EY-0061E-SG-0101

Programming
RSX-11M
in FORTRAN

Volume |

EY-0061E-SG-0101

Programming
RSX-11M

in FORTRAN

Student Workbook
Volume |

Prepared by Educational Services
of
Digital Equipment Corporation

Copyright © 1982, Digital Equipment Corporation.
All Rights Reserved.,

The reproduction of this material, in part or whole, is
strictly prohibited. For copy information, contact the
Educational Services Department, Digital Equipment
Corporation, Bedford, Massachusetts 01730.

Printed in U.S.A.

The information in this document is subject to change
without notice and should not be construed as a com-
mitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished
under a license and may not be used or copied except
in accordance with the terms of such license.

Digital Equipment Corporation assumes no responsibility
for the use or reliability of its software on equipment
that is not supplied by Digital.

The following are trademarks of Digital Equipment Corporation,
Maynard, Massachusetts:

DIGITAL DECsystem-10 MASSBUS
DEC DECSYSTEM-20 OMNIBUS
PDP DIBOL 0S/8
DECUS EDUSYSTEM RSTS
UNIBUS VAX RSX

VMS ' IAS

Volume |

SG STUDENT GUIDE

1

INTRODUCTION ¢ ¢ o ¢ ¢ o o o o o @
PREREQUISITES. ¢« o o ¢ ¢ o o o o o
COURSE GOALS AND NONGOALS.
COURSE ORGANIZATION. ¢ « &+ o o o &
COURSE MAP DESCRIPTION
COURSE MAP +. ¢ o o o o o o o o o o
COURSE RESOURCES . ¢« « o« & o o o &

Required References.

Optional References.
HOW TO TAKE THE COURSE
PERSONAL PROGRESS PLOTTER.

USING SYSTEM SERVICES

INTRODUCTION .+ ¢ o ¢ o ¢ o o o o o
OBJECTIVES &« « ¢ ¢ ¢ o ¢ o o o o &
RESOURCES.: =+ « o o o ¢ o ¢ o o o o
WHAT IS A SYSTEM SERVICE?.

WHY SHOULD YOU USE SYSTEM SERVICES?

CONTENTS

. .
0 [
o .
. .

.
=
WO L W

To Extend the Features of Your Programming

Lang uage [- [. . [. - [. .

To Ease Programming and Maintenance.

To Increase Performance. . . .
WHAT SERVICES ARE PROVIDED?. . . .
System and Task Information. .
Task Control . . . ¢ ¢ « ¢ o«

Task Communication and Coordlnatlon.

I/0 to Peripheral Devices. . .

Memory Use . . . o o o o o
OTHER SERVICES AVAILABLE o o o e e
HOW SERVICES ARE PROVIDED.

Executive Directives

L] .

Code Inserted into Your Task Bmage
AVAILABLE FILE AND RECORD ACCESS SYSTEMS

SYSTEM LIBRARIES . . ¢« ¢« ¢« o « o &

iii

e o o o 17
T
P
e o« o o« 19
e o o« o 19
e o« o o 19
e ¢« o « 19
e o o o 20
o o o o 20

. . L] . . 2@

A §
e o o o 21
e o o o 21
e o o o 22
e o o o 22
e o o o 23
e o o o 23
e o o o 26
e o o o 28
e o o o 28

2 DIRECTIVES

INTRODUCTION ¢ o o o s o o o o o o o o o o o
OBJECTIVES &« o o « o o s s o o o o o o o o o o
RESOURCES. B .
INVOKING EXECUTIVE DIRECTIVES FROM A USER TASK
Directive Processing . « o« o o« o « o o o @
Functions Available Through Executive
Directives . ¢ v ¢ o ¢ o o o o o o o o o
The Directive Status Word (DSW).
Sample Program . . . e o o s s e o o s o
Example Using Other Dlrectlves e o o o o o
Run Time Conversion Routines « .
NOTIFYING A TASK WHEN AN EVENT OCCURS. .« . . .
Event Flags. . o ¢ o ¢ ¢ o o o o o o o o o
Using Event Flags for Synchronization. . .
Examples of the Use of Event Flags
for Synchronization. . . ¢« ¢« ¢+ ¢« « ¢ o« o« &
ASYNCHRONOUS SYSTEM TRAPS (ASTS) &« o ¢ o o o «

3 USING THE QIO DIRECTIVE

INTRODUCTION &« 4 o o « o o o o s o o o o o o o
OBJECTIVES ¢ ¢ o o o o o 6 o o o o o o o o o @
RESOURCES.. . . . ¢ o e o e e o s o s e e o
OVERVIEW OF QIO DIRECTIVES e o o o o o e s o o
PERFORMING I/0 v ¢ o« o o o« & e o o o o o o
USING QIO DIRECTIVES 1IN FORTRAN. e o o o o o o
I/O FUNCTIONS. & & o o o o .0 o o o o o o o o o
LOGICAL UNIT NUMBERS (LUNS) e ¢ ¢ ¢ o o o o o o
SYNCHRONQUS AND ASYNCHRONOUS I/0 +v &« o o o o &
MAKING THE I/0 REQUEST « ¢ « o o o o o o o o o
THE I/O PARAMETER LIST IN FORTRAN. . . .
ERROR CHECKING AND THE I/0O STATUS BLOCK.
THE QIO DIRECTIVES . . ¢ ©¢ ¢ e o o o o o
Synchronous I/0. o « o o o o o o o o«
Asynchronous I/0 . « « « o o . .
, Synchronization With Asynchronous I/O.
TERMINAL I/0 v ¢ o o o o o o o o o o s o o o o
Device Specific Functions. . . .« « ¢ « &
I/0 Status Block and Terminating Characters
Read After Prompt. « + « ¢« o o o o o o o o
Read No EChO « o ¢ ¢ ¢ ¢ o o o o o o o o o
Read With Timeout. . . ¢ ¢« ¢ ¢ ¢ ¢ o o « &
Terminal-Independent Cursor Control. . . .

iv

33
33
33
35
35

36
38
39
42
46

47

48

49
53

63
63
63
65
65
66
66
68
68
74
76
76
77

82
82
86
86

89
91
93
96

4 USING DIRECTIVES FOR INTERTASK COMMUNICATION

INTRODUCTION . . & o o « o o o o o o« o o o o o o o o« o« 103
OBJECTIVES ¢ o o o o o o o o o o o s o o o o s s o« o« « 103
RESOURCE . . «¢ ¢ ¢ ¢ o o o . . . e o o o 183
USING TASK CONTROL DIRECTIVES AND EVENT FLAGS. e o« o o 1085
Directives . o« ¢ o ¢ o o o o o o o o o o o o o« o« o 106
SEND/RECEIVE DIRECTIVES. ¢ « o o « o o o o o o o« o o « 116
General ConCepPES « o o ¢ o o o o o o o o o o o+ o o 116
DirectivesS . ¢ ¢ ¢ o o o o o o o o o o o o o o o« » 116
Synchronizing Send Requests With
Receive RequestS ¢ v o o o o o o o o o o o o o o o 117
Using Send/Receive Directives
for Synchronlzatlon. . . e o o o o o o o o o o o 132
Slaving the Receiving Task e o o o s o o o o o o & 132
PARENT/OFFSPRING TASKING 4+ 2 « o« o s o o o« o o o o« « o 133
Directives Issued by a Parent Task e o o o o o 136
Directives Issued by an Offspring Task e « o+ o 145
Chaining of Parent/Offspring Relatlonshlps e o o o 146
Other Parent/Offspring Considerations. 153
Retrieving Command Lines in Spawned Tasks. . . 153
Spawning a Utility or Other MCR
Spawnable Task . o ¢ « o o o « o « o o o o« o« o 153
Task Abort Status. . « ¢« ¢ ¢ « o o o o o o o o 157
Summary of Various Methods of Data Transfer
Between Tasks. e ele o o o o o « o o 158
Comparison of Methods of Data Transfer 158
Other Methods of Transferring or Sharing Data
Between Tasks. . . ¢ ¢ o o « o « o o s o o« o« « « » 159

5 MEMORY MANAGEMENT CONCEPTS

INTRODUCTION & & o o o « o o o o o o o o o o o o« « « « 163
OBJECTIVES &« ¢ & o o o o o o s o s s s o o s o o o « « 163
RESOURCES. ¢« & ¢ o o o o o o o o s o s o o o o o o « « 163
GOALS OF MEMORY MANAGEMENT . . ¢ o « « o o o« o« o« o « o« 165
HARDWARE CONCEPTS. . . . e o o o & o o s s o o o o o 165
Mapped Versus Unmapped SystemsS « « « ¢ o o« o o o o 165
Virtual and Physical Addresses e o o o o o e o o 170
The KT-11] Memory Management Unlt s e o o o o s « o 173
Mode Bits. e o o o o o o o o o 173
Active Page Reglsters (APRs) . e o o o o 173
Converting Vvirtual Addresses to Phy51ca1
AdAresseS. « « o o o o o o o o o o o o o o o o o o 176
SOFTWARE CONCEPTS.: &« &« ¢ o o o o s s o « o o o« o« o« o« o 178
Virtual Address WindowS. « « ¢« &« ¢« &« o« o « « « « . 178
REgIONS. & o 4 & 4 o & o o o o o o o o o o o o« « » 179

Volume I

6 OVERLAYING TECHNIQUES

INTRODUCTION &« o ¢ o o o o o o o o o o o o o o o o
OBJECTIVES o
RESOURCE &+ ¢ o o o o o o o s o o o o o o o o o o o
CONCEPTS . . . e o o o o o e ‘e o e e o o o o e o
OVERLAY STRUCTURE. . . ¢ o o o e o o e
STEPS IN PROGRAM DEVELOPMENT USING OVERLAYS.
THE OVERLAY DESCRIPTOR LANGUAGE (ODL). . .
ODL Command Line Format. .
TYPES OF OVERLAYS. .
Disk-Resident. .
Memor y-Resident.,
LOADING METHODS. . .
Autoload
Manual Load. . . « « « &
Comparison of a Task With No Over
With Disk-Resident Overlays, and
With Memory-Resident Overlays.
LIBRARIES: +« ¢ o ¢ o o o o o o o o
GLOBAL SYMBOLS IN OVERLAID TASKS .
Data References in Overlays. .
CO-TREES . 3 o Y .) . . . 3 . . o

L] L 2

. o * o
e o . o o
s o o o

e o o o
o o & o O o ¢ o o

o o o ¢ o o o o o
e o ® o © o o o o

L]
.
*
.
.
.
L d
[

e o o o ¢ o
e o ® o o o ®

lays

7 STATIC REGIONS

INTRODUCTION « o o o o o
OBJECTIVES . . .« « o« o o o
RESOURCE e o o o
TYPES OF STATIC REGIONS. .
MEMORY ALLOCATION. . ¢ ¢ ¢ ¢ o o o o o o
MAPPING. . o o o o o o o o o o o o o o o o o o o =
REFERENCES TO A SHARED REGION. e o o o o s o
PROCEDURE FOR CREATING SHARED REGIONS
AND REFERENCING TASKS. &« ¢ o o o o o o o o o o o &

Creating a Resident Common . « « « ¢ « ¢ o o &

Creating a Referencing Task.

Accessing a Region for Read-Only or Read/erte
CREATING AND REFERENCING A SHARED LIBRARY.

Task-Building the Shared Library

and the Referencing Task . « « o ¢ o o o o o &
DEVICE COMMONS . o ¢ ¢ o ¢ o o o o o s o o o s o o

e o o o
L) L) (]
L] L) L] []
[[) [*
* o & o
L] * . L]
¢ o *
[. . .
[o o [
L] . L L[]
[] . [[
* o ¢ o

vi

o o 6 o O o & o o

L] [y L] '] L] . L] [} L]

185
185
185
187
188
191
191
191
195
195
197
201
201
203

204
211
217
219
225

233
233

1233

235
236
237
249

241
241
249
251
252

254
257

8 DYNAMIC REGIONS

9

INTRODUCTION . . .« . .
OBJECTIVES . « « ¢ o &
RESOURCE . . ¢« o« & o o
SYSTEM FACILITIES. . . .
REQUIRED DATA STRUCTURES .
Region Definition Block (RDB)
Creating an RDB in FORTRAN .
Window Definition Block (WDB)
Creating a WDB in FORTRAN. .
CREATING AND ACCESSING A REGION.
Creating a Region.
Attaching to a Region. . . .

. [.
. . °
.

Creating a Vvirtual Address Window.

Mapping to a Region. . . .
SEND- AND RECEIVE-BY- REFERENCE .
THE MAPPED ARRAY AREA.,

FILEI/O

INTRODUCTION ¢ o o o o o o o o o
OBJECTIVES ¢ ¢ ¢ o o o o o o o o«
RESOURCES. &« ¢ e o o o o o o o o
OVERVIEW . ¢« ¢ ¢ ¢ o o o o o o o
TYPES OF DEVICES ¢« ¢ ¢ o o o o o«
Record-Oriented Devices. . .
File-Structured Devices. . .
Types of File-Structured
COMMON CONCEPTS OF FILE I/0. . .
Common Operations.
Steps of File I/0. ¢ « « o &
FILES-11 . . e o o o o o e o
FILES-11 Structure e o o o o
Directories. « « « o o o« o &
Five Basic System Files. . .
Functions of the ACP . .

Devices

OVERVIEW AND COMPARISON OF FCS AND RMS .

Common Functions . . « « . &
FCS FEATURES &+ ¢ ¢ o o o o o o &
File Organizations
Supported Record Types . . .
Record Access Modes. . . .« &
File Sharing . . « ¢« & « o« .

vii

261
261
261
263
265
265
269
270
273
275
276
279
280
281
289
297

305
385
3085
387
307
307
387
398
319
310
319
311
311
316
319
320
323
323
325
325
325
329
331

RMS FEATURES .
File Organizations . .
Record Formats
Record Access Modes., .
File-Sharing Features. .
Summary.

e e o o o o

e o o o
¢ o o o
¢ o o o
e o o [}
L[] . L] L]
® .o o [
L[] ° L[] L[]

.
.
.
.
.
.
® & o o o o

® o o o o o
® o o o & o

10 FILE CONTROL SERVICES

INTRODUCTION

OBJECTIVES

RESOURCE

FILE ORGANIZATION VS. RECORD ACCESS.
READ AND WRITE ACCESS TO A FILE. . .
TYPES OF RECORDS IN A FILE &
FORMATTED AND UNFORMATTED RECORDS. .
DECLARING THE SIZE OF A RECORD . . .
SUMMARY OF KEYWORDS IN THE OPEN STAT

AP APPENDICES

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

APPENDIX
APPENDIX

APPENDIX

TOmMmEOOW Y

. . ° . [[.
. [° L] [. L] [} . . L]

® 6 o o o o o o o
L] L L . . . L] L J
) L[] Y [} . L[] 'Y L[] *
® 0 o o o o o o o

EMENT

GLOSSARY ¢« ¢ ¢ ¢ ¢ o o o o o o o o »
CONVERSION TABLES. ¢« ¢ o« o o o o o &
FORTRAN/MACRO-11 INTERFACE
PRIVILEGED TASKS ¢« ¢ ¢ ¢ ¢ s o o o &
TASK BUILDER USE OF PSECT ATTRIBUTES
ADDITIONAL SHARED REGION TOPICS. . .
ADDITIONAL EXAMPLE . ¢ « © o o « o o«
LEARNING ACTIVITY ANSWER SHEET . . .

viii

e & o & o 0 o o

e 0 o 06 o O o o

.

332
332
334
334
336
337

341
341
341
343
344
344
345
345
346

367
373
375
377
379
383
397
399

[e)Ne)We)Ne)Neo) o) NerWe)l
o~y W+

FIGURES

Using Executive Directives to Service a Task. 24
Using Executive Directives to Receive Services

From Other TaskS. . « + « + ¢ o o o s o o o o o« o o o« 25
Code Inserted into Your Task Image. « « « o« o o« o o« o 27

AST Sequence. L] .] L] . (] . . . L] 55

Execution of a Synchronous I/O Request. . « « « « « « 70
Events in Synchronous I/0 . « « o o o s o o o o« o« « o« 18
Execution of an Asynchronous I/O Request. . « . « « . 73
Events in Asynchronous I/0. « ¢ ¢ o« o o o « o« o o o« o 13

Parent/Offspring Communication Facilities 134

Spawning Versus Chaining (Request and
Offspring Information). . . ¢ ¢ ¢ ¢ o ¢ ¢« « o o o « o 147

Physical Address Space in an Unmapped System. 167
Physical Address Space in an 18-Bit Mapped System . . 168
Physical Address Space in a 22-Bit Mapped System. . . 169
Virtual Addresses Versus Physical Addresses

on an Unmapped SYyStem . « « ¢ o o o o o o o o o o « o 171
Virtual Addresses Versus Physical Addresses

on a Mapped System. « « o« o o ¢ o oo o o o o o« o o o 172
Page Address Registers Used in Mapping a Task 175
A Task with Three Windows to Three Regions. 181
Task in Figure 5-7 After Attaching to and Mapping

to a Fourth RegionN. . « o &« &« o & o o o o o« o o« « o« o« 182

A Memory Allocation Diagram . . . « « o « s o + o« o o 190
An OVerlay TEEE .+ o « o o o s o o s o o o o o o o« o » 190
An Example of Disk-Resident Overlays. . e e o« o .« o 196
An Example of Memory-Resident Overlays. e o o o+ o o 199

¢ o ® .
.
.
.
3
.
.

Task With Two Overlay Segments. 213
Resolution of Global Symbols. e o o o o o 218
TaSk Without CO“'TreeS - 3 227

Use Of CO—TreeS . o 3 . . 3 3 . 228

ix

N

L [|
[elos BEN] oy Ul i w

1
B Wr

My O Y O O Yo (e} Yo

S\

g mo
~

N
—

www
W N

Tasks Using a Position Independent Shared Region.
Tasks Using an Absolute Shared Region
Program Development for Shared Regions.

The Region Definition Block . . ¢ ¢ ¢ ¢ ¢ ¢ o o @
The Window Definition BloCK « « ¢ ¢ o o ¢ o o o &«
The Mapped Array Ar€a@ . o« « o« o« o o o o o o o o @

Example of Virtual Block to Logical Block,

to Physical Location Mapping. « « « o o o o o o o«
How the Operating System Converts Between
Virtual, Logical, and Physical Blocks
FILES~11 Structures Used to Support
Virtual-to-Logical Block Mapping. .« « « « o o o &
Directory and File Organization on a Volume . . .
Locating a File on a FILES-11 Volume. . . « « « &
Flow of Control During the Processing

of an I/0 Request
Move Mode and Locate Mode
Sequential Files.
RMS File Organizations. .

‘o L L] . .

* o o o
¢ o * o
e o L] *
L[] . L] L[]
® o ¢ o

L]
L]
.
]

A Shared Region With Memory-Resident Overlays . .
Referencing Two Resident Libraries. . « « « o o
Referencing Combined Libraries. . « o« o ¢ o o o &
Building One Library, Then Building

a Referencing Library . . ¢ ¢« ¢ ¢ ¢ ¢ o o o o o &
Revectoring « o« o o o ¢ ¢ ¢ o o o o o o o o o o @
Using Revectoring When Referenced Library

Has OvVerlayS. « « o o o o o o o o o s o o o o o @

Cluster Libraries . ¢« ¢ o ¢ o o o o o o o o o o

238

239
243

267
272

298

313
314

315
317
318

322
324

325
333

384

. 386

388

390
391

393
395

TABLES

Typical Course Schedules. « .« « « + « &

Standard Libraries. ¢ ¢« ¢ ¢ ¢ ¢ o o o o o o o o o
Resident LibrarieS. « ¢ o« o o o o o o o o o o o

Types of Directives . . & ¢ ¢ & ¢ ¢ o o« o o o o
Common (Standard) I/O FunctionS . . « o o o o o &

I/0 Parameter List for Standard I/0 Functions . .
Some Special Terminal Function Codes.« .« .

12

29
30

37
67

75
88

L [
(S, - w N

= O 0 N
S

P b

U,
N =

Ny o
N

11
w N =

O YOO Q0 00 00
=W N -

o w [(e Vo]
I |
N = oy

Task Control Directives and Their Use

for Synchronizing Tasks . « ¢« ¢ ¢ ¢« ¢ ¢ o o o o o &
Stopping Compared to Suspending or Waiting.
Event Flag Directives and Their Use

for Synchronizing Tasks . ¢ ¢ o ¢« ¢ ¢ o o o o o o &
The Send/Receive Data Directive
Methods of Synchronizing a Receiving Task (RECEIV)

With a Sending Task (SEND).: ¢ ¢ ¢ o o o o o o o o @
Standard Exit Status CodeS. « « o« o o o o o o o o =
Comparison of Parent Directives «
Directives Used by a Task to Establlshl38

a Parent/Offspring Relationship « ¢« « ¢ « ¢ &« ¢« « &
Directives Which Return Status to a Parent Task . .
Directives Which Pass Parent/Offspring Connections

to' ' Other TaskS. o o o o o o s o o o o o o o o o o =«
Task Abort Status Codes . « ¢« o ¢ o o o o o o o o @
Comparison of Methods of Data Transfer

Between TasKkS . o o« o« o o o o o o o o o o o s o o o

Mapped Versus Unmapped SysStemS. . « « « o o o o o =
APR and Virtual Address Correspondence. . « « « o« &

Comparison of Overlaying Methods. . . . « « « +« o«

Types of Static Regions Available on RSX-11M. . . .
Required Switches and Options for Building
a Shared Reg ion ® . L] L] L] . L] L] . * . L] L] . - . L] L]

Memory Management Directives. . . . « ¢« « ¢« o « . .
Region Status Word. . « o« o o o o o o o o o o o o &
Window Status Word. . ¢« ¢ ¢ o o o o o o o o o o o «

Comparison of Physical, Logical and Virtual Blocks.
Examples of Use of F11ACP Functions . « ¢« « « « « .
Comparison of FCS Record TypeS. . . .« e e e o o o
Comparison of Sequential Access I/0 and

Random AcceSS I/0 &« 4 o o o o o o o o o o o o o o o
File Organization, Record Formats, and Access Modes
Comparison of FCS and RMS . « ¢ « o o o o o o o o &

Decimal/Octal, Word/Byte/Block Conversions.
APR/Virtual Addresses/Words Conversions . . « « « «

xi

197
108

109
117

118
135
136

138
145

148
157

158

166
174

210

236

244

264
268
274

312
321
328

330
335
338

373
373

[\ N WN =

wwww w w NNDNDNDDN

11 |
DLW~ Ot D W

DD DD
|

nb.'b-b.b
© 0o oy

A OY O [
| |
L3 w N -

o n

N [e) e (=)}
[N R

EXAMPLES

Requesting a Task From Another Task« . « « « « 41
Using Some Miscellaneous Directives . . . + «. « « . . 44
Waiting for an Event Flag . & +. « ¢ ¢ o « « s o « « o 50
Setting an Event Flag . « ¢« « « o« o o o« o « o o o o o« 52
Using a Requested Exit AST. . + o« o o ¢ o o« o « o o« &« 57

Synchronous I/0 . o« o o o o o o o s o o o o o o o« o+ o 80
Asynchronous I/0 Using Event Flags

for Synchronization . . . ¢« ¢ ¢ ¢ ¢ ¢ ¢« o o o« o« o« o+ o 84
Prompting for INPUt . ¢ & &« ¢ o« ¢ o o o o« o o« o o o« o« 90
Read No ECho. o ¢ & o o o o ¢ o o o o o o o o o o o« «» 92
Read With Timeout . . . ¢ ¢ ¢ ¢ o ¢ ¢ o o o o« o o o « 94
Terminal-Independent Cursor Control « . . . 98

Synchronizing Tasks Using Suspend and Resume. 111
synchronizing Tasks Using Event Flags . . . « « « . . 114
Synchronizing a Receiving Task Using Event Flags. . . 120
A Receiving Task Which Can be Run Before or After

the Sender. . o ¢ o« o ¢ o ¢ o o o o o o o o o o o o o 124
Synchronizing a Receiving Task Using RCDS 129
A Task Which Spawns PIP . « o ¢« o o o o o o o o o o o 140
A Generalized Spawning Task . . ¢« ¢« ¢ ¢« o ¢« o « o« « o 143

An Offspring Task Which Chains Its Parent/Offspring
Connection to PIP &+ o « « o o o o o o o o « « o o o « 150
A Spawned Task Which Retrieves a Command Line 155

Description of An Overlaid Task .« « « « ¢ o« o « « « .« 189
Map File of Example 6-1 Without Overlays. . . « « . . 205
Map File of Example 6-1 With Disk-Resident

OVErlaySe o o o o o o o s o o o o o o o o o o o o o o« 207
Map File of Example 6-1 With Memory-Resident

OVErlayS. o « o o o o o o s o o o s o o o s o o o o« o« 209
A Task With Two Overlay SegmentS. « « « « « « o« o« « » 216
Complex Example Using OverlayS. « o« « « o o o o o o o 221

Resident Common Referenced with FORTRAN COMMON. . . . 247
Shared Library. « ¢« o ¢ ¢ o o o o o o o o« o« o o o o o 255

xii

Creating a Region . « o ¢ ¢ o ¢ o o o o o o«
Creating a Region and Placing Data in It. .
Attaching to an Existing Region and Reading
From It . & o o ¢ ¢ ¢ o o o o o o o o s o o
Send-by-Reference . . . ¢ ¢ ¢ ¢ ¢ o o o o
Receive-by-Reference. . . . + « ¢ o &« o« + &
Use of the Mapped Array Area. . « « o« o o &

Creating a Sequential File With variable
Length RecordS. .« « ¢ &« ¢ o o o « o o o o =
MACRO Equivalent of Example 19-1.
Program to Read a File Created in 106-1. . .
Creating a File With Sequential, Fixed
Length RecordS. « « « o o o« o o o o« o o o @
Reading a Fixed Length Record
Creating a Direct Access File .« « ¢ « ¢ o+ &
Creating an Unformatted, Direct Access File
Creating a Segmented File . . . « &« & o o o
Creating a File Using Block I/0 . . « « .« .

Reading the Event Flags (for Exercise 1-1).

xiii

e & ¢ o o o

278
284

287
292
295
300

348

349
351

353
355
357

359
361

362

397

‘STUDENT GUIDE

STUDENT GUIDE

INTRODUCTION

Programming RSX-11M in FORTRAN is intended for FORTRAN programmers
who use services of the RSX-11lM operating system beyond those

provided by the FORTRAN programming language itself. This course
describes the various services and how to use them from a task
which you write.

This course is self-paced, which means that you learn at whatever
rate is comfortable for you.

Instead of a teacher, you have a course administrator and a
subject matter expert. In some cases, the same person can perform
both functions. The course administrator manages the mechanics of
the course and makes sure you have easy access to the system and
the on-line course materials. As you finish modules, s/he records
your progress. The subject matter expert helps you if you have a
technical question. Before you consult the expert, however, read
the course materials @ and references in an effort to answer the
question yourself.
This Student Guide covers the following topics:

e Course prerequisites

e Course goals (and nongoals)

e Course organization

e Course map description

e Course resources

e How to take the course

® Personal Progress Plotter

STUDENT GUIDE

PREREQUISITES

To be prepared for this course, you must have taken the following
DIGITAL courses, or you must have equivalent experience.

l.

RSX-11M Utilities and Commands. Specifically, you must be
able to 1logon/logoff, edit files, and develop/run/debug
programs under RSX-11M.

Programming in FORTRAN,

COURSE GOALS AND NONGOALS

On completion of this course, you should be able to write tasks

which:

Use exequtive diréctives

Perform intertask communication and coordination
Perform synchronous and asynchronous I/0 operations
Use overlays |

Use memory management facilities to communicate between
tasks and make more effective use of available memory

This course does not teach the following:

The FORTRAN programming language

The Digital Command Language (DCL) or Monitor Console
Routine (MCR)

The program development cycle.

