
EY -0060E-SG-O 1 01

Programming
RSX-llM in MACRO

A Self-Paced Course

Volume I

EY -0060E-SG-O 1 01

Programming
RSX-ll M in MACRO

A Self-Paced Course

Student Workbook
Volume I

Prepared by Educational Services
of

Digital Equipment Corporation

Copyright © 1982, Digital Equipment Corporation.

All Rights Reserved.

The reproduction of this material, in part or whole, is
strictly prohibited. For copy information, contact the
Educational Services Department, Digital Equipment
Corporation, Bedford, Massachusetts 01730.

Printed in U.S.A.

The information in this document is subject to change
without notice and should not be construed as a com­
mitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished
under a license and may not be used or copied except
in accordance with the terms of such license.

Digital Equipment Corporation assumes no responsibility
for the use or reliability of its software on equipment
that is not supplied by Digital.

The following are trademarks of Digital Equipment Corporation,
Maynard, Massachusetts:

DIGITAL DECsystem-10 MASSBUS
DEC DECSYSTEM-20 OMNIBUS
PDP DIBOL OS/8
DECUS EDUSYSTEM RSTS
UNIBUS VAX RSX

VMS lAS

9/82-14

VOLUME I

SG STUDENT GUIDE

INTRODUCTION • • • • • • • •
PREREQUISITES. • • • • •••
COURSE GOALS AND NONGOALS ••
COURSE ORGANIZATION •••••
COURSE MAP DESCRIPTION •
COURSE MAP • • • • • • • • •
COURSE RESOURCES • • • • • •

Required References.
Optional References.

HOW TO TAKE THE COURSE •
PERSONAL PROGRESS PLOTTER. •

1 USING SYSTEM SERVICES

CONTENTS

• • • • • • • • • • 3
• • • ••• • ••• 4
• . • • • • • •. ••• 4
• • • • • • • • • • •• 5
• • • • • • • • • • • • • • 5
• • • • • • • • 6
• . • . . . • . • • • • • • 7
• • • • • • • • • .•• 7
· • • • • • • • • •• • 7
• • • • • • • • • • 8
· • . . • .13

INTRODUCTION • • • • • • • • •• • • • .17
.17 OBJECTIVES • • • • • • • • • • • • • •• •• •

RESOURCES. • • • •• • • •• • ••
WHAT IS A SYSTEM SERVICE? • • • • • • • • • •
WHY SHOULD YOU USE SYSTEM SERVICES? •••••

To Extend the Features of Your Programming

••• 17
.19

• • .19

Language • • • • • • • • • • • • • • • • • • • .19
To ~ase Programming and Maintenance. • ••••• 19
To Increase Performance. • • • • •• • ••••• 20

WHAT SERVICES ARE PROVIDED? • • • • • • • • • • • • • • 20
System and Task Information. • • •• • ••••• 20
Task Control • • • • • • • • • • • • • •• • •• 21
Task Communication and Coordination.. • •••• 21
I/O Peripheral Devices • • • • ••• • • •• 21
File and Record Access ••••••••••••••• 21
File and Record Access Systems. • • • .22
Memory Use • ~ • • • • • • • • • •••••••• 22

OTHER SERVICES AVAILABLE. • • • •• •• • • •• 23
HOW SERVICES ARE PROVIDED. • • • • • •• • ••••• 25

Executive Directives • • • • • • •••••••• 25
Code Inserted into Your Task Image. • ••••• 28

SYSTEM LIBRARIES. • • • • • • • • • • • • ••••• 30

2 DIRECTIVES

INTRODUCTION. • • • • • • • • • • • • • • •• • •• 35
OBJECTIVES • • • • • • • • • • • • • • • • •• • •• 35
RESOURCES •••••••••••••••••••••••• 35
INVOKING EXECUTIVE DIRECTIVES FROM A USBR TASK ••••• 37

Directive Processing. • • • • • • • • • • • •• 37

iii

Functions Available Through Executive
Directives ••••••••••••••
The Directive Parameter Block (DPB) ••••••
The Directive Status Word (DSW). • • •••
Sample Program ••••••••••••

DIFFERENT FORMS OF THE DIRECTIVE CALLS
The $ Form • • • • • • • • • • • • ••• •
The $C Form. • • • • • • • • • • • • • • •
The $S Form. • •• • • • •••••• •
Repeated Use of a Directive with Different

.39

.41

.42

.43

.46

.46

.49

.51

Arguments. • • • • • • • • • • • • • • • • .58
ADDITIONAL DIRECTIVE CONSIDERATIONS. • • • • • •• .62

An Alternative Method for Error Checking •••• 62
Run Time Conversion Routines. • • • • •• • •• 68
Notifying a Task When an Event Occurs.. • ••• 69

Event Flags. • • • • • • • • • • • • • .69
Using Event Flags for Synchronization. •• .70
Asynchronous System Traps (ASTs) • • • .75

Synchronous System Traps (SSTs). • • • • • • • • • .82

3 USING THE QIO DIRECTIVE

INTRODUCTION. • • • • • • • • • • • • •• •• .91
OBJECTIVES. • • • • • • • • • ••••••••••• 91
RESOURCES. • • • • • • • • • • • • .91
OVERVIEW OF QIO DIRECTIVES. • • • • • •• .93
PERFORMING I/O • • • • • • • • • • • • • • .93
I/O FUNCTIONS. • • • • • • • • • • • • • • • • .94

Logical Unit Numbers (LUN) ••••••••••••• 95
Synchronous and Asynchronous I/O • • •••••• 95

MAKING THE I/O REQUEST •••••••••••• 101
Error Checking and the I/O Status Block. • 103

THE QIO DIRECTIVES • • • • • • • • • • • • 105
Synchronous I/O. • • • • • • • • • • • • • • • • • 105
Asynchronous I/O • •• ••••••••••• • III
Synchronization With Asynchronous I/O. • • 112

TERMINAL I/O • 120
Device Specific Functions ••••••••••••• 120
I/O Status Block and Terminating Characters.. 120
Read After Prompt ••••••••••••••••• 123
Read No Echo • • • • • • • • • • • • • ••• • 126
Read with Timeout ••••••••••••••••• 128
Terminal-Independent Cursor Control. • •••• 131
Formatting Output Data • • • • • • • • ••• • 135
Formatting ASCII Data ••••••••••••••• 145

iv

4 USING DIRECTIVES FOR INTERT ASK COMMUNICATION

INTRODUCTION • 151
OBJECTIVES • 151
RESOURCE • 151
USING TASK CONTROL DIRECTIVES AND EVENT FLAGS. •• 153

Directives • 154
SEND/RECEIVE DIRECTIVES •••••••••••••••• 163

General Concepts • • • • • • • • • • • • • 163
Directives • • • • • • •• • • • • • • • • • • 163
Synchronizing Send Requests With
Receive Requests • • • • • •••••
Using Send/Receive Directives

• 164

for Synchronization. • • • • • • • • • • • •• 181
Slaving the Receiving Task • • • •• • •••• 181

PARENT/OFFSPRING TASKING • • • • •• •• • • • • • 182
Directives Issued by a Parent Task •••••• 184
Directives Issued by an Offspring Task •••••• 194
Chaining of Parent/Offspring Relationships • • 195
Other Parent/Offspring Considerations ••••••• 201
Task Abort Status. • • • • • • • • • • • • • • 206
Summary of Various Methods of Data Transfer
Between Tasks .••••••••••••• • 208
Other Methods of Transferring or Sharing Data
Between Tasks. • • • • • •• • •••••••• 209

5 MEMORY MANAGEMENT CONCEPTS

INTRODUCTION • • • • • • • • • • • • • 213
OBJECTIVES • 213
RESOURCES. • • • . • • •• • • • • • • • • 213
GOALS OF MEMORY MANAGEMENT • • • • • • • • • • •
HARDWARE CONCEPTS .••••••••••••••••

• 215
• • 215

Mapped Versus Unmapped Systems • •• • • • 215
Virtual and Physical Addresses ••••••
The KT-11 Memory Management Unit •••

Mode Bits. • • • • • • • • • • ••
Active Page Registers (APRs) •••••

Converting Virtual Addresses to Physical

220
• • • • 223
• • • • 223
• • • • 223

Addresses ••••••••••••••••••••• 226
SOFTWARE CONCEPTS ••••••••••••••••••• 228

Virtual Address Windows. • • • • • • • • • • • 228
Regions •••••••••••••••••••••• 229

v

6 OVERLAYS

INTRODUCTION • • • • • • • • • • • • • • • 235
OBJECTIVES • • • • • • • • • , • • • •• • 235
RESOURCE • • • • • • • • • • • • • • • 235
CONCEPTS •• • • • • • • • • • • • • • • • • • 237
OVERLAY STRUCTURE. • • • • • • • • •• 238
STEPS IN PROGRAM DEVELOPMENT USING OVERLAYS. ••• 241
THE OVERLAY DESCRIPTOR LANGUAGE (ODL).. • •••• 241

ODL Command Line Format. • • • • • • • • ••• 241
TYPES OF OVERLAYS.. •••• • ••• • •• 245

Disk-Resident. • • • • • • • • • • • • • • 245
Memory-Resident. • • • • • • • • • • • • • •• 247

LOADING METHODS. • • • • • • • • • • • •• 251
Autoload • • • • • • • • • • • • • 251
Manual Load. • • • ••• • • • •••••• 253
Comparison of a Task With No Overlays,
to One With Disk-Resident Overlays, and
One With Memory-Resident Overlays. • • •• 253
Overlaying Techniques. • • • • • • • • •• 254

LIBRARIES. • • • • • • • • • • • • • • • ••••• 262
GLOBAL SYMBOLS IN OVERLAID TASKS • • • • • • • 268

Resolution of Global Symbols • ••• • •• 268
Subroutine Calls • • • • • • • • • •• 271
Data References •••••••••••••••••• 271
Placing Data in the Root and Referencing It.. 272

CO-TREES . • • • • • • • •• • • • • • • •• • 282

VOLUME II
7 STATIC REGIONS

INTRODUCTION • • • • • • • • • • • • ••••••• 289
OBJECTIVES • • • • • • •• • • • • • • • • • • • • 289
RESOURCE . • 289
TYPES OF STATIC REGIONS. •• • • • • • • • 291
MEMORY ALLOCATION. • • • • • • • • • • •• 293
MAPPING. . • • • • • • • • • • • • • • •• 293
REFERENCES TO A SHARED REGION. • • • • • •• • •• 299

Techniques of Referencing ••••••••••••• 301
Using Overlaid Psects (Data Only) ••••••••• 301
Using Global Symbols (Data. or Subroutines) •••• 302
Using Virtual Addresses (Data Only) •••••••• 303

PROCEDURE FOR CREATING SHARED REGIONS
AND REFERENCING TASKS •••••••••••

Creating a Resident Common or Resident
Creating a Referencing Task ••••

DEVICE COMMONS • • • • • • • • • • • • • •

vi

• • • • • • 307
Library •• 307
• • • • • • 315
• • •• 326

8 DYNAMIC REGIONS

INTRODUCTION • • • • • • • •••• •• 337
OBJECTIVES • • • • • • • • •• • • • • • • 337
RESOURCE • • • • • • • • • •• •• •• 337
SYSTEM FACILITIES. • •••• • • • • • • • • • 339
REQUIRED DATA STRUCTURES ••••••••• •• 341

Region Definition Block (RDB). • • • • •• •• 341
Creating an RDB in MACRO-II.. •• •• •• 345
Window Definition Block (WDB). •• •• •• 347
Creating a WDB in MACRO-II • • •• • • • • 349

CREATING AND ACCESSING A REGION. • •• •• •• 351
Creating a Region. • • •• • ••••••••• 352
Attaching to a Region. • • • • • • •• •• 355
Creating a Virtual Address Window. • • 356
Mapping to a Region. • • • • • • • • • • • 356

SEND- AND RECEIVE-BY-REFERENCE • • • • 365
The Mapped Array Area. • • • ••••••• 373

9 FILE 1/0

INTRODUCTION • • • • • • • • • • • • • • • •• •• 383
OBJECTIVES • • • • • • • • • • • • • • •• 383
RESOURCES. • • • •••••• • •• • • •• 383
OVERVIEW • • • • • • • • • •• •• 385
TYPES OF DEVICES ••••••••••••• •• 385

Record-Oriented Devices.. • ••••••••• 385
File-Structured Devices. • • • • • • • •• •• 385

Types of File-Structured Devices • • ••• 386
COMMON CONCEPTS OF FILE I/O.. •••• • • • • • • 388

Common Operations. ••• • • • • • • • •• 388
Steps of File I/O. ••• • •• • • •• 388

FILES-II •• 389
FILES-II Structure • • • • • •• • • • • • • • 389
Directories. • • • • • • • • • • • •••• 394
Five Basic System Files. • • ••• 397
Functions of the ACP • • • • • • • • • • • 398

OVERVIEW AND COMPARISON OF FCS AND RMS • • • • • • • • 401
Common Functions • ••• • • • • • • • • • • • 401

FCS FEATURES • • • • • • • • • • • • •• •• • • • 403
File Organizations • • • • • • • • • • •• •• 403
Supported Record Types • • • • • • • • • • 403
Record Access Modes. • • • • ••••••• 407
File Sharing • • • • • • • • • • • • • • • • • • • 409

RMS FEATURES • • • • • • • • • • • • • • • • • •• 410
File Organizations •••• •• • • 410
Record Formats •• ••• • • • • • • • •• 412
Record Access Modes. • • • • • •• • • 412
File Sharing Features. • • • • •• 414
Summary. • • • • • • • • • • • • • • • •• •• 415

vi i

10 FILE CONTROL SERVICES

INTRODUCTION • • • • • • • • •• • • • • • • • • • 419
OBJECTIVES • 419
RESOURCE • • • • • • • • • • • • • • • • • 419
REVIEW OF FILE I/O • • • • • • • • • • • • • • • • 421
INTRODUCTORY EXAMPLE • • • • • • • • • • • • • • • • • 422
USING FCS •• • • • • • • • • • •• • • • • • • • 427

Preparing to Open a File • • • • • • ••••• 427
Initialization of the FSR ••••••••••••• 429
The File Descriptor Block (FDB). • • • • • •• 431

Functions of the FDB • • • • • •• • • • • 431
Allocating Space for FDBs. • • • • •• 432
Initializing an FDB •••••••••••••• 432

Specifying New File Characteristics. • • •• • 433
Selecting Data Access Methods.. •••• • 435
Specifying Data Access Methods • • • • • • •• 437
Additional Initialization of the FDB
for Record I/O • • • • • • • • • • • • • • • • 438
Additional Initialization for Block I/O. • 439
Initializing the File-Open Section of FDB ••••• 440

Setting Up a File Specification in the FDB •• 440
Setting Up the Dataset Descriptor. • • • ••• 441
Setting Up the Default Filename Block. • • 442
Initializing the File-Open Section
Prior to Opening the File. • ••••••• 443
Opening a File • • • • • • • • • • • • • • • • 450

ERROR CHECKING • • • • • • • • • • • • • • • • 453
PERFORMING RECORD I/O. • • • • • • • • •••••• 456

Different Forms of PUTS and GET$ ••••••••• 456
Sequential Access. •• • • • • • • • • 457
Random Access. • • • • • • • • • • • • 459
Closing the File • • • • • • • • • • • • • • • 460

PERFORMING BLOCK I/O • •• • • • • • ••••• 477
READ$ and WRITE$ Calls • • • • • • •• •• 477
Synchronization and Error Checking • • • • • • 478

ADDITIONAL TOPICS. • • • • • • • • • • • • 487
Deleting a File. • • • • • • • ••• • 487
File Control Routines. • • •••••••••• 487
Command Line Processing. • •••••••••• 488

AP APPENDICES

APPENDIX A SUPPLIED MACROS. . · · · · · · · · 491
APPENDIX B CONVERSION TABLES. · · · · . . . · · · 513
APPENDIX C FORTRAN/MACRO-II INTERFACE . . . · · · · · 515

PRIVILEGED TASKS • 517 APPENDIX D . · · · · · · · · APPENDIX E TASK BUILDER USE OF PSECT ATTRIBUTES · · · 519

viii

APPENDIX F
APPENDIX G
APPENDIX H

GL GLOSSARY

ADDITIONAL SHARED REGION TOPICS ••
ADDITIONAL EXAMPLES. • • • • • • • • •
LEARNING ACTIVITY ANSWER SHEET • •

• • • • 523
• • • • 537

• • 541

FIGURES

1-1 Using Executive Directives to Service a Task. • • .26
1-2 Using Executive Directives to Receive Services

from Other Tasks. • • • • • • • • • • ••••••• 27
1-3 Code Inserted into Your Task Image. • • • • • .29

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
3-1
3-2
3-3
3-4

Directive Implementation. •• • •••••
The Directive Parameter Block ••••••••
The $ Form. • • • • • • • • • • • • • • •
The $C Form •• • • • • • • • • • • • • •
The $S Form • • • • • • • • • • • • • • •
AST Mechanics • • • • • • • • • • • • • •
Stack as Set Up by the Executive for ASTs
SST Sequence •••••••••••••••
Execution of a Synchronous I/O Request. •
Events in Synchronous I/O • • • • • • • •
Execution of an Asynchronous I/O Request.
Events in Asynchronous I/O. • • • • • • •

·39
• • • • .41
• • • • .47
• • • • .50
• • • • .52
• • • • • 76
• . . . • 78
• • • • .84
• • • • .97
• • • • .97

100
• • • • 100

4-1 Parent/Offspring Communication Facilities •• 183
4-2 Spawning Versus Chaining (Request and Pass

Offspring Information) •••••••••••••••• 195
5-1 Physical Address Space in an Unmapped System. •• 217
5-2 Physical Address Space in an 18-Bit Mapped System •• 218
5-3 Physical Address Space in a 22-Bit Mapped System ••• 219
5-4 Virtual Addresses Versus Physical Addresses

on an Unmapped System • • • • • • • • • • • • • • • • 221
5-5 Virtual Addresses Versus Physical Addresses

on a Mapped System. • • • • • • • • • • • • • •• 222
5-6 Page Address Registers Used in Mapping a Task • • • • 225
5-7 A Task with Three Windows to Three Regions •••••• 231
5-8 Task in Figure 5-7 After Attaching to and Mapping

to a Fourth Region. • • • • • • • • • • • •• 232

6-1 A Memory Allocation Diagram • • • • • • • • • • • • • 240
6-2 An Overlay Tree • • • • • • • • • • • • • • • • • • • 240
6-3 An Example of Disk-Resident Overlays. • ••• 246
6-4 An Example of Memory-Resident Overlays •••••••• 249
6-5 Task With Two Overlay Segments •••••••••••• 263
6-6 Resolution of Global Symbols. • • • • • • • • • • • • 270

ix

6-7
6-8

7-1
7-2
7-3
8-1
8-2
8-3

Use of Co-Trees • •
Task With Co-Trees.

Tasks Using a Position Independent Shared Region.
Tasks Using an Absolute Shared Region • •
Program Development for Shared Regions ••••••
The Region Definition Block •••••••
The Window Definition Block •••
The Mapped Array Area • • • • • • • • • • • •

• • 283
• • 284

• • 295
• • 297
• • 300
• • 342
• • 348
• • 375

9-1 Example of Virtual Block to Logical Block,
to Physical Location Mapping. • • • • • • • • • • 391

9-2 How the Operating System Converts Between
Virtual, Logical, and Physical Blocks •••••••• 392

9-3 FILES-II Structures Used to Support Virtual-to-Logical
Block Mapping • • • • • • • • • • . • • • •• •• 393

9-4 Directory and File Organization on a Volume • •• 395
9-5 Locating a File on a FILES-II Volume.. •• • • • 396
9-6 Flow of Control During the Processing

of an I/O Request • • • • • •• •••••• • • • 400
9-7 Move Mode and Locate Mode • •• • • • • • • • • • 402
9-8 Sequential Files. • • • • • • • • • • •••• 403
9-9 RMS File Organizations. • • •• ••• • • 411

10-1
10-2
10-3
10-4

F-l
F-2
F-3
F-4

F-5
F-6

F-7

SG-l

1-1
1-2
1-3

2-1
2-2

The File Storage Region •••••••••••••
Move Mode Versus Locate Mode for Record I/O •
Block I/O Operations •••••••••••••
The File Descriptor Block • • • • • •• •• •

A Shared Region With Memory-Resident Overlays
Referencing Two Resident Libraries ••••••
Referencing Combined Libraries ••••••••••
Building One Library, Then Building
a Referencing Library • • • • • • • • • • • • • •
Revectoring • • • • • • • • • • • • • • • • • • •
Using Revectoring When Referencing Library
Has Overlays. • • • • ••••••••
Cluster Libraries • • • • • • • • • • • • • •

• • 426
• • 428
• • 429
• • 431

• • 524
• • 526
• • 528

530
• • 531

• • 533
• • 535

TABLES

Typical Course Schedules ••••••••

Examples of Use of Other Services • • • •
Standard Libraries. • ••••••••
Resident Libraries. • ••

Types of Directives
Summary of Directive Forms.

x

• •• 12

.24

.30

.32

• • .40
• • .61

3-1
3-2
3-3
3-4

4-1

4-2
4-3

4-4
4-5

4-6
4-7
4-8

4-9
4--10

4-11
4-12

5-1
5-2

6-1
6-2

Common (Standard) I/O Function Codes ••••••
I/O Parameter List for Standard I/O Functions •
Some Special Terminal Function Codes. • ••
Sample Editing Directives for $EDMSG ••••••

• • • .94
• 102
• 122
• 137

Task Control Directives and Their Use
for Synchronizing Tasks •••••••• ~ •••••• 155
Stopping Compared to Suspending or Waiting. • •• 156
Event Flag Directives and Their Use
for Synchronizing Tasks ••••••••• • • • • 156
The Send/Receive Data Directive ••••••
Methods of Synchronizing a Receiving Task (RECEIV)

• 164

with a Sending Task (SEND). • • • • • • •• • •• 165
Standard Exit Status Codes. • • • • • • • • • • • 184
Comparison of Parent Directives ••••••••••• 185
Directives Used by a Task to Establish
a Parent/Offspring Relationship • • • • • • ••
Directives Which Return Status to a Parent Task •
Directives Which Pass Parent/Offspring Connections

• 186
194

to Other Tasks •••••••••••••••••••• 196
Task Abort Status Codes • • • • • • • • • • • •• 207
Comparison of Methods of Data Transfer
Between Tasks • 208

Mapped Versus Unmapped Systems. • ••
APR and Virtual Address Correspondence ••

• 216
• • • 224

• • •• 260 Comparison of Overlaying Methods.
How Global Symbols Are Resolved • • • • • • • • • 269

7-1 Types of Static Regions Available on RSX-11M ••••• 292
7-2 Techniques of Referencing a Shared Region •••••• 305
7-3 Effect of /CODE:PIC, /SHAREABLE:COMMON, and

/SHAREABLE:LIBRARY on a Shared Region's STB ••••• 306
7-4 Required Switches and Options for Building

8-1
8-2
8-3

a Shared Region ••••••••••••••••• ~ • 309

Memory Management Directives.
Region Status Word ••••••••••
Window Status Word ••••••••••

• • • • 340
• • • • • • 344
• • • • • • 349

9-1 Comparison of Physical, Logical and Virtual Blocks •• 390
9-2 Examples of Use of FI1ACP Functions •••• • 399
9-3 Comparison of FCS Record Types •••••••••••• 406
9-4 Comparison of Sequential Access I/O and

Random Access I/O • • • • • • • • • •• • • • • • 408
9-5 File Organization, Record Formats, and Access Modes • 413
9-6 Comparison of Fes and RMS • • • • • • • • • • • • •• 415

xi

10-1
10-2

B-1
B-2

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10

3-1
3-2

3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10

4-1
4-2
4-3
4-4

4-5
4-6
4-7
4-8

4-9

6-1
6-2
6-3

When the User Record Buffer Is Needed . · · · · · · · 436
Types of Access · · · · · · · 445

Decimal/Octal, Word/Byte/Block Conversions. · · · · · 513
APR/Virtual Addresses/Words Conversions · · · · · · · 513

EXAMPLES

Requesting a Task • • • • • • • • • • • • • •• 45
Using thec $ Form of the Directives •••
Using the $C Form of the Directives ••••••••
Using the $S Form of the Directives ••••••
Using Several Directives •••••••••••
Waiting for an Event Flag •••••••••.•••

.54
• .56
• ,.57

.66
• .72
• .74 Setting an Event Flag in a Task • • • • • •

Using a Requested Exit AST •••••••
Using an AST in the Mark Time Directive •

· . • . . . 79

Using SSTs ••••••••••••••••••

Synchronous I/O • • • • • • • • • .
Asynchronous I/O Using Event Flags

• • .81
.86

• 109

for Synchronization • • • • ••••••• 114
Asynchronous I/O Using an AST for Synchronization •• 118
Prompting for Input • • • •• • • • • • • •• 124
Read No Echo ••••••••••••••••••••• 127
Read With Timeout • ~ • • • • • • • • • • 129
Terminal Independent Cursor Control.. • • • • • • 133
Formatting Numeric Data • • • • • • ••• •• 140
Formatting Directive and I/O Error Messages ••••• 143
Formatting ASCII Data • • • • •• •• •• •• 146

Synchronizing Tasks Using ~uspend and Resume ••••• 158
Synchronizing Tasks Using Event Flags • • •• •• 161
Synchronizing a Receiving Task Using Event Flags ••• 168
A Receiving Task Which Can be Run Before or After
the Sender •••••••••••• ~ ••••••••• 173
Synchronizing a Receiving Task Using RCDS$ •••••• 118
A Task Which Spawns PIP • • • • • • • • • • • • • • • 188
A Generalized Spawning Task • • • • • • • • • • • • • 191
An Offspring Task Which Chains its Parent/Offspring
Connection to PIP • • • • • • • • • • • • • • • • • • 198
A Spawned Task Which Retrieves a Command Line • • 203

Description of An Overlaid Task • • • • • • • • • • • 239
Map File of Example 6-1 without Overlays. •• •• 255
Map File of Example 6-1 With Disk-Resident
Overlay~. • • • •• • •••••••••••••• 257

xii

6-4 Map File of Example 6-1 With Memory-Resident
Overlays ••••••••••••••••••••••• 259

6-5 A Task With Two Overlay Segments ••••••••••• 266
6-6 Complex Example Using Overlays •••••••••••• 276

7-1 Resident Common Referenced With Overlaid Psects ••• 313
7-2 Resident Common Referenced With Global Symbols •••• 320
7-3 Shared Library. • • • • • • • • • • • • • 324
7-4 Creating and Using a Device Common. • • • • • • • • • 331

8-1 Creating a Named Region • • • • • • • • • • • • • • • 354
8-2 Creating a Region and Placing Data in It ••••••• 359
8-3 Attaching to an Existing Region and Reading Data

8-4
8-5
8-6

10-1
10-2

10-3

10-4
10-5
10-6
10-7

G-l
G-2

From It • • • • • • • • • • • •
Send-by-Reference • • • • • • •
Receive-by-Reference ••••••
Use of the Mapped Array Area ••

• • • 363
• • . • • • • . • 368

• • • • . • • . • . • 371
• • • . •• •. • 378

Creating a File in MACRO-II ••••••••••••• 424
Creating a File of Fixed Length Records, Initializing
FOB at Assembly Time. • • • • • • • • • • • • • • • • 463
Creating a File of Fixed Length Records, Initializing
FOB at Run Time • • • • • • • • ••••• • • • • 467
Accessing a File in Locate Mode • • ••••••• 470
Accessing a File in Random Mode • • • •• 474
Creating a File With Block I/O. • •••••••• 480
Reading a File With Block I/O •••••••••••• 484

Reading the Event Flags (for Exercise 1-1). • • • 537
Using the Routines GCML and CSI (for Exercise 10-6) • 538

xiii

STUDENT GUIDE

STUDENT GUIDE

INTRODUCTION

Programming RSX-IIM in MACRO is intended for MACRO-II
programmers who use services of the RSX-IIM operating system
beyond those provided by the MACRO-II programming language itself.
This course describes the various services and how to use them
from a task which you write.

This course is self-paced, which means that you learn at
whatever rate i~ comfortable for you.

Instead of a teacher, you have a course administrator and a
subject matter expert. In some cases, the same person can perform
both functions. The course administrator manages the mechanics of
the course and makes sure you have easy access to the system and
the on-line course materials. As you finish modules, s/he records
your progress. The subject matter expert helps you if you have a
technical question. Before you consult the expert, however, read
the course materials and references in an effort to answer the
question yourself.

This Student Guide covers the following topics:

• Course prerequisites
• Course goals (and Nongoals)
• Course organization
• Course map description
• Course resources
• How to take the course
• Personal Progress Plotter

3

STUDENT GUIDE

PREREQUISITES
To be prepared for this course, you must have taken the

following DIGITAL courses, or you must have equivalent experience.

1. RSX-IIM Utilities and Commands. Specifically, you must be
able to logon/logoff, edit files, and develop/run/debug
programs under RSX-IlM.

2. Programming in MACRO-II.

COURSE GOALS AND NONGOALS
On completion of this course, you should be able to write

tasks which:

1. Use executive directives

2. Perform intertask communication and coordination

3. Perform synchronous and asynchronous I/O operations

4. Use overlays

5. Use memory management facilities to communicate between
tasks and make more effective use of available memory

6. Use File Control Services to create and maintain files.

This course does not teach the following:

1. The PDP-II instruction set and the MACRO-II programming
language

2. The Digital Command Language (DCL) or Monitor Console
Routine (MCR)

3. The program development cycle.

4

STUDENT GUIDE

COURSE ORGANIZATION
This course is self-paced for independent study. The course

material is structured in modules. Each module is a lesson on one
or more skills required to fulfill the course goals. A module
consists of:

• An introduction to the subject matter of the module

• A list of objectives, which describe what you should
achieve by studying the,module

• A list of resources that provide reference materials and
additional reading for the module

• The module text,
tables, examples,
manuals

including explanatory text,
and references to readings

figures,
in the

• Learning activities (for some modules), consisting of
reading assignments or written exercises which are
essential to your learning the material

• Written and/or lab tests and exercises (bound separately)
which you can use to measure your achievement. Solutions
are provided for all exercises.

The course is bound in two volumes. The first volume
contains this student guide, the 10 modules (except for their
tests/exercises), the appendices, and a glossary. The second
volume contains the tests/exercises for each module.

COURSE MAP DESCRIPTION
The course map shows how each module relates to the other

modules and to the course as a whole. Before beginning a specific
module, it is recommended that you first complete all modules with
arrows leading into that module. These prerequisite modules
present material necessary to understanding the module you are
about to study.

If you have no preference, study the modules in numerical
order, 1 through 10.

5

STUDENT GUIDE

COURSE MAP

TK-7749

6

STUDENT GUIDE

COURSE RESOURCES

Required References

1. IAS/RSX-ll I/O Operations Manual (AA-M176A-TC)

2. IAS/RSX-ll System Library Routines Reference Manual
(AA-5580A-TC)

3. RSX-llM Mini-Reference (AV-5570D-TC)

4. RSX-llM/M-PLUS Executive Reference Manual (AA-L675A-TC)

5. RSX-llM/M-PLUS I/O Drivers Reference Manual (AA-L677A-TC)

6. RSX-llM/M-PLUS Task Builder Manual (AA-L680A-TC)

Optional References

1. PDP-II MACRO-II Language Reference Manual (AA-5075B-TC)

2. PDP-II Processor Handbook (EB-19402-20/8l)

3. RMS-ll User's Guide (AA-D538A-TC)

4. RMS-ll MACRO-II Reference Manual (AA-H683A-TC)

7

STUDENT GUIDE

HOW TO TAKE THE COURSE
Because this is a self-paced course, you determine how much

time to devote to each subject. You can pass quickly over
familiar topics. You can spend more time on topics which are of
interest to you, or which you can use often in your job, and less
time on topics which have little use in your job.

Each time you are ready to begin a new module, first read the
introduction and the objectives. If you feel that you already
understand the material in the module, you can go immediately to
the tests/exercises for that module. If you don't understand much
of the material, read the module. If you understand some of the
concepts but not others, just look over the program examples for
the concepts you understand. Read the text and study the examples
for concepts you don't understand. The text explains new concepts
and refers you to related readings in the manuals. The program
examples provide working examples which show you how to apply the
concepts.

Some of the readings in the manuals are required and others
are optional. Required readings are contained in learning
activities and are indented to set them apart from the module
text. These readings are required because they cover material not
otherwise covered in this course. The optional readings are
mentioned within the module text and are designed to help you in
two ways. First, they teach you more about a given topic.
Second, they offer another explanation in case you have trouble
understanding the explanation in this course.

In addition, you will need the manuals to look
specifics involved in invoking the various services.
especially true for the executive directives, system
routines, and File Control Service calls.

up the
This is
library

Keep the module objectives in mind. If a skill is listed as
an objective, be sure to master it. Later modules may depend on
this skill.

The module text contains many example programs to show you
how to use the skills you are learning. All of the example
programs in this book should be available on-line. The standard
location for these files is UFD [202,1] on your system disk.
Check your system and if the files are not located there, check
with your course administrator to find out where they are' located.

8

STUDENT GUIDE

Do not modify the files in UFD [202,1] or in their original
location. Instead, copy the files you plan to use to your own UFD
and use them there. In that way, the original files in UFD
[202,1] will remain intact for other students.

Each example program contains the following:

• Source code, with line numbers added
• A sample run session
• Bulleted items which are described in the text.

Line numbers have been added to the source code to ease
referencing during a group discussion. These line numbers are not
part of the actual source file. The source code also contains the
name of the file which contains the code on-line. Following this
is a brief description, telling what the example does. Any
special assemble and task-build instructions, and any special
install and run instructions follow this. Only special,
nonstandard instructions are included. The code itself includes
line comments plus some additional comments.

The sample run session shows what happens during a typical
run of the task. Any special install and run instructions are
shown in the run session.

The bulleted items match the example notes in the text, which
describe the code in more detail. Study the examples and the
notes that describe them carefully.

In the module on Using File Control Services, many of the
examples create output files. A dump of any created file follows
the run session. The file dumps were created using the DMP
utility.

If the examples are available on-line, assemble and
task-build them, and then run them. This will help you to
understand the examples better. Many of the tests/exercises ask
you to make minor changes to existing examples, and then run them
again. Do the tests/exercises for a module in the Tests/Exercises
book only after you have done all of the reading and have run the
example programs. If you prefer, you can do them as soon as you
cover the necessary material in the module. The same
Tests/Exercises book is used in this course and the Programming
RSX-IIM in FORTRAN course. Do all tests/exercises except those
which specifically say in FORTRAN. All exercises have solutions
in the Tests/Exercises book. In addition, any solutions involving
programs should be available on-line, in UFD [202,2]. Compare
these solutions to your own.

9

STUDENT GUIDE

If you have mastered the module objectives, ask your course
administrator to record your progress on your Personal Progress
Plotter. You will then be ready to begin a new module. If you
haven't yet mastered the module objectives, return to the module
text for further study.

With a self-paced course, it is impossible to give a schedule
that applies to all students. The amount of time that students
spend on a module depends on both their experience and their
interest in the topics in that module. Use Table 1 as a guide
when you set your schedule.

In addition to the 10 modules, the Student Workbook contains
several appendices, plus a glossary. The appendices are:

Appendix A Supplied Macros. This appendix contains
documentation on how to use the macros supplied with the
course. In addition, it includes the source code for all of
the macros and any subroutines which they requi re.

Appendix B - Conversion Tables.
table for converting between
words, bytes, and memory blocks.
for converting from active page
addresses.

This appendix contains a
decimal and octal, and among

It also contains a table
registers (APRs) to virtual

Appendix C FORTRAN/MACRO-II Interface. This appendix
contains an explanation of the techniques which you should
use to write a FORTRAN callable subroutine in MACRO-II. It
also explains how to call such a subroutine from MACRO-II.

Appendix D - Privileged Tasks. This appendix contains a
description of the various types of privileged tasks
supported under RSX-IIM, and how to create them.

Appendix E - Task Builder Use of Psect Attributes. This
appendix contains a description of the effect of Psect
attributes on how the Task Builder collects together
scattered occurrences of program sections.

Appendix F - Additional Shared Region Topics. This appendix
contains several additional shared region topics. They are:
overlaid shared regions, referencing multiple regions from a
single task, interlibrary calls, and cluster libraries.

