RSX-11M-PLUS and Micro/RSX
System Library Routines

Reference Manual
Order No. AA-JS75A-TC

RSX-11M-PLUS Version 4.0
Micro/RSX Version 4.0

Digital Equipment Corporation « Maynard, Massachusetts

First printing, December 1977
Updated, May 1979

Updated, November 1981
Revised, April 1983

Revised, August 1987

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

Copyright ©1977, 1979, 1981, 1983, 1987 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER’'S COMMENTS form on the last page of this document requests the
user’s critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC EduSystem UNIBUS
DEC/CMS IAS VAX
DEC/MMS MASSBUS VAXcluster
DECnet MicroPDP-11 VMS
DECsystem-10 Micro/RSX VT
DECSYSTEM-20 PDP

DECUS PDT

DECwriter RSTS diigiijtial]
DIBOL RSX

ZK3084

HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

USA & PUERTO RICO‘ CANADA INTERNATIONAL

Digital Equipment Corporation Digital Equipment Digital Equipment Corporation
of Canada Ltd. PSG Business Manager

P.O. Box CS2008 100 Herzberg Road c/o Digital's local subsidiary

Nashua, New Hampshire 03061 Kanata, Ontario K2K 2A6 or approved distributor

Attn: Direct Order Desk

In Continental USA and Puerto Rico call 800-258-1710.

In New Hampshire, Alaska, and Hawaii call 603-884-6660.

In Canada call 800-267-6215.

*Any prepaid order from Puerto Rico must be piaced with the local Digital subsidiary (809-754-7575).

Internal orders should be placed through the Software Distribution Center (SDC). Digital Equipment Corporation, Westminster,
Massachusetts 01473.

This document was prepared using an in-house documentation production system. All page composition and make-up was
performed by TX. the typesetting system developed by Donald E. Knuth at Stanford University. TgX is a trademark of the
American Mathematical Society.

Contents

Preface vii

Chapter 1 Introduction

Chapter 2 Register Handling Routines

2.1
2.2
2.3
24

Save All Registers Routine (BSAVAL) 2-2
Save Registers 3-5 Routine ($SAVRG) i, 2-4
Save Registers 0-2 Routine ($SAVVR). i 2-5
Save Registers 1-5 Routine (SAVR1) 2-6

Chapter 3 Arithmetic Routines

3.1

3.2

Integer Arithmetic Routines 3-1
3.11 Integer Multiply Routine (SMUL) 3-1
3.1.2 Integer Divide Routine ($DIV) 3-2
Double-Precision Arithmetic Routines 3-3
3.2.1 Double-Precision Multiply Routine ((}DMUL) 3-3
3.2.2 Double-Precision Divide Routine ($DDIV) 3-4

Chapter 4 Input Data Conversion Routines

4.1

4.2

4.3

ASCII to Binary Double-Word Conversions0..... 4-1
4.1.1 Decimal to Binary Double-Word Routine (DD2CT) 4-1
4.1.2 Octal to Binary Double-Word Routine (OD2CT) e 4-3
ASCII to Binary Conversionsttt tiimit i 4-4
4.2.1 Decimal to Binary Conversion Routine ($CDTB) 4-4
4.2.2 Octal to Binary Conversion Routine (§COTB) 4-6
ASCII to Radix-50 Conversions v i it ittt e e e 4-7
43.1 ASCH to Radix-50 Conversion Routine (JCAT5) 4-8

iii

4.3.2 ASCII with Blanks to Radix-50 Conversion Routine ($CAT5B) 4-9
Chapter 6§ Output Data Conversion Routines
5.1 Binary to Decimal Conversionsttt iniennnnnneeons 5-2
5.11 Binary Date Conversion Routine (JCBDAT) 5-2
5.1.2 Convert Binary to Decimal Magnitude Routine (§CBDMG) 5-3
5.1.3 Convert Binary to Signed Decimal Routine (§CBDSG) 5-5
5.1.4 Convert Double-Precision Binary to Decimal Routine ()CDDMG) 5-6
5.2 Binary to Octal Conversion.ottt i e 5-8
5.2.1 Convert Binary to Octal Magnitude Routine (§CBOMG) 5-8
5.2.2 Convert Binary to Signed Octal Routine (§CBOSG) 5-9
5.2.3 Convert Binary Byte to Octal Magnitude Routine ()CBTMG) 5-10
5.3 General Purpose Binary to ASCII Conversion Routine ($)CBTA) 5-12
5.4 Radix-50 to ASCII Conversion Routine (JC5TA) 5-13
Chapter 6 Output Formatting Routines
6.1 Uppercase Text Conversion Routine (JCVTUC) 6-1
6.2 Date String Conversion Routine ($DAT) 6-3
6.3 Alternate Date String Conversion Routine ($DAT) 6-4
6.4 Time Conversion Routine ($TIM)ttt ittt et e it ee e 6-6
6.5 Edit Message Routine (JEDMSG) i e 6-8
Chapter 7 Dynamic Memory Management Routines
7.1 Initialize Dynamic Memory Routine ($JINIDM) 7-2
7.2 Request Core Block Routine (JRQCB) 7-3
7.3 Release Core Block Routine (JRLCB) i 7-4
Chapter 8 Virtual Memory Management Routines
8.1 Using the Virtual Memory Management Routines 8-2
8.1.1 User Error-Handling Requirements 8-2
8.1.2 Task-Building Requirements e 8-4
8.2 Virtual Memory Initialization Routine (JINIVM) 8-5
83 CoreAllocationRoutines i i 8-9
8.3.1 Allocate Block Routine (JALBLK) i, 8-10
8.3.2 Get Core Routine ($GTCOR—Nonstatistical Module GTCOR) 8-12
8.3.3 Get Core Routine ($GTCOR—Statistical Module GTCOS) 8-15
8.3.4 Extend Task Routine (JEXTSK) 8-18

iv

8.4

8.5

8.3.5 Write Page Routine (SWRPAG) 8-20

Virtual Memory Allocation Routines 8-23
8.4.1 Allocate Virtual Memory Routine (JALVRT) 8-23
8.4.2 Allocate Small Virtual Block Routine (JALSVB) 8-26
8.4.3 Request Virtual Core Block Routine (JRQVCB) 8-29
Page Management Routines e 8-30
8.5.1 Convert and Lock Page Routine (fCVLOK) 8-31
8.5.2 Convert Virtual to Real Address Routine (JCVRL) 8-34
8.5.3 Read Page Routine (JRDPAG) 8-36
8.5.4 Find Page Routine (FNDPG) 8-38
8.5.5 Write-Marked Page Routine (§WRMPG) 8-40
856 Lock Page Routine (SJLCKPG) 8-42
8.5.7 Unlock Page Routine (JUNLPG) 8-44

Chapter @ Summary Procedures

Appendix A Universal Library Access

Index

Figures
2-1 Control Swapping of the Register Handling Routines 2-2
8-1 General Block Diagram of the $INIVM Routine 8-8
8-2 General Block Diagram of the SALBLK Routine 8-11

8-3 General Block Diagram of the §GTCOR Routine (nonstatistical module GTCOR) 8-14
8-4 General Block Diagram of the $§GTCOR Routine (statistical module GTCOS). . . 8-17

8-5 General Block Diagram of the $EXTSK Routine 8-19
8-6 General Block Diagram of the WRPAG Routine 8-22
8-7 General Block Diagram of the SALVRT Routine 8-25
8-8 General Block Diagram of the $ALSVB Routine 8-28
8-9 General Block Diagram of the SRQVCB Routine 8-30
8-10 General Block Diagram of the $CVLOK Routine 8-33
8-11 General Block Diagram of the §CVRL Routine 8-35
8-12 General Block Diagram of the SRDPAG Routine 8-37
8-13 General Block Diagram of the $FNDPG Routine 8-39
8-14 General Block Diagram of the WRMPG Routine 8-41
8-15 General Block Diagram of the SLCKPG Routine 8-43
8-16 General Block Diagram of the SUNLPG Routine 8-45

Tables

1-1
6-1
8-1
9-1
9-2
9-3
9-4
9-5
9-6
9-7

Program Section Names for SYSLIB Routines 1-3
$EDMSG Routine Editing Directives 6-11
Contents of the Virtual Memory Management Library File 8-4
Register Handling Routines Summary 9-1
Arithmetic Routines Summary 9-1
Input Data Conversion Routines Summary 9-2
Output Data Conversion Routines Summary 9-3
Output Formatting Routines Summary 9-5
Dynamic Memory Management Routines Summary 9-7
Virtual Memory Management Routines Summary 9-7

vi

Preface

Manual Objectives

The RSX-11M-PLUS and Micro/RSX System Library Routines Reference Manual describes the use
and function of the system library routines that may be called from MACRO-11 assembly
language programs.

Infended Audience

This manual is intended for use by experienced MACRO-11 assembly language programmers,
RSX-11M-PLUS and Micro/RSX system managers, and applications programmers.

Structure of This Document

Chapter 1 presents a general description of the services provided by the system library routines
and their functional relationships.

Chapter 2 describes the use and function of the register handling routines.

Chapter 3 describes the use and function of the arithmetic routines.

Chapter 4 describes the use and function of the input data conversion routines.

Chapter 5 describes the use and function of the output data conversion routines.
Chapter 6 describes the use and function of the output formatting routines.

Chapter 7 describes the use and function of the dynamic memory management routines.
Chapter 8 describes the use and function of the virtual memory management routines.
Chapter 9 summarizes the calling sequences of the system library routines.

Appendix A describes a routine that allows a program to access modules in a universal library
as if they were files.

vii

Associated Documents
The following manuals are prerequisite sources of information for readers of this manual:
e The PDP-11 MACRO-11 Language Reference Manual
e The RSX-11M-PLUS and Micro/RSX Task Builder Manual
* The manuals referred to in Appendix A

Readers should also refer to the RSX-11M-PLUS Information Directory and Master Index and the
Micro/RSX Master Index for descriptions of other documents associated with this manual.

viii

Chapter 1
Introduction

The routines described in this manual were written to provide commonly needed capabilities
for DIGITAL-supplied utilities. We supply documentation for them because the routines are
general enough to be used regularly by most MACRO-11 programmers. Note, however, that
the basic functionality of the routines described in this manual cannot be changed because of
the potentially widespread effect it may have on our system utilities.

The system library routines may be called by MACRO-11 assembly language programs to
perform the following services:

® Save and restore register contents to enable transfers of control between the calling program
and called subroutines

® Perform integer and double-precision multiplication and division

® Convert ASCII input data to internal binary and Radix-50 format

® Convert internal binary and Radix-50 data to ASCII output data

* Convert and format output data to produce text for a readable printout or display

® Manage the dynamic memory space available to the task that requires a small-to-moderate
amount of resident memory for data

®* Manage memory and disk file storage to accommodate tasks that require large amounts of
memory for data that must be transferred between memory and a disk work file

This manual describes the procedures for calling the library routines from within the source
program, the output that is returned to the executing task, and the interaction between the
library routines and the executing task.

The system library routines interface with each other to perform their various services. For
example, the data conversion routines call the arithmetic routines to perform the required
multiplication and division. All library routines preserve the contents of the calling task’s
registers, generally by calling the appropriate register handling routine to do the following:

® Save register contents on the stack

* Subsequently restore the contents of the registers

Introduction 1-1

e Return control to the calling task

The data conversion and format control functions performed by the Edit Message Routine
require calls to the output data conversion routines, which in turn call other routines.

The virtual memory management routines function as an automatic control system to allocate
and deallocate memory, maintain page addresses and status, and swap pages between memory
and disk storage to accommodate large amounts of data in a limited amount of physical
(dynamic) memory.

The system library routines communicate with the calling task by means of registers in which
output is returned or by settings of the C bit in the Condition Code of the Processor Status
Word. The calling task can usually determine whether a requested service was successfully
performed by examining the output register or registers or by testing the C bit setting when
control is returned from the library routine. Exceptions to this procedure are described in the
detailed discussions of given routines.

The system library routines are supplied to users as object code in the following files:
e The system library file (SYSLIB.OLB), which contains the following routines:
— the register handling routines (described in Chapter 2)
— the arithmetic routines (described in Chapter 3)
— the input and output data conversion routines (described in Chapter 4 and Chapter 5)
— the output formatting routines (described in Chapter 6)
— the dynamic memory allocation and release routines (described in Chapter 7)
— the universal library access routines (described in Appendix A)

¢ The memory management routines file (VMLIB.OLB), which contains the dynamic and
virtual memory management routines

At task-build time, the Task Builder will automatically search the system library file for any
referenced routines. However, the VMLIB.OLB file must be specified at task-build time if a task
has referenced the dynamic memory initialization routine (described in Chapter 7) or any of the
virtual memory management routines (described in Chapter 8 of this manual).

A summary of each procedure for using the system library routines is given in Chapter 9. This
is quick-reference material provided for the MACRO-11 assembly language programmer who
has become familiar with the detailed procedures that are explained in Chapters 2 through 8 of
this manual.

Additional Executive and I/O routines available to RSX-11 systems users are described in other
manuals. See the RSX-11M-PLUS Information Directory and Master Index for more information.

If the task that includes system library routines also references a position-independent resident
library, it is possible that program section names may conflict. Routines included in a task
cannot reside in the same program section as routines referenced in the position-independent
resident library. Table 1-1 lists the program section names and the system library routines that
reside in each program section. If your task includes a routine that uses a program section
listed in Table 1-1 and the task also references a position-independent resident library routine
that uses the same program section, the Task Builder generates a fatal error. To determine how

1-2 Introduction

to include the code in your task and avoid a conflict of program section names, refer to the

RSX-11M-PLUS and Micro/RSX Task Builder Manual.

Table 1-1: Program Section Names for SYSLIB Routines

SYSLIB Routines
Program Section Module Routine
Name Name Name(s)
.BLK. CATB $CDTB
$COTB
CAT5 $CAT5
CBTA $CBDAT
$CBDMG
$CBDSG
$CBOMG
$CBOSG
$CBTA
$CBTMG
CDDMG $CDDMG
CVTUC $CVTUC
C5TA $C5TA
EDDAT $DAT
$TIM
OD2CT .DD2CT
.OD2CT
SAVAL $SAVAL
SAVVR $SAVVR
PUR$D CAT5B (data) $CAT5B
EDTMG (data) $EDTMG
PUR$I CATS5B (instruction) $CAT5B
EDTMG (instruction) $EDTMG
$SRESL SAVRG $SAVRG
SAVR1 .SAVR1
$$RESM ARITH $DIV
$MUL
DARITH $DDIV
$DMUL

Introduction 1-3

Chapter 2

Register Handling Routines

The system library contains the following register handling routines:

Save All Registers Routine ($SAVAL), which saves and subsequently restores Registers 0
through 5

Save Registers 3-5 Routine ($SAVRG), which saves and subsequently restores Registers 3
through 5

Save Registers 0-2 Routine ($SAVVR), which saves and subsequently restores Registers 0
through 2

Save Registers 1-5 Routine (.SAVR1), which saves and subsequently restores Registers 1
through 5

The register handling routines function as coroutines to enable control swapping between
themselves, a subroutine, and the original caller of the subroutine. The register handling
routines are also called by other routines in the system library, as noted throughout this
manual.

To illustrate the effect of using the register handling routines, assume the following situation:

An original caller calls a subroutine. The subroutine calls a register handling coroutine. The
coroutine preserves (pushes onto the stack) the contents of the specified registers and issues
a coroutine call back to the subroutine. The subroutine executes to completion, then a return
instruction is executed to swap control back to the coroutine. The coroutine restores (pops from
the stack) the initial contents of the registers and returns to the original caller.

Figure 2-1 illustrates the control swapping function performed by the register handling routines.

Register Handling Routines 2-1

Figure 2-1: Control Swapping of the Register Handling Routines

ORIGINAL CALLER

START
¢ Legend
‘ CALL (subroutine) = JSR PC, subroutine
: RETURN =RTSPC

CALL (Subroutineg) — > (Subroutine)

r—.
. JSR r,$SAVxx -~ $SAVxx (save registers)
. . | L]
. Ll .
. . { (issue coroutine call
. . to subroutine)
. . -
. . (restore registers)
. RETURN —m .
END RETURN (to original caller)

ZK-5786-HC

2.1 Save All Registers Routine ($SAVAL)

The $SAVAL routine saves and subsequently restores Registers 0 through 5 for a subroutine.
The $SAVAL routine functions as a coroutine that swaps control between itself, a subroutine,
and the original caller.

Format

To call the $SAVAL routine, include the following entries in your source program:

1. Enable the $SAVAL routine to return control to the original caller by including the following
instruction in the calling routine:

CALL subroutine
2. Call the $SAVAL routine by including the following instruction in the subroutine:
CALL $SAVAL

2-2 Register Handling Routines

3. Enable the subroutine to return control to the $SAVAL routine by including the following
return instruction in the subroutine:

RTS PC

Description
Figure 2-1 illustrates the control swapping function performed by the register handling routines.

Upon entry to the $SAVAL routine, the program stack contains the return address to the original
caller and the return address of the subroutine. The $SAVAL routine pushes the contents of
Registers 0 through 4 onto the stack.

The $SAVAL routine moves the subroutine’s return address to the position following Register
0’s contents and moves the current contents of Register 5 to the stack above the contents of
Register 4.

The $SAVAL routine issues a coroutine call, in the form CALL @(SP)+, to swap control back
to the subroutine. The coroutine call replaces the subroutine’s return address with the return
address to the $SAVAL routine. When control returns to the subroutine, the stack pointer points
to $SAVAL’s return address. The stack contains the following information:

Return address to $SAVAL

Contents of Register 0

Contents of Register 1

Contents of Register 2

Contents of Register 3

Contents of Register 4

Contents of Register 5

Return address to original caller

The subroutine executes until a return instruction (RTS PC) is executed, which swaps control
back to the $SAVAL routine. The contents of Registers 0 through 5 are restored (popped from
the stack) and the $SAVAL routine returns, by means of the RTS PC instruction, to the original
caller.
Example
The following source statements illustrate the use of the $SAVAL routine:
* A calling routine contains the following instruction:

CALL FNDSEC

® The subroutine FNDSEC contains the following code:

Register Handling Routines 2-3

FNDSEC: CALL $SAVAL ; SAVE THE VOLATILE REGISTERS
MOV $RTSEG,R1 ; GET THE ROOT SEGMENT DESCRIPTOR VIRTUAL ADDRESS

CALL $CVRL ; CONVERT TO DYNAMIC MEMORY ADDRESS

ADD #5$GCST RO ; POINT TO THE .PSECT TABLE ENTRIES

MOV RO, -(SP) ; SAVE TABLE ENTRIES

MOV $CRELM,R1 ; GET THE CURRENT ELEMENT DESCRIPTOR ADDRESS

ADJUST POINTER TO SYMBOL ENTRY

AND LOOK FOR THE SYMBOL...

IF C-SET, NO SECTION ENTRY

IF C-CLR, YES. RESET CURRENT VIRTUAL SECTION
ADDRESS

ADD #5$YM,R1
CALL $SRCH
BCS 10$

MOV R1,CRVSC

TST (Sp)+ CLEAN OFF STACK
RTS PC AND RETURN SUCCESSFULLY
10$: ; SUBROUTINE CONTINUES

2.2 Save Registers 3—5 Routine ($SAVRG)

The $SAVRG routine saves and subsequently restores Registers 3 through 5 for a subroutine.
The $SAVRG routine functions as a coroutine that swaps control between itself, a subroutine,
and the original caller.

Format
To call the $SAVRG routine, include the following entries in your source program:

1. Enable the $SAVRG routine to return control to the original caller by including the following
Jump to Subroutine instruction in the calling routine:

CALL subroutine

2. Call the $SAVRG routine by including the following Jump to Subroutine instruction in the
subroutine:

JSR R5,$SAVRG

3. Enable the subroutine to return control to the $SAVRG routine by including the following
return instruction in the subroutine:

RTS PC

Description
Figure 2-1 illustrates the control swapping function performed by the register handling routines.

Upon entry to the $SAVRG routine, the program stack contains the return address to the original
caller and the contents of Register 5 of the original caller. The $SAVRG routine pushes the
contents of Registers 4 and 3 onto the stack, then pushes the current contents of Register 5
(return address to the subroutine) onto the stack.

The $SAVRG routine copies the original contents back into Register 5 and issues a coroutine
call, in the form CALL @(SPH, to swap control back to the subroutine. The coroutine call
replaces the subroutine’s return address with the return address to the $SAVRG routine. When
control returns to the subroutine, the stack pointer points to $SAVRG’s return address. The
stack contains the following information:

Return address to $SAVRG

2-4 Register Handling Routines

Contents of Register 3

Contents of Register 4

Contents of Register 5 (contents of original caller)
Return address to original caller

The subroutine executes until a return instruction (RTS PC) is executed, which swaps control
back to the $SAVRG routine. The contents of Registers 3 through 5 are restored (popped from
the stack) and the $SAVRG routine returns to the original caller.

Example

The following source statements call the $SAVRG routine to save Registers 3 through 5:

BUF: .BLKW 2 ; STRING BUFFER AREA
MOV RO,R1 ; COPY REGISTER 0
BIC #177400,R1 ; MASK OFF HIGH BITS

Mov R3,RO GET AREA TO PUT TERMINAL NUMBER IN

CLR R2 SUPPRESS LEADING ZEROS
MOV #BUF ,R4 OUTPUT STRING BUFFER
CALL CBOM ; CALL SUBROUTINE
RETURN

CBOM: JSR R5,$SAVRG ; CALL $SAVRG

MOV #'0,R2
MOV #10,R5

SET ASCII BIAS
SET RADIX FOR DIVISOR

MoV R1,RO ; INPUT -> DIVIDEND

1$: MOV R5,R1 ; RESET DIVISOR
CALL $DIV ; DIVIDE
ADD R2,R1 ; CONVERT REMAINDER TO ASCII
MOV R1,-(SP) ; PRESERVE CONVERTED REMAINDER
TST RO ; NO QUOTIENT? (ALL DONE)
BEQ 2% ; YES, GO COPY TO OUTPUT BUFFER
CALL 1$; NO - DO NEXT DIGIT

28: MOVB (SP)+, (R4)+ ; COPY A DIGIT TO OUTPUT
MOV R4,RO ; STORE FINAL ADDRESS
RTS PC ; RETURN CONTROL TO $SAVRG

2.3 Save Registers 0-2 Routine (§SAVVR)

The $SAVVR routine saves and subsequently restores Registers 0 through 2 for a subroutine.
The $SAVVR routine functions as a coroutine that swaps control between itself, a subroutine,
and the original caller.

Format

To call the $SAVVR routine, include the following entries in your program:

1. Enable the $SAVVR routine to return control to the original caller by including the following
instruction in the calling routine:

CALL subroutine

2. Call the $SAVVR routine by including the following Jump to Subroutine instruction in the
subroutine:

JSR R2,$SAVVR

Register Handling Routines 2-5

3. Enable the subroutine to return control to the $SAVVR routine by including the following
return instruction in the subroutine:

RTS PC

Description
Figure 2-1 illustrates the control swapping function performed by the register handling routines.

Upon entry to the $SAVVR routine, the program stack contains the return address to the original
caller and the contents of Register 2 of the original caller. The $SAVVR routine pushes the
contents of Registers 1 and 0 to the stack, then pushes the current contents of Register 2 (the
return address to the subroutine) to the stack.

The $SAVVR routine copies the original contents back into Register 2 and issues a coroutine
call, in the form CALL @(SP)+, to swap control back to the subroutine. The coroutine call
replaces the subroutine’s return address with the return address to the $SAVVR routine. When
control returns to the subroutine, the stack pointer points to $SAVVR'’s return address. The
stack contains the following information:

Return address to $SAVVR

Contents of Register 0

Contents of Register 1

Contents of Register 2 (contents of original caller)

Return address to original caller

The subroutine executes until a return instruction (RTS PC) is executed, which swaps control
back to the $SAVVR routine. The contents of Registers 0 through 2 are restored (popped from
the stack) and the $SAVVR routine returns, by means of the RTS PC instruction, to the original
caller.

2.4 Save Registers 1-5 Routine (.SAVR1)

The .SAVRI1 routine saves and subsequently restores Registers 1 through 5 for a subroutine.
The .SAVRI1 routine functions as a coroutine that swaps control between itself, a subroutine,
and the original caller.

