
Introduction to
Micro/RSX
Order No. AA-Y5388-TC

Micro/RSX Version 3.0

Digital Equipment Corporation Maynard, Massachusetts

First Printing, December 1983
Revised, June 1985
The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a license and
may be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.
Copyright ©1983, 1985 by Digital Equipment Corporation

All Rights Reserved.
Printed in U .5.A.

The postpaid USER'S COMMENTS form on the last page of this
document requests the user's critical eva'luation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:
DEC EduSystem UNIBUS
DEC/CMS lAS VAX
DEC/MMS MASSBUS V AXcluster
DECnet MicroPDP-11 VMS
DECsystem-10 Micro/RSX VT
DECSYSTEM-20 PDP
DECUS PDT
DECwriter RSTS ~UrnUD~U
DIBOL RSX

ZK-2601

This document was prepared using an m-house documentation production system. All page composition
and make-up was performed by TEX, the typesetting system developed by Donald E. Knuth at Stanford
University. TEX is a registered trademark of the American Mathematical Society.

Contents

Preface vii

Chapter 1 Getting Started

How to Use Your Terminal 1-2
Before You Start . 1-2

Startup Procedure . 1-4
Before You Log In to the System . 1-4
Logging In. 1-5

Login Messages from the Syst~m 1-6
Correcting Typing Mistakes . 1-7
Deleting Whole Lines. 1-8
Ending Input . 1-8
Clearing Your Screen 1-9
Displaying Information on Your Terminal 1-9
Shortening Commands . 1-10
Help from Micro/RSX . 1-11
More Help from Micro/RSX 1-11
A Directory of Your Files . 1-12
Devices on Your System 1-13
File Specifications . 1-13
Displaying Files on Your Terminal 1-14
Defaults in File Specifications 1-15
Controlling Output to Your Terminal 1-16

iii

Stopping the Action Entirely . 1-17
Setting and Showing . 1-18
Displaying System Information 1-20
Logging Out 1-20
Summary ... 1-21

Chapter 2 Creating Files

Creating a File 2-2
EDT, the DIGITAL Standard Editor 2-3
Startup Command Files 2-3
Character Mode Editing . 2-4

The Keypad 2-4
Beginning an Editing Session 2-6

Entering Character Mode 2-6
Getting Help on EDT 2-7
Moving the Cursor 2-7

Using the Arrow Keys 2-7
Changing the Direction of Cursor Movement 2-8
Moving the Cursor by Character, Word, and Line 2-8

Inserting Text .. 2-9
Deleting text .. 2-9

Undeleting Text 2-10
Locating Text 2-10
Moving Text 2-11
Leaving the Editor 2-12
Line Mode Editing 2-13

Range Specifications 2-14
Getting Help in Line Mode 2-14

Displaying Lines of Text. 2-16
Inserting Text. 2 -17

Renumbering Text Lines 2-18
Deleting Lines from Text 2-19
Searching through Text 2-19
Moving and Copying Text within the File 2-21
Replacing Words. 2-22

iv

Line Mode Commands Also Used in Character Mode 2-23
Creating a Second File 2-23
Including a Second File in Your Text 2-24

Summary ... 2-24

Chapter 3 Using DCl Commands

Wildcards and Other Wild Things 3-2
DCL Commands for File Management . 3-5

COpy ... 3-5
CREATE 3-6
CREATE/DIRECTORY 3-7
DELETE 3-7
DIRECTORY 3-9
EDIT .. 3-10
PURGE 3-11
RENAME 3-12
TYPE .. 3-12

DCL Commands for General System Use ... 3-12
BROADCAST , '.' .. 3-13
HELP .. 3-14
SET DEFAULT 3-14
SET PASSWORD 3-15
SHOW DEFAULT 3-15
SHOW DEVICES 3-16
SHOW TIME 3-17
SHOW USERS . 3-17
RUN .. 3-17

DCL Commands for Disks, Diskettes, and Tapes 3-17
MOUNT with Diskettes 3-19

Preparing a Blank Diskette for Use 3-20
Using a Diskette with Files on It 3-22

MOUNT with a Tape 3-23
Preparing a Blank Tape for Use . 3-24

DCL Commands for the Queue Manager . 3-25
PRINT 3-25

v

SHOW QUEUE 3-27
SET QUEUE 3-27
DELETE/ENTRY 3-28
HOLD/ENTRY 3-28
RELEASE/ENTRY 3-28
STOP / ABORT 3-29

Chapter 4 Automatic Command Entry

Indirect Command Processing 4-2
Indirect Command Files . 4-2
Substitution Mode . 4-4
Writing Programs with Indirect 4-6

Directives . 4-6
Special Symbols . 4-6
Labels .. 4-7
Explanation of the Command File. 4-9

Examples ... 4-10
Batch Processing . 4-14

An Example of a Batch Job 4-14
Submitting Batch Jobs 4-15

Glossary

Index

Figures
1-1 VT100 Video Terminal 1-3
1-2 VT220 Video Terminal 1-3
2-1 VT100 Keypad 2-5
2-2 VT220 Keypad 2-5

vi

Preface

Purpose of this Manual
This manual is intended to help new users of the Micro/RSX operating
system get started using their system. It provides examples of commonly
used commands, as well as instructions for creating and editing files.
Micro/RSX is a complex system used for many different purposes, but it
can be quite simple for an everyday user. If you are a new user, you
should read this manual first and try the examples. By the time you finish
reading and following the instructions in this book, you will be familiar
with most of the normal procedures needed for using Micro/RSX on the
MicroPDP-ll computer.

Intended Audience
This book is designed for any new user of Micro/RSX, whether familiar
with computers or not.

If you are accustomed to using a computer, you may be able to get enough
information from the examples and captions. However, most users will
want to read the explanation before trying the examples.

vii

Structure of This Manual
The Introduction to MicrojRSX consists of five parts:

• The MicrojRSX warm-up session. This uses a terminal on a MicrojRSX
system. You will learn how to log in and log out, how to issue
commands, and how to correct mistakes.

• An introduction to the EDT editor. You will learn how to create and
edit files.

• A summary of the commonly used MicrojRSX commands, with
examples of how to use them.

• An introduction to the Indirect Command Processor and to batch
processing, two methods of "hands-offN use of the computer.

• A glossary of commonly used terms. All terms introduced in italics in
this book are defined in the Glossary, as are many other terms.

Associated Manuals
You do not have to read all the books supplied with your MicrojRSX
system to get started. The other books are meant to be read in order over
a period of time. You should read the first two chapters of Volume 1
of the MicrojRSX User's Guide next. After that, you will be able to find
your way to any- further information you need, either through continued
reading or through the help files.

Four other manuals are included in your MicrojRSX Base Kit.

The MicrojRSX User's Guide, Volume 1, provides a further introduction to
using the MicrojRSX system and DCL commands. All the most common
commands and their most common qualifiers are described. Chapter 4
of Volume 1 provides documentation of the EDT editor. Volume 1 also
provides complete documentation of batch processing and the Indirect
Command Processor. It concludes with an annotated, alphabetical list of
all DCL commands.

The MicrojRSX User's Guide, Volume 2, is more detailed and includes
full reference information on all DCL (DIGITAL Command Language)
commands and all qualifiers. There is also information on the LINK
and LIBRARY commands for programmers in Chapter 15 and a list of
MicrojRSX error messages in Chapter 16.

viii

The Micro/RSX System Manager's Guide is for system managers and system
programmers. It includes information on day-to-day system maintenance,
such as rebooting the system, creating and deleting accounts, backing up
files, and setting system-wide attributes. It also includes information on
more advanced concepts of system management and special commands for
system programmers.

Programming on Micro/RSX surveys the programming possibilities on
Micro/RSX systems and also includes an annotated list of other books about
Micro/RSX and the RSX family of operating systems. It also describes the
Micro/RSX Advanced Programmer's Kit, which is available separately.

Conventions Used in This Manual

Convention Meaning

red ink In examples, what you type is printed in red. What the
system types is printed in black.

Any symbol with a 2- to 6-character abbreviation indicates
that you l@ijs the corresponding key on your terminal. For
example, RET indicates that you press the RETURN key.

The symbol ICTRL/al means that you hold down the key
labeled CTRL while pressing another key. For example, .
ICTRL/zi indicates that you should press the CTRL key and
the Z key together.

A Note for New System Managers
A new system manager needs to know more than this introduction includes.
Your next step is to look at the Micro/RSX User's Guide, Volume 1, which
gives you more introductory information on Micro/RSX. Once you have
looked at Chapters 1 and 2 of the Micro/RSX User's Guide, you're ready to
move on to the Micro/RSX System Manager's Guide.

Your new Micro/RSX system comes with two user accounts already in
place. One is a non privileged account, meaning that anyone can use it. It
is called the USER/USER account because the account name is USER and
the password is USER. The other is a privileged account, meaning that only
those who control the system should use it. It is called the MICRO /RSX
account because the account name is MICRO and the password is RSX.
One of the first things you'llieam to do as a system manager is to change
the name and password of that account to something less obvious. You'll

ix

also learn how to set up accounts for your other users, establish phone-in
terminal lines, install programs, and, in general, manage your system.

The Micro/RSX operating system can be as simple, or as complex, as
you want to make it. If you're patient, you'll find that everything about
the system is written down, either in the Introduction, User's Guide, and
System Manager's Guide, or in the manuals described in the final book of
the Micro/RSX Base Kit, Programming on Micro/RSX. (These manuals are
available separately, or as part of the Micro/RSX Advanced Programmer's
Kit.)

All these books, by the way, include User's Comments forms. We invite
you to let us know what you like or do not like about your Micro/RSX
system.

x

Chapter 1
Getting Started

MicrojRSX is an operating system. The MicrojRSX operating system is a
collection of software designed to make it easy to use the MicroPDP-ll
hardware.

The terminal is used to communicate with the operating system. From
your terminal you can issue commands that put the system to work for
you. Whenever you issue a c9mmand,. the system acknowledges and
acts upon your command. Because you are interacting with the system,
MicrojRSX is called an interactive system.

Generally, any mistakes you make in using a MicrojRSX system result in
an error message that tells you what you did wrong. For the most part,
there is nothing you can do to harm the system, and there are only a few
things you can do that harm your own use of the system. This book warns
you of most of the possible mistakes you might make.

You will also be learning DeL, the DIGITAL Command Language. DCL
is used on many DIGITAL operating systems, so what you learn about
using DCL on a MicrojRSX system is also applicable on other DIGITAL
computers, large and small.

Getting Started 1-1

How to Use Your Terminal
Most Micro/RSX systems use video terminals consisiting of a typewriter
keyboard and a numerical keypad like that on a calculator, and a separate
screen. In this book, we assume you are using a VT100 (Figure 1-1)
or VT220 (Figure 1-2) video terminal. These are DIGITAL's standard
video terminals. If you don't have one or the other, you should check
with someone to find out anything that is special and different about your
terminal before you do the exercises in this book.

Before You Start
Make sure both the terminal and the computer are turned on.

A switch on the back of the VT100 turns it off and on. When you turn
the VT100 on, the screen lights up and beeps; the ON LINE light at the
top of the keyboard is lit. If the VT100 is already turned on, the screen
will be lit, at least with a blinking line or square called the cursor.

A switch on the back of the VT220 turns it off and on. When you turn
the VT220 on, it beeps; the lights on the keyboard flash; and the screen
displays the message HVT220 OK". The VT220 may be turned on even if
the screen is not lit, as this terminal rests the screen if no keys have been
touched for a few minutes. If the power switch is on, but the screen is
not lit, touch any key on the VT220 keyboard. The screen relights.

The large rocker switch on the MicroPDP-ll turns it off and on. When
the MicroPDP-ll is on, the switch is lit. There are four small buttons
labeled Halt, Restart, Write Protect, and Ready. Only the button labeled
Ready should be lit. Simply press these buttons to turn the lights on or
off, as needed.

1-2 Getting Started

Figure 1-1: VT 100 Video Terminal

Figure 1-2: VT220 Video Terminal

Getting Started 1-3

Startup Procedure
When you turn on the MicroPDP-11, it goes through a startup procedure,
also called a bootstrap. The startup procedure checks the hardware and
brings the operating system from the fixed disk, where it is stored, into the
computer's main memory. During the startup procedure, you are asked to
type the time and date and press the key labeled RETURN. Use the 24-hour
clock for the time; for example, use 13:00 for 1:00 P.M. Use a three-letter
abbreviaton for the month; for example, 27-SEP-8S.

When the startup procedure is completed, a dollar sign ($) prompt appears
on the left-hand margin of your screen, indicating that the system is
available to you.

Now you are ready to begin.

Before You Log In to the System
Press the key labeled RETURN a few times. (In examples, the symbol
ffiill indicates that you press the RETURN key.) You should get a series of
dollar sign ($) prompts, each on a line by itself. These prompts inform
you that the system is ready to accept input. Input is a computer-industry
word meaning whatever you type into the computer.

$ [Bill
$ [Bill
$

The RETURN key is the simplest form of command you can give the system;
it enters the commands that you type and tests the system. Pressing the
RETURN key is a way of saying to the system, "Are you ready?" If the
system responds with the $ prompt, you can be reasonably sure that the
terminal, the Micro/RSX operating system, and the MicroPDP-11 computer
are ready for use.

A blinking indicator, called the cursor, should appear next to the $ prompt.
It is called a cursor because it points out the "course" you will follow, that
is, where the next character you type will appear.

Now you can log in.

1-4 Getting Started

Logging In
Logging in gains you access to the system.

LOGIN is the DeL command that logs you in.

MicrojRSX is a multiuser system. This means there can be more than one
terminal and more than one person using the system at a time. In fact,
there may be more people authorized to use the system than there are
terminals. All these things mean that the system must have some means
of keeping track of who's who. Logging in does this.

Type the LOGIN command. Enter the command by pressing the RETURN
key. The system responds by asking you to identify yourself. Type USER
and press the RETURN key. (Later you will use your own name or some
other name assigned by the system manager, but you must log in to the
account named USER to follow the examples in this book.)

The system asks you for your password. Type the password USER, but
do not press RETURN yet.

Until now, everything you have typed has appeared on the terminal, but
the password does not. Passwords are supposed to be secret, so that
unauthorized users cannot get on the system. For this reason, passwords
do not appear on your screen. In the following example, invisibility is
indicated by the angle brackets.

$ LOG IN (BIT]
Account or name: USER (BIT]
Password: <USER> (BIT]

The login procedure illustrates an important point about terminals. Each
terminal is really two devices in one. The keyboard is an input device
for sending messages to the system. The screen is an output device for
receiving messages from the system.

Everything you have typed so far has been a message from you to the
system. Everything that has appeared on the screen has been a message
from the system to you. Until you reached the password, it looked like
you were typing directly on the screen. You were not.

What you may have thought you were typing on the screen was really
an echo from the system, confirming that you typed what you thought
you did. For the password, however, the echo is suppressed for security
purposes. Occasionally, when the system is busy, you may notice that the
echo takes a little longer than usual.

Getting Started 1-5

There can be many different input or output devices on your Micro/RSX
system, but the terminal is one of the most common. Later, you'll learn
about others.

Now enter the password by pressing the RETURN key.

Note that the system allows one minute for logging in. If you don't
complete the login procedure within one minute, this message appears on
your terminal:

HEL - Timeout on response

Simply begin the login again by typing LOGIN and pressing the RETURN
key.

Login Messages from the System

During the login procedure, Micro/RSX checks your identification and
password to make sure you should be allowed on the system. If you are
identified correctly, the system makes your terminal available to you, as
indicated by the return of the $ prompt. A number of messages from the
system may appear before you see the prompt. For example, you may see
the following messages:

• LOGIN IRETJ
Account or name: USER IBllJ
Password: <USER> I RET I
Micro/RBI V3.0 Multiuser Operating System
14-MAR-85 08:15 Logged in on terminal TT2:

Good Morning

Softball team practice today.

1-6 Getting Started

GLB:[1.2]LOGIN.CMD
• SET DEFAULT [USER]/NAMED
««««««««««««««««««««««««<

•

Hello.

You are now logged in on the
Micro/aSI Operating System.

This is the USER account. Nothing
that you do in this account can do
any harm either to the system. or to
this account.

Use this account with the terminal
warm-up session described in the book
Introduction to Micro/asl.

Take it easy.

»»»»»»»»»»»»»»»»»»»»»»»>

Whenever you log in, you may get certain messages from the system, such
as "Good Morning." In addition, you may get informational messages, such
as the note about softball practice. In the USER account, you also get the
special greeting shown. At any rate, after everything has happened that
is going to happen, the system returns the $ prompt, signifying that it is
ready for more input.

If the prompt does not appear, press the RETURN key.

Correcting Typing Mistakes
Typing mistakes are by far the most common errors made by Micro/RSX
users. If you make a typing mistake, press the DELETE key once for each
character you want to delete. The DELETE key always deletes the character
immediately to the left of the cursor. In this book, the symbol I DEL I means
that you press this key. The DELETE key on the VT200-series terminals
looks like this: <Xl.

Beware the BACK SPACE key. This key is not used in DeL. Any command
line with a BACK SPACE will either be rejected or misinterpreted by
Micro/RSX. (This key can be used when you use the EDT editor, but
never when you enter commands to Micro/RSX.)

Getting Started 1-7

The most common errors made by terminal users involve confusing the
zero (0) and the capital 0 and confusing the number one (1) and the
lowercase L (I) or I (i). Type these characters to see how they differ in
appearance on your terminal. After you have typed them, delete them.

When you press the DELETE key, the character immediately to the left of
the cursor disappears and the cursor takes its place. The next character
you type appears in the vacated location. You can continue deleting until
you reach the left margin, but you cannot delete prompts.

Lowercase letters are not used in the examples in this book, but MicrojRSX
generally accepts either lowercase or uppercase commands. You may want
to use the SHIFT or CAPS LOCK key to make your examples look like ours.
Note that on most DIGITAL-manufactured keyboards the CAPS LOCK key
has no effect on the number and symbol keys.

Deleting Whole Lines
CTRL/U deletes an entire line.

If you wish, you can delete an entire line using the CTRL/U command.
Press the keys marked CTRL and U at the same time, just as you use
the SHIFT key and a letter together to type an uppercase letter. See the
following example.

S INADEQUATE COMMAND AU
S

When you press CTRL/U on your terminal, it is echoed as a circumflex (A),
also called an up-arrow, and a U. The line you typed is ignored.

Ending Input
CTRL/Z indicates End-of-File or End-of-Input.

More input? AZ
S

Pressing CTRL/Z tells the system that you have finished supplying input.
CTRL/Z is a command you can try when your terminal appears to be
hanging or otherwise behaving in some confusing way. You also use
CTRL/Z to terminate input to many system tasks, but more about that later.

1-8 Getting Started

Clearing Your Screen
If, after you've issued several DCL commands, you get tired of seeing
everything you've typed on the screen, you can clear the screen completely
by typing the following:

S eLR [ID]

This command clears the screen. It has no other effect.

Displaying Information on Your Terminal
The SHOW command displays system information.

The SHOW TIME command displays the time.

Type SHOW and enter it. DCL prompts you for the next portion of the
command. DCL always prompts you if you have not given a complete
command. Some commands prompt you more than once.

TIME is one function you can display. Type TIME in response to the
Function? prompt. Micro/RSX displays the current system time.

S SHOW IRETI
Function? TIME [ID]
12:37:33 10-JUL-85

Now type SHOW TIME on one line.

S SHOW TIME I RET I
12:37:33 10-JUL-85

Micro/RSX displays the current system time. Both forms of the command­
with or without the prompt-return the same information. The Function?
prompt identifies the next command element DCL is expecting. As you
will see, you can use SHOW to display a variety of system information.

Prompts like Function? are most useful when you are learning a command,
or using a rarely used command. As you see in the two forms in the
example, DCL prompts you only when you omit a necessary part of the
command. Once you have learned a command format, you probably will
not need the prompts, but they will always be available.

If you decide not to enter a command, you can always press CTRL/Z at
the end of the line or in response to the prompt, and the command is not
executed.

Getting Started 1-9

For example, type SHOW, with or without pressing RETURN. Then press
CTRL/Z.

$ SHOW-Z

or

$ SHOW mill
Function? -Z
$

As you can see, nothing happens. Pressing CTRL/Z cancels any command.

Shortening Commands
DCL does not require that you type the full command.

Try dropping letters from the SHOW TIME command. You will find that
S TI is sufficient to display the time.

$ S TI mill
12:37:33 10-JUL-85
SST mill
SHOW -- Illegal function
S T

$

The full command, such as SHOW TIME, identifies the action of the
command. As you will see later, DCL commands can be quite complex,
and the full form of the command is useful to help you see what action
you are performing. For everyday convenience, however, DCL accepts
abbreviations. You can abbreviate any DCL command.

In the case of SHOW, the abbreviation is S. There are several commands
with one-letter abbreviations. For most commands, three letters will be
enough, and four will always be enough. You can experiment with new
commands as you learn them, shortening the command until you get an
error message like the one just shown.

In the example, the abbreviation S T didn't work because there is another
DCL command, SHOW TERMINAL. Therefore, S TI is as short as SHOW
TIME can be. S TE is as short as SHOW TERMINAL can be.

For the sake of clarity, this book uses only full commands in examples.

1-10 Getting Started

Help from Micro/RSX
Type the command HELP SHOW TIME and enter it. Text explaining the
SHOW TIME command appears on your screen. (You should remember
that the time displayed is the time as it is set on the system, and is no
more accurate than any other clock.)

• HELP SHOW TIME IREfl
SHOW DAY [TIME] or SHOW TIME

The SHOW DAYTIME command displays the current time and date. The time
is in 24-hour format and the date is formatted as dd-mmm-yy.

•
You may get an error message, such as the following:

• HELP SHOW TIME rnm
HEL -- HELP file error -26

•
This means the files needed to make the HELP command' work are
temporarily unavailable. (The next section tells you more about files.)
If this message appears, see your system manager. It is not difficult to
restore the help files whenever you need them.

As you go through this book, you should use the help available for each
command that you learn. .

More Help from Micro/RSX
You can also get help from Micro/RSX while entering commands.

Type SHOW and enter it. When the Function? prompt appears, type
a question mark (?). Help text appears, followed by another Function?
prompt.

