
Mic'ro/RSX User's
Guide
Order No. AA-Y5398-TC

Micro/RSX Version 3.0

Digital Equipment Corporation Maynard, Massachusetts

First Printing, December 1983
Revised, June 1985
The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a license and
may be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.
Copyright ©1983, 1985 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid USER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:
DEC EduSystem UNIBUS
DEC/CMS lAS VAX
DEC/MMS MASSBUS V AXcluster
DECnet MicroPDP-11 VMS
DECsystem-10 Micro/RSX VT
DECSYSTEM-20 PDP
DECUS PDT
DECwriter RSTS tDDrnDDElD
DIBOL RSX

ZK-2544

This document was prepared using an in-house documentation production system. All page composition
and make-up was performed by TE", the typesetting system developed by Donald E. Knuth at Stanford
University. TE" is a registered trademark of the American Mathematical Society.

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico call 800-258-1710

In New Hampshire. Alaska. and Hawaii call 603-884-6660

In Canada call 613-234-7726 (Ottawa-Hull)
800-267-6215 (all other Canadian)

DIRECT MAIL ORDERS (USA & PUERTO RICO)"

Digital Equipment Corporation
PO. Box CS2008
Nashua. New Hampshire 03061

• Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

DIRECT MAIL ORDERS (CANADA)

Digital Equipment of Canada Ltd.
100 Herzberg Road
Kanata, Ontario K2K 2A6
Attn: Direct Order Desk

DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation
PSG BUSiness Manager
clo Digital's local subsidiary or
approved distributor

Internal orders should be placed through the Software Distribution Center (SDC). Digital Equipment
Corporation, Northboro, Massachusetts 01532

Contents Volume 1

Preface xvii

Summary of Technical Changes xxiii

Chapter 1 Welcome to Micro/RSX

1.1 What's It For? 1-2
1.1.1 The Real-Time Control Environment. 1-2
1.1.2 The Applications Environment 1-2
1.1.3 The General Purpose Timesharing Environment 1-3
1.1.4 The Purpose of the Operating System 1-3

1.2 How the User's Guide is Organized 1-5

Chapter 2 How to Use DCl

2.1 Micro/RSX and DCL: Basic Concepts 2-2
2.2 DCL Command Descriptions 2-2

2.2.1 System Programmer Commands 2-3
2.3 The DCL Command Line 2-3

2.3.1 Prompting 2-4
2.3.2 Qualifiers 2-4
2.3.3 HELP 2-6
2.3.4 Abbreviations 2-8
2.3.5 Numbers and Dates 2-10

iii

2.3.6 Multiple Parameters .. ' 2-10
2.3.7 Underscore Character 2-11
2.3.8 Colon and Equal Sign . 2-11
2.3.9 Quoting Strings 2-11
2.3.10 DECnet and DCL 2-12

2.3.10.1 SET HOST 2-13
2.3.10.2 SHOW HOST 2-14

2.3.11 Command Line Continuation 2-15
2.3.12 Comments in Command Lines 2-15
2.3.13 Errors 2-16

2.4 Using the Queue Manager: PRINT and BATCH Jobs 2-17
2.5 Indirect Command Files in DCL 2-18

Chapter 3 Using Your Terminal

3.1 Logging In and Logging Out 3-3
3.1.1 LOGIN 3-4
3.1.2 LOGOUT 3-9

3.2 The Keyboard 3-10
3.2.1 RETURN and Command Line Length 3-11
3.2.2 Line Terminators 3-12
3.2.3 DELETE Versus BACK SPACE 3-12
3.2.4 CAPS LOCK and SHIFT 3-13
3.2.5 NO SCROLL or HOLD SCREEN 3-13
3.2.6 Other Keys . 3-13

3.3 The Keypad 3-14
3.4 The CTRL Key and Control Characters 3-15

3.4.1 CTRL/C 3-15
3.4.2 CTRL/O 3-16
3.4.3 CTRL/Z 3-16
3.4.4 CTRL/U . 3-17
3.4.5 CTRL/G. 3-17

3.5 HELP 3-18
3.6 BROADCAST.................................. 3-21
3.7 SET and SHOW TERMINAL 3-25

3.7.1 SET TERMINAL 3-26

iv

3.7.2 SHOW TERMINAL 3-27

Chapter 4 EDT

4.1 Introduction to the EDT Editor . 4-1
4.1.1 Starting an Editing Session . 4-3
4.1.2 Choosing an Editing Mode . 4-3

4.1.2.1 Keypad Mode 4-3
4.1.2.2 line Mode . 4-4
4.1.2.3 Nokeypad Mode . 4-7

4.1.3 Moving Among Editing Modes 4-8
4.1.4 Getting Help from EDT 4-9
4.1.5 Ending an Editing Session 4-10
4.1.6 Recovering from a Lost Editing Session 4-11

4.2 Using EDT Buffers . 4-12
4.2.1 EDT'S Permanent Buffers 4-13

4.3 Using Keypad Mode . 4-13
4.3.1 Using the GOLD Key 4-14
4.3.2 Moving the Cursor 4-14
4.3.3 Inserting Text 4-17
4.3.4 Deleting and Undeleting Text 4-17
4.3.5 Locating Text 4-20
4.3.6 Moving Text . 4-22
4.3.7 Substituting Text 4-24
4.3.8 Five More Keys to Use with the GOLD Key 4-26

4.4 How to Use line Mode 4-27
4.4.1 Line Numbers and Ranges 4-27

4.5 Advanced Editing Features 4-30
4.5.1 Defining Macros 4-31
4.5.2 Defining Key Functions 4-33
4.5.3 Creating a Personal Editing Environment. 4-36

4.5.3.1 Using SET Commands 4-37
4.5.3.2 Using SHOW Commands to See What is Set. 4-38
4.5.3.3 Startup Command Files 4-39
4.5.3.4 Using Indirect Command Files with EDT 4-42

4.5.4 Structured Tabs 4-43

v

4.5.5 More on EDT Buffers 4-44
4.5.5.1 How To Create and Move Between Buffers 4-44
4.5.5.2 How To Copy Text from a File into a Buffer 4-46
4.5.5.3 How To Copy Text from One Buffer to Another

Buffer .. 4-46
4.5.5.4 How To Copy Text from a Buffer to a File 4-48
4.5.5.5 Ways to Use Buffers 4-48

4.6 EDT Summary. 4-50
4.6.1 Range Specifications . 4-50
4.6.2 Editor Control Commands . 4-54
4.6.3 Line-Mode Editing Commands 4-60
4.6.4 Editing Entities 4-63
4.6.5 Keypad Commands. 4-65
4.6.6 Nokeypad Commands 4-70

4.7 EDIT Command 4-74

Chapter 5 Files on Micro/RSX Systems

5.1 File Ownership and Location 5-2
5.2 File Specification 5-3
5.3 Defaults in File Specifications 5-5
5.4 Wildcards in File Specifications 5-8
5.5 Date-Related Qualifiers 5-11
5.6 Protection 5-12

5.6.1 File Protection 5-12
5.6.2 Directory Protection 5-16
5.6.3 Volume Protection 5-17

5.7 Creating Directories and Sequential Files 5-18
5.7.1 CREATE 5-18
5.7.2 CREATE/DIRECTORY 5-20

5.8 Maintaining a Directory 5-23
5.8.1 DIRECTORY 5-23
5.8.2 DELETE . 5-32
5.8.3 PURGE 5-35
5.8.4 COPY 5-37
5.8.5 RENAME 5-40

vi

5.9 More File-Related Commands 5-42
5.9.1 TYPE 5-42
5.9.2 PRINT 5-44
5.9.3 Queue Manager Commands 5-53

5.9.3.1 DELETE/ENTRy 5-55
5.9.3.2 SHOW QUEUE and SHOW PROCESSOR 5-56
5.9.3.3 SHOW QUEUE 5-56
5.9.3.4 SHOW PROCESSOR 5-59
5.9.3.5 SET QUEUE 5-60
5.9.3.6 STOP/ABORT 5-62
5.9.3.7 HOLD/ENTRY and RELEASE/ENTRY 5-63

5.9.4 UNLOCK 5-64
5.10 SET and SHOW 5-65

5.10.1 SET DEFAULT 5-66
5.10.2 SHOW DEFAULT 5-68
5.10.3 SET UIC 5-68
5.10.4 SHOW UIC 5-70
5.10.5 SET PROTECTION 5-71
5.10.6 SET PROTECTION/[NO]DEFAULT 5-74
5.10.7 SHOW PROTECTION 5-77

Chapter 6 Devices and Volumes

6.1 Devices on Micro/RSX Systems 6-2
6.1.1 Physical Devices, Pseudo Devices, LUNs, and Logical

Names 6-4
6.1.2 Summary of Device and Volume Use Commands 6-4

6.2 MOUNT 6-5
6.3 DISMOUNT................................... 6-14
6.4 INITIALIZE . 6-18
6.5 SET and SHOW 6-24

6.5.1 SHOW DEVICES 6-24

vii

Chapter 7 Running Tasks

7.1 Two Kinds of RUN Command 7-2
7.1.1 RUN Command for Task Image Files 7-2
7.1.2 RUN Command for Installed Tasks 7-5

7.2 ABORT 7-6
7.3 INSTALL 7-8
7.4 REMOVE 7-10
7.5 SET and SHOW 7-12

7.5.1 SHOW TASKS 7-12
7.5.1.1 SHOW TASKS/ACTIVE 7-12
7.5.1.2 SHOW TASKS/INSTALLED 7-13

7.5.2 SET PRIORITY 7-14

Chapter 8 Preparing a User Batch Job

8.1 How a User Batch Job Works 8-1
8.2 How to Prepare a User Batch Job 8-2

8.2.1 The Batch Command line . 8-3
8.2.1.1 Comments............................ 8-3
8.2.1.2 Continuation Lines 8-4
8.2.1.3 Indirect Command Files 8-4

8.3 Batch-Specific Command Descriptions 8-5
8.3.1 Login and Logout Commands 8-5
8.3.2 Data Commands 8-7
8.3.3 Sequence Control Commands 8-10

8.4 Allocating Devices and Mounting Volumes from Batch Jobs 8-15
8.5 SUBMIT 8-17
8.6 Queuing Jobs 8-22

8.6.1 How to Use the Queue Manager for Batch Jobs 8-22
8.6.2 DELETE . 8-24
8.6.3 SHOW QUEUE and SHOW PROCESSOR 8-25

8.6.3.1 SHOW QUEUE. 8-25
8.6.3.2 SHOW PROCESSOR 8-27

8.6.4 SET QUEUE . 8-28

viii

8.6.5 Holding and Releasing Jobs 8-30
8.6.5.1 HOLD 8-31
8.6.5.2 RELEASE............................ 8-31

8.7 The Batch Log File 8-32
8.8 Error Messages 8-35

8.8.1 Error Messages in Batch Logs 8-35
8.8.2 Error Messages to the Operator's Console 8-37

Chapter 9 The Indirect Command Processor

9.1 Indirect Command Files . 9-1
9.2 The Indirect Command Processor. 9-3
9.3 Summary of Indirect Directives 9-6
9.4 Symbols 9-10

9.4.1 Special Symbols 9-11
9.4.1.1 Special Logical Symbols 9-11
9.4.1.2 Special Numeric Symbols 9-14
9.4.1.3 Special String Symbols 9-25

9.4.2 Numeric Symbols and Expressions 9-32
9.4.3 String Symbols, Substrings, and Expressions 9-35
9.4.4 Reserved Symbols 9-36
9.4.5 Symbol Value Substitution 9-36

9.4.5.1 Substitution Format Control 9-38
9.5 Switches...................................... 9-40
9.6 Description of Indirect Directives 9-43

9.6.1 Define a Label (.label) 9-44
9.6.2 Ask a Question and Wait for a Reply (.ASK) 9-45
9.6.3 Ask for Definition of a Numeric Symbol (.ASKN) 9-47
9.6.4 Ask for Definition of a String Symbol (.ASKS) 9-50
9.6.5 Begin Block (.BEGIN) 9-51
9.6.6 Continue Processing Using Another File (.CHAIN) 9-52
9.6.7 Close Secondary File (.CLOSE) 9-53
9.6.8 Output Data to Secondary File (.DATA) 9-53
9.6.9 Decrement Numeric Symbol (.DEC) 9-55
9.6.10 Delay Execution for a Specified Period of Time (.DELAY) 9-55
9.6.11 Disable Option (.DISABLE) 9-56

ix

9.6.12 Enable Option (.ENABLE) 9-57
9.6.13 End Block (.END) 9-62
9.6.14 Delete Symbols (.ERASE) 9-62
9.6.15 Exit Current Command File (.EXIT) 9-64
9.6.16 Call a Subroutine (.GOSUB) 9-65
9.6.17 Branch to a Label (.GOTO) 9-66
9.6.18 Logical Test (.IF) 9-66

9.6.18.1 Test if Symbol Meets Specified Condition (.IF) 9-67
9.6.18.2 Test if Task is Active or Dormant (.IFACTj.IFNACT) 9-68
9.6.18.3 Test if Symbol is Defined or Not Defined

(.IFDF jIFNDF) .. 9-69
9.6.18.4 Test if Task is Installed or Not Installed

(.IFINSj.IFNINS) 9-70
9.6.18.5 Test if Mode is Enabled or Disabled

(.IFENABLEDj.IFDISABLED) 9-70
9.6.18.6 Test if Driver is Loaded or Not Loaded

(.IFLOAj.IFNLOA) .. 9-71
9.6.18.7 Test if Symbol is True or False (.IFTj.IFF) 9-72
9.6.18.8 Compound Tests 9-73

9.6.19 Increment Numeric Symbol (.INC) 9-73
9.6.20 Define Logical End-of-File (j) 9-74
9.6.21 Branch to Label on Detecting an Error (.ONERR) 9-74
9.6.22 Open Secondary File (.OPEN) 9-76
9.6.23 Open Secondary File for Append (.OPENA) 9-77
9.6.24 Open File for Reading (.OPENR) 9-79
9.6.25 Parse Strings into Substrings (.PARSE) 9-80
9.6.26 Pause for Operator Action (.PAUSE) 9-82
9.6.27 Read Next Record (.READ) 9-83
9.6.28 Return from a Subroutine (.RETURN) 9-84
9.6.29 Set Symbol to True or False (.SETTj.SETFj.SETL) 9-84
9.6.30 Set Symbol to Numeric Value (.SETN) 9-85
9.6.31 Set Symbol to Octal or Decimal (.SETOj.SETD) 9-86
9.6.32 Set Symbol to String Value (.SETS) 9-86
9.6.33 Terminate Command File Processing (.sTOP) 9-88
9.6.34 Test Symbol (.TEST) 9-88
9.6.35 Test Device (.TESTDEVICE) 9-90
9.6.36 Test a File (.TESTFILE) 9-92

.r

9.6.37 Test a Partition (.TESTPARTITION) 9-94
9.6.38 Translate a Logical Name Assignment (.TRANSLATE) .. 9-95
9.6.39 Wait for a Task to Finish Execution (.WAIT) 9-95
9.6.40 Initiate Parallel Task Execution (.XQT) 9-96

9.7 Examples 9-97
9.7.1 Invoking Indirect Interactively and Displaying Symbols . 9-97
9.7.2 Using an Indirect Command File 9-97
9.7.3 Asking for a Device Specification 9-98
9.7.4 Asking for the Type and Unit Number of the Terminal . 9-99
9.7.5 Initializing and Mounting a Volume, and Copying Files to That

Volume 9-101
9.7.6 Editing, Purging, Printing, and Formatting Files 9-103

9.8 Indirect Messages 9-105
9.8.1 Information-Only Messages 9-105
9.8.2 Error Messages 9-106

Chapter 10 Quick Reference

ABORT 10-2
ALLOCATE 10-2
ANALYZE/CRASH-DUMP 10-3
ANALYZE/ERROR-LOG 10-4
ANALYZE/MEDIA. 10-5
APPEND . 10-6
APPEND/ERROR-LOG 10-7
ASSIGN. 10-7
ASSIGN/QUEUE . 10-7
ASSIGN/REDIRECT. 10-8
ASSIGN/TASK . 10-8
BACKUP 10-8
BROADCAST 10-10
CANCEL .. 10-10
CONTINUE 10-11
CONVERT 10-11
COPY 10-12
CREATE 10-13

xi

CREATE/CFL 10-13
CREATE/DIRECTORY 10-13
DEALLOCATE 10-14
DEASSIGN 10-14
DEASSIGN/QUEUE. .. 10-14
DEFINE .. 10-15
DELETE. .. 10-15
DELETE/DIRECTORY. .. 10-16
DELETE/ENTRY .. 10-16
DELETE/JOB. .. 10-16
DELETE/processortype .. 10-16
DELETE/QUEUE 10-17
DIRECTORY 10-17
DISMOUNT .. 10-18
EDIT[/EDT] 10-19
FIX .. 10-19
HELP 10-19
HOLD/ENTRY 10-20
HOLD/JOB. .. 10-20
INITIALIZE. .. 10-20
INITIALIZE/processortype (Input) 10-21
INITIALIZE/processortype (Output) 10-22
INITIALIZE/QUEUE 10-23
INITIALIZE/UPDATE 10-23
INSTALL .. 10-24
LIBRARY 10-24
LIBRARY /COMPRESS 10-25
LIBRARY/CREATE 10-25
LIBRARY/DELETE .. 10-26
LIBRARY/EXTRACT 10-26
LIBRARY/INSERT 10-26
LIBRARY/LIST 10-27
LIBRARY/REMOVE 10-27
LIBRARY/REPLACE .. 10-27
LINK. .. 10-28
LOGIN 10-30

xii

LOGOUT .. 10-30
MESSAGE/ERROILLOG 10-30
MOUNT. .. 10-30
PRINT. .. 10-32
PURGE 10-33
RELEASE/ENTRY 10-34
RELEASE/JOB. .. 10-34
REMOVE 10-34
RENAME .. 10-34
REQUEST .. 10-35
RUN Installed Task 10-35
RUN Uninstalled Task. .. 10-36
SET [DAY]TIME .. 10-36
SET DEFAULT 10-37
SET DEVICE. .. 10-37
SET ERROILLOG 10-38
SET FILE .. 10-38
SET HOST 10-39
SET LIBRARY/DIRECTORY .. 10-39
SET [NO]PARTITION 10-39
SET PASSWORD 10-39
SET PRIORITY 10-40
SET PROTECTION 10-40
SET PROTECTION/[NO]DEFAULT 10-40
SET QUEUE/ENTRY 10-41
SET QUEUE/JOB. .. 10-41
SET SYSTEM 10-42
SET TERMINAL. .. 10-42
SET UIC. .. 10-45
SHOW ACCOUNTING .. 10-45
SHOW ASSIGNMENTS. .. 10-46
SHOW CACHE .. 10-46
SHOW CLOCICQUEUE .. 10-46
SHOW COMMON .. 10-47
SHOW [DAY]TIME .. 10-47
SHOW DEFAULT. .. 10-47

xiii

SHOW DEVICES 10-47
SHOW ERROILLOG 10-48
SHOW HOST 10-48
SHOW LIBRARY .. 10-49
SHOW LOGICALS 10-49
SHOW PARTITIONS 10-49
SHOW PROCESSOR. .. 10-50
SHOW PROTECTION .. 10-50
SHOW QUEUE .. 10-50
SHOW SYSTEM 10-51
SHOW TASKS 10-52
SHOW TERMINAL. .. 10-52
SHOW UIC 10-54
SHOW USERS. .. 10-55
START 10-55
START/ERROILLOG 10-55
START/processortype 10-56
START/QUEUE 10-56
START/QUEUE/MANAGER 10-57
START/UNBLOCK 10-57
STOP / ABORT .. 10-57
STOP /BLOCK .. 10-57
STOP /ERROILLOG .. 10-58
STOP /processortype .. 10-58
STOP/QUEUE. .. 10-58
STOP/QUEUE/MANAGER 10-59
SUBMIT .. 10-59
TYPE 10-60
UNFIX. .. 10-60
UNLOCK .' .. 10-60

Index

xiv

Figures
3-1 VT200-Series Terminal Keyboard and Keypad 3-2
4-1 VT100-Series Keypad 4-5
4-2 VT200-Series Keypad 4-6
4-3 Three EDT Buffers Used for Deleting and Un deleting Text 4-18
4-4 Two EDT Buffers Used for Substituting Text 4-24
5-1 File Organization on a Volume 5-2
5-2 Job Flag Page . 5-49
5-3 File Flag Page . 5-50

Tables
4-1 Moving Between Editing Modes 4-8
4-2 Ending an EDT Session 4-11
4-3 Moving the Cursor in Keypad Mode 4-14
4-4 Deleting Text in Keypad Mode 4-18
4-5 Five Gold Key Functions in Keypad Mode 4-26
4-6 Ranges for Line Mode 4-28
4-7 Symbols and Words Used in Line Mode 4-29
4-8 SET and SHOW Commands For Line Mode 4-38
4-9 Key Definitions for EDT 4-41
4-11 Range Specification 4-51
4-12 Editing Entities 4-64
4-13 Keypad Commands 4-66
4-14 Keyboard Commands . 4-70
4-15 Commands for Format 1 4-71
4-16 Commands for Format 2 4-72
4-17 Commands for Format 3 . 4-74
5-1 File Types 5-6
6-1 Devices on Micro/RSX Systems 6-2

xv

Preface

Manual Objectives
The Micro/RSX User's Guide provides information needed to do work
on a Micro/RSX system. Important system concepts are introduced and
explained, including how to use the DIGITAL Command language (DCl)
to communicate with the system. DCl is based on English words and is
designed for ease in issuing commands to the system. The manual also
gives instruction in using the EDT editor and many other useful system
facilities.

Int'ended Audience
This manual is intended for any user of a Micro/RSX system. The manual
is a reference manual with many tutorial elements, but new users should
read the Introduction to Micro/RSX first.

Associated Manuals
If you are entirely new to computers, or to DCl, or to the RSX family
of operating systems, you should read the Introduction to Micro/RSX and
follow its instructions before proceeding to the User's Guide.

If you will be managing the Micro/RSX system, you should see the
Micro/RSX System Manager's Guide.

Other manuals related to Micro/RSX are described in the book Programming
on Micro/RSX. You should read this book even if you are not planning to
do any programming, in order to learn more about how the system works
and what other information is available.

xvii

Structure of This Manual
The Micro/RSX User's Guide is in two volumes. In general, Volume 1
should cover any questions that come up in your day-to-day use of the
computer system. Volume 2 includes reference information on all parts of
the operating system and is considerably more detailed. In many cases,
Volume 2 duplicates information that appears in simpler form in Volume
1. The manual is organized around the major operating system functions.

Chapters 1 through 10 are in Volume 1 of the Users's Guide.
Chapter 1 Welcome to Micro/RSX, is a general introduction to

Micro/RSX.

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

How to Use DCL, introduces the basic concepts of DCL
and includes many hints on using DCL.

Using Your Terminal, covers terminal operations, includ­
ing logging in and logging out, keyboard terminology
and functions, setting and displaying important terminal
attributes, broadcasting messages, and using the system
HELP commands.

EDT, documents EDT, the standard DIGITAL editor.

Files on Micro/RSX Systems, introduces file handling
operations, including commands that create and delete
files, list directories, and rename, copy, type, and print
files. Wildcards and defaults are explained.

Devices and Volumes, covers common peripheral devices
and introduces the system I/O (input/output) terminology.
The chapter describes commands affecting devices and
software volumes.

Running Tasks, explains how tasks run in the system. In
addition, the chapter describes commands to abort tasks
and to display information about tasks in the system.

Batch Processing, explains how to prepare and submit a
batch job. With batch processing, you can schedule less
urgent work, or work that uses lots of computer resources,
for some later time when the system is not being heavily
used. You need not be present to do batch processing.

xviii

Chapter 9 Indirect Command Processor, explains how to prepare and
execute indirect command files. With Indirect, you can
expedite the entry of a complex sequence and preserve it
in an indirect command file; you can execute the sequence
of commands any time you like.

Chapter 10 Quick Reference, is the alphabetical listing of all DCL
commands and their formats, including comments to
remind you of specific points about many commands and
command elements. Each entry in Chapter 10 includes a
cross-reference to the full command description elsewhere.

Chapters 11 through 16 are in Volume 2 of the User's Guide.
Chapter 11 More About Using Your Terminal, provides additional

information on terminal operations, including logging in
and logging out, keyboard terminology and functions,
setting and displaying terminal attributes, broadcasting
messages, using the system HELP commands, and writing
a help file.

Chapter 12

Chapter 13

Chapter 14

Chapter 15

More About Files on Micro/RSX Systems, goes into more
detail about commands that list directories and that create,
delete, rename, copy, type, and print files. Wildcards and
defaults are explained.

More About Devices and Volumes, discusses peripheral
devices and explains the system I/O terminology. The
chapter explains the relationship between hardware devices
and the software file system, and describes how to prepare
scratch disks and magnetic tapes for use on the system.
Commands affecting devices and software volumes are also
described.

LINK and LIBRARY Commands, is for programmers. It
documents the program development facilities included on
the Micro/RSX Base Kit. The chapter briefly explains the
RSX Task Builder and the LIBRARY command, which is
used to maintain libraries.

More About Running Tasks, explains how tasks run in
the system, and how they are named, installed, fixed in
memory, and controlled while running. In addition, the
chapter describes commands that abort tasks, place tasks
in the clock queue, and display information about tasks in
the system.

xix

Chapter 16 Common Error Messages, explains error messages common
to several DCL commands. Other command-specific error
messages are explained in the full command descriptions.

Conventions Used in This Manual
A number of conventions are used in the command descriptions in this
manual:

Convention

[/ qualifier]

[g,m]

[directory]

VPPERCASE

Meaning

The vertical ellipsis shows where elements of command
input have been omitted because they are irrelevant to
the point being discussed.

Any command field enclosed in brackets is optional. If
the brackets include syntactical elements, such as dots
(.) or slashes (/), those elements are required for the
field. If the field appears in lowercase, you are to
substitute a legal command element if you include the
field.

This signifies a Vser Identification Code (VIC). The g is
a group number and the m is a member number. Where
a VIC is required, only one set of brackets is shown, as
[g,m]. Where the VIC is optional, two sets of brackets
are shown, as [[g,m]]. The VIC identifies a user and is
used mainly for controlling access to files and privileged
system function.

This signifies a directory, which is the location of files.
Most directories have 1- to 9-character names, but some
are in the same [g,m] form as the VIC. Where a directory
name is required, only one set of brackets is shown, as
[directory]. Where the directory is optional, two sets of
brackets are shown, as [[directory]].

Any command field in uppercase indicates the legal
form of the command. If you type it in that form, it
will work as described. Most DCL commands also have
abbreviations.

xx

Convention

lowercase

/qualifier

parameter

: argument

filespec

red ink

Meaning

Any command field in lowercase is to be substituted
for. Usually the lowercase word identifies the kind of
substitution expected, such as filespec, which indicates
that you should fill in a file specification .

. Any command element preceded by a slash (/) is a
DCL qualifier. Command qualifiers alter the action of
a command they are attached to. Parameter qualifiers
modify the action of the command as it affects that
parameter.

Required command fields are generally called param­
eters. The most common parameters are file specifi­
cations. Parameters are preceded by blanks or DCL
prompts.

Some parameters and qualifiers can be altered by the
inclusion of arguments preceded by a colon. An argu­
ment can be either numerical (COPIES:3) or alphabeti­
cal (NAME:QIX). The equals sign (=) can be substituted
for the colon to introduce arguments. COPIE5=3 and
COPIES:3 are the same.

A full file specification includes device, directory, file
name, file type, and version number, as in the following
example:
DB1:[COTTONTAL]HIPPITY.HOP;2

Full file specificationss are rarely needed. If you do not
give a version number, the highest numbered version
will be used. If you do not give a directory, the default
directory will be used. Some system functions default to
particular file types. See Chapter 5 for more information
on file specifications. See also the individual command
descriptions.
Some commands accept a filespec with a DECnet node
name. See Chapter 2 for more information.

All user input in examples is printed in red ink to
distinguish it from system output. That is, what you
type is shown in red.

xxi

Convention

{A I B}

GOLD aaa

Meaning

A rectangular symbol with a 2- to 6-character abbrevi­
ation indicates that you are to press the corresponding
key on your terminal. For example, @IT] indicates that
you are to press the RETURN key, and IDELI means that
you are to press the DELETE key.

A number of options between braces and separated by
vertical bars means that you are to choose one from the
options listed.

The rectangular symbol I CTRL/a I means that you are to
press ,he ~eG marked CTRL while pressing another key.
Thus, CTRL Z indicates that you are to press the CTRL key
and the Z key together in this fashion. I CTRL/Z I is echoed
on your terminal as AZ. Not all control characters echo.
See Chapter 3 for more information.

In Chapter 4, EDT, the word GOLD followed by other
key names means press the keys in that order.

See Chapter 2 for more information on DCL conventions.

xxii

Summary of Technical Changes

New Commands and Qualifiers
The following table lists the new commands and qualifiers to DCL.

ASSIGN[/ quallfter[s]]
/GROUP:[g]
/FINAL

New qualifiers.

COPY[/ quallfter[s]]
/ ALLOCATlON:n[.]

New qualifier.

DEASSIGN[! quallfter[s]]
/GROUP[:g]

New qualifier.
DELETE/DIRECTORY

New command. Deletes a directory on a Files-II volume and removes
its name from the volume's Master File Directory (MFD).

xxiii

INITIALlZE[j quallfler[s]]
/BAD_BLOCKS:arg

NOAUTOMATIC
(AUTOMATIC ,MANUAL)
(OVERRIDE ,MANUAL)

/DENSITY:arg
HIGH
LOW

New qualifiers.

INST ALL[j quallfler[s]]
/ [NO]RESIDENT _HEADER
/[NO]WRITE_BACK

New qualifiers.

LlNK[jqualifler[s]]
/CODE:(arg[s])

CLI
FAST_MAP

/[NO]PRINT

New qualifiers.

MOUNT[j quallfler[s]]
/PROCESSOR:arg

UNIQUE
/OVERRIDE:arg

IDENTIFICATION

New arguments to existing qualifiers.

SET HOST

New command. Connects your terminal to another system.

SET PASSWORD

New command. Allows nonprivileged users to change their passwords.

SET PROTECTION[j qualifier]
/[NO]DEFAULT

New qualifier.

xxiv

SET TERMINAL[/ quallfter[s]]
/INQUIRE
/DTCOl
/LA210
/LN03
/LQP02
/LQP03
/PRO_SERiES
/[NO]HOSTSYNC
/PRINTEILPORT
/[NO]TTSYNC

New qualifiers.

SHOW ASSIGNMENTS[! quallfter[s]]
/GROUP[:g]
/TERMINAL:ttnn:

New qualifiers.

SHOW HOST

Displays the name of the processor to which your terminal is currently
connected.

SHOW PROTECTION

New command. Displays your personal default file protection code.

SHOW TASKS[:taskname]/ quallfter[s]
/DEVICE:ddnn:

New qualifier.

SHOW TERMINAL[:ttnn][/ qua lifter]
/[NO]DTCOl
/[NO]LA210
/[NO]LN03
/[NO]LQP02
/[NO]LQP03
/[NO]PRO_SERIES
/[NO]HOSTSYNC
/PRINTEILPORT
/[NO]TTSYNC

New qualifiers.

xxv

New Device Support
The following table lists the new devices supported by Micro/RSX:
New terminal types:

DTCOl LA2l0

LN03 LQP02

LQP03 PRO_Series

New disk device:

RA60 RA80

RA8l RC25

RD52 RD53

New magnetic tape devices:

TK25 TK50

xxvi

Chapter 1
Welcome to Micro/RSX

Micro/RSX is an operating system. The operating system is the fundamental
software for a computer. Operating systems make it possible for all other
programs to run on a computer.

The Micro/RSX Operating System is the latest member of the RSX family of
operating systems. The MicroPDP-ll is a member of the PDP-II family
of computers. RSX operating systems run on all PDP-II computers. VAX-
11 RSX provides the RSX environment on VAX/VMS systems. This means
that the same program can run under RSX on a wide variety of DIGITAL
minicomputers and microcomputers, large and small. RSX systems allow
several users and their programs, or tasks as they are called on RSX
systems, to use the computer both independently and cooperatively.

Micro/RSX was designed to provide the capabilities of RSX systems on the
MicroPDP-ll computer. In general, you'll find that Micro/RSX is very
close to the RSX-IIM-PLUS system in its behavior.

Micro/RSX is a real-time system. Real-time systems respond rapidly to
input from users and to input from tasks.

Micro/RSX systems are multiuser systems. More than one user can have
access to the system at any time without interfering with each other.

This combination, a real-time, multiuser system, allows the most rapid
possible response for a variety of users. One important real-time feature is
the ability to assign priority to different tasks. A task with a high priority
can move a lower priority task out of the way temporarily in order to
respond to the more urgent need.

Welcome to Micro/RSX 1-1

All RSX systems feature DeL, the DIGITAL Command Language. DCL is
based on English words and is designed for easy use. As you become more
experienced, you can use DCL abbreviations to save yourself typing effort.
DeL is used on many DIGITAL operating systems, including VAX/VMS.
See Chapter 2 for more information on DCL.

1 . 1 What' 5 It For?
You wouldn't have either a MicroPDP-ll or a Micro/RSX system unless
you had some application for which you need a computer. Typically,
commercial and industrial data-processing applications fall into three
categories: real-time control, applications processing, and general purpose
time-sharing. Micro/RSX can handle all three types.

1. 1. 1 The Real-Time Control Environment
In the real-time control environment, the principal function of the operating
system is to handle rapid data movement with little human interaction.

Typical examples of such environments are steel rolling mills, oil refineries,
and communications switching centers. When certain conditions are met­
a thickness, a temperature, a delay-the system must respond rapidly­
closing a valve, slowing a motor, throwing a switch.

The operating system, naturally, does not know about steel rails or long
distance calls or gasoline. The principal function of the system in a real­
time control environment is to receive, verify, reply to, and move data
messages rapidly and without error.

1. 1.2 The Applications Environment

In the applications environment, Micro/RSX is used for running tasks.
These tasks can be office automation, communications systems, education
programs, games, you name it. Sometimes these applications are available
as tasks that you simply run with the DCL RUN command, but often
terminal users have no direct contact with the operating system at all. All
they see is the application. Terminal users communicate directly with the
task rather than with the operating system. They may not even log in.
Terminal users enter data, for processing by the applications task. The
task itself opens and closes files, updating and altering information as it is
entered.

1-2 Welcome to Micro/RSX

In the applications environment, the greatest part of the system's resources
is given over to continuous, high-volume data handling. Again, rapid,
error-free handling of data messages is the principal function of the system,
but instead of controlling a process, the messages update a data base under
the control of an applications task.

1. 1.3 The General Purpose Timesharing Environment
The general purpose time sharing environment is often a mixture of the
other two environments with the addition of program development and
testing as important activities. Terminal use is heavy in this kind of
environment. There may be several users at one time, but usually they are
thinking, looking up commands, or otherwise between keystrokes most of
the time. Micro/RSX can get a lot accomplished between keystrokes.

In the general purpose time sharing environment, the system's interactive
facilities are heavily used. These include DCL, EDT, and other tools.
Many of the program development tools of the RSX family are part of
the Micro/RSX Advanced Programmer's Kit, which is available separately.
Also available separately are a number of programming languages and
other products for programmers. Micro/RSX systems are often used to
develop programs to be run on another system. These programs might
be for real-time control or applications tasks. On the other hand, the
programs may perform special computations, such as modeling, statistical
analysis, or forecastirig, that are intended to be run on the same system
they were developed on.

Micro/RSX can be used in any combination of these three environments.
If you want to understand your Micro/RSX system fully, you'll want to
understand any applications that use the system in your installation.

1. 1.4 The Purpose of the Operating System

The purpose of the operating system is to make the computer hardware
easier to use.

The Executive controls the operating system. The Executive is a
set of routines that coordinate all activities in the system, including
supervision of input and output, allocation of resources, task execution,
and communications.

Welcome to Micro/RSX 1-3

The operating system manages the hardware and software resources of
your system. This management requires that the operating system do four
things:

1. Keep track of all resources

2. Enforce a policy on who gets what resources, when, and to what
extent

3. Allocate the resources according to system policies

4. Reclaim the resources when they are no longer needed

There are four basic resources under the control of the operating system:

1. Memory, the system's workspace, where active tasks, active data, and
the Executive itself are located

2. Central Processing Unit, or CPU, the part of the computer that executes
instructions or computes

3. Peripheral devices, including terminals and disks, the line printer, if
any, and any other hardware attached to the system

4. Stored information, the file system, the organization of files into
directories and directories into volumes

Each task has different resource requirements. Involved scientific and
statistical calculations, often called unumber-crunchers, n need a great deal
of CPU time and memory, but make few demands on the system's devices
or file system. Conversely, printing a long file can tie up a line printer for
hours while using little memory and only a few seconds of CPU time.

In general, because there is an operating system, individual users don't
need to concern themselves about such matters.

System managers need to be aware of what is happening on their systems
and how to control it. See the Micro/RSX System Manager's Guide for more
information on system management.

1-4 Welcome to Micro/RSX

1.2 How the User's Guide is Organized
Because the Micro/RSX system can be used in so many different ways, it
includes a wide choice of commands, many of which have only specialized
uses. To help you tell the difference between commonly used commands
and qualifiers and rarely used specialized commands, the Micro/RSX User's
Guide is divided into two volumes. In general, Volume 1 describes the
commonly used commands and procedures. The help fiies describe aU
commands, common and uncommon, and Chapter 10, Quick Reference,
in Volume 1 also lists them all.

You will probably find that you use most of the common commands and
a few of the uncommon ones. The wide choice of commands, although
it may be confusing at first, gives you (and your system manager) a great
deal of control over how the operating system does things. Often, you
may not understand the purpose of a command or qualifier until you run
into a situation where you need it.

Most users will be able to do most of their work successfully using Volume
1 only.

You should read over Chapters 1 through 6 in Volume 1 of the Micro/RSX
User's Guide so that you will be familiar with the material if you ever
need it. If you have questions about the material, you'll probably find the
answers in the parallel, but more detailed, chapters in Volume 2. In any
case, look at the tables of contents for the Micro/RSX User's Guide volumes
and read anything that appeals to you.

If you are interested in programming, or if you are interested in what
lies beneath the surface of Micro/RSX, you should read the separate book
Programming on Micro/RSX. Among other things, this book describes the
other Micro/RSX and RSX documentation that is available separately and
as part of the Micro/RSX Advanced Programmer's Kit.

The Micro/RSX Advanced Programmer's Kit includes both documentation
and some additional software.

Welcome to Micro/RSX 1-5

Chapter 2
How to Use DCL

DCL is the DIGITAL Command Language. DCL gives users an extensive
set of commands for dealing with the operating system. DCL commands
provide for interactive program development, device and file manipulation,
and interactive program execution and control.

If you are new to computers, or if you wish a quick review of DCL
and the operating system, you should read the Introduction to Micro/RSX.
This book includes a guided tour of the operating system, including an
interactive terminal session that introduces all of the most commonly used
DCL commands.

DCL commands are full words that describe the action to be taken, not
abbreviations or mnemonics. Thus, if you wish to set a terminal to lower­
case, you type SET TERMINAL/LOWERCASE. Because DCL commands
and command elements are full words, they are self-documenting.

You are not required to use the full form of DCL commands at the terminal,
however. Usually, you need type only the command elements required to
form a unique command. For instance, the abbreviation SET TERM/LOW
will also set a terminal to lowercase, but SET TERM/LO will not work
because there is also a command SET TERMINAL/LOCAL. See Section 2.3
for more information on how DCL commands are parsed.

This chapter introduces the rules of DCL. The examples are intended to
illustrate these rules, not to illustrate the full capabilities of the command.
For more detail, see the individual command descriptions.

How to Use DeL 2-1

2. 1 Micro/RSX and DCl: Basic Concepts
Commands in DCL are English or English-like words and follow well­
defined syntax rules. Full commands are self-documenting. DCL is
designed for consistency and ease of use.

DCL is the command language used on many DIGITAL operating systems.
In particular, Micro/RSX DCL is designed for compatibility with future
releases of RSX-11M-PLUS and VAX/VMS DCL.

2.2 DCl Command Descriptions
Command descriptions are found throughout both volumes of the
Micro/RSX User's Guides, where chapters are organized according to the
major functions of the operating system.

Command descriptions can have five parts:

1. A brief statement of the function of the command.

2. A full description of the format of the command, including prompts,
defaults, acceptable values for arguments, and the effects of each
qualifier.

3. Examples of the command in use. These examples often illustrate less
obvious aspects of the use of the command.

4. Notes, including warnings about side effects, counteracting commands,
recommendations for further reading, and so forth. Some command
descriptions do not have notes.

5. Error messages, including an explanation and a suggested user action for
each error. Only error messages specific to the command are included
in the command descriptions. General error messages, such as those
relating to syntax, are described in Chapter 16.

In addition, the formats of all Micro/RSX DCL commands are presented
in the alphabetical listing in Chapter 10.

Nonprivileged commands are those commands needed by all users in
everyday use of the system. Many privileged commands are also included
in DCL. Privileged commands are those commands that affect system
operations. For instance, the SHOW TIME command is a nonprivileged
command, but the SET TIME command is privileged.

2-2 How to Use DCL

2.2. 1 System Programmer Commands
Micro/RSX systems accept a few commands that are not in DCL format.
They do not prompt. They are often not English words. In general,
these commands are for the use of system programmers, not average
users. You'll find these commands described in the Micro/RSX System
Manager's Guide and in the Micro/RSX Advanced Programmer's Kit, which
is available separately.

2.3 The DCl Command line
A command consists of a command name (usually a verb) specifying the
action the system is to take. Most commands also include one or more
parameters and qualifiers to further define the action of the command.
Qualifiers are preceded by a slash (/) and parameters are preceded by
a space or prompt. Both qualifiers and parameters can take arguments.
Arguments are preceded by a colon (:), or an equals sign (=). This book
documents only the colon.

Here is an example:

• DIRECTORY/OUTPUT: UNCLE. DAT SOLO.. I RET I

In this case, the elements of the command line are as follows:

• DIRECTORY is the command name.

• OUTPUT, which is preceded by a slash (/), is a qualifier. This qualifier
indicates that you want the output from the DIRECTORY command to
go somewhere other than your terminal screen, which is the default.

• UNCLE.DAT, which is preceded by a colon (:), is the argument to the
/OUTPUT qualifier. This argument is the name of the file where you
want the output from the command to go.

• SOLO .• , which is preceded by a blank, is a parameter. This parameter
is the name of the file(s) of which you are taking a directory listing.
Most DCL parameters are file specifications, as is this one. The asterisk
(.) indicates a wildcard file type. See Section 5.4 for information on
wildcards.

Note that after you type in a command, you must pass it to the operating
system by pressing the RETURN key. See Section 2.3.11 for a discussion of
command lines that are too long to fit on one line of your terminal.

How to Use DeL 2-3

Some commands require parameters or arguments as part of the command
line. If you fail to supply a required command element, DCL prompts
you with one or two words indicating the general nature of the required
element. If you do not understand the prompt, type a question mark (?)
for help. (In some cases, an omission causes an error message rather than
a prompt.)

2.3.1 Prompting
The prompts teach you the form of a command by requesting that you
supply required command elements.

For example, the RENAME command works as follows:

• RENAME ~
Old file name? BROWNS. STL ~
New file name? ORIOLES.BLT ~

The one-line format for RENAME is as follows:

• RENAME BROWNS.STL ORIOLES.BLT ~

The formats can be mixed. DCL prompts for whatever you leave out. For
example:

• RENAME BROWNS. STL ~
New file name? ORIOLES. BLT ~

There are no defaults for prompts. You must supply a response to any
prompt. If you do not wish to continue with the command, press CTRL/Z.

2.3.2 Qualifiers
Qualifiers modify the action of the command and are generally optional.
Qualifiers always start with a slash (/).

Qualifiers are either command qualifiers or parameter qualifiers. Most
qualifiers are command qualifiers. In this manual, command qualifiers are
always shown as modifying the command name, as in this example:

• TYPE/TODAY *. HLP ~

However, most command qualifiers can appear anywhere in the command
line. They are also called IIfloating qualifiers." The following examples
illustrate how command qualifiers can float:

2-4 How to Use DeL

• TYPE *. OAT /TODA Y [Bill

or

• TYPE rnrn
File(s)? *.DAT/TODAY [Bill

or

• TYPE rnrn
File(s)? /TODAY nmJ
File(s)? *.DAT rnrn
You can mix formats and get exactly the same results, as in the following
examples:

• TYPE/TODAY [Bill
File (s)? * . OAT/EXCLUDE: ILLYA . OAT; * [Bill

or

• TYPE/TODAY rnrn
File(s)? *.DAT/ [Bill
Qualifier? EXCLUDE:ILLYA.DAT;* IRETI

or

• TYPE/TODAY [Bill
File(s)? / rnrn
Qualifier? EXCLUDE: ILLYA. OAT; * [Bill
File (s)? *. OAT rnrn
Note that you are prompted for a qualifier when a slash with no qualifier
attached appears on the command line. When you supply the qualifier,
do not type the slash again.

Almost all command qualifiers can float. In a few cases, however, the
command qualifier must appear directly after the command it modifies.
Whenever two similar commands are described separately, such as ASSIGN
and ASSIGN/REDIRECT or CREATE and CREATE/DIRECTORY, the
distinguishing qualifier cannot float. Other qualifiers to such commands
can still float, however, as in this example:

• CREATE/DIRECTORY [Bill
Device and UFO? [JENA] / ALLOCATION: 5 [Bill

which is the same as the following example:

• CREATE/DIRECTORY/ALLOCATION:5 [JENA] [Bill

How to Use DeL 2-5

Parameter qualifiers, sometimes called file specification qualifiers, cannot
float. Usually a parameter qualifier must be attached to a file specification,
because most DCL parameters are file specifications.

Many qualifiers can be negated by prefixing NO or-(minus) to the qualifier
name. Thus, the command

• DELETE/LOG *. TXT; * [Rill

deletes all files with the type . TXT and prints a list of the deletions on
your terminal, while the command

• DELETE/NOLOG *. TXT; * [Rill

or

• DELETE/-LOG *. TXT; * [Rill

simply deletes all the files without printing a list. (This action is in fact
the default behavior, but the example is given to illustrate the use of the
negative form of qualifiers.)

2.3.3 HELP
HELP is available from the system for all DCL commands and also for
many other aspects of the system. You can get help through the HELP
command or by typing a question mark (?) in response to any DCL
prompt.

For instance, if you need help on the TYPE command, type the following:

• HELP TYPE [Rill
TTPE[/qualifier[s]] filespec[s]

/DATE:dd-mmm-yy
/SINCE:dd-mmm-yy
/THROUGH:dd-mmm-yy
/SINCE:dd-mmm-yy/THROUGH:dd-mmm-yy
/TODAY
/EXCLUDE:filespec

The TYPE command displays the contents of text files on your
terminal.
To obtain help on the above qualifiers, type the following:

HELP TYPE qualifier

•
The HELP text consists of the command syntax, showing that TYPE accepts
one or more file specifications and one or more qualifiers, followed by a
brief explanation.

2-6 How to Use DeL

You can also type a HELP command naming the qualifier to get more
information on that qualifier, as in this example:

• HELP TYPE TODAY [EIT1
TYPE/TODAY filespec[s]

The /TODAY qualifier specifies that you wish the TYPE
command to type only files created today.

If you want help while being prompted by the TYPE command, use the
following procedure:

• TYPE [EIT1
File (s)? ? [EIT1

TYPE[/qualifier[s]] filespec[s]
/DATE:dd-mmm-yy
/SINCE:dd-mmm-yy
/THROUGH:dd-mmm-yy
/SINCE:dd-mmm-yy/THROUGH:dd-mmm-yy
/TODAY
/EXCLUDE:filespec

The TYPE command displays the contents of text files on your
terminal.

To obtain help on the above qualifiers, type the following:

HELP TYPE qualifier
File(s)?

The same help text is printed on your terminal, but the prompt returns,
meaning the TYPE command is still waiting for you to list the files you
want typed.

You can also get help on a specific subtopic while being prompted by a
command by responding to the prompt with a question mark (?) followed
by the subtopic. For example, after getting help on SET, you can also get
help on a specific function of SET:

• SET [EIT1
Function? ? [EIT1

The SET command establishes or changes the following:

[DAY] TIME DEFAULT DEVICE ERROR_LOG GROUPFLAGS
HOST LIBRARY [NO]PARTITION PRIORITY PROTECTION
PROTECTION/DEFAULT QUEUE SYSTEM TERMINAL

For information on the above commands, type HELP SET commandname.

How to Use DeL 2-7

To get help on a specific topic, enter a question mark followed by the topic
as follows:

Function? ? DEFAULT IRETI
SET DEFAULT [ddnn:] [directory]]

The SET DEFAULT command sets your default directory or device,
or both.

Function?

x ou can also get help by typing a question mark in response to the dollar
sign prompt ($).

If you should decide after reading the help text that you have chosen
the wrong command, enter a CTRL/Z in response to the prompt to end
the execution of the command. (A CTRL/Z pressed before entering the
command always cancels the command.)

There may also be help files providing information on special aspects of
your installation. In addition, you can create local help files for your own
use. See Chapter 3 for more information on the HELP command. For
information on how to write your own help files, see Chapter 11.

2.3.4 Abbreviations
It is rarely necessary for you to type either the complete command name or
the complete qualifier name. You only need to type the characters needed
to distinguish the command or qualifier from all others.

For example:

• TYPE can be abbreviated T because it is the only command beginning
with that character.

• INITIALIZE can be abbreviated INI, but not IN.

• INSTALL can be abbreviated INS, but not IN.

Three letters will usually be enough; four letters will always be enough.
You can often omit other parts of commands as well. You should
experiment to find how short you can abbreviate various commands. For
instance, the following command:

$ SET TERMINAL/VT100 [BITJ

2-8 How to Use DeL

is the documented format for the command that sets a terminal as a VT100.
The same command to VAX/VMS DCL does the same thing. However,
the Micro/RSX version of DCL permits you to type the following:

• SET VT100 rnm
to achieve the same result. This second form does not work on VAX/VMS
systems.

These briefer forms should be used interactively only, and not used when
you are making a permanent record or creating an indirect command file
(or batch job).

For your convenience, some frequently used commands have special brief
forms as follows:

Command Brief Form Command Brief Form

ABORT A HELP H

BROADCAST B HELP ?

COpy C LOGOUT LO

DIRECTORY D LINK L

DEALLOCATE DEAL MACRO M

DEASSIGN DEAS PRINT P

EDIT E RUN R

FORTRAN F SHOW S

TYPE T

To save time and typing, use these brief forms to replace the command
names when you are entering commands.

Note
As new commands are added in future releases, abbrevia­
tions may change.

How to Use DeL 2-9

2.3.5 Numbers and Dates
DCL recognizes both octal and decimal numbers. You usually do not have
to identify a number as octal or decimal, as DCL takes care of it. In
rare cases, the command description directs you to add a decimal point to
identify a decimal number.

DCL recognizes dates in two forms:

dd-mmm-yy as in 21-JUN-85

or

mm/dd/yy as in 06/21/85

System displays are always in the first format.

2.3.6 Multiple Parameters
Some commands permit you to enter a list of parameters instead of just
one. If you are entering a list of parameters, each parameter must be set
off by commas. For example,

$ PRINT JANE. TXT [Hill

causes a single file to be printed, while

• PRINT JANE. TXT. CHRIS. TXT. MULP.TXT [Hill

causes three files to be printed. You have the option of including spaces
on either side of the comma in lists.

If you end the list with a comma, DCL prompts you for further parameters.
For instance:

• PRINT JANE. TXT. CHRIS. TXT. [Hill
File(s)? MULP. TXT [Hill

Some commands for program development accept a list of arguments to
a single qualifier or parameter. In such cases, the list of arguments must
be enclosed in parentheses, with the elements set off by commas. For
example:

$ LINK/CODE; (PIC. FPP) HIYA mIT]

If you need to enter only a single argument, you do not need the
parentheses. For example:

• LINK/CODE: PIC HIYA [Hill

2-10 How to Use DeL

2.3.7 Underscore Character
The underscore character (_) is used to make OCL commands more
readable where two words are needed to name a single command element,
such as PRINT/FLAGJAGE. However, you need not type the underscore
to enter the command. PRINT /FLAGP AGE is the same as PRINT /FLAG_
PAGE. However, PRINT/FLAG PAGE will not work. You cannot include
a space in a command field.

2.3.8 Colon and Equal Sign
The command descriptions in this manual show arguments set off by a
colon (:), such as follows:

• PRINT/COPIES: 2 IZZY. TXT rnn:l

You can usually replace such colons with an equal sign (=), as in this
example:

• PRINT /COPIES=2 IZZY. TXT rnn:l

Colons in device names, such as OU1:, cannot be replaced by equal signs.

2.3.9 Quoting Strings
If you wish to include an exact string in a OCL command, put the string
in quotation marks. For instance, the message

• BROADCAST/ALL Rock and roll will never die ffi[D

is broadcast as

11-MAY-85 13:55 From PRINCE: :WRlTERS (TT64) to ALL
ROCK AND ROLL WILL NEVER DIE

while

• BROADCAST/ALL "Rock and roll will never die" rnfU

is broadcast as

11-MAY-85 13:56 From PRINCE: :WRlTERS (TT64) to ALL
"Rock and roll will never diel!

You need quotation marks when passing commands to tasks using the
/PARAMETERS qualifier to MOUNT or the /COMMANO qualifier to
RUN or INSTALL.

How to Use DeL 2-11

2.3.10 DECnet and DCl
Your system may include the optional DEC net networking software. If so,
you'll need the following information.

DECnet is a DIGITAL product that enables two or more systems to "talk"
to each other. These systems are linked together physically to form a
network. The purpose of a network is to allow the users on different
systems to share information and resources. See the Introduction to DECnet
for more information about this product.

Each system in a network is called a node. The system that you originally
log in to is your local node. All other systems in a network are called
remote nodes.

Some DCL commands accept DECnet node names as part of a file
specification. They are the following:
APPEND COPY CREATE DELETE

DIRECTORY RENAME TYPE

Several other DCL commands accept node names in the file specifications.
However, DECnet modifies the basic syntax of these commands. These
commands are: PRINT, SUBMIT, SET PROTECTION, and SET FILE. Be
sure to check the RSX DECnet Guide to User Utilities before attempting to
use these commands.

If the node you select is part of your network, you can simply add the
node name to the file specification in the appropriate DCL command. Note
that your terminal remains connected to your local node when you issue
these commands to a remote node.

In the following example, you issue a command to type on your terminal
the file ROMAN.TXT, which is located on remote node PRINCE and device
DB2:, in directory [PETER].

$ TYPE PRINCE: : DB2: [PETER] ROMAN. TXT IEITJ

All the usual rules about file and volume protection are maintained, of
course. See Section 5.6.

If the remote node you specify has a different style of file specification from
Micro/RSX, you must enclose the file specification in quotation marks, as
shown:

$ TYPE NEMO: : "DISK$USERDISK: [DALTON]DESPERADO_READERS.DIS" IEITJ

2-12 How to Use DCL

In addition to transmitting commands between nodes, DECnet also allows
you to connect your terminal to a remote node. See the SET HOST
command, described in the following section.

2.3.10.1 SET HOST

After you have logged in to a system, you can use the SET HOST command
to connect your terminal to a different system.

Both your current system and the remote system must run DECnet
software. In addition, you need to have an account on the remote system.
Otherwise, you will not be able to log in to the remote system after you
issue the SET HOST command.

Format
SET HOST nodename

Parameters
nodename

Specifies the name of the remote system that you want to connect your
terminal to.

A node is one system within a network of systems. The system that
you originally log in to is called a local node; all other systems in a
network are called remote nodes.

Once you have connected to the remote node, that operating system
responds with a prompt. After you log in, use commands that the remote
operating system accepts.

Type the LOGOUT command to log out of a remote node. After typing
this command, you are located on your local node.

You can only use SET HOST to connect to one remote node at a time. For
example, suppose you want information located at two different remote
nodes, KING and JUNE. You cannot connect first to remote node KING,
and then execute SET HOST again to connect to remote node JUNE. You
must first log out of KING, which relocates you on your local node, then
use SET HOST to connect to JUNE.

See the RSX DECnet Guide to User Utilities for a full explanation of this
command.

How to Use DCL 2-13

Example

• SET HOST TOOTSI ~
Connected to "TOOTSI" , System type = Micro/RSX
System 10: RSX TIMESHARING

• LOGIN ~
Account or Name: Erin ~
Password:

•
This SET HOST command connects your terminal to the remote node
TOOTSI. The remote system identifies itself, then prompts you. You log
in to the remote system, using the name and password of your account on
that system.

2.3.10.2 SHOW HOST

The SHOW HOST command displays the name of the processor to which
your terminal currently is connected. The display also shows you the name
and version number of the operating system running on the processor.

The SHOW HOST command is most useful after you have connected
your terminal to a remote system with the SET HOST command.
However, SHOW HOST works whether or not your system runs DECnet
software. Without DECnet on your system, this command simply displays
information about your local operating system.

Format
SHOW HOST

Example

• SHOW HOST ~
HOST=TOOTSI Micro/RSX V3.0 BL24

This example indicates the display from SHOW HOST. The name of
your current processor is TOOTSI, which is running Version 3.0 of the
Micro/RSX operating system.

2-14 How to Use DeL

2.3. 11 Command Line Continuation
Sometimes a command will not fit all on one line. In that case you can
continue the line by using a hyphen (-). When you end a command line
with a hyphen and a RETURN, the DCL continuation prompt (->) indicates
that you can continue entering the command line. If you are continuing a
line from a prompt, such as Task?, that prompt is the indication that the
line is being continued.

This feature permits you to enter command lines including more characters
than your terminal has room for on one line.

DCL commands are limited to 80 characters in all. When you type a
continuation line, count the hyphen and the two times you press the
RETURN key as three of the 80 characters. Of course, each blank, as well
as each punctuation mark, counts as one character.

Here is an example of line continuation:

• PRINT/COPIES:2/FLAG_PAGE/AFTER:(04-JUN-85) OZY.TXT.-@[U
->IZZY. TXT. FIZZY. TXT @[U

The command is not entered until DCL encounters a line ending with
a RETURN that is not preceded by a hyphen. In the example, the first
RETURN does not enter the command. Only the second RETURN, with no
hyphen, enters the command. The RETURN can be on a line by itself.

2.3. 12 Comments In Command Lines
You may want to include comments in command lines if you are keeping
a permanent record, such as a batch job or command file, or simply an
interactive session on a hardcopy terminal. You can include a comment in
a DCL command line by preceding it with an exclamation point (!).

If the comment ends the command line, you need only a single exclamation
point, as in this example:

• PRINT OZY. TXT ! Poem by Shelley @[U

If the comment is within the command line, you need two exclamation
points to set it off, as in this example:

• PRINT! Parody of Shelley! IZZY . TXT @[U

These comments are ignored and not interpreted in any way by DCL.

How to Use DeL 2-15

Comments can be placed at any natural break in the command line:
between qualifiers, between parameters, even as part of a response to a
prompt. Another example:

$ PRINT/FORMS:2!Letter-quality printer! IZZY.TXT ffi[U

2.3.13 Errors
You can correct typing errors or change the line completely by using the
DELETE key or CTRL/U, provided you have not terminated the line.

You can get rid of any DCL command by pressing a CTRL/Z, provided
you have not terminated the command.

If the system detects an error in the command line input, it returns the
appropriate error message at the issuing terminal.

Here are some examples of incorrect commands and the error messages
they produce:

$ PRIJT IZZY. TXT ffi[U
DeL -- Illegal command

$ PRINT/PURPLE IZZY. TXT mill
PRINT -- Illegal or contradictory qualifier
PRINT/PURPLE IZZY.TXT

$ PRINT/COPIES:TWELVE IZZY.TXT mill
PRINT -- Numeral expected
PRINT/COPIES:TWELVE IZZY.TXT

In the first case, the error was detected by DCL, as indicated by the first
part of the error message. There is no DCL PRI}T command. The entire
command was rejected.

In the second case, the command was entered correctly, but the qualifier
was incorrect. The first part of the message shows that the error was
detected within the PRINT command itself. The command is reprinted
and a circumflex C) points to the error.

In the third case, the command and the qualifier were correct, but the
argument was in error. The message explains the error and the circumflex
points to the error.

2-16 How to Use DeL

Sometimes the circumflex does not point directly at the error, but at the
point at which the command started to go wrong, which may be several
characters before or after the actual error. Typing mistakes are by far
the most common cause of errors. Retyping the command is often all
you need to do to eliminate the error. Other common causes of errors
are omitting a space or other delimiter in a command line, specifying
invalid devices or nonexistent files, issuing privileged commands from a
nonprivileged terminal, and failing to type a sufficient number of characters
to distinguish the command or command element.

The command descriptions include the most common errors produced by
the commands and suggestions for correcting the errors. All the DCL error
messages are listed and explained in Chapter 16.

2.4 Using the Queue Manager: PRINT and BATCH
Jobs

The Micro/RSX Queue Manager provides facilities for printing files on
line printers or other output devices. Files can be printed under user
control or under the control of a system task or applications task. See the
description of the PRINT command in' Chapter 5. The description includes
information on how to display and alter jobs in the print queues. A full
description of Queue Manager commands for the user is in Chapter 12.

In addition, the Queue Manager provides a batch processing facility. Batch
jobs allow you to use the system without requiring you to be present. This
means that jobs that take a long time to run, or otherwise tie up system
facilities, can be run when there are fewer demands on the system, such
as at night or on weekends.

How to write and submit a batch job is explained in Chapter 8, Batch
Processing. The chapter includes information on how to display and alter
jobs in the batch queues.

The Micro/RSX System Manager's Guide includes a complete description
of the process of setting up the Queue Manager and other commands
affecting the Queue Manager.

How to Use DeL 2-17

2.5 Indirect Command Files in DCL
In addition to batch processing, Micro/RSX provides the Indirect Command
Processor (Indirect) as a means of automatically passing commands to the
operating system. If you have a series of commands to be executed in the
same or similar fashion every time, you can include these commands in a
file to be run by Indirect.

Indirect accepts not only DCL commands, but also directives. You use
these commands and directives to program indirect command files that
control your use of the system. Indirect is described in full in Chapter 9.

2-18 How to Use DeL

Chapter 3
Using Your Terminal

The terminal is your main channel of communication with the computer
system. This chapter gives you basic information on how to use a terminal
to communicate with the Micro/RSX Operating System. For a quick
review of basic operations at a terminal, see the Introduction to Micro/RSX.
For complete details on terminal operations, see the Micro/RSX User's
Guide, Chapter 11.

The discussions in this chapter generally assuJlle you have one of two
DIGITAL terminals: the VT100- or VT200-series video terminals. If you
are using another type of terminal, check with your system manager to
make sure the information in this chapter applies. In any case, you should
read the manual shipped with your terminal to get full use of your terminal
on the system. The VT100- and VT200-series terminals have many features
that can be set either by users or by programs.

A typical terminal keyboard is shown in Figure 3-1. A keyboard is a set of
alphanumeric keys, similar to the set on a typewriter. The keypad shown
in the illustration is a set of special keys. Where pertinent, the functions
of these keys will be explained in this chapter. All terminals will have
some form of a keyboard; some terminals will not have the keypad.

Each terminal on a Micro/RSX system has a number. Your terminal
number is displayed when you log in. Your terminal number is also used
by the system to identify tasks run from your terminal.

Using Your Terminal 3-1

'0
o a.
>­
CD
~

'0
c:
o
'E
o
o
.a
>­
CD
~

C
c:
E
CD e---;
CI)

CD
a::::
CD
en

I

o
o
N
~

>
.. -I

C")

CD -:::J
0)
u::

3-2 Using Your Terminal

You can always use the pseudo device name TI: to refer to the terminal
you are currently using. You do not need a specific number. In most
cases, when a system task requires you to name an output file, you can
specify TI: and the output will be printed on your terminal.

3.1 Logging In and Logging Out
Logging in informs the system that you are using a terminal. Logging out
informs the system that you are through using the terminal.

Most terminals have an accessible on-off switch. This switch supplies
power to the terminal, but it has no bearing on whether the terminal is
logged in. If you tum the power switch off, a logged-in terminal remains
logged in.

You can test whether a terminal is turned on and available by pressing
RETURN. The RETURN key causes the dollar sign prompt ($) to appear. If
the prompt does not appear, the system may need to be rebootstrapped.
See the Micro/RSX System Manager's Guide for more information.

The SHOW DEFAULT command tells you whether the terminal is logged
in or not. If it is not logged in, the command produces an error message.
You can then log in. If the terminal is logged in, the command displays
the current default device and directory as well as other information.

It is not good practice to take over a terminal while another person is using
the terminal, as you may interfere with the other user's work. Check with
SHOW DEVICES to see if the other user has devices allocated or volumes
mounted and with SHOW TASKS/ACTIVE to see if the other user is
executing a task. If the other user has no significant activity under way,.
use your own judgment as to whether you should log the other user out,
by typing the following:

• LOGOUT rnrn
Then, after you log out the terminal, log yourself in.

If you are not sure how to log in, type HELP for help in logging in.

All Micro/RSX systems are multiuser protection systems. This means that
the system includes features such as LOGIN and LOGOUT and private
devices that enable several users to use the system without interfering with
each other's work.

Using Your Terminal 3-3

3.1.1 LOGIN

LOGIN grants access from a terminal to the system. LOGIN also establishes
certain characteristics of your terminal session. HELLO is a synonym for
LOGIN.

Format
LOG[IN]
Account or name: userid
Password: password

LOGIN userid
PASSWORD: password

LOGIN useridlpassword

Parameters
userld

Identifies the user logging in. It is easiest to log in by name. However,
this command also accepts four forms of User Identification Code
(UIC):

[g,m]
g,m
[g/m]
glm

Each user has a unique UIC, which the system manager assigns when
setting up your account. The g is your group number, and the m is
your member number.

If you log in using a comma in the UIC-for example, [303,17]-or
your name, a file called LB:[l,2]LOGIN.TXT normally prints on your
terminal. Your system manager puts information about the system and
other announcements in this file.

You can suppress LOGIN. TXT messages by using a slash (I) instead
of a comma (,) between the group and member numbers of your UIC
when you log in.

Your system manager can set up your account so that messages will
not print on your terminal when you log in or log out. If your system
manager selects this option, you will not receive LOGIN. TXT messages,
regardless of how you log in.

3-4 Using Your Terminal

password
Your password can have up to 39 characters. These can be letters,
numbers, periods (.), dollar signs ($), exclamation points (!), quotation
marks ('), or hyphens (-). When you enter your password in response
to the Password: prompt, your password will not print on the screen.
However, if you type in your password on the same line as your
name, the password does print. Your system manager establishes your
password as part of setting up your account. You may change your
password after you log in by using the SET PASSWORD command.
See Chapter 11.

Examples

S LOGIN [RIT1
Account or name : KAFKA [RIT1
Password: [RIT1
Micro/RBI V3.0 BL24 [1.54] System THEFLU
15-MAY-85 10:28

Good Morning

April 20. 1985

System Manager

** System will be down tonight from 21:00 to 24:00 **
** BACKUP TIME! **

Please purge your files!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

March 12. 1985 Sam Spade

Softball Practice Monday afternoon

S

In this example, full login text is automatically printed on the terminal
because the user logged in with a name (KAFKA). The full login text is
also printed if you log in with a UIC entered with a comma [g,m]. See
next example.

The dollar sign prompt ($) signifies the completion of logging in.

S LOGIN 303/5 [RIT1
Password: [RIT1
Micro/RSI V3.0 BL24 [1.54] System THEFLU
15-APR-85 10:28

Using Your Terminal 3-5

Good Morning

March 20, 1985 System Manager:

** System will be down tonight from 21:00 to 24:00 **
** BACKUP TIME' **

Please purge your files"""""'" "" """""'"

•
This example shows the first login of the day for this user. The VIC
was entered with a slash (303/5). The printing of the system LOGIN. TXT
file in full was therefore suppressed. Only the first message (defined as
being a priority message by the system manager) was printed. The priority
message is printed only on the first login of the day. This ensures that
users who habitually log in with the slash do not miss anything. See next
example.

• LOGIN 303/5 IRETI
Password: ~

Micro/RSI V3.0 BL24
15-APR-85 11:32

Good Morning

•

[1,54] System THEFLU

This example shows a subsequent login on the same day by the same user.
Note that no system messages are displayed.

• LOGIN ~
Account or name: 301/370 ~
Password: ~

Micro/RSI V3.0 BL24
15-APR-85 19:36

Good Evening
• GLOGIN.CMD
• SET TERMINAL/INQUIRE

[1,54] System THEFLU

• SET PROTECTION: (S:RWED,O:RWED,G:R,W:)/DEFAULT
• ASSIGN DU1: RS:
• G <EOF> •
This user has prepared a LOGIN.CMD file in his directory to set up
the terminal, establish a default protection code, and make a logical
assignment. The operating system runs the LOGIN.CMD file each time the
user logs in. The commands shown are issued by the indirect command
file LOGIN.CMD; the @ <EOP> marks the end of this command

3-6 Using Your Terminal

file. See Chapter 9, Indirect Command Processor, and the Introduction
to Micro/RSX for more information on indirect command files.

Your system manager may have established your account so that you do
not receive login messages, regardless of how you log in. If this is the
case, none of the information that usually appears between the Password:
prompt and your LOGIN.CMD file prints on your terminal. Therefore,
you do not see the system identification or messages from the system
manager's LOGIN.TXT file.

Notes

HELLO is identical to LOGIN.

LOGOUT, or BYE, counteracts LOGIN.

When you log in, the system's Account File Maintenance Program (ACNT)
establishes many characteristics of the terminal session you are beginning.
These include your default device (where your files are located), whether
your account is privileged or not, and so forth.

Your system may have a file called LB:[l,2]SYSLOGIN.CMD. This file
usually contains system-level commands that your system manager wants
the operating system to execute each time a user logs in.

You can create a file called LOGIN.CMD. You keep this file in your
directory, and the operating system executes it each time you log in. A
LOGIN.CMD file usually includes commands for setting up your terminal
and your account for regular use, although this file may contain any
commands you want. See the examples. See also Chapter 9 and the
Introduction to Micro/RSX for more information on indirect command files.

It is wise to log in occasionally with either your name or a comma in
your UIC. This way you can be sure you have not missed any important
messages.

Error Messages

MCR-Not logged In

DCl-Not logged In

Explanation: The terminal is not logged in.

User Action: Log in using LOGIN.

Using Your Terminal 3-7

LOG-Account nle open failure

Explanation: The system could not access the account file for some
reason.

User Action: Try again. Wait and try again. If the message recurs, see
your system manager.

LOG-Invalid account

Explanation: The name or UIC, or the password, given in the command
is not recorded in the account file.

User Action: Retype the command using correct data.

LOG-Loglns are disabled

Explanation: The system is being shut down, or a privileged user has
issued SET NOLOGINS for some other reason.

User Action: You cannot log in. Try again later. Often, when logins
are enabled again, the operator sends a message to all terminals.

LOG-Other user logged on

Explanation: Another user is logged in. Only one user at a time can
log in on a terminal.

User Action: Issue SHOW USERS to find out who is logged in. Issue
SHOW TASKS ACTIVE to find out what tasks are active on the
terminal. At your discretion, issue LOGOUT and then log yourself in.

LOG-Terminal allocated to other user

Explanation: The terminal has been allocated (made private) by another
user. You cannot log in on an allocated terminal.

User Action: Go to another logged in terminal. Issue SHOW DEVICES
TT: and find out which terminal has your terminal allocated.

3-8 Using Your Terminal

3. 1.2 LOGOUT

LOGOUT logs the user off the system.

LOGOUT also aborts any active nonprivileged tasks running from the
terminal, as well as dismounting any private volumes and deallocating any
private devices allocated from the terminal.

Format
LO[GOUT][/HOLD]

Command Quallfter
/[NO]HOLD

The /HOLD qualifier is for use on remote or DECnet host terminals. If
you include the qualifier, the terminal is logged out but the line is not
disconnected. This means you can log back in without reconnecting
the line. The default is /NOHOLD, meaning that when you log out,
the line is also disconnected.

Examples

• LOGOUT [BTI]
Connect time: 0 hrs 44 mins 0 sees
CPU time used: 0 hrs 6 mins 36 sees
Task total: gO
Have a good afternoon
08-MAY-86 16:68 TT10: Logged off PRINCE

In this example, a user logs out of a Micro/RSX system. The information
on system use only prints on systems that have Resource Accounting
running. (PRINCE is a DECnet node name. DECnet is a DIGITAL product
that allows the users of different computer systems to share information
and resources. A node is the name of one of these systems.)

Your system manager may have set up your account so that you do not
receive system information when you log out. In this case, the operating
system simply prints a dollar sign prompt ($) to indicate that you have
successfully logged out.

Using Your Terminal 3-9

$ LOGOUT [Rill
DMO -- TTl: Dismounted from DU1:
Connect time:
CPU time used:
Task total:

o hrs 32 mins 0 secs
o hrs 0 mins 12 secs

21
Have a good morning
08-MAY-85 11:17 TT10: Logged off ROMPER

In this example, the user had a volume mounted on device DU1:. The
LOGOUT command dismounted the volume, as the message states. If the
device was allocated, the LOGOUT command will deallocate it, but will
not issue a message.

$ LOGOUT [Rill
13:29:36 Task "TT10 "Terminated

Aborted via directive or CLI
$
Have a good afternoon
19-JUN-85 13:13 TT10: Logged off

In this example, the user had a task running from the terminal at the
time the LOGOUT command was issued. The command caused the task
to be aborted. The system did not include Resource Accounting, so no
system-use statistics were printed.

Notes

BYE is identical to LOGOUT.

LOGIN, or HELLO, counteracts LOGOUT.

You need type only LO to log out.

3.2 The Keyboard
Most of the keys on the main keyboard are self-explanatory. They function
much the same as they do on a typewriter. Only the most important
differences from typewriter operation are noted here.

You should remember that a computer terminal is not a typewriter. A
computer terminal has two functions: transmitting input to the computer
and receiving output from the computer. Usually, when you press a key,
the letter appears immediately on your terminal. When you pressed the
key, you sent a character to some system task or program. One of the
actions the system normally takes upon receiving a character is to send
it back to your terminal as an echo. This usually happens so fast that it
appears that you are typing on your terminal, but you are not. You are

3-10 Using Your Terminal

sending input to the system and it is sending output to your terminal. A
terminal is an input/output device.

Occasionally, when heavy demands are being made on the system, there
may be a noticeable lag between the input and the echo.

You should also remember that keys may behave differently when sending
output to some task other than DeL. Fer instance, all the keypad keys,
plus the ENTER, BACK SPACE, and LINE FEED keys, have special meanings
when you are running the EDT editor. Special applications software at
your installation may also use special meanings for certain keys. This
chapter covers key use for DCL (also called monitor level).

3.2. 1 RETURN and Command Line Length

The RETURN key has two functions. It is used in the conventional way
to supply a line feed and a carriage return, but the key is also used to
signal the system that you have finished typing a command. Commands
can be quite varied in length; the RETURN key defines the length of the
command. The symbol mm is used in this manual to signify that you press
the RETURN key. Thus,

• PRINT IZZY. TXT lBITl

is a complete command, and so is

• PRINT/COPIES: 2 IZZY. TXT lBITl

If you must enter a command that is longer than a single line on your
terminal, you can override the effect of the RETURN key by ending the
line with a hyphen before pressing the RETURN key. This works as
follows:

• PRINT/COPIES:2/FORM:1/DELETE IZZY.TXT. OXY.TXT.-lBITl
->MADISON.AVE. FUZZY. TXT; 12. GUNGA.DIN;2 lBITl

The hyphen tells the system to postpone execution of the command until
it receives a RETURN not preceded by a hyphen. In the example given,
the user had more files to be printed together than could be specified
on a single line. The hyphen called for the special continuation prompt
(->) rather than execution of the command. The RETURN without the
preceding hyphen then called for execution of the full command. For more
information on command lines continuation, see Chapter 2.

Using Your Terminal 3-11

Note
In most examples and command formats in this manual,
the RETURN at the end of a line containing a command
or command element is assumed and is not shown.

3.2.2 Line Terminators
To enter a command, terminate the command line with the RETURN key.
To cancel a command you do not want to enter, terminate the command
line with CTRL/Z or CTRL/C.

The ENTER key on the keypad is identical with RETURN at DCL monitor
level. (The two keys function differently in EDT, however.)

When you terminate a command line with the RETURN key, as soon as
the command is processed, the dollar sign prompt ($) reappears, ready for
another command. For example:

• SHOW TIME [EITJ
09:69:21 13-MAR-86

•
3.2.3 DELETE Versus BACK SPACE

You should avoid using the BACK SPACE key. This key is included on
terminals for compatibility with other systems but is not used in DCL. The
BACK SPACE key does not produce an echo, but it can have confusing
results when used in a file or when entering a command. When you make
a typing mistake, use the DELETE key (on the VT100-series terminals) or
<Xl key (on the VT200-series terminals) to correct it, not BACK SPACE.
(The BACK SPACE key may be used for special functions within tasks, as
it is in EDT.)

The DELETE key erases the character immediately to the left of the cursor.

3-12 Using Your Terminal

3.2.4 CAPS LOCK and SHIFT
On most video terminals, the CAPS LOCK key (on the VT100-series
terminals) and the LOCK key (on the VT200-series terminals) causes all
letters to be typed in uppercase. This key affects only letters, not numbers
or symbols. You can engage CAPS LOCK and type 'PDP-II' without
disengaging it, even though the apostrophes, numbers, and the hyphen
are lowercase.

The SHIFT keys set your terminal to uppercase for the keys not affected by
CAPS LOCK, as well as for individual alphabetic characters.

Different terminal models vary widely in their treatment of CAPS LOCK
or the equivalent key. You should experiment on your terminal.

3.2.5 NO SCROLL or HOLD SCREEN
The NO SCROLL key on the VT100-series terminals and the HOLD SCREEN
on the VT200-series terminals control the flow of information on your
terminal screen. These keys are useful when you want to read text on
your terminal screen at a rate slower than the terminal presents it. Press
NO SCROLL or HOLD SCREEN to stop information from moving upward
and off your screen; you press the key again to resume the flow of
information.

Note that you do not lose any information when you use the NO SCROLL
or HOLD SCREEN keys.

If your terminal appears to be doing nothing, you may have inadvertently
pressed NO SCROLL or HOLD SCREEN. If your terminal does not have
either a NO SCROLL or HOLD SCREEN key, see the discussion of CTRL/S
and CTRL/Q in Chapter 11.

3.2.6 Other Keys

See Chapter 11, More About Using Your Terminal, for more complete
information on keys, character names, and other terminal specifics.

Using Your Terminal 3-13

3.3 The Keypad
The VT100-series terminals have a second set of keys to the right of the
main keyboard, arranged much like a calculator's keypad. These keys
make up the alternate keypad.

The keys of the alternate keypad are available for special functions. When
you use EDT, the DIGITAL standard editor, you can use these keys to
easily edit text. In addition, some functions of the operating system use
these keys. They may be used in many other ways, depending on the
other applications your operating system is running.

The following list describes only the uses of the alternate keypad while
you are in DCL. See Chapter 4 for a description of how you use these
keys to execute EDT editing commands.

Keypad Key

NUMBERS

PERIOD

ENTER

PF KEYS

ARROW KEYS

Function

Work in the same way as the numbers on the regular
keyboard.

Works in the same way as the period on the regular
keyboard. It can be used for including the decimal
point in numbers.

Works the same as the RETURN key on the main
keyboard.

Reserved for special functions. They are not used at
monitor level.

Used for cursor control by EDT, but are otherwise
available for special functions.

The VT200-series terminals have both the alternate keypad and, between
it and the keyboard, another keypad with editing functions printed on the
keys. The middle set of keys make up the editing keypad.

The six labeled keys on the editing keypad are available for special
functions. They are defined by EDT as well as by many applications.

The keys of both keypads can have odd effects if pressed accidentally.
These keys each send an ESCAPE character plus one or more other
characters to the operating system. The ESCAPE is a nonprinting character,
but the associated printing characters may be echoed on the terminal
causing an error, such as

asl -- Illegal function

3-14 Using Your Terminal

No harm is done by this.

3.4 The CTRL Key and Control Characters
The key marked CTRL is called the control key. It is used much like the
shift key on a regular typewriter. If you hold down the CTRL key and then
press another key, you are sending a command to the operating system.
The CTRL key alone has no effect.

The combination is designated by CTRL/a, where a is the chosen letter
key.

When the combination is echoes on your terminal, the CTRL key is
represented by the circumflex (A). Press a CTRL/U and you see a AU
on your terminal.

Micro/RSX recognizes 11 letters combined with the CTRL key. Only the
most important are discussed here. See Chapter II, for information on the
others.

With the exception of CTRL/Z, the control characters are commands directed
to the operating system and not to any task you may be running from
your terminal. This means that they usually work without interfering with
such tasks. For instance, CTRL/O is used to skip over terminal output. It
skips over any output, whether sent by DCL, the Task Builder, an editor,
or any other system function. It only skips output. It does nothing else.

Note
Although you must press two keys to enter a control
character, the system considers a control character as a
single character.

3.4. 1 CTRL/C

On most Micro/RSX systems, CTRL/C aborts a task running from your
terminal. At any time that you want to stop a task from running, simply
press CTRL/C. This does no harm to the task itself. You should remember,
however, that the task has stopped whatever it was doing and therefore
may have left some file or job in an incomplete state. In general, this will
not be a problem, but you should be aware of the situation.

More sophisticated users can alter CTRL/C's behavior. See Chapter 11,
for more information.

Using Your Terminal 3-15

3.4.2 CTRL/O

This control character is used to skip over unwanted output to your
terminal. It is analogous to the fast-forward control on a tape recorder.

If you type a single CTRL/O in response to undesired output, the output
stops appearing on your terminal, but the system continues to generate the
output. It can do this much faster when it does not have to print it on the
terminal. If you type another CTRL/O, the output picks up at the point
the operating system has reached, not the point at which you typed the
last CTRL/O. If you do not type another CTRL/O, the system continues to
generate the output until it reaches the end, whereupon a prompt appears
and you may continue in response to the prompt.

If you are printing multiple files on your terminal, the CTRL/O will be
canceled at the end of each file. For example, if you have typed

$ TYPE *. LST [Bill

the system will start with the first file of the type .LST in your directory.
If you suppress this output with a CTRL/O ~ the system will start printing
again as soon as it reaches the beginning of the next file of the type .LST.

3.4.3 CTRL/Z

A CTRL/Z in response to a prompt or at the end of a command line cancels
the command.

CTRL/Z is also used as a command within many system tasks.

If your terminal does not respond, a CTRL/Z will often clear it.

A CTRL/Z in response to a request for input from an indirect command
file cancels the execution of the remainder of the file.

Fundamentally, CTRL/Z signals the system that you have finished typing
input.

3-16 Using Your Terminal

3.4.4 CTRL/U

CTRL/U deletes the current line on your terminal. It is as if the line had
never been typed. The system responds with a carriage return and a line
feed so that the line can be retyped.

If you use CTRL/U with a CREATE command to delete a line, the line you
have deleted will appear as a blank line within the fHe.

In three instances, a AU may appear on your terminal without your having
entered a CTRL/U.

1. The system automatically sends a CTRL/U to any terminal that has
been awaiting input past a 4-minute time-out limit. This means that
any line that is not terminated within the 4-minute limit is wiped out,
as indicated by the CTRL/U that appears at the terminal. If you have
typed in a line and then deleted it with the DELETE key, the system
still interprets this as a line awaiting input and sends the CTRL/U when
the time-out limit passes.

2. If you try to type more than 80 characters on a line without using
a hyphen to continue the line, the system automatically cancels
the command and indicates this by sending a AU to the terminal.
See Chapter 2, How To Use DCL, for more information on line
continuation.

3. Finally, if there is no available pool space when you type in a
command, the system sends a AU to your terminal informing you
that your command has been canceled. Pool is the section of the
computer memory where Micro/RSX keeps track of what it is doing.
When the system is very busy, the system may run out of available
pool space and refuse to accept your command. If this happens, the
condition will probably be corrected shortly. Try typing the command
again. If this does not work after some reasonable interval, you may
want to consider rebootstrapping the system. See the Micro/RSX System
Manager's Guide for more information.

