
•INTRODUCTION TO RSX-11M

Order No. DEC-I I-OM I EA-A-D

INTRODUCTION TO RSX-11M

Order No. DEC-11-0MIEA-A-D

digital equipment corporation · maynard. massachusetts

First Printing, May, 1974

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser
under a license for use on a single computer system and can be copied
(with inclusion of DIGITAL's copyright notice) only for use in such
system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright @ 1974 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDP DIGITAL
COMPUTER LAB DNC
COMSYST EDGRIN
COMTEX EDU SYSTEM
DDT FLIP CHIP
DEC FOCAL
DECCOMM GLC-8
DECTAPE IDAC
DIBOL IDACS

INDAC
KAlO
LAB-8
LAB-8/e
LAB-K
OMNIBUS
OS/8
PDP
PHA

ii

PS/8
QUICKPOINT
RAD-8
RSTS
RSX
RTM
RT-11
SABR
TYPESET 8
UNIBUS

CHAPTER 1

1.1

1.2
1. 2.1
1.2.2
1. 2. 3
1. 2. 4

1.3

1. 4

1.5

CHAPTER 2

2.1

2.2

2.3
2.3.l
2.3.2
') ") ")
~-.J•.J

2.3.4

2.4
2.4.1
2.4.2
2.4.3
2.4.4
2.4.5
2.4.6
2.4.7
2.4.8

2.5
2.5.1
2.5.2
2.5.3
2.5.4
2.5.5

2.6

2.7

2.8

2.9

CONTENTS

APPLICATIONS OF RSX-llM

INTRODUCTION

REALTIME APPLICATIONS
Data Acquisition
Process Control
Manufacturing
Laboratory Data Processing

BACKGROUND PROCESSING

COMMUNICATIONS

PROGRAMMING

RSX-llM SERVICES

WRITING, STORING, AND EXECUTING PROGRAMS
WRITTEN IN SYMBOLIC LANGUAGES

RSX-llM LANGUAGE TRANSLATORS

RSX-llM TASKS
Combining Language Translator Output
Creating Overlay Structures
Applying Attributes to a Task
Disk Storage of Tasks

RESPONDING TO REALTIME EVENTS
Multiprogramming
Interrupts
Multitasking
Disk Based Operation
Checkpointing
Power Failure Restart
Contingency Exits
Responding to Realtime Events - A Summary

MULTI-LEVEL ACCESS TO INPUT/OUTPUT DEVICES
The RSX-llM I/O Language
The Common File System
The Record I/O Package
Device Drivers
i~ogical ·unit- Numbers an-er Physical unft
Directories

SHARING OF COMMON ROUTINES

SUPPORT OF USER PREPARED RE-ENTRANT
ROUTINES

USER CONTROL OF EXTERNAL TASK SCHEDULING

AVAILABILITY OF SYSTEM ROUTINES FOR
PERFORMING DATA CONVERSIONS, ARITHMETIC
CONVERSIONS, AND FUNCTIONAL CALCULATIONS

iii

Page

1-1

1-1
1-1
1-1
1-2
1-2

1-2

1-3

1-3

2-1

2-1

2-3
2-3
2-4
2-4
2-4

2-4
2-5
2-6
2-8
2-8
2-8
2-8
2-9
2-10

2-10
2-11
2-11
2-11
2-12

2-12

2-12

2-13

2-13

2-14

2.10

2 .11

2.12

2.13

2.14

2.15

CHAPTER 3

Number

2-1
2-2
2-3
2-4
2-5
2-6
3-1
3-2
3-3

3.1
3.1.1

3.2

OPERATOR CONTROL OF RSX-llM

SYSTEM SUPPORT OF USER CREATED MACRO
LIBRARIES

COMPREHENSIVE ERROR RECOVERY

PROTECTION OF PROGRAMS AND DATA

TAILORING A SYSTEM TO USER-LOCAL
REQUIREMENTS

NON-DISRUPTIVE GROWTH

THE ORGANIZATION OF RSX-llM

ORGANIZATION OF THE 8K EXECUTIVE
Executive Component Descriptors

THE ORGANIZATION OF THE SYSTEM DISK

FIGURES

FORTRAN Program
Macro Definition, Call, and Expansion
MACR0-11 Statements
Machine Language
Sequential Execution of Programs
Concurrent Execution of Programs
The Basic Executive
Overlay Task Structure
Task Disk Image

iv

Page

2-14

2-14

2-14

2-15

2-15

2-15

3-1
3-2

3-4

Page

2-1
2-2
2-2
2-3
2-6
2-7
3-2
3-4
3-5

INTRODUCTION TO THE RSX-llM REALTIME EXECUTIVE

This manual is an introduction to Digital Equipment Corporation's RSX-I IM Realtime
Operating System. It assumes familiarity with a few process-control and data processing terms
and should prove useful to managers, programmers, and operators contemplating use or
acquisition of an RSX-1 lM based system. Topics covered include:

1. Applications of RSX-llM;

2. RSX-llM's Capabilities and Features, and

3. The Organization of RSX-1 lM.

v

CHAPTER I

APPLICATIONS OF RSX-llM

1.1 INTRODUCTION

The RSX-I IM Realtime Operating System can be used on any DEC PDP-11 computer* and
is designed for applications requiring response to physical events as they occur. The system
may function as an unattended, stand-alone process controller, as an operator-controlled**
interface, or as part of a network of DEC computers.

1.2 REAL TIME APPLICATIONS

1.2. l Data Acquisition

Data acquisition is the source collection of physically generated data for subsequent use in
evaluation and control. Data acquisition applications frequently must respond to bursts of
data that can only be serviced by many user tasks operating concurrently. RSX-1 lM is
designed to permit the concurrent execution of user tasks (multiprogramming) which makes
the servicing of demanding data acquisition applications possible. RSX-I IM, under user
program direction, can process data acquired from instruments such as spectrometers,
flowmeters, and thermocouples.

1.2.2 Process Control

A process control application usually involves data acquisition, analysis, and a feedback loop
aimed at controlling the behavior of a continuous process. Oil refineries or steel rolling mills
are typical examples of such processes.

The signals that the PDP-11 receives from devices attached to the process are called process
input. By reading and operating on various process inputs, the PDP-11 can monitor the status
of many parts of the process, such as temperatures, flow rates, and the amount of raw
matenals-oeirig-used: Erigmeer11fg--an.d--01)etalionaraata stotecr--n1 -rhe sys-rem c-arr-be use"'t to -
determine what action should be taken to keep the process running properly. These decisions
can also be made by control optimization programs, which are programs that make
adjustments based on interrelationships of various parts of the process.