STUDENT GUIDE

COURSE ORGANIZATION

This course is self-paced for independent study. The course
material is structured in modules. Each module is a lesson on one
or more skills required to fulfill the course goals. A module

consists of:

e An introduction to the subject matter of the module

e A list of objectives, which describe what you should
achieve by studying the module

@ A list of resources that provide reference materials and
additional reading for the module

e The module text, 1including explanatory text, figures,

tables, examples, and references to readings in the
manuals

e Learning activities (for some modules), consisting of
reading assignments or written exercises which are
essential to your learning the material

@ Written and/or lab tests/exercises (bound separately)
which you can use to measure your achievement. Solutions
are provided for all exercises.

The course is bound in three volumes. The first two volumes
contain this student gquide, the 18 modules (except for their
tests/exercises), and the appendices. The third volume contains
the tests/exercises for each module.

COURSE MAP DESCRIPTION

The course map shows how each module relates to the other modules
and to the course as a whole. Before beginning a specific module,
it is recommended that you first complete all modules with arrows
leading 1into that . module. These prerequisite modules present

material necessary to understanding the module you are about to
study.

If you have no preference, study the modules in numerical order, 1
through 10.

STUDENT GUIDE

COURSE MAP

DYNAMIC REGIONS

STATIC REGIONS

USING FILE
CONTROL SERVICES

MEMORY
MANAGEMENT
CONCEPTS

USING DIRECTIVES
FOR INTERTASK
COMMUNICATION

USING THE
QIO DIRECTIVE

TK-7749

STUDENT GUIDE

COURSE RESOURCES

Required References

1. RSX-11M/M-PLUS Executive Reference Manual (AA-L675A-TC)

2. RSX-11M/M-PLUS I/0 Drivers Reference Manual (AA-L677A-TC)

3. RSX-11M/M-PLUS Task Builder Manual (AA-L68@A-TC)

Optional References

1. PDP-11 Processor Handbook (EB-194¢2-2¢/81)

2. FORTRAN IV User's Guide

3. FORTRAN IV-PLUS User's Guide

4, FORTRAN 77 User's Guide

STUDENT GUIDE

HOW TO TAKE THE COURSE

Because this is a self-paced course, you determine how much time
to devote to each subject. You can pass quickly over familiar
topics. You can spend more time on topics which are of interest
to you, or which you can use often in your job, and less time on
topics which have little use in your job.

Each time you are ready to begin a new module, first read the
introduction and the objectives. If you feel that you already
understand the material in the module, you can go immediately to
the tests/exercises for that module. If you don't understand much
of the material, read the module. If you understand some of - the
concepts but not others, just look over the program examples for
the concepts you understand. Read the text and study the examples
for concepts you don't understand. The text explains new concepts
and refers you to related readings in the manuals. The program

examples provide working examples which show you how to apply the
concepts. :

Some of the readings in the manuals are required and others are
optional. Required readings are contained in learning activities
and are indented to set them apart from the module text. These
readings are required because they cover material not otherwise
covered in this course. The optional readings are mentioned
within the module text and are designed to help you in two ways.
First, they teach you more about a given topic. Second, they
offer another explanation in case you have trouble understanding
the explanation in this course.

In addition, you will need the manuals to look up the specifics
involved in invoking the wvarious services. This is especially
true for the executive directives. '

Keep the module objectives in mind. 1If a skill is 1listed as an
objective, be sure to master it. Later modules may depend on this
skill.

The module text contains many example programs to show you how to
use the skills you are learning. All of the example programs in
this book should be available on-line. The standard location for
these files is UFD [202,1] on your system disk. Check your system
and if the files are not located there, check with your course
administrator to find out where they are located.

STUDENT GUIDE

Do not modify the files in UFD [262,1] or 1in their original
location. 1Instead, copy the files you plan to use to your own UFD
and use them there. In that way, the original files in UFD
[282,1] will remain intact for other students.

Each example program contains the following:
e Source code
e A sample run session:

e Bulleted items which are ‘described in the text.

The source code contains the name of the file which contains the
code on-line. Following this is a brief description, telling what

the example does. Any special compile and task-build
instructions, and any special install and run instructions follow
this. Only special, nonstandard instructions are included. The

code itself includes line comments plus some additional comments.

The sample run session shows what happens during a typical run of
the task. Any special install and run instructions are shown in
the run session.

The bulleted items match the example notes in the text, which

describe the <code 1in more detail. Study the examples and the
notes that describe them carefully.

In the module on Using File Control Services, many of the examples
create output files. A dump of any created file follows the run
session. The file dumps were created using the DMP utility.

If the examples are available on-line, compile and task-build
them, and then run them. This will help you to understand the
examples better. Many of the tests/exercises ask you to make
minor changes to existing examples, and then run them again. Do
the tests/exercises for a module in the Tests/Exercises book only
after you have done all of the reading and have run the example
programs. If you prefer, you can do them as soon as you cover the
necessary material in the module.

The same Tests/Exercises book is wused in this course and the
Programming RSX-11M in MACRO course. Do all tests/exercises
except those which specifically say "in MACRO". All exercises
have solutions in the Tests/Exercises book. 1In addition, any
solutions involving programs should be available on-line, 1in UFD
[202,2]. Compare these solutions to your own.

STUDENT GUIDE

If you have mastered the module objectives, ask your course
administrator to record vyour progress on your Personal Progress
Plotter. You will then be ready to begin a new module. If you
haven't yet mastered the module objectives, return to the module
text for further study.

With a self-paced course, it is impossible to give a schedule that
applies to all students. The amount of time that students spend
on a module depends on both their experience and their interest in
the topics in that module. Use Table 1 as a guide when you set
your schedule,

19

STUDENT GUIDE

In addition to the 10 modules, the Student Workbook contains
several appendices. These are:

Appendix A - Glossary

Appendix B - Conversion Tables, This appendix contains a
table for converting between decimal and octal, and among
words, bytes, and memory blocks. It also contains a table
for converting from active page registers (APRs) to virtual
addresses.

Appendix C - FORTRAN/MACRO-11 Interface. This appendix
contains an explanation of the techniques which you should
use to write a FORTRAN callable subroutine in MACRO. It also
explains how to call such a subroutine from FORTRAN.

Appendix D - Privileged Tasks. This appendix contains a
description of the wvarious types of privileged tasks
supported under RSX-11M, and how to create them.,

Appendix E - Task Builder Use of Psect Attributes. This
appendix contains a description of the effect of Psect
attributes on how the Task Builder collects together
scattered occurrences of program sections.

Appendix F - Additional Shared Region Topics. This appendix
contains several additional shared region topics. They are:
overlaid shared regions, referencing multiple regions from a
single task, interlibrary calls, and cluster libraries.

Appendix G - Additional Example. This appendix contains the
source code for any program examples which are required for
the Tests/Exercises but are not included elsewhere in the
Student Workbook. These examples should also be available
on-line, under UFD [2#2,1]. They are included here 1in case
they are not available on-line on your system.

Appendix H - Learning Activity Answer Sheet. This appendix
contains the solutions to any Learning Activity questions in
this course. After you do a Learning Activity, check vyour
answers against those provided.

11

Table SG-1

STUDENT GUIDE

Typical Course Schedules

More Experienced

Less Experienced

Module Student Student
1. Using System 2.0 hours 3.0 hours
Services
2. Directives 5.0 hours 7.5 hours
3. Using the QIO 4.0 hours 6.0 hours
Directive
4., Using Directives 5.0 hours 7.5 hours
for Intertask
Communication
5. Memory Management 2.0 hours 3.0 hours
Concepts
6. Overlays 5.0 hours 7.5 hours
7. Static Regions 4.5 hours 7.8 hours
8. Dynamic Regions 4.5 hours 7.8 hours
9. File I/0 2.0 hours 3.0 hours
19. File Control 6.0 hours 9.0 hours
Services
Totals 40.0 hours of 60.5 hours of

study and lab

study and lab

12

STUDENT GUIDE

PERSONAL PROGRESS PLOTTER

DATE DATE TIME SIGN-OFF

MODULE STARTED | COMPLETED SPENT INITIAL

1. USING SYSTEM
SERVICES

2. DIRECTIVES

3. USING THE QIO
DIRECTIVE

4. USING DIRECTIVES
FOR INTERTASK
COMMUNICATION

5. MEMORY
' MANAGEMENT
CONCEPTS

6. OVERLAYS

7. STATIC REGIONS

8. DYNAMIC REGIONS

9. FILEI/O

10. FILE
CONTROL
SERVICES

13

USING SYSTEM SERVICES

USING SYSTEM SERVICES

INTRODUCTION

RSX-11M provides system services which perform many operations

commonly

needed by user-written application programs. Use of

these services can:

Improve the efficiency of your tasks by reducing the size
and execution time

Decrease the time it takes to code and debug your tasks
Increase the reliability of your task
Provide you with controlled access to system features

Improve the overall performance of your system

This module discusses what services exist and how they are called
from a task.

2.
3.

OBJECTIVES

Identify the facilities provided through system services.

List the various system libraries and the facilities they
provide.

RESOURCES

RSX-11M/M-PLUS Executive Reference Manual, Chapter 1

FORTRAN 1V User's Guide, Appendix B

FORTRAN IV-PLUS User's Guide, Appendix D

FORTRAN-77 User's Guide, Appendix D

17

USING SYSTEM SERVICES

WHAT IS A SYSTEM SERVICE?

An RSX-11M system service is a function or service performed for a
running task during the task's execution. The software which
provides the service 1is either in the Executive or in other system
supplied code.

WHY SHOULD YOU USE SYSTEM SERVICES?

To Extend the Features of Your Programming Language

System services offer you additional features not inherently part
of your programming language. Examples of this are:

® Accessing shared resources in a properly synchronized way

e Coordinating multiple tasks

e Controlling memory allocation and mapping

e Interacting with the Executive

To Ease Programming and Maintenance

DIGITAL provides the code to perform these services, hence less

time 1is needed for the user to develop working programs. The
supplied code has a well defined modular structure which eases
user design for his programs.

The code for system services is well debugged. This makes it
easier to debug and maintain programs, since there are fewer
potential points of failure and only the user written code needs
to be debugged. When maintenance is required in the code for the

supplied system services, patches are released by DIGITAL with
clear-cut installation procedures.

19

USING SYSTEM SERVICES

To Increase Performance

The supplied code to perform system services is generally written
in MACRO-11 which assures minimum execution time. It is often
possible to share the code among several different tasks, with
minimal additional overhead. This can result in any or all of the
following performance gains:

Increase in your task's throughput

Increase in your system's throughput

Increase in memory usage efficiency on your system
Decrease in your task's size

Increase in available space on mass storage volumes

WHAT SERVICES ARE PROVIDED?

The system services can be divided into a number of classes. For
each, a few examples are mentioned to give you a feeling for the
kinds of services available.
Note that a number of the services provided to tasks parallel
those provided to operators through DCL commands.
System and Task Information
You can obtain information from the system. For example, you can:
e Obtain information about your task
- its priority
- its logical unit (LUN) assignments
e Obtain information about a partition on the system
- 1its base address

- 1its length ’

e Obtain the current time and date

20

USING SYSTEM SERVICES

Task Control

You can start up and stop tasks, and alter task states. For
example, you can:

e Request another task to run

e Abort a task

e Suspend or resume a task

e Alter the running priority of an active task
Task Communication and Coordination
You can create a set of tasks that communicate with one another
and coordinate the interaction of the tasks. For example, you
can:

o Send data from one task to another

e Have one task notify other tasks that an event has
occurred (e.g., that a job has been completed)

e . Have one task pass a command to another task and have it
obtain an indication from the other task about the status
of the execution of the command.

170 to Peripheral Devices

You can interact with peripheral devices on your system. For
example, you can:

e Perform special I/O functions which cannot be accomplished
by FORTRAN READ or WRITE statements such as reading from a
terminal with the NOECHO feature invoked.

e Attach a device for exclusive use by a task

® Read or set variable characteristics of a device (e.g.,
for a terminal - baudrate or hold screen mode)

21

USING SYSTEM SERVICES

Memory Use

You can use system services to control the amount of memory vyour
task wuses or to permit several tasks to share an area of memory.
For example, you can:

e Run a task in less memory than its total size, by using
overlays to- load pieces of the program at any one time

e Allocate space in memory for a temporary work buffer, and
then return that space to the system when the task is
finished using it

e Share a data area in memory among several tasks

e Share a single copy, in memory, of a commonly used
'subroutine, among several tasks

OTHER SERVICES AVAILABLE

You can use system services to perform often needed functions,
For example, you can: ‘

e Convert between Radix-50 and ASCII format
e Get the date in dd-mon-yr format or as three integers

These services are generally supplied as subroutines 1located in
the system object library (LB:[1,1]SYSLIB.OLB).

22

USING SYSTEM SERVICES

HOW SERVICES ARE PROVIDED

When a system service is needed in a task, it is called via the
CALL statement just as for any other subroutine. Services are
provided using two different methods:

1. The Executive is 1invoked by the task to perform the
service (an executive directive)

2. The code to perform the service is placed directly into
the task

Executive Directives

Figure 1-1 shows how the first method works. The following steps
are involved:

@ The user task makes a service request and invokes the
Executive

© The Executive takes control and performs the service

‘, The Executive returns control to the user task, at the
statement following the service request. '

Figure 1-2 shows a more complex version of the first method. In
this case task A and task B use a system service to interact
through the Executive.

Task A starts up and at some point needs task B to do some work;
possibly a calculation. Task A sends the data to task B, requests
task B to run, and then waits until task B sends back the answer.
Task B starts running, performs the calculation, and then sends
the answer back to task A. Task B also notifies task A that the
job is finished. Task A then starts up again and uses the answer.
The steps outlined above for method one would actually be used a
number of times in this example.

23

USING SYSTEM SERVICES

EXECUTIVE

© cooe 10

INVOCATION

EXECUTIVE DIRECTIVE

e —— —- F11ACP
SERVICE
” , EXECUTIVE
- DIRECTIVE | — — — &
BRIVERS [* — —* CTIV OTHER TASKS
TASK

© reTuRN OF

STATUS FROM
EXECUTIVE

TK-7517

Figure 1-1 Using Executive Directives to Service a Task

!

24

USING SYSTEM SERVICES

| baTA FROM TASK A]

EXECUTIVE

CODE TO

SERVICE

DIRECTIVES

r——"

[i
1

TASK A
EXECUTIVE DIRECTIVES

¢ |RESULTS FROMI
TASK B

TASK B

—1 EXECUTIVE DIRECTIVES

TK-7516

Figure 1-2 Using Executive Directives to Receive Services
From Other Tasks

25

USING SYSTEM SERVICES

Code Inserted into Your Task Image

The second method of providing system services is 1illustrated in
Figure 1-3. The code to perform the service is inserted directly
into the user task. For system subroutines, the subroutine call

results in a transfer of control to the subroutine code, located
in another part of the user task.

Certain services must be provided by invoking the Executive. Any
service which 1involves synchronization or access to shared
resources must be coordinated by the Executive. For example, if a
request activates another task, the Executive must enter the task
in the active task list, which sets the task up to compete for
memory space and then CPU time. It is much easier to have the
Executive coordinate all the tasks, rather than require that each
task check with every other task before using a shared resource,
Also, any activity that involves communication or coordination
among multiple tasks usually must be performed by the Executive.

Placing the code in the user task is appropriate for a service
which is performed independently by a task. For example, if a
task converts an ASCII decimal value which is input at a terminal
to a Radix-50 value for internal use, there is no need for the
Executive to coordinate that activity. It does not affect shared
resources or other tasks.

If a service can be provided without need for the Executive, and
that service is needed often by a number of different tasks, it is
possible to share one copy of the code among several tasks. Using
special techniques, often used subroutines can be collected and a
single copy of each subroutine can be shared in memory among
several tasks. The procedure for producing and using a shared
collection of subroutines, called a resident library, is discussed
in the Static Regions module of this course.

Some of the services covered in this course are provided by making
special requests when you task-build your task. In some cases,
the Task Builder transparently places code directly in your user
task. In other cases, it sets your task up in a special way to
provide the service. We will discuss the techniques for accessing
services with the Task Builder in later modules.

26

USING SYSTEM SERVICES

TASK

SUBROUTINE CALL
i
FROM SYSTEM OBJECT - - T T —
LIBRARY OR FORTRAN SUBROUTINE ENTRY |e
OBJECT TIME SYSTEM POINT
LIBRARY AT TASK-BUILD RETURN
TIME

TK-9387

Figure 1-3 Code Inserted into Your Task Image

27

USING SYSTEM SERVICES

AVAILABLE FILE AND RECORD ACCESS SYSTEMS

There are two file and record access systems available under
RSX-11M, File Control services (FCS) and Record Management
Services (RMS). Both offer an interface between tasks and the
Files-11 structure used to maintain disk directories and files.

FCS is the standard access system supplied with RSX-11M. Many of
the wutilities (e.g., PIP, EDT, and the Task Builder) use FCS for
their file interface. RMS offers all of the FCS functionality
plus additional <capabilities not available with FCS, such as
indexed files and more sophisticated file sharing.

While it is transparent to the FORTRAN user, all READ or WRITE
statements wultimately result in calls to wvarious FCS or RMS
subroutines.

SYSTEM LIBRARIES

Table 1-1 contains a list of the libraries which are used during
program development of a task using system services. They are
usually located in LB:[1,1]. SYSLIB.OLB is the system object
library searched by default by the Task Builder.

28

USING SYSTEM SERVICES

Table 1-1 Standard Libraries

Langages
Using
Library

Version of
FORTRAN Using
Library

Contents

Notes

SYSLIB.OLB

RMSLIB.OLB

FOROTS.OLB

F4POTS.OLB

FORTRAN

FORTRAN
indirectly
used

FORTRAN IV

FORTRAN IV-PLUS
FORTRAN-77

Executive directive
calls for FORTRAN
FCS subroutines

Other file access
routines

Command retrieval
and parsing
routines

Assorted conversion

routines, arithmetic

routines, memory
management routines

RMS subroutines

FORTRAN IV Object

‘Time System (OTS)

FORTRAN IV-PLUS OTS
FORTRAN-77 OTS

Default object
library for
Task Builder

Optional soft-
ware may be
included in
SYSLIB.OLB

Optional soft-
ware may be
included in
SYSLIB.OLB

29

USING SYSTEM SERVICES

One or the other of the last two libraries must be included when
task-building a FORTRAN task unless, as the note states, the
libraries are included in SYSLIB.OLB. ' ,

Check with your system manager to determine what additional
software may be included in SYSLIB.OLB at your site.

Table 1-2 contains a list of the shareable resident 1libraries
which may also be on your system depending upon your installation.
You will learn how to use these resident libraries in Module 7,
the Static Regions module. Check with your system manager to find
out whether the preferred method of including these routines 1is
through linking the code into your task image or through using the
resident libraries.

Table 1-2 Resident Libraries

Resident Routines

Library Extracted From Notes

FCSRES.TSK SYSLIB.OLB Generally contains most
FCS routines

FORRES.TSK FOROTS.OLB May contain all or

FA4PRES. TSK F4POTS.OLB some FORTRAN OTS routines

RMSRES. TSK RMSLIB.OLB Full-functionality RMS
resident library

RMSSEQ. TSK RMSLIB.OLB RMS resident library for

sequential access only

Now do the Tests/Exercises for this module 1in the' Tests and
Exercises Book. They are all written problems. Check your
answers against those provided in that book.

If you think that you have mastered the material, ask your course
administrator to record your progress in your Personal Progress
Plotter. You will then be ready to begin a new module.

If you think that you have not yet mastered the material, return
to this module for further study.

30

DIRECTIVES

DIRECTIVES

INTRODUCTION

As stated in the previous module, system services can be placed
into two groups:

o Those which are handled entirely by the user task (via the
subroutine representing the service)

e Those which require the intervention of the Executive
The services in the second group are known as executive directives

(directives). This module discusses the services available as
directives and how to make various directive calls.

OBJECTIVES

l. To write programs in FORTRAN which use directives

2. To use information returned by the Executive to perform
error checking

3. To use event flags and ASTs with directives

RESOURCES

1. RSX-11M/M-PLUS Executive Reference Manual, Chapters 1 and
2 plus specific directives in Chapter 5

2. FORTRAN IV User's Guide, Appendix B

3. FORTRAN IV-Plus User's Guide, Appendix D

4. FORTRAN 77 User's Guide, Appendix D

33

DIRECTIVES

INVOKING EXECUTIVE DIRECTIVES FROM A USER TASK

Directive Processing

When an executive directive is called from a FORTRAN task, a
standard CALL 1is generated with an argument list containing each
argument in the CALL. When the Task Builder builds the task, the
code for the subroutine which invokes the directive is placed in
the task. (The subroutines are found in LB:[1,1]SYSLIB.)

At execution time this code generates a Directive Parameter Block
(DPB) and then pushes the DPB onto the stack. The DPB contains
all of the information needed by the Executive to perform the
requested service. This includes a Directive Identification Code
(DIC) which identifies which directive is being requested and the
length of the DPB. The length is included because the length can
vary depending on what directive is being called.

At execution time, the following steps occur:

e¢ The DPB is pushed onto the stack and a trap is made to the
Executive.

e A dispatcher routine (part of the Executive) receives the
DPB and determines which directive has been requested.

e The dispatcher routine enters the Executive at the
appropriate point, depending on the DIC, and the Executive
executes the code for the directive (note that the code for
the directive actually resides in the Executive, not in the
task).

e The Executive sends a Directive Status Word to the task and
then returns control to the user task.

Most directives pass control back to the user task at completion
of the directive. Certain directives by their nature do not
return to the user task. For instance, the Exit Task directive
causes the task to EXIT. For the Exit Task directive and other
directives of this type, control passes back to the user task only
if an error occurs' in issuing the directive.

35

DIRECTIVES

Functions Available Through Executive Directives

Table 2-1 1lists many of the Executive directives which are
available on your system. For a complete list of the directives
under each group, see section 5.1 (on D1rect1ve Categories) in the
RSX-11M/M-PLUS Executive Reference Manual.

This module, along with later modules on Using the QIO Directive,
Using Directives for Intertask Communication, and Dynamic Regions
introduce many of the functions which are available. No attempt
is made to go over every executive directive. However, at the end
of this course, you should know how look up any directive 1in the
manual and invoke it. Each directive is documented individually
in Chapter 5 of the RSX-11M/M-PLUS Executive Reference Manual.
The directives appear there 1in alphabetical order by MACRO-11
name; the FORTRAN CALL name for directives 1is similar to the
MACRO-11 name and is also included in the list. A condensed list
of the MACRO and FORTRAN directive names also exists in Table 1-1

in section 1.5.2. To find the page reference for a particular
directive, look under "CALL" in the index.

36

DIRECTIVES

Table 2-1 Types of Directives
Type CALL Name Description
Task Execution ABORT Abort task
Control EXIT Exit task
REQUES Request task
RESUME Resume task
RUN Run task
START Run task
SUSPND Suspend task
STOP Stop task
USTP Unstop task
Task Status ALTPRI Alter priority
Control DISCKP Disable checkpointing
ENACKP Enable checkpointing
Informational GETPAR Get partition parameters
Several Get time parameters
Event- CLREF Clear event flag
Associated CRGF Create group global flags
ELGF Eliminate group global flags
MARK Mark time
WAIT Mark time
READEF Read all event flags
READEF Read extended event flags
SETEF Set event flag
WAITFR Wait for single event flag
Trap-Associated SREA Specify requested exit AST
I/0 and ASNLUN Assign LUN
Intertask QIO Queue I/0 request
Communications WTQIO Queue I/0 request and wailt
RECEIV Receive data
SEND Send data
Memory CRRG Create region
Management MAP Map address window
Parent/ EXST Exit with status
Offspring SPAWN Spawn task
Tasking

37

DIRECTIVES

The Directive Status Word (DSW)

Upon completion of directive processing, the Executive returns a
code 1in the Directive Status Word (DSW) which gives the status of
the request. In order to examine the contents of the DSW and
hence determine success or failure, a specific argument must be
included in the CALL for the directive. This argument 1is always
the 1last argument in the list. While this argument is optional,
it should always be included since examining the DSW is the only
way to determine the success or failure of a directive. The
system does not look on a directive failure as an error; hence it
is up to the user to check the DSW after a directive CALL. The
variable name "IDSW" is frequently used for the DSW; it must be
an integer variable.

Successful completion is usually indicated by a DSW value of +1.
A negative value indicates an error. Different negative values
correspond to different reasons for errors. These wvalues and
their general meanings appear in Appendix B of the RSX-11M/M-PLUS
Executive Reference Manual and 1in the RS8X-11M/M-PLUS Executive
Reference Manual. Specific error values and any special meanings
are documented with each executive directive call in Chapter 5 of
the RSX-11M/M-PLUS Executive Reference Manual.

See Example 2-1 for an illustration of how to use the DSW.

38

DIRECTIVES

Sample Program

Example

2-1 illustrates the use of the Request Task and the Exit

Task directives. The directives are given below, along with a
description of their functionality:

The

The

Exit Task Directive
format: CALL EXIT - this CALL has no arguments

used to make a task inactive and to free up the system
resources it uses

Request Task Directive

format: CALL REQUES(TASKNM,, IDSW) where TASKNM 1is the
name of the task to be requested

used to request the specified installed task

this directive offers the same functionality as the DCL
RUN command for an installed task

Each program example in the course contains the following:

See the

Source code
A sample run session
Bulleted items which are described in the text

Student Guide for additional information on how to use the

examples.

39

DIRECTIVES

The following comments are keyed to Example 2-1.

If the appropriate OTS library has been included in
SYSLIB, the reference to the 0TS library is dropped.

Invoke the Request Task directive. Note that the six
character (or less) task name must be provided in Radix-5¢
format. This is accomplished by using the R (Radix-50)
data type in the DATA statement. (Radix-50 is a method of
representing a limited set of ASCII characters, such that
three characters can be packed into a single PDP-11 word.)
The task name must be the installed name (...PIP), not
just PIP.

The task is always assumed to be six Radix-5@ characters;
hence you should always pad a name of less than six
characters with trailing blanks. For instance, TASKNM
6R/ABC / should be used rather than TASKNM 3R/ABC/.

See Appendix A of the Language Reference Manual for
additional information on Radix-5d.

The only case in which control will return to the |user
task after a CALL EXIT is when an error occurred in
issuing the directive.

In case of an error, display a message and the DSW value.
A run session is provided for each example program. Note

that the PROGRAM name is REKWST, not REQUES. REQUES
cannot be used because it is the name of a directive.

40

DIRECTIVES

FROGRAM REKWST
C FILE REQUES.FTN

L This task disrlave a messadgey requests PIFy and
¢ then emits

C Task-build instructions?

¢ If wour LBILIs1IISYSLIR.OLE does not contain the
(5 FORTRAN Obdect Time Swstemy then wou must

[srecify the arrrorriate obdect libraryg

¢

C With FORTRAN IV:

[

C LINK/MAF REQUESyLE:LL1 s 1IFOROTS/LIBRARY
G With FORTRAN IV-FLUS and FORTRAN-77

C FLINK/MAF/CODESFFP REQUESLRILLy LIF4FOTS~
C =x/LIBRARY '

[VO/CONESFPF includes srace in the task
G ! hesder for saving the state of the

[I Floating roint srocessor.

[

C Date statement for RADSO task name
NATA TASKNM /76R. . FIF/
¢ Disrlaw startur Lext
WRITE (5+50)
50 FORMAT (7 REQUES HAS STARTED AND WILL REQUEST PIFY)
¢ Reeuest FIF
CALL REQUES (TASKNMy» TDEW)
¢ Check for Directive error
IF (IDSW JNE. 1) GOTO 1000
U No errory so exit
CAaLlL EXIT
 Error code. Disrlay error messadge and then exit.
1000 WRITE (S21010) IDSW
1010 FORMAT (7’ ERROR REQUESTING TASK. TDSW = ‘»I5)
cAaLlL EXIT
ENI

Rur Session

sRUN REQUES :
REQUES HAS STARTED AND WILL REQUEST FIP
FIF:"Z

Example 2-1 Requesting a Task From Another Task

41

DIRECTIVES

Example Using Other Directives
The following directives are used in Examp1e>2-2.
Suspend Task (CALL SUSPND)
e Used to suspend the issuing task
e The task can be resumed by another task issuing a resume
task directive or by an operator using the DCL CONTINUE
command .
Alter Priority (CALL ALTPRI)
e Alters the running priority of an active task.
Disable Checkpointing (CALL DISCKP)
e Disables checkpointing for a checkpointable task.
Enable Checkpointing (CALL ENACKP)
e Enables checkpointing again after a DISCKP directive.

