EY-0061E-SG-0201

Programming
RSX-11M
in FORTRAN

Volumelll

EY-0061E-SG-0201

Programming
RSX-11M
iNn FORTRAN

Student Workbook
Volume |l

Prepared by Educational Services
of
Digital Equipment Corporation

Copyright © 1982, Digital Equipment Corporation.
‘All Rights Reserved.

The reproduction of this material, in part or whole, is
strictly prohibited. For copy information, contact the
Educational Services Department, Digital Equipment
Corporation, Bedford, Massachusetts 01730.

Printed in U.S.A.

The information in this document is subject to change
without notice and should not be construed as a com-
mitment by Digital Equipment Corporation. - Digital
Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished
under a license and may not be used or copied except
in accordance with the terms of such license.

Digital Equipment Corporation assumes no responsibility
for the use or reliability of its software on equipment
that is not supplied by Digital.

The following are trademarks of Digital Equipment Corporation,
Maynard, Massachusetts:

DIGITAL DECsystem-10 MASSBUS
DEC DECSYSTEM-20 OMNIBUS
PDP _ DIBOL 0S/8
DECUS EDUSYSTEM .RSTS
UNIBUS VAX RSX

VMS | IAS

CONTENTS

Volume |

SG STUDENT GUIDE

INTRODUCTION &« o ¢ o « o o o o o o o o o o o o o o o o o
PREREQUISITES: « o o ¢ o o o o o o o o o o o o o o o o o
COURSE GOALS AND NONGOALS. ¢ « o & o o o o o o o o o o o
COURSE ORGANIZATION. &+ o« ¢ o o o s o o o o o o o o o o o
COURSE MAP DESCRIPTION « ¢ ¢ o o ¢ o o o o o o o s o o @

COURSE MAP . o o ¢ o o o o o o o s o s o o o o o o o o
COURSE RESOURCES ¢ & o 2 o o« o o o o o o o o o o s s o @
Required ReferenceS. « « o o o o o o o o o s s o o @
Optional References. . . ¢« o« o o o o o o o o o o o =
HOW TO TAKE THE COURSE ¢ ¢« ¢ o o o o o o o o o o o o o
PERSONAL PROGRESS PLOTTER. &« &« o o o o o o o o o o o &

WONNNOOM U D W

-

1 USING SYSTEM SERVICES

INTRODUCTION ¢ o 17

OBJECTIVES &+ « + « o o o s o o s o s o o o s o o o o o 17

RESOURCES. e o o o s o o e o o o o o o 17

WHAT IS A SYSTEM SERVICE° e e s o o o o o o o o e o o 19

WHY SHOULD YOU USE SYSTEM SERVICES?. . « « ¢« « « « « » 19
To Extend the Features of Your Programming

LANGUAJE &+ o o o o o o o o o o« s o o o o o o o o« « 19
To Ease Programming and Maintenance. 19
To Increase Performance. . . o« « o o o o o o o o o 20
WHAT SERVICES ARE PROVIDED?. « « ¢ o o o o & e o o o 20
System and Task Information. . . . ¢« « « ¢« « « o« o« 20
Task Control & . e o o o o o o 21
Task Communication and Coordlnatlon. e e o o o o o 21
I/O to Peripheral DevicesS. « o« « o o o o o o o o « 21
Memory Use e e o o o o o s o o o o s o o 22
OTHER SERVICES AVAILABLE e o o s o o s e @ . e o 22

HOW SERVICES ARE PROVIDED. . . ¢ o o o o o o o o o o« o 23
Executive Directives . . « + v ¢« ¢ o o o o o o« « o 23
Code Inserted into Your Task Image e « o o o o o 26

AVAILABLE FILE AND RECORD ACCESS SYSTEMS e o o o o o . 28
SYSTEM LIBRARIES L] L] L] o Ll Ld L] L L d . L] L] . L] . L] L] L] Ll 28

iii

2 DIRECTIVES

INTRODUCTION ¢ 4 ¢ o o o o o o« o o
OBJECTIVES . o o o ¢ o o o o o o o«
RESOURCES. . ¢ ¢ ¢ ¢ o o o o o s o o . .
" INVOKING EXECUTIVE DIRECTIVES FROM A USER TASK .
Directive Processing . . « o o o o o o o o &
Functions Available Through Executive
Directives o« o « o o
The Directive Status wOrd (DSW) .
Sample Progdram . « « o o o o o o o
Example Using Other Directives . .
Run Time Conversion Routines
NOTIFYING A TASK WHEN AN EVENT OCCURS. . . « .« =«
Event FlagS. o« « o o o o o o o o o o s o o o
Using Event Flags for Synchronization. . . .
Examples of the Use of Event Flags
for Synchronization. . ¢« ¢« &« ¢« ¢ o« ¢ o o o &
ASYNCHRONOUS SYSTEM TRAPS (ASTS) &« « o o o o o o

[} L) . . . e o
e o & o o o o

* o * o
e o o o
* o o o

3 USING THE QIO DIRECTIVE

INTRODUCTION . &+ o o o o o o o o o o o o o o o &
OBJECTIVES &« ¢ o o o o o o o s s o o o o o o s @
RESOURCES. . . . o o o e o o o o o o o e o
OVERVIEW OF QIO DIRECTIVES e o o o o o o o o o
PERFORMING I/0 . « . « o . e o o o o o o o @
USING QIO DIRECTIVES IN FORTRAN. e e o o o o o
I/O FUNCTIONS. + o 2 o o o o o s o o o o o o o
LOGICAL UNIT NUMBERS (LUNS). ¢ ¢ « ¢ o o o o « o«
SYNCHRONOUS AND ASYNCHRONOUS I/0 v o« « o o o o &
MAKING THE I/0 REQUEST ¢« ¢ ¢ o o« o o o o o o o o«
THE I/0 PARAMETER LIST IN FORTRAN. .
ERROR CHECKING AND THE I/0 STATUS BLOCK.
THE QIO DIRECTIVES . ¢ ¢ ¢ ¢ ¢ o o.9o o o
Synchronous I/0. « o o o o o o o o &
Asynchronous I/0 o+ « « o o o o o & e o s e
Synchronization With Asynchronous I/0. .
TERMINAL I/0 v o ¢ o o o o o o o o o o o s o o o
Device Specific Functions.

I/0 Status Block and Terminating Characters.
Read After Prompt. . + o ¢ ¢ ¢ ¢ o o o o o o
Read No EChO &+ ¢ & o o ¢ ¢ o o o o o o o o o
Read With Timeout. . « ¢ ¢ ¢ ¢ ¢ o ¢ o o o &
Terminal-Independent Cursor Control.

iv

33
33
33
35
35

36
38
39
42
46
47
47
48

49
53

4 USING DIRECTIVES FOR INTERTASK COMMUNICATION

INTRODUCTION ¢ o o o« o o o o o o o o o o o o o o o o« « 103
OBJECTIVES ¢ ¢ o o e o e o o ¢ o o o o o o o o o o« o« » 183
RESOURCE . . ¢ o o o o o & . e o o o 103
USING TASK CONTROL DIRECTIVES AND EVENT FLAGS. e o o o 105

Directives . v ¢ ¢ ¢ ¢ ¢ o o o o o o o o o o o o .« 106

SEND/RECEIVE DIRECTIVES. &« « ¢ ¢ « « o « o o « o o « » 116
General ConceptsS o« & o o o o« o o 2 o o o o o « o« « 116
Directives e o s o s s o s o o o o 116
synchronizing Send Requests With
Receive RequestS . + o v o o o o o o o o o o o o » 117
Using Send/Receive Directives

for Synchronization. . . e o o o o s o e o o o « 132
Slaving the Receiving Task e o o o s e e & o o s « 132
PARENT/OFFSPRING TASKING . . .« .« . e ¢ o o o o o 133
Directives Issued by a Parent Task e o o« o o o 136
Directives Issued by an Offspring Task e o« o o o 145
Chaining of Parent/Offspring Relatlonshlps e « « o 146
Other Parent/Offspring Considerations. 153
Retrieving Command Lines in Spawned Tasks. . . 153

Spawning a Utility or Other MCR
Spawnable Task . &« o &« o ¢ o o o « o« o o o o« o 153
Task Abort StatuS. .« « « ¢« o o o o o « o o o o 157
Summary of Various Methods of Data Transfer
Between Tasks. e o o o o o o s o o o e o 158
Comparison of Methods of Data Transfer 158
Other Methods of Transferring or Sharing Data
Between TaskS. . ¢ ¢« o o o o o o o o o o o o « » « 159

5 MEMORY MANAGEMENT CONCEPTS

INTRODUCTION 4« &« « o o o o o o o o o o o o o o o o o o 163
OBJECTIVES . ¢ ¢ o o o o o o s o o o o s o « o« o o« o o 163
RESOURCES.: &« ¢ o o o o o o o s s o s a o o o s o o o« o 163
GOALS OF MEMORY MANAGEMENT e o o s s s e e s s s s s o 165
HARDWARE CONCEPTS. . . . e e e o o o o s s s o o o 165
Mapped Versus Unmapped Systems e o o o o o o o o o 165
vVirtual and Physical Addresses S
The KT-11 Memory Management Unlt e o o o o o o o o« 173
Mode Bits. . ¢« & ¢ 4 o ¢ ¢ o o o o o o o o« o« o 173
Active Page Registers (APRS) .. +« « « « « « « 173
Converting Virtual Addresses to Physical
AJAresSeS. « o o o o s o o o o o s o o o o o o o o 176
SOFTWARE CONCEPTS. « « o o o o o o s o s o o o o o« o « 178
Virtual Address WindowS. . ¢« o« o+ o o o o o o o o« o 178
REJIONS. o o o ¢ o o o o o o o o o o o o o o o o o« 179

Volume I

6 OVERLAYING TECHNIQUES

INTRODUCTION . . .
OBJECTIVES « ¢ o o o o o o

RESOURCE
CONCEPTS « . .
OVERLAY STRUCTURE. . e e e s s e e .
STEPS IN PROGRAM DEVELOPMENT USING OVERLAYS
THE OVERLAY DESCRIPTOR LANGUAGE (ODL).
ODL Command Line Format. .
, TYPES OF OVERLAYS. . « « « &
Disk-Resident. .
Memor y-Resident.
LOADING METHODS. . .
Autoload
Manual Load. « « « « «
Comparison of a Task With No Over
With Disk-Resident Overlays, and
With Memory-Resident Overlays. « . . .
LIBRARIES. o o s e e o o & o e o o o o o o s @
GLOBAL SYMBOLS 1IN OVERLAID TASKS e e s e e o e o @
Data References in OverlayS. « « « « o s o o
CO-TREES ¢ ¢ ¢ o o o o o o o o o o o o o o o o o o

® o o o
o o o o
® o o oo
* o o o
* o o o
¢ o o o

[3 P 3 . o o [] . L] .
® o o o © o o o o o
o o ® o © o o 4 o

¢ e O o o o
. ¢ o 0 ¢ o o o

7 STATIC REGIONS

INTRODUCTION« .

OBJECTIVES . ¢« ¢ o ¢ o o &
RESOURCE . . 3 - [. . . .

TYPES OF STATIC REGIONS.

MEMORY ALLOCATION. o ¢ ¢ ¢ o ¢ o o o o o o o o o @

MAPPING. &« o o o o o o o s o o o o o o o o o o o o

REFERENCES TO A SHARED REGION. e o o o s o

PROCEDURE FOR CREATING SHARED REGIONS

AND REFERENCING TASKS. &« ¢ o o o o s o o s o o o &
Creating a Resident Common« ¢« ¢« « « o &

Creating a Referencing Task. . . .

Accessing a Region for Read-Only or Read/erte
CREATING AND REFERENCING A SHARED LIBRARY.

Task-Building the Shared Library

and the Referencing Task . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o &
DEVICE COMMONS ¢ ¢ o o o o o o o o o o o o o o o

vi

o o ® o © o o o @

185
185
185
187
188
191
191
191
195
195
197
201
201
203

204
211
217
219
225

233
233
233
235
236
237
240

241
241

249
251

252

254
257

8

9

DYNAMIC REGIONS

INTRODUCTION
OBJECTIVES « « « « + &
RESOURCE« .
SYSTEM FACILITIES. .

REQUIRED DATA STRUCTURES

Region Definition Block (RDB)

Creating an RDB in FORTRAN

Window Definition Block (WDB)

Creating a WDB in FORTRAN.
CREATING AND ACCESSING A REGION.

Creating a Region.

Attaching to a Region.
Creating a Virtual Address
Mapping to a Region.
SEND- AND RECEIVE-BY- REFERENCE

THE MAPPED ARRAY AREA.

FILEI/O

INTRODUCTION
OBJECTIVES « « « « « o
RESOURCES. « « « ¢ .+ &
OVERVIEW . « « ¢ « +
TYPES OF DEVICES . . .

.

3

Record-Oriented Devices.
File-Structured Devices.
Types of File- Structured

COMMON CONCEPTS OF FILE I/0.

Common Operations.

Steps of File 1I/0.
FILES-11 . .

FILES-11 Structure

Directories. . . .

Five Basic System Files
Functions of the ACP

3

OVERVIEW AND COMPARISON OF

Common Functions .
FEATURES * L] [] * []
File Organizations

FCS

L3

Supported Record Types
Record Access Modes.

File Sharing . . .

vii

Window.

. [

261
261
261
263
265
265
269
270
273
275
276
279
289
281
289
297

305
305
305
307
307
307
307
398
310
310
310
311
311
316
319
320
323
323
325
325
325
329

331

RMS FEATURES

File Organizations

Record Formats .

Record Access Modes.

[
L] L2
L] L]
.

File-Sharing Features.

Summary. « o« o «

10 FILE CONTROL SERVICES

INTRODUCTION
OBJECTIVES . « . . &
RESOURCE

FILE ORGANIZATION VS.

L3

RECORD

o o o o
o o o o

L] L L]

ACCESS

READ AND WRITE ACCESS TO A FILE. .
TYPES OF RECORDS IN A FILE
FORMATTED AND UNFORMATTED RECORDS.
DECLARING THE SIZE OF A RECORD . .
SUMMARY OF KEYWORDS IN THE OPEN STA

AP APPENDICES

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

GLOSSARY

TO™EOoOOw P

viii

CONVERSION TABLES. . .
FORTRAN/MACRO-11 INTERFACE
PRIVILEGED TASKS
TASK BUILDER USE OF PSECT ATTRIBUTES
ADDITIONAL SHARED REGION TOPICS.
ADDITIONAL EXAMPLE . .
LEARNING ACTIVITY ANSWER SHEET

) L] L3

TE

L]

e o o o

M

L J

* o o o

.

.

¢ o o o

332
332
334
334
336
337

341
341
341

343
344
344
345
345
346

367
373
375
377
379
383
397
399

wn vt ot
| [
[soJEN o)} (S} &> w N

[SINC, 0]
[

o~Noyunis W

AT OO OV OYON

FIGURES

~ Using Executive Directives to Service a Task. . .
Using Executive Directives to Receive Services

From Other TaskS. ¢« « o ¢ o o o o o o o o o o o o«
Code Inserted into Your Task Image. . « « o o o &

AST Sequence. . « « o o o o o e e e e e e e e

Execution of a Synchronous I/O Request.
Events in Synchronous I/0 . ¢ ¢ ¢ ¢ o o o o o o o
Execution of an Asynchronous I/0 Request.
Events in Asynchronous I/0. « « ¢ o« o o o o o o &

Parent/Offspring Communication Facilities
Spawning Versus Chaining (Request and
Offspring Information). . . . ¢ ¢ ¢« ¢ o ¢ o« o « &

Physical Address Space in an Unmapped System. . .
Physical Address Space in an 18-Bit Mapped System
Physical Address Space in a 22-Bit Mapped System.
Virtual Addresses Versus Physical Addresses

on an Unmapped SyStem . « « « o« ¢ o o o o o o o =
Virtual Addresses Versus Physical Addresses

on a Mapped System. o e 2 o s o s
Page Address Reglisters Used 1n Mapplng a Task . .
A Task with Three Windows to Three Regions. . . .
Task in Figure 5-7 After Attaching to and Mapping
to a Fourth Region. . « ¢ ¢ ¢ o o o o o o o o o @

A Memory Allocation Diagram . . « ¢ ¢ o o ¢ o o o
An Overlay Tree . « + o« o o o o o o &
An Example of Disk-Resident Overlays.
An Example of Memory-Resident Overlays
Task With Two Overlay Segments. . . .
Resolution of Global Symbols.
Task Without Co-Trees
Use of Co-Trees . ¢« ¢ o o o o o o o @

.
L
.
.
.

o o © o © o
¢ o o o o
s o . e .
e ¢ ® o o o
e o © o o

o o

ix

¢ o 0 o 0 o

o o ® o o

24

25
27

55

70
70
73
73

134
147

167
168
169

171

172
175
181

182

199
190
196
199
213
218

227
228

Tasks Using a Position Independent Shared Region. . . 238

Tasks Using an Absolute Shared Region
Program Development for Shared Regions. . . .

The Region Definition BlOCK & o o o o o o o &
The Window Definition Block . . « « ¢« ¢ ¢ o &
The Mapped Array Aread . « o « o o o o o o o o

Example of Virtual Block to Logical Block,

to Physical Location Mapping. . « « ¢« o« +« « &
How the Operating System Converts Between
Virtual, Logical, and Physical Blocks
FILES-11 Structures Used to Support
Virtual-to-Logical Block Mapping. . . « o
Directory and File Organization on a Volume .
Locating a File on a FILES-11 Volume.
Flow of Control During the Processing

of an I/0 Request . o ¢ o o o o o o &
Move Mode and Locate Mode .
Sequential Files.
RMS File Organizations. . .

L . . L]
L] . [L]

.
3 . . . -
3 . [. .

A Shared Region With Memory-Resident Overlays
Referencing Two Resident Libraries.
Referencing Combined Libraries.
Building One Library, Then Building

a Referencing Library . « « ¢ ¢ o ¢ o o o o «
ReveCtoring « « o« o o o o o o o s o o o o o o
Using Revectoring When Referenced Library

Has OverlaySe.e ¢ o o o o o o o o o o o o o o o

- Cluster Libraries . ¢ o o o ¢ ¢ o o o o o o o«

Typical Course Schedules. . « ¢ ¢« « o o o o &

Standard Libraries. . ¢ ¢ ¢ ¢ ¢ o o o o o o

Resident Libraries. . ¢« ¢ ¢ o o o o o o o o o

Types of Directives . . ¢ ¢ ¢ ¢« o ¢ ¢ o o o &

Common (Standard) I/O Functions . . « ¢ « + &
I/0 Parameter List for Standard I/O0 Functions
Some Special Terminal Function Codes.

[

o
.

3

e o o 239

e o o 243

. L] L] 267
L] . L] 272

« « o 298

L d L] L] 313
e o o 314

L] L L 315
. . . 317

L] L] . 318

322
324
325
333

* ¢ * o
o o 0 o

L] L] L] 384
. . . 386

. « o 388

e « o 390
e o « 391

.« o o 393
L] L] - 395

TABLES

. L3 . 12
[. . 29
. . L] 3@
. . 3 37
.« « . 67
. [L] 75
[. . 88

(S48, o AN D SN NN S
N = —) 0 J o [Y w N -
N = =

—

NN (o)}
U} |
w N N

S wN -

O O WO WY © 0o

O O
[

|
[&)X§;]

ww
N =

Task Control Directives and Their Use

for Synchronizing Tasks e s e o o o
Stopping Compared to Suspending or Waltlng. e o o
Event Flag Directives and Their Use

for Synchronizing Tasks « o ¢ ¢ o ¢ o o o« o o o o o«
The Send/Receive Data Directive . . « ¢« ¢ ¢ o o o &
Methods of Synchronizing a Receiving Task (RECEIV)

With a Sending Task (SEND). o « ¢ o o o o o o o o &
Standard Exit Status CodeS. « o« ¢ o o o o o o o o
Comparison of Parent Directives e o o o o
Directives Used by a Task to Establlshl38

a Parent/Offspring Relationship . . . ¢« « ¢« ¢« + + &
Directives Which Return Status to a Parent Task . .
Directives Which Pass Parent/Offspring Connections

to Other TaskS. « o o ¢ o o o o o o o o o s o o o =
Task Abort Status Codes . . v o o o o o o o o o o o
Comparison of Methods of Data Transfer

Between TasSKkS . o o o o o o o o o o o o o o o o o @

Mapped Versus Unmapped SystemsS. . « « ¢ o o o o o o
APR and Virtual Address Correspondence. . . . « « o«

Comparison of Overlaying Methods. « . « . .

Types of Static Regions Available on RSX-11M. . . .
Required Switches and Options for Building
a Shared Region . « o o« o« o o « o o o o o o o o o o«

Memory Management Directives. . « ¢« ¢ ¢ ¢ &« ¢ o o &
Region Status Word. . « « o o o ¢ o o o o o o o o o
Window Status word . * * * . L] L] . L] L] L] L] Ld * L] L] L]

Comparison of pPhysical, Logical and virtual Blocks.
Examples of Use of F11ACP Functions
Comparison of FCS Record TYPES. « o o o o o o o o o
Comparison of Sequential Access I/0 and

Random AcCeSS I/0 « o o o o o o o s o o o s o o o o
File Organization, Record Formats, and Access Modes
Comparison of FCS and RMS . ¢ ¢ « « o o o o o s o o

Decimal/Octal, Word/Byte/Block Conversions.
APR/Virtual Addresses/Wbrds Conversions . . . « . &

xi

107
108

109
117

118
135

136

138
145

148
157

158

166
174

210
236
244
264
268
274
312
321
328
330
335
338

373
373

o
N - G wWwh -

w w NN

wwww
S w

[A
Swh

BSOS
[|

| |
(Le] o0 ~NJovn

[| 11
awn o wWwN -

[s) 3¢ (=) N O O >

|
N -

~N 9

EXAMPLES

Requesting a Task From Another Task . . . ¢« « « « « o 41
Using Some Miscellaneous Directives ¢« « « « . 44
Waiting for an Event Flag . . « « o« ¢« ¢ ¢ o« ¢ o « « « 58
Setting an Event Flag . +. « « ¢ « « o o o o o o o o o« 52
Using a Requested Exit AST. « ¢« o o ¢ ¢ o ¢ o o o« « o 57

Synchronous I/0 . o« ¢ ¢ « o o o o o o o o o o o o o o« 80
Asynchronous I1/0 Using Event Flags

for Synchronization . . « ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o « o« « o« 84
Prompting for Input . .« « ¢ ¢ ¢ ¢« ¢ o o o« o o o o« « « 90
Read NO EChO. o & o ¢ o o o o o o o o o s o o o o o o« 92
Read With Timeout « . ¢ ¢ ¢ o o ¢ o o o o o o o « « « 94
Terminal-Independent Cursor Control 98

Synchronizing Tasks Using Suspend and Resume. 111
Synchronizing Tasks Using Event Flags 114
Synchronizing a Receiving Task Using Event Flags. . . 120
A Receiving Task Which Can be Run Before or After

the Sender. . « ¢« ¢ o o ¢ ¢ ¢ o o o o o o o o o o o o 124
Synchronizing a Receiving Task Using RCDS 129
A Task Which Spawns PIP . . « ¢ &« « « o o o o o o o« o 140
A Generalized Spawning Task . « ¢ o ¢ ¢ o o o o o« o o 143
An Offspring Task Which Chains Its Parent/Offspring
Connection to PIP +. + o « o o o o o o o o o s o o o o 150
A Spawned Task Which Retrieves a Command Line 155

Description of An Overlaid Task . . ¢« ¢« ¢« ¢« « « « « o 189
Map File of Example 6-1 Without Overlays. . « « « . . 205
Map File of Example 6-1 With Disk-Resident

OVErlayS. o o o o o o s o o o o o o s o o o o o o o o 207
Map File of Example 6-1 With Memory-Resident

OVErlaySe o« o o 209
A Task With Two Overlay SegmentS. . . ¢« « « « « o« « o« 216
Complex Example Using OverlayS. « « « « o o o o o o o« 221

Resident Common Referenced with FORTRAN COMMON. . . . 247
Shared Library. « « « o o o o o o s o o o o o o« o o« o 255

xii

10-5
10-6
19-7
10-8
19-9

Creating a Region . . + o o o o o o o o o o
Creating a Region and Placing Data in It. .
Attaching to an Existing Region and Reading
From It . o o o o ¢ o o o o o o o o o o o @
Send-by-Reference . . . ¢ ¢ ¢ ¢ o ¢ o o o
Receive~-by-Reference. . . « o o o« o o o o &
Use of the Mapped Array Area. . « o« o o o o

Creating a Sequential File With Variable
Length Records. . « ¢ ¢ ¢ o o o o o o o o &
MACRO Equivalent of Example 104-1. . . o .
Program to Read a File Created in 10- l. o .
Creating a File With Sequential, Fixed
Length Records. . . . e e e e o o
Reading a Fixed Length Record e s s s 2 e e
Creating a Direct Access File . ¢« ¢« « « « &
Creating an Unformatted, Direct Access File
Creating a Segmented File . . « ¢« ¢ o o o
Creating a File Using Block I/O . . « « . &

Reading the Event Flags (for Exercise 1-1).

xiili

278
284

287
292
295
300

348

349
351

353
355
357
359
361
362

397

OVERLAYING TECHNIQUES

OVERLAYING TECHNIQUES

INTRODUCTION

Overlays are used to allow a task to be developed and run if the

amount

of memory available or virtual address space for a task is

insufficient. This module explains the various overlay techniques
which are available and how to use them.

OBJECTIVES

To determine whether to use a disk-resident or
memory-resident overlay in a given situation

To construct overlay structures using the overlay
descriptor language

To write tasks using overlays.

RESOURCE

RSX-11M/M-PLUS Task Builder Manual, Chapters 3 and 4

185

OVERLAYING TECHNIQUES

CONCEPTS

A task may be too large to fit in the available memory. This may
happen because it is larger than the total amount of memory on the
system. More 1likely, it 1is because it is 1larger than the
partition it is to run 1in, or the available space within the
partition. The partition is probably used at the same time by
other tasks, hence, the available space may be considerably less
than the full partition.

For example, a 20K word task may have to fit in 15K words of
memory. The task can use overlays and load only portions of the
code at a time and just use 15K words of memory. Typically, the
pieces which overlay each other contain subroutines.

As an example, consider a task with main code and two subroutines,
G and H, which overlay each other. The main code calls subroutine
G first, causing G's code to be read into memory. Later, the main
code calls subroutine H, causing H's code to be read into the same
memory locations, overlaying subroutine G. If the main code later
calls G, G's code overlays subroutine H. As the task executes,
overlaying is performed whenever necessary. You can choose to
have all loading of overlay segments done automatically or you can
load them manually with specific calls to a loading routine.

In addition to physical memory 1limitations, tasks on PDP-11
systems have virtual memory 1limitations. As we learned in the
last module, a task can use a maximum of 32K words of wvirtual
addresses at a time. A task may require, say, 40K of virtual
memory, thereby exceeding the 32K wvirtual addressing 1limit,
Overlays loaded from disk would permit this task to run in 32K
words or less of physical memory, and allow all of the code loaded
at any given time to be addressed. Therefore, 32K words, or less,
of code are loaded and addressed at any one time, satisfying the
virtual address 1limit. Or, using a special kind of overlay, all
49K words of code can be loaded into memory, but the task maps
only 32K words of code at a time. This means that the task stays
within the virtual addressing limits even though it wuses 40K of
physical memory.

These special kinds of overlays are called memory-resident
overlays. They overlay by remapping rather than by reloading code
into memory.

187

OVERLAYING TECHNIQUES

An overlaid task can have several program segments. A program
segment consists of part or all of one or more object modules.
Each of the object modules consists in turn of one or more program
sections (Psects). There 1is always a single resident root
segment. This segment is loaded when the task is first loaded and
remains loaded and mapped at all times. 1In addition, there are
overlay segments which either: :

— reside on disk unless needed and share wvirtual address
space and physical memory.

- stay in memory once needed and share virtual address space
only.

There is one restriction on subroutines in an overlay segment.
They cannot call subroutines which are located in a segment which
overlays itself. The code for only one segment or the other is
available at any one time, and never both. We say that the
segments must be logically independent.

There are some drawbacks to using overlays. Additional code 1is
required to handle the overlay structure and the loading and/or
mapping of the overlay segments. Also, some execution time 1is
required to load and/or map the overlay segments.

OVERLAY STRUCTURE

Example 6-1 1lists the subroutines (corresponding to overlay
segments) which each segment calls during the execution of a task.
In addition, the sizes of the various modules are listed. TIf the
task is built without overlays, it is 17K words in size. '

We can reduce the amount of memory needed to 8K words by using
overlays. Figure 6-1 shows a likely overlay structure, using a
memory allocation diagram. This picture represents the overlaying
or sharing of virtual and/or physical address space in the task.
Figure 6-2 shows another method for showing the same overlay
structure, an overlay tree. It 1is easier to draw but doesn't
allow you to estimate the size of the task. As the calculation
below Figure 6-1 shows, the 1largest pieces which will ever be
needed at any one time are PROG, the root, and overlay segments
SUB1 and B. These total 8K words, so this task can run in 8K
words of physical memory.

188

OVERLAYING TECHNIQUES

Main Segment: PROG

PROG calls: SUBl1, SUB2, SUB3
SUBl calls: A, B

SUB2 calls: none

SUB3 calls: c, D, E
Segment Size

PROG 4K words
SUB1 2K words
SUB2 3K words
SUB3 1K words
A 1K words
B 2K words
C 1K words
D 2K words
E 1K words
TOTAL 17K words

Example 6-1 Description of An Overlaid Task

189

OVERLAYING TECHNIQUES.

SUB2

SUB1 SuB3

PROG

TK-7764

Figure 6-1 A Memory Allocation Diagram

Overlaid Task Size = Size of Root + Sum of lengths of segments
using the most overlay
area at any one time

Size of PROG + Size of SUBl + Size of B

4K + 2K + 2K = 8K
A B c D E
l i |
SUB1 suB2 SﬁB3
PROG

TK-7765

Figure 6-2 An Overlay Tree

199

OVERLAYING TECHNIQUES

STEPS IN PROGRAM DEVELOPMENT USING OVERLAYS
Use the following steps in developing a task which uses overlays:
1. Compile each module, producing a .OBJ file for each.

2. Use the editor to create an overlay descriptor file
(defines the overlay structure for the Task Builder).

3. Task-build using the overlay descriptor file as the only
input file.

THE OVERLAY DESCRIPTOR LANGUAGE (ODL)

The overlay descriptor language (ODL) is a fairly simple 1language
which is wused to define the overlay structure for the Task
Builder. Statements are placed in a text file which has a file
type 'ODL' (e.g., EXAMPLE.ODL). It 1is identified to the Task
Builder as a special file by using the /OVERLAY DESCRIPTION input
file qualifier (/MP in MCR) in the task-build command line.

ODL Command Line Format

The ODL command lines use the following format:

label: directive argument-list ;comment

where:

label - a one to six character symbolic, required only on a
.FCTR directive.

directive - one of the following

.ROOT - indicates the start of the overlay tree

. END - indicates the end of input

.FCTR - allows naming of subtrees

.NAME -~ allows naming a segment and assigning
attributes

.PSECT - allows special placement of a global

program section (Psect) - typically
used only in special cases in MACRO-11.

191

OVERLAYING TECHNIQUES

argument list - a list of .OBJ files and/or object
libraries, separated by hyphens or
commas, and grouped together with
parentheses.
comment - a comment to annotate the line
The separators have the following meaning:
e Parentheses '()'

- enclose the segments to be overlaid

e The hyphen '-'

'— indicates the concatenation of virtual address space

e The comma ','

- separates the segments to be overlaid

192

OVERLAYING TECHNIQUES

Examples of ODL:

1. X, the root of a task, calls subroutines Y and Z.

. END

Explanation: X is the root segment, Y and Z are each
overlay segments. Virtual addresses are
assigned to X first. Starting after that,
Y and Z begin at the same virtual address.
Either Y or Z (never both) is loaded and
mapped using those virtual addresses.

2. Using the information from Example 1, Y calls subroutines
and V.

X

.ROOT X- (Y- (U,V),2)
.END

Explanation: Add to Example 1. U and V are overlay
segments which overlay each other. After
the last address for Y, virtual addresses
begin for U and V. ‘

193

OVERLAYING TECHNIQUES

3. Using Example 1 again, add subroutine A to the root segment.

Y Z

.ROOT X-A-(Y,Z)
.END

Explanation: X and A together make up the root segment.
Virtual addresses are assigned first to X and
then to A, After that, Y and Z are assigned
virtual addresses.

4. Using ODL to describe Example 6~1 (Figures 6-1 and 6-2):

«ROOT PROG-(SUB1-(A,B) ,SUB2,SUB3-(C,D,E))
. END

Explanation: PROG is the root segment. SUBl, SUB2, and
SUB3 overlay each other, beginning at the
same virtual address. A and B overlay each
other, beginning after SUBl1l. C, D, and E
overlay each other, beginning after SUB3.

5. Using the .FCTR directive to describe Example 6-1:

' .ROOT PROG- (PART1,SUB2,PART2)
PART1: .FCTR SuBl-(A,B)

PART2: .FCTR SuB3-(C,D,E)
« END

Explanation: Substitute SUB1-(A,B) for PARTl in the first
the first line.

194

OVERLAYING TECHNIQUES

TYPES OF OVERLAYS

There are two types of overlays available, disk-resident overlays
and memory-resident overlays. 1In fact, both are loaded from disk.
The distinction is that disk-resident overlays are always 1loaded
from disk every time they are .needed, while memory-resident
overlays are loaded from disk only the first time they are needed.
After that, they remain in memory and remapping is used to overlay
segments as needed.

Disk-Resident

Disk-resident overlays are available on all RSX-11lM systems. See
Figure 6-3 for an example of a task with a root segment and three
disk-resident overlays. On initial load, only the root segment
MAIN 1is loaded. Overlay segments are loaded from disk whenever
required. This typically occurs when a subroutine in the overlay
segment is called. So if the root overlay segment MAIN contains a
call for subroutine A, for example, segment A is loaded from disk
prior to the transfer of control to A. 1If, after the subroutine
returns control to MAIN, a call is made to subroutine B, segment B
is 1loaded 1into memory right over segment A. If a call is later
made to subroutine C, segment C is loaded right over segment B.
This 1loading of overlay segments is performed whenever necessary.
The subroutines may be called in any order and each subroutine may
be called any number of times in the course of task execution.

The same starting virtual address is assigned to all three overlay
segments, A, B, and C, beginning at the next 32(10) word boundary
after the code for MAIN. So A, B, and C use the same virtual
addresses and are 1loaded starting at the same physical address.
One virtual address window maps the entire task, just the code in
memory is changed when an overlay is loaded.

This technique is useful when the entire task is too large to fit
into the space allowed for it. In the example in Figure 6-3, a
22K word task runs in 15K words of physical memory. Disk-resident
overlays are the default overlay type. The examples in the
previous section all produce disk-resident overlays.

195

WINDOW
0 1

-~

.

140000 APR6

120000 APRS

100000 APR4 [

60000 APR3

40000 APR2

20000 APR1 L.

0 APRO

=

160000 APR7 [

OVERLAYING TECHNIQUES

VIRTUAL
MEMORY

B
(3KW)

MAIN
(ROOT SEGMENT)
(9K WORDS)

HEADER AND STACK

LOADED

AS NEEDED
———

................

INITIAL
LOAD

—_
AND MAP

PHYSICAL
MEMORY

TIME1 TIME2 TIME3

Cc

MAIN
(ROOT SEGMENT)

HEADER AND STACK

? 16K WORDS

TK-7766

Figure 6-3 An Example of Disk-Resident Overlays

196

OVERLAYING TECHNIQUES

Memory-Resident

Memory-resident overlays are available only on mapped systems
which support the memory management directives. See Figure 6-4
for the same task as in Figure 6-3, this time with memory-resident
overlays. On 1initial 1load, again only the root segment MAIN is
loaded. The first time an overlay segment is needed it is 1loaded
from disk. However, once a segment is loaded it remains in memory
and is not reloaded from disk.

If subroutine A is called first, overlay segment A is loaded and
- virtual address window 1 is mapped to A. 1If, after the subroutine
returns control to MAIN, a call is made to subroutine B, then
segment B is 1loaded, but not directly over A. Instead, it is
loaded into another area of memory, and then virtual address
window 1 is mapped to B. If a call is later made to subroutine C,
segment C is loaded into another area of memory, and virtual
address window 1 is mapped to C.

The real gain in run-time efficiency is made when an overlay is

needed again. If another <call is made to A, overlay segment A
does not have to be 1loaded again from disk. It is already
memory-resident. Therefore, virtual address window 1 is simply

remapped from segment C to segment A. Any additional overlaying
is performed by remapping, with no further loading of overlay
segments necessary. Again, the subroutines may be called in any
order and each subroutine may be called any number of times.

The advantage of this approach is that after the first load, it is
much faster than disk-resident overlays. However, there is no
savings in the use of physical memory. In fact, a bit more memory
is required than with a non-overlaid task. So its main use is for
overcoming the 32K word virtual address limit when execution time
efficiency 1is important. A 44K word task can use memory-resident
overlays 1if there 1is enough memory available and the time
necessary for loading disk-resident overlay segments 1is
unacceptable.

The root segment uses one window and each overlay area requires a
separate window. This means that virtual addresses for each
overlay segment begin at the starting virtual address for the next
highest APR, corresponding to a 4K word boundary. Because the
root segment is 9K(14), APRs 8, 1, and 2 must be used to map the
root segment. Notice that A, B, and C all begin at virtual
address 60008, for APR 3.

197

OVERLAYING TECHNIQUES

This means that virtual addresses 44000-57777 cannot be used by
this task. If in fact MAIN were extended, then these virtual
addresses would be used. Remember, this doesn't mean that any
physical memory is wasted; but it does mean that careful
allocation of sizes to the various segments is necessary to avoid
wasting wvirtual address space. Note that the maximum number of
overlay areas with memory-resident overlay is seven since the root
segment requires one virtual address window and each overlay level
requires another virtual address window.

To indicate that you want memory-resident overlays, place an
exclamation point (!) before an overlay specification. The '!'
applies only to the first 1level; the next 1level may have
disk-resident overlays or memory-resident overlays again. The
only restriction on mixing of types 1is that once a 1level has
disk-resident overlays, no higher level may have memory-resident
overlays.

198

1

160000 APR7

140000 APR6 K

120000 APR5 F

100000 APR4
WINDOW
60000 APR3

40000 APR2

WINDOW- /' 20000 APR1

0

0 APRO

Figure 6-4

OVERLAYING TECHNIQUES

VIRTUAL
MEMORY

Lo

MAIN
(ROOT SEGMENT)
B (9K WORDS)

— —_—— e — —

HEADER AND STACK

PHYSICAL
MEMORY
— - - -
—
_
c
TMES
TIME2 . e B
_:: TiME 1 A
MAIN
INITIAL LOAD (ROOT SEGMENT)
—_—
AND MAP | HEADER AND STACK

TK7767

An Example of Memory-Resident Overlays

199

OVERLAYING TECHNIQUES

Examples of .ODL files for memory-resident overlays:

1. X, the root of a task, calls subroutines Y and Z.

.ROOT X-1(Y,2)
. END
The ! makes the overlays memory-resident.

2. Using the information from Example 1, Y calls subroutines ‘U
and V.

a. All memory-resident overlays:

. END
b. Some memory—-resident overlays, some disk-resident
overlays:
.ROOT X=-1(Y-(u,v),z)
. END

c. Illegal mixture:

.ROOT X-(Y-1(U,V),Z)
.END

Explanation of c.: This mixture is illegal because the first
level (Y and 2Z) is disk-resident. The next higher level
cannot have memory-resident overlays. Therefore, U and V
cannot be memory-resident.

200

OVERLAYING TECHNIQUES

LOADING METHODS

There are two loading methods, autoload and manual 1load. With
autoload, any necessary loading and/or remapping (in the case of
memory-resident overlays) is done automatically and is transparent
to the program. With manual load, the overlay segments are loaded
by specific user calls to a loading routine. Autoload and manual
load cannot be mixed in the same task.

Autoload

When a call is made to a subroutine in an overlay segment, an
autoload routine takes <control before the transfer to the
subroutine is made. It checks to find out whether the required
segment 1is already loaded or loaded and mapped. It performs any
necessary loading and/or remapping. Following that, the transfer
to the called subroutine is made.

Autoload is path loading, meaning that all segments along the path
to the required overlay segment are loaded. For example, in
example 2 in the previous section, involving X, Y, U, V, and Z, if
a call from segment X is made to subroutine U, both Y and U are
loaded. (However, the auto-load routine checks to see if either Y
or U is already in memory and if so, the segments are not loaded.)

Autoload is indicated by an asterisk (*) before an overlay
specification in an ODL 1line. An asterisk outside a set of
parentheses applies to all levels inside the parentheses.

The advantages of autoload are that it is easy to use and that it
does not require changes in the source code. For instance, you
could make changes in the ODL commands for the task but you would
not have to make any changes in the source code. One disadvantage
to autoload is that it increases the size of the segments, since
the autoload code plus its data structures must be included in the
task. Another disadvantage is that it executes slower than manual
load, since the autoload code has to check for whether the
required segment is available or not each time an autoloadable
segment is called. In addition, autoload must be performed
synchronously. See Section 4.1 (on Autoload) in the
RSX-11M/M-PLUS Task Builder Manual for more information about
autoload.

201

OVERLAYING TECHNIQUES

Examples of autoload:

1.

X, the root of a task, calls subroutines Y and Z.

With disk-resident overlays:

.ROOT . X-*(Y,Z)
. END

With memory-resident overlays:
-ROOT X-*1(Y,2)
. END

Using the information from Example 1, Y calls subroutines
and V.

With disk-resident overlays:

. END

With memory-resident overlays:

«ROOT X-*1 (Y-t (0,v),2)
Ld END

With some memory resident and some disk resident overlays:

.ROOT X-*1(Y-(U,V),Z)
. END .

202

U

OVERLAYING TECHNIQUES

Manual Load

With manual load, you must call the subroutine MNLOAD in the main
program or any subroutines to load and/or map any required overlay
segment before calling a subroutine in that segment.
Additionally, vyou must keep track of which segments are currently
available to avoid a transfer of control to an incorrect segment,
and to avoid unnecessary calls to the loading subroutine. Manual
load is not path loading. In example 2 of the previous section,
if X calls U, it can load just segment U, without loading segment
Y, unless that is desired. See Section 4.2 (on Manual Load) in
the RSX-11M/M-PLUS Task Builder Manual for more information on
manual load.

Manual load is the default loading method. Anytime that a segment
is not preceeded by an asterisk (*) in the ODL file, manual load
is used.

The advantages of manual load are that smaller overlay segments
result, it 1is usually more run time efficient, and loading of
overlay segments can be performed either synchronously or
asynchronously. The disadvantages are that the user must keep
track of things and that it requires special coding in the source
program.

2¢3

OVERLAYING TECHNIQUES

Comparison of a Task With No Overlays, With Disk-Resident Overlays, and
With Memory-Resident Overlays

Example 6-1, shown earlier in the module, and repeated below for
convenience, shows a main program which calls a subroutine, which
in turn calls another subroutine, etc. Note that the sizes shown
for the various parts of the task are only approximate.

Main Segment: PROG

PROG calls: SuBl, SUB2, SUB3
SUB1 calls: A, B

SUB2 calls: none

SUB3 calls: c, D, E
Segment Size (in words)
PROG 4K

SUB1 2K

SUB2 3K

SUB3 1K

A 1K

B 2K

C 1K

D 2K

E 1K

Total 17K

Example 6-1 Description of an Overlaid Task
Example 6-2 shows part of the task-build map £for the task in
Example 6-1 when the task is built with no overlays.

Example 6-3 shows the map when Example 6-1 1is built with all
disk-resident overlays.

Example 6-4 shows the map when Example 6-1 is built with all
memory-resident overlays.

Example 6-2 does not use overlays; therefore no .ODL file is

required. Examples 6-3 and 6-4 use overlays; therefore they
require a .ODL file. These files are shown along with the map.

204

OVERLAYING TECHNIQUES

Example 6-2 has a root segment but does not have any overlay
segments. Note that a single virtual address window maps the
entire task. The virtual address limits of the task are 000000 (8)
and 1@5357(8), meaning that these virtual addresses are used to
reference the task code when it is loaded into memory. The task
image 1is 17792(10) words long; hence 17792(1d) words of physical
memory are required to load and run the task.

Task-build command:

LB:[1,1]FOROTS/LIBRARY

Fartition name ! GEN

ITdentification ¢ 01

Task UIC ¢ L305530110

Htack limitsd 000254 001233 001000 00512,

FRG xfr address: 021254

Total address windows?: 1.

Task image size 17792. words

Task address limits! 000000 105357

R-W disk hlk limits! 000002 000107 0001046 00070,

Xk ROOT SEGMENT: FROG

R/ mem limits?d 000000 1035357 105360 35568,
Dislk blk limits? 000002 000107 000106 00070,

Example 6-2 Map File of Example 6-1 Without Overlays

205

OVERLAYING TECHNIQUES

Example 6-3 with disk-resident overlays, has a root segment, PROG,
and eight overlay segments. Note that a single virtual address
window maps the entire task when Jjust disk overlays are used;
i.e., when no memory resident overlays are used. The overlay
description shows the virtual addresses and sizes of the segments.
On the right side, the segments are listed, lined up by overlay
level. Segments SUBl, SUB2, and SUB3 overlay each other. They
all begin at wvirtual address @22206(8), right after the root
segment PROG. At various times, virtual addresses starting at
022200(8) reference the memory code of the overlay segment which
is actually loaded in memory at that time.

Segments A and B overlay each other, beginning with wvirtual
address ©32234(8), right after SUBl. 1In a similar way, segments
C, D, and E begin at virtual addresses @26250(8), right after
SUB3. With disk-resident overlays, only virtual addresses
gO0000 (8) to @42237(8) are used to reference the task in memory,
compared to (000000@(8) to 1@¢5357(8) without overlays. This task
requires only 8800 (10) words of memory, compared to 17792(10)
words with no overlays.

206

OVERLAYING TECHNIQUES

PROG.ODL file:

.ROOT PROG-L-*(SuBl-L-(A-L,B-L),SUB2-L,SUB3-L-(C-L,D-L,E-L))
L: .FACTR LB:[1,1]FOROTS/LIBRARY
. END

Task-build command:

LINK/MAP PROG/OVERLAY_DESCRIPTION
Note that LB:[1,1]FOROTS/LIBRARY must be concatenated with each
segment in the ODL file. 1In the remaining examples of ODL files,

the concatenation of the library to each segment will not be shown
in order to simplify the appearance of the ODL file.

Fartition name ! GEN

Identification ¢ 01

Task UIC + [30553011

Htack limits?: 000280 001257 001000 003512,

FRGE «fr addresst 021260

Total address windows? 1.