* The minimum configuration is a 16K PDP-11/10 with a Teletype (Teletype is a registered trademark of the
Teletype Corporation) or LA30 for the console terminal; one RK disk drive. which is the system distribution
medium: a KWI I-LIP for the system clock; a hardware bootstrap loader. and either one additional RK disk
drive. a DECtape or cassette.

* * RSX-11 M may or may not require an operator in the conventional use of the term. In this document opera
tor refers to anyone who is controlling the behavior of the sytem form a console in order to accomplish some
task.

1-1

After operational decisions have been made, the PDP-11 generates signals that control the
valves, switches, and relays that in tum control the process. These signals are called process
output.

1.2.3 Manufacturing

In a manufacturing application, RSX-llM monitors manufacturing operations, tests the
quality of products, furnishes production data to higher-level production and inventory control
systems, and manages the flow of work between departments. Data in these applications can
be collected directly from sensors or entered by operating personnel into special devices
located in the manufacturing plant.

1.2.4 Laboratory Data Processing

Until approximately 1964, the concept of having a computer for use by researchers within the
laboratory environment was almost unheard of. Equipment that could meet the laboratory
environment requirements of hands-on, on-line, interactive computing was simply unavailable.
DEC has been a leader in the LDP field since the introduction of the LINC processor in 1965
(LINC is an acronym for Laboratory Instrument Computer) which was the first computing
system designed and priced to meet the needs of the laboratory setting. RSX-llM provides
the basis for a natural cost-performance extension of DEC's pioneering concept.

1.3 BACKGROUND PROCESSING

Typically, a computer system designed to control a realtime process is engineered to provide
an adequate service level at peak load. Any peak load design results in low resource
utilization during the intervals when peak loads are not being experienced. To make use of
these idle resources, background tasks are introduced into the system's workload. Background
tasks usually have less stringent time constraints than those of the primary realtime
application being serviced, Typical of these background tasks are program preparation, off-line
data reduction, and payroll processing.

RSX-1 lM is designed as a priority system and, as such, services background tasks as just
another unit of work requiring processor attention. Tasks are given priorities and all processor
resources are doled out based on the task's priority and resource availability. Thus, to
distinguish between levels of urgency, the operator simply assigns different priorities. And, if
the urgency of tasks changes, the operator can alter the priorities of installed tasks without
halting system operation.

To further enhance the processing of background tasks, RSX-11 M has a checkpointing feature
which will remove a lower priority task from memory, replace it with a task of higher priority,
and, after the servicing of the higher priority task has completed, resume the original lower
priority task by restoring it to active competition for processor resources.

I "'I
I-,:.,

1.4 COMMUNICATIONS

The ability of a computer system to communicate with both humans and other computer
systems is becoming increasingly important. RSX-llM supports a variety of hardware and
software interfaces which permit it to communicate with other DEC computers, and also with
IBM 360/370 systems.

Asynchronous communications devices using ASCII code are supported at line speeds from
110 to 2400 baud. Devices in this category include DEC's LA30 DECwriter and the VT05B
Alphanumeric display. These devices are full duplex and permit both data entry and display.

Synchronous transmission provides a more efficient communications mechanism when large
amounts of binary or ASCII data must be moved from one digital system to another, as is the
case in computer networks or hierarchical systems. In order to transfer programs and data
between systems, RSX-1 lM can communicate with other systems over synchronous lines.

1.5 PROGRAMMING

The RSX-llM System performs the applications just discussed by executing programs. A
program is a sequence of instructions that directs the computer in manipulating data to
achieve some goal.

Application programs are highly specialized and unique, and are, in general, prepared by the
user to meet the requirements of his installation.

System programs are common to all applications and are delivered as components of an RSX-
1 lM system. These include programs to:

Compile and assemble programs written in FORTRAN IV and MACR0-11;

Service input/ output devices;

Respond to operator requests, and

Control the allocation of system resources.

System programs make it possible for the user to concentrate on wntmg applications
programs. The next chapter discusses in detail the functions supplied by the RSX-1 lM system.

1-3

CHAPTER 2

RSX-llM SERVICES

2.1 WRITING, STORING, AND EXECUTING PROGRAMS WRITTEN IN SYMBOLIC
LANGUAGES

General purpose computers operate on and execute instructions that are internally represented
in binary notation. The tedium of entering an instruction in binary was recognized very early
in the evolution of computers, and this tedium was virtually eliminated by the development of
computer languages more suited to human needs rather than the physical requirements of the
equipment.

RSX-llM provides two source languages:

1. MACR0-11, and

2. FORTRAN IV.

2.2 RSX-llM LANGUAGE TRANSLATORS

For a language to be of any use, it must have an accompanying translator that converts
statements in the source language to the object language of the computer itself. Thus the
MACRO-I I Assembler translates MACRO-I I statements into PDP-I I binary and the
FORTRAN IV compiler iranslates FORTRAN IV statements.

In Figures 2-1 through 2-4 interspersed in the text which fol!mvs, \Ve have shmvn the same
program, that of adding two numbers to produce a sum, in four language representations:

1. FORTRAN;

2. A MACRO- I I macro (with its macro definition);

3. A sequence of MACRO-I I statements, and

· 4~ - -Binary--(the object tarrgmrge uf-the PJJP.:tHrs-eit).-

The FORTRAN IV source statement in Figure 2-1 contains a complete statement of the
problem of producing the sum of two numbers and clearly conveys its intent. Thus, we say it
has a high informational content.

A=B+C

Figure 2-1 FORTRAN Program

2-1

The macro SUM below contains the same information but does not convey its intent as
naturally. Note that every macro requires a companion macro definition and, with the
exception of those macros supplied with the RSX- I IM software, the user must write this
definition. With FORTRAN IV, the compiler is supplied; the statements written in the
language are translated without user intervention. The .macro, its definition, call, and
expansion are shown in Figure 2-2.

