’ RSX-11M
1(Utilities Procedures Manual

Order No. DEC-11-OMUPA-B-D

dlilgliftlall

RSX-11M
Utilities Procedures Manual

Order No. DEC-11-OMUPA-B-D

RSX-11M Version 2

digital equipment corporation - maynard. massachusetts

First Printing, November 1974
Revised, September 1975

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance to the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
Digital.

Copyright (:) 1974, 1975 by Digital Equipment Corporation

The HOW TO OBTAIN SOFTWARE INFORMATION pages, located at the.back of
this document, explain the various services available to Digital soft-
ware users,

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX

COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM

LIMITED RIGHTS LEGEND

Contract No.

Contractor or Subcontractor: Digital Equipment Corporation

All the material contained herein is considered limited rights data
under such contract.

CONTENTS

Page
PREFACE Xi
0.1 MANUAL OBJECTIVES AND READER ASSUMPTIONS xi
0.2 STRUCTURE OF THE DOCUMENT xi
0.3 ASSOCIATED DOCUMENTS . xiii
CHAPTER 1 INTRODUCTION 1-1
1.1 RSX~11M UTILITY PROGRAMS 1-1
1.2 INITIATING RSX-11M UTILITIES 1-2
1.2.1 Initiating of Installed Utilities 1-2
1.2.2 Initiation of Uninstalled Utilities 1-3
1.3 RSX-11M UTILITY COMMAND STRINGS 1-4
1.3.1 Command Format Conventions 1-6
1.4 INDIRECT FILES 1-7
1.5 SYSTEM-WIDE CONVENTIONS 1-8
CHAPTER 2 PERIPHERAL INTERCHANGE PROGRAM (PIP) 2-1
2.1 INTRODUCTION TO PIP 2-1
2.2 INITIATING PIP 2-1
2.3 PIP COMMAND STRING 2-1
2.3.1 Lists of File Specifiers 2-2
2.3.2 Defaults in File Specifiers 2-2
2.3.3 PIP Command Switches and Subswitches 2-3
2.3.4 Asterisk Convention - Wild Cards 2-4
2.3.4.1 Wild Cards in Output File Specifiers 2-4
2.3.4.2 Wild Cards in Input Specifiers 2-5
2.3.5 File Identification Option 2-5
2.4 PIP COMMANDS 2-6
2.4.1 APPEND Command (/AP) 2-7
2.4.2 COPY Command (No Switch) and MERGE Command
(/ME) 2-8
2.4.3 DEFAULT Command (/DF) 2-12
2.4.4 DELETE Command (/DE) 2-13
2.4.5 ENTER Command (/EN) 2-15
2.4.6 FREE Command (/FR) 2-16
2.4.7 IDENTIFY Command (/ID) 2-16
2.4.8 LIST Command (/LI) 2-17
2.4.9 PROTECT Command (/PR) 2-21
2.4.10 PURGE Command (/PU[:n]) 2-24
2.4.11 REMOVE Command (/RM) 2-25
2.4.12 RENAME Command (/RE) 2-26
2.4.13 SPOOL Command (/SP) 2-28
2.4.14 UNLOCK Command (/UN) 2-29
2.4.15 UPDATE Command (/UP) 2-30
2.5 PIP ERROR MESSAGES 2-31
2.6 PIP ERROR CODES 2-41

iii

CONTENTS (Cont.)

Page

w
|
=

CHAPTER 3 FILE TRANSFER PROGRAM (FLX)

INTRODUCTION TO FLX
INITIATING FLX
FLX COMMAND STRING
FILE TRANSFERS
DOS VOLUME DIRECTORY MANIPULATION
1 DOS Directory Listings
.2 Deleting DOS Files
3 Initializing DOS-11 Volumes
RT VOLUME DIRECTORY MANIPULATION
1 RT Directory Listings
.2 Deleting RT Files
3 Initializing RT-11 Volumes
FLX CASSETTE SUPPORT
1 Cassette File Formats
.2 Multi-Volume Cassette Support
2.1 FLX Output Files
2.2

WWWWwWwLWwWwiwbwbwWwwwwwwwwww www

. . .

HFowowvwwowowoNNddIJdJdooooautuTuu e WN -
.

B
!

o
!

.
!

WRWLWWWWWWWWWWWWW www
1
HEFOOVUBEDWWWWWWN N

.7.2. FLX Input File ~-10
FLX PAPER TAPE SUPPORT =10
. FLX SWITCHES -11
.9.1 Format Mode Switches 3-11
.9.2 Transfer Mode Switches 3-13
.9.3 File Control Switches 3-15
0 FLX ERROR MESSAGES 3-20
CHAPTER 4 FILE DUMP UTILITY (DMP) 4-1
4.1 INTRODUCTION TO DMP 4-1
4.2 INITIATING DMP 4-2
4.3 DMP COMMAND STRINGS 4-2
4.4 DMP SWITCHES 4-2
4.5 DMP ERROR MESSAGES 4-5
CHAPTER 5 LINE TEXT EDITOR (EDI) 5-1
. INTRODUCTION -

USING EDI

Preparing to Run EDI
Initiating EDI

Defaults in File Specifiers
EDI Control Modes

Changing Control Mode

Text Access Modes
Line-by-Line Mode

Block Mode

Line-by-Line Vs. Block Mode
Text Files

Input and Secondary Files
Output Files

Terminal Conventions
Carriage Return

Character Erase (RUBOUT) and Line Delete
(CTRL U)

.
.

=

.
.

.
~NNNJdooouvuuuinnds W
.
w N~

P
P
[]

N

(S S, IV, N, N,V RO G O, O S, N, N, T, |
! 1
NN dooutones s WNNEE

oottt

. . . .

NMNMNNNDINONNNNMNNDNDNDDNNNDNODNDDNDNDND
.

.
[N

ul
1
~

iv

oot otot,

« e e s e

wwhh N
« v
00 00 0
. .
N

[

.
.
& W

. .
> bW W W
. . .

b

e ¢« 0
.
. .

.

.

..
. .

H I R0~ U S WN

M WNoRO

.
.

BWWWWWWWWwwwwwwwwwN =

.

.
.

.
WWWWWWWWWWNN NN e e e

.

.

GOt UTULLMUTNUTUUTUUTUTUTUTUUTUTUTUTUT D B B DD D D DD DS D DD DD
e 4 e & e e 4 e e s " & & s+ 5 e e e e s+ e v . P e v e e .
HWOWdO Ul s WN -

o

. . .
.

. .
wN -

.

oottt ounutounuetuunouunutunuuuTunuuuoooutuunununTuonuTuTToTLor
« v e e o . o e e e e « o e o e s e s+ e« s e e o) . .« e . .

. .
WoodoyNd W

o e

. e

N =

CONTENTS (Cont.)

EDI Command Conventions

Use of *

Search String Constants

EDI ERROR REPORTING

Command Level Informational and Error
Messages

File Access Warning Messages

Error Messages Requiring EDI Restart
Fatal Error Messages
BASIC EDI OPERATION AND COMMANDS
Basic EDI Operations
Creating a File

Entering Text Into a File
Editing a File

Basic EDI Commands

ADD Command

ADD AND PRINT Command
CHANGE Command

CTRL/Z Command

DELETE Command

DELETE AND PRINT Command
EXIT Command

INSERT Command

LOCATE Command

NEXT Command

NEXT PRINT Command

PRINT Command

RENEW Command

RETYPE Command

TOP OF FILE Command
Sample Editing Session
EXTENDED EDI COMMANDS
Setup Commands

BLOCK ON/OFF Command
CONCATENATION CHARACTER Command
OPENS Command

OUTPUT ON/OFF Command
SELECT PRIMARY Command
SELECT SECONDARY Command
SIZE Command

TAB ON/OFF Command

UPPER CASE ON/OFF Command
VERIFY ON/OFF Command

EDI Input/Output Commands
FILE Command

READ Command

WRITE Command

Line Pointer Control (Locative) Commands
BEGIN Command

BOTTOM Command

END Command

FIND Command

OLDPAGE Command

PAGE Command

PAGE FIND Command

PAGE LOCATE Command
SEARCH AND CHANGE Command

CONTENTS (Cont.)

Page
5.5.3.10 TOP Command 5-40
5.5.4 Text Modification and Manipulation Commands 5-40
5.5.4.1 ERASE Command 5-42
5.5.4.2 FORM FEED Command 5-43
5.5.4.3 LINE CHANGE Command 5-43
5.5.4.4 LIST ON TERMINAL Command 5-43
5.5.4.5 LIST ON PSEUDO-DEVICE Command 5-44
5.5.4.6 MACRO Command 5-44
5.5.4.7 MACRO CALL Command 5-45
5.5.4.8 MACRO EXECUTE Command 5-46
5.5.4.9 MACRO (IMMEDIATE) Command 5-47
5.5.4.10 OVERLAY Command 5-47
5.5.4.11 PASTE Command : 5-48
5.5.4.12 SAVE Command 5-48
5.5.4.13 TYPE Command 5-49
5.5.4.14 UNSAVE Command 5-50
5.5.5 EDI Close Operation Commands 5-50
5.5.5.1 CLOSE Command 5-51
5.5.5.2 CLOSES Command 5-51
5.5.5.3 CLOSE AND DELETE Command 5-51
5.5.5.4 EXIT AND DELETE Command 5-52
5.5.5.5 KILL Command 5-52
5.6 EDI ERROR MESSAGES 5-52
5.6.1 Command Level Informational and Error Messages 5-52
5.6.2 File Access Warning Messages 5-58
5.6.3 Error Messages Requiring EDI Restart 5-59
5.6.4 Fatal Error Messages 5-62
CHAPTER 6 SOURCE LANGUAGE INPUT PROGRAM (SLP) 6-1
6.1 INTRODUCTION TO SLP 6-1
6.2 PREPARING TO RUN SLP 6-1
6.2.1 Capabilities 6-1
6.2.2 Environment 6-1
6.2.3 Restrictions 6-2
6.3 INITIATING SLP 6-2
6.4 SLP STARTUP 6-2
6.4.1 Defaults in File Specifiers 6-3
6.4.2 Examples of SLP Initialization 6-3
6.5 SLP OUTPUT CONTROL SWITCHES 6-4
6.6 SLP OUTPUT FILES 6-4
6.7 SLP EDIT COMMANDS 6-6
6.7.1 SLP Edit Control Characters 6-6
6.8 INDIRECT FILES 6-8
6.8.1 Creating an Indirect File 6-8
6.8.2 Using Indirect Files 6-9
6.9 SLP EDITING EXAMPLES 6-9
6.10 SLP ERROR MESSAGES 6-12
CHAPTER 7 LIBRARIAN UTILITY PROGRAM (LBR) 7-1
7.1 INTRODUCTION TO LBR 7-1
7.1.1 Format of Library Files 7-1
7.1.2 Library Header 7-2
7.1.3 Entry Point Table 7-2
7.1.4 Module Name Table 7-4
7.1.5 Module Header 7-4

vi

CONTENTS (Cont.)

Page
7.2 INITIATING LBR 7-5
7.3 LBR COMMAND STRING 7-5
7.4 DEFAULTS IN LBR FILE SPECIFIERS 7-5
7.5 LBR FILE OPTION SWITCHES 7-7
7.5.1 Compress Switch (/CO) 7-7
7.5.2 Create Switch (/CR) 7-9
7.5.3 Delete Switch (/DE) 7-11
7.5.4 Default Switch (/DF) 7-12
7.5.5 Delete Global Switch (/DG) 7-13
7.5.6 Insert Switch (/IN) 7-14
7.5.7 List Switches (/LI, /LE, /FU) 7-15
7.5.8 Replace Switch (/RP) 7-17
7.5.¢9 Spool Switch (/SP) 7-23
7.5.10 Selective Search Switch (/SS) 7-23
7.5.11 Squeeze Switch (/SZ) 7-24
7.6 COMBINING LIBRARY FUNCTIONS 7-26
7.7 LBR CONSTRAINTS 7-27
7.8 LBR ERROR MESSAGES 7-27
7.8.1 Effect of Fatal Errors on Library Files 7-28
7.8.2 Error Messages 7-28
CHAPTER 8 FILE STRUCTURE VERIFICATION UTILITY (VFY) 8-1
8.1 INTRODUCTION TO VFY 8-1
8.2 INITIATING VFY 8-2
8.3 VFY COMMAND STRING 8-2
8.3.1 Defaults in File Specifiers 8-3
8.4 VFY COMMAND SWITCHES 8-4
8.4.1 Validity Check 8-5
8.4.1.1 File Error Reporting 8-6
8.4.1.2 Files Marked-for-Delete 8-7
8.4.1.3 Deletion of Multiply Allocated Blocks 8-8
8.4.1.4 Elimination of Free Blocks 8-8
8.4.1.5 Reccvering Lost Blocks 8-9
8.4.2 DELETE Switch (/DE) 8-9
8.4.3 UPDATE Switch (/UP) 8-10
8.4.4 REBUILD Switch (/RE) 8-11
8.4.5 FREE Switch (/FR) 8-12
8.4.6 LOST Switch (/LO) 8-~12
8.4.7 LIST Switch (/LI) 8-12
8.4.8 READ CHECK Switch (/RC) 8~13
8.5 VFY ERROR MESSAGES 3-14
8.6 VFY ERROR CODES 8-16
APPENDIX A COMMANDS AND SWITCHES A-1
A.l INTRODUCTION A-1
A.2 PIP COMMAND SUMMARY A-1
A.3 FLX COMMAND SUMMARY A-3
A.4 DMP COMMAND SUMMARY A-5
A.5 EDI COMMAND SUMMARY A-5
A.6 SLP COMMAND SUMMARY A-12
A.7 LIBR COMMAND SUMMARY A-13
A.8 VFY COMMAND SUMMARY A-14

vii

CONTENTS (Cont.)

Page
APPENDIX B LBR, EDI AND DMP EXAMPLES B-1
B.1 SAMPLE LISTINGS FOR LBR LIST SWITCHES
(OBJECT LIBRARY) B-1
B.1l.1 List Module Names B-1
B.1.2 List Module Names and Full Module
Information B-2
B.1.3 List Module Names, Full Module Information
and Module Entry Points (Global Symbols) B-3
B.1.4 List Module Names and Module Entry Points
(Global Symbols) B-7
B.2 SAMPLE LISTING FOR LBR LIST SWITCHES
(MACRO LIBRARY) B-13
B.2.1 List Module Names B-13
B.2.2 List Module Names and Full Module Information B-14
B.3 SAMPLE EDITING OPERATIONS B-15
B.3.1 File Editing. Sample B-16
B.3.2 SAVE and UNSAVE Example B-20
B.3.3 Use of Immediate Macro Command B-23
B.3.4 Use of Macro Commands B-24
B.4 SAMPLE DMP LISTINGS B-26
B.4.1 Use of /LB Switch B-26
B.4.2 "Standard" Command Line B-26
B.4.3 Dump Only the Header from SYSGEN.CMD B-28
B.4.4 Use of /BA Switch B-28
APPENDIX C RSX~11M PRINT SPOOLER TASK c-1
Cc.1 RECEIVE QUEUE OPERATION c~1
Cc.2 TEXT REQUIREMENTS c-1
c.3 TASK BUILD INFORMATION c-2
Cc.4 PRT ERROR MESSAGES Cc=-3
INDEX Index-1
FIGURES
Page
Figure 2-1 Results of COPY Command With and Without
/NV Specified 2-12
2-2 Sample Directories Before and After
Execution of /EN Command 2-16
2-3 Directory Listing Examples 2-20
2-4 Format of Protection Word 2-23
2-5 Use of Purge Switch 2-25
2~6 Results of Rename Command With and Without
/NV Specified 2-28
3-1 DEC Standard Cassette File Structure 3-6
3-2 DEC Standard Cassette File Label 3=7
3-3 DOS Directory Listings 3-18
3-4 RT Directory Listing 3-19
7-1 General Library File Format 7-2
7-2 Contents of Library Header 7-3
7-3 Format of Entry Point Table Element 7-4

viii

CONTENTS (Cont.)

FIGURES (Cont.)

Page
7-4 Format of Module Name Table Element 7-4
7-5 Module Header Format 7-5
7-6 Sample Files Used in LBR Examples 7-20
7-7 Output Library File After Execution of
Example 1 7-21
7-8 Output Library File After Execution of
Example 2 7-21
7-9 Output Library File After Execution of
Example 3 7=-22
7-10 MACRO Listing Before and After Running
LBR with /SZ Switch 7-26
8-1 VFY Listing Sample Using the /LI Switch 8-13
c-1 PRT Send Data Buffer Format c-2
TABLES
Page
Table 2-1 PIP Default File Specifiers 2-2
2-2 PIP Functions and Commands 2-6
2-3 PIP COPY and MERGE Command Subswitches 2-10
2-4 LIST Command Switches 2-18
2-5 PIP Error Codes 2-41
3-1 FLX Format Mode Switches 3-12
3=-2 FLX Transfer Mode Switches 3-13
3-3 FLX File Control Switches 3-15
4-1 DMP Switches 4-3
5-1 EDI Default File Specifiers 5-4
5~2 Line-by-Line vs. Block Mode 5-6
5-3 Basic EDI Commands 5-14
5-4 EDI Setup Commands 5-24
5-5 EDI Input/Output Commands 5-32
5-6 EDI Locative Commands 5-35
5-7 EDI Text Modification and Manipulation
Commands 5-41
5-8 EDI Close Operation Commands 5-50
6-1 Defaults in SLP File Specifiers 6-3
6-2 SLP Output Control Switches 6-5
6-3 SLP Edit Control Characters 6-7
7-1 Defaults in LBR File Specifiers 7-6
7~2 LBR File Option Switches 7-7
8-1 VFY Default File Specifiers 8-4
8-2 VFY Functions and Switches 8-4
8-3 VFY Error Codes 8-17

ix

PREFACE

0.1 MANUAL OBJECTIVES AND READER ASSUMPTIONS

The goal of this manual is to describe the utility programs supplied
with the RSX-1l1IM and to provide all the information necessary to use
these programs. Within the RSX-11M utility program set, programs are
provided to perform the following functions:

. File transfer

. File conversion

. File listing

. Interactive context editing

. Batch-oriented editing

. Library maintenance

. File structure verificatiocn
s

on Files-1l disk volume

It is assumed the reader is familiar with the PDP-1l computer, its
peripheral devices and the software supplied with the RSX-11M system.
Users of this manual should be also familiar with the RSX-11M Operator's

Procedure Manual which provides supporting information necessary for
the full utilization of the RSX-11M utilities.

This manual is organized and written as a reference manual and our
reader class assumptions regquire a system programmer level of exper-—
tise; thus, the manual will not contain definitions of data processing
terms and concepts familiar to this level of expertise.

0.2 STRUCTURE OF THE DOCUMENT

This document contains an introductory chapter which provides general
operating information and a separate chapter for each utility program,
containing specific operating information.

Chapter 1 describes the procedures required for initiating the utility

programs, defines command formats and command strings, and identifies

system-wide conventions.

X1

Chapter 2 details the Peripheral Interchange Utility Program (PIP), a
file transfer programs:

Chapter 3 details the File Transfer Utility program (FLX), a file con-
version program.

Chapter 4 describes the File Dump Utility program (DMP), a file listing
program.

Chapter 5 contains detailed information on the Line Text Editor Utility
program (EDI), an interactive context editing program.

Chapter 6 details the Source Language Input Utility program (SLP), a
batch-oriented editing program.

Chapter 7 describes the Librarian Utility Program, a library mainte-
nance program.

Chapter 8 details the File Structure Verification Utility program
(VFY), a file structure verification program for Files-1l1l disk volumes.

Appendix A contains a command summary for each utility.
Appendix B contains sample LBR and DMP listings, and EDI examples.
Appendix C contains a description of the print spooler task.

Throughout this manual the following conventions are used to describe
examples and command string formats:

a.</indicates a carriage return
b. @indicates ALTMode or ESCape key

c. In examples, messages which are typed out by the system,
are underlined.

d. In all cases, except where [UIC] is specified, brackets
signify optional parameters.

e. A indicates a space.

Additional conventions and definitions are given in Chapter 1.

Xii

0.3 ASSOCIATED DOCUMENTS

. .
Other manuals closely allied to the purposes of this document are
.

Order No. DEC-11-OMUGA-B-D.

The Documentation Directory defines the

intended readership of each manual in the RSX-11M/RSX-11S set and
provides a brief synopsis of each manual's contents.

xiii

CHAPTER 1

INTRODUCTION

1.1 RSX-11M UTILITY PROGRAMS

RSX-11M
programs.

provides the user with a comprehensive set of utility
The utility programs and their identifiers are as follows:

Peripheral Interchange Utility Program (PIP)

PIP is a file transfer program that provides the user with
facilities for copying, renaming, 1listing, deleting, and
unlocking files.

File Transfer Utility Program (FLX)

FLX is a file conversion program that provides the user with
a facility for transferring DOS-11 or RT-11 files to Files-11
volumes and vice versa.

File Dump Utility Program (DMP)

DMP is a file listing program that provides the user with a
facility for obtaining a printed copy of the contents of
files.

Line Text Editor Utility Program (EDI)

EDI is an interactive context editing program that provides
the user with a facility for creating and maintaining text
files.

Source Language Input Utility Program (SLP)

SLP is a batch-oriented editing program that ©provides h

the
user with a facility for creating and maintaining text files
on disk.

Librarian Utility Program (LBR)
LBR is a library maintenance program that provides the user
with a facility for creating, modifying, updating, listing,
and maintaining library files.

File Structure Verification Utility Program (VFY)

VFY is a disk verification program that provides the user
with a facility for verifying the consistency and validity of
the file structure on a Files~-1l1l volume.

1.2

INITIATING

INTRODUCTION

RSX-11M UTILITIES

There are six methods for initiating RSX-11M utility programs. These

metho

ds are d

escribed below. The first four methods

utility program is installed and ready to be executed.

two

cause the

utility program to be installed, exec

removed on exit.

1.2.1

NOTE

The RSX-11M systems provided in the
distribution kit reguire that all
utilities be initiated via methods five
and six. However, using the INSTALL MCR
Command (see RSX~11M Operator's
Procedures Manual) , the user can
permanently install the utility programs
in his system and thus make the first
four methods of initiation available.

loads, executes the specified command (s

apply when the
The remaining
uted, and then

}, and exits.

At this point, the user enters the utility command

string to execute the desired function.

When the utility has completed processi

ng a command

string it again issues a prompt. The user can either

Initiation of Installed Utilities

Method 1. >utilityname command string,/

Method 2. >utilityname<’/
responds with the following prompt.
utilityname>
enter another command string or enter
terminate the utility.

Method 3. >RUN ...utilityname .’/

responds with the following prompt:

utilityname>

a CTRL/Z* to

At this point, the user enters the utility command

string to execute the desired function.

* CTRL/Z is entered by holding down the CTRL key while
depressing the 2 key.

1-2

simultaneously

Method 4.

INTRODUCTION

When the utility has completed processing a command
string, it again issues a prompt. The user can
either enter another command string or enter CTRL/Z
to terminate the utility.

>RUN ...utilityname/UIC=[group,member]./

The UIC under which the utility executes is explicity
specified for this run only. Normally, wutility
programs execute with the default UIC associated with
the initiating terminal (see SET /UIC MCR command
described in RSX-11lM Operator's Procedures Manual).
When the utility is loaded, it issues the following
prompt:

utilityname>

At this point, the user enters the utility command
string to execute the desired function.

When the utility has completed processing a command
string, it again 1issues a prompt. The user can
either enter another command string or enter CTRL/Z
to terminate the utility.

NOTE

Methods 3 and 4 should not be used on
multi-user RSX-11M systems.

1.2.2 1Initiation of Uninstalled Utilities

Method 5.

Method 6.

>RUN S$Sutilityname./
causes the utility to be installed and loaded, and to
issue the following prompt:

utilityname>

At this point, the user enters the wutility command
string to execute the desired function.

When the utility has completed processing a command
string, it again 1issues a prompt. The user either
enters another command string to execute the desired
function or enters CTRL/Z to cause the utility to
exit. After exiting, the utility is removed from the
system.

>RUN S$utilityname/UIC=[group,member]_/

INTRODUCTION

The UIC under which the utility executes is explicity
specified for this run only. Normally, wutility
programs execute with the default UIC associated with
the 1initiating terminal (See SET /UIC MCR command
described in the RSX-11M Operator's Procedures

Manual) . When the utility is installed and loaded,

it issues the following prompt:

utilityname>

At this point, the user enters the utility command
string to execute the desired function.

When the utility has completed processing a command
string, it again 1issues a prompt. The user either
enters another command string to execute the desired
function or enters CTRL/Z to cause the utility to
exit. After exiting, the utility is removed from the
system.

1.3 RSX-11M UTILITY COMMAND STRINGS

Commands to RSX-11M utilities are expressed in the following format:

outflespc-1,...,outflespc-n=inflespc-1,...,inflespc~n

@indirect
where:
outflespc

inflespc

or

is an output file specifier.
is an input file specifier.

Any number of file specifiers is possible, the actual
number being determined by the task which will use
the file command string. 1In no case, however, can
the total 1length of the command string exceed the
maximum line length (80 characters).

Each file specifier (whether input or output) has the
following format:

dev:[g,m]filename.typ;ver/sw.../sw
where:
dev: is the physical device on which the
volume containing the desired file is

mounted; for example, DKO: or DTl:.
The name consists of 2 ASCII characters

INTRODUCTION

[g,m]

filename

typ

ver

/sw

followed by an optional 1- or 2-digit
(cctal) unit number and a colon.

is the user identification code (UIC),
consisting of a group number and a
member number, associated with the user
file directory (UFD) containing the
desired file.

is the name of the file. 1In RSX-11M, a
filename can be up to nine alphanumeric
characters 1in length. Filename and
type are always separated by a period
().

is a means of distinguishing among
forms of one file. For example, a
source FORTRAN program might be named
COMP.FTN, while the object code
associated with that program might be
called COMP.OBJ. File type and version
always are separated by a semicolon
(:). File type may be up to 3
alphanumeric characters.

is an octal number used to
differentiate among versions of a file.
For example, if a file is first created
using the editor, it 1is assigned a
version number of 1. If the file 1is
subsequently opened for editing, the
editor keeps the original file for
backup and creates a new file with the
same filename and type, but with a
version number of 2. Version is in the
range 0 thru 77777 (8).

is a 2-character ASCII name identifying
a switch option. The switch itself may
have three forms. If the switch
designator, for example, is SW, then:

/SW sets the switch
action;

/-SW, negates the
switch action,
and

/NOSW also negates
the switch
action.

In addition, the switch identifier may
be followed by any number of values.
The permitted values are ASCII strings,
octal numbers, and decimal numbers.

1-5

INTRODUCTION

The default for a numerical value is
octal. Decimal values are terminated
by a decimal point. Values preceded by
a pound sign (#) are octal; the octal
option is included for use as explicit
documentation, since a numeric value
not terminated with a decimal point is
an octal value. Finally, any numeric
value may be preceded by a + or - sign;
plus is the default.

If explicit octal (#) is used, the sign
(if the sign is used) must precede the
(pound) sign. The following are
valid switch specifications:

/SW:27:MAP:29.

/~SW

/NOSW:~-#50:SWITCH
The number of permissible values and
the switch interpretations themselves
depend entirely on the particular task
to which they are directed.

@indirect is an indirect command file specifier in the
following format:

@dev:[g,m] filename.typ;ver

1.3.1 Command Format Conventions

Throughout this manual, the following conventions are used in
presenting command formats.

[] Entries within sguare brackets indicate optional items.
The wuse of such items may be for readability, e.g.,
BL[OCK]; or to denote repetition, e.g.,[n].
EXCEPTION

[g,m] The square brackets are REQUIRED when
specifying a User's Identification Code.

A One or more spaces.

Underlined characters denote those displayed by the
system.

ABC Characters in upper <case indicate constants, 1i.e.,
items the user must enter exactly as presented.

filespec A file specifier, i.e., dev:[g,m]filename.type;ver

1-6

INTRODUCTION

dev A device specifier, i.e., device name and unit number,
such as DK1l:.

type The file type, such as .CMD, .0BJ, or .OLB.
ver The version number of the file.
[g,m] The User's Identification Code composed of two octal

numbers separated by a comma and surrounded by sguare
brackets. The left-hand number is the wuser's group
number ; the right-hand number 1is the user's member
number .

[uic] Also used to indicate the User's Identification Code;
[uic] and [g,m] are used interchangeably in the RSX-11M
documentation.

@ Indicates an indirect file specifier follows.
/ Indicates that a command switch follows. If a minus
sign (-) or the letters NO are placed between the slash

(/) and the switch name, it denotes that the switch
action is negated.

1.4 INDIRECT FILES

An indirect file is a sequential file containing a 1list of commands
exclusive to, and interpretable by a single task, wusually a
system-supplied component of RSX-11M, such as MACRO-11], the Task
Builder or a utility program.

Indirect files are initiated by replacing the file specification
command string required by a task with a filename string preceded by
an at sign (@).

For example; to initiate a file of MACRO-11 commands, the wuser would
input:

After MACRO-11 is initiated, it accesses the file INPT.CMD for all its
commands.

An indirect file may contain any command interpretable by the task to
which it is directed, but no others.

Indirect files may not contain indirect file references (i.e., only
one level of command file indirection is permitted).

A complete description of indirect files for use with MCR is contained
in the RSX-11M Operator's Procedures Manual.

1-7

INTRODUCTION
NOTES

1. The default file type for indirect
command files is .CMD.

2. Other default values for indirect
command file specifiers are:

dev = SYO0:

[uic] = The UIC wunder which
the specified utility
is running.

filename = No default.

type = .CMD

ver = Latest version

1.5 SYSTEM-WIDE CONVENTIONS

There are a number of system~wide conventions of which the user should
be aware.

1. The use of NO is the eguivalent of a minus sign (=) in
specifying the negation of a switch, e.qg.,

/NOSP is equivalent to /-SP

2. The alphanumeric file names and types are composed of the
letters A through Z and the numbers 0 through 9.

3. All numbers followed by a period (.) denote decimal numbers;
others are interpreted as octal numbers.

CHAPTER 2

PERIPHERAL INTERCHANGE PROGRAM (PIP)

2.1 INTRODUCTION TO PIP

The Peripheral Interchange Program (PIP) is an RSX-11M file utility
program that transfers data files from one standard Files-11 device to
another. PIP also performs simple control functions. The major
functions performed by PIP are:

° Copy files from one device to another
° Delete files

) Rename files

° List file directories

° Set the default device and UIC for PIP
] Unlock files

2.2 INITIATING PIP

All RSX-11M utility programs can be initiated in several ways. These
methods are described in Section 1.2. The methods for PIP are:
>PIP,/

>PIP command string _/

>RUN ...PIP_/

2RUN ...PIP/UIC=[group,member]_/
>RUN $PIP_/

>RUN S$PIP/UIC=[group,member]s/

2.3 PIP COMMAND STRING

All commands to PIP are issued by entering PIP command strings through
the initiating terminal. The format of the elements which comprise
PIP command strings differs for each command. Therefore, the command
string formats will be individually described in their respective
sections.

2-1

PERIPHERAL INTERCHANGE PROGRAM (PIP)

2.3.1 Lists of File Specifiers

All of the commands, except /IDENTIFY and /DEFAULT, accept a list of
file specifiers on which to operate. 1In all cases, the lists have the
property that the device, directory, filename, and type are propagated
down the 1list to provide defaults for missing fields in subsequent
file specifiers.

2.3.2 Defaults in File Specifiers

If any of the elements in the file specifier, except the filename and
type, are omitted, PIP uses a default. These default values are
listed in Table 2-1.

Table 2-1
PIP Default File Specifiers

Element Default Value

dev: SY0: -- For first file specifier, the unit on
which the system disk is mounted, or the default
specified by the PIP /DF switch; otherwise, the
same as specified or assumed for previous file
specifier.

[uic] For first file specifier, the default UIC under
which PIP is running (usually [200,200]), the UIC
specified by the MCR SET command, or the default
specified by the PIP /DF switch; otherwise, the
same as specified or assumed for previous file
specifier.

filename No default for the first file specifier. For the
second through n file specifiers, the last
previously specified filename. An asterisk (wild
card) specification is valid (see Section 2.3.4).

.typ No default for the first file specifier. For the
second through n file specifiers, the last
previously specified .typ. An asterisk (wild
card) specification is valid (see Section 2.3.4).

;version The default for input files 1is the most recent
version number. The default for output files is
the next higher version number, or, version one if
the file doesn't already exist 1in the output
directory. An exception is the PIP file delete
function that requires an explicit version number.

PERIPHERAL INTERCHANGE PROGRAM (PIP)
NCTE

A version number of ;-1 may be used to
specify the oldest version of a file. An

evn'l!'ﬁ\'l- ver ion nf « N Ar . mav ho
xplicit wversien o¢f ;0 or ; may be
specified to signify the most recent
version.

2.3.3 PIP Command Switches and Subswitches

A switch specification consists of a slash (/) followed by a
2-character switch name, and 1is optionally followed by a subswitch
name separated from the switch code by a slash. The subswitch 1itself
can have arguments which are separated from the subswitch by a colon
(¢). If more than one subswitch is used, each is preceded by a slash.

When present, a switch must follow any file or UIC specification;
that is, a switch cannot appear before the filename, type, version, or
UIC of the file on which the switch 1is to operate. However, some
switches may be specified without any file specification at all.

Command switches are global, that is, they may be specified once for
an entire 1list of file specifiers, and may appear on either side of
the equal sign. For example:

stringl,string2,string3/DE

The /DE switch applies to all of the strings; the files described by
the file specifiers would be deleted.

Switch arguments are specified as octal, decimal, or alphabetic
characters, depending on the switch. These values are discussed in
detail in the sections which discuss the individual FIP commands.

Command subswitches are local, that is, they only apply to the file
specifier which immediately precedes them. In the following example,
the NEW VERSION subswitch is applied to a particular file (ASDG.MAC).
(The NEW VERSION subswitch 1is used with the RENAME command in this
example) :

* .SMP=PRTX.QRT,ASDG.MAC/NV,KG.BAC/RE

In this example, files PRTX.QRT and KG.BAC are renamed, but they
maintain their associated version numbers. File ASDG.MAC is also
renamed, but the version number is forced to one greater than the
latest version of file ASDG.SMP.

NOTE

If a subswitch is applied to the first
file specifier 1in a collection of file
specifiers, and no command switch has
been specified, PIP assumes that the
command with which the subswitch 1is
associated is the one reqguested, and the
entire 1list of files 1is treated as
though the command were actually

PERIPHERAL INTERCHANGE PROGRAM (PIP)

specified.

Example:
PIP>FILE1/GR:R/WO,FILE2/GR:RW_/

This command is equivalent to:
PIP>FILE1/GR:R/WO,FILE2/GR:RW/PR _/

This example would result in the
following file protection:

a. FILE]l SYSTEM - Unchanged
MEMBER - Unchanged
GROUP - Read access
WORLD - No access
b. FILE2 SYSTEM - Unchanged
MEMBER - Unchanged
GROUP - Read/write access
WORLD - Unchanged

2.3.4 Asterisk Convention -~ Wild Cards

PIP allows wild cards to be specified by means of an asterisk
character in the file specifier. The * character in one or more
fields of a file specifier stands for "all"; e.g., all files, types
or all versions. Wild card use, however, is restricted in some cases.
Sections 2.3.4.1 and 2.3.4.2 describe the allowable uses and
restrictions on wild cards for input and output files.

2.3.4.1 Wild Cards in Output File Specifiers - Use of wild cards in
the output file specifiers is very restricted. 1In the following types
of command actions, the output file specifier may not have any wild
cards:

] Copying a single file

) Concatenating files to a specified file
° Appending to an existing file

[Updating (rewriting) an existing file

° Listing a directory

When a list of files is to be copied, the output specifier must be
* %;*% or default.

For the RENAME and ENTER commands, the output specifier may have wild
cards mixed with specified fields. Furthermore, a wild card field may
optionally be left null. 1In either case, the equivalent field of the
input file specifier is used.

In all cases where wild cards are allowed in the output file

PERIPHERAL INTERCHANGE PROGRAM (PIP)

specifier, the wild card UIC form [*,*] (but not [n,*] or [*,n]) may
be used to indicate that the output UIC is to be the same as the input
UIC.

2.3.4.2 Wild Cards in Input Specifiers - The following wild card
features are provided for input file specifiers:

° * *;* means all versions of all files.

° * .DAT;* means all versions of all files of type DAT.

. TEST.*;* means all versions and all types of files named
TEST.

. TEST.DAT;* means all versions of file TEST.DAT.

° *.* means the most recent version of all files.

. * .DAT means the most recent version of all files with type
DAT.

. TEST.* means the most recent version of all types of files

named TEST.
° TEST.DAT means the most recent version of TEST.DAT.
The following wild card UIC features are also provided:

PY [*¥,*] means all group, member number combinations (each from
1 to 377 octal);

° [nl,*] means all member numbers under group nl; and

. [*,n2] means all group numbers for member n2.

2.3.5 File Identification Option

Wherever a file specifier is used to describe an already existing
file, the /FI (file identification) option can be used. This option
allows the user to specify the file he wants to access by specifying
the device, unit, and 1its unique file identification number. This
file identification is assigned to the file at file creation time by
the RSX-11M system. Although the file identification number of a file
is normally invisible to the user, it can be obtained by using the PIP
FULL LIST command /FU. (Section 2.4.8 contains a description of the
LIST command). This will give the user a full or complete directory
listing of his files. The full list of his directory contains, among
other pertinent information about the file, its unigue file
identification number. The user need only specify this number using
the /FI option to access his files. The /FI option is specified 1in
the following format:

/FI:nl:n2

where nl and n2 are the file number and file sequence number of the
file, respectively.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

2.4 PIP COMMANDS

PIP commands are in the form of switches appended to optional file
specifiers. Command switches and functions are summarized in Table
2-2.

NOTE

Only one of the PIP command switches
listed in Table 2-2 can appear on a
command line. More than one subswitch
on a line is legal, as described in the
following command descriptions.

Table 2-2
PIP Functions and Commands
Command Switch Function
Append /AP Add files to the end of an existing file.
Copy No switch Copy a file.
Default /DF Change PIP's default device or UIC.
Delete /DE Delete one or more files.
Enter /EN Enter a synonym for a file in a directory
file.
Free /FR Print out available space on specified
volume.
Identify /1D Identify the version of PIP being used.
List /LI List a directory file.
Merge /ME Concatenate two or more files 1into one
file.
Protect /PR Change the protection of a file.
Purge /PU:n Delete obsolete version(s) of a file.
Remove /RM Remove a file entry from a directory.
Rename /RE Change the name of a file.
Spool /SP Specify a list of files to be printed and
deleted.
Unlock /UN Unlock a file.
Update /UP Rewrite an existing file.

2-6

PERIPHERAL INTERCHANGE PROGRAM (PIP)

2.4.1 APPEND Command (/AP)

FUNCTION

The APPEND command opens an existing file and appends the input
file(s) onto the end of it.

FORMAT
outfile=infile-1[,infile-2,...,infile-n] /AP[/FO]
where:
outfile is the output file specifier in the format:

dev:[uic] filename.typ;ver |[/AP] [/FO]

NOTES

1. No wild card specifiers are allowed in
the output file specifier.

2. The file type and record attributes are
taken from the existing file.

3. No defaults are allowed for the file
name or file type.

infile is the input file specifier in the format:

dev:[uic]filename.typ;ver/AP

NOTE

If filename, file type, and version are
null, then *.*;* is the default.

/AP is the APPEND switch

/FO is the Set File Ownership subswitch which
specifies that the owning UIC of the output file
corresponds to the directory into which the file
was entered. If the /FO subswitch 1is not
specified, the owning UIC of the new file 1is the
UIC under which PIP is running, regardless of the
directory into which the files were entered (see
COPY command for examples using /FO).

EXAMPLE
PIP>DK1:FILE1.DAT;1=FILE2.DAT;]1,FILE3.DAT;]1,FILE4.DAT;1/AP,/

FILE1.DAT;1 on DK1l: will be opened, and the contents of
FILE2.DAT;1, FILE3.DAT;l1 and FILE4.DAT;1 will be appended to it.

2-7

PERIPHERAL INTERCHANGE PROGRAM (PIP)

2.4.2 COPY Command (No Switch) and MERGE Command (/ME)

FUNCTION

The COPY command is used to create a copy of a file on the same or
another device. The COPY command is the PIP default command, if an
implicit output file specifier 1is used and no command switch is
specified. When an explicit output file specifier and only one input
file specifier are contained in a command 1line, the PIP default
command 1is also COPY. The MERGE command is used to create a new file
from two or more existing files. If an explicit output file specifier
is wused and more than one input file is named without an appended
switch, the MERGE command becomes the PIP default command.

FORMAT
outfile = infile-1[,infile-2,...,infile-n]
where:
outfile is the output file specifier in the format:

dev:[uic] filename.type;ver/subswitch

NOTE

If the output filename, file type, and
version are either null or *.*;*,6 the
input filename, file type, and version
are preserved. See /NV and /SU
subswitches. If any of the output file
name, file type, or version fields is
present, none may be wild and there may
be only one input file specifier for a
COPY command.

infile is the input file specifier in the format:

dev: [uic] filename.type;ver/subswitch

NOTE

If the filename, file type, and version
fields are all null, then *.*;* is the
default.

PERIPHERAL INTERCHANGE PROGRAM (PIP)
EXAMPLES
1. PIP>DK1:SAMP.DAT=DK2:TEST.DAT_/

Copy the latest version of file TEST.DAT from DK2:
as SAMP.DAT.

r
o]

2
=
[

2. PIP>DK1:[*,*]=DKO0:[11,*]_/

Copy all files from all members in group number 11 of DKO:
to DK1l:, preserving the UIC.

3. PIP>LP:=*,LST_/J

Copy the latest version of all files with a type of .LST to
the line printer.

4, PIP>DK1:SAMP.DAT=DX2:TEST.DAT;1,NEW.DAT;2/ME ./

Concatenate version 1 of file TEST.DAT and version 2 of file
NEW.DAT from DK2: generating file SAMP.DAT on DKI1.

5. PIP>DK1:=TESTPROG.MAC,.OBJ _/

Copy the latest versions of TESTPROG.MAC and TESTPROG.OBJ
from the system device to DKl:.

6. FPIP>DK1:=DK0:*.DAT;*_/

Copy all versions of all of the files of the type DAT from
DKO: to DKl:.

7. PIP>DT0:=[200,10]*.*;*_/
Copy all files under [200,10] from system device to DTO:.

8. PIP>DP0:[2G0,10}=DTO:*.*_)J

|—

Copy all of user's files from DTQ: to DP0:[200,10].

The optional subswitches described in Table 2-3 are used with both the
COPY and MERGE comnmands.

2-9

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Table 2-3
PIP COPY and MERGE Command Subswitches
Y
Subswitch Description
NOTE

All of the subswitches below can appear on
either the output or input file specifier.
If the subswitch is placed on an input
file specifier, it pertains only to that
file. If the subswitch is placed on the
output file specifier, it pertains to the
entire list of input specifiers.

/BL:n[.] Blocks Allocated - This switch specifies the number
of contiquous blocks to allocate to the output file,
where n is an octal or decimal value (decimal values
must be followed by a decimal point). The /BL:n
switch is useful for copying a contiguous file and
changing its size.

/CO Contiguous Output - This switch causes the output
file to be contiguous.

/-CO Noncontiguous Output - This switch causes the output
file to be noncontiguous.

NOTE

If none of the above subswitches is
specified, PIP defaults to the size and
attributes of the input file.

/FO Set File Ownership - This subswitch specifies that
the owning UIC of the output file corresponds to the
directory into which the file was entered. If the
/FO switch 1is not specified, the owning UIC of all
new files is the UIC under which PIP 1is running,
regardless of the directory in which the files were
entered. This subswitch can be used with both COPY
and MERGE commands.

If PIP is running under the UIC [1,1], the command:
DK0:[200,200}=DK1:[200,220] TEST.DAT

results in a new file being created in the [200,200]

directory on DKO: and the file being owned by UIC

[1,1].

However, the command:

DKO: [200,200]=DK1:[200,220] TEST.DAT/FO

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Table 2-3 (Cont.)
PIP COPY and MERGE Command Subswitches

Subswitch Description

/SU

/NV

results in the output file being owned by UIC
[200,200].

Supersede - This switch allows the user to copy a
file of which the name, type, and version of the
file already exists in the specified output
directory file. The old file 1is deleted and
replaced with the specified input file.

New Version - This switch allows the user to force
the output version number of the file being copied
to the latest version plus one of the file already
in the output directory. If the file does not
already exist in the output directory, a version
of one is assigned. The results which occur when
the /NV switch is specified are depicted in Figure
2-1.

Examples Using /FO Subswitch

NOTE
When using the /FO subswitch, PIP must
be running under a UIC that has write
access to all output directories.
PIP>DK1:[*,*]/FO=DPO:[13,10],[32,10],[34,10]_/
Copy all the files from the specified input directories to
the corresponding directories of DKl:, making the file owners

agree with the output directories.

PIP>DKl: [*,*]=DK0:{*,10]*.MAC/FO_ /

Copy all the .MAC files from all group numbers with member
number 10 to DKl:, preserving the directory UIC and setting
the file owner for each file to the directory UIC.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Directories Before COPY

INPUT DIRECTORY OUTPUT DIRECTORY
(201,291} [L1gg,189]
RICK.DAT;1 RICK.DAT;2

RICK.DAT; 4

Directories After COPY Without /NV Switch Set
(version number preserved)

INPUT DIRECTORY OUTPUT DIRECTORY
[2p1,261] [129.1pp]
RICK.DAT;1 RICK.DAT; 2
RICK.DAT; 4
RICK.DAT;1

The command used was:
DK1:[168,1pp] = DK2:[2¢1,2ﬂ1]RICK.DAT;£)

Directories After COPY With /NV Switch Set

INPUT DIRECTORY OUTPUT DIRECTORY
[291,201] [1pg,140]
RICK.DAT;1 RICK.DAT; 2

RICK.DAT; 4
RICK.DAT;5

The command used was:
DK1:[197,19d] = DKl:[2¢l,2ﬂl]RICK.DAT;l/§Z)

NOTE

The version specified with the /NV sub-
switch must be explicit or default; no
wild cards allowed.

Figure 2-1
Results of COPY Command With and Without /NV Specified

2.4.3 DEFAULT Command (/DF)

FUNCTION

The DEFAULT command provides the user with a facility to change the
default device or UIC.

The normal default UIC 1is the UIC under which PIP 1is currently

running; that is, the UIC specified in the last MCR SET/UIC command,
or that specified with the /UIC switch in a RUN ...PIP command.

2-12

PERIPHERAL INTERCHANGE PROGRAM (PIP)

NOTE
The /DF command alters only the default
UIC. It does not affect the UIC under
which PIP 1is running, nor does it
circumvent file protection. -
The normal default device for PIP is SYO:.
~ FORMAT

dev: [group,member] /DF

where:
dev: if specified, is the new default device to be
applied to subsequent PIP command strings.
[group,member] if specified, is the new default UIC to be
applied to subsequent PIP command strings.
/DF is the DEFAULT command switch.
EXAMPLES

1. PIP>[27,27]/DF_/

Set the default UIC to [27,27].
2. PIP>DK1:/DF./

Set the default device to DKl:.
3. PIP>DK1:[27,27]}/DF_/

Set the default device to DKl:, and the default UIC to
[27,27].

2.4.4 DELETE Command (/DE)

FUNCTION
The DELETE command provides the user with a facility to delete files.
FORMAT
infile-1[,infile-2,...,infile-n] /DE
where:

P

infile is the file specifier for the file to be deleted
in the format:

dev:[uic] filename.type;version/switch

/DE

EXAMPLES

1.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

NOTES

1. A version number must always be

when using the DELETE command switch.

2. When deleting files, a version

number

specified

of

;-1 may be used to specify the oldest
version of a file. An explicit version of
;0 or ; mav be specified to signify the

most recent version.
Examples

a. PIP>TEST.DAT;-1/DE </

Delete the oldest version

of file TEST.DAT

b. PIP>TEST1.DAT;0,TEST2.DAT;/DE<’

Delete the latest version of
files TEST1.DAT and TESTZ2.DAT.

Wild cards in the filename
fields are 1illecal when

;-1, 0, or ; is specified.

3. The file specifier must be issued

file

version

type
of

because

a null filename, file type, and version

does not default to *.*;*

4. The input file specifier can take all
usual forms, including wild cards, even in
the group, member number [UIC]. The
special requirement 1is that the version

number field must always be

explicit

the

only

or

xRN It cannot be defaulted to the most

recent version if wild cards are used.

is the DELETE command switch.

PIP>TEST.DAT;5/DE _/

Delete version 5 of the file TEST.DAT
directory on the default device.

PIP>TEST.DAT;1,;2/DE _/

e

Delete versions 1 and 2 of file TEST.DAT
directory on the default device.

PIP>*.0BJ; *,*.TMP; */DE _

Delete all versions of all files of the type
the current default directory on the default

in the

in the

OBJ and
device.

default

default

TMP from

PERIPHERAL INTERCHANGE PROGRAM (PIP)

2.4.5 ENTER Command (/EN)

FUNCTION

The ENTER command provides the facility to enter a synonym for a file
in a directory or directories, thus allowing the file to be accessed
by more than one name. Also provided is a subswitch, New Version
(/NV), which allows the user to force the version number of the file
being entered into the directory to a number one greater than the
latest version for the file.