10

STUDENT GUIDE

Appendix G - Additional Examples. This appendix cont~ins the
source code for any program examples which are required for
the Tests/Exercises but are not included elsewhere in the
Student Workbook. These examples should also be available
on-line, under UFD [202,1]. They are included here in case
they are not available on-line on your system.

Appendix H - Learning Activity Solutions. This appendix
contains the solutions to any Learning Activity questions in
this course. After you do a Learning Activity, check your
answers against those provided.

11

STUDENT GUIDE

Table SG-l Typical Course Schedules

12

STUDENT GUIDE

PERSONAL PROGRESS PLOTTER

DATE DATE TIME SIGN·OFF
MODULE STARTED COMPLETED SPENT INITIAL

1. USING SYSTEM
SERVICES

2. DIRECTIVES

3. USING THE 010
DIRECTIVE

4. USING DIRECTIVES
FORINTERTASK
COMMUNICATION

5. MEMORY
MANAGEMENT
CONCEPTS

6. OVERLAYS

7. STATIC REGIONS

8. DYNAMIC REGIONS

9. FILE I/O

10. FILE
CONTROL
SERVICES

13

USING SYSTEM SERVICES

USING SYSTEM SERVICES

INTRODUCTION
RSX-IIM provides system services which perform many

operations that are commonly needed by user-written application
programs. Skillful use of these services can:

• Improve the efficiency of your tasks, reducing size and
execution time

• Decrease the time it takes to code and debug your tasks

• Increase the reliability of your tasks

• Provide you with controlled access to system features

• Benefit the overall performance of your system.

The first step in learning to use these services is
understanding what services exist, how you can request them from
within your task, and how the services are delivered to you.
These topics are explained in this module and the following
module.

OBJECTIVES
1. To identify the facilities provided

services
through system

2. To list the ways in which system services may be provided
to a task

3. To list the various system libraries and the facilities
they provide.

RESOURCES
1. RSX-IIM/M-PLUS Executive Reference Manual, Chapter 1

2. IAS/RSX-ll System Library Routines Reference Manual,
Chapters 1 through 6

17

USING SYSTEM SERVICES

WHAT IS A SYSTEM SERVICES?

An RSX-IIM system service is a function or service performed
for a running task. It is performed during the task's execution.
The software which provides the service is either in the Executive
itself or in other system supplied code.

WHY SHOULD YOU USE SYSTEM SERVICES?

To Extend the Features of Your Programming Language

System services offer you additional features, not inherently
a part of your programming language. Examples of this are:

1. Accessing shared resources in a properly synchronized way

2. Performing I/O operations in MACRO-II

3. Coordinating among multiple tasks

4. Controlling memory allocation and mapping

5. Interacting with the Executive

6. Performing often needed functions, such as:

a. Numeric conversion of ASCII data typed in at a
terminal to binary format for internal use

b. Editing, and conversion, to produce suitable output
messages which include data generated at run time.

To Ease Programming and Maintenance

DIGITAL provides the code to perform these services.
Therefore, you will need less time to develop working programs.
The supplied code has a well defined modular structure, which
makes it easier to design your programs.

The code for system services is well debugged. This makes it
easier to debug and maintain programs, since there are fewer
potential points of failure and only your written code needs to be
debugged. When maintenance is required in the code for the
supplied system services, patches are released with clear-cut
installation procedures. .

19

USING SYSTEM SERVICES

To Increase Performance

The supplied code to perform system services is generally
efficient MACRO-II, which assures mlnlmum execution time. In
addition, it is often possible to share the code among several
different tasks, with minimal additional overhead. This can
result in any or all of the following performance gains.

• Increase in your task's throughput

• Increase in your system's throughput

• Increase in memory usage efficiency on your system

• Decrease in your task's size

• Increase in available space on mass storage volumes

WHAT SERVICES ARE PROVIDED?

The system services can be divided into a number of classes.
For each, a few examples are given to show you the kinds of
services which are available.

Note that a number of these services which are provided to
tasks parallel those provided to operators through DCL commands.

System and Task Information

can:
You can obtain information from the system. For example, you

• Obtain information about your task
Its priority
Its logical unit (LUN) assignments

• Obtain information about a partition on the system
Its base address
Its length

• Obtain the current time and date

20

USING SYSTEM SERVICES

Task Control

You can start up and stop tasks, and alter task states. For
example, you can:

• Request another task to run
• Abort a task
• Suspend or resume a task
• Alter the running priority of an active task

Task Communication and Coordination

You can create a set of tasks that communicate with one
another, as well as coordinate the interaction of the tasks. For
example, you can:

• Send data from one task to another.

• Have one task notify other tasks that an event has
occurred (e.g., that a job has been completed).

• Have one task pass a command to another task, and have it
obtain an indication from the other task about the status
of the execution of the command.

I/O Peripheral Devices

You can interact with peripheral devices on your system. For
~xample, you can:

• Write data to or read data from a peripheral device.

• Attach a device for exclusive use by a task.

• Read or set variable characteristics of a device (e.g.,
for a terminal - baud rate or hold screen mode).

File and Record Access

You can access files, including individual records within a
file. For example, you can:

• Create a file.

• Read blocks from or write blocks to a file on a
block-by-block basis.

21

USING SYSTEM SERVICES

• Read records from or write records to a file. The records
may be of different lengths, and not exactly one block
long.

• Extend or truncate an existing file.

File and Record Access Systems

The two access systems available under RSX-IIM are
Control Services (FCS) and Record Management Services (RMS).
offer an interface between tasks and the Files-II structure
to maintain disk directories and files.

File
Both
used

FCS is the standard access system supplied with RSX-IIM.
Many of the utilities (e.g., PIP, EDT, the Task Builder) use Fes
for their file interface. RMS offers all of the FCS functionality
plus capabilities not available with FCS, such as indexed files
(records that are accessible by a key field value) and more
sophisticated file sharing. A more complete discussion of the
facilities offered by FCS and RMS, and a comparison of the two,
appears in Module 9, on File I/O.

Memory Use

You can use system services to control the amount of memory
your task uses or to permit several tasks to share an area of
memory. For example, you can:

• Run a task in less memory than its total size, by using
overlays to load only needed pieces of the program at one
time.

• Allocate space in memory for a temporary work buffer, and
then return that space to the system when the task is
finished using it.

• Share a data area in memory among several tasks.

• Share a single copy, in memory, of a commonly used
subroutine among several tasks.

22

USING SYSTEM SERVICES

OTHER SERVICES AVAILABLE

You can use system services to perform
functions. For example, you can:

often needed

• Save and restore all or a subset of the registers when
writing a subroutine.

• Perform extended integer
multiplication and division.

and double

• Convert data from ASCII to internal binary.

precision

• Convert and format output data produced at run time into
printout and/or display messages.

These services are generally supplied as subroutines located
in the system object library (LB:[I,l]SYSLIB.OLB). Most of the
subroutines are documented in the IAS/RSX-ll System Library
Routines Reference Manual. A few of the subroutines will be
covered in detail in this course. However, most will not. Table
1-1 gives examples of specific functions performed by some of the
subroutines.

23

USING SYSTEM SERVICES

Table 1-1 Examples of Use of Other Services

24

USING SYSTEM SERVICES

HOW SERVICES ARE PROVIDED

Services are provided using two different methods.

1. The Executive is invoked by the task to perform the
service (an executive directive).

2. The code to perform the service is placed directly into
the task.

Executive Directives

Figure 1-1 shows how the first method works.
notes are keyed to the figure.

The following

ct The user task makes a service request and invokes the
Executive.

ct The Executive takes control and performs the service.

Calls device drivers as needed
Requests other tasks as needed

tt The Executive returns control to the user task, at the
instruction following the service request.

Figure 1-2 shows a more complex version of method 1. In this
case, Task A and Task B interact through the Executive.

Task A starts up and at some point needs Task B to do some
work, for example, perform a calculation. Task A sends the data
to Task B, requests that Task B run, and then waits until Task B
sends back the answer. Task B starts running, performs the
calculation, and then sends the answer back to Task A. Task B
also notifies Task A that the job is finished. Task A then starts
up again and uses the answer. The steps outlined above for Figure
1-1 would actually be used several times in this example.

25

USING SYSTEM SERVICES

EXECUTIVE

o CODE TO - - -~ F11ACP
SERVICE
EXECUTIVE

I/O
DRIVERS ~ - -. DIRECTIVE ~ - - -~ OTHER TASKS

TASK

OEXECUTIVE DIRECTIVEt----~
INVOCATION -

e RETURN OF
STATUS FROM
EXECUTIVE

TK-7517

Figure 1-1 Using Executive Directives to Service a Task

26

USING SYSTEM SERVICES

EXECUTIVE

CODE TO
SERVICE
DIRECTIVES
r---,
I r, I I

t
I

I DATA FROM TASK A I

•
TASK A TASK B

• • • • • EXECUTIVE DI RECTIVES •
",RESUL TS FROMI "-- EXECUTIVE DIRECTIVES

TASK B

TK-7516

Figure 1-2 Using Executive Directives to Receive Services
from Other Tasks

27

USING SYSTEM SERVICES

Code Inserted into Your Task Image

The second method for providing system services is
illustrated in Figure 1-3. The code to perform the service is
extracted from a system library and inserted directly in the user
task. For system macros, the machine code resulting from the
macro expansion is executed in place. For system subroutines, the
subroutine call results in a transfer of control to the subroutine
code, located in another part of the user task.

Certain services must be provided by invoking the Executive.
Any service which involves synchronization or access to shared
resources must be coordinated by the Executive. For example, if a
request activates another task, the Executive must enter the task
in the active task list, which sets the task up to compete for
memory space and then CPU time. It is much easier to have the
Executive coordinate all the tasks, rather than require that each
task check with every other task before using a shared resource.
Also, any activity that involves communication or coordination
among multiple tasks usually must be performed by the Executive.

Placing the code in the user task is appropriate for a
service which is performed independently by a task. For example,
if a task converts an ASCII decimal value which is input at a
terminal to binary for internal use, there is no need for the
Executive to coordinate that activity. It does not affect shared
resources or other tasks.

If a service can be provided with code inserted in the task
and that service is needed often by a number of different tasks,
it is possible to share one copy of the code among several tasks.
Using special techniques, often used subroutines can be collected
together and a single copy of each subroutine can be shared in
memory among several tasks. The procedure for producing and using
a shared collection of subroutines, called a resident library, is
discussed in the Static Regions module of this course.

Some of the services discussed in this course are provided by
making special requests when you task-build your task. In some
cases, the Task Builder transparently places code directly in your
user task. In other cases, it sets up your task in a special way
to provide the service. We will discuss the techniques for
accessing services with the Task Builder in later modules.

28

USING SYSTEM SERVICES

TASK

FROM SYSTEM MACRO {
LIBRARY AT ASSEMBLY TIME

~---------

MACRO- EXPANSION

1-----------

SUBROUTINE CALL I-----

FROM SYSTEM OBJECT {
LIBRARY AT TASK-BUILD TIME

~----------
SUBROUTINE ENTRY POINT ~

RETURN

TK·7514

Figure 1-3 Code Inserted into Your Task Image

29

USING SYSTEM SERVICES

SYSTEM LIBRARIES

Table 1-2 contains a list of the libraries which are used
during program development of a task using system services. They
are usually located in LB:[l,l]. RSXMAC.SML is the system macro
library searched by default by the MACRO-II assembler. SYSLIB.OLB
is the system object library searched by default by the Task
Builder.

Table 1-2 Standard Libraries

30

USING SYSTEM SERVICES

Table 1-2 Standard Libraries (Cant)

31

~SING SYSTEM SERVICES

Table 1-3 contains a list of the shareable resident libraries
which may also be on your system, depending on your installation.
You will learn how to use these resident libraries in Module 7, on
Static Regions. Check with your system manager to find out
whether the preferred method of including these routines is
through linking the code into your task image or using the
resident libraries.

Table 1-3 Resident Libraries

Now do the tests/exercises for this module
Tests/Exercises book. They are all written problems.
answers against those provided in that book.

in the
Check your

If you think that you have mastered the material, ask your
course administrator to record your progress in your Personal
Progress Plotter. You will than be ready to begin a new module.

If you think that you have not yet mastered the material,
return to this module for further study.

32

DIRECTIVES

DIRECTIVES

INTRODUCTION

Once you know the various system services available, you need
to know how to write programs which use them. This module
explains more about the services available through executive
directives and how to make various directive calls.

OBJECTIVES
1. To write programs in MACRO-II which use directives

2. To use information returned by the Executive to perform
error checking

3. To use event flags and asynchronous system traps (ASTs)
with directives.

RESOURCES

1. RSX-IIM/M-PLUS Executive Reference Manual, Chapter 1 and
2, and specific directives in Chapter 5

2. IAS/RSX-ll System Library Routines Reference Manual,
Chapters 4 and 5

35

DIRECTIVES

INVOKING EXECUTIVE DIRECTIVES FROM A USER TASK

Directive Processing

The sequence of steps outlined below details how a directive
is invoked and processed. The following notes are keyed to Figure
2-1.

Executive Code

C» A dispatcher routine
retrieves the Directive
Parameter Block, and
checks it to find out
which directive
has been requested.

C» The dispatcher routine
calls the appropriate
Directive routine to
execute the directive.

37

User Code

C» The user creates a Direc­
tive Parameter Block (DPB)
which contains all the
information the Executive
needs to process the dir­
ective.

tt Either the Directive
Parameter Block itself or
its starting address is
pushed onto the stack.

t) The user task issues an
EMT 377 instruction,
causing a trap into the
Executive.

DIRECTIVES

Executive Code

ct After executing the dir­
ective, the Executive
returns control to the
user task and returns
directive status.

User Code

__ The user task checks the
directive status and takes
appropriate action.

Use macros in the system macro library, LB:[l,l] RSXMAC.SML
to issue directives.

Most directives pass control back to the user task. Certain
directives by their nature do not pass back to the user task. The
Exit Task directive, for example, causes the task to exit.
Control passes back to the user task only in the case of a
directive error.

38

USER

TASK

o
o

DIRECTIVES

EXECUTIVE

TRAP
VECTOR

DIRECTIVE
DISPATCHER
(DRDSP)

DRDSP 1---...... 0

:--~-r------~O __ ~

DIRECTIVE
ROUTINES

TK-7515

Figure 2-1 Directive Implementation

Functions Available Through Executive Directives

Table 2-1 lists many of the Executive directives which are
available on your system. For a complete list of the directives
in each group, see section 5.1 on Directive Categories, in the
RSX-IIM/M-PLUS Executive Reference Manual.

Many of the functions available are discussed more fully in
this module, and in the modules on Using the QIO Directive, Using
Directives for Intertask Communication, and Dynamic Regions. No
attempt is made to discuss every executive directive. You should,
however, at the end of this course, know enough to be able to look
up any directive in the manual and invoke it.

Each directive is documented individually in Chapter 5 of the
RSX-llM/M-PLUS Executive Reference Manual. The directives appear
there in alphabetical order by MACRO-Il name.

39

DIRECTIVES

Table 2-1 Types of Directives

40

DIRECTIVES

The Directive Parameter Block (DPB)

The Directive Parameter Block is set up as the first step in
invoking an Executive directive. It contains all the information
the Executive needs to perform the requested s~rvice. This
includes a Directive Identification Code (DIC) which identifies
the Executive directive being requested. See Figure 2-2 for a
picture of the Directive Parameter Block layout.

The length of the DPB is included because its
depending on which directive is being invoked.
DPB is built from the arguments specific to
directive.

#OF WORDS DIRECTIVE

IN DPB = M + 1 IDENTIFICATION
CODE .

WORD 1

WORD2

WORD3

WORD4

length varies
The rest of the
the particular

FROM DIRECTIVE
ARGUMENTS

•
~:: • ~~ •

WORD M-1

WORDM

TK-7512

Figure 2-2 The Directive Parameter Block

41

DIRECTIVES

Macros are provided in the system macro library
[LB:[l,l]RSXMAC.SML] to set up the DPB and invoke each executive
directive. The format of the macro call is as follows.

xxxx$x argl,arg2,arg3, ••• ,argn

Example:

GLUN$C 4,BUFF

the
DPB.

The macro name determines the DIC and the length of the DPB;
arguments in the macro call are used to build the rest of the

The DPB for the example given is as shown below.

3 I 5

4

BUFF

For additional information on the macros for each
see the individual directives in Chapter 5
RSX-llM/M-PLUS Executive Reference Manual.

directive,
of the

The Executive preserves (saves and restores) all
registers when a task issues a directive.

task

The Directive Status Word (DSW)

Upon completion of directive processing, the Executive
returns a code in the Directive Status Word which gives the status
of the request. The DSW is located in the task header at location
$DSW, a global symbol which can be used to reference the value
directly. Successful completion is usually indicated by a DSW
value of +1 (IS.SUC).

A negative value indicates an error. Different negative
values correspond to different sources of errors. These values
and their general meanings appear in Appendix B of the
RSX-IIM/M-PLUS Executive Reference Manual and in the RSX-IIM
Mini Reference Manual. In addition, specific error values and any
special meanings are documented with each individual Executive
directive call in Chapter 5 of the RSX-IIM/M-PLUS Executive
Reference Manual.

42

DIRECTIVES

In addition to setting the DSW, the Executive clears the
carry bit to indicate successful directive execution and sets the
carry bit to indicate failure. You can check for errors using a
BCC or BCS instruction immediately after the directive call. In
that case, access the actual DSW value only if you need it.

Sample Program

Example 2-1 illustrates the use of the Request Task and the
Exit Task directives. The directives are given below, along with
a description of their functionality.

The Exit Task Directive

Format: EXIT$S (no arguments)

Used to make a task inactive and to free up the system
resources it uses.

The Request Task Directive

Format: RQST$ tsk
where tsk is the name of the task to be requested

RQST$C TASKA

Used to request the specified installed task

Offers the same functionality as the DCL RUN (immediately)
command for an installed task.

Before using any directive in a program, always read over the
description of that directive in Chapter 5 of the RSX-IlM/M-PLUS
Executive Reference Manual. Specifically, pay attention to the
different directive parameters and their meanings. See section
5.3 (on System Directive Descriptions) for an explanation of the
organization of the directive desciptions and what elements are
included.

Each program example in this course contains the following:

• Source code, with line numbers added

• A sample run session

• Bulleted items which are described in the text.

43

DIRECTIVES

See the Student Guide for additional information about how to
use the program examples.

The following comments are keyed to the example.

ct The macros for invoking directives must be specified to
the assembler in a .MCALL statement.

«t A number of special macros have been supplied with this
course to assist you in class. Since you don't yet know
how to issue the QIO directive, which is covered in the
next module, the TYPE macro is supplied to perform writes
to TI:.

Example:

TYPE <HELLO THERE)

issues a QIO directive to display the text
"HELLO THERE" at your terminal.

The use of the supplied macros is documented in Appendix
A, along with the source code for all macros and any
internal subroutines they call.

t» Invoke the Request Task directive. The task name must be
the installed name (••• PIP), not,just PIP.

ct The carry bit is set by the Executive in the case of an
error and is cleared in the case of success. Always check
the status on return from an executive directive.

ct The only case in which control will return to the user
task after an EXIT$S call is if a directive error occurs.
This is very unlikely to happen.

o This is an easy way to display the
instruction causes the Executive
display all registers at TI:.

DSW value. The lOT
to abort the task and

«t ON THE RUN SESSION. A run session is included for each
example program.

The simple method for displaying directive error messages is
used here to ke~p things simple. This technique may be useful in
the early stages of debugging a program. Later, this code should
be replaced with code which displays more readable error messages.
Techniques for doing this are covered in the next module.

44

o

1.
2

;+
5
6

.TITLE

.IDENT

.ENABL

DIRECTIVES

REQUES
lOll
LC

FILE REQUES.MAC

Enable lower case

7 This task displaws a messa~e, then reGuests PIP, and
8 eNits
cy

10 Assemble and task-build instructions, to include
11 supplied macros and subroutines:
1.2
13 MACRO/LIST LB:[1,1JPROGMACS/LIBRARY,dev:[ufdJREQUES
14 LINK/MAP REQUES,PROGSUBS/LIBRARY
1~j

16
17
1.8
19
20
2:1.
22

;
.MCALL EXITSS,RQSTSC ENternal swstem macros

;+
TYPE is a macro supplied in the macro librarw
LB:Cl,lJPROGMACS.MLB for doin~ 1/0. It issues QIO
directives for wou. TYPE calls subroutines in the
object librarw LB:Cl,1JPROGSUBS.OLB.

.MCALL TYPE ; ENternal supplied macro

; Displaw startup teNt
START: TYPE <REQUES HAS STARTED AND WILL REQUEST PIP>

~(ec:~uest PIP
f~QSTSC ••• PIP
BCS E/~/=i:

EXITSS
; Error code
Ef\f~: M()V

lOT
SDSW, F~O

.END STAf~T

Displaw messa!!.ie

R(-:'\GI.Je~:;t PIP
Branch on directive
error

ENit

Move DSW for displaw
Trap and disF,law
resisters

[

>RUN /:t:E(~UES o REW.JES HAS STA/i:TED AND WILl ... RECHJEST PIP
PIP)'·'Z
:>

Example 2-1 Requesting a Task

45

DIRECTIVES

DIFFERENT FORMS OF THE DIRECTIVE CALLS

There are three different forms for each directive call,
which correspond to three different methods for setting up the DPB
and invoking the directive. For each directive call in a program,
you may select which form to use.

With two forms, the $ and the $C, the DPB is set up in a data
area of your task at assembly time. In the $ form, you use one
system macro to set up the DPB, and another system macro at run
time to invoke the directive. In the $C form, you use just one
macro to both set up the DPB and invoke the directive. The
assembler separates the DPB setup into a data area for you. In
the $S form, the DPB is set up on the user stack at run time and
the directive is invoked immediately afterwards. As in the $C
form, only one system macro is needed to both set up the DPB and
invoke the directive.

Decide which form of each directive call to use based on the
following.

• Task size

• Run time efficiency

• Programming ease

• Knowledge of directive parameters, whether known at
assembly time or at run time

• Requirements for reentrant code (e.g., if the code is
contained in a shareable library).

Each of the three forms is further described below, using the
Set Event Flag directive (SETF$) as an example.

The $ Form

Figure 2-3 shows the $ form, so named because the last
character in the macro name is '$' (e.g., RQST$, ABRT$, etc.). In
the source code, use a system macro to set up the DPB in a data
area, specifying a label to identify it. In the example, LABEL is
the label for the DPB set up by the macro SETF$. The DPB is set
up at assembly time. The first word of the DPB contains the DPB
length in the high-order byte and the DIC in the low-order byte.
The next word contains the event flag number argument. Any
additional arguments would appear in successive words.

46

LABEL:

START:

SOURCE

•
•

SETF$

DIRECTIVES

EXPANDS TO

•
52. -_ .. ___ { LABEL: .BYTE 33 .• 2

.WORD 52.

START: · DIR$ #LABEL~MOV

. \..EMT

·

DPB IN DATA AREA:

2.1 33'1
52.

Figure 2-3 The '$' Form

TASK IMAGE

HEADER

STACK

TASK CODE

xxxxxxx
XXXXXXX

xxxxxxx
XXXXXXX

TK-7730

• Use the $ form of the directive macro to set up the DPB in
the data area at assembly time.

• Use DIR$ macro to initiate the directive at run time.

• The DIR$ macro pushes the DPB starting address onto the
stack, then traps to the Executive.

• Arguments in the $ form must be valid for .BYTE, .WORD, or
.RADS0 assembler directives.

val id arguments: 14.11,204, TASKA ,BUFF

invalid arguments: #14.,#204,#TASKA,@BUFF,R2

Throughout this course, a decimal point following a numeral
indicates that it is in base 10 notation. If no decimal point
follows a numeral, it is usually in base 8 notation. The
exception is when base 10 is clear from the context; e.g., 16
bits.

47

DIRECTIVES

Use the separate system macro DIR$ at run time to invoke the
directive, specifying the label of the DPB. This macro pushes the
starting address of the DPB onto the stack and then traps to the
Executive. The label LABEL, which corresponds to the starting
address of the DPB, is specified in the DIR$ call. If other
directives are invoked in the same task, DIR$ is used each time,
with the appropriate address (or label) specified.

Arguments in the $ form of the directive must be valid
arguments for .BYTE, .WORD, or .RAD50 Assembler directives. This
is necessary because the macros contain .BYTE, .WORD, or .RAD50
assembler directives. See the examples that accompany Figure 2-3.

This form of the directive is run time efficient. In
addition, if the same directive is used later in the program to
clear another event flag (e.g., 53.) it is possible to use the
same DPB for both calls. Offsets within the DPB are defined by
global symbols. Hence, at run time, the instructions INC
LABEL+C.LEEF or MOV #53.,LABEL+C.LEEF would change the existing
DPB for reuse, using another DIR$ #LABEL call. This saves on task
space, especially for directives with many arguments.

One drawback of this method is that it is harder to use
because two separate macros are needed for each directive
invocation. Another is that it is not reentrant if the DPB is
changed at run time. For example, reentrant code is required in
shareable subroutines.

48

DIRECTIVES

TheSe Form

Figure 2-4 shows the $C form, so named because the last
characters in the macro name are I $CI (e.g., RQST$C, ABRT$C,
etc.). This form functions similarly to the $ form, but it is
easier to use because the DPB setup and actual directive
invocation are combined into one macro call. The assembler
separates the DPB setup into a data area in a separate Psect named
$DPB$$. At run time, a pointer to the DPB is pushed onto the
stack when the directive is invoked, as in the $ form.

Arguments for the $C form must also be valid arguments for
.BYTE, .WORD, or .RAD50 assembler directives. Also, there is an
additional optional argument for all $C form calls which is only
necessary if a call is made from a Psect other than the default
blank Psect. This argument specifies the Psect from which the
call is made. This allows return to this Psect for the directive
invocation and other code. In Figure 2-3, the Psect PROGS
contains the main code.

An advantage of this method is that it is easier to use than
the $ form and is just as efficient at run time. One restriction
is that a given DPB cannot be accessed and modified at run time.
Therefore, to clear event flag 53., a separate CLEF$C 53.
directive is required, which generates a separate DPB. So for
repeated use of a directive, the $C form requires more task space.
Another restriction, due to the inaccessibility of the DPB at run
time, is that all directive arguments must be known at assembly
time. One other advantage of the $C from is that it is always
reentrant, since the DPB cannot be changed.

49

DIRECTIVES

SOURCE EXPANDS TO

.PSECT PROGS .PSECT

START: START:

SETF$C 52.,PROGS

•

.PSECT
$$$ = .
.BYTE
. WORD
.PSECT
MOV
EMf

•

PROGS

$DPB$$}

33.,2
52 .

PROGS ~
#$$$, - (SP)
377

DPB IN DATA AREA:

2.1 33·1
52.

Figure 2-4 The $C Form

Using the $C Form:

• Needs only one macro call.

TASK IMAGE

HEADER

STACK

TASK CODE

PSECT PROGS

XXXXXXX
XXXXXXX

PSECT $DPB$$

XXX XXX X
XXXXXXX

TK-7731

• Sets up the DPB in the data area at assembly time.

• The $C form, as in the $ form, also pushes the DPB address
onto the stack and traps to the Executive at run time.

• Optional argument specifies the current Psect if other
than the blank Psect.

• Arguments must also be valid for .BYTE, .WORD, or .RAD50
assembler directives.

50

DIRECTIVES

The$S Form

Figure 2-5 shows the $S form, so named because the last
characters in the macro name are ISS' (e.g., RQST$S, ABRT$S,
etc.). In this form, the OPB setup and the directive invocation
itself are combined into one macro call, as in the $C form.

However, unlike either the $ or the $C form, in the $S form,
the DPB is built at run time instead of at assembly time, and it
is built on the stack instead of in the task's data area. This
means that all arguments must be valid source arguments for MOV or
MOVB instructions. See the examples with Figure 2-5.

One advantage of this method is that the same call can be
used with different arguments, since a new OPB is built with each
executive directive macro call. Therefore, you can place
parameters which aren't known until run time in registers or data
areas. You can then specify the registers or the addresses of the
data values as arguments in the directive call.

Another major advantage is that the code can be reentrant
even if the directive arguments are modified. For example, a
register may be used as an argument. Because each task has its
own registers, each task has its own independent copy of the
argument.

The major disadvantage of this form is that it executes the
slowest of the three forms, because every word of the DPB must be
pushed onto the stack immediately before invoking the directive.
The more arguments the directive has, the longer it takes.

If a directive has no arguments (e.g., EXIT$), it is just as
run-time efficient to use the $S form, because the complete OPB is
only one word long. Therefore, it takes one instruction to push
the complete OPB onto the stack in the $S form. It also takes one
instruction to push the address of the OPB onto the stack in the $
and $C forms. Any directive which has no arguments (e.g., Exit
Task, Suspend Task) is available with only the $S form.

51

SOURCE

START: •
•

SETF$S #52.
•
•

Using the $S Form:

DIRECTIVES

EXPANDS TO

START:
•

MOV
MOV
.BYTE
EMT

•
•
•

"'I #52.,-(SP)
(PC)+,-(SP)
33.,2 ~
377

Figure 2-5 The $S Form

• Needs only one macro call.

TASK IMAGE

HEADER

- - - - --
STACK ----_.

TASK CODE

XXXXXXX
XXXXXXX
XXXXXXX
XXXXXXX

DPB ON STACK
(AT RUN TIME):

2.1 33'1
52.

TK-7732

• The $S form pushes complete DPB onto the stack at run
time, then traps to the Executive.

• Arguments must be valid source
instructions.

arguments

valid arguments: #15.,#204,#BUFF,Rl

possible misused arguments: 15.,204,BUFF

for MOV

Use 15., 204 or BUFF only if you want the contents of
those locations for the directive parameters.

52

DIRECTIVES

One other disadvantage of using the $S form arises when task
or partition names are specified as arguments. These arguments
must be in Radix-50 format in the DPB. If the $C or $ form is
used, the macro converts the ASCII name specified as an argument
to Radix-50 format. If the $S form is used, you must place the
name in a data area in Radix-50 format, then specify the address
of the data in the macro call. You can either use a .RAD50
assembler directive at assembly time or the $CAT5 subroutine. See
Appendix A of the IAS/RSX MACRO-II Reference Manual for a
description of the Radix-50 character set. Also, see 6.3.6 9 (on
the .RAD50 assembler directive) in the same manual for a
discussion of Radix-50 format.

Examples

Examples 2-2, 2-3, and 2-4 illustrate the use of the three
forms of the directive calls. All three forms send a 13(10) = 13.
word packet of data to a task RECEIV. The source code for RECEIV
follows the code for Example 2-3. Don't worry yet about the
actual mechanics of how to set up sender tasks and receiver tasks.
These are discussed in the module on Intertask Communication.
Just compare the uses of the different forms of directives. The
following notes are keyed to all three examples.

~ The .MCALL statement declares the particular macro
directive call or calls to be used, including the form.

t» Data area setup requirements:

$ form: SDAT$ directive sets up the DPB in the data
area.

$C form: Nothing is set up separately. The Assembler
sets up the DPB in a data area for you.

$S form: Normally, nothing is set up in a data area.
Task names are an exception, since they must
already be in Radix-50 format. Therefore,
the task name is set up in Radix-50 format
in the data area. The argument in the $S
call is the address of the task name.

53

DIRECTIVES

t» Executing the directive call.

$ form:

$C form:

Use the separate DIR$ macro.

Use the single SDAT$ call. The DPB
up at assembly time by this macro.
directive invocation is performed
time.

is set
Just the
at run

$S form: Use the SDAT$S call. The entire DPB is
pushed onto the stack at run time and then
the directive is invoked.

ct ON THE RUN SESSION. First run the sender. Then run the
receiver to receive and display the data.

Note the difference in the form of the arguments in the $S
form. These arguments are source arguments for MOV or MOVB
instructions. For the $ and $C forms, the arguments are arguments
for .WORD, .BYTE, or .RAD50 Assembler directives.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
j~
.~

16
17
18
19
20
21

0
22
23
24
25
26
27
28

;-

;

.TITLE SEND

.IDENT lOll

.ENABL LC

FILE SEND.MAC

Enable lower case

This task sends a buffer of 13. words of data to the
task RECEIV for processinS. It sets common event flas
33. when the data is Gueued for RECEIV

It uses the $ form of the Send Data directive

Assemble and task-build instructions:

MACRO/LIST LB:C1,1JPROGMACS/LIBRARY,dev:CufdJSEND
LINK/MAP SEND,LB:C1,lJPROGSUBS/LIBRARY

Install and run instructions:

This task does not have to be installed. RECEIV
must be installed.

.MCALL SDAT$,EXIT$S,DIR$; Swstem macros

.MCALL TYPE Supplied macro

BUFFER: .WORD 1,2,3,4,5,6,7,8.,9.,10.,11.,12.,13.
; Data to send

Example 2-2 Using the $ Form of the Directives (Sheet I of 2)

54

DIRECTIVES

29
0:30

31
32

; Create DPE separatelw in a data area for the $ form
SEND: SDATS RECEIV,BUFFER,33.; Set UP DPB for

;
START: DIR$:fI:SEND

; directive

Issue directive to
send data to RECEIV

e 33
34
~55
~56
37
38
39
40
41
42
43
44

BCS
TYPE

ERR ; Branch on dir error
(DATA QUEUED TO RECEIV> ; Displaw

EXIT$S

EI~R: MOV $DSW,I:;:l

lOT

.END START

F~un S~~S!;; i on

>lNS
>':~UN
DATA
>I~;!.JN

l.
2
3
4

:L

I:~ECEIV

SEND
C~UEl.JED TO I~ECE I V
F~ECEIV

,.)
A •• 4 1::­

..J

.TITLE RECEIV

.IDENT lOll

.ENABL LC

5 File RECEIV.MAC
6

6 7 8

success IT.essase

Move DSW to Rl for
displaw

Trap and displaw
resisters

9 10 11

Enable lower case

12

7 This task receives the data sent bw SEND, SENDC, or
8 SENDS and displaws it at TI:
9

10 .MCALL RCVDSC,EXITSS
11 .MCALL TYPE

13

12
13
14
15
16
17
18
19

;
RBUFF: .BLKW

.BLKB

.ASCII

.ASCIZ

15. ; Buffer for data received
BUFF:
FMT:

;
STAI:;:T: RCVDSC

BCS

80. ; Buffer for output message
1%3S%D%4S%D%4S%D%4S%D%4S%D%4S%D%4S%DI
1%4S%D%4S%D%4S%D%4S%D%4S%D%4S%DI

,RBUFF ; ReceIve from anwone
EI:~F~:I. ; Branch on directive error

20 ; Edit binarw data into ASCII message for displaw
21 MOV :fI:BUFF,RO Addr of output buffer
22 MOV IFMT,R1 Addr of format string
23 MOV :fI:RBUFF+4,R2 Addr of data received,
24
2~)

26
27
28
29
30
3:1.
32

CALL SEDMSG
TYPE :JI:BUFF II R:I.
EXITSS

; Err'or cc)(·.i€-~

ERR1: MOV SDSW,RO
lOT

.END START

skip sender task name
Edit ouput message
Display output messaSe
E}·dt

Move DSW for display
TT'ap and di~5f·'law

re~H ~5 te T'~;

Example 2-2 Using the $ Form of the Directives (Sheet 2 of 2)

55

1
2
3
4
1::.
,.J

6
7
8
9

10
11
12
:1.3
14
:1.5
16
17
lB
19
20
2:1.
22

0
23
24
25
26
2·7
28
'")9 e 30
31
32
33
34
35
36
37
38
39
40

F~l..In

>INS
>RUN
{lATA
>I~UN

:I.
:>

;+

DIRECTIVES

.TITLE SENDC

.IDENT /01/

.ENABL LC

FILE SENDC.MAC

Enable lower case

This task sends a buffer of 13. words of data to the
task RECEIV for processin~. It sets common event fla~
33. when the data is Gueued for RECEIV

It uses the $C form of the Send Data directive

Assemble and task-build instructions:

MACRO/LIST LB:Cl,lJPROGMACS/LIBRARY,dev:CufdJSENDC

LINK/MAP SENDC,LB:C1,lJPROGSUBS/LIBRARY

Install and run instructions:

;-

;

This task does not have to be installed. RECEIV
must be installed.

