RSX-11M

Task Builder Reference Manual

DEC-11-OMTBA-B-D

RSX-11M Version 2

Order additional copies as directed on the Software
Information page at the back of this document.

digital equipment corporation - maynard. massachusetts

First Printing November, 1974
Revised, September 1975

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance to the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
Digital.

Copyright (:) 1974, 1975 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX

COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM

LIMITED RIGHTS LEGEND

Contract No.

Contractor or Subcontractor: Digital Equipment Corporation

All the material contained herein is considered limited rights data
under such contract.

12/75-15

CONTENTS

Page
PREFACE Xi
0.1 MANUAL OBJECTIVES AND READER ASSUMPTIONS xi
0.2 STRUCTURE OF THE DOCUMENT xi
6.3 ASSOCIATED DOCUMENTS xii
CHAPTER 1 INTRODUCTION 1-1
CHAPTER 2 COMMANDS 2-1
2.1 GENERAL COMMAND DISCUSSION 2-1
2.1.1 Task Command Line 2-2
2.1.2 Multiple Line Input 2-3
2.1.3 Options 2-3
2.1.4 Multiple Task Specificaticn 2-4
2.1.5 Indirect Command File Facility 2-5
2.1.6 Comments 2-7
2.1.7 File Specification 2-7
2.2 EXAMPLE: VERSION 1 OF CALC 2-8
2.2.1 Entering the Source Language 2-10
2.2.2 Compiling the FORTRAN Programs 2-11
2.2.3 Building the Task 2-11
2.3 SUMMARY OF SYNTAX RULES 2-11
2.3.1 yntax Rules 2-12
CHAPTER 3 SWITCHES AND OPTIONS 3-1

SWITCHES

Task Builder Switches

AC (Ancillary Control Processor)
CC (Concatenated Object Modules)
CP (Checkpointable)

CR (Cross Reference)

DA (Debugging Aid)

EA (Extended Arithmetic Element)
FP (Floating Point)

HD (Header)

LB (Library File)

MM (Memory Management)

MP (Overlay Description)

PI (Position Independent)

PM (Post Mortem Dump)

PR (Privileged)

SH (Short Map)

SP (Spool Map Output)

SQ (Sequential)

SS (Selective Search)

TR (Traceable)

XT:n (Exit on Diagnostic)
Examples

Override Conditions

.
1

.
B = e 0 00 <) Y U1 s W N

OWVWO~NOUdWNHO

.
i

. .
N el Ll e e e el el]
1

.
.

.
.
.

.

.
|

WWLUWWWWWWOWHWWWWWWWwWwWwwwww
. .
WNHRRFRHHEFHEHFHERPHERRRRHEERHERERR
WWWWWWWWWWWWWWWWWwWwWwWwwwww
1
HOWOVWEOEO~LIJAOUTUIUTE BB DWW W

iii

OPTIONS

Control Option

ABORT (Abort the Task Build)
Identification Options

TASK (Task Name)

UIC (User Identification Code)

PRI (Priority)

PAR (Partition)

Allocation Options

ACTFIL (Number of Active Files)
MAXBUF (Maximum Record Buffer Size)
FMTBUF (Format Buffer Size)

EXTSCT (Program Section Extension)
EXTTSK (Extend Task Memory)

STACK (Stack Size)

Examples of Allocation Options
Storage Sharing Options

1 COMMON (Resident Common Block)

2 LIBR (Resident Library)

3 Example of Storage Sharing Options
1

2

3

¢« & & e o v e
. . e e 2 e+ s e s e

NN NTOE RS BRWWWWWWWWRNNNDNN R
> W N o

S s e e e e o e e
P T T T
NOYUT W N

DN ONOMNODONONNNNNONNONODONNNODNDNDNDNDNDND

e 8 e e e

* ¢ e« e o

Device Specifying Options

UNITS (Logical Unit Usage)

ASG (Device Assignment)

Example of Device Specifying Options
Storage Altering Options

GBLDEF (Global Symbol Definition)
ABSPAT (Absolute Patch)

GBLPAT (Global Relative Patch)
Example of Storage Altering Options
Synchronous Trap Options

ODTV (ODT SST Vector)

TSKV (Task SST Vector)

WWWWwWwwWwWwWwWLwwWwwWwwwwuwwwwwuwwwwwwwwww
. « e s e P
> W N

o & e s e

D T Y

N

3.3 EXAMPLE: CALC;2
3.3.1 Correcting the Errors in Program Logic
3.3.2 Building the Task
CHAPTER 4 MEMORY ALLOCATION
4.1 TASK MEMORY
4.1.1 P-Sections
4.1.2 Allocation of P-sections
4.1.2.1 Sequential Allocation of P-sections
4.1.3 The Resolution of Global Symbols
4.2 SYSTEM MEMORY
4.2.1 Mapped and Unmapped Systems
4.2.2 Privileged Tasks
4.3 TASK IMAGE FILE
4.3.1 Checkpoint Area
4.4 MEMORY ALLOCATION FILE
4.4.1 Memory Allocation File Format
4.4,2 Global Cross-Reference Format
4.4.3 Structure of the Memory Allocation File
4.5 EXAMPLE: CALC;l MAP
4.5.1 Heading

iv

CHAPTER

CHAPTER

CHAPTER

[SN
. .

ur U
e N

5.1.2

. L] .
R e
e e e

.

oottt
U dWWwwww

oot
NN NN
« o e

w N =

.3

¢ e e e
W N

N

Segment Description
Program Section Allocation Synopsis
File Contents Description

EXAMPLE: CALC;2 MAP
OVERLAY CAPABILITY

OVERLAY DESCRIPTION

Overlay Structure

Overlay Tree

Loading Mechanism

Resolution of Global Symbols in a
Multi-segment Task

Resolution of P-sections in a Multi-segment
Task

Overlay Description Language (ODL)
.ROOT and .END Directives

.FCTR Directive

.NAME Directive

.PSECT Directive

Multiple Tree Structures

Defining a Multiple Tree Structure
Multiple Tree Example

Overlay Core Image

EXAMPLE: CALC;3

Defining the ODL File

Building the Task

Memory Allocation File for CALC;3

EXAMPLE CALC;4

SUMMARY OF THE OVERLAY DESCRIPTION LANGUAGE
LOADING MECHANISMS

AUTOLOAD

Autoload Indicator

Path~Loading

Autoload Vectors

MANUAL LOAD

Manual Load Calling Sequence

FORTRAN Subroutine for Manual Load Request
ERROR HANDLING

EXAMPLE: CALC;5

GLOBAL CROSS—-REFERENCE OF AN OVERLAID TASK
SHARED REGIONS

USING AN EXISTING SHARED REGION

CREATING A SHARED REGION

POSITION INDEPENDENT AND ABSOLUTE SHARED
REGIONS

Page

4-21
4-22
4-22

oot LUl ol
1
W0

7.4 EXAMPLE: CALC;6 BUILDING AND USING A SHARED
REGION

1 Building the Shared Region

.2 Modifying the Task to Use the Shared Region

3 The Memory Allocation Files

CHAPTER 8 HOST AND TARGET SYSTEMS

.1 BUILDING THE TASK FOR THE TARGET SYSTEM
1.1 Example

EXAMPLE: CALC;7

1 Rebuilding the Shared Region

.2 Rebuilding the Task for the Target System
3 The Memory Allocation Files

CHAPTER 9 MEMORY DUMPS

9.1 POST-MORTEM DUMPS
9.1.1 Description of a Dump Generated by PMD...

SNAPSHOT DUMP
.1 Format of the SNPBKS$ Macro
.2 Format of the SNAPS$ Macro
3 Example of a Snapshot Dump
APPENDIX A ERROR MESSAGES
A.l TASK BUILDER ERROR MESSAGES
A.2 CROSS REFERENCE ERROR MESSAGES

APPENDIX

w

TASK BUILDER DATA FORMATS

GLOBAL SYMBOL DIRECTORY (GSD)
Module Name

Control Section Name

Internal Symbol Name

Transfer Address

Global Symbol Name

Program Section Name

Program Version Identification

.
e e el e

WWwwwwww
~NoOUT s W N

END-OF-GLOBAL-SYMBOL-DIRECTORY

o}
N

o]
W

TEXT INFORMATION

RELOCATION DIRECTORY

Internal Relocation

Global Relocation

Internal Displaced Relocation
Global Displaced Relocation
Global Additive Relocation
Global Additive Displaced Relocation
Location Counter Definition
Location Counter Modification
Program Limits

P-Section Relocation

P-Section Displaced Relocation

[S A B N T S
e s e P .

WEWWWWwwWwww W w

= o

vi

LI A R T A I |
HOYoodIJdoautw

Wowwwowww

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

a0
b
H

NN
N

.

¢ .
.

.

WWWwwwwww
.

N WN

oo n0 00N

P-Section Additive Relocation

P-Section Additive Displaced Relocation
Complex Relocation

INTERNAL SYMBOL DIRECTORY

END OF MODULE

TASK IMAGE FILE STRUCTURE

LABEL BLOCK GROUP
Label Block Details

HEADER

Low Core Context

Logical Unit Table Entry
SEGMENT TABLES

Status

Relative Disk Address
Load Address

Segment Length

Link Up

Link Down

Link Next

AUTOLOAD VECTORS

ROOT SEGMENT

OVERLAY SEGMENTS

RESERVED SYMBOLS
TAILORING THE TASK BUILDER
INCLUDING A DEBUGGING AID

RSX-11M TASK BUILDER GLOSSARY

CROSS REFERENCE PROCESSING AND DATA FORMATS

CROSS REFERENCE PROCESSOR
CREF INPUT FILE FORMAT

SEND PACKET FORMAT

ADJUSTING THE CROSS-REFERENCE LINE FORMAT

vii

Page

B-20
B-21
B-22

Number

oWt WIWtUUJT W W wwwWwoWw
HOWONOWUEWNFWUD W

7YY
wN O

FIGURES

Memory Allocation File for IMGl.TSK on a
Mapped System

Memory Allocation File for IMGl.TSK on an
Unmapped System

Cross Reference Listing for MP1l.MAP

Memory Allocation File for CALC;1l

(Mapped System)

Memory Allocation File for CALC;2 .

(Mapped System)

Memory Allocation File for CALC;3

(Mapped System)

Memory Allocation File for CALC;4

(Mapped System)

Root Segment of Memory Allocation File for
CALC;5 (Mapped System)

Sample Overlaid Cross-Reference Listing
Memory Allocation File for the Shared Region
DTA (Mapped System)

Memory Allocation File for CALC;6

(Mapped System)

The Memory Allocation File for the Shared
Region (Unmapped System)

The Memory Allocation File for CALC;7
(Unmapped System)

Sample Post-Mortem Dump

Format of Snapshot Dump Control Block
Sample Program That Calls for Snapshot Dumps
Sample Snapshot Dump (Words Octal and RADS50)
Sample Snapshot Dump (Bytes Octal and ASCII)
General Object Module Format

GSD Record and Entry Format

Module Name Entry Format

Control Section Name Entry Format

Internal Symbol Name Entry Format

Transfer Address Entry Format

Global Symbol Name Entry Format

P-Section Name Entry Format

Program Version Identification Entry Format
End of GSD Record Format

Text Information Record Format

Relocation Directory Record Format
Internal Relocation Command Format

Global Relocation

Internal Displaced Relocation

Global Displaced Relocation

Global Additive Relocation

Global Additive Displaced Relocation
Location Counter Definition

Location Counter Modification

Program Limits

P-Section Relocation

P-Section Displaced Relocation

P-Section Additive Relocation

P-Section Additive Displaced Relocation
Complex Relocation

Internal Symbol Directory Record Format
End-of-Module Record Format

viii

4-12

4-14
4-17

5-20

6-11
6-12

11 11 | S T I I I B |
FPON~NOOOUTWHRRFOSWO,
N - O

wtﬂUJthU1WEfUJ®\0\D\ou>m

£
3
o
0
=

=g HoNoRoNoNoNoNe!

N~V W

> W W
=N

FIGURES (Cont.)

Task Image on Disk

Label Block Group

Task Header Fixed Part
Task Header Variable Part
Logical Unit Table Entry
Segment Descriptor
Autoload Vector Entry
CREF Input File Format
Send Packet Format

TABLES

Task Builder Switches
Task Builder Options
P-Section Attributes

ix

g
[}
\Q
1]

| I S N RS R I R |
>N

=R NoNeNoNoNeNoNe!

VWHHFHMFHFONWH

PREFACE

0.1 MANUAL OBJECTIVES AND READER ASSUMPTIONS

This manual is a tutorial, intended to introduce the user to the basic
concepts and capabilities of the RSX-11lM Task Builder.

Examples are used to introduce and describe features of the Task
Builder. These examples proceed from the simplest case to the most
complex. The reader may wish to try out some of the sequences to test
his understanding of the document.

The user should be familiar with the basic concepts of the RSX-11M
system described in the Introduction to RSX-11M and with basic
operating procedures described in the RSX-11M Operator Procedures
Manual (see Section 0.3 below).

0.2 STRUCTURE OF THE DOCUMENT

The manual has nine chapters. The first four chapters describe the
basic capabilities of the Task Builder, The 1last four chapters
describe the advanced capabilities, The Appendices 1list error
messages and give detailed descriptions of the structures used by the
Task Builder.

Chapter 1 outlines the capabilities of the Task Builder,

Chapter 2 describes the command sequences used to interact with the
Task Builder.

Chapter 3 lists the switches and options.

Chapter 4 describes memory allocation for the task and for the system
and gives examples of the memory allocation file.

Chapter 5 describes the overlay capability and the language used to
define an overlay structure.

Chapter 6 gives the two methods that can be used for 1loading overlay
segments.

Chapter 7 introduces shared reqgions, which can be used for
communication between tasks or to reduce the system's memory
requirements,

Chapter 8 describes the considerations for building a task on one
system to run on a system with a different hardware configuration.

Chapter 9 describes two types of memory dumps - Post-Mortem and
Snapshot.

A Glossary of terms is given in Appendix G.

xi

0.3 ASSOCIATED DOCUMENTS

Other manuals closely allied to the purposes of this document are des-
cribed briefly in the RSX-11M/RSX-11lS Documentation Directory, Order
No. DEC-11-OMUGA-B-D. The Documentation Directory defines the intended
readership of each manual in the RSX-11M/RSX-11S set and provides a
brief synopsis of each manual's contents.

xii

CHAPTER 1

INTRODUCTION

This manual introduces the user to the Task Builder and defines the
role of the Task Builder in the RSX-11M System.

The fundamental executable unit in the RSX-11lM System is the task. A
routine becomes an executable task image, as follows:

1. The routine is written in a supported source language,
2. The routine is entered as a text file, through the editor.

3. The routine is translated to an object module, using the
appropriate language translator,

4. The object module is converted to a task image using the Task
Builder,

5. Finally, the task is run.

If errors are found in the routine as a result of executing the task,
the user edits the text file created in step 2 to correct the errors,
and then repeats steps 3 through 5.

If a single routine is to be executed, the use of the Task Builder is
appropriately simple. The wuser gives as input only the name of the
file that contains the object module produced from the translation of
the program and gives as output a name for the task image.

In typical applications, generally a collection of routines is run
rather than a single program., In this case the user names each of the
object module files and the Task Builder 1links the object modules,
resolves any references to the system library, and produces a single
task image, readv to be installed and executed.

The Task Builder makes a set of assumptions (defaults) about the task
image based on typical usage and storage requirements, These
assumptions can be changed by including switches and options in the
task-building terminal sequence, thus directing the Task Builder to
build a task which more closely represents the input/output and
storage requirements of the task.

CHAPTER 1 INTRODUCTION

The Task Builder also produces, upon request, a memory allocation file
that contains information describing the allocation of storage, the
modules that comprise the task image, and the value of all global
symbols. The user may optionally request that a list of global symbols,
accompanied by the name of each referencing modules, be appended to the
file (global cross-reference).

If a reduction in the amount of memory required by the task is
necessary, the overlay capability can be used to divide the task into
overlay segments, Overlaying a task allows it to operate in a smaller
memory area and thus makes more space available to other tasks in the
system.,

If the task is configured as an overlay structure, (that is, a
multi-segment task), the user becomes responsible for loading segments
into memory as they are needed. There are two methods provided for
loading overlay segments: autoload and manual.

The autoload method makes the loading of overlays transparent to the
user., No special calls are required to load the overlay segments of
the task. Loading of the overlay segments is accomplished
automatically by the Overlay Runtime System according to the structure
defined by the user at the time the task was built,

The manual load method requires that specific calls to the Overlay
Runtime System be included in the coding of the task, and gives the
user full control over the loading process.

If the task communicates with another task, or makes use of resident
subroutines to save memory, the Task Builder allows the user to link
to existing shared regions and to create new shared regions for future
reference.

To move a task from one system to another with different memory
management status, a special switch (/MM) is included in the Task
Builder., The use of this switch allows tasks to be built on .one
system and to run on another.

The user can become familiar with the capabilities of the Task Builder
by degrees. Chapter 2 of this manual gives the basic information
about Task Builder commands. This information is sufficient to handle
many applications. The remaining chapters deal with special features
and capabilities for handling advanced applications and tailoring the
task image to suit the application. The appendices give detailed
information about the structure of the input and output files
processed by the Task Builder.

This manual describes the handling of an example application, CALC,
In the first treatment of CALC, the user builds a task using all the
default assumptions. Successive treatments illustrate the main points
of each chapter in a realistic manner. Switches and options are added
as they are required, an overlay structure is defined when the task
increases in size, the loading of overlays is optimized, a shared
region is added and finally the task is moved from a development
system to a system which does not have memory management.

The memory allocation files for the various stages of task development
are included. The effect of a change can be observed by examining the
map for the previous example and the map for the example in which the
change is made.

CHAPTER 2

COMMANDS

2,1 GENERAL COMMAND DISCUSSION

This chapter describes command sequences that can be used to build
tasks, Each command sequence is presented, by example, from the
simplest case to the most complex. All commands are then summarized
by a set of syntactic rules,

The first of a set of examples, designed to illustrate some of the
important features of the command language, concludes this chapter,
This example illustrates a simple task building sequence for a typical
application.

The convention of underlining system-generated text to distinguish it
from user type-in is used in this manual. For example:

TKB>IMG1l=IN1

The underline in the dialogue indicates that the system printed 'TKB)'
and the user typed 'IMGl=IN1',

Consider again the creation and execution of a task. Suppose a user
has written a FORTRAN program, He enters the program through a text
editor as the file PROG.FTN. Then he types the following commands in
response to the Monitor Console Routine's request for input:

2FOR CALC=PROG
DTKB IMG=CALC
SINS IMG
SRUN IMG

The first command (FOR) causes the FORTRAN compiler to translate the
source language of the file PROG.FTN into a relocatable object module
in the file CALC.OBJ. The second command (TKB) causes the Task
Builder to process the file CALC.OBJ to produce the task image file
IMG.TSK., The third command (INS) causes Install to add the task to
the directory of executable tasks. Finally, the fourth command (RUN)
causes the task to execute.

CHAPTER 2, COMMANDS

The example just given includes the command
>TKB IMG=CALC

This command illustrates the simplest use of the Task Builder, It
gives the name of a single file as output and the name of a single
file as input. This chapter describes, first by example and +then by
syntactic definition, the complete facility for the specification of
input and output files to the Task Builder,

2.1.1 Task Command Line

The task-command-line contains the output file specificatiocns,
followed by the input file specifications, separated by an equal sign.
There can be up to three output files and any number of input files.

The output files must be given in a specific order: the first file
named is the task image file, the second is the memory allocation
file, and the third 4is the symbol definition file, The memory
allocation file contains information about the size and location of
components within the task. The symbol definition file contains the
global symbol definitions in the task and their virtual or relocatable
addresses in a format suitable for re-processing by the Task Builder,
The Task Builder combines the input files to create a single
executable task image.

Any of the output file specifications can be omitted., When all three
output files are given, the task-~command line has the form:

task-image, map, symbol-definition = input, ...
Consider the following commands and the ways in which the output
filenames are interpreted.

Command Output Files
>TKB IMG1,MP1l,SF1=INl1 The task image file is IMG1l.TSK, the

memory allocation file is MP1.MAP, and
the symbol definition file is SF1,STB.

>TKB IMG1=INl The task image file is IMG1l.TSK.

>TKB ,MP1=INl The memory allocation file is MP1l.MAP,

>TKB ,,SF1=INl The symbol definition file is SF1.STB.

>TKB IMGl,,SF1l=IN1l The task image file is IMGl.TSK and the
symbol definition file is SF1.STB.

>TKB =IN1 ?@is is a diagnostic run with no output
iles.

CHAPTER 2, COMMANDS

2,1,2 Multiple Line Input

Although there can be a maximum of three output files, there can be
any number of input files, When several input files are used, a more
flexible format is sometimes necessary, one that consists of several
lines. This multi-line format is also necessary for the inclusion of
options, as discussed in the next section.

If the user types 'TKB' alone, the Monitor Console Routine (MCR)
invokes the Task Builder. The Task Builder then prompts for input
until it receives a line consisting of only the terminating sequence

n//m
/17 .

The sequence

>TKB
TKB>IMG1,MP1=IN1
TKB>IN2,IN3
TKBY>//

produces the same result as the single line command:
>TKB IMG1,MP1=IN1,IN2,IN3

This sequence produces the task image file IMGl.TSK and the memory
allocation file MP1.MAP from the input files IN1.0BJ, IN2.0BJ, and
IN3.0BJ.

The output file specifications and the separator '=' must appear on
the first TKB command line. Input file specifications can begin or
continue on subsequent lines.

The terminating symbol '//' directs the Task Builder to stop acceptin
input, build the task, and return to the Monitor Console Routine
level.

2.1.3 Options

Options are used to specify the characteristics of the task being
built. If the user types a single slash '/', the Task Builder
requests option information by displaying 'ENTER OPTIONS:' and
prompting for input.

>TKB
TKB>IMG1,MP1=IN1
TKBYIN2,IN3

TKB>/

ENTER OPTIONS:
TKBY>PRI=100

TKB »COMMON=JRNAL : RO
TKB>//

In this sequence the user entered the options PRI=1NN and
COMMON=JRJAL:RO and then typed a double slash to end option input.
It also returned to MCR!!

CHAPTER 2. COMMANDS

The RSX-1lM Task Builder provides 20 options. The syntax and
interpretation of each option are given in Chapter 3,

The general form of an option is a keyword followed by an equal sign
'=' followed by an argument 1list, The arguments in the list are
separated from one another by colons. In the example given, the first
option consists of the keyword 'PRI' and a single argument '100°
indicating that the task is to be assigned ‘the priority 100, The
second option consists of the keyword 'COMMON' and an argument list
YJRNAL:RO', indicating that the task accesses a common region named
JRNAL and the access is read-only.

More than one option can be given on a line. The symbol exclamation
point 'l' is used to separate options on a single line. For example:

TKB)>PRI=100 ! COMMON=JRNAL:RO
is equivalent to the two lines

TKB>PRI=100
TKB)COMMON=JRNAL : RO

Some options have argument lists that can be repeated. The symbol
comma ',' is used to separate the argument lists. For example:

TKB>COMMON=JRNAL:RO,RFIL:RW
In this command, the first argument list indicates that the task has
requested read-only access to the shared region JRNAL, The second
argument list indicates that the task has requested read-write access
to the shared region RFIL,
The following three sequences are equivalent:
TKB>COMMON=JRNAL:RO,RFIL:RW
TKB)>COMMON=JRNAL:RO | COMMON=RFIL:RW

TKB >COMMON=JRNAL RO
TKB)>COMMON=RFIL:RW

2.1.4 Multiple Task Specification

If more than one task is to be built, the terminating symbol, '/°'
(slash), can be used following option input to direct the Task Builder
to stop accepting input, build the task, and request information for
the next task build.

3%
)
=3

CHAPTER 2. COMMANDS

Consider the Sequence:

>TKB

TKB)IMG1=IN1l
TKBYIN2,IN3

TKB>/

ENTER OPTIONS:
TKB>PRI=100
TKB>COMMON=JRNAL: R0
TKB>/
TKB>IMG2=SUBl
TRB>//

The Task Builder accepts the output and input file specifications and
the option input, then stops accepting input when it encounters the
'/' during option input. The Task Builder builds IMG1.TSK and returns
to accept more input for building IMG2.TSK.

2.1.5 Indirect Command File Facility

The sequence of commands to the Task Builder can be entered directly
or entered as a text file and later invoked through the indirect
command file facility.

To use the indirect command file facility, the user first prepares a
file that contains the user command input for the desired interaction
with the Task Builder, He then invokes its contents by typing ‘'a'
followed by the file specification.

Suppose the text file AFIL is prepared, as follows:

IMG1,MP1=IN1
IN2,IN3

/

PRI=100
COMMON=JRNAL : RO
//

Later, the user can type:

>TKB @AFIL

When the Task Builder encounters the symbol '@', it directs its search
for commands to the file specified following the '@' symbol. When the
Task Builder is accepting input from an indirect file, it does not
display prompting messages on the terminal. The l-line command to
take commands from the indirect file AFIL is equivalent to the
keyboard sequence:

>TKB
TKB>IMG1,MP1=IN1
TKB>IN2,IN3

TKB>/

ENTER OPTIONS :
TKBYPRI=100

TKB > COMMON=JRNAL : RO
TKB>//

CHAPTER 2. COMMANDS

When the Task Builder encounters a double-slash in the indirect
file, it terminates indirect file processing, builds the task, and
exits to the monitor upon completion.

However, if the Task Builder encounters an end-of-file in the indirect
file before a double slash, it returns its search for commands to the
terminal and prompts for input.

The Task Builder permits two levels of indirection in file references.
The indirect file referenced in a terminal sequence can contain a
reference to another indirect file.

Suppose the file BFIL.CMD contains all the standard options that are
used by a particular group at an installation. That is every
programmer in the group uses the options in BFIL.CMD. To include
these standard options in his task building file, the user modifies
AFIL to include an indirect file reference to BFIL.,CMD as a separate
line in the option sequence.

The contents of AFIL.CMD then are:

IMG1,MP1=1IN1
IN2,IN3

/

PRI=100
COMMON=JRNAL : RO
@BFIL

//
Suppose the contents of BFIL.CMD are:

STACK=100
UNITS=5 ! ASG=DT1l:5

The terminal equivalent of the command
>TKB @AFIL
then is:

>TKB
TKB>IMGl,MP1=IN1
TKB>IN2,IN3

TKB>/

ENTER OPTIONS :
TKB>PRI=100

TKB >COMMON=JRNAL : RO
TKB)>STACK=100
TKB>UNITS=5 ! ASG=DT1l:5
TKB>//

The indirect file reference must appear as a separate line. For
example, if AFIL.CMD were modified by adding the '@BFIL' reference on
the same line as the 'COMMON=JRNAL:RO' option, the substitution would
not take place and an error would be reported.

CHAPTER 2. COMMANDS

2.1.6 Comments

Comment lines can be included at any point in the sequence. A comment
line begins with a semicolon ';' and is terminated by a carriage
return, All text on such a line is a comment. Comments can be
included in option 1lines. In this case, the text between the
semicolon and the carriage return is a comment.

Consider the annotation of the file just described; the wuser adds
comments to provide more information about the purpose and the status
of the task he is working on. Specifically, he adds some identifying
lines, notes the function of his input files and shared region, and
concludes with a comment on the current status of the task. The
contents of the file are as follows:

TASK 33A

DATA FROM GROUP E-46 WEEKLY

4 e we w5 wg ~e

MGl,MP1l=

: PROCESSING ROUTINES
’ IN1

: STATISTICAL TABLES
‘ IN2

; ADDITIONAL CONTROLS
f IN3

/

PRI=100

éOMMON=JRNAL:R0 ; RATE TABLES

; TASK STILL IN DEVELOPMENT

//

2.1.7 File Specification

Thus far the interaction with the Task Builder has been illustrated in
terms of filenames., The Task Builder adheres to the standard RSX-11M
conventions for file-specification. For any file, the user can
specify the device, the user identification code, the filename, the
type, the version number, and any number of switches,

Thus, the file specification has the form:

device: [group,member] f£ilename. type;version/sw. ..

CHAPTER 2, COMMANDS

Consider, once again, the commands:

>TKB
TKB>IMGL,MP1=1IN1
TKB>IN2,IN3
TKB>//

When the files are specified by name only, the default assumptions for
device, group, member, type, version and switch settings are applied.
For example, if the default user identification code is [200,200], the
task image file specification of the example is assumed to be:

SY0:[200,200] IMG1.TSK;1

That is, the task image file is produced on the system device (SY0)
under user identification code [200,200]. The default type for a task
image file is TSK and since the name IMGl.TSK is new, the version
number is 1. The default settings for all the task image switches
also apply. Switch defaults are described in full in Chapter 3.

Consider the following commands:

>TKB

TKB) [20 ,23] IMG1/CP/DA,LP: /CR=IN1
TKB>IN2;3,IN3

TKB>//

This sequence of commands produces the task image file IMG1l.TSK;l
(actually, it produces IMG1l.TSK with a version 1 higher than the
current version of IMG1l.TSK) under user identification code [20,23]

on the system device. The task image is checkpointable and contains
the standard debugging aid. The memory allocation map, including a
global cross-reference listing, is produced on the line printer. The
task is built from the latest versions of IN1.0OBJ and IN3.0BJ and a
specific version, number 3, of IN2.0BJ. The input files are all found
on the system device.

For some files, a device specification is sufficient. In the above
example, the memory allocation file is fully specified by.the device
LP. The memory allocation file is produced on the line printer, but
is not retained as a file.

In this example, switches CP, CR, and DA are used. .There are 20 Tgsk
Builder switch settings. The code, syntax and meaning for each switch
are given in Chapter 3.

2.2 EXAMPLE: VERSION 1 OF CALC

An example task, CALC, is developed in this manual from t@e simple
case given here through successive refinementg and increasing
complexity. The successive versions of CALC are designed to summarize
the major points of each chapter and to illustrate possible uses for
the facilities described.

CHAPTER 2. COMMANDS

As the first step in the development of the task CALC, three separate
FORTRAN routines are entered by means of a text editor, translated by
the FORTRAN compiler, and built into a task by the Task Builder.

The routines are:

RDIN which reads and analyzes input data and selects a data
processing routine on the basis of the analysis.

PROC1 which processes the input according to a specified set
of rules; and

RPRT which outputs the results as a series of reports.

The three routines communicate with each other through a common block
named 'DTA'.

CHAPTER 2. COMMANDS

2.2.1 Entering the Source Language

The source for the FORTRAN programs of the example CALC is entered and
filed by means of the text editor EDI. The user invokes EDI and types
in the source for the FORTRAN programs., The relevant parts of the
programs are shown below:

»EDI
EDI)>RDIN,FTN
[CREATING NEW FILE]
INPUT
C READ AND ANALYZE INPUT DATA,
C
C SELECT A PROCESSING ROUTINE
C
C ESTABLISH COMMON DATA BASE
C
COMMON /DTA/ A(200), I
C READ IN RAW DATA
READ (6,1) A
1 FORMAT (200F6.2)
c CALL DATA PROCESSING ROUTINE
CALIL PROC1
C GENERATE REPORT
CALL RPRT
END
*CL
EDI>PROC1.FTN
[CREATING NEW FILE]
INPUT
c FIRST DATA PROCESSING ROUTINE
o COMMUNICATION REGION
COMMON /DTA A(200),I
RETURN
END
*CL
EDI>RPRT,FTN
[CREATING NEW FILE]
INPUT
C INTERIM REPORT PROGRAM
C COMMUNICATION REGION
COMMON /DTA/ A(200),I
RETURN
END
*EX
[EXIT]

2-10

CHAPTER 2. COMMANDS

2.2.2 Compiling the FORTRAN Programs

The FORTRAN programs are compiled by the following sequence:

>FOR

FORYRDIN, LRDIN=RDIN
FORYPROC1,LPROC1=PROCL
FOR>RPRT , LRPRT=RPRT

The first command invokes the FORTRAN compiler. The second command
directs the compiler to take source input from RDIN.FTN, place the
relocatable object code in RDIN.OBJ and write the listing in
LRDIN.LST. The remaining commands perform similar actions for the
source files PROCl1 and RPRT.

2,2.3 Building the Task

The task for the three programs is built in the following way:

>TKB CALC;1,LP:=RDIN,PRCC1l,RPRT
The task building command specifies the name of the task image file
(CALC.TSK;1l), the device for the memory allocation file (LP) and the

names of the input files (RDIN,OBJ, PROC1l.0BJ and RPRT.OBJ). The task
makes use of all the default assumptions for switches and options.

2,3 SUMMARY OF SYNTAX RULES

Syntactic rules for the interaction between the wuser and the Task
Builder are given here, These rules do not present any new
information; rather, they define, in a more formal and concise way,
the syntax of the commands already described in this chapter.

In the syntax rules, the symbol '...' indicates repetition. For
example,

input-spec, ...

means one or more input-spec items separated by commas; +that is, one
of the following forms:

input-spec
input-spec, input-spec
input-spec, input-spec, input-spec

see etC.

CHAPTER 2.

COMMANDS

As another example,

arg: ...

means one or

more arg items separated by colons.

As a final example,

TKB>input-line

means one or

more of the indicated 'TKB input-line' items.

2.3.1 Syntax Rules

The syntax rules are as follows:

1. A task-building-command can have one of several forms.
first form is a single line:

The

The

The

>TKB task-command-line

second form has additional lines for input file names:

>TKB
TKB>task-command=-line
TKB>input-line

TKB>terminating=-symbol
third form allows the specification of options:

>TKB
TKB>task-command-line
TKB>/

ENTER OPTIONS:
TKB>option=-line

TKB)>terminating-symbol

fourth form has both input lines and option lines:

OTKB
TKB)task-command-line
TKB)input-line

TKB/

ENTER OPTIONS:
TKB>option-line

TKB>terminating=-symbol

2-12

CHAPTER

2. COMMANDS

The terminating symbol can be:
/ if more than one task is to be built, or
// if control is to return +to the Monitor

Console Routine.

