'8 0,0 0 600

)

80 9 09 0.9 0 © 95 920 0P 000050000685 900 6 80

i X

|

EY-0060E-SG-0101

Programming
RSX-11Min MACRO

A Self-Paced Course

Volume |

dlilgliltiall

EY-0060E-SG-0101

Programming
RSX-11M in MACRO

A Self-Paced Course

Student Workbook
Volume |

Prepared by Educational Services
of
Digital Equipment Corporation

Copyright © 1982, Digital Equipment Corporation.
All Rights Reserved.

The reproduction of this material, in part or whole, is
strictly prohibited. For copy information, contact the
Educational Services Department, Digital Equipment
Corporation, Bedford, Massachusetts 01730.

Printed in U.S.A.

The information in this document is subject to change
without notice and should not be construed as a com-
mitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished
under a license and may not be used or copied except
in accordance with the terms of such license.

Digital Equipment Corporation assumes no responsibility
for the use or reliability of its software on equipment
that is not supplied by Digital.

The following are trademarks of Digital Equipment Corporation,
Maynard, Massachusetts:

DIGITAL DECsystem-10 MASSBUS
DEC DECSYSTEM-20 - OMNIBUS
PDP DIBOL 05/8
DECUS EDUSYSTEM RSTS
UNIBUS VAX RSX

VMS IAS

9/82-14

SG

1

2

CONTENTS

VOLUME |

STUDENT GUIDE

INTRODUCTION . . . « « .+ &
PREREQUISITES. . .

COURSE GOALS AND NONGOALS
COURSE ORGANIZATION, . . .
COURSE MAP DESCRIPTION ., .
COURSE MAP . ¢ o o o o o o o o o o s o o o o =
COURSE RESOURCES & v ¢ « o ¢ o o o o o o o o @

L] L] L] .
* e ¢ o
e o o o
e o o o
e o e o
e e o o
* o o o
L L] . L]
o e o o

L]
.
3
3
]
.
.
*
®
L]

Required References. . . « ¢« ¢ o o o o o o
Optional ReferencesS. « « « « o o o o o o &

HOW TO TAKE THE COURSE . . ¢ ¢ ¢ ¢ ¢ o o o o o
PERSONAL PROGRESS PLOTTER. « &« ¢ o o o o o o

USING SYSTEM SERVICES

INTRODUCTION . . o ¢ ¢ ¢ o o o o o o o o o o o
OBJECTIVES ¢ ¢ ¢ o ¢ o o o o o o o o o o o o o
RESOURCES. . « ¢ & ¢ « & e o s e e e o o e @
WHAT IS A SYSTEM SERVIC]E,"> . e e o o o o
WHY SHOULD YOU USE SYSTEM SERVICES'> o o e

To Extend the Features of Your Programmlng
Language « « o o o o o o o o o o o o s o »
To Ease Programming and Maintenance. . . .
To Increase Performance. . « « o« o o o o &

WHAT SERVICES ARE PROVIDED?. . . ¢« « « o o o &

System and Task Information. « &
Task Control « ¢« ¢ ¢ ¢ o ¢ o ¢ o o o o o =
Task Communication and Coordination.
I/0 Peripheral Devices . +« ¢« o« ¢ o« &
File and Record ACCESS « 4 @« o o o o
File and Record Access Systems . . .
Memory Use e o o e s o s o o o o

OTHER SERVICES AVAILABLE e e o o s s e e o e
HOW SERVICES ARE PROVIDED. . ¢ & ¢ o o o o o &

Executive Directives . ¢« ¢ ¢ ¢ ¢ o o o o &
Code Inserted into Your Task Image

SYSTEM LIBRARIES ¢ ¢ o« ¢ o o o o o o o o o o o

DIRECTIVES

INTRODUCTION . ¢ ¢ ¢ ¢ o o o o o o o o o o o »
OBJECTIVES &« ¢ o o o o o o o o o o o o s o o &
RESOURCES. . . . e e o o & s+ o e s s s o o o
INVOKING EXECUTIVE DIRECTIVES FROM A USER TASK

Directive Processing . + ¢« ¢« ¢ o o o o o &«

iii

L] L] L] .

L] L]
=
WOoONNNOTU bW

.17
.17
.17
.19
.19

.19
.19
.20
.20
.20
.21
.21
.21
.21
.22
.22
.23
.25
.25
.28
.30

.35
.35
.35
.37
.37

3

Functions Available Through Executive

Directives e » o o 8 o @
The Directive Parameter Block (DPB). . . .
The Directive Status Word (DSW).
Sample Program . « « o« « o o o o o o o o o

DIFFERENT FORMS OF THE DIRECTIVE CALLS

The $ FOIM o ¢ « o o o o o o o o o o o o =
The SC FOIM: & 4 o o o o o o « o o o o o &
The $S FOrM. « &« « o s o o @ c e o o o

Repeated Use of a Directive w1th D1fferent
ArgumentS. « « o ¢ o o ¢ o o o s o o o o @

ADDITIONAL DIRECTIVE CONSIDERATIONS.

An Alternative Method for Error Checklng .
Run Time Conversion Routines
Notifying a Task When an Event Occurs. . .
Event Flags. e o e o o o
Using Event Flags for Synchronlzatlon.
Asynchronous System Traps (ASTs) . . .
Synchronous System Traps (SSTS). « ¢« « « &

USING THE QIO DIRECTIVE

INTRODUCTION . o . ¢ ¢ ¢ o o o o o o o o o o
OBJECTIVES o «¢ o ¢ ¢ o o o o o o o o s o o o o
RESOURCES. « . « + « « . e o o o o s o e o @
OVERVIEW OF QIO DIRECTIVES e o e e o o o e o
PERFORMING I/0 . ¢ ¢ ¢ ¢ o o o o o o o o o o &
I/O FUNCTIONS. « ¢« & « o + & e o o e o o o o

Logical Unit Numbers (LUN) e o o o o o o
Synchronous and Asynchronous I/0

MAKING THE I/0 REQUEST . ¢ ¢ ¢ o ¢ o o o o o &

Error Checking and the I/0 Status Block. .

THE QIO DIRECTIVES . ¢ ¢ ¢ ¢ ¢ o o o o o o o o«

Synchronous I/0. + « o« o o o o« o o o o o
Asynchronous I/0 ¢« « ¢ o o o o o o o o o =
Synchronization With Asynchronous I/0. . .

TERMINAL I/O L] . [. . [. . . [. .

Device Specific Functions.« .

I/0 Status Block and Terminating Characters.

Read After Prompt. . « + ¢ o ¢ o o o o o o
Read No Echo . ¢« ¢ &« ¢ o o o « o o &
Read with Timeout. o o o
Terminal-Independent Cursor Control
Formatting Output Data« « « &
Formatting ASCII Data. « « « o« o o o o o &

e o s 0 L]

L] . . L] L]

L] . L] .

.39
.41
.42
.43
.46
.46
.49
.51

.58
.62
.62
.68
.69
.69
.70
.75
.82

.91
.91
.91
.93
.93
.94
.95
.95
101
103
105
185
111
112
120
120
1290
123
126
128
131
135
145

4

5

USING DIRECTIVES FOR INTERTASK COMMUNICATION

INTRODUCTION . . . ¢ & & o o o o o &

OBJECTIVES L] L L] L] L] L] L] Ld L] L] L] L L]
RESOURCE« & . .

.

3 ° .

USING TASK CONTROL DIRECTIVES AND EVENT FLAGS. .« .

Directives « ¢« ¢« ¢« & .
SEND/RECEIVE DIRECTIVES. . . « &« « &
General ConceptsS . v o « o o o &
Directives . . + ¢ ¢ o o o o o« &
Synchronizing Send Requests With
Receive Requests . . « « « o o« &
Using Send/Receive Directives
for Synchronization.
Slaving the Receiving Task . . .
PARENT/OFFSPRING TASKING

Directives Issued by a Parent Task
Directives Issued by an Offspring Task
Chaining of Parent/Offspring Relatlonshlps .- .
Other Parent/Offspring Considerations.

Task Abort Status. « ¢ ¢« « o o«

.

3 3 3

. . .

. . .

Summary of Various Methods of Data Transfer

Between Tasks.

Other Methods of Transferrlng or Sharing

Between TasksS. ¢ « o« o o o o o o«

MEMORY MANAGEMENT CONCEPTS

INTRODUCTION . & & ¢ 4 o o o o o o @

OBJECTIVES . ¢ &« & o o o o « o o o &

RESOURCES. . . . o o . o o o o o

GOALS OF MEMORY MANAGEMENT o o s e .

HARDWARE CONCEPTS. . . . e o o o

Mapped Versus Unmapped Systems .
Virtual and Physical Addresses

The KT-11 Memory Management Unlt
Mode Bits.

Active Page Reglsters (APRs)

.

L3

. L L2

3

.

.

Converting Virtual Addresses to Physical

AddressSeS. « o o o o o o o o o
SOFTWARE CONCEPTS. ¢ ¢ o« o o o o o o
Virtual Address Windows.
Regions. « ¢ v ¢ ¢ o o o o o o &

Data

151
151
151
153
154
163
163
163

164

181
181
182
184
194
195
201
206

208
209

213
213
213
215
215
215
220
223
223
223

226
228
228
229

6

7

OVERLAYS

INTRODUCTION . .
OBJECTIVES . . .
RESOURCE
CONCEPTS e e e o o o o o o o
OVERLAY STRUCTURE. . &+ v &« ¢ o o « o o o o o« &
STEPS IN PROGRAM DEVELOPMENT USING OVERLAYS. .

. . . . L3 [. [.
3 <

. L] . . . [. .

THE OVERLAY DESCRIPTOR LANGUAGE (ODL). . . .
ODL Command Line Format. . .« . « « + o« &
TYPES OF OVERLAYS. &+ 4 ¢ « « o o o o &
Disk-Resident. « o o« ¢ o o o o o o o o o o o
Memory-Resident. . « ¢« ¢« ¢ ¢ &« o o o+ &
LOADING METHODS. o« o« « o 2 o o o o o o o o o o o &
Autoload « ¢ v ¢ ¢ ¢ o ¢ s e o o o o s o @
Manual Load. . . . e s o o o s o o o ® s o
Comparison of a Task With No Overlays,
to One With Disk-Resident Overlays, and
One With Memory-Resident Overlays. . « « « « .
Overlaying TechniqueS. . « ¢ ¢ ¢« o ¢ ¢ o o o &
LIBRARIES, e s e o o o o o
GLOBAL SYMBOLS IN OVERLAID TASKS e o o s s o s o
Resolution of Global Symbols
Subroutine Calls . « o ¢ o o o o o o o o o o
Data ReferencesS. « « o o o o o o o o s o o
Placing Data in the Root and Referencing It.
CO-TREES . v & ¢ o o o o o o o o o

VOLUME I

STATIC REGIONS

INTRODUCTION . . « « «
OBJECTIVES . ¢« ¢ o o o o o o &
RESOURCE o o e s o .
TYPES OF STATIC REGIONS. o o .
MEMORY ALLOCATION. . &« ¢ o o o o o o &
MAPPING. « « ¢ ¢ o & o o o o 6 s o o o o o o
REFERENCES TO A SHARED REGION e o o o o o o o o o
Techniques of Referencing. . « ¢« ¢« ¢ ¢ &« « o &
Using Overlaid Psects (Data Only). o
Using Global Symbols (Data or Subroutlnes) . .
Using Virtual Addresses (Data Only). . « « . .
PROCEDURE FOR CREATING SHARED REGIONS
AND REFERENCING TASKS. ¢ « o o o o o o o s o o o o
Creating a Resident Common or Resident Library
Creating a Referencing Taske « « « ¢ o o o o o«
DEVICE COMMONS o . ¢ o o o o o o o o o o o o o o @

o . .

L) L] L] L]
L] L]
e o
L] . L] .
e o o 0
.
* o o
e o o o
]
e o o o

vi

L[] L] . . .

* L[] . L]

235
235
235
237
238
241
241
241
245
245
247
251
251
253

253
254
262
268
268
271
271
272
282

289
289
289
291
293
293
299
301
301
382
303

387
307
315
326

8 DYNAMIC REGIONS

INTRODUCTION . . & « .« .« &
OBJECTIVES « ¢ ¢ o o o o
RESOURCE . .+ & &« o & o o &
SYSTEM FACILITIES.
REQUIRED DATA STRUCTURES .

SEND~-

Creating a Region. . .
Attaching to a Region.

.

Region Definition Block (RDB)
Creating an RDB in MACRO-11.
Window Definition Block (WDB)
Creating a WDB in MACRO-11
CREATING AND ACCESSING A REGION,

. L]

Creating a Virtual Address Window. .

Mapping to a Region. .

The Mapped Array Area.

9 FILE1/O

INTRODUCTION . . o « o o o
OBJECTIVES ¢« ¢ ¢ o ¢ o o
RESOURCES. . +« ¢ o o o o &
OVERVIEW . . . e o o o
TYPES OF DEVICES e o o o
Record- Orlented Devices.
File-Structured Devices.

Types of File-Structured

.

AND RECEIVE-BY-REFERENCE

COMMON CONCEPTS OF FILE I/O.

Common Operations. . .
Steps of File I/0. . .

FILES-ll . .)

FILES-11 Structure . .
Directories. . « . . .

Five Basic System Files.

Functions of the ACP .

OVERVIEW AND COMPARISON OF

FCS

RMS

Common Functions . . .
FEATURES . . ¢« ¢« ¢ +« &
File Organizations . .
Supported Record Types
Record Access Modes. .
File Sharing
FEATURES . . « ¢« « « &
File Organizations . .
Record Formats
Record Access Modes. .
File Sharing Features.
Summary. « « o« o o o o

vii

-

.

.

.

FCS

. . . L3 .

. . . L] .

e e o
()
<
[
Q e o o
[
NN o o o

* o o o

337
337
337
339
341
341
345
347
349
351
352
355
356
356
365
373

383
383
383
385
385
385
385
386
388
388
388
389
389
394
397
398
401
4901
403
403
403
407
409
410
410
412
412
414
415

10

AP

FILE CONTROL SERVICES

INTR
OBJE
RESO
REVI
INTR
USIN

ERRO
PERF

PERF

ADDT

ODUCTION
CTIVES . « « + &
URCE . ¢« ¢« & « &
EW OF FILE I/O0 .
ODUCTORY EXAMPLE
G PCS & & ¢ o o o o o o o o o o o o o o o
Preparing to Open a File e o o o o o o o
Initialization of the FSR
The File Descriptor Block (FDB)
Functions of the FDB . . .
Allocating Space for FDBs.
Initializing an FDB. . . .

L[] L L] L]
L] L] . .
L] L] . L]
L L] L] L]
L] . . L]
° L L] L]
e o o o
L] o . L]
e L]] .
L] . L] .
L] L] L[] L]
3 L] L] L]

.
*
.
L]
.
L]

Specifying New File Characteristics
Selecting Data Access Methods. . .

Specifying Data Access Methods . . .
B

. L[] L] L[] L] [] *
L] . L] L] * * *
L[] * L] L] L] L] L]

Additional Initialization of the FD
for Record I1I/0 ‘o « o o
Additional In1t1a112atlon for Block I/0. .
Initializing the File-Open Section of FDB.
Setting Up a File Specification in the
Setting Up the Dataset Descriptor.
Setting Up the Default Filename Block. . .
Initializing the File-Open Section
Prior to Opening the File. .
Opening a File
R CHECKING . . « ¢ « o
ORMING RECORD I/O. . .
Different Forms of PUTS$
Sequential Access.
Random AcceSS. « « o o o =
Closing the File

and GET

L] L] L] L] L] . L]
. L] . L] L] L[] L]
° . . L] L] . .
L] L] . L] * * L]
(] L[] [L[] . L[] L]

o & N e o o

ORMING BLOCK I/O0
READS and WRITES$ Calls . .
Synchronization and Error Che
TIONAL TOPICS. & « o o o =
Deleting a File.
File Control Routines. . . :
Command Line Processing. « . « « ¢« ¢ o ¢ &«

l-l'o [} L[]
o o o o

o.g_Qooo

ck

L] L] L] . L] .
.

.
.
L]
L] . . . L] .
L] . . L] L] °

.
L]
.
L]
.
L]
L]

APPENDICES
APPENDIX A SUPPLIED MACROS. ¢ ¢ o« « o o o o o o &
APPENDIX B CONVERSION TABLES. . . . e o o o o e
APPENDIX C FORTRAN/MACRO-11 INTERFACE e o s o o
APPENDIX D PRIVILEGED TASKS « « o o ¢ « o o o o &
APPENDIX E TASK BUILDER USE OF PSECT ATTRIBUTES .

viii

L] . . L[]

L] L L] L] . L] .

L[] L] L[] .

o e o o

L] . . L]

L[] . . .

L] L] L] . . L] L] . * L] L] L]

L] L] * .

. L] . L]

419
419
419
421
422
427
427
429
431
431
432
432
433
435
437

438
439
449
4490
441
442

443
450
453
456
456
457
459
460
477
477
478
487
487
487
488

491
513
515
517
519

APPENDIX F ADDITIONAL SHARED REGION TOPICS. o 523
APPENDIX G ADDITIONAL EXAMPLES. . « ¢ & ¢ o o o o o o o o 537
APPENDIX H LEARNING ACTIVITY ANSWER SHEET 541

GL GLOSSARY

FIGURES

1-1 Using Executive Directives to Service a Task.26
1-2 Using Executive Directives to Receive Services

from Other TaskS. ¢« « « ¢ o o o o o o o o o o o o o o 27
1-3 Code Inserted into Your Task Image. « o« « ¢ o o o o o« 29

Directive Implementation. . . « ¢ ¢ ¢ o ¢« o ¢ « « « o 39
The Directive Parameter BloCK « ¢« o« ¢ o o ¢ ¢ o o o o 241
The S FOIMe o« 47
The SC FOIM &« « « o o o o o o o s o o o o o o o s o o« «50
The $S FOIM &« « « o o o o o o o o o o o o o o o o o o 52
AST Mechanics « v o o« o o o ¢ e o o o o o o o s o o o« 16

wuwwmwrrwmwww
BWNHOJAUTDdD WN

- Stack as Set Up by the Executive for ASTs . . . « . . .78
- SST Sequence. e e e o o o o« s« o « o84
- Execution of a Synchronous I/O Request. e o s e s o o 97
- Events in Synchronous I/O0 . + ¢« o o o« o o o o o o o « 97
- Execution of an Asynchronous I/O Request. 100
- Events in Asynchronous I/0. . « o o o o o o o« o« « o« « 100

Parent/Offspring Communication Facilities 183
Spawning Versus Chaining (Request and Pass

Offspring Information). « ¢« ¢« ¢« o ¢ &« o o o o o « o o 195
Physical Address Space in an Unmapped System. . . 217
Physical Address Space in an 18-Bit Mapped System . o 218
Physical Address Space in a 22-Bit Mapped System. . . 219
Virtual Addresses Versus Physical Addresses

on an Unmapped System . . « ¢ ¢ « o o o = e o o o « 221
Virtual Addresses Versus Physical Addresses

on a Mapped System. e o o o 222
Page Address Registers Used 1n Mapplng a Task e o o o 225
A Task with Three Windows to Three Regions. 231
Task in Figure 5-7 After Attaching to and Mapping

to a Fourth Region. . ¢« o ¢ ¢ o o o o o s o s o o o o 232

B
U
N

vt otn
1

T
0 J o [$,] oW

(S S,
|

6-1 A Memory Allocation Diagram . . « « ¢ o o« « o o« o o o 240
6-2 An Overlay Tree . o o o o o o o o o o o o o o o o o o 2490
6-3 An Example of Disk-Resident Overlays. . « « « « « o o 246
6-4 An Example of Memory-Resident Overlays. . « « « . « . 249
6-5 Task With Two Overlay SegmentS. « « « « « « o o« o o « 263
6-6 Resolution of Global Symbols. . « &« ¢« ¢ o ¢« o o o o« o 270

ix

I T Y I I
H O WNRWNDHE 0

[Xe] 000 00JIJ [o)Je))

N

O Y Y (<] O
|
()]S, -3 w

L
111w

= OO
BWw N

e W

I "Ixj"l:l":l"!:l
W=

":-1"’.1
(o X%}

q
|
~J

Use Of CO"TreeS - . o o)
TaSk With CO-TreeS. . . ‘ L] . . 3

. o o 283
Ld . L3 284

Tasks Using a Position Independent Shared Region. . . 295

Tasks Using an Absolute Shared Region
Program Development for Shared Regions. . . .
The Region Definition Block « « « &
The Window Definition Block . . « ¢« ¢ « « « .
The Mapped Array Area@ . « « o o s o o o o o &

Example of Virtual Block to Logical Block,
to Physical Location Mapping. . « .« « « « «
How the Operating System Converts Between
Virtual, Logical, and Physical Blocks

. Ll L] 297

L] L] L3 3@”
L] ® L] 342

. . . 348
e o o 375

L] L3 Ld 391

e o o 392

FILES-11 Structures Used to Support Virtual-to-Logical

Block Mapping . . ¢« ¢ ¢ o o« ¢ o o o o o o o »
Directory and File Organization on a Volume .
Locating a File on a FILES-11 Volume.
Flow of Control During the Processing

of an I/O RequesSt « o &« « o o o o o o o o o @
Move Mode and Locate Mode . . ¢« o o o o o o o«
Sequential FileS. . ¢« ¢« o o o o o o o o o o =«
RMS File Organizations.« ¢ ¢« ¢« ¢ & « &

The File Storage Region . .« ¢ ¢ ¢ & o« & ¢ o &
Move Mode Versus Locate Mode for Record I/0 .
Block I/O OperationS. « « o o o o o o s o o« &
The File Descriptor Block . . ¢« ¢ ¢ ¢ o o o &

A Shared Region With Memory-Resident Overlays
Referencing Two Resident Libraries.
Referencing Combined Libraries. . . « . « . .
Building One Library, Then Building

a Referencing Library . . « ¢ ¢ ¢ ¢« ¢ o« o o &
Revectoring . .« . ¢ o ¢ o ¢ ¢« ¢ o o o o o o o
Using Revectoring When Referencing Library
Has OverlayS. . ¢ o« o o o o o = o o o o s o o«
Cluster Libraries « & ¢« ¢ ¢« ¢« o o « .

Typical Course Schedules. « ¢ « « o .

Examples of Use of Other Services
Standard Libraries. « ¢ o« o o o o o o o o o o
Resident LibrarieS. « ¢« o ¢ o o o o o o o o o

Types of Directives . . . ¢« ¢« ¢« ¢« ¢« & o &« o &
Summary of Directive Forms. . « « « o o o « &

.« . o 393

. L] . 395
. « o« 396

. o o 400
e . o 402
.« o o 403
. o o 411

. L] L] 426

L] L] L] 428
L] L] L] 429

. . o 431

L4 L L] 524

. « .« 526
. .« . 528

. L] L3 53@
L] . L] 531

L] L] L] 533
. *® Ll 535

TABLES

. . . 012

L] . L] .24
L] L3 L ‘3@
L] L3 Ll .32

3 . . .4@
. . L] 061

[
o wN WN -

[Xe\e) WO YWY Y 0 0
[8]

Common (Standard) I/0 Function Codes. « « « « « o &
I/0 Parameter List for Standard I/0 Functions . . .
Some Special Terminal Function Codes. . . . « . . &«
Sample Editing Directives for SEDMSG. . + « o « o+ &

Task Control Directives and Their Use

for Synchronizing Tasks e 5 e = » s
Stopping Compared to Suspending or Waltlng.
Event Flag Directives and Their Use

for Synchronizing Tasks . ¢« « ¢ ¢ ¢ o ¢ o o o o o &
The Send/Receive Data Directive
Methods of Synchronizing a Receiving Task (RECEIV)

with a Sending Task (SEND). « « ¢ o « o o o o o o o
Standard Exit Status CodeS. ¢« « +o o ¢ o o o o o o &
Comparison of Parent Directives « . « . . .
Directives Used by a Task to Establish

a Parent/Offspring Relationship . . « ¢« « ¢« « « « .
Directives Which Return Status to a Parent Task . .
Directives Which Pass Parent/Offspring Connections

to Other TaskS. . ¢ ¢ ¢ o o o o o o ¢ o o o o o o =
Task Abort Status Codes . . &+ ¢ ¢ o« &+ o o o o o o =
Comparison of Methods of Data Transfer

Between TasksS . «o o o o o o o o o o o o o o o o o &

Mapped Versus Unmapped SystemS. . . « « ¢ « o o o o
APR and Virtual Address Correspondence. . . « « s« o

Comparison of Overlaying Methods. . . . « . « . . .
How Global Symbols Are Resolved . . ¢« + ¢ ¢ o o ¢ &

Types of Static Regions Available on RSX-11M. . . .
Techniques of Referencing a Shared Region
Effect of /CODE:PIC, /SHAREABLE:COMMON, and
/SHAREABLE : LIBRARY on a Shared Region's STB
Required Switches and Options for Building
a Shared Region . « ¢ ¢ o o o o o o o o o o o o o

Memory Management Directives. . ¢« ¢« ¢ &« o o o o o &
Region Status Word. « « ¢ « « ¢ o o o o o o o o o &
Window Status word. . L] L] L] . L] L] L] L] L] L] L] [] . L] L]

Comparison of Physical, Logical and Virtual Blocks.
Examples of Use of F11lACP Functions . . « « « « « &
Comparison of FCS Record TYPeS. « « « s o o o o o «
Comparison of Sequential Access I/0 and

Random Access I/0 ¢« ¢ ¢ o o o =« . . e e o o o
File Organization, Record Formats, and Access Modes
Comparison of FCS and RMS ., . & « & &« ¢ o o o o o &

xi

.94

192
122

137

155
156

156
164

165
184

185

186
194

196
207

298

216
224

260
269

292
305

306

309

3490

344
349

390
399
406

408
413

415

[T T T T O N I I |
HOYOOQAUTd WN -

NNMNMNDNDNDNDNDDDN

w W
L O L L L
N =

LU
S wWwnN - HOooNONULTs W

[L- S WWWwwwwww

D DD
(I
ogoau;m

[~

O

!
wnN -

(o)l W)

When the User Record Buffer Is Needed 436
TypesS Of ACCESS ¢ ¢« o o o s o o o o o o o o o o o = 445
Decimal/Octal, Word/Byte/Block Conversions. 513
APR/Virtual Addresses/Words Conversions 513
EXAMPLES
Requesting a Task . ¢ o ¢ ¢ o ¢ o o o o o o o o o & .45
Using thec $§ Form of the Directives54
Using the $C Form of the Directives « . .« . .56
Using the $S Form of the Directives ,57
Using Several Directives. « « ¢ o ¢« o ¢ ¢ o« o o o &« .66
Waiting for an Event Flag . ¢« ¢ « ¢ o o o o o« o o & .72
Setting an Event Flag in a Task « ¢« ¢ ¢ ¢ o o o o & .74
Using a Requested Exit AST. . + o ¢ ¢ o o o o o o o« .79
Using an AST in the Mark Time Directive81
USIng SSTS. « &+ ¢ o o o o o o o o s o s o o o o o .86
Synchronous I/0 . ¢ ¢ o o o o o o o o o o o o o o 199
Asynchronous I/0 Using Event Flags
for Synchronization « . ¢« ¢ ¢ ¢ ¢ ¢ o . . . 114
Asynchronous I/0 Using an AST for Synchronization . 118
Prompting for Input .« « « o o« o o o o« o o o o o o & 124
Read No Echo. . . &+ ¢ & & o o o o o o o o o o o o =« 127
Read With Timeout . o ¢ ¢ ¢ ¢ o o ¢ o o o o o o o &« 129
Terminal Independent Cursor Control « « « . 133
Formatting Numeric Data . « ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o & 149
Formatting Directive and I/0 Error Messages 143
Formatting ASCII Data@ o« « o o « o o o o o o o o o 146
Synchronizing Tasks Using Suspend and Resume. . . . 158
Synchronizing Tasks Using Event Flags « & 161
Synchronizing a Receiving Task Using Event Flags. . 168
A Receiving Task Which Can be Run Before or After
the Sender. « c o » . 173
Synchronizing a Receiving Task U51ng RCDS$ c e s e 178
A Task Which Spawns PIP . & ¢ ¢ ¢ o o o o o o o o o« 188
A Generalized Spawning Task e e o e o e 191
An Offspring Task Which Chains its Parent/Offsprlng
Connection to PIP . . ¢ ¢ ¢ & & o o o o o o o o o @ 198
A Spawned Task Which Retrieves a Command Line . . . 203
Description of An Overlaid Task « « ¢« « ¢ o ¢ o o & 239
Map File of Example 6-1 Without Overlays. . « . « . 255
Map File of Example 6-1 With Disk-Resident
OVerlaysS. o« o o o o o o o o s s o o o o o o o o o o 257

xii

19-4
16-5
19-6
10-7

G-1
G-2

Map File of Example 6-1 With Memory-Resident

OverlaySe o « o o o o o o o o o
A Task With Two

Complex Example Using Overlays.

Resident Common Referenced With

.

Overlay SegmentS. « +« ¢ o « o o o o =

. . - 3 . .

Overlaid Psects . . .

Resident Common Referenced With Global Symbols. . . .

Shared Library. « « « o« ¢ ¢ o &

Creating and Using a Device Common. . . « « « o« « + &

Creating a Named Region

Creating a Region and Placing Data in It. . . « . . .

Attaching to an Existing Region
From It ¢« ¢ o ¢ ¢ o o o o o &
Send-by-Reference
Receive-by-Reference. . . o« .
Use of the Mapped Array Area.

Creating a File in MACRO-11 ., .
Creating a File of Fixed Length
FDB at Assembly Time. . .

Creating a File of Fixed Length
FDB at Run Time o o
Accessing a File in Locate Mode
Accessing a File in Random Mode
Creating a File With Block I/0.
Reading a File With Block I/0 .

Reading the Event Flags (for Exercise

Using the Routines GCML and CSI

xiii

and Reading Data

Records, Initializing
Records, Initializing

.

. [. . . [. L] 3 . .

1-1). e o o o e
(for Exercise

259
266
276

313

320
324
331

354
359

363
368

371
378

424
463

467
479
474
480
484

537
538

STUDENT GUIDE

STUDENT GUIDE

INTRODUCTION

Programming RSX-11M in MACRO 1is intended for MACRO-11
programmers who use services of the RSX-11M operating system
beyond those provided by the MACRO-11 programming language itself.
This course describes the various services and how to use them
from a task which you write.

This course is self-paced, which means that you 1learn at
whatever rate is comfortable for you.

Instead of a teacher, you have a course administrator and a
subject matter expert. In some cases, the same person can perform
both functions. The course administrator manages the mechanics of
the course and makes sure you have easy access to the system and
the on-line course materials. As you finish modules, s/he records
your progress. The subject matter expert helps you if you have a
technical question. Before you consult the expert, however, read
the <course materials and references in an effort to answer the
question yourself.

This Student Guide covers the following topics:

Course prerequisites

Course goals (and Nongoals)
Course organization

Course map description
Course resources

How to take the course
Personal Progress Plotter

® 000 000

STUDENT GUIDE

PREREQUISITES

To be prepared for this course, you must have taken the
following DIGITAL courses, or you must have equivalent experience.

l. RSX-11M Utilities and Commands. Specifically, you must be
able to 1logon/logoff, edit files, and develop/run/debug
programs under RSX-11M.,

2. Programming in MACRO-11.

COURSE GOALS AND NONGOALS

On completion of this course, you should be able to write
tasks which:

1. Use executive directives

2. Perform intertask communication and coordination

3. Perform synchronous and asynchronous I/0 operations
4. Use overlays

5. Use memory management facilities to communicate between
tasks and make more effective use of available memory

6. Use File Control Services to create and maintain files.
This course does not teach the following:

1. The PDP-11 instruction set and the MACRO-11 programming
language

2. The Digital Command Language (DCL) or Monitor Console
Routine (MCR)

3. The program development cycle.

STUDENT GUIDE

COURSE ORGANIZATION

This course is self-paced for independent study. The course
material is structured in modules. Each module is a lesson on one
or more skills required to fulfill the course goals. A module
consists of:

e An introduction to the subject matter of the module

e A list of objectives, which describe what you should
achieve by studying the . module

e A list of resources that provide reference materials and
additional reading for the module

e The module text, including explanatory text, figures,
tables, examples, and references to readings 1in the
manuals '

e Learning activities (for some modules), consisting of
reading assignments or written exercises which are
essential to your learning the material

@ Written and/or lab tests and exercises (bound . separately)
which vyou can use to measure your achievement. Solutions
are provided for all exercises.

The course is bound in two volumes. The first wvolume
contains this student guide, the 10 modules (except for their
tests/exercises), the appendices, and a glossary. The second
volume contains the tests/exercises for each module.

COURSE MAP DESCRIPTION

The course map shows how each module relates to the other
modules and to the course as a whole. Before beginning a specific
module, it is recommended that you first complete all modules with
arrows leading into that module. These prerequisite modules
present material necessary to understanding the module vyou are
about to study.

If you have no preference, study the modules in numerical
order, 1 through 14.

STUDENT GUIDE

COURSE MAP

DYNAMIC REGIONS

STATIC REGIONS

USING FILE
CONTROL SERVICES

MEMORY
MANAGEMENT
CONCEPTS

USING DIRECTIVES
FOR INTERTASK
COMMUNICATION

USING THE
QIO DIRECTIVE

TK-7749

STUDENT GUIDE

COURSE RESOURCES

Required References
1. IAS/RSX-11 I/O Operations Manual (AA-M176A-TC)

2. IAS/RSX-11 System Library Routines Reference Manual
(AA-5580A-TC)

3. RSX-11M Mini-Reference (AV-557@8D-TC)

4. RSX-11M/M-PLUS Executive Reference Manual (AA-L675A-TC)

5. RSX-11M/M-PLUS I/0 Drivers Reference Manual (AA-L677A-TC)

6. RSX-11M/M-PLUS Task Builder Manual (AA-L68@A-TC)

Optional References
1., PDP-11 MACRO-11 Language Reference Manual (AA-5@075B-TC)

2. PDP-11 Processor Handbook (EB-194¢2-20/81)

3. RMS-11 User's Guide (AA-DS538A-TC)

4, RMS-11 MACRO-11 Reference Manual (AA-H683A-TC)

STUDENT GUIDE

HOW TO TAKE THE COURSE

Because this is a self-paced course, you determine how much
time to devote to each subject. You can pass quickly over
familiar topics. You can spend more time on topics which are of
interest to you, or which you can use often in your job, and less
time on topics which have little use in your job.

Each time you are ready to begin a new module, first read the
introduction and the objectives. If you feel that you already
understand the material in the module, you can go immediately to
the tests/exercises for that module. If you don't understand much
of the material, read the module. If you understand some of the
concepts but not others, just look over the program examples for
the concepts you understand. Read the text and study the examples
for concepts you don't understand. The text explains new concepts
and refers you to related readings in the manuals. The program
examples provide working examples which show you how to apply the
concepts.

Some of the readings in the manuals are required and others
are optional. Required readings are contained 1in 1learning
activities and are indented to set them apart from the module
text. These readings are required because they cover material not
otherwise covered in this course. The optional readings are
mentioned within the module text and are designed to help you in
two ways. First, they teach you more about a given topic.
Second, they offer another explanation in case you have trouble
understanding the explanation in this course.

In addition, you will need the manuals to look up the
specifics involved in invoking the various services. This is
especially true for the -executive directives, system 1library
routines, and File Control Service calls.

Keep the module objectives in mind. If a skill is listed as
an objective, be sure to master it. Later modules may depend on
this skill.

The module text contains many example programs to show you
how to use the skills you are 1learning. All of the example
programs in this book should be available on-line. The standard
location for these files 1is UFD [202,1] on your system disk.
Check your system and if the files are not 1located there, check
with your course administrator to find out where they are located.