Task image size ¢ 8800. words

Task address limits? 000000 042237

R-W disk bllk limitsd 000002 000120 000117 00079,

EX63.TSK Overlauw descristiont

Rase Tor Length

Q00000 022177 022200 09344, FROG

022200 032233 010034 04124, SURIL
032234 036237 004004 02052, A
Q32234 042237 010004 04100, B
022200 036203 014004 06148, SUR2
Q22200 026247 004050 02088, SUR3
026250 032253 004004 02032, . C
026250 0346253 010004 04100, I
026250 032253 004004 02052, E

Example 6-3 Map File of Example 6-1 With Disk-Resident Overlays

207

OVERLAYING TECHNIQUES

Example 6-4, with memory-resident overlays, also has a root
segment, PROG, and eight overlay segments. Notice ‘that three
virtual address windows are required for this task, one for the
root segment and one for each other overlay level. PROG uses
virtual addresses 000000 (8) to @23877(8), slightly more than with
Example 6-3. However, segments SUB1, SUB2, and SUB3 begin at
virtual address 40000 (8) corresponding to the next available APR,
APR 2, and not right after PROG. This is necessary because the
virtual address window must begin with the next APR. Segments A
and B begin at 60000(8), since the next virtual address window
begins with APR3. Segments C, D and E also begin at 60000(8) for
the same reason. With memory-resident overlays, virtual addresses
- PO0000B(8) to @77777(8) are used and the task requires 18464(19)
words in memory. The memory-resident overlay version of the task
requires the most virtual memory and also the most physical memory
of the three examples.

208

OVERLAYING TECHNIQUES

PROG.ODL file:

.ROOT PROG-*! (SUB1-! (A,B),SUB2,SuB3-!(C,D,E))
. END

Task-build command:

LINK/MAP PROG/OVERLAY DESCRIPTION

Fartition nmame ! GEN

Identification ¢ 01

Task UIC t L305,3011

Gtack limits?d 000320 001317 001000 00512,

PRG xfr address! 021320

Total address windows! 3.

Task imadge size 1§ 18464, words

Task address limitsd 000000 077777

R=W disk bllk limits?! 000003 000122 000120 00080.

EXDOVR.TSK Overlay descristion?

Base Tor Length

Q00000 023077 023100 09792, FROG

Q40000 030077 010100 04160, SUER1
Q40000 064077 004100 02112, A
Q80000 070077 010100 04160, 3]
040000 054077 014100 06208, SUR2
Q40000 044077 004100 02112, SUR3

060000 064077 004100 02112,
060000 070077 010100 04160.
060000 064077 004100 02112,

me o

Example 6-4 Map File of Example 6-1 With Memory-Resident Overlays

209

OVERLAYING TECHNIQUES

Table 6-1 refers to Examples 6-2, 653, and 6-4.

Table 6-1 Comparison of Overlaying Methods
Advantages and
Method Task Size Windows Disadvantages
Advantages
Non-Overlaid 17792 (10) Words 1 Smallest task size on
of Memory disk
Fastest execution
Simplest to develop
Disadvantages :
73 (18) Blocks Maximum task size 32K
on Disk words
Task smaller than 32K
105360 (8) words but too large
Virtual for partition or for
Addresses Used available space in
partition
Advantages
Disk-Resident 8800 (10) Words 1 Uses the smallest

Memory-Resident

of Memory

© 79(10) Blocks

on Disk

42238(8)
Virtual
Addresses Used

18464 (19) Words

of Memory

80(19) Blocks
on Disk

100000 (8)

Virtual
Addresses Used

amount of physical
memory

Uses the least amount
of virtual address
space

Disadvantages
Slowest execution

time; overlay segments

loaded from disk when
needed

Advantages

Faster execution than

disk-resident over-
lays

Task resident in
memory at one time

Disadvantages
Uses the most memory
and disk space
May waste virtual
address space
Requires space in
memory to hold the
entire task

210

OVERLAYING TECHNIQUES

Table 6-1 gives a comparison of the three overlaying methods. In
addition to the wvarious sizes, it also lists the advantages and
disadvantages of each approach. It is also possible to build this
task with memory-resident overlays for the first level (SUB1l,SUB2
and SUB3) and disk-resident overlays for one or both of the second
levels (A and B; or C, D and E).

LIBRARIES

Object libraries, when used, must be specified in the .ODL file.
The one exception is the default system library
LB:[1,1]1SYSLIB.OLB, which is searched automatically for the root
and each overlay segment. To allow inclusion of any needed
libraries, just specify the library with the /LB qualifier (as 1in
MCR format for TKB). To force the inclusion of a specific module
from a library, use the /LB:module form of the /LB qualifier.

Examples:

1.
.ROOT MAINPG-MYLIB1/LB-LIB~- (SUBA,SUBB,CPART)
CPART: .FCTR SUBC1-(SUBC2,SUBC3)
LIB: . FCTR MYLIB2/LB
« END
Explanation: Include all needed modules from MYLIB1l.OLB
and from MYLIB2.0OLB that are referenced in
the root segment MAINPG.

.ROOT MAIN-MYLIB1l/LB:MOD4-MYLIB1/LB-(A,B)
. END

Explanation: 1Include the module MOD4 from MYLIB1l.OLB.
In addition, the second MYLIB1l/LB with no
modules listed, causes the inclusion of
any other modules from MYLIB1.OLB that
are referenced in the root segment MAIN.

Note that if you reference additional 1library routines
from other segments, they will not get resolved properly
unless you specify the library again in each referencing
overlay segment.

211

OVERLAYING TECHNIQUES

3. Including the FORTRAN OTS Library:

.ROOT MAIN-LIBRA- (A-LIBRA,B-LIBRA)
LIBRA: .FCTR LB:[1,1]FOROTS/LB or F4POTS/LB
. END -

Include needed modules from FOROTS.OLB (or F4POTS.OLB) in the root
segment, in segment A, and in segment B. Notice that you should
specify the 1library in each segment which might need it.
Otherwise, 1f segment A needs a module not already included for
the root segment, the library is not searched again for module A
unless it is specified again in overlay segment A.

Note that in an installation which makes heavy use of FORTRAN, the
appropriate FORTRAN OTS library may have been included in SYSLIB
making it unnecessary to include the OTS 1library in the TKB
command. Check with your system manager to see if the 0TS library
is included in SYSLIB.

Example of Duplicate Code in Overlays

In the above example with a root and two overlay segments, A and
B, it is possible that duplicate code will be forced into the two
segments. If A and B both need module X from the library, and the
root does not need X, then a copy of X would be placed in both
segment A and in segment B. This adds to the size of segments A
and B but keeps the size of the root smaller. If the size of the
root is critical, you may be willing to have the duplicate code
appear in A and B. If the size of the root is not critical, force
X to be in the root by the following ODL statement:

.ROOT MAIN-LB:[1,1]FOROTS/LB:X-LIB-(A-LIB,B-LIB)
LIB: .FCTR LB:[1,1]FOROTS/LB
. END

In general, it is good practice to include a library reference in
each segment of the task. If you are concerned with the
possibility of duplicate code, you can use the trial and error
approach wherein you specify the library only in the root and then
note the unresolved symbols that occur. Once you determine from
the TKB map which modules are needed in which segments, you can
then determine if you want to place certain modules in the root or
if you are willing to have duplicate code in various segments.

212

OVERLAYING TECHNIQUES

Duplicate code can also be included from SYSLIB, the default
library. If you wish to use the trial and error method on modules
from SYSLIB, use the /LONG qualifier in the LINK command (/MA in
TKB format). This qualifier causes the Task Builder to 1list
modules included from SYSLIB in the map file.

Note that in the previous example, if X had been required 1in the
root, duplicate code in the overlay segments would not be
generated; all references to X would be resolved via the root.

An Overlay Example

Example 6-5 is a simple task with a root segment ROOT and 2
overlay segments, P and Q. During the execution of the task, the
following calling sequence is used:

ROOT calls P
ROOT calls Q

Figure 6-5 shows an overlay tree and a memory allocation diagram
for this task.

The code for Example 6-5 1is separated into three different
modules, one for each segment. The source file for the root
segment ROOT contains the startup code and controls the overlay
loading by <calls to the subroutines. The source file for each
overlay segment, P and Q, contains the subroutine code. '

OVERLAY TREE

MEMORY ALLOCATION DIAGRAM

P Q P Q

ROOT ' ROOT

TK-7755

Figure 6-5 Task with Two Overlay Segments

213

OVERLAYING. TECHNIQUES

Steps in Program Development for Example 6-5
1. 'Compile each module.
>FORTRAN/LIST ROOT

>FORTRAN/LIST P
>FORTRAN/LIST Q

2. Use the editor to create the overlay descriptor
FEXDOVR.ODL for disk-resident overlays.
.ROOT ROOT-LIB-*(P-LIB,Q-LIB)
LIB: .FCTR LB:[1,1]FOROTS/LB
« END

3. Task-build using the .ODL file as the input file.

>LINK/MAP EXDOVR/OVERLAY DESCRIPTION

LEARNING ACTIVITY
l. To build the above task with
memory-resident overlays, how would you
modify the .ODL file?

2. To build the above task without overlays,
what task-build command would you use?

214

file

OVERLAYING TECHNIQUES

The following notes are keyed to Example 6-5.
©@ on initial load only the root segment ROOT is loaded.

‘, With autoload the call to subroutine P causes the autoload
routine to 1load overlay segment P from disk and then
transfer control to the subroutine.

G’ Subroutine P displays a message and returns.

¢’ The call to subroutine Q causes the autoload routine to
load overlay segment Q from disk over segment P and then
transfer control to the subroutine.

G’ Subroutine Q displays a message and returns.

If another call were added to subroutine Q, the autoload routine
would check and see that overlay segment Q is already loaded and
would then just transfer control to Q. If another call were added
to subroutine P, the autoload routine would check and see that
overlay segment P is not loaded. Hence, it would load segment P
over segment' Q and then transfer control.

215

C FILE

C This

C Task-build instructions?

¢ file.

FILE

[2 B

C This
G

%50

~
e

FILE

30 3

This

lolw)
PIRY

.

3

OVERLAYING TECHNIQUES

FROGRAM ROOT
ROOT.FTN

task calls each of the subroutines P AND Q

WRITE (5+50) I Disrlaw messade
FORMAT (/ THE ROOT SEGMENT I8 NOW RUNNING AND
IWILL CaLL P.7)

caLl F

WRITE (51500 P Disrlay messade
FORMAT (¢ THE ROOT SEGMENT WILL NOW CALL Q.7
cCaLl @Q ‘

CWRITE (5y2350) I Nlisrlay messade
FORMAT (/7 THE ROOT SEGMENT WILL NOW EXIT.’)
Call EXIT VOEMit
END
SUBRQUTINE P

F+FTN

subroutine disrlaus a8 messade and them returns

WRITE(S:50) | Nisrlay messade
FORMAT (7 SEGMENT F IS NOW LOADED. SURBROUTINE
118 EXECUTING.)

RETURN I Return

END

SURROUTINE Q

Q.FTN

sﬁbroutine disrlavs & message and then returms
WRITE(S2H0) I Digrlay messase
FORMAT (7 SEGMENT Q IS8 NOW LOADED. SUBROUTINE
118 EXECUTING.)

RETURN I Return
END

Run Session

SRUN EXDOVR

THE MAl

N SEGMENT IS RUNNING AND WILL CALL F.

SEGMENT P IS NOW LOADED. SUBROUTINE F IS EXECUTING.
THE MAIN SEGMENT WILL NOW CALL Q.
SEGMENT @ IS NOW LOADED. SUBRROUTINE Q IS EXECUTING.

THE MAI

N SEGMENT WILL NOW EXIT.

Example 6-5 A Task with Two Overlay Segments

216

Use FEXDOVR.ODL as the insut

OVERLAYING TECHNIQUES

Changing Example 6-5 to Manual Load

To change the previous example to manual load, the source code 1in
ROOT must be modified to include the calls to subroutine MNLOAD
which will cause the loading of the segments. The ODL file must
also be modified to remove the autoload indicator (*). The files
MLROOT.FTN and MLEXDOVR.ODL on the tape provided with this course
are modifications of ROOT.FTN and EXDOVR.ODL. Check UFD [282,3]
for these files. See your course administrator 1if you have
difficulty finding these files.

GLOBAL SYMBOLS IN OVERLAID TASKS

When the Task Builder builds a task, each reference to a
subroutine is an unresolved symbol reference which must ultimately
be resolved by finding a corresponding subroutine or by finding an
entry in the system library. (Each subroutine generates a global
symbol definition which can be wused to resolve an unresolved
global reference symbol.) If no such subroutine or entry in the
system library is found, the global symbol is unresolved.

The scope of a global symbol 1is controlled by the overlay
structure. A module can only refer to a global symbol defined on
a path which passes through it. Thus, in Figure 6-6, the
reference "to global symbol R. (global symbol and subroutine are
used synonymously in this discussion) in segment Al 1is wundefined
- because R is not defined in either A@ or CNTRL. A@ and CNTRL form
the only path passing through Al. The definition in A2 can't be
used because Al and A2 overlay one another.

In a single segment task with no overlays the same global symbol
cannot be defined more than once, or it is multiply defined. With
the rules governing global symbols in overlays, however, the same
name can be used for two different global symbols as long as they
follow these two restrictions:

1. They must be defined on separate paths. Each reference is
resolved to the definition on its own path. Only if the
same symbol is defined more than once on the same path, is
it multiply defined.

2. The two symbols must not be referenced from a segment
closer to the root which has paths through both segments.
An example is a root segment which references a subroutine
N. If the root segment has two overlay segments U and V.
and each one defines the subroutine N, the Task Builder
can't tell which subroutine N to use. Therefore, the
reference is ambiguous, since there are several possible
ways to resolve the reference.

217

OVERLAYING TECHNIQUES

Figure 6-6 shows an example overlay tree with a number of global

symbol definitions. The
follows:
Q is defined in A@ and B#
R is defined in A2
S is defined in A0 and BO
T is defined in A@ and A2l
A21 A22
T(DEF)
S(REF)
Al A2
Q(REF) R(DEF)
R(REF)
S(REF)
A0
Q(DEF)
S(DEF)
T(DEF)
[
Figure 6-6

R(REF)
Q(REF)
smFH

various

Reference
Reference
Reference

Reference
Reference
Reference

(if autoload,

vector)

Reference
Reference
Reference
Reference
Reference
Reference

references

are resolved as

in A22 resolved in AQ
in Al resolved in A@
in Bl resolved in B#

in A22 resolved to A2
in Al undefined

in CNTRL resolved to A2
through an autoload

in Al resolved to AQ

in A21 resolved to Ag
in A22 resolved to A¢
in Bl resolved to B#

in B2 resolved to B®

in CNTRL ambiguous

Symbol multiply defined

B1 B2
Q(REF) S(REF)
S(REF)
B0 c
Q(DEF)
S(DEF)

S(REF)
R(REF)

218

TK-7756

Resolution of Global Symbols

OVERLAYING TECHNIQUES

Data References in Overlays

Data local to an overlay segment 1is only available while the
segment 1is loaded. When the segment 1is overlaid by another
segment, any updating of local data that had been made while the
segment was loaded will be lost. The next time the same segment
is loaded from the disk, the original data values will be brought
into memory. For this reason it is strongly recommended that data
required by more than one segment be placed in the root.

If you wish to share data between overlay segments, you must use
FORTRAN COMMON or pass arguments in the CALL (discussed below).
Note that if you want to share data between overlay segments A and
B, and 1if updating of the data can be done by either segment, it
is not sufficient to simply place the COMMON in A and B; it must
also be placed in the root segment.

By placing the same COMMON in the root, you are assured that A and
B will always be referring to the same data in the COMMON since
the root segment is always loaded. In FORTRAN-77 another way to
place a COMMON in the root is to use the FORTRAN SAVE common-name
statement in one of the segments. This will force the
task-builder to place the named common in the root. The .PSECT
ODL statement can also be used to force the placement of a common
in the root segment.

Another way of sharing small amounts of data between two overlays
is to have the data passed from the root to each overlay as an
argument to the CALL. 1If the segment changes one of the data
values passed as an argument, it will then be changed in the root
segment. The changed wvalue can then be passed to the next
overlay, etc.

Example 6-6 is a more complex example of the use of overlays. The
program calling sequence is as follows:

MAIN calls A
A calls JOBl or JOB2 (in module JOBXX)
MAIN calls B
Loop through three time
MAIN calls A
A calls JOBl or JOB2
End of loop
MAIN calls TOTAL (in the root segment)

219

OVERLAYING TECHNIQUES

The following notes are keyed to Example 6-6.

Task-build instructions.

COMMON OTHER is defined in the root segment MAIN, and 1is
referred to 1in overlay A and in overlays JOBl and JOBXX.
The entire allocation of space for OTHER is in MAIN; no
space is reserved for OTHER in the overlays.

The use of the COMMON OTHER by the MAIN segemnt and the
the -overlay segments allows the overlays to access data
provided by MAIN and to pass a result back to MAIN via the
fourth argument in OTHER. This argument 1is called
variously ANS in MAIN, ARG(4) in overlay A, SUM in overlay
JOBl and ANS in JOBXX.

_COMMON TOTCOM is also defined in MAIN and 1is referenced in

overlays JOBl1 and JOBXX. Allocation for TOTCOM is in
MAIN. Subroutine TOTAL displays the grand total, which
has been accumulated in TOTCOM in variable TOT, but the
subroutine does not refer to COMMON TOTCOM. Since MAIN
passes the argument TOT to subroutine TOTAL, the
subroutine does not have to use TOTCOM. This 1illustrates
how shared data may be passed between overlay segments via
the argument list.

Note that subroutine A calls JOB2, which is the name of
the subroutine, and that the ODL file uses JOBXX which is
the file name., File names are always used in ODL; not
subroutine names. In general, file names and subroutine
names should be the same simply to avoid confusion.

Note that neither COMMON OTHER or COMMON TOTCOM appear in
segment B since the segment does not refer to any
variables in either COMMON.

Argument TOT is is COMMON TOTCOM. Since the argument is

passed to subroutine TOTAL, TOTAL does not need a
reference to COMMON TOTCOM.

220

C
C
C
[
C
C
C
G

C

(M

OVERLAYING TECHNIQUES

FROGRAM MAIN
FILE MAINJ.FTN

This srodgram rrints a2 messadge and then calls subroutine
A, Subroutine A asks whether to rerform Jdob 1 or Jdob 2.F
It then calls either subroutine JORL or JORZ which)
rerforms the oreration and disrlaus the results. MAIN
then calls subroutine B which disrlavs a2 messadge. MAIN
then calls subroubtine A 3 more timesy keering a grand
total of the orerations. Finallwy it disrlauws the

grand total and exits.

Task-build instructions! Use FMRMAIN.ODL as the ineut
file.

COMFLEX DUMMY(1024) I Leave srace to make
I gedment larder
t’ COMMON Z0THER/QF1s0FsQF2sANS
INTEGER OP1s0Fs0OFP2yANS
DATA OF1y0P2/52/

© comvon sToTCOM/TOT

INTEGER TOT I Total

TYFPE X»/THE MAIN SEGMENT IS RUNNING AND WILL

1Call A7

CalL A I Call subroutine A

TYFE X5 THE MAIN SEGMENT WILL NOW CaALlL R
e’ CALL ® I Call subroutine R

0o 10y I=1+3

TYFE Xy THE MAIN SEGMENT WILL NOW CALL A7

ANS = 0 I Clear answer in case
' of no oreration

10 CALL A F Call subroutine A

TYFE %y ‘THE MAIN SEGMENT WILL CALL TOTAL~
t’ CALL TOTALCTOT) I Call routirne to
b diserlay dgrand total
TYPE Xy ‘THE MAIN SEGMENT WILL NOW EXIT’
CALL EXIT P EXIT
END

Example 6-6 Complex Example Using Overlays
(Sheet 1 of 4)

221

C

OVERLAYING TECHNIQUES

SUBROUTINE A

C FILE AFTN

C This subroutine disrlaus 38 message and then asks which
Jobs to do. It calls the arrrorrisate subroutine
C to doa the Joby disrlavws the resultsy and them returns

C of two

C to the

e

™

[

main #rogram

© CoMMON /OTHER/ARG

INTEGER ARG(4)
INTEGER BUFF

TYFE 1

FORMAT (T8» 'SEGMENT A IS NOW LOADED.

1 A I8 EXECUTING.)
TYFE 2

SUBROUTINE

FORMAT (7$/sT8y 00 YOU WANT TO DO JOR 1 OR JOR 2

17)
ACCEFT 3 BUFF

disrlaw code

3 FORMAT (142
IF (BUFF.NE.1) GOTO 10 ! Is it .Job 17 :
CaLL JOR1 ! Call subr to do .ob 1
GOTO 20 I Branch to

10 IF (RUFF.NE.2) GOTO 1000! Is it Job 27
CALL JOB2 I Call subr to do Job 2

20 TYFE 21sARG

21 FORMAT (T8»I2y1XsA2,I2y7 = ‘y13/)
GOTO 2000

1.000 TYPE 1001

1001 FORMAT (T8y/NO SUCH JOR. SORRY.’)

2000 RETURN I Return
END

Example 6-6 Complex Example Using Overlays

(Sheet 2 of 4)

1222

G

OVERLAYING TECHNIQUES

SURRODUTINE JOBRI1

C FILE JOBL.FTN
'™
C This subroutine rerforms an addition oreration. The
C orerandsy oreratory and sum are held in one common
C hlockr and the totasl in another.
© COMMON /OTHER/NUM1 s OFRATR s NUM2 s SUM
INTEGER NUM1yOFRATRsNUM2»SUM
© cowMon sTOTCOM/TOT
INTEGER TOT
C
INTEGER DUMMY(1024) I Leave srace Lo make
¢ ' module larder
™
TYFE 1 P lisrlay messade
A FORMAT (T16s /SEGMENT JOE1 IS NOW LOADED.”
I/yTlé SUBROUTINE JOE1L 18 EXECUTING.)
GUM = NUM1 + NUM2 Caleculate sum
TOT = TOT + SUM ! Add to grand total
OFRATR = 7+4° I Move orerand for
C ' outrut disrlay
RETURN
END
@ SUBROUTINE JOR2
[
C FILE JOBXX.FTN
¢ ‘
C This subroutine rerforms a multirlication oreration.
C The orerandsy oreratory and sroduct are held in one
C common blocky the runninmg total inm snother.

© COMMON /OTHER/OF1,OFRATR OF 2y ANS

INTEGER OF1s0FRATR»0OF2sANS
COMMON /TOTCOM/TOT
INTEGER TOT

REAL DUMMY(1024) I Leave srace to make
' module lardger
TYFE 1 ! DNisrlay message

FORMAT (T16»/SEGMENT JOERXX IS NOW LOADED.’y
1/9T16y SURROUTINE JOE2 I8 EXECUTING.)

ANS = 0OF1 X 0OF2 I Calculate rrodguct
TOT = TOT + ANS I Add this to grand total
OFRATR = ‘X%’ I Move orerand for
I outrut disrlaw
RETURN
END

Examplé 6-6 Complex Example Using Overlays

(Sheet 3 of 4)

223

OVERLAYING TECHNIQUES

e ‘SUERROUTINE E

C FILE B.FTN

C

G This subroutine disrlays a3 messade and returns
[

TYFE 1

1 FORMAT (T8 'SEGMENT B IS NOW LOADED, SURROUTINE

1B I8 EXECUTING.’)
RETURN
END

e SUBROUTINE TOTAL (TOT)

C FILE TOTAL.FTN

0 Subroutine to disrlaw drand total, The drand total

. location is rassed as a3 subroutine argument

INTEGER TOT
TYFE 17T0T
1 FORMAT (7 THE GRAND TOTAL IS ‘sI3y’.7/)
RETURN
END

Run Session

*RUN MRMAIN :
THE MAIN SEGMENT I8 RUNNING AND WILL CALL A
SEGMENT A IS NOW LOADED. SURROUTINE A IS
DO YOU WANT TO DO JOR 1 OR JOR 27 1
SEGMENT JORL IS NOW LOADED.
SUBROUTINE JOE1 IS EXECUTING.

54 2= 7

THE MAIN SEGMENT WILL NOW CALL E
SEGMENT B I8 NOW LOADED. SUBROUTINE B IS
THE MAIN SEGMENT WILL NOW CALL A
SEGMENT A IS NOW LOADED. SUBRROUTINE A IS
N0 YOU WANT TO DO JOg 1 OR JOR 27 2
SEGMENT JORBRXX IS NOW LOADED.
SUBROUTINE JOR2 IS EXECUTING.
9ok 2 =10

THE MAIN SEGMENT WILL NOW Call A
SEGMENT A IS NOW LOADED. SURROUTINE A IS
[0 YOU WANT TO DO JOR 1 OR JOR 27 2
SEGMENT JOBRXX IS NOW LOADED.
SURROUTINE JOE2 IS EXECUTING.
5 % 2 = 10

THE MAIN SEGMENT WILL NOW CALL A

EXECUTING.

EXECUTING.

EXECUTING.

EXECUTING.

SEGMENT A IS NOW LOADED. SUBROUTINE A IS EXECUTING.

D0 YOU WANT TO DO JOR 1 OR JOR 27 1
SEGMENT JOE1 IS NOW LOADED.
SUBROUTINE JOR1 IS EXECUTING.

S+ 2= 7

THE MAIN SEGMENT WILL CALL TOTAL
THE GRAND TOTAL I8 34.

THE MAIN SEGMENT WILL NOW EXIT

Example 6-6 Complex Example Using Overlays

(Sheet 4 of 4)

224

OVERLAYING TECHNIQUES

LEARNING ACTIVITY (Using Example 6-6)

l. Draw an overlay tree or a memory
allocation diagram. Since the questions
below assume a particular overlay
structure, check your answer before doing
questions 2 through 4.

2. What .0ODL file would you use for autoload
and all disk-resident overlays?

3. What .0ODL file would you use for autoload
and all memory-resident overlays?

4., What .0ODL file would you use for autoload
and A and B memory-resident and JOB1l and
JOBXX disk-resident?

CO-TREES

Sometimes there are subroutines which must be callable from
several or all different overlay segments in a task. One solution
is to place the subroutines in the root. Since they are always
loaded, they are then available from the root and all overlay
segments. If this causes the task to become too 1large and the
subroutines are logically independent (don't call each other),
another solution is available. You can set up a separate overlay
area and place the subroutines in it so that they overlay each
other.

For example, Figure 6-7 shows an overlaid task with subroutines X
and Y 1in the root. They are placed there so that the root and
every other segment can call them. If this makes the task too
large, set up a separate overlay area and place X and Y in it so
they overlay each other (Figure 6-8). X and Y are in a separate
overlay area, therefore, they can overlay each other and still be
called from the root and every other segment in the task.

225

OVERLAYING TECHNIQUES

The two overlay areas, the main one and the separate one for the
extra subroutines, are defined by a multiple tree structure. The
tree for the main code is called the main tree and the other one
is called a co-tree. The co-tree root may contain code but it
does not have to. In the example in Figure 6-8, the root of the
co-tree is null (or is a dummy root) and contains no code. A root
is needed to set up the overlay structure. Only the root of the
main tree is loaded on initial load. The co-tree roots are loaded
when they are first needed and remain loaded after that. Other
than that, 1loading of overlay segments works Jjust 1like a
single-tree overlay structure.

The .ODL files are listed above the files for the task without
co-trees and with co-trees. The co-trees are separated in the
.ODL file by a comma. With autoload, an asterisk (*) should be
specified on the <co-tree roots as well as in the normal places.
This is necessary because the co-tree roots are 1loaded 1like
overlay segments the first time they are needed. Also, note that
the .NAME directive is used to specify that CNTRL2 is just a name
for the null root segment of the co-tree.

For additional information on co-trees and an example, see Section
3.5 (on Multiple-Tree Structures) in the RSX-11M/M-PLUS Task
Builder Manual. 1In particular, note the use of the /NOFU or /FU
switch used with TKB.

226

OVERLAYING TECHNIQUES

.ODL File with no co-trees:

.ROOT CNTRL-X-Y-*(A@d, (Al,A2),B0-(B1,B2))
. END

B1

A1 A2 B2

AO BO

CNTRL

TK-8635

Figure 6-7 <Task Without Co-Trees

227

OVERLAYING TECHNIQUES

.ODL File with Co-Trees

.NAME CNTRL2
.ROOT CNTRL-* (A@g-(Al,A2),B@#-(B1,B2)), *CNTRL2- *(X,Y)
. END

The segment CNTRL2 is a dummy root used for loading purposes only.

A1 A2 B1 B2
AO BO X Y
J | | |
CNTRL CNTRL2
X Y
NULL ROOT CNTRL2
B1
A1 A2 B2
AO BO
CNTRL

TK-7768

Figure 6-8 Use of Co-Trees

228

OVERLAYING TECHNIQUES

Now do the tests/exercises for this module in the Tests/Exercises
book. ‘They are all lab problems. Check your answers against the

solutions provided, either

If you think that you have
administrator to record

Plotter. You will then be

If you think that you have
to this module for further

in that book or in on-line files.
mastered the material, ask your course
your progress in your Personal Progress
ready to begin a new module.

not yet mastered the material, return
study.

229

STATIC REGIONS

STATIC REGIONS

INTRODUCTION

Logical address space in a task is composed of regions. There are
three basic types of regions: task regions, static regions, and
dynamic regions. Task regions, into which tasks are 1loaded, are
created using information set up by the Task Builder. Static and
dynamic regions are generally used to share code or data among
several tasks. Static regions are created using the Task Builder;
dynamic regions are created during task execution using executive
directives.

This module discusses static regions. You can use these static
regions to:

e Create memory areas containing code which is shared among
tasks

e Create memory-resident data areas which can be wused for

communication between tasks or successive invocations of
the same task.

OBJECTIVES

1. To create and use a resident common region
2., To create and use a resident library

3. To determine whether a position independent or an absolute
shared region should be used in a given situation.

RESOURCE

e RSX-11M/M-PLUS Task Builder Manual, Chapter 5

. 233

STATIC REGIONS

TYPES OF STATIC REGIONS

Static regions, also called shared regions, are areas of memory
which are shared among tasks. They allow tasks to share data or
code with very 1little overhead. Unlike send and receive
directives, no executive directives are needed and the area's size
is limited only by virtual address and possibly physical memory
limitations. The virtual addressing limit must be met for both
the region itself and for any tasks which use the region. For a
task using the region, the virtual addressing limit applies to the
total of all regions used plus the task's code.

Static regions also offer very quick access, since the area is
loaded before the tasks which use it are run. Once loaded, it is
available directly in memory. Therefore, it offers much faster
access than disk-resident data. :

Table 7-1 summarizes the types of shared regions available on an
RSX-11M system. A resident common contains data. The data can be
accessed by several different tasks, each with read only access or
with read/write access.

A resident library contains reentrant subroutines, which can be
called by several different tasks. A single copy of each
subroutine <can be shared, thus reducing the total memory
requirements of the tasks. The term resident is used because the
shared region is task-built, installed, and 'loaded into memory
separately from the tasks which access it.

A third type of shared region is a device common, a special type
of resident common. It occupies physical addresses on the I/O
page, which correspond to I/0 device registers instead of physical
memory. Therefore, this kind of common allows a task to reference
an I/0 device directly. Unlike other resident commons, a device
common has no true contents because it has no physical memory
associated with it.

235

STATIC REGIONS

Table 7-1 Types of Static Regions
Available on RSX-11M

Type of Region Contents Advantages
Resident Common ‘Data accessed Serves as com-
by two or more munications link
tasks Serves as memory-
resident data base
Resident Library Reentrant routines, One copy of common
used by two or more routines shared in
tasks (must be wri- . memory

ten in MACRO-

11 but

can be used in a

FORTRAN CALL)

Device Common . No true "“contents" Nonprivileged task
Region is a range can directly access
of physical addresses an I/0 device with-
within I/0 page out being mapped

to the Executive

MEMORY ALLOCATION

Memory is allocated independently
individual tasks which use it.

the region referencing tasks. On
region must reside in a dedicated
of the partition must be the same

to the shared region and to the
We will call the tasks which use
an RSX-11M system, ‘the shared
common type partition. The name
as the name of the region. The

partition can be <created at SYSGEN time or later by the system

manager or. by a privileged user.

Once the region is installed and

loaded into the partition, it cannot be checkpointed.

236

STATIC REGIONS

MAPPING

Shared regions can be written and task-built as either position
independent regions or as absolute regions. On a mapped systen,
position independent regions can be placed anywhere in a
referencing task's virtual address space. This means that the
virtual addresses used to map to the region can correspond to any
available APR.

Figure 7-1 shows a position independent region POSIND and three
referencing tasks. The region 1is loaded into memory into the
partition POSIND; the partition name must be the same as the name
of the region. Recall that a virtual address window for mapping
must begin with a base address for an APR on a 4K word boundary.
Because the region is 5K words in length and each APR can only map
at most 4K words, two APRs are needed to map the region.

TASK A maps the shared region using APRs 6 and 7, starting at
virtual address 140000(8). It could in fact use APRs 5 and 6,
beginning at virtual address 120000(8); or APRs 4 and 5,
beginning at virtual address 100000 (8).

TASK B maps the shared region at the first available APR above the
task code, wusing APRs 2 and 3, beginning at virtual address
49003 (8). It could use APRs 3 and 4, 4 and 5, 5 and 6, or 6 and 7
as well,

Task C maps the shared region using APRs 6 and 7, starting with
virtual address 140000(8). There 1is no other possible way for
task C to map the shared region because APR 6 1is the first
available APR. :

When you task-build a referencing task, you can specify which APR
to wuse in mapping the region. If you do not specify an APR, the
Task Builder selects the highest set of available APRs. When task
A and task C were built, either the user did not specify an APR,
or APR 6 was specified. When task B was built, the user specified
APR 2.

An absolute shared region has its virtual addresses fixed when it
is task-built. All tasks which reference it must use those
virtual addresses, and the <corresponding APRs, to map to the
region. Figure 7-2 shows another region, ABSOLU, and three
referencing tasks A, B and C. The shared region ABSOLU was built
to wuse virtual addresses 120000 (8) through 147777 (8) (6K words)
with APRs 5 and 6. All referencing tasks must map to the region
using these APRs. Therefore, task A and task B can both map to
the region, since APRs 5 and 6 are available. Task C, on the
other hand, cannot reference ABSOLU, since APR 5 is already used
by its task code.

237 :

STATIC REGIONS

VIRTUAL :
MEMORY PHYSICAL
TASK A MEMORY
7, UNUSED
160000 APR7 [Esein ~—
140000 APR6 (5K WORDS) - ~—_
120000 APR5 g?y UNGSED S~ ~—
~— POSIND (POSITION
100000 APR4 ~//J INDEPENDENT REGION)
60000 APR3 | ASK \\\ / }/ -
40000 APR2 |- WINDOW ~_ / / /i
20000 APR1 | (16K WORDS) /7<
0 APRO 7/
N / /// TASK
~/ / REGION
! L /7\4/ (TASK A)
160000 APR7 /////\\
140000 APR® 44 // / /
120000 APR5 / // y /
100000 APR4 /) /
60000 APR3 POSIND / // o TASK
40000 APR2 (BI;AWS(I)(RDS) /// (Bri%:?'\sl)
20000 APR1 |- WINDOW / ////
0 APRO (8K WORDS) //
/ e
e
TASK C // / P e
UNUSED ; TASK
160000 APR7 [/POSIND Al -~ TASK
140000 APR6 (5K WORDS) -~ (TASK C)
120000 APR5 |
100000 APR4 | TASK
60000 APR3 |_ WINDOW -
40000 APR2 L (24K WORDS) ///
20000 APR1 |_ -
0 APRO -

TK-7774

Figure 7-1 Tasks Using a Position Independent Shared Region

238

STATIC REGIONS

VIRTUAL PHYSICAL
MEMORY MEMORY
TASK A
2 7
160000 APR7 ,///// ///%
140000 APR6 [ABSOLU ~—
120000 APR5 (6K WORDS) ———
L1/ 777 —~—
UNUSED7 —~— ABSOLU
100000 APR4 ////// ,,,,,,,,, /// - \\\74 (ABSOLUTE REGION)
60000 APR3 | N /
TASK ~ /
40000 APR2 | WINDOW \>(V
20000 APR1 | (16K WORDS) / ~
0 APRO / //
\[TASK
TASK B ///;(\ REGION
~
~ (TASK A)
oo e (770N / ~
140000 APR6 ABSOLU //
120000 APRS (6K WORDS) /
100000 APR4 % //// //
60000 APR3 —_— TASK
—_— REGION
40000 APR2 TASK — (TASK B)
20000 APR1 WINDOW —
0 APRO (8K WORDS) L
TASK C
160000 APR7 |-
140000 APR6
120000 APR5 |
100000 APR4 | _ TASK
60000 APR3 | ZV'NDO;V CAN'T
40000 APR2 | (24K WORDS) REFERENCE
ABSOLU
20000 APR1 |
0 APRO
TK-7769
Figure 7-2 Tasks Using an Absolute Shared Region

239

STATIC REGIONS

Because of the added flexibility of a position independent region,
i.e., any APR <can be used to map the region, it might seem that
there is no reason to ever wuse an absolute region with its
attendant APR restrictions. However, there are coding
restrictions for position independent regions which require the
use of highly specialized coding techniques. Because of these
restrictions, the decision to create a position independent or an
absolute region 1is wusually based on these coding restrictions
rather than on flexibilty alone.

In general, resident commons, containing data, are created
position independent and resident libraries, containing code, are
created absolute.

Figure 7-3 shows the program development process for <creating a
shared region and a referencing task. Specific steps for each
process are discussed later in this module. Compile and
task-build the shared region separate from the referencing task,
and before task-building the referencing task.

Since it is not an executable task, certain task-build switches
are wused to create a task image with no header and no stack. An
additional file, called a symbol definition file, is also created
at task-build time. This file contains information about the
symbols defined in the region which the Task Builder will use when
it builds the referencing task to set up the linkage to the
region.

After task-building the shared region, task-build the referencing
task. It can be written and compiled earlier, if desired. The
name of the region is specified to the Task Builder so that it can
access the symbol definition file and set up the linkage to the
shared region. The shared region must be installed (causing it to
be loaded into memory as well) before any referencing task is run.

REFERENCES TO A SHARED REGION

The following kinds of references are made to a shared region by a
referencing task:

e The task retrieves data from or stores data in a resident
common. FORTRAN COMMON is used for this purpose.

® Subroutine call to a subroutine defined in a shared
region.

240

STATIC REGIONS

PROCEDURE FOR CREATING SHARED REGIONS AND REFERENCING TASKS

Creating a Resident Common

l.

Code the shared region. Typically consists of a COMMON
statement and DATA statements which allow you to
initialize the COMMON.
Choose position independent for a resident common.

Compile the shared region.

If not already done, create the common type partition.

e Name must be the same as the name of the region.

e Best done when the system is SYSGENed.

® Use the SET PARTITION (SET/MAIN in MCR) command to
create a partition.

e Use the SET NOPARTITION (SET/NOMAIN in MCR) command to
eliminate a partition.

e Examples:

>SET PARTITION:MYCOM/BASE:7114/SIZE:20@/COMMON

Creates the common type partition MYCOM with base
physical address 711400 (8) and size 20000 (8) bytes.
no other partition may use this space at the same
time.

>SET NOPARTITION:MYCOM
Eliminates the partition MYCOM.
NOTE
Before you create or eliminate any partitions on

your system, check with your system manager to
find out what area of memory you may use.

241

STATIC REGIONS

5. Task-build the shared region.
e Symbol definition file (.STB) required.

e Build position independent and /SHAREABLE : COMMON.
This causes the Task Builder to include the COMMON
names in the .STB file so that references to them in
the referencing task are properly resolved. The
/SHAREABLE: LIBRARY switch used in task-building
resident libraries causes the COMMON (Psect for MACRO)
names to be omitted from the .STB file. This avoids
task-builder errors in the case of unintentional
duplication of Psect names.

e Use required switches and options (see Table 7-2).

6. Install the shared region in the common type partition
before running any referencing task.

e Not required before task-building the referencing
tasks.

e Use the INSTALL (INS in MCR) command to install the
region.

- This command also loads the region into memory.
This is wunlike an executable task, which is
usually loaded into memory only when it is
activated.

e There is no command to remove a region. It is removed
by either installing another region or eliminating the
partition.

242

STATIC REGIONS

SHARED
REGION

CREATE
SOURCE CODE

SHARED
REGION
SOURCE
FILE

1

ASSEMBLE
OR COMPILE

SHARED

TASK REFERENCING
SHARED REGION

CREATE
SOURCE CODE

\

TASK
SOURCE

FILE

ASSEMBLE
OR COMPILE

243

TASK
REGION OBJECT
OBJECT FILE
FILE
)
LIBRARY TASK SrvRoL TASK
BUILD BUILD
FILE(S) FILE
SHARED
REGION
INSTALL RUN
SHARED |-—————— — TASK
REGION
TK-7770
Figure 7-3 Program Development for Shared Regions

The required switches and options in
various reasons.
an executable task.
stack.

header and

The partition

will be 1loaded.

For an absolute region you must specify a base address. If
that value is used as a maximum,

specify a

length checking.

the
length of 4,
code, so

nonzero
A task-builder error results if
region is longer than the length specified.

the region is set up with the
long

STATIC REGIONS

Table

are needed for

No header or stack is needed because this is not

The referencing tasks
The symbol table definition file is needed to
allow the Task Builder to link referencing tasks

each have

their

to the region.

name specifies the partition into which the region

length,

size

you
for

the 1length of
If you specify a
needed for the

as it doesn't exceed the normal 32K word virtual

addressing limit,.

Table 7-2 Required Switches and Options for Building
a Shared Region
Switch/Option |
in DCL (MCR) Effect Defaults Notes .
/NOHEADER No task /HEADER
(/-HD) header
/SYMBOL TABLE Create a No .STB Needed for
(Specify third .STB file file task-building
output file) referencing task
STACK=0 No space STACK=256 (10)
for stack words
in .TSK file
PAR= Specify PAR=GEN Partition name
par[:base:len] partition If base and must be same as
name (set length not name of the .TSK
base virtual specified, and .STB files
address - information

required if
absolute; must
also specify
length, 0 or
maximum)

taken from
partition on
the system

For PI regions,
if specifying

base and len, use
base=@, length=g
or max

244

own

STATIC REGIONS

Example 7-1 has the source code for a resident common COMWP and a
referencing task COMGP. The following procedure is used to create
the resident common:

1.

Code the shared region.

See COMWP.FTN in Example 7-1. The following note is keyed
to the example:

"Create the FORTRAN named COMMON, MYDATA, and put data
into the array I.

Compile the shared region.
>FORTRAN/LIST COMWP
If necessary, create the common type partition.

We will make a partition COMWP, eight blocks = 1000(8)
bytes 1long. If the partition TSTPAR already exists on
your system, you may be able to eliminate it and then set
up your partition. Be sure to check with your system
manager before doing this and also be sure to put TSTPAR
back when you are finished.

! Check current partitions on the system

>SHOW PARTITIONS

!Record base address and length of TSTPAR and the type
lof partition. Convert the values to blocks by
tdropping the last 2 zeroes. (For example, base
taddress 123400 (8)=1234 blocks,

1length=20000(8) bytes = 200(8) blocks)

! Eliminate the partition TSTPAR

>SET NOPARTITION:TSTPAR

! Create the partition COMWP

>SET PARTITION:COMWP/BASE:1234/SIZE:10/COMMON

! Check to see if this worked correctly

>SHOW PARTITIONS '

Later, to eliminate the partition and to replace TSTPAR,
use these commands:

>SET NOPARTITION:COMWP
>SET PARTITION:TSTPAR/BASE:1234/SIZE:2@0/TASK

245

STATIC REGIONS

Task-build the shared region.
To build position independent:

>LINK/OPTIONS/MAP/SHAREABLE: COMMON/NOHEADER -
->/SYMBOL_TABLE/CODE:PIC COMWP,LB:[1,1]FOROTS/LIB
Option? STACK=0 ,

Option? PAR=COMWP

Option? <RET>

The /OPTIONS switch allows you to enter options. /MAP
indicates that you want a map file. /SHAREABLE:COMMON

‘indicates that Psect names are to be placed in the .STB

file (required to reference with FORTRAN COMMON).
/NOHEADER indicates that no task header be included in the
task image since this is not an executable task.
/SYMBOL_TABLE indicates that a .STB file be created.
(COMWP.STB) . /CODE:PIC indicates a position independent
region. STACK=@ indicates no stack space is needed since
this is not an executable task. PAR=COMWP indicates the
partition is COMWP. The Task Builder gets the length (for
a maximum check) from the partition on the system.

Install the region.
>INSTALL COMWP
Installs the region and also 1loads it into memory.

Note that this is different from an executable task,
which usually isn't loaded until it is requested.

246

STATIC REGIONS

BLOCK DATA COMWF

C
C File COMWF.FTN
C
C Frodgram to create and initislize 3 resident common
-C
C Task-build instructions! Must include /SHAREARLE$COMMON
C and /NOHEADRER switches? STACK=0 amd FAR=COMWF ortions.
C Must create STR Tile. Maw be /CODEIFIC or absolute
¢ (the default), 0TS library NOT recuired.
e ,
" COMMON /MYDATA/ 1(256)

IATA I /7128%5,128%10/

END

FROGRAM COMGF
C
C File COMGF.FTN
C
C Tashk to read datas from a3 static redion and srint it
C out at TI!, It uses a COMMON to reference the data.
C
C Task-build instructions!
C
C LINK/MAF/0FTION COMGFyLEIL1y1IFOROTS/LIRRARY
C Ortion? RESCOM=COMWF/RO
C Ortion? <RET:
C

© comMon /MYDATA/ L(256) ! Common to reference

C ! shared redion
C Loos throush to disrlaw rediony 8 numbers on 8 line

D0 50 J = 1+24958

WRITE (S510) (L(K)sK=JeJ+7) | Write values
10 FORMAT (7 “+1I2:71I8)
50 CONTINUE

CALL EXIT

END

Example 7-1 Resident Common Referenced with FORTRAN COMMON
(Sheet 1 of 2)

247

STATIC REGIONS

Run Session

*INS COMWP
*RUN COMGE

-3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3
& b 6 & é é é é
&) b é & é é)
é é 6 é b é é é

Example 7-1 Resident Common Referenced with FORTRAN COMMON
(Sheet 2 of 2)

248

~ STATIC REGIONS

Creating a Referencing Task

1. Code the task, using the FORTRAN COMMON used in creating
the region.

2. Compile the task.
3. Task-build the task.

e Specify shared regions by using one of the following
options:

- RESCOM=common name - for a user resident common.
The .STB and .TSK files may be on any device and
in any UFD, using normal defaults,

Append /RO or /RW for read-only or read-write
access.

- COMMON=common name - for a system resident common.
The .STB and .TSK files must be in LB:[1,1].

Append :RO or :RW for read-only or read/write
access.

(Note that a colon (:) is used for COMMON and
a slash (/) is used for RESCOM when appending the
RO or RW switches.)

4. After installing the shared region, install and/or run the
task.

If the shared region is to be a system shared region, the .STB
file and the .TSK file should be placed in LB:[1l,1]. Otherwise,
they can reside on any device under any UFD, as long as both files
are in the same UFD on the same device.