A task~-command-line has one of the three forms:
output~file~list = input~file, ...
= input-file, e

@indirect-file

where indirect-file is a file-specification as defined in
Rule 7.

An output-file-list has one of the three forms:

task-file, map~file, symbol-file

task-file, map-file

task-file
where task-file is the file specification for the task image
file; map-file 1is the file specification for the memory
allocation file; and symbol-file is the file specification
for the symbol definition file. Any of the specifications
can be omitted, so that, for example, the form:

task-file, ,symbol-file
is permitted.
An input-line has either of the forms:

input-file, ...

@indirect-£file
where input-file and indirect-file are file-specifications.
An option-line has either of the forms:

option | ...

@indirect-file

where indirect-file is a file-specification,

2-13

CHAPTER 2. COMMANDS

6.

An option has the form:
keyword = argument-list, ...
where the argument-list is
args: ...
The syntax for each of the 20 options is given in Chapter 3.

A file~specification conforms to standard RSX-11M
conventions. It has the form

device: [group,member] filename. type;version/sw. ..

where everything is optional. The components are defined as
follows:

device is the name of the physical device on which the
volume containing the desired file is mounted.
The name consists of two ASCII characters
followed by an optional 1l- or 2-digit octal unit
number; for example, 'LP' or 'DT1'.

group is the group number and is in the range 1
through 377 (octal).

member is the member number in the range 1 through 377
(octal).

The combination of the group number and the member number is
called the user identification code (UIC).

filename is the name of the desired file. The file name
can be from 1 to 9 alphanumeric characters, for
example, CALC.

type is the 3=-character type identification, Files
with the same name but a different function are
distinguished from one another by the file type;
for example, CALC.TSK and CALC.OBJ.

version 1is the octal version number of the file,
Various versions of the same file are
distinguished from each other by this number;
for example, CALC;l and CALC;2.

swW is a switch specification. More than one switch
can be used, each separated from the previous
one by a '/'. The switch is a 2-character
alphabetic name which identifies the switch
option, The permissable switch options and
their syntax are given in Chapter 3,

2-14

CHAPTER 2. COMMANDS

The device, the user identification code, the type, the version, and
the switch specifications are all optional.

The following table of default assumptions applies to missing
components of a file-specification:
item default
device SY0, the system device *
group the system group number currently in effect *
member the system member number currently in effect *
type task image TSK
memory allocation MAP
symbol definition STB
object module OBJ
object module library OLB
overlay description ODL
indirect command CMD
version for an input file, the highest-numbered existing
version.
for an output file, one greater than the

highest-numbered existing version,

switch (the default for each switch is given

3.)

in Chapter

*Except when appearing with an overlay description, an explicit device
or UIC designation becomes the default for subsequent files

by commas.

For example:

DT1:IMGl,MP1=IN1,DF:IN2,IN3
File Device
IMGl.TSK DT1
MP1l,MAP DT1
IN1.0BJ SYO
IN2.0BJ DFO
IN3.0BJ DFO0

separated

CHAPTER 3

SWITCHES AND OPTIONS

This chapter describes the ways in which additional directions can be
given to the Task Builder for the construction of a task image. Much
of the information in this chapter is quite specialized and refers to
topics that are described later in the manual., A quick reading of
this chapter will show the user the range of ways he can adjust the
task image he builds. Later, the chapter can be used as a reference
for practical applications with specific requirements.

3.1 SWITCHES
The syntax for a file specification, as given in Chapter 2, is:
dev: [group,member] filename. type;version/sw-1/sw-2.../sw-n

The file specification concludes with zero or more switches, sw-l,
sWw=2, ..., sw-n, and these are described in what follows:

When a switch is not given by the user, the Task Builder establishes a
setting for the switch, called a default assumption.

A switch is designated by a 2-character switch code. The allowable
code values are defined by the processor which interprets the code.
The code is an indication that the switch applies or does not apply.
For example, if the switch code is CP (checkpointable), then the
switch settings recognized are:

/CP The task is checkpointable,
/-CP The task is not checkpointable.
/NOCP The task is not checkpointable,

The switch codes allowed by the Task Builder are given in alphabetical
order in Table 3~1. After the alphabetical listing, a more detailed
description is given for each switch,

3-1

CHAPTER 3. SWITCHES AND OPTIONS

Table 3-1
Task Builder Switches
APPLIES
CODE MEANING TO FILE* DEFAULT
AC Task is an ancillary control proc- T -AC
essor.,
CcC Input File Consists of concatenated I ccC
object modules.
CP Task is checkpointable. T -CP
CR Append a global cross-reference M -CR
listing to the memory allocation
file.
DA Task contains a debugging aid. T,I -DA
EA Task uses extended arithmetic T -EA
element.
FP Task uses the floating T -FP
point processor.
HD Task image includes a header. T,S HD
LB Input file is a library file. I -1LB
MM System has memory management. T MM or-MM**
MP Input file contains an overlay I -MP
description.
PI Task is position independent. T,S -PI
PM Post mortem dump is requested. T -PM
PR Task has privleged access rights. T -PR
SH Short memory allocation file is M -SH
requested.
SP Spool map output. M SP
SQ Task p-sections are allocated T -SQ
sequentially.
ss Selective Search for global 1 -8s
symbols.
TR Task is to be traced. T -TR
XT:n Task Builder exits after n T ~XT
diagnostics.
* T task image file
S symbol definition file
M memory allocation file
I input file
** The default for the memory management switch is MM if the host

system has memory management hardware and -MM if the host system
does not have memory management hardware.

3-2

CHAPTER 3. SWITCHES AND OPTIONS

3.1.1 Task Builder Switches

The switches recognized by the Task Builder are described in this
section. For each switch, the following information is given:

o the switch mnemonic,
o the file(s) to which the switch can be applied.

o a description of the effect of the switch on the Task
Builder, and

o) the default assumption made if the switch is not present.

The switches are given in alphabetical order.

3.1.1.1 AC (Ancillary Control Processor)

file: task image

meaning: The task is an ancillary control processor, An ancillary
control processor is a privileged task that extends certain
Executive functions. For example, the system task 'FllACP'
is an ancillary control processor that receives and
processes file related input and output requests.

effect: The task is privileged. The Task Builder sets the AC
attribute flag and the privileged attribute flag in the task
label block flag word.

default: -=AC

3.1.1.2 CC (Concatenated Object Modules)

file: input

meaning: The file contains more than one object module,

effect: The Task Builder includes in the task image all the modules
in the file, If this switch is negated, the Task Builder
includes in the task image only the first module in the
file.

default: CC

3-3

CHAPTER 3. SWITCHES AND OPTIONS

3.1.1.3 CP (Checkpointable)

file: task image

meaning: The task is checkpointable.

effect: The Task Builder allocates in the task image a checkpoint
area equal to the size of the partition for which the task
is built. If the task is checkpointed, the entire parti-
tion is recorded in this area. The checkpoint area is
described in connection with the task image in Chapter 4.

default: ~CP

3.1.1.4 CR (Cross Reference)

file: task image or memory allocation

meaning: A global cross-reference is to be appended to the memory
allocation file.

effect: The cross-reference task is invoked to append a 1list of
global symbols, and their referencing modules, to the
memory allocation file. The format and content of the
cross-reference is explained in Section 4.4.2.

default: -CR

3.1.1.5 DA (Debugging Aid)

file: task image or input

meaning: The task includes a debugging aid.

effect: The Task Builder performs the special processing described
in Appendix F. If this switch is applied to the task image
file, the Task Builder automatically includes the system
debugging aid SY:[1,110DT.OBJ in the task image.

default: -DA

3.1.1.6 EA (Extended Arithmetic Element)

file: task image
meaning: The task uses the KE-11lA Extended Arithmetic Element.

effect: The Task Builder allocates three words in the task header
for the extended arithmetic element save area.

default: =EA

CHAPTER 3. SWITCHES AND OPTIONS

3.1.1.7 FP (Floating Point)

file: task image

meaning: The task uses the Floating Point Processor.

effect: The Task Builder allocates 25 words in the task
the floating point save area.

default: -FP

3.1.1.8 HD (Header)
file: task image or symbol definition

meaning: A header is to be included in the task image.

header

for

The negation

of this switch to produce a shared region is described in

Chapter 7.

effect: The Task Builder constructs a header in the task image.

content of the header is described in Appendix C,

default: HD

3.1.1.9 LB (Library File)

This switch has two forms:
1. Without arguments: LB

o amreIvEn A

2e With arg uments e L

to

smod-1:mod-2,..:mcd-8
The interpretation of the switch depends upon the form.

file: input

meanings 1. If the switch is applied without arguments,

undefined global references.

The

the input
file is assumed to be a library file of relocatable
object modules to be searched for the resolution of

2. If the switch is applied with arguments, the input file
is assumed to be a library file of relocatable object
modules from which the modules named in the argument

list are to be taken for inclusion in the task image.

effect: 1. If no arguments are specified, the Task Builder searches
the file to resolve undefined global references and

extracts from the library for inclusion

in the task

image any modules that contain definitions for such

references.

2. If arguments are specified, the Task Builder

only the named modules in the task image.

3-5

includes

CHAPTER 3.

default:

SWITCHES AND OPTIONS

NOTE

1. If the user wants the Task Builder to
search a library file both to resolve
global references and to select named
modules for inclusion in the task image,
he must name the library file twice:
once, with the LB switch and no
arguments to direct the Task Builder to
search the file for wundefined global
references, and a second time with the
desired modules to direct the Task
Builder to include those modules in the
task image being built,

2. The SS option may be used with the LB
option (with or without arguments)
to perform a selective search for
global definitions.

3.1.1.10 MM (Memory Management)

file:

meaning:

effect:

default:

3.1.1.11

task image

The system on which the task will run has memory management
hardware. Mapped and unmapped systems are described in
Chapter 4. The use of this switch to build a task to run on
another system with different mapping status is illustrated
in Chapter 8.

The Task Builder allocates memory for a mapped or unmapped
system independent of the mapping status of the system on
which the task is being built. If -MM is specified, the
Task Builder assumes an unmapped system and no memory
managmenet.

MM or -MM. The Task Builder allocates memory according to

the mapping status of the system on which the task is being
built.

MP (Overlay Description)

file:

meaning:

effect:

input

The input file describes an overlay structure for the task.
Overlay descriptions are discussed in Chapter 5.

The Task Builder receives all the input file specifications

from this file and allocates memory as directed by the
overlay description,

3-6

CHAPTER 3.

default:

3.1.1.12

file:

meaning:

effect:

default:

3.1.1.13

file:

meaning:

effect:

default:

3.1.1.14
file:

meaning:

effect:

default:

SWITCHES AND OPTIONS

NOTE

When an overlay description file is
specified as the input file for a task,
it must be the only input file
specified, The Task Builder does not
accept any other input files,

PI (Position Independent)

task image or symbol definition

The task contains only position independent code or data.
Position independent shared regions are described in Chapter
7.

The Task Builder sets the Position 1Independent Code (PIC)
attribute flag in the task label block flag word.

=PI

PM (Post Mortem Dump)

task image

In the event of an abnormal task termination, the system
will automatically 1list the contents of task memory.
(See Chapter 9 for information on memory dumps.)

The Task Builder sets the Post-Mortem Dump flag in the
Task label flag word.

-PM

PR (Privileged)

task image

The task is privileged with respect to memory access rights.
The task can access the I/0 page, and the Executive in
addition to its own partition. Privileged tasks are
described in Chapter 4.

The Task Builder sets the Privileged Attribute flag in the
task label block flag word.

-PR

3-7

CHAPTER 3 SWITCHES AND OPTIONS

3.1.1.15

file:

meanings

effect:

default:

3.1.1.16
file:

meaning:

effect:

default:

3.1.1.17
file:

meaning:

effect:

default:

3.1.1.18
file:

meaning:

effect:

default:

SH (Short Map)

memory allocation

The short version of the memory allocation file is produced.
Chapter 4 describes the memory allocation file and gives a
short and a long version of a memory allocation file.

The Task Builder does not produce the 'File Contents'
section of the memory allocation file.

-SH

SP (Spool Map Output)

memory allocation

Invoke the print symbiont to list the map file on LP{.
The file is deleted after printing.

The Task Builder creates a map file on SY§ and then
uses the print symbiont to list the file. The file is
deleted after printing.

Sp

5Q (Sequential)

task image

The task image is constructed from the specified program
sections in the order in which they are input. Chapter 4
describes the allocation of the task image and gives an
example which shows the allocation performed under the
default assumption and the allocation performed when the SQ
switch is specified.

The Task Builder does not re-order the program sections
alphabetically. °

-sQ

SS (Selective Search)

input

Do not include a global symbol definition from this module
unless a previously undefined reference to the global
symbol exists.

The Task Builder searches the Global Symbol Table for each
global symbol defined in the module. If an undefined
reference to a symbol is found, the corresponding definition
is included. When applied to a library or concatenated
object file, the switch is applied to each module in the
file.

-SS

CHAPTER 3.
3.1.1.19
file:
meaning:

effect:

default:

3.1.1.20

file:

meaning:

effect:

default:

SWITCHES AND OPTIONS

TR (Traceable)

task image

The
The
the
the

-TR

task is traceable.

Task Builder sets the T bit in the initial PS word of
task. When the task is executed, a trace trap occurs on
completion of each instruction.

XT:n (Exit on Diagnostic)

task image

More than n error diagnostics are not acceptable,

The

Task Builder exits after n error diagnostics have been

produced., The number of diagnostics can be specified as a
decimal or octal number, using the conventions:

n. means a decimal number (the decimal point must be
included) .
#n or n means an octal number.

If n is not specified, it is assumed to be 1.

=XT

3.1.2 Examples

The following terminal sequences illustrate the use of switches in
file specifications and the resulting interpretation.

Terminal Sequence Interpretation
>TKB IMGl/CP/DA=IN1l/-CC The task IMGl.TSK is checkpointable and
- includes the debugging aid

SY:{1,1]10DT.OBJ. The input file 1INl
contains only one object module.

2TKB The task IMG2.TSK is a privileged task.
TKB>IMG2/PR,MP1l/SH= The short map MPl.MAP is requested. The
TKB>IN2,RSX11M,STB inputs for the task are the file IN2.0BJ
TKB>// and the symbol definition file
RSX11M.STB which 1links the task to the
subroutines and data base of the
Executive.
>TKB The task IMG3.TSK contains the input
TKB)>IMG3=IN3 file IN3,0BJ, the modules SUBl and SUB2
TKB>LB1/LB:SUB1:SUB2 from the library £file LBl, and the
TKB>LBl/LB,DBGl/DA debugging aid DBGl.0BJ. The library
TKB>// file LBl.OLB is specilied a second time

without arguments so that the Task
Builder will search the file for
undefined global references.

3-9

CHAPTER 3. SWITCHES AND OPTIONS

>TKB IMG4/XT:5=TREE/MP The Task IMG4.TSK is built from the

- overlay description contained in the
file TREE.ODL. If more than five
diagnostics occur, the Task Builder
aborts the run.

3.1.3 Override Conditions

In some cases, it is not reasonable to apply two particular switches
to a file. When such a conflict occurs, the Task Builder selects the
overriding switch according to the following table:

switch switch overriding switch
AC PR AC
EA FP FP
cC LB LB

For example, in the terminal sequence:
MCR>TKB IMGS5=IN6,IN5/LB/CC

The input file IN5 is assumed to be a library £file that is to be
searched for undefined global references and not an input file with
several object modules.

3.2 OPTIONS

Twenty options are available to the user of the RSX-11lM Task
Builder, These options give the Task Builder information about the
characteristics of the task.

Some of these options are of interest to all users of the system, some
of interest only to the FORTRAN programmer, and some of interest only
to the MACRO-11 programmer. The interest range 1is given with the
description of the option. For more detailed descriptions of the

FORTRAN-related options, read the appropriate FORTRAN IV or FORTRAN
IV-PLUS manual.

CHAPTER 3. SWITCHES AND OPTIONS

Options can be divided into seven categories. The identifying
mnemonics and a brief description for each category are listed below:

l. contr - Control options are used to affect Task Builder
execution, ABORT is the only member of this
category. The user can direct the Task Builder to
abort the task build by the use of the option
ABORT,

2, ident - Identification options are used to identify task
characteristics, The task name, priority, user
identification code, and partition can be
specified by the use of options in this category.

3. alloc - Allocation options are used to modify the task's
memory allocation, The size of stack,
program-sectiocns in the task, and FORTRAN work
areas and buffers can be adjusted by the use of
options in this category.

4, share - Storage sharing options are used to indicate the
task's intention to access a shared region.

5. device - Device specifying options are used to specify the
number of units required by the task and the
assignment of physical devices to logical unit
numbers,

6. alter - Content altering options are used to define a
global symbol and value or to introduce patches in
the task image

7. synch - Synchronous trap options are used to define
synchronous trap vectors.

Table 3-2 lists all the options alphabetically. A brief description
of each option is given. The interest range of the option is
indicated by the following codes:

F option is of interest to FORTRAN programmers only.
M option is of interest to MACRO-1ll programmers only.
FM option is of interest to both.

The mnemonic for the category to which the option belongs is also
indicated in the table.

The options are then described 'in more detail by category.

CHAPTER 3,

SWITCHES AND OPTIONS

Table 3-2
Task Builder Options

Option Meaning Interest Category

ABORT Direct TKB to terminate build. FM contr

ABSPAT Declare absolute patch values. M alter

ACTFIL Declare number of files open F alloc
simultaneously.

ASG Declare device assignment to FM device
logical units.

COMMON Declare task's intention to access FM share
a memory resident shared region.

EXTSCT Declare extension of a program FM alloc
section.

EXTTSK Extend the amount of memory FM alloc
owned by a task.

FMTBUF Declare extension of buffer used F alloc
for processing format strings
at run-time.

GBLDEF Declare a global symbol definition. M alter

GBLPAT Declare a series of patch values M alter
relative to a global symbol.

LIBR Declare task's intention to access FM share
a memory resident shared region,

MAXBUF Declare an extension to the FORTRAN F alloc
record buffer.

ODTV Declare the address and size of M synch
the debugging aid SST vector.

PAR Declare partition name and FM ident
dimensions.

PRI Declare priority. M ident

STACK Declare the size of the stack. M alloc

TASK Declare the name of the task. M ident

TSKV Declare the address of the task M synch
SST vector.

UIC Declare the user identification code FM ident
under which the task runs.

UNITS Declare the maximum number of wmits. FM device

CHAPTER 3. SWITCHES AND OPTIONS

3.2.1 Control Option

There is only one control option. This option is of interest to all
users of the system.

3.2.,1.1 ABORT (Abort the Task Build) = The ABORT option directs the
Task Builder to abort the task build.

ar error in the

rlie
oduce an unusable

This option is used when it is discovered that an ea
terminal sequence will cause the Task Builder to pro
task image.,

The task Builder, on recognizing the keyword ABORT, stops accepting
input and restarts for another task build.

An example of the use of the ABORT option is given in section 3.3,
syntax: ABORT = n
where n is an integer value. The integer is required to
satisfy the general form of an option; however,

the value is ignored in this case,

default: none

NOTE

The wuse of CTRL/Z causes the Tack
Builder to stop accepting input and
build the task.

Mha ARADM ~And 3 An +ha AnTsry mrAna raer
il LXINTAN A Ut) A \JLL -I.D (SS9 L) Ull-l.! LJ-L uyc WGJ
to restart the Task Builder if an error

is discovered and the Task Builder
output is not desired.

3.2.2 Identification Options

Four options are available for providing identifying information for
the task. These options are of interest to all users of the system,

The identification options specify the name of the task, the wuser
identification code, the priority, and the partition, The user
identification code can be specified when the task is run. If such a
specification 1is not made at run time, the user identification code
established when the task was built is used.

CHAPTER 3. SWITCHES AND OPTIONS

3.2.2.1 TASK (Task Name) - The TASK option specifies the name of the
task.

syntax: TASK = task-name

where: task-name is a 1= to 6-character radix-50 name identifying
the task.

default: The first six characters of the name of the task image file
are used to identify the task when the task is installed.

3.2.2,2 UIC (User Identification Code) - The UIC option declares the
User Identification Code (UIC) for the task if no UIC is specified
when execution is requested.

syntax: UIC = [group,member]

where: group is an octal number in the range 1 - 377 which
specifies the group.

member is an octal number in the range 1 - 377 which
specifies the member.

default: The UIC under which the Task Builder is running
(normally the terminal UIC).

3.2.2.3 PRI (Priority) = The PRI declares the priority at which the
task executes. If no priority is specified when the task is
installed, this priority is used.

syntax: PRI = priority-number
where: priority-number is a decimal integer in the range 1 - 250

default: (established by Install) See the RSX-11M Operator's
Procedures Manual.

3.2.2.4 PAR (Partition) - The PAR option identifies the partition for
which the task is built.

In a mapped system a task can be installed in any system or user
partition large enough to contain it.

In an unmapped system, the task is bound to physical memory and must
be installed in the partition for which it was built or in a partition
starting at the same memory address as that partition,

syntax: PAR = pname [:base:length]

where pname is the name of the partition

base is the octal byte address defining the start of
the partition,

CHAPTER 3. SWITCHES AND OPTIONS

length is the octal number of bytes contained in the
partition.
In a mapped system a length of zero 1implies a
system~-controlled partition. A non-zero length
implies a user-controlled partition.
default: PAR = GEN

If the base and length are not specified, the Task Builder tries to

obtain that information from the system on which the task is being
built. If the partition named is resident in that system, the base
and length can be obtained.

The Task Builder binds the task to the addresses defined by

the partition base and verifies that the task does not exceed the
length specification if the partition is user-controlled.

To determine the validity of the task the Task Builder must consider
two types of task images, runnable and non-runnable, and two types of
systems, mapped and unmapped. A runnable task image must have a
header and can be installed and run. & non-runnable image must not
have a header and can not be executed directly. The Task Builder,
therefore, enforces the address limits according to the type of image
and type of system, as follows:

Runnable tasks Non-~runnable imaces

mapped unmapped mapped unmapped

base 9 on 22wo1d on 4k on 32word
boundary boundarv boundary

length nultiple |multiple rnultiple multiple

of 32words

of 32words

of 32words

of 32words

high address
bound

(32%-32)
words

28K Words

(32K-32)
words

(32¥-32)Words

3.2,3 Allocation Options

There are

length of an allocation.

to the FORTRAN programmer,

all,

six options that direct the

Task Builder

to change the
The first three options are of interest only
The remaining options are of

interest to

3.2,3.1 ACTFIL (Number of Active Files) - The ACTFIL option declares

the

number of files that the task can have open simultaneously.

For

each active file, an allocation of approximately 512 bytes is made.

CHAPTER 3., SWITCHES AND OPTIONS

If the number of active files used by a task is less than the default
assumption of four, the ACTFIL option can be used to save space. If
the number of active files is more than the default assumption, the
ACTFIL option must be used to direct the Task Builder to make the
additional allocation so that the task can run.

The FORTRAN Object Time System (OTS) and File Control Services (FCS)

must be included in the task image for the extension to take place.
The p-section that is extended has the reserved name '$$FSR1’',

syntax: ACTFIL = file-max

where: file-max is a decimal integer indicating the maximum number
of files which can be open at the same time,

default: ACTFIL = 4

3.2.3.2 MAXBUF (Maximum Record Buffer Size) - The MAXBUF option
declares the maximum record buffer size required for any file used by
the task.

This option must be used to extend the buffer whenever a file is to be
processed in which the maximum record size exceeds the default buffer
length.

The FORTRAN Object Time System must be included in the task image for
the extension to take place. The program section that is extended has
the reserved name 'S$$IOBl'.

syntax: MAXBUF = max-record

where: max-record is a decimal integer, larger than the
default, which specifies the maximum record
size in bytes.

default: MAXBUF = 132

3.2.3.3 FMTBUF (Format Buffer Size) - The FMTBUF option declares the
length of internal working storage allocated for the compilation of
format specifications at run-time. The length of this area must equal
or exceed the number of bytes in the longest format string to be
processed.

Run-time compilation occurs whenever an array is referenced as the
source of formatting information within a FORTRAN I/O Statement. The
program section to be extended has the reserved name 'S$$OBFl’'.

syntax: FMTBUF = max-format

where: max-format is a decimal integer larger than the default,
which specifies the number of characters in
the longest format specification.

default: FMTBUF = 132

CHAPTER 3. SWITCHES AND OPTIONS

3.2.3.4 EXTSCT (Program Section Extension) = The EXTSCT option
declares an extension in size for a p-section. P-sections and their
attributes are described in Chapter 4.

If the p-section has the attribute CON (concatenated), the section is
extended by the specified number of bytes. If the p-section has the
attribute OCR (overlay), the section is extended only if the length of
the extension is greater than the length of the p-section.

For example, suppose that p-section BUFF is 200 bytes 1long and the
option below is given:

EXTSCT = BUFF:250

The extension specified for the p-section depends on the CON/OVR
attribute; specifically:

for CON the extension is 250 bytes.
for OVR the extension is 50 bytes.

The extension occurs when the p-section name 1is encounted 1in an

input object file or in the overlay description file.
Syntax: EXTSCT = p-sect-name:extension

where: p-sect-name is a 1- to 6-character radix-50 name
specifying the p-section to be extended.

extension is an octal integer that specifies the number
of bytes by which to extend the p-section.

default: none

3.2.3.5 EXTTSK (Extend Task Memory) - The EXTTSK option declares the
amount of additional memory to be allocated to the task when in-
stalled in a system-controlled partition.

The amount of memory available to the task will be the sum of the
task size plus the increment specified in the EXTTSK keyword (rounded
up to the nearest 32-word boundary). If the task is built for a user-
controlled partition, the allocation of task memory reverts to the
partition size. The maximum size of the task may not exceed 32K - 32
words.

In an unmapped system the EXTTSK keyword is ignored.
syntax: EXTTSK = length

where: length is a decimal number specifying the increase
in task memory allocation (in words).

Il
o

default: EXTTSK

CHAPTER 3. SWITCHES AND OPTIONS

3.2.3.6 STACK (Stack Size) - The STACK option declares the maximum
size of the stack required by the task.,

The stack is an area of memory used for temporary storage, subroutine
calls, and interrupt service linkages. The stack is referenced by
hardware register R6 (the stack pointer),

syntax: STACK = stack-size

where: stack=-size is a decimal integer specifying the number of
words required for the stack.

default: STACK = 256

3.2.3.7 Examples of Allocation Options - Suppose the FORTRAN routines
contained in file GRP1l use eight files simultaneously and the maximum
record length in one of these files is 160 characters,

The terminal sequence used to build the task that would permit these
programs to run is:

>TKB
TKB)IMG1,MP1=GRP1
TKB>/

ENTER OPTIONS :
TKBYACTFIL = 8
TKBYMAXBUF = 160
TKB>//

3.2.4 Storage Sharing Options

Two options indicate the task's intention to access a shared region,
These options are of interest to all users of the system,

By convention, the COMMON option indicates the use of a shared region
that contains only data and the LIBR option indicates the use of a
shared region that contains only code. The two options have the same
effect, however, and can be used interchangeably.

3.2,4,1 COMMON (Resident Common Block) - The COMMON option declares a
resident common block for use by the task.

syntax: COMMON = common-name :access=code [:apr]

where: common-name is the 1= to 6-character radix-=50 name of the
common block.

access=-code is the code RW (read-write) or the code RO
{read-only) indicating the type of access the
task requires,

CHAPTER 3, SWITCHES AND OPTIONS

apr is an integer in the range 0-7 which
specifies the first Addressing Page Register
to be reserved for the common block.

default: none

The apr is optional and accepted only for a mapped system.

3.2,4.2 LIBR (Resident Library) - The LIBR option declares a resident
library for use by the task.

syntax: LIBR = library-name:access=-code[:apr]

where: library-name is the 1- to 6=-character radix-50 name
specifying the library.

access-=code is the code RW (read-write) or the code RO
(read-only) indicating the type of access the
task requires.

apr is an integer in the range 0 - 7 which
specifies the first Addressing Page Register
to be reserved for the library.

default: none

The apr 1is optiocnal and is accepted only for a mapped system,

3.2.4.3 Example of Storage Sharing Options - Suppose the task
composed of the MACRO-11 progrems TSTI and TSTZ2 accesses a shared
region DTST that contains data and a shared region STST that contains
code,

The terminal sequence used to build the task is:

>TKB
TKBY>CHK,LP:=TST1 ,TST2
TKB)/

ENTER OPTICNS:
TKB>COMMON = DTST:RW
TKB>LIBR = STST:RO
TKB>//

CHAPTER 3. SWITCHES AND OPTIONS

3.2,5 Device Specifying Options

The two options in this category are of interest to all users of the
system, The UNITS option declares the number of input/output units
that the task uses. The ASG option declares the devices that are
assigned to these units,

The number of logical units and the highest unit number assigned must
be compatible, An attempt to assign a physical device to a unit
number that is larger than the total number of units declared is an
error. Similarly, the number of units declared cannot be less than
the highest unit assigned.

Since the options are processed as they are encountered, to increase
the number of units and assign devices to these units, the user should
enter the UNITS option first and then the ASG option. Entering the
options in the reverse order can produce an error message.

3.2.5.1 UNITS (Logical Unit Usage) - The UNITS option declares the
number of logical units that are used by the task.,

syntax: UNITS = max-units

where: max-units is a decimal integer in the range 0 - 250
specifying the maximum number of logical
units.

default: UNITS = 6

3.2.,5.2 ASG _(Device Assignment) - The ASG option declares the
physical device that is assigned to one or more units.

syntax: ASG = device-name:unit-num-1:unit-num~-2,,,:unit-num-38

where: device-name - is a 2-character alphabetic device name
followed by a 1- or 2-digit decimal unit
number,
unit-num-1 are decimal integers indicating the
unit-num-2 logical unit numbers.

unit=num-38

default: ASG = SY0:1:2:3:4, TIO:5, CLO:6

3.2.5.3 Example of Device Specifying Options = Suppose the FORTRAN
programs specified in the file GRP1l require nine logical units. The
device assignments for units 1-6 agree with the default assumptions
and logical wunits 7,8 and 9 are assigned to DECtape 1 (DTl). The
terminal sequence of the example of 3.2.3.6 is changed to include
device assignment options, as follows.

CHAPTER 3. SWITCHES AND OPTIONS

>TKB
TKB>IMGL,MP1l=GRP1

TKB>/

ENTER OPTIONS:

TKBY>ACTFIL = 8 ! MAXBUF = 160
TKBY>UNITS=9 ! ASG = DT1:7:8:9
TKB>//

3.2,6 Storage Altering Options

These options alter the task image and are of interest only to the
MACRO-11 programmer, The GBLDEF option declares a global symbol and
value, The options ABSPAT and GBLPAT introduce patches into the task
image.

3.2.6.1 GBLDEF (Global Symbol Definition) - The GBLDEF option
declares the definition of a global symbol.

The symbol definition is considered absolute,
syntax: GBLDEF = symbol-name:symbol-value

where: symbol-name is a 1= to 6-character radix-50 name of the
defined symbol,

symbol-value is an octal number in the range 0-177777
assigned to the defined symbol,

default: none

3.2.6,2 ABSPAT (Absolute Patch) - The ABSPAT optiocn declar
of patches starting at the specified base address. Up
values can be given.

syntax: ABSPAT = seg-name:address:val-l:val-2,.,..:val-8

where: seg~name is the 1l- to 6~-character radix-50 name of the
segment,
address is the octal address of the first patch, The

address may be on a byte boundary; however,
two bytes are always modified for each patch.

val-1l is an octal number in the range 0~177777 to be
assigned to address.

val-2 is an octal number in the range 0-177777 to be
assigned to address+2

val-8 is an octal number in the range 0-177777 to be
assigned to address+20.

CHAPTER 3. SWITCHES AND OPTIONS

NOTE

All patches must be within the segment
memory limits or a fatal error is
generated,

3.2,6.3 GBLPAT (Global Relative Patch) - The GBLPAT option declares a
series of patch values starting at an offset relative to a global
symbol., Up to 8 patch values can be given.

syntax: GBLPAT=seg-name :sym-name [+/-offset] :val-l:val-2 ,,.:val-8

where: seg-name is as defined for ABSPAT

sym-name is a 1- to 6-character radix-50 name
specifying the global symbol,

offset is an octal number specifying the offset from
the global symbol,

val-1

val-2 are as defined for ABSPAT

v;i:8

default: none
NOTE

All patches must be within the segment
address limits or a fatal error is
generated.

3.2,6.4 Example of Storage Altering Options - Suppose that in the
example composed of the MACRO-11l programs TST1 and TST2, GAMMA is a
referenced symbol whose value is to be specified when the task is
built. The user defines the symbol GAMMA to have the value 25, He
introduces 10 patch values relative to the global symbol DELTA,

The terminal sequence of Example 3.2,4.3 is modified to include the
options GBLPAT and GBLDEF as follows:

>TKB
TKB)>CHK,LP:=TST1,TST2

TKB/

ENTER OPTIONS:
TKB>COMMON=DTST:RW:5, STST:RO

TKB>GBLDEF = GAMMA:25

TKB)>GBLPAT = TST1:DELTA:1:5:10:15:20:25:30:35
TKBYGBLPAT = TST1:DELTA+20:40:45

TKBY//

CHAPTER 3. SWITCHES AND OPTIONS

3.2.7 Synchronous Trap Options

There are two options which declare that the specified vector address
is to be preloaded into the task header thus enabling *the task to
receive control on the occurrence of synchronous traps. These options
are of interest only to the MACRO-1ll programmer,

3.2,7.1 ODTV (ODT SST Vector) - The ODTV option declares a global
symbol to be the address of the ODT Synchronous System Trap vector.
The defined global symbol must exist in the part of the task that is

always in memory.

syntax: ODTV = symbol-name:vector-length

where: symbol-name is a 1- to 6-character radix-50 name of a
global symbol.
vector-length is a decimal integer in the range 1 - 32
specifying the 1length of the SST vector in
words.

default: none

3.2.7.2 TSKV {Task SST Vector) - The TSKV option declares a global
symbol to be the address of the task SST vector. The defined symbol
must exist in the part of the task that is always in memory.

syntax: TSKV = symbol-name:vector-length
where: symbol-name
are as defined for ODTV
vector-liength J

default: none

3.3 EXAMPLE: CALC;2

Suppose that in the first execution of the task CALC several logical
errors are found. The user corrects the program and is now ready to
make the changes in the program and some adjustments in the task image
file based on the information he obtained about the size of the task
in the first task build,

In this example, he modifies the text file for the program, recompiles
the program, and rebuilds the task so that only one active file buffer
is reserved and the task is built for a larger partition.