• SHOW rnm
Function? ? rnm
SHOW thing

The SHOW command can be used to show something. The following things
can be shown with this command:

ACCOUNTING
ASSIGNMENTS
CLOCK_QUEUE
COMMON

[DAY] TIME
DEFAULT
DEVICE
ERROR_LOG

LIBRARY
PARTITIONS
PROCESSOR
PROTECTION

QUEUE
SYSTEM
TASKS

TERMINAL
UIC
USERS

For further help on the qualifiers, type HELP SHOW qualifier.

Function? ? TIME rnm

Getting Started 1-11

As you see, you can display a great deal of information with the SHOW
command. The display you see is the same you would see if you typed
HELP SHOW.

Now type? TIME in response to the Function? prompt. This time, the
help text you see is the same you would see if you typed HELP SHOW
TIME.

SHOW DAY [TIME] or SHOW TIME

The SHOW DAYTIME command displays the current time and date. The time
is in 24-hour format and the date is formatted as dd-mmm-yy.

Function? TIME [BIT]
14:53:48 10-JUL-85
$

This time, type TIME in response to the Function? prompt. The time is
displayed.

You can get help on any DCL command in this way. If you have typed a
command but you aren't sure what the prompt means, type in a question
mark (?) to get further information. Everything you had typed before you
typed the? is preserved for you whil~ you get help.

A Directory of Your Files
The DIRECTORY command displays information about stored files.

Type DIRECTORY and enter it. What you see on your terminal should
resemble the example, but your list of files may be somewhat different.

S DIRECTORY ffiIT]

Directory DUO: [USER]
14-MAR-85 14:56

WHATSHERE.TXT;l
HELLO. TXT; 1
LONG. TXT; 1
FLY.TXT;3
FLY.TXT;2
FLY. TXT; 1
MYDISK.CMD;l
LOGIN.CMD;l
FLU. TXT; 1
SHOW.CMD;l

3.
2.
25.
1.
1.
1.
4.
1.
1.
1.

Total of 40./40. blocks in 10. files

1-12 Getting Started

27-JAN-85 16:24
27-JAN-85 16:24
27-JAN-85 16:24
27-JAN-85 16:24
27-JAN-85 16:24
27-JAN-85 16:24
27-JAN-85 16:24
27-JAN-85 16:24
27-JAN-85 16:24
27-JAN-85 16:24

Files are one of the basic units of storage on Micro/RSX systems.
Everything on a Micro/RSX system either starts out or ends up as a file.
Put simply, a file is the means used to separate one significant collection
of material from another. Files can contain text, runnable programs (called
tasks), or various kinds of data.

The DIRECTORY command provides you with a list of all the files stored
on a particular device in a particular directory. Later you will have a
directory and an account under your own name.

Devices on Your System
Most Micro/RSX systems have a limited number of devices, usually two
diskette drives, or a tape drive, and one or more fixed disks. The diskettes
and tape can be removed and changed, but the fixed disk is permanently
in place, or nonremovable. You will generally use the fixed disk to store
files that you are currently working on or that you use all the time. You
will generally use diskettes and tapes to store files that need not always
be available.

All Micro/RSX devices have names such as DU2:, which is a diskette drive.
Notice that the name has two letters, a number, and ends with a colon (:).
The fixed disk on your system is named DUO:. If you have a tape drive,
it is probably named MUD:. The device name is important in helping you
find your files. .

There are many other kinds of devices besides mass storage devices. Line
printers and terminals are both devices, for instance. Your system may
also have other kinds of devices not mentioned here.

File Specifications
Each file stored on a Micro/RSX system has a unique identification, or
specification, also called a filespec. The device name and directory name
are important parts of the file specification.

At the head of the directory listing, you will see the device name (DUO:)
and directory name ([USER]) where the files are stored. Within the listing,
each file is identified by a file name (WHATSHERE), a file type (.TXT),
and a version number (; 1). These five elements fully distinguish one file
from all the others on the system and also permit you to locate it.

Getting Started 1-13

Thus, the full file specification of the first file listed in the directory example
is:

DUO:[USER]WHATSHERE.TXT;l

A complete file specification consists of a device name, a directory name,
a file name, a file type, and a version number. There can be only one
file with this full specification; there may be others with similar, but not
identical, specifications.

The syntax rules for all fields of the file specification are really quite simple:

• Device names have two letters and a number, followed by a colon (:).

• Directory names have two possible formats. The named directory
format has one to nine of the following characters: the 26 letters
A through Z and the numbers 0 through 9, or it has two numbers
separated by a comma and enclosed in brackets ([]). The numbered
directory format has two numbers separated by a comma and enclosed
in brackets ([]).

• File names have one to nine letters or numbers.

• File types have one to three letters or numbers and begin with a period
(.).

• Version numbers start at 1 and go up; they are separated from the file
type by a semicolon (;).

As you go through the exercises in this book, you will see that each field
of the file specification has a part to play in the smooth functioning of the
system.

But don't worry. Most of the time, all you'll have to type is the file name
and type.

Displaying Files on Your Terminal
The TYPE command displays selected files on your terminal.

Type TYPE and enter it. Give the full file specification as shown in
response to the File(s)? prompt. A short file is printed on your terminal.

S TYPE @TIl
File (s)? DUO: [USER] FLY. TXT; 3 [Bill
Time flies like an arrow.
Space flies like a bow.
Fruit flies like a banana.

1-14 Getting Started

Now try the one-line form of the command; leave out the device and
directory names and the version number.

S TYPE FLY. TXT ffi[U
Time flies like an arrow.
Space flies like a bow.
Fruit flies like a banana.

You do not always have to include the full file specification to specify a
given file. Some parts are included by default if you do not specify them.

The use of the word Ndefault" may be slightly confusing. In general,
Ndefault" means Nfor lack of competition." If all but one runner drops out
of a foot race, the last runner wins by default. On Micro/RSX, if you do
not supply a value, the system supplies a value of its own, for lack of
competition. If you supply a value, your value always Nwins."

Defaults in File Specifications
The SHOW DEFAULT command displays the default device and directory
for your terminal.

• SHOW ffi[U
Function? DEFAULT ffi[U

DUO: [USER] Named TT2:
Protection UIC: [200.1]

•
The default device and directory are automatically included in every file
specification, unless you have included some other device or directory.
You can find out your default device and directory, which is Nwhere you
are" on Micro/RSX, with the SHOW DEFAULT command. Every file in
DUO:[USER] has that disk name and directory name as part of its filespec.
(SHOW DEFAULT also tells you that your directory can use a name instead
of numbers, which terminal you are on, and your User Identification Code
(UIC), but that isn't part of the file specification default.)

There may be several files on your system called FLY.TXT;3, but there is
only one called DUO:[USER]FLY.TXT;3. If you wanted to see one of the
others, you'd have to include its directory name and disk name when you
typed its name, for example, DUl:[LEMEN]FLY.TXT;3.

One important default does not show. If you do not supply a version
number, Micro/RSX defaults to the highest-numbered version.

Getting Started 1-15

Type and enter the following command:

S TYPE FLY. TXT ~

The file FLY.TXT;3 is printed on your terminal.

Now type and enter this command:

S TYPE FLY. TXT; 1 IBm

As you see, two files with the same name and type but different version
numbers can differ greatly.

If you want to see a copy of a file from another device or directory, or
both, include the device name and directory name in the file specification;
the defaults of DUO: and [USER] are overridden.

Type and enter the following command:

S TYPE DUO: [1. 2]LOGIN. TXT ~

You should see most of the same text that is printed on your terminal
when you log in, if any.

Defaults are designed for your convenience, but you can always override
them. Usually, defaults are set to produce the most commonly used form
of the command or file specification.

Controlling Output to Your Terminal
The NO SCROLL and HOLD SCREEN keys delay output to your terminal.

CTRLjO skips over output to your terminal.

Type and enter the following command:

S TYPE ~
File (8) '7 LONG. TXT IBm

The file begins to appear on your screen. Immediately press the NO
SCROLL (VT100) or HOLD SCREEN (VT220) key on your terminal. The
file you are displaying stops right where it is.

Often on video terminals, the output from a command may scroll past on
the screen too fast for you to read. (Scroll means unroll like a scroll on
your screen.)

Now press NO SCROLL or HOLD SCREEN again. The file starts scrolling
past again.

1-16 Getting Started

The NO SCROLL and HOLD SCREEN keys do the same thing: they stop
the scrolling, or, if you prefer, hold the screen. You are not missing any
output when the key is in effect. These keys allow you to read output at
your own pace, rather than the terminal's.

Note
If your terminal appears to be hanging (not accepting new
input), you may have accidentally pressed the NO SCROLL
or HOLD SCREEN key.

Again, type and enter the following command:

$ TYPE LONG. TXT OIDJ

This time, immediately press CTRL/O. The output display from the TYPE
command stops immediately. Press CTRL/O again. The output display
from the TYPE command starts again, but not at the same place.

CTRL/O works like the fast-forward switch on a tape recorder. Use
CTRL/O to skip over output you do not want to see.

You can either skip the rest of the file entirely or skip down rapidly. You
are only skipping what you would see on the screen. You are doing
nothing to the file. Type the file again to be sure.

Stopping the Action Entirely
Again, type and enter the command:

$ TYPE LONG. TXT lBITI

This time, press CTRL/C. The file stops printing on your terminal almost
immediately and the $ prompt returns.

You have aborted the TYPE command. Therefore, the printing of
LONG.TXT on your terminal ceases. CTRL/C is one of the most useful
commands on Micro/RSX systems. Whenever something is happening at
your terminal that you do not like, or, if you want the system to stop
doing something you told it to, all you have to do is press CTRL/C and it
will stop happening.

Pressing CTRL/C causes a Micro/RSX task to abort. That is not as drastic as
it sounds. It means only that pressing CTRL/C stops the current program
from running. Everything you see happening on Micro/RSX is caused by
a task, or program. An operating system is a complex collection of tasks.
Even the commands that cause tasks to run are themselves tasks. This
means that it is handy to be able to stop a task from running. No harm

Getting Started 1-17

comes to the task when it is aborted; it simply goes away. You can run
it again right away. In this example, the TYPE command still works and
LONG. TXT is intact. (Of course, you shouldn't abort programs willy-nilly;
some tasks may be affected if they are aborted.)

Setting and Showing
The SET and SHOW commands can be used to change and display system
attributes.

The SET TERMINAL command sets, and resets, the attributes of your
terminal.

For example, SET TERMINAL/LOWERCASE causes your terminal to leave
lowercase input unchanged. SET TERMINAL/UPPERCASE causes your
terminal to convert lowercase ir.put to uppercase.

The SHOW TERMINAL command displays attributes of your terminal and
other terminals on the system.

Type and enter the following command:

$ SET TERMINAL/LOWERCASE !BIT]

Remember, you can use either the prompting form or the single-line form
for DCL commands.

Now type and enter the following command:

$ SHOW TERMINAL !BIT]
TT2: [USER] [200.1] 14-MAR-85 14:47 1 A. USER
CLI = DCL BUF = 80. HFILL = 0
LINES = 24. TERM = VT100 OWNER = none BRO NOABAUD
LOWER NOPRIV NOHOLD NOSLAVE NOESC CRT NOFORM NOREMOTE
ECHO NOVFILL HHT NOFDX WRAP NORPA NOEBC TYPEAHEAD
CTRLC NOAVO ANSI DEC EDIT NOREGIS NOSOFT NOBLKMOD
SERIAL NOHSYNC NOPASTHRU TTSYNC NOPRINTER_PORT

Micro/RSX displays all the attributes set for your terminal. Most of these
attributes look very technical, and they are. Most terminal attributes
are more of interest to programmers than users. If a particular terminal
attribute is important, your terminal will probably already have it set.
We are using SET TERMINAL and SHOW TERMINAL for this example
because the effects are simple, obvious, and harmless.

1-18 Getting Started

In the list of attributes of your terminal, you will see LOWER. LOWER
means that whatever you type in lowercase is sent to the system in
lowercase. If your terminal is not set LOWER, any lowercase character
you type is echoed in uppercase. The echo lets you see exactly what the
system received. (Actually, in most cases, the system doesn't care whether
the characters are uppercase or lowercase.)

Not all the terminal attributes listed by SHOW TER~1!NAL have obvious
meanings, but they include your terminal number, the width of your
screen (under BUF), and the length of your screen (under LINES). The
other terminal attributes are explained in the Micro/RSX User's Guide and
the help files.

Now, type and enter the following command:

• SET TERMINAL/UPPERCASE mTIJ

Your terminal is now set to translate any lowercase characters you type
into uppercase before transmitting them. Any lowercase character you
type will be echoed in uppercase. Why would you want to do this? Well,
some computer programs don't understand lowercase. But the only reason
for doing it in this example is for practice in setting something.

Now type and enter the SHOW TERMINAL command again. Where the
display listed LOWER, you now see NO LOWER (which is a computer way
of saying UPPER).

• SHOW TERMINAL mTIJ
TT2: [USER] [200.1] 14-MAR-85 14:47 1 A. USER
CLI = DCL BUF = 80. HFILL = 0
LINES = 24. TERM = VT100 OWNER = none BRO NOABAUD
NOLOWER NOPRIV NOHOLD NOSLAVE NOESC CRT NOFORM NOREMOTE
ECHO NOVFILL HHT NOFDX WRAP NORPA NOEBC TYPEAHEAD
CTRLC NOAVO ANSI DEC EDIT NOREGIS NOSOFT NOBLKMOD
SERIAL NOHSYNC NOPASTHRU TTSYNC NOPRINTER_PORT

Try typing something in lowercase. It comes out in uppercase. You will
probably want to set your terminal back to LOWER before continuing with
this warm-up session.

Getting Started 1-19

Displaying System Information
The SHOW USERS command displays a list of logged-in users.

Type SHOW USERS and enter it. Micro/RSX displays a list of everyone
currently logged in on the system. For each user, the list includes
the terminal number, the default directory, the protection UIC (User
Identification Code), the login time, the number of active tasks, and the
user's name.

S SHOW ITiill
Function? USERS ITIDJ
TTl: [JOEL] [303,4] 19-FEB-85 11: 27 0 D. JOEL
TT2: [USER] [200,1] 19-FEB-85 13:05 1 A. USER
TT4: [7,11] [7,11] 19-FEB-85 09:19 1 H. TAVANI
TT5: [MCCARTHY] [7,57] 19-FEB-85 08:15 1 MCCARTHY

Note that the terminal number has the same form as other device names:
two letters, a number, and a colon. The two letters identify the device
type, in this case, a terminal.

Logging Out
The LOGOUT command logs you off the system.

When you are through using Micro/RSX, you must log yourself out using
the LOGOUT command.

S LOGOUT ITiill
Connect time:
CPU time used:
Task total:

o hrs 30 minutes 8 sees
o hrs 0 minutes 23 sees

84
Have a Good Afternoon
14-MAR-85 14:48 TT2: logged off

Micro/RSX gives you some statistics on your system use when you log
out. Notice the disparity between CONNECT TIME, which shows you
how long you were logged in, and CPU TIME USED, which shows you
how much of that time you were actually using the central processing unit
or CPU. The CPU is the part of the computer that actually computes.

For most of the time that you were logged in, the system was waiting
for input from you. This is one of the main reasons why it is possible
for several users to do work simultaneously on the system. While the
system is waiting for input from you-even between the time you type
one character and the next, which is a long time to a computer-some
other user's needs can be served.

1-20 Getting Started

As part of logging you out, the LOGOUT command cleans up behind you,
aborting any active tasks and returning resources to the system.

There's just one more point you should know about the Micro/RSX system:
sometimes systems crash.

Sometimes, nothing seems to work, not even CTRL/C or the LOGOUT
command. In fact, you can type without getting any response from the
system. On these occasions, the system may have crashed. Crashing is
not as serious as it sounds either. If the system crashes, it is probably
not your fault. A crash is the system's response to an unstable condition,
usually caused by a privileged user, or a privileged task, or a hardware
problem. If the system should crash, the system manager or some other
responsible person (maybe you) will probably be bringing the system back
in a few minutes.

After a crash, the system must be bootstrapped. This can be done simply
by pressing the Restart button on the computer (or turning the power
switch off and on) and waiting for a confirmation message. This message
may be nothing more than the $ prompt.

No one is logged in if the system has crashed and then been restarted.

Summary
In this chapter, you have learned the most common ways of eliminating
confusion from your terminal and restoring tranquility:

• CTRL/Z for ending input

• CTRL/C to stop a program

• CLR to clear the screen

• HELP or question mark (?) to get help

• LOGOUT to end your use of the system

You now know enough about using your terminal and the system to move
on to some of the more complex, and useful, facilities of the Micro/RSX
system.

You have had to learn some computer jargon and some Micro/RSX jargon,
and you will be learning some more as you continue working with this
book. Micro/RSX is part of the RSX family of computer operating systems.
These systems can be quite complex. If you learn the correct terms from
the beginning, your chances of understanding what is happening on the
system are improved.

Getting Started 1-21

You should understand that all the commands discussed so far have been
commands to the operating system itself. The system also includes many
utilities to help you.

The next chapter of this book demonstrates the use of one of these utilities,
an editor, which is used to create files.

1-22 Getting Started

Chapter 2

Creating Files

A file is a collection of data significant to a user.

This definition covers a lot of territory. Files in Micro/RSX systems can be
of many types. Text files, like FLY.TXT, are in a form you can read. Other
files, such as task image files (files that contain a runnable program), are in
a form that only the computer and operating system can read.

The file type-the three-letter identification after the file name, such as
.TXT-usually gives a clue as to the contents of a file. There is a list of
common file types in Chapter 5 of the Micro/RSX User's Guide.

This chapter tells you how to create and edit files on a Micro/RSX system.

You will create and edit a text file called DOCTOR.FEL. The instructions in
this chapter have been designed to introduce you to many of the commands
you need to know to create and edit text files. Follow the examples closely,
so you can see how everything works.

Creating Files 2-1

Creating a File
The CREATE command creates files.

Type CREATE and enter it. In response to the File? prompt supply the
file name DOCTOR and the file type .FEl and enter it.

The prompt does not appear. Type the line of text shown in the example
below, including the RETURN. Note that the RETURN key works like a
typewriter carriage return. Then press CTRL/Z. The $ prompt returns.

$ CREATE [RITJ
Fi le1 DOCTOR. FEL [RITJ
I do not like you. Doctor Fell. [RITJ
-Z
$

While you were typing, you were "in" the CREATE task. CREA TE is not
only a DCl command; it is also a system task used to create files. While
you were in this task, you were not in DCL. DCl commands have no
effect inside the CREATE task.

Pressing CTRL/Z indicated the end of your input to the CREATE task. It
took you /I out" of the CREATE task and returned you to DCl level.

You have now created a file called DOCTOR.FEL. It is automatically
numbered version 1 and placed in the default directory, which is [USER].
Thus, the file has the file specification of DUO:[USER]DOCTOR.FEl;l. You
can use the DIRECTORY command to see that the file is there.

Note that although you have created a text file, the file type is not .TXT.
MicrojRSX permits you to give whatever name and file type you like to
your files. On the other hand, MicrojRSX systems also provide default
file types for various purposes; these are discussed in Chapter 5 of the
Micro/RSX User's Guide. (There is no default file type for the CREATE
command.)

The CREATE command is handy for making notes, but you can't really do
much in CREATE. You can't go back up a line to change something, for
instance. For fancier functionality, MicrojRSX provides an editor, a system
task designed to make creating and changing files easier.

2-2 Creating Files

EDT, the DIGITAL Standard Editor
The EDIT command invokes EDT, the DIGITAL standard editor.

EDT, the editor included on Micro/RSX systems, is also found on a number
of other DIGITAL operating systems. It is a general-purpose interactive text
editor with two modes of operation. Line mode has English-like commands
and works on either video or hardcopy tetIIlinals. As the name implies,
line mode editing is done on one line of text at a time. Character mode
works on video terminals only. When you use character mode editing,
you can work on a whole file.

In this book there are brief introductions to both modes of EDT. However,
the emphasis is on character mode editing, because it is the more common
mode of editing used on video terminals. More information on both types
of editing can be found in the Micro/RSX User's Guide.

Startup Command Files
EDT allows you to set the characteristics of your editing session by using
a file called a startup command file. For example, you can create a startup
command file that specifies how many characters per line appear on the
screen and whether you want character mode editing. The default name
for this file is EDTINI.EDT, for EDT initialization.

EDT looks for a file named EDTINI.EDT each time you begin an editing
session. If it finds one, EDT executes the commands in it. If there is no
such file, EDT simply uses its default characteristics, including line mode
editing.

The following sample EDTINI.EDT file does only two things. It sets the
editing mode to character and sets the wrap, that is, when the line breaks,
to 75 characters.

SET MODE CHANGE
SET WRAP 75

You will probably want to create an EDTINI.EDT file in your own account.
However, the [USER] account simply uses the default characteristics of
EDT.

Creating Files 2-3

Character Mode Editing
EDT character mode allows you to edit at any position in your text. Your
screen always contains an accurate picture of the part of the file you are
working on. The cursor shows exactly where you are at all times.

Character editing uses the keypad on your terminal. If your terminal has
no keypad, see Chapter 4 of the Micro/RSX User's Guide for information
on using character mode.

The Keypad
Character (or keypad) editing works on the VT100 and VT200-series video
terminals and other terminals with a numerical keypad. In character
editing, you request editor functions by pressing keys on the keypad. No
RETURN is required to enter the command. Anything you type on the
regular keyboard, including RETURN, is inserted into the file as text.

It is a good idea to keep a copy of the keypad diagram handy while you are
learning character editing. The keys on your terminal are not labeled with
EDT commands, but with numbers and some other characters. Figures
2-1 and 2-2 show the meaning of each key on the keypad for the VT100
and VT220. The numbers or characters shown in the upper right of each
key correspond to what you see on the key.

In this chapter, the keypad key number is noted in parentheses the first
time the key is mentioned, but not afterward. For instance, GOLD (PF 1)
indicates that the GOLD function uses the key labeled PF1.

As shown in the diagrams, most keys perform two functions. When you
want to use the upper of the two functions listed, simply press the key.
To use the lower (shaded) function, first press and release the GOLD key
(PF 1) and then press the key you want to use.