Read-only or read/write access affects the way the access bits in
the ©page descriptor registers (PDRs) in the APRs are set up. A
memory protect violation occurs if a task attempts to write to a
region when it has read-only access.

249

STATIC REGIONS

COMGP.FTN in Example 7-1 contains the source code for ~a task to
reference the shared region COMWP. Use the following procedure to
create the task: : : A '

1.

Code the task.

See COMGP,.FTN in Example 7-1. The following note is keyed
to the example:

The same FORTRAN named COMMON, MYDATA, is used here as
in COMWP.FTN to set up referencing.:

Compile the task

Task-build the task
>LINK/OPTION/MAP COMGP
Option? RESCOM=COMWP/RO
Option? <RET>
Link task to resident common COMWP. COMWP.TSK and
CONWP.STB are 1in the current UFD on SY:. Set up
read-only access. Use the highest available APR, APR
7, if the region was built position independent.

After installing the shared region, install and/or run the
task.

To do a temporary install, run, remove:
>RUN COMGP
To install and then run:

>INSTALL COMGP
>RUN COMGP

250

STATIC REGIONS

Accessing a Region for Read-Only or Read/Write

Whether read-only or read/write access is required 1is usually
straightforward. If a task moves data into the region or changes
a value in the region, read-write access is required. If a task
moves data out of the region or just reads values in the region,
read-only access is required.

However, when QIOs are issued and the buffer 1is in the shared
region, the situation is more involved. Obviously, to do a read
(e.g., from a terminal) into a buffer in the shared region
requires write access. A write (e.g., to a terminal) from a
buffer in the region should only require read access. However,
because the Executive 1is designed for very fast, real-time
applications, it does not check the function code for a QIO
directive to see whether it 1is a read or a write. Instead it
assumes the worst case - that all QIOs involving a buffer 1in a
shared region are reads (from a peripheral device) into a buffer
in the region, and that therefore all QIOs require read/write
access.

This condition causes an I/0O error (IO.SPR) for illegal |user
buffer. This condition does not cause errors in the example
because FORTRAN WRITEs create the output string in a buffer within
the referencing task area and the QIOs do the writes from the
referencing task area. However, if you issue QIOs directly, the
above problem can exist.

One solution is to get read/write access to the shared region.
Another solution 1is to move the data from the shared region to a
buffer in the referencing task area and then use that buffer for
the QIOs. A third solution is to build the task as a privileged
task. Privileged tasks, similar to privileged terminals, are
granted certain extra access to the system which nonprivileged
tasks don't have. Some privileged tasks just gain these extra
access rights, others map to the Executive as well. Normally, the
Task Builder builds a task as a nonprivileged task. For a
discussion of privileged tasks and how to task-build them, see
Appendix D.

251

STATIC REGIONS

CREATING AND REFERENCING A SHARED LIBRARY

Example 7-2 contains a shared library, LIB.MAC, and a referencing
task USELIB.FTN. The program LIB.MAC and the associated comments
are included to illustrate how a MACRO program can be called from
a FORTRAN program. Some knowledge of MACRO-11l is required to have
a full understanding of the example. The FORTRAN user need only
know the order of the arguments in the CALL in order to use these
subroutines.

The shared library contains four simple arithmetic routines to
add, subtract, multiply, and divide two numbers. They are all
written to be reentrant and, in addition, they are written so that
they can be called from a FORTRAN program with a standard FORTRAN
subroutine call.

INTEGER OP1,0P2,ANS
CALL AADD(OP1,0P2,ANS)

The argument list is set up as follows:

kkkhkkkkkkhhhkhhkhkkhkhkhkkkhkhhkkkkkkk

* R5 * COUNT=3 * word, word
khkkhkhkkkhkhkdkhhkkkkhkhkhkhkkhhkhkhhkkkkk

* address of OPl * longword
kkkkkkkhkhkhkkhkhhhhkkkhkhkkkkkkkkkkkk

* address of 0OP2 * longword
khkkkkkhkhkhkhkkkkhhhhkhhkhkhkhkhhkihkhkhkik

* address of ANS * longword

kkkkkhkkkkkhkkkhkkhkkhkhhkkkhkkhkkkkhkkk

Note that subroutines written in FORTRAN cannot be included in a
resident 1library because the code generated by FORTRAN is not
reentrant. For additional information on the FORTRAN/MACRO-11
interface, see Appendix C.

252

STATIC REGIONS

Each subroutine saves and restores all of the registers, using the
system 1library routine $SAVAL. The referencing task, USELIB,
calls each of the subroutines once, using the operands 8(10) and
2(19), and displays just the answers for the four operations. The
following notes are keyed to Example 7-2.

" Each subroutine entry point 1is defined with a global
symbol.

‘, Each subroutine is in a Psect of the same name as the
subroutine. In fact, the Psects are optional since the
library is built /SHAREABLE:LIBRARY. The specified Psect
names are not placed in the .STB file.

© For AADD and SUBB, move the first operand to R@, perform
the operation in R@, then move the answer to the third
operand for return to the caller.

@ rFor MULL, use Rl instead of R#, so that the product is
limited to just Rl (16 bits). If RO were used instead, a
32-bit product is returned (low-order 16 bits 1in R},
high-order 16 bits in R#).

@ ror DIVV, a 32-bit dividend is assumed in Rn and Rn+l, so
here it is R2 and R3 (low-order 16 bits in R3, high-order
16 bits in R2). Therefore, the 16-bit operand 1is placed
in R3 and the high-order word is cleared. The 16-bit
quotient, returned in R2, is then moved into the third
operand for return to the caller.

c’ Task-build instructions needed to tie the task to the
library.

253

STATIC REGIONS

Task-Building the Shared Library and the Referencing Task

The instructions for task-building the library and the referencing
task are included in Example 7-2; however one point should be
emphasized. .

When Task Building the library, you must use the
/SHAREABLE : LIBRARY switch to avoid task-builder errors when
building the referencing task. Whether the library is to be a
system resident 1library or a user resident library is determined
strictly by where the .STB and the .TSK file for the library
reside. 1If they are in LB:[1,1], the library is a system resident
library. 1If the .STB and .TSK files exist in other than LB:[1,1],
the library is a user resident library.

When task building a referencing task, the option (not . switch)
RESLIB=library name or LIBR=library name must be used. If the
option LIBR is used, the search for the library will be done only
in UFD LB:[1,1]. 1If the option RESLIB is used, the search for the
library will be done on the default device and UFD, or on the
device and UFD specified with the library name; for example:

>LINK/OPTIONS/MAP COMPG
Option? RESLIB=DB2:[2¢@,5]LIBA1l/RO

The above comments also apply to the creation and referencing of a
common region. The only difference is that when the common is
task-built, the /SHAREABLE:COMMON switch 1is generally used and
when the common is referenced, the option COMMON=name is used for
a system resident common, and RESCOM=name is wused for a user
resident library.

254

E CH NP TP NP WP SR W 2y P TR s s B

3
H

AADDE ¢

+ e
+ e

This
AADNDy

file

|
|

+TITLE
+ IDENT
+ENARL

File LIR.MAC

SURR»

Must create
(default).
conflicts.

+FBECT
cALL
MOV
AL
MOV
RETURN

+FEECT
CALL
MOV
SUR
MOV
RETURN

JPSECT
CALL
MOV
MUL

MOV
RETURN

+FSECT
CAaLL
MOV
CLR
nIiv
MOV
RETURN
+END

STATIC REGIONS

LIR
701/
LG i Enable lower case

contains the FORTRAN callable subroutines
MULL >y armd DIVWy which rerform the
arrrorriate inteder oreration.

Calling conventiont! CALL sub Corlyorlrans)

Task-build instructions? Must include /SHAREARLE!LIRRARY
artd /NOHEADER switchess STACK=0 and FAR=LIRE ortions.

+8TE file. Maw be /CODEIFIC or sbsolute
Using /SHAREARLE!LIBRARY avoids Fsect

AAIN ROy I s GRL yREL » CON ;

$SAVAL Save all redisters
BRIy RO Move l1st orerand

B4 (R3) yRO Add 2nd orerand

ROy@&6 (RS Store result

Restore resgs and return

@ @y ar |F >

SURRyROy I+GRLYyREL » CON
£5AVAL i Save all redisters
E2(R3)Y RO i Move lstv orerand
@4 (RGIY RO i Subtract 2nd orerand
ROyR&(RG) ¥ Store result

. ¢} Restore reds and return

MULLyROyIsGRLyREL s CON

HSAVAL Save all registers
@2(RS) 2RI i Move lst orerand

@4 (R3)sR1 F Multirly (3nswer 'in
i Just R1)

]

]

>

Store result
Restore reds and return

R1s@6(RS)

DIVVyROs IsGRLyREL » CON

HSAVAL ¥ Save all redisters
B2(RS) »R3 ¢ Move lst orerand
R2 # Clear high order 16 hits
B4(RS) v R2 i Nivide
R2yBH(RG) ¥ Store result

3 Restore redgs and return

Example 7-2 Shared Library (Sheet 1 of 2)

255

STATIC REGIONS

FROGRAM USELIR

C
C File USELIB.FTN
C
C FORTRAN task to use resident librargy LIE
(e
C Task-build instructions?
C
C HLINK/ZCODESFFRP/ZMAF/0FTION USELIRsLEICLy LIFOR-
c e -=0TS/LIBRARY ‘
C Ortion? RESLIB=LIR/RO
C Ostion? <RET>
G
INTEGER ANS»QF1y0F2
DATA OF1s0F2 /8+2/
c
CALL AALINCOFL»0F2+ANS) | Add orerands
TYFE 100y ANS I Print results
C
CALL SUBEB(OFLsOF2yANS) | Subtract orerands
TYFE 100y ANS P Print results
C .
CALL MULLC(OFLyOF2yANS) ! Multirlwy orerands
TYFE 100y ANS I Print results
c
CALL DIVV(OFL1s0OF2yANS) | Divide orerands
TYFE 100y ANS ! Print results
C
Call EXIT
C
100 FORMAT (/ THE ANSWER = ‘s12vy°.7%)
END

Run Session

*INS LIR

*RUN USELIE

THE ANSWER IS 10.
THE ANSUWER I8 6.
THE ANSWER I8 16.
THE ANSWER IS 4.

.'}

Figure 7-2 Shared Library (Sheet 2 of 2)

256

STATIC REGIONS

DEVICE COMMONS

A device common is a special type of common that occupies physical
addresses on the I/0 page. The I/0 page does not contain physical
memory, but peripheral device registers instead. Therefore, a
device common does not contain data the way a regular resident
common does. It is really just a way of setting up addressing to
allow a task to manipulate the device registers directly. This
might be useful in checking out the proper commands needed to
control a device or to check what control status registers (CSRs)
are in use on your system. Obviously, extreme care must be used
if vyou manipulate a device which is also referenced by any system
routines (e.g., a system device driver).

Privileged tasks which map to the Executive can also automatically
map the I/0 page. However, privileged tasks must be written very
carefully to avoid causing additional problems for the running
system. Device Commons allow nonprivileged tasks to manipulate
device registers.

While a device common region can be created in FORTRAN, by its
nature, referencing must be done via MACRO-11. For an example see
the RSX-11M/M PLUS Task Builder Manual.

Appendix F contains information about more advanced shared region
topics. It includes a discussion of the following topics:

e Overlaid shared regions

e Referencing several shared regions from one referencing
task ‘

e Handling interlibrary calls
e Cluster libraries

Most of the techniques discussed are more appropriate for the
MACRO-11 programmer who is running into virtual address limitation
problems. Cluster libraries are designed to save virtual address
space in tasks which wuse DIGITAL layered products, such as
FORTRAN, FMS (Forms Management Services), and FCS (File Control
Services). If you write FORTRAN programs which wuse these
products, you may find it useful to just read the last few pages,
which cover the procedure for task-building a task which
references two or more DIGITAL supplied resident 1libraries as a
set of cluster libraries.

257

STATIC REGIONS

Now do the Tests/Exercises for this module 1in the Tests and
Exercises Book. They are all lab problems. Check your answers
against the solutions provided, either the on-line file (under UFD
[2682,2]) or the hard copy in the Tests and Exercises Book.

If you feel that you have mastered the material, have your course
administrator record your progress on your progress plotter. You
will then be ready to begin a new module.

If you feel that you have not yet mastered the material, return to
the module for further study.

258

DYNAMIC REGIONS

DYNAMIC REGIONS

INTRODUCTION

The last module discussed how to use the Task Builder to create
and access static regions. It is also possible to create and
access regions while a task is executing. Such regions are called
dynamic regions. The memory management directives allow a task to
create and access dynamic regions and access existing static
regions. In addition, they offer a facility for creating private
regions and for allowing other tasks to access these regions.

OBJECTIVES

1. To write tasks which create a dynamic region and access
dynamic and/or static regions

2. To write tasks which dynamically control their mapping

3. To write tasks which create a private dynamic region and
allow one or more other tasks to access the region.

RESOURCE

® RSX-11M/M-PLUS Executive Reference Manual Chapter 3 - plus
specific directives in Chapter 5

261

DYNAMIC REGIONS

SYSTEM FACILITIES

Sometimes a task's needs for memory and for shared regions aren't

known

until run time, or the needs may change at run time.

Examples are:

1.

2.

Special

A task, e.g. an editor, needs a temporary work buffer for
only part of the time the task is active.

A task needs a shared region or work buffer, but its size
depends upon the needs of the user running the task (e.g.,
the size of an input file).

A task creates a shared region and wants to control access
to it by other tasks.

A task wants to create a shared region 1in a system
controlled partition (e.g., GEN) instead of in a dedicated
common type partition. Then when the shared region isn't
needed, the space automatically 1is available for other
system needs (tasks, etc.).

A task needs to map to two different shared regions at
different times, but has only one 4K word virtual address
window available.

directives, called memory management directives, are

available on mapped systems to allow tasks to perform the
following functions:

Create regions in system controlled partitions
Attach/detach from a region

Create/eliminate virtual address windows

Map/unmap a virtual address window to an attached region

Obtain information about its mapping from the system

The memory management directives are a SYSGEN option. Therefore,
if wusers on a system plan to use them, they must be included in
the Executive at SYSGEN time. Check with your system manager to
find out if they have been included on your system.,

263

DYNAMIC REGIONS

Table 8-1 1lists the memory management directives which
available on an RSX-11M system.

Table 8-1 Memory Management Directives

are

Function ’ FORTRAN Calls
Attach region ; ATRG
Create address window CRAW
Create region CRRG
Detach region DTRG
Eliminate address window ELAW
Get mapping context GMCX
Map adaress window MAP
Receive-by-reference RREF
Send-by-reference SREF
Unmap address window UNMAP

264

DYNAMIC REGIONS

REQUIRED DATA STRUCTURES

Each memory management directive requires that you set up one of
two data structures within your task; namely a region definition
block (RDB) or a window definition block (WDB). The RDB and the
WDB are the interface between the user task and the Executive.
Their contents change dynamically as regions are created and
accessed. In general, once the WDB and/or the RDB are set up, the
actual memory management directive FORTRAN calls are quite
straightforward. Their format is either:

CALL XXXX(wdb,idsw)
or
CALL XXX (rdb,idsw)

where wdb is the name of an 8 word integer array
for the Window Descriptor Block

rdb is the name of an 8 word integer array
for the Region Descriptor Block

Examples:
INTEGER WDB(8) ,RDB(8)

]

CALL CRAW(WDB, IDSW)
CALL CRRG (RDB, IDSW)

Region Definition Block (RDB)
An RDB contains information needed to create a region and/or to
attach to a region in a system controlled partition. The RDB is
used by the following directives:

e Attach Region (ATRG)

e Create Region (CRRG)

e Detach Region (DTRG)

265

DYNAMIC REGIONS

Figure 8-1 shows the arguments for the various RDB elements. The
meaning of the elements is as follows:

Region ID - a unique number assigned to a region when your
task attaches to a region. The number associates the task
with the region. It is returned by the Executive after
your task attaches to a region.

Size of Region - the size of a region to be created, 1in
32-word blocks. Also used to return a size when attaching
an existing region.

Name of Region - up to six characters in Radix-54.
Assigned when a region is created and used when attaching
to a region.

Region's Main Partition Name - up to six <characters in
Radix-5@. The name of the system controlled partition.

Region Status Word - wused by the wuser task to send
information to the Executive when creating or attaching to
a region. Also used by the Executive to return status to
the task after a memory management directive is executed.
Table 8-1 lists the various bits and their meanings.

Region Protection Word - Analogous to the file protection
word, controlling access to regions. As shown below, it
is set up with the same format (RWED for Read, Write,
Extend, Delete) within each category: System, Owner,
Group, and World:

World Group Owner System
DEWR DEWR DEWR DEWR
1119 1119 0000 go09 = 1670008 (8)

A 1 means access 1is denied, a # means access is permitted.
The example means world and group have read access; owner
and system have all access.

266

DYNAMIC REGIONS

ARRAY
ELEMENT ARGUMENTS BLOCK FORMAT
irdb (1) REGION ID
irdb (2) siz SIZE OF REGION (32w BLOCKS)
irdb (3)
nam NAME OF REGION (RAD50) ~
irdb (4)
irdb (5)
par REGION’S MAIN PARTITION NAME (RAD50)—
irdb (6}
irdb (7) sts REGION STATUS WORD
ir_db (8) pro REGION PROTECTION WORD

TK-9385

Figure 8-1 The Region Definition Block

267

DYNAMIC REGIONS

Table 8-2 Region Status Word

Octal

Symbol Value Set By Definition

RS.CRR 100000 System Region successfully created

RS.UNM 40000 Systém At least one window unmapped on a
detach

RS .MDL 200 User Mark region for deletion on last
detach

RS.NDL 100 User Created region not deleted on last
detach

RS.ATT 40 User Attach to created region

RS.NEX 20 User Created region not extendable

RS.DEL 19 User Delete access desired on attach

RS.EXT 4 User Extend access desired on attach

RS.WRT 2 User Write access desired on attach

RS.RED 1 User Read access desired on attach

Just as in other modules, the symbols shown are those used in the
documentation and by MACRO programmers. The symbols can be
converted to FORTRAN acceptable variable names by dropping the
period in the symbol. Values may be assigned by using the DATA
statement.

268

DYNAMIC REGIONS

Creating an RDB in FORTRAN
Example:
Create an RDB for a region with the following specificatiohs:
Size in 32(19) word blocks = 2
Region name = MYREG
‘Partition name = GEN
Region to be attached on create
Region to be marked for delete on last detach
Write access desired on attach
Owner to have all privileges and group to have read privileges

DIMENSION IRDB(8)

L3 3

DATA IRDB/#,2,3RMYR,3REG ,3RGEN, 3R ,"242,"177017/
In the above, the region status word (word 7 = 242(8)), is the sum
of 200(8) + 40(8) +2(8). See table 8-2 for meanings.

The region protection word is 177017(8), which breaks down as
follows:

World Group Owner System
DEWR DEWR DEWR DEWR
1111 11190 0009 1111

269

vExample:

DYNAMIC REGIONS

Create an RDB for a region with the following specifications:

Size in 32(10) word blocks = 1000(8)

Region name = XXXX

Partition name = same as task is installed in

Region status = do not delete, desired access to be filled in
before attaching

World to have no privileges,

DIMENSION IRDB(8)

DATA IRDB/#,"1000,3RXXX,3RX ,0,0,"100,"170000/

Note that any value the Region Descriptor Block could be
dynamically at run time by using input values to change
parts of the RDB.

Window Definition Block (WDB)

A WDB contains information needed to create a virtual

region
The WDB

and to map a virtual address window to an attached
is required for the following directives:

Create Address Window (CRAW)
Eliminate Address Window (ELAW)
Map Address Window (MAP)

Unmap Address Window (UNMAP)
Send-by-Reference (SREF)

Receive-by~-Reference (RREF)

279

all others to have all privileges

" changed

various

address
region.

DYNAMIC REGIONS

Figure 8-2 shows the layout of the WDB..
The meaning of the elements is as follows:

Window ID - A number which identifies the window block. in
the task header which describes the window. Window @ is
used for the task window. Windows 1 through 7 are used
for additional windows set up by the Task Builder for
overlays and static regions and for windows created
dynamically. The window ID is returned by the Executive
after a Create Address Window directive. The Task Builder
option WINDWS=n must be wused to specify the number of
additional window blocks needed for dynamic windows.

Base APR - The base APR to be used in mapping the window,
which sets the base virtual address.

Base Virtual Address -- The base virtual address in octal;

returned by the Executive after a Create Address Window
directive.

Region ID -~ The region ID, used to 1identify the region
when mapping a virtual address window to a region;
returned by the Executive in the RDB after an Attach
Region directive. You must move the value returned from
the RDB to the WDB before mapping to the region.

Offset in Region (32 word blocks) - The offset within the
region at which mapping is to begin. Allows a task to map
to different portions of a region.

Length to Map (32-word block) - The 1length within the
region to be mapped. Defaults to the shorter of the space
remaining in the region and the size of the window.

Window Status Word - Used by the wuser task to -send
information to the Executive when creating and mapping
windows. Also used by the Executive to return status to
the wuser task after a directive is executed. Table 8-3
lists the various bits and their meanings.

Send/receive buffer address - The address of an eight-word

buffer for sending or receiving data as part of the
Send-by-Reference and Receive-by-Reference directives.

271

ARRAY
ELEMENT

iwdb (1)

iwdb (2)

iwdb (3)

iwdb (4)

iwdb (5)

iwdb (6)

iwdb (7)

iwdb (8)

Figure 8-2

DYNAMIC REGIONS

ARGUMENTS

apr

siz

rid

off

len

sts

srb

BLOCK FORMAT

BASE APR WINDOW ID

VIRTUAL BASE ADDRESS (BYTES)

WINDOW SIZE (32W BLOCKS)

REGION ID

OFFSET IN REGION (32W BLOCKS)

LENGTH TO MAP (32W BLOCKS)

WINDOW STATUS WORD

SEND/RECEIVE BUFFER ADDRESS

272

TK-9386

The Window Definition Block

DYNAMIC REGIONS

Creating a WDB in FORTRAN

Example:
Create a WDB to describe a window with the following:

APR = 7

Size in 32(190) word blocks = 106(10)

Region to be mapped in a CALL CRAW or CALL RREF directive
Map with read access '

Map 164 (10) blocks

DIMENSION IWDB(8)

DATA IWDB/"3400,0,100,9,9,100,"201,08/

Note that the APR number (7 in the example) must be placed in the
high byte of the first word 1in the WDB. This can be done by
putting 3400 (8) into IWDB(1l). 3400 (8) 1is 00000111 Q0000000 (2)
which puts a 7 in the high byte for the base APR. This can also
be done by setting IDWB(1l)=7%*256.

Word 7 (2061(8)) is the window status word. See Table 8-3 for the
definitions of the bits in this word.

Create a WDB to describe a window with the following:

APR = 5

Size in 32(19) word blocks = 200 (8)

Map starting at offset of 5 blocks in region and map
10(19) blocks ‘
Send with delete: and write access

DIMENSION IWDB(8)

DATA IWDB/"24¢0¢,9,200,0,5,10,"412,0/

273

DYNAMIC REGIONS

Table 8-3 Window Status Word

Octal

Symbol Value Set By Definition

WS.CRW 100000 System Address window successfully
created

WS.UNM 40000 System At least one window unmapped by
a CRAW, MAP or UMAP directive

WS.ELW 20000 System At least one window eliminated
in a CRAW or ELAW directive

WS.RRF 10000 System Reference successfully received

WS.64B 400 User Defines permitted alignment for
offset start within the region
@ for 256-word alignment (8 blocks)
1 for 32-word alignment (1 block)

WS .MAP 200 User Window to be mapped in a CRAW or

~ RREF directive

WS.RCX 100 User Exit if no references

WS.DEL 10 User Send with delete access

WS.EXT 4 User Send with extend access

WS .WRT 2 User Send or map with write access

WS .RED 1 User Send with read access (map is

with read access by default)

274

DYNAMIC REGIONS

CREATING AND ACCESSING A REGION

Use the following procedure to create and access a region:
1. Create the region (Create Region directive)
2. Attach to the region (Attach Region directive)
3. Move the region ID from the RDB to the WDB

4, Create a virtual address window (Create Address Window
directive)

5. Map the virtual address window to the region (Map Address
Window directive)

6. Use the region

7. Detach from the region (Detach Region directive or task
exit). It is recommended that a task always issue the
Detach Region directive rather than depend on the EXIT
processing code to issue the Detach. The reason for this
is that if a task is fixed and EXITs, then no detach is
done. If you run the fixed task over and over, you could
run out of pool.

Steps 1 and 2 and also steps 4 and 5 can each be combined 1in a
single directive call. Step 4 can be performed earlier, if
desired. To access an existing region, begin with step 2.

If you don't remember what windows and regions are and also what
attaching and mapping mean, look over the sections on Windows and
Regions in the last few pages of Module 5, the Memory Management
module.

The use of each directive in the procedure above 1is detailed on
the following pages. The discussion includes: the purpose of the
directive, important input and output parameters, plus notes about
its use. For a complete discussion of each directive, see Chapter
5 of the RSX-11M/M-PLUS Executive Reference Manual. For
additional information on the memory management directives, see
Chapter 3 of the same manual.

275

DYNAMIC REGIONS

Creating a Region

When you create a region, the Executive allocates space for it in
a system controlled partition. Use the Create Region directive
(CRRG) with the following RDB input parameters:

l. Size of region (in 32(19) word blocks)
2. Name of region (becomes a private region if no name)
3. Name of partition (defaults to partition of task)

4. Region Status Word - mark for delete or do not delete
(default is mark for delete) ‘

5. Region protection word - determines permissible access to
region

In the following discussion, the MACRO symbols are used for the
various Window Status Word bits. See Table 8-3 (Window Status
Word) for definitions and values.

The only RDB output parameter is the RS.CRR bit in the region
status word. It is set if the region is successfully created, and
cleared if not. Normal Executive directive status is returned as
well (carry set for error, <clear for success; DSW contains
directive status word). If the region already -exists, success
status is returned. Therefore, RS.CRR can be used to tell whether
the region was in fact created or whether it already existed. The
following code segment illustrates how to examine RS.CPR to see if
the the region was successfully created.

INTEGER RSCPR,RDB(8)
DATA RSCPR/"100000/

I=RDB(7) .AND." 100000

Now test I. If I is @, the region was not created; otherwise it
was.

276

DYNAMIC REGIONS

Any task which passes the protection test can attach to a named
region. For wunnamed (private) regions, only tasks which are
specifically attached by the creator of the region may attach to
it. Therefore, for a private region, the creator completely
controls which tasks attach to it, and their access rights as
well. ‘

By default, or if RS.MDL is set in the region status word, the
region 1is deleted when the last attached task detaches from the
region., Named regions are left in existence after the last detach
if RS.NDL 1is set 1in the region status word when the region is
created. Unnamed (private) regions are always marked for delete

(deleted on 1last detach). There 1is no explicit Delete Region
directive.

If the RS.ATT bit is set in the region status word, the Executive
also attempts to attach the task to the region. 1In this case,
additional RDB input parameters are required and additional output
parameters are returned. Attaching to a region is discussed after
Example 8-1.

Example 8-1 shows how to create a named region which is 1left in
existence on the 1last detach. The following notes are keyed to
the example.

€@ sSet up the RDB. RS.NDL(1#0(8)) in the region status word

(RDB(7)) specifies that the region 1is to be left in
existence.

World Group Owner System
DEWR DEWR DEWR DEWR
Region Protection Word = 1111 200 3/3] 2000 (2)
170009 (8)
Bit set means access denied
‘3 Issue directive to create region, specifying the RDB
address and the DSW as the only arguments.

G’ Check for directive error.

@ Display message and exit.

277

cooOoOooaooooaoaa o

]

c

C

DYNAMIC REGIONS

FROGRAM CRERG
File CRERG.FTN

CRERG creates a named redion and exitsy leaving the
redion in existence.

ROR = Redgion Definitiorn Block for regiomn with the
following esrorerties?

Size = 100 (32. word blocks)
Name = MYREG
Fartition = GEN

= WOiINonerSYIRWED

Frotection
: OQWIRWEDyGRSRWED
o mot mark for delete om last detach

INTEGER RIDR(8)

Initialize the RIR

0 DATA RIB/0»*100y3RMYRs3REG s 3RGENys 3R v

17000100, "170000/

Creagte redion
CALL CRRG(RDEyIDG)

EBranch on error
IFCINS.LT.0)GOTO 800

Write success messade
WRITE (35515

15 @ FORMAT (‘ CRERG SUCCESSFULLY CREATED MYREGY)

C

Go to common exit
GOTD 1000

C Write create error messade
800 WRITE(S98%50)108
850 FORMAT(’ ERROR IN CREATING REGIONy DSW = ‘y14)

1000 caLl EXIT

END

Rur Session

*RUN CRERG
CRERG SUCCESSFULLY CREATED MYREG

Example 8-1 Creating a Region

278

DYNAMIC REGIONS

Attaching to a Region

When you attach your task to a region, the Executive creates a
logical connection between the two. The region can be either a
dynamic region or a static region. Use the Attach Region
directive (ATRG) with the following RDB input parameters:

Region name
Region Status Word (indicating R,W,E,D access)

The following RDB output parameters are returned:

Region ID
Region size

The region ID is needed later in order to map a virtual address
window to the region. The region size 1is of interest when
attaching to an already existing region whose size may not be
known,

Attaching can also be done as part of the Create Region directive
(CRRG), 1if the RS.ATT bit in the region status word is set when
the Create Region directive is issued. 1In fact, for an unnamed
region, attaching must be done as part of the Create Region
directive, since there is no region name to be used in a separate
Attach Region directive.

A task can detach from a region by using an explicit Detach Region
directive (DTRG) or by exiting (the Executive detaches the task).
If a task is changing a region from "do not delete" to "mark for
delete", an . explicit detach 1is required with RS.MDL set in the
region status word. If a task exits without issuing an explicit
detach, and the task is not fixed, the Executive detaches the task
but does not mark the region for delete. Once a region is marked
for delete, it 1is deleted when the last attached task detaches

from it. Once it is marked for delete it cannot be changed to "do
not delete". ‘

If a fixed task exits without issuing a detach, no detach is
issued by the Executive.

279

DYNAMIC REGIONS

Creating a Virtual Address Window

When you create a virtual address window for a task, the Executive
initializes a window block in the task header. It also checks to
ensure that this is the only window that uses the specified range
of wvirtual addresses, unmapping and eliminating any window that
overlaps that range. Use the Create Address Window directive
(CRAW) with the following WDB input parameters:

Base APR number
Window size (in 32(18) word blocks)

The following WDB output parameters are returned:

Window ID assigned by the system (1-7)
Base virtual address

The space for the additional window blocks in the task header must
be reserved at task-build time using the WNDWS=n option. N is the
number of additional windows needed for windows created at run
time. If extra space 1is not allocated, an address window
allocation overflow error (IE.WOV= -85.) results when you attempt
to create a virtual address window.

The window is also mapped to a region if bit WS.MAP is set in the
window status word when the Create Address Window directive is
issued. 1In that case, additional input parameters are needed.
See the following section on Mapping to a region.

The Eliminate Address Window (ELAW) directive can be used to
explicitly eliminate a virtual address window. 1In general, it is
not used because creating a new window automatically eliminates
any overlapping window.

2890

DYNAMIC REGIONS

Mapping to a Region

When you map a virtual address window to a region, the Executive
creates a 1logical connection between the virtual address window
and the region. Any attached region can be mapped. In the
process, the memory management registers are loaded so that
references to virtual addresses in the window access the region.
This assumes, of course, that the task keeps control of the CPU.
The APRs are reloaded every time a new task takes control of the
CPU.

Use the Map Address Window directive (MAP) to map a window to a
region, with the following WDB input parameters:

Region ID - Returned to RDB by Attach (move from RDB to
WDB) .

Offset into Region - in 32-word blocks, used to start
mapping at an offset from the start of the region. This
must be a multiple of 8(1@) unless WS.64B is set in the
window status word. If WS.64B is set, any whole number
may be specified.

Length to Map - If specified, must be less than or equal
to shorter of 1length of window and length remaining in
region. If defaulted, is set to the shorter of the two.

Window status word - actual access desired (read-only, or
read/write). Read access 1is always requested by default
so a request for write access actually requests read/write

access, and a request for no access actually requests read
access. '

The only WDB output parameter generally used 1is the 1length
actually mapped. If the window is already mapped, it is first
unmapped by the Executive. You can also use the Unmap Address
Window directive to explicitly unmap a window. Mapping can also
be done as part of the Create Address Window directive (CRAW).

The access desired is used here in addition to that declared when
attaching because several windows 1in the task may map the same
region. Some of the windows may need read-only access, others may
need read/write access. In that case, you must attach with
read/write access, and then you may map each window with either
read-only access or read/write access.

281

DYNAMIC REGIONS

Example 8-2 shows how to create a region and place data into
it, 1leaving it 1in existence on exit. Example 8-3 shows how to
attach to that region, read and display the data, and finally
detach and mark it for delete. One run session covers both
examples. The following notes are keyed to Example 8-2.

@ Task-building with the WNDWS=1 option causes the Task
Builder to allocate space in the task header for one
additional window block. You must also wuse the VSECT
option to «create a virtual section starting at 160000 (8)
for an extent of 20004(8). APR 7 must be used to map the
section because the section's beginning address is
1600080 (8). The name of the virtual section is DATA. This
ties the FORTRAN named COMMON DATA to the virtual section.

© RDB for region. Note that RDB(7), the region status word,
is 152(8). This is the combination of the following:

RS.NDL = 108 (8)
RS.ATT = 40(8)
RS.DEL = 10(8)
RS.WRT = 2(8)

152(8)

See Table 8-1 for the above definitions.

G’ WDB for virtual address window. The third argument is for
the region 1ID, which will be filled in at run time after
the task attaches to the region. In the window status
word, WS.MAP (200 (8)) means that the Create Address Window
directive will both create the window and map it to the
region. WS.RED (1(8)) is automatic, even though not
specified. WS.WRT (2(8)) 1indicates to map with write
access. The sum of the two needed octal codes is 202(8).

Create region and attach.

Move region ID, returned in RDB(1l) after attach, into
WDB(4) for mapping.

© Create a virtual address window and map it to the region.
The virtual address window begins with APR 7, so the base
address in the window is 160000 (8), corresponding to the
base address in the region.

282

DYNAMIC REGIONS

Place a byte count, 406(10), in the first word 1in the
region. This 1is Jjust one way to communicate this
information to other tasks which access the . region. The
length of the region is returned when a task attaches to
the region. You could use this as an alternate way to
pass the information about the amount of data.

Move 100 (19) words of ASCII "AB" and 100(10) words of
ASCII "12" into the region. This gives us 200 (18) words
or 400 (19) bytes of data.

Display a successful creation and initialization message
at the terminal.

Detach from the region and then exit, leaving the region
in existence.

283

DYNAMIC REGIONS

FROGRAM CREURG
File CREURG.FTN

CREURG creates 8 named redgion (attached on creation)y
creates a8 virtual address window (masred on creation)y

s rlaces ASCIT data inm the redgiormy detaches from the

region and exitsy leaving the rediorn in existence.
It rlaces a8 cournt word in the first word of the
redgiomny telling how manw buetes of data follow.

Task-build instructions?

FLINK/MAF/ZODFTIONS/COREFFP CREURGLBILIL»LIFOROTS~
-=/L.IBRARY

Oetion? VSECT=NATA1460000:20000

Ortion® WNDWS=1

Ortion? <RET:

ROR = Resion Definmitiorn Block for region with the
following rrorerties?

Size = 100(8) (32, word blocks)
Name = MYREG
Fartition = GEN

t’ Frotection = WOINoneySYIRWED

OQWIRWEDy GRIRWED
o not mark for delete on last detach
Attach with write and delete access

WOR = window Definition Block for window with the
following rrorerties?!
AFR)

Size

7
100octal (32, word hlochks)
G’ Offset in resgion 0 (32, word blocks)
Length in redgion 1000ctal (32, word blocks)
Mar on create with write access

o ¥

i

INTEGER RIOER(8) »WIRIB)
COMMON /DATA/Z IDATAC201)
Initialize the RIR ‘
DATA ROB/0y " 100 3RMYRy3REG »3RGENy 3R y "000152y 170000/
Initialize the WDE
DATA WOR/"°3400y0y"100v0+0y 100520240/
Call routine to create and attach redgion
CAlLlL. CRRG(RORBy ING?
Check for error
IFCIDS.LT.O0)GOTO 800
Create asddress window and mar to redion
WOR(4)=ROR(L)
CALL CRAWWIOER, IDS)

Example 8-2 Creating a Region and Placing
Data in It (Sheet 1 of 2)

284

o

¢ Checlk

C Place

0 @
20
: Detach

» Checl

-
s

s Write

DYNAMIC REGIONS

for error
IFCINS.LT.0)GOTO 810
data in redion -~ lst word is 8 bute count
IDATACL) =400
ne 10 J=2-101
InaTac)="AR"
no 20 K=1025201
INATAC(KY="12"
from redion
CALL NTRG(RIR, INS)
for error
IFCINS.LT.OXGOTO 820
message
TYPE Xy ‘CREURG HAS CREATED AND INITIALIZED THE
1IREGION

: Branch to common exit

C Write
800
£105
¢ Go to

C Write
810
a15

C Write
820

825

C Common
1000

Run Sess

*RUN CRE
CREURG.
FRUN ATT

ARARABRARARARARARARARARABARARARARARABARARARARARARARARARARARARARAR
ARARARABARARABRAR
ARBABARARARABARARABARARARARARARARARABARARARARARARARARARARARARARAR
ABARARARLZ12
12121212121 212
12121212121 212

12121212

GOTO 1000
create error messade
WRITE(Sy805)ID8
FORMAT(’ ERROR IN CREATING REGIONy IISW = ‘»I14)
common exit
GO TO 1000
attach error messade
WRITE(Sy815)ID8
FORMAT (/7 ERROR IN CREATING WINIOW AND MAFPFINGy
108W = “514)
GOTO 1000
detach error messade
WRITE(S,825)I08
FORMAT (Y ERROR IN DETACHING FROM REGIONy DSW =
1:14)
exit
CaL.L. EXIT
END

ion
URG

HAS CREATED AND INITIALIZED THE REGION
URG

12124212

Example 8-2 Creating a Region and Placing

Data in It (Sheet 2 of 2)

285

s

DYNAMIC REGIONS

The following notes are keyed to Example 8-3.

Again, task-build with the WNDWS=1 option so the Task
Builder allocates space for the window block in the task
header and with the VSECT option.

The RDB for attaching to the region. The only required
information is the region name and the region status word.
The partition name and the size, although included, are
not required. RS.MDL (200(8)) (set) marks the region for
delete when we do an explicit detach. We need delete
access to mark the region for delete (RS.DEL=10(8)). In
addition, attach with read (RS.RED=1(8)) and write
(RS.WRT=2(8)) access so we can map with read/write access.
The sum of the region status codes above is 213(8).

The WDB for the virtual address window. We map the entire
region (length = 100 (8) 32-word blocks) starting from the
beginning (offset = @g). WS.MAP means create the address
window and map. Map with read (WS.RED) and write (WS.WRT)
access. The sum of the window status codes is 203(8).

Attach to the region.

Move the region ID to the WDB and create the virtual
address window and map it to the region.

First word in the region contains a character or byte
count. Convert it to a word count.

Print the contents of the region, 64(18) characters per
line. This technique 1is wused to demonstrate how to
control the width of the output and to make the run
session fit on an 8 1/2 by 11 inch page with margins. If
the full terminal buffer width (typically 84(10) or
132(1@)) is acceptable, the FORMAT could be 39A2 or 65A2.

Detach from the region. Explicit detach required to mark
the region for delete.

286

LC

DYNAMIC REGIONS

FROGRAM ATTURG
File ATTURG.FTN

FORTRAN srogram to attach the existing redion MYREG
create a virtual address window (marred on creation)s
read ASCII data out of the redgiony detach from the
rediony and exit. The redgion is marked for delete
and will be deleted on last detach.

The first word in the redgion contains a count of how
many bhwtes of dats are in the redion.

Task-hbuild with these ortions?
" VSECT=REGION!160000320000
WNDWS=1

INTEGER RIB(8) yWDE(S)
INTEGER IDATACZ048) ' Arragw for addressing
! region (Full 4KW?
This common block will align with the address window
COMMON /REGION/IDATA
RIORB = Region definition block with the following rrorertiest
Size 0 (32.~word blocks) -~ returned
when attached
Name MYREG
Fartition GEN
Mark for delete on last detach
Attach with deletey read and write access

s Imitialize the RIEB

DATA ROR /0s0s3RMYRs3REG » 3RGENy 3R » 000213

150/

WOE = Window definition block with the following srorerties?
AFR 7
Size 200 octal (32.~word blocks)

Offset in redion O (32.-word blocks)

Length of window 0 octal (32.-word blocks) -
defaults to shortest

available lensgth

Mar on create with read and write access
Initialize the WDER
DATA WIORB /*340050 200504050+ "20350/

Example 8-3 Attaching to an Existing Region
and Reading Data From It (Sheet 1 of 2)

287

DYNAMIC REGIONS

C Attach resion
(4) CALL ATRG (RDEsIDS)
¢ Check for error on attach
IF (I0s LT, 0) GOTO 100
. Move region id to WIER
WOR(4)=ROR(1)
G’ : Create and mar window
CALL CRAW (WDR-IDS)
¢ Check for error :
IF CIDS LT, Q) GOTO 200
¢ Get buwte count and convert to word count

(6) NWORD= CTHATAC1)+1) /2
C Print contents of redion
10 WRITE (Sy11) (IDATACI)yI=2yNWORI)
11 FORMAT (¢ 7 532A2)

C Detach from region and delete it
CALL DTRG (RDERyIDNS)

¢ Check for error
IF ¢Ins JLT. 0) GOTO 300

C And Jdumr to exit

GOTD 500

:

C Error messades

100 WRITE (5-101) IDS

101 FORMAT (/ ERROR ATTACHING TO REGIONy DSW =’yI4)
GOTD 500

200 WRITE (S5.,201) IS

201 FORMAT (7 ERROR IN CREATING WINDOW: DSW =’y14)
GOTD 500

300 WRITE (5,301) IDS

301 FORMAT (/ ERROR DETACHING FROM REGIONs DSW =‘314)

[

500 CALL EXIT
END

Example 8-3 Attaching to an Existing Region
and Reading Data From It (Sheet 2 of 2)

288

DYNAMIC REGIONS

SEND- AND RECEIVE-BY-REFERENCE

If you create a private (unnamed) region, you have complete
control over whether other tasks can have access to it. You
specifically attach other tasks to the region by sending a packet
containing a reference to the region. When you do that, you can
also specify what access they have to the region. At the time,
.you must be attached with at least that much access yourself.
Named regions, on the other hand, can be attached by any task that
knows the name and has the appropriate access privileges to pass
the protection check. :

Use the Send-by-Reference directive (SREF) to send a region by
reference, with the following input parameters:

Receiver task name
WDB - Region ID .
offset into region - sent unchecked to receiver
length to map - sent unchecked to receiver
window status word - determines how receiving
task is attached
address of buffer - 8(108) word buffer which is
sent to the receiver
Event flag - if specified, set when the reference
is received, not when it is queued up
(in the receive-by-reference queue)

The receiver task is attached to the region when the reference 1is
queued. This avoids the problem of the region being deleted if
the sender exits before the receiver receives the region.
Remember that private regions are always marked for delete on the
last detach.

If you are using an event flag for synchronization, note that the
flag should be used to notify the sender when the receiver
receives the region by reference. It is not the same as the Send
and Receive Data directives, where the flag 1is set when the
reference is queued. That flag should be wused to notify the
receiver.

289

DYNAMIC REGIONS

The receiver follows a somewhat modified procedure to access the
region, as follows: ‘ .

1. Create window

2. After reference is queued, Receive-by-Reference (fills in
region ID in WDB) ‘

3. Map to region
4, Use region
5. Detach from region

Use the Receive-by-Reference directive (RREF) to receive a
reference to a region, with the following WDB input parameters:

Window Status Word - WS.MAP (200(8)) for receive and map
WS.RCX (100(8)) for receive data or exit

Buffer Address - 10(10) word buffer for sender task
name (in Radix-50 format) and data

The following WDB output parameters are returned, all ‘as set by
the sender:

Region ID

Offset into region

Length to map

Window status word - describes how attached

If the WS.MAP bit is set, the Executive maps the window to the
region, using the offset, length, and window status word access as
-sent. If a separate Map directive is used, the receiver can first
check and/or modify those parameters before mapping to the region.
WS.RCX set tells the Executive that the task is to EXIT 1if there
are no packets in the Receive-by-Reference queue.

2990

DYNAMIC REGIONS

Examples 8-4 and 8-5 show how to create a pair of tasks, a sender
task dnd a receiver task. The sender, Example 8-4, creates a
private region, initializes it, and sends a reference to it to the
receiver. The receiver, Example 8-5, in turn receives the
reference, displays the data, and then exits. One run session is
included for both examples. The following notes are keyed to
Example 8-4.

@ The RDB for the region. The name is defaulted to create a
private region.

@ The WDB for the virtual address window. The length
actually mapped will be returned after mapping. Read
access is automatic for map, so WS.WRT gets read/write
access.

G’ Create and attach to region, create virtual address window
and map it to the region.

Fill the region with ASCII M's.

Send-by-Reference to RCVREF (Example 8-4). Event flag 1
will be set when RCVREF actually does a
Receive-by-Reference.

© Display message saying region created and sent. Then wait
for event flag 1 to be set.

Display message saying RCVREF received region.

Exit. The Executive will detach us from the region. Note
that even 1if SNDREF exits before REVREF received, the
region will not be deleted because RCVREF is attached when
the reference is queued. The region is deleted only after
.both SNDREF and RCVREF detach.

291

DYNAMIC REGIONS

FROGRAM SNIREF

C
C File SNDREF.FTN
¢

C This srodgram creates & 64~word unnamed redion and

C fills it with ASCII characters, It then sends it by
G reference to task RCVREF» and waits for RCVREF to

C receive the redion.(This is signalled by event flag
¢ #1.) SNIREF then erints 8 message and exits., Since
C the area is unnamedy it is aubtomatically deleted when
C the last attached task exils.,

¢

C Task-build instructions?

[

C FLINK/ZMAF Z7CONEIFFP/0PTIONS SNDREFyLRBILL» 1 IFOROTS~
[/. ITRRARY

: Ortion? WNIWS=]1

L Ortion? VSECT=DATA?1460000:200

[Oertion? <RET>

e

C Imstsll arnd run instructions? RCVREF must be installed.
C Rur SNIDREF firsty then rum RCVREF.

o

C RIB = Redion definition block with the following
o rrorerties?

[Size 2 32~-word blocks

G Name none

G Fartition GEN

14 Frotection WOtroneySYSRWED s QWS RWED y
¢ GRinone

C Attach on creation

C Reasd and write access desired om attach
L

C WOR = Window definition block with the following
¢ srorerties?