.MCALL SDAT$C,EXIT$S,DIR$; Swstem macros

.MCALL TYPE ; SUPplied macro

BUFFER: .WORD :1.,2,3,4,5,6,7,8.,9.,10.,11.,12.,13.
; Data to send

START: SDAT$C RECEIV,BUFFER,33. ; Issue directive to
; send data to RECEIV

Bes
TYPE

EXIT$S

ERR: MOV
lOT

.END

Sess:i.on

RECEIV
SENDC
(~UEUED TO RECEIV
I~ECEIV

2 ~5 4

ERR
<DATA (~UEUErr TO

$DSW,Rl

START

t::"
.. J 6 7

; Branch on dir error
RECEIV> ; Displaw

8

sl.Jccess messaSe
E~·dt

Move DSW to R1
Trap and displaw
resisters

9 l() 11 :1.2 13

Example 2-3 Using the SC Form of the Directives

56

1
2
3,
4 ;+
~:i

6
7
8
9

10
11
:1.2
13
14

DIRECTIVES

.TITLE SENItS

.IItENT 1()11

.ENABL LC

FILE SENItS.MAC

Enable lower case

This task sends a buffer of 13. words of data to the
task RECEIV for processinS. It sets common event fla~
33. when the data is ~ueued for RECEIV

It uses the $S form of the Send Itata directive

Assemble and task-build instructions:

15
16

MACRO/LIST LB:C1,lJPROGMACS/LIBRARY,dev:CufdJSENItS
LINK/MAP SENItS,LB:C1,lJPROGSUBS/LIBRARY

:1.7
18
19
20
21

Install and run instructions:

This task does not have to be installed. RECEIV
must be installed

22
023

9-
.MCALL SItAT$S,EXIT$S,DIR$; S~stem macros

24
25
26
27
2(3
29

.MCALL TYPE ; SUPplied macro
;
BUFFER: .WORIt 1,2,3,4,5,6,7,8.,9.,10.,11.,12.,13.

Itata to send
;

o 3()
31

; Task names must be specified in Radix-50 format for
; the $8 form
TASKNM: .RAD50 /RECEIVI

e 32 ;
~~3
34

START: SItAT$S tTASKNM,tBUFFER,t33. ; Issue directive to
; send data to REtEIV

35 BCS ERR ; Branch on dir error
36 TYPE <ItATA QUEUEIt TO RECEIV> ; Displa~
37
38
39
40 ERR:
41
42

EXIT$S

MOV
lOT

$ItSW,R1

43 .END START

HI.Jn Session

>INS I:;;ECEIV
>F~UN SENDS
DATA QUEUED TO RECEIV
>I~UN I~FCE I V
12345 6 7

success messaSe
; E~·d t

Move ItSW to R1
Trap and displa~

; reSisters

8 9 :I.() :1.1 12

Example 2-4 Using the $S Form of the Directives

57

13

DIRECTIVES

Repeated Use of a Directive with Different Arguments

The following sections of code illustrate the use of the
different directive forms when using a directive several times in
a program. All three clear event flags 5. to 15., using the
Clear Event Flag directive 11 times. Note in particular that the
$ form uses the same DPB over and over again. The $C form macro
calls result in 11 different DPBs in the data area of the task.
The $S form uses a register as an argument and a new DPB is
generated for each call; but on the stack, not in a data area.

NOTE
A discussion of event flags and their uses
appears later in this module.

$ Form

Use the Executive directive first for event
access and change the DPB for the other ten calls.
below, the DPB begins at CLEAR •

• MCALL CLEF$, DIR$

.
CLEAR: CLEF$ 5.

START:

MOV #5.,R0
AGAIN: DIR$ #CLEAR

BCS ERR
INC R0
CMP R0,#15.
BGT DONE
INC C LEAR+C • LEEF
BR AGAIN

DONE:

58

flag 5, then
In the example

DIRECTIVES

$C Form

The $C form cannot access the DPB;
calls with separate DPBs •

• MCALL CLEF$C

START:

CLEF$C 5.
BCS ERR
CLEF$C 6.
BCS ERR
CLEF$C 7.
Bes ERR
CLEF$C 8.
BCS ERR
CLEF$C 9.
BCS ERR
CLEF$C 10.
BCS ERR
CLEF$C 11.
BCS ERR
CLEF$C 12.
BCS ERR
CLEF$C 13.
BCS ERR
CLEF$C 14.
BCS ERR
CLEF$C 15.
BCS ERR

59

so make 11 different

DIRECTIVES

$S Form

A new DPB is pushed onto the stack for each call. Use a
register value for an argument. Make the same call 11 times;
update the register each time.

START:

AGAIN:

.MCALL

MOV
CLEF$S
BCS
INC
CMP
BLE

CLEF$S

#5,RQJ
RQJ
ERR
RQJ
R0,#15.
AGAIN

Table 2-2 gives a summary of the three forms of the directive
call.

60

DIRECTIVES

Table 2-2 Summary of the Directive Forms

61

DIRECTIVES

ADDITIONAL DIRECTIVE CONSIDERATIONS

An Alternative Method for Error Checking

An additional argument can be used to specify the address of
an error subroutine.

Format:

$ Form $C Form

DCLEF: CLEF$ 53(./

DIR$ #DCLEF,ERROR CLEF$C 53."ERROR

$S Form

CLEF$S #53.,ERROR

NOTES
The extra null argument in the $C form is for
the optional Psect.

In the $S form, no 1#1 is needed on the
address, since this becomes a JSR PC,ERROR.
This argument is not moved to the stack.

In all three cases, the extra argument causes the following code
to be generated:

imacro without error address

iadditional code
BCC .+6
JSR PC,ERROR

62

DIRECTIVES

This results in a branch to the instruction following the
directive macro if the directive is executed successfully, and a
call to the subroutine ERROR if not. It is equivalent to
including the following code yourself.

OK:

DIR$
BCC
JSR

#LABEL
OK
PC, ERROR

Note that in case of an error the transfer to the error
routine is with a JSR, not a JMP or BR. The result is that the
return address is pushed onto the stack. If you generate an error
message and exit, the JSR won't cause any problems because the
stack isn't accessed.

If, on the other hand, you attempt to recover from the error,
you must remember that the return point is on the stack. You must
either use a RETURN (RTS PC) or clear the return address off the
stack if you wish to branch to a different location.

Examples Using Other Directives

The following directives are used in Example 2-5.

• Suspend Task (SPND$S)

Used to suspend itself

Can be resumed by another task issuing a Resume task
directive or by an operator using the DCL CONTINUE
command

• Alter Priority (ALTP$)

Alters the running priority of an active task

• Disable Checkpointing (DSCP$S)

Disables checkpointing for a checkpointable task

63

DIRECTIVES

• Enable Checkpointing (ENCP$S)

Enables checkpointing again after a DSCP$ directive

• Extend Task (EXTK$)

Modifies the size of the task by a positive or
negative number of 32-word blocks.

The $S form of SPND$, DSCP$, and ENCP$ is recommended because
each directive has no arguments.

Example 2-5 shows the use of a variety
the run demonstration below the source
comments are keyed to the example.

of directives. See
code. The following

tt Rl is a directive counter. When several directives are
used in a program, the counter helps keep track of which
directive caused an error. After an lOT, n in R1 means
that there was an error on the nth directive. R0 contains
the DSW value.

tt Task suspends itself. This allows the operator to use the
DCL SHOW TASKS/ACTIVE command to examine the task
parameters.

t» The task is loaded at physical address 00615200(8) to
00617200(8). SPN means the task is suspended.

ct The operator must use the DCL CONTINUE command to resume
the task.

ct Suspend again after you disable checkpointing and alter
the running priority.

C) Note the change in running priority (PRI). CKD indicates
the disabling of checkpointing.

tt Suspend again after you enable checkpointing, alter the
priority back to 50., and extend the task.

64

o

DIRECTIVES

Note the change in priority. Note also that the task was
checkpointed and is now loaded at addresses 01045200(8) to
01067200(8). The new task size is 22000(8) bytes,
compared to 2000(8) bytes before, as shown below. The
extend is for 200(8) blocks, where each block is Im0(8)
bytes long, which means there are 20000(8) extra bytes.
See Appendix B for a conversion table of bytes to blocks
and of octal to decimal.

Before:

00617200(8)
-00615200(8)

2000(8) bytes

After:

01067200(8)
-01045200(8)

22000(8)

65

1
2
3
4

6

;+

.TITLE

.IIIENT

.ENABL

FILE MISC.MAC

DIRECTIVES

MISC
/01/
LC Enable lower case

7 This task uses some miscellaneous Executive directives
8 to suspend itself, alter its runnin~ priorit~, disable
9 and enable checkpointin~, and extend its task size.

10
11 Task-build instructions:
12
13 LINK/CHECKPOINT/MAP MISC
14 since the task must be checkpointable to allow
15 disablin~ of checkpointin~ and extendin~ its size
16
17 Install and Run instructions:
18
19 Install the task. Then Run it to start it uP.
20 The task will suspend itself several different
21 times. Each time, use the command
22 SHOW TASKS:MISC/ACTIVE/FULL (MCR ATL MISC)
23 to examine the chan~es. Use the command
24 CONTINUE MISC (MCR RESUME MISC)
25
26
27
28
29
30

~~;
33
34
35
36

A 37
V 38

39
40
41
42

44

[

43

o 45
46
47

;-

;
START:

Make

OK:

GOOD:
; Make

to resume the task.

.MCALL

.MCALL
SPND$S,ALTP$C,DSCP$S,ENCP$S
EXTK$C,EXIT$S

CLR
SPND$S
BCS

FU

ERRl
SOllie chan~es and

DSCF'$S
BCC OK
JMf' ERR2
ALTP$C ,10.
BCC GOOD
JSR PC,ERR3

Directive counter for errors
Suspend to allow status check

; Branch on directive error
then suspend a~ain

Disable checkpointin~
Branch on ~ood directive
Jump to error code
Alter runnin~ priorit~
Branch on ~ood directive
Call error subroutine

SPND$S ERR4 ; Suspend to allow status check
and then suspend a~ain some other chan~es

ENCP$S
BCS ERRS
ALTP$C ",ERRo
EXTK$C 200

Enable checkpointin~ a~ain
Branch on directive error
Return priorit~ to ori~inal
Extend task size b~ 200(8)

blrJcks

Example 2-5 Using Several Directives (Sheet 1 of 2)

66

DIRECTIVES

·u~
BCC ALSOOK Branch on good directive
CALL ERf<7 ; Call error subroutine

ALSOOK: SPN[I$S Suspend cH~ain

0

5:L
~S2

53 AGNOK:
54 ; Error
5:::; ERRS:
56 ERR7:
57 ERR6:
58 ERR5:
59 ERR4:
60 ERI~3 :
61 ERR2:
62 ERR1:
63
64
65

Run SessicH'l

>INS MISC
>RUN MISe

BCC AGNOK
BR ERRS
EXIT$S
handling
INC R1
INC Rl
INC Rl
INC R1
INC R1
INC Rl
INC R1
INC R1
MOV $I1SW,RO ;
lOT
.END START

Branch on directive ok
Branch on directive error
EHi't,

S means error on 3rd SPNII$S
7 means error on EXTK$C
6 means error on 2nd ALTP$C
5 means error on ENCP$S
4 IT,eans erT'or on 2r,d SPNII$S
3 means error on 1st ALTP$C
2 means error on IISCP$S
1 means error on 1st SPNII$S
Move IISW for displa~
Trap and displa~ registers

MISC 055420 GEN 054500 00615200-00617200 PRI - 50. DPRI - 50. e STATUS: SF'N ""PMD
[

>SHOW TASKS/ACTIVE FULL MISC

TI - TT11: IOC - O. BID - O. EFLG - 000000 000000 PS - 170000
PC - 001264 REGS 0-6 000000 000000 011300 140130 000000 000000 001254 o >CONTINUE MISC

MISC 055420 GEN 054500 00615200-00617200 PRI - 10. DPRI - 50.

[

>SHOW TASKS/ACTIVE FULL MISC

o ST(~ TUS: CKD SPN -'PMII
TI - TT11: IOC - O. BID - O. EFLG - 000000 000000 PS - 170000
PC - 001324 REGS 0-6 000000 000000 011300 140130 000000 000000 001254

>CONTINUE MISC

O
f'1ISC 055420 GEN 054500 01045200""01067200 PRI - 50. DPRI"" 50.

[

>SHOW TASKS/ACTIVE FULL MISC

: STATUS: SPN -PMD
TI - TT11: IOC - O. BID - O. EFLG - 000000 000000 PS - 170000
PC - 001400 REGS 0-6 000000 000000 011300 140130 000000 000000 001254

>CONTINUE MISC
>SHOW TASKS/ACTIVE FULL MISC
ATL -- Task not active

Example 2-5 Using Several Directives (Sheet 2 of 2)

67

DIRECTIVES

This example illustrates a number of techniques for directive
error checking. At lines 33 and 44, a BCS is used. At lines 36,
39, 48, and 51, a BCC is used to branch past the transfer to the
error handling code.

The transfers themselves also differ. At line 37, a JMP is
used. At line 40, a JSR PC is used, while at line 49, a CALL
which is equivalent to a JSR PC is used. At line 52, a BR is
used. Finally, at lines 41 and 45, the address of the error
routine is specified as the last argument of the directive macro
call. This results in a JSR PC, generated as part of the macro
expansion.

All of these get you to the error routines. They are all
equivalent as long as you don't attempt to recover from the error.
If you do recover, you must remember that a JSR PC or CALL pushes
a return address onto the stack, as explained in the section on An
Alternate Method for Error Checking.

Run Time Conversion Routines

As mentioned earlier, the system maintains task names,
partition names, and certain other data in Radix-50 format to save
space. There are times when conversions between ASCII and
Radix-50 format need to be performed at run time.

You can modify Example 2-1 (REQUES.MAC) so an operator can
type in the task name at run time. This ASCII name would then
have to be converted at run time to Radix-50 format because the
.RAD50 assembler directive can only be used at assembly time. The
subroutine $CAT5 in SYSLIB.OLB is provided for performing this
conversion. Its use is documented in Chapter 4 of the IAS/RSX-11
System Library Routines Reference Manual.

If the Get Task directive (GTSK$) is used to retrieve task
information, the task name and partition name are returned in
Radix-50 format. If you want to display these, you need to
convert them to ASCII format. The subroutine $C5TA, also in
SYSLIB.OLB and documented in Chapter 5 of the manual mentioned
above, is provided for this purpose.

Additional subroutines are provided for converting between
binary and octal ASCII (signed or unsigned) and between binary and
decimal ASCII (signed or unsigned). See Chapters 4 and 5 of the
IAS/RSX-1l System Library Routines Reference Manual for additional
information.

68

DIRECTIVES

Notifying a Task When an Event Occurs

Often a task needs to know when an event has occurred. The
event may have occurred within another task; for example, when
the task has completed a requested function. The event may
instead have occurred within the system; for example, when a
requested I/O operation is completed. The two methods for
implementing synchronization are by using event flags and using
asynchronous system traps.

Event Flags

There are three types of event flags: local, global (or
common), and group global. Ninety-six event flags are made
available to tasks, each with a unique number (1(10)-96(10».

Local event flags are provided for each task. There are
32(10) local event flags, numbered 1(10)-32(10). These flags are
used to synchronize a task with an Executive service, such as an
I/O transfer. One task cannot reference another task's local
event flags, so they cannot be used to synchronize tasks with one
another. Local event flags 25(10)-32(10) are reserved for system
use and therefore should not be used by a user task.

Global or Common event flags are provided for synchronization
among different tasks. There is one set of 32(10) global event
flags for the system, numbered 33(10)-64(10). These flags can be
referenced by any task. Global event flags 57(10)-64(10) are
reserved for system use and should not be used by user tasks.

NOTE
There is no way to protect against other
tasks using global event flags. Great care
must be taken to ensure that global event
flags aren't used at the same time by several
different users. Check with your system
manager before using any global event flag to
ensure that it is not used for some other
purpose.

69

DIRECTIVES

There are only 32(10) global event flags available in the
system. If additional event flags are needed, another set of
event flags can be created for synchronization among different
tasks. Group global event flags (32(10», numbered 65(10)-96(10),
can be created for any UIC group number. These event flags can be
referenced by any task running under the correct group number.
Therefore, they can be used to synchronize tasks running under
that group number. An additional advantage is that they cannot be
referenced by tasks running under other group numbers.

Group global event flags are created using the DCL SET GROUP
FLAGS CREATE (FLA /CRE in MCR) command or the Create Group Global
Event Flags (CRGF$) directive. When users in a group don't need
them anymore, the group global event flags can be marked for
deletion using the DCL SET GROUP FLAGS DELETE (FLA /ELIM in MCR)
command or the Eliminate Group Global Event Flags (ELGF$)
directive. After that, when all active tasks in the group have
finished using them, the group global event flags are eliminated.

Using Event Flags for Synchronization

70

DIRECTIVES

Examples of the Use of Event Flags for Synchronization

Examples 2-6 and 2-7 show the use of event flags to
synchronize two tasks. WFLAG creates the group global event flags
for the group. It then clears event flag 65(10) and waits for
that flag to be set. SFLAG sets event flag 65(10), which unblocks
WFLAG. Run WFLAG first, then run SFLAG.

The following notes are keyed to the examples.

ct Create the group global event flags The default used

o

here creates them for the group number which the task is
running under.

An error is reported if the flags already exist.
isn't a fatal error, so we check for this condition.
the flags do exist, print a message and continue.

NOTE
If the error address had been included in the
macro directive call (CRGF$C "ERRl), two
changes must be made to the code. First, the
check for IE.RSU must be made at location
ERRI. Second, in the case of the nonfatal
error IE.RSU, the stack will have one extra
word because the macro does a JSR PC,ERRl,
not a BCS ERRI. Therefore, you would need to
either use a RTS PC (synonym RETURN) or, if
you want to branch to another location, you
need to pop the return address off the stack
before branching.

This
If

C» The flag is in an unknown state at startup. Therefore, we
must clear the flag before waiting for it to be set.

C» Wait for the event flag to be set by SFLAG. This causes
WFLAG to be blocked. Now run SFLAG.

C» Set event flag 65. This allows WFLAG to become unblocked.
SFLAG now exits.

() When WFLAG is unblocked and continues executing, it starts
up here. Check for any directive error entering the Wait
For state, print a message, and exit.

71

0

1.
2
:5
4
5
I.>
'7 .'
f3
9

10
1.1
12
:1.3
14
:L ~5
it')
17
18
:t (}
20
~.~ :J.
22
23
24
:~~5

:~6
27
28
29
30
31
32
33
:'54

''56

[

:35

o :37
38
39

A 40
V 41

42
4~5 o 44
45

0[:;
48
49
~50

~:H
52
~:i3

~54

~5~5

~56

~57
58

;+

;-

.TITLE

.IDENT

.ENABL

FILE WFLAG.MAC

DIRECTIVES

WFLAG
lOll
LC Enable lower case

This pro~ram creates the ~roup slobal event flaSs,
clears event flas 65. and waits for it to be set. When
the flaS is set it writes a messase and exits.

Assemble and task-build instructions:

MACRO/LIST LB:[l~:J.]PROGMACS/LIBRARY,dev:[ufdJWFLAG
LINK/MAP WFLAG,LB:[l,lJPROGSUBS/LIBRARY

Install and Run instructions:

Run WFLAG, then run SFLAG. At least one of the
tasks must be installed, or else the RUN command
will try to install both tasks under the same
nam(~" TTnn.

.MCALL EXITSS,WTSESC,CLEFSC"CRGFSC; System
; maCT'OS

.MCALL TYPE SUPplied macro

START: CLR RO RO used to identify
thf.~ e T' T'CH'

TYPE <WFLAG IS CREATING THE GROUP GLOBAL EVENT FLAGS>
CRGFSC Create Sroup ~lobal

; event f 1 a!!J!5
BCC OK ; Branch on directive ok

If sroup ~lobal event flass already exist,
Just display messase and continue

OK:

ERR3:

Er~R2 :

ERR:J.:

CMP SDSW,#IE.RSU Check for efs already

BNE

TYPE
TYPE
CLEF~~C

BeB

ERR:J.
in e~·dstence

Branch on anw other
i..ii r error

<GROUP GLOBAL EVENT FLAGS ALREADY EXIST>
<CLEAR AND THEN WAIT FOR EF 1.>5. TO BE SET>
65.
Ef'-:R2

Clear event flas 65.
Branch on directive
error,

WTSESC 65. Wait for event flas 65
to be set

BCS ERR3 Branch on directive
e r T'C)J'

TYPE <EF 65. HAS BEEN SET. WFLAG WILL NOW EXIT>
EXITSS
INC f'\0 F~O - ~5 if f?rrOr c)n

wait f(J Y' dir
INC RO I~O ~~ if errOT' on

c I €~a r fla!:-t dir
INC F~O RO 1. if €~ r ro r on

c r€~at~~ ST'('')UP flags dir
MOV SDSWy R:I. Place DSW in ~-;: 1
lOT Tr'(sp (zJnd dump resisters
.END STAI~T

Example 2-6 Waiting for an Event Flag (Sheet 1 of 2)

72

Run Session

>INS WFLAG
>INS SFLAG
>RUN WFLAG
>

DIRECTIVES

WFLAG IS CREATING THE GROUP GLOBAL EVENT FLAGS
CLEAR AND THEN WAIT FOR EF 65. TO BE SET
RUN SFLAG
>

EF 65. IS BEING SET. THEN SFLAG WILL EXIT.
EF 65. HAS BEEN SET. WFLAG WILL NOW EXIT

Example 2-6 Waiting for an Event Flag (Sheet 2 of 2)

73

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

0 27
28
29
30
31
32

;t

;-

.TITLE

.IDENT

.ENABL

FILE SFLAG.MAC

DIRECTIVES

SFLAG
lOll
LC Enable lower case

This task sets event flag 65. It assumes that the
group global event flags have alread~ been created.

Assemble and task-build instructions:

MACRO/LIST LB:Cl,lJPROGMACS/LIBRARY,dev:CufdJSFLAG
LINK/MAP SFLAG,LB:Cl,1JPROGSUBS/LIBRARY

Install and Run notes:

First run WFLAG, then run SFLAG. At least one of
the tasks must be installed, or else the RUN
command will trw to install both tasks under
the same name, TTnn.

.MCALL EXITSS,SETFSC

.MCALL TYPE
; S~stem macros
; SUPplied macros

;
START: TYPE

SETFSC
BCS
EXITSS
MOV
lOT

(EF 65. IS BEING SET. THEN SFLAG WILL EXIT.)

ERR:

65.
ERR

SDSW,Rl

.END START

Set event flag 65.
Branch on dir error
Exit
Save DSW
Trap and dump registers

Example 2-7 Setting an Event Flag in a Task

74

DIRECTIVES

Asynchronous System Traps (ASTs)

Asynchronous System Traps (ASTs) are used to detect events
that occur asynchronously to a task's execution. Two examples are
the completion of an I/O transfer and a power up after a power
failure. We say that they occur asynchronously to a task's
execution because they occur at unpredictable times, depending on
conditions which the task cannot control. If a task needs to do
work while waiting for an event to occur, it can do so and
periodically check an event flag to detect the event. However,
this means that the task must stop its work to check the flag.

Using an AST gives the Executive the responsibility for
monitoring the event. The Executive will "interrupt" the task and
transfer control to a special user-written routine when the event
has occurred. This technique is more efficient because the task
doesn't have to do any checking. It also results in faster
notification because the task is notified immediately after the
event occurs. With checking of the flag, it may take a long time
to notice an event that has occurred immediately after a check.

Several Executive directives allow the use of ASTs to handle
synchronization. A complete list appears in the section 5.1.5 on
Trap Associated Directives in the RSX-llM/M-PLUS Executive
Reference Manual.

Figure 2-6 shows how an AST works. The following notes are
keyed to this figure.

o The user
Directive.

specifies an AST routine in an
The Executive sets up for the AST.

tt The Executive returns control to the user task.

Executive

t» When the system determines that the event which
corresponds to the specified AST routine has occurred, the
Executive passes control to the AST routine and the task
executes it before any other user code in the task. This
means that if the task is executing at the time of the
AST, the task is "interrupted" until the AST routine is
executed. The AST routine is executed even if the task is
stopped or blocked. In that case, the task returns to its
stopped or blocked state after the AST routine is
executed, unless the AST routine or some external event
unstops or unblocks the task in the meantime.

75

MAIN
TASK
CODE

AST
SERVICE
CODE

DIRECTIVES

TASK CODE EXECUTIVE CODE

EXECUTIVE 01 RECTIVE
SPECIFYING AST
ROUTINE

ASTX$S

Figure 2-6 AST Mechanics

· ---------

SET UP FOR AST

•

ACTIVATE AST

RETURN FROM AST

•
•

TK-7508

C» The AST routine is a user written routine contained within
the task. The user stack is set up in a special way by
the Executive before the AST routine is entered, as shown
in Figure 2-7. Notice that some ASTs have special words
added to the stack. The AST routine may use these
parameters to check on what caused the AST, and then take
appropriate action. See section 2.3.4 on AST Service
Routines in the RSX-IlM/M-PLUS Executive Reference Manual
for a discussion of the specific stack formats.

76

DIRECTIVES

C» Finally, the AST routine uses the ASTX$S Executive
directive to "retu~n" control to the main task code via
the Executive. When the ASTX$S directive is invoked, the
Executive assumes that the stack contains only the
standard first four AST stack words. The user AST routine
must clear any additional AST specific parameters off the
stack before issuing this directive.

C) The Executive checks for any other ASTs which may have
occurred while the AST routine was executing. Any such
additional ASTs are queued up in an AST pending queue in a
first-in-first-out order. These ASTs are also serviced
before the Executive "returns" to the "interrupted" state
and code.

Note that the task's general purpose registers R0 through R5
and SP are not saved. Therefore, if you use these registers in an
AST routine, you must save and restore them.

For additional information on ASTs, see sections 2.3.3 and
2.3.4 on ASTs and AST Service Routines in the RSX-llM/M-PLUS
Executive Reference Manual.

77

DIRECTIVES

NEW SP [; =
r-------------------------~

}

AST SPECIFIC
PARAMETERS

INCREASING
ADDRESSES

PSW OF TASK PRIOR TO AST AST PARAMETERS

TASK'S DIRECTIVE STATUS WORD } STANDARD

~P-C--O-F-T-A-S-K-P-R-I-O-R-T-O--A-ST------~ ALWAYS PASSED

OLD
STACK
POINTER

(SPI

~------------------------~ ON THE STACK
EVENT FLAG MASK WORD

~------------------------~

TK-7511

Figure 2-7 Stack as Set Up by the Executive for ASTs

Example 2-8 shows the use of ASTs. An AST routine is entered
if~ an abort request is made by either another task or an operator.

The following notes are keyed to the example.

o
o
e

o

Set up for AST on abort attempt.

Loop until abort request comes in.

Service routine entered on first abort request. For this
AST, a nonprivileged task enters the routine only once and
further ASTs are cancelled. If the task is built as a
privileged task, the routine is entered each time an abort
attempt comes in. See Appendix D for an explanation of
privileged tasks.

There is no need to set up the stack for the AST return,
because there are no AST specific parameters (only the
four words expected by the Executive are on the stack).
The AST exit causes the Executive to transfer control to
the task back in the main code where it was "interrupted."

Another directive, SREX$, gives extended capabilities. An
entry passed on the stack to the AST routine indicates whether the
abort request came from a privileged or nonprivileged task or user
and further, whether it came from an Abort Task directive or a DCL
(or MCR) command. Each case can be handled differently.

78

1
2
3
4
5
6
7
8
9

lO
11
12
:1.:3
:1.4
1 ~.)
16
17
:L8
:I. (~
2()
21

0
::~2
2:3
24
25
26
27

DIRECTIVES

.TITLE ASTEX

FILE ASTEX.MAC

This task sets UP a Specif~ ReGuest Exit AST routine.
It then sits in a loop until someone tries to abort
it. At that point, it enters the AST routine and sends
out a messaSe. It won't abort the first time. A second
abort attempt will succeed because for this particular
AST~ the first abort AST cancels an~ further abort
AST'~; •

Assemble and task-build instructions:

;
START:

>MACRO/LIST ASTEX=LB:[1,1JPROGMACS/LIBRARY,­
'->dev: [ufdJASTEX
>LINK/MAP ASTEX,LB:[l,lJPROGSUBS/LIBRARY

.MCALL SREASC,ASTXSS

.MCALL TYPE
External swstem macros
External supplied macros

CLR
SREASC
BCS
TYPE

RO Error count
REXAST Set UP Specif~ Exit AST
ERR1 Branch on dir error
<ASTEX STARTING UP. WILL WORK UNTIL ABORTED.>

; Do some work.

0[28
29
30

CLR
LOOP: INC

BR
; Error code
E::r~R 1 : INC

MOV
lOT

R2
R2
LOOP

Clear counter
Increment counter

.; Loop back

e
0

31
:32
33
34
35 ; AST service routine

Error count
Move DSW for displa~

; Trap and displa~
reSisters

36 REXAST: TYPE <TRYING TO ABORT ME, EH1> ; Displa~
37 TYPE <WE WON'T LET YOU THIS TIME!> messaSe
38 ASTXSS ; AST exit
39

I:;:un Session

>INS ASTEX
>I:;:UN ASTEX

.END START

ASTEX STARTING UP. WILL WORK UNTIL ABORTED.
I~~BORT IT ASK ASTEX

TRYING TO ABORT ME, EH1
WE WON'T LET YOU THIS TIME!
~,BOF~T/TASK ASTEX
10:57:02 Task "ASTEX " terminated

Aborted via directive or CLI

Example 2-8 Us ing a Reque sted Ex it AST

79

DIRECTIVES

Example 2-9 shows the use of an AST routine with the Mark
Time (MRKT$) directive. The AST routine is entered after a 10.
second time period expires. The task starts the time period and
then suspends itself until the 10. seconds go by. The AST
routine, when entered, resumes the task. Therefore, the task is
unblocked and continues to execute when the AST routine exits.
The "main" code then displays a message and exits.

The following notes are keyed to the example.

ct The Mark Time instructs the system to start the 10.
second interval. The two specifies seconds. After that,
the AST routine at ASTSRT is entered. The missing first
argument is for an event flag, which would, if specified,
be initially cleared and then set when the 10. seconds
expired.

«t Task suspends itself. The AST routine is entered even
though the task is suspended.

t» The AST routine resumes the task. Otherwise, the task
would return to a suspended state upon exit from the AST
routine.

ct This instruction cleans up the stack for the AST Exit
directive. The extra word contains the event flag number
of the event flag set, or zero (in this case) if none was
specified. This word could be used to distinguish which
MRKT$ directive had expired in the case of several MRKT$
directives, using different event flags but the same AST
routine.

C» After the task is resumed by the AST routine, it starts
here.

If a task uses the Mark Time directive to place a time limit
on an operation, the Mark Time can be cancelled using the Cancel
Mark Time directive if the operation completes before the time
limit expires.

80

1
2
3
4
5
6
7
8
9

l.O
11
12
13
14
:1.5
16
17
:L8
19
20
21
22
23
24
25
;~6

27

0
28
29
30
31

032 o 33
34
:~5
36
37
38
39
40
41
42
43
44
45

,t

;-

.TITLE

.IDENT

.ENABL

FILE MARK. MAC

DIRECTIVES

MARK
lOll
L.C Enable lower case

This pro~ram issues a mark time for 10 seconds and
then stops itself. When the mark time expires, an AST
routine is invoked which unstops the task.

Assemble and task-build instructions:

MACRO/LIST LB:rl.,1JPROGMACS/LIBRARY,dev:rufdJMARK
LINK/MAP MARK,LB:r1,IJPROGSUBS/LINRARY

Install and run instructions:

The task must be installed under the name MARK in
order to run correctlw

.MCALL EXIT$S,MRKT$C,ASTX$S,SPND$S,RSUM$C
Swstem macros

.MCALL TYPE Special supplied macro

START: CLR RO RO is used to identif~

TYPE
TYPE
MRI"T$C
BCS

SPND$S
BCS

TYPE
EXIT$S

ERR3: INC

ERR2: INC

ERR1: INC

MOV
lOT

errors
('MARK' IS RUNNING AND WILL SUSPEND>
(ITSELF UNTIL AST RESUMES IT>
,l.O.,2,ASTSRT
ERRl.

ERR2

IssJ.Je mark time
Branch on directive
error

Suspend task
Branch on directive
error

('MARK' IS RESUMED AND WILL EXIT>
E~·dt

RO RO = 3 if error on

RO

RO

$DSW,Rl.

J.Jnstop
RO = 2 if error on

mark time
RO = 1 if error on
stop

Save DSW
Abort task and dump
register~;

Example 2-9 Using an AST in the Mark Time Directive
(Sheet 1 of 2)

81

46
47
48
49

850
51
~;2

53
~54

~55

056
57
!58
59
6()

DIRECTIVES

AST SERVICE ROUTINE
;
ASTSRT: TYPE

r~SUM$C

BCS

(AST ROUTINE EXECUTING AND WILL UNSTOP 'MARK')
MARK ; Resume task
ERR3 ; Branch on directive

; er'ror
User must clean AST specific values off the stack so
that the Exec sets control with stack as expected
(with reSular 4 AST words>

TST (SP>+ Clean off stack for

ASTX$S

.END START

AST ret'Jrn
Return to main code

through ast e~·d t

Hun ~)ess:i.on

>INSTALL MAI~K

>RUN MARI<

'MARK' IS RUNNING AND WILL SUSPEND
ITSELF UNTIL AST RESUMES IT
AST ROUTINE EXECUTING AND WILL UNSTOP 'MARK'
'MARK' IS RESUMED AND WILL EXIT

Example 2-9 Using an AST in the Mark Time Directive
(Sheet 2 of 2)

Synchronous System Traps (SSTs)

There is another kind of system trap available on the system,
generally used if you wish to handle trap producing errors
yourself, rather than have the Executive handle them. They are
called Synchronous System Traps (or SSTs). They detect certain
events which occur when program instructions are executed (e.g.,
odd address traps and memory protect violations). They are
synchronous because they always occur at the same point in the
program, when a given trap-causing instruction is executed.

82

DIRECTIVES

To set up for user coded SSTs, you must set up a vector table
in a data area that contains a list of SST service routine
addresses. Each entry in the table corresponds to a specific SST
which may occur. A zero in an entry indicates that the Executive
should handle that trap. Refer to Figure 2-8, which shows the
setup and use of an SST routine. The following comments are keyed
to this figure.

ct At start-up, the task issues a SVTK$ or SVDB$ directive,
specifying the vector table address, which causes the
Executive to record that address, setting up for user SST
service routines.

Ct The Executive returns control to the task.

t) An instruction is executed which causes a trap. The
Executive checks the SST vector table to see if the user
has specified a routine to handle the trap. If one is
specified, the Executive sets up the user stack and
transfers control to the SST routine. If no SST routine
is specified, the Executive aborts the task and displays
an error message at TI:.

ct Once the task receives control again, it executes the SST
routine as if in the main code. All system services are
available to the task. To return to the main code, clean
up the stack so it contains only the return PC and PSW,
and execute an RTT or RTI instruction.

C» The RTT or RTI instruction causes the PC and PSW to be
popped from the stack into the appropriate register,
causing a return to the "interrupted" code.

Note that the general purpose registers R0 through R5 and SP
are not saved. Therefore, if you use these registers in an SST
routine, you must save and restore them.

83

DIRECTIVES

TASK CODE EXECUTIVE CODE

DATA
SST VECTOR TABLE

AREA
SET UP POINTER
TO SST VECTOR TABLE

SVTK$ DIRECTIVE

MAIN
CODE -------

BPT INSTRUCTION EXECUTIVE TRAP
SERVICE ROUTINE

-------- -------
BPTSST:

SST
0 SERVICE

ROUTINE RTI OR RTT

TK-7510

Figure 2-8 SST Sequence

Example 2-10 uses three SST service routines to handle 8PT,
lOT and memory protection violation traps in the user program.
The following notes are keyed to this example.

ct Vector table containing the SST service routine addresses.
See the documentation on SVTK$ in Chapter 5 of the
RSX-llM/M-PLUS Executive Reference Manual for the order of
words in the table.

tt Executive directive to permit the use of user SST service
routines. You can also use SVD8$ to trap to an external
debugger (e.g., DDT) instead of to the user code.

t» 8PT causes a trap. The Executive checks the vector table;
because a routine address is specified for BPTs, it sets
up the stack and transfers control to location 8PT.

