
RSX-11M
Utilities Procedures Manual

Order No. DEC-11-0MUPA-B-D

RSX-11M
Utilities Procedures Manual

Order No. DEC-11-0M UPA-B-0

RSX-llM Version 2

digital equipment corporation · maynard. massachusetts

First Printing, November 1974
Revised, September 1975

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance to the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
Digital.

Copyright @ 1974, 1975 by Digital Equipment Corporation

The HOW TO OBTAIN SOFTWARE INFORMATION pages, located at the back of
this document, explain the various services available to Digital soft
ware users.

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECOS
UNIBUS
COMPUTER LABS
COM TEX
DDT
DECCOMM

Contract No.

DECsystem-lo
DECtape
DIBOL
EDU SYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8

LIMITED RIGHTS LEGEND

MASS BUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-11

Contractor or Subcontractor: Digital Equipment Corporation

All the material contained herein is considered limited rights data
under such contract.

PREFACE

0.1
0.2
0.3

CHAPTER 1

1.1
1. 2
1. 2 .1
1. 2. 2
1.3
1. 3 .1
, JI
..L. ~

1. 5

CHAPTER 2

2.1
2.2
2.3
2.3.l
2.3.2
2.3.3
2.3.4
2.3.4.1
2.3.4.2
2.3.5
2.4
2.4.1
2.4.2

2.4.3
2.4.4
2.4.5
2.4.6
2.4.7
2.4.8
2.4.9
2.4.10
2.4.11
2.4.12
2.4.13
2.4.14
2.4.15
2.5
2.6

CONTENTS

MANUAL OBJECTIVES AND READER ASSUMPTIONS
STRUCTURE OF THE DOCUMENT
ASSOCIATED DOCUMENTS

INTRODUCTION

RSX-llM UTILITY PROGRAMS
INITIATING RSX-llM UTILITIES
Initiating of Installed Utilities
Initiation of Uninstalled Utilities
RSX-llM UTILITY COMMAND STRINGS
Conunand Format Conventions
INDIRECT FILES
SYSTEM-WIDE CONVENTIONS

PERIPHERAL INTERCHANGE PROGRAM (PIP)

INTRODUCTION TO PIP
INITIATING PIP
PIP COMMAND STRING
Lists of File Specifiers
Defaults in File Specifiers
PIP Conunand Switches and Subswitches
Asterisk Convention - Wild Cards
Wild Cards in Output File Specifiers
Wild Cards in Input Specifiers
File Identification Option
PIP COMMANDS
APPEND Conunand (/AP)
COPY Conunand (No Switch) and MERGE Conunand
(/ME)
DEFAULT Conunand (/DF)
DELETE Conunand (/DE)
ENTER Conunand (/EN)
FREE Conunand (/FR)
IDENTIFY Conunand (/ID)
LIST Conunand (/LI)
PROTECT Conunand (/PR)
PURGE Conunand (/PU[:n])
REMOVE Conunand (/RM)
RENAME Conunand (/RE)
SPOOL Conunand (/SP)
UNLOCK Conunand (/UN)
UPDATE Conunand (/UP)
PIP ERROR MESSAGES
PIP ERROR CODES

iii

Page

xi

xi
xi
xiii

1-1

1-1
1 ... 2
1-2
1-3
1-4
1-6
1-7
1-8

2-1

2-1
2-1
2-1
2-2
2-2
2-3
2-4
2-4
2-5
2-5
2-6
2-7

2-8
2-12
2-13
2-15
2-16
2-16
2-17
2-21
2-24
2-25
2-26
2-28
2-29
2-30
2-31
2-41

CHAPTER 3

3.1
3.2
3.3
3.4
3.5
3.5.1
3.5.2
3.5.3
3.6
3.6.1
3.6.2
3.6.3
3.7
3.7.1
3.7.2
3.7.2.1
3.7.2.2
3.8
3.9
3.9.1
3.9.2
3.9.3
3.10

CHAPTER 4

4.1
4.2
4.3
4.4
4.5

CHAPTER 5

5.1
5.2
5.2.1
5.2.2
5.2.2.1
5.2.3
5.2.4
5.2.5
5.2.5.1
5.2.5.2
5.2.5.3
5.2.6
5.2.6.1
5. 2. 6. 2
5.2.7
5.2.7.1
5.2.7.2

CONTENTS (Cont.)

FILE TRANSFER PROGRAM (FLX)

INTRODUCTION TO FLX
INITIATING FLX
FLX COMMAND STRING
FILE TRANSFERS
DOS VOLUME DIRECTORY MANIPULATION
DOS Directory Listings
Deleting DOS Files
Initializing DOS-11 Volumes
RT VOLUME DIRECTORY MANIPULATION
RT Directory Listings
Deleting RT Files
Initializing RT-11 Volumes
FLX CASSETTE SUPPORT
Cassette File Formats
Multi-Volume Cassette Support
FLX Output Files
FLX Input File
FLX PAPER TAPE SUPPORT
FLX SWITCHES
Format Mode Switches
Transfer Mode Switches
File Control Switches
FLX ERROR MESSAGES

FILE DUMP UTILITY (DMP)

INTRODUCTION TO DMP
INITIATING DMP
DMP COMMAND STRINGS
DMP SWITCHES
DMP ERROR MESSAGES

LINE TEXT EDITOR (EDI)

INTRODUCTION
USING EDI
Preparing to Run EDI
Initiating EDI
Defaults in File Specifiers
EDI Control Modes
Changing Control Mode
Text Access Modes
Line-by-Line Mode
Block Mode
Line-by-Line Vs. Block Mode
Text Files
Input and Secondary Files
Output Files
Terminal Conventions
Carriage Return
Character Erase (RUBOUT) and Line Delete
(CTRL U)

iv

Page

3-1

3-1
3-2
3-2
3-2
3-3
3-3
3-3
3-3
3-3
3-3
3-4
3-4
3-5
3-5
3-9
3-9
3-10
3-10
3-11
3-11
3-13
3-15
3-20

4-1

4-1
4-2
4-2
4 ... 2
4-5

5-1

5-1
5-1
5-1
5-2
5-3
5-4
5-4
5-5
5-5
5-5
5-6
5-6
5-7
5-7
5-7
5-7

5-7

5.2.8
5.2.8.1
5.2.8.2
5.3
5.3.l

5.3.2
5.3.3
5.3.4
5.4
5.4.1
5:4:1=1
5.4.1.2
5.4.2
5.4.3
5.4.3.1
5.4.3.2
5.4.3.3
5.4.3.4
5.4.3.5
5.4.3.6
5.4.3.7
5.4.3.8
5.4.3.9
5.4.3.10
5.4.3.11
5.4.3.12
5.4.3.13
5.4.3.14
5.4.3.15
5.4.4
5.5
5.5.1
5.5.1.1
5.5.1.2
c:: c:: , "}
.J•.Je.L.eJ

5.5.1.4
5.5.1.5
5.5.1.6
5.5.1.7
5.5.1.8
5.5.1.9
5.5.1.10
5.5.2
5.5.2.1
5.5.2.2
5.5.2.3
5.5.3
5.5.3.1
5.5.3.2
5.5.3.3
5.5.3.4
5.5.3.5
5.5.3.6
5.5.3.7
5.5.3.8
5.5.3.9

CONTENTS (Cont.)

EDI Command Conventions
Use of *
Search String Constants
EDI ERROR REPORTING
Command Level Informational and Error
Messages
File Access Warning Messages
Error Messages Requiring EDI Restart
Fatal Error Messages
BASIC EDI OPERATION AND COMMANDS
Basic EDI Operations
Creating a File
Entering Text Into a File
Editing a File
Basic EDI Commands
ADD Command
ADD AND PRINT Command
CHANGE Cornmand
CTRL/Z Cornmand
DELETE Command
DELETE AND PRINT Command
EXIT Command
INSERT Cornmand
LOCATE Command
NEXT Cornmand
NEXT PRINT Command
PRINT Command
RENEW Command
RETYPE Command
TOP OF FILE Command
Sample Editing Session
EXTENDED EDI COMMANDS
Setup Commands
BLOCK ON/OFF Command
CONCATENATION CHARACTER Command
OPENS Cornmand
OUTPUT ON/OFF Command
SELECT PRIMARY Command
SELECT SECONDARY Command
SIZE Command
TAB ON/OFF Command
UPPER CASE ON/OFF Command
VERIFY ON/OFF Command
EDI Input/Output Commands
FILE Command
READ Command
WRITE Command
Line Pointer Control (Locative) Commands
BEGIN Command
BOTTOM Command
END Command
FIND Command
OLDPAGE Command
PAGE Comrnand
PAGE FIND Command
PAGE LOCATE Command
SEARCH AND CHANGE Command

v

Page

5-8
5-8
5-8
5-9

5-9
5-9
5-9
5-10
5-10
5-10
5-10
5-11
5-11
5-13
5-15
5-15
5-15
5-16
5-16
5-17
5-18
5-18
5-19
5-19
5-20
5-20
5-22
5-22
5-22
5-23
5-23
5-23
5-25
5-25
5-26
5-26
5-27
5-28
5-29
5-29
5-30
5-31
5-31
5-32
5-32
5-33
5-34
5-36
5-36
5-36
5-37
5-37
5-38
5-38
5-39
5-39

5.5.3.10
5.5.4
5.5.4.1
5.5.4.2
5.5.4.3
5.5.4.4
5.5.4.5
5.5.4.6
5.5.4.7
5.5.4.8
5.5.4.9
5.5.4.10
5.5.4.11
5.5.4.12
5.5.4.13
5.5.4.14
5.5.5
5.5.5.1
5.5.5.2
5.5.5.3
5.5.5.4
5.5.5.5
5.6
5.6.1
5.6.2
5.6.3
5.6.4

CHAPTER 6

6.1
6.2
6.2.1
6.2.2
6.2.3
6.3
6.4
6.4.1
6.4.2
6.5
6.6
6.7
6.7.1
6.8
6.8.1
6.8.2
6.9
6.10

CHAPTER 7

7.1
7 .1.1
7 .1. 2
7 .1. 3
7 .1. 4
7 .1. 5

CONTENTS (Cont.)

TOP Command
Text Modification and Manipulation Commands
ERASE Command
FORM FEED Command
LINE CBANGE Command
LIST ON TERMINAL Command
LIST ON PSEUDO-DEVICE Command
MACRO Command
MACRO CALL Command
MACRO EXECUTE Command
MACRO (IMMEDIATE) Command
OVERLAY Command
PASTE Command
SAVE Command
TYPE Command
UNSAVE Command
EDI Close Operation Commands
CLOSE Command
CLOSES Command
CLOSE AND DELETE Command
EXIT AND DELETE Command
KILL Command
EDI ERROR MESSAGES
Corrunand Level Informational and Error Messages
File Access Warning Messages
Error Messages Requiring EDI Restart
Fatal Error Messages

SOURCE LANGUAGE INPUT PROGRAM (SLP)

INTRODUCTION TO SLP
PREPARING TO RUN SLP
Capabilities
Environment
Restrictions
INITIATING SLP
SLP STARTUP
Defaults in File Specifiers
Examples of SLP Initialization
SLP OUTPUT CONTROL SWITCHES
SLP OUTPUT FILES
SLP EDIT COMMANDS
SLP Edit Control Characters
INDIRECT FILES
Creating an Indirect File
Using Indirect Files
SLP EDITING EXAMPLES
SLP ERROR MESSAGES

LIBRARIAN UTILITY PROGRAM (LBR)

INTRODUCTION TO LBR
Format of Library Files
Library Header
Entry Point Table
Module Name Table
Module Header

vi

Page

5-40
5-40
5-42
5-43
5-43
5-43
5-44
5-44
5-45
5-46
5-47
5-47
5-48
5-48
5-49
5-50
5-50
5-51
5-51
5-51
5-52
5-52
5-52
5-52
5-58
5 59
5-62

6-1

6-1
6-1
6-1
6-1
6-2
6..,.2
6-2
6-3
6-3
6-4
6-4
6-6
6-6
6-8
6-8
6-9
6-9
6-12

7-1

7-1
7-1
7-2
7-2
7-4
7-4

7.2
7.3
7.4
7.5
7.5.1
7.5.2
7.5.3
7.5.4
7.5.5
7.5.6
7.5.7
7.5.8
., c. a
'•-'·~

7.5.10
7.5.11
7.6
7.7
7.8
7.8.1
7.8.2

CHAPTER 8

8.1
8.2
8.3
8.3.1
8.4
8.4.1
8.4.1.1
8.4.1.2
8.4.1.3
8.4.1.4
8.4.1.5
8.4.2
8.4.3
8.4.4
8.4.5
8.4.6
8.4.7
8.4.8
8.5
8.6

APPENDIX A

A.l
A. 2
A. 3
A. 4
A. 5
A. 6
A. 7
A.8

CONTENTS (Cont.)

INITIATING LBR
LBR COMMAND STRING
DEFAULTS IN LBR FILE SPECIFIERS
LBR FILE OPTION SWITCHES
Compress Switch (/CO)
Create Switch (/CR)
Delete Switch (/DE)
Default Switch (/DF)
Delete Global Switch (/DG)
Insert Switch (/IN)
List Switches (/LI, /LE, /FU)
Replace Switch (/RP)
Spool Switch (/SP}
Selective Search Switch (/SS)
Squeeze Switch (/SZ)
COMBINING LIBRARY FUNCTIONS
LBR CONSTRAINTS
LBR ERROR MESSAGES
Effect of Fatal Errors on Library Files
Error Messages

FILE STRUCTURE VERIFICATION UTILITY (VFY)

INTRODUCTION TO VFY
INITIATING VFY
VFY COMMAND STRING
Defaults in File Specifiers
VFY COMMAND SWITCHES
Validity Check
File Error Reporting
Files Marked-for-Delete
Deletion of Multiply Allocated Blocks
Elimination of Free Blocks
Recovering Lost Blocks
DELETE Switch (/DE)
UPDATE Switch (/UP)
REBUILD Switch (/RE)
FREE Switch (/FR)
LOST Switch (/LO)
LIST Switch (/LI)
READ CHECK Switch (/RC)
VFY ERROR MESSAGES
VFY ERROR CODES

COMMANDS AND SWITCHES

INTRODUCTION
PIP COMMAND SUMMARY
FLX COMMAND SUMMARY
DMP COMMAND SUMMARY
EDI COMMAND SUMMARY
SLP COMMAND SUMMARY
LIBR COMMAND SUMMARY
VFY COMMAND SUMMARY

vii

Page

7-5
7-5
7-5
7-7
7-7
7-9
7-11
7-12
7-13
7-14
7-15
7-17
7-23
7-23
7-24
7-26
7-27
7-27
7-28
7-28

8-1

8-1
8-2
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-8
8-9
8--9
8-10
8-11
8-12
8-12
8-12
8--13
9-14
8-16

A-1

A-1
A-1
A-3
A-5
A-5
A-12
A-13
A-14

APPENDIX

APPENDIX

INDEX

Figure

B

B.l

B.1.1
B. l. 2

B. l. 3

B. l. 4

B.2

B.2.1
B.2.2
B.3
B.3.1
B.3.2
B.3.3
B.3.4
B.4
B.4.1
B.4.2
B.4.3
B.4.4

c

C.l
C.2
C.3
C.4

2-J

2-2

2-3
2-4
2-5
2-6

3-1
3-2
3-3
3-4
7-1
7-2
7-3

CONTENTS (Cont .)

LBR, EDI AND DMP EXAMPLES

SAMPLE LISTINGS FOR LBR LIST SWITCHES
(OBJECT LIBRARY)
List Module Names
List Module Names and Full Module
Information
List Module Names, Full Module Information
and Module Entry Points (Global Symbols)
List Module Names and Module Entry Points
(Global Symbols)

SAMPLE LISTING FOR LBR LIST SWITCHES
(MACRO LIBRARY)
List Module Names
List Module Names and Full Module Information
SAMPLE EDITING OPERATIONS
File Editing Sample
SAVE and UNSAVE Example
Use of Immediate Macro Command
Use of Macro Commands
SAMPLE DMP LISTINGS
Use of /LB Switch
"Standard" Command Line
Dump Only the Header from SYSGEN.CMD
Use of /BA Switch

RSX-llM PRINT SPOOLER TASK

RECEIVE QUEUE OPERATION
TEXT REQUIREMENTS
TASK BUILD INFORMATION
PRT ERROR MESSAGES

Page

B-1

B-1
B-1

B-2

B-3

B-7

B-13
B-13
B-14
B-15
B-16
B-20
B-23
B-24
B-26
B-26
B-26
B-28
B-28

C-1

C-1
C-1
C-2
C-3

Index-1

FIGURES

Results of COPY Command With and Without
/NV Specified
Sample Directories Before and After
Execution of /EN Command
Directory Listing Examples
Format of Protection Word
Use of Purge Switch
Results of Rename Command With and Without
/NV Specified
DEC Standard Cassette File Structure
DEC Standard Cassette File Label
DOS Directory Listings
RT Directory Listing
General Library File Format
Contents of Library Header
Formal of Ent.ry Point Table Element

viii

Page

2-12

2-16
2-20
2-23
2-25

2-28
3-6
3..,.7
3-18
3-19
7-2
7-3
7-4

Table

7-4
7-5
7-6
7-7

7-8

7-9

7-10

8-1
C-1

2-1
2-2
2-3
2-4
2-5
') 1
..J-.L

3-2
3-3
4-1
5-1
5-2
5-3
5-4
5-5
5-6
5-7

5-8
6-1
6-2
6-3
7-1
7-2
8-1
8-2
8-3

CONTENTS (Cont.)

FIGURES (Cont.)

Format of Module Name Table Element
Module Header Format
Sample Files Used in LBR Examples
Output Library File After Execution of
Example 1
Output Library File After Execution of
Example 2
Output Library File After Execution of
Example 3
MACRO Listing Before and After Running
LBR with /SZ Switch
VFY Listing Sample Using the /LI Switch
PRT Send Data Buff er Format

TABLES

PIP Default File Specifiers
PIP Functions and Commands
PIP COPY and MERGE Command Subswitches
LIST Command Switches
PIP Error Codes
FLX Format r.1ode CT" • ..,...; .+-,...'J,....""",...

.JVV ..L '-\,,....J.1C::U

FLX Transfer Mode Switches
FLX File Control Switches
DMP Switches
EDI Default File Specifiers
Line-by-Line vs. Block Mode
Basic EDI Commands
EDI Setup Commands
EDI Input/Output Commands
EDI Locative Commands
EDI Text Modification and Manipulation
Commands
EDI Close Operation Commands
Defaults in SLP File Specifiers
SLP Output Control Switches
SLP Edit Control Characters
Defaults in LBR File Specifiers
LBR File Option Switches
VFY Default File Specifiers
VFY Functions and Switches
VFY Error Codes

ix

Page

7-4
7-5
7-20

7-21

7-21

7-22

7-26
8-13
C-2

Page

2-2
2-6
2-10
2-18
2-41
3-12
3-13
3-15
4-3
5-4
5---6
5-14
5-24
5-32
5-35

5-41
5-50
6-3
6-5
6-7
7-6
7-7
8-4
8-4
8-17

PREFACE

O~l MANUAL OBJECTIVES AND READER ASSUMPTIONS

The goal of this manual is to describe the utility programs supplied

with the RSX-llM and to provide all the information necessary to use

these programs. Within the RSX-llM utility program set, programs are

provided to perform the following functions:

File transfer
File conversion
File listing
Interactive context editing
Batch-oriented editing
Library maintenance
File structure verification
on Files-11 disk volumes.

It is assumed the reader is familiar with the PDP-11 computer, its

peripheral devices and the software supplied with the RSX-llM system.

Users of this manual should be also familiar with the RSX-llM Operator's

Procedure Manual which provides supporting information necessary for

the full utilization of the RSX-llM utilities.

This manual is organized and written as a reference manual and our

reader class assumptions require a system programmer level of exper

tise; thus, the manual will not contain definitions of data processing

terms and concepts familiar to this level of expertise.

0.2 STRUCTURE OF THE DOCUMENT

This document contains an intr0<1uctory chapter which provides general

operating information and a separate chapter for each utility program,

containing specific operating information.

Chapter 1 describes the procedures required for initiating the utility

programs, defines command formats and command strings, and identifies

system-wide conventions.

xi

Chapter 2 details the Peripheral Interchange Utility Program (PIP), a

file transfer progrfiltn

Chapter 3 details the File Transfer Utility program (FLX), a file con

version program.

Chapter 4 describes the File Dump Utility program (DMP), a file listing

program.

Chapter 5 contains detailed information on the Line Text Editor Utility

program (EDI), an interactive context editing program.

Chapter 6 details the Source Language Input Utility program (SLP), a

batch-oriented editing program.

Chapter 7 describes the Librarian Utility Program, a library mainte

nance program.

Chapter 8 details the File Structure Verification Utility program

(VFY), a file structure verification program for Files-11 disk volumes.

Appendix A contains a command summary for each utility.

Appendix B contains sample LBR and DMP listings, and EDI examples.

Appendix C contains a description of the print spooler task.

Throughout this manual the following conventions are used to describe

examples and command string formats:

a._)indicates a carriage return

b.G}indicates ALTMode or ESCape key

c. In examples, messages which are typed out by the system,
are underlined.

d. In all cases, except where [UIC] is specified, brackets
signify optional parameters.

e. ~ indicates a space.

Additional conventions and definitions are given in Chapter 1.

xii

0.3 ASSOCIATED DOCUMENTS

Other manuals closely allied to the purposes of this document are

described briefly in the RSX-llM/RSX-llS Documentation Directory,

Order No. DEC-11-0MUGA-B-D. The Documentation Directory defines the

intended readership of each manual in the RSX-llM/RSX-llS set and

provides a brief synopsis of each manual's contents.

xiii

CHAPTER 1

INTRODUCTION

1.1 RSX-llM UTILITY PROGRAMS

RSX-llM provides the user with a comprehensive set of utility
programs. The utility programs and their identifiers are as follows:

• Peripheral Interchange Utility Program (PIP)
PIP is a file transfer program that provides the user with
facilities for copying, renaming, listing, deleting, and
unlocking files.

• File Transfer Utility Program (FLX)
FLX is a file conversion program that provides the user with
a facility for transferring DOS-11 or RT-11 files to Files-11
volumes and vice versa.

• File Dump Utility Program (DMP)
DMP is a file listing program that provides the user with a
facility for obtaining a printed copy of the contents of
files.

• Line Text Editor Utility Program (EDI)
EDI is an interactive context editing program that provides
the user with a facility for creating and maintaining text
files.

• Source Language Input Utility Program (SLP)
SLP is a batch-oriented editing program that provides the
user with a facility for creating and maintaining text files
on disk.

• Librarian Utility Program (LBR)
LBR is a library maintenance program that provides the user
with a facility for creating, modifying, updating, listing,
and maintaining library files.

• File Structure Verification Utility Program (VFY)
VFY is a disk verification program that provides the user
with a facility for verifying the consistency and validity of
the file structure on a Files-11 volume.

1-1

INTRODUCTION

1.2 INITIATING RSX-llM UTILITIES

There are six methods for initiating RSX-llM utility programs. These
methods are described below. The first four methods apply when the
utility program is installed and ready to be executed. The remaining
two cause the utility program to be installed, executed, and then
removed on exit.

NOTE

The RSX-llM systems provided in the
distribution kit require that all
utilities be initiated via methods five
and six. However, using the INSTALL MCR
Command (see RSX-llM· Operator's
Procedures Manual), the user can
permanently install the utility programs
in his system and thus make the first
four methods of initiation available.

1.2.1 Initiation of Installed Utilities

Method 1.

Method 2.

Method 3.

Lutilityname command string_)
loads, executes the specified command(s), and exits.

Lutil i tyname..J
responds with the following prompt.

utilityname>

At this point, the user enters the utility command
string to execute the desired function.

When the utility has completed processing a command
string it again issues a prompt. The user can either
enter another command string or enter a CTRL/Z* to
terminate the utility.

2.RUN •.• util i tyname..)
responds with the following prompt:

util i tyname>

At this point, the user enters the utility command
string to execute the desired function.

* CTRL/Z is entered by holding down the CTRL key while simultaneously
depressing the z key.

1-2

Method 4.

INTRODUCTION

When the utility has completed processing a command
string, it again issues a prompt. The user can
either enter another command string or enter CTRL/Z
to terminate the utility.

~RUN ... util i tyname/UIC= [group ,member]__)

The UIC under which the utility executes is explicity
specified for this run only. Normally, utility
programs execute with the default UIC associated with
the initiating terminal (see SET /UIC MCR command
described in RSX-llM Operator's Procedures Manual).
When the utility is loaded, it issues the following
prompt:

util i tyname>

At this point! the user enters the utility command
string to execute the desired function.

When the utility has completed processing a comman~
string, it again issues a prompt. The user can
either enter another command string or enter CTRL/Z
to terminate the utility.

NOTE

Methods 3 and 4 should not be used on
multi-user RSX-llM systems.

1.2.2 Initiation of Uninstalled Utilities

Method 5.

Method 6.

>RUN $utilitvname_)
causes the utility to be installed and loaded, and to
issue the following prompt:

util i tyname>

At this point, the user enters the utility command
string to execute the desired function.

When the utility has completed processing a command
string, it again issues a prompt. The user either
enters another command string to execute the desired
function or enters CTRL/Z to cause the utility to
exit. After exiting, the utility is removed from the
system.

~RUN $utilityname/UIC=[group,member]_.J

1-3

INTRODUCTION

The UIC under which the utility executes is explicity
specified for this run only. Normally, utility
programs execute with the default UIC associated with
the initiating terminal (See SET /UIC MCR command
described in the RSX-llM Operator's Procedures
Manual). When the utility is installed and loaded,
it issues the following prompt:

utilityname>

At this point, the user enters the utility command
string to execute the desired function.

When the utility has completed processing a command
string, it again issues a prompt. The user either
enters another command string to execute the desired
function or enters CTRL/Z to cause the utility to
exit. After exiting, the utility is removed from the
system.

1.3 RSX-llM UTILITY COMMAND STRINGS

Commands to RSX-llM utilities are expressed in the following format:

outflespc-1, ..• ,outflespc-n=inflespc-l, ... ,inflespc-n

or

@indirect

where:

outflespc

inflespc

is an output file specifier.

is an input file specifier.

Any number of file specifiers is possible, the actual
number being determined by the task which will use
the file command string. In no case, however, can
the total length of the command string exceed the
maximum line length (80 characters).

Each file specifier (whether input or output) has the
following format:

dev: [g,m]filename.typ;ver/sw ... /sw

where:

dev: is the physical device on which the
volume containing the desired file is
mounted; for example, DKO: or DTl:.
The name consists of 2 ASCII characters

1-4

INTRODUCTION

followed by an optional 1- or 2-digit
(octal) unit number and a colon.

[g,m] is the user identification code (UIC),
consisting of a group number and a
member number, associated with the user
file directory (UFO} containing the
desired file.

filename is the name of the file. In RSX-llM, a
filename can be up to nine alphanumeric
characters in length. Filename and
type are always separated by a period
(.) .

typ is a means of distinguishing among
forms of one file. For example, a
source FORTRAN program might be named
COMP.FTN, while the object code
associated with that program might be
called COMP.OBJ. File type and version
always are separated by a semicolon
(;). File type may be up to 3
alphanumeric characters.

ver is an octal number used to
differentiate among versions of a file.
For example, if a file is first created
using the editor, it is assigned a
version number of 1. If the file is
subsequently opened for editing, the
editor keeps the original file for
backup and creates a new file with the
same filename and type, but with a
version number of 2. Version is in the
range 0 thru 77777(8).

/sw is a 2-character ASCII name identifying
a switch option. The switch itself may
have three forms. If the switch
designator, for example, is SW, then:

/SW sets the switch
action;

/-SW, negates the
switch action,
and

/NOSW also negates
the switch
action.

In addition, the switch identifier may
be followed by any number of values.
The permitted values are ASCII strings,
octal numbers, and decimal numbers.

1-5

@indirect

INTRODUCTION

The default for a numerical value is
octal. Decimal values are terminated
by a decimal point. Values preceded by
a pound sign (#) are octal; the octal
option is included for use as explicit
documentation, since a numeric value
not terminated with a decimal point is
an octal value. Finally, any numeric
value may be preceded by a + or - sign;
plus is the default.

If explicit octal (#) is used, the sign
(if the sign is used) must precede the
(pound) sign. The following are
valid switch specifications:

/SW:27:MAP:29.
/-SW
/NOSW:-#SO:SWITCH

The number of permissible values and
the switch interpretations themselves
depend entirely on the particular task
to which they are directed.

is an indirect command file specifier in the
following format:

@dev: [g,m]filename.typ;ver

1.3.1 Command Format Conventions

Throughout this manual, the following conventions are used in
presenting command formats.

[] Entries within square brackets indicate optional items.
The use of such items may be for readability, e.g.,
BL[OCK]; or to denote repetition, e.g., [n].

[g,m]

EXCEPTION
~~--~-

The square brackets are REQUIRED when
specifying a User's Identification Code.

One or more spaces.

Underlined characters denote those displayed by the
system.

ABC Characters in upper case indicate constants, i.e.,
items the user must enter exactly as presented.

filespec A file specifier, i.e., dev:[g,m]filename.type;ver

1-6

dev

type

ver

[g ,m]

[uic]

@

I

INTRODUCTION

A device specifier, i.e., device name and unit number,
such as DKl:.

The file type, such as .CMD, .OBJ, or .OLB.

The version number of the file.

The User's Identification Code composed of two octal
numbers separated by a comma and surrounded by square
brackets. The left-hand number is the user's group
number; the right-hand number is the user's member
number.

Also used to indicate the User's Identification Code;
[uic] and [g ,m] are used intercha.ngeably in the RSX-llM
documentation.

Indicates an indirect file specifier follows.

Indicates that a command switch follows. If a minus
sign (-) or the letters NO are placed between the slash
(/) and the switch name, it denotes th~t the switch
action is negated.

1.4 INDIRECT FILES

An indirect file is a sequential file containing a list of commands
exclusive to, and interpretable by a single task, usually a
system-supplied component of RSX-llM, such as MACR0-11, the Task
Builder or a utility program.

Indirect files are initiated by replacing the file specification
command string required by a task with a filename string preceded by
an at sign (@).

Fo~ example; to initiate a file of MACR0-11 commands, the user would
input:

>MAC

After MACR0-11 is initiated, it accesses the file INPT.CMD for all its
commands.

An indirect file may contain any command interpretable by the task to
which it is directed, but no others.

Indirect files may not contain indirect file references (i.e., only
one level of command file indirection is permitted).

A complete description of indirect files for use with MCR is contained
in the RSX-llM Operator's Procedures Manual.

1-7

INTRODUCTION

NOTES

1. The default file type for
command files is .CMD.

2. Other default values for
command file specifiers are:

dev SYO:

indirect

indirect

[uic] The UIC under which
the specified utility
is running.

filename No default.

type .CMD

ver Latest version

1.5 SYSTEM-WIDE CONVENTIONS

There are a number of system-wide conventions of which the user should
be aware.

1. The use of NO is the equivalent of a minus sign (-) in
specifying the negation of a switch, e.g.,

/NOSP is equivalent to /-SP

2. The alphanumeric file names and types are composed of the
letters A through Z and the numbers 0 through 9.

3. All numbers followed by a period (.) denote decimal numbers;
others are interpreted as octal numbers.

I-8

CHAPTER 2

PERIPHERAL INTERCHANGE PROGRAM (PIP)

2.1 INTRODUCTION TO PIP

The Peripheral Interchange Program (PIP) is an RSX-llM file utility
program that transfers data files from one standard Files-11 device to
another. PIP also performs simple control functions. The major
functions performed by PIP are:

• Copy files from one device to another

• Delete files

• Rename files

• List file directories

• Set the default device and UIC for PIP

• Unlock files

2.2 INITIATING PIP

All RSX-llM utility programs can be initiated in several ways. These
methods are described in Section 1.2. The methods for PIP are:

2PIP~

>PIP command string~

>RUN ... PIP__)

~RUN ... PIP/UIC=[group,member]_J

>RUN $PIP__}

>RUN $PIP/UIC=[group,member]_.)

2.3 PIP COMMAND STRING

All commands to PIP are issued by entering PIP command strings through
the initiating terminal. The format of the elements which comprise
PIP command strings differs for each command. Therefore, the command
string formats will be individually described in their respective
sections.

2-1

PERIPHERAL INTERCHANGE PROGRAM (PIP)

2.3.1 Lists of File Specifiers

All of the commands, except /IDENTIFY and /DEFAULT, accept a list of
file specifiers on which to operate. In all cases, the lists have the
property that the device, directory, filename, and type are propagated
down the list to provide defaults for missing fields in subsequent
file specifiers.

2.3.2 Defaults in File Specifiers

If any of the elements in the file specifier, except the filename and
type, are omitted, PIP uses a default. These default values are
listed in Table 2-1.

Element

dev:

[uic]

filename

.typ

;version

Table 2-1
PIP Default File Specifiers

Default Value

SYO: -- For first file specifier, the unit on
which the system disk is mounted, or the default
specified by the PIP /DF switch; otherwise, the
same as specified or assumed for previous file
specifier.

For first file specifier, the default UIC under
which PIP is running (usually (200,200]), the UIC
specified by the MCR SET command, or the default
specified by the PIP /DF switch; otherwise, the
same as specified or assumed for previous file
specifier.

No default for the first file specifier. For the
second through n file specifiers, the last
previously specified filename. An asterisk (wild
card) specification is valid (see Section 2.3.4).

No default for the first file specifier. For the
second through n file specifiers, the last
previously specified .typ. An asterisk (wild
card) specification is valid (see Section 2.3.4).

The default for input files is the most recent
version number. The default for output files is
the next higher version number, or, version one if
the file doesn't already exist in the output
directory. An exception is the PIP file delete
function that requires an explicit version number.

2-2

PERIPHERAL INTERCHANGE PROGRAM (PIP)

NOTE

A version number of ;-1 may be used to
specify the oldest version of a file. An
explicit version of ;O ~r may be
specified to signify the most recent
version.

2.3.3 PIP Command Switches and Subswitches

A switch. specification consists of a slash (/} followed by a
2-character switch name, and is optionally followed by a subswitch
name separated from the switch code by a slash. The subswitch itself
can have arguments which are separated from the subswitch by a colon
(:). If more than one subswitch is used, each is preceded by a slash.

When present, a switch must follow any file or UIC specification;
that is, a switch cannot appear before the filename, type, version, or
UIC of the file on which the switch is to operate. However, some
switches may be specified without any file specification at all.

Command switches are global, that is, they may be specified once for
an entire list of file specifiers, and may appear on either side of
the equal sign. For example:

stringl,string2,string3/DE

The /DE switch applies to all of the strings; the files described by
the file specifiers would be deleted.

Switch arguments are specified as octal, decimal, or alphabetic
characters, depending on the switch. These values are discussed in
detail in the sections which discuss the individual PIP commands.

Command subswitches are local, that is, they only apply to the file
specifier which immediately precedes them. In the following example,
the NEW VERSION subswitch is applied to a particular file (ASDG.MAC).
(The NEW VERSION subswitch is used with the RENAME command in this
example) :

*.SMP=PRTX.QRT,ASDG.MAC/NV,KG.BAC/RE

In this example, files PRTX.QRT and KG.BAC are renamed, but they
maintain their associated version numbers. File ASDG.MAC is also
renamed, but the version number is forced to one greater than the
latest version of file ASDG.SMP.

NOTE

If a subswitch is applied to the first
file specifier in a collection of file
specifiers, and no command switch has
been specified, PIP assumes that the
command with which the subswitch is
associated is the one requested, and the
entire list of files is treated as
though the command were actually

2-3

PERIPHERAL INTERCHANGE PROGRAM (PIP)

specified.

Example:

PIP>FILE1/GR:R/WO,FILE2/GR:RW._}

This command is equivalent to:

PIP>FILE1/GR:R/WO,FILE2/GR:RW/PR_}

This example would result in the
following file protection:

a. FILEl SYSTEM Unchanged
MEMBER Unchanged
GROUP Read access
WORLD No access

b. FILE2 SYSTEM Unchanged
MEMBER Unchanged
GROUP Read/write
WORLD Unchanged

2.3.4 Asterisk Convention - Wild Cards

access

PIP allows wild cards to be specified by means of an asterisk
character in the file specifier. The * character in one or more
fields of a file specifier stands for "all"; e.g., all files, types
or all versions. Wild card use, however, is restricted in some cases.
Sections 2.3.4.1 and 2.3.4.2 describe the allowable uses and
restrictions on wild cards for input and output files.

2.3.4.1 Wild Cards in Output File Specifiers - Use of wild cards in
the output file specifiers is very restricted. In the following types
of command actions, the output file specifier may not have any wild
cards:

• Copying a single file

• Concatenating files to a specified file

• Appending to an existing file

• Updating (rewriting) an existing file

• Listing a directory

When a list of files is to be copied, the output specifier must be
.;* or default.

For the RENAME and ENTER commands, the output specifier may have wild
cards mixed with specified fields. Furthermore, a wild card field may
optionally be left null. In either case, the equivalent field of the
input file specifier is used.

In all cases where wild cards are allowed in the output file

2-4

PERIPHERAL INTERCHANGE PROGRAM (PIP)

specifier, the wild card UIC form [*,*] (but not [n,*] or [*,n]) may
be used to indicate that the output UIC is to be the same as the input
UIC.

2.3.4.2 Wild Cards in Input Specifiers - The following
features are provided for input file specifiers:

• *.*;* means all versions of all files .

wild

• *.DAT;* means all versions of all files of type DAT .

card

• TEST.*;* means all versions and all types of files named
TEST.

• TEST.DAT;* means all versions of file TEST.DAT .

• *·* means the most recent version of all files .

• *.DAT means the most recent version of all files with type
DAT.

• TEST.* means the most recent version of all types of files
named TEST.

• TEST.DAT means the most recent version of TEST.DAT .

The following wild card UIC features are also provided:

• [*,*] means all group, member number combinations (each from
1 to 377 octal);

• [nl,*] means all member numbers under group nl; and

• [*,n2] means all group numbers for member n2.

2.3.5 File Identification Option

Wherever a file specifier is used to describe an already existing
file, the /FI (file identification) option can be used. This option
allows the user to specify the file he wants to access by specifying
the device, unit, and its unique file identification number. This
file identification is assigned to the file at file creation time by
the RSX-llM system. Although the file identification number of a file
is normally invisible to the user, it can be obtained by using the PIP
FULL LIST command /FU. (Section 2.4.8 contains a description of the
LIST command). This will give the user a full or complete directory
listing of his files. The full list of his directory contains, among
other pertinent information about the file, its unique file
identification number. The user need only specify this number using
the /FI option to access his files. The /FI option is specified in
the following format:

/FI:nl:n2

where nl and n2 are the file number and file sequence number of the
file, respectively.

2-5

PERIPHERAL INTERCHANGE PROGRAM (PIP)

2.4 PIP COMMANDS

PIP commands are in the form of switches appended to optional file
specifiers. Command switches and functions are summarized in Table
2-2.

NOTE

Only one of the PIP command switches
listed in Table 2-2 can appear on a
command line. More than one subswitch
on a line is legal, as described in the
following command descriptions.

Table 2-2
PIP Functions and Commands

Command Switch Fune ti on

Append /AP

Copy No switch

Default /DF

Delete /DE

Enter

Free

Identify

List

Merge

Protect

Purge

Remove

Rename

Spool

Unlock

Update

/EN

/FR

/ID

/LI

/ME

/PR

/PU:n

/RM

/RE

/SP

/UN

/UP

Add files to the end of an existing file.

Copy a file.

Change PIP's default device or UIC.

Delete one or more files.

Enter a synonym for a file in a directory
file.

Print out available space on specified
volume.

Identify the version of PIP being used.

List a directory file.

Concatenate two or more files into one
file.

Change the protection of a file.

Delete obsolete version(s) of a file.

Remove a file entry from a directory.

Change the name of a file.

Specify a list of files to be printed and
deleted.

Unlock a file.

Rewrite an existing file.

2-6

PERIPHERAL INTERCHANGE PROGRAM (PIP)

2.4.1 APPEND Command (/AP)

FUNCTION

The APPEND command opens an existing file and appends the input
file(s) onto the end of it.

FORMAT

outfile=infile-l[,infile-2, ... ,infile-n]/AP[/FO]

where:

outfile is the output file specifier in the format:

inf ile

/AP

/FO

EXAMPLE

dev: [uic]filename.typ;ver[/AP] [/FO]

NOTES

1. No wild card specifiers are allowed in
the output file specifier.

2. The file type and record attributes are
taken from the existing file.

3. No defaults are allowed for the file
name or file type.

is the input file specifier in the format:

dev:[uic]filename.typ;ver/AP

NOTE

If filename, file type, and version are
null, then *.*;* is the default.

is the APPEND switch

is the Set File Ownership subswitch which
specifies that the owning UIC of the output file
corresponds to the directory into which the file
was entered. If the /FO subswitch is not
specified, the owning UIC of the new file is the
UIC under which PIP is running, regardless of the
directory into which the files were entered (see
COPY command for examples using /FO).

PIP>DKl:FILEl.DAT;l=FILE2.DAT;l,FILE3.DAT;l,FILE4.DAT;l/AP_J

FILEl.DAT;l on DKl: will be opened, and the contents of
FILE2.DAT;l, FILE3.DAT;l and FILE4.DAT;l will be appended to it.

2-7

PERIPHERAL INTERCHANGE PROGRAM (PIP)

2.4.2 COPY Command (No Switch) and MERGE Command (/ME)

FUNCTION

The COPY command is used to create a copy of a file on the same or
another device. The COPY command is the PIP default command, if an
implicit output file specifier is used and no command switch is
specified. When an explicit output file specifier and only one input
file specifier are contained in a command line, the PIP default
command is also COPY. The MERGE command is used to create a new file
from two or more existing files. If an explicit output file specifier
is used and more than one input file is named without an appended
switch, the MERGE command becomes the PIP default command.

FORMAT

outf ile

where:

outf ile

infile

infile-l[,infile-2, .•• ,infile-n]

is the output file specifier in the format:

dev: [uic]filename.type;ver/subswitch

NOTE

If the output filename, file type, and
version are either null or *.*;*, the
input filename, file type, and version
are preserved. See /NV and /SU
subswitches. If any of the output file
name, file type, or version fields is
present, none may be wild and there may
be only one input file specifier for a
COPY command.

is the input file specifier in the format:

dev: [uic]filename.type;ver/subswitch

NOTE

If the filename, file type, and
fields are all null, then *.*;*
default.

2-8

version
is the

PERIPHERAL INTERCHANGE PROGRAM (PIP)

EXAMPLES

1. PIP>DKl: SAMP. DAT=DK2: TEST. DAT__)

Copy the latest version of file TEST.DAT from DK2:
as SAMP.DAT.

2. PIP>DKl: [*,*]=DKO: [11,*]_.)

to DKl:

Copy all files from all members in group number 11 of DKO:
to DKl:, preserving the UIC.

3. PIP>LP:=*.LST__}

Copy the latest version of all files with a type of .LST to
the line printer.

4. PIP>DKl:SAMP.DAT=DK2:TEST.DAT;l,NEW.DAT;2/ME_.)

Concatenate version l of file TEST.DAT and version 2 of file
NEW.DAT from DK2: generating file SAMP.DAT on DKl.

5. PI P>DKl: =TESTPROG. MAC,. OBJ _J

Copy the latest versions of TESTPROG.MAC and TESTPROG.OBJ
from the system device to DKl:.

6. FIP>DKl:=DKO:*.DAT;*__J

Copy all versions of all of the files of the type DAT from
DKO: to DKl: .

7. PIP>DT0:=[200,10]*.*;*_.)

Copy all files under [200,10] from system device to DTO:.

8. PIP>DPO: [200,lO]=DTO:*.*_J

Copy all of user's files from DTO: to DPO: [200,10].

The optional subswitches described in Table 2-3 are used with both the
rnov ~nA MPD~P nnmm~nA~ "'"'L .&.. """'.&.&'-A J.."J..LLL'\.V.L.1 \,,....VlLULLt.l .. J.U ...:> e

2-9

Subswitch

/BL: n [.]

/CO

/-CO

/FO

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Table 2-3
PIP COPY and MERGE Command Subswitches

Description

NOTE

All of the subswitches below can appear on
either the output or input file specifier.
If the subswitch is placed on an input
file specifier, it pertains only to that
file. If the subswitch is placed on the
output file specifier, it pertains to the
entire list of input specifiers.

Blocks Allocated - This switch specifies the number
of contiguous blocks to allocate to the output file,
where n is an octal or decimal value (decimal values
must be followed by a decimal point). The /BL:n
switch is useful for copying a ~ontiguous file and
changing its size.

Contiguous Output - This switch causes the output
file to be contiguous.

Noncontiguous Output - This switch causes the output
file to be noncontiguous.

NOTE

If none of the above subswitches is
specified, PIP defaults to the size and
attributes of the input file.

Set File Ownership - This subswitch specifies that
the owning UIC of the output file corresponds to the
directory into which the file was entered. If the
/FO switch is not specified, the owning UIC of all
new files is the UIC under which PIP is running,
regardless of the directory in which the files were
entered. This subswitch can be used with both COPY
and MERGE commands.

If PIP is running under the UIC [1,1], the command:

DKO: [200,200]=DK1: [200,220]TEST.DAT

results in a new file being created in the [200,200]
directory on DKO: and the file being owned by UIC
[1,1].

However, the command:

DKO: [200,200]=DK1: [200,220]TEST.DAT/FO

2-10

PERIPHERAL INTERCHANGE PROGRAM (PIP}

Table 2-3 (Cont.}
PIP COPY and MERGE Command Subswitches

I Subswi tch Description

/SU

results in the output file being owned by UIC
[200,200].

Supersede - This switch allows the user to copy a
file of which the name, type, and version of the
file already exists in the specified output
directory file. The old file is deleted and
replaced with the specified input file.

New Version - This switch allows the user to force
the output version number of the file being copied
to the latest version plus one of the file already
in the output directory. If the file does not
already exist in the output directory, a version
of one is assigned. The results which occur when
the /NV switch is specified are depicted in Figure
2-1.

Examples Using /FO Subswitch

NOTE

When using the /FO subswitch, PIP must
be running under a UIC that has write
access to all output directories.

1. PIP>DKl: [*,*]/FO=DPO: [13,10], [32,10], [34,10]_.)

Copy all the files from the specified input directories to
the corresponding directories of DKl:, making the file owners
agree with the output directories.

2. PIP>DKl: [*:*J=DKO: f*,10]*.MAC/FO-==_)

Copy all the .MAC files from all group numbers with member
number 10 to DKl:, preserving the directory UIC and setting
the file owner for each file to the directory UIC.

2-11

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Directories Before COPY

INPUT DIRECTOFY OUTPUT DIRECTORY
c2.n, 2.in J [l~~, l~~J

RICK.DAT;! RICK.DAT;2

RICK.DAT;4

Directories After COPY Without /NV Switch Set
(version number preserved)

INPUT DIRECTORY OUTPUT DIRECTORY
[2,01, 2,Ll] [1,0,0, 1,0,0]

RICK.DAT;! RICK.DAT;2

RICK.DAT;4

RICK.DAT;!

The command used was:

DKl:[l,6,0,1,0,0] = DK2:[2~1,2~l]RICK.DAT;~

Directories After COPY With /NV Switch Set

INPUT DIRECTORY OUTPUT DIRECTORY
[2~1,2~Ll c1n,1nJ

RICK.DAT;! RICK.DAT;2

RICK.DAT;4

RICK.DAT;5

The command used was:

DKl:[l~~,l~~] = DK1:[2~1,2~l]RICK.DAT;l/N::>

NOTE

The version specified with the /NV sub
switch must be explicit or default; no
wild cards allowed.

Figure 2-1
Results of COPY Comma~d With and Without /NV Specified

2.4.3 DEFAULT Command (/DF)

FUNCTION

The DEFAULT command provides the user with a facility to change the
default device or UIC.

The normal default UIC is the UIC under which PIP is currently
running; that is, the UIC specified in the last MCR SET/UIC command,
or that specified with the /UIC switch in a RUN .•. PIP command.

2-12

PERIPHERAL INTERCHANGE PROGRAM (PIP)

NOTE

The /DF command alters only the default
UIC. It does not affect the UIC under
which PIP is running, nor does it
circumvent file protection.

The normal default device for PIP is SYO:.

FORMAT

dev: [group,member]/DF

where:

dev: if specified, is the new default device to be
applied to subsequent PIP command strings.

[group,member] if specified, is the new default UIC to be
applied to subsequent PIP command strings.

/DF is the DEFAULT command switch.

EXAMPLES

1. PIP>[27,27]/DF_}

Set the default UIC to [27,27].

2. PIP>DKl:/DF_}

Set the default device to DK!:.

3. PIP>DKl: [27,27]/DF./

Set the default device to DKl:, and the default UIC to
[27,27].

2.4.4 DELETE Command (/DE)

FUNCTION

The DELETE command provides the user with a facility to delete files.

FORMAT

infile-l[,infile-2, ... ,infile-n]/DE

where:

inf ile is the file specifier for the file to be deleted
in the format:

dev: [uic]filename.type;version/switch

2-13

/DE

EXAMPLES

PERIPHERAL INTERCHANGE PROGRAM (PIP)

NOTES

1. A version number must always be specified
when using the DELETE command switch.

2. When deleting files, a version number of
;-1 may be used to specify the oldest
version of a file. An explicit version of
;O or may be specified to signify the
most recent version.

Examples

a. PIP>TEST. DAT; -1/DE ~_)

Delete the oldest version
of file TEST.DAT

b. PIP>TEST1.DAT;O,TEST2.DAT;/DE~

Delete the latest version of
files TESTl.DAT and TEST2.D~T.

Wild cards in the filename or
fields are illegal when a
;-1, ;O, ~r ; is specified.

file type
version of

3. The file specifier must be issued because
a null filename, file type, and version
does not default to *.*;*.

4. The input file specifier can take all the
usual forms, including wild cards, even in
the group, member number [UIC]. The only
special requirement is that the version
number field must always be explicit or
"*" It cannot be defaulted to the most
recent version if wild cards are used.

is the DELETE command switch.

1. PIP>TEST. DAT; 5/DE ~

Delete version 5 of the file TEST.DAT in the default
directory on the default device.

2. PIP>TEST.DAT;l,;2/DE~_j

Delete versions 1 and 2 of file TEST.DAT in the default
directory on the default device.

3. PIP>*.OBJ;*,*.TMP;*/DE~

Delete all versions of all files of the type OBJ and TMP from
the current default directory on the default device.

2-14

PERIPHERAL INTERCHANGE PROGRAM (PIP)

2.4.5 ENTER Command (/EN)

FUNCTION

Tne ~NT~H command prov1aes ~ne facility to enter a synonym for a file
in a directory or directories, thus allowing the file to be Recessed
by more than one name. Also provided is a subswitch, New Version
(/NV), which allows the user to force the version number of the file
being entered into the directory to a number one greater than the
latest version for the file.