[AFR 7

¢ ‘ Size T2 32~word blocks

[Offset in redion O 32-word blocks

G Length of region 2 32-word blocks

- Mar om create with write access

C

INTEGER RORB(8) yWIR(8) yRCV(2)
¢ This commor block will slign with the address window
COMMON /DATAZIDATACS4)
> Imitialize the RIR
UATA ROB/09"29070s3RGENy 3R y"43, 170017/
C Initialize the WIR
DATA WOR/"3400s0¢ 250305929 202+0/
C Name of receiver task
nAaTA RCV/ZRRCV s IRREF/

-
4

Example 8-4 Send-by-Reference (Sheet 1 of 2)

292

DYNAMIC REGIONS

¢ Code
CALL CRRGCROEB, IDS) I Create redion
t’ IF (I LT, 0 GOTO 100 !t Check for error
WOE(4)=ROR(L) I Move region id to WIR
CALL CRAW(WIDRyIDS) P Create window

IF (IDS JLT. ©) GOTO 200 ! Check for error
C Fill redion with data
o no 10 I=1s64
10 IDATACT) =" MM’
L Send-bw-reference to receiver tasks set event flasg 1
C when receiverd
CALL SREF(RCVs1sWIBy » I0S)
IF (IDS JLT. 0) GOTO 400 ! Check for error
TYFE Xy’ SNIREF HAS CREATED THE REGION AND HAS
t’ 1 SENT IT TO RCVREF.’ I Nisrlay messade
CALL WAITFR(1,IDS) I Now wait for recestion
IF CIns JLT. 03 GOTO 3500 ! Check for error
t’ TYPE %y’ RCVUREF HAS RECEIVED IT. SNDREF IS NOW

TEXITING. P Write messade
GOTO 600 I And g0 exit

C Error handling code

100 WRITE (551100108

110 FORMAT (7 ERROR CREATING REGIONy DSW = ‘»14)
GOTO 4600

200 WRITE (S»210)I08% ‘

210 FORMAT (/ ERROR CREATING WINDOWy DSW = “+14)
GOTO 400

400 WRITE (541001086

410 FORMAT (¢’ ERROR IN SENDI-BY-REFERENCEs DSW = ‘y14)
GOTO 4600

500 WRITE (53510108

510 FORMAT (7 ERROR ON WAIT» DSW = “514)

s00 @ caLL ExIT
ENI

Example 8-4 Send-by-Reference (Sheet 2 of 2)

293

DYNAMIC REGIONS

The following notes are keyed to Example 8-5.

@ WwDB for virtual address window. The size 1is 200(8)
32-word blocks, a full 4K words. The offset into the
region, the length to map, and the access will be filled
in on receive. Since the length to map sent by SNDREF is
two blocks, 2 will be used in mapping. Note that the
window can be more than two blocks long. WS.MAP must be
left clear until after the window is created. Otherwise,
the Executive will try to map the window to the region,
causing an error. See the discussion which follows.

Create the virtual address window.

WS.MAP (200 (8)) must be set in the Window Status Word
(word 7) of the Window Definition Block, so that the task
will map as part of the Receive-by-Reference.

Receive—by-reference and map.

Get length actually mapped (two blocks, same as length of
region) and convert from blocks to bytes. Just display
that many characters.

© Display all characters with one WRITE.

" Exit. The Executive will detach the task from the region.
When both tasks have detached, the region will be deleted.

The receiver may map after the receive-by-reference or as part of
the receive-by-reference. 1If the receive-by-reference and the map
are combined in one directive, 1issue the Receive by Reference
directive with the WS.MAP bit set. 1In that case, the WS.MAP bit
must be clear when the window is created since you can't map until
you receive. This is necessary because even though the receiver
is attached to the region when the reference is queued up, the
region ID isn't filled in the WDB until the receiver executes the
Receive~-by—-Reference directive. So if you receive and map in one
call, 1issue the Create Address Window directive with the WS.MAP
bit clear, and then set it before issuing the Receive-by-Reference

directive. If you use a separate Map directive, the WS.MAP bit
can be left clear.

294

DYNAMIC REGIONS

FROGRAM ROCVREF
File RCVREF.FTN

Frosram to receive-hu-reference & resgion from SNDREF»
mar to the rediony read ASCII deta from the redions
detach from the redgiony and exit. The redion will be
deleted on last detach.

Task-buildg instructions?! Include these ortions
WNDWS=1
VSECT=DNATA$ 1460000120000

Install amd run instructionst ROVREF must be installed.
Run SNOREF firsty then run RCVREF,

WIE = Window defimition block withi
AFR 7
Size 200(8) 32-word blocks
Allow for full AFR use
These are filled in on receivey as sel by sender?
Offgset in redgiorn O 32-word blocks
Length of region 0 JI2-word blocks
reset after marring
Access 4]
NOTE: Must mar after receiving (or as rart of receive)
INTEGER WIE(8)
DATA WIE/°3400y07 2005090905020/
This common block will alidgn with the address window
COMMON /DATAZIDATACTL10000)
Create address window--do not mar at this time
CALL CRAWCWDERY IDS)
Check for error on create

IF (108 LT. 0) GOTO 200
Now set WIR status for marring--will be done bw receive-bu-reference

WORCZ)=WHOR(7)Y+*200
Receive-by~-reference and mar
CALL RREF(WORy» IDS)

Check for error
IF ¢10s LT+ 0) GOTO 100

Example 8-5 Receive-by-Reference (Sheet 1 of 2)

295

DYNAMIC REGIONS

C Caloulate mnumber of words of dats ~ length in blocks
C returned at WOR(4)
NCHAR = Z2%XWINR(4)
e [WRITE‘.(Syi()) CIDATACI) » I=1yNCHAR)
10 FORMAT (7 ‘»32A2)
C Go exit

GoTo 300

[Error messadges

100 WRITEC(S»110)I08

110 FORMAT (7 ERROR ON RECEIVE-RY-REFERENCE, DSW =/y14)
GOTO 300

200 WRITE(Sy210)1I08

210 FORMAT (’ ERROR CREATING WINDOWy DSW =/y14)

300 @ CALL EXIT
ENID

Run Session

*INS ROVREF
*RUN SNDREF

SNDREF HAS CREATED THE REGION AND HAS SENT IT TO RCVREF.
RUN RCVUREF

ROCVREF HAS RECEIVED IT. SNIREF IS8 NOW EXITING.
MM
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMEMMMMMMMM MM MMM MM MMM MMM

Example 8-5 Receive-by-Reference (Sheet 2 of 2)

296

DYNAMIC REGIONS

THE MAPPED ARRAY AREA

A large core resident data area may be set up by using the FORTRAN
VIRTUAL statement. The VIRTUAL statement provides the Task
Builder with the information required to <create a mapped array
area. The VIRTUAL statement 1is very similar to the DIMENSION
statement except that all space reserved for a VIRTUAL array is in
a separate area within the task region.

Figure 8-3 shows a task using a mapped array area. The Task
Builder sets things up so that when the task is initially loaded,
the task region is larger than normal, with the mapped array area
set aside in memory immediately below the task header. The task
is automatically attached to the region since it is part of the
task region.

The area may be any size as long as the task image and the mapped
array area fit 1into the partition. This means that it may be
larger than 32K words. However, due to the subscript 1limitation
of 32767 in FORTRAN, a single array cannot have more than 32767
elements. Typically, the wvirtual address window maps only a
portion of the region at a time using a single APR. Once you have
referenced an element in a virtual array, the APR is set up to map
to the nearest 4K boundary in the array. Hence, assuming an
integer array IARRAY, if your first reference 1is to IARRAY(1l),
then any element in the wvirtual array between IARRAY(1l) and
IARRAY(4096) can be maped with the current setting of the APR.

However, if a reference is made to an element with a subscript
higher than 4096, the APR used for the 4K window must be remapped.
Hence, consecutive references to IARRAY (1), IARRAY (5000),
IARRAY(2), 1IARRAY(5001), etc., will cause a remapping on each
reference, thereby inducing some additional overhead. Note that
all mapping is transparent to the user; however, knowledge of how
mapping is performed, and when, can aid you 1in designing vyour
programs to reduce the overhead required by remapping.

Since the area isn't set aside until the task 1is 1loaded 1into

memory, any initialization of the area must be performed at run
time.

297

160000 APR 7

APR 6

APR 5

APR 4

APR 3

APR 2

APR 1

APR 0

DYNAMIC REGIONS

298

PHYSICAL
MEMORY
VIRTUAL
MEMORY
WINDOW \
(4K WORDS) N
\ \
n \ N\
\ \
| N\
\ \
_ TASK TASK
B IMAGE \ \ IMAGE
(28K WORDS) : '
r
W
\ \
| \ \
CTReAsERASTAGC |\ W N =
\\
\ A\
\\
(1) INITIAL LOAD AND MAP \ \
TOTAL SPACE INITIALLY
® A R |
NEEDED. AREA
(32K WORDS)
Figure 8-3 The Mapped Array Area

DYNAMIC REGIONS

Example 8-6 shows how to create and use a mapped array area. The
following notes are keyed to the example:

Create the virtual array IDATA with 32000 elements.
Data to be placed into various parts of the virtual array.

Put 'Al' into IDATA(1l) and 'G7' into IDATA(2). After the
first reference, the mapping is set up to allow reference
to any element up to IDATA(4096) without remapping.

Put data into elements IDATA(4097) and IDATA(4098). Note
that the window had to be remapped to access the second 4K
of the mapped array. This is transparent to the user.

Put data into the third 4K block. Remapping needed.
Put data into the fourth 4K block. Remapping needed.
Retrieve data from each of the four 4K blocks. Remapping
required for each reference. The mapping order for
displaying the data is different just to show that the

order need not match the original order for placing the
data into the region.

299

DYNAMIC REGIONS

FROGRAM VIRTAR
C File VIRTARWFTN

C VIRTAR makes use of the marred arraw ares by using a
¢ FORTAN virtuasl arraw. It rlaces dats in 4 different
4K word blocks of the asrea and then disrlavs the

C dats at the terminal.

INTEGER NATADATR»DATCyDATHYDIATEG
s Set ur the virtual srray in the marred array 3reas
VIRTUAL IDATA(3Z2000)
¢ Define data values to be rlaced in the arraw
° [nn'm NATASLATRYDATE /ALy B2y /C37/

o=

DATA DATOSDATGE /7047y’ G77/
C Flage data in lst 4KW block/ IDATACL) ~ IDATAC4096)
e IDATACL)=DATA
INATACR)Y=DATG
" Flace yata in 2nd 4KW block/ IDATAC4097) -~ TLNATA(BL?2D
" INATACA097)=DATR
QDATQ(4O98)MDATG
C Place data in 3rd 4KW block/ IDATA(B193) - IDATACL2288)
G’ INATAC(BL93)=0ATC
[TOATA(B194)=0ATG
C Flace dats in 4th AKW block/ IDATACL2289) ~IDATA(16384)
c’ INATACL2289)=0ATD
[IDATACL2290)=DATG
¢ Write daeta from lst 4KW block
WRITE (59100) IDATACL) s IDATACD)
 Write data from 2rnd 4KW block
WRITE (55100) IDATAC4097)sIHATAC4098)
C Write data from 4th 4KW block
WRITE (S59100) IDATACL2289) s IDATACL2290)
C Write data from 3rd 4KW blochk
WRITE (S59100) IUATA(BLI?3) »IDATA(B1?4)
100 FORMAT (/ ‘sA2yA2)
CaLL EXIT
END

Rurn Session

*RUN VIRTAR
AlG7Y
R2G7
naG7
C3Gy

Example 8-6 Use of the Mapped Array Area

300

DYNAMIC REGIONS

Now do the tests/exercises for this module in the Tests/Exercises
book. They are all lab problems. Check your answers against the
solutions provided, either in that book or in on-line files.

If you think that you have mastered the material, ask your course
administrator to record vyour progress in your Personal Progress
Plotter. You will then be ready to begin a new module.

If you think that you have not yet mastered the material, return
to this module for further study.

301

FILE1/O

FILE I/0

INTRODUCTION

The RSX-11M file system is composed of three parts.

e File structures - the organization and data structures
maintained on the mass storage volumes themselves

e Ancillary Control Processors (ACPs) - tasks which maintain
the file structures and provide access to them

e File access routines - provide user-written tasks with an
interface to ACPs, which provide and maintain organization
within files,

This module reviews some basic information about file storage, and
provides general information about the RSX-11M primary file
structure called FILES-11, and its ACP. This module also presents
an overview and comparison of the two supplied file access
subsystems, File Control Services (FCS) and Record Management
Services (RMS) . The following module provides details on
programming using FCS, which is the more widely used subsystem.

OBJECTIVES

1. To describe the steps involved in file I/0

2. To describe the FILES-11 structure and how the F11ACP
maintains that structure during file I/0

3. To identify the advantages of using either FCS or RMS for
file access.

RESOURCES

1. IAS/RSX-11 I/0 Operations Reference Manual, Chapters 1 an
5 .

2. RMS-11 User's Guide

305

FILE I/0

OVERVIEW

Quite often in an application you need to store data on a
peripheral device (disk, magtape, etc.) for later retrieval. To
write such an application, you must know something about the
different devices which are on your system. In addition, you must
understand the file structure and its support systems. Once you
know that, you can learn the procedure for actually performing I/0
operations.

TYPES OF DEVICES

Record-Oriented Devices
Record-oriented devices have the following characteristics.

e Data is handled a record at a time.
e There is no file structure.

Terminals, line printers, and card readers are all record-oriented
devices. They are not designed for storage and fast retrieval of
data, but are designed instead to support interactive sessions or
provide hard copies of reports and other data.

File-Structured Devices

File-structured devices have the following general
characteristics. The data they contain: ‘

e Can be handled in files
® Can be stored and retrieved quickly

e Is typically stored on a storage medium which can be moved
from one device to another.

Hard disks, floppy disks, and magtape are examples of
file-structured devices. The following definitions should prove
helpful in our discussion.

a file - a collection of related data; therefore, a
logical unit of mass storage.

307

FILE I/0

volume - a physical unit of mass storage consisting of a
recording medium and its packaging. Examples are a disk
pack, a reel of tape, a diskette, and a DECtape 1II
cartridge.

Types of File-Structured Devices - There are two types of
file-structures devices, sequential and random-access. The type
is determined by the kind of access to data on it.

Sequential devices have the following characteristics.
® Data is retrieved in the same order as written

e New data is always appended at the 1logical end of the
tape, after the last data written

e data cannot be written in the middle of the volume without
losing the data past that point.

Magtape and cassettes are examples of sequential devices. In
essence, data is stored in order as written. To access any data,
all data before it on the tape must be read first.

Under RSX-11M, the magtape ancillary control processor (MTAACP)
supports the ANSI file structure. .

The MTAACP supports the following file setups?

A single file on a single volume

A single file on multiple volumes
Multiple files on a single volume
Multiple files on multiple volumes

Random-access devices, also called block-structured devices or
block-replaceable devices, have the following characteristics.
They can:

® Store and retrieve data in units called blocks

e Write or read blocks in any order

® Rewrite blocks without interfering with other blocks.

Hard disks (RL@1/02, RP@6, RM@2/083), diskettes (RX1l, RX21l1l) and
DECtape II are examples of random-access devices.

308

FILE I/0

The FILES-11 file structure, the standard RSX file . structure, |is
supported by the FILES-11 ancillary control processor (F11ACP).
F11ACP supports multiple files on a volume, but a file may not
extend across volumes. The COPY command (PIP in MCR) maintains
the FILES-11 structure during transfers of files within a given
device and between FILES-11 devices on a system.

The ANSI file structure is useful for transfers of files between
different (possibly non-DIGITAL) systems. FILES-11 is useful
between DIGITAL systems under RSX-11M, RSX-11M-PLUS, IAS and VMS
if the two systems have a device in common (e.g., both systems
have RL@2s). The FLX utility is provided to facilitate transfers
between RSX and other DIGITAL -systems which don't support
FILES-11, or between systems which support FILES-11 (even. between
two RSX-11M systems) which do not have a common FILES-11 device.
In that case, the FLX transfer is typically made on magtape, using
DOS or RT-11] format.

309

FILE I/0

COMMON CONCEPTS OF FILE1/0
Common Operations |
File i/O is often usea to perform the followihg éperations.
e Creating a file
° Deleting a file
® Modifying existing data within a file
° Appending.néw data to a file (or extending the file).
Steps of File 170
Use the following three basic steps to do file I/O.
l. Open the file.

Specify a LUN and the file. The ACP connects a

LUN to the file. ©Specify the access rights desired.

The ACP checks against the file protection code.

you are creating a new file, specify the

characteristics (e.g., format and initial length).
2. Perform the I/0 operations.

Use macros to invoke subroutines to store data in
file and/or retrieve data from the file.

3. Close the file.

Notify the system that the file operations

completed, so that appropriate cleanup work can be

performed.

319

FILE I/0

FILES-11

In order to use FILES-11, you need to understand its structure and
how to interact with it.

FILES-11 Structure

A block is the smallest unit of storage which is read from, or
written to, a FILES-11 device. Typically, the blocks are 256(10)
words or 512(10@) bytes long. Some devices divide or format their
volumes into pieces which are 256(10) words long, and others do
not. Therefore, the FILES-11 structure does some converting or
mapping so that you work with 1logical blocks which are all
standard size. When the volume 1is formatted, 1logical block
numbers are assigned to each 256(18) word area on the disk,
starting with logical block #. Generally, the position of data on
'a FILES-11 volume can be described in three alternate ways, by:

e Physical location
e Logical block number
e Virtual block number

‘Table 9-1 compares the three ways. Figure 9-1 shows an example of
the mapping among the different methods. Typically, you will
reference data only within files. The files are referenced by
~virtual block numbers within the file, starting with 1. Logical
block numbers are assigned to the entire disk, starting from 4.

The system converts virtual block number references to logical
block number references. For example, if you request a read of
virtual block 5, the system looks at the mapping and finds that
this corresponds to logical block 1622(8). This logical block, in
turn, is mapped to one or more specific sectors on the disk, which
are read from the disk.

311

FILE I/0

Table 9-1 Comparison of Physical, Logical and Virtual Blocks

Type of Block

Designation Size How Designated
Physical Depends on On multi-platter disks,
device designated by cylinder, track
: and sector
Logical 256 (10) Numbered in increments relative
words to the beginning of the volume,

starting with @

Virtual 256 (10) Numbered in increments relative
words to the beginning of a file,
starting with 1

Typically, data is accessed as records, units which are not
exactly one block or 512(10) bytes long. A record is a unit of
user specified size, corresponding, for example, to a single bank
account or a single line of text at a terminal.

Figure 9-2 shows how the operating system handles a request to
read a record using FCS. The first row shows a FORTRAN READ. The
FORTRAN READ instruction is converted by the compiler to a GETS
call to the File Control Services (FCS) to tead that record. 1In
MACRO, you will issue the GETS$ call yourself. FCS checks to find
out which wvirtual block within the file contains that record and
issues the QIO directive for you. The Executive converts the
virtual block number to its corresponding logical block number and
issues a read logical block QIO. The driver then converts the
logical block number to the appropriate physical locations, and
reads a block of data into memory. The record itself will then be
located within the block of data.

The second row shows a BASIC-PLUS-2 READ under the Record
Management Services (RMS). The BASIC-PLUS-2 compiler converts the
READ to a RMS S$GET call. RMS converts this to a QIO, to read the
corresponding virtual Dblock. From that point on, the steps are
just like those in the FORTRAN example.

312

FILE I/0

FLE SAMPLE.TXT;1

VIRTUAL
BLOCK #'S
(IN THE ! 2 3 4 5 6 7 10
FILE) N N =~ —
~
AN N NN ~N
~ N
// ~)i \ N N\ ~N ~N
LOGICAL

BLOCK o o0 102
#§S (ON

103 | 104 | eoe] 457 | 460 | oo]| 1104 |« | 1621 | 1622

THE VOLUME) \

PHYSICAL
LOCATIONS
({ON THE
VOLUME)

Figure 9-1

NOTE: BLOCK NUMBERS ARE IN OCTAL

TK-7738

Example of Virtual Block to Logical Block,
to Physical Location Mapping

313

FILE I/0

MACRO-11

FORTRAN ENTERS HERE
. . . .
\ Ld L] L]
. : : EXEC .
READ {5,10) | COMPILER FCS - |F11aCP DRIVER
ToATA GE.T$ QIO 10.RVB. Qo0 I?.RLB
b 3 : .
. TRANSFER
FORTRAN RECORD FCS RECORD VIRTUAL LOGICAL FROM PHYSICAL
BLOCK # BLOCK # LOCATIONS ON
DISK
BASIC—PLUS—2 RMS
. N .
READ DATA fCOMPILER } gcet
. .
BASIC—PLUS—2 RMS RECORD
RECORD '

TK-7743

Figure 9-2 How the Operating System Converts Between
Virtual, Logical, and Physical Blocks

Figure 9-3 shows the FILES-11 structures which are used to support
virtual-to-logical block mapping. Every FILES-11 volume has a
number of system files on it, one of which 1is the 1Index File
(INDEXF.SYS). The 1Index File contains certain blocks which are

for system use, plus a file header block for each file on the
volume.

Each file header block contains file retrieval pointers which are
used in mapping virtual blocks to 1logical blocks. Each file
retrieval pointer locates a range of contiguous 1logical blocks.
The first byte tells how many contiguous blocks are in the group,
and the next three bytes specify the logical block number of the
first block in the group. Therefore, in the figure, there are
five contiguous blocks, starting with 1logical block 336851(19).
Virtual block 1 = logical block 336851(14), vb 2 = 1b 336852(19),
vb 3 = 1b 336853(194), vb4 = 1b 336854(1p), and vb 5 = 1b
336855(10). The next group of blocks, starting with virtual block
6 has 51(18) blocks and begins at 1logical block 336900(14) up
through 1logical block 336950(10). The last 17(1¢) virtual blocks
(virtual blocks 57(19) to 73(10)) begin at logical block
337006 (18) up through 1logical block 337022(19). These file
retrieval pointers are wupdated each time a change 1in block
allocation occurs as a result of a file I/0O operation.

314

FILE I/0

VOLUME
Yoy, INDEX FILE
Ve N
///’ \\\\
yd \\
yd N
e ~
~ ~
FILE | FILE | FILE | FILE| , . . | FILE
HDR | HDR | HDR | HDR HDR
VBN 1 2 3 4 5 6/ 7 \ 10 N
/ \
/ \
/ \
/ \
FILE HEADER
FILE 3 ~
PAZi+1—— RETRIEVAL POINTERS
'/ \
/ \\
/ \
SIZE |
1ST LBN
[
SIZE 1ST LBN
5. H:005 L:021723 = 336851.
51, H:005 L:022004 = 336900,
17, H:0056 L:022156 = 337006.

TK-7741

Figure 9-3 FILES-11 Structures Used to Support
Virtual-to-Logical Block Mapping

315

FILE I/0

Directories

The operating system identifies files by file IDs, which are used
to calculate the 1location of the file header within the index
file. When you need to locate a file, it is difficult to remember
where it 1is on the disk, or even what its file ID is. Instead,
you use a file specification, a more English-like way of
identifying a file. An example of a file specification is:
DR1:[5,6]SAMPLE.TXT;1l. Tasks you write also wusually identify
files with a file specification. Directories are structures set
up on a FILES-1ll volume that are used to group files together, and
to convert file specifications to file IDs.

A directory is a list of files belonging to a single user, or
grouped together for other organizational purposes. An example of
files grouped together for organization is the libraries in User
File Directory (UFD) [1,1] on the system device. On a FILES-11
volume, a directory is a special file containing a 1list of the
files belonging to that user or group. For each file, the list
has: '

e The file specification: name, type, and version number
e The file ID

The file ID consists of a file number and a sequence number. The
file number identifies the offset within the index file to the
virtual block containing the file's file hedder. The sequence
number is wused to distinguish this file from previously deleted
files which used the same file header. There are two 1levels of
directories on a volume, as follows.

e One Master File Directory (MFD) which is directory [0,0]
@ One or more User File Directories (UFDs)

Figure 9-4 shows the relationship between the two levels and the
files. The MFD contains a list of the system file, plus one entry
for each UFD on the volume. Each UFD file has a name of the form
gggmmm.DIR, where [ggg,mmm] is the user identification code (UIC)
of the owner. Each UFD contains a 1list of the files 1in that
directory.

316

FILE I/0

MFD
(0,01

UFD UFD
[200,1] [303,5]
HIYAMAC;1 FLY.TXT;! 1ZZY.TXT;1 0ZY.TXT:1 LOGIN.CMD;1
TK-3965
Figure 9-4 Directory and File Organization on a Volume

Figure 9-5 shows the steps used in 1locating and accessing ‘the
blocks of the file DR2:[5,6]SAMPLE.TXT;1. The device name, DR1l:
tells which device or volume to look on. The operating system
reads the MFD file header to find the retrieval pointers for the
MFD file itself. It converts the virtual blocks to logical blocks
and reads the blocks of the MFD file. It searches through the

directory list for the UFD [5,6], namely the file 005006.DIR.

When it finds that name in the 1list,
the UFD file header. It reads
converts the virtual blocks to
blocks of directory [5,6].
When it finds that entry, it

it uses the file ID to locate

the retrieval pointers there,
logical blocks, and reads the

It looks for an entry SAMPLE.TXT;1l.

uses the file 1ID to 1locate the

SAMPLE.TXTs file header. It then reads the retrieval pointers in

the file header, converts the virtual blocks to logical blocks,
and reads the blocks of the file itself.

If this sounds like a lot of work, it is. Later, you will 1learn

about a way to go directly to the file header using the file ID if
a file is opened a second time during a task's execution.

317

MFD
HEADER

UFD
HEADER

FILE
HEADER

Figure 9-5

FILE I/0

DR1:[5,6]SAMPLE.TXT;1

RETRIEVAL
POINTERS ~

005005.DIR FILE ID
005006.DIR FILE ID

RETRIEVAL

POINTERS 7

.
.
L]

SAMPLE.TXT;1 FILE ID

RETRIEVAL

AN

POINTERS ~7

THIS IS A SAMPLE FILE

318

MFD

UFD [5,6]

FILE
SAMPLE.TXT:1

TK-7735

Locating a File on a FILES-11 Volume

FILE I/O

Five Basic System Files
There are five basic system files found on all FILES-11 volumes.
They are all created when the volume is initialized and are all
entered in the MFD. Two of these, the Index File and the Master
File Directory, have been mentioned previously. The five files
and their purposes are as follows.
e The Index File: INDEXF.SYS.
- Boot block - used when a system volume is bootstrapped

- Home block - contains volume identification and other
information

- 1Index file bitmap - a record of which header blocks
are 1in use; used by F11ACP when allocating header
blocks to files

- File header blocks for all files on the volume

e The Storage Map: BITMAP.SYS.
- A record of which blocks on the volume are in use
- Used by F11ACP when allocating blocks to files
e The Bad Block File: BADBLK.SYS.
- A list of blocks on the volume known to be bad
e The Master File Directory: 000000.DIR.
- Entries for the five system files
- An entry for each UFD file
e The System Checkpoint File: CORIMG.SYS.

- ,Spacé used for checkpointing if the system manager
allocates space in it.

319

FILE I/0

Functions of the ACP

The F11ACP maintains the FILES-11 structure on a volume during its

use.

The most elementary functions performed by the ACP are as follows.

Maintaining the File Header Blocks. This includes:

- Allocating and initializing a file header when a file
is created

- Recovering a file header for reuse when a file is
deleted

-~ Maintaining file attributes such as protection code,
length, etc.

- Maintaining the file retrieval pointers
Maintaining directories. This includes:

- Creating directory entries when a file or UFD is
created, or when a file synonym is created (e.g., by
the PIP /EN switch)

-~ Removing entries from directories when a file is
deleted or a file synonym is removed (e.g., by the PIP
/RM switch)

Maintaining block allocation. This includes:

Allocating blocks to files when a file is created or
extended ‘ :

Recovering blocks for reuse when a file is deleted or
truncated -

Controlling and facilitating task access to files. This
includes:

Checking protection codes to determine access rights

Connecting a task's LUN to a file to allow virtual
block I/0

Controlling shared access to files.

320

FILE I/0

Table 9-2 shows the F1l1ACP functions performed when you request
some typical file I/O operations.

Table 9-2 Examples of Use of Fll1ACP Functions

Operation Requested Functions Performed by F11ACP

Create a new, permanent file 1. Allocate a header for the file.
and write data to the file.

2. Allocate blocks to the file,
when it is opened and/or when
data written requires that ex-
tensions be added.

3. Create a directory entry for
the file.

4., Assign a LUN to the file.
5. When the file is closed, write

the updated file attributes to
the file header, deassign the

LUN
Read data from an existing 1. Assign a LUN to the file.
file.
Delete a file. 1. Remove the directory entry for
the file.
2. Deallocate the blocks of the
file.
3. Deallocate the header for the
file. '
Append data to a file. 1. Assign a LUN to the file,
2. Allocate extra blocks to the
file.
Create a temporary (scratch) 1. When file is opened, allocate
file. a header, allocate blocks, and

assign a LUN. (No directory
entry is created.)

2. When file is closed, de-
allocate blocks, deallocate
header, and deassign LUN.

321

FILE I/0

Figure 9-6 shows the flow of control during the processing of an
I/0 request. This figure parallels Figure 9-2, which shows how
the operating system converts virtual blocks to logical blocks to
physical locations.

The user task issues a read record request which is converted by
an FCS routine in the user task to a QIO, to read a virtual block.
The Executive converts the virtual block number to a logical block
number, using file retrieval pointers in pool. These retrieval
pointers are built by F11ACP from the retrieval pointers in the
file header. The Executive issues a read logical block request to
the driver. The driver converts the logical block number to the
actual physical 1locations and copies the block into the user
buffer.

For additional information on the FILES-11 structure, see Chapter
5 of the IAS/RSX-11 I/0 Operations Reference Manual. \

USER TASK POOL
READ RECORD RETRIEVAL POINTERS[¢*— — —— — —— — — —— — =/ .
L | FILE HEADER
-F—CS—OF R_MS—) l
EXEC DRIVER
Qlo 10.RVB

FILE BODY

F11ACP

TK-7737

Figure 9-6 Flow of Control During the Processing of an
I/0 Request

322

FILE I/0

OVERVIEW AND COMPARISON OF FCS AND RMS

Common Functions

The File Control Services (FCS) and the Record Management Services
(RMS) both offer easy methods for performing file I/0. The
operator or programmer need not be concerned with all the
nitty-gritty details, but can instead let FCS or RMS take care of
them. Both perform the following functions:

e Serve as an interface to the ACPs

e Allow I/O to the wvirtual blocks of a file on a
block-by-block basis’(Block I/0)

e Divide files 1into logical records and allow I/0 to
individual records within a file (Record 1I/0)

e Allow the programmer to process records using one of the
following buffers (Figure 9-7) '

- A buffer reserved by the programmer with another
buffer transparently used by FCS or RMS (move mode)

— Directly in the buffer used by FCS or RMS (locate
mode)

e Allow device independent I/0 - the routines are written to
work correctly with terminals, disks, etc.

e Provide mechanisms for controlling shared access to files.
Beyond that, FCS and RMS each offer a variety of file

organizations, record types, and access modes. These are
described in the following sections.

323

DISK

@z 2

FILE I/0

MOVE BLOCK
TO INTERNAL
BUFFER

(IF NECESSARY)

DIsSK

@ 2

MOVE BLOCK

TO INTERNAL

BUFFER
(IF NECESSARY)

MOVE MODE
TASK
(IN MEMORY)
| USER RECORD
[asc-.-- ' | BUFFER
MOVE RECORD
TO USER
RECORD BUFFER
| I |
INTERNAL
[| |asc 'i I BUFFER
]
LOCATE MODE
TASK
{IN MEMORY)
POINTER
/ POINT
/ POINTER
/' TORECORD
/
/
| - [
¥
~— fascee] INTERNAL
| l
|

Figure 9-7 Move Mode and Locate Mode

324

TK-7742

FILE I/0

FCS FEATURES

File Organizations

Essentially, all FCS supported files are ‘sequential, meaning that
new records are added at the end of the file, and records are
stored in the order they are written. Figure 9-8 shows a file
with sequential organization.

CELL NO. 1 2 3 4 5 n

7 /4/
RECORD | RECORDVEMPTY 7 RECORD ¥V EMPTY ., 1RECORD
1 2 4 In

TK-7748

Figure 9-8 Sequential Files

Supported Record Types

FCS supports two record types, fixed-length records and
variable-length records. Variable-length records may be sequenced
or nonsequenced. An example of each type of file is shown below
with the following three records:

12345
123 1234
AAAA BBBB CC D

The examples are in DMP format; the six-digit number on the left
is the byte count in octal of the first byte in that row. Then
16(19) = 28(8) bytes follow in order in octal. Below each byte in
octal is its equivalent in ASCII. An underscore (_) stands for an
ASCII blank. Consult the examples as you read the description of
each record type which follows.

325

FILE I/0

Examples:
Fixed-Length Records (record length

000 961 062 063 064 065 040 040 Q40
1 2 3 4 5 _ _ _

@20 040 xxx 061 062 063 @40 @61 062
_ pad 1 2 3 _ 1 2

g40 040 040 040 xxx 141 1901 101 101
_ _ _ pad A A A A

g60 040 104 040 040 Q40 XXX XXX XXX

D pad

Variable-Length Records

000 005 090 061 062 063 P64 P65 XXX
1 2 3 4
@20 063 064 0l6 009 101 101 101 141

3 4 A A A A
040 040 104 XXX XXX XXX XXX XXX XXX
D

Sequenced Variable-Length Records

000 007 000 001 000 P61 062 063 064
1 2 3 4
020 063 040 061 062 063 064 020 000

3 1 2 3 4
040 102 102 102 040 103 103 040 194
B B B _ C C _ D

326

= 17(10))

240
963
3
g40

XXX

010
040

XXX

65
293

XXX

g40

064
4

102

B
XXX

000
102

XXX

XXX
pad
200

XXX

040
040
102
B
XXX

g6l
192

XXX

g12
191

XXX

g40
g40
102

XXX

762
192

XXX

000
191

XXX

g40
gag
132

XXX

963
192

XXX

992
101

XXX

940
940
949

XXX

@49
g4

XXX

o0

191

XXX

240
g40
163

XXX

g6l
193

XXX

g6l
p4a0

XXX

g49
gao
193

XXX

262
193

XXX

262

192

XXX

FILE I/0

Fixed-length records all contain the same number of bytes.
Therefore, the location of the beginning of any record within the
file can be computed from its record number. With all record
types, each record begins on an even word boundary. This means
that in files with fixed-length records, if each record contains
an even number of bytes, the next record begins immediately after
it. If, on the other hand, each record contains an odd number of
bytes, one byte is unused after each record, and the next record
begins at the next word boundary. This unused byte 1is called a
pad byte.

Variable-length records may each have different lengths. For all
files with variable-length records, the first word of each record
contains a byte count, telling how many bytes are in that record.
For wvariable-length nonsequenced records, this count word is
followed by the data itself.

Following this, at the next word boundary, is the byte count for
the next record and then its data. To locate a given record
within the file, you must first read the byte count for the first
record in the file. You can then use the byte count to locate the
second record. You then continue reading byte counts and locating
successive records until you reach the desired record.

Variable-length sequenced records contain a byte <count, a user
specified sequence word, and then the data itself. The sequence
word can contain the record number or any other wuser specified
value. Variable-length sequenced records are not used much under
FCS. They are supported to allow compatibility with RMS
variable-with-fixed-control records.

327

Table 9-3 compares the different FCS record types.

FILE I/0

Table 9-3 Comparison of FCS Record Types

Record Overhead Common
Type Characteristics in File Applications
Fixed-Length Record length None Files with

Variable~Length
(nonsequenced)

Variable-length
(sequenced)

s

set when file
created

Records all
same length
(shorter
records pad-
ded)

Records may be
of different
lengths

First word of
each record is
a byte count

Variable length
records, with
an additional
word for a user
specified se-
quence number

One word per
record (hold-
ing record
length)

Two words per
record (one
for record
length, for
sequence
field)

similar data
in each record

Bank account
information,
bad credit
card lists,
etc.

Files with
varying con-
tents among
records

Files to be
printed
Source and
list files

Infrequently
used, except
for compati-
bility with
RMS.

328

FILE I/0

Record Access Modes

FCS offers two record access modes, sequential access and random
access. Table 9-4 compares the two access modes. The major
difference is that with random access, the user can process
records in any order (e.g., record 12, then record 4, then record
29). This is possible with fixed length records only, because FCS
can calculate the position of each record within the file from the
record number and the record size.

With variable-length records, on the other hand, FCS can't locate
record 12 unless it reads records 1 through 11 first, using the
record length in the first word of each record to calculate the
starting position of the next record. Therefore, you must use
sequential access with variable length records. You may choose
either of the two access modes for fixed length records, depending
on how your application processes the records.

329

FILE I/0

Table 9-4 Comparison of Sequential Access I/0 and

Random Access I/0

Characteristics

Sequential

Random Access

Devices supporting
this type of access

Record types using
this type of I/0

Sequence of records
in the file

Order of processing
records

Overhead if records
are processed in
same order as they
are stored in the
file

Overhead involved
if records are
processed in

order different
from how they are
stored in the file

All devices

All record types

Determined by the
order in which they

. are written to the

file

Usually the same
order as in the
file (one after
another)

Low

Much higher than
random access I/0

Block-structured
devices only

Fixed-length
records only

Usually determined
by the order in
which they are
written to the file

In any order, as
specified by the
user (using the
record number)

Low, but not as

low as sequential

Much lower than
sequential I/0

With sequential
subroutines
to a record

access.

NOTE
access,

for much faster

330

special
allow the user to save pointers
subsequent

system

FILE I/0

File Sharing
A task which opens a file may choose one of the following options:

e That no other accessor change any data in the file while
it has access ("shared" read, "exclusive" write).

- If this task desires read access, other accessors may
have simultaneous read access, but no other accessor
may have simultaneous write access.

- If this task desires write access, no other accessor
may have simultaneous read or write access.

- Any access request causing a conflict is rejected.

e That other accessors may change the data while it has
access ("shared" read/write access).

- 1If this task requests read or write access, other
accessors may have simultaneous read or write access.

- Use extreme care - Any precautions against corrupted
data are the responsibility of the accessors.

e That no other accessor changes any block within the file
which has already been accessed (block locking). Shared
access to the file is allowed, but:

- Each block which is written to is locked for exclusive
write access. -

- Each block which is read is 1locked for shared read
access.

- It is not recommended if accessing a large numbers of
blocks, because each block 1lock uses four words of
pool.

- Any attempt to access a block which causes a conflict,
returns an error,

331

FILE I/0

RMS FEATURES

File Organizations

RMS supports three file organizations, sequential, relative and
indexed. See Figure 9-9. Sequential files under RMS are the same
ds sequential files under FCS. A relative file is composed of a
series of cells of uniform size. The cell size is greater than or
equal to the largest record to be placed in the file. A single
record may be written to a cell, or the cell can be empty. The
cells may contain wvariable-length records. Variable-length
records within relative files can be accessed randomly because
each record is contained within a fixed-length cell. Also, when
you read successive records in a relative file, empty records are
automatically skipped.

An indexed file is composed of records, plus one or more indexes
.which are wused to access those records. Each index is used to
retrieve records according to the contents of a particular field,
or key, within the record. The data records themselves are
ordered according to a primary key which you declare when you
create the file.

Figure 9-9 shows an indexed file with a single key, namely last
name. In the example, the data records are in the bottom row,
ordered alphabetically by last name. The index for this file
contains two other levels, level 1 and level 2 (the root level).

A search for a record begins at the root level. For example, to
find the record with key value FRANCIS, search through the root
level, checking for the first value which is greater than or equal
to FRANCIS. The first such value is SMITH. Go to the next level
and again search for the first value greater than or equal to
FRANCIS; it is GROSS, the first value. Now go to the next level
and search again; this time the value FRANCIS is found. Since
this is level @, we have found the record.

As new records are added to the file, they are inserted 1in order
at level @ of the primary index. The primary index structure is
adjusted for the new entry at the same time. In addition, any
alternate 1index structures for other keys are adjusted as well.
There is always one primary key, and there may be as many as
254(19) alternate keys.

332

FILE I/0

END OF FILE

RECORD | RECORD [RECORD| ... |RECORD
1 3 n

SEQUENTIAL FILE ORGANIZATION

CELL NO. 1 4 n

2 3 5
7 7
1REC0RD RECORD‘I‘?ECOH .., | RECORD
§ . .

RELATIVE FILE ORGANIZATION

3

LEVEL 2

DAVIS | SMITH | highk
(ROOT) | high key

LEVEL 1 ANDREWS | DAVIS GROSS | MORRIS | SMITH THOMAS | high key
LeveLo | Apams [, JanDrews | Baker | | DAvis | Ebson |, | FRANCIS GROSS | HARRIS |, .. | WELLS

10246 50406 11022 | 02139 01142 46423 |"*°| 54966 11462 43168

INDEXED FILE ORGANIZATION

TK-7748

Figure 9-9 RMS File Organizations

Level @ of the alternate keys contains pointers to the original
location of the data record itself. If a data record is ever
moved in order to maintain the index structure, a pointer is
created and maintained 1in the record's original location, which
points to the data record's new location.

One specific advantage of an indexed file over a relative file |is
that an indexed file allows vyou to search for records using
several different key fields, while only the cell number can be
used with relative files. Even with a single key, indexed files
offer keys consisting of any ASCII characters, in contrast to just
a cell number for relative files.

There is, of course, more space overhead required in the file for
the 1index structures. In addition, more execution time 1is
required to insert new records, because the index structures must
be updated as well. We are keeping things rather simple in the
discussion here. For additional information, See the
RMS-11 User's Guide.

333

FILE I/0

Record Formats

RMS supports three record formats; fixed-length records,
variable-length records, and variable-length records with fixed
control. Fixed-length records and variable-length records are the
- same as fixed-length records and nonsequenced variable-length
records respectively, under FCS. They are both supported under
all three file organizations.

Variable-length records with fixed-control (VFC) contain a
fixed-length portion, for control, followed by a variable-length
portion. The fixed control portion may be up to 255(14) bytes
long. A sequenced variable-length record under FCS is the same as
a VFC record with a 2-byte (one word) fixed control portion.

An example of the use of VFC records is a bank account file, where
some accounts have both savings and checking, and others have just
one or the other. The fixed control portion could contain the
account number plus an indication of the kinds of accounts

contained in it. The variable portion contains the account
information for those accounts. The 1length of this portion
varies, depending on how many accounts the person has. VFC

records are supported under sequential and relative file
organizations only.

Record Access Modes

RMS supports three record access modes: sequential access, random
access, and access by Record File Address (RFA). Sequential
access and random access are similar to the FCS access modes,
except that they are applied differently for indexed files.

For sequential access on an indexed file, the "next" record is the
record with the next highest key value using the specified key,
not the next record added to the file. For random access, a key
value " for a certain key is specified, and that record is located
and accessed. To access a record by record file address, save
pointers to the record (called its record file address or RFA)
from one access, then use the pointers to subsequently access the
record again.

Table 9-5 describes the various access modes supported for each
file organization and how they work. For additional information,
see the RMS-11 User's Guide.

334

FILE 1I/0

Table 9-5 File Organization, Record Formats, and Access Modes

Sequential Relative - Indexed
Files Files Files
Record Fixed Fixed Fixed
Formats Variable Variable Variable
Supported VFC VFC
Access Modes Sequential Sequential Sequential
Supported RFA* Random Random
RFA* RFA*
Sequential Writes and Writes to Accesses cells
Access reads subse- subsequent in ascending
Techniques quent records cells order accord-
Reads from sub- ing to user
sequent cells, specified key
skipping empty ‘
ones
Random Not allowed User specifies User specifies
Access cell number of key and key
Techniques record to be value to be
accessed used in
accessing
records
Record File Task can Same as sequen- Same as
Address store RFA* of tial files sequential
Techniques a record for files

later return

* Not available in FORTRAN.

335

FILE I/0

File Sharing Features

RMS offers more sophisticated file-sharing options than FCS.
Sequential files can be shared for read access only. Relative and
indexed files can be shared for read and write access. When
opening a relative or indexed file, a task indicates one of the
following options.,

® No other accessor can change data in the file while it has
access ("shared" read, exclusive "write").

® Other accessors can change data, but subsets of the file
are protected at a time, while in use.

Relative and indexed files are divided into units <called buckets
(of wuser specified size, each 1 to 32(10) blocks long). 1In fact,
all actual I/0 tranfers are performed on full buckets only. In
implementing protection of subsets of the file at a time,
protection is on a bucket-by-bucket basis (bucket-locking).

A bucket is locked from the time any task with write access
accesses a record in a bucket, until that task begins operations
on another bucket, or closes the file. This means that records
within a given bucket <can't be accessed by other tasks while
another task with write access is using the bucket. But other
tasks may access other buckets in the file during that time.

336

Summary

FILE I/0

Table 9-6 summarizes our comparison of
module discusses the details of how to use FCS in a program.

FCS

and RMS. The

Table 9-6 Comparison of FCS and RMS

Characteristics FCS RMS

Supporting Standard RSX Special RMS utilities

utilities utilities to define, convert,
etc.

Supporting MACRO-11 MACRO-11

languages FORTRAN IV, IV-PLUS, FORTRAN IV-PLUS,

-77, BASIC-11 -77, BASIC-PLUS-2

COBOL

Ease of Relatively simple Relatively complex

file design

Ease of
programming

Type of data.
access supported

Relatively simple in
high-level languages

Moderate in MACRO-11

Virtual block I/O0

Sequential record
access

Random access by
record number with
fixed-length records

Access by record
position pointers,
saved from previous
access of record

Relatively simple in
high-level languages,
issues of efficiency
complex

Relatively difficult
in MACRO-11

Virtual block I/O

Sequential record
access

Random access by
cell number in a
relative file

Random access by
key field within
record, in an
indexed file

Access by record
file address,

saved from previous
access of record

337

FILE I/0

Table 9-6 Comparison of FCS and RMS (Cont)

Characteristics FCS RMS
Ooverhead in file Minimal v Minimal for se-
needed to support - quential files

record structure
‘ Moderate for
relative files

High for indexed

files
Execution time Low Low for sequential
overhead to and relative files
support record
access Moderate to high
for indexed files,
depending on file
and program design,
and file growth
Shared access System protection on System protection
coordination a per-file basis or on per-file or
on an all blocks per-bucket basis
accessed basis within a file

Now do the tests/exercises for this module in the Tests/Exercises
book. They are all written problems. Check your answers against
the provided solutions 'in the Tests/Exercises book.

If you think that you have mastered the material, ask your course
administrator to record your progress on your Personal Progress
Plotter. You will then be ready to begin a new module.

If you think that you have not yet mastered the material, return
to this module for further study.

338

FILE CONTROL SERVICES

FILE CONTROL SERVICES

INTRODUCTION

The File Control Services (FCS) subsystem provides the means
through which tasks perform I/0. 1In FORTRAN, calls to the FCS
routines are made indirectly through the FORTRAN Object Time
System (OTS).

While the FORTRAN programmer need not know how the the data
structures or the various calls to the FCS subroutines are used,
this module is presented as a brief introduction to FCS.

The first example, illustrating how a FORTRAN program creates a
file, also shows the MACRO code needed to perform the same
function.