Extend Task (CALL EXTTSK)

e Modifies the size of the task by an increment or decrement
of 32-word blocks.

42

DIRECTIVES

Example 2-2 shows the use of a variety of directives. See the run
demonstration below the source code. The following comments are
keyed to the example. Items 2,3,5 and 7 refer to the run session
following the program listing.

Task suspends itself. This allows the operator to use the
DCL SHOW TASKS/ACTIVE command to examine the task
parameters.

Note that the task is loaded at addresses @1123686(8) to
#1170100(8). SPN means the task is suspended.

The operator must use the DCL CONTINUE command to resume
the task.

Suspend again after disabling checkpointing and altering
the running priority.

Note the change in PRI (running priority). CKD in the
output from the DCL command SHOW TASKS/ACTIVE indicates
that checkpointing has been disabled.

Suspend again after enabling checkpointing, altering the
priority back to 50(10), and extending the task.

Note the change in priority. Note also that the task was
checkpointed and is now loaded at addresses ©1123608(8) to
#1210100(8). This is a task size of 64300(8) bytes,
compared to 44300(8) bytes before. The extend is for
200 (8) blocks, where each block 1is 100(8) bytes 1long,
meaning 200008(8) bytes extra. See Appendix B for a
conversion table for bytes to blocks and of octal to
decimal,

911790100 (8) 91210100 (8)
-91123600(8) -01123600(8)
44300 (8) ‘ 64300 (8)

43

O+
C

™
G
G
C
G

C
C
G
c
™

C

C
C
¢
C
C

[

Example 2-2

DIRECTIVES

FROGRAM MISC
FILE MISC.FTN

This task uses some miscellaneous Executive directives
to susrend itselfy alter its rurning sriorityy disable
and enable chechrointings and extend its task size.

Task-build imstructions?

LINK/CHECKFOINT/MAF MISCyLRILLy LIFOROTS/ILLIBRRARY
since the task must be checkrointabhle to disable
checkrointing and to extend its size.

Install and Run instructions?

Install the task. Thern Rum it to start it wur.
The task will susrend itself several different
times. Each timey use the command

SHOW TASKSIMISC/ACTIVE/FULIL (MCR ATL MISO)

to examine the changes. Use the command
CONTINUE MISC (MCR RESUME MISC)

to resume the task.

INTEGER DSWyDRCTV
CALL SUSPNRDSW) I Susrernd to allow chechk
I of status
|
]

IF (DSW.LT.0) GOTO 1010 Eranch on directive

error
Make some chandes and then susrend adain

CALL DISCKFDSW) I Tiisable checlksointins

IF (OSW.LT.0) GOTD 1020

CALL ALTFRIC(s10s18W) P Alter running srioritu

IF (DSW.LT.0) GOTO 1030

CALL SUSPNLI(DSW) . P Susrend to allow check

I of status
IF (OSW.LT.0) GOTO 1040

; Make some other changes and then susrend adain

CALL ENACKF(DSW) I Reenable checkrointing
IF (DSW.LT.0)Y GOTO 1050
CALL ALTFRI(»sDSW) I Return srioritw to

' original

IF (USW.LT.0) GOTO 1060

CALL EXTTSK(*200:,18W) | Extend task size bw
b 200(8) blocks

IF (DSW.LT.0) GOTO 1070

CALL SUSFNDCDSW) ! Susrend adgain
IF (DSW.LT.0) GOTO 1080
CALL EXIT !VoExit

Error handling
10 WRITE (5-101%5) DNSW

15 FORMAT (7 ERROR ON 18T SUSFEND. DSW = ‘yI5)
GOTO 1100
20 WRITE (3+1025) DSW

Using Some Miscellaneous Directives (Sheet 1 of

44

2)

DIRECTIVES

1025 FORMAT (7 ERROR ON DNISARLE CHECKFPOINTING. D&SW = ¢
1+15)
GOTO 1100
1030 WRITE (&51035) DSW
1035 FORMAT (7 ERROR ON 18T ALTER FRIORITY. DSW = “»
115
GOTO 1100
1040 WRITE (551045) SW
10435 FORMAT (7 ERROR ON 2NI! SUSFEND. DSW = ‘yI&)
GOTO 1100
WRITE (5y1035) SW
FORMAT (7 ERROR ON ENARLE CHECKFOINTING. DSW = -
L1352
GOTO 1100
1040 WRITE (3y1065) LSUW
10635 FORMAT (7 ERROR ON 2NIN ALTER FRIORITY. 0SW = 7y
115
GOTO 1100
1070 WRITE (5y1075) DSW
1075 FORMAT (7 ERROR ON EXTEND TASK. DSW = ‘I%5)
GOTO 1100
1080 WRITE (3y108%) DSW
1085 FORMAT ¢/ ERROR ON 3RD SUSFEND. DSW = ‘yI5)
1100 CaALL EXIT
END

e G
s

Rurn Session

FINS MISC
*RUN MISC
SHHOW TASKS/ACUTIVE FULL MISC
e, FWISC 067250 GEN 070310 01123600~01170100 FRI -~ 50, DFRI - 0.
STATUS: SFN ~FMD
TL - TT11i: I0C - O+ RIO -~ 0. EFLG - 000000 000000 FS -~ 170000
FC - 001640 REGS 0~6 000001 001242 001242 000000 001432 003572 001242
=CONTINUE MISC
>8HOW TASKS/ACTIVE FULL MISCS
MISC 067250 GEN 070310 011234600~-01170100 PRI - 10. DFRI - 50,
STATUS! CKD SFN ~PMD
TI - TT1ii: 10C - 0. RIO -~ 0., EFLG - 000000 000000 P& - 170000
FC ~ 001640 REGS 0~6 0034626 001242 001242 000000 001432 003572 001242
>*CONTINUE MISC
=SHOW TASKS/ACTIVE FULL MISC
MISC 067250 GEN 070310 01123600~01210100 PRI - %0, IDPFRI - 50.
STATUSS: SPN —~FMD
TI - TT11: I0C - 0. BIO ~ 0. EFLG - 000000 000000 PS8 ~ 170000
FC - 001640 REGS 0-6 003626 001242 001242 000000 001432 003572 001242
*CONTINUE MISC
»HHOW TASKS/ACTIVE FULL MISC
ATL -~ Task not active

Example 2-2 Using Some Miscellaneous Directives (Sheet 2 of 2)

45

DIRECTIVES

Run Time Conversion Routines

As mentioned earlier, the system maintains task names, partition
names, and certain other data in Radix-5¢ format in order to save
space. There are times when conversions between ASCII and
Radix-50 format need to be performed at run time. For example,
you can modify Example 2-1 (REQUES.FTN), so an operator can type
in the task name at run time. This ASCII name would have to be
converted at run time to Radix-5@ format. The function RAD5#8 or
the subroutine IRAD5@ is used to perform the conversion. The code
segment shown below illustrates the use of the function RADS50:

DIMENSION TASKNM (2)
READ (5, 1) TASKNM
1 FORMAT (2A4)
CALL REQUES (RAD5 (TASKNM) , , IDSW)

If the Get Task directive (CALL GETTSK) is used to retrieve task
information, the task name and partition name are returned in
Radix-50 format. If you wish to display these, you need to
convert them to ASCII format. The subroutine R5@QASC is provided
for this purpose. The program shown below illustrates the use of
the R5@0ASC subroutine:

DIMENSION IBUFF (16)

CALL GETTSK (IBUFF)

CALL R5@ASC(6,IBUFF (1), TASKNM)
CALL R5@ASC (6, IBUFF (3) , PARTNM)
WRITE (5, 1) TASKNM
WRITE (5, 2) PARTNM

1 FORMAT (' TASK NAME IS ',A6)
2 FORMAT (' PARTITION NAME IS ',A6)
END

46

DIRECTIVES

NOTIFYING A TASK WHEN AN EVENT OCCURS

Often a task needs to know when an event has occurred. The event
may have occurred within another task; for example, when the task
has completed a requested function. The event may instead have
occurred within the system; for example, when a requested I/O
operation is completed. There are two methods for implementing
synchronization, event flags and asynchronous system traps.

Event Flags

There are three types of event flags: 1local, global (or common),
and group global. Ninety-six event flags are made available to
tasks, each with a unique number (1(10)-96(18)).

Local event flags are provided for each task. There are 32(10)
local event flags, numbered 1(10)-32(10). These flags are used to
synchronize a task with an Executive service, such as an I/0
transfer. One task cannot reference another task's local event
flags, so they cannot be wused to synchronize tasks with one
another. Local event flags 25(10)-32(10) are reserved for system
use and hence should not be used by a user task.

Global or Common event flags are provided for synchronization
among different tasks. There is one set of 32(10) global event
flags for the system numbered 33(10)-64(10). These flags can be
referenced by any task. Global event flags 57(10)-64(19) are
reserved for system use and should not be used by user tasks.

NOTE

There is no way to protect against other
tasks using global event flags. Great care
must be taken to ensure that global event
flags aren't used at the same time by several
different users. Check with your system
manager before using any global event flag to
insure that it is not used for some other
purpose.

47

DIRECTIVES

There are only 32(10@) global event flags available system-wide.
If additional event flags are needed, another set of event flags
can be created for synchronization among different tasks. 32(10)
group global event flags, numbered 65(10)-96(10), can be created
for any UIC group number. These event flags can be referenced by
any task running under the correct group number. Hence, they can
be used to synchronize tasks running under that group number, and
offer an additional advantage in that they cannot be referenced by
tasks running under other group numbers.

Group global event flags are created using the DCL SET GROUPFLAGS
CREATE (FLA /CRE in MCR) command or the Create Group Global Event
Flags (CRGF$) directive. When users in a group don't need them
anymore, the group global event flags can be marked for deletion
using the DCL SET GROUPFLAGS DELETE (FLA /ELIM in MCR) command or
the Eliminate Group Global Event Flags (ELGF$) directive. After
that, when all active tasks in the group have finished using thenm,
the group global event flags are eliminated.

Using Event Flags for Synchronization
LEARNING ACTIVITY 2-1

Read section 2.2 (on Event Flags) in the
RSX-11M/M-PLUS Executive Reference Manual.
Pay particular attention to the examples.
This section covers how event flags can be
used for synchronizing tasks. When you have
finished reading the material, answer the
following questions. The answers are
provided in Appendix G.

Questions:

l. In Example 1 in the reading, how can Task
B do some work while waiting for event
flag 35 to be set by Task A?

2. What would happen in Example 2 if a local
event flag (e.g., 1) were used instead of
a common event flag?

3. Why is a 1local flag satisfactory in
Examples 3 and 4?

48

DIRECTIVES

Examples of the Use of Event Flags for Synchronization

Examples 2-3 and 2-4 show the use of event flags to synchronize
two tasks. WFLAG creates the group global event flags for the
group. It then clears event flag 65(10) and waits for that flag
to be set. SFLAG sets event flag 65(1¢), which unblocks WFLAG.
Run WFLAG first, then run SFLAG.

The following notes are keyed to the examples. Note 5 1is in
SFLAG; all others are in WFLAG.

‘. Create the group global event flags. The default group
number (used here) 1is the group number that the task is
running under.

An error is reported if the flags already exist. This
isn't a fatal error, so we check for this condition. If
the flags do exist, print a message and continue.

The flag is in an unknown state at startup. Therefore, we
must clear the flag before waiting for it to be set.

Wait for the event flag to be set by SFLAG. This causes
WFLAG to be blocked. Now run SFLAG.

Set event flag 65 in task SFLAG. This allows WFLAG to
become unblocked. SFLAG then exits. ‘

When WFLAG is unblocked and it continues executing, it
starts up here. We check for any directive error entering
the Wait For state, print a message, and exit.

In certain programming situations it may be necessary to test one
or more event flags to see if they are currently clear or set.
The CALL READEF directive can be wused to read a single flag.
After the flag has been read, the contents of the DSW will
determine the condition of the flag. If DSW=2, the flag was set;
if DSW=g, the flag was clear.

49

DIRECTIVES

FROGRAM WFLAG
[
C FILE WFLAG.FTN
[s
C This tesk crestes the srour global event fladgsy and
¢ then clears event flag 65, and waits for it to be set.
C When the fladg is sety it writes a3 messadge and exits
C ‘
C Install and run instructions?
o

C Rur WFLAGy them run SFLAG. At least ome of the

L tasks must be installedy or else the RUN command
o will try to install both tasks under the same

[rname (TTrm)

[
WRITE (5,10)
10 FORMAT (/ WFLAG IS CREATING THE GROUF GLORAL EVENT
1 FLAGS)
CALL CRGF (»IDSW)
IF (IDSW LT. 0) GOTO 900
1.5 WRITE (S5+20)
20 FORMAT (7 CLEAR AND THEN WAIT FOR EF &65. TO ERE SET)
CaLL CLREF (6% IDSW)
IF (INSsW JLT. 0 GOTO 1100
¢, CALL WAITFR (45, 1D0SW)
IF CIDSW LT« 0) GOTO 1200
o WRITE (3+30)
30 FORMAT (7 EF 6%5. HAS BEEN SET. WFLAG WILL NOW EXIT?)
CaLl. EXIT
C Error rrocessing

C

C Check for code of ~17y mesaning flass already esxist

00 IF (IDSW JNE, ~17) GOTO 1000

¢ In that casey Just dislaw 38 messadge and continue.

(2] WRITE (5,910)

10 FORMAT (7 GROUF GLORAL EVENT FLAGS ALREADY EXIST’)
GOTO 1S

& Here for fatal errorsy disrlay messadge and exit

1000 WRITE (5y1010) IDSW

1010 FORMAT (7 DIRECTIVE ERROR CREATING GROUF GLORAL
IEF/ /8. DSW = “»13)
CAl.L. EXIT

1100 WRITE (5211103 IDSW

1110 FORMAT (7 DIRECTIVE ERROR CLEARING EVENT FLAG 63.
1 DSW = /yI5)
Call EXIT

Example 2-3 Waiting for an Event Flag (Sheet 1 of 2)

50

DIRECTIVES

1200 WRITE (5,1210) IDSW

1210 FORMAT (/ DIRECTIVE ERROR WAITING FOR EVENT FLAG
1 65, DSW = I3
caLL EXIT
ENI

Rurn Session

*INS WFLAG
»INS SFLAG
*RUN WFLAG

“wFLAG IS CREATING THE GROUF GLORAL EVENT FLAGS
CLEAR AND THEN WAIT FOR EF 6%5. TO RE SET
RUN SFLAG

“EF 65, IS BEING SET. THEN SFLAG WILL EXIT.
EF 63, HAS BEEN SET. WFLAG WILL NOW EXIT

Example 2-3 Waiting for an Event Flag (Sheet 2 of

51

2)

[

DIRECTIVES

FROGRAM SFLAG

 FILE SFLAG.FTN

G

C This task sets event fladg 65. It sssumes that the

C grous

C

global event fladgs have alresdu beern created.

C Install and run instructions?

C
C
C
™
C
G

10

Rurn WFLAGy then run SFLAG. At least one of the
tasks must be installedy or else the RUN command
will tre to install both tasks under the same
riame (TTrm).

WRITE (35510)
FORMAT (/ EF 65. I8 REING SET. THEN SFLAG WILL EXIT")
CAlLL SETEF (63 TDSW)

: The DSW value returred for SETEF is 2 if it was setl

¢ oand ¢

¢ Error
1000
1010

if it was clear. A 1 is NOT returned for success
IF (IDSW JLT. O) GOTO 1000

caLL EXIT

code

WRITE (510100

FORMAT (7 DIRECTIVE ERROR SETTING EF 6%5. DSW = ¢
1+14)

caLl EXIT

END

Example 2-4 Setting an Event Flag

52

DIRECTIVES

ASYNCHRONOUS SYSTEM TRAPS (ASTs)

Asynchronous System Traps (ASTs) are used to detect events that
occur asynchronously to a task's execution. We say that they
occur asynchronously to a task's execution because they occur at
unpredictable times, depending on conditions which the task cannot
control. By doing some work and then periodically checking an
event flag to check on an event, a task can do work while waiting
for an event to occur. However, this means that the task must
periodically stop its work to check the flag.

Using an AST gives the Executive the responsibility for monitoring
the event. The Executive will "interrupt" the task and transfer
control to a special user written routine when the event has
occurred. Using this technique is more efficient because the task
doesn't have to do any periodic checking, and it probably results
in faster notification because the task is notified right after
the event occurs. With periodically reading the flag, it may take
quite a while to notice that the event has occurred if it occurs
immediately after a check. '

The only directives which allow the use of ASTs from FORTRAN are
CNCT, PWRUP, SDRC, SDRP, SPAWN, SREA and SREX.

53

DIRECTIVES

Figure 2-1 shows how an AST routine works. The following notes
are keyed to the figure.

For

The user specifies an AST routine 1in a directive. The
Executive sets up for the AST.

The Executive returns control to the user task.

When the system determines that the event has occurred
which corresponds to the specified AST routine, the
Executive passes control to the AST routine, executing it
before any other user code in the task. This means that if
the task is executing at the time of the AST, the task |is
"interrupted" until the AST routine is executed. The AST
routine is executed even if the task is stopped or blocked.
In that <case, the task returns to its stopped or blocked
state after the AST routine is executed, unless the AST
routine or some external event unstops or unblocks the task
in the meantime.

The AST routine is a user written routine contained within
the task.

The AST routine uses a standard RETURN statement to return
control to the main code via the Executive. However,
before the actual return, the Executive checks to see |if
any other ASTs have occurred while the AST routine was
executing. Any such additional ASTs are queued in an AST
pending queue in a first-in-first-out order; these ASTs
are also serviced before the Executive returns to the point
at which the AST interrupt occurred.

additional information on ASTs, see section 1.5.4 in

Chapter 1 and sections 2.3.3 and 2.3.4 in Chdpter 2 of the
RSX-11M/M-PLUS Executive Reference Manual.

54

DIRECTIVES

TASK CODE EXECUTIVE CODE
/——_— /——-\
j AN N S S
EXECUTIVE DIRECTIVE / SET UP FOR AST
SPECIFYING AST
MAIN ROUTINE “—0— e
TASK F
CODE
§~ - —1
| S] ACTIVATE AST
AstT || 1 N | 777
SERVICE .
cobe || | N\ |____ ‘_ o
ASTX$S
RETURN FROM AST
-———\—/ _________

TK-7508

Figure 2-1 AST Sequence

55

DIRECTIVES

Example 2-5 shows the use of ASTs. An AST routine is entered if
an abort request is made by either another task or an operator.

The following notes are keyed to the example.
© set uwp for AST on abort attempt.
©® Loop until abort request comes in.

G’ Service routine entered on first abort request. For this
particular AST, a nonprivileged task enters this routine
only once and further ASTs are cancelled. If the task is
built as a privileged task, the routine is entered each
time an abort attempt comes in. See Appendix D for an
explanation of privileged tasks. ‘

@O \Note that FORTRAN I/O cannot be performed in an AST routine
because the I/0 code is not reentrant; therefore any I/0
to be done in an AST routine must be done via QIO
directives. The next module will discuss the QIO directive
in detail.

Another directive, SREX, gives extended capabilities. An entry
passed to the AST routine indicates whether the abort request came
from a privileged or nonprivileged task or wuser and further,
whether it came from an Abort Task directive or a DCL (or MCR)
command. Each case can be handled differently.

56

DIRECTIVES

FROGRAM ASTEX
C FILE ASTEX.FTN

C This task sets ur a Srecifw Reauest Exit AST routine.
G It them sits im 2 loor until someone tries to abort

¢ it. At that rointy it enters the AST rouwtine and sends
s oout 2 message, It won’t abort the first time. A second
C sbort attemel will succeed because for Lhis rsarticular
: ASTy the first AST entry cancels anw further AST’s for
¢ this event

C Comrile instructions?

C The AST vouwtine must be comeiled with tracebach

C disabled., 8Since in this case the AST routine source
is din the same Tile as the mainliney comrile both with
¢ traceback disshled.

C For FORTRAN TV2

G FORTRAN/NOLINE NUMBRERS/LIST ASTEX

G For FORTRAN IV-FLUS or FORTRAN-77

G FORTRANL/FAF or /F771/7NOTRACE/LIST ASTEX

C Rurn notes?! Remember to use the name the tashk is
Coinstalled under when attemeting to abort the task.

INTEGER ISW
EXTERNAL REXAST
CALL SREA(REXASTsIISW) I Set ur Srecifw Exit AST
IF (DSW.LT.0) GOTO 1001 ! Branch on error
TYFE %2 “ASTEX STARTING UF. WILL WORK UNTIL ARORTEID.
. No some work.
10 N0 20 I= 3276732767
20 CONTINUE
GO TO 10
C Error code
1001 TYFE Xy ERROR ON DIRECTIVE» DSW = ‘yDGW
Call. EXIT
END

Example 2-5 Using a Requested Exit AST (Sheet 1 of 2)

57

DIRECTIVES

C
© SUBROUTINE REXAST

C _

C AST service routine

&

INTEGER FLIST(3)s I0WVE
REAL TEXT1(S) s TEXT2(7)
DaTA ITOWVR/711000/
NATA TEXTL Z7TRYI/s’NG T/v’0 AR’y
L170RT “y’ME ‘9 EH? ‘/
DATA TEXT2 Z77WE W/ s ON ‘T ¢’ LET’>»
12 YOU sy THI #’8 TI’ s 'ME! 7/
¢ Set wur Tor QIO directive
Call. GETADR(FLIST(LY yTEXTL(1))
FLIST(2)Y = 23
FLLIST(3) = %40
C Use Q10 directive Lo disrlaw text
‘, CALL WTQIOCIOWVR» Syl vy FLIGT)
¢ Bet wur Tor 2nd line of text
CALL GETADR(FLIST(L) »yTEXTZ2(1))
FLIST(2)Y = 27
 Use QIO directive to disrlaw texl
CALL WTRTO(IOWVERsS eyl s y FLIST)
RETURN
END

Rur Session

»INS ASTEX
=RUN ASTEX

ASTEX STARTING UF. WILL WORK UNTIL ABORTED.
ABORT/TASK ASTEX

TRYING TO ARORT MEs EH7T
WE WON‘T LET YOU THIS TIME!
ARORT/TASK ASTEX
101573102 Task "ASTEX * termimated
Abhorted via directive or CLI

3

Example 2-5 Using a Requested Exit AST (Sheet 2 of 2)

58

DIRECTIVES

Now do the tests/exercises for this module in the tests/exercises
book. They are all lab problems. Check your answers against the

solutions provided, either in that book or in on-line files, under
UFD [2082,2].

You will need the program READF.FTN to do question 1. It should be
available on-line probably wunder UFD [262,1]. 1In case it is not
available on-line, the source code is listed in Appendix G.

If you think that you'havé mastered the material, ask your course
administrator to record your ©progress in your Personal Progress
Plotter. You will then be ready to begin a new module.

If you think that you have not yet mastered the material, return to
this module for further study.

59

USING THE QIO DIRECTIVE H

USING THE QIO DIRECTIVE

INTRODUCTION

All Input/Output under RSX-11M is performed using QIO directives.

In this

module, you will learn how to use the QIO directive,

concentrating on its use for input/output to a terminal.

OBJECTIVES

To wuse the QIO directive to perform I/0 to a
non-file-structured device

To choose either synchronous or asynchronous 1I/0 as the

most effective method

To perform complete error checking upon I/0 completion

RESOURCES

RSX~-11M/M-PLUS Executive Reference Manual, Chapter 5 for

specific directives

RSX-11M/M-PLUS I/0 Driver's Reference Manual, Chapters 1

and 2

63

USING THE QIO DIRECTIVE

OVERVIEW OF QIO DIRECTIVES

All I/O operations wunder RSX-11M are performed using QIO
directives. While transparent to the user, all FORTRAN READ and
WRITE statements are ultimately transformed into QIO directives.
The QIO directive causes an I/0 request to be passed to the
appropriate service routine. The service routine 1is either a
device driver or a system task called an ancillary control
processor (ACP). There is a device driver for each device type on
the system. There are three ACP's provided, F11ACP for FILES-11
structured disks, MTAACP for ANSII magtape, and NETACP for DECNET.

The I/O0 packet is placed in an I/0 queue for the service routine.
The packets are queued in the order of the priority of the issuing
tasks. 1If there are multiple requests at a given priority, those
requests are queued first-in-first-out (FIFO). The QIO directive
does not perform the I/0 operation itself, but simply queues the
request to the appropriate service routine, which performs the
actual I/0 transfer. After the I/0 request has been queued, the
Executive returns control to the issuing task, unless the task
requests the Executive to place the task in a Wait For state until
the I/0 transfer completes.

PERFORMING 1/0

QIO directives ‘are generally used by a programmer for I/O on
non-file-structured devices such as terminals. For file I/O, all
READ and WRITE statments are passed off to the File Control
Services (FCS) or Record Management Services (RMS), which in turn
issue the appropriate QIOs for you. When using QIOs, you specify
which I/O0O operation (e.g., Read Virtual Block or Write Virtual
Block) is to be performed by means of an 1I/0 function code.
Specify the device by means of the logical unit number (LUN). You
specify additional information about the I/0 operation (e.g., what
buffer to write and how many characters) by means of an I/O
parameter list (IOPL). All of this information is passed to the
Executive through parameters in the Directive Parameter Block
(DPB), as it is with all directives.

65

USING THE QIO DIRECTIVE

USING QIO DIRECTIVES IN FORTRAN

There are two basic reasons for using QIO directives in FORTRAN.

e To acheive asynchronous I/O.

All READ and WRITE statements are synchronous; 1i.e., the
program 1is put into a Wait For state until the I/0 is
complete. If you need to perform asynchronous I/0, it can
only be done via QIO directives.

e To perform I/0O functions not possible with READ and WRITE
statements.

Certain I/0 functions, particularly to a terminal, cannot
be done by READ and WRITE statements. Some examples are
read with no echo and cursor control on a video terminal.
By using QIO directives, these functions can be done from
FORTRAN programs.

170 FUNCTIONS

Each device type has its own set of legal I/0 functions. Certain
functions are called standard or common, since they are available
on all devices. The seven standard I/O functions are 1listed 1in
Table 3-1. Logical block transfers (Read Logical Block and Write
Logical Block) can usually be performed for any device. For file
structured devices, virtual block transfers can be performed only
if a file is open on the device.

If virtual Block 1I/0 1is requested for a non-file-structured
device, such as a terminal, it is converted to logical block I/0
for you. 1In addition, devices may have additional device specific
- functions, such as Read No Echo at a terminal. Each function
requires its own set of parameters, which are specified in an 1I/0
parameter list.

66

USING THE QIO DIRECTIVE

Table 3-1 Common (Standard) I/0 Functions

Global Symbol Octal Suggested
in MACRO Value Function FORTRAN Name
IO.ATT 001400 Attach device IOATT
I0.DET 202000 Detach device IODET
I0.KIL 200012 Cancel I/0 requests IOKIL
I0.RLB 201000 Read Logical Block IORLB
I0.RVB 010400 Read Virtual Block IORVB
I0.WLB 200400 Write Logical Block IOWLB
I0O.WVB : 311000 Write Virtual Block IOWVB

Throughout the literature you will find I/O function codes given
in the form wused by MACRO programmers; for example, IO.ATT and
IO.DET. In MACRO, these codes can be used directly as function
codes in a QIO directive, and the proper octal values will be
inserted. 1In FORTRAN, you must determine the octal value for the
function and use that value in the CALL QIO or CALL WTQIO. For
instance, to issue an ATTACH, you could use:

CALL QIO("140@,,4s7r41¢+)

In order to make QIO calls more readable, it is recommended that
you create a DATA statement for any needed QIO functions using the
suggested variable names shown above. While the actual name |is
arbitrary, (but must be an integer variable), a certain degree of
standardization will be achieved by using the MACRO symbol without
the period (IOATT versus IO.ATT). Hence to perform an ATTACH:

DATA IOATT/"1400/
CALL QIO(IOATT,srrrvrr)

The octal values for all function codes can be found in Appendix B
of the RSX-11M/M-PLUS I/0 Driver's Reference Manual.