FORMAT
outfile=infile-1{,infile-2,...,infile~-n]}/EN[/NV]
where:

outfile is the file specifier to be given to the new
directory entry. The output file specifier has a
special property in that the filename, type, and
version are individually allowed to be explicit,
wild card (*) or defaulted (null). A name, type,
or version field that is either wild card (*) or
defaulted (null) means that the corresponding
field of the input file is to be used.

infile is the file specifier for the input file in the
format:

dev:[uic] filename.type;ver/sw(/subsw]

If no device is specified, in either the input or
output file specifier, then the current default
device is assumed to be the default device. If a
device 1is specified on either the input or output
side, that device is defaulted for the other side.
If both the input side and the output side
explicitly reference different devices, PIP will
flag this as an error and request that the line be
reentered.

The default input file specifier is *.*;*,
/EN is the ENTER command switch.

/NV is the New Version subswitch.

NOTE

The /NV subswitcb may appear on either
side of the equal sign. If it appears
on the output side, all of the files
being entered will be forced to a
version number one greater than the
latest version of the file. If it
appears on the input side, only files
that have the /NV subswitch appended to
them will be forced to a number one
greater than the latest version.

PERIPHERAL INTERCHANGE PROGRAM (PIP)
EXAMPLE

PIP>[101,101]TWIG/EN=[200,200]RICK.DAT;1 _/

Before
DIRECTORY {200,200] DIRECTORY [101,101]
RICK.DAT;1 JEN.OBJ; 2
LAU.OBJ; 3
After
DIRECTORY [200,200] DIRECTORY [101,101]
RICK.DAT;1 JEN.OBJ; 2
LAU.OBJ;3
TWIG.DAT;1
NOTE
The directory items for RICK.DAT;1 and
TWIG.DAT;1 both reference the same file.

Figure 2-2
Sample Directories Before and After Execution of /EN Command

2.4.6 FREE Command (/FR)

FUNCTION

The FREE command provides the user with the ability to print out the
available space on a specified volume.

FORMAT
dev:/FR
The output from the /FR command is shown below.

dev: HAS nnnn. BLOCKS FREE, nnnn. BLOCKS USED OUT OF nnnn.

2.4.7 1DENTIFY Command (/ID)

FUNCTION

The IDENTIFY command allows the user to identify the version of PIP
being used.

2-16

PERIPHERAL INTERCHANGE PROGRAM (PIP)

FORMAT
/ID
NOTE
When this command is invoked, the
version number is 1listed on the input
terminal as follows:
PIP VERSION Mvvee
where:
vv is the version number.
ee is the edit number.
EXAMPLE
PIP>/ID./

PIP VERSION M1301

2.4.8 LIST Command (/LI)

FUNCTION

The LIST command provides the user with the facility to 1list one or
more directories. Also provided are three alternate mode switches
(/BR, /FU and /TB) which allow the wuser to specify a choice of
directory listing formats. These switches are described in Table 2-4.

FORMAT

[listfilel=infile-1[,infile~2,...,infile-n] /LI [/switch]

where:
listfile is the listing file specifier in the format:
dev:[uic]lfilename.type;ver
NOTE
If 1listfile is not specified, it
defaults to TI:.
infile is the input file specifier in the format:

dev:[uic] filename.typ;ver/switch

NOTE

The default for this file is * . *;*,

2-17

PERIPHERAL INTERCHANGE PROGRAM (PIP)

/LI is the LIST command switch. This switch
the following information to be listed.
1. filename.type;version
2. number of blocks used (decimal)
3. file code:
(null) = non-contiguous
C = contiguous
L = locked
4, creation date and time
/switch are the alternate mode switches of the
command described in Table 2-4.
Table 2-4
LIST Command Switches
Switch Description
/BR This switch specifies the brief form
directory listing. This switch will cause
only the filename, type, and version
listed.
/FU[:n] This switch specifies the full directory

which allows the specification of the
of characters to be printed on a line.

following information to be listed:
1. filename. type; version

2. file 1identification number in
format:

3. number of blocks used/allocated
10)

4. file code

(null) = non-contiguous
C = contiguous
L = locked

5. creation date and time

2-18

format. This switch has an optional modifier

If specified, n is the number of characters
per line. If not specified, the number is
defaulted to (80.). This switch causes

(file number, file segquence number)

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Table 2-4 (Cont.)
LIST Command Switches

switch Description
6. owner UIC and file protection in the
format:
[group,member]
[system,owner ,group,world]
NOTE
These protection fields can
contain the values R,W,E,D.
where:
R = Read access permitted
W = Write access permitted
E = Extend privilege permitted
D = Delete privilege permitted
7. date and time of the last update
plus the number of revisions.
8. summary line:
The number of blocks used, the number of
blocks allocated, and the number of
files are printed.
The summary line is not printed when the
/BR switch is specified.
/TB This switch specifies that the user wants only the

where:

Figure

mmmm

summary line in the following format.

TOTAL OF nnnn./mmmm. BLOCKS IN xxxx. FILES

nnnn blocks used

blocks allocated

xxxX = number of files

NOTE

2-3 contains sample directory

listings in the various formats.

2-19

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Total Blocks (/TB) Format

STORAGE USEDN/ALLOCATED FOR DIRECTORY DK2:L200,2703]
15-JUL-75 15:446

TOTal OF 145./150. ELOCKS IN 5. FILES

Brief (/BR) Format

DIRECTORY DK2:L200»2701]

CKTST . MACH&
I0TST.MACH4
I0TST.T8K3 1
CKTST.TSK#1
CKTST.MAC}7

Standard (/LI) Format

DIRECTORY DK2:L200,2701
15-JUL-75 15:44

CKTST.MACH & 3. 15-JUL-75 15139
I0OTST.MAC# 4 4, 15-JUL-75 15339
IOTST.TSK#1 4%, C 15-JUL-75 15339
CKTBT.TSKi#1l 69. C 15~-JUL-75 15:40
CKTST.MAC$7 0. L 15-JUL-73 15140

TOTAL OF 145. BLOCKS IN S. FILES

Full (/FU) Format

DIRECTORY DK23L200,2701]
15-JUL-735 15346

CKTST.MACHS (10:10) 3./3.
C200,2701CRWED,RWEDyRWED,R]

I0TST.MACS4 (11-11) 4,74,
£200,2701CRWED»RWEDyRWEDsR]

I0TST.TSKs1 (7+12) 69,769, c
£2005270]1CRWEDRWEDYRWED,R]

CKTST.TEK#1 (12,13) 69./69. c
L200y270]1CRWED»RWEDRWEDsR1]

CKTST.HMAC$?7 (13r14) 0./5. L

£200,2701CRWEDYRWEDyRWEDR]

TOTAL OF 145./150. BLOCKS IN 5. FILES

Figure 2-3
Directory Listing Examples

15-JUL-75
15-JUL-75
15-JUL-75
15-JUL-75

15-JUL-75

15:39
15339
15:39
15:40

15340

EXAMPLES

1.

5.

6.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

PIP>/LI L/

Equivalent to TI:=/LI _
where the directory of the current default device and UIC is
listed.

PIP>LP:=[*,*] /FU:132.</

List, on the 1line printer, 1in full format (132-column
listing), all of the directories on the current default
device.

PIP>TI:=TEST.DAT/FU_/

List on TI: the full directory listing (80-column) for the
latest version of TEST.DAT on the current default device and
directory.

PIP>JUL13.DIR=[200,200]*.*/LI _/

List the latest version of all files in directory [200,200]
on the current default device to file JUL13.DIR in the
default directory on the default device.

PIP>LP:=[11,*]*.CMD; */LI_J

List, on the line printer, all versions of all files of type
.CMD in all directories in group 11.

PIP>LP:/BR=[11,11]*.CMD;*,* .DAT;*,* MAC;1_/

List, on the line printer, in brief format, all versions of
all files with a type of .CMD; all versions of all files
with a type of .DAT; and all files of type MAC with a
version number of 1. These files all reside in the directory
[11,11] on the current default device.

2.4.9 PROTECT Command (/PR)

FUNCTION

The PROTECT command provides the facility to alter the protection of a
file. File protection is provided for four categories as follows:

1.

System ~ Specifies what categories of access the system UICs
are allowed to the file (all group numbers less than
or equal to 10 octal).

Owner - Specifies what categories of access the owner has
allowed himself.

Group ~ Specifies what categories of access other members in
the same group have.

World - Specifies what categories of access have been given
all UICs not covered above.

2-21

PERIPHERAL INTERCHANGE PROGRAM (PIP)
For each category, the user can specify whether that category
Read, Write, Extend, or Delete the file.
NOTE

Only the owner or a system UIC can alter
the protection of a file.

FORMAT

can

infile-1/PR[/SY[:RWED]] [/OW[:RWED]] [/GR[:RWED]] [/WO[:RWED]] [/FO]

where:

infile is the file specifier for the file whose

protection is being changed, in the format:

dev:[uic] filename.type;ver/switch

NOTE
File specifier must be 1issued because a

null filename, file type, and version does
not default to *.*;*,

/PR is the PROTECT command switch.

/8Y,/OW,/GR, are the PROTECT command subswitches which allow

AND /WO the user to specify the protection he wishes

to

assign to a file. These subswitches allow the
user to specify which protection is to be altered
(others are left intact). The values which follow

the switch are any of the four letters R, W,

E, D

(for read, write, extend, delete) in any order.
They specify which privileges the respective
categories <can have. If the subswitch is present

and no value is given, then no privileges
granted for that category.

The subswitches are identified as follows:
/8Y 1s the system subswitch.
/OW 1is the owner subswitch.

/GR 1is the group subswitch.
/WO 1is the world subswitch.

NOTES

1. Protection can also be specified by
an optional octal value on the /PR

switch itself, in the format:

/PR:n

2-22

are

PERIPHERAL INTERCHANGE PROGRAM (PIP)

where n is the octal representation
of the protection to be assigned to
the file. This octal number is taken
as the new protection word. The
format of the protection word is
shown in Figure 2-4.

2. A new protection value may be set at
the same time as file ownership, or
file ownership alone may be changed.

/FO is the Set File Ownership subswitch which provides
the facility to set the ownership of a file to
that of the UIC of the directory in which it 1is
entered. A new protection value can be set at the
same time the file ownership is changed. If there
are files in the [200,200] directory which are
owned by another UIC, the following command:

PIP>[200,200]*.*;*/PR/FO _/
would cause all files to be owned by [200,200].
Directory Before Purge Directory After Purge

GARY;1 GARY; 3

GARY;2 GARY; 4

GARY; 3 GARY;5

GARY; 4 RICK;7

Gamv,s | O GARY/PU:3, RICK/PU:2. [

RICK; 4

RICK;5

RICK;7

(3, 4, and 5) are retained; versions 1 and 2 are deleted.

In the case of the files named RICK, since version 6 did not
exist, only version 7 is retained; and all existing versions
less than or equal to 5, i.e., versions 4 and 5, are deleted.

Figure 2-4
Format of Protection Word
EXAMPLES
1. PIP>TEST.DAT;5/PR/OW:RWE/GR:RWE: /WO /

Sets the protection so owner and group have RWE privileges
(not delete), world has no access privileges, and system

privileges are unchanged.

PIP> [*,*] *.%;*/PR:0_

Sets the protection of all files so all categories

granted all access privileges.

2-23

PERIPHERAL INTERCHANGE PROGRAM (PIP)

3. PIP>DKO:[*,*]*.*;*/PR/FO_/J

Sets all file owners to correspond with the directories in
which they are entered.

2.4.10 PURGE Command (/PU[:n])

FUNCTION

The PURGE command provides the wuser with a facility to delete a
specified range of obsolete versions of a file.

FORMAT

infile-1[,infile-2,...,infile-n}/PU[:n]

where:

infile

/PU:n

EXAMPLE

is the file specifier for the file to be deleted
in the format:

dev:[uic] filename.type/switch

is the PURGE switch. The PURGE switch provides
the wuser with a convenient way to delete old
versions of files. 1If the optional value n is
specified and the latest version of the file is m,
then all existing versions greater than m-n are
retained and all existing versions less than or
equal to m~n are deleted (see Figure 2=-5).
Although it is useful to think of this command as
deleting all but the n most recent versions, it is
important to understand that if any versions are
already deleted between m~n and m, then fewer than
n versions will be retained.

If the valve n is omitted, PIP defaults to 1 and
all but the 1latest version of the file are
deleted. If n 1is greater than the number of
versions of the specified file, no files are
deleted.

NOTE

A version number is not required when
using the PURGE switch. When specified,
the version number field is ignored.

PIP>*.0BJ/PU,* .MAC/PU:2 ./

Delete all but the highest version of all files with a type of

.OBJ,

and delete all but the two highest versions of all files

with a type of .MAC.

2-24

PERIPHERAL INTERCHANGE PROGRAM (PIP)

15 12 11 8 7 4 3 0
Protection [woriD | GROUP | OWNER | SYSTEM |
word P -7
L ///
3210 _-7

-

[D[E[wW][R]

(bit set means NO access permitted.)

Example

TEST.DAT;5/PR:3

(bits 0 & 1 set)
deny write and read access to the system
for file TEST.DAT;S.

Figure 2-5
Use of Purge Switch

2.4.11 REMOVE Command (/RM)

FUNCTION

The REMOVE command allows the user to remove an entry from a directory
file. Unlike the DELETE command, the REMOVE command does not delete
the associated file; only the directory entry is removed. REMOVE is
particularly wuseful for getting rid of directory entries which, for
whatever reason, point to nonexistent files. It is also wused to
delete synonyms generated using the ENTER command. If an entry to an
existing file is removed, that file can only be located using the VFY
/LO switch (see Section 8.4.6).

FORMAT
infile~1[,infile~-2,...,infile~-n]/RM
where:

infile is the file specifier for the directory file entry
to be removed in the format:

dev:[uic] filename.type;ver

NOTES

1. The file specifier must be issued
because a null filename, file type, and
version does not default to *,*;%*,

2. The input file specifier allows full
wild card facilities, but has the
restriction that the version number
must be specified explicitly or as a
wild card.

PERIPHERAL INTERCHANGE PROGRAM (PIP)
/RM is the REMOVE command switch.
EXAMPLE
PIP>DK1:[10,10]RICKSFILE.DAT;1/RM _J

Removes the file entry RICKSFILE.DAT;1l from the directory [10,10]
on DKl:.

2.4.12 RENAME Command (/RE)

FUNCTION

The RENAME command provides the user with the facility to change the
name of a file. Also provided is a subswitch (/NV) which allows the
user to force the renamed file to be a version number one greater than
the latest version of the previously-existing file with the same name.

FORMAT
outfile=infile-1[,infile-2,...,infile-n] /RE[/NV]
where:

outfile is the file specifier to be given to the new file.
The output file specifier has a special property
in that the filename, type, and version are
individually allowed to be explicit, wild card (*)
or defaulted (null). A UIC, filename, type, or
version field that 1is either wild card (*) or
defaulted (null) means that the corresponding
field of the input file is to be used. Thus, the
rename command provides the facility to change one
or more fields while preserving the others. The
format of the output specifier is as follows:

dev:[uic] filename.type;ver/switch

infile is the file specifier of the file to be renamed.
The input file specifiers are standard and allow
wild cards in all fields, 1including UIC. This
specifier is entered in the following format:

dev:[uic]lfilename.type;ver/switch

NOTES

1. A null filename, file type, and
version defaults to * ., *;*,

2. Renaming files across devices 1is not
allowed. However, renaming across
directories on the same device is
allowed. Thus, it is possible to move
files out of one directory into
another, preserving the name, type,
and version, or <changing them if
desired. This 1is permitted only if

PERIPHERAL INTERCHANGE PROGRAM (PIP)

PIP is running under a UIC which has
write privileges on each of the
directories involved.

3. If no device is specified 1in either
the input or output file specifier,
then the current default is assumed to
be the default device. 1If a device is
specified on either the input or
output side, that device is defaulted
for the other side. 1If both the input
side and the output side explicitly
reference different devices, PIP will
flag this as an error and reguest that
the line be reentered.

/RE is the RENAME command switch.
/NV is the New Version subswitch.
NOTES

1. The /NV subswitch allows the wuser to
force the version number of the
renamed file to a number one greater
than the latest version for the fi

2. The /NV subswitch may appear on either
side of the equal sign. If it appears
on the output side, all of the version
numbers of files being renamed will be
forced to a number one greater than
the 1latest version for the file. If
it appears on the input side, only the
file that has the subswitch appended

to it will have 1its version number

L= volol

forced to a number one greater than
the latest version for the file.
EXAMPLES
1. PIP>TESTFILE.DAT;1=TEST.DAT;5/RE_/
File TEST.DAT;5 is renamed TESTFILE.DAT;1.
2. BEBZBACKUP.*;*=TEST1.*;*,TESTZ.*;*,TEST3.*;*/RE,/
Rename all versions of all files with the names TEST1, TEST2,

and TEST3 to BACKUP, preserving the type and version of each
file.

2-27

PERIPHERAL INTERCHANGE PROGRAM (PIP)
3. PIP>*.*;1l=% %;%/RE./
Rename all of the latest copies of files to version 1.
CAUTION

There should only be one version of each
of these files.

4. PIP>[200,220]=[200,200]/RE_/

Rename all files from [200,200] to [200,220], preserving the
filename, type, and version of each file.

5. PIP>EXAMPLE, *; *=TEST.*;*/RE _/

Rename all versions of all files with the name TEST to the
name EXAMPLE, preserving the type and version of each file.

6. PIP>SAVE.DAT/RE/NV=0UTPUT.DAT;1 _/

Rename OUTPUT.DAT;1 and force the version number to one
greater than the latest version of SAVE.DAT. Figure 2-6
illustrates the results both with and without the /NV switch
set.

Directory Before Rename

SAVE.DAT; 2
SAVE.DAT; 3
SAVE.DAT; 4
OUTPUT.DAT;1
OUTPUT.DAT;?2

Directory After Rename Without /NV Switch Set

SAVE.DAT;2
SAVE.DAT; 3
SAVE.DAT; 4
SAVE.DAT; 1
OUTPUT.DAT;?2

Directory After Rename With /NV Switch Set

SAVE.DAT;2
SAVE.DAT; 3
SAVE.DAT; 4
SAVE.DAT;5
OUTPUT.DAT; 2

Figure 2-6
Results of Rename Command With and Without /NV Specified

2.4.13 SPOOL Command (/SP)

FUNCTION

The SPOOL command allows the user to specify a list of files to be
printed asynchronously.

2-28

PERIPHERAL INTERCHANGE PROGRAM (PIP)
FORMAT
infile-1i[,infile~2,...,infile-nj/SP
where:

infile is the file specifier of the file to be spooled
for printing in the format:

dev:[uiclfilename.typ;ver/SP

NOTES

1. File specifier must be 1issued because a
null filename, file type, and version does
not default to *.*;*,

2. 1If the user specifies a file by its file

identification number, the file will be

printed. File identification numbers

(/FI) are discussed in Section 2.3.5.

3. The line printer symbiont task (PRT...)
must be installed in the system (see
Appendix C for a description of the print
spooler) .
/SP is the SPCCOL command switch.
EXAMPLE
PIP>RICK1.LST;1,KATHY.LST;1,/FI:12:22/Sp_/

Spool the files RICK1.LST;l1, KATHY.LST;l1 , and the file whose
file identification number is 12:22 for asynchronous printing.

2.4.14 UNLOCK Command (/UN)

FUNCTION

The UNLOCK command allows the user to unlock a file that was locked as
a result of being improperly closed. If a program using File Control
Services (FCS) has a file open with write access and exits without
first closing the file, the file will be locked against further access
as a warning that it may not contain proper information. Typically
the following information would not have been written to the file:

1. The current block buffer being altered.

2. The record attributes which contain the end-of-file
information.

By using the UNLOCK command, the wuser can access the file and

determine the extent of the damage, perhaps taking appropriate
corrective action.

2-29

PERIPHERAL INTERCHANGE PROGRAM (PIP)

FORMAT

infile-1(,infile-2,...,infile-n] /UN

where:

infile

/UN

EXAMPLE

is the file specifier for the file to be unlocked,
in the format:

dev:[uic] filename.typ;ver/switch

NOTES
1. The file specifier must be given because a
null filename, file type, and version does
not default to * . *;*,
2. PIP must be running under the UIC of the
file owner or a system UIC.

is the UNLOCK switch

PIP>DK1:[100,100]JRICK1.0BJ;3/UN _J

File RICK1.0BJ;3 in directory [100,100] of device DKl: is

unlocked.

2.4.15 UPDATE Command (/UP)

FUNCTION

The UPDATE command is similar to a COPY or MERGE command, except that

an existing file
beginning.

FORMAT

is opened and new data is written into it from the

outfile=infile~1[,infile-2,...,infile-n] /UP[/FC]

where:

outfile

is the file specifier for the file to be rewritten
in the format:

dev: [uic]filename.type;ver
As in the MERGE and the APPEND commands, the
output file specifier must be explicit, i.e., no
wild cards are allowed.
NOTE
The characteristics and record attributes

of the output file are taken from the
first input file.

2-30

PERIPHERAL INTERCHANGE PROGRAM (PIP)

infile is the file specifier for the file to be copied
into the file being rewritten in the format:

dev:fuic]filename.ty

NOTE

A null filename, file type, and version
defaults to *.*;*,

/UP is the UPDATE command switch.

/FO is the Set File Ownership subswitch which
specifies that the owning UIC of the output file
corresponds to the directory into which the file-

was entered. If the /FO switch is not specified,
the owning UIC of all new files is the UIC under
which PIP is running, regardless of the directory
into which the file was entered (see the COPY
command for examples using /FO).

EXAMPLE
PIP>DK1:SAMPLE.DAT;1=TEST1.DAT;1,TESTZ.DAT;l,TEST3.DAT;l/UP_/
The file SAMPLE.DAT;1 on DKl: will be cpened, and the contents

of files TEST1.DAT;1, TEST2.DAT;1 and TEST3.DAT;1 will replace
the data which already exists in the file.

2.5 PIP ERROR MESSAGES

Errors encountered by PIP during processing are reported to the wuser
in the following format:

PIP -- <main error message>

<filename or filespec> - <secondary error message>
The filename or filespec, if present, identifies the file or set of
files being processed when the error occurred. If the error was
detected by the operating system, file system, or device driver, the
secondary error message is included to explain the cause of the error.
PIP error messages are contained in message files on the system
device. If PIP cannot access the message files, errors are reported
in the following format:

PIP -- ERROR CODE nn.

<filename or filespec> - <Driver Code -mm.>

or

<QIO Error Code -gg.>

2-31

PERIPHERAL INTERCHANGE PROGRAM (PIP)

where:

nn

-qq

is one of the PIP error codes contained
in Table 2-5.

is one of the standard system, file
primitive, or file control service codes

listed in Appendix I of the RSX-11 I/0
Operations Reference Manual.

is one of the directive error codes
listed in Appendix I of the RSX-11 I/0
Operations Reference Manual.

The PIP error messages, their descriptions and suggested user actions

are as follows.

PIP -- ALLOCATION FAILURE - NO CONTIGUOUS SPACE

Description

Contiguous space available on the output volume 1is insufficient
for the file being copied.

Suggested User Action

Delete all files that

are no longer reguired on the output

volume, and reenter the command line.

PIP -- ALLOCATION FAILURE ON OUTPUT FILE

or

PIP ~- ALLOCATION FAILURE - NO SPACE AVAILABLE

Description

Space available on the output volume is insufficient for the file

being copied.

Suggested User Action

Delete all files that

are no longer regquired on the output

volume, and reenter the command line.

PIP -- BAD USE OF WILD CARDS IN DESTINATION FILE NAME

Description

The user has specified a wild card "*" for an output filename
where use of a wild card is explicitly disallowed.

Suggested User Action

Reenter the command line with the proper output file explicitly

specified.

2-32

PERIPHERAL INTERCHANGE PROGRAM (PIP)
PIP —-- CANNOT FIND DIRECTORY FILE

Description

The user has specified a UFD that does not exist on the specific
volume.

Suggested User Action

Reenter the command line, specifying the correct UIC.

PIP -- CANNOT FIND FILE(S)
Description

The file(s) specified in the command were not found 1in the
designated directory.

Suggested User Action

Check the file specifier and reenter the command line.

PIP -- CANNOT RENAME FROM ONE DEVICE TO ANOTHER
Description
The user has attempted to rename a file across devices.

Suggested User Action

Reenter the command line, renaming the file on the input volume;
then, enter another command to transfer the file to the
originally intended volume.
PIP -- CLOSE FAILURE ON INPUT FILE
or
PIP -- CLOSE FAILURE ON OUTPUT FILE

Description

For some reason, the input or output file cannot be properly
closed. The file will be locked to indicate possible corruption.

Suggested User Action

Reenter the command line. If the error recurs, run the validity
check of the file structure verfication utility (VFY) against the
volume in guestion to determine if it 1is corrupted. VFY is
described in Chapter 8.

PIP -- COMMAND SYNTAX ERROR

Description

The user has entered a command in a format that does not conform
to syntax rules.

2-33

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Suggested User Action

Reenter the command line with the correct syntax.

PIP -- DEVICE NOT MOUNTED
Description
The message 1is self-explanatory.

Suggested User Action

Mount the device, and reenter the command line.

PIP -- DIRECTORY WRITE PROTECTED
Description

PIP could not remove an entry from a directory because the device
was write-protected, or because of privilege violation.

Suggested User Action

Write enable the unit, or have the owner of the directory change
its protection.

PIP -- ERROR FROM PARSE
Description
The specified directory file does not exist.

Suggested User Action

Reenter the command line with the correct UIC specified.

PIP -- FAILED TO ATTACH OUTPUT DEVICE
or
PIP -- FAILED TO DETACH OUTPUT DEVICE
Description

An attempt to attach/detach a record-oriented output device has
failed. This 1is usually caused by the device being off-line or
not resident.

Suggested User Action

Ensure that the device is on~line and reenter the command line.

PIP -- FAILED TO DELETE FILE

or

2-34

PERIPHERAL INTERCHANGE PROGRAM (PIP)
PIP -- FAILED TO MARK FILE FOR DELETE
Description
The user has attempted to delete & protected file.

Suggested User Action

Request PIP under the correct UIC and reenter the command line.

PIP -- FAILED TO ENTER NEW FILE NAME
Description
The user has specified a file that already exists in the
directory file, or the user does not have the necessary
privileges to make entries in the specified directory file.

Suggested User Action

Reenter the command line, ensuring that the filename and UIC are
specified <correctly, or reqguest PIP under the correct UIC and
reenter the command line.

PIP -- FAILED TO FIND FILE(S)

Description

The file(s) specified in the command line were not found 1in the
designated directory.

Suggested User Action

Check the file specifier and reenter the command line.

PIP -- FAILED TO GET TIME PARAMETERS
Description

An internal system failure occurred while PIP was trying to
obtain the current date and time.

Suggested User Action

Reenter the command 1line. If the problem persists, consult
software support representative.

PIP -- FAILED TO OPEN STORAGE BITMAP FILE
Description

PIP could not read the specified volume's storage bit map,
usually because of a privilege violation.

Suggested User Action

Retry by running PIP under a system UIC, or have the system
manager change the protection on the storage bit map.

2-35

PERIPHERAL INTERCHANGE PROGRAM (PIP)
PIP -- FAILED TC READ ATTRIBUTES
Description

The user's volume is corrupted or the wuser does not have the
necessary privileges to access the file.

Suggested User Action

Ensure that PIP is running under the correct UIC. If the UIC is
correct, then run the wvalidity check of the file structure
verification utility (VFY) against the volume in question to
determine where and to what extent the volume is corrupted. VFY
is described in Chapter 8.

PIP -- FAILED TO REMOVE DIRECTORY ENTRY

Description

PIP could not remove an entry from a directory because the unit
was write-protected, or a privilege violation was detected.

Suggested User Action

Write enable the unit, or have the owner of the directory change
its protection.

PIFP ~-- FILE IS LGST
Description

PIP has removed a file from its directory, failed to delete it,
and failed to restore the directory entry.

Suggested User Action

Run the lost check of the file structure verification wutility
(VFY) to recover the filename. VFY is described in Chapter 3.

PIP -- FAILED TO SPOOL FILE FOR PRINTING

Description

Insufficient system dynamic memory is available, or the spooler
task is not installed.

Suggested User Action

Wait for spooler queue to empty or install the spooler task and
reenter the command line.

2-36

PERIPHERAL INTERCHANGE PROGRAM (PIP)
PIP -- FAILED TO WRITE ATTRIBUTES

Description

The user volume is corrupted or the user does not have the
necessary privileges to write the file attributes.

Suggested User Action

Ensure that PIP is running under the correct UIC. 1If the UIC is
correct, then run the validity check of the file structure
verification utility (VFY) against the volume in question to
determine where and to what extent the volume is corrupted. VFY
is described in Chapter 8.

PIP -- FILE NOT LOCKED
Description

The user issued an unlock command for a file that was not locked.

Suggested User Action

Reenter the command line, specifying the correct file.

PIP -- ILLEGAL COMMAND
Description
The user has entered a command that is not recognized by PIP.

Suggested User Action

Reenter the command 1line with the PIP command correctly
specified.

PIP -- ILLEGAL SWITCH
Description

The user has specified a switch that is not a legal PIP switch or
has used a legal switch in an illegal manner.

Suggested User Action

Reenter the command line with the correct switch specification.

PIP -- ILLEGAL "*" COPY TO SAME DEVICE AND DIRECTORY
Description
The user has attempted to copy all versions of a file into the

same directory that 1is being scanned for input files. This
results in an infinite number of copies of the same file.

2-37

PERIPHERAL INTERCHANGE PROGRAM (PIP)

Suggested User Action

Reenter the command line, renaming the files or copying them into
a different directory.

PIP -- ILLEGAL USE OF WILD CARD VERSION
Description

The use of a wild card version number in the attempted operation
results in inconsistent or unpredictable output.

Suggested User Action

Reenter the command line with different options or with explicit
or default version number.
PIP -- I/0 ERROR ON INPUT FILE
or
PIP -- I/0 ERROR ON OUTPUT FILE
Description
One of the following conditions may exist:
1. The device is not on-line,
2. The device is not mounted.
3. The hardware has failed.
4. The volume is full (output only).
5. Input file is corrupted.

Suggested User Action

1. Determine which condition exists.
2. Rectify the condition.

3. Reenter the command line.

PIP -- EXPLICIT OUTPUT FILENAME REQUIRED
Description
This message is self explanatory.

Suggested User Action

Reenter the command line with the output filename explicitly
specified.

2-38

PERIPHERAL INTERCHANGE PROGRAM (PIP)
PIP —-- NOT A DIRECTORY DEVICE

Description

The user has issued a directory-oriented command to a device
{such as a printer) that does not have directories.

Suggested User Action

Reenter the command line without specifying a UIC.

PIP -- NOT ENOUGH BUFFER SPACE AVAILABLE
Description

PIP has insufficient I/0 buffer space to perform the reguested
command.

Suggested User Action

Have the system manager install PIP in a larger partition.

PIP -- NO SUCH FILE(S)
Description

The file(s) specified in the command were not found 1in the
designated directory.

Suggested User Action

Check the file specifier and reenter the command line.

PIP -- ONLY[*,*] IS LEGAL AS DESTINATION UIC
Description

The user has specified a UIC other than [*,*] as the output file
UIC for a copy.

Suggested User Action

Reenter the command line with [*,*] specified as the output UIC.

PIP -- OPEN FAILURE ON INPUT FILE
or

PIP -- OPEN FAILURE ON OUTPUT FILE
Description

The specified file could not be opened. One of the following
conditions may exist:

1. The file is protected against access.

PERIPHERAL INTERCHANGE PROGRAM (PIP)

2. A problem exists on the physical device (e.g., device cycled
down) .

3. The volume is not mounted
4. The specified file directory does not exist.
5. The named file does not exist in the specified directory.

Suggested User Action

1. Determine which condition exists.
2. Rectify the condition.

3. Reenter the command line.

PIP -- OUTPUT FILE ALREADY EXISTS-NOT SUPERSEDED
Description

An output file of the same name, type, and version as the file
already exists.

Suggested User Action

Retry the copy with the /NV switch to assign a new version number
or the /SU switch to supersede the output file.

PIP -- TOO MANY COMMAND SWITCHES - AMBIGUOUS
Description

The user has specified too many switches, or the switches
conflict.

Suggested User Action

Reenter the command line, specifying the correct set of switches.

PIP -- VERSION MUST BE EXPLICIT OR "#*"
Description

The version number of the specified file must be expressed
explicitly or as a wild card "*".

Suggested User Action

Reenter the command 1line with the version number correctly
expressed.

2-40

PERIPHERAL INTERCHANGE PROGRAM (PIP)

2.6 PIP ERROR CODES

Table 2-5 identifies the error codes PIP issues when it doesn't have

access

to the message files.

Message descriptions and suggested user

actions are identical to the information contained in Section 2.5.

Table 2-5
PIP Error Codes

Error Code

PIP Error Message is:

36.

38.
39.
40.
41.
42.
43.
44.
45.

COMMAND SYNTAX ERROR
ILLEGAL SWITCH
TOO MANY COMMAND SWITCHES - AMBIGUOUS

ONLY [*,*] IS LEGAL AS DESTINATION UIC
ILLEGAL COMMAND

ILLEGAL "*" COPY TO SAME DEVICE AND DIRECTORY
BAD USE OF WILD CARDS IN DESTINATION FILE NAME
EXPLICIT OUTPUT FILE NAME REQUIRED
ALLOCATION FAILURE - NO CONTIGUOUS SPACE
ALLOCATION FAILURE - NO SPACE AVAILABLE
ALLOCATION FAILURE ON OUTPUT FILE

I/0 ERROR ON INPUT FILE

I/0 ERROR ON OUTPUT FILE

ILLEGAL USE OF WILD CARD VERSION

OPEN FAILURE ON INPUT FILE

OPEN FAILURE ON OUTPUT FILE

CLOSE FAILURE ON INPUT FILE

CLOSE FAILURE ON OUTPUT FILE

FAILED TO DETACH OUTPUT DEVICE

DEVICE NOT MOUNTED

OUTPUT FILE ALREADY EXISTS - NOT SUPERSEDED
FAILED TO MARK FILE FOR DELETE

FILE IS LOST

VERSION MUST BE EXPLICIT OR "*"

ERROR FROM PARSE

FAILED TO DELETE FILE

CANNOT FIND DIRECTORY FILE

FAILED TO ATTACH OUTPUT DEVICE

DATTED MO QBT MTME DADAMDMDDCG
Lol ahiiy AV T4 14t rofnfinlibngs

NOT A DIRECTORY DEVICE

FAILED TO WRITE ATTRIBUTES

FAILED TO READ ATTRIBUTES

FILE NOT LOCKED

FAILED TO ENTER NEW FILE NAME

FAILED TO RESTORE ORIGINAL DIRECTORY ENTRY -~ FILE
IS LOST

CANNOT RENAME FROM ONE DEVICE TO ANOTHER.
FAILED TO SPOOL FILE FOR PRINTING

(Not used in RSX-11M)

FAILED TO OPEN STORAGE BITMAP FILE

FAILED TO FIND FILE(S)

CANNOT FIND FILE(S)

NO SUCH FILE(S)

FAILED TO REMOVE DIRECTORY ENTRY
DIRECTORY WRITE PROTECTED

NOT ENOUGH BUFFER SPACE AVAILABLE

CHAPTER 3

FILE TRANSFER PROGRAM (FLX)

3.1 INTRODUCTION TO FLX

[ER S R O 2 LUNVETAL SAal

FL
DOS-11 or RT-11 and Files-11 forma
following conversions:

P
t

n O

rme
. FLX i

e From DOS-11 to Files-11 format,
° From Files-11 to DOS-11 format,
. From DOS-11 to DOS-11 format,
o From Files-11 to Files-11 format,
. From RT~11 to Files-11 format,
° From Files-11 to RT-11 format,
. From RT-11 to RT-11 format.
FLX also allows the user to:
1. List directories of cassettes, RT-11, or DOS-11 volumes,

2. Delete files from DOS-11 and RT-11 volumes,

Lo]

ze cassettes, RT-11, o

[

3. Initial
Valid DOS-11 devices are:

DK, DT, MT, MM, CT, PR, and FP
Valid RT-11 devices are:

DK, DT, and DX

All wvalid Files-11 devices are supported, including RSX-format
cassette. :

3-1

FILE TRANSFER PROGRAM (FLX)

3.2 INITIATING FLX

All RSX-11M utilities can be initiated in several ways. The various
methods are explained in Section 1.2. The methods for FLX are:

>FLX </

>FLX command string./

>RUN ...FLX/

>RUN ...FLX/UIC=[group,member]/
>RUN $FLX ./

>RUN SFLX/UIC=[group,member]_/

3.3 FLX COMMAND STRING

The command string issued to FLX consists of an optional output file
specifiers, and one or more input file specifier in the following
format:

outfile=infile-1 [, infile-2,...,infile-n]
For a complete description of file specifiers, see Section 1.3.
Wild cards are only valid for "infile" specifiers.
Version numbers are only valid for Files-11 files and may not be

specified as wild. The standard rules for updating version numbers
apply.

3.4 FILE TRANSFERS

File transfers are specified by a command containing an output and an
input specifier together with a Format Mode Switch to denote the
format to be used. For example:
FLX>DT0:/DO=DK1:SYS1.MAC/RS </
transfers SYS1.MAC from Files-11 DK1l: to the DOS-11 DTO:.
FLX>DT1:/RT=DK0:SYS1.MAC/RS -
transfers SYS1.MAC from Files-11 DKO: to RT-11 DT1:.
If no /RS, /RT, or /DO 1is specified, FLX assumes /DO for input
specifiers and /RS for output. This "DOS-to-RSX" default transfer

direction can be dynamically modified -- see /DO and /RS switch
descriptions.

FILE TRANSFER PROGRAM (FLX)

3.5 DOS VOLUME DIRECTORY MANIPULATION

3.5.1 DOS Directory Listings

o issue the direc

The /LI or s FLX to 1issue ory of the
cassette or DOS-11 volume specified in the input specifiers to the
Files-11 file specified 1in the output specifier. If no output
specifier 1is present, then the directory will be issued to TI:. For

example:

/DI switch instruct
/D1l switch 1n ucct

SR &

T
S
+

t
i

FLX>LP:=DT0:[100,100]*.MAC/LI_/

lists on the line printer the directory of all .MAC files wunder UIC
[100,100] on DOS-11 DTO:.

2 ko] ~T1 ~ < ~ IR | o
3.5.2 Deleting DOS Files

Files may be deleted from DOS-11 disks or DECtape by wusing the /DE
switch. The delete command string uses no output specifier. For
example:

FLX>DK1:[100,100}SYS1.MAC/DE/

deletes SYS1.MAC under UIC [100,100] from the DOS-11 DKl:.

3.5.3 1Initializing DOS-11 Volumes

Cassettes and DOS-11 volumes are initialized by using the /ZE switch.
The initialize command has no output specifier. For example:

FLX>DT1:/%2E </

Initializes DOS-11 DT1:.

3.6 RT VOLUME DIRECTORY MANIPULATION

3.6.1 RT Directory Listings

The /LI or /DI switch, when combined with the /RT switch, instructs
FLX to issue the directory of the RT-11 volume specified in the input
"specifiers to the Files-11 file specified in the output specifier. If
no output specifier is present, then the directory will be issued to
TI: For example:

FLX>LP:=DT0:* .MAC/LI/RT_/

lists on the line printer the directory of all .MAC files on RT-11
DTO:.

FILE TRANSFER PROGRAM (FLX)

3.6.2 Deleting RT Files

Files may be deleted from RT-11 disks or DECtape by using the /DE
switch in conjunction with the /RT switch. The delete command string
uses no output specifier. For example:

FLX>DK1:SYS1.MAC/DE/RT./

deletes SYS1.MAC from RT-11 DKl:.

3.6.3 Initializing RT-11 Volumes

RT-11 volumes are initialized by using the /ZE switch in conjunction
with the /RT switch. The initialize command uses no output specifier.
For example:

FLX>DT1:/ZE/RT _/
initializes RT-11 DTI1:.

When initializing RT-11 volumes, the /ZE switch takes an optional
argument in the form:

/ZE:n

where n specifies the number of extra words per directory entry. A
directory segment consists of two disk blocks with a total of 512
words. The directory header uses five words, leaving 507 words for
directory entries.

Normally, each directory entry 1is 7-words long and two directory
entries within each directory segment are allocated to the file
system. Therefore, the number of entries in each segment (when no
extra words are specified) are determined as follows:

Directory Entries = (507+7) -2

72-2 = 70 entries

When extra words are specified (via /ZE:n) for directory entries, the
number of directory entries are determined as follows:

Directory Entries = [507=(n+7)] -2

For example, 61 entries can be made per directory segment 1if the
switch /ZE:1 is used.

The /NU switch is used with the /ZE and /RT switches to specify the’
number of directory segments to allocate to the RT-11 velume. The /NU
switch has the following form:

/NU:n
where n specifies the number of directory segments to allocate. If
the /NU switch 1is not specified, or if n is not specified, four
directory segments are allocated. The maximum number of segments
which can be allocated is 37(8) or 31(10). For example:

FLX>DTO: /ZE: 2/NU: 6/RT ./

FILE TRANSFER PROGRAM (FLX)

This command initializes RT-11 DTO:, allocates two extra words per
directory entry, and allocates six directory segments.

3.7 FLX CASSETTE SUPPORT

FLX supports the DEC standard cassette file structure. Files may be
transferred to and from cassettes in either RSX (/RS) or DOS (/DO)
transfer mode. The transfer mode selected depends on the user's file
format requirements.

3.7.1 Cassette File Formats

That 1is, they both conform to the DEC standard casette flle format.
The DEC standard cassette file structure is described in Figure 3-1.
The DEC standard cassette file label is described in Figure 3-2.

The difference between the RSX and DOS cassette file formats are as
follows:

RSX Format DOS Format

e Standard level 2 e Standard level 0
e l2~character file name (9+3) e 9-character file name (6+3)
e Blocks of any size up to 512 e 128-byte blocks

bytes (128 bytes default)
e Version numbers e NO version numbers

RSX cassette file mode (level 2) is a superset of the DOS cassette
file mode (level 0). Therefore, any cassette written in DOS mode can
be read in RSX mode. The reverse of this, however, is only true when:

i v 3 an ol - ~ -~ PR |
de file was written with 128-byte blocks, and

2. The extra file header data (version number, etc.), which does
not appear in DOS files, can be ignored.

RSX mode files and DOS mode files can be mixed on a given cassette, as
long as a proper retrieval mode is utilized when the files are being
accessed. Files of various block sizes can also share a given
cassette. FLX uses the block size contained in the file label data
when reading a file.

3-5

FILE TRANSFER PROGRAM (FLX)

leader
IRG IRG=inter record gap
File label | 32 bytes
iIRG l
Data blocks |
I file ’
IRG |
: I
1
i |
EOF |
:
1
1
: files
EOF
IRG
logical
end-of~ 32-byte null file label
tape
Clear
trailer
e —
Figure 3-1

DEC Standard Cassette File Structure

3-6

FILE TRANSFER PROGRAM (FLX)

10

11

12

13

14

15

16

23

24

25

26

27

28

29

30

31

Filename

File type

Data type

Record size

Sequence Number

Support Level

Date

Version Number

Record attributes byte

Unused (for user info)

Filename pt. 2

Unused (for user info)

Figure 3-2
DEC Standard Cassette File Label

3-7

FILE TRANSFER PROGRAM (FLX)

Filename
File type

Data type

Record size

Sequence number

Support level

Date

Version number

Record attributes

Filename pt. 2

6 ASCII Characters
3 ASCII Characters

Describes the type of file
to follow.

g -- Unknown type

1 -- ASCII (formatted)

2§ -- Formatted binary (DOS)
22 -- DOS LDA format

26 -- Unformatted binary TSK
format \

l6-bit binary record size,
where @<size <512. and even.

Used for multi-volume files,
g for sequence one.

@ for DOS format
2 for RSX format

6 ASCII characters in
ddmmyy form

16-bit version number used
in RSX mode. Undefined in
DOS mode.

The Files-11 standard rules for

version numbers apply to file
creation.

1 = FORTRAN carriage
control present

2 = standard carriage control
3 ASCII characters used in

RSX mode. Undefined in DOS
mode.

Figure 3-2 (Cont.)
DEC Standard Cassette File Label

FILE TRANSFER PROGRAM (FLX)

3.7.2 Multi-vVolume Cassette Support

FLX supports multi-volume cassettes in both RSX and DOS formats. No
switches are required to notify FLX that a multi-volume file
is being accessed.

special

3.7.2.1

FLX Output Files - When FLX detects the physical end-of-tape

for an output cassette, the following sequence of events occurs.

1.

FLX issues the following message:

FLX —-- END OF VOLUME ON CASSETTE
CTn:[g,m]

The cassette is rewound.

FLX issues an additional message.

MOUNT NEW CASSETTE? (Y, Z (OUTPUT ONLY) OR CR)
FLX>

At this point, the user has three alternatives:

a.

The user can mount the next output cassette volume and
type Y, followed by a carriage return. If the user
selects this alternative, the new cassette 1is rewound,
FLX searches for the logical end-of-tape (end of the last
file), and then continues transferring data onto the
tape. If a file with the same name as the current input
file is encountered on the new output cassette while
searching for the 1logical end of tape, FLX prints the

FLX -- FILE ALREADY EXISTS

and then returns to step 3 above.

The user can mount the next output cassette volume and
type Z, followed by a carriage return. The new cassette
is rewound, and FLX continues by transferring data onto
it. Thus, the tape is effectively zeroed before data is
transferred to it.

The user can enter a carriage return to terminate the
transfer.

If the user selects alternative ¢, FLX assumes that EOF 1is desired,
and issues the following message:

FLX -- REQUEST TERMINATED -- LAST BLOCK NOT WRITTEN

The last input file block processed was not written onto the tape.

3-9

FILE TRANSFER PROGRAM (FLX)

3.7.2.2 FLX Input File - When FLX detects the physical end-of-tape
for an input cassette, the following sequence of events occurs:

1. FLX issues the following message, including the input file
specifier on which the end-of-tape was detected:

FLX -- END OF VOLUME ON CASSETTE
CTn:[g,m] filename.type

2. The cassette is rewound.
3. FLX issues an additional message:

MOUNT NEW CASSETTE: (Y, Z (OUTPUT ONLY) OR CR)
FLX>

4. At this point the user has two alternatives:

a. The user can mount the next input cassette volume and
type Y, followed by a carriage return to continue; or

b. The user can type a carriage return to terminate the
transfer.

If the user selects alternative a, the new input cassette is rewound,
and a validity check 1is performed on the file label and seguence
number. If the file label and sequence number are correct, FLX begins
processing data from the volume. If, however, the file label and
sequence number are not correct, FLX issues the following message:

FLX -- FILE NOT FOUND

the process then returns to step 3 above.
If the user selects alternative b, FLX assumes that EOF 1is desired,
and the transfer is terminated.
NOTE
If the input file is being processed as
a formatted binary or an ASCII file, a
format error may occur.

If the user types Z, FLX prints the message:

FLX -~ BAD RESPONSE

the process then returns to step 3 above.

3.8 FLX PAPER TAPE SUPPORT

FLX supports the standard DEC paper tape devices, 1i.e., the PC-11
Paper Tape Reader/Punch and the PR-11 Paper Tape Reader, as DOS
devices.

FLX provides the ability to delimit records on paper tape for files
that are in formatted binary mode or in formatted ASCII mode.

FILE TRANSFER PROGRAM (FLX)

Formatted binary records are delimited by standard DOS 4-byte headers
and a trailing checksum. Formatted ASCII records which do not already
end with 1line feeds or form feeds are delimited by carriage
return-line feed pairs.

Special treatment is given to files which normally default to image
mode transfers, 1i.e., TSK, OLB, MLB, and SYS files. On output to
paper tape, these files are written, by default, in formatted binary.
When read back from paper tape to a Files-1l1 volume, the file is
written with fixed-length, 512-byte records as the default.

These defaults insure, when these files are read back from paper tape,
that they will be in exactly the same format as they were before they
were punched. However, the new files will not be contiguous unless
the user specifies /CO/BL:n with the output file specifier. An
appropriate value for n (the number of contiguous blocks to allocate),
must be known by the user before issuing the command.

NOTE

The use of explicit transfer mode
switches when transferring TSK, OLB,
MLB, and SYS files between paper tape
and Files-11 volumes can cause files
read back 1in from paper tape to be
different from the files that were
originally written out.

FLX provides three types of switches for file transfers: format mode
switches, which specify the format of the file; transfer mode
switches which control the mode of transfer (e.g., formatted ASCII
mode, formatted binary mode, or 1image mode); and file control
switches, which control such things as the number of blocks to be
allocated to the output file, or the output file's UIC, etc. Switch
specificatons consist of a slash (/), followed by a 2-character switch
name, and is optionally followed by a value separated from the switch
specifier by a colon (:).

3.9.1 Format Mode Switches

FLX has three format mode switches: /DO (DOS format), /RT (RT-11
format); and /RS (Files-11 format). When specified, these switches
describe the format of the specified files. These switches are
described in Table 3-1. .

3-11

FILE TRANSFER PROGRAM (FLX)

Table 3-1
FLX Format Mode Switches

Switch

Description

/DO

/RS

/RT

Identifies the file as a DOS-11 formatted file.

NOTE

If no /DO, /RT, or /RS switch is specified
in a command string, FLX initially assumes
/RS for output files and /DO for input
files. However, this default transfer
direction can be dynamically changed by
specifying a command consisting of only
the switch desired for the input side (/DO
or /RS only). See the note following /RT
for the /RT default operation.

Example:

To specify the default transfer direction
from RSX to DOS, type:

FLX>/RS_/

To specify the default transfer direction
from DOS to RSX, type:

FLX>/DO _/
Identifies the file as a Files-11 formatted file.

NOTE

See notes for /DO and /RT switches.
Identifies the file as an RT-11 formatted file.