FORMAT

outfile=infile-l[,infile-2, •.. ,infile-n]/EN[/NV]

where~

outf ile

in file

/EN

/NV

is the file specifier to be given to the new
directory entry. The output file specifier has a
special property in that the filename, type, and
version are individually allowed to be explicit,
wild card (*) or defaulted (null). A name, type,
or version field that is either wild card (*) or
defaulted (null) means that the corresponding
~ield of the input file is to be used.

is the file specifier for the input file in the
format:

dev: [uic]filename.type~ver/sw[/subsw]

If no device is specified, in either the input or
output file specifier, then the current default
device is assumed to be the default device. If a
device is specified on either the input or output
side, that device is defaulted for the other side.
If both the input side and the output side
explicitly reference different devices, PIP will
flag this as an error and request that the line be
reentered.

The default input file specifier is

is the ENTER command switch.

is the New Version subswitch.

NOTE

The /NV subswitch may appear on either
side of the equal sign. If it appears
on the output side, all of the files
being entered will be forced to a
version number one greater than the
latest version of the file. If it
appears on the input side, only files
that have the /NV subswitch appended to
them will be forced to a number one
greater than the latest version.

2-15

* *·* . ' .

PERIPHERAL INTERCHANGE PROGRAM (PIP)

EXAMPLE

PIP>[l01,10l]TWIG/EN=[200,200]RICK.DAT;l_.}

Before

DIRECTORY [200,200] DIRECTORY [101,101]

RICK.DAT;l JEN.OBJ;2

LAU.OBJ;3

After

DIRECTORY [200,200] DIRECTORY (101,101]

RICK.DAT;l JEN.OBJ;2

LAU.OBJ;3

TWIG.DAT;l

NOTE

The directory items for RICK.DAT;l and
TWIG.DAT;l both reference the same file.

Figure 2-2
Sample Directories Before and After Execution of /EN Command

2.4.6 FREE Command (/FR)

FUNCTION

The FREE command provides the user with the ability to print out the
available space on a specified volume.

FORMAT

dev:/FR

The output from the /FR command is shown below.

dev: HAS nnnn. BLOCKS FREE, nnnn. BLOCKS USED OUT OF nnnn.

2.4.7 IDENTIFY Command (/ID)

FUNCTION

The IDENTIFY command allows the user to identify the version of PIP
being used.

2-16

FORMAT

/ID

EXAMPLE

PIP>/ID_)

PERIPHERAL INTERCHANGE PROGRAM (PIP)

NOTE

When this command
version number is
terminal as follows:

is invoked, the
listed on the input

PIP VERSION Mvvee

where:

vv is the version number.

ee is the edit number.

PIP VERSION Ml301

2.4.8 LIST Command (/LI)

FUNCTION

The LIST command provides the user with the facility to list one or
more directories. Also provided are three alternate mode switches
(/BR, /FU and /TB) which allow the user to specify a choice of
directory listing formats. These switches are described in Table 2-4.

FORMAT

[listfile]=infile-l[,infile-2, ..• ,infile7n]/LI [/switch]

where:

listfile

inf ile

is the listing file specifier in the format:

dev: [uic]filename.type;ver

If listfile is
defaults to TI: .

NOTE

not specified, it

is the input file specifier in the format:

dev: [uic]filename.typ;ver/switch

NOTE

The default for this file is * *·* . ' .

2-17

/LI

/switch

Switch

/BR

/FU[:n]

PERIPHERAL INTERCHANGE PROGRAM (PIP)

is the LIST command switch. This switch causes
the following information to be listed.

1. filename.type;version

2. number of blocks used (decimal)

3 • f il e code :

(null)
c
L

non-contiguous
contiguous
locked

4. creation date and time

are the alternate mode switches of the LIST
command described in Table 2-4.

Table 2-4
LIST Command Switches

Description

This switch specifies the brief form of
directory listing. This switch will cause
only the filename, type, and version to be
listed.

This switch specifies the full directory
format. This switch has an optional modifier
which allows the specification of the number
of characters to be printed on a line.

If specified, n is the number of characters
per line. If not specified, the number is
defaulted to (80.). This switch causes the
following information to be listed:

1. filename. type; version

2. file identification
format:

number in the

(file number, file sequence number)

3. number of blocks used/allocated (base
10)

4. file code

(null) = non-contiguous
C = contiguous
L = locked

5. creation date and time

2-18

Switch

/TB

PERIPHERAL INTERCHANGE PROGRAM (PIP}

Table 2-4 (Cont.)
LIST Command Switches

Description

6. owner UIC and file protection in the
format:

[group ,member]

[system,owner,group,world]

NOTE

These protection fields can
contain the values R,W,E,D.

where:

R Read access permitted
W Write access permitted
E Extend privilege permitted
D Delete privilege permitted

7. date and time of the last update
pius the number of revisions.

8. summary line:

The number of blocks used, the number of
blocks allocated, and the number of
files are printed.

The summary line is not printed when the
/BR switch is specified.

This switch specifies that the user wants only the I

summary line in the following format.

TOTAL OF nnnn./mmmm. BLOCKS IN xxxx. FILES

where:

nnnn blocks used

mmmm blocks allocated

xx xx number of files

NOTE

Figure 2-3 contains sample directory
listings in the various formats.

2-19

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Total Blocks (/TB) Format

STORAGE USED/ALLOCATED FOR DIRECTORY DK2:C200r270J
15-JUL-75 15:46

TOTAL OF 145./150. DLOCKS IN 5. FILES

Brief {/BR) Format

DIRECTORY DK2:c200,270J

CKTST.HAC;6
IOTST.HACf4
IOTST.TSK;1
CKTST.TSK;1
CKTST.HAC;7

Standard (/LI) Format

DIRECTORY DK2:C200r270J
15-JUL-75 15:46

CKTST.HAC;6 3.
IOTST.HAC;4 4.
IOTST. TSKH 69.
CKTST.TSKfl 69.
CKTST.HACP7 o.

15-JUL-75 15:39
15-JUL-75 15:39

c 15-JUL-75 15:39
c 15-JUL-75 15:40

L 15-JUL-75 15:40

TOTAL OF 145. BLOCKS IN S. FILES

Full {/FU) Format

DIRECTORY DK2lC200r270J
lS-JUL-75 15:46

CKTST~HACf6 (10r10)
C200r270JCRWEDrRWEDrRWEDrRJ

IOTST.HAc;4 <11r11)
C200,270J[RWED•RWED,RWEDrRJ

IOTST.TSK;l (7,12)
C200•270J[RWED•RWEDrRWEDrRJ

CKTST.TSK;1 <12,13>
[200r270JCRWEDrRWEDrRWEDrRJ

CKTST.MACP7 <13r14)
C200,270JCRWED,RWEDrRWED,RJ

3./3.

4./4.

69./69.

69.169.

o.;s.

TOTAL OF 145./150. BLOCKS IN S. FILES

Figure 2-3
Directory Listing Examples

2-20

15-JUL-75 15S39

15-JUL-75 1:5: 39

C 15-JUL-75 15:39

C 15-JUL-75 15:40

L 15-JUL-75 15:40

PERIPHERAL INTERCHANGE PROGRAM (PIP)

EXAMPLES

1. PIP>/LI.)

Equivalent to TI:=/LI
where the directory of the current default device and UIC is
listed.

2. PIP>LP:=[*,*]/FU:l32._.)

List, on the
listing) , all
device.

line printer, in full
of the directories on

format (132-column
the current default

3. PIP>TI:=TEST.DAT/FU.)

List on TI: the full directory listing {80-column) for the
latest version of TEST.DAT on the current default device and
directory.

4. PIP>JUL13.DIR=[200,200]*.*/LI__}

List the latest version of all files in directory [200,200]
on the current default device to file JUL13.DIR in the
default directory on the default device.

5. PIP>LP:=[ll,*]*.CMD;*/LI_J

List, on the line printer, all versions of all files of type
.CMD in all directories in group 11.

6. PIP>LP:/BR=[ll,11]*.CMD;*,*.DAT;*,*.MAC;l.)

List, on the line printer, in brief format, aii versions of
all files with a type of .CMD; all versions of all files
with a type of .DAT; and all files of type MAC with a
version number of 1. These files all reside in the directory
[11,11] on the current default device.

2.4.9 PROTECT Command (/PR)

FUNCTION

The PROTECT command provides the facility to alter the protection of a
file. File protection is provided for four categories as follows:

1. System - Specifies what categories of access the system UICs
are allowed to the file (all group numbers less than
or equal to 10 octal).

2. Owner - Specifies what categories of access the owner has
allowed himself.

3. Group - Specifies what categories of access other members in
the same group have.

4. World - Specifies what categories of access have been given
all UICs not covered above.

2-21

PERIPHERAL INTERCHANGE PROGRAM (PIP)

For each category, the user can specify whether that category can
Read, Write, Extend, or Delete the file.

NOTE

Only the owner or a system UIC can alter
the protection of a file.

FORMAT

infile-1/PR[/SY[:RWED]] [/OW[:RWED]] [/GR[:RWED]] [/WO[:RWED]] [/FO]

where:

inf ile

/PR

/SY,/OW,/GR,
AND /WO

is the file specifier for the file whose
protection is being changed, in the format:

dev: [uic]filename.type;ver/switch

NOTE

File specifier must be issued because a
null filename, file type, and version does
not default to *.*;*.

is the PROTECT command switch.

are the PROTECT command subswitches which allow
the user to specify the protection he wishes to
assign to a file. These subswitches allow the
user to specify which protection is to be altered
(others are left intact). The values which follow
the switch are any of the four letters R, W, E, D
(for read, write, extend, delete) in any order.
They specify which privileges the respective
categories can have. If the subswitch is present
and no value is given, then no privileges are
granted for that category.

The subswitches are identified as follows:

/SY is the system subswitch.
/OW is the owner subswitch.
/GR is the group subswitch.
/WO is the world subswitch.

NOTES

1. Protection can also be specified by
an optional octal value on the /PR
switch itself, in the format:

/PR:n

2-22

PERIPHERAL INTERCHANGE PROGRAM (PIP)

where n is the octal representation
of the protection to be assigned to
the file. This octal number is taken
as the new protection word. The
format of the protection word is
shown in Figure 2-4.

2. A new protection value may be set at
the same time as file ownership, or
file ownership alone may be changed.

/FO is the Set File Ownership subswitch which provides
the facility to set the ownership of a file to
that of the UIC of the directory in which it is
entered. A new protection value can be set at the
same time the file ownership is changed. If there
are files in the [200,200] directory _which are
owned by another UIC, the following command:

EXAMPLES

PIP> [2 0 0 , 2 0 0] * . * ; */PR/ FO _;

would cause all files to be owned by [200,200].

Directory Before Purge Directory After Purge

GARY;!

GARY;2

GARY;3

GARY;4

GARY;5

RICK;4

"R!""K. c:;

RICK;7

~ GARY/PU:3, RICK/PU:2) Q

GARY; 3

GARY;4

GARY;5

RICK;7

In the case of the- files named GARY; the 3 latest versions
(3, 4, and 5) are retained; versions 1 and 2 are deleted.
In the case of the files named RICK, since version 6 did not
exist, only version 7 is retained; and all existing versions
less than or equal to 5, i.e., versions 4 and 5, are deleted.

Figure 2-4
Format of Protection Word

1. PIP>TEST.DAT;S/PR/OW:RWE/GR:RWE:/WO~

Sets the protection so owner and group have RWE privileges
(not delete), world has no access privileges, and system
privileges are unchanged.

2. Rl.!2[*,*]*.*;*/PR:O_J

Sets the protection of all files so all categories are
granted all access privileges.

2-23

PERIPHERAL INTERCHANGE PROGRAM (PIP)

3. PIP>DKO: [*,*]*.*;*/PR/FO.}

Sets all file owners to correspond with the directories in
which they are entered.

2.4.10 PURGE Command (/PU[:n])

FUNCTION

The PURGE command provides the user with a facility to delete a
specified range of obsolete versions of a file.

FORMAT

infile-l[,infile-2, ... ,infile-n]/PU[:n]

where:

inf ile

/PU:n

is the file specifier for the file to be deleted
in the format:

dev: [uic]filename.type/switch

is the PURGE switch. The PURGE switch provides
the user with a convenient way to delete old
versions of files. If the optional value n is
specified and the latest version of the file is m,
then all existing versions greater than m-n are
retained and all existing versions less than or
equal to m-n are deleted (see Figure 2-5).
Although it is useful to think of this command as
deleting all but the n most recent versions, it is
important to understand that if any versions are
already deleted between m-n and m, then fewer than
n versions will be retained.

If the val~e n is omitted, PIP defaults to 1 and
all but the latest version of the file are
deleted. If n is greater than the number of
versions of the specified file, no files are
deleted.

NOTE

A version number is not required when
using the PURGE switch. When specified,
the version number field is ignored.

EXAMPLE

PIP>*.OBJ/PU,*.MAC/PU:2.J

Delete all but the highest version of all files with a type of
.OBJ, and delete all but the two highest versions of all files
with a type of .MAC.

2-24

PERIPHERAL INTERCHANGE PROGRAM (PIP)

15 12 11 8 7 4 3
Protection

word
WORLD I GROUP I OWNER I

/

/
/

/

;/2 1 0

(nlElwlR(

(bit set means NO access permitted.)

Example

TEST.DAT;5/PR:3

(bits 0 & 1 set)
deny write and read access to the system
for file TEST.DAT;S.

Figure 2-5
Use of Purge Switch

0
SYSTEM J

2.4.11 REMOVE Command (/RM)

FUNCTION

The REMOVE command allows the user to remove an entry from a directory
file. Unlike the DELETE command, the REMOVE command does not delete
the associated file; only the directory entry is removed. REMOVE is
particularly useful for getting rid of directory entries which, for
whatever reason, point to nonexistent files. It is also used to
delete synonyms generated using the ENTER command. lt an entry to an
existing file is removed, that file can only be located using the VFY
/LO switch (see Section 8.4.6).

FORMAT

infile-l[,infile-2, •.. ,infile-n]/RM

where:

inf ile is the file specifier for the directory file entry
to be removed in the format:

dev: [uic]filename.type;ver

NOTES

1. The file specifier must be issued
because a null filename, file type, and
version does not default to *.*;*.

2. The input file specifier allows full
wild card facilities, but has the
restriction that the version number
must be specified explicitly or as a
wild card.

2-25

PERIPHERAL INTERCHANGE PROGRAM (PIP)

/RM is the REMOVE command switch.

EXAMPLE

PIP>DKl: [l 0, 10] RICKSFILE. DAT; l/RM _)

Removes the file entry RICKSFILE.DAT;l from the directory [10,10)
on DKl:.

2.4.12 RENAME Command (/RE)

FUNCTION

The RENAME command provides the user with the facility to change the
name of a file. Also provided is a subswitch (/NV) which allows the
user to force the renamed file to be a version number one greater than
the latest version of the previously-existing file with the same name.

FORMAT

outfile=infile-l[,infile-2, ... ,infile-n]/RE[/NV]

where:

outfile

inf ile

is the file specifier to be given to the new file.
The output file specifier has a special property
in that the filename, type, and version are
individually allowed to be explicit, wild card (*)
or defaulted (null). A UIC, filename, type, or
version field that is either wild card (*) or
defaulted (null) means that the corresponding
field of the input file is to be used. Thus, the
rename command provides the facility to change one
or more fields while preserving the others. The
format of the output specifier is as follows:

dev: [uic]filename.type;ver/switch

is the file specifier of the file to be renamed.
The input file specifiers are standard and allow
wild cards in all fields, including UIC. This
specifier is entered in the following format:

dev: [uic]filename.type;ver/switch

1.

2.

NOTES

file type, and A null filename,
version defaults to * *·* . , .
Renaming files across devices is not
allowed. However, renaming across
directories on the same device is
allowed. Thus, it is possible to move
files out of one directory into
another, preserving the name, type,
and version, or changing them if
desired. This is permitted only if

2-26

/RE

/NV

EXAMPLES

PERIPHERAL INTERCHANGE PROGRAM (PIP)

PIP is running under a UIC which has
write privileges on each of the
directories involved.

3. If no device is specified in either
the input or output file specifier,
then the current default is assumed to
be the default device. If a device is
specified on either the input or
output side, that device is defaulted
for the other side. If both the input
side and the output side explicitly
reference different devices, PIP will
flag this as an error and request that
the line be reentered.

is the RENAME command switch.

is the New Version subswitch.

NOTES

1. The /NV subswitch allows the user to
force the version number of the
renamed file to a number one greater
than the latest version for the file.

2. The /NV subswitch may appear on either
side of the equal sign. If it appears
on the output side, all of the version
numbers of files being renamed will be
forced to a number one greater than
the latest version for the file. If
it appears on the input side, only the
file that has the subswitch appended
to it will have its version number
forced to a number one greater than
the latest version for the file.

1. PIP>TESTFILE.DAT;l=TEST.DAT;5/RE..)

File TEST.DAT;S is renamed TESTFILE.DAT;l.

2. PIP>BACKUP.*;*=TEST1.*;*,TEST2.*;*,TEST3.*;*/RE_)

Rename all versions of all files with the names TESTl, TEST2,
and TEST3 to BACKUP, preserving the type and version of each
file.

2-27

PERIPHERAL INTERCHANGE PROGRAM (PIP)

3 • p Ip> * . * ; 1 = * . * ; *I RE .)

Rename all of the latest copies of files to version 1.

CAUTION

There should only be one version of each
of these files.

4. PIP>[200,220]=[200,200]/RE.)

Rename all files from [200,200] to [200,220], preserving the
filename, type, and version of each file.

5. PIP>EXAMPLE.*;*=TEST.*;*/RE.J

Rename all versions of all files with the name TEST to the
name EXAMPLE, preserving the type and version of each file.

6. PIP>SAVE.DAT/RE/NV=OUTPUT.DAT;l.J

Rename OUTPUT.DAT;! and force the version number to one
greater than the latest version of SAVE.DAT. Figure 2-6
illustrates the results both with and without the /NV switch
set.

Directory Before Rename

SAVE.DAT;2
SAVE.DAT;3
SAVE.DAT;4
OUTPUT.DAT;l
OUTPUT.DAT;2

Directory After Rename Without /NV Switch Set

SAVE.DAT;2
SAVE.DAT;3
SAVE.DAT;4
SAVE.DAT;l
OUTPUT.DAT;2

Directory After Rename With /NV Switch Set

SAVE.DAT;2
SAVE.DAT;3
SAVE.DAT;4
SAVE.DAT;S
OUTPUT.DAT;2

Figure 2-6
Results of Rename Command With and Without /NV Specified

2.4.13 SPOOL Command (/SP)

FUNCTION

The SPOOL command allows the user to specify a list of files to be
printed asynchronously.

2-28

PERIPHERAL INTERCHANGE PROGRAM (PIP)

FORMAT

infile-l[,infile-2, ... ,infile-n]/SP

where:

inf ile

/SP

EXAMPLE

is the file specifier of the file to be spooled
for printing in the format:

dev: [uic]filename.typ;ver/SP

NOTES

1. File specifier must be issued because a
null filename, file-type, and version does
not default to *.*;*.

2. If the user specifies a file by its file
identification number, the file will be
printed. File identification numbers
(/FI) are discussed in Section 2.3.5.

3. The line printer symbiont task (PRT ...)
must be installed in the system { see
Appendix C for a description of the print
spooler) .

is the SPOOL command switch.

PIP>RICK1.LST;l,KATHY.LST;l,/FI:l2:22/SP_)

Spool the files RICKl.LST;l, KATHY.LST;l , and the file whose
file identification number is 12:22 for asynchronous printing.

2.4.14 UNLOCK Command (/UN)

FUNCTION

The UNLOCK command allows the user to unlock a file that was locked as
a result of being improperly closed. If a program using File Control
Services (FCS) has a file open with write access and exits without
first closing the file, the file will be locked against further access
as a warning that it may not contain proper information. Typically
the following information would not have been written to the file:

1. The current block buffer being altered.

2. The record attributes
information.

By using the UNLOCK command,
determine the extent of the
corrective action.

which

the user
damage,

2-29

contain the end-of-file

can access the file and
perhaps taking appropriate

PERIPHERAL INTERCHANGE PROGRAM (PIP)

FORMAT

infile-l[,infile-2, •.. ,infile-n]/UN

where:

infile

/UN

EXAMPLE

is the file specifier for the file to be unlocked,
in the format:

dev: [uic]filename.typ;ver/switch

NOTES

1. The file specifier must be given because a
null filename, file type, and version does
not default to *.*;*.

2. PIP must be running under the UIC of the
file owner or a system UIC.

is the UNLOCK switch

PIP>DKl: [100, 100] RIC Kl. OBJ; 3/UN _)

File RICK1.0BJ;3 in directory [100,100] of device DKl: is
unlocked.

2.4.15 UPDATE Command (/UP)

FUNCTION

The UPDATE command is similar to a COPY or MERGE command, except that
an existing file is opened and new data is written into it from the
beginning.

FORMAT

outfile=infile-l[,infile-2, ... ,infile-n]/UP[/FO]

where:

outf ile is the file specifier for the file to be rewritten
in the format:

dev: [uic]filename.type;ver

As in the MERGE and the APPEND commands, the
output file specifier must be explicit, i.e., no
wild cards are allowed.

NOTE

The characteristics and record attributes
of the output file are taken from the
first input file.

2-30

inf ile

/UP

/FO

EXAMPLE

PERIPHERAL INTERCHANGE PROGRAM (PIP)

is the file specifier for the file to be copied
into the file being rewritten in the format:

dev: [uic]filename.type;ver/switch

NOTE

A null filename, file type, and version
defaults to *.*;*.

is the UPDATE command switch.

is the Set File Ownership subswitch which
specifies that the owning UIC of the output file
corresponds to the directory into which the file
was entered. If the /FO switch is not specified,
the owning UIC of all new files is the UIC under
which PIP is running, regardless of the directory
into which the file was entered (see the COPY
command for examples using /FO) .

PIP>DKl:SAMPLE.DAT;l=TESTl.DAT;l,TEST2.DAT;l,TEST3.DAT;l/UP__}

The file SAMPLE.DAT;l on DKl: will be opened, and the contents
of files TESTl.DAT;l, TEST2.DAT;l and TEST3.DAT;l will replace
the data which already exists in the file.

2.5 PIP ERROR MESSAGES

Errors encountered by PIP during processing are reported to the user
in the following format:

PIP -- <main error message>

<filename or filespec> - <secondary error message>

The filename or filespec, if present, identifies the file or set of
files being processed when the error occurred. If the error was
detected by the operating system, file system, or device driver, the
secondary error message is included to explain the cause of the error.

PIP error messages are contained in message files on the system
device. If PIP cannot access the message files, errors are reported
in the following format:

PIP -- ERROR CODE nn.

<filename or filespec> - <Driver Code -mm.>

or

<QIO Error Code -gg.>

2-31

PERIPHERAL INTERCHANGE PROGRAM (PIP)

where:

nn

-mm

-qq

is one of the PIP error codes contained
in Table 2-5.

is one of the standard system, file
primitive, or file control service codes
listed in Appendix I of the RSX-11 I/O
Operations Reference Manual.

is one of the directive error codes
listed in Appendix I of the RSX-11 I/O
Operations Reference Manual.

The PIP error messages, their descriptions and suggested user actions
are as follows.

PIP ALLOCATION FAILURE - NO CONTIGUOUS SPACE

Description

Contiguous space available on the output volume is insufficient
for the file being copied.

Suggested User Action

Delete all files that are no longer required on the output
volume, and reenter the command line.

PIP -- ALLOCATION FAILURE ON OUTPUT FILE

or

PIP ALLOCATION FAILURE - NO SPACE AVAILABLE

Description

Space available on the output volume is insufficient for the file
being copied.

Suggested User Action

Delete all files that are no longer required on the output
volume, and reenter the command line.

PIP -- BAD USE OF WILD CARDS IN DESTINATION FILE NAME

Description

The user has specified a wild card "*" for an output filename
where use of a wild card is explicitly disallowed.

Suggested User Action

Reenter the command line with the proper output file explicitly
specified.

2-32

PERIPHERAL INTERCHANGE PROGRAM (PIP)

PIP -- CANNOT FIND DIRECTORY FILE

Description

The user has specified a UFD that does not exist on the specific
volume.

Suggested User Action

Reenter the command line, specifying the correct UIC.

PIP -- CANNOT FIND FILE(S)

Description

The file(s) specified in the command were not found in the
designated directory.

Suggested User Action

Check the file specifier and reenter the command line.

PIP -- CANNOT RENAME FROM ONE DEVICE TO ANOTHER

Description

The user has attempted to rename a file across devices.

Suggested User Action

Reenter the command line, renaming the file on the input
then, enter another command to transfer the file
originally intended volume.

PIP -- CLOSE FAILURE ON INPUT FILE

or

PIP -- CLOSE FAILURE ON OUTPUT FILE

Description

volume;
to the

For some reason, the input or output file cannot be properly
closed. The file will be locked to indicate possible corruption.

Suggested User Action

Reenter the command line. If the error recurs, run the validity
check of the file structure verfication utility {VFY} against the
volume in question to determine if it is corrupted. VFY is
described in Cha~ter 8.

PIP -- COMMAND SYNTAX ERROR

Description

The user has entered a command in a format that does not conform
to syntax rules.

2-33

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Suggested User Action

Reenter the command line with the correct syntax.

PIP -- DEVICE NOT MOUNTED

Description

The message is self-explanatory.

Suggested User Action

Mount the device, and reenter the command line.

PIP -- DIRECTORY WRITE PROTECTED

Description

PIP could not remove an entry from a directory because the device
was write-protected, or because of privilege violation.

Suggested User Action

Write enable the unit, or have the owner of the directory change
its protection.

PIP -- ERROR FROM PARSE

Description

The specified directory file does not exist.

Suggested User Action

Reenter the command line with the correct UIC specified.

PIP -- FAILED TO ATTACH OUTPUT DEVICE

or

PIP FAILED TO DETACH OUTPUT DEVICE

Description

An attempt to attach/detach a record-oriented output device has
failed. This is usually caused by the device being off-line or
not resident.

Suggested User Action

Ensure that the device is on-line and reenter the command line.

PIP -- FAILED TO DELETE FILE

or

2-34

PERIPHERAL INTERCHANGE PROGRAM (PIP)

PIP -- FAILED TO MARK FILE FOR DELETE

Description

The user has attempted to delete a protected file.

Suggested User Action

Request PIP under the correct UIC and reenter the command line.

PIP -- FAILED TO ENTER NEW FILE NAME

Description

The user has specified a file that already exists in the
directory filet or the user does not have the necessary
privileges to make entries in the specified directory file.

Suggested User Action

Reenter the command line, ensuring that the filename and UIC are
specified correctly, or request PIP under the correct UIC and
reenter the command line.

PIP -- FAILED TO FIND FILE(S)

Description

The file(s) specified in the command line were not found in the
designated directory.

Suggested User Action

Check the file specifier and reenter the command line.

PIP -- FAILED TO GET TIME PARAMETERS

Description

An internal system failure occurred while PIP was trying to
obtain the current date and time.

Suggested User Action

Reenter the command line. If the problem persists, consult
software support representative.

PIP -- FAILED TO OPEN STORAGE BITMAP FILE

Description

PIP could not read the specified volume's storage bit map,
usually because of a privilege violation.

Suggested User Action

Retry by running PIP under a system UIC, or have the system
manager change the protection on the storage bit map.

2-35

PERIPHERAL INTERCHANGE PROGRAM (PIP)

PIP -- FAILED TC READ ATTRIBUTES

Description

The user's volume is corrupted or the user does not have the
necessary privileges to access the file.

Suggested User Action

Ensure that PIP is running under the correct UIC. If the UIC is
correct, then run the validity check of the file structure
verification utility (VFY) against the volume in question to
determine where and to what extent the volume is corrupted. VFY
is described in Chapter 8.

PIP -- FAILED TO REMOVE DIRECTORY ENTRY

Description

PIP could not remove an entry from a directory because the unit
was write-protected, or a privilege violation was detected.

Suggested User Action

Write enable the unit, or have the owner of the directory change
its protection.

PIP -- FILE IS LOST

Description

PIP has removed a file from its directory, failed to delete it,
and failed to restore the directory entry.

Suggested User Action

Run the lost check of the file
(VFY) to recover the filename.

structure verification utility
VFY is described in Chapter 8.

PIP -- FAILED TO SPOOL FILE FOR PRINTING

Description

Insufficient system dynamic memory is available, or the spooler
task is not installed.

Suggested User Action

Wait for spooler queue to empty or install the spooler task and
reenter the command line.

2-36

PERIPHERAL INTERCHANGE PROGRAM (PIP)

PIP -- FAILED TO WRITE ATTRIBUTES

Description

The user volume is corrupted or the user does not have the
necessary privileges to write the file attributes.

Suggested User Action

Ensure that PIP is running under the correct UIC. If the UIC is
correct, then run the validity check of the file structure
verification utility (VFY) against the volume in question to
determine where and to what extent the volume is corrupted. VFY
is described in Chapter 8.

PIP -- FILE NOT LOCKED

Description

The user issued an unlock command for a file that was not locked.

Suggested User Action

Reenter the command line, specifying the correct file.

PIP -- ILLEGAL COMMAND

Description

The user has entered a command that is not recognized by PIP.

Suggested User Action

Reenter the command line with the PIP
specified.

command correctly

PIP -- ILLEGAL SWITCH

Description

The user has specified a switch that is not a legal PIP switch or
has used a legal switch in an illegal manner.

Suggested User Action

Reenter the command line with the correct switch specification.

PIP -- ILLEGAL "*" COPY TO SAME DEVICE AND DIRECTORY

Description

The user has attempted to copy all versions of a file into
same directory that is being scanned for input files.
results in an infinite number of copies of the same file.

2-37

the
This

PERIPHERAL INTERCHANGE PROGRAM {PIP)

Suggested User Action

Reenter the command line, renaming the files or copying them into
a different directory.

PIP -- ILLEGAL USE OF WILD CARD VERSION

Description

The use of a wild card version number in the attempted operation
results in inconsistent or unpredictable output.

Suggested User Action

Reenter the command line with different options or with explicit
or default version number.

PIP -- I/O ERROR ON INPUT FILE

or

PIP -- I/O ERROR ON OUTPUT FILE

Description

One of the following conditions may exist:

1. The device is not on-line,

2. The device is not mounted.

3. The hardware has failed.

4. The volume is full {output only) .

5. Input file is corrupted.

Suggested User Action

1. Determine which condition exists.

2. Rectify the condition.

3. Reenter the command line.

PIP -- EXPLICIT OUTPUT FILENAME REQUIRED

Description

This message is self explanatory.

Suggested User Action

Reenter the command line with the output filename explicitly
specified.

2-38

PERIPHERAL INTERCHANGE PROGRAM (PIP)

PIP -- NOT A DIRECTORY DEVICE

Description

The user has issued a directory-oriented command to a device
(such as a printer) that does not have directories.

Suggested User Action

Reenter the command line without specifying a UIC.

PIP -- NOT ENOUGH BUFFER SPACE AVAILABLE

Description

PIP has insufficient I/O buffer space to perform the requested
command.

Suggested User Action

Have the system manager install PIP in a larger partition.

PIP -- NO SUCH FILE(S)

Description

The file(s) specified in the command were not found in the
designated directory.

Suggested User Action

Check the file specifier and reenter the command line.

PIP -- ONLY[*,*] IS LEGAL AS DESTINATION UIC

Description

The user has specified a UIC other than [*,*] as the output file
UIC for a copy.

Suggested User Action

Reenter the command line with [*,*] specified as the output UIC.

PIP -- OPEN FAILURE ON INPUT FILE

or

PIP -- OPEN FAILURE ON OUTPUT FILE

Description

The specified file could not be opened.
conditions may exist:

1. The file is protected against access.

2-39

One of the following

PERIPHERAL INTERCHANGE PROGRAM {PIP)

2. A problem exists on the physical device {e.g., device cycled
down) .

3. The volume is not mounted

4. The specified file directory does not exist.

5. The named file does not exist in the specified directory.

Suggested User Action

1. Determine which condition exists.

2. Rectify the condition.

3. Reenter the command line.

PIP -- OUTPUT FILE ALREADY EXISTS-NOT SUPERSEDED

Description

An output file of the same name, type, and version as the file
already exists.

Suggested User Action

Retry the copy with the /NV switch to assign a new version number
or the /SU switch to supersede the output file.

PIP -- TOO MANY COMMAND SWITCHES - AMBIGUOUS

Description

The user has specified too many switches, or the switches
conflict.

Suggested User Action

Reenter the command line, specifying the correct set of switches.

PIP -- VERSION MUST BE EXPLICIT OR "*"

Description

The version number of the specified file must be expressed
explicitly or as a wild card "*"

Suggested User Action

Reenter the command line with the version number correctly
expressed.

2-40

PERIPHERAL INTERCHANGE PROGRAM (PIP)

2.6 PIP ERROR CODES

Table 2-5 identifies the error codes PIP issues when it doesn't have
access to the message files. Message descriptions and suggested user
actions are identical to the information contained in Section 2.5.

Error Code

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.

Table 2-5
PIP Error Codes

PIP Error Message is:

COMMAND SYNTAX ERROR
ILLEGAL SWITCH
TOO MANY COMMAND SWITCHES - AMBIGUOUS
ONLY [*,*] IS LEGAL AS DESTINATION UIC
ILLEGAL COMMAND
ILLEGAL 11 * 11 COPY TO SAME DEVICE AND DIRECTORY
BAD USE OF WILD CARDS IN DESTINATION FILE NAME
EXPLICIT OUTPUT FILE NAME REQUIRED
ALLOCATION FAILURE - NO CONTIGUOUS SPACE
ALLOCATION FAILURE - NO SPACE AVAILABLE
ALLOCATION FAILURE ON OUTPUT FILE
I/0 ERROR ON INPUT FILE
I/0 ERROR ON OUTPUT FILE
ILLEGAL USE OF WILD CARD VERSION
OPEN FAILURE ON INPUT FILE
OPEN FAILURE ON OUTPUT FILE
CLOSE FAILURE ON INPUT FILE
CLOSE FAILURE ON OUTPUT FILE
FAILED TO DETACH OUTPUT DEVICE
DEVICE NOT MOUNTED
OUTPUT FILE ALREADY EXISTS - NOT SUPERSEDED
FAILED TO MARK FILE FOR DELETE
FILE IS LOST
VERSION MUST BE EXPLICIT OR 11 * 11

ERROR FROM PARSE
FAILED TO DELETE FILE
CANNOT FIND DIRECTORY FILE
FAILED TO ATTACH OUTPUT DEVICE

30. NOT A DIRECTORY DEVICE
31. FAILED TO WRITE ATTRIBUTES
32. FAILED TO READ ATTRIBUTES
33. FILE NOT LOCKED
34. FAILED TO ENTER NEW FILE NAME
35. FAILED TO RESTORE ORIGINAL DIRECTORY ENTRY - FILE

IS LOST
36. CANNOT RENAME FROM ONE DEVICE TO ANOTHER.
37. FAILED TO SPOOL FILE FOR PRINTING
38. {Not used in RSX-llM)
39. FAILED TO OPEN STORAGE BITMAP FILE
40. FAILED TO FIND FILE {S)
41. CANNOT FIND FILE{S)
42. NO SUCH FILE{S)
43. FAILED TO REMOVE DIRECTORY ENTRY
44. DIRECTORY WRITE PROTECTED
45. NOT ENOUGH BUFFER SPACE AVAILABLE

2-41

CHAPTER 3

FILE TRANSFER PROGRAM (FLX)

3.1 INTRODUCTION TO FLX

FLX is a file utility program that performs file conversion between
DOS-11 or RT-11 and Files-11 formats. FLX is designed to perform the
following conversions:

• From DOS-11 to Files-11 format,

• From Files-11 to DOS-11 format,

• From DOS-11 to DOS-11 format,

e From Files-11 to Files-11 format,

• From RT-11 to Files-11 format,

• From Files-11 to RT-11 format,

• From RT-11 to RT-11 format.

FLX also allows the user to:

1. List directories of cassettes, RT-11, or DOS-11 volumes,

2. Delete files from DOS-11 and RT-11 volumes,

3. Initialize cassettes, RT-11, or DOS-11 volumes.

Valid DOS-11 devices are:

DK, DT, MT, MM, CT, PR, and PP

Valid RT-11 devices are:

DK, DT, and DX

All valid Files-11 devices are supported, including
cassette.

3-1

RSX-format

FILE TRANSFER PROGRAM (FLX)

3.2 INITIATING FLX

All RSX-llM utilities can be initiated in several ways. The various
methods are explained in Section 1.2. The methods for FLX are:

2._FLX.)

>FLX command string~

>RUN ... FLX __}

>RUN ..• FLX/UIC= [group ,member]._)

~RUN $FLX~

>RUN $FLX/UIC=[group,member]~

3.3 FLX COMMAND STRING

The command string issued to FLX consists of an optional
specifiers, and one or more input file specifier in
format:

outfile=infile-1 [, infile-2, ... ,infile-n]

output file
the following

For a complete description of file specifiers, see Section 1.3.

wild card s a r e on 1 y v a 1 id f o r " inf il e " spec if i er s •

Version numbers are only valid for Files-11 files and may not be
specified as wild. The standard rules for updating version numbers
apply.

3.4 FILE TRANSFERS

File transfers are specified by a command containing an output and an
input specifier together with a Format Mode Switch to denote the
format to be used. For example:

FLX>DTO:/DO=DKl:SYSl.MAC/RS~

transfers SYSl.MAC from Files-11 DKl: to the DOS-11 DTO:.

FLX>DT 1: /RT=DKO: SYS 1. MAC/RS._,;'

transfers SYSl.MAC from Files-11 DKO: to RT-11 DTl:.

If no /RS, /RT, or /DO is specified, FLX assumes /DO for input
specifiers and /RS for output. This "DOS-to-RSX" default transfer
direction can be dynamically modified see /DO and /RS switch
descriptions.

3-2

FILE TRANSFER PROGRAM (FLX)

3.5 DOS VOLUME DIRECTORY MANIPULATION

3.5.l DOS Directory Listings

The /LI or /DI switch instructs FLX to issue the directory of the
cassette or DOS-11 volume specified in the input specifiers to the
Files-11 file specified in the output specifier. If no output
specifier is present, then the directory will be issued to TI:. For
example:

FLX>LP:=DTO: (100,100]*.MAC/LI_J

lists on the line printer the directory of all .MAC files under UIC
(100,100] on DOS-11 DTO:.

3.5.2 Deleting DOS Files

Files may be deleted from DOS-11 disks or DECtape by using the /DE
switch. The delete command string uses no output specifier. For
example:

FLX>DKl: (100,lOO]SYSl.MAC/DE_.}

deletes SYSl.MAC under UIC (100,100] from the DOS-11 DKl:.

3.5.3 Initializing DOS-11 Volumes

Cassettes and DOS-11 volumes are initialized by using the /ZE switch.
The initialize command has no output specifier. For example:

FLX>DTl:/ZE _J

Initializes DOS-11 DTl:.

3.6 RT VOLUME DIRECTORY MANIPULATION

3.6.1 RT Directory Listings

The /LI or /DI switch, when combined with the /RT switch, instructs
FLX to issue the directory of the RT-11 volume specified in the input
specifiers to the Files-11 file specified in the output specifier. If
no output specifier is present, then the directory will be issued to
TI: For example:

FLX>LP:=DTO:*.MAC/LI/RT_J

lists on the line printer the directory of all .MAC files on RT-11
DTO:.

3-3

FILE TRANSFER PROGRAM (FLX)

3.6.2 Deleting RT Files

Files may be deleted from RT-11 disks or DECtape by using the /DE
switch in conjunction with the /RT switch. The delete command string
uses no output specifier. For example:

FLX>DKl:SYSl.MAC/DE/RT_.}

deletes SYSl.MAC from RT-11 DKl:.

3.6.3 Initializing RT-11 Volumes

RT-11 volumes are initialized by using the /ZE switch in conjunction
with the /RT switch. The initialize command uses no output specifier.
For example:

FLX>DTl:/ZE/RT_J

initializes RT-11 DTl:.

When initializing RT-11 volumes, the /ZE switch takes an optional
argument in the form:

/ZE:n

where n specifies the number of extra words per directory entry. A
directory segment consists of two disk blocks with a total of 512
words. The directory header uses five words, leaving 507 words for
directory entries.

Normally, each directory entry is 7-words long and two directory
entries within each directory segment are allocated to the file
system. Therefore, the number of entries in each segment (when no
extra words are specified) are determined as follows:

Directory Entries (507+7) -2

72-2 = 70 entries

When extra words are specified (via /ZE:n) for directory entries, the
number of directory entries are determined as follows:

Directory Entries= [507-;-(n+7)] -2

For example, 61 entries can be made per directory segment if the
switch /ZE:l is used.

The /NU switch is used with the /ZE and /RT switches to specify the.
number of djrectory segments to allocate to the RT-11 volume. The /NU
switch has the following form:

/NU:n

where n specifies the number of directory segments to allocate. If
the /NU switch is not specified, or if n is not specified, four
directory segments are allocated. The maximum number of segments
which can be allocated is 37(8) or 31(10). For example:

FLX>DTO:/ZE:2/NU:6/RT..J

3-4

FILE TRANSFER PROGRAM (FLX)

This command initializes RT-11 DTO:, allocates two extra words per
directory entry, and allocates six directory segments.

3.7 FLX CASSETTE SUPPORT

FLX supports the DEC standard cassette file structure. Files may be
transferred to and from cassettes in either RSX (/RS) or DOS (/DO)
transfer mode. The transfer mode selected depends on the user's file
format requirements.

3.7.l Cassette File Formats

The file format for RSX or DOS cassette files is essentially the same.
That is, they both conform to the DEC standard casette file format.
The DEC standard cassette file structure is described in Figure 3-1.
The DEC standard cassette file label is described in Figure 3-2.

The difference between the RSX and DOS cassette file formats are as
follows:

RSX Format DOS Format

• Standard level 2 * Standard level 0

• 12-character file name (9+3) • 9-character file name (6+3)

• Blocks of any size up to 512 • 128-byte blocks
bytes (128 bytes default)

• Version numbers • NO version numbers

RSX cassette file mode (level 2) is a superset of the DOS cassette
file mode (level 0). Therefore, any cassette written in DOS mode can
be read in RSX mode. The reverse of this, however, is only true when:

l. The file was written with 128-byte blocks, and

2. The extra file header data (version number, etc.), which does
not appear in DOS files, can be ignored.

RSX mode files and DOS mode files can be mixed on a given cassette, as
long as a proper retrieval mode is utilized when the files are being
accessed. Files of various block sizes can also share a given
cassette. FLX uses the block size contained in the file label data
when reading a file.

3-5

FILE TRANSFER PROGRAM (FLX)

leader I

IRG IRG=inter record gap

File label T} 2 bytes

I
IRG I

I
Data blocks I

I .
file

IRG I
I I
I
I

I I

:

I EOF I~
I
I t
I
I
I files I

EOF

- I--

IRG
logical
end-of- 32-byte null file label
tape

Clear

trailer ---
Figure 3-1

DEC Standard Cassette File Structure

3-6

~

1

2

3

4

5

6

8

9

10

11

12

13

14

15

16

I
I
I

I
I
I

I
I

FILE TRANSFER PROGRAM (FLX)

Filename

File type

Data type

Record size

Sequence Number

Support Level

Date

17

18

~ 19

20 I
Version Number

21

~~ I
L.L. Record attributes byte

23

24 Unused (for user info)

25

26

27 Filename pt. 2

28

29

30 Unused (for user info)

31

Figure 3-2
DEC Standard Cassette File Label

3-7

FILE TRANSFER PROGRAM (FLX)

Filename

File type

Data type

Record size

Sequence number

Support level

Date

Version number

Record attributes

Filename pt. 2

6 ASCII Characters

3 ASCII Characters

Describes the type of file
to follow.

~ Unknown type

1 ASCII (formatted)

2~ Formatted binary (DOS)

22 DOS LDA format

26 Unformatted binary TSK
format

16-bit binary record size,

where ~<size <512. and even.

Used for multi-volume files,
~ for sequence one.

~ for DOS format

2 for RSX format

6 ASCII characters in
ddmmyy form

16-bit version number used
in RSX mode. Undefined in
DOS mode.

The Files-11 standard rules for
version numbers apply to file
creation.

1 = FORTRAN carriage
control present

2 = standard carriage control

3 ASCII characters used in
RSX mode. Undefined in DOS
mode.

Figure 3-2 (Cont.)
DEC Standard Cassette File Label

3-8

FILE TRANSFER PROGRAM {FLX}

3.7.2 Multi-Volume Cassette Support

FLX supports multi-volume cassettes in both RSX and DOS formats. No
special switches are required to notify FLX that a multi-volume file
is being accessed.

3.7.2.1 FLX Output Files - When FLX detects the physical end-of-tape
for an output cassette, the following sequence of events occurs.

1. FLX issues the following message:

FLX -- END OF VOLUME ON CASSETTE
CTn: [g ,m]

2. The cassette is rewound.

3. FLX issues an additional message.

MOUNT NEW CASSETTE? (Y, Z (OUTPUT ONLY} OR CR}
FLX>

4. At this point, the user has three alternatives:

a. The user can mount the next output cassette volume and
type Y, followed by a carriage return. If the user
selects this alternative, the new cassette is rewound,
FLX searches for the logical end-of-tape {end of the last
file}, and then continues transferring data onto the
tape. If a file with the same name as the current input
file is encountered on the new output cassette while
searching for the logical end of tape, FLX prints the
message:

FLX -~ FILE ALREADY EXISTS

and then returns to step 3 above.

b. The user can mount the next output cassette volume and
type Z, followed by a carriage return. The new cassette
is rewound, and FLX continues by transferring data onto
it. Thus, the tape is effectively zeroed before data is
transferred to it.

c. The user can enter a carriage return to terminate the
transfer.

If the user selects alternative c, FLX assumes that EOF is desired,
and issues the following message:

FLX -- REQUEST TERMINATED -- LAST BLOCK NOT WRITTEN

The last input file block processed was not written onto the tape.

3-9

FILE TRANSFER PROGRAM (FLX)

3.7.2.2 FLX Input File - When FLX detects the physical end-of-tape
for an input cassette, the following sequence of events occurs:

1. FLX issues the following message, including the input file
specifier on which the end-of-tape was detected:

FLX -- END OF VOLUME ON CASSETTE
CTn: [g,m] filename.type

2. The cassette is rewound.

3. FLX issues an additional message:

MOUNT NEW CASSETTE: (Y, Z (OUTPUT ONLY) OR CR)
FLX>

4. At this point the user has two alternatives:

a. The user can mount the next input cassette volume and
type Y, followed by a carriage return to continue; or

b. The user can type a carriage return to terminate the
transfer.

If the user selects alternative a, the new input cassette is rewound,
and a validity check is performed on the file label and sequence
number. If the file label and sequence number are correct, FLX begins
processing data from the volume. If, however, the file label and
sequence number are not correct, FLX issues the following message:

FLX -- FILE NOT FOUND

the process then returns to step 3 above.

If the user selects alternative b, FLX assumes that EOF is desired,
and the transfer is terminated.

NOTE

If the input file is being processed as
a formatted binary or an ASCII file, a
format error may occur.

If the user types Z, FLX prints the message:

FLX -- BAD RESPONSE

the process then returns to step 3 above.

3. 8 FLX PAPER TAPIL.§£1!?.;f?.QRT

FLX supports the standard DEC paper
Paper Tape Reader/Punch and the
devices.

tape
PR-11

devices, i.e., the PC-11
Paper Tape Reader, as DOS

FLX provides the ability to delimit records on paper tape
that are in formatted binary mode or in formatted

3-10

for files
ASCII mode.

FILE TRANSFER PROGRAM (FLX)

Formatted binary records are delimited by standard DOS 4-byte headers
and a trailing checksum. Formatted ASCII records which do not already
end with line feeds or form feeds are delimited by carriage
return-line feed pairs.

Special treatment is given to files which normally default to image
mode transfers, i.e., TSK, OLB, MLB, and SYS files. On output to
paper tape, these files are written, by default, in formatted binary.
When read back from paper tape to a Files-11 volume, the file is
written with fixed-length, 512-byte records as the default.

These defaults insure, when these files are read back from paper tape,
that they will be in exactly the same format as they were before they
were punched. However, the new files will not be contiguous unless
the user specifies /CO/BL:n with the output file specifier. An
appropriate value for n (the number of contiguous blocks to allocate),
must be known by the user before issuing the command.

NOTE

The use of explicit transfer mode
switches when transferring TSK, OLB,
MLB, and SYS files between paper tape
and Files-11 volumes can cause files
read back in from paper tape to be
different from the files that were
originally written out.

3.9 FLX SWITCHES

FLX provides three types of switches for file transfers: format mode
switches, which specify the format of the file; transfer mode
switches which control the mode of transfer (e.g., formatted ASCII
mode, formatted binary mode, or image mode); and file control
switches, which control such things as the number of blocks to be
allocated to the output file, or the output file's UIC, etc. Switch
specificatons consist of a slash (/), followed by a 2-character switch
name, and is optionally followed by a value separated from the switch
specifier by a colon (:).

3.9.1 Format Mode Switches

FLX has three format mode switches: /DO (DOS format), /RT (RT-11
format); and /RS (Files-11 format). When specified, these switches
describe the format of the specified files. These switches are
described in Table 3-1.

3-11

Switch

/DO

/RS

/RT

FILE TRANSFER PROGRAM (FLX)

Table 3-1
FLX Format Mode Switches

Description

Identifies the file as a DOS-11 formatted file.

NOTE

If no /DO, /RT, or /RS switch is specified
in a command string, FLX initially assumes
/RS for output files and /DO for input
files. However, this default transfer
direction can be dynamically changed by
specifying a command consisting of only
the switch desired for the input side (/DO
or /RS only) . See the note following /RT
for the /RT default operation.

Example:

To specify the default transfer direction
from RSX to DOS, type:

FLX>/RS_J

To specify the default transfer direction
from DOS to RSX, type:

FLX>/DO_)

Identifies the file as a Files-11 formatted file.

NOTE

See notes for /DO and /RT switches.

Identifies the file as an RT-11 formatted file.

NOTE

If the /RT switch is specified on one side
of a command string, the default entry for
the other side is /RS.

Examples:

1. FLX>DKO:=DTO:SYSl.MAC/RT.)

The output is defaulted to /RS.

2. FLX>DKO:/RT=DKO:SYSl.MAC__}

The input is defaulted to /RS.

3-12

FILE TRANSFER PROGRAM (FLX)

3.9.2 Transfer Mode Switches

FLX has three modes of file transfer for conversion in either
direction between DOS-11 and Files-11, or between RT-11 and Files-11.
These modes are: formatted binary, formatted ASCII, and image mode.
When a switch is specified, it determines the transfer mode to be
applied during translation. The switch formats and descriptions are
listed in Table 3-2 below.