67

USING THE QIO DIRECTIVE

LOGICAL UNIT NUMBERS (LUNSs)

The device for an I/0 operation is specified by means of a logical
unit number. The correspondence between logical unit numbers and
physical devices is made initially at task- bu11d time.

The default LUN assignments set up by the Task Builder are as
follows:

LUN #1 - SY:
LUN #2 - SY:
LUN #3 - SY:
LUN #4 - SY:
LUN #5 - TI:
LUN #6 - CL:
LUN #7 - TI:

LUN 7 is typically used for error messages.

These default assignments may be overridden at task-build time by
using the ASG option. Additional LUNs can be created (up to a
total of 25@ LUNs) by using the UNITS option.

Once a task 1is installed, an operator <can . check the LUN
assignments for the task by using the DCL SHOW LOGICAL_ UNITS
command (LUN in MCR). The assignments can be changed by an
operator using the DCL ASSIGN/TASK command (REA in MCR). The LUN
assignments can also be checked at run time wusing the Get LUN
directive (CALL GETLUN), and changed using the Assign LUN
directive (CALL ASNLUN).

SYNCHRONOUS AND ASYNCHRONOUS 1/0

There are two kinds of I/0, synchronous I/0 and asynchronous 1I/0.
With synchronous I/0, the Executive provides sychronization. When
a task issues an I/O request, it doesn't get control back from the
Executive until after the 1I/0 packet 1is queued, and the I/0
operation (the transfer performed by the service routine itself)
is completed. In other words, the synchronous I/0 request asks
the Executive to queue the I/0 packet and then place the task in a
"Wait For" state, waiting for the specified event flag to be set,
at which time the actual I/0 is complete.

68

USING THE QIO DIRECTIVE

Figure 3-1 shows the flow of instructions during the processing of
a synchronous I/0O operation. The task does not execute the
instruction following the QIO directive until after the 1I/0
transfer itself has completed.

Figure 3-2 shows a time diagram illustrating the same 1I/O
operation. Note that once the QIO directive is executed at step
1, the task doesn't execute again until step 8, after the transfer
has completed. The system handles all synchronization with
synchronous I/0. Use the CALL WTQIO directive to invoke this type
of I/0. (CALL WTQIO is a combination of a QIO and a WAITFR).

Commentary to Figures 3-1 and 3-2:

User task executes WTQIO directive.
Executive queues the I/0 request.
Executive calls the driver.

Driver begins the I/O transfer.

Driver handles I/0 transfer as necessary.
I/0 transfer completes.

Driver finishes up and notifies task the I/0 is completed.

User task continues.

69

USING THE QIO DIRECTIVE

EXECUTIVE

QIO DIRECTIVE
ROUTINE

USER TASK

@0 pirecTIvVE
o . Qo PACKET)

—»1 DEVICE DRIVER

() | N\

5}
(6) I/0 QUEUE
o

21

TK-7507

Figure 3-1 Execution of a Synchronous I/0O Request

USER TASK _____2 (s)
: ——
QIO DIRECTIVE :___Q_g !
| |
DRIVER L___e ;__2!
I
I ‘

1/0 TRANSFER

TIME

TK-7609

Figure 3-2 Events in Synchronous I/O

70

USING THE QIO DIRECTIVE

with asynchronous I/O, the Executive still queues the I/0O request.
However, when a task issues an asynchronous I/0 request, the
Executive passes control back to the task immediately after the
1/0 packet is gqueued to the driver. You must provide
synchronization concerning the completion of the actual 1I/0
transfer. This could occur at various times, depending upon such
factors as how many other I/0 packets are already in the driver's
I/0 queue, and the speed of the device itself. The task executes
in parallel while the I/0 transfer takes place. In Figure 3-3,
the instruction after the QIO request is executed after the I/O
packet is queued and the driver has. started the transfer, not
after the I/0 transfer completes. The task continues executing
unless it chooses to wait. Figure 3-4 shows a time diagram
illustrating asynchronous I/0.

Note that after the QIO directive is executed at 1 , the task
begins executing again at step 5 . In this example, the task
waits for the I/0 transfer to complete at step 5a . If vyou use
asynchronous I/0, you must provide any synchronization yourself,
using event flags or by testing the I/O status block. The task
shown in Figures 3-3 and 3-4 uses a Wait For Event Flag directive
at step 5a . Use the directive CALL QIO to invoke this type of
I/0.

The advantage of asynchronous I/0 is that your task can continue
processing in parallel with the I/O transfer. For example, you
can perform computations while waiting for a read or a write
operation to complete. Of course, if you need the information
from the read before you can do anything else, it is better to use
synchronous 1/0.

71

USING THE QIO DIRECTIVE

Commentary to Figures 3-3 and 3-4:

O 000 60 0000

User task executes QIO directive.
Executive queues I/O request.
Execﬁtive calls the driver.

Driver begins the I/O transfer, and passes control back to
the user task.

Driver handles I/0 transfer as necessary. User task
executes in parallel with I/0 transfer.

User task waits for I/O operation to complete.
I/0 transfer completes.

Driver finishes up and Executive notifies task that I/0 is
completed.

User task continues.

72

USING THE QIO DIRECTIVE

EXECUTIVE
T ——

| "QI0 DIRECTIVE
ROUTINE

USER TASK /
—©

°Q|O DIRECTIVE
L]

o

- * . QO PACKEﬁ

o \. PV
(4] ,
o -

o
1/0 QUEUE
o

TK-7518

Figure 3-3 Execution of an Asynchronous I/0 Request

o o O o
USER TASK [— —
QIO DIRECTIVE i ° ol ; é
DRIVER E__?_; :—2:
1/0 TRANSFER =L 0 o

TIME

TK-7513

Figure 3-4 Events in Asynchronous I/0

73

USING THE QIO DIRECTIVE

MAKING THE I/0 REQUEST

Specify the following information in the CALL QIO or CALL WTQIO
when requesting I/0:

e Synchronous or asynchronous I/0, by using the appropriate
directive.

e The I/0 function to be performed.
e The LUN to be used for the I/0 operation.

e An event flag number, if any, to be used for
synchronization. This is required for synchronous I/0.

e The address of an I/0 Status Block (IOSB). The IOSB is
used to pass status and other information about the I/0
operation back to the task.

e The I/0O parameter list (up to six words) which specifies
information for the particular device and I/0 function
requested.

e The Directive Status Word (DSW)

Table 3-2 shows the I/0 parameter list arguments which are needed
for each of the standard I/O functions with the full-duplex
terminal driver. Note that for write 1logical block and write
virtual block, the wvertical format control characters are the
standard FORTRAN carriage control characters.

Table 2-3 in section 2.3 of the RSX=11M/M-PLUS 1I/0 Driver's
Reference Manual 1lists these standard functions and the other
device-specific functions available with the full-duplex terminal
driver. The device-specific functions will be discussed later in
this module. If your RSX-11lM system has the half-duplex terminal
driver, Table 3-3 1in section 3.3 lists the functions available
with that driver. For other devices, there 1is a corresponding
table in the appropriate chapter of the manual. ‘

74

USING THE QIO DIRECTIVE

Table 3-2 1I/0 Parameter List for Standard I/O Functions

Function I/0 Parameter List
Attach None needed
Detach None needed
Kill None needed

Read Virtual Block
and
Read Logical Block

Write Virtual Block

and
Write Logical Block

word 1 -
word 2 -
word 3 -

NOTE :

words 4,
word 1 -

word 2 -
word 3 -

Octal
value

040
0960
261

44

@53
pao

words 4,

buffer starting address

buffer size (in bytes)

optional timeout count

(in 19 second intervals)

Only used if a special sub-
function bit is set. See the
section on Terminal I/O0.

5, and 6 - unused

buffer starting address

buffer size (in bytes)

vertical format control, as
follows (these are the standard
FORTRAN carriage control char-
acters):

ASCII
character Meaning
blank single space
/] . double space
1 form feed
$ prompting output-

stay in same
location after

output
+ overprint
null no implied format"

control - use
internal control

5, and 6 - unused

75

USING THE QIO DIRECTIVE

THE 1/O PARAMETER LIST IN FORTRAN

The parameter list must refer to an integer array declared 1in a
DIMENSION statement with a dimension of six. When used in a QIO
directive, the parameter 1list array name 1is used without a
subscript.

DIMENSION IPAR(6)
CALL QIO(,,,ssIPAR,)

Some entries in the parameter list must be the addresses of arrays
or variables. Since FORTRAN does not provide this capability, you
must use a system subroutine called GETADR to get the addresses.
(See the RSX-11M/M PLUS Executive Reference Manual and the
appropriate user's guide for further 1nformation. To get the
addresses of two variables IBUFF and JBUFF and place the addresses
in array K, use the following:

DIMENSION K(2)
CALL GETADR(K,IBUFF,JBUFF)

The address of IBUFF will be in K(1) and the address of JBUFF will
be in K(2) at the completion of the CALL GETADR.

ERROR CHECKING AND THE 1/O STATUS BLOCK

There are two kinds of errors which can be produced by QIO
directives, directive errors and I/0 errors. The various
directive and I/0 status codes and their meanings are 1listed in
Appendix B of the RSX-11M/M-PLUS I/0 Drivers Reference Manual and
also in the RSX-11lM Mini-Reference.

Directive errors are produced due to errors 1in processing the
directive and getting the 1I/0 packet queued up to the device
driver. As with other directives, QIO directive errors are
indicated by a negative value in the DSW upon return to the task
code. Success is indicated by a positive value (typically +1) in
the DSW. Thus, the directive status indicates the success or
failure of the attempt to queue the 1I/0 packet. Check for
directive errors immediately upon return to the task, after the
QIO directive is issued.

76

USING THE QIO DIRECTIVE

Upon completion of the I/0 transfer itself, the Executive returns
status information concerning the I/0 transfer to the I/0 Status
Block laid out as follows:

Device Dependent I/0 Status word

Actual Number of Bytes Transferred word

The low-order byte of the first word of the 1I/0 Status Block
contains the I/0 status code. Note that this is a byte value, not
a word value. A positive I/0 status code (usually +1) indicates
success, Negative values indicate various error conditions. The
second word of the I/0 status block indicates the number of bytes
actually transferred, which is significant in the case of any read
or of a write which ends after only some of the data is
transferred. The device dependent byte indicates, for reads, the
character which was used as a terminating character (<RET>,
CTRL/Z, <ESC>, etc.).

The I/O status byte should be checked only after the I/0 transfer
completes. For synchronous I/0, the I/0 status should be checked
immediately after checking the DSW, since the I/0 transfer itself
also completes before control is returned to you. For
asynchronous I/0, on the other hand, the 1I/O status should be
checked when the task is notified by the Executive that the
transfer 1is complete. Synchronization 1is discussed in the
following section, after an example of synchronous I/0.

THE QIO DIRECTIVES
Synchronous 1/0
The format of the CALL WTQIO is:

CALL WTQIO(ifn,lun,efn,pri,iosb,iopl,ids)

where

ifn - I/0 function code

lun - Logical unit number

efn - Event flag number (required for synchronous I/0)
pri - Priority (not used but must be present)

iosb - I/0 status block address
iopl - I/0 parameter list, integer array up to six elements
ids - Directive status word

77

USING THE QIO DIRECTIVE

An event flag must be specified for synchronous I/0. If one is
not specified, the I/O request is handled as an asynchronous I/O
request. The priority is included to allow compatibility with
RSX~11D. It is not used in RSX-11M. The I/0 parameter list is a
single directive parameter. Hence, the entry must be for an array
of up to six elements. Six words are always placed in the DPB for
the 1I/0 parameter 1list, whether or not all six words are
specified. It is best to reserve six words. If you do not, you
may end up with data from the array(s) defined immediately after
the variable defined for the parameter being used in the parameter
list for a QIO.

Example 3-1 shows the use of synchronous QIOs. The following'
notes are keyed to the example.

© The two-word (four-byte) I/O status block for return of
I/0 status and the buffer into which the data will be read
and from which the data will be displayed. IOSB is
declared as a byte array so that the program can examine
the I/0 status byte in IOSB(l). The program also needs to.
use the byte count of the number of bytes read by the QIO.
This count is found in IOSB(3) and 1IOSB(4). Since the
program needs this as an integer value, the
EQUIVALENCE (NUM,IOSB(3)) is used.

IBUF is the buffer used to hold the characters read by the
WTQIO directive.

(’ Issue the read request. We are using LUN 5, event flag 1,
and IOSB which 1is the four-byte (two-word) array to
receive I/0 status after the IORVB. The 1I/0 parameter
list 1is set up as a single parameter (IPAR) which refers
to an integer array. IPAR(l) must contain the address of
IBUFF which 1is the buffer into which the characters will
be read by the IORVB. Since this is an address, use CALL
GETADR to get the address into IPAR(l). IPAR(2) is the
maximum buffer size for the IORVB. If input is terminated
with a terminating character, such as a carriage return,
before 80 characters are typed, the number of characters
actually read will be returned in the second word of the

" status block (IOSB(3)). Input will be terminated
automatically after the eightieth character, 1if 840
characters are typed. In that case, 80 will be returned
in the second word of the status block.

© Check for directive error - failure to queue the 1I/0
packet.

78

USING THE QIO DIRECTIVE

With synchronous 1/0, the I/O operation has completed when
we get <control, so also check the I/0O status. A value
less than @ indicates an error in the I/0 transfer.

The count of characters typed 1in 1is in NUM (IOSB(3)).
Check on and convert only this many characters. Check
each character to see if it is in the range ASCII A to
ASCII Z. If so, convert to lowercase by adding
32(19)=40(8) to that value, or else continue.

Write the buffer BUFF, which has the converted message.
This 1is a Write Virtual Block. The third argument in the
I/0 parameter list, "4¢, is for vertical format control.
"4¢, which 1is an ASCII space, indicates single line feed
before writing the line.

Check for directive error or I/0 error.

NOTE

Although both virtual block and logical block
operations are permitted to a terminal, it is
safer to use virtual block operations. If
the 1I/0 is actually performed at a terminal,
the virtual block request gets converted to a
logical block request. If 1logical block
writes are used and someone reassigns the LUN
to a disk, for example, the write may
overwrite a block on the disk. If, on the
other hand, someone reassigns the LUN and
write virtual blocks are used to a disk, the
write will only be allowed if a file is open
on the disk, which will fail in most cases if
the program is writing to a terminal.

79

USING THE QIO DIRECTIVE

FROGRAM SYNCHQ
&
0 OFILE SYNCHO.FTN
G
I This rrogram reads 3 lire of text from the terminalsy
G converts asnw urrer case characlers to lower case and
 erints the converted message bhack at the terminal.
¢ It uses swnchronous QI0 directives.
™

" BYTE I0OSEC(4)y IRUF(80)
NIMENSION IFAR(S)
EQUIVALENCE (NUMyTOS8SR(3))
DATA TOWVE/%11000/
0a7TA TORVE/*10400/

NHAaTA IVFC/"40/
C Selt u~ values for the QL0
TUNTT =% ‘
TFAR(2)Y =80
TFAR(ZY=TVFC
i Get the address of the /0 buffer
CALL GETANRCIFARCLY v TRUFC1))
s Issue the QIO
CALL WTRIOQCIORVEsTUNIT 1y vy IOSRBy IFPARY INS)
 Check the directive anmd 1/0 statuses
IF CI0s LT. Q) GO TO 800
IF CLO8ROLY LT, 0) GO TO 810
C Check for usrercase characters and convert them to lowercase
no 100 I=1yNUM
IF (IBUFCDY LT A7) GO TO 100

G’ IF CIBUFCIY «GT. 9202 GO TO 100 1Z is 90010)
TRUF (L) =TIRBUF (I +32
100 CONTINUE
I Flace the rnumber of characters to write inm the I1/0 rarameter list
IPAR(2)Y=NUM

C Write the converted lime to the terminal

CAlLL WTRIOCTIOWVEs IUNITs Ly s IOSERy IFAR, IIS)
S Check directive and I/0 status)

IF (Ins LT, 0) GO TO 820

IF (I0SRCLY LT, O) GO TO 830

GO TO 8%0

-~

800 WRITE(S» 20008
GO TO 8%0

810 WRITE (G910 T08RC1)
GO TO 830

820 WRITE(Sy920)108

GO TO 83O

Example 3-1 Synchronous I/0 (Sheet 1 of 2)

80

USING THE QIO DIRECTIVE

330 WRITE(Sy930)I0SERCL)
8350 Call. EXIT
£00 FORMAT (4 RIRECTIVE ERROR ON READy CODE = ‘»14)
QL0 FORMAT(’ I/0 ERROR ON REAIly CODRE = ‘»14)
- R20 FORMAT(’ DIRECTIVE ERROR ON WRITE, CORE = ‘»14)
930 FORMAT(’ 1/0 ERROR ON WRITEy CODE = ‘»14)

ENI i i

Rur Session

*RUN SYNCHQ
ABCLEFGHIJk lmnorarstuvwwz123454678L I\
abhcdefghidhlmrnorarstuvwxwezl2345678C N

Example 3-1 Synchronous I/O (Sheet 2 of 2)

81

USING THE QIO DIRECTIVE

Asynchronous 1/0
The format of the CALL QIO is:

CALL QIO(ifn,lun,efn,pri,iosb,iopl,idsw)

where

ifn =~ I/O0 Function code

lun - Logical Unit Number

efn - Event Flag Number

pri - Priority (not used but must be present)

iosb - I/0 Status Block Address

iopl - I/0 Parameter List (up to 6 words)
idsw - Directive status word
Synchronization With Asynchronous I/0 -- As mentioned earlier,

event flags may be used for synchronization. If an event flag is
specified, the Executive clears the event flag when the I/O packet
is queued and sets the flag again when the I/0 transfer completes.
This happens with both synchronous and asynchronous 1I1/0, if an
event flag 1is specified. With asynchronous I/0, the task can

specify a flag and use it for synchronization using one of the
following techniques:

1. Do some work, then wait for the flag to be set.

2. Work the entire time, periodically checking the flag until
it is set.

A third technique is to monitor the contents of the I/0 status
byte of the 1I/0O status block. The entire I/O status block is
cleared when the I/0 request is queued to the driver. Later, it
is filled in when the I/0 transfer completes. Therefore, the user

task can periodically check the contents of the I/0 status byte
for a nonzero value.

82

USING THE QIO DIRECTIVE

Example 3-2 demonstrates the use of asynchronous I/0 to perform
the same function performed in Example 3-1. This task can do some
work in parallel with the I/0 transfer. The following notes are
keyed to the example. ’

" Issue the read via CALL QIO instead of CALL WTQIO. All
arguments are the same as for a CALL QIO. The Executive

will clear event flag 1 when the I/0 packet is dueued and
set it when the I/O operation completes.

© cCheck for directive errors immediately. Here, we are
checking for an error in queueing the I/0 packet.

‘, While the I/0 transfer itself takes place, we can do some
work. Here we fill the array at K with the values 64,
128' ...'64g.

@ Wwhen we are finished with our work, we wait for the event
flag specified in the CALL QIO directive. It will be set
when the I/O operation completes.

© 1Now that the I/0 operation is finished, check for 1I/0
errors.

After converting the message to 1lowercase, 1issue the
write.

" This time, we wait for the flag to be set right after we
check the directive status. We could do some more work
here. 1If in fact we are going to just wait, it is simpler
and more efficient to wuse synchronous I/0 (WTQIO).
Synchronous I/0 is more efficient because we perform both
functions (QIO and WAIT) in one Executive directive call.

"If you use an asynchronous QIO for either reading or writing, you

should not use a FORTRAN READ or WRITE to the same lun until you
are certain that the QIO has completed.

83

USING THE QIO DIRECTIVE

FROGRAM ASYNCG
e
C FILE ASYNCQ.FTN

£ This srodram reads @ line of text from the terminals
 converts anw urrer case characters to lower case and
¢ erints the converted messade back al the terminsl.
C It uses aswnchronous QI0s and an event flag for
C sunchromization.
[
BYTE TOSE(4)y IRUF(80)
DNIMENSION TFARGSI s K(10)
EQUIVALENCE (NUMsIOSR(3))
ODATA TOWVR/Y11000/
0AaTA TORVE/Z"10400/
NATH TVFC/"40/
[Selt us values Tor the QI0
JUNIT=5
IFAR(2)=80
IPAR(Z)) =TVFC
G Get the sddress of the 1/0 buffer
CALL GETADRCIPARCL) s TRUF (1))
¢ Issue the QI0
CALL QIOCIORVEByIUNITs Sy s I0SB IFAR T1IS)
(> Check the directive status
IF CIng JLT. 0) GO 70 800
C Do some work while 170 oreration is heing rerformed
g 50 I=1.10

KL y=64%]
50 CONTINUE
[Wait for 1I/0 to comerlete
" CALL WAITFR(SI1DS)
C Checlk directive status

IF (Ing i.7. Q) GO TO 805
. Check the 1I/0 status
IF (I08ROL)Y LT. 0) GO TO 810
 Converlt to lowercase
00 100 I=1y¢NUM
IF CIRUFCLY LT, “47) GO TO 100
IF (IBUFCTY GT. *132) GO TO 100
TBUF (D) =TRUF(I)+32
100 CONTINUE
2 Set uer 1I/70 Farameter List for write
IFAR(2)=NUM
C Write the converted lime to the terminal
CALL QIOCIOWVRyIUNIT»S»y I0OSRy IFAR INIS)
o Check directive status
IF (Ins JLT. O) GO TO 820

Example 3-2 Asynchronous I/0 Using Event Flags
for Synchronization (Sheet 1 of 2)

84

USING THE QIO DIRECTIVE

 Wait
@ CALL WALITFR(S,1ID8)
> Checlk directive status
IF (Ing JLT. 0) GO TO 825
¢ Check the 1/0 status
IF (T0SROLY LLT. O GO TO 830
GO TO 850

for the I/0 to comrlete

s,

8300 WRITE(Sy900) 106
GO TO 850
80% WRITE (S, 208108
GO TO 850
810 WRITE(S91L0)I0SROL)
GO TO 850
820 WRITE(Ss 2200106
GO TO 850
825 WRITE(Sy 925108
GO TO 850
8330 WRITE(5y930)108R(1L)
850 CaLl EXIT
PO0 FORMAT (Y DIRECTIVE ERROR ON READly CODE = ‘514)
0% FORMAT (7 DIRECTIVE ERROR ON 18T WALTy CODE = ‘514D
P10 FORMATCY 170 ERROR ON REAly CODE = “5y14)
$20 FORMAT ¢’ DIRECTIVE ERROR ON WRITEs CODE = ‘y14)
P25 FORMAT (7 DIRECTIVE ERROR ON 2NIN WALT, COIE = ‘514)
930 FORMAT (Y 170 ERROR ON WRITEs CODE = ‘y14)
ENI

Run Session

»RUN ASYNCQ
abedefaghRKJHKJIHKHFRTEWawryugiuroZCVovihvernbMENM7 (8534243 ¢/
ahedefghldhkdhbkhfriewewryuwiurozovevbvenbmbrm7 (8534243 17

Example 3-2 Asynchoronous I/0 Using Event Flags
for Synchronization (Sheet 2 of 2)

85

USING THE QIO DIRECTIVE
TERMINAL 1/0

Device Specific Functions

In the following discussion, references to function codes and
subfunction codes are made via the global symbols used when
programming in MACRO. This is done because all references in the
literature to these codes use the MACRO symbols. Several examples
of how to use these in FORTRAN programs are shown below.

Some device specific function codes are listed in Table 3-3, shown
below. Table 2-3 1in section 2.3 (on the QIO macros) of the
RSX-11M/M-PLUS I/0 Driver's Reference Manual 1lists all of the
available special functions for the full-duplex terminal driver.
As noted, some of these functions are SYSGEN options. Many of the
device-specific functions are selected using subfunction codes.
These codes may be ORed with standard or device-specific function
codes to produce special functions. For instance, the subfunction
TF.TMO (read with timeout) may be ORed with a read function such

as IO.RLB to produce a function of "read logical block with
timeout."

The octal values for TIO.RLB and TF.TMO are 1966 and 200,
respectively; hence the combination of the two functions is
represented by the octal value 1200.

This can coded in FORTRAN as follows:
CALL QIO("lzgﬂlllllll)
or, to improve readability:
INTEGER TFTMO
DATA TFTMO/"200/
DATA IORLB/"100@/
CALL QIO(IORLB.OR.TFTMO,,srrvs+)

Another way to produce this function which you may £find simpler
is:

INTEGER RLBTMO

DATA RLBTMO/"1200/
CALL QIO(RLBTMO,,srrvs)

86

USING THE QIO DIRECTIVE

Table 2-4 in Chapter 2 of the I/0 Driver's Reference Manual lists
the wvarious combinations which are possible. For example, TF.TMO
(read with timeout) ORed with a read . function (IO.RLB, TIO.RPR,
IO.RNE, etc.) terminates the read if the specified time period
goes by between keystrokes. For additional information on the
device-specific function codes, see section 2.3.2 (on
Device-Specific Functions) in the RSX-11M/M-PLUS I/0 Drivers
Reference Manual. Examples of the use of Read After Prompt, Read
No Echo, and Read With Timeout are included in this module.

Note that if you use subfunction codes with read or write function
codes, you should use 1logical operations rather that virtual;
i.e., use IO.RLB and IO.WLB rather than IO.RVB and IO.WVB. The
reason for this is that when a virtual operation is requested on a
terminal, the Executive converts the operation to a 1logical
operation. In the process, any subfunction codes are lost.

170 Status Block and Terminating Characters

As for other I/0 functions, the low-order byte of the first word
of the 1I/0 status block contains the I/0 status byte, indicating
the success or failure of the I/0 operation. Also, the second
word contains the count of characters actually transferred. For
reads from a terminal, the high-order byte of the first word of
the I/0 status block contains the terminating character in ASCII
(<RET>, CTRL/C, etc.) for successful reads. Normally, CTRL/Z is
treated as an error. The I/0O status byte is set to IE.EOF (-10.)
and the character count contains the count of characters read
before the CTRL/Z.

Example 3-4, which follows, shows how CTRL/Z can be handled
specially in a program. Two special function codes, I0.RST and
IO.RTT, allow reads to be successfully terminated by nonstandard
terminating characters. The first allows any non-alphanumeric
character to terminate input; the second allows the user to
specify which character or characters should terminate the read.

87

USING THE QIO DIRECTIVE

Table 3-3 Some Special Terminal Function Codes

Global Octal I/0 Parameter

Symbol Value Function List

I0.RNE 001020 Read With No Echo <{stadr,size{,tmo]l>
(Same as IO.RLB!TF.RNE)

I0.RPR 004400 Read After Prompt <stadr,size,[tmo],

pradr ,prsize,vic>

IO.RST 301001 Read With Any <stadr,sizel,tmo]>
Special Terminators
(Same as IO.RLB!TF.RST)

IO.RTT 305001 Read With Specified <stadr,size,[tmo],
Special Terminators table>

IO.WBT p00500 Write Logical Block, <stadr,size,vfc>
through ongoing I/0
(Same as IO.WLB!TF.WBT)
Task must be privileged

none 001200 Read With Timeout <stadr,size,tmo>

(IO.RLB! TF.TMO)

88

USING THE QIO DIRECTIVE

Read After Prompt

The Read After Prompt function allows the combination of a write
of prompting text followed by a read in a single QIO request. The
I/0 parameter list contains six parameters, three for the read,
and three for the write. The following notes are keyed to Example
3-3.