Further examples illustrate how some of the FCS features can be
incorporated by using the FORTRAN OPEN statement and the
appropriate forms of the READ and WRITE statements.

The major portion of this module contains a brief summary, with
examples, of the FORTRAN READ, WRITE and OPEN statements and the
various file and record types used in writing a FORTRAN program,
The FORTRAN programmer should be aware that each of the above,

READ, WRITE, and OPEN, are translated into FCS data structures at
compile time, and CALLs to FCS routines at execution time.

OBJECTIVES

l. To choose file characteristics for a specific application
and create files with those characteristics

2. To write tasks which read or write data using record I/0.

RESOURCES

1. FORTRAN 1V User's Guide

2. FORTRAN IV-Plus User's Guide

3. FORTRAN-77 User's Guide

341

FILE CONTROL SERVICES

FILE ORGANIZATION VS. RECORD ACCESS

A clear distinction must be made between the organization of a .
file and the record access to a file.

A file's organization refers to how the file was created via the
keyword ORGANIZATION in the OPEN.

The two possibilities are:
ORGANIZATION="'SEQUENTIAL'
ORGANIZATION='RELATIVE'

'INDEXED' is a third ORGANIZATION, but will not be discussed here.

Once established, the file ORGANIZATION cannot be changed. The
default is 'SEQUENTIAL'.

The record access to a file determines how a particular program
wants to access a file, again via the OPEN. The choices are:
ACCESS='SEQUENTIAL'
ACCESS='DIRECT'
ACCESS='APPEND' .
(ACCESS='INDEXED' will not be discussed.)

Figure 10-1 shows the possible combinations of ORGANIZATION and
ACCESS.

ORGANIZATION - ACCESS
SEQUENTIAL SEQUENTIAL
" APPEND

' |
|
| " - DIRECT (if fixed |
| length records) |
| |
| RELATIVE DIRECT I
| " - SEQUENTIAL |

Figure 10-1 Possible Combinations of ORGANIZATION and ACCESS

343

FILE CONTROL SERVICES

READ AND WRITE ACCESS TO A FILE

When a file is opened via the OPEN statement, the default is ' that
the file 1is opened for read and write access. The OPEN keyword
READONLY is used to restrict a program from write access. If vyou
are the 'WORLD' to a file (i.e., not SYSTEM, OWNER, or GROUP)
which has 'WORLD' protection set to R (read), and you attempt to
open that file without using the READONLY keyword in the OPEN, the
open will fail.

TYPES OF RECORDS IN A FILE

(Sometimes Referred to as 'Record Format')

There are three types of records (record formats) possible in a
file via the OPEN keyword RECORDTYPE:

RECORDTYPE="'VARIABLE"
RECORDTYPE='FIXED'
RECORDTYPE="'SEGMENTED'

Type VARIABLE consists of variable length records where the record
length is kept in the first two bytes of each record.

Type FIXED consists of records all of the same length as specified
in the RECORDSIZE keyword in the OPEN. Since the size is fixed,
it is not kept as an extra two bytes in the record; it is kept in
the header of the file and is available when the file is opened.

Type SEGMENTED consists of records which contain a single 1logical
record having one or more variable length records (segments). The
length of a segmented record is arbitrary; however, the length of
each segment is determined by the value of the RECORDSIZE keyword.
The default size is 133. The segmented record 1is wunique to

FORTRAN and can be used only with unformatted sequential files
under sequential access.

Because there is no set limit on the size of a segmented record,
each segment contains control information to indicate that the
segment is one of the following:

The first segment in the segmented record (control word=1l)

The last segment in the segmented record (control word=2)

The only segment in the segmented record (contol word=3)

None of the above: i.e., a continuation record (control
word=g)

344

FILE CONTROL SERVICES

The control word is kept as the first two bytes in the segment if
the record 1is FIXED and in the third and fourth bytes if the
record is VARIABLE.

When you wish to access an unformatted sequential file that
contains fixed 1length or variable length records, which was not
created by FORTRAN, you must specify RECORDTYPE='FIXED' or
RECORDTYPE='VARIABLE' when you open the file. If you do not
specify a RECORDTYPE, the default OPEN of the file will be
RECORDTYPE='SEGMENTED' and the first word (if FIXED) or the second
word (if VARIABLE) will be treated as a _control word causing
almost certain errors in the data.

FORMATTED AND UNFORMATTED RECORDS

A READ or WRITE statement can be formatted or unformatted. The
main difference in the two is that a formatted READ or WRITE uses
ASCII data while an unformatted READ or WRITE uses untranslated
binary data.

The FORM='FORMATTED' or FORM='UNFORMATTED' is used as appropriate.

The default is FORMATTED for ORGANIZATION='SEQUENTIAL' and
UNFORMATTED for ORGANIZATION='RELATIVE'.

DECLARING THE SIZE OF A RECORD

The keyword RECORDSIZE is used to declare a specific size for a
record. The defaults are as follows:

FORMATTED 133 bytes
UNFORMATTED (fixed) 128 bytes
UNFORMATTED (variable) 126 bytes

Note that you must specify the TKB option MAXBUF=n if you ex.ued a
record size of 133, where n is the size in bytes of the record.

345

FILE CONTROL SERVICES

- SUMMARY OF KEYWORDS IN THE OPEN STATEMENT

ORGANIZATION

ACCESS

READONLY

RECORDTYPE

FORM

RECORDSIZE

The remainder of this module is a series of examples

' SEQUENTIAL'
'RELATIVE'

'SEQUENTIAL'
'"DIRECT'
'APPEND' (sequential only)

to disallow WRITEs

'FIXED'
'VARIABLE'
' SEGMENTED'

' FORMATTED'
' UNFORMATTED'

n

illustrating

the various types of files and how they are OPENed and ACCESSed.

346

FILE CONTROL SERVICES

Example 16-1, CRESEQ, creates a file, VARI.ASC, of variable length
records. Since the records are variable in length, the byte count
for each record is kept in the first two bytes of the record
itself.

As can be seen from the run session, the first record contains a
single character, 1. Therefore bytes # and 1 are 001 and @00.
The next byte is 61, which is ASCII for 1 followed by a byte of
go9. Since the record has an odd number of bytes, the record is
padded with a @08 byte.

The next record contains an even number of bytes (2), so the
record need not be padded.

Although the examples use several defaults, in order to illustrate
the wvarious defaults, it is recommended that no defaults be used
when creating a file with an OPEN statement. Hence, in Example
19-2, the complete OPEN is as follows:

OPEN (UNIT=1,NAME="'VARI.ASC',CARRIAGECONTROL="LIST',
1 ORGANIZATION='SEQUENTIAL',ACCESS="'SEQUENTIAL',
2 TYPE="'NEW', FORM='FORMATTED"')

While it may seem a bit tedious to include all options in the
OPEN, it aids greatly in the readability of the program and
relieves any question as to what was meant in the OPEN.

347

FILE CONTROL SERVICES

FROGRAM CRESEQ - ICREATE FILE SEQUENTIALLY
C FILE CRESEQ.FTN

C This task creates 3 file VARI.ASC of varisble-lensth
. records using seauential record sccess. The records
¢ are inrut from the termimal and written to the file.
¢ The rrocess stors when the orerator tures CTRL/Z at

C the terminal.

EYTE BUFF(80)

INTEGER LEN _
¢ OFEN FILE ~ Default access is sequentials default form
G is formstted I/0 with seauential access

OFEN (UNIT=1yNAME="VARI .ASC’ ¢ TYPE="NEW’ »

1 CARRIAGECONTROL=/L.IST")
 Loos
10 READ (Sy11yEND=100) LENysRUFF ! Read record
11 FORMAT (Qs80A1)

WRITE (1+12) (RUFF(I)eI=1sLENY ! Write record
12 FORMAT (80Al1) I to file

GO TO 10
2 Close file and exit
100 CLOSE (UNIT=1)

CalLl EXIT

ENID

Ruri Session

*RUN CRESEQ

1

22

333

4444

Now is the time for 211 sood.

Dums of DR2IC30553011IVARILABCSS ~ File ID 405545550
Virtual block 0,000001 - Size 512, butes

000000 001 000 0461 000 002 000 062 062 003 000 063 063 063 000 004 000
Q00020 064 064 064 064 035 000 116 157 167 040 151 163 040 164 150 145

Q00040 040 164 1351 135 145 040 146 157 162 040 141 154 154 040 147 157
000040 157 144 036 000 000 000 000 QGO0 000 000 000 000 000 000 000 000

Example 10-1 Creating a Sequential File with Variable Length Records

348

FILE CONTROL SERVICES

Example 10-2 shows the equivalent MACRO code to produce the same
file as Example 10-1.

Example 10-3, SEQFOR, reads the first five records from the file
VARI.ASC and displays them on the terminal.

+TITLE CRESEQ
IDENT 701/
+ENABRL L.C i Enable lower case

e

File CRESEQ.MAC

CRESEQ creates 8 Tile VARI.ASC of variable-length
records using secuentizl asccess. It reads records from
TI¢y and rlaces them in the file. A 7Z terminates
inrut and closes the Tile.

Assemble and task-build instructions?
MACROZLIST LRERILDLLIPROGMACS/LIBRARY vdevilufagl-

->CRESEQR
LINK/MAF CRESEQsLRILLy 1IPROGSURS/LIBRARY

NP> SR W S G> EF N SR W er W S

MCALL EXSTHC»QIOWSCyQIOWSDNIRS ¢ Sustem macros
+MCALL FSRSZ$yFORIF$» FUATSAyFIRCSALFROPEA ¢ Sustem
+MCALL NMBLKS$yOPEN$WFUT$CLOSES 5 FCS maoros
+MCALL DIRERRy IOERRYFCSERR § Surrlied macros
¥y
FSRSZs 1 i 1 file for record 170
§ Define file descristor block for VARI.ASC
FOR: FUORDF % 5 Allocate the FIR
FRAT$A R.VARsFID.CR Variable length recordse
Listing ~ imrlied
SOR» e LF >
Seauential access and
record I/0 bu
defaulty RBUFF is

user record buffer
Use LUN 1y file srec
at FNAME
"VART .ASC*"
User Record Buffer
1/0 status hlock

Lt

FORC$A sBUFF

FROF$A 1y s FNAME

FNAME: NMEILK$ VARIsASC
BUFF & + BLKR 80.
rasT: +BLKW 2

+EVEN

+ENARL. LSRR

‘e @S E> R NS> TP S WY WX e R N6

Emable local sumbol
bhlock

e ey

Example 10-2 MACRO Equivalent of Example 10-1 (Sheet 1 of 2)

349

FILE CONTROL SERVICES

$ Oren file for writes call ERR1 if oren fails
START? OFEN$W #FDBsysypyyERRL

Iy

$ Bet record from terminzls sut to file.
10%3 QIOWSC TORVEySelysI08T e vy RBUFF 80,

RCS ERR2D # Branch on directive
$ error
TSTER IosT # Checl for I/0 error
BLT ERR2I i Brarnch on 1/0 error
MOV I0ST+2y R ¥ Number of bwtes inrut
FUTS #FDRy yR1 i Put record to file
RCS ERR3 $# Branch on FCS error
ER 10% ¥ Get rnext record
EXITS CLOSE$ #FIByERR4 # Close file
EXST$C EX$SUC i Exit with success
i status

Error code —~ Close file if necessaryy disrlay error
messade and exit

ERR1? FCSERR #FIEs+<ERROR OFENING FILE:
ERR2D: DIRERR <DIRECTIVE ERROR ON READ>
[

a
¥
&
y

CRR2I: CMPRE FIELEQF» I0OST i Is it ~Z7
REQ EXIT #IF ecuals close file
§ and ewit
TOERR FI08Ty<ERROR ON READ> § Disrlaw error
P messasge and exit
ERR3: CLOSES #FDESERR4 ¢ Close file !
FCBERR #FUBEy“ERROR WRITING RECORD:
ERR4 3 FCSERR #FORsERROR CLOSING FILE:>
+END START

Run Session

*RUN CRESEQ

1

22

333

4444

Now is the time for 2ll good.

Dume of DR2IC30Ty301IVARILABCHS ~ File ID 40554+540
Virtual block 05000001 -~ Size 512, butes

000000 001 000 0461 000 002 000 062 062 003 000 063 063 063 000 004 000

000020 064 064 064 064 0335 000 116 157 1467 040 151 1463 040 164 1350 145
000040 040 164 131 1535 1435 040 146 157 162 040 141 154 154 040 147 157

000060 157 144 036 000 000 000 000 000 000 000 000 000 000 000 000 000

Example 10-2 MACRO Equivalent of Example 1@-1 (Sheet 2 of 2)

350

FILE CONTROL SERVICES

FROGRAM SEQFOR
C File SEQFOR.FTN

C This task reads the first % records from the file
C VARI.ASC using sequential access and Formatted reads.
C It disrlaus the records at TI!.

INTEGER REC(40)
, Oren file
OFEN (UNIT=1yNAME='VART ASC/ » TYFE=/0LI)

—
b

(™ I Dgfaults to
[I gseauential asccessy
C ! formatted reads

0 100 I=1s5

. Read record from file
READ (1510) NeREC

10 FORMAT (Qy40A2)

C Write record at terminal
WRITE (5920) (RECOK) s K=1ly (N+L1I/2)

20 FORMAT (7 ‘s40A2)

100 CONTINUE .

C Close file and exit

CLOSE (UNIT=1)

caLl EXIT

END

Run Session

*RUN SEQFOR

1

22

333

4444

Now is the time for all dood.

Example 10-3 Program to Read File Created in 10-1

351

FILE CONTROL SERVICES

Example 10-4, CRESEQFIX, creates a file, FIXED.ASC, containing
fixed length records of 16 bytes each. 1In a file of fixed length
records, the size of each record is kept in the header of the file
rather than 1in the first two bytes of the record itself. 1In the
file dump you will see that the first input record, containing a
l, creates a record consisting of 61 (ASCII) and 15 blanks
(40(8)). The next record is 62, 62, and 14 blanks, etc.

One advantage of a file of fixed length records is that the file
may be accessed 1in 'DIRECT (or random) mode for both READ and
WRITE. The disadvantage of a fixed 1length record 1is that,
assuming a 16-byte record, a record containing one byte and a
record containing 16 bytes occupies the same space on the disk.
(Direct access 1is not available on a tape or cassette.) If you
have a wide disparity in record sizes, say 10 and 88, it may not
be practical to use fixed length records. However, where disk
space is not a problem, using direct access to a sequential file
might be very useful.

352

FILE CONTROL SERVICES

FROGRAM CRESEQFIX ICREATE FILE SEQUENTIALLY

C FILE CRESEQFIX.FTN
[' '
C This task creates a file FIXEN.ASC of fixed-lensth
¢ records uwsing sequential record sccess. The records
¢ are ineut from the terminal and written Lo the file.
> The srocess stors when the orerastor twures CTRIL/Z at
¢ the terminal.
C
RYTE RBUFF(80)
INTEGER LEN
C OFEN FILE -~ Default access is secuentials default form

c is formatted 1/0 with secuential access.
¢ .
OFEN (UNIT=1yNAME="FIXEDN.ASC » TYPE="NEW’
1 RECORDTYFE=/FIXEDN’ yRECORDSIZE=164)
¢ Loos
10 READ (5911 sEND=100) LENyRUFF ! Read record
11 FORMAT (Q»80A1)
WRITE (1+12) (RUFF(I) v I=1sLEN) I Write record
12 FORMAT (80A1) ot file
GO TO 10
L Close file andg exit
1.00 CLOSE (UNIT=1)
CaLlL EXIT
ENIDI

Rur Session

1

22

333

4444

Now is the time for all dgood.

Dume of DR2AICIOGyIOLIFIXEDN.ASCSI ~ File ID 40573v6+0
Virtusl block 02000001 ~ Size 9512, butes

000000 061 040 040 040 040 040 040 040 040 040 040 040 040 040 040 040
000020 062 062 040 040 040 040 040 Q40 040 040 040 040 040 040 040 040
000040 063 0463 063 040 040 040 040 040 040 040 040 040 040 040 040 040

Q00060 064 064 064 064 040 040 040 040 040 040 040 040 040 040 040 040
Q00100 122 157 163 145 1463 040 141 142 145 040 162 145 144 056 040 040

Example 1#-4 Creating a File With Sequential,
Fixed Length Records

353

FILE CONTROL SERVICES

Example 10-5, READFIXED, prompts you for the record number of the
record you want from the file FIXED.ASC, displays the record and
then allows you to replace the record if you wish. Note that the
file was created as a sequential file with fixed length records
and is being accessed as DIRECT. Since the record size is in the
header of the file, it is not necessary to describe the record
size in the OPEN. Note that both the READ and the WRITE to unit 1
use the formatted, direct form, i.e.:

READ (1'NO,10)
and
WRITE (1'NO,14)

One precaution here is that if you attempt to replace a record
with a 1longer record (in this case 16 bytes) than the original,
the new record will be truncated on the right.

As you can see from the run session in CRESEQFIX, the third record
originally contained 333. This was replaced with "Now is the
Time", as 1is shown by running READFIXED a second time and
displaying record 3 again.

354

FILE CONTROL SERVICES

FROGRAM READFIXED
C File READFIXED.FTN

C This task asks wou which record wou want from FIXED.ASCy
¢ and disrlaws the record on the termirmal, It then asks if
C wou wish to rerlace the record and if so asks for the rew
- record,

CHARACTERX16 RECyNEW
¢ Oren file
OFEN (UNIT=1yNAME='FIXEI . ASC s TYFE="0L.07 s ACCESS="DIRECT " »
1 FORM=/FORMATTED’)
¢ Read record from file
TYFE Xy ‘Enter record number wou want.’
REALD XyNO
REALI (1/NO»10XREC !Get record rusmber NO
10 FORMAT (A16)
C Write record at terminal
WRITE (520) REC
TYFPE %y ‘Do wou want Lo rerlace the record? Y or N
READ(Sy 10)ANS
IF (ANSEQ. ‘N OR.ANSEQ. 7)) GO TO 100

TYPE %s ‘Enter new record.’
READ(S s 1OINEW

s

20 FORMAT (7 ‘vAl6)
WRITEC(LI NO»10)INEW
100 CONTINUE

G Close file and exit
CLOSE (UNIT=1)
CalLl EXIT
END

Rum Session

*RUN READFIXED

Enter record mumber wou warnt.
3

333

o wou want to rerlace the record? Y or N
Y

Enter new record.

Now is the time.

»RUN REANFIXEN

Enter record number wou want.
3

Now is the time.

o &

Example 10-5 Reading a Fixed Length Record

355

FILE CONTROL SERVICES

Example 10-6, DIRFOR, illustrates the creation of a file via
direct access. The example creates record 1 through record 5, in
order. It is not necessary to create the records in order, nor
must there be a record n-1 if record n exists. Hence you may have
a sparse file, containing only those records whose record numbers
are specifically used in a WRITE. ’

Note that the RECORDSIZE = 10 is used in the OPEN. Since this is
a formatted record, the recordsize of 10 means that each record
will be 10 bytes. Hence the first record, containing 1,1,1,1,1,
is filled with five blanks (40,40,40,40,40). The fifth record,
which contains just a 5, is filled with nine blanks. The rest of
the file is filled with zeros.

356

(M
C File
C
C This
C acce

-l

C Dire
¢ FORT
«

; Oren

C Prom

25

C Read

50
C Writ

80
100

Rur Se

PRUN DI
INFUT
INFUT
INFUT
INFUT
INFUT

Nums o

000000
000020
000040
000060

FILE CONTROL SERVICES

FROGRAM DIRFOR
DIRFOR.FTN

task creates s file NIRFOR.DAT using direct
s formatted writes.

ot access formatted writes sre available in
RAN ITV-PLUS and FORTRAN-77 onlw

INTEGER REC(10)

file
OFEN (UNIT=2yNAME='NIRFOR.IAT yACCESS="DIRECT
1 TYPE=’'NEW’ yFORM="FORMATTED RECORDGTZE=10)
00 100 I=1+5
#t for insut
WRITE (5,2%9)
FORMAT (‘% INPUT UF'TO 10 DIGITSS 7
record from terminsl
READ (SsS50INyREC
FORMAT (Qe10I1>
& record Lo dishk
WRITE (2/1+80) (REC(K) yK=1sN)
FORMAT (1011> i
CONTINUE
CLOSE (UNIT=2)
Call EXIT
ENII

ssion

IRFOR

UF TO 10 DIGITS: 11111

UF TO 10 DIGITS? 2222

UF TO 10 DIGITS! 3333333333
UF TO 10 DIGITS! 444

UF TO 10 DIGITS: 5

f DR2IL30Gy 301 INIRFOR.DATILZ7 ~ File ID 40653%3+1050
Virtual bhlock 0000001 ~ Size 512. butes

061 0461 061 0461 061 040 040 040 040 040 062 062 062 062
040 040 040 040 063 063 063 063 063 063 063 063 063 063
064 040 040 040 040 040 040 040 065 040 040 040 040 040
040 040 000 000 000 000 000 000 000 000 000 000 000 00C

Example 10-6 Creating a Direct Access File

357

040 040
064 064
040 040
000 000

FILE CONTROL SERVICES

Example 10-7, DIRUNF, creates a file with unformatted, direct
access records. Since the file is unformatted, the record size of
5 does not refer to five bytes but rather to five storage units
where a storage unit is defined as four bytes. Hence each record
is 20 bytes long. Note that the file dump shows words rather than
bytes. This is because the data type is INTEGER which has two
bytes for each value. The first record contains five words of
#0001 padded with five words of 00000 to pad out the 2@-byte
record.

358

FILE CONTROL SERVICES

FROGRAM DIRUNF

C File DIRUNF.FTN

C This task creates a file DIRUNF.DAT using direct
¢ access unformatted writes.

¢

C
oz
&oo

10
C Write

100

Rurn Sess
*RUN QIR
INFUT UPR
INFUT UF
INOQUT UF
INPUT UP
}NPUT ur

INTEGER RECC10)
C Oxen file

OFEN (UNIT=4yNAME='TIRUNF.DAT’ yACCE

88=

1 TYPE=’NEW’ yRECORNISIZE=3) ! Ilefaults to

00 100y I=1+5
C Promet fer input
WRITE (35y25)
INFUT UP TO 10 DIGITS:)
C Read record from terminal

READ (5510) NyREC

FORMAT (Qy101I1)
record to dishk
WRITE (4°1) (REC(K)¢K=1sN)

FORMAT (’

CONTINUE

Call EXIT

END

ion
UNF

TO 10 DIGITS!:

TO 10 DIGITS!?
TO 10 DIGITS!?

TO 10 DIGITS:
TO 10 DIGITS?

' unformatted

11111
2222

3333333333
444

5

JDume of DRIALIOS»IOLIDIRUNF.DATSLIZ ~ File ID
1 block 0+000001 - Size S12.

000000
000020
000040
000060
000100
000120
000140

000001
000000
000000
000003

000004
0000035

000000

Virtua

000001
000000
000000
000003

000000
000000

000000

000001 000001 000001
000002 000002 000002
000000 000000 000003
000003 000003 000003

000000 000000 000000
000000 000000 000000

000000 000000 000000

DIRECT? »

4086619550

000000
000002
Q00003
000003
000000
000000

000000

Example 10-~7 Creating an Unformatted, Direct

359

bhules

000000
000000
000003
000004

000000
000000

000000

000000
000000
000003
000004

000000
000000

000000

Access File

FILE CONTROL SERVICES

Example 10-8, SEQUNF, illustrates the SEGMENTED record type, even
though the OPEN does not contain RECORDTYPE = 'SEGMENTED'. This
is because SEGMENTED is the default record type for an
UNFORMATTED, SEQUENTIAL file. This 1is the default file type
created by an unformatted WRITE in FORTRAN. Hence, if there had
been no OPEN statement, and the write statement was as shown:

WRITE(1) (REC(K) ,K=1,N)

the file created would default to FORZ@1.DAT (@01 because 1 was
used in the WRITE) and the record type would be SEGMENTED. The
advantage of a file with segmented records is that there is no
limit to its size, i.e., a single record could be many physical
blocks on a disk. The disadvantage of a file with segmented

records is that it cannot be read by any other high level
languages.

360

FILE CONTROL SERVICES

FROGRAM SEQUNF
¢
C This task crestes 8 file SEQUNF.IAT using seauertial
¢ unformatted writes
C
BYTE RECC(10)
[
¢ Oren file ,
OFEN C(UNIT=1 o NAME=‘SEQUNF JIAT y TYPE="NEW’y
1 FORM=/UNFORMATTEX v ACCESS="SEQUENTIAL ")
C Loor for 5 records
00 100 I=1s+9
C FPromet for irrut
WRITE (5+2%)
25 FORMAT (/4 INFUT UF TO 10 DIGITSS: /)
¢ Read record from terminal ‘
READ (5,50 NyREC
%0 FORMAT (Q+1011) -
C Write record Lo dishk
WRITE (1) (REC(K)sK=1yN)

100 CONTINUE _
CLOSE (UNIT=1)
CALL EXIT

C Error routine

200 WRITE (5+9250)

930 FORMAT ¢/ THERE WAS A FILE OFEN ERROR?)
CALL EXIT

ENI

Run Session

SRUN SEQUNF ‘

INFUT UF TO 10 DIGITS: 11111
INPFUT UF TO 210 DIGITS: 2222

INFUT UF TO 10 DIGITS: 3333333333
INFUT UF TO 10 DIGITS! 444

INFUT UF TO 10 DIGITS: 5

Dume of DR2ILIVEyIOLISEQUNF .DATSL1E ~ File ID 4067359350
Virtual hlock 0000001 -~ Size 512, butes

000000 000014 000003 000001 000001 000001 000001 000001 000012
000020 000003 000002 Q00002 000002 000002 0000246 000003 000003

000040 000003 000003 000003 000003 000003 000003 000003 000003
000060 000003 000010 000003 000004 000004 000004 000004 000003
000100 000005 000000 (00000 000000 000000 000000 000000 000000

Example 10-8 Creating a Segmented File

361

Example 10-9, FWRITE,

in MACRO can be

FILE CONTROL SERVICES

directly available in FORTRAN.

FWRITE
/01/
LG

+TITLE
+ TDENT
+ ENARL

it

¥

3

§ Subroutine call?l

$

]

¥

§ where

¥

]

H

¥

$

H

3

§

]

¥

9...
+MOCALL

TOSE: + BLKW

y

FWRITE? ¢
MOV
MOV

CaLL
RCS
AR
FORC$R

RCS
WRITES

BCS

MOV

RETURN
ERRORL: MOV

RETURN
ERROR2: MOV
' RETURN
ERRORZS MOV

RETURN
+END

illustrates how a Block I/O routine
called by a FORTRAN program.

¢ Ensble lower case

FWRITE is 8 FORTRAN-callable bhlock I/0 subroutine.

CALL FWRITE (ilurnyibufsisizsivbriefrsioshrierr)

ilun is logical wurmit number
ibuf is block buffer address
isiz it block buffer size (in butes)
ivh is address of 2-word v.b. number
iefn is event fladg
iosh is I/0 status block
ierr is a8 status code
4+l = Success .
-l = $FCHNL ERROR ‘
-2 = CANNOT CHANGE RECORD ACCESS
e WRITES REJECTED
WRITE$yFORCHR ¢ Sustem FCS macros
~

.

@2(RI)yR2
CHE0TSVSR3

$FCHNL
ERROR1
#14+R0O
y #F I RWM

ERROR2

l.uir

Address of FORTRAN
work area

Get FORTRAN FIR
Eranch on error
Foinmt to FCS FIER)
Chande record acoess
to block 1/0

Branch on error

B R P T T

v (RS y@6 RSy 1O(RS) yRL12(RI) vy L4(RT) s #0

ERROR3
#1yBR146(RS)
#-1s816 (RS)

F-2y@16(RG)

F-4» @16 (RE)

Issue write
Branch on error
Return success code

<

Returr FCHNL failure
code

wr 'R G G

Returrn couldrn‘t chande
access code .

Return write redected
code

Example 1¢-9 Creating a File Using Block I/O (Sheet 1 of

362

written
Block I/0 is not

3)

FILE CONTROL SERVICES

FROGRAM BLOCK1
€ File BLOCK1.FTN

C BLOCKL creates a8 file BLOCK.ASC using FWRITEs a
. FORTRAN callable subroutirne written in MACRO-11.

C Subroutine call!

C CALL FWRITE(ilunvibuffrisizerivbnriefrnriosbrierr)
C . where ilun is the lodgical unit number

C ibutf is the arraw to be written

[isize is the size of the buffer (bhutes)
(4 ivbn is a8 2=-inteder vbn {(highylow)

[iefn is an event flag number

C iosh is 8 2~intedger 1/0 status blochk
(™ ierr is an status codes

2 +1 = SUCCESS

C -1 = $FCHNL ERROR

G -2 = CANNOT CHANGE RECORD ACCESS
C e T WRITES$ REJECTED

4

C Task-build instructions?

G

C FLINK/ZMAF/CODRESFFF BLOCKLsFWRITESLEBILLy LIF4FOTS~
g -»/LIBRARY

INTEGER WDRUFF (2563 IVEN(2)
INTEGER ISTZEsIEFN»TOSR(2)sIERR
BYTE IOST(2)yCHARCHRUFF(S12)

EQUIVALENCE (I0SR.I08T) ! For accessing 170 status
EQUIVALENCE (WIORUFFyCHRBUFF)Y ! For accessing datas
DATA TLUN9ISIZEyIEFN /1¢S512+2/

- Get virtusl block #
TYFE 5

~

] FORMAT (’$VIRTUAL RLOCK NUMRER (LOW ONLY>: 7
ACCERT 69 IVEBN(2)
é FORMAT (160
TVBN(L)Y = 0 I High VBN = 0O
¢ Get character to insert
TYFE 7
7 FORMAT (/$CHARACTERS: /D
ACCEFT 8sCHAR
8 FORMAT (1Al1)

¢ Fill buffer with character
0 9yI=1,I81ZE
o CHRUFF(I) = CHAR

Example 10-9 Creating a File Using Block I/0 (Sheet 2 of

363

FILE CONTROL SERVICES

C Oren file
OFEN (UNIT=ILUNyNAME="RLOCK .ASC‘ s TYPE='NEW’)
C Call subroutine to write hlock of data
CALL FWRITE (ILUNsyWORBUFFsISIZEsIVENyIEFNsIOSEy

1IERR)
IF (IERR LT, 0) GOTO 200
TYFE 20
20 FORMAT (7 1 BLOCK REING WRITTEN TO FILE‘)

¢ Wait for write to comrlete
CALL WAITFR(IEFNs IDSW)
IF (IDSW LLT. O) GOTO 40 | Check for dir error
IF CI08Td) LT, 0) GOTO 100 ! Cheek for I/0

¢ I error on write
WRITE (&S¢30)I0SE(2)
30 FORMAT (7 WRITE COMFLETEIs »I6s’ RYTES WRITTEN
170 FILE")
GOTO 300
¢
40 TYFE 4%, IDSW
45 FORMAT (7 DIRECTIVE ERROR. IDSW = 7414
GOTO 300
o
100 WRITE (55110) I08T(1)
110 FORMAT (7 I/0 ERROR. 170 STATUS = ‘s16)
GOTO 300
C
200 TYFE 210 IERR
210 FORMAT (7 FCS ERRORy CONE = ‘314D
¢
300 CLOSE (UNIT=ILUN)>
CAaLL. EXIT
END

Run Session

FRUN BLOCK1

VIRTUAL BLOCK NUMBER (LOW ONLY) ¢ 2
CHARACTER e

1 BLOCK BEING WRITTEN TO FILE

WRITE COMPLETED S12 RYTES WRITTEN TO FILE

Dume of DR2IC30G5y301LIBLOCK.ASLCS14 ~ File ID 407015250
Virtual hlock 0s000001 ~ Sizxe 312, butes

Contains whatever was rreviouslw in that block on the dishk

Dume of DRIAILIVGy30LIBLOCK.ASCH14 ~ File I 407015250
Virtual block 05000002 —~ Size H12. hutes

000000 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145

000020 145 145 145 145 145 145 145 145 145 145 1405 145 145 145 145 145
000040 145 1435 145 145 1435 145 145 145 145 145 145 145 143 1435 145 145

*

*

000760 145 145 143 145 145 145 145 145 145 145 145 145 1405 145 145 145

Example 10-9 Creating a File Using Block I/O (Sheet 3 of 3)

364

APPENDICES

APPENDIX A
GLOSSARY

ASYNCHRONOUS SYSTEM TRAP (AST) - A system condition which occurs
as a result of a specified event such as completion of an I/O
request.

On occurrence of the event, control passes to an AST service
routine, and the AST is added to an Executive first-in first-out
queue for the task in which the service routine appears.

ATTACH - Device: Dedicate a physical device unit for exclusive
use by the task that requested attachment.

A task attaches a given device by issuing a QIO directivé, or QIO
and WAIT directive, specifying the I/0 function IO.ATT.

Region: 1Include a region in a task's logical address space.

A task attaches a region by issuing an Attach Region directive or
by being the target of another task's Send-By-Reference directive.

CLUSTER LIBRARIES - A special setup with shared resident libraries
which permits a task to use the same virtual address window to map
several difficult libraries. For example, the resident FORTRAN
Object Time System and the resident FCS library could use the same
virtual addresses. The run-time routines map and remap the
regions as they are needed, somewhat similar to what happens with
regular memory-resident overlays.

DATASET DESCRIPTOR - A six-word area in the user task containing
sizes and addresses of ASCII data strings, which FCS consults in
order to obtain a run-time file specification.

A dataset descriptor for a given file 1is a wuser-created data
structure which contains a file specification for that file.

When the filename block associated with a given file does not
contain sufficient information to enable FCS to do run-time file
processing on that file, FCS tries to get the needed information
from the file's dataset descriptor, if specified. Otherwise, FCS
consults the file's default filename block, if specified, in order
to get the desired information.

DEFAULT FILENAME BLOCK - An area in the user task that supplies
FCS with those default values that are needed to build a routine
file specification.

367

When the filename block associated with a given file does not
contain sufficient information to allow FCS to process the file,
and when a dataset descriptor does not contain the needed
information, then FCS consults the default filename block
associated with the file to obtain the missing information.

A default filename block may be used to supply a default name,
extension, and/or version for the file. The MACRO programmer uses
the NMBLKS$ macro to create this block at assembly time.

DETACH - Device: Free an attached physical device unit for use by
tasks other than the one that attached it.

A physical device unit can only be detached by means of an IO.DET
I/0 function issued by the task that attached it, or by the
Executive, if the task is terminated with the device still
attached.

Region: Remove a region from a task's logical address space.

A task detaches a region by issuing 'a Detach Region directive or
by exiting. ‘

DIRECTIVE STATUS WORD - A word in the user task header into which

the Executive returns status information about the most recently
called directive.

After processing a directive, the Executive passes the status of
that directive to the issuing task by putting a success or error
code into the task's Directive Status Word, which is assigned the
global 1label $DSW. If $DSW is negative, the Executive rejected
the directive; 1if $SDSW is +1, the directive was successful.

EVENT FLAG - A software flag which can be specified in a program

request to indicate to the issuing task which of several specified
events has occurred.

There are 96(1@) event flags.

Event flags 1 - 32(10) are local
33(19) - 64(10) are system global flags
65(10) - 96(1@) are group global flags

Local flags are used for intra-task synchronization, while group
global and system global flags are used for inter-task
synchronization and communication.

EXECUTIVE DIRECTIVE - A program request for Executive services.

368

An Executive directive is issued from a FORTRAN program by calling
a subroutine in the system object library. It is issued from a
MACRO-11 program by invoking a macro in the system macro library.

FILE DESCRIPTOR BLOCK (FDB) -~ The tabular data structure which
provides FCS with information needed to perform I/0 operations on
a file,

A task must allocate, through <calls to the FDBDF$ macro, or
dynamically through the use of run-time macros.

FILE STORAGE REGION (FSR) - The area in user task which FCS uses -
to buffer all wvirtual blocks read or written during record.
processing.

FCS requires one FSR block buffer for each file to be opened at
the same time for record I/0. When the task requests a record
that is not in the FSR buffer, FCS reads a virtual block from the
file 1into the task's file storage region. On the other hand, FCS
writes virtual blocks in the file storage region to the file when
a record must be put to the file.

The user task allocates this area by issuing an FSRSZ$ macro.

FILENAME BLOCK - The part of a file's File Descriptor Block which
FCS uses for building, and later using, a file specification.

The filename block contains the file's UFD, name, extension,
version number, device name, and unit. When a file is initially
opened, FCS fills in the filename block from user-supplied
information in the dataset descriptor and/or default filename
block.

I/0 STATUS BLOCK - A two-integer array which receives success or
error codes on completion of an I/0 request. If an I/0 status
block has been specified in an I/0 request, the Executive clears
both words wheh the I/O operation is queued. On completion, the
low byte of the first word contains +1 if the I/O was successful,
and a negative error code otherwise.

If the I/0 function involved a transfer, the second word contains,
on completion, the number of bytes transferred.

LOGICAL ADDRESS SPACE - The set of all physical addresses to which
a task has access rights.

If a task is running on a mapped system that includes support for
the memory management directives, it may issue directives in order
to manipulate its logical address space at run time.

369

LOGICAL BLOCK - A 512(14@) byte (256(1¢) word) block of data on a
block addressable volume.

To achieve device independence, each block addressable volume is

organized into logical blocks, numbered # to n-1, where n is the
number of logical blocks on the volume.

The mapping of logical blocks to physical blocks is handled by the
driver.

LOGICAL UNIT NUMBER (LUN) - A number associated with a physical
device unit during a task's I/0O operations.

The association of a LUN in a task with a given physical device
may be done by the Task Builder, by the operator using the
REASSIGN command, or at run time by the task, by issuing an Assign
LUN directive.

‘RANDOM ACCESS - A method of I/O to disk files in which records (or
virtual blocks) are specified by record (or virtual block) number.

Under\FCS, a file must be organized into fixed length records 1in
order for a task to do random access to the file.

FCS supports the use of block I/0, in which wvirtual blocks are
read from, or written to, the file without regard for the

structure of those blocks. The FORTRAN language does not support
block I/0.

READ/WRITE MODE - An FCS file access method in which the user task

uses the READS and WRITES macros to do block-structured I/0 to a
file.

REGION - An area consisting of one or more contiguous 32.-word
blocks of physical memory.

A region may be named or unnamed, but is always assigned a unique
region 1ID. A region has an associated protection word which
specifies the access rights a task may have with respect to that
region. Any task that satisfies the region protection word may
attach a named region, but no task can attach an unnamed region
unless the task has the region ID.

RESIDENT COMMON - A shared region which contains data.

RESIDENT LIBRARY - A shared reglon containing subroutines and/or
functions. _

SEQUENTIAL ACCESS - A mode of record access in which the n+lth
record in the file is processed after the nth record in the file.

370

Each record is assigned a record number, and each successive GET
or PUT causes the record number to be incremented.

SYNCHRONOUS SYSTEM TRAP (SST) - A "software interrupt" which
typically occurs as a result of an error or fault within the
executing task.

On recognition of an SST,'the Executive aborts the task, unless
there is an SST vector table to an SST routine in the task.

VIRTUAL ADDRESS - A 16-bit address which may be directly specified
using one of the general purpose registers.

A task specifies a virtual address whenever it wuses one of the
addressing modes in executing an instruction. Up to 32K virtual
word addresses may be specified by a task.

On a mapped system, the memory management hardware dynamically
maps virtual addresses to real physical addresses.

VIRTUAL ADDRESS WINDOW - A contiguous chunk of a task's wvirtual
address space.

Each virtual address window in a task begins on a 4K word boundary
and consists of one or more 32(10) word blocks of virtual address
space. Each window has a unique number assigned to it by the
Executive. Window @ always maps the task's header, stack, and
code. A task may divide its wvirtual address space into eight
windows.

VIRTUAL BLOCK - One of the logical blocks belonging to a file.

Each file consists of one or more 1logical blocks. The 1logical
blocks belonging to a file are called virtual blocks 1, 2, 3, etc.
The mapping of virtual blocks in a file to logical blocks on disk
is performed by the file system.

WINDOW DESCRIPTOR BLOCK (WDB) - A data structure used in a task in
order to represent a dynamically created window.

371

APPENDIX B
CONVERSION TABLES

Table B~1 Decimal/Octal, Word/Byte/Block Conversions

Words (10) /Words (8) Bytes(10)/Bytes(8) Blocks (10)/Blocks(8)

1/1 2/2

32/40 64/100 1/1

1K =1024/2000 2048/4000 - 32/49
2K =2048/4000 4096/10000 | 64/100
4K =4096/10000 8192/20000 128/200
8K =8192/20000 16384/40000 - 256/400
16K =16384/40000 32768/100000 512/1000
32K =32768/100000 65536/200000 1024/2000
64K =65536/200000 131072/400000 2048/4000
128K=131072/400000 262144/1000000 | 4096/10000

Table B-2 APR/Virtual Addresses/Words Conversions

APR Virtual Addresses Words
@ | 000000-017776 #-4K
1 220000-337776 4-8K
2 040003-857776 8-12k
3 0600080-0877776 12-16K
4 100000-117776 16-20K
5 120000-137776 20-24K
6 1400080-157776 24-28K
7 1600080-177776 28-32K

373

APPENDIX C
FORTRAN/MACRO-11 INTERFACE
CALLING A MACRO-11 SUBROUTINE FROM A FORTRAN PROGRAM
FORTRAN Program Call:
CALL SUBNAM (I,J,K)

MACRO translation:

l. Set up table of arguments.

RS ———=> Count=3

Address of I

Address of J

Address of K

2. Issue subroutine call.
JSR PC,SUBNAM
or
CALL SUBNAM
The FORTRAN Callable MACRO-11 Subroutine

Accessing:

I’
; Argument count = (R5)
; Argl = @2(R5)
; Arg2 = @4(R5)
; Arg3 = @6 (R5)
SUBNAM: : .
RTS PC ;s or RETURN

375

CALLING A FORTRAN SUBROUTINE FROM A MACRO-11 PROGRAM

In the MACRO program:

LINK: «BYTE
+WORD
«WORD
+WORD
A: «WORD
B: «WORD
C:

-
=2

&LuN()UJDtQ

«WORD

MOV #LINK,R5
JSR PC,SUB

In the FORTRAN program:

SUBROUTINE SUB (L,M,N)
N=L+M

RETURN

END

NOTE

This method is also used to call a FORTRAN
callable subroutine (written in MACRO-11).

Example 7-3 in the Static Regions module shows a shareable library
LIB.MAC, which contains FORTRAN callable subroutines. USELIB.MAC,
also in Example 7-3, shows a referencing task which calls
subroutines in the library.

376

APPENDIX D
PRIVILEGED TASKS

RSX-11M systems have two classes of tasks, privileged and
nonprivileged. The basic difference is that privileged tasks have
certain system-—-access capabilities that nonprivileged tasks do not
have. These privileges include one or more of the following:

® Access to Executive routines and data structures

e Automatic mapping to the I/0 page
e Bypass of system security features.
NOTE
Privileged tasks may be hazardous to a run-
ning system.

Use one of the following qualifiers (switches) to build a
privileged task.

1. /PRIVILEGE:0 qualifier (MCR /PR:0)
This task is built in the same way as a nonprivileged task
and does not map to the Executive or the I/0 page. It
can, however, do the following:

e Bypass file protection

e Issue directives which require privileges (e.g., Alter
Priority, QIO for Write Logical Break-through)

e Issue QIOs to write 1logical blocks to a mounted

volume, regardless of who issued the MOUNT or ALLOCATE
command.

377

2. /PRIVILEGE:4 or /PRIVILEGE:5 (MCR /PR:4 or /PR:5)

This task has the privileges of a /PRIVILEGE:@ task, plus
it maps to the Executive and the I/0 page. The user task
code is mapped beginning at APR 4 or 5, as specified. The
APRs below the one specified are used to map to the
Executive, and APR 7 is used to map the 1I/0 page. Use
/PRIVILEGE:4 if the Executive is 16K words or less; use
/PRIVILEGE:5 if the Executive 1is between 16K and 20K
words. If the task code extends beyond the end of the
addresses mapped by APR 6, then APR 7 is used to map the
excess code, and the task does not map to the I/0 page.

Privileged tasks are discussed in detail in the RSX~11M 1Internals

Course. See also Chapter 6 on Privileged Tasks in the
RSX-11M/M-PLUS Task Builder Manual.

378

APPENDIX E
TASK BUILDER USE OF PSECT ATTRIBUTES

The Task Builder <collects scattered occurrences of program
sections of the same name and combines them in a single area in
your task image. The program section attributes control how the
Task Builder collects and places each program section.

See Chapter 2 of the RSX-11M/M-PLUS Task Builder Manual for a
complete discussion of program section attributes.

Example of allocation code attributes:
CON (concatenate) versus OVR (overlay)
1. A.0OBJ has Psect Q,CON - length 106 (10) words
B.OBJ has Psect Q,CON - length 50 (10) words
When task-built:
LINK A,B

Yields 150 (18) words in Psect Q
(first A's 100(10) words, then B's 50(10) words).

2. A.OBJ has Psect Q,0OVR - length 100 (19) words
B.OBJ has Psect Q,0VR - length 50(10) words
When task-built:

LINK A,B
Yields lﬂﬂ(iﬂ) words in Psect Q

(A's 190(19) words. B's 50(18) words are the
same as A's first 58(19) words).

379

Example of scope code attributes:

LCL (local) versus GBL (global)

Overlay Tree B.ODL file:
ﬁB
Bl B2 .ROOT B-*! (B1,B2-B3)

| | - END

B

Task-build command (for all): LINK B/OVERLAY_ DESCRIPTION

1.

B.OBJ has Psect Q,LCL,CON - length lﬁ@(lﬁ);words

B1.0BJ has Psect Q,LCL,CON - length 50(14) words
When task-built:

Yields 100 (19) words in Psect Q in root segment B
Yields 50(10) words in Psect Q in overlay segment Bl

B.OBJ has Psect Q,GBL,CON -~ length 100(190) words
B1.0BJ has Psect Q,GBL,CON - length 50(10) words

When task-built:

yields 150 (19) words in Psect Q in root segment B (in the

segment closest to the root); B's 100(10) words, then
Bl's 50(19) words.

If GBL,OVR instead, yields 100(10) words in Psect Q in the
root segment. B's 100 words, with Bl's 50(10) words the
same as B's first 580(1¢) words.

380

3. B2.0BJ has Psect Q (LCL or GBL) - length 100+(10) words
B3.0BJ has Psect Q (LCL or GBL) - length 50(10) words

When task-built:

If CON, yields 150(10) words in Psect Q in overlay segment
B2 (allocation collected, since it is all in the same
overlay segment).

If OVR instead, 100(19) words 1in Psect Q 1in overlay
segment B2. B3's 50(10) words are the same as B2's first
. 58(19) words. ‘

LCL and GBL are used only for overlaid tasks. In a non-overlaid

task or within an overlay segment in an overlaid task, allocations

are collected when either LCL or GBL is specified, as in Example
3.

