N

P

RSX-11M

170 Drivers Reference Manual
Order No. DEC-11-OMDRA-A-D

”RSX—llM Version 1

11/74 - 14

Order additional copies as directed on the Software
Information page at the back of this document.

digital equipment corporation - maynard. massachusetts

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser
under a license for use on a single computer system and can be copied
(with inclusion of DIGITAL's copyright notice) only for use in such
system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use

or reliability of its software on equipment that is not supplied by
DIGITAL.

Associated Manuals

Refer to the User's Guide to RSX-1l1lM
Manuals, DEC-11-OMUGA-A-D.

Copyright (:) 1974 Digital Equipment Corporation

The HOW TO OBTAIN SOFTWARE INFORMATION page, located at the back of
this document, explains the various services available to DIGITAL

software users.

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDP DIGITAL INDAC PS/8
COMPUTER LAB DNC KAl0 QUICKPOINT
COMSYST EDGRIN LAB-8 RAD-8
COMTEX EDUSYSTEM LAB-8/e RSTS

DDT FLIP CHIP LAB-K RSX

DEC FOCAL OMNIBUS RTM
DECCOMM GLC-8 0s/8 RT-11
DECTAPE IDAC PDP SABR
DIBOL IDACS PHA TYPESET 8

UNIBUS

o

N

P

CONTENTS

Page
PREFACE xv
0.1 MANUAL OBJECTIVES AND READER CLASS ASSUMPTIONS Xv
0.2 STRUCTURE OF THE DOCUMENT xv
0.3 CONVENTIONS USED IN THIS MANUAL xvii
CHAPTER 1 RSX=-11M INPUT/OUTPUT
1.1 OVERVIEW OF RSX-11lM I/0 1-1
1.2 RSX=-11M DEVICES 1-2
1.3 LOGICAL UNITS 1-4
1.3.1 Logical Unit Number 1-4
1.3.2 Logical Unit Table 1-4
1.3.3 Changing LUN Assignments 1-5
1.4 ISSUING AN I/O REQUEST 1-6
l.4.1 QIO Macro Format v 1-7
l.4.2 Significant Events : 1-10
1.4.3 System Traps 1-11
1.5 DIRECTIVE PARAMETER BLOCKS 1-12
1.6 I/0-RELATED MACROS 1-13
1.6.1 The QIO$ Macro: Issuing an I/O Request 1-15
1.6.2 The DIR$ Macro: Executing a Directive 1-15
1.6.3 The .MCALL Directive: Retrieving System Macros 1-15
1.6.4 The ALUNS Macro: Assigning a LUN 1-16
1.6.5 The GLUNS$ Macro: Retrieving LUN Information 1-18
1.6.6 The ASTX$S Macro: Terminating AST Service 1-21
1.6.7 The WTSE$ Macro: Waiting for an Event Flag 1-21
1.7 STANDARD I/O FUNCTIONS 1-22
1.7.1 IO.ATT: Attaching to an I/0 Device 1-23
1.7.2 IO.DET: Detaching from an I/O Device 1-24
1.7.3 I0.KIL: Canceling I/O Requests 1-24
1.7.4 IO.RLB: Reading a Logical Block 1-25
1.7.5 I0.RVB: Reading a Virtual Block 1-25
1.7.6 I0.WLB: Writing a Logical Block 1-25
1.7.7 IO.WVB: Writing a Virtual Block 1-26
1.8 I/0 COMPLETION 1-26
1.9 RETURN CODES 1-27
1.9.1 Directive Conditions 1-28
1.9.2 I/0 Status Conditions 1-3n

CHAPTER

CHAPTER

CHAPTER

w w w WWwWwwwww w NN NN [S S O] N NN N N

V]

* o
L

N NN (SIS S O3 O 8

N HE HRR e

.
[=)]

e o o

o 0 © NN

o ¢ o
[OS SN

* o o
W=

L] [] L] L] L] * L]
N O RFRERHRERE

. [} L] . . []

UL WN

.
> w

TERMINAL DRIVER

INTRODUCTION
ASR-33/35 Teletypes
KSR=-33/35 Teletypes
LA30 DECwriters
LA36 DECwriter

RT02 Alphanumeric Display Terminal and RT02-C
Badge Reader/Alphanumeric Display Terminal

VT05B Alphanumeric Display Terminal
VT50 Alphanumeric Display Terminal

GET LUN INFORMATION MACRO

QIO MACRO

STATUS RETURNS

CONTROL CHARACTERS AND SPECIAL KEYS
Control Characters

Special Keys

VERTICAL FORMAT CONTROL

TERMINAL INTERFACES

DH11l Asynchronous Serial Line Multiplexer
DJ11 Asynchronous Serial Line Multiplexer
DL11l Asynchronous Serial Line Interface
PROGRAMMING HINTS

Terminal Line Truncation

ESCape Code Conversion

RT02~C Control Function

DISK DRIVERS

INTRODUCTION

RF11/RS11 Fixed-Head Disk

RJP04 Pack Disk

RJS03 Fixed-Head Disk

RJS04 Fixed-Head Disk

RK11/RK05 Cartridge Disk

RP11-C/RP03 Pack Disk

GET LUN INFORMATION MACRO

QIO MACRO

STATUS RETURNS

DECTAPE DRIVER

INTRODUCTION

GET LUN INFORMATION MACRO

iv

[CN O SR R SR X ?h)N NV N

Page

!
(8] w www [\SIS IR SN

11
= 0 © N
o

1
[
o

NN
o
[y

2-12
2-12

2-12
2-12
2-12
2-12

TT Y oLreeeee
w w NNV HE

|
>

M%\\

P

P

P

pr—

CHAPTER

CHAPTER

=)} (<3} [S S NS N RS (S O S] smuoouotn w

(<))

(=)) AN
¢ o o .

AN O

(S, 5, 8,) wn Lo I Y Lo [

e o o

¢ ¢ o o o

. * o o o L]

[S R NS, S,] Lo Wwwww N |l ol o

(o2 <) wn L www N [d

(SR NS N, NS Lo www

L] * o o
FERE

N

L

N =

o o
N

N =

o o
[SN

*
-

L]
=

QIO MACRO
Standard QIO Functions
Device=-Specific QIO Functions

STATUS RETURNS
DECtape Recovery Procedures
Select Recovery

PROGRAMMING HINTS
DECtape Transfers
Reverse Reading and Writing

Speed Considerations When Reversing Direction

Aborting a Task

MAGNETIC TAPE DRIVERS

INTRODUCTION
TM11l Magnetic Tape
TJUl6 Magnetic Tape

GET LUN INFORMATION MACRO

QIO MACRO

Standard QIO Functions
Device-Specific QIO Functions
I0.RWU

I0.SEC

STATUS RETURNS
Select Recovery
Retry Procedures for Reads and Writes

PROGRAMMING HINTS

Block Size .
Importance of Resetting Tape Characteristics
Aborting a Task

Writing an Even-Parity Zero
CASSETTE DRIVER

INTRODUCTION

GET LUN INFORMATION MACRO
QIO MACRO

Standard QIO Functions
Device-Specific QIO Functions

STATUS RETURNS
Cassette Recovery Procedures

STRUCTURE OF CASSETTE TAPE

PROGRAMMING HINTS
Importance of Rewinding

g
]
Q
o

| !
00 ~J > NN

L N N S ?h-& L
J
O 0 0000

U'IL'ﬂUl
NN+

(8}
!
N

Ll
Ut oW

N

Gaaua un aaaaa
1

HHEMEE Ho

wWwwN NN

!
-

1
wwN [l

[} 1 I
0 ~ ~3 o

AN O o)) O\C:\ (o)) We) <, o)

{idiid e

6.6.2 End=-of-~-File and IO,SPF

6.6.,3 The Space Functions, IO.SPB and IO.SPF

6.6.4 Verification of Write Operations

6.6.5 Block Length

6.6.6 Logical End-of-tape
CHAPTER LINE PRINTER DRIVER
INTRODUCTION
LP1l Line Printer
LS1l Line Printer
LV11l Line Printer

e o o
(VSR S g

GET LUN INFORMATION MACRO
QIO MACRO

STATUS RETURNS
.1 Ready Recovery

VERTICAL FORMAT CONTROL
PROGRAMMING HINTS
.1 RUBOUT Character
2 Print Line Truncation
3 Aborting a Task
CHAPTER 8 CARD READER DRIVER

8.1 INTRODUCTION

[}
.
[N

GET LUN INFORMATION MACRO

QIO MACRO
Standard QIO Functions
Device-Specific QIO Function

0 OO ©
e o o

OV O (S] P o Www
N

STATUS RETURNS

Card Input Errors and Recovery
Ready and Card Reader Check Recovery
I/0 Status Conditions

QO O
e o o o

e o o
whHE

FUNCTIONAL CAPABILITIES
P Control Characters

CARD READER DATA FORMATS
.1 Alphanumeric Format (026 and 029)
2 Binary Format

PROGRAMMING HINTS
Input Card Limitation
Aborting a Task

111
N NN

~ P R |

| I | |
NN N (6, 3 w

NNNg ~3 N ~

[e]

o]
N

111t 111
HE oONBe WNNN - =

©O®O® 0w

0

o

CHAPTER

CHAPTER

9

L] [] L] L]
=t
L] L] []
IREE™

.
[}S]

o o o o o 0 s o
® o o o o o o
SIS S SIS SN
o o o ¢ o

N WN

> WWwwwwwww

OO W WYY o WWWWWOWY WYY (X< O WY WYY

= {Xe}
o . e e o o o o o
=)} (S NSNS NN, N
® o o s o o
YU W

|
o
L]

=

10.1.1
10.1.2

10.2

10,3
10.3.1
10.3.2

10.4

10.4.1
10.4.2
10.4.3
10.4.4

10.4.5

10.4.6
10.4.7

10.5
10.5.1

MESSAGE-ORIENTED COMMUNICATION DRIVERS

INTRODUCTION

DL11-E Asynchronous Line Interface
DP1ll Synchronous Line Interface
DUll Synchronous Line Interface

GET LUN INFORMATION MACRO

QIO MACRO

Standard QIO Functions
Device-Specific QIO Functions
IO HDX

I0,INL and IO.TRM

IO.RNS

IO.SYN

IO.WNS

STATUS RETURNS

PROGRAMMING HINTS

Transmission Validation

Redundancy Checking

Half-Duplex Considerations

Low=Traffic Sync Character Considerations
Vertical Parity Support

Importance of I0,INL

PROGRAMMING EXAMPLE
ANALOG~-TO~-DIGITAL CONVERTER DRIVERS
INTRODUCTION

AFCll Analog-to-Digital Converter
AD01-D Analog-to=-Digital Converter
GET LUN INFORMATION MACRO

QIO MACRO

Standard QIO Function
Device=-Specific QIO Function

FORTRAN INTERFACE

Page

(e} O W WYY
[| 1 1
w WNN

1

WWOWWYWWWYWWYWW
1
AR U

1

1
~

1

1

kD\O\O\'O\O\D\O Y
=1 WYWWOVWwoooo

o

{Xe]
!

[

(=]

10-1
10-1
10-2

10-2
10-2
10-2
10-2

10-4

Synchronous and Asynchronous Process Control I/0 10-4

The isb Status Array
FORTRAN Subroutine Summary

AIRD/AIRDW: Performing Input of Analog Data

in Random Sequence

AISQ/AISQW: Reading Sequential Analog Input

Channels
ASADLN: Assigning a LUN to ADO:
ASAFLN: Assigning a LUN to AFO:

STATUS RETURNS
FORTRAN Interface Values

10-~-4
10-5

10-6
10-6
10-7
10-7

10-8
10-10

CHAPTER

10.6
10.6.1

10.7

10.7.1
10.7.2
10.7.3
10.7.4

11

11.1
11.1.1
1l1.1.2
1l.1.2.1
11.1.2.2

11.2

11,3

11.3.1
11.3.2
11.3.2.1

11.3.2.2
11.3.2.3

11.3.2.4
11.4

11.4.
11.4,

11.5.12

FUNCTIONAL CAPABILITIES
Control and Data Buffers

PROGRAMMING HINTS

Use of A/D Gain Ranges

Identical Channel Numbers on the AFCll
AFCll Sampling Rate

Restricting the Number of ADOl-D Conversions

UNIVERSAL DIGITAL CONTROLLER DRIVER
INTRODUCTION

Creating the UDCll Driver

Accessing UDCll Modules

Driver Services

Direct Access

GET LUN INFORMATION MACRO

QIO MACRO

‘Standard QIO Function

Device=-Specific QIO Functions

Contact Interrupt Digital Input

(W733 Modules)

Timer (W734 I/O Counter Modules)

Latching Digital Output (M685, M803,

and M805 Modules)

Analog-to-Digital Converter (ADUO1l Module)

DIRECT ACCESS

Defining the UDCll Configuration

Assembly Procedure for UDCOM,MAC

Symbols Defined by UDCOM,MAC

Including UDCll Symbolic Definitions in

the System Object Module Library

Referencing the UDCll through a Common Block
Creating a Global Common Block

Making the Common Block Resident

Linking a Task to the UDCll Common Block

FORTRAN INTERFACE

Page

10-10
10-10

10-11
10-11
10-11
10-11
10-11

11-1
11-1
11-2
11-2
11-3

11-3

11-3
11-3
11-4

11-5
11-7

11-8
11-8

11-8
11-9
11-9
11-10

11-12
11-12
11-12
11-14
11-14

11-14

Synchronous and Asynchronous Process Control I/0 11-15

The isb Status Array

FORTRAN Subroutine Summary

AIRD/AIRDW: Performing Input of Analog
Data in Random Sequence

AISQ/AISQW: Reading Sequential Analog
Input Channels

AO/AOW: Performing Analog Output

ASUDLN: Assigning a LUN to UDO:

CTDI: Connecting to Contact Interrupts
CTTI: Connecting to Timer Interrupts
DFDI: Disconnecting from Contact Interrupts
DFTI: Disconnecting from Timer Interrupts
DI/DIW: Reading Several Contact Sense
Fields

viii

11-15
11-16

11-18

11-19
11-19
11-20
11-20
11-21
11-22
11-23

11-23

L

P

Ve

(

e

CHAPTER

11Q5.13

11.5.14
11.5.15
11.5.16

11.5,17

11.5.18
11.5.19

11.6
ll'6.l

11.7

11.7.1
11.7.2
11.7.3

12

12.4.9
12.4,10

DOL/DOLW: Latching or Unlatching Several
Fields

DOM/DOMW: Pulsing Several Fields

RCIPT: Reading a Contact Interrupt Point
RDDI: Reading Contact Interrupt Data
From a Circular Buffer

RDTI: Reading Timer Interrupt Data From
a Circular Buffer

RSTI: Reading a Timer Module

SCTI: Initializing a Timer Module

STATUS RETURNS
FORTRAN Interface Values

PROGRAMMING HINTS

Checkpointable Tasks

Numbering Conventions

Use of CTDI and RDDI for Processing
Circular Buffer Entries

LABORATORY PERIPHERAL SYSTEM DRIVER
INTRODUCTION
GET LUN INFORMATION MACRO

QIO MACRO

Standard QIO Function

Device=-Specific QIO Functions (Immediate)
IO.LED

IO.REL

I0,SDI

IO.SDO

Device=Specific QIO Functions (Synchronous)

I0.ADS
IO HIS
IO.MDA
IO.MDI
I0.MDO
Device-Specific QIO Function (IO.STP)
I0,STP

FORTRAN INTERFACE

The isb Status Array

Synchronous Subroutines

FORTRAN Subroutine Summary

ADC: Reading a Single A/D Channel
ADJLPS: Adjusting Buffer Pointers
ASLSLN: Assigning a LUN to LSO:

CVSWG: Converting a Switch Gain A/D Value to

Floating-Point

DRS: Initiating Synchronous Digital Input

Sampling
HIST: Initiating Histogram Sampling
IDIR: Reading Digital Input

iw

Page

11-24
11-24
11-25

11-26

11-27
11-27
11-28

11-28
11-31

11-31
11-31
11-31

11-32

12-1
12-2

12-2
12-2
12-2
12-3
12-3
12-4
12-4
12-4
12-5
12-6
12-7
12-7
12-7
12-8
12-8

12-9

12-9

12-10
12-11
12-12
12-13
12-14

12-14
12-15

12-17
12-1¢

APPENDIX

APPENDIX

12.4.11
12.4.12
12.4,.13
12.4,14

12.4.15
12.4.16
12.4.17
12.4.18
12.4.19

12.5
12.5.1
12.5.2
12.5.3
12.5.4
12,6
12.6.1
12.6.2
12,6.3
12.6.4
A

A.l
A.2
A.3
A.4

A.5

.A. 6

A.7
A.8

A.9

IDOR: Writing Digital Output

IRDB: Reading Data from an Input Buffer

LED: Displaying in LED Lights

LPSTP: Stopping an In-Progress Synchronous

Function

PUTD: Putting a Data Item into an Output Buffer

RELAY: Latching an Output Relay

RTS: Initiating Synchronous A/D Sampling
SDAC: Initiating Synchronous D/A Output
SDO: Initiating Synchronous Digital Output

STATUS RETURNS

IE.RSU:

Second I/0 Status Word
I0.ADS and ADC Errors
FORTRAN Interface Values

PROGRAMMING HINTS

The LPS1l Clock and Sampling Rates
Importance of the I/0 Status Block
Buffer Management

Use of ADJLPS for Input and Output
SUMMARY OF IO FUNCTIONS
ANALOG-TO-DIGITAL CONVERTER DRIVERS
CARD READER DRIVER

CASSETTE DRIVER

COMMUNICATION DRIVERS (MESSAGE~-ORIENTED)

DECTAPE DRIVER

DISK DRIVERS

LABORATORY PERIPHERAL SYSTEM DRIVER
LINE PRINTER DRIVER

MAGNETIC TAPE DRIVERS

TERMINAL DRIVER

UNIVERSAL DIGITAL CONTROLLER DRIVER
I/0 FUNCTION AND STATUS CODES

I/0 STATUS CODES

I/0 Status Error Codes

I/0 Status Success Codes

DIRECTIVE CODES

Directive Error Codes
Directive Success Codes

A-2
A-2
A-2
A-3
A-3

A-3

/V»\\

N

/ :}\1

s

o o o o o
VI W+

e & o o o o

Woww Wwwwww

Wwww WWwwwww

Woo~go

APPENDIX C

APPENDIX D

I/0 FUNCTION CODES

Standard
Specific
Specific
Specific
Specific
Function
Specific
Specific
Specific
Specific

I/0 Function Codes

A/D Convertexr I/0 Function Codes

Card Reader I/0 Function Codes
Cassette I/O Function Codes
Communication (Message-Oriented) I/O.
Codes

DECtape I/O Function Codes

LPS I/0 Function Codes

Magtape I/O Function Codes

UDC I/O Function Codes

RSX~11M PROGRAMMING EXAMPLE

GLOSSARY

OF RSX-11M TERMS

xi

[3
S w
®

t

!
[cAN WS, IO, NS, LS

W w uluwmww

Q
I
jur}

)
t
-

Number
1-1
1-2
5-1

6-1

FIGURES

Logical Unit Table

QIO Directive Parameter Block

Determination of Tape Characteristics for the

T™M11l

Determination of Tape Characteristics for the

TJU16

Structure of Cassette Tape

TABLES

Directive Returns
I/0 Status Returns

Standard Terminal Devices

Standérd Communication Line Interfaces

Standard QIO Functions For Terminals
Terminal Status Returns

Terminal Control Characters

Special Terminal Keys

Vertical Format Control Characters
Standard Disk Devices

Standard QIO Functions for Disks

Disk Status Returns

Standard QIO Functions for DECtape
Device-Specific Functions for DECtape

DECtape Status Returns

Page
1-5
1-13

4-3
4-4
4-5

e

P

e,

-

“Interfaces

TABLES

Standard Magtape Devices

Standard QIO Functions for Magtape
Device~Specific QIO Functions for Magtape
Magtape Status Returns

Standard QIO Functions for Cassette

Device~Specific QIO Functions for Cassette

Cassette Status Returns

Standard Line Printer Devicés

Standérd QIO Functions for Line Printers
Line Printer Status Returns

Vertical Format Control Characters
Standard QIO Functions for the Card Reader
Device~Specific QIO Function for the Card Reader
Card Reader Switches and Indicators

Card Reader Status Returns

Card Reader Control Characters

Translation from DEC026 or DEC029 to ASCII
Message~Oriented Communication Interfaces

Standard QIO Functions for Communication

Device=Specific QIO Functions for Communication
Interfaces

Communication Status Returns
Standard Analog-to-Digital Converxrters
Standard QIO Function for the A/D Converters

Device~Specific QIO Function for the A/DH
Converters

A/D Conversion Control Word

Contents of First Word of isb

s 0
Dot I

9.7
10-1
19-2

Number

10-6

10-7
10-8
11-1
11-2
11-3
11-4
11-5
11-6
11-7
12-1
12-2

12-3

12-4

12-5
12-6
12-7
12-8
12-9

TABLES

FORTRAN Interface Subroutines
and ADO1l-D

A/D Converter Status Retﬁrns
FORTRAN Interface Values
Standard QIO Function for the
Device=Specific QIO Functions
A/D Conversion Control Word
céntents of First Word of isb
FORTRAN Interface Subroutines
UDCll Status Returns

FORTRAN Interface Values
Standard QIO Function for the

Device~Specific QIO Functions
(Immediate)

Device~Specific QIO Functions
(Synchronous)

for the AFC1l

UDC11l

for the UDC1ll

for the UDC1ll

LPS1l

for the LPS11l

for the LPS1l

Device=-Specific QIO Function for the LPS1l

(I0.STP)
Contents of First Word of isb

FORTRAN Interface Subroutines

LPS11l Status Returns

for the LPS1l

Returns to Second Word of I/O Status Block

FORTRAN Interface Values

xiv

Page

10-5
10-8
10-10
11-3
11-4
11—5
11-16
11-17
11-29
11-31
12-2

12-3
12-4

12-9
12-9
12-11
12-23
12-31
12-32

W\

s,

N

P
\

PREFACE

0.1 MANUAL OBJECTIVES AND READER CLASS ASSUMPTIONS

This manual is designed to provide all information necessary to
interface directly with the I/0 device drivers supplied as part of the
RSX-11M system, It is intended for wuse by experienced RSX~11M
programmers who want to take advantage of the time and/or space
savings which result from direct use of the I/O drivers,

The orientation of this manual is tutorial, but it does not attempt to
introduce the reader to all areas of RSX-11M input/output operations.
Readers are expected to be familiar with the RSX-11M Executive
Reference Manual (DEC~1l1-OMERA-A-D) and to have some experience with
the Task Builder and eithexr FORTRAN IV or MACRO-1l assembly language.
Readers should also be familiar with the PDP-11l terminology presented
in the PDP-11 Processor Handbook and the PDP-1ll Peripherals Handbook.
Users of RSX=-11M who do not require such detailed knowledge of the I/O
drivers can use the device independent services provided by File
Control Services (FCS) as documented in the RSX-1ll I/O Operations
Reference Manual (DEC-11-OMFSA-A-D).

0.2 STRUCTURE OF THE DOCUMENT

This manual has three basic components:

1. Chapter 1 provides an overview of RSX-1lM input/output
operations. It introduces the reader to the use of logical
unit numbers, directive parameter blocks, and macro calls.
It describes all of the I/0O functions common to a variety of
devices, and summarizes standard error and status conditions
relating to completion of I/O requests.

2, Chapters 2 through 12 describe the use of all device drivers o

supported by RSX-11M. These include the following: {
Chapter ~Device
2 Terminals and terminal

communications line interfaces

3 Disks

4 DECtape

5 Magnetic tape

6 Cassette

7 | Line printer

8 | Card reader

9 \‘ . Message-oriented communications

line interfaces

10 Analog-to-digital converters
1 | Universal digital controller
12 ‘ . Laboratcry peripheral system

Each of these chapters is structured in similar fashion and focuses on
the follow1ng basic elements: .

.'Descrlptlon of the dev1ce, including physical 1nformatlon ‘on
speed, capacity, access, and usage

. Summary of standard functions supported by the devices and
descriptions of device-specific functions '

. Discussion of special characters, carriage control codes, and
functional characteristics, if relevant

. Summary of error and status conditions returned on acceptance
or rejection of I/0 requests

. Description of programmlng hints for users of the device
under RSX-11M

tighiid s

§

S

3. Appendixes A through D provide quick reference material on
I/0 functions and status codes, a glossary of RSX-11lM terms,
and an example of RSX-11M I/O operations. These include the

following:
Appendix ' ~ Contents

A Summary of I/0 functions
by device

B I/0 function and status
‘codes '

Cc Programming example

D ' Glossary of RSX-11M terms

0.3 CONVENTIONS USED IN THIS MANUAL

There are a number of conventions and assumptions used in this manual
to present syntax and program coding examples. These are described in
the following list.

1. Brackets ([1]) in syntactic models enclose optional
parameters.

The following example illustrates this format:
ASTX$S [err]

2, Braces ({ }) in syntactic models indicate that one of the
- items must be selected, as in the following: ‘

DOM
CALL (inm,icont,idata, [idx], [isb], [1lun])
DOMW
3. An ellipsis (...) in a syntactic model or coding example
indicates that parameters have been omitted. As used in this
manual, an ellipsis in a QIO macro call indicates omission of

standard QIO parameters described in section 1l.4. This is
illustrated below:

QI0$C IO.RLV,...,<{stadd,size>

4, Consecutive . commas in a coding example indicate null
arguments. The following illustrates this usage:

QIOSC IO.ATT,6,,,,ASTO0l

5. Commas indicating null trailing optional arguments may be
omitted, as in the following:

QIO$C IO.KIL,9.

xv7ii

7.

Certain parameters are required but ignored by RSX-11M; this
is necessary to maintain compatibility with RSX-11lD. For
example, in the following, the priority specification (fourth
parameter) is ignored:

QIo$C IO.WLB,S8.,EV,,IOSB,ASTX,<IOBUF,NBUF)>

With the exception of MACRO-1ll coding examples, all numbers
in the text of this manual are assumed to be decimal; octal
radix is explicitly declared as in the following:

An illegal logical block number has been specified for
DECtape. The number exceeds 577 (1101 octal).

In MACRO-1l1l coding examples, all numbers are assumed to be
octal; decimal radix is explicitly designated by following
the number with a decimal point, as in the following example:

QIOSC IO.RDB,14.,,,10SB,,<IOBUF,80.>

In FORTRAN subroutine models, parameters which begin with the
letters i through n indicate integer variables, as in the
following example:

CALL DRS (ibuf,ilen,imode,irate,iefn,imask,isb,
[nbuf],istart], [istop])

In general, where both i and n prefixes are used in a call,
the i form indicates the name of an array and the n form
specifies the size of the array.