2-4 Creating Files

Figure 2-1: VT 100 Keypad

PF1 PF2 PF3 PF4

GOLD HELP
FNDNXT DEL L

FIND UND L
20 10 11 17

7 8 9 -PAGE SECT APPEND DEL W

COMMAND FILL REPLACE UNDW
18

4 5 6 ,
ADVANCE BACKUP CUT DEL C

BOTTOM TOP PASTE UNDC
19

1 2 3 ENTER
WORD EOL CHAR

ENTER
CHNGCASE DEL EOL SPECINS

0 •
LINE SELECT

sues
OPEN LINE RESET

16 21

ZK-1377-83

Figure 2-2: VT220 Keypad

B
PF1 PF2 PF3 PF4

FIND INSERT RE-
HERE MOVE GOI,.D

FNDNXT DEL L
HELP

FIND U.NDl
E1 E2 E3 20 10 11 17

7 8 9 -
SELECT PREV NEXT

SCREEN SCREEN

PAGE SECT APPEND DEL W

COMMAND FILl,. REPLACE UNDW
E4 E5 E6 1.

l'
4 5 6 ,
ADVANCE BACKUP CUT DEL C

BOTtOM TOP PASTE UNDC
12 19

1 2 3 ENTER

~ 1 ~ WORD EOL CHAR

~HNGCASE
ENTER

DEL EOL SPECINS
15 13 14

0 .
LINE SELECT

SUBS
OPEN LINE RESET

16 21

ZK-1380-83

Creating Files 2-5

Beginning an Editing Session
Type and enter the command EDIT. At the File? prompt, type and enter
the file name DOCTOR.FEL.

t EDIT
File? DOCTOR.FEL
1 I do not like you, Doctor Fell,
* IBpl
[EOB]

*

The line appears on the screen, followed by an asterisk (...), which is the
EDT line mode prompt. The asterisk signifies that you are "in" EDT and
that EDT is ready to accept your line mode commands.

Note that the line has the line number 1. EDT automatically numbers lines.
Line numbers are one way of locating text in your file.

Now press RETURN. You see the symbol [EOB], which means End-of­
Buffer, and another asterisk prompt. In EDT, a buffer is a workspace used
in editing files. In this case, the buffer contains one line of text. The [EOB]
tells you that you have reached the end, or bottom, of the buffer.

As you will see, the end of the buffer keeps moving down as you add
lines to your file. For this practice session, you will be working mostly in
a buffer called MAIN. EDT permits you to create more buffers if you need
them. See Chapter 4 in the Micro/RSX User's Guide for more information.

Entering Character Mode
At the asterisk prompt, type and enter the CHANGE command (abbrevia­
tion C) to enter character mode.

When you issue the CHANGE command, the one-line file and the [EOB]
symbol appear at the top of the screen. You are ready to begin editing.

Type the following lines, including RETURN:

The reason why I cannot tell. mITI
But this I know, and know full well, mITI
I do not like you, Doctor Fell.

2-6 Creating Files

Getting Help on EDT
You can get help on the keypad functions any time during an editing
session. Simply press the HELP (PF2) key. This prints a copy of the
keypad diagram on your screen. While the diagram is showing, you can
press any keypad key to get help on using that key. When you are through
with the help, press the space bar to return to editing. Try it out now.

Moving the Cursor
The cursor always appears where the next character will appear or the
next action will take place. You can move the cursor in many different
ways. Experience will teach you which is best in a given situation.

Using the Arrow Keys

The easiest way to move the cursor is by using the arrow keys. On a
VT100 terminal the four arrow keys are located at the top of the keyboard.
On the VT200-series terminals, they are located between the keyboard and
the keypad.

The LEFT and RIGHT arrows move the cursor one character to the left or
right. If the cursor is at the end of a line, the RIGHT arrow moves it to the
beginning of the next line. Conversely, if the cursor is at the beginning of
a line, the LEFT arrow moves it to the end of the previous line.

The UP and DOWN arrows move the cursor one line up or down. The
column position of the cursor does not change, unless there is no text in
the corresponding column above or below. In that case, the cursor moves
to the end of the preceding or following line.

Try using the arrow keys. Note that the cursor will not move beyond
the limits of the buffer. If you try to go beyond the limits, the message
N Advance past bottom of buffer" or NBackup past top of buffer" appears on
the screen.

Creating Files 2-7

Changing the Direction of Cursor Movement
The keypad commands ADVANCE (4) and BACKUP (5) change the
direction in which the cursor moves. The ADVANCE key causes the
cursor to move forward, toward the end of the buffer. The BACKUP key
causes the cursor to move back through the text, toward the top of the
buffer.

When you start editing, the cursor moves forward by default. You may
want it to move backward if you are searching for a word or making
a series of changes. However, it can be confusing to edit a file with
BACKUP in effect. In general, you should follow any use of ADVANCE
immediately with BACKUP.

The TOP (GOLD + 5) and BOTTOM (GOLD + 4) functions move the cursor
to the top and to the bottom of the file, respectively. Note that these two
functions use the GOLD key plus BACKUP or ADVANCE.

Use TOP to move the cursor to the top of your file.

I do not like you, Doctor Fell,
The reason why I cannot tell.
But this I know and know full well,
I do not like you, Doctor Fell.

Moving the Cursor by Character, Word, and Line
You can move the cursor one character at a time with the CHAR (3)
function and one word at a time with the WORD (1) function.

The LINE (0) function moves the cursor to the beginning of the next line;
the EOL (2) function moves the cursor to the end of the line.

Remember that if BACKUP is in effect, these functions will move the cursor
back instead of forward.

Use the LINE and WORD functions to move the cursor to the word "why".

I do not like you, Doctor Fell,
The reason.hy I cannot tell.
But this I know and know full well,
I do not like you, Doctor Fell.

You can also move the cursor through larger entities of text with the PAGE
(7) and SECT (8) functions. However, this file is not long enough to try
them out. For more information, see Chapter 4 in the Micro/RSX User's
Guide.

2-8 Creating Files

Inserting Text
There are two ways to insert text.

One way to insert text is simply to move the cursor to where you want
the new text to appear and begin typing.

To try this out, move the cursor to "tell" and type the words "and will
not". The screen looks like this:

I do not like you. Doctor Fell.
The reason why I cannot and will not>iell.
But this I know and know full well.
I do not like you. Doctor Fell.

The other way to insert text is to open a line first. The OPEN LINE (GOLD
+ 0) function opens a line immediately above the cursor.

Move the cursor to the beginning of the second line and try it out. The
screen will look like this:

I do not like you. Doctor Fell.

The reason why I cannot and will not tell.
But this I know and know full well.
I do not like you. Doctor Fell.

Deleting text
The DELETE key functions in EDT the same way it does at the system
level. It deletes a character at a time to the left of the cursor.

In EDT, however, you can also delete text by the character, by the word,
and by the line.

DEL C (,) deletes the character the cursor is on.

DEL W (-) deletes a word, starting with the letter the cursor is on and
going to the next space.

DEL L (PF4) deletes a line, starting with the letter or space the cursor is on
and going to the next RETURN.

Use DEL L to delete the blank line.

Creating Files 2-9

Use DEL W three times to delete the words "and will not".

I do not like you. Doctor Fell.
The reason why I cannot tell.
But this I know and know full well.
I do not like you. Doctor Fell.

Undeleting Text
You can restore text you have deleted using the UNDELETE functions.
These functions use the GOLD key plus the DEL L, DEL W, and DEL C
functions.

To try this out press DEL W; "tell" is deleted. Now press UND W; "tell" is
restored.

Try each of these functions by deleting and undeleting a line, a word, and
a character. Note that you can restore only the last piece of text you have
deleted. For example, if you use DEL C twice, you can only restore the
second character that you deleted.

Locating Text
The FIND (GOLD + PF3) function lets you search through a file for a specific
string.

To follow this example, first move the cursor to the top of the file.

Press the two keys of the FIND function. The words "Search for:" appear
highlighted at the bottom of the screen. Type the word "not". To search
forward through the file, press ADVANCE.

The screen looks like this:

I do not like you. Doctor Fell.
The reason why I cannot tell.
But this I know and know full well.
I do not like you. Doctor Fell.

The FIND NEXT function lets you search for repeated occurrences of a
string. To find the next occurrence of "not", simply press FNDNXT (PF3).
Continue to press FNDNXT until the message "String was not found"
appears at the bottom of the screen.

Note that to search back through the text you use the BACKUP function
in place of ADVANCE. Try searching back through the text for the word
"like".

2-10 Creating Files

Moving Text
You can move sections of contiguous text from one location in the file to
another with the CUT and PASTE functions.

The SELECT (.) function marks a range of text, in this case the text you
are going to move. The text you put in the select range is highlighted on
the screen.

The following example moves the third line to the first line.

First, move the cursor to the first letter of "But". Press SELECT. Then press
LINE. The third line appears highlighted, indicating that it has been marked
by SELECT. (If you select the wrong text, use RESET (GOLD + .) to undo
it.)

CUT (6) moves the text in the select range from the buffer you are working
in to a buffer named PASTE. The PASTE buffer does not appear on the
screen.

Press CUT. The selected text disappears from the screen:

I do not like you, Doctor Fell,
The reason why I cannot tell.
I do not like you, Doctor Fell.

PASTE (GOLD + 6) moves the text from the PASTE buffer back to the
main buffer, locating it at the cursor.

For this example, move the cursor to the top of the file. Press PASTE.

~'Ut this I know and know full well,
Ido not like you, Doctor Fell,
The reason why I cannot tell.
I do not like you, Doctor Fell.

The text in the PASTE buffer is not deleted until you replace it with new
text or end your editing session. Move the cursor to the beginning of the
last line and press PASTE again. The same line appears. Use TOP and DEL
L to delete the first line and go back to the original format.

Creating Files 2-11

Leaving the Editor
The EXIT command takes you out of EDT and makes a new file.

The QUIT command takes you out of EDT but does not make a new file.

EXIT and QUIT must be issued from line mode. To get back to line mode,
press CTRL/Z.

At the asterisk prompt, type EXIT and enter it by pressing RETURN. You are
out of EDT. The file name appears on the screen along with the number of
lines in the file. The dollar sign ($) prompt returns, signifying that EDT
is no longer active at your terminal.

Note
You can use the COMMAND (GOLD + 7) function to issue
line mode commands while still in character mode. Line
mode commands issued from character mode are entered
with the ENTER key.

Now type and enter the command TYPE DOCTOR.FEL. The file is printed
on your terminal.

Look at your directory. You now have two versions of DOCTOR.FEL. You
created version 1 with the CREATE command. When you edited version
I, you automatically created version 2.

Return to EDT using the EDIT command and naming DOCTOR.FEL as
the file to be edited.

Use the CHANGE command enter character mode. Delete the first two
lines of the file.

Again type CTRL/Z and, at the asterisk, type QUIT and enter it. The dollar
sign ($) prompt returns immediately. EDT prints no messages on your
terminal. The QUIT command directs EDT not to create a new version of
the file.

Type and enter TYPE DOCTOR.FEL. The full paragraph is printed on your
terminal. Deleting the two lines had no permanent effect, because you left
EDT using the QUIT command instead of the EXIT command. If you had
used the EXIT command, the new version of the file would have been only
two lines long and numbered version 3. (Version I, the one-line version,
and version 2, the four-line version, would still be in existence.)

2-12 Creating Files

Why would you use the QUIT command? If you wish to use EDT just
to read a file, to search for some lines, for instance, you can QUIT when
you are through because you haven't really done any permanent editing.
If you start to edit and then change your mind, QUIT is also useful. Or, if
you make a major error, such as deleting a large number of lines that you
wish to keep, it may be simpler to QUIT and start over.

Remember though, if you type QUIT accidentally, you will lose all the
editing work that you have performed. The EDT command QUIT is one
EDT command that can cause you to lose work if you use it when you
don't mean it.

Line Mode Editing
Line mode has all the editing functions that character mode does. Instead
of using keypad functions, line mode uses English-like commands. For
example, INSERT, DELETE, FIND, and MOVE are all line mode commands.
Line mode commands are typed at the asterisk prompt. They are entered
by pressing the RETURN key or the keypad key labeled ENTER. You can
find more information about all line mode editing commands in Chapter 4
of the Micro/RSX User's Guide.

To begin, type and enter EDIT DOCTOR. PEL. The first line of text appears
on the screen; notice that it is numbered .

• EDIT DOCTOR. FEL [!ill]
1 I do not like you, Doctor Fell,

*
When you created DOCTOR. PEL, you supplied no line numbers, but when
you brought the file into EDT, line numbers were assigned. These line
numbers are used only by EDT. They are not a part of your file. When
you return to DCL, you leave the line numbers behind. Because keypad
editing operates on the whole file, it doesn't use the line numbers EDT
assigns. However, because line mode editing operates on the file a line at
a time, it depends on them.

Type TYPE 1 and enter it. EDT prints line 1 and returns the prompt.

Now type T 1 and enter it. Line 1 is printed again.

Note
EDT has stricter rules for shortening commands than DCL.
Type commands exactly as shown in the examples.

Creating Files 2-13

Range Specifications
Line mode can display all or part of a buffer. The lines displayed are
selected by range specifications; range specifications can be line numbers
or descriptive words.

Type T WHOLE and enter it. The entire buffer (four lines) is printed on
your terminal, with line numbers.

Now type T BEGIN and enter it. EDT returns to the beginning of the
buffer and prints line 1. EDT uses an invisible line pointer to keep track
of where you are in a buffer. When you move from one place to another
in a buffer, you are moving the line pointer.

Now type TYPE END and enter it. The line pointer moves to the end of
the buffer and EDT displays [EOB].

Now type TEND -1 and enter it. The line pointer moves "up" one line
and EDT displays the last line.

The expressions BEGIN, END, and END -1 are all ways of specifying a
range for the TYPE command.

Getting Help in Line Mode
The EDT HELP command provides help on EDT. Typing HELP on a line
by itself gives information on the HELP command and lists other EDT
help available. Since you've just used some simple forms of EDT ranges,
you can now try some other ways to specify ranges in EDT.

Type HELP RANGE and enter it. After ~ pause, EDT displays quite a bit
of text explaining the different ways of expressing a range. What you have
been doing is combining range specifications with the TYPE command to
specify the lines you wish listed. Notice that there are many more forms
of range expression besides those you have already used.

* HELP RANGE [Bm

2-14 Creating Files

RANGE

Range specifications are used on most line editing commands to select
the exact lines of text on which the command will operate.

There are several general classes of range specifications:

1. Single line ranges specify a single line of text.

2. Multiple line ranges specify blocks of text. such as an
entire buffer or all lines from the current line to the end
of the buffer.

3. Compound ranges combine single line ranges with operators
to specify multiple lines of text.

4. Noncontiguous ranges specify multiple lines that are not
necessarily adjacent to one another.

Additional information available:

ALL
FOR
SELECT

*

AND
LAST
STRING

BEGIN
MINUS
THRU

BEFORE
NUMBER
WHOLE

BUFFER
ORIGINAL

DOT
PLUS

END
REST

Now type HELP RANGE MINUS and enter it. EDT displays text explaining
how the minus (-) is used in range specifications. Similar help is available
for all EDT line mode commands, as well as for concepts such as RANGE.

* HELP RANGE MINUS mill

RANGE

MINUS

The minus sign in ranges selects a single line that is a specified
number of lines before a specified line.

Format: [range] - [n]

Range is a single line range. and n is an integer. The line selected
is the line that is n lines before the line specified by range. If
you omit range. the current line is used; if you omit n. 1 is used.

Ex: TYPE 15 - 3 Type the third line before the line numbered 15.
TYPE END -1 Type the last line in the buffer.
TYPE - Type the previous line.

*
As you go through this editing exercise, use the HELP command whenever
you want further information. Type HELP on a line by itself for information
on what help is available from EDT.

Creating Files 2-15

Displaying Lines of Text
As you have seen, the TYPE command moves the line pointer to the
beginning of a range. There are many ways of expressing ranges.

Type T 1 and enter it. Line 1 is printed on your terminal. The TYPE
command moved the line pointer to line 1 and printed it.

Now type 1 by itself and enter it. Once again, line 1 is printed on your
terminal. This has the same effect as the previous command. If the range
expression for a type command begins with a number, you need not type
TYPE or T.

* T 1 ffiill
1 I do not like you, Doctor Fell,

* 1 (@]
1 I do not like you, Doctor Fell,

Press RETURN on a line by itself. Line 2 is printed. Line 2 is the next line
past the line pointer.

Type T . and enter it. Line 2 is printed. The dot (.) is a range expression
meaning "where the line pointer is. II

Now type a dot (.) and enter it. Line 2 is printed. The line pointer has
not moved. The dot is considered a line number. Thus, you did not have
to type the T.

* ~
2 The reason why I cannot tell,

*T ffiill
2 The reason why I cannot tell,

*. (@J
2 The reason why I cannot tell,

This time type TYPE 1 THRU 2 and enter it. Both lines are printed.

Type 1 THRU 2 and enter it. The range begins with a line number. No
TYPE command is needed.

Again, type and enter the dot. Although EDT printed both lines in the
range, the line pointer is still pointing at the first line in the range. The
dot will always tell you where the line pointer is.

2-16 Creating Files

*T 1 THRU 2 [Bill
1 I do not like you, Doctor Fell,
2 The reason why I cannot tell,

* 1 THRU 2 [Bill
1 I do not like you, Doctor Fell,
2 The reason why I cannot tell,

*. [Bill
1 I do not like, Doctor Fell,

Now type TYPE WH and enter it. The entire buffer is printed.

Finally, type WH and enter it. You get an error message, HUnrecognized
command." WH is a range expression that does not begin with a number,
so it does not work without the TYPE (or T) command. Since you entered
an illegal command, nothing happened. You received the message and the
asterisk (*) prompt returned. Your text is unaffected, and the line pointer
stays in place.

*T WH [Bill
1
2
3
4

[EDB]
*WH [Bill

I do not like you, Doctor Fell,
The reason why I cannot tell,
But this I know and know full well,
I do not like you, Doctor Fell.

Unrecognized command

*

Inserting Text
The INSERT command (abbreviation I) inserts text ahead of the line pointer.

The RESEQUENCE command (abbreviation RES) renumbers lines.

Type 1 and enter it. Line 1 is printed on your terminal.

Now type I (for INSERT) and enter it. Type the new line of text shown
in the example, and then end the insertion by pressing CTRL/Z on a line
by itself.

*1 [Bill
1

*1 [Bill

1

I do not like you, Doctor Fell,

All around the mulberry bush, [Bill
ICTRL/zi
I do not like you, Doctor Fell,

Creating Files 2-17

Now type T WH and enter it. The new line you entered appears ahead
of line 1. The line pointer was pointing to line 1 when you issued the
INSERT command. The INSERT command inserts text ahead of the line
pointer. (If the line pointer had been pointing at the end of the buffer, the
new text would have been inserted at the end of the file.)

*T WH mnJ
0.1
1
2
3
4

[EOB]

All around the mulberry bush.
I do not like you. Doctor Fell.
The reason why I cannot tell.
But this I know and know full well.
I do not like you. Doctor Fell.

Notice that the new line number is line 0.1. EDT keeps your lines in
numerical order by using numbers with decimal points when you insert
new material between existing lines. Since these numbers can become
confusing after a complicated series of inserts, EDT provides a means of
resequencing line numbers.

Renumbering Text Lines
Type RESEQUENCE and enter it. Now type T WH and enter it. The lines
have been renumbered.

*RESEQUENCE mnJ
6 lines resequenced
* TWH mnJ

1
2
3
4
6

[EOB]

*

All around the mulberry bush ..
I do not like you. Doctor Fell.
The reason why I cannot tell.
But this I know and know full well.
I do not like you. Doctor Fell.

2-18 Creating Files

Deleting Lines from Text
The DELETE command eliminates text.

Move the line pointer to line 1 and print it.

*1 mill
1 All around the mulberry bush,

Now type DELETE 1 and enter it. EDT informs you of the deletion and
prints the next line on your terminal.

Type T WH again and enter it, and you will see that the excess line is
gone.

* DELETE 1 mill
1 line deleted

2 I do not like you, Doctor Fell,
*T WH mill

2

*

3
4
5
[EOB]

I do not like you, Doctor Fell,
The reason why I cannot tell,
But this I know and know full well,
I do not like you, Doctor Fell.

Type and enter RESEQUENCE to renumber the lines correctly.

Searching through Text
The FIND command moves the line pointer past the string you are
searching for.

You can search for a string by quoting it. You can search again for the
same string by typing just the "quotes."

You can search for a group of lines by quoting from the beginning of the
first line and the end of the last line.

You can move the line pointer with plus (+) and minus (-) commands.

Type FIND BEGIN and enter it. The EDT prompt returns, but nothing else
is printed on your terminal. The line pointer is now at the beginning of
the buffer. The FIND command moves the line pointer without printing
the line. The TYPE command moves the line pointer and also prints the
line.

Creating Files 2-19

Type "Fell," including the quotes and enter it. The line containing the
quoted string is printed on your terminal. Now do the same thing again.
EDT reports that the string was not found and reprints the line. When
EDT finds a string, the line pointer moves past that string. When EDT
cannot find a quoted string, it reprints the last line pointed to. This tells
you that the line pointer has not moved. This may seem confusing, but
as you use EDT, particularly with larger files, you will find it less so.

*FIND BEGIN mrn
*"Fell." mrn

1 I do not like you. Doctor Fell.
*"Fell." mrn
String was not found

1 I do not like you. Doctor Fell.

Now type F BE and enter it. F is the abbreviation for the FIND command
and BE is the abbreviation for the BEGIN range expression. The EDT
prompt returns, but you see nothing else. The line pointer is at the
beginning of the buffer again.

Type two quotation marks ("") with nothing between them and press
RETURN. The first line is printed. EDT remembers the last string that you
searched for and searches for it again when you type the "quotes" with
nothing between them.

Return to the beginning of the buffer with F BE.

Now type "I do" THRU "Fell." and enter it. Notice that this time the
period is included in the second string. The entire poem is printed on your
terminal. The line pointer has not moved, however, as you can confirm
by typing a dot (.) and entering it. The dot means "the current line."

*F BE mrn
*"" mrn
*"1 do" THRU

1
2
3
4

* mrn
1

"Fell." mrn
I do not like you. Doctor Fell.
The reason why I cannot tell.
But this I know and know full well.
I do not like you. Doctor Fell.

I do not like you. Doctor Fell.

You can also move the line pointer down using the plus (+) command or
up using the minus (-) command as shown in the example. You can also
combine the plus or minus with other range expressions in commands,
such as TYPE BEGIN +1, or TYPE "reason" + I, or TYPE END -1. END-I,
by the way, is the last line in the buffer, since END is the actual end of
the buffer, meaning there is no line there.

2-20 Creating Files

But this I know and know full well,

The reason why I cannot tell,

*

Moving and Copying Text within the File
The MOVE command moves text.