Format

To call the .SAVRI1 routine, include the following entries in your source program:

1. Enable the .SAVR1 routine to return control to the original caller by including the following
instruction in the calling routine:

CALL subroutine

2. Call the .SAVRI1 routine by including the following Jump to Subroutine instruction in the
subroutine:

JSR Rb, .SAVR1

3. Enable the subroutine to return control to the .SAVRI1 routine by including the following
return instruction in the subroutine:

RTS PC

2-6 Register Handling Routines

Description

Upon entry to the .SAVRI1 routine, the program stack contains the return address to the original
caller and the contents of Register 5 of the original caller. The .SAVRI1 routine pushes the
contents of Registers 4, 3, 2, and 1, and the current contents of Register 5 (the return address
to the subroutine) to the stack.

The .SAVR1 routine copies the original contents back into Register 5 and issues a coroutine
call, in the form CALL @(SP}+, to swap control back to the subroutine. The coroutine call
replaces the subroutine’s return address with the return address to the .SAVRI1 routine. When
control returns to the subroutine, the stack pointer points to .SAVR1’s return address. The stack
contains the following information:

Return address to .SAVR1

Contents of Register 1

Contents of Register 2

Contents of Register 3

Contents of Register 4

Register 5 (contents of original caller)

Return address to original caller

The subroutine executes until a return instruction (RTS PC) is executed, which swaps control
back to the .SAVR1 routine. The contents of Registers 1 through 5 are restored (popped from
the stack) and the .SAVR1 routine returns, by means of the RTS PC instruction, to the original
caller.

Example

The following source statements call the .SAVRI routine to save the contents of Registers 1
through 5:

.GLOBL .PARSE, .FSRPT ; DEFINE FCS ENTRIES
.MCALL FINIT$ GET FCS MACRO DEFINITION

FLOPN: ; CALLING ROUTINE LOADS FILE DATA IN REGISTERS
CALL NEWOPN ; OPEN NEW COMMAND FILE
BCC REGLOAD ; BR IF NO ERROR
CALL OPERR$; OPEN ERROR ROUTINE
REGLOAD: . ; LOAD REGISTERS ROUTINE
NEWOPN: JSR R5, .SAVR1 ; SAVE REGISTERS 1-56
MOV Q# FSRPT,R1 ; POINTER TO FILE AREA
TST A .DFUI(R1) ; HAS IT BEEN INITIALIZED?
BNE 308 ; BRANCH IF YES
FINIT$; IF NOT, INITIALIZE FILE SYSTEM
308 CALL REGLOAD ; LOAD REGISTERS
CALL .PARSE ; FILL IN FNB WITH FILE DATA
RETURN
OPERR$: ; ERROR ROUTINE

Register Handling Routines 2-7

Chapter 3
Arithmetic Routines

The system library contains four arithmetic routines that perform unsigned integer multiplication
and division. This chapter describes the use and function of these arithmetic routines.

3.1 Integer Arithmetic Routines
The following routines perform arithmetic operations on 16-bit unsigned integer values:
e The Integer Multiply Routine ($MUL), which multiplies integer values
* The Integer Divide Routine ($DIV), which divides integer values

3.1.1 Integer Multiply Routine ($MUL)

The $MUL routine multiplies two single-word unsigned integer input values to produce an
unsigned double-word product.

Format

CALL $MUL

Input
multiplier
In Register 0: a single-word unsigned integer

multiplicand
In Register 1: a single-word unsigned integer

Output

product (high-order)
In Register 0: the high-order part of the resuit

product (low-order)
In Register 1: the low-order part of the result

Arithmetic Routines 3-1

The $MUL routine preserves Registers 2 through 5 of the calling task. It does not return any
error indications to the caller.

Example

The following source statements call the $MUL routine to perform multiplication and store the
results in the buffer WORK:

WORK: .BLKW 2 ; OUTPUT BUFFER

Mov #1200,R0 ; PUTS MULTIPLIER IN REGISTER O
Mov #36,R1 ; PUTS THE MULTIPLICAND IN REGISTER 1
CALL $MUL ; CALLS $MUL ROUTINE

MOV RO,WORK ; SAVES HIGH-ORDER PART OF RESULT
Mov R1,WORK+2 ; SAVES LOW-ORDER PART OF RESULT

3.1.2 Integer Divide Routine (SDIV)

The $DIV routine performs unsigned integer division.

Format
CALL $DIV

Input
dividend
In Register 0: an unsigned integer

divisor
In Register 1: an unsigned integer

Output
quotient

In Register 0: the quotient
remainder

In Register 1: the remainder
The $DIV routine preserves Registers 2 through 5 of the calling task. It does not return any
error indications to the caller.
Example

The following source statements call the $DIV routine to perform division and store the results
in Registers 0 and 1I:

FRACTN: .WORD 1 ; BUFFER FOR REMAINDER
MOV #36. RO ; SET DIVIDEND
Mov #8. ,R1 ; SET DIVISOR
CALL $DIV . DIVIDE
MOV R1,FRACTN ; SAVE REMAINDER

3-2 Arithmetic Routines

3.2 Double-Precision Arithmetic Routines

The following routines perform double-precision arithmetic operations:

® The Double-Precision Multiply Routine ($DMUL), which multiplies an unsigned double-
precision value by a single-precision multiplier to produce a double-precision product

* The Double-Precision Divide Routine ($DDIV), which divides an unsigned double-precision
dividend by an unsigned single-precision divisor to produce a double-precision result

3.2.1 Double-Precision Multiply Routine ($DMUL)
The $DMUL routine multiplies an unsigned double-precision value by an unsigned single-
precision value to produce an unsigned double-precision product.
Format
CALL $DMUL

Input
multiplier
In Register 0: an unsigned single-precision magnitude value

multiplicand (high-order)
In Register 2: the high-order part of an unsigned double-precision magnitude value

multiplicand (low-order)
In Register 3: the low-order part of the unsigned double-precision magnitude value

Output
product (high-order)

In Register 0: the high-order part of the product
product (low-order)

In Register 1: the low-order part of the product

The $DMUL routine preserves Registers 4 and 5 of the calling task, clears the C bit, and destroys
the contents of Registers 2 and 3 upon return to the caller. The $DMUL routine does not return
any error indications to the caller.

Example

The following source statements call the $DMUL routine to multiply the number stored in
Registers 2 and 3 by 127y and store the result in Registers 0 and 1:

MOV R5,R2 ; HIGH-ORDER PART OF MULTIPLICAND
MOV R4,R3 ; LOW-ORDER PART OF MULTIPLICAND
MOV #127. ,RO ; MULTIPLIER

CALL $DMUL ; MULTIPLY BY 127.

Arithmetic Routines 3-3

3.2.2 Double-Precision Divide Routine ($DDIV)
The $DDIV routine divides an unsigned double-precision integer dividend by an unsigned
single-precision (15-bit) divisor to produce an unsigned double-precision result.
Format

CALL $DDIV

Input
divisor
In Register 0: an unsigned double-precision integer

dividend (high-order)
In Register 1: the high-order part of an unsigned single-precision integer

dividend (low-order)
In Register 2: the low-order part of an unsigned single-precision integer

Output

remainder
In Register 0: the remainder

quotient (high-order)
In Register 1: the high-order part of the quotient

quotient (low-order)
In Register 2: the low-order part of the quotient

The $DDIV routine preserves the contents of Registers 3 through 5 of the calling task. The
$DDIV routine does not return any error conditions to the caller.
Example

The following source statements call the $DDIV routine to perform division and store the results
in Registers 0, 1, and 2:

DVD: .BLKW 2 ; BUFFER TO STORE HIGH-ORDER OF DIVIDEND
QUOT: .BLKW 2 ; BUFFER TO STORE HIGH-ORDER OF QUOTIENT
RMAIN: .BLKW 1 ; BUFFER FOR REMAINDER

MOV #150,R0 ; PUT DIVISOR IN REGISTER 0

MOV DVD,R1 ; SET UP HIGH-ORDER PART OF DIVIDEND

MOV DVD+2,R2 ; SET UP LOW-ORDER PART OF DIVIDEND

CALL $DDIV ; CALL $DDIV ROUTINE

MOV R1,QUOT ; PUT HIGH-ORDER PART OF QUOTIENT IN BUFFER

MOV R2,QUOT+2 ; PUT LOW-ORDER PART OF QUOTIENT IN BUFFER

MOV RO,RMAIN ; PUT REMAINDER IN RMAIN

3-4 Arithmetic Routines

Chapter 4
Input Data Conversion Routines

The input data conversion routines accept ASCII data as input and convert it to the specified
numeric representation. The following three types of routines perform input data conversion:

* ASCI to binary double-word conversion routines, which accept ASCII decimal or octal
input numbers and convert them to double-word binary numbers

® ASCII to binary conversion routines, which accept ASCII decimal or octal input numbers
and convert them to single-word binary numbers

e ASCII to Radix-50 conversion routines, which accept the Radix-50 set of ASCII characters
as input and convert them to Radix-50 internal format

4.1 ASCII to Binary Double-Word Conversions

The following system library routines convert ASCII input numbers to double-word binary
numbers:

¢ The Decimal to Binary Double-Word Routine (.DD2CT), which accepts ASCII decimal
numbers as input and converts them to double-word binary format

® The Octal to Binary Double-Word Routine (.OD2CT), which accepts ASCII octal numbers
as input and converts them to double-word binary format

4.1.1 Decimal to Binary Double-Word Routine (.DD2CT)

The .DD2CT routine converts a signed ASCII decimal number string to a double-length (2-word)
signed binary number.

Format
CALL .DD2CT

Input Data Conversion Routines 4-1

Input

output address
In Register 3: the address of the 2-word output field in which the converted number is to
be stored

number input characters
In Register 4: the number of characters in the string to be converted

input string address
In Register 5: the address of the character string to be converted

Output

binary result (high-order)
In word 1 of the output field: the high-order 16 bits of the converted number

binary result (low-order)
In word 2 of the output field: the low-order 16 bits of the converted number

Condition Code

Cbit = Clear if conversion was successful
Cbit = Set if an illegal character was found and conversion was incomplete
Description

The .DD2CT routine accepts leading plus (+) or minus (-) signs and a trailing period (.) in the
string to be converted. A preceding pound sign (#) forces octal conversion; a pound sign and a
period in the same input string is invalid. The numbers 0 to 9 are acceptable characters in the
decimal number string itself. Any other characters in the string will cause the .DD2CT routine
to terminate the conversion procedure. The value range of a decimal number to be converted
is —231 to +23! 1.

The .DD2CT routine saves and restores all of the calling task’s registers.

Example

The following source statements call the .DD2CT routine to convert an ASCII decimal number
string (pointed to by buffer ICHR), store the binary result in the address pointed to by buffer
BOUT, and check the results upon return:

ICHR: .ASCII /1234567./

.EVEN
BOUT: .BLKW 2
MOV #BOUT,R3 ; GET ADDRESS OF THE 2-WORD OUTPUT FIELD
MOV #10,R4 ; GET THE NUMBER OF INPUT CHARACTERS
MOV #ICHR,R5S ; GET ADDRESS OF THE INPUT CHARACTER STRING
CALL .DD2CT ; CONVERT THE STRING
BCS 1008 ; BRANCH IF C BIT SET (CONVERSION WAS NOT SUCCESSFUL)
; PROGRAM CONTINUES
100$: CALL ERR ; CALL ROUTINE TO OUTPUT ERROR MESSAGE

4-2 Input Data Conversion Routines

4.1.2 Octal to Binary Double-Word Routine (.OD2CT)
The .OD2CT routine converts an ASCII octal number string to a double-length (2-word) binary
number.
Format
CALL .0D2CT

input

output address
In Register 3: the address of the 2-word output field in which the converted number is to
be stored

number input characters
In Register 4: the number of characters in the string to be converted

input string address
In Register 5: the address of the character string to be converted

Output

binary result (high-order)
In word 1 of the output field: the high-order 16 bits of the converted number

binary result (low-order)
In word 2 of the output field: the low-order 16 bits of the converted number

Condition Code

Cbit = Clear if conversion was successful
Cbit = Setif an illegal character was found and conversion was incomplete
Description

The .OD2CT routine accepts leading plus (+) or minus (—) signs and a trailing period (.) in
the string to be converted. A preceding pound sign (#) is accepted but unnecessary; a pound
sign and a period in the same input string is invalid. A trailing period forces decimal conversion.
(This is because the .OD2CT routine is an entry point in the .DD2CT routine, which converts
decimal number strings to binary double-word values (see Section 4.1.1).) Acceptable characters
in the octal number string itself are the numbers 0 to 7.

The .OD2CT routine will terminate the conversion process if you use any other characters in
the ASCII octal number string.

The value range of an octal number you can convert is —23! to +23! —1.

The .OD2CT routine saves and restores all of the calling task’s registers.

Input Data Conversion Routines 4-3

Example

The following source statements call the .OD2CT routine to convert an ASCII octal number
string (pointed to by buffer ICHR), store the binary result in the address pointed to by buffer
BOUT, and check the results upon return:

ICHR: .ASCII /2461357/

.EVEN
BOUT: .BLKW 2
MOV~ #BOUT,R3 ; GET ADDRESS_OF THE 2-WORD OUTPUT
MOV #7.R4 ; GET THE NUMBER OF INPUT CHARACTERS
MOV~ #ICHR,R5 ; GET ADDRESS OF THE INPUT CHARACTER STRING
CALL .0D2CT ; CONVERT THE STRING
BCS 100$; BRANCH IF C BIT SET (INPUT STRING
: ; CONVERSION WAS NOT SUCCESSFUL)
; IF C BIT CLEAR, CONVERSION WAS SUCCESSFUL
. ; AND THE PROGRAM CONTINUES
1008: CALL ERR ; CALL ROUTINE TO OUTPUT ERROR MESSAGE

4.2 ASCIl to Binary Conversions

The following routines convert unsigned ASCII input numbers to single-word unsigned binary
numbers:

¢ The Decimal to Binary Conversion Routine ($CDTB), which accepts ASCII decimal numbers
as input and converts them to single-word binary format

e The Octal to Binary Conversion Routine ($COTB), which accepts ASCII octal numbers as
input and converts them to single-word binary format

These routines call the Integer Multiply Routine ($MUL) to perform the multiplication required
for the conversion.

4.2.1 Decimal to Binary Conversion Routine ($CDTB)
The $CDTB routine converts an unsigned ASCII decimal number to binary format.

Format

CALL $CDTB

Input

input buffer address
In Register 0: the address of the first byte of the ASCII decimal character string to be
converted

Output

next byte address
In Register 0: the address of the next byte of the input buffer

binary number
In Register 1: the converted number

4-4 Input Data Conversion Routines

terminator
In Register 2: the terminating character of the input buffer

Description

The numbers 0 to 9 are valid characters in the input decimal number. All other input characters
are invalid and are not converted by this routine. The end of a string of numbers must be
marked by a terminating character, which may be any ASCII character except the numbers 0
to 9. Examples of terminating characters are a blank, tab character, alphabetic character, and
special symbol. Leading blanks and tab characters are ignored.

The maximum value of a decimal number that can be converted by the $CDTB routine is
65,535. Numbers of greater value will cause indeterminate results since the $CDTB routine does
not check the value range of an input number. Also, the routine does not return a significant
Condition Code setting to the calling task.

Because the $CDTB routine returns the address of the next byte in the input buffer to the calling
task, you can convert successive strings by setting up a processing loop back to the CALL
$CDTB statement (see the example for this routine).

$CDTB calls the $SAVRG routine to save and restore Registers 3 through 5 of the calling task.

Note
You can determine, in the task, whether an input string was successfully
converted by testing the contents of Register 2. If the contents are other than
the expected terminating character, the conversion was incomplete because the
routine found an invalid character in the input string.

Example

The following source statements define a processing loop, using the $CDTB routine, to convert a
series of ASCII decimal character strings to binary numbers. This example uses the tab character
as the terminating character of each string and the space character as the terminating character
of the input buffer. If converted successfully, the binary numbers will be stored in the buffer
BNUM:

IBUF: .ASCII /123/<11>/4567/<11>/89/<11>/87654/<40>
.EVEN
BNUM: .BLKW 4 ; BUFFER FOR CONVERTED NUMBERS

Input Data Conversion Routines 4-5

MOV #BNUM,R4 ; GET THE OUTPUT BUFFER ADDRESS

MOV #IBUF,RO SET UP INPUT BUFFER ADDRESS
LOOP: CALL $CDTB CONVERT THE STRING

MOV Ri,(R4)+ SAVE CONVERTED STRING

CMP #11 ,R2 ; COMPARE ASCII TAB (HT) VALUE TO TERMINATING
; ~ CHARACTER RETURNED IN REGISTER 2

BEQ LOOP ; IF EQUAL, STRING SUCCESSFULLY CONVERTED,
;GO BACK THROUGH LOOP TO CONVERT NEXT INPUT
H STRING POINTED TO BY REGISTER O

CMP #40,R2 ; COMPARE SPACE VALUE (40) WITH TERMINATING
; CHARACTER IN REGISTER 2

BEQ 10$; IF EQUAL, CONTINUE PROGRAM (ALL INPUT
; HAS BEEN CONVERTED SUCCESSFULLY)

JMP ERR ; IF NOT EQUAL, ILLEGAL CHARACTER IN INPUT

STRING CAUSED CONVERSION TO TERMINATE; HENCE
: INPUT IS ERRONEOUS; GO TO ERROR ROUTINE
108: ; PROGRAM CONTINUES

4.2.2 Octal to Binary Conversion Routine ($COTB)
The $COTB routine converts an unsigned ASCII octal number to binary format.

Format
CALL $COTB

Input

input bufter address
In Register 0: the address of the first byte of the ASCII octal character string to be converted

Output

next byte address
In Register 0: the address of the next byte of the input buffer

binary number
In Register 1: the converted number

terminator :
In Register 2: the terminating character of the input buffer

Description

The characters 0 to 7 are valid in the input octal number. The maximum value of an octal
number that can be converted by the $COTB routine is 177777. The end of a string must be
marked by a terminating character, which may be any ASCII character except the numbers 0
to 7. Examples of terminating characters are a blank, tab character, alphabetic character, and
special symbol. Leading blanks and tab characters are ignored.

$COTB calls the $SAVRG routine to save and restore Registers 3 through 5 of the calling task.

Note

You can determine, in the task, whether an input string was successfully
converted by testing the contents of Register 2. If the contents are other than

4-6 Input Data Conversion Routines

the expected terminating character, the conversion was incomplete because the
routine found an invalid character in the input string.

Example

The following source statements define a processing loop, using the $COTB routine, to convert
a series of ASCII octal character strings to binary numbers. The example uses the tab character
as the terminating character of each string and the space character as the terminating character
of the input buffer. If converted successfully, the binary numbers will be stored in the buffer

BNUM:

IBUF: .ASCII /012/<11>/3456/<11>/76/<11>/54321/<40>
.EVEN

BNUM: .BLKW 4 ; BUFFER FOR CONVERTED STRINGS
MOV #BNUM,R4 ; GET OUTPUT BUFFER ADDRESS

MOV #IBUF,RO
LOOP: CALL $COTB
MOV Ri, (R4)+

SET UP INPUT BUFFER ADDRESS
CONVERT THE STRING
SAVE CONVERTED STRING

CMP #11,R2 COMPARE ASCII TAB (HT) VALUE TO TERMINATING
CHARACTER RETURNED IN REGISTER 2
BEQ LOOP IF EQUAL, STRING SUCCESSFULLY CONVERTED,
GOES BACK THROUGH LOOP TO CONVERT NEXT INPUT
STRING POINTED TO BY REGISTER O
CMP #40,R2 COMPARES SPACE VALUE (40) WITH TERMINATING

CHARACTER IN REGISTER 2
BEQ 10$; IF EQUAL, CONTINUES PROGRAM (ALL INPUT
HAS BEEN CONVERTED SUCCESSFULLY)
IF NOT EQUAL, ILLEGAL CHARACTER IN INPUT
STRING CAUSED CONVERSION TO TERMINATE; HENCE
INPUT IS ERRONEOUS; GOES TO ERROR ROUTINE
PROGRAM CONTINUES

JMP ERR

“t e e e e oW

10$:

4.3 ASCIl to Radix-50 Conversions

The following routines convert ASCII alphanumeric input characters to 16-bit Radix-50 values:

* The ASCI to Radix-50 Conversion Routine ($CAT5), which accepts input characters from
the ASCII character Radix-50 subset and converts them to Radix-50 format!

e The ASCII with Blanks to Radix-50 Conversion Routine ($CAT5B), which accepts input
characters from the ASCII character Radix-50 subset and blank characters and converts
them to Radix-50 format!

Both routines call the Integer Multiply Routine ($MUL) to perform the multiplication required
for the conversion.

1 See the PDP-11 MACRO-11 Language Reference Manual for a complete listing of the Radix-50 character set and ASCII equivalents.

Input Data Conversion Routines 4-7

4.3.1 ASCII to Radix-50 Conversion Routine (§CAT5)
The $CAT5 routine converts up to three ASCII characters to a 16-bit Radix-50 value.

Format
CALL $CATS

Input
input buffer address
In Register 0: the address of the first character in the ASCII string you want to convert

period disposition flag
In Register 1, one of the following values:

R1 = 0 if the period is a terminating character
R1 = 1 to specify that the period is a valid character to be converted to Radix-50
Output

next input character
In Register 0: the address of the next character of the input string

Radix-50 value
In Register 1: the converted Radix-50 value

terminator
In Register 2: the terminating character or the invalid character that caused termination

Condition Code

Cbhit = Clear if conversion was complete
Cbit = Set if conversion was incomplete
Description

The following characters are valid in the ASCII string to be converted:
* The alphabetic characters A to Z

* The numeric characters 0 to 9

¢ The dollar sign ($) and period (.)

For complete conversion, the string must contain three valid characters. If the string contains
fewer than three valid characters, the $CAT5 routine will convert them but will set the C bit
to indicate an incomplete conversion. Invalid characters cause the $CAT5 routine to terminate
conversion. In this case, the output will be the valid character or characters and trailing blank
or blanks, in binary format.

A blank character (space) in the ASCII character string causes the $CAT5 routine to terminate.
If you include blanks as valid characters in the string, call the $CAT5B routine to do the
conversion.

4-8 Input Data Conversion Routines

Since the address of the next character in the input string is returned in Register 0, you can
convert successive strings by resetting Register 1 and setting up a processing loop back to the
CALL $CAT5 statement.

The $CATS5 routine calls the $SAVRG routine to save and restore Registers 3 through 5 of the
calling task.

Note

You can determine, in the task, whether conversion was complete by testing
the C bit in the Condition Code or the contents of Register 2.

Example

The following source statements define a subroutine that calls the $CAT5 routine to convert
ASCII input data to Radix-50 format:

ASDAT: .ASCII /ABC.DEF.HIJ./ ; STRINGS TO BE CONVERTED

.EVEN
RADS: .BLKW 3. ; OUTPUT BUFFER
-EVEN
MOV #RAD5,R4 ; GET OUTPUT ADDRESS
MOV #3,R5 ; SET LIMIT TO LOOP
MOV #ASDAT,RO ; SET UP THE ADDRESS OF THE FIRST ASCII CHARACTER
1$: CLR Ri ; SPECIFY THAT PERIOD IS CONVERSION TERMINATOR
CALL $CATS ; CONVERT ASCII RADIX-50
BCC 2% ; BRANCH IF C BIT IS CLEAR (CONVERSION COMPLETE)
JMP INER ; JUMP TO INPUT ERROR ROUTINE IF
; C BIT IS SET (CONVERSION INCOMPLETE)
2$: MOV Ri, (R4)+ ; STORE CONVERTED CHARACTER
DEC RS
BGT 1$; PROCESS NEXT STRING

4.3.2 ASCIl with Blanks to Radix-50 Conversion Routine (SCAT5B)

The $CAT5B routine converts an ASCII 3-character string, including blank characters, to a 16-bit
Radix-50 value.