STUDENT GUIDE

Do not modify the files in UFD [202,1] or in their original
location. Instead, copy the files you plan to use to your own UFD
and use them there. 1In that way, the original files in UFD
[202,1] will remain intact for other students.

Each example program contains the following:

e Source code, with line numbers added
e A sample run session
® Bulleted items which are described in the text.

Line numbers have been added to the source code to ease
referencing during a group discussion. These line numbers are not
part of the actual source file. The source code also contains the
name of the file which contains the code on-line. Following this
is a brief description, telling what the example does. Any
special assemble and task-build instructions, and any special
install and run instructions follow this. Only special,
nonstandard instructions are included. The code itself includes
line comments plus some additional comments.

The sample run session shows what happens during a typical
run of the task. Any special install and run instructions are
shown in the run session.

The bulleted items match the example notes in the text, which
describe the <code in more detail. Study the examples and the
notes that describe them carefully.

In the module on Using File Control Services, many of the
examples create output files. A dump of any created file follows
the run session. The file dumps were created using the DMP
utility.

If the examples are available on-line, assemble and
task-build them, and then run then. This will help you to
understand the examples better. Many of the tests/exercises ask
you to make minor changes to existing examples, and then run them
again. Do the tests/exercises for a module in the Tests/Exercises
book only after you have done all of the reading and have run the
example programs. If you prefer, you can do them as soon as vyou
cover the necessary material in the module. The same
Tests/Exercises book is used in this course and the Programming
RSX-11M in FORTRAN course. Do all tests/exercises except those
which specifically say in FORTRAN. All exercises have solutions
in the Tests/Exercises book. In addition, any solutions involving
programs should be available on-line, in UFD [202,2]. Compare
these solutions to your own.

STUDENT GUIDE

If you have mastered the module objectives, ask your course
administrator to record your progress on your Personal Progress
Plotter. You will then be ready to begin a new module. If you
haven't yet mastered the module objectives, return to the module
text for further study.

With a self-paced course, it is impossible to give a schedule
that applies to all students. The amount of time that students
spend on a module depends on both their experience and their
interest in the topics in that module. Use Table 1 as a guide
when you set your schedule.

In addition to the 10 modules, the Student Workbook contains
several appendices, plus a glossary. The appendices are:

Appendix A - Supplied Macros. This appendix contains
documentation on how to wuse the macros supplied with the
course. In addition, it includes the source code for all of
the macros and any subroutines which they require.

Appendix B - Conversion Tables. This appendix contains a
table for converting between decimal and octal, and among
words, bytes, and memory blocks. It also contains a table
for converting from active page registers (APRs) to virtual
addresses.

Appendix C - FORTRAN/MACRO-11 Interface. This appendix
contains an explanation of the techniques which you should
use to write a FORTRAN callable subroutine in MACRO-11. It
also explains how to call such a subroutine from MACRO-11l.

Appendix D - Privileged Tasks. This appendix contains a
description of the various types of privileged tasks
supported under RSX-11M, and how to create them.

Appendix E - Task Builder Use of Psect Attributes. This
appendix contains a description of the effect of Psect
attributes on how the Task Builder collects together
scattered occurrences of program sections.

Appendix F - Additional Shared Region Topics. This appendix
contains several additional shared region topics. They are:
overlaid shared regions, referencing multiple regions from a
single task, interlibrary calls, and cluster libraries.

10

STUDENT GUIDE

Appendix G - Additional Examples. This appendix contains the
source code for any program examples which are required for
the Tests/Exercises but are not included -elsewhere in the
Student Workbook. These examples should also be available
on-line, under UFD [2¢2,1]). They are included here 1in case
they are not available on-line on your system.

Appendix H - Learning Activity Solutions. This appendix
contains the solutions to any Learning Activity questions in
this course. After you do a Learning Activity, check your
answers against those provided.

11

STUDENT GUIDE

12

STUDENT GUIDE

PERSONAL PROGRESS PLOTTER

DATE DATE TIME SIGN-OFF

MODULE STARTED | COMPLETED SPENT INITIAL

1. USING SYSTEM
SERVICES

2. DIRECTIVES

3. USING THE QIO
DIRECTIVE

4. USING DIRECTIVES
FOR INTERTASK
COMMUNICATION

5. MEMORY
MANAGEMENT
CONCEPTS

6. OVERLAYS

7. STATIC REGIONS

8. DYNAMIC REGIONS

9. FILE I/O

10. FILE
CONTROL
SERVICES

13

USING SYSTEM SERVICES

USING SYSTEM SERVICES

INTRODUCTION

RSX-11M provides system services which performb many
operations that are commonly needed by user-written application
programs. Skillful use of these services can:

e Improve the efficiency of your tasks, reducing size and
execution time

e Decrease the time it takes to code and debug your tasks

e Increase the reliability of your tasks

e Provide you with controlled access to system features

e Benefit the overall performance of your system.

The first step 1in 1learning to use these services is
understanding what services exist, how you can request them from
within your task, and how the services are delivered to vyou.

These topics are explained in this module and the following
module.

OBJECTIVES

1. To 1identify the facilities provided through system
services

2. To list the ways in which system services may be provided
to a task

3. To list the various system libraries and the facilities
they provide.

RESOURCES

1. RSX-11M/M-PLUS Executive Reference Manual, Chapter 1

2., IAS/RSX-11 System Library Routines Reference Manual,
Chapters 1 through 6

17

USING SYSTEM SERVICES

"WHAT IS A SYSTEM SERVICES?

An RSX-11M system service is a function or service performed
for a running task. It is performed during the task's execution.
The software which provides the service is either in the Executive
itself or in other system supplied code.

WHY SHOULD YOU USE SYSTEM SERVICES?

To Extend the Features of Your Programming Language

System services offer you additional features, not inherently
a part of your programming language. Examples of this are:

1. Accessing shared resources in a properly synchronized way
2. Performing 1/0 operations in MACRO-11

3. Coordinating among multiple tasks

4. Controlling memory allocation and mapping

5. Interacting with the Executive

6. Performing often needed functions, such as:

a. Numeric conversion of ASCII data typed 1in at a
terminal to binary format for internal use

b. Editing, and conversion, to produce suitable output
messages which include data generated at run time.

To Ease Programming and Maintenance

DIGITAL provides the <code to perform these services.
Therefore, you will need less time to develop working programs.
The supplied code has a well defined modular structure, which
makes it easier to design your programs.

The code for system services is well debugged. This makes it
easier to debug and maintain programs, since there are fewer
potential points of failure and only your written code needs to be
debugged. When maintenance 1is required 1in the code for the
supplied system services, patches are released with clear-cut
installation procedures. ‘

19

USING SYSTEM SERVICES

To Increase Performance

The supplied code to perform system services 1is generally
efficient MACRO-11, which assures minimum execution time. 1In
addition, it is often possible to share the code among several
different tasks, with minimal additional overhead. This can
result in any or all of the following performance gains.

Increase in your task's throughput

Increase in your system's throughput

Increase in memory usage efficiency on your system
Decrease in your task's size

Increase in available space on mass storage volumes

WHAT SERVICES ARE PROVIDED?
The system services can be divided into a number of <classes.

For each, a few examples are given to show you the kinds of
services which are available.

Note that a number of these services which are provided to
tasks parallel those provided to operators through DCL commands.

System and Task Information

You can obtain information from the system. For example, you
can:

e Obtain information about your task
- Its priority
- 1Its logical unit (LUN) assignments
e Obtain information about a partition on the system
- Its base address
- Its length

e Obtain the current time and date

20

USING SYSTEM SERVICES

Task Control

You can start up and stop tasks, and alter task states. For

example,

you can:

Request another task to run

Abort a task

Suspend or resume a task

Alter the running priority of an active task

Task Communication and Coordination

You can create a set of tasks that communicate with one

another,
example,

as well as coordinate the interaction of the tasks. For
you can:

Send data from one task to another.

Have one task notify other tasks that an event has
occurred (e.g., that a job has been completed).

Have one task pass a command to another task, and have it
obtain an indication from the other task about the status
of the execution of the command.

I/0 Peripheral Devices

) You can interact with peripheral devices on your system. For
example, you can:

Write data to or read data from a peripheral device.
Attach a device for exclusive use by a task.

Read or set variable characteristics of a device (e.g.,
for a terminal - baud rate or hold screen mode).

File and Record Access

You can access files, including individual records within a

file.

For example, you can:

Create a file.

Read blocks from or write blocks to a file on a
block-by-block basis.

21 -

USING SYSTEM SERVICES

e Read records from or write records to a file. The records
may be of different 1lengths, and not exactly one block
long.

e Extend or truncate an existing file.

File and Record Access Systems

The two access systems available under RSX-11M are File
Control Services (FCS) and Record Management Services (RMS). Both
offer an interface between tasks and the Files-11 structure used
to maintain disk directories and files.

FCS is the standard access system supplied with RSX-11M,
Many of the utilities (e.g., PIP, EDT, the Task Builder) use FCS
for their file interface. RMS offers all of the FCS functionality
plus capabilities not available with FCS, such as indexed files
(records that are accessible by a key field wvalue) and more
sophisticated file sharing. A more complete discussion of the
facilities offered by FCS and RMS, and a comparison of the two,
appears in Module 9, on File I/0.

Memory Use

You can use system services to control the amount of memory
your task wuses or to permit several tasks to share an area of
memory. For example, you can:

¢ Run a task in less memory than its total size, by using
overlays to load only needed pieces of the program at one
time.

e Allocate space in memory for a temporary work buffer, and
then return that space to the system when the task is
finished using it.

e Share a data area in memory among several tasks.

e Share a single copy, in memory, of &a commonly used
subroutine among several tasks.

22

USING SYSTEM SERVICES

OTHER SERVICES AVAILABLE

You <can use system services to perform often needed
functions. For example, you can:

e Save and restore all or a subset of the registers when
writing a subroutine.

e Perform extended integer and double precision
multiplication and division.

e Convert data from ASCII to internal binary.

e Convert and format output data produced at run time into
printout and/or display messages.

These services are generally supplied as subroutines located
in the system object library (LB:[1,1]SYSLIB.OLB). Most of the
subroutines are documented 1in the IAS/RSX-11 System Library
Routines Reference Manual. A few of the subroutines will be
covered in detail in this course. However, most will not. Table
1-1 gives examples of specific functions performed by some of the
subroutines.

23

USING SYSTEM SERVICES

Examples of Use of Other Services

Table 1-1

i

e L

24

USING SYSTEM SERVICES

HOW SERVICES ARE PROVIDED

Services are provided using two different methods.

1. The Executive is invoked by the task to perform the
service (an executive directive).

2. The code to perform the service is placed directly into
the task.

Executive Directives

Figure 1-1 shows how the first method works. The following
notes are keyed to the figure.

" The user task makes a service request and invokes the
Executive.

@ The Executive takes control and performs the service.

- Calls device drivers as needed
- Requests other tasks as needed

© The Executive returns control to the user task, at the
instruction following the service request.

Figure 1-2 shows a more complex version of method 1. 1In this
case, Task A and Task B interact through the Executive.

Task A starts up and at some point needs Task B to do some
work, for example, perform a calculation. Task A sends the data
to Task B, requests that Task B run, and then waits until Task B
sends back the answer. Task B starts running, performs the
calculation, and then sends the answer back to Task A. Task B
also notifies Task A that the job is finished. Task A then starts
up again and uses the answer. The steps outlined above for Figure
1-1 would actually be used several times in this example.

25

USING SYSTEM SERVICES

EXECUTIVE
CODE TO g — — —. F11ACP
SERVICE
/0 EXECUTIVE
DRIVERS ja— — —» DIRECTIVE j&~ — — — + OTHER TASKS

TASK

© return oF
STATUS FROM
EXECUTIVE

EXECUTIVE DIRECTIVE
INVOCATION <

TK-7517

Figure 1-1 Using Executive Directives to Service a Task

26

USING SYSTEM SERVICES

EXECUTIVE

CODE TO
SERVICE
DIRECTIVES
r— "™
[i N

| DATA FROM TASK A |

'

TASK A

EXECUTIVE DIRECTIVES

< |RESULTS FROM
TASK B

TASK B

EXECUTIVE DIRECTIVES

TK-7516

Figure 1-2 Using Executive Directives to Receive Services

from Other Tasks

27

USING SYSTEM SERVICES

Code Inserted into Your Task Image

The second method for providing system services is
illustrated in Figure 1-3. The code to perform the service is
extracted from a system library and inserted directly in the user
task. For system macros, the machine code resulting from the
macro expansion is executed in place. For system subroutines, the
subroutine call results in a transfer of control to the subroutine
code, located in another part of the user task.

Certain services must be provided by invoking the Executive.
Any service which involves synchronization or access to shared
resources must be coordinated by the Executive. For example, if a
request activates another task, the Executive must enter the task
in the active task list, which sets the task up to compete for
memory space and then CPU time. It is much easier to have the
Executive coordinate all the tasks, rather than require that each
task check with every other task before using a shared resource.
Also, any activity that involves communication or coordination
among multiple tasks usually must be performed by the Executive.

Placing the code in the wuser task 1is appropriate for a
service which is performed independently by a task. For example,
if a task converts an ASCII decimal value which 1is input at a
terminal to binary for internal wuse, there is no need for the
Executive to coordinate that activity. It does not affect shared
resources or other tasks.

If a service can be provided with code inserted in the task
and that service is needed often by a number of different tasks,
it is possible to share one copy of the code among several tasks.
Using special techniques, often used subroutines can be collected
together and a single copy of each subroutine can be shared 1in
memory among several tasks. The procedure for producing and using
a shared collection of subroutines, called a resident library, is
discussed in the Static Regions module of this course.

Some of the services discussed in this course are provided by
making special requests when you task-build your task. In some
cases, the Task Builder transparently places code directly in your
user task. 1In other cases, it sets up your task in a special way
to provide the service. We will discuss the techniques for
accessing services with the Task Builder in later modules.

28

USING SYSTEM SERVICES

FROM SYSTEM MACRO
LIBRARY AT ASSEMBLY TIME

SUBROUTINE CALL

d

FROM SYSTEM OBJECT SUBROUTINE ENTRY POINT

LIBRARY AT TASK-BUILD TIME

RETURN

TK-7514

Figure 1-3 Code Inserted into Your Task Image

29

USING SYSTEM SERVICES

SYSTEM LIBRARIES

Table 1-2 contains a list of the 1libraries which are wused
during program development of a task using system services. They
are usually located in LB:[1,1]. RSXMAC.SML is the system macro
library searched by default by the MACRO-11 assembler. SYSLIB.OLB

is the system object library searched by default by the Task
Builder.

Table 1-2 Standard Libraries

e

.

PR

.

- . - . - “’”’“”“}m -
a”mj’"i’v%? . _ . ;.éi@% .

30

USING SYSTEM SERVICES

Table 1-2 Standard Libraries (Cont)

S = e e e a».q,«mm,»m««; sommmmmsE s
.. W%‘swg - W@@: e
A m% o nm:::wh

SR

- mx%w .
... @ @ @@
o mz,wgwmmmmmmg;“.s

. . =

W - -
e M»msxa.-zeeg - e
e . e

wmmzwtm . .
-

s;:zémm:sm%n&

o Peaaae
- e -
o

.. .

... _ 5 ey T - .
.. . - m?* LY DY : e
... Wm&m e o M ‘L e “%»x@a‘f.{%}mww

v =

- 3

o 1§ [R > Al

g P / = NI - {

m«»“‘@?&aﬁ& m:sm,.mwmmﬁmmux&m;«m«wm»“ an?mmwm% L
o A A R A b B G G e A VR Shooii

b x:sau“a:ﬁfsa:»‘zz;zmm eGSR oo
E e o m,xwws mmm.,;x T —
2 AT = e

[
- Do
. . .
o -
.
.
S
S - - -
... .
E . mmwmm%%@ .
. - . .
E... . .
E. "mm‘"w%“mmwmx»m%mm,w . .
= .

- - ‘

.
%Wﬁmw%g
..

mwm Lo
i 2o ";';;:%‘W
e

S

o G M,mrgwm -

S o
e mm""mamm

. . .
. S
S - . : -
e = =
... . Cismaaaa s
E
R R

31

USING SYSTEM SERVICES

Table 1-3 contains a list of the shareable resident libraries
which may also be on your system, depending on your installation.
You will learn how to use these resident libraries in Module 7, on
Static Regions. Check with your system manager to find out
whether the preferred method of including these routines 1is
through 1linking the code 1into your task 1image or using the
resident 1libraries.

Table 1-3 Resident Libraries
% EEs &

e i] o

Now do the tests/exercises for this module in the
Tests/Exercises book. They are all written problems. Check your
answers against those provided in that book.

If you think that you have mastered the material, ask vyour
course administrator to record vyour progress in your Personal
Progress Plotter. You will than be ready to begin a new module.

If you think that you have not yet mastered the material,
return to this module for further study.

32

DIRECTIVES

DIRECTIVES

INTRODUCTION

Once you know the various system services available, you need

to know how to write programs which use them. This module

explains more about the services available through executive
directives and how to make various directive calls.

OBJECTIVES

To write programs in MACRO-11 which use directives

To use information returned by the Executive to perform
error checking

To use event flags and asynchronous system traps (ASTs)
with directives.

RESOURCES

RSX-11M/M-PLUS Executive Reference Manual, Chapter 1 and

2, and specific directives in Chapter 5

IAS/RSX-11 System Library Routines Reference Manual,

Chapters 4 and 5

35

DIRECTIVES

INVOKING EXECUTIVE DIRECTIVES FROM A USER TASK

Directive Processing

The sequence of steps outlined below details how a directive
is invoked and processed. The following notes are keyed to Figure
2-1.

Executive Code User Code

@ The user creates a Direc-
tive Parameter Block (DPB)
which contains all the
information the Executive
needs to process the dir-
ective.

@ cEither the Directive
Parameter Block itself or
its starting address is
pushed onto the stack.

© rThe user task issues an
EMT 377 instruction,
causing a trap into the
Executive.

@ 2 dispatcher routine
retrieves the Directive
Parameter Block, and
checks it to find out
which directive
has been requested.

©@ The dispatcher routine
calls the appropriate
Directive routine to
execute the directive.

37

DIRECTIVES

Executive Code User Code

@ After executing the dir-
ective, the Executive
returns control to the
user task and returns
directive status.

€@ The user task checks the
directive status and takes
appropriate action.

Use macros in the system macro library, LB:[1,1] RSXMAC.SML
to issue directives.

Most directives pass control back to the user task. Certain
directives by their nature do not pass back to the user task. The
Exit Task directive, for example, causes the task to exit.
Control passes back to the wuser task only in the case of a
directive error.

38

DIRECTIVES

USER EXECUTIVE
DIRECTIVE DIRECTIVE
ROUTINES
TRAP DISPATCHER T ~—
TASK vector (DRDSP) b ‘
() |_«[DrRODSP - O

9/ a1
< (s]

TK-7515

Figure 2-1 Directive Implementation

Functions Available Through Executive Directives

Table 2-1 lists many of the Executive directives which are
available on your system. For a complete list of the directives
in each group, see section 5.1 on Directive Categories, 1in the
RSX-11M/M-PLUS Executive Reference Manual.

Many of the functions available are discussed more fully in
this module, and in the modules on Using the QIO Directive, Using
Directives for Intertask Communication, and Dynamic Regions. No
attempt is made to discuss every executive directive. You should,
however, at the end of this course, know enough to be able to look
up any directive in the manual and invoke it.

Each directive is documented individually in Chapter 5 of the
RSX-11M/M-PLUS Executive Reference Manual. The directives appear
there in alphabetical order by MACRO-11 name.

39

DIRECTIVES

Table 2-1 Types of Directives

40

DIRECTIVES

The Directive Parameter Block (DPB)

The Directive Parameter Block is set up as the first step in
invoking an Executive directive. It contains all the information
the Executive needs to perform the requested service. This
includes a Directive 1Identification Code (DIC) which identifies
the Executive directive being requested. See Figure 2-2 for a
picture of the Directive Parameter Block layout.

The length of the DPB is included because its 1length varies
depending on which directive is being invoked. The rest of the
DPB is built from the arguments specific to the particular

directive.

DIRECTIVE

OF WORDS
- IDENTIFICATION
INDPB=M + 1 CODE

WORD 1

WORD 2

WORD 3

WORD 4
FROM DIRECTIVE

(ARGUMENTS

(49
°
))
48

D)

WORD M-1

WORD M

TK-7512

Figure 2-2 The Directive Parameter Block

41

DIRECTIVES

Macros are provided in the system macro library
{LB:[1,1]RSXMAC.SML] to set up the DPB and invoke each executive
directive. The format of the macro call is as follows.

XXxx$x argl,arg2,arg3,...,argn
Example:
GLUNSC 4,BUFF
The macro name determines the DIC and the length of the DPB;

the arguments in the macro call are used to build the rest of the
DPB. The DPB for the example given is as shown below.

3 5

4

BUFF

For additional information on the macros for each directive,
see the individual directives in Chapter 5 of the
RSX-11M/M-PLUS Executive Reference Manual.

The Executive preserves (saves and restores) all task
registers when a task issues a directive.

The Directive Status Word (DSW)

Upon completion of directive processing, the Executive
returns a code in the Directive Status Word which gives the status
of the request. The DSW is located in the task header at location
SDSW, a global symbol which can be used to reference the value
directly. Successful completion is usually indicated by a DSW
value of +1 (IS.SUC).

A negative value 1indicates an error. Different negative
values correspond to different sources of errors. These values
and their general meanings appear in Appendix B of the
RSX-11M/M-PLUS Executive Reference Manual and in the RSX-11M
Mini Reference Manual. 1In addition, specific error values and any
special meanings are documented with each individual Executive
directive call in Chapter 5 of the RSX-11M/M-PLUS Executive
Reference Manual.

42

DIRECTIVES

In addition to setting the DSW, the Executive clears the
carry bit to indicate successful directive execution and sets the
carry bit to indicate failure. You can check for errors using a
BCC or BCS instruction immediately after the directive call. 1In
that case, access the actual DSW value only if you need it.

Sample Program

Example 2-1 illustrates the use of the Request Task and the
Exit Task directives. The directives are given below, along with
a description of their functionality.

The Exit Task Directive
-~ Format: EXITSS (no arguments)

- Used to make a task inactive and to free up the system
resources it uses.

The Request Task Directive

- Format: RQSTS tsk
where tsk is the name of the task to be requested

RQSTSC TASKA
- Used to request the specified installed task

- Offers the same functionality as the DCL RUN (immediately)
command for an installed task.

Before using any directive in a program, always read over the
description of that directive in Chapter 5 of the RSX-11M/M-PLUS
Executive Reference Manual. Specifically, pay attention to the
different directive parameters and their meanings. See section
5.3 (on System Directive Descriptions) for an explanation of the
organization of the directive desciptions and what elements are
included.

Each program example in this course contains the following:
@ Source code, with line numbers added
e A sample run session

® Bulleted items which are described in the text.

43

DIRECTIVES

See the Student Guide for additional information about how to
use the program examples.

The following comments are keyed to the example.

The macros for invoking directives must be specified to
the assembler in a .MCALL statement.

A number of special macros have been supplied with this
course to assist you in class. Since you don't yet know
how to issue the QIO directive, which is covered 1in the
next module, the TYPE macro is supplied to perform writes
to TI:.

Example:
TYPE <HELLO THERE>

issues a QIO directive to display the text
"HELLO THERE" at your terminal.

The use of the supplied macros is documented in Appendix
A, along with the source code for all macros and any
internal subroutines they call.

Invoke the Request Task directive. The task name must be
the installed name (...PIP), not.just PIP.

The carry bit is set by the Executive in the <case of an
error and is cleared in the case of success. Always check
the status on return from an executive directive.

The only case in which control will return to the user
task after an EXITSS call is if a directive error occurs.
This is very unlikely to happen.

This is an easy way to display the DSW value. The IOT
instruction <causes the Executive to abort the task and
display all registers at TI:.

ON THE RUN SESSION. A run session is included for each
example program.

The simple method for displaying directive error messages is

used

here to keep things simple. This technique may be useful in

the early stages of debugging a program. Later, this code should
be replaced with code which displays more readable error messages.
Techniques for doing this are covered in the next module.

44

DIRECTIVES

1 +TITLE REQUES

2 +IDENT 701/

3 SENARL LC # Enable lower case

4 it

] i FILE REQUES.MAC

& y

7 i This tashk disrlavs 3 messadgey then recuests FIFs and

8 i exits

9 H

10 i Assemble and task-build instructionsy to include

11 § surrlied macros and subroutines?d

12 ¥

13 H MACROZLIST LRIL1L s LIPROGMACS/LIBRARY sddeviiufdIREQUES
14 H LINK/MAF REQUES»PROGSURS/LIEBRARY

15 o

14 MCALL EXIT$S-RASTSC i Extermnal sustem macros
17 it

18 i TYPE is a3 macro suselied in the macro library

12 ¢y LBEILLLIPROGMACS JMLLE for doing I/0. It issues QIO
20 # directives for wou. TYFE calls subroutines in the

21 # obdect librarg LBIL1y1IFROGSURS.OLE.

22 i
23 +MCALL TYFE . i External surerlied macro
24 H

25 ¥ Digrlaw startur text

26 START: TYFE <REQUES HAS STARTED AND WILL REQUEST PIP>-
Disrlay messade

r
N
-

28 ¢} Reauest PIP

29 RASTSHC 4 oFIF i Reauest FIFP

30 BCS ERR i Branch on directive
31 i error

32 EXIT$S i Exdt

33 i Error code

34 ERR? MOV $NSWy RO ¥ Move IISW for diselaw
35 107 ¥ Trar andg disrlay

36 i redisters

37 LEND START

Fun Session

»RUN REQUES

REQUES HAS STARTED AND WILL REQUEST FIP
IR

>

Example 2-1 Requesting a Task

45

DIRECTIVES

DIFFERENT FORMS OF THE DIRECTIVE CALLS

There are three different forms for each directive <c¢all,
which correspond to three different methods for setting up the DPB
and invoking the directive. For each directive call in a program,
you may select which form to use.

With two forms, the $ and the $C, the DPB is set up in a data
area of your task at assembly time. In the $ form, you use one
system macro to set up the DPB, and another system macro at run
time to invoke the directive. 1In the $C form, you use just one
macro to both set up the DPB and 1invoke the directive. The
assembler separates the DPB setup into a data area for you. In
the $S form, the DPB is set up on the user stack at run time and
the directive 1is invoked immediately afterwards. As in the $C
form, only one system macro is needed to both set up the DPB and
invoke the directive.

Decide which form of each directive call to use based on the
following.

e Task size
e Run time efficiency
e Programming ease

e Knowledge of directive parameters, whether known at
assembly time or at run time

® Requirements for reentrant code (e.g., 1if the code is
contained in a shareable library).

Each of the three forms is further described below, using the
Set Event Flag directive (SETF$) as an example.

The $ Form

Figure 2-3 shows the §$ form, so named because the last
character in the macro name is '$' (e.g., RQSTS, ABRTS, etc.). 1In
the source code, use a system macro to set up the DPB in a data
area, specifying a label to identify it. In the example, LABEL is
the label for the DPB set up by the macro SETF$. The DPB 1is set
up at assembly time. The first word of the DPB contains the DPB
length in the high-order byte and the DIC in the 1low-order byte.
The next word contains the event flag number argument. Any
additional arguments would appear in successive words.

46

DIRECTIVES

TASK IMAGE
HEADER
T Tstack |
SOURCE EXPANDSTO = [—— ———1
. . TASK CODE
LABEL: SETF$ 52—, [LABEL: .BYTE 33.2
. WORD 52— xxxxxxx
RT: -« . XXXXXXX
STA . START: .
DIR$ #LABEL MOV #LABEL-(SP)
: ‘ EMT 377
. . XXXXXXX
. XXXXXXX
DPB IN DATA AREA:
2| 33.
52.

TK-7730

Figure 2-3 The '$' Form
e Use the $ form of the directive macro to set up the DPB in

the data area at assembly time.

e Use DIRS macro to initiate the directive at run time.

e The DIRS macro pushes the DPB starting address onto the
stack, then traps to the Executive.

e Arguments in the $ form must be valid for .BYTE, .WORD, or
.RAD5@ assembler directives. :

valid arguments:

invalid arguments: #14.,#204,#TASKA,@BUFF,R2

Throughout this course, a decimal point following a numeral
indicates that it 1is 1in base 10 notation. If no decimal point
follows a numeral, it is usually in base 8 notation. The
exception 1is when base 10 is clear from the context; e.g., 16
bits.

47

DIRECTIVES

Use the separate system macro DIR$ at run time to invoke the
directive, specifying the label of the DPB. This macro pushes the
starting address of the DPB onto the stack and then traps to the
Executive. The 1label LABEL, which corresponds to the starting
address of the DPB, is specified in the DIRS call. If other
directives are invoked in the same task, DIRS is used each time,
with the appropriate address (or label) specified.

Arguments in the $§ form of the directive must be wvalid
arguments for .BYTE, .WORD, or .RADS5@ Assembler directives. This
is necessary because the macros contain .BYTE, .WORD, or .RADS59®
assembler directives. See the examples that accompany Figure 2-3.

This form of the directive 1is run time efficient. In
addition, if the same directive is used later in the program to
clear another event flag (e.g., 53.) it is ©possible to wuse the
same DPB for both calls. Offsets within the DPB are defined by
global symbols. Hence, at run time, the instructions INC
LABEL+C.LEEF or MOV #53.,LABEL+C.LEEF would change the existing
DPB for reuse, using another DIR$ #LABEL call. This saves on task
space, especially for directives with many arguments.

One drawback of this method is that it is harder to use
because two separate macros are needed for each directive
invocation. Another is that it is not reentrant if +the DPB is
changed at run time. For example, reentrant code is required in
shareable subroutines.

48

DIRECTIVES

The $C Form

Figure 2-4 shows the $C form, so named because the last
characters in the macro name are '$C' (e.g., RQSTSC, ABRTSC,
etc.). This form functions similarly to the $ form, but it is
easier to wuse because the DPB setup and actual directive
invocation are combined 1into one macro call. The assembler
separates the DPB setup into a data area in a separate Psect named
DPBSS. At run time, a pointer to the DPB is pushed onto the
stack when the directive is invoked, as in the $ form.

Arguments for the $C form must also be valid arguments for
.BYTE, .WORD, or .RAD50 assembler directives. Also, there is an
additional optional argument for all $C form calls which 1is only
necessary 1if a <call is made from a Psect other than the default
blank Psect. This argument specifies the Psect from which the
call is made. This allows return to this Psect for the directive
invocation and other code. In Figure 2-3, the Psect PROGS
contains the main code.

An advantage of this method is that it is easier to use than
the §$ form and is just as efficient at run time. One restriction
is that a given DPB cannot be accessed and modified at run time.
Therefore, to <clear event flag 53., a separate CLEFSC 53.
directive 1is required, which generates a separate DPB, So for
repeated use of a directive, the $C form requires more task space.
Another restriction, due to the inaccessibility of the DPB at run
time, is that all directive arguments must be known at assembly
time. One other advantage of the $C from is that it 1is always
reentrant, since the DPB cannot be changed.

49

DIRECTIVES

TASK IMAGE
SOURCE EXPANDS TO HEADER
. . [" stack |
. -~ ———— -
PSECT PROGS .PSECT PROGS
START: « START: - TASK CODE
SETF$C 52.,PROGS .PSECT $DPB$$
: 383 = . _ PSECT PROGS
. .BYTE 33,2
) WORD 52.
PSECT PROGS
XXXXXXX
EMT 377 J
.]
. PSECT $DPB$$
[o XXXXXXX
XXXXXXX
DPB IN DATA AREA: ’
A 33.
52,

TK-7731

Figure 2-4 The $C Form

Using the $C Form:

Needs only one macro call.
Sets up the DPB in the data area at assembly time.

The $C form, as in the $ form, also pushes the DPB address
onto the stack and traps to the Executive at run time.

Optional argument specifies the current Psect 1if other
than the blank Psect.

Arguments must also be valid for .BYTE, .WORD, or .RADS5#
assembler directives.

50

DIRECTIVES

The $S Form

Figure 2-5 shows the $§S form, so named because the last
characters in the macro name are 'S$S' (e.g., RQSTS$S, ABRTSS,
etc.). In this form, the DPB setup and the directive invocation
itself are combined into one macro call, as in the $C form.

However, unlike either the $ or the $C form, in the $S form,
the DPB is built at run time instead of at assembly time, and it
is built on the stack instead of in the task's data area. This
means that all arguments must be valid source arguments for MOV or
MOVB instructions. See the examples with Figure 2-5.

One advantage of this method is that the same call can be
used with different arguments, since a new DPB is built with each
executive directive macro call. Therefore, you can place
parameters which aren't known until run time in registers or data
areas. You can then specify the registers or the addresses of the
data values as arguments in the directive call.

Another major advantage is that the code can be reentrant
even 1f the directive arguments are modified. For example, a
register may be used as an argument. Because each task has its
own registers, each task has its own independent copy of the
argument.

The major disadvantage of this form is that it executes the
slowest of the three forms, because every word of the DPB must be
pushed onto the stack immediately before invoking the directive.
The more arguments the directive has, the longer it takes.

If a directive has no arguments (e.g., EXITS$), it is just as
run-time efficient to use the $S form, because the complete DPB is
only one word long. Therefore, it takes one instruction to push
the complete DPB onto the stack in the $S form. It also takes one
instruction to push the address of the DPB onto the stack in the $
and $C forms. Any directive which has no arguments (e.g., Exit
Task, Suspend Task) is available with only the $S form.

51

DIRECTIVES

TASK IMAGE
HEADER
T sTack
SOURCE EXPANDS TO
—_— . TASK CODE
START: o START: o
. MOV {PC)+,—(SP) XXXXXXX
: .BYTE 33.,2 HXXXX XXX
EMT 377 XXXXXXX
: XXXXXXX

DPB ON STACK
(AT RUN TIME):

2| 33.
52.

TK-7732

Figure 2-5 The $S Form

Using the $S Form:
e Needs only one macro call.

e The $S form pushes complete DPB onto the stack at run
time, then traps to the Executive. '

e Arguments must be wvalid source arguments for MOV
instructions.

valid arguments: #15.,#204,#BUFF,R1
possible misused arguments: 15.,204,BUFF

Use 15., 204 or BUFF only if you want the contents of
those locations for the directive parameters.

52

DIRECTIVES

One other disadvantage of using the $S form arises when task
or partition names are specified as arguments. These arguments
must be in Radix-50 format in the DPB. If the $C or $ form is
used, the macro converts the ASCII name specified as an argument
to Radix-50 format. If the $S form is used, you must place the
name in a data area in Radix-50 format, then specify the address
of the data in the macro call. You can either wuse a .RAD5#
assembler directive at assembly time or the $CATS5 subroutine. See
Appendix A of the IAS/RSX MACRO-11 Reference Manual for a
description of the Radix-50 character set. Also, see 6.3.6 9 (on
the .RAD5KO assembler directive) in the same manual for a
discussion of Radix-5# format.

Examples

Examples 2-2, 2-3, and 2-4 illustrate the use of the three
forms of the directive calls. All three forms send a 13(10) = 13.
word packet of data to a task RECEIV. The source code for RECEIV
follows the code for Example 2-3, Don't worry yet about the
actual mechanics of how to set up sender tasks and receiver tasks.
These are discussed in the module on Intertask Communication.
Just compare the uses of the different forms of directives. The
following notes are keyed to all three examples.

" The .MCALL statement declares the particular macro
directive call or calls to be used, including the form.

© Data area setup requirements:

$ form: SDATS directive sets up the DPB in the data
area.