MACRO DEFINITION

.MACRO
MOY
ADD
.ENDM

MACRO CALL

SUM RESUL T,FIRST,SECOND
FIRST,RESUL T
SECOND,RESUL T

SUM A,B,C

MACRO EXPANSION

MOY B,A
ADD C,A

Figure 2-2 Macro Definition, Call, and Expansion

Next, shown in Figure 2-3, we have the sum calculated by a sequence of MACRO-I I
statements. Note that the code statements are contained in the body of the SUM macro
definition, which is not unexpected, since the function of the macro definition is to expand,
from the macro call, the instructions necessary to perform the SUM calculation. The principal
role of macros is to permit a compact representation of repetitive code sequences that appear
in a program. Thus the single line:

SUM A,B,C

will be expanded into the two instructions needed to carry out the operation wherever it
appears in a program.

MOY X,Y
ADD Z,Y

Figure 2-3 MACRO- I I Statements

Finally we have the binary machine representation actually used by the computer to carry out
the sum calculation. Remember, it is the function of the FORTRAN IV compiler and the
MACR0-11 assembler to convert statements in their respective languages into object form.

2-2

0001110111110111
1111111111111010
1111111111110110
0110110111110111
lllllilIIIIIOlIO
lllIIIIIIIIlOOOO

Figure 2-4 Machine Language

The choice of a language involves trading off simplicity of representation with the economics
of execution speed and memory space. In general, a FORTRAN IV program will require
more memory space and equipment time to execute than an equivalent assembly program. On
the other hand, the programmer will be able to master the FORTRAN IV language in less
time, and once mastered, produce operational programs more quickly than if he had selected
MACRO-I I as his language.

2.3 RSX-llM TASKS

RSX-llM programs written in either MACR0-11 or FORTRAN IV require additional
processing after they are translated into object language and before they can be entered into
the system and perform their intended function. Programs which have been fashioned into
executable units are called tasks, and the program which creates tasks is called the Task
Builder.

The Task Builder is a vital element in the overall operation of a software system. The Task
Builder exists:

I. To permit one or more output files of the MACRO-I I assembler and/or the
FORTRAN IV compiler to be combined into a single task;

2. To create a task with an overlay structure;

3. To attach attributes* to a task, and

4. To store the task image on disk where it can be rapidly retrieved for execution.

Let's consider these functions individually.

2.3.l Combining Language Translator Output

Often it is necessary or desirable to write a program using both MACRO-I I and FORTRAN
IV. Building a task which is composed of output from two different languages is accomplished
by writing the code of the different sections in the appropriate language, then submitting the
output from the translators to the Task Builder, which constructs them into a single task. The
same Task Builder services are used in combining previously written, commonly used
subroutines into a task.

* Attributes are discussed in Section 2.3.3.

2-3

2.3.2 Creating Overlay Structures

The memory resource of a computer is fixed and finite. If a program will not fit in the
available memory it must be split up or overlaid. Overlaid tasks share the fixed memory such
that when one part of the program is complete, it is overlaid by another. It is the function of
the Task Builder to create, from a set of user overlay specifications, the overlaid task
structure.

2.3.3 Applying Attributes To A Task

Certain task characteristics are best applied to the task following language translation since
they either have a dynamic quality that would otherwise require repeated translations to alter,
or depend on the existence of a hardware feature. For example, a task using the Extended
Arithmetic Element (EAE hardware option) requires resources not needed if the option is not
going to be used. A task can be modified to run on a system not possessing the option by
relinking rather than by a more costly retranslation.

2.3.4 Disk Storage Of Tasks

All tasks in RSX-11 M are stored on disk and retrieved by name. This includes any overlays
that are part of a given task. In a realtime system it is imperative that requested tasks and
task overlays be retrieved with minimum delay. This requires a method for translating the
name supplied by the caller to a physical disk location. One of the functions of the Task
Builder is to place tasks onto disk, create a name directory entry for it, and link program
requests for tasks and overlays into the algorithm for searching and loading the requested
program section.

We can summarize the task creation process as a sequence of three steps. The user must:

1. Prepare a program section or sections in a supported language;

2. Submit each program section to the appropriate language translator, and

3. Submit the translated program sections to the Task Builder.

Such tasks are ready to be installed and initiated by the system operator.

2.4 RESPONDING TO REAL TIME EVENTS

The success of a realtime system is gauged not only by the speed with which it can respond to
realtime events, but also by the number of such events it can effectively satisfy at peak load.
RSX-1 lM provides facilities for minimizing absolute response to a single event and
maximizing the number of events it can service at peak load. These facilities are:

I. Multiprogramming:

2. Priority scheduling;

2-4

3. Multitasking;

4. Disk based operation;

5. Checkpointing;

6. Power failure restart, and

7. Contingency exits.

2.4.1 Multiprogramming

The natural synchronization requirements of programs, coupled with the disparity between the
time required to transfer data in and out of the system and the time required to process it,
produce idle time in all system resources. Multiprogramming is an attempt to improve
equipment efficiency by building a queue of demands for resources. The demand is achieved
by maintaining concurrently in main store more than one task waiting for resource usage. The
concurrent tasks are then multiplexed among each other's dead time intervals.

Since in a single processor only one task can have control of the CPU at a time, the apparent
concurrency is actually achieved because other system resources, in particular I/O units, can
execute in parallel.

By interleaving task actlVlty, the system can better accomplish the dual goals of minimizing
absolute response time and maximizing the number of events at peak load.

The multiprogramming of tasks is accomplished by dividing available memory into a number
of named, fixed size partitions. Tasks are built to execute out of a specific partition, and all
partitions in the system can operate in parallel.

Further, every partition can be split into as many as seven subpartitions, and tasks executing
out of the subpartitions may also execute in parallel. The execution of a task in the main
partition, however, is mutually exclusive with that of tasks within a main partition's
subpartitions. The existence of subpartitions makes it possible to reclaim the space of a large
partition and distribute it among several smaller tasks. This is a very real requirement in a
system which permits language translation concurrently with realtime processing, since
language translators require large partitions and are used intermittently.

We can graphically depict the advantages of multiprogramming by a simple illustration. Pro
grams A, B, and C are being executed in a system without multiprogramming. Program A
-reacts- some --infotmation from disk, operates on it,---ancfaisplays -a:--repoii: Program B pei=forms
some computation, displays a message, performs some more computation, and writes the result
to disk. Program C performs some computation reads some information from disk, performs
some more computation and writes the result to disk.

Figure 2-5 illustrates -the sequence in which various operations would be performed when the
three programs are executed one after the other. Notice that while any one part of the system,
such as a disk drive, is being used, the other parts, such as the CPU, are idle.