C» The 8PT SST routine displays a message, then returns from
trap, to line 28.

84

o

o

o
o

o

DIRECTIVES

The CLR 120000 causes a memory protect violation since the
highest address used in this program is far below that
(1627(8)). This causes another SST.

On a Memory Protect Violation SST, the Executive passes
three more words on the stack in addition to the PC and
the PSW. The details on these words are discussed in
section 2.3.2 on SST Service Routines in the
RSX-1IM/M-PLUS Executive Reference Manual.

We don't need the stack values in this routine, but we do
need to pop them off the stack so that the RTI instruction
works properly. The CMP and the TST are "dummy"
instructions used to pop the three words off the stack.

lOT causes another SST.

In the lOT routine, we can alter the return PC (on the top
of the stack), which changes the return point for the RTI
to NEW.

The TRAP instruction causes an SST for which there is no
user specified routine. Therefore, the Executive aborts
the task and displays a message at TI:.

85

1
2
3
4
C"
-.:J

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
2:~

0 2~:S

0
24
25

A 26
V"7

8 28
29

O
30
31
32 o 33
34
35
36

o[~!
41
42

O[:~
45 o 46
47
48
49
50

.TITLE

.IBENT

.ENABL.

FILE SST.MAC

DIRECTIVES

SST
1011
LC Enable lower case

This task sets UP an SST vector table to handle SST's
for BPT, lOT, and odd address traps. It then executes
instructions to cause these traps to occur. In each
SST routine, a messa~e is displawed and then the task
continues. Finall~, a TRAP instruction is executed.
Since no user SST routine is specified for TRAP, the
Executive aborts the task.

Assemble and task-build instructions:

MACRO/LIST LB:[l,lJPROGMACS/LIBRARY,dev:CufdJSST
LINKIMAP SST,LB:[l,lJPROGSUBS/LIBRARY

.MCALL SVTK$C,EXrT$S

.MCALL. TYPE
External swstem macros
External supplied macro

VTABL.E: • WOI~D O,MPTVIO,BPT,IOT ; SST vector table
;
START: SVTK$C VTABL.E,4

BPT
CLR 120000

lOT
EXIT$S

NEW: TRAP

; SST rOIJtines
;

Have Executive set UP

SST table
BPT instruction
Clear location 120000,
causin~ a IYlemorw
protect violation

rOT instrlJction
E~"dt
TRAP instruction

MPTVIO: TYPE (MEMORY PROTECT VIOLATION CAUGHT>

CMP
TST

RTI
BPT: TYPE

RTI
lOT: TYPE

MOV

RTI
.END

(SP)+,(SP)+
(SP)+

(BPT CAUGHT>

(lOT CAUGHT>
+NEW,(SP)

START

message
Clean off three
specific stack words
for memorw protect SST

RetlJrn from trap
Twpe message
RetlJrn from trap
Twpe message
Change PC on stack so

return from trap
returns to NEW

RetlJrn from trap

Example 2-10 Using SSTs (Sheet 1 of 2)

86

DIRECTIVES

F~un Sf.oH5Sicm

>I:::UN SST
BPT CAUGHT
MEMORY PROTECT VIOLATION CAUGHT
lOT CAUGHT
14:07:50 Task -TT11 - terminated

TI:;:AP eHeCl..lt i on
1:;:0:::00157:~

Rl~::OOOO:Jo2

F~2::::()00000

1:::~3:::: 1. 40312
R4::::1.44000
F~5::::000000
SP:::001254
F'C::::001312
F'S:::::L70000

Example 2-10 Using SSTs (Sheet 2 of 2)

Now do the tests/exercises for this module in the
Tests/Exercises book. They are all lab problems. Check your
answers against the solutions provided, either in that book or in
on-line files, under UFD [202,2].

You will need the program READF.MAC to do question 1. It
should be available on-line (probably under UFD [202,1]). In case
it is not available on-line, the source code is listed in Appendix
G.

If you think that you have mastered the material, ask your
course administrator to record your progress in your Personal
Progress Plotter. You will then be ready to begin a new module.

If you think that you have not yet mastered the material,
return to this module for further study.

87

USING THE QIO DIRECTIVE

USING THE QIO DIRECTIVE

INTRODUCTION
All input/output under RSX-llM is performed using the QIO

directive. In this module, you will learn how to use the QIO
directive, concentrating on its use for input/output to a
terminal.

OBJECTIVES
1. To use the QIO directive to perform I/O to a device that

is not file-structured (e.g., a terminal)

2. To choose either synchronous or asynchronous I/O as the
most effective method for a given application

3. To perform complete error checking upon I/O completion

4. To use formatting routines from the system subroutine
library to improve the readability of output data.

1. RSX-llM/M-PLUS Executive
directives in Chapter 5

Reference

RESOURCES
Manual, specific

2. RSX-llM/M-PLUS I/O Driver's Reference Manual, Chapters 1,
2 and 3

3. IAS/RSX-ll System Library Routines Reference Manual, Chap­
ter 6

91

USING THE QIO DIRECTIVE

OVERVIEW OF 010 DIRECTIVES

All I/O operations under RSX-IIM are performed using QIO
directives. The QIO directive causes an I/O request to be passed
to the appropriate service routine. The service routine is either
a device driver or a system task called an ancillary control
processor (ACP). There is a device driver for each device type on
the system. There are three ACP's provided: FIIACP for FILES-II
structured disks, MTAACP for ANSI magtape, and NETACP for DECNET.

The
routine.
priority
a given
(FIFO) •
itself,
routine,
request
issuing
task in

I/O packet is placed in an I/O queue for the service
The packets are queued up in order according to the

of the issuing tasks. If there are multiple requests at
priority, those requests are queued first-in-first-out

The QIO directive does not perform the I/O operation
but simply queues the request to the appropriate service
which performs the actual I/O transfer. After the I/O
has been queued, the Executive returns control to the

task, unless the task requests the Executive to place the
a Wait For state until the I/O transfer completes.

PERFORMING I/O

QIO directives are generally used only for I/O on non-file
structured devices such as terminals. For file I/O, the File
Control Services (FCS) or Record Management Services (RMS) are
used, which in turn issue the appropriate QIOs for you.

When using QIOs, you need to specify which I/O operation
(e.g., Read Virtual Block or Write Virtual Block) is to be
performed by means of an I/O function code. Specify the device by
means of the logical unit number (LUN). To specify additional
information about the I/O operation (e.g., what buffer to write
and how many characters), use an I/O Parameter List (IOPL). All
of this information is passed to the Executive through parameters
in the Directive Parameter Block (DPB) , as it is with all
Executive directives.

93

USING THE QIO DIRECTIVE

I/O FUNCTIONS

Each device type has its own set of legal I/O functions.
Certain functions are called standard or common, since they are
available on all devices. The seven standard I/O functions are
listed in Table 3-1. Logical block transfers (Read Logical Block
and Write Logical Block) can usually be performed for any device.
For file-structured devices, virtual block transfers can be
performed only if a file is open on the device. If Virtual Block
I/O is requested for a device which is not file-structured, such
as a terminal, it is converted to logical block I/O for you.
Devices may have additional device specific functions, such as
read no echo at a terminal. Each function requires its own set of
parameters, which are specified in an I/O parameter list.

Table 3-1 Common (Standard) I/O Function Codes

94

USING THE QIO DIRECTIVE

Logical Unit Numbers (LUN)

The device for an I/O operation is specified by means of a
logical unit number. The correspondence between logical unit
numbers and physical devices is made initially at task-build time.

The default LUN assignments set up by the Task Builder are as
follows:

LUN #1 - SY:
LUN #2 - SY:
LUN #3 - SY:
LUN #4 - SY:
LUN #5 - TI:
LUN #6 - CL:

These default assignments may be overridden at task-build
time by using the ASG option. Additional LUNs can be created (up
to a maximum of 250(10» by using the UNITS option.

Once a task is installed, an operator can check the LUN
assignments for the task by using the DCL SHOW LOGICAL UNITS
command (LUN in MCR) • The assignments can be changed by an
operator using the DCL ASSIGN/TASK command (REA in MCR). The LUN
assignments can also be checked at run time using the Get LUN
directive (GLUN$), and changed using the Assign LUN directive
(ALUN$) •

Synchronous and Asynchronous I/O

There are two kinds of I/O, synchronous I/O and asynchronous
I/O. With synchronous I/O, the Executive provides all
synchronization. With asynchronous I/O, you must provide
synchronization regarding the completion of the I/O operation
itself.

When a task issues a synchronous I/O request, it doesn't get
control back from the Executive until after:

1. The I/O packet is queued, and

2. The I/O operation (the transfer performed by the service
routine) itself is completed.

In other words, the synchronous I/O request asks the Executive to
queue the I/O packet and then place the task in a Wait For state,
to wait until the specified event flag is set, signifying that the
actual I/O operaton is complete.

95

USING THE QIO DIRECTIVE

Figure 3-1 shows the flow of instructions during the
processing of a QIO directive. The task does not execute the
instruction following the QIO directive until after the I/O
transfer itself has completed. Figure 3-2 shows a time diagram
illustrating the same I/O operation. Note that once the QIO
directive is executed at step 1, the task doesn't execute again
until step 8, after the transfer has completed. The system
handles all synchronization with synchronous I/O. Use the QIOW$
directive to invoke this type of I/O.

Commentary to Figures 3-1 and 3-2:

ct User task executes QIO and wait For directives.

ct Executive queues the I/O request.

t» Executive calls the driver.

ct Driver begins the I/O transfer.

C» Driver handles the I/O transfer as necessary.

C) I/O transfer completes.

t» Driver finishes its work and notifies the task that the
I/O is completed.

C» User task continues.

96

USER TASK

0010 DIRECTIVE

o

USING THE QIO DIRECTIVE

EXECUTIVE

010 01 RECTIVE
ROUTINE

o
e

__ --c)

Figure 3-1 Execution of a Synchronous I/O Request

USER TASK

010 DIRECTIVE

DRIVER

I/O TRANSFER

o
08

o

TIME

o
i
I

01

Figure 3-2 Events in Synchronous I/O

97

o
I
I
I
I

0: ,

TK-7507

TK-7509

USING THE QIO DIRECTIVE

with asynchronous I/O, the Executive still queues the I/O
request. When a task issues an asynchronous I/O request, the
Executive passes control back to the task immediately after the
I/O packet is queued to the driver. You must provide
synchronization concerning the completion of the actual I/O
transfer. This could occur at various times, depending on such
factors as how many other I/O packets are ahead of this one in the
driver's I/O queue, and the speed of the device itself. The task
executes in parallel with the I/O request.

In Figure 3-3, the instruction after the QIO request is
executed after the I/O packet is queued (and the driver has
started the transfer), not after the I/O transfer completes. The
task continues executing unless it chooses to wait. Figure 3-4
shows a time diagram illustrating asynchronous I/O.

Note that after the QIO directive is executed at step 1, the
task begins executing again at step S. In this example, the task
waits for the I/O transfer to complete at step Sa. If you use
asynchronous I/O, you must provide any synchronization yourself,
using event flags, asynchronous system traps, or both. The task
shown in Figures 3-3 and 3-4 uses a Wait For Single Event Flag
directive at step Sa. Use the directive QIO$ to invoke this type
of I/O.

The advantage of asynchronous I/O is that a task can continue
processing in parallel with the I/O transfer. For example, you
can perform computations while waiting for a read or write to
complete. Of course, if you need the information from the read
before you can do anything else, it is better to use synchronous
I/O.

98

USING THE QIO DIRECTIVE

Commentary to Figures 3-3 and 3-4:

ct User task executes the QIO directive.

tt Executive queues the I/O request.

t» Executive calls the driver.

ct Driver begins the I/O transfer; Executive passes control
back to the user task.

C» Driver handles the I/O transfer as necessary.
executes in parallel with the I/O transfer.

User task

a. User task waits for the I/O operation to complete.

C) I/O transfer completes.

t» Driver finishes up and the Executive notifies the task
that I/O is completed.

C) User task continues.

99

USER TASK

Galo DIRECTIVE

o
Oa

Cit

USING THE QIO DIRECTIVE

EXECUTIVE

o

DEVICE DRIVER o o
o
o

------(--)
I/O aUEUE

TK-7518

Figure 3-3 Execution of an Asynchronous I/O Request

0 0 Oa 0
USER TASK I i

I
,

00 I I
I I

010 DIRECTIVE I I
I 0: 0' DRIVER i

I

1

0 0 1
I/O TRANSFER

I

;rIME

TK-7513

Figure 3-4 Events in Asynchronous I/O

100

USING THE QIO DIRECTIVE

MAKING THE I/O REQUEST

Specify the following information in the QlO$ or QIOW$ call
when requesting I/O.

• Synchronous or asynchronous I/O, by using the appropriate
directive.

• The I/O function to be performed.

• The LUN to be used for the I/O operation.

• An event flag
synchronization.

number, if any, to be used for
This is required for synchronous I/O.

• The address of an I/O Status Block (IOSB) - two words set
aside with .BLKW or .BLKB assembler directives. The rOSB
is used to pass status and other information about the I/O
operation back to the task.

• The address of an AST routine, if transfer to an AST
routine is desired upon completion of the I/O transfer.

• The I/O parameter list (up to six words) which
information for the particular device and
particular I/O function requested.

specifies
for the

Table 3-2 shows the I/O parameter list arguments which are
needed for each of the standard I/O functions with the full-duplex
terminal driver. Table 2-3 (in section 2.3 on the QlO Macro) in
the RSX-I1M/M-PLUS I/O Driver's Reference Manual lists these
standard functions and the other device-specific functions
available with the full-duplex terminal driver. The
device-specific functions will be discussed further, later in this
module. If your RSX-I1M system has the half-duplex terminal
driver, Table 3-3 in section 3.3 on the QlO Macro lists the
functions available with that driver. For other devices, there is
a corresponding table in the appropriate chapter of the manual.

101

USING THE QIO DIRECTIVE

Table 3-2 I/O Parameter List for Standard I/O Functions

102

USING THE QIO DIRECTIVE

Error Checking and the I/O Status Block

There are two kinds of errors which can be produced by QIO
directives, directive errors and I/O errors. The various
directive and I/O status codes and their meanings are listed in
Appendix B of the RSX-llM/M-PLUS I/O Driver's Reference Manual and
also in the RSX-IIM Mini-Reference.

Directive errors occur because of errors in processing the
directive and getting the I/O packet queued up to the device
driver. As with all directives, directive errors are indicated by
a negative value in the DSW and the carry bit set upon return to
the task code. Success is indicated by a positive value
(typically +1) in the DSW and clearing of the carry bit.
Therefore, the directive status indicates the success or failure
of the attempt to queue the I/O packet. Check for directive
errors immediately upon return after the QIO directive is issued.

Upon completion of the I/O transfer
returns status information about the
Status Block, laid out as follows:

itself, the Executive
I/O transfer to the I/O

Device Dependent I I/O Status

Actual Number of Bytes Transferred

NOTE
The low-order byte of the first word of the
I/O Status Block contains the I/O status
code. This is a byte value, not a word
value. A positive I/O status code (usually
+1 = IS.SUC) indicates success. Again,
negative values indicate various error
conditions. The second word of the I/O
status block indicates the number of bytes
actually transferred, which is significant in
the case of any read or a write which ends
after only some of the data is transferred.
The device dependent byte usually contains
information which is device dependent. For
example, for a read from a terminal, it
contains the character which was typed as a
terminating character «RET), CTRL/Z, <ESC),
etc.) •

103

USING THE QIO DIRECTIVE

The I/O status byte should be checked only after the I/O
transfer completes. For synchronous I/O, the I/O status should be
checked right after checking the DSW, since the I/O transfer
itself also completes before control is returned to you. For
asynchronous I/O, on the other hand, the I/O status should be
checked when the task is notified by the Executive that the
transfer is complete. Synchronization is discussed in the section
that follows, after an example of synchronous I/O.

104

USING THE QIO DIRECTIVE

THE QIO DIRECTIVES

Synchronous I/O

The format of the QIOW$ call is:

QIOW$ ifn,lun,efn,pri,iosb,ast,iopl

where

ifn - I/O function code
lun - Logical unit number
efn - Event flag number (required for synchronous I/O)
pri Priority (not used)
iosb - I/O status block address
ast - AST routine address
iopl - I/O parameter list

Example using the $S form:

.MCALL QIOW$S

BUFF: .ASCII /HERE IS THE MESSAGE/
LBUFF: =.-BUFF

• EVEN
IOSB: • BLKW 2

QIOW$S #IO.WVB,#5,#1,,#IOSB,,<#BUFF,#LBUFF,#40>

Explanation of QIO arguments:

Write Virtual Block
LUN 5 (TI:)

. Event flag #1
Priority (always ignored)
I/O status block address = IOSB
AST routine address (none specified)
I/O parameter list

Input buffer address = BUFF
Buffer length = LBUFF
Vertical format control = 40(8) for single space

105

USING THE QIO DIRECTIVE

Once again, the $, $C, or $S form of the directive may be
used. An event flag must be specified for synchronous I/O. If
one is not specified, the I/O request is handled as an
asynchronous I/O request. The priority is included to allow
compatibility with RSX-IID. It is not used in RSX-IIM.

ASTs are not generally used for synchronous I/O, because the
Executive performs all synchronization for you. The I/O parameter
list is a single directive parameter. Therefore, the list is
enclosed in angle brackets, with the elements separated by commas.
In fact, six words are always placed in the DPB for the I/O
parameter list, whether or not all six words are specified.

Example 3-1 shows the use of synchronous QIOs. The following
notes are keyed to the example.

o As with other directives, the macro names must
specified in a .MCALL statement. Note that in
example, we use both the $C form and the $S form of
QIOW$ directive.

be
this
the

«t The two-word I/O status block for return of I/O status.

t» The buffer into which the data will be read, and also from
which the data will be displayed.

ct R4 is used to indicate whether a QIO error is a directive
error or an I/O error. A value of zero indicates that a
directive error occurred (and that R3 will contain the DSW
value). A value of -1(177777(8» indicates that an I/O
error occurred (and that R3 will contain the I/O status
byte).

C» Issue the read request. We are using LUN 5, event flag 1,
and IOSB is the label of the IOSB. The I/O parameter list
is set up as a single parameter (hence the need for the
angle brackets « and »). It specifies BUFF, the
address of the buffer for the characters read and 80., the
maximum number of characters to read. If input is
terminated with a terminating character, such as a
carriage return, before 80 characters are typed in, the
number of characters actually read will be returned in the
second word of the IOSB. Input will be terminated
automatically after the 80th character, if 80 characters
are typed. In that case, 80 will be returned as the
number of characters read.

106

o

USING THE QIO DIRECTIVE

Check for directive error
queueing the I/O packet.

indicating a failure in

t» With synchronous I/O, we don't get control again until
after the I/O operation has completed, so also check the
I/O status. A value less than zero indicates an error in
the I/O transfer.

C» Get the count of characters typed in from the second word
of the rOSB. We will only check on and convert that many
characters.

o Check each character to see if it is in the range ASCII A
to ASCII Z. If so, convert to lowercase by adding 32(10)
= 40(8) to that value, or else continue.

Write out the buffer BUFF, which has the converted
message. This is a Write Virtual Block. We use the $S
form instead of the $C form because we don't know how many
characters to write until run time. The $ form would also
work. Notice the difference in the format of the
arguments for the $S form compared to the $C form. Note
also that in the $S form, the lack of a '#' sign in IOSB +
2 means get the contents of that location, specifically
the number of characters to write out. The third argument
of the I/O parameter list, #40, is for vertical format
control. Single linefeed before writing the characters is
indicated by #40, or ASCII space.

Check for any directive or I/O errors.

See note 4. R5 is the directive counter, which will be
one for the first QIO and two for the second QIO. We need
to distinguish directive errors from I/O errors. In this
example, we use R4 to distinguish the two type of errors.
Zero in R4 means a directive error, and -1 (or 177777(8)
in two's complement) in R4 indicates an I/O error. For
directive errors, the DSW is placed in R3; for I/O
errors, the I/O status byte is placed in R3.

107

USING THE QIO DIRECTIVE

The list of all error codes appears in Appendix B of the
RSX-IIM/M-PLUS I/O Drivers Reference Manual and in the RSX-llM
Mini-Reference Manual. Of course, this simple error handling will
normally be replaced with a text error message and the error code.
You will learn how this is done later in the module.

NOTE
Although both virtual block and logical block
operations are permitted to a terminal, it is
safer to use virtual block operations. If
the I/O is actually performed at a terminal,
the virtual block request gets converted by
the Executive to a logical block request.
If, for example, logical block writes are
used and someone reassigns the LUN to a disk,
the write may overwrite a block on the disk.
If, on the other hand, write virtual blocks
are used and someone reassigns the LUN to a
disk, the write will only be allowed if a
file is open on the disk. The write will
fail in most cases if the program is writing
to a terminal.

108

1,
2
3
4
1:-
,)

6
l
8
9

:LO

G
:1_1
:1.2
1,3

a 1.4
15

8 16
1.7
18

0 1.9
20
2:L
22
23

0 24

o 25 . 26

0[27 28 o '19 . .:..

30
31
32
33
34
35
36

0
37
38
39
40
41
42
43
44
45

CD 46
47

;+

USING THE QIO DIRECTIVE

.TITlE SYNCHQ

.IDENT lOll

.ENABl LC Enable lower case

FILE SYNCHQ.MAC

This task reads a line of text from the terminal,
converts all upper case characters to lower case, and
prints the converted messaSe back at the terminal. It
uses svnchronous QIO directives.

IOSB:
BUFF:

START:

lOOP:

Here

NEXT:

.MCALl QIOWSC,QIOWSS,EXITSS ENt(~ T'na 1 S~j~:; t(~~1YJ

mac l'C)~;

.BLKW 2

.BlKB 80.

CLR F~5

CLR R4

lID Status Block
TeNt buffer

ET'ror Count
Error i nd :i. cat() T' "" 0

means directive errol'
(nSW in 1:;:3), ne~.~

means 1/0 el'l'C)T'
; (lID status in R3)

QIOWSC IO.RVB,5,1"IOSB,,(BUFF,80.); Issue

BCS
TSTB
BlT
MOV

CLR

CMF'B

BlT
CMF'B
BGT

if upper
MOVB
ADD
MOVB
INC

ERRl
rOSB
ERFUA
IOSB+2,RO

BUFF (R 1) ,:IJ: ' A

NEXT
BUFF(Rl),:IJ:'Z

; rec~d

Bl'anch on dir el'ror
Check for 1/0 el'ror
Branch on 1/0 el'ror
Get count of characters

tvped in
Offset into buffer to
charact€~r

Check for upper case
ASCI I chaT'act€n'

Branch if below l'anSe

NEXT ; Branch if above ran~e
case, move to reSister R2 and convert
BUFF(Rl),R2 Move to resister
:lJ:32.,R2 Convert to lower case
R2,BUFF(Rl) Replace in messaSe
Rl Increment offset into

buffer to next chal'
SOB RO,lOOF' Decrement count of

characters left to check
QIOWSS tIO.WVB,t5,tl"iIOSB,,(:lJ:BUFF,IOSB+2,:lJ:40)

; WT'i te teNt

Example 3-1 Synchronous I/O (Sheet 1 of 2)

109

USING THE QIO DIRECTIVE

BCS ERR2 ; Branch on dir error [48 at 49 TSTB IOSB Check for I/O error
50 BlT ERR2A ; Branch I/O

CD

51 EXIT$S
52
53 Error code
54 ;
55 ERR2A: INC R5
56 ERRIA: INC R5
57 MOVB IOSB,R3
58
59 IIEC R4
60
61 lOT
62
63 ERR2: INC R5
64 ERR1: INC R5
65 MOV $l)SW"R3
66
67 lOT
68
69 .END START

I~un Sess:i.on

>RUN SYNCHl~

ABCIIEFGHIJklmnoPGrstuvwxyz12345678[]\
abcdefshiJklmnoPGrstuvwxyz12345678[]\

on error
E~"dt

Up error cOI.Jnt - 2nd
""" 1st

I/O error. I/O statl.Js
to R3.

Nesative value in R4
means I/O error

Trap arId di~1F'la~
resisters

Up error coun"t - 2nd
1st

IIirective error. IISW
to R3, leave R4::::0.

Trap and displa~
resisters

Example 3-1 Synchronous I/O (Sheet 2 of 2)

110

010
oro

010
010

USING THE QIO DIRECTIVE

Asynchronous I/O

The format of the QIO$ call is:

QIO$ ifn,lun,efn,pri,iosb,ast,iopl

where

ifn - I/O function code
lun - Logical unit number
efn - Event flag number
pri Priority (not used)
iosb - I/O status block address
ast - AST routine address
iopl - I/O parameter list (up to six words)

Example using the $C form:

.MCALL QIO$C

IBUF: .BLKB 80.
I OSB : • BLKW 2 •

.
QIO$C IO.RVB,5,1"IOSB,,<IBUF,80.)

Explanation of QIO arguments:

Read Virtual Block
LUN 5 (TI:)
Event flag 1
Priority (ignored)
I/O status block address = IOSB
AST routine address (not used here)
I/O parameter list

Buffer address = IBUF
Buffer length = 80.

III

USING THE QIO DIRECTIVE

Synchronization With Asynchronous I/O

As mentioned earlier, event flags and asynchronous system
traps may be used for synchronization. If an event flag is
specified, the Executive clears the event flag when the I/O packet
is queued and sets the flag again when the I/O transfer completes.
This happens with both synchronous and asynchronous I/O, if an
event flag is specified. With asynchronous I/O, the task can
specify a flag and use it for synchronization using one of the
following techniques.

1. Do some work, then wait for the flag to be set.

2. Work the entire time, periodically checking the flag until
it is set.

Another possible technique for synchronization is to use ASTs
(discussed in Chapter 2). The following techniques might be used
with ASTs, after specifying an AST routine address in the QIO$
directive.

1. "Main" task does some work, then suspends or stops itself.
AST routine resumes or unstops the task.

2. "Main" task works the entire time, periodically checking a
cleared event flag or a cleared byte in a local data area.
AST routine sets the flag or sets the byte to a nonzero
value, thus notifying the "main" task that the I/O
operation has completed. If an event flag is used, it
will typically be different from the flag specified in the
asynchronous I/O request.

A third technique which can be used is to monitor the
contents of the I/O status byte of the I/O status block. The
complete I/O status block is cleared when the I/O request is
queued to the driver. Later, it is filled in when the I/O
transfer completes. Therefore, the user task can periodically
check the contents of the I/O status byte for a nonzero value.

112

USING THE QIO DIRECTIVE

Example 3-2 demonstrates the use of asynchronous I/O to
perform the same function performed in Example 3-1. This task can
do some work in parallel with the I/O transfer. The following
notes are keyed to the example.

ct Here we use QIO$C and QIO$S instead of QIOW$C and QIOW$S.

o

WTSE$C is a Wait for Single Event Flag directive, used to
synchronize the I/O operation.

A work buffer to be filled with values while the I/O
transfer is going on.

t) Issue the read. QIO$C instead of QIOW$C. All arguments
are the same. If ASTs were used for synchronization, an
AST address would be specified. The Executive will clear
Event Flag 1 when the I/O packet is queued and set it when
the I/O operation completes.

o Check again immediately for directive errors. Here, you
are checking for an error in queueing the I/O packet.

C» While the I/O transfer itself takes place, you can do some
work. Here fill the "array" at K with the values 64.,
128., ••• , 640.

C) When you are finished with your work, enter a Wait For
state until the event flag specified in the QIO$ directive
is set. It will be set when the I/O operation completes.

~ Now that the I/O operation is finished, check for I/O
errors.

o
o

After converting the message, issue the write.

This time, wait for the flag to be set immediately after
checking the directive status. You could do some more
work here. If you choose to wait, it is simpler and more
efficient to use synchronous I/O (QIOW$). Synchronous I/O
is more efficient because you perform both functions (QIO$
and WTSE$) in just one Executive directive call.

Still use the error count to indicate the directive
number. Since there are now extra directives (the WTSEs),
adjust the counts accordingly.

113

1
2
3
4
5
6
7
f3
9

10
11

0
12
13
14
15
16
17

0 18
19
20
2:1.
22
23

e 24
25

0
26
27
28
29
30
31.

0 32
33
34
35
36
37

0
38
39
40
41

;+

;-

USING THE QIO DIRECTIVE

.TITLE ASYNCQ
• ItiENT 10:1.1
.ENABI... LC

FILE ASYNCO.MAC

Enable lower case

This task reads a line of text from the terminal,
converts all upper case characters to lower case~ and
prints the converted ~essa~e back at the terminal. It
uses aswnchronous 010, usin. wait for event fla. for
synchronization.

.MCALL QIO$C,QIOSS,EXITSS,WTSESC; External
swste~m mc~C~T'OS

10SB: .BLKW
.BLKB
.BLKW

2
80.
l().

I 10 Statu~:; Block
T f:~xt buffs T' BUFF:

K:

START: CLR
CLR

OIOSC

BCS
NfJW do some

CLR
MOV

PLACE: MOV
AtiD

CMP
BHI
Atitl
BR

; Now wait for
WAIT: WTSESC

BCS

Array to fill while
waitin~ fc)r lID

R5 Error Count
R4 Error indicator: 0

means directive error,
; -1 means lID error

IO.RVB,5~1~~IOSB,,<BUFF,80+,40> ; Issue
read

ERR1 Branch on dir error
work

RO
164. ~R1
R1~K(RO)

t2~RO

RO,:f:20.
WAIT
:1:64. ~ R1
PLACE

lID of,eration
1

ERR2

to

Offset into arra~ K
Value to place in arra~
Place value in arra~
Point to next element

in K
At, the end'r
Branch if dcme
Compute next value

; Place it in the arra~
comF,lete

Wait fof' lID tC)
cfJmplet(f~

0[42
4:~

TSTB
BLT

IOSB
ERR1A

Check for dir error
Check for lID error
Branch on lID error
Get count of characters

typed in
44 MOV
45
46 CLR
47

IOSB+2,RO

R1 Offset into buffer to
character

Example 3-2 Asynchronous I/O Using Event Flags
for Synchronization (Sheet 1 of 2)

114

o

o

USING THE QIO DIRECTIVE

48 lOOF': CMf'B BUFF(R1),i'A Check for UF-F,er case
49 ASCII character
50 BlT NEXT Branch if below l'anse
51 CMf'B BUFF(R1),:I:'Z
52 BGT NEXT ; Branch if above r'anse
53 Here if UF-F-er case, move to register R2 and convert
54 MOVB BUFF(R1),R2 Move to register
55 ADD :fI:32.,R2 Convert to lower case
56 MOVB R2,BUFF(R1) ReF-lace in m€~SSagf~

57 NEXT: INC R1 Increment offset into
58 b'.Jffer to ne;·~t char
59 SOB RO,lOOf' Decrement char cC)f.Jnt
60 aIO$S :fI:IO.WVB,t5,t1"tIOSB,,<tBUFF,IOSB+2,t40>
61 ; WT'i te te;·,t
62 BCS ERR3 ; Branch on dir error
63 Could do some more work here too
64 WTSE$C 1 Wait for I/O to
65 comF-lete
66 BCS ERR4 Branch on dir error
67 TSTB IOSB Check for' I/O error'
68 BlT ERR3A Branch on I/O error
69 EXIT$S E;·dt
70 ; Error code
71 ERR3A: INC R5 R5=3, 2nd aID
72 INC R5
73 ERR1A: INC R5 R5=1, 1st aID
74 DEC R4 Make R4 negative to
75 indicate I/O error'
76 MOVB IOSB,R3 I/O status to J~3

77 lOT TraF- and disF-la~
78 registers
79 ERR4: INO R5 R5=4, 2nd Wait FOT'
80 ERR3: INC Rt::" ,J R5=3, 2nd aID
81 ERR2: INC R5 R5=2, 1st Wait Fe)r
82 ERR1: INC R5 R5=1, 1st cno
83 MOV $DSW,R3 Directive error. DSW
84 trJ R3, leave R4=0.
85 lOT TraF- and disF-la~
86 r'esisters
87 .END START

F~un Se!;;.sion

>J~UN ASYNCa
abcdefghKJHKJHKHFRTEWGwr~u~iupoZCVcybvcnbMBNM7(8534243 .:'
abcdefghkJhkJhkhfrtewGwr~u~iupozcvcybvcnbmbnm7(8534243 .:'

Example 3-2 Asynchronous I/O Using Event Flags
for Synchronization (Sheet 2 of 2)

115

USING THE QIO DIRECTIVE

Example 3-3 shows the use of ASTs for synchronization. In
addition, it shows the use of some supplied macros for generating
error reports. These macros are documented in Appendix A of this
course. The following notes are keyed to the example.

o

o

o

e

o

This is the text for the messages to be written. The
LEN=.-MES lets the assembler calculate the length of the
message for you. A similar technique is used for the
other messages.

The ASCII text may contain an odd number of characters.
The .EVEN assembler directive assures that your first
executable instruction is an even word boundary.

Issue the write request. The AST routine address is
specified. Also specify the address of the buffer, MES,
and its length LEN. You can use the $C form of the
directive because all arguments are known at assembly
time.

Suspend until the AST routine is activated\ upon I/O
completion. Normally some other processing would be done
here, in parallel with the I/O operation.

The Executive passes control to the AST routine when the
I/O transfer completes. First check the I/O status. You
do that here instead of in the main code because you will
be issuing another write which will overwrite the IOSB.
The I/O status check could otherwise be checked in the
main code after the task is resumed.

Write out a message so the operator knows you are in the
AST routine. This time you use synchronous I/O, since you
aren't planning to do any work while the I/O transfer
takes place. Again, check for errors.

__ Resume the task so it will be ready to run upon exit from
the AST routine.

C) Pop the extra word off the stack (this AST is entered with
five words on the stack instead of the standard four).
Then use the ASTX$ directive to exit the AST routine via
the Executive.

C) Check for directive errors on the SPND$.
that you never suspended yourself.

116

It's possible

USING THE QIO DIRECTIVE

CD Write another message synchronously, check for errors, and
then exit.

The DIRERR and IOERR macros generate
you. DIRERR generates a message
format.

DIRECTIVE ERROR
<user message>
DSW = <value> (in signed decimal)

error messages for
with the following

IOERR generates a message of the following format:

I/O ERROR
<user message>
I/O STATUS BLOCK = <hb>,<lb>/<2nd word>
(in signed decimal)

hb is the high byte of the first word.
lb is the low byte of the first word.

Each of these macros then causes the task to exit. Later
in this module you will learn how to generate such
messages yourself.

117

1
2
3
4
:5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

0 26
27
28
29

A 30 _ 31

8:32
33
34 o 35

836 CD 37
38
39
40
41
42
43

CD[:~
47
48

;+

USING THE QIO DIRECTIVE

.TITLE

.IDENT

.ENABL

(HOAST
10:1.1
l.C Enable lower case

FILE OIOAST.MAC
;

This pro~ram issues a 010 and then suspends itself.
When the 1/0 operation completes, an AST routine is
invoked which resumes the task.

; Assemble and task-build instructions:

MACRO/LIST LB:[l,lJPROGMACS/l.IBRARY,dev:CufdlQIOASR
LINK/MAP OIOAST,LB:[l,lJPROGSUBS/l.IBRARY

Install and run instructions: Install the task so that
the Resume directive works properly.

