RSX-11M/M-PLUS

Error Logging Manual
Order No. AA-L674B-TC

RSX-11M Version 4.1
RSX-11M-PLUS Version 2.1

digital equipment corporation - maynard, massachusetts

First Printing, January 1982
Revised, April 1983

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be wused or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on

equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright C) 1982, 1983 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL RSX
DEC/CMS EduSystem UNIBUS
DEC/MMS IAS VAX
DECnet MASSBUS VMS
DECsystem-10 PDP VT
DECSYSTEM-20 PDT

DECUS RSTS dilgliltiall
DECwriter

ZK2344

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico call 800-258-1710 DIRECT MAIL ORDERS (CANADA)
In New Hampshire, Alaska, and Hawaii call 603-884-6660 Digital Equipment of Canada Ltd.
940 Belfast Road
In Canada call 613-234-7726 (Ottawa-Hull) Ottawa, Ontario K1G 4C2
800-267-6146 (all other Canadian) Attn: A&SG Business Manager

DIRECT MAIL ORDERS (USA & PUERTO RICO)* DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation Digital Equipment Corporation

P.O. Box C52008 A&SG Business Manager

Nashua, New Hampshire 03061 c/o Digital's local subsidiary or

approved distributor

*Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment
Corporation, Northboro, Massachusetts 01532

CONTENTS

Page

PREFACE ix

SUMMARY OF TECHNICAL CHANGES xi
CHAPTER 1 INTRODUCTION

1.1 THE PURPOSE OF ERROR LOGGING . « « ¢ ¢ & o o o o« o 1-1

1.2 ERROR LOGGING OPERATION . . &« ¢ o o o o o o o o« o 1-1

1.2.1 Executive Routines . . « 4+ o ¢ 4 o o o o o« &+ o o 1=3

1.2.2 ERRLOG and ELI + « ¢ & o o o o o o o o o o « ¢ « 1-4

1.2.3 RPT . . o Y - . . 1—4

1.2.4 CFL . « ¢ « + & e e o o e o o o e o s e s o « 1-5

1.3 ERROR LOGGING OPTIONS e e o s e o s e o s e s s s 1-6

1.3.1 Unexpected Traps or Interrupts 1-6

1.3.2 Device EFFOLS « & o o o o o o o o s o o o o o o« 1-6

1.3.3 Interrupt Timeouts . . ¢ &« o ¢ ¢« o o o o« o o « « 1-6

1.3.4 Memory Errors .+ o o o o o o s o o o o o o » « « 1-6

CHAPTER ERROR LOG TASK (ERRLOG) AND ERROR LOG INTERFACE (ELI)

N

INSTALLING ERRLOG AND ELI .
USING ERRLOG AND ELI
ELI SWITCHES . . « « o« « « .

Logging Switches . . .
ERROR Limiting Sw1tches
The Limit Switch . . .
The Hard Limit Switch
The Reset Switch . . .
The Soft Limit Switch
File Naming Switches .
The Log Switch . . .
The Append Switch .
The Switch Switch .
The Backup Switch .
Display Switch
ERRLOG AND ELI MESSAGES
ELI Messages . « « «
ERRLOG Messages . . .

L S
« o o o »
* o ¢ o o
.

® s & o o s o
.
.

* o s o o & o
* o * & e o @
* o o o o o o

® e ¢ o+ 8 o+ ° o o
.

. L] . .

W N

. . L] .

. . L] . . . *) L]
e o o o

¢ o o o o o
e e o ¢ & o

.

.

.

.

.

.

.

i
N OWOOWWOOIIJAND NN -

* s e e
o
W N -
* o o o
* o o o
* o o o
* o o o
¢ o o o
* o o o
s s o o
e o o o o
|

BB BWWWWWWWwWWwwWwwwN -

*

.

L]

.

* o & 4

.

.
oD DD NN

|

B WWWWWNNNDNN

NNNDNNDODNDNNNNNDNONNDNDNDNONNDNDN

....
o
N
- . L] . .
. . . L] .
L) . . .)
.
L] . . . *
.
. .] . L]
. L] . . .
NN NN
|
T

CHAPTER

w

REPORT GENERATOR TASK (RPT)

INSTALLING AND RUNNING RPT « o e
USING RPT TO CREATE ERROR LOG REPORTS o .
The RPT Command Line . . . e e e o s e
Using Multiple Qualifiers 1n RPT Command Lines

.
.
.
.
.

WWWNONNDN -

o o
s o 0
W=

Using the Default RPT Command Line .
RPT REPORT SWITCHES . . ¢ ¢ ¢ ¢ o o o

. e

|
NN wN N+

Packet Selection Switches
The Date Switch

WWWwwwwww

e o 0

-

.

[

L A

WwWwwwwww
|

iii

CHAPTER

.
.
AU B WN

© o o o o s e v s s e e e @
e 6 o o o o e e s e s 0 o
* e o « s e » * o o o

P WWWwWWWwWwwwwwwwwwuwwwwww

. L]

. . .

VB B WWWWWWNNNDNN
. . .
N =

WWWWWWWWWwWwWwWwuwWwwwwwwwww

=3
L)

« o s o e
wWwhNoNdNDND =

o = S O -

...
. .
=
L] .
N~

« e e
. .
w N =

Vbbb WWw

[S - T -
.
N~

WWWWWWPONNDNDNDNNNDNNDNNDNDNDND

o o
. .

(CLRV LRV NG GO, R G, O, IS, RO R IO RGN, 0BG, B, I, NG, I E

PFHEHHEPRPOONOU S WN -

oW N O

“ e s e o o
* e ¢ & o o
. .

L R S i A A A T T T~ U S N S-S Y

e o e o o s e
* o o o o o o @

CONTENTS

The Device Switch
The Packet Switch
The Drive and Pack Serial Number
The Type Switch . . .
The Volume Label Sw1tch
Report Format Switch . . .
Brief Reports
Full Reports
Register Reports
No Report
Summary Switch (RSX-11M-PLU
The All Qualifier . .
The Error Qualifier .
The Geometry Qualifier
The History Qualifier
The None Qualifier . . .
The Report Switch
Predefined Switch Strings . .
User Defined Switch Strings .
The Width Switch
ERLCNF REPORT MESSAGES

e ¢ o o o o o

~

QO e o o o o o o
¢ s N~ e s o v s s

>

]

s o o o

.
.
.
.

* o & o
* e ¢ o

Switch .

* o o o o s e
® o o o 8 o e o
e o o o o o o o
* s+ * o e s o o

® e & 9 & e * o & o

e e * e o

® s * o & 4 o 4 o

. * o & o e o

¢ o ¢ o & s s o e o

* o 0 o o o o o ° o
w w
11 |
N 3]
[e o} w

ERLRPT REPORT MESSAGES« « .« . 3-35
ERROR LOG CONTROL FILE ARCHITECTURE
TERMS AND CONCEPTS . &« ¢ & & « 2 o o o o o o o o« o« 4-1
CONTROL FILE MODULE ARCHITECTURE . . . « ¢« « « o« . 4-2
RSX-11M and RSX-11M-PLUS Control File Modules . 4-3
Program Control Flow . . . + « ¢« ¢« ¢« « « « « « 4-10
Compilation Paths . . . ¢« ¢« ¢« ¢ ¢ ¢ & &« o« « « 4-11
Modification and Recompilation 4-13
INTERNAL INTERFACES e o o o o e s e o o o & « o 4-13
Interaction Between Dispatcher and Device-Level
Modules e e s o e o o o o o 4-13
Interaction between DSPZMl and ERM23 ., . . . 4-14
Interaction Between DSP2Pl1 and ERM23 4-15
DISPATCHING . & & o o o o o o o s o o s o « o« » 4-16
Event-Level Dispatching 4-16
Device-Level Dispatching «. « ¢« + . . 4-18
CPU-level Dispatching . . e e o e o o o « o 4-19
SUPPORT OF NON-DIGITAL DEVICES e o e o o o o o o 4-19
Error-logging of Unknown Devices e e o s+ 4-19
Providing Driver Support for a Non DIGITAL
Device . . . e s e s o s o s e & o o o o 4-19
$BMSET on RSX—llM e e e s e s 4 e o o « o « 4-20
$BMSET on RSX-11M-PLUS e e s o o e e e 4-20
$DVTMO and $DTOER on RSX-11M e e« o s « » o 4-20
$DVTMO and $DTOER on RSX-11M-PLUS e e e o o 4-21
$DVERR and $DVCER on RSX-11M e e e . . . 4-21
$DVERR and $DVCER on RSX-11M-PLUS 4-22
SNSIER -]
SFNERL . +« v v ¢ o o o o s o o o o o o o o o 4-22
SLOGER &+ & &« 4 &+ o o o o o o o o o o o s o » 4-23
LOGTST . & ¢ o « « o o« o o o s o o o o o o o« 4-23
SCRPKT « « o o o o o o o o o « o o o o o o« o 4-23
CALDEV on RSX-11M-PLUS e e e e s e e o o . 4-24
SQUPKT . & ¢« ¢ o o o o o o« o o o o o o o« o« » 4-24
SQERMV 4-=-25
Error-Logging Support for a Non DIGITAL Dev1ce 4-25
How to Write a Device-Level Module 4-25
1 MODULE Statement e s+« « o o 4-26
2 PROCEDURE Statement . . ¢« + ¢ ¢ ¢« « « « . 4-26
3 SUBPACKET Declaration 4-26
4 Register Definitions 4=-27

iv

CONTENTS

Page

4,5.3.1.5 Declaration of Local Work Variables and
TableS o . . 0 4-29
4.5.3.1.6 Loading of the Intermodule Varlable e + o 4-29
4.5.3.1.7 Determination of the Error Type 4-30
4.5.3.1.8 Coroutine Back to Caller . . « . « « « « . 4-30

4.5.3.1.9 Perform the Bit-To-Text Translation and
Register Printing « « . « . 4-30
4.5.3.1.10 Indicate Any Notes that are Required . . . 4-31
4.5.3.1.11 Exit the module « ¢« ¢« ¢« ¢ « « « « 4-31
4,5.3.2 How to Write a Notes Module 4-31
4.5.302-1 MODULE Statement - . ¢ o - - 4_32
4,5.3.2.2 PROCEDURE Statement . . . ¢« ¢« ¢« « « « « . 4-32
4.5.3.2.3 Notes Heading . . +« ¢ ¢ ¢ ¢ ¢ o o o o« « o« 4-32
4.5.3.2.4 Selecting a Note for Printing 4-33
4.5.3.2.5 Handling an Unknown Note Number 4-33
4.5.3.2.6 Getting the Next Note 4-33
4.5.3.2.7 Exit the Module . . . e e o o+ o o o« o o 4-33
4.5.3.3 MASSBUS and Non-MASSBUS Cons1derat1ons e o . 4-33
4.5.3.4 Making the New Device-Level Module Known . . 4-34
4.6 CODE EXAMPLES . . . e e s o o o 4-37
4,6.1 RM02/03 Dev1ce—Leve1 Module ERM23 e o o o« o o 4-37
4.6.2 DSP2M1 Dispatcher Module for RSX-11M 4-50
4.6.3 DSP2P1 Dispatcher Module for RSX-11M-PLUS . . 4-57
4.6.4 RM02/03 Notes Module NRM23 . . . &« « « « o« « o« 4-67
4,6.5 Subpacket Definitions ¢« 4-69
4.6.5.1 Subpackets Declared by DISPATCH 4-69
4.6.5.2 Subpackets Declared by DSP1IM1/DSP1Pl 4-72
4,6.5.3 Subpackets Declared by DSP2M1/DSP2P1 4-73
4.6.5.4 Subpackets Declared by DSP3M1/DSP3P1 4-73
4.6.5.5 Subpackets Declared by DSPAM1/DSP4P1 4-74
4.6.5.6 Subpackets Declared by DSP5M1/DSP5P1 4-74
4.6.5.7 Subpackets Declared by DSP6M1/DSP6P1 4-74
4.6.5.8 Subpackets Declared by DSP7M1/DSP7P1 4-75

CHAPTER 5 CONTROL FILE LANGUAGE GUIDE

5.1 CONTROL FILE OVERVIEW . ., ¢ ¢ ¢ « « o o o o o o« « 5-1
5.1.1 Report Generator General Processing . . e o« o 5-1
5.1.2 The General Format of an Error Log Packet e o o 5-2
5.1.3 Control File Language . . e o o o e o o s o & 5=2
5.1.4 General Format of Control F11e Modules e e o o« 5-2
5.1.5 Files . . . e o o o e & o s o o o o s o 5=3
5.2 TYPES AND EXPRESSIONS e o o o o o o o s o e o o » 5-4
5.2.1 Data TYPES &« ¢ ¢ ¢ ¢ « o o o o o o o s o o o« o« o« 5-4
5.2.1.1 LOGICAL TYPE &« ¢ ¢ o o o o o o o o o o o« o o« o« 5-4
5.2.1.2 STRING TYPE . « o o « « o s o s o o o o o o« o 5-4
5.2.1.3 ASCII TYPE « o « o o o o o s o o s o o s s o o« 5=-5
5.2.1.4 Numeric TYPES =« « « o o « o o s o o o o o o« « 5-5
5.2.1.5 Field TYPeS .+ o « o o o o o o o o o o o o o o« 5=7
5.2.1.6 POINTER TYPE « « o« o o ¢ o o o o o o o o« o o & 5=7
5.2.1.7 RSX TIME TYPE «. ¢ ¢ ¢ o « o o o o o o o o o« o« 5=7
5.2.1.8 VMS TIME TYPE & « &« o o« o o o o o o o o « & & 5-7
5.2.2 vVariablesS . « ¢ 4 ¢ 4 o o o o s o o o o o o o« o 5-8
5.2.3 Literals e o o o s e o o o s e e o o e s o o o 5=9
5.2.4 EXPressions . . & 4 ¢« ¢« ¢« o o o o o ¢ o o o o« « 5-9
5.2.4.1 String Operators . ¢« « ¢« o o o o« « o o « o« « o 5-9
5.2.4.2 Logical Operators . . . « « « « o« « « « « o 5-10
5.2.4.3 Relational Operators . . « « &+ « « « o « « « B5-11
5.2.4.4 Numeric Operators e o e o o s & s s+ o & o B5=-13
5.2.5 Operator Precedence . . . « « « « &« &« &« o« « + 5=15
5.3 FUNCTIONS « e e e o s s o s o o« « 5-16
5.3.1 $CND Functions - Cond1t1ona1 Functions 5-17
5.3.2 $CNV Functions - Conversion Functions 5-17
5.3.2.1 $CNV Functions - Numeric Conversion Functions 5-17

5.3.2.2

CONTENTS

Functions .
Functions - Encoding Functions

$COD
$COM
$CTL
$LOK
$PKT
$RPT
%STR
$TIM
$USR

O oOoNOAU W

b W N+
= O

Db Ww N

CALL

CASE

= O 0O W N

N O

TABLES

1

2

3

4 FILE
5

6 FIND
7

LISTS
. LIST

oot u,m

Functions -Computational Functions

Functions
Functions
Functions
Functions
Functions
Functions

.

.

RPT Control
Lookahead Functions
Packet Information
Report Control . .
String Handling .
Time Handling . . .

Function - User I/0 Function

DECLARATIONS . .
Scope of Declarations
DECLARE Statement
PACKET Statement
SUBPACKET Statement . .
Conditional Declarations

ACTION STATEMENTS
SET Statement
INCREMENT and DECREMENT Statem
WRITE Statement
WRITE _GROUP Statement
DECODE Statement

CONTROL STATEMENTS
MODULE Statement
LITERAL Statement

Statement

Statement

Statement

Statement

PUT Statement

.

Statement

1 Signalling . .
2 ENABLE Statement

3 SIGNAL Statement

.4 SIGNAL STOP Statement .
5

6

RETURN Statement
PROCEDURE Statement . . . « ¢« + «
IF-THEN-ELSE Statement

SELECT Statement
WHILE/UNTIL/DO Statements o o+ o o
LEAVE Statement
BEGIN-END Statement e o e o o & o o
Lexical Conditionals .

Table Structure
TABLE Statement

DYNAMIC TABLE Statement

.

POINTER Statement

.

.8.1
.8.2 SEARCH Statement
. SIGNALLING . . .

MESSAGE Statement
CRASH Statement
PRINT FORMATTING
FORMAT keyword string .
1 Control Directives . .
.2 Formatting Directives . .
3 Data-formatting Directives
USER INTERFACE HANDLING . . .
.1 Overview of User Interface Handllng
.2 Command Mode .
.3 Option Mode .
ERLCFL REPORT MESSAGES . .« . « « ¢ « &

¢ e * o

* o 8 o o o
* o o o o o

.

o o s
.

e o

.

.

.
en

ts .

.
.

.
.

. . . 3

¢ o o o o

. L[]
R N

. 3
. . .]

. 3 . .

.

.
.
.
.
.

. . .

. . .

.

® o o o © s o & o
* e o o o o o

¢ o o o o 4 o o
® s o o o o o o o

o o o o

.

.
.
.
.
.
.
.

* o o o
.
.

.

e o * o o o
" e o e+ o

* o o o o o

.
.
.
.
.
.

vi

¢ o © 4 o o ° o & o o o

¢ o o o

¢ & o s o

.

e o o o o o e © o o o o o+ o o

e & 4 e o & o

$CNV Functions - Miscellaneous Conversion

* o o o e o .

* o o o

¢ o o o

e o o o 0

* o ¢ o o o

L)

e o ¢ o e 4 © o @

® ¢ 0 o 0 o o o+ o

L R)

a0 o 8 o

Page

5-19
5-19
5-20

5-31
5-31
5-31
5-32
5-32
5-32
5-33
5-33
5-33
5-33
5-34
5-34
5-34
5-35
5-35
5-36
5-36
5-36
5-36
5-37
5-37
5-37
5-38
5-39
5-39
5-39
5-39
5-40
5-40
5-40
5-40
5-40
5-41
5-41
5-41
5-41
5-41
5-42
5-42
5-42
5-43
5-43
5-43
5-43
5-44

CONTENTS

Page
APPENDIX A TUNING THE ERROR LOGGING UNIVERSAL LIBRARY
APPENDIX B DRIVE SERIAL NUMBERS
APPENDIX C ERROR LOG PACKET FORMAT
EXAMPLES
EXAMPLE 2- Error Logging Status . . . « &« o &« o o « o« « » « 2-10

2-1

3-1 Error Log Brief Report « ¢« ¢ « ¢« ¢« « « 3-13
3-2 Error Log Full Report . . ¢« ¢« &« « & o o o « o« « 3-16
3-3 Error Log Register Report . . . ¢ « « ¢ o « « o« 3-19
3-4 Error Summary Report . . . ¢ ¢ « o o o o o« o o« o 3-22
3-5 Geometry Summary Report . . . +« + « « + « o o = 3-24
3-6 History Summary Report+ ¢« « ¢« ¢« o o o« o« o 3-26
A-1 Sample Execution of TUNE.CMD « « « « « « » A-2
c-1 Error Log Packet Format . . « ¢« ¢« ¢ ¢« ¢ o « o« o o C-1

FIGURES
FIGURE 1-1 Error Logging System . . . « & ¢ « o o o o o o o« o 1-2
4-1 Structure of Error-Logging Packet . . . e o« o 4-3
4-2 Compilation Path for RSX-11M Control F11e Modules 4-11
4-3 Compilation Path for RSX-11M-PLUS Control File
Modules e o s s e o e e & & s o e s s s e s o o 4-12
TABLES
TABLE 2-1 ELI Switches and Subswitches 2-3
2-2 Error Logging Devices . . . e o o o o o o o o o 25
3-1 RPT File Specification Defaults e o o s s o o o « 3-3
3-2 RPT Report Switches and Subswitches 3-5
4-1 Error Logging Code/Subcode Combinations 4-17
4-2 Event Types, Codes, and Their Dispatcher Modules 4-18
4-3 The DEVICE INFO Table 4-34
A-1 Modules in ERRLOG.ULB for RSX-11M A-4
A-2 Modules in ERRLOG.ULB for RSX-11M-PLUS A-5
B-1 Significant Digits in Drive Serial Numbers B-l

vii

PREFACE

This manual contains information about operating the RSX-11M/M-PLUS
Error Logging System. It explains how the Error Logger collects
information on system events and errors and how the Report Generator
and Control File produce various kinds of reports on those events and
errors. It also includes information on the control file architecture
and on how to add user-written modules. The error logging system
allows you to monitor the reliability of the hardware on your system
and to set error limits and display messages on the console terminal
if the number of errors on a device exceeds those limits.

This manual assumes you are familiar with the following documents:

The RSX-11M/M-PLUS MCR Operations Manual

The RSX-11M/M-PLUS Utilities Manual

The RSX-11M-PLUS or RSX-11M System Generation and Installation
Guide

The RSX-11M and RSX-11M-PLUS Information Directory and Master Index
define the intended readership for each manual in the documentation
set and provide a synopsis of each manual's contents. When this
manual refers to other documents, consult the appropriate information
directory for information about the document.

INTENDED AUDIENCE

This manual is intended for Field Service personnel, system managers,
and others responsible for maintaining the integrity of hardware
devices connected to an RSX-11M or RSX-11M-PLUS system.

In addition to understanding the RSX-11M or RSX-11M-PLUS operating
system and the Error Logging System, you need a thorough knowledge of
the hardware devices that the Error Logging System is monitoring.
This manual does not attempt to describe or explain the hardware
information that appears in the Error Log Reports. For information
about a specific device, consult the hardware documentation for that
device,

STRUCTURE OF THIS DOCUMENT

Chapter 1 provides an overview of the purpose and function of the
Error Logging System. It describes some features and limitations of
the system and explains the operating system resources that error
logging requires.

Chapter 2 describes the procedures for operating the Error Logger and

explains the Error Log Interface commands to control logging and
limiting.

ix

Chapter 3 describes the procedures for operating the Report Generator
and describes the report formatting available.

Chapter 4 explains the control file modules in detail, including flow

of program control, interfaces between modules, and module
dispatching. A knowledgeable system programmer can use the
information presented to add user-written modules to the Error Logging
System. The chapter includes extensively annotated examples of

DIGITAL-supplied modules.

Chapter 5 describes the Control File Language, which is used to write
control-file modules.

Appendix A describes the indirect command file, TUNE.CMD, that you can
use to remove devices from the Error Logging ULB and make it smaller.

Appendix B describes the formats used for drive serial numbers on
DIGITAL devices.

Appendix C describes the formats for standard error log subpackets.

CONVENTIONS USED IN THIS DOCUMENT

Examples of Error Log Reports illustrate the operation of the Report
Generator. They do not attempt to explain the specific
hardware-related events that the reports describe.

Black ink in command line descriptions designates what the computer
displays at the terminal.

Red ink designates what the user enters at the terminal.

Square brackets [] enclose the optional parameters for an ELI, RPT, or
CFL command.

Uppercase characters in command lines or syntax descriptions indicate
required syntax for the command.

Lowercase characters indicate variable parameters that the user
selects.

Gray shading in text and examples indicates features that appear only
on RSX-11M-PLUS systems.

Pink shading in text and examples indicates features that appear only
on RSX-11M systems.

SUMMARY OF TECHNICAL CHANGES

The Error Logging System will now allow the hard and soft error limits
to be reached independently. Previously, reaching one of the limits
would disable logging of either kind of error on that device. Now ,
reaching the soft 1limit will not affect the logging of hard errors,
nor will reaching the hard limit affect the logging of soft errors.

Device timeouts are now logged as hard errors if unrecoverable, and as
soft errors if recoverable.

When generating a report, RPT looks first for LX:[1l,6)ERRLOG.ULB. 1f
it fails to find that file, it looks for LB:[1,6]ERRLOG.ULRB.

The Executive ERROR module now resides in a directive common on
RSX-11M-PLUS systems and may reside in a directive common on RSX-11M
systems. Therefore, drivers that create data areas containing
information to be passed to the Executive ERROR module must not create
the data area in memory mapped by APRS5.

There are no user interface changes except for a number of new error
messages.

Two new chapters in this manual document the architecture of error log
control files and the Control file Language (CFL). These chapters
replace Appendix A in the previous version of this manual.

There have been a number of minor changes in CFL. Here is a 1list of
differences between CFL in RSX-11M V4.1 and RSX-11M-PLUS V2.1l and the
previous releases:

e DYNAMIC TABLE statement:

DYNAMIC TABLE is a synonym for FILE. You should use this new
statement in place of any FILE statement in new code.

e FILE statement:

The FILE statement will be removed from a future release.
Please convert your code to use DYNAMIC TABLE instead of FILE.

® 3%CNVSxxx functions:

The field width parameter is now optional and interacts with
the optional fill character parameter to determine whether the
resulting string 1is printed as is or is left- or
right-justified. In the earlier version, the digits in the
string were always right-justified and blank-filled if no
fill character was specified.

xi

SUMMARY OF TECHNICAL CHANGES

$LOKSLENGTH function:

This function always returns the length of the data in a
packet or subpacket. The length word for the packet or
subpacket is not considered part of the data and 1is not
counted in determining the length value returned.

3LOKSBYTE, %LOKSWORD, %LOKSLONGWORD functions:

The offset parameter is the offset within the data of the
packet/subpacket at which the byte, word, or longword begins.
The offset unit is always in bytes, with the first byte of
data in the packet/subpacket being offset 0.

$STRSUPCASE function:

STRSUPCASE accepts an ASCII string as a parameter, and returns
the ASCII string with all lowercase ASCII characters converted
to uppercase.

WRITE and WRITE GROUP statements:

Because of overlay restrictions, the following operators and
functions cannot be used 1in expressions in WRITE or
WRITE GROUP statements:

single and double operand numeric operators
the MATCH operator
%2CODSxxx functions
$CTLSxxx functions
$PKTSxxx functions
$RPTSxxx functions
$STRSxxx functions
$TIMSxxx functions
$USRSxxx functions

xii

CHAPTER 1

INTRODUCTION

1.1 THE PURPOSE OF ERROR LOGGING

The RSX-11M/M-PLUS Error Logging System records information about
errors and events that occur on your system hardware, either for
immediate action or for later analysis and reporting. Error logging
handles mass storage device (disk and tape) errors, as well as memory
errors., Since error logging is a part of the RSX-11M/M-PLUS system,
it is most effective for hardware errors that allow the system to
continue functioning.

Error logging is not used to detect information about operating system
failures or about device problems that cause the system to fail.
However, it does provide information about what I/0 activities
occurred on a device at the time of an I/O failure. If your system
includes the Crash Dump Analyzer (CDA), CDA can provide reports on
operating system failures.

You can use Error Log Reports to determine that a device 1is having
problems before the device actually fails and causes you to lose data.
For example, a report showing a pattern of recurring errors from

different blocks on a single disk head may indicate that the head
needs to be replaced.

1.2 ERROR LOGGING OPERATION
The complete Error Logging System is composed of four tasks.

e The Error Logger (ERRLOG)

e The Error Log Interface (ELI)

e The Report Generator (RPT)

e The Control File Language Compiler (CFL)
When the executive or a device driver detects an error, Executive
routines create an Error Log Packet in pool to describe the event.
(See Appendix C for a description of the Error Log packet.) ERRLOG
then writes the packet from pool into the Error Log File on disk,

usually within a few seconds of when the packet is created.

Figure 1-1 shows the interaction of the Error Logging System tasks
with routines in the Executive.

EXECUTIVE

PACKET-1 | PACKET-2 |
COMMAND PKT

\\

ERRLOG

PACKET-1

PACKET-2

COMMAND PKT

ELI

| COMMAND PKT

DRIVER

ERROR
module

CFL
COMPILER

)

CONTROL
FILE
MODULE

Figure 1-1

ERROR LOG FILE

REPORT
GENERATOR

RPT

ERRLOG.ULB

CONTROL
FILE

Error Logging System

ERROR LOG
REPORT

ZK-495-81

NOILONJOYLNI

INTRODUCTION

ERRLOG receives user commands from the Error Log Interface (ELI) to
control ERRLOG operation. These commands send error log packets
called command packets to the ERRLOG task.

The Report Generator (RPT) generates reports from the information in
the Error Log File.

RPT uses a library of modules written in the Control File Language
(CFL) to interpret data from the Error Log File and from user
commands. The CFL compiler is also part of the Error Logging System.
You can use CFL to recompile DIGITAL-supplied Control File Modules to
include patches to the modules supplied in the future. You can also
use CFL to create and compile Control File Modules for devices other
than those DIGITAL supplies. Chapter 4 explains the control file
module architecture and includes annotated DIGITAL control file
modules. Chapter 5 documents the Control File Language (CFL).

1.2.1 Executive Routines

Whenever the RSX-11M or RSX-11M-PLUS system is running and error
logging is active, routines in the Executive collect information from
device drivers and other tasks and write the information into error
log packets in system pool.

The Executive gathers information on the state of the registers when a
device error occurs, and includes information on system events, such
as device Mounts and Dismounts. You can also insert a text message
into the error log file using the MCR System Service Message command
(SSM). (See the RSX-11M/M-PLUS MCR Operations Manual).

If Error Logging is not active on the system, the device drivers still
detect each hardware error, but the Executive does not create Error
Log packets.

The Error Logging System makes a distinction between hard errors and
soft errors. Hard errors are those that cause an I/0 operation to be
aborted because the device driver cannot recover from the error. The
task that issued the I/0 request receives an error code indicating
that the operation failed. Soft errors are those from which the
device driver can recover. The task that issued the I/0 request does
not receive an error notification because the request eventually
succeeds.