Format
CALL $CATSB

Input

input buffer address
In Register 0: the address of the first character in the ASCII string you want to convert

period disposition flag
In Register 1, one of the following values:

Input Data Conversion Routines 4-9

R1 = 0 if the period is a terminating character
R1 = 1 to specify that the period is a valid character to be converted to Radix-50
Output

next input character
In Register 0: the next character of the input string

Radix-50 value
In Register 1: the converted Radix-50 value, one to three characters in length

terminator
In Register 2: the terminating character or the invalid character that caused termination

Condition Code

Cbit = Clear if conversion was complete
Cbit = Set if conversion was incomplete
Description

The following characters are valid in the ASCII string to be converted:
e The alphabetic characters A to Z

* The numeric characters 0 to 9

¢ The dollar sign ($), period (.), and blank (space)

For complete conversion, the string must contain three valid characters. If the string contains
fewer than three valid characters, the $CAT5B routine will convert them but will set the C bit
to indicate an incomplete conversion. Invalid characters cause the $CAT5B routine to terminate
conversion. In this case, the output will be the valid character or characters and trailing blank
or blanks, in binary format.

Since the address of the next character in the input string is returned in Register 0, you can
convert successive strings by resetting Register 1 and setting up a processing loop back to the
CALL $CATS5B statement.

$CATS5B calls the $SAVRG routine to save and restore Registers 3 through 5 of the calling task.

Note

You can determine, in the task, whether conversion was complete by testing
the C bit in the Condition Code or the contents of Register 2.

Example

The following source statements call the $CAT5B routine to convert a 3-character ASCII string
to Radix-50 format:

4-10 Input Data Conversion Routines

INSTR:

10$:

.ASCII
.BYTE
.EVEN

MOV
MOV
CALL
BCC
CMPB
BEQ
CALL

/IND/
15

INSTR,RO
#1,R1
$CATSEB
108
#15,R2
108

SERR

; ASCII INPUT STRING
; STRING TERMINATOR

; POINT TO THE ASCII INPUT STRING

; SPECIFY PERIOD IS VALID CHARACTER
; CONVERT IT TO RADIX-50

; WERE CHARACTERS CONVERTED?

; NO -- WAS TERMINATOR A <CR> ?

; EQ -- YES

; NO, CALL SYNTAX ERROR ROUTINE

; PROGRAM CONTINUES

Input Data Conversion Routines

4-11

Chapter 5

Output Data Conversion Routines

The output data conversion routines convert internally stored numeric data to ASCII characters.
The following four groups of routines convert output data:

Binary to decimal conversion routines, which convert binary data to one of the following
formats:

— 2-digit day date, in the range 01 to 31

— 5-digit unsigned decimal magnitude number
— 5-digit signed decimal number

— Decimal number up to nine digits in length

Binary to octal conversion routines, which convert binary numbers to one of the following
octal numbers:

— 6-digit unsigned octal magnitude number
— 6-digit signed octal number
— 3-digit octal number

A general-purpose binary conversion routine, which converts binary data to ASCII format.
Note that the preceding conversion routines format their output according to internally-
defined conversion parameters. The $CBTA routine allows you to determine the format of
the output by specifying the conversion parameters. You can call this routine directly, or
you may call it indirectly when you use the binary to decimal or octal routines. These
routines pass predefined conversion parameters to the $CBTA routine.

A Radix-50 to ASCII conversion routine, which converts a Radix-50 value to a 3-character
ASCII string

The output data routines described in this chapter are called by the Edit Message Routine
($EDMSG; described in Chapter 6) to convert data to be formatted for output to printers or
display devices.

Output Data Conversion Routines 5-1

5.1 Binary to Decimal Conversions

The following four system library routines convert internally formatted binary numbers to
external ASCII decimal format:

e Binary Date Conversion Routine ($CBDAT), which converts an internally stored binary date
to a 2-digit decimal number

e Convert Binary to Decimal Magnitude Routine ($CBDMG), which converts an internally
stored binary number to a 5-digit unsigned ASCII decimal magnitude value

e Convert Binary to Signed Decimal Routine ($CBDSG), which converts an internally stored
binary number to a 5-digit signed ASCII decimal number

e Convert Double-Precision Binary to Decimal Routine ($CDDMG), which converts a double-
precision, unsigned binary number to an ASCII decimal number of nine or fewer digits

These routines use predefined conversion parameters that are passed to the general-purpose
conversion routine (JCBTA), which performs the actual binary to ASCII conversion.

Note that these routines do not add an extra space for the minus sign (-) to the predefined
field-width parameter. If you are converting a negative number, expect that one of the spaces
in the output area will be used for the minus sign.

5.1.1 Binary Date Conversion Routine ($CBDAT)
The $CBDAT routine converts an internally stored binary date to a 2-digit unsigned decimal

number.
Format
CALL $CBDAT
The $CBDAT routine uses the following predefined conversion parameters:
Radix = 10
Field width = 2 characters
Sign flag = UNSIGNED
Input

output address
In Register 0: the starting address of the output area that will store the converted 2-byte
date

input date
In Register 1: the date (a binary value in the range 01 to 31)

zero suppression indicator
In Register 2, one of the following values:

5-2 Output Data Conversion Routines

R2 = 0 to specify suppression of leading zeros in the converted date (the date will be
left-justified)
R2 = Nonzero to specify no suppression of leading zeros
Output

converted date
In the specified output area: the converted day date (in ASCII decimal format)

next output address
In Register 0: the next available address (the pointer to the location following the last digit
stored)

Description

The $CBDAT routine pushes the predefined conversion parameters on the stack. It then passes
the conversion parameters in Register 2 to the General Purpose Binary to ASCII Conversion
Routine ($CBTA), which performs the actual conversion of the binary number.

The $CBDAT routine calls the $SAVRG routine to save and restore Registers 3 through 5 of
the calling task, and destroys the contents of Registers 1 and 2. The $CBDAT routine does not
return any error conditions to the caller.

Example

The following source statements call the $CBDAT routine to convert a binary date in the buffer
BDAT and store the converted date in the buffer ASDAT:

ASDAT: .BLKB 2 ; OUTPUT BUFFER
.EVEN
BDAT: .WORD 1 ; INPUT -- BINARY DATE
MOV #ASDAT RO ; PUTS THE ADDRESS OF OUTPUT AREA IN REGISTER O
MOV BDAT,R1 ; PUTS THE BINARY DATE, AT BDAT, IN REGISTER 1
CLR R2 ; CLEARS REGISTER 2 TO ZERO TO SPECIFY THAT LEADING
: ZEROS ARE TO BE SUPPRESSED
CALL $CBDAT ; CALLS THE $CBDAT ROUTINE

5.1.2 Convert Binary to Decimal Magnitude Routine ($CBDMG)

The $CBDMG routine converts an internally stored binary number to a 5-digit unsigned ASCII
decimal magnitude number.

Format
CALL $CBDMG

The $CBDMG routine uses the following predefined conversion parameters:

Output Data Conversion Routines 5-3

Radix = 10

Field width = 5 characters
Sign flag = UNSIGNED
Input

output address
In Register 0: the starting address of the output area that will contain the converted 5-digit
number

input number
In Register 1: the unsigned binary number you want to convert

zero suppression indicator
In Register 2, one of the following values:

R2 = 0 to specify suppression of leading zeros in the converted number (the number will
be left-justified)
R2 = Nonzero to specify no suppression of leading zeros
Output
result

In the specified output area: the converted number, a maximum of five digits in length

next output address
In Register 0: the next available address in the output area (the pointer to the location
following the last digit stored)

Description

The $CBDMG routine pushes the predefined conversion parameters on the stack. It then passes
the conversion parameters in Register 2 to the General Purpose Binary to ASCII Conversion
Routine ($CBTA), which performs the actual conversion of the binary number.

The $CBDMG routine calls the $SAVRG routine to save and restore Registers 3 through 5 of
the calling task. It destroys the contents of Registers 1 and 2. The $CBDMG routine does not
return error conditions to the caller.

Example

The following source statements call the $CBDMG routine to convert a binary number stored
in the buffer $IEXT and store the converted 5-digit ASCII decimal magnitude number in the

buffer .TEXT:

.TEXT: .BLKB 5 ; OUTPUT BUFFER
.EVEN

$IEXT: .WORD 2765 . ; INPUT VALUE

5-4 Output Data Conversion Routines

MOV #.TEXT,RO ; GET OUTPUT BUFFER

MOV $1EXT,R1 ; GET BINARY VALUE
CLR R2 ; SUPPRESS ZEROS
CALL $CBDMG ; CONVERT TO ASCII (DECIMAL)

5.1.3 Convert Binary to Signed Decimal Routine ($CBDSG)

The $CBDSG routine converts an internally stored binary number to a 5-digit signed ASCII
decimal number.

Format
CALL $CBDSG
The $CBDSG routine uses the following predefined conversion parameters:
Radix = 10
Field width = 5 characters
Sign flag = SIGNED
Input

output address

In Register 0: the starting address of the output area that will store the converted 5-digit
number

input number
In Register 1: the binary number to be converted

zero suppression indicator
In Register 2, one of the following values:

R2 = 0 to suppress leading zeros in the converted number (the output number will be
left-justified)
R2 = Nonzero to specify no suppression of leading zeros
Output
result

In the specified output area: the converted number, a maximum of five digits in length

next output address
In Register 0: the next available address in the output area (the pointer to the location
following the last digit stored)

Description

The $CBDSG routine automatically pushes the predefined conversion parameters on the stack.
It then passes the conversion parameters in Register 2 to the General Purpose Binary to ASCII
Conversion Routine ($CBTA), which performs the actual conversion of the binary number.

The $CBDSG routine calls the $SAVRG routine to save and restore Registers 3 through 5 of the
calling task, and does not save the contents of Registers 1 or 2. The $CBDSG routine does not
return error conditions to the caller.

Output Data Conversion Routines 5-5

Example

The following source statements call the $CBDSG routine to convert a binary value stored in
the buffer F.ERR and store the converted 5-digit ASCII decimal number in the buffer ER2NUM:

ER2: .ASCII $I/0 ERROR CODE:$; ERROR MESSAGE

ER2NUM: .BLKB 5 ; OUTPUT BUFFER
.EVEN

FILERR: MOVB F.ERR(RO) ,R1 ; GET ERROR CODE TO CONVERT
MOV #ER2NUM, RO ; POINT TO OUTPUT BUFFER
CLR R2 ; SUPPRESS LEADING ZEROS
CALL $CBDSG ; CONVERT ERROR CODE
MOVB #'.,(RO)+ ; PUT IN DECIMAL POINT

5.1.4 Convert Double-Precision Binary to Decimal Routine ($CDDMG)

The $CDDMG routine converts a double-precision, unsigned binary number to an unsigned
ASCII decimal number, up to nine digits, less than or equal to 65,536x10%. If the number
contains more than nine digits, the routine inserts a string of five ASCII asterisk symbols in the
output area.

Format
CALL $CDDMG

Input
output address
In Register 0: the starting address of the output area

input address
In Register 1: the address of the 2-word input area containing the double-precision number

zero suppression indicator
In Register 2, one of the following values:

R2 = 0 to specify suppression of leading zeros in the converted date (the date will be
left-justified)
R2 = Nonzero to specify no suppression of leading zeros
Note

If the five most significant digits are zeros, they will be suppressed automatically,
regardless of the setting of the suppression indicator.

Output

result
In the output area: the converted ASCII number

next output address
In Register 0: the pointer to the next available address in the output storage area

5-6 Output Data Conversion Routines

Note

If the number was converted successfully, the output area will contain from
four to nine digits. If the conversion attempt results in a decimal number
greater than 65,536x10* or longer than nine digits, the $CDDMG routine
prints a string of five ASCII asterisks in the output area.

Description

The $CDDMG routine performs the following actions:

Calls the $SAVRG routine to save and restore Registers 3 through 5 of the calling task
Calls the $DDIV routine to perform the double-precision division

Calls the $CBTA routine to perform the actual ASCII conversion

Destroys the contents of Registers 1 and 2

Example

The following source statements call the $CDDMG routine to convert a double-precision number,
pointed to by the buffer DPWRD, and store the converted ASCII decimal number in the buffer

ASDN:
ASDN: .BLKB 9. ; OUTPUT BUFFER
.EVEN
DPWRD: .BLKW 2 ; INPUT BUFFER
MOV #ASDN,RO ; PUTS ADDRESS OF OUTPUT AREA IN REGISTER 0
MOV #DPWRD,R1 ; PUTS STARTING ADDRESS OF DOUBLE-
; PRECISION INPUT WORD IN REGISTER 1
MOV #4. ,R2 ; PUTS NONZERO IN REGISTER 2 (SETS THE ZERD
; INDICATOR FLAG TO 1) TO SPECIFY
N THAT LEADING ZEROS ARE NOT TO
; BE SUPPRESSED
CALL $CDDMG ; CALLS THE $CDDMG ROUTINE
CMPB #'%, ASDN ; COMPARES AN ASCII ASTERISK SYMBOL WITH
; A BYTE OF THE CONVERTED NUMBER
BNE 10$; IF NOT EQUAL, CONVERSION WAS SUCCESSFUL
H AND PROGRAM CONTINUES
JMP ERR ; IF EQUAL, JUMP TO ERROR ROUTINE ERR (MORE
H THAN NINE DIGITS WERE CONVERTED AND THE
H OUTPUT DATA IS INVALID)
10$:

Note

The source statements also check the results and call an error routine if $CDDMG
was not successful.

Output Data Conversion Routines 5-7

5.2 Binary to Octal Conversion

The following three routines convert internally formatted binary numbers to external ASCII
octal format:

e Convert Binary to Octal Magnitude Routine ($CBOMG), which converts an internally stored
binary number to a 6-digit unsigned ASCII octal magnitude number

* Convert Binary to Signed Octal Routine ($CBOSG), which converts an internally stored
binary number to a 6-digit signed ASCII octal number

* Convert Binary Byte to Octal Magnitude Routine ($CBTMG), which converts an internally
stored binary byte to a 3-digit unsigned ASCII octal number

These routines pass predefined conversion parameters to the general-purpose conversion routine
($CBTA), which performs the actual binary to ASCII conversion.

Note that these routines do not add an extra space for the minus sign (-) to the predefined
field-width parameter. If you are converting a negative number, expect that one of the spaces
in the output area will be used for the minus sign.

5.2.1 Convert Binary to Octal Magnitude Routine (SCBOMG)

The $CBOMG routine converts an internally stored binary number to a 6-digit unsigned ASCII
octal magnitude number.

Format
CALL $CBOMG
The $CBOMG routine uses the following predefined conversion parameters:
Radix = 8
Field width = 6 characters
Sign flag = UNSIGNED
input

output address
In Register 0: the starting address of the output area in which the converted 6-digit number
is to be stored

input number
In Register 1: the binary number you want to convert

zero suppression indicator
In Register 2, one of the following values:

R2 = 0 to specify suppression of leading zeros in the converted number (the number will
be left-justified)
R2 = Nonzero to specify no suppression of leading zeros

5-8 Output Data Conversion Routines

Output
result
In the specified output area: the converted number, a maximum of six digits in length

next output address

In Register 0: the next available address in the output area (the pointer to the location
following the last digit stored)

The $CBOMG routine does not return any error conditions to the caller.

Description

The $CBOMG routine pushes the predefined conversion parameters on the stack. It then passes
the conversion parameters in Register 2 to the General Purpose Binary to ASCII Conversion
Routine ($CBTA), which performs the actual conversion of the binary number.

The $CBOMG routine calls the $SAVRG routine to save and restore Registers 3 through 5 of
the calling task, and destroys the contents of Registers 1 and 2.
Example

The following source statements call the SCBOMG routine to convert a binary number stored in
the buffer BNUM and store the converted 6-digit ASCII octal magnitude number in the buffer

OCOUT:

0COUT: .BLKB 6 ; OUTPUT BUFFER
.EVEN

BNUM: .WORD 162710 ; INPUT VALUE
MOV #0COUT,RO ; PUTS THE STARTING ADDRESS OF THE OUTPUT AREA IN REGISTER O
MOV BNUM,R1 ; PUTS THE BINARY NUMBER TO BE CONVERTED IN REGISTER 1

MOV #1,R2 ; PUTS THE VALUE 1 IN REGISTER 2 (SETS THE ZERO
; INDICATOR FLAG TO 1) TO SPECIFY THAT
H LEADING ZEROS ARE NOT TO BE SUPPRESSED
CALL $CBOMG ; CALLS THE $CBOMG ROUTINE

5.2.2 Convert Binary to Signed Octal Routine ($CBOSG)
The $CBOSG routine converts an internally stored binary number to a 6-digit signed ASCII
octal number.
Format
CALL $CBOSG

The $CBOSG routine uses the following predefined conversion parameters:
Radix = 8

Field width
Sign flag

6 characters
SIGNED

Output Data Conversion Routines 5-9

input

output address

In Register 0: the starting address of the output area in which the converted 6-digit number
will be stored

input number
In Register 1: the binary number to be converted

zero suppression indicator
In Register 2, one of the following values:

R2 = 0 to specify suppression of leading zeros in the converted number (the output num-
ber will be left-justified)
R2 = Nonzero to specify no suppression of leading zeros
Output
result
In the specified output area: the converted signed number, a maximum of six digits in
length

next output address
In Register 0: the next available address in the output area (the pointer to the location
following the last digit stored)

The $CBOSG routine does not return error conditions to the caller.

Description

The $CBOSG routine pushes the predefined conversion parameters on the stack. It then passes
the conversion parameters in Register 2 to the General Purpose Binary to ASCII Conversion
Routine (JCBTA), which performs the actual conversion of the binary number.

The $CBOSG routine calls the $SAVRG routine to save and restore Registers 3 through 5 of the
calling task, and destroys the contents of Registers 1 and 2.
5.2.3 Convert Binary Byte to Octal Magnitude Routine (§CBTMG)
The $CBTMG routine converts an internally stored binary byte to a 3-digit ASCII unsigned octal
number.
Format
CALL $CBTMG

The $CBTMG routine uses the following predefined conversion parameters:

Radix = 8
Field width = 3 characters
Sign flag = UNSIGNED

5-10 Output Data Conversion Routines

Input

output address
In Register 0: the starting address of the output area in which the converted 3-digit number
will be stored

input binary byte
In Register 1 (low-order byte): the binary byte to be converted

zero suppression indicator
In Register 2, one of the following values:

R2 = 0 to specify suppression of leading zeros in the converted number (the number will
be left-justified)
R2 = Nonzero to specify no suppression of leading zeros
Output
result

In the specified output area: the converted number, a maximum of three digits in length

next output address
In Register 0: the next available address in the output area (the pointer to the location
following the last digit stored

The $CBTMG routine does not return error conditions to the caller.

Description

The $CBTMG routine pushes the predefined conversion parameters on the stack. It then passes
the conversion parameters in Register 2 to the General Purpose Binary to ASCII Conversion
Routine ($CBTA), which performs the actual conversion of the binary byte.

The $CBTMG routine calls the $SAVRG routine to save and restore Registers 3 through 5 of the
calling task, and destroys the contents of Register 2. In addition, $CBTMG clears the high-order
byte of Register 1 (the low-order byte is unchanged).

Example

The following source statements call the $CBTMG routine to convert a binary number stored
in the buffer TBUF and store the converted 3-digit ASCII octal number in the buffer BOUT:

BOUT: .BLKB 3 ; OUTPUT BUFFER
.EVEN
TBUF : .BYTE 177 ; INPUT BUFFER
.EVEN
MOV #BOUT ,RO ; ADDRESS OUTPUT BUFFER
MOVB TBUF,R1 ; GET BINARY CODE
MOVB #1,R2 ; SPECIFY NO ZERO SUPPRESSION
CALL $CBTMG ; CONVERT THE BINARY NUMBER TO OCTAL

Output Data Conversion Routines 5-11

5.3 General Purpose Binary to ASCII Conversion Routine (SCBTA)

The $CBTA routine converts internally stored binary numbers to ASCII decimal or octal numbers
when called by the binary-to-decimal and binary-to-octal conversion routines described in
Sections 5.1 and 5.2.

Format

CALL $CBTA

Input

output address
In Register 0: the starting address of the output area in which the converted ASCII number
will be stored

input value
In Register 1: the binary value to be converted

conversion parameters
In Register 2, the following options:
Bits 0 - 7 (Low byte.) Must contain the conversion radix (2 to 16 decimal).

Bit 8 Must contain the unsigned flag (= 0) if unsigned value to be converted; or
must contain the sign flag (= 1) if signed value to be converted.

(The minus sign is not counted in the output field width when you convert a
negative signed number. The $CBTA routine will use a space in the output
buffer for the minus sign.)

Bit 9 Zero suppression flag = 0; or nonzero suppression flag = 1.

Bit 10 Blank fill flag = 1 to specify replacement of leading zeros with blanks (only if
nonzero suppression flag = 1).

Blank fill flag = 0 to specify no replacement of leading zeros (if bit 9 = 1).
(When the zero suppression flag = 0, the blank fill flag is ignored.)

Bits 11 — 15 Must contain a numeric value from 1 to 32 specifying the field width. If you
convert a negative signed number, remember to add a space in the field width
for the minus sign.

Output
result
In the specified output area: the converted number, from 1 to 32 digits in length

next output address
In Register 0: the next available address in the output area (the pointer to the location
following the last digit stored)

The $CBTA routine does not return any error conditions to the caller.

5-12 Output Data Conversion Routines

Description

The $CBTA routine converts internally stored values according to the user-defined conversion
parameters, which the calling routine passes as an input argument in Register 2.

Note that the $§CBTA routine does not add an extra space for the minus sign (-) to the predefined
field-width parameter. If you are converting a negative number, expect that one of the characters
in the output area will be used for the minus sign.

The $CBTA routine calls the $SAVRG routine to save and restore Registers 3 through 5 of the
caller, and calls the $DIV routine to perform the required division. The $CBTA routine also
destroys the contents of Registers 1 and 2.

Example

The following source statements set the conversion parameters, expressed in the number 15012,
which will determine the format of the output by $CBTA. The statements call the $CBTA routine
to convert a binary value in Register 3 and store the ASCII result in buffer CASTR:

CASTR: .BLKB 32. ; OUTPUT BUFFER
.EVEN
MOV RO, -(SP) ; SAVE REGS FOR CONVERT CALL

Mov R1i,-(SP)
Mov R2,-(SP)

MOV #CASTR RO ; ADDRESS TO CONVERT INTO

MOV R3,R1 ; VALUE TO CONVERT

MOV #15012,R2 ; 3-DIGIT, NO ZERC SUPPRESSION
CALL $CBTA ; CONVERT BINARY TO ASCII

In this example, the binary expression of the value in Register 2 (0001101000001010) specifies
that the output will have the the following conversion parameters:

Conversion radix= 10,

Sign flag = 0 (unsigned value)
NOSUP flag = 1 (no zero suppression)
Blank fill flag = 0 (no replacement of leading zeros with blanks)

Field width 3

5.4 Radix-50 to ASCIlI Conversion Routine (SC5TA)

The $C5TA routine converts an internally stored 16-bit Radix-50 value to an ASCII character
string.

Format
CALL $C5TA

Output Data Conversion Routines 5-13

Input
output address
In Register 0: the address that will point to the first byte of the converted string

Radix-50 word
In Register 1: the Radix-50 value you want to convert

Output
next output address
In Register 0: the address of the next byte after the last character stored in the output area

result
In the specified output area: the converted ASCII 3-character string, stored in a maximum
of three consecutive bytes

The $C5TA routine does not return error conditions to the caller. It destroys the contents of
Registers 1 and 2 and does not use Registers 3 through 5.
Example

The following source statements call the $C5TA routine to convert a Radix-50 number stored
in the buffer CRNTS and store the ASCII string result in the buffer SCRPTR:

CRNTS: .RAD60 /GEN/ ; RADIX VALUE
SCRPTR: .BLKB 3 ; OUTPUT BUFFER
.EVEN
MOV #SCRPTR ,RO ; SET OUTPUT BUFFER ADDRESS
MOV CRNTS,R1 ; GET RADIX VALUE
CALL $C5TA ; CONVERT IT

5-14 Output Data Conversion Routines

Chapter 6

Output Formatting Routines

The output formatting routines convert internally stored data to external ASCII characters and
format the converted characters to produce readable output. The five output formatting routines
are as follows:

The Uppercase Text Conversion Routine ($CVTUC), which converts lowercase ASCII text
to uppercase

The Date String Conversion Routine ($DAT), which converts a 3-word binary date to a
9-character ASCII output string

The Alternate Date String Conversion Routine ($DAT), which converts a date to a user-
defined ASCII format up to 25 characters long

The Time Conversion Routine ($TIM), which converts the binary time to an ASCII output
string

The Edit Message Routine ($EDMSG), which converts internally stored data to the user-
specified type of ASCII data (alphanumeric, octal, decimal) and formats the converted data
to produce meaningful output for printing or display

6.1 Uppercase Text Conversion Routine (SCVTUC)

The $CVTUC routine converts lowercase ASCII text to uppercase. The routine performs a
byte-by-byte transfer of the input ASCII character string, converting all lowercase alphabetic
characters to uppercase, and transferring all uppercase characters unchanged to the output string.