All integer arrays and variables are assumed to occupy one
storage word per variable (i.e., INTEGER*2) and all real
arrays and variables are assumed to occupy two storage words
per variable (i.e., REAL*4).

xviii

N

P

{
|

TN

CHAPTER 1

RSX-11M INPUT/OUTPUT

1.1 OVERVIEW OF RSX-11M I/O

The RSX-11lM real-time Executive supports a wide variety of PDP-11l
input and output devices, including disks, DECtapes, magnetic tapes,
tape cassettes, line printers, card readers, and such laboratory and
industrial devices as analog-=to-digital converters, universal digital
controllers, and laboratory peripheral systems, NDrivers for these
devices are supplied by Digital Equipment Corporation as part of the
RSX-11M system software. This manual describes all of the device
drivers supported by RSX-1l1lM and the characteristics, functions, error
conditions, and programming hints associated with each. PDP~11
devices not described in this manual can be added to basic RSX~11lM
configurations, but users must develop and maintain their own drivers
for these devices.

Input/output operations under RSX-1lM are extremely flexible and are
as device- and function-independent as possible., Programs issue I/0
requests to logical units which have been previously associated with
particular physical device units, Each program or task is able to
establish its own correspondence between physical device units and
logical unit numbers (LUNs). I/O requests are queued as issued; they
are subsequently processed according to the relative priority of the
tasks which issued them. I/O requests can be issued from MACRO=-1l orx
FORTRAN tasks by means of the File Control Services (for appropriate
devices), or can be interfaced directly to an I/0 driver by means of
the QIO system directive,

All of the I/0 services described in this manual are requested by the
user in the form of QIO system directives. A function code included
in the QIO directive indicates the particular dinput or output
operation to be performed. I/0 functions can be used to request such
operations as:

. attaching or detaching a task's exclusive use of a physical
device unit

. reading or writing a logical or virtual block of data
. canceling a task's I/O requests
A wide variety of device-specific input/output operations (e.g.,

reading DECtape in reverse, rewinding cassette tape) can also be
specified via QIO directives,

CHAPTER 1. RSX-11M INPUT/OUTPUT

l.2 RSX-1lM DEVICES

The devices listed below are supported by RSX=-11lM, Drivers are
supplied for each of these devices, and I/0 operations for them are
described in detail in subsequent chapters of this manual.
1. A variety of terminals, including the following:
« ASR=33 and ASR~35 Teletypes (1)
. KSR=33 and KSR-35 Teletypes (1)
. LA30 DECwriters (serial and parallel)

« LA36 DECwriter

. VT05B Alphanumeric Display Terminal

« VT50 Alphanumeric Display Terminal

.'RTOZ Data Entry Terminal

. RT02-~C Badge Reader and Déta Entry Terminal

These terminals are supported on the following asynchronous
line interfaces: ,

(
. DJ11 Asynchronous Communications Line Interface Multiplexer C
« DH11 and DH11l-DM1l1l-BB Asynchronous Communications Line
Interface Multiplexer ’
. DL11-A, DL11-B, DL1l-C, and DL11-D Asynchronous
" Communications Line Interfaces
2. A variety of disks, including the following:
. RF11/RS1l Fixed-Head Disk {

(1) Teletype is a registered trademark of the Teletype Corporation.

<

-

CHAPTER 1. RSX-11M INPUT/OUTPUT

.

10.°

11.

. RJP04 Pack Disk

.. RIS03 Fixed-Head Disk

« RJS04 Fixed-Head Disk

. RK11/RK05 Cartridge Disk

. RP11-C/RP03 Pack Disk

TCll-G DECtape

Two ﬁypes of magnetic tape:

« TJUL6 Magnetic Tape

. TM11/TUl0 Magnetic Tape

TAll Tape Cassette

Three line printers:

o« LP1l Line Printer

. LS1l Line Printer

. LV1l Line Printer

CR1ll Card Reader

Synchronous and asynchronous line interfaces:

. DL1l1-E Asynchronous Communication Line Interface
. DP1l Synchronous Communication Line Interface
. DUll Synchronous Communication Line Interface
Two analog=-to-digital converters:

. AFCll Analog-té-Digital Converter

. ADO1-D Analog-to-Digital Converter

UDCl1ll Universal Digital Controller

LPS11 Laboratory Peripheral System

CHAPTER 1, RSX-11M INPUT/OUTPUT

1.3 LOGICAL UNITS

This section describes the construction of the logical unit table and
the use of logical unit numbers.

l.3.1 Logical Unit Number

A logical unit number or LUN is a number which is associated with a
physical device unit during RSX~11lM I/O operations. For example, LUN
1 might be associated with one of the terminals in the system, LUNs 2,
3, 4, and 5 with DECtape drives, and LUNs 6, 7, and 8 with disk units.,
The association is a dynamic one; each task running in the system can
establish its own correspondence between LUNs and physical device
units, and can change any LUN~-physical device unit association at any
time. The flexibility of this association contributes heavily to
RSX-11M device independence,

A logical unit number is simply a short name used to represent a
logical unit-physical device unit association. Once the association
has been made, the LUN provides a direct and efficient mapping to the
physical device wunit, and elimindtes the necessity to search the
device tables whenever the system encounters a reference to a physical
device unit.

The user should remember that, although a LUN-physical device unit
association c¢an be changed at any time, reassignment of a LUN at run
time causes pending I/O requests for the previous LUN assignment to be
cancelled, It is the user's responsibility to verify that all
outstanding I/0 requests for a LUN have been serviced before that ILUN
is associated with another physical device unit,

l1.3.2 Logical Unit Table

There is one logical unit table (LUT) for each task running in an
RSX~11M system. This table is a variable~length block contained in
the task header, Each LUT contains sufficient 2-word entries for the
number of logical units specified by the user at task build time,

Each entry or slot contains a pointer to the physical device unit
currently associated with that LUN. Whenever a user issues an I/0
request, RSX-11lM matches the appropriate physical device unit to the
LUN specified in the call by indexing into the logical unit table by
the number supplied as the LUN. Thus if the call specifies 6 as the
LUN, RSX~11M accesses the sixth 2-word entry in the LUT and associates
the I/0O request with the physical device unit to which the entry
points. The number of LUN assignments valid for a task ranges from
zero to 255, but cannot be greater than the number of LUNs specified
at task build time,

Figure 1-1 illustrates a typical logical unit table,

{
£
\

T
s

/
.

CHAPTER 1. RSX-11lM INPUT/OUTPUT

Number of LUNs
___________________________________ UCB
LUN 1 0
Lo 2 | T o 777
UCB
LUN 3 T T
LUN 4 . UCB
Figure 1-1

Logical Unit Table

Word 1 of each active (assigned) 2-word entry in the logical unit
table points to the unit control block (UCB) of the physical device
unit with which +the LUN is associated. This linkage may be
indirect - that is, the user may force redirection of references from
one unit to another unit wvia the MCR command, REDIRECT, Word 2 of
each entry is reserved for mountable devices,

1.3.3 Changing LUN Assignments

Logical unit numbers have no significance until they are associated
with a physical device unit by means of one of the methods described
below:

1. At task build time, the user can specify an ASG keyword
option, which associates a physical device unit with a
logical unit number referenced in the task being built,

2. The user or system operator can issue a REASSIGN command to
MCR; this command reassigns a LUN to another physical
device unit and thus changes the LUN-physical device unit
correspondence. Note that this reassignment has no effect
on the in-core image of a task.

3. At run time, a task can dynamically change a LUN assignment
by issuing the ASSIGN LUN system directive, which changes
the association of a LUN with a physical device unit during
task execution.

TEIFTe

CHAPTER 1. RSX-11lM INPUT/OUTPUT

1.4 ISSUING AN I/O REQUEST

User tasks perform I/O in the RSX-11lM system by submitting requests
for I/O service in the form of QIO system directives. See Chapter. 2
of the RSX-1lM Executive Reference Manual for a complete description
of RSX-11M system directives.

In RSX-11lM, as in most multiprogramming systems, tasks do not normally
access physical device units directly. Instead, they utilize
input/output services provided by the Executive, since it can
effectively multiplex the use of physical device units over many
users. The RSX=-11lM Executive routes I/O requests to the appropriate
device driver and queues them according to the priority of the
requesting task. I/0 operations proceed concurrently with other
~activities in an RSX=-11M system,

After an I/0 request has been queued, the system does not wait for the
operation to complete, If at any time the user task which issued the
QIO request cannot proceed until the I/O operation has completed, it
should specify an event flag (see sections 1.4.1 and 1.4.2) in the QIO
request and should issue a WAITFOR system directive which specifies
the same event flag at the point where synchronization must occur.
The task then waits for completion of I/O by waiting for the specified
event flag to be set.

Each QIO directive must supply sufficient information to identify and
queue the I/0 request., The user may also want to include parameters
to receive error or status codes and to specify the address of an
asynchronous system trap service routine, Certain types of I/0
operations require the specification of device~dependent information
as well., Typical QIO parameters are the following:

« I/0 function to be performed

o mogical unit number associated with the physical device wunit
to bhe accessed

. Optional event flag number for synchronizing I/O completion
processing :

. Optional address of the I/O status block to which information
indicating successful or unsuccessful completion is returned

» Optional address of an . asynchronous system trap service
routine to be entered on completion of the I/0O request

. Optional device- and function-dependent parameters specifying
such items as the starting address of a data buffer, the size
of the buffer, and a block number

A set of system macros which facilitate the issuing of QIO directives
is supplied with the RSX-11lM system., These macros, which reside in
the System Macro Library (SY:[1,l]1RSXMAC.SML), must be made available
to the invoking task by means of the MACRO-]1l Assembler directive
«MCALL., The function of (MCALL is described in section 1.6.3.

p
\

{,
AN

CHAPTER 1. RSX-11M INPUT/OUTPUT

Several of the first six parameters in the QIO directive are optional,
but space for these parameters must be reserved.

During expansion of a QIO macro, a value of zero is defaulted for all
null (omitted) parameters., Inclusion of the device- and
function~-dependent parameters depends on the physical device unit and
function specified, If the wuser wanted to specify only an I/O
function code, a LUN, and an address for an asynchronous system trap
service routine, the following might be issued:

QI0$C IO.ATT,6,,,,ASTOX

where I0.ATT is the I/O function code for attach, 6 is the LUN, ASTOX
is the AST address, and commas hold places for the event flag number,
the request priority, and the address of the I/O status block. No
additional device~ or function-dependent parameters are required for
an attach function. The C form of the QIO$ macro is used here and in
most of the examples included in Chapter l. Section 1.5 describes the
three legal forms of the macro.

For convenience, any comma may be omitted if no parameters appear to
the 1right of it, The command above could therefore be issued as
follows, if the asynchronous system trap was not desired,

QIO$C I0.ATT,6

All extra commas have been dropped. If, however, a parameter appears
to the right of any place-holding comma, that comma must be retained.

l.4.1 QIO Macro Format

The arguments for a specific QIO macro call may be different for each
I/0 device accessed and for each I/0O function requested. The general
format of the call is, however, common to all devices and is as
follows:

QIO$C fnc,lun,[efn],[pril, [isb],last],<pl,P2,¢+.,P6>]

where brackets ([]) enclose optional or functicn-dependent parameters,

.If function-dependent parameters (pl,...,pb6) are required, these

parameters must be enclosed within angle brackets (<>). The following
paragraphs summarize the use of each QIO parameter. Section 1.5
discusses different forms of the QIO$ macro itself,

The fnc parameter is a symbolic name representing the I/0O function to
be performed, This name is of the foxm:

TO.xXxXX
where xxx identifies the particular I/O operation, For example, a QIO
request to attach the physical device unit associated with a LUN
specifies the function code:

I0.ATT

CHAPTER 1. RSX-11M INPUT/OUTPUT

A QIO request to cancel (or kill) all I/0 requests for a specified LUN
begins in the following way:

QIOSC TO0.KIL,4eee

The fnc parameter specified in the QIO request is stored internally as
a function code in the high=order byte and modifier bits in the
low=-order byte of a single word. - The function code is in the range
zero throngh 31 and is a binary value supplied by the system to match
the symbolic name specified in the QIO request., The correspondence
between global symbolic names and function codes is defined in the
system object module library. Local symbolic definitions may also be
obtained via the FILIO$ and SPCIO$ macros which reside in the System
Macro Library and are summarized in Appendix A, Several similar
functions may have identical function codes, and may be distinguished
only by their modifier bits., For example, the DECtape read 1logical
forward and read logical reverse functions have the same function
code, Only the modifier bits for these two operations are stored
differently.

The lun parameter represents the logical unit number (LUN) of the
associated physical device unit to be accessed by the I/O request.
The association between the physical device wunit and the LUN is
specific to the task which issues the I/0 request, and the LUN
reference is usually device-independent. An attach request to the
physical device unit associated with LUN 14 begins in the following
way s

QIOSC IOL.ATT,l4.,...

Because each task has its own logical unit table (LUT) in which the
physical device unit-LUN correspondences are established, the legality
of a lun parameter is specific to the task which includes this
parameter in a QIO request, In general, the lun must be in the
following range:

0 < lun < length of task's LUT (if nonzero)

The number of LUNs specified in the logical unit table of a particular
task cannot exceed 255,

The efn parameter is a number representing +the event flag to be
associated with the I/O operation., It may optionally be included in a
QIO request. The event flag is cleared when the I/0 request is queued
and is set when the I/0 operation has completed. This allows the task
to use the WAITFOR system directive to synchronize I/0 programming by
suspending execution to wait for an I/0O operation to complete and efn
to be set; however, if the task continues to execute, it may test the
event flag whenever it chooses by wusing the READ ALL EVENT FLAGS
system directive, If the user specifies an event flag number, this
number must be in the range 1 through 64, If an event flag
specification is not desired, efn can be omitted or can be supplied
with a value of zero. Event flags 1 through 32 are local (specific to

L

Pl

sty

P *‘\‘

{I
o

el

CHAPTER 1. RSX-11M INPUT/OUTPUT

the issuing task); event flags 33 through 64 are global (shared by
all tasks in the system). Flags 25 through 32 and 57 through 64 are
reserved for use by system software. Within these bounds, the user
can specify event flags as desired to synchronize I/0 completion and
task execution, Section 1.4.2 provides a more detailed explanation of
event flags and significant events.

The optional pri parameter is supplied only to make RSX-11M QIO
requests compatible with RSX-11D, A specific priority cannot be
associated solely with the I/O request specified in the QIO macro
call, An RSX~1lM I/0 request automatically assumes the priority of
the requesting task. For consistency with RSX-11lD, it is recommended
that pri be valid, but the user should be aware that RSX~11M does not
use this specification in any way. RSX=-11D priorities must be in
range 1 through 250, and zero can be supplied to indicate the priority
of the requesting task. A value of zero or a null specification is
recommended for all RSX-1l1lM use,

The optional isb parameter identifies the address of the I/0 status
block (I/O status double~word) associated with the I/O request., This
block is a 2-word array in which a code representing the final status
of the I/0 request is returned on completion of the operation., This
code is a binary value that corresponds to a symbolic name of the form
IS.xxx (for successful returns) or IE.xxx (for error returns)., The
binary error code is returned to the low-order byte of the first woxd
of the status block. It can be tested symbolically, by name, For
example, the symbolic status IE,BAD is returned if a bad parameter 1is
encountered, The following illustrates the examination of the I/0
status block, IOST, to determine if a bad parameter has been detected.

QIOSC I10,ATT,14.,2,,I08T,...
WISESC 2

CMPB #IE,BAD,IOST
BEQ ERROR

The correspondence between global svmbolic names and I/O completion
codes is defined in the system object module library. Local symholic
definitions, which are summarized in Appendix B, may also be obtained
via the IOERRS macro which resides in the System Macro Likrary.

Certain device-dependent information is returned to he high~order
byte of the first word of isb on completion of the IX/0O operation. If
a read or write operation is successful, the second word is also
significant, FPor example, in the case of a read funcition on a
terminal, the number of bytes typed before a carriage return is
returned in the second word of isb., If a Magtape unit is the Jevice
and a write function is specified, this number represents the number
of bytes actually transferred. The status block can be omitted from a
QIO request if the user does not intend to test for successful
completion of the request,

-
1
W

CHAPTER 1., RSX-11M INPUT/OUTPUT

The optional ast parameter specifies the address of a service routine
to be entered when an asynchronous system trap occurs. Section 1l.4.3
discusses the use of asynchronous system traps, and section 2.2,5 of
the RSX=-11M Executive Reference Manual describes traps in detail, If
the user wants to interrupt his task to execute special code on
completion of an I/0O request, an asynchronous system trap routine can
be specified in the QIO request., When the specified I/O operation
completes, control branches to this routine at the software priority
of the requesting task. The asynchronous code beginning at address
ast 1is then executed, much as an interrupt service routine would be,
If the user does not want to perform asynchronous processing, the ast
parameter can be omitted or a value of zero specified in the QIO macro
call.

The additional QIO parameters, <pl,p2,...,p6>, are dependent on the
particular function and device specified in the I/0 request, Between
zero and six parameters can be included, depending on the particular
I/0 function, Rules for including these parameters and legal values
are described in subsequent chapters of this manual,

l1.4.2 Significant Events

"Significant event" is a term used in real-time systems to indicate a
change in system status. In RSX-11lM, a significant event is declared
when an I/0 operation completes, This signals the system th.t a
change in status has occurred and indicates that the Executive should
review the eligibility of all tasks in the system to determine which
task should run next, The use of significant events helps cooperating
tasks in a real-time system to communicate with each other and thus
allows these tasks to control their own sequence of execution
dynamically.

Significant events are normally set by system directives, either
directly or indirectly, by completion of a specified function, Event
flags associated with tasks may be used to indicate which significant
event has occurred., Of the 64 event flags available in RSX-11M, the
flags numbered 1 through 32 are local to an individual task and are
sat or reset only as a result of that task's operation. The event
flags numbered 33 through 64 are common to all tasks. Flags 25
through 32 and 57 through 64 are reserved for RSX-11M system software
use,

An example of the use of significant events follows, A task issues a
QIO Jdirective with an efn parameter specified. A WAITFOR directive
follows the QIO and specifies as an argument the same event flag
number, The event flag is cleared when the I/0O request is queued by
the Executive, and the task is suspended when it executes the WAITFOR
directive until the event flag is set and a significant event is
declared at tha completion of the I/O request. The task resumes when
the appropriate event flag is set, and execution resumes at the
instruction following the WAITFOR directive., During the time that the
task is suspended, tasks with priorities lower than that of the
suspended task have a chanrce to run, thus increasing throughput in the
sys*tein,

(
\

TP

J—

(

CHAPTER 1. RSX-11lM INPUT/OUTPUT

l.4.3 System Traps

System traps are used to interrupt task execution and to cause a
transfer of control to another memory location for special processing.
Traps are handled by the RSX~11lM Executive and are relevant only to
the +task in which they occur. To use a system trap, a task must
contain a trap service routine which is automatically entered when the
trap occurs.

There are two types of system traps = synchronous and asynchronous.
Both are used to handle error or event conditions, but the two traps
differ in their relation to the task which is running when they are
detected. Synchronous traps signal error conditions within the
executing task. If the same instruction sequence were repeated, = the
same synchronous trap would occur. Asynchronous traps signal the
completion of an external event such as an I/O operation, An
asynchronous system trap (AST) usually occurs as the result of the
initiation or completion of an external event rather than a program
condition.

The Executive queues ASTs in a first-in-first—-out queue for each task
and monitors all asynchronous service routine operations. Because
asynchronous traps are the end result of I/O-related activity, they
cannot be controlled directly by the task. which receives them.
However, the task may, under certain circumstances, block honoring an
AST to prevent simultaneous: access to a critical data region., When
access to the critical data region has been completed, the queued ASTs
may again be honored., The DSAR$S (DISABLE AST RECOGNITION) and ENARSS
(ENABLE AST RECOGNITION) system directives provide the mechanism for
accomplishing this, An example of an asynchronous trap condition is
the completion of an I/0 request, The timing of such an operation
clearly cannot be predicted by the requesting task. If an AST service
routine is not specified in an I/0 request, a trap does not occur and
normal task execution continues,

Asynchronous system traps associated with I/O requests enable the
requesting task to be truly event-driven. The AST service routine
contained in the initiating task is executed as soon as possible,
consistent with the system's priority structure. The use of the AST
routine to service I/0 related events provides a response time which
is considerably better than a polling mechanism, and provides for
better overlap processing than the simple QIO and WAITFOR sequence,
Aswvnchronous system traps also provide an ideal mechanism for use in
multiple buffering of I/O operations.

All AST's are inserted in a first-in-first-out queue on a per task
basis as they occur (i.e., the event which they are to -signal has
expired). Thev are effected one at a time whenever the task does not
have AST's disabled and is not already in the process of executing an
AST service routine. The process of effecting an AST involves storing
certain information on the task's stack, including the task's four
WAITFOR mask words, the Directive Status Word (DSW), the PS, the PC
and any . trap dependent parameters, The task's general-purpose
registers R0O-R5 are not saved and thus it is the responsibility of the
AST service routine to save and restore the registers it uses. After

CHAPTER 1., RSX-11M INPUT/OUTPUT

an AST is processed, the trap-dependent parameters (if any) must be
removed from +the task's stack and an AST SERVICE EXIT directive
executed., The ASTX$S macro described in section 1.6.6 of this manual
is used to issue the AST SERVICE EXIT directive. On AST service exit,
control is returned to another queued AST, the executing task, or
. another task which has been waiting to run., Section 2,2.5 of the
RSX~11M Executive Reference Manual describes in detail the purpose of
AST service routines and all system directives used to handle them.

1.5 DIRECTIVE PARAMETER BLOCKS

A directive parameter block (DPB) is a fixed-length area of contiguous
memory which contains the arguments specified in a system directive
macro call. The DPB for a QIO directive has a length of 12 words. It
is generated as the result of the expansion of a QIO macro call. The
first byte of the DPB contains the directive identification code (DIC)
- always 1 for QIO. The second byte contains the size of the
directive parameter block in words - always 12 for QIO, During
assembly of a user task containing QIO requests, the MACRO-11l
Assembler generates a directive parameter block for each I/0 request
specified in a QIO macro call., At run time, the Executive uses the
arguments stored in each DPB to create, for each request, an I/0
packet in system dynamic storage. The packet is entered by priority
into a queue of I/0 requests for the specified physical device unit,
This queue 1is created and maintained by the RSX-11lM Executive and is
ordered by the priority of the tasks which issued the requests., The
I/0 drivers examine their respective queues for the I/O request with
the highest priority capable of being executed. This request is
de-queued (removed from the queue) and the I/0 operation is performed.
The process is then repeated until the queue is emptied of all
requests.,

After the I/0 request has been completed, +the Executive declares a
significant event and may set an event flag, cause a branch to an
asynchronous system trap service routine, and/or return the I/0
status, depending on the arguments specified in the original QIO macro
call, Fiqure 1-2 illustrates the layout of a sample DPB,

PN

g
{
AN

L

CHAPTER 1. RSX-11M INPUT/OUTPUT

1 0 Byte
Word 0 size of DPB -+ 12 1 +« DIC for QIO
directive
1l fnc modifiers| « I/0 function
2 ;f/fééé;;éa' lun + logical unit number
3 priority - A/E;;/ “ efn +« event flag number
4 isb « address of I/0

status block

5 ast +< address of
asynchronous trap
service routine

6 device-
. dependent
. parameters
11

Figure 1-2

QIO Directive Parameter Block

1.6 I/O-RELATED MACROS

There are several system macros supplied with the RSX-11lM system which
are used to issue and return information about I/0 requests. These
macros reside in the System Macro Library and must be made available
during assembly via the MACRO-1l assembler directive .MCALL.

There are three distinct forms of most of the system directive macros
discussed in this section. The following list summarizes the forms of
QIO$, but the characteristics of each form also apply to ALUN$, GLUNS,
and other system directive macros described below.

1. QIOS$ generates a directive parameter block for the I/O
request at assembly time, but does not provide the
instructions necessary to execute the request. This form of
the request is actually executed using the DIRS$ macro.

2. QIOS$S generates a directive parameter block for the I/0
request on the stack, and also generates code to execute the
request. This is a useful form for reentrant, sharable code
since the DPB is generated dynamically at execution time,

1-13

jisiids

CHAPTER 1. RSX=-11lM INPUT/OUTPUT

3. QIO$C generates a directive parameter block for the I/0
request at assembly time, and also generates code to execute
the request. The DPB is generated in a separate program
section called $DPBS$S. This approach incurs little system
overhead and is useful when an I/0 request is executed from
only one place in the program,

Parameters for both the QIO$ and QIOSC forms of the macro must be
valid expressions to be used in assembler data-generating directives
such as .WORD and .BYTE. Parameters for the QIOS$S form must be wvalid
source operand address expressions to be used in assembler
instructions such as MOV and MOVB. The following example references
the same parameters in the three distinct forms of the macro call.

QIOS I0O.RLB,6,2,,,AST01,...

QIOSC . I0.RLB,6,2,,,AST01,...

QIOSS #I0.RLB,#6,#2,,,#AST0l, ...
Only the QIO$S form of the macro produces the DPB dynamically. The
other two forms generate the DPB at assembly time, The
characteristics and use of these different forms are described in

greater detail in the RSX-11lM Executive Reference Manual.

The following Executive directives and assembler macros are described
in this section:

1. QIO$, which is used to request an I/0 operation and supply
parameters for that request.

2. DIR$, which specifies the address of ‘a directive parameter
block as its argument, and generates code to execute the
directive.

3. WMCALL, which is used to make available from the System Macro

Library all macros referenced during task assembly.

4. ALUNS, which is used to associate a logical unit number with
a physical device unit at run time,

5. GLUN$, which requests that the information about a physical
device unit associated with a specified LUN be returned to a
user-specified buffer,

6., ASTX$S, which is used to terminate execution of an
asynchronous system trap (AST) service routine.

7. WTSE$, which instructs the system to suspend execution of the
issuing task until a specified event flag is set.

L

TN

P

e

P

CHAPTER 1. RSX-~1l1lM INPUT/OUTPUT

l1.6.1 The QIO$ Macro: Issuing an I/0 Request

As described in section 1.6, there are three distinct forms of the
QIO$ macro. QIOS$S generates a DPB for the I/O request on the stack,
and also generates code to execute the request. QIO$C generates a DPB
and code, but the DPB is generated in a separate program section.
QIO$ generates only the DPB for the I/0 request. This form of the
macro call is wused in conjunction with DIR$ (see section 1.6.2) to
execute an I/0 request., In the following example, the DIR$ macro
actually generates the code to execute the QIO$ directive, It
provides no QIO parameters of its own, but references the QIO
directive parameter block at address QIOREF by supplying this label as
an argument,

CREATE QIO DPB

e

QIOREF: QIO$ IO0.RLB,6,2,,,AST01,...

.

READ1: DIRS #QIOREF ISSUE I/0 REQUEST

~e

READ2: DIRS #QIOREF ISSUE I/O REQUEST

~e

l.6.2 The DIR$ Macro: Executing a Directive

The DIR$ (execute directive) macro has been implemented to allow a
task to reference a previously defined directive parameter block
without requiring that it specify all of the parameters of that macro
again, It is issued in the form:

DIRS [addr] [,exrr]

where: addr is the address of a directive parameter block to be
used 1in the directive. If addr is not included, the
DPB itself or the address of the DPB is assumed to
already be on the stack.

err is an optional argument which specifies the address of
an error routine to which control branches if the
directive is rejected. The branch occurs via a JSR PC,
err,

1.6.3 The ,MCALL Directive: Retrieving System Macros

.MCALL is a MACRO=-1ll assembler directive which is used to retrieve
macros from the System Macro Library (SY:[1,1JRSXMAC.SML) for use
during assembly. It must be included in every user task which invokes
system macros. «MCALL is usually placed at the beginning of a user
task and specifies, as arguments in the call, all system macros which
must be made available from the library.