I Switch

/FA:n

Table 3-2
FLX Transfer Mode Switches

Description

Formatted ASCII

The DOS-11 or RT-11 file is to be formatted ASCII.
Formatted ASCII is defined as ASCII data records
terminated by carriage return/form feed (CR-FF),
form feed (FF), or vertical tab (VT). In
transfers from DOS-11 or RT-11 files to Files-11
files, CR-LF pairs are removed from the end of
records. In transfers from Files-11 files to
DOS-11 or RT-11 files, CR-LF pairs are added to
the end of each record which does not already end
with LF or FF. In both directions all nulls,
rubouts, and vertical tabs (VT) are removed from
input records.

If n is specified
fixed-length records
Output records will
necessary.

with
of size

be padded

Files-11 output,
n are generated.

with nulls, if

If n is not specified with Files-11 output, then
variable-length records are generated. The output
record size will equal the input record size.

NOTE

ASCII data is transferred as 7-bit values.
The eighth bit of each byte is masked off
before transfer. CTRL/Z (ASCII 032 octal)
is treated as the logical end of input
file for formatted ASCII transfers from
DOS-11 cassette or paper tape to Files-11.

3-13

FILE TRANSFER PROGRAM (FLX)

Table 3-2 (Cont.)
FLX Transfer Mode Switches

~--------~--------·--·--···-----·····----------------------~

Switch

/FB:n

/IM:n

Description

Formatted Binary

The DOS-11 or RT-11 file is to be formatted
binary. In formatted binary mode, formatted
binary headers and checksums are added to records
output to DOS-11 or RT-11 files, and they are
removed when transferred to Files-11 files.

If n is specified with Files-11 output, then
fixed-length records of size n will be output (512
bytes is the maximum). FLX pads records with
nulls to create the specified length. If n is not
specified with Files-11 output, then
variable-length records are produced. The output
record size is equal to the input record size.

Image Mode

The transfer is to be in image mode. Image mode
forces fixed-length records. The value n can be
used to indicate the desired record length for
Files-11 output (512 bytes is maximum). If the
value n is not specified, a record length of 512
bytes is assumed.

NOTES

1. The following dGfaul t transfer modes are
assumed for these file types (with the
exception of paper tape transfers -- see
Section 3. 8).

Mode File Type --
/IM TSK, OLB, MLB, SYS

/FB OBJ, STB, BIN, LDA

/FA All others

2. If the value n is specified in conjunction
with /FA, /FB, or /IM when the output file
is not a Files-ll file, it is ignored.

3-14

FILE TRANSFER PROGRAM (FLX)

3.9.3 File Control Switches

In addition to the switches associated with the transfer modes and
directions, FLX provides switches to control file processing. These
switches are described in Table 3-3.

Table 3-3
FLX File Control Switches

Switch Description

/BL:n Indicates the number of contiguous blocks to be
allocated to the output file ·where n spec if ies the
number of bloc ks.

This switch is used normally in conjunction with
/CO.

If /BL is not spec if ied, the input file size is
used as the output file size.

NOTE

The file allocation scheme used for RT-11
I volumes normally allocates the largest I

I available space on the volume for a new
file. Using /BL:n with the /RT switch for
the output file causes the output file to
be allocated the first <UNUSED> space of

. > size_ n. However, when the RT-11 file is
closed, the input file size is used as the
output file size. If the input file size
is not ~ n, an error results. Since all
RT-11 files are contiguous, the /CO switch
is not required with the /BL:n switch for

I
RT-11 output.

/BS:n Spec if ies the block size for cassette tape output,
where:

n specifies the block size in bytes.

If /BS is not spec if ied, a block size of 128 is
assumed. /BS is only valid in a cassette tape
(CT) output file spec if ier.

I /CO Indicates that the output file is to be
contiguous.

The /CO switch is meaningful only to disks and
DECtape.

If the input file is paper tape, cassette or
DOS-11 mag tape, /BL is also required.

3-15

I

I

I
I
I

I
I

1·

I
I

Switch

/DE

/DI

FILE TRANSFER PROGRAM (FLX)

Table 3-3 (Cont.)
FLX File Control Switches

Description

NOTE

The file types .TSK, .SYS, and .OLB are
transferred to Files-11 volumes with /CO
implied when the input is a FILES-11
volume or a DOS-11 DECtape or disk.

Deletes files from a DOS-11 DECtape or disk. It
is used also in conjunction with /RT to delete
files from an RT-11 DECtape or disk.

NOTE

When /DE is specified, the FLX command
string has no output specifier.

Causes a directory listing of cassettes or DOS
volumes to be listed on a specified output file.
It is used also in conjunction with /RT to
generate a directory listing of RT-11 volumes in a
specified output file.

NOTES

1. Files-11 volume directories can not be
listed using FLX.

2. If no output specifier is present, then
the directory is issued to TI:.

3. If no filename is specified, * * is
assumed.

Figure 3-3 contains sample DOS volume directory
listings, along with a description of the
information contained in each field. Figure 3-4
contains sample RT volume directory listings,
along with a description of the information
contained in each field.

3-16

I Switch
I
r
I /FC

I

/ID

/LI

/NU:n

/SP

/UI

/ZE

FILE TRANSFER PROGRAM (FLX)

Table 3-3 (Cont.)
FLX File Control Switches

Description

Indicates that FORTRAN carriage control
conventions are to be used, i.e., FD.FTN is set in
the file data block. The default is a carriage
return and line feed between records, i.e., FD.CR
is set. The /FC switch applies only to Files-11
output files. Refer to the RSX-11 I/O Operations
Reference Manual for a discussion of the file data
block and record attributes.

Requests the current version number of FLX. The
switch can be part of an output or input specifier
or it can be typed in response to the FLX prompt
message (FLX>).

Same as /DI

Used in conjunction with the /ZE and /RT switches
to specify the number of directory blocks (n) to
allocate when initializing an RT-11 disk or
DECtape. If /NU:n is not specified, four
directory blocks are allocated. The maximum
number of blocks which can be allocated is 37
octal (31 dee imal) .

Indicates that the converted file is to be spooled
via the print spooler. The /SP switch applies
only to Files-11 output files. The print spooler
is described in Appendix C.

Indicates that the output file is to have the same
UIC as the input file. The /UI switch is ignored
if the output specifier contains an explicit UIC.

Causes each record written to the cassette to be
..,.,......,,~ ~""~ T7"'V".:-1=.;,...~ m'h.,.... /'t7Q rlT.7.;4-,...'h, .;ra r'\.'r"'lo,~7 ·n~1;,-=1
L.CClU CU.J.\,.I. V'C..L i..1...1..C'Ue .1.lJ.C / V.L.I OYY.J..l..\,.,.ll .J..C> Vll..L:f Vc;...t.J...&..\.A

with a CT output file specifier.

Initializes cassettes or DOS-11 volumes. It is
used also in conjunction with /RT (and /ND) to
initialize RT-11 volumes.

NOTES

1. For DOS-11 DECtaper /ZE creates an entry
for the current UIC.

2. The /ZE command uses no output specifier.

3-17

FILE TRANSFER PROGRAM (FLX)

DECtape Directory Listing

DIRECTORY DT : [2 0 0 , 2 0 0 J
19-SEP-74

FLX.TSK 104.
UFD.TSK 8.
TKN.TSK 6.
MOU.TSK 14.

TOTAL OF 132. BLOCKS IN 4. FILES

Casette Directory Listing

DIRECTORY
19-SEP-74

CTl: [200,200]

19-SEP-74
19-SEP-74
19-SEP-74
19-SEP-74

<233>
<233>
<233>
<233>

UFD.TSK;l-0
TKN. TSK; 1-0
MOU.TSK;l-0

28.
20.
52.

19-SEP-74 128.
19-SEP-74 128.
19-SEP-74 128.

TOTAL OF 100. BLOCKS IN 3. FILES

These directories contain similar information. The following key

1

explains what that information is and where it is located.

0) (8 or 10)

1. Identifies this as a directory listing.

2. Specifies the device name and unit number.

3. Is the User Identification Code.

4. Is the date the directory was listed.

5. Is the filename, file type, version number (RSX cassettes
only) , and sequence number (cassettes only).

6. Is the file size in blocks.

7. Is the file creation date.

8. Is the record size in bytes for the file (cassettes only).

9. Is a total of the actual file sizes, and the total number of I
files in the directoty.

10. Protection code (disk and DECtape only).

Figure 3-3
DOS Directory Listings

3-18

FILE TRANSFER PROGRAM (FLX)

DECtape Directory Listing

DIRECTORY DK:
4-JUN-75

SIPBOO.MAC
< UNUSED >
SIP .MAC
SIPCD .MAC
< UNUSED >
SIPQIO.MAC
< UNUSED >

49.
6.

10.
7.

21.
7.

4686.

4713. FREE BLOCKS

4-JUN-75

4-JUN-75
4-JUN-75

4-JUN-75

TOTAL OF 73. BLOCKS IN 4. FILES

The following key explains what the information is, and where it is
located.

CD 0
0
(;\. 0i ~ v \:J \::...)

(i)
G)

1. Identifies this as a directory listing.

2. Specifies the device name and unit number.

3. Is the date the directory was listed.

4. Is the filename and file type; or <UNUSED> indicates free
(unused) space.

5. Is the number of blocks in the file or free space.

6. Is the file creation datei or blank for free space.

7. Is the total number of free blocks on the volume.

8. Is the total number of blocks allocated to files on the
volume.

Figure 3-4
RT Directory Listing

3-19

~ILE TRANSFER PROGRAM (FLX)

3.10 FLX ERROR MESSAGES

Errors encountered by FLX during processing are reported on the
initiating terminal.

The FLX error messages, their descriptions and suggested user actions
are described below.

FLX -- BAD LIST FILE SPEC

Description

The user has specified one of the following:

1. More than one output file for an /LI or /DI operation.

2. Wild cards in the output file for an /LI or /DI operation.

Suggested User Action

Reenter the command line correctly.

FLX -- BAD RESPONSE

Description

The user has specified the Z response to the message:

MOUNT NEW CASSETTE (Y, Z (OUTPUT ONLY) OR CR)
FLX>

and the cassette in question is an input volume.

Suggested User Action

Respond with Y or CR after the message has been redisplayed.

FLX -- CAN'T OPEN @ FILE

Description

The specified indirect command file could not be opened for one
of the following reasons:

1. The file is protected against access.

2. A problem exists on the physical device (e.g., device cycled
down) •

3. Volume is not mounted.

4. The specified file directory does not exist.

5. The named file does not exist in the specified directory.

6. The volume is not on-line.

Suggested User Action

Correct the condition and reenter the command line.

3-20

FILE TRANSFER PROGRAM (FLX)

FLX -- CO FILES TO OUTPUT DEVICE NOT ALLOWED

Description

The user has used the /CO switch with an illegal output device
(e.g. , MT, CT, or PP) .

Suggested User Action

Reenter the command line without the /CO switch specified.

FLX -- CASSETTE ERROR I/O TERMINATED

Description

An unexpected
end-of-volume
aborted.

hardware error has occurred during the
sequence on a cassette volume. The transfer is

Suggested User Action

Reenter the command line using a new cassette.

FLX -- COMMAND SYNTAX ERROR

Description

The user has entered a command in a format that does not conform
to syntax rules.

Suggested User Action

Reenter the command line with the correct syntax.

FLX -- CONFLICTING TRANSFER MODES SPECIFIED

Description

The user has specified conflicting transfer mode switches.

Example:

SY:=DT:FOO.OBJ/IM/FB.-J

Suggested User Action

Reenter the command line with only one transfer mode switch
specified.

FLX -- DOS OR RT-11 DEVICE NOT VALID FORMAT

Description

The device specified with the /DO switch has an incorrect DOS
file structure, or the device specified with the /RT switch has
an incorrect RT file structure.

Suggested User Action

Correct the problem, and reenter the command line.

3-21

FILE TRANSFER PROGRAM (FLX)

FLX -- DT: UFD FULL

Description

The DECtape directory is full.

Suggested User Action

Clean up the directory by deleting all unnecessary files.

FLX END OF VOLUME ON CASSETTE
MOUNT NEW CASSETTE? (Y, Z (OUTPUT ONLY) OR CR)

Description

Physical end-of-tape has been encountered during a cassette
transfer. The tape rewinds, and the user is asked to mount the
next cassette.

Suggested User Action

See Section 3.7.2.1 if an output transfer is being performed or
Section 3.7.2.2 if an input transfer is being performed.

FLX -- ERROR DURING DIRECTORY I/O

Description

One of the following conditions may exist:

l. The volume is not write-enabled.

2. The /DO, /RT or /RS switches were incorrectly specified.

3. The volume is not of the proper format.

4. A hardware error occurred during a directory I/O operation
(i.e., bad tape).

Suggested User Action

The following user actions correspond (by number) to the
conditions listed above.

1. Write-enable the volume.

2. Respecify the /DO, /DT or /RS switches correctly.

3. No recovery is possible with the volume currently mounted.
Mount a volume which is in the proper format, and retry the
operation.

4. Retry the operation.

FLX -- FILE ALREADY EXISTS

Description

The user specified an output file which already exists on the
device specified.

3-22

FILE TRANSFER PROGRAM (FLX)

Suggested User Action

Reenter the file specifier using a new or corrected filename.

FLX -- @ FILE NESTING EXCEEDED

Description

More than one level of indirect files was specified.

Suggested User Action

Retry the operation with only one level of indirect file
specified.

FLX -- FILE NOT FOUND

Description

The named file does not appear, as specified, in the requested
directory.

Suggested User Action

Retry the operation with the filename and directory correctly
specified.

FLX -- WARNING -- INPUT FILE OUT OF SEQUENCE

Description

A cassette multi-volume file is being accessed out of sequence.

Suggested User Action

This is a warning message. The transfer will continue unless
terminated by the user.

FLX -- @ FILE SYNTAX ERROR

Description

Syntax error in the indirect file specifier.

Suggested User Action

1. Edit the indirect command file using either EDI or SLP.

2. Rerun FLX using the corrected cpmmand file.

FLX -- FMTD ASCII RECORD FORMAT BAD

or

FLX -- FMTD BINARY RECORD FORMAT BAD

Description

Either the file is corrupted, or the file is not of the specified
type.

3-23

FILE TRANSFER PROGRAM {FLX)

Suggested User Action

If the file is corrupted, there is no recovery possible. If the
file type is incorrect, retry the operation with the correct
type.

FLX -- ILLEGAL /BS SIZE -- USE O<N<=512. AND EVEN

Description

An illegal block size was specified with the /BS switch on
cassette output.

Suggested User Action

Reenter the command line with a lega.l block size.

FLX -- INCORRECT # IN/OUT SPECS

Description

The user specified more than one input or output specifier in a
command where only one is allowed.

Suggested User Action

Reenter the command line with the proper syntax.

FLX -- INVALID DEVICE

Description

The user specified a device that cannot be utilized as an input
or output device, e.g., trying to read from a line printer.

Suggested User Action

Reenter the command line with a legal device specified.

FLX -- INVALID DOS OR RT-11 FILE SPEC

or

FLX -- INVALID RSX FILE SPEC

Description

The file specifier does not conform
specified operation could not be
device.

Suggested User Action

to proper
performed

syntax, or the
on the specified

Reenter the file specifier with the proper syntax.

FLX -- INVALID SWITCH

Description

The user has specified a switch that is not a valid FLX switch or
does not conform to proper syntax.

3-24

FILE TRANSFER PROGRAM (FLX)

Suggested User Action

Reenter the command line with a correct switch specification.

FLX -- 1/0 ERROR

Description

One of the following conditions may exist:

1. The specified device is not on-line.

2. A Files-11 volume is not mounted.

3. A hardware error has occurred (e.g., bad tape).

Suggested User Action

1. Ensure that the device is on-line and that the volume is
mounted (if it is an Files-11 volume).

2. Reenter the command line.

FLX -- I/O ERROR DELETING LINKED FILE

Description

An uncorrectable error occurred while a DOS linked file was being
deleted.

Suggested User Action

No action required; the file is effectively deleted, but the
volume may be corrupted.

FLX -- I/O ERROR INITIALIZING DIRECTORY

Description

One of the following conditions may exist:

1. The specified device is not on-line.

2. The specified volume is not mounted.

3. A hardware error has occurred (e.g., bad tape).

Suggested User Action

1. Ensure that the device is on-line and in operable condition.

2. Reenter the command line with the required switch specified.

FLX -- I/O ERROR ON COMMAND INPUT

Description

An unexpected error in command input was encountered from either
an indirect command file, or TI:; FLX exits.

Suggested User Action

Restart FLX.

3-25

FILE TRANSFER PROGRAM (FLX)

FLX -- I/O ERROR ON FLX TEMPORARY FILE

Description

FLX encountered an error condition with its temporary file. FLX
creates a temporary file on SY: for operations involving DOS-11
CT, DT, or MT. This error occurs when:

1. SY: is not on-line and mounted.

2. SY: is write-locked.

3. A protection violation occurred.

4. An I/O error was encountered.

Suggested User Action

Correct the error condition and reenter the command line.

FLX -- I/O ERROR ON LIST FILE

Description

An error occurred on the output device during a /DI or /LI
sequence. There is a hardware problem with the output device
(e.g., device powered down).

Suggested User Action

1. Rectify the condition.

2. Reenter the command line.

FLX -- OUTPUT DEVICE FULL

Description

The DOS or RT-11 output volume does not contain enough space for
the output file.

Suggested User Action

Delete all unnecessary files and reenter the command line.

FLX -- OUTPUT FILE SPEC NOT ALLOWED

Description

The user supplied an output file specifier for a command that
does not allow one.

Suggested User Action

Reenter the command without an output file specifier.

3-26

FILE TRANSFER PROGRAM (FLX)

FLX -- RECORD TOO LARGE

Description

FLX has detected an input record in a Files-11 transfer that is
larger than the specified or implied record size for the file,
i.e., the file is corrupted.

Suggested User Action

The file in question is unusable.

FLX -- REQUEST TERMINATED LAST BLOCK NOT WRITTEN

Description

The <CR> reply was given by the user to indicate that no new
volume wouia oe mounted when an end-of-voiume was encountered on
cassette output. The block which FLX was attempting to write
when it encountered the end of the cassette has not been written.

Suggested User Action

No action is required; the message is purely informational.

FLX -- SPECIFIED RECORD SIZE BAD, 512. USED

Description

The record size specified with the /FA, /FB, or /IM switch is not
acceptable. A record size of 512(10) bytes is assumed.

Suggested User Action

This is a warning message; no action is required.

FLX -- UNABLE TO ALLOCATE FILE

Description

There is no available space on the DOS or Files-11 volume for the
specified file; the volume is full.

Suggested User Action

Delete all unnecessary files and reenter the command line.

FLX -- UNABLE TO OPEN FILE

Description

A specified input or output Files-11 file could not be opened.
Possible reasons are:

1. Input file does not exist.

2. Volume is not mounted.

3. Protection violation occurred.

Suggested User Action

Correct the condition and reenter the command line.

3-27

FILE TRANSFER PROGRAM (FLX}

FLX -- UNABLE TO OPEN LIST FILE

Description

The list file cannot be opened under the specified filename and
UIC; the specified device may not be a valid Files-11 volume.

Suggested User Action

Reenter the command line specifying the correct filename and UIC.

FLX -- UNDIAGNOSABLE REQUEST

Description

FLX does not recognize the command line syntax.

Suggested User Action

Reenter the command line with the proper syntax.

FLX -- /CO FILES FROM INPUT DEVICE NOT ALLOWED UNLESS BL: SPEC

Description

When transferring files from MT, PR, or CT, the /CO switch can be
only specified when the /BL switch is also specified.

Suggested User Action

Reenter the command line, specifying the /BL switch.

FLX -- * IN VERSION NUMBER NOT ALLOWED

Description

A wild card was detected in the version number field of a file
specifier.

Suggested User Action

Reenter the command line with all version numbers explicitly
specified.

3-28

CHAPTER 4

FILE DUMP UTILITY (DMP)

4.1 INTRODUCTION TO DMP

The File Dump utility (DMP) program produces a printed listing of the
contents of a file. The listing can be directed to any suitable
output device: line printer, terminal, DECtape or disk. DMP runs in
either one of two modes:

1. File Mode

In file mode, one input file is specified and all, or a
specified range (see /BL:n:m) of virtual blocks, of the named
file is dumped.

2. Device Mode

NOTES

a. A virtual block refers to a
relative block of data in a
file.

b. Virtual blocks are numbered
sequentially from 1 through
n, where n is the total
number of virtual blocks of
the file.

c. The input device must be a
Files-11 structured volume
and must be mounted via the
MCR MOUNT command.

In device mode, only the device is specified, and a specified
range (/BL:n:m) of logical blocks is dumped.

NOTES

a. /BL:n:m switch is a
required parameter.

b. A logical block refers to
the actual 512-byte block
on disk and DECtape, and

4-1

FILE DUMP UTILITY (DMP)

4.2 INITIATING DMP

physical records on magtape
and cassette. DMP will
handle physical records up
to 2048 bytes in length.

c. Logical blocks are numbered
from 0 to n-1, where n is
the total number of logical
blocks on the device.

d. The volume to be dumped
must not be mounted.

All RSX-llM utility programs can be initiated in several ways. These
methods are described in Section 1.2. The methods for DMP are:

2_DMP_J

>DMP command string_)

>RUN •.. DMP_}

>RUN ..• DMP/UIC= [group ,member] _J

>RUN $DMP..,.j

>RUN $DMP/UIC=[group,member]..,.)

4.3· DMP COMMAND STRINGS

Commands to DMP are expressed in the following format:

outfile=infile/switch

For a complete description of file specifiers, see Section 1.3.

4.4 DMP SWITCHES

DMP switch specifications consist of a slash (/) followed by a
2-character switch name, optionally followed by a value, which is
separated from the switch by a colon (:). Eight switches are
recognized by DMP. These switches are described in Table 4-1.

4-2

Switch

Default

/AS

/BA:n:m

/BL:n:m

FILE DUMP UTILITY (DMP)

Table 4-1
DMP Switches

Description

Word mode octal dump

The /AS switch specifies that the data should be
dumped in ASCII mode. The control characters
(0-37) are printed as t, followed by the
alphabetic character corresponding to the
character code +100. For example, bell (code 7)
is printed as tG (code 107). Lower case
characters (140-177) are printed as%, followed by
the corresponding upper case character (character
code -4 0) .

This switch allows the user to specify a 2-word
base block address, where n = high-order base
block address (octal), and m = low-order base
block address (octal). When specified, all future
block numbers will be added to this value to
obtain an effective block number. This switch is
useful to specify block numbers that exceed 16
bits. For example:

DMP >/BA: l: 0 __}

Specifies that all future block numbers
will be relative to 65536(10)
(200000 (8)).

DMP>/BA: 0: 0 __}

Clears the base address.

Specifies the range of blocks to be dumped, where
n is the first block and m is the last block.

NOTES

1. If the /BL:n:m switch is specified
in file mode, it specifies the range
of virtual blocks to be dumped.

2. If the /BL:n:m switch is specified
as /BL:O in file mode, no virtual
blocks are dumped. This is useful
when the user wishes to dump only
the header portion of the file (see
/HD).

3. The /BL:n:m switch
parameter in device
in device mode, it
range of logical
dumped.

4-3

is a required
mode. When used

spec if ies the
blocks to be

Switch

/BY

/HD

/ID

/LB

/MD [: n]

FILE DUMP UTILITY (DMP)

Table 4-1 (Cont.)
DMP Switches

Description

The /BY switch specifies that the data should be
dumped in byte octal format.

This switch is an optional parameter to be used in
file mode. If specified, /HD causes the file
header as well as the specified portion of the
file to be dumped.

NOTE

If just the header portion of the file is
desired, the user can specify /HD/BL:O.
The file header is described in Appendix F
of the RSX-11 I/O Operations Reference
Manual.

Causes DMP's version to be identified. This
switch may be specified on a line by itself at any
time.

Example:

>DMP /ID_)

Logical block. This switch gives the user only
the starting block number and a contiguous or
noncontiguous indication for the file.

Example:

DMP>TI:=DKO:RICKSFILE.DAT;3/LB__}
STARTING BLOCK NUMBER = 0,135163 C

File RICKSFILE.DAT, version 3 is a contiguous file
starting at block number 0,135163. (See /BA:n:m
for block number description.)

Memory dump. This switch allows control of line
numbers. Line numbers are normally reset to zero
whenever a block boundary is crossed. The /MD
[:n] switch allows lines to be numbered
sequentially for the full extent of the file,
i.e., the line numbers are not reset when block
boundaries are crossed. The optional value (:n)
allows the user to specify the value of the first
line number. The default is 0.

NOTE

Sample listings are presented in Appendix
B.4.

4-4

FILE DUMP UTILITY (DMP)

4.5 DMP ERROR MESSAGES

DMP -- BAD DEVICE NAME

Description

The user has specified an invalid device name in a file
specifier.

Suggested User Action

Reenter the command line specifying the correct device.

DMP -- BLOCK SWITCH REQUIRED IN LOGICAL BLOCK MODE

Description

Self-explanatory -- /BL switch must be specified.

Suggested User Action

Reenter the command line with the /BL switch specified.

DMP -- CANNOT FIND INPUT FILE

Description

The requested file cannot be located in the specified directory.

Suggested User Action

Reenter the command with the correct filename and UIC specified.

DMP -- COMMAND SYNTAX ERROR

Description

The user has entered a command in a format that does not conform
to syntax rules.

Suggested User Action

Reenter the command line with the correct syntax.

DMP -- FAILED TO ASSIGN LUN

Description

The user has specified an illegal device in a file specifier.

Suggested User Action

Reenter the command line with the correct device specified.

4-5

FILE DUMP UTILITY (DMP)

DMP -- FAILED TO READ ATTRIBUTES

Description

The user has attempted to access a file for which he does not
have read access privileges.

Suggested User Action

Rerun DMP using a UIC which has read access privileges to the
file.

DMP -- ILLEGAL SWITCH

Description

The user has specified a switch that is not a valid DMP switch or
used a legal switch in an invalid manner.

Suggested User Action

Reenter the command line with the correct switch specified.

DMP -- I/O ERROR ON INPUT FILE

or

DMP -- I/O ERROR ON OUTPUT FILE

Description

One of the following conditions exists:

1. A problem exists on the physical device (e.g., device cycled
down) .

2. File is corrupted or the format is incorrect.

3. Output volume is full.

Suggested User Action

1. Determine which of the above conditions may exist.

2. Rectify the condition.

3. Reenter the command line.

4-6

FILE DUMP UTILITY (DMP}

DMP -- NO INPUT FILE SPECIFIED

Description

The user has terminated a command without entering an input file
specifier.

Suggested User Action

Reenter the command line with an input file specified.

DMP -- NO LISTS OR WILD CARDS ALLOWED

Description

The user either entered a command with more than one input or
output filename or entered a wild card in a file specifiere

Suggested User Action

Reenter the command line with only one input file specifier and
one output file specifier. No wild card specifiers allowed.

DMP -- OPEN FAILURE ON INDIRECT FILE

Description

The requested indirect command file does not exist as specified.
One of the following conditions may exist:

1. The file is protected against access.

2. A problem exists on the physical device (e.g., device
cycled down) .

3. The volume is not mounted.

4. The specified file directory does not exist.

5. The named file does not exist in
directory.

Suggested User Action

the specified

1. Determine which of the above conditions may exist.

2. Rectify the condition.

3- Reenter the command line.

4-7

FILE DUMP UTILITY (DMP}

DMP -- OPEN FAILURE ON INPUT FILE

or

DMP -- OPEN FAILURE ON OUTPUT FILE

Description

One of the following conditions may exist:

1. The file is protected against access.

2. The named file does not exist in
directory.

3. The volume is not mounted.

the

4. The specified file directory does not exist.

specified

5. A problem exists on the physical device (e.g., device
cycled down} •

Suggested User Action

1. Determine which of the above conditions exists.

2. Rectify the condition.

3. Reenter the command line.

4-8

CHAPTER 5

LINE TEXT EDITOR (EDI)

5.1 INTRODUCTION

The Line Text Editor (EDI) is an interactive context-editing program
that provides the capability to create and modify source programs and
other ASCII text material. EDI may be directed to read a line, or
group of lines, from the input file into an internal buffer by means
of terminal commands. The user can then, by means of additional
commands, examine, delete and change text, and insert new text at any
point in the buffer. When the line or block of lines has been edited,
the user can issue a command to write the data into a new file.

EDI is most frequently used to modify MACRO and FORTRAN source
programs, but it can also be used to edit any ASCII text material.

The EDI commands are described in sections 5.4 and 5.5.

5.2 USING EDI

This section is designed to give the user a step-by-step approach to
using the RSX-llM Line Text Editor.

5.2.l Preparing to Run EDI

Before initiating EDI, the user must consider the following:

1. EDI can operate only on Files-11 format files.
file formats are rejected.

All other

2. The output file generated by EDI always resides on the same
device as the input file. The outpµt file cannot be directed
to another device.

Example:

If a user has a file on DECtape and he wants to edit that
file and store the resulting file on disk, he must:

a. Transfer the file to disk and perform the editing there.

b. Edit the file on DECtape and then transfer the file to
disk using PIP.

5-1

LINE TEXT EDITOR (EDI}

3. If a device other than SYO: is to be utilized, it must be
mounted via the MCR MOUNT command.

4. If other than the latest version of a file is to be edited,
the desired version number can be explicitly stated in the
file specifier. This file will be opened as the input file
and the version number of the output file will be one greater
than the latest version of the file. If a command issued
during the editing session closes the explicit version of the
file without terminating the session (e.g., a TOF command),
both output and input files are closed, and the latest
version of the file is reopened as the input file.

5.2.2 Initiating EDI

All RSX-llM utility programs can be initiated in several ways. These
methods are described in Section 1.2. The methods for EDI are:

~EDI_}

>EDI command string _J

>RUN ••• EDI_}

>RUN ... EDI/UIC=[group,member],.J

>RUN $EDI_}

>RUN $EDI/UIC=[group,member]_}

If any format except ">EDI command string" is .used, EDI issues the
following prompting message:

At this point, the user must enter a file specifier for the file to be
edited. The file specifier is in the following format:

dev: [uic]filename.typ

If the file specifier is a new file (i.e., the file specified cannot
be found on the specified device) , the assumption is that the user
wishes to create a new file with the given filename. EDI then prints
the following comment lines:

[CREATING NEW FILE]
INPUT

and enters Input mode.

NOTES

1. Edit control modes are described in
Section 5.2.3.

2. If the message "FILE DOES NOT EXIST" is
displayed, it means that the specified
user file directory is nonexistent.

5-2

LINE TEXT EDITOR (EDI}

3. EDI does not accept indirect command
file specifiers.

4. The abbreviation "filespec" is used in
the command formats to indicate file
specifier.

If an existing filename is specified, EDI prints:

[PAGE l]
*

and waits in Edit mode for the first command to be issued.

If the ">EDI command string" format is used, the p~ompt message (EDI>}
is not issued, and EDI starts up in either Input or Edit mode,
depending on the filename specified: Input mode if the filename is
new; Edit mode if the filename already exists.

NOTE

At program startup, after the input file
has been identified and the output file
has been created, the program is ready
for commands. The first line available
to the user for editing is always one
line above the top of the input file or
the block buffer. This allows for
inserting text at the beginning of the
input file or the block buffer. If,
however, the user wishes to manipulate
the first line of text, he must perform
a NEXT operation to make that line
available.

5.2.2.1 Defaults in File Specifiers - If any of the elements of the
file specifier, except filename and type for input file, are omitted,
EDI uses a default. The default values-for both- the input and the
output files are listed in Table 5-1.

5-3

LINE TEXT EDITOR (EDI)

Table 5-1
EDI Default File Specifiers

Default Value Default Value
Element for Input File for Output File

dev: SYO: Same as input device

[uic] UIC under which EDI Same as input [uic]
is currently running

filename No default--must Same as input filename
be specified

.typ No default--must Same as input file type
be specified

;version Latest version Latest version+l

5.2.3 EDI Control Modes

EDI is capable of operating in two control modes:

• Edit mode (command mode)

• Input mode (text mode)

Edit mode is invoked automatically at program startup, if an existing
file is being edited.

When in Edit mode, EDI issues an asterisk(*) as a prompt. Also EDI
accepts and acts upon control words and data strings to open and close
files; to bring in lines of text from an open file; to change,
delete, or replace information in an open file; or to insert single
or multiple lines anywhere in a file.

Input mode is invoked automatically at program startup if a
non-existent file is specified. When Input mode is active, lines
entered at the terminal are treated as text to be inserted into the
output file.

5.2.4 Changing Control Mode

If EDI is in Edit mode and the user wishes to enter Input mode, the
INSERT command is issued, followed by a carriage return. This will
place EDI in Input mode, and all lines entered from this point will be
added into the file as new text, following the current line.

NOTE

The INSERT command is described in
section 5.4.3.8.

5-4

LINE TEXT EDITOR (EDI)

If EDI is in Input mode and the user wishes to switch to Edit mode, a
carriage return is entered as the first character in a line. EDI will
then issue the prompting character * , which signifies that the Edit
mode is active.

5.2.5 Text Access Modes

EDI provides the user with two modes of accessing and manipulating
lines of text in the input file:

• Line-by-line Mode - Allows the user to access lines of text
one line at a time (a line is a string of characters
terminated by a carriage return).

• Block Mode - Allows the user to access a block of lines, on
a line-by-line basis.

NOTE

Block mode is the default text access mode.

5.2.5.1 Line-by-Line Mode - In this mode, a single line is the unit
of the input file available to the user for modification at any point.
Line-by-line mode is entered by issuing a BLCCK OFF command, and is
terminated by issuing a BLOCK ON command. The BLOCK ON/OFF command is
described in section 5.5.1.1.

The line currently available is specified by a pointer, which can be
thought of as moving sequentially through the file, starting just
before the first line in tne r11e. ~ne user can manipulate the line
pointer by using the editing commands which are described in sections
5.4 and 5.5.

When a file is opened at the beginning of an editing session, the
first line of that file can be brought into memory and made available
for modification. This line remains in memory until the user requests
that a new line be brought in. The pointer then moves down the file
until the line requested is encountered. That line is brought into
memory and, as the "current" line, can be modified. ~hen a new line
is brought in, the old, or previous, line is written into the output
file, and is no longer accessible unless the user issues a TOP command
(the TOP command is described in Section 5.5.3.10). The TOF command
can be used to move the line pointer to the top of the file; however
TOF always causes EDI to re-enter the block mode (see Section
5.4.3.15).

5.2.5.2 Block Mode - In this mode, a user-specified portion (80 lines
is the default) of the input file is held in the block buffer for
editing until the user requests that the contents of the buffer be
added to the output file.

5-5

LINE TEXT EDITOR (EDI)

When the user is operating in block mode, EDI executes commands only
with respect to that portion of the input file currently in the
buffer. The lines of text in the buffer can be addressed backward as
well as forward within the buffer, thus allowing the user to back up
to a previously edited line without having to process the entire block
or file all over again, or having to issue a TOF command.

5.2.5.3 Line-by-Line Vs. Block Mode - Table 5-2 provides a brief
summary of the differences between line-by-line and block mode.

Table 5-2
Line-by-Line vs. Block Mode

Line-by-Line Mode

One line available for
modification at a time
(see third statement below
for exception).

I Lines can only be
accessed forward through
the file.

Locative commands, those
which allow the user to
locate a string of text
for modification, can be
applied to search the
entire file.

Block Mode

Entire block of lines available
for modification at a time, on
a line-by-line basis.

Lines can be accessed forward
and backward within a block.

Locative commands search only
the block that is in memory.
To search more data, another
block must be read in.

NOTE

The line pointer, regardless of
mode utilized, always points
iirst character- in the line.

editing
to the

5.2.6 Text Files

The following sections describe how data may be added to files, and
the operations performed on output files.

5-6

LINE TEXT EDITOR {EDI)

5.2.6.1 Input and Secondary Files - EDI accepts input from:

1. The input terminal {i.e., commands and text entries).

2. Files-11 volumes which contain

a. The file to be edited; or

b. A secondary file; or

c. A save file; or

d. A macro file.

The input file is always preserved. To delete
user can use the CLOSE-AND-DELETE command

the input file, the
or the EXIT-AND-DELETE

command, or PIP can be utilized. Any system failure, EDI failure, or
lack of space on the output volume does not cause the loss of the
input file. Only the output file is affected. The output file is not
completely destroyed; it is a truncated version of the input file
containing all of the edits to the point of failure.

5.2.6.2 Output Files - The output device is defaulted to the input
device, as well as the same directory and filename, with the version
number incremented by one. If the user wishes to change any of the
file parameters (except device and directory), he can specify a
completely new file specifier when closing a file or exiting at the
end of an EDI session.

5.2.7 Terminal Conventions

5.2.7.l Carriage Return - The carriage retutn has the
effects, depending on how it is used:

,
i. When issued in place of an input

return causes EDI to terminate.

f ollcwing

2. When issued in Edit mode, carriage return causes the next
line to be printed and that line to be the current line.

3. When issued in Input mode as the first character in the line,
carriage return causes a return to Edit mode.

4. When issued alone after an INSERT command, carriage return
puts the user in Input mode.

5.2.7.2 Character Erase (RUBOUT) and Line Delete (CTRL U) - Two
terminal commands are provided which permit the deletion {erasure) of
individual characters in a line or the deletion of an entire line.
RUBOUT deletes individual characters. CTRL/U deletes the current
input line. For a complete description of these commands, see the
RSX-llM Operator's Procedures Manual.

During editorial operations, neither the RUBOUT nor CTRL/U command
affects previously prepared text.

5-7

LINE TEXT EDITOR (EDI)

5.2.8 EDI Command Conventions

5.2.8.l Use of* - The asterisk character, *, can be used in place of
a numeric argument and is equal to 32767(10).

Example

The following command would result in the printing of the remainder of
the block buffer or file.

PRINT *

5.2.8.2 Search String Constants - In a number of the EDI commands,
the user must identify a string(s) of characters to be located and/or
changed. To reduce the necessary terminal entries, the more advanced
user can utilize the following special string constructs. In these
special cases, the three periods (...) are used to represent any
number of intervening characters.

Case 1. string-I .••
string-2

- Any string which starts with string-I,
continues with any number of intervening
characters, and ends with string-2.

Case 2 ..•. "string" - Any string which starts at the beginning
of the current line and ends with
'·string".

Case 3. "string" •.. - Any string which starts with "string"
and ends at the end of the current line.

Case 4. - A string which is the current line.

Examples

THIS IS A SAMPLE OF SPECIAL STRING CONSTRUCTS. Using the preceding
sentence and the commands specified in each case, observe the results:

Case 1.

Case 2.

Case 3.

Case 4.

C /S A ... E O/S AN EXAMPLE 0
results in

THIS IS AN EXAMPLE OF SPECIAL STRING CONSTRUCTS.

C / ... SPEC/THIS IS AN EXAMPL~ OF SPEC
results in

THIS IS AN EXAMPLE OF SPECIAI STRING CONSTRUCTS.

C /STRING •.. /EDI STRING CONSTRUCTS.
results in

THIS IS A SAMPLE OF SPECIAL EDI STRING CONSTRUCTS.

C / ... /EXAMPLES OF SPECIAL EDI CONSTRUCTS.
results in

EXAMPLES OF SPECIAL EDI CONSTRUCTS.

5-8

LINE TEXT EDITOR (EDI)

5.3 EDI ERROR REPORTING

Errors encountered by EDI are reported to the user by appropriate
error messages displayed on the input terminal. For the purpose of
clarification, these messages (and their descriptions and suggested
user actions) are described as four separate classes of errors. These
classes are:

• Command level informational error messages

• File access warning messages

• Error messages requiring EDI restart

• Fatal error messages

Input and output files are affected differently by the occurrence of
errors. Input files are always preserved. The resulting output file
is a truncated version of the input file, containing all edits
completed up to the time of the error.

5.3.l Command Level Informational and Error Messages

Messages in this class
helpful to the user
previous command. All
square brackets and
messages are described

indicate information that is designed
or identify errors that were encountered
messages in this class are enclosed
followed by a prompt for a new command.
in Section 5.6.1.

5.3.2 File Access Warning Messages

to be
in the
within

These

File access warning messages represent attempts on the part of the
user to access directories, files, or devices that are not present in
the host system or which are protected against access. Each message
is prefixed with:

EDI --

and, after the message is displayed, EDI returns to command level and
requests input by issuing an asterisk. These messages are described
in Section 5.6.2.

5.3.3 Error Messages Requiring EDI Restart

The error messages that result in restarting the editing session are
caused by conditions encountered by EDI that make it impossible to
continue the current editing session. EDI closes all open files (with
the exception of the secondary input file), reinitializes, and then
prompts for the next file to be edited. Each message is prefixed
with:

EDI --

These messages are described in Section 5.6.3.

5-9

LINE TEXT EDITOR (EDI)

5.3.4 Fatal Error Messages

Fatal error messages represent system and/or hardware error conditions
which make it impossible for EDI to continue execution. All files are
closed and EDI terminates its execution. Each error message is
prefixed with:

EDI --

and followed by the exit message:

[EXIT]

on the next line. These messages are described in Section 5.6.4.

5.4 BASIC EDI OPERATION AND COMMANDS

EDI can be used to create new files, enter new text into existing
files, and edit new and existing files. These operations are
described in this section, along with the basic EDI commands which are
required by the new user.

5.4.1 Basic EDI Operations

5.4.1.1 Creating a File - To create a file using EDI, a nonexistent
filename is used as the file specifier. This causes EDI to print the
following lines on the user terminal:

[CREATING NEW FILE]
INPUT

and to enter Input mode. The user then types the desired text on the
terminal, observing the required spacing within the line. When the
typing of the line is complete, the line is terminated by a carriage
return. The next line is entered in an identical manner.

During file creation, input errors on lines which have been terminated
by a carriage return are corrected by switching to Edit mode. This is
accomplished by typing a carriage return as the first character in a
line. Once Edit mode is entered, EDI issues a prompt (*) to indicate
that it is ready to receive an edit command. If additional text is to
be inserted after the corrections have been completed, the user must
locate the text line preceding the desired entry point and return EDI
to the Input mode by typing an I, followed by a carriage return. The
user can switch between the Input and Edit modes, as required, by
following the procedures described in this paragraph.

When the file creation and necessary corrections have been completed,
the user must switch to Edit mode to exit from EDI. The output file
is stored with the file specifier used when EDI was initiated, or it
can be renamed with the EXIT command.

5-10

LINE TEXT EDITOR (EDI}

S.4.1.2 Entering Text Into a File - Text can be entered into a file
in either Input or Edit mode. Since there are differences between the
two modes of text entry, each is described separately:

• Entering Text in Input Mode - When EDI is in Input mode, the
information typed on the terminal is inserted in the line
following the current line. As each line is terminated by a
carriage return, the line pointer is moved down one line and the
line which was just entered becomes the current line. EDI does
not recognize any command and remains in Input mode until a
carriage return is typed as the first character of a line. Then
EDI switches to Edit mode.

• Entering Text in Edit Mode - When EDI is in Edit mode, text can
be appended to the current line (via an ADD or ADD & PRINT
command), inserted as a line following the current line (via an
INSERT command), or used to replace the current line (via a
RETYPE command). Each of the commands inserts only a single line
of text; the command must be reissued to insert another line.
Other EDI commands can be used to modify a single line or a
complete file, but the ADD, ADD & PRINT, INSERT, and RETYPE
commands are mainly the commands used to insert text in Edit
mode.

S.4.2 Editing a File

Editing operations are performed only when in Edit mode. The commands
available with EDI are categorized as follows:

• Setup commands select data modes, select and open files, select
operating conditions, etc.

• Input/Output commands transfer text from input files and to
output files.

• Locative commands control the positioning of the current line
pointer.

• Text modification and manipulation commands display,
modify the text.

• Close operation commands terminate editing operations.

change

The various commands are described in Sections S.4.3 and S.S.

and

Two text access modes are available with EDI, and a command is
available that allows the user to select either mode. The
line-by-line mode allows the user to locate a line anywhere within a
file, but the current line pointer must always be moved down through
the file being edited. Once a line is passed, the pointer must be
moved to the beginning of the file to access that line agai~.

S-11

LINE TEXT EDITOR (EDI)

The second text access mode, which is the more frequently used of the
two modes, is block mode. In block mode, a block of data is stored in
the block buffer, and the line pointer can be moved up or down through
the data block. The default size of the data block is 80 lines.
Since data is packed in the block buffer, the user can increase or
decrease the data block size, as required, or he can read additional
data blocks into the block buffer as long as the buffer capacity is
not exceeded. Once the contents of the block buffer are established,
only the contents of the block buffer are available for editing
operations. If another block is to be edited, the block buffer must
be renewed before new data can be edited. Because of this limitation
in block mode, commands have been included in EDI that allow the user
to specify a string or page number not in the present contents of the
block buffer. Then, EDI performs the necessary search and renew
operations to locate the desired data and load it into the block
buffer. After selecting edit mode, the user moves the line pointer to
locate the line to be changed. The user then can perform editing
operations, which can consist of adding, changing, modifying or
deleting data, with a wide variety of commands. If a common change is
required more than once in a line or to more than one line, commands
are available to perform these operations without requiring the user
to locate each occurrence and enter the required command. Storage for
up to three EDI macro definitions is available so that frequently-used
EDI commands or string of EDI commands can be stored, called, and
executed, when required.

A single EDI command can insert the contents of a save file into the
file or data block being edited. Another command can delete a number
of lines and place EDI in Input mode so new lines can be entered via
the terminal in place of the original lines. Storage capacity of the
block buffer must never be exceeded; surpassing buffer capacity
during an operation is considered an EDI error condition. The data
which caused the overflow will be deleted.

Commands are included in EDI to perform the following input/output
operations:

• Write the contents of the block buffer into the output file
and renew the contents of the block buffer with the next
input data block.

• Write the contents of the block buffer into the output file
and erase the present contents of the block buffer.

• Read the next block or group of blocks into the block
buffer.

• Write edited text into the output file and return to top of
file.

In all cases, the input/output commands have no effect on the input
file. The input file can be deleted only during closing operations.
In most cases, an editing session is terminated by transferring the
contents of the block buffer and the remaining lines in the input
file, in that order, to the output file, and then closing the files.
Whether EDI is terminated is dependent upon which closing command is
used. The available closing commands are as follows:

5-12

•

•

•

•

•

LINE TEXT EDITOR (EDI)

Close the current editing session and remain in EDI .

Close the current editing session, delete the input file and
remain in EDI.

Exit EDI without deleting the input file •

Exit EDI and delete the input file .

Remain in EDI but delete both output and input files .

EDI is a versatile editing tool which enables the user to edit all
types of text files. In the following descriptions of the commands,
examples are included using text lines and files to illustrate the
function of the various commands. Text has been used in these
examples so that the intent of the command is not lost in the syntax
of a language which the new user may not understand.

5.4.3 Basic EDI Commands

The basic EDI commands listed in Table 5-3 allow the user to create a
file, modify a file by adding, deleting, or changing its contents, and
exit after the desired operations have been completed. These commands
are the most important commands to the new user; therefore, they have
been presented as a group near the beginning of this section to
provide the new user with an understanding of some of the more
important EDI capabilities. As the user becomes familiar with EDI
operations, the additional commands described in Section 5.5 will
allow utilization of the full EDI capabilities.

5-13

Command

ADD

ADD & PRINT

CHANGE

CTRL Z

DELETE

DELETE &
I PRINT

EXIT

INSERT

LOCATE

I NEXT

NEXT & PRINT

PRINT

RENEW

RETYPE

TOP OF FILE

LINE TEXT EDITOR (EDI)

Table 5-3
Basic EDI Commands

Command Format

A[DD] (string)

AP (string)

[n]C[HANGE] /string-1/
string-2/

tz

D [ELETE] [n]
or

D[ELETE] [-n]

DP [n] or DP -nJ

EX[IT] [filespec]

I[NSERT] (string)

[n]L[OCATE] {string)

N[EXT] [n] or
N[E~T] [-n]

NP [n] or NP [-n]

P [RINT] [n]

REN [EW] [n]

R[ETYPE] (string)

TOF

5-14

Description

Append {string) to
line.

current

Append {string) to current
line and print resultant line.

Replace string-1 with string-2
n times in the current line.

Close files and
editing session.

terminate

Delete current line and n-1
lines if n is (+); delete n
lines preceding current line
if n is {-). [-n] operates in
block mode only.

new Same as DELETE except
j current line is printed.

I Close files, name output file
and terminate editing session.

Enter (string) following
current line or enter input

II mode if (string) is not
specified.

Locate "nth" occurrence of
string.

Establish new current line n
lines away from current line.

1 Establish and
current line.

print

Print current line
next n-1 lines.

I
printed line is
current line.

and
The
the

new

the
last

new

Write current block to output
file and read new block from
input file {block mode only) .

Replace current line with
string; or delete current
line if {string) is null.

Return to top of input file
and save all pages previously
edited.

LINE TEXT EDITOR (EDI)

5.4.3.1 ADD Command

Function

This command causes the specified string to be appended to
line.

Format

A[DD] (string)

Example

"-~- _, .. ____ "'"'
L.11C: ..._U.L.LC:UL.

The following command completes the line HAPPY DAYS ARE HERE

~A AGAIN . ..)

5.4.3.2 ADD AND PRINT Command

Function

This command performs the same function as the ADD command, except
that the resultant line is printed.

Format

AP (string)

Example

Using the same line as the ADD command, the following command causes
the new line to be printed as folrows:

!AP AGAIN . ._)

HAPPY DAYS ARE HERE AGAIN.

5.4.3.3 CHANGE Command

Function

This command searches for string-1 in the current line and, if found,
replaces it with string-2. If string-1 is given, but cannot be
located in the current line, EDI prints [NO MATCH] and returns an *
prompt. If string-1 is null (not given), string-2 is inserted at the
beginning of the line. If string-2 is null, string-1 is deleted from
the current line. The search for string-1 begins at the beginning of
the current line and proceeds across the line until a match is found.
The delimiters may be any matching characters which are not contained
in the specified string. Slashes are shown in the example. The first
character following the command is considered the beginning delimiter
and the next matching character ends the string. Thus, characters
used as delimiters must not appear in the string itself. The closing
delimiter is optional.

A numeric value "n" preceding the command results in the
occurrenceE of string-1 being changed to string-2.

5-15

first
For

"n"
each

LINE TEXT EDITOR (EDI)

replacement of string-1 with string-2, the entire line is rescanned
beginning at the first character in the line. This allows the user to
generate a string of !l characters as shown in the example below.

If no match occurs, a [NO MATCH] message is displayed.

Format

[n]C[HANGE] /string-1/string-2[/]

Example

If a line contained A;B;C;D, then the command 4C/;/;;
A;;;;;B;C;D.

5.4.3.4 CTRL/Z Command

Function

generates

Typing CTRL/Z (holding the CTRL key down while typing the letter Z)
terminates the editing session. If an output file is open when CTRL/Z
is typed, then all remaining lines in the block buffer and the input
file are transferred (in that order) into the output file, all files·
are closed, and EDI exits. These actions occur if EDI is prompting
for command input with an asterisk or is in Input mode. If EDI is
prompting for another file specifier when CTRL Z is entered, all files
are closed (including any open secondary input file), and EDI exits.