NOTE

If the /RT switch is specified on one side
of a command string, the default entry for
the other side is /RS.
Examples:
1. FLX>DKO:=DTO:SYSl.MAC/RT_j

The output is defaulted to /RS.
2. FLX>DKO0:/RT=DK0:SYS1.MAC./

The input is defaulted to /RS.

3-12

FILE TRANSFER PROGRAM (FLX)

3.9.2 Transfer Mode Switches

FLX has three modes of file transfer for conversion 1in either
direction between DOS-11 and Files~11l, or between RT-11 and Files-11.
These modes are: formatted binary, formatted ASCII, and image mode.
When a switch 1s specified, it determines the transfer mode to be
applied during translation. The switch formats and descriptions are
listed in Table 3-2 below.

Table 3-2
FLX Transfer Mode Switches

Switch Description

/FA:n Formatted ASCII

The DOS-11 or RT-11 file is to be formatted ASCII.

~ Formatted ASCII is defined as ASCII data records
terminated by carriage return/form feed (CR-FF),-
form feed (FF), or vertical tab (VT). In
transfers from DOS-11 or RT-11 files to Files-11
files, CR-LF pairs are removed from the end of
records. In transfers from Files-11 files to
DOS-11 or RT-11 files, CR-LF pairs are added to
the end of each record which does not already end
with LF or FF. In both directions all nulls,
rubouts, and vertical tabs (VT) are removed from
input records.

If n is specified with Files-11 output,
fixed-length records of size n are generated.
Output records will be padded with nulls, 1if
necessary.

If n is not specified with Files-11 output, then
variable-length records are generated. The output
record size will equal the input record size.

NOTE

ASCII data is transferred as 7-bit values.
The eighth bit of each byte is masked off
before transfer. CTRL/Z (ASCII 032 octal)
is treated as the 1logical end of input
file for formatted ASCII transfers from
DOS-11 cassette or paper tape to Files-11.

3-13

FILE TRANSFER PROGRAM (FLX)

Table 3-2 (Cont.)
FLX Transfer Mode Switches

Switch

Description

/FB:n

/IM:n

Formatted Binary

The DOS-11 or RT-11 file 1is to be formatted
binary. In formatted binary mode, formatted
binary headers and checksums are added to records
output to DOS-11 or RT-11 files, and they are
removed when transferred to Files-11 files.

If n is specified with Files-11 output, then
fixed-length records of size n will be output (512
bytes is the maximum). FLX pads records with
nulls to create the specified length. If n is not
specified with Files-11 output, then
variable-length records are produced. The output
record size is egual to the input record size.

Image Mode

The transfer is to be in image mode. Image mode
forces fixed-length records. The value n can be
used to indicate the desired record length for
Files~11 output (512 bytes is maximum). If the
value n is not specified, a record length of 512
bytes is assumed.

NOTES

1. The following dgtfault transfer modes are
assumed for these file types (with the
exception of paper tape transfers -- see
Section 3.8).

Mode File Type

/IM TSK, OLB, MLB, SYS
/FB OBJ, STB, BIN, LDA
/FA All others

2. If the value n is specified in conjunction
with /FA, /FB, or /IM when the output file
is not a Files-11 file, it is ignored.

3-14

FILE TRANSFER PROGRAM (FLX)

3.9.3 File Control Switches

In addition to the switches associated with the transfer modes and

directions,

FLX provides switches to control file processing. These

switches are described in Table 3-3.

Table 3-3
FLX File Control Switches

Switch

Description

/BL:n

/BS:n

/CO

Indicates the number of contiguous blocks to be
allocated to the output file where n specifies the
number of blocks.

This switch is used normally in conjunction with
/CO.

If /BL is not specified, the input file size 1is
used as the output file size.

NOTE

The file allocation scheme used for RT-11
volumes normally allocates the largest
available space on the volume for a new
file. Using /BL:n with the /RT switch for
the output file causes the output file to
be allocated the first <UNUSED> space of
size > n. However, when the RT-11 file is
closed, the input file size is used as the
output file size. If the input file size
is not £ n, an error results. Since all
RT-11 files are contiguous, the /CO switch
is not required with the /BL:n switch for
RT-11 output.

Specifies the block size for cassette tape output,
where:

n specifies the block size in bytes.
If /BS is not specified, a block size of 128 is
assumed. /BS is only wvalid in a cassette tape

(CT) output file specifier.

Indicates that the output file is to be
contiguous.

The /CO switch is meaningful only to disks and
DECtape.

If the input file 1is paper tape, cassette or
DOS-11 magtape, /BL is also required.

3-15

FILE TRANSFER PROGRAM (FLX)

Table 3-3 (Cont.)
FLX File Control Switches

Switch Description
NOTE
The file types .TSK, .SYS, and .OLB are
transferred to Files-11 volumes with /CO
implied when the input 1is a FILES-11
volume or a DOS~11 DECtape or disk.

/DE Deletes files from a DOS-11 DECtape or disk. It
is used also in conjunction with /RT to delete
files from an RT-11 DECtape or disk.

NOTE
When /DE is specified, the FLX command
string has no output specifier.

/DI Causes a directory listing of cassettes or DOS

volumes to be listed on a specified output file.
It is wused also in conjunction with /RT to
generate a directory listing of RT-11 volumes in a
specified output file.

NOTES

1. Files-11 volume directories can not be
listed using FLX.

2. If no output specifier 1is present, then
the directory is issued to TI:.

3. If no filename 1is specified, *.* is
assumed.

Figure 3-3 contains sample DOS volume directory
listings, along with a description of the
information contained in each field. Figure 3-4
contains sample RT volume directory 1listings,
along with a description of the information
contained in each field.

3-16

FILE TRANSFER PROGRAM (FLX)

Table 3-3 (Cont.)
FLX File Control Switches

Switch

Description

/FC

/1D

/LI

/NU:n

/SP

/UL

/VE

/ ZE

Indicates that FORTRAN carriage control
conventions are to be used, i.e., FD.FTN is set in
the file data block. The default is a carriage
return and line feed between records, i.e., FD.CR
is set. The /FC switch applies only to Files-11
output files. Refer to the RSX-1l1l I/0 Operations
Reference Manual for a discussion of the file data
block and record attributes.

Requests the current version number of FLX. The
switch can be part of an output or input specifier
or it can be typed in response to the FLX prompt
message (FLX>).

Same as /DI

Used in conjunction with the /ZE and /RT switches
to specify the number of directory blocks (n) to
allocate when initializing an RT-11 disk or
DECtape. If /NU:n is not specified, four
directory blocks are allocated. The max imum
number of Dblocks which can be allocated is 37
octal (31 decimal).

Indicates that the converted file is to be spooled
via the print spooler. The /SP switch applies
only to Files-11 output files. The print spooler
is described in Appendix C.

Indicates that the output file is to have the same
UIC as the input file. The /UI switch is ignored
if the output specifier contains an explicit UIC.

Causes each record written to the cassette to be

a T ; : ;
read and verified. The /VE switch is conly valid

with a CT output file specifier.

Initializes cassettes or DOS-11 volumes. It 1is
used also in conjunction with /RT (and /NU) to
initialize RT-11 volumes.

NOTES

1. For DOS-11 DECtape, /ZE creates an entry
for the current UIC.

2. The /ZE command uses no output specifier.

3-17

FILE TRANSFER PROGRAM (FLX)

DECtape Directory Listing

DIRECTORY DT:[200,200]

19-SEP-74

FLX.TSK 104. 19-SEP-74 <233>
UFD.TSK 8. 19-SEP-74 <233>
TKN.TSK 6. 19-SEP-74 <233>
MOU.TSK 14. 19-SEP-74 <233>

TOTAL OF 132. BLOCKS IN 4. FILES

Casette Directory Listing

DIRECTORY CT1:[200,200]

19-SEP-74

UFD.TSK;1-0 28. 19-SEP-74 128.
TKN.TSK; 1-0 20. 19-SEP-74 128.
MOU.TSK; 1-0 52. 19-SEP-74 128.

TOTAL OF 100. BLOCKS IN 3. FILES

These directories contain similar information. The following key
explains what that information is and where it is located.

®© e O
©®

9 © oG

1. Identifies this as a directory listing.

2. Specifies the device name and unit number.
3. 1Is the User Identification Code.
4. 1Is the date the directory was listed.

5. 1Is the filename, file type, version number (RSX cassettes
only), and sequence number (cassettes only).

6. Is the file size in blocks.
7. 1Is the file creation date.
8. 1Is the record size in bytes for the file (cassettes only).

9. Is a total of the actual file sizes, and the total number of
files in the directoty.

10. Protection code (disk and DECtape only).

Figure 3-3
DOS Directory Listings

3-18

FILE TRANSFER PROGRAM (FLX)

DECtape Directory Listing

DIRECTORY DK:

SIPBOO.MAC 49. 4-JUN-75
< UNUSED > 6.
SIP .MAC 10. 4-JUN-75
SIPCD .MAC 7. 4-JUN-75
< UNUSED > 21.
SIPQIO.MAC 7. 4-JUN-75
< UNUSED > 4686.

4713. FREE BLOCKS
TOTAL OF 73. BLOCKS IN 4. FILES

The following key explains what the information is, and where it 1is
located.

® ©

@©OGHOO
(

1. 1Identifies this as a directory listing.
2. Specifies the device name and unit number.
3. 1Is the date the directory was listed.

4. 1Is the filename and file type; or <UNUSED> indicates free
(unused) space.

5. 1Is the number of blocks in the file or free space.
6. 1Is the file creation date, or blank for free space.
7. Is the total number of free blocks on the volume.

8. 1Is the total number of blocks allocated to files on the
volume.

Figure 3-4
RT Directory Listing

3-19

FILE TRANSFER PROGRAM (FLX)

3.10 FLX ERROR MESSAGES

Errors encountered by FLX during processing are reported on the
initiating terminal.

The FLX error messages, their descriptions and suggested user actions
are described below.

FLX -- BAD LIST FILE SPEC
Description
The user has specified one of the following:
1. More than one output file for an /LI or /DI operation.
2. Wild cards in the output file for an /LI or /DI operation.

Suggested User Action

Reenter the command line correctly.
FLX -~ BAD RESPONSE
Description
The user has specified the Z response to the message:

MOUNT NEW CASSETTE (¥, Z (OUTPUT ONLY) OR CR)
FLX>

and the cassette in question is an input volume.

Suggested User Action

Respond with Y or CR after the message has been redisplayed.
FLX -- CAN'T OPEN @ FILE
Description

The specified indirect command file could not be opened for one
of the following reasons:

1. The file is protected against access.

2. A problem exists on the physical device (e.g., device cycled
down) .

3. Volume is not mounted.

4, The specified file directory does not exist.

5. The named file does not exist in the specified directory.
6. The volume is not on-line.

Suggested User Action

Correct the condition and reenter the command line.

FILE TRANSFER PROGRAM (FLX)
FLX -- CO FILES TO OUTPUT DEVICE NOT ALLOWED
Description

The user has used the /CO switch with an illegal output device
(e.g., MT, CT, or PP).

Suggested User Action

Reenter the command line without the /CO switch specified.
FLX -- CASSETTE ERROR I/0 TERMINATED
Description
An unexpected hardware error has occurred during the
end-of-volume seguence on a cassette volume. The transfer is

aborted.

Suggested User Action

Reenter the command line using a new cassette.
FLX -- COMMAND SYNTAX ERROR
Description

The user has entered a command in a format that does not conform
to syntax rules.

Suggested User Action

Reenter the command line with the correct syntax.
FLX -- CONFLICTING TRANSFER MODES SPECIFIED

Description

The user has specified conflicting transfer mode switches.
'xample:
SY:=DT:F00.0BJ/IM/FB./

Suggested User Action

Reenter the command line with only one transfer mode switch
specified.

FLX -- DOS OR RT-11 DEVICE NOT VALID FORMAT
Description
The device specified with the /DO switch has an 1incorrect DOS
file structure, or the device specified with the /RT switch has

an incorrect RT file structure.

Suggested User Action

Correct the problem, and reenter the command line.

3-21

FILE TRANSFER PROGRAM (FLX)
FLX -- DT: UFD FULL
Description
The DECtape directory is full.

Suggested User Action

Clean up the directory by deleting 2ll unnecessary files.

FLX -- END OF VOLUME ON CASSETTE
MOUNT NEW CASSETTE? (Y, Z (OUTPUT ONLY) OR CR)

Description
Physical end-of-tape has been encountered during a cassette
transfer. The tape rewinds, and the user is asked to mount the

next cassette.

Suggested User Action

See Section 3.7.2.1 if an output transfer is being performed or
Section 3.7.2.2 if an input transfer is being performed.

FLX -- ERROR DURING DIRECTORY I/O
Description
One of the following conditions may exist:
1. The volume is not write-énabled.
2. The /DO, /RT or /RS switches were incorrectly specified.
3. The volume is not of the proper format.

4, A hardware error occurred during a directory I/0 operation
(i.e., bad tape).

Suggested User Action

The following user actions correspond (by number) to the
conditions listed above.

1. Write-enable the volume.

2. Respecify the /DO, /DT or /RS switches correctly.

3. No recovery is possible with the volume currently mounted.
Mount a volume which is in the proper format, and retry the
operation. .

4. Retry the operation.

FLX -- FILE ALREADY EXISTS

Description

The user specified an output file which already exists on the
device specified.

3-22

FILE TRANSFER PROGRAM (FLX)

Suggested User Action

Reenter the file specifier using a new or corrected filename.

)

TY ——
LoLan

()

FILE NESTING EXCEEDED
Description
More than one level of indirect files was specified.

Suggested User Action

Retry the operation with only one level of indirect file
specified.

FLX -- FILE NOT FOUND
Description

The named file does not appear, as specified, in the requested
directory.

Suggested User Action

Retry the operation with the filename and directory <correctly
specified.

Description
A cassette multi-volume file is being accessed out of sequence.

Suggested User Action

This is a warning message. The transfer will continue unless
terminated by the user.

FLX -- @ FILE SYNTAX ERROR
Description

Syntax error in the indirect file specifier.

Suggested User Action

1. Edit the indirect command file using either EDI or SLP.
2. Rerun FLX using the corrected command file.
FLX -- FMTD ASCII RECORD FORMAT BAD
or
FLX -- FMTD BINARY RECORD FORMAT BAD
Description

Either the file is corrupted, or the file is not of the specified
type.

3-23

FILE TRANSFER PROGRAM (FLX)

Suggested User Action

If the file is corrupted, there is no recovery possible. If the
file type 1is 1incorrect, retry the operation with the correct
type.

FLX ~- ILLEGAL /BS SIZE -~ USE O<KN<=512. AND EVEN
Description

An illegal block size was specified with the /BS switch on
cassette output.

Suggested User Action

Reenter the command line with a legal block size.
FLX ~- INCORRECT # IN/OUT SPECS
Description

The user specified more than one input or output specifier in a
command where only one is allowed.

Suggested User Action

Reenter the command line with the proper syntax.
FLX —-- INVALID DEVICE
Description

The user specified a device that cannot be utilized as an input
or output device, e.g., trying to read from a line printer.

Suggested User Action

Reenter the command line with a legal device specified.
FLX -~- INVALID DOS OR RT-11 FILE SPEC
or
FLX -- INVALID RSX FILE SPEC
Description
The file specifier does not conform to proper syntax, or the
specified operation could not be performed on the specified

device.

Suggested User Action

Reenter the file specifier with the proper syntax.
FLX -~ INVALID SWITCH
Description

The user has specified a switch that is not a valid FLX switch or
does not conform to proper syntax.

3-24

FILE TRANSFER PROGRAM (FLX)

Suggested User Action

Reenter the command line with a correct switch specification.

FLX -- 1/0 ERROR

Description

One of the following conditions may exist:
1. The specified device is not on-line.
2. A Files-11 volume is not mounted.

3. A hardware error has occurred (e.g., bad tape).

Suggested User Action

1. Ensure that the device is on~line and that the volume 1is
mounted (if it is an Files-11 volume).

2. Reenter the command line.
FLX -- I/0 ERROR DELETING LINKED FILE
Description

An uncorrectable error occurred while a DOS linked file was being
deleted.

Suggested User Action

No action required; the file is effectively deleted, but the
volume may be corrupted.

FLX -- I/0 ERROR INITIALIZING DIRECTORY
Description
One of the following conditions may exist:
1. The specified device is not on-line.
2. The specified volume is not mounted.
3. A hardware error has occurred (e.g., bad tape).

Suggested User Action

1. Ensure that the device is on-line and in operable condition.

2. Reenter the command line with the required switch specified.
FLX -- I/0 ERROR ON COMMAND INPUT

Description

An unexpected error in command input was encountered from either
an indirect command file, or TI:; FLX exits.

Suggested User Action

Restart FLX.

3-25

FILE TRANSFER PROGRAM (FLX)
FLX -~ I/0 ERROR ON FLX TEMPORARY FILE
Description
FLX encountered an error condition with its temporary file. FLX
creates a temporary file on SY: for operations involving DOS-11
CT, DT, or MT. This error occurs when:
1. SY: 1is not on-line and mounted.
2. 8Y: 1is write-locked.
3. A protection violation occurred.

4. An I/0 error was encountered.

Suggested User Action

Correct the error condition and reenter the command line.
FLX -- I/0 ERROR ON LIST FILE
Description
An error occurred on the output device during a /DI or /LI
sequence. There 1is a hardware problem with the output device

(e.g., device powered down).

Suggested User Action

1. Rectify the condition.

2. Reenter the command line.
FLX -~ OUTPUT DEVICE FULL

Description

The DOS or RT-11 output volume does not contain enough space for
the output file,

Suggested User Action

Delete all unnecessary files and reenter the command line.
FLX -- OUTPUT FILE SPEC NOT ALLOWED
Description

The user supplied an output file specifier for a command that
does not allow one.

Suggested User Action

Reenter the command without an output file specifier.

FILE TRANSFER PROGRAM (FLX)
FLX -- RECORD TOO LARGE

Description

FLX has detected an input record in a Files-11 tr
larger than the specified or implied record si
i.e., the file is corrupted.

- o~
el 1
a

Suggested User Action

The file in guestion is unusable.

FLX -- REQUEST TERMINATED -~ LAST BLOCK NOT WRITTEN
Description
The <CR> reply was given by the user to indicate that no new
voiume would be mounted when an end-of-volume was encountered on
cassette output. The block which FLX was attempting to write
when it encountered the end of the cassette has not been written.

Suggested User Action

No action is required; the message is purely informational.
FLX -- SPECIFIED RECORD SIZE BAD, 512. USED
Description

The record size specified with the /FA, /FB, or /IM switch is not
acceptable. A record size of 512(10) bytes is assumed.

Suggested User Action

This is a warning message; no action is required.
FLX -- UNABLE TO ALLOCATE FILE
Description

There is no available space on the DOS or Files-11 volume for the
specified file; the volume is full.

Suggested User Action

Delete all unnecessary files and reenter the command line.
FLX -~ UNABLE TO OPEN FILE
Description

A specified input or output Files-1l1 file could not be opened.
Possible reasons are:

1. Input file does not exist.
2. Volume is not mounted.
3. Protection violation occurred.

Suggested User Action

Correct the condition and reenter the command line.

3-27

FILE TRANSFER PROGRAM (FLX)
FLX -- UNABLE TO OPEN LIST FILE
Description

The list file cannot be opened under the specified filename and
UIC; the specified device may not be a valid Files-11 volume.

Suggested User Action

Reenter the command line specifying the correct filename and UIC.
FLX -~ UNDIAGNOSABLE REQUEST

Description

FLX does not recognize the command line syntax.

Suggested User Action

Reenter the command line with the proper syntax.
FLX -- /CO FILES FROM INPUT DEVICE NOT ALLOWED UNLESS BL: SPEC
Description

When transferring files from MT, PR, or CT, the /CO switch can be
only specified when the /BL switch is also specified.

Suggested User Action

Reenter the command line, specifying the /BL switch.
FLX -- * IN VERSION NUMBER NOT ALLOWED
Description

A wild card was detected in the version number field of a file
specifier.

Suggested User Action

Reenter the command line with all version numbers explicitly
specified.

3-28

CHAPTER 4

FILE DUMP UTILITY (DMP)

4.1 INTRODUCTION TO DMP

The File Dump utility (DMP) program produces a printed listing of the
contents of a file. The 1listing can be directed to any suitable
output device: 1line printer, terminal, DECtape or disk. DMP runs in

either one of two modes:
1. File Mode

In file mode, one input file is specified and all, or a
specified range (see /BL:n:m) of virtual blocks, of the named
file is dumped.

NOTES

a. A virtual block refers to a
relative block of data in a
file.

b. vVirtual blocks are numbered
sequentially from 1 through
n, where n 1is the total
number of virtual blocks of
the file.

- T d s L

c. The input device must be a
Files-11 structured volume
and must be mounted via the

MCR MOUNT command.
2. Device Mode
In device mode, only the device is specified, and a specified
range (/BL:n:m) of logical blocks is dumped.

NOTES

a. /BL:n:m switch is a
required parameter.

b. A logical bleck refers to
the actual 512-byte block
on disk and DECtape, and

FILE DUMP UTILITY (DMP)

physical records on magtape
and cassette. DMP will
handle physical records up
to 2048 bytes in length.

c. Logical blocks are numbered
from 0 to n-1, where n is
the total number of logical
blocks on the device.

d. The volume to be dumped
must not be mounted.

4.2 INITIATING DMP

All RSX-11M utility programs can be initiated in several ways. These
methods are described in Section 1.2. The methods for DMP are:

>DMP_/

>DMP command string/

>RUN ...DMP_/

>RUN ...DMP/UIC=[group,member]j__/
>RUN S$DMP_/

>RUN $DMP/UIC=[group,member]_/

4.3 DMP COMMAND STRINGS

Commands to DMP are expressed in the following format:
outfile=infile/switch

For a complete description of file specifiers, see Section 1.3.

4.4 DMP SWITCHES

DMP switch specifications consist of a slash (/) followed by a
2-character switch name, optionally followed by a value, which is
separated from the switch by a colon (:). Eight switches are
recognized by DMP. These switches are described in Table 4-1.

4-2

FILE DUMP UTILITY (DMP)

Table 4-1
DMP Switches

Switch

Description

Default

/AS

/BA:n:m

/BL:n:m

Word mode octal dump

The /AS switch specifies that the data should be
dumped in ASCII mode. The control characters
(0-37) are printed as *%, followed by the
alphabetic character corresponding to the
character code +100. For example, bell (code 7)
is printed as 4G (code 107). Lower case
characters (140-177) are printed as %, followed by
the corresponding upper case character (character
code -40).

This switch allows the user to specify a 2-word
base block address, where n = high-order base
block address (octal), and m = low-order base
block address (octal). When specified, all future
block numbers will be added to this wvalue to
obtain an effective block number. This switch is
useful to specify block numbers that exceed 16
bits. For example:

DMP>/BA:1:0 ./

7B

Specifies that all future block numbers
will be relative to 65536 (10)
(200000 (8)) .

DMP>/BA:0:0 _/
Clears the base address.

Specifies the range of blocks to be dumped, where
n is the first block and m is the last block.

NOTES

1. If the /BL:n:m switch 1is specified
in file mode, it specifies the range
of virtual blocks to be dumped.

2. If the /BL:n:m switch 1is specified
as /BL:0 in file mode, no virtual
blocks are dumped. This 1is useful
when the wuser wishes to dump only
the header portion of the file (see
/HD) .

3. The /BL:n:m switch is a required
parameter in device mode. When used
in device mode, it specifies the
range of logical blocks to be
dumped.

4-3

FILE DUMP UTILITY (DMP)

Table 4-1 (Cont.)
DMP Switches

Switch Description

/BY The /BY switch specifies that the data should be
dumped in byte octal format.

/HD This switch is an optional parameter to be used in
file mode. 1f specified, /HD causes the file
header as well as the specified portion of the
file to be dumped.

NOTE
If just the header portion of the file 1is
desired, the wuser can specify /HD/BL:O0.
The file header is described in Appendix F
of the RSX-1l1 1I/0 Operations Reference
Manual.

/1D Causes DMP's version to be identified. This
switch may be specified on a line by itself at any
time.

Example:
>DMP /ID_/

/LB Logical block. This switch gives the user only
the starting block number and a contiguous or
noncontiguous indication for the file.

Example:

DMP>TI:=DK0:RICKSFILE.DAT;3/LB 4/

STARTING BLOCK NUMBER = 0,135163 C
File RICKSFILE.DAT, version 3 is a contiquous file
starting at block number 0,135163. (See /BA:n:m
for block number description.)

/MD[:n] Memory dump. This switch allows control of 1line

numbers. Line numbers are normally reset to zero
whenever a block boundary 1is <crossed. The /MD
[:n] switch allows lines to be numbered

sequentially for the full extent of the file,
i.e., the 1line numbers are not reset when block
boundaries are crossed. The optional value (:n)
allows the user to specify the value of the first
line number. The default is 0.

NOTE

Sample listings are presented in Appendix
B.4,

FILE DUMP UTILITY (DMP)

4.5 DMP ERROR MESSAGES

DMP -- BAD DEVICE NAME
Description

The user has specified an 1invalid device name in a file
specifier.

Suggested User Action

Reenter the command line specifying the correct device.

DMP -- BLOCK SWITCH REQUIRED IN LOGICAL BLOCK MODE
Description
Self-explanatory -- /BL switch must be specified.

Suggested User Action

Reenter the command line with the /BL switch specified.

DMP -- CANNOT FIND INPUT FILE
Description
The requested file cannot be located in the specified directory.

Suggested User Action

Reenter the command with the correct filename and UIC specified.

DMP ~-- COMMAND SYNTAX ERROR
Description

The user has entered a command in a format that does not conform
to syntax rules.

Suggested User Action

Reenter the command line with the correct syntax.

DMP -- FAILED TO ASSIGN LUN
Description
The user has specified an illegal device in a file specifier.

Suggested User Action

Reenter the command line with the correct device specified.

FILE DUMP UTILITY (DMP)
DMP -- FAILED TO READ ATTRIBUTES
Description

The user has attempted to access a file for which he does not
have read access privileges.

Suggested User Action

Rerun DMP using a UIC which has read access privileges to the
file.

DMP -- ILLEGAL SWITCH
Description

The user has specified a switch that is not a valid DMP switch or
used a legal switch in an invalid manner.

Suggested User Action

Reenter the command line with the correct switch specified.

DMP -- I/0 ERROR ON INPUT FILE
or
DMP -- I/0 ERROR ON OUTPUT FILE
Description
One of the following conditions exists:
1. A problem exists on the physical device (e.g., device cycled
down) .
2. File is corrupted or the format is incorrect.
3. Output volume is full.

Suggested User Action

l. Determine which of the above conditions may exist.
2. Rectify the condition.

3. Reenter the command line.

FILE DUMP UTILITY (DMP)
DMP -- NO INPUT FILE SPECIFIED
Description

The user has terminated a command without entering an input file
specifier.

Suggested User Action

Reenter the command line with an input file specified.

DMP -- NO LISTS OR WILD CARDS ALLOWED

Description

The user either entered a command with more than one input or
output filename or entered a wild card in a file specifier.

Suggested User Action

Reenter the command line with only one input file specifier and
one output file specifier. No wild card specifiers allowed.

DMP -- OPEN FAILURE ON INDIRECT FILE
Description

The requested indirect command file does not exist as specified.
One of the following conditions may exist:

1. The file is protected against access.

2. A problem exists on the physical device (e.g., device
cycled down).

3. The volume is not mounted.

4. The specified file directory does not exist.

[o})
h

e n ile does not exist 1in the specified

e ame
lrectory.

0,13

Suggested User Action

1. Determine which of the above conditions may exist.
2. Rectify the condition.

3. Reenter the command line.

4-7

FILE DUMP UTILITY (DMP)
DMP -- OPEN FAILURE ON INPUT FILE
or
DMP -- OPEN FAILURE ON OUTPUT FILE
Description
One of the following conditions may exist:
1. The file is protected against access.

2. The named file does not exist in the specified
directory.

3. The volume is not mounted.
4, The specified file directory does not exist.

5. A problem exists on the physical device (e.g., device
cycled down).

Suggested User Action

1. Determine which of the above conditions exists.
2. Rectify the condition.

3. Reenter the command line.

4-8

CHAPTER 5

LINE TEXT EDITOR (EDI)

5.1 INTRODUCTION

The Line Text Editor (EDI) is an interactive context-editing program
that provides the capability to create and modify source programs and
other ASCII text material. EDI may be directed to read a line, or
group of lines, from the input file into an internal buffer by means
of terminal commands. The user <can then, by means of additional
commands, examine, delete and change text, and insert new text at any
point in the buffer. When the line or block of lines has been edited,
the user can issue a command to write the data into a new file.

EDI is most frequently used to modify MACRO and FORTRAN source
programs, but it can also be used to edit any ASCII text material.

The EDI commands are described in sections 5.4 and 5.5.

5.2 USING EDI

This section is designed to give the user a step-by-step approach to
using the RSX-11M Line Text Editor.

5.2.1 Preparing to Run EDI

Before initiating EDI, the user must consider the following:

1. EDI can operate only on Files-11 format files. All other
file formats are rejected.

2. The output file generated by EDI always resides on the same
device as the input file. The output file cannot be directed
to another device.

Example:

If a user has a file on DECtape and he wants to edit that
file and store the resulting file on disk, he must:

a. Transfer the file to disk and perform the editing there.

b. Edit the file on DECtape and then transfer the file to
disk using PIP.

LINE TEXT EDITOR (EDI)

3. If a device other than SY0: 1is to be utilized, it must be
mounted via the MCR MOUNT command.

4. If other than the latest version of a file is to be edited,
the desired version number can be explicitly stated in the
file specifier. This file will be opened as the input file
and the version number of the output file will be one greater
than the latest version of the file. If a command issued
during the editing session closes the explicit version of the
file without terminating the session (e.g., a TOF command),
both output and input files are closed, and the latest
version of the file is reopened as the input file.

5.2.2 Initiating EDI

All RSX-11M utility programs can be initiated in several ways. These
methods are described in Section 1.2. The methods for EDI are:

>EDI ./

2EDI command string _/

>RUN ...EDI./

>RUN ...EDI/UIC=[group,member]./
>RUN $EDI./

>RUN S$EDI/UIC=[group,member].’/

If any format except ">EDI command string" is .used, EDI 1issues the
following prompting message:

EDI>

At this point, the user must enter a file specifier for the file to be
edited. The file specifier is in the following format:

dev:[uic] filename.typ

If the file specifier is a new file (i.e., the file specified cannot
be found on the specified device), the assumption is that the user
wishes to create a new file with the given filename. EDI then prints
the following comment lines:

[CREATING NEW FILE]
INPUT

and enters Input mode.

NOTES

1. Edit control modes are described in
Section 5.2.3.

2. If the message "FILE DOES NOT EXIST" |is
displayed, it means that the specified
user file directory is nonexistent.

LINE TEXT EDITOR (EDI)

3. EDI does not accept indirect command
file specifiers.

4. The abbreviation "filespec" is wused in
the command formats to indicate file
specifier.

If an existing filename is specified, EDI prints:

[PAGE 1]

*

and waits in Edit mode for the first command to be issued.

If the ">EDI command string" format is used, the prompt message (EDI>)
is not issued, and EDI starts up in either Input or Edit mode,
depending on the filename specified: 1Input mode if the filename is
new; Edit mode if the filename already exists.

NOTE

At program startup, after the input file
has been identified and the output file
has been created, the program is ready
for commands. The first line available
to the user for editing 1is always one
line above the top of the input file or
the block buffer. This allows for
inserting text at the beginning of the
input file or the block buffer. If,
however, the user wishes to manipulate
the first line of text, he must perform
a NEXT operation to make that 1line
available.

5.2.2.1 Defaults in File Specifiers - If any of the elements of the
file specifier, except filename and type for input file, are omitted,
EDI uses a default. The default values for both the input and the
output files are listed in Table 5-1.

LINE TEXT EDITOR (EDI)

Table 5-1
ECI Default File Specifiers

Default Value Default Value
Element for Input File for Output File
dev: SYO0: Same as input device
fuic] UIC under which EDI Same as input [uic]

is currently running

filename No default--must Same as input filename
be specified

.typ No default--must Same as input file type
be specified

;version Latest version Latest version+l

5.2.3 EDI Control Modes

EDI is capable of operating in two control modes:
e Edit mode (command mode)
e Input mode (text mode)

Edit mode is invoked automatically at program startup, if an existing
file is being edited.

When in Edit mode, EDI issues an asterisk(*) as a prompt. Also EDI
accepts and acts upon control words and data strings to open and close
files; to bring in lines of text from an open file; to change,
delete, or replace information in an open file; or to insert single
or multiple lines anywhere in a file.

Input mode is invoked automatically at program startup if a
non-existent file 1is specified. When Input mode is active, lines
entered at the terminal are treated as text to be inserted into the
output file.

5.2.4 Changing Control Mode

If EDI is in Edit mode and the user wishes to enter Input mode, the
INSERT command 1is 1issued, followed by a carriage return. This will
place EDI in Input mode, and all lines entered from this point will be
added into the file as new text, following the current line.

NOTE

The INSERT command 1is described in
section 5.4.3.8.

5-4

LINE TEXT EDITOR (EDI)

If EDI is in Input mode and the user wishes to switch to Edit mode, a
carriage return is entered as the first character in a line. EDI will
then issue the prompting character * , which signifies that the Edit
mode is active.

5.2.5 Text Access Modes

EDI provides the user with two modes of accessing and manipulating
lines of text in the input file:

e Line-by-line Mode - Allows the user to access lines of text
one line at a time (a 1line 1is a string of characters
terminated by a carriage return).

e Block Mode - Allows the user to access a block of lines, on
a line-by-line basis.

NOTE

Block mode is the default text access mode.

5.2.5.1 Line-by-Line Mode - In this mode, a single line is the unit
of the input file available to the user for modification at any point.
Line-by-line mode is entered by issuing a BLCCK CFF command, and is
terminated by issuing a BLOCK ON command. The BLOCK ON/OFF command is
described in section 5.5.1.1.

The line currently available is specified by a pointer, which can be
thought of as moving sequentially through the file, starting just
before the first line in the file. The user can manipulate the 1line
pointer by using the editing commands which are described in sections
5.4 and 5.5.

When a file is opened at the beginning of an editing session, the
first 1line of that file can be brought into memory and made available
for modification. This line remains in memory until the user regquests
that a new line be brought in. The pointer then moves down the file
until the line reguested is encountered. That line 1is brought into
memory and, as the "current"” line, can be modified. When a new line
is brought in, the o0ld, or previous, line is written into the output
file, and is no longer accessible unless the user issues a TOP command
(the TOP command is described in Section 5.5.3.10). The TOF command
can be used to move the line pointer to the top of the file; however
TOF always causes EDI to re-enter the block mode (see Section
5.4.3.15).

5.2.5.2 Block Mode - In this mode, a user-specified portion (8C lines
is the default) of the input file is held in the block buffer for
editing until the user requests that the contents of the buffer be
added to the output file.

LINE TEXT EDITOR (EDI)

When the user is operating in klock mode, EDI executes commands only
with respect to that portion of the input file currently in the
buffer. The lines of text in the buffer can be addressed backward as
well as forward within the buffer, thus allowing the user to back up
to a previously edited line without having to process the entire block
or file all over again, or having to issue a TOF command.

5.2.5.3 Line-by-Line Vs. Block Mode - Table 5-2 provides a brief
summary of the differences between line-by-line and block mode.

Table 5-2
Line-by-Line vs. Block Mode

Line-by-Line Mode Block Mode
One line available for Entire block of lines available
modification at a time for modification at a time, on
(see third statement below a line-by-line basis.

for exception).

Lines can only be Lines can be accessed forward
accessed forward through and backward within a block.
the file.

Locative commands, those Locative commands search only
which allow the user to the block that is in memory.
locate a string of text To search more data, another
for modification, can be block must be read in.

applied to search the
entire file.

NOTE

The line pointer, regardless of editing
mode wutilized, always points to the
first character - in the 1line.

5.2.6 Text Files

The following sections describe how data may be added to files, and
the operations performed on output files.

LINE TEXT EDITOR (EDI)

5.2.6.1 Input and Secondary Files - EDI accepts input from:

1. The input terminal (i.e., commands and text entries).
2. Files-11 volumes which contain

a. The file to be edited; or

b. A secondary file; or

c. A save file; or

d. A macro file.

The input file is always preserved. To delete the input file, the
user can use the CLOSE-AND-DELETE command or the EXIT-AND-DELETE
command, or PIP can be utilized. Any system failure, EDI failure, or
lack of space on the output volume does not cause the loss of the
input file. Only the output file is affected. The output file is not
completely destroyed; it 1is a truncated version of the input file
containing all of the edits to the point of failure. '

5.2.6.2 Output Files - The output device is defaulted to the input
device, as well as the same directory and filename, with the version
number incremented by one. If the user wishes to change any of the
file parameters (except device and directory), he can specify a
completely new file specifier when closing a file or exiting at the
end of an EDI session.

5.2.7 Terminal Conventions

5.2.7.1 Carriage Return - The carria
effects, depending on how it is used:

Q

e return has the follcwing

1. When issu

e
return cau

-
11

i ut file specifier, carriage
es E

»

O

Aa 1
G PLa
s D

M rh

"
Ll

H
o)
o
o b
o

1 ~ -

I to rm

2. When issued in Edit mode, carriage return causes the next
line to be printed and that line to be the current line.

3. When issued in Input mode as the first character in the line,
carriage return causes a return to Edit mode.

4. When issued alone after an INSERT command, carriage return
puts the user in Input mode.

5.2.7.2 Character Erase (RUBOUT) and Line Delete (CTRL U) - Two
terminal commands are provided which permit the deletion (erasure) of
individual characters in a line or the deletion of an entire line.
RUBOUT deletes individual characters. CTRL/U deletes the current
input line. For a complete description of these commands, see the
RSX-11M Operator's Procedures Manual.

During editorial operations, neither the RUBOUT nor CTRL/U command
affects previously prepared text.

LINE TEXT EDITOR (EDI)

5.2.8 EDI Command Conventions

5.2.8.1 Use of * - The asterisk character, *, can be used in place of
a numeric argument and is equal to 32767(10).

Example

The following command would result in the printing of the remainder of
the block buffer or file.

PRINT *

5.2.8.2 Search String Constants - In a number of the EDI commands,
the wuser must identify a string(s) of characters to be located and/or
changed. To reduce the necessary terminal entries, the more advanced
user can utilize the following special string constructs. In these
special cases, the three periods (...) are used to represent any
number of intervening characters.

Case 1. string-l... - Any string which starts with string-1,
string-2 continues with any number of intervening
characters, and ends with string-2.

Case 2. ..."string" - Any string which starts at the beginning
of the current 1line and ends with
"string".

Case 3. ‘"string"... - Any string which starts with "string”

and ends at the end of the current line.
Case 4. ... ~ A string which is the current line.
Examples

THIS IS A SAMPLE OF SPECIAL STRING CONSTRUCTS. Using the preceding
sentence and the commands specified in each case, observe the results:

Case 1. C /S A...E O/S AN EXAMPLE O
results in
THIS IS AN EXAMPLE OF SPECIAL STRING CONSTRUCTS.

Case 2. C/...SPEC/THIS IS AN EXAMPLZ OF SPEC
results in
THIS IS AN EXAMPLE OF SPECIAL STRING CONSTRUCTS.

Case 3. C /STRING.../EDI STRING CONSTRUCTS.
results in
THIS IS A SAMPLE OF SPECIAL EDI STRING CONSTRUCTS.

Case 4. C /.../EXAMPLES OF SPECIAL EDI CONSTRUCTS.

results in
EXAMPLES COF SPECIAL EDI CONSTRUCTS.

5-8

LINE TEXT EDITOR (EDI)

5.3 EDI ERROR REPORTING

Errors encountered by EDI are reported to the wuser by appropriate
error messages displayed on the input terminal. For the purpose of
clarification, these messages (and their descriptions and suggested
user actions) are described as four separate classes of errors. These
classes are:

e Command level informational error messages

e File access warning messages

e Error messages requiring EDI restart

e Fatal error messages
Input and output files are affected differently by the occurrence of
errors. Input files are always preserved. The resulting output file

is a truncated version of the input file, containing all edits
completed up to the time of the error.

5.3.1 Command Level Informational and Error Messages

Messages in this class indicate information that is designed to be
helpful to the user or identify errors that were encountered in the
previous command. All messages in this <class are enclosed within
square brackets and followed by a prompt for a new command. These
messages are described in Section 5.6.1.

5.3.2 File Access Warning Messages

File access warning messages represent attempts on the part of the
user to access directories, files, or devices that are not present in
the host system or which are protected against access. Each message
is prefixed with:

EDI --
and, after the message is displayed, EDI returns to command level and

requests input by issuing an asterisk. These messages are described
in Section 5.6.2.

5.3.3 Error Messages Requiring EDI Restart

The error messages that result in restarting the editing session are
caused by conditions encountered by EDI that make it impossible to
continue the current editing session. EDI closes all open files (with
the exception of the secondary input file), reinitializes, and then
prompts for the next file to be edited. Each message 1is prefixed
with:

EDI --

These messages are described in Section 5.6.3.

LINE TEXT EDITOR (EDI)

5.3.4 Fatal Error Messages

Fatal error messages represent system and/or hardware error conditions
which make it impossible for EDI to continue execution. All files are
closed and EDI terminates its execution. Each error message is
prefixed with:

EDI --
and followed by the exit message:

[EXIT]

on the next line. These messages are described in Section 5.6.4.

5.4 BASIC EDI OPERATION AND COMMANDS

EDI can be used to create new files, enter new text into existing
files, and edit new and existing files., These operations are
described in this section, along with the basic EDI commands which are
required by the new user.

5.4.1 Basic EDI Operations

5.4.1.1 Creating a File - To create a file using EDI, a nonexistent
filename 1is used as the file specifier. This causes EDI to print the
following lines on the user terminal:

[CREATING NEW FILE]
INPUT

and to enter Input mode. The user then types the desired text on the
terminal, observing the required spacing within the line. When the
typing of the line is complete, the line is terminated by a carriage
return. The next line is entered in an identical manner.

During file creation, input errors on lines which have been terminated
by a carriage return are corrected by switching to Edit mode. This is
accomplished by typing a carriage return as the first character in a
line. Once Edit mode is entered, EDI issues a prompt (*) to indicate
that it is ready to receive an edit command. If additional text is to
be inserted after the corrections have been completed, the user must
locate the text line preceding the desired entry point and return EDI
to the Input mode by typing an I, followed by a carriage return. The
user can switch between the Input and Edit modes, as required, by
following the procedures described in this paragraph.

When the file creation and necessary corrections have been completed,
the wuser must switch to Edit mode to exit from EDI. The output file
is stored with the file specifier used when EDI was initiated, or it
can be renamed with the EXIT command.

LINE TEXT EDITOR (EDI)

5.4.1.2 Entering Text Into a File - Text can be entered into a file
in either Input or Edit mode. Since there are differences between the
two modes of text entry, each is described separately:

e Entering Text in Input Mode - When EDI is in Input mode, the
information typed on the terminal 1is inserted in the line
following the current line. As each 1line is terminated by a
carriage return, the line pointer is moved down one line and the

line which was just entered becomes the current line. EDI does
not recognize any command and remains in Input mode until a
carriage return is typed as the first character of a line. Then

EDI switches to Edit mode.

e Entering Text in Edit Mode - When EDI is in Edit mode, text can
be appended to the current 1line (via an ADD or ADD & PRINT
command) , inserted as a line following the current line (via an
INSERT command), or used to replace the current line (via a
RETYPE command). Each of the commands inserts only a single line
of text; the command must be reissued to insert another line.
Other EDI commands can be used to modify a single 1line or a
complete file, but the ADD, ADD & PRINT, INSERT, and RETYPE
commands are mainly the commands used to insert text in Edit
mode.

5.4.2 Editing a File

Editing operations are performed only when in Edit mode. The commands
available with EDI are categorized as follows:

e Setup commands select data modes, select and open files, select
operating conditions, etc.

e Input/Output commands transfer text from input files and to
output files.

¢ Locative commands control the positioning of the current 1line
pointer.

e Text modification and manipulation commands display, change and
modify the text.

e Close operation commands terminate editing operations.
The various commands are described in Sections 5.4.3 and 5.5.

Two text access modes are available with EDI, and a command is
available that allows the user to select either mode. The
line-by-line mode allows the user to locate a line anywhere within a
file, but the current line pointer must always be moved down through
the file being edited. Once a line is passed, the pointer must be
moved to the beginning of the file to access that line again.

LINE TEXT EDITOR (EDI)

The second text access mode, which is the more frequently used of the
two modes, is block mode. In block mode, a block of data is stored in
the block buffer, and the line pointer can be moved up or down through
the data block. The default size of the data block is 80 lines.
Since data is packed in the block buffer, the wuser can 1increase or
decrease the data block size, as required, or he can read additional
data blocks into the block buffer as long as the buffer capacity is
not exceeded. Once the contents of the block buffer are established,
only the contents of the block buffer are available for editing
operations. If another block is to be edited, the block buffer must
be renewed before new data can be edited. Because of this 1limitation
in block mode, commands have been included in EDI that allow the user
to specify a string or page number not in the present contents of the
block buffer. Then, EDI performs the necessary search and renew
operations to locate the desired data and 1load it into the block
buffer. After selecting edit mode, the user moves the line pointer to
locate the line to be changed. The wuser then can perform editing
operations, which can consist of adding, changing, modifying or
deleting data, with a wide variety of commands. If a common change is
required more than once in a line or to more than one line, commands
are available to perform these operations without requiring the user
to locate each occurrence and enter the required command. Storage for
up to three EDI macro definitions is available so that frequently-used
EDI commands or string of EDI commands can be stored, called, and
executed, when required.

A single EDI command can insert the contents of a save file into the
file or data block being edited. Another command can delete a number
of lines and place EDI in Input mode so new lines can be entered via
the terminal in place of the original lines. Storage capacity of the
block buffer must never be exceeded; surpassing buffer capacity
during an operation is considered an EDI error condition. The data
which caused the overflow will be deleted.

Commands are included in EDI to perform the following input/output
operations:

. Write the contents of the block buffer into the output file
and renew the contents of the block buffer with the next
input data block.

. Write the contents of the block buffer into the output file

and erase the present contents of the block buffer.

. Read the next block or group of blocks into the block
buffer.

° Write edited text into the output file and return to top of
file.

In all cases, the input/output commands have no effect on the input
file. The input file can be deleted only during closing operations.
In most cases, an editing session is terminated by transferring the
contents of the block buffer and the remaining lines in the input
file, in that order, to the output file, and then closing the files.
Whether EDI is terminated is dependent upon which closing command is
used. The available closing commands are as follows:

LINE TEXT EDITOR (EDI)
. Close the current editing session and remain in EDI.

* Close the current editing session, delete the input file and
remain in EDI.

. Exit EDI without deleting the input file.
. Exit EDI and delete the input file.
. Remain in EDI but delete both output and input files.

EDI is a versatile editing tool which enables the user to edit all
types of text files. 1In the following descriptions of the commands,
examples are included using text lines and files to illustrate the
function of the various commands. Text has been used in these
examples so that the intent of the command is not lost in the syntax
of a language which the new user may not understand.

5.4.3 Basic EDI Commands

The basic EDI commands listed in Table 5-3 allow the user to create a
file, modify a file by adding, deleting, or changing its contents, and
exit after the desired operations have been completed. These comméends
are the most important commands to the new user; therefore, they have
been presented as a group near the beginning of this section to
provide the new user with an understanding of some of the more
important EDI capabilities. As the user becomes familiar with EDI
operations, the additional commands described in Section 5.5 will
allow utilization of the full EDI capabilities.

5-13

LINE TEXT EDITOR (EDI)

Table 5-3

Basic EDI Commands

Command Command Format Description

ADD A[DD] (string) Append (string) to current
line.

ADD & PRINT AP (string) Append (string) to current

CHANGE

CTRL Z

DELETE

DELETE &
PRINT
EXIT

INSERT

LOCATE

NEXT

NEXT & PRINT

PRINT

RENEW

RETYPE

TOP OF FILE

[n]C[HANGE] /string-1/
string-2/

42

D[ELETE] [n]
or
D[ELETE] [-n]

DP [n] or DP -n]

EX[IT] [filespec]

I[NSERT] (string)

[n]L[OCATE] (string)
N[EXT] [n] or

N[EXT] [-n]

NP [n] or NP [-n]
P[RINT] [n]

REN[EW] [n]

R[ETYPE] (string)
TOF

line and print resultant line.

Replace string-1 with string-2
n times in the current line.
Close files and terminate
editing session.

Delete current 1line and n-1
lines if n is (+); delete n
lines preceding current 1line
if n is (-). [-n] operates in
block mode only.

Same as DELETE except new
current line is printed.

Close files, name output file
and terminate editing session.

Enter (string) following
current line or enter input
mode if (string) is not
specified.

Locate "nth" occurrence of
string.

Establish new current 1line n
lines away from current line.

Establish and
current line.

print new

Print current 1line and the
next n-1 lines. The last
printed 1line is the new

current line.

Write current block to output
file and read new block from
input file (block mode only).

Replace current line with
string; or delete current
line if (string) is null.

Return to top of input file
and save all pages previously
edited.

5-14

LINE TEXT EDITOR (EDI)
5.4.3.1 ADD Command

Function

h

1

is command causes the specified string tc be appended to the current

=3
D n

Format
A[DD] (string)
Example
The following command completes the line HAPPY DAYS ARE HERE

*A AGAIN../

5.4.3.2 ADD AND PRINT Command

Function

This command performs the same function as the ADD command, except
that the resultant line is printed.