—
i
o)
]

CHAPTER 1. RSX-11lM INPUT/OUTPUT
The following example illustrates the use of this directive:

.MCALL QIO$,QI0$S,DIRS,WTSESS ; MAKE MACROS AVAILABLE

QIOREF: QIOS$ I0.RLB,6,2,,,AST0l, . « .; CREATE ONLY QIO DPB

READl: DIRS #QIOREF ; ISSUE I/O REQUEST

READ2: QIO$S #I0.ATT,#14.,#8.,,,#AST02 ; CREATE DPB ON STACK
s AND ISSUE REQUEST

As many macro references as can fit on a line can be included in a
single J.MCALL directive. There is no limit to the number of .MCALL
directives that can be specified. ‘

1.6.4 The ALUNS Macro: Assigning a LUN

The ASSIGN LUN macro is used to associate a logical unit number with a
physical device unit at run time. All three forms of the macro call
may be used. ASSIGN LUN does not request I/O for the physical device
unit, nor does it attach the unit for exclusive use by the issuing
task., It simply establishes a LUN=~physical device unit relationship,
so that when the task requests I/0 for that particular LUN, the
associated phvsical device unit is referenced, The macro is issued
from a MACRO-1l program in the following way:

ALUNS lun,dev,unt
where: lun is the logical unit number to be associated with the
specified physical device unit,
dev 1is the device name of the physical device.
un is the unit number of that physical device.

For example, to associate LUN 10 with terminal unit 2, the following
macro call could be issued by the task:

ALUNSC 10,,TT,2

[

PN

e
i

TN

CHAPTER 1. RSX=-11lM INPUT/OUTPUT

A unit number of 0 represents unit 0 for multi-unit devices such as
disk, DECtape, or terminals; it indicates the single available unit
for devices without multiple units, such as card readers and line
printers.

The following list contains device names, listed alphabetically, that
may be included as dev parameters for all standard devices supported
by RSX-11M,

Name Device
AD ADO1-D Analog-to~-Digital Converter
AF AFCll Analog-to~-Digital Converter
CR CR1l Card Reader
CT TAll Tape Cassette
DB RJP04 Pack Disk
DF RF11/RS1l Fixed-Head Disk
DK RK11/RK05 Cartridge Disk
DP RP11-C/RP03 Pack Disk
DS RJS03 and RJS04 Fixed-Head Disks
DT TCll-G DECtape
LP LP1l, LS1ll, and LV11l Line Printers
LS LPS11 Laboratory Peripheral System
MM TJUl6 Magnetic Tape
MT TM11/TUl0 Magnetic Tape
T Terminals
uD UDC1l Universal Digital Controller
XL DL11l-E Asynchronous Communication Line Interface
XP DP1ll Synchronous Communication Line Interface
XU DUll Synchronous Communication Line Interface

A pseudo-device is a logical device which can normally be redirected
by the operator to another physical device unit at any time, without
requiring changes in programs which reference the pseudo-device.
Dynamic redirection of a physical device unit affects all tasks in the
system; reassignment by means of the MCR REASSIGN command affects
only one task. The following pseudo-devices are supported by RSX-11M:

w

I
-2
~

CHAPTER 1. RSX-11M INPUT/OUTPUT

Code Device

CL Console listing, normally the line printer

Cco Console output, normally the main operator's console

TI Pseudo-input terminal, normally the terminal from which

a task was requested

FSY System default device, normally the disk from which the
system was bootstrapped

The pseudo-device TI cannot be redirected, since such redirection
would have to be handled on a per task rather than a system wide basis
(i.e., change the TI device for one task without affecting the TI
assignments for other tasks). '

The example included below illustrates the use of the three forms of
the ALUNS macro.

DATA DEFINITIONS

“e %o ~o

ASSIGN: ALUNS 10.,TT,2 GENERATE DPB

~e

EXECUTABLE SECTION

~ w0 W

DIRS #ASSIGN EXECUTE DIRECTIVE

-

GENERATE DPB IN SEPARATE PROGRAM
SECTION, THEN GENERATE CODE TO
EXECUTE THE DIRECTIVE

ALUNS$C 10,,TT,2

. wo ~o

L3

GENERATE DPB ON STACK, THEN
EXECUTE DIRECTIVE

ALUNSS $10.,8"TT,$2

“ o

1.6.5 The GLUN$ Macro: Retrieving LUN Information

The GET LUN. INFORMATION macro requests that information about a
LUN-physical device unit association be returned in a 6-word buffer
specified by the issuing task. All three forms of the macro call may
be used, It is issued from a MACRO-11l program in the following way:

[Sad

-12

e~

N

PEataN

CHAPTER 1.,

where:

RSX=~-11M INPUT/OUTPUT
GLUNS lun,buf
lun is the logical unit number associated with the physical

device unit for which information is requested.

buf is thé 64word buffer to which information is returned.

For example, to request information on the disk unit associated with
LUN 8, the following call is issued:

GLUNS$C 8. ,IOBUF

The 6-word buffer contains the following indicators on completion of
the directive:

1-19

CHAPTER 1. RSX-1lM INPUT/OUTPUT

Word Byte Bit
0
1 0
1
2 0
1
2
3
4
5
6-12
13
14
15
3
4
5

Contents
Name of device associated with lun
Unit number of associated device
Driver flag value, indicating that the driver
is resident (always returned as 128 (200
octal) in RSX-11M)

Unit record-oriented device (€eg., card
reader, line printer) (1 = yes)

Carriage~control device (e.g., line printer,
terminal) (1 = yes)

Terminal device (1 = yes)

Directory device (e.g., DECtape, disk)
(1 = yes) ,

Single directory device (1 = yes)

Sequential device (1 = yes)

Reserved

Device mountable as a communications channel
for Digital network support (e.g., DP1l, DUll)
(1 = yes)

Device mountable as a FILES~1ll device (e.q.,
disk) (1 = ves)

Device mountable (logical OR of bits 13 and
14) (1 = ves)

Undefined (included for RSX-11lD compatibility)
Undefined (included for RSX=-11lD compatibility)

Default buffer size for device (e.g., length
of line for terminal)

The example included below illustrates the use of the three forms of

the GLUNS$ macro,

-4

-20

.
t

N

CHAPTER 1. RSX~11lM INPUT/OUTPUT

DATA DEFINITIONS

~o o w

GETLUN: GLUNS 6 ,DSKBUF GENERATE DPB

~e

.

EXECUTABLE SECTION

we wo wo

DIRS #GETLUN ; EXECUTE DIRECTIVE

GENERATE DPB IN SEPARATE PROGRAM
SECTION, THEN GENERATE CODE TO
EXECUTE THE DIRECTIVE

GLUNSC 6 ,DSKBUF

~e wo ~e

GENERATE DPB ON STACK, THEN
EXECUTE DIRECTIVE

GLUNSS #6,#DSKBUF

..~

1.6.6 The ASTX$S Macro: Terminating AST Service

The AST SERVICE EXIT macro is used to terminate execution of an
asynchronous syvstem trap (AST) service routine, Only the ASTXS$S form
of this macro is provided; ASTX$ and ASTX$C are unsupported forms of
the macro call. The macro is issued in the following way:

ASTXS$S [err]

where: err 1is an optional argument which specifies the address of
an error routine to which control branches if the
directive is rejected. ‘

On completion of the operation specified in this macro call, if
another AST is queued and asynchronous system traps have not been
disabled, then the next AST is immediately entered. Otherwise, the
task's state before the AST was entered is restored (it is the AST
service routine's responsibility to save and restore the registers it

uses) .,

l.6.7 The WISE$ Macro: Walting for an Event Flag

The WAIT FOR SINGLE EVENT FLAG macro instructs the system to suspend
execution of the issuing task until the event flag specified in the
macro call is set. This macro is extremely useful in synchronizing
activity on completion of an I/O operation. All three forms of the
macro call may be used. It is issued as follows:

WTSES efn

where: efn is the event flag number

1-21

tiallidu

CHAPTER 1. RSX-11M INPUT/OUTPUT

WTSES causes the task to be suspended until the specified event flag
is set. Frequently, an efn parameter is also included in a QIO$ macro
call, and the event flag is set on completion of the I/O operation
specified in that call. The following example illustrates task
suspension pending setting of the specified event flag., This example
also illustrates the use of the three forms of the macro call.

DATA DEFINITIONS

~e wp o

GENERATE DPB
I/0 STATUS BLOCK

WAIT: WISES 5
IOSB: « BLKW 2

~ wo

.

EXECUTABLE SECTION

~e we wo

ASSIGN LUN 14 TO MAGTAPE UNIT ZERO
ATTACH DEVICE

EXECUTE DIRECTIVE

WAIT FOR EVENT FLAG 5 TO BE SET

ALUNSS #14.,#"MM
QIOSC I0,ATT,1l4.,5
DIRS #WAIT

WTSESC 5

N W N W

QIOSS #I0,RLB,#14.,#2,,#I0SB, #ASTX,<#BUF, #80.>
. ; READ RECORD

.

WTSES$S #2 ; WAIT FOR EVENT FLAG 2

QIO$C I10.WLB,14.,3,,I0SB,ASTOL,<BUF,80,>
. ; WRITE RECORD

WTSE$SC 3

; WAIT FOR WRITE TO COMPLETE
QIOSC I0.DET,14. ; D

ETACH DEVICE

1.7 STANDARD I/O FUNCTIONS

There are a large number of input/output. operations that can be
specified by means of the QIO macro. A particular operation can be
requested by including the appropriate function code as the first
parameter of a QIO macro call. Certain functions are standard. These
functions are almost t*totally device-independent and can thus be
requested for nearly every device described in this manual, Others
are device-dependent and are specific to the operation of only one or
two I/0 devices. This section summarizes the function codes and
characteristics of the following device-independent I/O operations:

. attach to an I/0 device
. detach from an I/0 device

. cancel I/0 requests
1~-22

CHAPTER 1, RSX-11M INPUT/OUTPUT

. read a logical block

. read a virtual block

. Wwrite a logical block

. Wwrite a virtual block
For certain physical device units discussed in this manual, a standard
I/0 function may be described as being a NOP, This means that no
operation is performed as a result of specifying the function, and an
I/0 status code of IS.SUC is returned in the I/0 status block
specified in the QIO macro call.
In the following descriptions and in formats shown in subsequent

chapters, the five parameters represented by the ellipsis (...) are as
explained in section 1l.4.1l.

l1.7.1 I0.ATT: Attaching to an I/O Device

The function code IO.ATT is specified by a user task when that task
requires exclusive use of an I/0 device. This function code is
included as the first parameter of a QIO macro call in the following
way:

QIOoSC TOATT ;e

Successful completion of an IO.ATT request causes the specified
physical device unit to be dedicated for exclusive use by the issuing
task., This enables the task to process input or output in an unbroken
stream and is especially useful on sequential, non=-file-oriented
devices such as terminals, card readers, and 1line printers, An
attached physical device unit remains under control of the issuing
task until it is explicitly detached by that task., The same LUN must
be specified for both the attach and detach functions.

While a physical device unit is attached, the I/0 driver for that unit
dequeues only I/0 requests issued by the task that issued the attach.
Thus, a reqgquest to attach a device unit already attached by another
task will not be processad until the attachment is broken and no
higher priority request exists for the unit. A LUN that is associated
with an attached physical device unit may not be reassigned by means
of an ASSIGN LUN directive.

If the task which issued an attach function exits or is aborted before
it issues a corresponding detach, the RSX-1llM Executive automatically
detaches the physical device unit,

CHAPTER 1, RSX-11M INPUT/OUTPUT

1.7.2 IO.DET: Detaching from an I/O Device

The function code IO.DET is used to detach a physical device unit
which has been previously attached by means of an IO.ATT request for
exclusive use of the issuing task. This function code is included as
the first parameter of a QIO macro call in the following way:

QIOSC JODET,e0e

The LUN specifications of both IO.ATT and IO.DET must be the same, as
in the following example, which also illustrates the use of "S" forms
of several macro calls.

«MCALL ALUNS$S,QIOS$S
ALUNSS #14.,#"CR ; ASSOCIATE CARD READER WITH LUN 14

QIOSS #I0.ATT,#14, ; ATTACH CARD READER

LOOP: QIOSS #I0.RLB,#14.,... ; READ CARD

QIOSS #I0.DET, #14. ; DETACH CARD READER

1.7.3 I0.KIL: Canceling I/0O Requests

The function code I0Q.KIL is issued by a task to cancel all of that
task's I/O requests for a particular physical device unit, including
all pending and active requests. This results in the status code
IE.ABO being returned in the I/0 status block and the event flag being
set (if specified) for the respective requests, but does not initiate
any asynchronous systen trap (AST) service routine that may have been
specified. Whether the current request is actually cancelled depends
on the device, Because file~-structured devices (disk and DECtape)
operate quickly, IO.KIL is a NOP for these devices and simply causes
the return of IS,SUC in the I/0 status block,

This function code is included as the first parameter of a QIO macro
in the following way:

QIO$C IO.KIL,...
I0.KIL is useful in such special cases as canceling an I/0 request on

a physical device unit from which a response is overdue (i.e., a read
on a terminal),

1-24

7
14
i

N

CHAPTER 1. RSX=-11M INPUT/OUTPUT

1.7.4 IO.RLB: Reading a Logical Block

The function code IO.RLB is specified by a task to read a block of
data from the physical device unit specified in the macro call, This
function code is included as the first parameter of a QIO macro in the
following way:

QIOSC IO.RLB,e..,<{stadd,size,pn>

where: stadd is the starting address of the data buffer.
size 1is the data buffer size in bytes.

pn represents one to four optional parameters, used to
specify such additional information as block numbers
for certain devices,

l1.7.5 I0.RVB: Reading a Virtual Block

The function code IO.RVB is used to read a virtual block of data from
the physical device unit specified in the macro call., A "virtual"
block indicates a relative block position within a file and is
identical to a "logical" block for such sequential devices as
terminals and card readers. It is recommended that all tasks use
virtual rather. than logical reads. However, if a virtual read is
issued for a file-structured device (disk or DECtape), the user nmust
ensure that a file 4is open on the specified physical device unit,
This function code is included as the first parameter of a QIO macro
call in the following ways

NIOoSC IO.RVB,...,{stadd,size,pn>
where: stadd is the starting address of the data buffer.
size 1is the data bhuffer size in bytes,
pn represents one to four optional parameters, used to

specifv such additional information as block numbers
for certain devices,

1.7.6 IO.,WLB: Writing a Logical Block

The function code IO.WLB is specified by a task to write a block of
data to the physical device unit specified in the macro call, Thirs
function code is included as the first parameter of a QIO nacrc call
in the following way:

QIOSC I0.WLB,.e.,{stadd,size,pn>

where: stadd is the starting address of the data buff-r,

TEIreE

CHAPTER 1. RSX=-11lM INPUT/OUTPUT

size 1is the data buffer in bytes.
pn represents one to four optional parameters, used to

specify such additional information as block numbers or
format control characters for certain devices,

l1.7.7 IO WVB: Writing a Virtual Block

The function code I0O.WVB is used to write a virtual block of data to a
physical device unit. A "virtual" block indicates a relative block
position within a file and is identical to a "logical" block for such
sequential devices as terminals and line printers. It is recommended
that all tasks use virtual rather than logical writes. However, if a
virtual write is issued for a file-structured device (disk or
DECtape), the user must ensure that a file is open on the specified
physical device unit. This function code is included as the first
parameter of a QIO macro call in the following way:

QIOSC I0WVB,ee.,{stadd,size,pn>

where: stadd is the starting address of the data buffer.
size 1is the data buffer size in bytes.
pn represents one to four optional parameters, used to

specify such additional information as block numhers or
format control characters for certain devices,

1.8 I/O COMPLETION

When an I/0O request has been completed, either successfully orx
unsuccessfully, one or more actions may be taken by the Executive.
Selection of return conditions depends on the parameters included in
the QIO macro call. There are three major returns:

l. A sionificant event is declared on completion of an 1I/0
oneration, If an efn parameter was included in the I/0
request, the corresponding event flag is set.

2, If an isb parameter was specified in the QIO macro call, a
code identifying the tvpe of success or failure is returned
in the low-order bvte of the first word of the I/0O status
bleck at the location rerresented by isb.

This status return code is of the form IS.xxx (success) or
IB,xxx (error). For example, if the device accessed by the
T/0 request is not ready, a status code of IE,DNR is returned
in isbkb, The section below (Rzturn Codes) summarizes general
coes returned by most of the drivers described in this
narittal, .

1-28

o,

-

e

AT

P

CHAPTER 1. RSX-11M INPUT/OUTPUT

If the isb parameter was omitted, the requesting task cannot
determine whether the I/0 request was successfully completed.
A carry clear return from the directive itself simply means
that the directive was accepted and the I/0O request was
queued, not that the actual input/output operation was
successfully performed.,

3. If an ast parameter was specified in the QIO macro call, a
branch to the asvnchronous system trap (AST) service routine
which begins at the location identified by ast occurs on
completion of the I/0O operation. See section l.4.3 for a
detailed description of AST service routines.

1.9 RETURN CODES

There are two kinds of status conditions recognized and handled by
RSX-11M when they occur in I/0 requests:

. Directive conditions, which indicate +the acceptance or
rejection of the QIO directive itself

. I/0 status conditions, which indicate the success or failure
of the I/O operation

Directive conditions relevant to I/0 operations may indicate any of

the following:

. directive acceptance

. invalid buffer specification

. invalid efn parametexr

. invalid lun parameter

. invalid DIC number oxr DPE size

. unassigned I.UN

. insufficient memory
A code indicating tha acceptance or rejection of a directive is
returned to the directive status word at symbolic location $ND3W, This
location can be tested to determine the type of directive condition,
I/0 conditions indicate the success or failure of the I/C operation
specified in the QIO directive. I1/0 driver errors incluie such
conditions as device not ready, privilege violation, file already
open, or write-locked device, TIf an isb parameter is included ia tne
QIO directive, identifyving the address of a 2~word I/0 status bhlock,
an I/0 status code is returned in the low-crder byte of the Ffirst word

of this bhlock on completion of the I/0 operation, This cole 1is a
binary wvalue which corresponds to a syvmbolic name of the form T5,xxx

s

sidiidi

CHAPTER 1. RSX~11M INPUT/OUTPUT

or IE.xxxX. The low-order byte of the word can be tested symbolically,
by name, to determine the type of status return. The correspondence
between global symbolic names and directive and I/O completion status
codes 1is defined in the system object module library. Local symbolic
definitions may also be obtained via the DRERR$ and IOERR$ macros
which reside in the System Macro Library and are summarized in

Appendix B,

Binary values of status codes always have the following meaning:

Code Meaning

Positive (greater than zero) Successful completion
Zero Operation still pending
Negative Unsuccessful completion

A pending operation means that the I/0 request is still in the queue
of requests .for the respective driver, and the driver has not yet
serviced the request,

1.9,1 Directive Conditions

Table 1l-1 summarizes the directive conditions which may be encountered
in QIO directives. The acceptance condition is first, followed by
error codes indicating various reasons for rejection, in alphabetical
order,

o~

N

N

S

CHAPTER 1,

Code

Is.S8UC

IE.ADP

IFR.IEF

IE.ILU

IE,SDP

1r.ULN

IE.UPN

RSX-11M INPUT/OUTPUT

Table 1-1
Directive Conditions

Reason
Directive accepted

The first six parameters of the QIO directive were
valid, and sufficient dynamic memory was available to
allocate an I/0 packet. The directive is accepted.

Invalid address

The I/0 status block or the QIO DPB was outside of the
issuing task's address space or was not aligned on a
word boundary.

Invalid event flag number

The efn specification in a QIO directive was less than
zero or greater than 64,

Invalid logical unit number

The lun specification in a QIO directive was invalid
for the issuing task. For example, there were only
five logical unit numbers associated with the task, and
the value specified for lun was greater than five.

Invalid DIC number or DPB size

The directive identification code (DIC) or the size of
the directive parameter block (DPR) was incorrect; the
legal range for a DIC is from 1 through 127, and all
DIC values mnust be odd. Each individual directive
requires a DPB of a certain size, If the size is not
correct for the particular directive, this code is
returned.

Unassigned LUN

The logical unit number in the QIO directive was not
associated with a physical device unit., The user may
recover from this error by issuing a valid ASSIGN LUN
directive and then reissuing the rejected directive,

Insufficient dynamic memory

There was not enough dynamic memorv to allocate an I/0
packet for the I/0 request. The user can try again
later by suspending the task with a WAITFOR SIGNIFICANT
EVENT directive. Note that WAITFOR SIGNIFICANT EVENT
is the only effective wayv for the issuing task to
suspend execution, since other suspend-type directives
that could be used for this purpose themselves require
dynamic memory for their execution (e.g., MARK TIME).

ik

CHAPTER 1. RSX-11M INPUT/OUTPUT

1.9.2 1I/0 Status Conditions

The following list summarizes status codes which may be returned in
the I/0 status block specified in the QIO directive on completion of
the I/0O request. The I/O status block is a 2-word block with the
following format:

. The low-order byte of the first word receives a status code
of the form IS.xxx or IE.xxxXx on completion of the I/0
operation,

. The high-order byte of the first word is usually
device~dependent; in cases where the user might £find
information in this byte helpful, this manual identifies that
information,

. The second word contains the number of bytes transferred or
processed if the operation is successful and involves reading
or writing,

If the isb parameter of the QIO directive is omitted, this information
is not returned.

The following illustrates a sample 2-word I/O status block on
completion of a terminal read operation:

1 0 Byte

Word O 0 =10

1 Number of |bytes read

where =10 is the status code for IE.EOF (end of file). If this code
is returned, it indicates that input was terminated by typing CTRL/Z,
which is the end-of-file termination sequence on a terminal.

To test for a particular error condition, the user generally compares
the low-order byte of the first word of the I/O status block with a
symbolic value as in the following:

CMPB #IE.DNR,IOSB

However, to test for certain types of successful completion of the I/O
operation, the entire word value must be compared., For example, if a
carriage return terminated a line of input from the terminal, a
successful completion code of 1IS.CR is returned in the I/0 status
block. If an ESCape or ALTMODE character was the terminator, a code
of IS.ESC is returned., To check for either of these codes, the user
should first test the low-order byte of the first word of the block
for IS.SUC and then test the full word for IS.CR or IS.ESC,

Note that all three of the following comparisons will test equal since
the low-order byte in all cases is +1.

PN

P

CHAPTER l. RSX-11lM INPUT/OUTPUT

CMPB #IS.CR,IOSB
CMPB #IS,ESC,I0SB
CMPB #1S.SUC,IOSB
In the case of a successful completion where the carriage return is

the terminal indicator (IS.CR), the following illustrates the status
block:

1 0 Byte

Wword 0 |15 +1

1 Number of bytes read

where 15 is the octal code for carriage return and +1 is the status
code for successful completion.

The codes described in Table 1-2 are general status codes which apply
to the majority of devices presented in subsequent chapters., Error
codes specific to only one or two drivers are described only in
relation to the devices for which they are returned. The list below
describes successful and pending codes first, then error codes in
alphabetical order.

Table 1-2
I/0 Status Conditions

Code : Reason
IS.SuC Successful completion

The I/O operation specified in the QIO directive was
completed successfully. The second word of the I/O
status block can be examined to determine the number of
bytes processed, if the operation involved reading or
writing.

IS.PND I/0 request pending
The I/0 operation specified in the QIO directive has

not yet been executed, The I/0 status block is filled
with zeros.

CHAPTER 1.

Code

IE.ABO

IE.ALN

IE.BAD

IE.BLK

IE.BYT

IE.DAA

RSX~-11M INPUT/OUTPUT

Table 1-2 (Cont,)
I/O0 Status Conditions

Reason
Operation aborted

The specified I/O operation was cancelled via IO.KIL
while in progress or while still in the I/O queue,

File already open

The task attempted to open a file on the physical
device unit associated with the specified LUN, but a
file has already been opened by the issuing task on
that LUN.

Bad parameter

An illegal specification was supplied for one or more
of the device-dependent QIO parameters (words 6-11).
For example, a bad channel number or gain code was
specified in an analog-to-digital converter I/O
operation.

Illegal block number

An illegal block number was specified for a
file-~structured physical device unit, This code is
returned, for example, if block 4800 is specified for
an RK05 disk, on which legal block numbers extend from
zero through 4799,

Byte-aligned buffer specified.

Byte alignment was specified for a buffer, but only
word alignment is legal for the physical device unit,
For example, a disk function requiring word alignment
was requested, but the buffer was aligned on a byte
boundary. Alternately, the length of a buffer was not
an appropriate multiple of bytes. For example, all
RP03 disk transfers must be an even multiple of four
bytes.

Device already attached

The physical device unit specified in an I0.ATT
function was already attached to the issuing task.
This code indicates that the issuing task has already
attached the desired physical device unit, not that the
unit was attached by another task.

t-d

o~

PN

CHAPTER 1.

Code

IE.DNA

IE,DNR

IE.EOF

IE,IFC

IE.NLN

IE.NOD

RSX-11M INPUT/OUTPUT

Table 1-2 (Cont.)
1/0 Status Conditions

Reason
Device not attached

The physical device unit specified in an I0.DET
function was not attached to the issuing task. This
code has no bearing on the attachment status with
respect to other tasks.

Device not ready

The physical device unit specified in the QIO directive
was not ready to perform the desired I/0 operation.
This code is often returned as the result of an
interrupt timeout, that is, a "reasonable" amount of
time has passed, and the physical device unit has not
responded.

End-of-~file encountered

An end-of-file mark, record, or control character was
recognized on the input device, ‘

Illegal function

A function code was specified in an I/0 request that
was illegal for the specified physical device unit.
This code is returned if the task attempts to execute
an illegal function or if, for example, a read function
is requested on an output-only device, such as the line
printer.

File not open

The task attempted to close a file on the physical
device wunit associated with the specified LUN, but no
file was currently open on that LUN,

Insufficient buffer space

Dynamic storage space has been depleted, and there was
insufficient buffer space available to allocate a
secondary control block. For example, if a task
attempts to open a file, buffer space for the window
and file control block must be supplied by the
Executive, This code 1is returned when there is not
enough space for such an operation.

CHAPTER 1.

Code

IE.OFL

IE.OVR

IE.PRI

IE.SPC

IE.VER

IE .WLK

RSX-11M INPUT/OUTPUT

Table 1-2 (Cont.,)
I/0 Status Conditions

Reason

Device off-line

The physical device unit associated with the LUN
specified in the QIO directive was not on-line. When
the system was booted, a device check indicated that
this physical device unit was not in the configuration.

Illegal read overlay request

A read overlay was requested and the physical device
unit specified in the QIO directive was not the
physical device unit from which the task was installed.
The read overlay function can only be executed on the
physical device unit from which the task image
containing the overlays was installed.

Privilege violation

The task which issued a request was not privileged to
execute that request. For example, for the UDCll and
LPS1l, a checkpointable task attempted to connect to
interrupts or to execute a synchronous sampling
function.