5.4.3.5 DELETE Command

Function

This command causes lines of text to be deleted in the following
manner:

1. If n is given as +n, the current line and n-1 lines following
the current line are deleted. The new line available for
modification {the new current line) is the line following the
last deleted line.

2. If n is given as -n, the current line is not deleted, but the
specified number of lines that precede it are deleted. The
line pointer remains unchanged.

3. If n is null, the current line is deleted, and the next line
becomes the new current line.

NOTES

1. A negative value for n can be used only
in block mode.

2. If n is not specified, a value of +l is
assumed.

5-16

LINE TEXT EDITOR (EDI)

Format

D[ELETE] [n]

or

D[ELETE] [-n]

Example

To delete the previous five lines in the block buffer, the following
command is typed:

~D -5..)

5.4.3.6 DELETE AND PRINT Command

Function

This command performs the same function as the DELETE command, except
that the new current line is printed when the deletion of all lines
has been completed.

Format

Exam;ele

If the

and the
obtains

DP [n]

or

DP [-n]

NOTES

1. If n is not specified, +l is assumed.

2. A negative value for n can be used only
in block mode.

following lines are contained in a file:

THIS IS LINE 1

THIS IS LINE 2

THIS IS LINE 3

THIS IS LINE 4

line pointer is at the first line, the following command
the results shown below:

~DP 2../

THIS IS LINE 3

5-17

LINE TEXT EDITOR (EDI)

5.4.3.7 EXIT Command

Function

This command transfers all rema1n1ng lines in the block buffer and
input file (in that order) into the output file, closes the files, and
terminates the editing session. If file specifier is used, the output
file is renamed to the specified filename.

Format

EX[IT] [filespec]

Example

The following command terminates the editing session, without renaming
the output file, and causes the following printout:

!EX.)
[EXIT]
>

5.4.3.8 INSERT Command

Function

This command inserts "string" immediately following the current line.
The string becomes the new current line. If "string" is not
specified, the user enters Input mode.

Format

I (NSERT) {string)

Example

! I TEXT INSERT IN EDIT MODE __)

~L ABC.J

ABC IS THE START OF THE ALPHABET

*I J -
TEXT INSERT 1 IN INPUT MODE...)

TEXT INSERT 2 IN INPUT MODE_.}

ETC._}

_j

*

5-18

Inserts a
immediately
line.

line of text
after the current

Locates a line containing ABC.

This is the line found.

An I followed by a carriage

return causes EDI to switch

to Input mode and a series

of new lines can be input
following the current line.

A carriage return as the first
character in a line causes EDI
to return to Edit mode and
prompt for a new command.

LINE TEXT EDITOR (EDI)

5.4.3.9 LOCATE Command

Function

This command causes a search of the block buffer or input file,
beginning at the line following the current line for "string", which
may occur anywhere in the line sought. If "string" is not specified,
the line following the current line is considered a match. A numeric
value "n" preceding the command results in locating the "nth"
occurrence of "string". The line pointer is positioned to the line
containing the located string. LOCATE applies to the block buffer if
EDI is in block mode and to the input file if in line-by-line mode.
When the line is located, it is printed, unless a VERIFY OFF command
is in effect.

Format
[n] L [OCATE] (string)

Example

The following command can be used to locate the line HAPPY DAYS ARE
HERE AGAIN.

~L ppy __;

The file or block buffer is checked, and the line is printed when it
is located, if the VERIFY ON command is in effect.

5.4.3.10 NEXT Command

Function

This command establishes a new current line at n lines, plus v .. rn ... uu.:>,

from the current line.

Format

Example

N [EXT] [n]

or

N [EXT] [-n]

NOTES

1. If n is not specified, a value of +l is
assumed.

2. A negative n can be used only in the
block mode.

In the block mode, the following command moves the current line
pointer back five lines:

~N -5 _.}

5-19

LINE TEXT EDITOR (EDI)

5.4.3.11 NEXT PRINT Command

Function

Same as NEXT command, except the new current line is printed.

Format

Example

NP [n]

or

NP [-n]

NOTES

The following conventions can be used in
place of issuing a complete NP command.

1. Pressing the <CR> key is the same as an
NP+l command.

2. Pressing the <ALTMODE> (or ESCape) key
while in the block mode is the same as
an NP-1 command.

3. If n is not specified, then a value of
+l is assumed.

Assume the following four lines are contained in the file and the line
pointer is at the first line.

LINE 1 OF THE FILE

LINE 2 OF THE FILE

LINE 3 OF THE FILE

LINE 4 OF THE FILE

If the following command is issued, EDI would return the following
printout:

~NP 2~

~INE 3 OF THE FILE

5.4.3.12 PRINT Command

Function

This command prints out the current line and the next n-1 lines on the
terminal; the last line printed becomes the new current line.
(Compare with the TYPE command, Section 5.5.4.13.)

5-20

Format

Example

LINE TEXT EDITOR (EDI}

P [RINT] [n]

NOTE

If n is not specified, a value of +l is
assumed.

The following example illustrates both the PRINT and the TYPE
commands:

File A

Line A

Line B

Line c

Line D

Line E

~TYPE

T.: - - A l.J.1.Jl~

Line B

Line c

Line D

Line E

* -

File A

Line A

Line B

Line c

Line D

Line E

5_)

Before

Qis the

Line Pointer

After

5-21

File B

Line v

Line w

Line x

Line y

Line z

~PRINT 5_.)

Line v

Line w

Line x

Line y

Line z

:!!..

File B

Line v

Line w

Line x

Line y

Line z

LINE TEXT EDITOR (EDI}

5.4.3.13 RENEW Command

Function

This command writes the current block buffer into the output file and
reads a new block from the input file. The value n, which is
optional, specifies how many times the RENEW command is to be
repeated. If n is specified, the process is repeated n times, the
inter-blocks are written into the output file, and the last block is
left in the block buffer. If n is not specified, it is assumed that
the process is to be performed only once. This command can be used
only in the block mode.

Format

REN[EW] [n]

Example

~RENEW 10__)

In this example, ten consecutive blocks are transferred from the input
file to the block buffer. The initial contents of the block buffer
and the next nine blocks are transferred to the output file. The
current line pointer is pointing to the first line in the tenth block,
which is currently in the block buffer.

5.4.3.14 RETYPE Command

Function

This command causes the current line to be replaced by "string". If
"string" is not specified, the line will be deleted.

Format

R[ETYPE] [string]

Example

~R THIS IS A NEW LINE_.}

In this example, the string "THIS IS A NEW LINE" replaces the current
line.

5.4.3.15 TOP OF FILE Command

Function

This command causes a return to the top of the input file and saves
previously edited text. If this command is issued when in
line-by-line mode, EDI will switch to block mode after saving 'the
edited data. The first block is read into the block buffer.

5-22

LINE TEXT EDITOR (EDI)

Format

TOF

Example

~TOF_.)

This command causes the previously edited pages to be written into the
output file and the current line pointer to be reset to the top of the
input fi1e. The first block is read into the block buffer.

5.4.4 S~mple Editing Session

Section B.2.1 contains a sample EDI editing session that illustrates
how EDI commands can be used to edit a file.

5.5 EXTENDED EDI COMMANDS

5.5.1 Setup Commands

The setup commands required at the start of an editing session allow
the user to provide parameters for EDI features. Table 5-4 contains a
list of these commands.

5-23

Command

BLOCK ON/OFF

CONCATENATION
CHARACTER

OPENS

OUTPUT ON/OFF

SELECT PRIMARY

SELECT SECONDARY

SIZE

TAB

UPPER CASE
ON/OFF

VERIFY ON/OFF

LINE TEXT EDITOR (EDI)

Table 5-4
EDI Setup Commands

Command
Format

BL[OCK] ON or
BL[OCK] OFF

CC [letter]

OP[ENS] filespec

OU[TPUT] ON or
OU[TPUT] OFF

SP

SS

I
SIZE n

TA[B] ON or
I TA [B] OFF

UC ON or UC OFF

V[ERIFY] ON or
V[ERIFY] OFF

5-24

Description

Switch text access modes.

Change concatenation character
to specified character
(default is &) •

Open specified secondary file.

Continue/Discontinue transfer
to output file (line-by-line
mode) .

Reestablish primary file as
input file.

Select opened secondary file
J as input file. I

Specify maximum number of
lines to be read into block
buffer (default is 80 lines).

Turn automatic tabbing on or
off. If TAB ON is selected,
all text lines are moved over
8 spaces, unless the line has
a label followed by a colon,
or the line starts with a
semicolon in column 1.

Convert lower-case characters
entered from terminal to
upper-case characters.

Select whether locative and
change commands are verified.

LINE TEXT EDITOR (EDI)

5.5.l.l BLOCK ON/OFF Command

Function

This command allows the user to switch between block mode and
line-by-line mode. When BLOCK ON is issued, block mode becomes
active, and the next block of text is brought into the block buffer.
When BLOCK OFF is issued, the current block being processed is written
to the output file, and line-by-line mode becomes active, with the
first line from the next sequential block in the input file as the
current line.

Format

Example

NOTES

1. If a conflicting BLOCK command is issued
(e.g., BLOCK ON is issued when EDI is
already in BLOCK ON mode) : the command
is ignored.

2. BLOCK ON is the default text access
mode. It is assumed when neither ON nor
OFF is specified.

BL[OCK] ON

or

BL[OCK] OFF

~BLOCK ON..)

This command causes EDI to switch to block mode and the next block of
text to be read into the block buffer.

5.5.1.2 CONCATENATION CHARACTER Command

Function

This command allows the user to change the command concatenation
character to the specified character. If none is specified, the
ampersand (&) is assumed. The concatenation character links two EDI
commands on the same command line.

5-25

LINE TEXT EDITOR (EDI)

Format

Example

CC [letter]

~c :..J

~L A&B:C /A&B/ABC/_J

~cc & __)

In this example, the string to be located contains an ampersand.
Therefore, the default concatenation character must be changed to
something else before the line can be located.

The first command line changes the default concatenation character
from & to ..

The second command line instructs EDI to locate the string A&B and
change string A&B to ABC. (Note: this line contains two commands
which are concatenated by the new concatenation character, ":".)

The third command line changes the concatenation character back to the
normal default value, &.

5.5.1.3 OPENS Command

Function

This command opens the specified secondary input file. The primary
input file, if any, remains open and subsequent text is read from
primary input file until the secondary input file is selected for
input (see Section 5.5.1.6 for a description of SELECT SECONDARY
command).

Format

Example

OP[ENS] filespec

~OPENS RICKS.MAC_}

~SS../

~READ l__J

In this example, the file RICKS.MAC is opened as a secondary input
file, selected for input, and the first block is read in.

5.5.1.4 OUTPUT ON/OFF Command

Function

This command allows the user to selectively
transfer of text to the output file.

5-26

continue/discontinue the
OUTPUT ON is the default

condition;
is issued.

Format

Example

LINE TEXT EDITOR (EDI)

it is automatically established each time a CLOSE command
This command can be used only in the line-by-line mode.

OU[TPUT] ON

or

OU[TPUT] OFF

NOTE

If neither ON nor OFF is specified, ON
is assumed.

~OUTPUT OFF _J

~NP 5 __}

~OUTPUT ON_!

In this example, the user wishes to bypass five lines of text in the
input file without having these lines written into the output file.

The first command line causes the transfer of text to ·the output file
to be disabled.

The second command line causes five consecutive lines of text from the
input file to be bypassed.

The third command causes the transfer of text to the output file to be
reenabled.

5.5.1.5 SELECT PRIMARY Command

Function

This command selects the primary file for input. It allows the user
to reestablish the primary input file as the file from which text is
to be read.

Format

SP

5-27

Example

LINE TEXT EDITOR (EDI)

~OPENS SECOND.MAC_}

!SS_}

!RENEW 10 __}

!CLOSES_}

~SP

In this example, the user

1. Opens the secondary file SECOND.MAC.

2. Selects SECOND.MAC as the seconaary input file.

3. Issues a RENEW command, which reads ten consecutive blocks
from the secondary input file into the block buffer. The
first nine blocks are automatically transferred to the output
file.

4. Closes the secondary input file SECOND.MAC.

NOTE

The secondary file need not be closed
before the primary file is reselected as
input.

5. Reselects the primary input file for input.

5.5.1.6 SELECT SECONDARY Command

Function

This command allows the user to select the secondary file as the input
file.

Format

SS

Example

To add text to the output file from a secondary input file, the user
must first open the secondary input file and select it for input. The
use of the SS command is illustrated in the example presented in
Section 5.5.1.5.

5-28

LINE TEXT EDITOR (EDI)

5.5.1.7 SIZE Command

Function

This command allows the user to specify the maximum number of lines to
be read into the block buffer on a single READ. The default value for
SIZE is 80 lines.

Format

SIZE n

Example

~SIZE 50..J

This command would condition EDI to read a default of 50 lines into
the block buffer during a single READ command=

5.5.1.8 TAB ON/OFF Command

Function

Turn automatic tabbing on or off. TAB OFF is the default at the start
of an editing session. TAB ON results in a tab (equivalent to eight
spaces) being inserted automatically at the beginning of each input
line unless the line contains a label followed by a colon, or the
first column in the line contains a semicolon.

Format

Example

TA[B] ON

or

TA[B] OFF

NO'I'E

If neither ON nor OFF is specified when
a TAB command is issued, ON is assumed.

~TAB ON__;
~I__}
; HI THERE. THIS IS A SAMPLE OF TABBING.__)
THIS LINE GETS A TAB..)
1: THIS ONE DOESN'T_)
END__}
__;
~TAB OFF_)
*N -3..}
~p 4.)
; HI THERE. THIS IS A SAMPLE OF TABBING.

THIS LINE GETS A TAB
1: THIS ONE DOESN'T

END

5-29

LINE TEXT EDITOR (EDI)

5.5.1.9 UPPER CASE ON/OFF Command

Function

This command allows the user to enter lower-case characters from a
terminal and have them converted to upper-case characters. If UPPER
CASE OFF is issued, all input characters are accepted as they are
entered (no conversion is performed) , except that all EDI commands are
converted to upper-case characters.

Format

Example

UC ON

or

UC OFF

NOTE

If neither ON nor OFF is specified, then
ON is assumed. UC ON is default at
startup.

~UC OFF~_}
!I this line is entered in lower case__;
~UC ON_.)
!I this line is converted to upper case..)

Assuming that the input terminal is capable of generating lower case
input, the above example would create the following lines in the
output file.

this line is entered in lower case
THIS LINE IS CONVERTED TO UPPER CASE

5-30

LINE TEXT EDITOR (EDI)

5.5.1.10 VERIFY ON/OFF Command

Function

This command aiiows the user to select whether locative and change
commands are to be verified. Specifying VERIFY ON allows the user to
determine whether the desired change has been correctly done. EDI is
in the VERIFY ON mode at the start of editing.

Format

Example

V [ERIFY] [ON]

or

V[ERIFY] [OFF]

If neither
is assumed.

!.V OFF_}
~L VERIFY__}
!P~

NOTE

ON nor OFF is specified, ON

LINE IS PRINTED AUTOMATICALLY IF VERIFY IS ON
*N -2..)
!v ON_/
~L VERIFY~
LINE IS PRINTED AUTOMATICALLY IF VERIFY IS ON

In this example, the PRINT command is issued to verify that the
desired line has been located when VERIFY is OFF, but when the LOCATE
command is reissued with VERIFY ON, EDI prints the line automatically.

5.5.2 EDI Input/Output Commands

Input/Output commands are used to transfer text to and from input and
output files. Table 5-5 contains a list of these commands.

5-31

LINE TEXT EDITOR (EDI)

Table 5-5
EDI Input/Output Commands

Command
Command Format Description

FIL[FI[LE] f ilespec Transfer lines from input file to
both the output file and the
specified file until a form-feed or
end-of-file is encountered.

READ REA[D] [n] Read next n blocks of text into
block buffer. If buffer contains
text, new text is appended to it.

WRITE W[RITE] Write contents of block buffer to
output file and erase block buffer.

5.5.2.1 FILE Command

Function

This command transfers lines from the input file to both the output
file and a specified file, beginning with the current line, until a
forQ-feed character is encountered as the first character in a line or
end-of-file is reached. At that time the specified file is closed,
and the form-feed character is not included in the specified file.
During the transfer, the original file remains intact (i.e., all lines
written to the specified file are also written to the normal output
file, including the form-feed). When the command is complete, the
current line in the input file is one line beyond the form-feed.

If the specified file is not an existing file, a new file is created.
When the specified file does exist, the contents of the specified file
are overwritten with the new data.

Format

FI[LE] filespec

Example

!FI SEC.DAT.)

In this example, the contents of the input file from the current line
to end-of-file (assuming that no form-feed character is encountered)
is written into the output file and file SEC.DAT.

5.5.2.2 READ Command

Function

This command allows the user to read the next n blocks of text into
the block buffer.

5-32

LINE TEXT EDITOR (EDI)

If a block is already in the buffer, the new blocks are appended to
it.

Format

NOTE

EDI must be running in block mode before
this command can be executed.

REA [D] [n]

If n is not specified, a value of 1 is assumed. The value of n must
be positive.

Example

!READ 4 ~_)

In this example, four blocks of the input file are read into the block
buffer.

NOTE

The number of blocks specified should
not exceed buffer capacity. If the
blocks being read in exceed block buffer
capacity, EDI will fill the block buffer
and then issue a diagnostic message
explaining that the buffer capacity has
been exceeded. Following the message,
EDI will issue an * prompt and wait for
another command. At this point, the
user should issue a TOF command, locate
the line where the first READ command
was issued, and issue a READ command
with a smaller number of blocks
specified.

5.5.2.3 WRITE Command

Function

This command causes the entire contents of the block buffer to be
written into the output file. The contents of the block buffer is
then erased.

NOTE

EDI must be running in block mode before
this command can be executed.

5-33

Format

Example

w[RITE]

!:_W_}

?:_REA 2..)

LINE TEXT EDITOR (EDI)

In this example, the contents of the block buffer is written into the
output file and the block buffer is erased. Then, the next two blocks
are read into the block buffer.

5.5.3 Line Pointer Control (Locative) Commands

During editing operations, EDI maintains a pointer that identifies the
current line (i.e., the line to which any subsequent editing
operations will refer). Commands which modify the line pointer's
location are called locative commands and they are listed in Table
5-6.

The user can issue commands which control the positioning of the line
pointer and cause the pointer to be set to a line identified only by a
text string contained in the line. The commands provided enable the
user to:

1. Set the line pointer to either the top or bottom of the input
file or block buffer.

2. Move the· line pointer a specified number of lines away from
its current position.

3. Cause a line, identified only by a text string, to become the
current line.

NOTES

1. The carriage return key can be used to
move the line pointer from the current
line to the next line. Alternately, the
ALTMODE (or ESCape) key can be used to
move the line pointer from the current
input line to the previous input line
(block mode only) •

2. If the VERIFY ON command is in effect,
the line is printed when found.

5-34

Command

BEGIN

BOTTOM

END

FIND

IOLDPAGE
(Block
Mode Only)

PAGE
1 (Block
Mode Only)

PAGE FIND

I

(Block
Mode Only)

I

PAGE LOCATE
(Block
Mode Only)

SEARCH AND
CHANGE

TOP

LINE TEXT EDITOR (EDI)

Table 5-6
EDI Locative Commands

B [EGIN]

Command
Format

BO[TTOM]

E[ND]

[n]F[IND] (string)

I OL[DPAGE] n

PAG[E] n

[n]PF[IND] (string)

[n]PL[OCATE] (string)

SC /string-l/string-2/

T[OP]

5-35

Description

Set current line to the
line preceding top line
in file or block buffer
(identical to TOP).

Set current line to last
line in file or block
buf t"er.

Identical to BOTTOM.

Search current block or
input file, beginning at
line following current
line for the "nth"
occurrence of string.
String must begin in
column 1. Line pointer
is set to indicated line.

Return to TOF and read
page n into block buffer.

Enter block mode. Read
page n into block buffer.
Page n must be greater
than current page number.

Search successive blocks
for the "nth" occurrence
of string. String must
start in column 1.

Search successive blocks
for the "nth" occurrence
of string. String may be
anywhere in line.

Locate string-1 and
replace all occurrences
in line with string-2.

Identical to BEGIN.

LINE TEXT EDITOR (EDI)

5.5.3.l BEGIN Command

Function

This command sets the current line pointer to the beginning (top) of
the file (line-by-line mode) or block buffer (block mode). The
current line is one line preceding the top line in the file or block
buffer. This allows text to be inserted at the beginning of a file or
block.

Format

B [EGIN]

Example

In this example, the current line pointer is moved to the top of the
block buffer (block mode is assumed).

5.5.3.2 BOTTOM Command

Function

This command sets the current line pointer to the end of the block or
input file. If EDI is in block mode, only line pointer positioning
occurs. In line-by-line mode, all lines are copied from the input
file to the output file until an EOF is reached. The last line is
printed if the VERIFY ON command is in effect.

Format

Example

BO[TTOM]

~V ON.,)

~BO.,)

THIS IS THE LAST LINE

In this example, the line pointer is moved to the bottom of the block
buffer, and the last line is printed.

5.5.3.3 END Command

Function

This command is identical to the BOTTOM command.

Format

E[ND]

5-36

LINE TEXT EDITOR (EDI)

5.5.3.4 FIND Command

Function

This command searches the block buffer or input file, beginning at the
line following the current line for "string", which must begin in
column 1 of the lines searched. If "string" is not specified, the
next line is considered a match. A numeric value of "n" preceding the
command results in finding the "nth" occurrence of "string" and
positioning the line pointer to the line containing it.

FIND applies to the block buffer if EDI is in block mode and to the
input file if EDI is in line-by-line mode.

When the line containing the desired "string" is found, it is printed
if the VERIFY ON command is in effect.

Format

Example

[n]F[IND] (string)

*V ON.)

~F LOOK.)

LOOK AT THE FIRST CHARACTER IN THE LINE.

In this example, EDI searches the block buffer (or file) for a line
that begins with LOOK and prints the line when it is found.

5.5.3.5 OLDPAGE Command

Function

This command causes EDI to enter block mode, if not already in block
mode, and read page n into the block buffer. This command is
identical to the PAGE command, except that OLDPAGE allows the user to
back up to previous page "n". EDI actually accomplishes this by
performing a TOF operation followed by a PAGE n operation (see Section
5.5.3.6).

Format

OL[DPAGE] n

Example

*OL l_.)

[PAGE 1]

In this example, EDI locates page 1, reads it into the block buffer,
and prints the new page number.

5-37

LINE TEXT EDITOR (EDI)

5.5.3.6 PAGE Command

Function

This command causes EDI to enter block mode, if not already in block
mode, and read page n into the block buffer. A page is always
delimited by form-feeds. If n is less than the current page number,
an error message is displayed. Otherwise, the necessary number of
RENEW commands is executed to read page n into the block buffer.

Format

PAG[E] n

Example

~PAG 7.)

[PAGE 7]

In this example, EDI locates page 7 if the present page number is less
than 7, reads page 7 into the block buffer and prints the new page
number.

5.5.3.7 PAGE FIND Command

Function

This command functions identically to the FIND command, except that
successive blocks are searched until the "nth" occurrence of "string"
has been found. The contents of the block buffer and the blocks
between the current block and the block in which the "nth" occurrence
of the string is located are copied into the output file. The string
must begin in column 1 of the line searched.

Format

Example

[n]PF[IND] (string)

NOTE

This command can be used only in block
mode.

This command is used in the same manner as the FIND command, except
that the specified string can be in a block following the current
block.

5-38

LINE TEXT EDITOR (EDI}

5.5.3.8 PAGE LOCATE Command

Function

This command causes a search of the current block, starting at the
line following the current line, and successive blocks until the "nth"
occurrence of the string has been located. Text from the current
block buffer is written into the output file. The string can occur
any place in the lines checked. The line is printed if the VERIFY ON
command is in effect.

Format

Example

[n]PL[OCATE] (string}

NOTE

This command can be used only in block
mode.

This command is used in the same manner as the LOCATE command, except
that the specified string can be in a block other than the current
block.

5.5.3.9 SEARCH AND CHANGE Command

Function

This command causes a search for string-1 in the block buffer (block
mode} or input file (line-by-line mode}, beginning at the line
following the current line. The string may occur anywhere in the
line. When string-1 is located, it and all occurrences of the string
in that line are replaced by string-2. The located line becomes the
current line.

If string-! is not specified, then the match occurs on the next line,
and string-2 is inserted at the beginning of the line. The new
current line is printed if the VERIFY ON command is in effect. If
string-1 is given but EDI cannot locate the string, EDI returns an *
prompt, and the line pointer is positioned at the line preceding the
top of the file or block buffer.

Format

SC /string-l/string-2/

~-39

LINE TEXT EDITOR (EDI)

Example

If the following incorrect line is contained in the current block:

THES ES THE LINE TO BE ESSUED.

The following command can be issued to correct the errors:

~V ON..)

~SC /ES/IS/_)

THIS IS THE LINE TO BE ISSUED.

The corrected line is printed since the VERIFY ON command is in
effect.

5.5.3.10 TOP Command

Function

This command sets the current line pointer to the top of the file
(line-by-line mode) or block buffer (block mode). The current line is
one line preceding the top line in the file or block buffer, allowing
text to be inserted at the beginning of a file or block.

Format

T[OP]

Example

This command moves the line pointer to the top of the block buffer or
file.

5.5.4 Text Modification and Manipulation Commands

The text modification and manipulation commands enable the user to
display, change, and modify text. Table 5-7 contains a list of these
commands.

5-40

LINE TEXT EDITOR (EDI)

Table 5-7
EDI Text Modification and Manipulation Commands

I
'Command

ERASE

FORM FEED

LINE CHANGE

LIST ON TERMINAL

LIST ON PSEUDO
DEVICE

MACRO

MACRO CALL

MACRO EXECUTE

MACRO (IMMEDIATE)

OVERLAY

Command
Format

ERASE n

FF

Erase the current line
and next n-1 lines if in
line-by-line mode.

Erase the current block
buffer and the next (n-1)
blocksi if in block mode.

Insert form-feed into
block buffer (used to
delimit a page}.

[n]LC /string-l/string-2/ Change all occurrences of
string-1 in current line
(and n-1 lines) to
string-2.

LI[ST]

LP

MACRO [x] (definition)

MC[ALL]

[n]Mx [a]

[n]<definition>

O[VERLAY] [n]

5-41

Print on the user
terminal all lines
remaining in block buffer
or in ~ne input file,
beginning at current
line.

Same as LI, except print
ing is performed on
pseudo-device CL:.

Used to define macros.
Up to three macros can be
defined. Numeric

l
arguments to be passed at
execution are identified
by a % in definition.

Used to retrieve macro
definitions stored in
file MCALL; n .

Execute macro [x] [n]
times while passing
numeric argument [a] •

Define and execute a
macro n times.

Delete n lines, enter
Input mode, and insert
new line(s) as typed, in
place of original
line(s).

I
I

Command

PASTE

SAVE

TYPE

UNSAVE

LINE TEXT EDITOR (EDI)

Table 5-7 (Cont.)
EDI Text Modification and Manipulation Commands

Command
Format Description

PA[STE) /str-l/str-2/ Search all remaining
lines in file or block
buff er for string-I and
replace with string-2.

SA[VE) [n) [f ilespec) Save current line and the
next n-1 lines in
specified file. If
f ilespec is not
specified, lines are
saved in file SAVE. TMP.

TY[PE) [n) Print next n lines. Line
pointer remains at
current line.

UNS[AVE) [filespec) Insert all lines from
specified file following

I

current line. If
f ilespec is not
spec if ied, SAVE.TMP is
used.

5.5.4.l ERASE Command

Function

This command causes the current
the next n-1 blocks to be
specification of l is allowed.
erased. In block mode, the
blocks are erased.

Format

ERASE n

line, or the current block buffer, and
erased. In line-by-line mode, only a
This causes the current line to be
current block buffer and the next n-1

NOTE

If n is not specified, +l is assumed.

Example

~ERASE 5..)

This command causes the content of the current block buffer and the
next 4 blocks to be erased and not written into the output file.

5-42

I

I

I

I

LINE TEXT EDITOR (EDI)

5.5.4.2 FORM FEED Command

Function

This command allows the user to insert form-feeds into the text.
Form-feed cannot be entered in input modee The form-feed is inserted
after the current line, and the new current line becomes the line
containing the form-feed. Form-feeds are used to delimit an EDI page.

Format

Example

FF

~p_J
THIS IS THE LAST LINE ON THE PAGE
~FF.J

In this example, a form feed is inserted into the text following the
current line.

5.5.4.3 LINE CHANGE Command

Function

This command is similar to CHANGE, except that all occurrences of
string-1 in the current line are changed to string-2. A numeric value
11 n" preceding the command results in the current line and the next n-1
lines being changed. If string-2 is null, all occurrences of string-I
are deleted. New lines are printed if the VERIFY ON command is in
effect.

If string-I is given but EDI cannot locate the string in the current
line, EDI prints [NO MATCH] and returns an * prompt.

Format

[n]LC /string-l/string-2/

Example

If the current line is:

THES ES THE LINE TO BE ESSUED.

Then, the following command could be issued to correct the errors:

!.V ON_,l
*LC /ES/IS~
THIS IS THE LINE TO BE ISSUED

5.5.4.4 LIST ON TERMINAL Command

Function

This command prints on the user terminal all lines in the block buffer

5·-43

LINE TEXT EDITOR (EDI)

{block mode) or all remaining lines in the input file (line-by-line
mode), beginning at the current line. At the end of the listing, the
current line pointer is repositioned to the top of the input file or
block buffer.

Format

Example

NOTE

To suppress printing at any point, type
CTRL/O.

LI[ST]

~LI_}

This command causes all remaining lines in the block buffer or all
remaining lines in the input file to be printed on the user terminal.

5.5.4.5 LIST ON PSEUDO-DEVICE Command

Function

This command functions in the same manner as the LIST ON TERMINAL
command, excepe that the remaining lines in the block buffer (block
mode} or the remaining lines of the input file (line-by-line mode) are
listed ~n the pseudo-device CL:.

Format

LP

Example

This command causes all remaining lines in the block buffer or all
remaining lines in the input file to be printed on the pseudo-device
CL:.

5.5.4.6 MACRO Command

Function

This command is used to define macros. Space is available for three
macro definitions. The definition portion can be any legal EDI
command or string of legal EDI commands connected by the concatenation
character. If a numeric argument is to be passed to the macro at
execution time, a percent sign (%) must be inserted in the macro
definition at the point where the numeric argument is to be
substituted. Then, the "a" value, which is passed via the MACRO
EXECUTE command, replaces the percent sign when the macro is executed
(see Section 5.5.4.8 for a description of the MACRO EXECUTE command).

5-44

LINE TEXT EDITOR (EDI)

Format

MACRO x definition

where: x is the macro number (1, 2 or 3).

Example

To find the nth occurrence of the string ABC in the current block and
replace that occurrence and all remaining occurrences within the block
with the string DEF, the following macro could be used:

*MACRO l %L ABC&PA /ABC/DEF_)

The following command executes the macro and searches for the 10th and
----- --~nicceed i:n9···0e:cuYYence--·0T--A:1:rc-.-----rse·e--se·c-£Ton--s-: s. 4. a.)

*M 1 1 ())
-':.L ...L ...LV~

The following macro definition and subsequent invocation could be used
to change all occurrences of the strings ABC and GHI to DEF and JKL,
respectively. The substitution is made in the current block, and the
next four blocks (five blocks in all).

*MACRO l PA /ABC/DEF/&PA /GHI/JKL/&RENEW~ (MACRO command)
~SM l..J (MACRO EXECUTE command)

5.5.4.7 MACRO CALL Command

Function

This command allows the user to retrieve up to three macro definitions
previously stored by the user in a file.- The macro definitions must
contain only the "definition" portion of the MACRO command and will be
stored in successive macro areas (i.e., the first macro definition
goes into macro 1 area, the second definition, goes into macro 2 area,
and the third goes into macro 3 area) .

The filename of the file used to store the macro definitions must be
MCALL;n, where n represents a version of the file. If the desired ~ui
macro definitions are not contained in the latest version of file
MCALL, the version number of the file containing the desired
definitions can be forced to the latest version number using the PIP
COPY command with the /NV subswitch specified (see Section 2.4.2).
The filename must have a null or blank file type.

Format

MC[ALL]

NOTE

Strings of concatenated EDI commands can
be written as EDI macro definitions, and
up to three EDI macro definitions can be
stored in file MCALL;n. The MC command
is used to call the latest version of
file MCALL and move the three

5-45

Example

LINE TEXT EDITOR (EDI)

definitions into the macro storage area.
Then the user can execute the desired
macro without having to type the
complete command.

*MC_)

This command would retrieve the macro definitions stored in file
MCALL;n, where n represents the latest version of the file MCALL.

5.5.4.8 MACRO EXECUTE Command

Function

This command causes macro "x" to be executed "n" times while passing
it an optional numeric argument "a". If a macro numeric argument is
defined via the percent sign (%) in the macro definition, the numeric
argument contained in this command is passed for each execution of the
macro (See Section 5.5.4.6.). Before a macro can be executed, it must
have been defined via a MACRO command and stored in the EDI macro
storage area. If the desired macro definition is stored in a file,
the file must be called via a MACRO CALL command to move the
definition into the EDI macro storage area.

Format

where:

Examp~es

NOTE

Using this command, any one of the three
macro definitions stored in the EDI
macro storage area can be executed any
number of times.

[n] Mx [a]

n is the number of times the macro is to be
executed.

x is the macro nuraber.

a is the numeric argument to be passed when the
macro is executed (ignored if % argument is
not present in macro definition).

Execute macro number 1, twice.

~3M2 5.)

Execute macro number 2, three times, passing the numeric argument (5)
each time the macro is executed.

Section B.2.4 contains an example which illustrates how a file can be
edited using the EDI MACRO commands.

5-46

LINE TEXT EDITOR {EDI)

5.5.4.9 MACRO {IMMEDIATE} Command

Function

This command allows the user to define and execute a macro in one
step. The definition is enclosed within angle brackets and is
identical to that of the MACRO command. The definition is copied into
the macro 1 storage area and immediately executed n times. {Macro
storage is discussed in the description of MACRO CALL, Section
5.5.4.7.) The macro definition may also be subsequently executed via
an Ml command. The command is actually equivalent to the two macro
commands:

MACRO 1 definition

nMl

n<definition>

Example

*<L ABC&C /ABC/DEF>..J

This command causes EDI to search the current block buffer for the
string "ABC" and, when located, to change the string to "DEF".

Section B.2.3 contains an example which illustrates the use of the EDI
immediate MACRO command.

5.5.4.10 OVERLAY Command

Function

This command causes deletion of n lines and replacement with any
number of lines typed in by the user. If n is not specified, the
current line is deleted and replaced with any number of lines typed.
When the OVERLAY command is issued, EDI enters Input mode. The user
can enter text via ~ne user terminal. ~o leave Input mode, a carriage
return is typed as the first character in a line.

Format

O[VERLAY] [n]

NOTE

If n is not specified, a value of +l is
assumed. '

Example

This command deletes two lines and causes EDI to enter Input mode.

5-47

LINE TEXT EDITOR (EDI)

5.5.4.11 PASTE Command

Function

This command is id7ntical to the LINE CHANGE command, except that all
lines remaining in the input file or block buffer are searched, and
all occurrences of string-I are replaced with string-2. Modified
lines are printed if the VERIFY ON command is in effect. If string-I
is given, but a match cannot be located, the EDI returns an * prompt.
The line pointer is at the top of the buffer or top of file when the
command is complete.

Format

PA[STE] /string-1/string-2[/]

Example

If the following lines are to be corrected:

THIS ARE LINE 1
THIS ARE LINE 2
THIS ARE LINE 3

The command is as follows:

*PA /ARE/IS/_}

If the VERIFY ON command is in effect, all corrected lines are
printed.

NOTE

To discontinue printing, type CTRL/O.

5.5.4.12 SAVE Command

Function

This command causes the current line, and the next n-1 lines, to be
saved in the file specified by the file specifier. If the file
already exists, a new version is created with the same name, and the
appropriate information is saved in the new file.

If no file is specified, a save file is generated, under the name
SAVE.TMP.

NOTE

The input file or buffer information
that is transferred to the SAVE file
remains intact. The new current line
pointer will be positioned to the last
line saved. The SAVE command does not
delete lines in the block buffer or
input file.

5-48

LINE TEXT EDITOR (EDI)

Format

SA[VE] [n] [filespec]
Example

A user can save and later insert small groups of lines in several
places in an output file by using the SAVE and UNSAVE commands.
Suppose the user has a file called EDIT.MAC which contains six lines
to be inserted in a number of places in another file called HELP.MAC.
The procedure is:

1. Start an editing session using EDIT.MAC as the input file.

2. Locate the lines to be inserted into HELP.MAC.

3. Issue SAVE 6 command.

(This transfers the six lines to be saved into the file
SAVE. TMP.)

4. Issue a KILL command to terminate the editing session.

5. Start a new editing session using HELP.MAC as the input file.

6. Locate each place where the six lines are to be inserted and
issue the UNSAVE command (see Section 5.5.4.14).

7. Make further edits to the input file, as desired, or EXIT.

NOTE

The save file is not deleted by EDI and remains on
the specified volume until the user deletes it.

5.5.4.13 TYPE Command

Function

This command is functionally the same as the PRINT command, except
that the current line pointer is unchanged. That is, after printing
the specified number of lines, the line pointer is positioned to the
first line printed by the TYPE command. (Compare with the PRINT
command - Section 5.4.3.12.)

Format

Example

TY [PE] [n]

NOTE

If n is not specified, a value of 1 is
assumed.

See the example of the PRINT command (Section 5.4~3.12).

5-49

I

LINE TEXT EDITOR (EDI)

5.5.4.14 UNSAVE Command

Function

This command retrieves all the lines in a specified file and inserts
them immediately following the current line. If no file is specified,
the file is defaulted to SAVE.TMP. The new current line pointer is
positioned at the last line retrieved from the file. The file used in
this command can be any text file; it is often the file created with
a SAVE command.

Format

UNS[AVE] [filespec]

Example

If file SEC.DAT;! contains a group of lines which are to be inserted
following the current line, the following command performs the desired
operation.

~UNS SEC.DAT;l~

Section B.2.2 contains an example using the EDI SAVE and UNSAVE
commands.

5.5.5 EDI Close Operation Commands

The close operation commands are used to terminate EDI operations and
to write the remainder of the input file into the output file. Table
5-8 contains a list of these commands.

Command

CLOSE

CLOSES

CLOSE & DELETE

EXIT & DELETE

KILL

Table 5-8
EDI Close Operation Commands

Command
Format

CL[OSE] [f ilespec l

CLOSES

CD[L] [filespec]

ED [X] [f ilespec]

KILL

5-50

Description

Transfer remaining lines in
block buffer and input file to
output file and close file.
If file specifier is used,
output file is renamed. EDI>
prompt is issued.

Close secondary file.

Same as CL, except input file
is deleted. EDI> prompt is
issued.

Same as CDL, except after
files are closed and renamed,
EDI exits.

Input file and output file are
closed. Output file is I I ~eleted.
issued.

~ .l .. -

.t:lH> prompt lS
I

LINE TEXT EDITOR (EDI)

5.5.5.1 CLOSE Command

Function

This command transfers all remaining lines in ~ne o~ock buffer and
input file (in that order) into the output file, and closes both
files. If a file specifier is included, the output file is renamed to
the specified file. EDI then returns to its initial command sequence,
prompts with EDI> and waits for another file specifier to be entered.

Format

Example

NOTE

If a secondary file was opened during
the editing session and not closed, it
remains open.

CL[OSE] [filespec]

~CL_)
EDI>

This command closes both input and output files, and EDI returns to
the initial command sequence.

5.5.5.2 CLOSES Command

Function

This command is used when the user has finished extracting text from a
secondary file and wishes to close it. The secondary file is closed
and cannot be used for input unless reopened.

Format

CLOSES

5.5.5.3 CLOSE AND DELETE Command

Function

This command transfers all remaining lines in the block buffer and the
input file (in that order) into the output file, and closes both
files. The input file is then deleted. If a file specifier is
included, the output file is renamed to the specified file. In
effect, this command acts just like CLOSE, except that the input file
is deleted. See NOTE contained in Section 5.5.5.1.

Format

CD[L) [filespec)

5-51

LINE TEXT EDITOR (EDI)

5.5.5.4 EXIT AND DELETE Command

Function

This command functions in the
command, except that, after
exits.

Format

ED[X] [filespec]

5.5.5.5 KILL Command

Function

same
the

way as the CLOSE and DELETE
files are closed and renamed, EDI

This command returns EDI to the initial command sequence without
retaining the output file. When this command is executed, the input
file is closed, and the output file is deleted.

Format

Example

KILL

:KILL_)
EDI>

In this example, the output file is not retained, and EDI returns to
the initial command sequence waiting for the next file specifier.

5.6 EDI ERROR MESSAGES

The four classes of EDI error messages are:

• Command level informational and error messages

• File access warning messages

• Error messages requiring EDI restart

• Fatal error messages

The following sections describe all the messages that may be displayed
in each class. If the recovery procedure is not evident, a suggested
user action is supplied.

5.6.1 Command Level Informational and Error Messages

Messages in this class indicate information that is designed to be
helpful to the user or identify errors that were encountered in the
previous command. All messages in this class are enclosed within
square brackets and followed by a prompt for a new command. For
example, the following output occurs if a delete command encounters an

5-52

LINE TEXT EDITOR (EDI)

end-of-buffer in block mode:

(*EOB*]
*

Note that immediately following the message, EDI outputs an asterisk
to prompt for the next command.

The messages in this class follow.

[ALREADY PASSED THAT PAGE!]

Description

The user has attempted to access a page number that is less than
the current page. Prior pages can be accessed only via the
OLDPAGE command.

Suggested User Action

If the PAGE command has been incorrectly entered, retype the
command with the proper page number. Otherwise, use an OLDPAGE
command to access the desired page.

[BUFFER CAPACITY EXCEEDED BY]
offending line
[LINE DELETED]

Description

A READ, UNSAVE, INSERT, v~ OVERLAY command has caused
capacity of the block buffer to be exceeded. The line that
caused the overflow is displayed and deleted.

Suggested User Action

If a new file is being created, empty the buffer with a WRITE
command and continue the editing session.

If an existing file is being edited, it may be possible to
continue via a RENEW or WRITE command. Otherwise, use the CLOSE
command to close the output file and save all edits. Reopen the
output file as the input file and, using the SIZE command, reduce
the number of lines read into each buffer; then, using the PAGE
LOCATE command, search to the position in the file where editing
is to continue.

Occasionally, a file that was not created by EDI causes this
message (i.e., an attempt to open the file for input produces
this message). If this occurs, the following procedure may be
used to successfully edit the file:

1. Start the editing session by specifying a filename that
not correspond to any file in the current directory.
causes EDI to create a new file and enter Input mode.

2. Type carriage return to enter edit mode.

5-53

does
This

LINE TEXT EDITOR (EDI)

3. Using the SIZE command, reduce the number of lines read into
each buffer.

4. Use the KILL command to terminate the creation of the file.

5. When EDI prompts for a new file specifier, enter the name of
the desired file.

[CONCATENATING CHAR CHANGED TO "&"]

Description

The user has changed the command concatenation character and an
OLDPAGE, TOF, or TYPE command has caused it to be changed back to
II & II

0

Suggested User Action

Use the CC command to
concatenation character.

[CREATING NEW FILE]
INPUT

Description

reestablish the desired command

The in~ut file specified in the command does not exist and EDI
has created a new file. EDI automatically enters Input mode and
awaits the input of text lines.

Suggested User Action

If the intent is to create a new file,
session, entering new lines as required.
mode by typing carriage return; use
terminate the creation of the new file.
new file specifier, enter the correct file

[ILL CMD]

Description

continue the editing
Otherwise, enter Edit

the KILL command to
When EDI prompts for a
specification.

A command that is not recognized by EDI has been entered; or a
command that is not compatible with the current mode has been
attempted (e.g., a READ command in line-by-line mode).

[ILL NUM]

Description

A non-numeric character has been specified in a numeric field, or
a negative number has been entered where only positive numbers
are allowed.

5-54

LINE TEXT EDITOR (EDI)

[ILL STRING CONST]

Description

A search string specified in a CHANGE, LC, PASTE, or SC command
contains only one command concatenation character or does not
contain a matching string termination character (e.g.,
PASTE /ALPHABETA, whereas PASTE /ALPHA/BETA is correct) .

[ILLEGAL IN BLOCK ON MODE]

Description

An attempt has been made to execute a command that is illegal in
block mode.

[ILLEGAL FILE NAME GIVEN IN CLOSE OR EXIT]

or

[FILE WAS NOT RENAMED]

Description

A syntactically incorrect file specifier has been given in a
CLOSE or EXIT command, or the attempt to rename the output file
has failed.

Suggested User Action

The output file is closed under the name of the input file
without any loss of information. The Peripheral Interchange
Program (PIP) can be used to rename the file to the desired name.

[MACRO NOT DEFINED]

Description

An attempt has been made to execute a macro with the M command,
but the specified macro has not been defined.

Suggested User Action

Use the MACRO command to define the desired macro and then
execute it with the M command.

[MACRO NUMERIC ARG UNDEFINED]

Description

A macro has been executed with an M command that did not contain
a numeric argument, and the body of the referenced macro contains
the numeric argument replacement character "%".

5-55

LINE TEXT EDITOR (EDI)

Suggested User Action

Retype the command, specifying the appropriate numeric argument.

[MCALL FILE DOES NOT EXIST]

Description

An MCALL command has been executed to define a set of macros, but
the file MCALL does not exist in the current directory.

Suggested User Action

The desired set of macro definitions may exist under another UFO.
If this is the case, use PIP to copy or rename the MCALL file
into the current directory.

[NO INPUT FILE OPEN]

Description

A PAGE, READ or RENEW command has been attempted and a new file
is being created. These commands can be executed only when an
existing file is being edited.

[NO MATCH]

Description

A CHANGE command has specified a string to be changed that is not
in the current line.

[OVERLAYING PREVIOUSLY DEFINED MACRO]

Description

A MACRO command has resulted in the redefinition of a previously
defined macro. This message is intended to make the user aware
that the previous definition is no longer in effect.

[SAVE FILE DOES NOT EXIST]

Description

A file was specified in an UNSAVE command that cannot be located
in the respective directory.

Suggested User Action

Examine the file specifier to ensure its correctness. If the
file specifier is in error, correct the error, then retry the
command.

5-56

LINE TEXT EDITOR {EDI)

[SECONDARY FILE ALREADY OPEN]

Description

An attempt has been made to ope~ a secondary input file when
another secondary input file is already open. Alternatively, a
CLOSE or KILL command has been executed, or an error has been
encountered that causes EDI to restart, and the secondary file is
found to be open from the previous edit. The former case
represents an error, whereas the latter informs the user that he
still has a secondary file open.

Suggested User Action

Close the secondary input file using the CLOSES command, and then
open the desired secondary file with the OPENS command.

[SECONDARY FILE CURRENTLY SELECTED FOR INPUT]

Description

A CLOSE or KILL command has been issued, or an error
EDI to restart, when the secondary input file
selected for input.

Suggested User Action

Issue an SP command, a CLOSES command and proceed.

[SYNTAX ERROR]

Description

has caused
is open and

A command has been entered that is syntactically incorrect.

[TOO MANY CHARS]

Description

A CHANGE, LC, PASTE, or SC command has resulted in a line that
contains too many characters. EDI limits the length of a line to
90 characters.

Suggested User Action

Retype the line to ensure that the line is valid.

[*BOB*]

Description

The beginning-of-buffer has been reached. The current line
pointer is positioned just before the first line in the buffer.
Thus, new text lines can be entered before the first line.

5-57

LINE TEXT EDITOR (EDI)

[*EOB*]

Description

The end-of-buffer has been reached. The current line pointer now
points to the beginning of the buffer. Thus, if new lines are
inserted, they appear before the first line in the buffer.

[*EOF*]

Description

The end-of-file has been reached on the input file.

Suggested User Action

If the editing session is complete, use the CLOSE or EXIT command
to close the output file. Otherwise, use the TOF command to
return to the first block in the file and then continue editing
the file.

5.6.2 File Access Warning Messages

Messages in this class represent attempts on the part of the user to
access directories, files, or devices that are not present in the host
system. Each message is prefixed with:

EDI

and, after the message is displayed, EDI returns to command level and
prints an asterisk to request input.

The messages in this class follow.

EDI -- DEVICE NOT IN SYSTEM

Description

A FIL&, OPENS, SAVE, or UNSAVE cbmmand contains the specification
of a device that does not exist in the host system.

Suggested User Action

Reenter the command line, specifying only devices available in
the system.

EDI -- FILE DOES NOT EXIST

Description

An attempt has been made in a FILE or SAVE command to create a
file in a directory that does not exist on the specified volume.

5-58

LINE TEXT EDITOR (EDI)

WARNING

The remaining error messages in this
class should not occur and represent
failures in EDI. If such errors
persist, consult your DEC software
support representative.

EDI -- BAD DEVICE NAME

EDI -- BAD FILE NAME

EDI -- DEVICE NOT READY

EDI -- FILE ALREADY OPEN

EDI -- RENAME NAME ALREADY IN USE

EDI -- RENAME ON TWO DIFFERENT DEVICES

EDI -- WRITE ATTEMPT TO LOCKED UNIT

5.6.3 Error Messages Requiring EDI Restart

The error messages described in this section are caused by conditions
encountered by EDI that make it impossible to continue the current
editing session. EDI closes all open files (with the exception of the
secondary input file), reinitializes, and then prompts for the next
file to be edited.

As with file access warning messages, each message in this class is
prefixed with:

EDI --

After the appropriate message has been displayed, EDI prompts with:

EDI>

The editing session may be terminated at this point by typing carriage
return, or it can be continued by entering the next file specifier.
If a secondary file was open when the error condition was encountered,
the secondary file must be closed using the EDI commands.

The messages in this class follow.

5-59

LINE TEXT EDITOR (EDI)

EDI -- BAD RECORD TYPE - FILE NO LONGER USABLE

Description

The record type defined in the header block of the input file
(primary input, secondary input, UNSAVE, or MCALL) is not
supported by File Control Services (FCS); thus, the file cannot
be used for input to EDI.

Suggested User Action

The referenced file has been created without using FCS, or the
file structure on the volume is damaged. If the latter is the
case, the validity check of the file structure verification
utility (VFY) should be run to determine the extent of the
damage. VFY is described in Chapter 8.

EDI -- FILE IS ACCESSED FOR WRITE

Description

The input file (primary input, secondary input, UNSAVE, or MCALL)
is currently being written by another task.

Suggested User Action

Wait for the file to be written and then reenter the command
line.

EDI -- FILE IS LOCKED TO WRITE ACCESS

Description

The output file (text output, FILE, or SAVE) is currently
accessed for read by one or more tasks and is locked against all
writers.