The Error Logging System logs both hard and soft errors. Thus, you
can have a system functioning properly, with no errors reported to any
tasks in the system, with errors still being encountered and logged.
Thus error logging terminology sometimes refers to errors as events:
they do not always mean an actual failure.

When Error Logging is active, the Executive writes the data from a
single event into one Error Log Packet and assigns a sequence number,
unique to that event, to the packet. The Resource Monitoring Display
(RMD) shows the highest assigned sequence number as ERRSEQ, the total
number of errors.since error logging operations began.

When ERRLOG writes the packet in a file, the packet gets a number that
describes 1its 1location 1in the file relative to other packets. RPT
uses this number to refer to the event 1in later operations. The
number does not change unless the organization of the file changes.
For example, if an earlier error log file is appended to the current
error log file, the packet numbers in the appended file will change.

INTRODUCTION

Thus, you can generate a brief format RPT report to determine the
packet numbers of the most significant errors on your system, and then
generate a full format report, by packet number, of only those errors.

The Executive includes a directive for error logging (SMSG$) that
sends Error Log Packets directly to the Error Logger. (See the
RSX-11M/M-PLUS Executive Reference Manual for an explanation of how to
use this directive.) User tasks can use SMSGS$ to communicate with the
Error Logger.

1.2.2 ERRLOG and ELI

ERRLOG writes the Error Log Packets from pool to the Error Log File in
binary format. Only RPT can interpret and format data from the Error
Log File.

To issue a command to ERRLOG, type an ELI command to perform one of
the ERRLOG functions (logging, limiting, or file naming). ELI sends
an error log command packet to ERRLOG with instructions on the
function to be performed, and ERRLOG returns the results, if any, to
ELT.

The ERRLOG task allows you to specify two files to contain the error
log packets written to disk. ERRLOG uses the first file, the error
log file, unless an error is detected while ERRLOG writes to the file.
If an error is detected, ERRLOG switches to the second file, the
backup file. ELI commands allow you to establish or change the names
of the error log file and backup file.

The error logging system automatically limits the number of events it
logs on a given device. This error limit can be changed dynamically
by ELI commands while error logging is running. The system does
limiting in case the device starts to accumulate a large number of
errors. Without limiting in these cases, the error 1log file would
quickly become large and difficult to analyze. The limiting does not
throw away useful information, because usually when a large number of
events occurs on a device, most of them are the same and you can
generalize from a report on a small number of the events.

After a device reaches a particular error limit, logging of that type
of error on the device stops until you reset the error count to zero
or raise the error limit.

ERRLOG sends a message to the console terminal or to any terminal that
has allocated the device, explaining that the device reached the error
limit. Limiting does not affect operation of the device itself; it
only starts or stops error logging on the device.

1.2.3 RPT

RPT creates reports on the data in the Error Log File, based on
information in the Error Log Control File and commands supplied by the
user. Modules in the Error Log Control File tell RPT how to interpret
and print entries from the Error Log File for a specific operating
system.

When you are ready to generate an Error Log Report, you can run RPT to
select the information you want to include in the report. RPT can
generate reports in brief and full format on any collection of Error
Log Packets you select. For example, you can select reports on a

INTRODUCTION

specific device by device name, device type, volume 1label, pack
identification, or drive serial number. You can also select reports
of a specific error type or you can select a full report of all the
Error Log Packets in the Error Log File.

Error log reports can contain both context information and
device-supplied information.

Context information, which appears in full format reports, contains
operating system version information and some information about the
CPU model. Context information on the I/0 operation that encountered
the failure is recorded for device errors. This information is useful
to correlate events recorded in the error log file with other events

in the system. For example, hard I/0 errors often cause the task
issuing the I/0 request to exit with an error, since many tasks cannot
recover from I/0 errors. Information on the I/0 operation is also

useful to determine the operation the device driver attempted at the
time of the failure.

This support is optional on RSX-11M systems.

In a full report, RPT also includes all device-supplied information,
including registers and any other information the device provides.
Each device supplies one or more machine words of information when an
error occurs. RPT decodes each item of device information according
to the terminology wused 1in the device maintenance manual. If
additional information 1is useful to understand the significance of a
decoded item, that information is listed in parentheses.

Decoded items that are abnormal are flagged with a "*" in reports.
These 1items may or may not represent error conditions, depending on
the state of the device. 1Interpret items flagged with a "*" as "look
at me first". RPT reports flag more than one item on most devices.

RPT reports also flag more than one item if a device encounters an
error or cannot perform an operation because of another error
condition. This condition occurs when an abnormal device status
condition causes an I/0 function to fail. The RPT report flags both
the I/0 function failure and the abnormal device status.

An error type definition 1in the RPT report then boils all the
device-supplied information down to a single item reflecting the most
probable error reported by the device.

1.2.4 CFL

The Error Logging System includes a Control File Language compiler
(CFL) wused to recompile patched DIGITAL-written Control File Modules
or user-written modifications or additions to modules. Chapters 4 and
5 describe the operation of the CFL compiler and the DIGITAL-supplied
control file module for the RM02/RM03.

INTRODUCTION

1.3 ERROR LOGGING OPTIONS
Routines in the Executive respond to four types of errors:

® Unexpected traps or interrupts

e Device errors

e Device timeouts

® Memory errors
All systems that include Error Logging support at system generation
include support for logglng the first three types of errors,
RSX-11M-PLUS also ‘includes suppert f&x? loggir ‘memory = errors.,

However, support 'fOr logging memory errors is a separate system
generation option on RSX .11M,

1.3.1 Unexpected Traps or Interrupts

When your system includes Error Logging support, all unused system
vectors are filled with pointers to routines 1in the Executive.
Therefore, routines in the Executive are called if a trap or interrupt
occurs to one of these unused vectors. For example, a noisy
electrical environment or a static discharge may cause an unexpected
trap or interrupt to one of the unused vectors, or a valid interrupt
may be vectored to the wrong address. In these cases, the Executive
records this information.

1.3.2 Device Errors

Device errors are problems that a device encounters while carrying out
a software-requested operation. When a device error occurs and Error
Logging is active, the device driver calls Executive routines to
record the contents of the device registers or other hardware-supplied
information. The registers indicate the state of the device and its
controller. The routines also record information found in the actual
I1/0 request to the driver, such as the type of operation attempted.
This information aids you in the interpretation of the device error.

1.3.3 Interrupt Timeouts

Interrupt timeouts occur when the device that initiated an operation
fails to complete the operation within the length of time the driver
specified. Software timers that start when the transfer starts,
detect interrupt timeouts. The system records the same information
for timeouts that it records for device errors.

1.3.4 Memory Errors

Memory errors occur when the parity bit stored with the data during a
write operation does not match the parity calculated when the data is
read. Some types of main memory use parlty to ensure integrity of the
information. All RS8X { : egenerated systems
include support for ng me The support is a
system generation opt1on on Rsx—llM.

CHAPTER 2

ERROR LOG TASK (ERRLOG) AND ERROR LOG INTERFACE (ELI)

This chapter describes how to use the Error Log Task (ERRLOG) and the
Error Log Interface (ELI). Chapter 1 provided a general overview of
how ERRLOG and ELI work, along with the Report Generator (RPT), to
form the complete Error Logging System.

ERRLOG gets event and status information from device drivers and the
executive in the form of Error Log Packets and writes the packets in
an Error Log File on disk. The executive also performs error limiting
to allow a maximum number of errors to be logged on each device before
logging stops.
ELI, the user interface to ERRLOG, includes switches to:

@ Start or stop logging or limiting

e Change device error limits or error counts

e Establish or change log file or backup file names

e Display information about the error 1logging status of any
device or of the entire system

ERRLOG is the only part of the Error Logging System that must be

installed for error 1logging to occur. You can install ELI when you
issue commands to ERRLOG and install RPT when you create reports.

2.1 INSTALLING ERRLOG AND ELI

To install the ERRLOG task, enter the following MCR command from a
privileged terminal or as an entry in the system startup command file:

INS $ERL GED

To install ELI, enter the following MCR command from a privileged
terminal or as an entry in the system startup command file:

INS SELIGED)

If ELI is not installed, you can invoke it from a privileged terminal
using the following MCR command:

RUN $ELIGED

ERROR LOG TASK (ERRLOG) AND ERROR LOG INTERFACE (ELI)

2.2 USING ERRLOG AND ELI

To invoke ELI after it is installed, issue the following MCR command
from any terminal:

ELI (ED
ELI>

You can use the ELI /SH switch to display error 1logging information
from any terminal. However, you must use a privileged terminal to
execute any other ELI commands.

Enter each command on a separate line unless the command description
specifies otherwise.

The general format of an ELI command is:
[filespec]/switchl[...switchn]
filespec

A device mnemonic or the name of an error log file, backup file,
or file to append to the current error log file.

switches

Switches to set, change, or display ERRLOG operation. (You must
specify at least one switch on each ELI command line.)

If you want to use only the ERRLOG defaults and start logging, enter
the following ELI command:

/LOG

This command starts ERRLOG, using LB:[1,6]LOG.ERR as the default 1log
file and LB:[1,6]BACKUP.ERR as the default backup file. You must
specify the /LOG switch to use ERRLOG defaults.

The /LOG switch also starts error limiting to limit the number of hard
and soft errors ERRLOG records on each device before it stops logging
on that device. The default error limit, used when you begin limiting
with the /LOG switch, is five hard errors and eight soft errors for
each device, You can change these limits with the /HL or /SL switches
described 1in Section 2.3.2. However, you cannot use the switches to
change limits on the same command line as the /LOG switch.

2.3 ELI SWITCHES

This section describes the ELI switches and subswitches, divided into
four types:

e Logging switches

e Limiting switches

e File naming switches

e Display switch
Remember that these switches only control operation of the Error
Logger. Chapter 3 describes the RPT commands that generate actual

Error Log Reports. Chapter 5 describes the commands that control the
Control File Language Compiler.

ERROR LOG TASK (ERRLOG) AND ERROR LOG INTERFACE (ELI)

Table 2-1 summarizes the ELI switches 1in alphabetical order. ELI
syntax requires that you specify at least two characters of a switch
name and as many additional characters as it takes to make the switch
unique. However, the Logging and Limiting switches are called /LOG
and /LIM to make their names easier to remember.

Table 2-1
ELI Switches and Subswitches

Switch Subswitch Function
filespec/AP Appends the specified file to
(Append) the current Error Log File.

/DE Deletes the specified file
(Delete) after appending it to the
current Error Log File.
filespec/BA Sets the name for a backup file
(Backup) to the next highest version of

the file named.

device(s)/HL:n Set limits for hard (unre-

(Hard Error Limit) coverable) errors on a device.
You can use /SL, the Soft Error
Limits switch, on the same
command line.

/LIM Starts the use of error
(Limiting) limiting, using either default
limits or those set with ELI
switches. The /LOG switch

begins error limiting by
default.

/-LIM Stops the use of error limit-

/NOLIM ing.

(No Limiting)

[filespec] /LOG Begins error logger operation,

(Logging) turns on error limiting by
default, and, if you specify a
file name, overrides the

default name of the error log
file (LB:[1,6]LOG.ERR). If the
error log file already exists,
the /LOG switch uses the
existing file.

/-LIM Turns off error limiting while
the error logger is running.

/NV Creates a new version of the
(New Version) given file instead of using the
current version.

/-LOG Stops error logger operation
/NOLOG and turns off error limiting.
(No Logging)

(continued on next page)

ERROR LOG TASK (ERRLOG) AND ERROR LOG INTERFACE (ELI)

Table 2-1 (Cont.)
ELI Switches and Subswitches

Switch Subswitch Function

device (s) /RE Resets the QIO and error counts

(Reset) on the specified devices to
zero.

device(s)/SH Displays error logging

(Show) information for the specified
devices. (If you do not
specify device names, /SH

displays information for all
error logging devices on the

system.)
device(s)/SL:n Sets limits for soft (recover-
(Soft Error Limit) able) errors on a device. (You
can use /HL, the Hard Error
Limit switch, on the same

command line.)

filespec/SW Copies current error log file
(Switch) to the specified file and
transfers logging to that file.

/DE Deletes the o0ld file after the
/SW switch performs the copy
operation.

/NV Creates a new version of the
specified file instead of
appending data to the current
version.

2.3.1 Logging Switches
[filespec] /LOG
/~-LOG
/NOLOG

ELI Logging Switches start or stop 1logging on all error logging
devices in the system. (See Table 2-2)

Table 2-2 1lists the device modules included in the original
LB:[1,6] ERRLOG.ULB as distributed with the Error Logging System.
However, if you have deleted any device modules from this ULB, using
the 1indirect command file described in Appendix A, your system will
not include support for those devices. If you want error logging
support for the devices listed in Table 2-2, the Control File Module
listed with the device must be included in the ULB. See Appendix A
for information on how to include and delete modules from the ULB.

ERROR LOG TASK (ERRLOG) AND ERROR LOG INTERFACE (ELI)

Table 2-2
Error Logging Devices

Device Control File Module
ML11 EML11
RK03/RK05 ERKO05
RKO6/RK07 ERK67
RLO1/RLO2) ERL12
RMOS5 ERMOS
RM02/RMO3 ERM23
RA80/RA81 MSCP80

MSCPAT
MSCPCE
MSCPEN
MSCPTO
DEVUDA
RAGO MSCP60
MSCPAT
MSCPCE
MSCPEN
MSCPTO
DEVUDA
RC25/RD51/RX50 MSCPSD
MSCPAT
MSCPCE
MSCPEN
MSCPTO
DEVUDA
RM80 ERM80
RPO7 ERPO7
RP02/RP0O3 ERP23
RP04/RP05/RP06 ERP456
RS11 ERS11
RS03/RS04 ERS34
RX01 ERXO01
RX02 ERX02
TAll ETAll
TC1l1l ETC11
TS11/TU8O ETS11
TUS8 ETU58
TU77 ETU77
TUl6/TE16/TU45 ET1645
TU60 ETU60
TS03/TE10/TUl0 ET0310
TSV05 ETSV05

The /LOG switch begins error logging operation and optionally allows
you to specify a file in which the error logger writes the data it
collects. (See the file naming section below.) If you specify an
existing file, the /LOG switch appends new data to that file unless
you also specify the New Version switch (/NV) in the command line.

The /LOG switch also turns on error limiting, by default, wunless vyou
specify the No Limiting (/-LIM) switch to override it.

The NOLOG (/-LOG) switch stops error logging and, by default, stops
error limiting.

ERROR LOG TASK (ERRLOG) AND ERROR LOG INTERFACE (ELI)

/LOG Subswitches:

You can use the following subswitches on a command line with the /LOG
switch:

/-LIM[IT]

The /-LIM subswitch turns off error limiting. This
subswitch overrides the default ERRLOG operation in which
/LOG automatically turns on error limiting.

/NV

The /NV subswitch causes the error logger to create a new
version of the error log file (either the file you specify
in the command 1line or the default error log file
LB:[1,6]LOG.ERR) . This subswitch overrides the default
operation in which the /LOG switch appends data to the
current version of the error log file,

2.3.2 ERROR Limiting Switches

The following switches control the error limiting operation of ERRLOG.
You <can wuse them to start or stop error limiting or to change error
limits on specific devices. When a device reaches the user-specified
error limit or the default error limit, ERRLOG displays the following
warning message on the console terminal or on any terminal that has
allocated or attached the device:

ERRLOG -- **WARNING: Device dd: Exceeded (xxxx) Limit (n)

In the message, xxxx is the type of limit (hard or soft) and n is the
number to which the limit is set.

When the device reaches an error limit, error logging for that type of

error stops on the device until you reset the error and QIO counts to
0 or raise the error limit.

You can reset the error and QIO counts to 2zero with the ELI /RE
switch, Mounting or dismounting the device or rebooting the system
also resets the error and QIO counts to =zero. However, using the
/-LOG switch to stop logging does not reset the error and QIO counts.

Logging on a device stops only when the device reaches both of the
limits set for hard and soft errors. 1If, for example, the device
reaches its limits for hard errors but not for soft errors, it will
continue to 1log soft errors until the soft error limit is also
reached.

2.3.2.1 The Limit Switch

/LIM

/-LIM

/NOLIM
The /LIM switch starts or stops use of error limits. These limits are
set by default for all devices on the system when you enable error
logging or they are set for individual devices with the hard and soft

limit switches described below. The /LIM switch does not activate
error logging if it is not currently active on the system.

2-6

ERROR LOG TASK (ERRLOG) AND ERROR LOG INTERFACE (ELI)

When you specify the /LOG switch to begin error 1logging, it
automatically starts error 1limiting on all error logging devices
unless you inhibit limiting with the /-LIM switch.

2.3.2.2 The Hard Limit Switch
devl:[,...devn] :/HL:n

The /HL switch sets limits for the number of hard errors that error
logging records on the device specified. Hard errors occur on a
device when an I/0 operation fails and cannot be recovered by the
device driver. You can set hard error limits for more than one device
in the same command line, as long as the limits are the same. The
default hard error limit on each device is five.

The value n can be 0 to 255. 1If you set the 1limit to 255, 1logging
continues without stopping (the limit is infinite). 1If the limit is
set to 0, no errors will be logged.

Subswitch:

You can use the following switch as a subswitch on a command line with
the /HL switch:

/SL:n

In this way, you can set both hard and soft error limits for
devices on the same command line.

2.3.2.3 The Reset Switch
devl:[{,...devn:]/RE[SET]

The /RE switch resets the QIO count and error count for the specified
devices to zero. You can specify up to 14 devices in one command
line. You cannot reset QIO and error counts on all devices in the
system at once by specifying the /RE switch without specifying
devices.

When ERRLOG resets the counts to zero, it displays the following
message on the Console Terminal:

ERRLOG -- Error and QIO counts reset for ddnn:

2.3.2.4 The Soft Limit Switch
devl:[,...devn:]/SL:n

The /SL switch sets limits for soft errors. Soft errors occur on a
device when an I/0 operation fails, but succeeds in a subsequent retry
attempt. You can set soft error limits for more than one device in
the same command line, as long as the limit is the same. The default
soft error limit for each device is eight.

The value n can be 0 to 255. If you set the 1limit to 255, 1logging
continues without stopping (the limit is infinite). 1If the limit is
set to 0, no errors will be logged.

ERROR LOG TASK (ERRLOG) AND ERROR LOG INTERFACE (ELI)

Subswitch:

You can use the following subswitch on a command 1line with the /SL
switch:

/HL

In this way, you can set both hard and soft error limits for
devices on the same command string.

2.3.3 File Naming Switches

The following sections describe switches that establish and change the
names of Error Log Files and Backup Files.

2.3.3.1 The Log Switch
[filespec] /LOG

The /LOG switch, which also initializes the error 1logger, sets the
name of the error log file that the error logger uses. If you specify
an existing error log file, the default operation is to append data to
the current version of that file. To override the default, specify
the /NV switch. The error logger then creates and writes data in a
new version of the file. This switch does not work when error logging
is already active on your system. The default error 1log file
specification is LB:[1,6]LOG.ERR. The /LOG switch also specifies
LB:[1,6]BACKUP.ERR as the backup file. See Section 2.3.3.4 for more
information.

2.3.3.2 The Append Switch
filespec/AP[PEND]

The /AP switch appends the specified file to the end of the current
log file. Error logging must be active for this switch to work.

The default operation is to append the specified file to the current
error log file and to keep the appended file.

Subswitch:

You can use the following subswitch on the command line with the /AP
switch:

/DE [LETE]
The /DE subswitch causes the error 1logger to delete the

specified file after it copies the file to the end of the
current error log file.

2.3.3.3 The Switch Switch
[filespec] /SW[ITCH]

The /SW switch copies the current error log file to the file vyou
specify and begins logging 1in that file. The default operation

ERROR LOG TASK (ERRLOG) AND ERROR LOG INTERFACE (ELI)
appends data to an existing version of the file and preserves the old
version of the error log file.
Subswitches:

You can use the following subswitches on the command line with the /SW
switch:

/NV
The /NV subswitch creates a new version of the file vyou
specify. This subswitch overrides the default operation in
which the /SW switch appends data to the latest version of
the file.

/DE [LETE]

The /DE subswitch causes the error 1logger to delete the
current error log file after it copies the file to the new
file you specify.

2.3.3.4 The Backup Switch
filespec/BA [CKUP]

The /BA switch specifies the file to be used as a backup file if the
Error Logger cannot write to the current log file. By default, the
backup file is LB:[1,6]BACKUP.ERR.

The backup file specification is kept, but no file is created until
needed. You may wish to have your backup file on a different device
from the current log file. By default, both files are on pseudo
device LB:. :

When the Error Logger cannot write to the current log file, it creates
and opens the backup file and writes to it. At that point, you no
longer have a backup file, and the Error Logger displays the following
message on the Console Terminal:

ERRLOG -- Log file error - logging continuing on backup file

After error logging switches to the backup file, there is no longer a
backup file available.

The error logger uses the specified backup file as the current error
log file. It does not rename the file to LOG.ERR, even though the
file is now the error log file.

At this point, you should specify a new backup file, wusing the /BA
switch. Otherwise, if error logging cannot write to the new log file,
it will not be able to continue by writing in a backup file.

If the error logger tries to switch logging to a nonexistent backup
file, it displays the following message:

ERRLOG -- Backup file error - logging discontinued
When that happens, logging stops and must be restarted.
If you create the backup file on a disk other than the disk containing

the error 1log file, this ensures that logging will continue even if
the disk with the error log file develops problems.

ERROR LOG TASK (ERRLOG) AND ERROR LOG INTERFACE (ELI)

2.3.4 Display Switch

The /SH switch allows you to display information on the status of
error logging on the system.

[devl,...devn] /SH[OW]

/SH[OW]
The /SH switch allows you to display information on the status of
error logging on the system. The /SH switch displays Error Logging
information on the devices specified (up to 14). If the command does
not specify devices, the Error Logger displays information on all
error logging devices in the system. Example 2-1 illustrates the
output from the operation of the /SH switch:

Example 2-1 Error Logging Status
Error Logging Status 12-JAN-82 00:51:54
Logging: On Limiting: On
Log File: LB:[1,6]LOG.ERR File ID: DR3: 32,252

Backup File: LB:[1,6]BACKUP.ERR

Device Hard Error Soft Error QIO
Name Count/Limit Count/Limit Count
MMO : 0./5. 0./8. 23.
MM1: 0./5. 0./8. 9776.
MM2: 0./5. 0./8. 0.
MM3: 0./5. 0./8. 0.
DBO: 0./5. 0./8. 14144.
DB1l: 0./5. 0./8. 0.
DB2: 0./5. * 8./8. 46528.
DRO: 0./5. 0./8. 0.
DR1: 0./5. 0./8. 0.
DR2: 0./5. 0./8. 164234.
DR3: 0./5. 0./8. 625364.
DSO: 0./5. 0./8. 130.
DS1: 0./0. 0./0. 0. (0Offline)
DKO: 0./5. 0./8. 1.
DK1: 0./5. 0./8. 0.
DMO: 0./5. 0./8. 0.
DM1: 0./5. 0./8. 0.
DLO: 0./5. 0./8. 0.
DL1: 0./5. 0./8. 0.
DTO: 0./5. 0./8. 0.
DT1: 0./5. 0./8. 0.
DT2: 0./5. 0./8. 0.
DT3: 0./5. 0./8. 0.
DYO: 0./5. 0./8. 1.
DY1l: 0./5. 0./8. 1.

Y’ DDO: 0./5. 0./8. 0.
DD1: 0./5. 0./8. 0. .

2-10

ERROR LOG TASK (ERRLOG) AND ERROR LOG INTERFACE (ELI)

If you specify device names in the /SH switch, the output is the same
as Example 2-1, except that the display only includes information on
the devices you specified.

The asterisk next to the soft error limit for DB2: indicates that
DB2: reached the soft error limit and logging of soft errors stopped.
Note that the logging of hard errors will continue on DB2: until the
hard error limit is reached.

The display continues to record additional QIOs on the device, even
after logging stops because the Executive maintains the QIO count.

Therefore, the ratio of errors to QIOs on the device does not
necessarily give you a statistical error percentage.

2.4 ERRLOG AND ELI MESSAGES

ERRLOG displays messages on the console terminal when errors occur
during an operation. In some cases, ERRLOG displays messages on any
terminal that has allocated or attached the device on which the error
occurs. ELI displays messages on the terminal that invoked it. This

section describes the messages, their causes, and possible user
response.

2,4.1 ELI Messages

ELI -- ERRLOG not installed
Explanation: ERRLOG is not installed on the system.
User Action: 1Install ERRLOG from a privileged terminal and issue
the ELI command again.

ELI -- Failed to communicate with ERRLOG

Explanation: ELI could not communicate with ERRLOG using the
Executive directive (SMSGS).

User Action: Fatal error. No user action is possible.

ELI -- File name must be specified

Explanation: You used a Backup, Append, or Switch switch without
specifying a file name.

User Action: Reenter the ELI command with an appropriate file
specification.

ELI -- Get Command Line error
Explanation: The Get Command Line procedure failed.

User Action: This may be a temporary condition. Retry the
operation.

ERROR LOG TASK (ERRLOG) AND ERROR LOG INTERFACE (ELI)

ELI -- Illegal switch combination
Explanation: You wused an ELI switch 1in combination with
subswitches other than those allowed on a command string with
that switch. (See Table 3-1.)
User Action: Reenter the command string, specifying a legal
combination of switches on each string. Use a separate command
string for additional switches, if necessary.

ELI -- Maximum number of devices exceeded

Explanation: You attempted to reset QIO and error counts on more
than 14 devices in one command string.

User Action: Specify the /Reset Switch again, with 14 devices or
less.
ELI -- Switch requires device name (ddnn:) only

Explanation: You specified both a device name and UFD and/or
file name an ELI switch that only accepts a device name.

User Action: Reenter the command; omit the UFD and file name.

ELI -- Syntax error

Explanation: You used an illegal switch or file specification or
made some other syntactical error.

User Action: Reenter the command, wusing the proper command
string syntax.

2.4.2 ERRLOG Messages
ERRLOG -- Backup file error - logging discontinued

Explanation: ERRLOG encountered an error when it wrote in the
log file. It then tried to write in the backup file, but could
not. This error occurs if you fail to establish a new Dbackup
file after ERRLOG switches logging to the backup file.

User Action: 1Issue an ELI /BA command to establish a new backup
file and restart logging.
ERRLOG -- Device not in system

Explanation: ERRLOG tried to use a device that 1is not in the
system configuration.

User Action: Check to be sure you specified the correct device
and reenter the command. If the device is correct, no user
action is possible.

ERROR LOG TASK (ERRLOG) AND ERROR LOG INTERFACE (ELI)

ERRLOG -- Error and QIO counts reset for ddnn:
Explanation: The error and QIO counts for a given device were
reset,
User Action: No user action 1is necessary. This is an

informational message.

ERRLOG ~- Error Log packet too long

Explanation: ERRLOG encountered an Error Log Packet that was too
large. The error log packet was corrupt.

User Action: If the Error Logging System includes user-generated
error 1log packets, check the code to make sure none of the
packets are too long. Otherwise, submit an SPR.

ERRLOG -- Failed to assign LUN

Explanation: ERRLOG tried to assign a Logical Unit Number to a
terminal to send a notification message and the assignment
failed. This occurs when a device exceeds the error 1limit set
for it and ERRLOG tries to notify the terminal or task that has
the device allocated or attached.

User Action: No user action 1is necessary. The limiting
operation succeeded. This informational message tells you ERRLOG
was unable to notify the allocating terminal.

ERRLOG -- File I/0 error

Explanation: ERRLOG tried to execute a Switch or Append command
and could not open the new file or copy the old file to the new
one. When this error occurs, logging continues in the original
log file,

User Action: No action is required to continue logging. Retry
the Switch or Append command.

ERRLOG -- Log file error - logging continued on backup file

Explanation: An error occurred when ERRLOG tried to write in the
Error Log File. The logging operation transferred to write in
the backup file. The backup file becomes the 1log file, but
retains the given name.

User Action: 1Issue an ELI command to establish a new backup
file. Otherwise, 1if ERRLOG gets an error when it writes in the
new file (the previous backup file), it will not £find a backup
file to use.

ERRLOG -- Logging already active

Explanation: ERRLOG received an ELI command to begin logging
when logging was running.

User Action: No user action is necessary to continue logging.

ERROR LOG TASK (ERRLOG) AND ERROR LOG INTERFACE (ELI)

ERRLOG -- Logging initialized

Explanation: When ELI starts ERRLOG operation, using the /LOG
switch, ERRLOG displays this message on the Console Terminal.

User Action: No wuser action 1is necessary. This is an
informational message.
ERRLOG -- Logging not active

Explanation: The ERRLOG task is not currently running on your
system.

User Action: 1Issue an ELI /LOG command from a privileged
terminal and retry the operation.
ERRLOG -- Logging stopped

Explanation: When ELI stops ERRLOG operation, using the /-LOG
switch, ERRLOG displays this message on the Console Terminal.

User Action: No user action 1is necessary. This is an
informational message.

ERRLOG -- No data subpacket
Explanation: ERRLOG tried to use a corrupted data subpacket.
User Action: 1If the Error Logging System includes a user-written
control file module to generate error log packets, check the
code. Otherwise, submit an SPR.

ERRLOG -- No device subpacket
Explanation: ERRLOG tried to use a corrupted device subpacket.
User Action: 1If the Error Logging System includes a user-written
control file module to generate error log packets, check the
code. Otherwise, submit an SPR.

ERRLOG -- Privilege violation
Explanation: You tried to issue a privileged ELI command (to set
or change ERRLOG operations) from a nonprivileged terminal.
Nonprivileged users can only issue ELI Show commands.
User Action: Log on a privileged terminal and 1issue the
commands.