Format

Example

Using the same line as the ADD command, the following command causes
the new line to be printed as follows:

*AP AGAIN._/

HAPPY DAYS ARE HERE AGAIN.

5.4.3.3 CHANGE

Function

This command searches for string-1 in the current line and, if found,
replaces it with string-2. If string-l 1is given, but cannot be
located in the current line, EDI prints [NO MATCH] and returns an *
prompt. If string-1 is null (not given), string-2 is inserted at the
beginning of the line. If string-2 is null, string-l is deleted from
the current line. The search for string-1l begins at the beginning of
the current line and proceeds across the line until a match is found.
The delimiters may be any matching characters which are not contained
in the specified string. Slashes are shown in the example. The first
character following the command is considered the beginning delimiter
and the next matching character ends the string. Thus, characters
used as delimiters must not appear in the string itself. The closing
delimiter is optional.

A numeric value "n" preceding the command results in the first "n"
occurrences of string-1 being changed to string-2. For each

LINE TEXT EDITOR (EDI)
replacement of string-1 with string-2, the entire 1line 1is rescanned
beginning at the first character in the line. This allows the user to
generate a string of!l characters as shown in the example below.
If no match occurs, a [NO MATCH] message is displayed.
Format
[n]C[HANGE] /string-1l/string-2[/1

Example

If a line contained A;B;C;D, then the command 4C/;/;;: generates

5.4.3.4 CTRL/Z Command

Function

Typing CTRL/Z (holding the CTRL key down while typing the 1letter Z)
terminates the editing session. If an output file is open when CTRL/Z
is typed, then all remaining lines in the block buffer and the input
file are transferred (in that order) into the output file, all files’
are closed, and EDI exits. These actions occur if EDI is prompting
for command input with an asterisk or is in Input mode. If EDI is
prompting for another file specifier when CTRL Z is entered, all files
are closed (including any open secondary input file), and EDI exits.

5.4.3.5 DELETE Command

Function

This command causes lines of text to be deleted in the following
manner :

1. If n is given as +n, the current line and n-1 lines following
the current 1line are deleted. The new line available for
modification (the new current line) is the line following the
last deleted line.

2. If n is given as -n, the current line is not deleted, but the
specified number of lines that precede it are deleted. The
line pointer remains unchanged.

3. If n is null, the current line is deleted, and the next 1line
becomes the new current line.

NOTES

1. A negative value for n can be used only
in block mode.

2. If n is not specified, a value of +1 is
assumed.

5-16

LINE TEXT EDITOR (EDI)

Format
D[ELETE] [n]
or
D[ELETE] [-n]
Example

To delete the previous five lines in the block buffer, the following
command is typed:

*D -5/

5.4.3.6 DELETE AND PRINT Command

Function

This command performs the same function as the DELETE command, except
that the new current line is printed when the deletion of all lines
has been completed.

Format
DP [n]
or
DP [-n]
NOTES
1. If n is not specified, +1 is assumed.
2. A negative value for n can be used only
in block mode.
Example

If the following lines are contained in a file:
THIS IS LINE 1
THIS IS LINE 2
THIS IS LINE 3
THIS IS LINE 4

and the line pointer is at the first 1line, the following command
obtains the results shown below:

*DP 2./

THIS IS LINE 3

5-17

LINE TEXT EDITOR (EDI)

5.4.3.7 EXIT Command
Function
This command transfers all remaining lines in the block buffer and
input file (in that order) into the output file, closes the files, and
terminates the editing session. If file specifier is used, the output
file is renamed to the specified filename.
Format

EX[IT] [filespec]
Example

The following command terminates the editing session, without renaming
the output file, and causes the following printout:

*EX ./
[EXIT]
>

5.4.3.8 INSERT Command

Function

This command inserts "string" immediately following the current line.
The string becomes the new current line. If "string" 1is not
specified, the user enters Input mode.

Format
I(NSERT) (string)
Example
*I TEXT INSERT IN EDIT MODEAJ Inserts a line of text
immediately after the current
line.
*I ABC</ '~ Locates a line containing ABC.

ABC IS THE START OF THE ALPHABET This is the line found.

*1 ./ An I followed by a carriage

TEXT INSERT 1 IN INPUT MODE ./ return causes EDI to switch

TEXT INSERT 2 IN INPUT MODE / to Input mode and a series

ETC. </ of new 1lines can be input
following the current line.

‘//

* A carriage return as the first

character in a line causes EDI
to return to Edit mode and
prompt for a new command.

5-18

LINE TEXT EDITOR (EDI)

5.4.3.9 LOCATE Command

Function

This command causes a search of the block buffer or input file,
beginning at the line following the current line for "string", which
may occur anywhere in the line sought. 1If "string" is not specified,
the 1line following the current line is considered a match. A numeric
value "n" preceding the command results in locating the "nth"
occurrence of "string”. The line pointer is positioned to the line
containing the located string. LOCATE applies to the block buffer 1if
EDI is 1in block mode and to the input file if in line-by-line mode.
When the line is located, it is printed, unless a VERIFY OFF command
is in effect.

Format
[n]L[OCATE] (string)
Example

The following command can be used to locate the line HAPPY DAYS ARE
HERE AGAIN.

*L PPY/

The file or block buffer is checked, and the line is printed when it
is located, if the VERIFY ON command is in effect.

5.4.3.10 NEXT Command

Function

his command establishes a new curren

mh 1
ES 4
from the current line.

(ag
et
[
o]
o
jv)
T
jo
[
[
o3
(]
0
~
o]
[}
o
n
(€]
s
=}
oot
3
[
0
-

Format
N[EXT] [n]
or
N[EXT] [-n]
NCTES
1. If n is not specified, a value of +1 is
assumed.
2. A negative n can be used only in the
block mode.
Example

In the block mode, the following command moves the current line
pointer back five lines:

*N -5/

5-19

LINE TEXT EDITOR (EDI)

5.4.3.11 NEXT PRINT Command

Function

Same as NEXT command, except the new current line is printed.

Format
NP [n]
or
NP [-n]
NOTES
The following conventions can be used in
place of issuing a complete NP command.

1. Pressing the <CR> key is the same as an
NP+1 command.

2. Pressing the <ALTMODE> (or ESCape) key
while in the block mode is the same as
an NP~1 command.

3. If n is not specified, then a value of
+1 is assumed.

Example

Assume the following four lines are contained in the file and the line
pointer is at the first line.

LINE 1 OF THE FILE
LINE 2 OF THE FILE
LINE 3 OF THE FILE
LINE 4 OF THE FILE

If the following command is issued, EDI would return the following
printout:

*NP 2./

LINE 3 OF THE FILE

5.4.3.12 PRINT Command

Function

This command prints out the current line and the next n-1 lines on the
terminal; the last 1line printed becomes the new current line.
(Compare with the TYPE command, Section 5.5.4.13.)

Format

Example

LINE TEXT EDITOR (EDI)

P[RINT] [n]

The following

commands:

I
a

NOTE

f n is not specified, a value of +1
ssumed.

is

example illustrates both the PRINT and the

=

Before
File A File B
Line A [:>is the |:> Line V
Line B Line W
Line Pointer
Line C Line X
Line D Line Y
Line E Line 2
*TYPE 5/ *PRINT 5/
Line A Line V
Line B Line W
Line C Line X
Line D Line Y
Line E Line Z
hd *
After

File A File B
Line A Line V
Line B Line W
Line C Line X
Line D Line Y
Line E Ei> Line 2

5-21

TYPE

LINE TEXT EDITOR (EDI)

5.4.3.13 RENEW Command

Function

This command writes the current block buffer into the output file and
reads a new block from the input file. The value n, which is
optional, specifies how many times the RENEW command is to be
repeated. If n 1is specified, the process is repeated n times, the
inter-blocks are written into the output file, and the last block 1is
left in the block buffer. If n is not specified, it is assumed that
the process is to be performed only once. This command can be used
only in the block mode.

Format

REN[EW] [n]
Example

*RENEW 10,/
In this example, ten consecutive blocks are transferred from the input
file to the block buffer. The initial contents of the block buffer
and the next nine blocks are transferred to the output file. The

current line pointer is pointing to the first line in the tenth block,
which is currently in the block buffer.

5.4.3.14 RETYPE Command

Function
This command causes Ehe current line to be replaced by "string". If
"string" is not specified, the line will be deleted.
Format
R[ETYPE] [string]
Example
*R THIS IS A NEW LINE_/

In this example, the string "THIS IS A NEW LINE" replaces the current
line.

5.4.3.15 TOP OF FILE Command

Function

This command causes a return to the top of the input file and saves
previously edited text. If this command is issued when in
line-by-line mode, EDI will switch to block mode after saving the
edited data. The first block is read into the block buffer.

5-22

LINE TEXT EDITOR (EDI)
Format
TOF
Example
*TOF _/
This command causes the previously edited pages to be written into the

output file and the current line pointer to be reset to the top of the
input file. The first block is read into the block buffer.

5.4.4 Sample Editing Session

Section B.2.1 contains a sample EDI editing session that illustrates
how EDI commands can be used to edit a file.

5.5 EXTENDED EDI COMMANDS

5.5.1 Setup Commands

The setup commands required at the start of an editing session allow
the user to provide parameters for EDI features. Table 5-4 contains a
list of these commands.

LINE TEXT EDITOR (EDI)

Table 5-4

EDI Setup Commands

Command

Command
Format

Description

ELOCK ON/OFF

CONCATENATION
CHARACTER

OPENS

OUTPUT ON/OFF

SELECT PRIMARY

SELECT SECONDARY

SIZE

TAB

UPPER CASE
ON/OFF

VERIFY ON/OFF

BL[OCK] ON or
BL[OCK] OFF

CC [letter]

OP[ENS] filespec
OU[TPUT] ON or
OU [TPUT] OFF

SP

SS

SIZE n

TA[B] ON or

TA[B] OFF

UC ON or UC OFF

V[ERIFY] ON or
V[ERIFY] OFF

Switch text access modes.

Change concatenation character
to specified character
(default is &).

Open specified secondary file.

transfer
(line~by-line

Continue/Discontinue
to output file
mode) .

Reestablish primary file as
input file.

Select opened
as input file.

secondary file

Specify maximum number of
lines to be read into block
buffer (default is 80 lines).

Turn automatic tabbing on or
off. If TAB ON is selected,
all text lines are moved over
8 spaces, unless the line has
a label followed by a colon,
or the 1line starts with a
semicolon in column 1.

Convert lower-~case characters
entered from terminal to
upper-case characters.

Select whether locative and
change commands are verified.

5-24

LINE TEXT EDITOR (EDI)

5.5.1.1 BLOCK ON/OFF Command

Function

This command allows the wuser +to switch between block mode and
line-by~line mode. When BLOCK ON 1is issued, block mode becomes
active, and the next block of text is brought into the block buffer.
When BLOCK OFF is issued, the current block being processed is written
to the output file, and line-by-line mode becomes active, with the
first 1line from the next sequential block in the input file as the
current line.

NOTES

1. If a conflicting BLOCK command is issued
(e.g., BLOCK ON 1is issued when EDI is
already in BLOCK ON mode), the command
is ignored.

2. BLOCK ON is the default text access
mode. It is assumed when neither ON nor
OFF is specified.

Format
BL[OCK] ON
or
BL[OCK] OFF
Example

*BLOCK ONL/

This command causes EDI to switch to block mode and the next block of
text to be read into the block buffer.

5.5.1.2 CONCATENATION CHARACTER Command

Function

This command allows the user to change the command concatenation
character to the specified character. If none is specified, the
ampersand (&) is assumed. The concatenation character links two EDI
commands on the same command line.

LINE TEXT EDITOR (EDI)

Format
CC [letter]
Example
*CC 1o/
*I, A&B:C /A&B/ABC//
*CC & </

In this example, the string to be located contains an ampersand.
Therefore, the default concatenation character must be changed to
something else before the line can be located.

The first command line changes the default concatenation character
from & to :.

The second command line instructs EDI to locate the string A&B and
change string A&B to ABC. (Note: this line contains two commands
which are concatenated by the new concatenation character, ":".)

The third command line changes the concatenation character back to the
normal default value, &.

5.5.1.3 OPENS Command

Function

This command opens the specified secondary input file. The primary
input file, if any, remains open and subseguent text is read from
primary input file until the secondary input file is selected for
input (see Section 5.5.1.6 for a description of SELECT SECONDARY
command) .

Format
OP[ENS] filespec
Example
*OPENS RICKS.MAC_/
*ss</
*READ 1/

In this example, the file RICKS.MAC is opened as a secondary input
file, selected for input, and the first block is read in.

5.5.1.4 OUTPUT ON/OFF Command

Function

This command allows the user to selectively continue/discontinue the
transfer of text to the output file. OUTPUT ON is the default

5-26

LINE TEXT EDITOR (EDI)

condition; it is automatically established each time a CLOSE command
is issued. This command can be used only in the line-by-line mode.

Format
OU[TPUT] ON
or
CU[TEUT] OFF
NOTE
If neither ON nor OFF is specified, ON
is assumed.
Example

*QUTPUT OFF _/
*NP 54/
*OUTPUT ONL/

In this example, the user wiches to bypass five lines of text in the
input file without having these lines written into the output file.

The first command line causes the transfer of text to ‘the output file
to be disabled.

The second command line causes five consecutive lines of text from the
input file to be bypassed.

The third command causes the transfer of text to the output file to be
reenabled.

5.5.1.5 SELECT PRIMARY Command

Function

This command selects the primary file for input. It allows the user
to reestablish the primary input file as the file from which text is
to be read.

Format

SP

5-27

LINE TEXT EDITOR (EDI)
Example
*OPENS SECOND.MAC ./
*ssJ/
*RENEW 10 </
*CLOSES 4/
*Sp
In this example, the user
1. Opens the secondary file SECOND.MAC.
2. Selects SECOND.MAC as the seconaary input file.
3. Issues a RENEW command, which reads ten consecutive blocks
from the secondary input file into the block buffer. The

first nine blocks are automatically transferred to the output
file.

4., Closes the secondary input file SECOND.MAC.
NOTE
The secondary file need not be closed

before the primary file is reselected as
input.

5. Reselects the primary input file for input.

5.5.1.6 SELECT SECONDARY Command

Function

This command allows the user to select the secondary file as the input
file.

Format
SS
Example
To add text to the output file from a secondary input file, the user
must first open the secondary input file and select it for input. The

use of the SS command is illustrated 1in the example presented 1in
Section 5.5.1.5.

LINE TEXT EDITOR (EDI)

5.5.1.7 SIZE Command

Function

This command allows the user to specify the maximum number of lines t
be read into the block buffer on a single READ. The default value for
SIZE is 80 lines.

Format

SIZE n
Example

*SIZE 50</

This command would condition EDI to read a default of 50 1lines into
the block buffer during a single READ command.

5.5.1.8 TAB ON/OFF Command

Function

Turn automatic tabbing on or off. TAB OFF is the default at the start
of an editing session. TAB ON results in a tab (equivalent to eight
spaces) being inserted automatically at the beginning of each input
line unless the 1line <contains a label followed by a colon, or the
first column in the line contains a semicolon.

Format
TA[B] ON
or
TA[B] OFF
NOTE
If neither ON nor OFF is specified when
a TAB command is issued, ON is assumed.
Example
*TAB ON-<'
*1e/

; HI THERE. THIS IS A SAMPLE OF TABBING.-’
THIS LINE GETS A TAB./

1l: THIS ONE DOESN'T-’

END/

</

*TAB OFF_/

*N -3,/

*P 4./

; HI THERE. THIS IS A SAMPLE OF TABRING.
THIS LINE GETS A TAB

l: THIS ONE DOESN'T
END

5-29

LINE TEXT EDITOR (EDI)

5.5.1.9 UPPER CASE ON/OFF Command

Function

This command allows the user to enter lower-case characters from a
terminal and have them converted to upper-case characters. If UPPER
CASE OFF is issued, all input characters are accepted as they are
entered (no conversion is performed), except that all EDI commands are
converted to upper-case characters.

Format
UC ON
or
UC OFF
NOTE
If neither ON nor OFF is specified, then
ON is assumed. UC ON 1is default at
startup.
Example
*UC OFF_/
*I this line is entered in lower case-’/
*UC ON_J

*I this line is converted to upper case.’/

Assuming that the input terminal is capable of generating lower case
input, the above example would create the following lines in the
output file.

this line is entered in lower case
THIS LINE IS CONVERTED TO UPPER CASE

5-30

LINE TEXT EDITOR (EDI)

5.5.1.10 VERIFY ON/OFF Command

Function

This command allows the user to select whether 1locative and change
commands are to be verified. Specifying VERIFY ON allows the user to
determine whether the desired change has been correctly done. EDI is

in the VERIFY ON mode at the start of editing.
Format

V[ERIFY] [ON]

or

V[ERIFY] [OFF]

NOTE

If neither ON nor CFF is specified, ON
is assumed.

Example

*V OFF/

*I, VERIFY_/

P/

LINE IS PRINTED AUTOMATICALLY IF VERIFY IS ON
*N -2/

*V ON</

*I. VERIFY '/

LINE IS PRINTED AUTOMATICALLY IF VERIFY IS ON

In this example, the PRINT command is issued to verify that the
desired 1line has been located when VERIFY is OFF, but when the LOCATE
command is reissued with VERIFY ON, EDI prints the line automatically.

5.5.2 EDI Input/Cutput Commands

Input/Output commands are used to transfer text to and from input and
output files. Table 5-5 contains a list of these commands.

LINE TEXT EDITOR (EDI)

Table 5-5
EDI Input/Output Commands
Command

Command Format Description

FILE FI[LE] filespec Transfer lines from input file to
both the output file and the
specified file until a form-feed or
end-of-file is encountered.

READ REA[D] [n] Read next n blocks of text into
block buffer. If buffer contains
text, new text is appended to it.

WRITE WIRITE] Write contents of block buffer to
output file and erase block buffer.

5.5.2.1 FILE Command

Function

This command transfers lines from the input file to both the output
file and a specified file, beginning with the current line, until a
form-feed character is encountered as the first character in a line or
end-of-file 1is reached. At that time the specified file is closed,
and the form-feed character is not included in the specified file.
During the transfer, the original file remains intact (i.e., all lines
written to the specified file are also written to the normal output
file, including the form-feed). When the command is complete, the
current line in the input file is one line beyond the form-feed.

If the specified file is not an existing file, a new file is created.
When the specified file does exist, the contents of the specified file
are overwritten with the new data.
Format

FI[LE] filespec
Example

*FI SEC.DAT_/
In this example, the contents of the input file from the current 1line

to end-of-file (assuming that no form-feed character is encountered)
is written into the output file and file SEC.DAT.

5.5.2.2 READ Command

Function

This command allows the user to read the next n blocks of text into
the block buffer.

5-32

If a block is already in the buffer, the new blocks

it.

Format

LINE TEXT EDITOR (EDI)

NOTE

EDI must be running in block mode before
this command can be executed.

REA[D] |[n]

If n is not specified, a value of 1 is assumed.

be positive.

Example

*READ 4 _)J

are

The value of

appended

to

must

In this example, four blocks of the input file are read into the block

buffer.

NOTE

The number of blocks specified should
not exceed buffer capacity. If the
blocks being read in exceed block buffer
capacity, ECI will fill the block buffer
and then issue a diagnostic message
explaining that the buffer capacity has
been exceeded. Following the message,
EDI will issue an * prompt and wait for
another command. At this point, the
user should issue a TOF command, locate
the line where the first READ command
was 1issued, and 1issue a READ command
with a smaller number of blocks

specified.

5.5.2.3 WRITE Command

Function

This command causes the entire contents of the block buffer

written into
then erased.

to

be

the output file. The contents of the block buffer is

NOTE

EDI must be running in block mode before
this command can be executed.

5-33

LINE TEXT EDITCR (EDI)

Format
W{RITE]
Example
W/
*REA 2,/

In this example, the contents of the block buffer is written into the
output file and the block buffer is erased. Then, the next two blocks
are read into the block buffer.

5.5.3 Line Pointer Control (Locative) Commands

During editing operations, EDI maintains a pointer that identifies the
current line (i.e., the 1line to which any subsequent editing
operations will refer). Commands which modify the 1line pointer's
location are called 1locative commands and they are listed in Table
5-6. :

The user can issue commands which control the positioning of the 1line
pointer and cause the pointer to be set to a line identified only by a
text string contained in the line. The commands provided enable the
user to:

1. Set the line pointer to either the top or bottom of the input
file or block buffer.

2. Move the line pointer a specified number of lines away from
its current position.

3. Cause a line, identified only by a text string, to become the
current line.

NOTES

1. The carriage return key can be used to
move the 1line pointer from the current
line to the next line. Alternately, the
ALTMODE (or ESCape) key can be used to
move the line pointer from the current
input 1line to the previous input line
(block mode only).

2. If the VERIFY ON command is in effect,
the line is printed when found.

5-34

LINE TEXT EDITOR (EDI

Table 5-6
EDI Locative Commands

)

Command

Command Format Description

BEGIN B[EGIN] Set current line to the
line preceding top line
in file or block buffer
(identical to TOP).

BOTTOM BO[TTOM] Set current line to 1last
line in file or block
buffer.

END E[ND] Identical to BOTTCM.

FIND [n]F[IND] (string) Search current block or
input file, beginning at
line following current
line for the “nth"
occurrence of string.
String must begin in
column 1. Line pointer
is set to indicated line.

OLDPAGE - OL[DPAGE] n Feturn to TOF and read

(Block page n into block buffer.

Mode Only)

PAGE PAG[E] n Enter block mode. Read

{Block page n into block buffer.

Mode Only) Page n must be greater
than current page number.

PAGE FIND [n]PF[IND] (string) Search successive Dblocks

(Block for the "nth" occurrence

Mode Only) of string. String must
start in column 1.

PAGE LOCATE [n]PL[OCATE] (string) Search successive blocks

(Block for the "nth" occurrence

Mode Only) of string. String may be
anywhere in line.

SEARCH AND SC /string~l/string-~2/ Locate string-1 and

CHANGE replace all occurrences
in line with string-2.

TOP T [OP] Identical to BEGIN.

5-35

LINE TEXT EDITOR (EDI)

5.5.3.1 BEGIN Command

Functicn

This command sets the current line pointer to the beginning (top) of
the file (line-by-line mode) or block buffer (block mode). The
current line is one line preceding the top line in the file or block
buffer. This allows text to be inserted at the beginning of a file or
block.

Format

B[EGIN]
Example

*B/

In this example, the current line pointer is moved to the top of the
block buffer (block mode is assumed).

5.5.3.2 BOTTOM Command

~

Function

This command sets the current line pointer to the end of the block or
input file. If EDI is in block mode, only line pointer positioning
occurs. In line-by-line mode, all lines are copied from the input
file to the output file until an EOF is reached. The last line is
printed if the VERIFY ON command is in effect.

Format
BO [TTOM]
Example
*V ON/
*BO </

THIS IS THE LAST LINE

In this example, the line pointer is moved to the bottom of the block
buffer, and the last line is printed.

5.5.3.3 END Command

Function

This command is identical to the BOTTOM command.
Format

E[ND]

5-36

LINE TEXT EDITOR (EDI)

5.5.3.4 FIND Command

Function

This command searches the block buffer or input file, beginning at the
line following the current 1line for "string", which must begin in
column 1 of the lines searched. If "string"” is not specified, the
next line is considered a match. A numeric value of "n" preceding the
command results in finding the "nth" occurrence of "string" and
positioning the line pointer to the line containing it.

FIND applies to the block buffer if EDI is in block mode and to the
input file if EDI is in line-by-line mode.

When the line containing the desired "string" is found, it is printed
if the VERIFY ON command is in effect.

Format

[n]F[IND] (string)
Example

*V ON/

*F LOOK ../

LOOK AT THE FIRST CHARACTER IN THE LINE.

In this example, EDI searches the block buffer (or file) for a 1line
that begins with LOOK and prints the line when it is found.

5.5.3.5 OLDPAGE Command

Function

This command causes EDI to enter block mode, if not already 1in block
mode, and read page n into the block buffer. This command is
identical to the PAGE command, except that OLDPAGE allows the user to
back up to previous page "n". EDI actually accomplishes this by
performing a TOF operation followed by a PAGE n operation (see Section
5.5.3.6).

Format
OL[DPAGE] n
Example
*0L 1/
[PAGE 1]

In this example, EDI locates page 1, reads it into the block buffer,
and prints the new page number.

LINE TEXT EDITCR (EDI)

5.5.3.6 PAGE Command

Function

This command causes EDI to enter block mode, if not already in block
mode, and read page n into the block buffer. A page is always
delimited by form-feeds. If n is less than the current page number,
an error message 1is displayed. Otherwise, the necessary number of
RENEW commands is executed to read page n into the block buffer.

Format
PAG[E] n
Example
*PAG 7./
[PAGE 7]

In this example, EDI locates page 7 if the present page number is less
than 7, reads page 7 into the block buffer and prints the new page
number .

5.5.3.7 PAGE FIND Command

Function

This command functions identically to the FIND command, except that
successive blocks are searched until the "nth" occurrence of "string"
has been found. The contents of the block buffer and the blocks
between the current block and the block in which the "nth" occurrence
of the string is located are copied into the output file. The string
must begin in column 1 of the line searched.

Format
[n]PF[IND] (string)
NOTE
This command can be used only in block
mode.
Example

This command is used in the same manner as the FIND command, except
that the specified string can be in a block following the current
block.

5-38

LINE TEXT EDITOR (EDI)

5.5.3.8 PAGE LOCATE Command

Function

This command causes a search of the current block, starting at the
line following the current line, and successive blocks until the "nth"
occurrence of the string has been 1located. Text from the current
block buffer 1is written into the output file. The string can occur
any place in the lines checked. The line is printed if the VERIFY ON
command is in effect.

Format
[n]PL[OCATE] (string)
NOTE
This command can be used only in block
mode.
Example

This command is used in the same manner as the LOCATE command, except
that the specified string can be in a block other than the current
block.

5.5.3.9 SEARCH AND CHANGE Command

Function

This command causes a search for string-1l in the block buffer (block
mode) or input file (line-by-line mode), beginning at the line
following the current line. The string may occur anywhere in the
line. When string-1 is located, it and all occurrences of the string
in that line are replaced by string-2. The located line becomes the
current line.

If string~l is not specified, then the match occurs on the next 1line,
and string-2 is inserted at the beginning of the line. The new
current line is printed if the VERIFY ON command is in effect. If
string-1 1is given but EDI cannot locate the string, EDI returns an *
prompt, and the line pointer is positioned at the line preceding the
top of the file or block buffer.

Format

SC /string-l/string-2/

LINE TEXT EDITOR (EDI)
Example
If the following incorrect line is contained in the current block:
THES ES THE LINE TO BE ESSUED.
The following command can be issued to correct the errors:
*V ON ./
*SC /ES/IS/ L/

THIS IS THE LINE TO BE ISSUED.

The corrected line is printed since the VERIFY ON command is 1in
effect.

5.5.3.16 TOP Command
Function
This command sets the current line pointer to the top of the file
(line-by~line mode) or block buffer (block mode). The current line is
one line preceding the top line in the file or block buffer, allowing
text to be inserted at the beginning of a file or block.
Format

T[OP]
Example

T

This command moves the line pointer to the top of the block buffer or
file.

5.5.4 Text Modification and Manipulation Commands

The text modification and manipulation commands enable the wuser to
display, change, and modify text. Table 5-7 contains a list of these
commands.

5-40

LINE TEXT EDITOR (EDI)

Table 5-7

EDI Text Modification and Manipulation Commands

Command

Command Format Description

ERASE ERASE n Erase the current 1line
and next n-1 lines if in
line-by-line mode.
Erase the current block
buffer and the next (n-1)
blocks, if in block mode.

FORM FEED FF Insert form-feed into
block buffer (used to

LINE CHANGE

LIST ON TERMINAL

LIST ON PSEUDO-
DEVICE

MACRO

MACRO CALL

MACRO EXECUTE

MACRO (IMMEDIATE)

OVERLAY

[n]LC /string-1/string-2/

LI[ST]

LP

MACRO [x] (definition)

MC[ALL]

[n1Mx [a]

[n]<definition>

O [VERLAY] [n]

delimit a page).

Change all occurrences of

string-1l in current line
(and n-1 lines) to
string-2.

Print on the user
terminal all lines

remaining in block buffer
or in the input file,
beginning at current
line.

Same as LI, except print-
ing is performed on
pseudo-device CL:.

Used to define macros.
Up to three macros can be
defined. Numeric
arguments to be passed at
execution are identified
by a % in definition.

Used to retrieve macro
definitions stored in
file MCALL;n.

Execute macro [x] [n]
times while passing
numeric argument [al.
Define and execute a
macro n times.

Delete n lines, enter
Input mode, and insert

new line(s) as typed, in
place of original
line(s).

5-41

LINE TEXT EDITOR (EDI)

Table 5-7 (Cont.)
EDI Text Modification and Manipulation Commands

Command

Command Format Description

PASTE PA[STE] /str-1/str-2/ Search all remaining
lines in file or block
buffer for string-1 and
replace with string-2.

SAVE SA[VE] [n] [filespec] Save current line and the
next n-1 lines in
specified file. If
filespec is not
specified, lines are
saved in file SAVE.TMP.

TYPE TY[PE] [n] Print next n lines. Line
pointer remains at
current line.

UNSAVE UNS[AVE] [filespec] Insert all 1lines from
specified file following
current line. If
filespec is not
specified, SAVE.TMP is
used.

5.5.4.1 ERASE Command

Function

This command causes the current line, or the current block buffer, and
the next n-1 blocks to be erased. In line-by-line mode, only a
specification of 1 is allowed. This causes the current 1line to be
erased. In block mode, the <current block buffer and the next n-1
blocks are erased.

Format
ERASE n
NOTE
If n is not specified, +1 is assumed.
Example

*ERASE 5</

This command causes the content of the current block buffer and the
next 4 blocks to be erased and not written into the output file.

5-42

LINE TEXT EDITOR (EDI)

5.5.4.2 FORM FEED Command

Function
This command allows the user to insert form-feeds into the text.
Form—-feed cannot be entered in input mode. The form-feed is ingerted

after the current line, and the new current 1line becomes the 1line
containing the form-feed. Form-feeds are used to delimit an EDI page.

Format
FF
Example
*p/
THIS IS THE LAST LINE ON THE PAGE
IFE_)

In this example, a form feed is inserted into the text following the
current line. '

5.5.4.3 LINE CHANGE Command

Function

TR vy

This command is similar to CHANGE, except that all occurrences of
string-1 in the current line are changed to string-2. A numeric value
"n" preceding the command results in the current line and the next n-1
lines being changed. 1If string-2 is null, all occurrences of string-1
are deleted. New lines are printed if the VERIFY ON command is in
effect.

If string-1 is given but EDI cannot locate the string in the current
line, EDI prints [NO MATCH] and returns an * prompt.

Format
[n]LC /string-1/string-2/

Example

If the current line is:
THES ES THE LINE TO BE ESSUED.

Then, the following command could be issued to correct the errors:
*V ON/

*LC /ES/IS </
THIS IS THE LINE TO BE ISSUED

5.5.4.4 LIST ON TERMINAL Command

Function

This command prints on the user terminal all lines in the block buffer

5-43

LINE TEXT EDITOR (EDI)

(block mode) or all remaining lines in the input file (line-by-line
mode) , beginning at the current line. At the end of the listing, the
current line pointer is repositioned to the top of the input file or
block buffer.

NOTE
To suppress printing at any point, type
CTRL/O.
Format
LI[ST]
Example
*LI/

This command causes all remaining lines in the block buffer or all
remaining lines in the input file to be printed on the user terminal.

5.5.4.5 LIST ON PSEUDO-DEVICE Command

Function
This command functions in the same manner as the LIST ON TERMINAL
command, except that the remaining lines in the block buffer (block
mode) or the remaining lines of the input file (line-by-line mode) are
listed on the pseudo-device CL:.
Format

LP
Example

XLP_
This command causes all remaining lines in the block buffer or all

remaining lines 1in the input file to be printed on the pseudo-~device
CL:.

5.5.4.6 MACRO Command

Function

This command is used to define macros. Space is available for three
macro definitions. The definition portion can be any legal EDI
command or string of legal EDI commands connected by the concatenation
character. If a numeric argument 1is to be passed to the macro at
execution time, a percent sign (%) must be inserted in the macro
definition at the point where the numeric argument is to be
substituted. Then, the "a" value, which 1is passed via the MACRO
EXECUTE command, replaces the percent sign when the macro is executed
(see Section 5.5.4.8 for a description of the MACRO EXECUTE command) .

5-44

LINE TEXT EDITOR (EDI)

Format

MACRO x definition
where: X igs the macro number (1, 2 or 3.
Example

To find the nth occurrence of the string ABC in the current block and
replace that occurrence and all remaining occurrences within the block
with the string DEF, the following macro could be used:

*MACRO 1 $L ABC&PA /ABC/DEF./

The following command executes the macro and searches for the 10th and

§ucceeding occurrence of ABC. (See Section 5.5.4.8.)

*M 1 10/
The following macro definition and subseguent invocation could be used
to change all occurrences of the strings ABC and GHI to DEF and JKL,
respectively. The substitution is made in the current block, and the
next four blocks (five blocks in all).

*MACRO 1 PA /ABC/DEF/&PA /GHI/JKL/&RENEW¢J (MACRO command)
*5M 14/ (MACRO EXECUTE command)

5.5.4.7 MACRO CALL Command

Function

This command allows the user to retrieve up to three macro definitions
previously stored by the user in a file. The macro definitions must
contain only the "definition" portion of the MACRO command and will be
stored in successive macro areas (i.e., the first macro definition
goes into macro 1 area, the second definition, goes into macro 2 area,
and the third goes into macro 3 area).

The filename of the file used to store the macro definitions must be
MCALL;n, where n represents a version of the file. If the desired EDI
macro definitions are not contained in the latest version of file
MCALL, the version number of the file containing the desired
definitions can be forced to the latest version number using the PIP
COPY command with the /NV subswitch specified (see Section 2.4.2).

The filename must have a null or blank file type.
Format

MC [ALL]

NOTE

Strings of concatenated EDI commands can
be written as EDI macro definitions, and
up to three EDI macro definitions can be
stored in file MCALL;n. The MC command
is used to call the 1latest version of
file MCALL and move the three

LINE TEXT EDITOR (EDI)
definitions into the macro storage area.
Then the user can execute the desired

macro without having to type the
complete command.

Example
*MC </

This command would retrieve the macro definitions stored in file
MCALL;n, where n represents the latest version of the file MCALL.

5.5.4.8 MACRO EXECUTE Command

Function

This command causes macro "x" to be executed "n" times while passing
it an optional numeric argument "a". If a macro numeric argument is
defined via the percent sign (%) in the macro definition, the numeric
argument contained in this command is passed for each execution of the
macro (See Section 5.5.4.6.). Before a macro can be executed, it must
have been defined via a MACRC command and stored in the EDI macro
storage area. If the desired macro definition is stored in a file,
the file must be <called via a MACRO CALL command to move the
definition into the EDI macro storage area.

NOTE

Using this command, any one of the three
macro definitions stored in the EDI
macro storage area can be executed any
number of times.

Format
[nIMx [a]
where: n is the number of times the macro 1is to be
executed.

X is the macro number.

a is the numeric argument to be passed when the
macro 1is executed (ignored if % argument is
not present in macro definition).

Examples
*2M1 2/

Execute macro number 1, twice.
*3M2 54/

Execute macro number 2, three times, passing the numeric argument (5)
each time the macro is executed.

Section B.2.4 contains an example which illustrates how a file can bhe
edited using the EDI MACRO commands.

5-46

LINE TEXT EDITOR (EDI)

5.5.4.9 MACRO (IMMEDIATE) Command

Function
This command allows the user to define and execute a macro in one
step. The definition 1is enclosed within angle brackets and is

identical to that of the MACRO command. The definition is copied into
the macro 1 storage area and immediately executed n times. (Macro
storage is discussed in the description of MACRO CALL, Section
5.5.4.7.) The macro definition may also be subseguently executed via
an M1 command. The command is actually equivalent to the two macro
commands:

MACRO 1 definition

nM1

n<definition>
Example
*<L ABC&C /ABC/DEF>./

This command causes EDI to search the current block buffer for the
string "ABC" and, when located, to change the string to "DEF",.

Secticn B.2.3 contains an example which illustrates the use of the EDI
immediate MACRO command.

5.5.4.10 OVERLAY Command

Function

This command causes deletion of n lines and replacement with any
number of lines typed in by the user. If n is not specified, the
current line is deleted and replaced with any number c¢f 1lines typed.
When the OVERLAY command is issued, EDI enters Input mode. The user
can enter text via the user terminal. To leave Input mode, a carriage
return is typed as the first character in a line.)

Format
C[{VERLAY] [n]
NOTE
If n is not specified, a value of +1 is
assumed. N
Example

*0 2./

This command deletes two lines and causes EDI to enter Input mode.

LINE TEXT EDITOR (EDI)

5.5.4.11 PASTE Command

Function
This command is identical to the LINE CHANGE command, except that all
lines remaining in the input file or block buffer are searched, and
all occurrences of string-l1 are replaced with string-2. Modified
lines are printed if the VERIFY ON command is in effect. If string-1
is given, but a match cannot be located, the EDI returns an * prompt.
The line pointer is at the top of the buffer or top of file when the
command is complete.
Format

PA[STE] /string-l/string-2[/]
Example
If the following lines are to be corrected:

THIS ARE LINE 1

THIS ARE LINE 2

THIS ARE LINE 3
The command is as follows:

*PA /ARE/IS/./
If the VERIFY ON command is in effect, all corrected 1lines are
printed.

NOTE

To discontinue printing, type CTRL/O.

5.5.4.12 SAVE Command

Function

This command causes the current line, and the next n-1 lines, to be
saved in the file specified by the file specifier. If the file
already exists, a new version is created with the same name, and the
appropriate information is saved in the new file.

If no file is specified, a save file 1is generated, under the name
SAVE.TMP.

NOTE

The input file or buffer information
that 1is transferred to the SAVE file
remains intact. The new current 1line
pointer will be positioned to the last
line saved. The SAVE command does not
delete 1lines in the block buffer or
input file.

5-48

LINE TEXT EDITOR (EDI)
Format

SA[VE] [n] [filespec]
Example

A user can save and later insert small groups of 1lines in several
places in an output file by using the SAVE and UNSAVE commands.
Suppose the user has a file called EDIT.MAC which contains six lines
to be inserted in a number of places in another file called HELP.MAC.
The procedure is:

1. Start an editing session using EDIT.MAC as the input file.

2. Locate the lines to be inserted into HELP.MAC.

3. 1Issue SAVE 6 command.

(This transfers the six lines to be saved into the file
SAVE.TMP.)

4. Issue a KILL command to terminate the editing session.,
5. Start a new editing session using HELP.MAC as the input file.

6. Locate each place where the six lines are to be inserted and
issue the UNSAVE command (see Section 5.5.4.14).

7. Make further edits to the input file, as desired, or EXIT.
NOTE
The save file is not deleted by EDI and remains on

the specified volume until the user deletes it.

5.5.4.13 TYPE Command

Function
This command is functionally the same as the PRINT command, except
that the current line pointer is unchanged. That is, after printing

the specified number of lines, the line pointer is positioned to the
first 1line printed by the TYPE command. (Compare with the PRINT
command - Section 5.4.3.12,)

Format
TY[PE] [n]
NOTE
If n is not specified, a value of 1 1is
assumed.
Example

See the example of the PRINT command (Section 5.4.3.12).

5-49

LINE TEXT EDITOR (EDLI)

5.5.4.14 UNSAVE Command

Function

This command retrieves all the lines in a specified file and inserts
them immediately following the current line. If no file is specified,
the file is defaulted to SAVE.TMP. The new current 1line pointer is
positioned at the last line retrieved from the file. The file used in
this command can be any text file; it is often the file created with
a SAVE command.

Format

UNS [AVE] [filespec]
Example
If file SEC.DAT;1 contains a group of lines which are to be inserted
following the current line, the following command performs the desired
operation.

*UNS SEC.DAT;1./

Section B.2.2 contains an example using the EDI SAVE and UNSAVE
commands.

5.5.5 EDI Close Operation Commands

The close operation commands are used to terminate EDI operations and
to write the remainder of the input file into the output file. Table
5-8 contains a list of these commands.

Table 5-8
EDI Close Operation Commands
Command

Command Format Description

CLOSE CL[OSE] [filespec] Transfer remaining 1lines in
block buffer and input file to
output file and close file.
If file specifier 1is used,
output file is renamed. EDI>
prompt is issued.

CLOSES CLOSES Close secondary file.

CLOSE & DELETE CD[L] [filespec] Same as CL, except input file
is deleted. EDI> prompt is
issued.

EXIT & DELETE ED[X] [filespec] Same as CDL, except after
files are closed and renamed,
EDI exits.

KILL KILL Input file and output file are
closed. Cutput file is
deleted. EDL> prompt is
issued.

5-50

LINE TEXT EDITOR (EDI)

5.5.5.1 CLOSE Command

Function

This command transfers all remaining lines in the block buffer and
input file (in that order) into the output file, and closes both
files. 1If a file specifier is included, the output file is renamed to
the specified file. EDI then returns to its initial command seguence,
prompts with EDI> and waits for another file specifier to be entered.

NCTE

If a secondary file was opened during
the editing session and not closed, it
remains open.

Format

CL[OSE] [filespec]
Example

*CL</

EDI>

=]
o
H

This command closes both input and output files, and
the initial command sequence.

returns to

5.5.5.2 CLOSES Command

Function

This command is used when the user has finished extracting text from a
secondary file and wishes to close it. The secondary file is closed
and cannot be used for input unless reopened.

Format

CLOSES

5.5.5.3 CLOSE ANC DELETE Command

Function

This command transfers all remaining lines in the block buffer and the
input file (in that order) into the output file, and closes both
files. The input file is then deleted. If a file specifier |is
included, the output file is renamed to the specified file. 1In
effect, this command acts just like CLOSE, except that the input file
is deleted. See NOTE contained in Section 5.5.5.1.

Format

CD[L] [filespec]

5-51

LINE TEXT EDITOR (EDI)

5.5.5.4 EXIT AND DELETE Command

Function

This command functions in the same way as

the

CLOSE

and DELETE

command, except that, after the files are closed and renamed, EDI

exits.
Format

ED[X] [filespec]

5.5.5.5 KILL Command

Function

This command returns EDI to the initial command

file is closed, and the output file is deleted.

Format
KILL
Example
*KILL </
EDI>

sequence without
retaining the output file. When this command is executed, the input

In this example, the output file is not retained, and EDI
the initial command sequence waiting for the next file specifier.

5.6 EDI ERROR MESSAGES

The four classes of EDI error messages are:

. Command level informational and error messages

. File access warning messages
. Error messages regquiring EDI restart

. Fatal error messages

returns to

The following sections describe all the messages that may be displayed
in each class. If the recovery procedure is not evident, a suggested

user action is supplied.

5.6.1 Command Level Informational and Error Messages

Messages in this class indicate information tha

previous command. All messages in this class

5-52

t

are

designed to be
helpful to the wuser or identify errors that were encountered in the
enclosed within
square brackets and followed by a prompt for a new command. For
example, the following output occurs if a delete command encounters an

LINE TEXT EDITOR (EDI)

end-of-buffer in block mode:

[*EOB*]

*

Note that immediately following the message, EDI outputs an asterisk
to prompt for the next command.

The messages in this class follow.

[ALREADY PASSED THAT PAGE!]
Description

The user has attempted to access a page number that is less than

the current page. Prior pages can be accessed only via the
OLDPAGE command.

Suggested User Action

If the PAGE command has been incorrectly entered, retype the

command with the proper page number. Otherwise, use an OLDPAGE
command to access the desired page.

offending line
[LINE DELETED]

Description

A READ, UNSAVE, INSERT, or OVERLAY command has cause the
capacity of the block buffer to be exceeded. The line that
caused the overflow is displayed and deleted.

Suggested User Action

If a new file is being created, empty the buffer with a WRITE
command and continue the editing session.

If an existing file is being edited, it may be possible to
continue via a RENEW or WRITE command. Otherwise, use the CLOSE
command to close the output file and save all edits. Reopen the
output file as the input file and, using the SIZE command, reduce
the number of lines read into each buffer; then, using the PAGE
LOCATE command, search to the position in the file where editing
is to continue.

Occasionally, a file that was not created by EDI causes this
message (i.e., an attempt to open the file for input produces
this message). 1If this occurs, the following procedure may be
used to successfully edit the file:

1. Start the editing session by specifying a filename that does
not correspond to any file in the current directory. This
causes EDI to create a new file and enter Input mode.

2. Type carriage return to enter edit mode.

5-53

LINE TEXT EDITOR (EDI)

3. Using the SIZE command, reduce the number of lines read into
each buffer.

4. Use the KILL command to terminate the creation of the file.

5. When EDI prompts for a new file specifier, enter the name of
the desired file.

[CONCATENATING CHAR CHANGED TO "&"]

Description

The user has changed the command concatenation character and an
OLDPAGE, TOF, or TYPE command has caused it to be changed back to
ll&ll.

Suggested User Action

Use the CC command to reestablish the desired command
concatenation character.

[CREATING NEW FILE]
INPUT

[ILL

[ILL

Description

The input file specified in the command does not exist and EDI
has created a new file. EDI automatically enters Input mode and
awaits the input of text lines.

Suggested User Action

If the intent is to create a new file, continue the editing
session, entering new lines as required. Otherwise, enter Edit
mode by typing carriage return; use the KILL command to
terminate the creation of the new file. When EDI prompts for a
new file specifier, enter the correct file specification.

CMD]

Description

A command that is not recognized by EDI has been entered; or a
command that is not compatible with the current mode has been
attempted (e.g., a READ command in line-by-line mode).

NUM]

Description
A non-numeric character has been specified in a numeric field, or

a negative number has been entered where only positive numbers
are allowed.

5-54

LINE TEXT EDITOR (EDI)
[ILL STRING CONST]
Description
A search string specified in a CHANGE, LC, PASTE, or SC command
contains only one command concatenation character or does not

contain a matching string termination character (e.g.,
PASTE /ALPHABETA, whereas PASTE /ALPHA/BETA is correct).

[ILLEGAL IN BLOCK ON MODE]
Description

An attempt has been made to execute a command that is illegal in
block mode.

[ILLEGAL FILE NAME GIVEN IN CLOSE OR EXIT]
or
[FILE WAS NOT RENAMED]
Description
A syntactically incorrect file specifier has been given 1in a
CLOSE or EXIT command, or the attempt to rename the output file

has failed.

Suggested User Action

The output file is closed wunder the name of the input file
without any loss of information. The Peripheral Interchange
Program (PIP) can be used to rename the file to the desired name.

[MACRO NOT DEFINED]

Description

An attempt has been made to execute a macro with the M command,
but the specified macro has not been defined.

Suggested User Action

Use the MACRO command to define the desired macro and then
execute it with the M command.

[MACRO NUMERIC ARG UNDEFINED]

Description
A macro has been executed with an M command that did not contain

a numeric argument, and the body of the referenced macro contains
the numeric argument replacement character "g".

5-55

LINE TEXT EDITOR (EDI)

Suggested User Action

Retype the command, specifying the appropriate numeric argument.

[MCALL FILE DOES NOT EXIST]

Description

An MCALL command has been executed to define a set of macros, but
the file MCALL does not exist in the current directory.

Suggested User Action

The desired set of macro definitions may exist under another UFD.

If this 1is the case, use PIP to copy or rename the MCALL file
into the current directory.

[NO INPUT FILE OPEN]

Description

A PAGE, READ or RENEW command has been attempted and a new file
is being created. These commands can be executed only when an
existing file is being edited.

[NO MATCH]
Description

A CHANGE command has specified a string to be changed that is not
in the current line.

[OVERLAYING PREVIOUSLY DEFINED MACRO]

Description
A MACRO command has resulted in the redefinition of a previously

defined macro. This message is intended to make the user aware
that the previous definition is no longer in effect.

[SAVE FILE DOES NOT EXIST]

Description

A file was specified in an UNSAVE command that cannot be 1located
in the respective directory.

Suggested User Action

Examine the file specifier to ensure its correctness. If the
file specifier 1is in error, correct the error, then retry the
command .

5-56

LINE TEXT EDITOR (EDI)

[SECONDARY FILE ALREADY OPEN]

Description

An attempt has been made tc open a secondary input file when
another secondary input file is already open. Alternatively, a
CLOSE or KILL command has been executed, or an error has been
encountered that causes EDI to restart, and the secondary file is
found to be open from the previous edit. The former case
represents an error, whereas the latter informs the user that he
still has a secondary file open.

Suggested User Action

Close the secondary input file using the CLOSES command, and then
open the desired secondary file with the OPENS command.

[SECONDARY FILE CURRENTLY SELECTED FOR INPUT]

Description

A CLOSE or KILL command has been issued, or an error has caused
EDI to restart, when the secondary input file 1is open and
selected for input.

Suggested User Action

Issue an SP command, a CLOSES command and proceed.

[SYNTAX ERROR]

Description

A command has been entered that is syntactically incorrect.

[TOO MANY CHARS]

Description
A CHANGE, LC, PASTE, or SC command has resulted in a 1line that

contains too many characters. EDI limits the length of a line to
90 characters.

Suggested User Action

Retype the line to ensure that the line is valid.

[*BOB*]

Description
The beginning-of-buffer has been reached. The current 1line

pointer 1is positioned just before the first line in the buffer.
Thus, new text lines can be entered before the first line.

5-57

LINE TEXT EDITOR (EDI)
[*ECB*]
Description
The end-of-buffer has been reached. The current line pointer now

points to the beginning of the buffer. Thus, if new lines are
inserted, they appear before the first line in the buffer.