Illegal address space

The buffer requested for a read or write request was
partially or - totally outside the address space of the
issuing task. Alternately a byte count of zero was
specified.

Unrecoverable error

After the system's standard number of retries have been
attempted upon encountering an error, the operation
still could not be completed. This code is returned in
the case of parity, CRC, or similar errors.

Write=-locked device

The task attempted to write on a write-locked physical

device unit.

1-34

N

—
e o

2.1 INTRODUCTION

CHAPTER 2

TERMINAL DRIVER

The terminal driver provides support for a variety of terminal devices
the terminals supported, and
subsequent sections describe these devices in greater detail.

under RSX-11lM,

Model

ASR-33/35
KSR-33/35
LA30-P
LA30-S
LA36

RTO02
RT02-~C
VT05B

vI50

Table

2-1

summarizes

Table 2-1

Standard Terminal Devices

Column Width

Character Set

72
72
80
80

80-132

64
64
72
72

64
64
64
64
64~-96%*
64
64
64
64

Baud Range

110

110

300
110-300
110~-300
110-1200
110-1200
110-2400
110-300

* The LA36 transmits a set of 64 characters, but can print a set

96.

v
ot

of

TEFYY

CHAPTER 2, TERMINAL DRIVER

Where appropriate terminals must be strapped to transmit only
upper—-case alphabetic characters., Input 1lines can be at most 80
bytes, and longer input lines are truncated. The terminal driver
supports the communication 1line interfaces summarized in Table 2-2,
These interfaces are described in greater detail in section 2.7.
Programming is identical for all,

Table 2-2
Standard Communication Line Interfaces

Model Type

DH1l 16-line multiplexer or

DH11-DM11-BB 16-l1line multiplexer with modem control
DJ1l -16=1line multiplexer

DLll-A/B/C/D‘ Single~line interfaces

2.,1,1 ASR=33/35 Teletypes

The ASR~33 and ASR~35 Teletypes are asynchronous hard-copy terminals,
No paper tape reader or punch capability is supported.

2,1.2 KSR-=33/35 Teletypes

The KSR-33 and KSR-35 Teletypes are asynchronous, hard-copy terminals,

2,1.3 LA30 DECwriters

The LA30 DECwriter is an asynchronous, hard-copy terminal that is
capable of producing an original and one copy. ‘It is particularly
appropriate for systems requiring large numbers of printer-terminals,
The LA30~-P is a parallel model and the LA30~S is a serial model.

2.1.4 LA36 DECwriter

The LA36 DECwriter is a high-speed asynchronous terminal which
produces hard copy and operates in serial mode. It has an impact
printer capable of generating multipart and special preprinted forms,
Both upper-case and lower-case characters can be printed.

N
U
N

AN :

™,

e

CHAPTER 2, TERMINAL DRIVER

2.1.5 RT02 Alphanumeric Display Terminal and RT02-C Badge Reader/
Alphanumeric Display Terminal

The RT02 is a compact alphanumeric display terminal designed for
applications in which source data is primarily numeric. A shift key
permits the entry of 30 discrete characters, including upper-case
alphabetic characters., The RT02 can, however, receive and display 64
characters.,

The RT02-C model also contains a badge reader. This feature provides
a reliable method of identifying and controlling access to the PDP-ll
or to a secure facility. Furthermore, data in a format corresponding
to that of a badge (22-column fixed data) can be entered very quickly.

2.,1.6 VTO5B Alphanumeric Display Terminal

The VT05B is an alphanumeric display terminal that consists of a CRT
display and a self-contained keyboard. From a programming point of
view, it is equivalent to other terminals, except that the VTO5B
offers direct cursor addressing.

2,1.7 VT50 Alphanumeric Display Terminal

The VT50 is an alphanumeric display terminal that consists of a CRT
display and a keyboard. It is similar to the VT05B in capacity and
operation, but is restricted under RSX~1lM to a lower maximum baud
rate and does not offer direct cursor addressing.

2,2 GET LUN INFORMATION MACRO

Word 2 of the buffer filled by the GET LUN INFORMATION system
directive (the first characteristics word) contains the following
information for terminals. A setting of 1 indicates that the
described characteristic is true for terminals.,

[}
i
w

tialidy

CHAPTER 2, TERMINAL DRIVER

Bit . Setting
0 1
1 1
2 1
3 0
4 0
5 0

6-12 0

i3 0

14 0

15 0

Words 3 and 4 are undefined;

Meaning
Record-oriented device
Carriage~control device
Terminal device
Directory device
Single-directory device
Sequential device
Reserved

Device mountable as a communications
channel

Device mountable as a FILES-l1ll volume

Device mountable

word 5 indicates the default buffer

size for the device, for terminals the width of the terminal carriage

or display screen,

2-4

e~

,/m .

o~

TN

—

CHAPTER 2. TERMINAL DRIVER

2.3 QIO MACRO
Table 2-3 1lists the standard functions of the QIO macro that are
valid for terminals.

Table 2-3
Standard QIO Functions for Terminals

Format ‘ Function
QIOSC IOJATT, 0 Attach device
QIOSC IO DET, a0 Detach device
QIOSC IOLKIL,eso Cancel I/0 requests
QIO$C IO, RLB,...,<{stadd,size> Read logical block

(Read typed input into buffer)

QIOSC IOL,RVB,...,<{stadd,size) Read virtual block
(Read typed input into buffer)

QIOSC IO.WLB,..s,<{stadd,size,vfc> Write logical block
(Print buffer contents)

QIOSC IO.WVB,...,<{stadd,size,vfc> Write virtual block
(Print buffer contents)

where: stadd is the starting address of the data buffer (may be on a
byte boundary).

size is the data buffer size in bytes (must be greater than
zero) .

vic is a vertical format control character from Table 2-7,

The effect of IO.KIL on an in progress request depends upon whether
the request is for input or output, If it is for input (i.e., IO.RLB
or IO.RVB), the request is forced to terminate, IE.ABO is returned,
and the second word of the I/0O status block contains the number of
bytes already typed. If the request is for output (i.e., IO.WLB or
I0.WVB), the transfer is terminated, and IS.SUC is returned.

The terminal driver supports no device-specific functions.

N
i
m

CHAPTER 2,

TERMINAL DRIVER

2.4 STATUS RETURNS

Table 2-4 lists error and status conditions that are returned by the
terminal driver described in this chapter,

Code

IE.EOF

Is.suC

IS.CR

IS.ESC

IS.PND

IE.ABO

IE.DAA

Table 2-4
Terminal Status Returns

Reason
Successful completion on a read with End-of=-file

The line of input read from the terminal was terminated
with the end-of-file character CTRL/Z.

Successful completion

The operation specified in the QIO directive was
completed successfully. The second word of the I/0
status block can be examined to determine the number of
bytes processed, if the operation involved reading or
writing.

Successful completion on a read

The line of input read from the terminal was terminated
by a carriage return,

Successful completion on a read

The line of input read from the terminal was terminated
by an ESCape or ALTMODE character.

I/0 request pending

The operation specified in the QIO directive has not
yet been executed. The I/O status block if filled with
2exros.

Operation aborted

The specified I/O operation was cancelled via IO.KIL
while in progress or while in the I/O queue.

Device already attached.

The physical device unit specified in an IO.ATT
function was . already attached by the issuing task.
This code indicates that the issuing task has already
attached the desired physical device unit, not that the
unit was attached by another task.,

Patie

o

P

CHAPTER 2, TERMINAL DRIVER

Code

IE.DNA

IE.DNR

IE.IFC

IE.NOD

IE.OFL

IE.SPC

Table 2=4 (Cont.)
Terminal Status Returns

Reason
Device not attached
The physical device unit specified in an I0.DET
function was not attached by the issuing task., This
code has no bearing on the attachment status of other
tasks.
Device not ready
The physical device unit specified in the QIO directive
was not ready to perform the desired I/O operation.

This code is returned to indicate one of the following
conditions:

« A timeout occurred on the physical device
unit (i.e., an interrupt was lost).

. An attempt was made to perform a transfer on
a remote DH1ll line without carrier present.

Illegal function

A function code was specified in an I/O request that
was illegal for terminals.

Buffer allocation failure

Dynamic storage has been depleted, and there was
insufficient space available to allocate a buffer for

an input request (i.e., all input is buffered "in the

terminal driver).
Device off-line

The physical device unit associated with the LUN
specified in the QIO directive was not on-line., When
the system was booted, a device check indicated that
this physical device unit was not in the configuration.,

Illegal address space

The buffer specified for a read or write request was
partially or totally outside the address space of the
issuing task. Alternately, a byte count of zero was
specified.

>
!
N

8114y

CHAPTER 2. TERMINAL DRIVER

The following illustrates the contents of the I/0O status block on
return of an IS,ESC code:

1 0 Byte

Word 0 33 +1

1 Number of bytes read

where 33 is the octal representation of the ESCape or ALTMODE
character, and +1 1is +the status code for successful completion
(IS.SUC). The contents of this block on return of IS.CR are the sanme,
except that the high~order byte of word 0 contains 15, the octal code
for carriage return. Unlike other RSX~1lM return codes, IS.CR and
IS.ESC are word values, rather than byte values. The low=order byte
simply indicates successful completion, and the high-order byte is
required to show the specific type. To test for an IS.ESC or IS.CR
code, the user can first test the low-order byte of the first word of
the I/O status block for 1IS.SUC, and then test the full word for
IS.ESC or IS.CR.

2.5 CONTROL CHARACTERS AND SPECIAL KEYS

This section describes the particular meaning of special terminal
control characters and keys for RSX-11lM,

2.5.1 Control Characters

A control character is input from a terminal by holding the control
key (CTRL) down while typing one other key. Two of the control
characters described in Table 2-~5, CTRL/U and CTRL/Z, are echoed on
the terminal printer as 11U and *tZ respectively. Other control
characters are recognized by the terminal driver but are not printing
characters and are therefore not echoed.

)
)

CHAPTER 2,

Character

CTRL/C

CTRL/I

CTRL/J
CTRL/K
CTRL/L -
CTRL/M

CTRL/O

CTRL/U

CTRL/%

TERMINAL DRIVER

Table 2-5
Terminal Control Characters

Meaning

Typing CTRL/C on the terminal causes unsolicited input
on that terminal to be earmarked for the Monitor
Console Routine (MCR). When the wunsolicited input
completes, it is passed to the MCR dispatcher. "MCR)>"
is echoed when the terminal is ready to accept the
unsolicited input.

Typing CTRL/I initiates a horizontal tab, and the
terminal spaces to the next tab stop. Tabs are set at
every eighth character position.

Typing CTRL/J is equlvalent to typing the LINE FEED key
on the terminal.

Typing CTRL/K initiates a vertical tab, and the
terminal performs four line feeds.,

Typing CTRL/L initiates a form feed, and the terminal
performs eight line feeds. Paging is not performed,

Typing CTRL/M is equivalent to typing the carriage
RETURN key on the terminal (See section 2.5.2).

Typing CTRL/O suppresses output being sent to a
terminal by the current I/0 request. For attached
terminals, CTRL/O remains in effect, and output
continues to be suppressed until any of the following
occur: ‘

The terminal is detached
Solicited input is entered
Unsolicited input is entered
Another CTRL/O character is typed

For unattached terminals, CTRL/O suppresses output for
only the current output buffer.

Typing CTRL/U before typing a 1line terminator causes
previously typed characters to be deleted back to the
beginning of the 1line. The system echoes this
character as 1tU, followed by a carriage return and a
line feed. This allows the line to be retyped.

Typing CTRL/Z indicates an end-of-file for the current
terminal input. It signals MAC, PIP, TKB, and other

‘system tasks that terminal input is complete and the

task should exit. The system echoes this character as
tZ followed by a carriage return and a line feed.

?
N
t
2

CHAPTER 2., TERMINAL DRIVER

2,5.2 Special Reys

The ESCape, carriage RETURN, and RUBOUT keys have special significance
for terminal input, as described in Table 2-6. A line can be
terminated by an ESCape (or ALTMODE) character, by a carriage RETURN,
by CTRL/Z, or by completely £filling the input buffer (i.e., exhausting
the byte count before a 1line terminator is typed). The standard
buffer size for a terminal can be determined by issuing a GET LUN
INFORMATION system directive and examining word 5 of the information
buffer,

Table 2~-6
Special Terminal Keys

Key Meaning

ESC Typing ESCape or ALTMODE signals the terminal driver
that there is no further input on the current line.
This line terminator allows further input on the same
line since the carriage or cursor is not returned to
the first column position.

RETURN Typing RETURN terminates the current 1line and causes
the carriage or cursor to return to the first column on
the line.

RUBOUT Typing RUBOUT deletes the last character typed on an

input line., Only characters typed since the last line
terminator may be deleted. Several characters can be
deleted in sequence by typing successive RUBOUTs. The
first RUBOUT echoes as a backslash (\), followed by the
character which has been deleted. Subsequent RUBOUTSs
cause only the deleted character to be echoed, The
next character typed which is not a RUBOUT causes
another \ followed by the new character to be echoed.
The following example illustrates rubbing out ABC and
then typing CBA:

ABC\CBA\CBA
The second backslash is not displayed if a line
terminator is typed after rubbing out the characters on
a line, as in the following:

ABC\CBA

2,6 VERTICAL FORMAT CONTROL

Table 2-7 below summarizes the meanings of all characters used for
vertical format control on the terminal. Any one of these characters
can be specified as the value of the vfc parameter in an IO.WLB or
I0.,WVB function. ‘

2-1n

/{[{’“\
o
g

N

tidlligs

TN

,//‘“\.

p s

CHAPTER 2. TERMINAL DRIVER

Table 2-7
Vertical Format Control Characters

Octal
Value Character Meaning

040 blank SINGLE SPACE - Output a 1line feed, print the
contents of the buffer, and output a carriage
return. Normally, printing immediately follows
the previously printed line.

060 zero DOUBLE SPACE = Output two line feeds, print the
contents of the buffer, and output a carriage
return, Normally, the buffer contents are printed
two lines below the previously printed line.

061 one PAGE EJECT = Output eight line feeds, print the
contents of the buffer, and output a carriage
return,

053 plus OVERPRINT - Print the contents of the buffer and
output a carriage return, normally overprinting
the previous line.

044 dollar PROMPTING OUTPUT - Output a line feed and print
sign the-contents of the buffer., This mode of output
is intended for wuse with a terminal where a
prompting message is output and input is then read
on the same line,

000 null INTERNAL VERTICAL FORMAT -~ The buffer contents are
printed without addition of wvertical format
control characters. In this mode, more than one
line of guaranteed contiguous output can be
printed per I/O request.

All other vertical format control characters are interpreted as blanks
(octal 040).

2,7 TERMINAL INTERFACES

This section summarizes the characteristics of the three types of
standard communication line intexfaces supported by RSX-11M.

2,7.1 DH1l Asynchronous Serial Line Multiplexer

The DH1ll multiplexer interfaces up to 16 asynchronous serial
communications lines for terminal use., ‘As many as 16 DHlls can be
interfaced to the PDP-1l, and the total capacity is therefore 256

CHAPTER 2. TERMINAL DRIVER

lines. The DH1l supports programmable baud rates with no parity. The
DM11-BB option may be included to provide modem control for dial-up
lines. These lines must be interfaced via Bell 103 or equivalent
modems .,

2,7.2 DJll Asynchronous Serial Line Multiplexer

The DJ1l multiplexer interfaces as many as 16 asynchronous serial
lines to the PDP-1l for local terminal communications. As many as 16
DJ1lls can be interfaced to the PDP-11l, and the total capacity is
therefore 256 lines. The DJ11l does not provide a dial-up capability
but supports jumper selectable baud rates,

2,7.3 DL11 Asynchronous Serial Line Interface

The DL11 supports a single asynchronous serial line and handles
full-duplex communication between the PDP-1ll and a terminal. There
are 13 standard baud rates available to DL1l users (40-9600 baud),
Four versions of the DL11 interface are supported by RSX~-11lM for
terminal use: DL1ll-A, DL1l-B, DL1ll-C, and DL1ll-D. The DL11l-E is
supported only for message=-oriented communications and is described in
Chapter 9. A total of 16 DLll interfaces can be supported on a single
system for terminal use.,

2.8 PROGRAMMING HINTS

This section contains information on 1mportant considerations relevant
to users of the terminal driver described in this chapter.

2,8.1 Terminal Line Truncation

If the number of characters to be printed exceeds the line 1length of

the physical device unit, the terminal driver discards the excess:

characters. The user can determine that this will happen by examining
word 5 of the information buffer returned by the GET LUN INFORMATION
system directive,

2.,8.2 ESCape Code Conversion

An ESCape or ALTMODE character code of 33, 175, or 176 1is converted
internally to 33 before it is returned to the user on input.

2, 8 3 RTOZ-C Control Function

when sendlng a control character (e.g., vertical tab) to the RTO02-C
Badge Reader and Data Entry Terminal, the high-order bit (bit 7) of
the byte must be set to one. This causes the terminal driver not to
recognize the character, In the case of a vertical tab, 213 octal
must b2 output rather than 13 octal.

=10

P

i
S >,

CHAPTER 3

DISK DRIVERS

3.1 INTRODUCTION

The RSX=-11M disk drivers support the disks summarized in Table 3-1.
Subsequent sections describe these devices in greater detail,

Table 3-1
Standard Disk Devices

MODEL RPM SURFACES CYLINDERS WORDS/ WORDS/
: TRACK DRIVE

RF11/RS11 1800 1 128 2048. 262,144,
RIPO4 3600 19 411 5632, 43,980,288,
RJSO3 3600 1 64 4096. 262,144,
RIS04 3600 1 64 8192, 524,288,
RK11/RK05 1500 2 200 3072. 1,228,800,
RP11C/RP03 2400 20 400 2560, 20,480,000,

All of the disks described in this chapter are accessed in essentially
the same manner. Up to eight disks of each type may be connected to
their respective controllers. Disks and other file-structured media
under RSX~11lM are divided logically into a series of 256-word blocks.

3.1.1 RFl1/RS11l Fixed-Head Disk

The RF1l controller/RS1l fixed-head disk provides random-access bulk
storage. It features fast track-switching time and a redundant set of
timing tracks. The RF1l1l/RS1l is unique because .the hardware can
automatically perform a spiral read across disk platters.

3.1.2 RJP04 Pack Disk

The RJP04 (RH11l controller/RP04 pack disk) pack disk consists of 19
data surfaces and a moving read/write head. It is similar to the
RP11-C/RP03, but has twice the capacity. The RJP04 offers large
capacity storage with rapid access time.

3.1.3 RJISO03 Fixed-Head Disk

The RJS03 (RH1l controller/RS03 fixed~head disk) is a fixed head disk
which offers speed and efficiency. With 64 tracks per cylinder, the
RIS03 has a capacity of 262,144 words.

3.1.4 RJS04 Fixed-Head Disk
The RJS04 (RH1l controller/RS04 fixed-head disk) is similar +to the

RIS03 disk, and interfaces to the same controller but provides twice
the number of words per track and twice the capacity.

3.1.5 RK1l/RKO5 Cartridge Disk

The RK1ll controller/RKO5 DECpack cartridge disk 1is an economical
storage system for medium=-volume, random—access storage. The
removable disk cartridge offers the flexibility of large off-line
capacity with rapid transfers of files between on~ and off-line units
without necessitating copying operations,

3.1.6 RP11-C/RP03 Pack Disk

The RP1ll-C controller/RP03 pack disk consists of 20 data surfaces and
a moving read/write head. Only an even number of words can be
transferred in an RP03 read/write operation.

SN

.

CHAPTER 3. DISK DRIVERS

3.2 GET LUN INFORMATION MACRO

Word 2 of the buffer filled by the GET LUN INFORMATION system
directive (the first characteristics word) contains the following
information for disks., A bit setting of 1 indicates that the
described characteristic is true for disks.:

Bit Setting Meaning
0 0 Record-oriented device
1 0 Carriage-control device
2 0 Terminal device
3 1 Directory device
4 0 Single-directory device
5 0 Sequential device
6-12 0 Reserved
13 0 Device mountable as a communications
channel
14 1 Device mountable as a FILES~1ll volume

15 1 Device mountable

Words 3 and 4 of the buffer are undefined; word 5 indicates the
default buffer size, which is 512 for all disks.

3.3 QIO MACRO

Table 3-2 lists the standard functions of thé QIO macro that are valid
for disks.

w
!
w

CHAPTER 3. DISK DRIVERS

Table 3-2
Standard QIO Functions for Disks

Format Function
QIOS$C IO.ATT,... Not applicable (NOP)
QIOSC IO DET, ... Not applicable (NOP)
QIOSC IO.KIL,... , . Not applicable (NOP)

QIOSC IOLRLB,...,{stadd,size,,blkh,blkl> Read logical block
QIOSC IO.RVB,...,<{stadd,size, ,blkh.blkl> Read virtual block
QIOSC IO WLB,...,<{stadd,size, ,blkh,blkl> Write logical block

QIO$C IO.WVB,...,<{stadd,size,,blkh,blkld> Write virtual block

where: stadd is the starting address of the data buffer (must be on

a word boundary).

size 1is the data buffer size in bytes (must be even, greater
than zero, and, for the RP03, also a multiple of four

bytes).

blkh/blkl are block high and block 1low, combining to form a
double-precision number that indicates the
logical/virtual block address on the disk where the
transfer starts; blkh represents the high eight bits
of the address,. and blkl the low 16 bits,

I0.RVB and IO,WVB are associated with file operations (see the RSX=11
I/0 Operations Reference Manual)., For these functions to be executed,
a file must be open on the specified LUN, :

The disk drivers support no device-specific functions.

3.4 STATUS RETURNS

The error and status conditions listed in Table 3-3 are returned by
the disk drivers described in this chapter.

3-4

AT

p /m\\‘z

CHAPTER 3.

Code

Is.SsucC

IS.PND

IE.ALN

IE.BLK

IE.BYT

DISK DRIVERS

Table 3-3
Disk Status Returns

Reason

Successful completion

The operation specified in the QIO directive was
completed - successfully. The second word of the I/0
status block can be examined to determine the number of
bytes processed, if the operation involved reading or
writing.

I/0 request pending

The operation specified in the QIO directive has not
yet been executed, The I/0 status block is filled with

' ‘zeros.,

File already open

The task attempted to open a file on the physical
device unit associated with specified LUN, but a file
has already been opened by the issuing task on that
LUN. '

Illegal block number

An illegal logical block number was specified, This
code would be returned, for example, if block 4800 were
specified for an RKO05 disk, on which legal block
nunbers extend from zero through 4799,

Byte-aligned buffer specified

Byte alignment was specified for - a buffer, but only
word alignment is legal for disk. Alternately, the
length of a buffer is not an appropriate number of
bytes. For example, all RP0O3 disk transfer must be a
multiple of four bytes,

Device not ready

The physical device unit specified in the QIO directive
was not ready to perform the desired I/O operation,
IE,IFC Illegal function

A function code was specified in an I/0 request that is
illegal for disks.

CHAPTER 3. DISK DRIVERS

Table. 3-3 (Cont,)
Disk Status Retuxrns

Code Reason

IE.NLN File not open

The task attempted to close a £file on the physical
device unit associated with the specified LUN, but no
file was currently open on that LUN,

IE.NOD - Insufficient buffer space

Dyhamic storage space has been depleted, and there was
insufficient buffer space available to allocate a
secondary control block. For example, if a task
attempts to open a file, buffer space for the window
and file control block must be supplied by the
Executive, This code is returned when there is not
enough space for this operation.

IE,OFL Device off-=line

The physical device unit associated with the LUN
specified in the QIO directive was not on-line., When
the system was booted, a device check indicated that
this physical device unit was not in the configuration,

IE.OVR Illegal read overlay request {

A read overlay was requested, and the physical device
unit specified in the QIO directive was not the
physical device unit from which the task was installed.
The read overlay function can only be executed on the
physical device unit from which the task image
containing the overlays was installed,

IE.PRY Privilege violation
The task which issued the request was not privileged to <
execute that request. For disk, this code is returned

if a nonprivileged task attempts to read or write a
mounted volume directly (i.e., IO.RLB or IO.WLB).

T

o

CHAPTER 3, DISK DRIVERS

Table 3-3 (Cont,)
Disk Status Returns

Code Reason

IE.SpPC Illegal address space

The buffer specified for a read or write request was
partially or totally outside the address space of the
issuing task. Alternately, a byte count of 2zero was
specified.

IE.VER Unrecoverable error

After the system's standard number of retries has been
attempted upon encountering an error, the operation
still could not be completed. For disk, unrecoverable
errors are usually parity errors,

IE.WLK Write~locked device

The task attempted to write on a disk that was
physically write-locked.

When a disk I/O error condition is detected, an error is usually not
returned immediately. Instead, RSX-11lM attempts to recover from most
errors by retrying the function as many as eight times, Unrecoverable
errors are generally parity, timing, or other errors caused by a
hardware malfunction.

/mm

CHAPTER 4

DECTAPE DRIVER

4.1 INTRODUCTION

The RSX~-11M DECtape driver supports the TCll-G dual DECtape controller
with up to three additional dual DECtape transports, The TCll-G is a
dual-unit, bidirectional, magnetic-tape transport system for auxiliary
data storage. DECtape is formatted to store data at fixed positions
on the tape, rather than at unknown or variable positions as - on
coventional magnetic tape. The system uses redundant recording of the
mark, timing, and data tracks to increase reliability. FEach reel
contains 578 logical blocks. As with disk, each of these blocks can
be accessed separately, and each contains 256 words., '

4,2 GET LUN INFORMATION MACRO

Word 2 of the buffer filled by the GET LUN INFORMATION system

directive (the first characterics woxrd) contains the following

information for DECtapes. A bit setting of 1 indicates that the
described characteristic is true for DECtapes.

T

CHAPTER 4., DECTAPE DRIVER

Bit Setting) Meaning

0 0 Record~oriented device

1 0 Carriage-control device

2 0 Terminal device

3 1 Directory device

4 0 Single—directofy device

5 0 Sequential device

6-12 0 Reserved

13 0 Device mountable as a communications

channel

14 1 Device mountable as a FILES-1ll volume
15 1 Device mountable

Words 3 and 4 of the buffer are undefined; word 5 indicates the
default buffer size, for DECtape 512 bytes.

4.3 QIO MACRO

This section summarizes standard and device-specific QIO functions for
the DECtape driver. :

4.3.1 Standard QIO Functions

Table 4-1 lists the standard functions of the QIO macro that are wvalid
for DECtape.

PaiiaS

o

P

CHAPTER 4. DECTAPE DRIVER

Table 4-1

Standard QIO Functions for DECtape

Format

QIOSC
QIOSC
QIOS$C
QIOS$C
QIOS$C
QIO$C
QIOSC

where:

IO ATT ,e 0
JOJDET , e 00
JOWKIL,eee
IO.RLB,...,{stadd,size,,,lbn>
I0.RVB,...,<{stadd,size,,,lbn)>
IO.WLB,...,{stadd,size,,,lbn>

IO.WVB,...,<{stadd,size,,,lbn>

Function
Not applicable (NOP)
Not applicable (NOP)
Not applicable (NOP)
Read logical block (forward)
Read virtual block (forward)
Write logical block (forward)

Write virtual block (forward)

stadd is the starting address of the data buffer (must be on

a word boundary).

size is the data buffer size in bytes (must be even and

greater than zero).

lbn is the logical block number on the DECtape where the
transfer starts (must be in the range 0-577).