ERRLOG -- Task subpacket corrupted

Explanation: ERRLOG tried to use a corrupted task subpacket.

User Action: Submit an SPR,

ERROR LOG TASK (ERRLOG) AND ERROR LOG INTERFACE (ELI)

ERRLOG -- Unable to open file

Explanation: ERRLOG could not open the 1log file to Dbegin
logging. ERRLOG then transfers 1logging to the backup file
immediately.

User Action: 1Issue an ELI command to establish a new backup
file.

ERRLOG -- Unknown command packet subtype

Explanation: ERRLOG encountered an unknown command packet
subtype.

User Action: 1If the Error Logging System includes a user-written
control file module to generate Error Log Packets, check the
code. Otherwise, submit an SPR.

ERRLOG -- **WARNING: Device ddnn: exceeded xx Limit (x)

Explanation: Device ddnn exceeded the error limit set with an
ELI Hard or Soft Limit switch or the default error limit of five
hard errors and eight soft errors.

User Action: Check to see if the number of errors indicates a
serious hardware malfunction. To continue logging on the device,
reset the QIO and error counts to zero with the /Reset switch or
change the limits using the /HL or /SL switch.

CHAPTER 3

REPORT GENERATOR TASK (RPT)

This chapter describes how to use the Report Generator Task (RPT) to
create Error Log Reports.

Chapter 1 provided an overview of the interaction of elements 1in the
Error Logging System (the Error Log Control File and the Control File
Language Compiler). The RPT switches described in this chapter use
modules from the Error Log Control File to determine how to interpret
and format information from the error log file. (See Chapter 2 for a
description of how the Error Logger creates the error log file.) RPT
and modules in the error log control file work together to interpret
the information in the error log file and define an event that occurs
on a device. They do not analyze the event itself or attempt to
diagnose hardware failures.

All RPT reports use the same entry number to refer the same Error Log
Packet, so you can use RPT brief reports to isolate a device or
specific events occurring on that device, and then specify entry
numbers to generate a full report on only the specific events you want
to look at in more detail. Note, however, that some ELI commands may
change the packet number associated with an event. For example,
appending a file to the error log file will change the packet numbers
in the appended file.

3.1 INSTALLING AND RUNNING RPT

Since RPT is a nonprivileged task, any user can use it to create Error
Log Reports when it is installed on the system. To install RPT, enter
the following MCR command from a privileged terminal or as an entry in
the system startup command file:

>INS $RPT@ED

If RPT is not installed, you can invoke it from any terminal, using
the following MCR command:

>RUN SRPT RED
RPT>

To invoke RPT when it is installed, issue the following MCR command
from any terminal:

>RPT ®ED
RPT>

REPORT GENERATOR TASK (RPT)

3.2 USING RPT TO CREATE ERROR LOG REPORTS

The Error Log Control file needs at least two types of information
from RPT switches to generate Error Log Reports:

® How to select which Error Log Packets to analyze
e How to format the Error Log Packets

In addition, on RSX-1lM-PLUS systems the control file needs a third
kind of information. ; ‘

e How to summarize the information from the Error Log Packets

Switches on the RPT command line provide this information, which Iis
independent of the file specification they accompany.

3.2.1 The RPT Command Line

The only element you must specify in an RPT command line is the equals
sign (=). All other file and switch specifications in the command
line are optional.

The general format of an RPT command line is
[reportfile[/switches]]=[inputfile[/switches]]

reportfile
The name of the listing file that contains the Error Log Report.

Instead of a report file, you can specify TI: to send the report
to your terminal. On RSX-11M-PLUS systems with transparent
spooling you can specify LP: to send the report to the 1line
printer.

switches

Optional switches to control how RPT selects, formats, and (on
RSX-11M-PLUS) summarizes information from the error log file.
You can use the same switches with either the report file
specification or the 1input file specification on the command
line. RPT uses the switches 1in the order you specify, but
ignores which file specification they accompany.

input file

The only input file you can specify in the command 1line 1is the
Error Log File, the disk file that the Error Logger creates.

RPT also uses a universal library of compiled control file modules as
input. RPT looks first for the file LX:[1,6]ERRLOG.ULB. If it does
not find it, RPT looks for the file LB:[l,6]ERRLOG.ULB. Use pseudo
device LX: 1if you wish to save space on LB:. RPT includes this file
by default and you cannot specify or change it from the command 1line,
so it is not part of the format described above.

RPT can, however, prompt for the name of a universal library. If you
want RPT to prompt you for the universal library name, you must edit
the RPTBLD.BLD file and make the value of USERCM non-zero, then relink

REPORT GENERATOR TASK (RPT)

RPT. If you do make this alteration, note that it has the additional
effect of preventing you from issuing an RPT command line from the MCR
level. That is, the following is the way to invoke RPT.

>RPT
CTL> (universal library filespec)
RPT> command line

The RPT input and output files described above assume the defaults
listed in Table 3-1, unless you specify otherwise in the command line.

Table 3-1
RPT File Specification Defaults
Universal
Report File Input File Library Filel

Device: SYO: LB: LX:, LB:
UIC: Current UIC [1,6] [1,6]
File Name: ERRREPORT LOG ERRLOG
File Type: .LST . ERR .ULB
Version: new latest latest

1. Not specified by user.

3.2.2 Using Multiple Qualifiers in RPT Command Lines

You can only specify each RPT switch once in a command line. However,
some switches provide an alternative syntax that allows you to specify
more than one argument for the switch.

To specify more than one argument for an RPT switch, use the following
command syntax:

/switch: (qualifierl,qualifier2...qualifiern)
The parentheses, which are a required part of the command syntax,
allow RPT to use more than one qualifier for the switch. 1If you do
not specify the parenthesis, RPT displays the following message on
your terminal and exits:

ERLCNF~-F-SYNTAXERR command line syntax error

For example, to specify a report on more than one device, use the
following RPT switch:

/DE: (DB,DM2: ,DR)

RPT generates a report on all the DB and DR devices in your system, as
well as device DM2:.

REPORT GENERATOR TASK (RPT)
The switches that permit you to specify multiple qualifiers in this
way are:
e The DEVICE switch
e The PACKET switch
® The SERIAL switch (one drive and one pack serial number)
e The TYPE switch

e The SUMMARY switch (on RSX-11M-PLUS)

3.2.3 Using the Default RPT Command Line

To use the RPT default command line, enter the following command:
RPT>= [ED)

This command causes RPT to use the file specification defaults (listed

in Table 3.1) and switch defaults (listed below). In general, this

command creates a brief format report, without any summaries, using

all of the Error Log Packets in the error log file.

The RPT default command line invokes the following switches:

/F [ORMAT] :B [RIEF]

Creates a brief format report containing one line for each error
log packet described in the report. (See Section 3.3.2.)

/T(YPE]:A[LL]
Creates a report on packets describing all types of events:
peripheral, processor, memory, control, and system information
packets. (See Section 3.3.1.5.)
/DA[TE] :R[ANGE] :* : *
Creates a report on packets of all dates. (See Section 3.3.1.1.)
/DE[VICE] :ALL
Creates a report on all error logging devices in the system
/PA[CKET] :*:
Creates a report for all packet numbers. (See Section 3.3.1.3.)
,/SU[MMARY] ﬁ{ONE]

Does not cxeate”summary reports of stat15t1cal information on all
i 4 ' kThlS sw1tch is available only on

/W[IDTH] :W[IDE]

Creates a wide (132 column) report.

REPORT GENERATOR TASK (RPT)

3.3 RPT REPORT SWITCHES

This section describes the RPT switches, according to the RPT
requirement that they fulfill. These switches tell RPT how to perform
the following tasks:

® Select packets

e Format packets

e Summarize information from packets (on RSX-11M-PLUS only)
RPT syntax only requires that you specify enough characters in a
command or qualifier to make it unique. For example, you can specify
/T for the /TYPE switch, but you must specify /SU for the /SUMMARY
switch to distinguish it from the /SERIAL switch.
The command line examples used throughout this chapter highlight the

command they describe. Any switches not explained in the command
descriptions assume the default values described in Section 3.2.3.

Table 3-2 summarizes the RPT report switches in alphabetical order.

Table 3-2
RPT Report Switches and Subswitches

Switch Qualifiers Function
/DA:qualifier P[REVIOUS] :ndays Select packet based on date.
(Date) R[ANGE] :start:end
T [ODAY]
Y [ESTERDAY]
/DE:qualifier device_name(,s) Select packets based on device.
(Device) ALL
/F:qualifier Describes how RPT formats the error
(Format) log packets.
B [RIEF] Display packets in brief format

(one line for each packet).

F[ULL] Display all of the information in
the specified packet.

N [ONE] Does not display information on a
packet-by-packet basis.

R[EGISTER] Displays the same information, as
the FULL qualifier, but shows only
the device registers on packets for
peripheral errors.

/P:qualifier nnnn.nnn Select packets based on packet
(Packet number) nnnn.nnn [:mmmm . mmm] number.

(continued on next page)

REPORT GENERATOR TASK (RPT)

Table 3-2
RPT Report Switches and Subswitches

(Cont.)

Switch

Qualifiers

Function

/R:qualifier
(Report)

/SE:qualifier
(Serial number)

/SU:qualifier
(Summary)

/T:qualifier
(Type)

DAY

MONTH
SYSTEM
WEEK
user_string

D[RIVE] :number
P [ACK] :number

A[LL]
" E[RROR]

G [EOMETRY]

. H[ISTORY)

N[ONE]

A[LL]
C [ONTROL]
E[RRORS]

M [EMORY]

PE [RIPHERAL]

Invokes a predefined string of
switches for RPT to wuse. The
qualifier can be one of four
DIGITAL-defined strings or a user-
defined switch string.

Selects packets based on drive
and/or pack serial number. The pack
serial number is supplied only on
MSCP and last-track devices.

Selects the type of summary report
RPT generates {on RSX-11M-PLUS
systems only).

Selects all summary reports (His-
tory, Error, and Geometry).

Creates a summary report based only
on device errors.

Creates a summary report based on
disk geometry (sector or track, for
example) .

Creates a summary report based on
the error history of the device(s)
specified. !

Creates no summary report.

Selects packets based on packet
type.

Selects all packets in the Error Log
File.

Selects command packets from the
Error Log Interface (ELI).

Selects packets from the processor,
memory, and peripherals.

Selects packets from events that
occur in memory (such as memory
parity errors).

Selects packets from all peripheral
devices that support Error Logging.
This qualifier does not display
system information (such as mounts
or dismounts).

(continued on next page)

REPORT GENERATOR TASK (RPT)

Table 3-2 (Cont.)
RPT Report Switches and Subswitches

Switch Qualifiers Function
/T:qualifier PR[OCESSOR] Selects packets from events that
(Type) (Cont.) occur in the CPU, such asunknown

interrupts.

S[YSTEM INFO] Selects packets from events that
- occur on the system but are not
specifically tied to a single piece
of hardware (such as time changes,
system service messages, mounts and

dismounts).

/V:volume_label Selects packets based on volume
(Volume label) : label.

/Wi:qualifier N [ARROW] Selects the width of the report RPT
(Width) W([IDE] creates (80 or 132 columns). The

narrow width qualifier is ignored on
summary reports.

3.3.1 Packet Selection Switches
The following switches tell RPT how to select which Error Log Packets

to report on. This selection is based on an attribute of the device
or the packet or on the date and time that the packet was created.

3.3.1.1 The Date Switch

/DA[TE] :qualifier

QUALIFIERS:

P[REVIOUS] :n days

R[ANGE] :start_date:end_date

T [ODAY]

Y [ESTERDAY]

DEFAULT:

/DA:R:* %
The /DATE switch allows you to select packets based on the date that
an event occurred. This switch includes qualifiers to specify a range
of dates or to specify a particular day. DIGITAL also supplies switch
strings to use with the /REPORT switch that use the /DATE switch to
create reports for the previous week or month.

The RANGE qualifier accepts starting and ending dates in the standard
RSX format:

DD-MMM-YY

(DD-MMM-YY HH:MM:SS)

REPORT GENERATOR TASK (RPT)

However, if you specify the second format, with time as well as date,
the parentheses are a required part of the syntax.

When you use the starting date and ending date format, the starting
date rounds off to a time of 00:00:00 and the ending date rounds off
to 23:59:59.

The asterisk (*) used at the beginning of a range specification
indicates any date through the specified ending date. For example,
*:12-JAN-82 specifies all of the packets from the beginning of the
error log file through January 12, 1982.

The asterisk (*) used at the end of a range specification indicates
any date since the specified beginning date. For example, 4-FEB-82:%

specifies all of the packets from 00:00:00 on February 4, 1982 through
the end of the error log file.

3.3.1.2 The Device Switch
/DE[VICE] :qualifier
QUALIFIERS:

device name(,s)
ALL

DEFAULT:

/DE:ALL
The /DEVICE switch allows you to select packets for a particular
device, for more than one device, or for all the devices on the
system. You can specify more than one device with the /DEVICE switch

by using the special syntax described in Section 3.2.2,

RPT uses the following conventions for device names with the /DEVICE
switch:

Mnemonic Meaning
dd Selects all devices with the mnemonic d4d.
ddnn: Selects the device with the mnemonic 4d and the unit

number nn.

For example, /DE:DM selects all DM devices, and /DE: (DM,DB2:) selects
all DM devices and device DB2:.

3.3.1.3 The Packet Switch

P[ACKET] :nnnn.nn [:mmm.mm]

DEFAULT:

/Pi* %
The /PACKET switch allows you to select a packet or range of packets
by specifying the packet identification numbers. You can determine

the packet numbers you want to see by examining a brief report of all
packets.

REPORT GENERATOR TASK (RPT)

To select just one packet you specify one packet number. For example,
/PA:123.4 selects only packet number 123.4. To select a range of
packets, you specify the first and last packet numbers of that range:
/PA:123.4:432.1 selects all the packets from packet 123.4 through
packet 432.1.

You can also specify more than one packet or packet range by using the
special syntax described in Section 3.2.2.

The asterisk (*) indicates an open-ended number. You can select all
the packets before a particular number (*:235.3), or all the packets
after a particular number (235.3:%).

3.3.1.4 The Drive and Pack Serial Number Switch
/SE[RIAL]:qualifier
QUALIFIERS:

D[RIVE]:serial number

P[ACK] :serial number

(D[RIVE] :serial number,P[ACK]:serialnumber)
(P[ACK] :serial number,D[RIVE]:serial number)

DEFAULT:

None

The /SERIAL switch allows you to select packets based on their drive
or pack serial number or both. This switch only applies to peripheral
errors. You can select packets from any device that has a serial
number by drive serial number, but you can only select packets from
MSCP and last track devices by pack serial number. Appendix B
explains where RPT gets drive serial numbers and lists the significant
digits in serial numbers for each error logging device.

You can specify one drive and one pack serial number or both in the
same command line by using the special syntax described in Section
3.2.2.

3.3.1.5 The Type Switch

/T[YPE]:[qualifier]
QUALIFIERS:

A[LL]

C [ONTROL]

E [RRORS]

M [EMORY]

PE [RIPHERAL]

PR [OCESSOR]
S[YSTEM_INFORMATION]

DEFAULT:

/T:A

REPORT GENERATOR TASK (RPT)

The /TYPE switch selects Error Log Packets based on their packet type.
You can select the following types of packets (or combination of
types) with the appropriate /TYPE switch qualifier:

Qualifier Packet Type
ALL All Error Log Packets in the Error Log
File.
CONTROL Error Log Command Packets sent by the

Error Log Interface (ELI).

ERRORS All Error Log Packets from peripherals,
processor, and memory.

MEMORY Error Log Packets from events that occur
in memory (such as memory parity errors).

PERIPHERAL Error Log Packets from all peripheral
devices that support Error Logging. This
qualifier does not display system

information (such as mounts and
dismounts) for the devices. That
information is displayed by the
SYSTEM_INFO qualifier.

PROCESSOR Error Log Packets from events that occur
in the CPU, such as unknown interrupts.

SYSTEM INFORMATION Error Log Packets from events that occur
on the system, but are not specifically
tied to a single piece of hardware (such

as time changes, system service messages
mounts, and dismounts).

You can specify more than one type of packet by wusing the special
syntax for the /TYPE switch, described in Section 3.2.2.

3.3.1.6 The Volume Label Switch

/V[OLUME] :volumelabel
DEFAULT:
None

The /VOLUME switch selects packets for peripheral errors based on the
volume label.

For example:

=/T:PE/V:ERRLOGSYS

This command line specifies that RPT find the device or devices
containing a volume with the label ERRLOGSYS and generate a report of
peripheral errors on those devices. Since the /TYPE switch
specification did not include system information, the report will not
include mounts or dismounts for the devices.

REPORT GENERATOR TASK (RPT)

3.3.2 Report Format Switch
/F[ORMAT] :qualifier
QUALIFIERS:

B [RIEF]
F[ULL]
R[EGISTER]
N [ONE]

DEFAULT:
/F:B

The /FORMAT switch tells RPT how to format a report from packets in
the error log file. You can select reports in brief format (one line
for each error), in full format (all the information from the error
log packets specified) or 1in register format (dumping only the
registers for device errors). The following sections describes
qualifiers to the /FORMAT switch.

3.3.2.1 Brief Reports
/F [ORMAT] :B [RIEF]

Brief reports are short, one-line per packet, reports on selected
packets.

The brief report shown in Example 3-1 displays one line of information
about each of the error log packets specified in the RPT command line.
The following list describes the sections in the brief report. The
numbers in the 1list reflect the numbers of the sections in Example
3-1. Note that all these examples show wide width reports.

@ The Error Log Packet Entry Number which describes the
relative position in the Error Log File. This number does
not change unless the file 1is changed, by an ELI/APPEND
command, for example. It is not changed by normal logging
into the file.

The date and time the packet was logged.

The type of entry in the error log file; for example, hard
or soft device errors or system information.

The device on which the error occurred.

®0 OO0

The error type as defined by the hardware information. RPT
does not do any interpretation of these errors; it merely
reports the hardware information.

©

Any other information error logging gathers on the error,
such as the 1I/0 function that occurred at the time of the

error.

REPORT GENERATOR TASK (RPT)

~ The format o

The pack

- pac s were
‘ created) .. S

£1~€

Example 3-1 Error Log Brief Report

RS?illM/M»Plus Error Logging System Version V0=l 11~-MAR-1983 08:27:50 Page
Entry Time Stamp Entry Type Device Error Type Additional Information
4.4 04-JAN-1983 09:51:00 Device Hard Error DL000: Cover Open Function = Read Data
5.1 04~JAN-1983 09:51:06 Device Hard Error DLO00: Data CRC Error Function = Read Data
5.2 04~JAN~1983 09:51:07 Device Hard Error DL0O00: Data CRC Error Function = Read Data
10.3 14-~JAN-1983 14:20:18 Device Soft Error DM001: Data Check Function = Read Data
42,2 15~FEB~1983 14:02:23 Device Soft Error MS000: Uncorrectable Data Function = Write

(Ld¥) MSVL YOLVMINID Ly¥0day

v1-¢

Example 3-1

Selection Information:

Processor . :
- Memory
System_Info
Peripheral

Control

{ Device selections:
(ALL))

(17] Nufnber of packets printed / processed:
i 6. / 6.

® Processing began at 11-MAR~1983 18:12:02
Processing ended at 11-MAR-1983 18:12:20

(Cont.)

Error Log Brief Report

(LdY) MSVI HOLVHINAD 1Lyoday

REPORT GENERATOR TASK (RPT)

3.3.2.2 Full Reports
/F[ORMAT] :F [ULL)

Full reports provide a detailed listing of device events. They list
and interpret all of the information collected in the Error Log
Packets they describe.

The full report, shown in Example 3-2, displays the complete contents
of error 1log packet number 4.4, a Cover Open Error described in the
brief report in Example 3-1. The following 1list describes the
sections of the full report. The numbers on the list reflect the
numbered sections in Example 3-2.

@ The same identification information listed in items 1-5 of
the brief report description.

@® sSystem identification information including operating system
and base level, CPU type and address mapping type.

© Device identification information including the device name,
device type, volume label, controller, unit number, pack and
drive serial numbers, total I/O count on the device, and the
number of hard and soft errors logged previous to this one,.

® 1/0 operation identification includes the terminal and UIC
that initiated the operation, the task name, the beginning
physical memory address of the I/0 buffer, the length of the
1/0 request (in bytes), the maximum number of retries the
device driver allows for an 1I/0 operation, the number of
retries remaining, and the actual I/0 operation taking place.

Concurrent I1/0 activity occurring on other devices when this
- error occurred. This section, which only appears on
~ RSX-11M-PLUS systems, is only present when concurrent 1I/0
activity takes place; otherwise the section is suppressed.

I1/0 operation information includes the device 1/0 function
and type of error as defined by the hardware.

The device error position information locates the error by
cylinder, group, head, sector, and logical block number.

@® The device-supplied information includes a dump of the device
registers according to name, contents, and interpretation of
the bits 1in the registers. The * beside some bit
interpretations means that the condition is likely to have
contributed to the error. It is a sign that you may want to
examine the condition.

The following RPT command line generated the full report in Example
3-2:

RPT>EXEMPF.RPT=RAISIN.LOG/PA:4.4/F:F (]

9T~¢

Example 3~-2 Error Log Full Report

RSX~11M/M~Plus Error Logging System Version VO-1 21-JAN-1982 06:54:13

Page 1

@ Entry 4.4 Sequence 1. DLO000: Device Hard Error (Cover Open) 04~MAY-1981 09:51:00

System Identification:

@® System Ident Processor Mapping CPU Format

RSX-~11M-PLUS 10 PDP-11/70 22-Bit cCpPA 1.

Device Identification Information:

© Device Type Volume Label Controller Unit Subunit Pack SN Drive SN

DL0O00: RLO1 <null label> DL A 0 N/A N/A N/A

I1/0 Operation Identification:

O rT1I: uIC Task Name Address Length Maximum Retries Retries Remaining

TT000: ([003,054] ...BAD 340000 10240. 8. 8.

Concurrent I/0 Acti

00: [031,076] DROU!
 TT003: [031,076] BRUT3 N/A N/A

I/0 Count Hard Errors Soft Errors

292. 0. 0.

Operation

IO.RLB ! IQ.X

~ 10.SPF

(Ldd) MSVI YOLVYIANID L¥0d3aY

I1/0 Operation Information:

@ Device Function

Read Data

Example 3-2 (Cont.) Error Log Full Report

Type of Error

Cover Open

Device Error Position Information:

@ cCylinder

173.

Group Head Sector

N/A

Device Supplied Information:

@ Name

RLCS

RLBA

RLDA

RLMP1

RLMP2

Value

104335

043000
126716

133333

046074

= 01

RLO1

Block
13. 6926.
Interpretation
*[15] Composite Error *[11] Data CRC Error
[9: 8] Drive Selected = 0 [7] Controller Ready
[6] Interrupt Enabled [5: 4] BAl7,BAlé6
[3: 1] Function = Read Data [0] Drive Ready
[15: 0] Bus Address Register
[15: 7] Cylinder Address = 173. [6] Head Selected
[5: 0] sector Address = 14,
[12: 0] Word Count = 9685. words remaining
*[14] Current Head Error *[11] Spin Speed Error
*[10] Write Gate Error [7] Drive Type =
[6] Head Address = Upper head *[5] Cover Open
[4] Heads Out (over the disk) {3] Brushes Home
{ 2: 0] Drive State = Seek

(B)

Lower head

(LdY) MSVI HOLVHINID Ly0day

REPORT GENERATOR TASK (RPT)

3.3.2.3 Register Reports

/F[ORMAT]:R[EGISTER]
Register reports contain the same information as full reports for all
events except those that occur on peripherals. Register reports list
the contents of all device registers for peripherals, but contain no

other information.

The register report in Example 3-3 includes only the register section
of the full report for packet 4.4 (the Cover Open Error).

The following RPT command line generated the Register Report shown in
Example 3-3:

RPT>EXEMPN.RPT=RAISIN.LOG/F:R/PA:4.4

6T1-¢€

RSX~11M/M~Plus Error Logging System

Entry

4.4

Sequence

Device Supplied Information:

Name

RLCS

RLBA

RLDA

RLMP1

RLMP2

Value

104335

043000
126716

133333

046074

Example 3-3

Version V0-1

1. DL000: Device Hard Error

Interpretation

Lad @
et bt b et

0]

7]
0}

0]

Composite Error

Drive Selected = 0
Interrupt Enabled

Function = Read Data

Bus Address Register

173.
14.

Cylinder Address
Sector Address

Word Count = 9685. words remaining

Current Head Error

Write Gate Error

Head Address = Upper head
Heads Out (over the disk)
Drive State = Seek

22~JAN-1982 08:31:15

(Cover Open)

Error Log Register Report

04-MAY~1981 09:51:00

et i

Data CRC Error
Controller Ready

BAl17,BAl6 = 01 (B)
Drive Ready
Head Selected = Lower head

Spin Speed Error
Drive Type = RLO1l
Cover Open

Brushes Home

Page

(Ld¥) NSVl YOLVHINID 1Y0dday

REPORT GENERATOR TASK (RPT)

3.3.2.4 No Report
/F[ORMAT] : N [ONE]

RPT does not generate a formatted output report on event information.
This switch satisfies the requirement to tell RPT how to format the
packets by telling it not to format the packets or produce a
packet-by-packet report. It is useful on RSX-11M-PLUS systems when
you only want to generate a summary report.~

3.3.3 Summary Switc

RSX-11M-PLUS only)

/SU[MMARY] qual
QUALIFIERS°f

A{LL]

E [RROR]
G[EOMETRY]
H[ISTORY]
N[ONE]

DEFAULT:
/SU:N

The /SUMMARY sthch,Qwhich is only avallable on RSX 11M-PLUS systems,
tells RPT how to summarize the information from packets in the error
log file. Since the summaries are comp11at10ns ‘of the data gathered
from the individual packets, the /SUMMARY switch tells RPT what
particular piece of informatlon from the packets to use as the basis
for a summary report.e; , ,

RPT cannot create summary reports in narrow w1dth. If you specify
narrow Wldth, with the /W:N command, RPT formats the packet-by-packet
display in nazrow w1dth, but f mats the summary in wide width,

The follow1ng sectxons descrlbe the summary reports you can generate
with /SUMMARY quallfiers.w: ¥ : e ;

3.3.3.1 The All Qualifier'
/SU[MMARY] A[LL]
RPT generates summary reports sorted by h1story, error, and geometry.

These summary reports are described in Sections 3.3.3.2 through
3.3.3.4. NS It a '

3.3.3.2 ThefErrofoq&liﬁier 3

/SU[MMARY] E[RROR]

RPT generates a summ ry report sorted by -error type. The. error
summary, sorted by aevice,‘ sbows ‘the mnumber of times each error
occurred on the device. The Count column of the summary tells the
number of tnmes the error occurred ; Examplbf3;4 shows the summary
section of an error summary report. . N

REPORT GENERATOR TASK (RPT)

The following RPT command generated the report in Example 3-4:
>RPT ERRORRPT.LOG=/SU:E/F:N

When you specify /FORMAT:NONE, RPT does not display packets
packet-by-packet basis as shown in the previous examples.

on

ZZ-¢

Error Summary (sorted by device):

Device

DM0O0O:

DS001:

MMOO1:

RKO6

RS03

RS04

TU45

Drive SN

FFF

N/A

N/A

148

Example 3-4

Volume Label

<null label>

WORKVOL

WORKVOL

<null label>

Pack SN

N/A

N/A

N/A

N/A

Error Summary Report

Error Type

Data Late

Nonexistent Drive

No error bit found

CRC Error (NRZI)

LRC Error (NRZI)

Count

First/Last Occurrence

01-DEC-1981
01-DEC-1981

01-DEC-1981
01-DEC-1981
01-DEC-1981
01-DEC-1981

01-DEC-1981
01-DEC-1981
01-DEC-1981
01-DEC-1981

15:39:26
15:40:23

15:50:43
16:21:41
16:21:45
16:21:45

16:05:30
16:05:30
16:05:44
16:08:15

Entry

(TS N
NN

(Ldy¥) MSVI HOLVHINID LH¥0d3ay

REPORT GENERATOR TASK (RPT)

3.3.3.3 The Geometry Qualifier

/SU[MMARY] :G [EOMETRY]
RPT generates a summary report based on device geometry (logical block
or sector, for example). The Error Count column of the summary tells
how many times an error occurred in that device location.

Theffdlldﬁing RPT command generated the report in Example 3-5:

SRPT ERRORRPT.LOG=/SU:G/F:N

vi-¢

Example 3-5 Geometry Summary Report

Geometry Summary (sorted by device):

Device Type Drive SN Volume Label Pack SN Head Group Cylinder Sector LBN Error Count
DM00O0O: RKO06 FFF <null label> N/A 0. N/A 111. 15. 7341, 1.
2. N/A 108. 18. 7190. 1.
2. N/A 113. 21. 7523. 1.
2. N/A 82. 0. 5456. 1.
DS001: RSO3 N/A WORKVOL N/A 0. N/A N/A 35. 8. 3.
RS04 N/A WORKVOL N/A 0. N/A N/A 35. 17. 1.

(LdYd) MSVI HOLVYINIOD 1Lyodad

REPORT GENERATOR TASK (RPT)

9¢-¢

Example 3-6
History Summary (sorted by device):

Device -Type Volume Label

RP04/05

5

. PURPLE
RK06 :

RX02

RLOZ <null label>

TE/U16/45/77 <null label>

History Summary Report

Pack SN Total QIOs Hard Errors - Soft Errors

CN/A 135683, 5.
N/A

41670 . 5992.
”N/A - a6, st

wN/A 2213, 4.