CHAPTER 3., SWITCHES AND OPTIONS

3.3.1 Correcting the Errors in Program Logic

The FORTRAN source language for the program 'RDIN' is corrected to be:

READ AND ANALYZE INPUT DATA
SELECT A PROCESSING ROUTINE

ESTABLISH COMMON DATA BASE

COMMON /DTA/ A(200), I
READ IN RAW DATA

READ (6,1) A

FORMAT (200 F6,2)

QO aoaaooaan

=

CALL PROC1

L

CALL RD1

CALL RPRT

END

SUBROUTINE RD1l

RETURN
END

Next, the program 'RDIN' is recompiled:

2FOR RDIN,LRDIN=RDIN
Observe that the corrections to 'RDIN' included the addition of a
subroutine 'RD1l', The object file produced by the FORTRAN compiler as

a result of the above terminal sequence now contains two object
modules.

3.3.2 Building the Task

Suppose that the user knows from the logic of the program that only
one file is open at a time., The Task Builder assumes that four files
are open simultaneously, so some space can be saved in the task by use
of the ACTFIL option. In addition, the task is moved from the default
partition 'GEN' which on the host system is 8192 words to a larger
partition 'PAR14K'. Since ‘'PAR14K' is resident in the host system,
the base and length are known to the Task Builder,

CHAPTER 3. SWITCHES AND OPTIONS

He builds the task with the following terminal sequence:

>TKB

TKB>CALC; 2 ,=RDIN,RPRT,PROC1

TKB>/

ENTER OPTIONS:

TKBY>PAR=PAR1 4K

TKB»ABORT=1

TKB -- *FATAL* ~ ABORTED VIA REQUEST
ABORT=1
TKBY>CALC;2,LP:/SH=RDIN,PROCl,RPRT
TKB>/

ENTER OPTIONS:

TKB>PAR=PAR14K

TKBYACTFIL=1

TKB>//

The user introduced the ABORT option +o end the task build when he
realized that he had omitted the memory allocation file.

The effect of these options on the memorxy allocation is seen in the
next chapter, After the description of the task and memory allocation
files, the memory allocation files for the £first twc examples are
given,

CHAPTER 4

MEMORY ALLOCATION

This chapter describes the allocation of task and system memory. The
two types of systems supported by RSX-1lM, mapped and unmapped, are
described and the memory access rights of tasks within those systems
are defined, The memory allocation file is described in detail and
examples of memory allocation files in mapped and unmapped systems are
illustrated, The memory allocation f£file for the example CALC;l of
Chapter 2 and CALC;2 of Chapter 3 are included and discussed, The
effect of the options used in CALC;2 can be observed by comparing the
two memory allocation files.

4,1 TASK MEMORY

Task memory in RSX-11M consists of a header, stack, and a set of named
areas called program section (p-sections). Each p-section has
associated with it attributes from which the Task Builder can
determine its base and length.

Task Memory can be represented by the following diagram:

-~ end of partition

unused portion

p-section

p-section

p-section

stack

header

~-- partition base

Task Memory

CHAPTER 4, MEMORY ALLOCATION

The header contains task parameters and data required by the Executive
and provides a storage area for recording the tasks context. The
contents of the header are described in detail in Appendix C.

The stack is an area that can be used for temporary storage and
subroutine linkages and 1is referenced by general register R6, the
stack pointer, The size of the stack can be changed by the use of the
STACK option, as described in Chapter 3.

4,1.1 P-Sections

A program section, or p-section, is the basic unit of memory for the
task. A source language program is translated into an object module
consisting of p-sections., For example, the object module produced by
compiling a typical FORTRAN program consists of a p-section containing
the code generated by the compiler, a p-section for each common block
defined in the FORTRAN program, and a set of p-sections required by
the FORTRAN Object Time System,

A name and a set of attributes are associated with each p-section,
The p-section attributes are given in Table 4-1.

4-2

CHAPTER 4.

MEMORY ALLOCATION

Table 4-1
P-Section Attributes

ATTRIBUTE

VALUE

MEANING

access-code

type-code

scope—-code

alloc-code

reloc~code

memory-code

RW

RO

D*#%

T**

GBL

LCL

CON

OVR

HIGH

Low

(read/write). Data can be read from and
written into the p-section.

(read only). Data can be read from, but
cannot be written into the p-section,

(data) . The p-section contains data.

(instruction), The p-section contains
instructions or data and instructions.

(global). The p-section name 1is considered
across segment boundaries. The Task Builder
allocates storage for the p-section from
references outside the defining segment,

(local). The p~section name is considered
only within the defining segment. The Task
Builder allocates storage for the p-section
from references within the defining segment
only.

(concatenate), P-sections with the same name
are concatenated, The total allocation is
the sum of the individual allocations.

(overlay)., P-sections with the same name
overlay each other, The total allocation is
the 1length of the longest individual

Qi alllils

(relocatable), Storage in the p-section is
allocated relative to the vwvirtual base
address of the partition.

(absolute). Storage in the p-section is
always allocated relative to zero,

(high). The p-section is to be loaded into
high speed memory.

(low). The p-section is to be loaded into
core,

** Not to be confused with the I and D space hardware on the PDP
11/45 and 11/70.

1=
1
w

CHAPTER 4, MEMORY ALLOCATION

The scope-code and tyvpe-code are only meaningful when an overlay
structure is defined for the task. The scope-code is described in
connection with the resolution of p-section in Chapter 5, The
type~-code 1s described in connection with the generation of autoload
vectors in Chapter 6, The memory-code is not used by the Task
Builder.

The access-code and alloc-code are used by the Task Builder to
determine the placement and the size of the p-section in task memory.

The Task Builder divides storage into read/write and read-only memory
and places the p-sections in the appropriate area according to
access~-code, However, memory allocated to read-only p-sections is not
hardware protected. .

The alloc=-code is used to determine the starting address and length of
p-sections with the same name, If the alloc-code indicates that
p-sections with the same name are to he overlaid, the Task Builder
places each reference at the same position in task memory and
determines the total allocation from the 1length of the longest
reference, If the alloc-code indicates that p-sections with the same
name are to be concatenated, the Task Builder places each reference
one after another in task memory and determines the total allocation
from the sum of the lengths of each reference.

The initial reference to any p-section is always aligned on a word
boundary. When a p-section has the concatenate attribute, all
references to that p-section are placed adjacent to one another in task
memory. If any of these references ends on a byte boundary, the next
reference to that p-section is not word-aligned.

4,1.2 Allocation of P-sections

Suppose the user enters the following command:
>TKB IMG1,MP1=IN1,IN2,IN3,LBR1/LB

The user is directing the Task Builder to build a task image file,
IMGl.TSK, and a memory allocation file, MP1,MAP, from the input files
IN1,0BJ, IN2,0BJ, and IN3.0BJ, and to search the library file LBR1,OLB
for any undefined global references., Suppose the input files are
composed of p-sections with the following access-codes, alloc-codes,
and sizes:

File-name P-section Access Alloc | Size

name Code Code {(octal)
IN1l B RW CON 100

A RW OVR 300

C RO CON 150
IN2 A RW OVR 250

B RW CON 120
IN3 C RO CON 50

CHAPTER 4. MEMORY ALLOCATION

First, the Task Builder collects all p-sections with the same name to
determine the allocation for each uniquely named p-section.

In this example, there are two occurrences of the p-section named B
with attributes RW and CON, The total allocation for B is the sum of
the lengths of each reference; that is, 100 + 120 = 220, The
allocation for each uniquely named p-section then is:

P~section Total
Name Allocation
B 220
A 3¢
C 220

The Task Builder then re~organizes the p-sections alphabetically and
places them in memory according to their access-code, as follows:

¢ (220 :] read only
B (220)
read/write task memory
A (300)
stack
header

4.1.2,1 Sequential Allocation of P-sections - The SQ (sequential)
switch affects only the placement of p-sections in task memory.
P-sections with the same name and attributes are collected as
described; then uniquely named p-sections are placed in memory in the
order of input sequence according to the access-code.

Suppose the user adds the SQ switch to the previous example:
>TKB IMGl/SQ,MP1=IN1,IN2,IN3,LBR1/LB

The Task Builder collects the p-sections and places them in memory in
the input sequence, as follows:

CHAPTER 4. MEMORY ALLOCATION

c (220) read only
p—
A (3090)
read/write task memory
B (224)
stack
header

4,1.3 The Resolution of Global Symbols

When creating the task image file, the Task Builder resolves global
references., Suppose the global symbols are defined and referenced in
the p-sections in the following way:

File P-section Global Global
Name Name Defn. Name
IN1 B Bl Al
B2 Ll
A Cl
XXX
C
IN2 A Al
B Bl B2
IN3 C Bl

In processing the first file, INl, the Task Builder finds definitions
for Bl and B2 and references to Al,Ll1,Cl, and XXX. Since no
definition exists for these references, the Task Builder defers the
resolution of these global symbols. In processing the next file, IN2,
the Task Builder £finds a definition for Al, which resolves the
previous reference, and a reference to B2, which can be immediately
resolved.

CHAPTER 4. MEMORY ALLOCATION

When all the input object files have been processed, the Task Builder
has three unresolved global references, namely: Cl, L1, and XXX. A
search of the library file LBRl1 resolves L1 and the Task Builder
includes the defining module in the task image. A search of the
System Library resolves XXX. The global symbol Cl remains unresolved
and is, therefore, listed as an undefined global symbol.

The relocatable global symbol Bl is defined twice and is listed as a
multiply-defined global symbol on the terminal., The first definition
of a multiply defined symbol is used by the Task Builder. An absolute
global symbol can be defined more than once without being listed as
multiply defined as long as each occurrence ¢f the gsymbol has the same
value,

4,2 SYSTEM MEMORY

In RSX-11lM, system memory consists of the resident Executive and a set
of named areas. These named areas are partitions, sub-partitions, and
common blocks; associated with each of them are parameters of base
and length,

=12

System memory can be represented by the following diagram:

partition or
common block

F—. sub-partition

partition

- sub-partition

unused portion

p-section

p-section task
partition memory

p-section system
memory

stack

header

partition or
common block

resident
executive

CHAPTER 4. MEMORY ALLOCATION

4.2.,1 Mapped and Unmapped Systems

RSX~11M supports two types of systems, mapped and unmapped. A system
with memory management hardware is called a mapped system. Mapped
systems differ from unmapped systems in three respects:

1. Binding In an unmapped system, the task is
relocated to the base specified by the
partition at the time the task is built, and
therefore, the task can not be installed in a
partition with a different base address.

In a mapped system, the task is bound to
virtual zero and relocated by the mapping
hardware, and therefore, the task can be
installed in any partition large enough to
contain it.

2, Protection In an unmapped system, the task can access
all physical memory.

In a mapped system, the task can only access
memory specifically owned by the task.

3. Size In an unmapped system, the largest task size
is 28K minus the size of the Executive.

In a mapped system, the largest task size is
32K - 32.

The structure of task memory is identical in both systems. No object

code alterations are required to run a task in either a mapped or
unmapped system.

4,2,2 Privileged Tasks

A privileged task has special memory access rights, A non-privileged
task can access only its own partition and any referenced shared
regions, but a privileged task can, in addition, access the Executive
and the I/0 page.

In an unmapped system, a task cannot be prevented from accessing the
entire memory, but the users of the system are expected to observe the
access rules and preserve the distinction between privileged and
non-privileged tasks.

In a mapped system, however, the task can only access the memory
specifically owned by the task, so the distinction between privileged
tasks and non-privileged tasks is a real one.

The memory allocation for a privileged task in a mapped system can be
represented by the following diagram:

CHAPTER 4. MEMORY ALLOCATION

I/0 page
-= virtual 164909

-~ end of partition

unused portion
available to
task

task code and
data

stack

header

-- partition base
(virtual 100000)

executive
R/W mapping

low core
context

-= virtual #

The Executive and system tables occupy virtual locations within
address limits 0 - 77777. The task can occupy virtual locations
100000 - 160000. A privileged task can not reside in a partition
whose length exceeds 12K (checked by the Task Builder and by Install).

4,3 TASK IMAGE FILE

In addition to the task memory, or core image, the task image f£file
contains a label block group and possibly a checkpoint area. The
label block group contains data that is used by the Install processor
to create an entry in the system task directory for the task. The
label is described in detail in Appendix C.

The checkpoint area is allocated if the user specifies that his task
is checkpointable in building the task:

>TKB IMGl/CP,MP1=IN1,IN2,IN3

The switch CP is appended to the task image file indicating that the
task is checkpointable,

CHAPTER 4. MEMORY ALLOCATION

4.3.1 Checkpoint Area

If the task is checkpointable, the Task Builder must reserve space in
the task image file large enough to save all of the memory owned by the
task. If this area is too small, the task must be installed with the
checkpointable attribute disabled.

When the task is to reside in a system-controlled partition, the size
of this area is the task size plus any increment specified through the
EXTTSK keyword (see paragraph 3.2.3.5). If the task is to reside in a
user-controlled partition, the size of this area is equal to the par-
tition size.

When building a task for an unmapped system, the Task Builder always
allocates the checkpoint area based on partition size (all partitions
must be user-controlled).

When building a task for a mapped system, the Task Builder assumes that
the partition is system-controlled if:

1. A length of zero is specified in the PAR keyword (see
paragraph 3.2.2.4),

2. A resident, system-controlled partition is specified in the
PAR keyword,

3. The resident, default partition, GEN, is system-controlled,

4. The EXTTSK keyword is used after any partition specifications
(see paragraph 3.2.3.5).

The following examples illustrate option input for the above conditions.
Example 1: Explicitly specifying a system-controlled partition.
TKB>PAR=SYSCNT: :
The two colon delimiters define a base and length of 0.
Example 2: Specifying a resident partition.
TKB>PAR=GEN

In this case the assumption made by the Task Builder depends upon
whether or not the resident partition, GEN, is system-controlled.

Example 3: Default partition is to be used.

ENTER OPTIONS

TKB>/

The default partition, GEN, is assumed. The allocation of check-
point space in the task file depends upon whether this partition
is user-controlled.

CHAPTER 4. MEMORY ALLOCATION

Example 4: Use of the EXTTSK keyword.
TKB_EXTTSK=4000
TKB>/
The EXTTSK keyword is used to increase the amount of memory by

4000 words. The partition in which the task will reside is
assumed to be system-controlled.

4,4 MEMORY ALLOCATION FILE

The memory allocation file lists information about the allocation of
task memory and the resolution of global symbols. Optionally, a global
cross reference list may be appended to the file by means of the /CR
switch.

4.4.1 Memory Allocation File Format

In the discussion of task memory allocation, the following example was
used:

>TKB IMG1l,MP1=INl1l,IN2,IN3

The requested memory allocation file, MPl, is shown in Figure 4-1 for
a mapped system and in Figure 4-2 for an unmapped system. In the
mapped system, the task is bound to virtual address zero and can be
relocated by the mapping hardware into various partitions. In the
unmapped system, the task is bound to physical address 50100, the base
address of the default partition 'GEN',

The memory allocation file header contains information that identifies
Task Builder, the task, and the task-build time,

The segment description gives memory 1limits, identification, and
attributes. The task IMGl.TSK has a read/write memory allocation of
1744 bytes (that is, the header, the stack, and p-sections A and B)
and a read-only memory allocation of 220 bytes (p-section C).

The PROGRAM SECTION ALLOCATION SYNOPSIS shows the placement and size
of all p-sections.

The file contents section lists the input files, the p-sections that
make up the file, and the global symbols that are defined in the
p-sections, Undefined global symbols are listed following the
absolute p-section and summarized at the end of the listing.

CHAPTER 4. MEMORY ALLOCATION

FILE IMG1.TSKy! MEMORY ALLOCATION MAP
THIS ALLOCATION WAS DONE ON 25=8EP=74
AT 14115 BY TASK BUILDER VERSION M08

xxx ROOT SEGMENTS IN{

R/W MEM LIMITS: 000000 001743 201744
R=0 MEM LIMITS: 001744 002163 000220
STACK LIMITS: 000204 001283 001009
DISK BLK LIMITS: 000@02 000004 200QQ3
IDENTIFICATION 3 00
TASK ATTRIBUTES: NC

PROGRAM SECTION ALLOCATION SYNOPSISS
<. BLK.>1 8012p4 pOi284 oeDCAD

<A >t 201204 PP1503 @0R3Q0
1 281504 201723 000220
<C >3 901744 PR2163 P0R220

<588 >t @01724 BR1743 000R20

<., ABS.>! 90Q200 PPOARE 0PORLQA

xx*x FILEg INg,0BJs1 TITLEs ,MAIN, IDENT:
<., ABS,>: 92p0Q0 000OPO 200000
>>»>>3>5>>>>> UNDEFINED REFERENCE: C1

t 301504 001603 00P10Q
B1 Pp1Se6=R B2 PB1506-R

<A >3 901204 001503 000300

<C >t 001744 pR2113 BBR150Q

Figqure 4-1

Memory Allocation File for IMGl.TSK on a Mapped System

CHAPTER 4. MEMORY ALLOCATION

xxx FILES IN2,08J31 TITLES JMAIN, IDENTt
<A >y 001204 PO1453 @0B252

At 2p121@=R
y Ja1604 @21723 000120

B1 2p1506=R

wxx FILES IN3,0B8J33 TITLE® ,MAIN, IDENTS
<C >y 402114 002163 200050

*xx FILE: LBR1,0LBr1 TITLEs LI IDENT: 282
<, BLk,>1 201204 004204 0002002

Lt foi204=R

%% FILES SYSLIB,OLBr1 TITLE: XXX IDENTt 69
<538 >3 201724 001743 000029

XXX 2g1724«R

AR ARk ok kR
UNDEFINED REFERENCES1H
€1

Figure 4~1 (Cont.)
Memory Allocation File for IMG1l.TSK on a Mapped System

CHAPTER 4. MEMORY ALLOCATION

FILE IMG2,TSKy1 MEMORY ALLOCATION MAP
THIS ALLOCATION WAS DONE ON 25«SEP=74
AT 14315 BY TASK BUILDER VERSION M@8

*%x%x ROOT SEGMENTS INi

R/W MEM LIMITS: 050100 052243 201744
Re0 MEM LIMITS: 852@44 052263 200220
STACK LIMITSS 0S@384 251303 0212nA0
DISK BLK LIMITS3 DPO@Q322 000204 900073
IDENTIFICATION 1 00O
TASK ATTRIBUTESs NC

PROGRAM SECTION ALLOCATION SYNOPSIS:

<. BLK.>! 9513024 051304 000000

<A >3 851304 051603 200300
<8 >t 351604 052023 000220
<C >t 252044 052263 00022@

<S8 >3 252024 352043 080220

<., ABS,>1 200080 pQCE0QR VOCEROQ

xxx FILEt INj,0BJy1 TITLEt ,MAIN, IDENT:
<, ABS,.>: 300000 0QPQO0Q 000200
>>>>>»>»>>>>>> UNDEFINED REFERENCEt Ci

3 451604 051703 200109
81 NS1606=R B2 P516086=R

<A >: U51304 051603 000300

<C > QPS2P44 52213 000158

Figure 4-2

Memory Allocation File for IMGl.TSK on an Unmapped System

CHAPTER 4., MEMORY ALLOCATION

xxx FILE® IN2,0BJ31 TITLE: (MAIN, IDENT:

<A >t 251324 851553 808252
At 851314=R

t 951784 252023 080122
B1 ASi6B6=R

*%x FILEs IN3,08J33 TITLE® ,MAIN, IDENT3
<C >3 @52214 052263 092050

*x» FILE: LBR1,0LBJL TITLES L1 IDENTS 022
<, BLK.>p 051304 051304 020002
L1 NS1304=R

*xx FILEy SYSLIB,OLBst TITLES XXX IDENT: @0
<88S >t 052024 p52043 2ege2d

XXX 052p24=R

KARKKEARRK AR
UNDEFINED REFERENCESH
Ct

Figure 4-2 (Cont.)
Memory Allocation File for IMGl.TSK on an Unmapped System

CHAPTER 4. MEMORY ALLOCATION

4.4,2 Global Cross-Reference Format

In addition to the memory allocation information described, the user
may also request that a listing of all global symbols, accompanied
by the name of each referencing module, be appended to the memory
allocation file described above. A listing of this type, termed a
global cross-reference, is frequently useful when debugging and
maintaining a task that consists of many modules.

Cross-reference processing is performed by a separate task that is
invoked by including the CR switch in the memory allocation file
specification as shown in the following example.

TKB>IMGl,MP1/CR=IN1,IN2,IN3
A portion of the cross-reference output is shown in Figure 4-3.

The page header contains the name of the memory allocation file, along
with the originating task (TKB), and the time and date the file was
created. Cross-reference information consisting of the global symbol
name, value, relocatability (-R), and the name of each referencing
module is shown in the body of the listing.

For this unoverlayed task, the name of the module containing the
symbol definition is preceded by a #. A complete summary of the
cross-reference format is included in section 4.4.3. The reader
should consult Appendix H for detailed information on cross-reference
processing and data formats.

4.4.3 Structure of the Memory Allocation File

The structure of the memory allocat:on file can be described as
follows:

1. The memory allocation file consists of the following sequence
of items:

heading

segment description

program section allocation synopsis
file contents description

undefined references summary

If the /CR switch was used to request a global cross-reference,
the following items are added to the memory allocation file:

cross-reference page header
cross-reference list entries

Each of the above named items is defined in 2 through 9.

2. The heading gives the time and date of the task-build in the
following form:

FILE task-image-file-name MEMORY ALLOCATION MAP
THIS ALLOCATION WAS DONE ON date
AT time BY TASK BUILDER VERSION version-no.

SYMBOL
sQTSV

s§0TSVA
$PUTRE
SRLCB
$RGCH
$R50
§SAVRG
$SBR
$SEQC
$SST
gSSTO
$SST1
$SST2
$SST3
$58T4
§58TS
$5STé
$SST7
$SVTKS
«ASLUN
«CLOSE
«FATAL
«FINIT
+FSRCB
«FSRPT

.GTDID
+MBFCT
+«MOLUN
«NLUNS
«OPFNB
.PPASC
«PPRS50
LPUTSQ
«SAVRY

«.ALC1
.. ALOC
e« dALUN
« «BDRC
« « BKRG
« .CREA
..DEL1
. DID

. DIDF
« EFCK
. .EFC1
« .ENTR
o« JEXTD
. EXTI1
« o FCSX

«FIND
«oFINI
e GTDI

MEMORY ALLOCATION

VALUE
000052

016206=R &
011662=R

027034-R %
027136~=R
011714+-R
027274=R
001516=R
016206=R
016734=R
004316=R
004330=R
004336=R
004344-R
004352-R
004436=R
004362=R
006002=R
030436=R
024702=R
031436=R
025140-R
024264-R
000050

E B B BB BE R E BE B B

025244=R
024364~R
016214-R
016212-R
025262=R
032604-R
032132=-R
027320-R %

030402=R

034012=R
033742=R
030442=R
030632=-R
030714=R
030734-R
031122=R
032216-R
032076=R
031162=R
031170=R #
031336=R

034042~R ¢
034116=R &

E K _JE B B B

» x

031424-R
031352-R
025150=R #
031440=R &
- Cross

PR L R

$CLOSE
SISNLS
sOTV
SIFW
RQLCB
OPFNB
SERRPT
RQLCB
SFADD
$OTV
$OTV
SERRPT
SERRPT
SERRPT
SERRPT
SERRPT
SERRPT
SERRPT
SERRPT
SERRPT
ASSLUN
CLOSE
COMMON
FINIT
FCSKFSR
ASSLUN
PARD1
GETDID
FCSFSR
$OTV
$OTV
OPFNB
PARDI
DIDFND

PUTSG
ASSLUN

N2V

OPFNB
CKALOC
CKALOC
ASSLUN
BDBREC
BKRG
CREATE
DEL
DIDFND
DIDFND
EOFCHK
EOFCHK
DEL
CKALOC
CKALOC
CLOSE
WAITI
DLFND
FINIT
GETDI

Reference Listing for MPl.MAP

REFERENCES,,.

$EOL
$OTI
+MAIN,
SPUTRE
RSTFDB
RQLCB
$R50
SAVRG

=

sOTvV

SOTV
sOTV
SOTV
$OTV
$OTV
sOTV

$CLOSE
WAIT1
$OTI
$OTV
CREATE
RSTFDB
SUPEN

SOPEN
PPNASC
PPNRSO
SPUTRE

WTWALT
GETDI
OPFNB
CLOSE
OPFNB
OPFNB
DIFND
PARDID
PUTSQ

¢ DIRECT
COMMON
WATSET
¢ DIRECT
OPFNB
GETDID

Figure 4-3

4-17

SERRPT
SRETS

FCSFSR
WAITI

CLOSE
SAVR1

OPFNB
RDWALT
ROWAILT

OPFNB

CREATE
WTWALT
OPFNB

SFIO
$STPPA

FINIT
XQlo1l

FINIT
SERRPT

WIWALIT
WTWALT

OPFNB

SINITI
$VTRAN

OpPFNB

GETDID
SOPEN

PUTs@Q

CHAPTER 4. MEMORY ALLOCATION

6.

The segment description consists of the following sequence of
items:

***SEGMENT segment-name

R/W MEM LIMITS: start-addr end-addr length

R/0O MEM LIMITS: start-addr end-addr length
STACK LIMITS: start-addr end-addr length
DISK BLK LIMITS: start-blk end-blk blk=-length
IDENTIFICATION: name

ODT XFR ADDRESS: address

PRG XFR ADDRESS: address

TASK ATTRIBUTES: attr-1l ... attr-n

Any line in the sequence is omitted if it does not apply to a
given task image,

The constructs in this sequence are defined in paragraph 7.
The program section allocation synopsis has the form:

p-sect-name-1 start-addr end-addr 1length

oo

If the SQ switch is applied, the p-sect-names are 1listed in
input order:; otherwise p-sect-names are listed in
alphabetical order. Since p-sections are allocated according
to their access-code, the alphabetical 1listing is not
necessarily sequential.

The file contents description contains an entry for each
input file in the form:

***FILE filename TITLE title~name IDENT ident-name

<. ABS.> start-addr end-addr length
g-name~l value g-name-2 value,..
DO D24 UNDEFINED REFERENCE g-name-n
{p-sect-name-1> start-addr end-addr length...
g-name-1 value-R g-name-2 value-R...
. BLK. start-addr end-addr length

g~-name-~l value g=-name-2 value

The absolute global symbols are listed in the p-section named
. ABS, which is collated first. The blank p-section . BLK.
is collated last in the listing.

The undefined references summary has the form:

dkkdkkhhhhkkhhhkkhhkkkhhhx
UNDEFINED REFERENCES

g-name-1

LN

CHAPTER 4.

7.

MEMORY ALLOCATION

The Cross-Reference Page header gives the name of the memory
allocation file, the originating task (TKB), the date and time
the memory allocation file was created and the cross reference
page number, in the following format:

GLOBAL CROSS REFERENCE
FILE: map-file-name CREATED BY TKB ON date AT time
SYMBOL VALUE REFERENCES ...

The cross-reference list contains an alphabetic listing of
each global symbol along with its value and the name of each
referencing module. When a symbol is defined in several
segments within an overlay structure, the last defined value
is printed. Similarly, if a module is loaded in several
segments within the structure, the module name will be dis-
played more than once within each entry.

Entries have the form:

g-name-1 value (-R) title-name-1.....
title-name-n

g-name-2 value (-R) title-name-1l.....
title-name-n

The suffix '-R' is appended to the value if the symbol is
relocatable.

Prefix symbols accompanying each module name define the type
of reference as follows:

Prefix Symbol Reference Type
blank Module contains a reference that is resolved
in the same segment or in a segment towards
the root.
4 Module contains a reference that is resolved

directly in a segment away from the root or
in a co-tree.

@ Module contains a reference that is resolved
through an autoload vector.

Module contains a non-autoloadable
definition.
* Module contains an autoloadable definition.
NOTE

The reader should consult the glossary and
Chapter 5 for a discussion of unfamiliar
terms.

CHAPTER 4. MEMORY ALLOCATION

9. The remaining constructs are defined as follows:
segment~name is the name of the segment.

start-addr is the first storage address in octal
byte format.

end-addr is the last storage address in octal
byte format.

length is the number (in octal) of bytes
occupied,

start-blk is the relative block number (in octal)
for the starting disk location.

end-blk is the last relative block number for
the disk allocation.,

blk-length is the number (in octal) of blocks
occupied,

address is a byte address (in octal).

name is the name attached to the first

non-blank ,IDENT entry encountered.

attr V is an attribute code that applies to the
task image. The list of codes printed
is:

NC Task is not checkpointable

FP Task uses the floating point
processor

DA Task includes the standard

debugging aid SsY0:[1,1]10DT.OBJ

PI Task contains only position
independent code and data

PM Post mortem dump will be produced
in the event of an abnormal task
termination

PR Task is privileged

TR Task initial PS word has T-bit
enabled

EA Task uses KE-11lA extended
arithmetic element

AC Task is an ancillary control
processor

NH Task does not contain a header

CHAPTER 4. MEMORY ALLOCATION

~-sect-name ig the name of a p-section.

file-name is the name of an input object file.

title-name is the name of the first non-blank .TITLE
encountered.

ident-name is the name of the first non-blank .IDENT
encountered.

g-name is the name of a global symbol.

4,5 EXAMPLE: CALC;l MAP

The first run of CALC, discussed in Chapter 2, produces the memory
allocation file shown in Figure 4-4. This memory allocation file
contains all the parts described in this chapter., For inclusion in
the manual, the map was truncated after the second entry in the file
contents description. The truncated entries are described in general
terms in the section on the file contents.

4.5.1 Heading

The heading contains the date and time the example was run,

4,5,2 Segment Description

The task code and data for CALC;l occupies 37024 octal bytes of
read-write memory. After examining the map, the user decided to build
the next version of CALC for a partition 1larger than the dJdefault
partition GEN, which on the system he is using consists of 40000
bytes.

There is no entry for read-only memory because this task does not have
any read-only p-sections.

The stack occupies 1000 bytes because the user did not change the
default stack size.

The identification $FORT is assigned by the FORTRAN compiler to all
main programs.

The program transfer address is the virtual address 1210 (that is, the
starting address of the program.)

The task has the attribute NC (not checkpointable).

CHAPTER 4 MEMORY ALLOCATION

4.5.3 Program Section Allocation Synopsis

The blank program section '. BLK.' contains the object code produced
from the translation of the modules for CALC;l. The code begins at
virtual address 1210, ends at virtual address 26127, and occupies
24720 bytes.

The program section 'DTA ' is the memory allocation reserved for the
common block DTA,

The remaining program sections are storage regions required by the
FORTRAN object time system (0OTS) and File Control Services (FCS),
which were called in by the FORTRAN compiler to perform services for
the FORTRAN program.

4.5.4 File Contents Description

The file contents description lists for each file the program sections
that the file contributed to the segment. In CALC;l there are three
input files, RDIN,OBJ, PROCl.0BJ, and RPRT.OBJ. In addition to these
files, the library file SYSLIB,OLB is required to contribute the
FORTRAN run-time routines.,

The input file RDIN,OBJ contains three p-sections; namely, '.$$$S$.',
', BLK.,', and 'DTA °'. The p-section '.$$$$.' is the common block
reservation for unnamed or blank common. Since this task does not use
blank common, the storage reservation is zero, The p-section ', BLK.'
contains the code for RDIN,OBJ, starts at virtual address 1210, and
occupies 110 bytes. 'DTA ' is the p-section containing the common
block DTA. This section starts at virtual address 26130, and occupies
1442 bytes.

The input file, PROC1,.0BJ, also contains three p-sections; nanely,
'.$$88.', '. BLK.', and 'DTA '. The p-section '. BLK.' contains the
code for PROC1 and the definition for global symbol 'PROCl', the name
of the subroutine,

The map reproduced below does not contain the modules contributed by
the library file SYSLIB,OLB,

CHAPTER 4. MEMORY ALLOCATION

FILE CALC,TSK;l MEMORY ALLOCATION MAP
THIS ALLOCATION WAS DONE ON 25-JUL~-74
AT 14:53 BY TASK BUILDER VERSION MO06

*** ROOT SEGMENT: RDIN

000000 037023 037024
000210 001207 0061000
000002 000041 000040
$FORT

001210
NC

R/W MEM LIMITS:
STACK LIMITS:
DISK BLK LIMITS:

IDENTIFICATION :

PRG XFR ADDRESS:
TASK ATTRIBUTES:

PROGRAM SECTION ALLOCATION SYNOPSIS:

001210
026130
027572
030350
031560
035660
035762
036166
036166
036276
036276
000000
037024

026127
027571
030347
031557
035657
035761
036165
036166
036275
036276
037023
000000
037024

{. BLK,>:
<DTA >z
{$SAOTS>:
{$SDEVT)>:
{SFSR1>:
{$$FSR2>:
{$SIOBl>):
<$$IOB2>:
<$$OBFl>:
{$$OBF2>:
{$SRESL>:
{., ABS.>:
<-$$$$o>:

024720
001442
000556
001210
004100
000102
000204
000000
000110
000000
000526
000000
000000

*** FILE: RDIN,OBJ:1 TITLE: .MAIN, IDENT: $FORT

EAr s ~ AnAannANn

037024 037024 000000
026130 027571 001442
001210 001317 000110

>
<. BLK.>:

*** FILF: PROC1l,0BJ:1 TITLE: PROCl1l IDENT: $FCRTS

<. BLK.>:

PROC1
{.$8$8.0:
<{DTA >

<v BLK,.>:

001320 001320 000000
001320-R

037024 037024 000000
026130 027571 001442
001320 003003 001464

Figure 4-4

Memory Allocation File for CALC;1l
(Mapped System)

4-23

CHAPTER 4. MEMORY ALLOCATION

4,6 EXAMPLE: CALC;2 MAP

In the example CALC;2 in Chapter 3, the user added some code to RDIN,
and entered two options during option input:

o ACTFIL=1

o PAR=PAR14K

to eliminate the three active file buffers not
needed by CALC.

to direct the Task Builder to use a larger
partition for CALC since the wuser intends to
expand the task.