Format

CALL $CVTUC

Input
input address

In Register 0: the address of the text string to be converted

Output Formatting Routines 6-1

output address

In Register 1: the address of the output area for the uppercase string

number input bytes

In Register 2: the number of bytes in the string to be converted

Note

The number of bytes may not be stated as 0. A statement of 0 will cause

$CVTUC to fail.

Output
result

In the output area: the converted string

next input address

In Register 0: a pointer to the next available address in the input area

next output address

In Register 1: a pointer to the next available address in the output area

Description

The $CVTUC routine converts all ASCII alphabetic characters in the input string to uppercase.
Any other characters are moved from the input area to the output area in their sequential
positions. You may specify the input area address as the output area address (RO = R1) when
the $CVTUC routine is called. If you specify this at the outset, Register 0 and Register 1 will
be left pointing to the character following the string. The $CVTUC routine converts lowercase
alphabetic characters to uppercase where they occur in the input area. The original lowercase
contents of the input area are destroyed.

$CVTUC destroys the contents of Register 2 and does not use Registers 3 through 5 of the

calling task.

Example

The following source statements
uppercase:

MACNAM: .BLKW 3 :

MOV #MACNAM, RO
MOV #6,R2
MOV RO,R1
CALL $cvTuc

call the $CVTUC routine to convert an ASCII string to

WORK BUFFER

POINT TO WORK BUFFER
SAVE STRING COUNTER
POINT TO OUTPUT ADDRESS
DO THE CONVERSION

(In this example, the converted string will be stored in the buffer MACNAM because RO = R1.)

6-2 Output Formatting Routines

6.2 Date String Conversion Routine ($DAT)

The $DAT routine converts the 3-word internal binary date to the standard 8- or 9-character
ASCII output format. $DAT formats the date for output as follows:

day-month-year

Format
CALL $DAT

Input

output address
In Register 0: the address of the output area that will store the converted date

input address
In Register 1: the address of the 3-word input area that will store the binary date

date values
The input area must contain the following values:

Word1 = Last two digits of year

Word2 = A 2-digit number from 01 to 12 (month of year)
Word 3 = A 2-digit number from 01 to 31 (day of month)
Output
date

In the output area: the 8- or 9-character date string in the following format:

dd-mmm-yy
dd Day (one character for 1 to 9 and two characters for 10 to 31)

mmm Month (first three letters)

yy Year (last two digits)

next output address
In Register 0: the address of the next available location in the output area

next input address
In Register 1: the next address (input R1 + 6) of the input area
Description

The $DAT routine uses and may destroy the contents of Register 2. The calling task should
save any critical value contained in Register 2 before calling the $DAT routine.

$DAT calls the $SAVRG routine to save and restore the contents of Registers 3 through 5 of
the calling task.

Output Formatting Routines 6-3

Example

The following source statements call the $DAT routine to convert the binary date stored in
buffer DATBUF and store the formatted ASCII output in the buffer EDTBUF:

DATBUF: .WORD 87. ; YEAR
.WORD 11. ; MONTH
.WORD O1. ; DAY
EDTBUF: .BLKB 9. ; OUTPUT BUFFER
.EVEN
START:
MOV #EDTBUF ,RO ; OUTPUT FROM CONVERSION
MOV #DATBUF ,R1 ; GET INPUT BUFFER
CALL $DAT ; CONVERT DATE TO STANDARD ASCII FORMAT

After execution, the output buffer will contain the following information:

1-NOV-87

6.3 Alternate Date String Conversion Routine (SDAT)

The Alternate Date Routine ($DAT), accessed by the SYSLIB module INTDAS, converts the
binary date in a format not dependent upon the DIGITAL-standard date format (dd-mmm-yy).
The calling sequence is the same as for the standard format $DAT routine.

Format

CALL $DAT

input
output address
In Register 0: the address of the output area that will store the converted date

input address
In Register 1: the address of the 3-word input area that will store the binary date

date values
In the input area, the following definitions:
Word 1 = Last two digits of year
Word 2 = A 2-digit number from 01 to 12 (month of year)
Word 3 = A 2-digit number from 01 to 31 (day of month)
Output
date

In the output buffer: the converted and formatted string (up to 25 characters), determined
by your definitions of the logical names SYS$DATE_FORMAT and SYS$MONTH _nn

next output address
In Register 0: the address of the next available location in the output area

6-4 Output Formatting Routines

next input address
In Register 1: the next address (input R1 + 6) of the input area

Description

The alternate $DAT routine is contained in the module INTDAS, which has been inserted into
SYSLIB with entry points deleted. To include the INTDAS module in your task image, you
must explicitly request it in one of the following ways:

* Before building the task, invoke the Librarian Utility (LBR) and enter the following command
line to include the module INTDAS in the task:

LB: [1,1]SYSLIB/LB:INTDAS

® Insert the module EDDAT without entry points, and INTDAS with entry points, into SYSLIB
by entering the following command sequence:

>LBR

LBR>EDDAT=LB: [1,1]SYSLIB.OLB/EX:EDDAT
LBR>INTDAS=LB: [1,1]SYSLIB.OLB/EX: INTDAS
LBR>LB: [1,1]1SYSLIB.OLB/RP/-EP=EDDAT
LBR>LB: [1,1] SYSLIB.0OLB/RP=INTDAS

LBR>

>PIP INTDAS.OBJ;*/DE,EDDAT.0BJ;*

The alternate $DAT routine’s calling sequence remains the same as for the standard $DAT
routine, but the logical name SYS$DATE_FORMAT contains the following character formats:

Argument Effect

DD Print 2-digit day of month with leading zero

ZD Print 2-digit day of month with leading zero suppressed

MM Print 2-digit month number with leading zero

ZM Print 2-digit month number with leading zero suppressed
YY Print 2-digit year with leading zero

Y Print 2-digit year with leading zero suppressed

MMM Print alphabetic month (not necessarily three characters long)

You can use additional characters (other than the uppercase letters D, Z, M, and Y) in
SYS$DATE_FORMAT as delimiters. If SYSSDATE_FORMAT is not defined, you get the
DIGITAL-standard date format (dd-mmm-yy) by default. SYS$DATE_FORMAT can have a
maximum length of 16 characters.

The logical SYSSMONTH_nn (where nn is 01 to 12) provides the alphabetic month to be
printed when the mmm attribute is used. If SYSSMONTH_nn is not defined, you get the
DIGITAL-standard 3-letter month abbreviations (mmm) by default. SYSSMONTH _nn can have
a maximum length of 12 characters.

Logical translation is done in standard order. A local terminal assignment can override a
system-wide assignment, which permits the same program to produce output in the individual
user’s own language or preferred format.

Output Formatting Routines 6-5

There are two limitations to the alternate date routine. First, using it necessitates more output
buffer space than the traditional format because the output produced can be as long as 25
characters. The standard $DAT routine, however, produces eight or nine characters. Second,
the new module can be linked with many, but not all, existing programs. An example of a
program that cannot use this routine is one that performs operations on the resulting output
string, expecting it to be in the format produced by the standard routine.

The INTDAS module contains the routines $DAT and $TIM. The $TIM routine has not been
modified; it produces the standard time format, as described in Section 6.4, Time Conversion
Routine ($TIM).

The $DAT routine uses and may destroy the contents of Register 2. The calling task should
save any critical value contained in Register 2 before calling the $DAT routine.

$DAT calls the $SAVRG routine to save and restore the contents of Registers 3 through 5 of
the calling task.

Examples

Assume that you have replaced the SYSLIB module INTDAS into your library with entry points
and are ready to run a program that calls the $DAT routine. Your definition, at the system
prompt, of the logical names SYS$DATE_FORMAT and SYSSMONTH_nn will determine the
output of the $DAT routine when it executes, as shown in the following examples:

DEFINE SYS$DATE_FORMAT = "MMM ZD, 19YY"
DEFINE SYS$MONTH_ii = "November"

Output: November 1,1987

DEFINE SYS$DATE_FORMAT = "DD.MMM.YY"
DEFINE SYS$MONTH_11 = "XI"

OQutput: 01.XI.87
SYS$DATE_FORMAT = "ZD/MM/YY"
Output: 1/11/87

6.4 Time Conversion Routine ($TIM)

The $TIM routine converts the binary time, in a standard format, to an ASCII output string in
the form:

HH:MM:SS.S
The $TIM routine converts and formats the time for output in one of the following forms:

hour

hour :minute
hour:minute:second
hour:minute:second.fraction

Format
CALL $TIM

6-6 Output Formatting Routines

Input

The standard format for $TIM input values is shown in the following table:

Word Significance Value Range

WD1 Hour-of-Day 0to 23

WD2 Minute-of-Hour 0 to 59

WD3 Second-of-Minute 0 to 59

WD4 Tick-of-Second Depends on clock frequency
WD5 Ticks-per-Second Depends on clock frequency

output address

In Register 0: the address of the output area that will store the converted time

input address

In Register 1: the starting address of the input area that stores the time values

parameter count
In Register 2, the parameter count, where:
0 or 1, to specify that the hour (word 1) is to be converted in the format HH

R2
R2

R2

R2

Output

next output address

2, to specify that the hour and minute (words 1 and 2) are to be converted in the
format HH:MM

3, to specify that the hour, minute, and second (words 1, 2, and 3) are to be con-
verted in the format HH:MM:SS

4 or 5, to specify that the hour, minute, second, and tick are to be converted in the
format HH:MM:SS.S (where .S = tenth of second)

Note
For HH, the $TIM routine always returns two characters for all values

In Register 0: the address of the next available location in the output area

next input address

In Register 1: the address of the next word in the input area

time string

In the specified output area: the converted time string

Output Formatting Routines 6-7

Description

The $TIM routine calls the $SAVRG routine to preserve Registers 3 through 5 of the calling
task. The contents of Registers 0 and 1 are updated and returned to the calling task. The $TIM
routine destroys the contents of Register 2 (the parameter count). It also calls the following
routines:

e The $DIV routine, which performs the division required to convert binary values to ASCII
format

e The $CBDAT routine, which actually performs the time conversion, two digits at a time
The $TIM routine does not check the validity of the input data.

Example

The following source statements call the $DAT and $TIM routines to convert time values to the
standard formats:

Assume a program contains an input block, an output block, and source statements. For

example:
BDBLK: .WORD 87. ; YEAR
.WORD 11. ; MONTH
.WORD O1. ; DAY
.WORD 10. ; HOUR
.WORD 15. ; MINUTES
.WORD 35. ; SECONDS
.WORD xx
.WORD x
DTBLK: .BLKB 20.
MOV #DTBLK ,RO ; PUTS ADDRESS OF OUTPUT AREA IN REGISTER O
MOV #BDBLK ,R1 ; PUTS ADDRESS OF INPUT BINARY DATE AREA IN REGISTER 1
CALL $DAT ; CALLS THE $DAT ROUTINE
MOVB #11,(RO)+ ; PUTS TAB -AFTER DATE IN OUTPUT BUFFER

; REGISTER O NOW CONTAINS NEXT ADDRESS IN DTBLK FROM $DAT
: REGISTER 1 NOW CONTAINS ADDRESS OF NEXT WORD (THE

H HOUR 10) IN BDBLK FROM $DAT

; SPECIFIES THE HH:MM:SS FORMAT FOR CONVERTED TIME

; CALLS THE $TIM ROUTINE

MoV #3. ,R2
CALL $TIM

After execution, the output buffer will contain the following information:
1-NOV-87 10:15:35
The time and date fields are left-justified.

6.5 Edit Message Routine (SEDMSG)

The $EDMSG routine converts internally stored data to ASCII decimal, octal, or alphanumeric
characters, and controls the layout of the converted characters. You can use the $EDMSG
routine to produce printed or displayed text in meaningful, readable formats.

Format
CALL $EDMSG

6-8 Output Formatting Routines

Input

output address
In Register 0: the starting address of the output block

input address
In Register 1: the address of the input string

argument block address
In Register 2: the starting address of the argument block

input string

The input string contains the editing directives and ASCII text that determine data conversion
and format control for the $SEDMSG routine. The directives must be in one of the following

formats:
* %l

* %nl
* %Vl

The directives have the following effects:

Directive Effect
% A delimiter that identifies an editing directive to the $EDMSG routine.
n An optional repeat count (decimal number) specifying the number of times

the editing operation is to be repeated by the $EDMSG routine. If n = 0 or
is not specified, a repeat count of 1 is assumed.

\' Specifies that the repeat count is a value in the next word in the task’s argu-
ment block. If the value is 0, a repeat count of 1 is assumed.

1 An alphabetic letter specifying one of the editing operations to be performed
by the SEDMSG routine, as shown in Table 6-1.

Input strings may contain ASCII text as well as editing directives. Any number of directives
may appear in an input string. Input strings must be in ASCIZ format.

argument block (ARGBLK)
The argument block contains the binary data to be converted, the addresses of ASCII and
extended ASCII characters, or the address of a double-precision value.

Prior to calling the $EDMSG routine, set up the appropriate argument block, as follows:

* For $EDMSG to move ASCII or extended ASCII characters to the output block, the
argument block must contain the address of the ASCII characters.

* For $EDMSG to convert a binary byte to octal format, the argument block must contain
the address of the binary byte.

* For $EDMSG to convert binary values, the argument block must contain the values.

Output Formatting Routines 6-9

* For $EDMSG to perform filename string conversion, the argument block must contain
the following information:

Word 1
Word 2
Word 3
Word 4
Word 5

Radix-50 file name
Radix-50 file name
Radix-50 file name
Radix-50 file type

Binary version number

e For $EDMSG to convert a binary date, the argument block must contain the following

information:

Word 1
Word 2
Word 3

Year (last two digits)
Number (01 to 12) of month
Day of month (01 to 31)

Note

$EDMSG does not check the validity of the date values. If you specify
erroneous date values, output results will be unpredictable.

e For $EDMSG to convert binary time, the argument block must contain the following

information:

Word 1
Word 2
Word 3
Word 4
Word 5

Hour-of-day (0 to 23)

Minute-of-hour (0 to 59)

Second-of-minute (0 to 59)

Tick-of-second (depends on clock frequency)

Ticks-per-second (depends on clock frequency)

output block (OUTBLK)
The output block in which $EDMSG is to store output

Output

converted data

In the output block: the converted/formatted data

next byte

In Register 0: the address of the next available byte in the output block (the $EDMSG
routine clears this byte to provide a null-terminated (ASCIZ) string)

output length

In Register 1: the number of bytes transferred to the output block (the count does not
include the null-terminating byte)

next argument address
In Register 2: the address of the next argument in the argument block

6-10 Output Formatting Routines

Table 6-1 describes the editing directives for the $EDMSG routine.

Table 6-1: $EDMSG Routine Editing Directives

Operation

Directive Form

A (ASCII! string) %A
%nA
%VA

B (binary byte to %B
octal conversion)

%nB

%VB

D (binary to signed %D
decimal conversion,
0 suppress)

%nD

%VD

E (extended %E
ASCII")

%nE
%VE
F (form feed) %F

%nF
%VF

Move the ASCII character from address in ARGBLK to OUTBLK.

Move the next n ASCII characters from address in ARGBIK to
OUTBLK.

Use the value in the next word in ARGBLK as repeat count and
move the specified number of ASCII characters from address in
ARGBLK to OUTBLK.

Convert the next binary byte from address in ARGBLK to unsigned
octal number and store result in OUTBLK.

Convert the next n binary bytes from address in ARGBLK to oc-
tal numbers and store results in OUTBLK; insert space between
numbers.

Use the value in the next word in ARGBLK as the repeat count,
convert the specified number of binary bytes from address in
ARGBILK to octal numbers, and store results in OUTBLK; insert
space between numbers.

Convert the binary value in the next word in ARGBLK to signed
decimal and store result in OUTBLK.

Convert the next n binary values in ARGBLK to signed decimal
and store results in OUTBLK; insert tab between numbers.

Use the value in the next word in ARGBLK as repeat count, con-
vert the specified number of binary values to signed decimal, and
store results in OUTBLK; insert tab between numbers.

Move the extended ASCII character from the address in ARGBLK
to the OUTBLK.

Move n extended ASCII characters from the address in ARGBLK
to OUTBLK.

Use the value in the next word in ARGBLK as repeat count and
move the specified number of ASCII characters from the address
in ARGBLK to OUTBLK.

Insert a form-feed character in OUTBLK.
Insert n form-feed characters in OUTBLK.

Use the value in the next word in ARGBLK as repeat count and
insert specified number of form-feed characters in OUTBLK.

IExtended ASCII characters consist of the printable characters in the 7-bit ASCII code. If nonprintable characters appear in an
ASCII input string, the E directive replaces them with a space, while the A directive transfers the nonprintable characters to the

output block.

Output Formatting Routines 6-11

Table 6-1 (Cont.):

$EDMSG Routine Editing Directives

Directive Form Operation

I (include ASCIZ %l Use the next value in ARGBLK as the address of an ASCIZ string
string) to be logically included in the format string at this point.

M (binary to %M Convert the binary value in the next word in ARGBLK to decimal
decimal magnitude magnitude with leading zeros suppressed and store the result in
conversion, OUTBLK.

0 suppress)

%nM Convert the next n binary values in ARGBLK to decimal magni-
tude with leading zeros suppressed and store the results in
OUTBLK; insert tab between numbers.

%VM Use the value in the next word in ARGBLK as repeat count, con-
vert the specified number of binary values to decimal magnitude
with leading zeros suppressed, and store the results in OUTBLK;
insert tab between numbers.

N (new line- %N Insert CR and LF characters in OUTBLK.
carriage return/
line feed) %nN Insert n CR and LF characters in OUTBLK.

%VN Use the value in the next word in ARGBLK as repeat count and

insert the specified number of CR and LF characters in OUTBLK.
O (binary to %O Convert the binary value in the next word in ARGBLK to signed
signed octal octal and store the result in OUTBLK.
conversion)

%nO Convert the next n binary values in ARGBLK to signed octal and
store the results in OUTBLK; insert tab between numbers.

%VO Use the value in the next word in ARGBLK as repeat count, con-
vert the specified number of binary values to signed octal, and
store the results in OUTBLK; insert tab between numbers.

P (binary to %P Convert the binary value in the next word in ARGBLK to octal

unsigned octal magnitude with no leading zeros suppressed and store the result

magnitude in OUTBLK.

conversion,

no 0 suppress) %nP Convert the next n binary values in ARGBLK to octal magnitude
with no leading zeros suppressed and store the results in OUTBLK;
insert tab between numbers.

%VP Use the value in the next word in ARGBLK as repeat count, con-

6-12 Output Formatting Routines

vert the specified number of binary values to octal magnitude with
no leading zeros suppressed, and store the results in OUTBLK;
insert tab between numbers.

Table 6-1 (Cont.):

$EDMSG Routine Editing Directives

Directive Form Operation

Q (binary to %Q Convert the binary value in the next word in ARGBLK to octal

octal magnitude with leading zeros suppressed and store the result in

magnitude OUTBLK.

conversion,

0 suppress) %nQ Convert the next n binary values in ARGBLK to octal magnitude
with leading zeros suppressed and store the results in OUTBLK;
insert tab between numbers.

%VQ Use the value in the next word in ARGBLK as repeat count, con-
vert the specified number of binary values to octal magnitude with
leading zeros suppressed, and store the results in OUTBLK; insert
tab between numbers.

R (Radix-50 %R Convert the Radix-50 value in the next word in ARGBLK to ASCII

to ASCII) and store the result in OUTBLK.

%nR Convert the next n Radix-50 values in ARGBLK to ASCII and store
the results in OUTBLK.

%VR Use the value in the next word in ARGBLK as repeat count, con-
vert the specified number of Radix-50 values to ASCII, and store
the results in OUTBLK.

S (space) %S Insert a space in OUTBLK.

%nS Insert n spaces in OUTBLK.

%VS Use the value in the next word in ARGBLK as repeat count and
insert the specified number of spaces in OUTBLK.

T (double- %T Convert the double-precision unsigned binary value at the address

precision binary in ARGBLK to decimal and store result in OUTBLK.

to decimal

conversion) %nT Convert the next n double-precision binary values starting at the
address in ARGBLK to decimal and store results in QOUTBLK; in-
sert tab between numbers.

%VT Use the value in the next word in ARGBLK as repeat count, con-
vert the specified number of double-precision binary values start-
ing at the address in ARGBLK to decimal, and store the results in
OUTBLK; insert tab between numbers.

U (binary to %U Convert the binary value in ARGBLK to decimal magnitude with

decimal magnitude no leading zeros suppressed and store result in OUTBLK.

conversion,

no 0 suppress) %nU Convert the next n binary values in ARGBLK to decimal magni-

tude with no leading zeros suppressed and store results in
OUTBLK; insert tab between numbers.

Output Formatting Routines 6-13

Table 6-1 (Cont.):

$EDMSG Routine Editing Directives

Directive

Form

Operation

X (filename
string conversion)

Y (date
conversion)

Z (binary time
conversion)

< (define
byte field)

> (locate
field mark)

% VU

%X

%nX

%VX

%Y

%0Z
or
%1Z

%27

%3Z

%47
or
%57

%n <

%n >

Use the value in the next word in ARGBLK as repeat count, con-
vert the specified number of binary values to decimal magnitude
with no leading zeros suppressed and store results in OUTBLK;
insert tab between numbers.

Convert Radix-50 filename string in ARGBLK to ASCII string in
format name.typ; convert octal version number, if present, to
ASCII and store results in OUTBLK.

Convert next n Radix-50 filename strings in ARGBLK to ASCII
strings in format name.typ; convert octal version numbers, if
present, to ASCII and store results in OUTBLK; insert tab between
strings.

Use the value in the next word in ARGBLK as repeat count, con-
vert specified number of Radix-50 filename strings to ASCII strings
in format name.typ; convert octal version numbers, if present, to
ASCII and store results in OUTBLK; insert tab between strings.

Convert the next three binary words in ARGBLK to ASCII date
in format dd-mmm-yy and store in OUTBLK. For this directive, a
repeat is acceptable but will be ignored.

Convert binary hour-of-day in the next word of ARGBLK to ASCII
and store in OUTBLK in format HH.

Convert the binary hour-of-day and minute-of-hour in the next
two words of ARGBLK to ASCII and store in OUTBLK in format
HH:MM.

Convert the binary hour-of-day, minute-of-hour, and second-of-
minute in the next three words of ARGBLK to ASCII and store in
OUTBLK in format HH:MM:SS.

Convert the binary hour-of-day, minute-of-hour, second-of-minute,
and ticks-of-second or ticks-per-second in the next five words of
ARGBILK to ASCII and store in OUTBLK in format HH:MM:SS.S,
where .S = tenth of second.

Insert n ASCII spaces followed by a field mark (NUL) in OUTBLK
to define a fixed-length byte field. The output pointer will point
to the first space.

Increment the OUTBLK pointer until a field mark (NUL) is located
or the n repeat count is exceeded.

Description

The $EDMSG routine converts internally formatted data, in an argument block, to external
format and stores it in the calling task’s output block. The editing performed by the $EDMSG
routine is specified by user directives within an input string. Any nonediting directive characters
are simply copied into the output block. Output strings are in ASCIZ format.

6-14 Output Formatting Routines

The $EDMSG routine calls the output data conversion routines described in Chapter 5 and in
Section 6.2 of this chapter to convert binary data to the specified external format. See the
detailed descriptions of individual conversion routines for specific output formats.

The $EDMSG routine scans the input string, character-by-character. If it encounters nondirective
(or “unknown” directive) characters, it transmits them directly to the task’s output block. When
the $EDMSG routine finds a percent sign (%) delimiter, it interprets the character(s) following
the delimiter. If it encounters a data conversion directive, the $EDMSG routine accesses the
argument block, converts the specified data, and transmits it to the output block. If a format
control directive is encountered, the routine generates the specified control(s) and transmits the
data to the output block. If the percent sign delimiter is not followed by a valid operator,
or if multiple delimiters are found, the $EDMSG routine transmits the first delimiter (and any
subsequent delimiters not followed by a valid directive character) to the output block.