I0O.RVB and IO.WVB are associated with file operations (see the RSX-~11M

I/0 Operations Reference Manual),

For these functions to be executed,

a file must be open on the specified LUN,

[

CHAPTER 4. DECTAPE DRIVER

4.3.2 Device-~Specific QIO‘Functions

The device-specific functions of the QIO macro that are valid for
DECtape are shown in Table 4-2,

Table 4-2
Device-Specific Functions for DECtape

Format Function
QIO$C IO.RLV,...,<{stadd,size,,,lbn> Read logical block (reverse)
QIOS$SC I0WLV,...,<{stadd,size,,,lbn> Write logical block (reverse)

Where: stadd is the starting address of the data buffer (must be on
a word boundary).

size is the data buffer size in byte (must be even and
greater than zero).

1bn is the logical block number on the DECtape where the
transfer starts (must be in the range 0-577).

4.4 STATUS RETURNS

The error and status conditions listed in Table 4-3 are returned by
the DECtape driver described in this chapter,

-
7N

S

CHAPTER 4.

Code

Is.suC

IS.PND

IE.ALN

IE.BLK

IE.BYT

IE.DNR

DECTAPE DRIVER

Table 4-3
DECtape Status Returns

Reason

Successful completion

The operation specified in the QIO directive was
completed successfully. The second word of the I/O
status block can be examined to determine the number of
bytes processed, if the operation involved reading or
writing,

I/0 request pending

The operation specified in the QIO directive has not
vet been executed. The I/0 status block is filled with
zZeros. -

File already open
The task attempted to open a file on the physical
device unit associated with specified LUN, put a file

has already been opened by the issuing task on that
LUN.

Illegal block number.

An illegal 1logical block number was specified for
DECtape. The number exceeds 577 (1101 octal).

Byte~aligned buffer specified.

Byte alignment was specified for a buffer, but only
word alignment is legal for DECtape. Alternately, the
length of the buffer is not an even number of bytes.

Device not ready

The physical device unit specified in the QIO directive
was not ready to perform the desired I/0 operation.

CHAPTER 4. DECTAPE DRIVER =

Table 4-3 (Cont.)
DECtape Status Returns

Code Reason

IE.IFC Illegal function

A function code was specified in an I/O request that is
illegal for DECtape.

IE.NLN File not open
The task attempted to close a file on the physical

device unit associated with the specified LUN, but no
file was currently open on that LUN,

IE.NOD Insufficient buffer space

Dynamic storage space has been depleted, and there was
insufficient buffer space available to allocate a
secondary control block. For example, if a task
attempts to open a file, buffer space for the window
and file control block must be supplied by the
Executive. This code is returned when there is not
enough space for this operation.

IE.OFL Device off-line

The physical device unit associated with the LUN
specified in the QIO directive was not on-line. When
the system was booted, a device check indicated that
this physical device unit was not in the configuration.

IE.OVR Illegal read overlay request

A read overlay was requested and the physical device

unit specified in the QIO directive was not the
physical device unit from which the task was installed, {
The read overlay function can only be executed on the Ny
physical device unit from which the task image
containing the overlays was installed,

IE.PRI Privilege violation

The task which issued the request was not privileged to
execute that request., For DECtape, this code is
returned when a nonprivileged task attempts to read or
write a mounted volume directlv (i.e., IO.RLB, IO.RLV,
I0.WLB, or IO.,WLV)., IE.SPC Illegal address space

The buffer specified for a read or write request was
partially or totally outside the address space of the
issuing task. Alternately, a byte count of zero was
specified.

//-“’l\\.

CHAPTER 4. DECTAPE DRIVER

Table 4-3 (Cont.)
DECtape Status Returns

Code) Reason

IE.VER Unrecoverable error
After the system's standard number of retries has been
attempted upon encountering an error, the operation
still could not be completed. For DECtape, this code
is returned to indicate any of the following
conditions.
. A parity error was encountered.

. The task attempted a forward multi-block transfer
past block 577 (1101 octal).

. The task attempted a backward multi-block transfer
past block zero.

IE.WLK Write-locked device

The task attempted to write on a DECtape unit that was
physically write=-locked.

4.4,1 DECtape Recovery Procedures

When a DECtape I/0 error condition is detected, RSX-11lM attempts to
recover from the condition by retrying the function as many. as five
times. Unrecoverable errors are generally parity, mark track, or
other errors caused by a faulty recording medium or a hardware
malfunction., An unrecoverable error condition also occurs when a read
or write operation is performed past the last block of the DECtape on
a forward operation, or the first block of the DECtape on a reverse
operation.

In addition to the standard error conditions, an unrecoverable error
is reported when the "rock count" exceeds eight, The rock count is
the number of times the DECtape driver reverses the direction of the
tape while looking for a block number, Assume that the block numbers
on a portion of DECtape are 98, 96, and 101, where one bit was dropped
from block number 100, making it 96, If an I/O request is received
for block 100 and the tape is positioned at block 98, the driver
starts searching forward for block 100, The first block to be
encountered is 96 and because the driver is searching for block 100 in
a forward direction and 96 is less than 100, the search continues
forward. Block 101 is the next block, and because number 101 is
greater than 100, the driver reverses the direction of the tape and
starts to search backward. The next block number in this direction is
96 and direction is reversed again, because 100 is greater than 96,
To prevent the DECtape from being hung in this position, continually
rocking between block numbers 96 and 100, a maximum rock count of
eight has been established.

CHAPTER 4, DECTAPE DRIVER

4,4,2 Select Recovery

If the DECtape unit is in an off-line condition when the I/0 function
is performed, the message shown below is output on the operator's
console.

**% DTn: = SELECT ERROR

where n is the unit number of the drive that is currently off-line,
The user should respond by placing the unit to REMOTE. The driver
retries the function, from the beginning, once every second. It
displays the message once every 15 seconds until the appropriate
DECtape unit is selected. A select error may also occur when there
are two drives with the same unit number or when no drive has the
appropriate unit number,

4,5 PROGRAMMING HINTS

This section contains information on important programming
considerations relevant to users of the DECtape driver described in
this chapter.

4,5.1 DECtape Transfers

If the transfer length on a write is less than 256 words, a partial
block is transferred with zero £ill for the rest of the physical
block. If the transfer length on a read is less than 256 words, only
the number of words specified is transferred. If the transfer length
is greater than 256 words, more than one physical block is
transferred.,

4.5.2 Reverse Reading and Writing

The DECtape driver supports reverse reading and writing, because these
functions speed up data transfers in some cases. A block should
normally be read in the same direction in which it was written. If a
block is read from a DECtape into memory in the opposite direction
from that in which it was written, it is reversed in memory (e.qg.,
word 255 becomes word 0, and 254 becomes word 1l). If this occurs, the
user must then reverse the data within memory.

4,5.3 Speed Considerations When Reversing Direction

It is possible to reverse direction at any time while reading or

writing DECtape. However, the user should understand that reversing -

direction substantially slows down the movement of the tape. Because
DECtape must be moving at a certain minimum speed before reading or

P

P

N

CHAPTER 4, DECTAPE DRIVER

writing can be performed, a tape block cannot be accessed immediately
after reversing direction. Two blocks must be bypassed before a read
or write function can be executed, to give the tape unit time to build
up to normal access speed. Furthermore, when a request is issued to
read or write in a certain direction, the tape first begins to move in
that direction, then starts detecting block numbers. The following
examples illustrate these principles. '

If a DECtape is positioned at block number 12 and the driver receives
a request to read block 10 forward, the tape starts to move forward,
in the direction requested. When block number 14 is encountered, the
driver reverses the direction of the tape, since 14 is greater than
10, The search continues backward, and block numbers 11 and 10 are
encountered, Because the direction must be reversed and the driver
requires two blocks to build up sufficient speed for reading, block
number 9 and 8 are also bypassed in the backward direction., Then the
direction is reversed and the driver encounters blocks 8 and 9 forward
before reaching block number 10 and executing the read request.

4,5.,4 Aborting a Task

If the user attempts to abort a task which is waiting for a DECtape
unit to be selected, the unit must actually be selected before the
task will actually be aborted., .

TN

TN

//@\»

CHAPTER 5

MAGNETIC TAPE DRIVERS

5.1 INTRODUCTION

RSX-11M supports two magnetic tape devices, the TM1l and the TJUlG.
Table 5-1 summarizes these devices and subsequent sections describe
them in greater detail.

Table 5~1
Standard Magtape Devices

T™M11 TJUL6
Number of channels 7 or 9 9
Recording density, in frames For 7-channel: 800 or 1600
per inch 200, 556, or 800;
for 9~-channel:
800
Tape speed, in inches per 45 45
second
Maximum data transfer rate, 36,000 For 800 bpi:
in bytes per second 36,000;
for 1600 bpi:
72,000
Recording Method NRZI NRZI or
Phase
Encoding

Programming for Magtape 1is quite similar to programming for the
magnetic tape cassette (see Chapter 6). Unlike cassette, however,
Magtape can handle variable-length records and allows the user to
select a parity mode,

RSX~11M does not support a file structure for Magtape.

1)
J
=

CHAPTER 5, MAGNETIC TAPE DRIVERS

5.1.1 TM1ll Magnetic Tape

The TM1l consists of a TM1l controller with a TUl0 transport. It is a
low=-cost, high performance system for serial storage of large volumes
of data and programs in an industry-compatible format. All recording
is non-return-to-zero, inverted (NRZI).

5.1.2 TJUl6 Magnetic Tape

The TJUl6 consist of an RH1ll .controller, a TM02 formatter, and a TUL6
transport., It is quite similar to the TM1ll but is a Massbus device,
with a common controller, a specialized formatter, and a drive.
Recording is either 800 bpi NRZI or 1600 bpi phase~encoded (PE).,

5.2 GET LUN INFORMATION MACRO

Word 2 of the buffer filled by the GET LUN INFORMATION .system;
directive (the first characteristics word) contains the following

information for Magtapes. A bit setting of 1 indicates that the
described characteristic is true for Magtapes.

Bit Setting Meaning
0 -0 Record-oriented device
1 0 Carriage-control device
2 0 Terminal‘device
3 0 Directory device
4 0 Single-directory device
5 1 Sequential device
6-12 0 Reserved
13 0 Device mountable as a communications
channel
14 0 Device mountable as a FILES-11 volume
15 0 Device mountable

Words 3 and 4 of the bﬁffe: are undefined; word 5 indicates ' the
default buffer size, for Magtapes 512 bytes.

CHAPTER 5, MAGNETIC TAPE DRIVERS
5.3 QIO MACRO

This section summarizes standard and device-specific QIO functions for
the Magtape drivers.

5.3.1 Standard QIO Functions

Table 5-2 lists the standard functions of the QIO macro that are valld
for Magtape.

Table 5-2
Standard QIO Functions for Magtape

Format : : Function
QIOSC IO0.ATT ;00 Attach device
QIOSC IO.DET,;ees : Petach device
QIOSC TOJKIL,e0e Cancel I/0 requests
QIOSC IO.RLB,...,<{stadd,size> Read logical block

(read tape into buffer)

QIOSC IO.RVB,...,<{stadd,size> Read virtual block
(read tape into buffer)

QIOSC IO WLB,...,<{stadd,size> Write logical block
- (write buffer contents to tape)

QIO$C IO WVB,...,{stadd,size) Write virtual block
(write buffer contents to- tape)
where: stadd is the starting address of the data buffer (must be on

a word boundary).

- size is the data buffer size in bytes (must be even, greater

than =zero, and, for a write, must be at least 14

bytes).

I0.KIL does not cancel an in progress request unless a select error
has occurred.

fidilid

CHAPTER 5.

MAGNETIC TAPE DRIVERS

5.3.2 Device=Specific QIO Functions

Table 5~3 lists the device~specific functions of the QIO macro that
are valid for Magtape. Additional details on certain functions appear

below.
Table 5~3
Device-Specific QIO Functions for Magtape
Format Function
QIOSC IO.EOF,.ee Write end~of-file mark (tape mark)
QIOSC IO.RWD,.s. Rewind unit
QIOSC IO.RWU, ... Rewind and turn unit off-line
QIOSC IO0.SEC,s 0 Read tape characteristics
QIOSC I0.SMO,...,{cCbh> Mount tape and set tape characteristics
QIOSC I0.SPB,..s,<nbs> Space blocks
QIOSC IO,SPF,...,<{nes> Space files
QIOS$C I0.STC,es.,<Cb> Set tape characteristics
where: cb represents the characteristic bits to set,
nbs is the number of blocks to sbéce past (positive if
forward, negative if reverse).
nes is the number of EOF marks to space past (positive if
forward, negative if reverse).
5.3.2.1 IO,RWU - IO.RWU is normally used when operator intervention

is required
unit back on~line manually before subsequent operations can proceed.

(e.g., to load a new tape). The operator must turn the

5-4

P

o

CHAPTER 5.

the

second I/0 status»word.

MAGNETIC TAPE DRIVERS

as follows:

Bit

10
11

12

13
14
15

Meaning When Set

For TM1ll, 556 bpi density
(seven-channel). For
TJUL6, reserved

For TM1l, 200 bpi density
(seven~channel). For

TJUl6, reserved.

For TM1l, core~dump mode
(seven-channel, see below).
For TJUl6, reserved.

Even parity (default is odd).
Tape is past EOT.

Last tape command encountered
EOF (unless last command was
backspace) .

Writing is prohibited,

Writing with extended interxr-
record gap is prohibited

(i.e., no recovery is attempted

after write error).

Select error on unit (reserved
for driver; always 0 when read

by user).

Unit is rewinding (resexrved for

driver; always 0 when read by
user).

Tape is physically write-locked.

For TM1ll, reserved., For TJUl6,

1600 bpi density.

For TMll, drive is seven—-channel.

For TJUl6, reserved.

Tape is at load point (BOT).

Tape is at end-of-volume (EOV).

Tape is past EOV.

5.3.2.2 IO0.SEC -~ This function returns the tape characteristics in
The tape characteristic bits are defined

Can Be Set by
I0.SMO and IO,STC

X

CHAPTER 5, MAGNETIC TAPE DRIVERS

In core=-dump mode (TM1ll only, 800 bpi density, and seven-channel),
each eight-bit byte is written on two tape frames, four bits per

frame. In other modes on seven-channel tape, only six low-order bits

per byte are written.

The effect of these settings is illustrated in Figure 5-1 for the TM1l
and in Figure 5-~2 for TJUl6.

N

tiallid

P o

CHAPTER 5.

MAGNETIC TAPE DRIVERS

PARITY

SET EVEN e EVEN
PARITY s
SET 800 BPI,

NINE~-CHANNEL

SET 556 BPI,
SEVEN-CHANNEL

556 BPI?

200 BPI?

SET 800 BPI,
SEVEN-CHANNEL,
CORE-DUMP MODE

r—

yes

SET 800 BPI,
SEVEN-CHANNEL

SET 200 BPI,
SEVEN-CHANNEL

Determination of Tape Characteristics

Figure 5-1
for the TM11

5-7

CHAPTER 5. MAGNETIC TAPE DRIVERS

SET 1600 BPI

1600 BPI?

SET 800 BPI

EVEN
PARITY
?

SET
‘EVEN PARITY

Figure 5=2

Determination of Tape Characteristics

for the TJULl6

o
/

Lt

i

s~

CHAPTER 5, MAGNETIC TAPE DRIVERS

5.4 STATUS RETURNS

The error and status conditions listed in Table 5-4 are
the Magtape drivers described in this chapter.

Table 5-4
Magtape Status Returns
Code Reason
Is.SsuC Successful completion

returned by

The operation specified in the QIO directive was
completed successfully. The second word of the I/0
status block can be examined to determine the number of
bytes processed, 1i1f operation involved reading or
writing. This code is also returned if nbs equals zero
in an I0.SPB function or if nes equals zero in an

I0,SPF function.

IS.PND I/0 request pending

The operation specified in the QIO directive has not
yet been executed., The I/O status block is filled with

Zerose.

IE.ABO Operation aborted

The specified I/0 operation was cancelled via

IO.KIL

while in progress or while still in the I/0 queue.

IF .BBE Bad block

A bad block was encountered while reading or writing

and the error persists after nine retries,

The number

of bytes transferred is returned in the second word of
the I/0O status block. For TM1l, 1IE.BBE may also

indicate that a bad tape error (BTE)
encountered while reading or spacing.

IE.BYT Byte=aligned buffer specified

has been

Byte alignment was specified for a buffer, but only
word alignment is legal for Magtape. Alternately, the
length of a buffer is not an even number of bytes.

IE.DAA Device already attached

The physical device unit specified in

an I0.ATT

function was already attached by the issuing task,

This code indicates that the issuing task has

already

attached the desired physical device unit, not that the

unit was attached by another task,

CHAPTER 5.

Code

IE.DAO

IE.DNA

IE.DNR

IE.EOF

IE.EOT

MAGNETIC TAPE DRIVERS

Table 5-4 (Cont.)
Magtape Status Returns

Reason
Data overrun

On a read, a record exceeded the stated buffer size.
The f£inal portion of the buffer is checked for parity,
but is not read into memory.

Device not attached

The physicall device unit specified in an I0,.DET
function was not attached by the issuing task. This
code has no bearing on the attachment status of other
tasks. :

Device not ready

The physical device unit specified in the QIO directive
was not ready to perform the desired I/O operation.
This code is returned to indicate one of the following
conditions:

. A timeout occurred on the physical device unit (i.e.,
an interrupt was lost).

. A vacuum failure occurred on the Magtape drive,

. While trying to read or space, the driver detected
blank tape.

. The "LOAD" switch on the physical drive was switched
to the off position,

End-of-~file encountered
An end-of~file (tapemark) was encountered.
End-of-tape encountered

The end~of~tape (physical end-of=volume) was
encountered while +the tape was moving in the forward
direction. A ten-foot length of tape is provided past
EOT to be used for writing data and markers, such as
volume trailer labels, The IE.EOT code will continue
to be returned in the I/0 status block until the EOT
marker is passed in the reverse direction,

P

p N

P

-

CHAPTER 5,

Code

IE.EOV

IE.FHE

IE.IFC

IE.OFL

IE.SPC

IE.VER

IE.WLK

MAGNETIC TAPE DRIVERS

Table 5-4 (Cont.)
Magtape Status Returns

Reason
End-of-volume encountered

On a forward spacing function, the logical
end-of-volume (two consecutive FEOF marks) was
encountered, The tape is normally left positioned
between the two EOF marks.

Fatal hardware error
Fatal hardware malfunction.
Illegal function

A function code was specified in an I/O request that is
illegal for Magtape.

Device off-line

The physical device unit associated with the LUN
specified in the QIO directive was not on-line, When
the system was booted, a device check indicated that
this physical device unit was not in the configuration.

Tllegal address space

The buffer specified for a read or write request was
partially or totally outside the address space of the
issuing task, For Magtape, this code is also returned
if a byte count of zero was specified or if the user
attempted to write a block that was less than 14 byvtes
long.

Unrecoverahle erxor

After the system's standard number of retries has been
attempted upon encountering an error, the operation
still could not be completed. For Magtape, this code
is returned in the case of CRC or checksum errors or
when a tape block could not be read.

Write-locked device

The task attempted to write on a Magtape unit that was
physically write~locked. Alternately, tape
characteristic bit 6 was set Dby the software to
write=lock the unit logically.

CHAPTER 5. MAGNETIC TAPE DRIVERS

After read and write functions, the second I/0 status word contains
the number of bytes actually processed by the function., After spacing
functions, it contains the number of blocks of files spaced over, The
EOF mark counts as one block., If an EOF mark is encountered by a read
operation, the second I/O status word will contain an octal two.

5.4.1 Select Recovery

If a request fails because the desired unit is off-line, no drive has
the desired wunit number, or has its power off, the following message
is output on the operator's console:

*%** MTn:; == SELECT ERROR
where n is the unit number of the specified drive. The driver checks
the unit for readiness and repeats the message every 15 seconds until

the requesting task is aborted or the unit is made available, In the
latter case, the driver then proceeds with the request.

5.4.2 Retry Procedures for Reads and Writes

If an error occurs during a read (e.g., vertical parity error), the
recovery procedure depends on the type of Magtape in use. A bad tape
error on a TMll results in an immediate return of the error code
IE.BBE., All other read errors for both the TM1l and TJUl6 are retried
by backspacing one record and then rereading the record in question.
If the error persists after nine retries, IE.BBE is returned,

Write recovery is the same for both the TM1l and TJUl6., When a write
operation fails the driver attempts to avoid the bad spot on the tape
by means of an extended interrecord gap (IRG). This means that it
backspaces, makes the IRG just before the record three inches longer,
and then retries the write., If the error persists after nine retries,
IE.BBE is returned, The requesting task can use IO,STC to prohibit
writing with an extended interrecord gap. In this case, IE.BBE is
returned as soon as a write fails,

5.5 PROGRAMMING HINTS

This section contains information on important programming
consicderations relevant to users of the Magtape drivers described in
this chapter.

5.5.1 Rlock Size

Each block must . contain an even number of bytes, at le=ast 14 for a
write and a“ most A5,.534, It is more reasorable; however, to work

with a block size of apyproximately 2,048 bvtes,

PN

i

CHAPTER 5. MAGNETIC TAPE DRIVERS

5.5.2 Importance of Resetting Tape Characteristics

A task that uses Magtape should always set the tape characteristics to
the proper value before beginning I/0 operations. The task cannot be
certain in what state the previous task left these characteristics,
It is also possible that an operator might have changed the Magtape
unit selection, If the selection switch is changed, the new physical
device unit may not correspond to the characteristics of the unit
described by the respective unit control block.

5.5.3 Aborting a Task

If a task is aborted while waiting for a Magtape unit to be selected,
the Magtape driver recognizes this fact within 15 seconds., It is not
necessary to select the Magtape unit before aborting the task, as is
the case for DECtape.

5.5.4 Writing an Even-Parity Zero

If an even-parity zero were written normally, it would appear to the
drive as blank tape. It is therefore converted to 20 (octal). If
this conversion 1is undesirable, the user must ensure that no
even-parity zeros are output on the tape.

whdliid

-

g

CHAPTER 6

CASSETTE DRIVER

6.1 INTRODUCTION

RSX~11M supports the TAll magnetic tape cassette (a TAll controller
with a TU60 dual transport). Programming for cassette is quite
similar to programming for Magtape (see Chapter 5). The TAll system .
is a dual-drive, reel-to-reel unit designed to replace paper tape.
Its two drives run nonsimultaneously, using Digital proprietary
Philips—~type cassettes.

The maximum capacity of a cassette, in bytes, is 92,000 (minus 300 per
file gap and 46 per interrecord gap). It can transfer data at speeds
of up to 562 bytes per second. Recording density ranges from 350 to
700 bits per inch, depending on tape position,

6.2 GET LUN INFORMATION MACRO

Word 2 of the buffer filled by the GET LUN INFORMATION system
directive (the first characteristics word) contains the following
information for cassettes. A bit setting of 1 indicates that the
described characteristic is true for cassettes.

CHAPTER 6. CASSETTE DRIVER

Bit Setting Meaning
0 1 Record=-oriented device
1 0 Carriage=-control device
2 0 Terminal device
3 0 Directory device
4 0 Single-directory device
5 1 Sequential device
6-12 0 Reserved
13 0 Device mountable as a communications
channel '
14 0 Device mountable as a FILES=1ll volume
15 0 Device mountable

Words 3 and 4 of the buffer are undefined; word 5 indicates the
default buffer size, for cassettes 128 bytes.

6.3 QIO MACRO

This section summarizes standard and device-specific QIO functions for
the cassette driver.

N

(

CHAPTER 6, CASSETTE DRIVER

6.3.1l Standard QIO Functions

Table 6-~1 lists the standard functions of the QIO macro that are valid

for cassette.

Table 6-1
Standard QIO Functions for Cassette

Format Function
QIOSC IOLATT,;eee Attach device
QIOSC IO.DET,ees Detach device
QIOSC IO.KIL,... Cancel I/O0 requests
QIO$C IO .RLB,...,<{stadd,size> Read logical block

(read tape into buffer)

QIOSC IO.RVB,...,<{stadd,size> Read virtual block
(read tape into buffer)

QIOSC IO WLB,...,<{stadd,size> Write logical block
(write buffer contents to tape)

QIOSC IO.WVB,...,<{stadd,size> Write virtual block
‘ (write buffer contents to tape)
where: stadd is the starting address of the data buffer (may be on a
byte boundary).
size is the data buffer size in bytes (nust be greater than

Zero) .

I0.KIL does not affect in progress requests.,

6.3.2 Device~Specific QIO Functions

Table 6~2 lists the device-specific functions of the QI0 macro that
are valid for cassette. The section on programming hints below
provides more detailed information about certain functions.

CHAPTER 6. CASSETTE DRIVER

Table 6-2
Device~Specific QIO Functions for Cassette

Format ’ : Function
QIOSC IOL.EOF,;cew Write end-of-file gap
QIOSC IO.RWD,...A ‘ Rewind unit
QIOSC IO,SPB,ess,<nbs> v Space blocks
QIOSC I0SPF,.s.,{nes> Space files
where: nbs 1is the number of blocks to space past (positive if

forward, negative if reverse).

nes 1is the number of EOF gaps to space past (positive if
forward, negative if reverse).

6.4 STATUS RETURNS

The error and status conditions listed in Table 6-=3 are returned by
the cassette driver described in this chapter. ‘

Table 6-3]
Cassette Status Returns)
Code Reason
1S.SUC Successful completion

The operation specified in the QIO directive was
completed successfully. The second word of the I/O
status block can be examined to determine the number of
bytes processed, if the operation involved reading orxr
writing, or the number of blocks or files spaced, if
the operation involved spacing blocks or files, . -

PN

IS.PND ' I/0 request pending
The operation specified in the QIO directive has not
yet been executed. The I/0 status block is filled with
Zeros.

IE.ABO Operation aborted

The specified I/O operation was cancelled via IO0.KIL
while still in the I/O queue.

6-4

/-w\\

CHAPTER 6,

Code

IE.DAA

IE.DAO

IE.DNA

IE.DNR

IE.EOF

CASSETTE DRIVER

Table 6~3 (Cont,)
Cassette Status Returns

Reason

Device already attached

The physical device unit specified in an I0,ATT
function was already attached by the issuing task.
This code indicates that the issuing task has already
attached the desired physical device unit, not that the
unit was attached by another task.

Data overrun

The driver was not able to sustain the data rate
required by the TAll controller.

Device not attached

The physical device unit specified by an I0.DET
function was not attached by the issuing task, This
code has no bearing on the attachment status of other
tasks.

Device not ready
The physical device unit specified in the QIO directive
was not ready to perform the desired I/0O operation.

This code is returned to indicate one of the following
conditions:

. The cassette has not been physically inserted,
« The unit is off-line,

.« A timeout occurred on the physical device unit (i.e.,
an interrupt was lost).

End-of-file encountered

An end-of-~file gap was recognized on the cassette tape.
This code 1is returned if an EOF gap is encountered
during a read or if the cassette is phv51cally removed
during an I/0 operation.