The COpy command copies text.

Type 1 and enter it. Line 1 is printed.

Now type MOVE 1 TO END and enter it. EDT informs you that one line
has been moved.

Type RES (RESEQUENCE) and enter it.

Print the whole buffer by typing T WH and entering it.

*1 [@]
1 I do not like you, Doctor Fell,

*MOVE 1 TO END ~
1 line moved
*RES [@]
4 lines resequenced
*T WH [@]

1
2
3
4

[EOB]

*

The reason why I cannot tell,
But this I know and know full well,
I do not like you, Doctor Fell.
I do not like you, Doctor Fell,

Now type COpy 4 TO 1 and enter it. The command means "Make a copy
of line 4 and place it just ahead of line 1.1/ Resequence again and print the
whole buffer using the T WH command.

Creating Files 2-21

*COPY 4 TO 1 [BITJ
1 line copied
*RES ffiITl
4 lines resequenced
*T WH ffiITl

1
2
3
4
5

[EOB]

*

I do not like you, Doctor Fell,
The reason why I cannot tell,
But this I know and know full well,
I do not like you, Doctor Fell.
I do not like you, Doctor Fell,

Notice that the COPY command leaves the copied line in place, while
the MOVE command deletes the line from one location and places it in
another location.

Type and enter DELETE 5 to restore the poem to its original form.

Replacing Words
The SUBSTITUTE command replaces text. The SUBSTITUTE command
makes its substitution on the first matching string it encounters on the
current line. You can also make substitutions throughout a range or
throughout a whole file.

The SUBSTITUTE command searches for a string of text and replaces that
string with a new string. The old and new strings are marked by slashes
(/), or delimiters.

Begin this example by moving the line pointer to line 1. Type and
enter S/ell/umblej. EDT searches the line for the string "ell", makes the
substitution, and prints the new line.

1 ffiITl
* S/ell/umble/ ffiITl

1 I do not like you, Doctor Fumble,
1 substitution

Now type S/ell/umble/WHOLE and enter it. WHOLE means the whole
buffer, as usual. EDT searches for the string "ell" throughout the buffer,
making the substitution and printing each new line. When EDT has
completed its operations, it informs you of the number of substitutions
made.

2-22 Creating Files

*8/ ell/umble/WHOLE !BIT]
2 The reason why I cannot tumble,
3 But this I know and know full wumble,
4 I do not like you, Doctor Fumble.

3 substitutions

*
Return to line 1 and substitute Hell" for Humble," to restore the original
poem.

Line Mode Commands Also Used in Character
Mode

WRITE and INCLUDE are two line mode commands that have no direct
character mode equivalents. They are used in both line and character
editing.

Remember that you can use the COMMAND (PF 1 + 7) function in character
mode to enter line mode commands.

Creating a Second File
The WRITE command takes a specified range of text and creates a new
file containing that text. This command can be useful if you are going to
use a section of a file in more than one piece of writing, for example in
several different reports.

This example creates a file named LIKE.DOC that contains the first two
lines of DOCTOR.FEL. The two lines are not deleted from DOCTOR.FEL.

* WRITE LIKE.DOC 1 THRU 2 ffi[O
DUO: [U8ER]LIKE.DOC;1 2 lines

Creating Files 2-23

Including a Second File in Your Text
The INCLUDE command inserts a file into your existing file at the point
you specify. The default position is at the line pointer. This example moves
the line pointer to the end of your file and inserts the file LIKE.DOC.

*END lEffi
[EOB]
* INCLUDE LIKE. DOC
*T WH lEffi

1
2
3
4
5
6

[EOB]

*

I do not like you, Doctor Fell,
The reason why I cannot tell,
But this I know and know full well,
I do not like you, Doctor Fell.
I do not like you, Doctor Fell,
The reason why I canot tell,

The file LIKE.DOC still exists; you could include it in other files.

Summary
This concludes your introduction to EDT. You have learned to use the
most common editing functions in both character and line mode:

• Creating new files and new versions of files

• Moving around in a text file

• Inserting and deleting text

• Moving and copying text

• Making local and global substitutions

• Using range specifications

• Getting help

EDT has additional capabilities that have not been explained here. See
Chapter 4 of the MicrojRSX User's Guide for more information. This
chapter details all these advanced features:

1. Multiple buffers that permit you to work on smaller blocks of text
while you build a large file in the main buffer. If, for instance, you
have text that must be repeatedly inserted in a file-Nboilerplate" of
some kind-you can store that text in an alternate buffer and use the
COpy command to insert it wherever you need it.

2-24 Creating Files

2. A journaling facility that protects you against losing your files should
the system crash while you are editing.

3. A means of defining new commands in line mode and new keys
in character mode. Any time you need to do one series of editing
commands over and over again, you should consider defining keys or
commands.

4. ~Y1ore information on EDTINI.EDT files for saving those defined
commands and using them over and over without having to redefine
them every time.

EDT is quite versatile, and this introduction is only a beginning. Once you
get used to using EDT as taught here, you should explore the EDT help
files and Chapter 4 of the Micro/RSX User's Guide for ideas and suggestions
on how you can use the advanced features of EDT.

Creating Files 2-25

Chapter 3
Using DCl Commands

Micro/RSX has hundreds of available commands and qualifiers. These
commands enable you to specify in precise detail exactly what you want
the system to do. In most cases, however, complex (and confusing)
commands are not necessary. This chapter describes the Micro/RSX DCL
commands most likely to be of everyday use to an average system user.
The Micro/RSX help files and the Micro/RSX User's Guide have detailed
descriptions of all the DCL commands, qualifiers, and concepts.

So far you have not used any qualifiers with DCL commands. Qualifiers
are attached to a command by a slash (/) and are used to change the
effect of the command. For instance, if you type DIRECTORY, you'll see
a three-column listing of all the files in the USER account, but if you type
DIRECTORY /BRIEF, you'll see a one-column listing of all the files.

Most DCL commands require you to name a file. Just as a book can contain
anything that can be printed, a file can contain anything that can be put
on a computer disk or put into computer memory. A file can contain a
memo, or it can contain a computer program.

All files, regardless of their contents, have a lot in common. In particular,
all files have names in the same form. The file name can be no more than
nine characters and is usually followed by a three-letter file type. The
name of a file generally tells you quite a bit about what is in the file. For
instance, there is a file in the USER account called WHATSHERE.TXT. This
text file is an annotated list of all the files included in the USER account.

Using DCL Commands 3-1

This chapter explains more about how to use DCL and summarizes the
most often-used DCL commands. The chapter opens with a discussion of
wildcards, which are tools for specifying files in groups.

The next section discusses file management. DCL provides many
commands for managing your files. You have done some file management
already with the DIRECTORY and TYPE commands. You have also created
files using the EDIT and CREATE commands. Other DCL commands for
managing files include RENAME, COPY, DELETE, PURGE, and PRINT.

Following the file management section are descriptions of general system
commands like BROADCAST, RUN, SET DEFAULT, SHOW DEFAULT,
SHOW DEVICES, SHOW TIME, SHOW USERS, SET PASSWORD, and
HELP.

The next section explains the commands for using disks and tapes,
including how to prepare new diskettes for use. Commands in the section
include MOUNT, ANALYZE/MEDIA, DISMOUNT, and INITIALIZE.

The final section describes briefly how to use the Queue Manager, including
the PRINT command, as well as SHOW QUEUE, DELETE/ENTRY, and
SET QUEUE.

Wildcards and Other Wild Things
Directories can be quite large. Most of the time when you look in a
directory, you don't want to see the whole list, but only to see if certain
files are available. If you want to check on a single file, you can type a
command like this:

$ DIRECTORY FLY. TXT !Bill

The command lists only the most recent version of FLY. TXT.

The following command line lists all versions of FLY. TXT:

$ DIR FLY. TXT; * !Bill

The asterisk (.) is called a wildcard and functions exactly as a wild card
does in card games. It can stand for anything. In this case, the asterisk
means "all version numbers." Without the asterisk, you would have had
to type this to list all three:

$ DIR FLY.TXT;1.FLY.TXT;2.FLY.TXT;3 !Bill

And even then you couldn't be sure you'd listed all versions.

3-2 Using DCL Commands

For many commands, you can use wildcards in place of most fields in
the file specification. The examples in this section use the DIRECTORY
command, but you can use wildcards on all the commands discussed under
file management in the next section, as well as some other commands.

Some of this is going to look complicated, but once you get used to it,
you'll find it very useful. For instance, the following command asks for
lithe latest versions of all files with the file type .TXT";

• OIR *. TXT rnrn
The next command asks for "all files in all directories on the disk." Try it.
You'll probably want to press CTRL/C to stop it.

• OIR [*] * . * ; * rnrn
You cannot use wildcards for device names, but you can use them for
directory names, file names, file types, and version numbers.

Wildcards can get wilder. If you type the following command line, you're
asking for lithe latest version of all .TXT files whose names start with F";

• OIR F*. TXT rnrn
You're asking for "the latest version of all .TXT files whose names end
with F", if you type this:

• OIR *F. TXT rnrn
And, if you type this command line, you're asking for "the latest version
of all .TXT files whose names include an F":

• OIR *F*. TXT mTIJ
Combining letters and the asterisk wildcard only works on file names and
file types.

Another wildcard for file names and file types is the percent sign (%).
The percent sign is a wildcard that stands for a single character. Therefore,
to ask for "the latest version of all .TXT files whose names start with FL
and end with one other character," you use this command:

• OIR FL%. TXT mTIJ

As you can see, wildcards are a way of specifying lots of files, or narrowing
down the number of files you have to look at, without doing lots of typing
or thinking. You'll find more information on wildcards in Chapter 5 of
the Micro/RSX User's Guide.

Using DCL Commands 3-3

There are also some DCL command qualifiers that help you specify groups
of files without knowing anything about their exact names. These qualifiers
can be combined with wildcards in commands.

Many of these qualifiers relate to when the files in your directory were
created. You can show all the files created on or since a specified date, or
during a specified time period.

To ask for all the files you created today, type the following:

$ DrR/TODAY

To ask for "all the files I created on April 12, 1985," type:

$ DIR/DATE:12-APR-85 [!1J]

The qualifier jSINCE:28-FEB-85 means you're asking for "all the files I
created on or after February 28, 1985."

The jTHROUGH qualifier allows you to use jTHROUGH:03-SEP-85 to
mean "all files created on or before September 3, 1985."

You can use jSINCE and jTHROUGH together to ask for files created
between two dates:

S DIR/SINCE: 14-MAR-85/THROUGH' 01-NOV-85 ffiill

And, finally, there is the jEXCLUDE qualifier. Use this if you want to see
all your files except the file you specify. For example, to ask for "all files
in the directory except those named FLU.TXT," type:

S DrR/EXCLUDE' FLU TXT; * fRff1

These qualifiers can be combined with wildcards. You can ask for "all the
.TXT files I created today" by typing this:

S DIR/TODAY *. TXT; * ffiill

The more systematic you are about naming your files, the more useful
you'll find wildcards and these special DCL qualifiers.

Note
The next section discusses other file management com­
mands that accept wildcards and special qualifiers.
Wildcards and special qualifiers are easiest to use on
DIRECTORY and TYPE. You should wait until you are
confident of your ability to use them before trying them
out on more complex commands, such as RENAME or
COPY. This is especially true for DELETE and PURGE.

3-4 Using DCL Commands

DCL Commands for File Management
This section describes Micro/RSX file management commands in al­
phabetical order: COPY, CREATE, CREATE/DIRECTORY, DELETE,
DIRECTORY, EDIT, PURGE, RENAME and TYPE.

f'npv ,...,.,...,. ..
The COpy command makes a duplicate of one or more files. The file
that you create with COpy does not have to have the same name as the
original file.

Use COpy to move a file from the fixed disk to a diskette or tape, or from
one diskette to another, or from one directory to another. You may also
want to copy a file that you want to edit and use for a different purpose,
such as a form letter.

This example duplicates the file HELLO.TXT; the new copy of the file has
the name MESSAGE. TXT:

S COpy !Bill
From? HELLO. TXT [E.IT]
To? MESSAGE. TXT !Bill
S

If you have just looked at a file from· the fixed disk and wish to make a
copy on your diskette, use a command like this:

S COpy !Bill
From? GOODIE. TXT !Bill
To? DU1: [JOHNSON] GOODIE. TXT !Bill
S

You will then have two copies of the file, one on the fixed disk and one
on DUl: in the directory named [JOHNSON]. Naturally, there must be
a directory named [JOHNSON] on the diskette volume in DUl: for this
command to work.

(Later in this chapter you'll find a description of the CREATE/DIRECTORY
command that shows you how to create a directory to do this.)

Two qualifiers to COpy are quite useful:
/OWN
/REPLACE

Using DCL Commands 3-5

The IOWN qualifier specifies that the new copy of the file belongs to the
directory you sent it to, and not to the directory you copied it from. This
helps keep the protection of the file straight. If you encounter confusion
about the protection of copied files, copy the file again using this qualifier,
and you'll probably be all right.

There is a full discussion of file protection in Chapter 5 of the MicrolRSX
User's Guide. For the time being, all you need to know is that if you are
making a copy of the file for yourself, you won't need to use the IOWN
qualifier, but if you are making a copy for someone else, you will need to
use it. Otherwise, the person you're making the file for may have trouble
editing or deleting the file.

The IREPLACE qualifier specifies that if the directory you are sending the
copy to already has a file of that name, the old file will disappear and be
replaced by the new copy you have just sent.

CREATE
The CREATE command lets you create a text file without using the editor.
After you issue the command, type the text of the file on your terminal.
You can delete a line with CTRL/U. You can close the file by pressing
CTRL/Z.

For example:

$ eREA TE [ETI]
File? MAMOU. TXT
Why did you go away and leave me in Big Mamou?
~Z

$

You can create a file on a fixed disk or on a diskette. For instance, if your
default directory is on the fixed disk, you could create a file on a diskette
either by changing your default, or by specifying the diskette drive as part
of the response to the File? prompt.

You will almost always have a directory on the fixed disk, but you will
often have to create a directory on a diskette before you can create a file
to put in it. See the description of CREATE/DIRECTORY, next.

3-6 Using DCL Commands

CREATE/DIRECTORY
The CREATE/DIRECTORY command adds a directory to a fixed disk or to
a diskette. Nonprivileged users can create a directory on a diskette drive
if it is mounted with the qualifier /NOSHAREABLE. Privileged users can
create a directory on any mounted volume. See the discussion of MOUNT
later in this chapter.

If you name no disk, the directory is created on your current default disk.
If you name no directory, the directory will have the same name as your
default directory.

For example, if your default device is DUO: and your default directory is
[USER), the following command creates a directory called [USER) on DU2:.
UFO (User File Directory) is a synonym for directory.

• CREATE/DIRECTORY rnm
Device and UFO? DU2: rnm
•
Note that for this command to work you must be a privileged user or the
device DU2: must be mounted using the /NOSHAREABLE qualifier.

Remember that a directory must exist before you can copy files into it.
Later in this chapter you'll read more about how to move your work around
from the fixed disk to diskettes or tape. You should read this discussion,
which appears in the section "DCL Commands for Disks, Diskettes, and
Tapes" in this chapter, before creating any directories.

DELETE
The DELETE command erases one or more files from a directory. Once you
delete a file, it is gone forever. That makes DELETE the most dangerous
command you've learned so far. If you are deleting a whole list of files,
pressing CTRL/C may stop the last ones on the list from being deleted,
but it will not save the first ones.

DELETE works fine with wildcards and the special qualifiers, but you
should be sure you know what you're deleting. You may want to look at
a directory before deleting from it. For instance, type:

• DIRECTORY/TODAY *. TXT; * rnm
before typing:

• DELETE/TODAY *. TXT; * rnm

Using DCL Commands 3-7

You may have forgotten about something that you want to keep.

You have to specify a version number with the name of the file you are
deleting. You can use a wildcard, if you are deleting all versions of a file.
If you don't specify a version number, Micro/RSX prompts you with each
version of the file and asks whether you want to delete it.

There are two useful qualifiers to DELETE.

/LOG
/QUERY

The /LOG qualifier lists the names of files as they are deleted. This gives
you a list of what you deleted, but no chance to change your mind.

The /QUERY qualifier gives you a second chance. It allows you to delete
selectively after specifying a group of files. You are prompted with a list
of file names, based on your original command. As each file in the list is
named, you are asked whether you want to delete it.

The possible responses are as follows:
Y -delete the file
N-save the file
Q-save the file and quit
G-go ahead and delete all remaining candidates
@'ill-save the file

Y, N, and RETURN will continue with the next possible file, unless you
press CTRL/Z, which stops all further deleting.

Here's an example, issued with the defaults of DUl:[BERRY]:

$ DELETE/QUERY *. TMP ffiIT]
Delete file DU1: [BERRY] NADINE. TMP;1
Delete file DU1:[BERRY]16.TMP;1
Delete file DU1:[BERRY]CHUCK.TMP;1
Delete file DU1:[BERRY]DUCK.TMP;1

The following files have been deleted:
DU1: [BERRY]HAVANA.TMP;l
DU1: [BERRY]MOON.TMP;l
DU1: [BERRY]ROLLOVER.TMP;l
DU1: [BERRY] BEETHOVEN. TMP;1

•

3-8 Using DCL Commands

[Y/N/G/Q]? Y ffiIT]
[Y /N/G/Q]? Y ffiIT]
[Y /N/G/Q]? N ffiIT)
[Y /N/G/Q]? G ffiIT)

The user was able to delete the first two files one at a time with the Y
response, save the third file with the N response, and delete all remaining
files with the G response.

CAUTION
Don't use DELETE unless you mean it. In particular,
don't use DELETE with wildcards or special qualifiers until
you're sure of what you're doing.

DIRECTORY
The DIRECTORY command lists files in your directory. Remember that if
you do not name a particular file or group of files with the DIRECTORY
command, you will see a listing of all the files in the directory. If you
name one file, then the directory listing is limited to that file.

Several qualifiers are available for DIRECTORY:
/BRIEF
/FREE
/FULL
/OUTPUT:filespec
/PRINTER
/SUMMARY

The DIRECTORY command lists the flIes in your directory. Normally, this
is a three-column listing. The three columns show you the complete file
names, the number of blocks used by the file, and the creation date of the
file. At the end of the directory listing is a summary listing of the total
number and space requirements of all files listed. If you use the /BRIEF
qualifier, you get a one-column listing, showing only the file names. If
you use the /FULL qualifier, you get a great deal of information about
each file.

The /FREE qualifier shows you the amount of free space on the fixed disk
or a diskette you specify. For example:

$ DIRECTORY/FREE DU2: ~
DU2: has 405. blocks free. 395. blocks used out of 800.
Largest contiguous space = 210. blocks
12. file headers are free. 36. headers used out of 48.
$

Task image files, which are runnable programs, need contiguous space, as
do certain other kinds of files. Since each file has a header, the number
of free headers is the number of additional files you can make.

Using DCL Commands 3-9

EDIT

Since diskettes have limited space on them compared to the fixed disk,
you should check occasionally to make sure you're not about to overrun
the capacity of the diskette. Each block on a disk can hold 512 characters,
or about 80 words of text. With 800 blocks, each diskette can hold about
64,000 words of text.

Use DIRECTORY jFREE to compare the size of the diskettes with the size
of the fixed disk.

The jOUTPUT qualifier allows you to create a file containing the
directory listing, instead of printing it on your terminal. Include the
name you want the file to have with the jOUTPUT qualifier, such as
jOUTPUT:FOLEY.LST. You can use this qualifier to keep directories on
the fixed disk for each diskette you use.

The following example creates a file on the fixed disk; the file contains a
copy of the directory DU1:[FOLEYl

$ OIR/OUTPUT:FOLEY.LST OU1: [FOLEY]

The jPRINTER qualifier allows you to print the directory on your printer,
if you have one.

The jSUMMARY qualifier tells you how many files you have in your
directory and how much space they take up.

The EDIT command starts up EDT, the DIGITAL standard editor, which
is used to create and edit text files. Editing files is discussed in Chapter 2
of this book.

Several qualifiers to EDIT are described in Chapter 4 of the MicrojRSX
User's Guide; they can increase the flexibility and convenience of EDT.

3-10 Using DCL Commands

PURGE
The PURGE command is very similar to the DELETE command, except that
PURGE always leaves one or more copies of the file around. Normally,
PURGE will delete all but the highest-numbered copy of a file. This
command is very useful for cleaning up your disks.

For instance, if you edit a file; look at it edit it again, look at it, change your
mind, edit it again, and so forth, pretty soon you'll have a large number
of files with the same name and different version numbers. Usually, you'll
only want to keep the latest version. The following command allows you
to delete all· but the last version:

$ PURGE GROUCHO. TXT [Bffi

There are two qualifiers to PURGE that you may want to use:
/KEEP:n
/LOG

The /KEEP qualifier allows you to specify that the last n versions (by
number) be saved. In other words, instead of keeping just the latest copy
and deleting all the others, you can keep two or more of the latest versions
by using /KEEP.

The /LOG qualifier lists the names of the files deleted on your terminal.

The following command purges all the files in your directory:

$ PURGE *. * [Bffi

This is a good command to issue at the end of the day if you've done a
lot of editing or other file creating.

CAUTION
Don't use PURGE unless you mean it. In particular, don't
use PURGE with wildcards or special qualifiers until you're
sure of what you're doing.

Using DCL Commands 3-11

RENAME
The RENAME command changes a file's name.

For example,

S RENAME m:rn
Old file name? BROWNS. STL m:rn
New file name? ORIOLES. BLT m:rn
S

This changes BROWNS.STL (old file name) to ORIOLES.BLT (new file
name).

Here's another example:

S RENAME WRONG. TXT; * SONG. TXT; * m:rn
This changes all files named WRONG.TXT to the name SONG.TXT. All
the version numbers stay in order. Other wildcards and special qualifiers
will work with RENAME, but you should generally only rename one file
at a time until you are confident of your ability to handle wildcards and
special qualifiers.

TYPE
The TYPE command prints files on your terminal. You can use any
combination of file specifications, wildcards, and special qualifiers with the
TYPE command.

For example:

S TYPE/EXCLUDE: FLU. TXT; * *. TXT; * m:rn
The TYPE command prints on your terminal all .TXT files in your directory,
excluding all versions of FLU. TXT.

DCl Commands for General System Use
This section describes, in alphabetical order, a number of commands
for general system use. These include BROADCAST, HELP, RUN, SET
DEFAULT, SET PASSWORD, SHOW DEFAULT, SHOW DEVICES, SHOW
TIME, and SHOW USERS.