2-5

D DISKTIME

I CPU TIME

I TERMINAL TIME

Figure 2-5 Sequential Execution of Programs.

Figure 2-6 shows the sequence in which the same functions might be carried out under RSX-
1 IM. Note that the three resources involved (CPU, disk drive, terminal) are, at times, used
simultaneously. Note also that concurrent execution of three programs requires less computer
time than sequential execution of the same programs.

2.4.2 Interrupts

Multiprogramming functions only if a method exists for identifying when tasks in the system
have become blocked, indicating that a switch to a task ready to use system resources should
be initiated. The mechanism used in RSX-11 M is the interrupt.

When an interrupt occurs, RSX-1 lM determines the source of the interrupt and then executes
the program that has been specified to service the interrupt.

Interrupts can, as has been noted, be caused by realtime events. For example, if RSX-I IM
were controlling the testing of resistors as they were manufactured, an interrupt might be
generated every time the testing mechanism finished testing a good resistor. A different
interrupt might be generated when the resistor being tested was found to be defective.
Different programs might be executed to service the two interrupts. In an actual process, the
two programs might cause the resistors to be moved to different locations. In any realtime
application events have priority relationships, and both the interrupts themselves and the
subsequent processing of the interrupt reflect these relationships.

2-6

PROGRAM A •

PROGRAM B - I I
PROGRAM c IJ I D

D DISK TIME

ilii CPU TIME

ilii TERMINAL TIME

Figure 2-6 Concurrent Execution of Programs.

interrupting sources have four levels of hardware priority numbered 7, 6, 5, 4, with level
seven being the highest. An interrupt at level seven cannot be interrupted by any source until
the interrupt is serviced. More than one source may exist at any of the four levels but sources
tied to the same level cannot interrupt one another. Lower priority interrupt setvice routines
interrupted by higher sources are automatically returned to when the higher priority request
has been completed.

A second level of priority is maintained by the software, and this software priority determines
which task in the multiprogramming mix will execute next. The software maintained priority
contains 250 levels, and its service discipline is analogous to the four hardware levels.

W-he-n -an--- ifl-terrup-t----ee-€-B-FS--- the EX€cut-i-¥€-- de-termines if the- interrupt-has__ resulted _in the
blocking or unblocking of any of the tasks currently in the multiprogramming mix. If blocking
or unblocking has occurred, a search is made to determine the highest priority task ready to
run, and when this task is located it is given control of the CPU resources.

Thus the task priority is the sole determiner of which ready-to-run task has control of the
CPU at any given time. The priority of a task is established by the programmer or system
operator.

Using multiprogramming, multitasking (which is discussed next), interrupts, and priority
scheduling. RSX-11 M effects efficient use of the hardware complex, overlapping equipment
resources and responding to events in the order of criticality established by the user.

2-7

2.4.3 Multitasking

Multitasking is the multiprogramming of two or more tasks which need to communicate
among themselves and synchronize their activities.

In a uniprocessor environment*, some response time dependencies can only be achieved by
inducing parallelism. For example, in an airline reservation system a single console request
may require several independent file accesses, and to achieve the needed response time these
accesses and the their subsequent processing must occur in parallel under the control of a
single master task. To exercise this control, the master task must be able to start, stop, and
synchronize activity with related subsidiary tasks. In effect, a multitasking capability gives
every user task the ability to become an executive and thus extends the benefits of parallel
execution to the user tasks. RSX-11 M provides the services necessary to support multitasking.

2.4.4 Disk-Based Opetation

Except for rare, dedicated applications, the total code in a system always exceeds the available
main memory. A disk-based system uses random access peripherals both as an extension of
executive main memory and as the principal data interchange medium. The use of disk as the
system data storage medium provides the base for program development facilities, a common
file system, checkpointing, and rapid initiation of tasks, The Task Builder makes it possible for
the user to build overlaid tasks and call these overlays from disk. The total effect is to extend
significantly the achievable peak load while still maintaining system response time
requirements.

2.4.5 Checkpointing

A task currently active in a partition, but of a lower priority than another task requesting the
partition, can be pre-empted, rolled-out to disk, and later, after the higher priority task has
completed its execution, be rolled-in and restored to active execution at the point where it was
previously pre-empted. Checkpointing, which is optional on a per task basis, is another
method of making it pv~5ible to load the processor with as much work as it can possibly
absorb, and still meet its realtime commitments.

2.4.6 Power Failure Restart

Power failure restart is the ability of a system to smooth out intermittent short-term power
fluctuations with no apparent loss of service and without losing data, all the while maintaining
logical consistency within the system itself and the application tasks. Power failure affects
absolute response time and peak load capacity differently from the facilities previously
discussed, since it applies to the aggregate system performance rather than increasing
performance when the system is actually in operation. A system is not performing when it is
shut down, and if the Executive can reduce the shutdown periods due to power failure restart,
aggregate performance is increased.

* In multiprocessors. intra-task parallelism is needed to exploit the availability of more than one CPU.

2-8

In systems which do not support power failure restart, service disruptions due to power failure
are often lengthy, resulting in reduced equipment effectiveness. Furthermore, redundancy (a
second processor) does not increase system uptime in the power failure situation. Either the
system itself provides for recovery, or the user, if his application requires it, must purchase
auxiliary power, a rather expensive alternative.

Under RSX-1 lM power failure restart functions in four phases:

1. When power begins to fail, the processor traps to the Executive where volatile
register contents are stored in non-volatile memory, gracefully bringing system
operations to a halt.

2. When power is restored, the Executive again receives control and restores the
previously preserved state of the system.

3. The Executive then determines if any user level tasks have requested notification of
power failure. The contingency exit mechanism discussed in the next section is
used for notification.

4. The Executive then schedules all device drivers that were active at the time the
power failure occurred at their powerfail entry point. Drivers have the option of
being scheduled:

a. On power failure, or

b. On power failure when the driver has an outstanding I/O order.

These drivers can then, if required, make those restorations of state (like repeating
of I/O) they deem necessary.

This approach is quite efficient because the repeating of I/O is placed nearest the source most
iikely to know how to make the restoration. Basically, RSX-I IM takes a position which
assumes it does not know more about an application's requirements than the code expressly
nrr1ttPn tA CPMTlf'P thP 'lT'\T'\1;,....,f;A

YT.l...1.1..1.."".l...1. l.'-1' ..:J"'J.. 'f.l'-''-' \..l.l""' u.pp.1.J. U\..lV.lJ..