(Ldy) MSVI HOLVHINID Lyoday

REPORT GENERATOR TASK (RPT)

3.3.3.5 The None Qualifier
~ /SUIMMARY] :N [ONE]

RPTHdcesinqt~generate‘ a ‘summary report, However, this qualifier
satisfies the RPT requirement on RSX-11M-PLUS that the command line
specify how to summarize the information from Error Log Packets,

3.3.4 The Report Switch

/R[EPORT]:defined report string
DEFAULT:
None

The /REPORT switch invokes a predefined string of switches for RPT to
use. This switch string usually defines a particular type of report,
such as a report for a particular time period. The string contains
any legal combination of RPT switches., The string cannot include the
/REPORT switch.

The /REPORT switch allows you to access a file that contains the
switch combinations you use frequently and 1lets vyou 1invoke the
switches, using the string name, instead of reentering the switches
explicitly.

RPT uses the normal default values described in Section 3.2.1 for all
switches not defined 1in the switch string if the switches have
defaults.

The DIGITAL and user—-defined switch strings are found in the Control
File Module, PARSEM, or in a disk file, LB:[1,6]ERRDEFINE.CFS,
respectively. The /REPORT switch first searches PARSEM, where it
finds DIGITAL-defined strings. If the string is not defined there,
RPT searches ERRDEFINE.CFS.

Since RPT looks in the Control File Module first, you cannot redefine
the DIGITAL-supplied strings unless you alter the control file module.
DIGITAL does not recommend that you alter control file modules. You
can change the definitions for DIGITAL-supplied strings by slightly

altering their names and inserting the switch under the new name in
ERRDEFINE.CFS.

3.3.4.1 Predefined Switch Strings

DIGITAL supplies four predefined switch strings to wuse with the
/REPORT switch.

On RsxrllePLUS systems, the switch strings define:
:"3ffDAy'~ /FO:FULL/SU:ALL/DA: TODAY
'u §i wEEK - /SU: (HISTORY,ERROR)/DA:PREVIOUS : 7
. MO&THl-‘/SU:(HISTORY,ERROR)/DA:PREVIOUS:31

e SYSTEM - /SU: (HISTORY,ERROR)

REPORT GENERATOR TASK (RPT)

On RSX-11M systems, the switch strings define:
e DAY - /FORMAT:FULL/DA:TODAY
® WEEK - /DA:PREVIOUS:7
e MONTH - /DA:PREVIOUS:31l
® SYSTEM - uses all default switches

Note that the names of the predefined switch strings must be entered
in full. They cannot be abbreviated.

3.3.4.2 User Defined Switch Strings
You can name and define your own switch strings to use with the
/REPORT switch by creating and editing LB:[1,6]ERRDEFINE.CFS and
inserting the switch strings you want to define.
Entries in this file must be in the form:
'switchname','switchstring’
Note that single quotation marks are a required part of the syntax.
switchname
The name of the switch string you are defining. This name
becomes the qualifier to the /REPORT switch when you want to
invoke the string. (The name must be nine characters or less.)

switchstring

The RPT switches you select to generate the report. (The switch
string must be 80 characters or less.)

For example, if you want to generate a brief report of peripheral
errors on all the DB devices on your system, edit ERRDEFINE.CFS and
insert the following line:

'DB','/FO:B/TY:PE/DE:DB'
You can then create this report with the following RPT command:

RPT>outfile=infile/R:DB

When you invoke a user-defined string, you must enter the full switch
string name.

3.3.5 The Width Switch
/W[IDTH] :qualifier
QUALIFIERS:

N [ARROW]
W[IDE]

DEFAULT:
/WiW

REPORT GENERATOR TASK (RPT)

The /WIDTH switch allows you to set the line width of the report RPT
generates to narrow (80 columns) or wide (132 columns). The basic
report format does not change when RPT creates a narrow report.
Instead, each 1long line of the report wraps onto the next line at an
appropriate place.

3.4 ERLCNF REPORT MESSAGES

The Error Log Control File displays messages on your terminal if
errors occur during report generation. The messages include an
abbreviation, a severity 1level «code for the error (warning,
informational, or fatal), and text describing the error.

In some cases, RPT also writes the message in the Error Log Report, if
it explains an error that appears in the report. For example, when
RPT fails to find a control file module for a device you specify, it
displays a message on your terminal and in the report that includes
the error message.

This section lists the ERLCNF messages, along with possible causes and
methods for recovery.

The following are Fatal ERLCNF errors:

ERLCNF-F-ARGNOTUNQ, Argument specification <argument> is not unique

Explanation: You did not specify enough characters in a switch
argument to make it unique. It can be confused with another
argument,

User Action: Check the argument syntax and reenter the command.

ERLCNF-W-BADSUBPKT, Possible corruption in the <packetname> subpacket
in item <item label>

Explanation: RPT found something in the subpacket that appeared
to be abnormal. The file may be corrupted or it may be an
internal error within RPT.

User Action: You should never see this message. If you do, send
in an SPR along with a dump of the packet that generated the
message and any other information you have. You can create a
dump of the packet using the starting virtual block number of the
packet: the nnn portion of the packet number nnn.m.

If the message refers to a packet that you have altered, or a
module that you wrote, correct the module, recompile and add it
to the library.

ERLCNF-W-DUILLFORM, MSCP format code <code> is undefined

Explanation: This may be an internal error within RPT. It
indicates a format code in the RA80 packet that is corrupted.

User Action: You should never see this message. If you do, send
in an SPR along with a dump of the packet that generated the
message and any other information you have (See BADSUBPKT
description).

REPORT GENERATOR TASK (RPT)

ERLCNF-F-ILLARGCOM, Illegal argument combination

Explanation: You specified an illegal combination of arguments
with a switch.

User Action: Check the syntax and reenter the command.

ERLCNF-F-ILLFILSPC, Illegal file specification - <filename>

Explanation: You used an illegal file specification with an RPT
report generating command.

User Action: Check the syntax and try the operation again.

ERLCNF-W-ILLPACCOD, Illegal code in packet <packetid>, Code = <xx>

Explanation: The major code for the indicated packet 1is beyond
the range that RPT can handle.

User Action: You should never see this message. 1If you do, send
in an SPR along with a dump of the packet that generated the
message and any other information you have (See BADSUBPKT
description).

If the message refers to a packet that you have altered, or a
module that you wrote, correct the module, recompile and add it
to the library.

ERLCNF-F-ILLPACRAN, Illegal packet range - LOW = <xx>, HIGH = <xx>

Explanation: The RPT Packet Selection switch requires arguments
to be packet numbers in a specific format.

User Action: Determine the correct number for the packet you
want to display, check the syntax and reenter the command.

ERLCNF-W-ILLPACSBC, Illegal subcode in packet <packetid>, Code = <xx>,
Subcode = <xx>

Explanation: The subcode for the indicated packet is beyond the
range that RPT can handle.

User Action: You should never see this message. If you do, send
in an SPR along with a dump of the packet that generated the
message and any other information you have (See BADSUBPKT
description).

If the message refers to a packet that you have altered, or a
module that vyou wrote, correct the module, recompile and add it
to the library.

ERLCNF-F-ILLSWTARG, Illegal switch argument - <argument>

Explanation: RPT recognized the switch argument, but determined
that the argument 1s incorrect in the context given.

User Action: Check the syntax and reenter the command.

REPORT GENERATOR TASK (RPT)

ERLCNF-F-INTERROO1l, Internal error detected at position number <n>

Explanation: This is an internal RPT error. It occurs with the
PARSECLST and PARSECTION error messages.

User Action: You should never see this message. 1If you do, send
in an SPR and the command line that generated the message and any
other information you have.

ERLCNF~-F-MODNOTFND, Module not found - <module>

Explanation: RPT searched ERRLOG.ULB for the module and did not
find it.

User Action: You should never see this message. 1If you do, send
in an SPR and the command line that generated the message. Be
sure to include the name of the module that was missing.

ERLCNF-F-MULARGSPC, Argument <argument> specified multiple times

Explanation: You specified an RPT switch argument more than
once.

User Action: Check the syntax and reenter the command.

ERLCNF-F-MULSWTSPC, Switch <switch)> specified multiple times

Explanation: You entered the specified switch more than once on
the same RPT command line. RPT only allows you to specify each
switch once.

User Action: Check the syntax and reenter the command. Use the
special syntax for multiple switch specifications described in
Chapter 3 if the switch allows it.

ERLCNF-W-NODACSPRT’, No I0_ACTIVITY support, packet = (packet)

Explanation: This is usually caused by enabling I/0 activity
support on RSX-11M systems without enabling the corresponding
support in the error log control file. :

User Action: You should never see this message. If you do, send
in an SPR along with a dump of the packet that generated the
message and any other information you have (See BADSUBPKT
description). e : : e

If the~meésa§e'referskto a packet‘thatkyout~have ka1teted, or a
module ' that you wrote, correct the module, recompile and add it
‘to the library. ' : o
ERLCNF-F-NODIDPACK, No Device_ID subpacket
Explanation: This is an internal error within RPT.
User Action: You should never see this message. If you do, send

in an SPR along with a dump of the packet that generated the
message and any other information you have.

REPORT GENERATOR TASK (RPT)

ERLCNF-W-NODRIVSZ, No drive of size <size> for mnemonic <ddnn>; using
EUNKWN

Explanation: This may be an internal error within RPT.

User Action: You should never see this message if you have all
DIGITAL hardware. If you have non-DIGITAL hardware, and you
receive this message, it is caused by a disagreement between
RPT's table of device sizes and the actual size of the device.
See Section 4.5.3.4 for information on changing the table of
device sizes.

ERLCNF-W-NODRIVTYP, No drive type <type> for mnemonic <dd>; using
EUNKWN

Explanation: This may be an internal error within RPT. From the
mnemonic, the drive appears to be a MASSBUS device. However, RPT
does not recognize the device type as a MASSBUS device.

User Action: You should never see this message if you have only
DIGITAL hardware. If you have non-DIGITAL hardware, the error is
caused by disagreement between RPT's table of device sizes and
the size of the actual device. See Section 4.5.3.4 for
information on changing the table of device sizes.

ERLCNF-F-NOINPFILE. No input file specified

Explanation: RPT did not find an input file on the command line.
This message occurs when you failed to specify an equals (=) sign
in the command.

User Action: Check the syntax and reenter the command.

ERLCNF-W-NONOTES, No notes available for device <devicename>

Explanation: RPT includes a facility for displaying notes at the
bottom of Full or Register reports. This internal error message
indicates that a device which did not have an associated NOTES
module.

User Action: You should never see this message. If you do, send
in an SPR along with a dump of the packet that generated the
message and any other information you have (See BADSUBPKT
description).

If the message refers to a packet that you have altered, or a
module that you wrote, correct the module, recompile and add it
to the library.

ERLCNF-F-NOREMATCH, No predefined switch string for <string>
Explanation: RPT did not find the defined report string you used
in a /R[EPORT] command, either in ERRDEFINE.CFS or among the
DIGITAL-defined report strings. Remember to use the entire name

of the DIGITAL or user-defined string.

User Action: Check the syntax and reenter the command.

REPORT GENERATOR TASK (RPT)

ERLCNF-F-OPNINPFIL, Failed to open the input file

Explanation: RPT could not open the input file specified. This
message is accompanied by the FILERRCOD information message, that
displays the FCS error code from the file.

User Action: Check the FCS error code and retry after correcting
the indicated condition.

ERLCNF-F-OPNREPFIL, Failed to open the report file
Explanation: RPT could not open the report (output) file
specified. This message 1is accompanied by the FILERRCOD
information message, that displays the FCS error code from the
report file.
User Action: Check the FCS error code and retry after correcting
the indicated condition.

ERLCNF-F-OPNUSRFIL, Failed to open the user file
Explanation: RPT could not open the user file specified. This
message is accompanied by the FILERRCOD information message, that

displays the FCS error code from the file,

User Action: Check the FCS error code and retry after correcting
the indicated condition.

ERLCNF-F-SWTNOTUNQ, Switch specification <switch> is not unique

Explanation: You did not specify enough characters of a switch
to make it unique. It can be confused with another switch.

User Action: Check the switch syntax and reenter the command.

ERLCNF-F-SYNTAXERR, Command line syntax error

Explanation: Some element of the command line does not have the
correct syntax.

User Action: Check the syntax and reenter the command.

ERLCNF -F-TOOFEWARG, Too few arguments in switch <switch name>

Explanation: You specified a switch that requires one or more
arguments, without specifying enough arguments.

User Action: Check the syntax and reenter the command.

ERLCNF-F-UNKNWARG, Unknown argument - <argument>

Explanation: You specified an argument that is unknown to RPT.

User Action: Check the syntax and reenter the command.

REPORT GENERATOR TASK (RPT)

ERLCNF-W-UNKNWNDEV, Device mnemonic <dd> is unknown; using EUNKWN
Explanation: This may be an internal error within RPT.

User Action: You should never see this message. 1If you do, send
in an SPR along with a dump of the packet that generated the
message and any other information you have (See BADSUBPKT
description).

If the message refers to a packet that you have altered, or a
module that you wrote, correct the module, recompile and add it
to the library.

ERLCNF-W-UNKNWNNOT, No note number <number> for device <devicename>
Explanation: RPT includes a facility for displaying notes at the

bottom of reports. This internal error message indicates that a
device tried to print a note that was not available.

User Action: You should never see this message. If you do, send
in an SPR along with a dump of the packet that generated the
message and any other information you have (See BADSUBPKT
description).

If the message refers to a packet that you have altered, or a
module that you wrote, correct the module, recompile and add it
to the library.

ERLCNF-F-UNKNWSWT, Unknown switch - <switchname>

Explanation: You specified an unknown RPT switch.

User Action: Check the syntax and reenter the command.

The following are ERLCNF Warning messages:

ERLCNF-W-USEEUNKWN, Module <modulename> not found; using EUNKWN

Explanation: RPT was not able to find the module specified in
the Error Logging Universal Library and went to the EUNKWN module
instead. This causes a formatted dump of the device register to
appear in the report. This message usually occurs if you tune
your ULB and eliminate the module for a device you want to use,.

User Action: Retune the ULB to include the missing module.
The following are ERLCNF Informational messages. They accompany other

ERLCNF messages to give you additional information. They do not
affect RPT operation.

ERLCNF-I-FILERRCOD, File error code = <errorcode>

Explanation: This message displays the FCS error code for a
file. It accompanies messages on file access failures.

User Action: None 1is necessary. This is an informational
message.

3-34

REPORT GENERATOR TASK (RPT)

ERLCNF-I-PARSECLST, PARSE.SECTION LIST = <buf>

Explanation: This is an internal error within RPT. This message
accompanies the INTERR(Q01l message described above.

User Action: You should never see this message. If you do, send
in an SPR along with a dump of the packet that generated the
message and any other information you have (See BADSUBPKT
description).

If the message refers to a packet that you have altered, or a
module that you wrote, correct the module, recompile and add it
to the library.

ERLCNF-I-PARSECTION, PARSE.SECTION = <buf>

Explanation: This 1is an internal error within RPT. it
accompanies the INTERR0OO1l message described above.

User Action: You should never see this message. If you do, send
in an SPR along with a dump of the packet that generated the
message and any other information you have (See BADSUBPKT
description).

If the message refers to a packet that you have altered, or a
module that you wrote, correct the module, recompile and add it
to the library.

3.5 ERLRPT REPORT MESSAGES

Most of the following error messages are either associated with errors
in the control file module that RPT is interpreting, or internal RPT
errors.

If the message refers to a control file module that you have altered,
or a module that you wrote and added to the error logging system,
correct the error, recompile the module, and add it to the 1library.
The module 1in which the error occurred is specified in the first (or
top) 1line of the execution stack dump produced by RPT. This
information appears on the report file and on the terminal from which
RPT is being run.

If the message refers to a DIGITAL-supplied module or is an internal
RPT error, please submit an SPR and include a listing of the error log
report file produced by RPT.

ERLRPT-F-ACCUDFVAR, Attempt to access undefined variable.

Explanation: A control file module attempted to access a
variable which had not been defined.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

REPORT GENERATOR TASK (RPT)

ERLRPT-F-BADDIGIT, Invalid numeric digit in conversion.

Explanation: A numeric literal or the ASCII string argument for
the $CODSOCTAL, %COD$DECIMAL, %CODSHEX, %COD$BCD, %CODSBINARY, or
$CODSMACHINE function contained an 1illegal character for the
specified radix or was null or blank.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-BITFLDSIZ, Bit or field too large in extraction operation.

Explanation: The bit or field in an extraction operation
exceeded the size of the value on which the extraction was
performed.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-BITTOOHIG, Bit number too large for specified storage unit.

Explanation: The bit number specified by the character string
portion of a #BI, #WI, #LI, #QI, or #VI numeric literal was too
large for the specified value size.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-CASENOMAT, CASE selection expression has no matching value.

Explanation: No match was found for the value of the selector
expression 1in a CASE statement, and no ELSE clause was specified
in the CASE statement.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-CONTROLFI, Could not open control file.
Explanation: The control file module could not be opened.

User Action: 1If using the default control file library, check to
see that it is in either LX:[1,6] or LB:[1,6] and is not locked,
and that you have read acces to it, 1If using a wuser specified
control file, check to see that it is not locked and that you
have read access.

ERLRPT-F-COROUMIS, COROUTINE statement executed with no COROUTINE
stack frame.

Explanation: A COROUTINE statement was executed without
specifying a coroutine in the corresponding CALL statement.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

REPORT GENERATOR TASK (RPT)

ERLRPT-F-CRASH, Control file requested abort.

Explanation: The CRASH statement was executed by a control file
module,

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F~-DATNOTEXI, Data declaration is longer than data.

Explanation: The amount of data specified in a PACKET or
SUBPACKET declaration was larger than the amount of data in the
PACKET or SUBPACKET. This condition may be due to an error in
the control file module or an error in the error log packet being
analyzed.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-DECAGAIN, Group in declaration already declared.
Redeclaration illegal.

Explanation: A DECLARE, PACKET, SUBPACKET, TABLE, or
DYNAMIC TABLE statement was executed with a group name that was
already defined.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-DECGRPCTX, Group in DECODE statement has no context.

Explanation: The group in the DECODE statement was a TABLE,
DYNAMIC TABLE, or PACKET or SUBPACKET with the REPEATED attribute
for which the current record context was not valid.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-DECNOBIT, No BIT declaration corresponding to DECODE 1list
item,

Explanation: The bit number specified for a data item 1in the
DECODE statement had no corresponding BIT declaration for the
data item in the specified group.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-DECNOTEXT, No bit to text translation for DECODE list item.
Explanation: The BIT declaration corresponding to the bit number
specified for a data item in the DECODE statement, had no print

expression.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

REPORT GENERATOR TASK (RPT)

ERLRPT-F-DEFCASELS, No match for control expression in CASE
conditional definition.
Explanation: No match was found for the value of the selector
expression in a CASE conditional definition and no ELSE clause
was specified.
User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-DEFNOCONT, Attempt to access data in variable in group with
null context.
Explanation: The control file module attempted to access a
variable in a TABLE, DYNAMIC TABLE, or PACKET or SUBPACKET with
the REPEATED attribute for which the current record context was
not valid.
User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-DEFNOSTAK, Declaration stack overflow.

Explanation: The stack wused for processing declarations has
overflowed.

User Action: Edit RPTBLD.CMD to increase the psect extension for
psect DCSTKO, and rebuild RPT.

ERLRPT-F-DEFSTKUND, Internal error - Declaration stack underflow.
Explanation: This is an internal error within RPT.

User Action: Please submit an SPR with any information you have.

ERLRPT-F-DIVZERO, Attempt to divide by zero.
Explanation: A control file module attempted to divide by zero.
User Action: Correct the user-written module or submit an SPR
for DIGITAL~supplied modules.
ERLRPT-F-EXEINVCOD, Internal error - Execution stack entry has invalid
code,
Explanation: This is an internal error within RPT.
User Action: Please submit an SPR with any information you have.
ERLRPT-F-EXEINVPOS, Internal error - INPUT file has invalid position
value.
Explanation: This is an internal error within RPT.

User Action: Please submit an SPR with any information you have.

REPORT GENERATOR TASK (RPT)

ERLRPT-F-EXPGRPNOC, Attempt to reference POINTER for group without
context.

Explanation: A control file module attempted to reference the
POINTER special variable for a TABLE, DYNAMIC_TABLE, or PACKET or
SUBPACKET with the REPEATED attribute for which the current
record context was not valid.
User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.
ERLRPT-F-EXPINVCOD, Internal error - Invalid expression item code 1in
expression.
Explanation: This is an internal error within RPT.
User Action: Please submit an SPR with any information you have.
ERLRPT-F-EXPINVTYP, Internal error - invalid symbol data type in
expression.
Explanation: This is an internal error within RPT.
User Action: Please submit an SPR with any information you have.
ERLRPT-F-EXPNORSYM, Symbol without read access referenced in

expression.

Explanation: A control file module attempted to read a variable
defined in a DECLARE statement, which had not been initialized.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.
ERLRPT-F-EXPUDFGRP, Undefined group referenced in expression.

Explanation: A control file module attempted to reference a
group which had not been defined.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.
ERLRPT-F-EXPUDFSYM, Undefined symbol referenced in expression

evaluation.

Explanation: A control file module attempted to access an
undefined symbol,

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.
ERLRPT-F-EXPVALOVR, Value stack overflow during expression evaluation.

Explanation: The stack used for processing values and
expressions has overflowed.

User Action: Edit RPTBLD.CMD to increase the psect extension for
psect VLSTKO, and rebuild RPT.

REPORT GENERATOR TASK (RPT)

ERLRPT-F-EXPVARNOC, Attempt to access variable without context in
expression.

Explanation: A control file module attempted to reference a
variable in a TABLE, DYNAMIC_TABLE, or PACKET or SUBPACKET with
the REPEATED attribute for which the current record context was
not valid.
User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-FILERCLOS, File close error.

Explanation: An error occurred when RPT attempted to <close a
file.

User Action: Check for file access conflicts, device errors, or
low pool condition.
ERLRPT-F-FILERREAD, File read error.

Explanation: An error occurred when RPT attempted to read a
file.

User Action: Check for file access conflicts, device errors, or
low pool condition.

ERLRPT-F-FILERSPAN, Records in file are not allowed to span blocks.

Explanation: The span block attribute of the error 1log file
being analyzed was set. ELI creates the error log file with this
attribute set, and neither ELI, ERRLOG, nor RPT will modify 1it,
but some other task may have.
User Action: Use ELI to (re)start error logging with a new
version of the error 1log file, then use PIP to append the
previous version to the new version. PIP may produce the
following warning message:

PIP -- Input files have conflicting attributes

This message can be ignored.

ERLRPT-F-FILERWRIT, File write error.

Explanation: An error occurred when RPT attempted to write to a
file.

User Action: Check for file access conflicts, device errors, or
low pool condition.

ERLRPT-F-FILINTOPN, Internal error - file already open.
Explanation: This is an internal error within RPT.

User Action: Please submit an SPR with any information you have.

3-40

REPORT GENERATOR TASK (RPT)

ERLRPT-F-FILINVCOD, Internal error - invalid file code for specified
operation.

Explanation: This is an internal error within RPT.

User Action: Please submit an SPR with any information you have.

ERLRPT-F-FILINVMOD, Control file library has invalid module name table
format.

Explanation: The control file library has an invalid module name
table format. The control file must be a universal library.

User Action: Make sure that the control file 1is a valid
universal library and rerun RPT.

ERLRPT-F-FILNOTCTX, Operation requires that dynamic file have context.

Explanation: A control file module executed a POINTER DELETE or
POINTER MOVE statement on a DYNAMIC TABLE for which the current
record context was not valid.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-FILNOTEXI, Internal error - declared dynamic file does not
exist.

Explanation: This is an internal error within RPT.

User Action: Please submit an SPR with any information you have,

ERLRPT-F-FILNOTVIR, Could not create virtual address space for module
table.

Explanation: RPT could not dynamically extend its address space
to create room for the module table.

User Action: 1If the maximum task size for the partition is less
than 32K, use the MCR command SET /MAXEXT or DCL command SET
SYSTEM/EXTENSION LIMIT to increase the maximum task size, or run
RPT in a different partition.

ERLRPT-F-FILTOOBIG, File too large to read.

Explanation: RPT cannot analyze error log files which are larger
than 65535 blocks.

User Action: Use ELI to create new error log files more often.

ERLRPT-F-FINDFIELD, FIELD in FIND statement does not have valid data
type.

Explanation: A control file module executed a FIND statement
where the specified FIELD was not NUMERIC, STRING, ASCII,
RSXTIME, VMSTIME, or LOGICAL.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

REPORT GENERATOR TASK (RPT)

ERLRPT-F-FINDNOCON, FIND statement not valid on a group with no
context.

Explanation: A control file module executed a FIND statement for
a TABLE or DYNAMIC_TABLE attribute for which the current record
context was not valid.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-FORCLSNUL, FORMAT clause null,

Explanation: A control file module executed a WRITE or
WRITE_GROUP statement with a null FORMAT clause.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-FORFIELDS, FORMAT error - Field too narrow for variable to
print.

Explanation: A control file module executed a WRITE GROUP
statement where the width specified by a !DP directive was too
short for the corresponding variable.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-FORFIELDW, FORMAT error - Name too 1long for field in IDF
directive.

Explanation: A control file module executed a WRITE_GROUP
statement where the width specified in a !DF directive was less
than the length of the name of the corresponding variable

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-FORINVCHA, FORMAT error - Invalid character in FORMAT clause.
Explanation: A control file module executed a WRITE or
WRITE_GROUP statement with a FORMAT clause containing a
non-printing character.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-FORINVDIR, FORMAT error - Invalid format directive code.
Explanation: A control file module executed a WRITE or
WRITE GROUP statement with a FORMAT clause containing an invalid

format directive.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

REPORT GENERATOR TASK (RPT)

ERLRPT-F-FORINVVTY, FORMAT error - Attempt to output invalid variable
type.

Explanation: A control file module executed a WRITE or
WRITE GROUP statement with a FORMAT clause containing a !DP
directive for which the corresponding variable was the wrong

type.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-FORLINEOV, FORMAT error - Line overflow in FORMAT clause.

Explanation: A control module executed a WRITE or WRITE GROUP
statement during which the output buffer overflowed while
processing the FORMAT clause. The output buffer is 132
characters wide.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-FORNOARG, FORMAT error - Format directive missing required
argument,

Explanation: A control file module executed a WRITE or
WRITE GROUP statement with a FORMAT clause containing an !FC or
IFS directive with no numeric argument.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-FORNONAME, FORMAT error - request to print a field name for a
value.

Explanation: A control file module executed a WRITE or
WRITE_GROUP statement with a FORMAT clause containing a !DF
directive matched with a value rather than a variable.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-FORNOREAD, FORMAT error - Attempt to print a variable without
read access.

Explanation: A control file module executed a WRITE or
WRITE_GROUP statement which attempted to print a variable without
read access.
User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-FORNOTASC, FORMAT clause not ASCII.

Explanation: A control file module executed a WRITE or
WRITE_GROUP statement with a non-ASCII FORMAT clause.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

REPORT GENERATOR TASK (RPT)

ERLRPT-F-FUNDATNOT, Specified (sub)packet 1is not large enough for
offset.
Explanation: A control file module executed a look-ahead
function where the value of the offset argument was larger than
the specified PACKET or SUBPACKET.
User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-FUNFIELDS, 1Invalid conversion code argument to time

conversion function.

Explanation: A control file module executed a time conversion
function with an illegal value for the conversion code argument.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-FUNINVPOI, Invalid string pointer value in string function.
Explanation: A control file module executed a %STRSPARSE or
$¥STRSQUOTE function where the value of the pointer argument was
larger than the length of the string argument.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-FUNNOTCHA, Argument to STRSCHAR is not 1in wvalid range for

character.

Explanation: The value of the argument for the $STRSCHAR
function must be in the range 0 to 127(10).

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.
ERLRPT-F-FUNNOTIMP, Function not implemented.
Explanation: This is an internal error within RPT.
User Action: Please submit an SPR with any information you have.
ERLRPT-F-FUNQUOODD, Quote string in STRSQUOTE function must have even
length.

Explanation: A control file module executed a $STRSQUOTE
function, where the quote string argument was not an even length,

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-FUNSTRSIZ, Output string from string function too large.

Explanation: A control file module executed a string function
which resulted in a string longer than 255 characters.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

REPORT GENERATOR TASK (RPT)

ERLRPT-F-FUNWRONGA, Incorrect number of arguments in function call.

Explanation: A control file module executed a function call with
the wrong number of arguments.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-GROUPDEF, Attempt to reference undefined group.

Explanation: A control file module attempted to reference an
undefined group.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-GROUPNOC, POINTER statement executed on a group without
context.

Explanation: A control file module executed a POINTER statement
on TABLE or DYNAMIC_TABLE for which the current record context
was not valid.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.
ERLRPT-F-HEAPOVERF, Heap too small to hold value. Overflow.

Explanation: The heap used for processing values and expressions
has overflowed.

User Action: Edit RPTBLD.CMD to increase the psect extension for
psect VHEAPO, and rebuild RPT.

ERLRPT-F-INCFORWRI, Too few FORMAT expressions in WRITE GROUP
statement.