$C form: Nothing is set up separately. The Assembler
sets up the DPB in a data area for you.

$S form: Normally, nothing is set up in a data area.
" Task names are an exception, since they must
already be in Radix-50 format. Therefore,
the task name is set up in Radix-50 format
in the data area. The argument in the $S
call is the address of the task name.

53

DIRECTIVES

G’ Executing the directive call.
$ form: Use the separate DIRS$ macro.

$C form: Use the single SDATS$ call. The DPB is set
up at assembly time by this macro. Just the
directive invocation 1is performed at run
time.

$S form: Use the SDATSS call. The entire DPB is
pushed onto the stack at run time and then
the directive is invoked.

@ oN THE RUN SESSION. First run the sender. Then run the
receiver to receive and display the data.

Note the difference in the form of the arguments 1in the $S
form. These arguments are source arguments for MOV or MOVB
instructions. For the $ and $C forms, the arguments are arguments
for .WORD, .BYTE, or .RADS5# Assembler directives.

1 +TITLE SEND

2 +IDENT /01/

3 +ENARL LC ¥ Enable lower case

4 it

5 # FILE SEND.MAC

é H

7 # This task sends a buffer of 13. words of data to the
8 # task RECEIV for rrocessing. It sets common evenmt flag
9 i 33, when the dats is cueued for RECEIV

10 H

11 i It uses the $ form of the Send lata directive

12 H

13 i Assemble and task-build instructionst

14 3

15 H MACRO/ZLIST LEBIL11IFPROGMACS/LIBRARY rdeviLufdlSEND
14 H LINK/MAF SENDyLEILL1s1IFROGSURS/LIBRARY

17 H

18 # Install and rum instructionst

19 H
20 H This task does not have to be installed. RECEIV
21 § must bhe installed.,
22 § -

O = JMCALL SDAT$,EXIT$S,DIR$ § Sustem macros

24 MCALL TYFE i Surrlied macro
29 H
26 BUFFER?! +WORD 1929354959697 9849P49104911.912.913,
27 i Data to send
28

Example 2-2 Using the $ Form of the Directives (Sheet 1 of 2)

54

Ol i
o <

FING
=RUN
naTH
FRUN
1

WO NUDS G

-
3 = O

13
14
15
16
17
18
19
20
21
a0

23
24
25
26
27
28
29
30
31

DIRECTIVES

i Create IIFR serarstely in 2 datas area for the $ form
SEND? SUATS RECEIVyRUFFER»33, § Set us IFE for
§ directive

;
START: DIIR$ #SEND

i Issue directive to
¢ send data to RECEIV
RCS ERR # Bramnch on dir error
TYFE “DATA QUEUED TO RECEIV>» 5 Disrlaw
f osuccess messadge
EXIT$S § Exit
ERR: MOV $NSWyR1 ¢ Move IISW to R1 for
¥ disrlaw
Ior i Trar and disrlay
i redisters
+END START
Run Session
RECEIV
SEND
QUEUED TO RECEIV
RECETVY
2 3 4) é 7 g8 Q@ 10 11 12 13
«TITLE RECEIV
+IDENT /01/
+ENARL LC i Emable lower case
9
¥ File RECEIV.MAC
9
i This task receives the date sent bw SENDy SENDCy or
SENDS and disrlaws it at TI?
¥
+MCALL RCVIDSCYEXITSHS
+MCALL TYPE
’
RBUFF +BLKW 15, # Buffer for data received
BUFF$ + BLKE 80. i Buffer for outrul messade
FMT? +ASCIYT /Z3SADNAASADZASADBLASANZASALZASLIAAS AL/
TASCIZ /ZASADNZASINZASADZLAS AN ZLASANZLAS LD/
y
START: RCVI$C sRRBUFF ¥ Receive from angone
RCS ERRI # Branch on directive error
i Edit binarw data into ASCII messadge for disrlau
MOy $#BUFF sy RO § Addr of outrut buffer
MOV FFMT R i Addr of formalt string
MOV FREBUFF+4sR2 # Addr of data receiveds
i skir sender task name
CALL SEIMSG ¥y Edit ourult messade
TYPE F#RUFFyR1 i Digelay outrul messase
EXIT4$S i Exit
7 Error code
ERR1: MOV HNSWe RO ¥ Move ISW for disrlaw
Ior ¥ Trar and disrlaw
¢ redisters
+END START

32

Example 2-2 Using the $ Form of the Directives (Sheet 2 of

55

2)

o
= OGO NOUDLIN -

Py
28]

Run

=INS
+RUN
UATA
=IRUN

1

WH P W WP Mr P W W NTF WP 6> R ‘€ EF M G Wr € € W

a
y
a
’

-+

DIRECTIVES

+TITLE SENDC

+IDENT 701/

+ENARL LC $ Ensble lower case
FILE SENDC.MAC
This task sends a3 buffer of 13, words of data to the
task RECEIV for srocessing. It sets common event flas
33, when the dats is aueuwed for RECEIV
It uses the $C form of the Send lats directive
Assemble and task-build instructions?

MACRO/ZLIST LEBIC1»1IFROGMACS/LIBRARY rdeviLufdlSENDC

LINK/7MAF SENDCyLEIL1y 1IFROGSURS/LIBRARY

Install and run instructions?

This task does not have to be imstalled. RECEIV
must be installed.

MCALL SHATSCYEXIT$SyDIR$ 7 Sustem macros
JMCALL TYFE § Suprlied macro

RUFFER? +WORD 1929394959697 v849242104911.9124913,

»

lata to send

START! SDAT$C RECEIVyRUFFER+»33, # Issue directive to

iy send data to RECEIV

BCS ERR # Branch on dir error
TYFE SHATA QUEUED TO RECEIV> 5 Disrlaw
Fosuccess messade
EXIT$S ¥ oExit
ERR? MOV $NSWeR1 # Move DISW to R1
10T ¥ Trar and disrlay
i redisters
+END START
Session
RECETIV
SENDC
QUEUED TO RECETIV
RECEIV
2 3 4 5 6 7 8 9 10 11 12 13

Example 2-3 Using the $C Form of the Directives

56

g

= INS
=RUN
LATA
RUN

[
CUXNPE DL

DIRECTIVES

+TITLE SENDS
+IDENT /017
+ENARL 1L.C # Enable lower case

-+

FILE SENDS.MAC

This task sends a3 buffer of 13, words of data to the
task RECEIV for erocessind. It sets common event flas
33, when the data is cueued for RECEIV

It uses the $8 form of the Send lata directive

Assemble and task-builg instructions?

MACRO/LIST LE!ILC1s1IFPROGMACS/LIEBRARYydeviiufdISENDS
LINK/MAF SENDSyLE:L1y11FROGSURS/LIBRARY

Install and run instructions!

This task does not have to be instaslled, RECEIV
must be instslled

G WP Wr M SR P GF W WP WS CH NCF WP M W 3 S WD e

+MCALL SDAT$SYEXIT$SyDIR$% # Sustem macros
+MCALL TYFE # Suprlied macro

H
BUFFER?! WORD 1929394959697 98BeyP4910.9114912,.513,

lata to send

]

¥ Task names must he srecified inm Radix-50 format for

i the $85 form

TASKNM: +RADS0 /RECEIV/

H

START?! SDAT$S #TASKNM,#RUFFER,#33. ¢ Issue directiva to
¢+ send data to RECEIV

RCS ERR # Branch on dir error
TYFE <DATA QUEUED TO RECEIV> § Disrlaw
¥ success messade
EXIT$S ¥ Exit
ERR? MoV $NSWeR1 Move DSW to Rl

107 Trar and disrlay

redisters

wr > S

+END START

Sessian

RECEIV
SENDG
QUELED TO RECEIV

RECEX

Example 2-4 Using the $S Form of the Directives

57

DIRECTIVES

Repeated Use of a Directive with Different Arguments

The following sections of code 1illustrate the use of the
different directive forms when using a directive several times in
a program. All three clear event flags 5. to 15., using the
Clear Event Flag directive 11 times. Note in particular that the
$ form uses the same DPB over and over again. The $C form macro
calls result in 11 different DPBs in the data area of the task.
The $S form uses a register as an argument and a new DPB is
generated for each call; but on the stack, not in a data area.

NOTE

A discussion of event flags and their |uses
appears later in this module.

$ Form
Use the Executive directive first for event flag 5, then
access and change the DPB for the other ten calls. In the example

below, the DPB begins at CLEAR.

.MCALL CLEF$, DIRS

CLEAR: CLEFS$ 5.
START: .
MOV #5.,R0O
AGAIN: DIRS #CLEAR
BCS ERR
INC RO
CMP RO, #15.
BGT DONE
INC CLEAR+C.LEEF
BR AGAIN
DONE: .

58

SC Form

DIRECTIVES

The $C form cannot access the DPB; so
calls with separate DPBs.

START:

.MCALL

.

CLEFSC
BCS
CLEFSC
BCS
CLEFSC
BCS
CLEFSC
BCS
CLEFSC
BCS
CLEFSC
BCS
CLEFS$C
BCS
CLEFsSC
BCS
CLEFsSC
BCS
CLEFS$C
BCS
CLEFS$C
BCS

CLEFS$C

5.
ERR
6.
ERR
7.
ERR
8.
ERR
9.
ERR
1d.
ERR
11.
ERR
12.
ERR
13.
ERR
14.
ERR
15.
ERR

59

make

11

different

DIRECTIVES

$S Form

A new DPB is pushed onto the stack for each call. Use a
register wvalue for an argument. Make the same call 11 times;
update the register each time.

.MCALL CLEFS$S
START: .

MOV #5, R0
AGAIN: CLEFS$S RO

BCS ERR

INC RO

CMP RO, #15.

BLE AGAIN

Table 2-2 gives a summary of the three forms of the directive
call.

60

Table 2-2

DIRECTIVES

Summary of the Directive Forms

2 A
e
e

61

e
i
o

i
e

o

-

e
-
-

.
. Ha
-
-

o .

.

DIRECTIVES

ADDITIONAL DIRECTIVE CONSIDERATIONS

An Alternative Method for Error Checking

An additional argument can be used to specify the address
an error subroutine.

Format:

$ Form $C Form

DCLEF: CLEFS 53.-

DIRS $DCLEF,ERROR CLEF$C 53.,,ERROR
$S Form

CLEFS$S #53.,ERROR

NOTES
The extra null argument in the $C form is for
the optional Psect.

In the $S form, no '#' 1is needed on the
address, since this becomes a JSR PC,ERROR.
This argument is not moved to the stack.

of

In all three cases, the extra argument causes the following code

to be generated:

;macro without error address

.

;additional code
BCC .+6
JSR PC,ERROR

62

DIRECTIVES

This results in a branch to the instruction following the
directive macro 1if the directive is executed successfully, and a
call to the subroutine ERROR if not. It 1is -equivalent to
including the following code yourself.

DIRS #LABEL

BCC OK

JSR PC, ERROR
OK:

Note that in case of an error the transfer to the error
routine is with a JSR, not a JMP or BR. The result is that the
return address is pushed onto the stack. 1If you generate an error
message and exit, the JSR won't cause any problems because the
stack isn't accessed.

If, on the other hand, you attempt to recover from the error,
you must remember that the return point is on the stack. You must
either use a RETURN (RTS PC) or clear the return address off the
stack if you wish to branch to a different location.

Examples Using Other Directives
The following directives are used in Example 2-5.
e Suspend Task (SPNDS$S)
- Used to suspend itself
- Can be resumed by another task issuing a Resume task
directive or by an operator using the DCL CONTINUE
command
e Alter Priority (ALTPS)
- Alters the running priority of an active task

e Disable Checkpointing (DSCP$S)

- Disables checkpointing for a checkpointable task

63

DIRECTIVES

Enable Checkpointing (ENCPSS)
- Enables checkpointing again after a DSCP$ directive
Extend Task (EXTKS)

- Modifies the size of the task by a positive or
negative number of 32-word blocks.

The $S form of SPND$, DSCP$, and ENCPS is recommended because
each directive has no arguments.

Example 2-5 shows the use of a variety of directives. See

the run

demonstration below the source code. The following

comments are keyed to the example.

© 06 6 60 ©°

Rl is a directive counter. When several directives are
used in a program, the counter helps keep track of which
directive caused an error. After an IOT, n in Rl means
that there was an error on the nth directive. R@ contains
the DSW value.

Task suspends itself. This allows the operator to use the
DCL SHOW TASKS/ACTIVE command to examine the ‘task
parameters.

The task is loaded at physical address 0@615200(8) to
Pp3617200(8). SPN means the task is suspended.

The operator must use the DCL CONTINUE command to resume
the task.

Suspend again after you disable checkpointing and alter
the running priority.

Note the change in running priority (PRI). CKD indicates
the disabling of checkpointing.

Suspend again after you enable checkpointing, alter the
priority back to 50., and extend the task.

64

DIRECTIVES

Note the change in priority. Note also that the task was
checkpointed and is now loaded at addresses 01045200(8) to
31067200 (8). The new task size 1is 22000(8) bytes,
compared to 2000(8) bytes before, as shown below. The
extend is for 200(8) blocks, where each block 1is 108(8)
bytes 1long, which means there are 20000 (8) extra bytes.
See Appendix B for a conversion table of bytes to blocks
and of octal to decimal.

Before:

g0617200(8)
-00615200(8)

2000 (8) bytes
After:

01067200 (8)
-01045200(8)

22000 (8)

65

DIRECTIVES

1 +TITLE MISC
2 +IDENT /01/
3 +ENAERL LC ¥ Enabhle lower case
4 i+
) i FILE MISC.MAC
b H
7 3 This task uses some miscellaneous Executive directives
8 3 to susrend itselfs alter its running erriorityy disable
9 i and enable checkrointingy and extend its task size.
10 H
11 # Task-build instructions?
12 H
13 ¥ LINK/CHECKFOINT/MAF MISC
14 H since the task must be checkrointable to allow
15 H disabling of checkrointing and extending its size
16]
17 i Install and Rum instructions?
18 H
19 ¥ Install the task. Then Rum it to start it ur.
20] The task will susrend itself several different
21 H times. Each timer use the command
22 H SHOW TASKSIMISC/ACTIVE/FULL (MCR ATL MISC)
23 H to examinme the chandges. Use the command
24 ; CONTINUE MISC (MCR RESUME MISO)
25 H] to resume the tashk.
26 § -
27 H
28 +MCALL SPNI4S»ALTF$CyDISCP$SsENCF$S
29 +MCALL EXTR$CYyEXITSS
30 ¥
%31 START: CLR R1 i Directive counter for errors
32 SPND$S # Susrend to zllow status check
33 RCS ERR1 # Branch on directive error
34 i Make some chandges and then susrend adain
35 LSCF4$S i DNisable checkrointing
36 RCC OK # Branch on goo0d directive
37 JMF ERR2 # Jumr to error code
O ox: ALTFSC »10. i Alter running sriority
39 RCC Goon # Branch on dgood directive
40 JSR FCyERR3 § Czll error subroutine
y

41 Goon: SPNID$S ERR4 Susrend to allow status chechk
42 3 Make some other chandges and then susrend asgain

43 ENCF$S $ Enable checkrointing agsin
44 RCS ERRS # Bramch on directive error
" 45 ALTF$C »sryERRé §# Return priority to oridginasl
46 . EXTRK$C 200 $ Extend task size by 200(8)
L 47 i blocks

Example 2-5 Using Several Directives (Sheet 1 of 2)

66

DIRECTIVES

48 RCC ALSOOK Branch on dgood directive
‘, 49 CAL.L. ERR7 Call error subroutine
50 AL.SOOK: SFNI$S Susrend adain

er > €r ‘Cr ‘ar W

51 BCC AGNOK EBranch on directive ok

52 ER ERRS8 Eranch on directive error
53 AGNOK? EXIT$S Exit

54 ¥ Error handling

55 ERR83: INC Ri § B8 means error on 3rd SPND$S
56 ERR7: INC R1 $ 7 means error on EXTRK$C

57 ERR&? INC R1 ¥ 6 means error on 2nd ALTFR$C
58 ERRS? INC R1 i 9 means error orn ENCFP$S

o9 ERR4: INC Rl F 4 means error on 2nd SFND&S
40 ERR3? INC R1 # 3 means error on lst ALTF$C
61 ERR2? INC R1 §F 2 means error on NSCP$S

&2 ERR1: INC R1 # 1 means error on 1lst SPND$S
63 MOV $0SWsRO 7 Move DSW for diserlaw

| 64 IoT ¥ Trar and disrlay redisters
65 +END START

Rurn Session

*INS MISC

=RUN MISC

[=SHOW TASKS/ACTIVE FULL MISC
MISC 055420 GEN 0354500 00615200-00617200 FRI -~ 50, DFRI -~ 30.
STATUSE: SFN ~FMD
T - TTitr 10C - 0. RIOD -~ 0. EFLG -~ 000000 000000 FS -~ 170000
L FC o~ Q001264 REGS 0-6 000000 000000 011300 140130 000000 000000 001254
SCONTINUE MISC
F =GHOW TASKS/ACTIVE FULL MISC
MISC 055420 GEN 054500 00615200-00617200 FRI -~ 10. DFRI - 50.
STATUS: CKD SN ~FMD
TL - TT11¢ I0C -~ O. RIO - O. EFLG -~ 000000 000000 FS ~ 170000
L FC o~ 001324 REGS 0~6 000000 000000 011300 140130 000000 000000 001254
=CONTINUE MISC
F =SHOW TASKS/ACTIVE FULL MISC
MISC 055420 GEN 054500 01045200-01067200 FRI - 30, IDIFRI - 50,
STATUS: SPN ~FMI
TI - TTLli: I0C . RIO -~ 0. EFLG -~ 000000 000000 F& -~ 170000
= FC - 001400 REGS 0~6 000000 000000 011300 140130 000000 000000 001254
*CONTINUE MISC
»BHOW TASKS/ACTIVE FULL MISC
ATL == Task not active

H

Example 2-5 Using Several Directives (Sheet 2 of 2)

67

DIRECTIVES

This example illustrates a number of techniques for directive
error checking. At lines 33 and 44, a BCS is used. At lines 36,
39, 48, and 51, a BCC is used to branch past the transfer to the
error handling code.

The transfers themselves also differ. At line 37, a JMP is
used. At 1line 40¢, a JSR PC is used, while at line 49, a CALL
which is equivalent to a JSR PC is used. At 1line 52, a BR is
used. Finally, at 1lines 41 and 45, the address of the error
routine is specified as the last argument of the directive macro
call. This results 1in a JSR PC, generated as part of the macro
expansion.

All of these get you to the error routines. They are all
equivalent as long as you don't attempt to recover from the error.
If you do recover, you must remember that a JSR PC or CALL pushes
a return address onto the stack, as explained in the section on An
Alternate Method for Error Checking.

Run Time Conversion Routines

As mentioned earlier, the system maintains task names,
partition names, and certain other data in Radix-50 format to save
space. There are times when conversions between ASCII and
Radix-50 format need to be performed at run time.

You can modify Example 2-1 (REQUES.MAC) so an operator can
type in the task name at run time. This ASCII name would then
have to be converted at run time to Radix-50 format because the
.RAD5@ assembler directive can only be used at assembly time. The
subroutine $CAT5 in SYSLIB.OLB is provided for performing this
conversion. Its use is documented in Chapter 4 of the IAS/RSX-11
System Library Routines Reference Manual.

If the Get Task directive (GTSKS) is used to retrieve task
information, the task name and partition name are returned in
Radix-50 format. If you want to display these, vyou need to
convert them to ASCII format. The subroutine $CS5TA, also in
SYSLIB.OLB and documented in Chapter 5 of the manual mentioned
above, is provided for this purpose.

Additional subroutines are provided for <converting between
binary and octal ASCII (signed or unsigned) and between binary and
decimal ASCII (signed or unsigned). See Chapters 4 and 5 of the
IAS/RSX-11 System Library Routines Reference Manual for additional
information.

68

DIRECTIVES

Notifying a Task When an Event Occurs

Often a task needs to know when an event has occurred. The
event may have occurred within another task; for example, when
the task has completed a requested function. The event may
instead have occurred within the system; for example, when a
requested I/0 operation is completed. The two methods for
implementing synchronization are by using event flags and using
asynchronous system traps.

Event Flags

There are three types of event flags: local, global (or
common), and group global. Ninety-six event flags are made
available to tasks, each with a unique number (1(18)-96(10)).

Local event flags are provided for each task. There are
32(18) 1local event flags, numbered 1(1¢9)-32(10). These flags are
used to synchronize a task with an Executive service, such as an
I/0 transfer. One task cannot reference another task's local
event flags, so they cannot be used to synchronize tasks with one
another. Local event flags 25(10)-32(10) are reserved for system
use and therefore should not be used by a user task.

Global or Common event flags are provided for synchronization
among different tasks. There is one set of 32(10) global event
flags for the system, numbered 33(10)-64(10). These flags can be
referenced by any task. Global event flags 57(10)-64(10) are
reserved for system use and should not be used by user tasks.

NOTE

There is no way to protect against other
tasks wusing global event flags. Great care
must be taken to ensure that global event
flags aren't used at the same time by several
different users. Check with your system
manager before using any global event flag to
ensure that it is not wused for some other
purpose.

69

DIRECTIVES

There are only 32(108) global event flags available in the
system. If additional event flags are needed, another set of
event flags can be created for synchronization among different
tasks. Group global event flags (32(10)), numbered 65(10)-96(10),
can be created for any UIC group number. These event flags can be
referenced by any task running under the correct group number.
Therefore, they can be used to synchronize tasks running under
that group number. An additional advantage is that they cannot be
referenced by tasks running under other group numbers.

Group global event flags are created using the DCL SET GROUP
FLAGS CREATE (FLA /CRE in MCR) command or the Create Group Global
Event Flags (CRGF$) directive. When users in a group don't need
them anymore, the group global event flags can be marked for
deletion using the DCL SET GROUP FLAGS DELETE (FLA /ELIM in MCR)
command or the Eliminate Group Global Event Flags (ELGFS)
directive. After that, when all active tasks in the group have
finished using them, the group global event flags are eliminated.

70

DIRECTIVES

Examples of the Use of Event Flags for Synchronization

Examples 2-6 and 2-7 show the use of event flags to
synchronize two tasks. WFLAG creates the group global event flags
for the group. It then clears event flag 65(10¢) and waits for
that flag to be set. SFLAG sets event flag 65(10), which unblocks
WFLAG. Run WFLAG first, then run SFLAG.

The following notes are keyed to the examples.

" Create the group global event flags - The default wused
here creates them for the group number which the task is
running under.

t’ An error is reported if the flags already exist. This
isn't a fatal error, so we check for this condition. 1If
the flags do exist, print a message and continue.

NOTE

If the error address had been included in the
macro directive call (CRGF$SC , ,ERR1), two
changes must be made to the code. First, the
check for IE.RSU must be made at location
ERR1. Second, in the case of the nonfatal
error IE.RSU, the stack will have one extra
word because the macro does a JSR PC,ERR],
not a BCS ERR1. Therefore, you would need to
either use a RTS PC (synonym RETURN) or, 1if
you want to branch to another location, you
need to pop the return address off the stack
before branching.

The flag is in an unknown state at startup. Therefore, we
must clear the flag before waiting for it to be set.

Wait for the event flag to be set by SFLAG. This causes
WFLAG to be blocked. Now run SFLAG.

Set event flag 65. This allows WFLAG to become unblocked.
SFLAG now exits.,

When WFLAG is unblocked and continues executing, it starts
up here. Check for any directive error entering the Wait
For state, print a message, and exit.

71

DIRECTIVES

1 fTITLE WFLAG
2 JINENT /017
3 LENARL LC : $ Enahle lower case
4 it
5 i FILE WFLAG.MAC
b ¥
7 y This rrogram creates the dgrour global event fladsy
8 ¥ oclears event flasg 69. and waits Tor it to be set. When
b4 i the flag is selt it writes 8 messsdge and exits.
10 $
11 ¥ Assemble and task-build instructions?
12 H
13 i MACROZLIST LRICLy LIFROGMACS/LYIBRARY ydev i LufdIWFLAG
14 H LINK/MAF WFLAGyLEILLy LIFROGSURS/LIBRARY
15 H
1é y Imstall ardg Rum instructions?
17 t
18 § Fury WFLAGYy thern run SFLAG. At least ome of the
19 H tasks must be installedy or else the RUN command
20 § will trw to imstall]l both tasks under the same
21 H nameys TTrr.
22 § -
23 +MCALL EXITHSYWTSESCyCLEF$CsCRGF4$C ¢ Sustem
24 § o omacros
25 +MCALL TYPE # Surrlied macro
26
27 STARTY - CLR RO ¥y RO used to identifw
28 # the error :
29 TYFE SWFLAG I8 CREATING THE GROUF GLOBAL EVENT FLAGS:
©Q = CRGF$C } Create srour global
31 3 evenl flads
32 RCC 0K ¥ Branch on directive ok
33 3 If dgrour global evenlt Tlass alreadws exists
34 #ouust disrlay message and continue
35 CMF SNSWFTE.RSEU # Check for efs alreadw
346 ¥ in existence
e 37 BNE ERR1 # Branch on ang other
38 i dir error
39 TYFE SGROUF GLORAL EVENT FLAGS ALREADY EXIST:
40 oK? TYPE SOLEAR AND THEN WAILIT FOR EF 65. TO BE SET»
" 41 CLEF$C 69, # Clear event flag 65.
42 RCS ERR2 § Branch on directive
43 ¥ error.
" 44 WTSE$D 65, y Wait for event flag 63
45 i to be set
44 BCS ERR3 i Bramch on directive
o 47 ¥ error
48 TYPE “EF 65, HAS BEEN SET. WFLAG WILL NOW EXIT:>
49 EXIT$S
S50 ERR3: INC RO # RO = 3 if error on
S1 i wait for dir
52 ERR2? INC RO $ RO = 2 4if error on
53 ¥y clear Tlag dir
54 ERR1 S INC RO i RO = 1 if error on
55 3 oreate drour fladgs dir
5é MOV SNSWyR1L i Flace DSW in R1
57 1or ¥ Trar and dume redgisters
58 +END START

Example 2-6 Waiting for an Event Flag (Sheet 1 of 2)
72

DIRECTIVES

Fun Session

+ING WFLAG

*INS SFLAG

FRUN WFLAG

.wFLAG IS CREATING THE GROUF GLORAL EVENT FLAGS
CLEAR AND THEN WAIT FOR EF 65. TO BE SET

RUN SFLAG

'EF 65. I8 REING SET. THEN SFLAG WILL EXIT.
EF 65. HAS BEEN SET. WFLAG WILL NOW EXIT

Example 2-6 Waiting for an Event Flag (Sheet 2 of 2)

73

NSO N U D R

oAl

27
28
29

DIRECTIVES

+TITLE SFLAG
+IDENT /017
+ENABRL. LC # Enable lower case

-+

FILE SFLAG.MAC

This task sets event flag 65, It assumes that the
grour dglobal event fladgs have alreads been created.,

Assemble and task-build instructions?

MACRO/LIST LR:L1s1IPROGMACS/LIBRARY sdevilufdl8SFLAG
LINK/MAF SFLAGsLE!L1y1IFPROGSURS/LIBRARY

Install and Run notes?

First run WFLAGY then rum SFLAG. At least ome of
the tasks must be installedy or else the RUN
command will try to install both tasks under

the same nameys TTnm.

> Gr NCH PR WP CF 'S NEF > EF WP 'TH G WP 'GP WF G > €S

+MCALL EXIT$S,8ETF4C
+MCALL TYPE

Sustem macros
Surrlied macros

a

y
START? TYFE “EF 65, IS BEING SET. THEN SFLAG WILL EXIT.:
SETF$C 65, Set event flag 695,

¥
BCS ERR # Branch on dir error
EXIT$S ¥ Exit
ERR? MOV $NSWyR1 i Save [ISW
107 i Trar and dums redisters
+ENI START

Example 2-7 Setting an Event Flag in a Task

74

DIRECTIVES

Asynchronous System Traps (ASTs)

Asynchronous System Traps (ASTs) are used to detect events
that occur asynchronously to a task's execution. Two examples are
the completion of an I/0 transfer and a power up after a power
failure. We say that they occur asynchronously to a task's
execution because they occur at unpredictable times, depending on
conditions which the task cannot control. If a task needs to do
work while waiting for an event to occur, it can do so and
periodically <check an event flag to detect the event. However,
this means that the task must stop its work to check the flag.

Using an AST gives the Executive the responsibility for
monitoring the event. The Executive will "interrupt" the task and
transfer control to a special user-written routine when the event
has occurred. This technique is more efficient because the task
doesn't have to do any checking. It also results 1in faster
notification because the task is notified immediately after the
event occurs. With checking of the flag, it may take a long time
to notice an event that has occurred immediately after a check.

Several Executive directives allow the use of ASTs to handle
synchronization. A complete list appears in the section 5.1.5 on
Trap Associated Directives in the RSX-11M/M-PLUS Executive
Reference Manual.

Figure 2-6 shows how an AST works. The following notes are
keyed to this figure.

©@ The user specifies an AST routine in an Executive
Directive. The Executive sets up for the AST.

© The Executive returns control to the user task.

© When the system determines that the event which
corresponds to the specified AST routine has occurred, the
Executive passes control to the AST routine and the task
executes it before any other user code in the task. This
means that if the task is executing at the time of the
AST, the task 1is "interrupted" until the AST routine is
executed. The AST routine is executed even if the task is
stopped or blocked. 1In that case, the task returns to its
stopped or blocked state after the AST routine is
executed, unless the AST routine or some external event
unstops or unblocks the task in the meantime.

75

MAIN
TASK ¢
CODE

AST
SERVICE
CODE

the task. The
the Executive before the AST routine is entered,
Notice that some ASTs have special words
routine may use
and then take
Service

in Figure 2-7.
added to the
parameters
appropriate action.

Routines in the RSX-11M/M-PLUS Executive Reference Manual

r

DIRECTIVES

TASK CODE
/-——‘_—_

SPECIFYING AST
ROUTINE

ASTX$S

EXECUTIVE DIRECTIVE /0/

b—__/

Figure 2-6

stack.

EXECUTIVE CODE

b —— — — s —

to check on what caused the AST,

See section

TK-7508

AST Mechanics

The AST routine is a user written routine contained within
user stack is set up in a special way by

as

2.3.4 on AST

for a discussion of the specific stack formats.

76

DIRECTIVES

© rFinally, the AST routine uses the ASTX$S Executive
directive to "return" control to the main task code via
the Executive. When the ASTXS$S directive is invoked, the
Executive assumes that the stack contains only the
standard first four AST stack words. The user AST routine
must clear any additional AST specific parameters off the
stack before issuing this directive.

C’ The Executive checks for any other ASTs which may have
occurred while the AST routine was executing. Any such
additional ASTs are queued up in an AST pending queue in a
first-in-first-out order. These ASTs are also serviced
before the Executive "returns" to the "interrupted" state
and code. :

Note that the task's general purpose registers R@ through R5
and SP are not saved. Therefore, if you use these registers in an
AST routine, you must save and restore them.

For additional information on ASTs, see sections 2.3.3 and
2.3.4 on ASTs and AST Service Routines in the RSX-11M/M-PLUS
Executive Reference Manual.

77

DIRECTIVES

|
- -] [AST SPECIFIC
— — >
NEW SP " 11raramETERS
——— J
’ N
-»| TASK'S DIRECTIVE STATUS WORD | <ranpARD
INCREASING PSW OF TASK PRIOR TO AST AST PARAMETERS
ADDRESSES PC OF TASK PRIOR TO AST ALWAYS PASSED
N
oLD EVENT FLAG MASK WORD J°
STACK _ _ '
POINTER
(SP)
TK-7511
Figure 2-7 Stack as Set Up by the Executive for ASTs

Example 2-8 shows the use of ASTs. An AST routine is entered
if- an abort request is made by either another task or an operator.

The

Ano
entry pa
abort re
and furt
(or MCR)

following notes are keyed to the example.
Set up for AST on abort attempt.
Loop until abort request comes 1in.

Service routine entered on first abort request. For this
AST, a nonprivileged task enters the routine only once and
further ASTs are cancelled. If the task 1is built as a
privileged task, the routine is entered each time an abort
attempt comes in., See Appendix D for an explanation of
privileged tasks.

There is no need to set up the stack for the AST return,
because there are no AST specific parameters (only the
four words expected by the Executive are on the stack).
The AST exit causes the Executive to transfer control to
the task back in the main code where it was "interrupted."

ther directive, SREXS$, gives extended <capabilities. An

ssed on the stack to the AST routine indicates whether the

quest came from a privileged or nonprivileged task or user

her, whether it came from an Abort Task directive or a DCL
command. Each case can be handled differently.

78

DIRECTIVES

1 +TITLE ASTEX

2 it

3 7 FILE ASTEX.MAC

4 §

S # This task sets ur a8 Srecify Reauest Exit AST routine.
é i It then sits in & loor until someone tries to abort

7 # oit. At that rointy it enters the AST routine and sends
8 y out 3 messadge, It won’t abort the first time. A second
@ 3 abort stltemert will succeed because for this rarticular
10 § ASTy the first abort AST cancels any further abort

11 i AST 5.

12 H

13 ¢y Assemble and task-build instructions?

14 H

1% H *MACRO/ZLIST ASTEX=LRIL1y 1IFROGMACS/LIBRARY » -

1é H ~wrdeviLufdIASTEX

17 § LINK/ZMAF ASTEXyLEILLy 1 IFROGSURS/LIERRARY

18 § -

19 +MCALL SREA$C,ASTX$S i External sustem macros
20 +MCALL TYFE ¥ External surrlied macros
21 H
22 START: CLR RO i Error count

23 SREA$C REXAST 3 Set ur Specifuy Exit AST
24 RCS ERR1 # Branch on dir error

25 TYFE “ASTEX STARTING UF,. WILL WORK UNTIL ARORTED.:
26 i Do some work.

27 CLR R2 # Clear counter

28 LOOR: INC R2 i Imcrement counter

29 ER .O0F - % lL.oom hack

20 ¥ Error code

31 ERR1? INC RO # Error count

32 MoV sNSWeR1 § Move ISW for disrlaw
33 10T ¥ Trar and disrlag

34 i redisters

35 ¥y AST service routine

36 REXAST?! TYFE STRYING TO ABORT MEy EH7?> § Digrlaw

37 TYFE <WE WON’'T LET YOU THIS TIME!> § messade
38 ASTX$S i AST exit

39 +END START

Run Session

*INS ASTEX
*RUN ASTEX

"ASTEX STARTING UF. WILL WORK UNTIL ARORTEL.
ABORT/TASK ASTEX

TRYING TO ARORT MEs EH?

WE WON‘T LET YOU THIS TIME!

ARORT/TASK ASTEX

10187302 Task "ASTEX * terminated
Ahorted via directive or CLI

Example 2-8 Using a Requested Exit AST

79

DIRECTIVES

Example 2-9 shows the use of an AST routine with the Mark
Time (MRKTS) directive. The AST routine is entered after a 14.
second time period expires. The task starts the time period and
then suspends 1itself until the 10. seconds go by. The AST
routine, when entered, resumes the task. Therefore, the task is
unblocked and continues to execute when the AST routine exits.
The "main" code then displays a message and exits.

The following notes are keyed to the example.

‘. The Mark Time 1instructs the system to start the 14.
second interval. The two specifies seconds. After that,
the AST routine at ASTSRT is entered. The missing first
argument 1is for an event flag, which would, if specified,
be initially cleared and then set when the 14. seconds
expired.

© rTask suspends itself. The AST routine is entered even
though the task is suspended.

© The AST routine resumes the task. Otherwise, the task
would return to a suspended state upon exit from the AST
routine.