Suggested User Action

Wait for all readers of the file to finish, then reenter the
command line.

EDI -- ILLEGAL RECORD ATTRIBUTES - FILE NOT USABLE

Description

The record attributes defined in the header block of the input
file (primary input, secondary input, UNSAVE, or MCALL) are not
supported by FCS; thus, the file cannot be used for input to
EDI.

Suggested User Action

The referenced file has been created without using FCS or the
file structure on the volume is damaged. If the latter is the
case, the validity check of the file structure verification
utility (VFY) should be run to determine the extent of the
damage.

5-60

LINE TEXT EDITOR (EDI)

EDI -- PRIMARY FILE NOT PROPERLY CLOSED

Description

When the primary input file was last written, a close check was
specified, and the writing task did not properly close the file
(e.g., the task was aborted}. Thus, the file attributes were not
written, and the file may contain inconsistent data.

Suggested User Action

Exit from EDI by typing carriage return. Fun the Peripheral
Interchange Program (PIP} and use the /UN switch to unlock the
file. Reinitiate EDI and try to recover the data in the file.

EDI -- PRIVILEGE VIOLATION

Description

A privilege violation occurs during a file access for the
following reasons:

1. The specified volume is not mounted.

2. The UIC under which EDI is running does not possess the
necessary privileges to access the specified directory.

3. The UIC under which EDI is running does not possess the
necessary privileges to access the specified file.

Suggested User Action

If the volume is not mounted, then mount it using the MCR MOUNT
command. Otherwise, reinitiate EDI under a UIC that has
appropriate access privileges to both the specified directory and
the file.

EDI -- RECORD IS TOO LARGE FOR USER BUFFER

The input file (primary input, secondary input, UNSAVE, or MCALL}
being accessed was not created by EDI (or SLP) and contains
records that are too large. The maximum record length supported
by EDI is 90 bytes.

EDI -- SECONDARY FILE NOT PROPERLY CLOSED - NOT USABLE

Description

When the secondary input file was last written, a close check was
specified, and the writing task did not properly close the file
(e.g., the task was aborted}. Thus, the file attributes were not
written, and the file may contain inconsistent data.

Suggested User Action

Run PIP and use the /UN switch to unlock the file.
EDI and try to recover the data in the file.

5-61

Re initiate

LINE TEXT EDITOR (EDI)

WARNING

The remaining error messages in this
class should not occur and represent
failures in EDI. If such errors
persist, consult your DEC software
support representative.

EDI -- BAD DIRECTORY SYNTAX

EDI -- DUPLICATE ENTRY IN DIRECTORY

EDI -- END OF FILE

EDI -- ILLEGAL RECORD ACCESS BITS - FILE NOT USABLE

EDI -- ILLEGAL RECORD NUMBER - FILE NOT USABLE

5.6.4 Fatal Error Messages

The fatal error messages represent system and/or hardware error
conditions which make it impossible for EDI to continue execution.
All files are closed and EDI terminates its execution. The output
file may be truncated. Each error message is prefixed with:

EDI --

and followed by the exit message:

[EXIT]

on the next line.

The advanced user may be able to utilize the truncated version of an
output file in the following manner to save the editing performed
prior to the fatal error condition.

1. Use PIP to rename the truncated version of the output file to
avoid confusion.

2. Restart the editing session on the original input file.

3. Issue an OPENS command, specifying the renamed file as the
secondary file.

4. Issue an SS command to select the secondary file for input.

5. Issue an ERASE command to erase the first block of the input
file, unless the truncated output file did not contain the
entire first block.

6. Issue as many READ 1 and WRITE commands as necessary to reach
the EOF on the secondary file.

7. Issue an SP command to select the primary file for input.

5-62

LINE TEXT EDITOR (EDI)

8. Issue a CLOSES command to close the secondary file.

9. Issue a WRITE command to ensure that the last block was
written into the output file.

10. Issue as many READ 1 and ERASE
bypass all input file blocks
renamed file.

commands as necessary to
which are complete in the

11. Continue the normal editing session.

The messages in this class follow.

EDI -- CALLER'S NODES EXHAUSTED

Description

System dynamic storage has been depleted, and insufficient space
is available to allocate the control blocks necessary to open,
close, read, or write a file.

Suggested User Action

This probably is a system failure, but it could also represent a
transient overload condition. Wait until system load has
diminished and reinitiate EDI.

EDI -- DEVICE FULL

Description

Insufficient space exists on the output volume to extend an
output file (text output, FILE, or SAVE).

Suggested User Action

Determine which volume is being written. If it is required that
the specified file be written on this volume, then space must be
made available. Use PIP to purge (/PU) or delete (/DE) unwanted
files.

EDI -- FILE HEADER CHECKSUM ERROR

Description

An input file (primary input, secondary input, UNSAVE, or MCALL)
has a header block that does not contain a proper checksum.

Suggested User Action

The file structure on the specified volume is damaged. Run
validity check of the file structure verification utility (VFY)
to determine the extent of the damage. VFY is described in
Chapter 8.

5-63

LINE TEXT EDITOR (EDI)

EDI -- FILE HEADER FULL

Description

Insufficient retrieval pointer space exists in the header block
to extend an output file (text output, FILE, or SAVE).

Suggested User Action

An attempt is being made to create an output file that is larger
than can be described in a file header block. Split the file
into two or more files and process them separately.

EDI -- FILE PROCESSOR DEVICE WRITE ERROR

Description

This error message can be received by initiating an editing
session on a write-locked device.

Suggested User Action

Unlock device if it is write-locked. Otherwise, a hardware
problem may exist. Consult the DEC field service representative.

EDI -- INDEX FILE FULL

Description

File header block is not available to create an output file (text
output, FILE, or SAVE). When a volume is initialized, the
maximum number of files that may be created on the volume is
established. An attempt has been made to exceed this maximum.

Suggested User Action

Determine which volume is being referenced. If it is required
that the specified file be created on this volume, then space
must be made available. Use PIP to purge (/PU) or delete (/DE)
unwanted files.

WARNING

The following error messages signify
hardware problems. If possible, all
important files should be removed from
the volume. If errors persist, consult
the DEC field service representative.

5-64

LINE TEXT EDITOR (EDI)

EDI -- BAD BLOCK ON DEVICE

EDI -- FILE PROCESSOR DEVICE READ ERROR

EDI -- HARDWARE ERROR ON DEVICE

EDI -- PARITY ERROR ON DEVICE

WARNING

The remaining error messages in this
class should not occur and represent
failures in EDI. If such errors
persist, consult your DEC software
support representative.

EDI -- BAD DIRECTORY FILE

EDI -- BAD PARAMETERS ON A QIO

EDI -- INVALID FUNCTION CODE ON A QIO

EDI -- NO BLOCKS LEFT

EDI REQUEST TERMINATED

EDI -- WRITE ATTRIBUTE DATA FORMAT ERROR

EDI -- UNEXPECTED ERROR - EDITOR WILL ABORT

TASK " ... EDI" TERMINATED

5-65

CHAPTER 6

SOURCE LANGUAGE INPUT PROGRAM (SLP)

6.1 INTRODUCTION TO SLP

The Source Language Input Program l~L~J is a batch-oriented editing
program that is used to create and maintain source language files on
disk.

6.2 PREPARING TO RUN SLP

Before attempting to use SLP, the user should become familiar with
SLP's capabilities, environment, and restrictions.

6.2.1 Capabilities

SLP permits the user to:

6.2.2

1. Create new source files.

2. Create indirect files which contain SLP
commands.

edit control

3. Edit an already existing source file. The following editing
commands are provided:

a. Delete

b. Replace

c. Insert

4. Obtain line-number listings of files. These listings can be
used as an aid to editing the file.

Environment

SLP accepts input from the following media:

1. Any RSX-llM supported terminal device (on-line).

2. Card reader or indirect command file.

6-1

SOURCE LANGUAGE INPUT PROGRAM (SLP)

3. Any RSX-llM supported volume (on-line or indirect command
file).

6.2.3 Restrictions

1. The user must know in advance which lines, by line number, he
wants to edit. It is advisable, therefore, for the user to
have on hand a current line-number listing of the file he
wants to edit (line boundaries are the first character and
the carriage return).

2. SLP cannot handle input lines
characters in length. If more
specified an error is declared~

greater than 80 ASCII
than 80 characters are

3. Edit commands refer to line numbers that must be in ascending
order starting with 1 and continuing throughout the entire
file. Form feeds and page directives are treated as though
they are simply part of the text.

6.3 INITIATING SLP

All RSX-llM utility programs can be initiated in several ways. These
methods are described in Section 1.2. The methods for SLP are:

>SLP command string.)

>RUN •.• SLP ~

>RUN •.• SLP/UIC=[group,member]__J

>RUN $SLP.J

>RUN $SLP/UIC=[group,member].)

6.4 SLP STARTUP

After SLP has been initiated, the user must enter an initial command
to direct SLP to perform the desired function (e.g., create a new
file, select a file for editing, or list a file). The general format
of SLP commands is as follows:

outfile [/switch] [,1 istfile [/switch]] = infile [/switch]

where:

/switch is one or more of SLP's optional output control
switches. The SLP output control switches are
described in Section 6.5.

For a complete description of file specifiers, see Section 1.3.

6-2

I
I
I

I

I
I

SOURCE LANGUAGE INPUT PROGRAM {SLP)

6.4.1 Defaults in File Specifiers

Defaults in SLP file specifiers are described in Table 6-1.

Table 6-1
Defaults in SLP File Specifiers

Spec if ier Default

dev: Output File and Input File

SYO:

List File

The device specified or implied by
file specifier.

[uic] Output File and Input File

The UIC under which SLP is currently

List File

-· --- - specified implied by the Tne UlC or
specifier.

filename Must be specified

.type Must be specified

;ver Latest version for input files; latest
one for output and listing files.

6.4.2 Examples of SLP Initialization

Example 1.

SLP>KATESFILE.MAC_J

A new file, KATESFILE.MAC, is to be created on SYO:.
input from the terminal.

Example 2.

SLP>,LP:=KATESFILE.MAC • ..J

the output

running.

output file

version plus

SLP expects

This example produces a line-number listing of KATESFILE.MAC on the
line printer. No other output file is produced.

Example 3.

SLP>KATESFILE.MAC,LP:=KATESFILE.MAC;l_J

In this example, the input file(KATESFILE.MAC;l) is to be edited,
producing an updated output file name KATESFILE.MAC with a version

6-3

I
I
I

I
I
I

I
I
I

SOURCE LANGUAGE INPUT PROGRAM (SLP)

number one greater than the latest version for the file. In addition,
a line-number listing of the output file (KATESFILE.MAC) is produced
on the line printer.

6.5 SLP OUTPUT CONTROL SWITCHES

The SLP output control switches are described in Table 6-2. A switch
specification consists of a slash (/) followed by a 2-character name
for an enabling function, or a slash (/) followed by a minus (-) and a
2-character switch name for a disabling functton. If more than one
switch is used, each switch is preceded by a slash.

6.6 SLP OUTPUT FILES

When a file is edited, SLP produces an output file on disk under the
name specified by the user. If the /AU switch is specified (default
condition), the output file contains information about the changes
that have been made, so the user can more readily determine how the
new file differs from the old one.

Unless specifically suppressed, an audit trail is always created in
the output file, indicating changes effected by the edits.

Each line that has been inserted during the last editing session is
flagged by appending the characters ;**NEW** to the line.

The line following the inserted line(s) may be flagged by the
characters ;**-N, where N is a decimal value equal to the number of
lines that were deleted from the old file. For example:

;THIS IS A NEW LINE ADDED TO THE FILE
;THIS IS THE NEXT LINE

;**NEW**
;**-1

indicates that the new line has simply replaced one of the old lines.
That is, the edit command looked like:

-m,m..)
;THIS IS A NEW LINE ADDED TO THE FILE..)

where m is the number of the line that was replaced. There may also
be entries of the following kind:

;THIS LINE IS A REPLACEMENT
;NEXT OLD LINE

;**NEW**
;**-16

indicating that a new line has been inserted, but 16 lines have been
deleted immediately-preceding the next old line.

Lines may also be flagged with just the ;**-N characters, with no
immediately-preceding new lines, to indicate simply that lines have
been deleted, without being replaced.

If the /AU switch is specified when a file is being edited, the
current flags are stripped prior to output of the updated file. Thus,
the flags are reliable indicators of the editing that was done on the
most recent update of the file.

6-4

I Switch

I /AU or /-AU

SOURCE LANGUAGE INPUT PROGRAM (SLP)

Table 6-2
SLP Output Control Switches

Description

The /AU switch causes the editing audit trail to be
included, and the /-AU switch suppresses the editing
audit trail. That is, new and deleted lines are not
flagged when /-AU is in effect. Either switch can
be specified in the command string, in either an
input or an output file specifier. For example:

DKl:AX.MAC/-AU,LP:=AX.MAC__}

or

DKl:AX.MAC,LP:=AX.MAC/-AU_.)

Both specifications are legal and procuce an output
file with no audit trail.

/AU is the default condition.

/BF or /-BF When an audit trail is being produced, it may be
desirable to specify the blank fill (/BF) switch,
especially when the file being edited is a FORTRAN
source program. The /BF switch causes the audit
trail text to be right-justified by inserting blanks
at the end of the text line, rather than tabs.

To disable the blank fill function, specify /-BF.
Either switch may be specified on input or output
files. Neither has any effect if auditing is
suppressed.

/BF is the default condition.

/DB or /-DB Listing files are normally single-spaced. To create
a double-spaced listing file, the /DB switch must be
specified, as in the following example:

DKO:XYZ.MAC,LP:/DB=DKO:XYZ.MAC;3_.)

/-DB is the default condition.

/SP or /-SP Listing files may be spooled to a file-structured
volume by specifying a listing file as shown in the
following example:

DK:ABC.MAC,DKl:/SP=ABC.MAC_.}

This causes the list file to be written to the
volume mounted on DKl: prior to being output on a
line printer. The /SP switch has no effect if the
listing device is not file-structured. That is, if
the line printer is specified, no spooling occurs.
Output directly to a file-structured device without
printing the file can be accomplished by specifying
/-SP. The print spooler is described in Appendix C.

/SP is the default condition.

6-5

SOURCE LANGUAGE INPUT PROGRAM (SLP)

6.7 SLP EDIT COMMANDS

Following the initial command line, the user enters text lines, or
deletes or corrects lines in the original source file. Text that is
to be inserted at the beginning of the file is entered immediately
following the initial command line. To correct or replace a line, or
lines, or to insert text in the middle or at the end of the file, the
user must first specify an edit command, followed by a decimal value
referring to a line in the input file.
For example:

-9

The minus sign and line number may appear as the only element on the
line, or they may be followed by a comma and a second line number, as
shown below:

-9,12

-9,9

SLP interprets the user's purpose by exam1n1ng the edit command. When
a single line number is specified (e.g., -9 alone), SLP interprets the
user's purpose to be the insertion of new text lines into the source
file. The line number indicates that the new text is to be inserted
following the specified line (in the first example, new text would be
placed in the file following line 9).

When the user provides an edit command in the second format (-9,12),
SLP deletes all text lines from line 9 through line 12, inclusively.
The user can follow the edit command with lines of text, which will be
inserted into the file in the location previously occupied by the
deleted lines {i.e., the first new text line is the new line 9).

The edit command (-9,9) indicates that SLP is to delete line 9. If a
text line (or lines) follows, it replaces the deleted line.

6.7.1

NOTE

Line numbers must always be specified in
ascending sequence. Thus, -9,8 is
illegal, and an error message is printed
(refer to Section 6.10). It is also
illegal to refer to a line number lower
than a line number that was referenced
in a prior edit command.

SLP Edit Control Characters

SLP recognizes four edit control characters in character position 1:
the "minus" sign (-), the "less than" sign (<), the slash (/), and the
"at" sign (@). Table 6-3 describes the function of these characters.

6-6

- (minus)

I (slash)

@ (at)

< (less
than)

SOURCE LANGUAGE INPUT PROGRAM (SLP)

Table 6-3
SLP Edit Control Characters

Indicates
performed
specified.

-n

-n,n

-n,m

that
with

Function

an editing
reference to

function is to be
the line number(s)

Insert text following line n.

Delete line n.

Delete lines n through m, inc1usively.

The slash is placed in the first position of a
line cu indicate that the editing of a file is
complete. SLP responds by printing SLP> to inform
the user that it has terminated editing on the
previously specified file and is now ready to
begin editing another. The user responds either
by entering a new file specification, or by
terminating the editing session altogether by
typing CTRL/Z.

I ;?:~@~0ch7:!~~:~ei~h~~tc~~ ;~e~~i~=~~lo ... i~~~;o~r~.! .. ~.~.
I ..l..L.11C '- .L.J..lUL'""'U'- \,...L.&U.\... t..J.LJ.L. .a....,,;i "-'-' "'""''-'-"· ~ -- --- -

I

ind i r ec t f il e • That i s , input i s to be found in a
file rather than being entered from the terminal.
The user must indicate the device and file by

I
specifying their names immediately after the @
sign. For example:

I

@DK:DKSFIL.COR..)

instructs SLP to read input from the file
DKSFIL.COR on physical device unit DKO:. Indirect

1 files are more fully described in Section 6.8.

I
Unless otherwise specified, the file type defaults
to CMD.

I

The < character is used when entering a line
that begins with one of the special edit control
characters. It causes the line to be shifted one
character position to the left, resulting in the
deletion of the < character and the entry of the
desired control character as the first character
on the line. This is especially useful when
creating correction files. For example:

<@DIRBLK. COR_}

6-7

SOURCE LANGUAGE INPUT PROGRAM (SLP)

Table 6-3 (Cont.)
SLP Edit Control Characters

Character Fune tion

causes the line

@DIRBLK.COR

to be entered into the file. Subsequently, when
this file is referenced by SLP, the line

@DIRB LK. COR _}

will be interpreted as a reference to an indirect
file named DIRBLK. COR.

Similarly, specifying

<-23,29

results in the edit command -23,29 being written
into the output file. Thus, when the file is read
by SLP, lines 23 through 29 of the specified input
file will be deleted.

6.8 INDIRECT FILES

Indirect files contain both editing commands and correction lines to
be inserted into the file being edited. These files are input from a
device other than the terminal. An example of indirect file usage in
SLP follows. See Section 1.4 for a discussion of indirect files.

6.8.1 Creating an Indirect File

The following example shows how corrections and SLP commands are
inserted into an indirect file.

Example

1. Initiate SLP by specifying an initial command line
contains an output file specifier and a listing
specifier. The following is a typical command line:

SLP>FROG.COR,LP:_.}

that
file

In this example, SLP will generate the file FROG.COR, and
will produce a listing of this file as it is generated.

2. Begin entering correction or insertion lines into the file.
Supply the appropriate edit commands and insert as text. The
correct line numbers for text being edited must be obtained
from a listing of the file that is to be edited; new text,
however, can be entered without line numbers. In order to
generate edit command lines, it is necessary to use the shift
command character (<) in the first position of the input

6-8

SOURCE LANGUAGE INPUT PROGRAM (SLP)

line. For example, to create the line

-29,36

as a text line in FROG.COR, you must ~n~C'ifv -r----.1.

<-29,36..J

Thus, a typical correction file might be entered as:

<-15_)
;THIS ROUTINE CALLS THE ERROR PROCESSOR_)
$HEDR: SAVRG ;SAVE NONVOLATILE REGISTERS_)

BNE 10$;IF NE YES__}
RETURN..)

<-40 I 56 _J

6.8.2 Using Indirect Files

The following example shows how an indirect file can be used.

Example:

1. Assuming that the corrections contained in AMND.COR are to be
applied to a file named WPT.MAC, the file specifier to SLP
is:

SLP>WPT.MAC,LP:=WPT.MAC~__)

which is followed by the indirect-file edit control statement
referring to the correction file:

@AMND. COR..)
NOTE

If the initial command line,
WPT.MAC,LP:=WPT.MAC, was included in the
indirect file, then editing would have
been initiated as follows:

SPL>@AMND.COR_}

2. SLP reads correction input from the latest version of file
AMND.COR and returns to the terminal for further input to
finish updating WPT.MAC. If the user includes a termination
edit control line in AMND.COR (</), SLP responds by printing
SLP> at the terminal after terminating editing operations on
WPT.MAC. All files are closed and a listing is sent to LP:.

6.9 SLP EDITING EXAMPLES

The following examples indicate the various editing functions that SLP
can perform and the command formats used.

6-9

SOURCE LANGUAGE INPUT PROGRAM (SLP)

Example 1:

SLP>ALBLK.MAC,LP:=ALBLK.MAC;l_.}
-23,23_..,,1

; Rl=SIZE OF BLOCK TO ALLOCATE IN BYTES._.}
-33 _.)

MOV
-36,36..J
-39,39~_)

ASR
I _J

#$FRHD,R2 ;GET ADDRESS OF FREE POOL HEADER_.}

Rl ;CONVERT TO WORDS.J

In this example, the following editing functions are performed:

Line 23 is replaced by a corrected version (i.e.,; Rl=SIZE OF BLOCK
TO ALLOCATE IN BYTES.).

A new line is inserted after line 33.

Line 36 is deleted (and not replaced).

Line 39 is replaced by a corrected version (i.e.,

ASR Rl ;CONVERT TO WORDS).

The output file is named ALBLK.MAC, and a line-numbered listing is
produced on the line printer.

Example 2:

SLP>BLKSG.MAC,LP:=BLKSG.MAC;l..)
-55,55_.}

BCS 60$;IF CS YES...J
-107,107_./

CALL $ERMSG ;OUTPUT ERROR MESSAGE_.)
/_.)

In Example 2, the following editing functions are performed:

Line 55 is replaced by a corrected line;

Line 107 is replaced by a corrected line.

The output file is named BLKSG.MAC, and a line numbered listing is
produced.

6-10

SOURCE LANGUAGE INPUT PROGRAM (SLP)

Example 3:

SLP>CATB.ABC;l,DKl:CATB.DAT=CATB.ZYX.)
-15,16_/
CNTRL: .BYTE 1 9: 1 0.~)
-33,35_,/
$CDTD:: MOVB #'9,CNTRL ;SET DECIMAL LIMIT_)
-38' 38_}
COTB:: MOVB #'7,CNTRL ;SET OCTAL LIMIT__)
-43, 45_)

CMPB #I ,RS ; BLANK?_)
BEQ 1$;IF EQUAL YES..}
CMPB #HT,RS ;HT?_)
BEQ 1$;IF EQUAL YES__}

-4 7 I 50 _)
3$: MOV R5,R2 ;SET TERMINAL CHARACTER_}
/.)

Lines 15 and 16 are deleted and replaced by a corrected line;

Lines 33 through 35 are deleted and replaced by the single
starting with $CDTD;

Line 38 is replaced;

Lines 43 through 45 are replaced by four text lines;

Lines 47 through 50 are deleted and replaced by the single
beginning with 3 $: .

line

line

The output file is created with the name CATB.ABC; the list file
(CATB.DAT) is written to the volume mounted on DKl: prior to being
spooled to the line printer. The input file, CATB.ZYX, remains in its
original form.

Example 4:

SLP>GETBK.C46,LP:_.)
-- • TITLE GETBK_)
@CMCOD..)
;GET ALLOCATED BLOCKS_}
;_)
;:J

In Example 4, the user is creating a new file named GETBK.C46. The
first text line defines the program title. The next line is an edit
control line, which refers SLP to an indirect file named CMCOD.CMD
with the default file type CMD. When indirect input is complete, SLP
returns to the terminal for further input at the line following
@CMCOD.

6-11

SOURCE LANGUAGE INPUT PROGRAM (SLP)

6.10 SLP ERROR MESSAGES

SLP error messages are issued in two different formats:

• SLP followed
applicable,
line.

by two dashes and the error message. If
the command line in error is printed on the next

• SLP followed by two dashes, the error message and the
offending filename.

Examples

SLP -- SYNTAX ERROR
RICKSFILE.MAC,LP:=SHIRLEY.MAC;2

or
SLP -- OPEN FAILURE LINE LISTING FILE filename

SLP error messages, descriptions, and suggested user actions are as
follows.

SLP -- COMMAND SYNTAX ERROR
command line

Description

The command line format does not conform to syntax rules. This
is a fatal error; the currently opened files are closed and SLP
is reinitialized.

Suggested User Action

Reenter the command line.

SLP -- ILLEGAL DEVICE NAME
command line

Description

The device specified is not a legal device. This is a fatal
error; it causes the editing session to be reinitialized.

Suggested User Action

Reenter the command line.

SLP -- ILLEGAL DIRECTORY
command line segment

Description

The directory is not legally specified. This is a fatal error;
it causes the editing session to be reinitialized.

Suggested User Action

Reenter the command line.

6-12

SOURCE LANGUAGE INPUT PROGRAM (SLP)

SLP -- ILLEGAL ERROR/SEVERITY CODE pl p2 p3

Description

This error message indicates an error in the SLP program.

Suggested User Action

Reenter the command line. If the error persists, contact your
DEC field support representative.

SLP -- ILLEGAL FILE NAME
command line segment

Description

A file specification io greater than 30 characters in length or
contains a wild card (i.e., an asterisk in place of a file
specification element). This is a fatal error; it causes the
editing session to be reinitialized.

Suggested User Action

Reenter the command line.

SLP -- ILLEGAL GET COMMAND LINE ERROR

Description

The system, for some reason, is unable to read a command line.
This indicates an internal system failure or an error in the SLP
program.

Suggested User Action

Reenter the command line. If the error persists, contact your
DEC field support representative.

SLP -- ILLEGAL SWITCH
command line segment

Description

The switch is not a valid SLP switch or a legal switch is used in
an invalid manner. This is a fatal error; it causes the editing
session to be reinitialized.

Suggested User Action

Reenter the command line with the correct switch specified.

6-13

SOURCE LANGUAGE INPUT PROGRAM {SLP)

SLP -- INDIRECT COMMAND SYNTAX ERROR
command line

Description

The command line format specified for the indirect file does not
conform to syntax rules. This is a fatal error; the
currently-opened files are closed and SLP is reinitialized.

Suggested User Action

Reenter the command line.

SLP -- INDIRECT FILE DEPTH EXCEEDED
command line

Description

More than one level of indirection
command file. This is a fatal error;
are closed, and SLP is reinitialized.

Suggested user Action

has been specified in a
the currently-opened files

Correct the command file and reenter the command line.

SLP -- I/O ERROR COMMAND INPUT FILE

or

SLP -- I/0 ERROR COMMAND OUTPUT FILE

or

SLP -- I/0 ERROR CORRECTION INPUT FILE filename

or

SLP -- I/0 ERROR LINE LISTING FILE filename

or

SLP -- I/0 ERROR SOURCE OUTPUT FILE filename

Description

One of the following conditions may exist:

1. A problem exists on the physical device {e.g., device cycled
down) .

2. Length of command line is greater than 80 characters.

3. File is corrupted or the format is incorrect.

Suggested User Action

1. Determine which of the above condition exists.

2. Rectify the condition.

3. Reenter the command line.

6-14

SOURCE LANGUAGE INPUT PROGRAM (SLP)

SLP -- INDIRECT FILE OPEN FAILURE
command line

or

SLP -- OPEN FAILURE CORRECTION INPUT FILE filename

or

SLP -- OPEN FAILURE LINE LISTING FILE filename

or

SLP -- OPEN FAILURE SOURCE OUPUT FILE filename

Description

One of the following conditions may exist:

1. The file is protected against an access.

2. A problem exists with the physical device (e.g., device not
on-1 ine) .

3. The volume is not mounted.

4. The specified file directory does not exist.

5. The named file does not exist in the specified directory.

6. The available Executive dynamic memory is insufficient for
the operation.

These are fatal errors; they causes the editing session to be
reinitialized.

Suggested User Action

1. Determine which of the above conditions exists.

2. Rectify the condition.

3. Reenter the command line.

6-15

SOURCE LANGUAGE INPUT PROGRAM (SLP)

SLP -- PREMATURE EOF CORRECTION INPUT FILE filename

Description

An out-of-range line number has been specified in a correction
file or from the terminal, e.g., -1000 has been specified for an
800 line file.

Suggested user Action

1. Terminate the current editing session.
2. Restart the editing session, entering the correct line

number.

SLP -- PREMATURE EOF COMMAND INPUT FILE

Description

This is caused by typing CTRL/Z at the terminal, which sends an
end-of-file to SLP before the/ is read. SLP types out SLP>,
indicating that a new file specification is expected.

Suggested User Action

Restart the editing session at the point where the CTRL/Z was
inadvertently typed.

6-16

CHAPTER 7

LIBRARIAN UTILITY PROGRAM (LBR)

7.1 INTRODUCTION TO LBR

The Librarian Utility Program (LBR) allows the user to create, update,
modify, list, and maintain object and macro library files. A library
file is a direct access file containing one or more modules of the
same module type. Library files are organized for rapic access by the
Task Builder and MACR0-11 Assembler.

The Librarian and library files, working in conjunction with the
MACR0-11 Assembler and the Task Builder, provide fast entry point
search time, easy update with minimal copying of entire files, and the
ability to handle multiple module types.

Library files contain two directory tables; an entry point table
(EPT) that contains entry point names, and a module name table (MNT)
that contains module names.

Both the EPT and MNT are alphabetically ordered. Object module names
are derived from .TITLE directives, while entry point names are
derived from defined global symbols. Once an entry point is located,
its associated module can be accessed directly.

Macro module names are derived from .MACRO directives;
point names are not applicable.

7.1.1 Format of Library Files

macro entry

A library file consists of a header, an entry point table, a module
name table, the library modules, and (usually) free space. The entry
point table has zero length for macro libraries. See Figure 7-1.

7-1

LIBRARIAN UTILITY PROGRAM (LBR)

Fixed- Library
Length Header
Records

-.

l
Entry Point

Table
--

Module Name
Table

--~·
Variable- Module 1 Header
Length
Records Module 1

:

Module n Header

' Module n

Available Space

Figure 7-1
General Library File Format

7.1.2 Library Header

-Block
boundaries

The header section is a full block in which the first 23 words are
used to describe the current status of the library. Its contents are
updated as the library is modified, so the Librarian can access the
information it needs to perform its functions (Insert, Compress,
etc.) • See Figure 7-2.

7.1.3 Entry Point Table

The entry point table consists of 4-word elements containing an entry
point name (words 0-1), and a pointer to the module header where the
entry point is defined (words 2-3). See Figure 7-3. This table is
searched when a library module is referenced by one of its entry
points. The table is sequenced in order of ascending entry point
names. The entry point table is not used for macro library files.

7-2

LIBRARIAN UTILITY PROGRAM (LBR)

OFFSET

WORD 0

2

4

6

10

12

14

16

20

22

24

26

30 I
I

32

34

36 I

40

42

44

46

50

52

54

NON ZERO ID LIBRARY TYPE

LBR (LIBRARIAN) VERSION

(.!DENT FORMAT)

YEAR

DATE AND MONTH

TIME LAST DAY

INSERT HOUR

MINUTE

SECOND

RESERVED l SIZE EPT ENTR's

EPT STARTING RELATIVE BLOCK

NO. EPT ENTRIES ALLOCATED

NO. EPT ENTRIES AVAILABLE

RESERVED l SIZE MNT

MNT STARTING REL BLOCK

NO. MNT ENTRIES ALLOCATED

NO. MNT ENTRIES AVAILABLE

LOGICALLY DELETED

AVAILABLE (BYTES)

CONTIGUOUS SPACE

AVAILABLE (BYTES)

NEXT INSERT RELATIVE BLOCK

START BYTE WITHIN BLOCK

Figure 7-2
Contents of Library Header

7-3

ENTR'S

LIBRARIAN UTILITY PROGRAM (LBR)

WORD 0 GLOBAL SYMBOL

1 NAME (RAD50)

2 ADDRESS OF RELATIVE BLK.
MODULE

3 HEADER BYTE IN BLOCK

Figure 7-3
Format Of Entry Point Table Element

7.1.4 Module Name Table

The module name table is searched when the library module is
referenced by its module name, rather than by one of its entry points.
It is comprised of 4-word elements; a module name (words 0-1) and a
pointer to the module header (words 2-3). See Figure 7-4. The module
name table is sequenced in order of ascending module names.

WORD 0 MODULE NAME

1 (RAD50)

2 ADDRESS OF RELATIVE BLK.
MODULE

3 HEADER BYTE IN BLOCK

Figure 7-4
Format of Module Name Table Element

7.1.5 Module Header

Each module starts with an 8-word header, identifying the
status of the module, its length (number of words), etc.
7-5.

type and
See Figure

For object modules, the low-order bit of the attributes byte is set if
the module has the selective search attribute. Also, for object
modules, the two words of type-dependent information contain the
module identification defined by the .!DENT directive at assembly
time. For macro modules, these two fields are undefined.

7-4

LIBRARIAN UTILITY PROGRAM (LBR)

OFFSET FROM
START OF

MODULE HEADER

0
r

ATTRIBUTES

2

4

6 DATE
MODULE

10 INSERTED

12

14

16

7.2 INITIATING LBR

l STATUS

SIZE OF

MODULE (BYTES)

YEAR

MONTH

DAY

TYPE DEPENDENT

INFORMATION

Figure 7-5
Module Header Format

O=NORMAL MODULE
l=DELETED MODULE

All RSX-llM utilities can be initiated in several ways. These methods
are described in Section 1.2. The methods for LBR are:

~LBR__J

>LBR command string__)

>RUN ... LBR__}

>RUN •.. LBR/UIC=[group,member]~~

>RUN $LBR_}

>RUN $LBR/UIC=[group,member]__J

7.3 LBR COMMAND STRING

LBR accepts command strings in the following general format:

outfile[,listfile]=infile-l[,infile-2, ... ,infile-n]

LBR allows only one level of indirect command file. For a complete
description of file specifiers, see Section 1.3; for a description of
indirect files, see Section 1.4.

7.4 DEFAULTS IN LBR FILE SPECIFIERS

Defaults in LBR file specifiers are described in Table 7-1.

7-5

Specifier

dev:

[uic]

LIBRARIAN UTILITY PROGRAM (LBR)

Table 7-1
Defaults in LBR File Soecifiers

Output File
SYO:

Listing File

Default

The device which was specified for the output
file; otherwise, the default for the output
file.

Input File
For the first input file specifier, SYO:.

For the second through n input file specifiers,
the device specified in the previous input file
specifier; otherwise, the default for the
previous input file specifier.

Output File
The UIC under which LBR is currently running.

Listing File
The UIC which was
file; otherwise,
file spec if i er .

Input File

specified for the output
the default for the output

For the first input file specifier, the UIC
under which LBR is currently running.

For the second through n input file specifiers,
the UIC specified in the previous input file
specifier; otherwise, the default for the
previous input file specifier.

filename No default. Must be specified.

.type

;ver

/switch

Output File
Depends on the default in effect (see Section
7.5.4), except when the /CR or /CO switch is
specified {see Sections 7.5.1 or 7.5.2,
respectively) .

Listing File
.LST

Input File
Refer to the descriptions of /CO (Section
7.5.1), /IN (Section 7.5.6), and /RP (Section
7.5.8) switches.

Latest version of the file, or latest version plus
one for the output file when the /CO or /CR switches
are spec if ied.

Output File
/IN (Insert)