;-

Iosa:
MES:
LEN
MES1:

LENl
MES3:

LEN3

START:

; Main
ERR1:
ERRIA:
ERR2:
ERR3:
ERR3A:

.MCALL

.MCALL

.MCALL

.BLKW

.ASCII
:::

.ASCII

.ASCII
:::

.ASCII

.ASCII
:::

.EVEN
OIOSC

BCS
SPNDSS
BCS
OIOW$C

BCS
TSTB
BLT
EXIT$S

EXITS,OIOC,OIOWSC,ASTX$S ; System
SPND$S,RSUM$C macros
IOERR,DIRERR ; SUPplied macros
2 ; lID status block
I'OIOAST' IS STARTINGI ; Startup messa~e
.-MES
I'QIOAST' HAS BEEN RESUMED AND WILLI
I NOW EXITI ; Resumed messa~e
.-MESl
IASTRT IS EXECUTING AND WILL NOWI
I RESUME OIOASTI ; AST messa~e
.-MES3

IO.WVB,5,1"IOSB,ASTRT,(MES,LEN,40>
Issue write

ERR1 ; Branch on dir error
; Suspend self

ERR2 ; Branch on dir error
IO.WVB,5,1"IOSB,,(MES1,LEN1,40> ; Issue

write
ERR3 Brarlch on di T' err'or
IOSB Check foT' 1/0 er'reJr
ERR3A Branch on 1/0 €-~rrOT'

; E}·d t
code error handlin~, usinS supplied macros

DIRERR (ERROR ON 1ST ala BY OIOAST>
rOERR trOSB,(ERROR ON 1ST oro BY OIOAST>
DIRERR (ERROR ON SUSPEND>
DIRERR (ERROR ON 2ND oro BY OIOAST>
IOERR tIOSB,(ERROR ON 2ND ala BY OIOAST>

Example 3-3 Asynchronous I/O Using an AST for Synchronization
(Sheet 1 of 2)

118

49
50
51
52

[

53

Ct ;;
C) 56

57
58
59
60

tt 61
62

[

63 ct 64
65
66
67

~[~~
70
71

;

USING THE QIO DIRECTIVE

AST service routine - entered when the 1st QIO bw the
main code completes

ASTRT: TSTB 10SB ; check 1/0 status on
; 1/0 operation

BLT ERR1A ; Branch on 1/0 error
QIOWSC IO.WVB,5,1"IOSB,,(MES3,LEN3,40>; Issue

BCS
TSTB
BLT
RSUMSC
BCS
TST

ASTXSS

ERR4
IOSB
ERR4A
QIOAST
ERRS
(SP>+

; AST error handlin~ code

write
Branch on dir error
Check for 110 error
Branch on 110 error
Resume task
Branch on dir error
Pop AST specific word
off stack

Leave AST state and
return to main code

ERR4: DIRERR (ERROR ON QIO BY AST ROUTINE>
ERR4A: IOERR tIOSB,(ERROR ON QIO BY AST ROUTINE>
ERRS: DIRERR <ERROR ON RESUME BY AST ROUTINE>

.END START

Run Session

>INSTALL QIOAST
>RUN QIOAST
>

'QIOAST' IS STARTING
AST IS EXECUTING AND WILL NOW RESUME QIOAST
'QIOAST' HAS BEEN RESUMED

Example 3-3 Asynchronous I/O Using an AST for Synchronization
(Sheet 2 of 2)

119

USING THE QIO DIRECTIVE

TERMINAL I/O

Device Specific Functions

Some device-specific function codes are listed in Table 3-3.
Table 2-3 in section 2.3 (on the QIO macro) of the RSX-I1M/M-PLUS
I/O Drivers Reference Manual lists all of the available special
functions for the full-duplex terminal driver. As noted, some of
these functions are SYSGEN options.

Many of the device-specific functions are selected using
subfunction bits. These bits may be ORed with standard or
device-specific function codes to produce special functions.
Table 2-4 in Chapter 2 of the I/O Driver's Reference Manual lists
the various combinations which are possible. For example, TF.TMO
(read with timeout) ORed with a read function (IO.RLB, IO.RPR,
IO.RNE, etc.) terminates the read if the specified time period
goes by between keystrokes. Notice that some device-specific
functions, such as Read No Echo (IO.RNE), have equivalents using
subfunction bits (IO.RLB!TF.RNE). Read After Prompt (IO.RPR) on
the other hand, has no equivalent using subfunction bits.

NOTE
When you OR subfunction bits with read or
write functions, use Read Logical Block or
Write Logical Block, not the Read Virtual
Block or Write Virtual Block. If the
Executive converts a virtual block operation
to a logical block operation, any subfunction
bit settings are lost.

For additional information on the device-specific function
codes, see section 2.3.2 on Device-Specific Functions in the
RSX-11M/M-PLUS I/O Drivers Reference Manual. Examples of the use
of Read After Prompt, Read No Echo, and Read With Timeout are
included here.

I/O Status Block and Terminating Characters

As for other I/O functions, the low order byte of the first
word of the I/O status block contains the I/O status byte,
indicating the success or failure of the I/O operation. Also, the
second word contains the count of characters actually transferred.
For reads from a terminal, the high order byte of the first word
of the I/O status block contains the terminating character in
ASCII «RET), CTRL/C, etc.) for successful reads.

120

USING THE QIO DIRECTIVE

Normally, CTRL/Z is treated as an error. The I/O status byte
is set to IE.EOF (-10.) and the character count contains the count
of characters read before the CTRL/Z. Example 3-4 shows how
CTRL/Z can be specially handled in a program. Two special
function codes, IO.RST and IO.RTT, allow reads to be successfully
terminated by nonstandard terminating characters. The first
allows any non-alphanumeric character to terminate input; the
second allows the user to specify which character or characters
should terminate the read.

121

USING THE QIO DIRECTIVE

Table 3-3 Some Special Terminal Function Codes

122

USING THE QIO DIRECTIVE

Read After Prompt

The Read After Prompt function allows the combination of a
write of prompting text followed by a read in a single QIO
request. System overhead is lower because only one QIO directive
is processed. In addition, there is no window during which a
response to the prompt may be ignored. Such a window may occur if
separate QIOs are used to write and read, and if there is a delay
between the write of the prompt and the read. The I/O parameter
list contains six parameters, three for the read, and three for
the write. The following notes are keyed to Example 3-4.

o

o

e

o

Placing the buffer with "You typed:" just ahead of the
buffer for the input text allows the use of a single QIO
to write out the complete line of output text. FINMES is
the starting add res of the output text and length is FLEN
+ n, where n is the number of characters typed in.

We assign the symbol IOLEN to the second word of the IOSB.
This allows you to reference that word with IOLEN, instead
of using IOSTAT + 2.

QIO for Read After Prompt. The function code is IO.RPR.
The first three parameters in the I/O Parameter List are
for the read, the last three are for the write. The write
is performed first, followed by the read. The 44(8) for
the vertical format control causes the prompt text to
appear on the next line, followed immediately on the same
line by the prompt for the read.

We are going to display the message typed, preceded by the
text "you typed in." By placing the input buffer BUFF
immediately after the preceding text, we now have our
output text as one string beginning at FINMES. The total
length of the message to be displayed is the length of the
preceding text plus the number of characters typed in.

C» Use a normal QIO with Write Virtual Block to display the
output.

C) If the operator types a CTRL/Z, an error status is
returned. In this case, simply exit normally. Therefore,
you must check for this condition and handle it specially.

123

2
3
4
c·
... J

6

;+

,USING THE QIO DIRECTIVE

.TITLE PROMPT

.IDENT lOll

.ENABl l.C

File PROMPT.MAC

Enable lower case

7 This task prompts the user for an input strin~ and
8 then echos the string to the terminal. It repeats this
9 process until the user twpes a CTRl./Z.

10
11 Assemble and task-build instructions:
1.2
13 MACRO/l.IST LB:Cl,lJPROGMACS/lIBRARY,dev:CuicJPROMPT
14 LINK/MAP PROMPT,LB:[l,lJPROGSUBS/LIBRARY
15
16
17
18
19
20

;
PF~OM :
PLEN

.MCALL

.MCALL

.ASCII

EXITSS,QIOWSS
DIRERI~, IOERR

; Swstem macros
; SUPplied macros

IPlease t~pe an~thing: I ;Prompt
.-PROM ; Len~th of prompt

O[;~
2:3
24

FINMES: .ASCII
Fl.EN =:

BUFF: • Bl.KB
.EVEN

IOSTAT: .BLI(W

IYolJ t~ped: I
.-FINMES
80.

; Echo f~refix
; Len~th of above
; Buffer

0
:~6
27
28

e 29
:30
31
32
~53
34

0
3~)

~56

~57

0 ~58

39
40
41
42
43
44
45
46
47

O[:~
50
51
5~~

!5~5

54
~5~5

~56

; Move to word boundarw
:I. ; 1/0 statlJs block for

; QIOs.
IOlEN: • BlKW 1 ; 2nd word of 1/0 statlJs

; block
;
START: QIOWSS tIO.RPR,t5,t1"#IOSTAT,,<tBUFF,t80.,,tPROM,tPLEN,t44>

BCS
TSTB
BlT
ADD

QIOWSS

BCS
TSTB
BLT

DERI~
IOSTAT
IERI~
tFLEN,IOLEN

issue QIO for Read
; Afte r P Y'omf',t

Branch on dir error
Check 1/0 statlJs
Branch on 1/0 error
Add length of prefix
to that of entered text

tIO.WVB,t5,t1"tIOSTAT,,<tFINMES,IOLEN,t40>

CERR
IOSTAT
OERR
START

Write the new messe~e
Branch on dir error
Check for 1/0 error
Branch on 1/0 error
start over a~ain

; Errors come here
DERR: DIRERR <Error in QIO to READ AFTER PROMPT>

CERR:
IEf',R:

JE~~R :

OERR:

[rIRE~~R

eMPB
ENE

; Use macro to tell of
<Error in QIO to WRITE>
tIE.EOF,IOSTAT
.. JERf"

dir error
; Check for "'z
; Branch if not,
; was 1/0 error

EXITSS ; Normal exit
IOERR tIOSTAT,(Error in READ AFTER PROMPT>

Use macro to

IOERR
.END

tIOSTAT,(Error in WRITE>
START

tell of
1/0 error

Example 3-4 Prompting for Input (Sheet 1 of 2)

124

USING THE QIO DIRECTIVE

Run Session

>RUN PROMPT
Please twpe an~thinS: sJkshJHGJHGHFY134435
You t~ped: sJkshJHGJHGHFY134435
Please t~pe anwthinS: hello there
You t~ped: hello there
Please twpe an~thinS: -Z
>

Example 3-4 Prompting for Input (Sheet 2 of 2)

125

USING THE QIO DIRECTIVE

Read No Echo

Read No Echo is used to override the default of echoing each
,character as it is typed. This is used for passwords and other
private information. Example 3-S uses this function. The
following notes are keyed to the example.

ct The .NLIST SEX assembler directive instructs the assembler
not to list binary code which takes up more than one line.
This saves room in the listing for all the ASCII text.
Return to listing binary extensions for the code by using
a .LIST SEX assembler directive.

tt As in the previous example, we display the text typed in,
preceded by our own message. Since the Read No Echo
doesn't echo any characters back and thus doesn't move the
cursor on the screen at all, precede the text with a
carriage return (IS(8» to get the cursor back to the
start of the line. If this is not done, the NO LONGER A
SECRET WORD message will begin away from the left hand
margin, below the: in "SECRET WORD".

t) Write prompting text, then leave cursor at that position
for input (since 44 (8), is used for vertical format
control).

ct Read No Echo QIO. Standard read parameters except for the
function code.

C» As in the previous example, add the length of the
preceding text to the text typed in to determine the total
length of the output message. Here, however, you do the
calculation in a register instead of in the lOSS. Since
the Read No Echo doesn't echo any characters back, it
doesn't move the cursor on the screen. Therefore, precede
the text with a carriage return (lS(8» to move the cursor
back to the start of the line. Without it, the "NO LONGER
A SECRET WORD" message will begin away from the margin,
below and after "SECRET WORD: "

You can combine the write of the prompt and the read into one
QIO directive call using a Read After Prompt with the Read No Echo
subfunction bit (IO.RPR!TF.RNE). If you want, imbed the carriage
control characters in the message.

126

l.
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0
16
17
18
19
20

• [21 :~2

23
24
25
26
27
28

e
2(7
30
31
32
33
34

0 35
36
37
38

o [!6
41
42
43
44
45
46
47
48
49
50
~51

52
53
54

;+

USING THE QIO DIRECTIVE

.TITLE

.IDENT

.ENABL

NOECHO
/01/
LC Enable lower case

FILE NOECHO.MAC

; This task prompts for input, reads it without echo,
d i SF' 1 ays the i nput te~·'"t and e~·~ i ts •

Assemble and task-build instructions:

;-

MES:
L.EN
BUFF:

BL.EN
BUF:

IOSB:
LENT:

MACRO/LIST LB:[i,lJPROGMACS/LIBRARY,dev:[uicJNOECHO
LINK/MAP NOECHO,PROGSUBS/LIBRARY

.MCALL

.MCALL

.NLIST

.ASCII
=
.ASCII

_.
• BLKB
.EVEN
.WORII
.WORD

EXIT$S,QIOW$C,QIOW$S ; System macros
DIRERR,IOERR ; SUPplied macros
BEX Don't list binary

eNtensions
/SECRET WORD: / Prompt messege
.-MES Length of prompt
<15>/NO L.ONGER A SECRET WORD: /

Preceding remark
.-BUFF Length of Remark
80 • Input buffer

; Word align for IOSB
0 IOSB is broken into
0 two parts for

convenience.
.LIST BEX ; List binary eNtensions

START: aIOW$C IO.WVB,5,1"IOSB,,<MES,LEN,44> ; Write

BCS
TSTB
BLT
aIOW$C
BCS
TSTD
BLT
MOV
ADI!
QIOW$S

BCS
lSTB
BL.T

DERRl Branch on dir error
IOSB Check for I/O error
IERRl ; Branch on I/O error
IO.RNE,5,1"IOSB,,<BUF,80.> ; Read Noecho
DERR2 Branch on dir error
IOSB Check for I/O error
IERR2 ; Branch on I/O error
LENT,RO Get length of input
tBLEN,RO Add length of remark
tIO.WVB,t5,il."tIOSB,,<tBUFF,RO,t40>

DERR3
IOSB
IE/~R3

Wri te out te~·,t
Branch on dir error
Check for I/O error
Branch on I/O error

EXIT~;S

Errors come here
E}·dt

JERRi: IOERR iIOSB,<Error on
IERR2:
IERI~3 :
DERR1:
I1ERR2:
DERR3:

IOERR
IOERR
DIRERR
DIRERR
DIRERR
.END

:JIOSB,<Error on
tIOSB,<Error on
<Error in aID on
<Error in aIO on
<Error in aID on
START

1st WRITE>
READ>
2nd WRITE>
1st WRITE>
READ>
2nd WRITE>

Display I/O
message and
eHit
Display dir

message and
e~·dt

Example 3-5 Read No Echo (Sheet 1 of 2)

127

USING THE QIO DIRECTIVE

>RUN NOECHO
SECI~E:T WORD:
NO LONGER A SECRET WORD: ADD

Example 3-5 Read No Echo (Sheet 2 of 2)

Read with Timeout

Example 3-6 is a repeat of Example 3-1, only with a timeout
on the read. The following notes are keyed to the example.

ct To invoke the timeout mechanism, TF.TMO is ORed with the
read function (IO.RLB). You must use Read Logical Block
here, because any subfunction bits are stripped off when a
Read Virtual Block is translated to a Read Logical Block
function. In addition, the third parameter in the I/O
parameter list specifies the length of the timeout in 10
second intervals. This timeout occurs if that amount of
time passes between successive keystrokes. If a timeout
occurs, input is terminated, but no error is reported.
Instead, the success code +2 is returned rather than the
standard +1.

tt On the Run Session - In the first run, the QIO timed out
after KJHKJjjj. In the second run, the QIO was terminated
with a carriage return before it timed out.

To handle the timeout specially, just check the I/O status
byte for a value of +2 (IS.TMO). Another alternative for placing
a time limit is to use a Mark Time directive (MRKT$). The timeout
with a Mark Time is for the entire input, rather than for the next
keystroke.

128

1
2

;+

6

USING THE QIO DIRECTIVE

.TITLE

.IDENT

.ENABL

CHOTIM
lOll
LC

FILE GIOTIM.MAC

Enable lower case

7 This task reads a line of text from the terminal,
8 converts all upper case characters to lower case, and
9 prints the converted messa.e back at the terminal. It

10 uses swnchronous GIOs, with a timeout on the read.
11
:L2 ;.-
1 :~
14
15
:1.6
17
18
19
20
21
22
23 o 24
2~5

26
27
28
29
30
:·H
32
3~5
34
35
36
37
38
39
40
4:L
42
43
44
45
46
47

.MCALL GIOWSC,GIOWSS,EXITSS; Swstem macros

IOSB: .BLKW 2 1/0 StatlJs Block
Text buffer' BUFF: .BLI<B 80.

START: CLR R5
R4

Error Count

LOOF':

CLR Error indicator - 0
means directive error,
(DSW in R3), ne~ means
1/0 error (1/0 status

; in R3)
GIOWSC IO.RLB!TF.TMO,5,1"IOSB,,(BUFF,80.,1>

BCS
TSTB
BLT
MOV

CLR

eMF'B

ERRl
IOSB
ERR1('~

IOSB+2,RO

Rl

BUFF(Rl),i"A

BLT NEXT
CMF'B BUFF(Rl),t"Z

Issue read
Branch on dir error
Check for 1/0 error
Branch on 1/0 error
Get count of characters

typed in
Offset into buffer to
character

Check for upper case
ASCI I character'

Branch if below ranSe

BGT NEXT ; Branch if above range
It is upper case, so move to register R2 and convert

NEXT:

MOVB BUFF(Rl),R2 Move to re~ister
ADD i32.,R2 Convert to lower case
MOVB R2,BUFF(Rl) Replace in messaSe
INC R1 Increment offset into

SOB
buffer to next char

Decrement count of
; characters left

GIOW$S iIO.WVB,i5,il"iIOSB,,(iBUFF,IOSB+2,i40>
BCS ERR2 ; Branch on dir error

Example 3-6 Read With Timeout (Sheet 1 of 2)

129

USING THE QIO DIRECTIVE

48 TSTB IOSB
49 BLT ERR2A
50 EXIT$S
Sl
52 Error code
53 ;
54 ERR2A: INC
55 ERR1A: INC
56 MOVB
57 DEC
58
59 lOT
60 ERR2: INC
61 ERR1: INC
62 MOV
63
64 lOT
65 .END