Example of FORTRAN COMMONs at Psects:

Psect attributes are always: RW,D,GBL,OVR,REL
COMMON /RDATA/ I(100) |

Macro translation:

.PSECT RDATA,RW,D,GBL,OVR,REL

381

APPENDIX F
ADDITIONAL SHARED REGION TOPICS
SHARED REGIONS WITH OVERLAYS

e Can be referenced using a smaller window in referencing
task '

® Reuse virtual addresses in the referencing task
e Must be memory-resident overlays

e Have overlay structures which are placed in the .STB file
and later placed in root segment of referencing task.

BUILDING A RESIDENT LIBRARY WITH OVERLAYS
l. Code and assemble library modules.
2. Write regular .0ODL file to defiﬂe overlay structure.
e Typical structure has a null root.
3. Task-build as a shared region.

e Only symbols defined or referenced 1in the root are
included in the .STB file.

e Force inclusion of global references into root, when
necessary, using GLBREF option.

Example .ODL file OVRLIB.ODL (Figure F-1):

. NAME OVRLIB
.ROOT OVRLIB-*! (H,I-J)
.END

Example task-build command:

>LINK/NOHEADER/MAP/SYMBOL TABLE/OPTIONS OVRLIB/OVERLAY-
-> DESCRIPTION

Option? STACK=0

Option? PAR=OVRLIB:140000:40000

Option? GBLREF=H,I,J

Option? <RET>

383

Referencing task is created using reqgular procedure to reference
library OVRLIB.

See section 5.1.4 (on Shared Regions with Memory-Resident
Overlays) in the RSX-11M/M PLUS Task Builder Manual for additional
information.

PHYSICAL
MEMORY
VIRTUAL B
/
MEMORY - y
I
160000 APR7
H
140000 APR6
120000 APR5
100000 APR4
60000 APR3 |-
INITIAL
40000 APR2 |_ G Loap
{16K WORDS) — s
20000 APR1 |
0 APRO —

TK-7773

Figure F-1 A Shared Region With Memory-Resident Overlays

384

REFERENCING MULTIPLE REGIONS IN A TASK

e Use the usual procedure if:

- The number of available APRs in the referencing task
is sufficient

- Shared regions are logically independent (one 1library
does not call the other library)

e If shared regions are built absolute, APRs (and virtual
addresses) cannot overlap.

- Example task-build for 1logically independent 1libraries (Figure
F-2):)

Libraries: ARES built absolute at V.A. 160000(8); length 4K
words

BRES built absolute at V.A. 120006(8); length 6K
words , '

Referencing task: REF
>LINK/MAP/OPTIONS REF
Option? RESLIB=ARES/RO

Option? RESLIB=BRES/RO
Option? <RET>

385

PHYSICAL

MEMORY
/]
/
/ BRES
//
/
VIRTUAL / /
MEMORY / /
TASK REF / /
ARES \/A\ 7[\
—
160000 APR7 (4K WORDS) £ /
/UNUSED7 7 \74\\\ ARES
~—
140000 APR6 | BRES) /
(6K WORDS) Y,
120000 APR5 L
UNUSED
100000 APR4
——
\\\\\\
60000 APR3 |
; REF
40000 APR2 - 116K WORDS)
REF
20000 APR1 |
0 APRO -
—~——
\\\\
TK-7772
Figure F-2 Referencing Two Resident Libraries

386

INTERLIBRARY CALLS

One library

can call another 1library

FORRES calls FCSRES

To build libraries with interlibrary calls, use any of these

techniques.

e Build as a single combined library, then build referencing
task (Figure F-3).

e If referenced library does not contain overlays (Figure

F-4)

Build referenced library.

Build referencing 1library, specifying referenced
library to resolve calls.

Build referencing task, specifying only referencing
library.

o If referenced library has overlays (Figures F-5 and F-6):

Example task

Example task

You must revector interlibrary calls to allow access

to overlay structure and autoload vectors (always in
root of referencing task).

Once revectoring is included, build shared regions and
referencing task as if regions are logically
independent.

-build commands for each technique follow.

-build command for combined libraries (Figure F-3):

>LINK/MAP/NOHEADER/SHAREABLE : LIBRARY/SYMBOL TABLE-
->/0PTIONS F4PRES,LB:[1,1]F4POTS/LIBRARY

Option?
Option?
Option?

Referencing

STACK=0

PAR=F4PRES:120000:60000
<RET>

task is created using normal procedure to reference

the library F4PRES.

387

PHYSICAL

MEMORY
—~
~
VIRTUAL _— FaPRES
MEMORY -
(FCSRES)
160000 APR7 | FAPRES
(FCSRES) -
140000 APR6 | 12K WORDS //
120000 APR5 {
y//
100000 APR4 2
60000 APR3 USER
40000 APR2 |
USER _
20000 APR1 | (12K WORDS) //
/// ,
0 APRO —~

TK-7776

Figure F-3 Referencing Combined Libraries

388

Example task-build commands for building one 1library, then
building the second (referencing) library (Figure F-4):

>LINK/MAP/NOHEADER/SHAREABLE: LIBRARY/SYMBOL TABLE-
->/0PTIONS/CODE:PIC FCSRES -
Option? STACK=0

Option? PAR=FCSRES:0:20000

Option? <RET>

>LINK/MAP/NOHEADER/SHAREABLE : LIBRARY/SYMBOL TABLE-
->/0PTIONS F4PRES,LB:[1,1]F4POTS/LIBRARY

Option? STACK=0

Option? LIBR=FCSRES:RO

Option? PAR=F4PRES:140000:40000
Option? <RET>

Referencing task is created using normal procedure to reference
just the library F4PRES. F4PRES must be mapped using APRs 6 and 7
because it is built absolute. FCSRES 1is mapped at the next
available APR, namely APR 5, because it 1is built position
independent.

389

160000

- 140000

120000

100000

60000

40000

20000

VIRTUAL
MEMORY
APR 7 FAPRES
B (8K WORDS)
APR 6
FCSRES
APR & (4K WORDS)
7
APR 4 UNUSED
APR 3
APR 2 |
USER
APR 1 (12K WORDS)
APR 0
Figure F-4

PHYSICAL

MEMORY
//
FAPRES
//
FCSRES
USER

a Referencing Library

390

Building One Library, Then Building

TK-7771

FCS1 FCS2 F4PCLS USER

FSRPT:: —
—»{ .OPEN:: GET:: CALL .OPEN
.OPEN:?i
DISPAT: JMPTBL:: .
! .
.OPEN®—
PUT
GET
[]
AUTOLOAD ROUTINE, MAPS TO .
FCS1, THEN TRANSFERS CONTROL

TK~7777

Figure F-5 Revectoring

See Section 5.2.1.3 (on User Task Vectors Indirectly Resolve all
Interlibrary References) in the RSX-11M/M-PLUS Task Builder Manual
for additional information on revectoring. See also Section 5.2.3
on Examples for commented task-build commands for building
libraries with revectoring. '

391

Example task-build commands when revectoring is used
(Figure F-6):

>LINK/MAP/NOHEADER/SHAREABLE : LIBRARY/SYMBOL TABLE-
->/0PTIONS/CODE:PIC FCSRES/OVERLAY DESCRIPTION
Option? STACK=0 B

Option? PAR=FCSRES:0:20000

Option? GBLREF=.CLOSE

Option? GBLREF=.CSI1

Option? GBLREF=.CSI2

Option? GBLREF=.WAIT
Option? <RET>

>LINK/MAP/NOHEADER/SHAREABLE : LIBRARY/SYMBOL TABLE: -
->F4PCLS/TASK:F4PCLS/OPTIONS F4PRES,LB:[1,1TF4POTS-
~->/LIBRARY,LB:[1,1]SYSLIB/INCLUDE: FCSVEC

Option? STACK=0

Option? PAR=F4PCLS:140000:40000

Option? GBLINC=.FCSJT

Option? GBLXCL=.CLOSE

Option? GBLXCL=.CSI1

Option? GBLXCL=.CSI2

Option? GBLXCL=,WAIT
Option? <RET>

Referencing task is created using normal procedure to
libraries FCSRES and F4PCLS.

1392

reference

PHYSICAL

MEMORY
VIRTUAL -
/
MEMORY — FAPCLS
_— ol \\\\P?
y
W
/
160000 APR7 | FAPCLS —
(8K WORDS) -
- -
140000 APR6 — e ? FCS2
FCS1 FCS2 — =
120000 APRS | (4K WORDS) | (4K WORDS) st
100000 APR4
60000 APR3
40000 APR2 |
USER INITIAL
(12K WORDS) LOAD AND wap
20000 APR1 | —_— USER
0 APRO _

TK-7775

Figure F-6 Using Revectoring When Reférenced Library Has Overlays

393

CLUSTER LIBRARIES
e Allow shared libraries to overlay each other (Figure F-7).
- Can use one window for several libraries.

- Only enough wvirtual address space 1is needed for
largest library.

e One library can call another.
- Generally moving in one direction only.

- PFirst library 1in cluster 1is 1initially mapped (no
autoload).

- When a call is made to another library in cluster:

Autoload routines save mapping context and map
called library for a call.

Original 1library 1is remapped for return from
subroutine.

® Revectoring is necessary for interlibrary calls (Figure
F—5) .

- Special <coding must be included in the resident
libraries.

® Some special rules must be followed when building the
resident libraries.

e Are useful for FORTRAN tasks using the resident object

time system (FORRES, F4PRES, or F77RES), plus layered
products.

See Section 5.2 on Cluster Libraries in the RSX-11M/M-PLUS
Task Builder Manual for additional information.

Example of task-build command:

>LINK/MAP/OPTIONS/CODE:FPP CLSDEM,LB:[1,1]HLLFOR,~-
->LB:{1,1]F4POTS/LB,LB:[1,1]FDVLIB/LB

Option? CLSTR=F4PCLS,FMSCLS,FCSRES:RO

Option? <RET>

394

S6¢t

160000

140000

120000

100000
60000
40000
20000

0

APR7

APR6

APRS5 |-

APR4

APR3

APR2

APR1

APRO

VIRTUAL
| MEMORY
FapcLs FMSCLS
~(8K) | (8K)

FCS1 | FCS2
4K) | (4K)

— (22K WORDS)

Figure F-7

PHYSICAL
MEMORY

F4PCLS

FMSCLS

FCS2

FCS1

TASK

Cluster Libraries (Sheet l'of 2)

- 160000

140000

120000

100000

60000

40000

20000

0

APR7 |

APR6
APRS5 |
APR4
APR3
APR2

APR1

APRO

VIRTUAL
MEMORY

F4PCLS FMSCL\
(8K)

FCS1 FCS2
(4K) (4K)

TASK
- (22K WORDS)

PHYSICAL
MEMORY

F4PCLS

FMSCLS

FCS2

FCS1

TASK

TK-7815

96¢€

160000 APR7

140000 APR&

120000 APR5

100000 APR4

60000 APR3

40000 APR2

20000 APR1

0 APRO

(8K}

VIRTUAL
MEMORY

|FAPCLS [FMSCLS| %

@K} | ecst| Fesz

(4K)

TASK
(22K WORDS)

PHYSICAL
MEMORY

FAPCLS

FMSCLS

FCs2

FCs1

Figure F-7

TASK

160000 APR7

140000 APR6

120000 APRS

100000 APR4

60000 APR3

40000 APR2

20000 APR1

0 APRO

VIRTUAL
MEMORY

F4PCLS |FMSCLS| %

[(8K) | 8K [rest| Fes2
(4K) | (4K)

TASK
L (22K WORDS)

Cluster Libraries (Sheet 2 of 2)

PHYSICAL
MEMORY

F4PCLS

FMSCLS

FCS2

FCs1

TASK

TK-7778

APPENDIX G
ADDITIONAL EXAMPLE

The following example READF.FTN, should be available on-line,
probably under UFD [202,1]. It is needed for the Tests/Exercises,
Therefore, it is listed here in case it is not available on-line

at your site.

FROGRAM READF
C File READIF.FTN

C This task sets evermt flad 1 and then reads

C fTlags 1 to 16 and disrlavs them, The disrlaw is
0 8 series of 16 digitsy corresronding to flag
16 on the left throush flag 1 om the right.

C A1l indicates that the flag is sety 8 0

¢ indicates that the flag is clear,

INTEGERXZ IEVF(16)» 10ISW
C Set event flag 1.
CAlLL SETEF (1-IDSW)
T Branch on directive error
IF CIDnsW LT. O) GOTO 1000
C Read the event flags into the arraw ievf. Note
C that in FORTANy we carn only read 1 flag at a time
Do 20 I=1s16
CALL READEF (IsIDSW)
C Branch on directive error
IF (INnSW JLT. 0) GOTO 1100
C Check IDSW values 2 means sety O meamns clear
[8et the ievf value accordingle (1 means setr O
C means clear)
IF (InsSW LEQR. 2> GOTO 10
TEVF(I)=105W

GOTA 20
10 IEVF(I)=1
20 CONTINUE

C Write out flag settingsy starting with flag 16.
WRITE (5y30)

30 FORMAT (4 EVENT FLAGS 16. TO 1. ARE!’)
WRITE (5540) (IEVF(J)» J=16s1y~1)

40 FORMAT (7 ‘2161I2)
CALL EXIT

¢ Come here omn directive errors

1000 WRITE (5»1010) IDSW

1010 FORMAT (’ ERROR SETTING FLAG. ERROR CODE = ‘»I35)
CalL EXIT

1100 WRITE (S521110) IDSW

1110 " FORMAT (¢’ ERROR READING FLAG. ERROR CODE = ‘IS
Call EXIT
END

Example G-1’ Reading the Event Flags (For Exercise 1-1)

397

APPENDIX H
LEARNING ACTIVITY ANSWER SHEET

Learning Activity 2-1 (Directives)

1.

Either: a) Do some work, then check the flag by using the
CALL CLREF (35,IDSW) directive. Check the DSW. IS.SET
(=+2) means the flag was set; IS.CLR (=0) means the flag
was clear, or b) read flags 4 through 64 using RDAFS$ and
then test bit 2 of the third word in the buffer to read
flag 35. In either case, keep doing more specific work
and periodically check the flag.

The Executive would only set event flag 1 for Task A. It
would not set Task B's event flag 1; therefore, Task B
wouldn't realize that the data had been sent.

Local flags are accessible only to the task itself. They
are specifically provided for synchronization between the
Executive and a task.

Learning Activity 6-1 (Overlays)

(Using Example 6-5)

l.

.ROOT-LIB-*! (P-LIB,Q-LIB)

LIB: .FACTR LB:[1,1]FOROTS/LB

. END

LINK/MAP ROOT,P,Q,LB:[1,1]FOROTS/LB

399

Learning Activity 6-2
(Using Example 6-6)

1. Overlay tree.

JOB1 JOBXX
I I
I
A B
| I
|4
TOTAL
I
MAIN
2.
.ROOT MAIN-TOTAL-LIB-* (A-LIB-(JOB1-LIB,JOBXX- LIB) B-LIB)
LIB: L.FACTR LB:[1,1]FOROTS/LIB
. END
3.
.ROOT MAIN-TOTAL-LIB-*! (A-LIB-! (JOB1-LIB,JOBXX-LIB,B-LIB)
LIB: .FACTR LB:[1,1]FOROTS/LIB
« END
4’

.ROOT MAIN-TOTAL-LIB-* (A-LIB-(JOB1-LIB,JOBXX-LIB),B-LIB)
LIB: LFACTR LB:[1,1]FOROTS/LB
«END

400

EY-0061E-TP-0001

Programming
-~ RSX-11M
in FORTRAN

Tests/Exercises

Prepared by Educational Services
: of
Digital Equipment Corporation

CONTENTS

"USING SYSTEM SERVICES

TeSt/EXErCiSe . v ¢ o v v o o o o o o o o s s o o o o = 1

SOlULIOoN. &« ¢« o ¢ ¢ o o o o o o o o o o o o o o o o o a 3
DIRECTIVES

TeSt/EXErCiSe v o« o o o o o o o o o o o a o« o « o o o @ 5

SOlULioN. & o o o o o o o o o ¢ o o o o o o o o o o o o 7

USING THE QIO DIRECTIVE

TeSt/EXErCiSe v v v ¢ o o o o o o o o o o o o o o o o « 21
SolutionN. v« v ¢ ¢ ¢ o o o o o o ¢ o o o e o o o o o o 23

USING DIRECTIVES FOR INTERTASK COMMUNICATION

TeSt/EXErcisSe v v ¢ o o o o o o o o o o o o o o o o o 35
SolutioN. v v ¢ 4 6 6 b e e e e s e e e e e e e e e e e 37

MEMORY MANAGEMENT CONCEPTS

TeSt/EXErCiSe v v v v o o o o o o o o o o o o o o o o @ 59
SOlULION. & ¢ ¢ o o o o o o s o o o o o o s o o o o o @ 61

OVERLAYING TECHNIQUES

Test/EXErcisSe . v o« ¢ o o o o o o o o o o o o o o o o @ 63
SolutioNe. o« o o o o o o o o o o s o o o o o o o o o o o 65

STATIC REGIONS

TeSt/EXErCiSe ¢ v v o o o o o o o o o o e o o o o o o o 81
SolutioNe.e & ¢ ¢ o ¢ o o o o o o @ e o o o s s o o e o 83

DYNAMIC REGIONS

TesSt/EXErCiSe ¢ ¢ o« ¢ o o« o o o s o o o o o o o o o o &« 93
Solution. o v ¢ ¢ o o o o o o o o o o e o o o e o o o 95

iii

INTRODUCTION

This book contains tests/exercises for two different courses,
Programming RSX-11M in MACRO and Programming RSX-11M in FORTRAN.
Most of the questions apply to both courses. If a question begins
with "In MACRO" or "In FORTRAN", that question applies only to the
specified course. Solutions are provided for all tests/exercises.
Where it is appropriate, separate solutions are provided for MACRO
and FORTRAN. Solutions which involve programs should also be
available on-line.

Check the Student Guide in the Student Workbook for your
course for information on how to use the tests/exercises.

Using System Services
TEST/EXERCISE

Match the function with the type of system service wused to
perform it.

Function Type of System Service

a. The tasks send data 1. System and task information
back and forth to
each other 2. Task control

b. The tasks read data 3. Task communication/coordin-
from a file on disk ation

c. The tasks get input 4. I/0 to peripheral devices
from an operator
at a terminal 5. File and record access

6. Memory use

Draw a figure to illustrate a method of providing a system
service through the Executive.

Using System Services

SOLUTION

Match the function with the type of system service wused to
perform it.

Function Type of System Service
3 a. The tasks send data 1. System and task information
back and forth to ‘
each other 2. Task control
5 b. The tasks read data 3. Task communication/coordin-
- from a file on disk ation
4 c. The tasks get input 4, I1/0 to peripheral devices
from an operator .
at a terminal 5. File and record access

6. Memory use

Draw a figure to illustrate a method of providing a system
service through the Executive.

See Figure 1-1 or 1-2

Directives
TEST/EXERCISE

In MACRO-11

a. Modify the task READF to use the $C form of the Read Event
Flags directive.

b. Modify the task READF to use the $S form of the Read Event
Flags directive.

In FORTRAN, modify the task READF to set all of the odd
numbered flags from 1 to 15(18).

Modify WFLAG and SFLAG to use a global event flag instead of a
group global event flag. Omit any unnecessary code in the
tasks. Check with your instructor to find out which event
flag to use.

Write a task which does some work and periodically checks a
group global event flag. Have it display a message and exit
when the flag has been set. Write another task, or modify
SFLAG to set the flag.

Add a requested exit AST routine to WFLAG. .

In MACRO-11, add an odd address trap SST routine to the task
SST. Include an instruction which causes the trap to occur.

Directives

SOLUTION

1 +TITLE READIF
2 JIDENT /0L1/
3 SJENARL LC i Enable lower case
v+)
5 $ File LEX214.MAC
b]
7 3 Modified to use the $C form of the Read All Event $3EX
8 i Flags directive
9 F
10 $ This task starts ury sets event flag 1y reads the
11 i event fladgsy moves them into redgisters RO-R3 and then
12 i exits. It uses the $ form of the directive calls.
13 ¢
14 i The flags are returned as followsd
] H
16 H word 0 = event fladgs 1-16
17 ¥ word 1 = event flads 17-32
18 H word 2 = event flads 33-48
19 3 word 3 = event flads 49-64
20 -
21
22 +MCALL RDAFSCYSETFS$yEXITS$SyDIRS ¢ Sustem macros
27 s TEX
24 BUFF? YBLKW 4 3 Buffer for event fladg
25 ¥ values
26
27 SETF SETF® 1 3 PR for Set Event Flad
28 ¥y directive
29
30 START: CLR R4 3 Clear error counter
31 LIiR% $SETF ¢ Set event flag 1
32 RCS ERR1 i Branch on dir error
33 RIAF$C BUFF 3 Read the event fladgssiiEX
34 i (1 - 64>,
35 RCS ERR2 § Branmch on dir error
36 MOV RUFF RO i Move the event flad
37 MOV BUFF+2sR1 ¢ wvalues into the
38 MOV BUFF+4yR2 3 redisters
39 MOV BUFF+6yR3
40 Ior i Trar and disrlay
41 i redisters
42
43 i Come here on directive errors
44 ERR2? INC R4 3 R4=2 for read error
4% ERR1: INC R4 # R4=1 for set event
46 i y fladg error
47 MoV $NSWyRO $ Error code into RO
48 107 3 Trar and disrlay the
49 i redisters
50 +END START

CWNTU DU

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
28
27
28

29

X0.

31
32
33
34
35
34
37
38
39
40
a1
42
43
44

cooOoagooonn

w [}

o0

o000

10
20
C

30
40
C

10
10

11
11

Directives

SOLUTION

READF . FTN
File LEX22.FTN
Modified for exercises. Set odd numbered fladgs.

This task sets event flag 1 and then reads
flags 1 to 16 and disrlaws them

INTEGERX2 IEVF (18) vy I0ISUW
Set odd event flads.

00 5 K=1915.2

Cal.l. SETEF (KyIDSW)
Branch on directive error

IF (IDSW .LT. 0) GOTO 1000
CONTINUE

Read the event fladgs into the arraw ievf. Note

PIEX

HIEX
HIEX
HIEX

HEX

that in FORTANy we can only read 1 flag at a8 time

oo 20 I=Le16
CALL READEF (IyIDGSW)
Branch on directive error
IF (IpsWw LT. 0) GOTO 1100
Check IDSW valuey 2 means sety 0 means clear
Set the ievf value accordingly (1 means sety 0
means clear)
IF (Insw LEQ. 2) 60TO 10
TEVF (I =INSW
GOTO 20
TEVF (I =1
CONTINUE
Write out Tlag settingsy starting with flag 16,
WRITE (5,30)
FORMAT (7 EVENT FLAGS 16. TO 1. ARE?’)
WRITE (S5y40) (IEVF(J)y J=16y19-1)
FORMAT (7 “51612)
CaLlL EXIT
Come here on directive errors

00 WRITE (5y1010) IDSW

10 FORMAT (¢ ERROR SETTING FLAG. ERROR CODE =
CALL EXIT

00 WRITE (5,1110) IDSW

10 FORMAT (7 ERROR READING FLAG, ERROR CODE
Call EXIT
END

#

‘vl

‘91

]

Directives

SOLUTION

FROGRAM WFLLAG

1
2 (e
3 C FILE LEX23A.FTN
4 G
5 £ Modified to use event flas 35(10) IEX
&b [
7 C This task creates the grour dglobal event fladgs, and
8 C then clears event flad 6%, and waits for it to bhe set.
kY C When the flad is sety it writes a3 messadge and exits
10 C
11 C Imstall and run dinstructions?
12 C
13 C Rur WFLAGy then rum SFLAG., At least one of the
14 C tasks must be installeds or else the RUN command
13 Cc will try to install bhoth tasks under the same
16 C rname (TTrr)
17 C
18 WRITE (5+20)
19 20 FORMAT (7 CLEAR AND WAIT FOR EF 35, TO RE SET/)1IEX
20 Cal.l. CLREF (35.106W> HEX
21 IF CInsw LT, 0) GOTO 1100
22 CALL WAITFR (35,108W) FHEX
23) IF (IDSW LT, 0) GOTO 1200
24 WRITE (%5530)
25 30 FORMAT ¢/ EF 359. HAS REEN SET. FWAIT WILL NOW EXIT’)
26 o HIEX
27 CALL EXIT
28 C Error processing
29 C

30 1100 WRITE (S»y1110) I0SW

31 1110 FORMAT (/ DIRECTIVE ERROR CLEARING EVENT FLAG 35,
32 1 DSW = 715) HIEX

33 CcaLl EXIT ‘

34 1200 WRITE (Sy1210) IDSW :

35 1210 FORMAT (7 DIRECTIVE ERROR WAITING FOR EVENT FLAG

36 1 35, DSW = “»15)
37 CALL EXIT
38 ENI

1 +TITLE SFLAG

2 +INENT /01/

3 +ENARL LC # Enable lower case

4 ER S

] ¥ FILE LEX23R.MAC

é F }

7 ¥ ModifTied to use event flag 35, FFEX
8 ¥

Q- i This task sets event fladg 65. It assumes that the
10 § drour dlobal event flads have aslready been oreated,
11 H

12 i Assemble and task-build instructions?

13 H

14 H MACRO/LIST LE!IC1y LIFROGMACS/LIBRARY ydevi[ufdlSFLAG
15 H LINK/MAF SFLAGYLE!L1»1IFPROGSURS/L.IRRARY

11

=

~

SN O DR

NP B WD 'SE W > G NP WP N R > NEF AP N NER EF > M3 > G

Directives

SOLUTION

+TITLE LEX24
+IDENT /01/
+ENARL. LC

-+

FILE LEX24,MAC

messadge and exils.,

RARY rddev i CufdILEX24

names TTrn.

+MCALL
+MCALL. TYPE
START! CLR RO
TYFE “LEX24 IS CREATI
CRGF$0
RCC OK

This erogram creates the grous
clears event fladg 65,y does some work and reriodically
cehcks event flag 65. When the flag is set it writes a

Install and Run instructions:

13

A

y

A
4

@ e> e X oer

Enasble lower case

Assembrle and task-build instructions?t

LINK/MAF WFLAGYLEBIL1y 1IFROGSUBS/ILIBRARY

global event fladsy

EXIT$SsWTSE$CyCLEF$CyCRGF$C 5 Sustem

same

’ macros

Surrlied macro

RO used to identify

the error

Create drous dglobal

event flads

MACRO/LIST/0RJECT IWFLAG LEILC1y LIFROGMACS/LIB-§EX

#FEX

Runn WFLAGy then run SFLAG. At least ohe of the
tasks must be installeds
will try to install both tasks under the

or else the RUN commandg

EBranch on directive ok

i I dgrous dglobal event flads alreads existy
¥ Just disrlawy messade and continue
CiMp SNSWy HIE . RSU 3 Check for efs alreadu
i in existence
ENE ERR1 # Branch on any other
$ dir error
TYFE <GROUF GLORAL EVENT FLAGS ALREADY EXIST>
OK3 TYFE SCLEAR EF 69, WORK UNTIL IT IS SET:x
CLEF$C 635, $ Clear event flag 65,
BCS ERR2 § Branch on directive
¥ error
AGAIN? CLR R1 i Clesr counter FiEX
¥ Loor 2XX16 timesy then check flad sSEX
LOOF INC Rl 3 Increment counter $5EX
ENE LOOF i Not wet cwcledy loosis
i adain FPEX

G THE GROUF GLOEBAL EVENT FLAGSX

m
>

Directives

SOLUTION

17 WRITE (5y10)
18 10 FORMAT (7 LEX24 18 CREATING THE GROUF GLORAL EVENT FLAGS)
19 C HIEX
20 CALL CROF («IDSW)
21 IF CInsw LT 0 GOTO 900
22 15 WRITE (&G 202)
23 20 FORMAT (7 CLEAR EF 6%. WORK UNTIL IT I8 SET)
24 Call. CLREF (4635 1D8W)
25 TF O CInsW LT, 0) G6OTO 1100
26 22 N0 28 K=1y68535 FTEX
27 2% CONTINUE HHEX
28 WRITE (5280 PHEX
29 20 FORMAT (7 COUNTER HAS CYCLED) LIEX
30 CALL REANEF (8% 105W) FHEX
31 IF CInsWw LT. Q) GOTO 1200 HIEX
32 IF (InsW NE. 2 6G0TOo 22 HIEX
33 WRITE (Sy30)
34 20 FORMAT ¢/ EF &%, HAS BEEN SET. LEX24 WILL NOW EXIT?)
35 Call. EXIT
3& C Ervor rrocessins
27 M
38 C Checl Ffor code of ~17y meaning fladgs alreadwy exist
3¢ Q00 IF (InSwWw NE. —-17) GOTO 1000
40 C In that casey Just dislaew 2 messade and continue.
41 WRITE (5+910)
42 210 FORMAT (7 GROUF GLORAL EVENT FLAGS ALREADY EXIST)
43 GOTO LS
44 0 Here Tor Tatal errorsy disrlay message and exit
4% 1000 WRITE (51010 IDLSW
1010 FORMAT (7 DIRECTIVE ERROR CREATING GROUF GLORAL
TEF &, DSW = 7y 1)
calLL EXIT
1100 WRITE (S¢31110) IDEW
LL10 FORMAT (7 DIRECTIVE ERROR CLEARING EVENT FLAG 6%.
L DEW = 7918
Call EXIT
1200 WRITE (%1210 1DSW
1210 FORMAT (7 DIRECTIVE ERROR READING EVENT FLAG
1 6%, N8W = 7y %) HTEX
CaLl. EXIT
ENTL

15

30

SQV

Directives

SOLUTION
WTSES$C 65, ¥ Wait for event fladg 65
y to be set
BCS ERR3 # Branch on directive
error
TYFE “EF 653, HAS BEEN SET, WFLAG WILL NOW EXIT:
EXIT$S
¥ AST Service routine FiEX
REXAST: TYFE SWHY ME? NOT THIS TIME! !> § Ture messadgde
s rEX
ASTX$S ¥ AST exit to returm #3EX
ERR3: INC RO i RO = 3 if error on
i wait for dir
ERR2? INC RO $ RO = 2 if error on
; ' 3 clear flad dir
ERR1 ¢ INC RO $ RO = 1 if error on
i create dgrour flads dir
ERRO? MOV $NSWy R i Place DSW in R1y leave
i RO=0 for srecify $iEX
3 reacuested exit AST err
10T ¥ Trar and dums registers

+ENI START

FROGRAM WFLAG
FILE LEX23.FTN
Mogified to include a8 Reruested Exit

This task creates the grous global ev
then clears event Tlag 65, and waits
When the flag is sety il writes a mes

Install and run instructions:

Run WFLAGy then rum SFLAG, At 1
tasks must be installedy or els
will tre to install both tasks
name (TTrn)

aocooooooaooaoaoaoaaon

EXTERNAL REXAST
Set ur Requested Exit AST
CAlLL SREA (REXAST IDSW)
IF CInsw .LT. 0) GOTO 950
WRITE (5+10)
10 - FORMAT (° WFLAG IS CREATING THE
CaAlL CRGF (»1DSW)
IF (IpsWw L T. 0) GOTO 9200
15 WRITE (5+20)
20 FORMAT ¢/ CLEAR AND WAIT FOR EF
Cal.l. CLREF (65y1IDSW)
IF (IOsW LT. 0) GOTO 1100
CALL WAITFR (65sID8W)
IF (IDSW L.T. 0) GOTO 1200
WRITE (%5,30)

]

17

AST FIEX

ent fladsy and
for it to be set.
sadge and exits

east one of the
e the RUN command
under the same

HIEX
PIEX
HIEX
HIEX

GROUF GLOBAL EVENT FLAGS)

63+ TO BE SET)

DN DGR

-
~ O

12

14

BT A R LR TR D R i T R I L TS

Directives

SOLUTION

+TITLE 88T
JINENT /01/
+ENARL. LC ¢y Enable lower case

FILE LEX26.MAC

T

Modified to include an odd address trar FIEX

This task sets ur an S8T vector table to handle S85T’s
for BFTy I0T» and odd address trars. It then executes
instructions to cause these trars to occour. In each
S8T routiney 3 messadge is disrlaved and then the task
continues., Finallyes 8 TRAF instruction is executed,
Since no user 88T routine is srecified for TRAFy the
Executive ahorts the tashk.

Assemble and task-build instructions!

MACRO/LIST LEIL1y 1IFROGMACS/LIBRARY sdev i LufdILEX26
LINK/MAFP LEX26yL.EIE151IFPROGSURS/LLIBRARY

+MCALL SUTK$C,EXIT$S ¥ External sustem macros
+MCALL TYFE ¢ External surrlied macro

TARLE: WORD OLOTRF s MFTVIOYRFPTI0T 57 88T vector table

yyEX
TART?! SVUTK$C VTARLEs4 ¥ Have Executive set ur
¢+ 88T table
BFT y BRPFT instruction
TST 1 $ Test location 1y F3EX
§ causing an odd FFEX
$# addr trae yyEX
CLR 120000 # Clear location 120000y
¥ ocausing 8 memory
y rrotect violation
10T i I0T instruction
EXIT$S # Exit
EW? TRAF ¢y TRAF instruction

19

Using the QIO Directive
TEST/EXERCISE

Modify SYNCHQ or ASYNCQ to write prompting text (e.g., "TYPE
SOME TEXT: ") before issuing the read.

In MACRO-11, modify NUMER, replacing the error handling code
with code which writes out an error message plus the
appropriate status code. Refer to SYNQER for sample error
messages.

Modify NOECHO to use one QIO directive to both write the
prompt and read the input. Also, have the read timeout if no
key is struck for 20(10) seconds, in which case, display a
timeout message and exit. ' ,

Write a task which prints a message on every terminal in the
system. The task should break through any pending I/O at the
terminal. (Note: This task must be task-built as a
privileged task, using the /PRIVILEGED:0# qualifier in the
task-build command; /PR:@ in MCR) ‘

21

NLWNOIU DW=

b gt b pel fed b et et e peb
NONOU DU =C

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

41

42
43
44
45
46
47
48
49
50

51

-+

€r WP Er WP W3 W 0> € > 6»

10

RU
FR
LF

8T

L0

a
y

Using the QIO Directive

SOLUTION
+TITLE SYNCHQ
+INENT /017
+ENARL. LC i Enable lower case
FILE LEX31.MAC
Modified to disrlay rrometing text FrEX

This task read

uses sanchrono

+MCALL

SRE +BEKW
FF: +BLKR
MFPT: JASCII
RMFT =.-FRMFT
+EVEN

ART?: CLR
CLR

QIOWSC

ERCS
TSTR
RLT
QAIOWSC

RCS
TSTR
EBLT
MOV

CLR
OF: CMFR

RLT
CMFPE
BGT
Here if wurprer
MOVE
ADD
MOVER

s 8 line of text from the terminaly
converts all urrer case characters to lower casey and
srints the converted messadge back at the termimal., It
us QIO directives.

QIOWSC QIDWSSYEXITSHS 7 External sustem

~

4
e y
80. ¥

A

¥

RS
R4

I0.WVURBYySYy1yyIOSE

H
§
H
$
H
¥
y
H
ERR3 H
I0SE H
ERR3A ;
JO.RVEyS»1y9JOSEY
ERR1

I08ER
ERR1A
INOSR+29yRO

R1

RUFF(R1) »#’A

P WY MY 6> € G WF e ‘er e

NEXT
BUFF(R1) »#'Z
NEXT §

/TYFE SOME TEXT: / $ Fromst

Fomacros

I/0 Status Block
Text buffer

Length of rromet

mmm
> X X

> w> e
s > e

Error Count
Error indicstor -~ 0
means directive error
(ISW in R3)y ned
means I/0 error
(1/0 status in R3)

y FRMFT s LFRMFTy 40>
Lisrlay rromst FFEX
Branch on dir errorsiEX
Check for 1/0 errorssgEX
Eranch on I/0 errorssEX
s “BUFFs80.> 5 Issue

y read

Eranch on dir error

Check for 1/0 error
Eranch on 1I/0 error

Get count of characters
tured in
Offset inmto buffer to
character
Check for urrer case
ASCII character

Eranch if below rangde

Eramnch if above randgde

casey move to redister R2 and convert

BUFF(R1)yR2 i
*¥32.9R2 ’
;

R2 s BUFF (R1)

23

Move Lo redister
Convert to lower case
Rerlace in messade

Using the QIO Directive

SOLUTION

1 PROGRAM ASYNCQ

2 C

3 C FILE LEX31.FTN

4 c

5 C Modified to disrlaw rromrting text HEX
6 [

7 C This srodram reads a3 line of text from the termimale
8 C converts any urrer case characters to lower case and
9 C erints the converted messadge back a3t the terminal.
10 C It uses asuynchromnous QI0s and am event flas for

11 C sunchronization.

12 c

13 RYTE I0OSE(4),IRUF(80)

14 DIMENSION IFAR(&S)sK(10)D

15 EQUIVALENCE (NUMyITOSE(3))

16 REAL FRMFT(4) HIEX
17 ODATA FRMPFT //TYFE sy’ SOM sy E TE»'XT?! “/VIEX
i8 DATA IOWVER/"11000/

19 DATA IORVE/*10400/

20 DATA IVFC/"40/
21 Set ur values for the QIO
22 TUNIT=S
23 C Set wue for QID to issue rromst HIEX
24 CALL GETADR(CIFARCL) yPRMFT(1)) HIEX
25 IFAR(2)=16 HEX
26 IFAR(3)="40 FHEX
27 C Issue asusnchronous write HIEX
28 CALL QIOCIDWVERyIUNIT»S»y IOSEyIFARYINS) HIEX
29 IF CIDS L.T. O) GOTO 780 HEX
30 CALL WAITFR(S,IDS) HIEX
31 IF 108 LT, 0) GOTO 7895 HIEX
32 IF (I0SECL) JLT. 0) GOTO 790 HIEX
33 C Set us for read HTEX
34 IFPAR(3)=0 HEX
35 IFAR(2)=80
36 C Get the address of the I/0 buffer
37 CALL GETADR(IFAR(L) sy IRUF (1))
38 C Issue the QIO
39 CALL QIOCIORVEBYyIUNIT»Sy» IOSR IFARYINS)
40 C Check the directive status
41 IF 108 LT, 0) GO TO 800

42 C o some work while I/0 oreration is being rerformed
43 no S0 I=1+10

44 KCI)=64%1

45 S50 CONTINUE

44 C Wait for 170 to comrlete

47 CALL WAITFR(S,IDS)

48 C Checlk directive status

49 IF ¢IDS .LT. 0) GO TO 805

S0 C Check the 1/0 status

51 IF (IOSECL)Y LT, O0) GO TO 810

25

TN UMD O -

s

235
24
27

28

20
30
31
32
33
34
33
36
37
38
39

a1
42
43

45
46
47
48

50

-+

> Er > WP NP W WP 6> P

Using the QIO Directive

SOLUTION

+TITLE NUMER
+IDENT /017
+ENARL LC ¢ Enable lower case

FILE LEX32.MAC

Modified to inmclude error messade code P FEX
This tashk does a simrle addition and outruts the
results, It demonstrates Lhe use of $EIMSG for

formatting messades with numeric data

+MCALL QIOWSYyEXITESyDIRS 5 Sustem macros
+MCALL QIOWSS $ Sustem macros §IEX

+NLIST REX y Do not list binarw
: i extensions
§y Data
Al +WORD 10 # 1st addend and start
i of ardument block
E: +WORD 22 ¥ 2nd addend
o +BLKW 1 $ Location for sum
y
ouT: QI0WS TO0.WURsS s 1y » TOSRy s “RUFy v40> $0QI0 for

T08k: +EBLKW 2

- Wy ‘e

outrut messadge
170 status block

- ey

Set ur for $EDMSG

BUF ¢ +BLKE 80. 3 Outrut buffer
FMES? +ASCIZ /%0, WAS ADDED TO ZD.y GIVING %ZD./

¥ Format string

¥ Set ur for error messades using $EDMSG FFEX
. +EVEN FFEX
ARG +EBLKW 1 i Argument blockissEX
FMTID:! JASCIZ /NIRECTIVE ERROR ON WRITEy DSW = ZD/ F3EX
FMT1I! JASCIZ “I/0 ERROR ON WRITEs I/0 STATUS = ZD733EX
+EVEN - FPEX
JLIST REX ¢ List binary extensions
+EVEN $ Move to word boundary
START: MOV AsC ¥ Move 1st addend to sum
i word
AL EyC i Add 2nd addend to form
Foosum

-

y

Set ur for call to SEDMSG

MOV #RUF yRO i Addr of outrut buffer
MOV #FMESsR1 i Addr of format string
MOV *¥AYR2 i Addr of argument block
CaAL.L $EIMSE i Make cally character

y

count returned in R1

27

Using the QIO Directive

SOLUTION

1 +TITLE NOECHO

2 +IDENT /01/

3 +ENAERL. LC ¥y Enable lower case

4 it

5 $ FILE LEX33,.MAC

) H

7 ¥ Modified to combirne QIO0s and include timeout §iEX

8 i

b4 i This task writes a rromet and then issues a QI0 to read
10 3 from the terminal without echo. It then disrlauws the
11 ¥ word which was entered.

12 H . .

13 y Assemble and task-build instructions?

14 H

15] MACRO/ZILIST LE:L1s1IPROGMACS/LIBRARY rdeviluicllLEX33
16 § LINK/MAF LEX33yFROGSURS/LLIERARY

17 5)

18 +MCALL EXIT$SyQIOWSCyQIOWSS 5 Sustem macros

19 +MCALL DIRERRyIOERR $ Surrlied macros

20 H

21 i Data
22 H

23 +NLIST EREX # Don’t list of binarw
24 i extensions

25 MES? +ASCITI /SECRET WORD: / $ Fromrt messede

26 LEN = +«—MES ¥ Length of sromst

27 BUFF? JASCTT <18:/N0 LONGER A SECRET WORD: /

28 ¥ Preceding remark

29 BLEN = +«~BUFF $ Length of Remark

30 RUF? +BLKE 80. 3 Ineut buffer

31 TMOMS?! ASCII /READ TIMED QUT/ 5 Timeout messase §iEX
32 LTMOMS =.,-TMOMS ssEX
33 +EVEN Word align for I0OSR

I0SR is broken into
two rarts for

34 Iose: +WORD 0
33 LENT? +WORD Q

€ s @ @r

36 , ¢ convenience.
37 ¢y Define functions locaslly to allow us of an assidgnment
38 ¢ statement to shorten directive statement

39 I0.RFR =004400 Lefine functions
40 TF+RNE =20
41 TF.TMO =200

42 I0.FNC =<I0.RFR!TF.RNE!TF.TMOX QI0 fumction code

. wr > ‘a> €»

+LIST REX List binarwy extensions
44 $:
45 # Code
446 ’

47 START?! QIOW$C I0.FNCsSs1ly2I0SRy»<RUF»80.y2sMESyLENy44

48 # Issue read after F3EX
49 ‘ 3 erom=t § P EX
50 BCS DERR1 # Branch on dir error

29

-
= OUITNOUDLER -

ot
rJ

e
H> W

15
16
17
18
19
20
21
e

A

23

26
27
28
29
30
31
32
34
35
36
37
38
39
40
a1
42
43
44
45
46
47
48
49
50
51
52

-~

Using the QIO Directive

SOLUTION

FROGRAM NOECHO

C

C File LEX33.,FTN

c

C Modified to use read after rromet and to timeowt ! I1EX

(™

C This task rromsts for inruty reads it without echo and

C then skirs to the next lime and diselsws the insut

g text and exits.
BYTE BUFF (80)yIOSE(4)yCR(1)
INTEGER FARM(&6)
REAL. FROMFT(4) I Fromrt HTEX

C
DATA JOFNC /46207 1 Q10 HEX

c I function!t VEX

C b eode FHEX
DATA IsTMD /2/ P Timeout I1EX

C I gtatus MIEX
DATA CR 715/ ! Carriade return character
DATA FROMFT /7SECR’y‘ET W'y "ORDE " 4

C I Text HEX

C Set ur the I/0 rarameter list
CaLL GETADR (FARM{1)yRBUFF (1)) ! buffer address
FARM(2) = 80 I Ruffer length
FARM(Z) = 2 ! Timeout = 2 11EX

C ’ ! X 10 sec HHEX
CALL GETADR (FARM(4) yFPROMFT(L))Y ! Fromet addre HIEX
FARM(S) = 13 I Fromet lendgth! 1EX
FARM(&) = "44 Yertical HTEX

c o format conte! TEX

C Issue read no echor read after sromrty with timeout !IEX

CALL WTAIO (IOFNCsSe1s» IOSEByFARM:INS)

IF (IDS LT+ 0 GO TO 100 ' Dir error?

IF CIOSECL) LT, 0 GO TO 110 1-1/70 error?
C Check for timeout .

IF (I0OSE(1) .NE. ISTMO) GOTO 1 I Branch if no! TEX
[' timeouwt FIEX
1
1

TYFE X READ TIMED QUT’ Nisrlay HIEX
C message - HIEX
CAaLL EXIT I and exit HIEX
1 - WRITE (S5y2) CReC(BUFF (1) I=1I108BC3)) | Echo inrut
2 FORMAT ¢/ “yAly /N0 LONGER A SECRET WORD: ‘y80A1)
cCaLL EXIT
[
C Error conditions
C
100 TYFE Xy ‘DIRECTIVE ERROR ON READI, STATUS = “»IDS
cAaLL EXIT
110 TYFE %s ‘170 ERROR ON READ. CODE = ‘yIOSR(1)
Cal.lL EXIT)
END

31

W N Ui DO

32
33
34
C 35

37
38
39
40
41
42
43
44
45
44
47
48
49
50

51

C+
c

G

Using the QIO Directive

SOLUTION

FROGRAM LEX34

C FILE LEX34.FTN

€ Solution to Module 3y Lab Exercise 4

C Task does a8 write breakthrough to 311 terminzls.

C

C Task-build with /FRIVILEGED!Q aualifier

C_

C

INTEGER TTUNITsDISW

DATA TTUNIT/0/ I First outeut to TTO?
INTEGER FARAM(6) yITOSR(2)
RYTE SUCCOD2) U I/0 success codes

I First butes of I10SE
Mnemonic for *"Illedal
Ilevice or Unit* DSN code

170 function code
mnemonic

Write lodical blocky

write breakthroudghy
and restore cursor

-

EQUIVALENCE (SUCCODyIOSE
INTEGER IEIDU

DATA IEIDU/-99/

INTEGER ITOFCOD

DATA TOFCODR/*501/

l.oad rarameter list

CALL GETADRC(PARAM(1)y 'HELLO THERE ‘)

FARAM(2) = 11 ! Lensith of string

FARAM(3) = *40 ! Rlank for carr. ctrl.

CALL ASNLUNCA "TT/»yTTUNITYyIISW) | Assign LUN 4 to
FooTTme

IF (ISW.LT.0) GOTO 200
CALL WTRIO(IOFCODy4y1 sy I0SBFARAMy ISW)

IF (DSW.LT.0) GOTO 910 ! Directive error

IF (SUCCONCL) .NE.1) GOTO 920 ' I/0 error
TTUNIT = TTUNIT+1
GOTO 10

C Error from ASNLUN. If ASNLUN failed because of illedal
C unit numbery must have wrassed the last terminal. Exit.