3-12 Using DCL Commands

BROADCAST
The BROADCAST command sends a one-line message to one or more
terminals.

For instance, the following command sends a message to terminal TT2:.

$ BROADCAST lEffi
To? TT2: lEITl
Message? "Time for lunch." lEffi

You can also broadcast to another user by user name:

$ BROADCAST lEffi
To? BRANDO lEffi
Message? "Let's go out for popcorn." lEffi

In this case, the broadcast goes to all the terminals that user Brando
happens to be logged in on.

If you leave the "quotesH off the message, it appears on the receiving
terminal in UPPERCASE. With the II quotes, H the message appears exactly
as you sent it.

Privileged users can send messages to all terminals, or to all logged-in
terminals, by using the following qualifiers:

/All
/lOGGED-IN

The following command sends the broadcast to every terminal that has
power on, whether logged in or not:

$ BROADCAST/ALL lEffi
Message? "Emergency meeting in main lobby." IRETI

But this command sends the broadcast only to terminals with a user logged
in:

$ BROADCAST/LOGGED_IN lEffi
Message? "Everybody log out." lEffi

Using DCL Commands 3-13

HELP
The HELP command gives you information about using the system. Most
MicrojRSX systems have help files available for users, although sometimes
they may be found on a separate diskette instead of on the fixed disk.

Hand? are both abbreviations for the HELP command. You can also
get help by typing ? in response to a prompt from a DCL command. In
that case, after the help file appears on the screen, the prompt returns.
You can either answer, or you can ask for more help by typing another
question mark.

If you simply issue the HELP command at the $ prompt, you'll see a list of
the available help files for your system. You can also ask for information
on a specific command or qualifier by typing commands such as these:

S HELP TYPE mill
• HELP DIRECTORY BRIEF ~

Usually, each screen of help text will point you to further help text when
it is available.

The EDT HELP command works similarly. (See Chapter 2.)

SET DEFAULT
The SET DEFAULT command sets either your default directory or device,
or both. When you log in, you log in on a particular device, probably the
fixed disk (DUO:), and in a particular directory, for example [KILROY].
Therefore, DUO:[KILROY] is your default. You can use the SHOW
DEFAULT command to find out what your defaults are.

Whenever you name a file in a command, such as this:

S PRINT mill
File(s)? SLOE.GIN mm
the system assumes you mean:

SPRINT mm
File (s)? DUO: [KILROY] SLOE. GIN mm
If you want to print a file from another disk or directory, you have to
include the disk or directory name in your command. For instance:

SPRINT mm
File(s)? DU2: [JANE]TOP.CAT mm

3-14 Using DCL Commands

If you want to do a number of things with files from DU2:[JANE], use the
SET DEFAULT command, as in this example:

• SET DEF AUL T DU2: [JANE] mm
• PRINT TOP. CAT mm
When you're through with DU2:[JANE], you can go back to your original
disk and directory with another SET DEFAULT command.

SET PASSWORD
The SET PASSWORD command changes your password. You must enter
your old password before you are allowed to change it. You must enter
your new password twice, the second time for verification. Type carefully
when entering the password information, because it is not echoed. You
wouldn't want to have an unknown password because your finger slipped.
(If this does happen, the system manager can straighten it out.)

In the following example, the passwords are shown in brackets, but
remember that they do not appear on your terminal.

• SET PASSWORD mm
Old password: <FUDD>
New password: <WABBIT>
Verification: <WABBIT>

The next time you log in, you will have a new password.

SHOW DEFAULT
The SHOW DEFAULT command tells you your current default device and
directory. It also tells you the type of directory you have and which
terminal you are logged in on.

For example:

,SHOW DEF AUL T mm
DUO: [USER] Named TT2:
Protection UIC: [200.1]

•
Only the device and directory are important to know in order to use
defaults in file specifications. The directory type, NAMED, is the default
directory type. It indicates that your directory can use either the name or
number format. The protection UIC (User Identification Code) identifies
you to the system and controls what system privileges you have.

Using DCL Commands 3-15

SHOW DEVICES

The SHOW DEVICES command tells you which devices are on your system
and which are available. If you name a device type, only information about
devices of that type is shown. For example, the following command gives
information about the DU: devices on a system with one fixed disk and
two diskette drives:

$ SHOW DEVICES DU: mill
DUO: Public Mounted Loaded Type=RD51
DU1: TTO: - Private Loaded Type=RX50
DU2: Loaded Type=RX50
DU3: Offline Loaded Type=unknown
$

DUO:, the fixed disk, is mounted public, which makes it accessible to all
users. The device is an RDS1, a type of hard disk; its driver is loaded,
meaning it is present in memory so that it can be used at any time. This
means the fixed disk is available for use by anyone.

DU1:, a diskette drive, is mounted nonshareable, or private. Only the user
logged in on TTO: can use it. The device is an RXSO, a type of diskette,
and the driver is loaded.

DU2: is available for use with an RXSO diskette. It has not been mounted,
which indicates it is not presently being used.

DU3: is reported to be off line and loaded, type unknown. Loaded means
that the software is present to handle such a device if it exists. However,
since the device is off line, the system knows nothing about it. In fact,
this system may have no physical DU3: device.

If you issue the SHOW DEVICES command without naming any device,
you'll see a list of all devices on the system, including terminals and
pseudo devices. Pseudo devices are not physical devices. They are names
used by the system as stand-ins for real device names. This makes it
possible to refer to a device on any RSX system without knowing its
name and number. On any RSX system, the operating system itself is
always on pseudo device LB:, regardless of which physical device it might
be. Similarly, your terminal is always pseudo device TI:, regardless of its
number or model.

3-16 Using DCL Commands

SHOW TIME

The SHOW TIME command displays the current time and date. The time
is in 24-hour format, and the date is formatted as dd-mmm-yy.

For example:

$ SHOW TIME [RITJ
15:27 03-SEP-85
$

SHOW USERS

RUN

The SHOW USERS command tells you which terminals are logged in,
as well as providing some information about the user logged in to the
terminal. The following display shows the terminal number, the directory,
and the protection UIC (User Identification Code) for each user, followed
by the login time, the number of active tasks,and the user's name.

$ SHOW USERS [RITJ
TT2: [FREDDY] [7.40] 18-MAY-86 10:67 0 F. SANFORD
TT6: [WAREHOUSE] [303.6] 18-MAY-86 16:04 3 R. ROGERS
$

The RUN command starts a task (or working program) executing.

For example, this command runs a program called QIX:

$ RUN QIX [RITJ

Chapter 7 in the Micro/RSX User's Guide provides more information about
running tasks.

DCL Commands for Disks, Diskettes, and Tapes
The commands in the next section help you move your work around
from one disk to another, or from disk to tape. The section opens with
a description of how to use the MOUNT command with diskettes and
how to prepare a blank diskette for use. It then describes how to use the
MOUNT command with a tape and how to prepare a blank tape for use.

Using DCL Commands 3-17

Disk drives and tape drives on the MicroPDP-ll are peripheral devices
used for information storage. Many MicroPDP-lls have at least three
disk drives available, one with fixed media and two diskette drives with
removable media. Other MicroPDP-lls have a drive for a fixed disk and a
drive for a removable tape cartridge. You can't see the fixed disk, because
it's inside the box, and since it is fixed in place, you can't change it. The
diskettes and tape, on the other hand, are removable and readily available.

The fixed disk has a greater capacity and operates at a higher speed than
the removable media. The operating system itself resides on the fixed disk.
Whether you use the fixed disk or the removable media usually depends
on how you are using the Micro/RSX system.

In general, the fixed disk holds information that needs to be immediately
available, or on line, at all times. The operating system obviously falls in
this category, but the fixed disk probably has most of the user directories
on it as well.

The diskettes are slower and smaller than the fixed disk, but you can easily
remove them or replace them. The diskettes generally hold information
that you want to have on line for the moment, but that need not be on
line all the time. One common operation is to edit a file on the fixed disk,
where the speed is important, and then copy it to a diskette and delete it
from the fixed disk once you've finished with it.

Tapes are not as fast as either diskettes or the fixed disk, but they have
a greater storage capacity and are more economical. Tapes are commonly
used to back up the files on a system. Then, if files on the fixed disk are
accidentally deleted or destroyed, copies can be recovered from the tape.

You'll probably grow quite accustomed to moving files around from one
medium to another. On Micro/RSX systems, a disk, diskette, or tape must
be mounted before you can do anything with it.

3-18 Using DCL Commands

MOUNT with Diskettes

The MOUNT command gives you access to a diskette in its drive. After
placing the diskette in the drive, you must mount the volume. Every
volume has a label. Often, this label is written right on the diskette package
along with other identification. The volume label is like a password to
allow you to see the information that is on the diskette.

There are four qualifiers to MOUNT that you may need:
/NOSHAREABLE
/SHAREABLE
/PUBLIC
/FOREIGN

If you want to keep the information on the volume to yourself, you
should use the /NOSHAREABLE qualifier to MOUNT. You must mount
the volume /NOSHAREABLE if you are going to create a directory.

If you need to share the information on the volume, use the /SHAREABLE
qualifier. Diskette volumes are mounted /SHAREABLE by default.
Everyone who wants to share in the information on the mounted volume
will have to know the volume label, often called the Volume-ID.

Privileged users can use the /PUBLIC qualifier to MOUNT. When a disk
is mounted public, everyone can use it. The fixed disk is usually mounted
public. .

The /FOREIGN qualifier allows you to access diskettes that are not in
the format required by Micro/RSX. This qualifier is most commonly used
when you are preparing a blank diskette for use. As supplied, the diskettes
are not in Micro/RSX format. Therefore, when you mount them, you must
use the /FOREIGN qualifier to the MOUNT command. See the following
discussion for an example of this. You are always warned when you need
to use the /FOREIGN qualifier with any Micro/RSX command.

You can also use the /FOREIGN qualifier to mount any disk or diskette
that is not in Micro/RSX format. The /FOREIGN qualifier bypasses the
Micro/RSX file system.

Note
The term volume is often used as a synonym for diskette.
Strictly speaking, the diskette is the actual piece of plastic
and the volume is the organized information on the
diskette. In most cases, the difference is unimportant
because you need both hardware and software to gain

Using DCL Commands 3-19

access to the information on the diskette. Once the diskette
is placed in a drive, you will probably think of the device as
holding the information. Again, this is a loose definition,
but it is important to remember that they are not the same
thing.

Preparing a Blank Diskette for Use

Preparing a blank diskette for use involves two steps: checking for bad
blocks and putting the diskette in the format Micro/RSX requires to read
and write files. Bad blocks are usually caused by damage to the surface of
the diskette. In general, you should not use a blank diskette with a bad
block on it.

To prepare a blank diskette for use follow these steps:

1. Place the diskette in a drive. Remember that diskette drive numbers
vary according to whether you have an optional fixed disk on your
system. This example assumes you're using DU1:.

2. Issue the following command:

$ MOUNT/FOREIGN/NOSHAREABLE IRETI
Device? DU1: ffi[tl
$

3. Now, to check for bad blocks, issue the following command and wait
for the message to return:

$ ANALYZE/MEDIA ffi[tl
Device? DU1: ffi[tl
BAD -- DU1: Total bad blocks = O.
$

If ANALYZE/MEDIA informs you it has found more than two bad
blocks on the diskette, you will probably not want to use the diskette
for anything important. In general, diskettes either have no bad blocks
at all, or have too many to use. If you do not use a diskette, you
should make a note of it on the diskette envelope.

If the diskette has bad blocks, issue the following command:

$ DISMOUNT [Rill
Device? DU1: ffi[tl
14:41:30 *** DU1: -- Dismount complete
DMO -- TTO: dismounted from DU1: *** Final dismount initiated ***
$

3-20 Using DCL Commands

Put the rejected diskette back in its envelope and set it aside. Start
over with a new diskette.

4. When ANALYZE/MEDIA displays the message announcing zero bad
blocks, issue the following command:

$ INITIALIZE @IT]
Device? DU1: @IT]
Label? CHAPTERl rn£n
$

Wait for the $ prompt to return. Initializing a diskette makes it ready
to accept files and directories. The label, sometimes called the Volume­
ID, is, in effect, a password that you and others who want to use the
diskette will use. The label can be up to 12 characters long. Unless the
information on the diskette is meant to be kept secret, you can write
the label on the envelope so you won't forget it. (Don't write on the
envelope with the diskette inside it, or you may create bad blocks.)

5. Now issue the following two commands:

$ DISMOUNT @IT]
Device? DU1: ~
14:41:30 *** DU1: -- Dismount complete
DMO -- TTO: dismounted from DU1: *** Final dismount initiated ***
$ MOUNT /NOSHAREABLE @IT]
Device? DU1: IRETI
Label? CHAPTERl rnrn
$

Now the diskette in DU1: is ready to use. You had to issue a
DISMOUNT command before the MOUNT command, because once
you have initialized a diskette, it is no longer foreign and must be
remounted correctly.

6. The final step for readying a blank diskette is to create a directory for
yourself on it. In the next example, the system prompts you for device
and UFD. UFD (User File Directory) is a synonym for directory. Issue
the following command:

$ CREATE/DIRECTORY rnrn
Device and UFO? DU1: [HAYES] IRET!
$

Now you can copy files into the [HAYES] directory on that diskette,
and, in fact, do anything you can do with any other directory.

Using DCL Commands 3-21

7. When you're finished with the diskette, issue this command:

$ DISMOUNT lliITJ
Device? DU1: lliITJ
14:41:30 *** DU1: -- Dismount complete
DMO -- TTO: dismounted from DU1: *** Final dismount initiated ***
$

Remove the diskette from the drive so that others can use it.

You may be thinking, "That certainly is complicated!" It is complicated,
but there is an easy way around it. Whenever you have to use a
complicated series of commands, you can simply create a file containing
all the commands and let Micro/RSX issue the commands for you. See
Chapter 4 on Indirect command processing for an explanation of how to
do this.

Using a Diskette with Flies on It

To prepare a diskette that already has files on it, follow these steps:

1. Find out the volume label for the diskette you wish to use. Then issue
the following command:

$ MOUNT !BIT]
Device? DU1: !BIT]
Label? SPIDERS [@j
$

2. As soon as the $ prompt returns, you can use the mounted diskette.

3. When you're finished with the diskette, issue this command:

$ DISMOUNT !BIT]
Device? DU1: !BIT]
14:41:30 *** DU1: -- Dismount complete
DMO -- TTO: dismounted from DU1: *** Final dismount initiated ***
$

Remove the diskette from the drive so that others can use it.

3-22 Using DCL Commands

MOUNT with a Tape
The MOUNT command gives you access to a tape in its drive. After
placing the tape in the drive, you must mount the volume. Every volume
has a label of no more than six characters. Often, this label is written right
on the tape cartridge along with other identification. The volume label is
like a password to allow you to see the information that is on the tape.
Tape voiumes are organized into file sets. See Chapter 3 of the MicrojRSX
System Manager's Guide for more information about file sets and volumes.

There is one qualifier to MOUNT that you will need:
/FOREIGN

The /FOREIGN qualifier allows you to access tapes that are not in ANSI
format, the format that Micro/RSX generally uses. This qualifier is used
when you are preparing a blank tape for use. As supplied, the tapes are
not in ANSI format. Therefore, when you mount them for the first time,
you must use the /FOREIGN qualifier to the MOUNT command.

You can also use the /FOREIGN qualifier to mount any tape that is not
blank, but is not in ANSI format. The /FOREIGN qualifier bypasses the
file system that Micro/RSX usually requires.

Note
The term volume is often used as a synonym for tape.
Strictly speaking, the tape is the actual piece of plastic
and the volume is the organized information on the tape.
In most cases, the difference is unimportant because you
need both hardware and software to gain access to the
information on the tape. Once the tape is placed in a
drive, you will probably think of the device as holding
the information. Again, this is a loose definition, but it is
important to remember that they are not the same thing.

Using DCL Commands 3-23

Preparing a Blank Tape for Use

To prepare a blank tape for use, follow these steps:

1. Make sure that the tape cartridge is write-enabled. This means that
the write-protect switch is pushed all the way to the right, allowing
you to write files on the tape.

2. Place the tape in the drive. You will need to know the name of the
drive you are using. If your system uses a TK50 tape, the name of
your tape drive is MUO:. If your system uses any other kind of tape,
your tape drive is MSO:. If you do not know which kind of tape you
have, use the SHOW DEVICES command to get a list of the devices
on your system.

3. Issue the following commands:

$MOUNT /FOREIGN [Bill
Device?MUO: [Bill
$INITIALIZE ffiill
Device? MUO: [Bill
Label? MELVIN ffiill

Wait for the $ prompt to return. Initializing a tape prepares it to
accept files. The label, sometimes called the Volume-ID, is, in effect, a
password that you and others who want access to the tape will use.

4. Now issue the following two commands:

$ DISMOUNT ffiill
Device? MUO: ffiill
$ MOUNT lliITl
Device? MUO: ffiill
Label? MELVIN [BTI]
$

Now the tape in MUO: is ready to use. You had to issue a DISMOUNT
command before the MOUNT command, because once you have
initialized the tape, it is no longer foreign and must be remounted
correctly.

5. You can now use the tape in many of the same ways you would a
diskette. For example, you can copy files to the tape using the same
commands that you use to copy files to a diskette.

3-24 Using DCL Commands

6. When you are finished using the tape drive, issue the following
command:

$ DISMOUNT mm
Device? MUO: mm
Remove the tape cartridge from the drive. Be sure to label the cartridge,
so you will remember what is on it.

Note that backing up files is a common use of tapes. To use the Micro/RSX
backup procedure, you do not need to have the tape in ANSI format. For
information on backing up files, read Chapter 3 in the Micro/RSX System
Manager's Guide.

DCl Commands for the Queue Manager
The Queue Manager, or QMG, is the system task that keeps track of
jobs that have been directed to batch processors, printers, or other output
devices, making sure that they are separate and in order.

Commands that involve the Queue Manager include the following:
PRINT, SHOW QUEUE, SET QUEUE, DELETE/ENTRY, HOLD/ENTRY,
RELEASE/ENTRY, and STOP/ABORT.

PRINT

The PRINT command prints files on a printer, if your system has one.

$PRINT mm
File(s)? WHATSHERE.TXT mm
PRI - Job 141. name "WHATSHERE". submitted to queue "PRINT"
$

Once you receive the message that the print job has been submitted to a
queue, you can go on with your other work. The job name comes from
the name of the first, or only, file. The job number is unique and can be
used in other commands to the Queue Manager, such as SHOW QUEUE,
SET QUEUE, DELETE/ENTRY, and STOP/PRINTER.

There are two particularly useful qualifiers to PRINT:
/ AFTER:(dd-mmm-yy hh:mm)
/COPIES:n

The / AFTER qualifier allows you to print your job after a time you specify,
perhaps at a time when no one is around. Without this qualifier, the job
would go directly to the printer.

Using DCL Commands 3-25

You may specify either the date, or the time, or both. If you do not specify
a date, the current date is assumed. To specify the date without the time,
omit the hh and mm values.

The date must be in the format shown here:

18-MAY-85

The month is indicated by the first three letters of its name.

The time must be in the 24-hour format.

Here are some examples.

Print the file after 6 P.M.:

$ PRINT/AFTER: (18: 00) lliITJ
File (s)? LONG. TXT lliITJ

Print the file on April 1, 1985:

$ PRINT/AFTER: (1-APR-85) lliITJ
File (s)? JOKE. TXT lliITJ

The jCOPIES qualifier lets you print more than one copy of the file.

Print two copies of the file:

$ PRINT/COPIES' 2 lliITJ
File (s)? RESUME. TXT lliITJ

If you are printing more than one file at the same time, but only want
extra copies of one, put the jCOPIES qualifier after that file name.

Print two copies of the file RICE.TXT and one copy of the other two files:

$ PRINT [ETIJ
File(s)? BASEBALL.TXT, RICE.TXT/COPIES:2, YAZ.TXT lliITJ

Or, if necessary, you can carry this a bit further.

Print one copy of the first file, two of the second, and three of the third:

$ PRINT lliITJ
File(s)? HUEY.TXT,DEWEY.TXT/COPIES:2,LOUIE.TXT/COPIES:3 lliITJ

The following commands can be used for both print and batch jobs. The
SUBMIT command, described in the next chapter, places jobs in batch
queues just as the PRINT command places jobs in print queues.

3-26 Using DCL Commands

SHOW QUEUE
SHOW QUEUE displays information about print or batch jobs in queues,
such as where they are and what their entry numbers are.

The SHOW QUEUE command by itself lists full information on all jobs in
all queues.

If you want brief information on all jobs in all queues, use the following
command:

S SHOW QUEUE/BRIEF ffiill

If you want information on a particular job, type a command like the
following:

S SHOW QUEUE/ENTRY: 141 ITIDJ

SET QUEUE
SET QUEUE allows you to change attributes of print or batch jobs after
they have been placed in a queue.

The following example shows you how you can print two copies of the file
HOLIDAY. LIS, even though you did not specify two copies in the initial
PRINT command. The /FILEJOSITION qualifier refers to the position
of the file within this job.

SPRINT ffiill
File(s)? WHATSHERE.TXT,HOLIOAY.LIS , JUNE. OAT ffiill
PRI - Job 141, name "WHATSHERE", submitted to queue "PRINT"
S

S SET QUEUE/ENTRY:141/FILE_POSITION:2/COPIES:2 ffiill
S

The SET QUEUE command works for most of the qualifiers to the PRINT
and SUBMIT commands.

Using DCL Commands 3-27

DELETE/ENTRY
DELETE/ENTRY removes an entry from a queue. If you change your
mind after issuing a PRINT or SUBMIT command, use DELETE/ENTRY.
The following example shows how you can delete a print job, even though
you have already submitted it to the print queue.

SPRINT [RITJ
File (s)? WHAT SHERE . TXT [RITJ
PRI - Job 141. name "WHATSHERE". submitted to queue "PRINT"
S

S DELETE/ENTRY: 141 [RITJ
S

HOLD/ENTRY
If you submit a print or batch job to a queue and then wish to delay
processing for some reason, use the HOLD/ENTRY command. The
following example shows how you can delay processing of a job after
you have submitted it to the print queue.