3.4.5 CTRL/G

CTRL/G inserts a beep (buzz, bell) in a file or message. CTRL/G cannot
be the first character in a line. See Chapter 4, EDT, for more information
on including this signal in your files.

Using Your Terminal 3-17

3.5 HELP
HELP displays information about DCL commands and other information
about the operating system. Users can easily add to the information shown
by HELP.

HELP is the only command that you can issue without logging in.

Format
HELP[! OUTPUT:filespec][/ qualifier] [%] [parameter 1] [... parameter9]

Command Qualifiers
/OUTPUT:filespec
/LOCAL
/GROUP
/DCL
/FILE:filespec
/filename

Parameters

No parameters are required for the HELP command and there are
no prompts. You can get help on any given DCL command or
subtopic, however, by typing a question mark (?) in response to the
prompts from DCL. You can also get help by typing a question mark
in response to the dollar sign prompt ($). Examples follow at the end
of this section.

The HELP command without qualifiers or parameters displays the list
of commands for which help is available. This display also contains
information on getting more help.

The displays for all forms of the HELP command are stored in help
files, which are text files in help file format. See Chapter 11, for
information on writing help files. Users can write help files for their
entire system, for a group of users, or for themselves alone.

parameter 1
If you include a parameter in the HELP command, you will jump over
the initial HELP display to a display concerning the parameter you
have included. Examples follow at the end of this section.

Usually this parameter will be a command name. When seeking help
on a command, you should always start with a single parameter. The
display always includes directions for getting any available further
help.

3-18 Using Your Terminal

parameter9
There can be up to nine levels of help. In any case, the number of
parameters you enter determines the display shown; you always jump
over intervening displays.

Command Qualifiers
/OUTPUT:ftlespec

Permits you to name an output file where the requested help text is to
be saved. Use this feature to make your own library of help files that
you have found useful. You must be logged in to use this qualifier.

The following qualifiers are mutually exclusive. These qualifiers have the
effect of naming a file where the requested help text is located. No matter
which qualifier you use, you can still include up to nine parameters.

/LOCAL
%

Specifies that the help text is in the file HELP .HLP in the default
directory on the default volume. You can specify a local help file in
two ways: HELP /LOCAL or HELP%. You must be logged in to use
this qualifier.

/GROUP
Specifies that the help text is in the file HELP .HLP in the directory
[current group,I] on the default volume. All users with the same group
number have access to this file by typing HELP/GROUP. Examples
follow at the end of this section. You must be logged in to use this
qualifier.

/OCL
Specifies that you want help on a DCL command. For this qualifier,
the help text begins in the file LB:[1,2]DCL.HLP. This is the default for
Micro/RSX systems.

/FILE :ftlespec
Specifies any file where help text is located. If you do not give a
complete file specification, the defaults are LB:[1,2]filename.HLP. You
must be logged in to use this qualifier.

/ftlename
Specifies that the help text begins with LB:[1,2]filename.HLP. When
using this qualifier, you cannot specify the device, directory, or
extension, only the file name. You must be logged in to use this
qualifier.

Using Your Terminal 3-19

Examples

• HELP [@]
For help on logging in, type: HELP LOGIN

Help is available for DCL commands, utilities, and system features.
You can receive help by typing either HELP or ? in response to the
DCL prompt, followed by the desired topic. For example, for help on
the COPY command type either HELP COPY or ? COPY. To simplify HELP
text, the HELP files indicate only the first of these two formats.
Also note that you can type HELP requests in either upper or lower case.

Help is available for the following DCL commands:

ABORT ALLOCATE ANALYZE APPEND ASSIGN
BACKUP BROADCAST BYE CANCEL CONTINUE
CONVERT COPY CREATE DEALLOCATE DEASSIGN
DEBUG DEFINE DELETE DIFFERENCES DIRECTORY
DISMOUNT EDIT FIX HELLO HELP
HOLD INITIALIZE INSTALL LOGIN LIBRARY
LINK LOGOUT MOUNT PRINT PURGE
RELEASE RENAME REQUEST RUN SET
SHOW START STOP SUBMIT TYPE
UNFIX UNLOCK

For information on a command, type HELP commandname.
Additional help on a particular qualifier is often available
by typing:

HELP commandname qualifier.

For information on utilities and system features, type HELP MORE.
For the short forms of some commands, type HELP BRIEF.

In addition, your Micro/RSX system may include other software, such
as BASIC or FORTRAN and HELP will be available for those features.

For information on utilities, system tasks, and other system
information, type HELP MORE. For the short forms of some commands,
type HELP BRIEF. For help on logging in, type HELP LOGIN.

This example shows the initial display from HELP. The user typed HELP
without parameters or qualifiers at a DCL terminal.

• TYPE [@]
File(s)? ? @IT]
TYPE[qualifier[s]] filespec[s]

/DATE:dd-mmm-yy
/SINCE:dd-mmm-yy
/THROUGH:dd-mmm-yy
/SINCE:dd-mm-yy/THROUGH:dd-mmm-yy
/TODAY
/EXCLUDE:filespec

3-20 Using Your Terminal

The TYPE command displays the contents of text files on your terminal.

File(s)?

This example shows the display that results from typing in a question
mark (?) in response to a prompt from DCL. The same display results
from typing HELP TYPE.

S SHOW !Bill
Function? ? !Bill

SHOW thing

The SHOW command can be used to show something.
things can be shown with this command:

The following

ACCOUNTING [DAY] TIME LIBRARY
ASSIGNMENTS DEFAULT PARTITIONS
CLOCK_QUEUE DEVICES PROCESSOR
COMMON ERROR_LOG PROTECTION

Abbreviation: S
Function ? ? TIME !Bill

SHOW DAYTIME
SHOW TIME

QUEUE
SYSTEM
TASKS

TERMINAL
UIC
USERS

The SHOW TIME command displays the current time and date. The time
is in 24-hour format and the date is formatted as dd-mmm-yy.

Function?

This example shows the display that results from typing a question mark
(?) and a parameter in response to a prompt from the SHOW command.
The same display results from typing HELP SHOW TIME.

3.6 BROADCAST
BROADCAST displays a specified message at one or more terminals.

Format
BROADCAST
To? [ttnn:]
Message? message

BROADCAST / qualifier
Message? message

BROADCAST usemame message

BROADCAST @filespec

Using Your Terminal 3-21

Command Qualifiers
/ALL
/LOGGED-IN

Parameters
ttnn:

Specifies the terminal to which you want the message to be sent.
Terminals need not be logged in to receive messages, but they must
be turned on (powered).

If you do not specify a destination for the message, the message is
sent to pseudo device CO:, the operator's console.

message
The message must fit on a single line, but the final character can go in
column 80. The message can include any printing character. Lowercase
letters are converted to uppercase unless enclosed in quotation marks
(").

username
Specifies the user to whom you want the message to be sent. The
message goes to all terminals the user is logged in on. The username
must be the same as that shown by the SHOW USERS command.
If SHOW USERS does not display any names, you cannot send a
message by name.

If you have two users on your system with the same last names, you
can separate the usernames by preceding their last name with their
first initial immediately followed by a period (for example, P.ROBUST
and M.ROBUST).

@ftlespec
Specifies the name of an indirect command file. All users can send
multiple messages or multiple copies of the same message using this
method. See the example. The file should contain messages in the
following format:

TTnn:message

Privileged users can also use the privileged qualifiers in the following
formats to send messages to multiple terminals:

ALL:message
LOGGED-IN :message

3-22 Using Your Terminal

The indirect command file cannot include any Indirect directives or
labels, only destinations and messages. The destination cannot be
preceded by tabs or blanks.

Command Qualifiers
fALL

This privileged qualifier sends the same message to all powered
terminals, excluding slaved terminals.

fLOGGED_IN

This privileged qualifier sends the same message to all logged-in
terminals.

Examples

• BROADCAST @ill
To? TT2: @ill
Message? Meet me in the alley behind the barn.

The message is printed on TT2:.

30-MAY-86 From FEDERICO (TTt:) To: TT6:
MEET ME IN THE ALLEY BEHIND THE BARN.

•
As the message arrives, the terminal's audio signal (beep, buzz, or bell)
sounds. Notice that the message is printed in uppercase characters on the
receiving terminal.

• BROADCAST TT2: "This is a one-liner." @ill

This is the one-line form of the command. Because the message was
included within quotation marks ("), it appears on the terminal in exactly
the same form as it was sent:

30-MAY-86 From FELLINI (TTt:) TO TT2:
"This is a one-liner."

•
• BROADCAST/LOGGED_IN @ill
Message? Everybody take the rest of the day off. @ill

The message is printed on all logged-in terminals. This is a privileged
command.

Using Your Terminal 3-23

• BRO ODAILY ~
The file DAILY.CMD contains the following messages:

TTl :"Where is the Ditko contract?"
TT3:"Meet me for lunch at 11:30"
TT7:"The quick brown fox jumped over the lazy dog"
TT5:"Get back to work"
TT4:"I lost the Pearson account. Have you seen it?"

The messages are sent to the designated terminals. Privileged users can
also include messages preceded by ALL: and LOGGED-IN:.

Notes

B is the short form of BROADCAST.

Only terminals can receive messages. You can send a message to yourself
to test the BROADCAST command, using the form BROADCAST TI:.

If you want your message to include lowercase characters when printed,
enclose the message in quotation marks (").

All messages include one beep (buzz or bell, depending on the terminal).
If you want your message to include extra beeps, simply press CTRL/G to
add them.

If the message cannot be broadcast within 10 seconds, the system displays
the following message at the initiating terminal:

BRO---Terminal is busy---TTnn:

If a user specifies multiple destinations, the system returns an error message
for each busy terminal.

The BROADCAST command uses the write-breakthrough feature of the
terminal driver. This means the message breaks through any kind of I/O
at the destination terminal. If you are editing, for instance, the message
may appear in the middle of your text, but in fact it has no effect on the
text you are editing. You can issue a SET TERMINAL/NOBROADCAST
command if you do not want to receive broadcasts. See Chapter 11.

3-24 Using Your Terminal

Error Messages

BRO-Command Input error

Explanation: The BROADCAST task did not receive the command line.

User Action: Often, this message results from a missing indirect
command file. Locate the file, or check for proper syntax and enter
the command again.

BRO-Command syntax error

Explanation: The command syntax was not correct.

User Action: Check for proper syntax and enter the command again.

BRO-lilegal device speclfted

Explanation: The destination device was not a terminal.

User Action: Check for proper device and enter the command again.

BRO-Prlvlleged command

Explanation: Nonprivileged users cannot send messages to all con­
nected or logged-in terminals.

User Action: Use an indirect command file to send messages to multiple
terminals from a nonprivileged terminal.

BRO-User not receiving messages
BRO-TTnn:message

Explanation: The message was sent to a terminal set to NOBROADCAST.

User Action: Wait and try again.

3.7 SET and SHOW TERMINAL
SET TERMINAL and SHOW TERMINAL are complementary com­
mands. SET TERMINAL establishes terminal characteristics, and SHOW
TERMINAL displays information about terminal characteristics.

Only a few of these characteristics are described here. See Volume 2,
Chapter 11, for much more information. Also, for detailed information
about these characteristics, see the discussion of the full duplex terminal
driver in the Micro/RSX I/O Drivers Reference Manual, available separately
and included in the Micro/RSX Advanced Programmer's Kit.

Using Your Terminal 3-25

3.7.1 SET TERMINAL

SET TERMINAL establishes various attributes of your terminal.

This command description covers the /INQUIRE qualifier, which sets the
appropriate attributes of your terminal for you based on the type of terminal
you are using. In addition, this section describes one other frequently used
qualifier for setting terminal characteristics, /[NO]BROADCAST.

See Volume 2, Chapter II, or the help files, for the complete list of
attributes you can set, particularly if you are a programmer or privileged
user.

Format
SET
Function? TERMINAL
Terminal Attribute? /attribute[s]

SET TERMINAL/attribute[s]

Attributes
/[NO]BROADCAST
/INQUIRE

Attributes
/[NO]BROADCAST

Establishes whether you want to receive broadcast messages on your
terminal. The default, /BROADCAST, is to receive broadcasts. .

The /NOBROADCAST qualifier limits the messages that appear on
your terminal. This command prevents messages from appearing
on your terminal that another user sends with the BROADCAST
command. The operating system notifies senders that you are not
receiving messages. In addition, this command restricts messages from
the system shutdown task when it is shutting down the operating
system. Your terminal does not display any messages about the
impending shutdown of the system except those issued in the last five
minutes. However, your terminal still receives messages from other
tasks.

/INQUIRE

Tells the operating system to set all appropriate attributes for that type
of terminal. The /INQUIRE qualifier is perhaps the most useful of
all qualifiers to SET TERMINAL. It is good practice to include SET

3-26 Using Your Terminal

TERMINAL/INQUIRE in your LOGIN.CMD file if you do not always
log in to the system with the same terminal.

These attributes are described in detail in Chapter 11, Volume 2, and
include all the attributes listed there under Terminal Setup. In addition,
SET TERMINAL/INQUIRE sets the terminal width at 80 columns.

SET TERMINAL/INQUIRE sends a Querv to the terminal to find out
what model it is imd then issues the SET TERMINAL command for that
terminal model. The following DIGITAL terminals are set explicitly:
VT52, VT62, the VT100-series (VT100, VT101, and VT105 are all set
VT100; VT102 is set VT102), the VT200-series, the DECmate II and the
Rainbow 100-series (these two types are set VT102), the Professional
300-series, LA34, LA38, LA100, and LA120. All other terminals are
set /HARDCOPY, WIDTH:80, and considered Nunknown" models.

Note

You can find how all attributes are set for your terminal with an unadorned
SHOW TERMINAL command. See the next section.

3.7.2 SHOW TERMINAL
SHOW TERMINAL displays information about your terminal. The display
from this command includes all the attributes of your terminal. Most of
these are set automatically and will be of no interest to you. For a full
description of the meaning of all attributes, see Volume 2, Chapter 11.

Format
SHOW
Function? TERMINAL[:TTnn:]

SHOW TERMINAL[:TTnn:]

Qualifiers
/[NO]PRIVILEGED
/HT
/RT
/TI:

/[NO]BROADCAST
/TT
/VT

Using Your Terminal 3-27

Command Option
TTnn:

Identifies the terminal about which you want to display information.
The default is your terminal, TI:.

An unadorned SHOW TERMINAL command, such as the following:

• SHOW TERMINAL llim

or

• SHOW TERMINAL: TT6: llim

displays all the attributes set for your terminal or the terminal you
name. See the examples.

SHOW TERMINALI ALL displays information about all terminals on
the system.

Qualifiers

IHT
IRT

ITI:
ITT

IVT

Each SHOW TERMINAL qualifier directly relates to a SET TERMINAL
qualifier. The meaning of each qualifier, including I[NO]PRIVILEGED
and I[NO]BROADCAST, is discussed under SET TERMINAL in
Volume 2, Chapter 11.

These qualifiers display information about particular types of terminals
on the system. The IHT and IRT qualifiers display a list of DEC net
host terminals. The ITI: qualifier displays information about your
terminal and is the same as SHOW TERMINAL without any qualifier.
The ITT qualifier displays a list of real terminals on the system.

The IVT qualifier displays a list of virtual terminals, which are used
in batch processing.

3-28 Using Your Terminal

Examples

• SHOW [BIT!
Function?" TERMINAL [BIT!
TT3: [MCHEARTY] 09-APR-86 1 B. MCHEARTY

CLI = DCL BUF 80. HFILL = 0 SPEED=(9600.9600)
LINES = 24. TERM = VT220 OWNER = SELF BRO NOABAUD
LOWER NOPRIV NOHOLD NOSLAVE NOESC NOCRT NOFORM NOREMOTE
ECHO NOVFILL NOHHT NOFDI WRAP NORPA NOEBC TYPEAHEAD
CTRLC AVO ANSI DEC NOEDIT NOREGIS NOSOFT NOBLKMOD
SERIAL NOHSYNC NOPASTHRU TTSYNC

This example displays all the attributes for the user's own terminal. The
command is the equivalent of SHOW TERMINAL:TI:. The attributes
include the terminal number, the default directory, plus all the attributes
that can be set with SET TERMINAL. See Volume 2, Chapter 11 for a full
explanation of all these attributes.

• SHOW TERMINAL:TT6: [BIT!
TT6: [THEFROG] 09-APR-86 1 K. THEFROG

CLI = DCL BUF 80. HFILL = 0 SPEED=(9600.9600)
LINES = 24. TERM = VT100 OWNER = none BRO NOABAUD
LOWER PRIV NOHOLD NOSLAVE NOESC CRT NOFORM NOREMOTE
ECHO NOVFILL NOHHT NOFDI WRAP NORPA NOEBC TYPEAHEAD
CTRLC AVO ANSI DEC NOEDIT NOREGIS NOSOFT NOBLKMOD
SERIAL NOHSYNC NOPASTHRU TTSYNC

This example displays all the attributes for another terminal.

• SHO TERM/PRIVILEGED [BIT!
PRIV=TT7:

• SHO TERM/NOPRIVILEGED [BIT!
NOPRIV=TTO:

• SHO TERM/PAGE_LENGTH [BIT!
LINES=TT7:24

This example displays the page size (screen size) of the terminal from
which the command was issued. A nonprivileged user cannot display the
page size of another terminal with this command. Use the unadorned
SHOW TERMINAL and name the terminal about which you want the
information.

Using Your Terminal 3-29

$ SHO TERM/REMOTE @[B
REMOTE=TTl :
$ SHO TERM/LOCAL @[B
NOREMOTE=TT12:

$ SHO TERM/NOLOCAL @[B
REMOTE=TTl :
$ SHO TERM/NOREMOTE @[O
NOREMOTE=TT12:

This command shows which terminal numbers are assigned to telephone
lines so that callers with terminals and modems can log in from elsewhere.
Remote terminals access the system through dial-up lines while local
terminals are hard-wired to the computer.

This attribute has nothing to do with the LOCAL/REMOTE switch found
on some terminals. This attribute has nothing to do with DECnet host
terminals either.

The LOCAL/REMOTE switch on a terminal sets a terminal as a typewriter
or terminal, respectively.

3-30 Using Your Terminal

Chapter 4
EDT

4. 1 Introduction to the EDT Editor
EDT is an interactive text editor. You can use EDT to edit many kinds of
text files-letters, memos, or complex computer programs. With EDT you
can create new files, insert text into them, and edit that text. You can also
edit text in existing files.

EDT offers many features to make text editing easier and more effiCient.
These features include the following:

• Three methods of editing: keypad, line, and nokeypad.

• On-line HELP. You can use HELP any time during your editing session
without affecting your work.

• Journal facility. This feature allows you to recover edits lost during a
system interruption.

• Multiple buffers. You can place different pieces of text in separate
storage areas, allowing you to more easily organize modular programs
and documents.

• Start up command files. These files enable you to personalize the
characteristics of your editing sessions.

• Key definition facility. You can define keys to perform your most
frequent types of edits.

EDT 4-1

• EDT macros. You can create a series of editing commands to automate
your editing work.

• Tabbing facility. This feature enables you to create layered text formats.
It is particularly useful for writing structured programs.

The best way to familiarize yourself with EDT is to follow the examples
presented in the Introduction to Micro/RSX. These examples are intended
for those who have never used an interactive editor, although even
experienced users who do not know EDT can speed up the learning
process by reading and trying them as well. Another way to learn about
EDT is to use the help text available from EDT itself and try out the
various operations described there.

This chapter adds to the information on EDT presented in the Introduction
to Micro/RSX. It tells you how you can extend and customize EDT in
a number of ways, and how you can use all its features. If you want
even more information about EDT, see the EDT Editor Manual, which is
available separately.

The rest of this section presents basic concepts of EDT. The following
sections discuss the three types of editing available, including the line­
mode commands you use to control EDT's actions and displays. Also
described are advanced editing features such as macros, key definitions,
startup command files, and structured tabs. Finally, there is a summary of
all the EDT commands and a section that describes the EDIT command as
well.

Note the following conventions used in this chapter:

• Capital letters indicate the portion of an editing command that you
must type. For instance, EXit means that you only need to type EX to
execute this command. Likewise, Insert indicates that you need only
type the I.

• The expression "press the PASTE keypad function (GOLD 6)" means
to press first the GOLD key (PF1) and then the 6 key. The keypad
keys of the alternate keypad have numbers and symbols on them.
However, the text in this chapter describes editing functions rather
than keypad numbers or symbols. The keypad numbers are provided
along with a description of a function to help you execute your edit.
This convention is used in keypad mode.

4-2 EDT

4. 1. 1 Starting an Editing Session
To create a new text file or to edit an existing file, you type the command
EDIT followed by a file specification. (After you have familiarized yourself
with EDT by reading through to Section 4.6, you may want to refer
to Section 4.7 for more detailed information about the EDIT command.)
Note that EDT does not destroy the contents of any existing file that you
edit; it simply produces a new version, leaving the oid version intact.
(See Chapter 5 for an explanation of how to name a file.)

The following example shows how you invoke EDT to edit a file that you
named MEMO.TXT:

• EDIT MEMO. TXT [Rill

If MEMO.TXT is a new file, you will see the message NInput file does not
exist" followed by the end of buffer sign ([EOB» and the asterisk prompt
(.). (A buffer is a temporary storage area for your text. The [EOB] sign
with no text preceding it indicates that there is no text in this file.) If
MEMO.TXT is an existing file, a copy of the first line of text appears on
the screen followed by the asterisk prompt (.).

The asterisk prompt (.) indicates that EDT is ready to accept a command.
You are now ready to select one of EDT's three editing methods.

4. 1.2 Choosing an Editing Mode

Once you enter EDT, you can choose among three different editing
methods-also called modes. These three modes are called line, keypad,
and nokeypad (which is briefly discussed only in Sections 4.1.2.3 and 4.6.6).

4. 1.2. 1 Keypad Mode

After you enter EDT, you can enter keypad mode (or character mode) by
typing the CHANGE command after the asterisk prompt (.).

In keypad mode, you enter text by typing at the keyboard. You execute
editing commands by pressing one or two keys on the terminal's numeric
keypad. Unlike line mode, you can edit individual characters in the text.
You move the cursor to the exact point in the file at which you want to
edit the text, and you see your editing revisions as they happen.

Using keypad editing commands, you can move the cursor over entities
of text-such as words, paragraphs, and pages-delete and undelete these
entities, change the case of letters, move text around, and locate specific text
in the file. In addition, you can enter line-mode commands, and you can

EDT 4-3

define nokeypad commands to be executed when you press certain keys.
See Section 4.3.8 for information on how to enter line-mode commands
from keypad mode, and Section 4.5.2 for information on defining keys.

The advantages of keypad editing are the speed with which you can enter
text and the continual display of the text you have created. You enter
text by simply typing it, rather than preceding it with an Insert command,
as you must do in either line or nokeypad editing. Entering commands
through the keypad is fast and easy, requiring only that you press one
or two keys to execute an edit. The continual display of text as you edit
it means that you generally have fewer errors (you catch more of them
as you enter them) and you spend less time reworking what you have
already entered. These advantages make keypad mode the most popular
editing style.

The only major disadvantage of keypad editing is that you cannot use it
conveniently on hardcopy terminals. Almost all users of video terminals
prefer keypad editing.

The format of the command keypad is different for the VT100- and VT200-
series terminals. The VT200-series terminals have an additional editing
keypad, which does not execute EDT editing commands. Figures 4-1
and 4-2 show the layout of the keypads for these two terminals.

4. 1.2.2 Line Mode

When you enter EDT, you enter line mode by default. You know you are
in line mode when you see the asterisk prompt (.).

Line mode commands accomplish three types of editing tasks:

1. Editing lines of text

2. Controlling the display and automatic actions of EDT

3. Performing complex editing functions, when you use a series of these
commands to define a macro

Line editing refers to an editing style in which the smallest unit of text
you can handle is a line. You enter text into a file by typing first the Insert
command and then your text. EDT numbers these lines of text for you.
You revise the text by typing EDT commands after the asterisk prompt (•).
Frequently, you also type line numbers to indicate the range of text you
want the EDT command to affect. EDT executes your editing command,
then-once the edit is complete-displays your revisions one numbered
line at a time.

4-4 EDT

Figure 4-1: VT 1 ~O-Series Keypad

(i J 1.J f-,J ~J

ZK-1377-83

The advantages of line editing are its ease of use and its flexibility.
EDT's line-mode commands are simple English words that have obvious
functions. There are only a few commands, so you can learn and remember
them easily. Line editing is especially handy for dealing with large blocks
of text. In addition, you can work on either a video terminal or a hardcopy
terminal using the same editor commands.

The disadvantages of line editing are its limited range of functions and
the lack of display. For example, key definitions perform useful and
often complex operations on files, but they do not work in line mode.
In addition, your inability to see what you are editing may increase the
number of errors in your text. Because of these disadvantages, most
users who have video terminals use keypad mode, with a few line-mode
commands entered from keypad mode. See Section 4.3.8 for information
on how to enter line-mode commands from keypad mode.

In addition to editing lines of text, you use line-mode commands to
control the automatic actions of EDT and to display information about
your editing operations. For example, these line-mode commands will
change you from one editing mode to another, then display for you the
mode you are currently in. They can also set terminal characteristics, such

EDT 4-5

Figure 4-2: VT200-Serles Keypad

G
FIND INSERT RE·

HERE MOVE
E1 E2 E3

SELECT PREV NEXT
SCREEN SCREEN

E4 E5 E6

l'
12

~ 1 ~
15 13 14

ZK-1380-83

as screen width, as well as copy other text files into your current editing
session. See Section 4.4, which describes some frequently used line-mode
commands for controlling EDT.

You also use line-mode commands to build macros. Macros are groups
of line editing commands which perform complex functions that a single
command cannot provide-such as deleting a line and inserting a new line
all at once. See Section 4.5.1 for more information on defining macros in
EDT.

4-6 EDT

4. 1.2.3 Nokeypad Mode

After you enter EDT, you invoke nokeypad mode by typing the following
commands after the asterisk prompt (.):

*SET NOKEYPAD lliITJ
*CHANGE lliITJ

If your terminal is not a VT52, VT100- or VT200-series, EDT assumes it has
no keypad. In this case, if you enter a Change command after invoking
EDT, you go into nokeypad editing. If you issue the SEt NOKeypad
command on any terminal, any editing that follows is in nokeypad mode.

Nokeypad editing combines features of line and keypad editing. Nokeypad
editing is designed for a terminal that has a video screen but no keypad.
Like line editing, you do not need a keypad because you type the names
of the editing commands on the keyboard. Also, you enter text into the
file by typing the Insert command followed by the text you want to enter.
However, nokeypad editing resembles keypad editing in two respects: you
can edit individual characters in the text, and EDT displays your editing
revisions as they happen.

Using no keypad commands, you can execute such standard editing
operations as deleting and un deleting text, moving text around, moving
the cursor over entities, substituting one string for another, and inserting
structured tabs. (See Section 4.5.4 for information on using structured
tabs.) In addition, you use nokeypad commands to construct special key
definitions to customize your keypad editing environment. You can also
enter line-mode commands by using the EXTend command followed by
the line-mode command you want.

The advantages of nokeypad editing are its power in dealing with entities
of text and its use in constructing key definitions for keypad editing. Unlike
line and keypad editing, nokeypad editing can work not only on lines,
words, and characters, but on defined entities such as pages or paragraphs
as well. This gives you great flexibility in dealing with a complex editing
task, since you can refer to pieces of text more precisely. Constructing
strings of nokeypad commands to use as key definitions in keypad editing
allows you to use this power and flexibility along with the simplicity of
keypad editing.

The disadvantages of nokeypad editing are the relatively complicated
command formats and the necessity of entering text by using the Insert
command. Since many of the nokeypad commands work on entities, you
must remember the names of the entities as well as the commands. The

EDT 4-7

command formats often accept repetition counts and directions, further
complicating the process of entering commands.

Unless you have a terminal with no keypad, you will find that the nokeypad
commands are most often used in constructing key definitions to be used
with conventional keypad editing. All the keypad keys, plus many other
keyboard keys, can be defined or redefined to perform editing functions of
your own choice. See Section 4.5.2 for more information on key definition.

4. 1.3 Moving Among Editing Modes
Once you become familiar with the three modes of EDT, you will want
to travel between them. Table 4-1 lists the commands you need to
know to move between the line and keypad modes.
Table 4-1: Moving Between Editing Modes

From

Line Mode

Line Mode

Keypad Mode

Keypad Mode

Nokeypad Mode

Nokeypad Mode

To

Keypad Mode

Nokeypad Mode

Line Mode

Nokeypad Mode

Line Mode

Keypad Mode

Command

*CHANGE

* SET NOKEYP AD

* CHANGE

CTRL/Z

or GOLD/7

CTRL/Z

*SET NOKEYP AD

*CHANGE

EX

EX

*SET KEYPAD

*CHANGE

The following example demonstrates how to invoke EDT to create a new
file named WHY.NOT, enter line mode, enter keypad mode, return to line
mode, and finally enter nokeypad mode.

4-8 EDT

• EDIT WHY. NOT [E§!J 0
Input file does not exist ~
[EOB]
* CHANGE [E§!J.
[EOB]
I CTRl/Z I e
* SET NOKEYPAD [E§!J.
"'CHANGE mm
o You type the EDIT command to invoke EDT line mode.

~ "Input file does not exist" appears because you are creating the new
file WHY.NOT.

e EDT responds with the asterisk prompt (...), indicating that you are in
line mode. You type the Change command after the prompt to invoke
keypad mode.

e You press CTRL/Z to return you to line mode.

• The asterisk prompt (...) indicates line mode. After this prompt, you
type two commands to invoke nokeypad mode: the SEt NOKeypad
command followed by the Change command.

4. 1.4 Getting Help from EDT

EDT help describes all the commands available and presents information
on many concepts of EDT as well.

Each editing mode provides a method for getting help. If you are editing
in line mode, you can type HELP for a list of topicS on which help
is available, or HELP [topic] for information on a particular topic. For
instance, you can get information on how to include another file within
the file you are editing by typing:

*HELP INCLUDE [E§!J

The following command gets information on the definition of EDT line­
mode macros:

*HELP DEFINE MACRO [E§!J

In keypad editing, you press the HELP key PF2 to get help on keypad
functions. EDT responds with a diagram showing the layout of the
keypad commands for your terminal type. You then can get information
on a particular command by pressing the key that executes the command.

EDT 4-9

In keypad editing, you can also press the COMMAND keypad function
(GOLD 7) to get help. After executing this function, you respond to the
"Command:" prompt by typing HELP [topic], then pressing the keypad
ENTER key. For example, after pressing the COMMAND function, you can
type the following text:

Command: HELP CHANGE

This causes EDT to display the information it has on the CHANGE
command by scrolling the text of your buffer up the screen and replacing
it with the help text. When you finish reading the help text, press RETURN
to resume editing.

If you are doing nokeypad editing, you must type the EXTend command
followed by HELP [topic], using the format for line-mode HELP to get
information. (The EXTend command allows you to execute a line-mode
command from nokeypad mode.) For example:

EXT HELP CHANGE

4. 1.5 Ending an Editing Session

Both the EXit and QUIT commands terminate an editing session; however,
only EXit saves your edits. Note that you enter these commands from line
mode.

When you enter the EXit command, EDT creates an output file containing
the edited version of the input file. By default, the output file has the
same name and type as the input file. (The version number is incremented
by one.) The following example demonstrates how you invoke and then
terminate EDT to create a file named OUTPUT.DAT. The output file has
the same name as the input file, and the version number increases by one.

S EDIT OUTPUT. OAT mill

*EXIT mill
DUO: [SCHEDULE]OUTPUT.DAT;5 2 lines

If you want to override the default, and specify a different output file
name, type the EXit command followed by the new file name. In the
following example, you invoke EDT to edit a file named OUTPUT. OAT
and specify INPUT.DAT as the new file name when you terminate the
session.

4-10 EDT

• EDIT OUTPUT. OAT ffiill

.EXIT INPUT. OAT ffiill
DUO: [SCHEDULE] INPUT.DAT; 1 2 lines

If you do not want to save your edits when you end an editing session,
type the QUIT command. All the edits you made to the file are lost, and
no new output file is created.

Table 4-2 shows the three modes of EDT, and the commands you enter
to terminate each mode.
Table 4-2: Ending an EDT Session

Mode

Line

Keypad

Nokeypad

Commands to Terminate EDT

• EXit or QUIT

$

CTRL/Z

• EXit or QUIT

$

EX

• EXit or QUIT

$

4. 1.6 Recovering from a Lost Editing Session
While you are editing or inserting text, EDT is keeping track of every
keystroke you enter at your terminal. EDT records this information in a
file called a journal file. If you leave an editing session normally, using
either the EXit or QUIT commands, EDT deletes the journal file. However,
when you experience a system interruption, the journal file is saved so
that you can recover your lost edits.

The journal file does not contain a version of your text. Rather, it contains
a record of the keystrokes you entered during the session. By combining
the journal file with the text that you had at the beginning of your session,
you can recover your session to a point just before the interruption.

EDT 4-11

Note
Sometimes, the last few keystrokes are missing. This is
normal. No work from earlier in your session will be
omitted.

To recover an editing session, use the same command line that you used
to start the session originally, including the same file specification and any
qualifiers you used the first time. Finally, add the /RECOVER qualifier.
This tells EDT to read the journal file and execute the commands that are
recorded in it. EDT reads commands from the journal file and executes
them as you watch. See the examples for the EDIT command in Section 4.7.

The following example demonstrates how to recover a file named
MAILLIST.TXT after the editing session was interrupted. Note that you
had begun the session that was interrupted with the command EDIT
MAILLIST.TXT.

$ EDIT/RECOVER MAILLIST. TXT lliill

When you work with journal files, you will notice that they have a file
type of JOU. The file name is the same as the file you were editing. The
journal file for MAILLIST.TXT is MAILLIST.JOU. And, the journal file for
HAMMER. LIS is HAMMER.JOU. When you enter the EDIT/RECOVER
command,_ you enter the name of the file with its original file type, not
the .JOU file type. Otherwise you will edit the journal file.

4.2 Using EDT Buffers
Buffers are temporary holding areas for text. You can use the buffers in
EDT to do the following:

• Move part or all of another file into your editing session

• Create a file from part or all of the text in a buffer

• Divide one or more files into sections

See Section 4.5.5.5 for specific examples of how to use buffers.

4-12 EDT

4.2.1 EOrS Permanent Buffers
At the beginning of an editing session, EDT automatically provides a buffer
called MAIN. If you are creating a new file, you insert and edit text in the
MAIN buffer. If you are editing a file that already exists, EDT puts a copy
of the contents of the file into this MAIN buffer.

MAIN e>rists during your entire editing session. Also, you can delete only
the contents of this buffer, and not the buffer itself .

. The other buffer that EDT provides automatically is called the PASTE
buffer. The CUT keypad function (6) deletes text and places it in the
PASTE buffer. You then can use the PASTE keypad function (GOLD6) to
copy the text in the PASTE buffer to other locations, either elsewhere in
your current buffer or into another buffer. Every time you perform a new
CUT operation, EDT clears the PASTE buffer and replaces its contents
with the newly deleted text.

Like the MAIN buffer, you can edit or delete the contents of the PASTE
buffer (You cannot delete the buffer itself. See Section 4.5.5.1 for
information on how to move from the MAIN buffer to an alternate buffer.

4.3 Using Keypad Mode
Keypad editing is available on VT200- and VT100-series terminals. In
keypad editing, the contents of a file are displayed on the screen as you
edit. You can see the changes you make to a file as they take place.

In keypad editing, you press keys to perform editing functions instead of
typing commands (as is done in line and nokeypad editing). '

The following sections guide you through the many keypad functions. To
understand how each function works, invoke EDT to create a file called
TEST.EDT (Section 4.1.1) and enter keypad mode (Section 4.1.2.1). As you
read each section, follow the examples and experiment with the various
keypad functions in the file you just created.

EDT 4-13

4.3. 1 Using the GOLD Key

You can use the GOLD key for two purposes:

1. To use the alternate of two functions on a keypad key

2. To execute a function a specified number of times

To use an alternate function, press the GOLD key followed by the desired
key. (You do not need to hold down the GOLD key.) For example, to use
UND C, you press the GOLD key first, and then the UND C key.

If you want to execute a function a specified number of times (for example,
to use DEL C twelve times), press the GOLD key, type the number 12
(on the main keyboard), and press DEL C. Try it and see how much time
you save. The following steps show how to repeat any keypad function a
specified number of times:

1. Press the GOLD key.

2. Type a number.

3. Press the desired function.

4.3.2 Moving the Cursor

There are many ways to move the cursor in keypad mode. Table 4-3 lists
the 15 keypad functions that move the cursor.

You can use the ADVANCE and BACKUP keypad functions to set the
cursor in a forward or backward direction, respectively. By specifying the
direction of the cursor, you affect eight of the keypad functions: LINE,
EOL, WORD, CHAR, SECT, PAGE, FIND, FNDNXT.

Table 4-3: Moving the Cursor In Keypad Mode

Function Key

TOP

BOTTOM

LEFT arrow

UP arrow

RIGHT arrow

DOWN arrow

4-14 EDT

Destination of Cursor

Beginning of buffer

End of buffer

One character to the left

Up one character

One character to the right

Down one character

Table 4-3 (Cont.): Moving the Cursor In Keypad Mode

Function Key

LINE

EOL

WORD

CHAR

SECT

PAGE

FIND

FNDNXT

BACKSPACE

Destination of Cursor

One line up or down (depending on the current
direction of the cursor)

End of the current or previous line (depending on
the current direction of the cursor)

Beginning of the next or previous word (depending
on the current direction of the cursor)

One character to the right or left (depending on the
current direction of the cursor)

Across a 16-line section of text (up or down,
depending on the current direction of the cursor) or
if there are fewer than 16 lines, across the number
of existing lines

Across a page of text (by default, the text between
form feeds)

Next or previous specified string of text depending
on the current direction of the cursor

Next or previous occurrence of search string depend­
ing on the current direction of the cursor

Beginning of the current line

The following example demonstrates how to move the cursor to the
beginning (or top) and to the end (or bottom) of the buffer using the
TOP and BOTTOM keypad functions.

Insert the following three lines of text:

Five golden rings,
four calling birds,
three french hens,

1. Press the GOLD key followed by TOP to move the cursor to the "F"
in the word "Five".

2. Press the GOLD key followed by BOTTOM. Notice the cursor moving
to the left bracket of the end-of-buffer sign [EOB].

3. Press the GOLD key followed by TOP again, moving the cursor back
to the "F".

EDT 4-15

Repeat these steps to become familiar with the TOP and BOTTOM keypad
functions.

The following example demonstrates how to move the cursor using the
four arrow keys: UP, DOWN, LEFT, RIGHT. Insert the following four lines
of text:

Under a toadstool crept a wee elf.
Out of the rain to shelter himself.
Under a toadstool all in a heap.
Sat a big doormouse. fast asleep.

1. Press the TOP keypad function (the GOLD key followed by TOP) to
move the cursor to the letter "U" in the word "Under".

2. Press the RIGHT arrow 9 times, then press the DOWN arrow once,
moving the cursor to the "e" in the word "the".

3. Press the LEFT arrow 5 times, then press the DOWN arrow once,
moving the cursor to the "r" in the word "under".

4. Press the RIGHT arrow 8 times, then press the DOWN arrow once,
moving the cursor to the second "0" in the word "doormouse".

5. Press the LEFT arrow 6 times, then press the UP arrow 3 times, moving
the cursor to the word "a".

The following example demonstrates these keypad functions:
TOP
LINE
EOL
WORD
CHAR

Enter the following four lines of text:

ONE TWO THREE FOUR FIVE
SIX SEVEN EIGHT NINE
TEN ELEVEN TWELVE THIRTEEN
FOURTEEN

1. Press TOP to move the cursor to the first letter of the word "ONE".

2. Press LINE once, moving the cursor to the "5" in the word "SIX".

3. Press WORD twice, moving the cursor to the "E" in the word "EIGHT".
Then press EOL. The cursor will move to the end of the line.

4-16 EDT

4. Press WORD three times, moving the cursor to the uTH in the word
MTWEL VEH. Then press EOL. The cursor will move to the end of the
line.

5. If you are using a VT100- or VT200-series terminal, press CHAR four
times. The cursor will move to the uRH in the word uFOURTEENH

•

Note that the PREV SCREEN and NEXT SCREEN keys (on an LK201
keyboard) work like the SECT keypad function, moving the cursor back or
ahead by 16 lines.

4.3.3 Inserting Text
You can insert text simply by typing the text on the keyboard. No
command is required. Whatever you type becomes part of the file. Your
insertion appears on the screen as you type it and the surrounding text
moves as necessary to accommodate it. The cursor marks the starting
location for the insertion. When you want to begin a new line, press
RETURN to move the cursor to the beginning of the next line and continue
typing your text.

As you type new text, you may notice errors in sUlTounding text. You can
move the cursor to these errors and correct them at any time, and then
move the cursor back and continue to insert text.

4.3.4 Deleting and Undeletlng Text
You can delete text by character, word, and line. DELETE and DEL C
delete characters. DEL Wand LlNEFEED delete words or parts of words.
DEL l, DEL EOl, and CTRl/U delete lines or parts of lines. The deleted
text is stored in one of three buffers so that you can restore it using the
UNO commands (UNO C, UNO W, UNO L). (A buffer is a temporary
holding area for text. See Section 4.2 for more information on buffers.)
The character buffer contains the last character deleted; the word buffer
contains the last word deleted; and the line buffer contains the last line
deleted. Only the most recent deletion can be restored; you can restore
this unit of text numerous times to any location.

Figure 4-3 shows the three buffers that EOT fills when you use the delete
and undelete keys.

EDT 4-17

Figure 4-3: Three EDT Buffers Used for Deleting and Undeletlng
Text

DB DAY KEEPS THE

CHARACTER
BUFFER

WORD
BUFFER

LINE
BUFFER

ZK-1260-83

Table 4-4 lists the keypad functions used to delete text:

Table 4-4: Deleting Text In Keypad Mode

Keypad Function

DELETE

DEL C

DELW

LINE FEED

DEL L

CTRL/U

DEL EOL

CUT

Effect

Deletes the preceding character.

Deletes the current character.

Deletes to the end of the word.

Deletes to the beginning of the previous word.

Deletes to the next line.

Deletes from the beginning of the line to the cursor.

Deletes from the cursor to the end or beginning of
the line, depending on the current cursor direction.

Deletes the selected string from the current file and
stores it in the PASTE buffer. The selected string
is all the text between the cursor location when
you pressed the SELECT keypad function and the
position to which you moved the cursor. (Note
that the REMOVE key on the LK201 keypad works
like the CUT keypad function.)

Enter the following three lines of text. Then follow the steps to learn how
to use the delete keypad functions.

4-18 EDT

CHARACTER

WORD WORD WORD WORD WORD
LINE LINE LINE LINE LINE LINE LINE LINE

1. Move the cursor to the first C in the word "character". Press DEL C.
The C will disappear.

2. Press the GOLD key followed by UND C. The C will reappear.

3. Move the cursor to the H. Press DEL C to make it disappear.

4. Then press the GOLD key followed by UND C. The H is restored.

5. Press the GOLD key followed by UND C again, another H will appear.

Notice that the DEL C keypad function deletes the character directly at the
cursor and the DELETE key (on the main keyboard) deletes the character
immediately to the left of the cursor. You can use the UND C keypad
function to restore the most recently deleted character in either case. Press
the DELETE key and the DEL C keypad function to see the difference
between the two.

1. Move the cursor to the W in "WORD". Press DEL W. The word
"WORD" will disappear.

2. Press the GOLD key followed by UND W to restore the word.

3. Press the GOLD key followed by UND W again, another "WORD" will
appear.

Notice that the DEL W keypad function deletes to the end of the current
word, and the LINE FEED key (on the main keyboard) deletes to the
beginning of the preceding word. Press the LINE FEED key to see the
difference between the DEL W keypad function and the LINE FEED key.
Again, you can use the UND W keypad function to restore the deleted
word in either case.

1. Move the cursor to the beginning of the line of LINES. Press the DEL
L keypad function. The entire line will disappear.

2. Press the GOLD key followed by UND L to restore the line.

3. Press the GOLD key and UND L several times to create multiple lines.

Use the CTRLjU command to delete text from the cursor to the beginning
of the line. Notice that the cursor moves to the beginning of the line.
Press UND L to restore the line.

EDT 4-19

4.3.5 Locating Text
Use the FIND and FNDNXT keypad functions to locate strings of text. When
you press the GOLD key followed by FIND you will see the following
prompt on the screen:

Search for:

Type the string of text you are looking for and press one of the following
keys:

• ADVANCE

• BACKUP

• ENTER

• DO

If you press ADVANCE, EDT will search in a forward direction for the
specified string. If you press BACKUP, EDT will search in a backward
direction. If you press ENTER or DO, EDT will search in the direction
already set.

Note
The ADVANCE and BACKUP keys set the direction for
subsequent EDT commands.

Enter the text below. Press the GOLD key followed by the FIND keypad
function. When you are prompted for a search string, enter the word
Uticket". Then press BACKUP. The search will start at the end of the text
(where the cursor is located) and continue toward the beginning of the
text until it finds the word uticket".

Ella will not be able to attend the concert tonight.
She has a sore throat. Perhaps you could give the ticket
to somebody in your music class. Ella wants to see the
program when she is feeling better.

Search for: ticket

Now search for the word Uprogram". Press the GOLD key followed
by FIND. When you are prompted for the search string, enter the word
"program". If you press BACKUP again, you will see the response "String
was not found" because the word Uprogram" is located after the word
"ticket". Try it. Now press ADVANCE followed by FNDNXT. EDT will find
the string.

4-20 EDT

Ella will not be able to attend the concert tonight.
She has a sore throat. Perhaps you could give the ticket
to somebody in your music class. Ella wants to see the
program when she is feeling better.

Search for: program

Remember the following three items when you are entering a search string:

1. EDT ignores diacritical marks and the case of letters while making
searches (unless you enter the SET SEARCH EXACT command).

2. DELETE is the only key you can use to edit an incorrectly typed search
string.

3. To cancel a search string, press CTRL/U.

If you want to find the next occurrence of the string you are searching for,
use the FNDNXT keypad function. EDT will search in the direction already
set. If EDT cannot find the string, it will give you the message "String was
not found". You can reverse the direction of the search by pressing either
ADVANCE or BACKUP before pressing FNDNXT.

Enter the text below. Press GOLD and FIND. Enter the search string
"little" when prompted. Because the cursor is at the end of the text, you
must press the BACKUP keypad function to set the search in a backward
direction. Now press FNDNXT nine times. EDT will find each occurrence
of the search string. When the cursor arrives at the first "little", press
the ADVANCE keypad function to reverse the direction of the search.
Every time you press FNDNXT, the cursor will move forward to the next
occurrence of the word "little".

One little, two little, three little chickadees,
four little, five little, six little chickadees,
seven little, eight little, nine little chickadees,
ten little chickadees feeding.

Search for: little

EDT 4-21

4.3.6 Moving Text
You can move text using three different groups of keypad functions:

1. RETURN and OPEN LINE

2. DEL L, UNO L, DEL W, UNO W, DEL C, and UNO C

3. CUT and PASTE (or REMOVE and INSERT HERE)

Using the first method, you press RETURN to move text (with the cursor)
and OPENLINE to move text (without the cursor) down the screen line
by line. Using the second method, you delete a unit of text (character,
word, or line) from one location, move the cursor to another location, and
undelete the text there. (See Section 4.3.4 for more information about
deleting and un deleting text.) You can use the third method, which is
described in this section, to move larger units of text.

Use the following three keypad functions to move text:

1. SELECT

2. CUT (or REMOVE)

3. PASTE (or INSERT HERE)

Press SELECT to mark one end of a string of text that you want to delete
or move. Then move the cursor either backwards or forwards, to the other
end of the string and press CUT. Before you press CUT, you can correct a
mistake by pressing the GOLD key followed by RESET to cancel the select
range and start over.

You press CUT to delete the selected string of text from the current file and
store it in the PASTE buffer. (See Section 4.2 for more information about
the PASTE buffer.) The selected text is all the text between the cursor
location when you pressed SELECT and the position to which you moved
the cursor.

If you press CUT before you press SELECT, you will see the message "No
select range active".

You press GOLD followed by PASTE to insert the contents of the PASTE
buffer to the left of the cursor position.

To summarize, use the following steps to move text:

1. Place the cursor at the beginning of the text you want to move.

2. Press SELECT to mark the location.

4-22 EDT

3. Move the cursor to the end of the select range.

4. Press CUT to delete the text from its current position.

5. Move the cursor to the character just beyond where you want the text
inserted.

6. Press the GOLD key followed by PASTE.

Note
If you want to restore the select string to its original location
after you perform Step 4 above, press the GOLD key
followed by PASTE.

Enter the following text:

january february march april
may june july november
december august september october

In order to move the string "august september october" after "july", move
the cursor to the "a" in "august". Press SELECT. Then move the cursor
to the "r" in "october". Press CUT. The selected string will disappear into
the PASTE buffer. Now move the cursor after the word "july" and press
PASTE. A copy of the selected string in the PASTE buffer will appear on
the screen between the words "july" and "november".

If you press PASTE again, you will get another copy of the contents of the
PASTE buffer. Try it. Every time you press PASTE, you will get another
copy of the string "august september october". Once you perform another
SELECT and CUT operation, specifying a different string, the contents of
the PASTE buffer will change. You can always get as many copies of the
PASTE buffer as you want by pressing PASTE.

If you want to add to the text in the PASTE buffer, retaining the text
already there, use APPEND. APPEND deletes the select range from the
current buffer and adds it to the end of the PASTE buffer.

For example, if your PASTE buffer contains the text "Wolfgang Amadeus"
and you want to add the text "Mozart", follow the steps below:

1. Press SELECT.

2. Type the word" Mozart". (Precede the word with a space.)

3. Press APPEND.

EDT 4-23

Now the PASTE buffer contains the text:

Wolfgang Amadeus Mozart

4.3.7 Substituting Text

You can use the SUBS keypad function or the REPLACE keypad function
to replace one string of text with another. The following four steps
demonstrate how to use SUBS to make substitutions:

1. Press SELECT and enter the replacement text.

2. Press CUT. (The select range will disappear into the PASTE buffer.)

3. Press the GOLD key followed by FIND and enter the search string.

4. Press SUBS to exchange the existing text for the replacement text.

When you make substitutions using SUBS, you are using both the PASTE
buffer and the search string buffer. You use CUT to put the replacement
string in the PASTE buffer and FIND to put the string you want to find
and delete in the search string buffer. Figure 4-4 shows both buffers.

Figure 4-4: Two EDT Buffers Used for Substituting Text

CUT KEYPAD FUNCTION

REPLACEMENT
STRING

PASTE
BUFFER

FIND KEYPAD FUNCTION

STRING TO BE
DELETED

SEARCH
STRING
BUFFER

ZK-1261-83

When you use SUBS, EDT performs the substitution first and then moves
to the next occurrence of the search string. If EDT cannot find another
occurrence of the search string, it prints the message uString was not
found". If you do not want to make a particular substitution, press the
FNDNXT keypad function. The cursor will move to the next occurrence of
the search string. If you want to change that one, press SUBS again. Thus,
you can move through the buffer pressing SUBS each time you want to

4-24 EDT

make a replacement and pressing FNDNXT when you want EDT to leave
the search string alone.

Note
You must use the FIND keypad function when you are
making substitutions with SUBS because you are replacing
text that matches the search string with the contents of the
PASTE buffer. SUBS will not work correctly if you do not
use FIND.

Enter the following text:

Susanne grabbed the red apple and gobbled it down. Suddenly
her face turned quite red. Glancing towards the red house
she saw the huge tree bathed in red leaves.

Now perform the following steps to substitute the word Ugreenn for the
word ured":

1. Press SELECT and enter the word Ugreenn
•

2. Press CUT. (The word Ugreenn will disappear into the PASTE buffer.)

3. Press GOLD ~ollowed by FIND and enter the word uredn
•

4. Press SUBS to exchange the word Ured" for the word Ugreenn
•

5. Press SUBS three more times.

Your resulting text should look like this:

Susanne grabbed the green apple and gobbled it down. Suddenly
her face turned quite green. Glancing towards the green house
she saw the huge tree bathed in green leaves.

REPLACE deletes the text in the select range and replaces it with the
contents of the PASTE buffer.

For example, if your PASTE buffer contains the words upaste paste paste",
and your select range contains the words uselect select select", press
REPLACE to make your select range contain the words upaste paste paste".
The following steps demonstrate this example:

1. Press SELECT.

2. Type the words upaste paste pasten
•

3. Press CUT. Now your PASTE buffer contains the words upaste paste
paste".

4. Press SELECT again.

EDT 4-25

5. Type the words "select select select".

6. Press REPLACE. Now your select range contains the words "paste paste
paste".

4.3.8 Five More Keys to Use with the GOLD Key
Five keypad functions associated with the GOLD key are summarized in
Table 4-5:

Table 4-5: Five Gold Key Functions In Keypad Mode

Keypad Function

COMMAND

CHNGCASE

FILL

RESET

4-26 EDT

Effect

Enables you to enter a line mode
command from keypad mode.

Reverses the case of letters in your text.
Uppercase letters become lowercase;
lowercase letters become uppercase.

Reorganizes the select range so that
the maximum number of whole words
can fit within the current line width.

Changes the following conditions of
your editing session:

• Cancels an active select range.

• Empties the search buffer so that
there is no current search string.

• Sets EDT's current direction to
ADVANCE.

• Sets EDT to the default DMOV
state. (DMOV is a Nokeypad com­
mand that returns your editing ses­
sion to EDT's default state, where
EDT does not alter the case of let­
ters during move operations.)

Table 4-5 (Cont.): Five Gold Key Functions In Keypad Mode

Keypad Function

SPEC INS-special insert

Effect

Enables you to insert any charac­
ter from the DIGITAL Multinational
Character Set into your text using the
character's decimal equivalent value.
For information about the DIGITAL
Multinational Character Set, see the
EDT Editor Manual, which is available
separately.

For more information about all the available keypad keys, see the EDT
Editor Manual, which is available separately.

4.4 How to Use Line Mode
You can use EDT's line editing facility with any interactive terminal­
hardcopy or screen. Line editing uses the line as its point of reference.
EDT moves through the text line by line, not character by character as
in the two other editing modes. Line editing commands are particularly
useful for manipulating large blocks of text.

4.4. 1 Line Numbers and Ranges
To help you locate and edit text, EDT assigns line numbers. These line
numbers are not part of the text and are not kept when you end an editing
session. To see the line numbers of an already existing file, enter the TYPE
WHOLE command after the asterisk prompt (.). You will notice that the
text you enter is indented 12 spaces.

The following example demonstrates how to display your line numbers:

* TYPE WHOLE [Effi
1 oneoneoneoneoneoneone
2 twotwotwotwotwo
3 threethreethree
4 fourfourfourfour
5 fivefivefivefive

[EOB]

*

EDT 4-27

Line numbers have the following characteristics:

• They are assigned to every line in every buffer in every editing session,
including newly inserted lines and text added with the INCLUDE
command.

• They start with 1 and increment by 1.

• They are decimal numbers if newly inserted.

•
•

They are removed by the EXIT command, unless otherwise specified.

They can be renumbered in increments of 1 or more with the
RESEQUENCE command.

When you want a line mode command to affect a specific part of the
buffer, you must enter a range. Ranges can specify one or more lines. In
addition, the multiple-line ranges can be contiguous or noncontiguous.

Table 4-6 lists and describes the different ranges you can specify when
editing in line mode.

Table 4-6: Ranges for Line Mode

Range Type

period (:)

number

'string'

BEGIN

END

LAST

WHOLE

BEFORE

REST

Description

Current line

EDT line number

Next line containing the quoted string

First line of the buffer

After the last line in the buffer ([EOB])

Last line EDT was at in the previous buffer

Entire buffer

All lines in the buffer before the current line

All lines in the buffer starting with the current line and
ending with the last line

You can use the symbols and words listed in Table 4-7 with the range
types listed in Table 4-6 while editing in line mode.

4-28 EDT

Table 4-7: Symbols and Words Used In Line Mode

Symbol/Word

, or AND

: or THRU

n

n or FOR n

+ Mstring" or "n"

- Mstring" or Mn"

ALL Mstring" or Mn"

Description

Used to join noncontiguous ranges in a list;
only single lines can be joined in this way

Indicates a orOUp of lines starting with the
first range specifier and ending with the
second

Indicates the number of lines from the
current line

Indicates the next "n" number of lines

Indicates that "string" or "n" refers to a line
or lines after the current line

Indicates that "string" or "n" refers to a line
or lines before the current line

Indicates that the command applies to all
lines containing "string"

The following examples demonstrate some of the range types, symbols,
and words listed above.

Examples

1. TYPE

This command displays the current line.

2. TYPE 35

This command displays line 35.

3. TYPE "December"

This command displays the first line it encounters containing MDecember."

4. TYPE BEGIN

This command displays the first line of the current buffer.

5. TYPE END

This command displays the [EOB] mark.

EDT 4-29

6. TYPE WHOLE

This command displays every line in the current buffer.

7. TYPE 3,6,8

This command displays lines 3, 6, and 8.

8. DELETE 4 AND 13

This command deletes lines 4 and 13.

9. DELETE 4#3

This command deletes line 4 and the three lines following line 4.

10. TYPE. FOR 10

This command displays the current line and the next ten lines; the number
10 refers to the tenth line after the current line.

11. TYPE BEGIN +6

This command displays the seventh line of the current buffer.

12. DELETE -3 THRU .

This command deletes the current line and the three lines preceding it; the
number -3 refers to the third line before the current line.

13. TYPE. THRU 1000 ALL "Date:"

This command displays every line containing the string "Date:" that appears
in the group of lines starting with the current line and ending with line
number 1000.

4.5 Advanced Editing Features
This section describes some features that EDT provides to help you do
more complex tasks. These features include the following:

• Defining macros-EDT macros are groups of line-mode commands to
be executed at once. You place a series of commands in a buffer and
then the buffer name becomes a command to perform that series of
commands.

• Defining keys-EDT key definition is similar to creating a line-mode
macro. You can define a key to perform a series of character-mode
commands, both keypad and nokeypad.

4-30 EDT

• Startup command files-You can define keys or macros in a startup
command file and the key and macro definitions are automatically
ready for use in your editing session. You can also use the startup
file to set your own choice of editor characteristics. You can also use
startup command files to perform batch-style editing.

• Structured tabs-For programmers writing in structured languages,
such as Pascal, EDT provides structured tabs for easy editing. This
section explains this feature.

• EDT buffers-You can use EDT buffers to easily move text from one
buffer to another buffer, from a buffer to a file, and from a file to a
buffer. This section explains how to manipulate EDT buffers.

You can do fairly complex operations with macros, and even more complex
operations with key definitions, both of which are simple to write and use.
Finally, you may well accumulate a number of macros and key definitions
you want to save and reuse; the startup command file provides a method
for doing this.

4.5. 1 Defining Macros
You can group line-mode commands and name the group, using the name
as a line-mode command to execute the commands. This process is called
defining and executing a macro. EDT handles macros by creating a buffer
with the same name as the macro and holding the commands in that
buffer. When you enter the macro name, EDT pulls the commands out of
the buffer with that name and executes them.

To define a macro, use the DEFINE MACRO line-mode command. This
command tells EDT to create a buffer with the same name as the macro.
Because the macro name and the buffer name must be the same, the
rules for macro names are the same as those for buffer names: the names
can be 1 to 30 characters in length and may include alphabetic and
numeric characters and underscores (_). Next, enter that buffer (with a
FIND =buffer, CHANGE =buffer, or =buffer command) and insert text that
consists of line-mode commands. You can use any editing mode to insert
the line-mode commands. When all the line-mode commands you want
to execute are in the buffer, return to the buffer in which you want to use
the macro and enter the macro name as a line-mode command.

EDT 4-31

The following example illustrates this process. The macro searches through
the buffer MAIN for the next occurrence of the string uSales Record". When
an occurrence is found, the macro backs up one line and inserts several
lines of text.

S EDIT EXAM. TXT mTI]
1 This file contains sales and shipping records

*DEFINE MACRO DISCLAIM mTI]
*=DISCLAIM mTI]
* INSERT

AZ

FIND I I Sales Record I I

-1
INSERT
Sales records include sales
for which bills have been paid
and for which bills have been
outstanding less than 90 days.
AZ

*=main mTI]

Note that the first CTRL/Z in the example closes the INSERT in the
macro and the second CTRL/Z closes the INSERT that puts the text in the
buffer. Now, each time you type the newly created line-mode command
DISCLAIM, EDT searches for the string uSales Record", backs up one line,
and inserts the text given.

One advantage of using macros is that you can define large numbers of
them and access them with ease. The number of buffers you can maintain
(and therefore the number of macros you can access) is limited only by
available memory. Another advantage is that you can use macros from
any editing mode; the keypad command COMMAND and the nokeypad
command EXT (EXTend) allow you to use line-mode commands and
macros. You can even include macro names in key definitions with
EXT, but they must be the last thing in the key definition.

The disadvantage of using macros is that the macros can only include
line-mode commands. This means that you have less flexibility and power
than you would in character mode. Only a relatively small number of
commands are available in line mode.

Once you have defined macros, you often want to save them so that
you can reuse them later. The startup command file is provided for this
purpose. Section 4.5.3.3 contains more information on this topic.

4-32 EDT

4.5.2 Defining Key Functions

You can group nokeypad commands into units (called command strings)
and define character editing keys which you press to execute the group of
commands as one command. To distinguish them from macros these units
are called key definitions. Since you can execute line-mode commands from
nokeypad mode, key definitions can include any legal line or nokeypad
editing command.

You can create key definitions in either line-editing or keypad-editing
mode. In line editing you use the DEFINE KEY command. In keypad
editing, you use CTRL/K. When you press CTRL/K, EDT asks you to press
the key you want to define. When you have done this, EDT prompts you
for the string of nokeypad commands. As you are entering this string, you
can use the DELETE key to delete characters, or CTRL/U to erase the entire
line and cancel the key definitions.

There are two important differences in these two means of defining keys:

1. With the DEFINE KEY command, you include the key definition within
quotation marks ("), while with CTRL/K there are no quotation marks
around the key definition.

2. With the DEFINE KEY command, you type in the key definitions using
only nokeypad commands, while with CTRL/K, you can either type in
the nokeypad command, or press the key that performs that nokeypad
command, if there is one. That is, if you want to define a key using
CTRL/K that would delete three word.s, you could either type in D3W
to the CTRL/K prompt, or you could press the DEL WORD key three
times.

There are several control characters that have specific uses and cannot be
redefined:

• CTRL/Z exits to line-editing mode.

• CTRL/S and CTRL/Q are characters used by terminals in buffering text
(called XOFF and XON).

• CTRL/O skips over terminal output.

• CTRL/C kills the current EDT command.

• CTRL/H is the same as BACK SPACE, which in EDT moves the cursor
to the beginning of the line.

• CTRL/I is the same as TAB.

EDT 4-33

• CTRL/J is the same as LINE FEED, which in EDT deletes to the beginning
of the previous word.

• CTRL/L inserts a form feed, which causes a line printer to move up
one page when you print the file.

• CTRL/M is the same as RETURN.

You should not redefine these characters. In some cases the redefinitions
would not take effect, while in others your keyboard would not work as
you expected (the TAB key would not insert a tab, and so forth).

The GOLD key can precede any key for a key definition. You can define
GOLD M or GOLD CTRL/B, for instance.

Key functions are strings of nokeypad commands with some additional
rules:

• If you define a key with the DEFINE KEY command, you must enclose
the string of nokeypad commands in quotation marks (1/).

• If you end a string of commands with a period (.), the commands are
executed as soon as you press the key. In most cases, you should end
the command definition with a period. If you do not end the string of
commands with a period, EDT does not execute the commands until
you enter the key with ENTER. In other words, the period in the
definition enters the command string for you.

• If you enclose a command definition in parentheses, you can give
repeat counts by pressing GOLD followed by a number from the
keyboard to specify the count before pressing the defined key. If you
do not enclose the string in parentheses, the repeat count applies only
to the first command in the definition, not the entire definition.

• If you precede a string with a question mark (?), EDT prints the string
as a prompt when the command is executed, and accepts input from
the terminal in response to the prompt. EDT then substitutes the typed
input for the question mark in the command string and executes the
string. There is an example of this below.

• When you need to insert a CTRL/Z or a RETURN (CTRL/M) in a key
definition, you can enter a circumflex (A) followed by either Z or M. In
particular, you can perform the Open Line function (which creates a
blank line) with the command sequence AM-C, which inserts a carriage­
return/line-feed combination and backs up one character, placing the
cursor on the newly created empty line. If you have a key definition
that inserts more than one line of text, the text must be between an I

4-34 EDT

and a AZ, but the AM cannot be before the AZ. Try the following key
definition to see how it works:

*DEFINE KEY CONTROL A AS "iNameAZAMiAddressAZAMTown and StateAZAM."

Every time you press CTRL/ A while in character mode, the following
text is inserted:

Name
Address
Town and State

The advantage of key definitions is that you can perform complex editing
functions by using the powerful nokeypad commands. Because you can
deal with entities and the editing operations are done at the character
level, you can write key definitions that perform functions impossible to
do with macros.

The disadvantage of key definitions is that you must use them in character
mode. While this is usually not a restriction, you may want to create a
command file that uses EDT to edit text; however, you cannot use the
key definitions you have created because the command file must use line
editing. That is, you cannot do character editing except on a terminal.

Just as with macros, you will probably want to save the most useful key
definitions you create. You can do so with a startup command file. See
Section 4.5.3.3 for more information on startup command files.

The following string of nokeypad commands does a global query replace
operation from the cursor position to the end of the buffer. That is, the
definition prompts you for a string to find and another to replace the first.
The macro then searches for an occurrence of the first string and prints
the line containing the string. If you want that occurrence replaced, you
enter Y; if not, you enter N.

There are two ways to define this key. From line mode, use the DEFINE
KEY command:

*DEFINE KEY CONTROL A AS "EXT S/?'Replace: II?' With: '/REST/QUERY."

From character mode, press CTRL/K. This produces the prompt Press the
key you wish to define. Press CTRL/A. This is followed by the prompt
Now enter the definition terminated by ENTER. Type in the definition,
without quotation marks, but with the period (.) at the end.

EDT 4-35

You have defined a key to use the line-mode command SUBSTITUTE with
the slash character (I) as a delimiter. The question marks tell EDT to
request input for the strings to delete and insert. When you press the key
to which this definition is assigned, EDT prints Replace: at the bottom
of your terminal. When you enter a string (it must not contain I, the
delimiter character) and press ENTER, EDT prompts With: to the right of
the string you entered. When you enter the string to be inserted and press
ENTER, EDT searches for the first string, displays the line in which it finds
the string, and asks you if you want to replace the first string with the
second. The legal replies are described in Section 4.4.

This key definition prompts you for a procedure name and places your
cursor at the procedure heading for that procedure.

BR ADY 'PROCEDURE ?'Procedure name: ".

The BR command places the cursor at the beginning of the current buffer.
ADV sets the current direction to forward, and the quoted string moves
the cursor to the first occurrence of the string. The question mark tells
EDT to print the string in the inner quotes as a prompt and accept text
to replace the inner quoted string. If, for example, you type the string
"Write_Output" in response to the prompt Procedure name:, EDT actually
executes the following command:

BR ADY 'PROCEDURE Write_Output'.

4.5.3 Creating a Personal Editing Environment
EDT provides many features for creating a personal editing environment.
You can change the appearance of your screen display, the behavior of
lines of text as you insert them, and the mode in which you are working.
The following sections discuss some of the SET and SHOW commands
provided by EDT and how to use these commands and indirect command
files to create a personal startup command file. See the EDT Editor Manual,
which is available separately, for descriptions of all the available SET
commands.

4-36 EDT

4.5.3. 1 Using SET Commands

You can use the SET commands to change the way EDT works. Some
SET commands affect the display of text on your screen. For example, you
can specify the number of lines you want displayed and whether or not
the lines have line numbers (in line mode). You can also specify that EDT
make an exact search. See the following SET commands:

SET LINES number
SET [NO]NUMBERS
SET SEARCH EXACT

By default, your screen contains 22 lines. If you want to decrease the screen
display to 5 lines, enter the command SET LINES 5. If you are editing
at slow data rates, you can increase your editing speed by decreasing the
number of lines displayed on your screen.

When you are working in line mode, EDT displays line numbers by default.
If you do not want the, numbers to appear on the screen or paper, enter
the command SET NONUMBERS.

By default, when you press the GOLD key followed by the FIND key,
EDT searches for the specified string, disregarding the case of letters. For
example, if you enter the search string II course", EDT will. find every
occurrence of the word (for example, "courseN, "CourseN, "COURSEN). But,
when you enter SET SEARCH EXACT, EDT will only find occurrences of
the word that exactly match the specified string (" courseN).

You can use the following line mode commands to determine which mode
you enter:

SET KEYPAD
SET NOKEYP AD

In a start up command file, you would use the following SET commands
to determine which mode you enter:

SET MODE LINE
SET MODE CHANGE

For example, to enter nokeypad mode from keypad mode, enter the
following command after pressing GOLDCOMMAND:

Command: SET NOKEYPAD

One SET command, SET QUIET, even controls the sound of your terminal.
You can use this command to suppress the terminal bell that signals an
error.

EDT 4-37

4.5.3.2 Using SHOW Commands to See What Is Set

EDT provides the SHOW commands to enable you to see what is set and
what is not set. For every SET command there is a SHOW command.
If you want to see the number of lines on your screen, enter the SHOW
LINES command. If you want to see whether EDT is performing an exact
search, enter the SHOW SEARCH command.

For example, if you want to check the number of lines displayed on your
screen, enter the following command:

*SHOW LINES
22

Or, if you want to see whether line numbers will be displayed in line
mode, enter the following command:

*SHOW NUMBERS
numbers

Table 4-8 lists the SET commands discussed so far with their corresponding
SHOW commands:

Table 4-8: SET and SHOW Commands For Line Mode

SET Command . SHOW Command

SET KEYPAD SHOW KEYPAD

SET NOKEYPAD

SET LINES SHOW LINES

SET MODE LINE SHOW MODE

SET MODE CHANGE

SET NUMBERS SHOW NUMBERS

SET NONUMBERS

SET QUIET SHOW QUIET

SET NOQUIET

SET SCREEN SHOW SCREEN

SET TRUNCATE SHOW TRUNCATE

SET NOTRUNCATE

4-38 EDT

Table 4-8 (Cont.): SET and SHOW Commands For Line Mode

SET Command

SET WRAP

SET NOWRAP

SHOW Command

SHOW WRAP

For a complete list of the SHOW commands provided by EDT see the EDT
Editor Manual, which is available separately.

4.5.3.3 Startup Command Flies

EDT provides the ability to store macros, key definitions, and editor control
commands in a file to be read and executed each time you start EDT. This
file is called the EDTINI file (for EDT initialization). The more common
name is startup command file. If you have a file in your default directory
called EDTINI.EDT, EDT reads the file when it starts.

A startup command file can have any file specification. If it is called
EDTINI.EDT it is executed every time you invoke EDT. If it has some other
name, it must be called explicitly by using the /COMMAND qualifier to
the EDIT command either interactively or in an indirect command file.
The default file type for EDT startup command files is .EDT. For example:

• EDIT/COMMAND:SCAN TIZZY. TXT IRETI

EDT executes the file called SCAN .EDT and then is ready to edit
TIZZY.TXT.

Following is a sample startup command file. Note that you can include
comments in the file by preceding them with an exclamation point (!).
The comments follow the key definition they explain.

EDT 4-39

DEFINE KEY CONTROL A AS 'BACK C DC ADV C UNDC.'
! CTRL/A transposes the two characters to the left of the cursor.

DEFINE KEY CONTROL E AS "EXT CHANGE=?'To buffer: ' "
! CTRL/E moves you from buffer to buffer.

DEFINE KEY CONTROL V AS "I-?'Mark as: ,-AZ."
! CTRL/V marks your location in the text so you can find your
! way back to it with CTRL/B.

DEFINE KEY CONTROL B AS "BR ADV S/-?'Find mark: '-//."
! CTRL/B finds the location marked by CTRL/V.

DEFINE KEY CONTROL 0 AS "CUT'?'Delete to: "."
! CTRL/D deletes to the target string you type in. Text is
! removed to PASTE buffer and can be pasted back.

DEFINE KEY CONTROL G AS "7ASC."
! CTRL/G inserts a bell. beep. or buzz in your text. When you
! type the file. you hear the sound.

DEFINE KEY CONTROL R AS "REF."
! CTRL/R refreshes the screen.

DEFINE KEY CONTROL F AS "EXT WRITE ?'Write file: ' "
! CTRL/F writes the current buffer out as a file.

DEFINE KEY CONTROL T AS "EXT INCLUDE ?'Read file: '."
! CTRL/T reads a file in from outside EDT to the current position.

DEFINE KEY CONTROL X AS "EXT EX."
! CTRL/X causes an EXIT from change mode.

DEFINE KEY GOLD 10 AS "EXT HELP ?'Help on topic: '."
! GOLD PF2 prompts for line-mode help.

SET MODE CHANGE
! This command puts EDT directly into CHANGE mode upon startup.

SET QUIET
! This command eliminates the beep that normally comes with
! EDT error messages.

SET WRAP 70
! This command causes automatic wrapping at column 70. You
! must SET WRAP to use the FILL key (GOLD 8) on a Select Range.

Try out these key definitions interactively, using the line-mode command
DEFINE KEY or the character-mode CTRL/K. Almost all EDT startup files
for use on video terminals include the command SET MODE CHANGE.

Several of the keys defined in this example are defined differently by EDT.
Press the HELP key while in character mode for a list of keys defined by
EDT. You can usually redefine EDT keys that you do not use, but some
keys cannot normally be defined, CTRL/K, for instance. If you want to
define one of these keys, but also keep the normal EDT function as well,
you can DEFINE KEY GOLD CONTROLS K AS " ... ". Then, if you wish
to use the defined key, press GOLD CTRL/K.

You can also use GOLD to redefine most letter keys, as in the command
DEFINE KEY GOLD D AS " ... ".

4-40 EDT

Always try out key definitions with CTRL/K before putting them in a
startup command file. EDT informs you of undefinable keys. If the
CTRL/K does define the key, then press it to make sure it does what you
meant it to do.

To define keys on the keypad, use the key number, or GOLD and the
number. The keypad keys without numbers printed on them have the
numbers as listed in Table 4-9:
Table 4-9: Key Definitions for EDT

Keypad Key Key Number Keypad Key Key Number

UP-ARROW 12 .(dot) 16

DOWN-ARROW 13 0 0

RIGHT-ARROW 14 1 1

LEFT-ARROW 15 2 2

PFI GOLD 3 3

PF2 10 4 4

PF3 11 5 5

PF4 17 6 6

_(underscore) 18 7 7

,(comma) 19 8 8

ENTER 21 9 9

For even more information on key definition, see the EDT Editor Manual,
which is available separately.

EDT 4-41

4.5.3.4 Using Indirect Command Flies with EDT

You can write an indirect command file to combine the features of macro
definition, key definition, and EDT startup command files to help you
create a personal editing environment.

Here is an indirect file:

.ENABLE SUBSTITUTION

.ASKS FI File
EDIT/COMMAND;INI 'FI'
.ASK PU Purge it
.IFT PUT PURGE 'FI'

This command file enables you to use a specially named EDT startup file
(INI.EDT) instead of the default (EDTINI.EDT).

The startup file can contain key definitions.

You can also include macro definitions in a startup file. Keep in mind
that macro definitions are stored in a separate buffer. You can insert the
macro definition as part of your startup file, or you can do as shown in
this example:

DEFINE MACRO PELF
! Creates buffer PELF and enters name in
! line-mode command list.

INCLUDE PELF.FIL =PELF
! Finds file PELF.FIL, which includes
! the macro definition.

FIND =MAIN
Takes you back to MAIN buffer so you won't
start out in PELF.

You can do as many of these as you need for special applications of EDT.
Many EDT users have several startup files, one for programming, one for
text editing, and one for special formats, such as memos.

See Chapter 9 for more information on the Indirect Command Processor.

4-42 EDT

4.5.4 Structured Tabs
Most structured programming languages use tabs to indicate nested blocks
of code and other structures. EDT provides a structured tab facility to assist
you in this process. Skip this section if you are not writing structured code.

When you use the structured tab facility, you define the space between
tabs with the SET TAB command. You can execute this command in line
mode or with a startup command file. (See Section 4.5.3.3 for details on
the startup command file.) For instance, SET TAB 4 tells EDT to put four
spaces between two characters that have a tab between them. Once you
have executed this command, you can press the TAB key to get four spaces.
Pressing TAB again positions the cursor eight characters to the right, and
so forth. Thus, you can set the tab stops with the SET TAB command.

EDT keeps track of the current level of indentation using its indentation­
level counter. You can increment, decrement, and set the counter with the
appropriate commands (described in the following paragraphs) When you
type a TAB, EDT multiplies the value you gave with the SET TAB command
by the current value of the indentation-level counter to determine the
number of spaces and tabs to insert. Suppose, for example, you press TAB
before a WHILE statement; the WHILE statement starts at character position
4 (assuming you have entered the command SET TAB 4, as described in
the previous paragraph). EDT sets the indentation-level counter to 1. You
can now increment the counter, making its value 2, and when you press
a TAB at the beginning of the next line, EDT inserts eight spaces. When
you have introduced all the code that goes under the WHILE statement,
you can decrement the counter, after which pressing TAB causes only four
spaces to be inserted. Thus, code that is part of the WHILE statement
is indented eight spaces, and code following the WHILE is indented only
four spaces.

Three commands affect the indentation-level counter. You can increment
the level count with CTRL/E in keypad mode or the TI (Tab Increment)
command in nokeypad mode. CTRL/D or TO (Tab Decrement) decrements
the level count. CTRL/A and TC (Tab Compute) cause EDT to compute
the indentation level that corresponds to the cursor position and store it as
the current indentation level. To execute this command, your cursor must
be positioned to a column that is an even multiple of the SET TAB value;
otherwise you get an error message.

EDT 4-43

You can use the Tab Compute command to help in editing a program that
already exists. If you want to type some code that should be indented
twelve spaces, for example, you can move the cursor to character position
twelve and execute the Tab Compute command. Assuming that you
have previously executed the SET TAB command with a value of 4, EDT
computes that the current indentation-level counter value should be 3.
You can then proceed to type TAB at the beginning of a line to get twelve
spaces in front of the line, just as required.

EDT also has a command to move a region of text left or right. CTRL/T or
TABJ (Tab ADJust) moves the Select Range to the right if the repeat count
is positive, or to the left if the count is negative. EDT inserts or deletes
a number of tabs and spaces corresponding to the repeat count times the
SET TAB value.

4.5.5 More on EDT Buffers

This section briefly explains the more advanced features of EDT buffers.
These features include the following:

• Creating buffers

• Moving between buffers

• Copying text from a file into a buffer

• Copying text from one buffer to another buffer

• Copying text from a buffer to a file

• U sing buffers

For more information on buffers, see the EDT Editor Manual, which is
available separately.

4.5.5.1 How To Create and Move Between Buffers

To create a buffer, type the Find command followed by an equals sign
(=) and then the buffer name. A buffer name must be between 1 and
30 alphanumeric characters, but cannot start with a number. The only
punctuation character you can use in a buffer name is an underscore (_).

For example, to create a buffer named OSCAR while in line mode, enter
the following command line after the asterisk prompt (.):

*FIND=OSCAR lliTIJ

4-44 EDT

EDT creates the buffer OSCAR and moves you into that buffer. If you
press RETURN, you will see the [EOB] symbol followed by an asterisk
prompt (.), indicating that both the buffer OSCAR is empty and EDT is
ready for your commands to affect this buffer. You now can insert and
edit text as you did in the MAIN buffer.

To create a buffer from keypad mode, press the COMMAND keypad
function (GOLD 7). When EDT prompts you with "Command:," type Find
followed by an equals sign (=) and then the buffer name of your choice.
Terminate the command by pressing the keypad ENTER key. EDT creates
the specified buffer, then moves you into it. The screen clears except for
the [EOB] symbol, indicating that the current buffer is empty. You can
now begin entering and editing text just as you did in the MAIN buffer.

To create a buffer in nokeypad mode, type ·EXT followed by the line-mode
command indicated earlier in this section.

To return your previous location in the MAIN buffer, use the command
Find=MAIN. Include the period after the buffer name. If you omit the
period, you will return to the top of the MAIN buffer. When you leave
the alternate buffer, it remains intact until you exit from EDT. Unless you
command EDT to save the text of a buffer other than MAIN, that text is
destroyed when you leave EDT. (See Section 4.5.5.4 on how to save the
contents of a buffer by copying it into a file.)

Note that you can return to a buffer that you previously created. Just use
the Find=buffername command, terminating this command with a period
if you want to return to the exact location in buffername that you had
previousl y left.

The line-mode command SHOW BUFFERS displays a list of the existing
buffers and some information about the contents of each. An equals sign
(=) appears in the SHOW BUFFERS display next to the name of the current
buffer.

EDT 4-45

4.5.5.2 How To Copy Text from a File Into a Buffer

To copy text from a file located outside of EDT into an EDT buffer, use
the INClude command. While in line mode, for example, you type the
following command to copy the contents of a file named OUTSIDER.DAT
into your MAIN buffer:

*INCLUDE OUTSIDER. OAT =MAIN mIT!

The text of OUTSIDER. OAT is copied above the current line in the MAIN
buffer. If you do not specify a buffer name, EDT copies the text above the
current line in your current buffer.

Note that OUTSIDER. OAT is located in your own directory. You can copy
a file from another directory into an EDT buffer, providing you have access
to that file. See Chapter 5 for information about file specification and file
protection.

To copy text from a file into buffer while in keypad mode, you execute the
COMMAND keypad function (GOLD 7), then type after the "Command:"
prompt:

Command: INCLUDE OUTSIDER.DAT =MAIN

You press the keypad ENTER key to terminate this command.

In nokeypad mode, type EXT followed by the line-mode command
indicated earlier in this section.

4.5.5.3 How To Copy Text from One Buffer to Another Buffer

To copy text from one buffer to another while in line mode, you use the
COpy command. For example, to copy the contents of a buffer named
OSCAR to a buffer named YORICK, type:

*COPY =OSCAR TO =YORICK mIT!

When you complete this operation, the entire contents of the buffer OSCAR
is copied to the top of the buffer YORICK, and you are located in the buffer
YORICK.

Using the COpy command, you also can copy a portion of one buffer to
a specific location in another buffer. For example:

*COPY =OSCAR 5: 20 TO =MAIN 45 mIT!

This command copies lines 5 through 20 of the buffer OSCAR to the
location immediately above line 45 of the MAIN buffer. Your current
buffer is MAIN at the end of this operation.

4-46 EDT

When you are in keypad mode, you also can use the COpy command
to copy the entire contents of one buffer into another. First press the
COMMAND keypad function (GOLD 7), then type after the IICommand: 1P

prompt:

Command: COPY =OSCAR TO =MAIN

Press the keypad ENTER key to terminate this command.

However, if you are going to copy a portion of one buffer into a specific
location in another buffer, use Find command along with the CUT and
PASTE keypad functions. For example, to move a paragraph from buffer
OSCAR to a particular location in MAIN:

1. Move to buffer OSCAR, using the FIND-OSCAR command.

2. Move your cursor to the desired paragraph.

3. Use the CUT keypad function (6) to select this paragraph from buffer
OSCAR.

4. Move back to buffer MAIN, using the FIND=MAIN command. (To
return to your previous position in MAIN, type a period (.) after ·
MAIN.)

5. Move your cursor to the position in MAIN that you want the paragraph
to appear.

6. Use the PASTE keypad function (GOLD 6) to copy the paragraph into
the buffer MAIN. The text is copied immediately in front of the cursor
position.

See Section 4.3.6 for a detailed description of how to use the CUT and
PASTE keypad functions.

To copy text from one buffer to another while in nokeypad mode, type
EXT followed by the line-mode command indicated earlier in this section.

EDT 4-47

4.5.5.4 How To Copy Text from a Buffer to a File

To copy text from a buffer to a file, use the Write command. You can
use this command to copy text to a new file without affecting your editing
session.