List File I

~~~~~~__.~~~~/~S~P~/~L~I~-(s_p_o_o~l~a-n-d~l-i_s_t~m-o_d_u_l_e~n-a_m_e_s_) _ _J Input File 
None. 

7-6 



LIBRARIAN UTILITY PROGRAM ( LBR) 

7.5 LBR FILE OPTION SWITCHES 

LBR file options are in the form of switches appended to file 
specifiers. These option switches are summarized in Table 7-2. 

Option 

Compress 

Create 

I n-1 _..__ 
Lii:: J. I:: 1...1::: 

Default 

Delete Global 

Insert 

List 

Replace 

Spool 

Selective Search 

Squeeze 

Table 7-2 
LBR File Option Switches 

Switch Function 

/CO Compress a library file. 

/CR Create a library file. 

/T"'\n Delete a library module and all of its I .ur:.. 

entry points. 

/DF Specify the default library file type. 

/DG I Delete a library module entry point. 

/IN Insert a module. 

/LI List module names. 

/LE List module names and module entry 
points. 

/FU List module names and full module 
description. 

/RP 

/-RP 

/SP 

/-SP 

/SS 

/SZ 

Replace a module. 

Don't replace a module. 

Spool the listing for printing. 

Don't spool the listing. 

Set selective search attribute in 
module header. 

Reduce the size of macro source. 

7.5.1 Compress Switch (/CO) 

FUNCTION 

The Compress Switch provides the user with a facility for rearranging 
a file by physically deleting all logically deleted records, putting 
all free space at the end of the file, and making the free space 
available for new library module inserts. Additionally, the library 
table specification may be altered for the resulting library. LBR 
accomplishes this by creating a new file that is a compressed copy of 
the old library file. 

7-7 



LIBRARIAN UTILITY PROGRAM (LBR) 

NOTE 

The old library file is not deleted 
after the new file is created. 

The /CO switch can be appended only to the output file specifier. 

FORMAT 

outfile/CO:size:ept:mnt infile 

where: 

outf ile 

/CO 

:size 

:ept 

:mnt 

inf ile 

is the file specifier for the file that is to 
become the compressed version of the input file. 

NOTE 

Default type is .OLB if input file is an 
object library or .MLB if input file is 
a macro library. 

is the Compress switch. 

is the size of the new library file in 256-word 
blocks. If omitted, the size of the old library 
file is the default size. 

is the number of entry point table (EPT} entries 
to allocate. If the value specified is not a 
multiple of 64(10}, the next highest multiple of 
64(10} is used. If omitted, the number of EPT's 
in the old library file is the default value. 
This parameter is always forced to zero for macro 
libraries. 

NOTE 

Maximum number of entries is 4096(10). 

is the number of module name table (MNT} entries 
to allocate. If the value specified is not a 
multiple of 64(10), the next highest multiple of 
64(10) is used. If omitted, the number of MNT's 
in the old library file is the default value. 

NOTE 

Maximum number of entries is 4096(10}. 

is the file specifier of the library file to be 
compressed. 

7-8 



EXAMPLE 

(LBR) 

NOTE 

Default file type is .OLB for object 
libraries and .MLB for macro libraries. 
The actual default type is determined by 
the current default library type (see 
Section 7. 5. 4). 

LBR>RICKLIB/CO:l00.:128.:64.=SHEILA.OLB__} 

In this example, file SHEILA.OLB is compressed, and a new file, 
RICKLIB.OLB, is created with the following attributes: 

size= 100(10) blocks 

ept 128(10) entry points 

mnt 64(10) module names 

NOTES 
1. The new file, RICKLIB.OLB, received a 

version number that is one version 
greater than the latest version for the 
file. 

2. Both files, RICKLIB.OLB and SHEILA.OLE, 
reside in the default directory file on 
SYO:. 

7.5.2 Create Switch (/CR) 

FUNCTION 

The Create switch provides the user with a facility for allocating a 
contiguous library file on a direct access device (e.g., disk). It 
initializes the Library file header, the entry point table, and the 
module name tablee 

The /CR switch can be appended only to the output file specifier. 

FORMAT 

outfile/CR:size:ept:mnt:type 

where: 

outf ile 

/CR 

:size 

:ept 

is the file specifier for the library file being 
created. The default file type is .OLB if an 
object library is being created, or .MLB if a 
macro library is being created. 

is the create switch. 

is the size of the library file in 256-word 
blocks. The default size is 100(10) blocks. 

is the number of entry point table (EPT) entries 
to allocate. The default value is 512 (10) for 

7-9 



:mnt 

:type 

EXAMPLE 

LIBRARIAN UTILITY PROGRAM (LBR) 

object libraries. This parameter is always forced 
to zero for macro libraries. 

NOTE 

Maximum number of entries is 4096(10). 

is the number of module name table (MNT) entries 
to allocate. The default value is 256(10). 

NOTE 

Maximum number of entri~s is 4096(10). 

is the type of library to be created. Acceptable 
types are OBJ for object libraries and MAC for 
macro libraries. The default is the last value 
specified or implied with the /DF switch (see 
Section 7.5.4), or OBJ if /DF has not been 
specified. 

NOTE 

The EPT and MNT are automatically filled 
out to the next disk block boundary, if 
the values specified are not multiples 
of 64(10). 

LBR>RICKLIB/CR::l28.:64.:0BJ=SHEILA,LAURA,JENNY_) 

In this example, a combination of functions are performed. First, the 
library file RICKLIB.OLB is created in the default directory on SYO:; 
RICKLIB has the following attributes: 

size= 100(10) blocks (default size), 

ept 128(10) entry points, 

mnt 64(10) module names. 

type = .OBJ 

Second, object modules from the input files SHEILA.OBJ, LAURA.OBJ, and 
JENNY.OBJ, which reside in the default directory on SYO:, are inserted 
into the newly created library file. Insert is the default switch for 
input files (see Section 7.5.6). 

7-10 



LIBRARIAN UTILITY PROGRAM (LBR} 

7.5.3 Delete Switch (/DE) 

FUNCTION 

T~e Delete switch provides the user with a facility for deleting 
library modules and their associated entry points (global symbols) 
from a library file. Up to 15 library modules and their associated 
entry points can be deleted with one delete command. 

When LBR begins processing the /DE switch, it prints the following 
message on the initiating terminal: 

MODULES DELETED: 

As modules are logically deleted from the library file, the module 
name is printed on the initiating terminal. See the example at the 
end of this section. 

If a specified library module is not contained in the library file, a 
message is printed on the initiating terminal, and the processing of 
the current command is terminated. This message is as follows: 

LBR -- *FATAL* - NO MODULE NAMED "name" 

The /DE switch can be appended only to the library file specifier. 

FORMAT 

NOTE 

When LBR deletes a module from a library 
file, the module is not physically 
removed from the file, but is marked for 
deletion. This means, that although the 
module is no longer accessible, the file 
space that the module once occupied is 
not available for use (unless the 
deleted module is the last module which 
was inserted). To physically remove the 
module from the file and make the freed 
space available for use, the user must 
compress the library (see Section 
7.5.1). 

outfile/DE:module-l[:module-2: •.. :module-n] 

where: 

outfile is the file specifier for the library file. 

/DE is the delete switch. 

:module is the name of the module to be deleted. 

7-11 



LIBRARIAN UTILITY PROGRAM (LBR) 

EXAMPLE 

LBR>RICKLIB/DE:SHEILA:LAURA:JENNY_/ 

MODULES DELETED: 

SHEILA 

LAURA 

JENNY 

In this example, the modules SHEILA, LAURA, and JENNY and their 
associated entry points are deleted from the latest version of library 
file SYO:RICKLIB.OLB. 

7.5.4 Default Switch (/DF) 

FUNCTION 

The Default switch provides the user with a facility for specifying 
the default library file type. Acceptable values are OBJ for object 
libraries and MAC for macro libraries. A default value of OBJ is used 
by LBR to process the /OF switch. 

Specifying a default value: 

1. Sets the default type argument for the Create switch (/CR). 

2. Provides a file type default value of .MLB for macro 
libraries and .OLB for object libraries when opening an 
output (library) file, except in the cases of /CO and /CR. 
When /CO is specified, the default applies to the library 
input file. When /CR is specified, the default type is .OLB 
if an object library is being created, or .MLB if a macro 
library is being created. The /OF switch only affects the 
name of the file to be opened; thereafter, the library 
header record information is used to determine the type of 
library file being processed. 

The /DF switch can be issued alone or appended to a library file 
specifier. 

FORMAT 

outfile/DF:type •.• 

or 

/DF:type 

where: 

outf ile 

/OF 

type 

is the file specifier for the library file. 

is the Default switch. 

is OBJ for object library files and MAC for macro 
library files. 

7-12 



LIBRARIAN UTILITY PROGRAM (LBR) 

NOTE 

If a type other than OBJ or MAC is 
specified, the current default library 
type will be set to object libraries, 
and the following message will be 
displayed: 

LBR -- INVALID LIBRARY TYPE SPECIFIED 

EXAMPLES 

1. LBR>/DF:MAC_} 
LBR>RICKLIB=inf ile_) 

File RICKLIB.MLB is opened for insertion. 

2. LBR>/DF:MAC_} 
LBR>RICKLIB/DF:OBJ=infile_J 

File RICKLIB.OLB is opened for insertion. 

3. LBR> /OF: MAC_) 
LBR>RICKLIB/CR_} 

Macro library RICKLIB.MLB is created. 

4. LBR>/DF:MAC_J 
LBR>RICKLIB/CR::::OBJ_J 

Object library RICKLIB.OLB is 

5. LBR>/DF__) 
LBR>TEMP/CO=RICKLIB_} 

----.L-..::1 
~r.t::a l.t::U • 

RICKLIB.OLB is opened for compression. 
object library, the file TEMP.OLB is 
compressed output. If RICKLIB.OLB is 
nonstandard use of the type OLB) , 
created'. 

6. LBR>/DF:OBJ_/ 
LBR>TEMP/CO=RICKLIB.MLB_} 

If RICKLIB.OLB is an 
created to receive the 

a macro library (a 
the file TEMP.MLB is 

Assuming that file RICKLIB.MLB is a macro library, the macro 
library file TEMP.MLB is created to receive the compressed 
output. 

7.5.5 Delete Global Switch (/DG) 

FUNCTION 

The Delete Global switch provides the user with a facility for 
deleting a specified entry point (global symbol) from the EPT. Up to 
15 entry points may be deleted with one command. This command does 
not affect the object module which contains the actual symbol 
definition. 

7-13 



LIBRARIAN UTILITY PROGRAM (LBR) 

When LBR begins processing the /DG switch, it prints the following 
message on the initiating terminal: 

ENTRY POINTS DELETED: 

As entry points are deleted from the library file, the entry point is 
printed on the initiating terminal. See the example at the end of 
this section. 

If a specified entry point is not contained in the EPT, a message is 
printed on the initiating terminal, and the processing of the current 
command is terminated. This message is as follows: 

LBR -- *FATAL* - NO ENTRY POINT NAMED "name" 

The /DG switch can only be appended to the 1 ibrary file specifier. 

FORMAT 

outfile/DG:global-l[:global-2: .•. :global-n] 

·where: 

outfile is the library file specifier. 

/DG is the Delete Global switch. 

global is the name of the entry point to be deleted. 

EXAMPLE 

LBR>RICKLIB/DG:SHEILA:LAURA:JENNY_} 

ENTRY POINTS DELETED: 

SHEILA 

LAURA 

JENNY 

In this example, the entry points SHEILA, LAURA and JENNY are deleted 
from the latest version of the library file named SYO:RICKLIB.OLB. 

7.5.6 Insert Switch (/IN) 

FUNCTION 

The Insert switch provides the user with a facility for inserting 
library modules into a library file. Any number of input files can be 
specified, and each file can contain any number of concatenated input 
modules. For macro libraries, only first-level macro definitions are 
extracted from the input files. All text outside of the first-level 
macro definitions is ignored. The /IN switch is the default library 
file option, and can be appended only to the library file specifier. 

7-14 



LIBRARIAN UTILITY PROGRAM (LBR) 

If the user attempts to insert an input module which already exists in 
the library file, the following message is printed on the initiating 
terminal: 

LBR -- *FATAL* DUPLICATE MODULE NAME "name" IN filename 

Likewise, if the user attempts to insert a module and a module 
contains an entry point that duplicates one that is already in the 
EPT, the following message is printed on the initiating terminal: 

LBR -- *FATAL* DUPLICATE ENTRY POINT "name" IN filename 

FORMAT 

outfile[/IN]=infile-l[,infile-2, ... ,infile-n] 

where: 

outfile 

/IN 

inf ile 

EXAMPLE 

is the file specifier for the library file into 
which the input modules are to be inserted. The 
default type depends on the current default (see 
Section 7.5.4). It is .OLB if the current default 
is object libraries or .MLB if the current default 
is macro libraries. 

is the Insert switch. 

is the file specifier for the input file 
containing modules to be inserted into the library 
file. The default type is .OBJ if outfile is an 
object library and .MAC if outfile is a macro 
library. 

LB R> RIC KL IB /IN =SHE I LA, LA URA, JENNY.) 

In this example, the modules contained in the latest versions of files 
SHEILA, LAURA and JENNY, which reside in the default directory on 
SYO:, are inserted into the latest version of the library file 
RICKLIB; which also resides in the default directory on SYO:= The 
default file type for files SHEILA, LAURA, and JENNY is .OBJ if 
RICKLIB is an object module library or .MAC if RICKLIB is a macro 
library. 

7.5.7 List Switches (/LI, /LE, /FU) 

FUNCTION 

The List switches provide the user with a facility for producing a 
printed listing of the contents of a library file. Three switches 
allow the user to select the type of listing desired. Th~se switches 
are as follows: 

/LI Produces a listing of the names of all modules in the 
library file. 

/LE Produces a listing of the names of all modules in the 
library file and their corresponding entry points. 

7-15 



LIBRARIAN UTILITY PROGRAM (LBR) 

/FU Produces a listing of the names of all modules in the 
library file and gives a full module description for 
each: i.e., size, date of insertion, and 
module-dependent information. 

NOTE 

Appendix B.l contains sample listings of all 
three types of library listing. 

These switches can be appended only to the output file specifier or 
the list file specifier. 

FORMAT 

outfile[,listfile]/switch(es) 

where: 

outf ile is the file specifier for the library file whose 
contents is to be listed. 

1 istfile 

/switch (es) 

EXAMPLES 

is the optional listing file 
specified, the listing 
initiating terminal. 

specifier. 
is directed 

is the list option(s) selected. 

NOTE 

If 
to 

The /LI switch is the default value, and 
need not be specified when a listing file 
has been specified, or when any other list 
switch is included in the command. 

1. LBR>RICKLIB/LI__} 

not 
the 

In this example, a listing of the names of all the modules contained 
in file SYO:RICKLIB.OLB is printed on the initiating terminal. 

2. LBR>RICKLIB/LE_.,/ 

In this example, a listing of the names of all the modules and their 
entry points (contained in file SYO:RICKLIB.OLB) is printed on the 
initiating terminal. 

3. LBR>RICKLIB/FU__} 

In this example, a listing of the names of all the modules, and a full 
description of each module contained in file SYO:RICKLIB.OLB, is 
printed on the initiating terminal. 

7-16 



LIBRARIAN UTILITY PROGRAM (LBR) 

4. LBR>DKl: [200 1 200]RICKLIB,LP:/LE/FU_J 

In this example, a listing of the names of all the modules, their 
entry points, and a full description of each module for file RICKLIB, 
residing in directory [200,200] on DKl:, is printed on the line 
printer. 

7.5.8 Replace Switch (/RP) 

FUNCTION 

The Replace switch provides the user with a facility for replacing 
modules in a library file with input modules of the same name. Any 
number of input files are allowed, and each file can contain any 
numbe~ of concatenated input modules. 

When a match occurs on a module name, the existing module is logically 
deleted, and all of its entries are removed from the EPT. The /RP 
switch does not imply module replacement on matching entry point 
names. That condition is always fatal. 

As each module in the library file is replaced, a message is printed 
on the initiating terminal. This message, which contains the name of 
the module being replaced, is as follows: 

MODULE "name" REPLACED 

If the module to be replaced does not exist in the library file, LBR 
assumes that the input module is to be inserted and automatically 
inserts it without printing a message. 

FORMAT 

The /RP switch can be specified in either of the following formats: 

a. Global format - The /RP switch is appended to the file 
specifier, and all of the input files are assumed to contain 
modules to be replaced. 

b. Local format - The /RP switch is appended to an input file 
specifier, and only the file to which the /RP switch is 
appended is considered to contain modules to be replaced. 

Global Format 

outfile/RP=infile-l[,infile-2,.,.,infile-n] 

where: 

out file is the file specifier for the library file. The 
default type depends on the current default (see 
Section 7.5.4). It is .OLB if the current default 
is object libraries or the .MLB if the current 
default is macro libraries. 

7-17 



/RP 

inf ile 

LIBRARIAN UTILITY PROGRAM {LBR) 

is the Replace switch. 

is the input file specifier for the file that 
contains modules to be replaced in the library 
file. The default type is .OBJ if outfile is an 
object library, or .MAC if it is a macro library. 

This format of the /RP switch allows the user to specify a list of 
input files without having to append the /RP switch to each of them. 

Local Format 

NOTE 

Should the user want to override the 
global function for a particular input 
file {that is, to instruct LBR to 
process a particular file in a list as a 
file containing modules to be inserted 
but not replaced) , the user can append 
/-RP or /NORP to the desired input file 
spec if ier. 

outfile=infile-1 [/RP] [, infile-2 [/RP], ... , infile-n [/RP]] 

where: 

outf ile 

infile 

/RP 

is the file specifier for the library file. The 
local format default is the same as the global 
format default described above. 

is the input file specifier for the file that 
contains modules to be inserted or replaced in the 
output library file. The local format default is 
the same as the global format default described 
above. 

is the Replace switch. 

NOTE 

Appending the /RP switch to an input file 
specifier constitutes the local format of 
the switch. This overrides the LBR 
default (Insert) and instructs LBR to 
treat the module(s) contained in the 
specified file as modules to be replaced. 

7-18 



LIBRARIAN UTILITY PROGRAM (LBR} 

EXAMPLES 

The files used in the following four examples, and the modules 
contained within each file, are depicted in Figure 7-6. For the 
examples, these files are assumed to reside in the default directory 
on the default device, and the initial state of the library file is 
assumed to be as shown in Figure 7-6. 

1. LBR>RICKLIB/RP=SHEILA, LAURA, JENNY..) 

MODULE "SHEILA" REPLACED 
MODULE 11 LAURAl" REPLACED 
MODULE "LAURA2" REPLACED 
MODULE "JENNYl" REPLACED 
MODULE "JENNY2" REPLACED 

In this example, the global format for the /RP switch is used. Object 
modules from the input files SHEILA, LAURA, and JENNY replace modules 
by the same names in the library file named RICKLIB. The resulting 
library file is shown in Figure 7-7. 

2. LBR>RICKLIB=CHRIS, SHEILA/RP-./ 

MODULE "SHEILA" REPLACED 

In this example, the local format of the /RP switch is used. The 
object module SHEILA from file SHEILA is replaced in the library file 
RICKLIB. The object modules in the file CHRIS are inserted in the 
library file. (See Insert switch in Section 7.5.6.) The resulting 
library file is shown in Figure 7-8. 

7-19 



-.I 
I 

""' C> 

File Name 

Object 

Modules 

Output 
Library File Input Files 

RICKLIB. OLB; 1 SHEILA.OBJ;l LAURA.OBJ;! JENNY.OBJ;! CHRIS. OBJ; 1 

JENNYl SHEILA LAURA! JENNYl CHRIS! 

JENNY2 LAURA2 JENNY2 CHRIS2 

LAURA! LAURA3 JENNY3 

LAURA2 

SHEILA 

Figure 7-6 
Sample Files Used in LBR Examples 



LIBRARIAN UTILITY PROGRAM (LBR} 

RICKLIB. OLB; 1 
.J 

JENNYl 

JENNY2 

JENNY3 * 

LAURAl 

LAURA2 

LAURA3 * 

SHEILA 

*These modules did not exist on the 
library file prior to the execution of 
this example, but they did exist on the 
input files. LBR, therefore, assumed 
that they were to be inserted. Since 
LBR handled these modules as a normal 
insert, no message was printed on the 
input terminal. 

Figure 7-7 
Output Library File After Execution of Example 1 

RICKLIB. OLB; 1 

CHRISl ** 

CHRIS2 ** 

JENNYl 

JENNY2 

LAURAl 

LAURA2 

SHEILA * 

*This module replaced 

**These modules inserted 

Figure 7-8 
Output Library File After Execution of Example 2 

7-21 



LIBRARIAN UTILITY PROGRAM (LBR) 

3. LBR>RICKLIB/RP=SHEILA,LAURA,JENNY,CHRIS/-RP..) 

MODULE "SHEILA" REPLACED 
MODULE "LAURAl II REPLACED 
MODULE "LAURA2" REPLACED 
MODULE 11 JENNY1 11 REPLACED 
MODULE "JENNY2" REPLACED 

In this example, the /-RP switch is used to override the global format 
of the command. Object modules in files SHEILA, LAURA, and JENNY are 
processed as modules to be replaced, and file CHRIS is processed as a 
file which contains modules to be inserted. The resulting library 
file is shown in Figure 7-9. 

RICKLIB. OLB; 1 

CHRIS! ** 

CHRIS2 ** 

JENNY! 

JENNY2 

JENNY3 * 

LAURA! 

LAURA2 

LAURA3 * 

SHEILA 

*These modules were inserted by default. 

**These modules were specified to be 
inserted. Had a module of the same name 
been present, a fatal error message 
would have been issued. See Example 4 
below. 

Figure 7-9 
Output Library File After Execution of Example 3 

4. LBR>RICKLIB/RP=SHEILA,LAURA/-RP,JENNY..) 

MODULE "SHEILA" REPLACED 
LBR -- *FATAL* -- DUPLICATE MODULE "LAURA!" IN LAURA.OBJ;! 

In this example, only module SHEILA from file SHEILA was replaced. 
The user specified that the modules in file LAURA not be replaced 
(/-RP), but inserted. One of the modules contained in file LAURA 
duplicated an already existing module in file RICKLIB (see Figure 
7-6). Therefore, LBR issued the fatal error message and terminated 
the processing of the current command. 

7-22 



LIBRARIAN UTILITY PROGRAM (LBR) 

7.5.9 Spool Switch (/SP} 

The Spool switch is the list file default switch. Whether the switch 
is specified or not, the results are the same, i.e., the listing file 
is spooled to the line printer. The listing file can be spooled to 
any file-structured device (e.g., disk). 

After the listing file is created, a request is made to the print 
spooler task to print the spooled file; printing is performed 
asynchronously (see Appendix C for a description of the spooler task). 

The automatic printing of the listing file can be inhibited by 
specifying a minus sign (-) or the letters NO between the slash (/) 
and the SP in the spool switch (/-SP or /NOSP). This causes the 
listing file to be created, but the request to the print spooler task 
is not issued. Therefore, the file is not automatically printed. 

The /SP switch can only be appended to the list file specifier. 

FORMAT 

outfile,listfile[/SP] or [/-SP] 

where: 

outfile is the file specifier for the library file. 

l istf ile is the listing file specifier. 

/SP or /-SP is the Spool switch. 

EXAMPLE 

LBR>RICKLIB/DE: SHEILA 1 RICKLST/-SP ._/1 

In this example, the following occurs: 

1. The module SHEILA and its associated entry points are deleted 
from the library file SY:RICKLIB. 

2. The listing of the contents of resulting library file RICKLIB 
is written to the list file SY:RICKLST.LST. ~Ince the /-SP 
switch is specified, the file is not automatically printed. 

7.5.10 Selective Search Switch (/SS) 

FUNCTION 

The Selective Search switch is used to set the selective search 
attribute bit in the module header of object modules as they are 
inserted into an object library. The switch has no effect when 
applied to modules being inserted into a macro library. The switch 
may be specified only on input files for insertion or replacement 
operations, and it affects all modules in the input file to which it 
is applied. 

Object modules with the selective search attribute are given special 
treatment by the Task Builder. Global symbols defined in modules with 
the selective search attribute are only included in the Task Builder's 

7-23 



LIBRARIAN UTILITY PROGRAM (LBR) 

symbol table if they are previously referenced by other modules. 
Thus, only referenced symbols will be listed with the module in the 
Task Builder memory allocation file, thereby reducing task build time. 
The /SS switch should only be applied to object files whose modules 
contain only absolute (not relocatable) symbol definitions. See the 
RSX-llM Task Builder Reference Manual for more information. 

FORMAT 

outfile=infile-1/SS[,infile-2[/SS] , ... ,infile-n[/SS]] 

where: 

outf ile is the file specifier for the library file. 

inf ile is the file specifier for the input file that 
contains modules to be selectively searched. 

/SS is the Selective Search switch. 

7.5~11 Squeeze Switch (/SZ) 

FUNCTION 

The Squeeze switch provides the user with a facility for reducing the 
size of macro definitions by eliminating all trailing blanks and tabs, 
blank lines, and comments from macro text. The /SZ switch is used to 
conserve memory in the MACR0-11 Assembler and to reduce the size of 
macro library files. The Squeeze switch has no effect on object 
libraries. 

FORMAT 

The /SZ switch can be specified in either of the following formats: 

1. Global format - The /SZ switch is appended to the library 
file specifier, and all of the input files are assumed to 
contain modules to be squeezed. 

2. Local format - The /SZ switch is appended to an input file 
specifier, and only the file to which the /SZ switch is 
appended is considered to contain modules to be squeezed. 

Global Format 

outfile/SZ=infile-l,[,infile-2, ... ,infile-n] 

where: 

outf ile 

/SZ 

infile 

is the file specifier for the library file. 

is the Squeeze switch. 

is the file specifier for the input file 
contains modules to be squeezed before 
inserted into the library file. 

that 
being 

This format of the /SZ switch allows the user to specify a list of 
input files without having to append the /SZ switch to each of them. 

7-24 



Local Format 

LIBRP_RIAN UTILITY PROGRAM (LBR) 

NOTE 

Should the user want to override the 
global function for a particular input 
file (that is, to instruct LBR to 
process a particular file in a list as a 
file containing modules to be inserted 
but not squeezed), the user can append 
/-SZ or /NOSZ to the desired input file 
specifier. 

outfile=infile-1/SZ [ ,infile-2 [/SZ], ... , inft°le-n[/SZ]] 

where: 

outfile 

inf ile 

/SZ 

EXAMPLE 

is the file specifier for the library file. 

is the file specifier for the file that contains 
modules to be squeezed before being inserted into 
the library file. 

is the Squeeze s~itch. 

NOTE 

LBR uses the following algorithm on each 
line to be squeezed and inserts the 
resultant line into the library file: 

1. The line is examined for the 
rightmost semicolon (;). 

2. If a semicolon is located, it 
is deleted, along with all 
trailing characters in the 
line. 

3. All trailing blanks and tabs in 
the line are deleted. 

4. If the resulting line is null, 
nothing is transferred to the 
library file. 

Figure 7-10 illustrates the use of the LBR /SZ switch. A file 
containing input text to be squeezed is illustrated, along with the 
text actually inserted into the library file after the squeeze 
operation has been completed. 

7-25 



LIBRARIAN UTILITY PROGRAM {LBR) 

BEFORE BEING SQUEEZED 

.MACRO MOVSTR RX,RY,?LBL 

;*** - - NOTE : 
BOTH ARGUMENTS MUST BE REGISTERS 

LBL: MOVB 
BNE 
DEC 

;END OF MOVSTR 
.ENDM 

{RX)+, (RY)+ 
LBL 
RY 

;MOVE A CHARACTER 
;CONTINUE UNTIL NULL SEEN 
;BACKUP OUTPUT PTR TO NULL 

AFTER BEING SQUEEZED 

.MACRO MOVSTR RX,RY,?LBL 
;*** - - NOTE : 
; BOTH ARGUMENTS MUST BE REGISTERS 
LBL: MOVB {RX)+, {RY)+ 

BNE LBL 
DEC RY 
.ENDM 

Figure 7-10 
MACRO Listing Before and After Running LBR with /SZ Switch 

7.6 COMBINING LIBRARY FUNCTIONS 

Two or more library functions may be requested in the same command 
line. The only exceptions are that COMPRESS cannot be requested with 
anything else except LIST, and CREATE and DELETE cannot be specified 
in the same command line. 

Functions are performed in the following order: 

1. /DF 

2. /CR or /CO 

3. /DE 

4. /DG 

5. /IN, /RP, /SS, /SZ 

6. /LI, /LE, /FU 

EXAMPLE 

LBR>FILE/DE:XYZ:$A,LP:/LE/FU=MODX,MODY/RP__} 

7-26 



LIBRARIAN UTILITY PROGRAM (LBR) 

Functions are performed in order, as: 

Delete modules XYZ and $A. 

Insert all modules from MODX and MODY, replacing any duplicates 
of modules in MODY. 

Produce a listing of the resultant library file on the line 
printer with full module descriptions and all entry points. 

7.7 LBR CONSTRAINTS 

The following constraints apply to LBR: 

1. Limit of 65,536(10) words per module. 

2. Limit of 65,536(10) blocks per library, 

3. Tables should be 
Expanding table 
the entire file. 

allocated to maximum anticipated size. 
allocations requires using Compress to copy 

4. A fatal error results if an attempt is made to insert a 
module into a library which contains a differently named 
module with the same entry point. See Insert command, 
Section 7. 5. 6. 

5. The use of "wild cards" in file specifiers is not allowed 
(i.e., forms such as *.OBJ, where the "*" is used to indicate 
"all modules with type .OBJ"). 

7.8 LBR ERROR MESSAGES 

Error messages reported to the user by LBR are of two types: 
diagnostic and fatal. 

Diagnostic error messages inform the user that a condition exists that 
requires consideration, but the nature nF the condition does not 
warrant termination of the command. Diagnostic messages are issued to 
TI:, in the format: 

LBR -- *DIAG* - message 

Fatal error messages inform the user that a condition exists that 
caused LBR to terminate the processing of a command. When this 
occurs, LBR returns to the highest level of command input. For 
example, if the command is entered in response to the MCR prompt, 
i.e., 

>LBR command 

then, LBR issues the fatal error message and exits. If, however, the 
command is entered in response to the LBR prompt, i.e., 

LBR>command 

LBR issues the fatal error message and reprompts. 

7-27 



LIBRARIAN UTILITY PROGRAM (LBR) 

Fatal error messages are issued to TI: in the format: 

LBR -- *FATAL* - message 

NOTE 

If a fatal error occurs during the 
processing of an indirect command file, 
the command file is closed, the fatal 
error message, followed by the command 
line in error, is issued to TI:, and LBR 
returns to the highest level of command 
input. 

7.8.l Effect of Fatal Errors on Library Files 

The status of a library file after fatal errors is: 

1. In general, output errors leave 
indeterminate state. 

the library in an 

2. During the deletion process, the library is rewritten prior 
to the printing of the individual module-Jentry-point-deleted 
messages. 

3. During the replacement process, 
prior to the printing of the 
messages. 

the library is rewritten 
individual module-replaced 

4. During the insert process, the library is rewritten after the 
insertion of all modules in each individual input file, i.e., 
between input files. 

7.8.2 Error Messages 

LBR ILLEGAL GET COMMAND LINE ERROR CODE 

Description 

The system, for some reason, is unable to read a command line. 
This is an internal system failure. 

Suggested User Action 

Reenter the command line. If the problem persists, consult 
software support representative. 

LBR -- INPUT ERROR ON filename 

Description 

The file system, while attempting to process an input file, has 
detected an error. 

7-28 



LIBRARIAN UTILITY PROGRAM (LBR) 

A problem exists with the physical device (e.g., device cycled 
down) . 

Suggested User Action 

Reenter the command line. 

LBR -- COMMAND SYNTAX ERROR 
command line 

Description 

The user has entered a command in a format that does not conform 
to syntax rules. 

Suggested User Action 

Reenter the command line, using the correct syntax. 

LBR -- OUTPUT ERROR ON filename 

Description 

A write error has occurred on the output file. 
following conditions may exist: 

, 
~. The volume is full. 

2. The device is write-protected. 

3. The hardware has failed. 

Suggested user Action 

One of the 

If the volume is full, the user should delete all unnecessary 
files and rerun LBR. 

If the device is write-protected, the user should write-enable 
the device, and reenter the command line. 

If the hardware has failed, the user can swap devices and reenter 
the command line or wait until the device is repaired and rerun 
LBR. 

LBR -- ILLEGAL SWITCH 
command line 

Description 

The user specified a non-LBR switch or a legal switch in an 
invalid context. 

Suggested User Action 

Reenter the command line with the correct switch specification. 

7-29 



LIBRARIAN UTILITY PROGRAM (LBR) 

LBR INSUFFICIENT DYNAMIC MEMORY TO CONTINUE 

Description 

The partition in which LBR is running is too small. 

Suggested User Action 

Remove the task (LBR), install it in a larger partition, and 
reenter the command line. 

LBR -- INVALID LIBRARY TYPE SPECIFIED 

Description 

The user specified an illegal library type in a CREATE or DEFAULT 
command. The file types OBJ and MAC are the only valid 
specifications. See Sections 7.5.2 and 7.5.4. 

Suggested User Action 

Reenter the command line with OBJ or MAC specified. 

LBR -- COMMAND I/O ERROR 

Description 

One of the following conditions may exist: 

1. A problem exists on the physical device (e.g., not cycled 
up) . 

2. The file is corrupted or the format is incorrect (e.g., 
record length exceeds 132 bytes). 

Suggested User Action 

1. Determine which of the above conditions exists. 

2. Rectify the condition. 

3. Reenter the command line. 

LBR -- INDIRECT FILE OPEN FAILURE 
command 1 ine 

Description 

The requested indirect command file does not exist as specified. 
One of the following conditions may exist: 

1. The user directory area is protected against access. 

2. A problem exists on the physical device (e.g., device cycled 
down) . 

3. The volume is not mounted. 

4. The specified file directory does not exist. 

7-30 



LIBRARIAN UTILITY PROGRAM (LBR) 

5. The file does not exist as specified. 

6. Insufficient dynamic memory in Executive. 

Suggested User Action 

1. Determine which of the above conditions exists. 

2. Rectify the condition. 

3. Reenter the command line. 

LBR -- INDIRECT COMMAND SYNTAX ERROR 
command line 

Description 

The user specified an indirect file in a format that does not 
conform to syntax rules. 

Suggested User Action 

Reenter the command line with the correct syntax. 

LBR -- BAD LIBRARY HEADER 

Description 

Either the file is not a library file or the file is corrupted. 

Suggested User Action 

1. If the file is not a library file, reenter the command line 
with a proper library file specified. 

2. If the file is a proper library file, the user should run the 
file structure verification utility {VFY) against the volume 
to determine if it is corrupted (see Chapter 8). 

3. If the volume is corrupted, it must be reconstructed before 
it can be used. 

LBR -- INDIRECT FILE DEPTH EXCEEDED 
command line 

Description 

An attempt has been made to exceed one level of indirect command 
files. 

Suggested User Action 

Rerun the job with only one level of indirect command file. 

7-31 



LIBRARIAN UTILITY PROGRAM (LBR) 

LBR -- I/0 ERROR ON INPUT FILE filename 

Description 

A read error has occurred on an input file. One of the following 
conditions may exist: 

1. A problem exists on the physical device (e.g., not cycled 
up) • 

2. The file is corrupted or the format is wrong (record length 
exceeds 132 bytes) . 

Suggested User Action 

1. Determine which of the above conditions exists. 

2. Rectify the condition. 

3. Reenter the command line. 

LBR -- OPEN FAILURE ON FILE filename 

De script ion 

The file system, while attempting to open a file, has detected an 
error. One of the following conditions may exist: 

1. The user directory area is protected against an open. 

2. A problem exists on the physical device (e.g., device cycled 
down) . 

3. The volume is not mounted. 

4. The specified file directory does not exist. 

5. The file does not exist as specified. 

6. Insufficient contiguous space to allocate the library file 
(compress and create only). 

7. Insufficient dynamic memory in Executive. 

Suggested User Action 

1. Determine which of the above conditions exists. 

2. Rectify the condition. 

3. Reenter the command line. 

LBR -- INVALID EPT AND/OR MNT SPECIFICATION 

Description 

The user, when specifying a /CR or /CO command, entered an EPT or 
MNT value which was greater than 4096(10). 

Suggested User Action 

Reenter the command line with the correct value specified. 

7-32 



LIBRARIAN UTILITY PROGRAM (LBR) 

LBR -- POSITIONING ERROR ON filename 

Description 

The device is write-locked. 

Suggested User Action 

If the device is write-locked, write enable it and reenter the 
command line. 

LBR -- EPT OR MNT EXCEEDED IN filename 

De script ion 

The EPT or MNT table limit has been reached during the execution 
of an Insert or Replace command. 

Suggested User Action 

1. Copy the library, increasing the table space via the COMPRESS 
command. 

2. Reenter the command line. 

LBR -- DUPLICATE MODULE NAME "name" IN filename 

Cescription 

An attempt has been made to insert (without replacement) a module 
into a library that already contains a module with the specified 
name. 

Suggested User Action 

1. Determine if the specified input file is the correct file. 

2. If the input file is correct, the user must decide whether to 
delete the duplicate module from the library file and insert 
the new one, or replace the duplicate module by rerunning LBR 
with the /RP switch appended to the input file specifier. 

LBR -- GET TIME FAILED 

Description 

This error occurs when LBR attempts to execute a Get Time 
Parameters directive and fails. The error is caused by a system 
malfunction. 

Suggested User Action 

Reenter the command line. If the problem persists, consult 
software support representative. 

7-33 



LIBRARIAN UTILITY PROGRAM {LBR) 

LBR -- NO MODULE NAMED "module" 

Description 

The user has attempted to delete a module that is not in the 
specified library file. 

Suggested User Action 

1. Determine if the module name is misspelled or if the wrong 
library file is specified. 

2. Reenter the command line with the module name correctly 
spec if ied. 

LBR INVALID NAME -- "name" 

De script ion 

A module name or entry point that contains a non-Radix-50 
character has been specified for deletion. 

NOTE 

Radix-50 characters consist of the letters A through Z, 
the numbers 0 through 9, and the special characters 
period {.) and dollar sign {$). 

Suggested User Action 

Reenter the command line with a valid name. 

LBR -- LIBRARY FILE SPECIFICATION MISSING 

Description 

The user has entered a command without specifying the library 
file. 

Suggested User Action 

Reenter the command line with the library file specified. 

LBR -- ILLEGAL SWITCH COMBINATION 

Description 

The user has specified switches that cannot be executed in 
combination. See Section 7.6. 

Suggested User Action 

Reenter the command line, specifying the switches in the proper 
sequence. 

7-34 



LIBRARIAN UTILITY PROGRAM (LBR) 

LBR -- NO ENTRY POINT NAMED "name" 

Description 

The user has attempted to delete an 
the specified library file. 

Suggested User Action 

entry --..!-.L.. 
pV.1.lll. lS -~~ llV l. in 

1. Determine if the entry point is misspelled or if the wrong 
library file is specified. 

2. Reenter the command line with the entry point correctly 
specified. 

LBR -- DUPLICATE ENTRY POINT NAME "name" IN filename 

Description 

An attempt has been made to insert a module into a library file 
when both contain an identically-named entry point. 

Suggested User Action 

1. Determine if the specified input file is the correct file. 
If not, reenter the command line, specifying the correct 
input file. 

2. If the input file is the correct file, the user may delete 
the duplicate entry point from the library and rerun. 

LBR == TOO MANY OUTPUT FILES SPECIFIED 

Description 

The user has specified more than two output files; LBR makes the 
following assumptions: 

1. The first output file specified is the output library file. 

2. The second output file specified is the listing file. 

3. The third through n files specified to the left of the equal 
sign are ignored. 

Suggested User Action 

No action is required. LBR continues as though the extra file(s) 
were not specified. 

LBR -- EXACTLY ONE INPUT FILE MUST APPEAR WITH. /CO 

Description 

The user has specified no file or more than one input library 
file in the /CO command. 

7-35 



LIBRARIAN UTILITY PROGRAM (LBR} 

Suggested User Action 

Reenter the command line with only one input file specified. 

LBR -- FATAL COMPRESS ERROR 

Description 

The user's input library file is corrupted or is not a library 
file. 

Suggested User Action 

No recovery is possible. 
reconstructed. 

The file in question 

LBR -- EPT OR MNT SPACE EXCEEDED IN COMPRESS 

Description 

must be 

The user has specified an EPT or MNT table size for the output 
library file that is not large enough to contain the EPT or MNT 
entries used in the input library file. 

Suggested User Action 

Reenter the command line with a larger EPT or MNT table size 
specified. 

LBR -- ERROR IN LIBRARY TABLES, FILE filename 

Description 

The library file is corrupted or is not a library file. 

Suggested User Action 

If the file is corrupted, no recovery is possible; the file must 
be reconstructed. 

If the file is not a library file, the user should reenter the 
command line with the correct library file specified. 

LBR -- INVALID FORMAT, INPUT FILE filename 

Description 

The format of the specified input file is not the standard format 
for a macro source or object file, or the input file is 
corrupted. 

Suggested User Action 

Reenter the command line with the correct input file specified. 

7-36 



LIBRARIAN UTILITY PROGRAM (LBR) 

LBR -- OPEN FAILURE ON LBR WORK FILE 

Description 

The file system, while attempting to open the LBR work file, has 
detected an error. 

NOTE 

The LBR work file is created on the volume from which LBR 
was installed. 

One of the following conditions may exist: 

1. The volume is full. 

2. The device is write-protected. 

3. A problem exists with the physical device. 

4. Insufficient dynamic memory in Executive. 

Suggested User Action 

1. Determine which of the above conditions exists. 

2. Rectify the condition. 

3. Reenter the command line. 

LBR -- MARK FOR DELETE FAILURE ON LBR WORK FILE 

Description 

When LBR begins processing commands, it automatically creates a 
work file and marks it for delete. For some reason, this marking 
for delete failed. 

The work file constitutes a lost file, because it does not appear 
in any file directory. 

Suggested User Action 

The file may be deleted by running the 
verification utility (VFY) (see Chapter 8). 

LBR -- ILLEGAL FILENAME 
command line 

Description 

The user has entered one of the following: 

1. A file specifier which contains a wild card. 

file structure 

2. A file specifier which contains neither a filename nor file 
type. 

7-37 



LIBRARIAN UTILITY PROGRAM (LBR) 

~uggested User Action 

Reenter the command line correctly. 

LBR -- ILLEGAL DEVICE/VOLUME 
command line 

Description 

The user has entered a device specifier that does not conform to 
syntax rules. 

NOTE 

A device specifier consists of 2 ASCII characters, 
followed by one or two optional octal digits. 

Suggested User Action 

Reenter the command line with the correct 
specified. 

LBR -- ILLEGAL DIRECTORY 
command line 

Description 

device syntax 

The user has entered a UIC that does not conform to syntax rules. 

NOTE 

UIC syntax consists of a left square 
bracket, followed by one to three octal 
digits, a comma, one to three octal 
digits, and terminated by a right square 
bracket. 

Suggested User Action 

Reenter the command line with the correct UIC syntax. 

LBR -- WORK FILE I/O ERROR 

Description 

A write error has occurred on the LBR work file. 
following conditions may exist: 

1. The volume is full. 

2. The device is write-protected. 

3. The hardware has failed. 

7-38 

One of the 



LIBRARIAN UTILITY PROGRAM (LBR) 

Suggested User Action 

If the volume is full, the user should delete all unnecessary 
files and rerun. 

If the device is write-protected, the user should write enable 
the device, and reenter the command line. 

If the hardware has failed, the user can swap devices and retry 
the command, or wait until the device is repaired and rerun LBR. 

LBR -- VIRTUAL STORAGE REQUIREMENTS EXCEED 65536 WORDS 

Description 

This error may occur with maximum size libraries in conjuction 
with a single command line which logically deletes a large number 
of modules and entry points, and continues to replace them with 
an equally large number of modules and entry points having highly 
dissimilar names. 

Normally, this message indicates some sort of internal system 
error. 

Suggested User Action 

Rerun the job, but divide the complicated command line into 
several smaller command lines which do the same operations. 

7-39 



CHAPTER 8 

FILE STRUCTURE VERIFICATION UTILITY (VFY) 

8.1 INTRODUCTION TO VFY 

The File Structure Verification Utility (VFY} program provides: 

1. The ability to check the readability and validity of a 
file-structured volume. 

2. The ability to print out the number of available blocks on a 
file-structured volume (/FRee}. 

3. The ability to search for files which are in the index file, 
but not in any directory, i.e., files which are "lost" in the 
sense that they cannot be accessed by filename (/LOst} (see 
RSX-11 I/0 Operations Reference Manual for a description of 
the index file} . 

4. The ability to list all files in the index file, showing the 
file ID, filename, and owner (/List}. 

5. The ability to mark as 
be available, which 
(/UPdate}. 

"used" all the blocks that appear to 
are actually allocated to a file 

6. The ability to rebuild the storage allocation bit map so that 
it properly reflects the information in the index file 
(/REbuild} . 

7. The ability to restore files that are marked for delete 
(/DElete}. 

8. The ability to perform a read check on every allocated block 
on a file-structured volume (/RC}. 

NOTES 

1. There should be no other activity on the volume; 
in particular, activities which create new files, 
extend existing files, or delete files while VFY 
is running. 

2. VFY must not be aborted while a /UP, /RE or /DE 
command is being processed. Aborting VFY while it 
is in the process of modifying the storage 
allocation or index files may seriously endanger 
the integrity of that volume. 

8-1 



FILE STRUCTURE VERIFICATION UTILITY (VFY) 

8.2 INITIATING VFY 

All RSX-llM utility programs can be initiated in several ways. These 
methods are described in Section 1.2. The methods for VFY are: 

~VFY__} 

>VFY command string__) 

>RUN ... VFY-./ 

>RUN ..• VFY/UIC=[group,member]__J 

>RUN $VFY_} 

>RUN $VFY/UIC=[group,member]__J 

VFY normally operates in a read-only mode, assuming that the scratch 
file, if required, is on another device. VFY requires write-access 
under the following conditions: 

1. If the /UP or /RE switch is used, VFY requires write-access 
to the storage allocation map ([0,0]BITMAP.SYS). 

2. If the /DE switch is specified, VFY requires write-access to 
the index file ([0,0]INDEXF.SYS). 

3. If the /LO switch is specified and lost files are found, VFY 
requires write-access to the [1,3] user file directory. 

VFY may be run under any UIC if only read access is required. If 
write access is required, VFY must run under a system UIC. 

8.3 VFY COMMAND STRING 

All commands to VFY are issued by entering a VFY command string 
through the initiating terminal. The VFY command string is formatted 
as follows: 

listfile,scratchdev=indev/switch 

or 

indev/switch 

where: 

listfile 

scratchdev 

(This is a short form of TI:,indev=indev/switch) 

specifies the output listing file in the following 
format: 

dev: [uic]filename.typ;ver 

specifies the device on which the 
produced by VFY is to be written. 
is in the following format: 

dev: 

8-2 

scratch file 
This parameter 



indev 

/switch 

FILE STRUCTURE VERIFICATION UTILITY (VFY) 

The scratch file is used by VFY during the 
verification scan and during the lost file scan. 
It is created but is not entered in a directory. 
Therefore, it is invisible to the user. The 
scratch file is automaticallv deleted upon 
termination of the VFY program. -

NOTE 

If the user has reason to suspect that his 
system disk is of questionable integrity, 
the scratch file should be forced onto 
another device by utilizing this 
parameter. 

It is recommended that the scratch file 
always be assigned to another volume. The 
scratch file is not used for the /FREE and 
/LIST commands. 

specifies the volume to be verified. 
parameter is in the following format: 

dev: 

specifies the function to be performed, 
parameter is in the following format: 

/sw 

This 

This 

The VFY command switches are described in detail 
in Section 8.4. If no switch is specified, the 
VFY program performs a validity check. 

For a complete description of command strings, see Section 1.3. 

0 ~ , 
u.~.i Defaults in File 

Default file specifiers are listed in Table 8-1. 

8-3 



FILE STRUCTURE VERIFICATION UTILITY (VFY) 

Table 8-1 
VFY Default File Specifiers 

Element Default Value 

dev: Output listing device 

TI: 

Scratch file device 

SYO: 

Volume to be verified 

SYO: 

[uic] The UIC under which VFY is currently running. 

filename No default - must be specified. 

.typ No default - must be specified. 

;ver Latest version plus 1. 

8.4 VFY COMMAND SWITCHES 

VFY commands are specified in the form of switches appended to the VFY 
command string. Command switches and functions are summarized in 
Table 8-2. 

Table 8-2 
VFY Functions and Switches 

Function Switch Purpose 

Validity Check Null Check readability and validity 
of the volume mounted on 
specified device. 

Delete /DE Reset marked-for-delete 
indicators. 

Update /UP Allocate blocks which appear 
to be available but have been 
allocated to a file. 

8-4 

I 

J 



Fune ti on 

Rebuild 

Free 

Lost 

List 

Read Check 

FILE STRUCTURE VERIFICATION UTILITY (VFY) 

Table 8-2 (Cont.) 
VFY Functions and Switches 

1 Switch 

/RE 

/FR 

/LI 

/RC 

Purpose 

Recover blocks which appear to 
be allocated but are not 
contained in a file. 

Print out the available space 
on a volume. 

Scan entire file structure 
looking LuL files wIIl.(.;n are 
not in any directory. 

List entire index file by file 
iden ti f ica ti on. 

Check entire volume to see if 
every block of every file can 
be read. 

8.4.1 Validity Check 

Validity Check (no command switch) checks the readability and validity 
of the volume mounted on the specified device. This feature entails 
reading all the file headers in the index file and checking that all 
the disk blocks referenced in the map area of each file header are 
marked as allocated in the bit map (i.e., allocated to that file). 

Rules for running the Validity Check: 

1. The volume to be checked must be mounted as a Files-11 
structured volume, as follows: 

2._MOU dev:_) 

2. The volume may be write-protected if: 

a. It is not the system volume; or 

b. The required scratch file is directed to another 
file-structured volume. 

When the validity check is completed, a listing of the results is 
printed. This output is described in Section 8.4.1.1. 

8-5 



FILE STRUCTURE VERIFICATION UTILITY (VFY) 

8.4.1.1 File Error Reporting - After the volume has been verified, 
and the normal output messages have been printed, error conditions are 
reported. All errors for a given file are preceded by a file 
identification line that identifies the file in error. This line is 
formatted as follows: 

FILE ID nn,nn filename.type;version OWNER [g,m] 

where: 

nn,nn is the unique file iden ti f ica ti on number assigned 
to the file by the system at file-creation time. 

filename is the user filename. 

.type is the file type (i.e., OBJ for object file). 

;version is the version number of the file. 

[g,m] is the UIC which owns the file. 

This file identification line is followed by one or more of the 
following messages: 

I/O ERROR READING FILE HEADER-ERROR CODE -32 

Failed to read the file header for the specified file ID. 

BAD FILE HEADER 

Software checks on the validity of the file header indicate 
that the header has been corrupted. 

MULTIPLE ALLOCATION n,n 

The specified (double precision) logical block number is 
allocated to more than one file. If this error occurs, a 
second pass is automatically taken which will indicate all 
files that share each multipally allocated block. The 
second pass is taken after all file headers have been 
checked (see Section 8.4.1.3). 

BLOCK IS MARKED FREE n,n 

The specified logical block number is allocated to the 
indicated file but is not marked as allocated in the storage 
allocation map. (see Section 8.4.1.4). 

BAD BLOCK NUMBER n,n 

The specified block number was found in the header for 
file but is illegal for the device (out of range). 
indicates a corrupted file header. 

this 
This 

FILE IS MARKED FOR DELETE 

This indicates that a system failure 
specified file was being deleted. 
completed and the file header still 
8.4.1.2). 

8-6 

occurred while the 
The deletion was not 

exists (see Section 



FILE STRUCTURE VERIFICATION UTILITY (VFY) 

HEADER MAP OUT OF SYNC 

This indicates an error in the header map area which also 
indicates a corrupted file header. 

The last error message for the file is followed by a summary line for 
that file, as follows: 

where: 

MOLT 

FREE 

BAD 

SUMMARY: MULT=nn, FREE=nn, BAD=nn. 

is the number of multiple block allocations. 

is the number of blocks marked free that should 
have been allocated. 

is the number of bad retrieval pointers in the 
file header. 

NOTE 

If the output for VFY is directed to a 
terminal device, and the user does not 
wish to see all the error messages for a 
given file entering CTRL/O terminates 
the listing of all further error 
messages for that particular file, i.e., 
all messages but the summary line. 

8.4.l.2 Files Marked-for-Delete - If a file has been marked
for-delete but the deletion process was not completed, the user has 
two options: the file can be restored, if still required, and its 
consistency checked, or the deletion process can be completed to 
recover the lost space. These operations are described below. 

• Restoring a File 

To restore a file marked-for-delete, the disk volume must be 
mounted using the MCR MOUNT command with the /UNL switch 
specified. For example: 

2.MOU DKO:/UNL_} 

Then, run VFY specifying the /DE switch to reset the 
marked-for-delete indicators in file headers. Once the 
delete indicator has been reset, run VFY specifying the /LO 
switch to scan the entire file structure. 

NOTE 

The deletion process may have proceeded 
partially and a portion at the end of 
the file may be missing. This condition 
can be detected by a directory listing 
obtained using the PIP /FU switch (see 
Section 2.4.8). 

8-7 



FILE STRUCTURE VERIFICATION UTILITY (VFY) 

• Deleting a File 

Files that are marked-for-delete can be deleted directly 
with PIP, once their unique File ID has been obtained via a 
validity check. The File ID appears as the first entry in 
the file identification line which precedes each list of 
file errors (see Section 8.4.1.1). The following example 
illustrates how the File ID is used with PIP to delete a 
file: 

Example: 

.2.PIP /FI:l2:20/DE_J 

In this example, the file with File ID 12,20 is deleted from 
the system device. PIP issues the following error message 

j;PIP -- FAILED TO MARK FILE FOR DELETE-NO SUCH FILE" 

since the file system denies the existence of files already 
marked-for-delete; however, the file is completely deleted. 

Once files have been restored or deleted, run VFY with the /RE switch 
specified to assure the consistency of the volume's storage allocation 
map. 

8.4.1.3 Deletion Of Multiply Allocated Blocks - If the file 
structure contains multiply allocated blocks, it is necessary to 
delete files until there are no more such blocks. An automatic rescan 
of the volume identifies which files share which blocks. This rescan 
lists the first as well as subsequent files containing the multiply 
allocated blocks. Once the user has this information, he must then 
determine which, if any, of the files can be saved and delete the 
rest, using the Delete function provided by the PIP utility. 

NOTE 

Extreme caution should be taken in 
deleting multiply allocated files. 
After the files have been deleted, VFY 
should be run once again to ensure that 
all of the multiply allocated files 
have been deleted. 

8.4.1.4 Elimination Of Free Blocks - Once there are no multiply 
allocated blocks, the next concern is the elimination of blocks that 
are marked FREE in the storage allocation map, but which are actually 
allocated to a file. To cause these blocks to be reallocated in the 
storage allocation map, the user must rerun the validity check specify 
the /UP switch. This allocates all blocks that should have 
been marked as allocated. See Section 8.4.3 for a description of the 
/UP switch. 

8-8 



FILE STRUCTURE VERIFICATION UTILITY (VFY) 

Once there are 
blocks and no 

NOTE 

no multiply allocated 
blocks marked free that 

are actually in use, the file structure 
is safe for writing new files and 
extending existing files. However, if 
there were such errors, there may be 
files which have had data blocks 
overwritten as the result of multiple 
allocation. 

8.4.1.5 Recovering Lost Blocks - The user can determine whether any 
blocks have been lost on a file-structured volume by exam1n1ng the 
last two lines of output from the validity check. The last two lines 
of output give the free space on the volume. The first line of the 
two tells how much room is available according to the index file 
(i.e., the number of blocks that are not in use by any file in the 
index file). The last line specifies how much room is available 
according to the storage allocation map. Assuming there are no other 
errors, these two figures should agree. If the index file indicates 
that more blocks are free than the storage allocation map, then those 
blocks are "lost" in the sense that they appear to be allocated, but 
no file contains ~nem. Lost blocks may be recovered by rerunning the 
validity check specifying the /RE switch. See Section 8.4.4 for a 
description of the /RE switch. 

8.4.2 DELETE Switch {/DE) 

FUNCTION 

The DELETE switch allows the user to reset the marked-for-delete 
indicators in the file header area of those files which are marked for 
deletion, but which were never actually deleted. 

FORMAT 

listfile,scratchdev=indev/DE 

or 

indev/DE 

8-9 



FILE STRUCTURE VERIFICATION UTILITY (VFY) 

NOTES 

1. The volume must be mounted with the 
/UNL switch. 

2. VFY must be running under a system 
UIC. 

8.4.3 UPDATE Switch (/UP) 

FUNCTION 

The UPDATE switch allows the user to al~ocate all blocks that appear 
to be available but are actually allocated to a file. 

FORMAT 

listfile,scratchdev=indev/UP 

or 

indev/UP 

NOTES 

1. Files with multiply allocated 
blocks must be deleted from the file 
structure before the update can be 
run. 

2. The volume being updated must be 
write-enabled. 

3. VFY must be running under a system 
UIC. 

4. The scratch file should be on 
another volume. If this is 
impossible, the volume must be 
dismounted immediately after VFY 
terminates. (Failure to do this may 
result in partial updating of the 
storage allocation map.) Then the 
volume should be mounted again, and 
the scratch file must be deleted 
manually. VFY issues a detailed 
message in this case specifying the 
name of the scratch file to be 
deleted. 

The message is: 

VFY TO COMPLETE THE STORAGE MAP 
UPDATE DISMOUNT THE VOLUME 
IMMEDIATELY. THEN MOUNT IT 
AND DELETE THE FOLLOWING 
FILE: [g,m] filespec 

8-10 



FILE STRUCTURE VERIFICATION UTILITY (VFY) 

where: 

[g ,m] 

file spec 

is the UIC. 

is the name of 
the file to be 
deleted. 

8.4.4 REBUILD Switch (/RE) 

FUNCTION 

The REBUILD switch allows the user to recover blocks that are lost in 
the sense that they appear to be allocated, but no file contains them. 

FORMAT 

listfile,scratchdev=indev/RE 

or 

indev/RE 

NOTES 

1. Multiply allocated blocks must be 
removed {deleted) from the file 
structure before the rebuild can be 

2. The volume being updated must be 
write-enabled. 

3. VFY must be running under a system 
UIC. 

4. The scratch file should be on 
another volume. If this is 
impossible, the volume must be 
dismounted immediately after VFY 
terminates. {Failure to do this may 
result in partial updating of the 
storage allocation map.) Then the 
volume should be mounted again, and 
the scratch file must be deleted 
manually. VFY issues a detailed 
message in this case, specifying the 
name of the scratch file to be 
deleted. 

8-11 



FILE STRUCTURE VERIFICATION UTILITY (VFY) 

8.4.5 FREE Switch (/FR) 

FUNCTION 

The FREE switch provides the user with the ability to print out the 
available space on a specified volume. 

FORMAT 

listfile=indev/FR 

or 

indev/FR 

The output from the /FR command is shown below: 

dev: HAS nnnn. BLOCKS FREE, nnnn. BLOCKS USED OUT OF nnnn. 

8.4.6 LOST Switch (/LO) 

FUNCTION 

The LOST switch provides the facility to scan the entire file 
structure looking for files which are not in any directory and, thus, 
are lost in the sense that they cannot be referenced by filename. A 
list of the files is produced, and if the "lost file directory" [1,3) 
exists on that volume, all the files will be entered in that 
directory. 

FORMAT 

listfile,scratchdev=indev/LO 

or 

indev/LO 

8.4.7 LIST Switch (/LI) 

FUNCTION 

The LIST switch provides the facility to list the entire index file by 
file identification. The output for each file specifies the file 
number, file sequence number, filename, and owner. A typical index 
file listing is illustrated in Figure 8-1. 

FORMAT 

listfile,scratchdev=indev/LI 

or 

indev/LI 

8-12 



FILE STRUCTURE VERIFICATION UTILITY (VFY) 

VFY>DK:/LI.) 
LISTING OF INDEX ON DKO: 

FILE ID 000001,000001 INDEXF.SYS;l OWNER [ 1'1] 
FILE ID 000002,000002 BITMAP.SYS;l OWNER r , , , 

L .1. ' .1. J 
FILE ID 000003,000003 BADBLK.SYS;l OWNER [ 1' 1] 
FILE ID 000004,000004 000000.DIR;l OWNER [ 1' 1] 
FILE ID 000005,000005 CORIMG.SYS;l OWNER [l, 1] 
FILE ID 000006,000006 001001.DIR;l OWNER [ 1' 1] 
FILE ID 000007,000007 001002.DIR;l OWNER [ 1, 2] 
FILE ID 000010,000010 EXEMC.MLB;l OWNER [ 1' 1] 
FILE ID 000011, 000011 RSXMAC.SML;l OWNER [ 1'1] 
FILE ID 000012,000012 NODES.TBL;l OWNER [ 1'1] 
FILE ID 000013,000036 QIOSYM .MSG; 311 OWNER [ 1' 2] 
FILE ID 000014,000037 F4PCOM.MSG;l OWNER [1,2] 

Figure 8-1 
VFY Listing Sample Using the /LI Switch 

8.4.8 READ CHECK Switch (/RC) 

FUNCTION 

The READ CHECK switch provides the facility to check that every block 
of every file on a specified volume can be read. 

FORMAT 

listfile=indev/RC[:n] 

indev/RC [ :n] 

NOTE 

Since the READ CHECK is a read-only operation, the volume 
can be write-protected. 

The optional parameter [:n] is the blocking factor which indicates the 
number of file blocks to be read at a time. The default value is the 
maximum number of blocks in dynamic memory available to VFY. 

The dynamic memory available may be increased by installing VFY in a 
larger partition. Five blocks are available when VFY is installed in 
an BK partition, and four blocks are added for each lK increment. 

For the fastest possible read check, the maximum block factor should 
be used. Whenever an error is encountered, each block of the 
portion-in-error is reread individually to determine which data 
block(s) cannot be read. 

When an error is detected, a file identification line is listed in the 
following format: 

8-13 



FILE STRUCTURE VERIFICATION UTILITY (VFY) 

FILE ID nn,nn filename.typ;ver. blocks used/blocks allocated 

Following this line, an error message is listed. If a blocking factor 
other than 1 is in use, an error message in the following form will be 
issued: 

ERROR STARTING AT VBN nl,n2 LBN nl,n2 - ERROR CODE -err 

Following the first error message, there should be one or more error 
messages indicating the exact block(s) in error. The second error 
message line(s) will be in the following form: 

ERROR AT VBN nl,n2 LBN nl,n2 - ERROR CODE -err 

If an "ERROR STARTING AT" line is displayed without one or more "ERROR 
AT" lines, a multiblock read operation on the selected device has 
failed, but the data blocks appear to be individually readable. 

NOTES 

1. If the VBN of the unreadable block 
listed in the "ERROR AT" line is 
beyond the block-used-count, the 
data portion of the file is all 
right. 

2. The negative number printed after 
the ERROR CODE message is -4 to 
indicate a device parity error. 
Other error codes are contained in 
Appendix I of the RSX-11 I/O 
Operations Reference Manual. 

8.5 VFY ERROR MESSAGES 

VFY -- COMMAND SYNTAX ERROR 

Description 

The command entered does not conform to command syntax rules. 

Suggested User Action 

Reenter the command line with the correct syntax specified. 

VFY -- FAILED TO ALLOCATE SPACE FOR TEMP FILE 

Description 

The volume specified for the temporary scratch file is full. 

Suggested User Action 

Use PIP to delete all unnecessary files and rerun VFY. 

8-14 



FILE STRUCTURE VERIFICATION UTILITY {VFY) 

VFY -- FAILED TO ATTACH DEVICE 

or 

VFY -- FAILED TO DETACH DEVICE 

or 

VFY ILLEGAL DEVICE 

Description 

The file specifier entered contains an illegal device. 

Suggested User Action 

Reenter the command line with the correct device specified. 

VFY -- ILLEGAL SWITCH 

Description 

The switch specified is not a valid VFY switch or a valid switch 
is used illegally. 

Suggested User Action 

Reenter the command line with the correct switch specified. 

VFY -- I/O ERROR ON INPUT FILE 

or 

VFY I/O ERROR ON OUTPUT FILE 

Description 

One of the following conditions may exist: 

1. The device is not on-line. 

2. The device is not mounted. 

3. The hardware has failed. 

Suggested User Action 

1. Determine which of the above conditions exists. 

2. Rectify the condition. 

3. Reenter the command line. 

8-15 



FILE STRUCTURE VERIFICATION UTILITY (VFY) 

VFY -- NO DYNAMIC MEMORY AVAILABLE - PARTITION TOO SMALL 

Description 

VFY does not have enough buffer space to run. 

Suggested User Action 

Run VFY in a larger partition (8K minimum). 

VFY -- OPEN FAILURE ON BIT MAP 

or 

VFY -- OPEN FAILURE ON INDEX FILE 

or 

VFY -- OPEN FAILURE ON LISTING FILE 

or 

VFY OPEN FAILURE ON TEMPORARY FILE 

Description 

One of the following conditions may exist: 

1. VFY is not running under a system UIC, but should be. 

2. The named file does not exist in specified directory. 

3. The volume is not mounted. 

4. The specified file directory does not exist. 

Suggested User Action 

1. Determine which of the above conditions exists. 

2. Rectify the condition. 

3. Reenter the command line. 

8.6 VFY ERROR CODES 

If VFY cannot access the message file, errors are reported in the 
following format: 

VFY -- ERROR CODE nn. 

where: 

nn. is one of the error codes contained in Table 8-3. 

Refer to Section 8.5 for error descriptions and suggested user 
actions. 

8-16 



FILE STRUCTURE VERIFICATION UTILITY (VFY) 

ERROR 
CODES 

1. 
2. 
3. 
4. 
5. 
6. 
7. 

9. 

Table 8-3 
VFY Error Codes 

VFY ERROR MESSAGE IS: 

ILLEGAL DEVICE 
OPEN FAILURE ON BIT MAP 
OPEN FAILURE ON TEMPORARY FILE 
FAILED TO ALLOCATE SPACE FOR TEMP FILE 
FAILED TO DETACH DEVICE 
FAILED TO ATTACH DEVICE 
COMMAND SYNTAX ERROR 
I/0 ERROR ON INPUT FILE 
I/0 ERROR ON OUTPUT FILE 

I 
8. 

in ILLEGAL SWITCH 

Ll OPEN FAILURE ON LISTING FILE 

•. -~~..__O_P_E_N~F-A_I_L_U_R_E~O-N~I-N_D_E_X~F-I_L_E~~~~~~~~~~~~~ NO DYNAMIC MEMORY AVAILABLE - PARTITION TOO SMALL 

8-17 



APPENDIX A 

COMMANDS AND SWITCHES 

A.l INTRODUCTION 

This appendix presents a summary of the commands and/or switches used 
by the RSX-llM utilities described in this manual. Each of the 
numbered sections of this appendix corresponds, in number, to the 
chapter discussing that utility. For example, Chapter 2 and Section 
A.2 both deal with PIP. 

Commands and switches are presented alphabetically within the sections 
of this appendix, regardless of their presentation in the various 
chapters. 

A.2 PIP COMMAND SUMMARY 

APPEND 
outfile[/FO]=infile-1 

[,infile-2, ... ,infile-n]/AP[/FO] 
where /FO is File Owner 

COPY AND MERGE 
outfile[/switch]=infile-1 

f ,infile-2, ... ,infile-n] 
[/switch] 

/swi tch=BL: n [.] 
co 

DEFAULT 

-co 

FO 
NV 
SU 

Block allocated. 
Contiguous output. 
Non-contiguous 

output. 
File Owner. 
New Version. 
Supersede. 

dev: [group,member]/DF 

DELETE 
infile-l[,infile-2, ... ,infile-n]/DE 

A-1 

Opens an existing file 
(outfile} and appends 
the input file(s} 
onto the end of it. 

Creates 
file on 
another 

a copy of a 
the same or 

device. 

See Table 
complete 
of these 

2-3 for a 
description 

switches. 

Changes the default 
device and/or UIC. 

Deletes files. 



COMMANDS AND SWITCHES 

ENTER 
outf ile= inf ile-1 

[,infile-2, ... ,infile-n]/EN[/NV] 
where /NV is New Version. 

FREE 
dev:/FR 

IDENTIFY 
/ID 

LIST 

[listfile]=infile-1[, ... ,infile-n]/LI 
where [listfile] defaults to 
TI: if not specified. 

Alternate Mode Switches 
/BR Brief format. 
/FU[:n] Full format. 
/TB Total blocks format. 

PROTECT 
infile-1/PR[/SY[:RWED] [/OW[:RWED]] 

[/GR[:RWED]] [/WO[:RWED]] [/FO] 
where SY is system access rights. 

PURGE 

OW is owner access rights. 
GR is group access rights. 
WO is world access rights. 

RWED is read, write, extend, 
delete privilege. 

FO is File Owner subswitch. 

Enters a synonym for 
file in a directory 
with an option to force 
the version number of 
outf ile" to one greater 

than the latest version 
for the file. 

Prints out the available 
space on a volume. 

Causes the version of PIP 
currently in use to be 
displayed on the 
terminal. 

Lists one 
directories 
option to 
d ir ec tor y 
formats. 

or more 
with an 

specify 
listing 

For a complete descrip
tion of these switches, 
see Table 2-4. 

Alters file protection. 
See Section 2.4.9 for 
a complete description of 
these switches. 

-----ynfile-l[,infile-2, ... ,infile-n]/PU[:n] 

REMOVE 
infile-l[,infile-2, ... ,infile-n]/RM 

A-2 

Deletes a specified range 
of obsolete versions of a 
file. 

Removes an entry 
directory file. 

from a 



RENAME 
outfile=infile-1 

COMMANDS AND SWITCHES 

[,infile-2, ... ,infile-n]/RE 
[/NV] 

where NV is New Version= 

SPOOL 
---rnfile-l[,infile-2, ... ,infile-n] 

/SP 

UNLOCK 
infile-l[,infile-2, ... ,infile-n] 

/UN 

UPDATE 
outfile= infile-1 

[,infile-2, ... ,infile-n]/UP[/FO] 
where FO is File Owner. 

A.3 FLX COMMAND SUMMARY 

The FLX commands have the following format: 

outfile=infile-l[,infile-2, ... ,infile-n] 
/switch 

where switch BL:n 

BS:n 

co 

DE 

DI 

A-3 

Changes the 
file with 
to force 

name of a 
an option 

the version 
number of "outfile" to 
one greater than the 
latest version for the 
file. 

Specifies a list of 
files to be printed. 

Unlocks a file which 
was locked as a result of 
being improperly closed. 

Opens an existing 
file(s) (infile) and 
writes it, from the 
beginning, onto outfile. 

Performs file conver
sion between DOS-11, 
RT-11 and Files-11 
formats. 

Indicates th~ number 
of contiguous blocks 
to be allocated to the 
output file. 

Specifies the block 
size for cassette tape 
output. 

Indicates that the 
output file is to be 
contiguous. 

Deletes files 
DOS-11 or 
volume. 

from a 
RT-11 

Causes a directory 
listing of DOS or RT 
volumes; or DOS or 
RSX cassette tape 
volumes to be listed. 



COMMANDS AND SWITCHES 

DO 

FA:n 

FB:n 

FC 

ID 

IM:n 

LI 

NU:n 

RS 

RT 

SP 

UI 

VE 

ZE 

Identifies the file as 
a DOS-11 formatted 
file. 

Formatted ASCII. 

Formatted binary. 

Indicates that FORTRAN 
carriage control 
conventions are to be 
used. 

Requests the current 
version number of FLX. 

Image mode. 

Same as DI. 

Used with /ZE and /RT 
switches to specify 
the number of 
directory blocks to 
allocate. 

Indicates that file is 
a Files-11 formatted 
file. 

Indicates that file is 
an RT-11 formatted 
file. 

Indicates that 
converted file 
be spooled via 
print spooler. 

the 
is to 

the 

Indicates that the 
output file is to have 
the same UIC as the 
input file. 

Verify after write 
(for cassette only). 

Initializes DOS and RT 
volumes and cassettes 
for DOS or RSX files. 

See Tables 3-2 and 3-3 for a complete description of these switches. 

A-4 



COMMANDS AND SWITCHES 

A.4 DMP COMMAND SUMMARY 

The DMP utility has one command. 

outfile=infile/switch 

where switch AS 

BA:n:m 

BL:n:m 

BY 

HD 

ID 

LB 

MD [: n] 

Dumps a 
outfile. 

file onto 

Data should be dumped 
in ASCII mode. 

Specifies a base block 
address. 

Specifies the first 
and last logical 
blocks to be dumped. 

Data should be dumped 
in byte octal format. 

Includes 
header 
dumped. 

Causes 
version 
printed 
listing. 

the 
in the 

file 
data 

the current 
of DMP to be 

on the 

Causes starting 
(logical) block number 
and a contiguous or 
hon-contiguous indica
tion for the file to 
be printed. 

Controls line number 
sequencing during a 
memory image dump. 

See Table 4~1 for a complete description of these switches. 

A.5 EDI COMMAND SUMMARY 

ADD 
-A[DD] (string) 

ADD AND PRINT 
AP (string) 

A-5 

Add the text specified 
by "string" to the end 
of the current line. 

Same as ADD, except 
the new current line 
is printed. 



BEGIN 
B[EGIN] 

BLOCK ON or OFF 

COMMANDS AND SWITCHES 

BL[OCK] [ON] or [OFF] 

BOTTOM 
BO[TTOM] 

CHANGE 
[n]C[HANGE] /string-1/string-2 

CLOSE 
CL[OSE] filespec 

CLOSES 
CLOSES 

CLOSE AND DELETE 
CDL f ilespec 

A-6 

Sets the current line 
pointer to the top of 
the block buffer or 
input file. 

Switch 
modes. 

text access 

Sets the current line 
pointer to the bottom 
of block buffer or 
input file. 

Search for string-1 in 
the current line and 
replace it with the 
text specified in 
string-2. The integer 
n allows the user to 
repeat the command, 
thus allowing string-2 
to be substituted for 
string-1 n times. 

Transfer the remaining 
lines in the block 
buffer and the input 
file into the output 
file, then close both 
the input file and the 
output file. 

Close secondary 
file and 
selecting lines 
the input file. 

Same as the 
command, except 
the input file 
deleted. 

input 
begin 

from 

CLOSE 
that 

is 



COMMANDS AND SWITCHES 

CONCATENATION CHARACTER 
CC character 

CTRL/Z 
tz 

DELETE 
D[ELETE] [n] or [-n] 

DELETE AND PRINT 
DP [n] or [-n] 

END 
E[ND] 

ERASE 
ERASE [n] 

EXIT 
EX[IT] 

EXIT AND DELETE 
ED [X] file spec 

FORM FEED 
FF 

A-7 

Change command concat
enation character to 
the specified 
character (default is 
& ) • 

Same as EXIT if in 
Edit mode; otherwise, 
it causes an immediate 
exit of EDI. 

Delete the current and 
next n-1 lines, if n 
is positive; delete n 
lines preceding the 
current line, but not 
the current line, if n 
is negative. 

Same as DELETE, except 
that the new current 
line is printed out. 

Same as the 
command. 

BOTTOM 

Erase the entire block 
buffer, the current 
line, and the next n 
blocks. 

Same as CLOSE command, 
except that, when 
files are closed, EDI 
exits. 

Exit from the editing 
session, close the 
output file, delete 
the input file. 

Insert form feed into 
block buffer. 



COMMANDS AND SWITCHES 

FILE 
~~FI[LE] filespec 

FIND 
[n]F[IND] (string) 

INSERT 
I[NSERT] (string) 

KILL 
KILL 

LINE CHANGE 
[n]LC /string-1/string-2 

LIST ON TERMINAL 
LI[ST] 

LIST ON PSEUDO-DEVICE 
LP 

LOCATE 
[n] L [OCATE] string 

A-8 

Transfer lines from 
the input file to the 
file specified by 
filespec. 

Find the line starting 
with "string" or, if n 
is specified, the nth 
line starting with 
string". 

Insert "string" imme
diately following the 
current line. If 
string" is null, EDI 

enters Input mode. 

Terminate this editing 
session; close input 
and output files; 
delete the output 
file. 

Same as CHANGE, except 
that all occurrences 
of string-1 in the 
current line are 
changed to string-2. 

Print o~ user terminal 
all lines in block 
buffer or all 
rema1n1ng lines in 
input file, starting 
with current line. 

List the text in the 
block buffer or input 
file on the 
pseudo-device CL:, 
starting with the 
current line. 

Search the block 
buffer for "string" 
or, if n is specified, 
the nth occurrence of 
string". 



COMMANDS AND SWITCHES 

MACRO 
---r.iA[CRO] x definition 

MACRO CALL 
MC[ALL] 

MACRO EXECUTE 
[n] Mx [a] 

MACRO IMMEDIATE 
[n]<definition> 

NEXT 
N [ EXT ] [ n] or [ - n] 

NEXT PRINT 
NP [n] or [ -n] 

OLD PAGE 
OL[DPAGE] n 

OPENS 
OP [ENS 1 f ilespec 

OUTPUT ON or OFF 
OU [TPUT] [ON] or [OFF] 

OVERLAY 
0 [VERLAY] [n] 

PAGE 
PAG[E] [n] 

A-9 

Define macro x to be 
definition". 

Retrieve macros from 
the latest version of 
file MCALL;n. 

Execute macro x for n 
executions, passing it 
the numeric argument 
a. 

Allows the user to 
define and execute a 
macro n times in one 
step. 

Establish a new 
current line + or - n 
lines from the current 
line. 

Same as Next command, 
but the new current 
line is printed. 

Back up to page n. 

Open secondary input 
file. 

Turn output on or off. 

Delete the current 
line and the next n-1 
lines, and enter Input 
mode. 

Enter block mode, if 
not already in block 
mode, and read page n 
into the block buffer. 



COMMANDS AND SWITCHES 

PAGE FIND 
[n]PF[IND] {string) 

PAGE LOCATE 
[n]PL[OCATE] {string) 

PASTE 
PA[STE] /string-1/string-2 

PRINT 
P [RINT] [n] 

READ 
REA [D] [ n] 

RENEW 
REN [EW] [n] 

RETYPE 
R [ETYPE] (string) 

SAVE 
SA [VE] [n] [ filespec] 

A-10 

Identical to FIND 
command, except that 
it searches successive 
pages until the nth 
occurrence of i•string" 
is found. 

Same as LOCATE 
command, except that 
successive pages are 
searched for the value 
specified by "string". 

Same as the LINE 
CHANGE command, except 
that all lines in the 
remainder of the input 
file or block buffer 
are searched for 
str ing-1. Wherever 
found, string-1 is 
replaced with 
string-2. 

Print the 
and the 
lines, 
terminal. 

next line, 
next n-1 

on the 

Read the next n pages 
into the block buffer. 

Write the current 
buffer and read in the 
next. If n is 
specified, repeat n-1 
times. 

Replace the current 
line with the text of 
string". 

is null, 
deleted. 

If 11 string" 
the line is 

Save the current line, 
and the next n-1 
lines, in the file 
specified by filespec. 



COMMANDS AND SWITCHES 

SEARCH & CHANGE 
SC /string-1/string-2 

SELECT PRIMARY 
SP 

SELECT SECONDARY 
SS 

SIZE 
SIZE n 

TAB ON or OFF 
TA [B] [ON] or [OFF] 

TOP 
-T[OP] 

TOP OF FILE 
TOF 

TYPE 
--TY [PE] [n] 

UNSAVE 
UN s [A VE ] [ files pe c ] 

UPPER CASE ON or OFF 
UC [ON] or [OFF] 

A-11 

Search for string-1, 
in the block buffer or 
input file starting 
~~~h ~h~ ,~~~ ~~11~~-
YY.L'-ll \...!..l.'C ..LJ..J..L'C .LV•..L.VYY