@ WwTQIO for Read After Prompt. The function code is IO.RPR
(4400 (8)) . The first three parameters in the 1I/O
parameter list are for the read, the last three are for
the write. The write is performed first, followed by the
read. The 44(8) for the vertical format control causes
the prompt text to appear on the next line, followed
immediately on the same line by the prompt for the read.

(’ Use a normal FORTRAN WRITE to echo the input string.

G) If the operator types a CTRL/Z, an error status |is

returned. In this case, we just wish to exit normally.
Therefore, we must check for this condition and handle it
specially.

The ability to use certain function codes, including Read After
Prompt, is dependent on whether the option was included in the
SYSGEN for your system. Before attempting to use these functions,
check with your system manager to see if they'are available.

89

USING THE QIO DIRECTIVE

FROGRAM FROMPT
£
C File FROMPT.FTN

o
C This task issues a3 QI0 for READ AFTER FROMFTy echo’s it
 and rromets again. This continues until a3 CNTRL/Z is tured.

¢
C
BRYTE FROMC22) I Buffer for sromet string
RYTE RUFF(80) : I READL buffer
RYTE I0SE4) 1 I/70 status block
INTEGER FARM(S) P I/70 rarameter hlochk
EQUIVALENCE (NCHARsIOSEB(3)) ! NCHAR is for I/0
(I I count .
DATAH FROM I Fill the sromet buffer
1 /IF-/ylllylel,/alyIslylelyl 'y"t,'y'&;!'y"f-“"!’({:‘"
2 AR SR RAPRAVEAA AAVRE s R I IR M - R S A
nATA TORFR /"4400/ I Read after sromet
[! fumction code
[
C START?:
L S8et ur rarams. Tor QIO
L
CALL GETAOR(FARMC1) »BUFF (1)) t Pl is the address
- I of BUFF
CaLl GETADR(FARMG4) sFROMLYY | P4 is the address
C I of the sromet
FARM(2) = 80 U F2 is the lensth of
- t the bhuffer
FARM(S) = 22 I PS5 is the length of
¢ I the sromet
FARM(&)Y = 3& ' P66 is the rromet
[' format control
[

10 " CALL WTRIDCIORFRy S« 1y vy TOSEFARMIDSY | Invoke RID
IFC 1T08 LT. 0 2 GO TO 100 ! Directive error?
IFC ITO8SROLY LT, O) GO TO 110 ! 1I/0 error?

C
e’ WRITE (5915 (BUFF (1) I=lsNCHAR) ! Echo irnrut
[o ogbring
15 FORMATC 11Xy You tured! “»80A1) | FORMAT for
¢ | echo messade
GO TO 10 I Start over
[
100 TYFE Xy 'Directive error on QIO to READ AFTER
1IFROMPT. D8SW = ‘108 I Dir error
Cal.l. EXIT
C I/70 error. Check for "Z
110 IF (I08R(1) EQ. 10> GO TO 1%0 ! Branch on "2
G’ TYFE Xs'I/0 error on QIO to READ AFTER FPROMFT.
1 DSW = “yI08RCL) I I/0 error
150 Cal.l. EXIT
END

Example 3-3 Prompting for Input (Sheet 1 of 2)

90

USING THE QIO DIRECTIVE

Rum Session

“RUN PROMPT

Plesse ture anwthing! sJkshJHGJIHGHFY134435
You tured! s.kshJHGJIHGHFY 134435

lease ture anuwthing?! hello there

You tured: hello there

Flesse twre anwbthingt ~Z

04 *

Example 3-3 Prompting for Input (Sheet 2 of 2)

Read No Echo

Read No Echo is used to override the default of echoing each
character as it 1is typed. This is used for passwords and other
private information. Example 3-4 wuses this function. The
following notes are keyed to the example.

@ Write prompting text, then leave cursor at that position
for input. This is done by having 'S$' as the first
character in the FORMAT.

© Read No Echo QIO. Standard read parameters except for the
function code.

©® 2s in the previous example, we display the text typed in,
preceded by our own message. Since the Read No Echo
doesn't echo any characters back and hence doesn't move
the cursor on the screen, we precede the text with a
carriage return (15(8)) to get the cursor back to the
start of the 1line. Else, the NO LONGER A SECRET WORD
message will begin away from the left-hand margin, after
the : "SECRET WORD:".

91

USING THE QIO DIRECTIVE

FROGRAM NOECHO
C File NOECHO.FTN
C This task rromets Tor inruty reads it without echo and

0 thern skirs to the next line and disrlaus the inrut
G text and exits.

.
G
BYTE BUFF(80)» I0SE(4) s CRC(1)
INTEGER FARM(6)
o
DATA TORNE /7"01020/ I QI0 Read mo echo code
0ATA CR /7"15/ I Carriadge return character
¢
WRITE (Sy1) I write rromst
1 FORMAT (/$SECRET WORD: /) U Promet string
: 8et ur the 170 rarameter list

CaLl. GETADR (FARM(L) sBUFF (1)) I huffer address
FARM(2) = 80 I Buffer lensth
C Tasue read no echo

CaLLl WTRIO (IORNEsSy1y s JOSRyFARMY IDS)

IF (I0S JLT. O GO TO 100 I ir error?

IF (I08RCL) JLT. O GO TO 110 1 I/0 error?
WRITE (552) CRy(RUFFCI) v I=1I08R(3)) | Echo inmeutl

2 FORMAT (7 “3Aly’NO LONGER A SECRET WORD: ‘»80A1)
CaLL EXIT

G

C Error conditions

[

106 TYPE %y ‘DIRECTIVE ERROR ON READ. STATUS = ‘»1IDS
CALL EXIT

110 TYPE %y “1/0 ERROR ON -READ. CODE = “yI0SR(L)
CaL.L. EXIT
END

Rurn Session

*RUN NOECHO
SECRET WORKS
NO LONGER A SECRET WORD? ADD

Example 3-4 Read No Echo

92

USING THE QIO DIRECTIVE

Read With Timeout

Example 3-5 is a repeat of Example 3-1, but with a timeout on the

read.

The following notes are keyed to the example. Note 2 is in

the run session.

To invoke the timeout mechanism, TFTMO is ORed with the
read function (IORLB). We must use Read Logical Block
here, because any subfunction bits are stripped off when a
Read Virtual Block is translated to a Read Logical Block
function. 1In addition, the third parameter in the 1I/0
parameter list specifies the 1length of the timeout in
lP-second intervals. This timeout occurs if that amount
of time passes between successive keystrokes. If a
timeout occurs, input 1is terminated, but no error Iis
reported. Instead, the success code +2 is returned rather
than the standard +1. '

In the first run, the QIO timed out after KJHKJjjj. In
the second run, the QIO was terminated with a carriage
return before it timed out.

To handle the timeout specially, just check the I/0 status
byte for a value of +2 (IS.TMO). Another alternative for
placing a time limit is to use a Mark Time directive (CALL
MARK) . The timeout with a Mark Time is for the entire
input, rather than for the next keysttoke.

93

USING THE QIO DIRECTIVE

- FROGRAM QIOTIM
C FILE QIOTIM.FTN
[
C This task reasds @ line of text from the termimaly
L converts all urrar case characters to lower cases and
¢ rrints the converted messadge back at the terminal., It
C uses sunchronouws QI0sy with a8 timeout on the read.
-

INTEGER JTOSB(2)sPLIST(3)yNSWsDRCTY

BYTE RUFF(80)5UCCON

EQUIVALENCE (SUCCODyI0SE) | Success code is low
[I hute of 1/0 status
[I block
(0 MNEMONICS

INTEGER TORLEsTFTMOy»IOWVR

DATA IORLEByTFTMO» IOWVER/51000¢"2005 11000/

CALL GETADRC(PLISTsRBUFF)Y V' Fill in buffer address

FLIST(2)Y = 80 ! Length of buffer
FLIST(3) = 1 P Timeout count
‘. CALL WTRIOCIORLEB.OR.TFTMO«Se1 vy IOSRyFLIST s I8W)
o I Issue read

IF (D8W.LT.0) GOTO 1001 ! EBramch on dir error

IF (SUCCOD.LT.0) GOTO 1011 !} Branch on 170 error
¢

o 10 I=1lyI08R(Z) I Get cournt of characters
[P o tured in
(> Check for urrercase ASCII characters must be between A
G oandg Z ’

IF (RBUFFCD) LT /A ORBUFFCTIYLGT7Z7) GOTO 10
C It is urrer caser so convert

BUFFCIY = BUFF(L)+32

10 CONTINUE
FLIST(2)Y = [0SB2) I Character count and
FLIST(3) = "40 ' Format comtrol for

L I outsut
CALL WTQIOC(IOWVEsSs 12 TOSRyFLIST DE8WY | Outeut

[! results

IF (DSW.LT.0) GOTO 1002 ! Eranch on dir error

IF ¢8UCCOD.LT.0) GOTO 1012 ! Branch on 1/0 error
CALL. EXIT

Example 3-5 Read With Timeout (Sheet 1 of 2)

94

USING THE QIO DIRECTIVE

c

C Error code
C
1¢01 DRCTV = 1 I Error on lst QIO
) GOTO 1003 U Print messade and exit
1002 ORCTV = 2 : I Error on 2nd QIO
1003 TYFE 1004+DRCTVDSW

1004 FORMAT (7 DIRECTIVE ERROR ON DIRECTIVE #7512s 7y
1 DEW =‘916)

Cal.l. EXIT :
1011 DRCTV = 1 . ! Error on lst QIO

GOTO 1013 P Print messadge and exitl
1012 DRCTV = 2 P Error on 2nd QI0
1013 TYFE 1014s0RCTV,I0OSR(1)

1014 FORMAT (7 I/0 ERROR ON DIRECTIVE #7212y7y» 1/0
1C00E =/516)
Call. EXIT
END

Rur Session

TRUN QIOTIM
RJHKJddd

kdhbdddd
SRUN QIOTIM
JJJafhkdfiur<RET>
Jdddafthkdgfiure

3
&

Example 3-5 Read With Timeout (Sheet 2 of 2)

95

USING THE QIO DIRECTIVE

Terminal-Independent Cursor Control |

Terminal-independent cursor control is provided if selected at
SYSGEN time. If this 1is done, certain I/0 requests are
automatically converted for you by the terminal driver for the
particular device for which the 1I/0 request is made. This is
typically done with escape sequences used for positioning the
cursor. This allows a task to move the cursor to any position on
the screen and then write a message. This also can be done by
imbedding the terminal-specific escape sequences into the write
buffer. The advantage of wusing terminal-independent cursor
control 1is that the same program will work at different terminals
(VT-52s and VT-100s, for example), without any need for
modification.

To provide cursor control, place the proper value in the vertical
forms control word of the I/0 parameter list. If the high-order
byte in the VFC word is nonzero, the word 1is interpreted as a
cursor position. The high-order byte is the line number, and the
low-order byte is the column number. Home position, the wupper
left corner of the screen, is defined as line 1, column 1. To
start the display at line 14, column 25, place a 1@¢ in the
high-order byte and a 25 in the low-order byte. To do this, use
the expression 10*256.0R.25. 1In general, X*256.0R.Y corresponds
to position X,Y on the screen. If the high-order bit in the line
number byte is set, the screen is cleared before the cursor is
moved.

96

Example
control.

USING THE QIO DIRECTIVE

3-6 demonstrates the use of terminal-independent cursor
The following notes are keyed to the example.

Issue a Mark Time directive. 1In the CALL MARK(3,1,3,DSW),
the first parameter is EFN 3. The 1 is the time interval
magnitude. The second 3 is the time interval unit. A 3
indicates minutes. Hence the directive will set EFN 3 in
one minute.

Issue the second Mark Time directive. This one will set
event flag 2. It is used as the time interval for
updating the time. When the one second goes by and the
flag is set, we check for one minute gone by and update
the time display again if it has not.

Put the address of TIMMSG into PLIST(l).

Put X (line) in high byte and Y (column) in 1low byte of
PLIST(3), which 1is the vertical forms control for a QIO.
When the high-order byte of the VFC is nonzero, the word
is interpreted as a cursor position.

Issue the write. The vertical format control (X*256).0R.Y
places the <cursor before the write at line X, column Y.
The TF.RCU subfunction code (TFRCU) instructs the terminal
driver to save the cursor position before moving it and
then to restore it after writing the hessage. This allows
an operator to continue typing in commands while this task
runs.

Wait for one second to go by.

Read event flag 3. If it is set, the one minute is up and
we should exit.

The display will actually appear at 1line X, column Y on the

screen,

and is updated every second.

97

USING THE QIO DIRECTIVE

FROGRAM DATTIM

C+

C FILE DATTIMJFTN

L

C This task slaces the date and th
¢ oecolumn Y and thern urdates the di
C for 1 minute.

C..-

INTEGER XsYsZ

ODATA XeYyZ/5532917

INTEGER DSWyIT0SB(2)sPLIST(

BYTE SUCCOD, TIMMSG(18)

EQUIVALENCE (SUCCODyIOSR)
[!

INTEGER TOWLRy TFRCU» ISCLR

0ATA IOWLEs TFRCU ISCLR/"40

Call. MARK(3y1s3s05W)

|
!
IF (DSW.LT.0) GOTO 1001 !
CALL MARK(2sZy2yD5W) !
|
IF (OSW.LT.0) GOTO 1002
CALL DATECTIMMSG)
TIMMSGE(10) = 7 7

]
]
!
CalL TIMECTIMMSG(11)) [
CaLl. GETADR(PLIST» TIMMSG)
FLIST(2Y = 18

" FLIST(3) = (XX2896).0R.Y
s Digrlew time

G’ CaLl WTQIOCITOWLEB.OR.TFRCU»
IF (DSW.LT.0) GOTO 1003 !
IF (SUCCON.LT.Q) GOTO 1004

1

O coLL WAITFR(2DSW) !
!
IF (DSW.LT.0) GOTO 1005 !

& Check for 1 mirnute dsone by
" Call READEF (3.08W) !
IF (NSW.LT.0) GOTO 1006 !
IF (NSW.ER.ISCLRY GOTO 10
. ,
g ;
C !
C !

BOTO 1100

Example 3-6

28

@ time at line X
srlay every Z seconds

3

! Low bute of status
block is success code

OvlsQ/
Set ur to

1 minute
Branch on

exit after

dir error

Set event flag 2 after
Z seconds
Get date in bwtes 1-9

Insert srace between
date and time
Get time in bwte 11-18

Srles TOSRYyPLISTDSW)
Branch on dir error
b Branch on 170

@rror

Wait for mark
@xrire
Branch on

time to

dir error
Check event flad
Branch on dir error
I Check for flad
already clear. If
cleary mirute

not ur welty urdate
disrlay asdgain

Terminal-Independent Cursor Control (Sheet 1 of

2)

USING THE QIO DIRECTIVE

- Error code

1001 WRITE (5s1051) DSW
GOTO 1100
1002 WRITE (3-10352) DSW
GOTO 1100
1003 WRITE (55,1053) DSW
GOTO 1100
1004 WRITE (35y1034) SUCCOD
GOTO 1100
1005 WRITE (S5»1035) DSW
GOTO 1100
1006 WRITE (391056) DSW
GOTO 1100
1051 FORMAT (/ ERROR ON MARK TIME FOR 1 MINUTE. DSW =
1 7518
1052 FORMAT (/ ERROR ON MARK TIME FOR 1 SECOND. DSW =
1 79I

1053 FORMAT (¢ DIRECTIVE ERROR ON WRITE. DSW = ‘»15)
1054 FORMAT (7 I/0 ERROR ON WRITE. CODE = ‘»13)
10535 FORMAT (7 ERROR ON WAIT FOR. DSW = ‘515)
1056 FORMAT (7 ERROR ON CLEAR EVENT FLAG. DSW = 7yI5)
1100 caLL EXIT

END

Run Session

12-MAR-82 11112154
*RUN DATTIM I DISFLAY WILL START AT LINE S, COLUMN 32

Example 3-6 Terminal-Independent Cursor Control (Sheet 2 of 2)

Now do the tests/exercises for this module in the Tests/Exercises
book. They are all lab problems. Check your answers against the
solutions provided, either in that book or in on-line files.

If you think that you have mastered the material, ask your course
administrator to record vyour progress in your Personal Progress
Plotter. You will then be ready to begin a new module.

If you think that you have not yet mastered the material, return
to this module for further study.

929

USING DIRECTIVES FOR
INTERTASK COMMUNICATION

USING DIRECTIVES FOR INTERTASK COMMUNICATION

INTRODUCTION

The RSX-11M program development features allow modular development
of programs; the multitasking feature allows a modular approach
to applications.

A system of multiple tasks may require one or more of the
following services provided by executive directives under RSX-11M,

e First task requests that the second task be run.

e First task is notified of completion of the second task
operation.

e Tasks pass data to each other.

This module explains how to use system directives for this type of
coordination between tasks.

OBJECTIVES

e To use directives which control task execution to
synchronize cooperating tasks

e To use the send/receive directives to pass data between
tasks

e To write tasks which spawn subtasks using parent/offspring
directives

RESOURCE

e RSX-11M/M-PLUS Executive Reference Manual, Chapters 2 and
4 plus specific directives in Chapter 5

193

USING DIRECTIVES FOR INTERTASK COMMUNICATION

USING TASK CONTROL DIRECTIVES AND EVENT FLAGS

It is generally good programming practice to divide a single
complex task into a number of separate tasks, with each task
performing a distinct logical function. The use of a group of
tasks to perform a complex function frequently makes good sense,
especially where different parts of the process may run at widely
differing speeds, each more or less independent of the others.

Suppose, for 1instance, that one needs to simulate customer
transactions at a bank. There are, say, five windows and up to 15
customers can physically stand in line at a time, given the size
of the waiting area. One might design a group of tasks, one task
per line, to simulate this complex system. This approach has the
advantage of simulating the related, but essentially parallel,
processes in a more realistic manner than would a single, serial,
simulation. A further advantage of a multitasking approach to
such a job is that changes in the behavior of the system that are
caused by changes in a single line (e.g., by assigning different
sorts of transactions to different lines) can be easily simulated
merely by modifying the task that simulates that line.

An RSX-11lM programmer typically uses a mix of four multitasking
methods:

e Common or group global event flags, together with
synchronization and task scheduling directives, are used
to synchronize tasks.

e Resident commons are used to share data in memory.

e Memory management directives are used to <create and/or
share data areas dynamically at run time.

e File handling routines are used to open disk files for
shared access.

The use of shared regions, memory management directives and files
are covered in later modules.

195

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Directives

Table 4-1 lists the various task control directives which are
available for task synchronization. Most of them were discussed
in earlier modules. All of the directives are documented

individually in Chapter 5 of the RSX-11M/M-PLUS Executive
Reference Manual. : . :

Table 4-2 shows the differences between suspending and stopping a
task. The major difference is that stopping puts the task into a
stopped state which effectively lowers the task priority to @,
allowing any active task to checkpoint it if it is checkpointable.
Suspending or waiting, on the other hand, keeps the ‘task competing
for memory space on the basis of its running priority. This means
that if the task is checkpointable, only tasks of higher priority
can checkpoint it. ‘Waiting for an event flag affects
checkpointability the same way as suspending.

Table 4-3 lists the various event flag directives which are
available for synchronization.

106

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Table 4-1 Task Control Directives
and Their Use for Synchronizing Tasks

Directive Example of Use for Synchronization

FORTRAN CALL

REQUES
RUN

ABORT

SUSPND
STOP

RESUME
USTP

Issuing task activates target task;
target task then performs some operation
for issuing task

Issuing task aborts target task

A task suspends or stops itself to
wait for completion of another
task operation

A task suspends or stops itself
until it is needed by another task

A task resumes or unstops another
task which has suspended or stopped
itself while waiting for it

to complete some operation

A task resumes or unstops another
task when it needs the other task's
services

A task can also be resumed:
- by its own AST routine
- by an operator using a DCL CONTINUE
command (RESUME in MCR)
A task can also be unstopped:
- by its own AST routine

- by an operator using a DCL START
command (UNS in MCR)

107

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Table 4-2 Stopping Compared to Suspending or Waiting

Stopping

Suspending or Waiting

Priority is effectively
dropped to 0

Task can be checkpointed
by any other task (if
checkpointable)

Likelihood of being
checkpointed increases.

Frees memory for other
tasks

Task response time
increases dramatically
if task is checkpointed

Priority remains unchanged

Task can be checkpointed
only by tasks of higher
priority

Likelihood of being check-
pointed remains normal

Continued allocation of
memory can block out lower
priority tasks

No change in task response
time, because no change

in likelihood of being
checkpointed

198

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Table 4-3 Event Flag Directives and
Their Use for Synchronizing Tasks

Directive

Example of Use for Synchronization

FORTRAN CALL

CLREF

SETEF

WAITFR
STOPFR

STLOR
WFLOR

READEF

A task clears the event flag, then waits

for it to be

set by another task

A task performing an operation for

another task

sets an event flag to

signify completion of the operation

A task waits
operation by

for completion of an
another task by waiting

or stopping for that task to set an

event flag

A task waits
of the first

A task tests
operation by

or stops for the completion
of some set of operations

for completion of an
another task, without

waiting or stopping for it

109

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Example 4-1 shows the use of the Request Task (REQUES), Suspend
(SUSPND) , and Resume (RESUME) directives for synchronization. The
following notes are keyed to the example. Notes 1,2 and 5 are 1in
TASKA. Notes 3 and 4 are in TASKB. ;

" TASKA requests TASKB. This means that TASKB must be
installed wunder the name TASKB. After this, both tasks
are active and compete for memory and CPU time.

@ TASKA suspends itself. After this it still competes for
memory at its regular priority, but not for CPU time.

G’ TASKB types out a message and then resumes TASKA. More
typically, TASKB would perform some - service for TASKA
rather than just typing a message. After TASKB resumes
TASKA, they both compete for CPU time again.

(’ TASKB displays another message and then exits.
e, TASKA, now resumed, displays a message and exits.
Depending on the relative priorities of TASKA and TASKB and on the

particular task scheduling options on your system (e.g., round

robin scheduling, etc.), steps 4 and 5 may be reversed on the
run session.

110

USING DIRECTIVES FOR INTERTASK COMMUNICATION

FROGRAM TASKA
FILE TASKA.FTN

This task recuests TASKE to runy and then susrends
itself. TASKE resumes this task and exits.

Install and run instructions?! TASKA and TASKE must be
installed, Just rum TASKA.)

oaoooaoaoao O

INTEGER DSW
DATA TASKR/GRTASKER/

TYFE %»‘TASKA REGINS AND REQUESTS TASKE’
@ coLL REQUES(TASKEs»DSW)
IF (OSW.LT.0) GOTO 900

TYFE X»’TASKA IS SUSFENDING ITSELF’
© coLL SUSEND(DSW)
IF (DSW.LT.0) GOTO 910

G’ [TYPE Xy ' TASKA HAS BEEN RESUMED
CaLL EXIT
?00 TYFE X»’TASKA UNARLE TO REQUEST TASKE. DSW =
1y D8W
GOTO 1000
?10 TYFE %y /TASKA UNARLE TO SUSFEND. DSW = ’sDS8W
1000 CALL EXIT
END

Example 4-1 Synchronizing Tasks Using Suspend and Resume
(Sheet 1 of 2)

111

USING DIRECTIVES FOR INTERTASK COMMUNICATION

FROGRAM TASKER
C FILE TASKE.FTN

C This tashk is activated bw TASBKA. It rerforms its
C oreration and resumes TASKAy which has susrended
¢ itself,

INTEGER DSW
DATA TASBKA/SRTASKA/

C START?S
C Any oreration could be rerformed herer but in this
C case it’s onlwy & tureout.

‘, PYPE s ‘TASKE I8 ALIVE AND RUNNING’
Call RESUME(TASKADISW)
IF (DSW.LT.0) GOTO 200
TYFE Xy /TASKR HAS RESUMED TASKA AND IS EXITING’
Call EXIT
200 TYFE %y TASKR UNABLE TO RESUME TASKA, DSW = 7,D5W
CAlL. EXIT
NI

Rur Session

»INS TASKA
+INS TASKE
*RUN TASKA

TASKA REGINS AND REQUESTS TASKER
TASKA IS SUSFENDING ITSELF
TASKE I8 ALIVE AND RUNNING
TASKA HAS BEEN RESUMED
TASKE HAS RESUMED TASKA AND IS EXITING

Example 4-1 Synchronizing Tasks Using Suspend and Resume
(Sheet 2 of 2)

112

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Example 4-2 shows the use of event flags for synchronization. In
Module 2, there is a similar example. Here, TASKC requests TASKD,
rather than requiring an operator to start both tasks. Also, Stop
For Single Event Flag is used rather than Wait For Single Event
Flag. The difference between the two is that the first causes the
task to enter a stopped state and the other causes the task to
enter a Wait For (like a suspended) state. The following notes
are keyed to the example. Notes 1,2,3 and 6 are in TASKC. Notes
4 and 5 are in TASKD.

" Clear the event flag to initialize it. It's initial state
is unpredictable, since other tasks may have set or
cleared it.

Request TASKD.

Stop until the event flag is set by TASKD.

TASKD displays a message and sets the event flag.

TASKD displays a message and exits.

TASKC displays a message and exits.

Depending on the relative priorities of the two tasks, significant
events in the system, and other scheduling considerations, the
order of the steps may vary. In particular, steps 3 and 4
above may be reversed, as well as 5 and 6 .

The event flag must be a common or group global, and not a local
- one. In either case, the users on the system must coordinate to
avoid several users using the same event flag for different
purposes. If a group global event flag is used, the flags for
that group may have to be created using either the Create Group
Global Event Flags directive (CRGF) or the DCL SET
GROUPFLAGS/CREATE (FLA /CRE in MCR) command.

The Executive only scans the Active Task List and schedules tasks
for CPU time after a significant event. Setting an event flag
does not cause a significant event. This means that TASKC
normally won't compete for CPU time wuntil at least the next
significant event in the system. If it is important that TASKC
being executing sooner than that, TASKD should issue the Declare
Significant Event directive (DECLAR), causing the Executive to
reschedule tasks. For a discussion of significant events, see
Chapter 2 of the RSX-11M/M-PLUS Executive Reference Manual.

113

USING DIRECTIVES FOR INTERTASK COMMUNICATION

™

fe]

FROGRAM TASKC

FILE TASKCWFTN
task clears an event flag and recuests TASKD to

and then stors until the event flag is set bw

Install and run instructions! TASKD must be installed.
s oJust orurn TASKC,

|
INTEGER DNSWyFILAG
DATA FLAG/33/ IMNEMONIC FOR EVENT FLAG
DATA TASKIV/EGRTASKID/

TYFE % TASKC BREGINS AND REQUESTS TASKD'

CAlL CLREF(FLAG,DISW)
IF (OSW.LT.0) TYFE %s/TASKC UNABRLE TO INITIALIZE
1EVENT FLAG. DSW = ‘¢DGUW

CALL REQUES(TASKDy s DEW)
IF (NSW.LT.0) TYFE X» ‘TASKC UNABRLE TO REQUEST
1ITASKD. DSW = ‘yD5W

TYFE %y TASKC IS WAITING FOR EVENT FLAGY
Call STOFFR(FLAGsDSW)

IF (DSW.LT.0) TYFE %s /TASKC’‘S WAIT REQUEST
IREJECTED, DSW = ‘08U

TYFE Xy 'TASKC HAS RBEEN UNSTOFFED AND WILL NOW
1EXIT”

CaLL EXIT

END

Example 4-2 Synchronizing Tasks Using Event Flags

(Sheet 1 of 2)

114

USING DIRECTIVES FOR INTERTASK COMMUNICATION

FROGRAM TASKD
{:
C FILE TASKDO.FTN
C

C This task is activated by TASKC. It rerforms its
2 oreraztion and sets the flag for which TASKEO is wailing

INTEGER OSWsFLAG
DATA FLAG/ 33/ IMNEMONIC FOR EVENT FLAG

C START?