The memory allocation file shown in Figure 4-5 reflects these changes:

FILE CALC.TASK;2 MEMORY ALLOCATION MAP
THIS ALLOCATION WAS DONE ON 25-JUL~74
AT 15:07 BY TASK BUILDER VERSION M06

*** ROOT SEGMENT: RDIN

R/W MEM LIMITS: 000000 033777 034000
STACK LIMITS: 000210 001207 001000
DISK BLK LIMITS: 000002 000035 000034
IDENTIFICATION : S$FORT

PRG XFR ADDRESS: 001210

TASK ATTRIBUTES: NC

PROGRAM SECTION ALLOCATION SYNOPSIS:

<. BLK,>: 001210 026163 024754
<{DTA >: 026164 027625 001442
{$SAOTS>: 027626 030403 000556
{$$DEVT>: 030404 031613 001210
{$$FSRT>: 031614 032633 001020
{$$FSR2>: 032634 032735 000102
{$$IOB1l>: 032736 033141 000204
{$$IOB2>: 033142 033142 000000
{$$OBF1>: 033142 033251 000110
{$$0OBF2>: 033252 033252 000000
{$SRESL>: 033252 033777 000526
{. ABS,>: 000000 000000 000000
{.$888,.>: 034000 034000 000000

Figure 4-5
Memory Allocation File for CALC;2
(Mapped System)

CHAPTER 4. MEMORY ALLOCATION

Because of the additional logic in the program RDIN, the task code
allocation increased from 24720 in CALC;l to 24754 in CALC;2.

Because the ACTFIL keyword was used, the File Storage Region buffer
pool, $$FSR1l, decreased from 4100 in CALC;l to 1020 in CALC;2.

CALC;1l CALC;2 Difference
task code 24720 24754 + 34
$$FSR1 4100 1020 =3060
-3024

The use of the ACTFIL keyword saved 3060 bytes. The net saving of
3024 bytes, when added to the memory requirements for CALC;2, gives
the memory requirement for CALC;1l

CALC;2 34000
DIFF 3024
CALC;1l 37024

CHAPTER 5

OVERLAY CAPABILITY

This chapter describes the use of the overlay capability to reduce the
memory requirements of a task. The concept of tree structured
overlays is introduced and a language for representing this structure
is defined, Examples are given that illustrate the wuse of the
language and the allocation of memory for an overlayed task.,

5.1 OVERLAY DESCRIPTION

To create an overlay structure, the user divides his task into a
series of segments; specifically:

® a single root segment, which is always in memory, and

° any number of overlay segments, which share memory with one
nother,

A segment consists of a set of modules and p=-sections that can be
loaded by a single disk access. Segments that overlay each other must
be logically independent, Two segments are said to be logically
independent if the components of one segment do not reference and are
not referenced by any of the components of the other segment.

When the user defines an overlay structure, he must consider the
general flow of control within his task in addition to the logical
independence of the overlay segments, Dividing a task into overlays
saves space, but introduces the overhead activity of loading these
segments into memory as they are needed. The programmer must make
optimization decisions in constructing the overlay just as he does in
writing the programs.

There are several 1large classes of tasks that can be handled
effectively by an overlay structure. A task that moves sequentially
through a set of modules is well suited to the use of an overlay
structure, A task which selects one of a set of modules according to
the value of an item of input data is also well suited to an overlay
structure,

CHAPTER 5. OVERLAY CAPABILITY

5.1.1 Overlay Structure

Consider a task, TKl, which consists of four input files. Each input
file consists of a single module of the same name as the file. The
task is built by the command:

>TKB TK1=CNTRL,A,B,C

Suppose the user knows that the modules A, B, and C are 1logically
independent. In this example:

A does not call B or C and does not use the data of B or C,
B does not call A or C and does not use the data of A or C,
C does not call A or B and does not use the data of A or B,

The user can define an overlay structure in which A, B, and C are
overlay segments that occupy the same storage. Suppose further that
the flow of control for the task is as follows:

CNTRL calls A and A returns to CNTRL,
CNTRL calls B and B returns to CNTRL,
CNTRL calls C and C returns to CNTRL,
CNTRL calls A and A returns to CNTRL.

The loading of overlays occurs only four times during the execution of
the task. Therefore, the user can reduce the memory requirements of
the task without unduly increasing the overhead activity.

Consider the effect of introducing an overlay structure on the
allocation of memory for the task., Suppose the lengths of the modules
are as follows:

CNTRL 10000 bytes
A 6000 bytes
B 5000 bytes
c 1200 bytes

The memory allocation produced as a result of building the task as a
single segment on a system with memory mapping hardware is as follows:

- 24200
C

- 23000

- 15000
A

- 10000

CNTRL
-0

The memory allocation for a single-segment task requires 24200 bytes.

CHAPTER 5. OVERLAY CAPABILITY

The memory allocation produced as a result of using the overlay
capability and building a multi-segment task is as follows:

- - 16000
B c
- 10000
CNTRL
-0

The multi-segment task requires 16000 bytes. In addition to the
module storage, additional storage is required for overhead connected
with handling the overlay structure., This overhead is described later
and illustrated in the example CALC,

Observe that the amount of storage required for the task is determined
by the length of the root segment and the length of the longest
overlay segment., Overlay segments A and B in this representation are
much 1longer than overlay segment C, If the user can divide A and B
into sets of logically independent modules, he can further reduce the
storage requirements of his task. Suppose he divides A into a control
program A0 and two overlays Al and A2, A2 1is then further divided
into the main part A2 and two overlays A2l and A22, Similarly, he
divides the B overlay into a control module B0 and twc overlays Bl and
B2.

The memory allocation for the task produced by the additional overlays
defined for A and B is given by the diagram:

- 13600
a21|a22
Al A2 Bl | B2
20 BO c
- 10000
CNTRL
- 0

As a single~segment task, TK1l required 24200 bytes of storage. The
first overlay structure reduced the requirement by 6200 bytes. The
second overlay structure further reduced the storage requirement by
2200 bytes,

Observe that a vertical line can be drawn through the memory diagram
to indicate a state of memory. In the diagram given here, the
leftmost such line gives memory when CNTRL, A0, and Al are loaded:
the next such line gives memory when CNTRL, A0, A2, and A2l are
loaded: and so on.

Observe also that a horizontal line can be drawn through the memory
diagram to indicate segments that share the same storage. In the
given diagram, the uppermost such line gives Al, A2l, A22, Bl, B2 and
C, all of which can use the same memory; the next such line gives Al,
A2, Bl, B2, and C; and so on.

5-3

CHAPTER 5. OVERLAY CAPABILITY

5.1.2 Overlay Tree

The Task Builder provides a language for representing an overlay
structure consisting of one or more trees.

A single overlay tree is described first and then the procedure for
describing multiple overlay trees is given.

The memory allocation for the previous example can be represented by
the single overlay tree shown below:

A2l A22

Al A2 Bl B2

CNTRL

The tree has a root, CNTRL, and three main branches, A0, B0, and C,
The tree has six leaves, Al, A2l, A22, Bl, B2, and C,

The tree has as many paths as it has leaves. The path down is defined
from the leaf to the root, for example:

A21-A2-A0~-CNTRL
The path up is defined from the root to the leaf, for example:
CNTRL-B0-Bl.

Understanding the tree and its paths is important to the understanding
of the overlay loading mechanism and the resolution of global symbols.

5.1.2.1 Loading Mechanism -~ Modules can call other modules that exist
on the same path. The module CNTRL is common to every path of the
tree and, therefore, can call and be called by every module in the
tree, The module A2 can call the modules A2l, A22, A0, and CNTRL;
but A2 can not call Al, Bl, B2, BO or C,

When a module calls a module in another overlay segment, the overlay
segment must be in memory or must be brought into memory. The methods
for loading overlays are described in the next chapter.

5.1.2,2 Resolution of Global Symbols in a Multi-segment Task = The
Task Builder performs the same activities in resolving global symbols
for a multi-segment task as it does for a single segment task., The
rules defined in Chapter 4 for the resolution of global symbols in a
single segment task still apply, but the scope of the global symbols

is altered by the overlay structure,

CHAPTER 5. OVERLAY CAPABILITY

In a single segment task, any global definition can be referenced by
any module. In a multi-segment task, a module can only reference a
global symbol that is defined on a path that passes through the
segment to which the module belongs.

In a single segment task, if two global symbols with the same name are
defined, the symbols are multiply defined and an error message is
produced. In a multi-segment task two global symbols can be defined
with the same name as long as the definitions are on separate paths,
A reference is said to be ambiguous if there are multiple definitions
on common paths to which the reference could be resolved.

Consider the task TKl and the global symbols Q, R, S, and T.

A21 A22
T (def) R(ref)
l Q(ref)
___T__==J
Al A2 Bl B2
Q(ref) R(def) Q(ref)
R(ref) l
AO BO c
Q(def) Q(def)
S (def) S (def)
T(?ef)
CNTRL
S{ref)

The following remarks apply to the use of each of the symbols shown in
the diagram:

Q The global symbol Q is defined in the segment A0 and in the
segment BO. The reference to Q in segment A22 and the
reference to Q in segment Al are resolved to the definition
in AO0. The reference to Q in Bl is resolved to refer to the
definition of BO. The two definitions of Q are distinct in
all respects and occupy different memory allocations.

R The global symbol R is defined in the segment A2, The
reference to R in A22 is resolved to the definition in A2
because there is a path to the reference from the definition
(CNTRL~A0-A2~-222) . The reference to R in Al, however, is
undefined because there is no definition for R on a path
through Al.

CHAPTER 5. OVERLAY CAPABILITY

S The global symbol S is defined in A0 and BO., References to S
from Al, A2l or A22 are resolved to the definition in A0 and
references to S in Bl and B2 are resolved to the definition
in BO. However, the reference to S in CNTRL cannot be
resolved because there are two definitions of S on separate
paths through CNTRL, S is ambiguously defineqd.

T The global symbol T is defined in A2l and A0. Since there is
a single path through the two definitions (CNTRL-A0O-A2-A21),
the global symbol T is multiply defined.

5.1.2.3 Resolution of P-sections in a Multi-segment Task - A
p-section has an attribute that indicates whether the p-section is
local (LCL) to the segment in which it is defined or of global (GBL)
extent.

Local p~sections with the same name can appear in any number of
segments, Storage 1is allocated for each 1local p-section in the
segment in which it is declared, Global p-sections of the same name,
however, must be resolved by the Task Builder.

When a global p-section is defined in several overlay segments along a
common path, the Task Builder allocates all storage for the p=-section
in the overlay segment closest to the root,

FORTRAN common blocks are translated into global p-sections with the
overlay attribute, Suppose that in the task TXK1 the common block
COMA is defined in modules A2 and A2l, The Task Builder allocates the
storage for COMA in A2 because that segment is closer to the root than
the segment which contains A2l,

However, if the programs A0 and B0 .use a common block COMAB, the Task
Builder allocates the storage for COMAB in both the segment which
contains A0 and the segment which contains BO. A0 and BO can not
communicate through COMAB, When the overlay segment containing B0 is
loaded, any data stored in COMAB by A0 is lost.

The tree for the task TK1l including the allocation of the common
blocks COMA and COMAB is:

aA21 A22
Al A2
2
| a2 B1 B
A0 |
BO C
COlVfAB conas
|
CNTRL

CHAPTER 5. OVERLAY CAPABILITY

The allocation of p-sections can be specified by the user. If A0 and
B0 need to share the contents of COMAB, the user can force the
allocation of this p-section into the root segment by the use of the
.PSECT directive, described in Section 5.1.3.4.

5.1.3 Overlay Description Language (ODL)

The Task Builder provides a language that allows the user to describe
the overlay structure. The overlay description 1language (ODL)
contains five directives by which the user can describe the overlay

structure of his task.

An overlay description consists of a series of ODL directives., There
must be one (ROOT directive and one .END directive, The ,ROOT
directive tells the Task Builder where to start building the tree and
the .END directive tells the Task Builder where the input ends,

5.1.3.1 .ROOT and .END Directives - The arguments of the ROOT
directive make use of two operators to express concatenation and
overlaying. A pair of parentheses delimits a group of segments that
start at the same location in memory. The maximum number of nested
parentheses cannot exceed 32,

® The operator dash '-=' indicates the concatenation of storage,
For example, 'X~Y' means that the memory allocation must
contain X and Y simultaneously. So X and Y are allocated in
sequence.

° The operator comma ',' appearing within parentheses indicates
P) PP g P

+h AvrasT acsd - af A Ava~n DAy aAavamnla v 20 maana +had
il v vcx..l.ax -l.llg UL o Llsdl G\jc L) & Ud Chwllhl-l.c F4 4 pa S QLo i

memory can contain either Y or Z. Therefore Y and 2 are
share storage.

This operator is also used to define multiple tree
structures, as described in 5.1.4.

CHAPTER 5, OVERLAY CAPABILITY

Consider the overlay description lanquage directives:

+ROOT X~ (Y¥,2=(21,22))
.END

These directives describe the following tree and its corresponding
memory diagram:

71 7.2 z1 [Z2

Y A ¥ z

T x

X

To create the overlay description for the task TKl described earlier
in this chapter, the user creates a file TFIL that contains the
directives:

.ROOT CNTRI~ (AO-(Al,A2-(A21,A22)),B0~(B1,B2),C)
.END

To build the task with that overlay structure, the user types:
>TKB TK1=TFIL/MP

The switch MP tells the Task Builder that there is only one input
file, TFIL,ODL, and that file contains an overlay description for the
task.,

5.1.3.2 LFCTR Directive - The tree that represents the overlay
structure can be complicated. The overlay description language
includes another directive, ,FCTR, which allows the wuser to build
large trees and represent them systematically.

The .FCTR directive allows the user to extend the tree description
beyond a single line. Since there can be only one .ROOT directive,
the .FCTR directive must be used 1f the tree definition exceeds one
line. The LFCTR directive, however, can also be used to introduce
clarity in the representation of the tree,

CHAPTER 5, OVERLAY CAPABILITY

The maximum number of nested .FCTR levels is 32,

To simplify the tree given in the file TFIL the JFCTR directive is
introduced into the overlay description language as follcws:

.ROOT CNTRL~-(AFCTR,BFCTR,C)
AFCTR: .FCTR AO- (Al,A2-(A21,A22))
BFCTR: +FCTR BO-(Bl1l,B2)

.END

The label 'BFCTR', is used in the .ROOT directive to designate the
argument of the .FCTR directive, 'B0~(B1,B2)'. The resulting overlay
description is easier to interpret than the original description., The
tree consists of a root, CNTRL, and three main branches., Two of the

main branches have sub-branches.

The .FCTR directive can be nested. The user can modify TFIL as
follow:

.ROOT CNTRL~- (AFCTR,BFCTR,C)
AFCTR: .FCTR AO=-(Al,A2FCTR)

AZ2FCTR: .FCTR A2-{A21,A22)
BFCTR: .FCTR BO-(Bl1,B2)
.END

The decision to use the ,FCTR directive is based on considerations of
space and style.

5.1.3.3 L.NAME Directive ~ The NAME directive allows a segment name
to be defined and included at any appropriate point in the tree, The
defined name must be unique with respect +to filenames, p-section
names, JFCTR labels and other segment names that are used in the
overlay description,

The .NAME directive is used to uniquely identify a segment that is to
be loaded into memory by means of the Manual Load Method described in
Chapter 6. .

Suppose that, in the definition of the tree for TK1l, the user wants to
give a name to every main branch of the tree, He defines three names
and includes these new names in the overlay description for the tree,
TFIL is modified as follows:

.NAME BRNCH1
.NAME BRNCH2
«NAME BRNCH3
« ROOT CNTRI~ (BRNCH1=-AFCTR,BRNCH2-BFCTR,BRNCH3-C)

AFCTR: .FCTR AO-(Al,A2-(A21,A22))
BFCTR: .FCTR BO~(Bl,B2)
«END

5-9

CHAPTER 5, OVERLAY CAPABILITY

5.1.3.4 LPSECT Directive - The ,PSECT directive allows the placement
of a global p=-section to be specified directly. The name of the
p-section and its attributes are given in the ,PSECT directive., Then,
the name can be used explicitly in the definition of the tree to
indicate the segment in which the p-section is to be allocated.

Suppose the user encountered a problem in communication resulting from
the overlay description for TKI1. The user was careful about the
logical independence of the modules in the overlay segment, but he
failed to take into account the logical independence requirement of
multiple executions of the same overlay segment,

The flow of the task TKl, as described earlier in this chapter, can be
summarized in the following way. CNTRL calls each of the overlay
segments and the overlay segment returns to CNTRL in the following
order: A,B,C,A. The module A is executed twice., The overlay segment
containing A must be reloaded for the second execution of A,

The module A uses the common block DATA3. The Task Builder allocates
DATA3 in the overlay segment containing A, The first execution of A
stores some results in DATA3, The second execution of A requires
these values., In the present overlay description, however, the values
calculated by the first execution of A are overlaid. When the segment
containing A is read in for the second execution, the common block is
in its initial state.

The use of a .PSECT directive forces the allocation of DATA3 into the
root segment to permit the two executions of A to communicate, TFIL
is modified as follows:

.PSFECT DATA3,RW,GBL,REL,OVR
«ROOT CNTRL~DATA3- (AFCTR,BFCTR,C)

AFCTR: .FCTR AO-(Al,A2-(A21,A22))
BFCTR: .FCTR BO-(B1,B2)
.END

The attributes RW,GBL,REL and OVR are described in Chapter 4.

5.1.4 Multiple Tree Structures -

The Task Builder allows the specification of more than one tree within
the overlay structure. A structure containing multiple trees has the
following properties:

l., Storage is not shared among trees. The total storage
required is the sum of the longest path .on each tree,

2. Each path in a tree i:. common to all paths on every other
tree,

These properties allow modules, that would otherwise have to reside in
the root segment, to be contained in an overlay tree,

CHAPTER 5. OVERLAY CAPABILITY

Such overlay trees within the structure consist of a main tree and one
or nmore co-trees. The root segment of the main tree is loaded by the
monitor when the task is made active while segments within each
co-tree are loaded through calls to the overlay runtime system,

Except for the above distinction, all overlay trees have identical
characteristics, That is, each tree must have a root segment and
possibly one or more overlay segments,

The following paragraphs describe the procedure for specifying
multiple trees in the overlay description language and illustrate the
use of co-trees to reduce the memory required by a task.

5.1.4.1 Defining a Multiple Tree Structure = Multiple tree structures
are specified within the overlay description language by extending the
function of the comma ',' operator., As previously discussed, this
operator, when included within parentheses, defines a pair of segments
that share storage. The inclusion of the comma operator outside all
parentheses delimits overlay trees, The first overlay tree thus
defined is the main tree. Subsequent trees are co-trees.

Consider the following:

+ROOT X,Y

X3 .FCTR X0=(X1,X2,X3)

Ys .FCTR ¥0-(Y1,Y2)
.END

Two overlay trees are specified, A main tree containing the root
segment X0 and three overlay segments and a co-tree consisting of root
segment Y0 and two overlay segments. The Executive loads segment X0
into memory when the task is activated, The task then loads the
remaining segments through calls to the overlay runtime system,

A co~tree must have a root segment to establish linkages to the
overlay segments within the co-tree, ILogically, these root segments
need not contain code or data. (Such modules can be resident in the
main root). A segment of this type termed a 'null segment', may be
created by means of the .NAME directive, The previous example is
modified as shown below to include a null segment.

« ROOT X,Y

X3 .FCTR X0-¥0~-(X1,X2,X3)
« NAME YNUL

Y +FCTR YNUL~(Y1,Y2)
«END

The null segment 'YNUL' is created, using the ,NAME directive, and
replaces the co-tree root that formerly contained Y0.0BJ. YO now
resides in the main root.

CHAPTER 5. OVERLAY CAPABILITY

5.1.4.2 Multiple Tree Example - The following example illustrates the
use of multiple trees to reduce the size of the task,

suppose that in the task TK1l, the root segment CNTRL consists of a

small dispatching routine and two long modules, CNTRLX and CNTRLY,

CNTRLX and CNTRLY are logically independent of each other, are

approximately equal in 1length, and must access modules on all the
paths of the main tree,

The user can define a co-tree for CNTRLX and CNTRLY and effect a
saving in the storage required by the task, He modifies the overlay
description in TFIL as follows:

«NAME CNTRL2
» ROOT CNTRL~ (AFCTR,BFCTR,C) ,CNTRL2- (CNTRLX ,CNTRLY)

+END

The co-tree is defined at the 'zeroth' parenthesis level in the L,ROOT
directive, A co-tree must have a root segment, to establish linkages
to the overlay segments within the co-tree. When no code or data
logically belong in the root, the ,NAME directive can be used to
create a null root segment.,

The tree for the task TK1 now is:

A21 A22
Al A2 Bl ?2
Al BO C CNTRLX CNTRLY
0 | I |]
CNTRL CNTRL2

The corresponding memory diagram is:

- 6200
CNTRLX CNTRLY
CNTRL2 * _ 5200
a21|a22
al a2 Bl | B2
A0 BO c
- 1000
CNTRL
- 0

5-12

CHAPTER 5. OVERLAY CAPABILITY

The specification of the co-tree decreases the storage allocation by
4000 bytes. CNTRLX and CNTRLY can still access modules on all the
paths of the main tree, The only reqguirement imposed by the
introduction of the co-tree is the logical independence of CNTRLX and
CNTRLY,

Any number of co-trees can be defined, Additional co-trees can access
all the modules in the main tree and in the other co-trees.

5.1.5 Overlay Core Image

The core image for a task with an overlay structure can be represented
by the following diagram:

co-tree
overlay
segment

co-tree
root segment

co-tree
overlay
segments

co-tree
root segment

main tree
overlay
segments

main tree
root
segment

stack

header

CHAPTER 5., OVERLAY CAPABILITY

The header and stack are described in Chapter 4.

The root segment of the main tree contains all the modules that are
resident in memory throughout the entire execution of the task, along
with the segment tables, and if the autoload loading method is used,
the autoload vectors.

autoload
vectors

segment main tree
tables root segment

code and
data

The segment table contains a segment descriptor for every segment in
the task. The descriptor contains information about the load address,
the length of the segment, and the tree linkages. The segment table
is described in detail in Appendix C.

Autoload vectors appear in every segment that calls modules in another
segment that is further from the root of the tree. Autoload vectors
are described in connection with loading mechanisms in Chapter 6 and
the detailed composition of the autoload vector is given in Appendix
C.

The main tree overlay region consists of memory allocated for the
overlay segments of the main tree. The overlays are read into this
area of memory as they are needed.

autoload vectors I
overlay
code and data _Tegment

overlay

-
autoload vectors overlay
segment

code and data _J

The co-tree overlay region consists of memory allocated for the
overlay segments of the co-trees,

The co-tree root segment contains the modules that, once loaded, must
remain resident in memory.

5-14

CHAPTER 5. OVERLAY CAPABILITY

5.2 EXAMPLE: CAIC;:3

The version of CALC introduced earlier is now ready for the addition
of two more data processing routines, PROC2 and PROC3. These new
algorithms are logically independent of each other and of PROCI. The
third algorithm, PROC3, contains two independent routines SUBl and
SUB2,

The user defines an overlay structure for CALC as follows:

SUBl1 SUB2
PR?Cl P%OCZ PR?C3
RDIN
RPRT

5.2.1 Defining the ODL File

The user constructs a file, CALTR, of ODL directives to represent the
tree for CALC, as follows:

YEDI
EDI>CALTR.ODL
[CREATING NEW FILE]
INPUT

+ROOT RDIN=RPRT=-* (PROC1,PROC2,P3FCTR)
P3FCTR: ,FCTR PROC2- (SUB1,SUB2)

.END
*EX

NOTE

The '*' in the ODL description is the
autoload indicator and is described in
Chapter 6.

5-15

CHAPTER 5. OVERLAY CAPABILITY

52,2 Building the Task

The user builds the task with the same options as in the example of
Chapter 3. He replaces the names of the input files by a single
filename that designates the file containing the overlay description:

>TKB

TKBYCALC} 3 ,LP:/SH=CALTR/MP
ENTER OPTIONS:

TKB >PAR=PARI 4K
TKB>ACTFIL=1

TKB>//

5.2.3 Memory Allocation File for CALC;3

The short memory allocation file for this multi-segment task consists
of one page per segment, For convenience the pages are compressed in
this manual. See Figure 5-1,

The memory diagram for CALC;3 is:

- 36400
== 35724
SUB1 | suUB2
-= 35310
PROC1 | PROC2 PROC3
-~ 33254
segment tables and autoload vectors -= 33012
FORTRAN buffers
-- 26220
DTA
-~ 24556
RPRT
RDIN
-= 1214
stack
-~ 214
header
- 0

If the user had not used an overlay structure for the task, the memory
requirement of the task would have been:

ROOT 33012
PROC1 3124
PROC2 2304
PROC3 2034
SUB1 414
sUB2 404

43516

5-16

CHAPTER 5.

OVERLAY CAPABILITY

FILE CALC,TSK;3 MEMORY ALLOCATION MAP
THIS ALLOCATION WAS DONE ON 25-JUL-74
AT 15:36 BY TASK BUILDER VERSION M06

% ROOT SEGMENT:RDIN

R/W MEM LIMITS: 000000 033253 033254
STACK LIMITS: 000214 001213 001000
DISK BLD LIMITS: 000002 000035 000034
IDENTIFICATION : $FORT

PRG XFR ADDRESS: 001214

TASK ATTRIBUTES: NC

PROGRAM SECTION ALLOCATION SYNOPSIS:

{. BLK,>: 001214 024555 023342
{DTA >: 024556 026217 001442
{$SALER>: 026220 026243 000024
{$SAOTS>: 026244 027021 000556
{$$DEVT>: 027022 030231 001210
{$$FSR1>: 030232 031251 001020
{$$FSR2>: 031252 031353 000102
{$$IOBl>: 031354 031557 000204
{$SIOB2>: 031560 031560 000000
{$$OBFl>: 031560 031667 000110
{SOBF2>: 031670 031670 000000
<$$OVDT>: 000000 000000 000000
{$SRESL>: 031670 033011 001122
{$$SGDF>: 000000 000000 000000

{. ABS.>: 000000 000000 000000
¢, $888.5: 022012 033012 000000

NOYWP YW O /S Vowvmds vewvma wryeowww

%% SEGMENT: PROCl

R/W MEM LIMITS: 033254 036377 003124
DISK BLK LIMITS: 000036 000041 000004

Figure 5-1
Memory Allocation File for CALC;3
{Mapped System)

5-17

CHAPTER 5. OVERLAY CAPABILITY

PROGRAM SECTION ALLOCATION SYNOPSIS:

<. BLK,.>: 033254 034737 001464
{ADTA >: 034740 036377 001440

*** SEGMENT: PROC2

R/W MEM LIMITS: 033254 035557 002304
DISK BLK LIMITS: 000042 000044 000003
PROGRAM SECTION ALLOCATION SYNOPSIS:
<. BLK.>: 033254 034117 000644

{ADTA >: 034120 035557 001440

*** SEGMENT: PROC3

R/W MEM LIMITS: 033254 035307 002034
DISK BLK LIMITS: 000045 000047 000003
PROGRAM SECTION ALLOCATION SYNOPSIS:
<. BLK.>: 033254 033627 000354

{ADTA >: 033630 035267 001400
***SEGMENT: SUB1

R/W MEM LIMITS: 035310 035723 000414
DISK BLK LIMITS: 000050 000050 000001

PROGRAM SECTION ALLOCATION SYNOPSIS:
{. BLK.>: 035310 035723 000414

**%* SEGMENT: SUB2

R/W MEM LIMITS: 035310 035713 000404
DISK BLK LIMITS: 000051 000051 000001

PROGRAM SECTION ALLOCATION SYNOPSIS:

<. BLK.>: 035310 035713 000404

Figure 5-1 (Cont.)
Memo:ry Allocation File for CALC;3
(Mapped System)

5-18

CHAPTER 5. OVERLAY CAPABILITY

5.3 EXAMPLE CALC;4

After examining the memory allocation file for CALC;3, the user
observes that the Task Builder has allocated ADTA in the overlay
segments PROCl, PROC2, and PROC3, since all of these segments are
equidistant from the root.

The user knows, however, that these segments need to communicate with
each other through ADTA. In the existing allocation, any values
placed in ADTA by PROCl are lost when PROC2 is loaded. Similarly, any
values stored in ADTA by PROC2 are lost when PROC3 is loaded.

The user adds a ,PSECT directive to the overlay description to force
ADTA into the root segment so that PROCl, PROC2, and PROC3 can
communicate with each other. He modifies CALTR as follows:

+« ROOT RDIN=-RPRT-ADTA-* (PROC1,PROC2,P3FCTR)
P3FCTR: «FCTR PROC3- (SUB1,SUB2)

.PSECT ADTA,RW,GBL,REL,OVR

.END

He builds the task as in CALC;3 and the resulting memory allocation
file can be represented by the following diagram:

-- 36400
-~ 35724
SUB1l SUB2
-- 35310
PROCL PROC2 PROC3
-— 34714
segment table and autoload vectors
~= 34452
FORTRAN buffers
-~ 27660
DTA
-- 26216
ADTA
-= 24556
RPRT
RDIN
-- 1214
stack
- 214
header
- 0

5-19

CHAPTER 5. OVERLAY CAPABILITY

FILE CALC,TSK;4 MEMORY ALLOCATION MAP
THIS ALLOCATION WAS DONE ON 25-JUL~74
AT 15:44 BY TASK BUILDER VERSION M06

***ROOT SEGMENT: RDIN

R/W MEM LIMITS: 000000 034713 034714
STACK LIMITS: 000214 001213 001000
DISK BLK LIMITS: 000002 000036 000035
IDENTIFICATION : S$FORT

PRG XFR ADDRESS: 001214

TASK ATTRIBUTES: NC

PROGRAM SECTION ALLOCATION SYNOPSIS

<. BLK.,>: 001214 024555 023342
{ADTA >: 024556 026215 001440
{DTA >: 026216 027657 001442
{$SALER>: 027660 027703 000024
{$SAOTS>: 027704 030461 000556
{$$DEVT>: 030462 031671 001210
{$$FSR1>: 031672 032711 001020
{$$FSR2>: 032712 033013 000102
{SIOBl>: 033014 033217 000204
{$$IOB2>: 033220 033220 000000
{$$0OBFl>: 033220 033327 000110
{$$OBF2>: 033330 033330 000000
<{$$0OVDT>: 000000 000000 000000
{$SRESL>: 033330 034451 001122
{$$SGOF>: 000000 000000 000000
<. ABS.>: 000000 000000 000000
<.$$$$.>: 034452 034452 000000

Figure 5-2
Memory Allocation File for CALC:4
(Mapped Svstem)

CHAPTER 5.

OVERLAY CAPABILITY

%% SEGMENT: PROC1

R/YW MEM LIMITS: 034714 036377 001464
DISK BLK LIMITS: 000037 000040 000002

PROGRAM SECTION ALLOCATION SYNOPSIS:
<. BLK.>: 034714 036377 001464

®%% SEGMENT: PROC2

R/W MEM LIMITS: 034714 035557 000644
DISK BLK LIMITS: 000041 000041 000001

PROGRAM SECTION ALLOCATION SYNOPSIS:

<. BLK,>: 034714 035557 000644

% SEGMENT: PROC3

R/W MEM LIMITS: 034714 035307 000374
DISK BLK LIMITS: 000042 000042 000001

PROGRAM SECTION ALLOCATION SYNOPSIS:

<. BLK.>: 034713 035267 000354

*** SEGMENT: SUBL

R/W MEM LIMITS: 035310 035723 000414
DISK BLK LIMITS: 000043 000043 000001

PROGRAM SECTION ALLOCATION SYNOPSIS:
<« BLK,>: 035310 035723 000414

k%% SEGMENT: SUB2

R/W MEM LIMITS: 035310 035713 000404
DISK BLK LIMITS: 000044 000044 000001

Figure 5-2 (cont.)
Memory Allocation File for CALC;4
(Mapped System)

CHAPTER 5., OVERLAY CAPABILITY

5.4 SUMMARY OF THE OVERLAY DESCRIPTION LANGUAGE

1.

4.

An overlay structure consists of one or more trees. Each
tree contains at least one segment. A segment is a set of
modules and p-sections that can be loaded by a single disk
access.

A tree can have only one root segment, but it can have any
number of overlay segments.

The overlay description language provides five directives for
specifying the tree representation of the overlay structure,
namely:

« ROOT
«END

« PSECT
. NAME

These directives can appear in any order in the overlay
description, subject to the following restrictions:

a. There can be only one ,ROOT and one ,END directive,

b. The .END directive must be the last directive, since it
terminates input.

The tree structure is defined by the operators '=' (hyphen)
and ',' (comma) and by the use of parentheses.