ing the current line.
When string-I is
found, replace all
occurrences in line
with string-2.

Select primary input
file.

Select secondary input
file.

Specify maximum number
of lines to be read
into the block buffer
on a single READ.

Turn automatic tabbing
on or off.

Same as BEGIN command.

Return to the top of
the input file, in
block mode, and save
all pages previously
edited.

Same as PRINT command,
except that the
current line pointer
does not change.

Retrieve the lines
which were previously
saved on f ilespec and
insert them
immediately following
the current line.

Turn upper
conversion on or

case
off.

COMMANDS AND SWITCHES

VERIFY ON or OFF
V[ERIFY] [ON] or [OFF]

WRITE
W[RITE]

A.6 SLP COMMAND SUMMARY

The SLP utility has only one command.

outfile[,listfile/SP or/-SP]=infile
[/switch]

where switch AU and -AU

BF and -BF

DB and -DB

and where SP and -SP

Allows user to
whether or
locative and
commands are
verified.

select
not

change
to be

Write the current
block to the output
file, and erase the
contents of the
buffer.

Perform batch
or iented editing to
create and maintain
source language files
on disk.

Enable and disable the
editing audit trail,
which indicates the
changes made during
the most recent
editing session.

Enable and
blank fill
audit trail
produced.

disable
when an

is being

Enable and disable
double-spaced listing.

Enable and disable the
spooling of listing
files to a file
structured volume.

See Table 6-2 for a complete description of these switches and Table
6-3 for a description of the SLP edit control characters.

A-12

COMMANDS AND SWITCHES

A.7 LBR COMMAND SUMMARY

COMPRESS
outfile/CO:size:ept:mnt:=infile

CREATE
outfile/CR:size:ept:mnt:type

DELETE
outfile/DE:module-1

[:module-2: ... :module-n]

DEFAULT
outfile/DF:type •..
or
/DF:type

DELETE GLOBAL
outfile/DG:global-1

[:global-2: ... :global-n]

INSERT
outfile[/IN]=infile-1

[,infile-2, .•. ,infile-n]

LIST
~~outfile[,listfile]/switch(es)

where /switch(es)= LI

LE

FU

A-13

Creates a new library
file and
contents,
physically
logically
records in
and puts
space at
the file.

transfers
but

deletes
deleted

the file
all free

the end of

Allocates a contiguous
library file on a
direct access device.

Deletes library
modules and their
associated entry
points from a file.

Specifies
library

default
file type.

Deletes specified
library module entry
points from a file.

Inserts library
modules into a library
file.

Lists all modules in
the library file.

Lists all modules in
the library file and
all their entry
points.

Lists all modules in
the library file and
provides a full module
description including
size, date of
insertion, and
version.

COMMANDS AND SWITCHES

REPLACE
outfile/RP=infile-1

[,infile-2, •.. ,infile-n]

or

outfile=infile-1[/RP]
[, infile-2 [/RP], ... , infile-n [/RP]]

SPOOL
outfile,listfile/SP

SELECTIVE SEARCH
outfile=infile-1/SS

[, infile-2 [/SS], ... ,
infile-n[/SS]]

SQUEEZE
outf ile/SZ=inf ile-1

[, infile-2, .•. , infile-n]

or

outfile=infile-1/SZ
[,inf ile-2 [/SZ] , ..• ,

infile-n[/SZ]]

A.8 VFY COMMAND SUMMARY

DELETE
listfile, scratchdev=indev/DE

or indev/DE

FREE
~~listfile=indev/FR

or indev/FR

LIST
~~listfile, scratchdev=indev/LI

or indev/LI

A-14

Inserts, and in cer
tain cases, replaces
library modules in a
library file.

The listing file is
spooled out for
pr in ting.

Sets selective search
attribute bit in
object module header.

Reduces size of
macro sources.

Resets the marked-for
delete indicators in
the file header area
of those files marked
for deletion, but
which were never
actually deleted.

Prints out
able space
volume.

the avail-
on a

Lists the entire index
file by file
identification.

COMMANDS AND SWITCHES

LOST
~~listfile, scratchdev=indev/LO

or indev/LO

READ CHECK
listfile=indev/RC[:n]

or indev/RC[:n]

REBUILD
listfile, scratchdev=indev/RE

or indev/RE

UPDATE
listfile,scratchdev=indev/UP

or indev/UP

A-15

Scans the entire file
structure looking for
files that are not in
any directory.

Checks that every
block of every file on
specified volume can
be read.

Recovers blocks that
appear to be
allocated, but which
are no~ contained in
any file.

Allocates blocks that
appear to be
available, but which
are actually allocated
to a file.

APPENDIX B

LBR, EDI AND DMP EXAMPLES

B.l SAMPLE LISTINGS FOR LBR LIST SWITCHES (OBJECT LIBRARY}

B.1.1 List Module Names

LBR>MAC,LP:_/

or
LBR> MAC , LP : /LI _}

OI~~CTO~Y nF FILE MAC.OLR;\
08J~CT MODULF LlRRARV ~~FATED ~VI LB~ V~~2VM

LAST INSERT occu~~FO 22•SEP-74 AT t1:~t1S~
MNT F.NT~I~S ALLOCATEn: 6d; AVAILAHLt: 20
FPT ENTRIES bLLUCATtOI ~4~: AVAILABLE: 92
FILE SPACE AVAJLASLE: ~~~15 ~OROS

AS(;MT

ASSE~

CNrHL
cnDHD
r)ATDR
E1'1RuS
ENl')LN
ENDPS
DP~S

FLOAT
GETLN
GMA~G

I NI=' I l
JNTFL
INOFL
LA REL
LIS TC
LSTNi;
t.tAC~n
MAC~S

MCALL
MLI~~

MSCOR
~D~CT

P~C1CSI
P~nl'C

?ROSIN
PST
i::fEAD
REPT
~OLH{"I

~SOAT
RSE~~.C

B-1

~5111\!P

SECT~

SETIJT~
SETIHJ
SF.Tl MM
~ETMX

SPACE
STMhJT
SVMRL
woRDR
ltl~ I TE

B.1.2 List Module Names and Full Module Information

LB!•_> MAC , LP : /FU~

or

LBR>MAC, LP: /LI/FU ~

~I~ErTOMV nF FILE MAC.OL~;t
OBJECT ~ODULE LIR~A~V CMEAf~n ~v: LB~ VX~2VM

LAST INSERT occu~~EO 22-StP-74 AT 11:5115~
MNT ENTRIE~ ALLOCATED: 64; AVAILARLE: 2~

~PT ENTRTE~ ALLOCATEn: b4~: AVAILABLE: a~

FIL~ SPACt AVATLABL~: ~~01~ WO~DS

ASr.t-H SIZEtl11n64 TNSE..IHED 17-JUL-74 IDFNT:~2

ASSE~ SllEs~~7ct9 TN5Er;(TF.O 1•AllG•74 IDE.NTcV'5~1

CNIHL SIZF. :0~727 t ~1 SE.RTF. D 3\•JUL-74 JDENTsCi'4
CODl-1D S I l E : '~ ~ 9 2 ... ~ Tf'l~EqTEO 17•JUL•74 IDENTa~n

DAT DR 5IZUVlfl414 r NSE:.~ rm 17•JUL•74 IDF.NT107
EN~DS SIZEH'IC,,248 tNSERTfD 1•ALIG•74 IDENT1~6
Ef'.inL~ !;IH.:v~812 JNSE~TFD Jt•JUL•74 I OE"NT: VI~
ENl')PS SIZEHl\V16~1 TNSE~TE'D 17-JUL-74 IOE"ITH.,4
FXP~S SIZE.rnt~11 TN~F..~Hr'> 31-JUL-74 IDENT:~t:i
F'LOAT SIZE aH'IJ3b l~JSERlfD 17-JUL-74 IDENT:02
C:ETLM $IZE ~li.H>7~ INSE.~TFD 17-JUL-74 !L>ENT10b
GMA~G SI 2E Vl~29~ INSE.QTED 17-JUL-74 TDENT;Ci'1
J NF IL SIZE V1"'Y4 l TNSE.~H'D 9·Sf P•74 11"'lf::.NT112
T~JFL SIZE ~0493 INSERTED 31·JUL•74 IDFNTl~1
TNOFL ~IZE 0096~ I~SE~TfD:Y•SFP-74 IOENT:~t

LABEL SIZE 004~~ IN~ERTED 1•AlJG•74 IDENT:~ai

LIS TC SIZE ~0284 JNSERTECJ 17-JUL-74 IDENT:04
LST\JG SIH ~~566 INSERHD 17•JUL•7d IDENT1V117
~,\CRO SIH ~<~19 lN5ERTED 11 ... JuL-74 JDENTH~t.3
MAC.($ SIZE vl1 :>4~ INSERTED 9•SEP•74 !DENTS~9

MC ALL ~IZE vl~264 IN5l:~HD 31·JUL•74 I DE >-Jl V\ 1
MLJij~ SIZE 0~~~7 TNSE~TED 31•JUL•74 J[JENT VI ':l
MSCD~ SIZE ~~84j TNSEl=lHO 3t•JUL•74 T DrnT ei 8
NDRCT SIZE Vl~2~b INSEl(TED 31·JUL•74 JOE NT ~2

PROCSJ ~ 17 I: ~0216 JNSt~Trn 17·JUL•74 TD ENT el 1
PR("IPC SIZE Vl~8t'i~ INSERT Eu 17•JUL•74 IlJF.NT Vl2
PRns.-i SIZE. ~02!=i8 PJSE.RTF.:Dr 17-JUL-74 I DENT ~3
PST S Il E Vl1307 INSE~TED!17-JUL•74 I DENT 04
REAO St ZE ~ill l 98 JNSERTEDt17•JUL•74 JD ENT ~1

REPT SIZE l~ ~ 4 7 3 JNSEQTEnr31-JUL•74 IDFNT "'1
ROLHD SIZEt~i'15Ro TNSERF[)11•AllG•74 IDENT:~5
RSDAT SIZE:~~J74 TNSE~TF0:17•JUL·7~ IOENT:V'o
~SF~EC SIZE.:{,~974 !"iSEQTED: 1-Aur~-74 I~ENT:17M

~5UNP !;jIZEHq117 JNS~RTF0:17•JUL•74 IDF.NT101

B-2

StCT~ SlZEH~0551 I~~ERTE011•AUG•74 IDE.NT:;u
SETOii1 SI:ZErn~1~b JNSf~TED:17-JUL•74 IDENTH'l2
SETON ~IZE:~0b7~ TNSE~TED Jt.JUL-74 TDENT:~6
SEil-.;i"i SilF..#i1~29~ iN5E~iED i7-JUL·74 IDE~i:02
~ETMX SIZE:;?J0131 I NSE~TE"D 17-JUL-74 IDENT:01
SPACE SI7.EIV'~4.d9 INSE~Trn 22·5EP•74 JD ENT H'!4
STM"IT SJZE:t-H"31~ p.ISERTED 17-JUL-74 ICJENTt~3
SYMrjL StlEtvi~732 INSERTED 17-JUL·ld JD ENT: ~4
WQRDB SIZErn~1.41 lN~f.~TEO 17•JUL-74 IDF.~T:~2
WRITE S 1 ZE"HHH R9 TNSE.~TED 17-JUL•74 IDE~T:~1

B.1.3 List Module Names, Full Module Information and Module Entry
Points (Global Symbols)

LBR>MAC,LP:/FU/LE_..)

or

LBR>MAC ,LP :/LI/FU/LE _J

DI~ECT~RY OF FILE MAC.OLR;t
n8JECT ~~OULE LIBRARY CREATEn 81: LgR VX~2VM

LAST !~SERT ocru~RF.D 2~·SEP-74 AT 11:~1:5~
MNT ~NTRtE~ ALLOCATED: 64; AVAtLAHLE: 2~
EPT ENT~IES ALLOCATED: 64~J AVAILABLEt Q2
FILE SPACE. AVAILA8LEr ~~~15 WORDS

•• MODIJLE:ASGMT SIZE1~02~4 INSERTED:17•JUL•74 IOENT:~2

AS GMT ASGMH

u MODULE I ASSEM

ALLOC$ AS5EM CL~All EORITS LC~ITS MACP1 XCTPA3 'XCTPRG

u ~ODULE:C:NDTL ~IZf :~0727 TNSERTED:J1•JUL•74 IDENT:~4

CND8AS CNOTOP FNDC IFF tFT IFTF

** MODULEICODHO SI7-E:~~923 JNSERTED:17•JUL•74 IDENT:~o

CPtSTL INSIZE ObJDMP ORJINI ORJL~C ORJPNT ORJSFC PC~CNT
PCROLL ?CRT~L RLDOMP RLDPNT srcon~ TST~LD ZAPCPX

u MODULE:DATDR :;Jl[![ll0414 tNSERTEDr17-.JUL•74 IDE~T:~J

ALKB IDE~T

•• HODULESENBL.,S

EDTBAS EDTTOP FNA~L

B-3

•• HQDlJLEIENDLN Silt.1iHl812 INSERTED1J1•JUL•74 IDENT:"'6

ENDLl N ERRAT.S EkRCNl LI N~UF LINE ND LSTFHIF

... MODULEIENDPS ~IZEr~1~6~ INSERTED:17•JUL•74 IDENTIM

ENl)P1 ENDP2

•• MODULEtEXP~S SllEr~1211 lNSERTED131•JUL•74 I l)E:NT: ~6

AA SER~ ABSFXP ABSTRM ABSTST EAPR GLA~XP GUH RM ~ELEXP
~ELTRM RELTST TF J:(M

•• MODUL~IFLOAT SIZE:0~~3~ !NSERTED:17•JUL•74 IDENT1n

•• MODULE I GETLN SIZE.r1t1~~7~ lNSERTE~r17•JUL•74 toi.:NT:05

FFCNT GET LIN LINNIJM LPPC~IT PAGEXT PAGNUM SEC~END

(;MARG GMARGF RMArotG

•• MODULErINFIL SIZEr~~941 IN~~RTED19•SEP•74 IDENT112

CMLM2 C:MLM3 C:MLMd CMLM~ CSI~2 CSIM~ FINP1 I~PM1
OPENCH OPNSFIC OPSWTt OPS~T2 OLITERM OUT Mt STKM1 $OPSwT

•• MODULE:I~Ifl SlZErn~49J INSE~TED:31•JUL·74 IDENT:"1

S~CNAM SINIFL

•• 1'10DULE1JNOFL SIZE1ii'~96~ INSERTEDt9•SEP·74 IDENTn11

LSTNA~ OBJNAM U~OFL

•• MODULESLAAE.L SIZE:0~4C'll!J INSERTEDt1•AUG•7• IDENTH14

LA REL UBELF

•• MOOULE1LISTC SIZE.1~0284 INSERTED117•JUL•74 IDENlt04

LCTBAS LC TT OP LI ST PAGE

.... ~ODuLE1LSTNG SlZE13eJ566 INSERTEOf 17•JuL•74 IDE NT nu

C:l-iLF LI NPPG L~TDEV LSTREQ PAG'1NE PF0 ?Ft PUTK8
PUT I< Al ?UT LIN PUTLP SETBVT SET PF~ SETPF1 SETWDB SETWRD

•• MoDULE:MAC~o sIZEt~20tQ INSERTEDt17•JUL•74 IDENTH:l13

ALTSAV ASCII ASC Il RA SC ND BASCOD BASCPX IHS0f-4A 8A5DUM
AASEDT r:uSU'.D ~ASLTFi BASLSV BAS MU JU SMAR BASMAC ~ASPST

RAS~EG FUSSAT 8ASSE.C AA5SQC RASSST ~ASSTK BASSWT fHSSV"1

B-4

ALl<W A YT MOD CHRPNT CLCFGS CLCLOC C:LCHA)(CLCNAM CLCSEC
C...,DROL CODROL CPX~OL DMA~OL DSAtiL DUMROL EDTROL E"-'DFLG
EOT ERRMNE E~R, fRR,A ERR,B F.:~R,r, ERR,f ERR,I
ER~.L Ei:H~.M ERR,N ER~.O ERR,P ERR,Q E~~.R E~R,T

EQR,U E"QR,Z EVEN FL.AGS IMPPAS IMPPAT IMPURE I~PURT

IRPC LCDROL LI8ROL LSYr-lOL MU~Ol. MAA~OL MACP2 MAC?2F
M,ACROL "4E")CIT MODE MQVBYT NL I ST ODD OPCEF(~ O?CLAS
OVMACR OVSTMT PASS PST~OL REG~AS REGROL ~EGTOP RELLVL
ROLRAS l=lOLSIZ RULTOP RS,C~lO RS, COD RS,CPX RS.OMA ~s.ouM

RS,EDT QS11LCD RS,L!H RS,LSY RS,"IAA RS,MAR RS.MAC RS.PST
RS,QEG RS.SAT RS,SEC ~S.SRC RS.SST RS,STK RS,SltJT RS1SYM
~50ARS ~s-;,uor SA H~nL ~AVREG SEC~OL SECfOlo(SE. TXPR SIZCND
S IZCOD SJZC.PX SIZDM~ SIZDUM SIZEDT StZLCD SI ZLl H SJZLSY
S!ZMAA SJZM6B SlZMAC SIZPST SIZRFG SIZSAT SIZSEC S!ZSRC
SIZSST SJZSTK s1zs11q SIZSVM S~C~OL SSTROL ST KROL SwTROL
SY~BFG SYMROL SVMROL TOPCND TOPCOD TOPCP)(TnP!)~u TOPDUM
TOPE OT TOPLCD TO?LIB TOPLSY TOP'"1AA TOPMAR TOPMAC TQPPST
TOPRF.'.G TOPSAT TOPSFC TUPSRC TOP SST TOPSTK TOPSWT TQPSYM
VALU~ WQ~D XCTLIN)(HIT 0 X MIT 1 XMIT2 X"1IT3 H1lT4

XMIT5 XMIT6 XMJ T7

•• MODl.ILF:: ~H~S SilE:~1~4~ JN$ERTEDr9•SEP•74 I DU,, T: \!'IQ

fNDLOA GElBLk t-1ACR MA(ROC MACRnF ~ T • ~,AC "IT i "1 AX P~OMA

PROMCF PROMT Sf.TMAC ~CIMT

•• MOOULEs"ICALL SlZC.1'10264 INS~~TEDt31•JUL•74 IDENTHH

MCAL.L

•• MODULE Z MLI BS s1n:ll('B~1 INSE~TEDt31•JUL•74 IDENTHl6

CPVMAC FINSML. GETFID INJSML. S ~1LFDB

•• MOOUl.E:NtSCOR SlZEt~~843 INSERTED1Jt•JUL•74 IDENT:08

ENO ERROR GLOBL P~lNT SB TTL SET HO~ TIT LE

•• MODULE1ND~CT SIZEtlll02~8 INSERTEDIJ1•JUL•74 IDE~TH'l2

NA;;G NCHR NTYPE

•• MOOULE1PROCSI SIZEHHJ216 !NSERTED:17•JUL•74 IDENTl01

OS ADD~ DSMSI< FNADO~ ENMSI< LIA DOR LIMSI< MLMSI< NLADDR
NL.MSI< PAMSI< PROCSI SPMSI<

•• MODlJLE&PROPC SIZEt0t-11865 INSERTED117•JUL•74 IDENT111'2

AEXP OPCU1i1 OPCL~1 O?CL02 OPCL"'3 OPCL~4 OPCL05 OPCL0b
OPCL~7 OPCL~S OPCL09 OPCL121 PROPC

B-5

•• MODULEt?ROSW SJZEt0~258 TNSERTEDt17•JUL•74 IDFNTt03

PRl")SW SwTRAS S111TTOP

•• MODULE:PST SlZEHH307 INSERTED117•JUL•74 lDE.NTSC~4

A$VTOP DFLCNO nFLGBM l"lFLGF.V DFLMAC DFLS~C PST BAS PST TOP
SSTBAS SS TT OP wROSVM

•• HODULEtREAD S!ZEHHll198 INSERTEDr17•JUL•74 IDENTl01

GE.TVBN $READ

** MODULEt~EPl SIZEH1Ci141.3 I~SERTED:Jt•JUL•74 !DENT:01

ENDMAC I~P '"1PUSH RE~T

** MODULE:ROLHD SlZFtt1~6A5 !NSt~TEDt1•AUG•74 IDE~Ta05

APPEND INSERT LSRFGS LSFLAG LSG8AS LSRCH LSV,,KN MSRCH
N E,l(T OSRCH ROLNDX ROLUPD SCAN SCAN~ SEA~CH SSRCH
l AF'

•• MODULE:~Sl".IAT ~IZE!~c-1374 JNSE~TED117-JUL-74 Jl)FNT1~6

A~'1,~AX C'\iULVL r r~ n 11 r x CNfl~1SK i. . j I) ... ~ L) CIHJC f'.1 J L "<Av L,. l 'J ! N l I

EDMASK EDMRAK EDMCSI ED.A~A F.;), GAL ED,LSR ED• RF. r; ENDvtC
FXMFLG GMAblK (';MAPNT LBL.E.ND LCHE~L LCENDL LC FLAG LCINIT
LCLVL LC MA 51(LC "1C SI LC SAVE LCSAVL LCSBAK LC. LC.BEX
LC.RIN LC,CND LC.Cnf-1 LC.LD LC,LOC LC.MC LC.MD LC.ME
LC,MEB LC.SEQ LC.SRC l.C.SVM LC.TDC: LC,TH~ LI BNUM MACGSB
MACLVL ~AC NAM MACNXT M Ar'. l)t T MAC.<1RT MSAA?G "1SB~LK MSBCNT
MSREND MSHLr.H MS RM RP MSRPRP MSHHT MSRTVP P~GlDN P~(.;TTL

SMLLVL S~C:NUM STAF<S STLBLJF' TTLBRK TTLBUF

•• '-'ODULE I RSEX~C SJZErn~974 tNS~RTED11•AUG•/4 IDENT117M

AUFT~L !:LOSRC CM I RUF C~LBLK CNTTAL CONT CSIBLK DAT TIM
DE FMC l='DBTBL F'DR 1 FDR2 GETFLG GETPLl HDRTTL IOfTRL
To\EnF TQ,ER~ JO.NNU IQ,OPN Io.our In, TTY LOAM AC LSTFIL
MACLDG nt;J~UF n~Jf tL PASSSW PURGMC REST RT RLDBUF S?SAV
SRCCLO SRCMRK SRCPNT SRCSAV TSTST!< VB NS AV SLIM IT $LSTVZ
SSwTCH

** MODuLE:i<5UNP s1Zt.l,.,li1117 I~sERTED117•JuL•74 lDENpli'1

R50UNP

•• MClDULEISECT? s1nn:1~:is1 lNSERTEDt1•AUG•74 1DENTl04

A SECT C: SECT LPqT PSE" CT SATEHS SAT TOP SEC I NI

B-6

•• MODULErSETDJR s1ZE1~~126 INSERTED117•JUL•74 IDENT:~2

SET DIR

SETON SE"TTIM

•• MODULEISETIMM SIZE1~~292 tNSt~TEDt17•JUL•74 IDENTt~2

SE.TDSP HTIMM

•• MODULE:SPACE

MRKUUT QEMMAC SHFMS8 SQZSTK

•• MODULE:STMNT

STMNT

** MODULE:SVMBL

Ai'CGCNT
CT.NUM
nrv
GS~RG

TSTARG

4~GPNT

CT.~C
r')~J c
GS6RGF'
TSTF-t~ii

•• ~ODULF."1~~11~

SIZ~r~~3t~ IN5ERTEDr17•JUL•74 IOE~T:~J

SIZE1~~732 TNSERTED:17•JUL·7~ IDENT:~4

Cl-1SC6N
CT, PC: X
DNC:F
MlJL

CTTHL
CT.SMC
E.XPFLG
MUll-<5~

CT.ALP
CT,SP
GETCHR
SET CHI<

CT.COM
r:T,SPT
GETNR
SETNµ

CT, Tli8
GETR5vl
SETR5~,,

SIZt:~~141 !NStRTED:17•JUL•74 IOENT:~2

cvTNUM
GETSYM
SET SY~i

B.1.4 List Module Names and Module Entry Points (Global Symbols)

LBR>MAC, LP: /LE__}

or

LBR>MAC, LP: /LI/LE.,)

DI~ECTO~Y nF FTLE ~Ac.nLRJ1
n R.H. CT ~ ~ n 1J LE LI~ !.U. RY C ~FA Tf. r'l RV: LB Q V)(0 2 V ~
LAST !NciEh'T occ:u~~rn 22·SEP·74 4T 11 ::,1 =~~

B-7

f'lllNT FNT~TES ~LLOC:ATEDI 64J AVAlLABLEs 2~

EPT F..:NTl-lIE~ ALLOCATtOI 64~J AVAILABLE a 9~
FILE SPACE AVAlLAALU ~L-'~15 liiOQDS

•• MOOULE'IASGMT

ASG~T ASGMTF

•• Ml')DIJLEIASSEM

ALL QC$ ASSfM CLSALL rnR ITS LC:BITS MACP1 lCCTPAS XCTPRG

•• MODULE:CNDll

CNfHUS C~DTC'P F.~JDC IF JFF IFT IFTF IIF

•• MODULEICODHD

CP'XSTL TNSIZE !1HJDMP 08JINI ORJLOC OB.JPNT OBJ SEC PCRCNT
PC ROLL PC~TRL ~Ll')DMP ~LOPNT STCOOE TST~LD ZAPCPlC

•• MQOllL E J DA TOR

~Ll<B tDE'~T PAD IV IHM:i~

". MODULEIENBDS

F.DT~AS EDT TOP ENA Bl

•• M00ULEIEN0LN

E ~DLI N ERQRTS ~~QCNT LINBUF LINE ND LSTHUF"

•• ~OOULEIEND~S

ENDPt ENDP2

... MOOULEIEXPi;.iS

At;iSE.Rf.l ARSE)(P ARSTRM A8STSl EXPQ GLREXP GL~ PH1 ~ELEXP
REL TR~ QfLTST TERM

•• MODULE1FLOAT

•• MODlJLEtr.ETLN

FFC "iT GET LIN Ll N ~JI.I H LPPCNT PAGEXT PAGNIJ~·1 SEQEND

B-8

GM!~G t'.PO!oiGF' QMH~G

•• MODULF.' I 1 NF'll

CMLM:? C~LM3 CHLH4 C"1LM5 C: SI "1 t> CSIM~ F!NP1 P~PM1

nPENC:H OPNS~C OPSittT1 OP~~T2 OUT ERM OUTM1 5TKM1 $Q?SWT

•• MODULE1INJFL

SRCNAM $J~IFL

•• MODULE:t~OFL

LSTNAM OBJ NA"" 'l"-IOFL

... MODULEZLAAt.L

LAAEL LA8E.LF

;to MODULE:LJSTC

LCTBAS LC TT OP LI~ T PAr.t.

•• MOl)ULE':LSTt-.iG

Ci<LF LI t-IPPG LSHH'.V LSTi.CF1~ PAG~NE pi:·~ PF1 PUTKA ·
r-'UTt<BL PJTLIN PUTLP SETbYT SETPF0 SET PF 1 SET111DS SEhiRIJ

•• ,.;noULEr~ACRO

ALTSAV ASCII ASC lZ RA SC ND BASCO(') EU SC PX BASUt-1A RASDUM
AASEDT ~ASL CD RASLIH RASLSV AAS~AA RA~MAB BASMAC fHSPST
~ASREG 8ASS~T AASSEC RASSRC 8ASSST BASSTI< ~ASSWT AASSYH
RLK~ RYTMOD CH~P"-1 T CLrFGS CLCLOC CLC:MAX CLCNAM CLCSEC
CNl)ROL CIJDto<OL CPXi.WL l')~H ~OL r'lSAgl f)Ut-4Rf1L EOTRnL ENDFLG
F:OT E~R,..."4t. FR~. E~P.A F.~R.R ~RR.D FRR.E ~RR,T
E~R,L E'RR,M Ek'R,N EMR,O F~Q,P E~P,Q E.RR.R F.Rl-<,T
i:~~.u ~Q~.z F VF N FLAGS JMPPAS IMPPAT IMPURE !MPURT
I~PC LCDROL LI~ROL LSY~OL MUROL MAAROL MACP2 MACP2F
MACROL "'1EX IT MODE MOV!;VT NLJ ST ODO OPCE~~ OPCLAS
Q\/MAC~ liVST~T PAS~ PSTROL REG~AS REGMOL REG TOP RELLVL
ROLP,AS ROLSJl. ROLTnP RS,CND RS,COD RS,C?X RS.OMA RS,r>UM
RS,EDT QS,LCO ~S.LtH QS.LSY R~.'1AA RS,MA~ RS,MAC RS.PST
~S,REG ?S.SAT PS.SEC ~S.SRC RS.SST RS.Sh RS,SWT RSeSVM
R5;11ARS ~5~DOT SATROL !;AVRE"G SEC~OL SECTOlo< HTXPR SIZCND
~IZCOD ~IZCPX SIZDMA SI ZOUM SIZEl'H SI ZLCO S IZLI t-4 STZLSY
SIZMAA SlZMAB srz 11uc SilPST S!ZREG SIZSAT ~JZSF.C SilSRC
SI7SST ~IZSTI< S!ZSwT SIZSYM S~C~OL SST~OL ST KROL s~TROL
SYM~EG ~Y"1H0L ~""'~nL TOPC~D TOPCOIJ TOPCl='X TuPDMA roPou~
TQP~l)T TOPLt:D TCH'LlA TOPLSY TOP"1AA TOPMAH TQP"1AC TOPPST
TOPRFG TQPSAT TOP SEC TtJPSRC TO? SST TOPSTK TtWSWT TQPSYM
VALUE "40~ [))(CTLTN)(HJ T0 Hl! T 1 XMIT2 X'.~ IT 3 XMIT4
)(MJT5 oqu; XM !T7

B-9

•• "1nDIJLE s l.1H~S

PRM'1CF PR 0'1T St Tr-uc WCJMT

•• MODULr::1-1cALL

MCALL

•• MODULE:~LJB~

CPVl-1AC FI NS~L (;ETF ID INJSML SMLFD~

•• MOOULE:~SCDR

EN I) F.:~RQR Gl0f3L P~JNT SB TTL SETHDR TITLE

•• M<iOULE:NDQCT

NARG \JCH~ NTYPF.

•• MQDULE:P~OCSI

1154[)1)~ D5M51< EN rnn~ EN~SK LIA!)DR Ll~SI< MLMSI(NLADD~
NL~31(? A "151< P~ncs1 SPMSK

•• MIJDUL~:P~Ol-'C

AE)tp OPCL~(1 tiPCL~l OPC:L02 OPCL~J OPCL~42 OPCL~S OPCL~o
OPCLM r'JPCL~B OP CL'~ g QPCL1~ PR()PC

•• MnDULE:Pi-lOS~

PRQSW s..iHUS Sl'iTTOP

•• MODuLEsPST

RH TOP DFLCND rH·LGRM nFLGEV DFL~1AC DFLS~C PSTtU~ PST TO?
SST!iAS SSTH1P ~l/1<DSVM

•• MQDULEaREAD

GETV~N ~READ

•• M(lOIJLE'lqEPT

F,Nf)l-1AC J~P ~PLIS11 ~tPT

•• MODIJLEi~OLHD

APPEN0 !NSflH LS~Fr.S UiFLAr. LSGiHS LSRCH LSY~l(N MS~CH
NE)(f l')S;(CH ROLNl')X ROLUPD SCA"l SC A NIAi SEARCH SS~CH
7AP

B-10

•• Mt"lDULE:: Q51'Al

A~Gi'"i 4 X eNDLVL. eNDHFA. CN[}M5~ C1'iDiiii:tD cONCrH CR1on: EDlN!i
F.:QMASt< fDMHAK FIJMCSI ED.AMA ED. GBL EO • LSB F.D.~EG ENDVE'C
EXMFLG r;MAFiLK r;MAPNT LBLEND LCBE(';L LCENDL LCFLAG LClNIT
LCLVL LC MASK LC MC SI LC SAVE LCSAVL LCSBAK LC. LC•BEX
LC,8IN Lc.cND LC.COM LC,LD LC.LOC LC,MC LC.Mr) LCeME
LC,MEA LC• SFC.i LC,S~C LC.SYM Le.roe: LC,TTM LI RNUM MACGSR
MACLVL MACNAM MACN'O t-H CT XT MACvHH MSRH'G MSA~LK '"1SBCNT
MS~ENO MSBLGH MSBMRP MSBPRP MSB TX T MS~ TVP PRGIDN PQGTTL
SMLLVL S~C:NlJM STARS STLBUF TTL 8QK TTLBUF

•• MODULE i ~SEXFC

BUFTBL CL0Si:;>C r,MIBUF CMlt3LK C>.JTTRL CONT CSI8LK DATT IM
nEFMC FDBTl?L F'DB l F0~2 GETFLG GETPLI ~DR TTL IOFTBL
lOHOF TO,t.RR T(l,NNU I 0 • 0 P ~J IO,OUT IO, TTY LOA MAC LSTFIL
"1ACLDG 08J~UF ORJFIL PASSS~ PURGMC REST~T RLDBUF S?SAV
SRCCLO SQCMwK SrcC~NT S~CSAV TSTSTK VANS AV $LIMIT $LSTVZ
'SWTCH

•• MODULE I qsu~~p

R~~UNP

•• MODULESSEClR

A SECT CSECT LI r-11 T PSf.CT SA HUS SA TT np SEC INI

•• HODULEtSETr>I~

SE TD IR

•• MODULE:SE.TO~

SETON SE.TTPI

... MODULE s ~r. TI MM

SE.TDSP SET IM~

•• MODULE I SETM)t'

~ET~AX

•• HODULErSPACF

M~KOUT ~EMMAC SHFMSB SQZSTK

•• MODULE: SH1NT

STMNT

B-11

•• MOOULEiSYMBL

A~GCNT AQGPNT CHSCAN r:TTBL CT.ALP er.en~ CT.r:OL r.T.Lr
CT• ll.IU"'1 CT• PC: rT,PCt Cl,S"'1C Cl, SP r:T,SPT CT,TAb Cvl~U~
(')IV DNC DNCF F.XPFLG GET CH~ GE Tt~ Fl GE.T~~l?.I GETSYM
GSARG GSARGF r-1UL ~ULR50 SET CH~ SEH~R SET~5~ SETSY"1
TSTARG TSHHH~

** MODULE 11t1QRDB

BYTE

SQCMO

B-12

B.2 SAMPLE LISTING FOR LBR LIST SWITCHES (MACRO LIBRARY)

B.2.1 List Module Names

LBR>MAC,LP:_)

or

LBR>MAC,LP:LI.,}

DlRECTll~Y OF FlLE EXEMC,MLBH
~ACRO Ll~RA~v c~F.ATEO ~vs LB~ vi~3,4
LAST P.iS!:.~T occ~1"~E.O 2 .. j[JN•75 AT il:i6i25
M~T ENTRIES ALLiCATfOI 641 AVAlLA~LEs ~2
EPi ENTRIES A~LOCATEOt ~J AVAILABLE: 0
FILE S~ACE AVAILABLE• ~~789 wowns

ARQDF$
CLl<OF$
CUC OF$
CVCDF$
OEVD~$
EMBQn
F11DF~
HOROfi:~
~~OOFi

PC8DF$
r.:i1<TQF$
TC6D~!

B-13

B.2.2 List Module Names and Full Module Information

LBR>MAC,LP:/LE/FU_)

or

LBR>MAC,LP:/LI/LE/FU_)

OlRECT~~v OF FILE EXf~C,Ml~Jl

1"1ACRC! l !R~AiJy C~FATE:.r. RVS LHR v•v.i3,d
L A S T I ·~ Sf '< T 0 C C: ' I ~ ~ f. '.) 2 • J lJ ti; • 7 5 A T 1 7 2 1 ei I ? 5
~ N T E ~"' T ":' I f S A L l. J C A T t. (i : 6 4 1 A V A I I. A ~ L E J 5 2
~PT ~NT~r~s ALLOCATED: ~f AVATLAbLEI 0
FlLF SPAr~ AVA!LARLf J 007~9 ~OQOS

B-14

SAMPLES OF LISTING AND EDITING

B.3 SAMPLE EDITING OPERATIONS

Four sample editing operations are included in this section to
illustrate how the various EDI commands can be used. In the first
example, a file is edited using a few basic EDI commands. The second
example, illustrates the use of the SAVE, UNSAVE and PASTE commands.
In the second example, two save files are generated, modified, and
appended to the original file. Any closed file may be appended to or
inserted within an open file in the same manner shown in the second
example. The third example illustrates how an immediate macro command
can be defined and executed in a single step. The last example
illustrates how a file containing errors can be edited using the macro
commands.

B-15

B.3.1 File Editing Sample

>EDI PRTBLD.CMD./
(PAGE 1]
*P * :.J
J..
J COMMAND FILE TO BUILD
; PRNT SYMBIONT
J FOR RSX-llM MAXXED SYSTEM

;
11,54]PRT/MM/-CP,LP:=PRTBLD/MP
i
~; OPTIONS
;
STACK=40
PAR=PARK:O:lOOOO
!JNITS=4
TASK=PRT ...
ASG=C0:2,LP:3
PRI=60
UC=[lO,l]
;
, SPECIFY
; SPECIFY FLAG WHICH CONTROLS
; FILE DELETION AFTER PRINTING
.L
J TO ENABLE DELETION USE
;
; GBLPAT=PRT;$DELET:l

TO INHIBIT DELETION USE
;
; DEFAULT FROM ASSEMBLY IS
; FILE DELETION ENARBLED
L
GBLPAT=PRT:$DELET
I
-f*EOB*]

File PRTBLD.CMD is opened for editing. A PRINT * command
is issued to print the contents of the file. The following
errors are detected:

1 - PRNT should be PRINT.
2 - MAXXED should be MAPPED.