The Write command followed by a file name copies the entire contents of
your current buffer into the specified file. You can also copy only a portion
of your current buffer into a file. For example, the following line-mode
command puts a copy of lines 23 through the end of the current buffer
into a file that you name EMT.DAT .

... WRITE EMT. OAT 23: END illITJ

In keypad mode, to copy only a portion of your current buffer into a file
called EMT.DAT:

1. Use the CUT keypad function (6) to place the selected text for the
new file in the PASTE buffer.

2. Execute the COMMAND keypad function (GOLD 7), then type after
the "Command:" prompt:

Command: WRITE EMT.DAT =PASTE

This Write command copies the contents of the PASTE buffer into the
new file EMT.DAT.

3. Use the PASTE keypad function (GOLD 6) to copy the text back into
your current buffer, if you want to keep it in your current file also.

In nokeypad mode, to copy text from a buffer into a file, type EXT followed
by the line-mode command indicated earlier in this section.

4.5.5.5 Ways to Use Buffers

Here are some ways to use EDT buffers:

1. Suppose you have to send a letter to 10 people, whose names and
addresses are in a file. The letter is basically the same for each person
but requires some minor editing to personalize the contents. You might
do the following:

• Invoke EDT to type the basic letter in the MAIN buffer.

• Use the Find command to create a separate buffer and move there.

• Use the INClude command to copy the file with the address list
into this separate buffer.

4-48 EDT

• Use the CUT keypad function to select the address from the list that
you want to use in your letter. (See Section 4.3.6 for information
on how to move text from one location to another using the CUT
and PASTE keypad functions.)

• Move back to your MAIN buffer, which contains your basic letter.

• Use the PASTE keypad function to add the address to the letter.

• Use the Write command to create a file containing this copy of the
letter.

You are now ready for the second letter. Delete the old address and,
using the preceding procedure, move the next one into place. Edit
the letter so that it reflects this new recipient and then use the Write
command to copy that version to another file. Repeat the process until
all 10 letter are finished.

2. When you write computer programs, you often use elements from
other programs in the one you are currently creating. You might do
the following:

• Invoke EDT to type the new program in the MAIN buffer

• Use the Find command to create a separate buffer and move there

• Use the INClude command to copy into this buffer the file
containing the other program

• Use the CUT keypad function to select the portion of this other
program that you want to include in your new program

• Move back to your MAIN buffer, which contains your new program

• Use the PASTE keypad function to move the section of the other
program into your new program

3. If you are writing a large computer program with several modules,
you may want to create each module in a separate buffer. When you
are ready to assemble your modules into one program, you can use
either the COpy command or the Find command along with the CUT
and PASTE keypad functions to move your text from one buffer into
another.

4. If you are in the middle of an EDT session and need to get some
information or text from another file, you can create another buffer
and use the INClude command to copy this file there. Once you find

EDT 4-49

the item you need, you can move back to your original buffer and
resume editing there.

4.6 EDT Summary
This section summarizes EDT. There are brief descriptions of range
specifications, editor control commands, and line and character editing
commands. The editing entities on which character editing commands
can operate are also included. For a more detailed description of the
commands and specifications presented here, see the EDT Editor Manual,
which is available separately.

Command names are given in full with the abbreviated form printed
in UPPERCASE. Square brackets ([]) enclose an optional parameter
or qualifier; in these cases, the default value is specified in the text
accompanying the command. A vertical bar (I) separates options; two
forms with a vertical bar between them are mutually exclusive. You can
choose one or the other, or, in some cases, neither. Lowercase words
indicate information you supply, such as file specifications, beginning line
numbers, range specifications, and so forth.

Remember that any line-mode command can be included in a key definition
using EXT and that any line-mode command can be entered from character
mode by using GOLD 7 and typing the command in response to the
Command: prompt.

4.6. 1 Range Specifications
Range specifications can designate single lines, contiguous ranges, or
noncontiguous ranges. You specify a range as shown in Table 4-11.

4-50 EDT

Table 4-11: Range Specification

Range Specification

Single line ranges

number

'string' I "string"

[range] + [number]

BEGIN

Description

The current line-the cursor position in
character editing.
Example: *TYPE .
Types the current line.

The line specified by the number.
Example: *1536
line pointer moves to line 1536.

The next line containing the string (if pre­
ceded by a minus sign, the preceding line
containing the string). Two quotation marks
with nothing between them, as "", default
to the last string entered.
Example: *'False Aralia'
line pointer moves to next line containing
"False Aralia".

The line specified by adding the number to
the range (if you use a minus sign instead of
a plus sign, the line specified by subtracting
the number from the range). The range
defaults to the current line, number defaults
to 1.
Examples:
*. + 25 line pointer moves down 25

lines

*+25 Line pointer moves down 25
lines

*237-25 Line pointer moves first to 237
and then up 25 lines

The first line in the buffer.
Example: *FIND BEGIN
line pointer moves to beginning of the
buffer.

EDT 4-51

Table 4-11 (Cont.): Range Specification

Range Specification

END

LAST

ORIGINAL number

Contiguous line ranges

[range-I] : [range-2]

4-52 EDT

Description

An empty line following the last line in the
buffer.
Example: • FIND END-l
Line pointer moves to the last line in the
buffer.

The line position in the most recent text
buffer before entering the current buffer.
Example: .FIND LAST
EDT switches back to the last position in the
previous buffer. If you use this command
in a key definition, such as DEFINE KEY
GOLD L AS HFIND LAST. n and then press
GOLDL while in character mode, you can
jump back and forth between two buffers
with ease.

The line specified by the number in the
buffer MAIN before any edits changed line
numbers in this editing session.
Example: .TYPE ORIGINAL 15
Types the line originally numbered IS,
regardless of how many lines you've added
to the file.

The lines between range-1 and range-2.
Both ranges must be single lines. If either is
omitted the current line is the default. You
can use either: or THRU in this expression.
Example: .15:36
Lists lines 15 through 36 on your terminal.

Table 4-11 (Cont.): Range Speclftcatlon

Range Specification

[range] # number

BEFORE

REST

WHOLE

Noncontiguous line ranges

[range-l,range-2, ...]

Description

The specified number of lines starting with
range, which must be a single line; if range
is omitted it defaults to the current line (you
can also use FOR instead of #).
Example: ",TYPE 13 5
Types line 13 and the next four lines, five
lines in all.

All lines in the buffer preceding the current
line.
Example: ",DELETE BEFORE
Deletes everything in the buffer above the
line pointer.

All lines in the buffer after and including
the current one.
Example: ",SUBSTITUTE/Molly/Dolly /REST
Performs the substitution in the current line
and the rest of the buffer.

All lines in the current buffer.
Example: .TYPE WHOLE
lists the entire buffer.

All lines specified by range-I, range-2, and
so on. Each range must be a single line (you
can also use AND instead of,).
Example: .12, 16, 14,
Types lines 12, 16, and 14, in that order.
Example: .COPY 12,2 TO END
Copies line 12 and line 2, in that order, to
the end of the buffer.

EDT 4-53

Table 4-11 (Cont.): Range Specification

Range Specification

[range]ALL 'string'

Description

All lines in the range containing the string.
If you do not supply a range the default is
all lines in the current buffer containing the
string.
Example: .COPY ALL 'log' to = BOY
Copies all lines containing the string log to
a buffer named BOY, which becomes the
current buffer.

Ranges that include buffer names

=buffer [range] The specified range in the specified buffer.
The range defaults to the entire buffer, with
the cursor placed at the top of the buffer
(you can also use BUFFER instead of =).
Whenever you name a buffer with the = or
BUFFER, that buffer becomes the current
buffer. In the output from the SHOW
BUFFER command, the current buffer is
indicated by the =.

4.6.2 Editor Control Commands
Editor control commands affect the way in which EDT does its work and
the way in which it displays the results. The following list shows the
minimum abbreviation for the commands in UPPERCASE. You can enter
anything between the minimum abbreviation and the entire keyword when
you issue a command.

Change [[=bufler] range]
CHANGE places you in character editing mode, either keypad or
nokeypad according to the last SET KEYPAD /NOKEYP AD command,
or according to the terminal model. The default is keypad editing for
VT100- and VT200-series terminals. For other terminals, the default
is nokeypad. The range can include a buffer name and a single line
specification where the cursor is positioned in character editing mode.
You can express this single-line range as the dot (.), meaning "where
I last was in this buffer," or as a line number, or as a quoted string.

4-54 EDT

EXit [filespec][/SEQuence[[: Initial: Increment]][[/SAve]]]
EXIT ends an editing session and writes the contents of buffer MAIN
to the file whose name you specify (the file specification defaults to the
input file specification). The /SEQUENCE qualifier requests EDT to
include line numbers in the output file. The initial value is the starting
number and the increment value is the increment between numbers.
The /SA VE qualifier tells EDT to save the journal file (called input-file­
name.jOU). Normally, the journai fHe is deieted after you successfuHy
exit from EDT.

Help topic subtopic
HELP displays information on the requested subject. The values
for Utopic" and Nsubtopic" can be either alphanumeric strings or the
wildcard symbol (.). HELP with no qualifiers produces a list of all
topics for which EDT is prepared to give help.

Qult[!SAve]
QUIT ends an editing session without saving the text in any buffer.
The /SA VE qualifier requests EDT to save the journal file (called
input-file-name.JOU).

SEt CAse (Upper I Lower I None)
SET CASE tells EDT to flag any characters of the specified type by
printing an apostrophe before the character. This command is mainly
used on terminals that do not display both upper- and lowercase.

SEt Cursor top:bottom
SET CURSOR defines the points at which EDT scrolls the text on
a display terminal in character editing. When you move the cursor
outside the range specified by top:bottom (where top and bottom are
line numbers on the screen), EDT scrolls the text up or down to
accommodate the cursor movement. The default setting for the cursor
is 7:14. The screen does not start scrolling until you move the cursor
up to line 7 or down to line 14. If you issue the command SET
CURSOR 14:14, the screen starts scrolling whenever you start to move
off line 14.

SEt ENTity (Word I Sentence I PAGe I PARagraph) 'string'
SET ENTITY allows you to define character strings to be recognized
as entity delimiters. WORD and SENTENCE entities end with any
one of the string of characters you specify. PAGE and PARAGRAPH
end with the entire string. Default delimiters are space, LF, TAB, FF,
and RET for WORD; period, question mark, and exclamation point for
SENTENCE; FF for PAGE; and RET RET for PARAGRAPH. Although
all these entities are defined, there are no EDT commands that affect

EDT 4-55

sentences or paragraphs. There are several commands that affect
words: DEL W, UNO W, WORD. There is one EDT command that
affects a page: PAGE. The SET ENTITY command makes it possible to
define keys (or enter nokeypad commands) that affect all these entities,
but you have to do it yourself. If you have a text formatting program,
you may want to use SET ENTITY to define paragraphs and pages
using the same rules as the text formatter.

SEt Keypad I NOKeypad
SET KEYP AD /NOKEYP AD tells EDT whether you wish to enter
keypad or nokeypad editing mode when you issue the CHANGE
command or the SET MODE CHANGE command from your startup
command file. See Section 4.5.3.3 for more on startup command files.
The default is keypad editing for VT100- and VT200-series terminals
and nokeypad for all others. If your terminal has a keypad and is not
one of the DIGITAL models, you can probably include SET KEYPAD
in your startup file and it will probably work. If this is your situation,
you should check to make sure the key definitions for your terminal
match what is shown in the EDT help files. You should also check
your terminal manual.

SEt Lines number
SET LINES tells EDT how many lines to display on your screen in
character-editing modes. You can speed editing tasks on slow terminals
by reducing the number of lines displayed. The default number of
lines is 22. If you are editing on a slow terminal, try SET LINES
12. This reduces the time it takes to change the screen when you
edit something. If you do change this setting, you should also SET
CURSOR 0:8.

SEt Mode {Line I Change}
The SET MODE command is used in the startup file (Section 4.5.3.3) to
control the mode in which EDT starts editing. If you put SET MODE
CHANGE in your startup file, you go directly into character editing
when you start EDT. The default for EDT is line mode.

SEt NUmbers I NONumbers
SET NONUMBERS tells EDT not to display line numbers in line­
editing mode. The default is NUMBERS. EDT displays line numbers
along with text in line editing.

SEt Quiet I NOQuiet
SET QUIET tells EDT not to ring the terminal bell when an error
occurs in character editing. SET NOQUIET is the default. SET QUIET
is commonly included in startup files.

4-56 EDT

SEt SCreen width
SET SCREEN defines the number of characters EDT displays on
each line. What happens to the remaining characters on the line
is determined by the TRUNCATEINOTRUNCATE setting (see SET
TRUNCATE, below): the extra characters are either wrapped around
to the next line, or they are not displayed.

The default screen width is 80 characters. The VT100- and VT200-
series terminals can be set to either 80 columns or 132 columns. If
you are editing a file that is in 132-column format, you should reset
your terminal before entering the EDIT command. See Chapter 3, the
description of the SET TERMINAL command, for more information.
Once you have done that, then enter the EDIT command and SET
LINES 132 to make EDT match up with the file.

Another method of dealing with lines wider than the screen-and
EDT lines can be up to 250 characters long-is to use the nokeypad
commands SHL (shift left) and SHR (shift right) in a key definition. See
EDT Editor Manual, which is available separately, for an explanation
of these commands. See also EDT help files under HELP CHANGE
SUBCOMMAND SHIFT.

SEt SEarch {Begin I End}
SET SEARCH BEGIN lEND tells EDT where to leave the cursor after
locating a search string. The default is BEGIN. EDT leaves the cursor
at the beginning of the search string.

SEt SEarch {BOunded I Unbounded}
SET SEARCH BOUNDED tells EDT to stop searching when it reaches
the next page delimiter. This does not work if you do not have
any page delimiters in your text. The default is UNBOUNDED; EDT
searches the whole buffer in the current direction.

SEt SEarch {General I EXact}
SET SEARCH EXACT tells EDT to accept a match for a search string
only if the case matches exactly for each character in the string.
GENERAL, which is the default, allows strings to match whatever
the case. If you SET CASE EXACT, you can tell the difference
between Mongo and mongo. The case setting affects the SUBSTITUTE
command and SUBS key as well as searches.

SEt TAb n I NOTab
The SET TAB command, in conjunction with the tab manipulation
commands (CTRL/ A, CTRL/D, CTRL/E, and CTRL/T in keypad editing;
TC, TO, TI, and TADJ in nokeypad editing), allows you to format your

EDT 4-57

text, especially structured programs, very easily and quickly. For a
description of how to use structured tabs, see Section 4.5.4.

SEt TErmlnal{HCPV I VT52 I VT 1 OO}
{SCROLL I NOSCROLL}
{EDIT I NOEDIT}
{EIGHTBIT I NOEIGHTBIT}

The SET TERMINAL command overrides the terminal definition that
EDT obtains from the operating system. Micro/RSX takes care of
all terminal settings for you when you issue the EDIT command. It
is rarely necessary to override these settings if you have a DIGITAL
terminal. If you have to do so, it may indicate that Micro/RSX does not
know your terminal model. Issue a DCL SET TERMINAL/INQUIRE
command to make sure your terminal is set properly.

The EDT SET TERMINAL COMMAND offers four choices:

• The first choice is between HCPY, VT52, and VT100. HCPY
means hardcopy. This is the default for all terminals except VT52s,
the VT100-series, and the VT200-series; nokeypad editing is the
default. VT52 sets the terminal as a VT52; keypad definitions
match the VT52 keypad; keypad editing is the default. VT100
sets the .terminal as a VT100- or VT200-series terminal; keypad
definitions match the keypads on those terminals; keypad editing
is the default.

• The second choice is between SCROLL and NOSCROLL. All
DIGIT AL video terminals default to SCROLL, meaning that they
support scrolling regions that EDT can use. Other video terminals
default to NOSCROLL; some support scrolling regions and can be
set to SCROLL.

• The third choice is between EDIT and NOEDIT. VT102 terminals
support certain screen editing features; EDIT is the default for
VT102 terminals. NOEDIT is the default for all others.

• The fourth choice is between EIGHTBIT and NOEIGHTBIT.
Terminals that support the DEC Multinational Character Set, such
as the VT200-series, default to EIGHTBIT. All others default to
NOEIGHTBIT.

SEt {TRuncate I NOTRuncate}

SET NOTRUNCATE tells EDT not to truncate lines that are longer
than the current screen width. If you specify NOTRUNCA TE, EDT
displays the extra characters on subsequent lines. TRUNCATE is the
default setting; EDT displays a diamond on the edge of the screen to
indicate that the display does not include the entire line.

4-58 EDT

SEt Verify I NOVerify
SET VERIFY tells EDT to print the text of macros and command files
when you execute them. This can be helpful in debugging macros and
key definitions, but otherwise you probably can skip it. The default
setting is NOVERIFY.

SEt Wrap n I NOWrap
SET WRAP does two things: it causes EDT to insert a RETURN in your
file when the word you are typing causes the line length to exceed the
value of n. It also tells EDT what to use for the right margin when
you execute the FILL command. NOWRAP is the default setting. If
you have issued SET WRAP, you can then mark out a Select Range
and press FILL (GOLD 8) and all the lines in the Select Range are
rearranged to match the value you set.

SHow BUtler
SHOW BUFFER lists the buffers in use and the number of lines of
text in each buffer. The current buffer has an equals sign (-) in front
of its name. Any buffer for which EDT has not read all the text has
an asterisk after the line count, showing that the count for that file
may not be correct. EDT sometimes reads in only part of a file when
starting up, but it reads in the rest without any explicit action on your
part as you work your way down in the file.

SHow CAse
SHOW CASE displays the current case setting-UPPER, LOWER, or
NONE. The default is NONE.

SHow Cursor
SHOW CURSOR displays the range the cursor can move in without
EDT scrolling the text up or down. The default setting is 7:14.

SHow ENtity {Word I Sentence I PAGe I PARagraph}
SHOW ENTITY displays the delimiter(s) for the specified entity.
Default delimiters are LF, TAB, FF, and RET for WORD; period, question
mark, and exclamation point for SENTENCE; FF for PAGE; and RET
RET for PARAGRAPH.

SHow Key {CONtrol letter I [Gold] number}
SHOW KEY displays the definition of the specified key in character
editing, whether you have redefined the key or not.

EDT 4-59

SHow SCreen
SHOW SCREEN displays the current setting for the width of the
screen. The default setting is 80.

SHow SEarch
SHOW SEARCH shows the current search parameters. The default
settings are GENERAL, BEGIN, and UNBOUNDED.

SHow TErminal
SHOW TERMINAL displays the type of terminal EDT thinks you are
using.

SHow VErsion
SHOW VERSION shows the version of EDT you are using.

4.6.3 Line-Mode Editing Commands

You use line-mode commands for standard line-mode editing, and from
character mode using the GOLD 7 key.

The /QUERY qualifier can be used with several commands (COPY,
DELETE, MOVE, and SUBSTITUTE). In each case, EDT displays the line it
is currently on, and prompts you with a question mark. The legal replies
are Y, N, A, and Q. Y (for Yes) tells EDT to perform the operation as
requested. N (No) tells EDT not to perform the operation. A (All) allows
EDT to perform the indicated operation for the rest of the range. Q (Quit)
tells EDT to quit the operation without doing anything further.

CLear buffername
CLEAR deletes the entire contents of a buffer you name, whether you
are currently editing in that buffer or not. The buffer no longer exists
after you clear it.

COpy range-l TO [range-2][/Query][/Dupllcate:n]
COpy copies the range of lines specified by range-I to the position
specified by range-2 without deleting the original text. Range-2 can
be another buffer. The default for range-2 is the current line. If you
use the /QUERY qualifier EDT asks you about copying each line of
range-I. The responses to the /QUERY command are described at
the beginning of this section. The /DUPLICATE qualifier tells EDT to
perform the copy a number of times, thereby inserting several copies
of the text at range-2.

4-60 EDT

DEFine Key [CONtrol I Gold] x AS "string"
DEFINE KEY associates a keypad key or a control character with a
string of nokeypad commands. If you use CONTROL, x must be a
keyboard character other than 0-9, !, 'Yo, " and ". If you use GOLD,
or if you do not include GOLD or CONTROL, x must be a number.
(For a display of the number associated with each keypad key, enter
HELP DEFINE KEY VT100. The VT200-series is the same for the
numerical keypad. The numbers for the VT200-series editing keypad
are E1 through E6.) The "string" must be a quoted string of nokeypad
commands. For more information on constructing these strings, see
Section 4.5.2.

DEFine Macro macro-name
DEFINE MACRO assigns a name to a series of commands. Each macro
is associated with a buffer in which reside a number of line-mode
commands (the macro). When you enter macro-name as a line-mode
editing command, these commands are executed. The macro-name
can be 1 to 30 characters in length and may include alphabetic and
numeric characters and underscores (_). See Section 4.5.1 for more
information on defining macros.

Delete [range][/Query]
DELETE tells EDT to delete the lines in the specified range. The range
defaults to the current line. If you enter the /QUERY qualifier, EDT
asks you about each line before deleting it. The responses are listed
at the beginning of this section.

Find range
FIND locates the specified range (which must be a single line) and
places the cursor at the beginning of the line.

INClude ftlespec [range]
INCLUDE inserts the file whose name you specify into the buffer
specified by range. The default for range is the current buffer. EDT
inserts the file in front of the first line of range.

Insert [range]
INSERT allows you to insert text at the point specified by range, which
must be a single line. EDT inserts the text you type in front of the
line indicated by range. You terminate the text to be inserted with a
CTRL/Z. However, if you wish to insert only one line of text, you can
follow the range with a semicolon; any text typed on the same line
after the semicolon is inserted at range.

EDT 4-61

Move [range-l] TO [range-2][!Query]
MOVE moves the text specified by range-l to the point indicated
by range-2. The default for range-l and range-2 is the current line.
Range-2 must be a single line. MOVE deletes the original copy of the
text and moves it in front of the point indicated by range-2.

Print nlespec [range]
PRINT writes a file called filespec to the line printer, if any. The
default for range is the current buffer.

Replace [range]
REPLACE is the equivalent of a DELETE command followed by an
INSERT command. EDT deletes the text specified by range and allows
you to insert text to replace it. The default for range is the current
line. Replacement text is inserted at the point from which the deleted
text was taken. You can insert a single line of text by following the
range with a semicolon. EDT inserts any text between the semicolon
and the RETURN after deleting the text indicated by range.

RESequence [range][/SEquence[[:lnltlal: Increment]]]
RESEQUENCE assigns new sequence numbers to the lines in the range.
Range must specify a contiguous set of lines, and the default for range
is the entire current buffer. If you use the ISEQUENCE qualifier, EDT
starts the sequencing with the value of initial and adds the value of
increment to get the next line number. If you omit the ISEQUENCE
qualifier, initial defaults to the first line number of range and increment
defaults to 1.

Substitute /strlng-l/strlng-2[!][range][/Brlef[[:n]][[/NOType]][[!Query]]]
SUBSTITUTE replaces occurrences of string-l with string-2. Range
specifies where EDT may look for string-I. If you omit range, it
defaults to the current line. (You can use any character as a string
delimiter provided you use the same delimiter in all places.) EDT
displays the line after it makes the substitution. The IBRIEF qualifier
tells EDT to display only n characters of the line. The INOTYPE
qualifier tells EDT not to display the line. The IQUERY qualifier tells
EDT to ask before doing each substitution. The possible responses are
described at the beginning of this section.

Notice that the slash (I) is part of the command. If you wish to
use SUBSTITUTE on a string that includes a I, you can replace the
I with another delimiter chosen from the shifted number keys on the
keyboard. For example, the following command substitutes Micro/RSX
(with I) for MicroPDP-ll:

*SUBSTlTUTE$MicroPDP-11$Micro/RSX$WHOLE/QUERY

4-62 EDT

Notice that the $ is not substituted for the / in front of QUERY.

[Substitute] Next [/strlng-l/strlng-2[[/]]]
SUBSTITUTE NEXT replaces the next occurrence of string-1 with
string-2. The command is especially useful after you have used the
SUBSTITUTE command, since string-1 and string-2 default to the
strings specified in your last SUBSTITUTE command. When EDT
makes a substitution on a line, that line becomes the current line. The
same rule about the / holds.

[Type][range][/BRlef[[:n]][[/STay]]]
TYPE is the default line-mode command and need not be specified.
TYPE displays the specified range of lines. Range can be a single line
or multiple lines, and the multiple lines need not be contiguous. If you
include the /BRIEF qualifier, EDT displays only the first n characters
from each line (n defaults to 10). If you specify the /STAY qualifier,
EDT does not move the current line.

Write filespec [range][/SEQuence [[:Inltlal:lncrement]]]
WRITE writes the text specified by range to a file called filespec. If
you use the /SEQUENCE qualifier, EDT includes the line numbers,
starting with initial and increasing by increment, in a fixed field in
the output file. If you omit the /SEQUENCE qualifier, EDT uses the
line numbers it obtained from the input file. In other words, use this
command to create a file without leaving EDT.

4.6.4 Editing Entities

Some character editing commands operate on pieces of text that EDT
recognizes by special names. These pieces are called entities of text. The
names are used in nokeypad commands, but some of the entities are used
in keypad commands as well. Table 4-12 summarizes the EDT entities.

EDT 4-63

Table 4-12: Editing Entities

Entity

C

W

BW

EW

L

BL

EL

NL

PAR

BPAR

EPAR

SEN

4-64 EDT

Description

A single character, which may be any of the alphabetic, numeric,
or special keys on the keyboard. Control characters, such as
CTRL/M, are considered single characters.

A word, which is a string of characters delimited by one of a set
of delimiter characters. The default delimiters are space, RET,
TAB, and FF, but you can change these with the SET ENTITY
command.

The string of characters from the cursor position to the beginning
of the word; if the cursor is at the beginning of a word, BW is
the previous word.

The string of characters from the cursor to the end of the word,
including the character at the cursor position.

A single line of text.

The string of characters from the cursor to the beginning of the
line, or, the previous line, if the cursor is at the beginning of a
line.

The string of characters from the cursor to the end of the line,
including the character at the cursor position.

The string of characters from the cursor position to the beginning
of the next line.

A string of characters between paragraph delimiters; the default
delimiter is a pair of RETURNs, but you can change these with
the SET ENTITY command.

A string of characters from the cursor to the beginning of the
paragraph, or the previous paragraph, if the cursor is at the
beginning of a paragraph.

A string of characters from the cursor to the end of the
paragraph, not including the paragraph delimiter, but including
the character at the cursor position.

A string of characters between sentence delimiters; the default
delimiters are period, question mark, and exclamation point, but
you can change these with the SET ENTITY command.

Table 4-12 (Cont.): Editing Entities

Entity

BSEN

ESEN

PAGE

BPAGE

EPAGE

BR

ER

V

'xyz'

SR

Description

A string of characters from the cursor to the beginning of the
sentence.

A string of characters from the cursor to the end of the sentence,
not including the sentence delimiter; but including the character
at the cursor position.

The text between page delimiters, including the second delimiter;
the default delimiter for a page is a form feed (CTRL/L), but you
can change this with the SET ENTITY command.

The text from the cursor to the beginning of the page, or the
previous page, if the cursor is at the beginning of the page.

The text from the cursor to the end of the page, not including
the page delimiter, but including the character at the cursor
position.

The text between the cursor and the beginning of the current
buffer.

The text between the cursor and the end of the current buffer.

The text between the cursor and the same column position on
the next line, or the end of the next line, if the next line does
not contain enough characters to reach the same column.

A string of characters that is used in search operations; when
you use this entity with the D (delete), CUT, or R (replace)
functions, the entity includes the text between the cursor and
the string.

The text in the Select Range, which is everything between
the cursor position and the place in the buffer where the SEL
command was last executed; if you have entered no select
command (or you have canceled the last one) SR defaults to the
search string, or to a single character in the current direction for
the CHGC (change case) command.

4.6.5 Keypad Commands
This section provides a brief description of the function of each keypad
command, in Table 4-13. For further information on these commands, use
the keypad HELP key.

EDT 4-65

Table 4-13: Keypad Commands

Couunand Function

ADV ANCE Sets the current direction to be forward (toward the end
of the current buffer). This is the default setting, and it
remains in effect until you give the BACKUP command.
This is keypad key 4.

APPEND Deletes the Select Range and stores it at the end of the
paste buffer, leaving the previous contents of the paste
buffer untouched. This is keypad key 9.

BACKUP Sets the current direction to be backward (toward the
beginning of the current buffer). This setting remains in
effect until you give the ADV ANCE command. It is quite
confusing to be pointing back when you think you are
pointing forward. All commands implying a direction are
affected. This is keypad key 5.

BLINE Moves the cursor over a BL in the current direction.

BOTTOM Places the cursor at the end of the current buffer. This is
keypad key GOLD 4.

CHNGCASE Changes the case of letters in the Select Range (UPPERCASE
letters become lowercase and vice versa). If there is no
Select Range this command operates on one character in
the current direction. This is keypad key GOLD 1.

COMMAND Prompts you to enter a line-editing or editor-control com­
mand. This is GOLD 7 on the keypad.

CUT

DELC

DEL EOL

4-66 EDT

Deletes the Select Range from the current buffer and places
the text in the paste buffer. This is key 6 on the keypad.
On VT200-series terminals, the REMOVE key also performs
a cut.

Deletes the character the cursor is on and places it in the
character buffer. This is the comma (,) on the keypad.

Deletes the text between the cursor and the next line
terminator, including the character at the cursor but not
the terminator, and places it in the line buffer. This is
keypad key GOLD2. Compare this key with DEL L.

Table 4-13 (Cont.): Keypad Commands

Command Function

DEL L Deletes the text between the cursor and the next line
terminator, including the terminator and the character at
the cursor, and places it in the line buffer. This is PF4 on
the keypad. Compare this key with DEL EOL. You can
delete the line with one command, undelete it with UND
L (GOLD PF4), and then delete it with the other command
and notice the difference.

DEL W Deletes the text between the cursor and the next word
terminator, including the character at the cursor but not the
word terminator, and places it in the word buffer. This is
the underscore (_) on the keypad.

DOWN Moves the cursor to the same position on the next line
down, or to the end horizontal position if the next line
contains enough characters, otherwise the end of the next
line. This is the DOWN-ARROW.

ENTER Causes the command to be executed when you enter a line­
mode command (using COMMAND); terminates text strings
you enter when searching (using FIND); terminates key
definitions you enter when redefining keys (using CTRL/K).

EOL Moves the cursor to the end of the current line. This is key
2 on the keypad.

FIND Searches in the current direction for the search string. You
are prompted for the string, which you must terminate with
ENTER, ADVANCE, or BACKUP. (If you use ADVANCE or
BACKUP, you may change the default direction.) FIND also
stores the search string in the search buffer. This is GOLD
PF3 (and also the FIND key on the VT200-series terminals).

FNDNXT Searches in the current direction for the search string, which
is the text stored in the search buffer. Text is entered in the
search buffer when you use the FIND command or execute
a line-editing or nokeypad command that specifies a search
string. FNDNXT is PF3 on the keypad.

GOLD Causes the next keypad key pressed to perform the alternate
function. You can also enter repeat counts for commands by
pressing GOLD, then a number, using the keyboard keys.
GOLD is PF1.

EDT 4-67

Table 4-13 (Cont.): Keypad Commands

Command Function

HELP Displays a picture of the keypad on the terminal screen and
asks what key you would like described, then displays a
short description of the function of the key you specify.
HELP is PF2.

LEFT Moves the cursor one character position to the left; if the
cursor is at the beginning of a line, LEFT moves it to the
end of the previous line. This is the LEFT-ARROW.

OPEN LINE Inserts a line terminator after the cursor position; this either
creates a blank line or moves the text to the right of the
cursor to a new line. This is GOLD 0 on the keypad.

P AGE Moves across a PAGE in the current direction. PAGE is 7
on the keypad.

PASTE Inserts a copy of the text in the paste buffer at the cursor
position, leaving the paste buffer intact. PASTE is GOLD 6
on the keypad.

REPLACE Deletes the Select Range and replaces it with the contents
of the paste buffer. REPLACE is GOLD 9 on the keypad.

RESET Cancels the current Select Range or cancels the GOLD key
if you have pressed it and changed your mind about using
it. RESET is GOLD . (M dot") on the keypad.

RIGHT Moves the cursor one character position to the right; if the
cursor is at the end of a line, RIGHT moves the cursor to
the beginning of the next line. This is the RIGHT-ARROW.

SECT Moves the cursor sixteen lines in the current direction,
leaving it at the left margin. SECT is 8 on the keypad.
On the VT200-series terminals, PREV SCREEN moves back
one section and NEXT SCREEN advances one section.

SELECT Marks a position in the buffer as being one end of a Select
Range. The Select Range is everything between this marked
position and the current cursor position. You can move the
cursor in all the usual ways. SELECT is. (dot) on the
keypad. The VT200-series terminals have a second SELECT
key on the editing keypad.

4-68 EDT

Table 4-13 (Cont.): Keypad Commands

Command Function

SPECINS Allows you to insert a character into the buffer by specifying
its ASCII value. First, press the GOLD key, then the numeric
value using the keyboard keys and then press SPECINS.
This is GOLD 3 on the keypad.

SUBS Deletes the search string, replaces it with the contents of
the paste buffer, and finds the next occurrence of the search
string. This is GOLD ENTER on the keypad. Read the
keypad help for information on using this key. Many users
use the line-mode SUBSTITUTE command in conjunction
with GOLD 7.

TOP Positions the line the cursor is on at the top of the screen.
This is GOLD 5 on the keypad.

UND C Places the character in the character buffer at the cursor
position, leaving the character buffer unchanged. That is,
you can undelete the same character repeatedly. This is
GOLD, (comma) on the keypad.

UND L Places the text in the line buffer at the cursor position,
leaving the line buffer unchanged. You can undelete the
same line repeatedly. This is GOLD PF3.

UND W Places the text in the word buffer at the cursor position,
leaving the word buffer unchanged. You can undelete the
same word repeatedly. This is GOLD _ (underscore).

UP Moves the cursor to the same cursor position in the line
above if it exists; if not, to the end of the line above. This
is the UP-ARROW.

WORD Moves the cursor to the next W in the current direction,
past the next word delimiter. This is the 1 on the keypad.

In addition to these functions which are accessible from the keypad, several
functions are available on the keyboard itself, as shown in Table 4-14.
Keypad and keyboard keys that you never use are good candidates for
redefinition.

EDT 4-69

Table 4-14: Keyboard Commands

Command Function

BACK SPACE Moves the cursor to the beginning of the line

LINE FEED

CTRL/A

CTRL/D

CTRL/E

CTRL/F

CTRL/K

CTRL/T

CTRL/U

CTRL/W

CTRL/Z

Deletes the previous word and puts it in the word buffer

Sets tab indentation level to current cursor position (cursor
position must be an even multiple of the SET TAB value)

Decreases the tab level one unit

Increases the tab level one unit

Fills the selected range to the line width

Accepts a definition for a keypad key or control character

Moves selected range a tab stop left for a minus argument,
right otherwise

Deletes text between the cursor and the beginning of the
line

Refreshes the screen

Returns to line editing

4.6.6 Nokeypad Commands
Nokeypad commands are important not only for users who use nokeypad
editing, but also for writing key definitions. Many powerful functions
can be performed by strings of these commands (see Section 4.5.2 for a
detailed discussion of key definitions).

Nokeypad commands must be entered exactly. Abbreviations are not
allowed. The commands may be strung together without delimiters if you
wish, or you may include spaces. You can repeat a string of commands
by enclosing the string in parentheses. When a command in the string
fails (for instance a search command does not find its object), EDT stops
executing commands. All these rules also hold for a command string of
nokeypad commands used in key definitions.

Nokeypad commands consist of one or more of the following elements: a
nokeypad command, a count of actions or entities, a direction, an entity,
and a buffer name. The count either tells EDT how many times to perform
an action, or how many entities to handle. The direction is either + for

4-70 EDT

forward (towards the end of the buffer) or - for backward (toward the
beginning of the buffer). Entities are summarized in Section 4.6.4. The
buffer name is used in CUT, PASTE, and APPEND commands to tell EDT
where to store pieces of text.

There are three possible formats for nokeypad commands, each formed
from combinations of the above-mentioned elements.

The legal formats are described with the commands using that format.

Syntax for Format 1

command

Format 1 commands specify EDT's actions. You cannot modify the action
of these commands, so there are no qualifiers possible. See Table 4-15.
Table 4-15: Commands for Format 1

Command Function

ADV, + Both ADV and the + set the current direction to forward
(towards the end of the buffer, which is to the right and
down), unless you override it with the minus (-) or BACK in
your command string.

BACK, - Both BACK and - set the current direction to backward
(towards the beginning of the buffer, which is to the left
and up), until you override it with the plus (+) or ADV.

EX Exits nokeypad editing and returns to EDT line mode.

EXT Tells EDT that the rest of the line consists of line-mode
commands; when EDT has finished executing the line-mode
commands, it returns to character editing. The GOLD 7 key
uses this function.

I Opens the current buffer to allow you to insert text in front of
the cursor position. You terminate the insertion with CTRL/Z,
or follow the I with a semicolon (;) to insert the rest of the
line into the buffer as text. The INSERT key on the VT220
editing keypad also performs this function.

QUIT Exits from EDT and returns you to the system command level
without saving any files.

REF Refreshes the screen.

EDT 4-71

Table 4-15 (Cont.): Commands for Format 1

Command Function

SEL Selects a range of text when you enter the command at one
end of a piece of text; then positions the cursor at the other
end. The SELECT keys use this function.

TAB If you have set a tab size (with the SET TAB editor-control
command) and the cursor is at the beginning of a line, this
command inserts enough tabs and spaces to set the cursor
position to the SET TAB value times the indentation level
count. See Section 4.5.4 for more on the level counter. If you
have not set a tab size, or the cursor is not at the beginning
of a line, this command inserts a tab character.

TC Computes the current indentation level count by dividing the
current cursor position by the value you gave with the SET
TAB command. If the cursor position is not divisible by the
tab value, EDT issues an error message. See Section 4.5.4 for
more on the level counter.

TOP Places the current line at the top (beginning) of the buffer.

Syntax for Format 2

[+ I -] [count] command

Format 2 commands have variable count and direction parameters. The
default count for these commands is 1 in the current direction. Only two
commands using this format allow you to vary the direction, SUBSTITUTE
and SUBSTITUTE NEXT. See Table 4-16.

Table 4-16: Commands for Format 2

Command Function

ASC Allows you to enter arbitrary ASCII characters into a buffer
by entering the ASCII value of a character before the ASC
command. The SPECINS key uses this function.

S/sl/s2/ Replaces string sl with string s2; if you give a count, that
many substitutions are performed, and if you give a minus
(-) the search goes backward (note that any nonalphabetic
character can be used as a delimiter).

4-72 EDT

Table 4-16 (Cont.): Commands for Format 2

Command Function

SN Uses the strings defined in the last S (Substitute) command
to replace the next occurrence of string s1 with string s2; if
you give a count, that many substitutions are performed, and
if you give a minus (-) the search goes backward.

SHL Tells EDT to shift the image it displays on the screen to
the left. The number of characters shifted is eight times the
count entered with the SHL command. This command does
not work if you have SET NOTRUNCATE.

SHR Tells EDT to shift the image it displays on the screen to
the right; the number of characters shifted is eight times the
count entered with the SHR command. This command does
not work if you have SET NOTRUNCATE.

TO Decreases the indentation level count; if the count is zero,
this command has no effect. See Section 4.5.4 for more on
the level counter.

TI Increases the indentation level count. See Section 4.5.4 for
more on the level counter.

UNDC Un deletes a character by copying it from the character buffer
into the current text buffer in front of the cursor (leaving the
character buffer untouched). If you give a repeat count, EDT
inserts that many copies of the character in the buffer.

UNDW Undeletes a word by copying it from the word buffer into the
current text buffer in front of the cursor (leaving the word
buffer untouched). If you give a repeat count, EDT inserts
that many copies of the word in the buffer.

UNDL Undeletes a line by copying it from the line buffer into the
current text buffer in front of the cursor (leaving the line
buffer untouched). If you give a repeat count, EDT inserts
that many copies of the line in the buffer.

Inserts control characters into your text buffer when you enter
a letter following the circumflex. This does not work inside
an insert block, between an I and the CTRL/Z.

Syntax for Format 3

[+ I -] [repeat-count] command [+ I -] [entity-count]
[+ I -] entity [= buffer]

EDT 4-73

Format 3 commands specify an action on an entity. These commands
permit variable count and direction parameters, and some can operate in a
buffer other than the current one. You can place the direction sign in any
of the indicated positions. If you include counts in both places, they are
multiplied by each other. For example, the command string 3D3C deletes
nine characters. See Table 4-17.
Table 4-17: Commands for Format 3

Command Function

APPEND Deletes the specified entities and moves them to the end of the
specified buffer. If you do not include a buffer specification
in the command, EDT uses the paste buffer. Compare with
CUT.

CUT Deletes the specified entities and moves them to the specified
buffer. If you do not include a buffer specification, EDT uses
the paste buffer. EDT copies over the previous contents of
the receiving buffer. Compare with APPEND.

D Deletes the specified entities.

FILL Fills the specified text inside the margin defined by the SET
WRAP command. All the text that fits inside the bounds set
by the SET WRAP command is placed on each line, with the
rest dropped to the next line. Text is broken only between
words.

PASTE Copies the contents of the specified buffer in front of the
cursor, leaving the specified buffer unchanged. If you omit a
buffer specification, EDT uses the paste buffer.

R Deletes the specified entities and places you in insert mode,
allowing you to replace the deleted text. Press CTRL/Z to exit
insert mode.

T ADJ Moves the Select Range the specified number of tab stops in
the specified direction. See Section 4.5.4.

4.7 EDIT Command
EDIT invokes EDT, the DEC standard Editor. See the EDT Editor Manual
for more information.

4-74 EDT

Format
EDIT[/EDT][/ qualifier[s]] infile
or

ED IT[/ qualifier[s]] infile

Command Qualifiers
I[NO]CO~Y1~Y1~A~ND[:filespec]

/[NODOURNAL[: filespec]
/[NO]OUTPUT[:filespec]
/[NO]READ_ONL Y
/[NO]RECOVER

Parameter
Inftle

Specifies the file to be edited. If the file does not exist, EDT creates it.

You must supply a file name, but the type can be null.

Command Quallfters
I[NO]COMMAND[:ftlespec]

Controls whether an EDT initialization file is read by EDT before
editing begins. These files contain commands that alter the default
setup for EDT, such as custom line-mode commands and change-mode
key definitions.

The default is /COMMAND:EDTINI[.EDT].

If you use this qualifier and EDTINI.EDT or some other file you name
does not exist, EDT issues no error message and continues with the
editing session.

If you have a file EDTINI.EDT and do not want to use it, use the
/NOCOMMAND qualifier.

I[NO]JOURNAl[:ftlespec]
Controls whether EDT creates a journal file for the editing session.
The default is to create a journal file with a file name the same as that
of the input file with the type .JOU. You can specify a different name
by including a file specification.

The journal file consists of all editing commands and text entered
during the session. If the editing session ends abnormally, such as
through a system crash, or your inadvertently typing three CTRL/Zs
in succession, the journal file is saved. In such a case, you invoke EDT
again, with the same command line as before plus the /RECOVER

EDT 4-75

qualifier.
restored.
deleted.

Your editing session is repeated and all your editing is
If the editing session ends normally, the journal file is

If you specify /NOJOURNAL, no journal file is created and no recovery
is possible.

/[NO]OUTPUT[:fllespec]

If you do not specify this qualifier, the default is to create a file of
the same name and type as the input file with a version number one
higher than the input file. If the file is new, EDT creates version
number 1. You can alter the name of the output file by including a
file specification with the /OUTPUT qualifier. Otherwise, the qualifier
need not be included.

If you specify /NOOUTPUT, you cannot exit EDT without including
a file specification in your EDT EXIT command.

/[NO]READ_ONL Y

Specifies whether you want simply to read the file or to edit it. If your
command line includes /READ_ONLY, you can use the full facilities
of EDT, but you cannot exit without including a file specification
in your EDT EXIT command. Normally, you would use the EDT
QUIT command if you had specified /READ_ONLY. The /READ_
ONLY qualifier is equivalent to a combination of /NOOUTPUT and
/NOJOURNAL. You can use /READ_ONLY to look at files to which
you have no write access.

The default is /NOREAD_ONL Y, which need never be specified.

/[NO]RECOVER

Specifies whether EDT reads commands from a journal file prior to
starting the editing session. With a journal file, your editing session
can be restored if interrupted by a system crash or other problem. The
default is /NORECOVER, which need never be specified.

The /RECOVER qualifier requests EDT to open the input file and
then read EDT commands and text from the file with the same file
name as the input file and the file type .JOU. The command line with
/RECOVER added to it must be identical to the command line that
initiated the original failed editing session. This means that if you
specified an EDT initialization file, you must specify the same file in
the /RECOVER command line. And, if you specified a name for the
journal file other than infile.JOU, you must include the /JOURNAL
qualifier with the appropriate file specification. If journaling was not
enabled on the original command line, you cannot recover the editing
session.

4-76 EDT

Examples

S EDIT [ID]
File? HORNBLOW.TXT [ID]
Input file does not exist
[EOB]

*
This example shows the EDiT command in its simplest form. The file
HORNBLOW.TXT is created during the editing session.

S EDIT HORNBLOW.TXT [ID]

This is the one-line form of the same command.

S EDIT/OUTPUT:UMPIRE.MAC WEAVER.MAC [ID]
1 . TITLE WEAVER

*
In this example, the user takes an existing file as input and edits it to
create a new file.

S EDIT/COMMAND:FORMAT RAMBLE.RNO [ID]
Input file does not exist
[EOB]

*
In this example, the user prepared an EDT initialization file called
FORMAT.EDT. This file contains EDT command definitions designed to
be used with a text formatting program. See next example.

S EDIT/COMMAND:FORMAT/RECOVER RAMBLE.RNO [ID]
This is FORMAT. EDT. Version 2.4 Ambrose Bierce, Maintainer

During the editing session started in the previous example, the system
crashed. Once it was back on the air, the user duplicated his original
command exactly, naming the same EDT initialization file and then added
the /RECOVER qualifier. EDT begins reproducing the entire editing
session, beginning with reading in the initialization file, the first line
of which is seen in the example. All the editing commands and text
entered during the session have been recorded in the file RAMBLE.JOU,
which is also read back in by EDT. The result is that the entire editing
session is repeated up to within a few keystrokes of the crash.

EDT 4-77

If you want to test the recovery procedure, start editing a file and then
enter three CTRL/Zs as line-mode commands. This causes an unnatural
exit from EDT, so the journal file is saved. You can then duplicate the
original command line, add the /RECOVER qualifier, and watch yourself
edit.

Notes

See the EDT Editor Manual, which is available separately, for more
information on journaling, initialization files, command and key definitions,
and the other editing functions of EDT.

The qualifiers used with EDIT/EDT will not work with other forms of the
EDIT command. If you use the /EDT qualifier, it must appear immediately
after EDIT on the command line. Other qualifiers can float.

You can use the MCR command to invoke EDT in a different format that
some users may find more convenient. See the EDT Editor Manual for the
alternate command format.

4-78 EDT

Chapter 5
Files on Micro/RSX Systems

The commands in this chapter are used to create files, list them in
directories, remove them from directories, print copies of them on your
terminal or the line printer, and alter their contents in various ways. For a
quick review of file-handling commands, see the Introduction to Micro/RSX.
For complete detail on these commands, see the Micro/RSX User's Guide,
Volume 2, Chapter 12, More About Files on Micro/RSX Systems.

All files are stored on volumes. A volume is a disk, diskette, or tape with
data written on it in a form that Micro/RSX can use. Once the volume is
mounted, you can access the files on the volume. For more information
about volumes and devices, see Chapter 6, Devices and Volumes, or
Volume 2, Chapter 13, More About Devices and Volumes.

Within each disk volume, files are organized in directories. For the entire
volume, there is a Master File Directory (MFD). The MFD is a file named
[OOOOOO]OOOOOO.DIR. Most files listed in the MFD are User File Directories
(UFDs). In general, UFDs are simply called directories. Each directory is a
file with a name based on the name of the directory and the type .DIR.

See Figure 5-1 for an illustration of the relationship between volume,
MFD, and directory.

Files on Micro/RSX Systems 5-1

Figure 5-1: File Organization on a Volume

MFD
[000000]

I
I I ----

DIRECTORY DIRECTORY
[USER] [303005]

- -----

I I I
HIYA.M AC;1 FLY.TXT;1 IllY.TXT;1 OlY.TXT;1 LOGIN.CMD;1

ZK-3078-84

5. 1 File Ownership and Location
When you log in, you identify yourself with a User Identification Code
(UIC). You log in to your default device and directory. The default directory
has a name (or number) assigned by the system manager at the time your
account is set up. Nonprivileged users can change their default device and
directory, but not their UIC. Privileged users can change both. The UIC
identifies the user; the directory identifies the location of the files.

If you issue the SHOW DEFAULT command, you can find out your
default device (SY:), your default directory, and your UIC. The SHOW
UIC command gives you your UIC. Both these commands are described
in Section 5.10.

The default device is actually a volume mounted on a device. Most
Micro/RSX users have their main accounts on a fixed disk, but you can
also have accounts on diskettes as well.

Regardless of whether it is DUO:, DU1:, or some other device, your default
device can always be called either by its name or by the name SY:. This
is a logical assignment made each time you log in. Information on your
default device is kept by ACNT, the Account File Maintenance Program,
and picked up from there each time you log in. See the Micro/RSX System
Manager's Guide for more information on ACNT.

5-2 Files on Micro/RSX Systems

When you create a file, the system places the file name in a directory along
with a UIC. The UIC indicates the ownership of the file.

Each directory is a file with a name based on the name of the directory
and the type .DIR. Thus, directory [KIZZY] is a file listed in the Master File
Directory (MFD) named KIZZY.DIR, and directory [200001] is a file listed
in the MFD named 200001.DIR.

Directory entries consist of the names of files and pointers to file headers.
The file header holds information about the file's owner and the location
of the file on the mass-storage medium. Thus, a full file specification not
only identifies the file, but locates it as well.

5.2 File Specification
A file specification uniquely identifies a file, indicating its location and its
contents. Many DCL commands require file specifications.

The format of a file specification is as follows:

ddnn:[directory]name.type;ver

Parameters
ddnn:

Specifies the type of device and unit number on which the volume
containing the file is mounted. A full device name consists of two
alphabetical characters followed by one or two numbers, each from 0
through 7, followed by a colon. Examples include DUO:, DU1:, MSO:.

[directory]
Specifies the name of the directory in which the files are located.

Micro/RSX accepts either named directories or numbered directories. The
format for a named directory is as follows:
[directory] where directory is from one to nine of the following

characters: the 26 letters from A through Z, and the
numbers from 0 through 9.

Examples of named directories include [MINGUS], [RITTENBRG],
[001002], and [A1B2C3].

The format for a numbered directory is as follows:
[g,m] where g and m are octal numbers from 1 through

377.

Examples of numbered directories include [1,2] and [303,17].

Files on Micro/RSX Systems 5-3

See Volume 2, Chapter 12 for a description of the /NONAMED_
DIRECTORY qualifier for the SET DEFAULT command. When your
terminal's default is /NONAMED_DIRECTORY, then you can specify
only numbered directories in the SET DEFAULT command.

name
Specifies the name of the file, which can be from zero through nine
of the following characters: the 26 letters from A through Z, and the
numbers from 0 through 9 .

. typ
Specifies the file type. The type can be from zero through three of
the following characters: the 26 letters from A through Z, and the
numbers from 0 through 9. In general, the file type indicates the file
contents. For example, .FTN is the file type for FORTRAN source
programs. Null file types (0 length) are acceptable.

Always separate the name from the file type with a period (.).

There are no other restrictions on file types, but many system tasks
use default file types for input and output files. These defaults and
some system conventions on file types are summarized in Table 5-1.

:ver
Specifies the version number, a decimal number from 1 through 32767.
The version number identifies different versions of the same file. When
you create a file without specifying a version number, the system
assigns the file version number 1. Each time you create a new version
of a file-by editing it, for instance-the system adds one to the version
number.

You must separate the file type and version number with a semicolon.

You can also create a file with an explicit version number.

If you create a file with version number 32767, you can be sure
that file will not be inadvertently superseded by a file with a higher
number; 32767 is the highest possible version number. Under normal
circumstances, if you create a file with the same name and type as an
existing file, the new file's version number is one higher than the old
one. This cannot happen with the version number 32767. This feature
is useful where you must have a particular version of a file for some
reason.

In addition, you can use version 0 or version -1 in commands. Version
o is the most recent version of a file. Version -1 is the oldest version
of a file.

5-4 Files on Micro/RSX Systems

In most cases, Micro/RSX systems do not require you to enter the full file
specification. Defaults are supplied for all fields of the file specification
except the name (see Section 5.3). In addition, you can use wildcards to
specify groups of related files (see Section 5.4).

5.3 Defaults in File Specifications
Except for the file name, if you omit a field of the file specification, the
system automatically supplies the field as described here:

Field

ddnn:

[directory]

. typ

;ver

Default

The system establishes your default device when you
log in. SY: is always your default device. Logging in
assigns SY: to some physical device. You can use SET
DEFAULT to change the assignment of SY:; you can
display the assignment with SHOW DEFAULT (see
Section 5.10). You do not have to use the unit number
for devices numbered o. DU: is the same as DUO:, for
instance.

The system manager specifies your default directory
when establishing your account. Your default directory
can be any legal directory name. Normally, your
default directory is either your last name or a directory
whose numbers are identical to your User Identification
Code. You can change the default directory with SET
DEFAULT (Section 5.10.1); you can display the default
directory with SHOW DEFAULT (Section 5.10.2).

Standard file types (see Table 5-1) are used as defaults .
There is not a default file type in every situation.
Neither EDT nor the CREATE command assigns a
default file type. If you create a file without specifying
a file type, the file type is null, meaning only the dot
(.) is there. For instance, the following command:

$ CREATE NOFILTYPE IRET!

creates a file named NOFILTYPE.;l.

For input files, the default is the highest numbered
version; for output files, it is the next higher version
number, or 1 if no previous version exists.

Files on Micro/RSX Systems 5-5

The defaults make it possible for you to specify files without having to
type in the full file specification.

Suppose, for example, that your default device is DUO:, which the operating
system assigns the logical device name SY:, and your default directory
is [PISMO]. Assume further that there are three sequentially numbered
versions of a file called CLAM.TXT in the directory. If you want to print
the highest numbered version of this file (version 3) on your terminal, you
can use any of the following forms of the TYPE command, as they all
produce the same result:

• TYPE CLAM. TXT
• TYPE CLAM.TXT;3
• TYPE CLAM.TXT;O
• TYPE [PI8MO]CLAM.TXT;3
• TYPE DUO:CLAM.TXT
• TYPE DUO: [PI8MO] CLAM. TXT
• TYPE 8Y:CLAM.TXT
• TYPE 8Y: [PI8MO]CLAM.TXT;3
• TYPE 8Y: [PI8MO]CLAM.TXT;O

In most cases, you will use the first form, but if you want to keep a
permanent record of the terminal session, you may choose one of the
more explicit forms. In any case, the final form given is what the system
uses, as that form has all the defaults supplied. (Note that version 0 is
always assumed to be the highest numbered version, which is number 3
by definition in this example.)

Table 5-1: File Types

File Type

.BAT

.BLO

.B2S

.CBL

Use

File containing batch processing commands. System con­
vention. See Chapter 8 for more information about batch
processing.

Indirect command file used by the System Generation
procedure to create files needed to build system tasks.
System default.

BASIC-PLUS-2 source program. System default. BASIC­
PLUS-2 is available separately as a software option.

COBOL source program. System default. COBOL is
available separately as a software option.

5-6 Files on Micro/RSX Systems

Table 5-1 (Cont.): File Types

File Type

.CMD

. DAT

. DIR

.DMP

.FTN

.LOG

.LST

.MAC

.MAP

.MLB

.OB}

.ODL

.OLB

Use

Indirect command file. System default. See Chapter 9 for
more information about indirect command processing.

File containing data, as opposed to code. System convention .

File is either Master File Directory or User File Directory .
System default.

Dump file created by DMP, the File Dump Utility. System
default. DMP is part of the Micro/RSX Advanced
Programmer's Kit.

FORTRAN-77 source program. System default. FORTRAN-
77 is available separately as a software option.

Log of batch processing session. System default. See
Chapter 8 for more information about batch processing.

Listing file. System default.

MACRO-II source program. System default. The
MACRO-II Assembly Language is available in the
Micro/RSX Advanced Programmer's Kit as a software op­
tion.

Task Builder map file. System default. See Volume 2,
Chapter 14, LINK and LIBRARY Commands, for more
information. See also the RSX-IIM/M-PLUS and Micro/RSX
Task Builder Manual, available separately, and as part of the
Advanced Programmer's Kit.

Macro library. System default. See the Advanced
Programmer's Kit for more information.

Object module output from assembler or compiler. System
default. See the Advanced Programmer's Kit, or separate
language documentation for more information.

File containing Overlay Descriptor Language to be used by
Task Builder. System default. See the RSX-IIM/M-PLUS
and Micro/RSX Task Builder Manual, available separately,
and as part of the Advanced Programmer's Kit, for more
information about overlays.

Object module library. System default.

Files on Micro/RSX Systems 5-7

Table 5-1 (Cont.): File Types

File Type

.PMD

. SYS

. TMP

.TSK

. TXT

.ULB

Use

File containing Postmortem Dump of interrupted task.
System default. See the Advanced Programmer's Kit for
more information.

A bootable system image. System default .

A temporary file. System convention .

Task image file. System default.

A text file. System convention .

Universal library. System default.

5.4 Wildcards in File Specifications
In addition to the regular defaults for the current device, the current
directory, and the most recent version, you can use wildcards with the
commands in this chapter to set up temporary defaults for every part of
the file specification except the device name.

Simple wildcarding uses the asterisk (.) to replace any or all fields in the
file specification except the device name.

For instance, the following command:

• DIRECTORY [*] IBITl

lists all files in all directories on the default volume. The [.] means "all
directories. "

The following command:

• DIRECTORY [100.*] IRETI

lists all files in any numbered directories that have a group number of 100.

The following command:

• DIRECTORY [*] TEXT . TXT lID]

lists the most recent versions of all files named TEXT. TXT, regardless of
the directory.

Likewise, the • in place of the version number means "all versions."

5-8 Files on Micro/RSX Systems

The following command:

• DIRECTORY WON.BAT;* IBm

lists all versions of the file WOM.BAT in the default directory.

The asterisk (.) can also be used to replace an entire file name or file type
in much the same way.

The following command:

• DIRECTORY *. BAT IBm

lists the most recent versions of all files with the type .BAT in the default
directory.

All the examples that follow assume that you want a listing for files on
the default volume and default directory.

The following command:

• DIRECTORY COMMON. * [Rffi

lists the most recent versions of all files with the name COMMON and
any type.

The examples thus far have demonstrated the simple form of wildcarding,
using the asterisk character (.) to replace an entire field in a file
specification. Simple wildcarding works with all the commands in this
chapter. The PRINT command accepts simple wildcarding, as does the
SUBMIT command for batch processing.

For the commands DIRECTORY, DELETE, PURGE, COPY, RENAME,
TYPE, APPEND, UNLOCK, and SET PROTECTION, a more elaborate
form of wildcarding also is available. In these commands, within file
names and file types, the • can be used in a more complex manner. The
• actually means Hmatch zero or more characters in this position."

Wildcards are safest to use with DIRECTORY than any other command
because the DIRECTORY command does not manipulate the contents of
the files. They are most difficult to use with RENAME and COPY. They
are most dangerous to use with DELETE and PURGE. It is always a good
idea to check your wildcard specifications with the DIRECTORY command
before you do anything drastic.

Therefore, the following command:

• DIRECTORY L*. TXT IBm

Files on Micro/RSX Systems 5-9

lists the most recent versions of all files with the type . TXT whose names
start with "L".

And the following command:

$ DIRECTORY *L*. TXT mill

lists the most recent versions of all files with the type . TXT whose names
include an "L".

The same substitutions can also be used in file types, so that the following
command:

$ DIRECTORY SNOBLO. L* mill

lists the most recent versions of all files with the name SNOBLO and the
type beginning with an "L".

You can use more than one wildcard in file names and file types.

The following command:

$ DIRECTORY *F*D*. TXT mill

lists the most recent versions of all files with the type .TXT whose names
include an "F" and a "D" in that order.

In addition, the same commands permit the percent sign (%) to be used
as a wildcard, but only within file names and file types. The % means
"match exactly one character in this position."

The following command, for instance:

$ DIRECTORY %. TXT [EITJ

lists all files with the type .TXT and a single-character file name.

The following command:

$ DIRECTORY NOV%%85. TXT mill

lists all files with the type . TXT and a file name consisting of NOV and 85
separated by two characters.

Both kind of wildcards can be combined in a single file specification.

The following command:

$ DIRECTORY %L*T. TM% [EITJ

lists all files whose names begin with a single character followed by an
ilL" and end with a "T" and with a file type consisting of .TM and another
single character.

5-10 Files on Micro/RSX Systems

Wildcarding, combined with systematic policies of directory assignments,
file names, and file types can add considerable flexibility and convenience
to your use of the system.

5.5 Date-Related Qualifiers
The commands DIRECTORY, DELETE, PURGE, COPY, RENAME, TYPE,
APPEND, UNLOCK, and SET PROTECTION also accept several other
qualifiers that add further flexibility to these commands.

First, there are the date-oriented qualifiers:
/DATE:dd-mmm-yy
/SINCE:dd-mmm-yy
/THROUGH:dd-mmm-yy
/SINCE:dd-mmm-yy /THROUGH:dd-mmm-yy
/TODAY

These qualifiers all depend on the creation date of the file as shown in
the DIRECTORY listing. /DATE limits the operation of the command
to files created on the specified date. /SINCE limits the operation of the
command to files created on or after the specified date. /THROUGH limits
the operation of the command to files created before or on the specified
date. /SINCE and /THROUGH can be combined to limit the operation
of the command to files created within a given range of dates. /TODA Y
limits the operation of the command to files created on the same day the
command was issued.

You can enter the date in either of the following two forms:
dd-mmm-yy as in 25-MAY-85

or

mm/dd/yy as in OS/25/85

The system always displays dates in the first form.

These same commands also accept the following qualifier:
/EXCLUDE:filespec

The /EXCLUDE:filespec qualifier allows you to exclude a file or files
from the operation of the command. The file specification argument to
/EXCLUDE must include a version number, but the version number can
be •. Wildcards are accepted for all parts of the file specification argument
to /EXCLUDE.

Files on Micro/RSX Systems 5-11

The /EXCLVDE qualifier makes it possible to do the following:

$ DELETE/EXCLUDE: MICHAEL. TXT; * IBrn
File (8)? *. TXT; * IBrn

This command deletes all files with the type . TXT, except those named
MICHAEL.TXT.

5.6 Protection
Micro/RSX is a multiuser system. Each user is able to work without
interference from any other user. One way Micro/RSX provides data
privacy and system security is through restrictions on access to volumes
and the files on the volumes.

The best protection for sensitive files is to put them on a diskette, and
then lock that diskette away. The following section explains how files
and volumes can be protected by software on Micro/RSX systems. No
protection is completely safe, just as no lock is a defense against a
determined and resourceful burglar.

In order to access a file, you must have access to the volume, access to the
directory, and access to the file. Protection can be specified for all these
entities.

5.6. 1 File Protection

Each user has a unique Vser Identification Code (VIC) that the system
manager assigns while setting up your account. Your VIC identifies you
to the system.

When you create a file, you usually own it. Your VIC is an attribute of
the file, identifying you as the owner. Each file also has a protection code.
A protection code controls who can access a file and in what ways. You,
as the file's owner, control this protection code.

VICs look like the following:
[303,5]

The VIC consists of two numbers: the first number is your group number,
and the second is your member number. Group and member numbers are
octal and range from 1 through 377.

5-12 Files on Micro/RSX Systems

Generally, all users working on a particular project have the same group
number. As you will see in the following description of file protection
codes, a common group number can allow group members to share files
easily. In addition, group numbers indicate whether or not you are a
privileged user. A privileged user can look at or change any file on the
system. Privileged users have group numbers of 10 or less; nonprivileged
users have group numbers from 11 through 377.

The second number of your VIC identifies you as a particular member of
a group. The combination of the group and member numbers uniquely
identifies an individual user of the system.

Note that, if you are a privileged user, you can change your VIC. See
Section 5.10.3 for a description of SET VIC.

A file protection code specifies four categories of users, as well as four
kinds of file access that each category of user can have. When you attempt
to access a file, the operating system checks your VIC to determine which
of the four user categories you belong to. Your ability to access the file is
limited to the types of access that the file's protection code grants to those
categories.

The four categories of users in a file protection code are as follows:
SYSTEM The operating system itself, and privileged users. A privileged

user has a VIC with a group number of 10 or less.

OWNER

GROVP

WORLD

The file owner who is the user having the same VIC as the
one the file was created under-that is, your VIC.

All users having a VIC with the same group number as the
one the file was created under.

All other users.

The four kinds of file access that you can grant to the user categories are
as follows:
READ The user, or the user's tasks, may read, copy, print, or type

the file. If the file is a task image file, READ access means
you may run it. If you deny READ access to a class of users,
they can't run the task.

WRITE The user, or the user's tasks, may add new data to the file by
writing to it. You can't edit a file without WRITE access, nor
can you use the COpy command to write a file to a directory
where you have no WRITE access.

Files on Micro/RSX Systems 5-13

EXTEND

DELETE

The user, or the user's tasks, may change the amount of disk
space allocated to the file. In practice, you always specify
EXTEND access along with WRITE access in the protection
code.

The user, or the user's tasks, may delete the file. You can't
delete a file without DELETE access.

Your UIC relates to the user categories in a file protection code in the
following ways:

• Your UIC establishes you as either a privileged or nonprivileged user.
If you are a privileged user, you have the file access rights granted to
the SYSTEM category. Also, as a privileged user, you can change the
protection code of any file. By changing a file protection code for the
SYSTEM category, therefore, you can access any file in any way.

• When you create a file, the operating system gives your unique UIC to
the file. Your UIC, then, becomes one of a file's attributes, establishing
you as the file's owner. As the owner of a file, you can change its
protection code to suit your needs. Also, you have the file access rights
granted to the OWNER category.

• The first number in your UIC establishes you as a member of a group.
As a member of a group, you have the file access rights granted to the
GROUP category.

• You are always a member of the WORLD category.

Ordinarily, the operating system assigns the system's default protection
code to files. In a protection code, the four types of file access are
designated by their first letters. The default protection is as follows:

SYSTEM:RWED.OWNER:RWED.GROUP:RWED.WORLD:R

Note that under this default protection scheme any user can read your files,
because the WORLD category has READ access. Furthermore, everyone
in your GROUP category and all privileged users have full READ, WRITE,
EXTEND, and DELETE access. They can all delete your files.

If you have files that you particularly want to protect against deletion, or
if you want to limit the access people have to your files, use the SET
PROTECTION or the SET PROTECTION/DEFAULT commands described
in Sections 5.10.5 and 5.10.6. Be aware, though, that there is no way
to protect your files from privileged users, because they can change the
protection code for any file.

5-14 Files on Micro/RSX Systems

You can display the protection for any file with the SHOW PROTECTION
command. The DIRECTORY IFVLL command also displays file protection,
in the following form:

[RWED.RWED.RWED.R]

In the DIRECTORY display, the groups are not given, but they appear in
the same order as before: SYSTEM, OWNER, GROUP, \-\'ORLD. In the
previous example, then, WORLD has READ privileges.

A number of DCL commands include qualifiers that help you use file
protection. The most important is the IOWN qualifier to the COpy
command. If you don't specify otherwise, when you copy one of your
files to send it to someone else, you are the owner of the copy, even if it
isn't in your directory.

Assume you have VIC [303,5] and you are placing a copy of a file you
own into a directory called [MOONDOG], which is owned by VIC [200,2].
You use the following command:

• COPY RAMP. TXT [MOONDOG] RAMP. TXT ill.ITl

The file RAMP.TXT is in both directories, but its owner in both cases is
[303,5]. The owner of [MOONDOG] has only WORLD READ access to
her copy of RAMP.TXT, as seen in the following directory listing, where
the file owner is the first item on the second line of each file listing:

• DIRECTORY/FULL RAMP. TXT. [MOONDOG] RAMP. TXT mm
Directory DUO: [THEFLU]
3-MAR-85 15:49

RAMP.TXT;52 (7516.5)
[303.5] [RWED.RWED.RWED.R]

Total of 2./2. blocks in 1. file

Directory DUO: [MOONDOG]
3-MAR-85 15:49

RAMP. TXT; 1 (14343.6)
[303.5] [RWED.RWED.RWED.R]

Total of 2./2. blocks in 1. file

2./2. 1-JAN-85 13:12

2./2. 3-MAR-85 15:48

Grand Total of 4./4. blocks in 2. files in 2. directories

The IOWN qualifier to the COpy command specifies that the recipient of
the copy is the owner, not the sender. The following commands illustrate
this:

Files on MicrolRSX Systems 5-15

$ COPY/OWN RAMP.TXT [MOONDOG]RAMP.TXT mru
$ DIRECTORY/FULL RAMP. TXT. [MOONDOG] RAMP. TXT m.m
Directory DUO: [THEFLU]
3-MAR-85 15:50

RAMP.TXT;52 (7516.5)
[303.5] [RWED.RWED,RWED.R]

Total of 2./2. blocks in 1. file

Directory DUO: [MOONDOG]
3-MAR-85 15:50

RAMP.TXT;2 (14343.6)
[200.2] [RWED.RWED.RWED.R]

Total of 2./2. blocks in 1. file

2./2. 1-JAN-85 13:12

2./2. 3-MAR-85 15:49

Grand Total of 4./4. blocks in 2. files in 2. directories

You do not need the /OWN qualifier if you are copying a file hom
somewhere else. Normally, when you create a file, you own it. When
you copy a file to some other place, you are creating the file, so you must
override your default ownership with the /OWN qualifier.

5.6.2 Directory Protection
Because a directory is a file, it has a protection code like that of a file.
READ access is the right to list the directory, and WRITE access is the
right to create files in the directory. If you do not have EXTEND access
to a directory, you may be denied the right to create more than a certain
number of files in the directory. DELETE access means the right to delete
the directory file.

The default access for directory and file protection is the protection code
the disk was mounted with. The default for mount protection is the
protection code the volume was initialized with. See the discussion of
CREATE/DIRECTORY in Section 5.7.2 and also Chapters 6 and 13 for
more information.

The CREATE/DIRECTORY command includes a /PROTECTION qualifier
that provides a means of overriding the default system protection. This
qualifier sets the protection for the directory file itself, not for files in the
directory.

Here is an example:

$ CREATE/DIRECTORY/PROTECTION: (SYSTEM: .OWNER:RWED.GROUP: .WORLD:) ~
Device and UFD? DU1: [RAGBAG] mru

5-16 Files on Micro/RSX Systems

This example creates a directory called [RAG BAG] on the volume mounted
on device DUl:. The protection code is the protection code applied to
the actual directory file DUl:[OOOOOO]RAGBAG.DIR. The protection code
specifies that the owner (the person issuing the command) has full access
to the directory and the files in it and that SYSTEM, GROUP, and WORLD
have no access. These three groups may not list the directory (no READ
privilege), nor can they create files in the directory (no WRITE or EXTEND
privilege), or delete the directory itself (no DELETE privilege). That is,
only the owner can do anything with the directory.

Remember that this command does nothing to the protection of the
individual files in the directory. If a sophisticated user knows the file
ID numbers of your files, they're still accessible. Remember also that
although you can protect your files against SYSTEM access by privileged
users, a privileged user can still issue a SET PROTECTION command and
change the protection to SYSTEM:RWED, whereupon the privileged user
has complete access.

You can display the protection of a directory file in much the same way
as any other file. The following command displays the protection for the
directory created in the previous example. .

• DIRECTORY/FULL DU1:[OOOOOO]RAGBAG.DIR IRETI

5.6.3 Volume Protection
A disk, diskette, or tape with files in Micro/RSX format on it is called a
Files-II volume. Volume protection works in much the same way as file
protection except it affects the entire volume.

You can specify the volume protection at the time you initialize the volume
or at the time you mount it. Both the INITIALIZE command and the
MOUNT command (see Chapters 6 and 13) include a/PROTECTION
qualifier and an /OWNER qualifier for setting volume protection. In
addition, both MOUNT and INITIALIZE include a /FILEJROTECTION
qualifier that permits you to specify the protection for any new files created
on that disk volume. The INITIALIZE/UPDATE command enables you
to change the default protection on an existing volume. See Volume
2, Chapter 13 for more information.

Volume protection codes differ from file protection codes in that EXTEND
protection is called CREATE protection. The function of the code is the
same. Either EXTEND protection or CREATE protection refers to the right
to allocate space on a volume. CREATE under volume protection refers

Files on Micro/RSX Systems 5-17

to your ability to allocate space for a new file, while EXTEND under file
protection refers to your ability to allocate space within an existing file.

The default protection applied to all volumes on the system that have not
been otherwise protected is as follows:

SYSTEM:RWCD.OWNER:RWCD.GROUP:RWCD.WORLD:RWCD

(In fact, you can use a HC" in a file protection code or an HE" in a volume
protection code and the command will be accepted, but it is good practice
to use the correct protection category.)

If you need to know the protection of a volume (and the default file
protection for new files created on the volume), include the /SHOW
qualifier in your MOUNT command. See Chapter 6 for more information.

As shipped, the fixed disk uses the default volume protection and
file protection. These can be changed with the INITIALIZE/UPDATE
command. See Volume 2, Chapter 13, More About Devices and Volumes.
The odds are that no one has changed the protection on the fixed disk.
There is no simple way to display the protection of the fixed disk.

5.7 Creating Directories and Sequential Files
The CREATE command without a qualifier enables you to create a
sequential file directly at your terminal. The CREATE/DIRECTORY
command permits a user to create a directory.

5.7.1 CREATE

CREATE creates a sequential file and enables you to type text directly into
the file from your terminal without using an editor.

Format
CREATE
File? filespec

CREATE filespec

Parameter
nlespec

Specifies the name of the file to be created.

As soon as the command is entered, the cursor moves down a line.
The file is open for input. Any text you type goes into the file.

5-18 Files on Micro/RSX Systems

When you have finished entering text, press CTRL/Z to close the file.

If you want to create an empty sequential file, simply press CTRL/Z
first. See the examples.

Examples

• CREATE ~
File? COPY.CMD ~
; Command file to move files from Hank's directory to my directory ~
~

.ENABLE SUBSTITUTION ~
.LOOP: ~

.ASKS FI What file ~
COPY DU2: [HCWII] 'FI' 'FI' ~
.GOTO LOOP ~

In this example, the user wanted to move a number of files from one
directory to another. With CREATE, the user created an indirect command
file at the terminal. After entering the CREA TE command and file
specification, the cursor (or print head) moves to the left margin: The
terminal is attached for input to CREATE. Note that while CREATE is
executing, the RETURN key acts only as ·a carriage return, and not as a
means of entering commands to the system. No commands are accepted
by DCL until after you press CTRL/Z (echoed as AZ).

• CREATE JOE. TXT ~
Joe called at 4:30 on Monday. He'll be back from Switzerland on~
Thursday. but he won't be in the office until Friday afternoon. RET
ICTRLjzl

•
In this example, the user used CREA TE to take notes on a phone call.

• SHOW DEFAULTS ~
DUO: [POGO] TT3 :
• MOUNT/NOSHAREABLE ~
Device? DU1: ~
Label? OKEFENOKE ~
• CREATE/UFD ~
File? DU1: [ALBERT] ALLIGATOR. TXT ~
I declare a good-looking man looks good in anything. ~
I CTRLjZ I

•
In this example, the user wanted to create a file on a diskette and create
a directory to put it in. The user placed a diskette that already had some

Files on Micro/RSX Systems 5-19

files on it in diskette drive DUl: and issued the MOUNT command with
the /NOSHAREABLE qualifier. This qualifier makes the diskette private.
No one else can access it and the user who mounted it is privileged as far
as that diskette goes. The user then issued the CREATE command with
the /UFD qualifier, named a file including a directory name, and entered
text into the file, all without changing the default directory.

• CREATE CHURCHYLA. FEM I RET I
ICTRL/ZI

In this example, the user used CREATE to create an empty file for later
use. There are times when you need to have a file present, but the file
need not have any contents.

Notes

CREA TE differs slightly in batch jobs.
information.

See Chapter 8 for further

If you create a file without specifying a version number and no file of
that name and type already exists, the file is version 1. If a file of that
name and type exists and you give no version number, the new file has a
version number pne higher than the highest numbered previous version.

If you specify a version number when creating the file, the system creates
a file with the version number you give.

If you use CTRL/U when creating a sequential file, the text on the line is
eliminated, but not the line itself. In other words, CTRL/U leaves a blank
line behind when it deletes a line. CTRL/U, CTRL/R (refresh the line),
and the DELETE key are the only editing facilities available to you when
creating sequential files at the terminal.

5.7.2 CREATE/DIRECTORY
CREATE/DIRECTORY creates a directory on a Files-II volume and
enters the directory into the volume's Master File Directory (MFD).
Privileged users can create directories on volumes mounted on any device.
Nonprivileged users can create directories only on volumes mounted on
their own private (allocated or nonshareable) devices.

5-20 Files on Micro/RSX Systems

Format
CREATEjDIRECTORY(j qualifier[s]]
Device and UFO? [ddnn:][[directory]]

CREATE jDIRECTORY(j qualifier[s]][ddnn:][[directory]]

Command Qualifiers
I" T T ~,...." ""T~1\o.T._

/ l"\.LLU~l"\.llUl";ll

jLABEL:volumelabel
jNOWARNINGS
jOWNElLUIC:[uic]
jPROTECTION:(code)

Parameters
[ddnn:][[directory]]

You must specify at least one of these parameters. If you specify
one parameter, the default volume or directory is used for the other
parameter. You cannot create a directory that matches both your
default device and your default directory.

ddnn:
Specifies the disk on which you want to create a directory. This
parameter defaults to your default device.

The volume must be a Files-II volume mounted with the
jNOSHAREABLE qualifier (or allocated) if you are not privileged.

[directory]
Specifies the name of the directory you want to create. This parameter
defaults to the current default directory.

Directory names are from one to nine of the following characters: the
26 letters from A through Z, and the numbers from 0 through 9.

To retain compatibility with other RSX systems, MicrojRSX also accepts
numbered directory names. The format for a numbered directory is
[g,m], where g and m are octal numbers from 1 through 377.

Command Qualifiers
/ ALLOCATION:n

Specifies the number of directory entries (file names) for which space
is to be initially allocated. The value n is rounded up to the next
multiple of 32.

The default is j ALLOCATION :32.

Files on MicrojRSX Systems 5-21

/LABEL:volumelabel
Specifies that the volume label that you supply be compared with the
label on the volume. If the names match, a directory can be allocated.
If they do not match, the command is rejected.

If you do not specify this qualifier, the volume label is not checked.

/NOWARNINGS
Suppresses error messages resulting from the command.

/OWNEILUIC:[ulc]
Specifies the User Identification Code (UIC) of the directory's owner. A
UIC establishes the protection status of the directory. See Section 5.6.2
for more information. The default is for the directory to be owned by
you. You can specify any UIC as the owner. However, a nonprivileged
user cannot always create files in a directory that is owned by a UIC
different from his own.

/PROTECTlON:(code)
Specifies the protection code for the directory file, not for the files in
the directory. See Section 5.6.2 for more information.

Examples

S CREATE/DIRECTORY lRETl
Device and UFO? DU2: [JRICE] ffi[d

This example creates directory [JRICE] on the diskette volume mounted on
device DU2:. Nonprivileged users can create directories only on volumes
mounted with the jNOSHAREABLE qualifier. Privileged users can create
directories on volumes mounted on any device.

S CREATE/DIRECTORY DU2: [JRICE]ffi[d

This example is identical in effect to the previous one.

S CREATE/DIRECTORY ffi[d
Device and UFO? [BURLESON] ffi[d

This example creates directory [BURLESON] on the default device.

S CREATE/DIRECTORY ffi[d
Device and UFO? DU1: [Rill

This example creates a directory on the volume mounted on DU1: with
the same name as the default directory.

5-22 Files on MicrojRSX Systems

• DELETE/DIRECTORY [BDENT]BDENT.DIR ~

This example deletes the directory [BDENT) from the current device. All
directory files are in [000000). You must have DELETE access to the
directory file to delete it. The files in the directory are no longer accessible.

5.8 Maintaining a Directory
The following commands provide you with the means for maintaining
your directory. Disk space is an important resource, particularly on the
fixed disk. You will probably want to have only a limited number of your
most immediately useful files on line on the fixed disk. You should not
keep files that you do not need. Files that you want to save, but do not
need to have immediate access to, should be copied onto a diskette or tape
and kept off line.

5.8. 1 DIRECTORY
DIRECTORY displays information on files in directories.

Format
DIRECTORY[lformat-qual)[/destination-qual) [£ilespec[s))

Command Qualifiers

Format Qualifiers
/BRIEF
/FREE[:ddnn:)
/FULL
/SUMMARY

Destination Qualifiers
/OUTPUT:filespec
/PRINTER

Files on Micro/RSX Systems 5-23

Other Qualifiers
/DATE:dd-mmm-yy
/SINCE:dd-mmm-yy
/THROUGH:dd-mmm-yy
/SINCE:dd-mmm-yy /THROUGH:dd-mmm-yy
/TODAY
/EXCLUDE:filespec
/REWIND

Parameter
ftlespec[s]

Specifies the file or files for which information should be displayed. If
you do not supply a file specification, a complete directory listing of
the default directory is displayed.

You can supply one or more file specifications, separated by commas.
Directory information on the files you name is displayed.

You can use wildcards in place of any file specification field except the
device field. If you do. not supply a version number, only information
on the most recent versions is displayed. However, if you do not
supply a file type, the operating system assumes the file has no type
at all, as if its file specification were something like FILE.;1. If you do
not know the file type, use a wildcard.

You can display a listing of another directory by supplying the directory
name in this field. You can also specify device names in the form
ddnn: in this field.

If you name files in more than one directory or device, you should
name files for the default directory first. If you name files from another
device or directory first, the defaults are canceled. See the examples.

Command Quallfters

Command qualifiers are in the following three groups:

1. Format qualifiers control the appearance and detail of the
directory list.

2. Destination qualifiers control where the command output
is sent.

3. Other qualifiers modify the list of files by creation date or
exclusion.

5-24 Files on Micro/RSX Systems

If you do not supply a format qualifier, the display is in
standard format, giving the file name, type, and version
number, the number of blocks the file occupies, and the date
and time of creation.

If you do not include a destination qualifier, the display
appears on your terminal.

If you do not include any of the other qualifiers, the display
includes all files that otherwise qualify.

Format Qualifiers
/BRIEF

Specifies that the display give file names, types, and version numbers
only.

/FREE [ddnn:]
Specifies that the display give the free space and number of free file
headers on the default device or a specified device.

/FULL
Specifies that the complete directory entry be displayed, including file
ID number, blocks used and allocated, the owning VIC, and protection
status of the file, in addition to all the information in the standard
display.

/SUMMARY
Specifies that the display give only the total number of blocks allocated
and used for the specified files. If you give no file specifications in the
command, the display shows the total blocks allocated and used for
the default directory.

Destination Qualifiers

These qualifiers direct output to an output file or to the line printer.
/OUTPUT:tllespec

Specifies that the output of the DIRECTORY command be placed in a
file having the file specification you supply.

/PRINTER
Specifies that the output of the DIRECTORY command be printed on
your system's line printer, if you have one.

Files on Micro/RSX Systems 5-25

Other Quallfters
/REWIND

Specifies that you want the tape to be rewound to the beginning before
listing the directory. This qualifier is for magnetic tapes only.

Examples

S DIRECTORY @ill
Directory DUO: [BLOCKHEAD]
l-MAY-85 14:16

A.A;l 1.
AZ.CMD;5 1.
BYE.CMD; 1 1.
CLEAN.CMD;l 1.
DUN.CMD;4 1.
EDT.CMD;22 1.
LOX.CMD;l 1.
LOGIN.CMD;6 1.
TI.CMD;4 1.