@® This instruction cleans up the stack for the AST Exit

directive. The extra word contains the event flag number
of the event flag set, or zero (in this case) if none was
specified. This word could be used to distinguish which

MRKTS$ directive had expired in the case of several MRKTS$
directives, using different event flags but the same AST
routine.

© 2After the task is resumed by the AST routine, it starts
here.

If a task uses the Mark Time directive to place a time 1limit
on an operation, the Mark Time can be cancelled using the Cancel
Mark Time directive if the operation completes before the time
limit expires.

80

O NSO D GRS

3y

L W

25

W TP W NS R SR AR G QP SR R WP Mr @ PG> G

+

DIRECTIVES

+TITLE MARK
« JODENT 701/
+ENARL LC ¥ Enable lower case

FILE MARK.MAC

This rrodgram issues a mark time for 10 seconds and
then stors itself. When the mark time exriresr an AST
routine is invoked which unstors the task.

Assemble and task-build instructions?

MACRO/LIST LBIL1s1IFPROGMACS/LIBRARY sdev?iLufdIMARK
LINK/MAF MARKsLEIL1» 1IFROGSURS/LINRARY

Install and rum instructions?

The task must be installed under the name MARK in
order to run correctly

+MCALL EXIT$SsMRKTHCy»ASTX$Sy BPND$S » RESUMSC

$ Sustem macros
+MCALL TYPE ¥ Srecial surrlied macro
START: CLR RO ¥ RO is used to identifwy
§ errors
TYPE S/MARKY IS RUNNING AND WILL SUSFEND:
TYPE SITSELF UNTIL AST RESUMES IT>
MRRKT$C »10.92yASTSRT ¥ Issue mark time
RCS ERR1 i Branch omn directive
i error
SFEFNID$S ¥ Susrendg task
BCS ERR2 i Branch on directive
§ error
TYFE L/MARKY IS8 RESUMED AND WILL EXIT>x
EXIT$S 3 Exit
ERR3: INC RO $ RO = 3 if error on
¥ unstor
ERR2: INC RO $i RO = 2 if error on
$# mark time
ERR1: INC RO #§ RO = 1 if error on
i stor
MoV $DSWeR1 ¥ Save DSW
10T ¢ Abort task and dums
} redgisters

Example 2-9 Using an AST in the Mark Time Directive

(Sheet 1 of 2)

81

DIRECTIVES

44 1
47 H AST SERVICE ROUTINE
A8]
49 ASTSRT?: TYFE <AST ROUTINE EXECUTING AND WILL UNSTOF ‘MARK‘ -
950 RSUM$C MARK i Resume tash
51 RCS ERR3 i Branch on directive
52 ¥ error
53 # User must clean AST srecific values off the stack so
54 5 that the Exec dgets control with stack as exrected
55 ¥ (with redular 4 AST words)
o 56 T8T (SF)+ # Clean off stack for
57 § AST return
58 ASTX$S # Return to main code
59 3 through ast exit
60 +END START

Furn Session

FINSTALL MARK
*RUN MARK

MARK Y 16 RUNNING AND WILL SUSFEND
ITSELF UNTIL AST RESUMES IT
AST ROUTINE EXECUTING ANI WILL UNSTOF ‘MARK’
“MARK’ I8 RESUMED AND WILL EXIT

Example 2-9 Using an AST in the Mark Time Directive
(Sheet 2 of 2)

Synchronous System Traps (SSTs)

There is another kind of system trap available on the system,
generally wused 1if you wish to handle trap producing errors
yourself, rather than have the Executive handle thenmn. They are
called Synchronous System Traps (or SSTs). They detect certain
events which occur when program instructions are executed (e.g.,
odd address traps and memory protect violations). They are
synchronous because they always occur at the same point 1in the
program, when a given trap-causing instruction is executed.

82

DIRECTIVES

To set up for user coded SSTs, you must set up a vector table
in a data area that contains a 1list of SST service routine
addresses. Each entry in the table corresponds to a specific S8T
which may occur. A zero in an entry indicates that the Executive
should handle that trap. Refer to Figure 2-8, which shows the
setup and use of an SST routine. The following comments are keyed
to this figure.

" At start-up, the task issues a SVTKS$ or SVDB$S directive,
specifying the vector table address, which causes the
Executive to record that address, setting up for user SST
service routines.

© The Executive returns control to the task.

An instruction is executed which <causes a trap. The
Executive checks the SST vector table to see if the user
has specified a routine to handle the trap. If one is

specified, the Executive sets wup the user stack and
transfers control to the SST routine. If no SST routine
is specified, the Executive aborts the task and displays
an error message at TI:.

@ once the task receives control again, it executes the SST
routine as if in the main code. All system services are
available to the task. To return to the main code, <clean
up the stack so it contains only the return PC and PSW,
and execute an RTT or RTI instruction.

G’ The RTT or RTI instruction causes the PC and PSW to be
popped from the stack 1into the appropriate register,
causing a return to the "interrupted" code.

Note that the general purpose registers R@ through R5 and SP

are not saved. Therefore, if you use these registers in an SST
routine, you must save and restore then.

83

DIRECTIVES

TASK CODE EXECUTIVE CODE
DATA
o | e | @ e
e {1 _______ |
SVTK$ DIRECTIVE ‘,,/f""’/””’ .
MAIN)
CODE | ©® -
. BPT INSTRUCTION EXECUTIVE TRAP
= SERVICE ROUTINE
L }/
([P T
T .
SERVICE | : o :
ROUTINE RTI OR RTT
—-__/ l/——_—’

TK-7510

Figure 2-8 SST Sequence

Example 2-10 uses three SST service routines to handle BPT,
IOT and memory protection violation traps in the user program.
The following notes are keyed to this example.

Vector table containing the SST service routine addresses.
See the documentation on SVTKS in Chapter 5 of the
RSX-11M/M-PLUS Executive Reference Manual for the order of
words in the table.

Executive directive to permit the use of user SST service
routines. You can also use SVDBS$ to trap to an external
debugger (e.g., ODT) instead of to the user code.

BPT causes a trap. The Executive checks the vector table;
because a routine address is specified for BPTs, it sets
up the stack and transfers control to location BPT.

The BPT SST routine displays a message, then returns from
trap, to line 28.

84

DIRECTIVES

The CLR 120000 causes a memory protect violation since the
highest address wused in this program is far below that
(1627(8)). This causes another SST.

On a Memory Protect Violation SST, the Executive passes
three more words on the stack in addition to the PC and
the PSW. The details on these words are discussed in
section 2.3.2 on SST Service Routines in the
RSX-11M/M-PLUS Executive Reference Manual.

We don't need the stack values in this routine, but we do
need to pop them off the stack so that the RTI instruction
works properly. The CMP and the TST are "dummy"
instructions used to pop the three words off the stack.

IOT causes another SST.

In the IOT routine, we can alter the return PC (on the top
of the stack), which changes the return point for the RTI
to NEW.

The TRAP instruction causes an SST for which there 1is no

user specified routine. Therefore, the Executive aborts
the task and displays a message at TI:.

85

D NDIUOD LI -

10

WE WP WS WP NS WP SE W WS WP > AF WP WP WP 8

¥
vT
¥
ST

DIRECTIVES

LTITLE 88T
+IDENT /01/
+ENARL LT $ Emable lower case

FILE S8T.MAC

This task sets ur an 58T vector table to hanmdle $8T's
for BFTy I0T» and odd address trars. It then executes
instructions to cause these trars to occur. In each
S8T routiney a8 messadge is displaved and them the task
corntinues, Finallwy 3 TRAF instruction is executed.
Sirnce no user $87T routine is srecified for TRAFy the
Executive asborts the task.

Assemble and task-build instructions?

MACRO/LIST LEIL1y LIFROGMACS/LIBRARY ydeviLufdlSsT
LINK/MAF S8TyLEBIL1y1IPROGSURS/LIERARY

+MCALL SVUTKECYEXITSS 3 External sustem macros
JMCALL TYPE 3 External susrlied macro

ARLE?! JWORD OyMPTVIOBFT»I0T 7 88T vecltor table

ART: 8SVUTK$C VTARLEs4 Have Executive set us

88T table

¥
H
BPT # BPT instruction
CLR 120000 i Clear location 120000»
¥ causing a3 memory
i rFrotect violation
10T y 10T inmstruction
EXIT$S 3 Esdit
NEW?: TRAF ¥y TRAF imstruction
y
88T routines
y
MPTVIO! TYPE SMEMORY FROTECT VIOLATION CAUGHT> §3 Ture
¥ messade
CMF (SFY+9 (SF) 4+ i Clean off three
TST (SF)+ ¥y srecific stack words
¥ fTor memory rrotect $8T
RTI # Return from trae
EBFT? TYFE “BFT CAUGHT i Ture messade
RTI i Return from tras
I0T? TYPE 10T CAUGHT» i Ture messade
MoV ENEWy (SF) ¢ Change FC orn stack so
§ return from trae
i returns to NEW
RTI iy Return from trae

+END START

Example 2-1¢ Using SSTs (Sheet 1 of 2)

86

DIRECTIVES

Run Session

*RUN 88T
EFT CAUGHT
MEMORY FROTECT VIOLATION CAUGHT
10T CAUGHT
LA107:50 Task *TTL1 * terminsted
TRAF execution
RO=001573
R1=000012
R2=000000
R3=140312
R4=144000
RES=000000
SF=001254
FC=001312
F8=170000

Example 2-1¢ Using SSTs (Sheet 2 of 2)

Now do the tests/exercises for this module in the
Tests/Exercises book. They are all 1lab problems. Check your
answers against the solutions provided, either in that book or in
on-line files, under UFD [202,2].

You will need the program READF.MAC to do question 1. It
should be available on-line (probably under UFD [2#2,1]). In case
it is not available on-line, the source code is listed in Appendix
G.

If you think that you have mastered the material, ask your
course administrator to record your progress in your Personal
Progress Plotter. You will then be ready to begin a new module.

If you think that you have not yet mastered the material,
return to this module for further study.

87

3
USING THE QIO DIRECTIVE .

USING THE QIO DIRECTIVE

INTRODUCTION

All input/output under RSX-11lM is performed using the QIO
directive. In this module, you will learn how to use the QIO
directive, concentrating on its wuse for input/output to a
terminal.

OBJECTIVES

To use the QIO directive to perform I/O to a device that
is not file-structured (e.g., a terminal)

To choose either synchronous or asynchronous I/0 as the
most effective method for a given application

To perform complete error checking upon I/0 completion

To use formatting routines from the system subroutine
library to improve the readability of output data.

RESOURCES

RSX-11M/M-PLUS Executive Reference Manual, specific

directives in Chapter 5

RSX-11M/M-PLUS I/0 Driver's Reference Manual, Chapters 1,

2 and 3

IAS/RSX-11 System Library Routines Reference Manual, Chap-
ter 6

91

USING THE QIO DIRECTIVE

OVERVIEW OF QIO DIRECTIVES

All 1/0 operations under RSX-11M are performed using QIO
directives. The QIO directive causes an I/0 request to be passed
to the appropriate service routine. The service routine is either
a device driver or a system task called an ancillary control
processor (ACP). There is a device driver for each device type on
the system. There are three ACP's provided: Fl1ACP for FILES-11
structured disks, MTAACP for ANSI magtape, and NETACP for DECNET.

The I/0 packet is placed in an I/0 queue for the service
routine. The packets are queued up in order according to the
priority of the issuing tasks. 1If there are multiple requests at
a given priority, those requests are queued first-in-first-out
(FIFO). The QIO directive does not perform the I/0 operation
itself, but simply queues the request to the appropriate service
routine, which performs the actual I/0 transfer. After the 1I/0
request has been queued, the Executive returns control to the
issuing task, unless the task requests the Executive to place the
task in a Wait For state until the I/0O transfer completes.

PERFORMING 1/0

QIO directives are generally used only for I/O on non-file
structured devices such as terminals. For file I/0, the File
Control Services (FCS) or Record Management Services (RMS) are
used, which in turn issue the appropriate QIOs for you.

When using QIOs, you need to specify which 1I/0 operation
(e.g., Read Virtual Block or Write Virtual Block) is to be
performed by means of an I/0 function code. Specify the device by
means of the logical wunit number (LUN). To specify additional
information about the I/0 operation (e.g., what buffer to write
and how many characters), use an I/0 Parameter List (IOPL). All
of this information is passed to the Executive through parameters
in the Directive Parameter Block (DPB), as it is with all
Executive directives.

93

USING THE QIO DIRECTIVE

I/0 FUNCTIONS

Each device type has its own set of 1legal 1I/O functions.
Certain functions are called standard or common, since they are
available on all devices. The seven standard I/O functions are
listed in Table 3-1. Logical block transfers (Read Logical Block
and Write Logical Block) can usually be performed for any device.
For file-structured devices, virtual block transfers can be
performed only if a file is open on the device. If Virtual Block
I/0 1is requested for a device which is not file-structured, such
as a terminal, it is converted to 1logical block I/0 for you.
Devices may have additional device specific functions, such as
read no echo at a terminal. Each function requires its own set of
parameters, which are specified in an I/0 parameter 1list.

94

USING THE QIO DIRECTIVE

Logical Unit Numbers (LUN)

The device for an I/0 operation is specified by means of a
logical wunit number. The correspondence between logical unit
numbers and physical devices is made initially at task-build time.

The default LUN assignments set up by the Task Builder are as
follows:

LUN #1 - SY:
LUN #2 - SY:
LUN #3 - SY:
LUN #4 - SY:
LUN #5 - TI:
LUN #6 - CL:

These default assignments may be overridden at task-build
time by using the ASG option. Additional LUNs can be created (up
to a maximum of 250 (10)) by using the UNITS option.

Once a task is installed, an operator <can check the LUN
assignments for the task by wusing +the DCL SHOW LOGICAL UNITS
command (LUN in MCR). The assignments can be changed by an
operator using the DCL ASSIGN/TASK command (REA in MCR). The LUN
assignments can also be checked at run time using the Get LUN
directive (GLUNS), and changed wusing the Assign LUN directive
(ALUNS).

Synchronous and Asynchronous 1/0

There are two kinds of I/0, synchronous I/O0 and asynchronous
I1/0. With synchronous I/0, the Executive provides all
synchronization. With asynchronous I/0, you must provide
synchronization regarding the completion of the I/O operation
itself. :

When a task issues a synchronous I/O request, it doesn't get
control back from the Executive until after:

1. The I/0 packet is queued, and

2. The I/0 operation (the transfer performed by the service
routine) itself is completed.

In other words, the synchronous I/0 request asks the Executive to
queue the I/0 packet and then place the task in a Wait For state,
to wait until the specified event flag is set, signifying that the
actual I/0O operaton is complete,.

95

USING THE QIO DIRECTIVE

Figure 3-1 shows the flow of instructions during the
- processing of a QIO directive. The task does not execute the
instruction following the QIO directive until after the 1I/O
transfer itself has completed. Fiqure 3-2 shows a time diagram
illustrating the same I/0 operation. Note that once the QIO
directive 1is executed at step 1, the task doesn't execute again
until step 8, after the transfer has completed. The system
handles all synchronization with synchronous I/0. Use the QIOWS
directive to invoke this type of I/0.

Commentary to Figures 3-1 and 3-2:
User task executes QIO and Wait For directives.
Executive queues the I/0 request.
Executive calls the driver.
Driver begins the I/0 transfer.
Driver handles the I/O transfer as necessary.

I/0 transfer completes.

Driver finishes its work and notifies the task that the
I/0 is completed.

User task continues.

96

USING THE QIO DIRECTIVE

EXECUTIVE
-—/\

QIO DIRECTIVE
ROUTINE

USER TASK

#colo DIRECTIVE

(5) : Q/o PACKET)

—»1 DEVICE DRIVER

(6) 1/0 QUEUE

TK-7507

Figure 3-1 Execution of a Synchronous I/O Request

USER TASK __Q, (s)
i —
|
QIO DIRECTIVE {_i_g E
|]
DRIVER L___o' :__e_}
|
|

p o= o -

. 1/O TRANSFER

TIME

TK-7509

Figure 3-2 Events in Synchronous I/O

97

USING THE QIO DIRECTIVE

With asynchronous I/0, the Executive still queues the 1I/0
request. When a task 1issues an asynchronous I/0 request, the
Executive passes control back to the task immediately after the
I1/0 packet is queued to the driver. You must provide
synchronization concerning the completion of the actual 1I/0
transfer. This could occur at various times, depending on such
factors as how many other I/0 packets are ahead of this one in the
driver's I/0 queue, and the speed of the device itself. The task
executes in parallel with the I/0 request.

In Figure 3-3, the instruction after the QIO request is
executed after the I/0 packet 1is queued (and the driver has
started the transfer), not after the I/O transfer completes. The
task continues executing unless it chooses to wait. Figure 3-4
shows a time diagram illustrating asynchronous I/O.

Note that after the QIO directive is executed at step 1, the
task begins executing again at step 5. 1In this example, the task
waits for the I/O transfer to complete at step 5a . If you use
asynchronous I/0, vyou must provide any synchronization yourself,
using event flags, asynchronous system traps, or both. The task
shown in Figures 3-3 and 3-4 uses a Wait For Single Event Flag
directive at step 5a. Use the directive QIOS$ to invoke this type
of I/0.

The advantage of asynchronous I/0O is that a task can continue
processing in parallel with the I/0 transfer. For example, you
can perform computations while waiting for a read or write to
complete. Of <course, 1if you need the information from the read
before you can do anything else, it is better to wuse synchronous
I/0.

98

' USING THE QIO DIRECTIVE

Commentary to Figures 3-3 and 3-4:

User task executes the QIO directive.
Executive queues the I/0 request.
Executive calls the driver.

Driver begins the I/0 transfer; Executive passes control
back to the user task.

Driver handles the I/0 transfer as necessary. User task
executes in parallel with the I/0 transfer.

a. User task waits for the I/0 operation to complete.
I/0 transfer completes.

Driver finishes up and the Executive notifies the task
that I/0 is completed.

User task continues.

99

USING THE QIO DIRECTIVE

EXECUTIVE

T —

Q10 DIRECTIVE
ROUTINE

USER TASK

°QIO DIRECTIVE

L]
o

L]
O-

G/O PACKET)

N

¢ |[C O
(7

DEVICE DRIVER

1/0 QUEUE

Z

TK-7518

Figure 3-3 Execution of an Asynchronous I/0 Request

USER TASK

QIO DIRECTIVE

DRIVER I_;
|
|
t

1/0 TRANSFER

 J

TIME

TK-7513

Figure 3-4 Events in Asynchronous I/0

100

USING THE QIO DIRECTIVE

MAKING THE 170 REQUEST

Specify the following information in the QIO$ or QIOWS «call
when requesting I/O.

e Synchronous or asynchronous I/0, by using the appropriate
directive.

e The I/0 function to be performed.
e The LUN to be used for the I/O operation.

e An event flag number, if any, to be used for
synchronization. This is required for synchronous I/0.

e The address of an I/0 Status Block (IOSB) - two words set
aside with .BLKW or .BLKB assembler directives. The IOSB
is used to pass status and other information about the I/0
operation back to the task.

¢ The address of an AST routine, if transfer to an AST
routine is desired upon completion of the I/0 transfer.

e The I/0O parameter list (up to six words) which specifies
information for the particular device and for the
particular I/0 function requested.

Table 3-2 shows the I/0 parameter list arguments which are
needed for each of the standard I/0 functions with the full-duplex
terminal driver. Table 2-3 (in section 2.3 on the QIO Macro) in
the RSX-11M/M-PLUS I/0O Driver's Reference Manual lists these
standard functions and the other device-specific functions
available with the full-duplex terminal driver. The
device-specific functions will be discussed further, later in this
module. If your RSX-11M system has the half-duplex terminal
driver, Table 3-3 in section 3.3 on the QIO Macro 1lists the
functions available with that driver. For other devices, there is
a corresponding table in the appropriate chapter of the manual.

101

USING THE QIO DIRECTIVE

192

USING THE QIO DIRECTIVE

Error Checking and the 1/0 Status Block

There are two kinds of errors which can be produced by QIO
directives, directive errors and I/0O errors. The wvarious
directive and I/O status codes and their meanings are 1listed in
Appendix B of the RSX-11M/M-PLUS I/0 Driver's Reference Manual and
also in the RSX-11M Mini-Reference.

Directive errors occur because of errors in ©processing the
directive and getting the I/0O packet queued up to the device
driver. As with all directives, directive errors are indicated by
a negative wvalue in the DSW and the carry bit set upon return to
the task code. Success is indicated by a positive value
(typically +1) in the DSW and clearing of the <carry bit.
Therefore, the directive status indicates the success or failure
of the attempt to queue the I/0 packet. Check for directive
errors immediately upon return after the QIO directive is issued.

Upon completion of the I/0 transfer itself, the Executive
returns status information about the I/0 transfer to the I/0
Status Block, laid out as follows:

Device Dependent I/0 Status

Actual Number of Bytes Transferred

NOTE

The low~order byte of the first word of the
I/0 Status Block contains the I/0 status
code. This is a byte wvalue, not a word
value. A positive I/0 status code (usually
+1 = 1IS.SUC) 1indicates success. Again,
negative values indicate various error
conditions. The second word of the 1I/0
status block indicates the number of bytes
actually transferred, which is significant in
the case of any read or a write which ends
after only some of the data 1is transferred.
The device dependent byte usually contains
information which is device dependent. For
example, for a read from a terminal, it
contains the character which was typed as a
terminating character (KRET>, CTRL/Z, <ESC>,
etc.).

193

USING THE QIO DIRECTIVE

The I/0 status byte should be checked only after the 1I/0
transfer completes. For synchronous I/0, the I/O status should be
checked right after checking the DSW, since the 1I/0 transfer
itself also completes before control 1is returned to you. For
asynchronous 1/0, on the other hand, the 1I/O status should be
checked when the task is notified by the Executive that the
transfer is complete. Synchronization is discussed in the section
that follows, after an example of synchronous I/O.

104

USING THE QIO DIRECTIVE

THE QIO DIRECTIVES

Synchronous I/0
The format of the QIOWS call is:

QIOWS ifn,lun,efn,pri,iosb,ast,iopl

where

ifn - I/O function code

lun - Logical unit number

efn - Event flag number (required for synchronous I/0)
pri - Priority (not used)

iosb - I/0 status block address

ast - AST routine address

iopl - I/0 parameter list
Example using the $S form:

+MCALL QIOWSS

.

BUFF: (ASCII /HERE IS THE MESSAGE/
LBUFF: =.-BUFF

. EVEN
I0OSB: .BLKW 2

QIOWSS #IO.WVB,#5,#1,,#I10SB,,<#BUFF,#LBUFF,#40>

Explanation of QIO arguments:

Write Virtual Block
LUN 5 (TI:)
.Event flag #1
Priority (always ignored)
I/0 status block address = IOSB
AST routine address (none specified)
I/0 parameter list
Input buffer address = BUFF
Buffer length = LBUFF
Vertical format control = 49(8) for single space

195

USING THE QIO DIRECTIVE

Once again, the $, $C, or $S form of the directive may be
used. An event flag must be specified for synchronous I/0. If
one is not specified, the 1I/0 request 1is handled as an
asynchronous I/0 request. The priority 1is 1included to allow
compatibility with RSX-11D. It is not used in RSX-11M.

ASTs are not generally used for synchronous I/0, because the
Executive performs all synchronization for you. The I/O parameter
list is a single directive parameter. Therefore, the 1list |is
enclosed in angle brackets, with the elements separated by commas.
In fact, six words are always placed in the DPB for the 1I/0
parameter list, whether or not all six words are specified.

Example 3-1 shows the use of synchronous QIOs. The following
notes are keyed to the example.

@ 2s with other directives, the macro names must be
specified in a .MCALL statement. Note that 1in this
example, we use both the $C form and the $S form of the
QIOWS directive.

G’ The two-word I/0 status block for return of I/0 status.

The buffer into which the data will be read, and also from
which the data will be displayed.

" R4 is used to indicate whether a QIO error is a directive
error or an I/0 error. A value of zero indicates that a
directive error occurred (and that R3 will contain the DSW
value). A value of -1(177777(8)) indicates that an I/O
error occurred (and that R3 will contain the I/0 status
byte).

G’ Issue the read request. We are using LUN 5, event flag 1,
and IOSB is the label of the IOSB. The I/0 parameter list
is set up as a single parameter (hence the need for the
angle brackets (< and >)). It specifies BUFF, the
address of the buffer for the characters read and 8#¢., the
maximum number of characters to read. If input is
terminated with a terminating character, such as a
carriage return, before 80 characters are typed in, the
number of characters actually read will be returned in the
second word of the IOSB. Input will be terminated
automatically after the 8@th character, if 8@ characters
are typed. In that case, 808 will be returned as the
number of characters read.

106

USING THE QIO DIRECTIVE

Check for directive error - indicating a failure in
queueing the I/0 packet.

With synchronous I/0, we don't get ~control again until
after the 1I/0 operation has completed, so also check the
I/0 status. A value less than zero indicates an error 1in
the I/0 transfer.

Get the count of characters typed in from the second word
of the IOSB. We will only check on and convert that many
characters.,

Check each character to see if it is in the range ASCII A
to ASCII Z. 1If so, convert to lowercase by adding 32(10)
= 40 (8) to that value, or else continue.

Write out the buffer BUFF, which has the converted
message. This 1s a Write Virtual Block. We use the $S
form instead of the $C form because we don't know how many
characters to write until run time. The $ form would also
work. Notice the difference in the format of the
arguments for the $S form compared to the $C form. Note
also that in the $s form, the lack of a '#' sign in IOSB +
2 means get the contents of that location, specifically
the number of characters to write out. The third argument
of the 1I/0 parameter 1list, #40, is for vertical format
control. Single linefeed before writing the characters is
indicated by #4¢, or ASCII space.

Check for any directive or I/0 errors.

See note 4. R5 is the directive counter, which will be
one for the first QIO and two for the second QIO. We need
to distinguish directive errors from I/O errors. In this
example, we use R4 to distinguish the two type of errors.
Zero in R4 means a directive error, and -1 (or 177777(8)
in two's complement) 1in R4 indicates an I/O error. For
directive errors, the DSW 1is placed in R3; for 1I/0
errors, the I/0 status byte is placed in R3.

107

USING THE QIO DIRECTIVE

The list of all error codes appears in Appendix B of the
RSX-11M/M-PLUS I/0 Drivers Reference Manual and in the RSX-11M
Mini-Reference Manual. Of course, this simple error handling will
normally be replaced with a text error message and the error code.
You will learn how this is done later in the module.

NOTE

Although both virtual block and logical block
operations are permitted to a terminal, it is
safer to use virtual block operations. If
the 1I/0 is actually performed at a terminal,
the virtual block request gets converted by
the Executive to a 1logical block request.
If, for example, 1logical block writes are
used and someone reassigns the LUN to a disk,
the write may overwrite a block on the disk.
If, on the other hand, write virtual blocks
are used and someone reassigns the LUN to a
disk, the write will only be allowed if a
file is open on the disk. The write will
fail 1in most cases if the program is writing
to a terminal.

198

USING THE QIO DIRECTIVE

1 JTITLE SYNCHR

2 SIDENT 701/

3 +ENARL LC i Enable lower case

4 FRS

] i FILE SYNCHQ.MAC

é H

7 i This task reads a line of text from the terminals

g i converts a2ll urrer case characters Lo lower casey and
Q y erints the converted messadge back alt the terminal. It
10 ¥ uses sunchronous Q10 directives.

11 § -

F
'~

Lol 2 o
PR

‘.MCALL QIOWSCyQTOUSSYEXITSES ¢ Extermal swustem
Foomacros .

e 15 TOGSER: + BLRW 2 # 170 Status Rlock
©:1s ruFF: LBLKE 8O, $ Text buffer
17 :
18 8TART: CLR R3S i Error Count
19 CLR R4 ¢ Error indicator - 0O
20 F o omeans direcltive error
21 #(NSW i R3)» nresd
22 # means 1I/0 error
23 i (1/0 stetus in R3?
G, 24 QIOW$C I0.RVEB»S+1y»T0SRy vy~ BUFF 80, ¥ Issue
25 i read
o 26 RCS ERR1 # Branch on dir error
° 27 TSTR 0S5k # Check for I1/0 error
28 BLT ERR1A ¢ Branch on 1I/0 error
C' 29 MOy I0SB+2sRO ¢+ Get count of characters
30 i tured in
31 CLR R1 # Offset into buffer to
32 ¥ character .
33 LOOF: CMFR BUFF(R1)+E#’A # Checl for uprer case
34 i ASCII character
35 BLT NEXT # Branch if below range
36 CMFR RUFF(RL1)»#'Z
37 BGT NEXT 3 Branch if asbove rande
" 38 # Here if urrer caser move to redister R2 and convert
39 MOVE RUFF(R1)sRZ 3 Move to redgister
40 Ann #3249y R2 i Convert to lower case
41 MOVER R2yBUFF(R1) # Rerlace in messade
42 NEXT? INC R1 § Increment offset into
43 ¥ huffer to next char
44 SOk RO LOOF ¢ Decrement count of
43 § characters left to chechk
d) 46 QIOWSS #I0.WURsE5»#1y v #I0GRs vy <#BUFF» IOSE42y %40
47 i Write text

Example 3-1 Synchronous I/0 (Sheet 1 of 2)

109

USING THE QIO DIRECTIVE

48 RCS ERR2 ¥ Branch on dir error
0[49 TSTE I0SE # Check for I/0 error
50 BLT ERR2A # Branch on 1I/0 error
91 EXIT$S ¥ Exit
52 H
93 # Error code
54 H
55 ERR2A4% INC RS # Ur error count - 2nd QIO
56 ERR1A: INC RS] - lgt QIO
B7 MOVE I08RYR3 ¥y 1I/70 error. I/0 status
58 # to R3.
59 DEC R4 # Nedgative value in R4
@ 60 § means 1/0 error
61 10T i Trar and disrlay
62 ¥ redisters
63 ERR2? INC RS # Ur error count - 2nd QIO
64 ERR1? INC RS H - lat QIO
65 MOV $NSWR3 # Directive error. OSW
bé ¥ to R3r leave R4=0,
_67 IoT ¥ Trar and disrlay
68 i redisters

69 +ENII START

Run Session
SRUN SYNCHQ

ARCIUEFGHIJkImmorarstuvwuz123456780 1N\
abcdefdaghidklmnorarstuvwxuzl 23456780 I\

Example 3-1 Synchronous I/0O (Sheet 2 of 2)

11¢

USING THE QIO DIRECTIVE

Asynchronous I/0
The format of the QIOS$ call is:

QIO0S ifn,lun,efn,pri,iosb,ast,iopl
where
ifn -~ I/O function code
lun - Logical unit number
efn - Event flag number
pri - Priority (not used)
iosb - I/0 status block address
ast - AST routine address
iopl - I/0 parameter list (up to six words)

Example using the $C form:

+MCALL QIOSC

IBUF: .BLKB 80.
IOSB: .BLKW 2.

QIOSC 10.RvVB,5,1,,108B, ,<IBUF,80.>

Explanation of QIO arguments:

Read Virtual Block
LUN 5 (TI:)
Event flag 1
Priority (ignored)
I/0 status block address = IOSB
AST routine address (not used here)
I/0 parameter list
Buffer address
Buffer length

IBUF
84d.

111

USING THE QIO DIRECTIVE

Synchronization With Asynchronous 1/0

As mentioned earlier, event flags and asynchronous system
traps may be used for synchronization. If an event flag is
specified, the Executive clears the event flag when the I/0O packet
is queued and sets the flag again when the I/0 transfer completes.
This happens with both synchronous and asynchronous I/0, 1if an
event flag is specified. With asynchronous I/0, the task can
specify a flag and use it for synchronization wusing one of the
following techniques.

l. Do some work, then wait for the flag to be set.

2. Work the entire time, periodically checking the flag until
it is set.

Another possible technique for synchronization is to use ASTs
(discussed 1in Chapter 2). The following techniques might be used
with ASTs, after specifying an AST routine address in the QIO$
directive.

1. "Main" task does some work, then suspends or stops itself.
AST routine resumes or unstops the task.

2. "Main" task works the entire time, periodically checking a
cleared event flag or a cleared byte in a local data area.
AST routine sets the flag or sets the byte to a nonzero
value, thus notifying the "main" task that the 1I/0
operation has completed. If an event flag 1is wused, it
will typically be different from the flag specified in the
asynchronous I/0 request.

A third technique which can be wused 1is to monitor the
contents of the I/0 status byte of the I/0 status block. The
complete I/O status block is cleared when the I/0 request is
queued to the driver. Later, it 1is filled in when the I/0
transfer completes. Therefore, the user task can periodically
check the contents of the I/0 status byte for a nonzero value.

112

USING THE QIO DIRECTIVE

Example 3-2 demonstrates the wuse of asynchronous 1I/0 to
perform the same function performed in Example 3-1. This task can
do some work in parallel with the 1I/0 transfer. The following
notes are keyed to the example.

Here we use QIOS$C and QIOS$S instead of QIOWSC and QIOWSS.
WTSESC 1is a Wait for Single Event Flag directive, used to
synchronize the I/0 operation.

A work buffer to be filled with wvalues while the 1I/0
transfer is going on.

Issue the read. QIOSC instead of QIOWSC. All arguments
are the same. 1If ASTs were used for synchronization, an
AST address would be specified. The Executive will clear
Event Flag 1 when the I/0O packet is queued and set it when
the I/O operation completes.

Check again immediately for directive errors. Here, vyou
are checking for an error in queueing the I/0 packet.

While the I/0 transfer itself takes place, you can do some
work. Here fill the "array" at K with the values 64.,
128.'000' 64g.

When you are finished with your work, enter a Wait For
state until the event flag specified in the QIO$ directive
is set. It will be set when the I/O operation completes.

Now that the I/O operation 1is finished, check for 1I/0
errors.

After converting the message, issue the write.

This time, wait for the flag to be set immediately after
checking the directive status. You could do some more
work here. If you choose to wait, it is simpler and more
efficient to use synchronous I/O (QIOWS$). Synchronous I/O
is more efficient because you perform both functions (QIOS$S
and WTSES$) in just one Executive directive call.

Still use the error count to 1indicate the directive

number. Since there are now extra directives (the WTSEs),
adjust the counts accordingly.

113

SN UD -

Ry
[i o]

ot
o

fary
E-S

15
16
17
19
20

23

1]
4]

27

> W W wr @> €> WF B> S

I0
RU
K3

8T

»
y

PL.

a

H

WA

USING THE QIO DIRECTIVE

+TITLE ASYNCQ
+IDENT /017

+ENARL LC # Enable lower case
FILE ASYNCQ.MAC

This task reads a line of text from the terminals
converts a2ll urrer case characters to lower casey and
rrints the converted message back at the termimal. Tt
wses aswnchronous QI0y using wait for evernt flag for
synchronization.