2.4.7 Contingency Exits

Subroutines automatically entered as the result of an unanticipated synchronous condition (for
example, an attempt to execute an illegal instruction) or as the result of an asynchronous
condition anticipated or unanticipated (for example, an I/O termination) are called
contingency exit routines, and the conditions which triggered their entry are called contingency
exit conditions.

Synchronous exit conditions are those which are the result of a specific instruction
encountering an unanticipated event; if the code sequence up to and including the instruction
is repeated under identical conditions, the same unanticipated event occurs. As cited above, an
attempt to execute an illegal instruction has these characteristics.

By contrast, asynchronous conditions are not associated with a specific instruction's execution
and the point of exit for this condition in the code is unpredictable; an 1/0 termination has
these characteristics.

2-9

Contingency exits improve both the structural design of a program and the response efficiency
of a task. A contingency exit capability contributes meaningfully to the peak load a given task
can sustain and, as such, the peak load the system can sustain.

2.4.8 Responding To Realtime Events - A Summary

Each of the seven features:

1. Multiprogramming;

2. Priority Scheduling;

3. Multitasking;

4. Disk based operation;

5. Checkpointing;

6. Power failure restart, and

7. Contingency exits

exists to improve the cost performance of the system by increasing peak load capacity while
maintaining the ability to meet absolute realtime deadlines. They also contribute to the
system's capability for servicing sophisticated applications and to make use of the system's
resources when realtime demands are relatively inactive.

2.5 MULTILEVEL ACCESS TO INPUT /OUTPUT DEVICES

Input/output servicing has been traditionally among the more difficult aspects of applications
programming. From the user's point of view, 1/0 processing is a necessary evil since the
application itself, though driven by data, is not particularly concerned with the computer
interfacing subtleties required in data acquisition. And any service supplied by the system to
ease the 1/0 programming burden can contribute substantially to reducing the time required
to produce operational applications. RSX-I IM cases the 110 programming requirements by
supplying comprehensive device independence.

Device independence, in its most general form in RSX-I IM, consists of six entities:

1. An 1/0 Language;

2. A Common File System;

3. A Record 1/0 Package;

4. Device Drivers;

5. Logical Unit Numbers (LUNs), and

6. The Physical Unit Directory Group.

2-10

The goal of device independence is to provide a package of services that will enable the
construction of a task that can substitute devices at runtime without necessitating a single
change in the task's code. Many systems ciaim device independence when they can substitute
at runtime devices of similar characteristics, for example, a terminal for a line printer. Both
these devices output a single record at a time. Device independence which permits the
substitution of random access devices involves a quantum jump in complexity and user
flexibility. Many systems claiming device independence do not permit substitution of random
access devices for unit record devices and thus cannot match the 1/0 flexibility of RSX-1 lM
which does permit such substitutions.

2.5.1 The RSX-I IM 1/0 Language

The creation of user-level device independence in RSX-1 lM begins with the 1/0 language.
The 1/0 language includes all the 1/0 service requests necessary to logically interface with
devices. The requests make files available (OPEN), cause data to be transmitted to and from
the task to devices (GET, PUT), and disconnect files from the task (CLOSE).

The device independent 1/0 language specified in RSX-1 IM communicates with the File
System and the Record 1/0 Package.

2.5.2 The Common File System

A fiie system is the coiiection of system services which permits a user to view his l/O as a
transaction between his program and a named, protected collection of records.

The RSX-11 M File System manages public storage. It finds, opens, and closes files,· and it
maintains a directory of named files existing on the systems data volumes. It provides the
mechanism by which a file destined for a printer can be re-directed to a named file in
random access storage. Without such a file system to maintain the integrity of public store
and thereby not permitting a named storage area on random access devices to be treated as a
record oriented device, device independence reduces to a substitution of one record oriented
device for another. This substitution of similar device types severely impacts the benefits
accruing to both users and equipment when contrasted with complete device independence
provided in RSX-llM.

2.5.3 The Record 1/0 Package

Record 1/0 manages buffering, blocking, and device control functions. Using the 1/0
language, the user task communicates its 1/0 requirements to the Record 1/0 package.
Record 1/0, based on the characteristics of the device to which the data is being sent, builds
the 1/0 requests it will transmit to a device driver, The entire process just described is
transparent to the user level task.

2-l l

2.5.4 Device Drivers

Every physical device in the system has an associated device driver. A driver accepts requests
from the File System, Record 1/0, and user tasks*. Drivers perform the physical functions
implied in the requests issued to them, and perform error recovery when needed.

The structure of the RSX-1 IM 1/0 system makes it easy for a user to build drivers unique to
his application.

2.5.5 Logical Unit Numbers and Physical Unit Directories

Interchanging devices at runtime implies a method for communicating these changes to the
system. In RSX-11 M two ta bl es provide this communication:

The Logical Unit Table, and

The Physical Unit Directory Group.

In his task, a programmer refers to devices by logical unit numbers (LUNs). At task
installation, or dynamically at runtime, the task connects a LUN to a device driver and a
physical unit number. Now the web of device independence is complete. We can illustrate it
by an example.

Suppose a task which normally places its output on a printer desires to substitute a disk file.

At runtime, the task will connect its LUN for the printer to a disk driver and supply a
filename. When the device is opened, the File System will locate the file and note it in an
appropriate table. PUTs issued to the file flow through the Record 1/0 Package which will
block the records. append appropriate control information, and request the disk driver to
transmit it to the random access device. Later this file can be read and printed by a file
utility.

Two facilities, higher level languages and comprehensive 1/0 services, are the principal means
by which a user simplifies his programming task. Most 16K-based systems offer both
FORTRAN IV and a macro assembler, but few offer the 110 service capabilities of RSX-
11 M; these services are usually found only in systems requiring a much larger minimum
configuration.

2.6 SHARING OF COMMON ROUTINES

If a system is designed to support many levels of multiprogramming, the possibility that many
tasks will need the same code sequences is very high. A system usually selects one of two
alternatives for incorporating common, simultaneously required code sequences:

1. Include the common code in every task which needs it, or

2. Devise a mechanism to permit all tasks to share a single physical copy of the code.

* User tasks may bypass the file System and Record I/O. but in so doing forfeit the system's capability to
provide device independence.

• 1"' ,.::.-1.L..