F.TSK;l 4.
G.TSK;l 4.
PONG.TSK;2 12.
BUZZ.TXT;2 4.
IZZY.TXT;l 2.
JIVE. TXT; 1 1.

C
C
C

25-SEP-84 12:29
02-APR-86 13:03
26-SEP-84 12:29
10-JAN-86 08:29
23-JAN-85 08:06
07-NOY-84 16:66
27-APR-86 10:21
06-APR-86 16:56
30-APR-85 08:36

26-SEP-84 12:30
26-SEP-84 12:30
25-SEP-84 12:31
12-MAR-86 09:13
06-MAR-86 14:33
16-NOY-84 13:23

Total of 2906./3043. blocks in 160. files

This example shows a directory listing in the standard format.

The device and directory are named at the head of the listing, along with
the date and the time. All files in the directory are listed because the user
did not supply any file specifications. The files shown with a C in column
3 are contiguous files, in this case, task images. You may see files in a
directory with an L in this position, signifying that the files are locked.
Files are locked when they are closed improperly. See Section 5.9.4 for
information on the UNLOCK command.

S DIRECTORY/SUMMARY @ill
Storage used/allocated for Directory DU1: [RSTONES]
l-MAY-85 14:16

5-26 Files on Micro/RSX Systems

Total of 2892./3033. blocks in 160. files

This example displays the output produced by the jSUMMARY qualifier.
If the user had supplied one or more file specifications in the command,
the summary would cover the blocks used and allocated for the specified
files only.

• DIRECTORY/FREE @[B
DU1: has 383. blocks free, 417. blocks used out of 800.
Largest contiguous space = 203. blocks
17. file headers are free, 31. headers used out of 48.

This example displays information about the default device, which is one
of the diskettes in this case. Most files need not be contiguous, so you
probably don't need that information. The display also informs you that
you cannot add more than 17 files totaling 383 blocks to the diskette. Both
of these figures are absolute limits. That is, if you add one file totalling
383 blocks, that's it, or, if you add 17 files totalling only 17 blocks, you
have reached the limit. See the description of the INITIALIZE command,
Section 6.4, for more information on the capacity of the fixed disk and
diskettes.

• DIRECTORY/FREE LBO: @[B
DUO: has 6074, blocks free, 16626. blocks used out of 21600.
Largest contiguous space = 3620. blocks
397. file headers are free, 3603. headers used out of 4000.

This example displays information about the pseudo device LBO:. Notice
that the display identifies pseudo device LBO: as being DUO:. All systems
in the RSX family run off the same pseudo device, LBO:, which can be
many different physical devices. Most MicrojRSX systems run off DUO:,
which is the fixed disk.

• DIR TI.CMD @[B
Directory DUO: [PANCHO]
1-MAY-86 14:17

TI.CMD;4 1. 30-APR-86 08:36

Total of 1./6. blocks in 1. file

This example displays information on the most recent version of the file
named because the most recent version is the default. See next example.

• DIR TI.CMD;* @[B
Directory DUO: [PANCHO]
1-MAY-86 14:17

Files on MicrojRSX Systems 5-27

TI.CND;4
TI. CMD; 3
TI.CMD;2
TI.CND; 1

1.
1.
1.
1.

30-APR-85 08:36
27-APR-85 16:32
27-APR-85 16:29
27-APR-85 16:28

Total of 4./20. blocks in 4. files

This example displays information on all versions of the file named because
the user supplied a wildcard for the version number, overriding the default
of the most recent version.

$ DIR/FULL TI.CND ~
Directory DUO: [PANCHO]
l-MAY-85 14:17

TI.CND;4 (300.56)
[303.5] [RWED.RWED.RWED.R]

Total of 1./5. blocks in 1. file

1./5. 30-APR-85 08:36
03-MAY-85 09:58(2.)

This example displays full information on the most recent version of the
file named. The number in parentheses is the file identification number
assigned by the system when the file is created. The first number is the
file number, and the second is the sequence number of the file. The UIC
is the UIC of the owner, the protection status of the file, and the final
column on the second row is the last revision date and revision level.
The revision date is the date the file was last manipulated without a new
version being created (for example, appending one file onto another). See
the notes.

Protection status is listed in the order SYSTEM, OWNER, GROUP,
WORLD. See Section 5.6 for an explanation of protection. You can change
file protection with the SET PROTECTION command; see Section 5.10.5.

$ DIRECTORY/BRIEF *.CMD IRETI
Directory DUO: [PANCHO]

ADV.DND;2
AZ.CND;5
BYE.CND;l
CLEAN. CND ; 1
DAY.CND;l
DTC.CMD;l
DUN .CND;4
EDT .CND;22
LOX.CND;l
VTILCND; 1
TI.CND;4

5-28 Files on Micro/RSX Systems

This example displays brief information on the most recent version of all
files of the type .CMD in the default directory.

S DIRECTORY/TODAY ~

Directory DUO: [PANCHO]
6-MAY-86 13:44
Day of 6-MAY-86

2061CH4.MEM;1 339.
NEWINSDC3.RNO;7 10.
2061CH4.MEM;2 320.
FUT.MAI;l 1.
NEWINSDC3.RNO;6 9.
NEWINSDC3.RNO;10 10.
NEWINSDC4.RNO;3 7.
FRK.CMD;6 1.
NEWINSDC4.RNO;4 11.
LOG.LOG;l O.

06-MAY-86 10:11
06-MAY-86 10:06
06-MAY-86 10:12
06-MAY-86 13:06
06-MAY-86 09:66
06-MAY-86 10:39
06-MAY-86 11:46
06-MAY-86 13:43
06-MAY-86 13:43
06-MAY-86 13:43

Total of 708./736. blocks in 10. files

In this example, the user asked for a directory of all files created the same
day the command was issued. Note that the directory listing includes the
date. See the next example.

S DlRECTORY/TODAY/EXCLUDE:*.RNO;* ~

Directory DUO: [PANCHO]
6-MAY-86 13:46
.RNO; excluded
Day of 6-MAY-86

2061CH4.MEM;1
2061CH4.MEM;2
FUT.MAI;l
FRK.CMD;6
LOG.LOG;l

339.
320.
1.
1.
O.

06-MAY-86 10:11
06-MAY-86 10:12
06-MAY-86 13:06
06-MAY-86 13:43
06-MAY-86 13:43

Total of 672./693. blocks in 6. files

In this example, the user listed all files created the day the command
was issued but excluded all files with the .RNO file type. Note that the
file specification argument to /EXCLUDE has a wildcard version number.
Observe also that the exclusion is noted in the heading of the directory
listing.

S DIR *.TSK, [BADGE]*.TXT ~

Directory DU1: [CREAM]
20-MAY-86 09:39

Files on Micro/RSX Systems 5-29

CLOCK.TSK;3 8. C 15-MAY-85 08:55
F.TSK;l 4. C 25-APR-85 12:30
G.TSK;l 4. C 25-APR-85 12:30
TICTAC.TSK;4 19. C 01-MAY-85 12:07
TREK.TSK;l 54. C 25-APR-85 12:31

Total of 89./89. blocks in 5. files
Directory DU1: [BADGE]
20-MAY-85 09:39

FRONT. TXT; 1
EDITNEWS.TXT;12
OZY.TXT;3
TEXT. TXT; 1
NEW. TXT; 1
AWARE. TXT; 2
IZZY.TXT;10

3.
25.
2.
151.
O.
2.
2.

16-JAN-85 11: 23
11-MAR-85 10:50
11-MAR-85 10:50
11-MAR-85 10:50

L 27-APR-85 14:36
27-APR-85 13:48
12-MAY-85 13:42

Total of 184./205. blocks in 7. files

Grand total of 273./294. blocks in 12. files in 2. directories

In this example, a user with the default directory of [CREAM] requested
directory information on files in two directories. The default directory was
applied to the first files named, the •. TSK files; these were listed first in
the display. The second set of files displayed, the •. TXT files, were from
directory [BADGE], which was explicitly specified in the command. Note
the locked file. Compare this example with the next one.

S DIR [BADGE]*.TXT, *.TSK ~

Directory DU1: [BADGE]
20-MAY-85 09:40

FRONT. TXT; 1
EDITNEWS.TXT;12
OZY.TXT;3
TEXT. TXT; 1
NEW.TXT;l
AWARE. TXT; 2
IZZY.TXT;10
ADVENT.TSK;l
DUNGEON.TSK;2
PONG.TSK;2
YCLOCK.TSK;6
STAR.TSK;2
TICTAC.TSK;5
VTCHS.TSK;12
XCLOCK.TSK;6
LIFE.TSK;10

3.
25.
2.
151.
O.
2.
2.
151.
242.
12.
9.
102.
19.
26.
9.
4.

16-JAN-85 11:23
11-Mia-85 10:50
11-MAR-85 10:50
11-MAR-85 10:50

L 27-APR-85 14:36
27-APR-85 13:48
12-MAY-85 13:42

C 13-MAY-85 14:12
C 21-FEB-85 09:08
C 13-MAY-85 14:13
C 08-APR-85 12:17
C 13-APR-85 09:07
C 01-FEB-85 11:31
C 06-FEB-85 15:39
C 03-JAN-85 16:48
C 03-APR-85 13:28

Total of 758./780. blocks in 16. files

5-30 Files on Micro/RSX Systems

The command in this example is quite similar to the command used in
the previous one, but notice the difference in results. The same user,
with default directory [CREAM], issued the command but this time the
directory [BADGE] was specified first, for the •. T5K files. Even though no
directory was specified for the •. T5K files, these files were also listed from
directory [BADGE]-not from [CREAM]. This demonstrates that specifying
a directory in a DIRECTORY command resets the default directory for the
rest of the command or until another directory is specified.

Notes

The full format for directory listings may include two dates. The first
is the creation date of the file. The second date indicates the last time
the file was revised by the system or a task for write access, such as for
editing. The decimal number in parentheses following the second date is
the number of times the file has been changed in this fashion.

Your directory is a file that you own, but which is kept in directory [000000]
on the same volume as your directory. In directory [000000] you will find
the Master File Directory (MFD), which is a file named OOOOOO.DIR. The
MFD is the directory for directory [000000]. All directories on the volume
appear in this directory in the same form. The directory file for [303005]
is called 303005.DIR; the directory file for [PANCHO] is P ANCHO.DIR,
and so forth.

These directory files have file protection like all other files. The protection
is for the directory file, not for files in the directory. Because the directory
is a file, READ access is the right to list the directory, and WRITE access
is the right to create files in the directory. If you do not have EXTEND
access to a directory, you may be denied the right to create more than a
certain number of files in the directory. DELETE access means the right
to delete the directory file. Because you own your directory file, you can
usually delete it, but do not do so unless you're sure of what you are
doing.

Files on Micro/RSX Systems 5-31

5.8.2 DELETE
DELETE deletes specified files and releases the storage space the files
occupy.

Format
DELETE[/ qualifier]
File(s)? filespec[s]

DELETE[/qualifier] filespec[s]

Command Qualifiers
/EXCLUDE:filespec
/LOG
/NOWARNINGS
/QUERY
/DATE:dd-mmm-yy
/SINCE:dd-mmm-yy
/THROUGH:dd-mmm-yy
/SINCE:dd-mmm-yy /THROUGH:dd-mmm-yyy
/TODAY

Parameter
fllespec[s]

Specifies the file or files to be deleted.

You must supply the name, type, and version number fields of the file
specifications of the files you want to delete. Device and directory fields
default to your current device and directory. You can use wildcards in
any file specification field except the device field. You need not supply
a file type to delete a file with a null file type.

You can only delete files to which you have DELETE access.

To name more than one file for deletion, separate their file specifications
with commas.

Command Qualifiers
flOG

Specifies that a list of the files deleted be displayed on your terminal.

5-32 Files on Micro/RSX Systems

/QUERY
Specifies that you want to decide which files should be deleted on an
individual basis. Each file that is specified in the command is named.
You may enter one of six characters:
Y Deletes file named and goes on to next file.

N Does not delete file named and goes on to next
file.

G (Go) Deletes the file and goes on to delete all other
files specified.

Q (Quit) Does not delete the file and exits the task.
No more files are deleted.

CTRL/Z

RETURN

Same as Q (Quit).

Same as N (No).

Remember that you can specify files by default or wildcard. See the
examples. If you do not specify a version number, /QUERY is the
default. See the examples.

Examples

S DELETE I RET I
File(s)? *.DAT;* IRETI

This exampl~ deletes all versions of all files of the type .DAT.

S DELETE FlLE.FIL;1. ;3 •. TXT;6 IRETI

This example deletes versions 1 and 3 of FILE.FIL, and version 5 of
FILE.TXT. Note that no file name or type is specified for version 3, and no
name for .TXT;5.

S DELETE/QUERY rEm
File(s)? *.TMP;* IBIT1
Delete file DU1: [GOETHE]OGRE.TMP
Delete file DU1:[GOETHE]TROLL.TMP;1
Delete file DU1:[GOETHE]ORC.TMP;1
Delete file DU1: [GOETHE]ELF.TMP;1
Delete file DU1:[GOETHE]HOBBIT.TMP;1
Delete file DU1: [GOETHE]SNIPE.TMP;1

The following files have been deleted:
DU1:[303.5]SNIPE.TMP;1
DU1: [303.5]SNOPE.TMP;2

[Y/N/G/Q]? Y
[y /N/G/Q]? Y
[Y/N/G/Q]? Y
[Y/N/G/Q]? N
[Y/N/G/Q]? N
[Y/N/G/Q]? G RET

Files on Micro/RSX Systems 5-33

In this example, the user specified all files having the type . TMP in the
DELETE command. Three files were deleted at the user's choice, and two
were retained. The user then directed that all remaining files with the
type.TMP be deleted. There were two more files, which were deleted and
listed.

$ DELETE *.DOC @[D
Delete file DUO: [MABON]WITCH.DOC;2
Delete file DUO: [MABON]DRY.DOC;4
Delete file DUO: [MABON]PAYCHECK.DOC;l
Delete file DUO: [MABON] LOADING. DOC; 3
Delete file DUO: [MABON]LOADING.DOC;4
Delete file DUO: [MABON]LOADING.DOC;5
Delete file DUO: [MABON]LOADING.DOC;6

[Y /N/G/Q]? Y RET
[Y/N/G/Q]? N
[Y/N/G/Q]? Y
[Y/N/G/Q]? Y
[Y/N/G/Q]? Y
[Y/N/G/Q]? Y
[Y/N/G/Q]? N RET

In this example, the user specified the file type . DOC and a wildcard
for the file name. Because no version number was given, the DELETE
command defaulted to the /QVERY qualifier, enabling the user to choose
which files to delete.

$ DELETE/LOG *.LST;* @[D
The following files have been deleted:
DU1:[JIMP]RANGER.LST;1
DU1: [JIMP]TONTO.LST;1
DU1: [JIMP]REID.LST;l
DU1:[JIMP]SILVER.LST;1
DU1: [JIMP]SCOUT. LST;1
DU1:[JIMP]HORNET.LST;1
DU1: [JIMP]KATO.LST;l

In this example, the user specified all files with the type .LST in the
DELETE command and asked for a log of all files deleted.

Notes

You must have DELETE access to delete a file.

If you want to delete using wildcards, it is wise to get a directory listing
using the same file specifications you plan to delete. In this way, you can
be sure you are not deleting more files than you intend to delete.

Remember that under the default file protection on Micro/RSX systems,
you have DELETE access to your own files and all files in directories with
the same group number in the VIC.

5-34 Files on Micro/RSX Systems

See Section 5.9.3.1 for DELETE commands directed to the Queue Manager.

5.8.3 PURGE
PURGE deletes all but the latest versions of files, and releases the storage
space the deleted files occupy.

Format
PURGE[/ qualifier[s]]
File(s)? filespec[s]

PURGE[/ qualifier[s]] filespec[s]

Command Qualifiers
/EXCLUDE:filespec
/KEEP:n
/[NO]LOG
/NOWARNINGS
/DATE:dd-mmm-yy
/SINCE:dd-mmm-yy
/THROUGH:dd-mmm-yy
/SINCE:dd-mmm-yy /THROUGH:dd-mmm-yy
/TODAY

Parameter
ftlespec[s]

Specifies the file group or file groups to be purged.

Multiple file specifications must be separated by commas. Wildcards
can be substituted for directory, name, and type fields.

You can purge any files to which you have DELETE access.

Command Qualifiers
/KEEP:n

Specifies that the n latest versions of a file be retained. The value for
n can be any number.

If you do not use this qualifier, all versions but the most recent of
a given file are deleted. That is, the default form of the command
includes the qualifier /KEEP: 1. With the qualifier explicitly stated, all
but the n highest numbered versions are deleted. PURGE assumes
that version numbers are in numerical sequence and without missing
numbers. See the examples.

Files on Micro/RSX Systems 5-35

If more than one file specification is given with the /KEEP qualifier,
all but the latest n versions of all files listed are deleted.

/[NO]LOG
Specifies that the files deleted by PURGE be listed on your terminal.
The default is /NOLOG.

Examples

• PURGE [gIT]
File(s)? TEMPER.TSK @[D

In this example, all versions of TEMPER.TSK but the latest are deleted.

• DIRECTORY ASDIC.TM1;*. ELPASO.TEX;* @[D
DIRECTORY DB1: [303.5]
20-MAY-85 13:44

ASDIC.TM1;1
ASDIC.TM1;2
ASDIC.TM1;3
ASDIC.TM1;4
ASDIC.TM1;5
ELPASO.TEX;l
ELPASO.TEX;2
ELPASO.TEX;3
ELPASO.TEX;5
ELPASO.TEX;6

1.
1.
1.
O.
1.
1.
1.
1.
1.
1.

20-MAY-86 13:41
20-MAY-85 13:41
20-MAY-85 13:41
20-MAY-85 13:41
20-MAY-86 13:42
20-MAY-85 13:42
20-MAY-85 13:42
20-MAY-85 13:42
20-MAY-86 13:43
20-MAY-85 13:43

Total of 9./46. blocks in 10. files

• PURGE/LOG/KEEP:3 ASDIC.TM1 [gIT]
The following files have been deleted:
DB1:[303.5]ASDIC.TM1;1
DB1:[303.5]ASDIC.TM1;2

• • PURGE/LOG/KEEP:3 ELPASO.TEX @[D
The following files have been deleted:
DB1:[303.5]ELPASO.TEX;1
DB1:[303.5]ELPASO.TEX;2
DB1: [303. 5]ELPASO.TEX; 3

• • DIRECTORY ASDIC.TM1;*. ELPASO.TEX;* @[B
Directory DB1:[303.5]
20-MAY-85 13:46

ASDIC.TM1;3 1. 20-MAY-86 13:41
ASDIC.TM1;4 O. 20-MAY-86 13:41

5-36 Files on Micro/RSX Systems

ASDIC.TM1;6
ELPASO.TEX;6
ELPASO.TEX;6

1.
1.
1.

20-MAY-86 13:42
20-MAY-86 13:43
20-MAY-86 13:43

Total of 4./20. blocks in 6. files

In this example, the user started with two sets of five files. The five files
named ASDIC.TMI have version numbers in order. The five files named
ELPASO.TEX are numbered 1;2;3;5;6, The user issued a PURGE command
with the qualifier /KEEP:3. Versions 3, 4, and 5, of ASDIC.TMI were kept,
but only versions 5 and 6 of ELPASO.TEX were kept. This is because
the /KEEP:3 qualifier does not save the three highest numbered files,
but rather the highest numbered file and the next two lower numbered
files of the same name in numerical sequence. If there had been a file
ELPASO.TEX;4, it would have been saved. Because there was none, the
PURGE command task exited, its work done.

Note

You can purge any file to which you have DELETE access.

5.8.4 COpy
COpy copies files.

COPY creates a sequential file copy of one or more sequential fil~s, or of
records with either indexed or relative file organization.

Format
COPY[/qualifier[s]]
From? infile[s][/ qualifier]
To? outfile

COPY[/ qualifier[s]] infile[s][/ qualifier] outfile

Command Qualifiers
/OWN
/REPLACE
/DATE:dd-mmm-yy
/SINCE:dd-mmm-yy
/THROUGH:dd-mmm-yy
/SINCE:dd-mmm-yy /THROUGH:dd-mmm-yy
/TODAY
/EXCLUDE:filespec

Files on Micro/RSX Systems 5-37

Parameters
Inftle[s)

Specifies the input file or files to be copied.

You must have READ access to a file to copy it.

Multiple file specifications, separated by commas, are accepted. If
you specify multiple input files and a explicit output file, they will be
concatenated to the output file in the order that you specify them.

outftle

Specifies a single output file to which the input file or files are copied.

You must have WRITE access to the directory to which you want to
send a copy. Vnder the default protection, you have WRITE access to
your directory and to all directories with the same group number for
their owner's VIC. That is, a user with the VIC [303,5] can normally
copy to directories whose owners also have the group number 303,
such as [303,26].

You can change the name, type, and version number of the file when
you enter this pCl:rameter. Wildcards in the place of the name and the
type leave the name and type unchanged,

The output file can be created by COPY. The output file need not exist
when you issue the command. If a file of the same name and type
already exists, then the file you create has a version number one higher
than the highest existing version. If you specify a version number for
the output file field, then a file of that version number is created. If
such a file already exists, the operation fails unless you specify the
jREPLACE qualifier, which causes the existing file to be replaced by
the input file.

Wildcards are acceptable for output files if the destination is another
directory. If you have multiple input files and use wildcards for the
output file, you create multiple output files, each with the name and
type of the corresponding input file.

You can send copies to devices as well as to directories. See examples.

You can also use the COPY command to create multiple copies of the
same file with the same or different names.

5-38 Files on MicrojRSX Systems

Command Qualifiers
/OWN

Changes the ownership of the file being copied to the destination
directory. After execution, both directories own their respective copies.
If you do not specify IOWN, the original UIC owns both copies. This
can lead to confusion later when you try to edit or delete the file and
find that you do not have access because of conflicts in file ownership.

If you are copying from another directory to your own, use this
qualifier.

/REPLACE
If the output file has the same name, type, and version number as an
already existing file at the destination, the first file is deleted and the
file you have sent replaces it. The name, type and version number
stay as they were.

Examples

• COpy [Eill
From? [KERMIT]TSKBLD.CMD [Eill
To? TSKBLD. CMD ~

This example copies TSKBLO.CMO from [KERMIT] to the current directory
and device. The file is still owned by the original· owner, from whom it
was copied.

• COpy *. BAS DU1: [Eill

This example copies all files with the file type .BAS from the current
device and directory to the same directory on the volume mounted on
device nUl:.

• COPY/OWN TSKBLD.CMD [KERMIT]BLDFIL.CMD [Eill

This example copies TSKBLD.CMO from the current directory and device to
[KERMIT], assigns ownership to the owner of [KERMIT], and also changes
the file name to BLDFIL.CMD.

• COPY OLD1.FIL,OLD2.FIL [Eill
To? NEW. ONE [Eill

This example copies two previously existing files into one new file.

• COpy CHARLA. DMP TT4: [Eill

This example prints a copy of CHARLA.DMP on TT4:. This is a convenient
means of sending messages longer than one line. If the terminal is busy

Files on MicrolRSX Systems 5-39

at the time you send the copy, the copy is held until the terminal is clear
and then sent.

• COPY FLY.TXT SPIDER. TXT IRETI

This example creates the file SPIDER. TXT with the same contents as
FLY.TXT, both on the current device and directory.

Notes

C is the short form of copy.

COpy does not affect file organization. If you want to change file
organization, use the CONVERT command, which is explained in Volume
2, Chapter 12, More About Files on Micro/RSX Systems.

Usually, READ access is much broader than WRITE access. Under the
default protection setup, your READ access covers the whole system, but
your WRITE access is limited to other directories with the same group
number. Thus, you can copy from many places that you cannot copy to.

Also, when you copy a file, you do not copy its protection code. Your
copy has the default protection code. Use SET PROTECTION if you want
to change the protection code of the copy. See Section 5.6 for more
information on protection and Section 5.10.5 for more information on the
SET PROTECTION command.

5.8.5 RENAME

RENAME changes the name, type, or version number of an existing file.

Format
REN AME[/ qualifier[s]]
Old file name? infile
New file name? outfile

REN AME[/ qualifier[s]] infile outfile

Command Qualifiers
/DATE:dd-mmm-yy
/SINCE:dd-mmm-yy
/THROUGH:dd-mmm-yy
/SINCE:dd-mmm-yy /THROUGH:dd-mmm-yyy
/TODAY
/EXCLUDE:filespec

5-40 Files on Micro/RSX Systems

Parameters
Intlle

Specifies the file to be renamed.

You may give a wildcard for either the file name or the file type, or
both. If you use a wildcard in these fields, you must supply an entry
in the version number field. This may be a wildcard.

If you give a wildcard for version number, all versions retain their old
version numbers. If no version number is supplied, only the highest
version of the named file is renamed. It has the same version number
as the old file. If other files having the new name exist, then you
receive an error message.

outtlle
Specifies the new name for the file.

Wildcards leave that portion of the file specification the same as before.
No wildcard is needed for the version number.

Examples

• RENAME [Rill
Old file name? INTRO.TXT [Rill
New file name? APPENDIX. TXT [Rill

In this example, the most recent version of INTRO.TXT becomes
APPENDIX.TXT;1.

• RENAME IZZY.TXT;4 FIZZY.* [Rill

In this example, IZZY.TXT;4 becomes FIZZY.TXT;1. Other versions of
IZZY. TXT are not affected.

• RENAME AMA.DOC;4 *.*;11 ~

In this example, AMA.DOC;4 becomes AMA.DOC;11.

• RENAME MAIN.T8K;* EXTRA.T8K [Rill

In this example, all files named MAIN. TSK are renamed EXTRA. TSK. The
version numbers remain the same, regardless of sequence and order of file
creation.

• RENAME MAIN.T8K;* SUB.* ~

In this example, all versions of MAIN.TSK are renamed SUB.TSK. Versions
are in the order of creation, with numbers unchanged.

Files on Micro/RSX Systems 5-41

• &EN EXHAUST. * ; * REFRESH. * [Rffi

In this example, all files named EXHAUST of whatever type are renamed
REFRESH. Their file types remain the same. Note that a wildcard is given
for the input file type. This makes an entry in the version number field
mandatory.

Notes

You cannot rename files across devices.

Using wildcards is tricky. Experiment before committing yourself.

5.9 More File-Related Commands
The commands in this section perform varied actions on your files. The
TYPE command displays files on your terminal. The PRINT command
prints files on the system line printer. The APPEND command alters
the contents of certain files. The DIFFERENCE command displays the
differences between two files. The UNLOCK command unlocks locked
files.

5.9.1 TYPE

TYPE prints selected files on your terminal.

Format
TYPE[/ qualifier[s]]
File(s)? filespec[s]

TYPE[/ qualifier[s]] filespec[s]

Command Qualifiers
/DATE:dd-mmm-yy
/SINCE:dd-mmm-yy
/THROUGH:dd-mmm-yy
/SINCE:dd-mmm-yy /THROUGH:dd-mmm-yy
/TODAY
/EXCLUDE:filespec

5-42 Files on Micro/RSX Systems

Parameter
ftlespec[s]

Specifies the file or files to be printed on your terminal.

You can specify any file to which you have READ access.

The file name and type must be specified explicitly or with a wildcard
(.). If no version is specified, the most recent version is printed. A
Wiidcard in any field prints every file that matches otherWise. Both
the • and the % wildcards are accepted.

You can also specify a device and directory. If you do not, these fields
default to the current device and directory.

Multiple file specifications must be separated by commas.

Examples

• TYPE [Rill
File(s)? ROMEO. TXT [Rill

Everybody loves a lover.

This example prints the file ROMEO. TXT from the current device and
directory on your terminal.

• TYPE [SHAKEY]ROMEO.TXT [Rill
A Rose by any other name might not be Pete.

This example prints the file ROMEO.TXT from the current device and
directory [SHAKEY] on your terminal.

• TYPE [*] *. FIL; * [Rill
This is the beginning of a file named ARTHUR.FIL.
It goes on for several lines.

THIS MARKS THE INITIATION OF A FILE CALLED ALBERT.FIL.
IT TOO CONTINUES AT SOME LENGTH.

Now comes a file that starts like this called Z.FIL.
And some more.

At last, we reach the beginning of a file named FILLIE.FIL.
Again some more text and then

Files on Micro/RSX Systems 5-43

The last two lines of FILLIE.FIL.
ZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

•
This example prints on your terminal all versions of all files having the
type .FIL located on the current device.

Notes

In general, Micro/RSX documentation uses the term "print" to refer to any
output sent to a terminal and "type" to refer to any user input from a
terminal. The name of the TYPE command is an exception to this rule.

If you are typing multiple files, the CTRL/O feature works in a slightly
different fashion. When you enter a CTRL/O, output is descarded until you
press another CTRL/O or until the beginning of the next file is reached,
whereupon output is sent to your terminal again. This leaves you free to
use CTRL/O on a file-by-file basis.

You can type any file, but generally only ASCII text files are readable.

5.9.2 PRINT
PRINT queues files for printing on a line printer, if any. It can also be
used to queue jobs for other output devices that are serviced by the Queue
Manager.

Format
PRINT[/ qualifier[s]]
File(s)? filespec[/ qualifier[s]][,filespec(s]]

PRINT(/ qualifier[s]] filespec[/ qualifier(s]][,filespec[s]]

Command Qualifiers
/ AFTER:TOMORROW
/ AFTER:(dd-mmm-yy hh:mm)

(mm/ dd/yy hh:mm)
/COPIES:n
/DEVICE:ddnn:
/(NO]FLAGJ AGE
/FORMS:n
/JOB_COUNT:n
/[NODOBJ AGE
/LENGTH:n

5-44 Files on Micro/RSX Systems

/NAME:jobname
/PRIORITY:n
/QUEUE:queuename

File Qualifier
/COPIES:n

POiometei
ftlespec[s]

Specifies the file or files to be printed on the line printer.

Multiple file specifications must be separated by commas.

The asterisk character (*) can be used in directory, name, type,
and version number fields, but only to stand for the entire field.
Wildcarding of the form L*. TXT is not accepted by PRINT, nor is the
percent sign (%) wildcard accepted.

If your file specification includes no file type, the default file type is
.LST.

Command Qualifiers
/ AFTER:TOMORROW

Specifies that you want the job printed after midnight.

This qualifier is particularly useful in command files or batch jobs that
are run every day. If your job or command file includes a PRINT
command, the / AFTER:TOMORROW qualifier makes whatever job
you specify the first print job of the next day.

/ AFTER:(dd-mmm-yy hh:mm:[ss])
(mm/dd/yy hh:mm:[ss])

Blocks the job until after the specified time. Depending on the print
queues at that time, your job may be run immediately, or later, when
its tum comes up in the queue.

The parentheses, hyphens (or slashes), colons, and the space between
the calendar and clock fields are all necessary syntax. Note that a
space is used only between the calendar and clock fields. The space is
not necessary if either field is omitted.

Files on Micro/RSX Systems 5-45

You can specify the calendar field in either of the following two
formats:
dd-mmm-yy Uses a 1- or 2-digit number for the day, the first 3 letters

for the month, and 3 numbers for the year.

mm/dd/yy Uses a 1- or 2-digit number for the month, a 1- or
2-digit number for the day, and 2 numbers for the year.

If you leave out the calendar field, the day defaults to the current date.

The argument yy must be between 77 and 92. If you leave it out, the
year defaults to the current year.

The argument hh:mm:ss is the hour, minute, and second.

If you leave out the clock field, the time defaults to 00:00:00 on the
given date.

The argument ss need not be given because it defaults to 00. In fact,
the field is not actually used; if you do specify this argument, it is
checked for syntax only. The Queue Manager always takes a few
seconds to start the job.

Specifying a .time using I AFTER is equivalent to issuing a PRINT
command at that time. The job may still have to wait in its queue to
be printed.

/COPIES:n
Specifies the number of copies to be printed. The default is ICOPIES:l.
If your PRINT command includes this qualifier and specifies more than
one file, the resulting QMG print job consists of the specified number
of copies of the first file named, followed by that many copies of the
second file, and so on. If you want to print multiple copies of files by
sets, use the IIOB_COUNT qualifier. See the examples.

The ICOPIES:n qualifier to the file specification can be used to override
this qualifier for a given file in a list of file specifications.

/DEVICE:ddnn:
The IDEVICE qualifier specifies that you want the file printed on a
particular device.

/[NO]FlAG_PAGE
Adds flag pages to each file in your print job. With IFLAGJ AGE,
the number of flag pages is equal to the number of job flag pages that
precede the job.

5-46 Files on MicrolRSX Systems

With /NOFLAGJ AGE (the default), your job is still preceded by a
job flag page, but the files in the job are printed without any file flag
page, separated only by form feeds. You can suppress the job flag
page with the /NOJOBJAGE qualifier. Figures 5-2 and 5-3 show
the difference between the job flag page and the file flag page.

/FORMS:n
Specifies the type of form on which the job must be printed. 1 ne
argument n can have a value from 0 through 256. The default is O.
See your system manager for details on how to specify the particular
forms used at your installation.

/ JOB_COUNT:n

Specifies the number of sets of files you want printed. The default is
/JOB_COUNT: 1. If your PRINT command includes this qualifier and
specifies more than one file, the resulting QMG print job consists of
a set consisting of the files named in order, followed by another set,
and so on. If you want to print multiple copies of one or more files,
but not in sets, use the /COPIES qualifier. See examples.

/[NO]JOB_PAGE

Specifies whether you want a job flag page printed at the beginning of
the QMG print job. The default is /JOBJ AGE. Use /NOJOBJ AGE
when you are printing on special forms, or for some other reason
do not want to include a job flag page. See the /[NO]FLAGJAGE
qualifier for controlling file flag pages. Figure 5-2 and 5-3 show the
difference between job flag pages and file flag pages.

/LENGTH:n

Sets the length of a logical page; n can be any number from 0 through
255. The default is n=O. If you set a length, a form feed is automatically
generated if one is not found within n lines. If your line printer has
perforations for 66-line pages, it will not print on the perforations in
the paper if you set /LENGTH:60.

When you set the length at 0, the default, the logical page length is
unlimited.

This qualifier has no effect on how the printer handles form-feed
characters. A form feed still moves the printer to the top of the next
physical form, such as the perforation in a sheet of line printer paper.
This qualifier simply adds the requirement that the printer move to the
top of the next physical page if no form-feed character is encountered
within n lines. See the example using /LENGTH.

Files on Micro/RSX Systems 5-47

/NAME:jobname
Specifies a name for the print job. Your job name can be nine
alphanumeric characters.

If you specify a job name, that name appears on the flag page at the
beginning of the printed output. Otherwise, the file name of the first
file is used as the job name.

The job name also appears in the SHOW QUEUE display. The job
name includes the UIC under which it was entered.

There can be more than one job of the same name, but each job has
a unique entry number which appears in the SHOW QUEUE display.

/PRIORITY:n
Sets the queue priority of the print job. For nonprivileged users, n can
be from 0 through 150. Privileged users can set n up through 250.
The default is 50.

The Queue Manager prints the highest priority jobs first. When two
jobs have the same priority, the job that has been in the queue longest
is printed first.

/QUEUE :queuename
Specifies the name of the print queue in which the job is to be placed.
The default is the PRINT queue.

File Qualifier

File qualifiers override the corresponding command qualifier when you
have given multiple file specifications as parameters to the PRINT
command. See the examples. See Volume 2, Chapter 12 for several
more file qualifiers to the PRINT command.

/COPIES:n
Overrides the /COPIES command qualifier when attached to a
particular file specification.

Examples

$ PRINT l@il
File(s)? PASHA.CMD ~
PRI -- Job 305, name "PASHA ", submitted to queue "PRINT"

This example prints the most recent version of PASHA.CMD from the
default device and directory on the line printer. The Queue Manager
returns a message confirming that the job has been submitted and assigned

5-48 Files on Micro/RSX Systems

Figure 5-2: Job Flag Page

M cro/RSX
M cro/RSX
M cTo/RSX
M cro/RSX

SSSS Y
S y
S y y

SSS Y
S Y
S Y

SSSS Y

L 000
L 0
L 0
L 0
L 0
L 0
LLLLL 000

M cro/RSX
M cro/RSX
M cro/RSX
M cro/RSX

Y
y

0
0
0
0
0

V3.0 [1,10]LOGIN - NO PAGE LIMIT
V3.0 FORM .0 - NORMAL HARDWARE FORMS
V3.0 NO IMPLIED FORM FEED
V3.0

SSSS M M
S HH MH
S M M M

SSS M
S M
S M

SSSS M

G
G
G
G
G

GGGG

GGG
G

GGG

V3.0
V3.0
V3.0
V3.0

M
M
M
M

III
I
I
I
I
I

III

JOB CONTAINS ONE FILE

GGGG RRRR
G R R
G R R
G RRRR
G GGG R R
G G R R

GGG R R

N N
N N
NN N
N N N
N NN
N N
N N

[1,10]LOGIN - NO PAGE LIMIT
FORM .0 - NORMAL HARDWARE FORMS
NO IMPLIED FORM FEED
JOB CONTAINS ONE FILE

15-APR-85 17 07 43
15-APR-85 17 07 43
15-APR-85 17 07 43
15-APR-8~ 17 07 43

15-APR-85 17 07 43
15-APR-85 17 07 43
15-APR-85 17 07 43
15-APR-85 17 07 43

ZK-4072-85

Files on Micro/RSX Systems 5-49

Figure 5-3: File Flag Page

M cro/RSX
t1 cro/RSX
M cro/RSX

L 000
L 0
L 0
L 0
L 0
L 0
LLLLL 000

TTTTT X
T X
T X X
T X
T X X
T X
T X

M c:ro/RSX
M cro/RSX
M cro/RSX

0
0
0
0
0

X
X

X
X

V3.0
V3.0
V3.0

GGGG
G
G
G
G GGG
G G

GGG

TTTTT
T
T
T
T
T
T

V3.0
V3.0
V3.0

III
I
I
I
I
I

III

, ,
, ,

DUO:[1,2)LOGIN.TXT;1
COPY 1 OF 1
DELETION NOT SPECIFIED

N N
N N
NN N
N N N
N NN
N N
N N

1
11

1
1
1
1

111

DUD:[1,2)LOGIN.TXT;1
COpy 1 OF 1
DELETION NOT SPECIFIED

5-50 Files on Micro/RSX Systems

15-APR-85
15-APR-85
15-APR-85

15-APR-85
15-APR-85
15-APR-85

17:07:48
17:07:48
17:07:48

17:07:48
17:07:48
17:07:48

ZK-4073-85

an entry number. You can use this entry number in QMG commands. See
the next section.

• PRINT/COPIES:20 ~
F11e(8)? PASHA.CMD rnm
PRI -- Job 706. name "PASHA ". 8ubmitted to queue "PRINT"

This example prints 20 copies of PASHA.CMD. They are printed end-to­
end with no flag page except at the beginning.

• PRI/COP:20/FLAG_PAGE PASHA.CMD ~
PRI -- Job 321. name "PASHA ". 8ubmitted to queue "PRINT"

This example prints 20 copies of PASHA.CMD, each with a flag page.

• PRIN/COPIES:2 DAVID. TXT. DAN.TXT ~
PRI -- Job 18. name "DAVID ". 8ubmitted to queue "PRINT ..

This example prints two copies of DAVID.TXT followed by two copies of
DAN.TXT. It does not print two sets of one copy of each file. If you want
to print sets of files, see the next example.

• PRINT/JOB_COUNT:2 DAVID. TXT. DAN.TXT ~
PRI -- JOB 311. NAME "DAVID ". 8ubmitted to queue "PRINT"

This example prints a set consisting of a copy of DAVID.TXT followed by
a copy of DAN.TXT, and then prints another set of DAVID.TXT followed
by DAN.TXT.

• PRl/FLAG PASHA.CMD. RAJAH.CMD. SHEIK.CMD IRETI
PRI -- Job 999. name "PASHA ". 8ubmitted to queue "PRINT"

This example prints one copy of each file, each with its own flag page.

• PRI/NAME:ARABY/FLAG PASHA.CMD. RAJAH.CMD. SHEIK.CMD ~
PRI -- JOB 806. NAME "ARABY". 8ubmitted to queue "PRINT"

This example prints one copy of each file, each with its own flag page, and
gives the name ARABY to the job as a whole. The name ARABY appears
in the print queue and at the head of the entire printed output.

• PRINT/LENGTH:60 GLADRAG.MAC IRETI
PRI -- Job 22. name "GLADRAG ". 8ubmitted to queue "PRINT ..

This example prints a single copy of the file GLADRAG.MAC. This is a
source program file without form-feed characters in it. The user wants
to print it on line-printer paper, a physical form 66 lines long. To avoid
printing over the perforations, the user has specified a logical length of 60

Files on Micro/RSX Systems 5-51

lines. Each time 60 lines have been printed, the logical page is complete
and the printer moves to the top of the next physical page.

If the file has form feeds in it, the printer moves to the top of a physical
page each time it encounters a form feed and each time it prints 60 lines
without encountering a form feed.

S PRI/COPIES:20 MOB.COR. RIFF.COR. RAB.COR/COP:19. PRO.COR ~
PRI -- Job 77. name "MOB ", submitted to queue "PRINT"

This example prints 20 copies each of MOB. COR and RIFF.COR, 19 copies
of RAB.COR, and then 20 copies of PRO.COR.

S PRI/AFTER:(4-JUL-84 13:13) CONST.CON ~
PRI -- Job 809, name "CaNST ", submitted to queue "PRINT"

This example blocks the job in its queue until the specified date and time.
The file itself remains in its directory. Deleting the file from its directory
does not take it out of the queue, but does prevent it from being printed.

S PRI/AFTER:(17:00) GUNGA.DIN IRETI
PRI -- Job 766, name "GUNG! ". submitted to queue "PRINT"

This example prints the file after 5 p.m. on the day the command is
entered. If the command is entered after the specified time, the file is
printed immediately.

Notes

P is the short form of PRINT.

The PRINT command does not accept the percent (%) wildcard. The
asterisk (.) wildcard can only be used to substitute for a complete part of
the file specification and not for part of a file name or file type as most of
the file-related commands do.

For more information on the PRINT command, see Volume 2, Chapter 12.
There are several additional qualifiers to PRINT described there.

See the next section for a description of the SHOW QUEUE command,
which displays information about print jobs in queues.

PRINT is to print jobs as SUBMIT is to batch jobs.

Once your job is in a queue, you can modify some job attributes with SET
QUEUE. See the next section.

The Queue Manager automatically deletes .PMT and . DMP files after they
are printed.

5-52 Files on Micro/RSX Systems

The flag pages and the job pages have different formats for the banner
text. The job name page shows the UIC the PRINT command was issued
under on the first line and a 9-character job name (derived from an explicit
job name or the file name of the first file in the job) on the second line.
The flag page shows the full 9-character file name on the first line and the
file type and version number on the second line. See Figures 5-2 and 5-3.

Entry numbers run from 1 through 999 and are unique. Various QtvfG
commands permit you to identify your job either by this number or by job
name. The job name includes your UIC. See the next section and also the
expanded material in Volume 2, Chapter 12.

5.9.3 Queue Manager Commands
The PRINT command sends jobs to the line printer by way of the Queue
Manager (QMG). The Queue Manager is a system task that also distributes
jobs for batch processing. Passing jobs to the Queue Manager is called
II queuing jobs."

The Queue Manager distributes print jobs queued by user tasks, by system
tasks that output listings such as MACRO listings or task builder maps,
and jobs queued by the PRINT command.

Once jobs are in queues, you can display queue information with the
SHOW QUEUE command. You can alter the status of jobs in queues with
the SET QUEUE command. You can hold jobs in queues with the HOLD
/ENTRY command, release them from queues with the RELEASE/ENTRY
command, or delete jobs in queues with the DELETE/ENTRY command.

Once you have issued a PRINT command, you may want to alter the way
that file is processed or you may decide that you did not want to process
that file at all. This section explains how to make these changes.

For example, you issue the following PRINT command to queue the file
ANTRIM. TST to the line printer:

• PRINT ANTRIM. TST mill
PRI - Job 22. name "ANTRIM ". submitted to queue "PRINT"

However, you did not want to print that file. The file you wanted to
print is ANTRIM.TXT. To prevent ANTRIM.TST from printing, you must
remove that file from the queue. To do this, you use the SHOW QUEUE
command and either the DELETE/ENTRY command or the STOP/ABORT
command depending upon the status of your job.

Files on Micro/RSX Systems 5-53

The SHOW QUEUE command shows you the position of your job on
the queue (as well as that of other jobs) and whether or not your job is
currently being processed. The following example explains about SHOW
QUEUE and the output it gives:

• SHOW QUEUE ffiill
** PRINT QUEUES **
PRINT => LPO

[303,3] ANTRIM ENTRY:22
> 1 DUO: [MARK]ANTRIM.TST;1

LPO => LPO
** BATCH QUEUES **
BATCH => BPAO

ACTIVE ON LPO

ANTRIM.TST is entry number 22 in the PRINT queue. The Queue Manager
assigns an entry number to each job as a means for keeping track of which
jobs are processed when. Usually, this is done on a first-come, first-serve
basis. Also, note that ANTRIM.TST is currently being printed on line
printer LPO: as shown in the third line of the display. To stop your
currently printing job, you have to issue the STOP/ABORT command.
This command stops your job on the line printer immediately.

Use the STOP/ABORT command in the following manner:

• STOP/ABORT LPO: ffiill •
When the dollar sign prompt ($) returns, your job has stopped printing.

If your job has not started printing, issue the SHOW QUEUE command
as in the previous example. This time, the output this command gives is
slightly different from before, notably, the ACTIVE ON LPO is missing.
For example:

• SHOW QUEUE I RET I
** PRINT QUEUES **
PRINT => LPO

[303,3] ANTRIM ENTRY: 22
1 DUO: [MARK]ANTRIM.TST;1

LPO => LPO
** BATCH QUEUES **
BATCH => BPAO

To delete this job from the PRINT queue, you use the DELETE/ENTRY
command and the job's entry number (described in the previous example)
as follows:

• DELETE/ENTRY: 22 ffiill •
5-54 Files on Micro/RSX Systems

Your job has been removed from the PRINT queue and will not be printed.

Once ANTRIM.TST is removed from the PRINT queue, reissue the PRINT
command with ANTRIM. TXT as the file you want processed.

The following sections detail the various commands that use the QMG,
their qualifiers, and examples on how the commands are used.

5.9.3.1 DELETE/ENTRY

The DELETE/ENTRY command deletes jobs from a queue or files from a
job by specifying the job's entry number.

Format
DELETE/ENTRY:nnn[/FILEJOSITION :n]

Command Qualifiers
/ENTRY:nnn

Deletes a queue entry by number. This number is always unique.

/FILE_POSITION:n
Identifies the file by the file's position in the job.

Examples

• DELETE/ENTRY: 301 lEm
This command deletes the job from queue by referencing the job's unique
entry number (in this example, job number 301) .

• DELETE/ENTRY:301/FILE_POSITION:2 lEm
This example deletes only the second file appearing in job 301. You
may only refer to the file you want to delete by the file's position in the
print job (the numbered order in which you entered the file specification).
You cannot specify the file you want to delete by referring to its file
specification.

Note

You see the entry number for a job when you issue the PRINT command.
You can also find the entry number, and the file position for files in the
job, with the SHOW QUEUE command.

Files on Micro/RSX Systems 5-55

5.9.3.2 SHOW QUEUE and SHOW PROCESSOR

Use the commands described in this section to display information about
queues, the jobs in the queues, and spooled devices.

An unadorned SHOW QUEUE command lists all jobs in all queues.
Qualifiers can be used to limit the display to specific queues, specific
jobs, and the like.

You may examine the contents of your system's queues (in decreasing
degree of detail) by entering one of the following command qualifiers:

/FULL
/FILES
/BRIEF

5.9.3.3 SHOW QUEUE

SHOW QUEUE displays information about QMG print jobs.

Format
SHOW QUEUE [queuename][/qualifier[s]]

Command Qualifiers
/BRIEF
/DEVICE
/ENTRY:nnn
/FILES
/FORMS[:n]
/FULL
/OWNElLUIC:uic
/PRINT

Parameter
queuename

Displays QMG information for a single queue, either print or batch.
The main print queue is called PRINT. Other print queues have names
determined by the system manager.

Command Qualifiers
/BRIEF

Displays only queues, queue assignments, and jobs in queues.

You may examine specific attributes of queues by entering one of the
following qualifiers.

5-56 Files on Micro/RSX Systems

/DEVICE
limits information to print queues.

/ENTRY:nnn
limits information to a particular job entry referenced by the job's
unique entry number.

/FILES
Displays information about queues, queue assignments, jobs in queues,
and files that compose jobs in queues. The attributes of the jobs are
not displayed. This display format is the default of SHOW QUEUE.

/FORMS[:n]
Limits information to jobs that are to be printed on a specified form.
If the argument n is omitted, the display shows all jobs that are other
than Form O.

/FULL
Displays detailed information about queues, queue assignments, jobs,
the attributes of jobs in queues, and files that compose jobs in queues.

/OWNEILUIC:ulc
limits information to jobs owned by the specified uic.

/PRINT
limits "information to Print queues. This qualifier produces the same
information as the /DEVICE qualifier.

Examples

The following examples show the three different output displays (FULL,
FILE, BRIEF).

• SHOW QUEUE/FULL [EITJ

** PRINT QUEUES **
PRINT => LPO

[7.26] MARK ENTRY: 22 FORM: 0 ACTIVE ON LPO
PRI:60 LEN:O PAGE:O NORESTART FLAG:JOB NOLOWER COP:1
> 1 DUO: [GREGG]MARK.LST;1 COP:1 NODELETE

[7.40] ANITA ENTRY: 24 FORM: 0
PRI:60 LEN:O PAGE:O NORESTART FLAG:JOB NOLOWER COP:1

1 DUO: [LAKE]ANITA.MEM;12 COP:1 NODELETE
LPO => LPO
** BATCH QUEUES **
BATCH => BAPO

•
Files on Micro/RSX Systems 5-57

This display shows all information about the queues and jobs in queues.
In this example, the queue PRINT sends jobs to LPO:.

There are two print jobs in the queue PRINT:

• [7,2S]MARK, entry number 22, which is currently being printed on
LPO:

• [7,40]ANITA, entry number 24, which is waiting to be printed

The attributes of the job are indicated in the display, and the files that
make up each job are also listed. The angle bracket (>) indicates which
file of a job is currently being processed.

S SHOW QUEUE/FILE @TI]

** PRINT QUEUES **
PRINT => LPO

[7.25] MARK ENTRY: 22
> 1 DUO: [GREGG]MARK.LST;l

[7.40] ANITA ENTRY: 24
1 DUO: [LAKE]ANITA.MEM;12

LPO => LPO
** BATCH QUEUES **
BATCH => BAPO

ACTIVE ON LPO

This display, the default format, shows the queues in the same state. It
does not show the attributes of the job. It only shows the form number of
the job and the attributes of the files if other than the default values were
specified. Because /FILE is the default, you need not specify it.

S SHOW QUEUE/BRIEF @TI]

** PRINT QUEUES **
PRINT => LPO

[7.25] MARK ENTRY: 22
[7.40] ANITA ENTRY:24

LPO => LPO
** BATCH QUEUES **
BATCH => BAPO

ACTIVE ON LPO

This display only shows the names, entry numbers, and status of the jobs
in the queues. Also, if a form other than Form 0 is specified for a print
job, the form will appear in the display.

5-58 Files on Micro/RSX Systems

5.9.3.4 SHOW PROCESSOR

SHOW PROCESSOR displays information about the initialized character­
istics of spooled devices and batch processors, printers, and other output
devices under control of the Queue Manager.

Format
SHOW PROCESSOR [processomame]
Displays information about all processors.

SHOW PROCESSOR/PRINT or SHOW PROCESSOR/DEVICE
Shows all print processors.

Example

Enter the following command on your terminal:

• SHOW PROCESSOR I RET I

Information about print processors, batch processors, and spooled input
devices will be displayed at your terminal:

** SPOOLED DEVICES **
LPO <= PRINT LPO

LOWER FORM:O FLAG: 2
CURRENT JOB: [CRAZED]FUP

** BATCH PROCESSORS **
BAPO <= BATCH

ENTRY: 69

This display shows all information about spooled devices and batch
processors. In this example, spooled device LPO: can receive jobs from
queues PRINT and LPO:.

The only batch processor, BAPO, can receive jobs only from the queue
BATCH.

LPO: is currently printing job [CRAZED]FUP, entry number 59.

Files on Micro/RSX Systems 5-59

5.9.3.5 SET QUEUE

SET QUEUE modifies attributes given to either print jobs, or files that
compose jobs in queues. Such jobs and files have been entered in queues
by the PRINT command. You cannot change the attributes of an active
job.

Format
SET QUEUE/ENTRY:nnn/qualifier[jqualifier[s]]

Command Qualifiers
/ AFTER:(dd-mmm-yy hh:mm)
/FORMS:n
/JOB_COUNT:n
/LENGTH:n
/PRIORITY:n

File Format
SET QUEUE/ENTRY:nnn/FILE-POSITION:n/qualifier[jqualifier[s]]

File Qualifiers
/COPIES:n

Command Qualifiers
/ AFTER:(dd-mmm-yy hh:mm)

Changes the time after which your job will be printed. The job will
be BLOCKED until the time and date you specify. The job will not
necessarily be printed at exactly the time you state but will be eligible
after the time you state.

If you do not supply the calendar field, the default is the current date.
If you do not supply the clock field, the default is midnight on the
date given in the calendar field.

If you supply both the clock and calendar fields, you must separate
them with a space.

/FORMS:n
Changes the FORMS attribute of your print job. See Section 5.9.2 for
an explanation of the /FORMS qualifier to the PRINT command.

5-60 Files on Micro/RSX Systems

/JOB_COUNT:n

Changes the number of copies of a job you want to have printed.
See File Qualifiers for an explanation of how to modify the number
of copies of a file contained inside of a job. See Section 5.9.2 for an
explanation of the /COPIES qualifier to the PRINT command.

/LENGTH:n

Changes the length of a logical page (number of lines per printed page)
of your print job. A line printer will move to the top of a physical
page every time n lines have been printed on a page or a form feed is
encountered. See Section 5.9.2 for an explanation of the /LENGTH
qualifier to the PRINT command.

/PRIORITY:n

Changes the queue priority of a print job. Nonprivileged users may
set priorities up through 150. Privileged users may set priorities up
through 250. See Section 5.9.2 for an explanation of the /PRIORITY
qualifier to the PRINT command.

File Quallfters
/FILE_POSITION:n

Changes the operation of /COPIES:n or /[NO]DELETE as they apply
to a file contained in a job in queue. The number n refers to the file
position in the job. Use SHOW QUEUE to determine its position.

/COPIES:n

Changes the number of copies of a file you want to have printed
within a single printing of a print job.

Examples

• PRINT/JOB_COUNT:2 JILL.TXT.JOHN.TXT/COPIES:3 IRETI

The SHOW QUEUE/FULL command output might look like this:

** PRINT QUEUES **
PRINT => (LPO)

[304.1] JILL ENTRY:696 FORM: 0
PRI:50 LEN:O PAGE:O NORESTART

1 DU1: [DICK] JILL. TXT; 1
2 DU1:[DICK]JOHN.TXT;1

LPO => LPO

FLAG:JOB NOLOWER COP:2
COP:1 NODELETE
COP:3 NODELETE

To print two copies of the file JOHN.TXT instead of the three copies
specified in the initial print command, you would type the following SET
QUEUE command on your terminal and enter it:

Files on Micro/RSX Systems 5-61

• SET QUEUE/ENTRY:696/FILE_POSITION:2/CO:2 @[U

The SHOW QUEUE/FULL command output on your terminal then would
look like this:

** PRINT QUEUES **
PRINT => (LPO)

[304.1] JILL ENTRY: 696 FORM:O
PRI:50 LEN:O PAGE:O NORESTART

1 DU1: [DICK] JILL. TXT; 1
2 DU1: [DICK] JOHN.TXT;1

LPO => LPO

FLAG:JOB NOLOWER COP:2
COP:1 NODELETE
COP:2 NODELETE

Note that the file in position 2, JOHN.TXT, will have two copies instead
of three printed.

Notes

When you issue the PRINT command, you specify attributes of the QMG
job through command qualifiers. SET QUEUE command qualifiers change
the matching attributes.

You cannot change the attributes of an active job.

You can delete files or change the number of copies to be printed by
specifying /FILEJOSITION:n in your SET QUEUE command line.

5.9.3.6 STOP/ABORT

The STOP/ABORT command stops the current job on a line printer
immediately. Privileged users can stop any job. Nonprivileged users
can stop their own jobs.

Format
STOP / ABORT printer

Parameter
printer

Specifies the line printer whose active job you want to stop.

Example

• STOP/ABORT LPO: @[U •
This command stops the currently active print job on LPO:. This job i~
deleted from the queue and the next eligible job is queued.

5-62 Files on Micro/RSX Systems

Note

As soon as the active job is deleted, QMG passes the next eligible job
to the processor. The processor has not been aborted or killed, only the
active job on that processor.

5.9.3.7 HOLD/ENTRY and RELEASE/ENTRY

You can specify that a print job be HELD in a queue when you issue the
PRINT command, or you can hold it with the HOLD command.

You can release such jobs with the RELEASE command.

Note that when a system crashes, the Queue Manager automatically holds
those jobs in the queues so that the jobs are not lost. However, when the
system is restored, you must release those held jobs with the RELEASE
command.

Format
HOLD /ENTRY:nnn
Blocks a job in its queue until it is explicitly released.

RELEASE/ENTRY:nnn
Unblocks a job that has been held in queue.

Examples

• PRINT/HOLD/NAME:MARY MUSE. TXT IRETI

The SHOW QUEUE/FULL command output might look like this:

** PRINT QUEUES **
PRINT => LPO

[231.66] MARY ENTRY: 20 FORM:O
PRI:60 LEN:O PAGE:O NORESTART

1 DU1:[AMUSED]MUSE.TXT;1
LPO => LPO

HELD
FLAG:JOB NOLOWER COP:1
COP:1 NODELETE

To unblock MUSE.TXT, you would type the following RELEASE command
on your terminal:

• RELEASE/ENTRY: 20 !Bill
The SHOW QUEUE/FULL command output would look like this:

** PRINT QUEUES **
PRINT => LPO

[231.66] MARY ENTRY: 20 FORM:O ACTIVE ON LPO

Files on Micro/RSX Systems 5-63

PRI:60 LEN:O PAGE:O NORESTART FLAG:JOB NOLOWER COP:1
> 1 OU1: [AMUSED] MUSE. TXT; 1 COP:1 NOOELETE

LPO => LPO

Note

The HELD status of the job in the previous example was first changed to
WAITING, and then, since there were no jobs in queue, became ACTIVE.

5.9.4 UNLOCK

UNLOCK unlocks locked files. Locked files are files that have been
improperly closed because a task aborted or stopped execution while the
file was open. Locked files are identified by an L in the directory listing.

Format
UNLOCK[/ qualifier[s]]
File(s)? filespec[s]

UNLOCK[j qualifier[s]] filespec[s]

Command Qualifiers
/DATE:dd-mmm-yy
/SINCE:dd-mmm-yy
/THROUGH:dd-mmm-yy
/SINCE:dd-mmm-yy /THROUGH:dd-mmm-yy
/TODAY
/EXCLUDE:filespec

Parameter
filespec

Identifies the locked file(s) that you want to unlock.

Example

• Directory TOPEKA.KAN ~
Directory OBO:[303.6]
29-MAY-86 13:13

TOPEKA.KAN;3 32. L 26-MAY-86 12:29

Total of 32./40. blocks in 1. files

• • • UNLOCK TOPEKA. KAN ~

5-64 Files on Micro/RSX Systems

• • • DIRECTORY TOPEKA.KAN ~
Directory DBO: [303.6]
29-MAY-86 13:14

TOPEKA.KAN;3 32. 26-MAY-86 12:29

Total of 32./40. blocks in 1. files

In this example, the user found a locked file, perhaps through an error
message stating that the file could not be opened. The locked state is
indicated by the L in the third column of the directory listing. After the
user issues the UNLOCK command, the file is no longer locked.

Notes

In many cases, a locked file has no contents because the task that opened
the file aborted before writing to the file. In this case, you do not need to
unlock the file before deleting it.

Another common case of file locking is a data file that has been opened
by some task that aborted or exit~d without closing the file. In this case,
you have to unlock the data file before running the task again. If the file
is written to by the task, it may have been corrupted.

5. 1 0 SET and SHOW
You can type SET commands to establish your default device, directory,
and User Identification Code, and SHOW commands to display what these
defaults are. You can change the protection code for any existing file
in your directory with the SET PROTECTION command. In addition,
you can establish your own default file protection code with SET
PROTECTION/DEFAULT and use SHOW PROTECTION to display the
default protection.

See Section 5.9.3 for SET and SHOW commands for the Queue Manager.

Files on Micro/RSX Systems 5-65

5.10.1 SET DEFAULT

SET DEFAULT changes where the operating system looks for information
from your current device and directory to those indicated in the command.
SET DEFAULT establishes your default device or directory, or both. That
is, when you do not indicate a device or a directory in a file specification
or command, the operating system supplies these defaults.

The protection codes for the directory and its files control your activity in
the directory. If you are a nonprivileged user, you have the directory and
file access rights of the WORLD category, and-depending upon your User
Identification Code (UIC)-the GROUP category. If you are a privileged
user, you have the access rights of the SYSTEM category. Of course, if
your UIC matches the directory owner's, then you have the privileges of
the OWNER category.

Note that a privileged user can change his UIC with the SET UIC command.
If you intend to create or alter files in a directory other than your own, it
is good practice to change your UIC to match the directory owner's. See
Section 5.10.3.

SET DEFAULT works differently if you previously set your terminal's
default to /NONAMED_DIRECTORY. See Volume 2, Chapter 12 for more
information.

Format
SET DEFAULT[/qualifier] [default]]

Command Qualifier
/[NO]NAMED_DIRECTORY

Parameters
default

Specifies a device and/or directory or logical name to be used as the
default device or directory in file specifications.

If you specify a physical device name, terminate the device name with
a colon.

If you specify a directory name, you must enclose it in the square
brackets. (Note that if your terminal's default is /NONAMED_
DIRECTORY, the directory field accepts only numbered directories
in the form [g,m].)

5-66 Files on Micro/RSX Systems

If you specify a logical name, the logical name must translate to an
existing physical device and/or directory. If the logical name is to
translate to a physical device, be sure that when you make the logical
name assignment, you terminate the physical device name with a
colon. When you issue the SHOW DEFAULT command, the system
displays the actual physical device, not the logical name.

Command Quallfter
/[NO]NAMED_DIRECTORY

SET DEFAULT/NAMED_DIRECTORY is the default on Micro/RSX.
This command allows SET DEFAULT to accept either named or
numbered directories. The format for a named directory is [directory],
where directory is one to nine of the following characters: the 26 letters
from A through Z, and the numbers from 0 through 9. Examples of
named directories include [MAG], [DIDDLYBOP], and [lPOTAT02].

The format for a numbered directory is [g,m], where g and m are octal
numbers from 1 through 377. Examples of numbered directories are
[100,2] and [202,10].

If you issue SET DEFAULT/NONAMED_DIRECTORY, you can
only specify numbered directories in the SET DEFAULT command.
Operating with /NONAMED_DIRECTORY has some subtle side
effects. Its use is recommended only for experienced users of other
systems in the RSX family who need to maintain compatibility with
older versions.

Some application programs do not recognize named directories. See
Volume 2, Chapter 12 for some suggested solutions to this problem.

Examples

• SET DEFAULT DU1: [GRAMPUS] [EIT]

This example sets DU1: as the default device and [GRAMPUS] as the
default directory. All subsequent commands default to this device and
directory unless you explicitly state otherwise.

• SET DEF DU1: [Bill
• ASSIGN DU1: SY: [Bill

The two commands in this example are equivalent. In each case, the
default device becomes DU1:. When you set the default device, SET
DEFAULT actually assigns SY as a logical name for the device you want.
SY is the logical device name that represents your default device.

Files on Micro/RSX Systems 5-67

5.10.2 SHOW DEFAULT

SHOW DEFAULT displays the current default device and directory for
your terminal. It also shows whether you are operating with /NAMED_
DIRECTORY or /NONAMED_DIRECTORY as your default, and your
User Identification Code (UIC).

Format
SHOW DEFAULT

Example

• SHOW DEFAULT ~
DU1:[HUSKY] Named TT6:
Protection Ule: [16.20]

This example shows the display from SHOW DEFAULT, giving the default
device, DU1:, and directory, [HUSKY], for your terminal, TT6:. Named
indicates that your default is /NAMED_DIRECTORY -that is, you can
specify either a named or numbered directory in all file specifications and
commands. Your User Identification Code (UIC) identifies you to the
operating system and controls your ability to access files.

5.10.3 SET UIC

SET UIC is a privileged command that changes your User Identification
Code (UIC). A UIC is an attribute of a directory and its files, establishing
ownership. If you intend to create or alter files in a directory other than
your own, you can use this command to change your UIC to that of the
directory's owner.

A UIC controls the protection codes of both a directory and its files. These
protection codes determine who can access the directory and its files, and
in what ways. See Section 5.6.1 for a description of how UICs relate to
file protection codes.

If you change directories, but do not change your UIC to match that of
the directory's owner, the following problems can occur:

• If you create a file in the directory of a non privileged account-that
is, in a directory with a UIC group number greater than 10-the
owner of that directory cannot easily change or delete that file. Most
file protection codes restrict access in the WORLD category to READ,
which is the operating system default for this category. Because your

5-68 Files on Micro/RSX Systems

UIC owns the file, the owner of the directory may fall into the WORLD
category, and therefore can only read the file.

• Several system command files, as well as the command files of some
users, set the UIC of the file's owner to match the UIC of the directory's
owner. This matching of UICs gives the command file full access to
all the files in the directory. If the files in that directory are owned by
!:II rHUo1"onf- , nr f-ho 1".'u'W'\ft'\!:IInA filo ft'\!:11'" t!:llH
W ""'.1..&..&"'.&.& .. " ""''&'-/ ".&.Il'-' """&.'&LIo&.I.I.""" '&''&LW] ... ""

Note that SET UIC does not change your directory. Typically, after
executing this command, you issue the SET DEFAULT command to change
your directory to the one belonging to the owner of the new UIC.

SET UIC acts differently if your terminal's default is /NONAMED_
DIRECTORY. See Volume 2, Chapter 12 for more information.

Format
SET UIC [uic]

Parameter
[ulc]

Specifies the User Identification Code (UIC) that you want to make
your default. The format of a UIC is [g,m], where the first number is
the group number, and the second is the member number. Group and
member numbers are octal and range from 1 through 377.

Group numbers indicate privilege status. The UICs of privileged
accounts have group numbers of 10 or less.

Examples

• DIRECTORY/FULL [OOOOoo]GIDEON.DIR IRETI
Directory DUO: [000000]
12-MAY-86 14:12

GIDEON.DIR;1 (676.6040)
[200.1] [RWED.RWED.RWED.R]

Total of 1./1. blocks in 1. file

•
• SET UIC lEill
UIC? [200.1] lEill
• • SET DEFAULT [GIDEON] lEill

1./1. C 12-MAY-86 07:28

Assume that you want to create or alter files in [GIDEON], another directory
located on your current device. A full listing of the directory file itself,
located in [OOOOOO]GIDEON.DIR, shows that the UIC of the directory's

Files on Micro/RSX Systems 5-69

owner is [200,1]. You then issue the SET UIC command to change your
current UIC to that of the directory's owner. Finally, you type the SET
DEFAULT command to move to the other directory.

Notes

As a privileged user, you can manipulate the files of another directory in
any way. Note that you need only issue the SET UIC command if you
intend to create or alter files (WRITE) in another directory. However, when
you are working with the files of another directory, it is good practice to
always use this command.

If you change your UIC to that of a non privileged account, you can change
back to a privileged account by issuing the SET UIC command again.

You can type either the SET UIC or the SET DEFAULT command first;
the sequence does not matter.

5.10.4 SHOW UIC

SHOW UIC displays your User Identification Code (UIC). Your UIC is
unique and identifies you to the operating system. In addition, your UIC
determines whether you are a privileged or nonprivileged user.

Each file and directory has a UIC associated with it, which identifies the
owner. Each file and directory also has a protection code. The way in
which your UIC relates to both the UIC and protection code of a file
or directory controls your ability to access that file or directory. See
Section 5.6 for a description of protection.

Nonprivileged users always have the same UIC, but privileged users can
change their UIC with the SET UIC command.

Format
SHOW UIC

5-70 Files on Micro/RSX Systems

Example

• SHOW UlC @IT]
Protection UlC: [303.17]

This example shows the display from SHOW VIC. The first number is
the group number, and the second is the member number. Group and
member numbers are octal and range from 1 through 377.

Generally, all users working on a particular project have the same group
number. Each user account has a unique member number, however.

Group numbers indicate privilege status. The VICs of privileged accounts
have group numbers of 10 or less. The user issuing this SHOW VIC
command, therefore, is nonprivileged.

5.10.5 SET PROTECTION

SET PROTECTION changes the protection code of an existing file or files.

The protection code determines which users may access a file, and in what
ways.

Nonprivileged users can change the protection of any files in their own
directory. Privileged users can change the protection of any file.

Format
SET PROTECTION:(code)[/qualifier[s]] filespec[s]

SET PROTECTION[jqualifier[s]]
File? filespec[s]
Code? (code)

SET PROTECTION[jqualifier[s]] filespec[s] (code)

Command Qualifiers
/DATE:dd-mmm-yyy
/SINCE:dd-mmm-yy
/THROVGH:dd-mmm-yy
/SINCE:dd-mmm-yy /THROVGH:dd-mmm-yy
/TODAY
/EXCLVDE:filespec

Files on Micro/RSX Systems 5-71

Parameters
nlespec[s]

Specifies the file or files for which you are changing the protection.
Multiple file specifications, separated by commas, and wildcards are
permitted.

(code)
Specifies which user categories can access a file and what each user
category may do to the file. The parentheses are required.

There are four categories of users in a file protection code, as follows:
SYSTEM The operating system itself, and privileged users, those with

group numbers of 10 or less.

OWNER

GROUP

WORLD

The user having the same UIC as the one the file was created
under.

All users with the same UIC group number as the one the
file was created under.

All other users.

There are also four kinds of access to files as follows:
READ The user, or the user's tasks, may read, copy, print, type the

file, or ru\l it, if it is a task image.

WRITE

EXTEND

DELETE

The user, or the user's tasks, may add new data to the file
by writing to it.

The user, or the user's tasks, may increase the amount of
disk space allocated to the file.

The user, or the user's tasks, may delete the file.

The system default protection code is expressed as follows:

(SYSTEM:RWED,OWNER:RWED,GROUP:RWED,WORLD:R)

Under this code, the system, and privileged users, have full access to your
files. You, as well as others with your group number, also have full access
to your files. Other nonprivileged users can only read your files.

All files have the system default protection, unless you change their
protection code using the SET PROTECTION command, or establish
an alternative default protection using the SET PROTECTION/DEFAULT
command.

5-72 Files on Micro/RSX Systems

You specify the code in the SET PROTECTION command using the same
format as shown in the previous example. Note, however, that you need
to name only the user groups whose access rights you want to change and
the types of access you want to grant to those groups. If you want to deny
all access to a group, simply name the group and omit the colon (:) and
the code for the access form.

Examples

• SET [EITl FUNCTION? PROTECTION [EITl
CODE?(SYSTEM:RWED.OWNER:RWED.GROUP.WORLD) [EITl
File(s)? SANTONE.TEX [EITl

• • SHOW PROTECTION SANTONE.TEX IRETI
System:RWED. Owner:RWED. Group:No Access. World:No Access

This example changes the protection of the file SANTONE.TEX so that
privileged users and the owner have full access to the file and all others
have no access to the file. The SHOW PROTECTION command displays
the protection of the file. Issuing the SHOW PROTECTION command is
a good way of checking that you have changed the file's protection code
correctly.

• SET PROTECTION *.*:* (SYS:RWE.OWN:RWE.GRO:R.WOR:R) [EITl

This example sets the protection for all files in the current default directory.
No class of user can delete the files in the directory; other nonprivileged
users cannot alter files in the directory.

Notes

You must have access to the volume, the directory, and the file before you
can access a file. See Section 5.6.1 for more information.

Although you can protect your files against access by privileged users,
privileged users can change the protection status of any file. Thus, you
can prevent privileged users from inadvertently accessing your files, but
you cannot prevent them from deliberately changing the protection status
and doing what they will with your files.

If you deny READ access to a task image file, the task cannot be run.

Other commands accepting a protection code include INITIALIZE,
INITIALIZE/UPDATE, MOUNT, and CREATE/DIRECTORY.

Files on Micro/RSX Systems 5-73

Other commands with qualifiers associated with file ownership include:

• INITIALIZE/OWNEILUIC-See Volume 2, Chapter 13.

• INITIALIZE/UPDATE/OWNEILUIC-See Volume 2, Chapter 13.

• INSTALL/UIC-See Volume 2, Chapter 15.

• LINK/OPTION:UIC-See Volume 2, Chapter 14 and the RSX-llM
/M-PLUS and Micro/RSX Task Builder Manual (which is available
separately and as part of the Advanced Programmer's Kit).

• MOUNT/OWNER-See Volume 2, Chapter 13.

• RUN/UIC-See Volume 2, Chapter 15.

• SHOW QUEUE/OWNEILUIC-See Volume 2, Chapter 12.

• SHOW TASK/DYNAMIC/OWNER-See the Advanced Programmer's
Kit.

5.10.6 SET PROTECTION/[NO]DEFAULT
SET PROTECTION/DEFAULT establishes your personal default protection
code for all files that you create after issuing this command. A file
protection code controls the types of access that other system users have
to your files.

Note that this command establishes your default file protection only for the
current terminal session. To set your default file protection for all future
terminal sessions, place the SET PROTECTION/DEFAULT command in
your LOGIN.CMD file.

SET PROTECTION/NODEFAULT removes your personal default file
protection. After issuing this command, the files you create receive the
volume default protection. Although a volume can have any default
file protection, this default is usually the same as the system default of
(SYSTEM:RWED ,OWNER:RWED ,GROUP:RWED, WORLD:R).

To change the protection code for existing files, see the description of SET
PROTECTION in Section 5.10.5.

5-74 Files on Micro/RSX Systems

Format
SET PROTECTION:(code)/DEFAULT
SET PROTECTION/NODEFAULT

SET PROTECTION/DEFAULT
Code? (code)

Parameter
(code)

Specifies which user categories are permitted access to the file and what
each user category may do to the file. The parentheses are required.

The file protection code has four user categories and four types of access
allowed for each user category. See Section 5.10.5 for a description of
the protection code format.

The first time you issue SET PROTECTION/DEFAULT in a terminal
session, you must specify all four user categories. If you want to deny
access to a category, omit the colon and the access code after the
category name.

If you issue SET PROTECTION/DEFAULT again during the terminal
session, you only need to specify the categories for which you want
to change the access code. When you omit a user category in the
protection code, you keep the current default protection for that
category.

Examples

• SET PROTECTION/DEFAULT ~
CODE?(SYSTEM:R,OWNER:RWED,GROUP:R,WORLD) ~

This example establishes your default file protection. Because you are
issuing this command for the first time in the terminal session, you
specify all four user categories. The code limits users in the SYSTEM
and GROUP categories to READ access. You retain the standard volume
default protection for the OWNER category of READ, WRITE, EXTEND,
and DELETE. You deny all file access to the WORLD category by omitting
the colon and access code after the category name .

• SET PROTECTION: (GROUP)/DEFAULT ~

Assume that you type this command later in the same terminal session
that you executed the command in the first example. Here you change
your default protection for the GROUP category, denying these users any
access to your files. Your default protection for the other three user

Files on Micro/RSX Systems 5-75

categories remains unchanged. Note that you only needed to specify the
user category for which you wanted to change the file access .

• SET PROTECTION/NODEFAULT @[D

This command removes your personal default file protection. The files
that you create after issuing this command receive the volume default
protection.

Notes

If you place SET PROTECTION/DEFAULT in your LOGIN.CMD file, you
must specify all four user categories.

The system manager can use the Account File Maintenance Program
(ACNT) to establish a default file protection for your account. This method
has the same effect as placing SET PROTECTION/DEFAULT in your
LOGIN.CMD file: both methods establish your default file protection for
each terminal session. Note, however, that you can modify your default
file protection for any portion of a terminal session by typing the SET
PROTECTION /[NO]DEFAULT command.

If both SET PROTECTION /DEFAUL T and ACNT set your default file
protection, then the protection indicated in SET PROTECTION/DEFAULT
is your default.

SET PROTECTION/NODEFAULT removes your personal default protec­
tion, regardless of whether SET PROTECTION/DEFAULT or ACNT es­
tablished it.

Error Messages

Illegal user default protection code

Explanation: You did not specify all four user categories when issuing
SET PROTECTION/DEFAULT the first time during a terminal session.

User Action: Reenter the command line, specifying all four user
categories in the protection code.

5-76 Files on Micro/RSX Systems

No protection speclfted for any fteld.

Explanation: You attempted to set your default file protection code to
deny file access to all four user categories-that is, you specified a file
protection code that looks like (SYSTEM,OWNER,GROUP,WORLD).

User Action: The minimum default file protection code is READ access
for one user category. Reenter the command line, specifying at least
the minimum file access.

5.10.7 SHOW PROTECTION

SHOW PROTECTION displays your personal default file protection code.

Your default file protection can be established in two ways: either by
issuing the SET PROTECTION/DEFAULT command, or by using the
Account File Maintenance Utility (ACNT) to enter a protection code for
your account. See the description of SET PROTECTION/DEFAULT in
Section 5.10.6.

If you do not set your own default file protection, then SHOW
PROTECTION issues the following message:

No user default protection specified.

Format
SHOW PROTECTION

Example

• SHOW PROTECTION ~
System:RWED. Owner:RWED. Group:R. World:No Access

This example shows the display from SHOW PROTECTION, indicating
that your default file protection grants full access to the SYSTEM and
OWNER categories, READ access to the GROUP category, and no access
to the WORLD category.

Files on Micro/RSX Systems 5-77

Chapter 6
Devices and Volumes

Peripheral devices are the actual hardware elements that, with the
computer, make up a computer system. In general, a peripheral device is
anything that is not part of the CPU or main memory. Peripherals include
terminals, disks, and line printers.

Peripheral devices handle all input to and output from the system. One
primary function of the operating system is to manage efficiently all the
peripheral devices in the system.

On Micro/RSX systems, the primary peripheral devices are the terminals,
the fixed disk, and the cassette drives, but many Micro/RSX systems also
have magnetic tape devices or other disks, particularly RL02 drives.

In Micro/RSX terminology, a file is an owner-named area on a volume. A
volume is a collection of files stored on a magnetic medium, such as a disk
or magnetic tape. This medium must be physically placed on a drive and
logically mounted before the system can access the data on the volume.

This chapter briefly introduces the important concepts concerning devices
and volumes. In addition, the chapter describes the DCL commands that
deal with devices and volumes. See Volume 2, Chapter 13, More About
Devices and Volumes, for more information.

Devices and Volumes 6-1

6. 1 Devices on MicrojRSX Systems
Table 6-1 lists the devices found on Micro/RSX systems. Each installation
has a different configuration of physical devices. Each physical device has
an associated hardware controller, which serves as an interface between
the device hardware and the CPU. In addition, each device has a device
driver, which is the software interface between the operating system and
the device controller.

The table also lists pseudo devices found on Micro/RSX systems. A pseudo
device is an entity the system or user treats as an I/O (input/output) device,
although it is not actually any particular physical device. A pseudo device
name is a pseudonym through which actual physical devices can always
be reached. See Volume 2, Chapter 13 for more information on pseudo
devices.

Individual devices are identified by a 2-letter mnemonic and an octal unit
number, terminated by a colon. If you omit the unit number, the system
defaults to unit number O. That is, if you want to specify DUO: in a
command, DU: will do.

Table 6-1: Devices on Mlcro/RSX Systems

Mnemonic Device

CL: Console listing pseudo device

CO: Console output pseudo device

DD: DECtape II (TU58)

DL: RLOI/RL02 disk drives

DU: RA60/RA80/RA81 disk drives

RC25 disk drive

RD51/RD52 disk drives

RX50 diskette drive

DY: RX02 diskette drives

LB: System default pseudo device

LP: Une printer

MS: TK25 /TS05 /TS 11 tape drives

6-2 Devices and Volumes

Table 6-1 (Cont.): Devices on Mlcro/RSX Systems

Mnemonic Device

MU: TKSO tape drive

NL: Null device

RD: Reconfiguration driver

SP: Spooling pseudo device

SY: User default pseudo device

TI: Terminal input pseudo device

TT: Terminal

VT: Virtual terminal

WK: Workfile pseudo device

Micro/RSX systems support a variety of devices including the terminal,
line printer, disk, and tape unit. The line printer is called a unit record
device. Disks and magnetic tapes are mass-storage devices. Disks are
random-access devices and magnetic tapes are sequential-access devices.
Each of these device types is discussed in more detail elsewhere in this
chapter and in Volume 2, Chapter 13.

Devices are informally identified by the 2-letter mnemonic identifying the
device driver (such as DL: for RL02), but you should remember that the
driver may support more than one device. For instance, the DU: driver
supports the RDS1 and RDS2 fixed disks and the RXSO diskettes.

Magnetic tapes are a sequential-access medium. Random-access media,
such as disks, are used when speed is the most important virtue. Magnetic
tapes are used when economy and transportability are more important
than speed.

The Micro/RSX Base Kit includes a magnetic tape device driver, but all
other tape software is on the Micro/RSX Advanced Programmer's Kit. Tape
use on the Base Kit is limited to tapes used for backup and tapes mounted
as foreign volumes. See the Micro/RSX System Manager's Guide for more
information on backing up files and volumes.

Devices and Volumes 6-3

On Micro/RSX systems, the information contained on the magnetic medium
is called a volume. To be used directly on the system, disk volumes must
be in Files-II format. With Files-II volumes, you can list directories, type
files, create new files, and so forth. All other disk volumes are considered
foreign. To be used directly on the system, magnetic tape volumes must
be ANSI standard. All other tape volumes are considered foreign.

The /FOREIGN qualifier to the MOUNT command (Section 6.2) allows
you access to foreign volumes. Before being initialized, tapes and disks are
foreign; they must be mounted foreign to be initialized. For information
on initializing disk volumes, see the INITIALIZE command in Section 6.4.

For information on initializing tapes, see Volume 2, Chapter 13. Unless
you have the Micro/RSX Advanced Programmer's Kit, you can only mount
tapes foreign or use them for backup.

6. 1. 1 Physical Devices, Pseudo Devices, lUNs, and logical
Names

The purpose of devices of any kind is to handle I/O from tasks. Micro/RSX
systems offer you a number of ways to name and access physical devices.
You can directly access to the physical devices by naming them in
commands or file specifications. However, you can use several forms
of indirect access to physical devices as well.

The operating system often accesses physical devices as pseudo devices.
Tasks access physical devices through logical unit numbers (LUNs). LUNs
establish a relationship between the I/O done by the task and the devices
on the system that the task needs to access. Finally, you can give any
physical device a logical name. See Volume 2, Chapter 13, More About
Devices and Volumes, for more information.

6. 1.2 Summary of Device and Volume Use Commands
All volumes, Files-II or foreign, must be mounted for any access. Foreign
volumes are mounted with the MOUNT/FOREIGN command.

Multiple users can mount a volume on a shareable device. The volume
remains mounted until all users who have mounted it dismount it.

Ownership of a device on a system with multiuser protection is of four
kinds:

• A private volume is a volume mounted on a private device. A private
device is a device that has been allocated, or mounted with the
/NOSHAREABLE qualifier, and can be mounted by the owner only.

6-4 Devices and Volumes

• A shareable volume is a volume mounted /SHAREABLE by the first
user to mount it and can be mounted by any other user who knows
the volume label. The volume stays mounted until the last user to
mount it dismounts it.

• A public volume is a volume mounted on a public device. Devices are
made public by the privileged SET DEVICE/PUBLIC command or the
privileged jPUBLIC qualifier to the tvfOUNT command. The system
owns public devices. Mounting a public device means other users can
access the device without mounting it. Only a privileged user can set
a device public or nonpublic. Public devices cannot be allocated.