+MCALL QIO$CyQIOSSyEXITSS,WTSESC 3 Externsl

#¢ sustem macros

SR + BLKW 2

2 I/0 Status Rlock
FF3 +BLKE 80.

Text buffer

®|r wr e> e>

+BLKW 10. Arraw to Fill while
waiting for I/0
ART: CLR RS # Error Count
CLR R4 $ Error indicator: 0
i means directive errory
¥ ~1 mesns I/0 error
QIOSC I0WRVUBsSy 1y y I0SREy s RUFF 280,940 § Issue
§ read
RCS ERR1 i Bramnch on dir error
Now do some work
CLR RO Offset into arraw K
MOV #64.yR1 Value to slace in arraw
ACE: MOV R1sK(RO) Flace value in arraw
Al #2+RO Foirnt to nesxt element
in K
CMF RO+ #20. At the end?
BHI WAIT Branch if done
ADD #64.9R1 Comrute next value
BR FL.ACE Flace it in the arraw

Now wait for I/0 oreration to comrlete

W3 EF F Tr GF W P WF wr {1 Wr WP Cr 0> W WP > N> ‘6>

IT: WTSE$C 1 Wait for 1/0 to

comrlete

ECS ERR2 Check for dir error

TSTE I0SKE Checlk for I/0 error

BLT ERR1A Eranch on I/0 error

MOV IOSE+2yRO Get count of characters
tured in

CLR R1 Offset into buffer to
character

Example 3-2 Asynchronous I/0 Using Event Flags

for Synchronization (Sheet 1 of 2)

114

USING

THE QIO DIRECTIVE

FI0.WVRy#Ss#1 s #T0SRy » <EBUFF » IOSE+25 #4002

48 LOOF: CMPE BUFF(R1)»%‘A
49

50 BLT NEXT

51 CMFE BUFF(R1)»%°Z
52 BGT NEXT

53 y Here if urrer caser

54 MOVE BUFF(R1)sR2
59 ADD #32.9yR2
56 MOVE R2yRUFF(R1)
57 NEXT? INC R1

58

59 SOR RO LOOF
60 QI0%S

61

62 BCS ERRZ

63 # Could do some more work
64 WTSE$C 1

69

bé BCS ERR4

67 TSTR I0SR

68 BLT ERR3A

&9 EXIT$S

70 $ Error code

71 ERR3A: INC RS

72 INC RS

73 ERR1AY INC RS

74 IEC R4

75

76 MOVE IOSEYR3
77 107

78

79 ERR4: INC RS

80 ERR3 ! INC RS

81 ERR2: INC RS

82 ERR1? INC RS

83 MOV $NSWsR3
84

85 I0T

86

87 +ENDN START

Run Session

=RUN ASYNCQ

- wr @r

a

9

> Ws er wr ‘Gr wr

a

¥

A

¥

here too

> w> W W wr wr

W WE > TP GE WP WP W WP WB G3 W AT > WP W

Checlk for urrer case
ASCII character
Branch if below ransge

Rranch if above ransde

move to redister R2 and convert

Move to redister
Convert to lower case
Rerlace in messade
Increment offset into
buffer to next char
Necrement char count

Write text
Eranch on dir error

Wait for I/0 to
comrlete

EBranch on dir error

Check for 170 error

EBranch on 1/0 error

Exit

RS=3s 2nd QIO

R3=1s 1st QIO

Make R4 nedative to
indicate I/0 error
I/0 status to R3

Trar and disslawy

redisters
RS=4y 2nd Wait For
RS=3y 2rmd QIO
R3G=2y lst Wait For
R3=1y 1st QIO
Directive error. [HSW
to R3y leave R4=0,
Trar andg diselay
redisters

abedefghKJHRIJHKHFRTEWaWwryuwiuroZCVevbvenbMENM7 (8534243 ¢/
ahedefghl bk jhkhf ritewawrgugiurozovevbvenbmbnm? (8534243 ¢/

Example 3-2

for Synchronization

115

Asynchronouva/O Using Fvent Flags
(Sheet 2 of 2)

USING THE QIO DIRECTIVE

Example 3-3 shows the use of ASTs for synchronization. In
addition, it shows the use of some supplied macros for generating
error reports. These macros are documented in Appendix A of this

course.

The following notes are keyed to the example.

This is the text for the messages to be written. The
LEN=,.-MES 1lets the assembler calculate the length of the
message for you. A similar technique 1is wused for the
other messages.

The ASCII text may contain an odd number of characters.

The .EVEN assembler directive assures that your first
executable instruction is an even word boundary.

Issue the write request. The AST routine address is
specified. Also specify the address of the buffer, MES,
and its length LEN. You can wuse the $C form of the
directive because all arguments are known at assembly
time.

Suspend until the AST routine 1is activated. upon 1I/0
completion. Normally some other processing would be done
here, in parallel with the I/0 operation.

The Executive passes control to the AST routine when the
I/0 transfer completes. First check the I/O status. You
do that here instead of in the main code because you will
be issuing another write which will overwrite the IOSB.
The I/0 status check could otherwise be checked in the
main code after the task is resumed.

- Write out a message so the operator knows you are in the

AST routine. This time you use synchronous I/0, since you
aren't planning to do any work while the 1I/O transfer
takes place. Again, check for errors.

Resume the task so it will be ready to run upon exit from
the AST routine. '

Pop the extra word off the stack (this AST is entered with
five words on the stack instead of the standard four).
Then use the ASTXS directive to exit the AST routine via
the Executive.

Check for directive errors on the SPNDS. It's possible
that you never suspended yourself.

116

USING THE QIO DIRECTIVE

Write another message synchronously, check for errors, and
then exit.

The DIRERR and IOERR macros generate error messages for
you. DIRERR generates a message with the following
format.

DIRECTIVE ERROR
<user message>
DSW = <value> (in signed decimal)

IOERR generates a message of the following format:

I/0 ERROR

<user message>

I/0 STATUS BLOCK = <hb>,<1b>/<2nd word>
(in signed decimal)

hb is the high byte of the first word.
l1b is the low byte of the first word.

Each of these macros then causes the task to exit. Later
in this module you will 1learn how to generate such
messages yourself.

117

USING THE QIO DIRECTIVE

1 +TITLE QIOAST
2 +IDENT /01/
3 +ENARL LC 3 Enable lower case
4 it
S ¥y FILE QIOAST.MAC
é ¥
7 $# This rrodram issues a3 QI0 and then susrends itself.
8 ¥ When the I/0 oreration comrletesr an AST routine is
9@ # invoked which resumes the task.
10 H
11 ¥ Assemble and task-build instructions?
12 H
i3] MACRO/LIST LEBIL11IFPROGMACS/LIBRRARY rcfeviLufdlQI0ASR
14 H LINK/MAF QIOASTyLERIC1 s LIFROGSUEBS/LIEBRARY
15 H
16 # Install and run instructions! Imstall the task so that
17 # the Resume directive works rrorerlu.
18 §-
19 JMCALL EXITSSQI0SCQIOWESCASTXES 7 Sustem
20 +MCALL SPND$SyRSUMSC $ macros
21 +MCALL IOERRyDIRERR $ Surrlied macros
22 I0SE!? +BLKW 2 s 170 status hlock
23 MES +ASCII //QI0AST’ IS STARTING/ # Startur message
24 LEN = +~MES
25 MES1: +ASCII //QI0AST’ HAS REEN RESUMED AND WILL/
" 26 +ASCII / NOW EXIT/ y Resumed messade
27 LEN1 = +~MEST
28 MES3: +ASCITI /ASTRT IS EXECUTING AND WILL NOW/
el +ASCIT 7/ RESUME QIOAST/ ¥ AST messade
| 30 LEN3 = +—MES3
QO _ :: EVEN

32 START: QIO4C IO WUEB»SG» 1y » JOSEyASTRT » “MES s LEN» 40>

33 i Issue write

34 RCS ERR1 # Branch on dir error
Q_:s SFND$S 3 Suseend self

36 RCS ERR2 # Branch on dir error
d) 37 QIOWSC I0.WVEsSelyyTOSEy v MESL2LENLY40> § lssue

38 # write

39 ECS ERR3 # Branch on dir error

40 TSTR 106k # Checlk for I/0 error

41 RLT ERR3A # Branch on 170 error

42 EXIT$S y Exit

43 § Main code error handlingy using surrlied macros

44 ERR1? DIRERR <ERROR ON 18T QIO RY QIOAST:

45 ERR1A? ITOERR #I0SRy < ERROR ON 18T QIO RY QIDAST:
o 46 ERR2? DIRERR <ERROR ON SUSFEND:

47 ERR3? DIRERR <ERROR ON 2NI QIO RBY QIOAST:

48 ERR3A! IO0ERR ¥T0SRy < ERROR ON 2NIN QIO RY QIOAST:

Example 3-3 Asynchronous I/0O Using an AST for Synchronization
(Sheet 1 of 2)

118

USING THE QIO DIRECTIVE

49 H

50 3 AST service routime ~ entered whern the lst QL0 bhw the

51 y main code comrletes

52 H

53 ASTRT: TSTE I0SE § checlk 1/0 status on
6[54 # I/0 oreration

55 BLT ERR1A # Branch on 1/0 error
t’ 56 QIOWSEC TOJWVEByS»1ys IOSEy y “MES3SLEN3Y40> 3 Issue

57 # write

58 RCS ERR4 # Bramch on dir error

59 TSTER 108k # Check for 1I/0 error

60 BLT ERR4A # Branch on 1I/0 error
" 61 RSUM$C QIOAST ¥ Resume taskhk

62 BRCS ERRS ¥ Branmch on dir error

63 T8T (SF3+ # For AST grecific word
O s i off stack

L 65 ASTX4$S ¥ Leave ABT state andg

66 ¥ return to main code

&7 i AST error handling code

[68 ERR4: DIRERR <ERROR ON QIO BY AST ROUTINE:
0 69 ERR4A! IO0ERR #T0SKy<ERROR ON QIO RY AST ROUTINE:-

L 70 ERRS? DIRERR <ERROR ON RESUME RBY AST ROUTINE:

71 +END START

Run Session

=INSTALL QIOAST
=RUN QIOAST

QI0AST’ IS STARTING

AST IS EXECUTING AND WILL NOW RESUME QIOAST
‘QI0AST’ HAS BEEN RESUMED

Example 3-3 Asynchronous I/0 Using an AST for Synchronization
(Sheet 2 of 2)

119

USING THE QIO DIRECTIVE

TERMINAL 1/0

Device Specific Functions

Some device-specific function codes are listed in Table 3-3.
Table 2-3 in section 2.3 (on the QIO macro) of the RSX-11M/M-PLUS
I/0 Drivers Reference Manual lists all of the available special
functions for the full-duplex terminal driver. As noted, some of
these functions are SYSGEN options.

Many of the device-specific functions are selected using
subfunction bits. These bits may be ORed with standard or
device-specific function codes to produce special £functions.
Table 2-4 in Chapter 2 of the I/0 Driver's Reference Manual lists
the various combinations which are possible. For example, TF.TMO
(read with timeout) ORed with a read function (I0.RLB, IO.RPR,
IO.RNE, etc.) terminates the read if the specified time period
goes by between keystrokes. Notice that some device-specific
functions, such as Read No Echo (IO.RNE), have equivalents wusing
subfunction bits (IO.RLB!TF.RNE). Read After Prompt (I0.RPR) on
the other hand, has no equivalent using subfunction bits.

NOTE
When you OR subfunction bits with read or
write functions, use Read Logical Block or
Write Logical Block, not the Read Virtual
Block or Write Virtual Block. If the
Executive converts a virtual block operation
to a logical block operation, any subfunction
bit settings are lost.

For additional information on the device-specific function
codes, see section 2.3.2 on Device-Specific Functions in the
RSX-11M/M-PLUS I/0 Drivers Reference Manual. Examples of the use
of Read After Prompt, Read No Echo, and Read With Timeout are
included here.

1/ 0 Status Block and Terminating Characters

As for other I/0 functions, the low order byte of the first
word of the I/0O status block contains the 1I/0 status byte,
indicating the success or failure of the I/O operation. Also, the
second word contains the count of characters actually transferred.
For reads from a terminal, the high order byte of the first word
of the I/O status block contains the terminating character in
ASCII (<RET>, CTRL/C, etc.) for successful reads.

120

USING THE QIO DIRECTIVE

_ Normally, CTRL/Z is treated as an error. The I/O status byte
is set to IE.EOF (-19.) and the character count contains the count
of characters read before the CTRL/Z. Example 3-4 shows how
CTRL/Z <can be specially handled in a program. Two special
function codes, IO.RST and IO.RTT, allow reads to be successfully
terminated by nonstandard terminating characters. The first
allows any non-alphanumeric character to terminate input; the
second allows the wuser to specify which character or characters
should terminate the read.

121

USING THE QIO DIRECTIVE

Table 3-3 Some Special Terminal Function Codes

122

USING THE QIO DIRECTIVE

Read After Prompt

The Read After Prompt function allows the combination of a
write of prompting text followed by a read in a single QIO
request. System overhead is lower because only one QIO directive
is processed. In addition, there 1is no window during which a
response to the prompt may be ignored. Such a window may occur if
separate QIOs are used to write and read, and if there is a delay
between the write of the prompt and the read. The 1I1I/0 parameter
list contains six parameters, three for the read, and three for
the write. The following notes are keyed to Example 3-4.

(1) Placing the buffer with "You typed:" Jjust ahead of the
buffer for the input text allows the use of a single QIO
to write out the complete line of output text. FINMES Iis
the starting addres of the output text and length is FLEN
+ n, where n is the number of characters typed in.

e’ We assign the symbol IOLEN to the second word of the IOSB.
This allows you to reference that word with IOLEN, instead
of using IOSTAT + 2.

© 010 for Read After Prompt. The function code 1is IO.RPR.
The first three parameters in the I/0 Parameter List are
for the read, the last three are for the write. The write
is performed first, followed by the read. The 44(8) for
the vertical format control causes the prompt text to
appear on the next line, followed immediately on the same
line by the prompt for the read.

" We are going to display the message typed, preceded by the
text "you typed 1in." By placing the input buffer BUFF
immediately after the preceding text, we now have our
output text as one string beginning at FINMES. The total
length of the message to be displayed is the length of the
preceding text plus the number of characters typed in.

G’ Use a normal QIO with Write Virtual Block to display the
output.

©@ 1f the operator types a CTRL/Z, an error status is

returned. In this case, simply exit normally. Therefore,
you must check for this condition and handle it specially.

123

SOW N D IR =

[Rrr ey
R e

e
4 I]

o e
WO

3

Rt
R]

23
24
25
26
27
28
29
30

32
33

-

then

i

R L L TR T T R T

a

’
FROM:
FLEN
FINMES?
FLEN
BUFF 3

TOSTATS
TOLEN?

a

y
START?

-USING THE QIO DIRECTIVE

+TITLE FROMPT
+IDENT /01/
+ENARL LC ¥y Emable lower case

File FROMFT.MAC

This task sromets the user for an inrut string and
echos the strimg to the terminal. It rereats this
rrocess until the user tures a8 CTRL/Z.

Assemble and task-build instructions?

MACRO/LIST LEBICLs 1IPROGMACS/LIBRARY sydeviluicIFROMFT
LINK/MAF PROMFT LE:LLy 1IFROGSURS/L.IBRRARY

SMCALL EXIT$S,QL0WSS

¥ Sustem macros
+MCALL DIRERRy IOERR 5 8

urrlied macros

LASCII /Please ture anwthingt / sFromet

= +« ~FROM # Length of rromet
JABCIT /You tured? / i Echo rrefix
= +~FINMES ¥ Length of above
+EBLKE 80. ¥ Buffer
+EVEN # Move to word boundary
+RBLKW 1 # 170 status block for
¥ Ql0s.
+RBLKW 1 §F 2nd word of 1/0 status
y

block

QIOWSS HFIO0.RFRsy¥Sy#1y v #I0STATy » “¥BUFF »y#80. 5 y #FPROMy #FLENy #4445
issue QI0 for Read
After Fromet

BRCS DERR Eranch on dir error
TOTR T0STAT Checlk. 1/0 status

EBLT IERR EBranch on I/0 error
ALn FFLENy IOLEN Add lendgth of errefix

€ W> W WP r G e

to that of entered text
QRIOWSS #I0WVUB+ #5591y vy EHT0STATy vy #FINMES» IOLENy 40>
) # Write the rew messede

14
RCS CERR # Branch on dir error
TSTR IOSTAT # Check for I/0 error
BLT OERR § Bramch on I/0 error
ER START i Start over adgain

i Errors come here

DNERR?

CERR?
IERR?

JERR

OERR?

DIRERR <Evrror in QIO to READ AFTER FROMFT:
i Use macro to tell of
DIRERR <Error in QI0 to WRITE: dir error

CMFER ¥IELEOQOF » TOSTAT Check for ~Z

| er Er € €S

BNE JERR EBranch if rotsy
was I/0 error
EXITS Normal exit

I0ERR #FI0STATy<Error in READ AFTER FROMPT:-
¢ Use macro to
i tell of
I0ERR #I0STATs<Error in WRITE> 3 1/0 error

«END START

Example 3-4 Prompting for Input (Sheet 1 of 2)

124

USING THE QIO DIRECTIVE

Rurn Session

*RUN FROMPT

Flease ture anwthing! sikshJHGJHGHFY134435
You twred?! sikshJHGJIHGHFY134435

Flease ture anwthing! hello there

You tured?! hello there

Fleasse ture anubthing! "Z

Example 3-4 Prompting for Input (Sheet 2 of 2)

125

USING THE QIO DIRECTIVE

Read No Echo

Read No Echo is used to override the default of echoing each
character as it 1is typed. This is used for passwords and other
private information. Example 3-5 wuses this function. The
following notes are keyed to the example.

€@ The .NLIST BEX assembler directive instructs the assembler
not to list binary code which takes up more than one 1line.
This saves room in the listing for all the ASCII text.
Return to listing binary extensions for the code by using
a .LIST BEX assembler directive.

G’ As in the previous example, we display the text typed 1in,
preceded by our own message. Since the Read No Echo
doesn't echo any characters back and thus doesn't move the
cursor on the screen at all, precede the text with a
carriage return (15(8)) to get the <cursor back to the
start of the line. 1If this is not done, the NO LONGER A
SECRET WORD message will begin away from the 1left hand
margin, below the : in "SECRET WORD".

G’ Write prompting text, then leave cursor at that position
for input (since 44(8) is wused for vertical format
control).

(’ Read No Echo QIO. Standard read parameters except for the
function code.

G’ As in the previous example, add the 1length of the
preceding text to the text typed in to determine the total
length of the output message. Here, however, you do the
calculation in a register instead of in the IOSB. Since
the Read No Echo doesn't echo any characters back, it
doesn't move the cursor on the screen. Therefore, precede
the text with a carriage return (15(8)) to move the cursor
back to the start of the line. Without it, the "NO LONGER
A SECRET WORD" message will begin away from the margin,
below and after "SECRET WORD: ".

You can combine the write of the prompt and the read into one.
QIO directive call using a Read After Prompt with the Read No Echo
subfunction bit (IO.RPR!TF.RNE). If you want, imbed the carriage
control characters in the message.

126

Iy =

N NWU D

| pu—

USING THE QIO DIRECTIVE

+TITLE NOECHO
SIDENT /01/
+ENAERL. LC i Enable lower case

e

FILE NOECHO.MAC

This taesk srromrts for inrutsy reads it without echors
disrlaus the inrut text and exits.

Assemble and task-build instructions?

MACRO/LIST LE:L1»1IFPROGMACS/LIBRARY ydeviluicINOECHO
LINK/MAF NOECHOs FROGSURS/LIBRARY

EIECTIRCTEE TR TR T DR DR P T

H

+MCALL EXIT$S,QI0CWSC-QI0OWSS 3 Sustem macros
+MCALL DIRERRs IDERR Surrlied macros
+NLIST EBEX Dom’t list binary
extensions

MES? +ASCII /SECRET WORD: / Fromet messede

LEN = +—MES Length of rromet
RUFF$ +ASCIT <15:>/N0 LONGER A SECRET WORD: /
Freceding remarkh

»

- GF Wr W §

BLEN = +~BUFF Length of Remark
BUF +BLKR 80. Inrput buffer
+EVEN Word align for I0SE

I0ER: +WORD 0
LENT? +WORD 0

I0SR is broken into
two rarts for
CONVenience.

]

H

H

y

H

H

H
LIST REX #F List binary extensions

START: QIOWSC I0.WVEBySs1lysI0SR»y<MESsLENs44:> § Write

¥ sromrt
RCS NERR1 # Branch on dir error
TSTH INSE ¥ Check for I/0 error
RLT IERR1 # Branch on I/0 error
QIOWSELC JTO.RNEsS¢1y»I0SEyy<BUF+80,> ¥ Read Noecho
BRCS DERRZ # Branch on dir error
TSTR TI0SE # Check for 1I/0 error
BLT IERR2 # Branch on 1/0 error
MOV LENT»RO ¥ Get length of inrut
AL FBLENYRO ¢ Add length of remark

ATOWES FTIO0.WVUB»ESv 41 v #TOSEy » “#BUFF s ROy 402
Write out text

<y

BRCS DERR3 i Branch on dir error
TSTR I08E ¢ Checlk for I/0 error
RLT TIERR3 § Branch on 1/0 error
EXIT$S ¥ Exit

&

i Errors come here

IERRLY TOERR #I0SEy<Error on 1st WRITE:
ITERR2! IT0OERR #I0SRy<Error on READX
TERR3: IDERR #I0SBy~Evrror on 2nd WRITE> exit

OERR1:! DIRERR <Error inm QIO on lst WRITE> 5 Disrlaw dir
NBERR2! DIRERR <Error in QI0 on REAI- ¥y messadge and
DERR3: DIRERR <Errvor in QIO on 2ngd WRITE:> ¥ exit

+END START

DNisrlaw 170
message and

> ey e

Example 3-5 Read No Echo (Sheet 1 of 2)

127

USING THE QIO DIRECTIVE

Run Session
HRUN NOECHOQ

SECRET WORD?
NO LONGER A SECRET WORD?: ADD

Example 3-5 Read No Echo (Sheet 2 of 2)

Read with Timeout

Example 3-6 is a repeat of Example 3-1, only with a timeout
on the read. The following notes are keyed to the example.

To invoke the timeout mechanism, TF.TMO is ORed with the
read function (IO.RLB). You must use Read Logical Block
here, because any subfunction bits are stripped off when a
Read Virtual Block is translated to a Read Logical Block
function. In addition, the third parameter in the 1I/0
parameter 1list specifies the length of the timeout in 10
second intervals. This timeout occurs if that amount of
time passes between successive keystrokes. If a timeout
occurs, input is terminated, but no error 1is reported.
Instead, the success code +2 is returned rather than the
standard +1.

On the Run Session - In the first run, the QIO timed out
after KJHKJjjj. In the second run, the QIO was terminated
with a carriage return before it timed out.

To handle the timeout specially, just check the 1I/0 status

byte

for a value of +2 (IS.TMO). Another alternative for placing

a time limit is to use a Mark Time directive (MRKTS$). The timeout

with a Mark Time is for the entire input, rather than for the next
keystroke.

128

USING THE QIO DIRECTIVE

1 LTITLE QIOTIM

2 +IDENT /01/

3 +ENARL LC iy Enable lower case

4 i+

5 i FILE QIOTIM.MAC

b H

7 i This task reads a3 line of text from the terminals

8 ¢t converts a3ll urrer case characters to lower casey and
? i Prints the converted messaste back at the terminasl. It
10 §ouses sunchronous QI0sy with a8 timeout on the read.

11 §

12 §

13 SMEALL QIOWSCyQIOWSSEXITH#S ¢ Sustem macros

14

I/0 Status Rlock
Text buffer

15 INsE: + BLKW 2
16 RUFF ¢ + BLKR 80.

<> e

17

18 START?! CLR RS $ Error Count

19 CLR R4 y Error indicator - 0

20 i means directive errory
21 i (OSW in R3)y ned means
22 i I/0 error (I/0 status
23 i in R3)

24 QIOWSC IO0RLE!TF.TMO»Selry IO0SEy sy “RUFF 80,91

23 i Iesue read

26 RCS ERR1 i Branch on dir error

27 TSTER I0Sk i Check for 1I/0 error

28 BLT ERR1A ¥ Rranch om 1/0 error

29 MOV I0SE+2yRO i Get count of characters
30 i tured in

31 CLR R1 i Offset into buffer to
32 3 character

33 LOOFS CMFE BUFF(RL) »¥’A i Checl. for uprer case
34 # ASCIT character

35 BLT NEXT # Branch if below range
36 CMFE RUFF(RL1)Yv#/2Z

37 BGT NEXT ¢ Branch if above randge
38 # It is urrer caser so move to redister R2 and convert
39 MOVE RUFF(R1)yR2 + Move 1o register

40 ADD #32.9R2 ¢ Convert to lower case
41 MOVE R2yBUFF(R1) i Rerlace in messade

42 NEXT? INC R1 3 Increment offset into
43 $ buffer to next char
44 S0B ROy L.OOF i Decrement count of

45 i characters left

44 QIOWSS HI0.WVURsESv &1y v RI0SEy v “HRBUFF y IOBR+2» $40>
47 BCS ERR2 # Branch on dir error

Example 3-6 Read With Timeout (Sheet 1 of 2)

129

USING THE QIO DIRECTIVE

48 TGTER I0SE

49 EBLT ERR2A
50 EXIT$S

51 H

32 ¥ Error code

53 H

54 ERR2A! INC RS

53 ERR1IA: INC RS

56 MOVE IOSEsR3
857 LEC R4

58

59 10T

&0 ERR2? INC RS

41 ERR1¢ INC RS

&2 MOV $NSWsR3
63

64 10T

65 +ENIN START

Run Session

*RUN QIOTIM
KJIHKJ 30

btk dddd
=*RUN QIQTIM
JAdafhbkdfiue<RET®
duddathkdfiur

Example 3-6

139

L TR T

s Er GP WGP WGP WP € ar Q> ‘e

Read With Timeout

Check for I/0 error
EBranch on I/70 error

RS=2y 2nd QIO

RS=1y 1st QIO

I1/0 error. I/0 status to R4,
Negative value in R4

means I/0 error

Trar and disrlay redgisters
R3=2y 2nd QIO

RS=1y 1st QIO

Directive error. ISW

to R3y leave R4=0.

Trar and disrlay redisters

(Sheet 2 of 2)

USING THE QIO DIRECTIVE

Terminal-Independent Cursor Control

Terminal-independent cursor control 1is a SYSGEN option,
provided only if selected. If it is selected, certain I/0
requests are automatically converted by the terminal driver for
the specific device for which the I/0 request is made. This is
typically done with escape sequences used for positioning the
cursor. This allows a task to move the cursor to any position on
the screen and then write a message.

This can also of course be done by imbedding the terminal
specific escape sequences 1into the write buffer. However, the
advantage of using terminal-independent cursor control, 1is that
the same program will work at different terminals (VT-52's and
VT-100's, for example), without any need for modification.

All you need to do is place the proper value in the vertical
forms control word of the I/0 parameter list. If the high order
byte is non-zero, then the word 1is interpreted as a cursor
position. The high order byte is the line number, and the low
order byte is the column number. Home position, the wupper Ileft
corner of the screen, is defined as line 1, column 1.

To start the display at line 18., column 25., place a 10. 1in
the high order byte and a 25. 1in the low order byte. An easy way
to do this is to let the assembler convert 10.*256.!25. for vyou.
In general, X*256.!Y corresponds to position X,Y on the screen,
In addition, if bit 15 (the most significant bit in the 1line
number byte) is set, the screen is cleared before the cursor is
moved.

Example 3-7 demonstrates the wuse of terminal-independent
cursor control. The following notes are keyed to the example.

" Parameters defined with symbols so that they can easily be
changed.

e' Use the $ form of the mark time directive to allow reuse
of a single DPB.

G’ Issue a mark time directive for one minute to set event
flag 3, allowing the task to exit after one minute.

131

USING THE QIO DIRECTIVE

Modify the DPB and use it over and over again, at line 34,
to mark time for Z seconds before updating the display.
The second mark time wuses event flag 2, to avoid
conflicts. This approach saves task space since the DPB
is used again.

Issue the Z second mark time directive. We will wait for
event flag 2 at line 5@. When one second goes by and the
flag is set, check for one minute and update the display
again if it hasn't yet gone by.

Get the time and date parameters in binary.

Use the System Library Route $DAT and $TIM to format the
date and time for display. See Chapter 6 of the
IAS/RSX-11 System Library Routine Reference Manual for
documentation on these routines.

Calculate the length of the output message by subtracting
the starting position in the buffer from the position
after the last character in the buffer.

Issue the write. X*256!Y places the cursor before the
write at 1line X, column Y. The TF.RCU subfunction bit
instructs the terminal driver to save the cursor position
before moving it, and then to restore it after writing the
message. This allows you to continue typing in commands
while the task runs.

Wait for z seconds to go by. The mark time directive will
cause event flag 2 to be set.

Check event flag 3. If it is set, the one minute 1is up
and you should exit. Use Clear Event Flag instead of Read
All Event Flags so that the DSW will indicate whether the
flag was <clear or set before you cleared it. With Read
All Event Flags, the settings of flags 1-16 are returned
in a word in a buffer. You would then need to test the
specific bit to check the flag setting, which 1is more
work.

On the Run Session - The display actually will appear at

line X, column Y on the screen, and is updated every 2z
seconds.

132

USING THE QIO DIRECTIVE

1 LTITLE DATTIM

2 LIDENT /017

3 JENARL LC # Enable lower case

4 it

3 i OFILE DATTIM.MAC

&]

7 i This task =laces the date and the time alt lime Xy column Y and
8 § then wurdates the disrlaw everw Z seconds for 1 minute.

b4 ¥

10 i Assemble and Linmk instructions?

11 H

12 § MACRO/ZLIST LEILLs 1IPROGMACS/LIBRARY vddevilufdINATTIM

13 $ LINK/Z7MAF DATYIM LEILL1IPROGSURS/Z/LIBRARY

14 § -

15 MCALL QIOWSSyMRRTSsWTSESCBTIMSC 5 Externsl sustem macros
16 SMCALL EXITHSyCLEF$CDIRS #
17 +MCALL DIRERRy TOERR v External suerlied macros

18 i Data

Insert srace into outrul messase
Set ur for call to $TIMy ashk
far HHIMMISS format
44 cal.l. $TIM Cornvert time for disrlaw
45 SUR #TIMMSGy RO Comrute character count
AIOWES #T0.WLRITF .RCUsES o1y s #I0SEy vy “ETIMMEGy RO v EXXK2TH . 1Y
47 BCS ERR4I # Branch on directive error
48 TSTR 108k Check for I/0 error
49 BT ERR4T Bramch om 1/0 error
50 WTSE$C 2 Wait for mark time to exeire
51 BCS ERRS Branch on directive error

41 MOVE #/ 2 (RO)+
42 MOV #35R2

19 X3, o Llime number
0[”0 Y=32, i Columr rumber
21 Z=1 i How often to usdate (in seconds)
©0
23 TIMBUF ! BLKW 8. 3 Buffer for return of sustem Lime
24 TIMMSGHS JBLKRE 20, i Buffer fTor creating outrut messade
25 TOSRE: +BLKW 2 3 170 status block
" 26 MRKTM: MRKT$ 3193 $ OPE for mark time directive
27 i Code
" 28 STARTS: DIR$ #EMRKTM $ Set wusr to exit after 1 minute.
29 RCS ERRI $ Bramch om directive error
30 i Set ur for the other mark time directive
31 MOV #2yMRKTM+M.KTEF ¢ Chande event flag ¥
‘,[:33 MOV #Z s MRETM4M KTMG ¢ Chande time masgnitude
33 MOV #2y MRKTHM+M.KTUN ¢ Chandge time units
e’ 34 AGAIN: DIR$ #MRRKTHM § Schedule next uerdate
35 RCS ERR2 3 Branch on directive error
c, 36 GTIM$C TIMEUF i Get swstem time and date
37 RCS ERR3 ¥ Branch on directive error
38 MOV #TIMMSGyRO i Set ue for call to $0AT
39 MOV FTIMRUF s R1 H
40 CAall. SNAT $ Convert date for disrlay
¥
]
§
#
'

6900

e 2y e ws

Example 3-7 Terminal-Independent Cursor Control (Sheet 1 of 2)

133

52
QO s:
54
55
56
57
58

59

61
62
63
64
65
b6
67

12{X 1]

USING THE QIO DIRECTIVE

¥ Check for 1 minute done bw

i Error
ERR1¢
ERR2?
ERR3:
ERRA4L
ERRATI?
ERRS ¢
ERR&?

Session

FRUN DATTIM

Example 3-7

CLEF$C
BCS
CHF
BEQ

EXIT$S
code
DNIRERR
DIRERR
DIRERR
IIRERR
I0ERR
INIRERR
I'IRERR
LEND

3
ERR6&

$NSW#IS.CLR

AGAIN

<ERROR
“ERROR
“ERROR
“ERROR

<ERROR
“ERROR
START

Clear event flag to check setting

Eranch on directive error

Check for flag alreaduy clear

If still cleary minute ot ur wetys
urdate disrlaw adain

Exit if 1 minute is us

|y €r Gr W er aF

ON MARK TIME FOR 1 MINUTEX
ON MARK TIME FOR 1 SECONIU-
ON GET TIME:

ON WRITE>

#I0SBy<ERROR ON WRITE:

ON WAIT FOR:
ON CLEAR EVENT FLAGH

12-MAR-82 113112154
I DISFLAY WILL START AT LINE Sy COLUMN 32

Terminal-Independent Cursor Control (Sheet 2 of 2)

134

USING THE QIO DIRECTIVE

Formatting Output Data

The subroutine $EDMSG in SYSLIB.OLB provides a generalized
output formatting capability for easily creating display messages.
It is useful if some of the data is generated at run time. This
allows you to combine a number of functions available with
individual conversion routines (such as $CBDMG) for converting a
single binary word to an ASCII octal string for display. It
includes all of the following functions.

e Conversion of internal binary stored data to
- ASCII signed or unsigned octal
- ASCII signed or unsigned decimal
- ASCII alphanumeric characters

e Conversion of time or date data 1into standard ASCII
formats (hh:mm or dd-mmm-yy) »

e Formatting of converted characters for display, by
themselves or intermixed with other text.

For a complete discussion of the use of $SEDMSG, see Chapter 5
of the IAS/RSX-11 System Library Routine Reference Manual.

To invoke $EDMSG, use the following procedure.

1. Set up the output buffer, the format string, and the
argument block.

2. Set up the input parameters.
RfP - starting address of output buffer
Rl - starting address of format string

R2 - starting address of argument block, containing
the data to be converted

3. Call SEDMSG.

135

USING THE QIO DIRECTIVE

On return, the converted/formatted string is in the output
buffer. The output parameters are:

RO - Address of next available byte in the output buffer
Rl - Length (in bytes) of the output string

R2 - Address of the next argument in the argument
block.

NOTE
The output parameters make it possible to
concatenate messages using multiple calls to
SEDMSG.

The output buffer is a buffer in which $EDMSG generates the
output message. It is typically set up using the .BLKB or .BLKW
assembler directive. The format string 1is set wup wusing a
combination of ASCII text and editing "directives." It must be in
ASCIZ format, meaning that it 1is terminated by a @(8). The
editing "directives" are in one of three formats, as follows.

$d - Means perform directive d once
g¢nd - Means perform directive d n-times

$Vd - Means perform directive d V-times, where V is an
argument in the argument block.

For example, if %0 means convert binary word to ASCII signed
octal, %0 means convert the next word in the argument block to
ASCII signed octal in the output buffer. %30 means convert the
next three words to ASCII signed octal in the output buffer,
separated by tabs. %VO means get the binary word in the argument
block and convert that many words in the argument block to signed
octal in the output buffer.

Table 3-4 shows many of the editing directives available with
SEDMSG. An example follows the table.

136

USING THE 010 DIRECTIVE

137

USING THE QIO DIRECTIVE

Example:

FORMAT: .ASCIZ /%10SNAME IS %5A AND # IS %D/

-.EVEN

OUTBUF: .BLKW 80.

DATA: «WORD ADRNAM
.WORD 234

ADRNAM: .ASCII /BILLY/
. EVEN
MOV $OUTBUF, RO
MOV #FORMAT, R1
MOV #DATA, R2
CALL SEDMSG

The resulting string in OUTBUF would display as:

NAME IS BILLY AND # IS 156

Explanation:

$10S in the format string - Produces 10 spaces in the output
buffer.