The operator '-' (hyphen) indicates that its arguments are to
be concatenated and thus co-exist in memory. The operator ','
{(comma) within parentheses indicates that its arguments are
to be overlaid and thus share memory. The operator ',' not
enclosed in parentheses delimits overlay trees. The
parentheses group segments that begin at the same point in
memory.

For example,
+ROOT A-B-(C,D-(E,F))

defines an overlay structure with a root segment consisting
of the modules A and B. In this structure, there are four
overlay segments, C, D, E, and F. The outer parenthesis pair
indicates that the overlay segments C and D start at the same
location in memory.

The simplest overlay description consists of two directives,
as follows:

«ROOT A=-B-(C,D=(E,F))
.END

CHAPTER 5. OVERLAY CAPABILITY

7.

8.

Any number of the optional directives (.FCTR, .PSECT, and
.NAME) can be included.

The .ROOT directive defines the overlay structure. The
arguments of the LROOT directive are one or more of the
following:

® File specifications as described in 2.3.1

e Factor labels

® Segment names

® P-section names

The ,END directive terminates input.

The .FCTR directive provides a means for replacing text by a

symbolic reference (the factor label). This replacement is

useful for two reasons:

a. The .FCTR directive effectively extends the text of the
«ROOT directive to more than one line and thus allows
complex trees to be represented,

b. The .FCTR directive allows the overlay description to be
written in a form that makes the structure of the tree
more apparent,

For example:

+«END

can be expressed, using the ,FCTR directive, as follows:

«ROOT A-(Fl,F2,H)

Fl: .FCTR B~ (C,D)
F2: .FCTR E~(F,G)
<END

The second representation makes it clear that the tree has
three main branches.

The .PSECT directive provides a means for directly specifying
the segment in which a p-section is placed.

The ,PSECT directive gives the name of the p-section and its
attributes. For example:

+PSECT ALPHA,CON,GBL,RW,I,REL

ALPHA is the p-section name and the remaining arguments are
attributes. P-=section attributes are described in Chapter 4.

CHAPTER 5, OVERLAY CAPABILITY

9,

10.

The p-section name must appear first on the ,PSECT directive,
but the attributes can appear in any order or can be omitted.
If an attribute is omitted, a default assumption is made,
For p=-section attributes the default assumptions are:

RW,I,LCL,REL,CON

In the above example, therefore, it is only necessary to
specify the attributes that do not correspond to the default
assumption:

+PSECT ALPHA,GBL

The .NAME directive provides a means for defining a segment
name for use in the overlay description. This directive is
useful for creating a null segment or naming a segment that
is to be loaded manually. If the .NAME directive is not
used, the name of the first file, or p-section in the segment
is used to identify the segment,

The .NAME directive defines a name, as follows:
+« NAME NEWNM

The defined name must be unique with respect to the names of
p~sections, segments, files, and factor labels.

A co-tree can be defined by specifying an additional tree
structure in the LROOT directive, The first overlay tree
description in the LROOT directive is the main tree,
Subsequent overlay descriptions are co-trees., For example:

«ROOT A-B-(C,D-(E,F)) ,X-(Y,2),0-(R,S,T)
The main tree in this example has the root segment consisting
of files A,OBJ and B,0BJ; two co-trees are defined; the

first co~tree has the root segment X and the second co-tree
has the root segment Q.

5-24

CHAPTER 6

LOADING MECHANISMS

When the user divides his task into overlay segments, he becomes
responsible for loading these overlay segments into memory as they are
needed. The degree of involvement on the part of the user c¢an range
from minimum, in which he specifies that the loading of all segments
be handled automatically, to maximum, in which he explicitly controls
the asynchronous loading of each segment and handles any errors that
occur as a result of the load request,

This chapter describes the loading mechanisms available to the user.
There are two methods for loading overlays:

Autoload in which the Overlay Runtime System is
automatically invoked to load those segments that
are marked by the user,

Manual Load in which the user includes explicit calls to the
Overlay Runtime System in his programs,

In the autoload method, loading and error recovery are handled by the
Overlay Runtime System. In the manual load method, the user handles
loading and error recovery explicitly. The user has more control and
can specify whether loading is to be done synchronously or
asynchronously.

The user must decide which method he is going to use, because both
methods can not be used in a .single task, Both methods offer
advantages. The autoload method allows the user to divide his task
into segments without explicit calls to load overlays. The manual
load method saves space and gives the user full control over the
loading process.

The user is responsible for loading the overlay segments of the main
tree, and if co-trees are used, the root segment as well as the
overlay segments of the co-tree., Once loaded, the root segment of the
co-tree remains in memory.

CHAPTER 6., LOADING MECHANISMS

6.1 AUTOLOAD

If the user decides to use the autoload method, he places the autoload
indicator '*' in the ODL description of the task at the points where
loading must take place. Tne execution of a transfer of control
instruction to an autoloadable segment up-~tree automatically initiates
the autoload process.

6.1.1 Autoload Indicator

The autoload indicator, '*', marks the construct to which it is
applied as autoloadable, If the autoload indicator is applied to a
parenthesized construct then every name within the parentheses is
marked autoloadable. Applying the autoload indicator at the outermost
parentheses level of the ODL tree description marks every module in
the overlay segments autoloadable.

Consider the example TK1L of Chapter 5, and suppose further that
segment C consists of a set of modules Cl, C2, C3, C4 and C5. The
tree diagram for TK1l then is:

A21 A22
c5
c4
al A2 Bl B2 o3
[c2
A0 B0 cl
I | l |
CNTRL

If the user introduces the autoload indicator at the outermost
parentheses 1level, he 1is assured that, regardless of the flow of
control within the task, a module is always properly loaded when it is
called. The ODL description for the task with this provision then is:

« ROOT CNTRL~* (AFCTR,BCTR,CFCTR)

AFCTR: .FCTR AO- (Al,A2-(A21,A22))
BFCTR: .FCTR B0O-(B1,B2)
CFCTR: .FCTR Cl1-~C2-C3=C4~-C5

.END

To be assured that all modules of a co-tree are properly loaded, the
user must mark the root segwent as well as the outermost parentheses
level of the co-tree, as follows:

«ROOT CNTRL-* (AFCTR,LL,FTCR,CFCTR) ,*CNTRL2=* (CNTRLX ,CNTRLY)

The above example assumes that one or more modules containing
executable code reside in CNTRL2.

CHAPTER 6.,

LOADING MECHANISMS

The autoload indicator can be applied to the following constructs:

Filenames - to make all the components of the file
autoloadable.

Parenthesized ODL tree descriptions - to make all the names
within the parentheses autoloadable.

P-section names = to make the p-section autoloadable. The
p-section must have the I (instruction) attribute,

Defined names introduced by the .NAME directive - to make
all components of the segment to which the name applies
autoloadable.

Factor label names - to make the first irreducible component
of the factor autoloadable, If the entire factor is
enclosed in parentheses, then the entire factor is made
autoloadable.

Suppose the user introduces two L PSECT directives and a .NAME

directive

into +the ODL description for TK1l and then applies autoload

indicators in the following way:

«ROOT CNTRL~- (*AFCTR,*BFCTR, *CFCTR)

AFCTR: .FCTR A0-*ASUB1-ASUB2-*(Al,A2-(A21,A22))
BFCTR: .FCTR (BO-(Bl,B2))
CFCTR: «FCTR CNAM=C1-C2-C3~C4-C5

«NAME CNAM

.PSECT ASUB1,I,GBL,OVR
.PSECT ASUB2,I,GBL,OVR
.END

The interpretation for each autoload indicator in the overlay
description is as follows:

*AFCTR The autoload indicator is applied to a factor 1label

name, so the first irreducible component of that
factor, A0, is made autoloadable.

*BFCTR The autoload indicator is applied to a factor label

name, so the first irreducible component of that
factor, (B0-(B1,B2)), is made autoloadable.

*CFCTR Again, the autoload indicator is applied to a factor

label name, so the first irreducible component, CNAM,
of the factor is made autoloadable. CNAM, however, is
a defined name introduced by a .NAME directive, so all
the components of the segment to which the name applies
are made autoloadable; that is, Cl, €2, C3, C4, and
c5.

*ASUB1 The autoload indicator is applied to a p-section name,

so the p-section ASUBl is made autoloadable.

6-3

CHAPTER 6, LOADING MECHANISMS

*(Al,A2-(A21,A22)) The autoload indicator is applied to a
parenthesized ODL description so every name within the
parentheses is made autoloadable; that is, Al, A2,
A2l, and A22,

The net effect of the above ODL description is to make every name
except ASUB2 autoloadable.

6.1.2 Path-Loading

Autoload uses the technique of path-loading. That is, a call from a
segment to a segment up-tree (farther away from the root) requires
that all the segments on the path from the c¢alling segment to the
called segment to be resident in memory. Path loading is confined to
the tree in which the called segment resides., A call from a segment
in another tree results in the loading of all segments on the path in
the second tree from the root to the called module.,

Consider again the example TK1l and the tree diagram:

A21 A22
| C5
Cc4
Al A2 Bl B2 c3
l c2

AP BP ?1

CNTRL

If CNTRL calls A2, then all the modules between the calling module
CNTRL and the called module A2 are. loaded. In this case modules A0
and A2 are loaded,

The Overlay Runtime System keeps track of the segments in memory and
only issues load requests for those segments not in memory. If, in
the above example, CNTRL called Al and then called A2, A0 and Al are
loaded first and then A2 is loaded, A0 is not loaded when A2 is
loaded because it is already in memory.

A reference from a segment to a segment down-tree (closer to the root)
is resolved directly. For example, if A2 calls A0, then the reference
is resolved directly because A0 is known to be in memory as a result
of the path=loading that took place in the call to A2,

CHAPTER 6. LOADING MECHANISMS

6.1.3 Autoload Vectors

When the Task Builder sees a reference from a segment to an
autoloadable segment up~-tree, it generates an autoload vector for the
referenced global symbol., The definition of the symbol is changed to
an autoload vector table entry. The autoload vector has the following
format:

JSR PC

SAUTO

SEGMENT DESCRIPTOR ADDR.

ENTRY POINT ADDRESS

Observe that a Transfer of Control instruction to the referenced
global symbol executes the call to the autoload routine, $AUTO
contained in the autoload vector.

An exception is made in the case of a p-section with ¢the D (data)
attribute. References from a segment to a global symbol up-tree in a
p~section with the D attribute are resolved directly.

Since the Task Builder can obtain no information about the flow of
control within the task, it often generates more autoload vectors than
are necessary. The user, however, can apply his knowledge of the flow
of control of his task and his knowledge of path-loading to determine
the placement of autoload indicators. By placing the autoload
indicators only at the points where loading is actually required, the
user can minimize the number of autoload vectors generated for the
task,

CHAPTER 6. LOADING MECHANISMS

Suppose that in TK1l all the calls to overlays originate in the root
segment. That is, no module in an overlay segment calls outside its
overlay segment, Suppose further that the root segment CNTRL has the
following contents:

PROGRAM CNTRL
CALL Al
CALL A2l
CALL A2
CALL AO
CALL A22
CALL BO
CALL Bl
CALL B2
CALL C1
CALL C2
CALL C3
CALL C4
CALL C5
END

If the autoload indicator is placed at the outermost parentheses
level, thirteen autoload vectors are generated for this task.

The user observes that since A2 and A0 are loaded by path 1loading to
A21, the autoload vectors for A2 and A0 are unnecessary., He observes,
further, that the call to Cl loads the segment which contains C2, C3,
C4 and C5; therefore autoload vectors for €2 through C5 are
unnecessary.

The user eliminates the unnecessary autoload vectors by placing the
autoload indicator only at the points where loading is required, as
follows:

« ROOT CNTRL~ (AFCTR,*BFCTR,CFCTR)

AFCTR: «FCTR AO0=-(*Al,A2-%*(A21,A22))
BFCTR: .FCTR (BO-(B1,B2))
CFCTR: .FCTR *Cl-C2-C3-C4-C5

+END

With this ODL description, the Task Builder generates only seven
autoload vectors, namely those for Al, A2l, A22, BO, Bl, B2, and Cl,

6.2 MANUAL LOAD

If the user decides to use the manual load method of loading segments,
he must include explicit calls to the $LOAD routine in his programs.
These load requests give the name of the segment to be loaded and
optionally give information necessary to perform asynchronous load
requests and to handle unsuccessful load requests.

The $LOAD routine does not path-load. A call to SLOAD always results
in the segment named in the load request being loaded and only that
segment being loaded.

CHAPTER 6. LOADING MECHANISMS

The MACRO~1ll programmer calls the $LOAD routine directlyv. The FORTRAN
programmer is provided with the subroutine 'MNLOAD'.

6.2.,1 Manual Load Calling Sequence

The MACRO-11 programmer calls $LOAD, as follows:

MoV #PRLK ;RO

CALL $LOAD
where PBLK labels a parameter block with the following format:
PBLK: «BYTE length,event~flag
.RAD50 /seg=-name/
.WORD I/0-status
+«WORD AST=-trp

The user must specify the following parameters:

length the length of the parameter block (3 - 5 words)
event-flag the event flag number, used for asynchronous
loading. If the event-flag number is zero,

synchronous loading is performed.

seg-name the name of the segment to be loaded, a 1l- to
6-character radix-=-50 name, occupying two words.

The following parameters are optional:

I/0-status the address of the I1/0 status doubleword,
Standard QIO status codes applye.

AST=-trp the address of an asynchronous trap service
routine to which control is transferred at the
completion of the load request.

The condition code C is set or cleared on return, as follows:

If the condition code C = 0, the load request was successfully
executed,

If condition code C = 1, the load request was unsuccessful.

For a synchronous load request, the return of the condition code 0
means that the desired segment has been loaded and is ready to be
executed. For an asynchronous load request, the return of the code 0
means that the load request has been successfully queued to the device
driver, but the segment is not necessarily in memory. The user must
ensure that loading has been completed by waiting for the specified
event flag before calling any routines or accessing any data in the
segment,

CHAPTER 6.

LOADING MECHANISMS

6.2.2 FORTRAN Subroutine for Manual Load Request

To use manual load in a FORTRAN program, the program makes explicit
reference to the S$LOAD routine by means of the 'MNLOAD' subroutine,
The subroutine call has the following form:

CALL MNLOAD (seg-name,event-flag,I/O~status,ast-trp,ld-ind)

where:

seg-name

event-flag

I/0-status

ast-trp

ld=-ind

is a 2 word real variable containing the segment name
in radix-50 format,

is an optional integer event flag number, to be used
for an asynchronous 1load request, If the event flag
number 1is zero, the load request is considered
synchronous.

is an optional 2-word integer array to contain the I/0
status doubleword, as described for the QIQ directive
in the RSX-11lM Executive Reference Manual.

is an optional asynchronous trap subroutine to be
entered at the completion of a request. MNLOAD
requires that all pending traps specify the same
subroutine.

is an optional integer variable to contain the results
of the subroutine call, One of the following values is
returned:

+1 request was successfully executed.

-1 request had bad parameters or was not executed
successfully.

CHAPTER 6. LOADING MECHANISMS

Optional arguments can be omitted. The following calls are all legal:

Call Effect
CALL MNLOAD (SEGAlL) Load segment named in SEGAl
synchronously
CALL MNLOAD (SEGAl,0,,,LDIND) Load segment named in SEGAl
synchronously and return

success indicator to LDIND.
CALL MNLOAD (SEGAl,1,IOSTAT,ASTSUB,LDIND)

Load segment named in SEGAl
asynchronously, transferring
control to ASTSUB upon
completion of the load
request, storing the
I/0-status doubleword in
TIOSTAT and the success
indicator in LDIND

Consider the program CNTRL, discussed in connection with the autoload
method, and suppose that between the calls to the overlay segments
there is sufficient processing to make asynchronous loading effective.
The user removes the autoload indicators from his ODL description and
recompiles his FORTRAN programs with explicit calls to the MNLOAD
subroutine, as follows:

PROGRAM CNTRL
EXTERNAL ASTSUB

DATA SEGAl /6RAl /
DATA SEGA21 /6RAZ21 /

CALL MNLOAD (SEGAl,l,IOSTAT,ASTSUB,LDIND)
CALL Al

CALL MNLOAD (SEGA21,1,IOSTAT,ASTSUB,LDIND)
CALL A2l

END
SUBROUTINE ASTSUB
DIMENSION IOSTAT(2)

END

When the AST trap routine is given as shown in the preceding example,
the IO status doubleword is automatically supplied to the dummy
variable IOSTAT,

CHAPTER 6., LOADING MECHANISMS

6.3 ERROR HANDLING

If the manual load method is selected, the user must provide error
handling routines which diagnose load errors and provide appropriate
recovery.

If the autoload method is selected, a simple recovery procedure is
provided, which checks the Directive Status Word (DSW) for the
presence of an error indication, If the DSW indicates that no system
dynamic storage is available, the routine issues a ‘wait for
significant event' directive and tries again; if the problem is not
dynamic storage, the recovery procedure generates a breakpoint
synchronous trap. If the using routine is set to service the trap and
return without altering the state of the program, the request can be
retried.

A more comprehensive user-written error recovery subroutine can be
substituted for the system-provided routine if the following
conventions are observed:

1. The error recovery routine must have the entry point name
$ALERR,

2. The contents of all registers must be saved and restored.

On entry to SALERR, R2 contains the address of the segment descriptor
that could not be loaded. Before recovery action can be taken, the
routine must determine the cause of the error by examining the
following words in the sequence indicated:

l. $DSW - The Directive Status Word may contain an error
status code, indicating that the I/0 request to
load the overlay segment was rejected by the
Executive,

2. N,OVPT - The contents of this location, offset by N.IOST,
point to a 2-word I/0 Status block containing the
results of the load overlay request returned by
the device driver. The status code occupies the
low-order byte of word 0.

6.4 EXAMPLE: CALC;5

Suppose the task CALC is now complete and checked out and the. user
wants to adjust the autoload vectors to minimize the amount of storage
required.

From his knowledge of the flow of control of the task he can determine
that PROC3 is always in memory as a result of path-loading when it is
called and therefore, the autoload vector for PROC3 can be eliminated.,

He modifies the ODL description in CALTR, as follows:

CHAPTER 6. LOADING MECHANISMS

« ROOT RDIN=RPRT=-ADTA=~ (*PROC1,*PROC2,P3FCTR)
P3FCTR: .FCTR PROC3-*(SUB1,SUB2)
«END

He builds the task and the resulting memory allocation file in Figure
6~1 shows that the repositioning of the autoload indicator saved 10
bytes.

FILE CAILC.TSK;5 MEMORY ALLOCATION MAP
THIS ALLOCATION WAS DONE ON 25-JUL~74
AT 15:50 BY TASK BUILDER VERSION MO06

*** RDOT SEGMENT: RDIN

R/W MEM LIMITS: 000000 034703 034704
STACK LIMITS: 000214 001213 001000
DISK BLK LIMITS: 000002 000036 000035
IDENTIFICATION : S$SFORT

PRG XFR ADDRESS: 001214

TASK ATTRIBUTES: NC

PROGRAM SECTION ALLOCATION SYNOPSIS:

<. BLK.>: 001214 024555 023342
CADTA >: 024556 026215 001440
{DTA >: 026216 027657 001442
{SSALER>: 027660 027703 000024
{$$AOTS>: 027704 030461 000556
{$$DEVT>: 030462 031671 001210
{$$FSR1>: 031672 032711 001020
{$$FSR2>: 032712 033013 000102
{$$IOR1>: 033014 033217 000204
{$$I0B2>: 033220 033220 000000
{$$OBF1l>: 033220 033327 000110
{$$OBF2>: 033330 033330 000000
{$$0OVDT>: 000000 000000 000000
{$SRESL>: 033330 034451 001122
{$$BGDF>: 000000 000000 000000
{. ABS.>: 000000 000000 000000
{.$$85.>: 034452 034452 000000

Figure 6-1
Root Segment of Memory Allocation
File for CALC;5 (Mapped System)

CHAPTER 6. LOADING MECHANISMS

6.5 GLOBAL CROSS-REFERENCE OF AN OVERLAID TASK

Chapter 4 introduced the global cross-reference feature. This section
illustrates a global cross-reference that has been created for an
overlaid task. The task consists of a root segment containing the
module ROOT.OBJ, and two overlay segments comprised of modules

OVR1l and OVR2. The overlay description of the file is as follows:

.ROOT ROOT-(OVR1, *OVR2)
Only segment OVR2 is autoloadable.
The resulting cross-reference listing is shown in Figure 6-2. By
consulting the cross-reference listing, the following observations
can be made.
The global symbol OVR1l is defined in the module OVR1 and a single
non-autoloadable, up-tree reference is made to this symbol by the
module ROOT (as indicated by the up-arrow, i.e., circumflx, character).
The asterisk preceding the module OVR2 indicates that the global
symbol OVR2 is an autoload symbol and is referenced from the module
ROOT through an autoload vector as shown by the @ character.

Down-tree references to the global symbol ROOT are made from modules
OVR1 and OVR2. These references are resolved directly.

GLOBAL CROSS REFERENCE

FILE: OVRTST CREATED BY TKB ON 21-MAR=75 AT 14:04 PAGE 1
SYMBOL VALUE REFERENCES, ..

N,ALER 000010 AUTO # OVRES

N,IOST 000004 OVCTL # OVRES

N,OVLY 000000 OVCTL # GVRES

N,OVPT 000054 AUTO OVCTL

N,STBL 000002 # OVRES .

OVR1 001764=R & OVR1 = 'ROOCT

OVR2 001764=R * OVR2 @ ROOT

OSVEF 000037 $ OVCTL

ROOT 001210=R OVR1 OVR2 # ROOT
$ALERR 001226-R % ALERR OVDAT

8$AUTO 001252«R & AUTO

$DSw 000046 ALERR

$MARKS 001406=R AUTO # OVCTL
$RDSEG 001512-R AUTO # OVCTL
$SAVRG 001662=R AUTO # SAVRG

+«NALER 001224=-R & OVDAT
«NIOST 001220=-R & OVDAT
+NOVLY 001214=R & OVDAT
«NOVPT 000042 % OVDAT
«NSTBL 001216~R # OVDAT

Figure 6-2
Sample Overlaid Cross-reference Listing

CHAPTER 7

SHARED REGIONS

This chapter describes the use of shared regions. A shared region is
a block of data or code that can be shared by any number of tasks.

Shared regions are useful because they make more efficient use of
memory :

1. Shared regions provide a way in which two or more tasks can
communicate,

2, Shared regions provide a way in which a single copy of a data
base or commonly used subroutines can be shared by several
tasks.

Consider the first case, in which two tasks, Task A and Task B, need
to communicate a large amount of data. A convenient method of
transporting this data is the use of a shared region. Tasks can
communicate independent of their time of execution. This case is
illustrated by the following diagram:

shared region shared region
S S
Task A
Task B
Resident Resident
Executive Executive
System Memory (System Memory)
(Time t) Time t+n

CHAPTER 7. SHARED REGIONS

Task A and Task B communicate through the shared region,
of tasks can link to a shared region,

Any number

Consider the second case, in which tasks make use of common routines,
The common subroutines are not included in each task image; instead,
they are included in a shared region so that a single copy is
accessible to all tasks. This case is shown in the following diagram:

Routine R
Routine R
Task A
Routine R Task A
Task B Task B
Resident Resident
Executive Executive

System Memory

System Memory

CHAPTER 7. SHARED REGIONS

A task can link to as many as three shared regions. A privileged task
in a mapped system, however, can 1link to a maximum of two shared
regions.,

A shared region has associated with it a task image file and a symbol
definition file. When a task 1links to a shared region the Task
Builder uses the symbol definition file of the shared region to
establish the linkages between the task and the shared region.

7.1 USING AN EXISTING SHARED REGION

The user can link to any of the system shared regions by wusing the
COMMON or LIBR keyword option and specifying the name of the shared
region and the type of access he is requesting.

Suppose JRNAL is a system shared region and the user wants his task
IMGl to 1link to that region and examine some relevant data. He
specifies the name in the COMMON keyword with read-only access as
follows:

>TKB
TKB>IMGl,LP:=IN1,IN2,IN3
TKB>/

ENTER OPTIONS:
TKB>COMMON=JRNAL : RO
TKB>//

A task can link to any shared region on the disk. However, before the
task can be activated, any shared region it uses must be resident in
memory.

7.2 CREATING A SHARED REGION

To create a shared region, the task image and symbol definition files
must be built under UIC [1,1] on the system device.

In Chapter 4, runnable tasks were described. A shared region differs
from a runnable task in that it does not have a header or a stack.
The user must therefore specify that no header and stack are to be
produced for the task image file in creating a shared region,

In summary, to create a shared region the following steps are taken:

° The task image file and symbol definition file are built
under UIC [1,1] on the system device.

° The task image file or symbol definition file has the switch
/-HD, indicating that no header is required.

o The option STACK=0 1s entered during option input to
eliminate the stack.

CHAPTER 7. SHARED REGIONS

Suppose the user wants to create a resident library, ZETA, from the
files 21, Z2, and Z3. He builds the shared region, as follows:

>TKB

TKBY [1,1]ZETA/~HD,LP:,SY: [1,1] 2ETA=21,22,2%3
TKBY/

ENTER OPTIONS;

TKB >STACK=0

TKB>//

A task can now link to the shared region. However, before the task
can be installed and activated, the shared region must be made
resident in memory. Space is allocated for the 1library and the
library 1is 1loaded into memory by the following commands (see the
RSX-11M Operator's Procedures Manual for a description of the commands).

>! ALLOCATE SPACE FOR RESIDENT LIBRARY
SET /MAIN=ZETA:14001100!COM
SINS [1,1]ZETA/PAR=ZETA

7.3 POSITION INDEPENDENT AND ABSOLUTE SHARED REGIONS

A shared region can be either position independent or absolute.
Position independent shared regions can be placed anywhere in the
task's virtual address space when the system on which the task runs
has memory management hardware, Absolute regions must be fixed in the
virtual address space.

The user must ensure that the region is position independent, if he
applies the PI switch, The PI switch directs the Task Builder to
treat the region as position independent, but the Task Builder can not
determine whether or not the region is position independent. If the
PI switch is applied to a region which is not truly position
independent, the execution of a task linked to that region is
unpredictable.

Data is always position independent. Code can be position
independent, but the code produced as a result of compiling a FORTRAN
program is not position independent., Furthermore, FORTRAN programs
can not be used as shared libraries because these programs do not
satisfy the re-entrancy requirements necessary for shared regions.

FORTRAN common blocks can be included in shared regions. However, the
only way FORTRAN programs can communicate through the use of common
blocks is by the common block name; to retain this name, the shared
region must be declared position independent. If the region is not
declared position independent, the name is not retained and no FORTRAN
program can link to the common block.

Chapter 8 illustrates the use of a FORTRAN common block as a shared
region on an unmapped system.

Absolute shared regions are used for code which satisfies the
re-entrancy requirements for a shared region but is not position
independent.

CHAPTER 7. SHARED REGIONS

7.4 EXAMPLE: CALC;6 BUILDING AND USING A SHARED REGION

Suppose the task CALC has been completely debugged and the user wants
to replace the dummy reporting routine RPRT by a generalized reporting
program that operates as a separate task, This generalized reporting
program GPRT was developed by another programmer in parallel with the

development of CALC. Now both routines are ready and the user wants
+0 gcreate a2 shared reginn so that the two tasks can communi cate,

VaTR e & Tk - \sas Y whal e weaT W NI L L

In addition to creating the shared region, the user must modify his
FORTRAN routine to replace the call to the dummy reporting routine by
a call to REQUEST for the task GPRT and he must remove the dummy
routine from his ODL description for the task,

7.4.1 Building the Shared Region

The common block into which CALC places its results and from which
GPRT takes its input is named DTA, The user wants to make DTA into a
shared region so that the two tasks can communicate.

The user first creates a separate input file for DTA:

>EDI

EDI>DTA.FTN

[CREATING NEW FILE]

INPUT

C

c GLOBAL COMMON AREA FOR 'CALC' AND
C REPORTING TASK 'GPRT'

BLOCK DATA
COMMON /DTA/ A(200),I
END

*EX
He then compiles DTA:
2FOR DTA,LP:=DTA

He then builds the task image and symbol definition file for the
shared region DTA:

>TKB
TKB>[1,1]DTA/PI,LP:/SH,SY0: [1,1] DTA/-HD=DTA
TKB>/

ENTER OPTIONS:

TKB »STACK=0

TKB>//

He marks the task image file for DTA as position independent in order
to retain the name of the referenced common block, DTA,

CHAPTER 7., SHARED REGIONS

As required, he creates the task image and symbol definition file on
the system device under the User Identification Code [1,1,], applies
the switch -HD to the symbol definition file to specify that the task
has no header, and enters the option STACK=0 to eliminate the stack.
It was necessary to specify the system device SY0 for the symbol
definition file; if the wuser does not specify a device, the last
named device applies. In this case, failure to specify the system
device would have resulted in the application of the device
specification LP to the symbol definition file,

The shared region DTA now exists on the disk as an eligible candidate
for inclusion in an active system. The user can now modify his task
to link to that shared region. However, before the task can be
executed, the shared region must be made resident in memory.

7.4.2 Modifying the Task to Use the Shared Region

The user now modifies the task CALC, He edits the file containing the
program RDIN to include the name of the reporting task in radix-50
format:

DATA RPTSK/6RGPRT /

And he replaces the call to the dummy reporting routine RPRT by the
call:

CALL REQUES (RPTSK)
The relevant part of the program RDIN is shown below:

READ AND ANALYZE INPUT DATA

ESTABLISH COMMON DATA BASE
COMMON /DTA/ A(200), I

SET UP NAME OF REPORTING TASK IN RADIX 50
DATA RPTSK /6RGPRT /
READ IN RAW DATA

a O aao

CALL REQUES (RPTSK)

END

The user now modifies the ODL description of the task CALC to remove
the file RPRT.OBJ. He changes the .ROOT directive from:

«ROOT RDIN=-RPRT-ADTA=- (*PROC1,*PROC2,P3FCTR)
to:

«ROOT RDIN=-ADTA=- (*PROC1,*PROC2,P3FCTR)

CHAPTER 7. SHARED REGIONS

He then builds an indirect command file to include the COMMON keyword:

EDI
EDI>CALCBLD.CMD
[CREATING NEW FILE]
INPUT
CALC,LP:/SH=CALTR/MP
PAR=PAR14K

ACTFIL=1
COMMON=DTA : RW

//

*EX

And then he builds the task with the single command referencing the
indirect file:

>TKB @CALCBLD

The communication between the two tasks, CALC and GPRT, is now
established. When the shared region DTA is made resident, the two
tasks can run.

7.4.3 The Memory Allocation Files

Figure 7-1 gives the memory allocation file for the shared region DTA.
The attribute 1list indicates that the task image was built with no
header (NH) and is position independent (PI).

Figure 7-2 gives the memory allocation file for the task CALC after
the shared region DTA was created and the dummy reporting routine
removed from the task, The read-write memory limits for the xoot
segment code have increased due to the call to REQUES., The read-write
memory limits for the entire task have decreased because the common
block DTA is now a shared region allocated at 160000 and no longer
part of the task.

CHAPTER 7. SHARED REGIONS

FILE DTA.TSK:2 MEMORY ALLOCATION MAP
THIS ALLOCATION WAS DONE ON 25-JUL-74
AT 16:25 BY TASK BUILDER VERSION MO6

*** ROOT SEGMENT: DTA

R/W MEM LIMITS: 000000 001443 001444
DIS BLK LIMITS: 000002 000003 000002
IDENTIFICATION:

TASK ATTRIBUTES:NC,NH,PI

PROGRAM SECTION ALLOCATION SYNOPSIS:
<. BLK.>: 000000 000000 000000

{DTA >: 000000 001441 001442

<. ABS,.>: 000000 000000 000000
{.$$8$.>: 001442 001442 000000

*** FILE: DTA,0BJ:2 TITLE: .DATA, IDENT:
<.$$8$.>: 001442 001442 000000

<DTA >: 000000 001441 001442

Figure 7-1 .
Memory Allocation File for the Shared Region DTA
(Mapped System)

CHAPTER 7. SHARED REGIONS

FILE CALC.TSK:6 MEMORY ALLOCATION MAP
THIS ALLOCATION WAS DONE ON 25-JUL~74
AT 16:20 BY TASK BUILDER VERSION M06

*** ROOT SEGMENT: RDIN

R/W MEM LIMITS: 000000 033337 033340
STACK LIMITS: 000214 001213 001000
DISK BLK LIMITS: 000002 000035 000034
IDENTIFICATION : S$FORT
PRG XFR ADDRESS: 001214

TASK ATTRIBUTES: NC

PRI ¥ B 18 ¥ Y

PROGRAM SECTION ALLOCATION SYNOPSIS:

<. BLK.>: 001214 024651 023436
{ADTA >: 024652 026311 001440
<DTA >: 160000 161441 001442
{$SALER>: 026312 026335 000024
{$$AOTS>: 026336 027113 000556
{$$DEVT>: 027114 030323 001210
{$$FSR1>: 030324 031343 001020
{$$FSR2>: 031344 031445 000102
{$SIOR1>: 031446 031651 000204
{$$IOB2>: 031652 031652 000000
{$$0OBF1l>: 031652 031761 000110
{$$O0BF2>: 031762 031762 000000
{$$OVOT>: 000000 000000 000000
{$$RESL>: 031762 033103 001122
{$$SGDF»>: 000000 000000 000000
<. ABS.»>: 000000 000000 000000
{.$8$8.>: 161442 161422 000000

*** FILE: DTA.STB;2 TITLE: DTA IDENT:

{DTE >; 160000 161441 001442

<. ABS.>: 000000 000000 000000

N.OVPT 000054 $DSW 000046 $OTSV 000052 ,FSPRT 000050
<.$$$8.>: 161442 161442 000000

% FILE: RDIN.OBJ;5 TITLE: .MAIN, IDENT: $FORT

{e$$8S8.>: 161442 161442 000000

<e$$88.>: 161442 161442 000000

Figure 7-2
Memory Allocation File for CALC;6
(Mapped System)

7-9

CHAPTER 8

HOST AND TARGET SYSTEMS

This chapter describes the construction of a task destined to run on
another system,

8.1 BUILDING THE TASK FOR THE TARGET SYSTEM

The user can transfer a task from the host system (the system on which
the task is built) to the target system (the system on which the task
will run) by following a few simple steps:

1. He builds the task image specifving a partition that has the
base address and size of the partition in which the task will
run on the target system.