[*EOF*]
Description
The end-of-file has been reached on the input file.

Suggested User Action

If the editing session is complete, use the CLOSE or EXIT command
to close the output file. Otherwise, use the TOF command to
return to the first block in the file and then continue editing
the file.

5.6.2 File Access Warning Messages

Messages in this class represent attempts on the part of the user to
access directories, files, or devices that are not present in the host
system. Each message is prefixed with:

EDI --

and, after the message is displayed, EDI returns to command level and
prints an asterisk to regquest input. :

The messages in this class follow.

EDI -- DEVICE NOT IN SYSTEM

Description

A FILE, OPENS, SAVE, or UNSAVE cbmmand contains the specification
of a device that does not exist in the host system.

Suggested User Action

Reenter the command line, specifying only devices available in
the system.

EDI ~- FILE DOES NOT EXIST
Description

An attempt has been made in a FILE or SAVE command to create a
file in a directory that does not exist on the specified volume.

5-58

LINE TEXT EDITOR (EDI)
WARNING

The remaining error messages 1in this
class should not occur and represent
failures in EDI. If such errors
persist, consult your DEC scftware
support representative.

EDI -- BAD DEVICE NAME

EDI -- BAD FILE NAME

EDI -- DEVICE NOT READY

EDI -- FILE ALREADY OPEN

EDI -- RENAME NAME ALREADY IN USE

EDI -- RENAME ON TWO DIFFERENT DEVICES
EDI -- WRITE ATTEMPT TO LOCKED UNIT

5.6.3 Error Messages Requiring EDI Restart

The error messages described in this section are caused by conditions
encountered by EDI that make it impossible to continue the current
editing session. EDI closes all open files (with the exception of the
secondary input file), reinitializes, and then prompts for the next
file to be edited.

As with file access warning messages, each message in this «class is
prefixed with:

EDI --

After the appropriate message has been displayed, EDI prompts with:
EDI>

The editing session may be terminated at this point by typing carriage

return, or it <can be continued by entering the next file specifier.

If a secondary file was open when the error condition was encountered,

the secondary file must be closed using the EDI commands.

The messages in this class follow.

LINE TEXT EDITOR (EDI)
EDI -- BAD RECORD TYPE - FILE NO LONGER USABLE
Description
The record type defined in the header block of the input file
(primary input, secondary input, UNSAVE, or MCALL) 1is not
supported by File Control Services (FCS); thus, the file cannot
be used for input to EDI.

Suggested User Action

The referenced file has been created without using FCS, or the
file structure on the volume is damaged. If the latter is the
case, the validity check of the file structure verification
utility (VFY) should be run to determine the extent of the
damage. VFY is described in Chapter 8.

EDI -- FILE IS ACCESSED FOR WRITE

Description

The input file (primary input, secondary input, UNSAVE, or MCALL)
is currently being written by another task.

Suggested User Action

Wait for the file to be written and then reenter the command
line.

EDI -- FILE IS LOCKED TO WRITE ACCESS

Description

The output file (text output, FILE, or SAVE) 1is currently
accessed for read by one or more tasks and is locked against all
writers.

Suggested User Action

Wait for all readers of the file to finish, then reenter the
command line.

EDI -- ILLEGAL RECORD ATTRIBUTES - FILE NOT USABLE

Description

The record attributes defined in the header block of the input
file (primary 1input, secondary input, UNSAVE, or MCALL) are not
supported by FCS; thus, the file cannot be wused for input to
EDI.

Suggested User Action

The referenced file has been created without wusing FCS or the
file structure on the volume is damaged. If the latter is the
case, the validity check of the file structure verification
utility (VFY) should be run to determine the extent of the
damage.

5-60

LINE TEXT EDITOR (EDI)
EDI -- PRIMARY FILE NOT PROPERLY CLOSED
Description
When the primary input file was last written, a close check was
specified, and the writing task did not properly close the file
(e.g., the task was aborted). Thus, the file attributes were not
written, and the file may contain inconsistent data.

Suggested User Action

Exit from EDI by typing carriage return. Run the Peripheral

Interchange Program (PIP) and use the /UN switch to unlock the

file. Reinitiate EDI and try to recover the data in the file.
EDI -- PRIVILEGE VIOLATION

Description

A privilege violation occurs during a file access for the
following reasons:

1. The specified volume is not mounted.

2. The UIC under which EPRI is running does not possess the
necessary privileges to access the specified directory.

3. The UIC under which EDI is running does not possess the
necessary privileges to access the specified file.

Suggested User Action

If the volume is not mounted, then mount it using the MCR MOUNT

command . Otherwise, reinitiate EDI under a UIC that has
appropriate access privileges to both the specified directory and
the file.

EDI -- RECORD IS TOO LARGE FOR USER BUFFER

The input file (primary input, secondary input, UNSAVE, or MCALL)
being accessed was not created by EDI (or SLP) and contains
records that are too large. The maximum record length supported
by EDI is 90 bytes.

EDI -- SECONDARY FILE NOT PROPERLY CLOSED - NOT USABLE

Description

When the secondary input file was last written, a close check was
specified, and the writing task did not properly close the file
(e.g., the task was aborted). Thus, the file attributes were not
written, and the file may contain inconsistent data.

Suggested User Action

Run PIP and use the /UN switch to unlock the file. Reinitiate
EDI and try to recover the data in the file.

EDI -

EDI --

EDI --

EDI --

EDI -

5.6.4

LINE TEXT EDITOR (EDI)

WARNING

The remaining error messages in this
class should not occur and represent
failures in EDI. If such errors
persist, consult your DEC software
support representative.

BAD DIRECTORY SYNTAX

DUPLICATE ENTRY IN DIRECTORY

END OF FILE

ILLEGAL RECORD ACCESS BITS - FILE NOT USABLE

ILLEGAL RECORD NUMBER - FILE NOT USARLE

Fatal Error Messages

The fatal error messages represent system and/or hardware error
conditions which make 1t impossible for EDI to continue execution.
All files are closed and EDI terminates its execution. The output
file may be truncated. Each error message is prefixed with:

EDI --

and followed by the exit message:

[EXIT]

on the next line.

The advanced user may be able to utilize the truncated version of
output

an

file in the following manner to save the editing performed
prior to the fatal error condition.

Use PIP to rename the truncated version of the output file
avoid confusion.

Restart the editing session on the original input file.

to

Issue an OPENS command, specifying the renamed file as the

secondary file.

Issue an SS command to select the secondary file for input.

Issue an ERASE command to erase the first block of the input
file, wunless the truncated output file did not contain the

entire first block.

Issue as many READ 1 and WRITE commands as necessary to reach

the EOF on the secondary file.

Issue an SP command to select the primary file for input.

5-62

10.

11.

LINE TEXT EDITOR (EDI)

Issue a CLOSES command to close the secondary file.

Issue a WRITE command to ensure that the 1last block was
written into the output file.

Issue as many READ 1 and ERASE commands as necessary to
bypass all input file blocks which are complete in the

renamed file.

Continue the normal editing session.

The messages in this class follow.

ECI

EDI

EDI

-- CALLER'S NODES EXHAUSTED

Description

System dynamic storage has been depleted, and insufficient
is
close,

to
or write a file.

available
read,

Suggested User Action

This probably is a system failure,

transient

Aiminia
Uiniiriiofe

nA

had ~
G aiiy

-- DEVICE FULL

Description

Insufficient space exists on
output file

the
(text output, FILE, or

Suggested User Action

Determine which volume is being written.
the
made available.

space

allocate the control blocks necessary to open,

but it could also represent a

Wait wuntil system 1load has
output volume to extend an
SAVE) .

If it is required that

specified file be written on this volume, then space must be

Use PIP to purge

files.

-- FILE HEADER CHECKSUM ERROR

Description

An input file (primary input, secondary input, UNSAVE, or

(/PU) or delete (/DE) unwanted

MCALL)

has a header block that does not contain a proper checksum.

Suggested User Action

The file structure on
validity
to determine the extent of

the
check
the

Chapter 8.

5-63

specified

volume 1is damaged. Run
of the file structure verification utility (VFY)
damage. VFY 1is described in

LINE TEXT EDITOR (EDI)

EDI -- FILE HEADER FULL

Description

Insufficient retrieval pointer space exists in the
to extend an output file (text output, FILE, or SAVE).

Suggested User Action

header

An attempt is being made to create an output file that is

than can be described in a file header block.

into two or more files and process them separately.

EDI -- FILE PROCESSOR DEVICE WRITE ERROR

Description

This error message can be received by

session on a write-locked device.

Suggested User Action

Unlock device if it 1is write-locked.

block

larger

Split the file

initiating an

editing

Otherwise, a hardware

problem may exist. Consult the DEC field service representative.

EDI -- INDEX FILE FULL

Description

File header block is not available to create an output file (text
is initialized, the
the vol
established. An attempt has been made to exceed this maximum.

output, FILE, or SAVE). When
maximum number of files that may be

Suggested User Action

a

volume
created

Determine which volume is being referenced.
that the specified file be created on this volume, then space
must be made available. Use PIP to purge (/PU) or

unwanted files.

WARNING

The following error messages
hardware problems. If possible,

important files should be

5-64

removed

on

If

it

signify

all
from
the volume. If errors persist, consult
the DEC field service representative.

is r

delete

ume 1is

equired

(/DE)

EDI

EDI

EDI

EDI

EDI

LINE TEXT EDITOR (EDI)

BAD BLOCK ON DEVICE

FILE PROCESSOR DEVICE READ ERROR

HARDWARE ERROR ON DEVICE

PARITY ERROR ON DEVICE

WARNING

The remaining error messages

class should not occur and represent

failures in EDI. If such
persist, consult your DEC
support representative.

BAD DIRECTCRY FILE

BAD PARAMETERS ON A QIO

INVALID FUNCTION CODE ON A QIO

NO BLOCKS LEFT

REQUEST TERMINATED

WRITE ATTRIBUTE DATA FORMAT ERROR

UNEXPECTED ERROR -~ EDITOR WILL ABORT

.

TASK "...EDI" TERMINATED

5-65

CHAPTER 6

SOURCE LANGUAGE INPUT PROGRAM (SLP)

6.1 INTRODUCTION TO SLP

oT Y

The Source Language Input Program (SLP)} is a batch-oriented editing
program that 1is used to create and maintain source language files on
disk.

6.2 PREPARING TO RUN SLP

Before attempting to use SLP, the user should become familiar with
SLP's capabilities, environment, and restrictions.

6.2.1 Capabilities

SLP permits the user to:
1. Create new source files.

2. Create 1indirect files which contain SLP edit control
commands.

3. Edit an already existing source file. The following editing
commands are provided:

a. Delete
b. Replace
C. Insert

4. Obtain line-number listings of files. These listings can be
used as an aid to editing the file.

6.2.2 Environment
SLP accepts input from the following media:
1. Any RSX-11M supported terminal device (on-line).

2. Card reader or indirect command file.

6-1

SOURCE LANGUAGE INPUT PROGRAM (SLP)

3. Any RSX-11M supported volume (on-line or indirect command
file).

6.2.3 Restrictions

1. The user must know in advance which lines, by line number, he
wants to edit. It is advisable, therefore, for the user to
have on hand a current line-number listing of the file he
wants to edit (line boundaries are the first character and
the carriage return).

2. SLP cannot handle input 1lines greater than 80 ASCII
characters in length. If more than 80 characters are
specified an error is declared.:

3. Edit commands refer to line numbers that must be in ascending
order starting with 1 and continuing throughout the entire
file. Form feeds and page directives are treated as though
they are simply part of the text.

6.3 INITIATING SLP

All RSX~11M utility programs can be initiated in several ways. These
methods are described in Section 1.2. The methods for SLP are:

>SLp/

>SLP command string/

>RUN ...SLP_/

>RUN ...SLP/UIC=[group,member] /
>RUN $SLP</

>RUN $SLP/UIC=[group,member]_/

6.4 SLP STARTUP
After SLP has been initiated, the user must enter an initial command
to direct SLP to perform the desired function (e.g., create a new
file, select a file for editing, or list a file). The general format
of SLP commands is as follows:
outfile[/switch][,listfile[/switch]] =infile[/switch]
where:
/switch is one or more of SLP's optional output control
switches. The SLP output control switches are
described in Section 6.5.

For a complete description of file specifiers, see Section 1.3.

6-2

SOURCE LANGUAGE INPUT PROGRAM (SLP)

6.4.1 Defaults in File Specifiers

Defaults

in SLP file specifiers are described in Table 6-1.

Table 6-1
Defaults in SLP File Specifiers

Specifier

Default

dev:

[uic]

filename

.type

;ver

Output File and Input File

SYO:
List File

The device specified or implied by the output
file specifier.

Output File and Input File

The UIC under which SLP is currently running.
List File

The UIC specified or implied by the output £file

specifier.

Must be specified
Must be specified

Latest version for input files; latest version plus
one for output and listing files.

6.4.2

Example 1

A new fil
input fro

Example 2

Examples of SLP Initialization

SLP>KATESFILE.MAC_/

e, KATESFILE.MAC, is to be <created on SYO:. SLP expects
m the terminal.

SLP>,LP:=KATESFILE.MAC </

This example produces a line-number listing of KATESFILE.MAC on the
line printer. No other output file is produced.

Example 3.

SLP>KATESFILE.MAC,LP:=KATESFILE.MAC;1 _/

In this example, the input file(KATESFILE.MAC;1l) 1is to be edited,

producing

an updated output file name KATESFILE.MAC with a version

6-3

SOURCE LANGUAGE INPUT PROGRAM (SLP)
number one greater than the latest version for the file. 1In addition,

a line-number 1listing of the output file (KATESFILE.MAC) is produced
on the line printer.

6.5 SLP OUTPUT CONTROL SWITCHES

The SLP output control switches are described in Table 6-2. A switch
specification consists of a slash (/) followed by a 2-character name
for an enabling function, or a slash (/) followed by a minus (-) and a
2-character switch name for a disabling function. If more than one
switch is used, each switch is preceded by a slash.

6.6 SLP OUTPUT FILES

When a file is edited, SLP produces an output file on disk under the
name specified by the user. If the /AU switch is specified (default
condition), the output file contains information about the changes
that have been made, so the user can more readily determine how the
new file differs from the o0ld one.

Unless specifically suppressed, an audit trail is always created in
the output file, indicating changes effected by the edits.

Each line that has been inserted during the last editing session |is
flagged by appending the characters ;**NEW** to the line.

The line following the inserted 1line(s) may be flagged by the
characters ;**-N, where N 1is a decimal value equal to the number of
lines that were deleted from the o0ld file. For example:

;THIS IS A NEW LINE ADDED TO THE FILE ; **NEW* *
;THIS IS THE NEXT LINE p**-1

indicates that the new line has simply replaced one of the old 1lines.
That is, the edit command looked like:

-m,mg/
;THIS IS A NEW LINE ADDED TO THE FILE _/

where m is the number of the line that was replaced. There may also
be entries of the following kind:

;THIS LINE IS A REPLACEMENT ;s **NEW**
:NEXT OLD LINE ;¥*-16

indicating that a new line has been inserted, but 16 lines have been
deleted immediately-preceding the next old line.

Lines may also be flagged with just the ;**-N characters, with no
immediately-preceding new 1lines, to indicate simply that lines have
been deleted, without being replaced.

If the /AU switch is specified when a file 1is being edited, the
current flags are stripped prior to output of the updated file. Thus,
the flags are reliable indicators of the editing that was done on the
most recent update of the file.

SOURCE LANGUAGE INPUT PROGRAM (SLP)

Table 6-2
SLP Output Control Switches

Switch Description

/AU or /-AU | The /AU switch causes the editing audit trail to be
included, and the /~AU switch suppresses the editing
audit trail. That is, new and deleted lines are not
flagged when /-AU is in effect. Either switch can
be specified in the command string, in either an
input or an output file specifier. For example:

DK1l:AX.MAC/-AU,LP:=AX.MAC_/
or
DK1:AX.MAC,LP:=AX.MAC/~-AU_/

Both specifications are legal and procuce an output
file with no audit trail.

/AU is the default condition.

/BF or /-BF | When an audit trail is being produced, it may be
desirable to specify the blank £fill (/BF) switch,
especially when the file being edited is a FORTRAN
source program. The /BF switch causes the audit
trail text to be right-justified by inserting blanks
at the end of the text line, rather than tabs.

To disable the blank fill function, specify /-BF.
Either switch may be specified on input or output
files. Neither has any effect if auditing is
suppressed.

/BF is the default condition.

/DB or /-DB | Listing files are normally single-spaced. To create
a double-spaced listing file, the /DB switch must be
specified, as in the following example:

DKO:XYZ.MAC,LP:/DB=DKO:XYZ.MAC;3‘/
/-DB is the default condition.

/SP or /-SP | Listing files may be spooled to a file-structured
volume by specifying a listing file as shown in the
following example:

DK:ABC.MAC,DK1:/SP=ABC.MAC /

This causes the list file to be written to the
volume mounted on DKl: prior to being output on a
line printer. The /SP switch has no effect 1if the
listing device is not file-structured. That is, if
the line printer is specified, no spooling occurs.
Output directly to a file-structured device without
printing the file can be accomplished by specifying
/=SP. The print spooler is described in Appendix C.

/SP is the default condition.

SOURCE LANGUAGE INPUT PROGRAM (SLP)

6.7 SLP EDIT COMMANDS

Following the initial command line, the user enters text 1lines, or
deletes or <corrects lines in the original source file. Text that is
to be inserted at the beginning of the file 1is entered immediately
following the initial command line. To correct or replace a line, or
lines, or to insert text in the middle or at the end of the file, the
user must first specify an edit command, followed by a decimal value
referring to a line in the input file.

For example:

-9

The minus sign and line number may appear as the only element on the
line, or they may be followed by a comma and a second line number, as
shown below:

-9,12
-9,9

SLP interprets the user's purpose by examining the edit command. When
a single line number is specified (e.g., -9 alone), SLP interprets the
user's purpose to be the insertion of new text lines into the source
file. The 1line number indicates that the new text is to be inserted
following the specified line (in the first example, new text would be
placed in the file following line 9).

When the user provides an edit command in the second format (-9,12),
SLP deletes all text lines from line 9 through line 12, inclusively.
The user can follow the edit command with lines of text, which will be
inserted into the file 1in the location previously occupied by the
deleted lines (i.e., the first new text line is the new line 9).

The edit command (-9,9) indicates that SLP is to delete line 9. If a
text line (or lines) follows, it replaces the deleted line.

NOTE

Line numbers must always be specified in
ascending sequence. Thus, =-9,8 is
illegal, and an error message is printed
(refer to Section 6.10). It is also
illegal to refer to a line number lower
than a line number that was referenced
in a prior edit command.

6.7.1 SLP Edit Control Characters

SLP recognizes four edit control characters in character position 1:
the "minus" sign (=), the "less than" sign (<), the slash (/), and the
"at" sign (@). Table 6-3 describes the function of these characters.

SOURCE LANGUAGE INPUT PROGRAM (SLP)

Table 6-3
SLP Edit Control Characters

/ (slash)

@ (at)

< (less
than)

Indicates that an editing function 1is to be
performed with reference to the line number (s)
specified.

-n Insert text following line n.
-n,n Delete line n.
-n,m Delete lines n throcugh m, inclusively.

The slash is placed in the first position of a
line to indicate that the editing of a file is
complete. SLP responds by printing SLP> to inform
the wuser that it has terminated editing on the
previously specified file and 1is now ready to
begin editing another. The user responds either
by entering a new file specification, or by
terminating the editing session altogether by
typing CTRL/Z.

i
line to indicate that SLP is to seek input
indirect file. That is, input is tc be fo
file rather than being entered from the terminal.
The user must indicate the device and file by
specifying their names immediately after the @
sign. For example:

@DK:DKSFIL.COR L/

instructs SLP to read input from the file
DKSFIL.COR on physical device unit DKO:. 1Indirect
files are more fully described in Section 6.8.
Unless otherwise specified, the file type defaults
to CMD.

The < character is used when entering a line
that begins with one of the special edit control
characters. It causes the line to be shifted one
character position to the left, resulting 1in the
deletion of the < character and the entry of the
desired control character as the first character
on the line. This 1is especially wuseful when
creating correction files. For example:

<@DIRBLK.COR_/

6-7

SOURCE LANGUAGE INPUT PROGRAM (SLP)

Table 6-3 (Cont.)
SLP Edit Control Characters

Character Function

causes the line
@DIRBLK.COR

to be entered into the file. Subsequently, when
this file is referenced by SLP, the line

@DIRBLK.COR ./

will be interpreted as a reference to an indirect
file named DIRBLK.COR.

Similarly, specifying

<~-23,29
results in the edit command -23,29 being written
into the output file. Thus, when the file is read

by SLP, lines 23 through 29 of the specified input
file will be deleted.

6.8 INDIRECT FILES

Indirect files contain both editing commands and correction 1lines to
be inserted into the file being edited. These files are input from a
device other than the terminal. An example of indirect file usage 1in
SLP follows. See Section 1.4 for a discussion of indirect files.

6.8.1 Creating an Indirect File

The following example shows how corrections and SLP commands are
inserted into an indirect file.

Example

1. Initiate SLP by specifying an initial command 1line that
contains an output file specifier and a listing file
specifier. The following is a typical command line:

SLP>FROG.COR,LP: ./

In this example, SLP will generate the file FROG.CCOR, and
will produce a listing of this file as it is generated.

2. Begin entering correction or insertion lines into the file.
Supply the appropriate edit commands and insert as text. The
correct line numbers for text being edited must be obtained
from a 1listing of the file that is to be edited; new text,
however, can be entered without line numbers. In order to
generate edit command lines, it is necessary to use the shift
command character (<) in the first position of the input

6-8

SOURCE LANGUAGE INPUT PROGRAM (SLP)
line. For example, to create the line
‘29:36

as a text line in FROG.COR

<-29,36</
Thus, a typical correction file might be entered as:

<-15+/

s THIS ROUTINE CALLS THE ERROR PROCESSOR./

SHEDR: SAVRG 3 SAVE NONVOLATILE REGISTERS </
BNE 108 ;IF NE YES ./
RETURN_/

<-40,56 &/

6.8.2 Using Indirect Files

The following example shows how an indirect file can be used.
Example:

1. Assuming that the corrections contained in AMND.COR are to be
applied to a file named WPT.MAC, the file specifier to SLP

ig:

SLP>WPT.MAC,LP:=WPT.MAC_ /

which is followed by the indirect-file edit control statement
referring to the correction file:

@AMND.COR _/
NOTE

If the initial command line,
WPT MAC,LP:=WPT.MAC, was included in the
indirect file, then editing would have
been initiated as follows:

SPL>@AMND.COR/

2. SLP reads correction input from the latest version of file
AMND.COR and returns to the terminal for further input to
finish updating WPT.MAC. 1If the user includes a termination
edit control line in AMND.COR (</), SLP responds by printing
SLP> at the terminal after terminating editing operations on
WPT.MAC. All files are closed and a listing is sent to LP:.

6.9 SLP EDITING EXAMPLES

The following examples indicate the various editing functions that SLP
can perform and the command formats used.

SOURCE LANGUAGE INPUT PROGRAM (SLP)

Example 1:
SLP>ALBLK.MAC,LP:=ALBLK.MAC;1 <’/
-23,234/
; fiTSIZE OF BLOCK TO ALLOCATE IN BYTES.</
-33
MOV #SFRHD,R2 ;GET ADDRESS OF FREE POOL HEADER_/
-36,36</
-39,39<’
ASR R1 : CONVERT TO WORDS <’
/ </

In this example, the following editing functions are performed:

Line 23 is replaced by a corrected version (i.e.,; R1=SIZE OF BLOCK

TO ALLOCATE IN BYTES.).

A new line is inserted after line 33.

Line 36 is deleted (and not replaced).

Line 39 is replaced by a corrected version (i.e.,
ASR R1 ;s CONVERT TO WORDS) .

The output file is named ALBLK.MAC, and a line-numbered 1listing
produced on the line printer.

Example 2:
SLP>BLKSG.MAC,LP:=BLKSG.MAC;1 ./
-55,554/
BCS 603 ;IF CS YES </
-107,107/
CALL SERMSG ;OUTPUT ERROR MESSAGE _/
-,

In Example 2, the following editing functions are performed:
Line 55 is replaced by a corrected line;
Line 107 is replaced by a corrected line.

The output file is named BLKSG.MAC, and a line numbered 1listing
produced.

6-10

is

is

SOURCE LANGUAGE INPUT PROGRAM (SLP)
Example 3:

SLP>CATB.ABC;1,DK1:CATB.DAT=CATB.ZYX _/

~15,16 ./
CNTRL: .BYTE g,'0_/
_33' 35‘j
SCDTD:: MOVB $#'9,CNTRL ;SET DECIMAL LIMIT _/
-38,38_/
COTB:: MOVB #'7,CNTRL ;SET OCTAL LIMIT_/
-43,45,/

CMPB #' ,R5 ; BLANK? </

BEQ 1s ; IF EQUAL YESZ/

CMPB $HT, RS ;HT?</

BEQ 1$;IF EQUAL YES ./
-47,504/
3$: MOV R5,R2 ;SET TERMINAL CHARACTER_/
/ </

Lines 15 and 16 are deleted and replaced by a corrected line;

Lines 33 through 35 are deleted and replaced by the single 1line
starting with $CDTD;

Line 38 is replaced;
Lines 43 through 45 are replaced by four text lines;

Lines 47 through 50 are deleted and replaced by the single 1line
beginning with 3$:

The output file is created with the name CATB.ABC; the 1list file
(CATB.DAT) is written to the volume mounted on DKl: prior to being
spooled to the line printer. The input file, CATB.ZYX, remains in its
original form.

Example 4:

SLP>GETBK.C46,LP: _/
.TITLE GETBK

@CMCOD </

;GET ALLOCATED BLOCKS_/

i/
/<’

In Example 4, the user is creating a new file named GETBK.C46. The
first text 1line defines the program title. The next line is an edit
control line, which refers SLP to an indirect file named CMCOD.CMD
with the default file type CMD. When indirect input is complete, SLP
returns to the terminal for further input at the 1line following
@CMCOD.

6-11

SOURCE LANGUAGE INPUT PROGRAM (SLP)

6.10 SLP ERROR MESSAGES

SLP error messages are issued in two different formats:

° SLP followed by two dashes and the error message. If
applicable, the command line in error is printed on the next
line.

° SLP followed by two dashes, the -error message and the
offending filename.

Examples

SLP -- SYNTAX ERROR
RICKSFILE.MAC,LP:=SHIRLEY.MAC;2

or
SLP -- OPEN FAILURE LINE LISTING FILE filename

SLP error messages, descriptions, and suggested user actions are as
follows.

SLP -- COMMAND SYNTAX ERROR
command line

Description

The command line format does not conform to syntax rules. This
is a fatal error; the currently opened files are closed and SLP
is reinitialized.

Suggested User Action

Reenter the command line.

SLP -- ILLEGAL DEVICE NAME
command line

Description

The device specified is not a legal device. This 1is a fatal
error; it causes the editing session to be reinitialized.

Suggested User Action

Reenter the command line.

SLP -- ILLEGAL DIRECTORY
command line segment

Description

The directory is not legally specified. This is a fatal error;
it causes the editing session to be reinitialized.

Suggested User Action

Reenter the command line.

6-12

SOURCE LANGUAGE INPUT PROGRAM (SLP)
SLP -- ILLEGAL ERROR/SEVERITY CODE pl p2 p3
Description
Thig error message indicates an error in the SLP program.

Suggested User Action

Reenter the command line. If the error persists, contact vyour
DEC field support representative.

SLP -- ILLEGAL FILE NAME
command line segment

Description

A file specification is greater than characters in length or
contains a wild card (i.e., an terisk in place of a file
specification element). This is a fatal error; it causes the
editing session to be reinitialized.

W

0
s

Suggested User Action

Reenter the command line.

SLP -- ILLEGAL GET COMMAND LINE ERROR

Description
The system, for some reason, is unable to read a command line.
This indicates an internal system failure or an error in the SLP

program.

Suggested User Action

" Reenter the command line. If the error persists, contact your
DEC field support representative.

SLP -- ILLEGAL SWITCH
command line segment
Description
The switch is not a valid SLP switch or a legal switch is used in
an invalid manner. This is a fatal error; it causes the editing

session to be reinitialized.

Suggested User Action

Reenter the command line with the correct switch specified.

6-13

SOURCE LANGUAGE INPUT PROGRAM (SLP)

SLP ~- INDIRECT COMMAND SYNTAX ERROR
command line

Description

The command line format specified for the indirect file does not
conform to syntax rules. This 1is a fatal error; the
currently-opened files are closed and SLP is reinitialized.

Suggested User Action

Reenter the command line.

SLP -- INDIRECT FILE DEPTH EXCEEDED
command line

Description

More than one level of indirection has been specified in a
command file. This is a fatal error; the currently-opened files
are closed, and SLP is reinitialized.

Suggested User Action

Correct the command file and reenter the command line.

SLP -- I/0 ERROR COMMAND INPUT FILE
or

SLP -- I/0 ERROR COMMAND OUTPUT FILE
or

SLP -- I/O ERROR CORRECTION INPUT FILE filename
or

SLP -- I/0 ERROR LINE LISTING FILE filename

or
SLP -~ I/0 ERROR SOURCE OUTPUT FILE filename
Description
One of the following conditions may exist:

1. A problem exists on the physical device (e.g., device cycled
down) .

2. Length of command line is greater than 80 characters.
3. File is corrupted or the format is incorrect.

Suggested User Action

1. Determine which of the above condition exists.
2. Rectify the condition.

3. Reenter the command line.

SOURCE LANGUAGE INPUT PROGRAM (SLP)

SLP -- INDIRECT FILE OPEN FAILURE

command line

nr
Li

SLP —-- OPEN FAILURE CORRECTION INPUT FILE filename

or

SLP -- OPEN FAILURE LINE LISTING FILE filename

or

SLP -~ OPEN FAILURE SOURCE OUPUT FILE filename

One of the following conditions may exist:

1. The file is protected against an access.

2. A problem exists with the physical device (e.g., device
on-line).

3. The volume is not mounted.

4. The specified file directory does not exist.

5. The named file does not exist in the specified directory.

6. The available Executive dynamic memory 1is insufficient
the operation.

These are fatal errors; they causes the editing session to

reinitialized.

Suggested User Action

1. Determine which of the above conditions exists.

2. Rectify the condition.

3. Reenter the command line.

6-15

not

for

be

SOURCE LANGUAGE INPUT PROGRAM (SLP)
SLP ~~ PREMATURE EOF CORRECTION INPUT FILE filename
Description
An out-of-range line number has been specified 1in a correction
file or from the terminal, e.g., -1000 has been specified for an

800 line file.

Suggested User Action

1. Terminate the current editing session.
2. Restart the editing session, entering the <correct 1line
number .
SLP -- PREMATURE EOF COMMAND INPUT FILE
Description
This is caused by typing CTRL/Z at the terminal, which sends an
end-of-file to SLP before the / is read. SLP types out SLP>,

indicating that a new file specification is expected.

Suggested User Action

Restart the editing session at the point where the CTRL/Z was
inadvertently typed.

6-16

CHAPTER 7

LIBRARIAN UTILITY PROGRAM (LBR)

7.1 INTRODUCTION TO LBR

The Librarian Utility Program (LBR) allows the user to create, update,
modify, 1list, and maintain object and macro library files. A library
file is a direct access file containing one or - more modules of the
same module type. Library files are organized for rapic access by the
Task Builder and MACRO-11 Assembler.

The Librarian and library files, working in conjunction with the
MACRO-11 Assembler and the Task Builder, provide fast entry point
search time, easy update with minimal copying of entire files, and the
ability to handle multiple module types.

Library files contain two directory tables; an entry point table
(EPT) that contains entry point names, and a module name table (MNT)
that contains module names.

Both the EPT and MNT are alphabetically ordered. Object module names
are derived from .TITLE directives, while entry point names are
derived from defined global symbols. Once an entry point is located,
its associated module can be accessed directly.

Macro module names are derived from .MACRO directives; macro entry
point names are not applicable.

7.1.1 Format of Library Files

A library file consists of a header, an entry point table, a module
name table, the library modules, and (usually) free space. The entry
point table has zero length for macro libraries. See Figure 7-1.

LIBRARIAN UTILITY PROGRAM (LBR)

Fixed- Library
Length Header
Records

Entry Point
Table

~-Block
boundaries
Module Name

Table
Variable-~ Module 1 Header
Length
Records Module 1

Module n Header

Module n

Available Space

Figure 7-1
General Library File Format

7.1.2 Library Header

The header section is a full block in which the first 23 words are
used to describe the current status of the library. Its contents are
updated as the library is modified, so the Librarian can access the
information it needs to perform its functions (Insert, Compress,
etc.). See Figure 7-2.

7.1.3 Entry Point Table

The entry point table consists of 4-word elements containing an entry
point name (words 0-1), and a pointer to the module header where the
entry point is defined (words 2-3). See Figure 7-3. This table is
searched when a 1library module 1is referenced by one of its entry
points. The table is sequenced in order of ascending entry point
names. The entry point table is not used for macro library files.

7-2

LIBRARIAN UTILITY PROGRAM (LBR)

OFFSET
WORD 0 | NON ZERO ID LIBRARY TYPE
2 LBR (LIBRARIAN) VERSION
4 (.IDENT FORMAT)
6 YEAR
10 DATE AND MONTH
12 TIME LAST DAY
14 INSERT HOUR
16 MINUTE
20 SECOND
22 | RESERVED SIZE EPT ENTR's
24 ' EPT STARTING RELATIVE BLOCK
26 NO. EPT ENTRIES ALLOCATED
30 NO. EPT ENTRIES AVAILABLE
32 | RESERVED SIZE MNT ENTR'S
34 MNT STARTING REL BLOCK
36 NO. MNT ENTRIES ALLOCATED
40 NO. MNT ENTRIES AVAILABLE
42 LOGICALLY DELETED
44 AVAILABLE (BYTES)
46 CONTIGUOUS SPACE
50 AVAILABLE (BYTES)
52 NEXT INSERT RELATIVE BLOCK
s4 | START BYTE WITHIN BLOCK
Figure 7-2

Contents of Library Header

7-3

LIBRARIAN UTILITY PROGRAM (LBR)

WORD 0 GLOBAL SYMBOL
1 NAME (RADS50)
2 ADDRESS OF RELATIVE BLK.
MODULE
3 HEADER BYTE IN BLOCK
Figure 7-3

Format Of Entry Point Table Element

7.1.4 Module Name Table

The module name table 1is searched when the 1library module is
referenced by its module name, rather than by one of its entry points.
It is comprised of 4-word elements; a module name (words 0-1) and a
pointer to the module header (words 2-3). See Figure 7-4. The module
name table is sequenced in order of ascending module names.

WORD 0 MODULE NAME
1 (RAD50)
2 ADDRESS OF RELATIVE BLK.
MODULE
3 HEADER BYTE IN BLOCK
Figure 7-4

Format of Module Name Table Element

7.1.5 Module Header

Each module starts with an 8-word header, identifying the type and
status of the module, its length (number of words), etc. See Figure
7-5.

For object modules, the low-order bit of the attributes byte is set if
the module has the selective search attribute. Also, for object
modules, the two words of type-dependent information contain the
module identification defined by the L.IDENT directive at assembly
time. For macro modules, these two fields are undefined.

7-4

OFFSET FROM
START OF
MODULE HEADER

0

10
12
14

16

7.2

LIBRARIAN UTILITY PROGRAM (LBR)

ATTRIBUTES STATUS

SIZE OF

MODULE (BYTES)

DATE YEAR

MODULE I

INSERTED MONTH
DAY

TYPE DEPENDENT

INFORMATION

Figure 7-5
Module Header Format

INITIATING LBR

All RSX~-11M utilities can be initiated in several ways.
are described in Section 1.2.

>LBR

_ >LBR command string./

>RUN ...LBR_/

>RUN ...LBR/UIC=[group,member] _ /
>RUN SLBR_/

>RUN SLBR/UIC=[group,member]/

7.3

LBR COMMAND STRING

0=NORMAL MODULE
1=DELETED MODULE

These methods

The methods for LBR are:

LBR accepts command strings in the following general format:

outfile[,listfile)l=infile-1[,infile-2,...,infile-n]

LBR allows only one level of indirect command file.
description of file specifiers, see Section 1.3;

indirect files, see Section 1l.4.

7.4

DEFAULTS IN LBR FILE SPECIFIERS

For a complete
for a description of

Defaults in LBR file specifiers are described in Table 7-1.

LIBRARIAN UTILITY PROGRAM (LBR)

Table 7-1
Defaults in LBR File Svecifiers
Specifier Default
dev: Output File
SYO:
Listing File
The device which was specified for the output
file; otherwise, the default for the output
file.
Input File
For the first input file specifier, SYO:.
For the second through n input file specifiers,
the device specified in the previous input file
specifier; otherwise, the default for the
previous input file specifier.
[uic] Output File
The UIC under which LBR is currently running.
Listing File '
The UIC which was specified for the output
file; otherwise, the default for the output
file specifier.
Input File
For the first input file specifier, the UIC
under which LBR is currently running.
For the second through n input file specifiers,
the UIC specified 1in the previous input file
specifier; otherwise, the default for the
previous input file specifier.
filename | No default. Must be specified.
.type OQutput File
Depends on the default in effect (see Section
7.5.4), except when the /CR or /CO switch is
specified (see Sections 7.5.1 or 7.5.2,
respectively).
Listing File
.LST
Input File)
Refer to the descriptions of /CO (Section
7.5.1), /IN (Section 7.5.6), and /RP (Section
7.5.8) switches.
iver Latest version of the file, or latest version plus
one for the output file when the /CO or /CR switches
are specified.
/switch OQutput File
/IN (Insert)
List File
/SP/LI (spool and list module names)
Input File
None,

7-6

LIBRARIAN UTILITY PROGRAM (LBR)

7.5 LBR FILE OPTION SWITCHES

LBR file options are in the form of switches appended to file
specifiers. These option switches are summarized in Table 7-2.

Table 7-2
LBR File Option Switches

Option Switch Function
Compress /CGC Compress a library file.
Create /CR Create a library file.
Delete /DE Delete a library module and all of its

entry points.

Default /DF Specify the default library file type.
Delete Global /DG Delete a library module entry point.
Insert /IN Insert a module.
List /LI List module names.
/LE Ligt module names and module entry
points.
/FU List module names and full module

description.

Replace /RP Replace a module.
/=RP Don't replace a module.
Spool /SP Spocol the listing for printing.
/~SP Don't spool the listing.
Selective Search /SS Set selective search attribute in

module header.

Squeeze /S2Z Reduce the size of macro source.

7.5.1 Compress Switch (/CC)

FUNCTION

The Compress Switch provides the user with a facility for rearranging
a file by physically deleting all logically deleted records, putting
all free space at the end of the file, and making the free space
available for new library module inserts. Additionally, the library
table specification may be altered for the resulting 1library. LBR
accomplishes this by creating a new file that is a compressed copy of
the old library file.

LIBRARIAN UTILITY PROGRAM (LBR)
NOTE
The old 1library file 1is not deleted
after the new file is created.
The /CO switch can be appended only to the output file specifier.
FORMAT

outfile/CO:size:ept:mnt = infile

where:
outfile is the file specifier for the file that 1is to
become the compressed version of the input file.
NOTE
Default type is .OLB if input file is an
object 1library or .MLB if input file is
a macro library.

/CO is the Compress switch.

:size is the size of the new library file in 256-word
blocks. If omitted, the size of the old library
file is the default size.

sept is the number of entry point table (EPT) entries
to allocate. If the value specified is not a
multiple of 64(10), the next highest multiple of
64(10) 1is wused. If omitted, the number of EPT's
in the o0ld library file 1is the default value.
This parameter is always forced to zero for macro
libraries.

NOTE
Maximum number of entries is 4096 (10).

:mnt is the number of module name table (MNT) entries
to allocate. If the value specified is not a
multiple of 64(10), the next highest multiple of
64(10) 1is wused. If omitted, the number of MNT's
in the o0ld library file is the default value.

NOTE
Maximum number of entries is 4096 (10).
infile is the file specifier of the library file to be

compressed.

7-8

NOTE
Default file type 1is .OLB for object
libraries and .MLB for macro libraries.
The actual default type is determined by
the current default library type (see
Section 7.5.4).
EXAMPLE
LBR>RICKLIB/CO:100.:128.:64.=SHEILA.OLB4/

In this example, file SHEILA.OLB 1is compressed, and a new file,
RICKLIB.OLB, is created with the following attributes:

size = 100(10) blocks

0]
[®]
o+

]

128(10) entry points

3
oo}
-+
1

64 (10) module names

NOTES
1. The new file, RICKLIB.OLB, received a
version number that 1is one version
greater than the latest version for the
file.

2. Both files, RICKLIB.OLB and SHEILA.OLB,
reside 1in the default directory file on
SY0:.

7.5.2 Create Switch (/CR)

FUNCTION

The Create switch provides the user with a facility for allocating a
contiguous 1library file on a direct access device (e.g., disk). It
initializes the Library file header, the entry point table, and the
module name table.

The /CK switch can be appended conly to the output file specifier.
FORMAT

outfile/CR:size:ept:mnt:type

where:

outfile is the file specifier for the library file being
created. The default file type is .OLB if an
object library is being created, or .MLB if a
macro library is being created.

/CR is the create switch.

:size is the size of the 1library file in 256-word
blocks. The default size is 100(10) blocks.

tept is the number of entry point table (EPT) entries

to allocate. The default value is 512(10) for

LIBRARIAN UTILITY PROGRAM (LBR)
object libraries. This parameter is always forced
to zero for macro libraries.
NOTE
Maximum number of entries is 4096 (10).

smnt is the number of module name table (MNT) entries
to allocate. The default value is 256(10).

NOTE

Maximum number of entries is 4096 (10).

ttype is the type of library to be created. Acceptable
types are OBJ for object libraries and MAC for
macro libraries. The default is the 1last value
specified or implied with the /DF switch (see
Section 7.5.4), or OBJ if /DF has not been
specified.

NOTE
The EPT and MNT are automatically filled
out to the next disk block boundary, if
the values specified are not multiples
of 64(10).
EXAMPLE
LBR>RICKLIB/CR::128.:64,:0BJ=SHEILA,LAURA,JENNY _/
In this example, a combination of functions are performed. First, the
library file RICKLIB.OLB is created in the default directory on SYO0:;
RICKLIB has the following attributes:

size = 100(10) blocks (default size),

ept = 128(10) entry points,
mnt = 64(10) module names.
type = .OBJ

Second, object modules from the input files SHEILA.OBJ, LAURA.OBJ, and
JENNY.OBJ, which reside in the default directory on SY0:, are inserted
into the newly created library file. 1Insert is the default switch for
input files (see Section 7.5.6).

7-10

LIBRARIAN UTILITY PROGRAM (LBR)

7.5.3 Delete Switch (/DE)

FUNCTION

Mha Nalad witr~h
1C

T vides the wuser with a facility f£or deletin

uUgiete SW1ITCh per Wlth a MG&&&iAAg
library modules and their associated entry points (global symbols)
from a library file. Up to 15 library modules and their associated

entry points can be deleted with one delete command.

When LBR begins processing the /DE switch, it prints the following
message on the initiating terminal:

MODULES DELETED:

As modules are logically deleted from the 1library file, the module
name is printed on the initiating terminal. See the example at the
end of this section.

If a specified library module is not contained in the library file, a
message is printed on the initiating terminal, and the processing of
the current command is terminated. This message is as follows:

LBR -- *FATAL* - NO MODULE NAMED "name"

The /DE switch can be appended only to the library file specifier.

When LBR deletes a module from a library
file, the module 1is not physically
removed from the file, but is marked for
deletion. This means, that although the
module is no longer accessible, the file
space that the module once occupied is
not available for use (unless the
deleted module is the last module which
was inserted). To physically remove the
module from the file and make the freed
space available for use, the user must
compress the library (see Section
J.5.1).

FORMAT

outfile/DE:module~-1[:module-2:...:module-n]

where:
outfile is the file specifier for the library file.
/DE is the delete switch.
:module is the name of the module to be deleted.

7-11

LIBRARIAN UTILITY PROGRAM (LBR)
EXAMPLE
LBR>RICKLIB/DE:SHEILA:LAURA:JENNY _/

MODULES DELETED:

SHEILA
LAURA

JENNY

In this example, the modules SHEILA, LAURA, and JENNY and their
assocliated entry points are deleted from the latest version of library
file SY0:RICKLIB.OLB.

7.5.4 Default Switch (/DF)

FUNCTION

The Default switch provides the user with a facility for specifying
the default library file type. Acceptable values are OBJ for object
libraries and MAC for macro libraries. A default value of OBJ is used
by LBR to process the /DF switch.

Specifying a default value:
1. Sets the default type argument for the Create switch (/CR).

2. Provides a file type default value of .MLB for macro
libraries and .0OLB for object 1libraries when opening an
output (library) file, except in the cases of /CO and /CR.
When /CO 1is specified, the default applies to the library
input file. When /CR is specified, the default type is .OLB
if an object 1library 1is being created, or .MLB if a macro
library is being created. The /DF switch only affects the
name of the file to be opened; thereafter, the library
header record information is used to determine the type of
library file being processed.

The /DF switch can be issued alone or appended to a library file
specifier.

FORMAT

outfile/DF:type...

or
/DF : type
where:
outfile is the file specifier for the library file.
/DF is the Default switch.
type is OBJ for object library files and MAC for macro

library files.

7-12

LIBRARIAN UTILITY PROGRAM (LBR)
NOTE

If a type other than OBJ or MAC is
specified, the current default library
type will be set to object 1libraries,
and the following message will be
displayed:

LBR -~ INVALID LIBRARY TYPE SPECIFIED

EXAMPLES

1. LBR>/DF:MAC./
LBR>RICKLIB=infile_/

File RICKLIB.MLB is opened for insertion.

2. LBR>/DF:MAC./ .
LBR>RICKLIB/DF:0BJ=infile/

File RICKLIB.OLB is opened for insertion.

3. LBR>/DF:MAC <’/
LBR>RICKLIB/CR_/

Macro library RICKLIB.MLB is created.

4., LBR>/DF:MAC_/

LBR>RICKLIB/CR::::0BJ </
Object library RICKLIB.OLB is created.

5. LBR>/DF_/
LBR>TEMP/CO=RICKLIB./

RICKLIB.OLB is opened for compression. If RICKLIB.OLB is an
object 1library, the file TEMP.OLB is created to receive the
compressed output. If RICKLIB.OLB 1is a macro library (a
nonstandard use of the type OLB), the file TEMP.MLB is
created.

6. LBR>/DF:0BJ./
LBR>TEMP/CO=RICKLIB.MLB _/

Assuming that file RICKLIB.MLB is a macro library, the macro

library file TEMP.MLB 1is created to receive the compressed
output.

7.5.5 Delete Global Switch (/DG)

FUNCTION

The Delete Global switch provides the wuser with a facility for
deleting a specified entry point (global symbol) from the EPT. Up to
15 entry points may be deleted with one command. This command does
not affect the object module which contains the actual symbol
definition.

7-13

LIBRARIAN UTILITY PROGRAM (LBR)

When LBR begins processing the /DG switch, it prints the following
message on the initiating terminal:

ENTRY POINTS DELETED:

As entry points are deleted from the library file, the entry point Iis
printed on the initiating terminal. See the example at the end of
this section.

If a specified entry point is not contained in the EPT, a message 1is
printed on the initiating terminal, and the processing of the current
command is terminated. This message is as follows:

LBR -- *FATAL* - NO ENTRY POINT NAMED "name"

The /DG switch can only be appended to the library file specifier.

FORMAT

outfile/DG:global-1[:global-2:...:global-n]

‘where:

outfile is the library file specifier.

/DG is the Delete Global switch.

global is the name of the entry point to be deleted.
EXAMPLE

LBR>RICKLIB/DG:SHEILA: LAURA:JENNY _/

ENTRY POINTS DELETED:

SHEILA
LAURA

JENNY

In this example, the entry points SHEILA, LAURA and JENNY are deleted
from the latest version of the library file named SY0:RICKLIB.CLB.

7.5.6 Insert Switch (/IN)

FUNCTION

The Insert switch provides the user with a facility for inserting
library modules into a library file. Any number of input files can be
specified, and each file can contain any number of concatenated input
modules. For macro libraries, only first-~level macro definitions are
extracted from the input files. All text outside of the first-level
macro definitions 1is ignored. The /IN switch is the default library
file option, and can be appended only to the library file specifier.

7-14

LIBRARIAN UTILITY PROGRAM (LBR)
If the user attempts to insert an input module which already exists in
the 1library file, the following message is printed on the initiating
terminal:

LBR —-- *FATAL* DUPLICATE MODULE NAME "name" IN filename

Likewise, if the user attempts to insert a module and a module
contains an entry point that duplicates one that is already in the
EPT, the following message is printed on the initiating terminal:

LBR —-- *FATAL* DUPLICATE ENTRY POINT "name" IN filename

FORMAT

outfile[/IN]=infile~1[,infile~2,...,infile-n]

where:
outfile is the file specifier for the 1library file into
which the input modules are to be inserted. The
default type depends on the current default (see
Section 7.5.4). It is .OLB if the current default
is object libraries or .MLB if the current default
is macro libraries.
/IN is the Insert switch.
infile is the file specifier for the input file
containing modules to be inserted into the library
file. The default type is .OBJ if outfile is an
object 1library and .MAC 1if outfile is a macro
library.
EXAMPLE

LBR>RICKLIB/IN=SHEILA,LAURA,JENNY /

In this example, the modules contained in the latest versions of files
SHEILA, LAURA and JENNY, which reside in the default directory on

SY0:, are inserted into the latest version of the 1library file
RICKLIB, which also resides in the default directory on SY0:. The
default file type for files SHEILA, LAURA, and JENNY is .OBJ 1if
RICKLIB is an object module 1library or .MAC if RICKLIB is a macro

library.