NAME IS - Placed in the buffer as is.

$5A - Get five bytes and convert to ASCII. Because the
argument block 1is set up on a word-by-word basis, place the
address of the ASCII characters (ADRNAM), instead of the
ASCII characters themselves, in the argument block.

AND # IS - Moved to the output buffer as is.

$D - Get the next binary word in the argument block and
convert it to signed decimal in the output block. 234(8) is
converted to +156(10).

No decimal point is appended to decimal numbers unless vyou
specify %D. (including the ".") in the format string.

138

USING THE QIO DIRECTIVE

Three examples follow which demonstrate the use of the $EDMSG
routine.

Examples of Formatting Numeric Data

Example 3-8 shows the use of $EDMSG for formatting numeric

data.

The following notes are keyed to the example.

This is the argument block, which must be a set of
contiguous words.

This example uses the $§ form of the QIO directive. The
length of the buffer to be written out will be filled in
at run time.

The output buffer starts at BUF and is 84. bytes 1long.
This buffer should be long enough for at least the longest
message that you might generate.

The format string. Note that three words will be
converted to signed decimal ASCII wusing S$EDMSG. The
.ASCIZ assembler directive assures that the format string
ends with an octal g.

Set up input parameters for call to SEDMSG. The addends
and the sum are already in the argument block.

Invoke $EDMSG. The output string is returned at BUF. R1
contains the count of characters in the output string.

Move the count of characters to be written into the DPB of
the QIOS$ directive,.

Write the results out at the terminal.

Normally, the addends might be placed in the format string if

they

are known at assembly time. Only data generated at run time

would be converted using $SEDMSG.

139

O NOUD Gy

-
[l o]

12
13
14

13

14

i8
19
20
21
22

23

Example 3-8

+

| M G Er > N6 |

lata

*

T e 320 D e
*s *e

ur

..

et

ose:

Set

©r 6> |

RUF$
FMES?

8TART:

i Set

results.
formatting messades

USING THE QIO DIRECTIVE

+TITLE
+« TDENT
+ENAEL.

It

+MCALL
+NLIST

+WORD

+WORD
+ REKW

BI0Ws
+ BLKW
ur for $

+ BLKE
+ASCIZ

IST
+EVEN
MOV

Al

ur for
MOV
MOV
MOV
CALL

MOV

IR
RCS
TSTR
ELT
EXITHS

NUMER
701/
LC

FILE NUMER.MAC

demonstrates the

QIOWSyEXITHS, DT
REX

10

el
4

b

a
¥

Emabhle lower case

This task does a simrle addition amd outruts the

use of $EDMSG for

R$

wr e

> wr wr ‘e>

I0.WVBySs 1y sy I0OSRY

2
EOMSG

80.

/4D WAS ADDED

BEX
ArC
BC

all to SEDMSG
#¥BUF s RO
#FMESyR1
#AsR2
SENMSEG

R1>0UT+Q. I0PL+2
FOUT
ERR1D

108k
ERR1I

1490

»
¢
a
¢

;
TO

¥

. > ‘€> 6> A ‘@

©F Wr S WGP Gr S W EF > €> NG W»

with numeric data

i Sustem macros
o not list binary
extensions

lst addend and start
of arsgument block
2nd addend

lLocation for sum

SRUF»»40> Q10 for
outrut messade
170 status block

Outreut buffer
Zley GIVING ZD./
Format string

List binary extensions
Move to word houndary
Move lst addend to sum
word
Add 2nd addend to form
SLIm

of outrut buffer
of formalt string
Addr of arsument bhlock
Make calls character
count returned in R1
Flace # of characters
to write into IOFL
in QI0 DFPE
Write outrul messadge
Eranch on dir error
Check. for I/0 error
Eranch on 1I/0 error

Addr
Addr

Formatting Numeric Data (Sheet 1 of 2)

USING THE QIO DIRECTIVE

50 # Error handlins

51 ERR1D? MOV SNSWy RO # Move DNSW for disrlay
52 CLR R1 # Indicate dir errory bu
53 ¥ 0 inm R1 ‘

54 Ior

55 ERR1I: MOUVUR IOSkERO § Move 1/0 status for
56 i disrlay

57 MOV #-1sR1 # Indicate I/0 error by
58 $# =1 im RO

59 Ior

60 +END START

Rum Session

*RUN NUMER
8. WAS ADDED TO 18.y GIVING 26.

Example 3-8 Formatting Numeric Data (Sheet 2 of 2)

Example 3-9 shows how to wuse S$EDMSG to generate error
messages for display. This is a modification of Example 3-1
(SYNCHQ.MAC) . These error routines will typically replace trap
routines which might be used early in the debugging stage of an
application. The supplied macros DIRERR and IOERR have performed
similar functions for you. The following notes are keyed to the

example.

@ This is the assembly time setup for $EDMSG. ARG is the
start of the one word argument block. EBUFF is the start
of the buffer in which error messages are to be built.
FMT1, FMT1lA, FMT2, FMT2A are the format strings for the
various error messages. FMT1 and FMT2 are for directive
errors; FMT1A and FMT2A are for I/0 errors. The
quotation marks are used as delimiters in two of the
format strings because the strings contain slashes (/).

e' The main code is the same as before. Only the error
handling is different.

G’ For each error, move the address of the appropriate format
string into Rl (for the call to $EDMSG). Then move the
DSW into the argument block for directive errors, and the
I/0O status into the argument block for I/0 errors.
Because the I/O status is a byte, move it to Rl first and
then to the argument block, in order to extend the sign
bit to the high order byte (see 1lines @064 and @@65).
Then branch to the final setup for $EDMSG at EDAWT.

141

USING THE QIO DIRECTIVE

Move the address of the output buffer to R# and of the
argument block to R2. Then call $EDMSG.

Finally, write the formatted message out at the terminal
and exit.

On the Run Session - The first run shows a successful
read. The second run shows an error caused by a "Z.

142

USING THE QIO DIRECTIVE

1 +TITLE SYNQRER

2 +IDENT /01/

3 +ENARL LC ¥y Emsble lower case

4 i+

] # FILE SYNGRER.MAC

é H

7 $ This task reads 2 line of tewt from the terminals

8 # converts all usrer case characters to lower casey and
9 3 prints the converted messadge back at the terminal. It
10 3 uses sunchronous QI0. It also uses $EDMSG to dgenerate
11 ¥ error messadges
12 y - :
13 +MCALL QRIDWSCyQIDWSSEXITES 5 Sustem macros

14

I/0 Status Rlock
Text buffer

15 I08E: + BLKW 2
16 RUFF 2 + BLKE 80.

- e

17
i8 3 Set ur for error messades using SEDMSE
19
[~ 20 ARG? +BLKW 1 ¥ Argument block
21 ERUFF? +BLKE 80. ¢ Outerut buffer
" 22 FMT1: +ASCIZ /DIRECTIVE ERROR ON READy DSW = ZD/
23 FMTiA: +ASCIZ “1/0 ERROR ON READy I/0 STATUS = ZIv/
24 FMT2: +ASCIZ /DIRECTIVE ERROR ON WRITEs DSW = ZI/
LQS FMT2A! JASCIZ ‘170 ERROR ON WRITEr I/0 STATUS = ZII7
26 +EVEN
27
[28 START: QIOW$C TO0.RVEsSs1s»I0SByy<BUFF¢80,940> ¢ Issue
29 ¥ read
30 BRCS ERR1 # Branch on dir error
31 TSTR I0SE i Check for I/0 error
32 BLT ERR1A # Branch on I/0 error
33 MOV TOSR+25RO i Get character count
34 CLR R1 $ Offset into buffer to
35 # character
36 L.OOF 3 CMFPE RUFF(R1)s%’A 3 Check for urrer case
37 i ASCII charactlter
38 BLT NEXT # Branch if below randge
39 CMFR BUFF(R1) %72
40 BGT NEXT # Branch if above rande
" 41 i Here if urrer caser move to redgister R2 and convert
42 MOVER BUFF(R1)sR2 § Move Lo redister
43 AL #32, 9R2 # Convert to lower case
44 MOVE R2sRBUFF(R1) i Rerlace in messade
45 NEXT? INC R1 # Increment offset into
44 $# buffer to next char
47 SOk RO LOOF # Decrement count of
48 ¥y chars left to check
49 QIOWSS HI0.WVUEsFSv#1y v #I08Ey » “HRUFF» I0SR+2y #40
30 i Write text
51 RCS ERR2 3 Branmch on dir error
52 TSTE I08R $ Check for 1/0 error
53 BILT ERR2A # Branch on 1/0 error
|54 EXIT$S § Exit

Example 3-9 Formatting Directive and I/0 Error Messages
(Sheet 1 of 2)

143

USING THE QIO DIRECTIVE

59 i
56 $ Error code
57]
58 ERR1A? MOV FMTIAYRL i Format string for
59 i lst 1/0 error messadie
1) BR ERRGOA # Branch to common 1/0
61 # error code
62 ERR2A: MOV #FMT24vR1 i Format string for 2nd
63 i I/0 error messade
64 ERRGOAT MOVE I0SE»RO i Extend sign on 170
(-3 MOV ROy ARG 3 status bute bw movinsg
66 # it throusgh RO to the
e &7 § ardgument block
48 ER EDAWT # Branch to common edit
&9 i and write code
70 ERRL: MOV #FMT1R1 y Format string for lst
71 ¥y directive error
72 ER ERRGO i Branch to common
73 i directive error code
74 ERR2? MOV #FMT2yR1 3 Format strimg for 2nd
759 ¥ directive error
| 76 ERRGO: MOV #$0SWy ARG i Move DSW to arg block
77 ¥ Finish setting us for $EIMSEG
[78 EDAWT: MOV #ERUFFyRO # Outrut buffer address
Q| MOV #ARGIR2 5 Arsument block address
L 80 CaLL SEIMSEG i Edit outrut string
G’ 81 QIOWSS FI0.WURs#Sedlryyy s #ERUFFR1y$#40> 3 Write
2 i oult messade
83 EXIT$S ¥ Exit
84 +ENII START

Run Session

*RUN SYNGRER
SKIDSHKJKHE Jhk dhk.dhbkwutduvedherwerdwl 1?2
skddshk dkhkdhk dhk.dhkgutdubedherwerdwll2
=RUN SYNQER

dhfiooi JRLHJGHIGJIHG™Z

L0 ERROR ON READRY I1/0 STATUS = ~10

Example 3-9 Formatting Directive and I/O Error Messages
(Sheet 2 of 2)

144

USING THE QIO DIRECTIVE

Formatting ASCII Data

Example 3-9 demonstrates the use of $EDMSG for formatting
ASCII data. The only real difference between formatting ASCII
data as compared to numeric data is that the argument block
contains a pointer to the ASCII characters, rather than to the
ASCII data itself. The following notes are keyed to the example.

@ The argument block contains four words. Only the address
of the number to be typed is known at assembly time. The
other values will be filled in at run time. 1In the format
string, we are using %VA twice. The V tells SEDMSG to use
the next word in the argument block as the number of times
to perform the directive A. The directive A means move an
ASCII character to the output buffer. This allows you to
generate messages of different lengths at run time using
the same format string.

©® 2n alternative to using TSTB is to use a CMPB instruction.
IS.SUC is a global symbol equal to +1.

G) The number typed is in ASCII. We need to convert to
binary before dividing by two.

" Come here if the number is even., Place the address of the
message and 1its length into the argument block. Then
branch to the common code to generate the message.

This is the same as in note 4, but for an odd number.

Move the number of digits in the number entered by the
operator to the argument block; so you display that many
digits.

t’ Now set up for $EDMSG, format the output message, write
it, and exit.

Now do the tests/exercises for this module in the
Tests/Exercises book. They are all 1lab problems. Check your
answers against the solutions provided, either in that book or
on-line files.

If you think that you have mastered the material, ask vyour
course administrator to record your progress in your Personal
Progress Plotter. You will then be ready to begin a new module.

If you think that you have not yet mastered the material,
return to this module for further study.

145

USING THE QIO DIRECTIVE

1 STITLE FORMAT
2 EDENT /017
I JENARL LC i Enable lower case
4 i
5 $ FILE FORMAT.MAC
b 3
7 i This task asks the user for anm intedger. It then
8 v decides whether the value is even or oddy and rrints
@ 3 an arrrorriste messsdge. It demonstrates the use of
10 i $EDMSEG for ASCII dats
11 H
12 i Assemble and task-build instructions?
13 H]
14 H MACRO/LLIST LRILCLs 1 IFROGMACS/LIBRARY sdev i LufdIFORMAT
15 H LINK/MAF FORMAT»LEBIL1» 1IFROGSUBS/LIBRARY
16 § -
17 SMCALL EXIT$S»QI0WSCyRIOWSS § Sustem macros
18 +MCALL DIRERRy TOERR # Suprlied macros
19
20 MES§ +ASCTE ZINFUT A& DECIMAL INTEGER RETWEEN 1 AND 9999/
21 # Fromet text
22 LEN = «MES i Length of rromet text
23 «EVEN
24 NUM? +BLKR 4 y Buffer for ASCIIT # ineut
25 +EVEN
26 108k SWORD 0 # 1/0 Status Block
27 NUME? +WORD 0 # 2nd word of I/0 Status
28 i Rlock - for return of
29 3 # of characters read
_30 i Setur for $EDMSE
31 ARGRLK
32 L.NUM? +WORID 4] i Count of characters
33 . i in numbher
34 ANLIM ¢ +WORI NUM # Fointer to number in ASCII
35 LWORDS +WORD 4] § Count of characters
364 § i O or EVEN
" 37 AWDRD: JWORD 0O 3 Pointer to ODIN or EVEN
38 §in ASCII
39 BUF 3 + BLKE 80, i Outreut buffer
40 ouTe +ASCIZ /ZZNTHE NUMBER #VA is XZVA./ % Format string
4 MESKE 2 SASCTY JEVENS # ASCII text for EVEN
A2 LMESE =y MG E i Lensth of messade
43 MESD: LASCIT /0Dn/ # ASCITI text for OLD
|44 LMESO =, ~MESD i Lendgth of messade
4% +EVEN
44 ¥
47 START? QIOWSC TO.WVRvSely vy IOBRy v MESYLLENs40> 3§ Write
48 i reromet text
49 BCS ERRLD ¥ Branch on dir error
‘, 50 CMFR #I8.5UCy I0OGR i Check 1I/0 Status
51 BNE ERR1I # Bramch on 1/0 error
52 QIOWSC TO0.RVBsySe1y s TOSEs v NUMs 4> § Read ineut
53 RCS ERR2I # Bramch on dir error
54 TSTR 108k ¥ Check on 1I/0 error
] BILT ERR2ZI # Branch on 170 error

&

Example 3-19 Fotmatting ASCII Data (Sheet 1 of 2)

146

56
o [57
56
59
60
61
62

- 6%

84
L 835
86
87
g¢
89
Q0
@1
92

93

.

onn:

CONT?

i Error

Rurn Session

*RUN FORMAT
INFUT A& DECIMAL INTEGER RBETWEEN 1 AND

&H00

i Set ur

USING THE QIO DIRECTIVE

vidend in

LWORD

WORD

LWORT
WORD

UM

yR2

e e a

‘EH 'EX NES @ G WP NG @ R eH G @ el @ S @ s

A
¥

Set ur Lo convertl
dec ABCIT to binarw
Cornverty result in R1

ROvR1 combined

Clear high order 16 bits
Nividey auotiernt imn ROy
remainder in R1

Check remainder

Rranch if not O
Move length of EVEN

irnto argument bhlock
Move mointer to EVEN
into argument bloock
Branch to common code
Move lensth of QLN

irnto argument block
Move rointer to QDD

into arsgument block
Move # of characters

i rumber to ardg block
Set wur Tor call to $EIMSG

Edit outrut messade

RQIOWES #I0 WURBeHSsHLy v B TOSRy v <HRUF v R v #4005

MOV ENUM e RO
call. $CNTR
for divide. i
CLR RO
niv #2 RO
CMP R1»#Q
BNE Onn
MOV HFLMESE »
MOV EMESE s A
RBR CONT
MOV FLMESOy
MOV #MESO A
MOV NUME LN
MOV FRUF s RO
MOV #OUT R
MOV FARGRLK
cAall HEOMS6G
BCS ERR3D
CMPR #I5.5UC
RBNE ERR3I

EXIT$S

Mandlins

DIRERR <ERROR
TOERR #I08Ry <
LDIRERR <ERROR

IOERR FTOSRy
e SERROR
#1058y <
START

THE NUMEER 600 I8 EVEN.
=RUN FORMAT

INFUT A DECIMAL INTEGER
2349

THE NUMBER 2349 18 0DD.

e

Example 3-10

s TOGR

ON WRITE
ERROR ON
ON REAL
ERROR ON

147

ws ey @ e >

Write outrut messade
Bramch on dir error

Check for 170 error

Branch on I/0 ervor

Ewit

OF FROMFT TEXT:
WRITE OF FROMPT TEXT:

REAL
OUTPUTTING ANSWER:
ERROR QUTFUTTING ANSWER

BRETWEEN 1 AND

999

9999

Formatting ASCII Data (Sheet 2 of 2)

USING DIRECTIVES FOR
INTERTASK COMMUNICATION n

USING DIRECTIVES FOR INTERTASK COMMUNICATION

INTRODUCTION

The RSX-11M program development features allow modular
development of programs; the multitasking feature allows a
modular approach to applications.

A system of multiple tasks may require one or more of the
following services provided by executive directives under RSX-11M.

e First task requests that the second task be run.

e First task is notified of completion of the second task
operation.

e Tasks pass data to each other.

This module explains how to use system directives for this
type of coordination between tasks.

OBJECTIVES

1. To wuse directives which control task execution to
synchronize cooperating tasks

2. To use the send/receive directives to pass data between
tasks.

3. To write tasks which spawn subtasks using parent/offspring
directives.

RESOURCE

e RSX-11M/M-PLUS Executive Reference Manual, Chapters 2 and
4, plus specific directives in Chapter 5

151

USING DIRECTIVES FOR INTERTASK COMMUNICATION

USING TASK CONTROL DIRECTIVES AND EVENT FLAGS

It is generally good programming practice to divide a single
complex task into a number of separate tasks, with each task
performing a distinct logical function. Using a group of tasks to
perform a complex function frequently makes good sense, especially
where different parts of the process may run at widely differing
speeds, each more or less independent of the others.

Suppose, for example, that vyou need to simulate customer
transactions at a bank. There are five windows, up to 15
customers can physically stand in each line at a time, given the
size of the waiting area. You might design a group of tasks, one
task per line, to simulate this complex system. This approach has
the advantage of simulating the related, but essentially parallel,
processes in a more realistic manner than would a single, serial,
simulation. A further advantage of a multitasking approach to
such a job is that changes in the behavior of the system that are
caused by changes in a single line (e.g., by assigning different
types of transactions to different lines) can easily be simulated
by simply modifying the task that simulates that line.

An RSX-11M programmer typically uses a mix of the following
four multitasking methods.

l. Common or Group Global event flags, together with
synchronization and task scheduling directives, are used
to synchronize tasks.

2. Resident commons are used to share data in memory.

3. Memory management directives are used to create and/or
share data areas dynamically at run time.

4, File handling routines are used to open disk files for
shared access.

The use of shared regions, memory management directives and
files are discussed in later modules.

153

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Directives

Table 4-1 lists the various task control directives which are
available for task synchronization. (Most of these were discussed
in earlier modules.) All of the directives are documented
individually in Chapter 5 of the RS8X-11M/M-PLUS Executive
Reference Manual.

Table 4-2 shows the differences between suspending and
stopping a task. The major difference is that stopping puts the
task in a stopped state which effectively lowers the task priority
to =zero, allowing any active task to checkpoint it if it is
checkpointable. Suspending or waiting, on the other hand, keeps
the task competing for memory space on the basis of its running
priority. This means that if the task 1is checkpointable, only
tasks of higher priority checkpoint it. Waiting for an event flag
affects checkpointability the same way as suspending.

Table 4-3 lists the various event flag directives which are
available for synchronization. As discussed in Module 2, the
Clear Event Flag directive (CLEF$) can be used instead of the Read
All Event Flags (RDAFS$) or the Read Extended Event Flags (RDXFS)
directives, to check whether a single event flag is set (since the
DSW indicates whether the flag was initially clear or set). This
saves having to check the specific bits in the event flag mask
word. Checking specific bits is necessary with RDAF$ and RDXFS
because they return several event flag mask words, each containing
the settings of 16 flags, one flag per bit.

154

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Table 4-1 Task Control Directives
and Their Use for Synchronizing Tasks

..
e

o
| i

-

.
=

155

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Table 4-2 Stopping Compared to Suspending or Waiting

Table 4-3 Event Flag Directives and
Their Use for Synchronizing Tasks

y««&%&%

156

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Example 4-1 shows the wuse of the Request Task (RQSTS),

Suspend

(SPNDS), and Resume (RSUMS) directives for

synchronization. Notes 1, 2, 3 and 6 refer to TASKA. Notes 4 and
5 refer to TASKB.

The supplied macros are used to allow you to concentrate
on the synchronization techniques. If you want, these
macros can be replaced with QIO's and other code.

TASKA requests TASKB. This means that TASKB must be
installed wunder the name TASKB. After this, both tasks
are active and compete for memory and CPU time.

TASKA suspends itself. After this it still competes for
memory at its regular priority, but not for CPU time.

TASKB types out a message and then resumes TASKB. More
typically, TASKB would perform some service for TASKA
rather than just typing a message. After TASKB resumes
TASKA, they both compete for CPU time again.

TASKB displays another message and then exits.

TASKA, now resumed, displays a message and exits.

Depending on the relative priorities of TASKA and TASKB and

on the

particular task scheduling options on your system (e.g.,

round robin scheduling), steps 5 and 6 may be reversed on the run

session.

157

USING DIRECTIVES FOR INTERTASK COMMUNICATION

1 +TITLE TASKA

2 +JUENT /01/

3 +ENARL LC ¥ Enable lower case

4]

G # FILE TASKA.MAC

b H

7 $ This task recuests TASKE to runy and then susrends

8 5 itself. TASKE resumes this task and exits.

@ H

10 ¥ Assemble and task-build instructions?

11 H

12] MACRO/LIST LE!L1s1IFROGMACS/LIBRARY sdevilufdITASKA
13 H LINK/MAFP LEIL1y1ITASKA»FPROGSURS/LIBRARY

14 H

1.5 # Install and rum imstructioms? Both tasks must be

16 i imstalled. Just run TASKA.

17 H]

18 +MCALL RQAST$C»SPNISSYEXITSS 5 Sustem macros

19 +MCALL TYFE»DIRERR # Surrlied macros

20 ;
21 START! TYFE <TASKA BEGINS AND REQUESTS TASKE:»
22 $ Disrlay messade

23 RASTHC TASKER # Reauest TASKE

24 RCC OK1 # Bramch on directive ok
25 DNIRERR <TASKA UNARLE TO REQUEST TASKRB:> § Disrlaw
26 i error messade and exit
27 OK1: TYFE “TASKA IS8 SUSPENDING ITSELF> % Disrlay
28 ¥ messade
29 SFND$S i Susrend self

30 BCC OK2 $ Brarnch on directive ok
31 DIRERR < TASKA UNARLE TO SUSFEND:» # Disrlaw
32 i error messadge and exit
332 OK21% TYFE “TASKA HAS REEN RESUMEDN:> § Disrlawy

34 i messade

35 EXIT$S . ¥ Exit

36 + END START

Example 4-1 Synchronizing Tasks Using Suspend and Resume
(Sheet 1 of 2)

158

USING DIRECTIVES FOR INTERTASK COMMUNICATION

3
'~

TR EHMS = OO TN LS GR

- b et e

[y
o

pary
~

ot et
Rxie1]

20
21
pied
20
23
24

e

-
26
27
(28
QO |
(30
31
32
33
r34
O |35
(36
37

Rum

Er MY AEF 2L Er 'Ir TE NG W» @3 'SR NP EF 6 M

e

-y s var

fe 3]

T

TITLE TASKR
fIDENT 701/
JENARL LC ¥ Enable lowercase

FILE TASKE.MAC

This task is activated by TASKA, It rerforms its
oreration and resumes TASKAy which has susrended
itaself.

Assemble and link instructions?

MACRO/LIST LEILLy 1IPROGMACS/LIEBRARY sdevilufdlTAGKR
LINK/MAF TASKER LEBILL 1IFROGSURS/LLIBRARY

Instell and run instructionst Roth tasks must be
installed, Just run TASKA,

+MCALL REUMSCEXITHS § Sustem macros

+MCALL TYFPEsDIRERR i Surrlied macros
Must enable local sumbol blocks because we use local
sumbols and DIRERR has FSECT statements

+ENARL LSRR i Enable local sumbol
i block.

Arw oreration could be rerformed heres but in this

case it’'s only a tureout.

ART: TYFE <TASKE IS5 ALIVE AND RUNNING:> 5 Disrlag
; messasde

.

REUMSC TASKA i Resume TASKA
RCC 14 i Branch on directive ok
DIRERR <TASKE UNARLE TO RESUME TASKA>» § Disrlau

a

iooerror messade and exit

143 TYFE “TASKRE HAS RESUMED TASKA AND IS EXITING:
i Disrlaw messade
EXIT4$S i Exit
END START
Session

*INS TASKA
*INS TASKR
*RUN TASKA

"

'TﬁSKA BEGINS AND REQUESTS TASKE

TASKA

I

S SUSFENDING ITSELF

TASKE IS ALIVE AND RUNNING
TASKA HAS REEN RESUMED
TASKE HAS RESUMED TASKA AND IS EXITING

Example 4-1 Synchronizing Tasks Using Suspend and Resume

(Sheet 2 of 2)

159

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Example 4-2 shows the use of event flags for synchronization.
In module 2, there 1is a similar example. Here, TASKC requests
TASKD, rather than requiring an operator to start both tasks.
Also, the Stop For Single Event Flag is used rather than the Wait
For Single Event Flag. The difference between them 1is that the
first causes the task to enter a stopped state and the other
causes the task to enter a wait for (like a suspended) state.
Notes 1, 2, 3 and 6 refer to TASKC. Notes 4 and 5 refer to TASKD.

@ Clear the event flag to initialize it. It's initial state
is unpredictable, since other tasks may have set or
cleared it.

Request TASKD.

Stop until the event flag is set by TASKD.

TASKD displays a message and sets the event flag.

TASKD displays a message and exits.

TASKC displays a message and exits.

Depending on the relative priorities of the two tasks,
significant events in the system, and other scheduling
considerations, the order of the steps may vary. Specifically,
steps 3 and 4 above may be reversed, as well as 5 and 6 .

The event flag must be common or group global, not local. In
either case, the wusers on the system must coordinate to avoid
several users using the same event flag for different purposes.
If a group global event flag is used, the flags for that group may
have to be created using either the Create Group Global Event
Flags directive (CRGF$) or the DCL SET GROUPFLAGS/CREATE (FLA /CRE
in MCR) command.

The Executive scans the Active Task List and schedules tasks
for CPU time only after a significant event. Setting an event
flag does not cause a significant event. This means that TASKC
normally won't compete for CPU time wuntil at least the next
significant event in the system. If it is important that TASKC
begin executing sooner than that, TASKD should issue the Declare
Significant Event directive (DECLS), which causes the Executive to
reschedule tasks. For a discussion of significant events, see
Chapter 2 of the RSX-11M/M-PLUS Executive Reference Manual.

16¢

ey
CO TN UD LI

Ll
-

RN
ESR N X

15
16
17
18
19
20

23

Example 4-2

USING DIRECTIVES FOR INTERTASK COMMUNICATION

+

Wr gy er > G WS> R M2 EF G W M AE e

a

14
FL.AG=33.
§

START !

OK1:

OR3¢

+TITLE
+ TDENT
+ENAERL

FILE TASKC.MAC

This task clears
and then

TASKC
7017
LG

stors until

a

¥ Enable lower case

arn event Flasy recuests TASBKD to runs

the flag is set bhw TASKD.

Assemble and task-build imstructions?

MACRO/LIST LRICLy 1IFPROGHACS/LIBRARY sdevilufdlTASKC
TASKCy LBy 1IPROGSURS/LLIRRARY

LINK/MAF

Install and run
Just o run

+MCALL
+MOCALL

TYFE
CLEF$C
RCC
DIRERR

RAST$C
ECC
NIRERR
TYPE
STSE$C

RCC
DIRERR

TYFE

EXIT$S
+END

TASKC.

instructions? TASKD must be installed.

CLEF$CyRASTHO»STHESCYEXITSS § Sustem macros
TYFEs DIRERR $ Surrlied macros

STASKC
FLAG
OR1
<TASKE

TASKD
oK
STASKC
“TASKC
FLAG

0OR3

<TASKC *

“TASKC

START

Event flad to he used

KEGINS AND REQUESTS TASKIDN-
lisrlaw messade
Clear event flad
hefore storring
EBranch on directive ok
UNARLE TO INITIALIZE EVENT FLAG:-
¥ Disrlay error messade
y and exit
Reaeuest TASKD
Branch on directive ok
UNARLE TO REQUEST TASKD:> ¢ Disrlaw
i error messadge and emit
IS STOFFING FOR EVENT FLAGH:
Disrlaw messade
Stor for event fladg
to bhe set
Branch on directive ok
S STOF REQUEST REJECTED:> 7 Disrlaw
§ error messadge and exit
HAS BEEN UNSTOFFED AND WILL NOW EXIT:
§ Nisrlaw messade
§ Exdit

|y e W e

ar

ar ey W

Synchronizing Tasks Using Event Flags

(Sheet 1 of 2)

161

USING DIRECTIVES FOR INTERTASK COMMUNICATION

+TITLE TASRD

2 +IDENT /01/
3 +ENABRL. LG 3 Enable lower case
4 it
5 3 FILE TASKID.MAC
& H
7 # This task is activated by TASKC., It sets the flag for
8 # which TASKC is storred.
@ H
10 ¥ Assemble and task-build instructionst
11]
12 ¥ MACRO/LIST LEBIL1y LIFROGMACS/LIBRARY sdeviyDufdlTASKD
13 ¥ LINK/MAF TASKDsLEILL»1IFROGSURS/LIBRARY
14 ¥ -
15 +MCALL SETF$CEXITSS # Sustem macros
16 +MCALL TYPEyDIRERR § Surrlied macros
17 $
18 FLLAG=33. $ Event flag
19 H
20 §
21 $ Any oreration could bhe rerformed heresy but in this
22 ¥ case it’'s onlw 3 tureout.
23 START:! TYFE “TABKD I8 ALIVE AND RUNNING:> §# Disrlaw
[24 i messade
25 SETF$C FLAG § Set the Tlag to allow
26 $ TASKC to bhe umblocked
27 RCC OK # Branch on directive ok
28 DIRERR <TASKD UNABLE TO SET EVENT FLAG:»
29 $ Disrlaw error messade
30 ¥y and exit
31 OK'¢ TYFE “TASKD HAS SET THE EVENT FLAG AND IS EXITING:-
° [32-3 i Disrlay message
33 EXIT$S i Exit
34 +END START
35

Run Session

=INS TASKC

*RUN TASKC

TASKC BEGINS AND REQUESTS TASKD

TASKC I8 STOFFING FOR EVENT FLAG

TASKD IS ALIVE AND RUNNING

TASKD HAS SET THE EVENT FLAG AND IS EXITING
TASKE HAS BEEN UNSTOFFED AND WILL NOW EXIT

Example 4-2 Synchronizing Tasks Using Event Flags
(Sheet 2 of 2)

162

USING DIRECTIVES FOR INTERTASK COMMUNICATION

SEND/RECEIVE DIRECTIVES

General Concepts

The Send and Receive directives are used to transmit a 13.
word block of data between tasks. The sequence of events is as
follows.

1. A task issues a Send Data request, specifying a receiver
task and a data buffer.

2. The Executive copies the data buffer into a data packet in
the dynamic storage region (DSR or pool).

3. The Executive places the data packet FIFO
(first-in-first-out) into the receive queue of the
specified receiving task.

4. Later, the receiving task issues a Receive Data request,
specifying a data buffer.

5. The Executive copies the data packet 1into the buffer
specified by the receiving task.

Directives

Table 4-4 lists the Send Data directive and the various
Receive Data directives. The differences among the Receive Data
directives concern what happens if there are no data packets 1in
the receiver's receive queue.

All receive directives receive 15(18) words, including the
sender task name (in Radix-50 format) plus the data. If no sender
task is specified in a Receive Data directive, the first packet in
the receive queue is dequeued, regardless of which task sent it.
If a sender task is specified, only a packet sent by that task is
dequeued.

163

USING DIRECTIVES FOR INTERTASK COMMUNICATION

The Send/Receive Data Directive
o §§§?§ o B e

Synchronizing Send Requests with Receive Requests

You can use event flags for synchronization. The event flag
is specified by the sending task. This event flag is set when the
data packet has been queued to the receiving task. Therefore, a
global or group global event flag may be used to unblock a
receiving task which is active and waiting for the event flag to
be set.

You can also use an AST for synchronization. To request
entry into an AST routine whenever a data packet is received, use.
the Specify Receive Data AST directive (SRDAS). Typically, this
directive is issued at the beginning of task execution. From that
point on, the AST routine is entered when the first data packet
has been placed 1in the task's receive queue. Only one receive
data AST is queued, even if more than one data packet is received
at a time. Therefore, you should keep receiving until you get a
no data packets queued error to ensure that you have received all
of the data packets in the queue.

164

USING DIRECTIVES FOR INTERTASK COMMUNICATION

After the run, use ASTXS$S to exit from the AST routine.
After exiting from the AST routine, the AST routine will be
entered again if a new data packet is received. This continues
until the task exits, or until receive data AST's are canceled,
using the Specify Receive Data AST directive (SRDAS$) with no AST
routine specified. It is also possible to temporarily disable all
AST recognition wusing the Disable AST Recognition directive
(DSARS) .

In addition, you can use the task <control directives for
synchronization. Table 4-5 summarizes the various synchronization
techniques which might be used. Keep in mind that a Receive Data
directive (RCVDS$) ~causes an error condition directive, which is
inconsistent with task state (DSW = -8, IE.ITS) 1if there 1is no
data packet in the receive queue. Receive Data or Stop (RCSTS)
and Receive Data or Exit (RCVXS$), on the other hand, cause the
task to stop or exit, respectively, if there is no data queued.
For further information about possible synchronization problems,
see the writeup on the Receive Data directive (RCVD$) in Chapter 5
of the RSX-11M/M-PLUS Executive Reference Manual.

Table 4-5 Methods of Synchronizing a Receiving Task
(RECEIV) with a Sending Task (SEND)

165

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Examples 4-3, 4-4, and 4-5 show the use of Send and Receive
directives by a pair of tasks. Examples 4-3 and 4-4 use an event
flag for synchronization; Example 4-5 uses Receive Data or Stop
along with Unstop for synchronization. The notes below are keyed
to Example 4-3. Note 1 refers to SEND1 and RECV1l. Notes 5, 6 and
7 refer to SENDl. Notes 2, 3, 4 and 8 refer to RECV1.

© RECVL must be run first, or else the event flag will
already be set by SEND1 to indicate that a data packet has
been sent. RECV1 will clear the flag and wait for it to
be set again, and won't realize that a data packet is
already queued to it.

Initialize the message counter. You will receive and
display three messages and then exit.

Initialize the event flag.

Wait for the flag to be set after SENDl1 sends the data
packet, placing it in RECV1l's receive queue.

Get the data to be sent.

Send the data and set event flag 33. when the data packet
is queued to RECV1.

SEND1 exits.

Receive data from anyone.

Display a header and the data sent. Skip the first two
words (four ©bytes) of the buffer, which contain the name
of the sender task in Radix-5@ format.