2, He ensures that any shared regions accessed by the task are
present in both systems under UIC{1,1].

3. If the target system and the host system do not have the same
mapping status, he sets the Memory Management switch (MM) to
reflect the mapping status of the target system.

8.1.1 Example

Suppose that in a given installation, there is one 1large computer
system with mapping hardware and several smaller systems without
mapping hardware, The programmers in this installation create and
debug their tasks on the 1large host system and when the tasks are
ready to go into production, they transfer them to the smaller
systems, If the programmer is developing the task, TKl, in the
default partition on the host system, his task building sequence is:

>TKB TK1,LP:=SQl,SQ2

When he is ready to move his task to a target system, he builds the
task again, indicating the mapping status of the target system and
naming the partition in which the task is to reside on the target
system:

CHAPTER 8, HOST AND TARGET SYSTEMS

>TKB
TKB>TK1/=-MM,LP:=5Q1,5Q2
TKB/

ENTER OPTIONS:
TKB>PAR=PART1:100000 :40000

TKB>//

The resulting task image is ready to run on the unmapped target
system.

8.2 EXAMPLE: CALC;7

Suppose the user has now completed checking out the interface between
his task CALC and the generalized reporting routine and he is now
ready to move the task to another system., The system on which he has
been working has mapping hardware, but the system on which CALC is
going to run does not have mapping hardware,

The user knows the configuration of the target system. He knows that
there is a partition called PARSK with base at 40000 in which the task
CALC is going to run,

To move the tasks CALC and GPRT, he must also move the shared region

DTA. Therefore, he must rebuild the shared region task image for the
partition in which it will reside on the target system,

8.2.1 Rebuilding the Shared Region

He builds the task image for the shared region again, this time for a
partition in the target system:

>TKB
TKB>[1,1]1DTA/PI/~MM,LP:/SH,SY0:[1,1]DTA/~HD=DTA
ENTER OPTIONS:

TKB) STACK=0

TKB)PAR=PARS1:156000:2000

TKB>//

CHAPTER 8, HOST AND TARGET SYSTEMS

8.2.2 Rebuilding the Task for the Target System

He modifies the indirect command file CALCBLD, so that it includes the
memory mapping switch and the target partitions. He also adds
comments to identify the task building sequence:

PROCESS ANALYSIS FOR SYSTEM M23
VERSION 1 DATE: AUG 26, 1974
CALC/-MM,LP: /SH=CALTR/MP
PAR=PAR8K:40000:40000

COMMON=DTA :RW ; COMMUNICATION WITH GPRT

//

He then builds his task with the single command;

~e W

2>TKB RQCALCBLD
His task is now ready to be installed and run on the target system,

Before the task can be installed, the shared region must be made
memory resident on the target system.

8.2,3 The Memory Allocation Files

Figure 8-1 gives the memory allocation file of the shared region DTA
for an unmapped system. The shared region is bound to the partition
base specified by the PAR keyword in the task build, Note that the
shared region is declared position independent in the unmapped system
even though it is bound to the partition base 156000, The position
independent declaration is necessary to preserve the relocatable
p~section DTA so that other FORTRAN tasks can link to the region.

Figure 8-2 gives the memory allocation file of the task CALC for an
unmapped system, The task is bound to the specified partition base
40000 and linked to the shared region DTA bound at 156000.

CHAPTER 8. HOST AND TARGET SYSTEMS

FILE DTA,TSK;l MEMORY ALLOCATION MAP
THIS ALLOCATION WAS DONE ON 20-AUG-74
AT 07:09 BY TASK BUILDER VERSION MO06

*** ROOT SEGMENT: DTA

R/W MEM LIMITS: 156000 157443 001444
DISK BLK LIMITS: 000002 000003 000002
IDENTIFICATION:

TASK ATTRIBUTES: NC,NH,PI

PROGRAM SECTION ALLOCATION SYNOPSIS:
<+ BLK.>: 156000 156000 000000

<DTA >: 156000 157441 001442

<. ABS.>: 000000 000000 000000
<.$888.>: 157442 157442 000000

*** FILE: DTA.OBJ;l1 TITLE: .DATA, IDENT:
C.$8$8.7: 157442 157442 000000

<DTA >: 156000 157441 001442

Figure 8-1
The Memory Allocation File for the Shared Region
(Unmapped System)

/-4

CHAPTER 8, HOST AND TARGET SYSTEMS

FILE CALC.TSK;>: MEMORY ALLOCATION MAP
THIS ALLOCATION WAS DONE ON 20-AUG-74
AT 08:25 BY TASK BUILDER VERSION MO06

%% ROOT SEGMENT: RDIN

R.,W MEM LIMITS: 040000 073337 033340
STACK LIMITS: 040214 041213 001000
DISK BLK LIMITS: 000002 000035 000034
IDENTIFICATION : S$FORT

PRG XFR ADDRESS: 041214

TASK ATTRIBUTES: NC

PROGRAM SECTION ALLOCATION SYNOPSIS:

<. BLK.>: 041214 064661 023446
{ADTA >: 064662 066321 001440
{DTA >: 156000 157441 001442
{$$SALER>: 066322 066345 000024
{$$A0TS>: 066346 067123 000556
{$$DEVT>: 067124 070333 001210
{$$FSR1>: 070334 071353 001020
{$SFSR2>: 071354 071445 000102
{$$IOB1l>: 071456 071661 000204
{$$I0OB2>: 071662 071662 000000
{$$OBF1>: 071662 071771 000110
{$$OBF2>: 071772 071772 000000
{$$0VDT>: C00000 000000 000000
{$$RESL>: 071772 073113 001122
{$$SGDF>: 000000 000000 000000
<. ABS,>: 000000 000000 000000
<.$$88.> 157442 157442 000000

*** SEGMENT: PROC1

R/W MEM LIMITS: 073340 075023 001464
DISK BLK LIMITS: 000036 000037 000002

PROGRAM SECTION ALLOCATION SYNOPSIS:
{. BLK,>: 073340 075023 001464
Figure 8-2

The Memory Allocation File for
CALC;7 (Unmapped System)

CHAPTER 8, HOST AND TARGET SYSTEMS

*** SEGMENT, PROC2

R/W MEM LIMITS: 073340 074203 000644
DISK BLK LIMITS: 000040 000040 000001

PROGRAM SECTION ALLOCATION SYNOPSIS:
<o BLK.>: 073340 074203 000644
*** SEGMENT: PROC3

R/W MEM LIMITS: 073340 073673 000334
DISK BLK LIMITS: 000041 000041 000001

PROGRAM SECTION ALLOCATION SYNOPSIS:
<. BLK.>: 073340 073673 000334
**%* SEGMENT: SUBL

R/W MEM LIMITS: 073674 074307 000414
DISK BLK LIMITS: 000042 000042 000001

PROGRAM SECTION ALLOCATION SYNOPSIS:
<. BLK.>: 073674 074307 000414
**%* SEGMENT: SUB2

R/W MEM LIMITS: 073674 074307 000414
DISK BLK LIMITS: 000043 000043 000001

PROGRAM SECTION ALLOCATION SYNOPSIS:
<+ BLK.>: 073674 074307 000414

Figure 8-2 (Cont.)
The Memory Allocation File for CALC;7
{Unmapped System) v

CHAPTER 9

MEMORY DUMPS

9.1 POST-MORTEM DUMPS

The task PMD... generates a Post-mortem Dump of a task that is ab-
normally terminated. A task may be made eligible for a Post-Mortem
dump in one of two ways:

1. At task build time by specifying the /PM switch on the
task file. /-PM will disable dumps and is the default.

2. At task installation time the /PMD switch may be used
to override the task built option. /PMD=YES will enable
dumping; /PMD=NO will disable dumping.

The Post-mortem Dump task PMD... should be installed in a 4K parti-
tion in which all other tasks are checkpointable. This allows the
dump to be generated in a timely manner and prevents the system from
being locked up while the dump is being generated. The dump task
is capable of dumping from memory or from the checkpoint image of
the user's task. The Post-mortem Dump task is sensitive to the
location of the aborted task. Thus, if the aborted task is check-
pointed during the dump, the dump task will switch to reading the
checkpoint image. If the aborted task returns to memory after
being checkpointed, the Post-mortem Dump will switch to using the
core image again.

Dumps are always generated on the system disk under UIC [1,4]. Thus,
to avoid errors from PMD... the user must allocate a UFD for [1,4]
before installing the task. When the dump task finishes generating
the dump, it will attempt to queue it to the print spooler for subse-
quent printing. If no spooler is installed, the dump file will be
left on the disk and may be printed at a later time using PIP.

NOTE

Dump files tend to be rather large. The dump of an
8K partition will average about 340 blocks. There-
fore, if there is little space on the disk, it is
important to print and delete the dump file without
delay.

9-1

CHAPTER 9. MEMORY DUMPS

9.1.1 Description of a Dump Generated by PMD...

The following description of the contents of Post-Mortem and Snapshot
dumps is keyed to Figure 9-1. Snapshot dumps are explained more
fully in Section 9.2.

Item

Description

1

10

11

Type of dump - Post-Mortem or Snapshot. If it is a Snapshot
dump, the dump ID is printed.

The name of the task being dumped and the date and time the
dump was generated.

The program counter at the time of the dump; and if it is a
post-mortem dump, the reason the task was aborted.

The general registers, stack pointer, and processor status
at the time of the dump.

The task status flags at the time of the dump. See the
description of ATL or TAL in the RSX-~-11M Operator's Pro-
cedures Manual for the meaning of the flags.

The task event flag mask words at the time of the dump. If
the dump is a Snapshot dump, the EFN specified in the SNAP
macro will be ON.

The task UIC and the current value of the directive status
word.

The task's priority, number of outstanding I/0 requests, and
the terminal from which the task was initiated (TI:).

The task load device and the logical block number of the
start of the task image on the device.

The floating point unit (FPU) registers or the extended
arithmetic element (EAE) registers if the task is using one
of these pieces of hardware. 1If the task is not using the
FPU or EAE, these registers will not be printed. If the
task uses the FPU and doesn't specify /FP on the task image
file, or if it uses the EAE unit and has not specified the
/EA switch, the registers will not be printed. If the
machine being used has both an FPU and an EAE, PMD will
assume the user is using the FPU since it is the unit

of choice for arithmetic computations.

The logical unit assignments at the time of the dump. UNIT
is the logical unit number, and DEVICE is the device to which
the logical unit is assigned. For Snapshot dumps, file
status will display the file name of any open files. Post-
mortem dumps will not display this information since all of
the files will have been closed as a result of the I/0O
rundown on the aborted task.

CHAPTER 9. MEMORY DUMPS

Item

Description

12

13

14

The overlay segments loaded at the time of the dump, the
relative block number of the segment, the base address, the
length of the segment, and, for tasks using manual loads,
the segment names are displayed. The block number may be
used to determine which segment is loaded by reference to
the memory allocation file generated by the Task Builder.
The starting block number for each segment is the relative
block number of the segment. By obtaining a match, the
name of the segment in memory may be determined. Zero
length segments are usually co-tree roots.

The task stack at the time of the dump. The address is
displayed, along with the contents, in octal, ASCII, and
RAD50. Each word on the stack is dumped. If the stack
pointer is above the initial value of the stack (H.ISP),
only one word will be dumped. The rest will be dumped
as part of the task image.

The task image itself. The partition being dumped and the
limits of interest are displayed. For post-mortem dumps,
this is the entire task limit. For Snapshot dumps, this is
the virtual task limits requested by the user. The dump
routine rounds the requested low limit down to the nearest
multiple of 8 bytes and rounds the requested high limit up
to the nearest multiple of 8 bytes. The dump image displays
the virtual starting address of a four-word block of memory,
the data in both octal and RADS50 on the first line, and
byte octal and ASCII on the second line. A four-word block
which is repeated in a contiguous region of memory will be
printed once, and then noted by the message

%% DUPLICATE THROUGH XXXXXx ***

where xxxxxx indicates the last word which is duplicated.

If the task was aborted, the task partition, and the
libraries and common blocks it is linked to, will be dumped.
If the dump is a Snapshot dump, up to four contiguous
blocks of memory will be dumped, if requested.

CHAPTER 9. MEMORY DUMPS

postemontem puMp (D)

TAsKy SNPTST (2 TIMES 27=JUN<?5 R913¢
pcy eeer26 (3) 10T EXECUTION ©)
REGS1 RO = 008383 RY = 74400 R2 = Q00120 R3I = 1402130

@

R4 « Npgaeg RS « 2Qa@@2 8P » 200312 P8 « {72000
TASK STATUS) DST M3G AT «CHk HLT (5)

EVENT FLAG MASKS: <«Qieifr P00Q@1 <17+32> 086502 (:)
€33=48> 2002000 <49w84> 2202000

CURRENT UIC1 (28n,200) 08wy i, (7)

PRIORITY: %@, 1/0 COUNT: @, T1 DEVICE » TTi0y
LOAD DEVICE = 8vou L8Nt @,002265 (9)
FLOATING POINT UNIT 2

STATUS = Q44400

R@ = 200200 €0E020 000202 @BAARQ @

Ri « 000003 P0ORAQ Q02AAR 0AAEANAP

R2 - 720202 000020 @AP2000 ARA0OD

R} = 2000200 000000 Q20200 Q00000

R4 = 200000 0Q2M30P 000RR3 000000

RS « 00AREM 00A0A2 000002 ¢PEORD

LOGICAL UNITS

UNIT DEVICE FILE STATUS CE
1 sy

H Svo1

3 syot

OVERLAY SEGMENTS LOADED

STARTING RELATIVE BLOCK; 0Q@@02 BASE: @eo020 LENGTH; 2014g4 C)
STARTING RELATIVE BLOCK: nooRQd BASE: 001464 LENGTHI 200264

TASK STACK
ADDRESS CONTENTS ASCII RADSO @3
9ea312 00@edS ¥ 7

Figure 9-1
Sample Post-Mortem Dump

PARTITION: GEN

220002 0020312
312 2ea
eeeeie 0e17r77
377 023
200020 00Ae00
00e 009

#+#e DUPLICATE

200242 0Q0GQRQQA
202 aed
202250 000002
aee 02
ee@a6e q0ge0!
eey eeo
202073 (402¢9
2ne 200
p0pip2 02p312
312 202
22aiia 0ANaaA29
20Q@ @ea
eeei2e 000900
2en 499
229132 02R023
203 299
220142 220029
209 oe2
eepisSa eonr726
326 oot
ero180 eR120
120 ¢0Q
209170 Q44400
eea 1114
200200 0QQAR0A
@ee aeo

sve DUPLICATE

p0a25@ o@eoAeQ
ana oea
pP@280 0264
264 ¢9Q

201722 0R63P2
Jo0 @14
901732 161601
201 343
201743 003367
387 206
81750 @PA0RQ
eee #nd

eee DUPLICATE

TASK IMAGE

evai7e
170 ¢an
eo3200
200 neé
2eca2@
aen 202

THROUGH

egoea0
222 nQ0
202220
200 90@
286502
192 135
102200
200 200
aeenee
222 o2¢
290000
200 @09
140170
{72 399
n523%52
3Ise j2¢
252352
352 124
oeene2
202 722
Q74420
200 171
2ReAGA
20Q eo@
202020
200 @a2@

THROUGH

eeer32
332 oot
2ngeon
20e @29

206191
101 014
apse00
200 012
022626
226 245
20020@
200 909

THROUGH

LIMITS: Qeeeee = 201777

8856424 202000
924 135 Q00 @de
apenan 2Q2020
200 202 @00 @20
geseon 200009
000 200 @M@ Q0°
200038 vew
anapae aoe0@l
27 202 @91 008
P20726 00200
326 anrl aeo 900
peenea 700000
200 029 000 0QQ
{7217 0360
917 362 360 Q@0
Po20207 200000
202 220 222 220
geAnRR r0000¢
P2 7202 Q22 200
peaane 263536
pne 000 136 147
200000 2523852
P20 204 3I%2 124
aranee {72002
700 200 Q0@ 360
gaaena 140132
20 2%2 139 32
7003583 2p0ane
353 e@@ aee 9200
aaeene 22PQ00
P20 202 Q@07 Q0@
eoerQR 200200
P20 2@ Q0P @BOP
200246 eue
[-Id-1-1"1"] 201464
202 902 @684 903
Qeenen 200001
pAe P2 @ep1 oaQ
p2a116 103402
116 243 @02 20?7
205366 eepan2
366 912 Q02 @en
pe0207 anoene
207 a0e 0ap 000
aeodee 2900080
200 202 Q29 Q09
PR1776 wer
Figure 9-1

1 EB €
I YW AAX

i

| A N64

1TVP TVe

i 212
I € MWR

1 MWR

I B SNP

1 DY

1BAY ABQ
|6PA ASM
{ADW F v

[

(Cont.)

Sample Post-Mortem Dump

NS, i
iJ

i

H

1

!

Al

!

KQ i

1

H

!

8PP0 F

H

H
1J

{

i

PUV!

!

MWR |

|

BPp |

|

ey !
v

ES {
iP

1

{

l}

T

!

Al
14

EFA UXB!
1o

ARGF -1}

!

co

81 l

X8|

-

CHAPTER 9. MEMORY DUMPS

9.2 SNAPSHOT DUMP

The task PMD... is also capable of producing edited dumps for running
tasks. These dumps are called Snapshot Dumps, and they are useful as
debugging aids. A Snapshot Dump may be reguested any number of times
during the execution of a task. The information generated is under
the control of the programmer.

Snapshot Dumps are generated by the following macros:

SNPDFS$ Defines offsets in the Snapshot Dump Control Block
and control bits which control the format of the
dump.

SNPBKS Allocates the Snapshot Dump Control Block (see

Figure 9-2).
SNAPS Causes a Snapshot Dump to be generated.

SNPBKS$ and SNAPS$ issue calls to SNPDF$, so, in most cases, the pro-
grammer does not have to explicitly issue the SNPDF$ macro call.

9.2.1 Format of the SNPBK$ Macro

The format of the SNPBKS$ macro call is as follows:
SNPBKS dev,unit,ctl,efn,id,Ll,Hl,L2,H2,L3,H3,1L4 ,H4
where:

dev Is the 2 character ASCII name of the device to which

the dump is directed. If it is a directory device,
the UFD [1,4] must be on the volume. The dump will
be written to the disk and then spooled to the line
printer. If there is no print spooler, the file
will be left on the disk. If the device is not a
directory device, the dump will go directly to the
device.

unit Is the unit number of the device to which the dump
is directed.

ctl Are the flags which control the format of the dump

and the data to be printed. The flags are:

SC.HDR Print the dump header. (Items 1-10 in
Figure 9-1.)

SC.LUN Print information on all assigned LUNs.
(Item 11)

SC.0VL Print information about all loaded over-
lay segments. (Item 12)

SC.STK Print the user stack. (Item 13)

SC.WRD Print the requested memory in octal words
and RAD50. (Item 14)

SC.BYT Print the requested memory in octal bytes
and ASCII. (Item 14)

9-6

CHAPTER 9. MEMORY DUMPS

efn Is the event flag to be used to synchronize the user
program and the task PMD... .

id Is a number which identifies the Snapshot Dump. Since
dumps can be requested at different times and under
different conditions, this ID is used to identify the
place or reason for the dump.

Ll,L2 Are the starting addresses of the memory blocks to
L3,L4 be dumped.

H1,H2, Are the ending addresses of the memory blocks to be
H3,H4 dumped.

NOTE

If no memory is to be dumped, each limit
(Ll1,L2,L3,L4,H1,H2,H3,H4) should be zero.

Only one snap block is allowed. It generates the global label
. .SPBK.

NOTE

Since SNPBKS$ is used to allocate storage
for the snap block, all arguments except
dev must be valid arguments for .WORD or
.BYTE directives.

9.2.2 Format of the SNAPS$ Macro

The format of the SNAPS$ macro is as follows:

v

,H2,L3,H3,L4,H4

N

SNAPS ctl,efn,id,Ll,Hl,L

where:
ctl Are the flags which control the format of the dump
and the data to be printed. The flags are:
SC.HDR Print the dump header.
SC.LUN Print information on all assigned LUNs.
SC.STK Print the user stack.
SC.OVL Print information about all loaded
overlay segments.
SC.WRD Print the requested memory in octal words
and RAD50.
SC.BYT Print the requested memory in octal bytes
and ASCII.
efn Is the event flag to be used to synchronize the user

program and the task PMD... . A wait for single
event flag directive is always generated to perform
synchronization.

CHAPTER 9.

id

L1l,L2
L3,L4

H1,H2
H3,H4

’

r

MEMORY DUMPS

Is a number which identifies the snapshot dump.
Since dumps can be requested at different times
and under different conditions, this ID is used
to identify the place or reason for the dump.

Are the starting addresses of memory blocks to
be dumped.

Are the ending addresses of memory blocks to be

dumped .
NOTE

If no memory is to be dumped, each limit
(Ll,.2,L3,L4,H1,H2,H3,H4) should be zero.

The control flags may be set in any combina-
tion. They are NOT mutually exclusive. Thus,
any number of options may be obtained; e.qg.,
SC.HDR!SC.LUN!SC.WRD will print the header,
LUNs, and the requested memory in word octal
and RAD50 mode.

Arguments should only be specified to override
the information already in the snap control
block.

Since SNAP$ generates instructions to move

data into the snap block, its arguments must
be valid source operands for move commands.

9-8

CHAPTER 9. MEMORY DUMPS

Symbol Offset Description
SB.CTL 0 Control Flags
SB.DEV 2 Device Mnemonic
SB,UNT 4 Unit Number
SB.EFN 6 Event Flag
SB.ID 10 Snap Identification
SB.LM1 (L1) 12 Memory Block 1
Limits
(H1) 14
(L2) le6 Memory Block 2
Limits
(H2) 20
(L3) 22 Memory Block 3
Limits
(H3) 24
(L4) 26 Memory Block 4
Limits
(H4) 30
SB.PMD 32 "PMD..." in RADS50
34

Figure 9-2

Format of Snapshot Dump Control Block

9.2.3 Example of a Snapshot Dump

The sample program shown in Figure 9-3 will cause two Snapshot dumps
to be printed directly on LP0:. The first dump will use the para-
meters defined in the Snap Control Block. The header will be genera-
ted and the data in relative locations BLK to BLK+220 will be dis-
played in word octal and RAD50. The identification on the dump will
be 1.

The second dump causes the data in the locations BLK to BLK+220 to
be displayed in byte octal and ASCII. A header is also generated.
The dump identification is 64 (100 octal). Figures 9-4 and 9-5
show the dumps generated by the sample program.

0T-6

sdung zoysdeug I03 sSTTeD 3IPYL weiboig srtdwes

€-6 9Inbta

SNPTST = TESTY SNAP DUMP AND PMD MACRO MX9C

1

2

3

4 Q00000

5 000036 123 116
onaeay 124 1213
220044 anoa

6

7 000046

8 009216 012720 Q@PQP36!

9 ABe222

19 0n@226

11 n20d12 QoA204

12 oennds!

SNPTST « TEST SNAP DUMP AND PMD
SYMBOL TABLE

BLK PAQAAGR 8B EFNs
RUF P20036R SB,ID »
JIE.ACTE ewewes (X $B, M=
$8,.CTLe P0OOAR SB,PMDs
8B, DEVs p0QQR2 SB,UNTs
« ABS, 20000a .171"]

20414 201

ERRORS DETECTED: @

FREE COREt 6418, WORDS
SNPTST,SNPTSTeSNPTST

BLK1
120 AUFs
124

STARTI

27=JUN=?75

WTITLE
« IDENT
JMCALL
SNPBKS
«A8C12Z

LEVEN
SNAPS
MOV
caLl
SNAPS
107
+END

29124 PAGE |

SNPTST = TEST SNAP DUMP AND PMD
/847
SNPRKS,SNAPS,CALL

LP,2,8C ,HORLSC,O0VLISC,WRD,1,1,BLX,BLKe220

MACRO MX9C 27=JUNe?5 29124 PAGE {ef

204006
engo10
aoeaL2
220032
eonnna

SC.BYTs
8SC,HDRs
8C,LUNS
SC,0vLse
SC,8Tks

/SNPTST/

]
#BUF,RQ 3 SET BUFFER ADDRESS
$CATS } CONVERT T0 RADKQ
¥8C,HDR|SC,OVLISC,BYT,,#100

3 ABORT
8TART
Peeo4n SC,WRD® @aoge20
A0} STARTY PANBA6R
2200202 SCATS = weweww GX
200004 SNSW 3 sevews (X
200014 §$58T2 = AnAA27

‘€ MELIVHD

SdWNA AYOWHENW

+« SPBK QQQQQORG
eeSNPB 200032

CHAPTER 9. MEMORY DUMPS

SNAPSHMOTY DUMP I1D; 84

TASKs SNPTST TIMEY 27=JUNe75 29131
PC1 per724
REGS! Rz.- 22923583 Ry = p74420 R2 » p22120 R « 140130

R4 «» 2e0dap RS « PBAAR2 SP - 290342 PS = {7@p@A2
TASK STATUS:! MSG »CHK WFR

EVENT FLAG MASKS: «@{=16> 020821 <17«32> 256502
«33=48> PNRZD <49=64> GRAQQ2Q

CURRENT UICs (220,229) D8wey 1§,
PRIQRITY: %0, 170 COUNT: O, Tl DEVICE = TT101

LOAD DEVICE - 8Y0Q3 LBN: 3,002265

FLOATING POINT UNIT

STATUS = 244400

RG = 03¢0322 0QPQA220 222003 020000
R{ = 2AN3P2 022232 PR 0AQP0QQ
R2 = Zaoona @020209 QeANed Q2QREQR
R3 = 222093 Q20082 7020202 7EQQ2Q
R4 « 2000092 0Q0Q200 @AA0Re2 @o00RR
RS » 2GGA20@ 0QAQ322 0RGQAA QAAAARA

OVERLAY SEGMENTS LOADED

STARTING RELATIVE BLOCK: @epae2 BASE: aoegoe LENGTH: 201464
STARTING RELATIVE ALOCK: 20AQQ24 BASEy 0Q1464 LENGTH: 200264

TASK IMAGE
PARTITIONg GEN LIMITS: 209312 « pp@532
PAN318 901 MA@ 045 Q0@ 114 120 @AR 200 | X LP |
Q2322 001 P02 120 200 312 0P@ 132 00} ! e J Z |
200332 @0A 220 Q@Y 00Q PAP QAR 0QP@ 000 l {
20Q34n 200 Q02 0202 Q200 014 146 174 263 l 3l
22n50@ 006 206 337 245 373 377 Q@48 200 { % L
200510 @02 An3 2681 222 Q05 @eai 346 038 i { i
20@%20 176 377 346 @925 aS1 @2 377 210 |) {
22532 32@ 225 350 oP@ 367 @11 32 70i ie J i

Figure 9-4
Sample Snapshot Dump (Words Octal and RAD50)

9-11

CHAPTER 9. MEMORY DUMPS

SNAPSHOT DUMP ID1t ¢

TASK: SNPTSTY TIMES 27eJUNeTS 209131
PCr nOM530
REGS! RQ = 20202000 R{ = Q@@geon R2 = QP@Qn0Ra R3 =~ 140130

R4 = A0BDQAD RS « 0022 SP » 200312 P8 = 1700092
TASK STATUS: M8G wCHK WFR

EVENT FLAG MASKSY «Q1e16> QR0001 <{7«32> 256502
<33=48> 200222 <49=64> 20Q0CAQ

CURRENT UlCs [270@,200) DSwy ¢,
PRIORITY! S@, 1/0 COUNTE @, Tl DEVICE « TT101
LOAD DEVICE « SYO1 LBN: @,0202265

FLOATING POINT UNIT
STATUS =« 2444002

RO » 320207 0M2P2AQ QE2P0QA Q00002
R{ = Q00000 Q20AQ3 070200 200000
R2 = 272092 0@G3APE QRQAR2R? QepReR
R3 « 000003 QACPARA QPPA2C 000000
R4 e 320000 0QC202 Q00207 QO@QQQ
RS « QARAQR @A20ANG Q0QPCR2 000000

OVERLAY SEGMENTS LOADED

STARTING RELATIVE BLOCKI @@@en2 BASE: oaneen LENGTH? 201464

TASK TMAGE

PARTITION? GEN LIMITS: 200312 « PRBS32

peelie oonany AN0An2Y %0114 00000
n20322 Oaonanl 0ranay AeR312 200532
200330 o@e2000 paeean 200000 peeean
200342 Ar0eaq 200200 263014 131874

A U L36 !
A 4 EB MZI

B = -
”~—

PMD ."!

ppe%ee 10230068 0822737 177774 pe@adé |[uGa FBO 81 8l
200810 001492 2ne261 2204095 n{6746 | SJ DO FU DIN|
gees520 177576 @127486 ae1asy 194377 | 5F CTF M3 U61|
204538 @12700 20n350 on4aze? ap0712 JC8H E2 Awy KR}

Figure 9-5
Sample Snapshot Dump (Bytes Octal and ASCII)

9-12

APPENDIX A
ERROR MESSAGES

A.l TASK BUILDER ERROR MESSAGES

The Task Builder produces diagnostic and fatal error messages. Error
messages are printed in the following forms:

TKB =~ *DIAG¥*=-error-message
or
TKB == *FATAL*-error-message

Some errors are dependent upon correction from the terminal. If the
user is entering text at the terminal, a diagnostic error message can
be printed, the error corrected, and the task building sequence
continued., If the same error is detected by the Task Builder in an
indirect file, the Task Builder cannot request correction and thus the
error is termed fatal and the task build is aborted.

Some diagnostic error messages are simply informative and advise the
user of an unusual condition. If the user considers the condition
normal to his task, he can install and run the task image.

This appendix tabulates the error messages produced by the Task
Builder. Most of the error messages are self-explanatory. The Task
Builder prints the text shown in this manual in upper case letters.
In some cases, the Task Builder prints the line in which the error
occurred, so that the user can examine the 1line which caused the
problem and correct it.

0. ILLEGAL GET COMMAND LINE ERROR
System error. (no recovery.)

l. COMMAND SYNTAX ERROR
invalid=line

The invalid-line printed has incorrect syntax.
2, REQUIRED INPUT FILE MISSING

At least one input file is required for a task build.

APPENDIX A. ERROR MESSAGES

24,

25,

26,

27.

28.

29.

30,

31.

32,

33.

ALLOCATION FAILURE ON FILE file-name

The Task Builder could not acquire sufficient contiguous disk
space to store the task image file. (If possible, delete
unnecessary files on disk to make more room available,)

I/0 ERROR ON OUTPUT FILE file-name

This error may occur on any of the three output files.

LOAD ADDR OUT OF. RANGE IN MODULE module-name

An attempt has been made to store data in the task image
outside the address limits of the segment.

TRUNCATION ERROR IN MODULE module=-name

An attempt has been made to load a global value greater than
+127 or less than ~128 into a byte. The low~order eight bits
are loaded.

number UNDEFINED SYMBOLS SEGMENT seg-name

The Memory Allocation File lists each undefined symbol by
segment,

-

INVALID KEYWORD IDENTIFIER
invalid~line

The invalid-line printed contains an unrecognizable keyword.

OPTION SYNTAX ERROR
invalid-line

The invalid-line printed contains unrecognizable syntax.,

TOO MANY PARAMETERS

. invalid-line

The invalid-line printed contains a keyword with more
parameters than required.,

ILLEGAL MULTIPLE PARAMETER SETS
invalid-line .

The invalid-line printed contains multiple parameters for a
keyword which only allows a single parameter,

INSUFFICIENT PARAMETERS
invalid~line

The invalid-line contains a keyword with an insufficient
number of parameters to complete the keyword meaning,

APPENDIX A. ERROR MESSAGES

34,

35,

36,

37.

38.

39.

40.

41,

42,

43.

TASK HAS ILLEGAL MEMORY LIMITS

An attempt has been made to build a task whose size exceeds
the partition boundary.

OVERLAY DIRECTIVE HAS NO OPERANDS
invalid~line

All overlay directives except .END require operands,

ILLEGAL OVERLAY DIRECTIVE
invalid-line

The invalid-line printed contains an unrecognizable overlay
directive,

OVERLAY DIRECTIVE SYNTAX ERROR
invalid=line

The invalid=-line printed contains a syntax error,

ROOT SEGMENT MULTIPLY DEFINED
invalid=line

The invalid-~line printed contains the second ,ROOT directive
encountered, Only one .ROOT directive is allowed.

LABEL OR NAME IS MULTIPLY DEFINED
invalid=line

The invalid-line printed contains a name that has already
appeared on a .FCTR, .NAME, or ,PSECT directive.

NO ROOT SEGMENT SPECIFIED
The overlay description did not contain a .ROOT directive.

BLANK P-~SECTION NAME IS ILLEGAL
invalid=-line

The invalid-line printed contains a .PSECT directive that
does not have a p-section name,

ILLEGAL P-SECTION ATTRIBUTE
invalid=line

The invalid-line printed contains a p-section attribute that
is not recognized,

ILLEGAL OVERLAY DESCRIPTION OPERATOR
invalid=line

The invalid-line printed contains an unrecognizable operator
in an overlay description.

APPENDIX A, ERROR MESSAGES

44.

45.

46,

47.

48.

49,

50.
51,
52.

33.