£ Anw oreration could bhe rerformed herey but in this
o ocase it’s only a tureoutl.

TYFE Xy ‘TASKD I8 ALIVE AND RUNNING-

CalLl. SETEF (FLAGsDSW)

TF (O8W.LT.0) TYFE Xy TASKD UNARLE TO SET EVENT
1FLAG. D8W = ‘»DGH

TYFE X5/ TASKD HAS SET THE EVENT FLAG AND IS
[&EXITING’

CAll EXIT

END '

Rum Session

*INS TASKC

*RUN TASKC

TASKEC BEGINS AND REQUESTS TASKD

TASKC I8 STOFFPING FOR EVENT FLAG

TASKI I8 ALIVE AND RUNNING

TASKDN HAS SET THE EVENT FLAG AND I8 EXITING
TASKC HAS BEEN UNSTOFFED AND WILL NOW EXIT

Example 4-2 Synchronizing Tasks Using Event Flags
(Sheet 2 of 2)

115

USING DIRECTIVES FOR INTERTASK COMMUNICATION

SEND/RECEIVE DIRECTIVES

General Concepts

The Send and Receive directives are used to transmit a 13 word
block of data between tasks. The sequence of events is as
follows:

l. A task issues a Send Data request, specifying a receiver
task and a data buffer.

2. The Executive copies the data buffer into a data packet in
the dynamic storage region (DSR or pool).

3. The Executive places the data packet FIFO
(first-in-first-out) into the receive queue of the
specified receiving task.

4, Later, the receiving task issues a Receive Data request,
specifying a data buffer.

5. The Executive copies the data ‘packet into the buffer
specified by the receiving task.

Directives

Table 4-4 lists the Send Data directive and the wvarious Receive
Data directives. The difference among the Receive Data directives
concerns what happens if there are no data packets in the
receiver's receive queue.

All receive directives receive 15(10) words, including the sender
task name (in Radix-50 format) plus the data. If no sender task
is specified in a Receive Data directive, the first packet in the
receive queue is dequeued, regardless of which task sent it. If a

sender task is specified, only a packet sent by that task is
dequeued.

116

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Table 4-4 The Send/Receive Data Directive

Directive Directive

Name Call Notes

Send Data SEND Sends a 13(10) word
buffer to receiver
Event flag (if used)
set when packet queued
to receiver

Receive Data RECEIV Error if no data
packets queued

Receive Data RECOEX Exit if no data

or Exit packets queued

Receive Data RCST Stop if no data

of Stop packets queued

Synchronizing Send Requests With Receive Requests

Event flags can be used for synchronization. The event flag is
specified by the sending task. This event flag is set when the
data packet has been queued to the receiving task. Thus, a global
or group global event flag may be used to unblock a receiving task
which is active and waiting for the event flag to be set.

In addition, the task control directives <can be used for
synchronization. Table 4-5 summarizes the various synchronization
techniques which might be used. Keep in mind that a Receive Data
directive (RECEIV) causes an error condition (DSW = -8, IE.ITS;
directive inconsistent with task state) if there is no data packet
in the receive queue. Receive Data or Stop (RCST) and Receive
Data or Exit (RECOEX), on the other hand, cause the task to stop
or exit, respectively, if there is no data queued. For further
information about possible synchronization problems, see the
writeup on the Receive Data directive (RECEIV) in Chapter 5 of the
RSX-11M/M-PLUS Executive Reference Manual.

117

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Table 4-5 Methods of Synchronizing a Receiving Task
(RECEIV) with a Sending Task (SEND)

Method

Advantages

Disadvantages

RECEIV issues a Wait
For or a Stop For
Event Flag directive,
followed by a Receive
directive. SEND uses
that (common or group
global) event flag in
its SEND directive.

RECEIV issues a
Suspend or a Stop
directive followed
by a Receive direc-
tive. SEND issues a
Send directive
followed by a Resume
or an Unstop
directive.

RECEIV issues a
Receive Data or Stop
directive., SEND issues
a Send followed by an
Unstop directive.

RECEIV monitors an
event flag periodi-
cally. When the
event flag is set,
RECEIV issues .the
Receive directive.
SEND specifies that
event flag in its
Send directive.

Low system scheduling
overhead.

Does not require an
event flag.

Low system scheduling
overhead.

Does not require an
event flag.

RECEIV can continue
processing in para-
llel with RECEIV.

Requires care in
initializing and
setting flag.
(See Examples 4-3
and 4-4.)

Possible problems
in sequence of
Suspend or Stop,
and Resume or
Unstop, if the
Resume Unstop is
issued before the
receive suspends
or stops.

Possible delay
starting RECEIV
again, if RECEIV
was checkpointed.
(Can be avoided
if RECEIV is
built non-check-
pointable.)

RECEIV must
periodically re-
issue a Read
Event Flag or
Clear Event Flag

directive. Requires

care in initiali-
zing and setting
the flag.

118

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Examples 4-3, 4-4, and 4-5 show the use of Send and Receive
directives by a pair of tasks. Examples 4-3 and 4-4 use an event
flag for synchronization; Example 4-5 uses Receive Data or Stop
along with Unstop for synchronization. The following notes are
keyed to Example 4-3. Notes 1, 5, 6 and 7 are in SEND1l. Notes 2,
3, 4, 8, 9 and 1¢ are in RECV1.

€@ RECV]1 must be run first, or else the event flag will
already be set by SEND1 to indicate that a data packet has
been sent. 1In that case, RECV1 will clear the flag and
wait for it to be set again, and won't realize that a data
packet is already queued to it.

Use a DO loop with "I" as the message = counter. We will
receive and display three messages and then exit.

Initialize the event flag.

Wait for the flag to be set after SEND1 sends the data
packet, placing it in RECV1's receive queue.

Get the data to be sent.

Send the data and set event flag 33 when the data packet
is queued to RECV1.

SEND1 exits.

Receive data from anyone.

Display a header and the data sent. We skip the first two
words (four-bytes) of the buffer, which contain the name
of the sender task in Radix-50 format.

Go through the 1loop which <clears the event flag and
receives again if we have not yet received three messages.
If we have, display a message and exit.

o

119

USING DIRECTIVES FOR INTERTASK COMMUNICATION

FROGRAM SEND1
C
O FILE SENDL.FTN
[
{0 This task rromets at TI! for 8 line of text amd sends
: the data to RECVI for erocessing, Sunchronization is
¢ handled throusgh 2 common event flag. ‘
o
G Install and run instructions! RECVL must be installed
‘. ¢ oand run Frior to runndng SENDL. RECVL continues to run
C until it receives 3 dats racketls.
[
BYTE BUFFER(26)
DATA TEFN 733/ ! Event flag
NATA RTASK/6RRECVL / ! Receiver task
C Promet for insut
G’ TYFE X+ TYFE A LINE OF TEXTy 26 CHARACTERS OR LESS’
READ (S5+10) BUFFER ! Read text
10 FORMAT (26A1)
CALL SEND (RTASKsBUFFERs IEFN.INSW) | Send datas
QO !|:F <irsw .LT. 0) GOTO 900 ! Eranch on dir error

CALL EXIT P Exit

¢ Error code

200 TYFE Xy UNABLE TO QUEUE DATA TO RECVLI. DSW = ‘yI08W
cAaLl EXIT
END

Example 4-3 Synchronizing a Receiving Task Using Event Flags
(Sheet 1 of 3)

120

USING DIRECTIVES FOR INTERTASK COMMUNICATION

FROGRAM RECV1
C FILE RECVILI.FTN
¢ This task receives data from any sender task (e.d.y
C RECV1Y, It srints the data on TI!. Then it waits for

¢ another data racket. It does this until it has received
C 3 messages and then exits.

C This tesk synchromizes with its sender throusgh an
¢ event flas.

C Inmstall amd run instructionsd RECVL must be installed
¢ oand run hefore rurninsg SENDL.

C
INTEGER RBUFF(15) ! Receive buffer
naTa TEFN 733/ I Event flad
¢
ee no 100 I=1+3 A
CaLl CLREF (33y1D8W) I Clear fladg

IF (InsW GE. 0) GOTO 190
TYFE Xy "ERROR INITIALIZING FLAG. DSW = 75 IDSW
GOTO 1000

10 ‘, CALL WAITFR (33y108W) I Wait for a2 send

‘ IF (IDSW EQ. 1) 6GOT0 20

TYFE Xy "WAIT DIRECTIVE FAILED. 0D8W = /yIDSW
GATO 1000 '

20 " CALL RECEIV (yRBUFFyyIDSW) | Receive from anuone
IF (ITnsw JEQ. 1) GOTO 30
TYPE Xy 'RECEIVE DIRECTIVE FAILEXD IN °RECV1",
1 D8W = ‘»INSW
GOTO 1000

30 TYFE X» "DATA RECEIVED RY °"RECV1®:”
WRITE (35y353) (RBUFF(K)sRK=3y13)

35 FORMAT (7 ‘»13A2)

100 CONTINUE

TYPE %y " "RECVL" HAS RECEIVED 3 MESSAGES AND WILL
1 NOW EXIT

1000 CALL EXIT
END

Example 4-3 Synchronizing a Receiving Task Using Event Flags
(Sheet 2 of 3) ;

121

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Run Session

*ING RECVI

*RUN RECV1

*RUN SENDI

TYPE. A LINE OF TEXTy 26 CHARACTERS OR LESS
1111111

IATA RECEIVED RY "RECV1®:

Ti111111
+RUN SENI
TYPE A LINE OF TEXT» 26 CHARACTERS OR LESS

ATAADDFIADADIIIND
AL AL A Al K AL W o e 8

AL A A A W

VATA RECEIVED RY "RECV1®?

BRA22QAVDIAIVINID
Ao W A

FRUN SENDI

TYPE A LINE OF TEXTy 26 CHARACTERS OR LESS
33333FIZ33I3I3I3IZIZI3IZ3I3333

naTa RECEIVED RY “RECVLI®?

 3333333333333333333333333
"RECV1® HAS RECEIVED 3 MESSAGES AND WILL NOW EXIT

Example 4-3 Synchronizing a Receiving Task Using Event Flags
(Sheet 3 of 3)

122

USING DIRECTIVES FOR INTERTASK COMMUNICATION

If you wish to run the tasks in Example 4-3 in any order, RECV1
must be modified to receive data packets on startup if SEND1 has
already sent data. It gets complicated because SEND1 may have
already sent several data packets. 1It's also possible that event
flag 33. was left set by someone else. 1In that case the Receive
directive will fail, but we should not abort. Example 4-4 shows
the modifications which must be made to Example 4-3 to allow the
tasks to be run in any order. The following notes are keyed to
Example 4-4.

@ Ve use a flag word (IBEF) to distinguish whether we are
working on messages sent before or after RECV1 starts up.
Note that RECV1S must be installed as RECV1l, since SENDI
sends to RECV1.

@ Check for event flag set on startup. If it is set, issue
a Receive. If SEND1 has been run one or more times, the
Receive will succeed. 1If SEND1 has not been run yet, the
flag was set by another task and the Receive will fail.

G’ If the flag was not set, SEND]1 hasn't sent any messages
before we started. Clear the IBEF flag, so we know that a
Receive failure after the flag is set again 1is a real
failure. v

" In the case of a Receive failure, we check to see if we
are receiving data packets sent before RECV1 started up.
If we are, we know we have received all data packets
already queued up before RECV1 started executing.

G} If IBEF is clear, this was a failure after receiving all
data packets sent before RECV2 started up, so display an
error message and exit.

@ 1f IBEF is set, we have already received all data packets
which were queued up before RECV1 started up. Now clear
IBEF and wait for the flag to be set at 440.

‘, Check to see if we are still receiving data packets sent
before RECV1 started up. If so, Receive again. Keep
receiving until either we get all three packets or we get
a Receive failure. If, on the other hand, we have
received a message sent since startup, clear the flag and
wait for it to be set again when a new message is sent.

If a task runs and then exits with data packets 1in 1its receive
queue, those unreceived data packets are flushed from the queue on
exit. Hence, if SENDl1l sent four messages before RECV1 was run,
the fourth message would be lost.

123

USING DIRECTIVES FOR INTERTASK COMMUNICATION

FROGRAM RECVLS
C FILE RECVIS.FTN

{; This task and receives data from any sender task
C (e.ds BENDL), It srints the dats orm TI!. Then it
> waits for another data racket., It exits after

0 receiving and diserlaving 3 messages.

0 This task sunchronizes with its sender throusgh an

¢ event Tlasd. Recsuse of this swnchronizastiony and the
- care we take on startur Lo del messadges alreadu

¢ senty the btasks cam be run in anw ordery with any

U relative sriorities.

C Install and rdn instructions? RECVIS must be installed
¢ under the name RECV1 to work with SENDIL.

"ll IREF is the "hefore® flady used to keer track of whether
C we asre receiving messadges sent before RECVL started uwr,
C If the event flag is set at startur timer hkeer receiving
C messages until we dgel a Failure. We then wait until the
C flag is sel Lo receive adain. 1 means receiving messades
 sent before RECVL startedr O means Tinished receiving
¢ messasfes sent hefore
INTEGER IBEFy IEFNsRRBUFF(LE) y MONT
DATA TEFN /337 I Event flag
0AaTA IBREF 71/ | Before flagy assume

C I there are messadges
ATA MUENT /37 I Messade counter
Cal.ll. CLREF (IEFN»sIISW)

‘, IF (IDSW LT. 0) GOTO 900 | EBramch on dir error

IF (I0SW «EQ. 22 GOTO 50 ! Branch if flag set

¢ Here if flag mot initislly set
IF (IBEF +EQ. 0) GOTO 40
IREF=0 I 0 hefore flag
40 Cal.l. WAITFR (33I08W) P Wait for next messade

IF (I0SW LT. 0) GOTO 9210 | RBranch on dir error
¢ Get here when the fladg is set
%0 Call. RECEIV (yRBUFFy»IDSW) ! Receive from angone
IF (IDSW EQ. 1) GOTO 80 | EBranch on directive ok
0 Here on failure of Receive directive
IF (IBEF EQ. 0) GOTO 920 1 Chechk for failure
I on messages received
[I hefore startus,
L Here if failure after receiving messages already there
C at startus

IREF=0 I Clear hefore flag

GOTO 40 I Wait for flag to be set

Example 4-4 A Receiving Task Which Can be Run Before or After
the Sender (Sheet 1 of 3)

124

USING DIRECTIVES FOR INTERTASK COMMUNICATION

; Successful receirt ,
30 TYFE X 0ATA RECEIVED RY *RECVI*{”
WRITE (5+8%) (RRBUFF(K) yRK=3p15)
gs @ |ForMaT ¢ 7y1362)
MUNT=MCONT-1 I Dlecrement messadge counter
IF (MOCNT JEQ. 0) GOTO 100 ! Branch back if not done
L Set ur for another receive
IF (IREF +NE. 0) GOTO 50 ! Check for still
! receiving messades sent
G I bhefore startur. If sov
! receive adgain.
CalLl CLREF (33yID8W) P IF moty clear flag
IF (IDSW LLT. 0) GOTO 930 ! Branch on dir error
GOTO 40 I Wait for flag set again

C Here when three messadges received
100 TYPE Xy 7 "RECVIL" HAS RECEIVED 3 MESSAGES AND WILL
1 NOW EXITS
cal.l. EXIT
¢ Evror code
200 TYFE Xy 7ERROR INITIALIZING FLAG. DSW = 7y INSW
- GOTO 1000
@10 TYFE Xy “WAIT DIRECTIVE FAILED. DSW = “,IDSW
GOTO 1000
920 TYFE Xy "RECEIVE DIRECTIVE FAILED IN "RECVLI®". LSW
1 = 3 1INSW
GOTO 1000
230 TYFE Xy “ERROR RECLEARING FLAG. DSW = 7, 108U
1000 CaLL EXIT
END

Example 4-4 A Receiving Task Which Can be Run Before or After
the Sender (Sheet 2 of 3)

125

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Rurm Session

>INS/TASK.NAMEIRECVL RECV1S

=RUN SENDI

TYFE A LINE OF TEXT» 26 CHARACTERS OR LESS
1111 11

*RUN SENDL

TYFE A LINE OF TEXTs 26 CHARACTERS OR LESS

D222222222

N A% ale

*RUN RECVI

DATA RECEIVED RBY "RECV1°":

1111 11

DATA RECEIVED BY "RECV1*:

Q222222222

RUN SENDI

TYFE A LINE OF TEXT» 26 CHARACTERS OR LESS
33333 :

hATQ RECETIVED RBY "RECV1*®3:
33333
RECV1 HAS RECEIVED 3 MESSAGES AND WILL NOW EXIT

Example 4-4 A Receiving Task Which Can be Run Before or After
the Sender (Sheet 3 of 3)

126

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Example 4-5 uses Receive Data or Stop in the Receiver and Send
Data followed by Unstop in the sender. These tasks can be run in
any order. The potential synchronization problems are
considerably easier to deal with when using this technique of
synchronization. We will go through it first for running RECV2
before running SEND2. Then we will discuss the other
possibilities. The following notes are keyed to the example.

@ We issue a Receive Data or Stop directive. If there is no
data packet queued, RECV2 stops and must be unstopped by
SEND1. 1If, on the other hand, there 1is a data packet
queued, we want to receive it. The DSW equals IS.SET(+2)
if the task was stopped and then unstopped, and equals
IS.SUC(+1) if a data packet was received. 1If RECV2 is run
first, we stop.

© SEND2 gets the data and sends it. We do not need to
specify an event flag in the Send Data directive since we
use Stop/Unstop for synchronization.

© Unstop RECV2. In this order, this directive will
successfully unstop RECV2 because RECV2 stopped when it
issued the Receive Data or Stop directive.

@ rThere are two directive errors on UNSTOP which are not
errors for this set of tasks. Check for these errors and
if found, assume that everything worked correctly. If
RECV2 1is active but not stopped, it must be receiving
another packet. 1In that case, RECV2 will receive this
packet on the next Receive Data or Stop directive. If
RECV2 is not active, it has not been run yet. The packet
is still 1in RECV2's receive queue and RECV2 will receive
it when it is activated. The above situation will not
oceur the first time through if RECV2 is run first.

If the error is not one of the two errors checked
for, display an error message and exit,

@ Check for whether we stopped and unstopped. If so, we
didn't receive the data packet vyet. If not, we did
receive the data. In this case, if RECV2 is run first, we
did stop and unstop.

@ since we have not yet received the data packet, issue
another Receive.

" If there is still nothing in the Receive queue, something
is wrong. Display an error message and exit.

127

USING DIRECTIVES FOR INTERTASK COMMUNICATION

C’ After a successful Receive, whether immediately or after
Stop and Unstop, display the received message. In that
case, issue another Receive Data or Stop and loop through
again if we have not vyet received three messages. If
there is another data packet queued, we will receive it.
Otherwise, we stop until SEND2 sends data and unstops us
again.

If SEND2 is run once before RECV2, then the Unstop directive at 3
will fail. If in fact RECV2 is not active at all, or is active
but not stopped, it will dequeue the data packet when it issues a
Receive. Hence, we check for these conditions at 4 and just
exit if either condition caused the Unstop error. When we run
RECV2, we do actually receive a data packet at 1. At 5,
DSW = +1(IS.SUC) which means that we received a packet and didn't
stop. Therefore, we display the data and Receive or Stop again.
This time we will stop until SEND1l unstops us again.

If SEND2 is run two or three times before RECV2, any data packets
already sent are received and displayed. In the case of two sent,
the third RCDS will cause RECV2 to stop until SEND2 sends a third
packet and unstops it. In the case of three packets already sent,
RECV2 will receive all three and then exit.

As in Example 4-4, if SEND2 sends more than , three packets, any

additional ©packets will be 1lost because the receive queue is
flushed when the task exits.

128

USING DIRECTIVES FOR INTERTASK COMMUNICATION

G
C
"
C
e

G
C
C

10

"
C

20

FROGRAM SENDZ2
FILE SENDZ2.FTN
This task sromets at TI! for 8 line of text and sends

the data Lo RECV2 for rrocessing, The receiver will
continue to run until it receives 3 messages.

s Sunchrondzation is handled Lhrough RECV2’s stor bit.
s RECV2 and SENDZ2 maw be run in any order.

Imstall and rurn instructions? RECV2 must he installed.

BYTE RUFFER(26) I Send huffer

INTEGER DSW

REAL. RECV2

NATA RECV2/SRRECV2/ I Receiving task name
INTEGER IEITSyIEACT I Error mmemonics
HATA TEITSsTEACT/~8e~7/

TYFE Xs ‘TYFE A LINE OF TEXTy 26 CHARACTERS OR LESS
e READ (5y35) BUFFER
FORMAT (26A1)

CALL SEND(RECV2»BUFFERy yDSW) | Send data to RECV2
IF (DSW.EQ.1) GOTO 10

TYFE Xy 7UNARLE TO QUEUE DATA TOQ "RECV2®. DSW =
1 06W

Urnstor RECV2

Bramnch on directive ok
I Ten’t he storred?
That’s oky he’ll richk

9 CALL USTF(RECV2sDSW) !
{
20
!
! ur data when he
|
20
I
!

IF (DSW.EQ.L) GOTO 20
IF (OSW.EQ.IEITS)Y GOTOD

executes RCDSS
I Is he not active? If
noty he’ll rick us
data when activated
TYPE X “UNABLE TO UNSTOF "RECV2". DSW = ‘“yD8W

: ! Anw other error is bad
[CALL EXIT I Exit
END

¢, IF (DSW.EQ.IEACT)Y GOTO

Example 4-5 Synchronizing a Receiving Task Using RCDS

(Sheet 1 of 3)

129

USING DIRECTIVES FOR INTERTASK COMMUNICATION

FROGRAM RECV2

FILE RECV2.FTN-

This task receives date from anoth
It #rints the datar zlong with a8 h
it waits for another dats racketbs
until it has received 3 messades.

This task suynchronizes with its se
Because of this sunchronizationy t
in any ordery with any relative sr
Install

and run instructions?! RECV

INTEGER RRUFF (13)
INTEGER [SWs ISSET
DATA ISSET/2/

I Re

ns

N0 100y I=1s3

CALL RCST(yRRUFFIISW)
IF (DSW.GE.O0) GOTO 50
Ture Xy 'RECEIVE DIRECTIVE
1 DsW ‘2 DISW }
GOTo 1000 !

! Re
FA
i

a

[
¢ Successful receirt or
C check
 we hay

50
o

¢
Storred due to no datal

¢
G

CALL RECEIV(yRRUFF s »ISW)
IF (DSW.EQ.L) GOTO 60

tal¥}
st

unstorred
for unstorred after beindg
e Lo receive the dats

IF (DSW.NE.ISSET) GOTO 60

!
!
!
!

G
!

TYPE %y ‘RECEIVE DIRECTIVE FA
@ [1unsTOFPED. DSW = ‘yDBW !
GOTO 1000 !

C Disrlay data

&0 TYFE 759 (RRUFF (J)»J=3y13)
75 FORMAT (7 DATA RECEIVED RY *
100 CONTINUE

C Have received 3 messades
TYPE Xy’ "RECV2* HAS RECEIVED

1 NOW EXIT’
1000 call. EXIT I Esx
END

Example 4-5 Synchronizing a Recel

(Sheet 2 of 3)

130

er task (e.g, SEND2).
eadery on TI!: Then
continuing this

nder using RCST.
he tasks can be run
iorities.

2 must be installed.

ceive buffer

W code mnemonic

ceive from anvone

ILED IN *RECV2".
Srlay @rror messase

ned exit
another task, First
orredy in which case

Were we storred due
to no dats? If not
(NE)r we have a
data racket

Now dget the rachket
ILED AFTER "RECV2®

Ilisrlaw error
messade and exit

RECV2" {1/ /1Xy13A2)

3 MESSAGES AND WILL

it

ving Task Using RCDS

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Rur Session

I Rurn RECV2 firsty then run SEND2 3 times
»INS RECV2

=RUN RECV2

FRUN SENDZ2

TYFE A LLINE OF TEXT» 26 CHARACTERS OR LESS
B B A A

DATA RECEIVED BY "RECV2®?

T111111111
SRUN SEND2
TYPE A LINE OF TEXTs 26 CHARACTERS OR LESS

FRUN SEND2

TYPE A LINE OF TEXT» 26 CHARACTERS OR LESS
JFIIIIIZIIZZIZ333333333333

NATA RECEIVED BY "RECV2"?

“3333333333333333333333333
YRECVZ" HAS RECEIVED 3 MESSAGES AND WILL NOW EXIT

P Run SEND2 once firsty then rum RECV2sy and then run SEND2 twice more
=RUN SEND2

TYFE A LLINE OF TEXTy 26 CHARACTERS OR LESS

44444

*RUN RECV2

UATA RECEIVED BY *RECV2":

44444

RUN SEND2

TYFE A LINE OF TEXT»> 26 CHARACTERS OR LESS

G5555555

DATA RECEIVED BY "RECV2*:
55555555

*RUN SENDZ2 ~
TYFE A LINE OF TEXT» 26 CHARACTERS OR LESS

bbb
ﬂDATA RECEIVED RY *RECV2"!

&6
*RECV2" HAS RECEIVED 3 MESSAGES AND WILL NOW EXIT

Example 4-5 Synchronizing a Receiving Task Using RCDS
(Sheet 3 of 3)

131

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Using Send/Receive Directives for Synchronization

If it is desirable to pass data as well as notify another task of
the occurrence of an event, the Send/Receive directives can be
used to perform this double function. The advantage of this
approach 1s that data can be sent in addition to notifying the
other task of the occurrence of the event. The receiving task can
synchronize with the event using any of the techniques listed in
Table 4-5. :

Slaving the Receiving Task

Normally, a task runs under the UIC and the TI: of its initiator,
the operator 1issuing the RUN command, or the task issuing the
Request Task directive (REQUES). A receiver task which 1is run
from the same terminal as the sender is assigned the same UIC and
TI: as the sender. However, if the receiver is run from another
terminal or by a different wuser, it's UIC and/or TI: may be
different from that of the sender. Also, a receiver might receive

data from several different tasks initiated at several different
terminals.

If it is desirable to have the receiver task take on the UIC and
the TI: of the sender each time data is received, the receiver
task can be built as a slaved task. The advantages of this-
approach are that the receiver then acqulres the same privileges
as the sending task and can also do I/O dlrectly to the sending
task's terminal (through TI:). To build a task as a slaved task,
either task-build with the /SLAVE qualifier or install with the
/SLAVE qualifier.

132

USING DIRECTIVES FOR INTERTASK COMMUNICATION

PARENT/OFFSPRING TASKING

In multitasking situations, it is often useful to have one task
activate and monitor other tasks, or monitor already active tasks.
In particular, the requesting task may wish to receive periodic
status reports from the other tasks during execution, or when the
tasks exit. ' :

For example, a task to secure a nuclear reactor 1in case of
accident activates a pair of subordinate tasks, one task to issue
warnings to personnel and the other to initiate the shutdown
procedure. The task which activates the two subordinate tasks can
receive periodic status reports from each of the other tasks, so
that it can take appropriate action in case of a problem. 1In
particular, it would want to know about any failure 1in either
operation. '

Under RSX-11M, parent/offspring tasking provides a facility for
setting tasks wup in the structure described above. As we shall
see, this is easier to program than Send/Receive directives. A
parent task is one which connects to or spawns another task,
called an offspring task.

When a task spawns another task, it both activates the task and
establishes a connection to it. 1If the task is already active, a
parent task should just connect to the offspring. Figure 4-1
shows this relationship. When a task spawns another task it can
also send a command line or data of up to 79 characters (or bytes)
to the offspring.