Explanation: A control file module executed a WRITE_GROUP
statement which did not have two FORMAT expressions in the FORMAT
clause.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.
ERLRPT-F-INCRDECRL, Numeric variable in INCREMENT or DECREMENT larger

than value.

Explanation: A control file module executed an INCREMENT or
DECREMENT statement on a variable which was larger than a word.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

REPORT GENERATOR TASK (RPT)

ERLRPT-F-INCRDECRN, Variable in INCREMENT or DECREMENT statement not
numeric.

Explanation: A control file module executed an INCREMENT or
DECREMENT statement on a non-numeric variable.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-INCRDECRV, Variable in INCREMENT or DECREMENT not valid or
read-only.
Explanation: A control file module executed an INCREMENT or
DECREMENT statement on a variable which was not both readable and
writeable.
User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-INTINVDEC, Internal error - Invalid declaration entry type in
WRITEGROUP.
Explanation: This is an internal error within RPT.
User Action: Please submit an SPR with any information you have.

ERLRPT-F-INTVALSTK, Internal error - statement left information on
value stack.

Explanation: This is an internal error within RPT.

User Action: Please submit an SPR with any information you have.
ERLRPT-F-INVRADCNV, Internal error - Invalid radix code for

conversion.

Explanation: This is an internal error within RPT.

User Action: Please submit an SPR with any information you have.
ERLRPT-F-LEAVENOC, LEAVE statement executed outside of a conditional

block.

Explanation: A control file module executed a LEAVE statement,
which was not inside a loop statement block.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-LISTNOEXP, No expression in LIST for corresponding SEARCH
variable.

Explanation: A control file module executed a SEARCH statement
in which a match was found, but there were not enough expressions
in the list element for the number of variables specified in the
GET clause of the SEARCH statement.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

REPORT GENERATOR TASK (RPT)

ERLRPT-F-LISTNOMAT, Too many expressions in SEARCH statement for
referenced LIST.

Explanation: A control file module executed a SEARCH statement
in which there were too many search expressions for the specified
LIST.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-LISTNOTDF, Group referenced 1in SEARCH statement 1is not
defined.

Explanation: A control file module executed a SEARCH statement
in which the name specified for the LIST was not defined.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-LISTNOTLS, Group referenced in SEARCH statement 1is not a
LIST. R

Explanation: A control file module executed a SEARCH statement
in which the name specified for the LIST was not defined as a
list.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-MATDIFTYP, Values of differing type cannot be matched.

Explanation: A control file module executed a MATCH statement
which tried to match values of differing types.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-MATVALSIZ, Values of different size cannot be matched.

Explanation: A control file module executed a MATCH statement
which tried to match values of differing size.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-MEMALLFAI, Memory allocation failure - insufficient wvirtual
memory.

Explanation: RPT could not dynamically extend its address space
to create room for DYNAMIC TABLEs or control file modules.

User Action: If the maximum task size for the partition is less
than 32K, use the MCR command SET /MAXEXT or DCL command SET
SYSTEM/EXTENSION LIMIT to increase the maximum task size, or run
RPT in a different partition., If this occurs while generating
summaries for large numbers of packets, try reducing the amount
of data needed by using RPT switches to reduce the number of
packets analyzed for each summary.

REPORT GENERATOR TASK (RPT)

ERLRPT-F-MEMINIFAI, Memory allocation initialization failure.

Explanation: RPT could not dynamically extend its address space

to create room for its data structures.

User Action: If the maximum task size for the partition is

than 32K, wuse the MCR command SET /MAXEXT or DCL command SET

SYSTEM/EXTENSION LIMIT to increase the maximum task size, or
RPT in a different partition.

ERLRPT-F-MODLOAGRP, Undefined group referenced by module to be loaded.

Explanation: The control file module being loaded, attempted
reference an undefined group.

User Action: Correct the user-written module or submit an
for DIGITAL-supplied modules,
ERLRPT-F-MODLOASYM, Undefined symbol in module to be loaded.

Explanation: The control file module being loaded, attempted
reference an undefined symbol.

User Action: Correct the user-written module or submit an
for DIGITAL-supplied modules.

ERLRPT-F-MODNAMENL, Module name cannot be null.

Explanation: A control file module attempted to access another

control file module which had a null or blank name.

User Action: Correct the user-written module or submit an
for DIGITAL-supplied modules.

ERLRPT-F-MODNOMEM, Insufficient free memory to load module.

Explanation: RPT could not dynamically extend its address space

to create room for control file modules.

User Action: If the maximum task size for the partition is

than 32K, use the MCR command SET /MAXEXT or DCL command SET

SYSTEM/EXTENSION LIMIT to increase the maximum task size, or

RPT in a different partition. If this occurs while generating
summaries for large numbers of packets, try reducing the amount
of data needed by using other switches to reduce the number of

packets analyzed for each summary.

ERLRPT-F-MODSTART, Starting module for execution not found.

Explanation: The control file 1library must contain a module

named DISPATCH.

User Action: Correct the user-written module or submit an
for DIGITAL-supplied modules.

REPORT GENERATOR TASK (RPT)

ERLRPT-F-MODZERO, Attempt to modulus by =zero.

Explanation: A control file module attempted to perform a MOD by
Zero.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-NOMORESTK, Execution stack overflow.
Explanation: RPT's execution stack has overflowed.
User Action: Edit RPTBLD.CMD to increase the psect extension for
psect XCSTKO, and rebuild RPT.

ERLRPT-F-NOSTACKE, Internal error - Pop from execution stack with
empty stack.
Explanation: This is an internal error within RPT.

User Action: Please submit an SPR with any information you have.

ERLRPT-F-NOTDYNFIL, Dynamic file operation performed on invalid group.
Explanation: A control file module specified a group which was
not defined as DYNAMIC TABLE in a statement or operation
requiring a DYNAMIC_TABLE.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-NOTPOINT, POINTER LOAD or MOVE executed with a non-pointer

variable.

Explanation: A control file module executed a POINTER LOAD or
MOVE with a variable which was not a pointer.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.
ERLRPT-F-NOTPOIVAR, POINTER LOAD with no pointer variable specified.

Explanation: A control file module executed a POINTER LOAD or
MOVE with no variable specified.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-NUMINVOPR, Invalid numeric double-operand operation code.
Explanation: This is an internal error within RPT.

User Action: Please submit an SPR with any information you have.

REPORT GENERATOR TASK (RPT)

ERLRPT-F-OPRINVLOG, Attempt to perform logical operation on an invalid
type.

Explanation: A —control file module attempted to perform a
logical operation with operands that were neither NUMERIC nor
LOGICAL.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-OPRNOTIMP, Operation not implemented.

Explanation: A control file module attempted to perform a
multiplication where both operands were larger than a word value.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-PACKETSIZ, Illegal packet size.

Explanation: The size of an error log packet was zero or would
cause the packet to cross a block boundary.

User Action: Please submit an SPR with any information you have.

ERLRPT-F-POISETGRP, POINTER variable is not from correct group in
POINTER ... LOAD or MOVE.

Explanation: A control file module executed a POINTER LOAD or
MOVE statement in which the optional pointer variable was not a
pointer to the specified DYNAMIC TABLE.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT~-F~-PQISETMOD, POINTER variable is from wrong module in POINTER
... LOAD or MOVE.

Explanation: A control file module executed a POINTER LOAD or
MOVE statement in which the DYNAMIC TABLE pointed to by the
optional pointer variable was not in the same module as the
DYNAMIC TABLE specified in the POINTER statement.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-POISETSIZ, GROUP too small for POINTER in POINTER cee LOAD
or MOVE.

Explanation: A control file module executed a POINTER LOAD or
MOVE statement in which the optional pointer wvariable was
pointing past the end of the specified DYNAMIC_TABLE.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

REPORT GENERATOR TASK (RPT)

ERLRPT-F-PROCNAMEN, Null procedure name.

Explanation: A control file module specified a null or blank
procedure name in a CALL or ENABLE statement.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.
ERLRPT-F-RAD5S0BYTE, Cannot convert a byte using RAD50 conversion.

Explanation: A control file module attempted to convert an ASCII
string or numeric literal to a BYTE using RADS50 conversion.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F~-RELINVCOD, Invalid relational operator.
Explanation: This is an internal error within RPT.

User Action: Please submit an SPR with any information you have.

ERLRPT-F-RETURNNOC, A RETURN was executed with no corresponding CALL.

Explanation: A control file module executed a RETURN statement
outside of a procedure or coroutine.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-SELECTNOM, SELECT statement index has no matching statement
block.

Explanation: A control file module executed a SELECT statement
with no statement block to match the value of the numeric control
expression.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-SIGNOTASC, Parameter or message in SIGNAL-class statement not
ASCII.

Explanation: A control file module executed a SIGNAL,
SIGNAL_STOP, or MESSAGE statement with a non-ASCII argument.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-SIGTOOBIG, Message and parameters in SIGNAL-class statement
too long.

Explanation: A control file module executed a SIGNAL,
SIGNAL_STOP, or MESSAGE statement in which the length of the
concatenated message and parameters was longer than 255
characters.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

REPORT GENERATOR TASK (RPT)

ERLRPT-F-SIGTOOMAN, Cannot issue a SIGNAL during SIGNAL processing.
Explanation: A control file module executed a SIGNAL or
SIGNAL STOP statement while processing a previous SIGNAL or
SIGNAL_STOP.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-STANOTIMP, Statement not implemented.

Explanation: This is an internal error within RPT.

User Action: Please submit an SPR with any information you have.

ERLRPT-F-STANOTVAL, Internal error - invalid statement code.
Explanation: This is an internal error within RPT.

User Action: Please submit an SPR with any information you have.

ERLRPT-F-SUBEXTBIG, Substring extraction end element exceeds string.
Explanation: A control file module attempted to perform a
substring extraction in which the substring exceeded the end of
the string.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-SUBPKTSIZ, Illegal subpacket size.

Explanation: The current subpacket, exceeded the bounds of the
packet.

User Action: Please submit an SPR with any information you have.

ERLRPT-F-UNDEFPROC, Specified procedure not found.

Explanation: A control file module has executed a CALL
statement, and the specified procedure was not found.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules,
ERLRPT-F-UNDMODULE, Specified module not found.

Explanation: A —control file module has executed a CALL
statement, and the specified module was not found.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

REPORT GENERATOR TASK (RPT)

ERLRPT-F-VALSTKOVR, Value stack overflow.

Explanation: The stack used for processing values and
expressions has overflowed.

User Action: Edit RPTBLD.CMD to increase the psect extension for
psect VLSTKO, and rebuild RPT.

ERLRPT-F-VALUESIZE, Value in expression is too large.

Explanation: A control file module evaluated an expression in
which an intermediate value or the final value was too large.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-VALUETYPE, Value in expression is wrong type.

Explanation: A control file module evaluated an expression in
which an intermediate value or the final value was the wrong
type.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-VARNOCONT, Attempt to access variable 1in group without
context.

Explanation: A control file module attempted to reference a
variable for a TABLE, DYNAMIC TABLE, or PACKET or SUBPACKET with
the REPEATED attribute for which the current record context was
not valid.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-VARNODATA, Attempt to access variable in group with no data.
Explanation: A control file module attempted to reference a
variable for a TABLE, DYNAMIC_ TABLE, or PACKET or SUBPACKET with
no data.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLRPT-F-VARNOTDAT, Attempt to load data into a BIT or FIELD variable.
Explanation: A control file module attempted to 1load a value
into a BIT or FIELD in a group, rather than into the data item
for which the BIT or FIELD was defined.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

3-53

REPORT GENERATOR TASK (RPT)

ERLRPT-F-WRITEACCV, Attempt to load a value into a non-writable

variable.

Explanation: A control file module attempted to 1load a value
into a data item in a PACKET, SUBPACKET or TABLE.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

CHAPTER 4

ERROR LOG CONTROL FILE ARCHITECTURE

This chapter describes the architecture of Error Log Control Files. A
knowledgeable system programmer can use the information presented here
to add user-written modules to the Error Logging System.

This chapter includes the following major sections:

e Terms and Concepts -- Defines the most important terms and
concepts presented in this chapter.

e Control File Module Architecture -- Describes RSX-11M and
RSX-11M-PLUS control file modules, the flow of program control
through the modules, module compilation paths, and recompiling
modules after modifications.

e Internal Interfaces -- Describes interaction Dbetween control
file modules, with examples.

e Module Dispatching -- Explains event-level and device- or
CPU-level dispatching.

e Support of Non-DIGITAL Devices -- Provides the information you
need to include driver and error 1logging support for
non-DIGITAL devices.

e Error Logging System Source Code Examples - Includes
annotated 1listings of source code for four modules: ERM23,
DSP2M1, DSP2Pl, and NRM23. The source code 1is keyed to
discussions in the 1Internal Interfaces section (4.3) and
Support of Non-DIGITAL Devices section (4.5) of this chapter.

4.1 TERMS AND CONCEPTS

Here are definitions of the most important terms and concepts
presented in this chapter:

e Control File - A collection of modules that together perform a
function, such as processing error log files.

e Module - A component of the Error Logging System. There are
three kinds of modules: source modules, which have the file
type .CNF, object modules, which have the file type .ICF, and
listing modules, which have the file type .LST. Module names
that end in M1 are generally common to both RSX-11M and
RSX-11M-PLUS systems (for example, DEVSM1l), except where the
module name has an alternate Pl ending (for example, DSP2M1
and DSP2Pl). In this case, module names that end in Ml are
for RSX-11M systems only and those that end 1in Pl are for
RSX-11M-PLUS systems only.

ERROR LOG CONTROL FILE ARCHITECTURE

e Control File Language - The language in which control files
are written. The Control File Language (CFL) is described in
Chapter 5.

e Error Log File - The file that contains the raw error logging
data. One record in the file corresponds to one event. The
default specification for this file is LB:[1,6]LOG.ERR.

e Event - Something that is logged in the error 1log file. An
event may be the recording of an actual device error or it
could be some informational data, such as a device mount or a
change in system time.

® Packets/Subpackets - Each record (or event) is also a packet.
A packet begins with a length word and is followed by data,
which can consist of zero or more subpackets. A subpacket

also consists of a length word followed by data. Every packet
in the Error Logging System contains at least one subpacket.

NOTE

The packet length word begins the packet, but it is
not part of the packet; the packet length word is
kept by FCS. Therefore, the packet length word is not
included 1in the 1length of the packet. However, the
subpacket length words are part of the packet and are
included in its length. This is consistent throughout
the Error Logging System.

See Figure 4-1 for the general structure of an error-logging
packet.

4.2 CONTROL FILE MODULE ARCHITECTURE

The Error Logging System 1s modular; that 1is, 1information and
dependencies specific to different devices are isolated in modules
written for each device. This section describes the architecture of
the RSX-11M and RSX-11M-PLUS control file modules: the modules
themselves, the flow of program control through the modules, the
compilation paths, and modifying and recompiling the modules.

ERROR LOG CONTROL FILE ARCHITECTURE

PACKET LENGTH

SUBPACKET LENGTH

HEADER SUBPACKET

‘ SUBPACKET LENGTH

TASK SUBPACKET

SUBPACKET LENGTH

DEVICE IDENTIFICATION SUBPACKET —

SUBPACKET LENGTH

DEVICE OPERATION SUBPACKET

SUBPACKET LENGTH

DEVICE ACTIVITY SUBPACKET
(OPTIONAL ON RSX-11M)

SUBPACKET LENGTH

DATA SUBPACKET

ZK-1111-82

Figure 4-1 - Structure of Error-Logging Packet

4.2.1 RSX-11M and RSX-11M-PLUS Control File Modules

Here are short descriptions of the function of each of the RSX-11M and
RSX-11M-PLUS control file modules. Remember that modules with names
that end with "M1" are either common to both RSX-11M and RSX-11M-PLUS
or are for RSX-11M only, and modules with names ending with "Pl1l" are
for RSX-11M-PLUS only.

DISPATCH
DISPATCH is the root module for the Error Logging System. It
declares all commonly used variables, calls the INITM1l module to

initialize the system, and then calls the PARSEM module to obtain
and parse the command line. DISPATCH then requests the records

4-3

ERROR LOG CONTROL FILE ARCHITECTURE

from the input log file, declares the common subpackets (HEADER,
TASK, DEVICE ID, DEVICE OPERATION, and DEVICE ACTIVITY (optional
on RSX-11M, standard on RSX-11M-PLUS)) for each record, computes
the correct dispatcher module name, and calls that module. When
all the records are processed, it calls the summary modules if
requested (RSX-11M-PLUS only), and finally calls the
FINLM1/FINLP1 module to clean up. See Section 4.6.5 for the
definitions of the standard DIGITAL subpackets. Dispatching is
described in more detail in Section 4.4.

PARSEM

PARSEM declares variables local to the processing of the command
line and calls the PARS1M module to obtain the command line. It
then calls the PARS2M module to process any switches and the
PARS3M module to open the various files. PARSEM also provides
commonly used parsing routines to the other parsing modules.

PARS1M

PARS1M initializes parsing variables and gets the command 1line
from RPT. It then breaks all of the file specifications out of
the command line, leaving all of the switches. PARSIM then
searches for the /REPORT switch. If it finds the switch, PARS1M
replaces it with the specified string of predefined switches.

PARS2M

PARS2M gets a switch from the string of switches produced by
PARSIM. It then checks the switch for ambiguity and calls PRS2AM
to process the switch. If PRS2AM does not recognize the switch,
it 1is passed to the PRS2BM module. PARS2M repeats this process
until all switches have been processed.

PRS2AM

PRS2AM processes the following switches: DATE, DEVICE, and
PACKET.

PRS2BM

PRS2BM processes the following switches: FORMAT, SERIAL, SUMMARY
(RSX-11M-PLUS only), TYPE, VOLUME, and WIDTH.

PARS3M

PARS3M applies the default values to any switches that were not
specified and opens the specified files.

SELTM1

SELTM1 is called by DISPATCH to determine if the current packet
meets the selection criteria of the command line switches.

DSP1M1/DSP1P1

The DSP1IM1/DSP1P1 modules process Error Log Control events (See
Section 4.4.1). These modules declare the DATA subpacket for
each type of event and process the event to completion, calling
the formatter modules to print the common data if the FULL report
format is specified.

ERROR LOG CONTROL FILE ARCHITECTURE

DSP2M1/DSP2P1

The DSP2M1/DSP2P1 modules process Device Error events (See
Section 4.4.1). These modules call DEVSM1l to determine the name
of the device-level module required to process the event and then
calls that module as a co-routine and passes control to it. The
device-level module declares the DATA subpacket and then extracts
information from the registers of the logged device so it can
provide additional selection information. When the device-level
module returns control to DSP2M1/DSP2P1, it performs the last of
the selection tests and makes the decision whether to continue
with this event or not. If DSP2M1/DSP2Pl decides to continue,
and if the FULL report format has been specified, DSP2M1/DSP2P1l
calls the formatter modules to print the common information.
Once printing is completed, control returns to the device-level
module, which prints the device registers.

If the BRIEF report has been specified, DSP2M1/DSP2Pl still must
decide whether to continue, but there 1is no need for the
formatter modules and DSP2M1/DSP2P1l does its own printing.

'“;completed,~,the

each

1 gfto
mmaryfln the summary files. S

DSP3M1/DSP3P1
The DSP3M1/DSP3P1l modules process Device Information events (See
Section 4.4.1). They perform the same function as the

DSP2M1/DSP2P1 modules, but for device errors not related to 1I/0.
These modules are required only if you have a TU78 or MSCP (Mass
Storage Control Protocol) device.

DSP4M1/DSP4P1

The DSP4M1/DSP4P1 modules process Device Control Information
events (See Section 4.4.1). DSP4M1/DSP4P1l calls DEVSMl to get
the type of device associated with the device mnemonic.

Mount, dismount and reset operations have no DATA subpacket. The
formatter modules print the information if the FULL report mode
is specified; otherwise, the module does all the printing
itself. Like the DSP2P1 and DSP3P1 modules, DSP4Pl records
summary information if requested.

The Block Replacement event does have a DATA subpacket which is
processed entirely by this module. This type of event does not
contribute to summaries.

DSP5M1/DSP5P1

The DSP5M1/DSP5P1 modules process events detected by the CPU (See
Section 4.4.3). DSP5M1/DSP5P1 gets the CPU type from the HEADER
subpacket declared by DISPATCH and calls the appropriate
CPU-level module as a co-routine if the event was a memory parity
error. The processing then proceeds much like that for device
errors.

If the event was an unknown interrupt, the module declares and
processes the DATA subpacket itself.

ERROR LOG CONTROL FILE ARCHITECTURE

DSP6M1/DSP6P1

The DSP6M1/DSP6P1 modules process System Control Information
events (See Section 4.4). There is no DATA subpacket associated
with the power recovery event. The formatter modules print the
common information if in FULL-report mode; otherwise, the module
does all the printing itself.

DSP7M1/DSP7P1

The DSP7M1/DSP7P1 modules process Control Information events (See
Section 4.4). These modules declare the DATA subpacket for each
type of event and process the event to completion, calling the
formatter modules to print the common data if the FULL report
format is specified.

FINLM1/FINLP1l

FINLM1l or FINLPl is called by DISPATCH to clean up after all the
error log events are processed.

On RSX- llM-PLUS only, E‘IN&Pl also outputs the final page of the
error log report. This ! 1nformatlon as the
command line e red by the us ‘ ‘f;ﬁ; ; used, the switch
states, the number of events processed, and how long it took to
generate the report. ‘ S ‘ - ‘ : .

FM1NM1/FM1WM1

FM1INM1/FM1WM1l are formatter modules. They print information at
the top of each page of a FULL report. The information comes
mostly from the HEADER subpacket. FMINM1 prints reports in
NARROW format and FM1WMl prints reports in WIDE format.

FM2CM1
FM2CM1 is one of the formatter modules. It prints the Requesting

Task section of a FULL report. The information comes from the
TASK subpacket. FM2CM1l prints reports in both NARROW and WIDE

formats.

FM3CM1
FM3CM1 is a formatter module.’ It prints the Device
Identification Information section of a FULL report. The

information comes from the DEVICE ID subpacket. FM3CM1 prints
reports in both NARROW and WIDE formats.

FM4NM1/FM4WM1

FM4NM1/FM4WM1 are formatter modules. They print the I/0
Operation Identification section of a FULL report. The
information comes from the DEVICE OPERATION subpacket. FM4NM1
prints reports in NARROW format, and FM4WMl prints reports in
WIDE format.

Optionally, FM4NM1/FM4WM1l also prints the Concurrent I/0 Activity
section of a FULL report. The information comes from the DEVICE
ACTIVITY subpacket. See Section 4.1 for more information.

ERROR LOG CONTROL FILE ARCHITECTURE

FMTNP1/FMTWP1

FMTNP1/FMTWPl1 are formatter modules. They print the first page
of a FULL report, that 1is, all of the information from the
HEADER, TASK, DEVICE ID, DEVICE OPERATION, and DEVICE ACTIVITY
subpackets. FMTNP1 prints reports in NARROW format, and FMTWP1
prints reports in WIDE format.

INITM1

INITM] initializes variables to be wused later in the control
file. It sets up the page-top banners, formatter module
selectors, and WRITE GROUP format statements, based on whether
the report is NARROW or WIDE.

DEVSM1

DEVSM1 is called by DSP2M1/DSP2P1, DSP3M1/DSP3P1, and
DSP4M1/DSP4P1 to provide «certain device-related information.
DSP2M1/DSP2P1 and DSP3M1/DSP3P1l call it to find, among other
things, the name of the device-level module that should help
process the event, DSP4M1/DSP4P1 calls DEVSM1l to find out the
name of the device associated with a device mnemonic.

If the device mnemonic is DU, DEVSMl then calls DEVUDA to do most
of the processing.

DEVUDA

DEVUDA is called only by DEVSMl. It assists DEVSM1 in the
processing of events on MSCP devices.

ERRORM

ERRORM is the error processor for the Error Logging System.
Whenever a SIGNAL or SIGNAL_STOP occurs, ERRORM processes the
error.

SMRYEP

SMRYEP prints Error summaries on RSX-11M-PLUS only. DISPATCH
calls SMRYEP after all packets have been processed if an Error
summary was requested.

SMRYGP

SMRYGP prints Geometry summaries on RSX-11M-PLUS only. DISPATCH
calls SMRYGP after all packets have been processed if a Geometry
summary was requested.

SMRYHP

SMRYHP prints History summaries on RSX-11M-PLUS only. DISPATCH
calls SMRYHP after all packets have been processed if a History
summary was requested.

CPU-level modules

There are five CPU-level modules, all with names derived from
their associated processors. They are called as co-routines by
DSP5M1/DSP5P1 to process memory parity errors.

e El134 (RSX-llM only) - Processes errors fromfthé EDP¢11/34.

ERROR LOG CONTROL FILE ARCHITECTURE

e Ell44 - Processes errors from the PDP-11/44.
e E1160 (RSX-11M only) - Processes errors from the PDP-11/60.
e E1l17X - Processes errors from the PDP-11/70 and PDP-11/74.
e Ell1XX - Processes errors from all other PDP-11 processors.
EUNKWN
EUNKWN is a universal device-level or CPU-level module. EUNKWN
is called if a particular device-level module is unavailable, or
if the device mnemonic is unknown to the Error Logging System.
EUNKWN is also called if the CPU type is unknown.
EUNKWN produces a formatted dump of the data, showing the
relative offset within the data, and the data itself, in word,
high-byte, and low-byte formats (all octal), and in Dbinary word
format. See Section 4.5 for more information on error logging
from unknown devices.
DMPALL
DMPALL is similar to EUNKWN. DMPALL 1is called if the packet
cannot be processed due to an error in format or structure.
DISPATCH calls DMPALL if the packet fails any sanity check.
DMPALL produces a formatted dump of the data, showing the
relative offset within the data, and the data itself, in word,
high-byte, and low-byte formats (all octal), and in binary word
format.
Device-Level Modules
Device-level modules contain details of the bit-to-text
translation for all supported error-logging devices.
DSP2M1/DSP2P1 and DSP3M1/DSP3P1 call them as co-routines. Their
names are derived from the names of the associated devices.
See Section 4.5 for information on how these modules are
constructed, and how you can write device-level modules for
unsupported devices.
Here are the standard error-logging device-level modules:
e EML1l - Processes ML1ll errors
® ERKOS5 - Processes RKO0O5 errors
® ERK67 - Processes RK06 and RK(O7 errors
e ERL12 - Processes RLOl and RL02 errors
e ERM0S5 - Processes RMO5 errors
e ERM23 - Processes RM02 and RM0O3 errors
e ERM80 - Processes RM80 errors
e ERPO7 - Processes RP07 errors

® ERP23 - Processes RP02 and RPO3 errors

® ERP456 - Processes RP04, RP05 and RP06 errors

ERROR LOG CONTROL FILE ARCHITECTURE

® ERS11l - Processes RS1l1l errors
e ERS34 - Processes RS03 and RS04 errors
e ERXO0l - Processes RX0l errors
e ERX02 - Processes RX02 errors
e ET0310 - Processes TS03, TE10, and TUl0 errors
e ET1645 - Processes TEl6, TUl6, and TU45 errors
e ETAll - Processes TAll errors
e ETCll - Processes TCll errors
e ETS1ll - Processes TS1l1l, TU80 errors
e ETSV05 - Processes TSV05 errors
e ETU58 - Processes TU58 errors
e ETU77 - Processes TU77 errors
e MSCPAT - Processes MSCP Attention errors
® MSCPE - Processes MSCP controller errors
® MSCP60 - Processes MSCP RA60 errors
e MSCP80 - Processes MSCP RA80/RA81 errors
® MSCPEN - Processes MSCP End Packet errors
® MSCPSD - Processes MSCP Small Disk (RC25/RD51/RD50) errors
e MSCPTO - Processes MSCP Timeout errors
Notes Modules
Notes modules contain notes for error conditions that need
additional explanation. Notes modules are device-specific and
have names derived from the names of the associated device-level
module. See Section 4.5.3.2 for more information on how these
modules are constructed.
Here are the standard error-logging notes modules:
e NML1ll - Processes ML1ll notes
e NRK67 - Processes RK0O6 and RKO7 notes
e NRMO5 - Processes RMO5 notes
e NRM23 - Processes RM02 and RMO3 notes
e NTO0310 - Processes TS03, TE10, TUlO0 notes

e NTS1ll - Processes TS1ll, TU80 notes

4.2.2

ERROR LOG CONTROL FILE ARCHITECTURE

Program Control Flow

Here is a description of the general flow of program control through
the control file modules:

1.

RPT opens the control file. In most cases, this 1is the
default control file LX: or LB:[1,6)ERRLOG.ULB. If you wish
to use some other filespec, RPT must be rebuilt to prompt for
the new name of the file.

RPT creates the module table in its dynamic work space. This
table contains an entry for each module in the control file
universal library.

RPT loads the DISPATCH module and transfers control to the
ENTRY procedure.