Note

You can call an appropriate output routine to output the converted/formatted
data.

$EDMSG calls the $SAVRG routine to save and restore Registers 3 through 5 of the calling task.

Examples

1. The following source statements call the $EDMSG routine to format the data stored in
ARGBLK, as specified by the directives in buffer ISTRING:

ISTRING: CASCIZ /%F%12S***xTEXT***%3NY8SYVD%2NY,12S***END****/

.EVEN
ARGBLK: .WORD 3. ; NUMBER OF VALUES TO CONVERT
.WORD 99. ; VALUES
.WORD -37. H TO
.WORD 137. H FORMAT
OUTBLK: .BLKB 100. ; OUTPUT BLOCK
START: MOV #OUTBLK,RO ; SET UP ADDRESS OF QUTPUT

MOV #ISTRING,R1 ; SET UP ADDRESS OF INPUT
MOV #ARGBLK,R2 ; SET UP ARGUMENT BLOCK
CALL $EDMSG ; DO THE FORMATTING

The editing directives shown in this example have the following effects:

Directive Effect

%F Insert a form feed in OUTBLK (start a new page).

%12S Insert 12 spaces in OUTBLK and move the ASCII string to OUTBLK (indent
the first line 12 spaces and insert the header **+*TEXT#**x),

%3N Insert three pairs of CR-LF characters in OUTBLK (generate two blank lines).

%8S Insert eight spaces in OUTBLK (indent the next line eight spaces).

%VD Use the first value (3) in ARGBLK as the repeat count and convert the next

three binary values in ARGBLK to signed decimal; store each value, followed
by a tab, in OUTBLK (output three signed decimal numbers set up in columns).

Output Formatting Routines 6-15

Directive Effect
%2N Insert two pairs of CR-LF characters in OUTBLK (generate one blank line).
%125 Insert 12 spaces at the beginning of a line in OUTBLK and move the ASCII

string to OUTBLK (indent 12 spaces and insert the text #xx END#nxn),

The example will produce the following output:

* %k TEX T ¥ *

99 =37 137

sk kEND* %%

2. The following example calls the $EDMSG routine to convert the data stored in IBLK, as
specified by the formatting directives in the buffer INSTR:

INSTR: _ASCIZ /%F%5S***F. TREVISANI WORK REPORT FROM %Y TO %Yx*x/
.EVEN
IBLK: .WORD 87. ; YEAR
.WORD 8. ; 8TH MONTH (AUG)
.WORD 22. ; DAY
.WORD 87. ; YEAR
.WORD 9. ; OTH MONTH (SEP)
.WORD 16. ; DAY
PRBLK: .BLKB 100. ; OUTPUT BLOCK
BEGIN: MOV #PRBLK,RO ; SET UP ADDRESS OF OUTPUT

MOV #INSTR,R1
MOV #IBLK,R2
CALL $EDMSG

; SET UP ADDRESS OF INPUT
; SET UP ARGUMENT BLOCK
; DO THE CONVERSION

The editing directives in the example have the following effects:

Directive Effect

%F Insert a form feed in PRBLK (start a new page).

%5S Insert five spaces in PRBLK and move ASCII string to PRBLK (indent the line
five spaces and output the header **+F. TREVISANI WORK REPORT FROM).

%Y Convert the next three words in IBLK to formatted date and store in PRBLK
followed by ASCII text (insert 22-AUG-87 TO in header line).

%Y Convert next three words in IBLK to formatted date and store in PRBLK fol-

lowed by ASCII text (insert 16-SEP-87+*+ in header line).

The above example will produce the following output:

***F . TREVISANI WORK REPORT FROM 22-AUG-87 TO 16-SEP-87*#

6-16 Output Formatting Routines

Chapter 7
Dynamic Memory Management Routines

The dynamic memory management routines allow you to manually manage the space in a task’s
free dynamic memory. The free dynamic memory consists of all memory extending from the
assembled code of the task to the highest virtual address owned by the task, excluding resident
libraries.

Initially, these routines allocate free dynamic memory as one large block, from the highest
available memory address downward. Subsequent memory block allocations are made within
the available memory blocks. Available memory blocks are maintained as a linked list of blocks
in ascending order, pointed to by a 2-word listhead. Each free memory block contains a 2-word
control field, where:

e The first word contains the address of the next available block, or 0 if there is not another
block

e The second word contains the size of the current block

Memory allocation is either on a first-fit or best-fit basis. Allocation is always made from the
top of the selected available dynamic memory block. The second word of the block is adjusted
to reflect the new size of the current block of available dynamic memory. As memory blocks
are allocated completely, they are removed from the free memory list.

When memory blocks are deallocated (released), they are returned to the free memory list. The
released memory blocks are relinked to the free memory list in ascending address order. If
possible, released memory blocks are merged with adjacent memory blocks to form a single,
large block of free dynamic memory.

The following three routines perform dynamic memory management functions:

e Initialize Dynamic Memory Routine ($INIDM), which initializes the task’s free dynamic
memory

® Request Core Block Routine ($RQCB), which allocates blocks of memory in the free dynamic
memory

® Release Core Block Routine ($RLCB), which releases (deallocates) previously allocated
memory blocks in the executing task’s free dynamic memory

Dynamic Memory Management Routines 7-1

To use the dynamic memory management routines, provide the following information in the
source program:

e A 2-word free memory listhead in the following format:
FREEHD: .BLKW 2

* The appropriate call and argument(s) for the given routine, as described in Sections 7.1, 7.2,
and 7.3.

Before building the task, invoke the Librarian Utility (LBR) and enter the following command
line to include the modules INIDM and EXTSK in the task:

LB:{1,1]VMLIB/LB: INIDM: EXTSK

7.1 Initialize Dynamic Memory Routine (SINIDM)

The $INIDM routine establishes the initial state of the free dynamic memory available to the
executing task. The free dynamic memory consists of all memory extending from the end of
the task code to the highest virtual address used by the task, excluding resident libraries.
Format

CALL $INIDM

Input
free memory listhead
In the program’s data section: a 2-word memory listhead

free memory listhead address

In Register 0: the address of the free memory listhead
Output
first address

In Register 0: the first address in the task

last address
In Register 1: the address following the task image (last available address in the free
dynamic memory)

memory size
In Register 2: the size of the free dynamic memory
Description
The $INIDM routine performs the following actions:
¢ Rounds the free dynamic memory base address to the next 4-byte boundary

¢ Initializes the free dynamic memory as a single large block of memory

7-2 Dynamic Memory Management Routines

* Computes the total size of the free dynamic memory
* Sets the outputs in Registers 0 and 1 and returns to the calling task
Registers 3 through 5 are not used.

After initializing dynamic memory, your task may call the Request Core Block Routine ($RQCB)
to allocate memory blocks in the dynamic memory and the Release Core Block Routine ($RLCB)
to release the allocated blocks.

Example

The following source statements call the $INIDM routine to initialize a block of free dynamic
memory and save the first address of the task in Register 0:

$FREEHD: : .BLKW 2 ; FREE MEMORY LISTHEAD
MOV #$FREEHD ,RO ; SET ARG FOR FREE MEM HEAD
CALL $INIDM ; INITIALIZE MEMORY

7.2 Request Core Block Routine (SRQCB)

The $RQCB system library routine determines whether there is enough space available in the
free dynamic memory to satisfy an executing task’s memory allocation request. If memory is
available, the $RQCB routine allocates the requested memory block.

Format

CALL $RQCB

Input

free memory listhead address
In Register 0: the address of the free memory listhead

block size
In Register 1: the size (number of bytes) of the memory block to be allocated, where:
Rl = A value greater than or equal to 0, to specify best-fit allocation
R1 = A value less than 0, to specify first-fit allocation (the value is negated to determine
block size)
Output

block address
In Register 0: the dynamic memory address of the allocated block

block size

In Register 1: the actual size of the allocated block (requested size rounded to next 2-word
boundary)

Dynamic Memory Management Routines 7-3

Condition Code
Cbit = Clear if allocation is successful

Cbit = Set if allocation is not successful
The $RQCB routine calls the $SAVRG routine to save and restore Registers 3 through 5 of the
calling task. Register 2 is destroyed.
Example

The following source statements call the $RQCB routine to allocate a block of dynamic memory
and store the memory address in Register 0:

$FREEHD: : .BLKW 2 ; FREE MEMORY LISTHEAD
MOV #$FREEHD ,RO ; GET ADDRESS OF FREE CORE POOL
MOV #512. ,R1 ; SIZE OF BLOCK TO BE ALLOCATED
NEG R1 ; NEGATE TO SPECIFY FIRST FIT
CALL $RQCB ; REQUEST CORE BLOCK

7.3 Release Core Block Routine (SRLCB)

The $RLCB system library routine releases a block of previously allocated dynamic memory to
the free memory list. The memory addresses determine the order of the memory list.
Format

CALL $RLCB

Input
free memory listhead address
In Register 0: the address of the free memory listhead

block size
In Register 1: the size (number of bytes) of the block to be released

output address
In Register 2: the memory address of the block to be released

Output

released block
In the free memory list: the released dynamic memory block

7-4 Dynamic Memory Management Routines

Description

The $RLCB routine searches the free memory list until it finds the proper address slot and then
merges the released block into the list. If possible, the released memory block is merged with
adjacent blocks already in the free memory list.

The $RLCB routine calls the $SAVRG routine to save and subsequently restore Registers 3
through 5 of the calling task. Register 0 is unchanged, while the contents of Registers 1 and 2

are destroyed.

Example

The following source statements call the $RLCB routine to release a block of memory, stored in
buffer FREEHD, to the free memory listhead:

FREEHD: : . BLKW
REFHD: .WORD

MoV
MOV
Mov
CALL

2
0

REFHD ,R2
#4 ,R1
#FREEHD,RO
$RLCB

; FREE MEMORY LISTHEAD
; REFERENCE LISTHEAD

’
B
s

»

; GET ADDRESS OF ENTRY
; GET SIZE OF ENTRY
; SET ADDRESS OF LISTHEAD

RELEASE CORE BLOCK

Dynamic Memory Management Routines 7-5

Chapter 8

Virtual Memory Management Routines

The virtual memory management routines perform memory allocation and deallocation by
paging to and from disk file storage to accommodate tasks that require more memory than that
available in the task’s free dynamic memory at any given time. That is, the routines allow you
to bring pages into memory when they are needed, hold them there until they are no longer
needed, swap the pages out, and reallocate their memory space to other pages. These routines
do not require the memory management hardware and are not related to memory management
directives.

The virtual memory management routines perform the following major functions:

Virtual memory initialization
Dynamic memory allocation
Virtual memory allocation

Page management

Although you can call the individual virtual memory management routines, it is more efficient
to use them as automatic control systems by calling only the following key routines:

The Initialize Virtual Memory Routine ($INIVM), which initializes the task’s dynamic
memory and the disk work file

The virtual memory allocation routines Allocate Virtual Memory Routine (JALVRT) and
Allocate Small Virtual Block Routine ($ALSVB), which manage the allocation of large and
small page blocks to enable page swapping to and from dynamic memory

The following page management routines:

— The Convert and Lock Page Routine ($CVLOK), which converts a virtual address to a
dynamic memory address and sets a lock byte in the memory page to prevent its being
swapped out of memory until it is no longer needed

— The Unlock Page Routine ($UNLPG), which clears the lock byte in a memory-resident
page so that it can be released and its memory space reallocated to another page

— The Convert Virtual to Real Address Routine ($CVRL), which converts a virtual address
to a dynamic memory address

Virtual Memory Management Routines 8-1

— The Write-Marked Page Routine ($WRMPG), which sets the “written into” flag of
memory pages

8.1 Using the Virtual Memory Management Routines

8.1.

8-2

To call the virtual memory management routines, provide the appropriate call arguments and
statements in the source program, as described in Sections 8.2 through 8.5 of this chapter.

Your task should contain an error-handling routine and symbolic error codes, as described in
Section 8.1.1.

At task-build time, specify the file and the virtual memory management modules required by
the task, as described in Section 8.1.2.

1 User Error-Handling Requirements

Four virtual memory management routines detect fatal error conditions. These routines require a
user-written error-handling routine, entitled $ERMSG. In conjunction with the $ERMSG routine,
you should include definitions of three global error codes and one global severity code in the
task. The symbolic error codes are as follows:

Global Error
E$R4 Used by the $ALBLK routine when there is no dynamic memory available for
allocation

E$R73 Used by the $RDPAG and $WRPAG routines when a work file 1/O error occurs
during an attempt to swap pages between resident memory and disk storage

E$R76 Used by the $ALVRT routine when there is no virtual storage available for
allocation

S$v2 (Severity code) Used by the four routines cited above to denote a fatal error that
must be corrected before task execution can resume

When a fatal error occurs, the detecting routine sets up the following input arguments:
Register 1 = Low byte: error code
High byte: severity code (always S$V2)
Register 2 = Argument block address
and issues the following call:
CALL $ERMSG

Note that most of the virtual memory management routines interact, directly or indirectly, with
one of the four routines that call $ERMSG (see the General Block Diagram for each routine).
The only exceptions, which do not result in a call to $SERMSG, are the following routines:

$EXTSK
$FNDPG
$WRMPG
$LCKPG
$UNLPG

Virtual Memory Management Routines

These five routines indicate error conditions by setting the Condition Code C bit. Your error-
handling operations for these routines should respond to the Condition Code C bit. However,
these routines may need to link with the error routine $ERMSG. Therefore, you must define
the global symbols and an $SERMSG routine in your task whenever you use a virtual memory
management routine. If you have not defined the error-handling routine within the task, the
undefined global symbol diagnostic message will be generated at task-build time.

A typical error-handling routine would print a message to indicate the specific error condition,
close all files (including the work file), and exit.
Example

The following source statements illustrate a user-written error-handling routine that can be
called by a virtual memory management routine:

ER60: .ASCIZ <15>/ACNT--Workfile - dynamic memory exhausted/
ER61: .ASCIZ <15>/ACNT--Workfile - IO error or ADDR past EOF/
FILOPN: .BYTE O ; FILE OPEN FLAG. O = NO, 1 = YES
.EVEN
GENFLG: .WORD O ; GENERAL FLAG WORD
1 BIT O - VIRTUAL FILE OPEN. 1 = OPEN, 0 = CLOSED
P2 BIT 1 - ALLOCATE VIRTUAL BLOCK ERROR FLAG, 1 = ERROR
$ERMSG: : BIS #2,GENFLG ; SET ALLOCATE BLOCK ERROR
CMPB #E$R4,R1 ; DYNAMIC MEMORY ERROR?
BNE ERM2 ; NO
MoV #ERGO,RO ; YES, GET MESSAGE
BR ERROR
ERM2: CMPB #E$R73,R1 ; I/0 ERROR OR ADDRESS PAST EOF?
BNE ERM3 ; NO
MoV #ER61,RO ; YES, GET MESSAGE
BR ERROR
ERM3: ; ERROR-HANDLING ROUTINE
EXIT: TSTB FILOPN ; IS ACCOUNT FILE OPEN?
BLE 10$; NO
CALL CLOSE ; ROUTINE TO CLOSE ACCOUNT FILE
10$: BIT #1,GENFLG ; WORK FILE OPEN?
BEQ 158 ; NO
CALL CLOSEV ; ROUTINE TO CLOSE VIRTUAL FILE
15$:
ERROR: ; ERROR MESSAGE OUTPUT ROUTINE

Note

Generally, the error-handling routine should not attempt to return to the virtual
memory management routine that detected the fatal error because no meaningful
output would result.

Virtual Memory Management Routines 8-3

8.1.2 Task-Buiiding Requirements

There are two versions of the virtual memory management routines: the statistical version
and the nonstatistical version. Each version consists of 12 program modules, each containing
one or more routines, and a data storage module. Individual routines in the virtual memory
management routines library may reference other routines. The relationship of the modules and
routines in the library is shown in Table 8-1.

Table 8-1: Contents of the Virtual Memory Management Library File

Name of
Module Name Routine(s) Routines Referenced
Statistical Nonstatistical
ALBLK ALBLK $ALBLK $GTCOR, $EXTSK, $WRPAG
ALSVB ALSVB $ALSVB $ALVRT, $WRMPG, $CVRL, $ALBLK, $RQVCB,
$FNDPG, $RDPAG
CVRS CVRL $CVRL $FNDPG, $ALBLK, $RDPAG
EXTSK EXTSK $EXTSK (none)
FNDPG FNDPG $FNDPG (none)
GTCOS GTCOR $GTCOR $EXTSK,! $WRPAG
INIDM? INIDM? $INIDM $EXTSK
INIVS INIVM $INIVM $ALBLK, $GTCOR, $EXTSK, $WRPAG
MRKPG MRKPG $LCKPG $FNDPG
$UNLPG $FNDPG
$WRMPG $FNDPG
RDPAS RDPAG $RDPAG (none)
$WRPAG
RQVCB RQVCB $RQVCB (none)
VMUTL VMUTL $CVLOK $CVRL, $LCKPG, $FNDPG, $ALBLK, $RDPAG
VMDAS VMDAT Global data storage module

IThe Extend Task Routine ($EXTSK) is called by the $GTCOR routine, but only if GTCOS, the statistical version of $GTCOR, has
been defined and initialized in your source program at task-build time. (See Section 8.3 and Figure 8-4.)

2The INIDM module is a dynamic memory management module (see Chapter 7) that is normally used with the virtual memory
management routines.

Four modules in the statistical version of the routines set up or maintain statistics of the use
of the work file and memory. These modules and their associated statistical data fields are as
follows:

¢ The INIVS module, which initializes the following three double-word fields:
— The total work file access field ($WRKAC)
— The work file read count field (WRKRD)

8-4 Virtual Memory Management Routines

— The work file write count field (SWRKWR)

Each of these fields is a double-word integer contained in the global data storage module
(VMDAS) for the statistical version of the routines.

®* The CVRS module, which maintains the count of total work file accesses in the $WRKAC
field.

* The RDPAS module, which maintains a total of the work file reads in the $WRKRD field
and a total of the work file writes in the $WRKWR field.

* The GTCOS module, which maintains a count of the total amount of free dynamic memory
in the $FRSIZ single-word field. This field must be defined and initialized in the source
program.

The statistical version of the virtual memory management routines does not automatically report
these statistics. It is your responsibility to provide for the output of the statistical data in the
fields described above if the statistical version of the routines is used.

To use the statistical routines, specify at task-build time the virtual memory management routines
library file, the names of all statistical modules whose routines will be used at task-execution
time, and the name of the global data storage module. The only optional modules are ALSVB
and INIDM.

The following specifications identify all modules of the statistical version of the routines:

LB:[1,1]VMLIB/LB: ALBLK :ALSVB: ALVRT : CVRS : EXTSK : FNDPG : GTCOS
LB:[1,1]VMLIB/LB: INIVS:MRKPG :RDPAS :RQVCB : VMUTL : INIDM: VMDAS

The nonstatistical routines use the global data storage module VMDAT. To use the nonstatistical
routines, you specify at task-build time the virtual memory management routines library file, the
names of all nonstatistical modules whose routines will be used at task-execution time, and the
name of the global data storage module. The only optional modules are ALSVB and INIDM.

The following specifications identify all modules of the nonstatistical version of the routines:

LB:[1,1]VMLIB/LB:ALBLK : ALSVB: ALVRT : CVRL : EXTSK : FNDPG : GTCOR
LB:[1,1]VMLIB/LB: INIVM:MRKPG:RDPAG :RQVCB: VMUTL : INIDM: VMDAT

8.2 Virtual Memory Initialization Routine (SINIVM)

The $INIVM routine initializes the task’s free dynamic memory, sets up the page address control
list, and initializes your disk work file to enable memory-to-disk page swapping. Disk work file
capacity is 64K words.

Format
CALL $INIVM

Virtual Memory Management Routines 8-5

Input

$FRHD block
In your source program: define and initialize a 2-word field named $FRHD. To define the
field, include the following code in your source program:

$FRHD: : .BLKW 2.
To initialize the field, store the starting address of the free dynamic memory in $FRHD.
globals

In your source program: four global symbols as follows:

WS$KLUN Logical unit number (LUN) to be used for the work file. You must assign this
LUN to a disk device.

WS$KEXT Work file extension size (in blocks). A negative number indicates that the ex-
tend should first be requested as a contiguous allocation of disk blocks. A pos-
itive number indicates that the extend need not be contiguous.

N$MPAG Fast page search page count. If there is sufficient dynamic memory to allocate
the number of pages specified, NEMPAG will set aside 512 words of dynamic
memory to speed up the searching of memory-resident pages.

$WRKPT Store the address of the FDB in the word $WRKPT before calling $INIVM.

memory address
In Register 1: the highest address of the task’s free dynamic memory

Output
Condition Code

Initialization succeeded if both of the following conditions exist:
C bit = Clear

Register 0 = 0

Initialization failed if the following conditions exist:
C bit = Set

One of the following values:

Register 0
-2 to indicate work file open failure
-1 to indicate work file mark-for-deletion failure

Note

Before calling the $INIVM routine, the task may call the $INIDM routine (see
Chapter 7), which returns the last address of dynamic memory and the total
size of dynamic memory.

Also, you can examine the FCS error code at offset F.ERR in the work file FDB.
The address of the FDB is stored in the word $WRKPT.

8-6 Virtual Memory Management Routines

Description

Starting at the high address of the calling task’s free dynamic memory, the $INIVM routine
clears control fields and the page address control listhead. The $INIVM routine then sets up
the heading for a new page address control list and calls the Allocate Block Routine ($ALBLK)
to allocate a memory page block for the control list. The $INIVM routine calls the $ALBLK
routine to allocate a page block for the first memory page for the calling task, and links the first
allocated page to the page control list.

The $INIVM routine initializes (opens) your disk work file. If the file is opened successfully,
the $INIVM routine attempts to mark it for deletion. This ensures that the file will be deleted
automatically when it is closed, or if the task terminates abnormally or exits.

Note
The work file may be closed by the operation CLOSE$ $WRKPT.

The $INIVM routine destroys the contents of Registers 0 through 2. Whether or not the
initialization is successful, it transfers control to the $SAVRG routine, which restores Registers
3 through 5 and returns to the calling task.

The interaction of the $INIVM routine with your task and the Allocate Block Routine ($ALBLK)
is shown in Figure 8-1 (see next page).

Virtual Memory Management Routines 8-7

Figure 8-1: General Block Diagram of the $INIVM Routine

(Task ‘,<
)
SINIVM)

\i
Call $SAVRG to

save task’s i $SAVRG

R3 - RS

|

Set new high
dynamic memory
address

Clear memaory
Clear RO; clear C

control fields and ;
bit; transfer to

lists; force old

$SAVRG

$SAVRG to restore

pages out of R3 - R5 and return
memaory

Y
Set up new
address control

list:
ist; call SALBLK SALBLK
to allocate

control list

File
marked?

Set C bit; transfer
to $SAVRG to
restore R3- RS
and return

]

page block

¢ Set RO = —1

Call SALBLK

to aliocate block Mark file for
° .oc e o SALBLK deletion after
for first memory

close

page

Link memory
page to page
control list

Open disk
work file

8-8 Virtual Memory Management Routines

Set RO = -2

ZK-5765-HC

Example

The following source statements call the $INIVM routine to initialize free dynamic memory and
then call $WRKPT to close the work file. In this example, the $INIDM routine provides the
required free memory address in Register 1:

E$R4 == 4 ; INSUFFICIENT WORK FILE DYNAMIC MEMORY
E$R73 == 73 ; WORK FILE I/0 ERROR
E$R76 == 76 ; WORK FILE EXCEEDED
sgv2 == 302 ; SEVERITY 2
WSKLUN == 4 ; WORK FILE LUN
N$MPAG == 20 ; FAST PAGE SEARCH PAGE COUNT
WSKEXT == 24 ; WORK FILE EXTENSION SIZE (BLOCKS)
$WRKPT: .WORD O ; ADDRESS OF FDB
$FRHD:: .BLKW 2 ; FREE MEMORY LISTHEAD
$FRSIZ:: .BLKW 1 ; SIZE COUNT FOR FREE MEMORY
GENFLG: .WORD O ; GENERAL WORD FLAG
1 BIT O ~ VIRTUAL FILE OPEN - 1 = QPEN, 0 = CLOSED
MoV #3$FRHD, RO ; SET ARG FOR FREE MEMORY HEAD
CALL $INIDM ; INITIALIZE MEMORY
MOV R2,$FRSIZ ; SET ARG FOR SIZE
CALL $INIVM ; INITIALIZE WORK FILE SUBSYSTEM
CLOSE$ $WRKPT ; CLOSE VIRTUAL WORK FILE
BIC #1,GENFLG ; CLEAR WORK FILE OPEN FLAG
RTS PC

8.3 Core Allocation Routines

The core allocation routines manage the allocation and deallocation of space in the free dynamic
memory of the executing task. The core allocation routines are as follows:

* The Allocate Block Routine (JALBLK), which provides the interface between the executing
task and the other core allocation routines. That is, the executing task is provided all the
services of the core allocation routines by simply calling the $ALBLK routine, or those
routines that call the $ALBLK routine.