The first alternative is simple to implement and, if many tasks will need the same code
simultaneously, then many duplicate copies wili exist in physical memory, as well as on
peripheral memory. Avoiding this duplication is the aim of alternative number two.

The mechanism for code sharing in RSX-11 M is shareable libraries. A shareable library
consists of subroutines that are coded such that they may be interrupted asynchronously,
service another request for either the current or a different task, then resume later at the point
of interruption.

Shareable libraries under RSX-11 M are constructed at system generation and installed into
an operational system as needed.

2.7 SUPPORT OF USER PREPARED RE-ENTRANT ROUTINES

As stated in the previous section on shareable libraries, routines in the library must be so
coded that if the routine is being executed on a given interrupt level and a higher level
interrupt occurs, execution of the routine can be suspended and resumed after the higher
priority interrupt has been serviced.

Users who observe the requirements for coding re-entrant routines can include their own
shareable libraries into an RSX-1 lM system. All RSX-1 lM Executive macros have a format
which simplifies their use when the user is creating re-entrant routines.

2.8 USER CONTROL OF EXTERNAL TASK SCHEDULING

Priorities are indicators supplied by users to control the internal scheduling of tasks in active
competition for processor resources. But user tasks often require another level of scheduling.
For example, a task may want to run every two minutes. This type of scheduling request 1s
called an external schedule request. A user may request the Executive to run his task:

A delta time from now;

A delta time from clock unit synchronization;

An absolute time of day, or

Immediately.

All of these time options are available with or without periodic rescheduling. In addition.
RSX-11 M supports an unlimited number of programmed timers for each task in the system.
Using a request to the Executive, the user task can create a timer and place a value in it. The
Executive will decrement the timer at regular intervals until it reaches zero at which time it
will generate an asynchronous system trap passing control to the task at a prespecified task
address.

2-13

2.9 AVAILABILITY OF SYSTEM ROUTINES FOR PERFORMING DATA CONVER
SIONS, ARITHMETIC CONVERSIONS, AND FUNCTIONAL CALCULATIONS

Part of the shareable library contains subroutines that are often needed by user programs.
Some of these subroutines change the representation of data from one form to another. Others
compute functions of variables such as sines, logarithms, and square roots. Still others perform
arithmetic operations on data in various formats.

These subroutines reside on disk and must be made part of a task or included in a shareable
library before they can be executed. The Task Builder can make any of these subroutines part
of any task.

2.10 OPERATOR CONTROL OF RSX-llM

Use of RSX-11 M assumes a human operator directing the system from an operator's terminal.
RSX-11 M will support any number of simultaneously active operator terminals. Access to, and
control of the system is via an operator's language which directs the Monitor Console Routine
(MCR) to carry out the specified functions. The language initiates services designed to:

1. Give the operator full access rights to the system;

2. Provide for emergency on-line software-fault servicing;

3. Provide services for initializing and controlling both the system and user tasks, and

4. Be simple to use and simple to modify or enhance.

2.11 SYSTEM SUPPORT OF USER CREATED MACRO LIBRARIES

Most computer installations discover thaf there are some sequences of assembler-language
instructions that are used over and over again. The Macro Assembler makes it possible to
condense each such sequence into a single instruction called a macro instruction. When the
Macro Assembler encounters a macro instruction, it processes a prespecified sequence of
assembler-language statements. These prespecified statement sequences reside in a Macro
Library.

In some cases, it may be possible to use macro instructions to create a programming language
tailored to the needs of specific applications. By writing several macro instructions with
descriptive names, such as ORDER. TEST, or FLOW, it is possible to greatly simplify the
programming effort.

2.12 COMPREHENSIVE ERROR RECOVERY

RSX-11 M provides error detection and recovery services during language translation, task
building, and execution. Errors detected by a language translator or the Task Builder are
displayed at the completion of a translation or link, and can be used for subsequent correction
of the program.

2-14

During program execution, the RSX-1 lM Executive makes numerous checks on the validity of
requests, retries 1/0 operations, and restarts the system on power failures. In addition to rip
stop error detection, RSX-1 lM provides core dump routines and an online interactive
debugger to assist the programmer in quickly resolving the cause of a program fault. Of
course, other tasks independent of the faulting task continue normal operation.

2.13 PROTECTION OF PROGRAMS AND DATA

The RSX-llM makes a number of checks to ensure that the integrity of each task is
preserved. These involve the verification of any passed parameters that, if in error, would
cause either the system or another user task to fault. Checks are made in the file system to
prevent a task from reading, wriiing, or deleting files for which it does not have permission to
use as requested. Checks are repeatedly made to guarantee the consistency of critical system
tables. If the hardware memory management option is part of the users system, protection
among tasks and between the system and tasks is absolute; thus, unintended access to private
areas is blocked by the hardware.

2.14 TAILORING A SYSTEM TO USER-LOCAL REQUIREMENTS

Users have varying requirements for the total services supplied by RSX-1 lM. To make it
possible for each user to meet his local needs rather than to fulfill the global needs of all
users, RSX-llM provides a System Generation program (SYSGEN).

System Generation is the process by which a collection of system services are tailored to meet
the local physical constraints and performance requirements of the end-user.

RSX-1 lM consists of a set of independent program segments that can be linked so as to
eliminate services not required at a given installation, thus improving system cost-performance.
The user, for example, may eliminate certain Executive services like the panic dump routine,
or vary the size of the dynamic storage region used by the system.

RSX-1 lM is delivered on disk, and the system generation procedure is employed, under user
direction, to create an operable, locally tailored system.

2.15 NON-DISRUPTIVE GROWTH

RSX-11 M provides two paths for non-disruptive growth. First, even though the system in its
minimum configuration is quite modest, it is packed with facilities rarely found in 16K
systems. Indeed, RSX-1 lM is classed as a small system because of its minimum configuration.
Viewed from the services it provides, it is in the midi-system class. Growing within RSX-11 M
is greatly simplified by the availability of the system generation procedure discussed in Section
2.14. Through SYSGEN the user application may grow by peripherals or memory or by
moving up to a more powerful member of the PDP-11 family of processors.

Second. RSX-1 lM is a proper subset of DIGITAL's widely accepted RSX-1 lD Realtime
Operating System. RSX-11 M Applications can move to an RSX-11 D based system and be
assured of file portability, common operator commands, and growth without reprogramming.
In fact, RSX-11 M's compatibility with RSX-11 D is at the binary level thus, translated RSX-

2-15

I IM programs (recompilation or re-assembly is not required) will run on RSX-11 D following
a re-link of the RSX-I IM modules by the RSX-I ID Task Builder.