7.5.7 List Switches (/LI, /LE, /FU)

FUNCTION

The List switches provide the user with a facility for producing a
printed 1listing of the contents of a library file. Three switches
allow the user to select the type of listing desired. These switches
are as follows:

/LI Produces a listing of the names of all modules in the
library file.

/LE Produces a listing of the names of all modules in the
library file and their corresponding entry points.

7-15

LIBRARIAN UTILITY PROGRAM (LBR)

/FU Produces a listing of the names of all modules in the
library file and gives a full module description for
each: i.e., size, date of insertion, and

module-dependent information.

NOTE
Appendix EBE.1l contains sample 1listings of all
three types of library listing.
These switches can be appended only to the output file specifier or
the list file specifier.

FORMAT

outfile[,listfile]/switch(es)

where:
outfile is the file specifier for the library file whose
contents is to be listed.
listfile is the optional listing file specifier. If not
specified, the listing is directed to the
initiating terminal.
/switch(es) is the list option(s) selected.
NOTE
The /LI switch is the default wvalue, and
need not be specified when a listing file
has been specified, or when any other list
switch is included in the command.
EXAMPLES

1. LBR>RICKLIB/LI./

In this example, a listing of the names of all the modules contained
in file SYO:RICKLIB.OLB is printed on the initiating terminal.

2. LBR>RICKLIB/LE.’/
In this example, a listing of the names of all the modules and their
entry points (contained 1in file SY0:RICKLIB.OLB) is printed on the
initiating terminal.

3. LBR>RICKLIB/FU/
In this example, a listing of the names of all the modules, and a full

description of each module contained in file SY0:RICKLIB.OLB, is
printed on the initiating terminal,

LIBRARIAN UTILITY PROGRAM (LBR)
4. LBR>DK1:[200,200]RICKLIB,LP:/LE/FU_/
In this example, a listing of the names of all the modules, their
entry points, and a full description of each module for file RICKLIB,

residing in directory [200,200] on DKl:, 1is printed on the 1line
printer. ‘

7.5.8 Replace Switch (/RP)

FUNCTION

The Replace switch provides the user with a facility for replacing
modules in a library file with input modules of the same name. Any
number of input files are allowed, and each file can contain any
number of concatenated input modules.

When a match occurs on a module name, the existing module is logically
deleted, and all of its entries are removed from the EPT. The /RP
switch does not imply module replacement on matching entry point
names. That condition is always fatal.

As each module in the library file is replaced, a message 1is printed
on the initiating terminal. This message, which contains the name of
the module being replaced, is as follows:

MODULE "name" REPLACED

If the module to be replaced does not exist in the library file, LBR
assumes that the input module 1is to be inserted and automatically
inserts it without printing a message.

FORMAT
The /RP switch can be specified in either of the following formats:

a. Global format - The /RP switch 1is appended to the file
specifier, and all of the input files are assumed to contain
modules to be replaced.

b. Local format - The /RP switch is appended to an input file
specifier, and only the file to which the /RP switch is
appended is considered to contain modules to be replaced.

Global Format

outfile/RP=infile-~1[,infile~-2,.,.,infile~n]
where:

outfile is the file specifier for the library file. The
default type depends on the current default (see
Section 7.5.4). It is .OLB if the current default
is object 1libraries or the .MLB if the current
default is macro libraries.

7-17

LIBRARIAN UTILITY PROGRAM (LBR)
/RP is the Replace switch.

infile is the input file specifier for the file that
contains modules to be replaced in the library
file. The default type is .OBJ if outfile 1is an
object library, or .MAC if it is a macro library.

This format of the /RP switch allows the user to specify a 1list of
input files without having to append the /RP switch to each of them.

NOTE

Should the user want to override the
global function for a particular input
file (that 1is, to 1instruct LBR to
process a particular file in a list as a
file containing modules to be inserted
but not replaced), the user can append
/-RP or /NORP to the desired input file
specifier.

Local Format

outfile=infile-1([/RP][,infile~2[/RP],...,infile~-n[/RP]]

where:

outfile is the file specifier for the library file. The
local format default 1is the same as the global
format default described above.

infile is the input file specifier for the file that
contains modules to be inserted or replaced in the
output library file. The local format default is
the same as the global format default described
above.

/RP is the Replace switch.

NOTE

Appending the /RP switch to an input file
specifier constitutes the local format of
the switch. This overrides the LBR
default (Insert) and instructs LBR to
treat the module(s) contained in the
specified file as modules to be replaced.

7-18

LIBRARIAN UTILITY PROGRAM (LBR)
EXAMPLES

The files used in the following four examples, and the modules
contained within each file, are depicted in Figure 7-6. For the
examples, these files are assumed to reside in the default directory
on the default device, and the initial state of the library file is
assumed to be as shown in Figure 7-6.

1. LBR>RICKLIB/RP=SHEILA,LAURA,JENNY _/

MOCULE "SHEILA"™ REPLACED
MODULE "IAURA1"™ REPLACED
MODULE "LAURA2" REPLACED
MODULE "JENNY1" REPLACED
MODULE "JENNY2" REPLACED

In this example, the global format for the /RP switch is used. Object
modules from the input files SHEILA, LAURA, and JENNY replace modules
by the same names in the library file named RICKLIB. The resulting
library file is shown in Figure 7-7.

2. LBR>RICKLIB=CHRIS,SHEILA/RP <~

MODULE "SHEILA" REPLACED

In this example, the local format of the /RP switch 1is used. The
object module SHEILA from file SHEILA is replaced in the library file
RICKLIB. The object modules in the file CHRIS are inserted in the
library file. (See Insert switch in Section 7.5.6.) The resulting
library file is shown in Figure 7-8.

7-19

0Z-L

Output

Library File

Input Files

File Name RICKLIB.OLB;1 SHEILA.OBJ;1 LAURA.OBJ; 1 JENNY.OBJ;1 CHRIS.OBJ;1
JENNY1 SHEILA LAURA1 JENNY1 CHRIS1
Object JENNY2 LAURA2 JENNY2 CHRIS2
Modules LAURAL LAURA3 JENNY3
LAURAZ2
SHEILA
Figure 7-6

Sample Files Used in LBR

Examples

(997) WY¥D0¥d ALITIIN NVIYVIEIT

LIBRARIAN UTILITY PROGRAM (LBR)

RICKLIB.OLB;1

JENNY1
JENNY2
JENNY3 *
LAURAL
LAURA2
LAURA3 *

SHEILA

*These modules did not exist on the
library file prior to the execution of
this example, but they did exist on the
input files. LBR, therefore, assumed
that they were to be inserted. Since
LBR handled these modules as a normal
insert, no message was printed on the
input terminal.

Figure 7-7
Output Library File After Execution of Example 1

RICKLIB.OLB;1

CHRIS1 * %
CHRIS2 *%
JENNY1
JENNY2
LAURAL
LAURA2

SHEILA *

*This module replaced

**These modules inserted

Figure 7-8
Output Library File After Execution of Example 2

7-21

LIBRARIAN UTILITY PROGRAM (LBR)
3. LBR>RICKLIB/RP=SHEILA,LAURA,JENNY,CHRIS/~RP_/

MODULE "SHEILA" REPLACED
MODULE "LAURA1l" REPLACED
MODULE "LAURA2" REPLACED
MODULE "JENNYI1" REPLACED
MODULE "JENNY2" REPLACED

In this example, the /-RP switch is used to override the global format
of the command. Object modules in files SHEILA, LAURA, and JENNY are
processed as modules to be replaced, and file CHRIS is processed as a
file which contains modules to be inserted. The resulting library
file is shown in Figure 7-9.

RICKLIB.OLB;1

CHRIS1 *%
CHRIS2 **
JENNY1
JENNY?2
JENNY3 *
LAURA1
LAURA2
LAURA3 *

SHEILA

*These modules were inserted by default.

**These modules were specified to be
inserted. Had a module of the same name
been present, a fatal error message
would have been issued. See Example 4
below.

Figure 7-9
Output Library File After Execution of Example 3
4. LBR>RICKLIB/RP=SHEILA,LAURA/-RP,JENNY_/

MODULE "SHEILA" REPLACED
LBR -~ *FATAL* -- DUPLICATE MODULE "LAURA1" IN LAURA.OBJ;1l

In this example, only module SHEILA from file SHEILA was replaced.
The wuser specified that the modules in file LAURA not be replaced
(/-RP), but inserted. One of the modules contained in file LAURA
duplicated an already existing module 1in file RICKLIB (see Figure
7-6). Therefore, LBR issued the fatal error message and terminated
the processing of the current command.

7-22

LIBRARIAN UTILITY PROGRAM (LBR)

7.5.9 Spool Switch (/SP)

The Spool switch is the list file default switch Whether the switch

is specified or not, the results are the same, i.e., the listing file
is spcoled to the line printer. The listing file can be spooled to

any file-structured device (e.g., disk).

After the listing file is created, a request 1is made to the print
spooler task to print the spooled file; printing 1is performed
asynchronously (see Appendix C for a description of the spooler task).

The automatic printing of the 1listing file can be inhibited by
specifying a minus sign (-) or the letters NO between the slash (/)
and the SP in the spool switch (/-SSP or /NOSP). This causes the
listing file to be created, but the request to the print spooler task
is not issued. Therefore, the file is not automatically printed.

The /SP switch can only be appended to the list file specifier.

FORMAT

outfile,listfile[/SP] or [/-SP]

where:
outfile is the file specifier for the library file.
listfile is the listing file specifier. ‘
/SP or /-SP is the Spool switch.

EXAMPLE

LBR>RICKLIB/DE:SHEILA,RICKLST/~-SP _/
In this example, the following occurs:

1. The module SHEILA and its associated entry points are deleted
from the library file SY:RICKLIB,.

2. The listing of the contents of resulting library file RICKLIB
is written to the list file SY:RICKLST.LST. Since the /-SP
switch is specified, the file is not automatically printed.

7.5.10 Selective Search Switch (/SS)

FUNCTION

The Selective Search switch is wused to set the selective search
attribute bit in the module header of object modules as they are
inserted into an object 1library. The switch has no effect when
applied to modules being inserted into a macro library. The switch
may be specified only on input files for insertion or replacement
operations, and it affects all modules in the input file to which it
is applied.

Object modules with the selective search attribute are given special

treatment by the Task Builder. Global symbols defined in modules with
the selective search attribute are only included in the Task Builder's

7-23

LIBRARIAN UTILITY PROGRAM (LBR)

symbol table if they are previously referenced by other modules.
Thus, only referenced symbols will be listed with the module in the
Task Builder memory allocation file, thereby reducing task build time.
The /SS switch should only be applied to object files whose modules
contain only absolute (not relocatable) symbol definitions. See the
RSX-11M Task Builder Reference Manual for more information.

FORMAT

outfile=infile-1/S8S[,infile-2[/SS],...,infile-n{/SS]]

where:
outfile is the file specifier for the library file.
infile is the file specifier for the 1input file that
contains modules to be selectively searched.
/8S is the Selective Search switch.

7.5.11 Squeeze Switch (/SZ)

FUNCTION

The Squeeze switch provides the user with a facility for reducing the
size of macro definitions by eliminating all trailing blanks and tabs,
blank lines, and comments from macro text. The /SZ switch is used to
conserve memory in the MACRO-11 Assembler and to reduce the size of
macro library files. The Squeeze switch has no effect on object
libraries.

FORMAT
The /SZ switch can be specified in either of the following formats:

1. Global format - The /SZ switch is appended to the library
file specifier, and all of the input files are assumed to
contain modules to be squeezed.

2. Local format - The /SZ switch is appended to an input file

specifier, and only the file to which the /SZ switch is
appended is considered to contain modules to be squeezed.

Global Format

outfile/SZ=1infile~-1,(,infile-2,...,infile~-n]

where:
outfile is the file specifier for the library file.
/SZ is the Squeeze switch.
infile is the file specifier for the 1input file that

contains modules to be squeezed before being
inserted into the library file.

This format of the /SZ switch allows the user to specify a 1list of
input files without having to append the /SZ switch to each of them.

7-24

Local Format

LIBRARIAN UTILITY PROGRAM (LBR)

Should the user

alakhal Fiimatrian
Jilwadl Tufictivil

file (that is,

NOTE

want to override the
for a particular input
to 1instruct LBR to

process a particular file in a list as a

file containing modules to
squeezed), the user can append

but not
/~SZ or /NOSZ to
specifier.

be inserted

the desired input file

outfile=infile-1/Sz[,infile-2[/S%],...,infile-n[/S%]]

where:
outfile is the file specifier for the library file.
infile is the file specifier for the file that contains
modules to be squeezed before being inserted into
the library file.
/S%Z is the Sgueeze syitch.
NOTE
LBR uses the following algorithm on each
line to be squeezed and inserts the
resultant line into the library file:
1. The line is examined for the
rightmost semicolon (;).
2. If a semicolon is located, it
is deleted, along with all
trailing characters in the
line.
3. All trailing blanks and tabs in
the line are deleted.
4., If the resulting line is null,
nothing 1is transferred to the
library file.
EXAMPLE

Figure 7-10 illustrates
containing input text
text actually inserted

the use of the LBR /SZ
to be sgueezed is illustrated,
into the 1library file after

operation has been completed.

7-25

switch.

along
the

A file
with the
squeeze

LIBRARIAN UTILITY PROGRAM (LBR)

LBL: MOVB
BNE
DEC
. ENDM

.MACRC MOVSTR RX,RY,?LBL

ki ~ - NOTE : H
; BOTH ARGUMENTS MUST BE REGISTERS ;
LBL: MOVB (RX)+, (RY)+ ;MOVE A CHARACTER
BNE LBL ;CONTINUE UNTIL NULL SEEN
DEC RY ; BACKUP OUTPUT PTR TO NULL
;END OF MOVSTR
. ENDM
AFTER BEING SQUEEZED
.MACRO MOVSTR RX,RY,?LBL
ke - - NOTE :

; BOTH ARGUMENTS MUST BE REGISTERS

BEFORE BEING SQUEEZED

(RX)+, (RY) +
LBL
RY

Figure 7-10

MACRO Listing Before and After Running LBR with /SZ Switch

7.6 COMBINING LIBRARY FUNCTIONS

Two or more library functions may be requested 1in the same command
line. The only exceptions are that COMPRESS cannot be requested with

anything else except
in the same command 1

LIST, and CREATE and DELETE cannot be specified
ine.

Functions are performed in the following order:

1. /DF
2. /CR or /CO
3. /DE

4. /DG

5. /IN, /RP, /SS, /SZ

6. /LI, /LE, /FU

EXAMPLE

LBR>FILE/DE:XYZ:

$A,LP:/LE/FU=MODX,MODY/RP_/

LIBRARIAN UTILITY PROGRAM (LBR)
Functions are performed in order, as:
Delete modules XYZ and S$A.

Insert all modules from MODX and MODY, replacing any duplicates
of modules in MODY.

Produce a listing of the resultant library file on the 1line
printer with full module descriptions and all entry points.

7.7 LBR CONSTRAINTS

The following constraints apply to LBR:
1. Limit of 65,536(10) words per module.
2. Limit of 65,536(10) blocks per library,

3. Tables should be allocated to maximum anticipated size.
Expanding table allocations reguires using Compress to copy
the entire file.

4. A fatal error results if an attempt is made to insert a
module into a library which contains a differently named
module with the same entry point. See Insert command,
Section 7.5.6.

5. The use of "wild cards" in file specifiers 1is not allowed
(i.e., forms such as *.0BJ, where the "*" is used to indicate
"all modules with type .OBJ").

7.8 LBR ERROR MESSAGES

Error messages reported to the wuser by LBR are of two types:
diagnostic and fatal.

Diagnostic error messages inform the user that a condition exists that
requires consideration, but the nature of the condition does not
warrant termination of the command. Diagnostic messages are issued to

TI:, in the format:

LBR -- *DIAG* - message
Fatal error messages inform the user that a condition exists that
caused LBR to terminate the processing of a command. When this
occurs, LBR returns to the highest 1level of command 1input. For
example, if the command 1is entered in response to the MCR prompt,
i.e., '

>LBR command

then, LBR issues the fatal error message and exits. If, however, the
command is entered in response to the LBR prompt, i.e.,

LBR>command

LBR issues the fatal error message and reprompts.

LIBRARIAN UTILITY PROGRAM (LBR)

Fatal error messages are issued to TI: 1in the format:

7.8.1

LBR -~ *FATAL* - message

NOTE

If a fatal error occurs during the
processing of an indirect command file,
the command file is <c¢losed, the fatal
error message, followed by the command
line in error, is issued to TI:, and LBR
returns to the highest level of command
input.

Effect of Fatal Errors on Library Files

The status of a library file after fatal errors is:

1.

2.

7.8.2

In general, output errors leave the library in an
indeterminate state.

During the deletion process, the library is rewritten prior
to the printing of the individual module-/entry-point-deleted
messages.

During the replacement process, the library 1is rewritten
prior to the printing of the individual module-replaced
messages.

During the insert process, the library is rewritten after the
insertion of all modules in each individual input file, i.e.,
between input files.

Error Messages

LBR -- ILLEGAL GET COMMAND LINE ERROR CODE

Description

The system, for some reason, is unable to read a command line.
This is an internal system failure.

Suggested User Action

Reenter the command line. If the problem persists, consult
software support representative.

LBR -~ INPUT ERROR ON filename

Description

The file system, while attempting to process an input file, has
detected an error.

7-28

LIBRARIAN UTILITY PROGRAM (LBR)

A problem exists with the physical device (e.g., device cycled
down) .

Suggested User Action

Reenter the command line.

ILBR -- COMMAND SYNTAX ERROR
command line

Description

The user has entered a command in a format that does not conform
to syntax rules.

Suggested User Action

Reenter the command line, using the correct syntax.

LBR —-- OUTPUT ERROR ON filename
Description

A write error has occurred on the output file. One of the
following conditions may exist:

1. The volume is full.
2. The device is write-protected.
3. The hardware has failed.

Suggested User Action

If the volume is full, the user should delete all unnecessary
files and rerun LBR.

If the device is write-protected, the wuser should write-enable
the device, and reenter the command line.

If the hardware has failed, the user can swap devices and reenter
the command 1line or wait until the device is repaired and rerun
LBR.

LBR -- ILLEGAL SWITCH
command line
Description

The user specified a non-LBR switch or a 1legal switch in an
invalid context.

Suggested User Action

Reenter the command line with the correct switch specification.

7-29

LIBRARIAN UTILITY PROGRAM (LBR)
LBR —-- INSUFFICIENT DYNAMIC MEMORY TO CONTINUE
Description
The partition in which LBR is running is too small.

Suggested User Action

Remove the task (LBR), install it in a larger partition, and
reenter the command line.

LBR —-- INVALID LIBRARY TYPE SPECIFIED
Description
The user specified an illegal library type in a CREATE or DEFAULT
command . The file types OBJ and MAC are the only valid

specifications. See Sections 7.5.2 and 7.5.4.

Suggested User Action

Reenter the command line with OBJ or MAC specified.

LBR ~~ COMMAND I/O ERROR
Description
Cne of the following conditions may exist:

1. A problem exists on the physical device (e.g., not cycled
up) .

2. The file is corrupted or the format 1is incorrect (e.g.,
record length exceeds 132 bytes).

Suggested User Action

1. Determine which of the above conditions exists.
2. Rectify the condition.
3. Reenter the command line.
LBR -~ INDIRECT FILE OPEN FAILURE
command line
Description

The requested indirect command file does not exist as specified.
One of the following conditions may exist:

1. The user directory area is protected against access.

2. A problem exists on the physical device (e.g., device cycled
down) .

3. The volume is not mounted.

4, The specified file directory does not exist.

7~-30

5.
6.

LIBRARIAN UTILITY PROGRAM (LBR)
The file does not exist as specified.

Insufficient dynamic memory in Executive.

Suggested User Action

1.
2.

3.

Determine which of the above conditions exists.
Rectify the condition.

Reenter the command line.

LBR -- INDIRECT COMMAND SYNTAX ERROR
command line

Description

The user specified an indirect file in a format that does not
conform to syntax rules.

Suggested User Action

Reenter the command line with the correct syntax.

LBR ~-- BAD LIBRARY HEADER

Description

Either the file is not a library file or the file is corrupted.

Suggested User Action

1.

2.

If the file is not a library file, reenter the command line
with a proper library file specified.

If the file is a proper library file, the user should run the
file structure verification utility (VFY) against the volume
to determine if it is corrupted (see Chapter 8).

If the volume is corrupted, it must be reconstructed before
it can be used.

LBR —— INDIRECT FILE DEPTH EXCEEDED
command line

Description

An attempt has been made to exceed one level of indirect command
files.

Suggested User Action

Rerun the job with only one level of indirect command file.

7-31

LIBRARIAN UTILITY PROGRAM (LBR)
LBR -- I/0 ERROR ON INPUT FILE filename
Description

A read error has occurred on an input file. One of the following
conditions may exist:

1. A problem exists on the physical device (e.g., not cycled
up) .

2. The file is corrupted or the format is wrong (record 1length
exceeds 132 bytes).

Suggested User Action

1. Determine which of the above conditions exists.
2. Rectify the condition.

3. Reenter the command line.

LBR -- OPEN FAILURE ON FILE filename
Description

The file system, while attempting to open a file, has detected an
error. One of the following conditions may exist:

1. The user directory area is protected against an open.

2. A problem exists on the physical device (e.g., device cycled
down) .

3. The volume is not mounted.
4. The specified file directory does not exist.
5. The file does not exist as specified.

6. Insufficient contiguous space to allocate the library file
(compress and create only).

7. Insufficient dynamic memory in Executive.

Suggested User Action

1. Determine which of the above conditions exists.
2. Rectify the condition.

3. Reenter the command line.

LBR —-- INVALID EPT AND/OR MNT SPECIFICATION
Description

The user, when specifying a /CR or /CO command, entered an EPT or
MNT value which was greater than 4096 (10).

Suggested User Action

Reenter the command line with the correct value specified.

7-32

LIBRARIAN UTILITY PROGRAM (LBR)
LBR -~ POSITIONING ERROR ON filename
Description
The device is write-locked.

Suggested User Action

If the device is write~lccked, write enable it and reenter the
command line.

LBR —- EPT OR MNT EXCEEDED IN filename
Description

The EPT or MNT table limit has been reached during the execution
of an Insert or Replace command.

Suggested User Action

1. Copy the library, increasing the table space via the COMPRESS
command .

2. Reenter the command line.

LBR -- DUPLICATE MODULE NAME "name" IN filename
LCescription
An attempt has been made to insert (without replacement) a module
into a library that already contains a module with the specified

name.

Suggested User Action

1. Determine if the specified input file is the correct file.

2. If the input file is correct, the user must decide whether to
delete the duplicate module from the library file and insert
the new one, or replace the duplicate module by rerunning LBR
with the /RP switch appended to the input file specifier.

LBR -- GET TIME FAILED

Description

This error occurs when LBR attempts to execute a Get Time

Parameters directive and fails. The error is caused by a system

malfunction.

Suggested User Action

Reenter the command line. If the problem persists, consult
software support representative.

LIBRARIAN UTILITY PROGRAM (LBR)
LBR -- NO MODULE NAMED "module"
Description

The user has attempted to delete a module that 1is not
specified library file.

Suggested User Action

1. Determine if the module name is misspelled or 1if the

library file is specified.

in the

wrong

2. Reenter the command 1line with the module name «correctly

specified.

LBR -- INVALID NAME -- "name"

Description

A module name or entry point that contains a non-Radix-50

character has been specified for deletion.

NOTE

Radix-50 characters consist of the letters A through

Z,

the numbers 0 through 9, and the special characters

period (.) and dollar sign ($).

Suggested User Action

Reenter the command line with a valid name.

LBR -- LIBRARY FILE SPECIFICATION MISSING
Description

The user has entered a command without specifying the
file.

Suggested User Action

Reenter the command line with the library file specified.

LBR -- ILLEGAL SWITCH COMBINATION

Description

library

The user has specified switches that cannot be executed in

combination. See Section 7.6.

Suggested User Action

Reenter the command line, specifying the switches in the
sequence.

proper

LIBRARIAN UTILITY PROGRAM (LBR)
LBR -- NO ENTRY POINT NAMED "name"

Description

The user has attempted to delete an entry point that 1is not in

the specified library file.

Suggested User Action

1. Determine if the entry point is misspelled or if the wrong
library file is specified.

2. Reenter the command 1line with the -entry point correctly
specified.

LBR -~ DUPLICATE ENTRY POINT NAME "name" IN filename

Description

An attempt has been made to insert a module into a
when both contain an identically-named entry point.

Suggested User Action

library file

1. Determine if the specified input file is the correct file.
If not, reenter the command 1line, specifying the correct
input file.

2. If the input file is the correct file, the wuser may delete

the duplicate entry point from the library and rerun.

LBR

TCC MANY OUTPUT

Description

The user has specified more than two output files;
following assumptions:

LBR makes the

1. The first output file specified is the output library file.
2. The second output file specified is the listing file.
3. The third through n files specified to the left of the

sign are ignored.

Suggested User Action

No action is required.
were not specified.

LBR -- EXACTLY ONE INPUT FILE MUST APPEAR WITH./CO
Description

The user has specified no file or more
file in the /CO command.

than one 1input

equal

LBR continues as though the extra file(s)

library

LIBRARIAN UTILITY PROGRAM (LBR)

Suggested User Action

Reenter the command line with only one input file specified.

LBR -~ FATAL COMPRESS ERROR
Description

The user's input library file is corrupted or is not a library
file.

Suggested User Action

No recovery 1s possible. The file in gquestion must be
reconstructed.

LBR —-- EPT OR MNT SPACE EXCEEDED IN COMPRESS
Description
The user has specified an EPT or MNT table size for the output
library file that is not large enough to contain the EPT or MNT

entries used in the input library file.

Suggested User Action

Reenter the command line with a larger EPT or MNT table size
specified.
LBR -- ERROR IN LIBRARY TABLES, FILE filename
Description
The library file is corrupted or is not a library file.

Suggested User Action

If the file is corrupted, no recovery is possible; the file must
be reconstructed.

If the file is not a library file, the user should reenter the
command line with the correct library file specified.

LBR —-- INVALID FORMAT, INPUT FILE filename
Description
The format of the specified input file is not the standard format
for a macro source or object file, or the input file is

corrupted.

Suggested User Action

Reenter the command line with the correct input file specified.

7-36

LIBRARIAN UTILITY PROGRAM (LBR)
LBR -- OPEN FAILURE ON LBR WORK FILE
Description
The file system, while attempting to open the LBR work file, has
detected an error.
NOTE

The LBR work file is created on the volume from which LBR

was installed.
One of the following conditions may exist:
1. The volume is full.
2. The device is write-protected.
3. A problem exists with the physical device.
4. Insufficient dynamic memory in Executive.

Suggested User Action

1. Determine which of the above conditions exists.
2. Rectify the condition.

3. Reenter the command line.

BR WORK FILE

[l

LBR -- MARK FOR DELETE FAILURE ON
Description
When LBR begins processing commands, it automatically creates a
work file and marks it for delete. For some reason, this marking
for delete failed.

The work file constitutes a lost file, because it does not appear
in any file directory.

Suggested User Action

The file may be deleted by running the file structure
verification utility (VFY) (see Chapter 8).

LBR ~-- ILLEGAL FILENAME
command line
Description
The user has entered one of the following:
1. A file specifier which contains a wild card.

2. A file specifier which contains neither a filename nor file
type.

7-37

LIBRARIAN UTILITY PROGRAM (LBR)

Suggested User Action

Reenter the command line correctly.

LBR ~- ILLEGAL DEVICE/VOLUME
command line

Description

The user has entered a device specifier that does not conform to
syntax rules.

NOTE

A device specifier consists of 2 ASCII characters,
followed by one or two optional octal digits.

Suggested User Action

Reenter the command 1line with the correct device syntax
specified.

LBR -- ILLEGAL DIRECTORY
command line
Description

The user has entered a UIC that does not conform to syntax rules.

NOTE

UIC syntax consists of a left square
bracket, followed by one to three octal
digits, a comma, one to three octal
digits, and terminated by a right square
bracket.

Suggested User Action

Reenter the command line with the correct UIC syntax.

LBR -- WORK FILE I/O ERROR
Description

A write error has occurred on the LBR work file. OCne of the
following conditions may exist:

1. The volume is full.
2. The device is write-protected.

3. The hardware has failed.

7-38

LIBRARIAN UTILITY PROGRAM (LBR)

Suggested User Action

If the volume is full, the user should delete all unnecessary
files and rerun.

If the device is write-protected, the user should write enable
the device, and reenter the command line.

If the hardware has failed, the user can swap devices and retry
the command, or wait until the device is repaired and rerun LBR.
LBR —- VIRTUAL STORAGE REQUIREMENTS EXCEED 65536 WORDS

Description

This error may occur with maximum size 1libraries in conjuction
with a single command line which logically deletes a large number
of modules and entry points, and continues to replace them with
an equally large number of modules and entry points having highly

dissimilar names.

Normally, this message indicates some sort of internal system
error.

Suggested User Action

he complicated command ne into

Rerun the job, but divide ¢t iR
lines which do the same operations.

v
several smaller command

CHAPTER 8

FILE STRUCTURE VERIFICATION UTILITY (VFY)

8.1 INTRODUCTION TO VFY

The File Structure Verification Utility (VFY) program provides:

1.

The ability to check the readability and validity of a
file-structured volume.

The ability to print out the number of available blocks on a
file-structured volume .(/FRee).

The ability to search for files which are in the index file,
but not in any directory, i.e., files which are "lost" in the
sense that they cannot be accessed by filename (/LOst) (see
RSX-11 1I/0 Operations Reference Manual for a description of
the index file).

The ability to list all files in the index file, showing the
file ID, filename, and owner (/LIst).

The ability to mark as "used" all the blocks that appear to
be available, which are actually allocated to a file
(/UPdate) .

The ability to rebuild the storage allocation bit map so that
it properly reflects the information in the index file
(/REbuild).

The ability to restore files that are marked for delete
(/DElete) .

The ability to perform a read check on every allocated block
on a file-structured volume (/RC).

NOTES

1. There should be no other activity on the volume;
in particular, activities which create new files,
extend existing files, or delete files while VFY
is running.

2., VFY must not be aborted while a /UP, /RE or /DE
command is being processed. Aborting VFY while it
is in the process of modifying the storage
allocation or index files may seriously endanger
the integrity of that volume.

8-1

FILE STRUCTURE VERIFICATION UTILITY (VFY)

8.2 INITIATING VFY

All RSX-11M utility programs can be initiated in several ways. These
methods are described in Section 1.2. The methods for VFY are:

SVFY_J

>VFY command string_/

>RUN ...VFY./

>RUN ...VFY/UIC=[group,member] _/

>RUN $VFY_/

>RUN $VFY/UIC=[group,member]/
VFY normally operates in a read-only mode, assuming that the scratch
file, 1if required, 1is on another device. VFY requires write-access
under the following conditions:

1. If the /UP or /RE switch is used, VFY requires write-access
to the storage allocation map ([0,0]BITMAP.SYS).

2, 1If the /DE switch is specified, VFY requires write-access to
the index file ([0,0]INDEXF.SYS).

3. 1If the /LO switch is specified and lost files are found, VFY
requires write-access to the [1,3] user file directory.

VFY may be run under any UIC if only read access 1is required. If
write access is required, VFY must run under a system UIC.

8.3 VFY COMMAND STRING

All commands to VFY are 1issued by entering a VFY command string
through the initiating terminal. The VFY command string is formatted
as follows:

listfile,scratchdev=indev/switch

or
indev/switch (This is a short form of TI:,indev=indev/switch)
where:
listfile specifies the output listing file in the following
format:
dev: [uic]filename.typ;ver
scratchdev specifies the device on which the scratch file

produced by VFY is to be written. This parameter
is in the following format:

dev:

8-2

indev

/switch

FILE STRUCTURE VERIFICATION UTILITY (VFY)

The scratch file 1is wused by VFY during the
verification scan and during the lost file scan.
It is created but is not entered in a directory.
Therefore, it 1is invisible to the wuser. The
scratch file is automatically deleted upon
termination of the VFY program.

NOTE

If the user has reason to suspect that his
system disk is of guestionable integrity,
the scratch file should be forced onto
another device by utilizing this
parameter.

It is recommended that the scratch file

always be assigned to another volume. The

scratch file is not used for the /FREE and
/LIST commands.

specifies the volume to be verified. This
parameter is in the following format:

dev:

specifies the function to be performed. This
parameter is in the following format:

/swW
The VFY command switches are described in detail

in Section 8.4. If no switch is specified, the
VFY program performs a validity check.

For a complete description of command strings, see Section 1.3.

Q
o

Default file specifiers are listed in Table 8-1.

FILE STRUCTURE VERIFICATION UTILITY (VFY)

Table 8-1
VFY Default File Specifiers
Element Default Value
dev: Output listing device
TI:
Scratch file device
SYO0:
Volume to be verified
SYO0:
[uic] The UIC under which VFY is currently running.
filename No default - must be specified.
.typ No default - must be specified.
;ver Latest version plus 1.

8.4 VFY COMMAND SWITCHES

VFY commands are specified in the form of switches appended to the VFY
Command switches and functions are summarized in

command string.

Table 8-2.
Table 8-2
VFY Functions and Switches

Function Switch Purpose

Validity Check Null Check readability and validity
of the volume mounted on
specified device.

Delete /DE Reset marked-for-delete
indicators.

Update /UP Allocate blocks which appear
to be available but have been
allocated to a file.

FILE STRUCTURE VERIFICATION UTILITY (VFY)

Table 8-2 (Cont.)
VFY Functions and Switches

Rebuild /RE Recover blocks which appear to
be allocated but are not
contained in a file.

Free /FR Print out the available space
on a volume.

Lost /LO Scan entire file structure
looking for files which are

not in any directory.

List /LI List entire index file by file
identification.

Read Check /RC Check entire volume to see if
every block of every file can
be read.

8.4.1 Validity Check

Validity Check (no command switch) checks the readability and validity
of the volume mounted on the specified device. This feature entails
reading all the file headers in the index file and checking that alil
the disk blocks referenced in the map area of each file header are
marked as allocated in the bit map (i.e., allocated to that file).

Rules for running the Validity Check:

B

1. The volume to be <checked must be mounted as a Files-11
structured volume, as follows:

>MOU dev:_/
2. The volume may be write-protected if:
a. It is not the system volume; or

b. The required scratch file 1is directed to another
file-structured volume.

When the validity check is completed, a 1listing of the results is
printed. This output is described in Section 8.4.1.1.

FILE STRUCTURE VERIFICATION UTILITY (VFY)

8.4.1.1 File Error Reporting - After the volume has been verified,
and the normal output messages have been printed, error conditions are
reported. All errors for a given file are preceded by a file
identification 1line that identifies the file in error. This line is
formatted as follows:

FILE ID nn,nn filename.type;version OWNER [g,m]

where:
nn,nn is the unique file identification number assigned
to the file by the system at file-creation time.
filename is the user filename.
.type is the file type (i.e., OBJ for object file).
;version is the version number of the file.
[g,m] is the UIC which owns the file.

This file identification line is followed by one or more of the
following messages:

I/0 ERROR READING FILE HEADER-ERROR CODE -32
Failed to read the file header for the specified file ID.
BAD FILE HEADER

Software checks on the validity of the file header indicate
that the header has been corrupted.

MULTIPLE ALLOCATION n,n

The specified (double precision) 1logical block number is
allocated to more than one file. 1If this error occurs, a
second pass is automatically taken which will indicate all
files that share each multipally allocated block. The
second pass is taken after all file headers have been
checked (see Section 8.4.1.3).

BLOCK IS MARKED FREE n,n

The specified logical block number 1is allocated to the
indicated file but is not marked as allocated in the storage
allocation map. (see Section 8.4.1.4).

BAD BLOCK NUMBER n,n

The specified block number was found in the header for this
file but 1is 1illegal for the device (out of range). This
indicates a corrupted file header.

FILE IS MARKED FOR DELETE

This indicates that a system failure occurred while the
specified file was being deleted. The deletion was not
completed and the file header still exists (see Section
8.4.1.2).

FILE STRUCTURE VERIFICATION UTILITY (VFY)
HEADER MAP OUT OF SYNC

This indicates an error in the header map area which also
indicates a corrupted file header.

The last error message for the file is followed by a summary line for
that file, as follows:

SUMMARY: MULT=nn, FREE=nn, BAD=nn.

where:
MULT is the number of multiple block allocations.
FREE is the number of blocks marked free that should
have been allocated.
BAD is the number of bad retrieval pointers 1in the

file header.

NOTE

If the output for VFY is directed to a
terminal device, and the user does not
wish to see all the error messages for a
given file entering CTRL/O terminates
the 1listing of all further error
messages for that particular file, i.e.,
all messages but the summary line.

8.4.1.2 Files Marked-for-Delete - If a file has been marked-
for-delete but the deletion process was not completed, the user has
two options: the file can be restored, if still required, and Iits
consistency checked, or the deletion process can be completed to
recover the lost space. These operations are described below.

° Restoring a File

To restore a file marked-for-delete, the disk volume must be
mounted wusing the MCR MOUNT command with the /UNL switch
specified. For example:

>MOU DKO:/UNL/

Then, run VFY specifying the /DE switch to reset the
marked-for-delete indicators in file headers. Once the
delete indicator has been reset, run VFY specifying the /LO
switch to scan the entire file structure.

NOTE

The deletion process may have proceeded
partially and a portion at the end of
the file may be missing. This condition
can be detected by a directory listing
obtained using the PIP /FU switch (see
Section 2.4.8).

FILE STRUCTURE VERIFICATION UTILITY (VFY)

° Deleting a File

Files that are marked-for-delete can be deleted directly
with PIP, once their unigue File ID has been obtained via a
validity check. The File ID appears as the first entry in
the file identification 1line which precedes each list of
file errors (see Section 8.4.1.1). The following example
illustrates how the File 1ID is used with PIP to delete a
file:

Example:
>PIP /FI:12:20/DE_/

In this example, the file with File ID 12,20 is deleted from
the system device. PIP issues the following error message

“PIP -- FAILED TO MARK FILE FOR DELETE-NO SUCH FILE"

since the file system denies the existence of files already
marked-for-delete; however, the file is completely deleted.

Once files have been restored or deleted, run VFY with the /RE switch
specified to assure the consistency of the volume's storage allocation
map.

8.4.1.3 Deletion Of Multiply Allocated Blocks - If the file
structure contains multiply allocated blocks, it is necessary to
delete files until there are no more such blocks. An automatic rescan
of the volume identifies which files share which blocks. This rescan
lists the first as well as subsequent files containing the multiply
allocated blocks. Once the user has this information, he must then
determine which, if any, of the files can be saved and delete the
rest, using the Delete function provided by the PIP utility.

NOTE

Extreme caution should be taken in
deleting multiply allocated files.
After the files have been deleted, VFY
should be run once again to ensure that
all of the multiply allocated files
have been deleted.

8.4.1.4 Elimination Of Free Blocks - Once there are no multiply
allocated blocks, the next concern is the elimination of blocks that
are marked FREE in the storage allocation map, but which are actually
allocated to a file. To cause these blocks to be reallocated in the
storage allocation map, the user must rerun the validity check specify
the /UP switch. This allocates all blocks that should have

been marked as allocated. See Section 8.4.3 for a description of the
/UP switch.

FILE STRUCTURE VERIFICATION UTILITY (VFY)
NOTE

Once there are no multiply allocated
blocks and no blocks marked free that
are actually in use, the file structure
is safe for writing new files and
extending existing files. However, if
there were such errors, there may be
files which have had data blocks
overwritten as the result of multiple

allocation.

8.4.1.5 Recovering Lost Blocks - The user can determine whether any
blocks have been lost on a file-structured volume by examining the
last two lines of output from the validity check. The last two lines
of output give the free space on the volume. The first line of the
two tells how much room is available according to the index file
(i.e., the number of blocks that are not in use by any file in the
index file). The last line specifies how much room 1is available
according to the storage allocation map. Assuming there are no other
errors, these two figures should agree. If the index file indicates
that more blocks are free than the storage allocation map, then those
blocks are "lost" in the sense that they appear to be allocated, but
no file contains them. Lost blocks may be recovered by rerunning the
validity check specifying the /RE switch. See Section 8.4.4 for a
description of the /RE switch.

8.4.2 DELETE Switch (/DE)

FUNCTION
The DELETE switch allows the wuser to reset the marked-for-delete
indicators in the file header area of those files which are marked for
deletion, but which were never actually deleted.
FORMAT

listfile,scratchdev=indev/DE

or

indev/DE

FILE STRUCTURE VERIFICATION UTILITY (VFY)
NOTES

1. The volume must be mounted with the
/UNL switch.

2. VFY must be running under a system
uIC.

8.4.3 UPDATE Switch (/UP)

FUNCTION

The UPDATE switch allows the user to allocate all blocks that appear
to be available but are actually allocated to a file.

FORMAT
listfile,scratchdev=indev/UP
or

indev/UP

NOTES

1. Files with multiply allocated
blocks must be deleted from the file
structure before the update can be
run.

2. The volume being updated must be
write-enabled.

3. VFY must be running under a system
UIC.

4. The scratch file should be on
another volume. If this is
impossible, the volume must be
dismounted immediately after VFY
terminates. (Failure to do this may
result in partial wupdating of the
storage allocation map.) Then the
volume should be mounted again, and
the scratch file must be deleted
manually. VFY issues a detailed
message in this case specifying the
name of the scratch file to be
deleted.

The message is:

VFY -- TO COMPLETE THE STORAGE MAP
UPDATE DISMOUNT THE VOLUME
IMMEDIATELY. THEN MOUNT IT
AND DELETE THE FOLLOWING
FILE: [g,m] filespec

8-10

FILE STRUCTURE VERIFICATION UTILITY (VFY)

where:
[g,m] is the UIC.
filespec is the name of
the file to be
deleted.

8.4.4 REBUILD Switch (/RE)

FUNCTION

The REBUILD switch allows the user to recover blocks that are lost in
the sense that they appear to be allocated, but no file contains them.

FORMAT
listfile,scratchdev=indev/RE
or

indev/RE

NOTES

1. Multiply allocated blocks must be
removed (deleted) from the file
structure before the rebuild can be

rian
L Uile

2. The volume being updated must be
write-enabled.

3. VFY must be running under a system
UIC.

4. The scratch file should be on
another volume. 1f this is
impossible, the volume must be
dismounted immediately after VFY
terminates. (Failure to do this may
result in partial updating of the
storage allocation map.) Then the
volume should be mounted again, and
the scratch file must be deleted
manually. VFY 1issues a detailed
message in this case, specifying the
name of the scratch file to be
deleted.

8-11

FILE STRUCTURE VERIFICATION UTILITY (VFY)

8.4.5 FREE Switch (/FR)

FUNCTION

The FREE switch provides the user with the ‘ability to print out the
available space on a specified volume.

FORMAT
listfile=indev/FR
or
indev/FR
The output from the /FR command is shown below:

dev: HAS nnnn. BLOCKS FREE, nnnn. BLOCKS USED OUT OF nnnn.

8.4.6 LOST Switch (/LO)

FUNCTION
The LOST switch provides the facility to scan the entire file
structure 1looking for files which are not in any directory and, thus,
are lost in the sense that they cannot be referenced by filename. A
list of the files is produced, and if the "lost file directory" [1,3]
exists on that volume, all the files will be entered 1in that
directory.
FORMAT

listfile,scratchdev=indev/LO

or

indev/LO

8.4.7 LIST Switch (/LI)

FUNCTION
The LIST switch provides the facility to list the entire index file by
file 1identification. The output for each file specifies the file
number, file sequence number, filename, and owner. A typical index
file listing is illustrated in Figure 8-1.
FORMAT

listfile,scratchdev=indev/LI

or

indev/LI

8-12

FILE STRUCTURE VERIFICATION UTILITY (VFY)

FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE
FILE

ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID

VFY>DK:/LI_/
LISTING

OF INDEX ON DKO:

000001,000001
0006002,000002
000003,000003
000004,000004
000005,000005
000006,000006
000007,000007
000010,000010
000011,000011
000012,000012
000013,000036
000014,000037

INDEXF.SYS;1
BITMAP.SYS;1
BADBLK.SYS;1
000000.DIR;1
CORIMG.SYS;1
001001.DIR;1
001002.DIR;1
EXEMC.MLB;1

RSXMAC.SML;1
NODES.TBL;1

QIOSYM.MSG; 311

F4PCOM.MSG; 1

OWNER [1,1]

AT r 11
OWNER [1,1]

OWNER [1,1]
OWNER [1,1]
OWNER [1,1]
OWNER [1,1]
OWNER [1,2]
OWNER [1,1]
OWNER [1,1]
OWNER [1,1]
OWNER [1,2]
OWNER [1,2]

8.4.8

Figure 8-1
VFY Listing Sample Using the /LI Switch

READ CHECK Switch (/RC)

FUNCTION

The READ CHECK switch provides the facility to check that every

of every file on a specified volume can be read.

FORMAT

listfile=indev/RC[:n]

nr
(o2 &

indev/RC[:

n]

NOTE

block

Since the READ CHECK is a read-only operation, the volume

can be write-protected.

The optional parameter
of file blocks to be read at a time.

number

The dynamic memory available may be increased by installing VFY
partition.
an 8K partition, and four blocks are added for each 1K increment.

larger

For the fastest possible read check, the maximum block
is encountered,

be used.

Whenever an

portion-in-error
block(s) cannot be read.

[:n]

is the blocking factor which indicates the

The default value is the
maximum number of blocks in dynamic memory available to VFY.

in a

Five blocks are available when VFY is installed in

error
is reread

individually

determine

factor
each Dblock

should
of the
which data

When an error is detected, a file identification line is listed in the
following format:

8-13

FILE STRUCTURE VERIFICATION UTILITY (VFY)
FILE ID nn,nn filename.typ;ver. blocks used/blocks allocated

Following this line, an error message is listed. 1If a blocking factor
other than 1 is in use, an error messadge in the following form will be
issued:

ERROR STARTING AT VBN nl,n2 LBN nl,n2 - ERROR CODE -err

Following the first error message, there should be one or more error
messages indicating the exact block(s) in error. The second error
message line(s) will be in the following form:

ERROR AT VBN nl,n2 LBN nl,n2 - ERROR CODE =-err

If an "ERROR STARTING AT" line is displayed without one or more "ERROR
AT" 1lines, a multiblock read operation on the selected device has
failed, but the data blocks appear to be individually readable.

NOTES

1. 1If the VBN of the wunreadable block
listed in the "ERROR AT" line is
beyond the block-used-count, the
data portion of the file 1is all
right.

2. The negative number printed after
the ERROR CODE message 1is -4 to
indicate a device parity error.
Other error codes are contained in
Appendix I of the RSX-11 1/0
Operations Reference Manual.

8.5 VFY ERROR MESSAGES
VFY -- COMMAND SYNTAX ERROR
Description
The command entered does not conform to command syntax rules.

Suggested User Action

Reenter the command line with the correct syntax specified.

VFY -- FAILED TO ALLOCATE SPACE FOR TEMP FILE
Description
The volume specified for the temporary scratch file is full.

Suggested User Action

Use PIP to delete all unnecessary files and rerun VFY.

FILE STRUCTURE VERIFICATION UTILITY (VFY)
VFY -- FAILED TO ATTACH DEVICE
or
VFY -- FAILED TO DETACH DEVICE
or
VFY -- ILLEGAL DEVICE
Description
The file specifier entered contains an illegal device.

Suggested User Action

Reenter the command line with the correct device specified.

VFY -- ILLEGAL SWITCH
Description

The switch specified is not a valid VFY switch or a valid switch
is used illegally.

Suggested User Action

Reenter the command line with the correct switch specified.

VFY -- I/0 ERROR ON INPUT FILE
or
VFY -- I/0 ERROR ON OUTPUT FILE
Description
One of the following conditions may exist:
1. The device is not on-line.
2. The device is not mounted.

3. The hardware has failed.

Suggested User Action

1. Determine which of the above conditions exists.
2. Rectify the condition.

3. Reenter the command line.

8-15

FILE STRUCTURE VERIFICATION UTILITY (VFY)
VFY -- NO DYNAMIC MEMORY AVAILABLE - PARTITION TOO SMALL
Description
VFY does not have enough buffer space to run.

Suggested User Action

Run VFY in a larger partition (8K minimum).

VFY -- OPEN FAILURE ON BIT MAP
or

VFY -- OPEN FAILURE ON INDEX FILE

or

VFY -~ OPEN FAILURE ON LISTING FILE
or

VFY -~ OPEN FAILURE ON TEMPORARY FILE

Description

One of the following conditions may exist:
1. VFY is not running under a system UIC, but should be.
2. The named file does not exist in specified directory.
3. The volume is not mounted.
4. The specified file directory does not exist.

Suggested User Action

1. Determine which of the above conditions exists.
2. Rectify the condition.

3. Reenter the command line.

8.6 VFY ERROR CODES

If VFY cannot access the message file, errors are reported in the
following format:

VFY -- ERROR CODE nn.
where:
nn. 1is one of the error codes contained in Table 8-3.

Refer to Section 8.5 for error descriptions and suggested user
actions.