SPRINT [RITJ
File(s)? WHATSHERE.TXT [RITJ
PRI - Job 141. name "WHATSHERE". submitted to queue "PRINT"
S

S HOLD/ENTRY: 141 [RITJ
S

RELEASE/ENTRY
Use the RELEASE/ENTRY command when you are ready to begin
processing a job that you have delayed with HOLD/ENTRY. The following
example releases the job that was held up in the previous example.

S RELEASE/ENTRY: 141 [RITJ
S

3-28 Using DCL Commands

STOP/ABORT
Finally, if you want to cancel the currently active print job, you can issue
the following command:

$ STOP/ABORT LPO: IBTIl

or

$ STOP/ABORT TTl: IBTIl

You have to know the name of the physical device serving as your system's
printer (for example, LPO: or TTl:) to use the STOP/ABORT command.

There are many more qualifiers to all the Queue Manager commands. See
Chapter 8 in the Micro/RSX User's Guide for more information.

Using DCL Commands 3-29

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Chapter 4
Automatic Command Entry

Often while working on the system, you need to use the same command
or sequence of commands repeatedly. It is tiresome to retype the same
commands each time you need them. With complicated commands, typing
mistakes are particularly annoying. Micro/RSX includes a command
processor (called Indirect) and a batch processor to pass commands
automatically to the system.

With both the command processor and the batch processor, you place the
commands or series of commands you want executed in a file and pass
the file to the system for processing. Otherwise, the two processors are
very different.

In particular, the Indirect Command Processor works from a logged-in
terminal, while a batch job logs itself in, which allows you to use your
computer when you're not even there. The batch job can be scheduled to
run at a particular time, while Indirect runs immediately. Batch jobs can
be scheduled by priority, while Indirect always runs at the same priority.
Batch jobs provide you with a batch log indicating how the job ran. Indirect
includes a complete programming language, while batch jobs provide only
slight programming capability.

These two methods of automatic command entry can easily work together.
A batch job can include a command to run Indirect, and Indirect can issue
a SUBMIT command to run a batch job.

The following sections describe more about each processor. The material
in this chapter is more difficult. Study it carefully and then create your
own examples.

Automatic Command Entry 4-1

Indirect Command Processing
Indirect (the Indirect Command Processor) lets you execute several DCL
commands by typing one Indirect command line.

You create a file and put the DCL commands you want to execute into it
in the order you want them processed. To execute this command file, type
an at sign (@) and then the name of the file. Indirect and DCL then do
all the work.

For example, the file SHOW.CMD in the user directory contains the
following DCL command lines:

SHOW TIME
SHOW USERS
SHOW DEVICES

To execute this command file, type the following command line:

$ ~SHOW ffiIT]

Indirect, which is invoked by the at sign (@), reads the commands in the
file one at a time, waiting until each command has been executed before
going on to the next one.

There are only two command files in the USER directory. For the other
examples in this chapter, use EDT to create new command files. The
examples in this chapter use all uppercase letters, but Indirect accepts both
uppercase and lowercase. Since Indirect looks for .CMD file types by
default, you should create your files with this type. If you use another file
type, you must specify that file type whenever you want to execute the
file.

Indirect Command Files
Indirect command files are used for many different things. One example
is a login command file. When you log in, the system automatically runs
the command file LOGIN.CMD, which can set various characteristics for
your terminal or automatically run other programs or files. Take a look at
the LOGIN.CMD file in the [USER] directory.

To illustrate, you can use LOGIN.CMD to change the characteristics of
your terminal if the ones you want are different from the terminal's default
characteristics. Put the necessary DCL command lines in LOGIN.CMD.
The characteristics will be changed automatically when you log in. Here
is an example of a login command file:

4-2 Automatic Command Entry

SET TERMINAL/SPEED: (9600. 9600)/WIDTH: 80
c)COOKIE
SHOW USERS
SHOW TIME

This command file sets two different characteristics for the terminal: speed
and width. (See the Micro/RSX User's Guide for more information about
these commands.) The command file also runs another command file,
COOKIE.CMD. When COOKIE.CMD finishes executing, Indirect returns
to the first file (the login command file) to continue executing it. The
SHOW commands display the users currently logged in on the system,
and then the current time and date.

When you put commands into a login command file, you do not have to
type those commands every time you log in; Indirect does all the work
for you. Putting repetitive sequences of commands that you are going
to use often into a file is what Indirect is especially good for. Using
indirect command files saves you time and prevents mistakes. HRepetitive
sequences of commands" can be just about anything. A few examples are
listing files in your directory, mounting volumes, backing up files, or doing
quick tests at your terminal.

The following sample command files will give you a better idea of wh~t
Indirect can do for you:

• To prepare a disk volume for use and then mount it, run a file
containing the following command lines:

MOUNT/FOREIGN DU1:
ANALYZE/MEDIA DU1:
DISMOUNT DU1:
INITIALIZE DU1:MYDISK
MOUNT/NOSHAREABLE DU1:MYDISK

This file checks the volume (DUl:) for bad blocks (so that data will
not be written to them), initializes the volume (which deletes any
data currently on the volume and gives it the format of a Micro/RSX
volume), and then mounts the volume. (Note that the device on which
you mount a volume may not be DUl:, nor is the name of the volume
likely to be HMYDISK." See the file named MYDISK.CMD in the USER
directory. This command file can be used to prepare any diskette for
use on the system.)

Automatic Command Entry 4-3

• To check for files in your directory, use a file containing command
lines similar to the following:

DIR *.RNO;*
DIR *.MEM;*
DIR *.TXT;*
DIR *.LST;*
DIR *.CMD;*
DIR *.HLP;*

These command lines display on your terminal lists of various files
based on their file type. After looking at these lists, you can decide
what you want to do with the files.

Substitution Mode
You may need to change indirect command files often to make them do
exactly what you want to do each time. For example, you might use a
command file to do a backup procedure but find that you have to edit the
file to change the name of the device drive or its unit number. For such
cases, Indirect has substitution mode.

Substitution mode allows you to place a special word-called a symbol­
in the command line. When you run the command file, it asks you
(through a special Indirect command line) for the information that is to be
substituted for the symbol. An Indirect directive (or command), .ENABLE
SUBSTITUTION, allows you to use substitution mode. Symbols are put
in single quotes ('). The single quotes tell Indirect to substitue a value for
the symbol name before executing the command.

The following command file shows substitution mode being used:

.ENABLE SUBSTITUTION

.ASKS DEVICE Device to mount?
MOUNT 'DEVICE'

These command lines (which can be part of a larger command file) perform
the following actions: they enable substitution mode, ask you which device
is going to be mounted (DEVICE), assign your answer to the symbol
DEVICE, and then mount that device. When you run the file, this is what
you see on your terminal:

$ * Device to mount? [S]: DU1: mID
$ MOUNT DU1:

4-4 Automatic Command Entry

When you see ". Device to mount? [5]:" on your terminal, type the name
of the device to be mounted and press the RETURN key. After you have
answered the question, Indirect displays the MOUNT command line on
your terminal, with the specific device name substituted for the symbol
'DEVICE', and the system mounts the device.

The asterisk (.) at the beginning of the line indicates that the question is
being asked by Indirect. .A5KS means "ask for a string;" so the "[5]:" at
the end of the question indicates that Indirect expects a string answer, that
is, an answer containing a string of alphabetic and/or numeric characters.
Indirect also accepts other types of answers, depending on the question
being asked.

When the command file is run, Indirect substitutes your answer to the
question (DU1:) for the symbol 'DEVICE' in the MOUNT command line
following the question. That is why you see "MOUNT DU1:" displayed
on your terminal instead of "MOUNT 'DEVICE'." Using substitution mode
lets you name any device with your command file.

The next command file, which displays information from a user's local (that
is, private) help file, shows a similar use for substitution mode. (These
commands could also be part of a larger file.)

.ENABLE SUBSTITUTION

.ASKS CMND Enter command name
HELP/FILE:DU2:[BONNIE]COMMANDS.HLP 'CMND'

The terminal session would be this:

• ClHELP ffiIT] • * Enter command name [S]: Telegram ffiIT]
• HELP/FILE:DU2:[BONNIE]COMMANDS.HLP Telegram

The TELEGRAM command sends a specified message

As a way to display help files, this command file asks for the topic for
which help is wanted. When the terminal displays ". Enter command
name [5]:," you type in the topic you want help on. Indirect takes your
answer, substitutes it for the symbol 'CMND', in the HELP command line,
and then displays the requested help information immediately afterwards.
(See Chapter 3 in the Micro/RSX User's Guide for more information on the
HELP command.)

Automatic Command Entry 4-5

Writing Programs with Indirect
As you can see, Indirect can be used to write programs-in fact, the
command file just shown is really a simple program. Many common
programming techniques are available in Indirect. These techniques include
looping, counters, variables, arithmetic and logical operations, and testing
system conditions. The techniques are performed through the use of
Indirect directives, symbols, and labels.

Directives
.ENABLE SUBSTITUTION and .ASKS are two of the many Indirect
directives. This chapter does not describe all the directives, but acquaints
you with a few that you are most likely to use and to use frequently.
The .ASKS directive has two companion directives, .ASK (for true/false­
or logical-questions) and .ASKN (for numeric questions). You can use
.ENABLE and its companion directive, .DISABLE, to set and change several
other modes in Indirect.

All Indirect directives begin with a period, except for the logical end-of-file
directive, which is a slash (/).

For a complete list of the Indirect directives, see Chapter 9 in the Micro/RSX
User's Guide.

Special Symbols
Indirect has special symbols that it defines automatically. The definitions
of the symbols depend on specific system characteristics and the replies
to queries given during command file execution. Special symbols can be
compared, tested, or substituted and are of three types: logical, numeric,
or string. All special symbols have a common format: angle brackets
(< >) enclose the special symbol name.

For a list of the special symbols for Indirect, see Chapter 9 in the Micro/RSX
User's Guide.

4-6 Automatic Command Entry

Labels
You can also use labels in command files. Labels allow you to organize
your file more coherently and to jump to other lines in the file, depending
on the results of conditional statements.

For example, the following command file asks for the values of two
variables and then compares them .

. ENABLE SUBSTITUTION

.ASKN A Enter value for A

.ASKN B Enter value for B

.IF A > B .GOTO TEST2

.EXIT
TEST2: .SET A B

Depending on the result of the comparison (done with the .IF directive),
the command file either exits (.EXIT) or goes onto the section of the file
labeled .TEST2:.

Notice that the label begins in the first column of the command file while
the directives begin in the ninth column (one tab stop over). Formatting
your command files in this way makes them consistent and easy to read.

Labels are one through six characters in length, begin with a period (.),
and end with a colon (:). (The period and colon are not included in
the six characters.) When you use labels in command lines within the
command file, however, you only need to use the name; you do not need
to include the period and colon. The .GOTO directive allows you to go to
the different sections of the file marked by different labels.

The .IF and .sET directives, like .ASKS, have companion directives. The
other .IF directives allow you to make tests for certain specific conditions.
The other .SET directives allow you to set values as true, false, logical,
numeric, string, octal, or decimal.

The following command file uses one of the other .SET directives, .sETS,
and also the .ENABLE and .GOTO directives. The file also uses the special
string symbol <TIME>. A more detailed explanation follows the text of
the file.

Automatic Command Entry 4-7

. 000:

.100:

.200:

.300:

.400:

.500:

.600:

.700:

.800:

.900:

.END:

.; The following file prints a message on the terminal,

.; depending on the time of day .

. ENABLE SUBSTITUTION

.SETS TIME "'<TIME>'"

.; <TIME> has the format hh:mm:ss .

. SETS SAYING TIME[8. :8.]

.; Sets SAYING equal to last digit of <TIME> (l's column

.; for seconds) .

. GOTO 'SAYING'OO

., Makes a label based on the second <TIME> is checked .

What else can go wrong?
.GOTO END

Have you seen your shrink today?
.GOTO END

Ours is not to reason why .
. GOTO END

Where were YOU when the lights went out?
.GOTO END

Why are you here?
.GOTO END

Everything is relative .
. GOTO END

It will be a good experience for you!
.GOTO END

Don't panic .
. GOTO END

One lousy driver can ruin your whole day .
. GOTO END

Curiosity killed the cat .
. GOTO END

. EXIT

4-8 Automatic Command Entry

Explanation of the Command File
In addition to the directives and special symbol, this command file also
illustrates other features of Indirect. The first feature is the use of
comments. Comments can be used to describe what the file is supposed
to do and to explain what the command lines do or to give additional
information about them. Comments that begin with a period and semicolon
(.;) are not displayed on the terminai when the file is executed. Comments
that begin with only a semicolon (;) or an exclamation point (!) are
displayed.

This file, as the introductory comment explains, displays a message on the
terminal when the file is run. The message displayed depends on the time
at which the file is executed.

When the file begins to execute, substitution mode is enabled and then the
symbol TIME is set with the .SETS directive to be equal to the contents
of the special symbol <TIME>. <TIME> contains the current time in
the format hh:mm:ss. The second .SETS command line sets the symbol
SAYING to be equal to the last digit contained in <TIME>. The range
[8.:8.] means that Indirect should look for the last character in the string of
eight characters; in other words, the second digit for seconds. For example,
if <TIME> contains 11:37:56, the symbol TIME is set to 6. That means
that Indirect will display this message:

; It will be a good experience for you!

The .GOTO command line creates a label, using the second from
<TIME> , so that Indirect will know which label to go to and which

message to display. (In the above example, Indirect branched to label
.600:.) The remainder of the file lists the labels and the messages to be
displayed, and then branches to the .END: label after the message has
been displayed. In that way, Indirect goes directly to the end of the file
and exits without first displaying any messages following the one that was
displayed.

The following examples will give you an idea of the usefulness and
versatility of Indirect. A brief commentary follows each example. For
more information on Indirect (directives, symbols, error messages, and so
on), please see Chapter 9 of the MicrojRSX User's Guide.

Automatic Command Entry 4-9

Examples
Each example is followed by an explanation.

• The following command file creates a file named after the current date:

.ENABLE SUBSTITUTION

.SETS DATE <DATE>

.SETS DAY DATE[1:2]

.SETS MONTH DATE[4:6]

.SETS YEAR DATE[8. :9.]

.ASKS TYPE What file type?

.SETS NAME DAY+MONTH+YEAR+"."+TYPE
EDIT 'NAME'

In this file, substitution mode is enabled, then the symbol DATE is set
to the contents of the Indirect special symbol <DATE> (for example,
15-JUL-85). The symbol DAY is then set to the two characters for
the date (15), which are the first and second characters contained in
<DATE> . The symbol MONTH is then set to the three characters

for the month OUL), which are the fourth through sixth characters
contained in <DATE> . The symbol YEAR is set to the two characters
for the year (85), which are the eighth and ninth characters contained
in <DATE>. (By default, Indirect considers numbers to be octal.
Unless .ENABLE DECIMAL is in effect, you must use a decimal point
(.) after a number for Indirect to accept it as decimal. Notice the
decimal points after 8 and 9 in the example. See Chapter 9 in the
Micro/RSX User's Guide for more information on .ENABLE DECIMAL.)

The .ASKS command line asks you for the file type of the file being
created, and the symbol NAME becomes the concatenation of the
previous three symbols and TYPE. NAME, therefore, becomes the
name of the file being created, for example, 15JUL85.TXT. The last
command line in the file invokes EDT to edit the new file.

• The following command file concatenates several DCL help files into
one file named HELPFILES.TXT and then prints the file after a certain
specified time:

4-10 Automatic Command Entry

.ENABLE SUBSTITUTION

.ASKS DEVICE Enter device and directory spec

.ASKS TIME Time to print (hh:mm)?

.IF TIME EQ " .SETS TIME "0"
COPY 'DEVICE'DCL.HLP HELPFILES.TXT
APPEND 'DEVICE'ALLOCATE.HLP,BROADCAST,COPY HELPFILES.TXT
APPEND 'DEVICE'DIRECTORY.HLP,DISMOUNT,HELP HELPFILES.TXT
APPEND 'DEVICE'INITIALIZE.HLP,LINK,MOUNT HELPFILES.TXT
APPEND 'DEVICE'PuAGE.HLP,RENAME,RuN,SET HELPFILES.TXT
PRINT/AFTER: ('TIME') HELPFILES.TXT

In this file, substitution mode is enabled. Indirect asks which device
and directory the files are to be copied from ('DEVICE') and the time
after which the files are to be printed ('TIME'). If no specific time is
given, the files are queued to be printed immediately.

The COpy command creates the new file HELPFILES.TXT and copies
into it the help file DCL.HLP. The APPEND commands add more
help files to the end of HELPFILES.TXT. The PRINT command prints
HELPFILES.TXT after the time given in response to the "",Time to
print?" question.

• The following command file can help you delete unnecessary files from
your directory:

.BEGIN:
.ENABLE SUBSTITUTION

.ASKS FIL~ Which file?
TYPE 'FILE'
.ASK DEL Delete this file
.IFT DEL DELETE 'FILE';*
.GOTO BEGIN

With this file, substitution mode is enabled and Indirect asks for the
name of a file to be deleted. However, before the file is deleted, DCL
displays the file on the terminal and then Indirect asks if the file should
be deleted. This ensures that you do not delete a file that you really
want to keep.

If you answer "Yes" (Y) to the question, DCL deletes the file. After
the file is deleted, Indirect loops back up to the beginning and asks
again for the name of a file to be deleted. If you have no more files to
be deleted, type CTRL/Z in response to the "", Which file?" question.

Automatic Command Entry 4-11

• The following command file gets information about the system, your
account, and your terminal, and writes the information into another
file:

.ENABLE SUBSTITUTION

.OPEN INFO.DAT

.ENABLE DATA
'<DATE>'
'<TIME>'
'<UIC>'
'<LOGDEV>'
'<NETNOD>,

'<TISPED>,

'<TITYPE>,

. DISABLE DATA

.CLOSE INFO.DAT
TYPE INFO.DAT

!This
!This
!This
!This

is
is
is
is

today' 's date.
the current time.
your current UIC.
your login device.

!This is the DECnet node name for your
!system.
!This is the baud-rate code for your
!terminal.
!This is the type code for the
!terminal you are using .

With this file, substitution mode is enabled, a new file called INFO.DAT
is opened so that the information can be written into it (if the file
already exists, Indirect creates a new version), and then data mode is
enabled. Data mode allows several lines of text to be written into a
file.

Then, Indirect gets the contents of the various special symbols and
writes the information into INFO.DAT. After the last symbol is read,
data mode is disabled, and INFO.DAT is closed and then displayed on
the terminal. For example:

$ ClINFORM mill
S TYPE INFO.DAT
13-JUL-85
10:14:37
[303.23]
DUO
AMITY

22

15

$ CI <EOF>
$

4-12 Automatic Command Entry

!This
!This
!This
!This
!This

is today's date.
is the current time.
is your current UIC.
is your login device.
is the DECnet node name

!system.
of your

!This the baud-rate code for your
!terminal.
!This is the type code for the
!terminal you are using.

As you can see, the appropriate information has been written into the
new file.

Notice in the command file that there are two apostrophes in "today"s",
but only one apostrophe shows in the display. When substitution mode
is enabled, you must use two apostrophes in any comments so that the
text shows up correctly. When you use only one apostrophe, Indirect
assumes the text following the apostrophe to be a string symbol. See
Chapter 9 in the Micro/RSX User's Guide for more information.

Also, a code of 22(octal) for <TISPED> means that the baud rate of
the terminal is 9600. A code of 15(octal) for <TITYPE> means that
the terminal is a VT100. See Chapter 9 in the Micro/RSX User's Guide
for complete lists of the codes for the baud rates and terminal types.

You can also use Indirect directly from the terminal without running
a command file. The following command line lets you work with
Indirect interactively:

S ClTl: [BIT]
AT.>

When Indirect responds with AT.> (the task-name prompt), you
can enter Indirect command lines, invoke command files, or display
the values of special symbols. To display a symbol, use the
.ENABlE SUBSTITUTION directive, and then request the symbol in
the following format:

AT. > ; I <symbol> I [BIT]

For example, if you do

AT. > . enable substitution [BIT]
AT. > ; I <time> I [BIT]

Indirect responds with

S ;15:57:56
AT.>

The semicolon before the symbol indicates that Indirect should display
the time on the terminal, but DCl should not try to execute it as one
of its commands.

Automatic Command Entry 4-13

To exit from Indirect, type CTRL/Z:

AT. > ICTRL/zi
$ C <EOF>
$

Batch Processing
Batch processing is an alternative method of passing commands to the
operating system automatically. The text that follows illustrates how batch
processing works on Micro/RSX.

Batch jobs differ from indirect command files in that a batch job is a
complete terminal session, whereas an indirect command file is only part
of a terminal session. You must be logged in on a terminal to run an
indirect command file, but you can run a batch job long after you have
logged out and gone home. A batch job runs on a special kind of terminal
called a virtual terminal, which is really software.

Another difference between batch processing and Indirect processing is
that batch jobs can produce a log of the job as it runs.

A final difference is that batch processing does not have the complete
programming capability of the Indirect directives. You can, however,
invoke indirect command files from within a batch job.

An Example of a Batch Job
The following file, called BATCH. BAT, is an example of a batch file:

$JOB HIYA [200/1]
$COPY OLDFILE.TXT HIYA.TXT
$APPEND JOHN.TXT,COVERT.DAT HIYA.TXT
$PRINT HIYA.TXT
$CINFORM
$PRINT SYSTEM.DAT
$EOJ

This is a complete user batch job. In batch jobs, a dollar sign ($) precedes
batch-specific and DCl commands. The dollar sign notifies the batch
processor that a command follows.

The JOB command logs the batch job onto the virtual terminal. This
command also gives the name HIY A to the user batch job and, by including
the slash in the VIC, keeps all but important login messages out of the
batch log.

4-14 Automatic Command Entry

The COPY, APPEND, and PRINT commands work as usual, as does the
indirect command file INFORM.CMD

Comments can be included in the batch job, and thus in the batch log,
by using an exclamation point (!) after the dollar sign and before the
comment.

A line without a dollar sign in the first position notifies the batch processor
that the line contains data. The DATA and EOD commands can be used
to include data in batch jobs but are not necessary.