The ENTRY procedure is very similar to the root module in
most MACRO-11 programs. This procedure declares most of the
commonly used data structures. It then enables the ERROR 1
procedure in the ERRORM module as an error handler. Next, it
gets and parses the command 1line by calling the SETUP
procedure in the PARSEM module. That done, it performs some
general initialization with the INIT 1 procedure from INITMI.
ENTRY then sets up a loop which steps through the
PACKET RANGE file, extracting pairs of packet ranges which
are fed back to RPT. The next step, performed for each
packet range, is to loop through the current packet range,
requesting each packet in turn and calling the DISPATCH
procedure in the DISPATCH module. When all. packets and
packet ranges have been ed, it generates
RSX~11M-PLUS ; e E 28 P! ure
SUM_ERROR, ;“\:‘ I rom SM EPQ,SMRYGP,
and” SMRYHP pe Yo : p, it calls the
FINAL 1 proce;u E [SE B

The DISPATCH procedure in the DISPATCH module declares all of
the common subpackets. These are, in order of appearance,
HEADER, TASK, DEVICE 1D, DEVICE_OP, and I0_ACTIVITY
(conditionally supported on RSX-11M) . Each of these
subpackets has a mask bit 1in the HEADER subpacket which
indicates the presence of the subpacket. If the bit is set,
the subpacket is present and therefore declared. If the bit
is not set, the subpacket is not present and consequently not
declared. Note that the HEADER subpacket must always be
present. As each subpacket is declared, various tests are
performed that must be passed or the entire packet is
rejected. These tests are for the various selection criteria
that the user can specify using command line qualifiers. If
the tests are passed, the procedure then computes the name of
the appropriate dispatcher module. The dispatcher module
name is derived by concatenating the following elements:

e The string "DSP"

e The event code (HEADER.CODE TYPE) converted to ASCII
decimal

e The string "M1" (for RSX-11M) or "P1" (for RSX-11M-PLUS)

For example, an event with a code of 5 would be dispatched to
the module DSP5M1 or DSP5P1, depending on the operating
system.

ERROR LOG CONTROL FILE ARCHITECTURE

6. The dispatcher modules (or modules they may call) handle the
declaration of the DATA subpacket if one is present. The
dispatcher modules also perform further selection tests, as
appropriate. Eventually, the dispatcher module decides
whether or not information about the event should be printed.
BRIEF format reports are printed entirely by the dispatcher
module. FULL and REGISTER format reports are printed by a
combination of:

® One or more of the RSX-11M formatter modules (FM1NM1,
FM1WM1l, FM2CM1l, FM3CMl, FM4NM1l, FM4WMl), or one of the
RSX-11M-PLUS formatter modules (FMTNPl, or FMTWP1l)

e The appropriate dispatcher module

e A device-level module (if it is a device error), or a
CPU-level module (if it is a processor or memory error)

4.2.3 Compilation Paths

For both the RSX-11M and RSX-11M-PLUS operating systems, the DISPATCH
module must be compiled first. The next modules to be compiled are at
the next level, namely (for RSX-11M) ERRORM, DSP2M1, DSP1M1l, DSP5M1,
and PARSEM using as input the symbol file produced from the
compilation of DISPATCH. Modules in the same group, such as ERRORM,
INITM1, SELTM1l, and FINLMl all use the same input symbol file (in this
case, DISPATCH) and can be compiled in any order.

Figures 4-2 and 4-3 indicate the compilation paths for the RSX-11M and
RSX-11M-PLUS modules, respectively.

DISPATCH
ERRORM DSP2M1 DSP1M1 DSP5M1 ~ PARSEM
INITM1 S DSP3M1
SELTM1 DSP4M1
FINLM?1 ‘ DSP6M1
' © DSP7M1
I N T I
DEVSM1 FMINM1 DEVICE ET1XX PARSIM - -PARS2M PARS3M
0 FMIWMA LEVEL E1134 , ~ |
FM2CM1 © MODULES E1144 ; PRS2AM
1 COFM3NMT . E1160 ‘ ' PRS2BM
DEVUDA CFM3WMT S E117X
o FM4ANM1
FM4WM1 -

ZK-1112-82

‘Figurei442 - COmpilationiPéth for RSX-11M Contr01 Fi1e'Modu1és

ERROR LOG CONTROL FILE ARCHITECTURE

DISPATCH
ERRORM DSP2P1 DPS1P1 DSP5P1 SMRYEP PARSEM
INITP1 DSP3P1 SMRYGP
SELTMA DSP4P1 SMRYHP
FINLP1 DSP6P1
DSP7P1
l | | I
DEVSM1 FMTNP1 DEVICE E11XX : PARS1M PARS2M PARS3M
FMTWP1 LEVEL E1144 |
MODULES E117X PRS2AM
. PRS2BM
DEVUDA

ZK-1113-82

Figure 4-3 - Compilation Path for RSX-11M-PLUS Control File Modules

Where modules in the figure are connected by vertical lines, the upper
module 1is compiled first. The lower module or modules are then
compiled using the symbol file produced by the module at the next
higher 1level. Therefore, again using an RSX-11M example, the DSP2M1
module is compiled using the symbol file from DISPATCH, the DEVSM1
module is compiled using the symbol file from DSP2M1l, and so on.

Many of the modules in the RSX-11M error 1log control file have a
common source with RSX-11M-PLUS modules. Compile-time conditionals in
some of these modules generate variants specific to each operating
system. Modules used 1in the RSX-11M Error Logging System must be
compiled using the following compile-time literal declarations:

Option>LITERAL SUPPORT.RSX 11M = TRUE
Option>LITERAL SUPPORT.RSX 11M PLUS = FALSE
Option>LITERAL SUPPORT.IO ACTIVITY = FALSE
Optiond>/ -

The declaration,
LITERAL SUPPORT.IO_ACTIVITY = FALSE

can be changed to TRUE to enable processing of 1I/0 activity
subpackets. If you choose to do this, you must recompile all control
file modules and generate a new system after defining the symbol
ESSACT in RSXMC.

Modules used in the RSX-11M-PLUS Error Logging System must be compiled
using the following compile-time literal declarations:

Option>LITERAL SUPPORT.RSX 11M = FALSE
Option>LITERAL SUPPORT.RSX_11M PLUS = TRUE
Option>LITERAL SUPPORT.IO_XCTIVITY = TRUE
Option>/

See Chapter 5 for a description of the Control File Language used in
these declarations.

ERROR LOG CONTROL FILE ARCHITECTURE

4.2.4 Modification and Recompilation

You can modify any control file module. After doing so, you must
recompile the module and replace it in the control file library.

There is one very important rule to remember when modifying any
control file module:

IF
your modification to a module creates new groups, tables, or
dynamic tables, OR <creates a new variable within any of
these structures, OR reorders a variable within any of these
structures

THEN
you must also recompile all modules on the same branch of
the tree at levels lower than the modified module.

END_IF

Note that recompilation of lower-level modules is not necessary if you
modify the run-time logic. For example, modifying the statement

IF 3¥STRSLENGTH(PARSE.SWITCH LIST) EQ 0
to
IF %STR$LENGTH(PARSE.SWITCH_LIST) EQ 1

in the PARSEM module would not require recompiling any of the lower
level modules, namely PARS1M, PARS2M, PARS3M, PRS2AM, or PRS2BM.

However, changing the line to read
IF %STRSLENGTH(PARSE.SWT_LIST) EQ 1

and creating the new variable SWT LIST in the PARSE group requires
recompilation of the lower-level modules. This 1is Dbecause the
information in the symbol file <consists of group names (in
alphabetical order) and the variables defined within the group (in the
order declared). The compiler uses the information from the input
symbol file to compute relative group and variable numbers for use
when a module references a group and/or variable declared in a higher
level module. These group and variable numbers, rather than the
names, are used to resolve references to groups and variables when a
module 1is 1loaded. Defining new groups, or variables within a group,
changes the relative order of these symbols.

4.3 INTERNAL INTERFACES

This section discusses the specifics of various internal interfaces of
the Error Log Control File modules. All of the modules used as
examples in this chapter appear at the end of this chapter.

4.3.1 Interaction Between Dispatcher and Device-Level Modules

The following two sections describe, in detail, the interaction
between a dispatcher module and a device-level module, using the
processing of an RM03 error as an example. Section 4.3.1.1 describes
the interaction wusing an RSX-11M module (DSP2M1). ~Section 4.3.1.2

4-13

ERROR LOG CONTROL FILE ARCHITECTURE

describes the differences between the dispatcher modules using an
RSX-11M-PLUS module (DSP2P1).)

For this detailed examination, the following discussion refers to the
ERM23 device-level module code in Section 4.6.1 and the DSP2Ml
dispatcher module code in Section 4.6.2. Both the discussion here and
the code in those two sections are keyed to each other by the module
names (either ERM23 or DSP2M1) and numbers that look like this: (’.

You may wish to remove the pages for Sections 4.6.1 and 4.6.2 from
your book for easier reference in following the interaction between
these two modules.

4.3.1.1 Interaction between DSP2M1 and ERM23 - Processing in DSP2M1
begins with DISPATCH having declared all subpackets, except for the
DATA subpacket. All subpackets, except for the TASK subpacket, are
needed for a device error. DSP2M1 begins by determining that
peripheral errors are requested and that the subcode is valid. Having
completed these checks, DSP2M1 <calls DEVSM1l (DSP2M1 ‘)). DEVSM1

returns device information in three variables.
INTERMOD_ DEVERR.DISP_NAME contains the name of the device-level module
needed to process the DATA subpacket, 1in this case "ERM23".

INTERMOD DEVERR.DRIVE TYPE contains the string "RMO03" for the drive
type. The last variable, INTERMOD DEVERR.ALT NAME contains the string
"RM02/03" for the alternate drive type. (The alternate name variable
is not used during device error processing.)

After returning from DEVSM1l the NOTE NUMBERS file is c¢leared (DSP2M1

Q). This deletes any records that may remain there from previous
events.
The next step establishes the coroutine relationship with the

device-level module (DSP2M1 €@). The DEVICE ERROR procedure in the
DSP2M1 module is one partner while the DEVICE ENTRY procedure in the
ERM23 module 1is the other. Control passes to the DEVICE ERROR
procedure. -

The first thing the DEVICE ERROR procedure does is pass control to its
partner (DSP2M1 @) . Module ERM23 receives control at the beginning
of the DEVICE_ENTRY procedure (ERM23 @).

DEVICE ENTRY proceeds to declare the DATA subpacket (ERM23 €). Once
this 71s completed the INTERMOD DEVERR variables are Ffilled in (ERM23
® and @). All of the variables must be filled in. If the
information for a particular variable is wunavailable or not
applicable, use the string "N/A". For the variable
INTERMOD DEVERR.ERROR CYLINDER the string "???" also has a special

meaning; it indicates to DSP2M1 that the section titled Device Error
Position Information is to be suppressed.

Once the INTERMOD DEVERR variables are all filled Iin, DEVICE ENTRY
will coroutine back DEVICE ERROR (ERM23 0. DEVICE ERROR regains
control where it left off (DSP2M1 @).

DSP2M1 then performs the serial number tests, if required, after
having first initialized the variable INTERMOD DEVERR.REJECT FLAG to
FALSE. If the serial number test is failed, the variable
INTERMOD_DEVERR.REJECT_FLAG is set to TRUE.

The path through the two modules now depends on the report format,
either BRIEF, FULL, REGISTER or NONE. Following are explanations of
each of these paths.

ERROR LOG CONTROL FILE ARCHITECTURE

BRIEF

The REJECT FLAG variable is tested (DsP2Ml1 @). If TRUE,
nothing is output. If FALSE, one line is output which contains
the information required for a BRIEF report. In either case, the
variable INTERMOD_DEVERR.PRINT_FLAG is set to FALSE.

FULL

The REJECT FLAG variable is tested (DSP2MI @). If TRUE,
nothing is output and the PRINT FLAG variable is set to FALSE.

If REJECT FLAG is FALSE, the four formatter modules are called to
print the information from the common subpackets. The DSP2M1l
module then prints (still on the first page) the information
passed back in the INTERMOD DEVERR variables filled in by ERM23.
DSP2M1 generates a page break, then prints a header on the second
page. When done DSP2M1 sets the PRINT FLAG variable to TRUE.

REGISTER

The REGISTER path is almost identical to the FULL path. The only
difference 1is that the page containing all of the common
information is not printed. The header on the page containing
the register translation supplies a summary of the information
instead.

NONE
The NONE path sets the PRINT FLAG variable to FALSE (DSP2M1 @).

All of these paths converge again at DSP2M1 @ . At this point
control once again passes to the DEVICE_ENTRY procedure in ERM23.

The first thing the DEVICE_ENTRY procedure does upon regaining control
is test the PRINT FLAG variable (ERM23 ‘;) - If it is FALSE, the
module exits (ERM23 ~ @).

If the PRINT_FLAG variable is TRUE, ERM23 performs the bit-to-text
translation of the registers. Following that, any required notes are
indicated by PUTs to the NOTE NUMBERS file specifying the note index
(ERM23 {). The module then exits (ERM23 @).

When ERM23 exits DSP2Ml regains control and the coroutine partnership
is broken (DSP2Ml d)) - The DEVICE ERROR procedure then checks for
entries in the NOTE NUMBERS file. 1If there are any, DSP2M1 computes
the name of the notes file. The name of a notes module is the same as
its corresponding device-level module except the first character of
the module name is the 1letter "N", in this case NRM23. The notes
module is then called to print the requested notes.

4.3.1.2 Interaction Between DSP2P1 and ERM23 - The relationship and
flow of control between the DSP2M1/DSP2P1 module and device-level
modules is identical. They both pass the same information and control
back and forth at the same points. However, there are differences in
the modules themselves. This section explains those differences.

As in the previous discussion, you may wish to remove the pages for

Sections 4.6.1 and 4.6.3 from your Dbook for easier reference in
following the interaction between these two modules.

ERROR LOG CONTROL FILE ARCHITECTURE

Following are the differences between the DSP2M1 and DSP2P1l modules.

DSP2P1 declares the logical variable INDICATE. TAPE_FLAG (DSP2P1 ‘)) .
This variable 1is set by DEVSM1l to indicate whether or not the device
is a magtape. The variable 1is used later 1in processing summary
information.

If the packet is not rejected and if the report format 1is not NONE,
the variable REPORT.PRINT COUNT is incremented (DSP2P1 @). This
variable keeps a count of how many events were printed (as opposed to
looked at, which is a separate tally).

After the device-level module has printed (if instructed to) and has
exited back to DSP2P1l, the UPDATE RECORD procedure in DSP2Pl is called
(DSP2P1 @).

The UPDATE RECORD procedure tests to see if an ERROR summary was
requested (DSP2P1 0. If not, processing goes on to the GEOMETRY
section.

If an ERROR summary was requested, DSP2Pl searches the ERROR_INFO_E
file to see if an error having the same error type has been
encountered. If so, the record in the file describing that type of
error 1is updated to show that one more error occurred, and when it
occurred. If no such error is found in the file, a new record that
describes the error is added to the file. Processing then goes on to
the GEOMETRY section.

The UPDATE_ RECORD procedure then tests to see if a GEOMETRY summary
was requested (DSP2P1 (3). If not, the procedure exits.

Updating the ERROR_INFO G file is much the same as updating the
ERROR_INFO E file. The only difference 1is that the information
recorded is somewhat different. 1In particular, the GEOMETRY summary
records information regarding where on the device the error occurred.
It is for this reason that we need to know whether or not the device
is a magtape; magtapes have no valid geometry information.

4.4 DISPATCHING

This section discusses module dispatching. Dispatching happens at two
levels: event-level dispatching and device- or CPU-level dispatching.

4.4.1 Event-Level Dispatching

All events that occur in the Error Logging System are assigned a
unique combination of code and subcode. These code/subcode
combinations can be found in the file EPKDF.MAC (EPKDF$ macro in
EXEMC.MLB) along with the definition of the structure of error log
packets. See Appendix C for a listing of EPKDFS. Table 4-1
summarizes the error logging code/subcode combinations.

ERROR LOG CONTROL FILE ARCHITECTURE

Table 4-1
Error Logging Code/Subcode Combinations

Code Subcode

1. Error Log Control l. Error Log Status Change
2. Switch Logging Files
3. Append File
4., Declare Backup File
5. Show (not logged)
6. Change Limits

2. Device Errors l. Device Hard Error
2. Device Soft Error
3. Device Interrupt Timeout
(hard)

Device Interrupt Timeout
(soft)
3. Device Information 1. Device Information Message
4. Device Control Information 1. Device Mount

2. Device Dismount
3. Device Counts Reset
4. Block Replacement

5. CPU-Detected Errors 1. Memory Error
2. Unexpected Interrupt

6. System Control Information 1. Power Recovery

7. Control Information l. Time Change
2. System Crash
3. Device Driver Load
4. Device Driver Unload
5. Message

Each code group is processed by one of the dispatcher modules. These
modules are named DSP1M1/DSP1Pl, DSP2M1/DSP2Pl, ..., DSP7M1/DSP7Pl.
The name of the dispatcher module is derived on the fly in the
DISPATCH module's DISPATCH procedure by concatenating the following
elements:

e The string "DSP"
e The event code (HEADER.CODE TYPE) converted to ASCII decimal
e The string "M1" (for RSX-11M) or "P1l" (for RSX-11M-PLUS)

The single-digit ASCII conversion of the code value (obtained from the
HEADER subpacket) is required because the RSX-11M/M-PLUS Librarian
utility LBR allows a maximum of six Radix-50 characters for a module
name. The code value 9 is currently unused; values 0 and 8 are
reserved.

Once the dispatcher module has been called it checks to see if this
type of event was requested. If the event type was not requested, the
module returns, effectively 1ignoring the entry. Event types are
requested by using the /TYPE command line qualifier. The event types,
codes, and the dispatcher modules that process them, are listed in
Table 4-2.

ERROR LOG CONTROL FILE ARCHITECTURE

Table 4-2
Event Types, Codes, and Their Dispatcher Modules

Type Codes Dispatcher Modules

ALL 1-7 DSP1M1/DSP1lPl, ..., DSP7M1/DSP7P1

CONTROL 1 DSP1M1/DSP1P1

ERRORS 2,3,5 DSP2M1/DSP2P1, DSP3M1/DSP3P1l, DSP5M1/DSPS5P1
MEMORY 5 DSP5M1/DSP5P1

PERIPHERAL 2,3 DSP2M1/DSP2P1, DSP3M1,DSP3P1

PROCESSOR 5 DSP5M1/DSP5P1

SYSTEM INFO 4,6,7 DSP4M1/DSP4Pl, DSP6M1/DSP6P1, DSP7M1/DSP7P1

Once the dispatcher module determines that this type of event was
requested, it checks to see if the subcode is in range. If it is not,
the event is rejected with an error message.

At this point dispatcher modules may declare and print the DATA
subpacket themselves or may call lower level modules to do so. The
error-logging dispatcher modules handle all of the printing for the
BRIEF report mode. If the FULL report mode 1is specified, the
dispatcher modules call one or more of the following modules to print
the common portions of the event:

System, Width Formatter Module(s)
RSX-11M, NARROW FM1NM1l, FM2CM1, FM3CM1l and FM4NM1l
RSX-11M, WIDE FM1wWwM1l, FM2CM1l, FM3CM1l and FM4WM1l
RSX-11M-PLUS, NARROW FMTNP1

RSX-11M-PLUS, WIDE 3 FMTWPL

The dispatcher module may print the rest of the event itself or work
with a lower-level module.

4.4.2 Device-Level Dispatching

Device-level dispatching is performed with the assistance of the
DEVSM1 module. This module is called by DSP2M1/DSP2P1, DSP3M1/DSP3P1
and DSP4M1/DSP4P1 and determines, among other things, the correct
device-level module for the event.

Here is a description of how DEVSM1l works (see the source code for
exception cases; this discussion addresses only usual cases). The
first thing DEVSM1 checks is whether there is a DEVICE ID subpacket.
If no DEVICE ID subpacket is found, an error results. “Once past that
check, DEVMS1l uses the device mnemonic to search the DEVICE_INFO
table. 1If the device is not found, DEVSM1l specifies the EUNKWN module
in the variable INTERMOD_DEVERR.DISP_NAME.

Assuming that the mnemonic is recognized, DEVSM1l tests to see if (a)
the mnemonic is that of a MASSBUS device, and (b) there is a DATA
subpacket. Assuming both are true, DEVSM1l looks ahead into the DATA
subpacket to obtain the MASSBUS Drive Type from the logged registers.

4-18

ERROR LOG CONTROL FILE ARCHITECTURE

This value is unique for each MASSBUS device. Once this value 1is
obtained, the DEVICE INFO table is searched again, this time using the
drive-type value as the key. Assuming this search turns up a match,
the variable INTERMOD DEVERR.DISP NAME is filled in with the module
name specified by the resulting record in the table.

If there is no DATA subpacket, or if the device 1is not a MASSBUS
device, the search of the table ends up pointing to the first record
that matched on the specified mnemonic. DEVSM1 performs a further
search of the table based on the mnemonic as well as the device size
(which is provided in the variable DEVICE ID.DEV TYPE). The variable
INTERMOD DEVERR.DISP NAME is then filled 1in “with the module name
specified in the record that is the result of this search.

4.4.3 CPU-level Dispatching

CPU-level dispatching is performed by DSP5M1/DSP5P1. The HEADER
subpacket contains a variable called PROC TYPE that indicates the type
of processor the error was logged on. DSP5M1/DSP5P1 uses that
variable to search a table that contains module names associated with
the CPU-type value.

4.5 SUPPORT OF NON-DIGITAL DEVICES

This section explains what you have to do to provide error-logging
support for non-DIGITAL devices.

Adding error-logging support for a non-DIGITAL device consists of
either one or three steps, depending on the desired level of support.
The first step is to include error-logging support in the driver.
Without this support no information can be logged for the device. For
full error-logging support, you must perform two more steps: write a
device-level module for the new device, and add it to the control file
library and make the Error Logging System aware of the new module.

The following sections show you what you need to accomplish these
steps.

4.5.1 Error-logging of Unknown Devices

The Error Logging System can handle entries from devices unknown to
the system. Entries from an unknown device are handled by the EUNKWN

module, which functions as a universal device-level module. For a
BRIEF report, EUNKWN will pass back "N/A" in the INTERMOD_DEVERR
variables to indicate that the information is not available. For a

FULL report, EUNKWN prints the device registers in a dump-style format
where the bit-to-text translation would normally take place. The rest
of the report is unchanged.

4.5.2 Providing Driver Support for a Non-DIGITAL Device

The Executive module ERROR contains the routines to be wused by a
driver to 1log device errors. A device error in this sense can be a
real error, a timeout, or perhaps an informational message. The
following sections discuss the routines in general. See the code in
[11,10] ERROR.MAC for more detail.

ERROR LOG CONTROL FILE ARCHITECTURE

For the most part, driver support is the same for RSX-11M and
RSX-11M-PLUS. Where there are differences, the full discussion is
repeated.

4.5.2.1 S$BMSET on RSX-11M - On RSX-11M, the $BMSET coroutine raises
the processor priority to 7 (to lock out interrupts) and then calls
the caller to start the I/0 function. When the re-called caller
returns, $BMSET 1lowers the processor priority to 0, thus allowing
interrupts once again.

INPUTS
None
OUTPUTS

None

4.5.2.2 SBNSET on RSX-11M-PLUS - On RSX-11M-PLUS, . the $BMSET
coroutine raises the processor prlorlty to 7 (to 1ock out interrupts),
sets the "interrupt active" bit S2.ACT in S.8T2 of the SCB, and then
calls the caller to start the I/o function. When the re-called caller
returns, $BMSET lowers the processor priority to 0, thus allowing
interrupts once agazn. ; ‘ ; - Sy :

INPUTS
R4 = SCB Address
OUTPUTS

The "interrupt active"™ bit S2.ACT is set

4.5.2.3 S$DVTMO and SDTOER on RSX-11lM - On RSX-11M, the routine S$DVTMO
logs device timeouts at PRO, and the routine $DTOER logs device
timeouts at device priority. The routines behave identically, except
that $DTOER disables the device interrupt and lowers the processor
priority to 0.

If the symbol DSSIAG is defined, the routines test to see if the
timeout 1is a diagnostic function. Diagnostic functions are never
logged.

The routines load the error code and subcode in RO and the routine
falls into the routine S$DVCER.

INPUTS
R2 = CSR Address
R4 = SCB Address
OUTPUTS

Rl = I/0 Packet Address (if D$SIAG defined and a diagnostic
function)

C =0, if D$SIAG not defined or not a diagnostic function.
Create an error log packet and fill it in. Put a pointer to
the packet (S.BMSV) in the SCB and set the "error in progress"
bit SP.EIP in S.PRI.

ERROR LOG CONTROL FILE ARCHITECTURE

~C =1, If DSSIAG defined and a diagnostic function. Set the
- ‘"error in ‘progress" bit SP.EIP in S.PRI. Do not create an
~error log packet. L

'$DVTMO and S$DTOER on RSX-11M-PLUS - On . RSX~ llM-PﬂUS,"the
~$DVTMO logs device timeouts at PRO, and the routine $DTOER
: “timeouts - at device -~ priority. ‘The routlnes behave
aily except that $DTOER -disables the dev1ce 1nterrupt ‘and
, the processoz prlorlty to 0. ; P ~

nes'clear the "interrupt active" bit SZ ACT in the SCBk word
They then test to see if the timeout is a dlagnostlc functlon.
;,unctions are ‘never logged ; ; ; ; :

The routines load the error code and subcode in RO and eegfioutiné
,,nto the ‘routine $DVCER. ; S

ws

2 = Addxess of a block of reglsters to 1og (mest be ‘the CSR
ddress if KS.MBC is set) o S
‘8CB ‘Address -

UCB Address

IE DNR and 377 (Device not Ready)
I/O Packet Address

if not a dlagnostlc function. Create an error log
and fill it in. Put a pointer to the packet (S.BMSV)
n the SCB- and set the "error in progress" bit SP.EIP in

o,e
~gﬂIf afdiagnostic function. Do not creétefan error log

4.5.2.5 '$DVERR and $DVCER on RSX-11M - $DVERR and $DVCER - are the
same; ~ $DVCER: is the routine name, and $DVERR is a synonym. This
routine logs device errors. If an error is already in.progress on the
device, it will be ignored. If not, SDVCER allocates an error log
packet and fills it in with the context of the current transfer. Note
that this routine requires that there be an I/0 packet associated with
this error. See the rout1ne $LOGER (Sectxon 4.5. 2 9) to log an error

INPUTS jf
R4 = SCB Address
RS = UCB Address
OUTPUTS

If no error “is already in progress on this dev1ce, allocate an
i»err@t ‘log packet, fill it in, point the SCB to: the packet, and
VSet the “error 1n progress" bit. :

'—If,an error is in progress on this device, this routine is a
no-op. e

ERROR LOG CONTROL FILE ARCHITECTURE

4.5.2.6 S$SDVERR and $DVCER on RSX—IIM-PLUS - $DVERR and $DVCER are. the
same; $DVCER 1is the routine name, and $DVERR is a synonym. This
routine logs dev1ce errors. If an error is already in progress on the
device, it will be ignored. If not, $DVCER allocates an error log
packet and fills it ‘inwith the context of the current: transfer. Note
that this routine reguires that there be an I/0 packet ‘associated with
this error. See th outine $LOGER (Sect1on 4, 5 2 9) to log an error
where there'is no I mactlve on the device. : o

Note that, on, RSX- llna' US, 1nformatlon about concurrent I/o factivity
on other devices is al‘o logged.f Lo ; ; ;

INPUTS

R2 = Address of a block of reglsters to- log (must be the CSR
address if KS.MBC 1s set) ‘
R4 = SCB Address .

R5 = UCB. Address

OUTPUTS

1f no- error 15 already 13fprogress on thls dev1ce, allocate an
‘error log packet “fill it in, point the SCB to the packet, and
set tbe "exro: 1n progress" bxt.

If an error is 1n progress on thls dev1ce thls ~routine is a
no-op. , ; : ,

4.5.2.7 $8NSIER - This routine logs nonsense interrupts. The routine
identifies the interrupting vector and logs the error.

INPUTS
@(SP) = Contains bits 06:04 of the unused vector number.
OUTPUTS

If a nonsense interrupt is in the process of being 1logged,
increment the interrupt count.

If this is the beginning of the processing of a nonsense
interrupt, identify the vector and create and queue an error
log packet.

4.5.2.8 S$FNERL - This routine is called at I1/0 completion, or when it
is necessary to queue an error log packet after a successful recovery
of a mid-transfer error. In essence, this routine completes the
processing of an error.

The routine first inserts the error retry information. It then tests
to see if this was a hard (unrecoverable) error or a soft
(recoverable) error, and updates the packet accordingly. All errors
are assumed to be "hard" up to this point. Depending on the result of
that test, SFNERL tests against the appropriate limit to see if the
limit has already been met. If the limit had been previously met the
packet is discarded. 1If not, SFNERL updates the appropriate error
count, logs the packet, and sets the SCB to show that the processing
of this error has been completed.

ERROR LOG CONTROL FILE ARCHITECTURE

INPUTS
RO = First I/0 Status word
R2 = Starting and Final error retry counts (if 0, do not

update limits)

R3 = Error Log Packet Address (if R4 = 0)
R4 = SCB Address or 0
R5 = UCB Address

OUTPUTS

Either queue or discard the error log packet (depending on the
limits) and set the SCB to indicate that no error is being
processed.

4.5.2.9 SLOGER - Drivers use SLOGER to create an error 1log packet
when no I/0 is present, such as when a driver receives an unsolicited
interrupt from a device that <contains information that should be
logged. SLOGER creates the packet normally, but the driver is
responsible for filling in the DATA subpacket information. Otherwise,
processing is similar to S$DVERR.

INPUTS
R1 = Length of data to be logged (in bytes)
R4 = SCB Address (If 0, then no I1/0 packet is present)
R5 = UCB Address

OQUTPUTS

C = 1, Error cannot be logged for some reason

C = 0, Error can be logged
Rl = Address of DATA area in the packet
R3 = Address of Error Log packet

4,5.2,10 LOGTST - This routine is not for use by drivers. Other
routines in the ERROR module call LOGTST to see if an error can or
should be logged.