* The Get Core Routine (§GTCOR), which is always called by the $ALBLK routine to perform
the necessary processing to allocate the requested memory space from the free dynamic
memory.

* The Request Core Block Routine ($RQCB), which is called by the $GTCOR routine to
allocate the requested memory space if it is available in the free dynamic memory.

* The Write Page Routine ($WRPAG), which is called by the $GTCOR routine to transfer
memory pages to your disk work file to free enough memory space to satisfy the memory
allocation request.

* The Release Core Block Routine ($RLCB), which is called by the $§GTCOR routine to release
space previously allocated to a memory page that has been transferred to the disk work file.

Virtual Memory Management Routines 8-9

In addition to the five core allocation routines mentioned above, there is a sixth routine called
the Extend Task Routine ($JEXTSK), which is accessed by the statistical module GTCOS. The
$EXTSK routine is called by the $GTCOR routine to extend the size of the task region, thus
making enough memory available in the free dynamic memory to satisfy the allocation request.

Do not confuse the statistical module GTCOS with the nonstatistical module GTCOR. Both of
these modules are called by references to the entry point $GTCOR. $GTCOR calls $EXTSK
only when you include the statistical module GTCOS at task-build time. If you do not include
GTCOS, the $GTCOR routine uses the nonstatistical module GTCOR by default.

8.3.1 Allocate Block Routine ($ALBLK)

The $ALBLK routine determines whether a block of memory storage can be allocated from the
free dynamic memory. If so, the $ALBLK routine clears (zeroes) the allocated block and returns
the resident memory address of the block to the calling task. If there is insufficient space in the
free dynamic memory, the requested block cannot be allocated.

Format

CALL $ALBLK

Input

block size
In Register 1: the size (number of bytes less than or equal to 512;9) of the memory storage
block to be allocated

error code
In the task: the definitions for the following global symbols:
E$R4

S$v2
Output
block address
In Register 0: the dynamic memory address of the allocated, cleared block

error response
If allocation is unsuccessful, $ALBLK produces the following output:

In Register 1: sets the error/severity codes E$R4 and S$V2
In Register 2: saves the address of the argument block $FRHD (free memory header)

The $ALBLK routine then calls the user $ERMSG routine.

Description

The $ALBLK routine calls the Get Core Routine ($GTCOR) to allocate the requested memory
block, as follows:

* Request allocation from the free dynamic memory

* If the request is not met, attempt to extend the task region to increase the size of the free
dynamic memory

8-10 Virtual Memory Management Routines

* If the task cannot be extended, swap unlocked pages from memory storage to disk to
deallocate memory space for reallocation

In addition to being called by the user task, the $ALBLK routine is called by the following
virtual memory management routines:

* Initialize Virtual Memory Routine ($INIVM), which calls $ALBLK to allocate initial blocks
of dynamic memory to enable page swapping between disk and memory storage

¢ Convert Virtual to Real Address Routine ($CVRL), which calls $ALBLK to allocate a block
of dynamic memory for a virtual page block

® Allocate Virtual Memory Routine ($ALVRT), which calls $ALBLK to allocate a memory page
block for a virtual page block that is to be swapped from memory to disk storage

The interaction of the $ALBLK routine with a user task and other virtual memory management
routines is shown in Figure 8-2.

Figure 8-2: General Block Diagram of the $SALBLK Routine

Task
_—@ $INIVM routine

$CVRL routine

$ALVRT routine

L $RQCB

SEXTSK

Call $GTCOR to
request memory g $GTCOR
block

$WRPAG

Clear block;
set block address
in RO; return

Get
block?

$RLCB

ik

Call user’s
$ERMSG routine

)

($ERMSG)

Virtual Memory Management Routines 8-11

Example

The following source statements call the $ALBLK routine to allocate a 4-byte block of memory
and store the address of the block in buffer REFHD:

ER4 == 4 ; INSUFFICIENT WORK FILE DYNAMIC MEMORY
E$R73 == 73 ; WORK FILE I/0 ERROR
E$R76 == 76 ; WORK FILE EXCEEDED
sgv2 = 2 ; SEVERITY 2
REFHD: BLKW 2 ; REFERENCE LISTHEAD
MOV R1,-(SP) ; SAVE VIRTUAL ADDRESS OF REFERENCE
MOV #4,R1 ; GET SIZE OF BLOCK
CALL $ALBLK ; ALLOCATE CORE BLOCK
MOV RO,GREFHD+2 ; LINK REAL ADDRESS TO OLD LAST BLOCK ADDRESS
MOV RO,REFHD+2 ; SET NEW LAST BLOCK ADDRESS
MOV (SP)+,2(RO) ; RECORD VIRTUAL ADDRESS OF REFERENCE

8.3.2 Get Core Routine ($GTCOR—Nonstatistical Module GTCOR)

The $GTCOR routine (defined in the nonstatistical module GTCOR) attempts to allocate
requested dynamic memory blocks in the following ways:

e Allocate memory from the currently available space in the free dynamic memory

e Swap unlocked page blocks from dynamic memory to disk, freeing previously allocated
memory space for reallocation

Format
CALL $GTCOR

input

block size
In Register 1: the size (number of bytes less than or equal to 512;¢) of the dynamic memory
block to be allocated

Output

block address
In Register 0: the memory address of the dynamic memory block, if allocated

Condition Code

C bit = Clear if the allocation was successful
Cbit = Set if the allocation failed
Description

$GTCOR calls the Request Core Block Routine ($RQCB; described in Chapter 7) to determine
whether enough free dynamic memory space is currently available to satisfy the allocation
request. If so, the $§GTCOR routine returns the memory address of the resident block to the
caller.

8-12 Virtual Memory Management Routines

If the $RQCB routine cannot allocate the requested block from the current free dynamic memory,
the $GTCOR routine searches for the unlocked pages currently resident in memory. If any
unlocked pages are found, the least recently used (LRU) page is released and its memory space
is allocated to the new page. If an unlocked page cannot be found, $GTCOR sets the C bit,
indicating that it failed to find an unlocked page, and returns control to the caller.

When an LRU page is found, the $GTCOR routine checks the page to see if it has been written
into. If so, the Write Page Routine ($WRPAG) is called to write the page to the disk work
file. The Release Core Block Routine ($RLCB; described in Chapter 7) is called to release the
page and the Request Core Block Routine ($RQCB) is called to allocate the page. The memory
address of the allocated page returns in Register 0 to the caller. If the §GTCOR routine does not
obtain sufficient memory for the requested block, it sets the C bit in the Condition Code and
returns control to the caller. $GTCOR calls the $SAVRG routine to save and restore Registers
3 through 5 of the caller.

The $GTCOR routine is always called by the Allocate Block Routine ($ALBLK).

The interaction of the $GTCOR routine with other system library and virtual memory
management routines is shown in Figure 8-3 (see next page).

Virtual Memory Management Routines 8-13

Figure 8-3: General Block Diagram of the $GTCOR Routine (nonstatistical module

$SAVRG]
Call $RQCB
Task \
SALBLK } Caller SGTCOR to request $RQCB
memory block
Clear C bit;
$SAVRG \ set memory yes Get
address in RO; block?
return
no
Check for
unlocked pages
no
Set C bit; return
yes
Call SWRPAG yes
SWRPAG to write pages
out to disk
no
Delete pages
from list; tink
remaining pages;
cail SRLCB to (SRLCB)
release page
blocks

ZK-5767-HC

8-14 Virtual Memory Management Routines

Example

The following source statements call the $GTCOR routine to allocate a memory block of one
byte plus the length of the header:

E$R4 == 4 ; INSUFFICIENT WORK FILE DYNAMIC MEMORY
E$R73 == 73 ; WORK FILE I/0 ERROR
E$R76 == 76 ; WORK FILE EXCEEDED
s$v2 == 302 ; SEVERITY 2
LENGTH: .BLKW 1 ; LENGTH OF RECORD JUST READ
HDSZ: .BLKW 1 ; LENGTH OF HEADER
.EVEN
MOV #1,RO ; SET LENGTH TO ONE BYTE
MOV RO, LENGTH ; REMEMBER THE LENGTH
ADD #HDSZ ,R1 ; ADD HEADER LENGTH
ADD RO,R1 ; ADD ALLOWANCE FOR MODIFICATIONS
CALL $GTCOR ; ALLOCATE SPACE

8.3.3 Get Core Routine (§GTCOR—Statistical Module GTCOS)

The $GTCOR routine (accessed by the statistical module GTCOS) attempts to allocate requested
dynamic memory blocks in one of the following ways:

* Allocate memory from the currently available space in the free dynamic memory

* Extend the task region, increasing the size of the free dynamic memory to accommodate
the allocation request

* Swap unlocked page blocks from dynamic memory to disk, which frees previously allocated
memory space for reallocation

Format
CALL $GTCOR

Input

block size
In Register 1: the size (number of bytes less than or equal to 512;¢) of the dynamic block
memory to be allocated

Output
address

In Register 0: the memory address of the dynamic block, if allocated
Condition Code

Cbit = C(lear if the allocation was successful

Cbit = Set if the allocation failed

Virtual Memory Management Routines 8-15

Description

The Request Core Block Routine (SRQCB; described in Chapter 7) is called to determine whether
enough free dynamic memory space is currently available to satisfy the allocation request. If
so, the $GTCOR routine returns the memory address of the resident block to the caller.

If the requested block cannot be allocated from the current free dynamic memory, the §GTCOR
routine calls the Extend Task Routine ($EXTSK) to determine whether the task region can be
extended to make available the requested space in the free dynamic memory. If so, the §GTCOR
routine returns the memory address to the caller.

If the task region cannot be extended, the $§GTCOR routine searches for unlocked pages currently
resident in memory. If any unlocked pages are found, the least recently used (LRU) page is
released and its memory space is allocated to the new page.

When an LRU page is found, the $§GTCOR routine checks the page to see if it has been written
into. If so, the Write Page Routine (WRPAG) is called to write the page to the disk work
file. The Release Core Block Routine ($RLCB; described in Chapter 7) is called to release the
page and the Request Core Block Routine ($RQCB) is called to allocate the page. The memory
address of the allocated page is returned in Register 0 to the caller. If the $§GTCOR routine is
not able to obtain sufficient memory for the requested block, it sets the C bit in the Condition
Code and returns control to the caller. The $GTCOR routine calls the $SAVRG routine to save
and subsequently restore Registers 3 through 5 of the caller.

The $GTCOR routine is always called by the Allocate Block Routine ($ALBLK).

The interaction of the $GTCOR routine with other system library and virtual memory
management routines is shown in Figure 8-4.

8-16 Virtual Memory Management Routines

Figure 8-4: General Block Diagram of the $GTCOR Routine (statistical module
GTCOS) '

‘ $SAVRG
TN Call $RQCB
;:thLK } Caller $GTCOR to request $RQCB
memory block

Clear C bit;

SSAD set memory yes Get
address in RO; block?
return

no

See If task can
be extended

Inhibit further yes
extensions

Maximum
size?

Check for Call $EXTSK
unlocked pages to extend task $EXTSK

Get
extension?

Set C bit; return

Update free
memory; update
top of memory;
call $RLCB to
retease block

Written
into?

Call $WRPAG
SWRPAG to write pages
out to disk

Delete pages
from list; link

remaining pages; 14 R \
call SRLCB to ! $RLCB }
release page

blocks

ZK-5768-HC

Virtual Memory Management Routines 8-17

8.3.4 Extend Task Routine ($SEXTSK)

The $EXTSK routine extends the current region of the task to increase the amount of available
memory for allocation. It extends the task region by the specified size rounded to the next
32-word boundary.

Format

CALL $EXTSK

Input

block size
In Register 1: the size (number of bytes less than or equal to 51219) of the memory storage
block to be allocated

Output

extension size
In Register 1: the actual extension size (requested size rounded to next 32-word boundary)

Condition Code
Cbit = Clear if extension was successful

C bit Set if extension failed

[

Description

The $EXTSK routine is called by the Get Core Routine ($GTCOR) when there is insufficient
space in the current free dynamic memory to satisfy a memory block allocation request. The
$EXTSK routine rounds the requested extension size to the next 32-word boundary. If there is
enough memory space available, $EXTSK extends the task region, returning the total amount
of the extension, in Register 1, to the $§GTCOR routine. It preserves all other registers of the
caller. If it cannot extend the task region, the $EXTSK routine sets the C bit in the Condition
Code and returns to the $GTCOR routine.

While you can call the $EXTSK routine directly, the routine is also called by the Initialize
Dynamic Memory Routine ($INIDM), described in Chapter 7.

The interaction of the $EXTSK routine with the $GTCOR routine (in statistical module GTCOS)
is shown in Figure 8-5.

8-18 Virtual Memory Management Routines

Figure 8-5. General Block Diagram of the SEXTSK Routine

Task } Call
$GTCOR aller =

Round
extension to
32-word
boundary

Convert to
32-word blocks;
set extension size
in R1; return

to caller

Can
extend?

Set C bit;
return to caller

ZK-5769-HC

Example

The following source statements call the $EXTSK routine to extend the amount of memory
available to the task:

T$KINC == 256. ; TASK INCREMENT
T$KMAX == 0 ; MAXIMUM SIZE OF TASK
P$TADDR: .WORD O ; NEXT FREE ADDRESS
FRHD: .BLKW 2 ; FREE MEMORY LISTHEAD

Virtual Memory Management Routines 8-19

CALL $SAVRG ; SAVE NONVOLATILE REGISTERS

10$:
MOV R1,-(SP) ; SAVE BYTE COUNT
MOV #FRHD,RO ; GET ADDRESS OF FREE CORE POOL
CALL $RQCB ; REQUEST CORE BLOCK
BCC 60$: IF C BIT CLEAR, SPACE IS ALLOCATED
MOV #P$TADDR ,R3 : GET POINTER TO NEXT FREE ADDRESS
MOV (R3) ,R2 ; GET NEXT FREE ADDRESS
CMP R2, #T$KMAX . IS TASK AT MAXIMUM ALLOWABLE SIZE?
BHIS 17$; IF TASK HIGHER OR SAME, YES
MOV #T$KINC,R1 ; GET TASK INCREMENT (IN BYTES)
CALL $EXTSK ; EXTEND THE TASK
BCS ERR$; IF C BIT SET, EXTENSION FAILED
ADD R1i,FRHD . ADD INCREMENT TO POOL
ADD R1, (R3) ; UPDATE TOP OF MEMORY
BR 47$; RELEASE BLOCK TO POOL
17$:
MOV #-1, (R3) ; BLOCK FURTHER ATTEMPTS TO EXTEND TASK
47$:
MOV #FRHD ,RO ; GET ADDRESS OF FREE CORE POOL
CALL $RLCB ; RELEASE MEMORY
MOV (SP)+,R1 ; RESTORE BYTE COUNT
BR 10$; BEGIN AGAIN
60$:
INC (sp)+ ; CLEAN STACK, LEAVE C BITS INTACT
RTS PC

8.3.5 Write Page Routine (§WRPAG)
The $WRPAG routine transfers a memory page to the disk work file.

Format
CALL $WRPAG

input

page address
In Register 2: the dynamic memory address of the page to be transferred to disk

error code
In the task: the definitions for the following global symbols:

E$R73
S$V2

Output

Condition Code
Cbit = C(lear if transfer succeeded

C bit Set if transfer failed

error response
If transfer is not successful, $WRPAG produces the following output:
In Register 1: sets the error/severity codes E$R73 and S§V2

8-20 Virtual Memory Management Routines

The $WRPAG routine then calls the user $ERMSG routine.

Description

The $WRPAG routine is called by the Get Core Routine ($GTCOR) to transfer to your disk
work file a resident memory page that has been written into.

The $WRPAG routine calls the $SAVVR routine to save and subsequently restore Registers 0
through 2 of the caller. The routine then performs the following actions:

® Sets up the disk work file address of the page to be transferred
* Initiates the page-writing operation
® Checks the status of the write operation

* Indicates a successful transfer (clears the C bit in the Condition Code) and returns control to
the $SAVVR routine, or calls your $ERMSG routine if a fatal work file I/O error prevented
the page transfer

The interaction of the $WRPAG routine with the $GTCOR routine is shown in Figure 8-6 (see
next page).

Virtual Memory Management Routines 8-21

Figure 8-6: General Block Diagram of the $WRPAG Routine

Task
$GTCOR } (Caller J=
SWRPAG SSAVVR

Set up disk
address for
page to be
transferred

Y

Initiate page
writing
operation

1

Check status
of write
operation

Clear C bit; ()
yes ear l $SAVVR
return

Call user’s
SERMSG $ERMSG
routine

ZK5770:HC
Example

The following source statements call the $WRPAG routine to transfer a memory page from
buffer PSGNXT to the disk work file:

8-22 Virtual Memory Management Routines

E$R4 == 4 ; INSUFFICIENT WORK FILE DYNAMIC MEMORY

E$R73 == 73 ; WORK FILE I/0 ERROR
E$R76 == 76 ; WORK FILE EXCEEDED
s$v2 == 302 ; SEVERITY 2
P$GNXT: .WORD O ; NEXT PAGE WORK FILE
MOV R4,R5 ; SAVE PREDECESSOR
MOV P$GNXT,R4 ; GET NEXT PAGE
MOV R4,R2 ; SET UP BUFFER FOR TRANSFER
CALL $WRPAG ; WRITE OUT PAGE INTO DISK WORK FILE

8.4 Virtual Memory Allocation Routines

The virtual memory allocation routines manage the allocation of disk and memory storage to
enable page swapping from the free dynamic memory to your disk work file. The three virtual
memory allocation routines are as follows:

* The Allocate Virtual Memory Routine ($ALVRT), which allocates disk and memory page
blocks, maintains page control and address tables, and interfaces with the executing task
and the core allocation and page management routines.

* The Allocate Small Virtual Block Routine ($ALSVB), which allocates small page blocks of
disk and memory storage within large page blocks to enable efficient use of storage. The
$ALSVB routine interfaces with the $ALVRT routine and page management routines to
ensure address and status control of small pages in memory and disk storage.

® The Request Virtual Core Block Routine ($RQVCB), which manages page-block allocation
on your disk work file when it is called by the $ALVRT routine.

8.4.1 Allocate Virtual Memory Routine (SALVRT)

The $ALVRT routine determines whether a page block of virtual storage can be allocated on
your disk work file. If so, the $ALVRT routine allocates an equal amount of memory storage,
updates page control and address tables, and returns the disk and memory addresses of the
allocated page blocks to the caller. If the $ALVRT routine cannot allocate the requested storage,
the error and severity codes E$R76 and S$V2 are stored in Register 1 and the user’s $SERMSG
routine (see Section 8.1.1) is called.

Format
CALL $ALVRT

Input

block size
In Register 1: the number of bytes to be allocated

Note
The maximum size of a page block is 512, bytes.

Virtual Memory Management Routines 8-23

Output

memory address

In Register 0: the memory address of the allocated page block
In Register 1: the virtual address of the allocated page block

Description

The $ALVRT routine calls the Request Virtual Core Block Routine (RQVCB) to determine
whether the requested storage can be allocated on the disk work file. If not, a fatal error is
signalled and the $ALVRT routine calls your $ERMSG routine.

If it can allocate the disk storage, the $RQVCB routine returns the disk page block address to
the $ALVRT routine, which determines whether a page block of space is available in memory.
If not, the Allocate Block Routine ($ALBLK) is called to allocate a page block. The $ALVRT
routine then calls the Convert Virtual to Real Address Routine (JCVRL) to convert the virtual
address to a memory address.

The $ALVRT routine calls the Write-Marked Page Routine (SWRMPG) to set the “written into”
flag of the memory page. It also calls the $SAVRG routine to save and restore Registers 3
through 5 of the calling routine.

Although you can call the $ALVRT routine directly, it is also called automatically by the Allocate
Small Virtual Block Routine (SALSVB).

The interaction of the $ALVRT routine with your task and other virtual memory management
routines is shown in Figure 8-7.

8-24 Virtual Memory Management Routines

Figure 8-7: General Block Diagram of the SALVRT Routine

Task
$ALSVB } Caller SALVRT
Call $SAVRG
to save e $SAVRG)
R3-R5
Call $RQVCB
$SAVRG to request disk $RQVCB
storage block
Call user’s
seawsa m
routine

Get
block?

Save disk page

Set memory ;
address of page address; see |
in RO; set disk core page block

available

address of page
in R1; transfer to
$SAVRG to
restore R3 - RS

Page no Call SALBLK
block in to allocate SALBLK
core? core page block
yes —
Update
SWRMPG ‘ paging/address
tables
4
Call SWRMPG Call SCVRL to
to flag page as convert virtual
. 9 . 9 address to real
written into
address

ZK-5771-HC

Virtual Memory Management Routines 8-25

Example

The following source statements call the $ALVRT routine to allocate a page block of virtual
memory on a disk file. In this example, the statements save the contents of Registers 0 and 2
before calling $ALVRT:

E$R4 == 4 ; INSUFFICIENT WORK FILE DYNAMIC MEMORY
E$R73 == 73 ; WORK FILE I/0 ERROR

E$R76 == 76 ; WORK FILE EXCEEDED

s$v2 == 302 ; SEVERITY 2

TEMPi: .WORD O ; TEMPORARY BUFFER FOR VIRTUAL MEMORY
TEMP2: .WORD O ; TEMPORARY BUFFER FOR VIRTUAL MEMORY
A.LEN: .BLKW 1 ; LENGTH OF VIRTUAL ELEMENT

MOV RO, TEMP1 ; SAVE POINTER IN INPUT BUFFER

Mov R2,TEMP2 ; SAVE NUMBER OF BYTES IN BUFFER

MOV A .LEN,R1 ; LENGTH OF VIRTUAL ELEMENT TO REGISTER 1
CALL $ALVRT ; ALLOCATE VIRTUAL BLOCK

8.4.2 Allocate Small Virtual Block Routine ($ALSVB)

The $ALSVB routine allocates small page blocks within large page blocks of disk and memory
storage. Thus, the routine accommodates variable user allocation size requirements and
minimizes wasted storage space.

The $ALSVB routine initially allocates a large page block, then performs suballocation of
requested small blocks within the large block. When the space within a large block is exhausted,
a new large block is allocated by the $ALSVB routine.

Format

CALL $ALSVB

Input

memory block
In the source program: a large memory block defined as follows:

N$DLGH == 512.

Note

Normally, 512 is the size of a large memory block. In any case, it must be
less than or equal to 512,4.

page block size
In Register 1: the size of the page block to be allocated, where:

R1 = Zero (0) to force the allocation of a large virtual page block on the first call to
$ALSVB
R1 = A value less than or equal to 512 specifying the size, in bytes, of the small page

to be allocated

8-26 Virtual Memory Management Routines

Output
dynamic memory address

In Register 0: the dynamic memory address of the allocated page block

virtual address

In Register 1: the virtual address of the allocated block

Description

When a small page block is to be allocated within an existing large page block, the $ALSVB
routine calls the Convert Virtual to Real Address Routine ($CVRL) to do the following:

Locate the allocated large page, if it is memory-resident (if it is not resident, read the page
from disk to memory)

Convert the virtual page address to a memory page address
Transfer the large page block from disk into the large memory page block

The $ALSVB routine calls the Write-Marked Page Routine (SWRMPGQG) to set the “written into”
flag of the allocated memory page.