~~un Session

O
k,jhkJJJJ [

>I~UN aIOTIM
K,JHI(J,j,j,j

>RUN CHOTIM
~~~afhk~f~ur<RET> 
,.1,J,Jafhk,JflUr 

R5 
R5 
IOSB,R3 
R4 

R5 
R5 
$DSW,R3 

START 

Check for lID error 
Branch on I/O eT'ror 

R5=2, 2nd aID 
R5=1, 1st aID 
lID error. lID status to R4. 
Nesative value in R4 

means lID error 
Trap and displa~ resisters 
R5=2, 2nd aID 
R5=1, 1st ala 
Directive error. I:rSW 
to R3, leave R4=O. 

Trap and disF'la~ resisters 

Example 3-6 Read Wi th Timeout (Sheet 2 of 2) 

130 



USING THE QIO DIRECTIVE 

Terminal-Independent Cursor Control 

Terminal-independent cursor control is a SYSGEN option, 
provided only if selected. If it is selected, certain I/O 
requests are automatically converted by the terminal driver for 
the specific device for which the I/O request is made. This is 
typically done with escape sequences used for positioning the 
cursor. This allows a task to move the cursor to any position on 
the screen and then write a message. 

This 
specific 
advantage 
the same 
VT-100's, 

can also of course be done by imbedding the terminal 
escape sequences into the write buffer. However, the 
of using terminal-independent cursor control, is that 

program will work at different terminals (VT-52's and 
for example), without any need for modification. 

All you need to do is place the proper value in the vertical 
forms control word of the I/O parameter list. If the high order 
byte is non-zero, then the word is interpreted as a cursor 
position. The high order byte is the line number, and the low 
order byte is the column number. Home position, the upper left 
corner of the screen, is defined as line 1, column 1. 

To start the display at line 10., column 25., place a 10. in 
the high order byte and a 25. in the low order byte. An easy way 
to do this is to let the assembler convert 10.*256.!25. for you. 
In general, X*256.!Y corresponds to position X,Y on the screen. 
In addition, if bit 15 (the most significant bit in the line 
number byte) is set, the screen is cleared before the cursor is 
moved. 

Example 3-7 demonstrates the use of terminal-independent 
cursor control. The following notes are keyed to the example. 

C» Parameters defined with symbols so that they can easily be 
changed. 

«» Use the $ form of the mark time directive to allow reuse 
of a single DPB. 

t) Issue a mark time directive for one minute to set event 
flag 3, allowing the task to exit after one minute. 

131 



USING THE QIO DIRECTIVE 

ct Modify the DPB and use it over and over again, at line 34, 
to mark time for Z seconds before updating the display. 
The second mark time uses event flag 2, to avoid 
conflicts. This approach saves task space since the DPB 
is used ag a in. 

C) Issue the Z second mark time directive. We will wait for 
event flag 2 at line ~0. When one second goes by and the 
flag is set, check for one minute and update the display 
again if it hasn't yet gone by. 

e» Get the time and date parameters in binary. 

o 

o 

o 

Use the System Library Route $DAT and $TIM to 
date and time for display. See Chapter 
IAS/RSX-Il System Library Routine Reference 
documentation on these routines. 

format the 
6 0 f the 
Manual for 

Calculate the length of the output message by subtracting 
the starting position in the buffer from the position 
after the last character in the buffer. 

Issue the write. X*256!Y places the cursor before the 
write at line X, column Y. The TF.RCU subfunction bit 
instructs the terminal driver to save the cursor position 
before moving it" and then to restore it after wri ting the 
message. This allows you to continue typing in commands 
while the task runs. 

CD Wait for z seconds to go by. The mark time directive will 
cause event flag 2 to be set. 

ct Check event flag 3. If it is set, the one minute is up 
and you should exit. Use Clear Event Flag instead of Read 
All Event Flags so that the DSW will indicate whether the 
flag was clear or set before you cleared it. With Read 
All Event Flags, the settings of flags 1-16 are returned 
in a word in a buffer. You would then need to test the 
specific bit to check the flag setting, which is more 
work. 

G) On the Run Session - The display actually will appear at 
line X, column Y on the screen, and is updated every z 
seconds. 

132 



1 

3 
4 
5 
I.> 

;+ 

USING THE QIO DIRECTIVE 

.TITLE 

.IDENT 

.ENABL. 

DATTIM 
I()ll 
LC 

FILE DATTIM.MAC 

Enable lower case 

7 This task places the date and the time at line X, column Y and 
8 then updates the displa~ ever~ Z seconds for 1 minute. 
9 

10 Assemble and Link instructions: 
:1.1 
12 MACRO/LIST LB:C1,lJPROGMACS/LIBRARY,dev:CufdJDATTIM 
13 
l4 
l ~) 

16 
l7 
18 

[

19 o 20 
21 

0 
0 

2~5 

26 
27 
28 
29 
~50 

[

31 o 32 
A 33 
V 34 

35 o 36 
:37 
38 
39 
40 o 41 
42 
4~5 

44 
4) 45 

0 46 
47 
48 

G) 
49 
50 
51 

;-

Dc~ta 

LINK/MAP DATTIM,LB:C1,lJPROGSUBS/LIBRARY 

.MCALL 
• MCALI ... 
.MCALL 

X::::5. 
Y::::32. 
Z::::1 + 

QIOWSS,MRKTS,WTSESC,GTIMSC ; External s~stem macros 
EXITSS,CL..EFSC,DIRS ; 
DIRERR,IOERR External supplied macros 

I ... i n(o? numb(·~ T' 

CO lUlTln numbf? T' 

How often to update (in seconds) 

TIMBUF: .BLKW 
TIMMSG: .BL..KB 
IOSB: .BLKW 
MI~KTM: MF~KTS 

8. 
20. 
2 
3 y 1 y;-3 

Buffer for return of $~stem time 
Buffer for creatinS output messaSe 
1/0 status block 
DPB for mark time directive 

; CodE~ 

START: DIRS iMRKTM Set UP to exit after 1 minute, 
BCS ERRl ; Branch on directive error 

; Set UP for the other mark time directive 
MOV t2,MRKTM+M.KTEF ChanSe event flaS * 
MOV tZ,MRKTM+M.KTMG Chan~e time maSnitude 
MOV t2,MRKTM+M.KTUN Chan~e time units 

AGAIN: DIRS iMRKTM Schedule next update 
BCS ERR2 Branch on directive error 
GTIMSC TIMBUF Get swstem time and date 
BCS ERR3 Branch on directive error 
MOV tTIMMSG,RO Set UP for call to SDAT 
MOV tTIMEUF,Rl 
CALL SDAT Convert date for displa~ 
MOVE I' ,(RO)+ Insert space into output messaSe 
MOV t3,R2 Set UP for call to STIM, ask 

for HH:MM:SS format 
CALL STIM Convert time for displa~ 
SUB tTIMMSG,RO '; Compute character count 
QIOWSS IIO.WLB!TF.RCU,t5,tl"tIOSB,,<*TIMMSG,RO~.X*256.!Y> 
BCS ERR4D Branch on directive error 
TSTS 10SB Check for 1/0 error 
BLT ERR41 Branch on lID error 
WTSESC 2 Wait for mark time to expire 
BCS ERR5 Branch on directive error 

Example 3-7 Terminal-Independent Cursor Control (Sheet 1 of 2) 

133 



USING THE QIO DIRECTIVE 

CD 
52 Chec"'. for 1 minl.Jte gone b~ 
53 CI ... EF$C 3 Clear event flag to check setting 
54 BCS ERR6 Branch on directive error 
55 CMF' $DSW,,:JI:IS.CLR Check for flag al read!:, clear 
56 BEG AGAIN If still clear, minutf:~ not, UP ~et,,, 

57 update displi3~ a~~ain 

58 EXIT$S E}·dt if 1 minute i ~; UF' 

59 ; Error code 
60 ERR1: IIIRERR <ERROR ON MARK TIME FOR 1 MINUTE> 
61 ERR2: IIIRERF~ <EI~F~OF~ ON MARK TIME FOR 1 SECOND> 
62 ERR3: I1IRERR <ERROR ON GET TIME> 
63 ERR4D: I1IRERR <ERROR ON Wr~ITE> 
64 ERR4I: IOERR tIOSB,,<ERROR ON WRITE> 
65 ERR5: I1IRERR <ERROR ON WAIT FOR> 
66 ERR6: IIIRERR <ERF~Of~ ON CLEAR EVENT FLAG> 
67 .END STAf~T 

1:~lJn Session 

12-MAR-B2 11:12:54 
>RUN I1ATTIM DISF'LAY WILL START AT LINE 5, COLUMN 32 

Example 3-7 Terminal-Independent Cursor Control (Sheet 2 of 2) 

134 



USING THE QIO DIRECTIVE 

Formatting Output Data 

The subroutine $EDMSG in SYSLIB.OLB provides a generalized 
output formatting capability for easily creating display messages. 
It is useful if some of the data is generated at run time. This 
allows you to combine a number of functions available with 
individual conversion routines (such as $CBDMG) for converting a 
single binary word to an ASCII octal string for display. It 
includes all of the following functions. 

• Conversion of internal binary stored data to 

ASCII signed or unsigned octal 

ASCII signed or unsigned decimal 

ASCII alphanumeric characters 

• Conversion of time or date data into standard ASCII 
formats (hh:mm or dd-mmm-yy) 

• Formatting of converted characters for 
themselves or intermixed with other text. 

display, by 

For a complete discussion of the use of $EDMSG, see Chapter 5 
of the IAS/RSX-ll System Library Routine Reference Manual. 

To invoke $EDMSG, use the following procedure. 

1. Set up the output buffer, the format string, and the 
argument block. 

2. Set up the input parameters. 

R0 - starting address of output buffer 

R1 - starting address of format string 

R2 - starting address of argument block, containing 
the data to be converted 

3. Call $EDMSG. 

135 



USING THE QIO DIRECTIVE 

On return, the converted/formatted string is in the output 
buffer. The output parameters are: 

R0 - Address of next available byte in the output buffer 

Rl - Length (in bytes) of the output string 

R2 - Address of the next argument in the argument 
block. 

NOTE 
The output parameters make it possible to 
concatenate messages using multiple calls to 
$EDMSG. 

The output buffer is a buffer in which $EDMSG generates the 
output message. It is typically set up using the .BLKB or .BLKW 
assembler directive. The format string is set up using a 
combination of ASCII text and editing "directives." It must be in 
ASCIZ format, meaning that it is terminated by a 0(8). The 
editing "directives" are in one of three formats, as follows. 

%d - Means perform directive d once 

%nd - Means perform directive d n-times 

%Vd - Means perform directive d V-times, where V is an 
argument in the argument block. 

For example, if %0 means convert binary word to ASCII signed 
octal, %0 means convert the next word in the argument block to 
ASCII signed octal in the output buffer. %30 means convert the 
next three words to ASCII signed octal in the output buffer, 
separated by tabs. %VO means get the binary word in the argument 
block and convert that many words in the argument block to signed 
octal in the output buffer. 

Table 3-4 shows many of the editing directives available with 
$EDMSG. An example follows the table. 

136 



USING THE QIO DIRECTIVE 

Table 3-4 Sample Editing Directives for $EDMSG 

137 



USING THE QIO DIRECTIVE 

Example: 

FORMAT: .ASCIZ 
• EVEN 

OUTBUF: .BLKW 
DATA: .WORD 

.WORD 
ADRNAM: .ASCII 

• EVEN 

MOV 
MOV 
MOV 
CALL 

/%10$NAME IS %5A AND # IS %D/ 

80. 
ADRNAM 
234 
/BILLY/ 

#OUTBUF, R0 
#FORMAT, Rl 
#DATA, R2 
$EDMSG 

The resulting string in OUTBUF would display as: 

NAME IS BILLY AND # IS 156 

Explanation: 

%10S in the format string - Produces 10 spaces in the output 
buffer. 

NAME IS - Placed in the buffer as is. 

%5A - Get five bytes and convert to ASCII. Because the 
argument block is set up on a word-by-word basis, place the 
address of the ASCII characters (ADRNAM), instead of the 
ASCII characters themselves, in the argument block. 

AND # IS - Moved to the output buffer as is. 

%D - Get the next binary word in the argument 
convert it to signed decimal in the output block. 
converted to +156(10). 

block and 
234(8) is 

No decimal point is appended to decimal numbers unless you 
specify %D. (including the ".") in the format string. 

138 



USING THE QIO DIRECTIVE 

Three examples follow which demonstrate the use of the $EDMSG 
routine. 

Examples of Formatting Numeric Data 

Example 3-8 shows the use of $EDMSG for formatting numeric 
data. The following notes are keyed to the example. 

ct This is the argument block, which must be a set of 
contiguous words. 

o 

e 

o 

This example uses the $ form of the QIO directive. The 
length of the buffer to be written out will be filled in 
at run time. 

The output buffer starts at BUF and is 80. bytes long. 
This buffer should be long enough for at least the longest 
message that you might generate. 

The format string. Note that three words will be 
converted to signed decimal ASCII using $EDMSG. The 
.ASCIZ assembler directive assures that the format string 
ends with an octal 0. 

C» Set up input parameters for call to $EDMSG. The addends 
and the sum are already in the argument block. 

C) Invoke $EDMSG. The output string is returned at BUF. R1 
contains the count of characters in the output string. 

«a Move the count of characters to be written into the DPB of 
the QIO$ directive. 

C) Write the results out at the terminal. 

Normally, the addends might be placed in the format string if 
they are known at assembly time. Only data generated at run time 
would be converted using $EDMSG. 

139 



:I. 
2 
3 
4 
t::" 
.. I 

6 
7 
8 
9 

10 
II 
12 
13 
14 

o [i~ :1.7 
18 
19 o '20 
2:1. 

2~5 
24 

;+ 

USING THE QIO DIRECTIVE 

.TITLE: 

.IDENT 

.ENABL 

FILE NUMER.MAC 

NUMER 
lOll 
LC Enable lower case 

This task does a simple addition and outputs the 
results. It demonstrates the use of SEDMSG for 
formattin~ messa~es with numeric data 

; Data 
A: 

B: 
C: 
; 
OUT: 

IOSB: 
; 

.MCALL. 

.NLIST 

.WORD 

.WORD 

.BLKW 

QIOWS 

.BLKW 

QIOWS,EXITSS,DIRS 
BEX 

; System maCT'O~) 

Do not list binar~ 
eHtensions 

lO 

22 
1 

2 

1st addend and start 
of ar~ument block 

2nd addend 
Location for stJm 

; output messa~e 
; 1/0 status block 

; Set UP for SEDMSG 
; 
BUF: 
FMES: 

START: 

Set UP 

.BJ...KB 

.ASCIZ 

.LIST 

.EVEN 
MOV 

ADD 

80. Output buffer 
I%D. WAS ADDED TO %D., GIVING %D.I 

Format strinr:J 

BEX 

A,C 

B,C 

List binary eHtensions 
Move to word boundary 
Move 1st addend to sum 

word 
Add 2nd addend to form 

SUITt 
for c:~all to $EDMSG 

MOV 
MOV 
MOV 
CALL 

MOV 

DIRS 
BCS 
TSTB 
BLT 
EXITSS 

iBUF,RO 
iFMES,Rl 
:fI:A,R2 
SEDMSG 

Rl,OUT+Q.IOPL+2 

:JI:OUT 
ERR1D 
IOSB 
ERR1! 

Addr of output buffer 
Addr of format strin~ 
Addr of ar~ument block 
Make call, character 
count returned in Rl 
Place * of characters 
to write into IOPL 
in cno DPB 

Write output messaSe 
Branch on dir error 
Check for 1/0 error 
Branch on 1/0 error 

Example 3-8 Formatting Numeric Data (Sheet 1 of 2) 

140 



USING THE QIO DIRECTIVE 

50 ; Error handlins 
51 ERR1D: MOV SDSW,RO Move DSW for dis?la~ 
52 CLR R1 Indicate dir error, bw 
53 0 in Rl 
54 lOT 
55 ERR1I: MOVB IOSB,RO Move I/O status for 
56 dis?la~ 

57 MOV t-l,Rl Indicate I/O error bw 
58 -1 in RO 
59 lOT 
60 .END START 

Run Session 

>RUN NUMER 
8. WAS ADDED TO 18., GIVING 26. 
> 

Example 3-8 Formatting Numeric Data (Sheet 2 of 2) 

Example 3-9 shows how to use $EDMSG to generate error 
messages for display. This is a modification of Example 3-1 
(SYNCHQ.MAC). These error routines will typically replace trap 
routines which might be used early in the debugging stage of an 
application. The supplied macros DIRERR and IOERR have performed 
similar functions for you. The following notes are keyed to the 
example. 

~ This is the assembly time setup for $EDMSG. ARG is the 
start of the one word argument block. EBUFF is the start 
of the buffer in which error messages are to be built. 
FMTl, FMT1A, FMT2, FMT2A are the format strings for the 
various error messages. FMT1 and FMT2 are for directive 
errors; FMTIA and FMT2A are for I/O errors. The 
quotation marks are used as delimiters in two of the 
format strings because the strings contain slashes (/). 

tt The main code is the same as before. 
handling is different. 

Only the error 

t» For each error, move the address of the appropriate format 
string into R1 (for the call to $EDMSG). Then move the 
DSW into the argument block for directive errors, and the 
I/O status into the argument block for I/O errors. 
Because the I/O status is a byte, move it to R1 first and 
then to the argument block, in order to extend the sign 
bit to the high order byte (see lines 0064 and 0065). 
Then branch to the final setup for $EDMSG at EDAWT. 

141 



USING THE QIO DIRECTIVE 

C» Move the address of the output buffer to R0 and of the 
argument block to R2. Then call $EDMSG. 

ct Finally, write the formatted message out at the terminal 
and exit. 

C) On the Run Session - The first run shows a successful 
read. The second run shows an error caused by a AZ. 

142 



1 
2 
3 
4 
5 
6 

;+ 

USING THE QIO DIRECTIVE 

.TITLE SYNQER 

.IDENT /01/ 

.ENABL LC 

FILE SYNQER.MAC 

Enable lower case 

7 This task reads a line of text from the terminal, 
8 converts all upper case characters to lower case, and 
9 prints the converted messa~e back at the terminal. It 

10 uses swnchronous QIO. It also uses SEDMSG to ~enerate 
11 error messa~es 
12 
13 
14 
15 
16 
17 
18 
19 

;-

IOSB: 
BUFF: 

.MCALL GIOWSC,QIOWSS,EXITSS; Swstem macros 

.BLKW 

.BLKB 
2 
80. 

I/O Status Block 
Text buffer 

; Set UP for error messa~es usin~ SEDMSG 

o[·~~ 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
:33 
34 
35 
:36 
37 
38 
39 

ARG: 
EBUFF: 
FMT1: 
FMT1A: 
FMT2: 
FMT2A: 

.BLKW 

.BLKB 

.ASCIZ 

.ASCIZ 

.ASCIZ 

.ASCIZ 

.EVEN 

1 
80. 
/tlIRECTIVE 
'I/O ERROR 
/tlIRECTIVE 
'I/O ERROR 

Argument block 
; Output buffer 

ERROR ON READ, DSW = ZD/ 
ON READ, I/O STATUS = ZD' 
ERROR ON WRITE, DSW = ZDI 
ON WRITE, I/O STATUS = %D' 

o 40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
~jO 

51 
52 
53 
54 

LOOF': 

Here 

NEXT: 

BCS 
TSTB 
BLT 
MOV 
CLR 

CMF'B 

BLT 
eMF'B 
BGT 

if l.Jpper 
MOVB 
ADD 
MOVB 
INC 

SOB 

GIOWSS 

BCS 
TSTE 
BLT 
EXITSS 

ERRl 
IOSB 
ERR1A 
IOSB+2,RO 
Rl 

BUFF(Rl),t"A 

read 
Branch on dir error 
Check for 110 error 
Branch on liD e~ror 
Get character count 
Offset into buffer to 
character 

Check for upper case 
ASCII character 

Branch if below ran~e NEXT 
BUFF(r~j.) ,:I:"Z 
NEXT ; Branch if above range 
case, move to re~ister R2 and convert 
BUFF(Rl),R2 Move to re~ister 
:132. ,R2 
R2,BUFF(Rl) 
Rl 

RO,LOOF' 

Convert to lower case 
Replace in messa~e 
Increment offset into 
buffer to next char 

Decrement count of 
; chars left to check 

IIO.WVB,t5,tl"tIOSB,,(IBUFF,IOSB+2,t40> 

ERR2 
10SB 
ERR2A 

Wri t-e te~·ct. 

1 Branch on dir error 
Check for 1/0 error 
Branch on liD error 
E~·dt 

Example 3-9 Formatting Directive and I/O Error Messages 
(Sheet 1 of 2) 

143 



e 

55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71. 
72 
73 
74 
75 
76 
77 

E r r('1T' code 
; 
ERR1A: MOV 

BR 

ERR2A: MOV 

ERRGOA: MOVE 
MOV 

BR 

ERI~1 : MOV 

BR 

Er~R2 : MOV 

USING THE QIO DIRECTIVE 

ERRGOA 

tFMT2A,R1 

IOSBlIl:;:O 
RO,ARG 

EItAWT 

:tFMT1,Rl 

ERR GO 

:tFMT2,Rl 

Format strin~ for 
1st 1/0 error messaSe 

Branch to common lID 
error code 

Format strin~ for 2nd 
1/0 error messa~e 

Extend si~n on 1/0 
status byte by movin~ 
it throu~h RO to the 
a r~umemt block 

Branch to common edit 
and write cc)(.:ie 

Format strin~ for 1st 
directive error 

B rc1nch to common 
directive error code 

Format strin~ for 2nd 
directive error 

ERRGO: MOV t$DSW,ARG Move ItSW to ar~ block 
; Finish settin. UP for $EItMSG 

[

78 o 79 
80 

Cit 81 
a;! 

EItAWT: MOV tEBUFF"RO Output buffer address 
MOV iARG,R2 Ar~ument block address 
CALL $EItMSG ; Edit output strinS 
CUOW$S tIO. WVB, =1=5" +1" , , , <tEB.uFF, R1 , t40> ; Wri te 

; OIJt messa~e 
; E~·d. t, 83 

84 
EXIT$S 
.END START 

>RUN SYNQER 
SKJDSHKJKHkJhkJhkJhkyutduYeJherwerJwl12 
skJdshkJkhkJhkJhkJhkyutduYeJherwerJwl12 
>I~UN SYNQER 
dhfiooiJKLHJGHJGJHG~Z 

lID ERROR ON READ, lID STATUS = -10 

Example 3-9 Formatting Directive and I/O Error Messages 
(Sheet 2 of 2) 

144 



USING THE QIO DIRECTIVE 

Formatting ASCII Data 

Example 3-9 demonstrates the use of $EDMSG for formatting 
ASCII data. The only real difference between formatting ASCII 
data as compared to numeric data is that the argument block 
contains a pointer to the ASCII characters, rather than to the 
ASCII data itself. The following notes are keyed to the example. 

ct The argument block contains four words. Only the address 
of the number to be typed is known at assembly time. The 
other values will be filled in at run time. In the format 
string, we are using %VA twice. The V tells $EDMSG to use 
the next word in the argum~nt block as the number of times 
to perform the directive A. The directive A means move an 
ASCII character to the output buffer. This allows you to 
generate messages of different lengths at run time using 
the same format string. 

C» An alternative to using TSTB is to use a CMPB instruction. 
IS.SUC is a global symbol equal to +1. 

t» The number typed is in ASCII. 
binary before dividing by two. 

We need to convert to 

o 

o 
o 

o 

Come here if the number is even. Place the address of the 
message and its length into the argument block. Then 
branch to the common code to generate the message. 

This is the same as in note 4, but for an odd number. 

Move the number of digits in the number entered by the 
operator to the argument block; so you display that many 
digits. 

Now set up for $EDMSG, format the output message, write 
it, and exit. 

Now do the tests/exercises for this module in the 
Tests/Exercises book. They are all lab problems. Check your 
answers against the solutions provided, either in that book or 
on-line files. 

If you think that you have mastered the material, ask your 
course administrator to record your progress in your Personal 
Progress Plotter. You will then be ready to begin a new module. 

If you think that you have not yet mastered the material, 
return to this module for further study. 

145 



USING THE QIO DIRECTIVE 

4 vi-

• TITI ... E 
.IDENT 
.ENABl. 

FORMAT 
lOti 
LC 

S FILE FORMAT.MAC 
6 

Enable lower case 

7 This task asks the user for an inteser. It then 
8 decides whether the value is even or odd, and prints 
9 an appropriate messaSe. It demonstrates the use of 

10 SEDMSG for ASCII data 
11. 
12 Assemble and task-build instructions: 
13 
14 MACRO/LIST l.B:[1,1JPROGMACS/l.IBRARY,dev:[ufdJFORMAT 
15 LINK/MAP FORMAT,l.B:[1,lJPROGSUBS/l.IBRARY 
16 ; .o~ 

17 .MCALL EXITSS,QIOWSC,QIOWSS; S~stem macros 
18 • MCALl. DIRERR,IOERR ; SUPplied macros 
19 
20 
21 

26 
27 
28 
29 
30 
31 

:'5:3 
:34 
3!5 
36 o :37 
38 
:39 
40 
4:1. 
42 
4~5 

44 
4~.:S 

·46 
47 
48 
49 o ~5() 

MES: .ASCII IINPUT A DECIMAL INTEGER BETWEEN 1 AND 99991 
Prompt te~d, 

LEN _0 .-MES l.€·msth of promF,t te~·~t 

;EVEN 
NUM: + BU<B 4 Buffer feH' ASCII :fI: input 

.EVEN 
IOSB: • WOF~D () 1/0 Status Block 
NUMB: .WORD () 2nd word of liD Status 

Blc)(~k - for retuT'rt of 
t of chare:1cters read 

; Setup for SEDMSG 
ARGBLK: 
L..NUM: • WORD () Count of characters 

in numb(~r 
ANUM: • WORD 
LWDRD: + WOFUI 

AWOI~D: • WORD 

BUF: 
OUT: 
MESE: 
LMEal::: 
i'1ESO: 
LMESO 

; 
ST;')I~T: 

.BLKB 

.ASCIZ 

.ASCII 
::::. ····MESE 
.ASCII 
::::.-MESO 
.EVEN 

(~IOWSC 

BCS 
CMPB 
BNE 
QIOWSC 
BCS 
TSTB 
BL.T 

NUM 
() 

o 

Pointer to number in ASCII 
Count of characters 

in ODD CH' EVEN 
Pointer to ODD or EVEN 

in ASCII 
80. Output buffer 
I%NTHE NUMBER %VA is %VA.I ; Format strins 
/EVENI ASCII text for EVEN 

10DDI 
Lensth of message 
ASCII text for ODD 
Length of messaSe 

IO.WVBv5,lv,IOSB,,<MES,LEN,4(» ; Write 
prompt text 

ERR1D Branch on dir error 
iIS.SUC,IOSB Check liD Status 
ERR1I ; Branch on liD error 
IO.RVBv5v1"IOSBv,<NUM,4) ; Read input 
ERR2D Branch on dir error 
IOSB Check on I/O error 
ERR2I Branch on liD error 

Example 3-10 Fo~matting ASCII Data (Sheet 1 of 2) 

146 



USING THE QIO DIRECTIVE 

A[ ~56 
V !:5"7 

~5B 
!:59 

MOV tNUM,RO ; Set UP to convert 
; dec ASCII to binar~ 

CALL tCDTB ; Convert, result in Rl 

60 
6:1. 
62 
63 
64 

Set UP for divide. Dividend in RO,Rl combined 
CLR RO Clear hi~h order 16 bits 
DIV t2,RO Divide, Quotient in RO, 

Rb,:JI:O 
ODD 

r'emaind€~r' in I~:I. 

o[ ~~ 
. 67 

6B 
69 

CMP 
BNE 
MOV 

MOV 

BR 
MOV 

:/l:L~1ESE, L.WO~(D 

:J1:MESE v AWCHUt 

CONT 
:fJ:LMESO,L.WORD 

Chf?ck T'ema i ndf~ T' 

Bp<:mch if not 0 
Move length of EVEN 
into argument block 

Move pointer to EVEN 
into argument block 

Branch to common code 
Move length of ODD 
into apgument block 

Move pointer to ODD 
into ar~ument block 

Move I of characters 

ODD: 

[ 

?O 

O 7:1. 
"72 
7~5 

74 CONT: 

MOV :fJ:MESO, AWOF\[t 

MOV NUMB,L.NUM 

0 

7~5 

76 
77 
7B 
79 
BO 
B:l 
82 
B3 
B4 
01::-
\.I,) 

86 
B7 
BB 
0<1 
90 
9:L 
92 
93 

, Error' 
EI:~I:~:I. 1:1: 
EI:~I:~:L I: 
ERR:?D: 
EF~F~21 : 
I::J~R3D : 
EI:~I:~31 : 

>1i:UN FORMAT 

:lJ:BUF,Ii:O 
:/l:OUTv R:I. 
:/J:~l~(GBL..I< v F\2 

in number to arg block 
Set UP for call to SEDMSG MOV 

MClV 
MOV 
CALL 
CHOW'S 

SEDMSG ; Edit output message 
:fJ:IO.WVBvI5vl:l."IIOSB,,<IBUF,Rl,140> 

BCS EJi:Ii::3D 
CMPB IIS.SUC,IOSB 
BNE EI~~(::~ I 
EXIT~;S 

hand I in!~t 

Write output messa~e 
Branch on dir error 
Check for I/O error 
Branch on I/O error 
I::N:t.t 

DIRERR (ERROR ON WRITE OF PROMPT TEXT> 
IOERR IIOSB,<ERROR ON WRITE OF PROMPT TEXT> 
DIRERR <ERROR ON READ> 
IOERR tIOSB,<ERROR ON READ> 
DIRERR <ERROR OUTPUTTING ANSWER> 
IClERR tIOSB,<ERROR OUTPUTTING ANSWER> 
• END !3TART 

INPUT A DECIMAL INTEGER BETWEEN 1 AND 9999 
600 

THE NUMBER 600 IS EVEN. 
>RUN FORMAT 
INPUT A DECIMAL INTEGER BETWEEN 1 AND 9999 
2349 

THE NUMBER 2349 IS ODD. 
:::. 

Example 3-10 Formatting ASCII Data (Sheet 2 of 2) 

147 





USING DIRECTIVES FOR 
INTERT ASK COMMUNICATION 





USING DIRECTIVES FOR INTERTASK COMMUNICATION 

INTRODUCTION 
The RSX-IIM program development features allow 

development of programs; the multitasking feature 
modular approach to applications. 

modular 
allows a 

A system of multiple tasks may require one or more of the 
following services provided by executive directives under RSX-IIM. 

• First task requests that the second task be run. 

• First task is notified of completion of the second task 
operation. 

• Tasks pass data to each other. 

This module explains how to use system directives for this 
type of coordination between tasks. 

1. To use directives which control task 
synchronize cooperating tasks 

OBJECTIVES 
execution to 

2. To use the send/receive directives to pass data between 
tasks. 

3. To write tasks which spawn subtasks using parent/offspring 
directives. 

RESOURCE 

• RSX-lIM/M-PLUS Executive Reference Manual, Chapters 2 and 
4, plus specific directives in Chapter 5 

151 





USING DIRECTIVES FOR INTERTASK COMMUNICATION 

USING TASK CONTROL DIRECTIVES AND EVENT FLAGS 

It is generally good programming practice to divide a single 
complex task into a number of separate tasks, with each task 
performing a distinct logical function. Using a group of tasks to 
perform a complex function frequently makes good sense, especially 
where different parts of the process may run at widely differing 
speeds, each more or less independent of the others. 

Suppose, for example, that you need to simulate customer 
transactions at a bank. There are five windows, up to 15 
customers can physically stand in each line at a time, given the 
size of the waiting area. You might design a group of tasks, one 
task per line, to simulate this complex system. This approach has 
the advantage of simulating the related, but essentially parallel, 
processes in a more realistic manner than would a single, serial, 
simulation. A further advantage of a multitasking approach to 
such a job is that changes in the behavior of the system that are 
caused by changes in a single line (e.g., by assigning different 
types of transactions to different lines) can easily be simulated 
by simply modifying the task that simulates that line. 

An RSX-llM programmer typically uses a mix of the following 
four multitasking methods. 

1. Common or Group Global event flags, together with 
synchronization and task scheduling directives, are used 
to synchronize tasks. 

2. Resident commons are used to share data in memory. 

3. Memory management directives are used to create and/or 
share data areas dynamically at run time. 

4. File handling routines are used to open disk files for 
shared access. 

The use of shared regions, memory management directives and 
files are discussed in later modules. 

153 



USING DIRECTIVES FOR INTERTASK COMMUNICATION 

Directives 

Table 4-1 lists the various task control directives which are 
available for task synchronization. (Most of these were discussed 
in earlier modules.) All of the directives are documented 
individually in Chapter 5 of the RSX-IIM/M-PLUS Executive 
Reference Manual. 

Table 4-2 shows the differences between suspending and 
stopping a task. The major difference is that stopping puts the 
task in a stopped state which effectively lowers the task priority 
to zero, allowing any active task to checkpoint it if it is 
checkpointable. Suspending or waiting, on the other hand, keeps 
the task competing for memory space on the basis of its running 
priority. This means that if the task is checkpointable, only 
tasks of higher priority checkpoint it. Waiting for an event flag 
affects checkpointability the same way as suspending. 

Table 4-3 lists the various event flag directives which are 
available for synchronization. As discussed in Module 2, the 
Clear Event Flag directive (CLEF$) can be used instead of the Read 
All Event Flags (RDAF$) or the Read Extended Event Flags (RDXF$) 
directives, to check whether a single event flag is set (since the 
DSW indicates whether the flag was initially clear or set). This 
saves having to check the specific bits in the event flag mask 
word. Checking specific bits is necessary with RDAF$ and RDXF$ 
because they return several event flag mask words, each containing 
the settings of 16 flags, one flag per bit. 

154 



USING DIRECTIVES FOR INTERTASK COMMUNICATION 

Table 4-1 Task Control Directives 
and Their Use for Synchronizing Tasks 

155 



USING DIRECTIVES FOR INTERTASK COMMUNICATION 

Table 4-2 Stopping Compared to Suspending or Waiting 

Table 4-3 Event Flag Directives and 
Their Use for Synchronizing Tasks 

156 



USING DIRECTIVES FOR INTERTASK COMMUNICATION 

Example 4-1 shows the use of the Request Task (RQST$), 
Suspend (SPND$), and Resume (RSUM$) directives for 
synchronization. Notes 1, 2, 3 and 6 refer to TASKA. Notes 4 and 
5 refer to TASKS. 

C» The supplied macros are used to allow you to concentrate 
on the synchronization techniques. If you want, these 
macros can be replaced with QIO's and other code. 

tt TASKA requests TASKS. This means that TASKB must be 
installed under the name TASKS. After this, both tasks 
are active and compete for memory and CPU time. 

t» TASKA suspends itself. After this it still competes for 
memory at its regular priority, but not for CPU time. 

ct TASKS types out a message and then resumes TASKS. More 
typically, TASKS would perform some service for TASKA 
rather than just typing a message. After TASKS resumes 
TASKA, they both compete for CPU time again. 

C» TASKS displays another message and then exits. 

C) TASKA, now resumed, displays a message and exits. 

Depending on the relative priorities of TASKA and TASKS and 
on the particular task scheduling options on your system (e.g., 
round robin scheduling), steps 5 and 6 may be reversed on the run 
session. 

157 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

0 
18 
19 
20 
21 

0 
22 
23 
24 
25 
26 
27 

0 
28 
29 
30 
31 

0 
32 
33 
34 
35 
36 

USING DIRECTIVES FOR INTERTASK COMMUNICATION 

; 

.TITLE 

.IDENT 

.ENABL 

FILE TASKA.MAC 

TASKA 
lOll 
LC Enable lower case 

This task reouests TASKB to run, and then suspends 
itself. TASKB resumes this task and exits. 

Assemble and task-build instructions: 

MACRO/LIST LB:[l,lJPROGMACS/LIBRARY,dev:[ufdJTASKA 
LINK/MAP LB:[1,1JTASKA,PROGSUBS/LIBRARY 

Install and run instructions: Both tasks must be 
installed. Just run TASKA. 

.MCALL RQST$C,SPND$S,EXIT$S; S~stem macros 

.MCALL TYPE,DIRERR Supplied macros 

START: TYPE (TASKA BEGINS AND REQUESTS TASKB) 

OK2: 

RQST$C 
BCe 
DIRERR 

TYPE 

SPND$S 
BCC 
DIRERR 

TYPE 

EXIT$S 

Displa~ messaSe 
TASKB Reouest TASKB 
OK1 ; Branch on directive ok 
(TASKA UNABLE TO REQUEST TASKB> ; Displa~ 

; error messa~e and exit 
<TASK A IS SUSPENDING ITSELF) ; Displa~ 

; messase 
; Suspend self 

OK2 ; Branch on directive ok 
(TASKA UNABLE TO SUSPEND> ; Displa~ 

; error messaSe and exit 
(TASKA HAS BEEN RESUMED> Displa~ 

messase 
; Exit 

~END START 

Example 4-1 Synchronizing Tasks Using Suspend and Resume 
(Sheet 1 of 2) 

158 



0 

0 

1 
2 
3 
4 
~ 
~ 

6 
7 
8 
9 

10 
11 
12 
17 ~ 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

ra 

~6 
31 
32 
33 

~! .J 

36 
37 

USING DIRECTIVES FOR INTERTASK COMMUNICATION 

.TITLE 

.IDENT 

.ENABL 

TASKB 
lOll 
LC ; Enable lowercase 

FILE TASKB.MAC 

This task is activated by TASKA. It performs its 
operation and resumes TASKA, which has suspended 
itself. 

Assemble and link instructions: 

MACROILIST LB:Cl,IJPROGMACS/LIBRARY,dev:CufdJTASKB 
LINKIMAP TASKB,LB:C1,lJPROGSUBS/LIBRARY 

Install and run instructions! Both tasks must be 
installed. Just run TASKA. 

.MCALL RSUMSC,EXITSS System macros 

.MCALL TYPE,DIRERR ; SUPplied macros 
Must enable local symbol blocks because we use local 
symbols and DIRERR has .PSECT statements 

.ENABL LSB Enable local s~mbol 
block. 

Any operation could be performed here, but in this 
; case it's only a typeout. 
START: TYPE (TASKB IS ALIVE AND RUNNING) ; Display 

1$: 

RSUMSC 
BCC 
DIRERR 

TYPE 

EXITSS 

; messaSe 
TASKA ; Resume TASKA 
IS ; Branch on directive ok 
(TASKB UNABLE TO RESUME TASKA) ; Display 

; error messase and exit 
(TASKB HAS RESUMED TASKA AND IS EXITING) 

; Displa~ messaSe 
; Exit 

.END START 

Run Session 

)INS TASKA 
)INS TASKB 
)RUN TASKA 
) 

TASKA BEGINS AND REQUESTS TASKS 
TASKA IS SUSPENDING ITSELF 
TASKS IS ALIVE AND RUNNING 
TASKA HAS BEEN RESUMED 
TASKS HAS RESUMED TASKA AND IS EXITING 

Example 4-1 Synchronizing Tasks Using Suspend and Resume 
(Sheet 2 of 2) 

159 



USING DIRECTIVES FOR INTERTASK COMMUNICATION 

Example 4-2 shows the use of event flags for synchronization. 
In module 2, there is a similar example. Here, TASKC requests 
TASKD, rather than requiring an operator to start both tasks. 
Also, the Stop For Single Event Flag is used rather than the Wait 
For Single Event Flag. The difference between them is that the 
first causes the task to enter a stopped state and the other 
causes the task to enter a wait for (like a suspended) state. 
Notes 1, 2, 3 and 6 refer to TASKC. Notes 4 and 5 refer to TASKD. 

o 

o 
e 
o 
e 
o 

Clear the event flag to initialize it. 
is unpredictable, since other tasks 
cleared it. 

Request TASKD. 

It's initial state 
may have set or 

Stop until the event flag is set by TASKD. 

TASKD displays a message and sets the event flag. 

TASKD displays a message and exits. 

TASKC displays a message and exits. 

Depending on the relative priorities of the two tasks, 
significant events in the system, and other scheduling 
considerations, the order of the steps may vary. Specifically, 
steps 3 and 4 above may be reversed, as well as 5 and 6. 

The event flag must be common or group global, not local. In 
either case, the users on the system must coordinate to avoid 
several users using the same event flag for different purposes. 
If a group global event flag is used, the flags for that group may 
have to be created using either the Create Group Global Event 
Flags directive (CRGF$) or the DCL SET GROUPFLAGS/CREATE (FLA /CRE 
in MCR) command. 

The Executive scans the Active Task List and schedules tasks 
for CPU time only after a significant event. Setting an event 
flag does not cause a significant event. This means that TASKC 
normally won't compete for CPU time until at least the next 
significant event in the system. If it is important that TASKC 
begin executing sooner than that, TASKD should issue the Declare 
Significant Event directive (DECL$), which causes the Executive to 
reschedule tasks. For a discussion of significant events, see 
Chapter 2 of the RSX-IIM/M-PLUS Executive Reference Manual. 

160 



1 
2 
3 
4 
a::-
..:J 

6 
7 
8 
9 

10 
11 
12 
13 
14 
1 ~:; 
16 
17 
18 
19 
20 
21 
'")'1 
~,:.. 

2:3 

0 
24 
25 
26 
27 
28 
29 
30 

0 ~51 
3'1 It.. 

33 
34 
3~5 

e 36 
37 
~58 

39 
40 
41 0[42 . 4~5 

44 
45 

USING DIRECTIVES FOR INTERTASK COMMUNICATION 

;+ 

; --

.TITLE 

.IDENT 

.ENABL 

FILE TASKC.MAC 

TASKC 
/Oll 
LC Enable lower case 

This task clears an event fla~, reGuests TASKD to run, 
and then stops until the flas is set b~ TASKD. 

Assemble and task-build instructions: 

MACRO/LIST LS:[l,lJPROGMACS/LIBRARY,dev:[ufdJTASKC 
LINK/MAP TASKC,LB:[l,lJPROGSUBS/LIBRARY 

Install and run instructions: TASKD must be installed. 
Just run TASKC. 

.MCALL CLEF$C~RQST$C,STSESC,EXITSS; S~stem macros 

.MCALL TYPE,DIRERR SUPplied macros 

FLAG=33. Event flas to be used 
; 
~~TART: TYPE <TASKC BEGINS AND REQUESTS TASKD) 

(11'\1 : 

OK2: 

01\3: 

CLEFSC FL.AG 
Displa~l messaSe 
Clear event flas 
befo re s tOPF' i n~ 

BCC OK1 Branch on directive ok 
DIRERR <TASKC UNABLE TO INITIALIZE EVENT FLAG) 

Displa~ error msssaSe 

RQSTSC 
BCC 
DIRERR 

TYPE 

; and eNit 
TASKD ; ReGuest TASKD 
OK2 ; Branch on directive ok 
<TASKC UNABLE TO REQUEST TASKD) ; Displa~ 

error msssaSe and exit 
<TASKC IS STOPPING FOR EVENT FLAG) 

STSESC FL.AG 
Dis~-:,la~ messaSe 
Stop for event flaS 
to be set 

BCC OK3 ; Branch on directive ok 
DIRERR <TASKC'S STOP REQUEST REJECTED) ; Displa~ 

TYPE 
error messaSe and eNit 

<TASKC HAS BEEN UNSTOPPED AND WILL NOW EXIT) 
; Displa~ messaSe 

EXITSS ; Exit 
.END START 

Example 4-2 Synchronizing Tasks Using Event Flags 
(Sheet 1 of 2) 

161 



USING DIRECTIVES FOR INTERTASK COMMUNICATION 

1 
2 
3 
4 
5 
6 

;+ 

.TITLE 

.II!ENT 

.ENABL 

FILE TASKI!.MAC 

TASI~n 

10:1.1 
LC Enable lower case 

7 This task is activated bw TASKC. It sets the fla~ for 
8 which TASKC is stopped~ 
9 

10 Assemble and task-build instructions: 
11 
:1.2 
13 
14 
15 
16 
:L7 
18 
19 
20 
21 

MACRO/LIST LB:[l,lJPROGMACS/LIBRARY,dev:,[ufdJTASKD 
LINK/MAP TASKI!,LB:[l,lJPROGSUBS/LIBRARY 

;-

FLAG=33. 

.MCALL SETFSC,EXITSS 

.MCALL TYPE,DIRERR 
Swstem macros 
SI.JP? lied lTIac ro'!:> 

Event flag 

Anw operation could be performed here, but in this 
22 ; case it's onlhl a twpeout. 

o 24 [

1')3 START: TYPE (TASKD IS ALIVE AND RUNNING> 