• An unowned volume is a volume on a device that has not been allocated
or mounted by anyone. An unowned volume can be mounted by
anyone.

Any user who mounts a volume has full access to that volume within
the limits of privilege and volume and file protection. Privileged users
have privileged access. Nonprivileged users have nonprivileged access.
However, nonprivileged users do have privileged access to volumes
mounted on their private (allocated) devices.

A mounted device cannot be set public or nonpublic, and cannot be
allocated or deallocated.

The LOGOUT command issued by any user automatically dismounts­
any volumes mounted from that terminal and deallocates any devices
allocated from that terminal. A mounted public device is not dismounted
by LOGOUT, however.

6.2 MOUNT
MOUNT declares a volume to be known to the system, and sets the volume
on-line, and ready for use. Some qualifiers can be used with any MOUNT
command; some are limited to mounting disks and others are limited to
mounting magnetic tapes. All tape qualifiers to MOUNT are described in
Volume 2, Chapter 13, but unless you have the Advanced Programmer's
Kit you can only mount tapes foreign or use them for backup.

Devices and Volumes 6-5

Format

For Disks and Other Random-Addressable Devices
MOUNT[/qualifier[s]] ddnn: volumelabel

Command Qualifiers
/FILEJROTECTION:(code)
/FOREIGN
/OVERRIDE:IDENTIFICATION
/OWNER:[uic]
/PROTECTION:(code)
/PUBLIC
/[NO]SHAREABLE
/SYSTEM (synonym for /PUBLIC)
/[NO]WAIT
/[NO]WRITE

Parameters
ddnn:

Specifies the device on which the volume is to be mounted. You can
mount only one disk or other random-addressable device.

volumelobel
Specifies the volume label, that is, the name associated with the
volume. Volume labels are mandatory for nonprivileged users. You
must supply a volume label for each volume you want to mount.
Disk and random-addressable volume labels can be as many as 12
characters.

Volume labels (or identifiers) can include any alphanumeric character
without restriction. If you are mounting an ANSI-standard magnetic
tape, you can also specify nonalphanumeric symbols such as the
following:

<space> ! " ~ _ ' () * + , - . / : < = > ?

Labels including these characters must be enclosed in quotation marks
(1/). If the label includes the quotation mark itself (1/), the quotation
mark must be followed by another quotation mark. The extra quotation
marks do not count in figuring the length of the label. See the
examples.

Note that the at sign (@), semicolon (;), and dollar sign ($) are not
accepted in volume labels.

6-6 Devices and Volumes

Command Qualifiers
/FILE_PROTECTlON:(code)

Specifies the default file protection for any new files created on the
volume while it is mounted. The file protection code is enclosed
in parentheses. See Section 5.6 for more information on file
protection codes and the relationship between file protection and
volume protection. See also the /PROTECTION qualifier.

The default file protection can be overridden by specifying another
protection when the file is created.

If this qualifier is not included, the value specified at the time the
volume was initialized is applied.

/FOREIGN
Specifies that the volume being mounted is not in Files-11 format (if a
disk volume) or not in ANSI format (if a tape volume). This qualifier
is required for foreign volumes. Note that before a tape or disk has
been initialized, it is a foreign volume.

/OVERRIDE:IDENTIFICA TlON
Allows privileged users to mount a volume without using the volume
label. IDENTIFICATION is the default argument for /OVERRIDE.
All other arguments to OVERRIDE are for tapes and are described in
Volume 2, Chapter 13.

/OWNER:[g,m]
Specifies the owner of the volume. The brackets are required syntax.
This qualifier overrides the OWNER value established when the volume
was initialized. The owner value is used with file and volume
protection. See Section 5.6.

/PROTECTION:(code)
Specifies the volume protection for Files-11 disks. This protection
overrides the volume protection established when the volume was
initialized. The /PROTECTION qualifier combines with the /OWNER
qualifier to control access to the volume. See Section 5.6 for more
information on volume protection.

/PUBLIC
/SYSTEM

These two qualifiers are synonyms. The /SYSTEM qualifier is included
for VAX/VMS compatibility.

Devices and Volumes 6-7

Specifies that the mounted volume be available to all users who are
allowed access under the volume protection and file protection codes
established for the volume when mounted. See the discussion on file
protection and volume protection in Section 5.6. These qualifiers are
privileged.

If you state this qualifier explicitly when mounting a volume on an
allocated (private) device, the device is automatically deallocated and
set public.

If you do not state this qualifier explicitly, and the device is already
set public, the mount defaults to /PUBLIC.

See the discussion of public, private, and shareable volumes in Volume
2, Chapter 13.

I[NO]SHAREABLE
Specifies whether the volume is to be mounted shareable.

A volume mounted /SHAREABLE can be mounted multiple times by
the same or different users. Each user's access is determined by the
volume-protection and file-protection codes established for the volume
when mounted. See the discussion of file protection and volume
protection in Section 5.6.

If you mount the volume /SHAREABLE and the device is allocated or
set public, the device is automatically deallocated or set nonpublic.

A volume mounted /NOSHAREABLE is dedicated for your private use.
No other user can access the volume. For Files-II volumes mounted
/NOSHAREABLE, your privileges are SYSTEM privileges. See the
discussion of file protection and volume protection in Section 5.6.

Mounting a volume nonshareable is the equivalent of allocating
the device and then mounting it. See Volume 2, Chapter 13
for a description of the ALLOCATE command. If you specify
/NOSHAREABLE explicitly when mounting a volume on a device,
the device is allocated and set nonpublic.

If the device is already allocated, the default is /NOSHAREABLE.

If the device is not allocated or set public, the default is /SHAREABLE.

If the device is set public, the default is /PUBLIC (synonym:
/SYSTEM).

See the discussion of public, private, and shareable volumes in
Section 6.1.2 and Volume 2, Chapter 13.

6-8 Devices and Volumes

/[NO]WAIT
Specifies whether you require operator assistance in performing the
mount. This qualifier is used mainly for batch jobs, indirect command
files, or terminals distant from the machine room. The default is
jWAIT for mounts in batch jobs and indirect command files, and
jNOWAIT for interactive mounts.

If the mount is included in a batch job or indirect command fJe, or if
you specify jWAIT in an interactive mount, a message concerning the
mount is sent to the operator's console and the mount is not completed
until the operator physically places the disk on the drive and spins it
up. If you specify jNOWAIT in a batch job or indirect command file,
or if the mount is interactive, no message appears. The medium must
have been placed on the device and readied for access (that is, spun
up and on line). (See the examples.)

For more information on mounts from batch jobs, see the discussion
of MOUNT in Chapter 8.

/[NO]WRITE
Specifies whether the volume is to be write-protected. The default
is jWRITE. If jWRITE is specified or implied, the volume can be
written to as permitted by the volume protection and file protection
codes established for the volume when mounted. See the discussion
of volume protection and file protection in Section 5.6. If a volume
is mounted with the jNOWRITE qualifier, no one may write to the
volume.

Examples

• MOUNT [gill
Device? DU1: [gill
Volume ID? HOTROD IRETI

This example mounts the volume labeled HOTROD on device DUl:. If
you are doing nothing more than mounting a volume to read from it
or write to it, you will probably not need a more complicated MOUNT
command than this.

The command sets a series of default values that do not concern the
everyday user. All default values for the mount come from the Volume
Home Block. This block is written when the volume is created by
INITIALIZE or by some other system task (such as a backup utility) that
creates a file structure on the volume. Most of the qualifiers to MOUNT
are used to override values in the Volume Home Block. You can also alter

Devices and Volumes 6-9

the Volume Home Block with the INITIALIZE/UPDATE command. These
operations are described in Volume 2, Chapter 13.

• MOUNT/WAIT DU1: WHIZZER I RET I

In this example, the user wants an operator to place the medium containing
the proper volume in place on DU1:. The command may appear in a batch
job, indirect command file, or interactive mount, perhaps from a user on
a remote termimal. The following message appears on CO: (TTO:), the
operator's console:

Please mount volume WHIZZER on DU1:
Type
OMS (DCL START) when ready
or
RES (DCL CONTINUE) to reject request.

The operator performs the requested operation and the mount takes place,
if the device was available and the operator typed START. (There is no
MCR on Micro/RSX systems.) If the device was not available and the
operator typed CONTINUE, the mount fails. The batch processor attempts
to continue the job. The same is true if the command appears in an
indirect command file.

Notes

You should not confuse mounting with physically placing the disk or other
magnetic medium on a drive. Naturally, you must place the medium on
a drive and spin it up (for a disk) or load it (for a tape) before you can
do anything else with it. However, mounting enables the system software
to access the medium, either to read or write data, or to establish a file
structure for the volume.

There are four states of device ownership:
Private The device has been made private through the ALLOCATE

command or the /NOSHAREABLE qualifier to MOUNT.
Only you can access the volume.

Shareable The device has been mounted /SHAREABLE. Any user can
mount the volume.

Public The device has been made public through the SET DEVICE
/PUBLIC command or the /PUBLIC (or /SYSTEM) qualifier
to MOUNT. Only a privileged user can set a device public.

6-10 Devices and Volumes

Unowned No one has mounted a volume on the device, nor is it
allocated or set public.

See the discussion of public, private, unowned, and shareable devices and
mounted volumes in Volume 2, Chapter 13.

You cannot put comments in a MOUNT command line.

DISMOUNT counteracts MOUNT. See Section 6.3 for a description of
DISMOUNT with examples.

See Volume 2, Chapter 13 for more information on how the operating
system controls devices and volumes. See also the description of the
INITIALIZE command in Section 6.4.

Error Messages

MOU-ACP not In system

Explanation: The task specified as the ACP, or the default ACP, is not
installed in the system.

User Action: See your system manager. Chapter 13 in Volume 2 has
more information about ACPs.

MOU-Oevlce not In system -ddnn:

Explanation: The command specified a device not present in the system.

User Action: Retype the command after checking the device list (SHOW
DEVICES) or see your system manager.

MOU-Oevlce specified twice

Explanation: The command specified the same device twice.

User Action: Retype command after checking for proper syntax.

MOU-Orlver not loaded

Explanation: The command named a device whose driver is not loaded.

User Action: See your system manager.

Devices and Volumes 6-11

MOU-Falled to attach device -ddnn:

Explanation: The command named a device that was attached by
another task and could not be mounted.

User Action: Check the device list (SHOW DEVICES) to find out if the
device is in use. See your system manager.

MOU-Home block I/O error

Explanation: An I/O error was detected in trying to read the Volume
Home Block. This message often indicates that the device is not ready,
or that the disk has not been initialized.

User Action: Try again. Switch the diskette to the other drive and try
again. If the error recurs, you may have the wrong disk, or one that
has not been initialized.

MOU-lIIegal keyword combination

Explanation: The command specified conflicting qualifiers.

User Action: Retype command after checking for proper syntax.

MOU-Index file I/O error

Explanation: MOUNT could not read either the index file header or the
storage allocation file.

User Action: See your system manager. See Volume 2, Chapter 13 for
more information.

MOU-No such device available

Explanation: The command named a device not present in the system.

User Action: Retype the command after checking the device list (SHOW
DEVICES) or see your system manager.

MOU-Not file-structured device

Explanation: The command named a device that is not supported as a
Files-I! device.

User Action: Retype the command after checking for proper device
name.

6-12 Devices and Volumes

MOU-Parameter conflicts with mounted volume

Explanation: An attempt was made to mount a previously mounted
volume using qualifiers that conflict with those specified when the
volume was originally mounted.

User Action: Check with SHOW DEVICES and confirm qualifiers with
other user. See your system manager. This may happen with a
MOUNT /SHAREABLE command.

MOU-Storage bit map file I/O error

Explanation: An I/O error was encountered while reading the storage
allocation file.

User Action: Check to be sure that you have the correct magnetic
medium, or the volume has not been initialized. See your system
manager.

MOU-Unlt allocated to or In use by another user.

Explanation: The command specified a device that is already in use.

User Action: Check on the status of the device with SHOW DEVICES
and take the appropriate action.

MOU-Unsupporfed file header format

Explanation: The Volume Home Block does not conform to Files-11
format. The volume may be corrupted.

User Action: The volume may already be mounted with the /FOREIGN
qualifier, or some other special condition is in effect. See your system
manager.

MOU-Volume already mounted -ddnn:

Explanation: An attempt was made to mount a volume on a device
that already had a mounted volume.

User Action: See your system manager.

Devices and Volumes 6-13

MOU-Wrong volume label

Explanation: The volume label on the label and the volume label in
the command do not match.

User Action: Retype the command after checking for proper volume
label. Privileged users can use the /OVERRIDE:IDENTIFICATION
qualifier.

6.3 DISMOUNT
DISMOUNT counteracts MOUNT. DISMOUNT marks the volume logically
off line and disconnected from the file system. Marking a volume for
dismount prevents programs from opening new files on the volume. After
all open files on the volume have been closed, the volume is dismounted.

Format
DISMOUNT[/ qualifier[s))
Device? ddnn: [volumelabel]

DISMOUNT[/qualifier[s)) ddnn: [volumelabel]

Command Qualifiers
/All
/PUBlIC
/SAVE
/SYSTEM (synonym for /PUBlIC)
/TERMINAl:ttnn:

Parameters
ddnn:

Specifies the device on which the volume is mounted.

volumelabel
Specifies the volume label or File Set ID for magnetic tape. This
parameter is optional, but if it is specified, the label or File Set ID
is checked against the mounted volume. There is no prompt for this
parameter.

6-14 Devices and Volumes

Command Qualifiers
/All

Specifies that all volumes mounted from the terminal at which the
command is issued be dismounted. A message informs you of each
dismount as it takes place. No device name or volume label is accepted
with this qualifier. See the example.

/PUBLIC
/SYSTEM

Causes all users to be dismounted from a volume. This is a privileged
qualifier. A DISMOUNT/PUBLIC frees the device, no matter who has
mounted the volume on it. This is the only way to dismount a public
volume. The /SYSTEM qualifier is a synonym for /PUBLIC, included
for compatibility with VAX/VMS.-

/SAVE
Specifies that the disk is to remain spinning in the drive and can be
accessed for read or write operations by privileged tasks. This is a
privileged qualifier.

The most common use of /SA VE is when saving or backing up the
system disk. If you simply want to leave the disk spinning, use the
/NOUNLOAD qualifier. Remember, these values can also be set with
the /DEFAULT qualifier to MOUNT. See Section 6.2.

/TERMINAl:ttnn:
Allows a privileged user to dismount a volume mounted from another
terminal.

Examples

• DISMOUNT lEm
Device? Dtn: lEm
DIS -- TT7: Dismounted from DU2: *** Final Dismount Initiated ***
This example dismounts a volume on device DU2:. No other user had the
volume mounted when the DISMOUNT command was issued.

• DISMOUNT DU1: HOTROD I RET I
DIS -- TT3: Dismounted from DU1:

This example dismounts a volume on device DU1:. The user specified the
label HOTROD to be sure the correct volume was mounted on the device.
The volume was mounted shareable and because another user also has it
mounted, the informational message does not include the notification of
final dismount.

Devices and Volumes 6-15

$ LOGOUT [@!]
DMO -- TTl: Dismounted from DU: *** Final dismount ***
Have a good morning
22-APR-85 TTl: Logged off

This example dismounts a volume as part of the LOGOUT procedure. The
user had the volume mounted on the device and had not dismounted it
before logging out. LOGOUT dismounted the volume. If the device had
been made private through the /NOSHAREABLE qualifier to MOUNT,
or the ALLOCATE command, LOGOUT also deallocated it. This is the
equivalent of DISMOUNT/ALL.

The informational message is headed by DMO rather than DIS for historical
reasons.

$ DISMOUNT/ALL [@!]
DIS -- TTl: Dismounted from DU1:
DIS -- TTl: Dismounted from DU2: *** Final dismount ***

This example dismounts all volumes mounted from the terminal at which
the DISMOUNT was issued.

$ DISMOUNT/PUBLIC DU1: [@!]
DIS -- TT2: Dismounted from DU1:
DIS -- TT4: Dismounted from DU1:
DIS -- TT5: Dismounted from DU1: *** Final dismount ***

In this example, a privileged user dismounts all users who mounted the
volume on DU1:.

Notes

DISMOUNT counteracts MOUNT.

LOGOUT issues a DISMOUNT/ALL automatically. DISMOUNT / ALL
dismounts all volumes mounted from the terminal at which the command
is entered.

You cannot include comments in a DISMOUNT command line.

The messages to your terminal indicate only that the volume is marked
for dismount. The actual completion of the dismount is noted on the
operator's console.

CAUTION
When the dismount operation is complete, the ACP prints
the following message on the operator's console (CO:):

*** ddnn Dismount complete

6-16 Devices and Volumes

This message does not appear until all files that are open
on the volume are closed. Do not remove the medium
from the drive until this message appears on CO: (TTO:).
If you remove the medium before the message appears, the
present volume may be corrupted, and the next volume
mounted on that device will be corrupted.

Error Messages

DIS-Checkpoint file stili active

Explanation: The command attempted to dismount a volume that
contained an active checkpoint file. The volume cannot be dismounted
until the checkpoint file has been closed.

User Action: Wait, or, if privileged, you can issue a SET DEVICE:ddnn:
/NOCHECKPOINT and reissue the DISMOUNT after you receive the
system message indicating that the checkpoint file is no longer active.

DIS-Volume not mounted

Explanation: The command specified a device that was not mounted.

User Action: Retype command after checking SHOW DEVICES for
mounted devices.

DIS-Volume not mounted by TI:

Explanation: The command attempted to dismount a volume mounted
from another terminal.

User Action: Dismount the volume from the proper terminal, or have
a privileged user dismount the volume.

DIS-Wrong volume label

Explanation: The command included an incorrect volume label.

User Action: Reissue the command without specifying a volume label
or check the volume label to be sure you are dismounting the right
volume.

Devices and Volumes 6-17

6.4 INITIALIZE
INITIALIZE produces a volume in Files-II format. Diskettes must be
initialized before you can do anything with them.

When you initialize a diskette, you erase all existing files. Initialization
also writes a dummy bootstrap and a Volume Home Block, and builds the
directory structure.

Several qualifiers to INITIALIZE and a great deal more information,
including tape initialization, is included in Volume 2, Chapter 13. If
you do not have the Advanced Programmer's Kit you have no need to
initialize tapes.

When initializing diskettes, you generally do not need any qualifiers.

Format
INITIALIZE[/ qualifier[s]]
Device? ddnn:
Label? volumelabel

INITIALIZE[/qualifier[s]] ddnn: volumelabel

Command Qualifiers
/BAD_BLOCKS:arg

AUTOMATIC
MANUAL
NOAUTOMATIC

/FILEJROTECTION:(code)
/OWNER:[g,m]
/PROTECTION:(code)

Parameters
ddnn:

Specifies the name of the device on which the magnetic medium to
contain the volume has been placed. In most cases, this is DUl: or
DU2:.

volumelabel
Specifies the label the volume is to be initialized with. The label
names the volume and must be specified by non privileged users when
they mount the volume. The volume label is, in effect, a password
controlling access to the volume. The volume label can be as many as
12 characters long.

6-18 Devices and Volumes

Command Quallfters

Defaults to INITIALIZE enable you to initialize a volume in a standard
fashion, but the qualifiers allow much more flexibility.

/BAD_BLOCKS:arg
AUTOMATIC
MANUAL
NOAUTOMATIC

AUTOMATIC reads the bad-block descriptor file created by the
ANALYZE/MEDIA command and automatically determines the bad­
block information for the volume. This is the default. See the
Micro/RSX System Manager's Guide for more information.

MANUAL specifies that bad-block information for the volume is to be
entered manually.

NOAUTOMATIC specifies that bad-block information is to be ignored.

/FILE_PROTECTlON:(code)

Specifies the default protection for all files on the volume being
initialized. See Section 5.6 for more information on file protection.

The default file protection code is as follows:

(SYSTEM:RWED.OWNER:RWED.GROUP:RWED.WORLD:R)

/OWNER:[g,m]

Specifies the owner of the volume. Group and member numbers range
from 1 through 377. The default volume owner is [1,1]. The /OWNER
value is used for checking volume protection. See Section 5.6 for more
information on volume and file protection.

/PROTECTION:(code)

Specifies the default protection for new files created on the volume.
See the discussion of volume protection in Section 5.6. The code for
volume protection is similar to that for file protection, except that the
liE" for EXTEND protection is replaced by a IIC" for CREATE protection.

The default volume protection is as follows:

(SYSTEM:RWCD.OWNER:RWCD.GROUP:RWCD.WORLD:RWCD)

Devices and Volumes 6-19

Example

• INITIALIZE @[B
Device? DU1: @[B
Volume ID? HONOLULU @[B

This example initializes a volume with the volume label HONOLULU on
device DUl:. In most cases, this is all you will have to do.

Notes

Remember, when you initialize a disk volume, you are erasing all
information that was previously on the disk or diskette. Initialize with
care.

Before you can initialize a disk volume, you must issue a MOUNT
command with the /FOREIGN and /NOSHAREABLE qualifiers. The
/FOREIGN qualifier is required because the volume is considered not in
Files-II format before initialization. The /NOSHAREABLE qualifier is
required because you cannot initialize a disk volume if any other user has
access to it. See the explanation in the MOUNT command description in
Section 6.2.

INITIALIZE creates a Volume Home Block and five files used by the system.
Many of the qualifiers to INITIALIZE put values in the Volume Home
Block. Most of these values can be overridden through similar qualifiers
to MOUNT. You can change the values in the Volume Home Block with
the INITIALIZE/UPDATE command. See Volume 2, Chapter 13 for more
information on these operations.

Error Messages

INI-Allocatlon for system ftle exceeds volume limit

Explanation: The system was unable to allocate a system file from the
specified block because of intermediate bad blocks or end-of-volume.

User Action: Reenter command with different argument for the
/INDEX: qualifier. See Volume 2, Chapter 13.

6-20 Devices and Volumes

INI-8ad block tile corrupt - data Ignored

Explanation: Although the /BAD_BLOCKS qualifier was selected, or
defaulted to, the bad block data on the disk was not in the correct
format and was therefore ignored.

User Action: Process the medium with the ANALYZE/MEDIA com­
mand and initialize again. See Volume 2, Chapter 13 for more infor­
mation.

INI-8Iock(s) exceed volume limit

Explanation: The specified block or blocks exceeded the physical size
of the volume.

User Action: Retype command after checking for proper qualifier
values. See Volume 2, Chapter 13.

INI-8oot block write error

Explanation: An error was detected in writing out the volume boot
block.

User Action: Reenter the command. If it still does not work, tell your
system manager.

INI-Checkpolnt tile header I/O error

Explanation: An error was detected in writing out the checkpoint file
header.

User Action: Reenter the command. If it still does not work, tell your
system manager. See Volume 2, Chapter 13 for information on the
checkpoint file.

INI-Command I/O error

Explanation: INITIALIZE encountered an I/O error while reading the
command line.

User Action: Retype command line. If this fails, tell your system
manager.

Devices and Volumes 6-21

INI-Oata error

Explanation: The command specified a bad block number or contiguous
region that was too large.

User Action: Reenter command after checking proper syntax. See
Volume 2, Chapter 13.

INI-Oevlce allocated to other user -ddnn:

Explanation: Command specified a private device not allocated to your
terminal. You can make a device private with the ALLOCATE
command or MOUNT/NOSHAREABLE.

User Action: Make sure you entered the correct device name. Find out
who has the device allocated and why before taking further action.

INI-Oevlce not In system

Explanation: Command specified a device not in the current system.

User Action: Retype command after checking SHOW DEVICES for
proper device name.

INI-Oevlce not ready -ddnn:

Explanation: The device was not up to speed (spun up).

User Action: Wait and try again.

INI-Orlver not loaded

Explanation: Command specified a device for which the driver is not
loaded.

User Action: Retype command after checking SHOW DEVICES for
proper device name.

INI-Falled to attach device -ddnn:

Explanation: INITIALIZE failed to attach the specified device.

User Action: Wait and try again. Check SHOW DEVICES. See your
system manager.

6-22 Devices and Volumes

INI-Falled to read bad block file

Explanation: Although the /BAD_BLOCKS:AUTOMATIC qualifier was
specified, or defaulted to, no bad-block data was found.

User Action: Process the medium through the ANALYZE/MEDIA
command and try again. See Volume 2, Chapter 13 for more
information.

INI-Not file structured

Explanation: The system does not support the device named as a Files-
11 device.

User Action: Retype command after checking proper syntax. See
Volume 2, Chapter 13.

INI-Publlc device -ddnn:

Explanation: Command attempted to initialize a volume on a public
device.

User Action: None. Nonprivileged users can only initialize volumes on
private devices.

INI-Storage bit map file error

Explanation: The system failed to read the header of the file
[OOOOOO]BITMAP .SYS.

User Action: See your system manager. A privileged user may be
able to fix the problem using the INITIALIZE/UPDATE command,
described in Volume 2, Chapter 13.

INI-Undeftned density selection

Explanation: Command specified an illegal density argument for the
device named.

User Action: Retype command after checking for proper density
argument. See Volume 2, Chapter 13.

IN I-Volume mounted Flles-ll

Explanation: Command attempted to initialize a volume mounted Files-
1l.

User Action: Check to make sure you have the right volume.

Devices and Volumes 6-23

INI-Volume mounted foreign with ACP

Explanation: Command attempted to initialize a volume mounted
/FOREIGN but with the / ACP qualifier.

User Action: Remount the volume without the / ACP qualifier.

INI-Volume name too long-volumelabel

Explanation: Command included a volume label that was too long.

User Action: Retype command but limit diskette volume label to 12
characters.

6.5 SET and SHOW
You can display assignments and set and display certain device charac­
teristics. See Volume 2, Chapter 13 for information on device assignment
and the SET DEVICE command.

6.5. 1 SHOW DEVICES

SHOW DEVICES displays information about the devices included in the
system.

Format
SHOW DEVICES[:dd[nn:][/ attribute]]

Device Attributes
/[NO]PUBLIC
/WIDTH:ddnn:
/[NO]SYSTEM

Argument
dd[nn:]

synonym for /PUBLIC

If you specify just the dd portion of the device name, as in the
following:

• SHOW DEVICE:DU mill

the command displays information about all devices of that type on
the system. If you specify the full device name, as in the following:

• SHOW DEVICE:DU1: mill

the display shows you information about DU1: only.

6-24 Devices and Volumes

Device Attributes

If you do not include an attribute or a device name, SHOW DEVICES
displays a list of all the devices on the system, including terminals and
pseudo devices.

/[NO]PUBLIC
/[NO]SYSTEM

Displays a list of all devices set (or not set) PUBLIC. The /[NO]SYSTE~Y1
qualifier is a synonym included for VAX/VMS compatibility.

/WIDTH
Displays the size of the I/O buffer (line length) for a particular device,
including a terminal.

Display Information

The display from SHOW DEVICES can include a number of messages.
See the examples.

ddnn:
A device name in the first column indicates the device or pseudo
device for which information is being displayed. A device name in the
second column indicates a device to which the corresponding device
in the first column has been redirected. See Volume 2, Chapter 13 for
more information.

TInn:
A terminal name in the second column, followed by the word
PRIV ATE, indicates that the device named in the first column has
been allocated by the user logged in on the terminal in the second
column.

MOUNTED
Indicates that the device is mounted. For privileged users, the message
also includes the volume label.

BUF=
Indicates the line length (I/O buffer size).

PUBLIC
Indicates that the device has been set public.

If your command was SHOW DEVICES/PUBLIC, or /NOPUBLIC, the
display is PUB=ddnn: or NOPUB=ddnn:

Devices and Volumes 6-25

TYPE=
Indicates the device type by model name, for example, RD51, RX50.

MARKED FOR DISMOUNT
Indicates that a mounted device has been marked for dismount, but
that the dismount has not been completed, meaning that files are still
open on the volume. The volume cannot be remounted while it is
marked for dismount.

OFFLINE
Indicates that the system tables contain entries for the device, but that
the device is not included in the current configuration.

[directory] LOGGED ON
Indicates that the terminal is logged on and that your current directory
is [directory].

LOADED
Indicates that a loadable device driver is currently loaded.

UNLOADED
Indicates that a loadable device driver is currently not loaded.

SPOOLED
Indicates that a device is under the control of the Queue Manager.

WCHK=
NOWCHK=

Indicates a device with write-checking enabled or not enabled.

Examples

• SHOW DEVICES IRETI
TTO: Loaded
TT1: DUO: Spooled Loaded
TT2: [BODDLY] - Logged in Loaded
TT3: Loaded
TT4: [JEROME] - Logged in Loaded
TT6: Loaded
VTO: Loaded
VT1: Loaded
ROO: Loaded
DUO: Public Mounted Loaded Type=RD61
DU1: TT2: - Private Mounted Loaded Type=RX60
DU3: Offline Loaded Type=unknown
NLO: Loaded

6-26 Devices and Volumes

TIO:
coo: TTO:
CLO: TTO:
SPO: DUO:
LBO: DUO:
SYO: DUO:

This example shows the display from SHOW DEVICES. All devices and
pseudo devices are included. For terminals, the name in brackets is the
default directory. The only information shown for pseudo devices is the
name and the device to which they are redirected. Privileged users also
see volume labels.

• SHOW DEVICES DU: @to
DUO: Public Mounted Loaded Type=RD6l
DU1: TT2: - Private Mounted Loaded Type=RX60
DU3: Offline Loaded Type=unknown

•
This example displays information about all devices of the type DU:. The
mnemonic (DUnn:) identifies the device controller. Both the fixed disk
and the diskettes use the same device controller, although the media are
very different.

• SHOW DEVICES/PUBLIC @to
PUB=DUO:
PUB=DU1:
PUB=LPO:

This example displays information about all public devices. Public devices
are accessible to all users. They may be mounted by any user to assure
continued access to the volume mounted on the device.

• SHOW DEVICE:LPO:/WIDTH @to
BUF=LPO:00132.
• SHOW DEVICE:TT1:/WIDTH @to
BUF=TTll:00080.

This example displays the line lengths of a line printer and a terminal.
The line length is determined by the size of the I/O buffer, which is why
the word BUF appears.

Devices and Volumes 6-27

Chapter 7
Running Tasks

Tasks on Micro/RSX are programs that can be run on the system. Tasks
that are used all the time can be installed, which makes them immediately
available when needed. Tasks that are used only occasionally can be kept
in a file in a directory and run from there. In general, the system manager
decides which tasks should be installed and which should be run from
task image files.

This chapter includes brief descriptions of the following commands: RUN,
ABORT, INSTALL, and REMOVE, as well as commands for displaying
information about running and installed tasks.

There is a great deal more information about task execution in Volume 2,
Chapter 15, More About Running Tasks.

For more information about what makes a task, see Volume 2, Chapter 14,
LINK and LIBRARY Commands, and also Programming on Micro/RSX.

Running Tasks 7-1

7 . 1 Two Kinds of RUN Command
Just as there are two kinds of tasks you can run on Micro/RSX systems,
there are two ways of using the RUN command:

1. Running tasks in task image files

2. Running installed tasks

Tasks from directories are tasks included in task image files. To run these
tasks, the system must temporarily install them. To run such tasks, simply
type RUN followed by the file specification. See Section 7.1.1.

Installed tasks are always ready to run. You can see a list of installed
tasks with the SHOW TASKS/INSTALLED command. You cannot run all
installed tasks. Many are used by the system. For those you can run,
simply type RUN and give the task name. Most large applications run as
installed tasks. See Section 7.1.2.

7. 1. 1 RUN Command for Task Image Flies

When used to run an uninstalled task, RUN is actually a combination
command, encompassing INSTALL, RUN, and REMOVE. This command
is the only way a nonprivileged user can install or remove a task.

Format
RUN[/ qualifier[s]]
Task? [$]filespec

RUN[/ qualifier[s]] [$]filespec

Command Qualifiers
/TASLNAME:taskname
/TIMLLIMIT:n[u]
/UIC:[g,m]

Parameter
[$]ftlespec

Specifies a task image file on a mounted Files-II volume. This task is
installed, run, and then removed when it has finished executing.

The default file type is . TSK, but if you include the . TSK in the file
specification, then you can be sure that you are running the file from
the default directory, and not an installed task with the same name.
See the examples.

7-2 Running Tasks

The dollar sign ($) directs the system to search first for the file in
the system directory and then in the library directory. In this case,
the dollar sign specifies a device and directory and thus counts as an
element of a file specification.

Command Qualifiers

These qualifiers establish how the uninstalled task is to be installed.
/TASILNAME:taskname

Specifies the name under which the task is to be run. The default is
to run the task under a name derived from the name of the terminal
from which the RUN command was issued, as discussed in Volume
2, Chapter 15.

Use this qualifier when you want to run two tasks simultaneously using
the RUN command. Otherwise, the second RUN command causes the
following error message to appear on your terminal:

Run -- Task name already in use

See the examples.

Task names are restricted to six Radix-50 characters. The Radix-50
character set consists of the 26 uppercase letters, the 10 numerals, and
the period (.) and dollar sign ($).

/TlME_LlMIT:n[u]
Allows you to limit the amount of CPU time the task can run. The
default is jTIME_LIMIT:3M, which is quite a lot. The "M" stands for
minutes. If you give simply a number as an argument, the time unit
defaults to minutes, but you can also specify a time limit in seconds
by using a number and an "5", as in jTIME_LIMIT:30S.

/UIC:[g,m]
Specifies the default UIC for the task. This is a privileged qualifier.
This UIC determines in what protection class the task belongs and
thus determines file access.

The square brackets are required syntax.

Running Tasks 7-3

Examples

S RUN ROBOT.T8K ~

This example installs, runs, and removes upon completion the task
contained in the task image file ROBOT. TSK from the default directory on
the default device.

S RUN ROBOT ~

This example works differently depending on whether or not there is an
installed task named ROBOT. If there is an installed task named ROBOT,
this command runs it. If there is not such as task installed, this command
works the same as the previous example.

Obviously, it is best not to have both installed and uninstalled tasks using
the same name, but it can happen. If you include the file type, or any
other field of a file specification, including the dollar sign ($), you can
avoid running an installed task. See the notes for more information.

Notes

The default on Micro/RSX systems is to run only one task per terminal at
one time, but in fact Micro/RSX allows you to run many tasks from one
terminal at the same time. You can change this characteristic with the SET
TERMINAL/NOSE RIAL command, described in Volume 2, Chapter II,
More About Using Your Terminal.

For information about placing files in the system directory or library
directory so that users can run them with the dollar-sign ($) convention,
see Volume 2, Chapter 15, More About Running Tasks.

This section describes RUN as it works with any portion of a file
specification included. In general, you do not have to include the file
type, as .TSK is the default. In one unusual circumstance, however, you
must explicitly enter a file type. If there is a task already installed in the
system that has the same task name as the file name of the task image
file containing the task you want to run, the RUN command will run the
installed task rather than the one you want to run. In such an instance,
you must include the file type to force the RUN command to access the
task image file.

Some error messages resulting from RUN are labeled INS rather than
RUN because this form of RUN installs the task automatically and the
error occurs during the installation.

7-4 Running Tasks

7. 1.2 RUN Command for Installed Tasks
RUN also initiates the execution of installed tasks. Privileged users can use
RUN to initiate the execution of installed tasks on a schedule by creating
entries in the system clock queue. See Volume 2, Chapter 15.

Format
RUN[/ qualifier[s]]
Task? taskname

RUN[/ qualifier[s]] taskname

Command Qualifier
jUIC:[g,m]

Parameter
taskname

Specifies the name of the installed task to be run. The names of
installed tasks are one through six Radix-50 characters. If the System
Task Directory (STD) contains no entry under the task name you
supply, the system searches the default directory on the default device
for a file named taskname.TSK. If RUN finds such a file, it installs,
runs, and removes it.

Command Qualifier
/UIC:[g,m]

Specifies the default UIC for the task. This is a privileged qualifier.
The task's UIC determines what file protection class it belongs in, and
thus directly influences file access.

The square brackets are required syntax.

Notes

The dollar sign prompt ($) returns immediately after you issue a RUN
command for an installed task. This does not indicate that the task has
completed execution.

You can display entries in the clock queue with SHOW CLOCIC.QUEUE.
See Volume 2, Chapter 15.

Running Tasks 7-5

Error Message

RUN-Invalid time parameter

Explanation: Command specified an invalid time argument.

User Action: Check for proper syntax and reenter command.

7.2 ABORT
ABORT forces an orderly end to a running task or to the action of a specific
command. On most Micro/RSX systems, you can simply use CTRL/C to
abort any task running from your terminal.

Tasks can also be aborted by other tasks or by error-handling routines. If
this happens, some of the messages discussed below can appear on your
terminal without your having issued an ABORT command.

Nonprivileged users can abort any task running on their own terminal.
Privileged users can abort any task.

Format
ABORT[/COMMAND][I qualifier[s]] commandname

ABORT ITASK[/qualifier[s]] [taskname]

Command Qualifiers
ICOMMAND
ITASK
ITERMINAL:ttnn:

Parameters

The parameters differ depending on whether you are aborting a
command or a task.

The default is to abort a command. See the examples.
commandname

Specifies the command whose effect you want to cancel. This
parameter can be used only when the IT ASK qualifier is not present.
You must specify at least the first three characters of the command
verb.

7-6 Running Tasks

taskname
Specifies the name of the task you want to abort. This parameter
requires the presence of the IT ASK qualifier. If you use the IT ASK
qualifier and do not specify a task name, you will get an error message,
"Illegal task name."

Command Quallfters
/COMMAND

Specifies that you want to abort a command. This is the default
qualifier and need not be included.

flASK
Specifies that you want to abort a task by name.

/lERMINAL:ttnn:
Specifies that a task from some terminal other than your own be
aborted. This is a privileged qualifier.

Examples

• ABO RUN lBru
11:11:11 Task "TT10" terminated

Aborted via directive OR eLI

This example aborts a task initiated with the RUN command running on
your terminal. See the next example.

• RUN TREK lBru
ORDERS: STAR DATE = 2000
You must destroy the Klingon invasion forces of 29 battle
cruisers. You have 40 solar years to complete your mission.
Ready? I CTRL/C I

In this example, the user installs the interactive task TREK by means of a
RUN command. Then, instead of providing the task with requested input,
the user issues a CTRL/C and aborts the task.

• ABORT/TASK MACT3 IRETI

This example aborts the task named MACT3. Nonprivileged users can
abort tasks running on their own terminals. Privileged users can abort
tasks running on any terminal by name.

Running Tasks 7-7

• DIRECTORY *. RNO ~
Directory DUO: [MONGO]
18-MAY-86 16:28

ALTCLI.RNO;3
ANNI.RNO;6
APRCOM.RNO;4
BEST.RNO;6
CATCH.RNO;4
CHAPllSMG.RNO;13
CHAP12SMG.RNO;61
CHARSET.RNO;6

•

213.
3.
9.
40.
7.
49.
223.
6.

27-APR-86 16:62
30-JAN-86 09:30
16-APR-86 10:36
28-APR-86 16:60
22-MAR-86 09:39
13-MAR-86 16:36
08-APR-86 13:16
16-FEB-86 11:671cTRL/CI

In this example, the user issues a DIRECTORY command and sees that
the file she was checking for is present. Rather than wait for the directory
listing to complete, the user types CTRL/C and the directory listing halts
immediately.

• ABORT/TERMINAL:TT3: ACRO ~

This example, issued by a privileged user, aborts the ACRO task running
on another terminal. Notification of the abort appears on TT3: but not on
the terminal from which the ABORT command was issued.

Notes

A is the short form of ABORT.

There can be a number of messages issued with the abort. These messages
are explained in Volume 2, Chapter 16.

LOGOUT also aborts nonprivileged tasks running from your terminal.

Tasks can also be aborted by Executive directives issued by other tasks, in
particular, by error-handling routines.

7.3 INSTALL
INSTALL includes a specific task in the System Task Directory, thus
making it known to the system. This is a privileged command. A number
of qualifiers and other information about INSTALL are discussed in Volume
2, Chapter 15.

This is a privileged command. Nonprivileged users install tasks temporarily
through RUN, which includes most of the same qualifiers as INSTALL.
See Volume 2, Chapter 15.

7-8 Running Tasks

Format
INST ALL[/ qualifier[s]]
File(s)? [$ Jfilespec

INSTALL[/qualifier[s]] [$Jfilespec

Command Qualifiers
/[NO]CHECKPOINT
/PRIORITY:n
/TASICNAME:taskname
/UIC:[g,mJ

Parameter
[$]ftlespec

Specifies the name of the task image file containing the task that you
want to install. The default file type is . TSK. The dollar sign ($), if
present, directs the system to search for the file first in the system
directory and then in the library directory. If you do not include
the /TASICNAME qualifier, the task will be installed under a name
based on the first six characters of the file name unless another name
was assigned through the TASK= option of the Task Builder. See the
examples for more information.

Command Qualifiers
/[NO]CHECKPOINT

Specifies whether or not the task is checkpointable. The default is set
at link time. This qualifier overrides the link-time checkpointability
specification.

/PRIORITY:n
Specifies the priority at which the task is to run. The default is set
at link time. This qualifier overrides the default set at link time. The
argument n can range from 0 through 250.

/TASILNAME:taskname
Specifies the name by which the task is to be referenced. The default
is set at link time. This qualifier overrides the link-time specification.
See the examples for more information.

/UIC:[g,m)

Specifies the default UIC for the task. This task UIC determines in
what protection class the task belongs and thus directly influences file
access. The brackets are required syntax.

Running Tasks 7-9

Examples

• INSTALL FATE ~

This example looks for a task image file named FATE. TSK on the default
device in the default directory and installs it as FATE in the STD, assuming
no other name was specified at link time.

• INSTALL .LATE IRETI

This example looks in the system directory (by convention, [1,54] and
the library directory (by convention, [3,54]) for a task image file named
LATE.TSK and installs it as LATE in the STD, assuming no other name
was specified at link time.

• INSTALL BUCKING IRETI

This example looks for a task image file named BUCKING.TSK on the
default device in the default directory, and installs it as BUCKIN in the
STD, assuming no other name was specified at link time.

• INSTALL/TASK_NAME:DOOR GATE ~

This example looks on the default device in the default directory for a
task image file named GATE.TSK and installs it as DOOR in the STD,
overriding any task name specified at link time.

Notes

REMOVE counteracts INSTALL See Section 7.4.

You can display the attributes of installed tasks with SHOW TASKS
/INSTALLED. See Section 7.5.1.2.

INSTALL can also install commons. See Volume 2, Chapter 15.

7.4 REMOVE
REMOVE takes a task name out of the System Task Directory. The task
is no longer installed.

REMOVE/REGION takes the name of a region out of the Common Block
Directory and the partition list. This is a privileged command.

7-10 Running Tasks

Format
RE MOVE [/ qualifier]
Task? taskname

REMOVE[/ qualifier] taskname

Command Qualifier
/REGION

Parameter
taskname

Specifies the name of the task you want to remove.

If you want to remove a region, specify the /REGION qualifier and
the name of the region.

Command Qualifier
/REGION

Specifies that you want to remove a region from the Common Block
Directory.

Examples

• REMOVE WONTON [Bill

This example removes the task named WONTON from the System Task
Directory. The task is no longer installed .

• REMOVE/REGION DON JON [Bill

This example removes the common region named DONlON from the
Common Block Directory.

Notes

To remove an active task, you must first abort it.

If a task is fixed, REMOVE first unfixes it and then removes it. See Volume
2, Chapter 15 for information on fixed tasks and the FIX command.

REMOVE cancels all time-based requests for the task to run.

REMOVE de allocates all receive-by-reference and receive-data packets for
the task and detaches all attached regions. See the RSX-11M/M-PLUS and
Micro/RSX Executive Reference Manual in the Advanced Programmer's Kit
for more information.

Running Tasks 7-11

7.5 SET and SHOW
All users can display information about active and installed tasks.

Privileged users can change the priority of active tasks.

See Volume 2, Chapter 15 for other SET and SHOW commands having to
do with running tasks.

7.5.1 SHOW TASKS

SHOW TASKS displays information about active and installed tasks on
the system.

7.5.1.1 SHOW TASKS/ACTIVE

SHOW TASKS j ACTIVE displays information about active tasks in brief
and full formats.

Brief Format
SHOW TASKSj ACTIVE[:ttnn:][jqualifier[s]]

Command Qualifiers
jBRIEF
JALL

Argument
ttnn:

If you name a terminal in the command, the display shows in brief
form the tasks active at that terminal. If you do not name a terminal,
the display shows in brief form the tasks active at your terminal.

Command Qualifiers
/BRIEF

Specifies that you want to display information about active tasks in
the brief format. This is the default and need not be specified.

The brief format includes task names and the originating terminal in
parentheses next to each task name.

/All
Specifies that you want to display information about all tasks active
on the system. The default is to show information about tasks active
at your terminal only.

7-12 Running Tasks

Examples

• SHOW TASKS/ACTIVE @[U
MCR... (TT5:)
SHOT5 (TT5:)

This example shows the brief display from SHOW TASKS/ACTIVE. In this
case, the tasks are MCR ... , the central command dispatcher, and SHOTS,
the SHOW task itself .

• SHOW TASKS/ACTIVE/ALL @[U
LDR. . . (COO:)
RMDEMO (TTO:)
SHOH2 (HT2:)
NETACP (COO:)
SHOT5 (TT5:)
DBOFCP (COO:)

TT4 (TT4:)
EDIT2 (TT2:)
EDIT3 (TT3:)

This example shows the brief display from SHOW TASKS/ ACTIVE/ALL.

Full Format
SHOW TASK[:taskname]/ ACTIVE/FULL

Argument
taskname

If you include a task name, the display shows full information on that
task. If you do not name a task, the display shows full information
on all currently active tasks. See Volume 2, Chapter 15 for more
information on this form of the command.

7.5.1.2 SHOW TASKS/INSTALLED

SHOW TASKS/INSTALLED displays information about installed tasks in
either brief or full format.

Format
SHOW TASKS[:taskname]/INSTALLED[/ qualifier]

Command Qualifiers
/BRIEF
/FULL

Running Tasks 7-13

Argument
taskname

Specifies the task for which you want information displayed. If you do
not specify a task name, information on all installed tasks is displayed.

Command Qualifiers
/BRIEF

Requests information on installed tasks in a brief format. This is the
default and need not be specified. The format of the display is as
follows:

taskname ident parname priority size ddnn:-lbn [memstate]

The elements in this display are as follows:
taskname The name of the task

ident

pam arne

priority

size

ddnn:

Ibn

memstate

The task version identification (or the version of the
prototype task)

The partition in which the task is installed

The task's priority

The size of the task in bytes

The device from which it is to be loaded

The logical block number of its disk address

The task memory state, which can be FIXED,
CHECKPOINTED, or blank

If the task version identification is missing (with the rest of the line
moved left) or if it is garbage, the task was installed from a disk that
is no longer present. If the task version number is a date, such as
07JUL, the task was compiled on that day.

/FULL
Requests the full format of the SHOW TASKS IINST ALLED command.
See Volume 2, Chapter 15 for more information on this form of the
command.

7.5.2 SET PRIORITY

SET PRIORITY alters the priority of an active task. This is a privileged
command.

7-14 Running Tasks

Format
SET PRIORITY
Priority? pnum
Task? taskname

SET PRIORITY:n taskname

Parameters
pnum

Specifies the new priority you want to assign to the task. Priority
numbers can range from 1 through 250.

taskname
Specifies the name of the active task whose priority you want to alter.

Notes

Notice that SET PRIORITY changes both the running and default priority
of a task. A task can change its own priority through the ALTP$ Executive
directive. With this directive j only the running priority is changed.

There is no SHOW PRIORITY command. You must use SHOW TASKS
/FULL instead.

Running Tasks 7-15

Chapter 8

Preparing a User Batch Job

A batch processor is a task that allows you to have a complete interactive
terminal session without being present. The commands and data that you
use to complete a session are contained in a user batch job. Each user
batch job is run on a software terminal called· a "virtual terminal." After
your batch job has run, a batch log is created, which is a record of the
activity on the virtual terminal.

This chapter discusses how to prepare a user batch job, how to queue batch
jobs, and how to read a batch log. This chapter also describes in detail
the batch-specific commands, as well as batch-specific error messages.

If you are creating a batch job for the first time, you should be familiar
with the various DCL commands and the Indirect Command Processor.

8.1 How a User Batch Job Works
To complete a user batch job, the batch processor creates a virtual terminal.
A virtual terminal passes the commands and data in your batch job to CLls
and other tasks. A user batch job completes the following functions:

1. Logs itself in

2. Issues commands

3. Supplies data for tasks

4. Responds to exit status codes returned by tasks

5. Logs itself out

Preparing a User Batch Job 8-1

You can queue one or more batch jobs using the SUBMIT command, and
this process is called a batch chain.

Each batch job that is submitted to the queue has the same UIC as the
terminal from which the SUBMIT command was entered. In other words,
the same default login UIC that is created when you log in to an interactive
terminal is created for you when your batch job is logged into a virtual
terminal.

Note
If you are a privileged user, you can run a batch job under
a UIC different from your login UIC.

When a batch job is complete, a batch log is created for your records by the
virtual terminal. The batch log includes the commands in the batch chain,
the time they were executed, the error messages received, comments, and,
optionally, login messages and the data blocks for the job. Once the batch
job is completed, the record is spooled to the line printer unless otherwise
specified. See Section 8.7 for more information on the batch log.

8.2 How to Prepare a User Batch Job
A user batch job is a file that contains commands and data that run from
a virtual terminal. The commands in a user batch job can consisit of
DCl commands or indirect command files, or they may be batch-specific
commands. The batch processor interprets these commands and processes
the information as if you were holding an interactive session.

The batch-specific commands include a login and a logout command, data
commands, and label and sequence control commands. The login and
logout controls enable the batch processor to log you in and out of each
session. The data control commands allow you to include user input in
your user batch job. User input is any data that would be input in an
interactive session. label and sequence control commands allow you to
program responses to errors that occur from within your user batch job.
Section 8.3 has descriptions of each of the batch-specific commands.

8-2 Preparing a User Batch Job

8.2. 1 The Batch Command Line
The general format of the batch command line is as follows:

S [label:] [command]

All commands in batch jobs must be preceded by a dollar sign ($). The
dollar sign informs the batch processor that the line is to be interpreted as
a command.

A label consists of from one to six characters terminated by a colon (:).
Labels, used with the GOTO command, perform error-handling functions.
The GOTO command may appear in any part of your batch job and does
not have to precede or immediately follow the label. See Section 8.3 for
a description of the GOTO command.

Commands include batch-specific commands, CLI commands such as DCL,
and indirect command files. All of these commands may be used together
in a user batch job. Note that the DCL LOGIN and LOGOUT commands
cannot be used in a user batch job because there are batch-specific
commands to perform those functions.

DCL commands are documented elsewhere in this manual. Batch-specific
commands are described in Section 8.3. Details on using indirect command
files are described in Section 8.2.1.3.

8.2. 1. 1 Comments

The exclamation point (!) is used to include comments in the user batch
job. Any information following a comment (!) is not processed by the
batch processor or issued to the CLI, but is recorded in the batch log.

Use the following format to enter comments:

S!comment

Comments (!) can include any alphanumeric character. For example:

S!SSSLet's talk cashSSS

The first dollar sign is recognized by the batch processor, but the dollar
signs and the text following the comment (!) are there for your reference
in the batch log.

Preparing a User Batch Job 8-3

8.2.1.2 Continuation Lines

DCL commands that do not fit on one line can be continued on the next
line by placing a hyphen (-) in the last character position on the line.
Continuation lines cannot begin with a dollar sign, a space, or a tab, and
they cannot be labeled. For example:

$DELETE BIG.MAC;2.JIMMY.MAC;1.LIZ.MAC;1.JAMES.MAC;2.­
MERRI.MAC;5

This command line executes as if it were on one line. You cannot use
continuation lines with batch-specific commands.

8.2. 1.3 Indirect Command Files

The at sign (@) invokes an indirect command file from within a batch job.
When the system accesses the indirect command file, the system executes
the commands in it. Use the following command line to include an indirect
command file in your user batch job:

$Gindirect[.CMD]

You must use the dollar sign to include indirect command files in your
batch job. The .CMD file type is optional. You may invoke the command
file from the default device and the default directory, or you may specify
a device and directory. For example, you c~n include indirect command
files in your batch job as follows:

$GBACKUP

This command line invokes the BACKUP.CMD file on the default device
and the default directory and passes it to the system to be processed.

$GDUO: [1.2]BACKUP

This command finds the file named BACKUP.CMD on DUO: in directory
[1,2] and passes it to the system to be processed.

Note that the default file type for indirect command files is .CMD. The
default file type for the SUBMIT command is also .CMD (see Section B.S.
You should be careful not to give batch jobs and indirect command files
the same file name because you could inadvertently submit an indirect
command file as a batch job. See Chapter 9 for more information about
indirect command files.

8-4 Preparing a User Batch Job

8.3 Batch-Specific Command Descriptions
This section describes batch-specific commands to be used for batch
processing. There are three groups of batch-specific commands:

1. Login and logout commands

2. Data commands

3. Sequence control commands (for error handling)

8.3. 1 Login and Logout Commands

JOB

The JOB command marks the beginning of a user batch job and must
appear first in each file in a batch chain. Using the JOB command is
equivalent to the LOGIN command in DCL.

Format
JOB[/qualifier] [loglabel] [[uic]]

Command Qualifier
/TlME:(hh:mm)

or

/TIME:m
Limits the job to hours (hh) and minutes (mm or m) of CPU time. The
default is 3 minutes.

Parameters
loglabel

Specifies the name of your batch job. The loglabel can be up to six
alphanumeric characters. This loglabel appears in the batch log and
does not affect the processing of your job.

If no loglabel is entered, the corresponding spaces in the batch log are
left blank.

[ulc]

Specifies the UIC. When specifying a UIC, you must include the
brackets in the specification. Only privileged users can specify a UIC
different from the UIC under which they submit the batch job.

Preparing a User Batch Job 8-5

If you do not include a UIC, the. system defaults to the UIC under
which you submit your batch job.

The UIC and login messages appear in the batch log. If you want to
suppress login messages, use the slash format in your user batch job
(see the examples).

Examples

$JOB

This is the simplest form of the JOB command. It logs the user onto a
terminal. The UIC is the same as the UIC the SUBMIT command was
issued under. Any system information messages appear in the batch log.

$JOB [20/20]

This example logs the user in under UIC [20,20] and suppresses login
messages.

$JOB BAT JOB

In this example, the loglabel BA TJOB appears in the user job heading in
the logfile. Note that the loglabel can be up to six alphanumeric characters
long.

$JOB/TIME:5

This example specifies that the job must not exceed 5 minutes of CPU
time. The job ends automatically after 5 minutes of CPU time has elapsed.

EOJ

The EOJ command marks the logical end of a user batch job. This
command is equivalent to LOGOUT in DCL.

An EOJ command must be placed at the end of each user batch job in a
batch chain. The batch processor logs out each job before beginning the
next job in a batch chain.

Note that if an end-of-file is encountered before the EO} command, the
batch processor assumes an EOJ command.

Format
EO}

8-6 Preparing a User Batch Job

8.3.2 Data Commands

DATA

The DATA cornrnand rnarks the beginning of a data block included in the
batch job. A data block is any required user input other than DCL, indirect
cornrnands, or user-written cornrnands for the batch job.

Format
DA T A[/ qualifier[s]]

Command Qualifiers
/[NO]COPV

Directs the batch processor to print data blocks in the batch log. Data
blocks include any block of information that a cornrnand in the batch
log file rnay require to execute. This data block rnust follow the
cornrnand line.

The /NOCOPY qualifier prevents printing of the data blocks in the
batch log.

The default is /COPY.

/DOLLARS[: "string"]
Allows you to include user input that is preceded by a dollar sign
($). Normally, when the batch processor encounters a dollar sign, it
assurnes this is the end of a data block.

To end a data block when using the /DOLLARS qualifier, you rnust
specify either an EOD cornrnand or a "string". A "string" rnay be up
to 15 characters in length and rnust be placed at the end of your data
block. This "string" does not appear in your batch log.

The default "string" is $EOD.

Note that if you use a "string" when specifying the /DOLLARS
qualifier, the batch processor ignores all EODs until the "string" is
encountered.

Preparing a User Batch Job 8-7

Examples

.RENAME
PETE. TXT
REPEAT.TXT
.PRINT REPEAT.TXT
.RENAME
.DATA
PETE. TXT
REPEAT.TXT
.PRINT REPEAT.TXT

These two examples are the same. Both examples rename PETE. TXT to
REPEAT.TXT and print REPEAT.TXT.

In the first example, the first line without the dollar sign is taken as
data because the previous line called for user input. In the second
example, the DATA command is used to identify the text following the
RENAME command as a data block. In both examples, the next dollar
sign encountered marks the end of the data block. Note that the DATA
command is optional unless one of its qualifiers is needed .

• SAM.TSK
.DATA/DOLLARS
.!The following information is a data block .
• 1 Foryou
.2 Forme
.3 Forsam
.!This is the end of the data block .
• EOD

In this example, the task SAM requires, as input, information beginning
with a dollar sign. To include data beginning with a dollar sign in the task
SAM, you must use the DATA command with the /DOLLARS qualifier.

Using the DATA command with the /DOLLARS qualifier allows data
beginning with a dollar sign to be passed to the task instead of the batch
processor. The information following the DATA/DOLLARS command is
a data block. An EOD command is required to end the data block.

.JOB NEWJOB

.!This file creates a batch command file called CAT.BAT within the

.!batch job NEWJOB

.COpy TI: CAT.BAT

.DATA/DOLLARS:"MOUSE"

.!The following information

.!is to be included in the file

.'CAT.BAT until the string

8-8 Preparing a User Batch Job

',RMOUSER is encountered.
'JOB
'RUN SPOT.TSK
'DATA/DOLLARS
t40.00 Vets
'20.00 Chow
'10.00 Grooming
'EOD
SEOj
MOUSE
'EOJ

In this example, a batch job is created called NEW]OB. When the batch
processor encounters another JOB command, another batch command file is
created called CAT.BAT. Information is read from the TI: (virtual terminal)
and copied to the file CAT.BAT. Because a Hstring" MOUSE was used in
the file CAT.BAT, the batch processor ignores all EOD commands until
the string HMOUSE" is encountered. The file CAT .BAT is a separate batch
command file with a batch job.

Note that the first EOD command and the first EO] command are ignored
by the batch processor, but are included in the file CAT.BAT. The last EO]
command ends the batch job. Remember, if a Hstring" is not used, the
batch processor ends the data block when it encounters an EOD command.

EOD

The EOD command marks the end of a data block. If you use the
DATA command with the /DOLLARS qualifier, the data block is closed
by default when an EOD is encountered. If you used a Hstring" with
/DOLLARS, the batch processor ignores all EOD commands until the
Hstring" is encountered.

Format
EOD

Preparing a User Batch Job 8-9

8.3.3 Sequence Control Commands

STOP

The STOP command stops the batch job. You can use it alone or with the
ON or IF commands.

Format
STOP
ON statuscode THEN STOP
IF statuscode THEN STOP

A STOP command stops the batch processor. This command may be used
alone or with an ON or IF command. the status codes are WARNING,
ERROR, and SEVEREERROR.

A STOP command without a qualifier or command following it is
interpreted by the batch processor. A STOP command followed by a
qualifier or any other command line is passed to the current eLI.

You may have more than one STOP command in a user batch job when
it is used with the ON or IF commands.

If you stop a user batch job in a batch chain, the batch processor continues
with the next batch job.

Example

IJOB
I!This is a test.
ISTOP

This is the simplest form of the STOP command. In this example, the
STOP command is equivalent to an EOJ command.

If you use a STOP command with the ON or IF command, the batch
processor does not halt the batch job, but rather performs the action
specified by these commands.

Note that if your batch job contains another batch job, the batch processor
continues with the next user batch job in the batch chain.

8-10 Preparing a User Batch Job

CONTINUE

The CONTINUE command can be used with the ON or IF commands. This
command allows the batch processor to continue processing jobs when it
encounters a status code other than SUCCESS.

The use of the CONTINUE command alone does not affect processing.

Format
CONTINUE
ON statuscode THEN CONTINUE
IF statuscode THEN CONTINUE

The status codes are WARNING, ERROR, and SEVEREERROR.

GOTO

The GOTO command instructs the batch processor to move to a line that
contains a specified label and begin processing from there. This command
can reference forward or backward. Use it alone or with the ON or IF
commands.

Format
GOTO label

label: [command]

Parameter
label:[command]

The label can be up to six alphanumeric characters long. The referenced
label may precede or follow the GOTO command line. Note that the
referenced label must have a colon (:) following it. The command
following the label is optional.

Preparing a User Batch Job 8-11

Examples

.GOTO NEXJOB

.NEXJOB:DIR

In this example, the batch processor is instructed to skip to the label
NEXJOB. The NEXJOB reference uses the DIR command to display
directories .

• ON WARNING GOTO MOON

In this example, the batch processor is instructed to skip to the label
MOON if a WARNING or more severe error is encountered.

Note that your referenced label may precede or follow the GOTO command
line. Because of this, it is possible to get caught in an infinite loop. To
avoid looping, use the jTIME qualifier with the JOB command so that you
can specify a limit to your batch job.

ON

The ON command, when used with the STOP, CONTINUE, or GOTO
commands, specifies the action to be. taken by the batch processor if an
error occurs.

Format
ON statuscode THEN STOP

ON statuscode CONTINUE

ON statuscode GOTO label

Parameter
statuscode

The status codes are WARNING, ERROR, and SEVEREERROR.

The action taken by the batch processor depends on the status code
you use and the commands you use it with. For example, if you use
ON WARNING THEN STOP, the processor stops the batch job when
a message other than success is returned.

8-12 Preparing a User Batch Job

If you choose ERROR, the batch processor ignores all warning messages
in your batch job, but performs the specified action for all ERROR and
SEVEREERRORs encountered.

If you choose SEVEREERROR, the batch processor ignores both
warnings and errors encountered in your batch job and performs a
specified action when a SEVEREERROR is encountered.

If no warnings or errors are encountered, the batch processor assumes
a SUCCESS statuscode. ON SUCCESS is not a valid command,
however.

Note that if the status code is encountered, the ON command defaults
to ON WARNING THEN STOP until another ON or SET command
is encountered. You may set the ON command at any point in a user
batch job.

Examples

.ON WARNING THEN STOP

This is the default setting for the ON command. If you do not override it
with another ON command or a SET command, any WARNING or more
severe status return code will stop the batch job .

• ON ERROR THEN GOTO JEEPERS

Once the batch processor encounters this command, it ignores all
WARNINGs. When the batch processor receives an ERROR or
SEVEREERROR code, it skips directly to the line labeled $JEEPERS: and
processes that command and all commands following that label.

SET

The SET command enables or disables the ON command setting.

Format
SET NO ON

SET ON

The SET NO ON command disables the ON command setting, including
the default. The batch processor ignores the status codes set by the ON
command until a SET ON or IF command is encountered. Any errors
detected while in a SET NO ON state are included in the batch log.

Preparing a User Batch Job 8-13

SET ON enables the ON command after a SET NO ON command has
been issued. The batch processor returns to the status set by the last ON
command.

IF

The IF command is used to check the status code of a given command
in a batch job. When an IF command is specified and the status code is
encountered, IF specifies the action to be taken by the batch processor.

Format
IF statuscode THEN STOP

IF statuscode CONTINUE

IF status code GOTO

Parameters
statuscodes

The status codes are WARNING, ERROR, and SEVEREERROR.

The IF command overrides an ON command if the status code in the
IF command line and the status code in the ON command line match.

Note that the IF command also overrides a SET command.

Example

tJOB KIDS
t! IF cOlllland example
tRUN PARENT.TSK
tIThe task PARENT.TSK uses three status codes to determine whether
tIthe batch job should continue. If any of the status codes are encountered,
tIthe job moves to the label specified in the IF command line.
tIF SEVEREERROR THEN GOTO DOOM
tIF ERROR THEN GOTO BED
tIF WARNING THEN GOTO ROOM
t!PARENT.TSK moves to the label PLAY if the exit status of the task
t!does not match the conditions set by the IF command.
tGOTO PLAY !If success assumed
t!If the status code SEVEREERROR is encountered, the job moves to the
t!label DOOM, broadcasts to the terminal and STOPS the batch jOb.
tDOOM:
tBRO TT21: "Severe error. Run ends".
tSTOP !If SEVEREERROR encountered.
t!If the status code ERROR is encountered, the job moves to the label
t!BED, broadcasts to the terminal, and starts a new task called

8-14 Preparing a User Batch Job

'!NEWKID.TSK. Once the NEWKID.TSK has completed. the job moves
'!to the label PLAY.
'BED:
'BRO TT21: "Error encountered. Running NEWKID.TSK"
'RUN NEWKID.TSK !If ERROR encountered.
'GOTO PLAY
'!If the status code WARNING is encountered. the job moves to the label
.!ROOM. broadcasts to the terminal, and moves to the label PLAY.
'ROOM:
'BRO TT21: "WARNING received. Job continues".
'GOTO PLAY
'!The label PLAY specifies an end-of-job command.
'PLAY:EOJ

In this example, three actions are given by the IF command. Should the
exit status of a task match the conditions set by the IF command, the
specified action is taken. Any ON command in effect is ignored.

8.4 Allocating Devices and Mounting Volumes
from Batch Jobs

Your user batch job may require allocating devices and mounting volumes.
If it does, running your batch job in your absence presents some problems,
because you may not be present physically to load the device or to mount
the volume. The batch processor cannot issue commands involving that
volume, if the device is not allocated and the volume is not mounted.

If you have an operator who can physically load the device and mount
the volume in your absence, you may use the ALLOCATE command and
the MOUNT command.

Because you will not know in advance which drive is available, the
ALLOCATE command uses a generic qualifier to allocate the first available
drive. Likewise, the MOUNT command has a qualifier that enables the
batch processor to pause until your volume is physically mounted.

Use the following format in your user batch job to allocate a drive:

• ALLOCATE [/TYPE: devtype] dd: ddn:

The qualifier /TYPE is necessary whenever a device name (dd) refers
to more than one kind of device. Once you have specified the above
command line, the ALLOCATE command allocates the first available drive
and assigns the logical name (ddn:) you specified.

Preparing a User Batch Job 8-15

The MOUNT command follows the ALLOCATE command in your batch
job. Use the MOUNT command with the /W AIT qualifier to notify the
operator (by sending a message to the console terminal) to load the volume
with the specified label on a specified drive. For example:

'MOUNT/WAIT ddn: label

The MOUNT command pauses until the operator loads the device
and restarts the MOUNT command. When the MOUNT command is
completed, the remaining commands in the batch job are executed.

Note that you must use the DEALLOCATE command and the DISMOUNT
command as you would in an interactive session.

Examples

'JOB
'!This batch job restores files from an RX51
,!disk pack labeled CHECK ME to the fixed disk.
'ALLOCATE/TYPE:RX50 DU: INO:'
'MOUNT/WAIT INO: CHECKME
'BACKUP/NOINI/DIR INO: DUO:
'DISMOUNT INO:
'DEALLO INO:
'EOJ

In this example, you do not know the physical device name, so you give
it a logical device name, INO:.

If you intend to load and allocate the device yourself on a specific drive,
you can use the MOUNT/NOSHAREABLE command, as shown in the
next example:

'JOB
'!This batch job will get a full directory listing
'!of an RX51 diskette that is already loaded and
'!spun up.
'MOU DU1:IMREADY/NOSHAREABLE
'DlRECTORY/PRINT DU1: [*]/FU
'DMO DU1:
'EOJ

8-16 Preparing a User Batch Job

8.5 SUBMIT
The SUBMIT command is used to enter user batch jobs into the batch
queue. If more than one batch job is submitted to the queue, it is called a
batch chain.

This section explains the qualifiers that are available with the SUBMIT
command to control the processing of your batch jobs.

Format
S UBMIT[/ qualifier[s]] filespec[s][l filequalifier[s]]

Command Qualifiers
I AFTER:(dd-mmm-yy hh:mm)

(mml dd/yy hh:mm)
I[NO]HOLD
INAME:jobname
I[NO]RESTART
IPRIORITY:n
IQUEUE:queuename

File Qualifiers
I[NO]DELETE
I[NO]TRANSFER

Batch Logfile Qualifiers
INAME:jobname
I[NO]LOGFILE
I[NO]PRINT
IPRINT:printqueue

Parameter
ftlespec[s]

Specifies the file(s) containing the user batch job(s).

If you include multiple file specifications, separate them using commas.
You can use wildcards (.) in the directory, name, type, and version
fields of the file specifications.

If your file specification includes no file type, the default file type is
.CMD.

Preparing a User Batch Job 8-17

Command Qualifiers

/ AFTER:(dd-mmm-yy hh:mm)
(mm/dd/yy hh:mm)

Blocks the job until after the specified time. Depending on the status
of other jobs in the batch queue, your job may be run immediately or
at a later time.

You can specify the calendar filed in either of two formats:
dd-mmm-yy Uses a 1- or 2-digit number for the day, the first 3 letters

for the month, and a 2-digit number for the year.

mm/dd/yy Uses a 1- or 2-digit number for the month, a 1- or
2-digit number for the day, and 2-digit number for the
year.

If you leave out the calendar field, it defaults to the current date.

If you leave out the clock field, the time defaults to 00:00:00.
/[NO]HOLD

Specifies that the job be held in its queue. You can release the job
with the RELEASE/JOB command.

/NAME:jobname
Specifies a job name for a batch job. The job name can be up to nine
alphanumeric characters in length.

If you specify a job name, that name appears in the output from the
SHOW QUEUE commands. If you do not specify a job name, the job
name defaults to the name of the first file specification submitted to
the queue.

If you specify /NOPRINT and a job name, the file name of the batch
log is the same. as the job name and the file type is .LOG.

Note that you can label individual jobs in a batch chain using the label
field of the JOB command.

/[NO]RESTART
Indicates whether or not a job should be restarted if it has been
interrupted.

/REST ART causes the batch job to be put in a held state if it has been
interrupted. To start the job again, you must use the RELEASE\jOB
command.

8-18 Preparing a User Batch Job

/NOREST ART does not change the status of a batch job that has been
aborted. A job that has been aborted is deleted from the queue. This
is the default.

/PRIORITY:n

Sets the queue priority of the batch chain. The highest priority job
runs' first. For example, if two jobs have the same priority, the job that
has been in the queue longer runs first.

For nonprivileged jobs, n can be any number from 1 through 150.
Privileged users can set priority from 1 through 250.

The default for n is 50.

This qualifier does not affect the running priority of tasks included in
your batch job.

/QUEUE:queuename

Specifies the name of the batch queue in which the job is to be placed.

The default is the BATCH queue.

File Qualifiers
/[NO]DELETE

Indicates whether a user batch job(s) should be deleted or not from
the user's directory.

The /DELETE qualifier marks a user batch job(s) for deletion from
the user's directory after the job has completed processing. The batch
job(s) is always deleted from the batch queue.

The default is /NODELETE.

/[NO]TRANSFER

Specifies whether or not the system should make temporary copies of
batch command files that have been submitted from a volume mounted
on a non public device.

If you use the /TRANSFER qualifier, you may dismount volumes after
the SUBMIT command has completed processing. This is the default.

Note: if a volume has files such as task files that are needed to
complete a batch job, do not dismount the volume.

When you specify the /NOTRANSFER qualifier, no copies are made.
The volumes must remain mounted until batch processing is complete.

Preparing a User Batch Job 8-19

Batch Logflle Qualifiers
/NAME:jobname

Gives a name to the batch job and the batch log.

In the batch log file, this name appears in the page heading.

When you issue the SHOW QUEUE command, this name appears in
the display.

If you do not specify a name, the name defaults to the first file name
in your batch job.

/[NO]LOGFILE
Specifies whether a batch log file should be created or not.

/LOGFILE produces a batch log file.

/NOLOGFILE suppresses the creation of a batch log file.

The default is /LOGFILE.

/PRINT[: prlntqueue]
Causes the batch log file to be queued to a line printer and deleted
after it is printed. The temporary file is ~reated in SP:[1,7].

Although the PRINT queue is normally used, you may spool the batch
log file to any print queue by specifying an optional queuename.

The default is /PRINT:PRINT.

/NOPRINT
Suppresses the automatic printing of the batch log, but creates a
permanent copy of the batch log file. The file can be found under the
same directory and device name as the first batch job in your batch
chain.

The batch log file name is the same as the batch job name with the
file type . LOG.

Examples

$ SUBMIT SUPER.BAT ~

In this example, the batch file SUPER. BAT is spooled to the default batch
queue BATCH. The name of the job is SUPER. The log file SUPER. LOG
will be printed and then deleted.

8-20 Preparing a User Batch Job

• SUBMIT/PRINT SUPER. BAT ~

In this example, the /PRINT qualifier is the default. The command is
equivalent to the previous one.

• SUBMIT/NOPRINT SUPER.BAT ~

In this example, a permanent log file is created in your directory. After the
batch job completes, you may examine the log file SUPER. LOG at your
terminal or use the PRINT command to spool it to a line printer.

• SUBMIT/NOLOGFILE SUPER. BAT IRETI

In this example, no log file is produced.

• SUBMIT CLARK.BAT,ROBIN.BAT,SUPER.BAT IRETI

The batch files in this example are processed in the order submitted. They
are processed by the default batch processor, without interruption. Each
file contains a user batch job. The three files when submitted in this
manner are a batch chain. The name of the batch chain is CLARK and
the name of the log file is CLARK.LOG. The log file contains a record of
each of the three user batch jobs.

• SUBMIT/NAME:POOH BEAR.BAT,TIGGER.BAT/DELETE,CHRIS.BAT ~

In this example, the name POOH is given to the batch chain. The batch
file TIGGER.BAT is deleted after it is processed.

• SUBMIT/QUEUE:BAT2/AFTER:(2-JUN-86) MOMSIE.BAT ~

In this example, the batch file MOMSIE.BAT is submitted to the queue
BAT2. MOMSIE.BAT will be processed on June 2, 1985 after midnight.

If you want to submit a batch file from a directory other than your own, you
must specify the directory and the file name. For example, if your directory
is [KOOL], you may submit a batch file from the directory [HEATW AVE]
as follows:

• SUBMIT/NOPRINT [HEATWAVE]BURN.BAT ~

In the above example, the batch file BURN.BAT is submitted from the
directory [HEATWA VE] with the /NOPRINT qualifier. The /NOPRINT
qualifier suppresses the automatic printing of the batch log, but creates a
permanent copy of the batch log file.

Preparing a User Batch Job 8-21

8.6 Queuing Jobs
The Queue Manager (QMG) is a system task that distributes jobs to output
devices or batch processors. Passing jobs to the Queue Manager is called
II queuing jobs." When the Queue Manager releases jobs for processing, this
action is called "dequeuing jobs."

The Queue Manager distributes jobs to batch processors. These user batch
jobs are queued by the SUBMIT command and are called QMG batch
jobs. A QMG batch job is a chain of one or more user batch jobs to be
processed. The SUBMIT command specifies a QMG batch job.

Once jobs are in queues, you can display queue information with the
SHOW QUEUE command. You can alter the status of jobs in queues
with the SET QUEUE command. You can hold jobs in queues with the
HOLD /ENTRY command or release them from queues with the RELEASE
/ENTRY command.

8.6. 1 How to Use the Queue Manager for Batch Jobs
Once you have issued a SUBMIT command, you may want to alter how
that file is processed or you may decide that you did not want to process
that file at all. This section explains how to manipulate the QMG so that
your file is processed the way you want it to be.

For example, you issue the following SUBMIT command to process the file
ANTRIN.BAT to the line printer:

• SUBMIT ANTRIN. BAT mIT!
SUB - Job 22, name "ANTRIN ", submitted to queue "BATCH ..

However, you did not want to submit that file. The batch file you wanted to
process is ANTRIM.BAT. To prevent ANTRIN.BAT from being processed,
you must remove that file from the BATCH queue. To do this, you use
the SHOW QUEUE command and the DELETE/ENTRY command.

The SHOW QUEUE command shows you the position of your job on the
queue (as well as other jobs) and whether or not your job is currently being
processed. The following example shows you how to issue the SHOW
QUEUE command, and displays the resulting output.

8-22 Preparing a User Batch Job

• SHOW QUEUE IBm
** PRINT QUEUES **
PRINT => LPO
LPO => LPO
** BATCH QUEUES **
BATCH => BPAO

[303.3] ANTRIN ENTRY: 824
1 DUO: [QUAINT]ANTRIN.BAT;l

•
ACTIVE ON BAPO

ANTRIN.BAT has an entry number of 824 in the BATCH queue. The
Queue Manager assigns an entry number to each job as a means of
keeping track of which jobs are processed when. Usually, this is done
on a first-come, first-served basis. Also, ANTRIN.BAT is currently being
processed, as noted by the seventh line of the display. To stop your job
from processing further (or if your job has not begun to be processed), you
have to issue the DELETE/ENTRY command. This command stops your
job immediately. You use the DELETE/ENTRY command in the following
manner:

• DELETE/ENTRY: 824 IBm
•
Your job has been removed from the BATCH queue and will not be
processed any further. However, a batch log is still created even when
you abort the batch job. When your job is finished (or aborted), the batch
log is put on the PRINT queue to be printed on the line printer. (For
more information on the batch log file, see Section 8.7.) The output from
the SHOW QUEUE command after you delete your job from the batch
processor is as follows:

• SHOW QUEUE I RET I
** PRINT QUEUES **
PRINT => LPO
LPO => LPO

[303.3] ANTRIN ENTRY: 824 ACTIVE ON LPO
1 SPO: [1.7]ANTRIN.LOG;1 DELETE

** BATCH QUEUES **
BATCH => BPAO

•
Once ANTRIN.BAT is removed from the BATCH queue, reissue the
SUBMIT command with ANTRIM. BAT as the file you want processed.

The following sections detail the various commands for using the QMG,
their qualifiers, and examples of how the commands are used.

Preparing a User Batch Job 8-23

8.6.2 DELETE

The DELETE command is used to delete jobs from a queue or files from a
job.

Format
DELETE/ENTRY:nnn[/FILEJOSITION:n]

This command allows the deletion of a job in queue by specifying the job's
entry number. You can also delete a single file in a job by specifying the
/FILEJOSITION:n qualifier.

Parameters
/ENTRY:nnn

Deletes a queue entry by number. The number is unique.

/FILE_POSITION:n
Identifies the file by the file's position in the job.

Examples

• DELETE/ENTRY: 301 [BIT]

This command deletes the job from queue by referencing the job's unique
entry number (in this example, job number 301) .

• DELETE/ENTRY:301/FILE_POSITION:2 [BIT]

This example deletes only the second file appearing in job 301. You may
only refer to the file you wish to delete by the file's position in the print
job (the numbered order in which you entered the file specification). You
cannot specify the file you wish to delete by referring to its file specification.

Notes

Associating a particular file specification with the numbered order in which
it was entered into a queue can be accomplished by entering a SHOW
QUEUE command, and examining the output on your terminal.

DELETE/QUEUE works on all categories of jobs in any queue. You can
delete ACTIVE jobs, WAITING jobs, TIME-BLOCKED jobs, or HELD jobs.

There can be more than one job with the same name from the same UIC.
The DELETE/QUEUE command will delete the first job of a given name
in the queue.

8-24 Preparing a User Batch Job

8.6.3 SHOW QUEUE and SHOW PROCESSOR

You may use the commands described in this section to display information
about queues, the jobs in the queues, spooled devices, and batch processors.

The commands described in the following section allow you to access
information about QMG batch jobs.

A SHOW QUEUE command win show all jobs in all queues. Qualifiers
can be used to limit the display to specific queues, specific jobs, and the
like.

You may examine the contents of your system's queues (in decreasing
degree of detail) by entering one of the following command qualifiers:

/FULL
/FILES
/BRIEF

The commands described in Section 8.6.3.2 display information about
spooled devices and batch processors under the control of the Queue
Manager.

8.6.3. 1 SHOW QUEUE

SHOW QUEUE displays information about QMG batch jobs.

Format
SHOW QUEUE [queuename][/qualifier[s]]

Command Qualifiers
/FULL
/FILES
/BRIEF
/ENTRY:nnn
/NAME:jobname
/OWNEILUIC:uic
/BATCH

Command Qualifiers
/FUll

Displays detailed information about queues, queue assignments, jobs,
the attributes of jobs in queues, and files that compose jobs in queues.

Preparing a User Batch Job 8-25

/FILES

Displays information about queues, queue assignments, jobs in queues,
and files that compose jobs in queues. The attributes of the jobs are
not displayed. This display format is the default of SHOW QUEUE.

/BRIEF
Displays only queues, queue assignments, and jobs in queues.

You may examine specific attributes of queues by entering one of the
following qualifiers.

SHOW QUEUE queuename

Displays QMG information for a single queue. The information
displayed may be for batch queues.

/ENTRY:nnn

Limits information to a particular job entry referenced by the job's
unique entry number.

/NAME:jobname

Limits information to jobs with the specified job name.

/OWNEILUlC:ulc
Limits information to jobs owned by the specified uic.

/BATCH
Limits information to batch queues.

Examples

The following examples show the three different output displays (FILE,
FULL, BRIEF) .

• SHOW QUEUE @ill

** PRINT QUEUES **
PRINT => LPO
LPO => LPO
** BATCH QUEUES **
BATCH => BAPO

[7.40]MJRA ENTRY: 23
> 1 DU1:[7.40]MJRA.BAT;1

•
ACTIVE ON BAPO

This display, the default format, shows the queues in the same state. It
does not show the attributes of the job. It only shows the form number of

8-26 Preparing a User Batch Job

the job and the attributes of the files if other than the default values were
specified.

• SHOW QUEUE/FULL llim
** PRINT QUEUES **
PRINT => LPO
LPO => LPO
•• BAT~rl QuirujgS ••
BATCH => BAPO

[7.40]MJRA ENTRY: 23 ACTIVE ON BAPO
PRI:60 NORESTART LOG PRINT:PRINT
> 1 DU1: [7.40]MJRA.BAT;1 NODELETE

•
This display shows all information about the queues and jobs in queues.
In this example, the batch job [7,40]MJRA, entry number 23, is running on
batch processor BAPO.

The attributes of the job are indicated in the display, and the files that
make up each job, are also listed. The angle bracket (>) indicates which
file of a job is currently being processed.

• SHOW QUEUE/BRIEF llim
** PRINT QUEUES **
PRINT => LPO
LPO => LPO
** BATCH QUEUES **
BATCH => BAPO

[7.40]MJRA ENTRY: 23
$

ACTIVE ON BAPO

This display only shows the names, entry numbers, and status of the jobs
in the queues.

8.6.3.2 SHOW PROCESSOR

SHOW PROCESSOR displays information about the initialized character­
istics of spooled devices and batch processors, printers, and other output
devices under control of the Queue Manager.

Format
SHOW PROCESSOR [processomame]
Displays information about all processors.

SHOW PROCESSOR/BATCH
Shows all batch processors.

Preparing a User Batch Job 8-27

Example

Enter the following command line on your terminal:

• SHOW PROCESSOR @[U

Information about print processors, batch processors, and spooled input
devices will be displayed at your terminal in the following manner:

** SPOOLED DEVICES **
LPO <= PRINT LPO
** BATCH PROCESSORS **
BAPO <= BATCH

CURRENT JOB: [303.3]ENGINE

•
ENTRY:688

This display shows all information about spooled devices and batch
processors.

The only batch processor, BAPO, can only receive jobs from the Queue
BATCH.

8.6.4 SET QUEUE
SET QUEUE modifies attributes given to batch jobs or files that compose
jobs in queues. Such jobs and files have been entered in queues by the
SUBMIT command. You cannot change the "attributes of an active job.

Format
SET QUEUE/ENTRY:nnn/qualifier[/qualifier[s]]

Job Qualifiers
/ AFTER:(hh:mm dd-mmm-yy)
/PRIORITY:n
/[NO]REST ART

File Format
SET QUEUE/ENTRY:nnn/FILEJOSITION:n/qualifier[/qualifier[s]]

File Qualifiers
/FILEJOSITION :n
/[NO]DELETE

8-28 Preparing a User Batch Job

Job Qualifiers
/ AFTER:(dd-mmm-yy hh:mm)

Changes the time after which your job will be processed. The job
will be BLOCKED until the time and date you specify. The job will
not necessarily be processed at exactly the time you state, but will be
eligible after the time you state.

If you do not supply the calendar field, the default is the current date.
If you do not supply the clock field, the default is midnight on the
date given in the calendar field.