Once the connection is established using Spawn or Connect, the
offspring can send or emit status by using the Emit Status (EMST)
directive. This allows the offspring to send a one-word status
value to the parent. Upon exit, a success code (EX$SUC=+1) 'is
returned if the standard EXIT is used, or a specified one-word
status can be returned if the Exit With Status directive (EXST) is
used. If the task is aborted, a standard severe warning code
(EX$SEV=+4) 1is returned. The status is automatically returned in
a status block in the parent task -- no receive directive 1is
needed. Synchronization can be handled using event flags or an
AST routine. The flag is set or the AST routine entered when the
status is received. Table 4-6 shows the standard status codes.

133

USING DIRECTIVES FOR INTERTASK COMMUNICATION

PARENT

SPAWN OFFSPRING

—__—/
———_—/

EVENT FLAG AND/OR
AST ROUTINE

OFFSPRING

I COMMAND LINE J——-—7

le———— OFFSPRING STATUS |———

EXIT, EXIT
WITH STATUS,
OR EMIT
STATUS

Figure 4-1 Parent/Offspring Communication Facilities

134

TK-7745

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Additional directives are provided for parent/offspring support.
The Send Data, Request, and Connect directive combines the
functions of the three separate directives (Send, Request, and
Connect) 1into a single directive. This is similar to Spawn, but
sends a 13 word data packet rather than a 79 byte command 1line.
It also Jjust sends data and connects 1if the task is already
active. Spawn is rejected if the task is already active, unless
the task is a CLI (Command Line Interpreter).

Two other directives are provided to allow chaining, or passing a

parent/offspring connection from an offspring to another task. We
will discuss chaining in more detail later in this module.

Table 4-6 Standard Exit Status Codes

Mnemonic Value Meaning

EXSWAR /] Warning -- task succeeded, but
irregularities are possible

EX$SuC 1 Success -~ results as expected

EXSERR 2 Error —-- results unlikely to be
as expected

EX$SSEV 4 Severe Error -- one or more fatal

' errors were detected, or offspring
aborted.

The above symbols could be used in a FORTRAN program by dropping

the * § sign from the symbol and using them as a variable name with
the appropriate values.

135

USING DIRECTIVES FOR INTERTASK COMMUNICATION

‘Directives Issued by a Parent Task

Table 4-7 summarizes the directives which may be issued by a
parent task. Note that parent and offspring are relative terms,
an offspring of one task may be the parent of another.

Table 4-7 Comparison of Parent Directives

Send, Request
Characteristic Spawn Connect and Connect

Can be used for Yes No Yes
offspring which
is not yet active

Can be used with No, except Yes Yes
offspring which if offspring
is already active is a Command

Line Inter-
preter (CLI)

Can pass data (or Yes (up to No Yes (13 words)
command) to off- 79 bytes)

spring as part

of directive*

Can be used to Yes No No
pass commands to

a Command Line

Interpreter (CLI)

* If a parent/offspring relationship is established via Connect,
the tasks can of course exchange data using Send/Receive. The
table above indicates whether the passing of data from parent
to offspring is a capability of the directive in and of itself.

136

USING DIRECTIVES FOR INTERTASK COMMUNICATION

LEARNING ACTIVITY

Chapter 4 of the RSX-11M/M-PLUS Executive
Reference Manual contains a good discussion
of the Parent/Offspring directives and in
particular it gives a number of possible uses
for them. We will not discuss these various
uses anywhere in this course.

Read Sections 4.1, 4.2, and 4.3 of the
RSX-11M/M-PLUS Executive Reference Manual for
a discussion of the Parent/Offspring
directives and examples of their wuse in
applications.

137

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Table 4-8 summarizes the arguments for the Spawn directive, the
Connect directive, and the Send Data, Request, and Connect
directive. For additional information, see the writeup on each

directive 1in Chapter 5 of the RSX-11M/M~PLUS Executive Reference
Manual. :

Table 4-8 Directives Used by a Task to
Establish a Parent/Offspring Relationship

Directive Directive

Name Call

Spawn CALL SPAWN(tsk,grp,mem,efn,ast,esb,param,
cmdlin,cmdlen,unum,dnam,dsw)

Connect CALL CNCT(tsk,efn,ast,esb,param,dsw)

Send, CALL SDRC(tsk,buf,efn,ast,esb,param,dsw)

Request,

and Connect

tsk - offspring task
grp,mem - UIC offspring will run under

efn - event flag to be set when offspring exits or emits
status

ast - AST routine to be entered when offspring exits or
emits status.

esb - exit status block address

param - name of a word to receive the status block address
when the AST occurs

cmdlin,cmdlen - address of buffer with command 1line,
length of command line

unum,dnam - device to be TI: for offspring
buf - 13(1¢) word buffer to be sent

dsw - directive status word

138

Example
at TI:.

USING DIRECTIVES FOR INTERTASK COMMUNICATION

4-6 shows a task which spawns PIP to display a directory
The following notes are keyed to the example.

The command line to be passed to PIP. We 1include the
three character command name to be consistent with the way
MCR passes commands if a utility command is typed to MCR.

Display startup message.

Spawn ...PIP. Event flag 1 will be set when ...PIP eXxits
or emits status. EXSTAT is the address of the eight-word
status block (only the first word is used). CMD 1is the
starting address of the command 1line and LEN is its
length.

Wait for event flag 1 to be set when ...PIP exits or emits
status. Notice that this is a local event flag, local to
this task, which is cleared by the Executive when the task
is spawned and set by the Executive when the spawned task
exits or emits status.

The high-order byte of the exit status code may contain
unexpected data. Therefore, clear that byte by specifying
the logical AND of the code and 377(8) before displaying
the code.

On the Run Session - The first run session shows a
successful exit by ...PIP, the second one shows ...PIP
aborted by an operator. Note the different status codes.

NOTE

On an RSX-11M system, an attempt to spawn
...PIP will fail if ...PIP is already active.
This works diffently from initiating PIP from
MCR, where an attempt is made to install the
task ...PIP under the name PIPTnn if ...PIP
is already active. A solution to this
problem is to spawn CLI... (the current
cLl), ...DCL (DCL) or MCR... (MCR) and send
it the command line. It will in turn start
up the appropriate PIP task under ...PIP or
PIPThn, as if the command was typed in by an
operator. See section 4.4 (on Spawning
System Tasks) of the RSX-11M/M-PLUS Executive
Reference Manual for additional information.

139

USING DIRECTIVES FOR INTERTASK COMMUNICATION

[
C
C
G
™
C

G

L

90
91
10

FROGRAM SFUWN
File SFAWN.FTN

This srogram srawns FIFy rasses it 2 command line to
disrlaw 8 directory at TI!y waits for it to exits andg
then disrlaus its emit status.

IF (N8SW.LT.0) GOTO 210 ! Branch on dir error
WRITE (Sy25) EXSTAT(1).AND."377 | DNiselaw low
I hute of exit status

FORMAT (7 SFAWN REFORTING: FIFP EXITEDy EXIT
1I5TATUS WAS “»I1v7.7)
CALL EXIT UOEwxit
Error harndling code
O TYFE Xy "ERROR SFAWNING FPIF. DSW = /»D8W

GOTO 1000
0 TYPE %y ERROR WAITING FOR EVENT FLAG. DIISW = ‘y1N5W
00 cal.l. EXIT
END

lNatas
INTEGER EXSTAT(8)sPLIST(3)»1SW
RYTE RUFF(80)
REAL FIFCMD3)
0NAaTA FIF/6R. . IR/
0DATA CMID//FPIF ‘9" X.MAyC/LLY/
Code
WRITE (%Hy135) I Write messade
¢’ FORMAT (¢ SFAWN IS STARTING AND WILL SFAUN FIF‘)
e CALL SFAWUNC(FIPyr vyl yEXSTATy yCMDy 125 » y DGW)
’ ' Spawn FIP
' IF (8SW.LT.0) GOTO 9200 ! EBranch on dir error
" Call. WAITFRLDSW) I Wait for task to exit

Example 4-6 A Task Which Spawns PIP (Sheet 1 of 2)

149

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Rurn Session

RUN SFAWN
SFAWN IS STARTING AND WILL SFAWN FIF

Iirectory DR1IC305,3011

8-MAR~B2 1213

W.MACH] 1. 20-MAY-81 13104
Al.MACS2 1. 09-DEC-80 16158
AMACH] 1. 1O0-JUN-81 135121
SFAWN .MAC S22 1. 08-SEF-81 11120

Total 127./129, blocks in 25, files

wSPAUN REFORTING? FIF EXITED., EXIT STATUS WAS 1.

*RUN SFAWN
SFAWN 18 STARTING AND WILL SFAWN PIF

Directory DR1IC30G,3011
B8-MAR-82 12813

W.MACED 1. 20-MAY-81 13104
Al.MACS2 1. 09-DEC-80 16158

A.MACS] 1. 10~JUN-81 15321

NCL=ARORT/TASK .. .FIF

AP MACHL2 4. 21-MAY-81 133150

12315315 Task *.. FIFY terminated
Ahorted via directive or CLI
And with rending 1/0 recuests

SPAWN REFORTING: FIF EXITED., EXIT STATUS WAS 4.

-,

Example 4-6 A Task Which Spawns PIP (Sheet 2 of 2)

141

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Example 4-7 is a more generalized spawning task, which prompts for
the name of a task and a command line and then spawns that task,
sending the input command line to it. The following notes are
keyed to the example.

0 60 000

Prompt for and get the task name. The task name must be
entered in all uppercase characters. To allow lowercase
characters, the code must be modified to <check for any
lowercase characters and convert them to uppercase.

Convert ASCII task name to Radix-50 format.
Prompt for and get command line.

Spawp task specified. We are wusing event flag 1 for
synchronization, The status will be returned in EXSTAT.

Wait for event flag 1 to be set, indicating that the task
has exited (or emitted status).

Clear high-order byte of the status word and display it.
Note that CLI... passes the command line to the current
CLI (DCL) which in turn invokes task DIRT1ll to display the
directory. (This is task DIR spawned at terminal T11)
BUFFER (1) and (2) are set to blanks in case a name of less

than six characters is entered. By clearing to blanks, a
short name is assured of having trailing blanks.

142

USING DIRECTIVES FOR INTERTASK COMMUNICATION

FROGRAM GSFAWN
L
C FILE GSFAWN.FTN
[
£ This task sromets at ti! for & task neme and command
C liney then srawns the srecified task and rasses it the
C command lime. ATter that it waits until the offsrring
¢ task exilte and disrlaws its exit status.

C Rurn imstructionst The name of the task to be srawned
¢ must be tured inm using all urrer case characters.

REaAL. BUFFERC(20) s TSKNAM
INTEGER EXSTAT(8)
C Fad task name buffer with blanmks in case name is short
IATA BUFFERC(L) yRUFFER(2) /7 ‘vt 1/
[
WRITE (5515)
15 " FORMAT (’ TASK NAME?’)
. READ (525) BUFFER(L) sBUFFER(2)
25 FORMAT (2Aa4)
¢ Convert task rizme to Radix—-350 format
CALL IRADSO (&yBUFFER» TSKNAM)
WRITE (533

Rt FORMAT (7 COMMAND LINE (79 CHARACTERS OR LESS)7?’)
READ (5545) NyBUFFER
43 FORMAT (Qs2004)

 Srawn taesk with command line
CALL SFAWN (TSKNAM» vy Ly s EXSTAT s s BUFFERs Ny » » IDSW)
IF (INnSW LT. 0) GOTO 900 ! Bramch on dir error
¢ Wait for task to exit
CALL WAITFR (1s10IS8W>)
IF (InsW LT. 0) GOTO 910 ! Branch om dir error
WRITE (5y,55) EXSTAT(1) AND. "377
bl ‘, FORMAT (707510Xy ‘TASK EXITEDN. STATUS WAS “»12s7.7

1/
GOTO 1000 I Go to common exit
C Error code)
200 WRITE (5,903) IDSW
Q05 iU?g?T (/ DIRECTIVE ERROR SFPAWNING TASK. ISW = 7
14
GOTO 1000
910 WRITE (5s215) IDSW >
915 FORMAT (7 DIRECTIVE ERROR ON WAIT FOR., DSW = 7y
114>
1000 CALL EXIT
END

Example 4-7 A Generalized Spawning Task (Sheet 1 of

143

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Rum Session

FRUN GSFAWN

TASK NAME?

e o PIF

COMMAND LINE (79 CHARACTERS OR LESS)?
FIF %.DI8/LT

Iirgectorw DRI1IL305,3011
8-6EP--81 15209

FRIENDS .DIG$2
FRIENDSNL . DIS2

10-AUG~81 11113

1
1 31-AUG-81 11142

-«

Total of 2./10. blocks in 2. files

TASK EXITED. STATUS WAS 1.

*RUN GSFAUWN

TASK NAMET

+ ¢ o DCL

COMMAND LINE (79 CHARACTERS OR LESS)?
DIRECTORY %.MAC

Directorw DRLIL30S,3011
8-SEF-81 15310 :

W.eMACS 1 1. 20-MAY-81 13:04
AL.MACS2 1. 09~-DEC-80 16358
A.MACHL 1. 10-JUN-81 15221
AP MACHL2 4, 21-MAY-81 13150
FORMAT .MAC3 34 - 21-AUG-81 11:93
FROGY sMACS 1 1. 30-JAN-81 143127
PROGZ .MACSH L 1. 30-JAN-81 14:30
RAY .MACH1 4. 30-JAN-81 14139
FROGX . MACH & 1. 30-JAN-81 14342
S eMACHS 1. 21-MAY-81 10201
A2, MACSH2 1. 21-MAY-81 10104
C2.MACH 1 1. 21~-MAY-81 103104

Task "DIRT11* terminated
Q Aborted via directive or CLI
Andg with rending 1/0 reauests

TASK EXITED. STATUS WAS 4.

Example 4-7 A Generalized Spawning Task (Sheet 2 of 2)

144

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Directives Issued by an Offspring Task

Table 4-9 summarizes the directives which can be wused by an
‘offspring to return status to a parent task. Table 4-6 shows the
standard exit status codes used on the system. An offspring can
also spawn or connect to other tasks as well.

Table 4-9 Directives Which Return Status
to a Parent Task

Directive Effect/Use

CALL EXIT Exits and returns "Success" status
to all current parent tasks.

Special case of CALL EXST

CALL EXST(status) Exits and returns specified one-
word status to all current parent
tasks.

Terminates parent/offspring

relationship.
CALL EMST Emit specified status to specified
(parent-task,status,dsw) parent (or to all parents, if

parent task name is omitted).

Terminates the parent/offspring

relationship. The connection can
be reestablished by the parent,

using the Connect Directive.

: NOTE
The Executive returns "Severe Exit" status if
the task is aborted or 1f a fatal error
occurs.,

145

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Chaining of Parent/Offspring Relationships

An offspring can chain or pass its parent/offspring connection on
to another task. In that case the connection between the parent
and the offspring which passes the connection is broken. In 1its

place, a connection 1is made between the parent and the new
offspring.

Figure 4-2 shows the difference between an offspring spawning
another task versus chaining its connection to another task. Note
that with spawn, the connection between the parent and the first
offspring still exists, plus a new connection is established
between the first offspring and the new offspring.

Table 4-10¢ summarizes the directives which can be wused to chain
parent/offspring relationships. Request and Pass Offspring
Information (RPOI) is similar to Spawn in function, in that it
starts up the task and can pass a 79 byte command line. Send
Data, Request, and Pass Offspring Control Block (SDRP) is similar
to Send Data, Request and Connect, in that it sends a 13 word data
packet and it succeeds even if the task is already active.

146

USING DIRECTIVES FOR INTERTASK COMMUNICATION

TASK 2
SPAWNS
TASK 3

BEFORE

AFTER

TASK 1

TASK 1

TASK 2

|
I
|
|
TASK 2 |
|
|
|
|

TASK 3

NOTE: EACH ARROW SHOWS A PARENT/OFFSPRING CONNECTION.

TASK 2 REQUESTS
AND PASSES OFFSPRING

INFORMATION
BEFORE | AFTER
L
TASK 1 I TASK 1
|
t— |
TASK 2 | TASK 2 TASK 3
|
I

THE ARROW STARTS AT THE PARENT AND POINTS TO THE OFFSPRING.

Figure 4-2

Spawning Versus Chaining

TK-7746

(Request and Pass Offspring Information)

147

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Table 4-109 Directives Which Pass Parent/Offspring
Connections to Other Tasks

Characteristic

Can be used for a
new offspring which
is not yet active

Can be used for a
new offspring which
is already active

Can pass data (or a
command) to a new
offspring

Can be used to pass
commands to a CLI

RPOI SDRP

Yes Yes

No, unless Yes

the offspring

is CLI

Yes (up to Yes (13 words)
79 bytes)

Yes . No

148

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Example 4-8 shows the use of the Request and Pass Offspring
Information (RPOI) directive,. This task is similar to example
4-6, but it uses RPOI instead of SPAWN. Two run sessions are
provided, showing the difference between an offspring passing its
parent/task connection and an offspring spawning another
offspring. In the first run session, GSPAWN spawns PASSIT
(Example 4-8), which starts up PIP, passing its connection
(GSPAWN/PASSIT) on to PIP. In the second run session, GSPAWN
spawns SPAWN (Example 4-6), which spawns PIP. Note that with
PASSIT, ...PIP returns its exit status directly to GSPAWN. GSPAWN
is no longer connected to PASSIT once the connection is passed on
to PIP. With SPAWN, ...PIP returns its exit status to SPAWN.
SPAWN displays that status and then exits, sending 1its own exit
status to GSPAWN,

The following notes are keyed to the example.

€@ Use RPOI instead of SPAWN. No event flag is needed nor is
a status block set up since this task won't receive status
from ...PIP. The seventh argument in the argument 1list
(MACRO symbolic name RP.OAL, suggested FORTRAN name RPOAL)
determines what parent (fixed) connections are passed, 1if
any. If RPOAL has a value of 1, as in the example, all
connections are passed. (In this example there 1is only
one connection.) A connection is established between the
parent of PASSIT (GSPAWN) and ...PIP. The connection
between GSPAWN and PASSIT is broken. '

(’ Display a message and exit with a status of 10., to make
it easy to tell whether the status is from this task or
from ...PIP. Note in SPAWN that the CALL EXIT 1is used,
which results in a Success Code (+1) being sent as the
exit status.

© On the First Run Session (GSPAWN spawns PASSIT) - The exit
status from ...PIP is returned directly to GSPAWN.

@ On the Second Run Session (GSPAWN spawns SPAWN) - The exit
status from ...PIP 1is returned to SPAWN, then SPAWN
returns its own exit status to GSPAWN,

If you wish to chain the connection from only one of several
parents, specify a single task, and do not specify RPOAL in the
RPOI directive call.

If RPOAL is not specified and no task 1is specified, then no

connections are passed. This might be useful to request a task
and send 79 bytes of data when a connection is not needed.

149

USING DIRECTIVES FOR INTERTASK COMMUNICATION

N

FROGRAM FASSIT
C File FASSIT.FTN

€ This erodram recuests FIFs rasses it a command line to
C disrlay a8 directory at TI!y and rasses it a3ll of its
C rarent cornections ss well

C Data
INTEGER FLIST(3)y0S8U
BYTE BRUFF(80)
REAL FIFyCMD(3)
DATA FIF/6R. . FIF/
DATA CMID//FPIF ‘s ‘X.MA»/C/LLT/

-

- Code .
WRITE (5+135) ! Write messade
15 FORMAT (7 FASSIT IS STARTING AND WILL REQUEST FIF’)
" CaLl RPOI (PIFssyyyCMIs12y1vseysSW) | Reauest FIF
IF (USW.LT.0) GOTO 900 ! Branch om dir error
WRITE (35:23) ! Write messade

25 ‘, FORMAT (7 PASSIT REQUESTED FIFP AND WILL NOW EXIT‘)
CALL EXST (100 P Exit with status of 10
C-Error nandling code
00 TYFE Xy ERROR REQUESTING FIF. DSW = ‘yN8W
CAaLL EXIT
ENID

Example 4-8 An Offspring Task Which Chains Its
Parent/Offspring Connection to PIP (Sheet 1 of 3)

150

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Run Session

»INS PASSIT

*RUN GSFAWN

TASK NAME?

PASSIT

COMMAND LINE (79 CHARACTERS OR LESS)?

FASSIT IS STARTING AND WILL REQUEST FIF
FASSIT HAS REQUESTED FIF AND WILL NOW EXIT

Directors DEL:L305y3011
B-MAR-B2 15822

W.MACSH1 L. 20-MAY-81 13:04
Al MACH2 1. 09-DEC~-80 16158

SPAWUN.MACSH L 4. 08-SEF~81 13132

Total of 13./66. hlocks in 15, files

© 7ASK EXITED., STATUS WAS 1.

*RUN GSFAWN

TASK NAME®?

FASSIT

COMMAND LINE (79 CHARACTERS OR LESS8)7?

FASSIT IS STARTING AND WILL REQUEST FIPF
FASSIT HAS REQUESTED FIF AND WILL NOW EXIT

ﬁirectorw DRLIL305,3011
9-8EF-81 15123

W.MACT] 1. 20-MAY-81 13:04
A1l .MACS2 1. 09-DEC-80 146158
A.MACH1 1. 10-JUN-81 15121
A?.MACH 12 4., 21-MAY-81 13150

151243110 Task ®"+++PIF* terminated
Abhorted via directive or CLI
And with rending I/0 recuests

© TASK EXITED. STATUS WAS 4.

Example 4-8 An Offspring Task Which Chains Its
Parent/Offspring Connection to PIP (Sheet 2 of 3)

151

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Run Session

*INS SPAWN

*RUN GSFAWN

TASK NAMET

SFAWN

COMMAND LINE (79 CHARACTERS OR LESS)?

SFAWN I8 STARTING AND WILL SFAWN FIF

Divrectors DRLIL30%5,3017
B-MAR-82 15122

N.MACﬁl 1. 20-MAY-81 13304
Al.MACH2 1. 09-DEC-80 16358
*
¢
SPAWN. MACS 1L 4 08-8EF~-81 133132

Total of 13./66. blocks in 15. files

SFAWN REFORTING: FIF EXITEDs EXIT STATUS WAS 1.
‘,'TAQK EXITED. STATUS WAS 1.
]
*RUN GSFAWN
TASK NAME?

SFAWN
COMMAND LINE (79 CHARACTERS OR LESS)?

SFAWN 18 STARTING AND WILL SPAWN FIF

Directory NRLILIONH 301
B-8EF-81 153123

WeMACSH I 1. 20-MAY-81 13104
Al.MACS2 1. 09-NEC-80 163158
AMACSHL 1. 10-JUN-81 15221
NCLEABORT/TASK .+ FIF

A MACS 12 4. 21-MAY-81 13150

1631240110 Task ".+.FIF" terminated
Abhorted via directive or CLI
Andg with rending 170 recuests
SPAWN REFORTING: PIP EXITEDy EXIT STATUS WAS 4.

o [

TASK EXITED., STATUS WAS 1.

Example 4-8 An Offspring Task Which Chains Its
Parent/Offspring Connection to PIP (Sheet 3 of 3)

152

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Other Parent/Offspring Considerations

Retrieving Command Lines in Spawned Tasks - Use the Get MCR
Command Line directive (GETMCR). The passed command is returned
to a buffer specified in the GETMCR call.

Spawning a Utility or Other MCR Spawnable Task - Utilities are
generally installed under task names of the form ...tsk. This
makes them MCR spawnable tasks, which notifies MCR to spawn
multiple copies of the task under names tskTnn if the task is
invoked as an MCR command using the three-character task name
(e.g., PIP /LI). In fact, any task is spawnable, but only tasks
installed under a name of this form are spawned as multiple copy
tasks by MCR. When such a task is invoked by MCR, MCR passes it
the entire command line, including the three-character task name
(e.g., PIP /LI). Even if you spawn a utility directly, you should
pass a command line which includes the three-character task name.
This maintains compatibility with the format used by MCR to pass
commands to utilities, and avoids potential problems caused when
the utility parses your command line.

On RSX-11lM systems, there is more likelihood of getting a task
already active failure if you spawn a utility directly using the
name ...tsk than there is if you instead spawn MCR... and pass
the command line which includes the task name. This is due to the
fact that if a task is spawned directly using ...tsk, the spawn
attempt fails if the task ...tsk is aready active. No attempt is
made to install the task under the name ¢tskTnn if ...tsk is
already active, as is the case if you spawn MCR... (MCR) to start
up the utility.

153

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Example 4-9 shows a spawned task which retrieves a simple command
line of the form SPW n, where n is a single character. If n=1,
SPW performs a simple addition exercise and displays the answer.
If n=2, SPW performs a simple multiplication exercise instead.
Else, SPW displays the message "NO OTHER OPERATIONS ALLOWED".
This task, like most system utilities, will run correctly whether
spawned directly by a task (as ...SPW), started by MCR as the
result of a command line sent when spawning MCR, or invoked by an
operator using an MCR command. ‘ ,

The following notes are keyed to Example 4-9.

@ CALL GETMCR to get the command line.

@© Display the command line as received.

G} Check the value of n for an ASCII 1, skipping over the
characters SPW and the blank after SPW. Note that in a
real application, the first part of the command 1line
should be checked as well to see that it really is SPW and
a blank. Branch if not equal.

Check n for an ASCII 2. If not branch to error at 7.
If n=1, perform a simple addition (2+5).

If n=2, perform a simple multiplication (2x5).

If n is neither a 1 nor a 2, display an error message and
exit with warning status(4d).

If n was 1 or 2, display a message giving the results of
the computation and then exit with success status (+1).

This run session shows ...SPW being spawned three times by
MCR, when an operator types an MCR command line.

© 0 6 006000

This run session shows ...SPW being invoked three times by
running GSPAWN, which in turn spawns ...SPW.

154

USING DIRECTIVES FOR INTERTASK COMMUNICATION

FROGRAM SFWNED
File SPWNED.FTN

This task uses the GETMCR directive to get a command
Lirne from either TI! or the rarent task. It then
echoes the command lime and does an add or multisluy
tures out the answer -and emits status om exit

Task-build instructions?

FLINK/ZMAR SFWNEDyLRBIL1» LIFPROGSURS/L.IRRARY s FOROTS
/->LIBRARY

Install and rum instructions! To make this task MCR

srawnabler install it under the name .+, ,8PW. Command
lines shouwld be of the form SPW function - valid
functions are 1 and 2.

aooooOoaoonoaoooooooaoaoo

BYTE INBUFF{(80)
INTEGER IOSE(2)DEW
INTEGER NUMI1»NUMZ2sANS
DATA NUMLyNUM2/5y2/

BYTE QF
C
" CALL GETMCRCINRUFF s IISW) b Get commandg line
IF (OSW.6T.0) GOTO 10
TYFE Xy “OIDN‘T GET COMMAND LINE. DSW = ‘D85W
10 t’ TYPE 159 (INBUFF(I)»yI=108W) | lDisrlaw the
C I command line
15 FORMAT (1X»80a1)

C Check for functiom 1y branch if not
IF (INRBUFF(S).NE.’17) GOTO 20
©~ANs = NUML + NUM2 !

OF i !

GOTO 30 !

~ 1

Check for functiom 2y branch if not
IF (INBUFF(S)JNE.’27) GOTO 40

o addition

Setl oreration sidgn
Niswrlaw results
and exit

C

L)

0

3

ANS = NUM1 % NUM2 P Tlo multirlication

OF = ‘%’ I Get oreration sidgn
30 TYPE 35y NUM1yOF »NUM2yANS I Disrlaw results
35 C’ FORMAT (IXsTI1lsdXsAlsI2y 7 =/91I257,7)

CaLL EXST(L) P Exit with success
C - I status

C Disrlay no or messade
40 TYFE %»y‘ NO OTHER

CALL EXST(0)

OFERATIONS A
!
!