25 SETFSC FLAG 

BCC OK 
26 
27 
28 
29 
30 

I!IRERR (TASKI! UNABLE 

[

31 o 32 
33 
34 
35 

1~I_Jn Session 

>INS TASKC 
>~;UN TASKC 

TYPE <TASKI! HAS 

EXITSS 
.END STAf~T 

TASKC BEGINS ANI! REGUESTS TASKI! 
TASKC IS STOPPING FOR EVENT FLAG 
TASKI! IS ALIVE ANI! RUNNING 

SET 

; mes~>age 

; Set the fla~ to allow 
; TASKC to be unblocked 
; Branch on directive ok 

TO SET EVENT FLAG> 
; I!isplaw error message 
; and e~·d. t 

THE EVENT FLAG ANI! IS EXITING> 
; I!isplaw message 
; EHi·t 

TASKD HAS SET THE EVENT FLAG ANI! IS EXITING 
TASKC HAS BEEN UNSTOPPEI! ANI! WILL NOW EXIT 

Example 4-2 Synchronizing Tasks Using Event Flags 
(Sheet 2 of 2) 

162 



USING DIRECTIVES FOR INTERTASK COMMUNICATION 

SEND/RECEIVE DIRECTIVES 

General Concepts 

The Send and Receive directives are used to transmit a 13. 
word block of data between tasks. The sequence of events is as 
follows. 

1. A task issues a Send Data request, specifying a receiver 
task and a data buffer. 

2. The Executive copies the data buffer into a data packet in 
the dynamic storage region (DSR or pool). 

3. The Executive places the data packet FIFO 
(first-in-first-out) into the receive queue of the 
specified receiving task. 

4. Later, the receiving task issues a Receive Data request, 
specifying a data buffer. 

5. The Executive copies the data packet into the buffer 
specified by the receiving task. 

Directives 

Table 4-4 lists the Send Data directive and the various 
Receive Data directives. The differences among the Receive Data 
directives concern what happens if there are no data packets in 
the receiver's receive queue. 

All receive directives receive 15(10) words, including the 
sender task name (in Radix-50 format) plus the data. If no sender 
task is specified in a Receive Data directive, the first packet in 
the receive queue is dequeued, regardless of which task sent it. 
If a sender task is specified, only a packet sent by that task is 
dequeued. 

163 



USING DIRECTIVES FOR INTERTASK COMMUNICATION 

Table 4-4 The Send/Receive Data Directive 

Synchronizing Send Requests with Receive Requests 

You can use event flags for synchronization. The event flag 
is specified by the sending task. This event flag is set when the 
data packet has been queued to the receiving task. Therefore, a 
global or group global event flag may be used to unblock a 
receiving task which is active and waiting for the event flag to 
be set. 

You can also use an AST for synchronization. To request 
entry into an AST routine whenever a data packet is received, use 
the Specify Receive Data AST directive (SRDA$). Typically, this 
directive is issued at the beginning of task execution. From that 
point on, the AST routine is entered when the first data packet 
has been placed in the task's receive queue. Only one receive 
data AST is queued, even if more than one data packet is received 
at a time. Therefore, you should keep receiving until you get a 
no data packets queued error to ensure that you have received all 
of the data packets in the queue. 

164 



USING DIRECTIVES FOR INTERTASK COMMUNICATION 

After the run, use ASTX$S to exit from the AST routine. 
After exiting from the AST routine, the AST routine will be 
entered again if a new data packet is received. This continues 
until the task exits, or until receive data AST's are canceled, 
using the Specify Receive Data AST directive (SRDA$) with no AST 
routine specified. It is also possible to temporarily disable all 
AST recognition using the Disable AST Recognition directive 
(DSAR$). 

In addition, you can use the task control directives for 
synchronization. Table 4-5 summarizes the various synchronization 
techniques which might be used. Keep in mind that a Receive Data 
directive (RCVD$) causes an error condition directive, which is 
inconsistent with task state (DSW = -8, IE. ITS) if there is no 
data packet in the receive queue. Receive Data or Stop (RCST$) 
and Receive Data or Exit (RCVX$), on the other hand, cause the 
task to stop or exit, respectively, if there is no data queued. 
For further information about possible synchronization problems, 
see the writeup on the Receive Data directive (RCVD$) in Chapter 5 
of the RSX-11M/M-PLUS Executive Reference Manual. 

Table 4-5 Methods of Synchronizing a Receiving Task 
(RECEIV) with a Sending Task (SEND) 

165 



USING DIRECTIVES FOR INTERTASK COMMUNICATION 

Examples 4-3, 4-4, and 4-5 show the use of Send and Receive 
directives by a pair of tasks. Examples 4-3 and 4-4 use an event 
flag for synchronization; Example 4-5 uses Receive Data or Stop 
along with Unstop for synchronization. The notes below are keyed 
to Example 4-3. Note 1 refers to SENDI and RECVl. Notes 5, 6 and 
7 refer to SENDI. Notes 2, 3, 4 and 8 refer to RECVl. 

ct RECVl must be run first, or else the event flag will 
already be set by SENDI to indicate that a data packet has 
been sent. RECVl will clear the flag and wait for it to 
be set again, and won't realize that a data packet is 
already queued to it. 

o Initialize the message counter. You will receive and 
display three messages and then exit. 

C» Initialize the event flag. 

o Wait for the flag to be set after SENDI sends the data 
packet, placing it in RECVl's receive queue. 

ct Get the data to be sent. 

ct Send the data and set event flag 33. when the data packet 
is queued to RECV1. 

o 
o 
o 

SENDI exits. 

Receive data from anyone. 

Display a header and the data sent. Skip the first two 
words (four bytes) of the buffer, which contain the name 
of the sender task in Radix-50 format. 

Decrement the message counter. Branch back to clear the 
event flag and receive again if you have not yet received 
three messages. If you have, display a message and exit. 

167 



0 

0 
e 

0 

0 

USING DIRECTIVES FOR INTERTASK COMMUNICATION 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

[?O -
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
4~ J 

46 

;-

.TITLE RECV1 

.IDENT /011 

.ENABL LC 

FILE RECV1.MAC 

Enable lower case 

This task receives data from anw sender task 
(e.S., SEND1). It prints the data on TI:. Then it 
waits for another data packet. It does this until it 
has received 3 messaSes and then exits. 

This task swnchronizes with its sender throush an 
event flas. 

Assemble and task-build instructions: 

MACRO/LIST LB:[1,lJPROGMACS/LIBRARY,dev:[ufdJRECV1 
LINK/MAP RECV1,LB![1,lJPROGSUBS/LIBRARY 

Install and run instructions: RECV1 must be installed 
and run before runnins SEND1. 

.MCALL CLEFSC,WTSESC,RCVDSC,EXITSS; Swstem macros 

.MCALL TYPE,DIRERR SUPplied macros 

EFN - 33. 
¥ 

Event flas 

RBUFF: .BLKW 15. 

.ENABL LSB 

; 
START: 

AGAIN: 

WAIT: 

MOV 

CLEFSC 

BCC 
DIRERR 

WTSESC 
BCC 
DIRERR 

t3,R5 

EFN 

WAIT 
<ERROR 

EFN 
3$ 
<WAIT 

Receive bu~fer 

Enable local swmbol 
blocks 

Initialize messaSe 
counter 

Initialize 
swnchronizinS flas 

Branch on directive ok 
INITIALIZING FLAG) ; Displaw 

; error messaSe and exit 
; Wait for a send 
; Branch on directive ok 

DIRECTIVE FAILED) ; Displaw error 
~ messaSe and exit 

; We set here when the flaS is set 
3S: RCVDSC ,RBUFF Receive from anwone 

BCC 5$ Branch on directive ok 

Example 4-3 Synchronizing a Receiving Task Using Event Flags 
(Sheet 2 of 3) 

169 



USING DIRECTIVES FOR INTERTASK COMMUNICATION 

If a task runs and then exits with data packets in its 
receive queue, those unreceived data packets are flushed from the 
queue on exit. Therefore, if SENDl sent four messages before 
RECVl was run, the fourth message would be lost. 

If you want to run the tasks in Example 4-3 in any order, 
RECVl must be modified to receive data packets on startup if SENDl 
has already sent data. The process gets complicated because SENDl 
may have already sent several data packets. It's also possible 
that event flag 33. was left set by someone else. In that case 
the Receive directive will fail, but you should not abort. 

Example 4-4 shows the modifications which must be made to 
Example 4-3 to allow the tasks to be run in any order. The 
following notes are keyed to Example 4-4. 

o 

o 

o 

o 

Use a flag word (BEFORE) to distinguish whether you are 
working on messages sent before or after RECVl starts up. 
Note that RECVIS must be installed as RECV1, since SENDl 
sends to RECV1. 

Check to see if the event flag is set on startup. If it 
is set, issue a Receive. If SENDl has been run one or 
more times, the Receive will succeed. If SENDl has not 
yet been run, the flag was set by another task and the 
Receive will fail. 

If the flag was not set, SENDl hasn't sent any messages 
before you started. Clear the BEFORE flag, because a 
Receive failure after the flag is set again is a fatal 
error. 

In the case of a receive failure, check to see if you are 
receiving data packets that are sent before RECVl started 
up. If you are, you know you have received all data 
packets already queued up before RECVl started executing. 

If BEFORE is clear, there was a failure after receiving 
all data packets sent before RECV2 started up, so display 
an error message and exit. 

,171 



1 
~ , 
3 
4 
~ 
~ 

6 
~ , 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
~~ 
~~ 

26 
27 
28 
29 
30 
31 
32 
33 

0 34 
35 
36 
37 
38 
39 
40 
41 
4? 
43 
44 
45 
46 
47 

USING DIRECTIVES FOR INTERTASK COMMUNICATION 

;+ 

.TITLE RECVIS 
+IDENT lOll 
.ENABL LC 

FILE RECV1S.MAC 

Enable lower case 

This task receives data from ans sender task 
(e+~. SEND1). It prints the data on TI:. Then it 
waits for another data packet. It exits after 
receivin~ and displasin~ 3 messa~es. 

This task ssnchronizes with its sender throu~h an 
event fla~. Because of this ssnchronization, and the 
care we take on startup to ~et messa~es alreads 
sent. the tasks can be run in ans order, with ans 
relative priorities. 

Assemble and task-build instructions: 

MACRO/LIST LB:[I,1JPROGMACS/LIBRARY,dev:rufdJRECV1S 
LINK/MAP RECV1S,LB:r1,1JPROGSUBS/LIBRARY 

Install and run instructions: RECV1S must be installed 
under the name RECVl to work with SENDi. 

.MCALL 

.MCALL 
CLEFSC.WTSESCyRCVDSC,EXITSS ; Ssstem macros 
TVPE,DIRERR SUPplied macros 

EFN - 33. Event fla~ 

"Before" flaSy used to keep track of whether we are 
receivin~ messa~es sent before RECV1 started up. If 
the event fla~ is set at startup time~ keep receivins 
until we ~et a failure. We then wait until the fIBS is 
set to receive aSain. 1 means receivin~ messaSes sent 
before startuP' 0 means finished receivin~ them. 

BEFORE: .WORD 1 Assume there are messa~es 
RBUFF: .BLKW 15. Receive buffer 

.ENABL LSB 

START: MOV t3,R5 
CLEFSC EFN 

Enable local ssmbol blocks 

Messa~e counter 
Initialize ssnchronizin~ 
flas 

BCC 1$ ~ Branch on directive ok 
DIRERR <ERROR INITIALIZING FLAG) ; Displas 

error message and exit 

Example 4-4 A Receiving Task Which Can be Run Before or After 
the Sender (Sheet 1 of 3) 

173 



USING DIRECTIVES FOR INTERTASK COMMUNICATION 

Run Session 

>INS/TASK_NAME:RECV1 RECV1S 
>RUN SENDl 
TYPE A LINE OF TEXT, 26 CHARACTERS OR LESS 
1111 11 
>RUN SENDl 
TYPE A LINE OF TEXT, 26 CHARACTERS OR LESS 
2222222222 
>RUN RECVl 
> 
DATA RECEIVED BY ARECVl a : 

1111 11 
DATA RECEIVED BY -RECV1 A: 
2222222222 
RUN SEND1 
TYPE A LINE OF TEXT, 26 CHARACTERS OR LESS 
33333 
> 
DATA RECEIVED BY -RECVl a

: 

33333 
-RECV1' HAS RECEIVED 3 MESSAGES AND WILL NOW EXIT 
> 

Example 4-4 A Receiving Task Which Can be Run Before or After 
the Sender (Sheet 3 of 3) 

Example 4-5 uses Receive Data or Stop in the Receiver and 
Send Data followed by Unstop in the sender. These tasks can be 
run in any order. The potential synchronization problems are 
considerably easier to deal with when using this technique of 
synchronization. The technique will be explained first as it 
applies to the case of running RECV2, before you run SEND2. A 
discussion of the other possibilities will follow. Notes 2, 3 and 
4 refer to SEND2. Notes 1, 5, 6, 7, 8 and 9 refer to RECV2. 

o 

o 

Issue a Receive Data or Stop directive. If there is no 
data packet queued, RECV2 stops and must be unstopped by 
SEND2. If, on the other hand, there is a data packet 
queued, you would want to receive it. The DSW equals 
IS.SET(+2) if the task was stopped and then unstopped, and 
equals IS.SUC(+l) if a data packet was received. If RECV2 
is run first, stop. 

SEND2 gets the data and sends it. You do not need to 
specify an event flag in the Send Data directive since you 
use Stop/Unstop for synchronization. 

175 



USING DIRECTIVES FOR INTERTASK COMMUNICATION 

If SEND2 is run two or three times before RECV2, any data 
packets already sent are received and displayed. In the case of 
two sent, the third RCDS$ will cause RECV2 to stop until SEND2 
sends a third packet and unstops it. In the case of three packets 
already sent, RECV2 will receive all three and then exit. 

As in Example 4-4, if SEND2 sends more than three packets, 
any additional packets will be lost because the receive queue is 
flushed when the task exits. 

177 



0 

0 

0 
0 

0 

e 

1 
2 
3 
4 
~ 
J 

6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
~~ ,J 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

USING DIRECTIVES FOR INTERTASK COMMUNICATION 

.TITLE 

.IDENT 

.ENABL 

FILE RECV2.MAC 

RECV2 
lOll 
LC Enable lower case 

This task receives data from another task. It prints 
the data, alons with a header, on TI:. Then it waits 
for another data packet, conti~uins this until it has 
received 3 messaSes. 

This task swnchronizes with its sender usins RCSTS. 
Because of this swnchronization, the tasks can be run 
in anw order, with an~ relative priorities. 

Assemble and task build instructions: 

MACRO/LIST LB:C1,lJPROGMACS/LIBRARY,dev:CufdJRECV2 
LINK/MAP RECV2~LB:Cl,lJPROGSUBS/LIBRARY 

Install and run instructions: RECV2 must be installed. 

.MCALL RCSTSC,RCVDSC,EXITSS; S~stem macros 

.MCALL TYPE,DIRERR SUPplied macros 

RBUFF: • BLKW 15 • Receive buffer 

.ENABL LSB 

; 
START: MOV i3,R5 
RECEIV: RCST$C ,RBUFF 

BCC 5$ 
DIRERR <RECEIVE 

Enable local swmbol 
blocks 

Set UP messaSe counter 
Receive from anwone 
Branch on directive ok 

DIRECTIVE FAILED IN uRECV2 u > 
Displaw error messaSe 

; and exit 
Successful receipt or unstopped bw another task. First 
check for unstopped after beinS stopped, in which case 

we have to receive the data 
"5$: eMP SDSW,tIS.SET Were we stopped due to 

6S: 

BNE 

RCVD$C 
BCC 
DIRERR 

TYPE 

TYPE 
SOB 

6$ 
no data 

If not, we have a data 
; packet 

~RBUFF Now set the packet 
6$ ; Branch on directive ok 
<RECEIVE DIR FAILED AFTER "RECV2 U UNSTOPPED> 

Displaw error messaSe 
and exit 

<DATA RECEIVED BY HRECV2 u :> Displa~ 

text and 
data sent iRBUFF+4,i26. 

R5,RECEIV Decrement messaSe 
counter. Receive asain 
if haven't received 3 
wet 

TYPE <RRECV2 u HAS RECEIVED 3 MESSAGES AND WILL NOW EXIT> 
Twpe exit messaSe 

EXITSS ; Exit 
.END START 

Example 4-5 Synchronizing a Receiver Task Using RCDS$ 
(Sheet 2 of 3) 

179 



USING DIRECTIVES FOR INTERTASK COMMUNICATION 

Using Send/Receive Directives for Synchronization 

If you want to pass data as well as notify another task of 
the occurrence of an event, the send/receive directives can be 
used to perform this double function. The receIvIng task can 
synchronize with the event using any of the techniques listed in 
Table 4-5. 

Slaving the Receiving Task 

Normally, a task runs under the UIC and the TI: of its 
initiator, the operator issuing the RUN command, or the task 
issuing the Request Task directive (RQST$). A receiver task which 
is run from the same terminal as the sender is assigned the same 
UIC and TI: as the sender. However, if the receiver task is run 
from another terminal or by a different user, it's UIC and/or TI: 
may be different from that of the sender. Also, a receiver might 
receive dat~ from several different tasks initiated at several 
different terminals. 

If you want to have the receiver task take on the UIC and the 
TI: of the sender each time data is received, the receiver task 
can be built as a slaved task. The advantages of this approach 
are that the receiver acquires the same privileges as the sending 
task and can do I/O directly to the sending task's terminal 
(through TI:). To build a task as a slaved task, either 
task-build or install with the /SLAVE qualifier. 

181 



USING DIRECTIVES FOR INTERTASK COMMUNICATION 

PARENT 

OFFSPRING 

SPAWN OFFSPRING J COMMAND LINE L -'" 

I I 

..".".",.--- EXIT, EXIT 
WITH STATUS, 

EVENT FLAG AND/OR J I OR EMIT 
AST ROUTINE I OFFSPRING STATUS I STATUS 

TK-7745 

Figure 4-1 parent/Offspring Communication Facilities 

Additional directives are provided for parent/offspring 
support. The Send Data, Request, and Connect directive combines 
the functions of the three separate directives (Send, Request, 
Connect) into a single directive. This is similar to Spawn, but 
sends a 13. word data packet rather than a 79. byte command 
line. It also only sends data and connects if the task is already 
active. Spawn is rejected if the task is already active, unless 
the task is a Command Line Interpreter (CLI). 

Two other directives are provided to allow chaining, or 
passing a parent/offspring connection from an offspring to another 
task. Chaining is discussed in more detail later in this module. 

183 



USING DIRECTIVES FOR INTERTASK COMMUNICATION 

Table 4-7 Comparison of Parent Directives 

185 



USING DIRECTIVES FOR INTERTASK COMMUNICATION 

Example 4-6 shows a task which spawns PIP to display a directory 
at TI:. The following notes are keyed to the example. 

o 

o 
e 

o 

The command line to be passed to PIP. We include the 
three-character command name to be consistent with the way MCR 
passes commands if a utility command is typed to MCR. 

Display startup message. 

Spawn ••• PIP. Event flag 1 will be set when ••• PIP exits or 
emits status. EXSTAT is the address of the eight-word status 
block (only the first word is used). CMD is the starting 
address of the command line and LEN is its length. 

Wait for event flag 1 to be set when ••• PIP exits or emits 
status. Notice that this is a local event flag, local to this 
task, which is cleared by the Executive when the task is 
spawned and set by the Executive when the spawned task exits 
or emits status. 

The high order byte of the exit status code may contain 
unexpected data. Therefore, clear that byte before converting 
the code to signed decimal for display. 

C) Use $EDMSG to produce a status message. Display the message 
and then exit. 

tt ON THE RUN SESSION - The first run session shows a successful 
exit by ••• PIP, the second one shows ••• PIP aborted by an 
operator. Note the different status codes. 

NOTE 
On an RSX-llM system, an attempt to spawn 
••• PIP will fail if ••• PIP is already active. 
This works diffently from initiating PIP from 
MCR, where an attempt is made to install the 
task ••• PIP under the name PIPTnn if ••• PIP 
is already active. A solution to this 
problem is to spawn CLI... (the current 
CLI), ••• DCL (DCL) or MCR ••• (MCR) and send 
it the command line. It will in turn start 
up the appropriate PIP task under ••• PIP or 
PIPTnn, as if the command was typed in by an 
operator. See section 4.4 (on Spawning 
System Tasks) of the RSX-llM!M-PLUS Executive 
Reference Manual for additional information. 

187 



o 

USING DIRECTIVES FOR INTERTASK COMMUNICATION 

53 
~54 

; Error 
ERF~1D: 

handlin~ code - ; Displaw error messa~e and exit 
DIRERR <ERROR WRITING STARTUP MESSAGE> 

5~5 
56 

EF~R1I: 
ERR2: 

IOERR +IOSB,<ERROR WRITING STARTUP TEXT> 
DIRERR <ERROR SPAWNING PIP) 

57 
~j8 

EI:::I~3: 
EF~I:~4D : 

DIRERR <ERROR WAITING FOR EVENT FLAG) 
DIRERR <ERROR WRITING PIP'S EXIT STATUS> 

59 EF~I:::41 : IOERR #IOSB,<ERROR WRITING PIP'S EXIT STATUS> 
C)() .END START 

Hun Session 

>RUN SPAWN 
SPAWN IS STARTING AND WILL SPAWN PIP 

Directorw DB1:[305,301J 
EJ'-MAli'-82 :J. 2: 15 

W.MAC;1 
A:t..MAC;2 
A.MAC;l 

GPAWN.MAC;22 

1. 
1. 
1. 

1. 

20·-MAY-81 13:04 
09-[lEC-80 16:58 
10-JUN-81 15:21 

08-SEP-81 11:20 

Total 127./129. blocks in 25. files 

SPAWN REPORTING: PIP EXITED. EXIT STATUS WAS 1. 

>RUN SPAWN 
SPAWN IS STARTING AND WIll SPAWN PIP 

Directorw DB1:C305,3():J.J 
B'-MAI~-8:;~ :t. 2: 15 

W.MAC;:t. 1. 
A:t..MAC;2 1. 
A.MAC;l 1. 
DCL>ABORT/TASK ••• PIP 

20-MAY-81 13:04 
09-DEC-80 16:58 
10-JUN-81 15:21 

A9.MAC;12 4. 21-MAY-81 13:50 
12:15:15 Task • ••• PIP" terminated 

Aborted via directive br ClI 
And with pend ins liD reGuests 

SPAWN REPORTING: PIP EXITED. EXIT STATUS WAS 4. 

Example 4-6 A Task Which Spawns PIP (Sheet 2 of 2) 

189 



1 
2 
3 
4 

6 

USING DIRECTIVES FOR INTERTASK COMMUNICATION 

;+ 

.TITLE 

.I[lENT 

.ENABL 

GSF'AWN 
/01/ 
LC 

FILE GSF'AWN.MAC 

Enable lower case 

7 This task prompts at ti: for a task name and command 
8 line, then spawns the specified task and passes it the 
9 command line. After that it waits until the offsprinS 

10 task exits and displays its exit status. 
11 
12 Assemble and task-build instructions: 
13 
14 MACRO/LIST LB:C1,1JPROGMACS/LIBRARY,dev:[ufdJGSF'AWN 
15 LINK/MAP GSPAWN,LB:E1,1JPROGSUBS/LIBRARY 
16 
17 Run instructions: The name of the task to be spawned 
18 must be typed in usin. all upper case characters. 
19 ;-
20 
21 
22 
2~5 

.MCALL SPWNSS,EXITSS,EXSTS,[lIRS,WTSESC; System 
; macros 

.MCALL INPUT,TYPE,DIRERR; SUPplied macros 

24 I/O buffer - initialize first 6 bytes to blanks to pad 
25 

o[~; 
28 
29 
30 
~51 

32 
33 
34 
35 
36 
37 

[
38 o 39 
40 
41 
42 
43 

short t(!~sk names 
BUFFER: .ASCII I 

.BLKB 74. 
TSKNAM: .BLKW 2 
BOMB: EXSTS EXSSEV 

BUFF: .BLKW 80. 

I 

Task name in RAD50 
Directive for fatal 
error 

OIJtPUt buffer for e~·dt 
status dist-:,la~1 

FMT: .ASCIZ I%N%10STASK EXITEII. STATUS WAS %D.%N/ 

EXSTAT: 

START: 

.EVEN 

.BLKW 

.ENABL 
TYPE 
INPUT 

Bec 
TYPE 
I1IRS 

8. 

LSB 
<TASK NAME?> 
:fI:BUFFER,t80. 

1S 
<INPUT FROM TI: 
BOMB 

; Status block 

Disr,lay prompt 
Get input (buffer addr 

retu rned in f<O) 
Branch on directive ok 

FAILED> 
; Fatal error 

Example 4-7 A Generalized Spawning Task (Sheet 1 of 3) 

191 



USING DIRECTIVES FOR INTERTASK COMMUNICATION 

>RUN GSPAWN 
TASK NAME"~ 

••• F'IP 
COMMAND LINE (79 CHARACTERS OR LESS)? 
PIP *.ItIS/LI 

Directory DB11[3059301] 
B-SEP-B:I. 1~:): 0<';> 

FI~ I ENDS + D:r: S; 2 
FI~IENDSNI ...• DI S v 2 

:1. ~ 

1 • 
10· .. ·AUG·· .. 8:1. 1:1.: 13 
:.;~:I. · .. ·AUG-··B:J. :1.:1.: 42 

Total of 2./10. blocks in 2. files 

TASK EXITED. STATUS WAS 1. 

>RUN GSPAWN 
T ASK NAME'!> 
CLI ••• 
COMMAND LINE (79 CHARACTERS OR LESS)? 
IHRECTOliY * + MAC 

Directory DB1:[305,301] 
B··"SEP""B:I. 1 ~5 : :I. () 

W.MACi/l 
A1.MAC;2 
A.MAC;1 
A9.MAC;:l.2 
FOf~MAT .MAC;~~4 

PI~OGY • MAC; :I. 
P/;:OGZ + MAC; :I. 

:1. + 

1 + 

:1 •• 

4. 
6. 
1 • 
1 • 
4. 

20·-MAY-·81 
()9·· .. DEC· .. ·8() 
10-··,JUN····8:J. 
2:1 ... ··MAY····8:J. 
21 .... AUG· .. ·8 :I. 
30 .. ··JAN· .. ·8 :1. 

30-·JAN-.. 8:1. 
30-.. JAN-8:1. 

1:3: 04 
:I. 6: ~jB 
:1.5:2:1. 
:1.3:50 
1:1.:~)3 

14:27 
14:30 
:1.4:39 r:~AY • MAC;:I. 

DCL>ABORT/TASK DIR 
PROGX.MAC;6 1. 30-JAN-81 :1.4:42 
C.MAC;5 
A2.MAC;2 

• [G2.MAC; 1 

1. 21-MAY-8:1. :1.0:01 
1. 21-MAY-8:1. 10:04 
1. 2:1.-MAY-8:1. 10:04 

Task -DIRT1:1.· terminated 
Aborted via directive or CLI 
And with pendins liD reGuests 

TASK EXITED. STATUS WAS 4. 

Example 4-7 A Generalized Spawning Task (Sheet 3 of 3) 

193 



USING DIRECTIVES FOR INTERTASK COMMUNICATION 

Chaining of Parenti Offspring Relationships 

An offspring can chain or pass on its parent/offspring 
connection to another task. In that case the connection between 
the parent and the offspring which passes the connection is 
broken. In its place, a connection is made between the parent and 
the new offspring. 

Figure 4-2 shows the difference between an offspring spawning 
another task versus chaining its connection to another task. Note 
that with Spawn, the connection between the parent and the first 
offspring still exists, and a new connection is established 
between the first offspring and the new offspring. 

Table 4-10 summarizes the directives which can be used to 
chain parent/offspring relationships. Request and Pass Offspring 
Information (RPOI$) is similar to Spawn in function, in that it 
starts up the task and can pass a 79. byte command line. Send 
Data, Request, and Pass Offspring Control Block (SDRP$) is similar 
to Send Data, Request and Connect, in that it sends a 13. word 
data packet, and executes successfully even if the task is already 
active. 

BEFORE 

TASK 1 

TASK 2 

TASK 2 
SPAWNS 
TASK 3 

AFTER 

TASK 1 

TASK 2 

r 

TASK 3 

BEFORE 

TASK 1 

TASK 2 

TASK 2 REQUESTS 
AND PASSES OFFSPRING 
INFORMATION 

AFTER 

TASK 1 

NOTE: EACH ARROW SHOWS A PARENT/OFFSPRING CONNECTION. 
THE ARROW STARTS AT THE PARENT AND POINTS TO THE OFFSPRING. 

Figure 4-2 Spawning Versus Chaining 
(Request and Pass Offspring Information 

195 

TASK 3 

TK-7746 



USING DIRECTIVES FOR INTERTASK COMMUNICATION 

The following notes are keyed to Example 4-8. 

«t Use RPOI$ instead of SPWN$. No event flag is needed nor 
is a status block set up since this task won't receive 
status from ••• PIP. RP.OAL specified means that all (in 
this example there is only one) parent connections are 
passed on. A connection is established between the parent 
of PASSIT (GSPAWN) and ••• PIP. The connection between 
GSPAWN and PASSIT is broken. 

o 

o 

o 

Display a message and exit. You don't need to use $EDMSG 
because this task doesn't receive exit status. 

Exit with a status of 10., to make it easy to tell whether 
the status is from this task or from ••• PIP. Note in 
SPAWN that EXIT$S is used, which results in a success code 
(+1) being sent as the exit status. 

On The First Run Session (GSPAWN spawns PASSIT) - The exit 
status from ••• PIP is returned directly to GSPAWN. 

On The Second Run Session (GSPAWN spawns SPAWN) - The exit 
status from ••• PIP is returned to SPAWN, then SPAWN 
returns its own exit status to GSPAWN. 

If you wish to chain the connection from only one of several 
parents, specify a single task, and do not specify RP.OAL in the 
RPOI$ directive call. If RP.OAL is not specified and no task is 
specified, then no connections are passed. This might be useful 
to request a task and send 79. bytes of data when a connection is 
not needed. 

197 



o 

o 

USING DIRECTIVES FOR INTERTASK COMMUNICATION 

I:::lJn Session 

>INS PASSIT 
>RUN GSF'AWN 
TAS/( NAME? 
PASSIT 
COMMAND LINE (79 CHARACTERS OR LESS)? 

PASSIT IS STARTING AND WILL REQUEST PIP 
PASSIT HAS REQUESTED PIP AND WILL NOW EXIT 

Directorw DB1:C305,301J 
B···MAR-B~~ :t. ~5: 22 

W.MAcn. 
A1.MAC;2 

:I. • 
1 • 

20-MAY-81 13:04 
09-·DEC-80 16:58 

SPAWN.MAC;1 4. 

Total of :1.3./66. blocks in 15. files 

TASK EXITED. STATUS WAS 1. 

>RUN GSPAWN 
TASK NAME'!) 
PASSIT 
COMMAND LINE (79 CHARACTERS OR LESS)? 

PASSIT IS STARTING AND WILL REQUEST PIP 
PASSIT HAS REQUESTED PIP AND WILL NOW EXIT 

Directorw DB1:C305,301J 
B-·SEP-·8:1. 15: 2:3 

W.MAC;1 
A1.MAC;2 
A.MAC;1 
A9.MAC;:l.2 

:l ~ 
1 • 
1 • 
4. 

20···MAY····H:I. 
09···DEC····80 
:I. 0··· .JUN· .. B :1. 
2:1.·-MAY··H:I. 

15:24::1.0 Task " ••• PIP" terminated 
Aborted via directive or ClI 
And with pendins 110 reGuests 

TASK EXITED. STATUS WAS 4. 

:I.::n04 
lb:5B 
:1. ~:; : ~~:I. 
:to :.~ : ~)() 

Example 4-8 An Offspring Task Which Chains Its 
Parent/Offspring Connection to PIP (Sheet 2 of 3) 

199 



USING DIRECTIVES FOR INTERTASK COMMUNICATION 

Other Parent/Offspring Considerations 

Retrieving Command Lines in Spawned Tasks Use the Get MCR 
Command Line directive (GMCR$). The passed command is returned, 
beginning at offset G.MCRB within the DPB for the GMCR$ directive. 
Therefore, if you use the $ form of the directive and if the DPB 
starts at location DPBl, the first character of the command line 
is at location DPBl+G.MCRB. 

Spawning a Utility or other MCR Spawnable Task Utilities are 
generally installed under task names of the form ••• tsk. This 
makes them MCR spawnable tasks, which notifies MCR to spawn 
multiple copies of the task under names tskTnn if the task is 
invoked as an MCR command using the three-character task name 
(e.g., PIP /LI). 

Any task is spawnable, but only tasks installed under a name 
of the form ••• tsk are spawned as multiple copy tasks by MCR. 
When such a task is invoked by MCR, MCR passes it the entire 
command line, including the three-character task name (e.g., 
PIP ILl). Even if you spawn a utility directly, you should pass a 
command line which includes the three-character task name. This 
maintains compatibility with the format used by MCR to pass 
commands to utilities, and avoids potential problems caused when 
the utility parses your command line. 

On RSX-11M systems, there is a greater chance of getting a 
task already active failure if you spawn a utility directly using 
the name ••• tsk, than there is if you spawn MCR ••• and pass the 
command line which includes the task name. This is due to the 
fact that if a task is spawned directly using ••• tsk, the spawn 
attempt fails if the task ••• tsk is already active. No attempt is 
made to install the task under the name tskTnn if ••• tsk is 
already active, as is the case if you spawn MCR... (MCR) to start 
up the utility. 

201 



1 
~~ 

3 
4 
5 
6 
7 
8 
(J 

lO 
1.1 
12 
:L ~5 
:L4 
l!:j 
:1,6 
17 
1,8 
:L (J 
20 
2:L 
22 

0 23 
24 
;!~5 

26 
27 
28 
29 
:30 
~H 
:32 
:1:~ 
:'54 
3~5 

36 
:37 

USING DIRECTIVES FOR INTERTASK COMMUNICATION 

.TITLE SF'WNED 

.IDENT /01/ 

.ENABL LC ; Enable lower case 

This task uses the GMCR$ directive to set a command 
line ~rom either TI: or the parent task. It then 
echoes the command line and does an add or multiply, 
t,::~pes ('Jut the answer andemi ts statl_ls on eNi t 

Assemble and link instructions: 

MACRO/LIST LB:[1,lJF'ROGMACS/LIBRARY,dev:[u~d]SF'WNED 
LINK/MAF' SPWNED,LB:[l,lJF'ROGSUBS/LIBRARY 

Install and run instructions: To make this task MeR 
spawnable, install it under the name ••• SF'W. Commands 
should be o~ the form SF'W n, where n is a function. 
The valid functions are 1 (~or add) and 2 (~or multiply). 

; 
GMCR: 

BUFF: 
FMT: 

IOSH: 
DATA: 
NUM1: 

\ 

NUM2: 
ANS: 
OF': 

.MCALL EXST$S,GMCR$,DIR$,QIOW$S; System macros 

.MCALL TYF'E,DIRERR,IOERR; SUPplied macros 

GMCR$ 

• BLI(B 
.ASCIZ 
.EVEN 
• BL./(W 

.WORD 

.WORD 

.WORD 

.BLKW 

.BLKB 

.EVEN 

DPB for Get MCR Command 
Line directive 

80. ; Output buffer 
/%D %A %D - %D./ ; Format strins 

2 I/O status block 

5 1st operand 
OF' address of operation 

sisn in ASCII 
2 2nd operand 
1 answer to operation 
1 operand in ASCII 

Example 4-9 A Spawned Task ~~ich Retrieves a 
Command Line (Sheet 1 of 3) 

203 



USING DIRECTIVES FOR INTERTASK COMMUNICATION 

>INS/TASK_NAME: ••• SPW SPWNED 
>MCR SPW 1 
SF'W 1 
5 + 2 ::-.: 7. 
>MCR SPW 2 
SF'W 2 
5 * ~~ :::: :1.0. 
>MCR SF'W :3 
SF'W 3 CD ND ()THEF~ OPEI:;:ATIONS ALLOWEII 

>RUN GSF'AWN 
TASK NAME'!, 
• •• SPW 
COMMAND LINE (79 CHARACTERS OR LESS)? 
BPW 1 
SPW l. 
5 + 2 :::: 7~ 

TASK EXITED. STATUS WAS i. 
>/~UN GSPAWN 
TASK NAME'r 
• •• SF'W 
COMMAND LINE (79 CHARACTERS OR LESS)? 
BPW 2 
SPW 2 
5 * 2 :::: 10. 

TASK EXITED. STATUS WAS 1. 
>/=i:UN GSPAWN 
TI~SK NAME? 
• •• BPW 
COMMAND LINE (79 CHARACTERS OR LESS)? 
~:)PW 3 
SPW 3 

NO DTHER OPERATIONS ALLOWED 

TASK EXITED. STATUS WAS O. 

Example 4-9 A Spawned Task Which Retrieves a 
Command Line (Sheet 3 of 3) 

205 



USING DIRECTIVES FOR INTERTASK COMMUNICATION 

Table 4-11 Task Abort Status Codes 

207 



USING DIRECTIVES FOR INTERTASK COMMUNICATION 

Other Methods of Transferring or Sharing Data Between Tasks 

If large amounts of data are to be transferred between tasks 
or shared between tasks, two other techniques are available. 
Tasks can use files on mass storage devices. This technique is 
advantageous if really quick transfer is not essential and/or if a 
permanent copy of the data is needed. 

Tasks can also be written to share a data area in memory. 
This technique is particularly useful if transfer time is critical 
and a permanent copy of the data is either not needed at all or is 
not needed until a later time. Both of these techniques are 
discussed in later modules. 

Now do the tests/exercises for this module in the 
Test/Exercises book. They are all lab problems. Check your 
answers against the solutions provided, either in that book or 
on-line files. 

If you think that you have mastered the material, ask your 
course administrator to record your progress in your Personal 
Progress Plotter. You will then be ready to begin a new module. 

If you think that you have not yet mastered the material, 
return to this module for further study. 

209 



MEMORY MANAGEMENT CONCEPTS 



MEMORY MANAGEMENT CONCEPTS 

INTRODUCTION 
The use of memory management hardware in mapped systems 

permits the use of more physical memory, task relocation, and the 
sharing of data and code. It also offers a memory protection 
feature. This module explains how the memory management hardware 
works and how the software interacts with the hardware. Later 
modules explain the use of memory management for overlays and 
shared regions. 

OBJECTIVES 
1. To list the differences between mapped and unmapped 

systems 

2. To list the advantages of memory management 

3. To use virtual and physical addresses, windows, and 
regions to describe the mapping of a task. 

RESOURCES 
1. RSX-IIM/M-PLUS Task Builder Manual, Chapter 2 

2. PDP-II Processor Handbook, Chapter 6 (optional) 

213 



MEMORY MANAGEMENT CONCEPTS 

GOALS OF MEMORY MANAGEMENT 

The KT-ll memory management unit is a device available on 
medium and larger PDP-II's. While the 16-bit addressing structure 
of the PDP-II's limits processors without a memory management unit 
to 32K words of addressing, processors with a memory management 
unit can support up to l28K words, or even as much as 2000K words 
(2 Meg words), depending on the model of the processor. 

In addition to this extension of the processor's addressing 
space, a memory management unit offers other features not 
otherwise available. With memory management, tasks can be loaded 
and executed at different locations in memory without being 
modified in any way. This means that the operating system can 
load a task into any available space within a system-controlled 
partition; therefore a task need not wait until a specific 
location is available. It also means that the Executive can move 
tasks around to make better use of available space (shuffling). 

Memory management also provides a mechanism for controlling 
tasks' access to memory. Memory areas can be protected: 
unrelated tasks can reside in memory simultaneously and are 
normally prevented from accessing each other's memory. However, 
tasks which do need to share memory locations are allowed to do 
so, under the rules of memory access built into the Executive. 

HARDWARE CONCEPTS 

Mapped Versus Unmapped Systems 

A system which has the KT-Il memory management unit installed 
and enabled is called a mapped system. Otherwise, it is called an 
unmapped system. Small PDP-II's, such as the PDP-II/03 and 
PDP-II/04 are always unmapped. The KT-II unit is available as an 
option on some medium sized processors, including the PDP-Il/35 
and PDP-ll/40. It is a standard feature on large and newer 
processors such as the PDP-II/70, PDP-ll/24, PDP-ll/23-PLUS and 
PDP-II/44. 

Table 5-1 shows a comparison of unmapped and mapped systems 
on various PDP-II's. 

215 



MEMORY MANAGEMENT CONCEPTS 

Figure 5-3 shows the layout of a mapped system with 22-bit 
addressing. Twenty-two bits give an addressing limit of 2048K 
words or 4096K bytes. Again, the top 4K words correspond to the 
I/O page. 124K words are used for UNIBUS mapping, which is needed 
when peripheral devices access memory directly (DMA devices). 
UNIBUS mapping is necessary to convert an 18-bit UNIBUS address to 
22-bit physical memory addresses. This leaves 1920K words of 
physical memory. Again, the Executive, including POOL, usually 
takes 16K words or 20K words, leaving 1904K words or 1900K words 
for tasks. 

28K WORDS 
OF 
MEMORY 

4K WORDS { 

(28-N)K WORDS 

N K WORDS { 
(N~20) 

I/O PAGE 

TASK 

AREA 

'DSR 1------------
EXECUTIVE 

PHYSICAL 
ADDRESSES 
(IN OCTAL) 

177777 

160000 
157777 

32K WORDS 
OF ADDRESSING 

o 
TK-7747 

Figure 5-1 Physical Address Space in an Unmapped System 

217 



1920K 
WORDS OF 
MEMORY 

MEMORY MANAGEMENT CONCEPTS 

4K WORDS 

124K WORDS 

1904K OR 
1900K WORDS 

16K OR 20K 
WORDS 

I/O PAGE 

RESERVED 

(UNIBUS MAP) 

TASK 

AREA 

DSR ----------
EXECUTIVE 

PHYSICAL 
ADDRESSES 
(IN OCTAL) 

17777777 

17760000 
17757777 

17000000 
16777777 

o 

2048K WORDS 
OF ADDRESSING 

TK-7758 

Figure 5-3 Physical Address Space in a 22-Bit Mapped System 

219 



MEMORY MANAGEMENT CONCEPTS 

On a mapped system, the Task Builder fixes a task's code in 
virtual address space, but the actual mapping of virtual addresses 
to physical addresses is performed at run time by the memory 
management unit. Tasks may be loaded at different physical 
addresses and still run correctly. As you will see later, mapping 
also allows a task to access several separate pieces of physical 
memory. 

VIRTUAL 
ADDRESSES 
(IN OCTAL) 

VIRTUAL 
MEMORY 

137777 .---------..,.- - -- - ----

TASK 

8K WORDS 

100000 '--_______ a-. _______ _ 

PHYSICAL 
MEMORY 

TASK 

8K WORDS 

DSR 1'-----------

EXECUTIVE 

16K WORDS 

PHYSICAL 
ADDRESSES 
(IN OCTAL) 

140000 
137777 

100000 
77777 

o 
TK-7759 

Figure 5-4 Virtual Addresses Versus Physical Address 
on an Unmapped System 

221 



MEMORY MANAGEMENT CONCEPTS 

The KT -11 Memory Management Unit 

Mode Bits - Bit 15 and 14 and bits 13 and 12 of the processor 
status word (PSW) indicate, respectively, the current and previous 