When a large page block is to be allocated, the Allocate Virtual Memory Routine ($ALVRT) is
called to do the following;:

Allocate the disk and dynamic memory of the requested large page block
Convert the virtual address to a memory address
Transfer the large block, if necessary, from disk to dynamic memory

Set the “written into” flag of the allocated page block

The $ALSVB routine destroys the contents of Register 2 and preserves the contents of Registers
3 through 5.

The interaction of the $ALSVB routine with other virtual memory management routines is
shown in Figure 8-8 (see next page).

Virtual Memory Management Routines 8-27

Figure 8-8: General Block Diagram of the $ALSVB Routine
(Task ‘,4

SALSVB

!

Round requested
btock size to
word boundary;
check to see if
this is first call

Call $ALVRT to
allocate large SALVRT
disk page biock

1
Return memory
address in RO;
virtual address
in R1

Get virtual
address of
available smatl
block

Y
Call SCVRL to

convert virtual Call SWRMPG
address to memory &1 to mark page as | $SWRMPG
address and read written into

into page

ZK-5772-HC

8-28 Virtual Memory Management Routines

Example

The following source statements call the $ALSVB routine to allocate a block of memory within
a larger block:

E$R4 == 4 ; INSUFFICIENT WORK FILE DYNAMIC MEMORY
E$R73 == 73 ; WORK FILE I/0 ERROR
E$R76 == 76 ; WORK FILE EXCEEDED
S$vV2 == 302 . SEVERITY 2
N$DLGH == 512. ; LARGE BLOCK SIZE
P$GSIZ == 24 ; SIZE OF CURRENT PAGE
MOV #P$GSIZ,R5 ; GET PAGE SIZE
Mov R5,R1 ; COPY SIZE OF TABLE
ASL R1 ; CONVERT TO BYTES
CALL $ALSVB ; ALLOCATE VIRTUAL MEMORY
MoV R1, (R4)+ ; SAVE VIRTUAL ADDRESS

8.4.3 Request Virtual Core Biock Routine (SRQVCB)

The $RQVCB routine manages page-block allocation on your disk work file. The $RQVCB
routine is called by the Allocate Virtual Memory Routine (SALVRT) when your task has
requested allocation of a page block of a maximum of 5124 bytes in length.

The $RQVCB routine is not a user-called routine.

Description

The $RQVCB routine rounds the requested number of bytes up to the nearest word. If the
rounded value crosses a disk block boundary, the $RQVCB routine allocates the page block
beginning at the next disk block.

If allocation is successful, the $RQVCB routine clears the C bit in the Condition Code and
returns the disk address of the allocated page to the $ALVRT routine.

If allocation is not successful, the $RQVCB routine sets the C bit in the Condition Code and
returns control to the $ALVRT routine. The following conditions can prevent allocation:

* There is no more disk storage space available.
* A page block size greater than 512;y bytes has been requested.

The interaction of the $RQVCB routine with the $ALVRT routine is shown in Figure 8-9 (see
next page).

Virtual Memory Management Routines 8-29

Figure 8-9: General Block Diagram of the SRQVCB Routine

Check available
disk storage

Set C bit;
| return to caller

Clear C bit;
round request;
check size
yes
Too big?
no

Allocate page Put disk page
space within address in R1;
disk block 1 clear Cbit; o
boundary return

ZK-5773-HC

8.5 Page Management Routines

The page management routines perform the processing required to control page swapping
between dynamic memory and disk file storage. This processing includes address conversion;

8-30 Virtual Memory Management Routines

page location; page transfer from disk to memory; and page status handling such as
timestamping, flagging as “written into,” and locking and unlocking memory pages.

The page management routines are as follows:

The Convert and Lock Page Routine ($CVLOK), which converts a virtual address to a
dynamic memory address and locks the page in memory when called by your task

The Convert Virtual to Real Address Routine ($CVRL), which converts a virtual address to
a dynamic memory address when called by one of the following:

— The user task

— The Allocate Virtual Memory Routine ($ALVRT) when a new disk page has been
allocated

— The Convert and Lock Page Routine ($CVLOK) when a page address is to be converted
and the page is to be locked in memory

The Read Page Routine ($SRDPAG), which is called by the $CVRL routine to transfer a page
from your disk work file to dynamic memory

The Find Page Routine ($FNDPG), which determines whether a virtual page is resident in
dynamic memory when called by one of the following:

— The $CVRL routine

— The Lock Page Routine ($LCKPG)

— The Unlock Page Routine (JUNLPG)

— The Write-Marked Page Routine (WRMPG)

The Write-Marked Page Routine (SWRMPG), which sets the “written into” flag of memory
pages when called by a user or by the $ALVRT and $ALSVB virtual memory allocation
routines

The Lock Page Routine (JLCKPG), which is called by the $CVLOK routine and a user task
to set a lock byte in a memory page to prevent its being swapped from memory to the disk
file

The Unlock Page Routine ($UNLPG), which is called by a user task to clear a lock byte
in a memory page to allow it to be swapped to disk storage to free memory space for
reallocation

8.5.1 Convert and Lock Page Routine ($CVLOK)
The $CVLOK routine performs the following functions:

Converts a virtual address to a memory address
Locks the page in memory

Format

CALL $CVLOK

Virtual Memory Management Routines 8-31

input

virtual address
In Register 1: the virtual address you want to convert

Output

converted memory address
In Register 0

virtual address
In Register 1

Condition Code

Cbit = Clear if the address was converted and the page locked
Cbit = Set if address conversion or page locking failed
Description

The $CVLOK routine calls the following routines:

e The Convert Virtual to Real Address Routine (JCVRL) to convert the virtual address to a
memory address

o $CVRL to preserve the contents of Registers 3 through 5
e The Lock Page Routine (JLCKPG) to lock the page in memory
$CVLOK also preserves the contents of Register 2.

The interaction of the $CVLOK routine with the calling task and other page management
routines is shown in Figure 8-10.

8-32 Virtual Memory Management Routines

Figure 8-10: General Block Diagram of the $CVLOK Routine

i

$CVLOK

i
Call SCVRL to
convert virtual
to memory
address

SCVRL

)

Call $LCKPG
to tock page $LCKPG
in core

i

Page
locked?

Set C bit;
return

Clear C bit; set
RO = memory
address; set

R1 = virtual
address; return

ZK-5774-HC

Example

The following source statements call the $CVLOK routine to convert a virtual address from
the listhead to a dynamic memory address in TEMP1 and then an error routine in case the
conversion fails:

Virtual Memory Management Routines 8-33

E$R4 == 4 ; INSUFFICIENT WORK FILE DYNAMIC MEMORY

E$R73 == 73 ; WORK FILE I/0 ERROR
E$R76 == 76 ; WORK FILE EXCEEDED
s$v2 == 302 ; SEVERITY 2
TEMP1: .WORD O ; TEMPORARY STORAGE FOR VIRTUAL MEMORY
LISTHD: .BLKW 1 ; LISTHEAD LOCATION
MOV LISTHD,R1 ; MOVE VIRTUAL ADDRESS
CALL $CVLOK ; CONVERT, STORE REAL ADDRESS IN REGISTER 0
BCS LCKERR ; ERROR
MOV RO, TEMP1 ; SAVE IN TEMPORARY BUFFER
LCKERR: MOV #ERR55,R0 ; GET ERROR MESSAGE
BR ERROR ; GET ERROR ROUTINE

8.5.2 Convert Virtual to Real Address Routine (SCVRL)

The $CVRL routine converts a virtual address to a dynamic memory address. Virtual address
units are words and dynamic memory addresses are bytes.

Format
CALL $CVRL

Input

virtual address
In Register 1: the virtual address you want to convert

Output

memory address
In Register 0: the converted memory address

Description
The $CVRL routine may be called directly in the task or indirectly by the following routines:
e Allocate Virtual Memory Routine (JALVRT) when a new disk page has been allocated

e Convert and Lock Page Routine (}CVLOK) when the executing task has specified that a
virtual address is to be converted to a memory address and the page is to be locked in
memory

The $CVRL routine calls the Find Page Routine ($FNDPG) to determine whether the specified
page is resident in memory. If so, the virtual address is converted to a memory address, which
is returned to the caller. If the page is not in memory, $CVRL calls the Allocate Block Routine
($ALBLK) to allocate a memory page block. The $CVRL routine then calls the Read Page
Routine ($RDPAG) to transfer the disk page into dynamic memory. The page address is then
converted to a memory address. The memory address of the specified word in the page is
stored in Register 0, and control is transferred to the $SAVRG routine, which restores Registers
3 through 5 and returns to the caller.

The $CVRL routine leaves Register 1 unchanged. It destroys the contents of Register 2.

The interaction of the $CVRL routine with the caller and other virtual memory management
routines is shown in Figure 8-11.

8-34 Virtual Memory Management Routines

Figure 8-11:

$SAVRG

General Block Diagram of the $CVRL Routine

Task
$CVLOK

< SCVRL $SAVRG
Call $FNDPG FNDP
to find page $FNDPG

Example

Call SALBLK
Page to atlocate
in core? memory page SALBLK
block
\

Convert address; Galt $RDf’AG
to read disk

set RO = memory int

address; return page nto
memory page

$RDPAG

ZK-5775-HC

The following source statements call the $CVRL routine to convert a virtual address in Register
1 to a dynamic memory address and store the result in Register 0:

E$R4
E$R73
E$R76
s$v2
P$GSIZ

P$GADR:

== 4
== 73
== 76
== 302

; INSUFFICIENT WORK FILE DYNAMIC MEMORY
; WORK FILE I/0 ERROR

; WORK FILE EXCEEDED

; SEVERITY 2

; SIZE OF CURRENT PAGE

; ADDRESS OF CURRENT PAGE

Virtual Memory Management Routines 8-35

MOV #P$GADR,R1 ; GET PAGE ADDRESS

MOV R1,R5 ; SAVE VIRTUAL ADDRESS
TST R1 ; IS REQUEST ON BLOCK BOUNDARY?
BNE 208 ; IF NO, BLOCK ALREADY EXISTS
MOV #P$GSIZ,R1 ; CREATE A PAGE BUFFER
CALL $ALBLK ; ALLOCATE STORAGE SPACE
MOV R5,R1 ; RESTORE VIRTUAL ADDRESS

20$: CALL $CVRL ; CONVERT TO REAL ADDRESS

8.5.3 Read Page Routine (SRDPAG)
The $RDPAG routine transfers a disk page from the work file to the dynamic memory.

Format
CALL $RDPAG

Input

page address
In Register 0: the disk address of the page you want to transfer

Output
Condition Code
Cbit = Clear if transfer succeeds
Cbit = Set if transfer fails
Description

The $RDPAG routine is called by the Convert Virtual to Real Address Routine ($CVRL) when
a disk page is to be transferred to dynamic memory. The $RDPAG routine then does the
following:

® Sets up the address of the page to be transferred
* Initiates the page-reading operation
¢ Checks the status of the read operation

¢ (Calls the $SAVVR routine to save and subsequently restore the caller’s Registers 0
through 2

The interaction of the $RDPAG routine with the task and the $CVRL routine is shown in
Figure 8-12.

8-36 Virtual Memory Management Routines

Figure 8-12: General Block Diagram of the SRDPAG Routine

Task
|

L]

i

tnitiate read
operation

Check status

of read
Set C bit;
no call user’s
1 $ERMSG $ERMSG
routine
yes

Clear C bit;

transfer to

$SAVVR to

restore RO - R2

and return

)

ZK-5776-HC

Example

The following source statements allocate a page in buffer P$GSIZ and call the $RDPAG routine
to read the virtual page address into core memory:

Virtual Memory Management Routines 8-37

E$R4 == 4 ; INSUFFICIENT WORK FILE DYNAMIC MEMORY

E$R73 73 ; WORK FILE I/0 ERROR

E$R76 == 76 ; WORK FILE EXCEEDED

s§v2 == 302 ; SEVERITY 2

P$GSIZ == 24 ; SIZE OF PAGE

P$GBLK: .BLKW 100. ; RELATIVE BLOCK NUMBER

LISTHD: .BLKW 1. ; LISTHEAD LOCATION

PAGLS: .BLKW 1. ; ADDRESS OF PAGE LIST

$CVRT: SAVRG ; SAVE NONVOLATILE REGISTERS
MOV R1,R5 ; COPY VIRTUAL ADDRESS
SWAB R5 ; POSITION BLOCK NUMBER TO LOW BYTE
CALL $FNDPG ; SEARCH FOR PAGE
BCC 10$; IF C BIT CLEAR, PAGE IN CORE.
MOV #P$GSIZ,R1 . GET SIZE OF PAGE BUFFER
CALL $ALBLK ; ALLOCATE MEMORY
MOV PAGLS,R4 . GET ADDRESS OF PAGE LIST
BEQ 5% ; IF EQ NONE
CLR R2 ; SET FOR MOVB WITH NO EXTEND
BISB R5,R2 ; GET RELATIVE BLOCK NUMBER
ASL R2 ; CONVERT TO WORD OFFSET
ADD R2,R4 ; COMPUTE LIST ADDRESS
MoV RO, (R4) ; STORE ADDRESS OF PAGE

5$: ;
MOVB R5,P$GBLK (RO) ; SET RELATIVE BLOCK NUMBER
CALL $RDPAG ; READ PAGE INTO CORE

8.5.4 Find Page Routine (SFNDPG)
The $FNDPG routine searches an internal page address list to determine whether a virtual page
has already been transferred into an allocated memory page block.
Format

CALL $FNDPG

Input
virtual page address
In Register 1: the address of the page being searched for
Output
block address
In Register 0: the memory page block address where the page is resident
Condition Code
Cbit = Clear if page is resident
Cbit = Set if page was not found

8-38 Virtual Memory Management Routines

Description
The $FNDPG routine is called by the following virtual memory management routines:

® Convert Virtual to Real Address Routine ($CVRL) when a virtual address is to be converted
to a memory address

* Lock Page Routine (LCKPG) when a memory page is to be locked in core memory

* Unlock Page Routine (SUNLPG) when a locked memory page is to be unlocked

* Write-Marked Page Routine ((WRMPG) when the “written into” flag is to be set in a memory
page

The $FNDPG routine determines whether the specified page is resident in the task’s dynamic
memory. If so, the page is timestamped, its page block address is set in Register 0, the C bit in
the Condition Code is cleared, and control returns to the caller. If the page is not resident in
memory, the $FNDPG routine sets the C bit in the Condition Code and returns control to the
caller. $FNDPG does not change the contents of Register 1.

The interaction of the $FNDPG routine with a user task and the page management routines is
shown in Figure 8-13.

Figure 8-13: General Block Diagram of the SFNDPG Routine

Task
s$CVRL
l SUNLPG

SWRMPG

\
SFNDPG

Check page
address list to
see if page

in core

no Set C bit;
return

yes

Time-stamp
page; clear C bit;
set RO = page
address; return

ZK-5777-HC

Virtual Memory Management Routines 8-39

Example

The following source statements call the $FNDPG routine to verify that a page address, stored
in buffer PBGADR, exists in core memory. The example then calls $ALBLK to allocate the page

block:
P$GADR: .WORD 0 ; VIRTUAL PAGE ADDRESS
P$GSIZ == 24 ; SIZE OF PAGE
CALL $SAVRG ; SAVE NONVOLATILE REGISTERS
MOV P$GADR,R1 ; GET PAGE ADDRESS
CALL $FNDPG ; SEARCH FOR PAGE
BCC 10$; IF CLEAR, PAGE IN CORE
MOV #P$GSIZ,R1 ; GET SIZE OF PAGE BUFFER
CALL $ALBLK ; ALLOCATE MEMORY
10$:

8.5.5 Write-Marked Page Routine (SWRMPG)
The $WRMPG routine sets the “written into” flag of the specified page in dynamic memory.

Format
CALL $WRMPG

Input

virtual page address
In Register 1: the address of the page for which the flag is being set

Output
Condition Code
Cbit = Clear if the page was write-marked successfully
Chbit = Set if the specified memory page was not resident in the task’s free dynamic
memory
Description

The $WRMPG routine is called by the following virtual memory management routines:

* Allocate Virtual Memory Routine (JALVRT) when a disk page has been allocated in dynamic
memory

e Allocate Small Virtual Block Routine (BALSVB) when a small page block has been allocated
within a large page block

$WRMPG calls the Find Page Routine ($FNDPG) to determine whether the specified page is
resident in the task’s memory. If not, the C bit in the Condition Code is set and control is
transferred to the $SAVVR routine to restore Registers 0 through 2 and return to the caller. If
the page is resident in memory, its “written into” flag is set, the C bit in the Condition Code is
cleared, and control is transferred to the $SAVVR routine to restore Registers 0 through 2 and
return to the caller.

8-40 Virtual Memory Management Routines

The interaction of the $WRMPG routine with the caller and virtual memory management
routines is shown in Figure 8-14.

Figure 8-14: General Block Diagram of the $WRMPG Routine

Example

A\

' SWRMPG

Task
Caller $SALVRT
$ALSVEB

$SAVVR

)

)l

yes

Call $FNDPG
to find page $FNDPG
F.ind no Set C bit; return
it? to $SAVVR

Set write-mark
flag; clear C bit;
return to
$SAVVR

$SAVVR

ZK-5778-HC

The following source statements call the $WRMPG routine to mark a page and then call an
error routine in case $WRMPG is not successful:

TEMP1:
FREECT:
ERBS:

.WORD
.BLKW
.ASCIZ
.EVEN

0
1

; TEMPORARY STORAGE FOR VIRTUAL MEMORY
; NUMBER OF AVAILABLE PAGE ENTRIES
<16>/ACNT--Work file - page mark /

Virtual Memory Management Routines 8-41

MOV TEMP1,R1 ; SET $WRMPG ARGUMENT

Mov R5, TEMP1 ; MOVE PREV PAGE ADDRESS TO VIRTUAL MEMORY
MOV ©ORO, €R3 ; UPDATE PREV VIRTUAL ADDRESS PAGE POINTER
INC FREECT ; INCREMENT NUMBER OF PAGES AVAILABLE
CALL $WRMPG ; MARK PAGE "WRITTEN INTO"
BCS WRMERR ; ERROR

WRMERR : MOV #ER58,RO ; GET ERROR MESSAGE
BR ERROR ; GET ERROR ROUTINE

8.5.6 Lock Page Routine ($LCKPG)
The $LCKPG routine sets a lock byte in a memory-resident page to prevent its being swapped
from dynamic memory to the disk work file.
Format
CALL $LCKPG

Input

virtual page address
In Register 1: a virtual address in the page to be locked in dynamic memory

Output
Condition Code
Cbit = C(lear if the page was locked in memory
Cbit = Setif the page was not found
Description

The $LCKPG routine may be called by a user task or by the Convert and Lock Page Routine
($CVLOK).

$LCKPG calls the Find Page Routine (}FNDPG) to determine whether the memory page is
resident. If so, the page lock byte is set, the C bit in the Condition Code is cleared, and control
is transferred to the $SAVVR routine to restore Registers 0 through 2 and return to the caller.

If the specified page is not in memory, the $LCKPG routine sets the C bit in the Condition
Code and returns control, by means of the $SAVVR routine, to the caller.

The interaction of the $LCKPG routine with the task and page management routines is shown
in Figure 8-15.

8-42 Virtual Memory Management Routines

Figure 8-15: General Block Diagram of the $LCKPG Routine

Example

The following source statements call the $LCKPG routine to lock a page in dynamic memory if
the listhead contains more than one element:

TEMP1:
LISTHD:
ERb5:

$SAVVR ’

—— =)

!
SLCKPG

Task

SCVLOK

$SAVVR

Call SFNDPG
to find page

Page
in core?

Lock it; clear

C bit; transfer

to $SAVVR to
restore RO - R2
and exit to caller

2 SFNDPG ’

Set C bit; transfer
to $SAVVR to
restore RO - R2
and exit to calier

Virtual Memory Management Routines

ZK-5779-HC

.WORD O ; TEMPORARY STORAGE FOR VIRTUAL MEMORY
.BLKW 1 ; LISTHEAD LOCATION

.ASCIZ <15>/ACNT --Work file - page lock /

.EVEN

8-43

MOV LISTHD,R1 MOVE 1ST VIRTUAL ADDRESS

CALL $CVLOK ; 1ST PAGE REAL ADDRESS IN REGISTER 0
BCS LCKERR ; ERROR
ST (RO) ; ONLY 1 ELEMENT?
BNE 40$: NO, MORE THAN ONE
CALL $UNLPG ; YES, ONLY ONE, UNLOCK IT

40$: MOV TEMPL,R1 ; SET UP VIRTUAL ADDRESS FOR $LCKPG
CALL SCVRL ; SAVE REAL ADDRESS OF NEXT PAGE IN REGISTER 0
CALL $LCKPG ; LOCK
BCS LCKERR ; ERROR

LCKERR: MOV ~ #ERRS5,RO ; GET ERROR MESSAGE
BR ERROR ; ERROR ROUTINE

8.5.7 Unlock Page Routine (SUNLPG)
The $UNLPG routine clears a lock byte in a memory-resident page to allow the page to be
swapped from dynamic memory to the disk work file.
Format
CALL $UNLPG

input

virtual page address
In Register 1: the virtual address of the page you want to unlock

Output
Condition Code
Cbit = Clear if the page was unlocked
Cbit = Set if the page was not found
Description

$UNLPG calls the Find Page Routine ($FNDPG) to determine whether the memory page is
resident. If so, the page lock byte and the C bit in the Condition Code are cleared and control
is transferred to the $SAVVR routine to restore Registers 0 through 2 and return to the caller.

If the specified page is not in memory, the C bit in the Condition Code is set and control is
returned, by means of the $SAVVR routine, to the caller.

The interaction of the $UNLPG routine with the task is shown in Figure 8-16.

8-44 Virtual Memory Management Routines

Figure 8-16: General Block Diagram of the SUNLPG Routine

]

Call SFNDPG
to find page

i
$SAVVR SFNDPG

Set C bit; transfer
to $SAVVR to
restore RO - R2
and exit to caller

Unlock it; clear
C bit; transfer to
$SAVVR to
restore RO - R2
and exit to caller

ZK-5787 HC

Example

The following source statements call the $UNLPG routine to allow pages to be swapped from
real memory to virtual memory:

Virtual Memory Management Routines 8-45

TEMP1: .WORD
TEMP2: .WORD
FREECT: .BLKW
LISTHD: .BLKW

.EVEN

10%$: MOV
MoV
Mov
CLR
CALL
BCS
TST
BNE
CALL
BCS

20$:

=00

1

; TEMPORARY STORAGE FOR VIRTUAL MEMORY
; TEMPORARY STORAGE FOR VIRTUAL MEMORY
; NUMBER OF AVAILABLE PAGE ENTRIES

; LISTHEAD LOCATION

ER56: .ASCIZ <15>/ACNT

--Work file - page unlock /

#LISTHD, TEMP2 ;

LISTHD,R1
R1,TEMP1
FREECT
CVLOK
LCKERR
(RO)

20$
$UNLPG
UNLERR

GET FIRST REAL ADDRESS POINTER

MOVE FIRST VIRTUAL ADDRESS

SAVE IN SECOND VIRTUAL ADDRESS BUFFER
CLEAR NUMBER OF SWAPS PER PASS

PUT REAL ADDRESS IN REGISTER O

ERROR, PAGE LOCK FAILED

LINK = O, ONLY ONE ELEMENT?

NO, MORE THAN ONE

YES, ONLY ONE, UNLOCK IT

ERROR

8-46 Virtual Memory Management Routines

Chapter 9
Summary Procedures

The procedures for using the system library routines are summarized in the tables in this
chapter. These summaries are presented as quick reference guides for users who are familiar
with the detailed procedures and requirements for using individual routines, as described in the
preceding chapters of this manual.