Submitting Batch Jobs

You pass the batch job to the batch processor with the DCL command
SUBMIT. For example:

$ SUBMIT/AFTER: (17 : 30) BATCH. BAT mIT]

The SUBMIT command places the batch job in the batch queue, from
which it will run after 17:30 (5:30 P.M.) on the day it was submitted.
When the job runs, it produces a log similar to the following one, which
is printed on the line printer when the job completes:

QMG Batch Job - BATCH
Processor BAPO

BPR V04.00 31-Aug-86 10:37 Page 1

10:37:06 .JOB HIYA [200/1]

User Job - HIYA Terminal VT2:

10:37:06
10:37:08
10:37:13

TERM

TERM
10:37:14

TERM
10:37:16

TERM
10:37:17

TERM

UIC = [200. 1]

Micro/RSX V3.0 BL24 [4.64] System

.GLB: [1.2]SYSLOGIN.CMD

.COPY OLDFILE.TXT HIYA.TXT

.APPEND JOHN.TXT.COVERT.DAT HIYA.TXT

.PRINT HIYA. TXT

AMITY

PRI - Job 43. name "BATCH " • submitted to queue
.GINFORM .G <EOF>
.PRINT SYSTEM.DAT
PRI - Job 43. name "BATCH ". submitted to queue
tEOJ
Connect time: o hrs o mins 26 secs
CPU time used: o hrs o mins 6 secs
Task total: 20

"PRINT "

"PRINT "

Automatic Command Entry 4-15

The batch log includes a record of all commands and data that the batch
job passed to the virtual terminal as well as any output sent to the virtual
terminal. You should try to relate the lines in the batch job to the lines
in the log. The file HIY A. TXT is printed on the second page of the batch
log, and the file SYSTEM.DAT is printed on the third page.

For more information on batch processing, see Chapter 8 in the Micro/RSX
User's Guide.

4-16 Automatic Command Entry

Glossary

abort
Stopping a program from running before it is finished is called aborting the
program. On most Micro/RSX systems, you can do this with the CTRL/C
command, but there is also a separate ABORT command in DCL that does
the same thing. When nonprivileged users log out, LOGOUT aborts any
programs they have runnning at the time.

Aborting a program does the program no harm, nor does it harm the
system. If the program keeps records of any kind, as a business system
would, then aborting it may result in incomplete records, but these can
usually be brought up to date. Aborting programs of this sort may also
result in locked files.

account
Each system user has an account. This is a record of the user's User
Identification Code (UIC), name, password, default disk, default directory,
and privilege status. System managers create accounts using the Account
File Maintenance Program, ACNT.

applications task
An applications task is any task that uses the operating system to run,
but is not part of that system. Examples include games, office automation
programs, graphics programs, control programs, and so forth.

Glossary-l

argument

ASCII

Arguments add specific information to DCL command qualifiers.

A DCL command consists of a command and optional qualifiers. The
qualifier alters the operation of the command. For instance, the PRINT
command has a /COPIES qualifier. This qualifier accepts an argument
specifying the number of copies you want. In DCL, arguments are preceded
by a colon (:) or an equal sign (=). The following example includes two
qualifiers with arguments .

• PRINT/COPIES:3/NAME:MELISSA IVAN.LAB ~

This command means print 3 copies of the file IVAN.LAB and give the
name MELISSA to the print job.

See the Micro/RSX User's Guide for more information on DCL commands.

ASCII stands for American Standard Code for Information Interchange.
ASCII is the standard format for readable text on computers. It is a
code used to translate letters, numbers, and symbols from a keyboard into
machine code, and vice versa.

Thus, an ASCII file is a file that can be read both by people and by
computers.

bad block
Bad blocks are blocks on a mass storage device that are not usable because
there is some physical damage or flaw. The ANALYZE/MEDIA command
is used to find bad blocks. You can use disks or diskettes that have bad
blocks on them, but if there are many bad blocks, you should consider
replacing the disk or diskette. Different devices have different levels of
tolerance for bad blocks, but with diskettes you will usually find that there
are either no bad blocks or many. You should discard diskettes with more
than two bad blocks. You should back up any diskette with any bad
blocks, no matter how few.

batch log
A batch log is a file or printed listing documenting everything that
happened to a particular batch job.

Glossary-2

batch processing
Batch processing is a mode in which all commands to be executed by the
operating system, or data to be used as input to the commands, are placed
in a file and submitted to the system for execution.

Batch jobs can be scheduled to run at a particular time, such as at night
when no one is using the system.

See also Indirect Command Processing.

block

boot

A block is a unit of measurement for files. In almost all cases, a block is
512 bytes. Since each character in text takes one byte, this means that one
block in an English language text file contains about 80 words of text.

The term "block" is also used to refer to various parts of the system that
contain processing information, such as a Task Control Block (TCB) used
by Micro/RSX to control tasks.

See bootstrap.

bootstrap
In computer terminology, a bootstrap is an operation that brings itself into
a desired state by its own action, as in the expression "She lifted herself by
her bootstraps." In Micro/RSX systems, the bootstrap is a routine included
in the MicroPDP-11 computer that includes enough instructions to bring
the rest of the operating system into the computer's main memory. A
bootstrap is often called a boot, and bootstrapping is often called booting.

Booting means bringing a fresh copy of the operating system into action.
This is accomplished by turning the power off and then on again on the
MicroPDP-11, or by pressing the RESTART button. When you do this, the
computer first checks its hardware and then brings the operating system
back from the fixed system disk into memory. See the Micro/RSX System
Manager's Guide for more information.

buffer
Buffer refers to a temporary storage area in a program. In this book, the
term refers to the buffers created by EDT for your use in creating and
modifying files. EDT always starts out in a buffer named MAIN, but it
has other buffers available, and you can create your own buffers. See the
Micro/RSX User's Guide for more information on EDT and its buffers.

Glossary-3

central processing unit
See CPU.

character mode
EDT's character mode uses the video screen to operate on text one character
at a time, in contrast to line mode, which operates on one line at a time.
Character mode editing commands are entered using the keypad.

See line mode.

circumflex
The circumflex character, also called an up-arrow, looks like a hat or a
roof:

It is used on MicrojRSX systems to indicate that you have typed a control
character.

command
A command, when executed, is an instruction to the software to perform a
particular action. For instance, the following command directs MicrojRSX
to perform a series of operations:

$ TYPE IZZY. TXT mill

This command directs the system to find a file named IZZY. TXT and
display the contents of that file on your terminal.

In this book, you learn commands to DCL, the DIGIT AL Command
Language, and commands to the EDT editor. See the MicrojRSX User's
Guide for more information on DCL commands.

complier
Each high-level language is implemented through a compiler. A compiler
is a program that takes a source program written in the high-level language
and translates it into binary object modules that can then be translated
into tasks by the Task Builder. See Programming on MicrojRSX for more
information.

Glossary-4

contiguous
A contiguous file consists of physically adjacent portions on a mass storage
device. Contiguous files can be loaded into main memory in a single
operation. The most common contiguous files are task image files, but
other files can also be contiguous. Contiguous files are indicated by a letter
C in the directory listing, as shown below:

QIX.TSK;2 40. C 01-APR-86 00:01

control character

CPU

A control character is a special form of command to the system entered
by pressing the CTRL key and a letter key together. The most important
control character is CTRL/C, which aborts any task running on your
terminal. Other useful control characters include CTRL/Z, which means
"end-of-input," and CTRL/O, which skips over unwanted output on your
terminal. Control characters are sometimes indicated by a circumflex (A)
followed by the character, as shown below:

·z

CPU stands for Central Processing Unit. It is the hardware that handles
all the calculation and routing of input and output (I/O), as well as the
execution of tasks. The CPU is the part of the computer that actually
computes.

crash
A crash is the system's response to an unstable condition. Rather than
continuing to operate and allowing the system to do itself damage, it
ceases operation. In general, all you'll need to do is boot the system again;
however, persistent crashes are a sign of trouble.

cursor
The cursor is a flashing indicator used on video terminals to point to
the screen position where the next character will appear. It is called a
cursor because it shows the "course" the printed or typed line will follow.
The VT100- and VT200-series terminals allow you to choose a solid block
() or an underscore line (_) as a cursor. See your terminal manual
for information.

Glossary-S

Del
DCL stands for DIGITAL Command Language. DCL provides a means
of communication between the user and Micro/RSX. DCL is designed to
be easy to use. Commands are generally English words. If necessary
elements are not typed in, DCL prompts for them. DCL also provides help
for the user.

DCL is used on most DIGITAL operating systems. There are differences
from system to system, but for everyday use, DCL is quite similar on all
systems.

default
A default is a value or operation that is automatically included in a
command unless you specify otherwise.

In most cases, default settings will be what is normal or expected. Many
times, you will not even notice that defaults are being used, but the default
settings can always be overridden. You can always find the defaults for
any command in the Micro/RSX User's Guide and in the help files.

In Micro/RSX and the RSX family in general, a wide range of defaults
is used. The idea is that the less the user has to specify in any given
situation, the easier the system is to use and the smaller the chance of
error.

delimiter
A delimiter is a character that separates, terminates, or organizes the
elements of a command or file specification, such as the semicolon (;)
before the version number, or the slash (/) that sets off a qualifier from a
DCL command.

The RETURN key is a delimiter that marks the end of a command field
or command. Other delimiters are punctuation marks, such as the colon
(:) and comma (,). Spaces or tabs are also common delimiters. These
small elements play an important part in keeping matters organized on the
system.

device
A device is any peripheral hardware connected to the processor and capable
of receiving, storing, or transmitting data. Devices commonly provided on
Micro/RSX systems include terminals, line printers, a fixed disk, diskette
drives, and sometimes tape drives.

Glossary-6

All devices have names in the same form: two letters, a number, and a
colon (:). Terminals are called TTl:, TT2:, and so forth. The line printer
is usually LPO:. The first device of any type is always number O.

DIGITAL Command Language
See DCL.

directory

disk

A directory is a file that briefly catalogs a set of files stored on disk or
tape. The directory includes the name, type, and version number of each
file in the set. Every user has a default directory.

Directories can have names of up to nine characters, such as
[SCHMENDRK] or [JESSEJOE], or they can have names consisting of two
numbers, such as [303,26] or [7,11]. Directories with two numbers can
generally be referenced either as [7,11] or [007011]. There is no distinction
between the two kinds of directories.

The DCL command DIRECTORY displays information about files in
directories.

The disk is the major type of mass storage device on Micro/RSX systems.
Disks are high-speed, random-access devices. There are several kinds.
Most Micro/RSX systems include a fixed disk and. two diskette drives with
removable diskettes.

disk-based system

echo

On a disk-based system, such as Micro/RSX, the tasks and other functions
that make up the operating system are stored on a disk and loaded into
memory as they are needed by users, then removed when they are no
longer needed. The Micro/RSX system is kept on the fixed disk because
of the disk's speed and capacity. The disk with the system on it is called
the system disk.

When characters that are typed on a terminal keyboard are also displayed
on the terminal, the process is called echoing. Terminals are dual devices,
sending input and receiving output. Echoing is one form of receiving
output from the system.

editor
An editor is a system task for creating and altering text files. Micro/RSX
systems include EDT, the standard DIGITAL editor.

Glossary-7

error message
Error messages are sent by the system when some action you have
requested fails. Each error message identifies the command or system
function that detected the error. For instance, error messages from the
TYPE command are labeled TYP.

The great majority of error messages result from mistakes in typing or
mistakes in syntax. Often, you can correct the error by retyping the
command.

Most system error messages are explained in the Micro/RSX User's Guide.
See the individual command descriptions and Chapter 16 of the Micro/RSX
User's Guide.

Executive

FCS

field

file

The Executive controls the operating system. The Executive coordinates
all activities in the system, including task execution, user communication,
supervision of input and output (I/O), and resource allocation. The name
RSX stands for Resource Sharing Executive.

FCS stands for File Control Services, a set of routines that can be used in
tasks to open and close files, read from them, write to them, extend, or
delete them. FCS provides a set of macros to simplify the user's interface
to the system I/O structures.

High-level language statements that operate on files on Micro/RSX systems
are implemented through these routines, or a similar set of RMS-11
routines. See Programming in Micro/RSX and the Advanced Programmer's
Kit for more information.

The term field usually refers to a portion of a command or command
element. For example, the file name and file type are two fields of the file
specification.

A file is a set of data arranged in a structure significant to the user; it is
one of the basic units of information on Micro/RSX.

A file is any named, stored program or data, or both, to which the system
has access. Access can be of two types: (1) read-only, meaning the file
cannot be altered, and (2) read-write, meaning the contents of the file can
be altered. See read and write.

Glossary-8

See also volume.

File Control Services
See FCS.

file specification
The file specification, sometimes called a filespec, is the unique identifica­
tion of a file that gives its physical location and, generally, an indication
of its contents.

All file specifications are in the following form:

DUO: [USER]FLY.TXT;l

The device name is two letters and a number followed by a colon (:), such
as DUO:.

Next is the directory, enclosed in square brackets, such as [USER].

File names can include 1 to 9 of the letters A through Z and the numbers
o through 9, but no other characters. The name, such as FLY, should give
some indication of the contents.

The file type starts with a period (.) and includes from 0 to 3 characters.
It usually gives some indication of the type of file, such as .TXT.

The version number is set off by a semicolon (;).

See the MicrojRSX User's Guide for more information about file specifica­
tions and their component parts.

fixed media
Some mass storage devices, notably the main disk on the MicroPDP-ll,
are fixed in place and cannot be removed. In general, the fixed medium is
used for storage that must be on line and accessible at all times, such as
the operating system itself. Compare with removable media.

floppy diskette
Floppy diskette is a common term for a flexible diskette.

form feed
A form feed is a nonprinting character that causes a line printer or hardcopy
terminal to move the paper up to the next full page. You can include
a form feed in text by inserting a CTRL/L while editing. You will see
<FF> in your text. When the file is printed, the line printer moves to a

new page.

Glossary-9

functionality
Functionality is a computer industry term that means nothing more than
what the hardware or software can do. A synonym for functionality is
feature.

global

hang

Global means affecting the entire file, or the entire system, or the entire
task, depending on the context. In this book, you have learned about
global substitutions, that is, changing all instances of one string in a file.

When a terminal or task appears to be going nowhere or doing nothing, it
is said to be hanging. Hung terminals are sometimes described as static,
or dormant, or locked.

Sometimes, you can correct a hung terminal by pressing CTRL/Z or
CTRL/C, or by turning the terminal off and on. You should also check to
be sure the NO SCROLL or HOLD SCREEN key hasn't been pressed.

hardcopy terminal
Terminals that print output on paper are called hardcopy terminals; they are
also called printing terminals. Hardcopy terminals preserve a permanent
record of everything that is printed or typed on them.

Micro/RSX systems often use a hardcopy terminal as a line printer.

hardware
Hardware is all the parts of the computer system you can touch. The
terminals, the computer, the disk drives, the line printer, are all hardware.
Your system may have special hardware.

See software.

Hardware and software must be in harmony for the system to work at full
efficiency.

help file
A help file is a text file in a form suitable for use with the HELP command.
Many help files are included as part of the Micro/RSX system, but you can
also write your own help files. See the Micro/RSX User's Guide, Volume
2, Chapter 12, for more information.

Glossary-l0

high-level language
High-level languages, for example, BASIC-PLUS-2, FORTRAN-77, and
COBOL-BI, are transportable programming languages. Programs in these
languages are not tied to a particular kind of computer. They are called
high-level because programs written in these languages usually provide a
higher level of information about what the program will do than assembly
language provides.

Each programming statement in a high-level language is translated into
several machine-language instructions.

Indirect Command Processor

input

The Indirect Command Processor passes commands to the operating system
automatically. In addition, the Indirect Command Processor permits you to
use programming techniques, such as loops, counters, labels, and symbol
substitution, to set up more elaborate procedures. Any series of commands
you have to enter over and over with few or no changes is a candidate for
Indirect processing.

See batch processing.

Input is a computer term meaning whatever you supply to the system.
Most input is typed in, but both batch processing' and Indirect processing
supply input to the system without typing once they are started.

Input tile
Many system utilities and commands take existing files and produce new
files. For example, the COPY command takes a file from one place and
copies it to another. EDT can edit a file and make a new one from it. In
these cases, the file being copied is called the input file and the file being
created is called the output file.

install
When you copy the operating system or an application from its distribution
media to the system disk, you are installing it.

Installing a task has a different meaning. An installed task is named in
the System Task Directory (STD), a list of Task Control Blocks (TCBs) that
contain information about each task. Taking a task out of the STD is called
removing it.

A task cannot run unless it is installed.

Glossary-ll

Users automatically install and remove their tasks through the RUN
command. Privileged users can also install and remove tasks explicitly.

installation
The installation is the full computer system at your location. The
installation includes the operating system, the programming languages,
and applications tasks, as well as the computer and its hardware devices.

Each installation has a different collection of hardware and software
which has been selected and customized for the needs of that particular
installation. For this reason, not every capability or function mentioned in
the system documentation is available at every installation.

interactive system
Micro/RSX is an interactive system. This means that you and the operating
system communicate directly using the terminal. The Micro/RSX operating
system immediately acknowledges and acts upon commands you enter at
a terminal.

journaling
Journaling is an EDT feature that allows you to recover work that is lost
from a system interruption.

While you are using EDT, it records each keystroke you make. If the
system crashes while you are editing, this record is preserved. You can
then restore your file to where it was before the crash using the /RECOVER
qualifier to the EDIT command. See the Micro/RSX User's Guide for more
information.

language library
Most high-level languages have a unique set of routines for program
support that are collected in a separate library. Some of those routines are
similar to routines commonly found in the system library. Some routines
found in a language library are required by the compiler to properly
implement some high-level instructions, such as WRITE or PRINT. Others
are required by the Task Builder to correctly link the program.

Glossary-12

library
A file containing one or more relocatable routines that can be incorporated
into a task is called a library. A system library is supplied, but you may also
create user libraries for your installation or application. See Programming
on MicrojRSX and the Advanced Programmer's Kit for more information.

See also language library, object library, resident library, system library,
and user library.

line mode
EDT has two main modes of operation: line mode and character mode.
Line mode operates on a line or group of lines and is well suited to
manipulating large blocks of text. Line mode editing commands are
English words.

See also character mode.

line number
EDT automatically assigns numbers to the lines of the file you are editing.
The numbers are useful in finding and manipulating the contents of the
file. In line mode, you can see the numbers on your terminal; in character
mode, you do not. In any case, the numbers disappear when you leave
the editor.

line pOinter
A line pointer marks where you are in a file. For example, EDT uses an
invisible line pointer to mark your place in the file you are editing.

line printer

link

The line printer is an output device that prints files one line at a time. It is
used to print large amounts of output in a hardcopy form. In some cases,
the line printer will actually be a high-speed hardcopy terminal. Not all
MicrojRSX systems have line printers.

In general, the line printer is under the control of a system task called
the Queue Manager. You send files to the line printer with the PRINT
command.

See Task Builder.

listing
This is a common computer term for output printed on the line printer. It
also refers to the text file of a program as produced by a compiler.

Glossary-13

load
When a task is loaded, it is located in main memory and therefore available
for use.

Most tasks on MicrojRSX stay on the system disk until needed, at which
time the system loads them into memory.

locked files

login

Occasionally, when a program terminates abnormally (for example, when
you issue an ABORT command), files that the program was using are
locked. You may not discover the locked files until you try to run the
program again and find that you cannot.

Locked files are indicated by the presence of a letter L in the directory
listing, such as the following:

LCPJUL85.MAI;1 267. L 01-AUG-85 09:27

You can use the DCL command UNLOCK on locked files. You should
be aware, however, that MicrojRSX locks files for your protection. You
should check to make sure the data in locked files is sound after you
unlock them. How you check such data naturally depends on what the
files are for, but if a text file has been locked, you can read it over after it
has been unlocked.

If you continually have trouble with locked files, there may be some
problem with the program that uses the files.

Logging in identifies you to the operating system and informs the system
that you have certain privileges and are using a particular terminal. You
can log in on MicrojRSX with either the HELLO or LOGIN command.
They are identical. You'll also need an account to log in to, and a password.

logout
Logging out informs the operating system that you have finished using a
particular terminal. You can log out with the LOGOUT or BYE command.
Logging out aborts any task you have running from your terminal and
eliminates your access to a disk or tape.

Glossary-14

macro
A macro, in MACRO-11 Assembly Language, is a single assembly language
instruction that generates a predefined set of machine language instructions.

MACRO-11 derived its name from its capacity to define macros. A
MACRO-11 user can, in effect, create high-level instructions by writing
macros. Many macros are available in the system macro library.

MACRO= 11 assembly language

Most of the system tasks and utilities on Micro/RSX are written in
MACRO-11 assembly language. The language is called MACRO-1t
because it allows programmers to define macros. A macro is a series
of instructions that collectively perform some operation, and that can be
called by a single name.

MACRO-11 includes a number of functions designed to make program­
ming easier. These functions include directives to divide programs into
sections, conditional assembly directives, a comprehensive system macro
library, and user-defined macro libraries.

MACRO-11 is available separately in the Advanced Programmer's Kit.
See Programming on Micro/RSX and the Advanced Programmer's Kit
documentation for more information.

main memory
Main memory is a series of storage locations from which the CPU fetches
its data. The contents of main memory can be easily altered. It can also
be randomly accessed. When a task is run, it is loaded in main memory.
The task has no access to the CPU if it is not in main memory.

Compare with mass storage device.

mass storage device
A mass storage device is a device, such as a disk, where data files and other
types of files are stored when they are not being used. The Micro/RSX
system and its components reside on a mass storage device most of the
time.

media
See medium.

Glossary-IS

medium
The medium is the physical device, such as a disk or magnetic tape, that
contains the data. The plural of medium is media.

See also volume.

memory management
Memory management is a process that supports the running of large
programs on PDP-II computers. All current DIGITAL computers include
memory management hardware. Micro/RSX includes software that works
with this hardware.

The instruction set of the PDP-II computer forms 16-bit virtual memory
addresses, so a program can directly address only 64K bytes of memory.
The actual physical address space on PDP-lIs is 4096K bytes, or 4
megabytes. Memory management is a combination of PDP-II hardware
and RSX-ll software that permits programs to translate 16-bit virtual
addresses into 22-bit physical addresses. With 22-bit addresses, programs
can address all of memory.

See Programming on Micro/RSX and the Advanced Programmer's Kit for
more information. From the software side, memory management is
handled by the Task Builder.

mode
Mode refers to a possible condition or state of operation. For example,
EDT can operate in line mode or character mode.

mount
Mounting a volume makes the volume recognizable to the system and
gives the system access to the files on that volume. For example, before
you can use the files on a diskette, you use the Del command MOUNT
to tell the system which drive the diskette is in and to make the files on
the diskette available for the system to use.

monitor
Del checks the activity on your terminal when nothing else is happening.
Therefore, Del is sometimes referred to as monitor level. When you are
in EDT, you are not at monitor level.