[L
END

LLOWED”
Exit with warning
status

Example 4-9 A Spawned Task Which Retrieves a
Command Line (Sheet 1 of 2)

155

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Run Session

FINS/TASK.NAME D+« +SFW SFWNED

=MCR SFW 1

SFW 1

9+ 2=7,

e *MCR SFW 2

SFW 2

5% 2 = 10,
*MOCR 8BFW 3

SPW 3

__ NO OTHER OFERATIONS ALLOWED

*RUN GSFAUWN
TASK NAMET

.o o SFU
COMMAND LINE (79 CHARACTERS OR LESS)?
SPW 1

SFW 1

54+ 2= 7,

TASK EXITED. STATUS WAS 1.
*RUN GSPAWN
TASK NAME?

v o o SFW

COMMAND LINE (79 CHARACTERS OR LESS)?
c, GPW 2

SPW 2

S K 2 = 10,

TASK EXITED. STATUS WAS 1.

*RUN GSFAWN

TASK NAME®?

v e e SFW

COMMAND LINE (79 CHARACTERS OR LESS) 7T

SFPW 3

SPW 3

NO OTHER OFERATIONS ALLOWED

TASK EXITED. STATUS WAS 0.

Example 4-9 A Spawned Task Which Retrieves a
Command Line (Sheet 2 of 2)

156

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Task Abort Status - When establishing a parent/offspring
connection, it is possible to request a second word of status when
a task exits. 1In that case, the second word of the status block
returns the task abort status. This word allows a parent task to
distinguish the different reasons for return of "Severe Error"
status.

Table 4-11 lists the various task abort status codes. To get the
second status word, place any nonzero value in the high byte of
the event flag argument word. To do this, specify the logical OR
of 256 and the event flag number.

Example:

CALL SPAWN (TASKS,,,,,256.0R.12,,STAT,CMD,LCMD)

Table 4-11 Task Abort Status Codes

‘Bxit
Mnemonic Value Status Meaning
S.CEXT -2(19) EX$sucC=1 Task exited normally
S.COAD /] EX$SEV=4 0dd address and traps to 4
S.CSGF 2(19) EX$SEV Segment fault
S.CBPT 4(10) EX$SEV Break point or trace trap
s.cIioT 6(19) EX$SEV IOT instruction
S.CILI 8(12) EXS$SEV Illegal or reserved instruction
S.CEMT 10(10) EX$SSEV Non RSX EMT instruction
S.CTRP 12(109) EXS$SEV Trap instruction
S.CFLT 14(19) EX$SEV 11/49 floating-point exception
S.CSST 16(109) EX$SEV SST abort - bad stack
S.CAST 18(19) EX$SEV AST abort - bad stack
S.CABO 20(19) EX$SEV Abort via directive or CLI command
S.CLRF 22(19) EX$SEV Task load request failure
S.CCRF 24 (19) EX$SEV Task checkpoint read failure
S.IOMG 26 (10) EX$SEV Task exit with outstanding I1/0
S.PRTY 28 (19) EXS$SEV Task memory parity error
S.CPMD 30(10) EXS$SSEV Task aborted with PMD request
S.CINS 32(10) EX$SEV Task installed in two different

systems

157

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Summary of Various Methods of Data Transfer Between Tasks

Table 4-12 summarizes and compares the

various

methods of

transfer between tasks which we have discussed so far.

Comparison of Methods of Data Transfer

Table 4-12 Comparison of Methods of Data
Transfer Between Tasks
Direction/
Maximum Repetition Pool
Method Amount Restrictions Requirements Notes
Send/ 13(19) None Data packet Both tasks must
Receive words is buffered be written to
in pool use Send/Receive
directives
Spawn 79(19) Parent to Command line Used with any
Command bytes offspring is buffered task which uses
Line only in pool GETMCR directive
or Get Command

Offspring Offspring Line (GCML)

must exit Control Block routine

for parent (OCB) is

to pass created in

another pool

command
Of £- 1l or 2 Offspring Only OCB No separate
spring words to parent is in pool directive
Status only needed in

Parent must

parent to
receive status

data

reconnect to
offspring to
receive status
again

Any exiting task
automatically
returns status

158

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Other Methods of Transferring or Sharing Data Between Tasks

If large amounts of data are to be transferred between tasks or
shared between tasks, two other techniques are available. Tasks
can use files on mass storage devices., This technique is
advantageous if really quick transfer is not essential and/or if a
permanent copy of the data is desired.

Tasks can also be written to share a data area in memory. This
technique 1is particularly useful if transfer time is critical and
a permanent copy of the data is either not needed at all or is not

needed until a later time. Both of these techniques are discussed
in later modules.

Now do the tests/exercises for this module in the Tests/Exercises
book. They are all lab problems. Check your answers against the
solutions provided, either in that book or in on-line files.

If you think that you have mastered the material, ask your course
administrator to record vyour progress in your Personal Progress
Plotter. You will then be ready to begin a new module.

If you think that you have not yet mastered the material, return
to this module for further study.

159

MEMORY MANAGEMENT CONCEPTS

MEMORY MANAGEMENT CONCEPTS

INTRODUCTION

The use of memory management hardware in mapped systems permits
the wuse of more physical memory, task relocation, and the sharing
of data and code. It also offers a memory protection feature.
This module explains how the memory management hardware works and
how the software interacts with the hardware. Later modules

explain the wuse of memory management for overlays and shared
regions. '

OBJECTIVES

1. To 1list the differences between mapped and unmapped
systems

2. To list the advantages of memory management

3. To wuse virtual and physical addresses, windows, and
regions to describe the mapping of a task.

RESOURCES

1. RS8X-11M/M-PLUS Task Builder Manual, Chapter 2

2. PDP-11 Processor Handbook, Chapter 6 (optional)

163

MEMORY MANAGEMENT CONCEPTS

GOALS OF MEMORY MANAGEMENT

The KT-1l memory management unit is a device available on medium
and larger PDP-11's. While the 16-bit addressing structure of the
PDP-11's limits processors without a memory management unit to 32K
words of addressing, processors with a memory management unit can
support up to 128K words, or even as much as 2000K words (2 Meg
words), depending on the model of the processor.

In addition to this extension of the processor's addressing space,
a memory management unit offers other features not otherwise
available. With memory management, tasks can be 1loaded and
executed at different locations in memory without being modified
in any way. This means that the operating system can load a task
into any available space within a system-controlled partition;
therefore a task need not wait wuntil a specific 1location is
available. It also means that the Executive can move tasks around
to make better use of available space (shuffling).

Memory management also provides a mechanism for controlling tasks'
access to memory. Memory areas can be protected: unrelated tasks
can reside in memory simultaneously and are normally prevented
from accessing each other's memory. However, tasks which do need
to share memory locations are allowed to do so, under the rules of
memory access built into the Executive.

HARDWARE CONCEPTS

Mapped Versus Unmapped Systems

A system which has the KT-11] memory management unit installed and
enabled 1is called a mapped system. Otherwise, it is called an
unmapped system. Small PDP-1ll1l's, such as the PDP-11/03 and
PDP-11/04 are always unmapped. The KT-1l1l unit is available as an
option on some medium sized processors, including the PDP-11/35
and PDP-11/44. It is a standard feature on large and newer
processors such as the PDP-11/7¢, PDP-11/24, PDP-11/23-PLUS and
PDP-11/44. :

Table 5—1 shows a comparison of unmapped and mapped systems on
various PDP-1l1l's.

165

MEMORY MANAGEMENT CONCEPTS

Table 5-1 Mapped Versus Unmapped Systems

Memory ’ Other Addressing
System Addressing Size Addressing Limit
Unmapped 16-bit 28K words I/0 page 1777717
(56K bytes) ‘ 4K words 32K words
(8K bytes) (64K bytes)
Mapped 18-bit 124K words I1/0 page 777777
(248K bytes) 4K words 128K words
(8K bytes) (256K bytes)
Mapped 22-bit 1920K words I/0 page 17777777
(3840K bytes) 4K words 2048K words
(8K bytes) (4096K bytes)
UNIBUS map
124K words

(248K bytes)

Figures 5-1 to 5-3 show physical address space on the various
systems., Appendix B contains a conversion chart between decimal
and octal, and between various word and byte values, which may be
helpful as you read this module.

Figure 5-1 shows the layout of an unmapped system. Sixteen-bit
addresses are all that are allowed. This corresponds to an
addressing limit of 32K words or 64K bytes. Of this, 28K words
correspond to actual physical memory and 4K words correspond to
the I/0 page. The addresses in the 1I/0 page are assigned to
peripheral devices which are used in performing I/O operations.
On an RSX~11lM system, the Executive, including the Dynamic Storage
Region (DSR or POOL), takes up something less than or equal to 20K
words (as little as 8K words). Tasks occupy the area between the
top of the Executive and the top of memory.

Figure 5-2 shows the layout of a mapped system with 18-~bit
addressing. Eighteen bits give an addressing limit of 128K words
or 256K bytes. Again, the top 4K words correspond to the 1I/O
page, leaving 124K words of physical memory. The Executive,
including POOL, usually takes either 16K words or 20K words,
leaving the rest, either 108K words or 104K words, for tasks.

166

MEMORY MANAGEMENT CONCEPTS

Figure 5-3 shows the 1layout of a mapped system with 22-bit
addressing. Twenty-two bits give an addressing limit of 2848K
words or 496K bytes. Again, the top 4K words correspond to the
I/0 page. 124K words are used for UNIBUS mapping, which is needed
when peripheral devices access memory directly (DMA devices).
UNIBUS mapping is necessary to convert 18-bit UNIBUS addresses. to
22-bit physical memory addresses. This leaves 1920K words of
physical memory. Again, the Executive, including POOL, usually
takes 16K words or 20K words, leaving 1904K words or 1900K words
for tasks.

'PHYSICAL
ADDRESSES
(IN OCTAL)
177777)
4K WORDS I/0 PAGE
) | 160000
157777
TASK 32K WORDS
(28-N)K WORDS < AREA " OF ADDRESSING
28K WORDS
OF 9
MEMORY
¢ DSR
N K WORDS .
(N<20) EXECUTIVE
L L 0 J

TK-7747

Figure 5-1 Physical Address SpaCe in an Unmapped System

167

MEMORY MANAGEMENT CONCEPTS

PHYSICAL
ADDRESSES
(IN OCTAL)
777777 Y
" 4K WORDS \ 1/0 PAGE
760000
f 757777
108K OR { TASK
104K WORDS AREA 128K WORDS
124K WORDS+ TOF ADDRESSING
OF
MEMORY
\
DSR
16K OR 20K
WORDS 1 EXECUTIVE
. ~ 0 .4

TK-7757

Figure 5-2 Physical Address Space in an 18-Bit Mapped System

168

MEMORY MANAGEMENT CONCEPTS

PHYSICAL
ADDRESSES
(IN OCTAL)
17777777
4K WORDS 1/0 PAGE
17760000
17757777
RESERVED
124K WORDS {
(UNIBUS MAP)
L 17000000
r 16777777
| 2048 WORDS
1920K 1904K OR TASK OF ADDRESSING
'WORDS OF ¢ 1900K WORDS) ‘
MEMORY AREA
1 DSR
16K OR 20K |
WORDS EXECUTIVE
L . 0 J

TK-7758

Figure 5-3 Physical Address Space in a 22-Bit Mapped System

169

MEMORY MANAGEMENT CONCEPTS

Virtual and Physical Addresses

Virtual addresses are used within a task itself. They are always
16-bit addresses 1in the range @(8) to 177777(8), or 32K words.
When a task 1is task-built, wvirtual addresses are assigned
typically starting at @(8) at the beginning of the task.

Physical addresses are used in physical memory, the I/O page, and,
with 22-bit systems only, the UNIBUS map. They begin with #(8) at
the beginning of memory and include all of physical memory, the
UNIBUS map, and the I/O page.

On an unmapped system, no address relocation 1is performed.
Therefore, virtual addresses match physical addresses. Figure 5-4
shows a task's virtual addresses and the corresponding physical
addresses 1in an unmapped system. The task is loaded beginning at
physical address 60000(8), and addresses referenced 1in the task
code reference physical addresses directly.

On a mapped system, the memory management hardware translates or
"maps" a task's virtual addresses to the physical addresses in
physical memory where the task 1is actually loaded. In the
simplest case, the wvirtual addresses are offsets from a base
physical address where the task is loaded. If a task 1is 1later
relocated to another location in physical memory, the virtual
addresses are then offset from the new base physical address.

Figure 5-5 shows a task loaded at two different 1locations. As
shown below, at time 1, virtual address 1534(8) in the task is at
the location 425134(8) in physical memory. At time 2, wvirtual
address 1534(8) 1in the task is at location 141534 (8) in physical
memory. Since all addresses are converted at execution time,
references to location 1534(8) in the task are resolved correctly
regardless of where the task is loaded in physical memory.

243400 (8) Base physical address
1534 (8) Offset (task virtual address)

425134 (8) Actual physical address

140000 (8) Base physical address
1534 (8) Offset (task virtual Address)

141534 (8) Actual physical address

170

MEMORY MANAGEMENT CONCEPTS

On a mapped system, the Task Builder fixes a task's code in
virtual address space, but the actual mapping of virtual addresses
to physical addresses is performed at run time by the memory
management unit,. Tasks may be 1loaded at different physical
addresses and still run correctly. As you will see later, mapping
also allows a task to access several separate pieces of physical
memory.

PHYSICAL ~ PHYSICAL

ADDRESSES
- MEMORY (IN OCTAL)
VIRTUAL VIRTUAL
ADDRESSES
IN OCTAL MEMORY
() e 140000
137777 137777
TASK | TASK
8K WORDS 8K WORDS
100000 S 100000
’ PSR 77777
EXECUTIVE
16K WORDS
0

TK-7759

Figure 5-4 Virtual Addresses Versus Physical Addresses
on an Unmapped System

171

MEMORY MANAGEMENT CONCEPTS.

VIRTUAL
ADDRESSES VIRTUAL
{IN OCTAL) MEMORY
137777
TASK
24K WORDS
0
VIRTUAL
MEMORY
137777
TASK
24K WORDS

Figure 5-5 Virtual Addresses Versus
on a Mapped System

KT-11
M.M.
uNIT -
-
=~ ~
S~
TIME 1
KT-11
M.M.
UNIT
~
~
~
AN
AN
AN
AN
AN
TIME 2

172

PHYSICAL
MEMORY

TASK
24K WORDS

EXEC
20K WORDS

PHYSICAL
MEMORY

TASK
24K WORDS

EXEC
20K WORDS

PHYSICAL
ADDRESSES
(IN OCTAL)

403400
403377

243400
243377 -

120000
117777

PHYSICAL
ADDRESSES
(IN OCTAL)

300000
277777

140000
137777
120000
117777

TK-7760

Physical Addresses

MEMORY MANAGEMENT CONCEPTS

The KT-11 Memory Management Unit

Mode Bits - Bits 15 and 14 and bits 13 and 12 of the processor
status word (PSW) indicate, respectively, the current and previous
modes of processor operation. The mode may be:

e Kernel mode (80)
e User mode (11)

e Supervisor mode (@1). (Supervisor mode 1is not used on

RSX-11M, and is available only on 11/45, 11/55, 11/44, and
11/78.)

The purpose of having different processor modes is to provide for
a privileged mode (kernel) where the Executive can execute
privileged instructions (e.g., HALT), and can manipulate
privileged locations (e.g., PSW), and a non-privileged and
protected mode (user) where tasks usually execute.

Active Page Registers (APRs) - The Active Page Registers (APRs) in
the KT-11 memory management unit are used to define the mapping or
correspondence between virtual and physical addresses. On an
RSX-11M system, one set of eight APRs is used at a time to define
this mapping. There is one set of APR's used for each processor

mode; one is used in user mode and another set is used in kernel
mode.

At any given time, the set of APRs in use 1is determined by the
mode bits 1in the processor status word. Each APR in the set in
use maps a specific range of virtual addresses, as shown in Table
5-2. The APR can map zero words, if not in use, up to the full 4K
words, always in even multiples of 32 words. In actuality, the
hardware may contain additional sets of APRs, but they are not
used under RSX-11M.

Each APR consists of two 16-bit registers, a page address register
(PAR) and a page descriptor register (PDR). The page address

register contains a base address used in mapping the appropriate
range of virtual addresses.

173

MEMORY MANAGEMENT CONCEPTS

Table 5-2 APR and Virtual Address Correspondence

APR Virtual Address

Number Range K Words
7 160000-177777 (8) 28-32K
6 140000-157777 (8) 24-28K
5 120000-137777(8) 2¢-24K
4 100000-117777 (8) 16-20K
3 6Qoee~- 77777 (8) 12-16K
2 40000~ 57777 (8) 8-12K
1 20008- 37777 (8) 4- 8K
/] g- 17777 (8) g- 4K

Because the page address register contains only 16 bits, but the
actual physical addresses on the larger PDP-11's contain 18 or 22
bits, the 16 bits cannot <contain an actual physical address.
Instead, the 16 bits contain a block number, which corresponds to
the high-order 16 bits (12 bits with 18-bit addressing) of the
actual physical address. A block of memory is 32(1l@) words (=
64 (10) bytes = 100(8) bytes) long and starts on a 100(8) boundary.
Therefore, the base physical address 00134200 (8) is the start of
block number @01342(8) and the base address 12445700(8) 1is the
start of block number 124457(8). '

To obtain the block number from a physical address which ends in
at least two octal zeros, just strip off the last two zeros from
the actual address. To obtain the physical address from the block
number, append two zeros to the end of the block number in octal.

The page descriptor register (PDR) contains information about the
page of memory in use, such as the length of the page (up to 4K
words) and the access rights (read/write, read-only, etc.). The
fields for 1length and access rights in the PDR provide the
capability for hardware memory protection. If any reference in a
task 1is beyond the actual area in use or violates the access
rights, a memory protect violation is reported.

For a more complete description of the PARs and the PDRs, see
Chapter 6 of the PDP-1l1 Processor Handbook.

Figure 5-6 shows the values in the page address registers for an
example task. The main part of the task is 14K words long;
therefore it needs four APRs; three APRs (APR #,1, and 2) mapping
4K words each, and a fourth APR (APR3) mapping the last 2K words.
The base physical address of the task 1is 00432408(8), which |is

obtained by converting the block number ©004324(8) to a byte
address. :

174

MEMORY MANAGEMENT CONCEPTS

All virtual addresses within the main task area are mapped to
physical addresses beginning at location 00432400 (8). This means
in effect that each virtual address corresponds to an offset from
location 20432400 (8) . The page descriptor registers, not
illustrated, indicate that APRs @, 1, and 2 map 4K words each, but
that APR 3 maps only 2K words. '

PHYSICAL PHYSICAL
MEMORY ADDRESSES
(IN OCTAL)
VIRTUAL VIRTUAL
ADDRESSES MEMORY PAR
(INOCTAL)) _APR __ VALUE
~ ~
COMMON 4K WORDS 7 | 015322
160000 —_— —_ RESIDENT COMMON
6 000000 1532200
140000 £
5| 000000
120000 [UNUSED
/ 4| 000000
100000 § /
70000 ~—-——-—-—3- 005124 |~
60000 {_ — ~
2| oo04724 —{ 512400
40000 |- .
TAS > 14K WORDS
K 1| ooss24 TASK — 472400
20000 |- - AREA
ol ooaz2s 1 452400
0 ————
~ 432400

TK-7761

Figure 5-6 Page Address Registers Used in Mapping a Task

175

MEMORY MANAGEMENT CONCEPTS

The task in Figure 5-6 is also mapped to a resident common. APR 7
is used to map this 4K word area, beginning at location 6153200 (8)
in physical memory. Therefore, virtual addresses from 160000 (8)
to 177777 (8) map to physical addresses @1532200(8) to ©91732177(8).
Virtual address 1653414(8) corresponds to physical address
015322008 (8) + [1653414(8)-160000(8)] = 01605614 (8).

Note that a task can be loaded into a minimum of one or a maximum
of eight separate contiguous areas of memory, because each APR
must map to a contiguous area of memory. If a 32K word task is
loaded 1into one large contiguous area, eight APRs are still used,
but each APR maps only part of the large contiguous area.

Converting Virtual Addresses to Physical Addresses

The following two examples show how the KT-11 memory management
unit converts virtual addresses to physical addresses for the task
shown in Figure 5-6.

Example 1

The KT-11 unit takes a virtual address and uses the value 1in the
appropriate APR to convert it to a physical address. The virtual
address range indicates which APR to use (Table 5-2).

Since ©#53422(8) is in the range 0400006-957777, APR 2 is used. Or,
looking at the address in binary, the high-order three bits
indicate which APR to use. Bits @ through 12 indicate the
displacement or offset from the base physical address of the page.
This is equal to ©053422(8) - 04000@(8) = 13422(8), the distance of
this virtual address from the base virtual address for this APR.

Active

Page Displacement

Field Field
do—— e e +

P53422(8) = | 61 9 | 1011100010010 (2)
tmm————— T +
2 13422(8)
APR Offset

176

MEMORY MANAGEMENT CONCEPTS

In easier terms, virtual address 40000(8) will be located at the
base physical address. A wvirtual address 13422(8) bytes above
that will be 13422(8) bytes above that physical 1location. The
base physical address is determined by converting the block number
in APR2, 004724(8), to the physical address 00472400 (8). (Recall
that a block of memory 1is 1606(8) bytes.) Therefore, address
53422 (8) is mapped to the location shown below.

00472400 (8) Base physical address
+ 13422 (8) Displacement

PP506022(8) Actual physical address

Example 2

Convert the virtual address 165275(8)

o e +
165275(8) = 1 111 | @010 1081021111081] (2)
o ——— e +
7 95275 (8)
APR Offset

APR 7 = @15322(8) blocks = 01532200(8) Base physical address
: + @5275(8) Displacement

—— v —————— ———

§1537475(8) Actual physical address

The memory management unit performs this conversion using an adder
and a number of internal registers. The conversion is performed
at extremely fast speeds. Chapter 6 of the
PDP-11 Processor Handbook discusses this conversion process in
more deta11

177

MEMORY MANAGEMENT CONCEPTS

SOFTWARE CONCEPTS

Virtual Address Windows

A virtual address window, or simply a window, 1is a contiguous
range of virtual addresses within a task. 'A window is always
mapped as a unit, to a contiguous range of physical locations. A
task which resides in a single contiguous area of physical memory
generally has a single window, called the task window, which Iis
mapped to the area. An example of this was shown in Figure 5-5,
which has a single window 24K words long. Notice that the window
is the same at time 1 and time 2, but it maps to different
locations in physical memory. On the other hand, a task which
must access two separate pieces of physical memory at the same
time would have two windows (as in Figure 5-6) to map those areas.

Windows are mapped using APRs. A virtual address window always
corresponds to at least one, but possibly more than one, APR (up
to all eight). A window always begins at a 4K word boundary,
corresponding to the lowest address mapped by the first APR used
for the window. Successively higher APRs are then used, until the
entire window 1is provided for. The Task Builder assigns most
virtual addresses and creates most windows, determining which APRs
will be used during that task's execution.

The task window for a task begins at virtual address @ (therefore
using APR @) and extends upward as far as necessary to accommodate
the task's header, stack, main code and data. Other windows can
begin at any 4K word boundary above the high limit of the task
window. Typically, additional windows are assigned from the top
of wvirtual address space working downwards. For example, if an
additional address window of 4K words or less 1is needed, it is
assigned a base address of 160000(8), using APR 7.

If, on the other hand, a window is needed between 4K words and 8K
words in size, the window will be given a base address of
140000 (8). In this case, the window would use APRs 6 and 7.
Additional windows would be assigned lower base addresses that
correspond to other available APRs.

NOTE
Under no circumstance can two windows exist
at the same time within a task using the same
APR or the same virtual addresses.

178

MEMORY MANAGEMENT CONCEPTS

The Task Builder allocates space in the task header for the
windows it has created and records information that specifies how
these windows are to be mapped. This information is used to load
the APRs with appropriate values before the task executes.

Memory management directives can be used to create and initialize
additional windows while a task executes. Space for these
additional windows must be allocated in the task header at
task-build time, using the "WNDWS" option. Memory management
directives and their use are discussed 1in Module 8 on Dynamic
Regions.

Regions

A region is a contiguous area of physical memory to which a task
may get access rights. A region must be contained completely

within a partition. It can be part of a partition or the entire
partition.

There are three types of regions in an RSX-11M system.

l. Task region - an area in a user-controlled partition or a
system-controlled partition into which a task is loaded
and then executes.

2. Static Common Region - an area in a common type partition;
e.g., a shared common for data or a shared library for
code.

3. Dynamic Region - an area in a system-controlled partition
which 1is created dynamically, at run time, using the
memory management directives.

A task gets access rights to a region by "attaching"” to the
region. Before the Executive attaches a task to a region, it
checks its needed access against the protection on the region.
This is similar to checking file protection before allowing file
access. If the task passes the check on access rights, then the
Executive attaches the task to the region by establishing a
connection between the two. The total amount of physical memory,
made up of regions, to which a task is attached is called a task's
logical address space.

179

MEMORY MANAGEMENT CONCEPTS

After a task is attached to a region, it actually accesses or uses
the region by first "mapping" one of its virtual address windows
to a part or to all of the region. During this process, the
Executive wuses the window and region information to £ill in the
APRs. After this, references in the task to virtual addresses in
that window map to physical addresses within the region. A region
does not have to be the same size as a window. Generally it is of
equal or larger size than the window.

Attaching and mapping are done automatically by the Executive for
regions 1linked to at task-build time. Alternatively, a task can
use memory management directives at run time to dynamically create
regions, attach to regions, and map windows to regions.

Figure 5-7 shows a task which has three virtual address windows
mapped to three different regions. Figure 5-8 shows the same task
after it attaches to another region (the work area) and maps to
it. Notice that virtual addresses beginning at 100008 (8) are used
to map this region. For example, this area might be used as a
temporary work buffer. Figure 5-8 does not include the actual PAR
values or the actual physical addresses. This simpler form of
mapping diagram will be used from now on in this course to make

things easier, unless the actual PAR values and physical addresses
are significant to the discussion.

Now do the tests/exercises for this module in the Tests/Exercises
book. They are all written problems. Check your answers against
those provided in that book.

If you think that you have mastered the material, ask your course
administrator to record your progress in your Personal Progress
Plotter. You will then be ready to begin a new module.

If you think that you have not yet mastered the material, return
to this module for further study.

184

MEMORY MANAGEMENT CONCEPTS

PHYSICAL
MEMORY
LIBRARY
VIRTUAL VIRTUAL / f
ADDRESSES PAR
(IN OCTAL) MEMORY APR VALUE / /
177777 —— I
WINDOW COMMON 4 006056 1=~
2 0000 (4K WORDS) / /
WINDOW 11(:7777 m f’ﬂf!ﬂﬂ!ﬂ'm:ﬁ), ———- 6- 014764 T~ common
1 140000 |_LIBRARY (2K WORDS) | _
/ 5 000000
120000
4| 000000
100000
3| o06232
63777 — 2] -
60000 -
2| 008032
40000 TASK
WINDOW WINDOW
0 (13K WORDS) 1] 005632 TASK
20000 REGION
0 005432
-~ ~

PHYSICAL
ADDRESSES
{IN OCTAL)

1476400

605600

543200

TK-7762

Figure 5-7 A Task with Three Windows Mapped to Three Regions

181

WINDOW
2 160000

WINDOW

1 { 140000

WINDOW
3 4

WINDOW 4
0

r

120000
L 100000
(60000

40000

20000

Figure 5-8 Task in Figure 5-7 after Attaching

\ 0

MEMORY MANAGEMENT CONCEPTS"

VIRTUAL
MEMORY

APR 7

COMMON
(4K WORDS)

[NsEY

LIBRARY (2K WORDS)

APR 6 %%%%%mﬂﬁig%%%%‘\

APR 5 | WORK AREA ~_
(6K WORDS)

APR 4 |

APR 3 %/////WW//////% \\\

APR2 I TASK ™~
WINDOW

APR 1 |- (13K WORDS)

APR 0 -

™~

to a Fourth Region-

182

PHYSICAL
MEMORY

LIBRARY

COMMON

WORK AREA

TASK
REGION

TK-7763

to and Mapping

5 i

 Digital Equipment Corporation « Bedford, MA 01730