200
205
?10
215

®20

P25

IF (DSW.EQ.IEIDU)Y CALL EXIT

TYPE 90%5»DSW ! Other error
FORMAT (7 ERROR ON ASNLUN. DISW = ‘»,16)
CALL EXIT

TYFE 915y TTUNITDSW

FORMAT (7 DIRECTIVE ERROR ON QIO TO TT/y02y727/
1 7 DSW = “»16)

caLl. EXIT

TYFE 925y TTUNITySUCCODRC2) »ySUCCOD(1)»IO0SRB(2)
FORMAT ¢/ I/0 ERROR ON QIO TO TT/»0257:7/

1 7 1/70 STATUS EBLOCK = ‘147 y/9I4y’ /7916)
CaLL EXIT

ENI

33

Using Directives for Intertask Communication
TEST/EXERCISE

Modify RECV1 and SEND1 to synchronize using Suspend and Resume
directives instead of event flags.

Modify RECV2 so that the display includes the name of the

sending task in addition to the data.

Write another sender task to send data to RECV2. Modify the
receiver so that it receives data from your task only, not
from SEND2.

Modify SPAWN so that it spawns CLI..., MCR..., or ...DCL
several different times and sends a different MCR or DCL
command line each time. Display the exit status after each
command executes.

Write a parent task and an offspring task. Have the parent
spawn the offspring. Have the offspring emit status to the
parent every five seconds for 3¢ seconds and then exit. Have

the parent display each status value. Optional: Use an AST
routine in the parent for synchronization.

35

NN E DL =

35
36
37
38
39
40
41
42
43
44

Using Directives for Intertask Communication

SOLUTION
+TITLE SEND1
SIDENT /0L/
+ENARL LC i Enable lower case

+
FILE LEX41A.MAC

Modified to use Susrend and Resume directives foriiEX
sgnchronization , i EX

This task sromrts at TI! for 3 line of text and sends
the data to RECV1 for rrocessing. Sunchronization is
handled throush 8 common event flad.,

Assemble and task~build instructions?

FMACRO/LIST/0RJECTISENDL LBIC1y1IFPROGMACS/LI-S5EX
~+*BRARY ydeviLufdILEX41A
*LINK/MAF SENDLSLEILL»1IFROGSURS/LIBRARY

Install and run instructionst: RECVI must be instal led
and run erior to running SENDRL, RECVL continues to run
until it receives 3 data rackets.

> R WP eF Er € EF WP M EP G W WP CH WP @3> Cr T3 T E»

+MCALL SDATSCYEXITSSsROUMSE 5 Sustem macrossiEX
+MCALL TYPEINFUTsDRIRERR § Surrlied macros

<> 1w e
c
i)
a
=
.

+ RLKE 26, ¢ liata buffer to be sent
+ENARL LSE 3 Enable local sumbol
iy blocks
H
START:I: TYFE “TYFE A LINE QF TEXTy 26 CHARACTERS OR LESS:
; # Ture rromet
INFUT #BUFFERy #2656, ¥ Get teuxt to send
ShATS$C RECV1yRUFFER 7 Send data to RECV1 $7EX
kCC 1% # Branch on directvie ok

DIRERR <UNARLE TO QUEUE DATA TO RECV1X: 3 Disrlay

§ error messadge and exit
14 REUMSC RECV1 3 Resume RECVI FiEX
RCC 5% ¢ Branch on directive oks$sEX
DIRERR <“UNARLE TO RESUME RECV1:> 3 $FEX
5% EXIT$S § Exit #FEX
+END START

37

WO NTOD RS-

45

50

Using Directives for Intertask Communication

SOLUTION

STITLE RECVI
SIDENT /017
+ENARL L.C 3 Emable lower case

<+

FILE LEX41E.MAC

This task and receives data from any sender tash
(esster SENDL) It prints the datae on TI!. Then it
waits for another data racket. It does this until it
has received 3 messadges and then exits.

This taesk sunchronizes with its sender throudgh an
event flad,

Assemble and task-build instructions?
*MACROZLIST/Z0RJECTIRECV] LEBIL11IPROGMACS/LIR-§FEX
-=*RARY sdeviLufdIRECVI FPEX
LINK/MAF RECV1,LE!LC1y1IPROGSURS/LIRRARY

Install and run instructions: RECV1 must be installed
and run hefore running SENDIL.

> 3 W WP > W > > MF Wr WP T3 Er WS M G WP WF E> W G e

+MCALL ROVISCYEXIT$SySFNI$S? Sustem macros §53EX

+MCALL TYPESDIRERR 3 Suprlied macros
;
H
REUFF + BLKW 15, # Receive buffer
i
+ENARL LSRR i Enasble local sumbol
+ blocks
3
START: MOV *¥3+yRS Initialize messade

counter

Susrend self untilsiEX

message arrives

BCC 34 Eranch on directive ok

DIRERR <SUSFEND DNIRECTIVE FAILED: 3 Disrlaw $7EX
y error messade and exit

AGATIN? SPND$S

.r W W > e

i We det here when resumed bw SEND1 $FEX
362 RCVI$C »RBUFF # Receive from angone
RCC 5% 3 Branch on directive ok
DIRERR ~“RECEIVE DIRECTIVE FAILED IN *RECV1®:-
§ Disrplaw error messade
§ and exit
¥ Successful receirt
G9¢%¢ TYFE <DATA RECEIVED RY “"RECV1*!> 3 Disrlau
i data

39

Modified to wuse Susrend and Resume for sunchromizationsiEX

[

NONOGDL

10

)

A A

23

ye
ad

W3 D W WS P F M) WP RF S W W EP WP Er M W NG S ‘er e W

»

4

-

¥

a

4

S

RECEIV? RCST$C sRRUFF

N
H
s
1
.
H

5

REUFF: JBLKW
TASKNM: +BLKW 3

Using Directives for Intertask Communication

SOLUTION

+TITLE RECV2
+IDENT /01/

+ENARL LC # Enable lower case
FILE LEX42.MAC $SEX
Modified to disrlaw the sender task name in addition F3EX
to the dats y7EX

This task receives data from another task., It srints
the datay slong with a8 headery on TI!., Then it waits
for amother data racketly continuing this until it has
received 3 messafHes.

This task sunchronizes with its sender using RCST$.
Because of this sunchronizationy the tasks can be run
in anw ordery with any relative sriorities.

Assemble and task build irmstructions:
MACROZLIST/0RJECTIRECV2 LEILCLy 1IFROGMACS/LIB-33EX
~*RARY rdevilufdllEX424 FIEX
LINK/ZMAF RECV2sLEBILLs 1IFROGSUBS/LIEBRARY

Install and run instructions! RECV2 must be installed,

MCALL RCSTSCyRCVISCHYEXITSS § Sustem macros
+MCALL TYPE»OIRERR i Surrlied macros

Receive huffer
Buffer for task names iEX

[y
o
-

> |y

Enable local sumbol
blocks

+ENARBL LSR

“r W

Set ur messadge counter
Receive from anwone
ECC 5% Eranch orn directive ok
DIRERR <RECEIVE DIRECTIVE FAILED IN ®RECVU2":
y Nisrlay error messade
3 and exit

TART: MOV #35RSG

. e @

Now det the racket
Branch on directive ok

RCVID$C »RBUFF
ECC &%

Successful receirt or unstorred by another task. First
check for unstorred after beind storredsy in which case
we have to receive the dats
%2 CMF $NSW#IS.8ET 3 Were we storred due to
¥ ono data
ENE 6% 3 If noty we have a data
i racket
H
]

41

20
21
22
23
24
28
26
27
28
29
30
31
32
33
34
35

36

38
39

a1

42
43
44
45
46
47
48

50

(320
P

53
54

5%

56
57

o8

Using Directives for Intertask Communication

SOLUTION

INTEGER REUFF (13) !
INTEGER DSWsISSET
INTEGER TASKNM(3) !

DATA ISSET/2/ |

[]
32

00 100y I=153
CALL RCST(sRBUFFyIDISW) !
IF (USW.GE.Q) GOTO S50
Ture Xy 'RECEIVE DIRECTIVE
1 DSW = “yISW !
GOTO 1000 !
C
C Successful receirt or unstorred
C check for unstorred after heindg
C we have to receive the data
0 IF (NSW.NE.ISSET) GOTO 60

5
C
[
C
C Storred due to no datal
Cal.l.
IF (SW.EQ.1) GOTO 40
TYFE Xy ‘RECEIVE DIRECTIVE
TUNSTOPFPED, DSW = ‘yDSW

GOTO 1000
C Disrlaw data

RECEIV(sREUFF» yISW)

Receive buffer

Ruffer for ASCII form!!EX
of task name HIEX
LSW code mnemonic

Receive from anwone

FAILED IN "RECV2*.
Nisrlay error messade
and exit

bw another task. First
storredy in which case

! Were we storred due
' to no data? If not
! (NE)r we have a
! data rachket

I Now dget the rachket
FATLED AFTER °"RECV2"

I Nisrlay error
I messade and exit

&0 CALL R3I0ASC (6+RBUFF » TASKNM) HIEX
TYFE 73y TASKNMy (REBUFF () s J=39135) HTEX
75 FORMAT (7 DATA RECEIVED RY "RECV2*:7//1Xe3 1IEX
. 1A2,1Xy13A2) HEX
100 CONTINUE
C Have received 3 messades
TYFE Xy "RECV2" HAS RECEIVED 3 MESSAGES AND WILL
1 NOW EXIT’
1000 CaLL EXIT VOEMit
END

43

W ND D g

37
a A
23
24

24
27
28
29
30
31
32
33
34

35

42

ogooaoooooaonaoaaaoa s

41

o0

G,

20

Using Directives for Intertask Communication

SOLUTION

FROGRAM LEXA43A
FILE LEX43A.FTN HIEX
A second sender task to send data to RECV2 HIEX

This task sromerts a3t TI! for a8 line of text and sends
the data to RECV2 for rrocessindg. The receiver will
continue to rumn until it receives 3 messadges.,
Suynchironization is handled throush RECV2’s stor bit.
RECV2 amd LEXA4A3A maw be run in ang order.

Install ang run instructions? LEX43R must be HTEX

installed under the name RECUQ. THEX
RYTE BUFFER(26) b Send buffer

INTEGER DSW

REAL RECV2

DATA RECV2/SRRECVZ/ I Receiving task name
INTEGER IEITSIEACT P Error mpemonics
DATA IEITS, IEACT/~89~-7/

TYPE Xy ‘TYFE A LINE OF TEXTs 26 CHARACTERS OR LESS’
READ (5+5) BUFFER

FORMAT (26A1)

CALLL SEND(RECVZ2sRUFFERy»DSW) ! Send data to RECV2
IF (DSW.EQ.1) GOTO 10

TYPE X» "UNARLE TO QUEUE DATA TO "RECV2". DSW = 7

Ly DGW

CALL USTF(RECV2yDSW)

IF (DSW.EQ.1) GOTO 20

IF (DSW.EQ.IEITS)Y GOTO 2

I Unstor RECV2
I Branch on directive ok
0O ! Isn’t he storred?
b That’s oky he’ll sich
P oup datae when he
! executes RCNSE
0 ! Is he not active? If
' notr he’ll rick up
! data when activated
TYFE Xy 7UNARLE TO UNSTOF *RECV2*., NSW = ‘yDSW

! Anw other error is bad
CALL EXIT VOEMGt
END

IF (DSW.EQR.IEACT) GOTO 2

45

47
48
49
90
51
52
53
54
55
96
57
58
99
60
61
42
63
64

b6
&7
68
49
70
71
72
73

S TN UDLIR-

ooooo0O0CoONONoOnNONNNan

Using Directives for Intertask Communication

SOLUTION
3 Successful receirt or unstorred bwy another task. First
3 check for unstorred after beind storredy in which case
i we have to receive the data
G5%3 CMF SNSWy#IS.SET i Were we storred due to
¥ ono data
ENE &% # If rnoty we have s data
H racket
RCVII$C LEX43AyRBUFF $ Now dget the racket
BCC b6% ¥ Branch on directive ok
DIRERR <RECEIVE DIR FAILED AFTER "RECU2" UNSTOFFED:
i Dllisrlay error messade
) ¥ and exit '
b1 TYFE “HATA RECEIVED RY *RECV2*:!:> § Disrlaw
¥ text and
TYFE #REBUFF+4y %26, $ dats sent
H SOR RS yRECEIV # Decrement messade
3y counter. Receive adain
if haven’t received 3
§F uwet
LEC RS FEX
BEQ IONE $EX
JMF RECEIV y+EX
DONE ¢ TYFE S"RECV2Y HAS RECEIVED 3 MESSAGES AND WILL NOW EXIT>
i Ture exit
) ¥ messasde
EXIT$S § Exit
+END START
FROGRAM RECV2
FILE LEX43B.FTN HIEX

Modified to receive onlw from LEXA43A
TASK WILL EXIT WITH A NO DATA QUEUED ERROR IFIVIEX
MORE COMFLICATED

TO CHECK FOR SEND2 SENDING DATA AND

NOTE?
SENDZ2 SENDS DATA.

This task receives data from

It rrints the datar

it waits for another data rackety

along with 3 headery

VHEX

CORE IS NEEDED
UNSTOFFING REC
another tLask (e.d. SE
an TI:.

continuing this

until it has received 3 messades.’

This task synchronizes with its sender using RCST.

Because of this syunchronizations
with any relative rriorities.

in any ordery

Install and run
installed

instructions?
under the name RECV2.

47

the tasks can be

LEX43E must be

HIEX
VRIIEX

ND2) .
Then

run

HIEX
HIEX

OO NO A D LR

21
il

o a
23
24

-~
25

27

Using Directives for Intertask Communication

W E> M WS N M N WS W W > e

CMD1 e
LEN1
CcMn2:
LENZ2 =
CMO3:
LEN3 =
SMES
LLSMES

I08Ek:
EXSTAT?

CMDTRL

SFAWN?

BUFF ¢

This rrogram srawns MCR...»
command linesy waits for each to exitsy and
disrlavs esch command’s exit

SOLUTION

+TITLE SPAWN
+IDENT 702/

+ENARL LC

File LEX44.MAC

A

4

rasses it a3 series of

status.

Enable lower case

-

ar wr w>

Assemble and task-build instructions?

o>

mmin m
> X X

> . ws

>

MACRO/LIST LE:L1,1IFROGMACS/LIERARY ydevilufdlilEX44
LINK/MAF LEX44,LEBI01y1IFROGSURS/LIERARY

+MCALL SFUNSYyEXITSS,WTSE$C,QIOW$S»QI0WSC

+MCALL DIRERRy IOERR
+NLIST BEX

+ASCII "FIF X.MAC/LI"
=,-CMI1

JASCIT /ACT/

o CMD2

+ASCII /TIM/

+ “‘CMI‘3

- wr wr e

<> e3>

Sustem macros
Surrlied macros
Inhibit listing of
binary extensions

Command line
lL.ength of command

+ASCII /SFAWN IS STARTING AND WILL SFAWN/

JASCII / MCR COMMANDS/
=, ~GMES

+EVEN
+ BLKW 2
+ BLKW 8.

+WORD CMDLyLENI
+ WORD CHMD2yLEN2
+WORD CMID3»LEN3
+WORD 0

a

a
¥

- a>

e

»
L4

Startur messade
l.ensgth of messade

I/0 status block
Exit status hlock

Table indexing
MCR commands

End of table

SFWN$ MCReovrrryrr 1y yEXSTAT

+ BLKE 80.

Format string:
+ASCIT /XNSFAWN REFORTING: COMMAND/
+ASCIZ 7/ COMFLETED. EXIT STATUS WAS ZD.ZN/

FMT?

START?

a

¥

<> Wr W W W W
. > e Wr e e

mm mMmmmmMmm
KX XXXX XX

- -
- .

mmmm
X X XX

> wr W W
. > wr €

-
-
m
x

OQutrut messade buffer

QRIOW$C TO0.WVUER»Sy1s s TOSEy » SMESsLESMES Y40

+EVEN

RCS ERRLLD
TSTR I0SE

ELT ERR1I

49

-

2
y
a
¢

EBranch on dir error
Check for I/0 error
Bramnch onn 1/0 error

Using Directives for Intertask Communication

SOLUTION

1 FROGRAM SFUWN

2 C

3 C File LEX44.FTN-

4 C

] C This rrodgram seawns ...0CLy rasses it a8 series of I'IEX
é C command liness waits for each to exity and HEX
7 C disrlags each command’s exit status. FIEX
8 C

9 C hata

10 INTEGER EXSTAT(8)yFLIST(4) 1ISW

11 RYTE RBUFF(80)

12 C Commands to be srawned! HEX
13 (™

14 (™ DIR X.MAC VHEX
15 C SHOW TASKS/ACTIVE HTEX
16 C SHOW TIME VHEX
17 (8

18 REAL CMD(Ss3) FHEX
19 DATA CMI/'DIR ‘s’ X MA’ ‘L’ y O y O

20 1 ‘SHOW v’ TAS s 'KS/A8 s ‘CTIV s 7E’y :
21 2 ‘SHOW v/ TIM yE’ y O y O/ HIEX
22 INTEGER LEN(3Z)
23 IATA LEN/9y17:9/

24 C

25 REAL DCL.
26 DATA DCL/6R. . 0CL/

27 C
28 C Code .
29 WRITE (5,15 I Write messade

30 15 FORMAT (¢’ SFAWN IS STARTING AND WILL SFAWN ‘»

31 1 ‘DCL COMMANDS ‘) HIEX
32 0 30+I=1+3

33 CALLL SPAWNCDCLy »y» 1y yEXSTAT» yCMDCL 1)y LENCID)

34 1 »9eyIISW) FHEX
35 I Srawn DCL
36 IF (ISW.LT.0) GOTD 900 ! Branch on dir error
37 CALL WAITFR(1,DSW) I Wait for task to exit
38 “IF (DSW.LT.0) GOTO 9210 ' RBranch on dir error

39 WRITE (592%5) EXSTAT(1).AND.*377 | DNisrlaw low

40 ! hute of exit status

41 25 FORMAT (‘ SFAWN REFORTING: COMMAND COMFLETED. s
42 1 7 EXIT STATUS WAS “‘»I1y’.7)

43 30 CONTINUE

44 CALL EXIT ! Exit

45 C Error handling code

46 200 TYPE Xy ERROR SFAWNING NCL. DSW = ‘,05W

47 GOTO 1000) E

48 210 TYFE Xy "ERROR WAITING FOR EVENT FLAG. DSW = ‘,DS5W
49 1000 CALL EXIT C :
50 END :

51

89

100

Using Directives for Intertask Communication

DIRS$
RCS
TST
RGE
"TIR%
RCS
RR
34%3 EXIT$S
#
ERR1? DIRERR
ERR23 DIRERR
ERR3: DIRERR
ERR4: DIRERR
ERRSG? DIRERR

AST routiney

value)

D e e e e

STRTN? SETF$C
RCS
CMP

REQ
TST
EGE

CNCT$C
RCS
4% T8T
- ASTX$S

§
t
’
;
OVRNMS: .ABCII

+ASCII

OVRNML. = -~0VRNMS

+EVEN
i
OVRRUN? QIOWSC
ARRTSC
ECS
EXITSS

a

14

ERRé& ¢ DIRERR

ERR7$ DIRERR

ERR8 ¢ DIRERR
+ END

SOLUTION
R4 y QIOWS to TI?
ERR4
RS # Did offsering exit?
3% i Yes
#CLEF # No. Clear EF 1 adain
ERRS
1% Wait

Once offsrring exitsy
so should rarent

- er e

<ERROR ON INITIAL CLEF$:-
<ERROR SFAWNING LEXA45B>
“ERROR ON WTSE$C:
“<ERROR ON QIOW®:
“ERROR ON CLEF$:

entered when offsrring emits status

(nedative status value) or exits (rositive status

1 i Awaken main code

ERR6&

$NSWyH#IS.SET i If sety main code is
not reads wet

OVRRUN ¥y We’ve been overrun

STATUS $ Has offserring exited?

44 # If sor don’t try to
i reconnect

LEX45Ry yASTRTNSTATUS

ERR7 :

(SF)Y+ # Clean ur stack from AST
i Let main code run

If 8 new status comes in before we’'re done with the old
oner something is wrong. Stor everuthing.

/8TATUS RECEIVED REFORE READY. /
/ ABORTING BOTH TASKS./

IO WVBrS59s39 99y SOVRNMS y OURNML. » 40>
LEX43R # Abort offsering
ERRS

iy Exit this tashk

<ERROR FROM SETF$ IN AST ROUTINE:
<ERROR CONNECTING TO OFFSFRING:
“ERROR ABORTING OFFSFRING:

START

53

VAN UDLIR-

10
11

12
14
15
16
17
18
19
20

21
20

23
24

25

26
-
27

28
29

.y
Eh A

31
32
33
34
36
37
38
39
40
41
42
43
44
45
a6
47
48
49

50

&

v

-+

W> WP ‘Gr P e WP €3 e O 3 W W3 WP NP WP EF ek

Using Directives for Intertask Communication

SOLUTION

+TITLE LEX45R
+IDENT /0L1/
+ENARL ILC $ Enable lower case

File LEXA45E.MAC
Solution to Module 4y Lab Exercise 5 - Fart Ry
offsrring task '

This task is srawned by LEX45A. It emits a nedgative
status everwy 5 secondsy then exits after 30 seconds
(6 emitsy then am exit). '

If an emit status fails because this task was not
connected to the rarents snother emit status will be
tried 9 seconds later. Two consecutive failures cause
this task to exit with am error messade.

This task must be instslled under task name LEX4G5HR,

LMCALL EMETS$S,QT0WECyWTSESCy MRRKTSCyEXITSS
+MCALL DIRERR

NCNCT! LASCIT ZLEXA5R NOT CONNECTELD TO ANY FPARENT/

+BYTE 1512
CASCIT /WILL TRY AGAIN IN $ SECONDS/

NCONCTL = +~NCNCT

+EVEN
¥
START: CLR RO $ RO = exit status
CLE R1 ¥ R1 = O means last
i attemst to emit status
v suceeded, RO < 0 means
3 it failed because we
i were not connected
MOV #6+R3 3 R3 = number of emits
¥ wel to be issued
EMST?S DEC R3 # Set timer (again)?
EMI EXIT ¢ Nos Just exit ‘
MRKT$C 1,552 y Set timer for § seconds
ECS ERR1
DEC RO i Use status < O when
vy oemitting
EMSET$S RO # Emit to rarent
RCS 1% iy Failed, Whu?
CLR 1 ¥ Note success
ER WAIT i Wait for S secs to rass
142 CMF $DSWy¥IELITS # Failed because not
y connected?
RNE ERR2 ¥ Ang other reasony auit

55

19

21
23
24
25
26
27
28

- 29

30

33
36
37

39
40
41
42
43
44
45
46
47
48
49

51
53
54
55
56
57
58
59
60

Using Directives for Intertask Communication

SOLUTION
C
INTEGER DSWs IEITS
DATA IEITS/-8/ ! Evror mnemonic
LOGICALX1 ERLAST I Flag if last EMST
c ! failed because we were
Cc ' not connmected
DATA ERLAST/.FALSE./
C
00 S0»I=1+6 ! ITssue & EMSTs
CALL MARK (1s52y08W) I Set timer for 3 seconds
IF (USW.LT.0) GOTO 900
CALL EMST(s(~1)s015W)> I Emit to rarent
IF (OSW.LT.0) GOTO 20 ! Failed, Whu?
ERLAST = FALSE., I Note success
GOTOD 30 I Wait for § secs to rass
20 IF (ISW.NELIEITS) GOTO 210 ! Failed for reason
(™ I other than not
C ! connected
IF (ERLAST) GOTO 910 ! Failed last time too?
C I Then give ue,
ERLAST = ,TRUE. I Else note we failed
' this time
C ' And announce the
C ' rroblemt
TYFE 25
25 FORMAT (7LEX43B NOT CONNECTELD TO ANY FARENT/
1 “WILL TRY AGAIN IN 9 SECONDS’)
C U And try adain in S secs
30 CALL WAITFR(1,D5W) I Wait for 9 secs to rass
IF (DSW.LT.0) GOTO 920
50 CONTINUE
caLl. EXIT I Exit (with success)
(™
¢ Directive errors
C
200 TYFE Xy ERROR ON MRKT. DSW = ‘yDISW
GOTO 1000
P10 TYFE Xs ERROR EMITTING TO PARENT. ISW = ‘,DISW
GOTO 1000
P20 TYFE Xy ERROR ON WAITFR. O8W = ‘,y[08W
1000 CALL EXIT
END

57

Memory Management Concepts

TEST/EXERCISE

Write 'M' if the statement applies to mapped systems, 'U' if

it

a.

b.

applies to unmapped systems, or 'M,U' if it applies to
both. :

Physical addresses up to 32K words accessible with
16-bit addressing.

Physical addresses up to 128K words accessible with
18-bit addressing. '

Program relocation possible without having to program
or task-build again.

Detection of memory protection violations.

Program executes only at physical addresses that match
the virtual addresses created by the task builder.

Virtual address limit of 32K words.

Fill in the headings and the missing values in Figure 1.

59

Memory Management Concepts

SOLUTION

Write 'M' if the statement
it applies to unmapped
both.

U a. Physical addresses
16-bit addressing.
words is the limit
mapped system.)

M b. Physical addresses
18-bit addressing.

M c¢. Program relocation

applies to mapped systems, 'U' 1if
systems, or 'M,U' if it applies to

up to 32K words accessible with
(M is also acceptable since 32K

of 16-bit addressing even on a
up to 128K words accessible with

possible without having to program

or task-build again.

‘M d. Detection of memory protection violations.

U e. Program executes only at physical addresses that match
the virtual addresses created by the task builder.

M,U f. Virtual address limit of 32K words.

Fill in the headings and the missing values in Figure 1.

61

Overlaying Techniques

TEST/EXERCISE

The following is an output

MAIN CALLING SUBROUTINE
G CALLING SUBROUTINE Gl
Gl RUNNING

MAIN CALLING SUBROUTINE
H1 RUNNING

MAIN CALLING SUBROUTINE
H CALLING SUBROUTINE H1
H1 RUNNING

H CALLING SUBROUTINE H2
H2 RUNNING

MAIN EXITING

display from a task.

G

H1

The calling sequence parallels the output display.

1.

Draw an overlay tree diagram or a memory “allocation diagram
for a possible overlay structure for the task.

Write the modules MAIN, G, Gl1, H, Hl1l, and H2. Assemble or

compile each one.
Task-build and run the

Task-build and run the
Obtain a map.

Task-build and run the
Obtain a map. '

task

task

task

without overlays. Obtain a map.

with all disk-resident overlays.

with all memory-resident overlays.

63

Overlaying Techniques

SOLUTION

The following is an output display from a task.

MAIN CALLING SUBROUTINE G
G CALLING SUBROUTINE G1
Gl RUNNING

MAIN CALLING SUBROUTINE HI1
H1 RUNNING

MAIN CALLING SUBROUTINE H
H CALLING SUBROUTINE H1
H1 RUNNING

H CALLING SUBROUTINE H2
H2 RUNNING

MAIN EXITING

The calling sequence parallels the output display.

l. Draw an overlay tree diagram or a memory allocation diagram
for a possible overlay structure for the task.

MEMORY ALLOCATION

OVERLAY TREE DIAGRAM
G1 H1 H2
‘ I I G1 H1 | H2
G H
G H
MAIN
MAIN

TK-7744

65

VNN DUNR=

Sonoooaona

END
LTITLE G
+IDENT /017
+ENARL LC $ Enable lower case
¥
i File LEXOR.MAC
H
¥ Subroutine for Module 6y Lab Exercises 1-6.
y Illustrate different overlasus and their effects.
H
+GLORBL. G1 # Subroutine called
+GLORBL IOFAIL # Error routine
+MCALL QIOWSC
H
¥ Messades
H
CG1MS: JASCITI /6 CALLING SURROUTINE G1/
COIML = +-CG1IMS
+EVEN
]
y Ture messade thern call routine
; N
Gi QIOWSE TOWVUERsSy1lsyyy e CGIMSyCGIML 40
RCS ERROR
caLlL Gl
RETURN
ERROR: JMP I0OFAIL
+END

Overlaying Techniques

SOL.UTION

FROGRAM MAIN

TYFE X»

CALL

File LEX&6A.FTN

Mainline routine for Module 6y Lab Exercises 1-6.
Illustrate different overlaus and their effects.

For each routines ture messadge then call routine

‘MAIN CALLING SUBROUTINE G
G

TYFE %y “MAIN CALLING SUEBRROUTINE H1’

cAlLL

Hi1

TYFE %y MAIN CALLING SUBROUTINE H’

CAaLL

H

TYFE X» "MAIN EXITING”
CALL EXIT

67

Overlaying Techniques

SOLUTION

SURROUTINE G1

~
~
2

C File LEX6C.FTN

R S
!

C Subroutine for Module 6y Lab Exercises 1-6.
é C Illustrate different overlaws and their effects.

7 C

a C Ture messadge then return

4 C

10 TYFE Xy /Gl RUNNING”

i1 RETURN

12 END

1 LTITLE WM

2 +INDENT /017

3 +ENARL LC i Enable lower case
4 ;

5 ¥ File LEX6é6D.MAC

& H

7 s Subroutine for Module 6y Lab Exercises 1-6.

8 i Illustrate different overlaus and their effects.
4 $

10 +GLORBL H1sH2 i Subroutines called
11 +GLOBL IOFAIL iy Error routine
12 +MCALL QIOUWSC

13 H

14 ¢+ Messades

15 H

16 CHIMS: JASCITI /H CALLING SUBROUTINE H1/
17 CH1ML = ,-CHIMS
18 CH2MSG: ABCIY /H CALLING SURROUTINE H2/
19 CH2ML. = ~CH2MS

20 +EVEN

21]

22 ¥ Ture messadge then call routine

23 H .

24 Hts QIOWSC TOL.WVUBySeylyryy sy CHIMSyCHIML »40:
2% RCS ERROR

26 cal.L H1

27 QTIOWHC I0.WVURySylyyy vy CH2MSyCH2ML vy 40
28 RCS ERROR

29 CaLL H2

30 RETURN

31 ERROR: JUMF IOFAIL

32 +END

69

TN D OIS

[Py
M OO

ot
1N]

N ONDOD LR

10

22
K

poaw]

¥

P

3

[
= O ONS LD

2

12

Overlaying Techniques

SOLUTION

SURROUTINE H1

C
C File LEXSE.FTN
C
C Subroutine for Module 6y Lab Exercises 1-6.
C Illustrate different overlaws and their effects.
C .
C Ture messade then return
(™
TYFE %y ’H1 RUNNING’
RETURN
END
STITLE H2
+IDENT /701/
JENARL LC # Enable lower case
’
v File LEX6F .MAC
3 v
Subrogtine for Module 6r Lab Exercises 1-6.
Illustrate different overlaws and their effects.
i

+GLORL TOFAIL $ Evror routine
MCALL QIOWSC

Messades

> e W

H2RUNS: JASCII /H2 RUNNING/
H2RUNL = +-~H2RUN

+EVEN
} Ture messadge then return
$
M2 QIOWSC TO.WVEBySylyryy “H2RUNsH2RUNL y40
RCS ERROR
) RETURN
ERROR: JMF I0FAIL
JEND
SUBROUTINE H2
C
C File LEX6F.FTN
C
C Subroutine for Module 65 Lab Exercises 1-6.
C Illustrate different overlaws and their effects.
[
C Ture messade then return
[
TYFE Xy H2 RUNNING‘
RETURN
END

71

Module

LOnL
i overlas

Overlaying Techniques

SOLUTION

by Lab Exercise 4

ile for building MACRO-11 with all disk resident
W

+ROQT LEX6A~-FROGSURS/LB-X(LEXSE-LEXSC» OVRH)

CVRH +FCTR LEX6D—~(LLEXSE s LEX&6F)
§
7 LEX6A = MAIN
FLEXSR = G
¥ LEX6C = G1
POLEXSD = H
v LEXSE = H1
yOLEXAF = HR2
L END
§# Module &y Lab Exercise 4
¥
i L00L file for building FORTRAN with all disk-resident
¥ overlaus
+ROOT LEXO6A-FLIB-X(LEX6B-LEXSC~FLIBYHSEGS)?
HSEGS? +FCTR LEXS6D-FLIB-(LEXSE~FLIByLLEX&F-FLIE)
FLIB? +FCTR LEIL1Ly13F4F0OTS/LLE
¥
i LEXé6A = MAIN
y LEX6R = G
¥ LEXSC = (1
i LEX6D = H
¢+ LEX6E = HI
i LEX6F = H2
SEND

§ Module 6y Lab Exercise 5

$

i «00L file for MACRO-11 with 211 memoruy-resident
i oaverlaus

’ LRO0T LEX6A~FROGSURS/LEB-X 1 (LEXSE-LEX&6Cy OVRH)
{(OVURH? +FFCTR LEX6D-1 (LEX&E s LEXAF)

P LEX6A = MAIN

i LEX6R = G .

i LEX4C = 61

FOLEXSD = H

¢ LEXOE = HI

3OLEXEF = H2

+END

73

Overlaying Techniques

SOLUTION

Use the map to fill in the following table:

Type of Starting Virtual Starting virtual
Overlay Address of G Address of H1

No Overlays

All
Disk-Resident Answers will vary depending on
Overlays ‘ students' particular solution.

All
Memory-Resident
Overlays

Disk-Resident
and Memory-
Resident
Overlays

Module by Lab Exercise 8

LODL file in MACRO~11 to rlace TOTAL in an overlaw
sesment .
All overlauws are disk-resident

LROOT MAIN-X (A~ (JORL » JORXX)y By TOTAL)

+ENTD

D T I T T

Module 46y Lab Exercise 8

LO0L file in FORTRAN to slace TOTAL in an overlaw
sedment .
All overlauys are disk-resident

+ROOT MAIN-FLIR-X(OVRAvE-FLIByTOTAL~FL.IR)
(QVRA S +FCTR A-FLIE-~-C(JOBL-FLIRy JORXX~FLITR)
FLIR: +FCTR LESLLyLIFAFOTS/LR
+END

TR T T U

75

51
52
u3
54
55
56
57
58
59
60
61
62
63
b4
69
&6
67
68
69
70
71
72
73
74

LN UD LI

Overlaying Techniques

SOLUTION

START: QIOW$C TO.WUBySslyys < MES1yLMESL1,40> jWrite MES1

a

14

calLlL A i Call subroutine A
CALL RTOTAL i Call routine to FvE
i disrlaw runninsg FiEX
s total FrEX
QIOWSEC I0.WVBsSslyyy s MES2yLMES2y40> sWrite MES2

caLlL B i Call subroutine R
Set us for loos '

MOV *#3rR4 - Counter

LOOFS QIOWSC TO.WURsSsleyy y 'MES3 LMES3,40> 5 Write MES3

ooOooOooOooooaoaoanns

oo

CLR ANG i Clear answer in case
of no oreration
CAL.L A # Call subroutine A
CALL RTOTAL. § Call routine to F7EX
¥ disrlaw running yiEX
¢ total $sEX
S0R R491.00F ¢y lDecrement counter and
¥ loor back until dore
QIOWSC T0.WURySy1yryy MESALMES4y40r 3 Write MES4

cALL TOTAL % Call routine to
i disrlay drand total
QIOWSC TO.WURsS»1lysyy MESTSyLMESS»40x 3 Write MESSH
EXIT$S oExit
+END START
FROGRAM MAIN
FILE LEX69A.FTN HIEX

Modified to call RTOTAL to disrlaw the running HIEX
after each call to A TIEX

This erodram rrints 8 messade and then calls subroutine
A. Subroutine A asks whether to rerform .Job 1 or Jdob 2.F
It then calls either subroutine JOR1L or JOR2 which
rerforms the oreration and disrlaws the results. MAIN
then calls subroutine B which disrlaus 3 messadge. MAIN
then calls subroutine A 3 more timesy keering a drand
total of the orerations. Fimallyy it disslasus the

grand total and exits.

Task-build instructions? Use LEX6?A.0DL as the imerut! 1EX

file for RTOTAL in the root. Use LEX69R.00L a3s the FTEX
ineut file for RTOTAL in the best overlaw sedgment HEX

77

NN D LI

- b
P CNO O N D GRS

ey Cr e gL ey

€ o>

Overlaying Techniques

SOLUTION

+TITLE RTOTAL
LIDENT 7017

+ENARIL. LC i Enable lower case
y
3 FILE LEX69E.MAC
14
Subroutine to erint the runnming total
y

+MCALL QI0WSS ¥ External sustem macros

+NLIST BEX # o not list bhinary

¥ extensions

RTOFMT: JASCIZ /THE TOTAL S0 FAR IS ZIt./ #Format string
RTOTBF ¢ BLKE 100. ¥ Outrut buffer

+EVEN

+NLIST BEX i List binmarwe extensions
RTOTAIL ¢ I MOV #FRTOTRF sy RO i Set ur for S$EIMSEO

MOV FRTOFMTYR1 3

MOV #TOT»R2 ¢

cAlL.L $EDMSE6 i Edit messadge

QIOWSS FI0.WVBv¥Sedlysy v JERTOTBF yRLyH40

i Print it
RETURN
JEND

SURROUTINE RTOTAL
FILE LEX&69E.FTN

Subroutine to rrint the running total

ooonn

COMMON /TOTCOM/TOT
INTEGER TOT
TYFE S»TOT
] FORMAT (/ THE TOTAL S0 FAR IS’y I4y7°.7)
RETURN
END

Module 6y Lab Exercise ¢

L00L file i MACRO-11y slacing RTOTAL in the root
gsedment for testinsg .
All overlaws are memory-resident

JROOT LEX6PA~LEXAPR-X! (A1 (JORL1y JORXX) y Ry TOTAL)
LEX&69A = MAIN modified to call RTOTAL
LEX69R = RTOTAL

+END

79

Static Regions

TEST/EXERCISE

Create an initialized resident common (size: 32(18) blocks =
1924 (18) words, contents: 25(14) in each word). Check with
your course administrator to find out where to place the
common type partition. Write two tasks, one that modifies all
values in the common, and one that reads the values and
displays them.

Create a resident library using the supplied FORTRAN callable
subroutines AADD, SUBB, MULL and DIVV (all in LIB.MAC). Write
a task that calls one or more of the routines. For example,
write a task that asks for four numbers (A, B, C, and D) and
then computes and displays (A * B) + (C * D) = answer.

81

Static Regions

SOLUTION

1 STITLE LEX71A

2 SIDENT /017

3 LJENARL LC # Enable lower case

4 it

& ¢ File LEX71A.MAC

é §

7 i Frodgram which creates and initializes a common redion
8 $ which will be referenced using overlaid Psects.

Q §

10 i Sire 1024, wordsy contents all 25s

11 H

12 3 Task-build instructions? Must include /SHAREARLE :COMMON
13 i oand /NOHEADER switchess STACK=0 and PAR=COMWF ostions.
14 # Must create .85TR file. May be /CODEIFIC or absolute

15 i (default).

16

17 i The code is rlaced in 8 Fsect named MYDATA

18 § o

19 JGSECT MYUATA DyGRLYyOVR ¢ Defaults RELsRW
20 +REFPT 1024. y Rereat count
21 +WORD 25, i Word of 2510
22 +ENDR ¥ End rereat ransge
23 CEND

1 BLOCK DATA LEX71A

2 C

3 0 File LEX71A.FTN

4 C

5 C Frogram to create and initialize a8 residenlt common

6 ¢

7 C Size is 1024 wordsy inmitisalized with all 257s

8 C

9 C Task-build instructions? Must include /SHAREARLE:ICOMMON
10 C and /NOHEADER switchess STACK=0 and FPAR=COMWF ortions.
11 C Must create .STR file. Maw be /CODE!FIC or ashsolute

12 C (the default), 0TS library NOT recuired.

13 C

14 COMMON /MYDATA/ " 1(1024)

15 DATA I /1024%25/

146 ‘ END

83

50
91

52

53
G4

e
I

96
w7
58
59

60

NO D G

ERRORLS

SETUF:

Static Regions

SOLUTION

MOVR INDSRYRO i Extend sign on 170

MOV RO » ARG i astatus and slace in
$ ard hlock

MOV FFERR2y R y Addr of format string

MOV F¥BUFFyRO i Addr of outrut buffer

MOV FARG s R2 i Addr of argument blook

cal.L SENMSH ¥y Edit messade

QIOWES FTO0.WURe #Sydlyyyy TRRBUFFyR1I v #40> § Write
¥ messasie

EXITHS Bt

+END START

. FROGRAM LEX71R

s File LEX71B.FTN

to decrement each word in the static common

region LEXZ71A. It uses a COMMON to reference
the data.

C
(8
C
¢ Tash
C
C

¢ Task-build instructions!?

LINK/MAF/0FTION LEX71EsLE:L1yLIFOROTS/LIBRARY
Ortion? RESCOM=LEX71A/RW
Ostion? <RET:X>

COMMON /MYDATA/ L(1024)! Common to reference
! shared redion

Decrement values

no 5 K=1,1024

LK) =L (K)-1

CONTINUE

WRITE (3,10) ' DNlisrlavy done messade
FORMAT (7 LEX71B HAS MODIFIED THE VALUES IN THE
1 COMMON LEX71A7) .
CAaLL EXIT

END

85

51
92
53

54
9%
56
a7z
58
oY
60
61
62
63
64

b

10

12
13
14
15
16
17
18
19
20
21
22

y-
g

a
¥

ER

ER

SE

f o]
L2

10
50

Static Regions

SOLUTION

Ervor code

RORS MOV $0SWy ARG
MOV #FERRL s R
ER SETUR

ROR1: MOVER T08RyRO
MOV RO« ARG

Move DSW to arsg bhlock
Addr of format strinsg
Branch to $EOMSG code
Extend sign on 170
status and Flace in
arg bhlock
Addr of format string
Addr of outrut buffer
Addr of argument hlock
Edit messase
SERBUFFsRL #4005 3 Write
messade
Ewit

MoV FFERR2sR1
TUF: MOV ¥RUFF RO
MOV #ARGYR2
CAL.L $ENMEE
QIOW$S #TO.WVRsRGs Ry »y

Wr €3 N G E> er > Sr W W @> Er €

EXTT$S
+ENI START

FROGRAM LEX71C

D File LEX71C.FTN

Task to read dasta from the static common redgion LEX71A
and erint it out at TI:. It uses 3 COMMON to reference
the data.

Task-~build instructions?

LINK/MAF/0OFTION LEXZ1CsLEB:L1s1IFOROTS/LIRRARY
Ortion? RESCOM=LLEX71A/R0
Ostion? <RET:

COMMON /7MYDATA/ L.(1024)1 Common to reference
| shared redion

Loor throudgh to disrlay rediony 8 numbers on &8 line

oo 50 J = 1102458

WRITE (S5910) (L(K)YsK=Jp J+7) | Write values

FORMAT (7 7+I2+718)

CONTINUE

CALL EXIT

END

87

a1
52
53
54

o en
whod

56
57
58
59
60
61
62
63
64
6%
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

82
83
84
89
86
37
88
39
?0
?1
92

94
9%

97
98
P9
100

ADDARG: +WORD 3

b WF Tr Wr QP > NG

Static Regions

SOLUTION

For ADD

First MUL result
Second result
Grand total

«WORD MURES1
+WORD MULRES
+WORD GRTOT

> ‘as ws a»

ASCITI buffer table., Initially each entrwy in this table
consists of the address of a3 sromet string followed by
the address of the buffer to store the inrut, After a
gstring is insuty howevers the rromrt string address is
rerlaced bw the lendgth of the inmrut string. This
tables with the addition of the fimal value GRTOTy then
serves as Lhe $EIMSG argument blochk.

EDMARG?
ARTELS: LWORD AFRMY y ASCA

LWORD EBFRMT sy ASCE

COTRL.: <WORD CFPRMT»ABCC

+WORD NFRMT s ASCIH .
Grand total (numeric

GRTOT: LWORD 3
) ¥y wvalue is inserted
i directly into $EDMSG
3 block)
¥
3 Other numeric values
M1 WORD 3 First MUL argument
M2i LWORD 3 Second MUL argument
MURESL?! +WORD 3 First MUL result
MULRES! JWORD § MUL result

ROFRMT: QIOWE I0.RFRyS 91y s TOSRy y<is 7y y s FLENy "%
108k «BLKW 2

E TR PR

0

.

Code

START: QIOW$C TO.WVBsSslyys sy HDRMSsHDRML40> 5 Identifu

MOV M1 RS y RS =» location to store
5 binary inrut values
MOV FRIFRMT y R4 3 R4 =» “"read with
. 3 reromet" DFR
MOV FARTEBLyR3 3y R3 == ASCII buffer table
CALL GETINF i Get A
cALL GETINF i Get B
MOV EMULARG YRS y RS =» MUL a3rdg hlock
CAlL.L MULL. 3 Do first multisly
MOV MULRESyMURES1 3 Save resuylt
MOV #M1 RS 3 Reset redgisters
MOV *RIOFRMT s R4 H (FORTRAN calling
MOV FCOTRILyR3 3y convention does not
3y dguarantee thew are
i rreserved,)

89

15
16
17
18
19
20
21
22
23
24
25

26

33

35
36
37
38
39

Static Regions

SOLUTION

FROGRAM LEX72

-+

File LEX72.FTN

Solution to Module 7y Lab Exercise 2

routines.

aooOoooaoo

Task buwild instructions?

Y
i3

2

Task comrutes sum of rroducts using resident library

C LINK/MAF/0FTIONS LEX72yLBIC11IF4FOTS/LIR

]

Ostion? RESLIR=LIR/RO

a

INTEGER AsEyCyDyMURESL yMURES2+GRTOT
C ASCII bhutes to make rrometing code cleaner
BYTE ASCAsASCRyASCCYASCD

LDATA ASCAsASCERYyASCCASCIV/ Ay "Ry 7C/ s 017/

»
TYFE 9

5 FORMAT (7 TASK WILL COMPUTE (AXEI+(CXID) 7/
1 7 ENTER NUMERERS IN IECIMAL.")

C FORMAT statements used rereatedly below?

15 FORMAT (“$ENTER “sAly’ ! %)

25 FORMAT (16)
TYFE 13+A5CA ' Promet for
ACCEFRT 2994 Vooand ineut A
TYFE 15+ASCER P Promet for
ACCEFT 23yE ' oand inrut B
CALL MULLC(A»ByMURESL) I MURES1 = AXR
TYFE 15sASCC v ' Promet for
ACCEFT 25,C ! andg inrut C
TYFE 15sA8CIH I Promet for
ACCEFT 25D P ooandg ineut I
CaLL MULL(CsDyMURES2) ! MURESZ2 = CxD
CALL AAND(MURESL yMURES2yGRTOT) I GRTOT = sum
TYFE 35y AvyByCyDyGRTOT

35 FORMAT (7 (“sIbs’ X ‘9169’) 4+ (“5Ib6v7 %X “316y97)
CaLl EXIT
END

91

‘3 16)

Dynamic Regions
TEST/EXERCISE

Referring to Exercise 1 of Module 7 (Static Regions), modify
the tasks that reference the common so that they both map to
the common dynamically using the memory management directives.