31
1
w

CHAPTER 6,

Code

IE,EOT

IE.IFC

IE.OFL

IE.SPC

IE.VER

IE.WLK"

CASSETTE DRIVER

Table 6-3 (Cont.)
Cassette Status Rgturns

Reason
End-of-tape encountered

While reading or writing, clear trailer at end-of-tape
(EOT) was encountered, Unlike Magtape, writing beyond
EOT is not permitted on cassettes., This condition is
always sensed on a write before it would be sensed on a
read of the same section of tape. If IE.EOT is
returned during a write, the cassette head has
encountered EOT before finishing the writing of the
last block. It is recommended that the user rewrite
the block on another cassette in its entirety.

Illegal function

A function code was specified in an I/O request that is
illegal for cassette.

Device off~line

The physical device unit associated < with the LUN
specified in the QIO directive was not on-line. When
the system was booted, a device check indicated that
this physical device unit was not in the configuration,

Illegal address space

The buffer specified for a read or write request was
partially or totally outside the address space of the
issuing task. Alternately, a byte count of 2zero was
specified on a transfer,

Unrecoverable error

This code is returned when a bhlock check error occurs
(see section 6,.6.5). The cyclic redundancy check
{CRC), a two-byte value located at the end of each
block, is a checksum that is tested during all read
operations to ensure that data is read correctly. If
an unrecoverable error is returned, the user may
attempt recovery by spacing backward one block and
retrying the read operation.,

Write-locked device

The task attempted to write on a cassette unit that was
physically write-locked. This code may be returned
after an I0,WLB, 1I0,WVB, or IO.EOF function,

P

T

a
i
\;

CHAPTER 6, CASSETTE DRIVER

6.4.1 Cassette Recovery Procedures

If an error occurs during a read or write operation, the operation
should be retried several times. The recommended maximum number of
retries is nine for a read and three for a write because each retry
involves backspacing, which does not always position the tape in the
same place. More than three retries of a write operation may destroy
previously written data. For example, to retry a write, it is best to
space two blocks in reverse, then space one block forward. This
insures the tape is in the proper position to rewrite the block that
encountered the error.,

After read and write functions, the second I/0 status word contains
the number of bytes actually processed by the function. After spacing
functions, it contains the number of blocks or files actually spaced.

-

6.5 STRUCTURE OF CASSETTE TAPE

Figure 6~1 illustrates a general structure for cassette tape. A
different structure can be employed if the user wishes.

Here the tape consists of blocks of data interspersed with sections of
clear tape that serve as leader, trailer, interrecord gaps (IRGs), and

end~of-file gaps.

The logical end-=of-tape in this case consists of a sentinel label
record, rather than the conventional group of end-of-file gaps. Each
file must contain at least one block. The size of each block depends
upon the number of bytes the user specifies when writing the block.

IRGs
BOT - - ~ EOT
¥
CL |LPG LR || REC| REC|l ...| REC|| EOF |LR || REC| ... | REC|EOF | SLR CcT
\ —~ 7 ~" —/ ~
FILE 1 FILE 2 LEOT
. J
N
150 FEET

Figure 6-1
Structure of Cassette Tape

CHAPTER 6. CASSETTE DRIVER

Abbreviation Meaning
cL Clear leader
BOT Physical beginning-of-tape
LPG Load point gap (blank tape written by driver before the

first retrievable record)

LR File label record
REC Fixed-length record (data)
EOF End-of-file gap
IRG Interrecord gap
SLR Sentinel label record
LEOT Logical end=-of~tape
EOT PhYsical end~of~tape
CT Clear trailer

6.6 PROGRAMMING HINTS

This section contains information on important programming
considerations relevant to users of the cassette driver described in

this chapter.

6.6.1 Importance of Rewinding

The first cassette operation performed on a tape mnust always be a
rewind to ensure that the tape is positioned to a known place, When
it is positioned in clear tape there is no way to determine whether it
is in leader at the beginning-of-tape (BOT) or in trailer at the
end-of~-tape (EOT),

e

i

CHAPTER 6. CASSETTE DRIVER

6.6.,2 End-of-~-File and I0,.SPF

The hardware senses end-of-file (EOF) as a timeout, When IO.SPF is
issued in the forward direction (nes is positive), the tape is
positioned two-thirds of the way from the beginning of the final file
gape. In effect, this is all the way through the file gap. When
I0,SPF is issued in the reverse direction (nes is negative), the tape
is positioned one-third of the way from the beginning of the final
file gap (i.e., two thirds of the way from the beginning of the last
file spaced). Therefore to correctly position the tape for a read or
write after issuing I0.SPF in reverse, the user should issue I0.SPB
forward for one block, followed by I0.SPB in reverse for one block.

6.6.3 The Space Functions, I0.SPB and IO,SPF

I0.SPB always stops in an IRG, IO.SPF in an EOF gaps. Neither space
function actually takes effect until data are encountered., For
example, suppose the tape is positioned in clear leader at BOT and the
user requests that one block be gpaced forward., The drive passes over
the remaining leader until it reaches data, passes one block, and
stops in the IRG, Similarly, if the same command is issued when the
tape is at BOT on a blank tape or a tape containing only EOF gaps, the
function does not terminate until EOT,

6.6.4 Verification of Write Operations

Certain errors, such as cyclic redundancy check, are detected on read
but not write operations. Therefore, to ensure reliability of
recording, it 1is recommended that the user perform a read as
verification of every write operation.

6.6.5 Block Length

The user must specify the exact number of bytes per block when
requesting read or write operations. An attempt to read a block with
an incorrect byte count causes an unrecoverable error (see section
6.4) to occur,

6.6.6 ILogical FEnd~of-Tape

The conventional method of signaling logical end-of-tape by multiple
EOF gaps 1is inadequate for cassettes. This is because multiple FEOF
gaps are not distinguishable from each other, For example, two
sequential ECOF gaps would be read as three instead of two. Also
spacing functions, since they are triggered by encountering data, can
not recognize multiple EOF gaps. Consequently, the use of a sentinel
or key record to signal logical end-of=-tape is recommended.

P

e,

CHAPTER 7

LINE PRINTER DRIVER

7.1 INTRODUCTION

The RSX=11lM line printer driver supports the line printers summarized
in Table 7-1. Subsequent sections of this chapter describe these
printers in greater detail.

Table 7-1
Standard IL.ine Printer Devices

Model Column Width Character Set Lines per Minute
LP11-F 80 64 170-1110
LPl1l-H 80 96 170-1110
LP11=-J 132 64 170-1110
LP11-K 132 96 170-1110
LP11-R 132 64 1110
LPLl-S 132 96 1110
LS11 132 62 60-200
LV1l 132 96 500

CHAPTER 7. LINE PRINTER DRIVER

7.1.1 LPll Line Printer

The LPll is a high-speed 1line printer available in a variety of
models. The entire LP1ll line consists of impact printers, using one
harmmer per column and a revolving drum with upper-case and optional
lower~case characters. The LP1ll~-R and LPll-S are fully buffered
models which operate at a standard speed of 1110 1lines per minute,
The other LP1l models have 20-character print buffers. These printers
are therefore able to print at full speed if the print 1line 1is no
longer than 20 characters. Lines which exceed this maximum are
printed at a slower rate. Forms with up to six parts may be used for
multiple copies.

7.i.2 LS1l Iiine Printer

The LS1ll is a medium~speed line printer., It has a 20-character print
buffer, and lines of 20 characters or less are printed at a rate of
200 lines per minute. Longer lines are printed at a slower rate.
RSX=~11M does not support the LS11l expanded character set feature.

7.1.3 LV1l Line Printer

The LV11l is a fully-bhuffered electrostatic printer-plotter which
operates at a standard rate of 500 lines per minute, RSX-~11lM supports
only the LV11l print capability, not the plotter mode.

7.2 GET LUN INFORMATION MACRO

Word 2 of the buffer filled by the GET LUN INFORMATION systemn
directive (the first characteristics word) contains the fcllowing
information for line printers. A bit setting of 1 indicates that the
described characteristic is true for line printers,

Bit Setting Meaning
0 1 Record-oriented device
1 1 Carriage-control device
2 0 Terminal device
2 0 Diractory device
4 2 Single-directory device
E 0 Sequential device

P

AN

//A\.\

CHAPTER 7. LINE PRINTER DRIVER

Bit Setting Meaning
6-12 0 Reserved
13 0 Device mountable as a communications
channel
14 0 Device mountable as a FILES-1l volume
15 0 Device mountable

Words 3 and 4 of the buffer are undefined; word 5 indicates he
default buffer size for the device, for line printers the width of the
printer carriage (i.e., 80 or 132).

7.3 QIO MACRO
Table 7-2 lists the standard functions of the QIO macro that are valid

for line printers.

Table 7-2
Standard QIO Functions for Line Printers

Format: Function
QIOSC IOLATT,;eee Attach device
QINSC IOLDET ;40 Detach device
QIOSC T0.KIL,eu. Cancel I/0 requests

QIOSC IO.WLB,...,<{stadd,size,vfc> Write logicel block (print buffer
contents)

QIOSC IO.WVB,...,<{stadd,size,vEc)> Write virtual hlock (print huffer
contents)

where: stadd 1is the starting address of the data buffer (may be on a
byte bcundary).

size is the data huffer size in bytes (must be greater than
Zero) .

vEc is a vertical format control character from Tanle 7-4,
I0,XIL does not cancel an in progress request unless the line printer
is in an offline condition because of a power failure or a paper Jam

oxr because it is out of paper,

The line printer driver supports no device-specific functicns,

CHAPTER 7., LINE PRINTER DRIVER

7.4 STATUS RETURNS

Table 7-3 lists the error and status conditions that are returned by
the line printer driver described in this chapter.

Table 7-3
Line Printer Status Returns

Code Reason

IS.SUC Successful completion

The operation specified in the QIO directive was
completed successfully. The second word of the I/0
status block can be examined to determine the number of
bytes processed, if the operation involved writing.

IS.PND I/0 request pending
The operation specified in the QIO directive has not
yet been executed. The I/O status block is filled with
Zeros.

IE.ABO Operation aborted

The specified I/O operation was canceled while in

progress or while in the I/O queue. {
A
IE.DAA Device already attached
The physical device unit specified in an IO.ATT
function was already attached by the issuing task.
This code indicates that the issuing task has already
attached the desired physical device unit, not that the
unit was attached by another task.
IE.DNA Device not attached
s
The physical device unit specified an IO.DET function L

was not attached by the issuing task. This code has no
bearing on the attachment status of other tasks.

tiall) § i

S

CHAPTER 7, LINE PRINTER DRIVER

Table 7-3 (Cont.)
Line Printer Status Returns

Code Reason

IE.IFC Illegal function

A function code was specified in an I/0 request that is
illegal for line printers.

IE.OFL Device off-line
The physical device unit associated with the LUN
specified in the QIO directive was not on-line. When

the system was booted, a device check indicated that
this physical device unit was not in the configuration,

IE.SPC Illegal address space
The buffer specified for a write request was partially

or totally outside the address space of the issuing
task. Alternately, a byte count of zero was specified.

7.4.1 Ready Recovery

If any of the following conditions occur:
. Paper jam
. Printer out of paper
. Printer turned off-line

. Power failure

the driver determines that the 1line printer is off-line, and the

following message is output on the operator's console:
*** IPn: -= NOT READY

where n is the unit number of the line printer that is not ready. The
driver retries the function which encountered the error condition from
the beginning, once every second. It displays the message every 15
seconds until the line printer is readied. If a power failure occurs
while printing a line, the entire line is reprinted from the beginning
when power is restored.

m

TEITF

CHAPTER 7. LINE PRINTER DRIVER

7.5 VERTICAL FORMAT CONTROL

Table 7-4 summarizes the meaning of all characters used for vertical
format control on the line printer. Any one of these characters can
be specified as the vfc parameter in an I0,WLB or IO,WVB function,

Table 7-4
Vertical Format Control Characters

Octal

Value Character Meaning

040 blank SINGLE SPACE: output a line feed, print the
contents of the buffer, and output a carriage
return. Normally, printing immediately follows
the previously printed line.

060 . zZero DOUBLE SPACE: output two line feeds, print the
contents of the buffer, and output a carriage
return. Normally, the buffer contents are printed
two lines below the previously printed line,

061 one PAGE EJECT: output a form feed, print the
contents of the buffer, and output a carriage
return, Normally, the contents of the buffer are
printed on the first line of the next page.

053 plus OVERPRINT: print the contents of the buffer and
perform a carriage return, normally overprinting
the previous line,

044 dollar PROMPTING OUTPUT: output a line feed and then

sign print the contents of the buffer.

000 null INTERNAL VERTICAL FORMAT: the buffer contents are

printed without addition of vertical format
control characters., In this mode, more than one
line of guaranteed contiguous output can be
printed per I/O request.

All other vertical format control characters are interpreted as blanks
(octal 040). ’

7.6 PROGRAMMING HINTS

This section contains information on important programming
considerations relevant to users of the line printer driver described
in this chapter,

ol

(
\

CHAPTER 7, LINE PRINTER DRIVER

7.6.,1 RUBOUT Character

The line printer driver discards the ASCII character code 177 during
output, because a RUBOUT on the LS1ll printer causes a RUBOUT of the

hardware print buffer,

7.6,2 Print Line Truncation

If the number of characters to be printed exceeds the width of the
print carriage, the driver discards excess characters until it
receives one that instructs it to empty the buffer and return to
horizontal position 1, The user can determine that truncation will
occur by issuing a GET LUN INFORMATION system directive and examining
word 5 of the information buffer. This word contains the width of the
print carriage in bytes.

7.6.3 Aborting a Task

If a task is aborted while waiting for the line printer to be readied,
the line printer driver recognizes this fact within one second. It is
not necessary to ready the printer before aborting the task, as is the
case for DECtape.

P

CHAPTER 8

CARD READER DRIVER

8.1 INTRODUCTION

The RSX-11lM card reader driver supports the CRll card reader. This
reader 1is a virtually Jjam-proof device which reads EIA standard
80-column punched cards at the rate of 300 per minute, The hopper can
hold 600 cards. This device uses a vacuum picker which provides
extreme tolerance to damaged cards and makes card wear insignificant.
Cards are riffled in the hopper to prevent sticking., The reader uses
a strong vacuum to deliver the bottom card, It has a very short card
track, so only one card is in motion at a time.,

8.2 GET LUN INFORMATION MACRO

Word 2 of the buffer filled by the GET LUN INFORMATION system
directive (the first characteristics word) contains the following
information for card readers. A bit setting of 1 indicates that the
described characteristic is true for card readers.

CHAPTER 8. CARD READER DRIVER

Bit Setting Meaning
0 1 Record=-oriented device
1 0 Carriage-control device
2 0 Terminal device
3 0 Directory device
4 0 Single-directory device
5 0 Sequential device
6-12 -0 Reserved
13 0 Device mountable as a communications
channel
14 0 Device mountable as a FILES-11 volume
15 0 ‘ Device mountable |

Words 3 and 4 of the buffer are undefined; word 5 indicates the
default buffer size, which is 80 bytes for the card reader.

8.3 QIO MACRO

This section summarizes standard and devxce-spec1f1c QIO functions for
the card reader driver. .

8.3.1 Standard QIO Functions

Table 8-l lists the standard functions of the QIO macro that are valid
for the card reader.

S

TN

CHAPTER 8., CARD READER DRIVER

Table 8-1 v
Standard QIO Functions for the Card Reader

Format Function
QIOSC IOATT,ee. ; Attach device
QIOS$SC IO.DET,e0 Detach device
QIOSC IO.KIL,eso Cancel I/0 requests
QIOSC IO.RLB,...,<{stadd,size> Read logical block (alphanumeric)
QIOS$C IO.RVB,...,<{stadd,size> Read virtual block (alphanumeric)

where: stadd is the starting address of the data buffer (may be on a
byte boundary).

size is the data buffer size in bytes (must be greater than
zero).

I0.KIL does not cancel an in progress request unless the card reader
is in an offline condition because of a pick, read, stack, or hopper
check, because of power failure, or because the RESET button has not
been depressed.

8.3.2 Device-=Specific QIO Function
The device~specific function of the QIO macro that is valid for the
card reader is shown in Table 8-2,

Table 8-2
Device-Specific QIO Function for the Card Reader
Format Function
QIOSC IO.RDB,...,<{stadd,size> Read logical block (binary)
where: stadd is the starting address of the data buffer (may be on a
byte boundary).

size is the data buffer size in bytes (must be greater than
Zero) .

CHAPTER 8. CARD READER DRIVER

8.4 STATUS RETURNS

There are a wide variety of error conditions and recovery procedures
related to the use of the card reader. This section describes the
three major ways in which the system reports error conditions.

1. Lights and indicators on the card reader panel are turned on
or off to indicate particular operational problems such as
read, pick, stack, or hopper checks. Switches are available
to turn the reader power on and off and to allow the user to
reset after correcting an error condition,

2. A message is output on the operator's console if operational
checks or power problems occur,

3. An I/O completion code is returned in the low-order byte of
the first word of the I/0 status block specified in the QIO

macro to indicate success or failure on completion of an I/0
function,

The following subsections describe each of these returns in detail.

8.4.1 Card Input Errors and Recovery

The table included below describes all external 1lights and switches
used to indicate to the operator that a hardware problem has occurred
and must be corrected, There are two classes of hardware errors:

« Those requiring the operator to ready the reader and try the
operation again.

« Those requiring the operator to remove the last card from the
output stacker, to replace it in the input hopper, and to try
the operation again.

In the first case, the card reader was unable to read the current
card, In the second, the card was read incorrectly and must be
physically removed from the output stacker. The card reader driver
automatically restarts a read operation within one second after the
cards have been replaced in the input hopper.

Table 8~3 summarizes the functions of lights and indicators on the
front panel of the card reader, It discusses common operational
errors which might be encountered while reading cards and recovery
procedures associated with these error conditions,

/“"’7"\\

Table 8-3

Card Reader Switches and Indicators

Action

Controls application
of all power to the
card reader.

When indicator is

off, depressing switch
applies power to
reader and causes
associated indica-

tor to light.

When indicator is
lit, depressing
switch removes all
power from reader and
causes indicator to
go out.

When lit, this light
indicates that the
card just read may be
torn on the leading or
trailing edges, or
that the card may

have punches in

column positions 0

or 81,

CHAPTER 8. CARD READER DRIVER
Indicator Description
POWER pushbutton
switch indicator
switch
(alternate
action:
pressed for
both ON and
OFF)
READ white light
CHECK
e indicator
§

Because READ CHECK
indicates an error
condition , whenever
this indicator is
lit, it causes the
card reader to stop
operation and extin-
guishes the RESET
indicator,

Recovery

Card may have been
read incorrectly;
restore power if
possible by depress-
ing the POWER
switch; insert the
card again as the
first card in the
input hopper, and
press the RESET
switch; in some
cases, it may be
necessary to
restart the program.

Card was read incor-
rectly; duplicate if
hecessary, insert

the card again as

the first card in the
input hopper and
press the RESET
switch.

Table 8=3 (Cont.)

Card Reader Switches and Indicators

Action

When 1it, this light
indicates that the
card reader failed to
move a card into the
read station after
it received a READ
COMMAND from the
controller,

Stops card reader
operation and extin-
guishes RESET
indicator.

When lit, this light
indicates that the
previous card was not
properly seated in
the output stacker
and therefore may be
badly mutilated,

Stops card reader
operation and ex-
tinguishes RESET

indicator.

When lit, this light
indicates that either

CHAPTER 8, CARD READER DRIVER
Indicator Description
PICK white light
CHECK

indicator

STACK white light
CHECK

indicator

HOPPER white light
CHECK

indicator

the input hopper is
empty or that the out-~
put stacker is full,

Recovery

Card could not be
read; press the
RESET switch to try
again or remove the
caxrds from the input
hopper, smooth the
leading edges, re-
place, and then
press the RESET
switch.,

Card may have been
read incorrectly and
is not positioned
properly in the out=-
put stacker; dupli-
cate the card if it
is damaged; insert
the card again as
the first card in
the input hopper and
press the RESET
switch.

Card may have been
read incorrectly;
enpty the stacker or
£ill the hopper; in-
sert the card again
as the first card in
the input hopper and
press the RESET
switch.

P

CHAPTER 8, CARD READER DRIVER

) ,/«m\\
\

Table 8-3 (Cont.)
Card Reader Switches and Indicators

Indicator Description Action

STOP momentary When depressed,

switch pushbutton/ immediately lights
indicator and drops the READY
switch line, thereby extin-

(red light) guishing the RESET
indicator. Card
reader operation then
stops as soon as the
card currently in the
read station has been

ém#; read.

‘ \\\\\ -
This switch has no
effect on the system
power; it only stops
the current operation,
RESET momentary When depressed and
switch pushbutton/ “released, clears all
‘ indicator error flip-flops and
< switch ~ initializes card
(green reader logic. Associ-
light) ated RESET indicator

lights to indicate
that the READY signal
is applied to the con-
troller.

The RESET indicator
goes out whenever the
STOP switch is de-

/ pressed or whenever

& , « an error indicator

) lights (READ CHECK,

PICK CHECK, STACK
CHECK, or HOPPER
CHECK) «

8.4.2 Ready and Card Reader Check Recovery
If any of the following conditions occurs:
. POWER failure

. reset switch not pressed (reader offline)

CHAPTER 8. CARD READER DRIVER
the driver determines that the card reader is not ready, and the
following message is output on the operator's console:
*** CRn: == NOT READY
If any of the following conditions occurs:
. Pick error (PICK CHECK)
« Read error (READ CHECK)
. Output stacker error (STACK CHECK)
. Input hopper out of cards (HOPPER CHECK)
. Output stacker full (HOPPER CHECK)

the driver determines that a card reader check has occurred, and the
following message is output on the operator's console:

*** CRn: -~ READ FAILURE, CHECK HARDWARE STATUS

where n is the unit number of the card reader that is not ready. The
operator should correct the error and press RESET: the driver
attempts the function from +the beginning, once every second. It
displays the message once every 15 seconds until the card reader is
readied, In all cases except pick error, the last card read should be
reinserted in the input hopper, as described in section 8.4.1.

8.,4.3 I/O Status Condition

The error and status conditions listed in Table 8-4 are returned by
the card reader driver described in this chapter.

CHAPTER 8.

Code

IS.suC

IS.PND

IE.ABO

IE.DAA

IE.DNA

IE.EOF

IE.IFC

IE.NOD

CARD READER DRIVER

Table 8-4
Card Reader Status Returns

Reason

Successful completion

The operation specified in the QIO directive was .

completed successfully. The second word of the I1/0
status block can be examined to determine the number of
bytes processed, if the operation involved reading.

I/0 request pending

The operation specified in the QIO directive has not
yet been executed. The I/O status block is filled with
zZeros,

Operation aborted

The specified I/0 operation was canceled while in
progress or while still in the I/O queue.

Device already attached

The physical device unit specified in an IO.ATT
function was already attached by the issuing task.
This code indicates that the issuing task has already
attached the desired physical device unit, not that the
unit was attached by another task.

Device not attached

The physical device unit specified in an I0,DET
function was not attached by the issuing task. This
code has no bearing on the attachment status of other
tasks.

End-of-file encountered

An end-of-file control card was recognized.

Illegal function

A function code was specified in an I/0 request that is
illegal for card readers.

Buffer allocation failure

Dvnamic storage space has been depleted, and there was
insufficient buffer space available to allocate a card
buffer (i.e., cards are read into a driver buffer
translated and then moved to the user buffer).

)
1
o)

T

TEIT

CHAPTER 8, CARD READER DRIVER

Table 8-4 (Cont.)
Card Reader Status Returns

Code Reason

IE.OFL Device off-line

The physical device unit associated with the LUN
specified in the QIO directive was not on-line. When
the system was booted, a device check indicated that
this physical device unit was not in the configuration.

IE.SPC Illegal address space
The buffer specified for a read request was partially

or totally outside the address space of the issuing
task. Alternately, a byte count of zero was specified.

8.5 FUNCTIONAL CAPABILITIES

The card reader driver can perform the following functions:

1. Read cards in DEC026 format and translate to ASCII,

2, Read cards in DEC029 format and translate to ASCII.

3. Read cards in binary format.
If the QIO macro specifies the IO.RLB or IO.RVB function, the driver
interprets all data as alphanumeric (026 or 029 format). As explained
below, control characters indicate whether 026 or 029 is desired. If

the QIO macro specifies IO,RDB, the driver interprets all data,
including 026 and 029 control characters, as binarv.

8.5.1 Control Characters

Table 8=5 lists the multipunched cards that the card reader driver
recognizes as control characters. They are never transferred to the
user's buffer or included in the count of transferred bytes in
alphanumeric mode. In binary mode the only control card recognized is
binary EOF. '

8-1n

e

PN

{
S

CHAPTER 8., CARD READER DRIVER

Table 8=5
Card Reader Control Characters

Punches Columns Meaning
12-11-0-1—6—7-8~9 1 End-of-file (alphanumeric)
12-11-0-1~6-~7-8~9 (all 8 punches in End-of-file (binary)

the first 8 columns)
12-2-4-8 1 026-coded cards follow
12-0-2-4-6-8 1 029-coded cards follow

DEC026 is the default translation mode when the system is
bootstrapped. This mode remains in effect until explicitly changed by
a control card indicating that DEC029 cards will follow, After
encountering a DEC029 control card, the driver translates all cards in
DEC029 format unless another DEC026 control card is encountered. This
card overrides the 029 mode specification and indicates that
subsequent cards are to be translated in 026 format. Control
characters are addressed to +the card reader itself, and remain in
effect even when the reader is attached and subsequently detached.

8.6 CARD READER DATA FORMATS

The card reader reads data in either alphanumeric or binary format.

8.6.1 Alphanumeric Format (026 and 029)

Table 8~6 summarizes the translation from DEC026 or DEC029 card codes
to ASCII,.

2=

CHAPTER 8. CARD READER DRIVER

Table 8-6
Translation from DEC026 or DEC029 to ASCII

Non- . Non=-
Parity Parity
Character ASCII DEC029 DEC026 Character ASCII DEC029 DEC026
[173 12 0 12 0 ? 077 0 8 7 12 8 2
1 175 11 0 11 ¢ @ 100 8 4 8 4
SPACE 040 none none A 101 12 1 12 1
! 041 12 8 7 12 8 7 B 102 12 2 12 2
" 042 8 7 085 C 103 12 3 12 3
043 8 3 0 86 D 104 12 4 12 4
$ 044 11 83 11 8 3 E 105 12 5 12 5
% 045 0 8 4 0 87 F 106 12 6 12 6
AND 046 12 11 8 7 G 107 12 7 12 7
' 047 8 5 8 6 H 110 12 8 12 8
(050 1285 08 4 I 111 12 9 12 9
) 051 11 85 12 8 4 J 112 11 1 11 1
* 052 11 84 11 8 4 K 113 11 2 11 2
+ 053 12 86 12 L 114 11 3 11 3
’ 054 083 083 M 115 11 4 11 4
- 055 11 11 N 116 11 5 11 5
. 056 12 83 12 8 3 0 117 - 11 6 11 6
/ 057 01 01 P 120 11 7 11 7
0 060 0 0 Q 121 1l 8 11 8
1 061 1 1 R 122 11 9 11 9)
2 062 2 2 [123 0 2 0 2 {
3 063 3 3 T 124 03 0 3 AN
4 064 4 4 U 125 0 4 0 4
5 065 5 5 A 126 05 05
6 066 6 6 W 127 06 0 6
7 067 7 7 X 130 0 7 07
8 070 8 8 Y 131 08 08
9 071 9 9 2 132 09 09
: 072 8 2 11 8 2 [133 12 82 11 85
: 073 11 86 0 8 2 \ 134 0 82 8 7
< 074 1284 12 8 6] 135 118 2 12 8 5
= 075 8 6 8 3 + OR 136 11 87 85 /
> 076 0 86 11 8 6 “ or = 137 085 8 2 X

8.6.2 Binary Format

In RSX-11M binary format, the data are not packed, but are transferred
exactly as read, one card column per word., Because each word has 16
bits and each card column represents only 12, the data from the column
are stored in the rightmost 12 bits of the word. The word's remaining
four bits contain zeros.