If you supply both the clock and calendar fields, you must separate
them with a space.

/PRIORITY:n
Changes the queue priority of a batch job. Nonprivileged users may
set priorities up through 150. Privileged users may set priorities up
through 250.

/[NO]RESTART
Changes the restartability of your job. If you specify /RESTART,
your job will start again from the beginning if it is interrupted while
ACTIVE. If you specify /NORESTART (the default) your job will pick
up where it left off, if it is interrupted while ACTIVE.

File Qualifiers
/FILE_POSITION:n

Changes the operation of /[NO)DELETE as it applies to a file contained
in a job in queue. The number n refers to the file position in the job.
Use SHOW QUEUE to determine its position.

/[NO]DELETE
Changes the delete status of a single file contained in a batch job.

Examples

• SUBMIT MEDSURG.BAT ~

The SHOW QUEUE/FULL command output might look like this:

** PRINT QUEUES **
PRINT => LPO
LPO => LPO
** BATCH QUEUES **
BATCH => BAPO

[303.3] MEDSURG ENTRY: 43 ACTIVE ON BAPO

Preparing a User Batch Job 8-29

PRI:50 NORESTART LOG PRINT:PRINT
> 1 DUO: [303.3]MEDSURG.BAT;1 NODELETE

•
To change the priority of the file MEDSURG.BAT from a priority of 50
to 100, you would type the following SET QUEUE command on your
terminal:

• SET QUEUE/ENTRY:43/PRIORITY:100 ~

The SHOW QUEUE/FULL command output on your terminal would look
like this:

** PRINT QUEUES **
PRINT => LPO
LPO => LPO
** BATCH QUEUES **
BATCH => BAPO

[303.3] MEDSURG ENTRY:43 ACTIVE ON BAPO
PRI:100 NORESTART LOG PRINT:PRINT

> 1 DUO: [303. 3] MEDSURG. BAT; 1 NODELETE

•
Note that the file MEDSURG.BAT now has a priority of 100 instead of 50.

Notes

When you issue the SUBMIT command, you specify attributes of the QMG
job through command qualifiers. SET QUEUE command qualifiers change
the matching attributes.

You cannot change the attributes of an active job.

You can delete files by specifying the /FILEJOSTION:n qualifier in your
SET QUEUE command line.

8.6.5 Holding and Releasing Jobs
You can specify that a batch job be HELD in queue when you issue the
SUBMIT command.

You can release such jobs with the RELEASE command.

8-30 Preparing a User Batch Job

8.6.5. 1 HOLD

HOLD blocks a job in its queue until it is explicitly released.

Format

HOLD /ENTRY:nnn
Remember, jobs may share the same name but never the same entry number.

8.6.5.2 RELEASE

RELEASE unblocks a job that has been held in queue.

Format
RELEASE/ENTRY:nnn

Examples

• SUBMIT/HOLD LAYLA. BAT IBIT1
The SHOW QUEUE/FULL command output might look like this:

** PRINT QUEUES **
PRINT => LPO
LPO => LPO
** BATCH QUEUES **
BATCH => BAPO

[303.3] LAYLA ENTRY: 26 HELD
PRI:60 NORESTART LOG PRINT:PRINT

> 1 DUO: [303.3]LAYLA.BAT;1

•
NODELETE

To unblock LAYLA.BAT, you would type the following RELEASE com­
mand on your terminal:

• RELEASE/ENTRY: 26 IBIT1
The SHOW QUEUE/FULL command output would look like this:

** PRINT QUEUES **
PRINT => LPO
LPO => LPO
** BATCH QUEUES **
BATCH => BAPO

[303.3] LAYLA ENTRY: 26 ACTIVE ON BAPO
PRI:60 NORESTART LOG PRINT:PRINT
> 1 DUO: [303.3]LAYLA.BAT;1 NODELETE

•

Preparing a User Batch Job 8-31

Note, the HELD status of the job in the previous example was first changed
to WAITING, and then, since there were no jobs in queue, became ACTIVE.

8.7 The Batch Log File
A batch job creates a batch log file that contains a record of activity on the
virtual terminal. Unless otherwise specified, the batch log is automatically
printed on your system's line printer after batch processing is complete.
Note that if you have your batch log file spooled to a printer, the temporary
file is deleted after batch processing is complete.

The batch log contains the commands in the batch chain, the time the
commands were executed, the error messages received, any comments that
you placed in your batch job and, optionally, login messages and the data
blocks for the job. The log also includes all system output that would
normally appear on your terminal during an interactive session. Any
spooled output is also appended to the print job that contains the batch
log file. This is called the log file print job.

If you specify the /NOLOG qualifier, the batch log is not spooled to the
printer, but your system output is spooled as separate print jobs.

The batch log file is divided into three parts: the log file heading, the user
job flag information, and a printout of the user batch job activity.

The log file heading contains the following:

• Title "QMG Batch Job"

• Batch job name

• Version number of the batch processor

• Day, month, year, and time the batch job began

• Batch log page number

• Task name of the batch processor

The user job flag displays the following:

• User job name

• Device name of the logged-in virtual terminal

• UIC under which the batch job was logged in

8-32 Preparing a User Batch Job

Note that the previous information is followed by system messages from
a successful login.

The remaining part of the batch log is a record of activity which includes
the following:

• Command lines and comments preceded by a time stamp

e Output from commands and tasks (normany written to your terminal)

• Data for commands and tasks

• Lines skipped by a GOTO statement

• Exit status messages

TERM, DATA, and SKIP are line identifiers that appear in the spaces
between the time stamps and the command lines in the log file. TERM
identifies the line as output from a task to the virtual terminal, DATA
identifies the line as input data to a task, and SKIP indicates that the line
was skipped because of a GOTO command.

Periods that appear below an identifier indicate a continuation of that
particular line identifier.

Your batch log file may also contain the status code that an ON command
has met or exceeded when a task exited. A display is also included in the
batch log of each task's exit status.

Note that when data appears on the same line as a prompt, it causes the
line to be labeled TERM rather than DATA. If a GOTO is specified, with
the ON and IF commands enabled, the lines skipped are labeled as SKIP.

Example

'JOB ORWELL
'!Generate and print calendars for year 1986
'ON ERROR THEN GOTO BADCAL
'RUN CALENDAR
1986
'EOD
'GOTO SPOOL
'BADCAL: ON ERROR THEN GOTO NOFILE
'RUN NEWCAL
L
1986
'SPOOL:
'PRINT BIGSIS:=1986.CAL/CO:l0
'IF ERROR THEN GOTO DIFFQ
'DIFFQ: PRINT/COPIES:10 1986.CAL

Preparing a User Batch Job 8-33

'STOP
'NOFILE:
'!Could not create calendar file
'EOJ

In this example, a user batch job is created called ORWELL. The following
text shows the batch log file that the user batch job ORWELL produces:

QMCBatch Job - CALENDAR
Processor BAPO

BPR V1.0 23-MAY-85 11:03 Page 1

11:03 'JOB ORWELL

User Job - ORWELL Terminal VT2:
UIC = [301.31]

==================================

11 :03:54
11 :03:54
11:03:55

TERM

TERM

Micro/RSX V3.0

'!Generate and print calendars for year 1985
'ON ERROR THEN GOTO BADCAL
'RUN CALENDAR

** Calendar generator program - Version 1.0

Enter year: 1985
Sorry. year must not exceed 1983

'ERROR' Exit status returned - enabling action "ON" command

SKIP 'EOD
'GOTO SPOOL

11:03:56 'BADCAL: ON ERROR THEN GOTO NOFILE
11:03:56 'RUN NEWCAL

11 :04 :01
11 :04:01

TERM
** Calendar generator program - Version 1.5

Enter'S' for small format. 'L' for large format: 1
Enter year: 1985

File 1985.CAL has been created

'SPOOL:
'PRINT BIGSIS:1985.CAL/CO:10

TERM PRI - Extraneous input
11:04:03 'IF ERROR THEN GOTO DIFFQ

SKIP 'STOP
11:04:04 'DIFFQ: PRINT/COPIES:10 1985.CAL

TERM PRI -Job 13. name "1985 ".submitted to queue "LPO "

8-34 Preparing a User Batch Job

$STOP
11:04:08 TERM Connect time: 0 brs 1 mins 0 secs

CPU time used: 0 brs 0 mins 4 secs
Task total: 16

8.8 Error Messages
The following sections describe error messages that occur from batch­
specific commands. Commands in batch jobs can also create error messages
that appear in your batch log.

In addition, the batch processors themselves can send error messages
concerning your batch jobs. Some of these messages result from system
problems and are returned to the operator's console. Others reflect
difficulties in processing your batch job and are returned to your batch log.
Section 8.8.1 describes error messages which appear in your batch log.
Section 8.8.2 describes messages that are sent to the operator's console.

8.8.1 Error Messages In Batch Logs

BPR-Batch tile already open

Explanation: BPR (batch processor) attempted to open the specified file
when it was already open.

User Action: System problem. See your operator or system manager.

BPR-Batch tile close failure

Explanation: BPR failed to close the specified file.

User Action: The batch job should not be affected. Check the directory
to see if the file is locked. If so, issue the DCL UNLOCK command.

BPR-Batch tile deletion failure

Explanation: The /DELETE qualifier to the SUBMIT command failed
to execute.

User Action: Check the directory. The file may not be in the directory,
or the batch job may lack delete access to the file. Delete the file with
the DCL DELETE command.

Preparing a User Batch Job 8-35

BPR-CPU time limit exceeded, user job terminated

Explanation: The batch job ran longer than the /TIME qualifier to the
JOB command permitted.

User Action: Retry the batch job and increase the amount of CPU time
using the /TIME qualifier.

BPR-I/ 0 error

Explanation: The batch processor failed to read from or write to the
virtual teI1Tlinal, or the batch processor was unable to open the batch
file.

User Action: Retry the batch job. This may indicate a hardware error.
See your operator or system manager.

BPR-Vlrtual terminalI/O was aborted

Explanation: The task sending I/O to the virtual terminal was aborted.

User Action: None.

BPR-Label undeftned

Explanation: The batch job specified a label that was not in the job.

User Action: Check the job to see that the label is present in proper
form. The label must begin with a dollar sign ($) and end with a
colon (:).

BPR-Log "Ie directory not found - aborted batch job

Explanation: The SUBMIT command included the /NOPRINT qualifier,
but the batch job cannot find the directory for the batch log.

User Action: See your system manager.

BPR-Logon privilege violation

Explanation: The $JOB command gave an incorrect UIC.

User Action: Check the command for proper syntax and retry the job.
For nonprivileged users, the UIC in $JOB must match the login UIC
in effect when the SUBMIT command was entered.

BPR-Output request from incorrect virtual terminal

Explanation: System error.

User Action: See your operator or system manager.

8-36 Preparing a User Batch Job

BPR-Spawn failure

Explanation: System error.

User Action: See your operator or system manager.

BPR-Speclfled maximum CPU time too large

Explanation: The largest amount of CPU time that inay be specified is
65535 minutes (1092 hours, 15 minutes).

User Action: Specify less CPU time.

BPR-Syntax error

Explanation: A command line in the batch job does not start with a
dollar sign ($), or special batch commands have improper syntax.

User Action: Check the batch file for proper syntax and retry the job.

BPR-Syntax error-$JOB does not appear first

Explanation: $JOB logs in the user batch job on the virtual terminal
and must appear first in the batch file.

User Action: Edit the batch file so that $JOB appears first.

BPR-Vlrtual terminal output too long for buffer

Explanation: A stream of characters from the virtual terminal was too
long to fit in a storage buffer. .

User Action: Make sure that the task outputs RETURN and LINEFEED
characters when performing terminal I/O.

8.8.2 Error Messages to the Operator's Console

BPR-Batch file Input error

Explanation: BPR could not read from the batch file.

User Action: Check the batch file status. The file may not be in the
directory.

BPR-Batch job jobname stili In progress

Explanation: System error. QMG attempted to start the batch job while
another job was in progress.

User Action: Inform the system manager.

Preparing a User Batch Job 8-37

BPR-Error during send to QMG

Explanation: System error.

User Action: Inform the system manager.

BPR-Illegal error-severity code n

Explanation: System error.

User Action: Inform the system manager.

BPR-Incorrect Emit Status Block (ESB) address returned by spawned task

Explanation: System error.

User Action: Inform the system manager.

BPR-Log lie close failure

Explanation: BPR failed to close the log file.

User Action: Check the log file status. The device may not be available,
or the file may not be in the directory.

BPR-Log lie open error

Explanation: BPR failed to open the log file.
,

User Action: Check the log file destination. The device may be write­
locked.

BPR-Log lie output error

Explanation: BPR failed to write to the log file.

User Action: Check the log file status. The device may not be available,
or the file may not be in the directory.

BPR-Output request from Incorrect virtual terminal

Explanation: System error.

User Action: Inform the system manager.

8-38 Preparing a User Batch Job

Chapter 9
The Indirect Command Processor

This chapter describes indirect command files and the Indirect Command
Processor (Indirect). Also included are descriptions of the processor
directives and symbols that control the execution of Indirect.

9. 1 Indirect Command Files
Indirect command files can be used for many different things-from doing
simple tasks to performing complex system-control and programming
functions.

An indirect command file is a text file containing DCl command lines and
special directives that allow you to control command file processing. The
Indirect Command Processor (which usually runs under the task name
AT.) reads the indirect command file, interprets the directives, and passes
the DCl commands to DCL.

For example, an indirect command file could contain the following
command lines:

.ENABLE SUBSTITUTION

.ASKS CONNAN Enter command name
HELP 'CONNAN'

With this file, Indirect processes the first two command lines and DCl
executes the HELP command line.

The Indirect Command Processor 9-1

To initiate an indirect command file, type in the file specification preceded
by an at sign (@). For example:

• GCOMMANDS. CMD rnm
The default file type for indirect command files is .CMD. Thus, the
command line in the previous example could also be input as follows:

• GCOMMANDS rnm
The name of the indirect command file can also be a logical name
assignment that translates into a vaild Files Control Services (FCS) file
specification. For example,if you have assigned the logical name TEST to
the string DUl:[USER]COMMANDS.CMD, the command @TEST invokes
the file COMMANDS.CMD.

If the catchall task (TDX) is installed on your system, you can give the
command file a 3-character name and execute the file without using the at
sign. For example:

• ABC rnm
Indirect searches your directory for a command file called ABC.CMD.

See Chapter 2 of this manual and the Micro/RSX System Manager's Guide
for more information on the catchall task (TDX).

Indirect command files can also be nested. The maximum level of nesting
is four unless this value has been changed by your system manager. A
maximum level of four means that you can run one command file, which
can run another file, which can run a third file, which can run a fourth
nle, which can run a fifth file.

For example, the following command file executes a DCL command line
and then invokes another command file (COOKIE.CMD). When Indirect
is finished with COOKIE.CMD, it returns to the first file, which executes
more DCL commands.

SET TERMINAL/LOWER/SCOPE/WIDTH:80
GCOOKIE
SHOW DEVICES
SHOW USERS
SHOW TIME

For DCL commands and for questions displayed by the .ASKx directives,
the first character displayed is the DCL prompt. The default prompt is a
dollar sign followed by a space ($).

9-2 The Indirect Command Processor

9.2 The Indirect Command Processor
When processing an indirect command file, Indirect first reads the command
file and interprets each command line either as a command to be passed
directly to DCl or as a request for action by Indirect. The directives for
Indirect are distinguished by a period (.) as their beginning character.

The Indirect directives allow you to perform the following functions:

• Define and assign values to logical, numeric, and string symbols (see
Section 9.4 for more information on symbols)

• Substitute a symbols's value into any line of the command file

• Perform arithmetic

• Manipulate strings

• Display text on the user's terminal

• Ask questions of a user

• Control the sequence of execution of a command file

• Call subroutines

• Detect error conditions

• Test symbols and conditions

• Create and access data files

• Parse commands and data

• Enable or disable any of several operating modes

• Control time-based and parallel task execution

• Expand logical name assignments

These functions are described throughout Section 9.6, Description of
Indirect Directives.

Two directives, .BEGIN and .END, allow you to block-structure the
command file and create Begin-End blocks. Modular, block-structured
command files are easier to debug and maintain. More importantly, Begin­
End blocks isolate local symbol definitions as well as labels and thus
conserve symbol table space.

The Indirect Command Processor 9-3

When you define a symbol, Indirect creates an entry for the definition
in an internal symbol table. Generally, symbol table entries retain their
definitions under the following conditions:

• If defined locally, throughout the execution of the command file.

• If defined globally, throughout the execution of all levels of nested
command files (a dollar sign ($) at the beginning of the symbol
indicates a global symbol).

When defined within a Begin-End block, however, local symbols retain
their definitions only throughout the execution of the commands within
that block. The symbols are erased from the symbol table when Indirect
encounters the .END directive at the end of the block.

One Indirect directive, .ENABLE GLOBAL (see Section 9.6.12), and a
switch, ILO (see Section 9.5), allow the definition of some symbols as
global to all file levels. If symbols are not global, each time Indirect enters
a deeper level, it masks out of the symbol table all symbols defined by
the previous level so that only the symbols defined in the current level
are available for use by that level. When control returns to a previous
level, the symbols defined in that level become available once again and
the ones from the lower level(s) are lost.

When Indirect reaches the end of the highest-level indirect command file,
it displays the message

• G <EOF>

and then exits. (The message is not displayed if the .DISABLE DISPLAY
directive is in effect. See Sections 9.6.11 and 9.6.12.)

Indirect displays on the requesting terminal every DCL command line as
it is executed. However, if Indirect is activated by @filename/NOCLI, the
DCL command lines are displayed but not executed. (See Section 9.5 for
information on the I[NO]CLI switch.)

A command file can also include comments. Comments can be placed
at different locations in the file and require different preceding characters
depending on how you want Indirect and DCL to treat them. Following
are the three formats for comments:
;comment Comments at beginning of line to be displayed by DCL

!comment

.;comment

Comments after the start of a DCL command line

Comments that will not be displayed

9-4 The Indirect Command Processor

Indirect attaches the terminal while processing contiguous comment lines
that begin with a semicolon. This allows you to type CTRl/O and suppress
a lengthy comment. Output is resumed by typing another CTRl/O or is
resumed at the next DCl command line or Indirect directive statement in
the command file.

Note that no command or comment lines are displayed if .ENABlE QUIET
is in effect (see Section 9.6.12).

When Indirect processes a .ENABlE QUIET statement, it forces a
detachment (if detach mode is enable, which is the default) because it
no longer needs the terminal for processing. Once quiet mode has been
established, no attempts are made to reattach the terminal.

Any DCl command line issued by Indirect also causes an unconditional
detachment. This action prevents a task, which may need the terminal,
from suspending activity because the terminal is attached by Indirect.

A .DISABlE QUIET statement establishes terminal I/O but does not
attempt to detach the terminal. See Section 9.6.12 for more information.

If you do not specify a file name in the initial command line, Indirect
can construct the name of a default file to be opened. The default file is
named INDINlxxx.CMD, where xxx either is null or is the 3-character task
name under which Indirect is installed. Note, however, that this facility is
usually disabled. To enable it, the value in the build file for the Indirect
task must be changed.

If a specified command file cannot be found in the current directory,
Indirect can also search for the file in another directory. However, to
enable this facility, the value D$CUIC in the build file for the Indirect task
must be changed to be nonzero. If the new value is 1, Indirect searches
for the file in lB:[1ibuic]. If the new value is greater than 377(8), Indirect
considers it to be the octal equivalent of the UIC (on lB:) to be searched.
For example, if you issue the command @ABC.CMD but Indirect cannot
find the file in the current directory, then, if the value of D$CUIC is set to
[303,54], Indirect searches that directory for the file.

The Indirect Command Processor 9-5

9.3 Summary of Indirect Directives
The Indirect directives described later in this chapter are listed here by
category. A detailed description of each directive is given in alphabetical
order in Section 9.6.

Category

Label Definition

.label:

Symbol Definition

.ASK

.ASKN

.ASKS

.ERASE

.SETT

. SETF

.SETN

.SETD

.SETO

.SETL

.SETS

.TRANSLATE

Function

Assigns a name to a line in the command file so
that the line may be referenced elsewhere within
the file by a .GOTO or .GOSUB directive.

Prompts for user input to define or redefine a
logical symbol and assign the symbol a true or
false value.

Prompts for user input to define or redefine a
numeric symbol and assign the symbol a numeric
value.

Prompts for user input to define or redefine a string
symbol and assign the symbol a character string
value.

Deletes all local or global symbol definitions or a
single global symbol definition.

Defines or redefines a logical symbol and assigns
the symbol a true or false value .

Defines or redefines a numeric symbol and assigns
the symbol a numeric value.

Redefines the radix of a numeric symbol.

Defines or redefines a logical symbol and assigns
the symbol a true or false value.

Defines or redefines a string symbol and assigns
the symbol a character string value.

Expands a logical name translation into the special
symbol <EXSTRI>.

9-6 The Indirect Command Processor

Category

File Access

.CHAIN

. CLOSE

. DATA

.OPEN

.OPENA

.OPENR

. PARSE

.READ

Logical Control

. BEGIN

. END

.EXIT

. GOSUB

. GOTO

/

Function

Closes the current indirect command file and
begins executing commands from another file.

Closes a user data file .

Specifies a single line of data to be output to a file .

Creates and opens an output data file (if the file
exists, creates a new version and opens it).

Opens an existing data file and appends subsequent
text to it (does not create a new version). Defaults
to .OPEN if the file does not exist.

Opens a data file for reading with the .READ
directive.

Parses (divides) strings into substrings .

Reads a line from a file into a specified string
variable.

Marks the beginning of a Begin-End block .

Marks the end of a Begin-End block .

Terminates processing of either Indirect or the cur­
rent command file, returns control to the invoking
terminal or to the previous Indirect file level, and
optionally sets the value for the special symbol
<EXSTAT> .

Calls a subroutine within the command file .

Branches to a label within the command file .

Defines logical end-of-file. Terminates file process­
ing and exits. This directive is equivalent to the
.STOP directive. It is the only directive that does
not begin with a period and does not consist of
alphabetic characters.

The Indirect Command Processor 9-7

Category

.ONERR

.RETURN

.STOP

Logical Tests

.IF

.IFACT

.IFNACT

.IFDF

.IFNDF

.IFENABLED

.IFDISABLED

.IFINS

.IFNINS

.IFLOA

.IFNLOA

.1FT

.IFF

.TEST

. TESTDEVICE

.TESTFILE

.TESTPARTITION

Function

Branches to a label upon detecting a specific
Indirect error condition.

Effects an exit from a subroutine and returns to the
line immediately following the subroutine call.

Terminates indirect command file processing and
optionally sets Indirect exit status. This directive is
equivalent to the logical end-of-file (/) directive.

Determines whether or not a symbol satisfies a
condition.

Determines whether or not a task is active .

Determines whether or not a symbol is defined .

Tests the .ENABLE or .DISABLE options .

Determines whether or not a task is installed in
the system .

Determines whether or not a device driver is
loaded .

Determines whether a logical symbol is true or
false .

Tests the length of a string symbol or locates a
substring.

Returns information about a device in the system .

Determines if a specified file exists and determines
the physical device associated with a logical device
name (performs device translation).

Returns information about a memory partition in
the system.

9-8 The Indirect Command Processor

Category Function

Enable or Disable an Operating Mode

.ENABLE

.DISABLE
Enables or disables control of the following modes:

Substitution (SUBSTITUTION)
Time-out Darameter (TIMEOUT)
Lowercas~-character processing (LOWERCASE)
Terminal attachment (ATTACH, DETACH)
Output of data to data files (DATA)
File deletion (DELETE)
Global symbols (GLOBAL)
Symbol radix (DECIMAL)
Command line echo (QUIET)
Command display (TRACE)
Field display (DISPLAY)
Passing commands to CLI (CLI)
Input truncation error suppression (TRUNCATE)
Escape recognition (ESCAPE)
Escape-sequence processing (ESCAPE-SEQ)
Control-Z recognition (CONTROL-Z)
Numeric overflow (OVERFLOW)

Increment or Decrement Numeric Symbols

. DEC

.INC

Execution Control

.DELAY

.PAUSE

.WAIT

.XQT

Decrements the value of a numeric symbol by one .

Increments the value of a numeric symbol by one .

Delays the execution of an indirect command file
for a specified period of time.

Temporarily suspends the execution of an indirect
command file to allow user action.

Waits for a specified task to complete execution
and sets the special symbol <EXSTAT> with
the completed task's exit status.

Initiates a task, passes a command line to it, and
continues Indirect processing without waiting for
the task to complete.

The Indirect Command Processor 9-9

9.4 Symbols
Indirect allows you to define symbols. These symbols can then be tested
or compared to control flow through the indirect command file. Their
values may also be inserted into DCL commands, data records for data
files, or comments to be displayed on the terminal.

Symbol names are ASCII strings from one through six characters in length.
They must start with a letter (A through Z) or a dollar sign ($). The
remaining characters must be alphanumeric or a dollar sign.

There are three symbol types:

• Logical

• Numeric

• String

A logical symbol has a value of either true or false.

A numeric symbol can have a numeric value in the range of 0 through
177777(8) (65535 decimal). The symbol can be defined to have either a
decimal or octal radix. The radix is relevant only when the symbol is
substituted (see Section 9.4.2).

A string symbol has as its value a string of ASCII characters, with a length
of 0 through 132(10) characters.

A symbol's type (logical, numeric, or string) is defined by the first directive
that assigns a value to the symbol. Assignment directives can assign the
following:

• A true or false value to define a logical symbol (defined by .ASK,
.SETL, .SETT, or .SETF)

• An octal or decimal number to define a numeric symbol (defined by
.ASKN or .SETN)

• A character string to define a string symbol (defined by .ASKS, .READ,
or .SETS)

9-10 The Indirect Command Processor

9.4.1 Special Symbols
Indirect defines certain special symbols automatically. These symbols are
dependent on specific system characteristics and the replies to queries
given during command file execution. Special symbols can be compared,
tested, or substituted and are of three types: logical, numeric, or string. All
special symbols have a common format: angle brackets (< >) enclose
the special symbol name.

Sections 9.4.1.1 through 9.4.3 give brief descriptions of the special logical,
numeric, and string symbols, and discuss the use of numeric and string
symbols and expressions. Section 9.4.4 explains reserved symbols, and
Sections 9.4.5 and 9.4.5.1 discuss symbol-value substitution.

9.4.1.1 Special Logical Symbols

The special logical symbols are assigned a true or false value based on the
following conditions:

Symbol Value

< ALP HAN > Set to true if last string entered in response to a .ASKS
directive or tested with a .TEST directive contains only
alphanumeric characters. An empty string also sets
<ALPHAN> to true.

<ALTMOD> Set to true if last question was answered with an
ALTMODE or ESCAPE. Otherwise, <ALTMOD> is set
to false.

<DEFAUL> Set to true if the answer to last query was defaulted (the
RETURN key was pressed once) or a time-out occurred.

<EOF> Set to true if the last .READ or .ASKx directive resulted in
reading past the end of the file. Otherwise, <EOF> is
set to false.

The Indirect Command Processor 9-11

Symbol

<ERSEEN>

Value

Set to true if any of the following conditions are true
(<ERRNUM> , < EXSTAT > , and <FILERR> are
described in Section 9.4.1.2):

• <FILERR> is less than 0 (that is, if a negative error
code was returned).

• An exit status «EXSTAT» value worse than
<WARNING> was returned

• <EOF> is set to true

• <ERRNUM> is not 0

• You used the command line .SETT <ERSEEN>

The command line .SETF <ERSEEN> sets the following
conditions:

• < FILERR> is set to 0

• <EXSTAT> is set to 0

• <EOF> is set to false

• < ERRNUM> is set to 0

<ESCAPE> Set to true if last question was answered with an
ALTMODE or ESCAPE. Otherwise, <ESCAPE> is set
to false. <ESCAPE> is a read-only symbol.

<FALSE> Logical constant used for comparisons with the .IF directive
or as a default for the .ASK directive.

<lAS> Set to true if the current operating system is lAS. Always
false on a Micro/RSX system.

<LOCAL> Set to true if the terminal from which Indirect is executing
(TI:) is a local terminal. If the terminal is remote,
<LOCAL> is set to false.

< MAPPED> Set to true if the system on which Indirect is running is
mapped; set to false if the system is unmapped. Always
true on a Micro/RSX system.

9-12 The Indirect Command Processor

Symbol Value

<NUMBER> Set to true if the last string entered in response to a
.ASKS directive or tested with a . TEST directive, contains
only alphanumeric characters. An empty string also sets
<NUMBER> to true.

<OCTAL> Set to true if the answer to the last .ASKN ciil'ective or
the radix of the numeric symbol tested in the last . TEST
directive is octal, or if the last string tested with a . TEST
directive contained all numeric characters in the range 0
through 7.

<PRIVIL> Set to true if the current user is privileged. Its value
is determined from the flag contained in the terminal
data base. The symbol is set when Indirect is started
and remains unchanged during execution. The next time
Indirect is started, <PRIVIL> is reset if a command to
change the user's privilege (for example, DCL SET TERM
/NOPRIV) was issued during the previous execution.

<RAD50> Set to true if the last string entered in response to a .ASKS
directive or tested with a . TEST directive contains only
Radix-50 characters. Radix-50 characters are the uppercase
alphanumeric characters plus period (.) and dollar sign ($).
A blank is not a Radix-50 character in this context. An
empty string also sets <RAD50> to true.

<RSXIID> Always false on a Micro/RSX system.

<TIMOUT> Set to true if time-out mode is enabled and the last .ASKx
directive timed out waiting for a user response.

<TRUE> Logical constant used for comparisons with the .IF directive
or as a default for the .ASK directive.

The Indirect Command Processor 9-13

9.4.1.2 Special Numeric Symbols

The special numeric symbols are assigned the following values:

Symbol

<ERRCTL>

Value

Controls the way in which Indirect processes errors. The
symbol is treated as an eight-bit mask. For each class of
error that a user's .ONERR target routine processes (see
Section 9.6.21), the appropriate bit is set in the mask. If
the bit is cleared, Indirect exits after printing the error
information.
If the eighth bit, which is the sign bit or 200(8), is set,
Indirect does not print any information about the error.
The initial default value for <ERRCTL> is I, which
implies that only class 1 errors can be handled with a
.ONERR address and that error messages will be printed.
To cover class 1 and 2 errors, the value for <ERRCTL>
must be 3.

Note
If you attempt to trap errors other
than default class I, processing can­
not continue in most cases. The error
service routine is limited to returning
a fatal error message and executing
the .EXIT directive. The internal state
of Indirect is indeterminate in all but
class "1 error cases. If you receive
an error that is not class I, clean up
what you are doing as much as pos­
sible and exit from Indirect.

See Section 9.8 for a list of the error messages and their
assigned class values.

<ERRNUM> Assigned the class number of an error that Indirect has
finished processing. This value can be used for processing
specific error types with a .ONERR routine.
See Section 9.8 for a list of the error messages and their
assigned class values.

9-14 The Indirect Command Processor

Symbol

<ERRSEV>

Value

Assigned the error severity mask associated with the error
that Indirect has finished processing. This bit mask
corresponds to the bit mask <ERRCTL> used to control
the processing.

Assigned the vaiue of 0, I, 2, 4, or 17, depending on the
exit status from the last DCL command line executed or
from the last u.WAIT taskname" directive, where taskname
was activated by the .XQT directive.
This special numeric symbol is modified at the completion
of a synchronous DCL command line or at the completion
of a .WAIT directive. The .EXIT directive can also modify
<EXSTAT> . The value is returned from a task that has

completed if the task exits with status. Otherwise, the
value is returned from DCL. The values 0, I, 2, 4, and
17 and their corresponding special symbols indicate the
following:
o <WARNIN> Warning.

1 <SUCCES> Success.

2 <ERROR> Error.

4 <SEVERE> Severe error.

17 <NOSTAT> The task could not return exit status.

The Indirect Command Processor 9-15

Symbol

<FILERR>

Value

Assigned the FCS-ll (I/O error or driver) or directive
(DSW) status code resulting from a .TESTFILE, .0PENx,
or .READ directive operation. <FILERR> contains
the contents of offset F.ERR and F.ERR+l from the File
Descriptor Block (FDB) associated with the file. If F.ERR+l
(the high byte of the word) contains zero, F.ERR (the low
byte of the word) contains an I/O error code. If F.ERR+l
contains -I, F.ERR contains a directive status code.
The following lists give the codes (in octal words) and their
meanings.
I/O Error Codes (F.ERR+l, the high byte, contains 0):

Error Number Meaning

Decimal Octal

-1 000377 Bad parameters

-2 000376 Invalid function code

-3 000375 Device not ready

-4 000374 Parity error on device

-5 000373 Hardware option not present

-6 000372 Illegal user buffer

-7 000371 Device not attached

-8 000370 Device already attached

-9 000367 Device not attachable

-10 000366 End-of-file detected

-11 000365 End-of-volume detected

-12 000364 Write attempted to locked unit

-13 000363 Data overrun

-14 000362 Send/receive failure

9-16 The Indirect Command Processor

Error Number Meaning

-15 000361 Request terminated

-16 000360 Privilege violation

-17 000357 Shareable resource in use

-18 000356 Illegal overlay request

-19 000355 Odd byte count (or virtual address)

-20 000354 Logical block number too large

-21 000353 Invalid UDC module number

-22 000352 UDC connect error

-23 000351 Caller's nodes exhausted

-24 000350 Device full

-25 000347 Index file full

-26 000346 No such file

-27 000345 Locked from read/write access

-28 000344 File header full

-29 000343 Accessed for write

-30 000342 File header checksum failure

-31 000341 Attribute control list format error

-32 000340 File processor device read error

-33 000337 File processor device write error

-34 000336 File already accessed on LUN

-35 000335 File ID, file number check

-36 000334 File ID, sequence number check

-37 000333 No file accessed on LUN

-38 000332 File was not properly closed

The Indirect Command Processor 9-17

Error Number

-39

-40

-41

-42

-43

-44

-45

-46

-47

-48

-49

-50

-51

-52

-53

-54

-55

-56

-57

-58

-59

-60

000331

000330

000327

000326

000325

000324

000323

000322

000321

000320

000317

000316

000315

000314

000313

000312

000311

000310

000307

000306

000305

000304

9-18 The Indirect Command Processor

Meaning

No buffer space available for file

Illegal record size

File exceeds space allocated, no
blocks

Illegal operation on File Descriptor
Block

Bad record type

Illegal record-access bits set

Illegal record-attribute bits set

Illegal record number-too large

Internal consistency error

Rename-two different devices

Rename-a new file name already
in use

Bad directory file

Cannot rename old file system

Bad directory syntax

File already open

Bad file name

Bad device name

Bad block on device

Enter-duplicate entry in directory

Not enough stack space (FCS or
FCP)

Fatal hardware error on device

File ID was not specified

Error Number Meaning

-61 000303 Illegal sequential operation

-62 000302 End-of-tape detected

-63 000301 Bad version number

-64 000300 Bad file header

-65 000277 Device off line

-66 000276 Block check, CRC, or framing error

-67 000275 Device on line

-68 000274 No such node

-69 000273 Path lost to partner

-70 000272 Bad logical buffer

-71 000271 Too many outstanding messages

-72 000270 No dynamic space available

-73 000267 Connection rejected by user

-74 000266 Connection rejected by network

-75 000265 File expiration date not reached

-76 000264 Bad tape format

-77 000263 Not ANSI "0" format byte count

-78 000262 No data available

-79 000261 Task not linked to specified ICS
/ICR interrupts

-80 000260 Specified task not installed (.NST)

-80 000260 No AST specified in connect (.AST)

-81 000257 Device off line when off-line request
was issued

The Indirect Command Processor 9-19

Error Number Meaning

-82 000256 Invalid escape sequence

-83 000255 Partial escape sequence

-84 000254 Allocation failure

-85 000253 Unlock error

-86 000252 Write check failure

-87 000251 Task not triggered

-88 000250 Transfer rejected by receiving CPU

-89 000247 Event flag already specified

-90 000246 Disk quota exceeded

-91 000245 Inconsistent qualifier usage

-92 000244 Circuit reset during operation

-93 000243 Too many links to task

-94 000242 Not a network task

-95 000241 Time-out on request

-96 000240 Connection rejected

-97 000237 Unknown name

-98 000236 Unable to size device

-99 000235 Media inserted incorrectly

-100 000234 Spindown ignored

9-20 The Indirect Command Processor

Directive Status Codes (F.ERR+l, the high byte,
contains -1):

Error Number

Decimal Octal

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

-11

-15

-16

-17

-18

-19

-20

-21

-80

177777

177776

177775

177774

177773

177772

177771

177770

177767

177766

177765

177761

177760

177757

177756

177755

177754

177753

177660

Meaning

Insufficient dynamic storage

Specified task not installed

Partition too small for task

Insufficient dynamic storage for
send

Unassigned LUN

Device handler not resident

Task not active

Directive inconsistent with task state

Task already fixed/unfixed

Issuing task not checkpointable

Task is checkpointable

Receive buffer is too small

Privilege violation

Resource in use

No swap space available

Illegal vector specified

Invalid table number

Logical name not found

Directive issued/not issued from
AST

The Indirect Command Processor 9-21

Error Number Meaning

-81 177657 Illegal mapping specified

-83 177655 Window has I/O in progress

-84 177654 Alignment error

-85 177653 Address window allocation overflow

-86 177652 Invalid region 10

-87 177651 Invalid address window 10

-88 177650 Invalid TI parameter

-89 177647 Invalid send buffer size (greater than
255.)

-90 177646 LUN locked in use

-91 177645 Invalid UIC

-92 177644 Invalid device or unit

-93 177643 Invalid time parameters

-94 177642 Partition/region not in system

-95 177641 Invalid priority (greater than 250.)

-96 177640 Invalid LUN

-97 177637 Invalid event flag (greater than 64.)

-98 177636 Part of DPB out of user's space

-99 177635 DIC or DPB size invalid
See the RSX-IIM/M-PLUS and Micro/RSX I/O Operations
Manual and the Micro/RSX I/O Drivers Reference Manual
for more information.

<FORATT> Assigned the octal value of the file attributes that were
used to open the data files.

<MEMSIZ> Assigned the value of the current system memory size in
K words (K is 1024(decimal».

9-22 The Indirect Command Processor

Symbol

<SPACE>

<STRLEN>

<SYMTYP>

Value

Assigned the number, in octal, of free bytes in the internal
symbol table for Indirect. The number does not reflect the
amount of space that could be gained by the automatic
extension of the Indirect task.

Assigned the length, in octal, of the string entered in
response to the last .ASKS directive or the string tested by
the last .TEST directive. The symbol is also set when a
command file is invoked «STRLEN> contains the octal
number of variables used in the command line) and as the
result of a .PARSE statement «STRLEN> contains the
octal number of substrings produced by the directive).

Assigned the numeric code for the type of symbol tested
with a .TEST directive. The symbol types have the
following code numbers:
Logical 0

Numeric 2

String 4

<SYSTEM> Assigned an octal number to represent the operating system
on which Indirect is running. For a Micro/RSX system, the
value is 6.

<SYUNIT> Assigned the unit number of the user's default device (SY:).

<TICLPP> Assigned the current page length setting for the terminal.
When you first invoke Indirect, it attempts to determine the
length. If the information is not available, <TICLPP>
defaults to 24(decimal).

<TICWID> Assigned the current page width setting for the terminal.
When you first invoke Indirect, it attempts to determine the
width. If the information is not available, <TICWID>
defaults to 80(decimal).

The Indirect Command Processor 9-23

Symbol

<TISPED>

<TITYPE>

Value

Assigned the baud rate for transmitting characters from
the host system to the terminal. When you first invoke
Indirect, it attempts to determine the baud rate. The baud
rate information is useful for determining the quality and
quantity of information to be transmitted. The following
list gives the octal value that corresponds to the baud rates:
1 0 13 1200

2 50 14 1800

3 75 15 2000

4 100 16 2400

5 110 17 3600

6 134 20 4800

7 150 21 7200

10 200 22 9600

11 300 23 EXTA

12 600 24 EXTB

Assigned the terminal type of the terminal from which
Indirect is running. If the terminal type is changed from
within an indirect command file, <TITYPE> is set to
the latest terminal type. If Indirect cannot determine the
terminal type, <TITYPE> is set to zero (0).
The following list gives the octal value that corresponds to
the terminal types:
o Unknown 11 VT52 23 LA38

1 ASR33 12 VT55 24 VTI01

2 KSR33 13 VT61 25 VTI02

3 ASR35 14 LA180S 26 VT105

4 LA30S 15 VT100 27 VT125

5 LA30P 16 LA120 30 VT131

6 LA36 20 LA12 31 VT132

9-24 The Indirect Command Processor

Symbol Value

7 VT05

10 VT50

21 LA100

22 LA34

35 PC3xx-series

36 VT200-series
See the Micro/RSX I/O Drivers Reference Manual (the
chapter on the fun-duplex terminal driver) for more
information.

9.4. 1.3 Special String Symbols

The special string symbols are assigned the following string values:

Symbol Value

<ACCOUN> Assigned certain accounting information from a user's
accounting block (UAB). If Resource Accounting is not
running on the system, the fields of <ACCOUN> are
null. The information is in the following format (note the
trailing comma):
usemame,sessionid,accountnumber,CPU ,DIR,QIO, TAS, ac­
tivetasks,
usemame

sessionid

accountnumber

CPU

DIR

QIO

The first 14(decimal) characters of the
user name (as it appears in the sys­
tem account file) followed by the first
initial.

The 3-letter session-ID code followed
by the unique login number.

The user's account number as it ap­
pears in the system account file.

The number of CPU ticks used since
login.

The number of system directives issued
since login.

The number of QIO directives issued
since login.

The Indirect Command Processor 9-25

Symbol Value

TAS The number of tasks run since login.

activetasks The current number of the user's active
tasks.

The individual fields can be isolated with the .P ARSE
directive:
.PARSE <ACCOUN> "." NAME SID ACNT CPU DIR QIO TAS ACT JUNK

Note that because double-precision arithmetic is not avail­
able in Indirect, the numeric <ACCOUN> parameters
cannot be converted to numeric form and manipulated in
arithmetic expressions.

<ClI> Assigned the acronym (3 through 6 letters) of the current
command line interpreter (for example, DCL).

< CONFIG > Contains the parameter defaults specified when the current
Indirect task was built. If you have the Advanced
Programmer's Kit, see the module INDCFG in the system
procedure library lB:[1,2]INDSYS.CLB on the system disk
for more details.

<DATE> Assigned the current date; format is dd-mmm-yy.

9-26 The Indirect Command Processor

Symbol

<DIRECT>

Value

Contains a user's current default directory string; format is
[name].
The contents of <DIRECT> are different depending on
the directory mode you are in and the kind of directory
you are using.
If you are not in named directory mode (Mnonamed" mode),
<DIRECT> contains a null directory string ([]).

If you are in named directory mode and using a named
directory, <DIRECT> contains your default directory
string in the form ddddddddd.
If you are in named directory and using a numeric
directory, <DIRECT> contains your default directory
string in the form [gggmmm].
If <DIRECT> contains the null string ([]), use the special
symbol <UIC> for the location of your current default
directory. If <DIRECT> contains a directory string, use
it as the current default directory location.

< EXSTRI > When Indirect is first initiated, contains build-time infor­
mation about the Indirect task. The information includes
the version number of the task and the time the task was
built. Afterwards, it can contain such information as the
string results from a more deeply nested indirect command
file or the results of a . TESTDEVICE statement. The results
are sent to the calling command file.
This symbol can be redefined with a .SETS <EXSTRI>
xxxx command.

The Indirect Command Processor 9-27

Symbol

<FlLATR>

Value

Contains eight fields of file-attribute information obtained
from offsets for the File Descriptor Block (FDB). The
information is from the FDB used in the last .OPENx
operation and is in the following format (note the trailing
comma):

rtyp ,ratt,rsiz,hibk,efbk,ffby ,racc,rctl,

The attributes are as follows:
F.RTYP Record type (byte, octal). Set as follows to

indicate the type of records for the file:
l-fixed-Iength records (R.FIX)
2-variable-Iength records (R.VAR)
3-sequenced records (R.SEQ)

F.RATT Record attribute (byte, octal). Bits 0 through 3
are set as follows to indicate record attributes:
Bit 0 If 1, first byte of record contains a

FORTRAN carriage control character
(FD.FTN); otherwise, O.

Bit 1 If 1, for a carriage control device, a
line feed is to occur before the line
is printed and a carriage return is to
occur after the line is printed (FD.CR);
otherwise, O.

Bit 2 . If 1, indicates print file format (FD.PRN);
FCS allows this attribute but does not
interpret the format word; otherwise,
O.

Bit 3 If 1, the records cannot cross block
boundaries (FD.BLK); otherwise, O.

9-28 The Indirect Command Processor

Symbol Value

F.RSIZ Record size (word, decimal). Contains the size
of fixed-length records or indicates the size of
the largest record that currently exists in a file
of variable-length records.

F.HIBK Highest virtual block number allocated (double
word with F .EFBK, decimal).

F.EFBK End-of-file block number (double word with
F.HIBK, decimal).

F.FFBY First free byte in the last block or the maximum
block size for magnetic tape (word, octal).

F.RACC Record access (byte, octal). Bits ° through 3
define as follows the record access modes:
Bit ° If 1, READ$/WRITE$ mode (FD.RWM);

if 0, GET$/PUT$ mode.

Bit 1 If 1, random access mode (FD.RAN)
for GET$ /PUT$ record I/O; if 0, se­
quential access mode.

Bit 2 If 1, locate mode (FD.PLC) for GET$
/PUT$ record I/O; if 0, move mode.

Bit 3 If 1, PUTS operation in sequen­
tial mode does not truncate the file
(FD.INS); if 0, PUTS operation in se­
quential mode truncates the file.

The Indirect Command Processor 9-29

Symbol Value

F .RCTL Device characteristics (byte, octal). Bits 0
through 5 define as follows the characteristics
of the device associated with the file:
Bit 0 If 1, record-oriented device (FD.REC);

if 0, block-structured device.

Bit 1 If 1, carriage control device (FD.CCL);
otherwise, O.

Bit 2 If 1, teleprinter device (FD.TTY); oth­
erwise, O.

Bit 3 If 1, directory device (FD.DIR); other­
wise, O.

Bit 4 If 1, single-directory device (FD> SDI;
an MFD is used, but no directories are
present).

Bit 5 If 1, block-structured device inherently
sequential in nature (FD.SQD), such
as a magnetic tape. Record-oriented
devices are assumed to be sequential

. in nature, so this bit is not set for
them.

If no file is currently open, a fatal error occurs.

< FILSPC > Assigned the specification for the file referred to with
the last .OPEN, .OPENA, .OPENR, or TESTFILE directive
operation, or in the last specification for a nested command
file.

<FMASK> Contains octal values representing answers to some of the
system generation questions. If you have the Advanced
Programmer's Kit, refer to the module INDSFN in the sys­
tem procedure library LB:[1,2]INDSYS.CLB on the system
disk for an explanation of the values.

<LIBUIC> Assigned the UIC of the current nonprivileged task library;
format is [g,m], where g is the group number of the UIC
and m is the member number of the UIC (leading zeros
are not included).

9-30 The Indirect Command Processor

Symbol Value

<LOGOEV> Assigned the device name and unit number of the user's
login account.

<LOGUIC> Assigned the login UIC of the current user; format is
[ggg,mmm).

<NETUIC> If the system has OECnet, assigned the UIC in which
OECnet-related tasks are stored on the system vol­
ume; format is [ggg,mmm). <NETUIC> is used with
<SYSUIC> and <LIBUIC> to separate the compo­

nents of the system.

<NETNOO> Assigned the OECnet node name of the system. If the
system is not on the OECnet network, <NETNOO> is
assigned MICRO.

<SYOISK> Assigned the device mnemonic (two letters) of the user's
default device (SY:); format is dd (for example, OU).

<SYSOEV> Assigned the physical name of the system disk. The device
name is in the form ddn (for example, ~UO).

<SYSIO> Assigned the operating system's baselevel number.

<SYSUIC> Assigned the system UIC; format is [ggg,mmm).

<SYTYP> Contains a string consisting of up to 12 ASCII characters
that identifies the system; only three identifications are
valid: "Micro/RSX," "RSX-11M-PLUS," and HRSX-11M."

<TIME> Assigned the current time; format is hh:mm:ss.

The Indirect Command Processor 9-31

Symbol

<VIC>

Value

Assigned the current VIC; format is [ggg,mmm].
The contents of <VIC> are different depending on the
directory mode you are in and the kind of directory you
are using.
If you are not in named directory mode ("nonamedH mode),
<VIC> contains your default VIC in the form ggg,mmm.

If you are in named directory mode and using a named
directory, <VIC> contains your protection VIC in the
form ggg,mmm. In this case, there is no default.
If you are in named directory mode and using a numeric
directory, <VIC> contains the default VIC correspond­
ing to the default directory string in <DIRECT>. The
default VIC is in the form ggg,mmm.
<VIC> follows the numbered default directory string in

named directory mode so that all command files and tasks
created previous to Version 3.0 will still work from named
mode in a numeric directory.
If you need to obtain the protection VIC from within the
indirect command file, use one of the following procedures:

• If you are a privileged user, use the <VIC> symbol.

• If you are a nonprivileged user and your system has
Resource Accounting, use the <LOGVIC> symbol.

<VERSN> Contains a string consisting of up to four ASCII characters
that identifies the version number of the system; format is
n.n (for example, 3.0).

9.4.2 Numeric Symbols and Expressions
A numeric symbol is a string of digits representing a value in the range of 0
through 177777(octal) (0 through 65535(decimal), if immediately followed
by a period, or if decimal mode has been enabled). If an arithmetic
operation yields a result outside of this range, or one that crosses the
boundaries, a fatal error occurs and the following message is displayed
(unless turned off by .ENABLE OVERFLOW):

AT. -- Numeric under- or overflow

9-32 The Indirect Command Processor

A numeric symbol or constant may be combined with another numeric
symbol or constant by a logical or arithmetic operator to form a numeric
expression. Arithmetic operators are used to add (+), subtract (-), multiply
(.), and divide (/). Logical operators are the inclusive OR (!), logical
AND (&), and NOT (#). Embedded spaces and tabs are not permitted
in front of operators. If a space precedes an operator, particularly the plus
sign (+), the operator will not function correctly.

Numeric expressions are evaluated from left to right unless parentheses
are used to form subexpressions, which are evaluated first. For example,
the directive statements

.SETN N1 2

.SETN N2 3

.SETN N3 N1+N2*4

assign numeric symbol N3 the value 24(octal), whereas the directive
statements

.SETN N1 2

.SETN N2 3

.SETN N3 N1+(N2*4)

assign numeric symbol N3 the value 16(octal).

Numeric expressions are permitted as second operands in numeric .IF and
.SETN directives. They are also permitted as range and default arguments
in .ASKN and .ASKS directives. The directives .EXIT and .STOP allow
numeric expressions to represent exit status.

Indirect associates a radix, either octal or decimal, with each numeric
symbol. The radix of a numeric symbol changes each time the symbol is
assigned a new value. If you use a numeric expression to assign a new
value to a symbol and all operands in the expression are octal, then the
symbol is set to octal. If any operand in the expression is decimal, the
symbol is set to decimal. For example:

.SETN N1 2

.SETN N2 3.

.SETN N3 N1+3

.SETN N3 N1+3.

.SETN N3 N1+N2

N1 i8 octal
N~ i8 deci ... l
N3 i8 octal
N3 i8 decimal
N3 i8 deci ... l

You can also assign a new value to a symbol with the .ASKN directive.
See Section 9.6.3 for more information.

The Indirect Command Processor 9-33

The .SETO and .SETD directives allow you to change the radix of a numeric
symbol without changing the value of the symbol. For example:

.SETN N1 10.

.SETO N1
! N1 = 10 decimal
! N1 = 12 octal

See Section 9.6.31 for more information on .SETO and .SETD.

The radix of a numeric symbol does not affect arithmetic operations or
comparisons. The radix is important only when substituting a numeric
symbol into a string. If the radix of the symbol is octal, the value of the
symbol is substituted into the string as an octal number. If the radix is
decimal, the value is substituted as a decimal number. For example:

SETN N1 10.
; N1 = 'N1'
.SETO N1
; N1 = 'N1'

N1 = 10 decimal
Displayed as ; N1 = 10
Make N1 octal
Displayed as ; N1 = 12

If you substitute a numeric symbol into a string and the substituted number
is decimal, a period (.) following the symbol name causes a trailing period
to be included in the string (following the substituted number). For
example:

.SETN N1 10.
; N1 = 'N1'
; N1 = 'N1.'
. SETO N1
; N1 + 'N1.'

N1 = decimal
Displayed as N1 = 10
Displayed as N1 = 10 .
Make N1 octal
Displayed as ; N1 = 12

You can also force a numeric symbol to be substituted as an octal or decimal
number by using a substitution format control string. For example:

.SETN N1 10.
; N1 = 'N1%D'
; N1 = 'N1%O'

N1 = 10 decimal
! Displayed as ; N1 = 10
! Displayed as ; N1 = 12

See Section 9.4.5.1 for more information on substitution format control
strings.

9-34 The Indirect Command Processor

9.4.3 String Symbols, Substrings, and Expressions
A string constant is a string of any printable characters enclosed by
quotation marks or a pound sign (#). (if you begin a string with one
of these delimiters, you must end it with the same delimiter.) Using
pound signs is helpful when you want to include quotation marks in the
string. Empty strings are also permitted. The number of characters cannot
exceed 132(decimal). For example:

"ABCDEF"
.HITHERE.
'HI"THERE"'

"" ••
String symbols may have the value of any string constant. The value
is assigned by a .SETS or .ASKS directive. For example, the directive
statements

. SETS Sl "ABCDEF"

. SETS S2 Sl

assign string symbol S2 the value of string symbol S1 (that is, ABCDEF).

A substring facilitates the extraction of a segment from the value of a string
symbol. You can use substrings only in second operands of .SETS and .IF
directives. For example, the directive statements

. SETS Sl "ABCDEF"

.SETS S2 Sl[1:3]

assign string symbol S2 the value of string symbol S 1 beginning at character
one and ending at character three (that is, ABC).

You can also use the syntax [n:*] to extract the characters from position n
to the end of the string. For example, the directive statements

.SETS Sl "ABCDEF:

. SETS S2 Sl[3:*]

assign string symbol S2 the value CDEF.

You can combine a string constant, symbol, or substring with another
string constant, symbol, or substring by the string concatenation operator
(+) to form a string expression.

The Indirect Command Processor 9-35

String expressions are permitted as second operands in .sETS and .IF
directives where the first operand is a string symbol. For example, the
directive statements

. SETS S1

. SETS S2

. SETS S3

"A"
"CDEF"
S1+"B"+S2[1:3]

assign string symbol S3 the value of the concatenation of string symbol
Sl, string constant "B," and the first three characters of string symbol S2
(that is, ABCDE).

9.4.4 Reserved Symbols
Parameters for a command file can be passed to Indirect for processing.
The parameters are stored in the following reserved local symbols:

PO, PI, P2, P3, P4, P5, P6, P7, P8, P9, COMMAN

The symbol COMMAN contains everything in the issuing command line,
including the specification for the command file.

The symbols PO through P9 contain individual elements of the command
line. The elements are delimited by a single space or tab character in
between each one. (This is not true for a .CHAIN command line, however.)
Two delimiting characters between elements represent a null parameter.
(See the description of the .PARSE directive in Section 9.6.25 for an
example of this behavior.)

With the .GOSUB directive (see Section 9.6.16), any parameters to the right
of the label and to the left of a comment are transferred to the symbol
COMMAN. The value of COMMAN can then be parsed to obtain formal
call parameters.

9.4.5 Symbol Value Substitution
Substitution can occur in any line. Indirect can use the values assigned
to logical, numeric, string, or special symbols by replacing a normal
parameter (for example, a device unit) with the symbol name enclosed
in apostrophes (for example, 'DEVICE'). When a previous directive has
enabled substitution mode (.ENABLE SUBSTITUTION), Indirect replaces
the symbol name enclosed in apostrophes with the value assigned to the
symbol.

9-36 The Indirect Command Processor

When Indirect encounters an apostrophe, it treats the subsequent text, up
to a second apostrophe, as a symbol name. Indirect then searches the
table of symbols for the corresponding symbol and substitutes the value
of the symbol in place of the symbol name and surrounding apostrophes
in the command line.

For example, the first three lines in the following example appear in an
indirect command fJe. \tVhen Indirect executes these lines, it displays the
last two lines at the entering terminal.

.ENABLE SUBSTITUTION

.ASKS DEVICE Device to mount?
MOUNT 'DEVICE'

• * Device to mount? [S]: DU1: ~
• MOUNT DU1:

DUl: was entered in response to the displayed question. This reply
assigned the string value DUl: to string symbol DEVICE. Then, when
Indirect read

MOUNT 'DEVICE'

it substituted for 'DEVICE' the value assigned to DEVICE (that is, DUl:).
If substitution mode was not enabled, Indirect would simply have passed
the line to DCL as it appeared in the command file (that is, MOUNT
'DEVICE').

To include an apostrophe as text within a command line rather than
as the start of a symbol, you must replace the single apostrophe with
two contiguous apostrophes (n). If substitution mode is enabled, Indirect
displays the command file line

;DON' 'T PANIC

as

;DON'T PANIC

The Indirect Command Processor 9-37

9.4.5. 1 Substitution Format Control

The conversion of numeric values to strings and the placement of string
and logical values in a substitution operation can be controlled with a
format control string. The control string is in the following form:

'symbol %controlstring'

The control string begins with the percent sign (%) and ends with the
second of the two apostrophes that denote the substitution operation. The
control string consists of one or more of the following characters:
C Compress leading, embedded, and trailing blanks, and remove

embedded nulls (leave one space between characters, but strip all
leading and trailing spaces).

D Force the conversion of a numeric symbol to decimal.

o Force the conversion of a numeric symbol to octal.

S Perform signed conversion for a numeric symbol.

M Perform magnitude conversion for a numeric symbol.

Z Return leading zeros for a positive numeric value.

Rn Right-justify the resulting string, truncating to 'n' decimal characters
if necessary.

Ln Left-justify the resulting string, truncating to 'n' decimal characters
if necessary.

X Convert the variable to Radix-50 characters.

V If the symbol being substituted is numeric, convert the low byte to
its equivalent ASCII character and substitute it.
If the symbol being substituted is a string, convert the first character
to its octal representation and substitute it.

As an example, the following command file shows various control strings
being used and the results of using the control strings:

9-38 The Indirect Command Processor

·ENABLE SUBSTITUTION

.SETS STRING" A B CD "
; STRING = 'STRING%C'

.SETS STRING "ABCD"
STRING = , STRINGXR6 '

STRING = 'STRING%3'

. SETN NUMBER 10.
NUMBER • 'NUMBERXD '
NUMBER • , NUMBER%O '
NUMBER • , NUMBER%ZO '

Compress spaces

Right-justify string.
truncating to 6 characters
Right-justify string.
truncating to 3 characters

NUMBER = , NUMBER%ZOR4 '

Convert numeric symbol to decimal
Convert numeric symbol to octal
Return leading zeros for positive
numeric value. convert to octal
Return leading zeros; convert to
octal; right-justify.
truncating to 4 characters

When the command file is executed, Indirect displays the text as follows:

GCONTROL ~
STRING = A B CD
STRING = ABCD

STRING • ABC

NUMBER = 10
NUMBER = 12
NUMBER = 000012

NUMBER • 0012

Compress spaces
Right-justify string. truncating to 6
characters
Right-justify string. truncating to 3
characters
Convert numeric symbol to decimal
Convert numeric symbol to octal
Return leading zeros for positive
numeric value. convert to octal
Return leading zeros; convert to
octal; right-justify. truncating to 4
characters

Indirect does not perform a consistency check on the control string. If you
specify conflicting format characters, Indirect uses the last one specified.

The Indirect Command Processor 9-39

9.5 Switches
Indirect accepts the following switches: jTR, JCLI, jLB, JLO, and JDE.

Switch Function

j[NO]TR Displays a trace of the indirect command file on the terminal
from which the file is being run. This function is useful
for debugging an indirect command file. Each command
line, including Indirect directive statements, is displayed. As
each command line is processed, a number representing the
nesting depth of the command file is displayed, followed by
an exclamation point and the command line. If the command
line causes some action to occur, the next displayed line
indicates the action; usually, this line consists of the DCL
commands issued as a result of the previous directive. The
default is jNOTR.

j[NO]CLI Passes commands not processed by Indirect to the default
command line interpreter (DCL) for your system. The default
is JCLI.

jLB Indicates that the specified file is a universal library of
command procedures and that the specified module is the
procedure to be executed.
When command procedures, which are indirect command
files, are inserted into a universal library with the DCL
LIBRARY jINSERT command, you can then reference them
with jLB:module.
Command libraries are built by creating a universal library
and inserting command files into it. You can then reference
the procedures in the library with the following command
line:

@commandlibraryjLB:module

The default file type for a command library is .CLB.
If you do not specify a module (@commandlibrary jLB),
Indirect attempts to locate a module called .MAIN ..

9-40 The Indirect Command Processor

Switch Function

If you do not specify a library name (@/LB:module), the
following actions occur:

• If the command is issued from the terminal or from a file
that is not in the library, Indirect ignores the /LB switch
and treats the command line as though you had used
@module.CMD. Note that if the command is issued from
a command file, the default device and directory of the
specified module are the same as those for the current
file, not necessarily the same as those for the terminal.

• If the command was issued from within a library, the
specified module is searched for in the current library.

These default actions for an unspecified library al­
low a collection of procedures to be developed in a
given directory with the @/LB:module or .CHAIN
/LB:module commands. When the procedures are then
placed in a library, no source changes are required.

Example
The command file P ARAM.CMD contains parameter def­
initions for the .SETN directive and the command file
SYSPRC.CMD contains system-specific procedures. The fol­
lowing command lines create the command library and enter
the command files into it:
• LIBRARY/CREATE/UNIVERSAL:CMD SYSTART.CLB
• LIBRARY/INSERT SYSTART.CLB PARAM,SYSPRC

You can then use the following command lines to reference
the command library modules:
• OSYSTART/LB:PARAM !Define global symbols
• OSYSTART/LB:SYSPRC !Run init procedure

If you have the Advanced Programmer's Kit, DIGITAL
supplies a library of command procedures on the system
disk. The library is LB:[l,2]INDSYS.CLB and it contains the
following procedures:
INDCFG Displays the current build parameters for the

running Indirect task

The Indirect Command Processor 9-41

Switch

I[NO]LO

I[NO]DE

Function

INDDMP Dumps to the terminal the contents of the Indirect
symbol table

INDPRF A sample procedure to fully parse file-name strings

INDSFN Returns system-configuration information

INDVFY Displays the values of all of the special symbols

QIOERR Returns a string expansion of the <FILERR>
error codes

.INDEX Displays an index of the procedures in the library
The following command line shows the format for invoking
a command procedure in the library:

@LB:[l,2]INDSYS/LB:procedurename

Before you attempt to access a command procedure, make
sure that INDSYS.CLB is in LB:[l,2]. If it is not in this
directory, your system manager must copy the library from
the Advanced Programmer's Kit.

Indicates that when a new command file is executing, it
can have access to the local symbols created by its calling
command file and that any local symbols created by the new
command file will be defined as local symbols for the calling
command file. The default is INOLO.

Indicates that the indirect command file is to be deleted when
its processing is complete unless a logical end-of-file (I) or
.STOP directive is encountered before the end of the file. The
default is INODE.

You may use any combination of the switches in the following command
line:

Gfilespec/switch(es)

or in the following directive statement:

.CHAIN filespec/switch(es).

Except for ILB and ILO, the switches you specify in the command line
that initiates Indirect processing are used as defaults when executing those
commands.

9-42 The Indirect Command Processor

9.6 Description of Indirect Directives
Directives must be separated from their arguments and from DCL-specific
commands by at least one space. Unless you are using the .IF directive,
only one directive per command line is allowed.

You can insert any number of blanks and horizontal tabs in three places
in a command line:

1. At the start of the command line

2. Immediately following the colon (:) of a label

3. At the end of the command line

This allows you to format the command files for readability. The
recommended procedure is to begin labels in the first column and
everything else in the ninth column (after one horizontal tab).

An important exception is the lines processed between .ENABLE and
.DISABLE DATA directives; no blanks or tabs are removed from these
lines. For example:

.IFT Z .GOTO 10

.10: .OPEN DATFIL
.DATA XXIXX

.ENABLE DATA
This is data
that goes into
the data file .
. DISABLE DATA

.GOTO 20

Note that the .DISABLE DATA statement must begin in the first column or
Indirect will place it in the data file. You can also use the .CLOSE directive
in place of .DISABLE DATA. It too must begin in the first column.

The Indirect Command Processor 9-43

9.6. 1 Denne a Label (.Iabel)
Labels always appear at the beginning of the line. They may be on a
line with additional directives and/or a DCL command, on a line with a
comment, or on a line by themselves. When control passes to a line with
a label, the line is processed from the first character after the colon.

Commands do not have to be separated from the label by a space. Only
one label is permitted per line. Labels are one through six characters in
length and must be preceded by a period and terminated with a colon. A
label may contain only alphanumeric characters and/or dollar signs ($).

It is also possible to define a label as a direct-access label; once the label is
found, its position in the command file is saved. This allows subsequent
jumps to frequently called labels or subroutines to be effected quickly. The
first statement processed after a jump to a direct-access label is the one on
the next line.

If you define more than the maximum number of labels allowed, the
subsequent direct-access labels replace the earliest, and so on. The smaller
the number of direct-access labels, the larger the amount of free space in
the symbol table.

If you have a large command file that branches from a line to a label
before that line, using direct-access labels can result in a substantial saving
of processing time. Normally, Indirect searches for the label in every
line below the one where the branch occurred. If the label is not found,
Indirect wraps around to the top of the file to continue the search. With
direct-access labels, however, Indi~ect can go immediately to the label.

To declare a label for direct access, leave the line following the colon
blank.

Example

.100: .ASK A Do you want to continue

.IFT A .GOSUB 200

.200:

. ; THIS IS THE START OF A SUBROUTINE

. RETURN

9-44 The Indirect Command Processor

In this example, .200: is a direct-access label while .100: is not.

The target label of a .GOTO branch from within a Begin-End block must
be contained in that block because the .GOTO directive cannot branch
into another block. The target label of a .ONERR directive must also be
contained on the same Begin-End level. The target label of a .GOSUB call
from within a Begin-End block, however, can be outside the current block
because program control returns to the block from which the .GOSUB call
was made. For more information, see the descriptions of the .BEGIN,
.GOSUB, .GOTO, and .ONERR directives (Sections 9.6.5, 9.6.16, 9.6.17,
and 9.6.21, respectively.)

9.6.2 Ask a Question and Walt for a Reply (.ASK)

The .ASK directive diplays a question on the terminal, waits for a reply,
and sets a specified logical symbol to the value of true or false, depending
on the reply. If the symbol has not already been defined, Indirect makes an
entry in the symbol table. If the symbol has been defined, Indirect resets
its value (true or false) in accordance with the reply. Indirect exits with
a fatal error if the symbol was previously defined as a string or numeric
symbol.

Formats (brackets are required syntax)
.ASK ssssss txt-stmg
.ASK [default:timeout] ssssss txt-stmg
.ASK [:timeout] ssssss txt-stmg

Parameters
ssssss

The 1- through 6-character symbol to be assigned a true or false value.

txt-strng
The question or prompt that Indirect displays.

default
The default response; used if the question is answered with an empty
line (null) or if time-out occurs. The default can be <TRUE> or
<FALSE> or another logical variable.

The Indirect Command Processor 9-45

timeout
The time-out count. Indirect waits this long for a response, then
applies the default answer. The format for time-out is nnu, where
nn is the decimal number of time units to wait and u is T (ticks), S
(seconds), M (minutes), or H (hours). The time-out count is valid only
if time-out mode is enabled (.ENABLE TIMEOUT; see Section 9.6.12).

The entire .ASK statement must fit on one command line.

Note that if you omit the default value but specify a timeout count, the
colon is required for positional identification.

When executing a .ASK directive, Indirect displays (unless .DISABLE
DISPLA Y is in effect) txt-strng prefixed by an asterisk (.) and suffixed
with N?[y IN):". Indirect recognizes five answers:
Y [Eill Set symbol ssssss to true.

CTRL/Z

Example

Set symbol ssssss to false.

Set symbol to false or to user-specified default value. The
IRETI symbol indicates the RETURN key.

Set symbol ssssss to true and set the special logical
symbol < ESCAPE> to true only if escape recognition
has been enabled. The IEscl symbol indicates the ESCAPE or
AL TMODE key.

If Control-Z mode is enabled, set <EOF> to true and
proceed, else exit immediately.

The directive statement

.ASK PRINT Do you want to print the file

displays

• * Do you want to print the file? [YIN]:

on the terminal. Symbol PRINT will be set to true or false after you
type Y, N, the RETURN key, or the ESCAPE key (if escape recognition is
enabled).

9-46 The Indirect Command Processor

9.6.3 Ask for Definition of a Numeric Symbol (.ASKN)

The .ASKN directive displays on the terminal a request for a numeric
value, waits for it to be entered, optionally tests the range for the numeric
response and/or applies a default value, and sets the specified symbol
accordingly. If the symbol has not previously been defined, Indirect makes
an entry in the symbol table. If the symbol has already been defined,
Indirect resets its value in accordance with the reply. Indirect exits with
a fatal error if the symbol was previously defined as a logical or string
symbol.

Formats (brackets are required syntax)
.ASKN ssssss txt-strng
.ASKN [low:high:default:timeout] ssssss txt-stmg

Parameters
ssssss

The 1- through 6-character symbol to be assigned a numeric value.

txt-strng
The question or prompt that Indirect displays.

low:hlgh
A numeric expression or symbol giving the range for the response.

default
A numeric expression or symbol giving the default value.

timeout
The time-out count. Indirect waits this long for a response, then
applies the default answer. The format for time-out is nnu, where
nn is the decimal number of time units to wait and u is T (ticks), S
(seconds), M (minutes), or H (hours). The time-out count is valid only
if time-out mode is enabled (.ENABLE TIMEOUT; see Section 9.6.12).

The entire .ASKN statement must fit on one command line.

Note that if you omit any of the parameters within the square brackets,
any preceding colons are required for positonal identification.

The command line cannot exceed 132(decimal) characters in length. When
executing a .ASKN directive, Indirect displays (unless .DISABLE DISPLAY
is in effect) txt-strng prefixed by an asterisk (•) and suffixed either with [0]:
to indicate that the response will be taken as octal, or with [0]: to indicate

The Indirect Command Processor 9-47

that the response will be taken as decimal. The reply must be a number
either within the specified range or in the range 0 through 177777(octal)
(by default) or 0 "through 65535(decimal).

If the response is outside the specified range, the following message is
displayed:

AT. -- Value not in range

Indirect then repeats the query.

If an arithmetic operation yields a result greater than 177777(octal) when
computing the actual value of any of the arguments low, high, or default,
a fatal error occurs and the following message is displayed:

AT. -- Numeric under- or overflow

If the response is an empty line (null) and a default value (default) was
not specified, Indirect applies a default of O. Note that in this case, the
range, if specified, must include O.

The response may be either octal or decimal; a leading pound sign (#)
forces octal, a trailing period (.) forces decimal. In the absence of either,
Indirect applies a default radix. The default radix is decimal if either the
range or default values are decimal expressions (followed by a period).
Otherwise, the default radix is octal (unless decimal mode has been
enabled). Indirect displays the default type as either [0] or [D].

To force a default decimal radix without specifying a range argument, use
the following construction:

.ASKN [: :0.] A Enter value

or

.ENABLE DECIMAL

.ASKN A Enter value

9-48 The Indirect Command Processor

Examples

The directive statement

.ASKN SYM Define numeric symbol A

displays the following on the terminal:

• * Define numeric symbol A [0]:

In this example, [0] is the default radix (octal).

Indirect then defines symbol SYM according to the reply entered.

In this next example, the directive statement

.ASKN [2:35:16:20S] NUMSYM Define numeric symbol A

displays the following on the terminal:

• * Define numeric symbol A [0 R:2-36 D:16 T:20S]:

The format used in this displayed is as follows:

[x R:low-high D:default T:timeout].

Where:
x

R:low-high

D:default

T:timeout

o if the default radix is octal or D if it is decimal.

The specified range.

The specified default.

The specified time-out count before the default answer is
used.

Indirect then checks whether the response string is in the specified range.

In the last example, the directive statement

.ASKN [NUMSYM+10:46:NUMSYM+10] SYM Define numeric symbol B

displays the following on the terminal (assuming the value of 16(octal) for
NUMSYM):

• * Define numeric symbol B [0 R:26-46 D:26]:

The Indirect Command Processor 9-49

9.6.4 Ask for Definition of a String Symbol (.ASKS)

The .ASKS directive displays on the terminal a request for a string value
to define a specified symbol and optionally tests whether the number of
characters in the response string falls within the specified range. If the
symbol has not previously been defined, Indirect makes an entry in the
symbol table. If the symbol has already been defined, Indirect resets its
value in accordance with the reply. Indirect exits with a fatal error if the
symbol was defined previously as a logical or numeric symbol. If the
number of characters is out of the specified range, the following message
is displayed:

AT. -- String length not in range

Indirect then repeats the query.

Formats (brackets are required syntax)
.ASKS ssssss txt-stmg
.ASKS [low:high:default:timeout] ssssss txt-stmg

Parameters
ssssss

The 1- through 6-character symbol to be assigned a string value.

txt-strng
The question or prompt that Indirect displays.

low:hlgh
A numeric expression giving the range for the number of characters
permitted in the response string.

default
A string expression or symbol giving the default value.

timeout
The time-out count. Indirect waits this long for a response, then applies
the default answer. The format for timeout is nnu, where nn is the
decimal number of time units to wait and u is T (ticks), S (seconds), M
(minutes), or H (hours). The time-out count is valid only if time-out
mode is enabled (.ENABLE TIMEOUT; see Section 9.6.12).

9-50 The Indirect Command Processor

The entire .ASKS statement must fit on one command line.

Note that if you omit any of the parameters within the square brackets,
any preceding colons are required for positional identification.

When executing a .ASKS directive, Indirect displays (unless .DISABLE
DISPLA Y is in effect) txt-strng prefixed by an asterisk (.) and suffixes it
with [S]:. the reply must be an ASCII character string.

Examples

The directive statement

.ASKS NAME Please enter your name

displays the following on the terminal:

• * Please enter your name [S]:

Indirect then defines symbol NAME according to the string reply entered.

In the next example, the directive statement

.ASKS [1:15::10S] MIDNAM Please enter your middle name

displays the following on the terminal:

• * Please enter your middle name [8 R:1-15 T:10S]:

The format used in this displayed is as follows:

[8 R:low-high T:timeout]

Where:
S

R:low-high

T:timeout

The symbol type (string).

The specified range for the number of characters.

The specified timeout count.

9.6.5 Begin Block (.BEGIN)

The .BEGIN directive marks the beginning of a Begin-End block. The
block must be terminated with a .END directive.

Labels and local symbols defined following the .BEGIN directive are local
to the block instead of being used throughout the entire command file.
Therefore, labels and local symbols defined inside a block lose definition
outside the block.

The Indirect Command Processor 9-51

Symbols defined outside a block retain definition throughout the file.
Symbols defined outside a block and then modified within the block,
however, assume and retain the value assigned in the block.

Labels defined outside a block are not accessible by a .GOTO directive from
within the block. They are, however, accessible by a .GOSUB directive
because program control returns to the next line within the block.

Labels and local symbols defined within a block lose definition with an
.ERASE LOCAL directive statement (see Section 9.6.14) or with the .END
directive.

The .BEGIN directive must be the only directive on a command line. For
example, it cannot appear on the same line as an .IF directive.

Format
.BEGIN

9.6.6 Continue Processing Using Another File (.CHAIN)
The .CHAIN directive, which must be the last command in the file, closes
the current file, erases all local symbols, clears any .ONERR arguments,
empties the direct-access label cache, and continues processing using
command lines from another file. The .CHAIN directive does not close
data files, pass parameters, or change the nested file level.

Format (brackets not part of syntax)
.CHAIN filespec[/switch(es)]

Parameters
ftlespec

The specification (including a directory, if desired) of the file that
contains the new command lines. This parameter can also be a logical
name assignment that translates into a valid FCS file specification.

/swltch(es)
Any of the optional switches described in Section 9.5.

9-52 The Indirect Command Processor

Example

. CHAIN OUTPUT

This directive statement transfers control to the file OUTPUT.CMD .

. CHAIN TEMP

This directive statement transfers control to the command file specified by
the logical translation of TEMP.

9.6.7 Close Secondary File (.CLOSE)
The .CLOSE directive closes the secondary file opened by a .OPEN directive
(see Section 9.6.22).

Format (brackets not part of syntax)
.CLOSE [#n]

Parameter
n

An optional file number in the range 0 to x-I, where x is the number
of file-open FDBs specified in the build file for the Indirect task.
(The value x is the maximum number of files that can be open
simultaneously.) The default is #0. You can substitute a numeric
symbol for the value n by enclosing the symbol in apostrophes.

9.6.8 Output Data to Secondary File (.DATA)
The .DATA directive specifies text that is to be output to a secondary file
previously opened by a .OPEN directive.

When Indirect processes the text string that follows the .DATA directive,
it ignores the leading space (if present), assuming it to be a separator
between the directive and the text string. Any other spaces are transferred
to the data file. If a tab follows the directive, it is transferred to the file. If
no other characters follow the directive, a blank line is transferred to the
file. This processing has the following results:

Command File

. D A T A foo/BTI1

. D A T A foo/BTI1

Open File

foo/BTI1

foo/BTI1

The Indirect Command Processor 9-53

Command File

.DAT~fo<@]

.DAT~fo<@]

.DAT~

Open File

ITABI fa<@]

ITABI fo<@]

null line

Note that if a comment follows a .DATA statement (that is, .DATA data
!comment), Indirect also outputs the comment to the secondary file because
it cannot tell if the comment pertains to the .DATA statement itself or to
the data being output to the file.

Format (brackets not part of syntax)
.DATA [#n] txt-stmg

Parameters
n

An optional file number in the range 0 to x-I, where x is the number
of file-open FDBs specified in the build file for the Indirect task.
(The value x is the maximum number of files that can be open
simultaneously.) The default is #0. You can substitute a numeric
symbol for the value n by enclosing the symbol in apostrophes.

txt-strng
The text to be output to the secondary file.

The command line cannot exceed I32(decimal) characters and the specified
text string cannot continue onto the next line. If a secondary file is not
open, an error condition exists; Indirect issues an error message and begins
error processing.

Example

.SETS SEND "This is data"

.OPEN TEMP

.DATA • SEND ,

. CLOSE

These directives output THIS IS DATA to the secondary file TEMP.DAT
(.DAT is the default file type for a data file).

9-54 The Indirect Command Processor

9.6.9 Decrement Numeric Symbol (.DEC)
The .DEC directive decrements a numeric symbol by 1. Indirect exits with
a fatal error if the symbol was defined previously as a logical or string
symbol.

Format
.DEC ssssss

Parameter
ssssss

The 1- through 6-character numeric symbol.

Example

.DEC x
This directive decrements by 1 the value assigned to the numeric symbol
X. If X crosses the zero boundary (goes from positive to negative),
decrementing it will cause an underflow error.

9.6.10 Delay Execution for a Specified Period of Time
(.DELAY)

The .DELA Y directive delays further processing of the file for a specified
period of time.

Format
.DELAY nnu

Parameters
nn

The decimal number of time units to delay.

u

T Ticks

S Seconds

M Minutes

H Hours

The parameter nn is decimal by default, or octal if preceded by a pound

The Indirect Command Processor 9-55

sign (#). For example:
lOS 10(decimal) seconds

#10S 10(octal) seconds

If quiet mode is disabled when the .DElA Y directive is executed, Indirect
issues the following message:

AT. -- Delaying

When the time period expires and the task resumes, Indirect issues this
message:

AT. -- Continuing

Example

.DELAY 20M

This directive statement delays processing for 20(10) minutes.

9.6.11 Disable Option (.DISABLE)

The .DISABlE directive disables a specified operating mode previously
activated by an .ENABlE directive. See Section 9.6.12 for information on
the operating modes.

Format
.DISABlE option[,option ...]

Parameter
option

One or more of the operating modes described in Section 9.6.12.

The following is a list of the operating modes that can be disabled:
ATTACH DELETE GLOBAL SUBSTITUTION

ClI DETACH lOWERCASE TIMEOUT

CONTROl-Z DISPLAY OVERFLOW TRACE

DATA ESCAPE QUIET TRUNCATE

DECIMAL ESCAPE-SEQ

Note that when you disable DETACH mode from a command file and then
request a task or DCl command to display information, the command file
may not be able to continue executing. The task or DCl command may

9-56 The Indirect Command Processor

need to attach to the terminal to display the information, but will not be
able to do so because Indirect cannot detach from the terminal.

9.6.12 Enable Option (.ENABLE)

The .ENABLE directive is used to invoke several operating modes. Each
mode is independent of the others; all of them can be active simultaneously.
When Indirect starts to process the highest-level command fUe, the initial
settings are as follows:
ATTACH enabled (R) ESCAPE-SEQ disabled (R)

CLI enabled (R) GLOBAL enabled (I)

CONTROL-Z disabled (I) LOWERCASE enabled (I)

DATA disabled (I) OVERFLOW disabled (R)

DECIMAL disabled (R) QUIET disabled (R)

DELETE disabled (I) SUBSTITUTION disabled (I)

DETACH enabled (R) TIMEOUT enabled (R)

DISPLAY enabled (R) TRACE disabled (I)

ESCAPE disabled (I) TRUNCATE disabled (R)

However, when Indirect passes control to a lower-level command file by
means of a .CHAIN filename or @filename statement, only the following
modes are reset to their initial (denoted by "I" in the previous list) set­
tings: CONTROL-Z, DATA, DELETE, ESCAPE, GLOBAL, LOWERCASE,
SUBSTITUTION, and TRACE. The remaining operating modes retain (de­
noted by "R" in the previous list) their new settings in the lower-level
file.

In A TT ACH mode, Indirect attaches to a terminal when displaying
comment lines. In DETACH mode, it detaches from the terminal when
processing command lines. Enabling both of these modes allows you to
type CTRL/O to suppress a lengthy comment.

Attach and detach_ modes perform conditional IO.ATT and to IO.DET
terminal-QIO functions, depending on the setting of the ATTACH or
DET ACH attribute bits in an internal flag word that controls the operating
modes. However, disabling the detach mode always attaches the terminal
until a DCL command is issued or a .ENABLE QUIET statement is
encountered (see the following description). Thus, if you want the terminal
to remain detached while quiet mode is in effect, enable both attach and
detach modes at the beginning of your indirect command file or interactive

The Indirect Command Processor 9-57

terminal session. Also, if you are going to toggle in the attach and detach
operating modes during the execution of the command file, follow the
.ENABLEj.DISABLE statement with a .ENABLE QUIET statement.

Enabllng CONTROl-Z mode allows a command file to detect a CTRLjZ
response to a question and continue processing. If Control-Z mode is
disabled and you type CTRLjZ in response to a .ASKx question, Indirect
exits. If Control-Z mode is enabled, the special symbol <EOF> is set to
true and Indirect continues processing the command file.

In DATA mode, Indirect outputs lines that follow a .ENABLE DATA
directive statement to a secondary file. (The .DATA directive sends a
single line of text to a secondary file.) To disable data mode, the .DISABLE
DATA (or .CLOSE) statement must begin in the first column. Otherwise,
Indirect copies the statement itself into the data file. The .ENABLE DATA
directive also has an optional argument (#n) that specifies which file the
data is to go into. See the description of the .DATA directive (Section
9.6.8) for more information.

In GLOBAL symbol mode, symbol names that begin with a dollar sign
($) are defined as global to all levels of indirect files; once such a symbol
has been defined, all levels recognize it. Symbols that do not begin with
a dollar sign are recognized only within the level that defines them.

In DECIMAL mode, all numeric symbols are created or redefined by
default as decimal instead of octal.

In DELETE mode, the current command file is deleted when Indirect
processes the last command line in the file.