Table 9-1: Register Handling Routines Summary
Routine Name/

Mnemonic Function Call Statement
Save All Registers Saves/restores RO—R5 CALL $SAVAL
$SAVAL

Save Registers 3—5 Saves /restores R3—R5 JSR R5,$SAVRG
$SAVRG

Save Registers 0—2 Saves /restores RO—R2 JSR R2,$SAVVR
$SAVVR

Save Registers 1—5 Saves/restores R1—R5 JSR R5,.SAVR1
.SAVR1

Table 9-2: Arithmetic Routines Summary

Routine Name/ Input Arguments and

Mnemonic Call Statement Output

Integer Multiply RO = Multiplier RO = Product (high-order part)

$MUL R1 = Multiplicand R1 = Product (low-order part)
CALL $MUL R2—RS5 preserved

Integer Divide RO = Dividend RO = Quotient

$DIV R1 = Divisor R1 = Remainder
CALL $DIV R2—R5 preserved

Summary Procedures 9-1

Table 9-2 (Cont.):

Arithmetic Routines Summary

Routine Name/

Mnemonic

Input Arguments and
Call Statement

Output

Double-Precision Multiply

$DMUL

Double-Precision Divide

$DDIV

RO = Multiplier
Multiplicand:
R2 = High-order part
R3 = Low-order part
CALL $DMUL

RO = Unsigned divisor
Dividend:
R1 = High-order part
R2 = Low-order part
CALL $DDIV

RO = Product (high-order part)
R1 = Product (low-order part)
R4—RS5 preserved

R2—R3 destroyed

C = Clear

RO = Remainder

R1 = Quotient (high-order part)
R2 = quotient (low-order part)
R3 preserved

NOTE: The arithmetic routines accept unsigned input and produce unsigned results.

Table 9-3:

Input Data Conversion Routines Summary

Routine Name/

Mnemonic

Input Arguments and
Call Statement

Output

Decimal to
Binary Double
Word

.DD2CT

Octal to
Binary Double
Word

.OD2CT

Decimal to
Binary
$CDTB

Octal to
Binary
$COTB

9-2 Summary Procedures

R3 = Output address

R4 = Number input characters
R5 = Input string address
CALL .DD2CT

R3 = Output address

R4 = Number input characters
R5 = Input string address
CALL .OD2CT

RO = Address first input byte
CALL $CDTB

RO = Address first input byte
CALL $COTB

Successful:
Converted number at output
address:
Word 1 = High-order part
Word 2 = Low order part
C = Clear"
Unsuccessful:
C = Set
All registers preserved

Successful:
Converted number at output
address:
Word 1 = High-order part
Word 2 = Low-order part
C = Clear
Unsuccessful:
C = Set
All registers preserved

RO = Address first byte of next string
R1 = Converted number

R2 = Terminating character

R3—RS5 preserved

RO = Address first byte of next string
R1 = Converted number

R2 = Terminating character

R3—R5 preserved

Table 9-3 (Cont.):

Input Data Conversion Routines Summary

Routine Name/

Input Arguments and

Mnemonic Call Statement Output
ASCII to RO = Address first input Successful:
Radix-50 character RO = Address next input character
$CAT5 R1 = 0 (period is terminating R1 = Converted Radix-50 value
character) R2 = Terminating character
R1 =1 (period is valid character) C = Clear
CALL $CAT5 Unsuccessful:
R2 = Illegal character
C = Set
R3—R5 preserved
ASCII with RO = Address first input Successful:
Blanks to character RO = Address next input character
Radix-50 R1 = 0 (period is terminating R1 = Converted Radix-50 value
$CAT5B character) R2 = Terminating character
R1 =1 (period is valid character) C = Clear
CALL $CAT5B Unsuccessful:
R2 = Illegal character
C = Set
R3—RS5 preserved
Table 9-4: Output Data Conversion Routines Summary
Routine Name/ Input Arguments and
Mnemonic Call Statement Output
Binary Date RO = Output address Converted date at output address
Conversion R1 = Binary date RO = Next available output address
$CBDAT R2 = 0 (zero suppress) R3—R5 preserved

Convert Binary
to Decimal
Magnitude
$CBDMG

Convert Binary
to Signed
Decimal
$CBDSG

R2 = Nonzero (no zero suppress)
CALL $CBDAT

RO = Output address

R1 = Binary number

R2 = 0 (zero suppress)

R2 = Nonzero (no zero suppress)
CALL $CBDMG

RO = Output address

R1 = Binary number

R2 = 0 (zero suppress)

R2 = Nonzero (no zero suppress)
CALL $CBDSG

R1—R2 destroyed

Converted number at output ad-
dress

RO = Next available output address
R3—RS5 preserved

R1—R2 destroyed

Converted number at output ad-
dress

RO = Next available output address
R3—RS5 preserved

R1—R2 destroyed

Summary Procedures 9-3

Table 9-4 (Cont.):

Output Data Conversion Routines Summary

Routine Name/

Input Arguments and

Mnemonic Call Statement Output

Convert Double- RO = Output address Successful:

Precision R1 = Input address Converted number at output
Binary to R2 = 0 (zero suppress) address

Decimal R2 = Nonzero (no zero suppress) Unsuccessful:

$CDDMG CALL $CDDMG String of ASCII asterisks at

Convert Binary
to Octal
Magnitude
$CBOMG

Convert Binary
to Signed
Octal

$CBOSG

Convert Binary
Byte to Octal
Magnitude
$CBTMG

General Purpose
Binary to

ASCII

$CBTA

9-4 Summary Procedures

RO = Output address

R1 = Binary number

R2 = 0 (zero suppress)

R2 = Nonzero (no zero suppress)
CALL $CBOMG

RO = Output address

R1 = Binary number

R2 = 0 (zero suppress)

R2 = Nonzero (no zero suppress)
CALL $CBOSG

RO = Output address

R1 = Binary byte

R2 =0 (zero suppress)

R2 = Nonzero (no zero suppress)
CALL $CBTMG

RO = Output address
R1 = Binary value
R2 = Conversion parameters:
Bits 0—7: = Radix (2 to 1649)
Bit 8: = 0 = Unsigned value
=1 = Signed value
Bit 9: = 0 = Zero suppress
=1 = No zero
suppress
Bit 10: = 1, replace leading
zeros with blanks
= 0, do not replace
leading zeros with
blanks
Bits 11—15: = Field width
(value 1—32)
CALL $CBTA

output address
RO = Next available output address
R3—Rb5 preserved
R1—R2 destroyed

Converted number at output
address

RO = Next available output address
R3—RS5 preserved

R1—R2 destroyed

Converted number at output
address

RO = Next available output address
R3—RS5 preserved

R1—R2 destroyed

Converted byte at output address
RO = Next available output address
R3—R5 preserved

R1—R2 destroyed

Converted number at output
address

RO = Next available output address
R3—R5 preserved

R1—R2 destroyed

Table 9-4 (Cont.): Output Data Conversion Routines Summary

Routine Name/

Input Arguments and

Mnemonic Call Statement Output

Radix-50 to RO = Output address Converted number at output
ASCIHI R1 = Radix-50 word address

$C5TA CALL $C5TA RO = Next available output address

R3—R5 not used
R1—R2 destroyed

Table 9-5: Output Formatting Routines Summary

Routine Name/

Input Arguments and

Mnemonic Call Statement Output
Uppercase RO = Input address Converted text at output address
Text R1 = Output address R3—R5 not used
$CVTUC R2 = Number input bytes R2 destroyed
(cannot be zero) R0O—R1 left pointing to the character
CALL $CVTUC following the string
Date String RO = Output address Converted date string at output address
Conversion R1 = Input address RO = Next available output address
$DAT CALL $DAT R1 = Address of next input word
R3—R5 preserved
R2 destroyed
Time RO = Output address Converted time string at output
Conversion R1 = Input address address
$TIM R2 = Parameter count: RO = Next available output address

=0 or 1, hour (HH)

= 2, hour:minute
(HH:MM)

= 3, hour:minute:second
(HH:MM:SS)

=4 or 5,
hour:minute:second.
tenth of second
(HH:MM:SS.S)

CALL $TIM

R1 = Address of next input word
R3—RS5 preserved

R0O—R1 updated

R2 destroyed

Summary Procedures 9-5

Table 9-5 (Cont.): Output Formatting Routines Summary

Routine Name/ Input Arguments and

Mnemonic Call Statement Output
Edit Message Define ASCIZ input string Converted /formatted data in output
$EDMSG directives in the form: block
RO = Address of last zero byte in output

%l block

%nl R1 = Number of bytes in output block

%V1 R2 = Address of next argument in

argument block
where n = Optional decimal R3—R5 preserved

repeat count; V specifies an

optional value to be used

as a repeat count; and

1 = One of the following
characters:

A = ASCII string transfer
B = Binary byte to octal conversion
D = Binary to signed decimal conversion
E = Extended ASCII string transfer
F = Form control insertion
I = ASCIZ address
M = Binary to decimal magnitude conversion, zero suppression
N = New line insertion
O = Binary to signed octal conversion
P = Binary to octal magnitude conversion, no zero suppression
Q = Binary to octal magnitude conversion, zero suppression
R = Radix-50 to ASCII conversion
S = Space insertion
T = Double-precision binary to decimal conversion
U = Binary to double-precision decimal conversion, no zero suppression
X = Filename conversion
Y = Date conversion
Z = Time conversion
< = Define fixed-length byte field
> = Locate field mark

Set up argument and output block:
RO = Output address
R1 = Input string address
R2 = Argument block address
CALL $EDMSG

9-6 Summary Procedures

Table 9-6: Dynamic Memory Management Routines Summary

Routine Name/

Input Arguments and

Mnemonic Call Statement Output

Initialize Include FREEHD: .BLKW 2 RO = Task’s first address
Dynamic in data section R1 = Free pool first address
Memory RO = Free memory listhead R2 = Size memory pool
$INIDM address R3—RS5 not used

Request Core
Block
$RQCB

Release Core
Block
$RLCB

CALL $INIDM
RO = Free memory listhead

address
R1 = Byte size of block
CALL $RQCB

RO = Free memory listhead
address

R1 = Byte size of block

R2 = Block memory address

Successful:

RO = Block memory address

R1 = Actual size of block
C = Clear

Unsuccessful:
C = Set

R3—R5 preserved

R2 destroyed

Released block
R3-—RS5 preserved
RO unchanged
R1—R2 destroyed

Table 9-7: Virtual Memory Management Routines Summary

Routine Name/

Input Arguments and

Mnemonic Call Statement Output
Initialize Define $FRHD block with Successful:
Virtual first address of free memory RO=0
Memory Define 4 global symbols: C = Clear
$INIVM WS$KLUN (work file LUN) Unsuccessful:
WSKEXT (work file RO = -2, file not opened
extension size) RO = ~1, file not marked
N$MPAG (fast page search C = Set
page count) R3— R5 preserved
$WRKPT (address of FDB) Original contents R0—R2 destroyed
R1 = Free memory highest
address
CALL $INIVM
Allocate R1 = Byte size of requested Successful:
Block block RO = Block memory address
$ALBLK CALL $ALBLK Unsuccessful:

User’s $ERMSG routine is called

R3—RS5 preserved
RO—R2 destroyed

Summary Procedures

9-7

Table 9-7 (Cont.):

Virtual Memory Management Routines Summary

Routine Name/

Input Arguments and

Mnemonic Call Statement Output
Get Core R1 = Byte size of requested Successful:
$GTCOR block RO = Block memory address
CALL $GTCOR C = Clear
Unsuccessful:
C = Set
R3—RS5 preserved
Extend R1 = Byte size of requested Successful:
Task block R1 = Actual extension size
$EXTSK CALL $EXTSK C = Clear
Unsuccessful:
C = Set
R2—RS5 preserved
Write R2 = Memory address of page Successful:
Page CALL $WRPAG C = Clear
$WRPAG Unsuccessful:
User’s $ERMSG routine is called
R0O—R?2 preserved
Allocate R1 = Byte size of requested Successful:
Virtual block RO = Allocated block memory address
Memory CALL $ALVRT R1 = Allocated block disk address
$ALVRT Unsuccessful:
User’s $ERMSG routine is called
R3—R5 preserved
R2 destroyed
Allocate Define N$DLGH = = 512, RO = Block memory address
Small R1 = Size of requested page R1 = Block virtual address
Virtual block: R3—RS5 preserved
Block = 0, for large block R2 destroyed
$ALSVB allocation on first
call to SALSVB
= A value less than or
equal to 512 bytes
for small page
allocation
CALL $ALSVB
Convert and R1 = Virtual address Successful:
Lock Page CALL $CVLOK RO = Memory address
$CVLOK R1 = Virtual address

9-8 Summary Procedures

C = Clear
Unsuccessful:

C = Set
R2—RS5 preserved

Table 9-7 (Cont.): Virtual Memory Management Routines Summary

Routine Name/

Mnemonic

Input Arguments and
Call Statement

Output

Convert Virtual

to Real
Address
$CVRL

Read Page
$RDPAG

Find Page
$FNDPG

Write-Marked
Page
$WRMPG

Lock Page
$LCKPG

Unlock Page
$UNLPG

R1 = Virtual address
CALL $CVRL

RO = Page disk address
CALL $RDPAG

R1 = Page virtual address
CALL $FNDPG

R1 = Virtual address in page
CALL $WRMPG

R1 = Virtual address in page
CALL $LCKPG

R1 = Virtual address in page
CALL $UNLPG

RO = Memory address
R3—R5 preserved

R1 unchanged

R2 destroyed

Successful:

C = Clear
Unsuccessful:

User’s $ERMSG routine is called
RO—R2 preserved

Page found:
RO = Block memory address
C = Clear

Page not found:
C = Set

C = Clear, page write-marked
C = Set, page not found
RO—R2 preserved

C = Clear, page locked
C = Set, page not found
R0O—R2 preserved

C = Clear, page unlocked
C = Set, page not found
RO—R2 preserved

Summary Procedures

9-9

Appendix A
Universal Library Access

On most RSX-11M-PLUS and Micro/RSX systems, you can create a universal library to store
related groups of files. The LBR utility creates the universal library file with a file type ULB. By
means of the LBR utility, you can subsequently insert files as modules in the library.!

To access a module of a universal library, a program can call the $ULA routine, which
establishes the necessary conditions for access (read only). The $ULA routine first calls an
initializing routine, $ULAIN, to validate that the library file is in the correct format and to
obtain the needed information from the library header. $ULA then calls a second routine,
$ULAFD, to read the module header, to position libary file pointers to the beginning of the
module, and to establish the necessary FDB locations for the File Control System (FCS).2 Once
the necessary FDB locations are established, the program can access the module as if it were a
separate file. That is, the program can perform GET$ operations in move mode for each record
in the module.

To call the $ULA routine, supply the following data:

® In Register 0, the address of the universal library FDB. The library file must already be open
for read access.

¢ In Register 1, the address of a 42g-word buffer. The first two words of the buffer must
contain the name (in Radix-50 format) of the module to be accessed. $ULA will put a copy
of the module header from the library into the remaining 100s (64;0) bytes. Initialize the
FDRC$A arguments urba and urbs (FDB offsets FURBD and F.URBD+2) in the FDB for
the library file. The $ULA routine saves the arguments, uses the space for storing module
header information, and restores the values before returning control to the calling program.

The $ULA routine produces the following data:
® Register 0 is unchanged.

® Register 1 is unchanged. The $ULA routine fills in the 40-word buffer with a copy of the
header for the module accessed.

1 See the description of the LBR utility in the RSX-11M-PLUS Utilities Manual, or see the description of the DCL command LIBRARY in the
RSX-11M-PLUS Command Language Manual or in the Micro/RSX User's Guide.

2 See the RSX-1IM-PLUS and Micro/RSX 1/0 Operations Reference Manual for information on FCS and the use of FDB locations.

Universal Library Access A-1

¢ The first seven words of the library file FDB contain the first seven words of the FDB of the
module’s associated input file (as if it were a separate input file).

e The offset F.EFBK+2 of the library file FDB contains the last block number of the module.

* The offset F.FFBY of the library file FDB contains the number of the next available byte
past the end of the module.

* The offset F.ERR of the library file FDB has the standard interpretations except for the
following special meanings:

— The symbol IE.BHD means either “File not a universal library” or “Bad library header.”
— The symbol IE.NSF means “No such module.”
* The C bit is set to indicate an error.

To use the $ULA routine properly, use the following coding sequence:

OPEN$- RO ; OPEN UNIVERSAL LIB FILE
; STORE FIRST SEVEN WORDS OF LIBRARY FDB

CALL $ULA

GET$ RO ; ACCESS MODULE IN MOVE MGDE ONLY
; RESTORE FIRST SEVEN WORDS OF LIBRARY FDB

CLOSE$ RO or invoke $ULA again

Note that the program must open the library file for read-only access. (To change a module in
the universal library, use the LBR utility.) The program must save the first seven words of the
library file FDB before calling the $ULA routine for the first time. The $ULA routine modifies
these words during processing, but their original values are necessary either to access another
module or to ensure that the library file is closed properly. The program must restore the
seven words after accessing a module and before accessing another module or before closing
the library file.

A-2 Universal Library Access

Index

A

$ALBLK (Allocate block), 8-10
$ALSVB (Allocate small virtual block), 8-26
$ALVRT (Allocate virtual memory), 8-23
ASCII number conversion
ASCII to Radix-50 ($CAT5), 4-8
ASCII with blanks to Radix-50 ($CAT5B),
4-9
decimal to binary
($3CDTB), 4-4
double-word (.DD2CT), 4-1
octal to binary
double-word (.OD2CT), 4-3
octal to binary ($COTB), 4-6

B

Binary conversion

binary byte to octal ($CBTMG), 5-10

binary date to decimal ($CBDAT), 5-2

binary to signed decimal ($CBDSG), 5-5

binary to signed octal ($CBOSG), 5-9

binary to unsigned decimal ($CBDMG),
5-3

binary to unsigned octal ($CBOMG), 5-8

double-precision binary to decimal
($CDDMG), 5-6

general purpose binary to ASCII ($CBTA),
5-12

C

$C5TA (Radix-50 to ASCII), 5-13

$CATS5 (ASCII to Radix-50), 4-8

$CAT5B (ASCI with blanks to Radix-50),
4-9

$CBDAT (Binary date to decimal), 5-2

$CBDMG (Binary to unsigned decimal), 5-3

$CBDSG (Binary to signed decimal), 5-5

$CBOMG (Binary to unsigned octal), 5-8
$CBOSG (Binary to signed octal), 5-9
$CBTA (General purpose binary to ASCII),
5-12
$CBTMG (Binary byte to octal), 5-10
$CDDMG (Double-precision binary to
decimal), 5-6

$CDTB (Decimal to binary), 4-4
Conversion

See ASCII number conversion

See Binary conversion

See Date conversion

See Decimal conversion

See Octal conversion

See Radix-50 conversion

See Time conversion
$COTB (Octal to binary), 4-6
$CVLOK (Page lock), 8-31
$CVRL (Virtual to real address), 8-34
$CVTUC (Uppercase text), 6-1

D

$DAT (Date conversion)
alternate format, 6-4
standard format, 6-3
Date conversion
alternate format date ($DAT), 6-4
standard format date ($DAT), 6-3
Dates
specifying, 6-5
$DDIV (Double-precision divide), 3-4
Decimal conversion
decimal to binary
($CDTB), 4-4
double-word (.DD2CT), 4-1
$DIV (Integer divide), 3-2
Divide routine
divide ($DIV), 3-2

Index-1

Divide routine (cont’d.)

double-precision divide ($DDIV), 3-4
$DMUL (Double-precision multiply), 3-3
Double-precision divide ($DDIV), 3-4
Double-precision multiply ($DMUL), 3-3
Double-precision routine, 3-3

E

$EDMSG (Edit message), 6-8
$EXTSK (Extend task), 8-18

F

Message formatting (cont’d.)

time conversion ($TIM), 6-6
uppercase text ($)CVTUC), 6-1
$MUL (Integer multiply), 3-1
Multiply routine
double-precision multiply ($}DMUL), 3-3
multiply ($MUL), 3-1

N

$FNDPG (Find page), 8-38
G

$GTCOR (Get core), 8-15
I

$INIDM (Initialize memory), 7-2
$INIVM (Initialize virtual memory), 8-5
Integer routine

divide ($DIV), 3-2

multiply ($MUL), 3-1

L

$LCKPG (Lock page), 8-42
Library routine
communicating between, 1-1 to 1-2
placing, 1-2
searching, 1-2
storing, 1-2

M

Numeric to ASCII, 5-2

See also ASCII number conversion

binary byte to octal
($CBTMG), 5-10

binary date to decimal
($CBDAT), 5-2

binary to signed decimal
($CBDSG), 5-5

binary to signed octal
($CBOSG), 5-9

binary to unsigned decimal
($CBDMG), 5-3

binary to unsigned octal
($CBOMG), 5-8

double-precision binary to decimal
($CDDMG), 5-6

general purpose binary to ASCII ($CBTA),

5-12
Radix-50 to ASCII ($C5TA), 5-13

O

Memory management, 7-1
See also Virtual memory management
core blocks release ($RLCB), 7-4
core blocks request ($RQCB), 7-3
initialize ($INIDM), 7-2
Message formatting, 6-1
carriage return/line feed insertion, 6-12
date conversion ($DAT)
alternate format, 6-4
standard format, 6-3
edit directive (JEDMSG), 6-8
extended ASCII, 6-11
field mark, 6-14
filename string, 6-14
form-feed insertion, 6-11
general, 6-8
space insertion, 6-13

Index-2

Octal conversion
octal to binary
double-word(.OD2CT), 4-3
octal to binary($COTB), 4-6
.OD2CT (Octal to binary
double-word), 4-3

P

Paging
memory
See Virtual memory management

R

Radix-50 conversion

ASCII to Radix-50 ($CATS5), 4-8

ASCII with blanks to Radix-50 ($CAT5B),

4-9

Radix-50 to ASCII ($§C5TA), 5-13
$RDPAG (Read page), 8-36
Register handling

of control swapping function, 2-1

Register handling (cont’d.)

save all Registers (§SAVAL), 2-2
save Registers 0-2 ($SAVVR), 2-5
save Registers 1-5 (.SAVR1), 2-6
save Registers 3-5 ($SAVRG), 2-4
$RLCB (Release core block), 7-4
$RQCB (Request core blocks), 7-3

$RQVCB (Request virtual core block), 8-29

S

Virtual memory management (cont’d.)
write page (SWRPAG), 8-20

W

$SAVAL (Save all Registers), 2-2
.SAVR1 (Save Registers 1-5), 2-6
$SAVRG (Save Registers 3-5), 2-4
$SAVVR (Save Registers 0-2), 2-5
Single-precision routine

See Integer routine

T

$TIM (Time conversion), 6-6
Time conversion
time ($TIM), 6-6

U

$ULA (Universal library), A-1
Universal library

creating, A-1
$UNLPG (Unlock page), 8-44

\Y

Virtual memory management, 8-1

See also Memory management
address conversion ($CVRL), 8-34
allocate ($ALVRT), 8-23
allocate small virtual block ($ALSVB),
8-26
core blocks request (SRQVCB), 8-29
$CVRL routine, 8-34
error-handling, 8-2
find page ($FNDPG), 8-38
initialize ($INIVM), 8-5
lock page ($LCKPG), 8-42
memory storage
allocate block ($ALBLK), 8-10
extend task (PJEXTSK), 8-18
get core ($GTCOR), 8-12, 8-15
page lock ($CVLOK), 8-31
read page ($RDPAG), 8-36
task-building requirements, 8-4
unlock page (SUNLPG), 8-44
write-marked page (SWRMPG), 8-40

$WRMPG (Write-marked page), 8-40
$WRPAG (Write page), 8-20

Index-3

RSX-11M-PLUS and Micro/RSX
System Library Routines
Reference Manual
AA-JS75A-TC

READER’S
COMMENTS

Your comments and suggestions are welcome and will help us in our
continuous effort to improve the quality and usefulness of our documentation
and software.

Remember, the system includes information that you read on your terminal:
help files, error messages, prompts, and so on. Please let us know if you have
comments about this information, too.

Did you find this manual understandable, usable, and well organized? Please make suggestions for

improvement.

Did you find errors in this manual? If so, specify the error and the page number.

What kind of user are you? — Programmer — Nonprogrammer

Years of experience as a computer programmer /user:

Name

Date

Organization

Street

City

State ____ Zip Code

or Country

-— Do Not Tear - Fold Here and Tape ——————————— — — e e e e e e e e e e e e e e e e e e

No Postage

™ Necessary
t if Mailed
in the

United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
Corporate User Publications—Spit Brook
ZK01-3/J35

110 SPIT BROOK ROAD

NASHUA, NH 03062-9987

—— Do Not Tear - Fold Her¢e - ———————~—— - ———————— e —

. mwea