TFINP

N

CHAPTER 8, CARD READER DRIVER

8.7 PROGRAMMING HINTS

This section contains information on important programming
considerations relevant to users of the card reader driver described
in this chapter. Section 8.4 contains information on operational
error-recovery procedures which might be important from a programming
point of view.

8.7.1 Input Card Limitation

Only one card can be read with a single QIO macro call, A request to
read more than 80 bytes or columns, the length of a single card, does
not result in a multiple card transfer, Only 80 columns are
processed, It is possible to read fewer than 80 columns of card input
with a QIO read function., The user can specify that only the first 10
columns, for example, of each card are to be read.

8.7.2 Aborting a Task

If a task which is waiting for the card reader to be readied is
aborted, the card reader driver recognizes this fact within one
second. It is not necessary to ready the reader before aborting the
task, as is the case for DECtape.

b
|
1=
9]

ot

-

CHAPTER 9

MESSAGE-ORIENTED
COMMUNICATION DRIVERS

9.1 INTRODUCTION

RSX-11M supports a variety of communication line interfaces -
synchronous and asynchronous, single-line and multiplexers,
character-oriented and message-oriented. These are used for terminal
communications, remote job entry, multicomputer interfaces, and
laboratory and industrial control communications. Communications line
interfaces can be roughly divided into two categories:

. Terminal (character-oriented) communications devices
N Multicomputer (message-oriented) communications devices

Chapter 2 describes the character-oriented asynchronous communications
line interfaces used primarily for terminal communications. The
PDP-11. PERIPHERALS HANDBOOK contains more detail on these devices,
This chapter describes in some detail the RSX-11M message-oriented
synchronous and asynchronous communication line interfaces. These are
used most frequently in multicomputer communications.

Character-oriented communications devices include the DH11l, DJ11,
DLl1l-A, DL11l~B, DL1ll-C, and DL1l1l-D interfaces. These are asynchronous
multiplexers and single-line interfaces which are used almost
exclusively for terminal communications. Transfers on all of these
interfaces are performed one character at a time. None of the
interfaces in this category have drivers of their own (i.e., they are
supported via the terminal driver), and none can be accessed directly
as RSX~-11M devices.

Message-oriented communications line interfaces are used primarily to
link two separate but complementary computer systems., One system must
serve as the transmitting device and the other as the receiving
device, Devices in this category include the synchronous and
asynchronous single-line interfaces summarized in Table 9-1.

CHAPTER 9. MESSAGE-~ORIENTED COMMUNICATION DRIVERS

Table 9-1
Message-Oriented Communication Interfaces

Model Type Function

DL11-E Asynchronous Single~line interface
DP11 Synchronous Single-line interface
DUl1ll Synchronous Single-line interface

The message~oriented communication line interfaces are used primarily
to transfer large blocks of data.

Whereas the character-oriented interfaces can only be accessed
indirectly through the terminal driver, the DL1l1l-E, DPll, and DUll
allow I/O requests to be queued directly for them. These devices have
drivers of their own and can be accessed by means of the logical
device names listed in Table 1-1. These names can be used in
assigning LUNs via the ASSIGN LUN system directive, at task build or
via the REASSIGN MCR command. The following subsections briefly
discuss the message-~oriented interfaces supported for RSX-11M.

9.1.1 DL11-E Asynchronous Line Interface

The DL11l-E is an asynchronous, serial~bit, single-line interface. It
is a block-transfer device used for remote terminal and multicomputer
communications., Baud rates are selectable between 50 and 9600, and
full data set control is supported. A single PDP-1l can support as
many as 16 DLl1l-E interfaces.

9.1.2 DPll Synchronous Line Interface

The DPll provides a program interrupt interface between a PDP-1ll and a
serial synchronous 1line. This interface facilitates the use of the
PDP~11l in remote batch processing, remote data collection, and remote
concentration applications. The modem control feature allows the DPll
to be used in switched or dedicated configurations.

On the DPll, baud rates are selectable between 2000 and 19,200, The
programmer can select a specific sync character which is used to
synchronize the transmitting and receiving systems. A single PDP-1ll
can support up to 16 DPll interfaces.

o

o

e ™~

CHAPTER 9. MESSAGE-ORIENTED COMMUNICATION DRIVERS

9.1.3 DUll Synchronous Line Interface

The DUll synchronous line interface is' a single-line communications
device which provides a program-controlled interface between the
PDP-11 and a serial synchronous line. The PDP-11 can be interfaced
with a high-speed line to perform remote batch processing, remote data

.collection, and remote concentration applications. Modem control is a

standard feature of the DUll and allows the device to be used in
switched or dedicated configurations. The DUll transmits data at a
maximum rate of 9600 baud; this rate is limited by modem and data set
interface level converters.

The DUll can be programmed to accept any user-defined sync character.

The use of the sync character is the same for the DUll and the DPll,
A single PDP-1l can support as many as 16 DUll interfaces.

9.2 GET LUN INFORMATION MACRO

Word 2 of the buffer filled by the GET LUN INFORMATION system
directive (the first characteristics word) contains the following
information for message-oriented communication interfaces., A Dbit
setting of 1 indicates that the described characteristic is true for
the interfaces described in this chapter.

Bit Setting Meaning
0 0 Record-oriented device
1 0 Carriage—~control device
2 0 Terminal device
3 0 Directory device
4 0 Single-directory device
5 0 Sequential device
6-12 0 Reserved
13 1 Device mountable as a communications
channel
14 0 Device mountable as a FILES-1ll volume
15 1 Device mountable

Words 3 and 4 are undefined, and word 5 has a special meaning for the
DP1l and the DUll interfaces. Byte 0 of word 5 contains the number of
sync characters to be transmitted before a synching message (e.g.,
after line turn around in half duplex operation), and byte 1 is used
as a sync counter,

CHAPTER 9. MESSAGE-ORIENTED COMMUNICATION DRIVERS

9.3 QIO MACRO
This section summarizes the standard and device=-specific functions of

the QIO macro that are wvalid for the communication interfaces
described in this chapter.

9.3.1 sStandard QIO Functions

Table 9-2 lists the standard functions of the QIO macro that are valid
for the communication devices.

Table 9-2
Standard QIO Functions for Communication Interfaces

Format Function
QIOSC IO ATT,... Not applicable (NOP)
QIOSC IO.DET, e Not applicable (NOP)
QIOSC IO.KIL,... Not applicable (NOP)
QIOSC IO RLB,...,<{stadd,size) Read logical block (stripping sync)
QIOSC IO0.WLB,...,{stadd,size> Write)logical block (preceded by
syncs

where: stadd is the starting address of the data buffer (may be on a
byte boundary).

size is the data buffer size in bytes (must be greater than
zero).

o

SN

CHAPTER 9. MESSAGE-ORIENTED COMMUNICATION DRIVERS

9.3.2 Device-Specific QIO Functions

The specific functions of the QIO macro that are wvalid for the
communication line interfaces are shown in Table 9-3.

Table 9-3
Device~Specific QIO Functions for Communication Interfaces

Format , Function

' QIOSC IOHDX,... Set device to half-duplex mode

QIOSC IO INL, ... Initialize device and set device
characteristics

QIOS$SC IO.RNS,...,<{stadd,size> Read logical block, without
stripping sync characters
(transparent mode)

QIOSC IO.SYN,ee.,<syn> Specify sync character

QIOS$SC IO.TRM,... Terminate communication,
disconnecting from physical channel

QIOS$C IO.WNS,...,<{stadd,size> Write logical block without
preceding sync characters

(transparent mode)

where: stadd is the starting address of the data buffer (may be on a
byte boundary).

size is the data buffer size in bytes (must be greater than
zero) .

syn is the sync character, expressed as an octal value.

The device-specific functions listed in Table 9-3 are described in
greater detail below,

9.3.2.1 1I0.,HDX - The IO.HDX QIO function is used to set the mode on a
DL11-E, DPll, or DUll unit to half-duplex. The IO.HDX function code
can be combined (ORed together) with the IO.SYN function code, if
desired, to set the operational characteristics of the physical device
unit.

CHAPTER 9, MESSAGE-ORIENTED COMMUNICATION DRIVERS

9.3.2.2 I0.INL and IO.TRM -~ These two QIO functions have the same
function code but different modifier bits. IO INL is used to
initialize a physical device unit for use as a communications 1link.
It turns the device on-line, sets device characteristics, and encsures
that the appropriate data terminal is ready. IO.TRM disconnects the
device, If it is a dial-up interface, it also hangs up the line.

9.3.2.3 IO.RNS - The IO.RNS QIO function is used to read a logical
block of data, without stripping the sync characters which may precede
the data. A similar function is IO.RLB, which is non-transparent, in
that it causes sync cliaracters preceding the data message to be
stripped. IO.RLB is used at the start of a segmented data request, in
which the block might have the following layout:

Ls |

slslululalnlcs]cs] DATA [cs]
1 2 3 4 5 6 7 8

Where: S 1is a sync character

H is a header character

CS is a validity check character

The programmer must strip sync characters from the beginning of a data
block in this way. Stripping only at the beginning of a read allows a
later character which happens to have the same binary value as a sync
character to be read without stripping. IO.RLB is used to read a
logical block with leading sync characters stripped; IO.RNS is wused
to read the block without stripping leading sync characters.,
Generally, IO.RLB should be used.

9.3.2.4 I0.SYN -~ This QIO function allows the programmer to specify
the sync character to be recognized when an I0.,RLB or IO.WLB function
is performed. IO.SYN can be combined (ORed together) with IO.,HDX to
set the characteristics of the physical device unit.

9.3.2.5 IO,WNS - This QIO function causes a logical block to be
written with no preceding sync characters. To ensure that the two
systems involved in a communication are synchronized, two or more sync
characters are transmitted by one system and received by the other
before any other message can be sent, IO,WLB is used to write a block
of data, preceded by sync characters; IO,WNS is used to perform a
block transfer without sending sync characters first, Generally,
I0.WLB should be used.

=

P

CHAPTER 9. MESSAGE-ORIENTED COMMUNICATION DRIVERS

9.4 STATUS RETURNS

The error and status conditions listed in Table 9-4 are
the communication drivers described in this chapter.

Table 9-4
Communication Status Returns

Code Reason

Is,.SucC Successful completion

returned by

The operation specified in the QIO directive was
completed successfully. The second word of the I/0
status block can be examined to determine the number of
bytes processed, if the operation involved reading or

writing,

IS.PND I/0 request pending

The operation specified in the QIO directive has not
yet been executed. The I/O status block is filled with

zZeros.,

IE.DNR Device not ready

The physical device unit specified in the QIO directive
was not ready to perform the desired I/0 operation.
This code is returned to indicate one of the following

conditions:

. The physical device unit could not be

initialized

(i.e., the circuit could not be completed).

« The transmission of a character was not

followed by

an interrupt within the period of time selected as
the device timeout period. This timeout occurs only
when a transmission is in progress and the interrupt
marking completion of a message does not occur, The
appropriate response to this condition is to attempt
to resynchronize the device by initializing and
accepting the next request. A timeout does not occur
on a read. If the receiving device is not ready, the
transfer will not be initiated by the transmitting
device. Once the transfer is initiated, however, it
will complete either by satisfying the requested byte

count or by timing out.

CHAPTER 9. MESSAGE-ORIENTED COMMUNICATION DRIVERS

Table 9-4 (Cont.)
Communication Status Returns

Code Reason

IE.IFC Illegal function

A function code was specified in an I/0 request that is
illegal for message-oriented communication devices.

IE.OFL Device off-line

The physical device unit associated with the LUN
specified in the QIO directive was not on-line. When
the system was booted, a device check indicated that
this physical device unit was not in the configuration,

IE.SPC Illegal address space
The buffer specified for a read or write request was
partially or totally outside the address space of the

issuing task., Alternately, a byte count of zero was
specified,

9.5 PROGRAMMING HINTS

This section contains information on important programming
considerations relevant to users of the message-oriented communication
interfaces described in this chapter.

9,5.1 Transmission Validation

Because there is no way for the transmitting device to verify that the
data block has successfully arrived at the receiving device unless the
receiver responds, the transmitter assumes that any message which is
clocked out on the 1line (without 1line or device outage) has been
successfully transmitted., As soon as the receiver is able to satisfy
a read request, it returns a successful status code (IS.SUC) in the
I/0 status block. Of course, only the task which receives the message
can determine whether or not the message has actually been transmitted
accurately,

The receiving device should be ready to receive data (with a read
request) at the time the transmission is sent.

TN

CHAPTER 9., MESSAGE-ORIENTED COMMUNICATION DRIVERS

9.5.2 Redundancy Checking

By the nature of message-oriented communications, only the task which
receives a communication can determine whether or not the message was
received successfully. The transmitter simply transfers data, without
validation of any kind. It is therefore the responsibility of the
communicating tasks which use the device to check the accuracy of the
transmission. A simple validity check is a checksum-type longitudinal
redundancy check. A better approach to validating data is the use of
a cyclic redundancy check (CRC). A CRC can be computed in software or
with a hardware device, such as the KG-1l1 communications arithmetic
option.

9.5.3 Half-Duplex Considerations

Only half-duplex mode is supported for the message-oriented
communication interfaces described in this chapter. A unit must be
explicitly declared half-duplex by setting the mode with an IO.HDX QIO
function. Because there is a single I/O request queue, only one QIO
request can be performed at a time. It 1is therefore not possible,
through QIOs, for a device to send and receive data at the same time.

9.5.4 Low-Traffic Sync Character Considerations

If message traffic on a 1line 1is 1low, each message sent from a
communications device should be preceded by a sync train., This
enables the controller to resynchronize if a message is "broken"
(i.e., part or all of it is lost in transmission). Correspondingly,
every message received by a communications device under low-traffic
conditions, when messages are not contiguous (back-to-~back), should be
read via an IO.RLB (read, strip sync) function. This requires that
the first character in the data message itself not have the binary
value of the sync character.

9.5.5 Vertical Parity Support

Vertical parity is not supported by the DL1l-E, DPll, and DUll, Codes
are assumed to be eight-bit only.

CHAPTER 9., MESSAGE-ORIENTED COMMUNICATION DRIVERS

9.5.6 Importance of I0,INL

After the type of communication line has been determined, and after
I0O.SYN has specified the sync character, it is extremely important
that IO.INL be issued before any transfers occur. This - ensures that
appropriate parameters are initialized and that the interface is
properly conditioned. Note that IO.INL provides the only means of
setting device characteristics, such as sync character, For this
reason, IO.INL should always be used immediately prior to the first
transfer over a newly-—-activated link,

9.6 PROGRAMMING EXAMPLE

The following example illustrates the initialization, setting of
device parameters, and transmission of a block of data on a
message-oriented communication device.

«MCALL ALUNS$S,QIOSS

ALUNSS #1,#"XP,#0
QIO$S #I0.HDX!IO.SYN,#1,,,,,<#226>
QI0$S #I0.INL,#1
QIOS$S #I0.WLB,#1,,,#TXSTS,#TXAST,<#TXBUF,$100>; SEND A BLOCK

« wo “o

TXAST: CMPB #$IS.SUC&377,@(SP) +

BEQ 108

~e “o No we

BLOCK

USE LUN1 FOR DPl1l
SET DEVICE PARAMETERS
PUT DEVICE ON LINE

WAS DATA CLOCKED OUT
SUCCESSFULLY?
IF SO, SET UP FOR NEXT

(-

(
\

TN

T

(

CHAPTER 10

ANALOG=TO~-DIGITAL CONVERTER DRIVERS

10.1 INTRODUCTION

The AFCll and ADOl-D analog~to-digital (A/D) converters are used for
the acquisition of industrial and laboratory analog data. Although
each has its own driver, programming for both is quite similar and
both are multichannel, programmable gain devices, The AD0Ol1-D should
not be confused with the ADU0Ol, a UDC module, which is described in
Chapter 11, Table 10-1 compares the AFCll and the ADOLl-D briefly, and
subsequent sections describe these devices in greater detail,

Table 10-1
Standard Analog=to-Digital Converters

AFC11 AD01-D
Maximum sampling rate (points 200 (20 per single) Approximately
per second) channel 10,000
Number of bits 13 or 14 10 or 11
Maximum number of analog channels 1024 64 ‘

that can be multiplexed

10.,1.,1 AFCll Analog-to-Digital Converter

"The AFCll is a differential analog input subsystem for industrial

data-acquisition and control systems. It multiplexes signals, selects
gain, and performs a 13~ or l4-bit analog-to-digital conversion under
program control, With the wuse of appropriate signal-conditioning
modules, the system can intermix :nd accept low-level, high-level, and
current inputs, with a high degree of noise immunity.

10-1

CHAPTER 10, ANALOG-TO-DIGITAL CONVERTER DRIVERS

10.1.2 AD0l-D Analog-to-Digital Converter

The ADOl-D is an extremely fast analog data=-acquisition systemn, It
multiplexes signals, selects gain, and performs a 10- or ll-bit
analog-to-digital conversion undar program control, The ADOl-D is
normally unipolar, but an optional sign-bit facilitates bipolar
operation.

10.2 GET LUN INFORMATION MACRO

If a GET LUN INFORMATION system directive is issued for a LUN
associated with an analog-to-digital converter, word 2 (the first
characteristics word) contains all zeros, words 3 and 4 are undefined,
and word 5 is not significant, since there is no concept of a default
buffer size for analog-to~digital converters.

10.3 QIO MACRO

This section summarizes standard and device-specific QIO functions for
analog~to~digital converters.

10.3.1 Standard QIO Function

The standard function that is valid for analog-to-digital converters
is shown in Table 10-~2,

Table 10-2
Standard QIO Function for the A/D Converters

Format Function

QIOSC IO KIL,... Cancel I/O requests

Since all requests are processed with a small amount of time, no in
progress request is ever canceled. This function simply cancels all
queued requests,

10.3.2 Device=Specific QIO Function

The device-specific function of the QIO macro that 1is wvalid for

analog-to-digital converters is shown in Table 10-3.

10-2

P

CHAPTER 10, ANALOG-TO-DIGITAL CONVERTER DRIVERS

Table 10-3

Device-Specific QIO Function for the A/D Converters

Format Function

QIOSC IO.RBC,...,<{stadd,size,stcntad> Initiate multiple A/D

conversions

where: stadd is the starting address of the data buffer (must be on

a word boundary).

size is the control buffer size in bytes

(must be even and

greater than zero); the data buffer is the same size,

stcnta is the starting address of the control buffer (must be
on a word boundary); each control buffer word must be

constructed as shown in Table 10-~4.

Table 10-4
A/D Conversion Control Word

Bits Meaning AFCll
0~11 Channel number Range: 0-1023
12-15 Gain value for this Gain:

sample, expressed as
a bit pattern as
follows

[
N

1
2
illegal
illegal
10
20
illegal
illegal
50
100
illegal
illegal
200
1000
illegal
illegal

=
HHHHHHHHOOOOOOOOIW

[
HFHERMHOOOOMMHMHOOOO |b

[
PHOOHHOOHMHOOHKOO (W
HOMHMOMOHOMOROHONO

10-3

ADO1-D
Range: 0-63

Gain:

00 N

illegal
illegal
illegal
illegal
illegal
illegal
illegal
illegal
illegal
illegal
illegal
illegal

CHAPTER 10. ANALOG-TO-DIGITAL CONVERTER DRIVERS

10.4 FORTRAN INTERFACE

A collection of FORTRAN~callable subroutines provide FORTRAN programs
access to the AFCll and the ADOl-D, These are described in this
section, All are reentrant and may be placed in a resident library.

10.4.1 sSynchronous and Asynchronous Process Control I/0

The ISA standard provides for synchronous and asynchronous I/0.
Synchronous I/0 is indicated by appending a "W" to the name of the
subroutine (e.g., AISQ/AISQW). The synchronous call suspends task
execution until the I/0 operation is complete. If the asynchronous
form is wused, execution continues and the calling program must
periodically test the status word for completion.

10.4.2 The isb Status Array

The isb (I/0 status block) parameter is a two-word integer array that
contains the status of the FORTRAN call, in accordance with ISA
convention., This array serves two purposes:

1., It is the 2-word I/O status block to which the driver returns
an I/0 status code on completion of an I/0O operation.

2. The first word of isb receives a status code from the FORTRAN
interface in ISA-compatible format, with the exception of the
I/0 pending condition, which is indicated by a status of
zero., The ISA standard code for this condition is +2,

The meaning of the contents of isb varies, depending on the FORTRAN
call that has been executed, but Table 10-5 lists certain general
principles that apply. The section describing each subroutine
provides further details.

10-4

e

CHAPTER 10, ANALOG-TO-DIGITAL CONVERTER DRIVERS

Table 10-5
Contents of First Word of isb

Contents Meaning

isb(l) = 0 Operation pending; I/O in progress

isb(1l) = 1 Successful completion

isb(1l) = 3 Interface subroutine unable to generate
QIO directive or number of samples is
zero

3 < isb(1l) < 300 QIO directive rejected and actual error
code = =(isb(l) - 3)

isb (1) > 300 Driver rejected request and actual error

code = =(isb (1) - 300)
Unless otherwise specified, the value of isb(2) is the value returned
by the driver to the second word of the I/O status block.
FORTRAN interface subroutines depend on asynchronous system traps to

set their status. Thus, 4if the trap mechanism is disabled, proper
status cannot be set. ‘

10.4.3 FORTRAN Subroutine Summary

Table 10-6 lists the FORTRAN interface subroutines supported foxr the
AFCll and AD01-D under RSX-11M,

Table 10-6
FORTRAN Interface Subroutines for the AFCll and ADO1l~-D

Subroutine Function

AIRD/AIRDW Perform input of analog data in random
sequence

AISQ/AISQW Read a series of sequential analog input
channels

ASADLN : Assign a LUN to ADO:

ASAFLN Assign a LUN to AFO0:

10-5

CHAPTER 10, ANALOG-TO=-DIGITAL CONVERTER DRIVERS

The following subsections briefly describe the function and format of
each FORTRAN subroutine call. Note the use of ASADLN and ASAFLN to
assign a default logical unit number.

10.4.4 AIRD/AIRDW: Performing Input of Analog Data in Random
Sequence

The ISA standard AIRD/AIRDW FORTRAN subroutines input analog data in
random sequence, These calls are issued as follows:

AIRD
CALL {inn,icont,idata, [isb], [1un])
AIRDW
where: inm specifies the number of analog input channels,

icont is an integer array containing terminal connection
data = channel number (right-justified in bits 0-11)
and gain (bits 12-15), as shown in Table 10-4,

idata is an integer array to receive the converted values.

isb is a two-word integer array to which the subroutine
status is returned

lun is the logical unit number.,

The isb array has the standard meaning defined in section 10.4.2. If
inm = 0, then isb(l) = 3. The contents of idata are undefined if an
error occurs,

10.4.5 AISQ/AISQW: Reading Sequential Analog Input Channels

The ISA standard AISQ/AISQW FORTRAN subroutines read a series of
sequential analog input channels. These calls are issued as follows:

AISQ
CALL (inm,icont,idata, [isb], [1lun])
AISQW
where: inm specifies the number of analog input channels,

icont is an integer array containing terminal connection
data - channel number (right-justified in bits 0-11)
and gain (bits 12-~15), as shown in Table 10-4,

idata is an integer array to receive the converted values.

isb is a 2-word integer array to which the subroutine
status is returned.

lun is the logical unit number.,

10-6

PN
, \

Hallidy

CHAPTER 10, ANALOG-TO-DIGITAL CONVERTER DRIVERS

For sequential analog input, channel number is computed in steps of
one, beginning with the value specified in the first element of icont,
The channel number field is ignored in all other elements of the
array.

The gain used for each conversion is taken from the respective element
in icont. Thus, even though the channel number is ignored in all but
the first element of icont, the gain mnmust be specified for each
conversion to be performed.

The isb array has the standard meaning defined in section 10.4.2. If
inm = 0, then isb(l) = 3. The contents of idata are undefined if an

error occurs.

10.4.6 ASADLN: Assigning a LUN to ADO:

The ASADLN FORTRAN subroutine assigns the specified LUN to ADO: and
defines it as the default logical unit number to be used whenever a
LUN specification is omitted from an AIRD(W)/AISQ(W) subroutine call,
It is issued as follows:

CALL ASADLN (lun,[isw])
where: Jun is the logical unit number to be assigned to ADO: and
defined as the default unit,
isw is an integer variable +to which the result of the

ASSIGN LUN system directive is returned.

Only the LUN specified in the last call to ASADLN or ASAFLN is defined
as the default unit,

10.4.,7 ASAFLN: Assigning a LUN to AFO:

The ASAFLN FORTRAN subroutine assigns the specified LUN to AFO: and
defines it as the default logical unit number to be used whenever a
LUN specification is omitted from an AIRD(W)/AISQ(W) subroutine call,
It is issued as follows:

CALL ASAFLN (lun, [isw])

10-7

CHAPTER 10, ANALOG-TO-DIGITAL CONVERTER DRIVERS

where: lun is the logical unit number to be assigned to AF0: and
defined as the default unit.
isw is an integer variable to which the status from the
ASSIGN LUN system directive is returned,

Only the LUN specified in the last call to ASAFLN or ASADLN is defined
as the default unit.

10.5 STATUS RETURNS"

The error and status conditions listed in Table 10-7 are returned by
the analog~to-digital converter drivers described in this chapter.

Table 10-7
A/D Converter Status Returns.

Code Reason

Is.SUC Successful completion

The operation specified in the QIO directive was
completed successfully. The second word of the I/O
status block can be examined to determine the number of
A/D conversions performed.

1S.PND I/0 request pending

The operation specified in the QIO directive has not
vet been executed., The I/O status block is filled with
Zeros,

IE.ABO Operation aborted

The specified I/0 operation was cancelled via IO.KIL
while still in the I/0 queue.