In DISPLAY mode, Indirect displays the current fields for the .ASKx
directive and @ <EOF>. If display mode is disabled, Indirect displays
only the text string for the .ASKx directive and suppresses @ <EOF>.

In ClI mode, commands not processed by Indirect are passed to your CLI.
The default CLI for MicrojRSX is DCL. CLI mode is equivalent to the
function of the JCLI switch (see Section 9.5).

In lOWERCASE mode, characters read from the terminal in response to
.ASKS directives are stored in the string symbol without lower- to uppercase
conversion. The representation of characters is significant when comparing
strings (see Section 9.6.18) because the .IF directive distinguishes between
lowercase and uppercase characters.

9-58 The Indirect Command Processor

In SUBSTITUTION mode, Indirect substitutes a string for a symbol. The
symbol must begin and end in apostrophes ('symbol'). For example, if
the symbol A has been assigned the string value THIS IS A TEST, then
every 'A' will be replaced by THIS IS A TEST. When substitution mode
is enabled, Indirect performs substitutions in each line before scanning the
line for directives and DCL commands. (While obeying a .GOTO label
directive, however, Indirect ignores any undefined symbols encountered
before the target line, that is, the line containing the specified label.)

ESCAPE recognition permits the response to a .ASK, .ASKN, or .ASKS
directive to be an escape character. A question answered with a single
escape character sets the special logical symbol <ESCAPE> to true. The
escape character must be used only as an immediate terminator to the
question; if one or more characters precede the escape character, an error
condition exists. In this case, the following message is displayed:

AT. -- Invalid answer or terminator

Indirect then repeats the question. Note that if you press the ESCAPE
key in response to a .ASK directive, the specified logical symbol (ssssss of
.ASK ssssss txt-strng) is also set to true.

ESCAPE-SEQuence processing forces Indirect to attach to the terminal for
escape-sequence recognition, using the 10.ATT!TF.SEQ I/O function. In
this mode, the result of a .ASKx or .READ statement from the terminal
will contain the terminating escape character and escape sequence as
documented in the full-duplex terminal driver chapter of the Micro/RSX
I/O Drivers Reference Manual.

OVERFLOW mode allows signed arithmetic in numeric expressions. When
you enable overflow mode, Indirect evaluates numeric expressions as
signed integers rather than as unsigned integers. Enabling this mode
provides for numeric expressions and operations that otherwise would
result in the NNumeric under- or overflow" error message.

In QUIET mode, Indirect does not echo DCL command lines or comments.
The command lines are executed normally and, if they return a message
or display, the message or display is shown on the terminal.

In TIMEOUT mode, Indirect uses the time-out parameters specified with
the .ASKx directives. Indirect waits for the time-out count to elapse and
then applies the default answer to the directives. Time-out mode must be
enabled (the default) to use the time-out counts for the .ASKx directives.

The Indirect Command Processor 9-59

In TRACE mode, command lines that Indirect has processed are displayed
on the terminal. As each line is processed, it is displayed with its nesting
level and an exclamation point (!). Trace mode is equivalent to the
function of the jTR switch (see Section 9.5).

In TRUNCA TE mode, Indirect ignores any truncation errors on a .READ
directive. A truncation error occurs when a line in a file is too long. If the
full record cannot fit within the I32(decimal)-character limit of the symbol,
the record is truncated.

Formats (brackets not part of syntax)
.ENABLE option[,option ...]
.ENABLE DATA [#n]

Parameters
option

#n

One or more of the operating modes previously described.

An optional file number in the range 0 to x-I, where x is the number
of file-open FOBs specified in the build file for the Indirect task.
(The value x is the maximum number of files that can be open
simultaneously.) The default is #0. You can substitute a numeric
symbol for the value n by enclosing the symbol in apostrophes.

Examples

SUBSTITUTION mode:

.ENABLE SUBSTITUTION

.ASKS FILE Specify next file
PRINT 'FILE'

When the command file is executing, the corresponding lines displayed at
the terminal are:

$ * Specify next file [S]: SOURCES ~
$ PRINT SOURCES

GLOBAL symbol mode:

The following two lines appear in an indirect command file called TESTI:

.ENABLE GLOBAL

.SETS $X "TEST"

9-60 The Indirect Command Processor

A file called TEST2.CMD contains the following lines:

.ENABLE GLOBAL

.ENABLE SUBSTITUTION
ClTESTl
RUN '$X'

DCL displays the following lines when the file TEST2.CMD is run:

$ RUN TEST
$ CI <EOF>

ESCAPE-recognition mode:

;If you want a list of options, type <ESC> .
. ENABLE ESCAPE
.ASKS A Enter option
.IFT <ESCAPE> .GOTO LIST

.LIST: ;Options are: A (ADD), S (SUBTRACT), M (MULTIPLY)
.ASKS A Enter option

If you press the ESCAPE key in response to ENTER OPTION, the lines
displayed at the terminal are:

$;If you want a list of options, type <ESC>.
$ * Enter option [S]: <ESC>
$;Options are: A (ADD), S (SUBTRACT), M (MULTIPLY)
$ * Enter option [S]:

QUIET mode:

.ASK QUIET Do you want command lines suppressed

.IFT QUIET .ENABLE QUIET

.IFF QUIET .DISABLE QUIET
SHOW TASKS/ACTIVE

If the response is affirmative, Indirect displays the active tasks but not the
SHOW TASKS/ACTIVE command. For example:

$ * Do you want command lines suppressed? [Y/N]: Y
DCL
SHOT14
AT.T14

CONTROL-Z mode:

.ENABLE CONTROL-Z

.ASK RESP Do you want to continue

The Indirect Command Processor 9-61

.IFT <EOF> .GOTO CLENUP

.IFF RESP .GOTO CLENUP

If you press CTRL/Z in response to the question, <EOF> is set to true
and Indirect transfers to label CLENUP.

9.6. 13 End Block (.END)

The .END directive marks the end of a Begin-End block. If Indirect
encounters more .END directives than . BEGIN directives, command
processing terminates and the following message is displayed:

AT. -- Illegal nesting

Format
.END

As with .BEGIN, the .END directive must be the only directive on the
command line.

9.6.14 Delete Symbols (.ERASE)

The .ERASE directive deletes all local or global symbol definitions, or a
specific global symbol definition.

When you define a symbol either locally (by defining a symbol value) or
globally (by enabling global symbol mode and preceding the symbol name
with a dollar sign ($», Indirect creates an entry in the symbol table. The
.ERASE directive erases either all local or all global entries, or a specific
global entry, in the table.

Following a .ERASE directive, you can redefine a symbol's value as well
as its type.

Format
.ERASE LOCAL
.ERASE GLOBAL
.ERASE SYMBOL global-symbol

An .ERASE LOCAL directive outside of a Begin-End block erases all local
symbols defined within the current file.

An .ERASE LOCAL directive within a Begin-End block erases only those
local symbols defined within the block.

9-62 The Indirect Command Processor

However, note that the following actions also occur:

1. Local symbols defined within a nested file are erased when that file
exits.

2. Local symbols defined within a Begin-End block are erased by .END.

3. Local symbols defined outside of Begin-End blocks are visible, modifi-
able, and not erasable within a Begin-End block.

Also note that .ERASE LOCAL statement will not work if it is included
in a command file invoked with the ILO (local) switch, a command file
invoked with the at sign (@file), or by a .CHAIN directive with ILO, or
a file called by the .CHAIN directive with ILO. This restriction occurs
because Indirect uses its internal stack for local symbols, nested command
file context, and Begin-End block context storage. When a command file
is invoked with the at sign or is called by .CHAIN with ILO, the context
of the calling command file is placed on the internal stack for later use.
But when Indirect processes the .ERASE LOCAL statement in the invoked
file, it removes this context along with any local symbols defined by the
command files. This behavior causes Indirect to abort with an error when
it later attempts to remove the context of the calling file (or the Begin-End
context, which is also placed on the stack) from the internal stack.

An .ERASE GLOBAL directive, either outside of or within a Begin-End
block, erases all global symbols.

An .ERASE SYMBOL global-symbol directive erases the specified global
symbol. (Individual local symbols are not erasable.)

Examples

.ERASE LOCAL

This directive erases all local symbol definitions used in the indirect
command file .

. ERASE SYMBOL ,SWITC

This directive erases the single global symbol U$SWITC."

The Indirect Command Processor 9-63

9.6.15 Exit Current Command File (.EXIT)

The .EXIT directive terminates processing of the current command file or
Begin-End block and returns control to the previous-level command file or,
if the directive is executed within a block, to the line following the .END
directive. If the directive is encountered at the uppermost indirect nesting
level, Indirect exits and passes control to DCL (see the .sTOP directive,
Section 9.6.33).

The .EXIT directive also allows you to optionally specify a value to copy
into the special symbol <EXSTAT>.

Format (brackets not part of syntax)
.EXIT [value]

Parameter
value

An optional numeric expression to be copied to the special symbol
<EXSTAT> .

Example

The following line appears in an indirect command file called TESTl:

OTEST2

The file TEST2.CMD contains the following line:

. EXIT

When Indirect encounters the .EXIT .directive in TEST2, control returns to
TEST1.CMD.

If the .EXIT directive in TEST2.CMD includes a numeric expression (for
example, .EXIT N2), Indirect evaluates the expression and copies the value
into <EXSTAT>.

9-64 The Indirect Command Processor

9.6. 16 Call a Subroutine (.GOSUB)

The .GOSUB directive saves the current position in an indirect command
file and then branches to a label. The label identifies an entry point to a
subroutine that is terminated by a .RETURN directive.

When you issue a .GOSUB directive from within a Begin-End block,
Indirect saves the current block context and then scans the fiJe for the fi_"St
occurrence of the subroutine label. Note that during the scan, Indirect
ignores any intervening .BEGIN or .END directives. The .RETURN
directive restores previous block context. Thus, the subroutine can be
contained within a Begin-End block.

The maximum nesting depth for subroutine calls depends on the number
specified in the build file for the Indirect task.

Format
.GOSUB label parameters

Parameter
label

The label that designates the first line of a subroutine, but without
the leading period and trailing colon. Any parameters to the right of
the label and to the left of a comment are transferred to the reserved
local symbol COMMAN. The value of COMMAN can then be parsed
with the .PARSE directive (see Section 9.6.25) to obtain formal call
parameters.

Example

.GOSUB EVAL

This directive statement transfers control to the subroutine labeled .EVAL:.

The Indirect Command Processor 9-65

9.6. 17 Branch to a Label (.GOTO)

The .GaTa directive causes a branch from one line in an indirect command
file to another. All commands between the .GaTa directive and the
specified label are ignored. Branches can go forward or backward in the
file.

The target of a .GaTa branch from within a Begin-End block must be
contained in that block. The .GaTa directive cannot branch into another
block. When Indirect encounters a .GaTa directive within a Begin-End
block, it searches for the specified label in that block. Since Indirect only
searches the one Begin-End block, you can use the same label more than
once in a command file.

See Section 9.6.1 for more information on labels and direct-access labels.

Format
.GaTa label

Parameter
label

The name of the label, but without the leading period and trailing
colon.

Example

. GOTO 100

This directive statement transfers control to the line containing the label
.100:.

9.6.18 Logical Test (.IF)

A number of directives make tests. If the result of the test is true,
Indirect processes the remainder of the command line. Logical tests can
be combined into a compound logical test by using the .AND and .aR
directives.

9-66 The Indirect Command Processor

9.6. 18. 1 Test If Symbol Meets Speclfted Condition (.IF)

The .IF directive compares a numeric or string symbol with another
expression of the same type to determine if one of several possible
conditions is true. If the condition is satisfied, Indirect executes the
remainder of the command line.

When comparing a string symbol with a string expression, Indirect
compares the ASCII values of each operand's characters (from left to
right) one by one. An operand is considered greater if the first nonequal
character has a greater value than the corresponding character in the other
operand.

Numeric symbols are compared strictly on the basis of magnitude. If
overflow mode is enabled (see Section 9.6.12), Indirect evaluates numeric
expressions as signed integers rather than as unsigned.

Format
.IF symbol relop expr directive-statement

Parameters
symbol

The 1- through 6-character logical, numeric, or string symbol.

relop
One of the following relational operators:
EQ or == Equal to

NE or <> Not equal to

GE or > == Greater than or equal to

LE or <== Less than or equal to

GT or > Greater than

L T or < Less than

expr
An expression of the same type as symbol.

directive-statement
The Indirect command line to be processed if the condition is satisfied.

The Indirect Command Processor 9-67

Examples

.SETS X "A"

.SETS Y "a"

.IF X LT Y .GOTO 200

The ASCII value of string symbol X is less than the ASCII value of string
symbol Y, which satisfies the less-than condition. Thus, control passes to
the line containing the label .200: .

. SETN N1 2

.SETN N2 7

.IF N1 <= N2 DIR

With the condition satisfied (numeric symbol N1 less than or equal to
numeric symbol N2), the DIRECTORY command is executed .

. SETS S1 "AAb"

.SETS S2 IIAA"

.SETS S3 !lBBBB"

.IF S1)= S2+S3[1:1] .INC A

Because string symbol 51 is greater than or equal to string symbol 52
concatenated with the first character of string symbol 53 (AAb > = AAB),
that condition is satisfied and Indirect increments numeric symbol A.

9.6.18.2 Test if Task is Active or Dormant (.IFACT/.IFNACT)

The .IFACT and .IFNACT directives test whether a task is active (.IFACT)
or dormant (.IFNACT). If the result of the test is true, the remainder of the
command line is processed. If the specified task is not installed, Indirect
assumes the dormant condition.

Formats
.IFACT taskname directive-statement

.IFNACT taskname directive-statement

Parameters
taskname

A 1- through 6-character legal task name.

directive-statement
The Indirect command line to be processed if the condition is satisfied.

9-68 The Indirect Command Processor

Examples

. IFACT REPORT .GOTO 360

.IFNACT REPORT RUN REPORT

9.6.18.3 Test If Symbol Is Defined or Not Defined (.IFDF/IFNDF)

The .IFDF and .IFNDF directives test whether a logical, numeric, or string
symbol has been defined (.IFDF) or not defined (.IFNDF). If the result of
the test is true, the remainder of the command line is processed. These
directives do not test the value of the symbol.

Formats
.IFDF ssssss directive-statement

.IFNDF ssssss directive-statement

Parameters
ssssss

The 1- through 6-character symbol being tested. The symbol can be
local, global, or an Indirect special symbol.

directive-statement
The Indirect command line to be processed if the condition is satisfied.

Examples

.IFDF A .GOTO 100

.IFNDF A .ASK A Do you want to set the time

The Indirect Command Processor 9-69

9.6.18.4 Test If Task Is Installed or Not Instalr8d (.IFINS/.lFNINS)

The .IFINS and .IFNINS directives test whether a task is installed (.IFINS)
or not installed (.IFNINS) in the system. If the result of the test is true,
the remainder of the command line is processed.

Formats
.IFINS taskname directive-statement

.IFNINS taskname directive-statement

Parameters
taskname

A 1- through 6-character task name.

directive-statement
The Indirect command line to be processed if the condition is satisfied.

Examples

.IFINS LPl .GOTO 260

.IFNINS LPl INS $LPl

9.6.18.5 Test If Mode Is Enabled or Disabled
(.lFENABLED/ .IFDISABLED)

The .IFENABLED and .IFDISABLED directives test whether an operating
mode has been enabled with the .ENABLE directive or disabled with
the .DISABLE directive. See the description of the .ENABLE directive in
Section 9.6.12 for the list of operating modes.

Formats
.IFENABLED option directive-statement

.IFDISABLED option directive-statement

9-70 The Indirect Command Processor

Parameters
option

The same operating mode option (with the exception of DATA) used
with the .ENABLE or .DISABLE directive, or one of the following
options:
FULL-DUPLEX The full-duplex terminal driver is present in the

system; default is enabled.

LOCAL The ILO switch was specified in the initial command
line; default is enabled.

POTASK

directive-statement

Parent-offspring tasking support is included in the
current system; default is enabled.

The Indirect command line to be processed if the condition is satisfied.

Examples

.IFENABLED CLI .GOTO SHOW

.IFDISABLED DECIMAL .ENABLE DECIMAL

9.6.18.6 Test If Driver Is Loaded or Not Loaded (.lFLOA/.lFNLOA)

The .IFLOA and .IFNLOA directives test whether a driver is loaded
(.IFLOA) or not loaded (.IFNLOA) in the system. If the result of the
test is true, the remainder of the command line is processed. Note that
for the purposes of these directives, resident drivers are assumed to be
loaded.

Formats
.IFLOA dd: directive-statement

.IFNLOA dd: directive-statement

Parameters
dd:

A device driver

directive-statement
The Indirect command line to be processed if the condition is satisfied.

The Indirect Command Processor 9-71

Examples

.IFLOA DU: .GOTO 250

.IFNLOA DU: LOA DU:

9.6.18.7 Test If 5ymbolls True or False (.IFT/.IFF)

The .1FT and .IFF directives test whether a logical symbol is true (.1FT) or
false (.IFF). If the result of the test is true, Indirect processes the remainder
of the command line.

Indirect exits with a fatal error if the symbol being tested was previously
defined as a numeric or string symbol.

Formats
.1FT ssssss directive-statement

.IFF ssssss directive-statement

Parameters
ssssss

The 1- through 6-character logical symbol being tested.

directive-statement
The Indirect command line to be processed if the condition is satisfied.

Examples

.IFT A . GOT a 100

.IFF B .GOTO 200

9-72 The Indirect Command Processor

9.6. 18.8 Compound Tests

You can combine .IF tests by using the .AND and .OR directives. In
addition, an implied .AND is effected when more than one .IF appears on
the same line without being separated by an .AND directive.

The .AND directive takes precedence over the .OR directive as shown in
the following example:

.IFT A .OR .IFT B .AND .IFT C .GOTO D

That is, Indirect reads the line as:

.IFT A .OR (.IFT B .AND .IFT C) .GOTO D

Examples

.IFT A .AND .IFF B .GOTO HELP

If the logical symbol A is true and the logical symbol B is false, control
passes to the line containing the label .HELP: .

. IFT A .IFF B .GOTO HELP

This has the same effect as the previous directive (.AND implied) .

. IFT A .OR .IFF B RUN WAY

If the logical symbol A is true or if the logical symbol B is false, the RUN
command is issued.

9.6.19 Increment Numeric Symbol (.INC)

The .INC directive increments a numeric symbol by 1. Indirect exits with
a fatal error if the symbol was previously defined as a logical or string
symbol.

Format
.INC ssssss

Parameter
555555

The 1- through 6-character numeric symbol being incremented.

The Indirect Command Processor 9-73

Example

.INC B

This increments by 1 the value assigned to the numeric symbol B. If B
crosses the zero boundary (goes from negative to positive), incrementing
it will cause an overflow error.

9.6.20 Define Logical End-of-Flle (/)

The logical end-of-file directive (/) terminates file processing at all levels,
closes all open data files, and exits. Indirect then displays (if display mode
has not been disabled) the following message:

• CI <EOF>

Format

/
The directive is the first nonblank character of the line.

You can use this directive at any location in the command file to quickly
terminate file processing, but care should be taken to avoid an inadvertent
exit.

Example

.100:

.ASK CaNT Do you wish to continue
.IFT CaNT .GOTO 100
/

9.6.21 Branch to Label on Detecting an Error (.ONERR)

If Indirect detects one of the following errors:

• Task not installed in system (.XQT, .WAIT)

• Undefined symbol

• Bad syntax (.XQT, .WAIT, .DELAY)

• Unrecognized command

• String substitution error

• Symbol type error (.IF, .1FT, .IFF, .INC, .DEC)

9-74 The Indirect Command Processor

• Redefinition of a symbol to a different type (.ASK, .ASKN, .ASKS,
.SETT, .SETF, .SETL, .SETN, .SETD, .SETO, SETS)

• Data file error (.OPEN, .OPENA, .OPENR, .DATA, .CLOSE, or .READ
between .ENABLE DATA and .DISABLE DATA)

control passes to the line containing the specified label. This feature
provides you with a means of gaining control to terminate command file
processing in an orderly manner.

Note that the .ONERR directive applies only to the error conditions listed;
errors returned from a task external to Indirect (for example, a DCL syntax
error) are not processed by the .ONERR directive.

Format
.ONERR [label]

Parameter
label

The name of the label, but without the leading period and trailing
colon. The brackets are not part of the required syntax.

Upon detecting an error, Indirect passes control to the line starting with
.label:. The .ONERR directive must be issued before Indirect encounters
the error condition. If the directive is executed (one of the listed errors
is encountered), error processing passes to the specified label. If the label
specified by the .ONERR directive does not exist and an error condition
has occurred, command processing terminates.

If you do not specify the optional label, Indirect disables processing for
the previous .ONERR directive.

If you want to have .ONERR processing and Begin-End blocks in a program,
the label you specify must be located on the same block level as the
.ONERR directive. When Indirect detects an error, it passes control to
the most recently defined .ONERR label in the current block level or in a
previous, lower block level.

Once a .ONERR condition has occurred, another .ONERR directive must
be issued to trap a future error.

The .ONERR directive works with the special symbol <ERRCTL> (see
Section 9.4.1.2). For each class of error that a .ONERR target routine
processes, the appropriate bit is set in the symbol. The initial default
value for <ERRCTL> is 1, which implies that only class 1 errors can
be handled with a .ONERR routine. (Note that if you attempt to process

The Indirect Command Processor 9-75

errors other than default class 1, Indirect cannot continue in most cases.
The error service routine is limited to a fatal error message and .EXIT. The
internal state of Indirect is indeterminate in all but class 1 error cases.)
After Indirect has processed the .ONERR directive, <ERRCTL> is reset
to 1. See Section 9.8 for a list of error messages and their assigned class
values.

Example

.ONEM 100

Upon detecting one of the error conditions, Indirect passes control to the
line labeled .100:.

9.6.22 Open Secondary File (.OPEN)

The .OPEN directive opens a specified secondary file as an output file.
The .DATA directive is used to place data in this secondary file.

Format (brackets not part of syntax)
.OPEN [#n] filespec

Parameters
#n

An optional file number in the range 0 to x-I, where x is the number
of file-open FOBs specified in the build file for the Indirect task.
(The value x is the maximum number of files that can be open
simultaneously.) The default is #0. You can substitute a numeric
symbol for the value n by enclosing the symbol in apostrophes.

nlespec
A file to be opened as an output file. The default file type is .DAT.

Indirect sets the owner UIC of the file being opened to be the current
protection UIC of the user. All FCS protection and privilege checks
are still in effect.

For nonprivileged users, the protection UIC is always the same as their
login UIC. If you are not in named directory mode, you can change
only your default UIC with the SET UIC or SET DEFAULT command.
If you are in named directory mode, the SET UIC command is illegal
and SET DEFAULT changes only your default UIC.

9-76 The Indirect Command Processor

For privileged users, the protection UIC can change. If you are not
in named directory mode, you can use SET UIC and SET DEFAULT
to change both your protection UIC and your default UIC. If you
are in named dirctory mode, the SET UIC command changes only
your protection UIC. Your default UIC remains the same. The SET
DEFAULT command changes only your default UIC. Your protection
UIC remains the same.

For more information on the SET UIC and SET DEFAULT commands,
see Volume 2, Chapter 12.

The parameter filespec can also be a logical name assignment that
translates into a valid FCS file specification.

You cannot specify a fixed-length record file with the .OPEN directive.
If you do, Indirect changes the attribute of the file from fixed-length
to variable-length when it closes the file.

Note that you cannot include a comment that begins with a semicolon
(;comment) in an .OPEN statement. Doing so results in a syntax error.
Comments that begin with an exclamation point (!comment) are accepted.

Examples

.OPEN SECOUT

This directive opens the file SECOUT.DAT as an output file .

. OPEN TEMP

This directive opens the file specified by the logical translation of TEMP.

The command file HIHO.CMD contains the following directive statement:

.OPEN GRUMPY

When the following command lines are executed:

• ASSIGN DU2: [DWARVES] GRUMPY. OAT GRUMPY !Bill
• ClHIHO!Bill

Indirect opens the file DU2:[DWARVES]GRUMPY.DAT.

9.6.23 Open Secondary File for Append (.OPENA)

The .OPENA directive opens a secondary file and appends all subsequent
data to the file.

Format (brackets not part of syntax)
.OPENA [#n] filespec

The Indirect Command Processor 9-77

Parameters
n

An optional file number in the range 0 to x-I, where x is the number
of file-open FOBs specified in the build file for the Indirect task. (The
value x is the maximum number of files that can be open for append
simultaneously.) The default is O. You can substitute a numeric symbol
for the value n by enclosing the symbol in apostrophes.

filespec
A secondary file to be opened with subsequent data appended to it.
The default file type is .DAT.

Indirect sets the owner UIC of the file being opened to the current
protection UIC of the user. See the description of the .OPEN directive
for more information.

The parameter filespec can also be a logical name assignment that
translates into a valid FCS file specification.

You cannot specify a fixed-length record file with the .OPENA directive.
If you do, Indirect changes the attribute of the file from fixed-length
to variable-length record when it closes the file.

Note that you cannot include a comment that begins with a semicolon
(;comment) in an .OPENA statement. Doing so results in a syntax error.
Comments that begin with an exclamation point (!comment) are accepted.

If the specified file does not already exist, .OPENA becomes the .OPEN
directive by default.

Examples

.OPENA SECOUT

This directive opens the file SECOUT.DAT as an output file and appends
subsequent data to it .

. OPENA TEMP

This directive opens the file specified by the logical translation of TEMP
as an output file and appends subsequent data to it.

The command file BEAUTY.CMD contains the following directive state­
ment:

.OPENA BEAST

9-78 The Indirect Command Processor

When the following command lines are executed:

• ASSIGN OU2: [TALES]BEAST.OAT BEAST @[D
• CBEAUTY @[D

Indirect opens the file DV2:[TALES]BEAST.DAT and appends subsequent
data to it.

9.6.24 Open File for Reading (.OPENR)
The .OPENR directive opens a file for reading with the .READ directive.

Format (brackets not part of syntax)
.OPENR [#n] filespec

Parameters
n

An optional file number in the range 0 to x-I, where x is the number
of file-open FDBs specified in the build file for the Indirect task. (The
value x is the maximum number of files that can be open for reading
simultaneously.) The default is #0. You can substitute a numeric
symbol for the value n by enclosing the symbol in apostrophes.

filespec
A file to be opened for reading. The default file type is .DAT. Indirect
sets the owner VIC of the file being opened to the current protection
VIC of the user. See the description of the .OPEN directive for more
information.

The parameter filespec can also be a logical name assignment that
translates into a valid FCS file specification.

You cannot specify a fixed-length record file with the .OPENR directive.
If you do, Indirect changes the attribute of the file from fixed-length
to variable-length record when it closes the file.

Note that you cannot include a comment that begins with a semicolon
(;comment) in a .OPENR statement. Doing so results in a syntax error.
Comments that begin with an exclamation point (!comment) are accepted.

The Indirect Command Processor 9-79

Examples

.OPENR INDADD

This directive opens the file INDADD.DAT for reading with the .READ
directive .

. OPENR DATLIB.ULB/LB:DATINP

This directive opens for reading the library module DATINP that is
contained in the univeral library DA TLIB .

. OPENR TEMP

This directive opens for reading the file specified by the logical translation
of TEMP.

The command file HANSEL.CMD contains the following directive state­
ment:

.OPENR GRETEL

When the following command lines are executed:

,ASSIGN DU2: [WITCH]GRETEL.DAT GRETEL ~
,ClHANSEL ~

Indirect opens the file DU2:[WITCH]GRETEL.DAT for reading.

9.6.25 Parse Strings Into Substrings (.PARSE)

The .P ARSE directive parses strings in a command line into substrings.

Format
.PARSE < STRING> < CONTROLSTRING> < VAll> < VAR2> ... < VARN>

The string is broken up into substrings as specified by the control string.
The substrings are stored in the specified variables. The first character of
the control string delimits the first substring, the second character of the
control string delimits the second substring, and so on. The last character
of the control string is repeated if the number of variables exceeds the
length of the control string. If you specify more variables than substrings,
the additional variables are set to null strings. If you specify fewer variables
than the number of substrings that can be parsed, the last variable contains
the unparsed fragment of < STRING>. If the last character of < STRING>

is a delimiter (for example, a comma (,) or a right angle bracket (> »,
Indirect assumes that there is a null substring after it. If you do not

9-80 The Indirect Command Processor

specify a symbol for this substring for this substring to be parsed into, the
delimiter and the substring are parsed into the last symbol specified.

The symbol <STRLEN> contains the actual number of substrings that
Indirect processed (including explicit null substrings).

Examples

A command file, PARSE.CMD, contains the following command lines:

.ENABLE SUBSTITUTION

.PARSE CONNAN" ." FILE Al A2 A3 A4 A6
;FILE == 'FILE'
;Al == 'Al'
;A2 == 'A2'
;A3 == 'A3'
;A4 == 'A4'
;A6 == 'A6'
;<STRLEN> • '<STRLEN>,

The command file is invoked with the following command line:

• ClP ARSE ARG 1 . ARG2 .. ARG3 [@]

When the file is executed, COMMAN contains NPARSE ARGl,
ARG2"ARG3" and Indirect displays the following information:

• ;FILE == PARSE
• ;Al == ARGl
• ;A2 == ARG2
• ;A3 ==
• ;A4 .. ARG3
• ;A6 ==
• ;<STRLEN> == 6

The following example is from an interactive terminal session:

• ClTI: [@]
AT.>.ENABLE SUBSTITUTION [@]
AT.>.SETS A "1" . [@]
AT. >. PARSE A "." B C [@]
AT.>; 'B' [@]

• ;1 AT.>; 'C' [@] · ; AT.>.PARSE A .. ," B [@]
AT.>; 'B' [@]

• ; 1. AT.~
• CI <EOF> •

(null substring)

The Indirect Command Processor 9-81

In this example, the first time string A is parsed, there are enough variables
to contain the substring 1 and the implied null substring following it. The
second time A is parsed, however, there are not enough variables to
contain the substring, so the entire string (1,) is parsed into the specified
variable.

9.6.26 Pause for Operator Action (.PAUSE)

The .P AUSE directive interrupts processing of an indirect command file to
wait for user action. A .P AUSE directive causes Indirect to stop itself, after
which you can perform some operations and subsequently cause the task
to resume.

Format
.PAUSE

When Indirect stops itself, it displays the following message on the entering
terminal:

AT. -- Pausing, To continue type "command taskname"

Where:
command

The command line to be issued to resume the task.

taskname
The name of the Indirect task.

You then type the appropriate command line to resume the task. Indirect
displays the following message:

AT. -- Continuing

and continues processing where it left off.

Note that the .PAUSE directive is legal only if the command line interpreter
for your terminal is DCL.

9-82 The Indirect Command Processor

9.6.27 Read Next Record (.READ)
The .READ directive reads the next record into a specified string variable.
The entire record is read into the variable. If the record is longer than
132(decimal) characters, an error occurs.

After every .READ operation, the special symbol <FILERR> contains
the FCS-ll file code for the read and the special symbol <EOF> reflects
whether an end-of-file was found. (Note that .OPENR does not clear
<EOF>.) If an error or end-of-file occurs, the string variable remains

unchanged from its previous state.

Format (brackets not part of syntax)
.READ [#n] ssssss

Parameters
n

An optional file number that specifies the file from which the record
is to be read. The file number must be one of the numbers used in a
previous .OPENR statement.

ssssss
The string variable into which the record will be read.

Example

.LOOP:

. ERROR:

.DONE:

.ENABLE SUBSTITUTION

.OPENR FILE

.IF <FILERR> NE 1 .GOTO ERROR

. READ RECORD

.IFT <EOF> .GOTO DONE

.IF <FILERR> NE 1 .GOTO ERROR
; 'RECORD'
.GOTO LOOP

. CLOSE

These directives open the file FILE.DAT for reading, read each record into
the string variable RECORD, display each record on the terminal, and
close the file.

The Indirect Command Processor 9-83

9.6.28 Return from a Subroutine (.REIURN)
The .RETURN directive signifies the end of a subroutine and returns control
to the line immediately following the .GOSUB directive that initiated the
subroutine.

Format
.RETURN

9.6.29 Set Symbol to lrue or False (.SEII/.SEIF/.SEIl)
The .SETT, .SETF, and .SETL directives define or change the value of a
specified logical symbol. If the symbol has not been defined, Indirect
makes an entry in the symbol table and sets the logical symbol to the
value specified. If the symbol has already been defined, Indirect resets the
symbol accordingly. Indirect exits with a fatal error if the logical symbol
was defined previously as a numeric or string symbol.

Formats
.SETT ssssss

.SETF ssssss

.SETL ssssss 111111

Parameters
ssssss

111111

The 1- through 6-character logical symbol to be assigned a true or
false value.

A logical or numeric expreSSion. The symbol ssssss is assigned the
value of 111111 when the logical expression is evaluated.

Examples

.SETT x

This directive sets the logical symbol X to true .

. SETF ABCDE

This directive sets the logical symbol ABCDE to false.

9-84 The Indirect Command Processor

.SETL TEST SWITCHA!SWITCHB

This directive sets the logical symbol TEST to true if SWITCHA or
SWITCHB is true.

9.6.30 Set Symbol to Numeric Value (.SETN)

The .SETN directive defines or changes the value of a specified numeric
symbol. If the symbol has not been defined, Indirect makes an entry in
the symbol table and sets the symbol to the numeric value specified. If the
symbol has already been defined, Indirect resets the symbol accordingly.
Indirect exits with a fatal error if the numeric symbol was previously
defined as a logical or string symbol.

Format
.SETN ssssss numexp

Parameters
ssssss

The 1- through 6-character numeric symbol.

numexp
A numeric expression. (See Section 9.4.2.)

When specifying a numeric value to assign to a symbol, you may combine
a numeric symbol or constant with another numeric symbol or constant to
form a numeric expression. If numeric expressions are used, no embedded
blanks or tabs are permitted. Evaluation is done from left to right unless
parentheses are used to form subexpressions, which are evaluated first.
The radix of an expression is octal if all the operands are octal and decimal
mode has not been enabled; otherwise, the radix is decimal.

Examples

.SETN NUMBER 27

This directive assigns to the numeric symbol NUMBER the value 27(8) .

. SETN A1 3*(A2-5)

This directive assigns the numeric symbol Al the value of symbol A2
minus 5, multiplied by 3.

The Indirect Command Processor 9-85

9.6.31 Set Symbol to Octal or Decimal (.SETO/.SETD)

The .SETO and .SETD directives redefine the radix of a specified numeric
symbol. If the symbol has not been defined, Indirect makes an entry in
the symbol table and sets the symbol to the specified radix with a value
of O. If the symbol has already been defined, Indirect resets the symbol
accordingly. Indirect exits with a fatal error if the symbol was previously
defined as a logical or string symbol.

Formats
.SETO ssssss

.SETD ssssss

Parameter
ssssss

The 1- through 6-character numeric symbol to be assigned an octal or
decimal radix.

Example

.SETN A 10

.SETD A

. SETO A

; Sets symbol A to 10(octal)
; Defines A as a decimal-radix symbol with a value of
; 8(octal) .

; Defines A back to original radix with a value of
; 10(octal).

9.6.32 Set Symbol to String Value (.SETS)

The .SETS directive defines or changes the string value of a specified string
symbol. If the symbol has not been defined, Indirect makes an entry in
the symbol table and sets the symbol to the specified string value. If the
symbol has been defined, Indirect resets the symbol accordingly. Indirect
exits with a fatal error if the symbol was defined previously as a logical or
numeric symbol.

Format
.SETS ssssss strexp

9-86 The Indirect Command Processor

Parameters
555555

The 1- through 6-character string symbol.

strexp
Any string expression. (See Section 9.4.3.)

indirect assigns to the specified symboi the string vaiue represented by
the string expression strexp. If a string constant is used in strexp, the
constant must be enclosed by quotation marks (Uconstant" or pound sign
(#constant#».

You can combine a string symbol, constant, or substring with another
string symbol or substring by the string concatenation operator (+) to form
a string expression.

Examples

.SETS A "ABCDEF"

This directive assigns to string symbol A the string value ABCDEF .

. SETS STR2 "ZZZ"

This directive assigns to string symbol STR2 the value ZZZ .

. SETS S1 '123"456'

This directive assigns to string symbol S1 the value 123"456 .

. SETS X STR2+"ABC"

This directive assigns to string symbol X the value of symbol STR2 plus
ABC (that is, ZZZABC) .

. SETS X STR2+A[1:3]

This directive is equivalent to the previous directive. It assigns to string
symbol X the string value of STR2 plus the first three characters of string
A (that is, ZZZABC).

;SETS MYFILE <UIC>+"MYFILE.TXT"

This directive assigns the string symbol MYFILE the string value of the
current VIC and the string contained within the quotation marks (for
example, if the current VIC is [303,23], MYFILE is assigned the string
value [303,23]MYFILE.TXT).

The Indirect Command Processor 9-87

9.6.33 Terminate Command File Processing (.STOP)

The .STOP directive immediately terminates command file processing at
all levels, closes all open data files, and exits. The following message is
then displayed (unless .DISABLE DISPLAY is in effect):

• G <EOF>

The .STOP directive allows you to optionally set the exit status for Indirect
execution.

Format (brackets not part of syntax)
.STOP [value]

Parameter
value

An optional numeric expression to serve as the exit status for Indirect.
If you do not specify an exit status value, the .STOP directive is
identical to the logical end-of-file directive (/).

Example

.STOP 0

This directive terminates command file processing and sets the exit status
for Indirect to 0 (Warning).

9.6.34 Test Symbol (. TEST)
The . TEST directive has two different functions. It tests a variable and sets
various special symbols accordingly, and it does substring searches and
sets the special symbol <STRLEN> accordingly.

Format 1
.TEST ssssss

Parameter
ssssss

The 1- through 6-character symbol to be tested.

9-88 The Indirect Command Processor

The results of the test are as follows:

• If variable is a string, <SYMTYP> is set to 4 and <STRLEN> con­
tains the length of the string. Also, the special symbols <ALPHAN> ,
<NUMBER>, <RAD50>, and <OCTAL> are set based on a

scan of the characters of variable.

• If variable is numeric, <SYMTYP> is set to 2.

• If variable is octal, <SYMTYP> is set to 2 and <OCTAL> is set
to TRUE.

• If variable is logical, <SYMTYP> is set to O.

Format 2
. TEST string substring

Parameters
string

A string symbol or constant.

substring
A string expression.

In this case, the substring is searched for in the specified string. If the
substring is present, <STRLEN> is set to the position of the starting
character of the substring within the string. If substring is not present,
<STRLEN> is set to O.

If a string constant is used in string or substring, the constant must be
enclosed by quotation marks ("constant") or by pound signs (#constant#).

Examples

If SUM is a string symbol, the directive statement

.TEST SUM

sets <SYMTYP> to 4 and places the number of characters represented
by the symbol SUM into <STRLEN>.

The directive statements

.SETS MAIN "ABCDEF"

.TEST MAIN "C"

set <STRLEN> to 3, the position of C in the string ABCDEF.

The Indirect Command Processor 9-89

The directive statements

.SETS Sl #AB"CDE#

.TEST Sl #D#

set <STRLEN> to 5, the position of 0 in the string AB"CDE.

9.6.35 Test Device (.TESTDEVICE)

The .TESTDEVICE directive allows a command file to acquire information
about any device in the system. The information, including error
indications, is contained in the string symbol <EXSTRI>. Each device
attribute in the string is separated by a comma (which allows processing
by the .PARSE and .TEST directives). The first field of the string is the full
physical name of the device. The next four fields are octal representations
of the device-characteristics words (U.CWI through U.CW4 of the Unit
Control Block). Additional fields contain more information about the
device.

Format
.TESTDEVICE dd[nn]:

Parameter
dd[nn]:

The device about which the command file is requesting information.

The device name can be a logical name assignment that translates into
a valid device specification.

The information stored in <EXSTRI> is in the following form:

ddnn:,xx,xx,xx,xx,atr,atr ... ,atr,

Where:
ddnn:

The physical device name for the device specified in the command
line.

xx,xx,xx,xx
The four device-characteristics words in octal notation. (See the RSX-
11M-PLUS Guide to Writing an I/O Driver for more information.)

9-90 The Indirect Command Processor

atr
One or more of the following device attributes:
NSD "No such device" is configured into this system.

LOD The device driver is loaded.

UNL The device driver is not loaded.

ONL The device is on line.

OFL The device is off line.

MTD The device is a mountable volume and is mounted.

NMT The device is not a mountable volume or is not mounted.

FOR The device is a mountable volume and is mounted foreign.

NFO The device is not a mountable volume or is not mounted foreign.

PUB The device is a public device.

NPU The device is not a public device.

ATT The device is attached to another task.

ATU The device is attached to this copy of Indirect.

NAT The device is not attached.

ALO The device is allocated to another terminal.

ALU The device is allocated to this terminal.

NAL The device is not allocated.

<EXSTRI> contains the value "NSD," (no such device) if the device is
not present in the current system configuration.

<EXSTRI> contains the comma delimiters along with the device infor­
mation so that the device information can be extracted from <EXSTRI>
with the .P ARSE directive.

The Indirect Command Processor 9-91

Examples

.TESTDEVICE SY:

This directive statement acquires information about user logical device SY:
and stores it in <EXSTRI> .

. TESTDEVICE TEMP

This directive acquires information about the device specified by the logical
translation of TEMP.

The command file PROCESS.CMD contains the following directive state­
ment:

.TESTDEVICE DATA'DISK

When the following command lines are executed:

, ASSIGN DU2: DATA$DISK @[D
, ~PROCESS @[D

Indirect acquires information about the device DU2:.

9.6.36 Test a File (.TESTFILE)

The . TESTFILE directive determines if a specified file exists or it determines
the physical device associated with a logical name (that is, it performs
device translation).

If you specify a file in the command line, the results of a .TESTFILE
operation are contained in the symbols <FILSPC> and <FILERR>.
<FILSPC> contains the file specification (including device, directory, file

name, file type, and version number) and <FILERR> contains the FCS
status code resulting from the search for the file.

If you do not specify a file in the command line, Indirect performs device
translation only.

Formats
.TESTFILE filespec

.TESTFILE 11:

9-92 The Indirect Command Processor

Parameters
nlespec

The file to be tested.

The parameter filespec can be a logical name assignment that translates
into a vaild FCS file specification.

II.
II.

The logical name assigned to be translated to a physical device.

Examples

.TESTFILE MP:IND.MAP

If the file exists, this directive assigns the following values:
<FILERR> 1

< FILSPC > DU1:[lOl,300]IND.MAP;4 (MP: is the logical name
assigned to the physical device DU1:)

If the file does not exist, the directive assigns the following values:
<FILERR> 346 (230(decimal»

< FILSPC > DU1:[lOl,300]IND.MAP;O

The following directive translates the logical name TI: into its physical
device name:

.TESTFILE TI:

The directive assigns the symbol values as follows:
< FILERR > 1

< FILSPC > TT23:.DAT;O

.TESTFILE TEMP

This directive assigns the symbol values as follows:
<FILERR> 1

< FILSPC > file specified by the logical translation of TEMP

The command file SWAN.CMD contains the following directive statement:

.TESTFILE EGG

.TESTFILE SYS$TALES

The Indirect Command Processor 9-93

When the following command lines are executed:

S ASSIGN DU2: [UGLY]DUCKLING.DAT SYS$TALES @[D
$ ASSIGN TALES.CMD EGG @[D
$ ClSWAN @[D

Indirect tests the file DU2:[UGLY]DUCKLING.DAT and then for the file
TALES.CMD.

9.6.37 Test a Partition (.TESTPARTITION)

The .TESTPARTITION directive allows a command file to acquire infor­
mation about a partition in the system. The partition can be the one in
which Indirect is running or any other partition. You can use the directive
to verify that a partition is large enough before installing a task in it or that
the partition is present before loading a special system. Indirect returns the
information (in the special symbol <EXSTRI» in the following format:

partitionname,base,size, type,

where base and size are in 64-byte blocks and type is SYS for system­
controlled partitions, USR for user-controlled partitions, or NSP for an
unknown partition name. If the partition is not found, Indirect returns a
uNo such partition" error in the form:

partitionname",NSP,

Format
. TESTP ARTITION partition name

Parameter
partition-name

A 1- through 6-character legal partition name. If you use the wildcard
(.) instead of a partition name, Indirect assumes you are testing the
same partition in which the current version of Indirect is executing.

Example

.TESTPARTITION GEN
;GEN.1500.2303.SYS.

This directive acquires information about the partition named GEN. The
partition has a starting address of 150000(octal), it is 230300(octal) bytes
long, and it is a system-controlled partition.

9-94 The Indirect Command Processor

9.6.38 Translate a Logical Name Assignment (.TRANSLATE)

The . TRANSLATE directive allows a command file to expand a local or
global logical name assignment. The expanded assignment is contained in
the string < EXSTRI > .

Format
. TRANSLATE logical

Parameter
logical

The logical name assignment to be expanded.

<EXSTRI> contains the original string if no assignment exists for the
specified logical name.

For more information on logical names, especially logical names containing
colons, see the description of the ASSIGN and DEFINE command in the
Micro/RSX Guide to Advanced Programming, which is available separately
or as part of the Advanced Programmer's Kit.

Examples

.TRANSLATE TEMP

where TEMP is assigned the string DUO:[USER]LOGIN.CMD.

This directive assigns to the symbol <EXSTRI> the value DUO:[USER]LOGIN.CMD .

. TRANSLATE SYS'LOGIN

where SYS$LOGIN is assigned the string DU2:[MYDIR].

This directive assigns to the symbol <EXSTRI> the value DU2:[MYDIR].

9.6.39 Walt for a Task to Finish Execution (.WAIT)

The . WAIT directive suspends processing of an indirect command file until
a particular task has terminated.

Format
. WAIT taskname

The Indirect Command Processor 9-95

Parameter
taskname

A 1- through 6-character legal task name.

If the task name is omitted, Indirect assumes the task name applied by the
last HRUN task" command. This name is specified as

TTnn

Where:
n

The invoking terminal.

nn
The terminal number.

The .WAIT directive also sets the symbol <EXSTAT> with the exit status
of the completed task.

If the specified (or default) task is not installed, Indirect ignores the . WAIT
directive. The .WAIT directive performs no function if the INOCLI switch
is in effect.

Example

.WAIT RUN

This directive discontinues processing of the command file until the
terminal-initiated task RUN exits.

9.6.40 Initiate Parallel Task Execution (.XQT)
Indirect usually passes a command to DCL and waits until the command's
execution has completed. However, it is possible for Indirect to initiate a
task and not wait for it to complete before executing the next directive.
The .XQT directive allows you to start a task, to pass a command line to
it, and to continue processing in parallel with the initiated task. (In DCL,
you can also use the RUN ICOMMAND:Hcommand-line" command to
pass command lines to another task.) The maximum number of successive
.XQT directives allowed depends on the parameter specified in the build
file for the Indirect task.

Format
.XQT taskname command-line

9-96 The Indirect Command Processor

Parameters
taskname

The name of the task (for example, RUN).

command-line
The command line to be executed.

The .XQT directive allows you to initiate paraiiel processing of tasks. The
· WAIT directive is used to synchronize their execution.

The .WAIT directive must also be used to clear out the status block of a
.XQT. If the block is not cleared out, it is never reused, which could possibly
(after enough .XQTs) produce the error message, "'Too many concurrent
.XQTs."

9.7 Examples
The following sections contain examples showing different uses for Indirect.
The longer examples are followed by detailed explanations.

9.7.1 Invoking Indirect Interactively and Displaying
Symbols

• ClTI: ffiIT]
AT.>

Specifying @TI: allows you to work with Indirect interactively. When
Indirect issues the AT.> prompt, you can enter directive statements,
invoke command files, or display the values of special symbols. To
display a symbol, use the .ENABLE SUBSTITUTION directive, and then
request the symbol in the following format:

AT.> ;' <symbol> '

9.7.2 Using an Indirect Command File
A file named PRINTER.CMD contains the following command lines:

.ENABLE SUBSTITUTION
; '<TIME>'
PRINT LISTINGS.MEM
. EXIT

To execute the command file, use the following command line:

• ClPRINTER ffiIT]

The Indirect Command Processor 9-97

9.7.3 Asking for a Device Specification

., This command file asks for a device specification .

. , You may enter the device name with or without a colon

., and the unit number does not have to be entered for

., unit O. The output produced is the proper device name

., with a unit number and a colon .

. ENABLE SUBSTITUTION It

.DISABLE LOWERCASE 4t

.ASKS DEVICE What is the device name? ~

. SETN TEMPN 2 e

.SETS TEMPS":" •

. TEST DEVICE CD

.IF TEMPN EQ <STRLEN> .SETS DEVICE DEVICE+"O" •

. IF TEMPS NE DEVICE[<STRLEN>:<STRLEN>] .SETS DEVICE DEVICE+":" c&

.DISABLE DISPLAY CD
; The full device specification is 'DEVICE'
. ENABLE DISPLAY
. EXIT

e • •
When you execute this command file, Indirect asks for the name of a
device and then displays the complete device specification on the terminal.
For example:

$ ODEVICE [@J
$ * What is the device name? [S:]: dul ~
The full device specification is DU1:

$ 0 <EOF>
$

The following commentary gives a line-by-line explanation of the command
file:

It Substitution mode enabled.

• Lowercase mode disabled, which means that all input characters are
converted to uppercase regardless of how they were typed in.

• Asks for the device name (that is, the mnemonic and unit number)
and assigns it to the string symbol DEVICE.

e Sets numeric symbol TEMPN to the value 2, which is the number of
characters for the device mnemonic.

8) Sets string symbol TEMPS to contain a colon. The colon is a string
constant, so it must be enclosed in quotation marks.

9-98 The Indirect Command Processor

• Tests the symbol DEVICE (which contains the specified device name).
As a result, the following special symbols are set:
<SYMTYP> 4 (because DEVICE is a string symbol)

<STRLEN> the length of the string (the number of characters
typed in response to the question)

• Performs a conditional test. If the value of TEMPN (2) equals the value
of <STRLEN> , set DEVICE to be the current contents of DEVICE
plus O. That is, if <STRLEN> equals 2, that means the user typed
in only the device mnemonic without a unit number. Therefore, the
unit number of the device should be O. DEVICE becomes ddO.

• Performs another conditional test. If the value of TEMPS (:) does not
equal the last character of DEVICE, add a colon to DEVICE (set the
string symbol DEVICE to be equal to DEVICE plus colon; DEVICE
becomes ddn:).

• Display mode disabled, which means that Indirect displays only the
text string for the .ASKS directive and suppresses @ <EOF> upon
exiting.

• Displays this text, with the full device name substituted for 'DEVICE,'
on the terminal.

• Displays mode reenabled, which means that @ <EOF> will be
displayed after all when Indirect exits.

• Exits from the file and Indirect.

9.7.4 Asking for the Type and Unit Number of the Terminal
.ENABLE SUBSTITUTION ..
. ENABLE GLOBAL •
· TESTFILE TI: •
· SETN TYPE <TITYPE> e
· SETN 'TRM TYPE CD
; "TRM' CD
.SETS UNIT <FILSPC>[1:4] tt
· SETS 'TT UNIT fa
; "TT' CD

When you execute this command file, Indirect retrieves the type and unit
number of the terminal from which the file is executing, and displays this
information on the terminal. For example:

The Indirect Command Processor 9-99

• OTERMINAL rn:rn
• ; 16
• ; TT14
• G <EOF> •
The first number in this display, 15, means that the terminal from which
the file is running is a VT100. The second number in the display, 14, is
the unit number for the terminal.

The following commentary gives a line-by-line explanation of the command
file:

• Substitution mode enabled.

• Global symbol mode enabled, which means that symbol names that
begin with a dollar sign ($) are defined as global for all levels of
command files. Once such a symbol has been defined, all levels
recognize it.

• Translates logical name TI: into its physical device name (for example,
TT14:) and puts the name in the special symbol <FILSPC>. The
device name is turned into a file specification, so the contents of
<FILSPC> would be TT14:.DAT;0.

e Sets numeric symbol TYPE to the contents of special symbol
< TITYPE > , which contains the octal code number for the type

of terminal (for example, 15 for a VT100).

• Sets numeric global symbol $TRM to the contents of TYPE.

CD Displays the value of $TRM (the octal code number for the terminal
type) on the terminal.

• Sets string symbol UNIT to the first four characters of < FILSPC >
(for example, TT14; if the unit number is less than 10, Indirect also
displays the colon).

CD Sets string global symbol $TT to the contents of UNIT (TT14).

• Displays the value of $TT (the unit number of the terminal).

9-100 The Indirect Command Processor

9.7.5 Initializing and Mounting a Volume, and Copying
Flies to That Volume

.ENABLE SUBSTITUTION t»
.GETDEV: •

. ASKS DEVICE Enter device (DU1 or DU2) ..

. IF DEVICE EQ "DUO" .GOTO GETDEV tt

.ASKS DIR What directory (include square brackets)? ~
.INIT:

.COPY:

.END:

.ASK INIT Initialize device

.IFF INIT .GOTO COpy
ALLOCATE 'DEVICE':
MOUNT/FOREIGN 'DEVICE'"
.ASKS LABEL What volume label?
INITIALIZE 'DEVICE': 'LABEL'
DISMOUNT/NOUNLOAD'DEVICE':
MOUNT/NOSHAREABLE 'DEVICE': 'LABEL'
CREATE/DIRECTORY 'DEVICE' :'DIR'

.ASKS FILES Enter names of files (file1.file2 •...)
COpy 'FILES' 'DEVICE' :'DIR'
.ASK MORE More files
.IFT MORE .GOTO COPY
.ASK LIST List directory
.IFF LIST .GOTO END
DIRECTORY'DEVICE':'DIR'

DISMOUNT 'DEVICE':
DEALLOCATE 'DEVICE':
. EXIT

CD • • • e • • • • • e • • I)
CD • • I)

• • • •
The following commentary gives a line-by-line explanation of the command
file:

t» Substitution mode enabled.

• Line for .GETDEV: label. It is a direct-access label, so it is the only
element on the command line.

• Asks for the name of the device to which the files will be copied.

e Performs a conditional test. If DEVICE = DUO (an illegal device),
returns to .GETDEV: and asks the question again.

.. Asks for the directory to which the files will be copied.

o Line for the .INIT: label (also a direct-access label).

• Asks if the device should be initialized.

The Indirect Command Processor 9-101

• If the device should not be initialized, proceeds with the copy
operation.

CD Allocates the specified device.

e Mounts the device foreign, which is necessary for initializing a device.

• Asks for the label for the volume.

.. Initializes the volume and gives it the specified label.

• Dismounts the device without spinning it down.

• Remounts the device as a private, Files-1I volume.

• Creates the specified directory on the volume.

e Line for the .COPY: label (also a direct-access label).

• Asks for the specifications of the files to be copied.

• Copies the files to the device.

.. Asks if there are more files to be copied.

e If there are more files, returns to the .COPY: label.

• If there are no more files, asks if you would like a directory of the
copied files.

fa If you do not want a directory, goes to the end of the file (.END:).

• If you do want a directory, displays the names of the copied files on
the terminal.

• Line for the .END: label (also a direct-access label).

fa Dismounts the device.

e Deallocates the device.

• Exits from the file and Indirect.

9-102 The Indirect Command Processor

9.7.6 Editing, Purging, Printing, and Formatting Flies

.100:

.PROC:

.LIST:

.ENABLE QUIET 0

.ENABLE SUBSTITUTION tt

.ASKS FILNAM What is the file name? tt

. ASKS FILTYP What is the file type? •
EDIT 'FILNAM'. 'FILTYP' •
. ASK A Do JOU want to purge this fila? ~
.IFT A PURGE/KEEP:2 'FILNAM'.'FILTYP' tt
SET FILE /TRUNCATE 'FILNAM'. 'FILTYP';* •
. ASK DSR Do you want to invoke DSR? ~
.IFT DSR . GOSUB PROC «8
.ASK B Do you want a listing? GD
.IFF B .GOTO 100 aD
.GOSUB LIST GD
PRINT/FORMS: 'C'/COPIES: 'D' 'FILNAM' .'FILTYP' GO

. EXIT

RNO 'FILNAM'='FILNAM'
.SETS FILTYP "MEN"
.ASK F Do you want to purge the .MEN files?
.IFT F PURGE/KEEP:2 'FILNAM'.MEN
SET FILE /TRUNCATE 'FILNAM' .MEN;*
. RETURN

.ASKN C What form number?

.ASKN [::1.] D How many copies?

. RETURN

• 4&
«I
0& • fib • fa • fa
fa
CD •

The following commentary gives a line-by-line explanation of the command
file:

o Quiet mode enabled, which means that Indirect does not echo (display
on the terminal) DCl command lines or comments. The command
lines are executed normally and, if they return a message or display,
those are shown on the terminal.

• Substitution mode enabled.

• Asks for the name of the file (for example, MYFIlE).

• Asks for the type of the file (for example, CMD).

• Invokes EDT so that you can edit the specified file.

• When you are done with EDT (using the EXIT or QUIT command),
asks if you want to purge the versions of the file.

The Indirect Command Processor 9-103

• If you want to purge the files, DCL does this, keeping the two latest
versions of the file.

.. Truncates the files to free up blocks that are allocated to the files but
not used.

CD Asks if you want to use DIGITAL Standard Runoff (DSR) to format
the file.

• If you do want to use DSR, Indirect goes to the subroutine for file
processing (.PROC:).

• After returning from the processing subroutine, asks if you want a
listing of the file.

CD If you do not want a listing, exits from the file and Indirect.

41) If you do want a listing, goes to the subroutine for listing files (.LIST:).

• After returning from the listing subroutine, prints the specified number
of copies of the file on the designated printer.

• Line for label .100: (a direct-access label).

• Exits from the file and Indirect.

CD Line for .PROC: label (label for the processing subroutine).

• DSR formats the file (which must be a .RNO file) and creates (by
default) a .MEM file.

• Sets string symbol FILTYP equal to type MEM.

e Asks if you want to purge the .MEM files.

• If you do want to purge the files, DCL does this, keeping the two
latest versions of the file.

• Truncates the files to free up blocks that are allocated to the files but
not used.

• Returns to the line after .GOSUB PROC (.ASK B Do you want a listing).

• Line for .LIST: label (label for the listing subroutine).

fa Asks for the form number for the line printer. Sets the numeric symbol
C to this value, which is used in the PRINT command line.

e Asks for the number of copies to be printed (the default is 1). Sets
numeric symbol D to this value, which is also used in the PRINT
command line.

9-104 The Indirect Command Processor

• Returns to the line after .GOSUB LIST (the PRINT command line).

9.8 Indirect Messages
When Indirect encounters an error, it displays the appropriate error message
and the command line in which the error occurred. If the line contained
a substitution, the line as it appeared before the substitution took place is
also displayed. Indirect also closes all open data files before exiting.

Section 9.8.1 explains the information-only messages and Section 9.8.2
explains the error messages. The error messages are divided into classes,
depending on the level of severity. Class 2 errors can be handled with the
<ERRCTL> symbol (see Section 9.4) and class 1 errors can be handled

with the .ONERR directive (see Section 9.6.21). Class 0 errors must be
corrected outside of Indirect.

9.8.1 Information-Only Messages

@ < EOF>

Explanation: (Class 0) Indirect has reached the end-of-file for the
outermost command file and is terminating execution.

AT. -Continuing

Explanation: Indirect is resuming execution after a .P AUSE or .DELAY
directive.

AT.-Delaylng

Explanation: A .DELA Y directive was just executed, halting the pro­
cessing of an indirect command file for a specified period of time.

AT.-Invalld answer or terminator

Explanation: In response to a question from .ASK, you entered
something other than Y, N, or null, followed by a RETURN; or you did
not enter a numeric value in response to an .ASKN question; or you
pressed the ESCAPE key either without escape recognition enabled or
as a character other than the first one following the question. The
question will be repeated.

AT.-Pauslng. To continue type "command taskname"

Explanation: Indirect just executed a .P AUSE directive, interrupting
processing of an indirect command file to wait for user action.

The Indirect Command Processor 9-105

AT.-Value not In range

Explanation: The response to an .ASKN or .ASKS question was not
within the specified range. Indirect repeats the question.

9.8.2 Error Messages

AT.-8ad range or default speclftcatlon

Explanation: (Class 1) An illegal character was specified as a range or
default argument. Only numeric expressions are permitted.

AT-Command ftle open error

Explanation: (Class 2) The file being invoked in an @file or @file
/LB:module command line cannot be found or opened.

AT.-Data ftle error, code x.

Explanation: (Class 1) Indirect encountered an error while processing a
.OPEN, .OPENA, .CLOSE, or .DATA directive, or a data-mode access
to the secondary file. See the description of <FILERR> (Section
9.4.1.2) for a definition of the numeric code x.

AT.-Flle already open

Explanation: (Class 1) An .OPEN or .OPENA directive specified a file
that was already open.

AT.-Flle not found

Explanation: (Class 2) An @filename or .CHAIN directive specified an
incorrect file name or nonexistent file.

AT. -File not open

Explanation: (Class 1) Indirect encountered a .DATA or .CLOSE
directive that did not reference an open file.

AT.-Flle read error

Explanation: (Class 2) An error was detected in reading the indirect
command file. This error is usually caused by records that are more
than 132(decimal) bytes long.

9-106 The Indirect Command Processor

AT.-lIIegal file number

Explanation: (Class 1) The file number in an .OPEN, .OPENA, .OPENR,
•. DATA, .ENABLE DATA, .READ, or .CLOSE directive is not in the
range of 0 through 3.

AT. -Illegal nesting

Explanation: (Class 1) Too many Begin-End blocks have been nested
in the indirect command file. The maximum nesting depth is limited
to the size of the symbol table.

AT. -Initialization error. code x.

Explanation: (Class 0) Indirect failed to complete initialization when
you invoked it. The following list gives the meaning of the displayed
code number:

1. Unable to acquire system information such as the UIC or device
name.

2. Impure area setup failed.

3. Unable to acquire task-specific information.

4. Un~ble to acquire terminal-type information.

5. Unable to acquire the disk name and other information about
the system device (SY:).

6. Unable to allocate enough space for command and data I/O
buffers. For privileged Indirect tasks, Indirect was not installed
with a large enough increment value. The system manager
should remove and reinstall Indirect with a larger increment
or in a larger partition. For the nonprivileged Indirect task,
the EXTEND TASK directive failed to return sufficient space
for Indirect to allocate the buffers.

7. Initialization of allocated buffers failed.

8. Initialization of the DATA file structures failed.

9. Allocation of FCS-ll buffers for data and command lines failed.

10. Symbol table initialization failed.

11. Initialization cleanup failed.

12. Unable to obtain initial command line.

The Indirect Command Processor 9-107

> 12. Error codes greater than 12 are returned by FMS-11 and other
special purpose initialization modules.

Error number 6 is the only initialization error that you should
encounter. If any other error from 1 through 12 persists, submit
a Software Performance Report (SPR) with any other pertinent
information.

AT.-Invalld keyword

Explanation: (Class 1) An unrecognized keyword (preceded by a period)
was specified.

AT. -Label not at beginning of line

Explanation: (Class 1) The specified label does not start in the first
column of the line. All labels must do so.

AT. -Logical name translation error

Explanation: (Class 1) A logical name translation directive error has
occurred. Use the SHOW ASSIGNMENTS command to determine the
status of your logical name assignments.

AT.-Maxlmum Indirect ftle depth exceeded

Explanation: (Class 2) An attempt was made to reference an indirect
command file at a nested depth greater than the maximum specified
in the build file for the Indirect task.

AT .-No pool space

Explanation: (Class 2) The dynamic memory allocation has been
exhausted. Either wait for more pool space to become available or
use the DCL SET SYSTEM/POOL command.

AT.-Null control string

Explanation: (Class 1) The control string specified with the .P ARSE
directive was null (there were no characters between the quotation
marks or pound sign).

9-108 The Indirect Command Processor

AT. -Numeric under- or overftow

Explanation: (Class 2) The evaluation of a numeric expression yielded
a value outside the range 0 through 177777(octal). This means that
the value crossed the zero boundary from positive to negative, or from
negative to positive.

AT.-Redenn!ng a read-only symbol.

Explanation: (Class 2) An attempt was made to assign a new value to
a read-only symbol. Read-only symbols cannot be overwritten.

AT.-Redeftnlng symbol to different type ssssss

Explanation: (Class 1) An .ASK, .ASKN, .ASKS, .READ, .SETT, .SETF,
+.SETL, .SETN, or .SETS directive was in an attempt to set the specified,
already defined symbol to a different type. The. first definition of a
symbol determines its type (logical, numeric, or string); subsequent
value assignments must conform to the original type.

AT.-.RETURN without .GOSUB

Explanation: (Class 1) A .RETURN directive was specified without a
previous call to a subroutine (.GOSUB).

AT.-Spawn failure

Explanation: (Class 1) Indirect could not initiate the execution of a user
command task.

AT.-Strlng expression larger than 132. bytes

Explanation: (Class 2) An attempt was made to generate a string
expression longer than 132(decimal) characters.

AT.-Strlng substitution error

Explanation: (Class 1) Indirect encountered an error during a substitu­
tion operation. A probable cause for the error is either the omission
of a second apostrophe or the specification of a symbol that is not
defined.

AT.-Subroutlne nesting too deep

Explanation: (Class 1) The maximum subroutine nesting level was
exceeded. The maximum level is specified in the build file for the
Indirect task.

The Indirect Command Processor 9-109

AT.-Symbol table overftow ssssss

Explanation: (Class 2) The symbol table was full and there was no
space for symbol ssssss.

AT. -Symbol type error ssssss

Explanation: (Class 1) The symbol ssssss was used out of context for its
type; for example, a numeric expression referenced a logical symbol.
Only symbols of the same type can be compared.

AT. -Syntax error

Explanation: (Class 2) The format of the specified command line is
incorrect.

AT.-Too many concurrent .XQTs

Explanation: (Class 1) More than the maximum number of successive
.XQT directives allowed by the build file for the Indirect task were
issued.

AT.-Undeftned label < .Iabel:>

Explanation: (Class 1) The label <.label:> specified in a .GOTO,
.GOSUB, or *.ONERR directive could not be found.

AT.-Undeftned symbol ssssss

Explanation: (Class 1) The symbol ssssss was referenced, but it had not
been defined.

9-110 The Indirect Command Processor

Chapter 10
Quick Reference

This chapter lists all DCL commands in alphabetical order. Each command
entry includes cross-references to the full command description in Volume
2 or to other Micro/RSX manuals. Each command entry also includes
a general description of the functions of the command, as well as the
full command syntax, sometimes with brief comments preceded by an
exclamation point (!).

These command descriptions are intended for quick reference only. If
you are not familiar with the functions of a particular command, you
should read the main text referenced in this chapter. The comments are
in shorthand form and are meant to serve as reminders only.

Comments include examples of input, value ranges, and cautions.
Privileged commands and qualifiers are flagged. A number of commands
have two qualifiers listed as synonyms. Other qualifiers perform no op­
eration by themselves and are listed in the comments as "no-ops." These
synonyms and no-ops are usually included for compatibility with DCL on
VAX/VMS systems or for clarity and completeness. See the main text for
more information.

For your convenience, some frequently used commands have brief
forms. These short forms are not necessarily compatible with other

Quick Reference 10-1

implementations of DCL and are provided for the convenience of
MicrojRSX users. They are as follows:
A ABORT H HELP

B BROADCAST ? HELP

C COpy LO LOGOUT

0 DIRECTORY L LINK

DEAL DEALLOCATE M MACRO

DEAS DEASSIGN P PRINT

E EDIT R RUN

F FORTRAN S SHOW

ABORT Chapter 15

ABORT forces an orderly end to a running task or to the action of a
specific command. Nonprivileged users can abort any task running on TI:.
Privileged users can abort any task by using the jTERMINAL qualifier.

Formats
ABORT[/COMMAND] [jqualifier[s]] commandname
ABORT jTASK[/ qualifier] taskname

Command Qualifiers
jCOMMAND
j[NO]POSTMORTEM
jTASK
jTERMINAL:ttnn:

ALLOCATE Chapter 12

!Default

!Privileged

ALLOCATE declares a specified device to be a private device. The format
for the logical device name is the same as for other device names: two
characters, an octal unit number, and a colon. If you omit the unit number
and colon, the first available device of that class is allocated.

10-2 Quick Reference

Format
ALLOCA TE[/ qualifier[s]] dd[nn:] [logicalname]

Command Qualifiers
!Privileged /TERMINAL:ttnn:

/TYPE:devicetype !RD51, RX50, RL02, and so on

ANAL YZEiCRASH_DUMP RSX-7 7 M/M-PLUS and Micro/RSX
Crash Dump Analyzer Reference
Manual

The ANALYZE/CRASH-DUMP command helps you determine the cause
of system crashes by analyzing and formatting a memory dump created
by the Executive Crash Dump Module. You must have the Advanced
Programmer's Kit to use this command.

Format
ANAL YZE / CRASH-DUMP[/ qualifier[s]] filespec[/ qualifer[s]]

Command Qualifiers
/LIST[:listfilespec[/ qualifiers]]

/ERROIL.LIMIT
/PAGE_COUNT:n
/P AGE_LENGTH:n
/[NO]PRINTER
/EXIT:n
/LIMIT:n
/LINES:n
/[-]SP

/BINARY:binaryfilespec
/MEMORY_SIZE:n
/SYMBOLS:symbolfilespec

Filespec Qualifiers
/ ACTIVE:(arg[, ...])

/ALL

DEVICES
TASKS

/DEVICES
/TASKS
/BLOCK:n
/CLOCI<-QUEUE
/CONTROLLERS

Quick Reference 10-3

/DENSITY:n
/DAT A-STRUCTURES:(arg[, ...])

COMMANDJ ARSER
DEVICE
PARTITION
STATUS
TASK
UNIT

/DUMP[:(ST ART:n,END:n[,ADDRESS:n])]
/HEADERS
/KERNEL:(arg[, ...])

DATA:(START:n,END:n)
INSTRUCTION:(START:n,END:n)
REGISTERS

/PARTITION
/POOL:(START:n,END:n)
/SECONDARY JOOL[:(ST ART:n,END:n)]
/[NO]SYSTEM
/TASKS:(arg[, ...])

DIRECTORY
ADDRESS:(NAME:name[,START:n,END:n])
DATA:(NAME:name[,START:n,END:n])
INSTRUCTION :(NAME:name[,START:n,END:n])

ANAL YZE/ERROILLOG Micro/RSX System Manager's Guide

The ANALYZE/ERROR-LOG command analyzes and formats information
about errors and events that occur on system hardware and generates error
log reports. Most of these commands (and the reports they generate) will
be most useful to DIGITAL Field Service.

Format
ANALYZE/ERROR-LOG [/qualifier[s]] datafile

Command Qualifiers
/BRIEF
/COMMAND:switchstring

DAY
MONTH
WEEK
SYSTEM

/DEVICES[:devicelist]

10-4 Quick Reference

!Invokes predefined switch string

/ENTRY:[start:end[, ...])]
/FULL
/INCLUDE[:(arg[, ...])]

!Specifies error log packet numbers

!Specifies the type of errors
!to report

/NODETAIL

ALL
CONTROL
MEMORY
PERIPHERAL
PROCESSOR
SYSTEM--INFORMA TION

/OUTPUT[:outputfile] !Writes report in a file
/PREVIOUS_DA YS:n
/REGISTERS
/SERIALNUMBER:(arg[, ...])

PACK:n
DRIVE:n

/SINCE:starttime[/THROUGH:endtime]
/STATISTICS[:(arg[,oo.])] !Writes report based on

!disk geometry
ALL
ERROR
DISK-GEOMETRY
HISTORY
NONE

/THROUGH:endtime
/TODAY
/VOLUME_LABEL:volumelabel
/[NO]WIDE
/YESTERDAY

ANAL VZE/MEDIA Chapter 13

The ANALYZE/MEDIA command determines if bad blocks exist on a disk
volume and records their locations for use by backup and restore utilities
and the INITIALIZE command.

Quick Reference 10-5

Format
ANALYZE/MEDIA[/qualifier[s]] ddnn:

Command Qualifiers
/ ALLOCATE:label

/BAD_BLOCKS
/BAD_BLOCKS/EXERCISE:(n,m)
/BAD_BLOCKS /NOEXERCISE
/[NO]EXERCISE[:(n,m)]
/OVERRIDE
/RETRY
/SHOW

APPEND Chapter 11

!Prompts for bad block numbers to
!put in BADBLOCK.SYS and to enter
!in the bad block descriptor file

APPEND appends to an existing sequential file records from one or more
sequential files.

Format
APPEND[/ qualifier[s]] infile[,s] outfile

Command Qualifiers
/EXCLUDE:filespec
/NOWARNINGS
/REWIND

/SHARED

!Filespec can include wildcards.
!Suppresses error messages
!Tape only. Rewinds tape before
!beginning
!Permits others to access file
!while you append it

/DATE:dd-mmm-yy !Given day only
/SINCE:dd-mmm-yy !From given day through current day
/THROUGH:dd-mmm-yy !From beginning through given day
/SINCE:dd-mmm-yy /THROUGH:dd-mmm-yy

/TODAY

10-6 Quick Reference

!From given day through given day
!Todayonly

APPEND /ERROR-LOG Micro/RSX System Manager's Guide

APPEND /ERROILLOG appends the specified file to the end of the current
error log file. Error Logging must be active for this qualifier to work. The
default is to append the file to the current Error Log File and to keep the
appended file as well.

Format
APPEND /ERROILLOG filespec[/ qualifier]

File Qualifier
/DELETE

ASSIGN Chapter 13

!Deletes error log file after
!appending it

ASSIGN equates a logical name to a physical device name, to all or part of
a file specification, or to another logical name. ASSIGN checks the syntax
of an equivalence name that is either a device or file specification. All
references to the logical name are resolved by the operating system.

Format
ASSIGN[! qualifier[s]] equivalence-Ilame logicaLname

Command Qualifiers
/FINAL
/GROUP[:g]
/LOCAL
/LOGIN
/GLOBAL
/SYSTEM
/TERMINAL:ttnn:
/TRANSLA TION :FINAL

!Privileged
!UIC group number
!Default
!Privileged
!Privileged
!Privileged; synonym for /GLOBAL
!Privileged
!Privileged; synonym for /FINAL

ASSIGN/QUEUE Micro/RSX System Manager's Guide

ASSIGN/QUEUE establishes a path between a queue and a processor in
the Queue Manager subsystem. Privileged.

Format
ASSIGN/QUEUE queuename processomame

Quick Reference 10-7

ASSIGN/REDIRECT Chapter 13

ASSIGN/REDIRECT redirects output from one physical device to another.
You can also redirect output from a physical device to a pseudo device or
the reverse. Privileged.

Format
ASSIGN/REDIRECT oldddnn: newddnn:

ASSIGN/TASK Chapter 15

ASSIGN/TASK reassigns an installed task's logical unit numbers (LUNs)
from one physical device to another. The reassignment overrides the static
LUN assignments in the task's disk image file. You cannot change the
LUNs of an active task. Privileged.

Format
ASSIGN /T ASK:taskname ddnn: lun

BACKUP Micro/RSX System Manager's Guide

BACKUP backs up and restores Files-II volumes. It transfers files from a
volume to a backup volume and retrieves files from the backup volume.

Format
BACKUP[/qualifier[s]] sourceddnn:[filespec[s]] destinationddnn:

Command Qualifiers

Group 1: Selective Backup and Restore
/CREATED:arg

AFTER:(dd-mmm-yy hh:mm)
BEFORE:(dd-mmm-yy hh:mm)

/EXCLUDE
/IMAGE:arg !For multivolume disk operations.

SAVE
RESTORE

/MODIFIED:arg
AFTER:(dd-mmm-yy hh:mm)
BEFORE:(dd-mmm-yy hh:mm)

/NEW_VERSION
/[N01REPLACE

10-8 Quick Reference

Group 2: Initialization
I ACCESSED:n

IBAD_BLOCKS:arg
AUTOMATIC
MANUAL
OVERRIDE

IEXTENSION :n
IFILE-PROTECTION :code
IHEADERS:n
IINDEX:arg

BEGINNING
MIDDLE
END
n

IINITIALIZE
IMAXIMUMJILES:n
ISA VE-SET:name

IWINDOWS:n

Group 3: Tape and Disk Control

!n is default number of FCBs per
!volume.
!Default

!Default n=5.
!Default is protection of involume.

!Specifies location of INDEXF.SYS
!on volume; default is location of
!file on involume.

!At logical block n.

!Default is name of volume being
!backed up.
!Default is number of mapping
!pointers on involume.

I APPEND !May need IREWIND; see main text.
IDENSITY:arg

800
1600

IERROlLLIMIT:n
ILABEL:TAPE:fileset-ID
ILENGTH:n

IRE WIND

Group 4: Verification
ICOMPARE
lVERIFY

Group 5: Display
ILIST

!Default density is 800 bpi.
!Default n-25.

!Usable length of output tape in
!decimal feet; default n - physical
!length of the output tape.
!Rewind first tape of tape set
!before executing the command line;
!may use with I APPEND.

Quick Reference 10-9

/[NO]LOG

Group 6: Disk Processing
/APPEND
/DIRECTORY

/NOINITIALIZE
/LABEL:arg

INPUT:volumelabel
[OUTPUT:]volumelabel

/MOUNTED
/[NO]PRESERVE

BROADCAST Chapter 11

!fLOG goes to TI:; /NOLOG is
!default.

!May need /IMAGE; see main text
!Can only be used with
!/NOINITIALIZE.

!See also /LABEL:T APE:volumelabel,
!Gp 3.

!jLABEL:OUTPUT is default; if the
!only volumelabel in command line
lis outvolume, /LABEL:volumelabel
twill do.

!jPRESERVE is default.

BROADCAST displays a specified message at one or more terminals.

Formats
BROADCAST ttnn: message
BROADCAST usemame message
BROADCAST @indirectspec
BROADCAST[/qualifier] message

Command Qualifiers
/ALL
/LOGGED-IN

CANCEL Chapter 15

!Privileged
!Privileged

CANEL eliminates entries from the clock queue. CANCEL does not affect
a currently executing task, just the pending entries in the clock queue.

Format
CANCEL taskname

10-10 Quick Reference

CONTINUE Chapter 15

CONTINUE resumes execution of a previously suspended task. The task
name defaults to terminal TTnn:.

Format
CONTINUE[/qualifier] [taskname]

Command Qualifier
ITERMINAL:ttnn:

CONVERT Chapter 12

!Privileged

CONVERT invokes the RMSCNV utility, which moves records from one
file to another. RMSCNV reads records from an input file and writes them
to an output file. The action of RMSCNV depends on the organization
(sequential, relative, or indexed) of the two files and on the qualifiers you
include with the CONVERT command.

Format
CONVERT[fqualifier[s]] in file outfile

Command Qualifiers
I[NO]APPEND
IBLOCI<-SIZE:n

I[NO]FIXED_CONTROL
I[NO]IDENTIFICATION

IINDEXED
IKEY[:n]
I[NO]LOGJILE[:filespec]

I[NO]MASS-INSERT
IMERGE

I[NO]PAD[:[#]arg]

IRELATIVE
I[NO]REPLACE
ISEQUENTIAL
I[NO]TRUNCATE

!I APPEND conflicts with IREPLACE.
!Magtape block size:18 <==n <==8192;
!default=512.
!lNO is default.
!Prints RMS-11 version number; INO
!is default; no filespec required.
!Outfile is indexed; see main text.
!O <==n <==9; default==1.
!lNO is default; no filespec logs
!on TI:

!Both files must have same
!organization.
!Pad infile records to outfile
!length; default pad character is
!blank (040).
!Outfile is relative.
!jREPLACE conflicts with I APPEND.
!Outfile is sequential.
!lNO is default.

Quick Reference 10-11

COpy Chapter 12

COPY copies files. Unless specified otherwise, COpy preserves the file
organization of the input file, that is, indexed files are copied as indexed
files, and so forth. See also the CONVERT command. If you intend to do
multiple file copies, see the COpy command description.

Format
COpy infile[s] outfile

Command Qualifiers
/ ALLOCATION:n

/BLOCICSIZE:N

/[NO]CONTIGUOUS
/EXCLUDE:filespec
/NONEW_VERSION

/NOWARNINGS
/OWN
/OVERLAY
/PRESERVE_DATE

/REPLACE
/REWIND

/SHARED

/DATE:dd-mmm-yy
/SINCE:dd-mmm-yy

!Specifies n blocks of contiguous
!space
!Defines block size for outfile on
!magtape; n is octal unless
!terminated with decimal point; no
!effect on infile.
!Specifies contiguous outfile.
!Filespec can include wildcards.
!Suppresses automatic increment
!of version numbers.
!Suppresses error messages.
!Makes outfile UIC owner of copy.
!Infile written over outfile.
!Output file takes creation date of
!input file.
!No magtape.
!Magtape only. Rewinds tape before
!starting operation.
!Permits others to access file
!while you copy it.
!Given day only.
!From given day through current
!day.

/THROUGH:dd-mmm-yy !From beginning through given day.
/SINCE:dd-mmm-yy /THROUGH:dd-mmm-yy

/TODAY

10-12 Quick Reference

!From given day through given day.
!Todayonly.

CREATE Chapter 12

CREATE creates a sequential file in a directory on a file-structured device.
After you issue the command, you can immediately enter text. To end data
entry and close the file, press CTRL/Z. See also CREATE/DIRECTORY.

Format
CREATE filespec

CREATE/CFL Micro/RSX System Manager's Guide

The CREATE/CFL command invokes the Control File Language compiler
(CFL) and allows you to create intermediate form modules (IFORM) to
support non-DIGITAL devices in the Error Logging System.

Format
CREATE/CFL[/qualifier(s)] source..Jile [symboLfile]

Command Qualifiers
/[NO]INTERMEDIA TEJORM[:ifornL...file]
/[N O]LIST[:listfile]
/[NO]OPTION
/[NO]SYMBOLJILE[:symbolfile]

CREATE/DIRECTORY Chapter 12

CREATE/DIRECTORY creates a directory on a Files-II volume and enters
its name in the volume's Master File Directory (MFD). Nonprivileged users
can only create directories on mounted volumes on their own private
(allocated) devices.

Format
CREATE /DIRECTORY[/ qualifier] [ddnn:][directory]

Command Qualifiers
/ ALLOCATION:n
/LABEL:volumelabel
/NOWARNINGS
/OWNEILUIC

/PROTECTION :code

!Entries for n files.
!Compare with volume label
!Suppresses error messages
tOwner of directory; use if
!different from creator

Quick Reference 10-13

DEALLOCATE Chapter 13

DEALLOCA TE counteracts ALLOCATE. It frees a private device for access
by others. To deallocate a device, the device must not be mounted.

Format
DEALLOCA TE[! qualifier] ddnn:

Command Qualifiers
/ALL

/DEVICE
/TERMINAL:ttnn:

!Frees all devices allocated by
!TI:; do not specify ddnn:.
!Non -opera tional
!Privileged

DEASSIGN Chapter 13

DEASSIGN deletes logical name assignments. DEASSIGN counteracts
both the ASSIGN and DEFINE commands.

Format
DEASSIGN[! qualifier[s]] logicaLname

Command Qualifiers
/ALL
/GROUP[:g]
/LOCAL
/LOGIN
/GLOBAL
/SYSTEM
/TERMINAL:ttnn:

DEASSIGN/Ql-EUE

!Combine with any other qualifier
!UIC group number
!Default
!Privileged
!Privileged
!Synonym for /GLOBAL
!Default is TI:; otherwise
!privileged

Micro/RSX System Manager's Guide

DEASSIGN/QUEUE counteracts ASSIGN/QUEUE. It is used to eliminate
the path from a queue to a processor in the Queue Manager subsystem.
Privileged.

Format
DEASSIGN /QUEUE queuename processomame

10-14 Quick Reference

DEFINE Micro/RSX Guide to Advanced Programming

DEFINE equates a logical name to a physical device name, to all or part of
a file specification, or to another logical name. All references to the logical
name are resolved by the operating system.

Unlike ASSIGN, DEFINE does not check the syntax of an equivalence
name that is either a device or file specification.

Please note that the DEFINE command primarily benefits the applications
programmer.