54,

55.

TOO MANY NESTED .ROOT/.FCTR DIRECTIVES
invalid~line

The invalid-line printed contains a J.FCTR directive that
exceeds the maximum nesting level (32).

TOO MANY PARENTHESES LEVELS
invalid-~line

The invalid-line printed contains a parenthesis that exceeds
the maximum nesting level (32).

UNBALANCED PARENTHESES
invalid-line

The invalid=-line printed contains unbalanced parentheses.
not used,

ILLEGAL LOGICAL UNIT NUMBER

invalid-line

The invalid-line printed contains a device assignment to a
unit number larger than the number of logical units specified
by the UNITS keyword or assumed by default if the UNITS
keyword is not used.

ILLEGAL NUMBER OF LOGICAL UNITS
invalid-line

The invalid-line printed contains a number of logical unit
greater than 250.

not used.
not used.
not used.

ILLEGAL DEFAULT PRIORITY SPECIFIED
invalid-line

The invalid-line printed contains a priority greater than
250.

ILLEGAL ODT OR TASK VECTOR SIZE
SST vector size specified greater than 32 words.

ILLEGAL FILENAME
invalid-line

The invalid-line printed contains a wild card (*) in a file
specification, The use of wild cards is prohibited.

APPENDIX A. ERROR MESSAGES

56.

57.

58.

59,

60,

61,

62.

63,

64,

not used,

LOOXUP FAILURE ON FILE filename
invalid-line

The invalid-=line printed contains a filename which cannot be
located in the directory.

ILLEGAL DIRECTORY
invalid-line

The invalid-line printed contains an illegal UIC,
INCOMPATIBLE REFERENCE TO A LIBRARY P-SECTION p-sect-name

A task has attempted to reference more storage in a shared
region than exists in the shared region definition.

ILLEGAL REFERENCE TO LIBRARY P-SECTION p-sect-name

A task has attempted to reference a p-sect-name existing in a
resident library (shared region) but has not named the
library in a COMMON or LIBR keyword.

RESIDENT LIBRARY MEMORY ALLOCATION CONFLICT
keyword-string

One of the following problems has occurred:
1. More than three shared regions have been specified,
2, The same shared region has been specified more than once.

3. Shared regions whose memory allocations overlap have been
ified.

LOOKUP FAILURE RESIDENT LIBRARY FILE
invalid-line

No symbol table or task image file found for the shared
region on SY0 under UIC [1,1].

INVALID ACCESS TYPE
invalid-line

Requested access to shared region was not RW or RO,

ILLEGAL PARTITION/COMMON BLOCK SPECIFIED
invalid-line

User defined base or length not on 32 word boundary.

APPENDIX A, ERROR MESSAGES

65,

66,

67.

68.

69.
70,

71.

72,

73.

74.

75.

76,

NO MEMORY AVAILABLE FOR LIBRARY library-name

Insufficient virtual memory available to cover total memory
needed by referenced shared regions (mapped system only).

PIC LIBRARIES MAY NOT REFERENCE OTHER LIBRARIES
invalid=line

ILLEGAL APR RESERVATION

APR specified on COMMON or LIBR keyword that is outside the
range 0~7; or APR specified in an unmapped system.,

I/0 ERROR LIBRARY IMAGE FILE

An I/O error has occurred during an attempt to open or read
the Task Image File of a shared region.

not used.
not used,
INVALID APR RESERVATION

APR specified on a LIBR or COMMON keyword for an absolute
library.

COMPLEX RELOCATION ERROR = DIVIDE BY ZERO: MODULE
module-name

A divisor having the value zero was detected in a complex
expression, The result of the divide was set to zero,
(Probable cause~ division by an undefined global symbol,)
WORK FILE I/O ERROR

I/0 error dquring an attempt to reference data stored by the
Task Builder in a work file.

LOOKUP FAILURE ON SYSTEM LIBRARY FILE

The Task Builder cannot find the system Library
(SY0:[1,1]18YSLIB,0LB) file to resolve undefined symhols,

UNABLE TO OPEN WORK FILZ

The work file is located on the same device as the Task
Builder, (Work file device is not mounted or Task Builder
UIC not present on the device.)

NO VIRTUAL MEMORY STORAGE AVAILABLE

Maximum permissible size of the work file exceeded (no
recovery).

APPENDIX A, ERROR MESSAGES

77.

78.

~1
(Ve
.

80.

8l.

82,

MODULE module-name NOT IN LIBRARY

The Task Builder could not £ind the module named on the LB
switch in the library.

INCORRECT LIBRARY MODULE SPECIFICATION
invalid-line

The invalid=line contains a module name with a non-=-Radix=50
character,

A module has been requested from a library file that has an
empty module name table.

RESIDENT LIBRARY IMAGE HAS INCORRECT FORMAT
invalid=line

The invalid-line specifies a shared region that has one of
the following problems:

1. The library file image has a header.

2, The 1library references another 1library with invalid
address bounds (i.e., not on 4K boundary in a mapped
system) .

3. The library has invalid address bounds.

PARTITION partition-name HAS ILLEGAL MEMORY LIMITS

i. The partition-name dJdefined in the host system has
incompatible memory 1limits with respect to the target
system,

2. The user has attempted to build a privileged task in a
partition whose length exceeds 12K.

INVALID PARTITION/COMMON BLOCK SPECIFIED
invalid=-=line

Partition is invalid for one of the following reasons:

1. The Task Builder cannot find the partition name in the
host system in order to get the base and length.

2., The system is mapped, but the base address of the
partition is not on a 4K boundary for a non-runnable task
or is not 0 for a runnable task.

3. The memory bounds for the partition overlap a shared
region.

4, The partition name is identical to the name of a
previously defined COMMON or LIBR shared region,

APPENDIX A. ERROR MESSAGES

83.

5. The top address of the partition for a runnable task
exceeds 32K-32 words for a mapped system or exceeds 28K-1
for an un-mapped system.

6. A system-controlled partition was specified for an un-
mapped system.

ABORTED VIA REQUEST
input-line

The input-line contains a request from the user to abhort the
task build.

A.2 CROSS REFERENCE ERROR MESSAGES

The following error messages are output by the Cross Reference Task.
Each message is preceded by one of the following prefixes:

CRF -- *DIAG* - <name of originating task> - MESSAGE
CRF -- *FATAL* - <name of originating task> - MESSAGE

CREF INPUT FILE <file name> HAS ILLEGAL FORMAT

A premature end-of-file was encountered on the CREF data file.
This problem should be reported to the Digital Software
representative.

FAILED TO DELETE FILE <file name>

Cross reference processor did not have delete privileges.
Verify that the cross-reference task is installed to run
under UIC [10,1].

FILE <file name> NOT FOUND

File <file name> could not be located.

ILLEGAL ERROR/SEVERITY CODE

The occurrence of this error indicates a software malfunction
that should be reported to the Digital Software Representative.

INPUT FROM UNKNOWN TASK

Cross reference processing requested by the originating task
is not supported by CREF.

I/0 ERROR ON FILE <file name>

An error has been encountered while reading or writing the
specified file. A possible hardware problem is indicated;
or the device may have insufficient space to accommodate the
CREF output file.

INVALID OUTPUT FORMAT SPECIFIED

This message indicates an inconsistency in the data file

submitted for CREF processing. The occurrence of this error
should be reported to your Digital software representative.

A-10

APPENDIX A. ERROR MESSAGES

8. NO DYNAMIC STORAGE AVAILABLE
The Cross Reference task requires more working storage than is
available within the area of memory owned by the task. If
possible, install the task in a larger partition.

9. NO VIRTUAL MEMORY STORAGE AVAILABLE

The Cross—Reference processor work file storage requirements
exceed 65,536 words. No recovery is possible from this error.

10. OPEN FAILURE ON FILE <file name>
The Cross-reference processor was unable to open the named
file to append the cross-reference listing. Ensure that
the cross-retference task is installed to run under UIC
[10,1] to allow unrestricted access to all files.
11, SYMBOL TABLE SEARCH STACK OVERFLOW
Software error. ©Notify the DEC Software Representative.
12. UNABLE TO OPEN WORKFILE

Possible causes are:

1. Device not mounted
2. Device write protected

The workfile device is assigned to LUN 7 and is normally the
device from which CRF was installed.

13. WORK FILE I/O ERROR

The Cross Reference Processor encountered an I/O error while
reading or writing data on its workfile.

Possible causes:

l. Device full
2. Hardware error

APPENDIX B

TASK BUILDER DATA FORMATS

An object module is the fundamental unit of input to the Task Builder.

Object modules are created by any of the standard language processors
{i.s., MACRO=11, FORTRAN, etc.,) or the Task Builder itself {symbol
definition file). The RSX=11M librarian (LBR) provides the ability to
combine a number of object modules together into a single library
file.

An object module consists of variable length records of information
that describe the contents of the module. Six record (or block) types
are included in the object language. These records guide the Task
Builder in the translation of the object language into a task image,
The six record types are:

Type 1 - Declare Global Symbol Directory (GSD)

Type 2 - End of Global Symbol Directory

Type 3 - Text Information (TXT)

Type 4 - Relocation Directory (RLD)

Type 5 = Internal Symbol Directory (ISD)

Type 6 = End of Module
Each object module must consist of at least five of the record types.
The one record type that is not mandatory is the internal symbol
directory. The appearance of the various record types in an object
module follows a defined format. See Figure B-1l,
An object module must begin with a Declare GSD record and end with an
end-of-module record. Additional Declare GSD records may occur
anywhere in the file but before an end-of~GSD record. An end-of-GSD

record must appear before the end-of-module record. At least one
relocation directory record must appear before <the first text

APPENDIX B, TASK BUILDER DATA FORMATS

information record, Additional relocation directory and text
information records may appear anywhere in the file, The internal
symbol directory records may appear anywhere in the file between the
initial declare GSD and end=-of=-module records.

Object module records are variable length and are identified by a
record type code in the first word of the record, The format of
additional information in the record is dependent upon the record

type.

APPENDIX B, TASK BUILDER DATA FORMATS

GSD Initial GSD
RLD Initial Relocation Directory
GSD Additional GSD
TXT Text Information
TXT Text Information
RLD Relocation Directory
GSD Additional GSD
END GSD End of GSD
ISD Internal Symbol Directory
ISD Internal Symbol Directory
TXT Text Information
TXT Text Information
TXT Text Information
END MODULE END OF MODULE

Figure B-1
General Object Module Format

B.l GLOBAL SYMBOL DIRECTORY (GSD)

Global symbol directory records contain all the information necessary
to assign addresses to global symbols and to allocate the memory
required by a task.

GSD records are the only records processed in the first pass, thus
significant time can be saved if all GSD records are placed at the
beginning of a module (i.e., less of the file must be read in phase
3).

APPENDIX B, TASK BUILDER DATA FORMATS

GSD records contain seven types of entries:

Type
Type
Type
Type
Type
Type
Type

0 = Module Name

1

A U e w N

Each entry type is

first two words

Control Section Name

Internal Symbol Name

Transfer Address

Global Symbol Name

Program Section Name

Program Version Identification

represented by four words in the GSD record. The
contain six Radix-50 characters. The third word

contains a flag byte and the entry type identification. The fourth
word contains additional information about the entry, See Figure B=2,

APPENDIX B, TASK BUILDER DATA FORMATS

0 RECORD _
TYPE
RAD50

ENTRY TYPE FLAGS

VALUE

RADS0
NAME

TYPE FLAGS

VALUE

- A

RADSO0
NAME

TYPE FLAGS
VALUE

RAD50
NAME

TYPE FLAGS

VALUE

Figure B-2
GSD Record and Entry Format

B.l.l1 Module Name

The module name entry declares the name of the object module. The
name need not be unique with respect to other object modules (i.e.,
modules are identified by file not module name) but only one such
declaration may occur in any given object module. See Figure B-3.

APPENDIX B, TASK BUILDER DATA FORMATS

MODULE
NAME

Figure B-3
Module Name Entry Format

B.l.2 Control Section Name

Control sections, which include ASECTs, blank-CSECTS, and named-CSECTs
are supplanted in RSX-1lM by PSECTs. For compatibility, the Task
Builder processes ASECTs and both forms of CSECTs, Section B.,l.6
details the entry generated for a PSECT statement, In terms of a
PSECT statement we can define ASECT and CSECT statements as follows:
For a blank CSECT, a PSECT is defined with the following attributes:
.PSECT ,LCL,REL,CON,RW,I,LOW
For a named CSECT, The PSECT definition is:
.PSECT name, GBL,REL,OVR,RW,I,LOW
For an ASECT, The PSECT definition is:
.PSECT .ABS,.,GBL,ABS,I,OVR,RW,LOW
ASECTs and CSECTs are processed by the Task Builder as PSECTs with the

fixed attributes defined above. The entry generated for a control
section is shown in Figure B-4,

CONTROL SECTION

NAME

1 IGNORED
MAXIMUM LENGTH

Figure B-4
Control Section Name Entry Format

APPENDIX B. TASK BUILDER DATA FORMATS

B.1.3 Internal Symbol Name

The internal symbol name entry declares the name of an internal symbol
(with respect to the module). TKB does not support internal symbol
tables and therefore the detailed format of this entry is not defined

(Figure B=5). If an internal symbol entry is encountered while
reading the GSD, it is merely ignored.

SYMBOL
NAME

UNDEFINED

Figure B-5
Internal Symbol Name Entry Format

B.l.4 Transfer Address

The transfer address entry declares the transfer address of a module
relative to a P-section. The first two words of the entry define the
name of the P-section and the fourth word the relative offset from the
beginning of that P-section. If no transfer address is declared in a
module, a transfer address entry either must not be included in the
GSD or a transfer address of 000001 relative to the default absolute
P-section (. ABS.) must be specified, See Figure B-6.

SYMBOL
NAME

OFFSET

Figure B-6
Transfer Address Entry Format

NOTE

If the P-section is absolute,
then OFFSET is the actual
transfer address if not
000001.

APPENDIX B, TASK BUILDER DATA FORMATS

B.l.5 Global Symbol Name

The global symbol name entry (Figure B-7) declares either a global
reference or a definition. All definition entries must appear after
the declaration of the P-section under which they are defined and
before the declaration of another P-section. Global references may
appear anywhere within the GSD,)

The first two words of the entry define th: name of the global symbol.
The flag byte declares the attributes of the symbol and the fourth
word the value of the symbol relative to the P-section under which it
is defined.

The flag byte of the symbol declaration entry has the following bit
assignments.

Bits 0 = 2 = Not used.

Bit 3 Definition
0 = Global symbol references.

1 = Global symbol definition.

Bit 4 - Not used

Bit 5 = Relocation
0 = Absolute symbol value.

1 = Relative symbol value

Bit 6 - 7 - Not used,
SYMBOL
NAME
4 FLAGS
VALUE
Figure B-7

Global Symbol Name Entry Format

APPENDIX B. TASK BUILDER DATA FORMATS

B.l.6 Program Section Name

The P=section name entry (Figure B-8) declares the name of a P-section
and its maximum length in the module., It also declares the attributes
of the P=-section via the flag byte.

GSD records must be constructed such that once a P-section name has
been declared all global symbol definitions that pertain to that
P-section must appear before another P-section name is declared.
Global symbols are declared via symbol declaration entries., Thus the
normal format is a P-section name followed by zero or more symbol
declarations, followed by another P-section name followed by zero or
more symbol declarations, and so on.

The flag byte of the P-section entry has the following Dbit
assignments:

Bit 0 - Memory Speed
0 = P-section is to occupy low speed (core) memory.

1l = P-section is to occupy high speed (i.e., MOS/Bipolar) memory.

Bit 1 - Library P-section
0 = Normal P-section.
1 = Relocatable P-section that references a core resident 1library
or common block.
Bit 2 = Allocation
0 = P-section references are to be concatenated with other
references to the same P-section to form the total memory
allocated to the section.
1 = P-section references are to be overlaid, The total memory

allocated to the P=-section is the largest request made by
individual references to the same P-section,

Bit 3 - Not used but reserved,

Bit 4 - Access
0 = P-section has read/write access,

1 - pP-section has read-only access.

Bit 5 = Relocation

0 = P-section is absolute and requires no relocation.

APPENDIX B, TASK BUILDER DATA FORMATS

Bit 6

Bit 7

P-section is relocatable and references to the control section
must have a relocation bias added before they become
absolute.

Scope

The scope of the P-section is local. References to the same
P-section will be collected only within the segment in which
the P~section is defined.

The scope of the P-section is global. References to the
P-section are collected across segment boundaries. The
segment in which a global P-section is allocated storage is
determined either by the first module that defines the
P-section on a path or by direct placement of a P-section in
a segment via the Overlay Description Language PSECT
directive,

Type
The P-section contains instruction (I) references.

The P-section contains data (D) references,

P-SECTION
NAME

5 FLAGS

MAX LENGTH

Figure B-8
P-Section Name Entry Format
NOTE

The length of all absolute
sections is zero.

B.l.7 Program Version Identification

The program version identification entry (Figure B-9) declares the
version of the module. TKB saves the version identification of the
first module that defines a nonblank version. This identification is
then included on the memory allocation map and is written in the label
block of the task image file.

APPENDIX B, TASK BUILDER DATA FORMATS

The first two words of the entry contains the version identification,
The flag byte and fourth words are not used and contain no meaningful
information.

SYMBOL
NAME
6 0
0
Figure B-9

Program Version Identification Entry Format

B.2 END-OF-GLOBAL~SYMBOL=DIRECTORY

The end-of-global-symbol-directory record (Figure B-10) declares that
no other GSD records are contained further on in the file. Exactly
one end-of-GSD~record must appear in every object module and is one
word in length.

RECORD _ 2

0 TYPE

Figure B-10
End of GSD Record Format

B.3 TEXT INFORMATION

The text information record (Figure B=1ll) contains a byte string of
information that is to be written directly into the task image file.
The record consists of a load address followed by the byte string.

Text records may contain words and/or bytes of information whose final
contents are yet to be determined, This information will be bound by
a relocation directory record that immediately follows the text record
(see B.4 below). If the text record does not need modification, then
no relocation directory record is needed. Thus multiple text records
may appear in sequence before a relocation directory record.

The load address of the text record is specified as an offset from the
current P-section base., At least one relocation directory record must
precede the first text record. This directory must declare the
current P-section,

APPENDIX B, TASK BUILDER DATA FORMATS

TKB writes a text record directly into the task image file and
computes the value of the load address minus four, This value is
stored in anticipation of a subsequent relocation directory that
modifies words and/or bytes that are contained in the text record.
When added to a relocation directory displacement byte, this value
yields the address of the word and/or byte to be modified in the task
image.

0 RECORD _
TYPE
LOAD ADDRESS
TEXT TEXT
n TEXT
n "
" "
" [1}
” "
" TEXT
TEXT TEXT

Figure B-1l1l
Text Information Record Format

B.4 RELOCATION DIRECTORY

Relocation directory records (Figure B=-12) contain the information
necessary to relocate and link a preceding text information record.
Every module must have at least one relocation directory record that
precedes the first text information record. The first record does not
modify a preceding text record, but rather it defines the current
P-gsection and location. Relocation directory records contain 13 types

B-12

APPENDIX B, TASK BUILDER DATA FORMATS

of entries., These entries are classified as relocation or 1location

modification entries. The following types of entries are defined:
Type 1 - Internal Relocation

Type 2 - Global Relocation

Type 3 - Internal Displaced Relocation

Type 4 - Global Displaced Relocation

Type 5 - Global Additive Relocation

Type 6 = Global Additive Displaced Relocation

Type 7 - Location Counter Definition

Type 10 - Location Counter Modification

Type 11 - Program Limits

Type 12 - P-Section Relocation

Type 13 - Not used

Type 14 - P-Section Displaced Relocation

Type 15 - P-Section Additive Relocation

Type 16 - P-Section Additive Displaced Relocation

Type 17 - Complex Relocation
Each type of entry is represented by a command byte (specifies type of
entry and word/byte modification), followed by a displacement byte,
followed by the information required for the particular type of entry.
The displacement byte, when added to the value calculated from the
load address of the previous text information record, (see B.3 above)
yields the virtual address in the image that is to be modified. The
command byte of each entry has the following bit assignments.,

Bits 0 - 6 Specify the type of entry. Potentially 128 command types
may be specified although only 15(decimal) are implemented.

Bit = 7 Modification

0 = The command modifies an entire word.

1 The command modifies only one byte. The Task Builder checks
for truncation errors in byte modification commands, If
truncation is detected (i.e., the modification value has a

magnitude greater than 255), an error is produced.

APPENDIX B, TASK BUILDER DATA FORMATS

RECORD _
0 TYPE - °
DISP CMD
INFO INFO

" INFO

" "

" "

" "

" "

" "

u "
CMD "
INFO DISP

" INFO

" "

n "

" "

" n
DISP CMD
INFO INFO
INFO INFO
INFO INFO

Figure B-12
Relocation Directory Record Format

B-14

APPENDIX B, TASK BUILDER DATA FORMATS

B.4.1 Internal Relocation

This type of entry (Figure B-13) relocates a direct pointer to an
address within a module, The current P-section base address is added
to a specified constant and the result is written into the task image
file at the calculated address (i.e., displacement byte added to value
calculated from the load address of the previous text block).

Example:

A: MoV #A,RO
or
«WORD A

DISP B 1
CONSTANT

Figure B-13
Internal Relocation Command Format

B.4.2 Global Relocation

This type of entry (Figure B-14) relocates a direct pointer to a
global symbol, The definition of the global symbol is obtained and
the result is written into the task image file at the calculated
address.,
Example:

MOV $GLOBAL, RO

or

.WORD GLOBAL

DISP B 2

SYMBOL
NAME

Figure B-14
Global Relocation

B~-15

APPENDIX B, TASK BUILDER DATA FORMATS

B.4.3 Internal Displaced Relocation

This type of entry (Figure B~15) relocates a relative reference to an
absolute address from within a relocatable control section. The
address plus 2 that the relocated value is to be written into is
subtracted from the specified constant. The result is then written
into the task image file at the calculated address.,

Example
CLR 177550
or
Mov 177550.R0
DISP B 3
CONSTANT

Figure B=15
Internal Displaced Relocation

B.4.4 Global Displaced Relocation

This type of entry (Figure B=-16) relocates a relative reference to
global symbol, The definition of the global symbol is obtained and
the address plus 2 that the relocated value is to be written into is
subtracted from the definition value., This value is then written into
the task image file at the calculated address,

Example:
CLR GLOBAL
or

MOV GLOBAL,RO

DISP B 4

SYMBOL
NAME

Figure B-1l6
Global Displaced Relocation

APPENDIX B, TASK BUILDER DATA FORMATS

B.4.5 Global Additive Relocation

This type of entry (Figure B-17) relocates a direct pointer to a
global symbol with an additive constant. The definition of the global
symbol is obtained, the specified constant is added, and the resultant

value 1is then written into +the task image file at the calculated
address.

Example:
MOV #GLOBAL+2,R0
or

+WORD GLOBAL~-4

DISP B 5

SYMBOL
NAME

CONSTANT

Figure B=-17
Global Additive Relocation

B.4.6 Global Additive Displaced Relocation

This type of entry (Figure B=18) relocates a relative reference to a
global symbol with an additive constant. The definition of the global
symbol is obtained and the specified constant is added to the
definition value, The address plus 2 that the relocated value is to
be written into is subtracted from the resultant additive value, The
resultant value 1is then written into the task image file at the
calculated address.

Example:

CLR GLOBAL+2
or
Mov GLOBAL~=5, R0

DISP B 6

SYMBOL
NAME

CONSTANT

Figure B-18
Global Additive Displaced Relocation

B-17

APPENDIX B, TASK BUILDER DATA FORMATS

B.4,7 Location Counter Definition

This type of entry (Figure B-19) declares a current P-section and
location counter value. The control base is stored as the current
control section and the current control section base is added to the
specified constant and stored as the current location counter value.

0 B 7

SECTION
NAME

CONSTANT

Figure B-19
Location Counter Definition

B.4.8 Location Counter Modification

This type of entry (Figure B=20) modifies the current location
counter, The current P-section base is added to the specified
constant and the result is stored as the current location counter,
Example:

e = o +N

or

+« BLKB N

0 B 10
CONSTANT

Figure B-20
Location Counter Modification

APPENDIX B. TASK BUILDER DATA FORMATS

B.4.9 Program Limits

This type of entry {Figure B-2l) is generated by the .LIMIT assembler
directive, The first address above the header (normally the beginning
of the stack) and highest address allocated to the tasks are obtained
and written into the task image file at the calculated address and at
the calculated address plus 2 respectively.

Example:

+LIMIT

DISP B 11

Figure B=21
Program Limits

B.4.10 P-Section Relocation

This type of entry (Figure B~22) relocates a direct pointer to the
beginning address of another P-section (other than the P-section in
which the reference is made) within a module. The current base
address of the specified P-saction is obtained and written into the
task image file at the calculated address.

Example:

PSECT A
B:

PSECT C

Mov #B, RO

or
.WORD B
DISP B 12
SECTION
NAME

Figure B-22
P-Section Relocation

APPENDIX B., TASK BUILDER DATA FORMATS

B.4.11 P-Section Displaced Relocation

This type of entry (Figure B-23) relocates a relative reference to the
beginning address of another P-section within a module. The current
base address of the specified P-section is obtained and the address
plus 2 that the relocated value is to be written into is subtracted

from the base value. This value is then written into the task image
file at the calculated address.

Example:
«PSECT A
B:
+PSECT C
MoV B, RO
DISP B 11
SECTION
NAME

Figure B=23
P-Section Displaced Relocation

B.4,12 P-Section Additive Relocation

The type of entry (Figure B~24) relocates a direct pointer to an
address in another P=-section within a module. The current base
address of the specified P-section is obtained and added to the
specified constant, The result is written into the task image file at
the calculated address.,

APPENDIX B, TASK BUILDER DATA FORMATS

Example:
.PSECT A
B:
C: N
PSECT D
MoV #B+10,R0
MOV #C, RO
or

«WORD B+10
-WORD c

DISP B 15

SECTION
NAME

CONSTANT

Figure B=-24
P-Section Additive Relocation

B.4.13 P-Section Additive Displaced Relocation

This type of entry (Figure B=25) relocates a relative reference to an
address in another P-section within a module, The current base
address of the gpecified P-section 1is obtained and added to the
specified constant. The address plus 2 that the relocated value is to
be written into is subtracted from the resultant additive value. This
value is then written into the task image file at the calculated

address.,

APPENDIX B, TASK BUILDER DATA FORMATS

Example:
+PSECT A
B:
C: .
+PSECT D
MOV B+10,R0
MOV c,RO
DISP B 16
SECTION
NAME
CONSTANT

Figure B=-25
pP-Section Additive Displaced Relocation

B.4.14 Complex Relocation

This type of entry (Figure B-25A) resolves a complex relocation
expression, Such an expression is one in which any of the MACRO-11l
binary or unary operations are permitted with any type of argument,
regardless of whether the argument is unresolved global, relocatable
to any P-section base, absolute, or a complex relocatable
subexpression.

The RLD command word is followed by a string of numerically-specified
operation codes and arguments. All of the operation codes occupy one
byte. The entire RLD command must fit in a single record, The
following operation codes are defined.

0 - No operation

1 Addition (+)

Subtraction (=)

w
1

Multiplication (%)

ES
1

Division (/)

APPENDIX B, TASK BUILDER DATA FORMATS

5 - Logical AND (&)

6 - Logical inclusive OR (!)
10 - Negation (=)

11 - Complement (1C)
12 - Store result (command termination)

13 - Store result with displaced relocation (command termination)

16 - Fetch global symbol. It is followed by four bytes containing
the symbol name in RADIX-50 representation.

17 - Fetch relocatable value. It 1is £followed by one byte
containing the sector number, and two bytes containing the
offset within the sector,.

20 - Fetch constant., It is followed by two bytes containing the
constant.

The STORE commands indicate that the value is to be written into the
task image file at the calculated address.

All operands are evaluated as l6-~bit signed quantities wusing two's
complement arithmetic, The results are equivalent to expressions that
are evaluated internally by the assembler. The following rules are to
be noted,

1. An attempt to divide by zero yields a zero result., The task
Builder issues a nonfatal diagnostic.

2, All results are truncated from the left in order to fit into
16 Dbits,. No diagnostic 1is issued if the number was too
large, If the result modifies a byte, the Task Builder
checks for truncation errors as described in Section 3,4,

3. All operations are performed on relocated (additive) or
absolute 16=bit quantities. PC displacement is applied to
the result only.

Example:

.PSECT ALPHA
A:

«PSECT BETA

APPENDIX B. TASK BUILDER DATA FORMATS

MoV #A+D~G1/G2&<1C<1771201G3>>,R1

DISP B 17

COMPLEX STRING

12

Figure B=-25A
Complex Relocation

B.5 INTERNAL SYMBOL DIRECTORY

Internal symbol directory records (Figure B-26) declare definitions of
symhols that are local to a module. This feature is not supported by
TKB and therefore a detailed record format is not specified, If TKB
encounters this type of record, it will ignore it.

0 RECORD _
TYPE

NOT
SPECIFIED

Figure B=-2€
Internal Symbol Directory Record Format

B.6 END OF MODULE

The end-of-module record (Figure B=-27) declares the end-of-an object
module, Exactly one end of module record must appear in each ohject
module and is one word in length.

RECORD _
0 TYPE =6

Figure B=27
End-of-Module Record Format

APPENDIX C

TASK IMAGE FILE STRUCTURE

The task image as it is recorded on the disk appears in Figure C-1,

UTCLOAD VECTORS
CO-TREE OVERLAY
BLOCK

AUTOLOAD VECTORS
CO-TREE ROOT

AUTCLOAD VECTORS

MAIN TREE
OVERLAY
BLOCK

AUTOLOAD VECTORS
SEGMENT TABLES

ROOT SEGMENT
CODE & DATA

STACK
FP/EA SAVE AREA
HEADER BLOCK

CHECKPOINT AREA

BLOCK

LABEL

Figure C-1
Task Image on Disk

APPENDIX C, TASK IMAGE FILE STRUCTURE

C.l LABEL BLOCK GROUP

The label block group, shown in Figure C-2, precedes the task on the
disk, and contains data that need not be resident during task
execution, and up to two blocks containing device assignment data for
LUNs 1-255, The task label blocks (first block in group) are read and
verified by Install. The information in these blocks is used to £ill
in the task header.

APPENDIX C.

LABEL
L$BSTK

L$BPAR

L$SBFLG

L$BPRI

L$BLDZ

LS$BMXZ

L$BSA

L$BLIB

L$BEXT

TASK

10
12
14
16

20

42
44
46
50
52

54

116

IMAGE FILE STRUCTURE

TASK

NAME

TASK PARTITION

in radix 50 format

TASK FLAG WORD

TASK PRIORITY

LOAD SIZE IN 32-WORD BLOCKS

MAX SIZE IN 32-WORD BLOCKS

TASK STARTING ADDRESS

HEADER RELATIVE BLOCK

TASK TRANSFER ADDRESS

YEAR YEAR
CREATION MONTH
DATE DAY

LIBRARY/COMMON NAME

LIBRARY LENGTH (32w blks)

CREATION YEAR

DATE MONTH
DAY

STARTING ADDRESS

LIBRARY FLAGS

TASK EXTENSION

Figure C-2
Label Block Group

LIBRARY
> REQUEST

fmawvimiam A
\ida sl O

thre
word entries)

(In increments of
32 words)

APPENDIX C.

LUN

BLOCK

LUN

BLOCK

TASK IMAGE FILE STRUCTURF

746
750
752
754
756
760
762
764
766
770
772
774

776

FILE

ID

FILENAME

TYPE

VERSION

DIRECTORY 1D

DEVICE NAME

UNIT

DEVICE NAME

UNIT NUMBER

DEVICE NAME

UNIT NUMBER

DEVICE NAME

UNIT NUMBER

DEVICE NAME

UNIT NUMBER

Figure C-2 (Cont.)
Label Block Group

]
i
b

LUN 1

LUN 127

LUN 128

LUN 255

APPENDIX C, TASK IMAGE FILE STRUCTURE

C.l.1 Label Block Details

The information contained in the 1label block is verified by the

install tas
and in linking
LS$BTSK

L$BPAR

L$BFLG

L$BPRI

L$BLDZ

L$BMXZ

L$3BSA

LS$BHRB

L$BBLK

LSBXFR

in creating a system task directory entry for the task,
the task to resident shared regions.

Task name, consisting of two words in Radix-50 format.
The value of this parameter is set by the TASK keyword,

Partition name, consisting of two words in Radix-50
format, Its value is set by the PAR keyword,

Task flag word containing bit values that are set or
cleared depending on defined task attributes.
Attributes are established by appending the appropriate
switches to the task image file specification,

Bit Attribute if Bit=l

TSSCHK 6 Task is non=-checkpointable

TS$PRV 8 Task is privilieged

TS$SACP 13 Task is ancillary control processor
TSSNHD 14 Task image does not have header
TSSPIC 15 Task is position independent

Default priority, set by the PRI keyword.

Load size of the task, expressed in multiples of
32-word blocks. The value of L$BLDZ is equal to the
size of the root segment, in multi-segment tasks.,

Maximum size of the task, expressed in multiples of
32=word blocks, The header size is included,

LSBMXZ is used by Install to verify that the task fits
into the specified partition,

Starting address of task. Marks the base address of
the Task image in the addressing space.

Relative block of the header with respect to the first
block in the task file,

Number of blocks in the Label Block group.
Transfer address of the task. Used by BOOT to locad and

start a bootable core image; for example: the
resident executive,

9]
i
w,

APPENDIX C, TASK IMAGE FILE STRUCTURE

LS$SBDAT Three words, containing the task creation date as
2-digit integer values, as follows:

YEAR (since 1900)
MONTH OF YEAR
DAY OF MONTH

LSBEXT Task extension size in 32 word blocks. The value of
this parameter is set by means of the EXTTSK keyword.