IE.BAD Bad parameter

An illegal specification was supplied for one or more
of the device-~dependent QIO parameters (woxds 6-11).
For the analog-to-digital converters, this code
indicates that a bad channel number or gain code ias
specified in the control buffer,

10-8

PN

CHAPTER 10, ANALOG-TO-DIGITAL CONVERTER DRIVERS

Code

IE.BYT

IE.DNR

IE.IFC

IE.OFL

IE.SPC

Table 10-7 (Cont.)
A/D Converted Status Returns

Reason
Byte-aligned buffer specified

Byte alignment was specified for a data or control
buffer, but only word alignment 1is legal for
analog-to-digital convertors. Alternately, the length
of the data and control buffer is not an even number of
bytes,

Device not ready

The physical device unit specified in the QIO directive
was not ready to perform the desired I/O operation,
For the AFCll, this code is returned if an interrupt
timeout occurred or the power failed. 1In the case of
the AD01-D, which is not operated in interrupt mode,
this code indicates a software timeout occurred (i.e.
a conversion did not complete within 30 microseconds).

Illegal function

A function code was specified in an I/0 request that is
illegal for analog-to-digital convertors.

Device off-line

The physical device unit associated with the LUN
specified in the QIO directive was not on-line. When
the system was booted, a device check indicated that
this physical device unit was not in the configuration,

Illegal address space

The data or control buffer specified for a conversion
request was partially oxr totally outside the address
space of the issuing task. Alternately, a byte count
of zero was specified,

FORTRAN interface values for these subroutines are presented in

section 10.5.1.

10-9

CHAPTER 10. ANALOG-TO-DIGITAL CONVERTER DRIVERS

10.5.1 FORTRAN Interface Values

The values listed in Table 10-8 are returned in FORTRAN subroutine
calls,

Table 1.0-8
FORTRAN Interface Values

Status Return FORTRAN Value
IS.SUC +01
IS.PND +00
IE.ABO +315
IE.ADP +101
IE.BAD +301
IE.BYT +319
IE,DAO +313
IE.DNR +303
IE.IEF +100
IFE,IFC +302
IE.ILU +99
IE,.NOD +323
IE,.ONP +305
IFE.PRI +316
IE.RSU +317
IF.SDP +102
IE.SPC +306
IE.ULN +08
IE.UPN +04

10,6 FUNCTIONAL CAPABILITIES

The AFCll and ADOl1-D operate only in multi-sample mode, because the
user can simulate single-sample mode by simply specifying one sample.
Multi-sample mode permits many channels to be sampled at approximately
the same time without requiring the user to queue multiple I/O
requests,

The maximum number of channels in the configuration is specified at

system~generation time, This value is stored in the respective AFCll
and ADOl=-D unit control blocks,

17.6.1 Control and Data Buffers

The user must define two buffers of equal size, the control buffer and
the data buffer. The former contains the control words needed to
perform one A/D conversion per channel specified. Fach control word
indicates the channel to be sampled and the gain to be applied (see
Table 10-4).

10-10

P

CHAPTER 10, ANALOG-TO-DIGITAL CONVERTER DRIVERS

The data buffer receives the results of the conversions., Each result
is placed in the data buffer location that corresponds to the control
word that specified it. :

10.7 PROGRAMMING HINTS

This section contains information on important programming
considerations relevant to users of the analog-to-digital converter
drivers described in this chapter.

10.7.1 Use of A/D Gain Ranges

Note that the A/D gain ranges overlap. The key to successful use of
the A/D converters is to change to a higher gain whenever a full-scale
reading is imminent and to change to a lower gain whenever the last
A/D value recorded was less than half of full scale. This method
maintains maximum resolution while avoiding saturation.

10.7.2 Identical Channel Numbers on the AFCll

When requesting sampling of more than one channel, the user should not
specify multiple sampling of a single channel without 10 or more
intervening samples on other channels, This ensures 50 milliseconds
between samples on a single channel. If sampling occurs more often
than this on a single channel, partial results are returned (see
10.7.3 below).

10.7.3 AFCll1l Sampling Rate

Although the AFCll can sample a maximum of 200 points per second, a
single channel can only be sampled at 20 points per second. Because
the channel capacitor needs 50 milliseconds to recharge after each
conversion, more frequent sampling may result in partial readings. If
this occurs, the user will receive no indication that information is
heing lost, To ensure that information is not lost on any one
channel, the user should sample approximately ten other channels
before returning to the first one,

10.7.4 Restricting the Number of ADO1-D Conversions

The ADCl-D is an extremely fast device, providing a 25-microsecond
conversion rate, and is driven programmably to minimize system
overhead. However, an excessive numbexr of conversions in a single
request essentially locks out the rest of the svstem because the
driver does not return control to the system until it has finished all
the specified conversions. MNo other task can run, although interrupts

can still occur and are processed.

10-11

,ﬂu\\

N

CHAPTER 11

UNIVERSAL DIGITAL CONTROLLER DRIVER

11,1 INTRODUCTION

The UDC1ll is a digital input/output system for industrial and process
control applications. It interrogates and/or drives up to 252
directly addressable digital sense and/or control modules. The UDC1ll
operates under program control as a high-level digital multiplexer, .
interrogating digital inputs and driving digital outputs.

While performing analog-to-digital conversions, the UDCll driver can
handle other functions, such as contact or timer interrupts or
latching output, These functions are performed immediately, without
requiring any in progress analog-to~digital conversions to first be
completed. ‘

Unlike other RSX—llM‘I/O device drivers, the UDCll driver is neither a
multicontroller nor a multiunit driver.

11,1.1 Creating the UDCll Driver

Since different installations have different configurations of
modules, no preassembled driver is supplied with the RSX~11lM system,
Each installation must assemble the driver source module with a prefix
file that defines the particular hardware configuration,

The prefix file is created at system generation according to the
user's response +o questions relating +to the UDCll, This file is
named RSXMC,MAC and includes symbolic definitions of the UDCll
configuration, These definitions encode the relative module number
and the number of modules for each generic type specified in the
system generation dialog. The encoding has the following format:

8 8
Lgpmber of modules starting module number

One or more of the following symbols is generated:

11-1

CHAPTER 1l. UNIVERSAL DIGITAL CONTROLLER DRIVER

Symbol Module Type

U$SADM Analog input

U$$SAOM Analog output

US$CIM Contact interrupt ,
US$CSM Contact sense input
USSLTM Latching digital output
U$$SSM Single-shot digital output
USSTIM Timer (I/0 counter)

Note that all modules of a given type must be installed together in
sequential slots. ‘

11.1,2 Accessing UDCll Modules

RSX~11M provides two methods of accessing the UDCll:
l. A QIO macro call issued to the driver

2, Restricted direct access by any task to I/0 page registers
dedicated to the UDC1l1l

The first method, access through the driver, is required to service
interrupting modules and to set and record the state of latching
digital output modules.
The second method, direct access, is a high-speed, low=-overhead way to
service noninterrupting modules. The following functions may be
pexrformed:

. Analog output

. Contact sense input

« Single-shot digital output

. Read a contact interrupt module

. Read a timer module

11.,1.2,1 Driver Services - The driver services the following types of
modules: :

1. Contact interrupt
2. Timer (I/O counter)
3. Analog input

4, Latching digital output

11-2

T

RN
5 S,

CHAPTER 11, UNIVERSAL DIGITAL CONTROLLER DRIVER

Contact and timer interrupts need not be serviced by a single task.
One task may be connected to contact interrupts, and another to timer
interrupts. A nonprivileged task can connect to either or both of
these classes by providing a circular buffer to receive interrupt
information and an event flag to allow triggering of the task whenever
a buffer entry is made.

11.1.2.2 Direct Access - A global common block within the I/O page
provides restricted direct access to the UDCll device registers. In a
mapped system, the length of the block is set to prevent access to
other device registers. In an unmapped system, the use of the common
block is optional. Section 11,4 explains direct access more fully,

11.2 GET LUN INFORMATION MACRO

If a GET LUN INFORMATION system directive is issued for a LUN
associated with the UDCll, word 2 (the first characteristics word)
contains all zeros, words 3 and 4 are undefined, and word 5 1is not
significant, since there is no concept of a default buffer size for
universal digital controllers.

11.3 QIO MACRO
This section summarizes standard and device=-specific QIO functions for

the UDCll driver. In issuing them, note the numbering conventions
described in 11.7.2.

11.3.1 Standard QIO Function

The standard function that is valid for the UDCll is shown in Table
11-1.

Table 11-1
standard QIO Function for the UDCll
Format Function
.QIOSC I0.KIL,ee. cancel I/0 requests

IO.KIL cancels all queued requests and disconnects all interrupt
connections, but does not stop any I/0 that is currently in progress.

11-3

CHAPTER 11.

UNIVERSAL DIGITAL CONTROLLER DRIVER

11.3.2 Device-Specific QIO Functions

Table 11-2 summarizes device-specific QIO functions that are supported
for the UDCll.

QIO$C
QIOSC
QIosc
QIOS$C

QIOSC

QIOSC
QIOSC

where:

Table 11-2
Device~Specific QIO Functions for the UDCll

Format Function
J0.CCI,...,<{stadd,sizb,tevE> Connect a buffer to contact
interrupts
I0,CTI,...,<{stadd,sizb,tevf,arv> Connect a buffer to timer
interrupts
I0.DCI,;eee Disconnect a buffer from
contact interrupts
I0.DTI,vee. , Disconnect a buffer from timer
interrupts
I0.ITI,e0e.,<{mn,ic> Initialize a timer
IO.MLO,...,<Opn,pp,dp> Open or close latching digital
output points
IO.RBC,...,<{stadd,size,stcenta Initiate multiple A/D
conversions
stadd is the starting address of the data buffer (must be on
a word boundary).
sizh is the data buffer size in bytes (must be even and
large enough to include a 2-word buffer header plus one
data entry; the buffer may cross a 4K boundary).
tevE is the trigger event flag number (in range 1 through
64).
arv is the starting address of the table of initial/reset
values (must be on a word boundary).
mn is the module number.
ic is the initial count.
opn is the first latching digital output point number,
which must be on a module boundary (evenly divisible by
16).
PP is the l6-bit mask.

11-4

=

C

N

Vi

——

CHAPTER 11. UNIVERSAL DIGITAL CONTROLLER DRIVER

dp is the data pattern.

size is the control buffer size in bytes (must be even and
greater than zero); the data buffer is the same size.

stenta is the starting address of the control buffer (must be
on a word boundary); each control buffer word must be
constructed as shown in Table 11-3.
The following sections describe the functions listed in Table 1ll=-2,

Table 11-3
A/D Conversion Control Word

Bits Meaning ADUO1
0-11 - Channel number Range: 0-1023
12-15 Gain value for this Gain:

sample, expressed as
a bit pattern as
follows

15 14 13 12

illegal
illegal

HFHRHRPHFHEFOOOOOOOO
HFHEHHOOOOHRHKHMHFOOOO
HHOOMMHOOKHOOHKHOO
HOHOHOMHOMHOHOHOKRO
u
o

11.3.2.1 Contact Interrupt Digital Input (W733 Modules) - Digital
input and change of state information from contact interrupt modules
is reported in a requester=-provided circular buffer, The buffer
consists of a 2-word header, followed by a data area in the following
format:

1 driver index

2 user index

3 entry

4 entry

Xy

CHAPTER 11, UNIVERSAL DIGITAL CONTROLLER DRIVER

Whenever a change of state occurs in one or more contact points an
interrupt is generated. The UDC1ll driver gains control, determines
whether the change of state is of interest (i.e., a contact closure
and point closing (PCL) is set on the module), and then optionally
makes an entry in the data area of the buffer, updates the index words
and .sets the trigger event flag of the connected task.

Each entry consists of five words in the following format:

Word Contents
0 Entry existence indicator
1 Change of state (COS) indicator
2 . Module data (current point values)
3 v Module number (interrupting module)
4 Generic code (interrupting module)

The driver enters data in the 1location currently indicated by the
driver index. This pointer can be considered as a FORTRAN index into
the buffer, i.e., the first location of the buffer is associated with
the index 1. The beginning of the data area is the location of the
first entry (index 3), Entries are made in a circular fashion,
starting at the beginning of the data area, filling in order of
increasing memory address to the end of the data area, and then
wrapping around from the end to the beginning of the data area. If,
near the end of the data area, only part of the entry (e.g., the first
two words) can fit, the remainder (the other three) is placed at the
beginning of the data area.

It is expected that the connected task will maintain its own pointer
(the wuser index) to the location in the buffer where it is next to
retrieve contact interrupt data. When a task is triggered by the
driver, it should process data in the buffer starting at the location
indicated by its pointer and continuing in a circular fashion until
the two pointers are equal or a zero entry existence indicator is
encountered. Equality of pointers means that the connected task has
retrieved all the contact interrupt information that the driver has
entered into the buffer,

The entry existence indicator is set nonzero when a buffer entry is
made. When a requester has removed or processed an entry, he must
clear the existence indicator ' in order to free the buffer entry
position,

If data input occurs in a burst sufficient to overrun the buffer, data
are discarded and a count of data overruns is incremented. The
nonzero entry existence indicator also serves as an overrun indicator.
A positive value (+1) indicates no overruns between entries; a
negative value is the two's complement of the number of times data
have been discarded between entries,

11-6

/"”’"\\‘

e

/
H
A\ .

CHAPTER 1l. UNIVERSAL DIGITAL CONTROLLER DRIVER

The module number indicates a module on which a change of state in the
direction of interest has been recognized for one or more discrete
points. The direction of the change may be from 0 to 1 or 1 to O,
depending on the PCL (point closing) and POP (point opening) module
jumpers. The change of state (COS) indicator specifies which point or
points of the module have changed state.

The bit position of an on-bit in the COS indicator provides the
low=-order bits (3-0) of a point number and the module number provides
the high order bits (15-4). The module data indicates the logical
value (polarity) of each point in the module at the time of the
interrupt,

Contact interrupt data can be reported to only one task. The
functions IO,CCI and IO.DCI in Table 11-2 are provided to enable a
task to connect and disconnect from contact interrupts. If the
connection is successful, the second word of the I/0 status block
contains the number of words passed per intexrrupt in the low-order
byte and the initial FORTRAN index to the beginning of the data area
in the high-~order byte,

11,3.2.2 Timer (W734 I/0 Counter Modules) - A timer (I/O counter)

module is a clock that is initialized (loaded), counts up or down, and
then causes an interrupt. The UDCll driver treats such modules in a
way similar to that in which it handles contact interrupts. The
requester provides a circular buffer similar to that for contact
interrupts. Each entry oonsists of four words in the following
format:

Word Contents
0 Entry existence indicator
1 Module data (current value)
2 Module number (interrupting module)
3 Generic code (interrupting module)

The I0.CTI function in Table 11-2 enables a task to connect to timer
interrupts. The table of initial/reset values is used to initially
load the timers and to reload them on interrupt (overflow). The table
contains one word for each timer module. The contents of the first
word is used to load the first module, and so forth. If a timer has a
nonzero value when it interrupts, it is not reloaded, so that
self-clocking modules and modules that interrupt on half count can
continue counting from the initial value.

The I0.DTI function in Table 11-2 disconnects a task from timer
interrupts, and the IO.ITI function provides the capability to
initialize a single timer.

CHAPTER 11. UNIVERSAL DIGITAL CONTROLLER DRIVER

11.3.2.3 Latching Digital Output (M685, M803, and M805
Modules) - Each module has 16 latching digital output points. The
I0.MLO function in Table 11~2 opens or closes a set of up to 16
points, Bit n of the mask and data pattern corresponds to the point
opn + n., ‘If a bit in the mask is set, the corresponding point is
opened or closed, depending on whether the corresponding bit in the
data pattern is clear or set., If a bit in the mask is clear, the
corresponding point remains unaltered.

11.3.2.4 Analog-to-Digital Converter (ADUO1l Module) - Each ADUO1l
module has eight analog input channels. The IO.RBC function in Table
11-2 initiates A/D conversions on multiple ADUO1l input channels,
Restrictions on maximum sampling rates are the same as defined for the
AFCll in Chapter 10.

11.4 DIRECT ACCESS

Section 11.1.2 describes UDCll functions that mav be performed by
referencing a module through its physical address in the I/0 page.
Under RSX-11M such access is accomplished by one. of the following
methods:

l. A privileged task or any task running in an unmapped system
has unrestricted access to the 1I/0 page and may therefore
access each module by absolute address.

2, Using the Task Builder, a task may link to a global common
area whose physical address limits span a set of locations in
the I/0 page. This method applies to either a mapped or
unmapped system,

The latter method allows a task to be transported to any other system
simply by relinking. Further, in a mapped system the memory
management hardware will abort all references to device registers
outside the physical address limits of the common block.

The operations required to implement each method may be summarized as
follows:

l. Unrestricted access to the I/0 page
a. An object module is created which defines the UDCll
configuration through a list of absolute global addresses
and addressing limits for each module type.
b. The object module is included in the system library file,
c. A task 1is created containing the appropriate global

references. Such references are resolved when the task
builder automatically searches the system library file,

11-8

e

/‘"“\

T

N

CHAPTER 11, UNIVERSAL DIGITAL CONTROLLER DRIVER
Steps a and b are executed once. Step c is performed each time a task
is created that references the UDCll. -
2. Access to the I/O page through a Global Common Block:
a. An object module is created which defines the UDCll
configuration through a 1list of relocatable global

addresses and addressing limits for each module type.

b. The object module is linked, using the Task Builder, to
create an image of the Global Common block on disk,

c. The INSTALL MCR command is used to make the Global Common
Block resident in memory.

d. A task is created containing the appropriate global
references., Such references are resolved by directing
the Task Builder to link the Task to the common block.

The following paragraphs describe each step in detail.

11.4.1 Defining the UDCll Configuration

The source module UDCOM.MAC*, when assembled with the proper prefix
file, provides global definitions for the following parameters:

. The starting address of each module type.
« The highest point number within a given module type.
« The highest module number within a given module type.

The last two parameters are absolute quantities that may be used to
prevent a task from referencing a module that is non-existent or out
of limits,

By means of conditional assembly the list of addresses may be created
as absolute symbols defining locations in the I/O page or as symbols
within a relocatable program section to be wused when building and
linking to the UDCll Global Common area.

1l.4.1.1 Assembly Procedure for UDCOM,MAC - UDCOM.MAC is assembled
with the RSX-1llM configuration parameters contained in the file
RSXMC, MAC,

To create relocatable module addresses either the parameter 'USSDCM'
or 'MSSMGE' must be defined., 'M$$SMGE'! will be included in RSXMC.MAC

* This module resides on the RK05 cartridge of the RSX=-11M
distribution bit labeled SOURCE MASTER. ‘It is under UIC [11,10].

11-9

CHAPTER 11, UNIVERSAL DIGITAL CONTROLLER DRIVER

if memory management was specified when the system was generated. If
not, the wuser should edit the file to include the following
definition:

U$SDCM=0
The file mav then be assembled using the MCR command:
>MAC UDCOM,UDLST=[11,10]RSXMC, UDCOM

This command invokes the MACRO-11l assembler which processes the input
files RSXMC.MAC and UDCOM,MAC to create UDCOM.OBJ and UDLST.LST.

To create absolute module addresses, both of the above parameters must
be undefined. Edit RSXMC.MAC, if necessary, to remove definitions and
then invoke the MACRO-1l assembler with the following MCR command:

>MAC UDCDF,UDLST=[11,10]RSXMC,UDCOM
In this sequence the files UDCDF.OBJ and UDLST.LST are created from

the specified source modules. UDCDF,OBJ contains the module addresses
in absolute form.

11.4.1.2 §Symbols Defined by UDCOM,MAC - This section 1lists the
symbolic definitions created by UDCOM.MAC.

The following symbols define the absolute or relocatable address of
the first module of a given type:

Symbol Module Type

$.ADM Analog input

$.A0M Analog output

$.CIM Contact interrupt

$.CSM Contact sense input

$.LTM Latching digital output
$.55M Single-shot digital output
$.TIM Timer (I/0 counter)

11-10

PN

T

s

CHAPTER 1l. UNIVERSAL DIGITAL CONTROLLER DRIVER

The addresses in relocatable form are defined in a program section
named 'UDCOM' having the attributes:

REL ~ relocatable
OVR = overlaid

I - instruction
GBL -~ global scope

Note that these attributes correspond to those attached to a named
common block within a Fortran program.

In either the absolute or relocatable case, individual modules are
referenced by the corresponding symbolic address plus a relative
module index.

The following symbols define the highest digital point within a module
type:

Symbol Module Type

P$.CIM Contact interrupt

P$.CSM Contact sense input
P$,.LTM Latching digital output
P$.SSM Single~shot digital output

The highest point number is defined relative to the first point on the
first module of a specific type.

For example if two contact interrupt modules are installed, the symbol
'PS,CIM' will have an octal value of 37.

The following symbols define the highest module number within a given
module type.

Symbol Module Type

M$.ADM Analog input

M$.AOM Analog output

M$,.CIM Contact interrupt

M$.CSM Contact sense input
MS$.LTM Latching digital output
M$.8SSM Single=-shot digital output
M$.TIM Timer (I/O counter)

The highest module number is defined relative to the first module of a
given type. Thus, based on the previous example, M$.CIM will have a
value of 1.

11-11

CHAPTER 11, UNIVERSAL DIGITAL CONTROLLER DRIVER

11.4.2 Including UDCll Symbolic Definitions in the System Object
Module Library

As described in 1l.4, a task having unrestricted access to the I/0
page may reference a UDCll module by absolute address. The object
module UDCDF contains symbolic definitions of absolute module
addresses and may be included in the System Object Module Library:

SY:[1,1]SYSLIB.OLB

The Task Builder automatically searches this file to resolve any
undefined globals remaining after all input files have been processed.

The following example illustrates the procedure for including the file
'UDCDF.OBJ' in the library.

>SET /UIC=[1,1]
S>LBR SYSLIB/IN=[200,200]UDCDF

The SET MCR command is issued to establish the current UIC as [1,1].
Next, the RSX1l1lM Librarian is invoked and instructed, through the use
of the /IN switch to include the object module UDCDF.0BJ in the file
SYSLIB,.OLB.

11.4.3 Referencing the UDCll through a Global Common Block

The following sections define the procedure for creating a Global
Common block in the I/0 PAGE, making the block resident in memory, and
creating a task which references UDCll modules within the block,
Examples are given for both mapped and unmapped systems.,

11.4.3.1 Creating a Global Common Block - The following sequence

illustrates the use of the object file UDCOM.OBJ to create a disk
image of the global common area in a mapped system,

>SET /UIC=[1,1]

STKB _
TKB>UDCOM/MM,LP: ,SY : UDCOM/PI /~HD=[200 ,200] UDCOM
TKB>/

ENTER OPTIONS:

TKB>STACK=0

TKB>/

In the above example, a current UIC of [1,1] is established and the
Task Builder is initiated. The initial input line to the Task Builder
specifies the following files:

« A core image output file to be named UDCOM,TSK

. A memory map output to the line printer

11-12

P

.

// \,

CHAPTER 11, UNIVERSAL DIGITAL CONTROLLER DRIVER

A symbol table file to be named UDCOM.STB

All files reside on SY: under UIC [1,1]. The single input file,
UDCOM,OBJ containing the UDCll address definitions as relocatable
values, constitutes the input,

The switches specified for the output files convey the following
information to the Task Builder:

/MM indicates that the core image of the common block will
reside on a system with Memory Management.

/PI indicates that the core image is position independent;
that 1is the virtual address of the common block may
appear on any 4K boundary within a task's address
space,

/-HD indicates that the core image will not contain a
header. A header is only required for a core image
file that is to be installed and executed as a task.

A single line of option input must be entered to eliminate the default
memory allocation for the stack area.

The following sequence illustrates the corresponding procedure for an
unmapped system:

>SET /UIC=[1,1]

>TKB

TKB>UDCOM/-MM,LP: ,SY:UDCOM/PI/~HD=[200,200] UDCOM
TKB>/

ENTER OPTIONS:

TKB>STACK=0

TKB>PAR=UDCOM:171000:1000

TKB>/

Again the task builder is requested to produce a core image and symbol
table file under the UIC [1,1] and a map file on the line printer from
the input file UDCOM,OBJ. The output file switches convey the
following information:

/=MM indicates that the core image of the common block will
reside on an unmapped system.

/PI Indicates that the core image is position independent.
In an unmapped system the core image is fixed in the
same address space for all tasks; however, the global
symbols defined in the symbol table file retain the
relocatable attribute.

/=HD indicates that a core image without a header is to be
created.

11-13

CHAPTER 11, UNIVERSAL DIGITAL CONTROLLER DRIVER

The PAR option specifies the base and length of the common area to
coincide with the standard UDCll addresses in the I/0 page. All
references to the common block by tasks will be resolved within this
region,

11.4.3.2 Making the Common Block Resident - The following SET command
creates a UDCII common block residing in the I/O page for a mapped
system: ,

>SET /MAIN=UDCOM:7710:10:DEV
The corresponding command in an unmapped system is:

>SET /MAIN=UDCOM:1710:10 :DEV
The preceding sequence specifies the allocation of a common block in
the I/O page whose physical address limits correspond to the UDC1ll

standard locations. Note that the address bounds and length are
defined in units of 32 words.

11.4.3.3 Linking a Task to the UDCll Common Block - A task may access
UDC1l modules by linking to the common block as follows:

TKB)>TASK,LP:=TASK,0BJ
TKBY>/

ENTER OPTIONS:

YTKB COMMON=UDCOM:RW
TKBY>/

The above sequence is valid for either a mapped or unmapped systenm,
In both cases the Task Builder will link the task to the common block
by relocating the Global symbol definitions contained in UDCOM.STB.
If memory management is present, the Executive will map the
appropriate physical locations into the tasks virtual addressing space
when the task is made active.

11,5 FORTRAN INTERFACE

A collection of FORTRAN-callable subroutines provide FORTRAN programs
access to the UDCll, These are described in this section., All are
reentrant and may be placed in a resident librarv.

Instead of using the FORTRAN-callable subroutines described in this
section, a FORTRAN program may use the global common feature described
in section 11.4 to reference UDCll modules directly in the I/O0 page,
as shown in the following example:

11-14

SN

s 'ﬂ'm\\

CHAPTER 11, UNIVERSAL DIGITAL CONTROLLER DRIVER

UDCl1ll GLOBAL COMMON
COMMON /UDCOM/ ICSM(10) ,IA0(10)

READ CONTACT SENSE MODULE 1 DIRECTLY

Q00 Qa0

ICS=ICSM(1)

Note that the position of each module type must correspond to the
sequence in which storage is allocated in the common statements,

11.5.1 Synchronous and Asynchronous Process Control 1/0

The ISA standard provides for synchronous and asynchronous process
I/0. Synchronous I/O is indicated by appending a "W" to the name of
the subroutine (e.g., AO/AOW). But due to the fact that nearly all
UDCll 1I/O operations are performed immediately, in most cases the "W"
form of the call is retained only for compatibility and has no meaning
under RSX-11M. In the case of A/D input, however, the "W" form is
significant: the synchronous call suspends task execution until input
is complete. If the asynchronous form is used, execution continues
and the calling program must periodically test the status woxrd for
completion.

11.5.2 The isb Status Array

The isb (I/O status block) parameter is a 2-word integer array that
contains the status of the FORTRAN call, in accordance with ISA
convention., This array serves two purposes:

l. It is the 2=word I/O status block to which the driver
returns an I/O status code on completion of an I/0
operation.

2, The first word of isb receives a status code from the
FORTRAN interface in ISA~compatible format, with the
exception of the I/0 pending condition, which is
indicated by a status of zero. The ISA standard code for