Decrement the message counter. Branch back to <clear the
event flag and receive again if you have not yet received
three messages. If you have, display a message and exit.

167

USING DIRECTIVES FOR INTERTASK COMMUNICATION

1 +TITLE RECVI
2 SIDENT /017
3 JENARL LG i Enable lower case
4 i+
] i FILE RECVIL.MAC
&]
7 # This task receives data from amu sender task
8 i (e.sgtey SENDL), It mrints the data om TI!., Then it
? §F wails for another dats racket. It does this until it
10 i has received 3 messadges and then exits.
11 §
12 i Thie task sunchronizes with its sender throush an
13 i evenlt flag.
14 ¥
15 i Assemble and task-build imstructionst
16 H
17 $ MACROZLIST LRILLy LIFROGMACS/LIBRARY sdeviLufdliRECVL
18 H LINK/MAF RECVLsLEILLy 1IFROGSURS/LIBRARY
19 i
‘. 20 y o Imstall znd rvun instructions! RECVL must be installed
21 ioand run before rurming SENDL.
22 §
23 +MOALL CLEFS$CyWTSESCyRCOVISCYEXITHS # Swustem macros
24 «MCALL TYPEyDIRERR i Surrlied macros
25 H
26 EFN = 33. i Event flag
27 §
28 RBUFF e BLKW 15, i Receive buffer
29 H
30 +ENARL. LSE i Enable local sumbol
31 i blocks
32]
" 33 START: MOV #3sR3 # Initislize messade
34 i counter
‘, 35 AGAIN? CLEF$C EFN $ Imitislize
36 $ sunchronizing flag
37 RCC WAIT # Branch on directive ok
38 DIRERR <ERROR INITIALIZING FLAG:> 5 Disrlaw
39 i error message and exit
‘, 40 WAIT: WTSE4C EFN i Wait for a send
41 RCC 34 i Branch on directive ok
42 DIRERR <WAIT DIRECTIVE FAILED> § Disrlaw error
43 i messadge and exit
44 i We dget here when the flad is set
‘, 45 363 ROCVLDSE s RRBUFF i Receive from asnuone
46 RCC 5% i Branch on directive ok

Example 4-3 Synchronizing a Receiving Task Using Event Flags
(Sheet 2 of 3)

169

USING DIRECTIVES FOR INTERTASK COMMUNICATION

If a task runs and then exits with data packets in its
receive queue, those unreceived data packets are flushed from the
queue on exit., Therefore, if SENDl1 sent four messages before
RECV1 was run, the fourth message would be lost.

If you want to run the tasks in Example 4-3 1in any order,
RECV]1 must be modified to receive data packets on startup if SENDI1
has already sent data. The process gets complicated because SEND1
may have already sent several data packets. 1It's also possible
that event flag 33. was left set by someone else. In that case
the Receive directive will fail, but you should not abort.

Example 4-4 shows the modifications which must be made to
Example 4-3 to allow the tasks to be run in any order. The
following notes are keyed to Example 4-4.

@ Use a flag word (BEFORE) to distinguish whether you are
working on messages sent before or after RECV1 starts up.
Note that RECV1S must be installed as RECV1, since SENDI1
sends to RECV1.,

@ Check to see if the event flag is set on startup. If it
is set, issue a Receive, If SEND1l has been run one or
more times, the Receive will succeed. If SEND1 has not
yet been run, the flag was set by another task and the
Receive will fail.

G’ If the flag was not set, SEND1 hasn't sent any messages
before vyou started. Clear the BEFORE flag, because a
Receive failure after the flag is set again 1is a fatal
error.

‘, In the case of a receive failure, check to see if you are
receiving data packets that are sent before RECV1 started
up. If you are, you Kknow vyou have received all data
packets already queued up before RECV1 started executing.

G’ If BEFORE is clear, there was a failure after receiving

all data packets sent before RECV2 started up, so display
an error message and exit.

171

USING DIRECTIVES FOR INTERTASK COMMUNICATION

1 STITLE RECVLS
2 +TRENT /0L/

3 JENARL LO i Enabhle lower case
-4 i+
b i FILE RECVIS.MAC
& ¥
7 i This task receives dats from anu sender tashk
8 i (e.d. SENDLY. It erints the data om TI!. Then it
9 i waits for another dalts racket. It exits after
10 # oreceiving andg disrlaving 3 nesssges.
11 ¥
12 # This btask swunchromizes with its sender through an
13 i event fTlag. Because of this swnchronizations and the
14 iocare we take on startur to selt messades slreadw
15 § ity bhe tasks cam be rum in any ordery with ang
16 i orelative sriorities.
17 §
18 § Assemble and tesk-build instructions?
19 § .
20 H MACROZLIST LEBILL 1 IPROGMACS/LIBRARY vydeviLufdIRECVIS
21 H LINKZMAF RECVIS LEBILL LIPROGSURS/LLIBRARY
22 ¥
23 ¥ Install and run dnstructionsd RECVIS must bhe installed
2 §ounder the name RECVI to work with SENDIL.
25 o :

26 +MUALL CLEF$CyWTSESCyRUVDSCyEXITHS # Sustem macros
27 +MCALL TYPFE»DIRERR i Suprlied macros

28 $

29 EFN = 33X, i BEvent flag

0 H

31 i "RBefore" flagy used to keer track of whether we are

32 i oreceiving messases senlt before RECVL sterted we. IT

33 i the event Tlag is sel at starbur timer keer receiving
" 34 yountil we gHet a8 Failure, We thern wait until the flag is

35 Foset to receive again. 1 means receiving messades sent

R 1¢) H sfore stevtury O means finished receiving them.

LIE
37 BEFDORE: +WORD 1 i Assume there are messasges
38 RBUFF? JBLKW 15, i Receive bhuffer
39 [

40 +ENARL LSE Enable local sumbol blocks

PO
3
{3 e
—
o g
=
_{
L4 d
<

MOV F3y R

: Messade counter
43 CLEF$C EFN

Initialize sunchronizing
flas

45 RCC 1% Branch on directive ok
46 DIRERR <ERRDR INITIALIZING FLAG:r 3 Disslaw

47 i oerror messadge and exit

@y @r er |

Example 4-4 A Receiving Task Which Can be Run Before or After
the Sender (Sheet 1 of 3)

173

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Rurt Session

*INS/TABK.NAMEIRECVL RECV1S

FRUN SENDI

TYFE A LINE OF TEXTy 26 CHARACTERS OR LESS
Liieo11

*RUN SENDI1

TYFE A LINE OF TEXTy» 26 CHARACTERS OR LESS
R222222222

*RUN RECVI

DATA RECEIVED RY *RECV1*:

1111 11

DATA RECEIVED BY "RECV1*:

DA L

RUN BENID1
TYFE A LINE OF TEXTy 26 CHARACTERS OR LESS

33333

hATA RECEIVED RY "RECV1':
33333
“RECVIL® HAS RECEIVED 3 MESSAGES AND WILL NOW EXIT

Example 4-4 A Receiving Task Which Can be Run Before or After
the Sender (Sheet 3 of 2)

Example 4-5 uses Receive Data or Stop in the Receiver and
Send Data followed by Unstop in the sender. These tasks can be
run in any order. The potential synchronization problems are
considerably easier to deal with when using this technique of
synchronization. The technique will be explained first as it
applies to the case of running RECV2, before you run SEND2. A
discussion of the other possibilities will follow. Notes 2, 3 and
4 refer to SEND2. Notes 1, 5, 6, 7, 8 and 9 refer to RECV2.

€@ Issue a Receive Data or Stop directive. If there 1is no
data packet queued, RECV2 stops and must be unstopped by
SEND2. If, on the other hand, there 1is a data packet
queued, vyou would want to receive it. The DSW equals
IS.SET(4+2) if the task was stopped and then unstopped, and
equals IS.SUC(+1) if a data packet was received. If RECV2
is run first, stop.

t’ SEND2 gets the data and sends it. You do not need to

specify an event flag in the Send Data directive since you
use Stop/Unstop for synchronization.

175

USING DIRECTIVES FOR INTERTASK COMMUNICATION

If SEND2 is run two or three times before RECV2, any data
packets already sent are received and displayed. In the case of
two sent, the third RCDS$ will cause RECV2 to stop until SEND2
sends a third packet and unstops it. 1In the case of three packets
already sent, RECV2 will receive all three and then exit.

As in Example 4-4, if SEND2 sends more than three packets,

any additional ©packets will be lost because the receive queue is
flushed when the task exits.

177

USING DIRECTIVES FOR INTERTASK COMMUNICATION

1 +TITLE RECV2

2 LIDENT 701/

3 JENARL LT # Enable lower case

4 H

) i FILE RECV2.MAC

b H

7 § This ltashk receives data from another task. It erints

8 ¥ the datay along with 8 headery on TIt. Then it waits
@ i for another data rackets continuing this until it has
10 i oreceived 3 messadges.

11 §

12 § This tashk sunchrondzes with its sender using RCST$.

13 # Because of this sgnchronizationy the tasks cam be run
14 Foin any ordery with any relative sriorities.

15 H

14 y Assemble and tesk build instructions?

17 1]

1e § MACROZLIST LEILLy LIPROGMACS/LIBRARY vdev i DufdIRECV2
19 H LINK/MAF RECV2LRIL1»1IFPROGSURS/LIBRARY

20 H

21 F Imstell and rvun instructions? RECV2Z must bhe installed.
22 H

23 +MCALL RCSTHCRCVISCYEXITSS 5 Sustem macros

24 SMEALL TYFESDIRERR i Surrlied macros

25 H

24 RBUFF$ JBLKW 15, 3 Receive buffer

27 $

28 +ENARL LGSR # Enable local sumbol

29 ¥ blocks

30 H

31 START?: MOV #3+sRY ¥ Set ur messadge counter
32 RECEIV? RCSTHC sRBUFF § Receive from angone

33 BCC S% 3 Branch on directive ok
34 DIRERR <RECEIVE DIRECTIVE FAILED IN *RECU2Y>

35 : ¢ DNisrlay error messade
36 3 and exit

37 ¥ Successful receirsrt or unstorred bw snother task. First
28 # check for unstorred after being storredy in which case
39 i we have Lo receive the data

40 3 CMFP SNGWy F TS . SET $ Were we storred due to
41 ¥ no dats

42 EBNE &% i If noty we have a data
43 § racket

44 RCVIsC «RRBUFF i Now get the racket

45 RCC 4% # Branch on directive ok
46 DIRERR <RECEIVE DIR FAILED AFTER "RECVZ® UNSTOFFED:
47 $ Diserlaw error messsde
48 § and exit

49 &41 TYFE <HATA RECEIVED RY "RECVY2° !> & DNisrlau

S50 i text and
51 TYFE #FRBUFF+4y 426, i data sent
52 SOR Ry RECETIV i Necrement messade

53 # counter. Receive adain
G54 § 4T haven’t received 3
55 i wet
56
57 TYFE SPRECV2Y HAS RECEIVED 3 MESSAGES AND WILL NOW EXIT:-
58 ¥ Ture exit messade

o9 EXIT$S § Exit

&0 +END START

Example 4-5 Synchronizing a Receiver Task Using RCDS$
(Sheet 2 of 3)

179

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Using Send/Receive Directives for Synchronization

If you want to pass data as well as notify another task of
the occurrence of an event, the send/receive directives can be
used to perform this double function. The receiving task can
synchronize with the event using any of the techniques listed in
Table 4-5.

Slaving the Receiving Task

Normally, a task runs under the UIC and the TI: of its
initiator, the operator issuing the RUN command, or the task
issuing the Request Task directive (RQST$). A receiver task which
is run from the same terminal as the sender is assigned the same
UIC and TI: as the sender. However, if the receiver task is run
from another terminal or by a different user, it's UIC and/or TI:
may be different from that of the sender. Also, a receiver might
receive data from several different tasks initiated at several
different terminals.

If you want to have the receiver task take on the UIC and the
TI: of the sender each time data is received, the receiver task
can be built as a slaved task. The advantages of this approach
are that the receiver acquires the same privileges as the sending
task and can do I/0 directly to the sending task's terminal
(through TI:). To build a task as a slaved task, either
task~-build or install with the /SLAVE qualifier.

181

USING DIRECTIVES FOR INTERTASK COMMUNICATION

PARENT
OFFSPRING
SPAWN OFFSPRING L————| COMMAND LINE }-————
u——-\// ‘
e ———] EXIT, EXIT
WITH STATUS,
EVENT FLAG AND/OR OR EMIT
AST ROUTINE |e——— OFFSPRING STATUS |—— STATUS

TK-7745

Figure 4-1 Parent/Offspring Communication Facilities

Additional directives are ©provided for parent/offspring
support. The Send Data, Request, and Connect directive combines
the functions of the three separate directives (Send, Request,
Connect) into a single directive. This is similar to Spawn, but
sends a 13. word data packet rather than a 79. byte command
line. It also only sends data and connects if the task is already
active. Spawn is rejected if the task is already active, unless
the task is a Command Line Interpreter (CLI).

Two other directives are provided to allow chaining, or

passing a parent/offspring connection from an offspring to another
task. Chaining is discussed in more detail later in this module.

183

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Table 4-7 Comparison of Parent Directives

o

185

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Example 4-6 shows a task which spawns PIP to display a directory

at TI:.

The following notes are keyed to the example.

The command line to be passed to PIP. We 1include the
three-character command name to be consistent with the way MCR
passes commands if a utility command is typed to MCR.

Display startup message.

Spawn ...PIP. Event flag 1 will be set when ...PIP exits or
emits status. EXSTAT is the address of the eight-word status
block (only the first word is used). CMD 1is the starting
address of the command line and LEN is its length.

Wait for event flag 1 to be set when ...PIP exits or emits
status. Notice that this is a local event flag, local to this
task, which is cleared by the Executive when the task |is
spawned and set by the Executive when the spawned task exits
or emits status.

The high order byte of the exit status code may contain
unexpected data. Therefore, clear that byte before converting
the code to signed decimal for display.

Use SEDMSG to produce a status message. Display the message
and then exit.

ON THE RUN SESSION - The first run session shows a successful
exit by ...PIP, the second one shows ...PIP aborted by an
operator. Note the different status codes.

NOTE

On an RSX~-11lM system, an attempt to spawn
...PIP will fail if ...PIP is already active.
This works diffently from initiating PIP from
MCR, where an attempt is made to install the
task ...PIP under the name PIPTnn if ...PIP
is already active. A solution to this
problem is to spawn CLI... (the current
cLI), ««.DCL (DCL) or MCR... (MCR) and send
it the command line. It will in turn start
up the appropriate PIP task under ...PIP or
PIPTnn, as if the command was typed in by an
operator. See section 4.4 (on Spawning
System Tasks) of the RSX-11M/M-PLUS Executive
Reference Manual for additional information.

187

USING DIRECTIVES FOR INTERTASK COMMUNICATION

53 i Error handling code — 5 DNisrlay error messadge and exit
94 ERRID? DIRERR <ERROR WRITING STARTUF MESSAGE::

1] ERR1I?! TUERR #I0SBy“ERROR WRITING STARTUF TEXT:

LT ERR2? DNIRERR <ERROR SFAWNING FPIF:-

57 ERR3? DIRERR <ERROR WAITING FOR EVENT FLAGH

58 ERR4D?: LIRERR <ERROR WRITING FIF‘S EXIT STATUS>

59 ERR4I! TOERR #I0SBy<ERROR WRITING FIF‘S EXIT STATUS:
460 +END START

Rurn Session

[RUN SPAWN
SFAWN IS STARTING AND WILL SFAWN FIF

Directory DR1IIL30S5,30110
8-MAR-82 12115

W.MACH T 1. 20-MAY-81 13104
Al.MACS2 1. 09-DEC-80 146158
AMACSH] 1. 10-JUN~-81 15121
SFAWN . MACF 22 1. 08-SEF-81 11120

Total 127./712%9. blocks in 25. files

'SPAwN REFORTING?: FIF EXITED. EXIT STATUS WAS 1.

*RUN SFAWN
SFAWN IS STARTING AND WILL SFAWN FIF

Directory NRIILIOS,3011
8-MAR-82 12315

W.MACH 1 1. 20-MAY-81 13104
Al.MACS2 1. 09-DEC-80 16158
A.MACS] 1. 10-JUN-81 15321
NCL>ABORT/TASK +.+ FIF

NP MACS12 4, 21-MAY-81 1315

12015315 Task "o PIP" terminated
Aborted via directive or CLI
And with rending 170 recuests
L SFAWN REFORTING: FPIPF EXITED. EXIT STATUS WAS 4.

-,

Example 4-6 A Task Which Spawns PIP (Sheet 2 of 2)

189

N ONOOD G-

29
32
33
39
36
o[
39
41

42
43

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Wr WP @ wr W TP W WP E> G @ W Gr R NP Wy

| W W

-+

i

+TITLE GSFAWN
+IDENT /01/
+ENARL LC 7 Enable lower case

FILE GSFAWN.MAC

This task sromets a3t ti! for a8 task mame and command
lirney then srawns the srecified task and rasses it the
command line. After that it waits until the offsering
tashk exits andgd disrlaus its exit status.

Assemble and task-build instructions?

MACRO/LIST LEIL1s 1IFROGMACS/LIRRARY sdeviLufdIGEFAWN
LINK/MAP GSPAWNYLEBILCLy1IFROGSURS/LIBRARY

Rurn instructions?! The name of the task to he srawned
must be tured in using all urrer case characters.,

\

i Sustem
i omacros
rOs

+MCALL SFWNSSyEXITHSyEXETSyDIRS s WTSESC
+MCALL INFUTSTYPEDIRERR # Suprlied mac

I/70 buffer — initialize Tirst é6 butes to blanks to rad
short task rnames

RUFFER: .ASCII / /

TSKNAM: +BLKUW 2
BOME? EX8T4 EX$SEV

BUFF +BLRW 80.

+« RLKE 74,
2 Task name in RADSO
llirective for fatal
error
Outreut buffer for exit
status disrlay

D I P K TR TY

FMT3 +ASCIZ /XANZIOSTASK EXITED. STATUS WAS ZD.ZN/
+EVEN
EXSTAT? .BLKW 8. § Status block

¥

+ENARBL LSRE

START: TYFE “TASK NOME?>: § DNisrlay rromet
INFUT #RUFFER» #80 . i Get imrut (buffer asddr
i returned in RO
RCC 1% i Branch on directive ok
TYFE “INPUT FROM TI! FAILED:-
y

0IRS ROME Fatal error

Example 4-7 A Generalized Spawning Task (Sheet 1 of 3)

191

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Run Session

*RUN GSFAWN

TASK NAMET?

s o PIF

COMMAND LINE (79 CHARACTERS OR LESS)T
FIF %.DIS/LT

Directory DELIILIOS 3011
8-8EF-81 15109

FRIENDS .DIGS2 1. 10-AUG-81 11313
FRIENIGNL DTS2 1. 1-AUG~81 11142

Total of 2,710, bhlocks in 2. files

TASK EXITED. STATUS WAS 1.

>RUN GSFAWN

TASK NAME?

CL-IO’O

COMMAND LINE (79 CHARACTERS OR LESS?
DIRECTORY X.MAC

Directory DRI1IILC30E,3011
8-SEP-81 15210

WeMACH] 1e 20-MAY-81 13104
Al.MAC2 1. 09-NEC-80 16158
A.MACH L 1e 10-JUN-81 15121
A?.MACF 12 4, 21-MAY-81 13150
FORMAT .MAC? 34 b 21-AU6-81 11153
FROGY MACS 1 1. 20-JAN-81 14127
FROGZ .MACH 1 1. 30— JAN-81 14130
RAY +MACS 1 4. I0-JAN-81 14139
NCL-ARORT/TASK DIR

FROGX MACH S 1. I0-JAN-81 14142
CoMACHS L. 21-MAY-81 10301
AZMAC 2 1. 21-MAY-81 10104
C2.MACHL 1. 21 ~-MAY-81 10:04

Task *"DIRTLIL* terminated
‘, Aborted via directive or CLI

And with rending 170 recuests

TASK EXITED. STATUS WAS 4.

Example 4-7 A Generalized Spawning Task (Sheet 3 of 3)

193

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Chaining of Parent/Offspring Relationships

An offspring can chain or pass on 1its ©parent/offspring
connection to another task. 1In that case the connection between
the parent and the offspring which passes the connection is
broken. 1In its place, a connection is made between the parent and
the new offspring.

Figure 4-2 shows the difference between an offspring spawning
another task versus chaining its connection to another task. Note
that with Spawn, the connection between the parent and the first
offspring still exists, and a new connection 1is established
between the first offspring and the new offspring.

Table 4-10 summarizes the directives which can be wused to
chain parent/offspring relationships. Request and Pass Offspring
Information (RPOIS$) is similar to Spawn in function, in that it
starts up the task and can pass a 79. byte command line. Send
Data, Request, and Pass Offspring Control Block (SDRP$) is similar
to ©Send Data, Request and Connect, in that it sends a 13. word
data packet, and executes successfully even if the task is already
active.

TASK 2 TASK 2 REQUESTS
SPAWNS AND PASSES OFFSPRING
TASK 3 INFORMATION
BEFORE ‘ AFTER BEFORE I AFTER
TASK 1 I TASK 1 TASK 1 | TASK 1
\ | 1 1 | \
TASK 2 I TASK 2 TASK 2 | TASK 2 TASK 3
| TASK 3 I
| |

NOTE: EACH ARROW SHOWS A PARENT/OFFSPRING CONNECTION.
THE ARROW STARTS AT THE PARENT AND POINTS TO THE OFFSPRING.

. TK-7746

Figure 4-2 Spawning Versus Chaining
(Request and Pass Offspring Information

195

USING DIRECTIVES FOR INTERTASK COMMUNICATION

The following notes are keyed to Example 4-8.

@ Use RPOIS instead of SPWN$. No event flag is needed nor
is a status block set up since this task won't receive
status from ...PIP. RP.OAL specified means that all (in
this example there 1is only one) parent connections are
passed on. A connection is established between the parent
of PASSIT (GSPAWN) and ...PIP. The connection between
GSPAWN and PASSIT is broken.

e' Display a message and exit. You don't need to use $EDMSG
because this task doesn't receive exit status.

G’ Exit with a status of 10., to make it easy to tell whether
the status 1is from this task or from ...PIP. Note in
SPAWN that EXITSS is used, which results in a success code
(+1) being sent as the exit status.

@ On The First Run Session (GSPAWN spawns PASSIT) - The exit
status from ...PIP is returned directly to GSPAWN.

@ On The Second Run Session (GSPAWN spawns SPAWN) - The exit
status from ...PIP 1is returned to SPAWN, then SPAWN
returns its own exit status to GSPAWN.

If you wish to chain the connection from only one of several
parents, specify a single task, and do not specify RP.OAL in the
RPOIS$ directive call. 1If RP.OAL is not specified and no task is
specified, then no connections are passed. This might be useful
to request a task and send 79. bytes of data when a connection is
not needed.

197

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Run Session

+INS FASSIT

*RUN GSFAWN

TASK NAMET

FASSILT

COMMAND LINE (79 CHARACTERS OR LESS)?

PASSIT IS STARTING AND WILL REQUEST FIF
FASSIT HAS REQUESTED FIF AND WILL NOW EXIT

Directory DEL:L30%5,3017
H-MAR-82 15822

W.eMACSHL 1. 20-MAY-81 13104
AL.MACS2 1. 09-NEC~-80 146158
SPAWN.MACSH1 4. 08-SEF-81 13132

Total of 13./66. blocks in 15, files

TASK EXITED. STATUS WAS 1.

#RUN GSFAWN

TASK NAME®?

FASSIT

COMMAND LINE (79 CHARACTERS OR LESS)?

FASSIT I8 STARTING AND WILL REQUEST FIF
PASSIT HAS REQUESTED FIF AND WILL NOW EXIT

Directory DELSL305s 3010
G-GEF-81 15223

W.MACS1 1. 20-MAY-81 13104
Al.MACS2 1. O9-BEC-80 16238
AMACS 1 1. 1O-JUN-~81 1521
A?.MACH12 4. 21-MAY-81 13350

151243010 Task "+ FIP" terminated
Aborted via directive or CLI
And with rending I/70 recuests

TASK EXITED. STATUS WAS 4.

Example 4-8 An Offspring Task Which Chains Its
Parent/Of fspring Connection to PIP (Sheet 2 of 3)

199

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Other Parent/Offspring Considerations

Retrieving Command Lines in Spawned Tasks - Use the Get MCR
Command Line directive (GMCR$). The passed command is returned,
beginning at offset G.MCRB within the DPB for the GMCRS$ directive.
Therefore, 1if you use the $ form of the directive and if the DPB
starts at location DPBl, the first character of the command 1line
is at location DPBl1+G.MCRB.

Spawning a Utility or other MCR Spawnable Task - Utilities are
generally installed under task names of the form ...tsk. This
makes them MCR spawnable tasks, which notifies MCR to spawn
multiple copies of the task wunder names tskTnn if the task is
invoked as an MCR command using the three-character task name
(e.g., PIP /LI).

Any task is spawnable, but only tasks installed under a name
of the form ...tsk are spawned as multiple copy tasks by MCR.
When such a task is invoked by MCR, MCR passes it the entire
command 1line, including the three-character task name (e.g.,
PIP /LI). Even if you spawn a utility directly, you should pass a
command 1line which includes the three-character task name. This
maintains compatibility with the format used by MCR to pass
commands to utilities, and avoids potential problems caused when
the utility parses your command line.

On RSX-11M systems, there is a greater chance of getting a
task already active failure if you spawn a utility directly using
the name ...tsk, than there is if you spawn MCR... and pass the
command 1line which includes the task name. This is due to the
fact that if a task is spawned directly using ...tsk, the spawn
attempt fails if the task ...tsk is already active. No attempt is
made to install the task under the name tskTnn if ...tsk |is

already active, as is the case if you spawn MCR... (MCR) to start
up the utility.

201

USING DIRECTIVES FOR INTERTASK COMMUNICATION

1 +TITLE SFWNED

2 SIOENT /017

3 LENAERL LT i Enable lower case

4 it

b # This task uses the GMCR$ direcltive to get 3 command

) # line from either TI: or the rarent task. It then

7 ¢ echoes the commarnd line and does an add or multisrluy

8 i tures oult the arnswer and emits status on exit

2 i

10 i Assemble and link instructions?

11 H

12 ; MACROZLIST LEILL«LIPROGMACS/LIBRARY sdev i LufdlSRFWNED
13 § LINK/7MAF SFWNEDsLERILL s 1IFROGSURS/LIBRARY

14 H

15 $ Irmstall and run instructions! To make this task MCR

1é i srawnabler install it under the mname +..85FW. Commands
17 i should be of the form SFW ny where n is a function.

18 $ The valid functions are 1 (for add) and 2 (for multisrlu).
19 $
20 +MCALL EXSTHSSyGMCR$»DIR$ s QI0WSS 5 Sustem macros
21 SMCALL TYPESDIRERRs IDERR # Surrlied macros
22 8
23 GMCR? GMCRS # DFR for Get MCR Commandg
24 ¥y Line directive

25 BUFF?$ +BLKE 80. § Outreut buffer

26 FMT: - WASCIZ /%D %A %I = ZDi./ % Format string

27 +EVEN

28 I0Gg: + BLIKW I70 status block

29 naTaz

r3
-

3 NUMLt | JWORD] i lst orerand

31 WORD oF i} address of oreration
32 ¥ sidgn inm ASCII

33 NUM2 +WORD 2 ¥ 2ngd orerand

34 ANS? + BLLKW 1 ¥ answer to oreration
35 0F: + BLKE 1 i orerand in ASCIIT

34 +EVEN

37 $

Example 4-9 A Spawned Task Which Retrieves a
Command Line (Sheet 1 of 3)

203

USING DIRECTIVES FOR INTERTASK COMMUNICATION

'_R'un Session

FINS/TASKL.NAMES + « « SFW SFUWNETD
=MCR 8SPW 1

SFW 1

FMCR SFW 2

SFW 2

5 % 2 = 10,

FMCR SFW 3

SFW 3

c) NO OTHER OFERATIONS ALLQWED

*RUN GSFPAWN

TASK NAMET

e 0o BFUW

COMMAND LLINE (79 CHARACTERS OR LESS)7?
SFW 1

SFW 1

S+ 2= 7.

. TASK EXITED. STATUS WAS 1.
[+RUN GSFAWN

TASK NAME?

o BPU

COMMAND LINE (79 CHARACTERS OR LESS)?
GFW
SFU

I

[N N

= 10,

TASK EXITED. STATUS WAS 1.
Q| :run GsFaUN
TASK NAME?

Vo BEW
COMMAND LINE (79 CHARACTERS OR LESS)?
SFW 3
SFW 3

ND OTHER OFERATIONS ALLOWED

TASK EXITED. STATUS WAS 0.

Example 4-9 A Spawned Task Which Retrieves a
Command Line (Sheet 3 of 3)

205

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Table 4-11 Task Abort Status Codes

1 e

207

USING DIRECTIVES FOR INTERTASK COMMUNICATION

Other Methods of Transferring or Sharing Data Between Tasks

If large amounts of data are to be transferred between tasks
or shared between tasks, two other techniques are available.
Tasks can use files on mass storage devices. This technique is
advantageous if really quick transfer is not essential and/or if a
permanent copy of the data is needed.

Tasks can also be written to share a data area 1in memory.
~ This technique is particularly useful if transfer time is critical
and a permanent copy of the data is either not needed at all or is
not needed until a later time. Both of these techniques are
discussed in later modules.

Now do the tests/exercises for this module in the
Test/Exercises book. They are all 1lab problems. Check your
answers against the solutions provided, either 1in that book or
on-line files.

If you think that you have mastered the material, ask vyour
course administrator to record your progress in your Personal
Progress Plotter. You will then be ready to begin a new module.

If you think that you have not yet mastered the material,
return to this module for further study.

209

MEMORY MANAGEMENT CONCEPTS

MEMORY MANAGEMENT CONCEPTS

INTRODUCTION

The use of memory management hardware in mapped systems
permits the use of more physical memory, task relocation, and the
sharing of data and code. It also offers a memory protection
feature. This module explains how the memory management hardware
works and how the software interacts with the hardware. Later
modules explain the wuse of memory management for overlays and
shared regions.

OBJECTIVES

1. To 1list the differences between mapped and unmapped
systems

2. To list the advantages of memory management

3. To wuse virtual and physical addresses, windows, and
regions to describe the mapping of a task.

RESOURCES

1. RSX-11M/M-PLUS Task Builder Manual, Chapter 2

2. PDP-11 Processor Handbook, Chapter 6 (optional)

213

MEMORY MANAGEMENT CONCEPTS

GOALS OF MEMORY MANAGEMENT

The KT-11 memory management unit is a device available on
medium and larger PDP-11's. While the 16-bit addressing structure
of the PDP-11's limits processors without a memory management unit
to 32K words of addressing, processors with a memory management
unit can support up to 128K words, or even as much as 2000K words
(2 Meg words), depending on the model of the processor.

In addition to this extension of the ©processor's addressing
space, a memory management unit offers other features not
otherwise available. With memory management, tasks can be 1loaded
and executed at different 1locations 1in memory without being
modified in any way. This means that the operating system can
load a task 1into any available space within a system-controlled
partition; therefore a task need not wait wuntil a specific
location 1is available. It also means that the Executive can move
tasks around to make better use of available space (shuffling).

Memory management also provides a mechanism for controlling
tasks' access to memory. Memory areas can be protected:
unrelated tasks <can reside in memory simultaneously and are
normally prevented from accessing each other's memory. However,
tasks which do need to share memory locations are allowed to do
so, under the rules of memory access built into the Executive.

HARDWARE CONCEPTS

Mapped Versus Unmapped Systems

A system which has the KT-11l memory management unit installed
and enabled is called a mapped system. Otherwise, it is called an
unmapped system. Small PDP-1ll1's, such as the PDP-11/03 and
PDP-11/04 are always unmapped. The KT-1l1l unit is available as an
option on some medium sized processors, including the PDP-11/35
and PDP-11/44. It 1is a standard feature on large and newer
processors such as the PDP-11/706, PDP-11/24, PDP-11/23-PLUS and
PDP-11/44.

Table 5-1 shows a comparison of unmapped and mapped systems
on various PDP-11l's.

215

MEMORY MANAGEMENT CONCEPTS

Figure 5-3 shows the layout of a mapped system with 22-bit
addressing. Twenty-two bits give an addressing limit of 2@48K
words or 40@96K bytes. Again, the top 4K words correspond to the
I/0 page. 124K words are used for UNIBUS mapping, which is needed
when peripheral devices access memory directly (DMA devices).
UNIBUS mapping is necessary to convert an 18-bit UNIBUS address to
22-bit physical memory addresses. This leaves 1920K words of
physical memory. Again, the Executive, including POOL, usually
takes 16K words or 20K words, leaving 1904K words or 1900K words
for tasks.

PHYSICAL
ADDRESSES
(IN OCTAL)
177777)
4K WORDS 1/0 PAGE
160000
r ;
157777
TASK 32K WORDS
28-N)K WORDS < >
(28-N) AREA OF ADDRESSING
28K WORDS
OF $
MEMORY
(DSR
r— _________ u—
N K WORDS
(N<20) EXECUTIVE
L " 0 J

TK-7747

Figure 5-1 Physical Address Space in an Unmapped System

217

MEMORY MANAGEMENT CONCEPTS

PHYSICAL
ADDRESSES
(IN OCTAL)
17777777
4K WORDS 1/O PAGE
17760000
17757777
RESERVED
124K WORDS ¢
(UNIBUS MAP)
[17000000
- 16777777
[2048K WORDS
1920K /504K OR TASK OF ADDRESSING
WORDS OF 4 1900K WORDS |
MEMORY AREA
0 DSR
16K OR 20K
WORDS EXECUTIVE
Y . 0 J

TK-7758

Figure 5-3 Physical Address Space in a 22-Bit Mapped System

219

MEMORY MANAGEMENT CONCEPTS

On a mapped system, the Task Builder fixes a task's code 1in
virtual address space, but the actual mapping of virtual addresses
to physical addresses is performed at run time by the memory
management unit. Tasks may be 1loaded at different physical
addresses and still run correctly. As you will see later, mapping
also allows a task to access several separate pieces of physical
memory.

PHYSICAL PHYSICAL

ADDRESSES
MEMORY (IN OCTAL)
VIRTUAL VIRTUAL
ADDRESSES
(IN OCTAL) MEMORY
_________ 140000
137777 137777
TASK TASK
8K WORDS 8K WORDS
w000 L\ 100000
DSR 77777
EXECUTIVE
16K WORDS
0

TK-7759

Figure 5-4 vVvirtual Addresses Versus Physical Address
on an Unmapped System

221

MEMORY MANAGEMENT CONCEPTS

The KT-11 Memory Management Unit

Mode Bits - Bit 15 and 14 and bits 13 and 12 of the processor
status word (PSW) indicate, respectively, the current and previous
modes of processor operation. The mode may be:

e Kernel mode (04d)
o User mode (11)

e Supervisor mode (#1). (Supervisor mode is not wused on
RSX-11M, and is available only on 11/45, 11/55, 11/44, and
11/70.)

The purpose of having different processor modes is to provide
for a privileged mode (kernel) where the Executive can execute
privileged instructions (e.qg., HALT) , and can manipulate
privileged locations (e.g., PSW), and a non-privileged and
protected mode (user) where tasks usually execute.

Active Page Registers (APRs) - The Active Page Registers (APR's)
in the KT-11 memory management unit are used to define the mapping
or correspondence between virtual and physical addresses. On an
RSX-11M system, one set of eight APRs is used at a time to define
this mapping. There is one set of APR's used for each processor
mode; one is used in user mode and another set is used in kernel
mode.