Format
DEFINE[/ qualifier[s]] equivalence-Ilame logical-Ilame

Command Qualifiers
/GROUP[:g]
/GLOBAL
/LOCAL
/LOGIN
/SYSTEM
/TERMINAL:ttnn:
/TRANSLA TION :FINAL

DELETE Chapter 12

!Privileged
!Default
!Privileged
!Privileged; synonym for /GLOBAL
!Privileged
!Privileged

DELETE deletes specified versions of files and releases the storage space
the files occupy. See also other forms of the DELETE command described
in the following entries.

Format
DELETE[/qualifier[s]]

Command Qualifiers
/EXCLUDE:filespec
/[NO]LOG
/NOWARNINGS
/[NO]QUERY

!Filespec can include wildcards.
!Lists deleted files on TI:
!Suppresses error messages
!Queries before deleting;
!lNO is default.

/DA TE:dd-mmm-yy !Given day only
/SINCE:dd-mmm-yy !From given day through current day
/THROUGH:dd-mmm-yy !From beginning through given day
/SINCE:dd-mmm-yy /THROUGH:dd-mmm-yy

!From given day through given day

Quick Reference 10-15

/TODAY !Todayonly

DELETE/DIRECTORY Chapter 12

DELETE/DIRECTORY deletes a directory on a Files-II volume and
removes its name from the volume's Master File Directory (MFD).
Nonprivileged users can only delete directories on mounted volumes on
their own private (allocated) device.

Format
DELETE/DIRECTORY [ddnn:][directory]

DELETE/ENTRY Chapter 12

DELETE/ENTRY deletes QMG jobs by entry number (n).

Format
DELETE/ENTRY:n[/qualifier]

Command Qualifiers
/FILEJOSITION :n

DELETE/JOB Chapter 12

DELETE/JOB deletes QMG jobs by queuename and jobname.

Format
DELETE/JOB[/qualifier] queuename [[uic]]jobname

Command Qualifier
/FILEJOSITION :n

DELETE/processortype Micro/RSX System Manager's Guide

DELETE/processortype deletes print processors, output despoolers, or
batch processors from the Queue Manager subsystem by processor name
or device name. This command also sets the device unspooled.

10-16 Quick Reference

Format
DELETE/processortype processomame

Processortypes
APPLICATIONSJROCESSOR
BATCtLPROCESSOR
CARD-READER
DEVICE
INPUT
PRINTER
PROCESSOR

!INPUT is synonym.
!PRINTER is synonym.
!CARD-READER is synonym.
!DEVICE is synonym.

DELETE/QUEUE Micro/RSX System Manager's Guide

Privileged. DELETE/QUEUE deletes queues in the Queue Manager
subsystem by name. When you specify DELETE/QUEUE, you must also
specify the /ERASE qualifier. See DELETE/JOB and DELETE/ENTRY to
delete jobs from queues.

Format

DIRECTORY Chapter 12

DIRECTORY displays information on files in directories.

Format
DIRECTORY[jformat-qual][/destination-qual] [other-qual[s]] [filespec[s]]

Command Qualifiers

Format Qualifiers
/ ATTRIBUTES
/BRIEF
/FREE [ddnn:]

/FULL
/SUMMARY

Destination Qualifiers
/OUTPUT[:filespec]
/PRINTER

!RMS-ll attributes

!Free blocks on volume; default is
!SY:.

!Blocks used and allocated only

!Names output file. TI: is default.
!Output to LPO:

Quick Reference 10-17

Other Qualifiers
!Not used with jFREE or
!jATTRIBUTES

JDA TE:dd-mmm-yy !Given day only
jSINCE:dd-mmm-yy !From given day through current day
jTHROUGH:dd-mmm-yy !From beginning through given day
jSINCE:dd-mmm-yy jTHROUGH:dd-mmm-yy

jTODAY
jEXCLUDE:filespec
jNOWARNINGS
jREWIND

DISMOUNT Chapter 13

!From given day through given day
!Todayonly
!Filespec can include wildcards.
!Suppresses error messages
!Magtape only; rewinds tape before
!executing command

DISMOUNT marks the volume mounted on the specified device as logically
off line and disconnected from the file system. If you specify the volume
label, the system verifies the label name to ensure that you are dismounting
the correct disk.

Format
DISMOUNT ddnrt: [label]

Command Qualifiers
JALL

jPUBLIC

jSAVE

jSYSTEM
jTERMINAL:ttnn:

j[NO]UNLOAD

10-18 Quick Reference

!Dismount all devices mounted by
!user.
!Privileged; dismounts all users
!from volume.
!Privileged; disk keeps spinning;
!privileged tasks can access.
!Synonym for jPUBLIC.
!Privileged; dismounts volumes
!mounted from another terminal.
!Affects DB:, DM:, and DU: devices;
!see main text.

EDIT[/EDT] Chapter 4

EDIT or EDIT/EDT invokes EDT, the standard DIGITAL editor.

Format
EDIT[/EDT][/ qualifier[s]] filespec

Com.m.and Qualifiers
/[NO]COMMAND[:filespec]
/[NO]CREATE
/[NOUOURNAL[:filespec]
/[NO]OUTPUT[: filespec]
/[NO]READ_ONL Y
/[NO]RECOVER

FIX Chapter 15

!Default is /COMMAND:EDTINI.EDT.

!Default is /NOREAD_ONLY.
!Default is /NORECOVER.

FIX causes an installed task or region to be loaded and locked into memory.
The taskname parameter can be the name of either the task or the region.
Privileged.

Format
FIX[/ qualifier] taskname

Command Qualifiers
/READONLY_SEGMENT

/REGION

HELP Chapter 11

!Read-only segment of multiuser
!task
!Common region

. ,

Help displays information about your system. Help files for DCL and
some utilities are supplied with the system. Your system may also have
help for an alternate CLI or local, group, or other special help. See main
text.

Quick Reference 10-19

Format
HELP[/qualifier[s]] [parameter 1 ... parameter9]

Command Qualifiers
jCLI:cliname
JDCL

jFILE:filespec
jfilename
jGROUP

HOLD/ENTRY Chapter 12

!For alternate CLIs.
!DCL help; default for DCL
!terminals.
!Names file containing help text.
!LB:[1,2] filename. HLP
!Help file is in [g, 1]; g is your
!group.

HOLD jENTRY holds a QMG job in its queue by entry number (n).

Format
HOLDjENTRY:n

HOLD/JOB Chapter 12

HOLD JJOB holds a QMG job in its queue by queuename and jobname.

Format
HOLD JJOB queuename [[uic]]jobname

INITIALIZE Chapter 13

INITIALIZE produces a volume in Files-II format. See also INITIALIZE
jUPDATE. You must mount the volume jFOREIGN. Nonprivileged users
must allocate the device before it can be initialize. See also other forms of
the INITIALIZE command described in the following entries.

Format
INITIALIZE[/ qualifier[s]] ddnn: volumelabel

Command Qualifiers
j ACCESSED:n

jBAD_BLOCKS:arg

!Number of directories accessed
!simultaneously.

AUTOMATIC
(AUTOMATIC, MANUAL)

10-20 Quick Reference

MANUAL
NOAUTOMATIC
OVERRIDE
(OVERRIDE,MANUAL)

/DENSITY:arg
800
1600
HIGH
LOW

/EXTENSION:n

/FILEJROTECTION :(code)

/HEADERS:n
/INDEX:arg

BEGINNING
MIDDLE
END

!Extend full files by n blocks;
!default n=5.
!Default protection for files
!on volume.

!Locates index file on volume.
!Default for tapes and DECtapes.
!Default for disks.

n !At logical block n.
/LABEL:VOLUME-ACCESSIBILITY:" c"

/MAXIMUMJILES:n
/OWNER:[uic]
/PROFESSIONAL

/PROTECTION :(code)
/[NO]SHOW

/WINDOWS:n

!Magtape only: limits access.
!c can be A-Z, 0-9,
land ! " % ' () + , - . / :
!= & > < _ ? or;
!Default is blank.

!Initialize disk for Professional
!300 series.
!Default protection for volume.
!Display volume information on TI:;
!lNO is default.
!Mapping pointers to file windows;
!default n=7.

INITIALIZE / processortype (Input) Micro/RSX System
Manager's Guide

This form of the INITIALIZE command creates, names, and starts an input
spooler or card-reader pro~essor. Privileged. See next entry to initialize an
output des pooler .

Quick Reference 10-21

Format
INITIALIZE / processortype processorname[! qualifier[s]]

Processor Types
CARD-READER
INPUT

Command Qualifiers
/BA TClLQUEUE:queuename
/CONSOLE:ddnn:
/PRINTEILQUEUE:queuename

!INPUT is synonym.
!CARD-READER is synonym.

INITIALIZE/processortype (Output) Micro/RSX System
Manager's Guide

This form of the INITIALIZE command creates, names, and starts an output
despooler or batch processor. Privileged. See previous entry to initialize
an input spooler.

Format
INITIALIZE / processortype processorname[! qualifier[s]]

Processor Types
APPLICATIONSJROCESSOR
BA TClLPROCESSOR
DEVICE
PRINTER
PROCESSOR

Command Qualifiers
/FLAGJ AGE:n
/FORMS:n
/[NO]SHAREABLE
/[NO]LOWERCASE
/[NO]UPPERCASE

10-22 Quick Reference

!n can be 0-2; default n=1.
!n can be 0-255; default n=D.
!Default is NOSHAREABLE.
!Default is LOWERCASE.
!Default is NOUPPERCASE.

INITIALIZE/QUEUE Micro/RSX System Manager's Guide

INITIALIZE/QUEUE creates, names, and starts a queue in the Queue
Manager subsystem.

Format
INITIALIZE/QUEUE queuename[! qualifier]

Command Qualifiers
/BATCH
/PRINTER
/NOWARNINGS

!Default

INITIALIZE/UPDATE Chapter 13

INITIALIZE/UPDATE invokes the HOME utility to alter values in the
volume home block without affecting the other data on the volume.
INITIALIZE/UPDATE is only for disks and DECtapes in Files-II format.

You must mount the volume /FOREIGN.

Format
INITIALIZE /UPD A TE[/ qualifier[s]] ddnn: volumelabel

Command Qualifiers
/ ACCESSED:n
/DENSITY:arg

800
1600

/EXTENSION :n
/FILlLPROTECTION:code

/LABEL:newvolumelabel
/MAXIMUMJILES:n
/OWNER:[uic]
/PROFESSIONAL

/PROTECTION:code
/[NO]SHOW
/WINDOWS:n

!Extend full files by n blocks.
!Default protection for files on
!volume.
!Changes volume label.
!Maximum number of files on volume.

!Initialize disk for Professional
!300 series.
!Protection for volume.

!Mapping pointers to file windows;
!default n=7.

Quick Reference 10-23

INSTALL Chapter 15

INST ALL includes a task in the System Task Directory, thus making it
known to the system. Privileged.

Format
INST ALL[/ qualifer[s]] [$]filespec

Command Qualifiers
/[NO]CHECKPOINT
/COMMAND:"taskcommandH

/EXTENSION:n !n (octal) additional words of
!address space.

/[NO]INTERPRETER !Installing a CLI? Default is NO.
/MUL TIUSElLP ARTITION :parname

/P ARTITION :parname
/[NO]POSTMORTEM
/PRIORITY:n
/[NO]READONLY_COMMON

/[NO]RESIDENT-HEADER

/[NO]SLAVE
/TASLNAME:taskname
/TRANSLATION-ROUTINE:n
/UIC:[uic]
/[NO]WRITEBACK

LIBRARY Chapter 14

!Install read-only portion.

!0-250.
!Install common as read-only.
!Default is NO.
!jNORESIDENT-HEADER is
!external header;/RESIDENT is
!no external header.
!jNOSLA VE is default.
!1-6 characters.

LIBRARY creates and maintains user-written library files. The command
has eight functions, each listed here as a separate command. See main
text for more details on all functions and qualifers.

Format
LIBRARY[/ operation][/ qualifer[s]]

LIBRARY @filespec

10-24 Quick Reference

LIBRARY jCOMPRESS Chapter 14

LIBRARY /COMPRESS physically deletes modules that have been logically
deleted through LIBRARY/DELETE. You can rename the resulting com­
pressed library. You can also use this command to copy a library and
rename it.

Formais
LIBRARY /COMPRESS[:(arg[,s])] libspec [newlibspec]

Arguments
GLOBAL:n
MODULES:n
BLOCKS:n

LIBRARY jCREATE

!Entry-point table entries.
!Module-name table entries.
!Size in 256-word blocks.

Chapter 14

LIBRARY /CREATE creates a library and optionally inserts one or more
modules into it.

Formats
LIBRARY / CREA TE[:(arg[,s]) U/ qualifier[s]] libspec [infilespec[s]]

Arguments
GLOBAL:n
MODULES:n
BLOCKS:n

Command Qualifiers
/[NO]GLOBALS

/MACRO
/OBJECT

/SELECTIVE_SEARCH
/SQUEEZE
/UNIVERSAL

!Entry-point table entries.
!Module-name table entries.
!Size in 256-word blocks.

!Include globals in entry-point
!table.
!Identifies macro library.
!Default; identifies object
!library.
!Object modules only.

!Identifies universal library.

Quick Reference 10-25

LIBRARY /DELETE Chapter 14

LIBRARY /DELETE deletes object modules from a library. You can delete
as many as 15 modules with a single command. See LIBRARY/REMOVE
for removing global symbols (entry points) from a library.

Format
LIBRARY /DELETE lib spec module[,module[,s]

LIBRARY /EXTRACT Chapter 14

LIBRARY/EXTRACT reads one or more modules from a library and writes
them to a specified output file. You can extract as many as eight modules
with a single command. If you extract more than one module, the modules
are concatenated in the output file.

Format
LIBRARY /EXTRACT[/qualifier] lib spec module[,s]

Command Qualifier
/OUTPUT[: filespec] !Default output file is TI:; name a

!file when extracting object
!modules.

LIBRARY /INSERT Chapter 14

LIBRARY /INSERT inserts modules from one or more files into a library.
You can insert any number of files with a single command.

Format
LIBRARY /INSERT libspec filespec[s]

Command Qualifiers
/[NO]GLOBALS

/SELECTIVE_SEARCH
/SQUEEZE

10-26 Quick Reference

!Include globals in entry-point
!table.

LIBRARY /LIST Chapter 14

LIBRARY/LIST lists on your terminal or in an output file the names of all
modules in a library.

Format
LIBRARY jLIST[:filespec] libspec

Command Qualifiers
/BRIEF
/FULL
/[NO]NAMES !Names plus global entry points.

LIBRARY /REMOVE Chapter 14

LIBRARY /REMOVE removes global symbols (entry points) from a library.
You can remove as many as 15 global symbols with a single command.
See LIBRARY/DELETE for deleting object modules from a library.

Format
LIBRARY /REMOVE libspec global[,global[,s))

LIBRARY /REPLACE Chapter 14

LIBRARY /REPLACE replaces a module in a library with a new module of
the same name and deletes the old module.

Format
LIBRARY /REPLACElibspec filespec[s]

Command Qualifiers
/[NO]GLOBALS

/SELECTIVE_SEARCH
/SQUEEZE

!Include globals in entry-point
!table.

Quick Reference 10-27

LINK Chapter 14

LINK invokes the Task Builder, which links object modules and routines
from user and system libraries to form an executable task.

Format
LINK[/ qualifier[s]] filespec[/ qualifier[s)][,filespec[s]]

Command Qualifiers
/ ANCILLARYJROCESSOR[:n] !Task is ACP; n is 0,4, or 5.
/[NO]CHECKPOINT:arg

SYSTEM
TASK

/CODE:(arg[,s])
CLI
DATA-SPACE

!Checkpoints to [O,O]CORIMG.SYS.
!Checkpoints to task image file.

!CLI task.

EAE !Extended arithmetic element.
FAST-MAP !Fast Mapping.
FPP !Floating-point processor.
PIC !Position-independent code.
POSITION-INDEPENDENT

/COMP A TIBLE
/[NO]CROSS-REFERENCE
/[NO]DEBUG[:filespec]
/[NO]EXECUT ABLE:filespec

/ERROlLLIMIT:n
/[NO]EXTERNAL
/FAST
/FULLSEARCH
/[NO]HEADER
/[NO]IOJAGE

!Synonym for PIC.

!Default is ODT.
!Names task file. Synonym for
!/TASK.
!Stop task build after n errors.

!Fast TKB.

/LONG !Long map.
/MAP[:filespec] !Default is /MAP:TI:.
/[NO]MEMORY-MANAGEMENT[:n]

/OPTIONS[:filespec]

/OVERLA Y _DESCRIPTION
/POSTMORTEM

10-28 Quick Reference

!n for unmapped systems; see main
!text; default is /MEM; n is 28
!(default) or 30.
!File contains options. Otherwise
!you will be prompted.

/[NO]PRINT
/[NO]PRIVILEGED[:n]
/[NO]RECEIVE
/[NO]RESIDENT _OVERLAYS
/SAVE
/[NO]SEGREGATE
/SEQUENTIAL
/SHAREABLE[:arg]

/SLAVE
/SLOW

COMMON
LIBRARY
TASK

!Print map?
!Default is /NOPRIVILEGED.

!Saves indirect file.
!jNOSEG is default.

!Multiuser.

!Default.

/SYMBOLTABLE[:filespec] !Output .STB file.
/[NO]SYSTEM-LIBRARY _DISPLAY

/[N O]T ASK[: filespec]

/TKB
/TRACE
/[NO]W ARNINGS

/[NO]WIDE

File Qualifiers
/[NO]CONCATENA TE
/DEFAULT_LIBRARY
/[NO]GLOBALS

!Default is /NOSYS.
!Names task image file;
!jEXECUTABLE
!is synonym; names 1-6 characters;
!jNOTASK means no task built.
!Default.

!jNO suppresses diagnostic
!messages; /W ARNINGS is default.
!Wide map.

!File to replace [001001]SYSLIB.OLB
!Default is /GLOBALS; includes
!global symbols in map.

/LIBRARY !File is object module library.
/INCLUDE:(module1[:,..:modulen])

/OVERLA Y _DESCRIPTION

/SELECTIVE_SEARCH

!File is object module library;
!include named modules in task
f' .Image.
!File is .ODL; also a command
!qualifier.
!Also a command qualifier.

Quick Reference 10-29

LOGIN Chapter 11

LOGIN (or HELLO) grants access to a multiuser protection system and
establishes your privileges as a system user.

Format
LOGIN userid/password

LOGOUT Chapter 11

LOGOUT counteracts LOGIN. LOGOUT also aborts any nonprivileged
tasks running from the terminal and also dismounts any volumes and
deallocates any private devices allocated from the terminal.

Format
LOGOUT[/ qualifier]

Command Qualifier
/[NO]HOLD

MESSAGE/ERROR_LOG

!Holds remote line after logout;
!lNO is default.

Micro/RSX System Manager's Guide

MESSAGE/ERROlLLOG inserts text into the error log file. The text
appears in reports produced by the ANALYZE/ERROlLLOG command.
The message can be any text string up to 79 characters long.

Format
MESSAGE/ERROlLLOG message text

MOUNT Chapter 13

MOUNT declares a volume to be logically known to the system, on
line, and available for use. Some qualifiers can be used with any
MOUNT command; some are limited to mounting disks (and other random­
addressable devices); and others are limited to mounting magnetic tapes.

Format for Disks and Other Random-Addressable Devices
MOUNT[/qualifier[s]] ddnn: volumelabel

10-30 Quick Reference

Format for Magnetic Tapes
MOUNT[/qualifier[s]] ddnn:[,ddnn: ...] fileset-ID

Command Qualifiers for Both Disks and Tapes
/DEFAULT:arg !Sets defaults for dismount; see

!main text.
SAVE
NOUNLOAD
UNLOAD

/FILEJROTECTION:(code)

/FOREIGN

!Protection for files created
!during mount.

/OVERRIDE:IDENTIFICATION !Privileged; no label needed.
/P ARAMETERS:Huser parameters"

!Quotes are required syntax.
/PROCESSOR:arg !Privileged; name ACP for volume.

acpname
UNIQUE

/PROTECTION :(code)
/PUBLIC

/[NO]SHAREABLE
/[NO]SHOW

/SYSTEM
/[NO]WAIT
/[NO]WRITE

!Volume protection during mount.
!Privileged; deallocates; sets
!public.

!Displays volume information on
!TI:.
!Synonym for /PUBLIC.
!Default is /NOWAIT.

Command Qualifiers for Files-II Devices
/ ACCESSED:n !n is number of File Control

!Blocks.
/EXTENSION :n
/OWNER:[uic]

/UNLOCK
/WINDOW:n

!Extends full files by n blocks.
!Coordinates with file and volume
!protection.
!Main use is with VFY.

Command Qualifiers for ANSI and Unlabeled Tapes
See main text for these qualifiers.

/BLOCLSIZE:n

Quick Reference 10-31

jCARRIAGE_CONTROL:arg
FORTRAN
LIST
NONE

jDENSITY:arg
800

1600
j[NO]HDR3
j[NO]LABEL
jOVERRIDE:(arg,[,s])

ACCESSIBILITY
EXPIRATION_DATE
IDENTIFICA TION
SET-IDENTIFICATION

jRECORD_SIZE:n
jTRANSLATE:arg

EBCDIC
NONE
UTI
UT2
UT3

jVOLUME-IDENTIFICATION:(volume-ID[,volume-ID[,s]])

PRINT Chapter 12

PRINT queues files for printing on a line printer. PRINT can also queue
jobs for other output devices.

Format
PRINT[/ qualifier[s]] filespec[/ qualifier[s]][,filespec[,s]]

Command Qualifiers
j AFTER:TOMORROW
j AFTER:(dd-mmm-yy hh:mm)
jCOPIES:n
j[NO]DELETE
jDEVICE:ddnn:
j[NO]FLAGJ AGE

jFORMS:n
j[NO]HOLD

10-32 Quick Reference

!Override on filespec.
!Override on filespec.

!Flag page on each file; default is
!jNOFLAGJ AGE.
!n can be 0-256; default n=O.
!Default is jNOHOLD; same effect as
!HOLD command.

/JOB_COUNT
/[NO)JOBJ AGE

/LENGTH:n
/[NO]LOWERCASE
/NAME:jobname
/[NO]TRANSFER
/PAGLCOUNT:n
/PRIORITY:n

/QUEUE:queuename
/[NO]RESTART
/[NO]UPPERCASE
/[NO]WIDE

File Qualifiers
/COPIES:n
/[NO]DELETE
/[NO]TRANSFER

PURGE Chapter 12

!Flagpage on job; default
!/JOBJAGE.
!Page length.

!1-9 characters.
!Override on filespec.
!Limits pages in job.
!n is 1-150 nonprivileged; through
!250 privileged; default n==50

PURGE deletes all but the latest versions of files and releases the storage
space the deleted files occupy.

Format
PUR GE[/ qualifier[s]] filespec[s]

Command Qualifiers
/EXCLUDE:filespec
/KEEP:n
/[NO]LOG
/NOWARNINGS
/DA TE:dd-mmm-yy
/SINCE:dd-mmm-yy

!Filespec can include wildcards.

!Lists files on TI: as deleted.
!Suppresses error messages.
!Given day only.
!From given day through current
!day.

/THROUGH:dd-mmm-yy !From beginning through given day.
/SINCE:dd-mmm-yy/THROUGH:dd-mmm-yy.

/TODAY
!From given day through given day.
!Today only.

Quick Reference 10-33

RELEASE/ENTRY Chapter 12

RELEASE/ENTRY releases by entry number (n) a print or batch job that
has been held in its queue.

Format
RELEASE/ENTRY:n

RELEASE/ JOB Chapter 12

RELEASE/JOB releases by queuename and jobname a print or batch job
that has been held in its queue.

Format
RELEASE/JOB queuename [[uic]]jobname

REMOVE Chapter 15

REMOVE counteracts INSTALL. REMOVE takes a task name out of the
System Task Directory. Privileged.

Format
REMOVE[/ qualifier] taskname

Command Qualifier
/REGION

/TRANSLATION-ROUTINE:n

RENAME Chapter 12

!Takes name of region out of Common
!Block Directory and partition
!list.
! Removes an ACD

RENAME changes the name, type, or version number of an existing file.
Note that you can specify wildcards in any the file specification fields, but
you should be careful when using'them so that you do not specify the
wrong file. You should also be careful with version numbers.

10-34 Quick Reference

Format
REN AME[/ qualifier[s]] oldfilespec newfilespec

Command Qualifiers
jEXCLUDE:filespec !Filespec can include wildcards.
jNOW ARNINGS !Suppresses error messages
jDATE:dd-mmm-yy !Given day only
iSINCE:dd-mmm-yy iFrom given day through current day
jTHROUGH:dd-mmm-yy !From beginning through given day
jSINCE:dd-mmm-yy jTHROUGH:dd-mmm-yy

!From given day through given day
jTODAY !Todayonly

REQUEST Chapter 11

REQUEST sends a message to the operator's console (CO:). You can
optionally place quotation marks (") around the message.

Format
REQUEST message

RUN Installed Task Chapter 15

RUN initiates the execution of installed tasks. Privileged users can use
RUN to initiate the execution of installed tasks on a schedule by creating
entries in the system clock queue.

Format
RUN[/ qualifier[s]] taskname

Command Qualifiers
jDELAY:nu

jINTERVAL:nu
jSCHEDULE:hh:mm:ss
jSTATUS:arg

COMMAND

TASK

!n is the number of units and u is
!the time unit: T,ticks; S,seconds;
!M,minutes; H,hours. Privileged.
!Privileged.
!Privileged.

!Retum status from RUN command;
!default. Nonprivileged.
!Retum status from task being run;
!see main text on both these
!arguments. Nonprivileged.

Quick Reference 10-35

/SYNCHRONIZE:u

/UIC:[uic]

RUN Uninstalled Task

!Synchronize on next T,S,M, or H.
!Privileged.
!Privileged.

Chapter 15

When used to run an uninstalled task (from a task image file), RUN is a
combination command, encompassing INSTALL, RUN, and REMOVE. See
main text.

Format
RUN[/qualifier[s]] [$]filespec

Command Qualifiers
/[NO]CHECKPOINT
/COMMAND:"taskcommand"
/EXTENSION :n

/P ARTITION :parname
/[NO]POSTMORTEM
/PRIORITY:n
/STATUS:arg

TASK

COMMAND

/T ASLNAME:taskname
/TIME_LIMIT:n[u]

/UIC:[uic]

!See main text.
!n (octal) additional words of
!address space.
!Privileged

!Privileged

!Return status from RUN command;
!the default
!Return status from task being run;
!see main text on both these
!arguments. /ST A TUS can be
!used separately or with /UIC
! 1-6 characters
!Arg is M (minutes) by default; can
!also be S (seconds); 3M is
!default.
!Privileged

SET [DA Y]TIME Micro/RSX System Manager's Guide

SET [DAY]TIME sets the system date and time. You must specify at least
one of the fields, in any order. Privileged.

Format
SET [DAY]TIME:[dd-mmm-yy] [hh:mm]

10-36 Quick Reference

SET DEFAULT Chapter 12

SET DEFAULT establishes your default device or directory, or both. If
you are a privileged user and your terminal's default is /NONAMED_
DIRECTORY, then SET DEFAULT also establishes your User Identification
Code.

Formot
SET DEFAULT[/qualifier] [ddnn:][[directory]]

Command Qualifier
/[NO]NAMED_DIRECTORY

SET DEVICE Chapter 13

!See main text.

SET DEVICE establishes certain device attributes. Privileged.

Format
SET DEVICE:ddnn:/qualifier[s]

Command Qualifiers
/CACHE:(option[,s]) !Modifies data caching; see

!RSX-11M/M-PLUS System
!Management Guide.

P AR==[main-pamame:]subpamame[: size]
[NO]DIRECTORY
[NO]OVERLA Y
[NO]VIRTUAL
[NO]LOGICAL
[NO]READ-AHEAD

/NOCACHE
/[NO]CHECKPOINTJILE[:n]

/[NO]LOWERCASE
/[NO]PUBLIC
/[NO]SYSTEM
/WIDTH:n

!n is number (decimal) of blocks in
![O,O]CORIMG.SYS.
!Default is /NOLOWERCASE.
!Default is /NOPUBLIC.
!Synonym for /[NO]PUBLIC.
!Nonprivileged for TI:.

Quick Reference 10-37

SET ERROR_LOG Micro/RSX System Manager's Guide

SET ERROR-LOG sets up error-logging operations and manipulates the
Error Log file.

Syntax for setting up error logging:

Format
SET ERROR-LOG[/ qualifier[s]]ddn:[,ddn:[,s]]

Command Qualifiers
/HARD_LIMIT:n
/SOFT_LIMIT:n
/RESET _COUNTS

Syntax for manipulating the Error Log file:

Format
SET ERROR-LOG[/qualifier[s]]

Command Qualifiers
/BACKUP J'ILE:filespec
/[NO]LIMITING
/NEW _LOGJ'ILE:filespec[/ qualifier[s]]

/DELETE
/NEW_VERSION

SET FILE Chapter 12

SET FILE establishes certain file attributes.

Format
SET FILE[/qualifier[s]] filespec[s]

Command Qualifiers
/END_OF J'ILE:(BLOCK:n,BYTE:n)

/ENTER:synonyIILfilespec
/NOWARNINGS
/REMOVE
/REWIND

/TRUNCATE

10-38 Quick Reference

!See main text
!See main text
!Suppresses error messages
!See main text
!Magtape only; rewinds tape before
!beginning operation
!Eliminates blocks allocated but
!unused; saves disk space

SET HOST Chapter 2

SET HOST connects your terminal to a remote system. You issue this
command after you have logged in to your current system. Both your
current system and the remote system (nodename) must run DECnet
software.

Format
SET HOST nodename

SET LIBRARY jDIRECTORY Chapter 15

SET LIBRARY/DIRECTORY establishes the directory where the system
utilities and other nonprivileged system tasks are kept. Note that this
command does not create the specified directory. Privileged.

Format
SET LIBRARY /DIRECTORY:[directory]

SET [NO]PARTITION Chapter 15

SET [NO]P ARTITION creates or eliminates a partition. The partition name
must be from one through six characters. Privileged.

Format
SET [NO]PARTITION:parname/qualifier[s]

Command Qualifiers
/BASE:n
/DEVICE !Device common.
/DIAGNOSTIC
/SIZE:n
/SYSTEM
/TOP:value

SET PASSWORD Chapter 11

SET PASSWORD changes your password.

Format
SET PASSWORD

Quick Reference 10-39

•

SET PRIORITY Chapter 15

SET PRIORITY alters the priority of an active task. The active task's
priority (n) can be from 0 through 250. Privileged.

Format
SET PRIORITY:n taskname

SET PROTECTION Chapter 12

SET PROTECTION changes the protection code of files. The protection
code controls who can access files and in what ways. The first format is
preferred. The default code is (SY:RWED,OW:RWED,GR:RWED,WO:R).

Format
SET PROTECTION:(code)[/qualifier[s]] filespec[s]
SET PROTECTION[/qualifier[s)) filespec[s] (code)

Command Qualifiers
/DATE:dd-mmm-yy !Given day only
/SINCE:dd-mmm-yy !From given day through current day
/THROUGH:dd-mmm-yy !From beginning through given day
/SINCE:dd-mmm-yy /THROUGH:dd-mmm-yy

/TODAY
/EXCLUDE:filespec

!From given day through given day
!Todayonly
!Filespec can include wildcards.

SET PROTECTION/[NO]DEFAULT Chapter 12

SET PROTECTION/DEFAULT establishes your personal default protection
code (for example, (SY:RWED,OW:RWED,GR:R,WO:) for all files that you
create after issuing this command. It is recommended that you place this
command in your LOGIN.CMD file. SET PROTECTION/NODEFAULT
removes your personal default file protection.

Format
SET PROTECTION:(code)/DEFAULT
SET PROTECTION/NODEFAULT

10-40 Quick Reference

SET QUEUE/ENTRY Chapter 12

SET QUEUE/ENTRY modifies by entry number some attributes of print
or batch jobs once they are in a queue. However, you can specify only
one attribute at a time. See SET QUEUE/JOB to modify by job name.

Format
SET QUEUE/ENTRY:n[/qualifier]

Command Qualifiers
/AFTER:(dd-mmm-yy hh:mm)
/COPIES:n
/[NO]DELETE
/FILEJOSITION :n
/FORMS:n
/JOBCOUNT:n
/LENGTH:n
/[NO]LOWERCASE
/PAGLCOUNT:n
/PRIORITY:n

/RELEASE
/[NO]RESTART
/[NO]UPPERCASE

!n is 1-150 nonprivileged; through
!250 privileged; default n=50
!Same as RELEASE/QUEUE

SET QUEUE/JOB Chapter 12

SET QUEUE/JOB modifies by job name some attributes of print or batch
jobs once they are in a queue. However, you can specify only one attribute
at a time. See SET QUEUE/ENTRY to modify by entry number.

Format
SET QUEUE/JOB[/qualifier] queuename [[uic]]jobname

Command Qualifiers
/ AFTER:(ddd-mmm-yy hh:mm)
/COPIES:n
/[NO]DELETE
/FILEJOSITION:n
/FORMS:n
/JOBCOUNT:n
/LENGTH:n
/[NO]LOWERCASE

Quick Reference 10-41

/PAGE_COUNT:n
/PRIORITY:n

/RELEASE
/[NO]REST ART
/[NO]UPPERCASE

!n is 1-150 nonprivileged; through
!250 privileged; default n==50
!Same as RELEASE/QUEUE

SET SYSTEM Micro/RSX System Manager's Guide

SET SYSTEM establishes certain characteristics of the system. You must
always specify a qualifier. Privileged.

Format
SET SYSTEM/qualifier

Command Qualifiers
/[NO]CRASlLDEVICE[:ddn:]
/DIRECTORY:[directory]

/EXTENSION_LIMIT:n

/[NO]LOGINS
/NETWORLUIC
/PACKETS:n
/POOL:top:max:total

/POOL/LIMITS:arg
HIGH=n
LOW=n
MINIMUM-SIZE:n
TASI<-PRIORITY:n

SET TERMINAL Chapter 11

!See Advanced Programmer's Kit.
!Sets directory where system tasks
!are kept; does not create a
!directory .
!Sets maximum size a task can
!extend itself with the Extend Task
!directive.

!n = 0 through 15.
!Increases size of pool; see main
!text.

!See main text.

SET TERMINAL sets various attributes of your terminal. Privileged users
can set attributes for any terminal.

Format
SET TERMINAL[:ttnn:]/qualifier[s]

10-42 Quick Reference

Command Qualifiers

Group 1: Common Use
/[NO]BROADCAST
/CLI:cliname
/[NO]CONTROL=C
/DCL
/[NO]HOLD_SCREEN
/INQUIRE

/[NO]LOWERCASE

/[NO]PRIVILEGED
/SPEED:(transmit,receive)

/[NO]UPPERCASE
/WIDTH:n

Group 2: Terminal Setup
/[NO]ADVANCED_ VIDEO
/[NO]ANSLCRT
/[NO]AUTOBAUD
/ASR33
/ASR35
/[NO]BLOCLMODE
/CRFILL:n
/[NO]DEC_CRT
/DTCOI
/[NO]EDIT -MODE
/[NO]FORMJEED
/[NO]HARDCOPY
/[NO]HOSTSYNC
/KSR33
/KSR35
/LA12
/LA30P
/LA30S
/LA34
/LA36
/LA38
/LA50
/LAIOO
/LA120

!Not for VT100s
!Automatically sets proper terminal
!characteristics
!/NOLOWER same as /UPPER and is
!default.
!Privileged
!Remember to set hardware
!after this command.
!/NOUPPERCASE same as /LOWERCASE

!n can be 0-7.

Quick Reference 10-43

/LA180S
/LA210
/LFFILL
/LN03
/LQP02
/LQP03
/P AGLLENGTH:n
/PRINTElLPORT
/PRO_SERIES
/[NO]REGIS
/[NO]SCOPE
/[NO]SOFT _CHARACTERS
/[NO]TAB
/[NO]TRANSLATION-ROUTINE[:arg]

/[NO]TTSYNC
/VT05
/VT50
/VT52
/VT55
/VT61
/VTIOO
/VTIOI
/VTI02
/VTI05
/VT125
/VT131
/VT132
/VT200_SERIES
/WIDTH:n

Group 3: Task Setup
/[NO]ECHO
/[NO]EIGHT_BIT
/[NO]ESCAPE
/[NO]FULLDUPLEX
/[NO]INTERACTIVE
/[NO]LOCAL

10-44 Quick Reference

n !ACD number
logical !Logical name

!for ACD number

/[NO]PARITY[:type]
ODD
EVEN

/[NO]P ASSALL
/[NOP ASTHRU
/[NO]REMOTE
/[NO]SERIAL
/[NO]SLAVE
/[NO]TYPEAHEAD[:n]
/[NO]WRAP

SET UIC Chapter 12

!ODD is default.

!jSERIAL is default.

!n can be 0-255.

SET UIC changes the User Identification Code of privileged users. If your
terminal's default is /NONAMED_DIRECTORY, then this command also
changes the directory location of a privileged user.

Format
SET UIC [uic]

SHOW ACCOUNTING Micro/RSX Advanced Programmer's Kit

SHOW ACCOUNTING displays current information on your terminal
session, if you are nonprivileged. Privileged users can display information
about any terminal session.

Format
SHOW ACCOUNTING/qualifier

Command Qualifiers
/INFORMATION
/TRANSACTIONS[:infile] outfile

Quick Reference 10-45

SHOW ASSIGNMENTS Chapter 13

SHOW ASSIGNMENTS displays at your terminal your local and login
logical name assignments. Privileged users can display assignments for
other terminals as well as all assignments in the operating system.

SHOW LOGICAL displays the same information as SHOW ASSIGNMENTS.

Format
SHOW ASSIGNMENTS[/qualifier[s))

Command Qualifiers
/ALL
/GLOBAL
/GROUP[:g]
/LOCAL
/LOGIN
/SYSTEM
/TERMINAL:ttnn:

!Privileged
!UIC group number
!Default
!Same as /LOCAL
!Synonym for /GLOBAL; privileged
!Privileged

SHOW CACHE RSX-7 7M/M-PLUS System Management Guide

SHOW CACHE displays data caching information.

Format
SHOW CACHE [ddnn:][/qualifier]

Command Qualifiers
/RATE:n

SHOW CLOCK_QUEUE

!n is number of seconds

Chapter 15

SHOW CLOCK-QUEUE displays information about tasks currently in the
clock queue. This information consists of the task names, the next time
each task is to run, and each task's reschedule interval, if any.

Format
SHOW CLOCK-QUEUE

10-46 Quick Reference

SHOW COMMON Chapter 15

SHOW COMMON displays the names of resident commons installed in
the system, their PCB addresses, the number of attached tasks, and the
status of the common. If you do not specify a common name, all commons
are displayed.

Format
SHOW COMMON[:name][/qualifier]

Command Qualifier
/TASK

SHOW [DA Y]TIME

!Displays tasks attached to a
!named common.

Micro/RSX System Manager's Guide

SHOW [DA Y]TIME displays the system time and date setting.

Format
SHOW [DA Y]TIME

SHOW DEFAULT Chapter 12

SHOW DEFAULT displays the current default device and directory for your
terminal. This command also displays whether your terminal's default is
/NAMED_DIRECTORY or /NONAMED_DIRECTORY, and your User
Identification Code.

Format
SHOW DEFAULT

SHOW DEVICES Chapter 13

SHOW DEVICES displays information about the devices included in the
system. This command displays 2-character mnemonic names only.

Quick Reference 10-47

Format
SHOW DEVICES[jqualifier]

Command Qualifiers
/[NO]CACHE
/dd[nn:]
/[NO]PUBLIC
/[NO]SYSTEM
/WIDTH:ddnn:

!Synonym for /PUBLIC

SHOW ERROR_LOG Micro/RSX System Manager's Guide

SHOW ERROlLLOG provides a brief display of error-logging information
on the devices specified. If you do not specify any devices, the qualifier
provides information on all devices in the system. The default is to display
this report on your terminal.

Format
SHOW ERROlLLOG[jqualifier[s)) devlist

Command Qualifiers
/CURRENT
/HISTORY
/ OUTPUT[: filespec]
/RECENT

SHOW HOST Chapter 2

SHOW HOST displays the name of the processor to which your terminal
currently is connected. It also shows you the name and version number
of the operating system running on the processor.

Format
SHOW HOST

10-48 Quick Reference

SHOW LIBRARY Chapter 15

SHOW LIBRARY displays the current Micro/RSX library directory. This is
the directory where the nonprivileged system utilities are kept.

Format
SHOW LIBRARY[/qualifier]

Command Qualifier
/DIRECTORY !Non-operational, for

!for VMS compatibility

SHOW LOGICALS Micro/RSX Guide to Advanced Programming

SHOW LOGICALS displays at your terminal your local and login logical
name assignments. Privileged users can display assignments for other
terminals as well as all assignments in the operating system.

SHOW ASSIGNMENTS displays the same information as SHOW
LOGICAL.

Format
SHOW LOGICAL[/qualifier[s]]

Command Qualifiers
. /ALL

/GLOBAL
/GROUP[:g]
/LOCAL
/LOGIN
/SYSTEM
/TERMINAL:ttnn:

!Privileged
!UIC group number
!Default
!Same as /LOCAL
!Synonym for /GLOBAL; privileged
!Privileged

SHOW PARTITIONS Chapter 15

SHOW PARTITIONS displays address and content information about the
partitions in the system. You can display information about all partitions
or about a single partition.

Format
SHOW P ARTITIONS[:name]

Quick Reference 10-49

SHOW PROCESSOR Chapter 12

SHOW PROCESSOR displays information about the processors, batch
processors, printers, card readers, and other devices under control of the
Queue Manager.

Format
SHOW processortype processomame

Processor Types
CARD-READER
DEVICE

INPUT
PRINTER

PROCESSOR

SHOW PROTECTION

!INPUT is synonym.
!All nonbatch output processors;
!synonym for PRINTER.
!CARD-READER is synonym.
!All nonbatch output processors;
!synonym for DEVICE.

Chapter 12

SHOW PROTECTION displays your personal default file protection code.
Your default file protection can be established in two ways: by issuing the
SET PROTECTION/DEFAULT command and by using the Account File
Maintenance Utility (ACNT) to enter a protection code for your account.

Format
SHOW PROTECTION

SHOW QUEUE Chapter 12

SHOW QUEUE displays information about batch and print jobs in
queues.

Format
SHOW QUEUE[/qualifier] [queuename]

Command Qualifiers
/ALL

/BATCH
/BRIEF
/DEVICE

10-50 Quick Reference

!All entries in all queues.
!Default.
!All entries in all batch queues.

!All nonbatch queues; synonym for
!/PRINTER.

/ENTRY:n
/FILES

/FORMS:n
/FULL
/NAME:jobname

/OWNEILUIC:[[uic]]

/PRINT

!Lists files in each job; not as
!long as /FULL.

!Lists only jobs with that name;
!may be more than one.
!Lists only jobs from that UIC;
!default UIC is login UIC.
!All nonbatch queues; synonym for
!jDEVICE.

SHOW SYSTEM Micro/RSX System Manager's Guide

SHOW SYSTEM displays information about the current system.

Format
SHOW SYSTEM[/ qualifier]

Command Qualifiers
/CLI
/CRASlLDEVICE
/DIRECTORY

/EXTENSION_LIMIT
/NETWORI<-UIC

/PACKETS

/POOL
/POOL/LIMITS
/SECONDARYJOOL

!CLls on current system

!Default; displays current system
!directory
!Task extension limit
!Directory that DECnet-tasks
!are located
!Maximum I/O packets and number
!currently available
!Displays pool statistics
!Dispalys pool limits
!Shows secondary pool

Quick Reference 10-51

SHOW TASKS Chapter 15

SHOW TASKS displays information about active or installed tasks.

Format
SHOW T ASKS[:taskname 11 qualifier[s]

Command Qualifiers
/ ACTIVE[:ttnn:]
/DEVICE:ddnn:

/INSTALLED
/LOGICALUNITS

/BRIEF
/FULL
/ALL

!Show tasks installed from named
!device

!Static LUNs for installed task
!qualifier

SHOW TERMINAL Chapter 11

SHOW TERMINAL displays information about your terminal and other
terminals on your system. If you do not specify a qulifier, SHOW
TERMINAL displays all attributes for your terminal (TI:).

Format
SHOW TERMINAL[:ttnn:][/qualifier]

Command Qualifiers
/[NO]ADVANCED_ VIDEO
/[NO]ANSLCRT
/[NO]AUTOBAUD
/[NO]ASR33
/[NO]ASR35
/[NO]BLOCI<-MODE
/[NO]BROADCAST
/CLI:cliname
/[NO]CONTROL:C
/[NO]CRFILL
/DCL
/[NO]DEC_CRT
/[NO]DTCOI
/[NO]ECHO
/[NO]EDIT~ODE

10-52 Quick Reference

/[NO]EIGHT _BIT
/[NO]ESCAPE
/[NO]FORMJEED
/[NO]FULLDUPLEX
/[NO]HARDCOPY
/[NO]HOLD_SCREEN
/[NO]HOSTSYNC
/HT
/[NO]INTERACTIVE
/[NO]KSR33
/[NO]KSR35
/[NO]LA12
/[NO]LA24
/[NO]LA30P
/[NO]LA30S
/[NO]LA34
/[NO]LA36
/[NO]LA38
/[NO]LA50
/[NO]LAIOO
/[NO]LA120
/[NO]LA180S
/[NO]LA210
/[NO]LFFILL
/[NO]LN03
/[NO]LOCAL
/LOGGED_ON
/[NO]LQP02
/[NO]LQP03
/[NO]LOWERCASE

/MODEL
/P AGE_LENGTH
/[NO]P ARITY
/[NO]P ASSALL
/[NO]P ASTHRU
/[NO]PRIVILEGE
/PRINTERJORT
/PRO_SERIES
/[NO]REGIS
/[NO]REMOTE
/RT

!DECnet host terminal

!NOLOWER same as /UPPER
!and is default.

!DECnet host terminal

Quick Reference 10-53

I[NO]SCOPE
I[NO]SERIAL
I[NO]SLAVE
I[NO]SOFT _CHARACTERS
ISPEED
I[NO]TAB
ITI:
ITT
I[NO]TTSYNC
I[NO]TYPE-AHEAD
I[NO]UPPERCASE

IVT:
I[NO]VT05
I[NO]VT50
I[NO]VT52
I[NO]VT55
I[NO]VT61
I[NO]VTIOO
I[NO]VTIOI
I[NO]VTI02
I[NO]VTI05
I[NO]VT125
I[NO]VT131
I[NO]VT132
I[NO]VT200_SERIES
IWIDTH
I[NO]WRAP

SHOW UIC Chapter 12

!All real terminals

!jNO UPPERCASE same as
!jLOWERCASE.
!Virtual terminal

SHOW UIC displays your User Identification Code (UIC). Your UIC
is unique and identifies you to the operating system. Your UIC also
determines whether you are a privileged or nonprivileged user.

Format
SHOW UIC

10-54 Quick Reference

SHOW USERS Introduction to Micro/RSX

SHOW USERS displays all currently logged-in terminals, including DECnet
host terminals and virtual terminals, with the default directory and login
UIC for each.

Format
SHOW USERS

START Chapter 15

START resumes execution of a task stopped by a STOP$S directive. The
task name defaults to TTnn:

Format
ST ART[j qualifier] [taskname]

Command Qualifier
jTERMINAL:ttnn: !Prlvileged

START fERROR_LOG Micro/RSX System Manager's Guide

STARTjERROILLOG begins logging on all error-logging devices in the
system. This qualifier uses LB:[l,6]LOG.ERR as the default Error Log file
and LB:[l,6]BACKUP.ERR as the default backup file. It starts error limiting
with default limits of five hard errors and eight soft errors.

Format
START jERROILLOG[j qualifier[s]] filespec

Command Qualifiers
jINCLUDE[:(arg[s])] !Selects what kind of errors

!will be logged
ALL
CONTROL
ERRORS
MEMORY
PERIPHERAL
PROCESSOR
SYSTEM-INFORMATION

jNEW_VERSION
j[NO]LIMITING
jUPDATE
JZERO

Quick Reference 10-55

START /processortype Micro/RSX System Manager's Guide

This form of the START command starts a processor, batch processor,
output processor, or card-reader processor. Privileged.

Format
ST ART / processortype processomame[! qualifier[s]]

Processortypes
APPLICATIONSJROCESSOR
BA TClLPROCESSOR
CARD-READER
DEVICE
INPUT
PRINTER
PROCESSOR

Command Qualifiers
/FORMS:n

/CONTINUE
/RESTART
/NEXT
/TOP_OFJILE
/BACKSPACE:n
/FORWARDSPACE:n
/PAGE:n
/ALIGN

!INPUT is synonym.
!PRINTER is synonym.
!CARD-READER is synonym.
!DEVICE is synonym.

!Overrides value set on
!initialization.
!Default

START/QUEUE Micro/RSX System Manager's Guide

ST ART/QUEUE starts a queue. Privileged.

Format
START /QUEUE queuename

10-56 Quick Reference

START /QUEUE/MANAGER Micro/RSX System Manager's
Guide

START /QUEUE/MANAGER starts the Queue Manager. Privileged.

Format
START /QUEUE/MANAGER

START /UNBLOCK Chapter 15

START /UNBLOCK continues the execution of a task blocked by the STOP
/BLOCK command. Nonprivileged users can unblock any task running
from their own terminal. Privileged users can unblock any task. See main
text.

Format
START /UNBLOCK[j qualifier] [taskname]

Command Qualifier
/TERMINAL:ttnn:

STOP/ABORT Chapter 12

!Privileged

STOP / ABORT stops the current job on a line printer immediately.
Privileged users can stop any job. Nonprivileged users can stop their
own jobs.

Format
STOP / ABORT printer[:]

STOP/BLOCK Chapter 15

STOP /BLOCK blocks an installed running task. The task no longer
executes or competes for memory. Nonprivileged users can block tasks
running from their own terminals. Privileged users can block any task.
See main text.

Format
STOP /BLOCK[/qualifier] [taskname]

Command Qualifier
/TERMINAL:ttnn: !Privileged

Quick Reference 10-57

STOP /ERROILLOG Micro/RSX System Manager's Guide

STOP /ERROLLOG causes logging to stop on all devices and stops error
limiting as well.

Format
STOP /ERROLLOG

STOP /processortype Micro/RSX System Manager's Guide

This form of the STOP command stops a processor, batch processor,
card-reader processor, printer, or other output processor. Privileged.

Format
STOP /processortype processomame[/qualifier[s]]

Processortypes
APPLICA TIONSJROCESSOR
BATClLPROCESSOR
CARD-READER
DEVICE
INPUT
PRINTER
PROCESSOR

Command Qualifiers
/ABORT
/FILE-END
/JOB-END
/PAUSE

!INPUT is synonym.
!PRINTER is synonym.
!CARD-READER is synonym.
!DEVICE is synonym.

!See main text.

STOP/QUEUE Micro/RSX System Manager's Guide

STOP /QUEUE stops queues. Privileged.

Format
STOP /QUEUE queuename

10-58 Quick Reference

STOP /QUEUE/MANAGER Micro/RSX System Manager's Guide

STOP/QUEUE/MANAGER stops the Queue Manager. The Queue
Manager stops after the current job is processed (unless you specify the
/ ABORT qualifier). Privileged.

Format
STOP /QUEUE/MANAGER[/qualifier]

Command Qualifier
/ABORT

SUBMIT Chapter 8

!Stops QMG immediately.

SUBMIT queues QMG batch jobs consisting of one or more user batch
jobs for processing by a batch processor.

Format
SUBMIT[/ qualifier[s]] filespec[s]

Command Qualifiers
/ AFTER:TOMORROW
/ AFTER:(dd-mmm-yy hh:mm)
/[NO]DELETE

/[NO]HOLD

/[NO]LOGJILE
/NAME:jobname

/[NO]PRINTER[:queuename]

/PRIORITY:n

/QUEUE:queuename
/[NO]RESTART
/[NO]TRANSFER

!Deletes batch file after run;
!command or filespec qualifier.
!Default is /NOHOLD; /HOLD has
!same effect as HOLD command.

!1-9 characters; default is first
!filename.
!Optionally name queue for log
!print job.
!n is 1-150 non privileged; through
!250 privileged; default n=50.

Quick Reference 10-59

TYPE Chapter 12

TYPE prints selected files on your terminal.

Format
TYPE [/ qualifier[s]]filespec[s]

Command Qualifiers
/EXCLUDE:filespec
/NOWARNINGS
/SHARED

/DATE:dd-mmm-yy
/SINCE:dd-mmm-yy
/THROUGH:dd-mmm-yy
/SINCE:dd-mmm-yy
/TODAY

UNFIX Chapter 15

!Filespec can include wildcards.
!Suppresses error messages
!Allows other user to access file
!while you type it
!Given day only
!From given day through current day
!From beginning through given day
!From given day through given day
!Todayonly

UNFIX frees a fixed task or region from memory. The taskname parameter
can be the name of either a task or a region. Privileged.

Format
UNFIX[/ qualifier] taskname

Command Qualifiers
/READONL Y _SEGMENT
/REGION

UNLOCK Chapter 12

!RO segment of multiuser task.

UNLOCK unlocks locked files. Locked files are files that have been
improperly closed. They are identified by an "L" in the directory listing.

Format
UNLOCK [/qualifier[s]] filespec[s]

Command Qualifiers
/EXCLUDE:filespec
/NOWARNINGS
/DATE:dd-mmm-yy
/SINCE:dd-mmm-yy

10-60 Quick Reference

!Filespec can include wildcards.
!Suppresses error messages
!Given day only
!From given day through current day

jTHROUGH:dd-mmm-yy !From beginning through given day
jSINCE:dd-mmm-yy jTHROUGH:dd-mmm-yy

!From given day through given day
JTODA Y !Today only

Quick Reference 10-61

Index

A
Abbreviation (DCL), 2-8, 10-1
Abort, 3-15
ABORT command, 7-6 to 7-8,

10-2
<ACCOUN> symbol (ICP),

9-25
Account File Maintenance

Program
See ACNT

ACNT,5-2
ADVANCE (EDT keypad

function), 4-14
ADVANCE command (EDT), 4-66
ALLOCATE command, 10-2

batch processing, 8-15 to 8-16
<ALPHAN> symbol (ICP),

9-11
<ALTMOD> symbol (ICP),

9-11
ANALYZE command

ANALYZE/CRASH-DUMP,
10-3 to 10-4

ANALYZE/ERROlLLOG, 10-4
ANALYZE/MEDIA, 10-5

APPEND (EDT keypad function),
4-23

APPEND command, 10-6
APPEND/ERROlLLOG, 10-7

APPEND command (EDT), 4-66
Applications system, 1-2
.ASK directive (ICP), 9-45 to 9-46
.ASKN directive (ICP), 9-47 to

9-49
.ASKS directive (ICP), 9-50 to

9-51
ASSIGN command, 10-7

ASSIGN/QUEUE, "10-7
ASSIGN/REDIRECT, 10-8
ASSIGN/TASK, 10-8

Attach mode (ICP), 9-57

B
BACK SPACE key, 3-12
BACK SPACE key (EDT), 4-70
BACKUP (EDT keypad function),

4-14
BACKUP command, 10-8 to 10-10
BACKUP command (EDT), 4-66
Batch command, 8-5

CONTINUE, 8-11
DATA, 8-7
EOD,8-9
EOJ, 8-6
GOTO, 8-11
IF, 8-14
JOB, 8-5
ON, 8-12
SET, 8-13

Index-l

Batch command (cont'd.)
STOP, 8-10

Batch job
user, 8-2

Batch log, 8-32 to 8-35
Batch processing, 2-17, 8-1 to 8-4
.BEGIN directive (ICP), 9-51 to

9-52
Begin editing (EDT), 4-3
Begin-End block (ICP), 9-3, 9-51,

9-62
BlINE command (EDT), 4-66
BOTTOM (EDT keypad function),

4-16
BOTTOM command (EDT), 4-66
BROADCAST command, 3-21 to

3-25, 10-10
Buffer (EDT), 4-12 to 4-13, 4-44 to

c

4-50
creating, 4-44
main, 4-12
moving between, 4-44
moving text

between buffers, 4-46
from a buffer to a file, 4-48
from a file to a buffer, 4-46

PASTE, 4-13
using, 4-48

CANCEL command, 10-10
CAPS lOCK key, 3-13
CFL, 10-13
.CHAIN directive (ICP), 9-52
CHANGE command (EDT), 4-54
CHNGCASE (EDT keypad

function), 4-26
CHNGCASE command (EDT),

4-66
CLEAR command (EDT), 4-60
<ClI> symbol (ICP), 9-26

ClI mode (ICP), 9-58
Clock queue, 10-46
.ClOSE directive (ICP), 9-53

Index-2

Colon (:), 2-11
COMMAND (EDT keypad

function), 4-26
COMMAND command (EDT),

4-45, 4-66
Command library

ICP, 9-40
COMMAN symbol (ICP), 9-36
Comments in command lines,

2-15
<CONFIG> symbol (ICP), 9-26

CONTINUE command, 10-11
batch processing, 8-11

Control commands (EDT), 4-54 to
4-60

CHANGE,4-54
EXIT,4-55
HELP, 4-55
QUIT,4-55

Control File language
See CFl

Control-Z mode (ICP), 9-58
CONVERT command, 10-11
COPY command, 5-37 to 5-40,

10-12
COpy command (EDT), 4-46,

4-60
Crash, 10-3 to 10-4
CREATE command, 5-18 to 5-20,

10-13
CREATE/CFl, 10-13
CREATE/DIRECTORY, 5-20,

10-13
CTRl/U function (EDT), 4-21
CTRl key, 3-15

CTRl/C, 3-15
CTRl/G, 3-17
CTRl/O, 3-16
CTRl/U, 3-17
CTRl/Z, 3-15, 3-16
EDT,4-70

CUT (EDT keypad function), 4-22
CUT command (EDT), 4-66

D
DATA command

batch processing, 8-7 to 8-9
.DATA directive (ICP), 9-53 to

9-54
Data mode (ICP); 9-58
Date, 2-10
<DATE> symbol (ICP), 9-26

Date-related qualifier (DCL), 5-11
to 5-12

DCL, 2-1, 10-1
command line, 2-3 to 2-4
correcting errors, 2-16 to 2-17
functional grouping, 2-2

DEALLOCATE command, 10-14
DEASSIGN command, 10-14

DEASSIGN/QUEUE, 10-14
.DEC directive (ICP), 9-55
Decimal mode (ICP), 9-58
Decimal number, 2-10
DECnet software, 2-12
<DEFAUL> symbol (ICP), 9-11

Default
file specification, 5-5 to 5-8,

5-66
DEFINE command, 10-15
DEFINE key (EDT), 4-33
DEFINE KEY command (EDT),

4-61
DEFINE MACRO command

(EDT), 4-61
.DELA Y directive (ICP), 9-55
DELETE command, 5-32 to 5-35,

10-15
DELETE/DIRECTORY, 10-16
DELETE/ENTRY, 5-55, 10-16

QMG,8-24
DELETE/JOB, 10-16
DELETE/PROCESSOR, 10-16

DELETE/QUEUE, 10-17

DELETE command (EDT), 4-61
DELETE key, 3-12
Deleting text (EDT), 4-17

commands
DEL C, 4-66
DEL EOL, 4-66
DELETE, 4-61
nta , A_I:.'7 _ , -Z-VI

DEL W, 4-67
CTRL/U function, 4-17
DELETE key, 4-17
keypad function

CUT,4-17
DEL C, 4-17
DEL EOL, 4-17
DEL L, 4-17
DEL W, 4-17

LINE FEED key, 4-17
Detach mode (ICP), 9-57
Device, 6-2 to 6-5

displaying, 6-24
information

acquiring (ICP), 9-90
translating (ICP), 9-92

Device driver
testing (ICP), 9-71

DIGITAL Command Language
See DCL

<DIRECT> symbol (ICP), 9-27
Directory, 5-1

protection, 5-16 to 5-17, 5-71
to 5-77

DIRECTORY command, 5-23 to
5-31, 10-17

.DISABLE directive (ICP), 9-56
DISMOUNT command, 6-14 to

6-17, 10-18
Display mode (ICP), 9-58
DOWN command (EDT), 4-67

E
EDIT command, 4-74 to 4-78

Index-3

EDIT command (cont'd.)
EDIT/EDT, 10-19
/RECOVER qualifier, 4-12

Editor
See EDT Editor

EDT Editor
advanced features, 4-30 to 4-50
buffer, 4-12 to 4-13, 4-44 to

4-50
creating, 4-44
main, 4-12
moving between, 4-44
moving text

between buffers, 4-46
from a buffer to a file,

4-48
from a file to a buffer,

4-46
PASTE, 4-13
using, 4-48

command summary, 4-50 to
4-74

control, 4-54 to 4-60
editing entities, 4-63 to

4-65
keypad mode, 4-65 to 4-70
line mode, 4-60 to 4-63
nokeypad mode, 4-70 to

4-74
conventions, 4-2
DEFINE key, 4-33
defining key functions, 4-33 to

4-36
defining macros, 4-31 to 4-32
EDIT command, 10-19
editing entities, 4-63 to 4-65
ending, 4-10 to 4-11
features, 4-1
Gold key, 4-26
help, 4-9 to 4-10
indirect command files, 4-42
introduction, 4-1 to 4-2
invoking, 4-3
keypad mode, 4-3 to 4-4, 4-13

to 4-27

Index-4

EDT Editor
keypad mode (cont'd.)

deleting text, 4-17
inserting text, 4-17
locating text, 4-20
moving text, 4-22
substituting text, 4-24

line mode, 4-4 to 4-6, 4-27 to
4-30

range, 4-27
symbol, 4-29
TYPE WHOLE command,

4-27
mode

changing, 4-8
choosing, 4-3
keypad, 4-3 to 4-4
line, 4-4 to 4-6, 4-27 to

4-30
nokeypad, 4-7 to 4-8

nokeypad mode, 4-7 to 4-8,
4-70 to 4-74

personal features, 4-36 to 4-42
recovering text, 4-11 to 4-12
startup command files, 4-39
structure tabs, 4-43 to 4-44

.ENABLE directive (ICP), 9-57

.END directive (ICP), 9-62
End editing (EDT), 4-10 to 4-11
ENTER (EDT keypad function),

4-20
ENTER command (EDT), 4-67
ENTER key, 3-12
EOD command

batch processing, 8-9
<EOF> symbol (ICP), 9-11

EOJ command
batch processing, 8-6

EOL command (EDT), 4-67
Equal sign (=)

DCL, 2-11
.ERASE directive (ICP), 9-62
<ERRCTL> symbol (ICP), 9-14
<ERRNUM> symbol (ICP),

9-14

Error
correcting, 2-16

Error logging, 10-4, 10-7, 10-30,
10-38, 10-48, 10-55, 10-58

Error message
batch processing, 8-35 to 8-38

<ERRSEV> symbol (lCP), 9-15
<ERSEEN> symbol (ICP), 9-12
<ESCAPE> symbol (ICP), 9-12

Escape mode (ICP), 9-59
Escape sequence

ICP, 9-59
/EXCLUDE qualifier (DCL), 5-11
EXIT command (EDT), 4-55
.EXIT directive (ICP), 9-64
<EXSTAT> symbol (ICP), 9-15
<EXSTRI> symbol (ICP), 9-27

F
<FALSE> symbol (ICP), 9-12
<FILATR> symbol (ICP), 9-28

to 9-30
File, 5-1

batch log, 8-32 to 8-35
closing (ICP), 9-53
creating, 4-3
delaying (ICP), 9-55
editing

end, 4-10 to 4-11
start, 4-3

indirect command
See ICP

location, 5-2
opening

appending (ICP), 9-77
reading (ICP), 9-79

opening,(ICP), 9-76
outputting data (ICP), 9-53
owner, 5-2
protection, 5-12 to 5-16, 10-40

displaying, 5-77
setting, 5-71 to 5-77

testing (ICP), 9-92

<FILERR> symbol (ICP), 9-16
to 9-22

Filespec
See File specification

File specification, 5-3 to 5-8
File type, 5-6
FILL (EDT keypad function), 4-26
<FILSPC> -symbol (ICP), 9-30

FIND (EDT keypad function),
4-20

FIND command (EDT), 4-61, 4-67
FIX command, 10-19
<FMASK> symbol (ICP), 9-30

FNDNXT (EDT keypad function),
4-20

FNDNXT command (EDT), 4-67
<FORATT> symbol (ICP), 9-22

Full-duplex mode (ICP), 9-71

G
General purpose system, 1-3
Global mode (ICP), 9-58
GOLD command (EDT), 4-66,

4-67
GOLD key (EDT)

keypad mode, 4-14
.GOSUB directive (ICP), 9-65
GOTO command

batch processing, 8-11 to 8-12
.GOTO directive (ICP), 9-66

H
Help

EDT, 4-9 to 4-10
HELP command, 2-6 to 2-8, 3-18

to 3-21, 10-19
HELP command (EDT)

control command, 4-55
keypad mode, 4-68

HOLD command
HOLD /ENTRY, 5-63, 10-20
HOLD /ENTRY command, 8-31
HOLD /JOB, 10-20

HOLD SCREEN key, 3-13

Index-5

<lAS> symbol (ICP), 9-12
ICP, 2-18, 8-4, 9-1

block-structure file, 9-3
branching, 9-66
command library, 9-40
command line, 9-43
directive, 9-43

summary, 9-6 to 9-9
error processing, 9-74
examples, 9-97 to 9-105
exiting, 9-64
formatting, 9-43
functions, 9-3
interrupting, 9-82
invoking interactively, 9-97
label

defining, 9-44 to 9-45
direct-access, 9-44

logical test, 9-66
compound, 9-73

message, 9-105 to 9-110
operating mode

default, 9-57
disabling, 9-56
enabling, 9-57
testing, 9-70

parsing, 9-80
special symbol, 9-11

logical, 9-11
numeric, 9-14
string, 9-25

subroutine
calling, 9-65
returning, 9-84

substring
searching, 9-88

suspending, 9-95
switches, 9-40 to 9-42

IClI, 9-40
IlB, 9-40
IlO, 9-42
ITR,9-40

Index-6

ICP (cont'd.)
symbol, 9-10

deleting, 9-62
displaying, 9-97
numeric, 9-32 to 9-34

decrementing, 9-55
defining, 9-47
incrementing, 9-73
setting, 9-85, 9-86

reserved, 9-36
setting logical, 9-84
string, 9-32 to 9-36

defining, 9-50
setting, 9-86

substituting, 9-59
substitution, 9-36

formatting, 9-38 to
9-39

testing, 9-66, 9-69, 9-72,
9-88

terminating, 9-88
tracing, 9-40, 9-60
translating logical names, 9-95
universal library, 9-40

ICP operating mode, 9-56 to 9-62
.IFACT directive (ICP), 9-68
IF command

batch processing, 8-14 to 8-15
.IFDF directive (ICP), 9-69
.IF directive (ICP), 9-66
.IFDISABlED directive (ICP), 9-70
.IFENABlED directive (ICP), 9-70
.IFF directive (ICP), 9-72
.IFINS directive (ICP), 9-70
.IFLOA directive (ICP), 9-71
.IFNACT directive (ICP), 9-68
.IFNDF directive (ICP), 9-69
.IFNINS directive (ICP), 9-70
.IFNlOA directive (ICP), 9-71
.1FT directive (ICP), 9-72
.INC directive (ICP), 9-73
INCLUDE command (EDT), 4-46,

4-61
Indirect command file (EDT), 4-42
Indirect Command Processor

Indirect Command Processor
(cont'd.)

See ICP
INITIALIZE command, 6-18 to

6-24, 10-20
INITIALIZE/PROCESSOR

input, 10-21
output, 10-22

INITIALIZE/QUEUE, 10-23
INITIALIZE/UPDATE, 10-23

INSERT command (EDT), 4-61
Inserting text (EDT), 4-17
INSTALL command, 7-8 to 7-10,

10-24

J
JOB command

batch processing, 8-5 to 8-6
Journal file (EDT), 4-11 to 4-12

See also /RECOVER qualifier

K
Keyboard, 3-1, 3-10 to 3-17
Key functions (EDT)

defining, 4-33 to 4-36
Keypad, 3-14 to 3-15
Keypad mode (EDT), 4-3 to 4-4,

4-13 to 4-27

L

command summary, 4-65 to
4-70

deleting text, 4-17
Gold key, 4-14
inserting text, 4-17
locating text, 4-20
moving text, 4-22
moving the cursor, 4-14
substituting text, 4-24

Label
ICP

defining, 9-44 to 9-45
direct-access, 9-44

volume, 6-6

.LABEL directive (ICP), 9-44 to
9-45

LEFT command (EDT), 4-68
LIBRARY command, 10-24

LIBRARY /COMPRESS, 10-25
LIBRARY/CREATE, 10-25
LIBRARY /DELETE, 10-26
LIBRARY/EXTRACT, 10-26
LIBRARY /INSERT, 10-26
LIBRARY/LIST, 10-27
LIBRARY/REMOVE, 10-27
LIBRARY/REPLACE, 10-27

<LIBUIC> symbol (ICP), 9-30
Line continuation, 2-15
LINE FEED key (EDT), 4-70
Line mode (EDT), 4-4 to 4-6, 4-27

to 4-30
command summary, 4-60 to

4-63
line numbers, 4-27
range, 4-27
symbol, 4-29
TYPE WHOLE command, 4-27

Line numbers (EDT), 4-27
Line terminator, 3-12
LINK command, 10-28 to 10-29
<LOCAL> symbol (ICP), 9-12

Local mode (ICP), 9-71
Locating text (EDT), 4-20

ADV ANCE keypad function,
4-20

BACKUP keypad function, 4-20
CTRL/U, 4-21
DO function, 4-20
ENTER keypad function, 4-20
FIND keypad function, 4-20
FNDNXT keypad function,

4-20
SET SEARCH EXACT

command, 4-21
<LOGDEV> symbol (ICP),

9-31
Logical end-of-file directive (ICP),

9-74

Index-7

Logical name, 6-4
Logical unit number

See LUN
Login, 3-3
LOGIN command, 3-4 to 3-8,

10-30
Logout, 3-3, 3-9
LOGOUT command, 3-9 to 3-10,

10-30
<LOGUIC> symbol (ICP), 9-31

Lowercase mode (ICP), 9-58
LUN,6-4

M
Macro (EDT)

defining, 4-31 to 4-32
MAIN buffer (EDT)

See buffer
<MAPPED> symbol (ICP),

9-12
Master File Directory

See MFD
<MEMSIZ> symbol (ICP), 9-22

MESSAGE/ERROILLOG
command, 10-30

MFD, 5-1
Micro/RSX Operating System, 1-1

to 1-5, 2-2
MOUNT command, 6-5 to 6-14,

10-30 to 10-32
batch processing, 8-15 to 8-16
qualifiers

/NOSHAREABLE, 6-8
/SHAREABLE, 6-8

MOVE command (EDT), 4-62
Moving text (EDT), 4-22

CUT keypad function, 4-22
GOLD key, 4-22
OPENLINE keypad function,

4-22
PASTE keypad function, 4-22
RESET keypad function, 4-22
SELECT keypad function, 4-22

Moving the cursor (EDT)

Index-8

Moving the cursor (EDT) (cont'd.)
ADVANCE keypad function,

4-14
BACKUP keypad function, 4-14
BOTTOM keypad function,

4-15
CHAR keypad function, 4-16
DOWN arrow key, 4-16
EOL keypad function, 4-16
GOLD key, 4-15
LEFT arrow key, 4-16
LINE keypad function, 4-16
RIGHT arrow key, 4-16
TOP keypad function, 4-15
UP arrow key, 4-16
WORD keypad function, 4-16

Multiple parameters, 2-10

N
<NETNOD> symbol (ICP),

9-31
<NETUIC> symbol (ICP), 9-31

Network, 2-12
Node, 2-12
Nokeypad mode (EDT), 4-7 to 4-8

command summary, 4-70 to
4-74

NO SCROLL key, 3-13
/NOSHAREABLE qualifier

MOUNT command, 6-8
Number, 2-10
<NUMBER> symbol (ICP),

9-13

o
< OCTAL> symbol (ICP), 9-13

Octal number, 2-10
ON command

batch processing, 8-12 to 8-13
.ONERR directive (ICP), 9-74
.OPENA directive (ICP), 9-77
.OPEN directive (ICP), 9-76
OPENLINE (EDT keypad

function), 4-22

OPEN LINE command (EDT),
4-68

.OPENR directive (ICP), 9-79
Operating mode

ICP
default, 9-57
disabling, 9-56
enabling, 9-57
testing, 9-70

Operating system, 1-1 to 1-5
Overflow mode (ICP), 9-59

P
PAGE command (EDT), 4-68
Parent-offspring mode (ICP)

see Potask mode
.P ARSE directive (ICP), 9-80
Parsing

ICP, 9-80
Partition

acquiring information (ICP),
9-94

Password, 3-5
PASTE buffer (EDT)

See buffer
PASTE command (EDT), 4-68
.P AUSE directive (ICP), 9-82
Physical device, 6-4
Potask mode (ICP), 9-71
PRINT command, 5-44 to 5-53,

10-32
PRINT command (EDT), 4-62
Private volume, 6-8
<PRIVIL> symbol (ICP), 9-13

Prompt, 2-4
Protection, 5-12 to 5-18, 5-71 to

5-77, 10-40
directory, 5-16 to 5-17
file, 5-12 to 5-16, 10-40
volume, 5-17 to 5-18

Pseudo device, 3-3, 6-4
Public volume, 6-8
PURGE command, 5-35 to 5-37,

10-33

Q

QMG,2-17
Qualifier, 2-4
Queue Manager

See QMG
Queue ~.,1anager command, 5-53

to 5-64
Quiet mode (ICP), 9-59
QUIT command (EDT), 4-55
Quoted string, 2-11

R
Range (EDT), 4-27

summary, 4-50
.READ directive (ICP), 9-83
Real-Time system, 1-2
Record

reading (ICP), 9-83
Recovering text (EDT), 4-11 to

4-12
/RECOVER qualifier

EDIT command, 4-12
RELEASE command

RELEASE/ENTRY, 5-63, 8-31
to 8-32, 10-34

RELEASE/JOB, 10-34
REMOVE command, 7-10 to 7-11,

10-34
RENAME command, 5-40 to 5-42,

10-34
REPLACE (EDT keypad function),

4-25
REPLACE command (EDT), 4-62,

4-68
REQUEST command, 10-35
RESEQUENCE command (EDT),

4-62
Reserved symbol (ICP), 9-36
RESET (EDT keypad function),

4-26
RESET command (EDT), 4-68
Resource Accounting, 10-45
.RETURN directive (ICP), 9-84

Index-9

RETURN key, 3-11
RIGHT command (EDT), 4-68
<RSX11D> symbol (ICP), 9-13

RUN command, 7-2 to 7-6, 10-35
to 10-36

s
SECT command (EDT), 4-68
SELECT (EDT keypad function),

4-22
SELECT command (EDT), 4-68
SET command

batch processing, 8-13 to 8-14
SET [DAY]TIME, 10-36
SET DEFAULT, 5-66 to 5-67,

10-37
SET DEVICE, 10-37
SET ERROILLOG, 10-38
SET FILE, 10-38
SET HOST, 2-13, 10-39
SET LIBRARY/DIRECTORY,

10-39
SET PARTITION, 10-39
SET PASSWORD, 10-39
SET PRIORITY, 7-14 to 7-15,

10-40
SET PROTECTION, 5-71 to

5-74, 10-40
SET PROTECTION/DEFAULT,

5-74 to 5-77, 10-40
SET QUEUE, 5-60 to 5-62, 8-28

to 8-30
SET QUEUE/ENTRY, 10-41
SET QUEUE/JOB, 10-41
SET SYSTEM, 10-42
SET UIC, 5-68 to 5-70, 10-45

SET command (EDT), 4-37
SET CASE, 4-55
SET CURSOR, 4-55
SET ENTITY, 4-55
SET KEYPAD, 4-37, 4-56
SET LINES, 4-37, 4-56
SET MODE, 4-37, 4-56
SET NONUMBERS, 4-56
SET NUMBERS, 4-37

Index-l0

SET command (EDT) (cont'd.)
SET QUIET, 4-37, 4-56
SET SCREEN, 4-57
SET SEARCH, 4-21, 4-57
SET SEARCH EXACT, 4-21,

4-37
SET TAB, 4-43, 4-57
SET TRUNCATE, 4-58
SET VERIFY, 4-59
SET WRAP, 4-59

.SETD directive (ICP), 9-86

.SETF directive (ICP), 9-84

.SETL directive (ICP), 9-84

.SETN directive (ICP), 9-85

.SETO directive (ICP), 9-86

.SETS directive (ICP), 9-86

.SETT directive (ICP), 9-84
SET TERMINAL command, 3-26

to 3-27, 10-42 to 10-45
/SHAREABLE qualifier

MOUNT command, 6-8
SHIFT key, 3-13
SHOW command

SHOW ACCOUNTING, 10-45
SHOW ASSIGNMENTS, 10-46
SHOW CACHE, 10-46
SHOW CLOCICQUEUE,

10-46
SHOW COMMON, 10-47
SHOW [DAY]TIME, 10-47
SHOW DEFAULT, 5-68, 10-47
SHOW DEVICES, 6-24 to 6-27,

10-47
SHOW ERROILLOG, 10-48
SHOW HOST, 2-14, 10-48
SHOW LIBRARY, 10-49
SHOW LOGICALS, 10-49
SHOW PARTITIONS, 10-49
SHOW PROCESSOR, 5-59,

8-27 to 8-28, 10-50
SHOW PROTECTION, 5-77,

10-50
SHOW QUEUE, 5-56 to 5-58,

8-25 to 8-27, 10-50
SHOW SYSTEM, 10-51

SHOW command (cont'd.)
SHOW TASKS, 7-12 to 7-14,

10-52
SHOW TERMINAL, 3-27 to

3-30, 10-52 to 10-54
SHOW UIC, 5-70 to 5-71,

10-54
SHOW command (EDT)

SHOW BUFFER, 4-59
SHOW CASE, 4-59
SHOW CURSOR, 4-59
SHOW ENTITY, 4-59
SHOW KEY, 4-59
SHOW LINES, 4-38
SHOW NUMBERS, 4-38
SHOW SCREEN, 4-60
SHOW SEARCH, 4-38, 4-60
SHOW TERMINAL, 4-60
SHOW VERSION, 4-60

<SPACE> symbol (ICP), 9-23
Special symbol

ICP, 9-11
logical, 9-11
numeric, 9-14
string, 9-25

SPECINS (EDT keypad function),
4-26

SPECINS command (EDT), 4-69
START command, 10-55

START /ERROlLLOG, 10-55
START /PROCESSOR, 10-56
START/QUEUE, 10-56
START/QUEUE/MANAGER,

10-57
START /UNBLOCK, 10-57

Startup command file (EDT), 4-39
STOP command

ba tch processing, 8-10
STOP / ABORT, 5-62 to 5-63,

10-57
STOP/BLOCK, 10-57
STOP /ERROlLLOG, 10-58
STOP /PROCESSOR, 10-58
STOP /QUEUE, 10-58

STOP command (cont'd.)
STOP /QUEUE/MANAGER,

10-59
.STOP directive (ICP), 9-88
String

quoted, 2-11
<STRLEN> symbol (ICP), 9-23

SUSr-vUT command, 8-2, 8~17 to
8-21, 10-59

Subroutine
ICP

returning, 9-84
Subrouting

ICP
calling, 9-65

SUBS (EDT keypad function),
4-24

SUBS command (EDT), 4-69
SUBSTITUTE command (EDT),

4-62
Substituting text (EDT), 4-24

CUT keypad function, 4-24
FIND keypad function, 4-24
FNDNXT keypad function,

4-24
GOLD key, 4-24
REPLACE keypad function,

4-25
SELECT keypad function, 4-24
SUBS keypad function, 4-24

Substitution mode (ICP), 9-59
Substring

ICP
searching, 9-88

Switch
ICP, 9-40 to 9-42

<SYDISK> symbol (ICP), 9-31
Symbol

defining (ICP), 9-4
ICP, 9-10

deleting, 9-62
displaying, 9-97
numeric, 9-32 to 9-34

decrementing, 9-55
defining, 9-47

Index-II

Symbol
ICP (cont'd.)

incrementing, 9-73
setting, 9-85, 9-86

reserved, 9-36
setting logical, 9-84
string

defining, 9-50
setting, 9-86

substituting, 9-59
substitution, 9-36

formatting, 9-38 to
9-39

testing, 9-66, 9-69, 9-72,
9-88

Symbol (EDT), 4-29
<SYMTYP> symbol (ICP), 9-23
<SYSDEV> symbol (ICP), 9-31
< SYSID > symbol (ICP), 9-31
<SYSTEM> symbol (ICP), 9-23

System programmer command,
2-3

<SYSUIC> symbol (ICP), 9-31
<SYTYP> symbol (ICP), 9-31
<SYUNIT> symbol (ICP), 9-23

T
Tab

structured (EDT), 4-43 to 4-44
Task, 7-1 to 7-6

aborting, 7-6
displaying, 7-12 to 7-14
executing, 7-2
executing in parallel (ICP), 9-96
installing, 7-8
priority

setting, 7-14, 7-15
testing (ICP), 9-68, 9-70

Task build
See TKB

Terminal, 3-1 to 3-3
characteristics

setting, 3-26, 10-42
showing, 3-27, 10-52

Index-12

Terminal (cont'd.)
virtual, 8-1

· TESTDEVICE directive (ICP),
9-90 to 9-92

· TEST directive (ICP), 9-88
.TESTFILE directive (ICP), 9-92
· TESTP ARTITION directive (ICP),

9-94
TI: pseudo device, 3-3
<TICLPP> symbol (ICP), 9-23
<TICWID> symbol (ICP), 9-23
<TIME> symbol (ICP), 9-31

Time-out mode (ICP), 9-59
Time-sharing system, 1-3
<TIMOUT> symbol (ICP), 9-13
<TISPED> symbol (ICP), 9-24
<TITYPE> symbol (ICP), 9-25

TKB, 10-28 to 10-29
TOP (EDT keypad function), 4-16
TOP command (EDT), 4-69
Trace mode (ICP), 9-60
.TRANSLATE directive (ICP),

9-95
<TRUE> symbol (ICP), 9-13

Truncate mode (ICP), 9-60
TYPE command, 5-42 to 5-44,

10-60
TYPE command (EDT), 4-63

U
UIC, 3-4, 5-3

displaying, 5-70
setting, 5-68

<UIC> symbol (ICP), 9-32
Un deleting text (EDT)

commands
UND C, 4-69
UND L, 4-69
UND W, 4-69

keypad function
UND C, 4-17
UND L, 4-17
UND W, 4-17

Underscore (_), 2-11

UNFIX command, 10-60
Universal library

ICP, 9-40
UNLOCK command, 5-64 to 5-65,

10-60
UP command (EDT), 4-69
User batch job, 8-2
User File Directory (UFO)

See Directory
User Identification Code (UIC)

See UIC

v
Version number

file, 5-5
<VERSN> symbol (ICP), 9-32

Virtual terminal, 8-1
Volume, 5-1 to 5-3, 6-2 to 6-4,

6-6 to 6-14, 6-18 to 6-24
private, 6-8
protection, 5-17 to 5-18
public, 6-8

Volume label, 6-6
VT100-series terminal, 3-1
VT200-series terminal, 3-1

w
.WAIT directive (ICP), 9-95
Wildcard, 5 8 to 5-11
WORD command (EDT), 4-69
WRITE command (EDT), 4-48,

4-63

x
.XQT directive (ICP), 9-96

Index-13

USER'S
COMMENTS

Micro/RSX User's
Guide

Volume 1
AA-YS39B-TC

Your comments and suggestions are welcome and will
help us in our continuous effort to improve the quality
and usefulness of our documentation and software.

Remember, the system includes information that you read
on your terminal: help files, error messages, prompts, and
so on. Please let us know if you have comments about
this information, too.

Did you find this manual understandable, usable, and well organized? Please
make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

What kind of user are you? __ Programmer __ Nonprogrammer

What do you use the system for?

Years of experience as a computer programmer luser:

Name ________________ Date __________ _

Organization _________________________ _

Street ____________________________ _

City _____________ State ____ Zip Code __ _
or Country

- - Do Not Tear - Fold Here and Tape

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SSG PUBLICATIONS ZK 1-31 J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03062-2698

No Postage
Necessary

if Mailed in the
United States

- - - Do Not Tear - Fold Here -

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