4.5.2.11 $CRPKT - This routine creates an error log packet. It is
called as part of the $SMSG directive processing, and by other
Executive routines as part of the processing of a memory error,
nonsense interrupt, time change, power fail recovery, or device error.

In general, the routine determines the required format and size of the
packet, allocates the required amount of pool, and then fills in the
packet. It obtains information from SYSCOM, the appropriate DCBs,
UCBs, SCBs, TCBs, VCBs, and the I/0 packet, as required.

Note that a HEADER subpacket is always required. A forced system
crash will result if SCRPKT detects the condition of "no HEADER
subpacket”.

Note also that on RSX-11M, information about concurrent 1I/0 activity
on other devices can also be optionally logged. Do this by defining
the symbol ES$$ACT and doing a new system. (You must recompile the
error-logging control files, as well.)

ERROR LOG CONTROL FILE ARCHITECTURE

On RSX-11M-PLUS, i
devices is always
question. ‘ N

INPUTS

RO = Packet Code and Subcode (See EPKDF for details)

Rl = Length of DATA subpacket

R2 = Control Mask word (See EPKDF for details)

R3 = Beginning Address of data for DATA subpacket

R4 = TCB Address (for TASK subpacket)

R5 = UCB Address (for DEVICE IDENTIFICATION subpacket)
OUTPUTS

RO = Unchanged

Rl = Beginning Address of data in the DATA subpacket

R2 = Unchanged

R3 = Beginning Address of Error Log packet

R4 = Unchanged

C = 0, A packet was created

C = 1, A packet was not created

R5 = Unchanged

4.5.2.12 CALDEV
‘the logical unit

H ;ate$

INPUTS

OUTPUTS

Unit numb

4.5.2.13 S$QUPKT - This routine queues an Error Log packet. If there
is no other packet in the queue, $QUPKT requests the error logger task
(ERRLOG) with a delay of 2 seconds. If there is another entry in the
queue, SQUPKT requests ERRLOG to run immediately. Command packets
(from ELI) always cause ERRLOG to run immediately.

INPUTS

R3 = Pointer to packet for insertion in queue
OUTPUTS

None

ERROR LOG CONTROL FILE ARCHITECTURE

4.5.2.14 S$SQERMV - This routine removes an entry from the error log
queue and transfers it to a user buffer. It is called only by ERRLOG.

INPUTS
R4 = Length of user buffer
R5 = Address of user buffer
OUTPUTS
R1 = Length of packet
R4 = Unchanged
R5 = Unchanged

C = 0, Packet was successfully removed

C 1, Either no packet to remove or packet was too long. If
Rl <> 0, the packet was too long and Rl contains the packet
length., If Rl = 0, then there was no packet to remove.

4,5.3 Error-Logging Support for a Non-DIGITAL Device

Full error-logging support requires two steps beyond driver support.,
The first step is to write the device-level module for the new device.
This module contains the detailed instructions on how to interpret the
logged information, that is, the bit-to-text translation information
for the device registers. The information common to all events is
interpreted by the DIGITAL-supplied modules.

The second step is to add the new module to the control file 1library
and make the Error Logging System aware of the new module. The
following sections explain these steps in detail.

4.5.3.1 How to Write a Device-Level Module - This section explains
the general structure of device-level modules, using the RM02/03
module ERM23 as an example. Section 4.6.1 is an annotated listing of
ERM23; Section 4.6.4 is an annotated listing of the notes module for
the RM02/03. Both the discussion here and the code in those two
sections are keyed to each other by the module names (either ERM23 or
DSP2M1) and numbers that look like this: @ .

You may wish to remove the pages for Sections 4.6.1 and 4.6.4 from
your book for easier reference in following the interaction between
these two modules.

In general, the flow of a device-level module proceeds as follows:
MODULE statement followed by module header '
PROCEDURE statement

SUBPACKET declaration

Register definitions

Declaration of local work variables and table declarations

Intermodule variable loading

000000

Error-type determination

ERROR LOG CONTROL FILE ARCHITECTURE

Coroutine back to caller
Bit-to-text translation and register printing

Note requirements indicated

©6 60

Exit the module.

Each of these procedures are described in the following sections.

4.5.3.1.1 MODULE Statement -

o

The MODULE statement for a device-level module must be of the form:
MODULE modulename 'ident' ;

The module name must match the name specified for this device 1in the
DISP_NAME field of the DEVICE_INFO table in the DEVSMl module (See
Section 4.5.3.4). Generally, the module name begins with the letter
"E", followed by five or fewer letters indicating the device or
devices served by the module. For example, the ERM23 module handles
the RM02 and RM03 disks, while the ERP456 module serves the RP04, RPOS5
and RP06 disks.

The ident field is exactly what it implies, an identification value
that 1is stored 1in the module. Generally, the ident begins with a
letter that identifies the operating system the module is intended to
be used with, such as "M", followed by a version and update number in
the standard DIGITAL style.

The module header follows. This includes the copyright statement,
author, date written, and audit trails of modifications.

4.,5.3.1.2 PROCEDURE Statement -

(2]

The PROCEDURE statement for a device-level module must be of the form:
PROCEDURE DEVICE_ENTRY

The procedure name must be DEVICE ENTRY. This name is hard coded into
the DSP2M1/DSP2P1 and DSP3M1/DSP3Pl dispatcher modules.

4.5.3.1.3 SUBPACKET Declaration -

(3]

The device-level module is responsible for the declaration of the
device data (usually 1in the form of registers). The SUBPACKET
declaration defines the number of registers, how they are printed, and
the bit-to-text translations for the various bits and fields of the
registers. The general format of the statements is as follows:

ERROR LOG CONTROL FILE ARCHITECTURE

SUBPACKET subpacket_name = DISP.NEXT PACKET NAMED ;

reg_name: WORD MACHINE ;
H BIT {15]: ‘true_text' ;
: BIT [14]: 'true_text',
‘false text' ;
aux_label: FIELD [12:2]: 'Bits 12 and 13 = '
3CNV_SBINARY (Subpacket_name.aux_label, 2, '0')
‘(B
: BIT [(11]: true_text'
reg_name: WORD MACHINE ;

END_ PACKET ;

The subpacket name is usually REGISTER, although this name 1is not
required. DISP.NEXT PACKET is a variable that contains the subpacket
number of the 'data' subpacket and has been set up by the preceding
modules. The NAMED qualifier indicates to RPT that the register
labels are to be saved for later printing.

What follows next are the definitions of the registers and their Dbits
and fields.

The end of the subpacket declaration is 1indicated by the statement
'END_PACKET ;'.

4.5.3.1.4 Register Definitions -

4]

The label assigned to a register provides both a reference to the
register (a variable name) and a name for the register when printing.
The register name is printed later on (if you specified a FULL format
report) . In most «cases, the Error Logging System uses the same
register names used by DIGITAL field service hardware documents.

For the RM02/03, the first register declared looks like:

RMCS1: WORD MACHINE ;
: BIT [15}: '*Special Condition set' ;
RMCS]1_TRE: BIT [14]: '*Transfer Error' ;
: BIT [13]): '*MASSBUS Control Bus Parity Err' ;
: BIT [12]: '*Unused bit set' ;
: BIT [11]: ' Drive Available',
'*Drive not Available (other port using it)' ;
: BIT [10]: ' UNIBUS B Selected for Data Transfer',
' UNIBUS A Selected for Data Transfer' ;
RMCSI_BA: FIELD [8:2]: ' BAl7,BAl6 = '

%CNV_SBINARY(REGISTER.RMCSI_BA, 2, '0")
' (B)' ;

: BIT [7]): Controller Ready',

Controller not Ready' ;

Interrupt Enabled',

Interrupt not Enabled' ;

BIT { 6]:

- - -

ERROR LOG CONTROL FILE ARCHITECTURE

The first line indicates that the name of the register is RMCS1 and
that it 1is a WORD in length (16 bits). The MACHINE qualifier states
that, when printed, the register is to be formatted in the native
radix for the machine that the report is being generated on. The
native radix for the PDP-11 is octal, and for the VAX-11l, hexadecimal.
Other print qualifiers are available to change the radix, such as HEX,
OCTAL, DECIMAL, BCD, BINARY, and RADSO.

The second line defines bit 15 of the register RMCS1l, 1including when
it 1is to be printed and what is to be printed. Only one text string
is provided. This indicates that the bit is to be printed only when
true (set). Otherwise, nothing is printed for that bit.

Bit 14 has a label of RMCS1 TRE. Labels assigned to bits and fields
are never printed. They are allowed so you can reference the bit or
field as a variable. As with bit 15, the text for this bit is printed
only if the bit is set.

Bit 11 has two text arguments. The first argument is printed 1if the
bit is set and the second argument is printed if the bit is reset. 1In
other words, this bit will always be printed.

Bits 8 and 9 are defined to be a FIELD with the variable name
RMCS1 BA. The arguments for a field are as follows:

FIELD ([starting bit number:number of bits]: 'other string',
- - '0 string',
'1 string',
'2 string',

'N_string' ;

The 0_string is printed if the value of the field 1is =zero. The
1 string is printed 1if the value of the field is 1, and so on. The
other string is printed if the field has a value that has no
corresponding text string. Note that for the field RMCS1 BA there is
only an other_string. Therefore, this field is always printed.

A technique that is used in the DIGITAL device-level modules 1is to
declare a field over any contiguous unused bits. The other string is
defined to be 'Unused bits set', and the 0 string is defined to be
NULL (the null, or zero length string). 1If the field has the value
zero, nothing is printed. 1f, however, any of the bits are set, the

field appears in the report.

Note that all of the text strings associated with bits and fields have
as their first character either a space or an asterisk. RPT, when
printing the text for a bit or field, removes the first character of
the string and places it in front of the bit or field position
indicator. An asterisk signals some kind of special condition. For
example, bit 11 of RMCS1 can print one of two ways, either as:

[11] Drive Available
or as:
*[11] Drive not Available (other port using it)
Remember that the asterisk does not necessarily indicate an error,

just something interesting. A blank in front of the position
indicator means a normal or status condition.

ERROR LOG CONTROL FILE ARCHITECTURE

You can use 1IF...THEN...ELSE, CASE, and SELECT statements to
conditionalize the declaration of the subpacket. The statement blocks
in these structures must be enclosed by BEGIN and END. You can use
variables previously declared in the subpacket even though the
declaration of the subpacket is not complete. Also note the use of
the $%LOK (lookahead) functions in various device-level modules. They
look into a subpacket before it 1is declared, usually to produce
variables to control the declaration.

Note the variable REGISTER.LENGTH towards the end of the subpacket
declaration in ERM23. This variable was created when the SUBPACKET
statement was executed. The variable name is of the form
subpacket name.LENGTH and contains the number of bytes in the
subpacket.

4.5.3.1.5 Declaration of Local Work Variables and Tables -

(5]

The device-level module often needs some local variables and tables.
These are generally defined after the end of the subpacket
declaration, although this is not required. Remember, however, that
variables must be declared in a module before they can be used.

4.5.3.1.6 Loading of the Intermodule Variables -

(6]

The DISPATCH module declares a collection of variables having the
group name INTERMOD DEVERR. Some of these ASCII string variables pass
information from the device-level modules back to their caller. The
variables that must be filled in are:

e INTERMOD_DEVERR.DRIVE SN

e INTERMOD DEVERR.DEV_FUNCTION

e INTERMOD_DEVERR.PHYS UNIT

e INTERMOD DEVERR.ERROR_CYLINDER

e INTERMOD DEVERR.ERROR_ SECTOR

e INTERMOD DEVERR.ERROR_HEAD

e INTERMOD DEVERR.ERROR_GROUP

e INTERMOD_DEVERR.BLOCK_ NUMBER

e INTERMOD DEVERR.ERROR TYPE

e INTERMOD DEVERR.DRIVE TYPE (See Section 4.5.3.3 for more

details on this variable.)

This section of the module is where these variables are filled in.
Use the string 'N/A' if the information is either not applicable or
not available. Note that for certain devices, most notably magnetic
tapes, the ERROR CYLINDER variable is filled in with the string '?22?'.
This flag tells the dispatcher module to suppress the printing of the
section entitled Device Error Position Information. Note that one of
the variables to be filled in contains the error type. See the next
section for more details on how the error type is determined.

4-29

ERROR LOG CONTROL FILE ARCHITECTURE

4.5.3.1.7 Determination of the Error Type -

7]

The error-type definition is essentially a determination of the most
likely problem as indicated by the error bits for a given event. It
is not a determination of 'what broke', but rather an indication of
'what happened'. The error type is determined solely on the basis of
the bits in the current event. No inter-event analysis is performed.

The error type is determined by a precedence parse of the various
error bits found in the device registers. The DECODE statement, in
conjunction with IF...THEN...ELSE-type constructs, is used to search
the bits in a specific order. The first condition found to be true
stops the search.

4.5.3.1.8 Coroutine Back to Caller -

8]

Once all of the intermodule variables have been filled in, a coroutine
statement returns control to the device module's caller. The caller
examines the returned information and determines whether to continue
processing the event. Nothing has been printed up to this point in
the processing of this event.

If the decision is not to proceed (to reject the event), the caller
(a) sets the wvariable INTERMODkDEVERR.PRINT_FLAG to FALSE and, (b)
coroutines back to the device-level module.

If the decision is to proceed, the caller performs some or all of the
printing, depending on whether the print format is FULL or BRIEF. 1If
the FULL format is specified, the caller (a) prints everything except
the device registers, (b) sets the variable INTERMOD DEVERR.PRINT FLAG
to TRUE, and (c¢) coroutines back to the device-level module. If the
format is BRIEF, the caller (a) performs all required printing, (b)
sets the variable INTERMOD DEVERR.PRINT FLAG to FALSE and (c)
coroutines back to the device-level module.

When the device-level module regains control it examines the print
flag. If TRUE, the module prints the device registers and generates
any required note indicators. If the print flag is FALSE, the module
exits.

4.5.3.1.9 Perform the Bit-To-Text Translation and Register Printing -

9]

If the variable INTERMOD DEVERR.PRINT FLAG is TRUE the device-level
module prints the device registers and performs the required
bit-to-text translation. This is done by executing a WRITE statement
(to produce column headers) followed by a WRITE GROUP statement. The
WRITE GROUP statement references the subpacket name specified in the
SUBPACKET statement. It also uses two variables, REPORT.W G F 1 and
REPORT.W G F 2, as format strings. These variables are initialized by
the INITM1 module and contain the format strings for printing the
register data in either WIDE or NARROW format. If you need to print
data that does not conform to the formats defined by these variables,
you can define your own format. You can test the 1logical variable
REPORT.WIDE to determine whether a WIDE or NARROW report was
requested.

ERROR LOG CONTROL FILE ARCHITECTURE

If the variable INTERMOD DEVERR.PRINT FLAG is FALSE, the device-level
module exits.

4.5.3.1.10 1Indicate Any Notes that are Required -

10

The Error Logging System can print notes for certain conditions that
need additional explanation. If you need such notes, you can create a
notes module (See Section 4.5.3.2 for details) and include it in the
library. You can then request a note by referencing it from the
device-level module.

You request a note by performing a PUT into the NOTE_NUMBERS file
specifying the note number in the NOTE NUMBERS.INDEX variable. For
example, the RM02/03 device-level module can optionally generate a
note 1f <certain unused bits in the RMDA register are set. This is
done with with the code:

1
! If the unused bits 5 to 7 are set in the RMDA register.
1

IF (REGISTER.RMDA [5:3] NE #BB'Q')
THEN

Print the note saying that it may cause an invalid
sector address to be recognized resulting in a
possible invalid address error.

e g 4= gee o=

PUT NOTE_NUMBERS INDEX = 1 ;
END_IF ;

When the device-level module exits, the caller tests to see whether
any notes were requested. If notes were requested, the dispatcher
strips the first character from the device-level module's name and
replaces it with the letter 'N'. For example, the notes module for
ERM23 (the RM02/03 device-level module) 1is NRM23, The dispatcher
calls the notes module, which determines which notes were requested
and prints them.

Multiple notes can be requested. They are printed in the order
requested.

4.5.3.1.11 Exit the module -

o

When everything is done, the device-level module exits. Exiting a
module implies a RETURN to the module's caller. Exiting from a
device-level module also breaks the coroutine relationship.

4.5.3.2 How to Write a Notes Module - This section explains the
structure of a notes module using the RM02/03 notes module as an
example. Section 4.6.4 contains an annotated listing of this module.

ERROR LOG CONTROL FILE ARCHITECTURE

Here, in general, is the flow of a notes module:
MODULE statement followed by module header
PROCEDURE statement

Notes heading

Selection of a note for printing

Handling of an unknown note number

Getting the next note

6 0000Q

Exit the module

These sections are now explained in detail.

4.5.3.2.1 MODULE Statement -

(1

The MODULE statement for a notes module must be of the form:
MODULE module name 'ident' ;

The module name of a notes module 1is related to 1its corresponding
device-level module name by replacing the first 1letter of the
device-level module's name with the letter 'N' to get the notes module
name. This convention must be followed, because the notes module name
is derived from the name of the device-level module and 1is never
looked up in a table.

See Section 4.5.3.1 for an explanation of the 'ident' field of the
MODULE statement.

4.5.3.2.2 PROCEDURE Statement -

(2]

The PROCEDURE statement for a notes module must be of the following
form:

PROCEDURE NOTES

The procedure name must be NOTES. This 1is wired into the
DSP2M1/DSP2P1 and DSP3M1/DSP3P1l dispatcher modules.

4,5,3.2.3 Notes Heading -

3]

The notes heading declares what is about to be printed. Notice that
notes appear directly following the register interpretation in FULL
and REGISTER reports only.

ERROR LOG CONTROL FILE ARCHITECTURE

4.,5.3.2.4 Selecting a Note for Printing -

4]

Notes are selected for printing by testing the NOTE NUMBERS file for
context after performing a POINTER NOTE NUMBERS FIRST operation. If
records remain (that is, if there is context) a SELECT is performed on
the variable NOTE_NUMBERS.INDEX. This variable indicates which note
to print.

4.5.3.2.5 Handling an Unknown Note Number -

(5]

The ELSE clause of the SELECT statement traps unknown note numbers. A
SIGNAL 1is performed using the 'UNKNWNNOT' error indication. The note
number and the drive type are passed to the error handler as string
arguments.

4.5.3.2.6 Getting the Next Note -

(6]

The next note is obtained by POINTER NOTE NUMBERS NEXT. This causes
RPT to point to the next record in the NOTE NUMBERS file. If another
record exists, the NOTE NUMBERS file has context at the top of the
WHILE...DO loop; otherwise there will be no context, which means that
there will be no more notes.

4.5.3.2.7 Exit the Module -

7]

When everything is done, the notes module exits. Exiting a module
implies a RETURN to the module's caller.

4.5.3.3 MASSBUS and Non-MASSBUS Considerations - All device-level
modules work essentially the same way. The only exception is that
MASSBUS modules are not required to fill in the variable
INTERMOD DEVERR.DRIVE TYPE, whereas non-MASSBUS modules are.

This exception has to do with mixed MASSBUS configurations. With
mixed configurations, the Executive's database may not match the
actual configurations. A mismatch can happen if unit plugs have been
inadvertently swapped.

The Error Logging System deals with this possibility as follows:

1. When a device's mnemonic is found in the DEVICE_INFO table in
module DEVSM1l, the MASSBUS FLAG is checked. 1If it is TRUE, a
lookahead into the device registers returns the device's
DRIVE_TYPE.

2. The DEVICE_INFO table is then searched again to find a record
having that drive type.

ERROR LOG CONTROL FILE ARCHITECTURE

3. The Error Logging System then dispatches to the module
corresponding to the actual registers 1logged, not to the
module indicated by the mnemonic provided by the Executive.

For MASSBUS devices, the Error Logging System uses the device name
provided by the DEVICE INFO table. This name will always be correct,
as each MASSBUS device has a unique drive-type value. If there is a
mismatch between the mnemonic supplied and the device type as
determined by examining the registers, the device-type field 1in the
printed report is preceded by an asterisk,

For non-MASSBUS devices, it is the device-level module's
responsibility to supply correct drive-type information. The DEVSM1
module fills in the value based on the device's mnemonic and size, but
sometimes this information 1is not accurate. The RKO03 and RKO05 are
examples of where this is necessary. Both RK03 and RK05 device errors
are processed by the ERK05 module. The ERKO5 module figures out,
based on the device registers, which kind of drive it is and fills in
the DRIVE TYPE variable accordingly. Another example is DU devices.
In this case, the Error Logging System 1is only concerned that the
device mnemonic is DU. It 1is up to the modules that handle these
devices to provide the drive-type information.

4.5.3.4 Making the New Device-Level Module Known - The Error Logging
System is made aware of a new device-level module by adding a record
to the DEVICE INFO table in the DEVSM1 module. A section of the table
is reproduced in Table 4-3.

Table 4-3
The DEVICE_INFO Table

TABLE DEVICE_INFO ;

MNEMONIC tASCII [2] ; ! Device mnemonic
PRINT NAME :ASCII [6] ; ! Name for printing
ALT_PRINT_NAME $ASCII [1l2] ; ! Alternate name for printing
DISP_NAME :ASCII [6] ; ! Name of device module
SIZE : LONGWORD ; ! Size of device
MASSBUS_FLAG :LOGICAL ; ! True if a MASSBUS device
DRIVE TYPE :BYTE ; ! MASSBUS device type number
BEGIN_TABLE
'‘cT', 'TU6O', 'TU60"', 'ETAll', #LD'O', FALSE, #BO'0’
'DB', 'RPO4', 'RP04/05"', 'ERP456"', #LD'171798"', TRUE, $#BO'20"' ;
'DB', 'RPO5', 'RP04/05"', 'ERP456"', $LD'171798', TRUE, #BO'21"' ;
'DB', 'RPO6', 'RPO6', 'ERP456', #LD'340670', TRUE, #B0O'22' ;
'‘DD', 'TUS8', 'TUS8', 'ETUS8', #LD'512"', FALSE, #BO'Q' ;
'DF', 'RF1ll', 'RF11', 'ERS11', $LD'-1"', FALSE, #BO'0' ;
'DK', 'RKOS5', 'RK03/05"', YERKO5', $LD'4800"', FALSE, #BO'0' ;
‘DL', 'RLO1l', 'RLO1"', 'ERL12', #LD'10240"', FALSE, #BO'0' ;
'DL', 'RLO2', 'RLO2', 'ERL12"', #LD'20480"', FALSE, #BO'0' ;
'DM', 'RKO6', 'RKO6"', 'ERK67"', $#LD'27126"', FALSE, #B0O'0’
'‘DM', 'RKO7', 'RKO7"', 'ERK67"', #LD'53790"', FALSE, #BO'0'

(continued on next page)

ERROR LOG CONTROL FILE ARCHITECTURE

Table 4-3 (Cont.)
The DEVICE_INFO Table

‘DP', 'RPO3', 'RPO3', 'ERP23', #LD'80000', FALSE, #BO'0' ;
'DR', 'RMO2', 'RM02/03', 'ERM23', #LD'131680', TRUE, #B0'25' ;
'DR', 'RMO3', 'RM02/03"', 'ERM23', #LD'131680', TRUE, #B0'24' ;
'DR', 'RMO5', 'RM05', 'ERMO5', #LD'500384', TRUE, #B0'27' ;
'DR', 'RM80O', 'RM80', 'ERM8O', #LD'242606', TRUE, #BO'26' ;
'DR', 'RPO7', 'RPO7', 'ERPO7', #LD'1008000', TRUE, #BO'42' ;

'DS', 'RS03', 'RS03/04", v $LD'1024°', TRUE, #BO'0’
'DS', 'RS03', 'RS03/04"', ’ #LD'1024", TRUE, #BO'l'
'DS', 'RS04', 'RS03/04"', 'ERS34', #LD'2048"', TRUE, #BO'2'
'DS', 'RS04°', 'RS03/04", ’ $LD*2048", TRUE, #B0O'3"’

~e wo Ne N

'DT', 'TUS6', 'TUS6°', 'ETC11', #LD'576"', FALSE, #BO'Q'

The columns of the table, taken from left to right, correspond to the
declared items MNEMONIC, PRINT NAME, ALT_PRINT_NAME, DISP NAME, SIZE,
MASSBUS FLAG, and DRIVE TYPE. Following are explanations of each of
these declared items.

MNEMONIC

The mnemonic is a two-character ASCII field that 1is the device
mnemonic, as found 1in the Device Control Block (DCB). Records
should be kept in alphabetical order by mnemonic.

PRINT NAME

This six-character ASCII field identifies the particular device.
This field 1is used in the printing of the Device Identification
Information section of FULL or REGISTER reports whenever the
device registers are available. 1In general, this field is used
unless devices are being mounted or dismounted. 1In those cases,
the device registers are not available and, depending on the
device, there may be insufficient information to completely
identify a device. When this occurs, the ALT PRINT NAME field is
used instead. - -

ALT_PRINT_ NAME

This twelve-character ASCII field identifies the device when the
device registers are not available, wusually for mounts and
dismounts. In these cases, depending on the device, there may be
insufficient information to identify a device completely. For
example, when an RP04 is mounted, the only information available
that can identify the device is the mnemonic DB and the device
size. This information is the same for an RP04 and an RPO5. In
this case, the ALT PRINT NAME field is used, which identifies the
device as an RP04/05. -

DISP_NAME
This six-character ASCII field 1identifies the name of the

device-level module used to process error-logging entries for the
particular device.

ERROR LOG CONTROL FILE ARCHITECTURE

SIZE

This longword specifies the number of Dblocks on the device.
There are two special values associated with this field: a value
of zero (0) indicates that the device is a magtape, and a value
of -1 indicates there is no fixed size for the device. DEVSM1
will not correctly handle combinations of fixed- and
variable-size devices having the same mnemonic.

MASSBUS FLAG

This logical value indicates whether or not the device is a
MASSBUS device. Set it TRUE for MASSBUS devices, and FALSE for
any other devices.

DRIVE TYPE

This byte specifies the MASSBUS drive-type value. Each MASSBUS
device has a unique value which is available in the low byte of
the drive-type register. If the record 1is not for a MASSBUS
device, this field should be zero (0).

Once the record has been added to the source module (use SLP so
multiple corrections can be easily merged) the DEVSM1 module must be
recompiled. The first step in this process is to extract the symbol
file for the DSP2M1 module (or DSP2P1 for RSX-11M-PLUS) from the
ERRLOGETC.ULB library. The command should be:

>LBR DSP2M1.SYM=ERRLOGETC.ULB/EX:DSP2M1 (for RSX-11M) or
>LBR DSP2Pl.SYM=ERRLOGETC.ULB/EX:DSP2Pl (for RSX-11M-PLUS)

Once this is done, DEVSMl can be recompiled. The RSX-11M command
sequence is:

>CFL

CFL>DEVSM1,DEVSM1,DEVSM1=DEVSM1,DSP2M1
Option>LITERAL SUPPORT.RSX 11M = TRUE
Option>LITERAL SUPPORT.RSX 11M PLUS = FALSE
Option>LITERAL SUPPORT.IO ACTIVITY = FALSE
Option>/

CFL>"2Z

The RSX-11M-PLUS command sequence is:

>CFL . :) -
CFL>DEVSM1,DEVSM1,DEVSM1=DEVSM1,DSP2P1
Option>LITERAL SUPPORT.RSX_11M = FALSE s
Option>LITERAL SUPPORT.RSX 11M_PLUS = TRUE
Option>LITERAL SUPPORT.IO ACTIVITY = TRUE
Option>/ , ST ’ '
CFL>"g

There is no need to recompile the DEVUDA module as no new variables
are created in this process.

The updated DEVSM1 module can be replaced in the control file 1library
with the command:

>LBR ERRLOG.ULB/RP=DEVSM1.ICF

Once this is done, the Error Logging System will be able to associate
the mnemonic of the device with a module used to process entries for
that device.

ERROR LOG CONTROL FILE ARCHITECTURE

At this point you should include the device-level module (and notes
module, if required) in the error log library. This is done by using
the command:

>LBR ERRLOG.ULB/IN=device_level module.ICF[,notes_module.ICF]

The EUNKWN module is used (with a warning message) if an attempt is
made to process an error log entry for a device that is listed in the
DEVICE INFO table and whose corresponding device-level module is
unavailable.

4.6 CODE EXAMPLES

The following sections consist of examples of source code from the
Error Logging System. These examples are annotated for use with the
preceding narrative text. They are written in the Control File
Language, which 1is dJdocumented in the next chapter. The examples in
this chapter are:

e ERM23 device-level module for RM02s and RMO3s
¢ DSP2Ml dispatcher module for RSX-11M
 DSP2Pl dispatcher module for RSX-11M-PLUS

e NRM23 notes module for RM02s and RMO03s

4.6.1 RM02/03 Device-Level Module ERM23

Follocwing is an annotated 1listing of ERM23.MAC, the device-level
module for the RMO02 and RM03 disk drives.

MODULE ERM23 'M01.01' ;
ERROR LOG CONTROL FILE MODULE: RM02, RMO3

COPYRIGHT (c) 1981 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD
MASSACHUSETTS. ALL RIGHTS RESERVED.

1

1

1

1

1

1

!

! THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED
! AND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE
! AND WITH THE INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS
! SOFTWARE OR ANY OTHER COPIES THEREOF, MAY NOT BE PROVIDED OR
! OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON. NO TITLE TO AND
! OWNERSHIP OF THE SOFTWARE IS HEREBY TRANSFERED.