3 - /CP should have been used instead of /-CP.

4 - INPUT should be appended to the line containing
the word OPTIONS.

5 - PARK should be PAR4K.

6 - UC should be UIC.

7 - The line containing SPECIFY should be deleted.

8 - The comment line containing the format used to inhibit
deletion is missing.

9 - ENARBLED should be ENABLED.

10 - A :1 should be appended to the line following
the word $DELET.

The end of buffer is reached and EDI causes the EOB message
to be printed.

*TOF__}
fPAGE 1)
*PL PRNT__.J
: PRNT SYMBIONT
~C/RN/RIN/ __)
; PRINT SYMBIONT
"!!..._/
; FOR RSX-llM MAXXED SYSTEM
*C/XX/PP/._,/
T FOR RSX-llM MAPPED SYSTEM
~NP 3__)
[l,54]PRT/MM/-CP,LP:=PRTBLD/MP
~C,/-CP,/CP,__J
[l,54]PRT/MM/CP,LP:=PRTBLD/MP
~PL PAR=__.)
PAR=PARK:O:lOOOO
~ C/RK/R4K/_.)
PAR=PAR4K:O:l0000
~NP -3_/
; OPTIONS
~AP INPUT~
; OPTIONS INPUT
~PL UC___;
UC=[lO,l]
~C/UC/UIC/ __)
UIC=[lO,l]

A TOF command is issued to move the line pointer to top of
file and editing is started.
1 - A PAGE LOCATE command is issued to locate the first

line in error and the line is printed automatically.
A CHANGE command is issued to correct the line
and the corrected line is verified automatically.

2 - A carriage return is entered following the prompt to
move the line pointer and print the next line in error.
A CHANGE command is issued to correct the line and the
corrected line is verified automatically.

3 - A NEXT PRINT 3 command is issued to locate the
next line in error and the line is printed. A CHANGE
command is issued to correct the line and the corrected
line is verified automatically.

5 - A PAGE LOCATE command is issued to locate the next
line in error and the line is printed automatically. A
CHANGE command is issued to correct the line and the
corrected line is verified automatically.

4 - A line in error was bypassed by mistake; therefore, a
NEXT PRINT -3 command is issued to back the line
pointer up. An ADD AND PRINT command is used to correct
the line

6 - A PAGE LOCATE command is used to located the next line
in error and the line is printed automatically.
A CHANGE command is issued to correct the line and
the corrected line is verified automatically.

0
l"lj

t"1
H
(/)

8
H
z
G)

:J::"
z
t1

ti:l
t1
H
8
H
z
G)

~_)

!.J
; SPECIFY
:DP_.)
; SPECIFY FLAG WHICH CONTROLS
~PL INH_.)
; TO INHIBIT DELETION USE
:I_._J
;~

GBLPAT=PRT:$DELET:O__J
..,,;
:PL RB_.}
; FILE DELETION ENARBLED
_":_C/R//_J
; FILE DELETION ENABLED
*) --;
*..)
~BLPAT=PRT:$DELET
:~AP : l._J
GBLPAT=PRT:$DELET:l
-~TOF::J-·

[PAGE l]

7 - The line pointer is moved down two lines via the
carriage return option to locate the next line in
error. A DELETE AND PRINT command is issued to delete
the line containing ; SPECIFY and print the
next line.

8 - A PAGE LOCATE command is issued to locate the
point in the file where the new comment lines
are to be inserted. EDI is switched to the Input
mode, two lines are entered, and EDI is switched
back to Edit mode by entering a carriage return as
the first character in the line •

9 - A PAGE LOCATE command is issued to locate the next
line in error. A CHANGE command is issued to
correct the spelling error. The line is verified
automatically.

10 - The line pointer is moved down two lines using two
carriage returns to locate the last line in error.
An ADD AND PRINT command is issued to append
:1 following the word $DELET.

The necessary corrections are complete so the line
pointer is moved to the top of the file via a TOF command.

trl
t:1
H
H
H
z
Cl

I

; COMMAND FILE TO BUILD
; PRINT SYMBIONT
L!_OR RSX-llM MAPPED SYSTEM

;
[l,54]PRT/MM/CP,LP:=PRTBLD/MP
;
T OPTIONS INPUT
;
STACK=40
PAR=PAR4K:0:10000
UNITS=4
TASK=PRT ...
ASG=C0:2,LP:3
PRI=60
UIC=[lO,l]
;
, SPECIFY FLAG WHICH CONTROLS

FILE -DELETION AFTER PRINTING
;
; TO ENABLE DELETION USE
;
; GBLPAT=PRT:$DELET:l
;
; TO INHIBIT DELETION USE
;
; GBLPAT=PRT:$DELET:O
;
; DEFAULT FROM ASSEMBLY IS

FILE DELETION ENABLED
;
GBLPAT=PRT:$DELET:l
i
[*EOB*]
~EX_}
[EXIT]

A PRINT * command is issued to print the complete
file with all corrections

An Exit command is issued to close the file and
terminate the editing session.

tp
I

"' 0

B.3.2 SAVE and UNSAVE Example

*LI__}
THIS IS LINE 1 PAGE 1
THIS IS LINE 2 PAGE 1
~HIS IS LINE 3 PAGE 1
~HIS IS LINE 4 PAGE 1
THIS IS LINE 5 PAGE 1
.[*EOB*]

:~.::;-
*SA 5 SAVI. DAT___./

~T__.J
~SA 5 SAV2.DAT_}
-~CL__}
EDI>SAVl. DAT.)
[PAGE l]
:LI_}
'rHIS IS LINE 1 PAGE 1
'rHIS IS LINE 2 PAGE 1
THIS IS LINE 3 PAGE 1
THIS IS LINE 4 PAGE 1
'rHIS IS LINE 5 PAGE 1
[*EOB*]

"'PA/PAGE l/PAGE 2/__.}
THIS IS LINE 1 PAGE 2
'rHIS IS LINE 2 PAGE 2
THIS IS LINE 3 PAGE 2
'rHIS IS LINE 4 PAGE 2
THIS IS LINE 5 PAGE 2
~CL__)

The file to be used in this example is
printed via a LIST command.

The line pointer is returned to the top.
A SAVE command is used to save the
five lines in a separate file.

The line pointer is returned to the top.
A second SAVE command is used to generate
a second saved file. The primary input file is closed.
The first save file is opened and a
LIST command is used to verify the file.

A PASTE command is used to change
PAGE 1 to PAGE 2 in all lines.

The first save file is closed.

EDI>SAV2. DAT___}
[PAGE l]
~LI__}
THIS IS LINE 1 PAGE 1
THIS IS LINE 2 PAGE 1
THIS IS LINE 3 PAGE 1
THIS IS LINE 4 PAGE 1
THIS IS LINE 5 PAGE 1
[*EOB*]

~PA/PAGE l/PAGE 3/._}
THIS IS LINE 1 PAGE 3
THIS IS LINE 2 PAGE 3
THIS IS LINE 3 PAGE 3
THIS IS LINE 4 PAGE 3
THIS IS LINE 5 PAGE 3
~CL_)
EDI>START.DAT_)
(PAGE l]

The second save file is opened.

The LIST command is used to verify
the contents of the file.

A PASTE command is used to change
PAGE 1 to PAGE 3 in all lines.

The second save file is closed
The original input file is opened again.

Ul
>
::s::
"'O
L'
tI:I
Ul

0
t-ij

L'
H
Ul
1-3
H
z
G)

::t:oi z
t:l

tI:I
t:l
H
1-3
H
z
G)

~BO_._/

THIS IS LINE 5 PAGE 1 The last line in the file is located.
~UNS SAVl. DAT_} Two UNSAVE commands are used to
*UNS SAV2. DAT__) append the two save files to the
*T.._/ original input file.
!LI..J A LIST command is used to
THIS IS LINE 1 PAGE 1 verify the contents of the
THIS IS LINE 2 PAGE 1 combined file.
THIS IS LINE 3 PAGE 1
THIS IS LINE 4 PAGE 1
THIS IS LINE 5 PAGE 1
THIS IS LINE 1 PAGE 2
THIS IS LINE 2 PAGE 2 CJ)

THIS IS LINE 3 PAGE 2
>'
3:

THIS IS LINE 4 PAGE 2 '""Cl
L'

THIS IS LINE 5 PAGE 2 trl
CJ)

THIS IS LINE 1 PAGE 3
THIS IS LINE 2 PAGE 3 0

'Tl
THIS IS LINE 3 PAGE 3
THIS IS LINE 4 PAGE 3

L'

to
H

I THIS IS LINE 5 PAGE 3
CJ)

N l*EOB*]
1-3

N
H
z

*EX J GJ -· _..,
1EXIT] ::r;.

z
tJ

trl
tJ
H
1-3
H
z
GJ

tx1
I

N
w

B.3.3 Use of Immediate Macro Command

~LI__}

AB~-- IN LINE 1 - ABC
AB_~ IN LINE 2 - ABC
ABC IN LI_NE 3 - ABC
_ABC __ IN LINE 4 - ABC
ABC IN LINE 5 - ABC

.:...

.
ABC IN LINE N - ABC
[*EOB*]
~4<F ABC&C/ABC/DEF/>../
[OVERLAYING PREVIOUSLY DEFINED MACRO]
ABC IN LINE 1 - ABC
DEF IN LINE 1 - ABC
ABC IN LINE 2 - ABC
DEF IN LINE 2 - ABC
ABC IN LINE 3 - ABC
DEF IN LINE 3 - ABC
ABC IN LINE 4 - ABC
DEF IN LINE 4 - ABC
*

A LIST command is issued to print
the file used in this example.

The immediate macro is defined
and executed to find the first
four lines which start with ABC
and change the first occurrence
of the string ABC to DEF.
The FIND command causes the line
to be printed before the change.
The CHANGE command causes
the line to be printed after
the change.

B.3.4 Use of Macro Commands

~LI_}
THIS LITTLE FILE HAS
MANY CONNON ETTORS SO
WE CAN SHOW YOU HOW
YHE MACRO CONNANDS CAN
~~USED.
FIRST, YHE DESIRED MACRO
MUST BE DEFINED; YHE LINE
POINTER IS MOVED TO A LINE
WITH AN ETTOR; AND YHEN, YHE
MACRO EXECUTE CONNAND
IS ISSUED TO COTTECT YHE
~TTOR
f*EOB*]
*MACRO 1 C/NN/MM/_.}
*MACRO 2 SC/TT/RR/_.)
*MACRO 3 PA/YHE/THE/_.)
*M3 _.}
THE MACRO CONNANDS CAN
FIRST, THE DESIRED MACRO
MUST BE DEFINED; THE LINE
WITH AN ETTOR; AND THEN, THE
IS ISSUED TO COTTECT THE
_:NP2__.}
MANY CONNON ETTORS SO
~Ml_}
MANY COMMON ETTORS SO
~M2_.)
MANY COMMON ERRORS SO

The LIST command is used to print the
file and the file is checked for errors.
The following errors are located.

1. The string NN is used in place
of MM (see macro 1} •

2. The string TT is used in place
of RR (see macro 2) •

3. The string YHE is used in place
of THE (see macro 3) .

The three macro definitions which will
correct the errors are typed.

Macro 3 is used to change all YHE
strings to THE.

NP2 is used to locate a line with errors.

Ml is used to change NN to MM.

M2 is used to change TT to RR

to
I

N
U1

~NP2__}
THE MACRO CONNANDS CAN
~Ml:J
THE MACRO COMMANDS CAN

WITH AN ERROR; AND THEN, THE
*) ----MACRO EXECUTE CONNAND
*Ml_.}
MACRO EXECUTE COMMAND
~M2__}
IS ISSUED TO CORRECT THE
~M2__...J

. ERROR
~T__/
~LI_)
THIS LITTLE FILE HAS
MANY COMMON ERRORS SO
WE CAN.SHOW YOU HOW
THE MACRO COMMANDS CAN
BE USED.
FIRS~THE DESIRED MACRO
M.U.S_T BE DEFINED; THE LINE
POINTER IS MOVED TO A LINE
WITH AN ERROR; AND THEN, THE
MACRO EXECUTE COMMAND
IS ISSUED TO CORRECT THE
ERROR.
[*EOB*]

NP2 is used to locate the next line in error.

Ml is used to change NN to MM.

M2 is used to locate the next TT string
and change it to RR.

_}is used to locate the next line in error.

Ml is used to change NN to MM.

M2 is used to locate the next TT string and
chanqe it to RR.
M2 is used to locate the last error in the
file and correct it .

After all lines have been corrected, the
file is printed using the LIST command.

B.4 SAMPLE DMP LISTINGS

B.4.1 Use of /LB Switch

DMP>TI:=SY:BIGMAC.TSK/LB_.}
STARTING BLOCK NUMBER = ~£135163 C

~TI:=SY:SYSGEN.CMD/LB__}

STARTING BLOCK NUMBER= ~'~~16~6

B.4.2 "Standard" Command Line

This command will dump virtual blocks 1 and 2 in SYSGEN.CMD in
ASCII mode.

DMP>LP:=SY:SYSGEN.CMD/AS/BL:l:2_.}

DMP>

OU MP OF DP01[200,200]SVSGEN,CMOJ15 •FILE ID 7157,35146,0
vlRTUAL BLOCK 0,00~~01 • SIZE 512, BYTE'S

000000 •• •• ' -. •p •• , s y s G E N p
000020 A R. T 1 "'"'

ti. , 6 ""• , ""I D E
000040 T E R M I N E s v s T E M f
0000b0 E 4 T u R E s A N 0 A s s E
000100 M B L. E T H E E)(E c u T I
000120 v E •• •• , •• , •• • s I< A A •
000140 R E y 0 u B u I L. 0 I N G
0001b0 A M A p p E 0 s y s T E M -· 0H200 < .. , • A s K B • R E y 0 u
000220 R u N N I N G 0 N A. M A
000240 c H I N E w I l H ti1 0 R E
0002b0 T H A N 1 6 I(w 0 R 0 s ,,.A -· 000300 , •• -~ •• ' I N s T A L L T H
210121320 E N E c c E s s A R y T A s
0003ll0 I< s

'
... •o ... s E T I u I c

0003b0 = [1 , s 0 l iii. '"'G I N s p I
000400 p ... •G •• I N s f L x •• ... N • • • I
000~20 f F B l N s M A c •z •• • I
0HU0 F F B p I p B I G M A c •
0004&0 T s I< , * I 0 E ,..Q •• • I F' T a
0210500 I N s B I G M A c •• .,.w • I
H05Z0 F T B p I p M A c • T s I(

000540 , * I 0 E . ,-,
' ••

... .
' D E

0005&0 L E T E F I L. E s F R 0 M
000b00 p A. s T s y s G E N s 4 -· ' ·1
000020 N 0 T E I ..,I 0 N v I R G I N
000b40 D I s I< s I N 0 N E 0 I' T
H06&0 M E F I l E s w E T ~ y

000700 T 0 3 ...
'

fill ·1 0 E L. E T E w 1
000720 L. L. E x I s T p I p w
000740 l l. L. G I v E E R R 0 R M
H0'7b0 f s s A G e: s ... , 5 iii. 1 -1 •1 T H •

B-26

DUMP OF OP01[200,Z00]SVSGEN,CMOJ15 •FILE IO 7157,3514&10
VIRTU~L BLOCK 0,000~02 • SIZE 512, BYTES

000000 T s H 0 u L 0 I N 0 I c A T
000020 E T H A T T H E F I I.. E
00004'0 0 0 E s N 0 T E x I s T • f
H00b0 --A •• u •p --· s E T I u I c = c
000100 1 1 2 0] -s ... p I p R s x '4
000120 s M • c M 0 ' • I 0 E t< •s -· p I
000140 p R s x 8 L 0 • c M 0 '

.. I 0
0001&0 E •N •• p I p * • 0 e J , • I
000200 0 E. .. p •• s E T I u I c = c 1 l
000220 z " j •s •• F I p R s x A s M
000240 • c M 0 ' * I D E H ·s ... p I p
0H2b0 R s x B L D • c 1-1 0 ' * I D E ""• 000300 "'N •• p I p * • 0 B J , * I 0 E
000320 •p •• s E T I u I c • [1 1 , 1
000340 0] ""R •• p I p s y s T B • M ..
000300 c ' * I 0 E •R •• p I p R s x M
000400 c M A c , • I 0 E , •• 7 ""'•
0004Z0 , N 0 ~ w E R u N T H p:
000440 s y s G E N p R 0 G R A M
012104b0 T 0 s E L E c T T H E E x
000500 E c u ... I v E G 0 !Iii' ; F E A T I

000520 u R E s • N D 0 E v I c E s
000540 w E w A N T I N T H E
000560 N E w s y s T E M ' "• , "'I N 0
000«>00 T E I I F y 0 u A R E R
000020 u N N I N G 0 N ,. 1 b K
000040 w 0 R 0 M A c ~ I N E y 0 u
000&60 s H 0 u L 0 s 1 ...

' •1 s p E c
00071210 I F y T H A T N 0 A s s e:
000720 M B L y L I s T I "' G s B E'
000740 G E N E R A T E 0 • R I '9i .. , "'I
12100760 t F y 0 u A R E R u N N I

B-27

B.4.3 ?ump Only the Header from SYSGEN.CMD

DMP>LP:=SY:SYSGEN.CMD/HD/BL:~:~_)

DMP>

DUMP OF OP01[200,200]SVSGEN,CMDs15 • FILE ID 7157, 3514b10
FIL.E HEADER

SYSGEN.CMOS15 (7157135140) 1,110. 11 .. oc;r .. 74 11148
[200, 200] [RWEO, RWEO, RwE01 R]

000000 027027 007157 ~3514b 000401 100200 1&0000 000000 001002
000020 "90077 000000 000012 0000'11"1 000010 000000 000000 000000
000040 000000 1300~00 000000 00000~ 000000 000000 000000 075273
0000b0 02b22b 0000L'J0 012314 000015 000001 030401 041517 033524
000100 030464 032461 030462 030462 0474bl 052103 032067 030461
000120 034064 032461 k'J00000 0000PI~ 000000 000000 000000 000000
000140 000000 0014lH 1'H>00o 0020A"1 001 &0& 000000 0441Sb 001400
000lb0 044300 000000 000000 0000A0 000000 0000~0 000000 000000
000200 000000 000000 000000 00000"' 000000 000000 000000 000000
000220 00b000 ~00000 000000 0000PIA 000000 000000 000000 000000
0002tH~ ~00000 000000 000000 0000V11~ 000000 000000 000000 000000
0002b0 000000 CHJ0000 000000 0000PI~ 000000 000000 000000 000000
000300 0'10000 0000(30 00000121 0000~~ 000000 00121000 000000 000000
000320 000000 1Hl0000 000000 000000 000000 000000 000000 000000
000340 ae0000 000000 00000121 0210121"''1.I 000000 000000 000000 0001210 0
0003b0 0"0000 000000 000000 0000PI~ 000000 0000'110 000000 000li:Hrn
0~0lf 00 LJ0~000 000000 000000 0000AA 000000 00001210 000000 000000
000"'20 '100000 000000 000000 0000AA 000000 000000 000000 000000
000"'40 000000 1.Hl0000 000000 0000~A 000000 000000 000000 000000
000~60 000000 000000 00D000 0000PIA 000000 000000 000000 000000
000500 0"J00"J0 000000 000000 0000PIA 000000 000000 0HH0 000000
000520 iJ~0000 000000 IJ00000 0000ft~ 000000 000H0 000H0 000000
000sq0 0~0000 000000 000000 0000AA 000000 000000 000000 000000
U05o0 000000 000000 1300000 0000M 000000 000000 000000 000000
000b00 000000 1300000 000000 000001') 000000 000000 000000 000000
000020 000000 000000 000000 000001'1 000000 00001210 000000 000000
000040 000000 000000 000000 0000PJA 000000 0000H 000000 000000
H0bo0 000000 1300000 00001210 001Z10AA 000000 000000 000000 12100000
000700 000000 ~00000 000000 0000l-'A 000000 000000 000000 000000
000720 000000 000000 000000 0000~~ 000000 000000 000000 00000Ql
000740 000000 IHJ0000 .,00000 0000PIVJ H0000 000000 000000 000000
0007b0 000000 '300000 000000 0000~"' 000000 000000 000000 1bb212

B.4.4 Use of /BA Switch

The first command sets the base block address to 2, the next command

causes virtual blocks 3 and 4 to be dumped.

~/BA:~:2_)

DMP>LP:=SYSGEN.CMD/BY/BL:l:2.j

DMP>

B-28

DUMP OF OP01[2001200]SYSGEN,CMOs15 •FILE lD 715713514610
VIRTUAL BLOCK 0100~~03 • SIZE 512, BYTES

000000 116 101 "40 117 116 040 101 ~40 115 101 103 110 111 116 105 040
000020 127 t • 1 c>a t t °' ~40 115 4 1 7 . ;) ;) 105 fl II fl 12'4 •• 1".11 • l'I. 110 040 001 ·- 1(,1 '"'I.I I '"1 I. lo;,J i

000040 066 113 040 127 117 122 104 123 072 000 073 011 131 117 125 0't0
000060 115 101 131 040 107 105 124 ~40 101 123 123 105 115 102 114 131
0210100 040 114 111 123 124 111 11b 107 123 040 117 116 11'4 131 0lH?l 111
000120 10b 040 131 117 125 040 104 U 1 122 105 103 124 040 124 110 105
000140 115 040 124 117 kl73 000 073 rut 124 110 105 040 114 111 116 105
0001 b0 040 120 122 111 116 124 105 122 040 050 114 120 060 072 051 040
000200 117 122 040 101 116 117 121.J 110 105 122 040 104 111 123 113 056
000220 ia40 0lf 0 124 110 105 122 105 ()J40 111 123 040 116 117 124 040 040
000240 01.&0 103 '162 000 ~73 011 105 t16 117 125 107 110 040 123 120 101
0002&0 1 ()3 105 040 111 116 040 124 110 105 0412! 123 117 125 122 103 105
000300 040 104 111 123 113 01~0 124 117 040 113 105 105 120 040 101 111.1
000320 114 0ll0 124 11"' 105 0 1~0 031 "100 073 011 101 123 123 105 115 102
000340 114 131 040 114 111 123 124 111 116 107 040 10& 111 114 105 1 C!3
000360 056 073 001 000 073 105 010 "'00 122 125 116 040 044 123 107 110
000400 0iH 00121 073 101 "63 000 073 "'"" 101 124 040 124 110 111 123 040
000420 120 117 111 116 124 040 127 105 040 1Z2 105 116 101 115 105 040
000440 124 110 ies 040 101 123 123 105 115 102 114 131 ~40 103 117 115
000460 115 101 11b 104 040 106 111 114 105 040 046 000 073 040 101 116
000500 104 040 124 110 105 0'40 123 131 123 124 105 115 040 102 125 111
000520 114 104 "IJ 0 103 117 115 115 101 1tb 104 040 10c 111 114 105 040
000540 124 117 020 000 056 111 100 10& 040 101 040 013 011 133 061 061
000so0 054 002 060 135 1320 000 056 111 100 124 040 101 040 073 011 133
000000 ~61 061 054 0b2 06'4 135 001 ~00 073 125 057 000 05b 111 106 10b
OIOIOl~:>OI Gan ai • "' t f".I JI I'll . "'"' t t t . ~ ,.,.,. • "lr "l ,.. L ·4 0oi ~~, . 062 000 i35 057 122 .,.,., "" "', ""'' IP'"' CJ ,,,o ' ... ' 'c;.r;i "'., "1 4 ,,;;,.;i ~04 ~;;)'t

000040 1 os 075 122 123 130 101 123 115 056 103 115 104 073 052 054 122
000000 121 130 1 !32 114 10Q 056 103 115 uu 073 052 011 057 000 05& 111
000700 1130 124 04tl 101 040 120 111 120 12140 133 061 061 054 062 064 135
000720 057 122 105 075 122 123 130 101 123 115 056 103 115 104 073 052
000740 054 122 123 130 102 114 104 £1J56 103 115 104 073 052 000 077 000
000700 aso 101 123 113 040 132 040 104 111 104 040 131 117 125 040 101

B-29

OUM" OF OP01[200,200]SYSGEN,CMDJ15 •FILE ID 7157,3514610
VIRTU~~ BLOCK 0,000004 • SIZE 512, BYTES

000000 11b 123 127 105 122 040 12'4 110 105 040 123 131 123 107 105 11&
000020 040 121 125 105 123 124 111 117 116 123 040 124 117 040 131 117
0000q0 125 122 040 123 101 124 111 123 106 101 103 124 111 117 no 040
000060 020 000 05b 111 106 124 040 132 040 056 107 117 124 117 040 061
000100 068 k)00 01'1 ta00 ~73 111 074 ~HJ 073 040 127 105 040 127 111 11 '4
000120 114 ~lf 0 105 130 111 12/l 040 1lb 117 127 040 123 117 040 124 110
000140 1('1 124 '140 131 117 125 040 115 101 131 040 122 105 123 124 101
000160 122 124 040 124 110 111 123 "J40 103 117 115 115 101 116 104 040
000200 113b 111 114 105 067 000 073 ~40 106 122 117 115 040 124 110 105
000220 ~"'*' 102 105 107 111 11& 116 111 llb 107 05& 01.J0 124 110 111 123
000240 0 41d 121 111 11" 114 040 101 114 114 117 127 040 101 040 103 114
0002b0 105 101 ltb 040 125 120 040 117 106 040 124 110 105 122 070 000
000300 an b40 104 111 123 113 040 101 1lb 10" 040 101 049 11b 105 127
000320 """ 122 125 Ub 040 117 106 1'140 123 107 116 040 124 117 040 123
000340 1 "S 114 1135 103 12tf 01~0 12" \10 105 040 120 122 117 120 105 122
0003b0 04J 117 120 124 111 117 116 123 022 000 073 0U 100 117 122 040
000400 131 117 125 122 k'40 123 131 123 12'1 105 115 056 001 000 073 040
000"120 a12 b00 Id Sb 107 117 124 117 Pl40 12'61 "'60 060 0b0 0~6 000 050 061
000440 ao0 060 072 073 ~37 000 073 A40 llb 117 127 12140 127 105 040 101
000460 123 123 1135 us 102 114 105 V!40 12~ 110 105 0a0 105 130 us 103
000500 125 124 111 126 105 01.10 001 "100 073 124 ~27 000 056 111 106 1121&
000520 040 101 040 123 105 124 040 "157 125 111 103 075 133 0&1 061 054
000540 002 000 135 k'H~0 027 000 050 111 100 124 040 101 040 123 105 124
000560 040 057 125 111 103 075 133 ~61 0b1 054 062 064 135 073 013 000
12100000 115 101 1e3 040 10El 122 123 130 101 123 115 000 001 000 073 10&
000020 ao2 000 ld73 040 116 117 127 ~40 127 105 040 102 125 111 114 104
000b40 04~ 12t1 110 105 040 103 117 t16 103 101 124 105 116 101 124 105
000bb0 1 "4 040 117 102 112 105 103 124 040 115 117 104 125 114 105 040
000700 Ub 111 114 105 024 000 073 t'J40 10b 117 122 040 124 110 105 040
000120 105 130 us 103 125 124 111 \2b 105 056 001 00e 073 104 024 000
000740 120 111 120 0q0 122 123 130 001 0b1 115 056 117 102 123 075 052
0007&0 05b 117 1 "2 112 02b 000 120 111 120 040 056 117 102 112 057 122

B-30

APPENDIX C

RSX-llM PRINT SPOOLER TASK

The RSX-llM Print Spooler task (PRT ...) provides a means of
eliminating contention for the system line printer. Rather than
waiting for the line printer to become available, a task directs the
output intended for the line printer to a disk file. The task issues
a Send Data directive to the print spooler, placing a data block,
which identifies the file to be spooled, in the print spooler queue.
A Request directive then is issued by the task to activate the print
spooler, in case it is not already active. All files identified in
the print spooler queue are printed in a first in - first out (FIFO)
order.

C.l RECEIVE QUEUE OPERATION

The standard method of placing a user file in the print spooler
receive queue (and requesting its execution) is via the PRINT$ macro
call, which is described in the RSX-11 I/O Operations Reference
Manual. Files are spooled in this same manner by the RSX-llM
utilities which support the spool (/SP) option. Each entry in the
print spooler receive queue consists of a 13-word data block
containing the file-related information illustrated in Figure C-1.

C.2 TEXT REQUIREMENTS

The print spooler task prints ASCII text with a maximum line length of
132 bytes. It will properly handle files with all modes of FCS
carriage control (i.e., standard, embedded and FORTRAN).

C-1

RSX-llM PRINT SPOOLER TASK

WORD

1 Filename

2 in

3 RADIX-50

4 File type in RADIX-50

5 File version (binary)

6 Device name in ASCII

7 Unit number (binary)

8

9 File ID

10

11

12 Directory ID

13

Figure C-1
PRT Send Data Buffer Format

C.3 TASK BUILD INFORMATION

The print spooler task must be built during an RSX-llM system
generation because the task image file (PRT.TSK) is not distributed on
the standard release kits. Normally, the print spooler is built to
delete all files which have been spooled, but the print spooler build
file can be edited during system generation to disable the automatic
delete feature. When the print spooler is built without automatic
delete, spooled files are retained after printing. If the system has
a deleting print spooler, all spooled files are deleted after
printing. Therefore, the user should know whether or not the system
currently running has a deleting print spooler before spooling files.

The print spooler employs double buffering to increase throughput to

C-2

RSX-llM PRINT SPOOLER TASK

the line printer. However, when the print spooler is checkpointable
{the default from the build file), the Executive limits the print
spooler to one outstanding I/O operation, thus effectively reducing it
to single buffering. To effectively use the double buffering
capability of the print spooler, it must e1tner be built as
noncheckpointable during system generation, or installed in the system
as noncheckpointable. However, the print spooler should not be made
noncheckpointable if this will adversely effect the execution of other
tasks in the same partition.

See the RSX-llM System Generation Manual for
generation information.

C.4 PRT ERROR MESSAGES

detailed system

All error messages issued by PRT are sent to the console terminal via
pseudo-device CO:. The error messages have the following format:

PRT -- text

In all but the receive failure error, the messages supply information
that identifies the sender task and the file in question. All PRT
errors are fatal; upon error detection, printing of the input file is
terminated, and a clean up/restart procedure is entered.

In the case of the receive failure error, the sender and file
information are unavailable. Furthermore, PRT does not attempt to
dequeue additional spool requests because of the nature of this error
condition. Instead, PRT exits causing its receive queue to be purged
by the system.

RECEIVE FAILURE, d. -- TASK EXITING

Description

The Receive Data or Exit directive failed while attempting to
obtain the next file specifier from the queue. The system error
code {d.) is printed to identify the error.

NO DEVICE NAME - SENDER: task FILE: filename.typ;ver

Description

The dequeued print request did not contain a device name.

NO FILE ID - SENDER: task FILE: filename.typ;ver

Description

The dequeued print request did not contain a file ID.

C-3

RSX-llM PRINT SPOOLER TASK

OPEN FAILURE INPUT FILE - SENDER: task FILE: filename.typ;ver, d.

Description

The specified file could not be opened.
conditions may exist:

One of the following

1. The file is protected against access for read privileges.

2. A problem exists on the physical device (e.g., device cycled
down) .

3. The volume is not mounted.

4. The specified file directory does not exist.

5. The named file does not exist in the specified directory.

6. The file is already deleted.

The system error code (d.) is printed to identify the failure.

ATTACH FAILURE - SENDER: task FILE: filename.typ;ver, d.

or

DETACH FAILURE - SENDER: task FILE: filename.typ;ver, d.

Description

The line printer could not be attached/detached (i.e., system
does not contain a line printer). The system error code (d.) is
printed to identify the error.

PRINT ERROR - SENDER: task FILE: filename.typ;ver, d.

Description

A Queue I/O request to the line printer has failed.
error code (d.) is printed to identify the error.

The system

I/O ERROR INPUT FILE - SENDER: task FILE: filename.typ;ver, d.

Description

An error was detected while reading the input file. One of the
following conditions may exist:

1. A problem exists on the physical device (e.g., device cycled
down) .

2. Length of the text line is greater than 132 bytes.

3. File is corrupted or the format is incorrect.

The system error code (d.) is printed to identify the error.

C-4

Aborting VFY, restrictions when,
8-1

Access modes, text, 5-5
Access warning messages, file,

5-9, 5-58
ADD AND PRINT command, 5-15
ADD command, 5-15
ALT Mode key, 5-20
APPEND command, 2-7
ASCII mode switch, 4-3
/AS switch, 4-3
Asterisk convention, wild cards,

2-4

Base block address switch, speci
fy I 4-3

Basic EDI commands, 5-13
Basic EDI operation and commands,

5-10
/BA switch, 4-3
BEGIN command, 5-36
Block address switch, specify

base, 4-3
Block command, 5-25
Block mode, 5-5
Block mode, line-by-line vs., 5-6
Block switch, logical, 4-4
Blocks, deletion of multiply

Blocks, elimination of free, 8-8
Blocks, recovering lost, 8-9
Blocks switch, specify first and

last, 4-3
/BL switch, 4-3
BOTTOM command, 5-36
Buffer capacity exceeded, 5-53
/BY switch, 4-4
Byte mode switch, 4-4

Carriage return, use of, 5-7
Cassette directory listing, 3-18
Cassette file formats, 3-5
Cassette support, FLX, 3-5
Cassette support, multi-volume,

3-9
CHANGE command, 5-15
Changing control mode, 5-4
Character erase (RUBOUT) , 5-7
Check, validity, 8-5
CLOSE AND DELETE command, 5-51
CLOSE command, 5-51
Close operation commands, EDI,

5-50
CLOSES command, 5-51
/CO, COMPRESS switch, 7-7
Combining library functions, 7-26

INDEX

Command,
ADD, 5-15
ADD AND PRINT, 5-15
APPEND, 2-7
BEGIN, 5-36
BLOCK, 5-25
BOTTOM, 5-36
CHANGE, 5-15
CLOSE, 5-51
CLOSE AND DELETE, 5-51
CLOSES, 5-51
CONCATENATION CHARACTER, 5-25
COPY, 2-8
CTRL/Z, 1-2, 5-16
DEFAULT, 2-12
DELETE, 2-13, 5-16
DELETE AND PRINT, 5-17
END, 5-36
ENTER, 2-15
ERASE, 5-42
EXIT, 5-18
EXIT AND DELETE, 5-52
FILE, 5-32
FIND, 5-37
FORM FEED, 5-43
FREE, 2-16
IDENTIFY, 2-16
INSERT, 5-18
KILL, 5-52
LINE CHANGE, 5-43
LIST, 2-17
LIST ON PSEUDO-DEVICE, 5-44
LIST ON TERMINAL, 5-43
LOCATE, 5-19
MACRO, 5-44
MACRO CALL, 5-45
MACRO EXECUTE, 5-46
MACRO IMMEDIATE, 5-47
MERGE I 2-8
NEXT I 5-19
NEXT PRINT, 5-20
OLDPAGE, 5-37
OPENS, 5-26
OUTPUT, 5-26
OVERLAY, 5-47
PAGE, ~-38

PAGE FIND, 5-38
PAGE LOCATE, 5-39
PASTE, 5-48
PRINT, 5-20
PROTECT, 2-21
PURGE, 2-24
READ, 5-32
REMOVE, 2-25
RENAME, 2-26
RENEW I 5-22
RETYPE, 5-22
SAVE, 5-48
SEARCH AND CHANGE, 5-39
SELECT PRIMARY, 5-27

Index-1

Command (cont.),
SELECT SECONDARY, 5-28
SIZE, 5-29
SPOOL, 2-28
TAB, 5-29
TOP, 5-40
TOP OF FILE, 5-22
TYPE, 5-49
UNLOCK, 2-29
UNSAVE, 5-50
UPDATE, 2-30
UPPER CASE, 5-30
VERIFY, 5-31
WRITE, 5-33

Command, concatenation character,
5-25

Command conventions, EDI, 5-7
Command format conventions, 1-6
Command level informational and

error messages, 5-9, 5-52
Command string,

DMP, 4-2
FLX, 3-2
LBR, 7-5
PIP, 2-1
VFY, 8-2

Command strings, utility, 1-4
Command switches and subswitches,

PIP, 2-3
Command switches, VFY, 8-4
Commands,

EDI close operation, 5-50
input/output, 5-31
line pointer (locative), 5-34
PIP, 2-6
setup, 5-23
text modification and manipula

tion, 5-40
Compress switch, (/CO), 7-7
Concatenation character command,

5-25
Constants, search string, 5-8
Constraints, LBR, 7-27
Control characters, SLP edit, 6-6
Control mode, changing, 5-4
Control modes, EDI, 5-4
Control switches, file, 3-15
Control switches, SLP output, 6-5
Convention, wild cards, asterisk,

2-4
Conventions,

command format, 1-6
EDI command, 5-8
system-wide, 1-8
terminal, 5-7

COPY command, 2-8
Creating a file, 5-10
Creating an indirect file, 6-8
/CR, CREATE switch, 7-9
Create switch (/CR), 7-9
CTRL/Z command, 5-16

/DE, DELETE switch, 7-11
DEFAULT command, 2-12
Defaults in file specifiers,

EDI, 5-3
LBR, 7-5
PIP, 2-2
SLP, 6-3
VFY, 8-3

DEFAULT switch, 7-12
DELETE AND PRINT command, 5-17
DELETE command, 2-13, 5-16
Delete, files marked for, 8-7
Delete global switch (/DG), 7-13
DELETE switch (/DE), 7-11, 8-9
Deleting a file, 8-8
Deleting DOS files, 3-3
Deleting RT files, 3-4
Deletion of multiply allocated

blocks, 8-8
/DF, DEFAULT switch, 7-12
/DG, DELETE GLOBAL switch, 7-13
Directory listings,

DOS, 3-3
RT, 3-3

Directory manipulation,
DOS volume, 3-3
RT volume, 3-3

DMP,
file dump utility, 4-1
initiating, 4-2

DMP command strings, 4-2
DMP error messages, 4-5
DMP switches, 4-2
DOS directory listings, 3-3, 3-18
DOS files, deleting, 3-3
DOS-11 volumes, initializing, 3-3
DOS volume directory manipulation,

3-3

EDI,
command conven_tions, 5-7
control modes, 5-4
default file specifiers, 5-3
error messages, 5-52
error reporting, 5-9
initiating, 5-2
line text editor, 5-1
modes, 5-4
operation and commands, basic,

5-10
preparing to run, 5-1
text access, 5-5
using, 5-1

EDI commands,
basic, 5-13
close operations, 5-50
extended, 5-23
input/output, 5-31
line pointer control (locative),

C:: __ ")A
..J ..J'"t

Index-2

EDI commands (cont.),
setup, 5-23
text modification and manipula-

tion, 5-40
Edit commands, SLP, 6-6
Edit control characters, SLP, 6-6
Edit mode, entering text in, 5-11
Edit modes, EDI, 5-4
Editing a file, 5-11
Editing examples, SLP, 6-9
Editing session, sample, 5-23
Elimination of free blocks, 8-8
END command, 5-36
ENTER command, 2-15
Entering text in edit mode, 5-11
Entering text in input mode, 5-11
Entering text into a file, 5-11
Entry point table, 7-2
ERASE command, 5-42
Error codes,

PIP, 2-41
VFY, 8-16

Error messages,
DMP, 4-5
EDI I 5-52
fatal, 5-10, 5-62
FLX, 3-20
LBR, 7-27
PIP, 2-31
SLP, 6-12
VFY, 8-14

Error messages, command level
informational and, 5-9, 5-52

Error messages requiring EDI
restart, 5-9, 5-59

Error reporting,
EDI, 5-9
file I 8-6

Exceeded buffer capacity, 5-53
EXIT &.~D DELETE --~~--;:J C'._f:'.") \,.,UllULICUJ.U. 1 J- J,;;..

EXIT command, 5-18
Extended EDI commands, 5-23

Fatal error messages, 5-10, 5-62
File access warning messages, 5-9,

5-58
File, creating a, 5-10
File, deleting a, 8-8
File, entering text into a, 5-11
File, editing a, 5-11
File, restoring a, 8-7
File access warning messages, 5-9,

5-58
FILE command, 5-32
File control switches, 3-15
File dump utility (DMP) , 4-1
File error reporting, 8-6
File formats, cassette, 3-5
File header switch, 4-4
File identification option, 2-5

File name, 1-5
File option switches, LBR, 7-7
Filespec, 5-3
File specifiers,

defaults in LBR, 7-6
defaults in PIP, 2-2
defaults in SLP, 6-3
defaults in VFY, 8-3
list of, 2-2

File transfer program (FLX), 3-1
File transfers, 3-2
File structure verification

utility (VFY), 8-1
Files,

deleting, DOS, 3-3
deleting, RT, 3-4
format of library, 7-1
indirect, 1-7, 6-8
library, 7-28
marked-for-delete, 8-7
output, 5-6
SLP output, 6-4
text, 5-6

FIND command, 5-37
FLX,

cassette support 1 3-5
command string 1 3-2
error messages, 3-20
file transfer program, 3-1
initiating, 3-2
input files, 3-10
output files, 3-9
paper tape support, 3-10
switches, 3-11

Format conventions,
command, 1-6

Format of library files, 7-1
Format mode switches, 3-11
Formats, cassette file, 3-5
FORM FEED command, 5-43
Free blocks, elimination of, 8-8
FREE cornrnand, 2-16
FREE switch (/FR), 8-12
/FR, FREE switch, 8-12
/FU,/LE,/LI, list switches, 7-15

/HD switch, 4-4
Header,

library, 7-2
module, 7-4

Header switch, file, 4-4

/ID switch, 4-4
Identification switch, 4-4
IDENTIFY command, 2-16
Indirect file, creating an, 6-8
Indirect files, 1-7, 6-8
Indirect files, using, 6-9

Index-3

Inflespc, 1-4
Informational and error messages,

command level, 5-9, 5-52
/IN, INSERT switch, 7-14
Initializing,

DOS-11 volumes, 3-3
RT-11 volumes, 3-4

Initiation of installed utilities,
1-2

Initiation of uninstalled
utilities, 1-3

Initiating,
DMP, 4-2
EDI, 5-2
FLX, 3-2
LBR, 7-5
PIP, 2-1
RSX-llM utilities, 1-2
SLP, 6-2
VFY, 8-2

Input and secondary files, 5-7
Input file, FLX, 3-10
Input mode, entering text in, 5-11
Input/Output commands, 5-31
INSERT command, 5-18
Insert switch (/IN) , 7-14
Installed utilities, initiation

of, 1-2

KILL command, 5-52

/LB switch, 4-4
LBR command string, 7-5
LBR constraints, 7-27
LBR error messages, 7-27
LBR file option switches, 7-7
LBR, initiating, 7-5
LBR, librarian utility program,

7-1
/LE,/LI,/FU, list switches, 7-15
Librarian utility program {LBR),

7-1
Library files, 7-28
Library files, format of, 7-1
Library functions, combining, 7-26
Library header, 7-2
/LI,/LE,/FU, list switches, 7-15
/LI, LIST switch, 8-12
Line-by-line mode, 5-5
Line-by-line vs. block mode, 5-6
LINE CHANGE command, 5-43
Line delete {CTRL/U) , 5-7
Line pointer control {locative)

commands, 5-34
Line text editor {EDI), 5-1
LIST command, 2-17
LIST ON PSEUDO-DEVICE co:rnmand;

5-44

LIST ON TERMINAL command, 5-43
LIST switch (/LI), 8-12
List switches (/LI,/LE,/FU), 7-15
LOCATE command, 5-19
Locative commands, line pointer,

5-34
Logical block switch, 4-4
/LO, LOST switch, 8-12
Lost blocks, recovering, 8-9
LOST switch (/LO), 8-12

MACRO CALL command, 5-45
MACRO command, 5-44
MACRO EXECUTE command, 5-46
MACRO IMMEDIATE command, 5-47
/MD switch, 4-4
Memory dump switch, 4-4
MERGE command, 2-8
Mode,

block, 5-5
changing control, 5-4
line-by-line, 5-5

Mode switch, ASCII, 4-3
Mode switch, byte, 4-4
Mode switches, format, 3-11
Mode switches, transfer, 3-12
Modes, EDI control, 5-4
Module header, 7-4
Module name table, 7-4
Multiply-allocated blocks,

deletion of, 8-8
Multi-volume cassette support, 3-9

NEXT command, 5-19
NEXT PRINT command, 5-20
Normal operation, VFY, 8-2

OLDPAGE command, 5-37
OPENS command, 5-26
Outflespc, 1-4
OUTPUT command, 5-26
Output control switches, SLP, 6-4
Output files,

EDI, 5-7
FLX, 3-10
SLP, 6-4

OVERLAY command, 5-47

PAGE command, 5-38
PAGE FIND command, 5-38
PAGE LOCATE, 5-39
Paper tape support, FLX, 3-10
PASTE command, 5-48

Index-4

Peripheral Interchange Program
(PIP) , 2-1

PIP commands, 2-6
PIP 2-1
PIP command switches and sub-

switches, 2-3
PIP error codes, 2-41
PIP error messages, 2-31
PIP, Peripheral Interchange Pro-

gram, 2-1
Preparing to run EDI, 5-1
Preparing to run SLP, 6-1
PRINT command, 5-20
PROTECT command, 2-21
PURGE command, 2-24

/RC, READ CHECK switch, 8-13
READ CHECK switch (/RC) I 8-13
READ command, 5-32
REBUILD switch (/RE), 8-11
Recovering lost blocks, 8-9
REMOVE commqnd, 2-25
RENAME command, 2-26
RENEW command, 5-22
REPLACE switch (/RP), 7-17

global format, 7-17
local format, 7-18

/RE, REBUILD switch, 8-11
Restart, error messages requiring

EDI, 5-9, 5-59
Restoring a file; 8-7
Restrictions,

while running VFY, 8-1
when aborting VFY, 8-1

RETYPE command, 5-22
/RP, replace switch, 1-L1
RSX-llM utilities, initiating, 1-2
RT directory listing, 3-19
RT directory listings, 3-3
RT files, deleting, 3-4
RT volume directory manipulation,

3-3
RT-11 volumes, initializing, 3-4
Run EDI, preparing to, 5-1
Run SLP, preparing to, 6-1
Running VFY, restrictions while,

8-1

Sample editing session, 5-23
SAVE command, 5-48
SEARCH AND CHANGE command, 5-39
Search string constants, 5-8
Secondary files, input and, 5-7
SELECT PRIMARY command, 5-27
SELECT SECONDARY command, 5-28
Selective search switch (/SS) ,

7-23
Setup commands, 5-23

SIZE command, 5-29
SLP,

capabilities, 6-1

edit control characters, 6-7
editing examples, 6-10
environment, 6-1
error messages, 6-12
initialization, examples of, 6-3
initiating, 6-2
output control switches, 6-4
output files, 6-4
restrictions, 6-2
source language input program,

6-1
startup, 6-:2

Source language input program
(SLP) , 6-1

Specify base block address switch,
4-3

Specify first and last blocks
switch, 4-3

SPOOL command, 2-28
Spool switch (/SP) , 7-23
/SP, spool switch, 7-23
Squeeze switch (/SZ), 7-24
Startup, SLP, 6-2
String,

DMP command, 4-2
FLX command, 3-2
UTILITY command, 1-4
VFY command, 8-2

Subswitches, PIP command switches
and, 2-3

Switch,
/AS, 4-3
ASCII mode, 4-3
/BA, 4-3
/BL, 4-3
/BY, 4-4
byte mode, 4-4
/CO, COMPRESS, 7-7
/CR, CREATE I 7-9
/DE, DELETE, 7-11, 8-9
/DF, DEFAULT, 7-12
/DG, DELETE GLOBAL, 7-13
file header, 4-4
/FR, FREE, 8-12
/HD, 4-4
/ID, 4-4
Identification, 4-4
/IN, INSERT, 7-14
/LB I 4-4
/LI, LIST, 8-12
logical block, 4-4
/LO, LOST, 8-12
/MD, 4-4
memory dump, 4-4
/RC, READ CHECK, 8-13
/RE, REBUILD, 8-11
/RP, REPLACE, 7-17
specify base block address, 4-3

Index-5

Switch (cont.),
specify first and last blocks,

4-3
/SP, SPOOL, 7-23
/SS, SELECTIVE SEARCH, 7-23
/SZ, SQUEEZE, 7-24
/UP, UPDATE, 8-10

Switches (/LI,/LE,/FU), list, 7-15
Switches and subswitches, PIP

command, 2-3
Switches,

DMP, 4-2
file control, 3-15
FLX, 3-11
format mode, 3-11
LBR file option, 7-7
transfer mode, 3-13
VFY command, 8-4

System-wide conventions, 1-8

TAB command, 5-29
Terminal conventions, 5-7
Text access modes, 5-5
Text files, 5-6
Text modification and manipula-

tion commands, 5-40
TOP commands, 5-40
TOP OF FILE commands, 5-22
Transfer mode switches, 3-13
Transfers, file, 3-2
Truncated output file, utilizing

a, 5-62
TYPE command, 5-49

Uninstalled utilities, initiation
of, 1-3

UNLOCK command, 2-29
UNSAVE command, 5-50
UPDATE command, 2-30
UPDATE switch (/UP), 8-10
UPPER CASE command, 5-30
Use of carriage return, 5-7
Use of*, 5-8
User identification code, 1-5
Using EDI, 5-1
Using indirect files, 6-9
Utilities, initiating RSX-llM, 1-2
Utility command string, 1-4
Utilizing a truncated output file,

5-62

Validity check, 8-5
VERIFY command, 5-31
VFY,

command string, 8-2
command switches, 8-4
error codes, 8-16
error messages, 8-14
file structure verification

utility, 8-1
initiating, 8-2
normal operation, 8-2

Volume directory manipulation, RT,
3-3

Volumes, initializing DOS-11, 3-3
Volumes, initializing RT, 3-4

Warning messages, file access,
5-9, 5-58

Wild cards, asterisk convention,
2-4

WRITE command, 5-33

Index-6

READER'S COMMENTS

RSX-llM Utilities Procedures
Manual
DEC-11-0MUPA-B-D

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

0 Assembly language programmer

0 Higher-level language programmer

0 Occasional programmer (experienced)

0 User with little programming experience

0 Student programmer

0 Non-programmer interested in computer concepts and capabilities

CitY~~~~~~~~~~~~~~State~~~~~~~Zip Code~~~~~~~
or

Country

If you require a written reply, please check here. 0

---Fold l-lere---~

·-- Do Not Tear - Fold l-lere and Staple ---

BUSINESS REPLY MAIL
:\'O POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Communications
P. 0. Box F
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

digital equipment corporation

Pri~tcd ir US.A.

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	5-59
	5-60
	5-61
	5-62
	5-63
	5-64
	5-65
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	7-39
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	B-29
	B-30
	C-01
	C-02
	C-03
	C-04
	Index-1
	Index-2
	Index-3
	Index-4
	Index-5
	Index-6
	replyA
	replyB
	xBack