Glossary-16

multiuser
A multiuser system, such as Micro/RSX, permits a number of users to work
on their terminals simultaneously with little or no interference between
users. Users on a multiuser system have their own files and their own
share of time on the system. Commands such as LOGIN and LOGOUT
are part of the protection offered on a multiuser system, as is the ability
to make one of the diskettes your private device through the command
MOUNT /NOSHAREABLE.

non privileged
Most Micro/RSX users are nonprivileged. Nonprivileged users run
programs, or tasks, on the system, but they have no means of directly
affecting the system and its operations. In most cases, users do not need
to be privileged. See also privileged.

object library
An object library is a file containing a collection of compiled or assembled
routines that can be included in a user program's task image. Object
libraries commonly reside on disk devices and are only present in memory
when routines within a library are called by a program being compiled or
assembled.

object module
An object module is a program, or part of a program, that has been
converted from the programming language in which it was written to a
format the computer can use. This conversion is performed by a language
processor, called an assembler or compiler. Object modules are files with
the file type OBJ. An object module must be processed by the Task Builder
to make a task file, which is the executable program.

The Micro/RSX Base Kit includes the Task Builder, but does not include any
language processors. The MACRO-II Assembler is available separately
as part of the Advanced Programmer's Kit. Many other programming
languages are also available separately.

See Chapter 14 of the Micro/RSX User's Guide for more information.
Programming on Micro/RSX also has information on object modules.
For full information, see the RSX-IIM/M-PLUS and Micro/RSX Task
Builder Manual, which is available separately or as part of the Advanced
Programmer's Kit, or see other documentation provided with your language
processor.

Glossary-17

ODT
ODT (the On-line Debugging Tool) provides special code that you link into
your task image to help debug a program. ODT commands and operators
allow you to execute your program gradually by setting breakpoints at
selected locations or by stepping through the program one instruction at a
time. See Programming on Micro/RSX for more information.

off line
Equipment and devices that are unavailable for use are considered to be
off line. For example, turning off a line printer puts the printer off line.

on line
On line is a computer term meaning ready for use. Peripheral devices can
be on line or off line.

On-line Debugging Tool
See ODT.

operating system
An operating system is a set of computer programs that work together to
manage computer resources for efficient operation. An operating system
is used for communicating with the computer, for developing programs,
and for scheduling the efficient use of the computer hardware, including
memory, CPU, terminals, line printers, and communications devices.

The Micro/RSX operating system is part of the RSX-ll family of DIGITAL
operating systems.

output
Output is a computer term meaning whatever the system or a program
returns to you. For example, all the prompts from DCl are system output.
If you use the TYPE command to display a file, your command is input,
and the contents of the file displayed at your terminal is output.

output tile
Many system utilities and commands take existing files and produce new
files. For example, the COpy command takes a file and creates a copy
of it. EDT can edit a file and make a new one from the original. In
these cases, the file being copied is called the input file, and the file being
created is called the output file.

Glossary-18

password
A password is a protective mechanism to identify a particular user. Only
you should know your password. Anyone who knows your password can
log in to your account and do what they like.

peripheral device
Any auxiliary device that can provide the system with input, or accept
output from the system, is called a peripheral device or a peripheral.
Terminals, line printers, and disks are all peripheral devices.

privilege
Privilege determines the level of system access allowed to a user or a task.

privileged
On MicrojRSX systems, most users are non privileged. This simply means
that they are not allowed to perform operations or issue commands that
will affect the system as a whole. Nonprivileged users can find out what
time it is with the SHOW TIME command, but only privileged users can
change the time with the SET TIME command.

You become privileged by logging in to a privileged account. The
same applies to becoming nonprivileged. The system manager is usually
privileged.

For more information on privilege, see the MicrojRSX User's Guide.

prompt
A prompt is a sign that the system is ready to accept input from you.

For example, when you enter the TYPE command without specifying a file
name, the TYPE command prompts you as follows:

File(s)?

By default, DCL prompts with a dollar sign ($).

In line mode, EDT prompts with an asterisk (.).

protection
One of the major features of a multiuser system is its ability to tell
one user's files from another's. On MicrojRSX systems, each file has a
protection code that specifies what kind of access different users can have
to the file and what they may do to the file when they access it. File
protection is based on the VIC. You can display your VIC with the SHOW
VIC command. The VIC is a two-number code, such as [303,5].

Glossary-19

There are four kinds of users:

1. SYSTEM-The operating system itself and privileged users, those with
group numbers of 10 or less.

2. OWNER-The user with the same UIC as the file owner. You can
display the file owner, and the file's protection, with the /FULL
qualifier to the DIRECTORY command.

3. GROUP-Users with the same group number, which is the first number
of the pair in the UIC.

4. WORLD-Everybody else.

There are also four kinds of access to files:

1. READ ACCESS-A user can read, copy, print, or type the file. If the
file is a task image file, READ access means you can run the program.

2. WRITE ACCESS-A user can add new data to the file by writing to it.

3. EXTEND ACCESS-A technical provision so that tasks can change the
amount of disk space allocated to the file.

4. DELETE ACCESS-A user can delete the file.

You can display the protection and ownership of any file with the
DIRECTORY /FULL command. You can change the protection of files
you own with the SET PROTECTION command.

See Chapter 5 of the Micro/RSX User's Guide for more information on
protection.

pseudo device
A pseudo device is an entity treated as an input/output device by the user
or system, although it is not any particular physical device. The pseudo
device name is a stand-in name through which the actual physical device
is reached. (This is similar to addressing a letter to the Governor of North
Carolina without knowing the name of the person holding the office.)

The pseudo device convention makes it possible to refer to a device on any
RSX-11 system without knowing its physical name and number. Thus,
pseudo device LB: is always the disk containing the operating system itself
and TI: is always the terminal you are using, no matter what its number
is or whether it is local or remote, hardcopy or video.

See the Micro/RSX User's Guide for more information on pseudo devices.

Glossary-20

qualifter
A qualifier for a DCL command is always preceded by the slash character
(/). The qualifier alters the action of a command. Most often, qualifiers
override defaults. For instance, this command uses the default, which is
to print one copy:

SPRINT IZZY. TXT ffiill

Adding the /COPiES qualifier overrides the default and prints the number
of copies you specify, such as the following:

SPRINT/COPIES: 2 IZZY. TXT ffiill

In this case, /COPIES is a command qualifier, altering the operation of the
command itself. The number 2 is an argument to the /COPIES qualifier.

DCL also uses file qualifiers, which alter the effect of a command for
one file associated with the command, but not others. For example, the
command

SPRINT IZZY.TXT. OZY.TXT/COPIES:2. FIZZY.TXT ffiill

prints one copy of IllY.TXT and FIllY.TXT because that is the default,
but two copies of OlY.TXT. See the Micro/RSX User's Guide for more
information on DCL qualifiers.

queue
A queue is a waiting line. In the computer industry, a queue is a list of
items to be processed according to system or user priorities. On Micro/RSX
systems, queues are under the control of the system task called the Queue
Manager.

Queue Manager
The Queue Manager, also called QMG, is a system task that controls
queues of jobs directed to batch processors, line printers, or other output
devices. In general, the Queue Manager keeps the jobs separate and in
order.

random access
Random access refers to a type of access to memory or mass storage devices
in which any location can be accessed directly, without regard for which
location was accessed previously. This term is in contrast to sequential
access, such as on a tape, where you have to start at the beginning and
move towards the end until you reach the location you want.

Glossary-21

range

read

Range is the expression of the exact number of lines of text that EDT will
operate on. The simplest form of range is WHOLE, meaning the whole
buffer, but you can use expressions such as 20 THRU 30, meaning from
line 20 through line 30. Type HELP RANGE while in EDT for more
information, or see the Micro/RSX User's Guide.

When a task is accepting data, it is said to be reading. This is a standard
computer term. When you enter a TYPE command, the system must read
the designated file from the disk before displaying it at the terminal.

real-time
Micro/RSX is a real-time system. This means it can respond rapidly, almost
without any delay, to any outside event. Real-time systems are often used
to control industrial processes, but the real-time nature of Micro/RSX
means it can respond rapidly under most circumstances to time-sharing
users as well as industrial processes.

Record Management Services
See RMS-ll.

reentrant
A program or routine that can be entered at the same time by more than­
one task is called reentrant.

removable media
Some mass storage devices, such as the diskette drives, have removable
media. The diskettes can be removed and replaced. Removable media are
convenient for files that need not be on line or accessible at all times, such
as text files you've finished editing.

See also fixed media.

resident library
A resident library is a block of executable instructions that normally resides
in memory. The routines in a resident library are already linked (task built)
and can be shared by several tasks at the same time. Resident library
routines are not included as part of your program's task image, but they
are directly accessible by your program.

Glossary-22

RMS-ll
RMS stands for Record Management Services. RMS is the more
sophisticated and flexible of the two sets of routines supplied on Micro/RSX
systems for file operations; the other is FCS. RMS routines open and close
files, read from files, write to files, and extend and delete files.

Most programming languages have their own methods of dealing with files
that use these routines. In general, RMS routines are not used directly.

See the Advanced Programmer's Kit for more information on RMS-ll and
FCS.

routine
A routine is an ordered set of instructions that performs an operation. A
routine can be an entire program or a part of a program.

RSX-ll system
The name RSX stands for Resource Sharing Executive. The RSX-ll family
of DIGITAL operating systems has been in use and under subsequent
development for more than 10 years. RSX-ll systems are real-time
systems with features that also allow many users to share the system.
Current members of the RSX-ll family inclu,de:

• RSX-IIM, the oldest active member of the family. RSX-llM is a real­
time system with many timesharing features. It runs on any PDP-l L
RSX-llM is intended primarily for the smaller, older PDP-lIs.

• RSX-IIS, a specialized real-time system used for process control on
systems with no mass storage peripherals.

• RSX-I1M-PLUS, also a real-time system, but with many additional
timesharing features, designed for the current line of PDP-lIs.
RSX-llM-PLUS systems make the best use of the features available
on modern PDP-lIs.

• Micro/RSX, an RSX-llM-PLUS system designed specifically for the
MicroPDP-ll with many features to make it easier to use and install,
but still a real-time system for multiple users.

• VAX-II RSX, a system that runs under VAX/VMS and emulates an
RSX-style system.

Glossary-23

scroll

• P lOS, the Professional Operating System, an RSX-II M-PLUS system
designed specifically for the Professional 300 series of desktop com­
puters. It has many new features designed for a single user with little
interest in or knowledge of computers.

When more than a screenful of output is sent to a video terminal, the
output usually scrolls up. New output appears at the bottom of the screen
and eventually disappears off the top, just as if it were on a scroll that is
being unrolled at the bottom and rolled at the top.

Use the NO SCROLL or HOLD SCREEN key on your terminal if the output
scrolls too fast.

sequential access
This term refers to a method of access to memory or mass storage devices
where the records or files are read one after another in the order they appear
in the file or volume. A magnetic tape is an example of a sequential access
device. If you are half way through a tape and want to read a record
that is one third of the way through the tape, you must go back to the
beginning and read through until you get to the record that you want.

See also random access.

software
All computer programs are software. Software is all the parts of the
computer you cannot touch. Software is the collection of tasks, procedures,
and rules associated with the operation of a particular computer system.
The operating system is software. EDT is editing software. Office
automation is software. The purpose of software is to make the computer
easier to use.

Compare with hardware.

source ftle
A source file is a text file; it is a program in some programming language
to be translated into an object module by the MACRO-II Assembler or
a compiler. A source file cannot be run or task built. The Task Builder
uses the object module to produce a task file; the task file is a runnable
program. See Programming on MicrolRSX for more information.

Glossary-24

string
A string is a sequence of characters. When you search for a word in
EDT, you are searching for a string. The sequence of characters that
forms a command is sometimes called a command string. Strings are not
always what they seem. The string " Jena" is different from the string
"Jena", because the first string includes a space. Similarly, the string "7" is
different from "001", even though they are equal numbers.

subroutine
A subroutine is a set of instructions, or a routine, that can be called by
other routines. A subroutine performs a secondary function in a larger
program.

syntax
Syntax refers to the structure or format that a command must follow.
Misspelled words are the most common syntax errors. You can always
find the complete syntax for any command in the Micro/RSX User's Guide.

system disk
The fixed disk that contains the operating system is called the system disk.
You can find the system disk on an RSX system by referencing pseudo
device LB:.

system library
All the relocatable routines used by the operating system are defined in the
system library. These routines perform various common functions, such
as formatting input and output, managing memory, and converting binary
numbers to decimal. See Programming on Micro/RSX and the Advanced
Programmer's Kit for more information.

system task

task

A task that performs a system-level function is called a system task. Most
parts of the operating system, such as EDT or DCL, are system tasks.

See also applications task.

The task is the fundamental executable programming unit on Micro/RSX.
Almost everything that runs on a Micro/RSX system-EDT, DCL,
applications-is a task.

task build
Task build is another term for "link." See Task Builder.

Glossary-25

Task Builder
The Task Builder is a translator that uses an object module to produce a
runnable task. It allocates the space the task needs to run and makes sure
that the symbols used by the program are properly related to one another.
This is also called linking. The LINK command invokes the Task Builder.

See Chapter 14 of the Micro/RSX User's Guide for more information.
Programming 011 Micro/RSX also has information on the Task Builder.
For full information, see the RSX-IIM/M-PLUS and Micro/RSX Task
Builder Manual, which is available separately, or as part of the Advanced
Programmer's Kit.

task image file

A task image file is a file that contains a runnable program, or task. Most
task image files have the file type .TSK and also include a letter C in their
directory listing, indicating that they are contiguous and not spread out
over the disk. Here is a directory listing for a task image file:

QIX.TSK;2 40. C 01-APR-85 00:01

terminal
A terminal is a hardware device with two functions: sending input to the
system and receiving output from the system. Most Micro/RSX systems
have video terminals. Terminal input usually comes from a typewriter-like
keyboard. Output appears on the video screen.

On hardcopy terminals, the screen is replaced by a piece of paper.

text file

UIC

Text files are those files that are readable by people, for example, files
created using EDT. Text files are often called ASCII files.

UIC means User Identification Code. This code is a pair of numbers that
identifies each user. It is used for file protection and privilege.

User Identification Code

See UIC.

Glossary-26

user library
The DeL command LIBRARY allows you to incorporate your own unique
set of special routines into a library that you create yourself. In this way,
you can store your own commonly used routines and recall them when
you need them. See the Micro/RSX User's Guide for a description of the
LIBRARY command.

utility

A utility is a general purpose task included in the operating system to
perform common functions, such as editing or queue management.

video terminal
A video terminal is a terminal with a video screen for accepting output.

Most Micro/RSX systems have video terminals, in particular DIGITAL's
VT100- and VT200-series terminals.

virtual terminal
A virtual terminal is a software terminal created by the Executive to pass
commands and data to the operating system, as from batch jobs. As far
as the system is concerned, a virtual terminal has the same behavior as a
physical terminal. See also terminal.

volume
The volume is the largest unit of the file structure. A volume contains
files. A volume can be on any medium. The fixed disk and the diskettes
are physical media containing files arranged in volumes. In other words,
the medium is the physical disk and the volume is the arrangement of the
information on the disk. In most cases, you will probably think of the
medium and the volume as being the same, but you should be aware of
this distinction.

wildcard

write

A wildcard character is an asterisk (.) or percent sign (%) used to replace
parts of a file specification that are not entered in a command. See the
Micro/RSX User's Guide for complete information on wildcards.

When a task is sending output, it is said to be writing. This is a standard
computer term. When you issue a TYPE command, the system must read
the file from the disk and then write that file to the terminal.

Glossary-27

Index

A
Abbreviating commands, 1-10
ADVANCE key (EDT), 2-8
ANALYZE/MEDIA command,

3-20
Arrow keys (EDT), 2-7

B
BACKSPACE key, 1-7
BACKUP key (EDT), 2-8
Bad block, 3-20 to 3-21
Batch log, 4-15
Batch processing, 4-1, 4-14, 4-16
Bootstrap, 1-3, 1-21
BOTTOM key (EDT), 2-8
BROADCAST command, 3-13

c
CHANGE command (EDT), 2-7
Change mode (EDT)

See character mode
Character mode (EDT), 2-4, 2-7
CHAR key (EDT), 2-9
Clear screen command

See CLR command
CLR command, 1-9
Command, 1-1
COMMAND key (EDT), 2-12,

2-23

Control key
See CTRL key

COpy command, 3-5
COpy command (EDT), 2-21
Crash, 1-21
CREATE/DIRECTORY command,

3-7
CREATE command, 2-2, 3-6
CTRL key

CTRL/C, 1-17
CTRL/O, 1-16
CTRL/U, 1-8
CTRL/Z, 1-8, 1-10

Cursor, 1-2, 1-4
CUT key (EDT), 2-11

D
DCL (DIGITAL Command

Language), I-I, 1-10, 3-1
Default, 1-15 to 1-16, 3-14
DEL C key (EDT), 2-9
DELETE/ENTRY command, 3-28
DELETE command, 3-7, 3-9, 3-11
DELETE command (EDT), 2-19
DELETE key, 1-7 to 1-8
Deleting text (EDT), 2-9, 2-19
DEL L key (EDT), 2-9
DEL W key (EDT), 2-9
Device, 1-5 to 1-6, 1-13,3-16

pseudo, 3-16

Index-l

DIGITAL Command Language
See DCL

Directives (ICP), 4-4, 4-6
Directory, 1-13
DIRECTORY command, 1-12, 3-9

to 3-10
Disk

fixed, 3-18
Diskette, 3-18

preparing blank, 3-20
DISMOUNT command, 3-20, 3-25

E
Echo, 1-5
EDIT command, 3-10
EDT editor, 2-3
EDTINI.EDT file, 2-3
EOL key (EDT), 2-8
Error message, 1-1
EXIT command (EDT), 2-12

F
File, 2-1, 3-1

EDTINI.EDT, 2-3
name, 3-1
protection, 3-6
specification, 1-13, 1-16
startup command, 2-3
task image, 2-1
text, 2-1
type, 2-1

Filespec
See file specification

File specification, 1-13 to 1-16
File type, 2-1
FIND command (EDT), 2-19
FIND key (EDT), 2-10
FIND NEXT key (EDT), 2-10

G
GOLD key (EDT), 2-4

Index-2

H
HELP command, 1-11 to 1-12,

3-14
HELP command (EDT), 2-7, 2-14
HOLD /ENTRY command, 3-28
HOLD SCREEN key, 1-16

I
ICP (Indirect Command

Processor), 4-1 to 4-4
INCLUDE command (EDT), 2-23

to 2-24
Indirect Command Processor

See ICP
INITIALIZE command, 3-21
Input, 1-4
INSERT command (EDT), 2-17
Inserting text (EDT), 2-9

K
Keypad (EDT), 2-4

L
Labels (ICP), 4-7
LINE key (EDT), 2-8
Line mode (EDT), 2-6, 2-13
Logging in, 1-5 to 1-6
LOGIN command, 1-5 to 1-6
LOGOUT command, 1-20

M
Media, 3-18
MicroPDP-ll, 1-2
MOUNT command, 3-19,3-23

/FOREIGN qualifier, 3-19
MOVE command (EDT), 2-21
Moving text (EDT), 2-11, 2-21

N
NO SCROLL key, 1-16

o
On line, 3-18
OPEN LINE key (EDT), 2-9
Operating system, 1-1

p
PAGE key (EDT), 2-8
Password, 1-5, 3-15
PASTE key (EDT), 2-11
Peripheral device, 3-18
Preparing blank diskette, 3-20
Prompt, 1-4, 1-9
Pseudo device, 3-16
PURGE command, 3-11

Q

Qualifier (DCL), 3-1
QUIT command (EDT), 2-12 to

2-13

R
Range (EDT), 2-14 to 2-17
RENAME command, 3-12
RESEQUENCE command (EDT),

2-18 to 2-19
RESET key (EDT), 2-11
RETURN key, 1-4
RUN command, 3-17

s
SECT key (EDT), 2-8
SELECT key (EDT), 2-11
SET command, 1-18

SET DEFAULT command, 3-14
SET PASSWORD command,

3-15
SET QUEUE command, 3-27
SET TERMINAL command,

1-18 to 1-19
SHOW command, 1-9

SHOW DEFAULT command,
I-IS, 3-15

SHOW command (cont'd.)
SHOW DEVICES command,

3-16
SHOW QUEUE command, 3-27
SHOW TERMINAL command,

1-18 to 1-19
SHOW TIME command, 1-9,

3-17
SHOW USERS command, 1-20,

3-17
Special symbols (ICP), 4-6
Startup command file, 2-3
STOP / ABORT command, 3-29
SUBMIT command, 4-15
SUBSTITUTE command (EDT),

2-22
Substitution mode (ICP), 4-4 to

4-5
Syntax, 1-14

T
Tape, 3-18
Terminal, I-I, 1-5

video, 1-2
VT100, 1-2 to 1-3
VT220, 1-2 to 1-3

TOP key (EDT), 2-8
TYPE command, 1-14,3-12

u
UFO

See directory
UIC, 3-15
UNO C key (EDT), 2-10
Undeleting text (EDT), 2-10
UNO L key (EDT), 2-10
UNO W key (EDT), 2-10
User File Directory

See directory

v
Volume, 3-19,3-23

label, 3-19,3-21,3-24
VT100 terminal, 1-2 to 1-3

Index-3

VT220 terminal, 1-2 to 1-3

W
Wildcard, 3-2, 3-4
WORD key (EDT), 2-8
WRITE command (EDT), 2-23

Index-4

USER'S
COMMENTS

Introduction to
Micro/RSX

AA-Y538B-TC

Your comments and suggestions are welcome and will
help us in our continuous effort to improve the quality
and usefulness of our documentation and software.

Remember, the system includes information that you read
on your terminal: help files, error messages, prompts, and
so on. Please let us know if you have comments about
this information, too.

Did you find this manual understandable, usable, and well organized? Please
make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

What kind of user are you? __ Programmer __ Nonprogrammer

What do you use the system for?

Years of experience as a computer programmer/user:

Name ________________ Date __________ _

Organization _________________________ _

Street ____________________________ _

City ________________ State _____ Zip Code __ _
or Country

- - Do Not Tear - Fold Here and Tape

\\\\\\

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03062-2698

No Postage

Necessary

if Mailed in the ~
United States

- - - Do Not Tear - Fold Here -