The following paragraphs describe components of the Resident Library
Name Block. An 8-woxrd block is generated for each Resident Library
referenced by the task. Because shared regions need not be resident
in the system, the Task Builder builds the block from the region's
disk image, using information in the header and label blocks.

Library Name A 2-word Radix-50 name specified in the LIBR or COMMON
keyword.

Length Length of the shared region in 32 word blocks,. The
INSTALL routine verifies that this wvalue does not
exceed the size of the resident common block area.

Creation Date Obtained from the creation date in the 1library image
label block.

Starting Address First address used to map the Library into the task
addressing space.

Flag Word Bits 2, 14 and 15 are used as follows:

Bit Value Meaning

LDSREL 2 0 Library is absolute
1 Library is PIC
LD$RSV 14 0 Reserved
LDS$ACC 15 0 Access request type is Read only
1 Access request type is Read
Write

C.2 HEADER

The task is read into memory starting at the base of the Header,
Since the root segment is a contiguous set of disk blocks it is loaded
with a single disk access. Figure C-3 illustrates the format of the
fixed part, and Figure C-4 the Logical Unit Table. The Floating Point
Save Area is storage for the PDP~11/45 floating point registers when
this option is requested.

The task header starts on a block boundary and is immediately followed
by the task image.

In an unmapped system, the header is fully accessible to the task. In
a mapped system, the Executive copies the header of an active task to
protected memory and restores the header contents when the task is
completed or checkpointed.

APPENDIX C. TASK IMAGE FILE STRUCTURE

H.CSP
H.HDLN

H.PCBT

H.PCBC

H.DSW
H.FCS
H.FOR
H.OVLY

H.RSVD

26
30
32
34

36

40
42
44
46
50
52
54

56

CURRENT STACK POINTER

LENGTH OF HEADER (bytes)

TASK PCB

COMMON/LIBR PCB#1l

COMMON/LIBR PCB#2

COMMON/LIBR PCB#3

END OF PCB DESCRIPTORS

DSW CONTEXT SAVE

FCS CONTEXT SAVE/PTR

FORTRAN OTS CONTEXT SAVE/PTR

OVERLAY RUNTIME SYSTEM PTR

RESERVED

Figure C-3
Task Header Fixed Part

Impure Area
Pointers

APPENDIX C,

H.EFLM

H.CUIC
H.DUIC
H.IPS

H.IPC

H.ISP

H.ODVA
H.ODVL
H.TKVA
H.TKVL
H.PFVA
H.FPVA

H.RCVA

H.FPSA

H.GARD

H.NLUN

TASK IMAGE FILE STRUCTURE

60
62
64

66

70

72

74

76
100
102
104
106
110
112
114
lle
120
122
124

126

130

EVENT FLAG MASK WORD (1-16)

" (17-32)

" (33-48)

" (49-64)

CURRENT UIC

DEFAULT UIC

INITIAL PS

INITIAL PC

INITIAL SP

ODT SST VECTOR ADDRESS

ODT SST VECTOR LENGTH

TASK SST VECTOR ADDRESS

TASK SST VECTOR LENGTH

POWER FAIL AST CONTROL BLOCK

FLOATING POINT AST CONT BLK

RECEIVE AST CONTROL BLOCK

RESERVED

FLOATING POINT/EAE SAVE PTR

RESERVED

HEADER GUARD WORD POINTER

NUMBERS OF LUNS

Figure C-3 (Cont.)
Task Header Fixed Part

APPENDIX C.

TASK IMAGE FILE STRUCTURE

LUN TABLE (2 words/LUN)

CURRENT PS

INITIAL VALUES
CURRENT PC

relative block
CURRENT R5 number of header
CURRENT R4 ident word #2
CURRENT R3 ident word #1
CURRENT R2 task name word #2
CURRENT R1l task name word #1

; rogram transfer

CURRENT RO P address

HEADER GUARD WORD

Figure C=4

Task Header Variable Part

APPENDIX C, TASK IMAGE FILE STRUCTURE

NOTE

To save the identification, the initial
value set by the Task Builder should be
moved to 1local storage. When the
program is fixed in memory and being
restarted without being re-loaded, it is
necessary to test the reserved program
words for their initial values to
determine whether the contents of R3 and
R4 should be saved.

The contents of RO, Rl and R2 are only

set when a debugging aid is present in
the task image.

C.2.1 Low Core Context

The low core context for a task consists of the Directive Status Word
and the Impure Area Pointers, The Task Builder predefines the
symbolic reference names as follows:

$DSW Directive Status Word

.FSRPT File Control Services work area and buffer pool
Pointer

$OTSV FORTRAN OTS work area Pointer

N.OVPT Overlay Runtime System work area Pointer
The only proper reference to these pointers is by symbolic name, The
pointers are read-only. If they are written into, the result will be

lost on the next context switch.

The Directive Status Word is a one word area used to report the
results of an Executive Directive,

The Impure Area Pointers are necessary to satisfy the re-entrancy
requirements of the associated routines.

C.2.2 Logical Unit Table Entry

Each entry in the Logical Unit Table has the form shown in Figure C=5,

APPENDIX C., TASK IMAGE FILE STRUCTURE

UCB ADDR

WINDOW BLOCK POINTER

Figure C=5
Logical Unit Table Entry

The first word contains the address of the device unit control block
in the Executive system tables that contains device dependent
information.

The second word is a pointer to the window block 1if the device is
file=structured,

The UCB address is set at install-time if a corresponding ASG
parameter is specified at task-huild-time, This word can also be set
at run-time with the Assign Lun Directive to the Executive.

The window block pointer is set when a file is opened on the device

whose UCB address is specified by word l. The window block pointer is
cleared when the file is closed.

C.3 SEGMENT TABLES

The Segment Table contains a segment descriptor for every segment in
the task. The segment descriptor is formatted as shown in Figure C-6,
If the autoload method is used, the segment descriptor is six words in
length. If the manual load method is used, the segment descriptor is
expanded to be eight words in length to include the segment name,

APPENDI C. TASK IMAGE FILE STRUCTURE

STATUS REL, DISK ADDRESS

LOAD ADDRESS

LENGTH IN BYTES

LINK UP

LINK DOWN

LINK NEXT

SEGMENT

NAME

Figure C=6
Segment Descriptor

C.3.1 Status

The status bit is used in the autoload method to determine if an
overlay is in memory, that is:

bit 12

0 segment is in memory.

bit 12

1 segment is not in memory.,

C.3.2 Relative Disk Address

Each segment begins on a block boundary and occupies a contiguous disk
area to allow an overlay to be loaded by a single device access. The
relative disk address is the relative block number of the overlay
segment from the start of the task image. The maximum relative block
number can not exceed 4096 since twelve bits are allocated for the
relative disk address.

C.3.3 Load Address

The load address contains the address into which the loading of the
overlay segment starts.

c-12

APPENDIX C, TASK IMAGE FILE STRUCTURE

C.3.4 Segment Length

The segment length contains the length of the overlay segment in bytes
and is used to construct the disk read.

€.3.5 Link Up

The link up is a pointer to a segment descriptor away from the root.

C.3,6 Link Down

The link down is a pointer to a segment nearer the root.

C.3.7 Link Next
The link next is a pointer to the adjcining segment descriptor. When
a segment is loaded, the loading routine follows the link next to

determine if a segment in memory is being overlaid and should
therefore be marked out-of-memory.

The link next pointers are linked in a circular fashion:

Consider the tree:

A21 A2
|
Al A2
A0
The segment descriptors are linked in the following way:
A2l A22 A2l A22 A21 TS A22
Al A2 Al A2 AlT—C A2
A0 A0 Go
link up link down link next

APPENDIX C. TASK IMAGE FILE STRUCTURE

If there is a co~tree, the link next of the segment descriptor for the
root points to the segment descriptor for the root segment of the
co-tree,

C.4 _AUTOLOAD VECTORS

Autoload vectors appear in every segment that references autoload
entry points in segments that are farther from the root than the
referencing segment,

The autoload vector table consists of one entry per autoload entry
point in the form shown in Figure C-7.

JSR PC

SAUTO

SEGMENT DESCRIPTOR ADDR.

ENTRY POINT ADDRESS

Figure C=7
Autoload Vector Entry

C.5 ROOT SEGMENT

The root segment is written as a contiguous number of blocks.

C.6 OVERLAY SEGMENTS

Each overlay segment begins on a block boundary. The relative block
number for the segment is placed in the segment table. Note that a
given overlay segment occupies as many contiguous disk blocks as it
needs to supply its space request = the maximum size for any segment,
including the root, is 32K-32 words.

APPENDIX D

RESERVED SYMBOLS

Several global symbol and p-section* names are reserved for use by the
Task Builder, Special handling occurs when a definition of one of
these names is encountered in a task image.

The definition of a reserved global symbol in the root segment causes
a word in the Task Image to be modified with a value calculated by the
Task Builder., The relocated value of the symbol is taken as the
modification address.

The following glcobal symbols are reserved by the Task Builder:

GLOBAL MODIFICATION
SYMBOL VALUE
« MOLUN Error message output device,

«NLUNS The number of logical units used by the task, not
including the Message Output and Overlay units,

«NOVLY The overlay logical unit number,

«NSTBL The address of the segment description tables., Note
that this location is modified only when the number of
segments is greater than one.

« TRLUN The trace subroutine output logical unit number,
«ODTL1 Logical unit number for the ODT terminal device TI:.

«ODTL2 Logical unit number for the ODT line printer device CL:.
* p-gections are created by .ASECT, ,CSECT, or .,PSECT directives. The
.PSECT directive obviates the need for either the .ASECT or .CSECT
directives, these being retained for compatibility only. In this
document all sections will be referred to as p-sections unless the
specific characteristics of .ASECTS or .CSECT apply.

APPENDIX D.

RESERVED SYMBOLS

The definition of a reserved p-section causes that p-section to be
extended if the appropriate option input is specified (see section

3.2.3.4).

The following p-section names are reserved by the Task Builder:

SECTION
NAME

$SDEVT

$$FSR1

$$IOB1

$SOBF1

EXTENSION
LENGTH

The extension length (in bytes) is calculated from
the formula

EXT = <{S.FDB+52>*UNITS

Where the definition of S.FDB is obtained from the
root segment symbol table and UNITS is the number
of logical units used by the task, excluding the
Message Output, Overlay , and ODT units.

The extension of this section is specified by the
ACTFIL option input.

The extension of this section is specified by the
MAXBUF option input,

FORTRAN OTS uses this area to parse array type
format specifications. May be extended by FMTBUF
keyword.

APPENDIX E

TAILORING THE TASK BUILDER

There are several ways in which the performance of the Task Builder
can be improved by making use of the resources of a given system,

Like most system programs, the Task Builder is heavily overlaid.
There are two versions of the Task Builder available: BIGTKB, which
occupies more storage and runs faster than TKB and TKB, which has more
overlays, occupies less storage and runs slower,

In order to minimize storage requirements, the Task Builder uses a
work file for storing symbol definitions and other tables. The work
file is organized as a virtual memory file. When tables exceed the
available memory, the information is displaced to the work file and
retrieved when it is required. The work file and the Task Builder
usually exist on the same device, namely: SYO.

The following techniques are available for improving the performance
of the Task Builder based on the resources of the system on which the
Task Builder is to run.

1. The appropriate version of the Task Builder should be chosen;
that is, one which conserves space or time depending on the
system's requirements,

2, If a device with a faster response time is available, the
Task Builder should be moved to that device.

'3, If additional memory is available, the Task Builder should be
installed in a larger partition so that it can make use of
the extra memory as dynamic storage,

4, If two moving head disks are available the Task Builder
should be moved to one disk and the work file to another by
re-assigning LUN 8., There will be less head movement in this
case and the disks can, therefore, respond faster.

If the user has the resources to rebuild the Task Builder, he can
alter some parameters at build time which affect the Task Builder's
performance.

APPENDIX E.

1.

2.

WSKEXT =

N$SMPAG -

TAILORING THE TASK BUILDER

defines the number of blocks by which the work file
is extended when an extension is required. If
WSKEXT is increased, the access to the work file
will be faster.

defines a threshold which determines whether a fast
or slow work file page search is used., The fast
page search saves about 15% of the execution time,
but requires 256 words of the Task Builder's dynamic
storage. This threshold defines the minimum page
storage capacity of dynamic memory required for the
fast search method. It is currently set at 20.

APPENDIX F

INCLUDING A DEBUGGING AID

If the user wants to include a program which controls the execution of
the task he is building, he can do so by naming the appropriate object
module as an input file and applying the /DA switch.

When such a program is input, the Task Builder causes control to be
passed tc the program when the task execution is initiated.

Such control programs might trace a task, printing out relevant
debugging information, or monitor the task's performance for analysis.

The switch has the following effect:

1. The transfer address in the debugging aid overrides the task
transfer address.

2, On initial task 1load, the following registers have the
indicated value:

R0 - Transfer address of task
Rl = Task name in Radix-50 format {(word #1)
R2 - Task name (word #2)

RSX-

AUTOLOAD -

CO-TREE-

GLOBAL COMMON BLOCK -~

GLOBAL CROSS REFERENCE -

GLOBAL SYMBOL -

HOST SYSTEM -

MAIN PARTITION -

MAIN TREE-

MANUAL LOAD -

MEMORY ALLOCATION FILE -

APPENDIX G

11M TASK BUILDER GLOSSARY

The method of loading overlay segments, in
which the Overlay Runtime System
automatically 1loads overlay segments when
they are needed and handles any unsuccessful
locad requests.

An overlay tree whose segments, including the
root segment, are made resident in memory
through calls to the Overlay Runtime System.

An area of memory reserved for a resident
library or common block.

A list of global symbols, in alphabetical
order, accompanied by the name of each refer-
encing module.

A symbol whose definition is known outside
the defining module.

The system on which the task is built.

A partition whose memory may be subdivided
into fixed-length sub-partitions or dynam-
ically allocated to each task by the
Executive (system-controlled partitions).

An overlay tree whose root segment is loaded
by the Monitor when the task is made active.

The method of loading overlay segments in
which the user includes explicit calls in his
routines to 1load overlays and handles
unsuccessful load requests.

The output file created by the Task Builder
that describes the allocation of task memory.

OVERLAY DESCRIPTION LANGUAGE - A language that describes the overlay

structure of a task.

APPENDIX G. RSX-11M TASK BUILDER GLOSSARY

OVERLAY RUNTIME SYSTEM - A set of subroutines linked as part of an

OVERLAY SEGMENT -

OVERLAY TREE -

PARTITION -

PATH -

PATH-DOWN =

PATH-UP -

PATH-LOADING -

PRIVILEGED TASK -

P-SECTION -

ROOT SEGMENT -

RUNNABLE TASK -

SHARED REGION -

SEGMENT -

SUB-PARTITION =

SYMBOL DEFINITION FILE -

overlaid task that are called to load
segments into memory.

A segment that shares storage with other
segments and is loaded when it is needed.

A tree structure consisting of a root segment
and optionally one or more overlay segments.

An area of memory reserved for the execution
of tasks.

A route that is traced from one segment in
the overlay tree to another segment in that
tree.

A path toward the root of the tree.
A path away from the root of the tree.

The technique used by the autoload method to
load all segments on the path between a
calling segment and a called segment.

A task that has privileged memory access
rights. A privileged task can access the
Executive and the I/0 page in addition to its
own partition and referenced shared regions.

A section of memory that is a unit of the
total allocation. A source program is
translated into object modules that consist
of p-sections with attributes describing
access, allocation, relocatability, etc.

The segment of an overlay tree that, once
loaded, remains in memory during the
execution of the task.

A task that has a header and stack and that
can be installed and executed.

An area of system memory whose contents can
be shared by any number of tasks.

A group of modules and/or p-sections that
occupy memory simultaneously and that can be
loaded by a single disk access.

A partition that resides within a main
partition.

The output file created by the Task Builder
that contains the global symbol definitions
and values in a format suitable for re-
processing by the Task Builder. Symbol
definition files are used to link tasks to
shared regions.

APPENDIX G. RSX-11lM TASK BUILDER GLOSSARY

SYSTEM-CONTROLLED PARTITION - A partition whose memory may be
dynamically allocated by the Executive to
several concurrently active, resident tasks.

TARGET SYSTEM - The system on which the task executes.

TASK IMAGE FILE - The output file created by the Task Builder
that contains the executable portion of the
task.

USER-CONTROLLED PARTITION - A partition that can accommodate only
one active, resident task.

APPENDIX H

CROSS REFERENCE PROCESSING AND DATA FORMATS

H.1 CROSS REFERENCE PROCESSOR

The Cross Reference Processor is an independent task that is invoked
by the Task Builder to convert an input file of the specified format
into a cross reference listing that is appended to a text output file.

Input to the cross reference file consists of the following:

Q

. A text file to which the cross reference listing is to be
appended. The file must reside on a random access file-
structured device.

. A cross reference input file having the format shown in
Figure H-1. The file is assumed to reside on the same
device and have the same UIC and filename as the text
file. The input file, however, has an extension of .CRF.

. A "SEND" packet having the format shown in Figure H-2.

Normally the output file will reside on the input device; however, by
means of the appropriate flags within the send packet, the cross ref-
erence task can be instructed to dispose of this file in one of the
following ways:

The text file may be submitted to the print symbiont
for output.

The file may be copied to a record-oriented device,
then deleted from the system device.

Requesting a global cross-reference listing via the /CR switch causes
the Task Builder to perform the additional processing outlined below.

. If the output device is sequential; or record-oriented;
i.e., LP:, a temporary memory allocation file is created
on SY0:. The target device and unit are recorded.

. After the memory allocation file has been written, another
pass is made over the object files to create the cross
reference input file.

APPENDIX H. CROSS~-REFERENCE PROCESSING AND DATA FORMATS

. The SEND packet is always constructed regardless of the
target device. The spooling flag is set if the target
device is a random access device.

The packet is sent to the cross-reference task.

. The cross reference task is requested to run.

H.2 CREF INPUT FILE FORMAT

The cross-reference input file consists of a single header record
followed by data records as shown in Figure H-1.

The header record consists of the name of the originating task (in
RADIX-50), followed by a numeric value that identifies the task. The
value is used to access internal cross-reference tables that contain
information describing the CREF output format.

The next 5 words contain the creation time and date for the text
file.

Subsequent data records contain the information used by CRF to create
the body of the listing. The first two words comprise the symbol
name (in RADIX-50). The second two words consist of information that
identifies the reference. For a global cross-reference, these words
contain the module name (in RADIX-50). The symbol value is an octal
quantity associated with the symbol name.

The last word in the data record is subdivided into the attributes
flag byte and the format number byte. The contents of the flag byte
cause specific characters to be printed to the left of each reference,
and within the value field. For the Task Builder the flags and re-
lated symbols are:

Flag Symbol Definition

200 ~ Reference is defined in an overlay segment away
from the root.

040 -R Symbol is relocatable.

020 * Module contains an autoloadable definition.

010 # Module contains a non-autoloadable definition.

002 @ Module contains a reference that is resolved

through an autoload vector.

The format byte defines the table to which the data record belongs.

This allows several types of cross-reference listings to be generated

by a single originating task. The Task Builder always sets this value
to zero. The format number identifies the cross-reference list to which
the data record belongs. Currently, only one type of cross-reference is
created by the Task Builder and the value is always zero.

APPENDIX H. CROSS-REFERENCE PROCESSING AND DATA FORMATS
1 NAME OF ORIGINATING
e TASK (2-WORD RAD50)
ORIGINATING TASK IDENTIFIER (TKB=0)
HERDER CREATION DATE YEAR
RECORD —_—
OF MONTH
CREF INPUT DAY
FILE HOUR
MINUTE
RESERVED
I SYMBOL NAME
(2 WORD RAD50)
DATA REFERENCE IDENTIFIER
RECORD .]

(2 WORDS)

SYMBOL VALUE

FORMAT NUMBER ATTRIBUTES
1
! i
l l
i [
' |
l |
l |
| |
DATA RECORDS
TO END-OF-
FILE
Figure H-1

CREF Input File Format

APPENDIX H. CROSS-REFERENCE PROCESSING AND DATA FORMATS

H.3 SEND PACKET FORMAT

The format of the send packet is shown in Figure H-2. The contents
of the packet are as follows.

Words 1 through 10 contain information describing the text output file
name, directory file identification, device name and unit, and a flags
byte. A value of 1 in bit 0 of the flags byte instructs CREF to sub-

mit the text file to the print symbiont after processing.

The remaining three ‘vords specify the CREF input data file version
and the device to receive the text output after processing (if a
record-oriented device was specified in the map file portion of the
Task Builder command line).

Using the above information, CREF constructs the data input file name
as follows:

File name: Same as text file
Version: As specified
Type: .CRF

Device: Same as text file

Directory ID: Same as text file

APPENDIX H. CROSS-REFERENCE PROCESSING AND DATA FORMATS

I TEXT FILE NAME _____ |

3-WORDS

RAD 50

FILE TYPE

FILE VERSION

WORD 0 |

DIRECTORY ID WORD 1

WORD 2

DEVICE NAME

FLAGS UNIT

CREF FILE VERSION

TARGET DEVICE

RESERVED UNIT

Figure H-2
Send Packet Format

APPENDIX H. CROSS-REFERENCE PROCESSING AND DATA FORMATS

H.4 ADJUSTING THE CROSS-REFERENCE LINE FORMAT

The user may adjust the cross-reference output format for either
132-column or 72-column printers by revising the build file
CRFBLK.CMD under UFD [1,24] (mapped) or [1,20] (unmapped) and re-
building the task as follows.

To obtain the narrow format (default), the user should edit the build
file and insert a semi-colon in front of the command:

EXTSCT=$$RCB0:204

Conversely, the wide format is obtained by removing the semi-colon
preceding the above command.

INDEX

ABORT, 3-13

Absolute patch, 3-21

Absolute shared regions, position
independent and, 7-4

ABSPAT, 3-21

AC switch, 3-3
ACTFIL, 3-15, 4-22
Active files, 3-15

Allocation options, 3-10, 3-15
Allocation of p-sections, 4-4
Ancillary control processor
switch, 3-3
Arithmetic element,
ASG, 3-20
Assignment, device, 3-20
Attributes, p-section, 4-3
Autoload, 1-2, 6-1
Autoload indicator, 6-2
Autoload vectors, 5-14,

extended,; 3-4

6-6, C-14

Building shared region, 7-5

Building task, 2-11, 3-24, 5-16

Building task for target system,
8-1

Buffer size, format, 3-16

Buffer size, maximum record, 3-16

CC switch, 3-3
Checkpointable switch, 3-4
Checkpoint area, 4-10
Code, user identification,
Comma operator, 5-11
Command line, task,
Commands, 2-1

task building, 2-12
Comment lines, 2-7
Comments, 2-7
COMMON, 3-18
Common block, resident, 3-18
Compiling FORTRAN programs, 2-11
Complex relocation, B-22
Concatenated object modules switch,

3-3

Content altering options, 3-10
Control option, 3-13
Control section name, B-6
Core image, overlay, 5-13
Co-tree, 5-24
Co-trees, 5-12
Co-tree overlay region,
CP switch, 3-4
Cross reference switch,
CR switch, 3-4

2-8

M

22—
p4

5-14

3-4

DA switch, 3-4

Data formats, task builder, B-1
Debugging aid switch, 3-4, F-1
Defining a multiple tree structure,
5-11
Defining ODL file, 5-15
Default, 2-15
Default assumptions, 2-8
Default type, 2-8
Defaults, 1-1
Device, 2-14
Device assignment, 3-20
Device options, 3-10
...... ; 3=20
Diagnostic, exit on, 3-8
Directive,
.END, 5-7,
.FCTR, 5-8, 5-23
.NAME, 5-9, 5-24
.PSECT, 5-10, 5-23
.ROOT, 5-7, 5-23
Directory,
end of global symbol, B-11
internal symbol, B-24
relocation, B-12
Directory, global symbol, B-3
Disk address, relative, C-12
Dumps,
post-mortem,
snapshot, 9-6

5-23

9-1

EA switch, 3-4
Editor, text,

.END directive,
End of module, B-24

AV am s P e 2 0= Yo oy

Entering source 1a.u\5 uage,

Error handling, 6-10

Error messages,
cross-reference, A-10
task builder, A-1

Existing shared region, 7-3

Exit on disgnostic switch, 3-9

Extended arithmetic element switch,

3-4

Extend task memory, 3-15

EXTSCT, 3-17

EXTTSK, 3-17

2-10

5-7, 5-23

.FCTR directive, 5-23

File,
memory allocation, 4-10, 4-15
task image, 4-9

File contents, 4-19

Filename, 2-14

File, output, 2-13

File storage region, 4-22

File specifications, 2-7, 2-14

5-8,

INDEX-1

File structure, task image, C-1

Files, memory allocation, 1-2,
5-16, 7-7, 8-3

Floating point switch, 3-5

FMTBUF, 3-16

Format buffer size, 3-16

FORTRAN, 6-8

FORTRAN programs, compiling, 2-11
FP switch, 3-5

GBLDEF, 3-21

GBLPAT, 3-22

GDS, 8-3

Global additive displaced reloca-
tion, B-17

Global additive relocation, B-17

Global
Global
Global
Global
Global

cross-reference format, H-1

displaced relocation, B-16

relative patch, 3-22

relocation, B-15

symbol definition, 3-21

Global symbol directory, B-3

Global symbol directory, end of,
B-11

Global symbol name, B-8

Glossary, G-1

Group, 2-14

HD switch, 3-5
Header switch,
Heading, 4-18

Host and target systems,

3-5, C-6

8-1

Identification options, 3-12
Indirect command file facility, 2-5
Input, multiple line, 2-3

Internal display relocation, B-16
Internal relocation, B-15

Internal symbol directory, B-24
Internal symbol name, B-7

Label block, C-5
Label block group, C-2
LB switch, 3-5

LIBR, 3-19
Library file switch, 3-5
Library, resident, 3-19
Library, system, 1l-1
Line,

input, 2-13

option, 2-13

task command, 2-13

Lines, comment,
Link down, C-13
Link next, C-13

INDEX-

Link up, C-13

Load address, C-12

Loading mechanism, 5-4, 6-1
Location counter definition, B-18
Location counter modification, B-18
Logical unit table entry, C-10

Low core context, C-10

Manual load, 1-2, 6-1, 6-6
Manual load calling sequence, 6-7
Manual load request, 6-8

Map, short, 3-8

Mapped and unmapped systems, 4-8
MAXBUF, 3-16

Maximum record buffer size, 3-16
Memory,
system, 4-7
task, 4-1
Memory allocation, 4-1
Memory allocation file, 1-2, 4-10,

4-15, 5-16, 7-7, 8-3
Memory allocation file format, 7-7
Memory dumps, 9-1
Memory management switch, 1-2, 3-6
Messages, error, A-1l
MM switch, 3-6
Modifying the task to use the
shared region, 7-6
Module, end of, B-24
Module name, B-5
Module, object, 1l-1
MP switch, 3-6
Multiple line input, 2-3
Multi-segment task, 5-4, 5-6
Multiple task specification, 2-4
Multiple tree, 5-12
Multiple tree structure, defining

a, 5-11
Multiple tree structures, 5-10
.NAME directive, 5-9, 5-24

Object module, 1-1

Object modules, concatenated, 3-3

oDL, 5-7

opL file, defining, 5-15

ODT SST vector, 3-23

opTV, 3-23

Operators, tree structure,

Option, 2-14

Options, 2-3, 3-10
ABORT, 3-13
ABSPAT, 3-21
ACTFIL, 3-15
allocation,
ASG, 3-20
COMMON, 3-18

5-22

3-10, 3-15

2

Options (cont.),

content altering,
210 3,1

3-10
2

nnnnnnn
CuUlivi ULy 2Tawvy

device, 3-10
device specifying, 3-20
EXTSCT, 3-17
EXTTSK, 3-17
FMTBUF, 3-16
GBLDEF, 3-21
GBLPAT, 3-22
jidentification,
LIBR, 3-19
MAXBUF, 3-16
oDTV, 3-23
PAR, 3-14
PRI, 3-14
STACK, 3-18
storage altering, 3-21
storage sharing, 3-10, 3-18
synchronous trap, 3-10, 3-23
TASK, 3-14
TSKV, 3-23
UIC, 3-14
UNITS, 3-20
Options, switches and, 3-1
Output file, 2-13
Overlay, 1-2, 5-1
Overlay core image, 5-13
Overlay description switch, 3-6,
5-1
Overlay description language,
5-22
Overlay region, co-tree, 5-14
Overlay segments, C-14
Overlay structure, 5-2
Overlay tree, 5-4
Overriding switch, 3-9
Owner, 2-14

3-10, 3-13

5-7,

PAR, 3-14

Partition, 3-14

Patch, absolute, 3-21

Patch, global relative, 3-22

Path-loading, 6-4

Performance of task builder, E-1

PI switch, 3-7

PM switch, 3-7

Position independent switch, 3-7

Position independent and absolute
shared regions, 7-4

Post mortem dump, 9-1

Post mortem dump switch, 3-7

PR switch, 3-7 :

PRI, 3-14

Priority, 3-14

Privileged switch, 3-7

Privileged tasks, 4-8

Program limits, B-19

Program section, 4-2

Program section allocation, 4-19

Program section extension, 3-17

Program section name, B-9

Program version identification, B-10

.PSECT directive, 5-10, 5-23

P-section additive displaced
relocation, B-21

P-section additive relocation, B-20

P-section, allocation of, 4-4, 4-5

P-section attributes, 4-3

P-gsection displaced relocation,
B-20

P-section relocation, B-19

P-sections, 4-2

Rebuilding shared region, 8-2
Rebuilding task for target system,
8-3
Relative disk address, C-12
Relocation,
global, B-15
global additive, B-17
global additive displaced, B-17
global displaced, B-16
internal, B-15
internal displaced, B-16
P-section, B-19
P-section additive, B-20
P-section additive displaced,
complex, B-21, B-22
P-section displaced, B-12
Relocation directory, B-12
Reserved symbols, D=1
Resident common block,
Resident library, 3-19
Resolution of global symbols,
o5—-4
Resolution of p-sections, 5-6

3-18

4-6,

.ROOT directive, 5-7, 5-23
Root segment, C-14
Segment description, 4-18

Segment length, C-13
Segment tables, C-11
Selective search switch,
Sequential, 3-8
SH switch, 3-8
Shared region, building, 7-5
Shared region, existing, 7-3
Shared region, modifying the task
to use the, 7-6
Shared region, rebuilding, 8-2
Shared regions, 1-2, 7-1
Shared regions, position independent
and absolute, 7-4
Short map, 3-8
Snapshot dump, 9-6
Source language, entering,
SP switch, 3-8
Spool map output switch, 3-8
SQ switch, 3-8

3-8

2-10

INDEX-3

SS switch, 3-8 Task image file structure, C-1

SST vector, task, 3-23 Task memory, 4-1
STACK, 3-18 Task, multi-segment, 5-4, 5-6
Stack size, 3-18 Task specification, multiple, 2-4
Status, C-12 Task SST Vector, 3-23
Storage altering options, 3-21 Text editor, 2-10
Storage sharing options, 3-10, 3-18 Traceable switch, 3-9
Switch, 2-8, 2-14, 3-2 Transfer address, B-7
Switch, overriding, 3-9 Tree structures, multiple, 5-10
Switches, Tree structure operators, 5-22
AC, 3-3 Tree, overlay, 5-4
cc, 3-3 TSKV, 3-23
cp, 3-4 Type, 2-14
CR, 3-4 Type, default, 2-8
DA, 3-4
En, 3-4
FP, 3-5
HD, 3-5 UIC, 2-15, 3-14
LB, 3-5 UNITS, 3-20
MM, 3-6 Unmapped systems, mapped and, 4-8
MP, 3-6 User identification code, 2-8,
PI, 3-7 2-15, 3-14
PM, 3-7
PR, 3-7
SH, 3-8
Sp, 3-8 Version, 2-14
sSQ, 3-8 Version identification program,
ss, 3-8 B-10
TR, 3-9
XT, 3-9
Switches and options, 3-1
Symbol definition, global, 3-21 XT switch, 3-9

Symbol directory, global, B-3

Symbol directory, internal, B-24

Symbol name, global, B-8

Symbol name, internal, B-7

Symbols, reserved, D-1

Symbols, resolution of global, 4-6,
5-4

Synchronous trap options, 3-10,
3-23

Syntax rules, 2-11

System library, 1-1

System memory, 4-7

Systems, host and target, 8-1

Systems, mapped and unmapped, 4-8

Tables, segment, C-11
Target system, building task for,

8-1

Target system, rebuilding task for,
8-3

Target systems, host and, 8-1

TASK, 3-14

Task, building, 2-11, 3-24, 5-16
Task builder data formats, B-1
Task builder, performance of, E-1
Task command line, 2-2

Task image, 1-1

Task image file, 4-9

INDEX-4

!

|

|

! RSX-11M Task Builder
1 Reference Manual

| DEC-11-OMTBA-B-D
|
|
|
|
1

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

12

1=

=

<

=

12

R

=}

5 Is there sufficient documentation on associated system programs
z reguired for use of the software described in this manual? If not,
a what material is missing and where should it be placed?

]

o

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer {experienced)
User with little programming experience

Student programmer

000000

Non-programmer interested in computer concepts and capabilities

Name Date
Organization
Street
City State Zip Code
or
Country

If you do not require a written reply, please check here. [j

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

USINESS REPLY MAIL
O POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Jstage will be paid by:

Software Communications
P. O. Box F
Maynard, Massachusetts 01754

DIGITAL EQUIPMENT CORPORATION
MAYNARD. MASSACHUSETTS 01754

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	9-11
	9-12
	A-01
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	D-01
	D-02
	E-01
	E-02
	F-01
	G-01
	G-02
	G-03
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	Index-01
	Index-02
	Index-03
	Index-04
	replyA
	replyB
	xBack