At any given time, the set of APRs in use 1is determined by
the mode bits in the processor status word. Each APR in the set
in use maps a specific range of virtual addresses, as shown 1in
Table 5-2. The APR can map zero words, if not in use, up to the
full 4K words, always 1in even multiples of 32 words. In
actuality, the hardware may contain additional sets of APRs, but
they are not used under RSX-11M.

Each APR consists of two 16-bit registers, a page address
register (PAR) and a page descriptor register (PDR). The page
address register contains a base address used in mapping the
appropriate range of virtual addresses.

223

MEMORY MANAGEMENT CONCEPTS

All virtual addresses within the main task area are mapped to
physical addresses beginning at location 00432400 (8). This means
in effect that each virtual address corresponds to an offset from
location 30432400 (8) . The page descriptor registers, not
illustrated, indicate that APRs 0, 1, and 2 map 4K words each, but
that APR 3 maps only 2K words.

PHYSICAL PHYSICAL
MEMORY ADDRESSES
(IN OCTAL)
VIRTUAL
ADDRESSES MEMORY PAR
(IN OCTAL) APR VALUE
~— ~
COMMON 4K WORDS 7 | 015322
160000 — RESIDENT COMMON
000000 1532200
140000
000000
120000 [UNUSED
000000
100000 F
70000 005124 |~ ___
60000 | _ -
2| 004724 -] 512400
40000 |_ _
TASK } 14K WORDS
1| ooss24 TASK —| 472400
20000 | - AREA
o| 004324 ~| 452400
0 ——
~ 432400

TK-7761

Figure 5-6 Page Address Registers Used in Mapping a Task

225

MEMORY MANAGEMENT CONCEPTS

In easier terms, virtual address 40000(8) will be located at
the base physical address. A virtual address 13422(8) bytes above
that will be 13422(8) bytes above that physical 1location. The
base physical address is determined by converting the block number
in APR2, 004724(8), to the physical address 00472400(8). (Recall
that a block of memory 1is 100(8) bytes.) Therefore, address
#53422(8) is mapped to the location shown below.

909472400 (8) Base physical address
+ 13422 (8) Displacement

g0506022(8) Actual physical address

Example 2

Convert the virtual address 165275(8)

fom e +
165275(8) = | 1 11| #18610101111061]| (2)
o T T +
7 35275 (8)
APR of fset

APR 7 = @15322(8) blocks = 01532200 (8) Base physical address
+ @5275(8) Displacement

@1537475(8) Actual physical address

The memory management unit performs this conversion using an
adder and a number of internal registers. The conversion is
performed at extremely fast speeds. Chapter 6 of the
PDP-11 Processor Handbook discusses this conversion process in
more detail.

227

MEMORY MANAGEMENT CONCEPTS

Memory management directives can be wused to create and
initialize additional windows while a task executes. Space for
these additional windows must be allocated in the task header at
task-build time, wusing the "WNDWS" option. Memory management
directives and their use are discussed in Module 8 on Dynamic
Regions.

Regions

A region is a contiguous area of physical memory to which a
task may get access rights. A region must be contained completely
within a partition. It can be part of a partition or the entire
partition.

There are three types of regions in an RSX-11lM system.

1. Task region - an area in a user-controlled partition or a
system-controlled partition into which a task is loaded
and then executes,

2. Static Common Region - an area in a common type partition;
e.d., a shared common for data or a shared 1library for
code.

3. Dynamic Region - an area in a system-controlled partition
which is created dynamically, at run time, using the
memory management directives.

A task gets access rights to a region by "attaching" to the
region. Before the Executive attaches a task to a region, it
checks its needed access against the protection on the region.
This is similar to checking file protection before allowing file
access. If the task passes the check on access rights, then the
Executive attaches the task to the region by establishing a
connection between the two. The total amount of physical memory,
made up of regions, to which a task is attached is called a task's
logical address space.

After a task is attached to a region, it actually accesses or
uses the region by first "mapping" one of its virtual address
windows to a part or to all of the region. During this process,
the Executive wuses the window and region information to fill in
the APRs. After this, references in the task to virtual addresses
in that window map to physical addresses within the region. A
region does not have to be the same size as a window. Generally
it is of equal or larger size than the window.

229

MEMORY MANAGEMENT CONCEPTS

PHYSICAL
MEMORY
LIBRARY
/
//
1/
VIRTUAL VIRTUAL /y
ADDRESSES PAR
(IN OCTAL) MEMORY APR VALUE ///
177777 L
WINDOW COMMON oos0ss | /™
2 160000 {4K WORDS) / COMMON
Y T 014764 T~
Y'NDOW 110000
000000
120000
000000
100000
. 006232
777 ~
60000 =
006032
40000
WINDOW WINDOW
0 (13K WORDS) 005632 TASK
26000
REGION
005432
0 -

PHYSICAL
ADDRESSES
(IN OCTAL)

1476400

605600

543200

TK-7762

Figure 5-7 A Task with Three Windows Mapped to Three Regions

231

OVERLAYS

OVERLAYS

INTRODUCTION

Overlays are used to allow a task to be developed and .run if

there
task.
to use

is not enough available physical or virtual memory for a
This module explains the various overlay techniques and how
them.

OBJECTIVES

To determine whether to use a disk-resident or
memory-resident overlay in a given situation

To construct overlay structures using the overlay
descriptor language

To write tasks using overlays.

RESOURCE

RSX-11M/M-PLUS Task Builder Manual, Chapters 3 and 4

235

OVERLAYS

CONCEPTS

A task may be too large to fit in the available memory. This
may happen because it is larger than the total amount of memory on
the system. More likely, it is because the task is 1larger than
the partition it is to run in, or the available space within the
partition. The partition is probably used by other tasks at the
same time; therefore, the available space may be considerably
less than the full partition.

For example, a 2@K word task may have to fit in 15K words of
memory. The task can use overlays and load only portions of the
code at a time, and use just 15K words of memory.

Typically, the pieces which overlay each other contain
subroutines. As an example, consider a task with main code and
two subroutines, G and H, which overlay each other. The main code
calls subroutine G first, causing G's code to be read into memory.
Later, the main code calls subroutine H, causing H's code to be
read into the same memory locations, overlaying subroutine G. If
the main code later calls G, G's code overlays subroutine H. As
the task executes, overlaying is performed whenever necessary.
You can choose to have all 1loading of overlay segments done
automatically, or vyou can load them manually with specific calls
to a loading routine. R

In addition to physical memory limitations, tasks on PDP-11
systems have virtual memory limitations. As discussed in the last
module, a task can only use a maximum of 32K words of wvirtual
addresses at a time. A task may require more than 32K words of
physical and also virtual memory. For example, a task may need
49K words of physical memory, exceeding the virtual addressing
limit. This means that the task can't address all of 1its code.
Overlays loaded from disk permit this task to run in 32K words or
less of physical memory, and allow all of the code loaded at any
given time to be addressed. Therefore, 32K words of code or less
are loaded and addressed at any one time, satisfying the wvirtual
address limit.

Another method is to use special kinds of overlays. With
these, all 4¢K words of code can be loaded into memory, but the
task maps only 32K words of code at a time. This means that the
task stays within the wvirtual addressing limits even though it
uses 4@PK words of physical memory.

These special kinds of overlays are called memory-resident
overlays. They overlay by remapping, rather than reloading, code
into memory.

237

OVERLAYS

Main Segment: PROG

PROG calls: SuBl, SuB2, SUB3

SUB1 calls: A, B

SUB2 calls: none

SUB3 calls: C, D, E
Size

Segment in Words

PROG 4K

SUB1 2K

SuUB2 3K

SUB3 1K

A 1K

B 2K

C 1K

D 2K

E 1K

Total 17K

Example 6-1 Description of an Overlaid Task

239

OVERLAYS

STEPS IN PROGRAM DEVELOPMENT USING OVERLAYS

Use the following steps to develop a task which uses
overlays.

1. Assemble each module, producing an .0BJ file for each

2. Use the editor to create an overlay descriptor file
(defines the overlay structure for the Task Builder).

3. Task-build using the overlay descriptor file as the input
file.

THE OVERLAY DESCRIPTOR LANGUAGE (ODL)

The overlay descriptor language (ODL) is a fairly simple
language which is wused to define the overlay structure for the
Task Builder. Statements are placed in a text file which has a
file type 'ODL' (e.g., EXAMPLE.ODL). This text file is identified
to the Task Builder as a special file by using the
/OVERLAY DESCRIPTION input file qualifier (/MP in MCR) in the
task-build command line.

ODL Command Line Format

The ODL command lines use the format that follows.
label: directive argument-list ;comment
where:

label - A one- to six-character symbolic, required only
on an FCTR directive.

directive - one of the following:

.ROOT - indicates the start of the overlay tree
.END - indicates the end of input

.FCTR - allows naming of subtrees

.NAME - allows naming a segment and assigning

attributes

. PSECT

allows special placement of a global
program section (Psect).

241

OVERLAYS

Examples of ODL

l.

X, the root of a task, calls subroutines Y and Z.

.ROOT X-(Y¥,2)
. END

Explanation: X is the root segment, Y and Z are each

overlay segments. Virtual addresses are assigned to X
first. Starting after that, Y and Z begin at the same
virtual address. Either Y or Z (never both) is loaded

and mapped using those virtual addresses.

Using the information from Example 1, Y calls subroutines
U and V.

.ROOT X-(Y-(U,V),Z)
.END

Explanation: Add to Example 1. U and V are overlay
segments which overlay each other. After the last
address for Y, virtual addresses begin for U and V.

243

OVERLAYS

TYPES OF OVERLAYS

There are two types of overlays available, disk-resident
overlays and memory-resident overlays. 1In fact, both are loaded
from disk. The distinction is that disk-resident overlays are
loaded from disk every time they are needed, while
memory-resident overlays are loaded from disk only the first time
they are needed. After that, they remain in memory and remapping
is used to overlay segments as needed.

Disk-Resident

Disk-resident overlays are available on all RSX-11M systems.
An example of a task with a root segment and three disk-resident
‘overlays is shown in Figure 6-3.

On initial load, only the root segment MAIN 1is loaded.
Overlay segments are loaded from disk whenever required. This
typically occurs when a subroutine in the segment is called. So
if the root segment MAIN contains a call for subroutine A, for
example, segment A is loaded from disk prior to the transfer of
control to A.

If, after the subroutine returns control to MAIN, a call is
made to subroutine B, segment B is loaded into memory right over
segment A, If a call is later made to subroutine C, segment C is
loaded right over segment B. This loading of overlay segments is
performed whenever necessary. The subroutines may be <called in
any order, and each subroutine may be called any number of times
in the course of task execution,

The same starting virtual address is assigned to all three
overlay segments, A, B, and C, beginning at the next 32(19) word
boundary after the code for MAIN. So A, B, 'and C use the same
virtual addresses and are loaded starting at the same physical
address. One virtual address window maps the entire task; just
the code in memory is changed when an overlay is loaded.

This technique is useful when the entire task is too 1large
to fit into the space allowed for it. 1In the example in Figure
6-3, a 22K word task runs in 15K words of physical memory.
Disk-resident overlays are the default overlay type. The ODL
examples in the ©previous section all produce disk-resident
overlays.

245

OVERLAYS

Memory-Resident

Memory-resident overlays are available only on mapped
systems which support the memory management directives. Figure
6-4 shows the same task as 1in Figure 6-3, this time with

memory-resident overlays. On initial load, again only the root
segment MAIN is loaded. The first time an overlay segment is
needed it is loaded from disk. However, once a segment is

loaded, it remains in memory and is not reloaded from disk.

If subroutine A is called first, overlay segment A is loaded
and virtual address window 1 is mapped to A. 1If, after the
subroutine returns control to MAIN, a call is made to subroutine
B, then segment B is loaded, but not directly over A. Instead,
it is loaded into another area of memory, and then virtual
address window 1 1is mapped to B. 1If a call is later made to
subroutine C, segment C is loaded into another area of memory,
and virtual address window 1 is mapped to C.

The real gain in run time efficiency is made when an overlay
is needed again. 1If another call is made to A, overlay segment A
does not have to be loaded again from disk. It 1is already
memory-resident. Therefore, virtual address window 1 is simply
remapped from segment C to segment A. Any additional overlaying
is performed by remapping, with no further loading of overlay
segments necessary. Again, the subroutines may be called in any
order and each subroutine may be called any number of times.

The advantage of this approach is that after the first load,
it 1is much faster than using disk-resident overlays. However,
there are no savings in the use of physical memory. 1In fact, a
bit more memory 1is required than with a non-overlaid task. So
the main use of memory-resident overlays is for overcoming the
32K word virtual address limit when execution time efficiency is
important. A 44K word task can use memory-resident overlays Iif
there is enough memory available and the time necessary for
loading disk-resident overlay segments is unacceptable.

The root segment uses one window, plus each overlay area
requires a separate window. That means that virtual addresses
for each overlay segment begin at the starting virtual address
for the next highest APR, corresponding to a 4K word boundary.
Notice that A, B, and C all begin at virtual address 60000(8),
for APR3, because MAIN is 9K words long. MAIN uses all 4K words
in APRs @ and 1, plus 1K word in APR2 (virtual addresses 40000 (8)
through 43777(8)) .

247

WINDOW
1

{

160000 APR7

120000 APR5 K

100000 APR4

60000 APR3

40000 APR2
gvmoow 20000 APR1
0 APRO

Figure 6-4

///

140000 APR6 K

OVERLAYS

VIRTUAL
MEMORY

249

- - - -
— -—
yﬁy
Py - - — T T
TIME2 = —
) | gsiw) =
/////// 7 —
MAIN
(ROOT SEGMENT)
(9K WORDS) INITIAL LOAD
b A
HEADER AND STACK _AEMi_

PHYSICAL
MEMORY

MAIN

HEADER AND STACK 7

(ROOT SEGMENT)

TK-7767

An Example of Memory-Resident Overlays

OVERLAYS

LOADING METHODS

There are two loading methods, autoload and manual 1load.
With autoload, any necessary 1loading and/or remapping (in the
case of memory-resident overlays) is done automatically and is
transparent to the program. With manual 1load, the overlay
segments are loaded by specific user calls to a loading routine.
Autoload and manual load cannot be mixed in the same task.

Autoload

When a call is made to a subroutine in an overlay segment,
an autoload routine takes <control before the transfer to the
subroutine is made. It checks to find out whether the required
segment is already loaded, or loaded and mapped. It performs any
necessary loading and/or remapping. After that, the transfer to
the called subroutine is made.

Autoload is path loading, meaning that all segments along
the path to the required overlay segment are loaded. For
example, in example 2 in the previous section, with root X and
subroutines Y, U, V, and Z, if a call from segment X is made to
subroutine U, both Y and U are loaded. Note that autoload 1loads
only overlay segments along the path which are not already
loaded.

Autoload is indicated by an asterisk (*) before an overlay
specification in an ODL 1line. An asterisk outside a set of
parentheses applies to all levels inside the parentheses.

The advantages of autoload are that it is easy to wuse and
does not require changes in the source code. One disadvantage is
that it increases the size of the segments because the autoload
code plus 1its data structures must be included in the task.
Another is that it executes slower than manual load, because the
autoload code has to check for whether the required segment is
available or not each time an autoloadable segment is called. 1In
addition, autoload must be performed synchronously. See section

4.1 on Autoload in the RSX-11M/M-PLUS Task Builder Manual for
more information.

251

OVERLAYS

Manual Load

With manual load, you must call the subroutine $LOAD to load
and/or map any required overlay segment before calling a
subroutine in that segment. You must also keep track of which
segments are currently available, to avoid a transfer of control
to an incorrect segment and to avoid unnecessary calls to the
loading subroutine. Manual load is not path loading. In Example
2 of the previous section, if X calls U, it can load just segment
U, without loading segment Y, unless it is desirable to load
both. See section 4.2 on Manual Load in the
RSX-11M/M-PLUS Task Builder Manual for more information.

Manual load is the default loading method. Whenever there
are no asterisks (*) in an ODL file, manual load is used.

The advantages of using manual load are that it results in
smaller overlay segments, is usually more run time efficient, and
overlay segments can be loaded either synchronously or
asynchronously. The disadvantages are that you must keep track
of which overlay segments are loaded and use special code in the
source program.

Comparison of a Task With No Overlays, to One With Disk-Resident
Overlays, and One With Memory-Resident Overlays

Example 6-1, shown earlier in the module, and repeated below
for convenience, shows a main program which calls a subroutine,

which in turn calls another subroutine, etc. Note that the sizes
shown for the various parts of the task are only approximate.

253

OVERLAYS

Task~-build command:

LINK/MAP PROG,SUB1,A,B,SUB2,SUB3,C,D,E

Fartition mame ! GEN

Identification { 0Ol

Task UIC P L305,3011

Stack limits?! 000284 0012¥3 001000 00HL2.

FRG xfr address! 021254

Total address windows? 1.

Task imadge sizxe ¢ 17792, words

Task address Llimits?! 000000 105357

R-W dislk blk limits? 000002 000107 00010&6 00070,

¥k ROOT SEGMENT! FROG

R/7W mem limitsed Q00000 103357 105360 35568,
Disk blk limits? 000002 000107 000106 00070,

Example 6-2 Map File of Example 6-1 Without Overlays

255

OVERLAYS

PROG.ODL file:

.ROOT PROG-*(SUB1-(A,B) ,SUB2,SUB3-(C,D,E))
.END

Task-build command:

LINK/MAP PROG/OVERLAY DESCRIPTION

Fartition name ! GEN

Identification ! 01

Task UIC t L305,3010

Stack Limitse?! 000260 001257 01000 00%512.

FRG xfr address: 021260

Total asddress windows?: 1.

Task imade size $ 8800, words

Tashk address limits?d 000000 042237

R-W disk blk limits: 000002 000120 000117 006079,

EX63.TSK Overlaw descrirtion?

Base Tos Length

000000 022177 022200 (09344, FROG

Q22200 032233 010034 04124, SUR1L
032234 036237 004004 02052, A
032234 042237 010004 04100, E
Q22200 036203 014004 06148, SUR2
022200 026247 004050 02088, SURI
Q26250 032253 004004 02052, C
Q26250 036253 010004 04100, n
Q26250 032233 004004 02052, E

Example 6-3 Map File of Example 6-1 With Disk-Resident Overlays

257

OVERLAYS

PROG.ODL file:

.ROOT PROG-*! (SsuB1-!(A,B) ,SuUB2,SUB3-!(C,D,E))
. END

Task-build command:

LINK/MAP PROG/OVERLAY DESCRIPTION

Fartition mame ! GEN

Idemtification § 01

Task UIC 3 L3053011

Stack Timits?! 000320 001317 001000 00512,

FRG xfr address: 021320

Totel address windows? 3.

Task image size ¢ 18464, words

Task address limits: 000000 077777

Fo-W disk bll limits? 000003 000122 000120 00080,

EXDOVR.TSK QOverlay descristion?

Rase Tor L.endgth

000000 023077 23100 09792, FROG

Q40000 050077 010100 041460, SURL
060000 064077 004100 02112, A
Q40000 Q70077 010100 04160, B
Q40000 054077 014100 046208, SUR2
040000 044077 004100 02112, SUR3
060000 064077 004100 02112, G
060000 070077 010100 04160,]
060000 064077 004100 02112, E

Example 6-4 Map File of Example 6-1 With Memory-Resident Overlays

259

OVERLAYS

Table 6-1 Comparison of Overlaying Methods (Cont)

Table 6-1 compares the three overlaying methods. 1In addition
to the various sizes, it lists the advantages and disadvantages of
each approach.

Remember that it is also possible to mix memory-resident and
disk-resident overlays in a task. For example, the first level
(suBl1l, SUB2, and SUB3) could be memory-resident, and either or
both second levels (A, B or C, D, E) could be disk-resident.

2601

OVERLAYS

Include needed modules from FOROTS.OLB in the root segment
in segment A, and in segment B. You should specify the
library in each segment which may need it. Otherwise, if
segment A needs a library module not already included for
the root segment, the library is not searched again for
module A,

An Qverlay Example

Example 6-5 is a simple task with a root segment ROOT and two
overlay segments, P and Q. The following calling sequence is used
during the execution of the task.

ROOT calls P
ROOT calls @

Figure 6-5 shows an overlay tree and a memory allocation
diagram for this task.

The code for Example 6-5 is separated 1into three different
modules, one for each segment. The source file for the root
segment ROOT contains the startup code and controls the overlay
loading by calls to the subroutines. The source file for each
overlay segment, P and Q, contains the subroutine code.

OVERLAY TREE

MEMORY ALLOCATION DIAGRAM

P o P Q

ROOT ROOT

TK-7755

Figure 6-5 Task With Two Overlay Segments

263

OVERLAYS

The notes below are keyed to Example 6-5.
On initial load only the root segment ROOT is loaded.

@® with autoload, the call to subroutine P causes the
autoload routine to load overlay segment P from disk, and
then transfer control to the subroutine.

G’ Subroutine P displays a message and returns.

@O rThe call to subroutine Q causes the autoload routine to
load overlay segment Q from disk over segment P, and then
transfer control to the subroutine.

G’ Subroutine Q displays a message and returns.

If another call were added to subroutine (@, the autoload
routine would check to make sure that overlay segment Q is already
loaded, and would then transfer control to Q. If another call
were added to subroutine P, the autoload routine would check and
find that overlay segment P is not loaded. It would then 1load
segment P over segment Q and transfer control.

To use manual load, use additional code to load the segments
into the root segment ROOT. Also, modify the .ODL file, omitting
the asterisk (*). The files MLROOT.MAC and MLEXDOVR.ODL on the
tape provided with this course are modifications of ROOT.MAC and
EXDOVR.ODL for manual load. Check UFD [282,3] for these files.
See your course administrator if you have difficulty finding them.

265

OVERLAYS

1 STITLE Q

2 « IDENT /017

3 +ENARL LC ¥ Enable lower case

4 i+

] # FILE Q.MAC

&4 $

7 # This subroutine disrlaus 8 message and returns.

8 ;.m

9 +MCALL QIOWSC i External sustem macros

10 H

11 MES +ASCITI /SEGMENT Q IS NOW LOADED. SUBROUTINE Q7

12 +ASCTIT /7 I8 EXECUTING./

13 LMES = , -~ MES

14 +EVEN i Move Lo word bhoundary

15 H

16 QA QIDWSC TOWVRsSelvryy MESYLMES»40r 3 Disrlay
o [17 i messade

18 RETURN # Return

19 +END

Rurn Session

FRUN EXDOVR

THE MAIN SEGMENT IS RUNNING AND WILL CALL F.
SEGMENT F IS NOW LOADED, SURROUTINE P IS EXECUTING.
THE MAIN SEGMENT WILL NOW CALL Q.

SEGMENT Q IS NOW LOADED. SUBROUTINE Q I8 EXECUTING.
THE MAIN SEGMENT WILL NOW EXIT.

Example 6-5 A Task With Two Overlay Segments (Sheet 2 of

267

OVERLAYS

Table 6-2 How Global Symbols Are Resolved

269

OVERLAYS

Subroutine Calis

With manual load, since the global symbols are resolved
directly to the virtual address corresponding to the symbol, the
transfer is directly to the subroutine. The program must ensure
that the correct overlay segment is loaded before making the call.
Otherwise, the transfer will transfer <control to that wvirtual
address in the wrong code, causing unexpected results.

With autoload, the global symbols are resolved directly for
calls downward toward the root. This works because path loading
ensures that the segments along the path closer to the root are in
fact 1loaded. The calls to subroutines away from the root are
resolved through autoload vectors. This causes the <call to the
subroutine to transfer control first to the autoload routine,
allowing it to check and load any needed overlay segments before
transferring control to the virtual address of the subroutine.

Data References

The safest place for all data is in the root segment. Data
placed in an overlay segment is only accessible when the overlay
segment is loaded and the reference is resolved directly. This
means that with manual 1load, the data is accessible when the
segment is loaded.

With autoload, on the other hand, it's not that simple.
References out from the root are usually not resolved directly,
but through autoload vectors. For example, the reference to the
global symbol A, a data 1label, is resolved to the label of an
autoload vector within the same overlay segment. The actual
virtual address of A is a value within the autoload vector.
Therefore, a reference to A references the autoload vector, not
the data itself. 1In addition, a reference to A does not cause the
overlay segment to be loaded. It is loaded only on a call to a
subroutine. Although there are some ways with autoload to get
references resolved directly, it is difficult.

With disk-resident overlays, another problem arises with any
data changed at run time. 1If the data is in an overlay segment,
it is reinitialized every time the segment is reloaded from disk,
since the original copy of the code is reloaded. This problem
occurs with both manual load and autoload.

271

OVERLAYS

The Task Builder normally combines together allocations for
Psects of the same name. If the Psects have the local (LCL)
attribute, combining is only done within a single overlay segment.
If the Psects have the global (GBL) attribute, combining is done
across overlay segment boundaries. For Psects with the GBL
attribute, by default, these allocations are collected in the
segment specifying the Psect which is closest to the root segment.
Therefore, if the Psect MYDATA is specified in the root segment
and also in one or more overlay segments, the complete allocation
is placed in the root segment. The OVR attribute tells the Task
Builder to begin both allocations at the same virtual address.
Consider Example 2 above. The local symbol M, defined locally in
the overlay segment, corresponds to the beginning of the Psect in
the root segment, the address of the first 2. The instruction INC
M+2 again increments the second 2 to a 3.

See Appendix E for additional information on how the Task
Builder uses the various Psect attributes. Also see section 3.2.4
(on Allocation of Program Sections in a Multisegment Task) in the
RSX-11M/M-PLUS Task Builder Manual for a description of how the
Task Builder allocates Psects in an overlaid task.

Two other methods can be used to place in the root a Psect
which 1is not defined in the root. If a Psect has the SAV
attribute, the Task Builder automatically places that Psect's
allocation in the root. If the Psect does not have the SAV
attribute, then the .PSECT Overlay Descriptor Language statement
can be wused to specify placement of a particular Psect in the
root, overriding the default placement. See section 3.4.5 (on the
.PSECT Directive) in the RSX-11M/M-PLUS Task Builder Manual for an
example of the use of .PSECT ODL directive.

Example 6-6 is a more complex example of the use of overlays.
It shows the use of both techniques for placing data in the root
and referencing it from overlay segments. The program calling
sequence is shown below.

273

OVERLAYS

The following notes are keyed to the example.

The Psect OTHER is set up for wusing overlaid Psects to
reference the data. Since it is defined in the root, the
entire allocation for OTHER is in the root segment. OoP1,
OP2, and ANS can be Jjust 1locally defined, since the
overlay segments define the locations as offsets from the
start of the Psect. On the other hand, global symbols can
be used instead, if desired. The data 1is an argument
block for a call to $EDMSG.

The references to the data from overlay segment JOB1l are
set up by specifying the Psect OTHER, then defining local
symbols. .BLKW statements are used because you are Jjust
defining symbols and offsets. The local symbols NUM1,
NUM2, and SUM correspond to oP1, OoP2, and ANS,
respectively, in MAIN.

The references to the data from overlay segment JOBXX are
set up in a similar way. This time the same local symbols
OP1, OP2, and ANS are used again.

The references to the data from overlay segment A are also
set up in a similar way. This time only the starting
address of the argument block is needed.

The grand total and the ASCII operand (for $EDMSG) are
defined with the global symbols TOT and OP.

The reference to TOT and OP in JOB1l, and JOBXX, are
automatically resolved directly. No special coding is
needed in the referencing segment. TOTAL also references
TOT, this time from the root segment (because TOTAL is
also in the root segment).

Note that data which is pure (read-only) and referenced
within the overlay segment only, causes no problems when
placed in an overlay segment. The references are direct
and the data 1is only referenced while the segment is
loaded.

The input buffer for the Jjob number typed in by the
operator, and the output buffer for displaying an
operation's results are contained in an overlay segment
and changed at run time. However, since the data is
accessed only from within the overlay segment, and only
while the segment 1is still loaded, no problems result,
I1f, in fact, the MAIN segment referenced this data after a
call to B was made, it would no longer work correctly
because on reload, the data is reinitialized.

275

OVERLAYS

52 § Set ur for loos
53 MOV *#3sR4 # Counter
54 LOOF? QIOWSC TOWVRySylyry s “MESIyLMES3»40> § Write MES3
53 CLR ANS i Clear answer in case
1) i of mo oreration
57 CaLL A i Call subroutine A
58 SOR R4 LOOF ¢ Decrement counter and
59 ¥ loor back until done
60 QIOWSC I0.WVEBySelsrsy s MES4,LLMES4y40> 5 Write MES4
61 caLL TOTAL. i Call routine to
62 i disrlaw drand totsl
&3 QIOWSC I0.WVEB»Sylyyyy<MESSYLLMESS»40> 3 Write MESS
64 EXIT$S i Exit
69 JENDII START
1 +TITLE A
2 +IDENT /01/
3 +ENARLE LC ¥ Enable lower case
4 $+
5 # FILE A.MAC
é H
7 # This subroutine disrlavs 2 messade and then asks which
8 i of two Jdobs to do. It calls the arrrorrizte subroutine
9@ § to do the Jdoby disrlavs the resultsry and then returns
10 #F to the main srogram.
i1 §
12 +MCALL QICWsC,QI0WSS i Sustem macros
13 +NLIST BEX i Do not list binary
14 A i extensions
15 +FSECT OTHER NsGRLsOVRYRELRW % PSECT with dats
" 16 ARG +BLKW 4 i Set address Tor start
17 i of argument block
18 +FSECT i Rack to blank PSECT
1.9 MES? +ASCTIT <11x/SEGMENT A IS NOW LOADED. SURROUTIN/
20 JABCIT /Z7E A IS EXECUTING./
21 LMES=, ~MES
" 22 FMES JASBCIT <11x=/700 YOU WANT TO DO JOR 1 OR JOR 27 /
23 LFMES=, ~FMES
24 EMES JASCIT <18 11»/N0 SUCH JOEB. SORRY./
25 LEMES=,~EMES
Lﬁé OFMT JASCIZ 1 Lx/700 ZA AL = ZDJAN/
27 OBUFF3? JRLKER 100, ¢ Buffer for diserlaw of
O :: 5 ob results
L2329 BUFF 3 +BLKE 1 # Buyffer for insut char
y

30 +EVEN Move to word bhoundary

Example 6-6 Complex Example Using Overlays (Sheet 2 of 6)

277

OVERLAYS

18011011 /78EGMENT JORL I8 NOW LOADED./

155

12

1150115 /8URROUTINE JORL IS EX/

ZECUTING ./
LMES= ., ~MES

REX

a

List binary extensions

IO{UUB?S!lvyyv'{MESyLMESy‘}O} # DNisplaw

H messade

NUM1 » SUM ¢ First orerand to ans
NUM2» SUM F Add in other orerand
SUM,TOT ¢ Add this answer Lo total
¥+ 0F # Move orerand Tor outrut
¥ disrlay
i Return
JOBXX
/01/
1.C i Enable lower case

This subroutine rerforms a multislication oreration.
It is assumed that local swmbols O0Fly OFP2 and ANS
same local sumbols in MAIN. The
defined in MAINy ig the address
the drand total is maintained.

QRIOWSC i External sustem macros
BEX # Do mot list binary
i extensions
OTHER DyGRLsOVRYREL sRW # Data FSECT
1 i lst orerandg
1 i Address of oreration
§ i ASCII
1 i 2nd orerand
1 i Answer
i Rack to blank FSECT
1024 . %2 i Leave srace to make
§ module larder

L1GE1 1011 /8EGMENT JOBXX 185 NOW/
/ LOARED, /<1801 25011110
/SURROUTINE JOR2 IS EXECUTING./
LMES=,~MES

26 MES S +ASCIT
Q[:e? VASCTX
28 +ASCTI
29
0 +EVEN
31 JLIST
32
33 JORL I QIOWSC
34
e 35 MOV
364 AL
e 37 AL
38 MOy
39
40 RETURN
41 +END
1 +TITLE
2 +IDENT
3 +ENARL
4 it
G i FILE JORXX.MAC
b ¥
7 ;
8 §
9 ¥ corresrond to the
10 ¥ globel sumbol TOTy
11 i where
12 e
13 «MCALL
14 +NLIST
15
16 +PSECT
17 OFLe +BLRKW
o 18 +BLKW
i9
20 OF21: + BLRW
21 ANS ¢ +BLKW
22
23 FBECT
24 « BLKW
25
_ 26 MES? +ASCIT
6[27 JASCIT
28 +ASCTY
29
30 +EVEN
31 JUIBT

Example 6-6

REX

i List binary extensions

Complex Example Using Overlays (Sheet 4 of 6)

279

IR R R

z
L

N D

10
i1

12
o[
14
15
1o
17
18
19
20

R

OVERLAYS

STITLE R
+IDENT /01/ .
+ENARBL LC # Emable lower case
it
i FILE RBR.MAC
H
i This subroutine disrlavs 8 messadge and returns
;....

SMOALL QIDWSC 3 External swustem macros
+NLIST BREX o mot list bimary
extensions
MES S JASCIT <11-/8EGMENT B IS NOW LOADED. SURBROUTINE/
JASCIT / B IS EXECUTING./
LMES = , - MES

a
14
»
¥

+EVEN i Move to word bhoundarw
H
Bi: QIOWSC TOWVBySslery » “MESYyLMES»40> § Disrlaw
i messade
RETURN i Return
+END

Session

FRUN MRMAIN

THE

THE

THE

THE

THE

THE
THE

THE

MAIN SEGMENT I8 RUNNING AND WILL CALL A
SEGMENT A IS NOW LOADED. SURROUTINE A IS EXECUTING.
DO YOU WANT TO DO JOB 1 OR JOR 2% 1
SEGMENT JOR1 IS NOW LOADED.
SURROUTINE .JOR1 IS EXECUTING.

5+ 2= 7

MAIN SEGMENT WILL NOW CALL R
SEGMENT R IS NOW LOADED. SURROUTINE B I8 EXECUTING.
MAIN SEGMENT WILL NOW CALL A
SEGMENT A IS NOW L.OADED. SUBRROUTINE A IS EXECUTING.
I YOU WANT TO DO JOR 1 OR JOB 27 2
SEGMENT JORXX I8 NOW LOADED.
SURROUTINE JORZ2 I8 EXECUTING.
9ok 2 = 10

MAIN SEGMENT WILL NOW CALL A
SEGMENT A I8 NOW LOADED. SURROUTINE A IS EXECUTING.
Do YOU WANT TO DO JORB 1 OR JOR 27 2
SEGMENT JORXX I8 NOW LOADELD.
SURROUTINE JOR2 IS EXECUTING.
5 % 2 = 10

MAIN SEGMENT WILL NOW CALL A
SEGMENT A IS NOW LOADED. SUBROUTINE A IS EXECUTING.
D0 YOU WANT TO IO JOR 1 OR JOR 27 1
SEGMENT JOR1 IS NOW LOALDED.
SURROUTINE JOR1 IS EXECUTING.
9+ 2= 7

MAIN SEGMENT WILL CALL TOTAL
GRAND TOTAL IS 34,

MAIN SEGMENT WILL NOW EXIT

Example 6-6 Complex Example Using Overlays (Sheet 6 of

281

6)

OVERLAYS

Al

B1
A2 B2

A0

BO

CNTRL

Figure 6-7

TK-8635

Task Without Co-Trees

283

OVERLAYS

Now do the tests/exercises for this module in the
Tests/Exercises book. All but the first problem are lab problems.
Check your answers against the provided solutions, either the
on-line files (under UFD [282,2] or the printed copies in the
Tests/Exercises book.

If you think that you have mastered the material, ask your
course administrator to record your progress on your Personal
Progress Plotter. You will then be ready to begin a new module.

If you think that you have not vyet mastered the material,
return to this module for further study.

285