8-16

FILE STRUCTURE VERIFICATION UTILITY (VFY)

Table 8-3
VFY Error Codes
ERROR
CODES VFY ERROR MESSAGE 1IS:
1. ILLEGAL DEVICE
2. OPEN FAILURE ON BIT MAP
3. OPEN FAILURE ON TEMPORARY FILE
4. FAILED TO ALLOCATE SPACE FOR TEMP FILE
5. FAILED TO DETACH DEVICE
6. FAILED TO ATTACH DEVICE
7. COMMAND SYNTAX ERROR
8. I/0 ERROR ON INPUT FILE
9. I/0 ERROR ON OUTPUT FILE
10. ILLEGAL SWITCH
11. OPEN FAILURE ON LISTING FILE
12. OPEN FAILURE ON INDEX FILE
13. NO DYNAMIC MEMORY AVAILABLE -~ PARTITION TOO SMALL

8-17

A.1 INTRODUCTION

This appendix presents a summary of the commands
utilities
sections of this appendix
that utility.

by the RSX-11M
numbered
chapter

A.2 both

discussing
deal with PIP.

Commands
of this
chapters.

appendix,

regardless

PIP COMMAND SUMMARY

APPENDIX A

COMMANDS AND SWITCHES

described in t

of

APPEND

outfile({/FO]=infile-1
[,infile~2,...,infile~n] /AP[/FO]
where /FO is File Owner

COPY AND MERGE

outfile[/switch]l=infile~1

[/switch]
/switch=BL:n[.]
(o]0]
-CO

FO
NV
SU

DEFAULT

[,infile-2,...,infile-n]

Block allocated.

Contiguous output.

Non-contiguous
output.

File Owner.

New Version.

Supersede.

dev: [group,member] /DF

DELETE

infile-1{,infile-2,...,infile~n] /DE

corresponds,
For example, Chapter 2 and Section

and/or switches used
his manual. Each of the
in number, to the

+ 3
Tir

NrAarma an v 1
vupens an eXxi
(outfile)
the input

onto the end

g file
and appends
file(s)
of it.

Creates
file on
another

a copy of a
the same or

device.

See Table
complete
of these

2-3 for a
description
switches.

Changes the defa

device and/or UIC.

Deletes files.

and switches are presented alphabetically within the sections
their presentation in the various

ult

COMMANDS AND SWITCHES

ENTER
outfile=infile-1 Enters a synonym for
[,infile~2,...,infile-n] /JEN[/NV] file in a directory
where /NV is New Version. with an option to force
the version number of
outfile" tc one greater
than the 1latest version
for the file.
FREE
dev:/FR Prints out the available
space on a volume.
IDENTIFY
/1D Causes the version of PIP
currently in use to be
displayed on the
terminal.
LIST
[listfile]=infile-1[,...,infile-n] /LI
where [listfile] defaults to Lists one or more
TI: if not specified. directories with an
option to specify
Alternate Mode Switches directory listing
/BR Brief format. formats.
/FU[:n] Full format. For a complete descrip-
/TB Total blocks format. tion of these switches,
see Table 2-4.
PROTECT
infile-1/PR[/SY[:RWED] [/OW[:RWED]] Alters file protection.
[/GR[:RWED]] [/WO[:RWED]] [/FO] See Section 2.4.9 for
where SY is system access rights. a complete description of
OW is owner access rights. these switches.
GR is group access rights.
WO is world access rights.
RWED is read, write, extend,
delete privilege.
FO is File Owner subswitch.
PURGE

infile-1[,infile-2,...,infile-n]/PU[:n]
Deletes a specified range

of obsolete versions of a
file.

REMOVE
infile-1[,infile-2,...,infile-n]/RM Removes an entry from a
directory file.

COMMANDS AND SWITCHES

RENAME
outfile=infile-1 Changes the name of a
[,infile-2,...,infile~n] /RE file with an option
[/NV] to force the version

o - .. 3 [: (13
where NV is New Versicn. number of outfile to

one greater than the
latest version for the

Ar
W VoL

file.
SPOOL
infile-1[,infile-2,...,infile-n] Specifies a list of
/SP files to be printed.
UNLOCK
infile-1[,infile-2,...,infile-n] Unlocks a file which
/UN was locked as a result of
being improperly closed.
UPDATE
outfile=infile-1 Opens an existing
[,infile-2,...,infile-n] /UP[/FO] file(s) (infile) and
where FO is File Owner. writes it, from the

beginning, onto outfile.

A.3 FLX COMMAND SUMMARY

The FLX commands have the following format:

outfile=infile-1{,infile-2,...,infile-n] Performs file conver-
/switch sion between DOS-11,
RT-11 and Files-11

formats.
where switch = BL:n Indicates the number

of contiguous blocks
to be allocated to the

LiaiC o

BS:n Specifies the block
size for cassette tape
output.

co Indicates that the

output file 1is to be
contiguous.

DE Deletes files from a
DOS-11 or RT-11
volume.

DI Causes a directory

listing of DOS or RT
volumes; or DOS or
RSX cassette tape
volumes to be listed.

COMMANDS AND SWITCHES

DO Identifies the file as
a DOS-11 formatted
file.

FA:n Formatted ASCII.

FB:n Formatted binary.

FC Indicates that FORTRAN
carriage control
conventions are to be
used.

1D Reguests the <current

version number of FLX.

IM:n Image mode.

LI Same as DI.

NU:n Used with /ZE and /RT
switches to specify
the number of

directory blocks to
allocate.

RS Indicates that file is
a Files-11 formatted
file.

RT Indicates that file is
an RT-11 formatted
file.

SP Indicates that the

converted file 1is to
be spooled via the
print spooler.

UI Indicates that the
output file is to have
the same UIC as the
input file.

VE Verify after write
(for cassette only).

ZE Initializes DOS and RT
volumes and cassettes
for DOS or RSX files.

See Tables 3-2 and 3-3 for a complete description of these switches.

A.4

COMMANDS AND SWITCHES

DMP COMMAND SUMMARY

The DMP utility has one command.

outfile=infile/switch

where switch =

AS

BA:n:m

BL:n:m

BY

HD

ID

LB

MD{:n]

See Table 4~1 for a complete description of t

EDI COMMAND SUMMARY

ADD

A[DD] (string)

ADD AND PRINT
AP (string)

Dumps a file onto
outfile.
Data should be dumped

in ASCII mode.

Specifies a base block
address.

Specifies the first
and last logical
blocks to be dumped.

Data should be dumped
in byte octal format.
Includes the file
header in the data
dumped.

Causes the current
version of DMP to be
printed on the
listing.

Causes starting
(logical) block number
and a contiguous or

nhon-contiguous indica-

tion for the file to
be printed.
Controls line number

sequencing during a
memory image dump.

Add the text specified
by "string" to the end
of the current line.

Same as ADD, except
the new current line
is printed.

COMMANDS AND SWITCHES

BEGIN
B[EGIN]

BLOCK ON or OFF
BL[OCK] [ON] or

[OFF]

BOTTOM
BO[TTOM]

CHANGE
[n]C[HANGE] /string-1/string-2

CLOSE

CL[OSE] filespec

CLOSES

CLOSES

CLOSE AND DELETE
CDL filespec

Sets the current line
pointer to the top of
the block buffer or
input file.

Switch
modes.

text access

Sets the current 1line
pointer to the bottom
of block buffer or
input file.

Search for string-1 in
the current 1line and
replace it with the
text specified in
string-2. The integer
n allows the user to
repeat the command,
thus allowing string-2
to be substituted for
string-1l n times.

Transfer the remaining

lines in the block
buffer and the input
file into the output
file, then close both

the input file and the
output file.

Close secondary input
file and begin
selecting 1lines from
the input file.

Same as the CLOSE
command, except that
the input file is
deleted.

COMMANDS AND SWITCHES

CONCATENATION CHARACTER
CC character

CTRL/Z
+Z

DELETE
D[ELETE] [n] or [-n]

DELETE AND PRINT
DP [n] or [-n]

E

E[ND]

o

ERASE ,
ERASE [n]

EXIT
EX[IT]

EXIT AND DELETE
ED[X] filespec

FORM FEED
FF

Change command concat-
enation character to
the specified
character (default is
&) . .

Same as EXIT if 1in
Edit mode; otherwise,
it causes an immediate
exit of EDI.

Delete the current and
next n-1 lines, if n
is positive; delete n
lines preceding the
current line, but not
the current line, if n
is negative.

Same as DELETE, except
that the new current
line is printed out.

Same as the BOTTOM
command .

Erase the entire block
buffer, the current
line, and the next n
blocks.

Same as CLOSE command,
except that, when
files are closed, EDI
exits.

Exit from the editing
session, close the
output file, delete
the input file.

Insert form feed into
block buffer.

COMMANDS AND SWITCHES

FILE
FI[LE] filespec Transfer lines from
the 1input file to the
file specified by
filespec.

FIND
[n]F[IND] (string) Find the line starting
with "string" or, if n
is specified, the nth
line starting with
string".

INSERT
I[NSERT] (string) Insert "string" imme-
diately following the
current line. If
string" is null, EDI
enters Input mode.

KILL Terminate this editing
session; close input
and output files;
delete the output
file.

LINE CHANGE
[n]LC /string-1/string-2 Same as CHANGE, except
that all occurrences
of string-1 in the
current line are
changed to string-2.

LIST ON TERMINAL

LI[ST] Print on user terminal
all lines in block
buffer or all

remaining lines in
input file, starting
: with current line.
LIST ON PSEUDO-DEVICE

LP List the text in the
block buffer or input
file on the
pseudo-device CL:,
starting with the
current line.

LOCATE
[n]L{OCATE] string Search the block

buffer for "string"

or, if n is specified,
the nth occurrence of
string"”.

COMMANDS AND SWITCHES

MACRO
MA[CRO] x definition Define macro x to be
definition".
MACRO CALL
MC[ALL] Retrieve macros from

the latest version of
file MCALL;n.

MACRO EXECUTE
[n]Mx [a] Execute macro x for n
executions, passing it
the numeric argument
a.

MACRO IMMEDIATE
[n]<definition> Allows the user to
define and execute a
macro n times in one

step.
NEXT
N[EXT] [n] or [-n] Establish a new

current line + or - n
lines from the current
line.

NEXT PRINT
NP [n] or {-n] Same as Next command,
but the new current
line is printed.

OLC PAGE
OL[DPAGE] n Back up to page n.
OPENS
OP[ENS] filespec Open secondary input
file.
OQUTPUT ON or OFF
OU[TPUT] [ON] or [OFF] Turn output on or off.
OVERLAY
O[VERLAY] [n] Delete the current
line and the next n-1
lines, and enter Input
mode.
PAGE
PAG[E] [n] Enter block mode, if

not already 1in block
mode, and read page n
into the block buffer.

COMMANDS AND SWITCHES

PAGE FIND
[n]PF[IND] (string) Identical to FIND
command, except that
it searches successive
pages until the nth
occurrence of "string"
is found.

PAGE LOCATE
[n]PL[OCATE] (string) Same as LOCATE
command, except that
successive pages are
searched for the value
specified by "string".

PASTE
PA[STE] /string-l/string-2 Same as the LINE
CHANGE command, except
that all lines in the
remainder of the input
file or block buffer
are searched for
string-1. Wherever
found, string-1 is
replaced with
string-2.
PRINT
P[RINT] [n] Print the next line,
and the next n-1
lines, on the
terminal.
READ
REA[D] [n] Read the next n pages
into the block buffer.
RENEW
REN[EW] [n] Write the current
buffer and read in the
next. If n is
specified, repeat n-1
times.
RETYPE
R[ETYPE] (string) Replace the current
line with the text of
string". If "string"”
is null, the line is
deleted.
SAVE
SA[VE] [n] [filespec] Save the current line,

and the next n-1
lines, 1in the file
specified by filespec.

COMMANDS AND SWITCHES

SEARCH & CHANGE
SC /string-1/string-2

SELECT PRIMARY
SP

SELECT SECONDARY
SS

SIZE
SIZE n

TAB ON or OFF
TA[B] [ON] or [OFF]

TOP
T [OP]

TOP OF FILE
TOF

TYPE
TY[PE] [n]

UNSAVE

UNS [AVE] [filespec]

UPPER CASE ON or OFF
UC [ON] or [OFF]

Search for string-1,
in the block buffer or
input file starting

21 +h +h 3 g
with the line follow

ing the current 1line.
When string-1 is
found, replace all
occurrences in 1line
with string-2.

Select primary input

file.

Select secondary input
file.

Specify maximum number
of 1lines to be read
into the block buffer
on a single READ.

matic tabbing

Same as BEGIN command.

Return to the top of
the input file, in

block mode, and save
all pages previously
edited.

Same as PRINT command,
except that the
current line pointer
does not change.

Retrieve the lines
which were previously
saved on filespec and
insert them
immediately following
the current line.

Turn upper case
conversion on or off.

COMMANDS AND SWITCHES

VERIFY ON or OFF
V[ERIFY] [ON] or [OFF] Allows user to select
whether or not
locative and change
commands are to be
verified.

WI[RITE] Write the current
block to the output
file, and erase the

contents of the
buffer.
A.6 SLP COMMAND SUMMARY
The SLP utility has only one command.
outfile[,listfile/SP or/~-SP}=infile Perform batch-
[/switch] oriented editing to

create and maintain
source language files
on disk.

where switch = AU and -AU Enable and disable the
editing audit traiil,
which indicates the
changes made during
the most recent
editing session.

BF and -BF Enable and disable
blank fill when an
audit trail 1is being

produced.
DB and -DB Enable and disable
double-spaced listing.
and where SP and -SP Enable and disable the
spooling of 1listing
files to a file

structured volume.

See Table 6-2 for a complete description of these switches and Table
6-3 for a description of the SLP edit control characters.

COMMANDS AND SWITCHES

LBR COMMAND SUMMARY

COMPRESS
outfile/CO:size:ept:mnt:=infile

CREATE
outfile/CR:size:ept:mnt:type

DELETE
outfile/DE:module-1

DEFAULT
outfile/DF:type...

DELETE GLOBAL
outfile/DG:global-1
[:global-2:...:g9lobal~n]

INSERT
outfile[/IN]=infile-1
[,infile~2,...,infile~-n]

LIST
outfile[,listfile]/switch(es)
where /switch(es)= LI
LE
FU

Creates a new library

file and transfers
contents, but
physically deletes
logically deleted
records 1in the file
and puts all free
space at the end of

the file.

Allocates a contiguous
library file on a
direct access device.

Deletes library
modules and their
assocliated entry

points from a file.

Specifies default
library file type.
Deletes specified

library module entry
points from a file.

Inserts library
modules into a library
file.

Lists all modules in
the library file.

Lists all modules 1in
the 1library file and
all their entry
points.

Lists all modules 1in
the 1library file and
provides a full module
description including

size, date of
insertion, and
version.

COMMANDS AND SWITCHES

REPLACE
outfile/RP=infile-1 Inserts, and in cer-
[,infile-2,...,infile-n] tain cases, replaces
library modules in a
or library file.
outfile=infile~1[/RP]}
[,infile-2[/RP],...,infile-n[/RP]]
SPOOL
outfile,listfile/SP The listing file 1is
spooled out for
printing.
SELECTIVE SEARCH
outfile=infile-1/SS Sets selective search
[,infile-2[/SS} ;e attribute bit in
infile-n[/SS1] object module header.
SQUEEZE
outfile/SZ=infile-1 Reduces size of
[,infile~2,...,infile~n] macro sources.
or
outfile=infile~1/S%
[,infile-2[/S2],...,
infile-n[/SZ]]
VFY COMMAND SUMMARY
DELETE
listfile, scratchdev=indev/DE Resets the marked-for-
or indev/DE delete indicators in
the file header area
of those files marked
for deletion, but
which were never
actually deleted.
FREE
listfile=indev/FR Prints out the avail-
or indev/FR able space on a
volume.
LIST
listfile, scratchdev=indev/LI Lists the entire index
or indev/LI file by file

identification.

COMMANDS AND SWITCHES

LOST
listfile, scratchdev=indev/LO
or indev/LO

READ CHECK
listfile=indev/RC[:n]

or indev/RC[:n]

REBUILD
listfile, scratchdev=indev/RE
or indev/RE

UPDATE
listfile,scratchdev=indev/UP

or indev/UP

Scans the entire file
structure looking for
files that are not in
any directory.

Checks that every
block of every file on
specified volume can
be read.

Recovers blocks that
appear to be
allocated, but which
are not contained in
any file.

Allocates blocks that
appear to be
available, but which
are actually allocated
to a file.

APPENDIX B

LBR, EDI AND DMP EXAMPLES

B.1 SAMPLE LISTINGS FOR LBR LIST SWITCHES (OBJECT LIBRARY)

B.1l.1 List Module Names

LBR>MAC,LP: 4/
or
LBR>MAC,LP: /LI &/

DIRECTORY NF FILE MAC,NLR;1

ORJECT MODULF LIRRARY CREFATED RY: LBR VYU2yM
LAST INSERT OCCURRED 22=SEP=74 AT 11:51:5¢
MNT ENTRIES ALLOCATEN: 64; AVAILABLES: 29

FPT ENTRIES 3LLOCATEDS 6413 BAVAILARLES: 92
FILE SPACF AVATLABLE: M27%15 WURDS

ASGMT
ASSEM
CNDTL
CODHD
DATOR
ENBDS
ENDLN
ENDPS
EXPRS
FLOAT
GETLN
GMARG
INFIL
INTFL
INQFL
LAREL
LISTC
LSTNG
MACRD
MACRS
MCaLL
MLIBS
MSCDR
NDRCT
PROCS]
PRNOPC
PROSW
PST
READ
REPT
ROLHD
RSDAT
RSEXEC

B.

1.

2

R51INP
SECTR
SETDIR
SETNN
SETIMM
SETMYX
SPACE
STMNT
SYMBL
WORDR
WRITE

List Module Names and Full Module Information

LBI>MAC,LP: /FU_ /

or

LBR>MAC,LP:/LI/FU </

NIRECTOHY NF FILE MAC,0LR;1

0BJECT MODULE LIRKARY CREATEN RBY!

Lae

VXuavm

LAST INSERT OCCURRED 22=SEP=~7d aT 11:31:50

MNT ENTRIES AL OCATED?
FPT ENTRIES ALLOCATED:
FILE SPACE AVATLABLE:®

ASGMT
ASSEM
CNDTL
CODHD
DATDR
ENRDS
ENDLN
ENNDPS
FXPRS
FLOAT
GETLN
GMARG
INFIL
INTFL
INOFL
LABEL
LISTC
LSTNG
MACRO
MACRS
MCALL
MLIAS
MSCOR
NDRCT
PROCS]
PROPC
PROSW
PST
READ
REPT
ROLHD
RSDAT
RSFXEC
REUNP

SlZgtre26a
SI1Zg1RA749
SI1ZFenr727
SIZE:00923
S1Z2g102414a
S1ZE1@N248
S12e:prmB12
SIZE*n1p6Y
S1Zestm1211
SIZe:vma35
SIZE:unnb0
SIZE: 290
SIZE1nmv4y
SIZE32ad403
SIZE1A0960
SIZE:Q40¢
S1ZE:0P284
SIZE:AD2566
SIZE:n2v19
SIZEsw1bdu
SIZEsda264
SIZE:27A807
SIZE:ARBAS
S]ZEtARESE
S1ZFtnR216
SIZ2EtPABED
SI1Z2¢e:4R258
SIZe1nidn7
S1Zetnpaios
SIZE3AR473
SIZE12P6RD
SIZE124374
SI1Z2E:1uR074
SIZEsGALY7

643 AVAILABRLE?
b47; AVAILABLE?
ARBLS WORDS

INSERTEDS17=JUlL=74
TNSERTFD11=alIG=74

ITMSERTEDII{=JUL=74
INSERTED:17=JUL=74
INSERTED:17=JUL=74
INSERTED: 1 =AUG=74

INSERTED: 31 =JUL=74
TNSERTEDt17«JUL=74
INSERTEN:31=JUL=724
INSERTFN:17«JUL=74
INSERTEDt17=JUL=74
INSERTEDI17=JUL=74
INSERTFD19=5FP=d

INSERTED:31=JUL=74
INSERTEDIY=SFP=74

INSERTED:1=AUG=74

INSERTED?I17=JUL=74
INSERTEDt17=JUL=74
INSERTED17«TUL=74
INSERTEDI9=SEPw74

INSERTED:31=JUL=74
INSERTEDt3{=JUL=74
INSERTED I ~JUL =74
INSERTED:31=JUL=74
INSERTEDEI7=JUL=74
INSERTED!17=JUL=74
INSERTED:17=JUL=74
INSERTED!I7=JUL=74
INSERTEDt17=JUL=74
INSERTEN: 3t =JUL=74
INSERTFDt1=alIGm74

INSERTFNs17=JUlL~7¢
INSERTEDs I =alIM=74

INSERTFOe(7=0Ul=74

29

a2

IDFNT P2
IDENTSAEM
TOENT:04
IDENT P86
IDFENT 187
IDENTIUH
IDENT: 6
TOENT:@4
IDENT:P6
IDENT G2
TUENT DY
T0ENT ;P
IDENTSt2
TDENT3AY
IDENT:OY
IDENT:4
IDENT:Q4
IDENT Q7
IDENT:AL D
INDENTS@Q
IDENT Q]
TDENT 08
IDENT:@8
JIDENT ;2
IDENT:Q1
IDENT P2
IDENT:O3
IDENTSIR4
TOENTI®Y
IDFNT P
IDENT 25
TOENT: P8
INENTsI7M
IDENTIEY

B.

1.

3

SECTR SIZEte@551 INSERTED1{=AUG=74

SETOIR SIZE1A@126 INSERTED:17-JUL=74
SETDN SIZE:@@67¢ INSERTED:31.JUL-74
SETIMM SIZE:9P292 INSERTEDI17-JUL=74
SETMX SIZE:p@131 INSERTED117-JUL=74
SPACE SIZE10P4d49 INSERTEDN:22+SEP-74
STMNT SIZE:p315 INSERTED:17=JUL-74
SYMBL SIZE1uP732 INSERTED:17-JUL=74
WORDR SIZE:m@14] INSERTED:117-JUL=74
WRITE SIZE:@@1R9 TINSERTEDI17-JuL-74

List Module Names, Full Module Information

IDENTS 24
IDENT:R2
IDENT @6
IDENT:Y
TDENT:P4
TDENT @3
TDENT s34
IDFENT 02
IDENT @1

and Module Entry

Points (Global Symbols)

LBR>MAC,LP:/FU/LE_/
or
LBR>MAC,LP:/LI/FU/LE _ /

DIRECTNRY OF FILE MAC,OLR;1
ORJECT MODULE LIBRARY CREATED BY:

LBR VX@d2VM

LAST INSERT OCCURRED 22=SEP=74 AT 11151359

MNT ENTRTES 4L LUCATED:
EPT ENTRIES ALLUCATED:
FILE SPACE AVATLABLE!

64; AVAILARLE?:
643 AVAILABLE:
BWaALS WORDS

29
92

ww MODULESASGMT SIZE 127264 INSERTED:17=JUL=7d4 IDENT:R2
ASGMT ASGMTF

«r MODULEPASSEM SIZE1A2749 INSERTEDI|=AUG=74 IDENT1v5EM
ALLOC® ASSEM CLSALL EDRITS LCRITS MACPH XCTPA3 XCTPRG

«w MODULE:CNODTL SIZEna727 INSERTEDId1=JUL=74 IDENT:4
CNDRAS CNDTOP FNDC 1F IFF 1FT IFTF TIF

*+ MODULE:CQONHD SI7E:42923 INSERTED:17=JUL=74 IDENT:26
CPXSTL INSIZE ObJDMP OBJINI OBJLOC ORJPNT ORJSFC PCRENT
PCROLL PCRTRL RLDDMP RLDPNT STCONDE TSTRLD ZAPCPX

«* MODULESDATDR SIZE:n@414 INSERTEDI17=JUL=74 IDENT:Q7
BLKR IDENT RAD]YX RaDsA

v« MODULESENBDS SIZEtPPA248 INSERTEDI1~AUG=74 IDENT106

EDTBAS EDTTOP ENABL

we MODULESENDLN

ENDLIN ERRBTS

#+ MDDULESIENDPS

ENDPY ENDP2

#+ MODULE:EXPRS

ARSERR
RELTRM

ABRSFXP
RELTST

*+ MODULESIFLOAT

*+ MODULEIGETLN

FFCNT
GMARG

GETLIN
GMARGF

*v MODULESINFIL

CMLM2
OPENCH

CMLM3
OPNSRC
«s» MODULE:INIFL

SRCNAM SINIFL

#» MODULE®INOFL

LSTNAM DBJNAM

we MODULESLABEL

LABEL LABELF

»+ MODULEILISTC

LCTBAS LCTTOP

«v MODYLESLSTNG

CRLF
PUTKAL

LINPPG
PUTLIN

+x MODULE:IMACRD

ALTSAV ASCII
BASEDT RaSLCD
RASREG RASSaT

SIZE24812 INSERTED:31=JUL=74

ERRCNT LINBUF LINEND LSTAUF

SIZE1 31060 INSERTED:17=JUL=74

SIZEtW1211 INSERTEDI3{=JUL=74
ABSTRM ABSTST EXPR GLBEXP
TFRM

SIZE$P2N35 INSERTED:17=JuUlL=~74

81Ze:10P674 INSERTENI17=JUL=74

LINNUM
RMAKG

LPPCNT PAGEXT PAGNUM

SIZEt2MA941 INSERTED319=SEP=74

CMLMA CMLMS CSIu2 CSIMS

OPSWTY{ DPSWT2 OUTERM QUTMI

S17E100493 INSERTED:3{=JUL=74
SIZE12n96Y INSERTED19«SEP=74

$INOFL

SIZE:9247p INSERTEDI1=AUGw74

SIZE120284 INSERTEDI17=JUlL=74
LIST PAGE

S1ZE130566 INSERTEDI17=JyL=74

LSTDEV |LSTREQ PAGMNE PF@

PUTLP SETBYT SETPFA SETPFI
SIZE142019 INSERTEDI17=JylL=74
ASCIZ RASCND RASCOD BASCPX
RASLTH RASLSY BASMaA RASMAR
RASSEC RASSRC PRASSST A8ASSTK

IDENT A6

IDENT:04

IDENT: 26
GLBTRM RELEXP

IDENTIR2

INENT @5

SEGEND

IDENT2

FINPY
STkM]

INPMY
$OPSWTY

IDENT:01

IDENT:91

IDENTtU4a

IDENT:Q4

IDENT 7

PF1
SETWDBR

PUTKR
SETWRD

IDENTIDL]
BASDMA

RASMAC
HASSWT

BaSDUM
RASPSTY
RASSYM

RLKW BYTMOD
CNDROL CODROL
EQT ERRMNE

ERR,L ERR,M

ERR U ERR,Z

IRPC LCOROL
MACROL MEXIT

OVMACR OVSTMT
ROLBAS ROLSIZ
RS,EDT RS,LCD
RS,REG RS,SaT
R5pARS R5ALOT
S1ZcoD SJZLPX
SIZMAA SI1ZMaB
S12S8T SI1ZSTK
SYMRFG SYMROL
TOPEDT TOPLCOD
TOPREG TOPSAT
VALUE WORD

XMITS XMITH

e+ MODULFEMACRS

ENDLOA GETBLK
PROMCF PROMT
v+ MODULEIMCALL

MCALL

«r MODULEIMLIBS

CPYMAC FINSML

v+ MODULE:IMSCDR

END ERROR

we MODULESNDRCT

NARG NCHR

«+ MODULES$PROCSI
DSADDR DSMSK
NLMSK PAMSK

*+ MQDULESPROPC

AEXP oPCL2¥
OPCL®? oOPCLPA®

CHRPNT CLCFGS CLCLOC CLCMAX
CPXROL DMAROL DSAHL DUMROL
ERR, FRR, A ERR,R ERR,D
ERR,N ERR, O ERR,P ERR,Q
EVEN FLAGS IMPPAS IMPPAT
LIRROL LSYROL MaAAROL MARROL
MODE MOVBYT NLIST opp
PASS PSTHROL REG3AS REGROL
pULTnP RS,CND RS.COD RS.CPX
RS,LIB RS,LSY RS.MA2 RS MAR
RS,SEL HS.SRC RS+SST RS,.8TK
SATRNL SAVREG SECROL SECTOR
81Z20MA SI2DUM SIZEDT SIZLCD
SIZMAC SIZPST SIZRFG SIZSAT
SIZSWT SIZSYM SRCROL SSTROL
SYMROL TOPCND TOPcOD TOPCPX
TOPLIB TOPLSY ToPMAA T(QPMAR
TOPSFC TOPSRC TOPSST TOPSTK
XCTLIN XMIl@ XMITY XMIT?2
XMIT7

S§12E:21549 INSERTED:Q=8EP=74

MACR MACROL MALRNF MT MAC
SETMAC WCIMT

SIZEs¥R264 INSERTEDt31=JUL=74

SIZE$028R7 INSERTEDI31=JUL=74

GETFID INISML SHLFDB8

S1ZE19A3843 INSERTEDtI1=JUL~74

GLOBL PRINT SBTTL SETHDR

SIZE:vn258 INSERTED!3I1=JUL=74

NTYPE

SIZE1PA216 INSERTED:17=JulL=74
ENADDR ENMSK LIADDR L IMSK
PROCSI SPMSK

SI2E132865 INSERTEDI{7+-JUlL=74

OPCLAL 0OPCLB2 OPCLA3 OPCLW4
OPCL@9 O0OPCL12 PROPC

CLCNAM
EDTROL
ERR,E

ERR R

IMPURE
MACP2

OPCERR
REGTOP
RS,DMA
RS MAC
RS,SHT
SETXPR
SIZL18
SIZSEC
STKROL
TOPDMA
TOPMAC
TOPSWT
XMIT3

IDEMNT 201G

MT,MAX

IDENT1QY

IDENT @6

IDENT:08

TITLE

IDENTSIR2

IDENT1O@}

MLMSK

IDENT W2

OPCL®5

CLCSEC
ENDFLG
ERR,!

ERR,T

IMPURT
MACP2F
oPCLAS
RELLVL
RSDUM
RS.PST
RS«SYM
SIZCND
SI1LLSY
S1ZSRC
swTROL
TOPDUM
TOPPST
TOPSYM
XMIT4

PROMA

NLADDR

opPCL@SE

*+ MODULEtPROSW

PROSW

SWTRAS

«+ MODULE!PST

BEYTOP
SSTBAS

DFLCND
SSTTOP

+# MODULEIREAD

GETVBN

$SREAD

*+ MODULEIREPT

ENDMAC

I1RP

v« MODULE!ROLHD

APPEND
NEXT
24P

INSERT
OSRCH

ve MODULE:IRSNAT

AWy, 18X
EDMASK
FXMFLG
LCLVL

LC.BIN
LC,MEB
MACLVL
MSBEND
SMLLVL

CNDLVvL
EDMRAK
GMABLK
LCMASK
LCLCND
LC.SEQ
MACNAM
MSRLGR
SRCNUM

vv MODULEIRSEXEC

BUFTRL
DEFMC

TOSENF
MAC| DG
SRCCLO
SSWTCH

CLOSRC
FDBTRL
T10.ERR
DBJIBUF
SRCMRK

wx MODULES$RBUNP

RSBUNP

v¥ MODULEISECTR

ASECT

CSECT

8]7E:122258 INSERTEDt17=JUL=~74

SWTTOP

SIZE1@1307 INSERTEDI17=JuUlL=74

NFLGBM DFLGEV DFLMAC DFLSMC
WRDSYM

SIZE32A198 INSERTEDIi7=JulL=74

SIZE18A473 INSERTED!31=JUL=74

MPUSH REPT

SIZtt9N685 INSERTEDtII=AUG=74

LSRFGS LSFLAG LSGBAS LSRCH
ROLNDX ROLUPD SCAN SCANK

SIZE14n374 TINSERTED117=JUL=74

CNDME X CNDMSK {LIDwRD CONCMI
EDMCSI ED,AMA FED,GBL EDLLSR
GMAPNT LBLEND LCBEGL LCENDL
LCMCST LCSaVE LCSAVL LCSBaK
LC.COM LC,LD LCL LOC LCJMC

LC,SRC LC,SYM LC.TOC LC,TTM
MACNXT MACTXT MACART MSBARG
MSRMRP MSRPRP M3SHTXT MSRTYP
STARS STLBUF TTLBRK TTLBUF

SIZEtY¥M974 INSERTEDt1i=AUG=/4
CMIBUF CMLBLK CNTTBL CONT
FDR1 FOR2 GETFLG GETPLI
JOLNNU I0,0PN I0,0UT IQ,TTY

NBJFTL PASSSW PURGMC RESTRY
SRCPNT SRCSAV TSTSTK VBNSAV

§1Z2E147117 INSERTED#17=Jyl=74

SIZE102551 INSERTED11=AUG=74

LIMIT PSECT SATBAS SaATTOP

IDENT A3

IDENT R4

P8TBAS PSTTOP

IDENTsO1

IDENT D1

IDENT 205

LSYBKN MSRCH
SEARCH SSRCH

INFNTInE

Leby A LiJANYL
ED.RFG ENDVEC
LCFLAG LCINIT
LCI LCCBEX
LC.MD LC«ME

LIBNUM MACGSB
MSBRLK MSBCNT
PRGIDN PRGTTL

IDENTII7M
CSIBLK DaTTIM
HDRTTL I0FTRL
LOAMAC LSTFIL
RLDBUF SPSAV
SLIMIT $_STVZ

IDENTI@Y

IDENTIO4

SECINI

#+ MODULESSETDIR S7ZE12A126 INSERTEDI{7=JUL~74 IDENT:@2

SETDIR

v¢ MODULESSETPN STZE1@d673 INSERTEDt31=JUL=74 IpeNT:@6

SETON SETTIM

#« MODULESSETIMM SIZEt18W292 INSERTEDIL7=JUL=74 IDENTIN2

SETDOSP SETIMM

*» MODULE;SETMX SIZE@2131 INSERTEDs17=JUL=74 IDENT;@1

SETMAX

% MODULE:SPACE SIZE1d0449 INSERTED?:22=-8EP=74 IDENT3Q4

MRKUUT REMMAC SHFMSB SQZSTK

v¥ MODULES$STMNT SIZEt3315 INSERTED:17=JUlL=74 IDENT:03

STMNT

wx MODULESSYMBL SIZE®3A732 INSERTED:17=JUL=74 IDENT:Q4
AwGCNT ARGPNT CHSCAN CITBL CT.ALP CT,.COM CT,EQL CT.LC
CT,NUM CT,PC cT,PCX CT,SMC CT,SP CT.SPT CT,TAB CVINUM
nlv PNC DNCF EXPFLG GETCHR GETNBR GETRBY GETSYM
GSARG GSARGF MUL MUIL RS2 SETCHR SETNR SETRBM SETSYM
TSTARG TSTRB4

v« MODULE3WORDRB SI1Z8:9%14) INSERTED:17=JUL=74 IDENT:@2

RYTE

#% MODULEIWARITE SIZF13A1RY INSERTED!17=JUL=74 IDENT:IOQ!

$UCMO INR]TE

B.1l.4 List Module Names and Module Entry Points (Global Symbols)

LBR>MAC,LP:/LE </
or
LBR>MAC,LP:/LI/LE _/

DIRECTORY NF FTLE MAC,OLB}!
NRJECT MANULE | IRRA&RY CREATED RY: LBR VXd2VM
LAST INSERT OCCURKED 22«SEPe74 AT {1:51:5¢

MNT FNTRTES ALLOCATED?
EPT ENTRIES ALLOCATEDNS
FILE SPACE avVAILABLE:

*+« MODULESASGMT

ASGMT ASGMTF

v« MODULEIASSEM

ALLDCS ASSEM

v MODULERICNDTL

CNDBAS CNDTOP

#+ MODULE:ICODHD

CPXSTL
PCROLL

INSTZE
PCRTAL

v+ MODULEIDATDR

RLKB TDENT

*v MODULESENRBDS

ECTRAS EQDTTOP

** MODULEIENDLN

ENDLIN ERRBRTS

*% MODULEIENDPS

ENDP1 ENDP?

¢+ MODULESIEXPKS

AHSERR
RELTRM

ARSEXP
RELTST

*e MODULEIFLOAY

*% MODULEIGETLN

FFCNT GETLIN

CLSALL

ENDC

NBJDMP
RLNDMP

RADIX

ENABL

ENRCNT

ARSTRM
TERM

LINNUM

643
6402}

AvalLaglEs 24

EORITS LCBRITS
IF 1FF
OBJINI OBJLOC
RLPPNT STCODE
RaN5

LINBUF LINEND
ABSTST EXPR
LPPCNT PAGEXT

AVAILABLES 92
ArA15 WURDS

MACP 1

IFY

OBJPNT
TSTRLD

LSTRUF

GLBEXP

PAGNLM

XCTPAS

IFTF

0BJSEC
ZaPCPX

GLRTRM

SEQEND

XCTPRG

11F

PCRCNT

RELEXP

*« MODULESINFIL
cMLM2 CMLM3
OPENCH OPNSRC

«* MODULEPINIFL

SRCNAM SINIFL

#+ MODULESINOFL

LSTNAM DBJINAM

«x MODULE:LAREL

LAREL LAaBELF

#+ MODULE:ILISTC

LCTBAS LLTTOP

#* MODULFE:LSTNG
CRLF LINPPG
PUTKBL PUTLIN

+% MODULEIMACRD
ALTSAV ASCIT

RASEDT RASLCD
RASREG BASSAT

RLKW RYTMOD
CNDROL CcNDwOL
FOT ERRMNE

ERR, L ERR M

ERR, U FRR,Z

IRPC LCPROL
MACROL MEXIT

ODVMACK NVSTMT
ROLRAS ROLSIZ
RS,ENT RS,LCO
RS,REG RS,SAT
RSA248BS RS200T7
SIZcND SIZCPX
SIZMAA ST1ZMAB
S17S8T SIZSTK
3YMREG SYMrOL
TOPEDTY TOPLCOD
TOPRFG TOPSAT
VAL UE WORD

XMITS XMITH

CMLM4
OPSWTY

SINOFL

LISY

LSTDEV
PUTLP

AS5C1Z
RASLIR
RASSFC
CHRPMT
CPXROL
FRR,
ERR N
FVEN
LIRROL
MODE
PASS
ROLTNP
PS,LTH
PS,SEC
SATROL
SIZoMA
S1ZMacC
SI728WT
SYMRN|
TOPLIB
THPSEC
XCTLTN
XMIT?

CMLM5
NPSAT2

PAGE

LSTRFA
SETBYT

RASCND
BASLSY
RASSRC
CLCFGS
DMARDOL
ERR, A

ERR,O

FLAGS

LSYROL
MOVRBYT
PSTROL
RS ,CND
RS, LSY
RS,SRC
SAVREG
SIZOUM
SIZPST
SIZSYM
TOPCND
TOPLSY
TOPSRC
XMITO

CSIm2
OUTERM

PAGMNE
SETPFD

RASCOD
RASMAA
BASSST
cLCLOC
NSARL

FRR,R

FRR,P

IMPPAS
MAAROL
NLIST

REGHAS
RS,COD
RS.MAA
RS,887
SECROL
SIZENT
S1ZREG
SRCINL
ToPCOD
TOPMAA
TOPSST
(MITY

CSIMB
0UTMY

PFU
SETPFY

BaSCPX
RASMAR
BASSTK
CLCMAX
NUMROL
ERR,D
ERR,Q
IMPPAT
MABROL
opon
REGKOL
RS,CPX
RS,MAR
RS,STk
SECTOR
SIZLCD
SIZSAT
SSTROL
ToPCPX
TOPMAR
TOPSTK
XMIT2

FINPY
STKM{

PF1
SETwWDHR

BASLUMA
BASMAC
RASSWT
CLCNAM
EOTROL
ERK,E

ERR,.R

IMPURE
MACP2

OPCERR
REGTOP
RS,DMa
RS MAC
RS,SWT
SETXPR
SIZLIR
STZSEC
STKROL
TuPDMA
TOPMAC
TOPSWT
XMIT3

INPMY
$OPSWT

PUTKR
SETWRD

RASDUM
RASPST
BASSYM
CLCSEC
ENDFLG
ERR,1T

FRR,T

IMPURY
MACP2F
OPCLAS
RELLVL
RSNHUM
RSsPST
RS+SYM
SIZCND
STZLSY
S1ZSRC
SwTROL
TaPnUM
TOPPST
TOPSYM
xMIT4

** MODULEgMACRS

PROMCF PROMT

*% MODULFsMCaALL

MCALL

¥+ HMODULE:sMLIRS

CPYMAC FINSML

** MODULE:MSCDR

END ERROR

#w MODULEINDRCT

NARG NCHR

+¢ MODULEIPROCSI
NS4DNR DSMsK
NLM3K PAMSK

® v MODU|LF:PROPC
AEXP gPCLA
OPCLWA7 NPCL38

wv MODULE$PROSW

PROSHW SATBAS

*+ MODULEIPST
RRIYTOP DFLCND
SSTHAS SSTTOP

*+ MODULESREAD

GETVAN SREAD

v MODULEIREPT

FENDMAC IRP

#w MODULESROLHD

APPEND INSERT

NEXT ASRCH
740

SeTMAC

GETFID

GLOSL

NTYPE

ENADDR
PROCSI

nPCLA1
OPCL?9

SWTTOP

DFLGRM
WKRDSYM

MPUSH

LSRFARS
ROLNNX

WCIMT

INJSML SMLFDH

PRINT SaTTL

ENMSK LIADDR
SPMSK

opcLaz opPCLAS
ORPCLIA PROPC

NDFLGEV DFLMAC

REPT

LSFLAG LSGB3AS
ROLUPD SCAN

B-10

SETHDA

LIMsK

neCLP4

DFLSMC

LSRCH
SCANW

TITLE

MLMsK

NPCLAS

PSTHAS

LSYBKN
SEARCH

NLADDR

opCLPe

PSTTOP

MSRCH
SSRCH

ve MODULESRSDAY

aRGMax CNDLVL
EDMASK EDMRBRAK
EXMFLG GMAKLK
LCLvL LCMASK
LC.BIN LC.CND
LC,MER LC,S8FW
MACLVL MACNAM
MSREND MSRBLGH
SMLLYL SRCNUM

¢+ MODULESRSEXEC
BUFTRL CLOSRC
DEFMC FDRTRL
TOSEOF TO0,tRK
MACLDG OBJRUF
SRCCLO SRCMERK
ISWTICH

*v MODULESRSUNP

ROBUNP

#«% MODULE$SECTR

ASECT CSECT

*+ MODULE!SETDIR

SETDIR

+% MODULESSETDN

SETON SETTIM

#+ MODULE:SETIMM

SETDSP SETIMM

«¥ MODULES$SETMYX

SETMAX

*v MODULE:SPACF

MrRKOUT REMMAC

*e¢ MODULE§STMNT

STMNT

CNDMFX
FOMCST
GMAPNT
LCMCSI
LC.COM
LC,SRC
MACNXT
MSBMRP
STARS

CMIBUF
FDB1

TONNU
ORJFIL
SKCPNT

LIMIT

SHFMSB

CNDMER
ED.AMA
LBLEND
I.CSAVE
LC.LD

LC,SYM
MACTXT
MSBPRP
STLBUF

CMLBLK
FDR2

10,0PN
PASSSW
SRCSAV

PSECT

SQRZSTK

CNDWRD
ED.GBL
LCBEGL
LCSAVL
LC.LOC
Lc.T0C
MACHRT
MSRTXT
TTLERK

CNTTRL
GETFLG
10,0UT
PURGMC
TSTSTK

SaTRAS

Limar®

ENDJLSH
LCENDL
LCSBAK
LC.MC

LC,TTM
MSBAPG
MSRTYP
TTILBUF

CONT

GETPL]
10, TTY
RESTRT
VANSAV

SATTOP

CRADIX
ED.REG
LCFLAG
LC.
LC«MD
LIRNUM
MSBRRLK
PRGIDN

CSIasLkK
HDRTTL
LOAMAC
RLDBUF
$LIMIT

SECINI

EDINTT
ENDVEC
LCINIT
LC«BEX
LCeME

MACGSA
MSBCNT
PRGTTL

DATTIM
10FTBL
LSTFIL
3PSaAV

$LSTVZ

«+ MNODULE:ISYMBL
ARGCNT ARGPNT CHSCAN CTTBRL
CT NUM CT,FC fT,PCX CT1,SMC
DIV DNC DNCF FXPFLG
GSARG GSARGF MUl MULRS?
TSTARG TSTRED

v« MODULEIWORDB

RYTE

*% MODULEIWRITE

$GCMO SWRITE

CT.aALP
C1,.SP

GETCHR
SETCHR

CT.COM
LT.8P7
GETNR
SETNH

CT.FOL
CT.7AH
GETRB
SETR5w

CTeLC

CvINUM
GETSYM
SETSYM

B.2 SAMPLE LISTING FOR LBR LIST SWITCHES (MACRO LIBRARY)

B.2.1 List Module Names

LBR>MAC, LP : </
or

LBR>MAC,LP:LI </

DIRECTURY QF FILE EXEMC,MLBI1

MACRO LIRRAQY (CREATED BY: LBR viald,d
LAST INSERY (OCCHRRED 2eJuN=75 AT (7116129
MNT ENTRIES ALLNCATENS 645 AVAILARLE: B2
EPT ENTRIES ALLOCATED: 21 AvAILABLES @
FILE SPACF AVAILABLEP 4#789 wORDS

ARQOF $
CLKDF$
CUCDFS
CVCDFS
DEVDF3
EMBODF #
FI1DF$
HDROF &
HWDDF %
PCBDF 3
PKTDFS
TCROFS

B.2.2

List Module Names and Full Module Information

LBR>MAC,LP:/LE/FU <’

LBR>MAC,LP:/LI/LE/FU <’/

DIRECTORY QF FILE ExE™MC.MLAZY
MACRO L [RkaRy CREATED Rygy

or

LEBR VXin3,d

LAST INSFRT NCCARRED 2=JUNm7?75 AT (7116825

MNT ENTRIES ALLOCATED:
FPT BENTRIFS ALLOCATED: 21
FILE SPAaCE AvVAILaRLF!

L&

L4

LR

L4

LA

L4

MODULF s AB0ODF

MODLLESCLKDF 3

MODULEICUCDF B

MUDULEsCVCODF 3

MODULESDEVOF®

MODULF SEMRDE$

MODULE SF11DF 3

MONULFIHMDRNF &

MODULE tHWDNF§

MODULE IPCBODF S

MODULE SPKTNF §

MODULE I TCROF®

hdj}

SI1Zesvyovy

StZE1vm24p

S12€E:20376

S1ZEtnebiny

SIZEgelvla

STZE19u299

STZEtAr®3v

S1ZE1wnl2y

SIZgt»2368

§lZEsaev22)

STZE§22233

SIZEyaupa3q

B-14

AVATILARLE!
AVATLABLE: @
An72Rg WORNS

52

INSERTED2=JUNmT S

INSERTEDI 2= JUNTD

INBERTEDI2=JUN7S

INSERTFD22«JUN=TS

INSERTEDy2=JUN®7H

INSERTED 2w JUNSTS

INSFRTEDI2mJUNST7S

INSERTED:2=JUN=T75

INSFRTEDI2=JUN=75

INSERTEDI2=JUN®TS

INSERTEDI20JUNTS

INSERTED12=JUN=7S

SAMPLES OF LISTING AND EDITING

B.3 SAMPLE EDITING OPERATIONS

Four sample editing operations are 1included 1in this section to
illustrate how the various EDI commands can be used. In the first
example, a file is edited using a few basic EDI commands. The second
example, titllustrates the use of the SAVE, UNSAVE and PASTE commands.
In the second example, two save files are generated, modified, and
appended to the original file. Any closed file may be appended to or
inserted within an open file in the same manner shown in the second
example. The third example illustrates how an immediate macro command
can be defined and executed in a single step. The 1last example
illustrates how a file containing errors can b2 edited using the macro
commands.

9T~

B.3.1 File Editing Sample

>EDI PRTBLD.CMD ./
[PAGE 1]
*p

COMMAND FILE TO BUILD
PRNT SYMBIONT
FOR RSX-11M MAXXED SYSTEM

1,54]PRT/MM/-CP,LP:=PRTBLD/MP

P N I D D R TN L ‘~.

OPTIONS

!
STACK=40
PAR=PARK:0:10000
UNITS=4
TASK=PRT...
ASG=C0:2,LP:3
PRI=60
UC=[10,1]

SPECIFY
SPECIFY FLAG WHICH CONTROLS
FILE DELETION AFTER PRINTING

TO ENABLE DELETION USE

GBLPAT=PRT; $DELET:1

TO INHIBIT DELETION USE

DEFAULT FROM ASSEMBLY IS
FILE DELETION ENARBLED

it N . . |
I- ~o o ine [inepneine o fuajne jue e ne

GBLPAT=PRT: $DELET

/
f[iEOB*]

File PRTBLD.CMD is opened for editing. A PRINT * command
is issued to print the contents of the file. The following
errors are detected:

—
i

9 -
10 -

The

PRNT should be PRINT.
MAXXED should be MAPPED.
/CP should have been used instead of /-CP.

INPUT should be appended to the line containing
the word OPTIONS.

PARK should be PAR4K.

UC should be UIC.

The line containing ; SPECIFY should be deleted.

The comment line containing the format used to inhibit
deletion is missing.
ENARBLED should be ENABLED.

A :1 should be appended to the line following
the word $DELET.
end of buffer is reached and EDI ceauses the EOB message

to be printed.

ONILIJd dNV OSNILSIT 40 SHTIdWVS

LT-d

*TOF,/

[PAGE 1]
*PL PRNT.