Finally, compatibility is further enhanced by the strict programming standards used in the
creation of all RSX-11 M software. By following these standards, which are detailed in an
appendix of the MACRO-I I Reference Manual*, the user can interface simply with DEC
produced software and be confident that programs will be compatible with all RSX-I IM and
RSX-I ID system programs.

* DIGITAL manual number DEC-11-0XDMA

2-16

CHAPTER 3

THE ORGANIZATION OF RSX-1 lM

This chapter presents no new concepts or facilities to those already discussed in Chapter 2.
This chapter is intended as a structural overview of the system for those readers whose interest
or decision-making needs require further insight into how the system accomplishes the user
services described in Chapter 2. Readers primarily interested in only the facilities of RSX-11 M
may omit reading this chapter.

The system delivered on the distribution medium, and from which the user site tailors his
system, is identical in structure to the system the user will SYSGEN. The only differences
which will exist are determined by the SYSG EN selection of services.

3.1 ORGANIZATION OF THE SK EXECUTIVE

Figure 3-1 * shows the memory layout of the basic SK Executive. The descriptions of the
individual regions include possible expansion through SYSGEN parameters.

3.1.1 Executive Component Descriptors

Trap Vectors:

This region contains the hardware trap and interrupt vectors and requires 12S words.
This region is expandable at SYSGEN to. a maximum of 256 words.

System Stack:

Used for nesting interrupts and internal calls made by the Executive. Forty words are
required.

System Common Data:

Contains pointers filled in by SYSGEN.

System Tables:

Contains the data used to control system operation. Included are:

Partition Descriptions;

The System Task Directory, and

Device Tables.

The total size of the table region is established by SYSG EN configuration selections.

* The figure is schematic and not to scale.

3-1

0
TRAP VECTORS

SYSTEM STACK

SYSTEM COMMON DATA

BASIC EXECUTIVE

EXECUTIVE SERVICES

SYSTEM DISK DRIVER

CASSETTE OR
DECTAPE DRIVER

TERMINAL DRIVER

SYSTEM TABLES

DYNAMIC STORAGE
REGION

TASK LOADER FOR
NONRESIDENT TASKS

MCR

FILE SYSTEM

TASK
TERMINATION

SK

Figure 3-1 The Basic Executive

3-2

Dynamic Storage Region:

The Executive has continuing needs for temporary storage. Such storage is acquired,
used, and returned to the available pool. If a given Executive service requests dynamic
storage, and it is unavailable, the Executive will inform the user task, which usually
waits for some storage to become available. The size of this region is important, for, if
it is too small, wait periods will be induced; if it is too large, system effectiveness is
lowered, since fewer tasks can fit in memory. The size of the region is a SYSGEN
parameter.

The Basic Executive:

The Basic Executive contains the code that provides the facilities discussed in Chapter
2. All these facilities are included in the SK Executive.

Executive Services:

This region contains the programs which respond to the directives issued by users to
request Executive services. These programs make extensive use of the Basic Executive.

Device Drivers:

Three drivers are included in the basic 8K Executive:

Disk;

Cassette or Dectape, and

Terminal.

These are multi-unit drivers that can service any number of their respective devices.

In general, systems which grow beyond SK will do so because of the presence of
additional drivers. Drivers are included in the system at SYSG EN.

Task Loader For Nonresident Tasks:

This loader is a task and operates out of its own partition; thus, it can run in parallel
with system and user task operation.

The loader, which is device independent:

l. Loads- tasks mi initialJoad--requests~ _

2. Writes checkpointable tasks to disk when required, and

3. Returns previously checkpointed tasks to active competition for processor
resources.

File System, Monitor Console Routine (MCR) and Task Termination (TKTN):

These three routines function as tasks. The file system occupies the main partition;
MCR, and TKTN operate out of subpartitions. Whenever MCR or TKTN need to run,

3-3

the file system is checkpointed. MCR and TKTN can run in parallel. Of course, the
main partition itself operates in parallel with both the system and user tasks.

Panic Dump and Crash Modules:

These two routines respond to system software failures, providing core dumps and
selective analysis. They are not included (or shown) in the basic system (SK) but are
mentioned because of their fundamental importance in error analysis. Most program
development systems (as opposed to dedicated online systems) will likely include these
routines.

In a 16K system with an SK Executive, the remaining SK is available for user task partitions.

3.2 THE ORGANIZATION OF THE SYSTEM DISK

All data, whether data as such or programs to be loaded and executed, exist as named files on
disk managed by the RSX-llM file system. The entire disk storage space is apportioned
dynamically as files are created or deleted. Thus programs be they in source, object, or task
images exist as named storage regions in the public storage space (disks) and are retrieved by
name. It is one of the functions of the file system to locate. files when presented with their
names.

Task images on disk are structured to mm1m1ze the time required to load them. or to load
overlays within a task as they are needed.

The tree structure of tasks is shown below in Figure 3-2.

BRANCH
SEGMENTS

JIM

ROOT

JOHN

JOE

Figure 3-2 Overlay Task Structure

3-4

JACK

CONVRT
TASK

The root segment is always resident; the branch segments, JIM, JOHN, JOE, and JACK can
overlay one another during task execution. The tree structure is created by user specifications
submitted to the Task Builder.

Using the file system, the Task Builder creates a disk image of the task CONVERT; this
image is shown in Figure 3-3.

SEGMENT JIM

SEGMENT JOHN --
SEGMENT JOE --

SEGMENT JACK

ROOT SEGMENT ---TASK HEADER --

LABEL BLOCK --
I I

CHECKPOINT AREA I
I
I

'•
Figure 3-3 Task Disk Image

t--
FORCED
BLOCK
BOUNDARIES

The checkpoint area exists only for tasks declared checkpointable and is equal in size to the
partition or subpartition from which the task will execute.

When a task is installed in the system a resident task descriptor is generated into which the
task name and its physical disk address are stored. The segments within a task are located on
disk block -l>ouffdanes, an arrangement \vhidi- greatly speeds - iip- the process -of loading
overlays when they are requested. Given that the physical disk address of a task is preserved
in memory we can note two efficiencies of our structure:

1. The root segment, including the task header, is loaded with a single access. No
lookups are required for task loading, yet the file can be retrieved by name
through the file system.