Write a task that creates a dynamic region two blocks 1long,
fills it with a character typed in at the terminal, and leaves
it in existence on exit. Write a second task that modifies
one value in the region, then displays all the values in the
region at the terminal, and finally deletes the region.

Modify SNDREF so that it sends the region by reference to a
second receiver task, in addition to RCVREF. Write the second
receiver task, which should modify values in the region and
then display the values in the region at the terminal.

93

Dynamic Regions

SOLUTION

1 +TITLE LEX8I1E

2 +IDENT /0L/ :

3 +ENARL LC : i Enable lower case

4 y+

G i File LEX81E.MAC

é H

7 s LEX71R modified to use memory manasdement directives

8 ; .

< i Program to attach to the existing redion LEX71Ay create
10 ¥ 8 virtuasl sddress window (marred on creation)y decrement
11 ¥ all values in the redion by 1y detach from the redion
12 # and exit.

13 5

14 ¥ Assemble and task-build imstructions!?

15 H . : .
16 H FMACROZLIST LBIL1y LIFPROGMACS/LIBRARY ydevilufdlLEXBLR
17 H LINK/ZMAF/Z0PTION LEX81IRsLEIL1y1IFROGSURS/LIBRARY
18 3 0rtion? WNDWS=1 -

19 H *0etion? <RET:

20 § -

21 +MCALL EXIT$SyROBBK$ yWIBEK$yATRGSC 7 Sustem

22 +MCALL CRAWSyDTRGSSyDIR$yQIOWES i+ macros

23 +MCALL DIRERRy IOERR ¥ Surrlied macros

24 RDE? RIOBERS 32, LEX71AyLEX71Ay<RS.UWRTIRS.RED>

25 § Nefine redion with?

26 ¥ Siz = X2, (32, word blocks)
27 H Name = LEX71A

28 F Fartition = |LEX71A

29 H Attach with read and write access

30 ;)

21 WIN? CRAWS WIR sDFE for creste address window
32 WOES WHRRKE 7932,9090:32.y< WS MAFIWSRED WS JWRT >

33 H lefine window witht?

34 [- CAFR = 7

35 ; Size = 32, (32. word blocks)
36 ¥ Offset in rediorn = 0 (32, word blocks)
37] Length inm redion = 32, (32. word blocks)
38] Mar on create with read and write access
39 H

40 I0SE!: + BLKW 2 ‘ : # 170 status block

41 W =1024, i # of words in redion ‘
42 NONE +ASCII /LEXBIE HAS MODIFIED THE VALUES/ 3 Dorne
43 ‘ +ASCII 7/ IN LEX714/7 i messade
44 LOONE =4 ~[IONE

45 START: ATRG$C RDOE s Attach to region

446 RCS ERR1 ¥y Check for error

47 MOV ROB+RGINyWNE+W.NRID ¢ Move redgion ID

48 ‘ # into WIR

49 ODIRS FWIN ¢y Create window

50 RCS ERR2 # Check for error

95

29
30
31
32

33

35
36
37
18
39
40
41
42
43
44
45
44
47
48
49
S50
S51
G52
53
54
]
56
57
58
59
60
61
62
63
64
&5
b6
468
469
70
71
72
73

"

Dynamic Regions

SOLUTION

C WIOR = Window definition block with the following rrorerties?
C AFR 7
C Size 32 (10) (32.~word blocks)
(W Offset in redion O (32.-word blocks) .
I Lendgth of window 32 (10) (32.~word blocks)
Cc Mar on create with read and write access
C Imitialize the WDOER

IATA WOR /7"3400+0+325050532y*203-0/
¢
C Attach redgion

CALL ATRG (RDOE.IDNS)
C Check for error on attach
IF (I0S LT, 0) GOTO 100
C Move redion id to WIR
WOR(4)=ROR(L)
C Create and mar window
CALL CRAW (WDRyIDS)
C Check for error
IF (IDS LT. 0) GOTO 200
C Decrement values
no 50 K=1,1024
ITDATA(K)=IDATA(K)~1
50 CONTINUE
C Detach from redion and delete it
CALL DTRG (RIORyIDNS)
C Check for error
IF (IDS JLT. Q) GOTO 300
C And Jume to exit
WRITE (S5»60)

60 FORMAT (/ LEX81ER HAS MODIFIED THE VALUES IN
1 THE COMMON LEX71A7)
GOTO $00
C
C Error messades
100 WRITE (S5»101)> 108
101 FORMAT (° ERROR ATTACHING TO REGIONs DSW =’+I4)
GOTO 300
200 WRITE (5y201) IS
201 FORMAT (* ERROR IN CREATING WINDOWs DSW =’+14)
GOTO 300
300 WRITE (35.301) 108
301 FORMAT (/ ERROR DETACHING FROM REGIONy DSW =/,14)
C
500 CAal.l EXIT
END

97

ey
e

53
94

55

Hé
57
58
59
&0
61
&2
63
64
65
b6
&7
&8
69
70
71
72
73

Dynamic Regions

SOLUTION
RCS ERR2- # Check for error
MOV £160000yR2 i Set base addr in redion
MOV ENyRS # Loor count
LOOF? MOV FRUFF yRO ¥ Set ur for SEDMSG
MOV *#FMTsR1
CALL $EDMSG s Edit data

RIOWSS #FI0.WUBs¥Sy %1y #¥TO0SEy y < #RUFFsR1y#40%

Write data

BCS ERR3N # Check for dir error
TSTR 108k § Check for 1/0 error
BL.T ERR3I # Branch on error
SOR RSy LOOF 3 Frint the line

NONE $ DTRG$S #RIEB $ Detach from redion
BCS . ERR4 5 Check for error
EXIT$S

a

E4

Error handling code

ERR1Z DIRERR <ERROR ATTACHING TO REGIONX

ERR2: DIRERR <ERROR CREATING WINDOW ANDI MAFFING:
ERR30: DIRERR <ERROR WRITING DATA:

ERR3I: TOERR $I05Ey < ERROR WRITING DATA:

ERRA4 S DIRERR <ERROR DETACHING FROM REGION:

oo ooOoOooaoOaon

~—
i3

oo

+ENI START

FROGRAM ILEX81C
File LEXBLC.FTN
LEX71C modified to use memory management directives

Frogram to attach redgion LEX714 in rartition LEX71A
creaste a window and mar it to the redgiorn uron creationy
read data out of the rediony and detsch from it

Task~build with these ortions?
VSECT=0ATAI1460000:20000
WNDWS==1

INTEGER RIORB(8)»WDR(8)
This common block will alidgn with the address window

COMMON /DATA/IDATA(L1024)

RIOE = Redion definition block with the followinsg
rrorerties?

Siwze 32 (10) (32.-word blocks)

Name LEX71A

Fartition LEX71A

Frotection WOrornes SY IRWEDyOWIRWEDy GR $ RWED

Attach with read access

Initislize the RIR
NATA ROB /0y32y3RLEXy3R71A»3RLEX»3R71Ay "000001
1%170000/

99

Dynamic Regions

SOLUTION

1 LTITLE LEX82A

2 +INENT /017

3 +ENARL LC ¢ Enable lower case

y

5 ¥ File LEX82A.MAC

é]

7 3 Frodgram to create an named redion (attached on

g iy creation)y create a8 virtual address window (marred on
9 3 creation)y rlace ASCII data in to redgions detach from
10 i the redion and exity leaving the redion in existence.
11 ¥

12 ¥ Task-build instructions?

13 ¥

14 H Include WNDIWS=1 ortion

15 $

16 +MCALL EXITHSyROBEKSy WIEEKS y CRRGS$y CRAWS

17 ‘ JHMCALL DTRGSYDNIRSyQIOWESyQI0QWSC

18

19 REG? CRRG4 RIOE sIOFR for create redgion

20 H Lefine redion with?

21] Sire = 2 (32, word blocks)
22 $ Name = MYREG

23 H Fartition = GEN

24 H Frotection = WOINornerySYIRWED

25 ; OWIRWED Yy GRIRWED

26 ¥ I'o not mark for delete on last detach
27 ; Attach with write and delete access
28 ROE? RIOBEKS 2yMYREGyGENy RS +NILIRS.DEL'RS.WRTIRS,ATT >y 170000
29 H

30 WIN? CRAWS WhE i IFR for create address window
31 H lefine window with?

32 3 AFR = 7

33 i Size = 2 (32, word blocks)
34] Offset in redion = 0 (32. word blocks)
35 ¥ Length in redion = 2 (32. word blocks)
36] Mar on create with write access

37 WDHE? WIREBKE 79290092y WS MAF ! WS, WRT >

38 ¥

39 DET? DTRGS RIOE y OFR for detachindg redion

40 I0SE: BLKW 2 3 I/70 status block -

41 BUFF +BLKR 80, y Imeut/Outrut buffer

42 MES S +ASCII /ENTER ASCII CHARACTER?! /

43 LEN = +MES

44 IINMES? JASCIT <I15x/LEX824 HAS CREATED AND INITIALIZED/
45 +ABCII 7/ THE REGION/

44 LONMES = =,-~DONMES

47 ¥ Error format strings

48 FCRRER?: .ASCIZ ZERROR CREATING REGION, DSW = ZI./

49 FCRWER?: +ASCIZ /ERROR CREATING WINDOW, DSW = XD,/

50 FOETER? +ASCIZ /ERROR DETACHING FROM REGION., DSW = XIt,/

191

Dynamic Regions

SOLUTION
101 MOV F#FQAIZIEYR1 $ QI0 write err messade
102 . EBR SHOERR $ Branch to common code
103 ERRS? MOV #¥FNETERYR1 # Detach region messade
104
105 SHOERR T MOV #RUFF RO y Set ur for $EIMSG
106 MOV FSNSWIR2 i
107 CALL $EIMS6 i Edit messade
108 QIOWSS #I0.WVBsESs#Llyyey #RBUFFsyR1»#40>
109 vy Disrlaw messade
110 EXIT$S ¥ Exit
111
112 +END START

FROGRAM LEX82A4

C

C File LEX82A.FTN

C

C LEX82A creates a8 named redion (attached on creation)y
> creates 28 virtual sddress window (marred on creation)y

SO NDUD U=
o

C rlaces an ASCII character inrut 3t TI! at 81l locations
C in the rediony detaches from the rediomn and exitsy
‘ g leaving the redion in existence.
11 C Task-build instructions?
12 ¢
13 C FLINK/ZMARP/0FPTIONS/CODESFPF LEXB2A-LEBIC1»1IFOROTS-
14 C ~=/LIBRARY
19 C Oetion? VSECT=DATA!160000:20000
16 C Ortion? WNDWS=1
7 C Ostion? <RET:
18 (™
19 C ROB = Redgion Definition RBlock for region with the
20 C following srorerties?
21 ¢ Size = 2 (32, word blocks)
22 C Name = MYREG
23 C Fartition = GEN :
24 C Frotection = WOINomeySYIRWED
25 C OWIRWEDYyGRIRWED
26 C o rnot mark for delete on last detach
27 C Attach with write and delete access
28 ;
29 C WIER = Window lefinition Block for window with the
30 C following srorFerties?
31 C AFR = 7
32 C Size = 2 (32, word blocks)
33 C Offset in regionm = 0 (32, word blocks)
34 C Length in redion = 2 (32, word blocks)
35 C Mar on create with write access
36 C

193

R

S Y

&

-
O W NS

PP
Py

D LIFSE

13
1é
17
18

20
21
Do
22
e

23

24

oy

o)
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

48
49

S50

N> Cr WE W RF GF EF WF G P P € G €3> €@ € E> A

-+

i

Dynamic Regions

SOLUTION

+TITLE LEX82R
«IDENT /0L/
+ENARBL LC ¢y Enable lower case

File LEXB82R.MAC

Frogram to attach to am existing rediony create a
virtual asddress window (marered on creation)s modifw
the first bute of the redgiony resd ASCIT data from the
rediony detach from the redion and mark it for deletey
and finalluy exit,. The region will be deleted on last
detach.

Assembrle and task-build instructions?

*MACROZLIST LEILLy LIFROGMACS/LIBRARY rdevilufdl-
*LEX82R .
FLINK/ZMAPAOPTION LEX82ByLEIL1»1IFROGSURS/LIBRARY
HQetion? WNDWE==1

H0etion? <RETX:

SMEALL EXITHSyRDBEKS s WIRBBR$ s ATRGSC 7 Swustem
SMUALL CRAWS yDTROGSS LIRSy DIDWES i omacros
+MCALL DIRERRy TOERR ¥ Burelied macros

RIOES RIOBEKS Qe MYREGyGENy “RS WRTIRE REDIRS . MOL VRS DEL >

|y ey ME G W @r car c€r £ L e W Wk € S ey Q> e

IOSKE?: + RLKW 2
REIZ =128,
START? ATRG$C ROR

(=

Hefine redion with?
Qire = 0 (32. word blocks)
) returned after attach
Name = MYREG
Partition = GEN
Mark for delete on last detach
Attach with ready write and delete access

CRAWS Whk sOFE for creste address window
WIREBKS 732009050909 WS MAFTWSJREDTWS s WRT >
DNefine window with?

AFR

Size

Of fselt inm redgion

Length in redgion

o
> o

#

7

200 (32, word blocks)
O (32, word blochks)

O (32, word bhlochks)

} returned whern masred
Mar on create with read and write access

o

I/0 status block

Redgion size in bules

Attach to redion

RCS ERR1 Check for error

MOV ROB+R.GIDyWHIBHW.NRID # Move redgion ID
into WDR

LIRS #WIN i Create window

> € ‘ar >

195

15

16

18
19
20
21
22
JEX

24

S

awd

24
28
29

30

34
35
b

38
39
40

42
43

45

44

47

48
49
50
G52
53
54
55
56
a7
58
59
60
61
62
63
64

™
3

oo s

b3

Dynamic Regions

SOLUTION

INTEGER RIOR(8)Y»WDR(8)
BYTE IDATACL28)
This common bhlock will alidgn with the address window
COMMON /0ATAZIDATA
ROB = Redgion defirmition block with the following
rrorerties! '

Gire O (32.~word blocks)
filled in when attached
Name MYREG
Fartition GEN
Frotection WOinones SYIRWEDy OW I RWELy GRIRWED

Mark Tor delete on last detach

Attach with deletey write and read access
Initielize the RIDE

DATA ROR /0v0y3RMYRyIREG s 3ARGENy 3R » "000213y

15170000/

D WOR = Window definition black with the following

rrorerties?

AF 7
Size 200(8) (32.-word hlocks)

Offset in region O (32,~word blocks)
Length of window 0O (32,~word blocks)
_ filled in when marred
Mar on create with read access)
Imitialize the WIR
DATA WIER /"3400505°2005050505"203+0/

Attach resion
CHLL ATRG (RDRyIDS)

s Checl. for error on attach

IF (Ins LLT. 0) GOTO 100

¢ Move restion id to WOR
WIR(4)=RORBC(1)
C Create and mar window
CALL CRAW (WDEyIDS)
C Checlk Tor error
IF (Ins JLT. 0) GOTO 200
C Flace ASCII Z in first bute
TDATACL)="2"
C FPrint contents of redion
10 WRITE (S5y11) IDATA
11 FORMAT (7 ‘v64A1)
C Detasch from rediorn and delete it
CALL DTRG (RORyIDS)
¢ Checlk for error
IF (108 JLT. 02 GOTO 300
G Ang Jdume Lo exit

GOTD 500

197

13

15

16

18
19
20
21
23
24

25

26
27
28
29
30
31
32
33
34

5

34
37
38

40
41

42

43

45
44
47

Dynamic Regions

SOLUTION

LTITLE SNDREF
+IDENT /01/

JENARL LC ¥ Enabhle lower c©
+ .
File LEX83A.MAC $sEX

Modified to send to a8 2nd receiver RCVRF2 in
addition to RCVREF

LEX83A creates a é4-word (2 block) unnamed red
fills it with ASCII characters. It then sends
region to RCVREFy and then waits for RCVREF to
the redgion. (This is sidgnalled bwy event flag #
thern srints 8 message and exits. Since the are
urnmamedy it ds sutomatically deleted whern the
attached tassk exils.,

Assemble and task-build instructions?

HMACROZLIST LEILL» LIFROGMACS/LIBRARY ydev
~>LEXB3A i
HLINK/MAP/Z0FTION LEX83AsLEBIC1y 1IFROGSURS
Ostion? WNDWS=1

LEX83R must he installed as RCVRF2, Run LEX83A
ther run RCVREF arnd RCVRF2 (either one first)

> Wy Sy R NS> EF W Er SR Tr WP > P TP 6P Q> R > VN WD MR NG dE S e

LMCALL QIOWSC,QIOWSS RASTHC § Sustem ma
+MCALL WTSESCyEXIT$SyROBRKS y WIERRKS
SMCALL CRRG$S»CRAWSS » SREF $C

SMCALL DIRERR ¥ Surrlied macro

SNLIST REX ¥ SUPFRESS DATA
letine redion with?

Size = 2 32-WORD RLOCKS

Name = FOnee

Fartition = GEN

WO nones GRIRWED
OWIRWEDYSY inone

Frotection

Attach on ocreate

Read and write access desired on attach
RO = 170017

RSETAT = REATTIRSREDIRS JUWRT

hrx B T P P TR T TR T Y

RIE RDEEKS 2 »GENsRSTAT » RFRO

129

aase

s
;
’

1 m

X
X

M

- e

ion and

the
receive
1) It

a8 is
last

FLufedd-3 sEX

/L. IBRARY

Install and run instructions! RCVREF must he installed.

firsty

Qros

?9
100
101
102
103
104
103
106
107
108
109
110
111
112

OO U DGR

10

28

33
34
35
36
37
38

Dynamic Regions

SOLUTION

QAIOWSC TOWVBYySe2yryy s MES2yLMES2y40> 5 Disrlaw
i messade

RCS &% i Branch on dir error
EXIT$S i oExit

¥ Error code

1% DIRERKR <ERROR ON CREATE OR ATTACH REGION:

2% NIRERR RROR ON CREATE OR MAF WINDOW:

K3 HIRERR RROR ON SEND BY REFERENCE:»

44 NIRERR <ERROR ON 18T WRITE:

5% DIRERR <ERROR ON WAIT FOR:>

bt : DNIRERR <ERROR ON 2ND WRITE:

76 NIRERR < ERROR ON 2NI SEND RY REFERENCE: §EX

843 DIRERR < ERROR ON 2ND WAIT FOR> FEX

oooOoOooOooooOnOooooOoDoOoOooOOonoooOOoOnOOCoaooan

+END START

FROGRAM SNDREF
File LEX83A.FTN

Modified to send the redion by refererce to RCVRF2 1I1EX
in addition to RCVREF HIEX

This srodgram creastes 2 é4-word unnamed resdion and
fills it with ASCII charscters. It themn sends it bw
reference to task RCVREFy and waits for RCVREF to
receive the redion.(This is sidnalled bw event flad
%#1.) SNIREF then srints 3 messase and exits. Since
the ares is unnameds it is automatically deleted when
the last atltached task exits.,

Task-build instructions?

FLINK/ZMAF/ZCODESFFFP/0FPTIONS LEX83AsLEIL1,1IF0-TIEX
~-=ROTS/L.IBRARY FHEX
Option? WNDIWS=1

Ortion? VSECT=DATA!1460000:200

Osrtion? “RETX

Install and run instructions?! RCVREF must bhe installed.
LEX83E must be installed under the name RCVRF2. HIEX
Rurn LEX83A firsty thern rum RCVREF and RCVRF2 (in 11EX
either order)

KOR = Region defimition block with the fPollowinsg
rrorerties? :
: Sire 2 32~word blocks

Name none

Fartition GEN

Frotection WOironeySY IRWEDy OW I RWED y
GRinone

Attach onm creation
Read and write access desired on attsch

111

8%

86

87
a8
g9
90
91
)
93
94
95
96
97
o8
99
100
101
102
103
104
105
106

N i

8

10
11
12
13
14
15
16
17
18
19
20
21

peded
P,

C

Dynamic Regions

SOLUTION

Error handling code

100 WRITE (Sy110)IDS
110 FORMAT (/ ERROR CREATING REGIONy 0DSW = ‘y1I4)
GOTO 400
200 WRITE (59210108
210 FORMAT (7 ERROR CREATING WINIOWs DSW = ‘»I4)
GOTO 400
400 WRITE (55,410)IN8
410 FORMAT (7 ERROR IN SEND-RY-REFERENCEy DSW = ‘y14)
GOTO 600
450 WRITE (59460)108
450 FORMAT (7 ERROR IN 2ND SEND-RY-REFERENCEs DSW
1 = “»14) VHEX
GOTD 600 HHEX
500 WRITE (3y510)I108
510 FORMAT (¢ ERROR ON WAITy [OSW = “»14)
GOTO 600 FHEX
550 WRITE (558600108 HIEX
560 FORMAT (7 ERROR ON 2NI! WAITy DSW = ‘514) VIEX
C
4600 CAaLL EXIT
ENDI
LTITLE LEX83ER
+IODENT /01/ :
LENARL LT y Emable lower case

e M > S 6D WS WP N> W WP wr €» EF WP € CF W € S

File LEX83R.MAC

Second reciever for SNIREF (modifed to LEX83A).
Frogram to receive-bu-reference (marred on creation)y
modifw the first datas bule in the redgiony

read ASCIY data from the rediony detach from the
region and exit. The redion will be deleted orn last
detach.

The first word in the resion caontains the count of the
umber of bwtes of dats in the redion.

Assemble and task build instructions?
MACRO/LIST LEIL1y 1IFROGMACS/LIBRARY ydevilufdl
-=LEX83R

LINK/MAF/0FPTIONS LEXS83BsLEBIC1y1IFROGSURS/LIRRARY
ortion? WNIWS=]

113

Dynamic Regions

SOLUTION

1 FROGRAM LEX83R

2 C

3 C File LEX83EB.FTN

4 ¢

5 C LEX83R receives bw referemce a redion from the tashk

é ¢ LEX83A., It mars to the rediormy modifies the first

7 C buter rrints out the contentsy and exits. The redion

8 C is deleted on last detach.

9 C

10 C Task-bwild instructions? Include these ortions

11 (M WNDWS=1

12 C USECT=DATA$160000:20000

13 3

14 C Imstall and run instructions?! LEX83ER must be installed.
15 C as RCVURF2. RCVREF must be installed. Rurn LEX83A first,

16 C thern run LEX83R and RCVREF (in either order).

ié C WOE = Window definitiorn block with?

19 ¢ AR 7

20 C Gize 200(8) 32-word blocks

21 C Allow for full AFR
22 ™ Offset im redion 0O 32-word bhlocks

23 C Length of region 0 32-word blocks (to be filled
24 C in on receive)

25 ¢ Read and write access

26 INTEGER WIER(8)

27 OATA WDR/"3400205 250505029340/

28 BYTE DNATACL128)

29 C This commorn block will slidn with the address window
30 COMMON /DATA/DATA

31 C

32 C Create address window--do rmot mar at this time

33 CALL CRAW(WDEy INS)

34 C Check for error on create

35 IF (IDS LT. 0) GOTO 200

34 C Now set WIEB status for marring-—-will be done bw
37 . C receive-bhu-reference

38 WOR(Z)=WNR(7)Y4"200

3?2 Receive data and mar

40 CALL. RREF(WDEsy INS)

41 . C Checl for error

42 IF (I0S JLT. 0) GOTO 100

43 C Modify first value

44 DATA(LY=’9/

4% C Calculate number of butes of data ~ lendgth in hlocks
46 C returned at WHER(S)

47 NCHAR = S4%XWDER(S)

48 WRITE(Sy10) (DATACI) yI=1sNCHAR)
49 10 FORMAT (7 ’s64A1)

50 C Go exit

51 GOTO 300

115

File 170

TEST/EXERCISE

Next to each activity, write O for open, I for I/0 operation,
or C for «close, to 1identify which step of file I/0 is
involved.

a. Records are read from the file.

b. Access rights to the file are checked.

c. Existing file is located on disk.

d. Internal buffers are placed in a pool for re-use.
e. Records are wfitten to a file,

Describe three functions performed by the Files-11 ancillary
control ©processor (F11ACP) when a task creates a new file
containing seven blocks.

117

b.

File 1/0

TEST/EXERCISE

A company has a file of customer records. Each record
contains the company name, the address, the contact
person, and the equipment bought. At different times, the
records are accessed using company name, city, or contact
person.

A company uses COBOL for its applications. It has a
payroll file which is processed in order every two weeks.

119

File 1/0
SOLUTION

Next to each activity, write O for open, I for I/O operation,
or C for <close, to 1identify which step of file I/O is
involved.

a. Records are read from the file.

b. Access rights to the file are checked.

L

o

0 c. Existing file is located on disk.

_C d. Internal buffers are placed in a pool for re-use.
_I e. Records are written to a file.

Describe three functions performed by the Files-11 ancillary
control ©processor (F1l1ACP) when a task creates a new file
containing seven blocks.

Any three of the following:

Allocate a file header
Initialize the file header

Set up file retrieval pointers
Create a directory entry
Allocate blocks to the file

Connect a task's LUN to the file

121

b.

File 170

SOLUTION

A company has a file of customer records. Each record
contains the company name, the address, the contact
person, and the equipment bought. At different times, the
records are accessed using company name, city, or contact
person.

Best answer is RMS only since an 1indexed file with
multiple keys 1is needed for fastest access. FCS can be
used, but access by key value is 1impossible. You would
have to step through the file, checking all records, to
locate the one you want. ‘

A company uses COBOL for 1its applications. It has a
payroll file which is processed in order every two weeks.

RMS only; COBOL is supported under RMS, but not under
FCS.

123

File Control Services

TEST/EXERCISE

Modify CRESEQ so that each record in the file contains the
text input from the terminal preceded by "AAAA".

Write a task that appends records to a file you have created
(using one of the FCS example programs or the editor).

In MACRO-11, modify the task CREFXA so that 1input from the
terminal uses FCS routines instead of QIO directives.

Write a task that requests input from a terminal of the form:
n, text

Use the input to update the nth record of FIXED.ASC, which has
fixed 1length records. Use random access and do not truncate
the file.

In MACRO-11, modify the task BLOCK1l or BLOCK2 so that it
writes or displays two virtual blocks at a time.

(Optional) In MACRO-11, modify the task CCSI so that the
subroutines DISPLY and DELETE actually display and delete the
file. Caution: DELETS$ delete the highest version of a file
if no version number 1is specified. (See Chapter 6 of the
IAS/RSX I/0 Operations Reference Manual for information about
the routines GCML and CSI.)

125

T

[

NLOoNOUD

40

42
43
44
45
46
A7
48
49
50

R L T TR TR TIRCTIR AR T 1Y

§

-+

File Control Services

SOLUTION

+TITLE CRESEQ
+IDENT 701/
+ENAEBL. LC

File LEX101.MAC
Modified to rreced each record with AAAA

CRESEQ crestes a Tile VARI.ASC,. It reads
records from TI!y and slaces them in the file.
A “Z terminates irnrut and closes Lhe file.

Assemble and task-build instructions?

MACRO/LIST LRIECLs 1IPROGMACS/LIBRARY ydev i Dufdl-
~»CRESEQR '
LINK/MAF CRESEQsLRIC1y 1IFROGSURS/LIRRARY

MCALL EXSTSCyQIOWSCyQIOWEyDIRE 3 Swustem macros
+MCALL FSOROZSyFUROF Sy FOATSAYyFIRCEHAyFIOPEA 3§
+MCALL NMELK$yOFEN$WsFUTS$»CLOSES ¢

+MCALL DIRERRy IOERRFCSERR ¥ Suselied macros

FSRSZ$ 1 i 1 file for record 1I/0
y liefine file descrirtor block for VARI.ASC
FOg: FORDF$ Allocate the FIR

FNAME?: NMBLK$ VARI»ASC

a
y

RUFF ¢ +ASCIT /AAAA/
INRUF? JRLKE 80.
IosT: + BLKW 2

FOAT$A R.VARsFIL.CR
Ligting ~ imrlied
carriage returny line
feed

Seauential access and

record 1/0 by
defaulty BUFF is
user record bhuffer

Use LUN 1y file srec

at FNAME

"VARI . ASC"

FORCSA s BUFF

FROF$A 1y yFNAME

W) WP e > EF EF \EF ‘EF €S € > e

Local Data
USER RECORD RBUFFER

. e e

I/0 STATUS RLOCK

JLIST REX
+EVEN

+ENARL. LSE

127

s E
FE

Variable lenglh recordss

X
X

VTN GIro-

28
29
30
31

- 32

33
34
35
36
37
38
39
40
a1
42
43

coooOoooOoaooonn

coooQaot

c

C
10

File Control Services

SOLUTION

FROGRAM CRESEQ I'CREATE FILE SEQUENTIALLY
FILE LEX101.FTN
Modified to rrecede each record with AAAA HIEX

This task creates a file of VARI.ASC of
variasble-lendgth records using seauential record sccess.
The records are inrFut from the terminal and coried to

the file. The rrocess stors when the orerator tures
CTRIL./Z at the terminal.

RYTE RUFF(84)y INBUF(80) HIEX
EQUIVALENCE (RUFF(35)y INRUF (1)) HIEX
INTEGER LEN

DATA BUFF (1) yRUFF (2) yBUFF(3) s RUFF (4)

1L /A y"Ay"A A/

OFEN FILE

Nefault access is seauential

. Default is formatted I1/0 for Seauential files

OFEN (UNIT=1y NAME="VART .ASC’ sy TYFE="NEW’ »
1 CARRIAGECONTROL="LIST ")
TYFE X ‘TYFE IN TEXTy TERMINATE EACH RECORD
1 WITH A CARRIAGE RETURN-‘
TYFE Xy ' TERMINATE INFUT WITH A CTRL/Z’
Loos
READ (Sy11END=100) LLENy INRUF ! Read record!'EX
FORMAT (Qs80A1)
LEN = LEN+4 ! Add 4 for A’s
HIEX
WRITE (1y12) (BUFF(I)sI=1sLEN) ! Write record
FORMAT (80A1) I to file
GO TO 10
Close file and exit
0 CLOSE (UNIT=1)
CALL EXIT
END

129

51

52

53
54

59

T

58
59
60
61
62
63
64
63
66
&7
68
69
70
71
72
73
74
75
76
77

79
80
81
82
83
84
85
86
87
88
89
?0
?1
P2
93
P4
95
96

98
99

DIROK?

OKIO?

EXIT?

i Error
ERR1:
ERR2$
ERR3}

10

FINGET:

SHOERR ¢

QIOWSC

RCC
MOV
MoV
ER

TSTE
EBGT
CMFER
EEQ
MOVE

MOV
MOV
MOV
ER

MOV
FUT$
ER

CLOSES
ECS
EXST$C

File Control Services

SOLUTION

DIROK
$EFIQIOYR1
#$08WIR2
SHOERR

IosT
OKIO
*#IE.EQF » TOST
EXIT

I0OSTYRO

RO » ARG
*#ARG,R2
$EFDQRIOYR1
SHOERR

I08T+2yR1
#FDERy yR1yERR2
10%

$#FDIR

ERR3
EX$SUC

Frocessing

TSTR

REQ
MOV

EBR
MOV

MOVE

MOV
MOV

MOV
CALL
MOV
DIRS
CLOSES
EX8T$C
JEND

F+ERR+1(R0O)

I0
F¥EFCDIRYRY

FINSET
FEFCSI0XR1

F.ERR(RO) RO
ROy ARG
¥ARGYR2

#0BUFF yRO
SENMSE

R1yFRINTH+Q. IOFL+

FFRINT
#FLE
EX$ERR
START

131

IORVEsS»1yyI0STy » “BUFF 280,55

-

WP P P P D W WE M M G M W3 My D WP P S W WS 6

€y .

LTI T30 2 I TR TR T TR T T T T T T . L

Read 3
line from TI:
EBranch on Directive ok
Set ur for $EDIMSG
Eranch to show error
and exit
Check for
Branch if 1I/0 ok
Check for EOF
If EQy close and exit
I/0 status is sidgn
extended and rlaced
in argument block
for $EDMSG call
Set ur for $EIMSG call

I/0 error

Eranch to show error
and exit

Length of record to R1
Write next record

Get next record

Close file

Branch on
Exit with

FCS error
status of I

Itirective error or 1/0
error

Branch on I/0 error
Set wur for $EIMSG»
directive error

Eranch to finish setus
Set ur for $SEIMSGy 1/0
error

FCS error code

is sidgn extended and
rlaced in arg block

$EIMSG ardument block
OQutrut buffer

Format error messade
i Size of messade
Frint error messasde
Close file

Exit with status of 2

File Control Services

SOLUTION

1 +TITLE CREFXA

2 +IDENT /01/

3 +ENABL LC ¥ Enable lower case
4 it

] $ File LEX103.MAC

& H

7 i Modified to use FCS inmstead of QI0‘s to det $FEX
2] y inrut from TI? FEX
4 ;

10 3 CREFXA orens FIXED.ASC for writer inruts records
11 i from TI! and suts them secquentiaslly to the file.,
12 i A "z terminates inrut and closes the file.

13 ¥

14

15 +MCALL EXST$C»QIOWSCyQIOWS»DIRS

16

17 +MCALL FSRSZ$yFIORDF$» NMELKS

18 +MCALL FLORCSAsFIATSAFRNOP%A

19 +MCALL OFEN$WyGET$yFUT$»CLOSES
20 +MCALL OFENS$R
21
a2 +NLIST EREX ¥ Surrress ASCIIT
23 R8IZ = 30, ¥ Record size (hules)
24 108T: + RLKW 2 ¥ Q10 status block
25 FRINT: QIQWS JOJUWVRYySs1ley» y SORUFF» 040
26 BUFF + BLKER RSI1IZ i User record buffer
27 OBRUFF? + BLKE 80. ¥ Outrut buffer for
28 ¥} Oerror messases
29 ARG?: + BLKW 1 i Ardgument block for
30 5 SEDMSG

31 EFDQRIO: +ASCIZ /DIRECTIVE ERROR ON QIO0. ERROR CODE = ZD./
32 EFIQIO: .ASCIZ 7I/0 ERROR ON QIO. ERROR CODE = ZD.7

33 EFCOIR: +ASCIZ /FCS DIRECTIVE ERROR. ERROR CODE = ZI./

34 EFCSI0O! .ASCIZ 7TFCS I/0 ERROR CODE. ERROR CODE = ZD.?

35 v

36 +EVEN

gg HLIST BEX i Show offsets

39 FSRSZ$ 2 i 2 files for record I/0
40 ¥ FyEX

41

42 FORs: FLORDF$ ¥ File descrirtor block
43 FORC$A sRBUFFsRSIZ ¥ User huffer and size
44 FDAT$A R.FIXsFD.CRyRSIZ % Fixed length recordss
45 ¥ imrlied “CR=<LF>

46 : FOOF$A 1»»FILE # use LUN 1

47 FILE? NMELK$ FIXEDyASC 3 FIXED,ASC

133

?8
?9
100
101

102

103
104
105
106

107
108

109
110
111
112
113
114
115
116
117
118
119
120
121

&

Error
ERR1$
ERR2%
ERR3
ERR4:

DIRERR?

10

FINSET?

SHOERR:

FProcessing

TSTE F L ERR+1(RO)
EEQ 10

MOV $EFCDIRYR1
ER FINSET

MOV $EFCSIOrRL
MOVE F ERR (RO) s RO
MOV ROy ARG

MOV ARG »R2

MOV $OEUFF y RO
CALL $EDMSG

MOV R1yFRINT+Q. TOFL+
DIRS FERINT
CLOSE$ #FDE

CLOSE$ #FDBI

EXST$C EXS$ERR

JEND START

File Control Services

SOLUTION

135

wr ar e wr B wr > r Sr W X W P W3 W T W P e

Directive error or 1/0
error '
Eramch on 170 error
Set ur for $EDMSGy $3EX
directive error
EBramch to finish setus
Set ur for $EIMSGy 1/0
error
FCS error code
is sign extended and
#laced in arg block
S$EDMSG argument block
Quteut buffer
Format error messasge
¥y Size of messade
Frint error messade
Close file
Close "file" a3t TI:

$FEX
Exit with status of 2

File Control Services

SOLUTION
50
Sl +ENARL. LSE ¥ Allow local sumbols
852 i to cross Psect
53 i boundaries
54
tite] START?: OFEN$U #FDIByserysERR1 ¢ Oren file for urdate
36 vy (includes extend)
37 # Clear buffer to all blanks each time
58 1043 MOV #RSIZyR1 i Record size
59 MOV #¥BUFFyR2 i R2 => buyffer
60 20%3 MOVE * s (R2)+ 3 Move inm a blank
61 S0k R1y20% y Continue until done
62
463 QIOWST I0.RPR»Sy1y 2 I08Ty y < RBUFFeRSIZy s INFPTLINFTY ‘%5
64 y Fromrt and dget insut
6% CHMFER *¥IE.EQF » I0ST 3 Check for "Z
b6 REQ EXIT iLF "2y exit
&7 MOV #RUFF sy RO ¥ Set us to convert
68 CaLL $COTR i record ¥ to binary
=34 y Check for good conversions character after # is
70 F returned in R2 (it should be 3 “"»*)
71 CHMFR 7y 9 R2 $ Is it a comma
72 REQ GOon i Branch on good
73 § conversion

74 QIOWSC TO.WURsSylyyyy “CNVER?LCNVER 40

75 ¥ Digrlay error messadge
76 RCS ERR4 # Branch on directlive
77 ¥ error

78 ER 104 ¥ Get next inrut

79 Goon: FUT$R ¥ DBy ryR1s yERR2 §# Write record to outrut
80 3 file

81 BR 10% iy Get next inrut

82 ¥ Close filey disrlay messadgey and exit

83 EXIT? CLOSE$ #FDRYERR3 s Close file

84 QIOW$C IO WURsySylyy sy BUFF1yLEN1y40> jlWrite

89 . ¥ messade Lo orerator
86 RCS ERR4 # Branch on error

87 EXIT$S .

88

89 ERR13

20 ERR2? CLOSEd$ #FIRBYERR3 # Close file

91 ERR3: MOVE F+ERR(RO) RO 3 Move FCS error code
@2 MOV ROy 108T 3 to argument block

93 # for $EIMSG

24 MOV *#10STyR2 3 Set up for $EDIMSG

5 TSTR F+ERR+1(RO) # I/0 or directive error
26 BEQ I0ERR # Branch om I/0 error
97 MOV #EMESDYR1 # Set us for dir error
98 §F message

?9 BR COMME ¥ Branch to common code
100 IOERRS MOV *EMESIsR1 $ Set ue for I/0 error
101 ¥ messade

137

VNN

27
28

29

File Control Services

SOLUTION

+TITLE RLOCK2

+IDENT /01/
" +ENARL LC # Enable lower case
14
$ File LEX103.MAC $PEX
’
$ Modified to work on 2 virtusl blocks at a8 time 5FEX
y
¥ XX-BLOCK2 rromrts at TI! for a virtual block number
3y and then reads and disrlaus that block of "BLOCK.ASC*®
;- ,

+MCALL QIOWSyDIRSyQIOWSSYEXSTSS

«MCALL FOBDF$»FORCSAsFIER$Ay FOOF$Ay NMELKY

+MCALL FSRSZ$yOFENSRyREADNSyWALITSYyCLOSES

+SRTTL MESSAGES

+NLIST BREX
CR = 15
LF = 12
MES1 S +ASCIT /FIRST VIRTUAL EBLOCK: / s sEX
LEN1 =, - MES1
MES2: - +ASCIT <CRx<LF>/HERE ARE THE BLOCKS ! /<CR=<LF>
; s EX
LEN2 =, - MES2
MES3I! JASCIZ “1/0 ERROR FROM OFEN$Ry CODE = ZD.~“
MES3D: LASCIZ /UDIRECTIVE ERROR FROM OFEN$R» CODE = ZD./
MES41I: LASCIZ ‘170 ERROR FROM READ$y CODE = ZD.~’
MES4n! JASCIZ /DIRECTIVE ERROR FROM READ$y CODE - ZD./
MESSI +ASCIZ 7170 ERROR FROM WAIT$y COINE = XD, 7
MESSD? +ASCIZ /DIRECTIVE ERROR FROM WALT$s CODE = ZD./
BUFF$ +BLKE 80. 3 STORE RESFONSE HERE

LLIST REX

+EVEN

+SRTTL LOCAL STORAGE

FSRSZ$ O $ NO FSR RUFFER NEEDED

FOR RILOCK 1/0

FOg: FORDF $ ¥y FIIR FOR INFPUT FILE

FORCS$A Fh.RWM 3 READ/WRITE MODE

FOBK$A EBLOCK»1024.5915108k § EF 1+ BUFFER AIRy s +EX

y SIZE

FLOOF$A 1y sFILE # LUN 1y DFNER
FILE? NMERLK$ RLOCKyASC i NAME IS BLOCK.ASC
VEN? +WORD Or1l s DEFAULT VEN
BLOCK?! +BLKW 512, $ BLOCK RUFFER sy EX
I0SEK: +BLKW 2

139

File Control Services

SOLUTION
101 IOERR2: MOV #MES4IsR1 $ =x I/0 error messsde 4
102 ER FCSERR # Branch to common code
103 ERR3?
104 ' TSTR F+ERR+1<(RO) $ 1/0 or directive error
105 REQ IOERR3 # Branch on I/0 error
106 MOV EMESSDyR1 $ o =x Dir error message 9
107 ER FCSERR 3 Rranch to common code
108 IOERR3: MOV #MESSIyR1 § =» 1/0 error messade 5
109 $ FALL INTO COMMON CODE
110 FCSERR
111 MOVE F+ERR(RO)yR2 ¥ Sidgn extend error code
112 MOV R2y I0SE 3 and move into IOSE
113 MOV ¥EX$ERR YRS i Exit status inm RS
114 FORMAT
115 MOV ¥I0SEsR2 § Set ur for $SEDMSG
116 MOV #RUFFyRO H
117 . cal.l $EIIMSG]
118 QIOW$S #I0.WUBy#Se#1yvy vy #BUFFyR1y#40> ¢ Disrlay
119 i messade
120 EXIT:?
121 CLOSES #FLE i Close the file
122 EXST$S RS § Exit with status
123 +END START

141

File Control Services

SOLUTION
51 CS1% # llefine CSI offsets
a52 CRLK? +BLKE C.SIZE i allocate CSI storade
93 +EVEN
54
o559 DEMSK = 1 i llelete mashk
56 DIMSK = 2 # Disrlay mashk
57 SWTEL. ¢ # Switch descrirtor table
58 CSI$SW DEyDEMSK i llelete switch = [E
o9 CSI4SW DIYDIMSKyryyNUM 7 Diserlay switch = DIy
&0 § also allow DIIN
61 CSISND ¥ End of switch table
62 .
63 CSI4SV OCTALsCOPYs2yNUMs Value N for /DIIN is
44 i in octal and will
&5 iy be stored in COFY
b6 CSISND $ End of switch value
67 i table
68 sGET COMMAND LINE BLOCK DEFINITIONS
69 '
70 FSRSZ$ 3 ¥ GCHML uses record 1I/03%EX
71
72 GELK? GCMLES »CS5Iyy5 3 Fromet with ‘C8I7 on
73 . 3 LUN S
74 FIOR? FORDF$ s FIOR for file to delete
75 5 or disrlay,.
76 FDRC$A sTRUFF»132. s UREB AT TBRUFFs lensth
77 132,
78 FLOF$¢A L1yCRLK+C,.DOSDS $ LUN 1y dataset
79 3 descrirtor from CSI
80
81 $ NOTE: Need a 2nd FIR for disrlau
82
83 FIORO? FORDF % 3 FOR for outrut to TI!FFEX
84 FIaT$A R.VUARYFID.CR s Var lendgth records, i3EX
85 i list format FyEX
86 FORC$A »TBUFF»132. i URR at TRUFFy lengthi#iEX
87 . : s 132, $IEX
88 FROrsA 2,D8FTO i LUN 2y dataset $EX
89 i descrirtor at LSFTO $FEX
0 DsSETO! +WORD LOEVyDEV y Datsset descrirtor §7EX
?1 +WORD Q0 3 for TI!. No UIC or $3EX
Qo +WORD 00 i name needed. FSEX
93 NEV? +ASCIT /TId/ H sPEX
94 LIEV=,~0EV i $FEX
95
6 +EVEN
97 JMFTERL ! +WORD NONEyDELETEyDISFLY 5 Jumr table for
98 $ subroutines derending
P9 . ¥ on switches
100 COFPY? +WORD 1 $ Value for N in /DIIN

143

File Control Services

SOLUTION
151 CAL.L QuUTMS # Call QUTMSy as @& T EX
152 # subroutine §yEX
153 RETURN i Return $yEX
154
18% % Common gdisrlavw messadge code — a8 subroutine since it §F7EX
156 ¥ is mpot a8 common return roint $IEX
157
1958 OUTMS: MOV ¥BUFF sy RO 3 Set ur for $SEIMSG
159 MOV EFMT R]
160 MOV FNATAIR2 ’
161 CALL SEIMSG i Edit messade
162 QIOWSS #I10.WVUEBy#¥S5y#1lys s y “HRBUFFsR1y#40> ¥ Disrlay
163 RETURN # Return
164 '
165 i Subroutine DELETE
166 3
167 3 OKKXWARNING — THE HIGHEST VERSION NUMBER OF THE FILE XXX
168 § XXXWILL BE DELETED IF NO VERSION NUMBER IS SFECIFIED XXX
169
170 DELETE: MOV FLELTXT»DIATA i Set us for outrut of
171 i messade
172 CaAL.L QuUTHMS i Call disrlaw s EX
173 o i subroutine §FEX
174 DELET$ #FDRERRD i Nelete file sEX
175 RETURN i Return
176 # lielete error code
177 ERRII: MOVR F+ERR(RO) RS y Extend sidn on errorysEX
178 MOV RSsDATA+2 i and move to ardg blockssEX
179 - MOV ¥DELTXTYDATA i Move rointer to deletesiEX
180 i text ysEX
181 COMME: TSTER F.ERR+1(RO) + Checlk for directive $+#EX
182 $ error or 1/0 error $3EX
183 BREQ I0DERR $ Branch on I/0 error $5EX
184 MOV *#FMTERDYR1 $ Get format string s yEX
185 BR DISFER 3 Branch to common s EX
186 ¥y error disslaw code §FEX
187 IODERR?: MOV FFMTERIYRL 3 Get format strind srEX
188 DISFERS MOV #RUFFsRO ¥ Set ur for SEDIMSG s 7EX
189 MOV *¥NATAYR2] yFEX
190 caLL SEIMSE ¥ Edit messade sEX
191 MOV R1»TYPE44Q,.I0OFPL42 § Size of messade §rEX
192 IIR$ *#TYFE4 ¥y DNisrlay messade s fEX
193 EXIT$S # Exit $EX
194
195 ¥ Subroutine DISFLY ~ Jdust disrlaw a3 messade
196
197 NISFLY?! CALL $SAVAL # Save all redisters
198 MOV #DITXT+DATA y Set ur for outrut of
199 ¥ messade
200 CALL QUTMS ¥y Branch to common
201 i disrlayw code

145