; PRNT SYMBIONT

*C/RN/RIN/_
; PRINT SYMBIONT

; FOR RSX-11M MAXXED SYSTEM

XC/XX/Pb/)

; FOR RSX-11M MAPPED SYSTEM

*NP 3

[1,54]PRT/MM/-CP,LP:=PRTBLD/MP

*C,/-Cp,/CP,/

[1,54]PRT/MM/CP,LP:=PRTBLD/MP

*PL PAR=_ J
PAR=PARK:0:10000
*C/RK/R4K/_/
PAR=PAR4K:0:10000
*NP -3_/

; OPTIONS

*AP INPUT./

; OPTIONS INPUT
*PL UC_
UC=[10,1]
*C/UC/UIC/_
UIC=[10,1]

A TOF command is issued to move the line pointer to top of

file and editing is started.

1 - A PAGE LOCATE command is issued to locate the first
line in error and the line is printed automatically.

A CHANGE command is issued to correct the line
and the corrected line is verified automatically.

2 - A carriage return is entered following the prompt to
move the line pointer and print the next line in error.
A CHANGE command is issued to correct the line and the
corrected line is verified automatically.

3 - A NEXT PRINT 3 command is issued to locate the
next line in error and the line is printed. A CHANGE
command is issued to correct the line and the corrected
line is verified automatically.

5 - A PAGE LOCATE command is issued to locate the next
line in error and the line is printed automatically. A
CHANGE command is issued to correct the line and the
corrected line is verified automatically.

4 - A line in error was bypassed by mistake; therefore, a
NEXT PRINT -3 command is issued to back the line
pointer up. An ADD AND PRINT command is used to correct
the line

6 - A PAGE LOCATE command is used to located the next line
in error and the line is printed automatically.

A CHANGE command is issued to correct the line and
the corrected line is verified automatically.

ONILIJE ANV ONILSIT 40 SITAWYS

8T1-49

L

PECIFY

o
ol

SPECIFY FLAG WHICH CONTROLS
PL INH_/
TO INHIBIT DELETION USE

L]
W

o Ne | [Ne | kfse [H[we [Hjwe | %

, GBLPAT=PRT: $DELET:0_ /
-’

*P[, RB./

; FILE DELETION ENARBLED
*C/R/ /[

; FILE DELETION ENABLED

J

—‘4/

GBLPAT=PRT: $SDELET
*AP :1_
GBLPAT=PRT:$DELET: 1

*TOF
[PAGE 1]

*|

7 - The line pointer

is moved down two lines via the

carriage return option to locate the next line in

error. A DELETE AND PRINT command is issued to delete

the line containing ; SPECIFY and print the

next line.

8 - A PAGE LOCATE command is issued to locate the
point in the file where the new comment lines
are to be inserted. EDI is switched to the Input
mode, two lines are entered, and EDI is switched
back to Edit mode by entering a carriage return as
the first character in the line.

9 - A PAGE LOCATE command is issued to locate the next
line in error. A CHANGE command is issued to
correct the spelling error. The line is verified

automatically.

10 - The line pointer
carriage returns
An ADD AND PRINT
:1 following the

is moved down two lines using two
to locate the last line in error.
command is issued to append

word $DELET.

The necessary corrections are complete so the line

pointer is moved to the top of the file via a TOF command.

NV DNILSIT 40 SHTARWYS

ONILIAZ

6T-€

P *

COMMAND FILE TO BUILD
PRINT SYMBIONT
FOR RSX-11M MAPPED SYSTEM

1,54]PRT/MM/CP,LP:=PRTBLD/MP

OPTIONS INPUT

[T PPN P P R N R I

STACK=40
PAR=PAR4K:0:10000
UNITS=4
TASK=PRT...
ASG=CQ:2,LP:3
PRI=60

UICc=[10,1]

SPECIFY FLAG WHICH CONTROLS
FILE DELETION AFTER PRINTING

TO ENABLE DELETION USE

GBLPAT=PRT: $DELET: 1

TO INHIBIT DELETION USE

GBLPAT=PRT: $DELET: 0

DEFAULT FROM ASSEMBLY IS
FILE DELETION ENABLED

| B T PP PP [N DAY AP Y A P PO Py P BN

GBLPAT=PRT: SDELET:1

{*E0B*]

A PRINT * command is issued to print the complete

file with all corrections

An EXit command is issued to close the file and

terminate the editing session.

ONILIdd dNVY ONILSIT JA0 SHTAWVYS

0z-4g

B8.3.2 SAVE and UNSAVE Example

*LI,/

THIS IS LINE 1 PAGE 1
THIS IS LINE 2 PAGE 1
THIS IS LINE 3 PAGE 1
THIS IS LINE 4 PAGE 1
THIS IS LINE 5 PAGE 1
[*EOB*]

'T_j

*SA 5 SAV1.DAT </

*T

*SA 5 SAV2.DAT./
*LG/

EDI>SAVI1.DAT ./

[PAGE 1]

*LIL/

THIS IS LINE 1 PAGE 1
THIS IS LINE 2 PAGE 1
THIS IS LINE 3 PAGE 1
THIS IS LINE 4 PAGE 1
THIS IS LINE 5 PAGE 1
[*EOB*]

*PA/PAGE 1/PAGE 2/./
THIS IS LINE 1 PAGE 2
THIS IS LINE 2 PAGE 2
THIS 1S LINE 3 PAGE 2
THIS IS LINE 4 PAGE 2
THIS IS LINE 5 PAGE 2

*CL_/

The file to be used in this example is
printed via a LIST command.

The line pointer is returned to the top.
A SAVE command is used to save the
five lines in a separate file.

The line pointer is returned to the top.

A second SAVE command is used to generate

a second saved file. The primary input file is closed.
The first save file is opened and a

LIST command is used to verify the file.

A PASTE command is used to change
PAGE 1 to PAGE 2 in all lines.

The first save file is closed.

ONILIQ3I ANV ONILSIT J0 SIATAWYS

1Z¢-9

EDI>SAV2.DAT </

[PAGE 1]

*LI1I,/

THIS IS LINE 1 PAGE 1

THIS IS LINE 2 PAGE 1
PAGE

THIS IS LINE 4 PAGE 1

THIS IS LINE 5 PAGE 1

[*EOB*]

*PA/PAGE 1/PAGE 3/./
THIS IS LINE 1 PAGE

THIS IS LINE 2 PAGE
THIS IS LINE 3 PAGE

THIS IS LINE 4 PAGE
THIS IS LINE 5 PAGE

Wwlwiw jWwiw

*CL_/
EDI>START.DAT <’
[PAGE 1]

The second save file is opened.

The LIST command is used to verify
the contents of the file.

A PASTE command is used
PAGE 1 to PAGE 3 in all

The second save file is
The original input file

to change
lines.

closed
is opened again.

ONILIQET ANV ONILSIT J0 SITTIWVS

(A4t

*BOL/

THIS IS LINE 5 PAGE 1
*UNS SAV1.DAT_/

*UNS SAV2.DAT<’/

*T,/

*LIe’

THIS IS LINE 1 PAGE 1
THIS IS LINE 2 PAGE 1
THIS IS LINE 3 PAGE 1
THIS IS LINE 4 PAGE 1
THIS IS LINE 5 PAGE 1
THIS IS LINE 1 PAGE 2
THIS IS LINE 2 PAGE 2
THIS IS LINE 3 PAGE 2
THIS IS LINE 4 PAGE 2
THIS IS LINE 5 PAGE 2
THIS IS LINE 1 PAGE 3
THIS IS LINE 2 PAGE 3
THIS IS LINE 3 PAGE 3

THIS IS LINE 4 PAGE 3
THIS IS LINE 5 PAGE 3
[*EOB*]

*EX/

[EXIT]

The last line in the file is located.
Two UNSAVE commands are used to
append the two save files to the
original input file.

A LIST command is used to

verify the contents of the

combined file.

ONIIIJd ANV DNILSIT 40 SHTIWVS

€c-d

Immediate Macro Command

B.3.3 Use of
*LI,/

ABC IN LINE 1 - ABC
ABC IN LINE 2 ~ ABC
ABC IN LINE 3 - ABC
ABC IN LINE 4 - ABC
ABC IN LINE 5 - ABC
ABC IN LINE N - ABC
[*EOB*]

*4<F ABC&C/ABC/DEF/>./

[OVERLAYING PREVIQUSLY DEFINED MACRO]
ABC IN LINE 1 - ABC
DEF IN LINE 1 - ABC
ABC IN LINE 2 - ABC
DEF IN LINE 2 - ABC
ABC IN LINE 3 - ABC
DEF IN LINE 3 -~ ABC
ABC IN LINE 4 - ABC
DEF IN LINE 4 ~ ABC

*

A LIST command is issued to print
the file used in this example.

The immediate macro is defined
and executed to find the first
four lines which start with ABRC
and change the first occurrence
of the string ABC to DEF.

The FIND command causes the line
to be printed before the change.
The CHANGE command causes

the line to be printed after

the change.

ONILICT ANV ONMILSIT 40 SHTAWYS

ve-4

B.3.4 Use of Macro Commands

*LIL/

THIS LITTLE FILE HAS

MANY CONNON ETTORS SO

WE CAN SHOW YOU HOW

YHE MACRO CONNANDS CAN
BE USED.

FIRST, YHE DESIRED MACRO
MUST BE DEFINED; YHE LINE
POINTER IS MOVED TO A LINE
WITH AN ETTOR; AND YHEN, YHE
MACRO EXECUTE CONNAND

IS ISSUED TO COTTECT YHE
ETTOR

[*EOB*] :
*MACRO 1 C/NN/MM/./
*MACRO 2 SC/TT/RR/_J
*MACRO 3 PA/YHE/THE/./
M3/

THE MACRO CONNANDS CAN
FIRST, THE DESIRED MACRO
MUST BE DEFINED; THE LINE

WITH AN ETTOR; AND THEN, THE
IS ISSUED TO COTTECT THE
*NP2./

MANY CONNON ETTORS SO

*M1J

MANY COMMON ETTORS SO

*M2_J
MANY COMMON ERRORS SO

The LIST command is used to print the
file and the file is checked for errors.
The following errors are located.

1. The string NN is used in place
of MM (see macro 1l).

2. The string TT is used in place
of RR (see macro 2).

3. The string YHE is used in place
of THE (see macro 3).

The three macro definitions which will
correct the errors are typed.

Macro 3 is used to change all YHE
strings to THE.

NP2 is used to locate a line with errors.
M1l is used to change NN to MM.

M2 is used to change TT to RR

ONILIQ3 ANV ONILSIT 40 SHTAWVS

¢Z-d

*NP2 ./

THE MACRO_CONNANDS CAN
*M1,/

THE MACRO COMMANDS CAN

*M2_)/

WITH AN ERROR; AND THEN, THE
* ./

MACRO EXECUTE CONNAND

*MI_J
MACRO EXECUTE COMMAND
*M2_J

IS ISSUED TO CORRECT THE

M2

ERROR
*T_J
*LIL/
THIS LITTLE FILE HAS
MANY COMMON ERRORS SO
WE CAN _SHOW YOQOU HOW
HE MACRO COMMANDS CAN
BE USED.
FIRST, THE DESIRED MACRO
MUST BE DEFINED; THE LINE
POINTER IS MOVED TQ A LINE
WITH AN ERROR; AND THEN, THE

MACRO EXECUTE COMMAND

IS ISSUED TO CORRECT THE
ERROR.

[*EOB*]

NP2 is used to locate the next line in error.
M1l is used to change NN to MM.

M2 is used to locate the next TT string
and change it to RR.

</is used to locate the next line in error.

M1l is used to change NN to MM.

M2 is used to locate the next TT string and
change it to RR.

M2 is used to locate the last error in the
file and correct it.

After all lines have been corrected, the
file is printed using the LIST command.

ONILIQd dNV ONILSIT 40 SATAWYS

B.4 SAMPLE DMP LISTINGS

B.4.1 Use of /LB Switch

DMP>TI:=SY:BIGMAC.TSK/LB '/
STARTING BLOCK NUMBER = #,135163 C

DMP>TI:=SY:SYSGEN.CMD/LB_/
STARTING BLOCK NUMBER = §,2016086

B.4.2 "Standard" Command Line

This command will dump virtual blocks 1 and 2 in SYSGEN.CMD in
ASCII mode.

DMP>LP:=SY:SYSGEN.CMD/AS/BL:1:2 _/
DMP>

DUMP OF DP21(202,200)SYSGEN,CMD115 « FILE ID 7157,35146,0
VIRTUAL BLOCK 2,208pA708% = SIZE 512, BYTES

»

mmoo» Moo
1 4
»

2
®
»

P20000 ®
nepe2e
0eavye
900060
penien
ponize
een149
eRei60
eop200
20220
peraye
poo26R
2ea300
pen32p
poa340
e0pP360
pRo40p
peB420
oeo4u0
00460
eees5ee
goes520
pBaAsS4D
PP0560
oeaé602
00620
epa64p
0090660
ep2720
220720
pe0740
gee7se

»
?

¥
-
- w T < MZ>COI-Z

g o IO =
0 re = 0
E
CL DT 3>~
t 2
W=
> M M
-4 O
=M TMMU

3
?

™
Ce
e]

AP>IVD<ITM-—-4D>>>
MZW VO
X O C 9 —-tmMmZ
—4
ZA T DX OO WM
mwo X m -1
>

XTIV
-

M TS bt T ™ PP VO O\ VUt ZO D0

<D ™M O< P> HEHOMZO—OM=O £Z

PO ZXKOWOmB™M™

¥
¥
14
MO MO ®n

»
D > Z P wCes T
¥

MUl -

Z X
3
TO
».
]
»
O 2 TR>-412>»PMITOIID
?

P Al BB 2 &R B el
id ?
TdDMBOB™DRTDODOYS Z <7 =x

MXAL® ==L TIT S

k4
»
?

. 1 3
*m FrEZCCMOSPIP>PBDIICrITMPAETODPNDH>MZ < B <

»

™m
4

»

)
-4 20 O Frin BB Ne)

Zww T T WD

»
»

» .
MOAaMIAM-4MODO> TTBS™> PMBPZZZ>p<BDdDMC I

- m o G T~

b 3
p i 4 %] -4 et

»

Mrar 4AXTO0OZ 0~ - A MO XM -0
DIrr oM O MBE--AHO TN B r—~O
W W W A» -t~
@) G X~ +t (D 20
¥
]
TM-40OMVZZAOr® VoMU
- MMM Z
]
-t 0 0~
9
HOHMM—AOOEUwe T INZON TOo»>»
2
L

>
[V,]
¥

VIRTUAL BLOCK P,02md02 = SIZE 512, BYTES

DUMP OF DPA1[200,200]1SYSGEN,CMDs15 « FILE ID 7157,35146,2

- b= O\ - Q@ L~ ¥ @& i > - o O a DOl s
[3 € b

W S HXOANE—MAWD aTIXMAIIWCACBLWZ XOWONMO -Z
QAFFOWNe & Y adHONY ¢l @ Fd WOTHWO>0L®O® X
. J * .

WO WY =" A\ @O e 0l =t o «— DAL D
L

O - MODODODOWNDG N ot e Z2¢OT > o < i e O oo
[[[4 [}

2 XNQAQWETEONEWMW-A"IHANA LSOO ~Z w AZ 0O Z =
4 ¢

[YR OO D TOMO>rurxw @ O xE D - e Z 0O
¢ €

x —0N s X NN IWFO~HOOAO a -~ & WO Z X v — Ll oo
Or-r-uWwe x o - O0Ow «eD e N\ W LVOOAOFE PF>00LVFVEFJ
& [}

L OSS,LPTP/'.!/PR*WNEENNS ADAIA.
[} L4

D2rZ 600 ~ue xO Lo TR Wilds>aa>wLOX 32X 20>
k 3 ¢

O «a A VEXQMNDWN ~_5O0 -0 00 XLl X W Z 2D w o
I e

TENDIDONONDG &~ OO WESE N COO®+~v Qo > Z >
€ ¢ €

STE’IORNPHQMXPSRiMNY UEEN'NRHYLE
et € €

0.‘1” Ezcs_-._n.-l-ﬂro VO IWWZONL ALK
¢

B-27

B.4.3 Dump Only the Header from SYSGEN.CMD

DMP>LP :=SY:SYSGEN.CMD/HD/BL:@:8 _/
MP>

]

DUMP OF DPO1[200@,2001SYSGEN,CMD31S = FILE ID 7457,35146,0
FILE HEADER

SYSGEN.CMD11S (7157,35146) Te/10, 11=0CT=74 {1148
[20@,2080] [RWED,RWED,RWED,R])

peooRe 327027 PO7157 V35146 D204t 100200 16000¢ Q20200 QQieel
peo0R2e 099077 200000 ©02QPR12 2200NMA Q200010 00003C Q0000 200000
epgoe4e A%¢000 0OPV0Q 000P00 P000AM 2Q2000 GQQR00@ Q200008 @A75273
epoase 826226 P0PBE@ 012314 202015 000001 @3P461 041517 233524
aep100 B3p464 p32461 030462 030462 247461 852103 832067 030461
gaaiae 234064 032461 VG020 CODONA QGP200 AAQPQQQ 020000 @0QRRQ
000140 030007 PR1401 146006 002007 Q201606 PQPQ00Qd Q44156 201400
0002160 244306 000000 00PP0D 00P2AY 0CGQ0P 220020 Q202200 200000
aon200 200202 00000Q 020000 0000AA PAPGE0 PQ000Q3 P3GA0C 22QQ0Q
gpa2ae 23,000 POCSPC B00DP00 PQ0Q0AR CPRQPC0P 0QP0QPQAQ Q00020 PPQOPR2
paaa4e 0NEoce P332 COQRPR2 2000A7 Q00000 Q200Q2Q 230000 ooRBRd
200260 2Np000 C0QEC0 POGPP0 2000MY CPOG0Q QR0002Q 220200 Q0QeREQ
goe3ee 97602022 002R00 CCQVDE 2006NN 20P220 000000 PCRYGO B0oBCA
002320 79¢P2@ 00ME03 000000 PP0QPQA7 22000 Q0QQA323Q 220020 200000
geasqe 37p0Q0 POCOCS 00QP0PC P200MA Q0070 CPPC2Q0 VOQAR0 Q00BQRQ
200360 ANpaee pO0EGE 20PPDQ 0QQ2Q0AN 200002 0QAC0Q 202000 Q0Q0RQ
re400 J0p0e0 Q00000 200003 C030MA 2PPORV Q00000 200000 Q00200
Pped2e J00000 POCQOPE QCOCOQ 200077A 200000 CQQQOQ02 ©QQ000 2000020
poed4e AN@Re2 P00QQP2 VG002 2000MN QQV00C 0022203 Q20020 @cea00Q
goe4d60 000202 P00Q0Q 000QP0 PRROMY 00200Q PQ2Q00 020000 Q000QRd
ore500 2MNpooe p00GC2 PRO0P2 2000A7 JQPO0P 0MQ0QQ0 Q70000 220000
peesao J7@l0e CP0E0Y VR0PP0 CP000MA QPPQ00QP QP0QPQ0 Q00000 Q00000
eees4e 290020 000000 VAOROO 0CQGNA 0PPQPP Q0QQQA0Q0 209220 P0R000
eeesen 02p0Q02 Q00600 VPAPR0 Q200MN CPDR0Q Q020022 220000 oCpoRO
poRsoR 09p000 PPOCEGO 0ROPRP2 Q2300MN Q0EA2P 00P0Q0Q 220000 Q00ERQ
paaece 209000 000GQ0 V00RP0 002NN C20RA0P 0QQ30Q0 Q00020 200000
pege4n 290000 PP202C VODOGY QQJQ02NA CRACVP 000003 202000 P0O0Q0D
2006602 20p000 POPOZO 000000 VOODAN 2PQQ0P0 PRQ0Q0Q 820200 200000
opevee 295000 VOCE00 QPCOPPO 0009MN GPP00C QPQQ0Q3 000000 Pd3CERO
poQ720 09p000 COROCP V0DPOQ 0000PAM 2000 0QC0QQ Q200000 20PAR2
pPB740 20p200 P0PYGE VOD2P0 PQ20AN OPEARR CORGQQ3 000000 Q22Q00d
opB760 ANp00s 00PPGC POOROO Q000MN APRRQRQO CPROQQ 22020Q 166212

B.4.4 Use of /BA Switch

The first command sets the base block address to 2, the next command

causes virtual blocks 3 and 4 to be dumped.

DMP>/BA:{@#:2_ /

DMP>LP :=SYSGEN.CMD/BY/BL:1:2_ /
DMP>

DUMP OF DPR1[200,200) SYSGEN,CMD315 = FILE 1D 7157,35146,0
VIRTUAL BLOCK 2,@00mR@23 » SIZE 512, BYTES

epeoee
200020
0@0240
ep020260
ao010e
oeo120
epoi40
opB160
gea20e
2p0220
ep@24p
geazee
003092
000320
200340
00360
goeg4do0
200420
poB4d4p
200460
000500
gess2e
pees40
280560

oeoéap
220620

Wwie

PRo64R
080660
opa7oe
o720
poeT4p
gea760

116
127
866
115
g4a
106
115
a4p
117
242
B49
103
gup
114
114
856
201
122
124
115
104
114
124
454
61

24

105
123
106
857
v54
356

187

141

I Y

113
101
114
pae
p4e
122
122
paa
103
1025
124
B4
134
673
pen
117
1192
1021
g4o
104
117
p62
a61
121
875
132
124
122
122
101

440
124
g4
131
111
131
124
122
@40
124
LY

240 1

111
124
249
021
873
111
185
116
124
40
820
260
854
¢42
122
102
040
105
123
123

a49
117
107
124
125
973
116
116
105
073
116
113
105
111
a73
063
124
101
040
105
117
256
g2o
veéd

449
424

130
104
040
122
102
040

p4e
115
122
185
111
240
oee
124
117
122
11
nde
4@
240
123
125
gog
40
i23
106
048
115
111
2ae
135

194
g =1/

1014
256
i2e
123
114
132

1 a4e
17 122
04 123
124 A4Q
116 107
104 111
273 11
125 122
124 110
105 #42
105 116
124 110
124 117
231 200
124 1114
210 20@
273 40
127 105
123 125
111 114
123 131
115 101
106 106
856 111
201 0@

I e27
g 4239

123 115
1083 {15
111 t20
139 101
124 a56
34 ted

115
125
72
181
123
122
124
40
1es
111
117
185
040
273
116
122
igi
p40
115
125
123
116
pap
106
273
861
856
jo4
e4e
123
103
111

101

[Wik}
Vo

2g0
123
240
125
{10
25@
122
123
125
p4o
113
211
107
125
124
122
1e2
040
124
104
124
124
125
g6i
183
P73
133
115
115
184

123
{24
873
123
117
103
125
114
040
840
107
123
105
121
@40
116
240
185
114
246
125
040
248
242
257
854
115
252
261
256
124
240

g1l
P61
1083
273
131

[V R
-

115
114
240
114
p62
114
117
240
125
120
123
111
044
110
1o1
240
273
249
111
211
e40
256
g68
273
257
254
115
252
117

073
111
132
852
pee
1Y
104
P20
125

105
G408
125
114
040
{10
116
251}
113
g4e
120
183
121
145
185
1237
123
125
117
121
125
185
364
214
126
857
254
256
264
73
arv
040

240
Go1i
a4e
131
1it
125
105
240
256
240
101

114
122
123
116
p40
g4o
115
116
i
g4
géi
133
106
f22
122
111
135
252
Q22
121

DUMP OF

000000
200020
eeee4p
200060
20100
000120
200140
222160
202200
200220
200240
222260
200300
200320
220340
000360
2ee4eo
000420
200440
200460
20500
200520
200540
200560
220600
220620
20640
200660
gea7ee
220729
20a740
20@760

DPA1[202,208)SYSGEN,CMDy1S = FILE ID 7157,35
. 146,0
VIRTUAL BLOCK @,00a104 = SIZE Slé. BYTES

116
243
125
024
260
114
101
122
1né
d49
849
105
873
342
105
A4d
1314
a12
260
123
125
a48
262
049
115
262
249
104
106
105
120
g56

123
121
122
"1%])
pbo
bae
124
124
111
102
127
101
p4e
122
114
117
117
©woo
060
123
124
101
géb0o
257
101
0o
124
ghe
111
130
111
117

127
125
40
856
@04
105
w40
e4e
114
105
i1
116
j04
125
105
120
125
use
g72
105
111
@40
135
125
103
¥73
110
117
114
105
120
102

1085
105
123
111
a0
130
131
124
105
107
114
240
111
116
103
124
122
1087
273
115
126
123
LT
111
240
a4
105
102
105
103
249
112

122
123
121
106
073
1
117
110
o7
1
114
125
123
4@
124
111
040
117
037
102
105
185
027
103
1eg
116
04g
112
024
125
122
026

240
124
124
124
111
124
125
111
2aa
116
04@
120
113
117
o4
117
123
124
eae
114
e40
124
2020
75
122
117
13
105
poe
124
123
gee

§24
111
111
240
874
P40
240
123
273
116
104
240
240
106
124
116
131
147
273
185
ea1
240
256
133
123
127
117
103
a73
111
130
120

112
117
123
132
hoe
116
115
a4
A4a
i1t
114
117
193
A40
112
123
123
n4a
a4
A4
Aoa
as7
111
a6l
130
n4e
116
124
N4
126
a6}
111

185
116
106
40
273
117
101
i3
106
f16
114
106
116
123
1a5
eee
124
'
it6
124
273
125
106
061l
101
127
{e3
pdo
106
105
pé6l
120

Q40
{23
101
256
040
127
131
117
ja22
187
117
040
104
107
e4o
00
105
nee
117
119
124
111
124
254
123
105
101
115
117
856
115
e4e

123
040
103
107
127
042
040
115
117
256
127
124
040
116
120
073
115
060
127
125
027
103
g4
062
115
040
124
117
122
001
256
856

1314
124
{24
117
185
123
{22
115
145
240
e4a
1102
181
040
122
040
256
6@
Q49
249
200
275
1a1
264
@2e
102
105
124
g4e
poe
117
117

123
117
111
124
240
117
105
104
240
124
101
105
4@
124
117
106
201
206
127
105
256
133
o4e
135
gol
125
116
125
124
273
1ee2
102

107
240
117
117
127
4@
123
116
124
110
p4e
122
116
117
120
117
gee
002
105
130
111
P61
123
a73
aeo
114
124
114
110
104
123
112

1es
134
116
240
i1
124
124
{04
110
111
1023
e7@
185
40
185
122
@73
@56
240
105
1@6
g6l
125
e13
e73
114
124
105
125
ga4
e75s
257

116
117
040
261
114
110
101
240
185
123
114
oeo
127
123
122
CIT.
p4Q
061
191
103
106
954
124
goo
186
104
105
049
249
goa
252
122

APPENDIX C

RSX-11M PRINT SPOOLER TASK

The RSX-11M Print Spooler task (PRT...) provides a means of
eliminating contention for the system 1line printer. Rather than
waiting for the line printer to become available, a task directs the
output intended for the line printer to a disk file. The task issues
a Send Data directive to the print spooler, placing a data block,
which identifies the file to be spooled, in the print spooler queue.
A Request directive then is issued by the task to activate the print
spooler, in case it is not already active. All files identified in
the print spooler queue are printed in a first in - first out (FIFO)
order.

C.1 RECEIVE QUEUE OPERATION

The standard method of placing a wuser file in the print spooler
receive queue (and requesting its execution) is via the PRINTS macro
call, which is described in the RSX-11] 1I/0 Operations Reference
Manual. Files are spooled in this same manner by the RSX-11M
utilities which support the spool (/SP) option. Each entry 1in the
print spooler receive gueue consists of a 13-word data block
containing the file-related information illustrated in Figure C-1.

C.2 TEXT REQUIREMENTS

The print spooler task prints ASCII text with a maximum line length of
132 bytes. It will properly handle files with all modes of FCS
carriage control (i.e., standard, embedded and FORTRAN).

RSX-11M PRINT SPOOLER TASK

WORD

1 Filename
2 in
3 RADIX-50

4 File type in RADIX-50
5 File version (binary)
6 Device name in ASCII
7 Unit number (binary)
8
9 File ID

10

11

12 Directory ID

13

Figure C-1
PRT Send Data Buffer Format

C.3 TASK BUILD INFORMATION

The print spooler task must be built during an RSX-11M system
generation because the task image file (PRT.TSK) is not distributed on
the standard release kits. Normally, the print spooler 1is built to
delete all files which have been spooled, but the print spooler build
file can be edited during system generation to disable the automatic
delete feature. When the print spooler is built without automatic
delete, spooled files are retained after printing. If the system has
a deleting print spooler, all spooled files are deleted after
printing. Therefore, the user should know whether or not the system
currently running has a deleting print spooler before spooling files.

The print spooler employs double buffering to increase throughput to

RSX-11M PRINT SPOOLER TASK

the 1line printer. However, when the print spooler is checkpointable
(the default from the build file), the Executive 1limits the print
spooler to one outstanding I/0 operation, thus effectively reducing it
to single buffering. To effectively wuse the double buffering
capability of the print spooler, it must either be built as
noncheckpointable during system generation, or installed in the system
as noncheckpointable. However, the print spooler should not be made
noncheckpointable if this will adversely effect the execution of other
tasks in the same partition.

See the RSX-11M System Generation Manual for detailed system
generation information.

C.4 PRT ERROR MESSAGES

All error messages issued by PRT are sent to the console terminal via
pseudo-device CO:. The error messages have the following format:

PRT -- text

In all but the receive failure error, the messages supply information
that identifies the sender task and the file in question. All PRT
errors are fatal; wupon error detection, printing of the input file is
terminated, and a clean up/restart procedure is entered.

In the case of the receive failure error, the sender and file
information are unavailable. Furthermore, PRT does not attempt to
dequeue additional spool requests because of the nature of this error

condition. Instead, PRT exits causing its receive queue to be purged
by the system.

RECEIVE FAILURE, d. -- TASK EXITING
Description
The Receive Data or Exit directive failed while attempting to
obtain the next file specifier from the queue. The system error
code (d.) is printed to identify the error.

NO DEVICE NAME - SENDER: task FILE: filename.typ;ver
Description
The dequeued print request did not contain a device name.

NO FILE ID - SENDER: task FILE: filename.typ;ver

Description

The dequeued print request did not contain a file ID.

RSX-11M PRINT SPOOLER TASK
OPEN FAILURE INPUT FILE - SENDER: task FILE: filename.typ;ver, d.
Description

The specified file could not be opened. One of the following
conditions may exist:

1. The file is protected against access for read privileges.

2. A problem exists on the physical device (e.g., device cycled
down) .

3. The volume is not mounted.
4, The specified file directory does not exist.
5. The named file does not exist in the specified directory.
6. The file is already deleted.
The system error code (d.) is printed to identify the failure.
ATTACH FAILURE - SENDER: task FILE: filename.typ;ver, d.
or
DETACH FAILURE - SENDER: task FILE: filename.typ;ver, d.
Description
The line printer could not be attached/detached (i.e., system
does not contain a line printer). The system error code (d.) is
printed to identify the error.
PRINT ERROR - SENDER: task FILE: filename.typ;ver, d.

Description

A Queue I/0 request to the line printer has failed. The system
error code (d.) is printed to identify the error.

I/0 ERROR INPUT FILE - SENDER: task FILE: filename.typ;ver, d.
Description

An error was detected while reading the input file. One of the
following conditions may exist:

1. A problem exists on the physical device (e.g., device cycled
down) .

2. Length of the text line is greater than 132 bytes.
3. File is corrupted or the format is incorrect.

The system error code (d.) is printed to identify the error.

INDEX

Aborting VFY, restrictions when, Command ,
8-1 ADD, 5-15
Access modes, text, 5-5 ADD AND PRINT, 5-15
Access warning messages, file, APPEND, 2-7
5-9, 5-58 BEGIN, 5-36
ADD AND PRINT command, 5-15 BLOCK, 5-25
ADD command, 5-15 BOTTOM, 5-36
ALT Mode key, 5-20 CHANGE, 5-15
APPEND command, 2-7 CLOSE, 5-51
ASCII mode switch, 4-3 CLOSE AND DELETE, 5-51
/AS switch, 4-3 CLOSES, 5-51
Asterisk convention, wild cards, CONCATENATION CHARACTER, 5-25
2-4 COPY, 2-8

CTRL/Z, 1-2, 5-16
DEFAULT, 2~12
DELETE, 2-13, 5-16

Base block address switch, speci- DELETE AND PRINT, 5-17
fy, 4-3 END, 5-36
Basic EDI commands, 5-13 ENTER, 2-15
Basic EDI operation and commands, ERASE, 5-42
5-10 EXIT, 5-18
/BA switch, 4-3 EXIT AND DELETE, 5-52
BEGIN command, 5-36 FILE, 5-32
Block address switch, specify FIND, 5-37
base, 4-3 FORM FEED, 5-43
Block command, 5-25 FREE, 2-16
Block mode, 5-5 IDENTIFY, 2-16
Block mode, line-by-line vs., 5-6 INSERT, 5-18
Block switch, logical, 4-4 KILL, 5-52
Blocks, deletion of multiply LINE CHANGE, 5-43
allocated, 8-8 ListT, 2-17
Blocks, elimination of free, 8-8 LIST ON PSEUDO-DEVICE, 5-44
Blocks, recovering lost, 8-9 LIST ON TERMINAL, 5-43
Blocks switch, specify first and LOCATE, 5-19
last, 4-3 MACRO, 5-44
/BL switch, 4-3 MACRO CALL, 5-45
BOTTOM command, 5-36 MACRO EXECUTE, 5-46
Buffer capacity exceeded, 5-53 MACRO IMMEDIATE, 5-47
/BY switch, 4-4 MERGE, 2-8
Byte mode switch, 4-4 NEXT, 5-19

NEXT PRINT, 5-20
OLDPAGE, 5-37

OPENS, 5-26

Carriage return, use of, 5-7 OUTPUT, 5-26
Cassette directory listing, 3-18 OVERLAY, 5-47
Cassette file formats, 3-5 PAGE, 5-38
Cassette support, FLX, 3-5 PAGE FIND, 5-38
Cassette support, multi-volume, PAGE LOCATE, 5-39

3-9 PASTE, 5-48
CHANGE command, 5-15 PRINT, 5-20
Changing control mode, 5-4 PROTECT, 2-21
Character erase (RUBOUT), 5-7 PURGE, 2-24
Check, validity, 8-5 READ, 5-32
CLOSE AND DELETE command, 5-51 REMOVE, 2-25
CLOSE command, 5-51 RENAME, 2-26
Close operation commands, EDI, RENEW, 5-22

5-50 RETYPE, 5-22
CLOSES command, 5-51 SAVE, 5-48
/CO, COMPRESS switch, 7-7 SEARCH AND CHANGE, 5-39
Combining library functions, 7-26 SELECT PRIMARY, 5-27

Index-1

Command (cont.),

SELECT SECONDARY, 5-28

SIZE, 5-29

SPOOL, 2-28

TAB, 5-29

TOP, 5-40

TOP OF FILE, 5-22

TYPE, 5-49

UNLOCK, 2-29

UNSAVE, 5-50

UPDATE, 2-30

UPPER CASE, 5-30

VERIFY, 5-31

WRITE, 5-33
Command, concatenation character,

5-25
Command conventions, EDI, 5-7
Command format conventions, 1-6
Command level informational and
error messages, 5-9, 5-52

Command string,

DMP, 4-2
FLX, 3-2
LBR, 7-5
PIP, 2-1
VFY, 8-2

Command strings, utility, 1-4
Command switches and subswitches,
PIP, 2-3
Command switches, VFY, 8-4
Commands,
EDI close operation, 5-50
input/output, 5-31
line pointer (locative), 5-34
PIP, 2-6
setup, 5-23
text modification and manipula-
tion, 5-40
Compress switch, (/CO), 7-7
Concatenation character command,
5-25
Constants, search string, 5-8
Constraints, LBR, 7-27
Control characters, SLP edit, 6-6
Control mode, changing, 5-4
Control modes, EDI, 5-4
Control switches, file, 3-15
Control switches, SLP output, 6-5
Convention, wild cards, asterisk,
2-4
Conventions,
command format, 1-6
EDI command, 5-8
system-wide, 1-8
terminal, 5-7
COPY command, 2-8
Creating a file, 5-10
Creating an indirect file, 6-8
/CR, CREATE switch, 7-9
Create switch (/CR), 7-9
CTRL/Z command, 5-16

/DE, DELETE switch, 7-11
DEFAULT command, 2-12
Defaults in file specifiers,
EDI, 5-3
LBR, 7-5
PIP, 2-2
SLP, 6-3
VFY, 8-3
DEFAULT switch, 7-12
DELETE AND PRINT command, 5-17
DELETE command, 2-13, 5-16
Delete, files marked for, 8-7
Delete global switch (/DG), 7-13
DELETE switch (/DE), 7-11, 8-9
Deleting a file, 8-8
Deleting DOS files, 3-3
Deleting RT files, 3-4
Deletion of multiply allocated
blocks, 8-8
/DF, DEFAULT switch, 7-12
/DG, DELETE GLOBAL switch, 7-13
Directory listings,
DOS, 3-3
RT, 3-3
Directory manipulation,
DOS volume, 3-3
RT volume, 3-3
DMP,
file dump utility, 4-1
initiating, 4-2
DMP command strings, 4-2
DMP error messages, 4-5
DMP switches, 4-2
DOS directory listings, 3-3, 3-18
DOS files, deleting, 3-3
DOS-11 volumes, initializing, 3-3
DOS volume directory manipulation,
3-3

EDI,
command conventions, 5-7
control modes, 5-4
default file specifiers, 5-3
error messages, 5-52
error reporting, 5-9
initiating, 5-2
line text editor, 5-1
modes, 5-4
operation and commands, basic,

5-10

preparing to run, 5-1
text access, 5-5
using, 5-1

EDI commands,
basic, 5-13
close operations, 5-50
extended, 5-23
input/output, 5-31
line pointer control (locative),

E_24
-~ ™ 3

Index-2

EDI commands (cont.),
setup, 5-23
text modification and manipula-
tion, 5-40
Edit commands, SLP, 6-6
Edit control characters, SLP,
Edit mode, entering text in,
Edit modes, EDI, 5-4
Editing a file, 5-11
Editing examples, SLP, 6-9
Editing session, sample, 5-23
Elimination of free blocks, 8-8
END command, 5-36
ENTER command, 2-15
Entering text in edit mode, 5-11
Entering text in input mode, 5-11
Entering text into a file, 5-11
Entry point table, 7-2
ERASE command, 5-42
Error codes,
PIP, 2-41
VFY, 8-16
Error messages,
DMP, 4-5
EDI, 5-52
fatal, 5-10,
FLX, 3-20
LBR, 7-27
PIP, 2-31
SLP, 6-12
VFY, 8-14
Error messages, command level
informational and, 5-9, 5-52
Error messages requiring EDI
restart, 5-9, 5-59
Error reporting,
EDI, 5-9
file, 8-6
Exceeded buffer capacity, 5-53
EXIT AND DELETE command, 5-52

EXIT command, 5-18
Extended EDI commands,

6-6
5-11

5-62

5-23

Fatal error messages, 5-10, 5-62

File access warning messages, 5-9,
5-58

File, creating a, 5-10

File, deleting a, 8-8

File, entering text into a, 5-11

File, editing a, 5-11

File, restoring a, 8-7

File access warning messages, 5-9,
5-58

FILE command, 5-32

File control switches, 3-15

File dump utility (DMP), 4-1

File error reporting, 8-6

File formats, cassette, 3-5

File header switch, 4-4

File identification option, 2-5

File name, 1-5

File option switches, LBR, 7-7

Filespec, 5-3

File specifiers,
defaults in LBR, 7
defaults in PIP, 2-
defaults in SLP, 6
defaults in VFY, 8
list of, 2-2

File transfer program (FLX),

File transfers, 3-2

File structure verification

utility (VFY), 8-1

Files,

deleting, DOS, 3-3

deleting, RT, 23-4

leting, RT, 3-4
format of library,
indirect, 1-7, 6-8
library, 7-28
marked-for-delete,
output, 5-6
SLP output,
text, 5-6

FIND command, 5-37

FLX,
cassette support,; 3-5
command string,; 3-2
error messages, 3-20
file transfer program, 3-1
initiating, 3-2
input files, 3-10
output files, 3-9
paper tape support,
switches, 3-11

Format conventicns,
command, 1-6

Format of library files, 7-1

Format mode switches, 3-11

Formats, cassette file, 3-5

FORM FEED command, 5-43

Free blocks, elimination of,

FREE command, 2-16

FREE switch (/FR), 8-12

/FR, FREE switch, 8-12

/FU,/LE,/LI, list switches,

3-1

6-4

3-10

8-8

7-15

/HD switch, 4-4

Header,
library, 7-2
module, 7-4

Header switch, file, 4-4

/ID switch, 4-4

Identification switch, 4-4
IDENTIFY command, 2-16

Indirect file, creating an, 6-8
Indirect files, 1-7, 6-8
Indirect files, using, 6-9

Index-3

Inflespc, 1-4 LIST ON TERMINAL command, 5-43

Informational and error messages, LIST switch (/LI), 8-12
command level, 5-9, 5-52 List switches (/LI,/LE,/FU), 7-15
/IN, INSERT switch, 7-14 LOCATE command, 5-19
Initializing, Locative commands, line pointer,
DOS-11 volumes, 3-3 5-34
RT-11 volumes, 3-4 Logical block switch, 4-4
Initiation of installed utilities, /LO, LOST switch, 8-12
1-2 Lost blocks, recovering, 8-9
Initiation of uninstalled LOST switch (/LO), 8-12
utilities, 1-3
Initiating,
DMP, 4-2
EDI, 5-2 MACRO CALL command, 5-45
FLX, 3-2 MACRO command, 5-44
LBR, 7-5 MACRO EXECUTE command, 5-46
pIP, 2-1 MACRO IMMEDIATE command, 5-47
RSX-11M utilities, 1-2 /MD switch, 4-4
SLP, 6-2 Memory dump switch, 4-4
VFY, 8-2 MERGE command, 2-8
Input and secondary files, 5-7 Mode,
Input file, FLX, 3-10 block, 5-5
Input mode, entering text in, 5-11 changing control, 5-4
Input/Output commands, 5-31 line-by-1line, 5-5
INSERT command, 5-18 Mode switch, ASCII, 4-3
Insert switch (/IN), 7-14 Mode switch, byte, 4-4
Installed utilities, initiation Mode switches, format, 3-11
of, 1-2 Mode switches, transfer, 3-12

Modes, EDI control, 5-4
Module header, 7-4
Module name table, 7-4
KILL command, 5-52 Multiply-allocated blocks,
deletion of, 8-8
Multi-volume cassette support, 3-9

/LB switch, 4-4
LBR command string, 7-5

LBR constraints, 7-27 NEXT command, 5-19
LBR error messages, 7-27 NEXT PRINT command, 5-20
LBR file option switches, 7-7 Normal operation, VFY, 8-2

LBR, initiating, 7-5
LBR, librarian utility program,

7-1
/LE,/LI1,/FU, list switches, 7-15 OLDPAGE command, 5-37
Librarian utility program (LBR), OPENS command, 5-26
7-1 Outflespc, 1-4
Library files, 7-28 OUTPUT command, 5-26
Library files, format of, 7-1 Output control switches, SLP, 6-4
Library functions, combining, 7-26 Output files,
Library header, 7-2 EDI, 5-7
/LI,/LE,/FU, list switches, 7-15 FLX, 3-10
/LI, LIST switch, 8-12 SLP, 6-4
Line-by-line mode, 5-5 OVERLAY command, 5-47

Line-by-line vs. block mode, 5-6
LINE CHANGE command, 5-43
Line delete (CTRL/U), 5-7

Line pointer control (locative) PAGE command, 5-38
commands, 5-34 PAGE FIND command, 5-38
Line text editor (EDI), 5-1 PAGE LOCATE, 5-39
LIST command, 2-17 Paper tape support, FLX, 3-10
LIST ON PSEUDO-DEVICE command, PASTE command, 5-48
5-44

Index-4

Peripheral Interchange Program
(PIP), 2-1

PIP commands, 2-6
PIP command string, 2-1
PIP command switches and sub-

w

switches, 2
PIP error codes, 2-41
PIP error messages, 2-31
PIP, Peripheral Interchange Pro-
gram, 2-1
Preparing to run EDI, 5-1
Preparing to run SLP, 6-1
PRINT command, 5-20
PROTECT command, 2-21
PURGE command, 2-24

/RC, READ CHECK switch, 8-13

READ CHECK switch (/RC), 8-13

READ command, 5-32

REBUILD switch (/RE), 8-11

Recovering lost blocks, 8-9

REMOVE commgnd, 2-25

RENAME command, 2-26

RENEW command, 5-22

REPLACE switch (/RP), 7-17
global format, 7-17
local format, 7-18

/RE, REBUILD switch, 8-11

Restart, error messages requiring

EDI, 5-9, 5-59
Restoring a Fllei 8~7
Restrictions,
while running VFY, 8-1
when aborting VFY, 8-1
RETYPE command, 5-22
/RP, replace switch, 7-17

RSX-11M utilities, initiating, 1-2

RT directory listing, 3-19

RT directory listings, 3-3

RT files, deleting, 3-4

RT volume directory manipulation,
3-3

RT-11 volumes, initializing, 3-4

Run EDI, preparing to, 5-1

Run SLP, preparing to, 6-1

Running VFY, restrictions while,
8-1

Sample editing session, 5-23

SAVE command, 5-48

SEARCH AND CHANGE command, 5-39

Search string constants, 5-8

Secondary files, input and, 5-7

SELECT PRIMARY command, 5-27

SELECT SECONDARY command, 5-28

Selective search switch (/SS),
7-23

Setup commands, 5-23

SUuSW L i

Subswi *'C]"QS PI

SIZE command, 5-29
SLP,

capabilities, 6-1
edit commands, 6=6

edit control characters, 6-7

editing examples, 6-10

environment, 6-1

error messages, 6-12

initialization, examples of, 6-3

initiating, 6-2

output control switches, 6-4

output files, 6-4

restrictions, 6-2

source language input program,
6-1

startup, 6-2

Source language input program

(sLp), 6-1

Specify base block address switch,

4-3

Specify first and last blocks

switch, 4-3

SPOOL command, 2-28

Spool switch (/SP), 7-23
/SP, spool switch, 7-23
Squeeze switch (/Sz), 7-24
Startup, SLP, 6-2

String,

DMP command, 4
FLX command, 3
UTILITY command,
VFY command, 8-2
D o~

-2
2
1-4

’ cmmand switches
and, 2-3

Switch,

/AS, 4-3

ASCII mode, 4-3

/BA, 4-3

/BL, 4-3

/BY, 4-4

byte mode, 4-4

/CO, COMPRESS, 7-7
/CR, CREATE, 7-9

/DE, DELETE, 7-11, 8-9
/DF, DEFAULT, 7-12
/DG, DELETE GLOBAL, 7-13
file header, 4-4

/FR, FREE, 8-12

/HD, 4-4

/ID, 4-4
Identification, 4-4
/IN, INSERT, 7-14

/LB, 4-4

/LI, LIST, 8-12
logical block, 4-4
/LO, LOST, 8-12

/MD' 4"4

memory dump, 4-4

/RC, READ CHECK, 8-13
/RE, REBUILD, 8-11
/RP, REPLACE, 7-17
specify base block address, 4-3

Index-5

Switch (cont.),
specify first and last blocks,
4-3
/SP, SPOOL, 7-23
/SS, SELECTIVE SEARCH, 7-23
/SZ, SQUEEZE, 7-24
Switches (/LI,/LE,/FU), list,
Switches and subswitches, PIP
command, 2-3
Switches,
DMP, 4-2
file control,
FLX, 3-11
format mode, 3-11
LBR file option, 7-7
transfer mode, 3-13
VFY command, 8-4
System-wide conventions, 1-8

7-15

3-15

TAB command, 5-29

Terminal conventions,

Text access modes, 5-5

Text files, 5-6

Text modification and manipula-
tion commands, 5-40

TOP commands, 5-40

TOP OF FILE commands, 5-22

Transfer mode switches, 3-13

Transfers, file, 3-2

Truncated output file, utilizing
a, 5-62

TYPE command,

5-7

5-49

Uninstalled utilities, initiation
of, 1-3

UNLOCK command, 2-29

UNSAVE command, 5-50

UPDATE command, 2-30

UPDATE switch (/UP), 8-10

UPPER CASE command, 5-30

Use of carriage return, 5-7

Use of *, 5-8

User identification code,

Using EDI, 5-1

Using indirect files, 6-9

Utilities, initiating RSX-11M, 1-2

Utility command string, 1-4

Utilizing a truncated output file,
5-62

1-5

8-5
5-31

Validity check,
VERIFY command,
VFY,
command string, 8-2
command switches, 8-4
error codes, 8-16
error messages, 8-14
file structure verification
utility, 8-1
initiating, 8-2
normal operation, 8-2
Volume directory manipulation, RT,
3-3
Volumes, initializing DOS-11, 3-3
Volumes, initializing RT, 3-4

Warning messages, file access,

5-9, 5-58
Wild cards, asterisk convention,
2-4

WRITE command, 5-33

Index-6

RSX-11M Utilities Procedures
Manual
DEC-11-OMUPA-B-D

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be repcrted on a Software
Probklem Repcrt (SPR) form

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience

Student programmer

000000

Non-programmer interested in computer concepts and capabilities

Name Date
Organization
Street
City State Zip Code
or
Country

If you require a written reply, please check here. E]

Fold Here

- Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

dlilgiftiall

Software Communications
P, 0. Box F
Maynard, Massachusetts 01754

digital equipment corporation

Printed in US4

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	5-59
	5-60
	5-61
	5-62
	5-63
	5-64
	5-65
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	7-39
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	B-29
	B-30
	C-01
	C-02
	C-03
	C-04
	Index-1
	Index-2
	Index-3
	Index-4
	Index-5
	Index-6
	replyA
	replyB
	xBack