2. Each segment of a tree structured overlaid task is also retrieved with a single
access. Since the entire task is in a contiguous file, and the overlay loader can
compute the block number of any segment, retrieval is as fast as the device itself

3-5

permits. And since the file is protected, no checks are required to validate header
information, thus further reducing the loading and initiation overhead to the
absolute minimum.

In realtime systems, response time is more than a psychological variable interpreted by the
interacting human; it's a critical parameter that often determines success or failure
quantitatively and absolutely. Every effort has been expended to ensure in the design of the
task's organization on disk instantaneous response, constrained only by the application
requirements of the user and the limitations of hardware.

3-6

Acquisition of data, 1-1
Application of RSX-1 IM, 1-1
ASCII code, 1-3
Asynchronous communications devices,

1-3
Attributes, 2-4

Background processing, 1-2
Basic Executive, 3-3
Binarv machine larnrnaQ:e. 2-1. 2-3

.I '-" 4..,.1 ' ,

Blocking, 2-11
Branch segments of overlays, 3-4
Buffering, 2-11

Capacity at peak load, 2-10
Checkpoint area, 3-5
Checkpointing, 1-2, 2-8
Combining output from two language

translators, 2-3
Common data, 3-1
Common file system, 2-11
Common routines, sharing of, 2-12
Communication between operator

and system, 1-3
Compatibility, 2-16
Concurrent program execution, 2-7
Console control, 2-14
Contingency Exits, 2-9
Control of RSX-llM by operator, 2-14
Core dump routines, 2-15
Crash modules, 3-4

Data acquisition, 1-1
.Data reduction off-line, 1-2
Debugging routine, 2-15
Devices, 1-3
Device control, 2-11
Device drivers, 3-3
Device independence, 2-10
Directories, physical unit, 2-12
Disk-based operation, 2-8
Disk storage, 2-4, 2-11, 3-1, 3-4
Drivers for devices, 3-3
Dynamic storage region. 3-3

Error recovery, 2-14
Execution of programs

concurrent, 2-7
sequential, 2-6

Execution of tasks in parallel, 2-5

INDEX

Executive, 2-7
conponents, 3-1
organization, 3-1, 3-2
services, 3-3

Exits, contingency, 2-9
Expansion of RSX-11 M, 2-15
External task scheduling under user

control, 2-13

File access, 2-15
File protection, 2-15
File system, 3-3
File system, common, 2-11
Flowmeters, 1-1
FORTRAN IV language, 2-1, 2-2

Growth of RSX-1 lM, 2-15

Hardware, 1-1

Input, 1-1
Interrupts, 2-6, 2-7

Laboratory Data Processing, 1-2
LA30 DECwriter, 1-3
Language translators 2-1
Libraries of user macros, 2-14
Libraries, shareable, 2-12
Libraries, user, 2-12
Logical unit number, 2-12

Macro assembler, 2-14
Macro definition 2-2
MACRO- I I language, 2-1
Macro libraries, 2-14
Macro statements, 2-1, 2-2
Manufacturing, 1-2
Monitor Console Routine (MCR), 2-14

- --~J- -
Multi-level access to devices, 2-10
Multiprogramming, 1-1, 2-5
Multitasking, 2-8

Nonresident tasks, loader for, 3-3
Numbers, logical unit, 2-12

Off-line data reduction. 1-2
Operator control of RSX-11 M. 1-1

2-14

INDEX-I

INDEX (cont.)

Operator-system communication 1-3
Organization of 8K Executive, 3-1
Organization of RSX-11 M, 3-1
Organization of system disk, 3-4
Output, 1-2
Output combined from two translators,

2-3
Overlays, 2-4, 3-4, 3-5

Panic dump, 3-4
Parallel execution, 2-5
Partitions, 2-5, 3-5
Payroll processing, 1-2
Peak load capacity, 2-10
Physical unit directories, 2-12
Power failure restart, 2-8
Priority

of interrupt, 2-7
of task, 1-2

Process control, 1-2
Program execution,

concurrent, 2-7
sequential, 2-6

Program preparation, 1-2
Programs, system, 1-3
Protection of files, 2-15

Random access storage. 2-11
Realtime applications, 1-1
Realtime events 2-4
Record 1/0 package, 2-11
Re-entrant routines, 2-13
Restart after power failure, 2-8
Root segment, 3-5
Routine sharing, 2-13
Routine, system, 2-14

Sequential execution of programs,
2-6

Services, RSX-l l M. 2-1

Shareable libraries, 2-13
Software priority, 2-7
Source languages, 2-1
Spectrometers, 1-1
Stacks, 3-1
Storage, disk, 2-4, 2-11, 3-1, 3-4
Subpartitions, 2-5, 3-6
Synchronous transmission, 1-3
System common data, 3-1
System configuration, 1-1
System generation programs (SYSG EN),

2-15
System programs, 1-3
System requirements, 2-15
System routines, 2-14
System stack, 3-1
System tables, 3-1

Tables of system, 3-1
Task builder, 2-3, 2-14
Task creation, 2-4
Task execution in parallel, 2-5
Task loader for nonresident tasks,

3-3
Task priority, 1-2, 2-7
Task scheduling, external, 2-13
Tasks, RSX-11 M, 2-3
Task storage on disk, 2-4
Task termination (TKTN), 3-3
Thermocouples, 1-1
Timers, 2-13
Translators, 2-1
Transmission, synchronous, 1-3
Trap vectors, 3-1
Tree structure of tasks, 3-4, 3-5

Unit directories, 2-12
Unit numbers, logical, 2-12

VT05B alphanumeric display, 1-3

INDEX-2

Introduction to the RSX-llM
Realtime Executive
DEC-11-0MIEA-A-D

READER Is CO!VLrvI.ENTS

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

0 Assembly language programmer

[] Higher-level language programmer

0 Occasional programmer (experienced)

0 User with little programming experience

0 Student programmer

0 Non-programmer interested in computer concepts and capabilities

CitY--~~~~~~~~~~~~~State~~~~~~-Zip Code __ ~~~~~~
or

Country

If you require a written reply, please check here. []

·---·Fold llere--

·--- Do Not Tear · Fold llere and Staple ---

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

~nmnomo
Software Communications
P. o. Box F
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

digital equipment corporation

Printed in U.S.A.

	000
	001
	002
	003
	004
	005
	1-01
	1-02
	1-03
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	Index-1
	Index-2
	replyA
	replyB
	xBack