modes of processor operation. The mode may be: 

• Kernel mode (00) 

• User mode (11) 

• Supervisor mode (01). (Supervisor mode is not used on 
RSX-11M, and is available only on 11/45, 11/55, 11/44, and 
11/70.) 

The purpose of having different processor modes is to provide 
for a privileged mode (kernel) where the Executive can execute 
privileged instructions (e.g., HALT), and can manipulate 
privileged locations (e.g., PSW), and a non-privileged and 
protected mode (user) where tasks usually execute. 

Active Page Registers (APRs) - The Active Page Registers (APR's) 
in the KT-11 memory management unit are used to define the mapping 
or correspondence between virtual and physical addresses. On an 
RSX-11M system, one set of eight APRs is used at a time to define 
this mapping. There is one set of APR's used for each processor 
mode; one is used in user mode and another set is used in kernel 
mode. 

At any given time, the set of APRs in use is determined by 
the mode bits in the processor status word. Each APR in the set 
in use maps a specific range of virtual addresses, as shown in 
Table 5-2. The APR can map zero words, if not in use, up to the 
full 4K words, always in even multiples of 32 words. In 
actuality, the hardware may contain additional sets of 'APRs, but 
they are not used under RSX-11M. 

Each APR consists of two 16-bit registers, a page address 
register (PAR) and a page descriptor register (PDR). The page 
address register contains a base address used in mapping the 
appropriate range of virtual addresses. 

223 



MEMORY MANAGEMENT CONCEPTS 

AYI virtual addresses within the main task area are mapped to 
physical addresses beginning at location 00432400(8). This means 
in effect that each virtual address corresponds to an offset from 
location 00432400(8). The page descriptor registers, not 
illustrated, indicate that APRs 0, 1, and 2 map 4K words each, but 
that APR 3 maps only 2K words. 

VIRTUAL 
ADDRESSES 
(IN OCTAL) 

160000 

140000 

120000 

100000 

70000 

60000 

40000 

VIRTUAL 
MEMORY PAR 

APR VALUE 

7 015322 

6 000000 

5 000000 

4 000000 

3 005124 

2 004724 

TASK 14K WORDS 
1 004524 

20000 

0 004324 
o L...-______ ....I-L_ 

-
----

-- ---

...... -----...... 

--- --

PHYSICAL 
MEMORY 

RESIDENT COMMON 

TASK 

AREA 

-

-

-

PHYSICAL 
ADDRESSES 
(IN OCTAL) 

1532200 

512400 

472400 

452400 

432400 

TK-7761 

Figure 5-6 Page Address Registers Used in Mapping a Task 

225 



MEMORY MANAGEMENT CONCEPTS 

In easier terms, virtual address 40000(8) will be located at 
the base physical address. A virtual address I3422(8) bytes above 
that will be I3422(8) bytes above that physical location. The 
base physical address is determined by converting the block number 
in APR2, 004724(8), to the physical address 00472400(8). (Recall 
that a block of memory is I00(8) bytes.) Therefore, address 
053422(8) is mapped to the location shown below. 

Example 2 

00472400(8) Base physical address 
+ 13422(8) Displacement 

00506022(8) Actual physical address 

Convert the virtual address I65275(8) 

+-------+---------------------------+ 
I65275(8) = I 1 1 1 I 0 1 0 1 0 1 0 1 1 1 1 0 1 I (2) 

+-------+---------------------------+ 
7 05275(8) 

APR Offset 

APR 7 = 0I5322(8) blocks = 0I532200(8) Base physical address 
+ 05275(8) Displacement 

The memory management 
adder and a number of 
performed at extremely 
PDP-II Processor Handbook 
more detail. 

0I537475(8) Actual physical address 

unit performs this conversion using an 
internal registers. The conversion is 

fast speeds. Chapter 6 of the 
discusses this conversion process in 

227 



MEMORY MANAGEMENT CONCEPTS 

Memory management directives can be used to create and 
initialize additional windows while a task executes. Space for 
these additional windows must be allocated in the task header at 
task-build time, using the "WNDWS" option. Memory management 
directives and their use are discussed in Module 8 on Dynamic 
Regions. 

Regions 

A region is a contiguous area of physical memory to which a 
task may get access rights. A region must be contained completely 
within a partition. It can be part of a partition or the entire 
partition. 

There are three types of regions in an RSX-llM system. 

1. Task region - an area in a user-controlled partition or a 
system-controlled partition into which a task is loaded 
and then executes. 

2. Static Common Region - an area in a common type partition; 
e.g., a shared common for data or a shared library for 
code. 

3. Dynamic Region - an area in a system-controlled partition 
which is created dynamically, at run time, using the 
memory management directives. 

A task gets access rights to a region by "attaching" to the 
region. Before the Executive attaches a task to a region, it 
checks its needed access against the protection on the region. 
This is similar to checking file protection before allowing file 
access. If the task passes the check on access rights, then the 
Executive attaches the task to the region by establishing a 
connection between the two. The total amount of physical memory, 
made up of regions, to which a task is attached is called a task's 
logical address space. 

After a task is attached to a region, it actually accesses or 
uses the region by first "mapping" one of its virtual address 
windows to a part or to all of the region. During this process, 
the Executive uses the window and region information to fill in 
the APRs. After this, references in the task to virtual addresses 
in that window map to physical addresses within the region. A 
region does not have to be the same size as a window. Generally 
it is of equal or larger size than the window. 

229 



MEMORY MANAGEMENT CONCEPTS 

VIRTUAL 
ADDRESSES 
(IN OCTAL) 

WINDOW 

2 160000 ! 
177777 

WINDOW 147777 
1 140000 

WINDOW 
o 

120000 

100000 

63777 
60000 

40000 

20000 

VIRTUAL 
MEMORY 

TASK 
WINDOW 

(13K WORDS) 

OL.... _______ '--

PAR 
APR VALUE 

7 006056 

6 014764 

5 000000 

4 000000 

3 006232 -
2 006032 

1 005632 

0 005432 

/ 
II 
I 

/ 
I 

I 
II 

II 
II 

I.L_ 
I -

1fT 
II ---

r- -.... 

-- --

PHYSICAL 
MEMORY 

LIBRARY 

COMMON 

TASK 
REGION 

PHYSICAL 
ADDRESSES 
(IN OCTAL) 

1476400 

605600 

543200 

TK-7762 

Figure 5-7 A Task with Three Windows Mapped to Three Reg ions 

231 



OVERLAYS 



OVERLAYS 

INTRODUCTION 
Overlays are used to allow a task to be developed and .run if 

there is not enough available physical or virtual memory for a 
task. This module explains the various overlay techniques and how 
to use them. 

OBJECTIVES 
1. To determine whether to use a disk-resident or 

memory-resident overlay in a given situation 

2. To construct overlay structures 
descriptor language 

3. To wr i te tasks using overlays. 

using the overlay 

RESOURCE 
• RSX-IIM/M-PLUS Task Builder Manual, Chapters 3 and 4 

235 



OVERLAYS 

CONCEPTS 

A task may be too large to fit in the available memory. This 
may happen because it is larger than the total amount of memory on 
the system. More likely, it is because the task is larger than 
the partition it is to run in, or the available space within the 
partition. The partition is probably used by other tasks at the 
same time; therefore, the available space may be considerably 
less than the full partition. 

For example, a 20K word task may have to fit in 15K words of 
memory. The task can use overlays and load only portions of the 
code at a time, and use just 15K words of memory. 

Typically, the pieces which overlay each other contain 
subroutines. As an example, consider a task with main code and 
two subroutines, G and H, which overlay each other. The main code 
calls subroutine G first, causing G's code to be read into memory. 
Later, the main code calls subroutine H, causing H's code to be 
read into the same memory locations, overlaying subroutine G. If 
the main code later calls G, G's code overlays subroutine H. As 
the task executes, overlaying is performed whenever necessary. 
You can choose to have all loading of overlay segments done 
automatically, or you can load them manually with specific calls 
to a loading routine. 

In addition to physical memory limitations, tasks on PDP-II 
systems have virtual memory limitations. As discussed in the last 
module, a task can only use a maximum of 32K words of virtual 
addresses at a time. A task may require more than 32K words of 
physical and also virtual memory. For example, a task may need 
40K words of physical memory, exceeding the virtual addressing 
limit. This means that the task can't address all of its code. 
Overlays loaded from disk permit this task to run in 32K words or 
less of physical memory, and allow all of the code loaded at any 
given time to be addressed. Therefore, 32K words of code or less 
are loaded and addressed at anyone time, satisfying the virtual 
address limit. 

Another method is to use special kinds of overlays. With 
these, all 40K words of code can be loaded into memory, but the 
task maps only 32K words of code at a time. This means that the 
task stays within the virtual addressing limits even though it 
uses 40K words of physical memory. 

These special kinds of overlays are called memory-resident 
overlays. They overlay by remapping, rather than reloading, code 
into memory. 

237 



OVERLAYS 

Main Segment: PROG 

PROG calls: SUBI, SUB2, SUB3 

SUBI calls: A, B 

SUB2 calls: none 

SUB3 calls: C, D, E 

Si ze 
Segment in Words 

PROG 4K 
SUBI 2K 
SUB2 3K 
SUB3 lK 
A lK 
B 2K 
C lK 
D 2K 
E lK 

Total 17K 

Example 6-1 Description of an Overlaid Task 

239 



OVERLAYS 

STEPS IN PROGRAM DEVELOPMENT USING OVERLAYS 

Use the following steps to develop a task which uses 
overlays. 

1. Assemble each module, producing an .OBJ file for each 

2. Use the editor to create an overlay descriptor file 
(defines the overlay structure for the Task Builder). 

3. Task-build using the overlay descriptor file as the input 
file. 

THE OVERLAY DESCRIPTOR LANGUAGE (OOL) 

The overlay descriptor language (ODL) is a fairly simple 
language which is used to define the overlay structure for the 
Task Builder. Statements are placed in a text file which has a 
file type 'ODL' (e.g., EXAMPLE. ODL). This text file is identified 
to the Task Builder as a special file by using the 
IOVERLAY DESCRIPTION input file qualifier (IMP in MCR) in the 
task-build command line. 

ODL Command Line Format 

The ODL command lines use the format that follows. 

label: directive argument-list icomment 

where: 

label - A one- to six-character symbolic, required only 
on an .FCTR directive. 

directive - one of the following: 

.ROOT - indicates the start of the overlay tree 

.END - ind icates the end of input 

• FCTR - allows naming of subtrees 

• NAME - allows naming a segment and assigning 
attr ibutes 

.PSECT - allows special placement of a global 
program section (Psect). 

241 



OVERLAYS 

Examples of ODL 

1. X, the root of a task, calls subroutines Y and z. 

.ROOT 

.END 

Y 

X 

X-(Y,Z) 

z 

Explanation: X is the root segment, Y and Z are each 
overlay segments. virtual addresses are assigned to X 
first. Starting after that, yand Z begin at the same 
virtual address. Either Y or Z (never both) is loaded 
and mapped using those virtual addresses. 

2. using the information from Example 1, Y calls subroutines 
U and V. 

.ROOT 

.END 

u I 
Y 

V 

Z 

X 

X-(Y-(U,V) ,Z) 

Explanation: Add to Example 1. U and V are overlay 
segments which overlay each other. After the last 
address for Y, virtual addresses begin for U and V. 

243 



OVERLAYS 

TYPES OF OVERLAYS 

There are two types of overlays available, disk-resident 
overlays and memory-resident overlays. In fact, both are loaded 
from disk. The distinction is that disk-resident overlays are 
loaded from disk every time they are needed, while 
memory-resident overlays are loaded from disk only the first time 
they are needed. After that, they remain in memory and remapping 
is used to overlay segments as needed. 

Disk -Resident 

Disk-resident overlays are available on all RSX-IIM systems. 
An example of a task with a root segment and three disk-resident 

'overlays is shown in Figure 6-3. 

On initial load, only the root segment MAIN is loaded. 
Overlay segments are loaded from disk whenever required. This 
typically occurs when a subroutine in the segment is called. So 
if the root segment MAIN contains a call for subroutine A, for 
example, segment A is loaded from disk prior to the transfer of 
control to A. 

If, after the subroutine returns control to MAIN, a call is 
made to subroutine S, segment S is loaded into memory right over 
segment A. If a call is later made to subroutine C, segment C is 
loaded right over segment S. This loading of overlay segments is 
performed whenever necessary. The subroutines may be called in 
any order, and each subroutine may be called any number of times 
in the course of task execution. 

The 
overlay 
bo undary 
virtual 
address. 
the code 

same starting virtual address is assigned to all three 
segments, A, S, and C, beginning at the next 32(10) word 
after the code for MAIN. So A, S, 'and C use the same 
addresses and are loaded starting at the same physical 

One virtual address window maps the entire task; just 
in memory is changed when an overlay is loaded. 

This technique is useful when the entire task is too large 
to fit into the space allowed for it. In the example in Figure 
6-3, a 22K word task runs in 15K words of physical memory. 
Disk-resident overlays are the default overlay type. The ODL 
examples in the previous section all produce disk-resident 
overlays. 

245 



OVERLAYS 

Memory-Resident 

Memory-resident overlays are available only on mapped 
systems which support the memory management directives. Figure 
6-4 shows the same task as in Fig ure 6 -3, thi s time wi th 
memory-resident overlays. On initial load, again only the root 
segment MAIN is loaded. The first time an overlay segment is 
needed it is loaded from disk. However, once a segment is 
loaded, it remains in memory and is not reloaded from disk. 

If subroutine A is called first, overlay segment A is loaded 
and virtual address window 1 is mapped to A. If, after the 
subroutine returns control to MAIN, a call is made to subroutine 
B, then segment B is loaded, but not directly over A. Instead, 
it is loaded into another area of memory, and then virtual 
address window 1 is mapped to B. If a call is later made to 
subroutine C, segment C is loaded into another area of memory, 
and virtual address window 1 is mapped to C. 

The real gain in run time efficiency is made when an overlay 
is needed again. If another call is made to A, overlay segment A 
does not have to be loaded again from disk. It is already 
memory-resident. Therefore, virtual address window 1 is simply 
remapped from segment C to segment A. Any additional overlaying 
is performed by remapping, with no further loading of overlay 
segments necessary. Again, the subroutines may be called in any 
order and each subroutine may be called any number of times. 

The advantage of this approach is that after the first load, 
it is much faster than using disk-resident overlays. However, 
there are no savings in the use of physical memory. In fact, a 
bit more memory is required than with a non-overlaid task. So 
the main use of memory-resident overlays is for overcoming the 
32K word virtual address limit when execution time efficiency is 
important. A 44K word task can use memory-resident overlays if 
there is enough memory available and the time necessary for 
loading disk-resident overlay segments is unacceptable. 

The root segment uses one window, plus each overlay area 
requires a separate window. That means that virtual addresses 
for each overlay segment begin at the starting virtual address 
for the next highest APR, corresponding to a 4K word boundary. 
Notice that A, B, and C all begin at virtual address 60000(8), 
for APR3, because MAIN is 9K words long. MAIN uses all 4K words 
in APRs 0 and 1, plus lK word in APR2 (virtual addresses 40000(8) 
th r 0 ug h 43777 (8» • 

247 



160000 APR7 

140000 APR6 

120000 APR5 

{

100000 APR4 
WINDOW 
1 

60000 APR3 

~INDOW 20000 APR1 

OVERLAYS 

VIRTUAL 
MEMORY 

-----
--~ 

MAIN 
(ROOT SEGMENT) 

(9K WORDS) INITIAL LOAD 

AND MAP 
~ 

{ 

40000 APR2 

o APRO ..... _______ "'- _ __ _ 

-

-

PHYSICAL 
MEMORY 

C 

B 

A 

MAIN 

(ROOT SEGMENT) 

-------
HEADER AND STACK 

TK-7767 

Figure 6-4 An Example of Memory-Resident Overlays 

249 



OVERLAYS 

LOADING METHODS 

There are two loading methods, autoload and manual load. 
With autoload, any necessary loading and/or remapping (in the 
case of memory-resident overlays) is done automatically and is 
transparent to the program. With manual load, the overlay 
segments are loaded by specific user calls to a loading routine. 
Autoload and manual load cannot be mixed in the same task. 

Autoload 

When a call is made to a subroutine in an overlay segment, 
an autoload routine takes control before the transfer to the 
subroutine is made. It checks to find out whether the required 
segment is already loaded, or loaded and mapped. It performs any 
necessary loading and/or remapping. After that, the transfer to 
the called subroutine is made. 

Autoload is path loading, meaning that all segments along 
the path to the required overlay segment are loaded. For 
example, in example 2 in the previous section, with root X and 
subroutines Y, U, V, and Z, if a call from segment X is made to 
subroutine U, both yand U are loaded. Note that autoload loads 
only overlay segments along the path which are not already 
loaded. 

Autoload is indicated by an asterisk (*) before an overlay 
specification in an ODL line. An asterisk outside a set of 
parentheses applies to all levels inside the parentheses. 

The advantages of autoload are that it is easy to use and 
does not require changes in the source code. One disadvantage is 
that it increases the size of the segments because the autoload 
code plus its data structures must be included in the task. 
Another is that it executes slower than manual load, because the 
autoload code has to check for whether the required segment is 
available or not each time an autoloadable segment is called. In 
addition, autoload must be performed synchronously. See section 
4.1 on Autoload in the RSX-llM/M-PLUS Task Builder Manual for 
more information. 

251 



OVERLAYS 

Manual Load 

With manual load, you must call the subroutine $LOAD to load 
and/or map any required overlay segment before calling a 
subroutine in that segment. You must also keep track of which 
segments are currently available, to avoid a transfer of control 
to an incorrect segment and to avoid unnecessary calls to the 
loading subroutine. Manual load is not path loading. In Example 
2 of the previous section, if X calls U, it can load just segment 
U, without loading segment Y, unless it is desirable to load 
both. See section 4.2 on Manual Load in the 
RSX-llM/M-PLUS Task Builder Manual for more information. 

Manual load is the default loading method. Whenever there 
are no asterisks (*) in an ODL file, manual load is used. 

The advantages of using manual load are that it results in 
smaller overlay segments, is usually more run time efficient, and 
overlay segments can be loaded either synchronously or 
asynchronously. The disadvantages are that you must keep track 
of which overlay segments are loaded and use special code in the 
so urce prog ram. 

Comparison of a Task With No Overlays, to One With Disk-Resident 
Overlays, and One With Memory-Resident Overlays 

Example 6-1, shown earlier in the module, and repeated below 
for convenience, shows a main program which calls a subroutine, 
which in turn calls another subroutine, etc. Note that the sizes 
shown for the various parts of the task are only approximate. 

253 



OVERLAYS 

Task-build command: 

LINK/MAP PROG,SUBl,A,B,SUB2,SUB3,C,D,E 

Partition name : GEN 
Identification : 01 
Task UIC [305,301] 
Stack limits: 000254 001253 001000 00512. 
PRG xfr address: 021254 
Total address windows: 1. 
Task imase Slze 17792. words 
Task address limits: 000000 105357 
R-W disk blk limits: 000002 000107 000106 00070. 

*** ROOT SEGMENT: PROG 

R/W mem limits: 000000 105357 105360 35568. 
Disk blk limits: 000002 000107 000106 00070. 

Example 6-2 Map File of Example fi-l Without Overlays 

255 



OVERLAYS 

PR OG • OD L f i 1 e : 

.ROOT PROG-*(SUB1-(A,B) ,SUB2,SUB3-(C,D,E)) 

.END 

Task-build command: 

LINK/MAP PROG/OVERLAY_DESCRIPTION 

Partition name : GEN 
Identification : 01 
Task urc [305,301J 
Stack limits: 000260 001257 001000 00512. 
PRG xfr address: 021260 
Total address windows: 1. 
Task ima~e size 8800. words 
T~sk address limits: 000000 042237 
R-W disk blk limits: 000002 000120 000117 00079. 

EX63.TSK Overla~:l df~sc T' :i. Fit i on: 

Bas)(-? Top Len~.=ith 
.. __ .... _ ......... 

000000 022177 022200 09344. F'ROG 
()22200 0:~2233 010034 04124. SUB1 
()32234 0362:~7 004004 02052. 
032234 042237 OJ.0004 04100. 
022200 0:~6203 014004 0614B. SUB2 
022200 026247 004050 02088. SUB3 
()26250 032253 004004 ()2052. 
026250 036253 010004 04100. 
()26250 032253 004004 020~7;2 • 

A 
B 

C 
D 
E 

Example 6-3 Map File of Example 6-1 With Disk-Resident OVerlays 

257 



OVERLAYS 

PR OG • 00 L f i 1 e : 

.ROOT PROG-*! (SUB1-! (A,B) ,SUB2,SUB3-! (C,D,E)) 

.END 

Task-build command: 

LINK/MAP PROG/OVERLAY_DESCRIPTION 

Partition name : GEN 
Identification : 01 
Task UIC [305,3013 
Stack limits: 000320 001317 001000 00512. 
PRG xfr address: 021320 
Total address windows: 3. 
Task ima~e size 18464. words 
Task address limits: 000000 077777 
R-W disk blk limits: 000003 000122 000120 00080. 

EXDOVR.TSK Overlay df.~sC T' :i. F,t :i. ('),..,: 

B'3~:;.e TOF' I...€~ngth --_ ........ -.. 
000000 023077 023100 09792. PROG 
040000 050077 01.0100 04:1.60 + SUBl 
060000 064077 004100 021.12. 
060000 070077 010100 04160. 
040000 054077 014100 06208. SUB2 
040000 044077 004100 021.:1.2. SUB3 
060()()0 064077 004100 02112. 
060000 070077 010:1.00 ()4160. 
060000 064077 004100 021.:1.2. 

A 
B 

C 
II 
E 

Example 6-4 Map File of Example 6-1 With Memory-Resident OVerlays 

259 



OVERLAYS 

Table 6-1 Comparison of Overlaying Methods (Cont) 

Table 6-1 compares the three overlaying methods. In addition 
to the various sizes, it lists the advantages and disadvantages of 
each approach. 

Remember that it is also possible to mix memory-resident and 
disk-resident overlays in a task. For example, the first level 
(SUB1, SUB2, and SUB3) could be memory-resident, and either or 
both second levels (A, B or C, D, E) could be disk-resident. 

261 



OVERLAYS 

Include needed modules from FOROTS.OLB in the root segment 
in segment A, and in segment B. You should specify the 
library in each segment which may need it. otherwise, if 
segment A needs a library module not already included for 
the root segment, the library is not searched again for 
mod ule A. 

An Overlay Example 

Example 6-5 is a simple task with a root segment ROOT and two 
overlay segments, P and Q. The following calling sequence is used 
during the execution of the task. 

ROOT calls P 
ROOT calls Q 

Figure 6-5 shows an overlay tree and a memory allocation 
diagram for this task. 

The code for Example 6-5 is separated into three different 
modules, one for each segment. The source file for the root 
segment ROOT contains the startup code and controls the overlay 
loading by calls to the subroutines. The source file for each 
overlay segment, P and Q, contains the subroutine code. 

OVERLAY TREE 

MEMORY ALLOCATION DIAGRAM 

P Q P Q 

T 
ROOT ROOT 

TK-7755 

Figure 6-5 Task With Two Overlay Segments 

263 



OVERLAYS 

The notes below are keyed to Example 6-5. 

o 
o 

e 
o 

o 

On initial load only the root segment ROOT is loaded. 

with autoload, the call to subroutine P causes the 
autoload routine to load overlay segment P from disk, and 
~hen transfer control to the subroutine. 

Subroutine P displays a message and returns. 

The call to subroutine Q causes the autoload routine to 
load overlay segment Q from disk over segment P, and then 
transfer control to the subroutine. 

Subroutine Q displays a message and returns. 

If another call were added to subroutine Q, the autoload 
routine would check to make sure that overlay segment Q is already 
loaded, and would then transfer control to Q. If another call 
were added to subroutine P, the autoload routine would check and 
find that overlay segment P is not loaded. It would then load 
segment P over segment Q and transfer control. 

To use manual load, use additional code to load the segments 
into the root segment ROOT. Also, modify the .ODL file, omitting 
the asterisk (*). The files MLROOT.MAC and MLEXDOVR.ODL on the 
tape provided with this course are modifications of ROOT.MAC and 
EXDOVR.ODL for manual load. Check UFD [202,3] for these files. 
See your course administrator if you have difficulty finding them. 

265 



1 
2 
3 
4 
5 
6 
7 
8 
9 

lO 
11 
12 
13 
14 
15 

[

16 o 17 
18 
19 

;+ 

; 

OVERLAYS 

.TITLE 0 

.IDENT 10:/.1 

.ENABL. LC 

FILE Q.MAC 

Enable lower case 

; This subroutine displa~s a messsSe and returns. 

.MCALL aIOW$C External 5~5tem macros 
; 
MES: .ASCII ISEGMENT 0 IS NOW LOADED. SUBROUTINE 0/ 

.ASCII I IS EXECUTING./ 
LMES ::: •. - MES 
.EVEN Move to word boundar~ 

RETURN 
.END 

; Return 

Di~;F'J.a~ 

me5~;ai:jf~ 

F~l.Jn Sess i on 

>RUN EXDOVR 
THE MAIN SEGMENT IS RUNNING AND WILL. CALL P. 
SEGMENT P IS NOW LOADED. SUBROUTINE P IS EXECUTING. 
THE MAIN SEGMENT WIL.L NOW CALL o. 
SEGMENT a IS NOW LOADED. SUBROUTINE Q IS EXECUTING. 
THE MAIN SEGMENT WILL NOW EXIT. 

Example 6-5 A Task With Two Overlay Segments (Sheet 2 of 2) 

267 



OVERLAYS 

Table 6-2 How Global Symbols Are Resolved 

269 



OVERLAYS 

Subroutine Calls 

With manual load, since the global symbols are resolved 
directly to the virtual address corresponding to the symbol, the 
transfer is directly to the subroutine. The program must ensure 
that the correct overlay segment is loaded before making the call. 
Otherwise, the transfer will transfer control to that virtual 
address in the wrong code, causing unexpected results. 

With autoload, the global symbols are resolved directly for 
calls downward toward the root. This works because path loading 
ensures that the segments along the path closer to the root are in 
fact loaded. The calls to subroutines away from the root are 
resolved through autoload vectors. This causes the call to the 
subroutine to transfer control first to the autoload routine, 
allowing it to check and load any needed overlay segments before 
transferring control to the virtual address of the subroutine. 

Data References 

The safest place for all data is in the root segment. Data 
placed in an overlay segment is only accessible when the overlay 
segment is loaded and the reference is resolved directly. This 
means that with manual load, the data is accessible when the 
segment is loaded. 

With autoload, on the other hand, it's not that simple. 
References out from the root are usually not resolved directly, 
but through autoload vectors. For example, the reference to the 
global symbol A, a data label, is resolved to the label of an 
autoload vector within the same overlay segment. The actual 
virtual address of A is a value within the autoload vector. 
Therefore, a reference to A references the autoload vector, not 
the data itself. In addition, a reference to A does not cause the 
overlay segment to be loaded. It is loaded only on a--Call to a 
subroutine. Although there are some ways with autoload to get 
references resolved directly, it is difficult. 

With disk-resident overlays, another problem arises with any 
data changed at run time. If the data is in an overlay segment, 
it is reinitialized every time the segment is reloaded from disk, 
since the original copy of the code is reloaded. This problem 
occurs with both manual load and autoload. 

271 



OVERLAYS 

The Task Builder normally combines together allocations for 
Psects of the same name. If the psects have the local (LCL) 
attribute, combining is only done within a single overlay segment. 
If the psects have the global (GBL) attribute, combining is done 
across overlay segment boundaries. For psects with the GBL 
attribute, by default, these allocations are collected in the 
segment specifying the psect which is closest to the root segment. 
Therefore, if the Psect MYDATA is specified in the root segment 
and also in one or more overlay segments, the complete allocation 
is placed in the root segment. The OVR attribute tells the Task 
Builder to begin both allocations at the same virtual address. 
Consider Example 2 above. The local symbol M, defined locally in 
the overlay segment, corresponds to the beginning of the Psect in 
the root segment, the address of the first 2. The instruction INC 
M+2 again increments the second 2 to a 3. 

See Appendix E for additional information on how the Task 
Builder uses the various psect attributes. Also see section 3.2.4 
(on Allocation of program Sections in a Multisegment Task) in the 
RSX-llM/M-PLUS Task Builder Manual for a description of how the 
Task Builder allocates Psects in an overlaid task. 

Two other methods can be used to place in the root a Psect 
which is not defined in the root. If a Psect has the SAV 
attribute, the Task Builder automatically places that psect's 
allocation in the root. If the Psect does not have the SAV 
attribute, then the .PSECT Overlay Descriptor Language statement 
can be used to specify placement of a particular psect in the 
root, overriding the default placement. See section 3.4.5 (on the 
.PSECT Directive) in the RSX-llM/M-PLUS Task Builder Manual for an 
example of the use of .PSECT ODL directive. 

Example 6-6 is a more complex example of the use of overlays. 
It shows the use of both techniques for placing data in the root 
and referencing it from overlay segments. The program calling 
sequence is shown below. 

273 



OVERLAYS 

The following notes are keyed to the example. 

o The psect OTHER is set up for using overlaid Psects to 
reference the data. Since it is defined in the root, the 
entire allocation for OTHER is in the root segment. aPI, 
OP2, and ANS can be just locally defined, since the 
overlay segments define the locations as offsets from the 
start of the Psect. On the other hand, global symbols can 
be used instead, if desired. The data is an argument 
block for a call to $EDMSG. 

«t The references to the data from overlay segment JOBI are 
set up by specifying the Psect OTHER, then defining local 
symbols. .BLKW statements are used because you are just 
defining symbols and offsets. The local symbols NUMI,· 
NUM2, and SUM correspond to aPI, OP2, and ANS, 
respectively, in MAIN. 

t) The references to the data from overlay segment JOBXX are 
set up in a similar way. This time the same local symbols 
aPI, OP2, and ANS are used again. 

C» The references to the data from overlay segment A are also 
set up in a similar way. This time only the starting 
address of the argument block is needed. 

o The grand total and the ASCII operand (for $EDMSG) are 
defined with the global symbols TOT and OP. 

o The reference to TOT and OP in JOBl, and JOBXX, are 
automatically resolved directly. No special coding is 
needed in the referencing segment. TOTAL also references 
TOT, this time from the root segment (because TOTAL is 
al so in the root segment). 

o Note that data which is pure (read-only) and referenced 
within the overlay segment only, causes no problems when 
placed in an overlay segment. The references are direct 
and the data is only referenced while the segment is 
loaded. 

o The input buffer for the job number typed in by the 
operator, and the output buffer for displaying an 
operation's results are contained in an overlay segment 
and changed at run time. However, since the data is 
accessed only from within the overlay segment, and only 
while the segment is still loaded, no problems result. 
If, in fact, the MAIN segment referenced this data after a 
call to B was made, it would no longer work correctly 
because on reload, the data is reinitialized. 

275 



OVERLAYS 

52 ; Set UP for loop 
53 MOV t3,R4 ; Counter 
54 lOOP: QIOW$C IO.WVB,5,l",,<MES3,lMES3,40>; Write MES3 
55 CLR ANS Clear answer in case 
56 of no operation 
57 CALL A Call subroutine A 
58 SOB R4,lOOP Decrement counter and 
59 ; loop back until done 
60 QIOW$C IO.WVB,5,1",,<MES4,lMES4,40>; Write MES4 
6:1. CAll TOTAL ; Call routine to 
62 ; displa~ srand total 
63 QIOW$C IO.WVB,5,1",,<MES5,lMES5,40>; Write MES5 
64 EXIT$S ; Exit 
65 .END START 

1 
2 

;+ 

.TITL.E A 

.IDENT lOll 

.ENABlE lC Enable lower case 3 
4 
5 FILE A.MAC 
6 
7 This subroutine displa~s a messaSe and then asks which 
8 of two Jobs to do. It calls the appropriate subroutine 
9 to do the Job, displa~s the results, and then returns 

:1.0 to the main proSram. 
:I. :I. ; N •• 

12 
13 
14 
:L ~5 

0[ :1.6 
:1.7 
:I.B 
:1.9 
2() 

21 o 22 
2~5 

24 

ARG: 

MEa: 

PMES: 

EMES: 

OFMT: 
OBUFF: 

BUFF: 

.MCALL 

.NLIST 

.PSECT 

.BI . ..I<W 

.PSECT 

.ASCII 

.ASCII 

QIOW$C,QIOW$S 
BEX 

S~stem macros 
Do not list binar~ 

OTHER 
4 

€~xterls ions 
D,GBL,OVR,REL.,RW ; PSECT with data 

Set address for start 
of arsument block 

; Back to blank PSECT 
<:I.:I.>/SEGMENT A IS NOW LOADED. SUBROUTINI 
IE A IS EXECUTING.I 

LMES::::. -MES 
~ASCII <1:1.)/DO YOU WANT TO DO JOB :I. OR JOB 21 I 
I...PMES=. -·PMES 
.ASCII <:1.5><:I.:I.>INO SUCH JOB. SORRY.I 
L.EMES::::. -EMES 
.ASCIZ <1:1.)/%D %A %D == XD.%NI 
tBLKB 100. Buffer for displa~ of 

tBlKB 
.EVEN 

1 
,job resul ts 

Buffer for input char 
Move to word boundar~ 

Example 6-6 Complex Example Using Overlays (Sheet 2 of 6) 

277 



o[~~; 
28 
29 
3() 
~5:1. 

~~2 
;~3 

o~~~; 36 
37 o 38 
39 
40 
41 

1 

3 
4 

MES: 

,.JUEU: : 

;+ 

OVERLAYS 

.ASCII <15><11><11>/SEGMENT JOBI IS NOW LOADED.I 

.ASCII <15><12><11><11>/SUBROUTINE JOB1 IS EXI 

.ASCII IECUTING.I 
I...MES::::. ··"MES 
.EVEN 
.LIST BEX ; List binarw extensions 

QIOW$C 

MDV 
ADD 
ADD 
MDV 

RETU~~N 
.END 

.TITLE 

.IDENT 

.ENABL 

NUM1"SUM 
NUM~~" SUM 
SUM"TOT 
:JI:"+"OF' 

JOBXX 
lOll 
LC 

; meSScJse 
First operand to ans 
Add in other operand 
Add this answer to total 
Move operand for output 
displa~ 

l:;:etuT'n 

Enable lower case 

FILE JOBXX.MAC 

7 This subroutine performs a multiplication operation. 
8 It is assumed that local swmbols OF'I" OF'2 and ANS 
9 correspond to the same local swmbols in MAIN. The 

10 slobal swmbol TOT" defined in MAIN, is the address 
11 where the srand·total is maintained. 

[

16 

• ~i 
20 
21 

23 
24 
25 

0·- [26 
27 
28 
29 
:50 
31 

; " .. 

OP1: 

0f'2: 
ANS: 

MES: 

.MCALL CnOW$C 

.NLIST SEX 

.PSECT OTHER 

.BLKW 1 

.BLKW 1 

.BLKW 1 

.BLKW 1 

External s~stem macros 
Do not list binar~ 
e~·~terIS i ems 

D"GBL"OVR"REL,RW ; Data F'SECT 
1st operand 
Address of operation 

, in ASCII 
2nd operand 
Answer 

.f'SECT Back to blank PSECT 

.BLKW 1024.*2 Leave space to make 
, module larser 

.ASCII <15><11><11>/SEGMENT JOBXX IS NOWI 

.ASCII I LOADED.I<15><12><11><11> 

.ASCII /SUBROUTINE JOB2 IS EXECUTING.I 
LMES=.-MES 
.EVEN 
.L1ST BEX , List binarw extensions 

Example 6-6 Complex Example Using Overlays (Sheet 4 of 6) 

279 



1 
2 
::s 
4 
I::· 
... J 

;t 

OVERLAYS 

.TITLE B 

.IDENT 1011 

.ENABL LC 

FIl.E B.MAC 

Enable lower case 

b ; 
7 ; This subroutine displays a messaSe and returns 
f.J ;_. 
9 

10 
11 

0[1.2 
13 
14 
1:5 
:1.6 
:1.7 
lB 
19 
20 

MES: 

.MCALL QI0W$C 

.NLIST BEX 
; External system macros 
; Do not list binary 

eHtensions 
.ASCII (ll>/SEGMENT B IS NOW LOADED. SUBROUTINEI 
.ASCII I B IS EXECUTING./ 
I...MES :::: • .- MES 
.EVEN 

RETur~N 

.END 

; Move to word boundary 

; RetuT'n 

DisF,lay 
message 

1~lJn Sf?~;si on 

>RUN MRMAIN 
THE MAIN SEGMENT IS RUNNING AND WILL CALL A 

SEGMENT A IS NOW LOADED. SUBROUTINE A IS EXECUTING. 
DO YOU WANT TO DO JOB 1 OR JOB 21 1 

SEGMENT JOBl IS NOW LOADED. 
SUBROUTINE JOBl IS EXECUTING. 

5 t 2:::: ? 

THE MAIN SEGMENT WILL NOW CALL B 
SEGMENT B IS NOW LOADED. SUBROUTINE B IS EXECUTING. 

THE MAIN SEGMENT WILL NOW CALL A 
SEGMENT A IS NOW LOADED. SUBROUTINE A IS EXECUTING. 
DO YOU WANT TO DO JOB 1 OR JOB 21 2 

SEGMENT JOBXX IS NOW LOADED. 
SUBROUTINE JOB2 IS EXECUTING. 

~7j * 2 :::: 10 

THE MAIN SEGMENT WILL NOW CAl.L A 
SEGMENT A IS NOW LOADED. SUBROUTINE A IS EXECUTING. 
DO YOU WANT TO DO JOB 1 OR JOB 21 2 

SEGMENT JOB XX IS NOW LOADED. 
SUBROUTINE JOB2 IS EXECUTING. 

5 * 2 ~-:: 10 

THE MAIN SEGMENT WILL NOW CALL A 
SEGMENT A IS NOW LOADED. SUBROUTINE A IS EXECUTING. 
DO YOU WANT TO DO JOB 1 OR JOB 21 1 

SEGMENT JOBl IS NOW LOADED. 
SUBROUTINE JOBl IS EXECUTING. 

:5 + 2 .... 7 

THE MAIN SEGMENT WIl.L CALL TOTAL 
THE GRAND TOTAL IS 34. 

THE MAIN SEGMENT WILL NOW EXIT 

Example 6-6 Complex Exa.mple Using Overlays (Sheet 6 of 6) 

281 



A1 

AO 

OVERLAYS 

A2 

I 
y 
I 
X 
I 

CNTRl 

Y 

X 

CNTRl 

B1 
B2 

BO 

TK-8635 

Figure 6-7 Task Without Co-Trees 

283 



OVERLAYS 

Now do the tests/exercises for this module in the 
Tests/Exercises book. All but the first problem are lab problems. 
Check your answers against the provided solutions, either the 
on-line files (under UFD [202,2] or the printed copies in the 
Tests/Exercises book. 

If you think that you have mastered the material, ask your 
course administrator to record your progress on your personal 
progress Plotter. YoU will then be ready to begin a new module. 

If you think that you have not yet mastered the material, 
return to this module for further study. 

285 