1

! THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT
! NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
! EQUIPMENT CORPORATION.

1

!

1

!

1

1

!

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF
ITS SOFTWARE ON EQUIPMENT THAT IS NOT SUPPLIED BY DIGITAL.

VERSION 01.01

ROBERT E. LI 08-JAN-81

b=t = = 4 s e e

ERROR LOG CONTROL FILE ARCHITECTURE
Device-Level Module

This is one of the many device modules, which is called by the device
error dispatcher (DSP2cl) or device information dispatcher (DSP3cl)
to process all the device dependent information.
Modified by:

CBP Correct BAE/CS3 register logic

(2]

PROCEDURE DEVICE_ENTRY

!
!
'
!
!
!
]
!
]

B
!
!
]

D

This procedure, which is called via COROUTINE statement from a dispatch
module, declares and translates all device registers or data fields of
the data subpacket. The intermodule variables required by the dispatch
modules are stuffed with the appropriate values, followed by a COROUTINE
back to the dispatch module. The dispatch module then COROUTINEs back to
this routine a second time, at a point where a write group 1is used to
print the details of a FULL or REGISTER report.

EGIN
Declare a variable to hold the length of the subpacket.
ECLARE PACKET LENGTH ;

TEMP tBYTE ;

END_DECLARE ;

P 7 R

Now get the length of the DATA subpacket. Remember that the returned value

is in bytes and includes two bytes for the length word.

ET PACKET LENGTH.TEMP TO %LOK_SLENGTH(DISP.NEXT PACKET) ;

Define the data subpacket offsets and all the print information.

(3]
SUBPACKET REGISTER = DISP.NEXT_PACKET NAMED ;
RMCS1: WORD MACHINE ;
: BIT [15]: '*Special Condition set' ;
RMCS1_TRE: BIT [14]: '*Transfer Error' ;
: BIT (13]: '*MASSBUS Control Bus Parity Err' ;
: BIT [12}: '*Unused bit set' ;
: BIT {11): ' Drive Available',
'*Drive not Available (other port using it)'
: BIT [10]: ' Unibus B Selected for Data Transfer',
' Unibus A Selected for Data Transfer' ;
RMCS1 BA: FIELD {8:2]: ' BAl7,BAl6 = '
%CNV_$BINARY(REGISTER.RMCSI_BA, 2, '0Y)
' (B)'
: BIT [7]): Controller Ready',
Controller not Ready' ;
: BIT [6]: Interrupt Enabled’',

L]
v
' Interrupt not Enabled' ;
RMCS1 FN: FIELD [1l:5]}: ' Function = '
- | INTERMOD DEVERR.DEV_FUNCTION ;
1]

: BIT [0]: *Go bit on' ;

-

’

ERROR LOG CONTROL FILE ARCHITECTURE
Device-Level Module

Drive Selected = '
INTERMOD_DEVERR.PHYS_UNIT ;

RMCS2_UN: FIELD [0:3):

RMWC: WORD MACHINE ;
: FIELD [0:1l6]: %CNV_SDECIMAL P(%COM_$NEGATE(REGISTER.RMWC), 6)
| ' words remaining' ;
RMBA: WORD MACHINE ;
: FIELD ([0:16]): ' Bus Address Register' ;
RMDA: WORD MACHINE ;
: FIELD [13:3]: '*Unused bits set', NULL ;
RMDA HD: FIELD [8:5]: ' Track Address = '
- | *CNV_SDECIMAL_P(REGISTER.RMDA_HD, 2) ;
: FIELD ([5:3]: *Unused bits set (see note)', NULL ;
RMDA SEC: FIELD [0:5]: ' Sector Address = '
- | %CNV_$DECIMAL_P(REGISTER.RMDA_SEC, 2) ;
RMCS2: WORD MACHINE ;
: BIT [15]: '*Data Late' ;
RMCS2 WC: BIT [14]: '*Write Check Error' ;
s BIT [13]: '*parity Error';
: BIT [12]: '*Nonexistent Drive' ;
: BIT [11}: '*Nonexistent Memory' ;
: BIT [10]: '*program Error' ;
: BIT [9]: '*Missed Transfer' ;
: BIT [8]: '*MASSBUS Data Bus Parity Error' ;
: BIT [7]: ' OQutput Ready (silo contains data)',
' Output not Ready (silo empty)' ;
: BIT [6}: ' Input Ready (silo not full)',
' Input not Ready (silo full)' ;
BIT [5]: ' Controller Clear '
j '(clears all drives as well)' ;
BIT [4): *Parity Test set (even parity)',
' Parity Test reset (odd parity)' ;
: BIT [3]: '*Bus Address Increment Inhibit' ;
L}
I

RMDS: WORD MACHINE ;
: BIT [15}: ' Attention Active' ;
RMDS ERR: BIT [14]: '*Error (RMER1,2 have bits set)' ;
T BIT [13}: ' Position in Progress' ;
: BIT [12]: ' Medium Online', '*Medium not Online' ;
: BIT [11]: ' Drive is Write Locked',
' Drive is Write Enabled' ;
: BIT [10]: ' Last Sector Transfered (last of the pack)' ;
: BIT [9]: ' Programmable (ports program selectable)' ;
: BIT [8]: ' Drive Present', '*Drive not Present' ;
: BIT [7]: ' Drive Ready',
' Drive not Ready' ;
: BIT [6]: ' Volume Valid', '*Volume not Vvalid' ;
: FIELD [1:5]}: '*UJnused bits set', NULL ;
: BIT [0]: ' Drive in Offset Mode',
' Drive not in Offset Mode' ;
RMER1: WORD MACHINE ;
RMER1 DCK: BIT [15]: '*Data Check' ;
T BIT [14]: '**Drive Unsafe' ;
: BIT [13]: '*Operation Incomplete' ;
: BIT [12]: '*Drive Timing Error' ;
: BIT [11]: '*Write Lock Error' ;
: BIT [10]: '*Invalid Address Error' ;
: BIT [9]: '*Address Overflow Error' ;
: BIT [8]: '*Header CRC Error' ;
H BIT [7]: '*Header Compare Error' ;

RMER1_ECH:

e oo

s o0 a0 e

RMLA:
RMLA_ANG:

RMDB:

RMMR1:

.o

.

ERROR LOG CONTROL FILE ARCHITECTURE

BIT [6]:
BIT [51:
BIT [4]:
BIT [3]:
BIT [2]):
BIT [1):
BIT [0]:

WORD MACHINE
FIELD [8:8]:

BIT [7]:
BIT [6]:
BIT [5]:
BIT [4]

BIT [3]:
BIT [2]:
BIT [1]:
BIT [0]:

WORD MACHINE

FIELD [11:5]:

FIELD [6:5]):

FIELD [0:6]:
WORD MACHINE

FIELD [0:16}:

WORD MACHINE
BIT [15]:

BIT

[14]):

BIT

[13]):

BIT

[12}:

BIT

[11]):

BIT

[10]:

BIT [9]):

BIT [8]:

BIT [7]:

.
14

-

’

r

Device-Level Module

'*ECC Hard Error' ;

'*Write Clock Fail' ;

'*Format Error' ;

'*parity Error' ;

'*Register Modification Refused' ;
'*11legal Register' ;

'*I1llegal Function' ;

$CND SIF(REGISTER.RMDT (11},

T NULL,'*Unused bits set'),
NULL ;

#7 Attention'
#6 Attention'
#5 Attention'
#4 Attention'
#3 Attention'
#2 Attention'
#1 Attention'
#0 Attention'

Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit

e Ns Wa Ne we we W Ne

'*Unused bits set',
' Sector Count = '
| 3CNV_SDECIMAL_P (REGISTER.RMLA_ANG, 2) ;
*Unused bits set', NULL ;

NULL ;

' Data Buffer contents' ;

%CND_$IF(REGISTER.RMMRl_MM,
' Debug Clock set', NULL),
$CND SIF(REGISTER. RMMRl _MM,
T Debug Clock reset™, NULL) ;

$CND SIF(REGISTER.RMMR1 MM,

7 Debug Clock Enabled', NULL),
$CND SIF(REGISTER.RMMR1 MM,
T Debug Clock Disabled', NULL) ;

$CND_$IF(REGISTER.RMMR1 MM,

7 Diagnostic End of Block set',
$CND_SIF(REGISTER.RMMR1 MM,

7 Diagnostic End of Block reset',NULL)
$CND SIF(REGISTER.RMMR1 MM,

NULL) ,

T Search Time Out disabled', NULL),
%CND_SIF(REGISTER.RMMRl_MM,

' Search Time Out enabled', NULL) ;
$CND SIF(REGISTER.RMMRI_MM,

7 Maintenance Clock set', NULL),
$CND $IF(REGISTER.RNMR1_MM,

7 Maintenance Clock reset', NULL) ;

%CND_$IF(REGISTER.RMMRl_MM,
' Maintenance Read Data set',
$CND $IF(REGISTER RMMR1 MM,
' Maintenance Read Data reset',NULL) ;
$CND SIF(REGISTER.RMMR1 MM,
7 Maintenance Unit Ready'
$CND SIF(REGISTER RMMR1 MM,

NULL) ,

NULL) ,

7 Maintenance Unit Not Ready', NULL) ;
%CND_SIF(REGISTER RMMR1 MM,
' Maintenance On Cylinder', NULL),

$CND_SIF (REGISTER.RMMR1_MM,
' Maintenance not On Cylinder',NULL) ;
$CND SIF(REGISTER.RMMR1 MM,

T*Maintenance Seek Error', NULL) ;

ERROR LOG CONTROL FILE ARCHITECTURE
Device-Level Module

: BIT [6]: $CND_$IF(REGISTER.RMMR1 MM,
'*Maintenance Drive Fault',NULL) ;
H BIT [5]: $CND SIF(REGISTER.RMMR1 MM,

7 Maintenance Sector Pulse set', NULL),
$CND S$IF(REGISTER.RMMR1 MM,
7 Maintenance Sector Pulse reset', NULL) ;
BIT [4]: '*Unused bit set' ;
BIT [3}]: $CND SIF(REGISTER.RMMR1 MM,

e o0

" Maintenance Write Protect', NULL),
$CND SIF(REGISTER.RMMR1 MM,
T Maintenance Write Enabled', NULl) ;
: BIT [2]: $CND SIF(REGISTER.RMMR1 _MM,
T Maintenance Index Pulse set', NULL),
$CND $IF(REGISTER RMMR1 MM,
'"Maintenance Index Pulse reset', NULL) ;
H BIT [1}1: $CND SIF(REGISTER.RMMR1 _MM,
7 Maintenance Sector Compare set', NULL),
$CND SIF (REGISTER.RMMR1 MM,
7 Maintenance Sector Compare reset', NULL);
RMMR1 MM: BIT [0]: ' Diagnostic Mode on',
- ' Diagnostic Mode off' ;

RMDT: WORD MACHINE ;
: BIT [15]: '*Drive not Sector Addressable' ;
: BIT [14]: '*Unit is a Tape Drive' ;
: BIT [13}: NULL, '*Unit is not a Moving Head Device' ;
: BIT [12]: '*Unused bit set' ;
: BIT [11]: ' DRQ on (dual port unit)*',
' DRQ off (single port unit)' ;
: FIELD [9:2]: '*Unused bits set', NULL ;
RMDT TYP: FIELD [0:8]: ' Drive Type = '
- | INTERMOD_DEVERR.DRIVE_TYPE H
RMSN: WORD MACHINE ;
: FIELD [0:16]: ' Drive Serial Number = '
| %CNV_$BCD(REGISTER.RMSN,4) | ' (BCD)' ;
RMOF': WORD MACHINE ;
: FIELD [13:3]: '*Unused bits set', NULL ;
: BIT [12]: ' 16 Bit Data Format',
'*18 Bit Data Format' ;
: BIT [11]: ' ECC Inhibit', ' ECC enabled' ;
: BIT [10]: ' Header Compare Inhibit',
' Header Compare Enabled' ;
: FIELD ([8:2]: '*Unused bits set', NULL ;
: BIT [7]: ' Offset Direction = Forward',
' Offset Direction = Reverse' ;
: FIELD [0:7]): '*Unused bits set', NULL ;
RMDC: WORD MACHINE ;
: FIELD [10:6]: '*Unused bits set', NULL ;
RMDC DC: FIELD [0:10]: ' Desired Cylinder = '
B | CNV_SSDECIMAL P(REGISTER.RMDC_DC, 4) ;
RMHR: WORD MACHINE ;
: FIELD [0:16]: ' Holding Register contents' ;
RMMR2: WORD MACHINE ;
: BIT [15]: ' Port A Request for Service' ;
: BIT [14]: ' Port B Request for Service' ;
H BIT [13}: ' Control Select Tag on' ;
: BIT [12]: $CND SIF(REGISTER.RMMR1 MM,
' Test Sequencer Branching on', NULL) ;
: BIT [11]: ' Control or Cylinder Tag on' ;
: BIT [10]: ' Control or Head Tag on' ;

ERROR LOG CONTROL FILE ARCHITECTURE
Device-Level Module

RMMRZ_MBL: FIELD [0:10]}: %CND_$IF(REGISTER.RMMRI_MM,
' Maintenance Bus Lines = '
%CNV_$BINARY(REGISTER.RMMRZ_MBL, 10, '0")
1 (B)I

, NULL) ;
RMER2: WORD MACHINE ;
: BIT [15]): '*Bad Sector Detected (hdr bit)' ;
: BIT [14]: '*Seek Incomplete' ;
: BIT [13]: '*Operator Plug Error (removed)' ;
BIT [12]: '*Invalid Command (VV bit reset)' ;
BIT [1l1]: '*Loss of System Clock' ;
: BIT [10]: '*Loss of Bit Clock' ;
: FIELD [8:2]): '*Unused bits set', NULL ;
: BIT [7]): '*Device Check' ;
: FIELD (4:3]: '*UJnused bits set', NULL ;
: BIT [3]: '*Data Parity Error' ;
: FIELD [0:3): '*Unused bits set', NULL ;
RMEC1: WORD MACHINE ;

: FIELD [13:3]: '*Unused bits set', NULL ;
RMECl_PS: FIELD [0:13]: ' ECC Position = ' | VAR.ECCPS ;
RMEC2: WORD MACHINE ;

: FIELD [11:5]: '*Unused bits set', NULL ;
: FIELD {0:11): ' ECC Pattern = ' | VAR.ECCPAT ;

IF DEVICE OP.FLG BAE AND (PACKET_LENGTH.TEMP EQ #BD'46')

1
! If the RH70 flag 1is true and the packet length is 22 registers,
! declare the BAE and CS3 registers. Note that the packet length check
! is necessary because umapped RSX systems will not log BAE and CS3
! 2ven if the controller is an RH70.

1

THEN
BEGIN
RMBAE: WORD MACHINE ;
: FIELD [6:10]}: '*Unused bits set', NULL ;
RMBAE EXT: FIELD [0:6]: ' BA21 through BAl6 = '
B | CNV_SBINARY (REGISTER.RMBAE EXT, 6, '0') ;
RMCS3: WORD MACHINE ;
: BIT [15]: '*Address Parity Error' ;
: BIT [14]: '*Data Parity Error, 044 word' ;
: BIT [13]: '*Data Parity Error, Even Word' ;
: BIT ([12]: '*Write Check Error, 0dd word' ;
: BIT [1l1]: '*Write Check Error, Even Word' ;
: BIT [10]: ' Double Word Transfered' ;
: FIELD [7:3]: '*Unused bits set', NULL ;
: BIT [6]: ' Interrupt Enabled',
' Interrupt not Enabled' ;
: FIELD [4:2]: '*UJnused bits set', NULL ;
RMCS3 IPC : FIELD [0:4]: ' Inverse Parity Check Bits = '
- $CNV $BINARY(REGISTER.RMCS3_IPC, 4, '0")
t(BY'
END ;
END IF ;

END_PACKET ;

ERROR LOG CONTROL FILE ARCHITECTURE
Device-Level Module

(5]

! Declare all variables needed for the

!

DECLARE VAR ;
ECCPS:
ECCPAT:

END_DECLARE ;

ASCII [22]
ASCII [22]
!
! Create the device function code
1

TABLE FUNCTION ;
FUN CODE:

subpacket print information.

! ECC position.
! ECC pattern.

~e ~

conversion table.

BYTE MACHINE ;

Centerline' ;

'Write Check Header and Data' ;

'Write Header and Data' ;

FUN TEXT: ASCII [27] ;

BEGIN TABLE
#B0'00", 'No Operation' ;
#B0'02', 'Seek Command'
$#BO'03"', 'Recalibrate' ;
#BO'04°', '‘Drive Clear' ;
#BO'05', 'Release (dual port)' ;
#BO'06°', 'Offset Command' ;
#BO'07"', 'Return to
$#B0'10"', 'Read_in Preset' ;
#BO'11"', 'Pack Acknowledge' ;
$#BO'14"', 'Search Command' ;
#BO'24°', 'Write Check Data' ;
$#BO'25"',
$#BO'30"', 'Write Data' ;
#BO'31"',
#B0O'34"', 'Read Data' ;
$#BO'35"', 'Read Header and Data' ;

END_TABLE ;
Calculate the ECC Position.

Determine if the ECC position

1
!
1
1
!
!
IF REGISTER.RMEC1 PS LE #WD'4128'
THEN

At this point, the ECC position is within range

1

!

! Next,
! If the
1

{

value, points to the starting bit within the sector or is

has an illegal

irrelevent.

is normal (not used),

(0. to 4128.).

find out if the ECC position counter (register) was used.
ECC position register value

equals an octal 4066, it

indicates the register was initialized but not used.

SET VAR.ECCPS TO %CND_S$IF(REGISTER.RMECl PS EQ #WO'4066',
'Normal', 3%CNV_SDECIMAL_P(REGISTER.RMEC1l PS, 6)) ;

ELSE

SET VAR.ECCPS TO 'Outside of legal range' ;

END_IF ;

ERROR LOG CONTROL FILE ARCHITECTURE
Device-Level Module

If the error was a non-correctable hard error or Error Correction
was inhibited, then the ECC position and ECC pattern are irrelevant.

[B e S L

F (REGISTER.RMER1 ECH EQ TRUE)
HEN

BEGIN
SET VAR.ECCPS TO 'Irrelevant (ECH set)'
SET VAR.ECCPAT TO 'Irrelevant (ECH set)'
END ;

END_IF ;

IF (REGISTER.RMOF [11] EQ TRUE)
THEN

BEGIN
SET VAR.ECCPS TO 'Irrelevant (ECI set)'
SET VAR.ECCPAT TO 'Irrelevant (ECI set)'
END ;

~e ~e

ELSE
SET VAR.ECCPAT TO %CNV_S$OCTAL (REGISTER.RMEC2 [0:11], 4, '0') | ' (O)'

END_IF ;

(6]

The following will use the register information to determine the
value of the intermodule variables, which are needed by the
dispatcher and stuff these accordingly

The variables are:

INTERMOD DEVERR.DRIVE SN

INTERMOD DEVERR.DEV FUNCTION

INTERMOD DEVERR.PHYS UNIT

INTERMOD DEVERR.ERROR CYLINDER

INTERMOD DEVERR.ERROR SECTOR

INTERMOD DEVERR.ERROR HEAD

INTERMOD DEVERR.ERROR GROUP (not applicable to this device)
INTERMOD DEVERR.BLOCK NUMBER

INTERMOD DEVERR.ERROR_TYPE

Return the drive serial number.

ET INTERMOD DEVERR.DRIVE SN TO %CNV_S$BCD(REGISTER.RMSN, 12, Y

4= b [f) 4 b s s b 4 s e b s b= s S s b= s 4= e e

Lookup the function code in the function table.

ERROR LOG CONTROL FILE ARCHITECTURE
Device-Level Module

!
éIND FUNCTION FUN_CODE = REGISTER.RMCSI_FN H
i Check if a match is found between the register and the table,
1
iF FUNCTION.CONTEXT
THEN
i Yes, return the associated function text in the variable.
1
éET INTERMOD_DEVERR.DEV_FUNCTION TO FUNCTION.FUN_TEXT ;
ELSE
1
; Otherwise, return text indicating an invalid function.
1
éET INTERMOD_DEVERR.DEV_FUNCTION TO 'Invalid function' ;
ND_IF ;
Return the physical unit number.
éET INTERMOD DEVERR.PHYS UNIT TO %CNV_$DECIMAL(REGISTER.RMCSZﬁUN, 1) ;
DISK GEOMETRY INFORMATION.
and SECTOR address, initially assumming the error packet was NOT caused
by a data error.
Calculate LBN using the formula...
LBN = (CYLINDER ADRS * number of SECTORS/CYL +

E
1
|
1
1
1
!
! Calculate the intermodule variables for LBN, GROUP, CYLINDER, TRACK,
1
!
1
1
]
]
! HEAD~ADR§ * number of SECTORS/TRACK +
! SECTOR_ADRS)
1
SET INTERMOD_DEVERR.BLOCK_NUMBER TO
$CNV_SDECIMAL P(

(REGISTER.RMDC_DC * #LD'160' +

REGISTER.RMDA_HD * #WD'32" +

REGISTER.RMDA_SEC),

9) i

Initialize GROUP. (not applicable to this device)

!
1
!
SET INTERMOD_ DEVERR.ERROR_GROUP TO 'N/A' ;
!
! Initialize CYLINDER.

!

S

ET INTERMOD DEVERR.ERROR CYLINDER TO
$CNV_SDECIMAL_P (REGISTER.RMDC_DC, 3) ;

Initialize TRACK (head).

!

!

!

SET INTERMOD_ DEVERR.ERROR_HEAD TO
$CNV_SDECIMAL_ P(REGISTER.RMDA HD, 2) ;

Initialize SECTOR.

!

]

!

SET INTERMOD DEVERR.ERROR_SECTOR TO
CNV_SDECIMAL P (REGISTER.RMDA SEC, 2) ;

= b e G b s S 4s Bm s b= 4me Sm b= Bme Sem = e bem b sme = b sme Sem eme o

ERROR LOG CONTROL FILE ARCHITECTURE
Device-Level Module

Correct the geometry information if necessary.

Upon a data error, the hardware will update the GROUP, CYLINDER, TRACK and

SECTOR to point to the sector following the sector in error. In order to

make the intermodule variables for GROUP, CYLINDER, TRACK, SECTOR and LBN

point to the media address causing a data error, they are corrected (backed
off by 1) using the following algorithm.

Was it a data error ? (check error bits)
Yes, it was a data error. (correction (backoff) is needed)
Decrement LBN. (recalculate pointing to previous BLK)
Was SECTOR = 0 ? (sector underflow boundry?)
Yes, SECTOR = 0. (underflow sector and borrow from TRK)
SECTOR = SECTORMAX. (underflow the sector)
Was TRACK = 0? (track underflow boundry?)
Yes, TRACK = 0. (underflow TRK and borrow from CYL)
TRACK = TRACKMAX. (underflow the track)
Decrement CYLINDER. (borrow from CYL for TRK)
No, TRACK NOT = 0. (no undeflow of TRK)
Decrement TRACK. (Simply, with no borrow from CYL)
No, SECTOR NOT = 0. (no underflow at all)
Decrement SECTOR. (point to the previous block)
No, it was not a data error. (no correction (backoff) needed)

Was it a data error?

IF REGISTER.RMER1 DCK OR REGISTER.RMER1 ECH OR REGISTER.RMCS2 WC
THEN

1
!
B

Yes, it was a data error. (LBN and geometry information needs correction)

EGIN

Correct the LBN by recalculating. (backed off by one block).

1

1

!

SET INTERMOD DEVERR.BLOCK NUMBER TO

$CNV_$DECIMAL P(

(REGISTER.RMDC DC * #LD'160' +
REGISTER.RMDA HD * #WD'32' +
REGISTER.RMDA SEC) -1,
9) i

Was the sector address zero? (Sector underflow?)

IF REGISTER.RMDA SEC EQ #BD'00'
THEN

Yes, it was zero. (so undeflow the sector and borrow from track)

W o= o= o

EGIN

Underflow the sector.

1
1
!
SET INTERMOD_DEVERR.ERROR SECTOR TO '31l.' ;
1
! Was track (head) address zero? (track underflow?)
!
IF REGISTER.RMDA HD EQ #BD'00’
THEN
1
! Yes, the track was 0, so underflow the track
! and borrow from the cylinder.

ERROR LOG CONTROL FILE ARCHITECTURE
Device-Level Module

1]
BEGIN
!
! Underflow the track (head).
!
SET INTERMOD_DEVERR.ERROR_HEAD TO '4.' ;
!
! Borrow from the cylinder.
1
SET INTERMOD DEVERR.ERROR_CYLINDER TO
$CNV_$DECIMAL_P (REGISTER.RMDC DC - 1, 3) ;
END ;
ELSE

No, the track was not zero. Simply decrement it. (no track underflow)

!
]
!
SET INTERMOD DEVERR.ERROR HEAD TO
CNV_SDECIMAL P(REGISTER.RMDA HD - 1, 2) ;
END IF ;
END ;
ELSE

1
! No, the sector address was not zero. Simply decrement it.
! (no sector underflow)

1

S

ET INTERMOD DEVERR.ERROR SECTOR TO
$CNV_SDECIMAL P(REGISTER.RMDA SEC - 1, 2) ;
END IF ; - -
END ;
END_IF ;

!
! Find the reason causing this error packet and set the variable
! accordingly.

1

IF REGISTER.RMCS1_ TRE

THEN
BEGIN
IF NOT REGISTER.RMDS_ERR
THEN
DECODE
INTERMOD DEVERR.ERROR_TYPE = REGISTER ;
RMCS2 [15] ; ! Data Late
RMCS2 [14] ; ! Write Check Error
RMCS2 [13] ; ! U.B. Parity Error
RMCS2 [12] ; ! Nonexistent Drive
RMCS2 [11] ; ! Nonexistent Memory
RMCS2 [10] ; ! Program Error
RMCS2 [9] ; ! Missed Transfer
RMCS2 [8} ; ! MASSBUS Data Bus Parity Error

END_DECODE ;

ERROR LOG CONTROL FILE ARCHITECTURE
Device-Level Module

ELSE

Drive not Available
Controller not Ready

NOT RMCS1 [11]
NOT RMCS1 [7]
END DECODE ;

ELSE
DECODE
INTERMOD_DEVERR.ERROR TYPE = REGISTER ;
RMER2 [15] ; Tt Bad Sector Detected (Hdr bit)
RMER2 [14] ; ! Seek Incomplete
RMER2 [13] ; ! Operator Plug Error (removed)
RMER2 [12] ; ! Invalid Command (VV bit reset)
RMER2 [11] ; ! Lost of System Clock
RMER2 [10] ; ! Lost of Bit Clock
RMER2 [7] ; ! Device Check
RMER2 [3] ; ! Data Parity Error
RMERL1 [6] ; ! ECC Hard Error
RMER1 [15] ; ! Data Check
RMER1 [14] ; ! Drive Unsafe
RMER1 [13] ; ! Operation Incomplete
RMER1l ([12] ; ! Drive Timing Error
RMER1 [11] ; ! Write Lock Error
RMER1 [10} ; ! Invalid Address Error
RMERL [9] ; ! Address Overflow Error
RMER1 [8] ; ! Header CRC Error
RMERY [71 ; ! Header Compare Error
RMER1 [5] ; ! Write Clock Fail
RMER1 [41 ; ! Format Error
RMER1 [3] ; ! Parity Error
RMER1 [2] ; ! Register Modification Refused
RMER1 [1] ; ! Illegal Register
RMER1 [0] ; ! Illegal Function
END DECODE ;
END IF ;~
END ;
DECODE
INTERMOD DEVERR.ERROR TYPE = REGISTER ;
NOT RMDS [12] ; ~ ! Medium not Online
NOT RMDS [8] ; Drive not Present
NOT RMDS [6] ; Volume not Valid
RMCS1 ([13] ;
7
i

!
!
! MASSBUS Control Bus Parity Error
1
1

END_IF ;

IF (INTERMOD_DEVERR.ERROR TYPE EQ NULL)
THEN

SET INTERMOD DEVERR.ERROR TYPE TO 'No error bit found' ;

END_IF ;

1= te e v v b 4 e e v 0= () 4 b e 0

8]

All the intermodule variables have been stuffed, so return to the
coroutine caller (calling dispatch module).

OROUTINE ;

The dispatcher returns control to this module here, with the flag
INTERMOD DEVERR.PRINT FLAG set to either TRUE or FALSE. If the
flag is TRUE, a FULL or REGISTER report is in progress, the banner
has been printed, and this module prints device registers (or data
fields for packet oriented devices) Otherwise, this module does
not print anything, and simply exits back to the dispatcher. The
width of the report (80/132) 1is controlled by dispatcher defined
format variables REPORT.W G F 1 and REPORT.W G F 2 based on the
user specified /WIDTH switch. -

ERROR LOG CONTROL FILE ARCHITECTURE
Device-Level Module

IF INTERMOD_DEVERR.PRINT_FLAG
THEN
BEGIN
1
! Print the header for the Name, Value and Interpretation fields.
1
WRITE
FORMAT
'15FCName!13FCValue!25FCInterpretation!2FL"' ;
1
! Print the registers according to the format variable (80/132)
! provided by the dispatcher.
1
WRITE_GROUP REGISTER
FORMAT
1
! Print format for the register name
! and it's associated value.
1
REPORT.W G F 1,
]
! Print format for the exploded bits and fields.
1
REPORT.W G_F 2 ;
1
! If there are any NOTES to be printed, this is where the
! PUT of note indicies is done on the note file. When the
! return from this module is done, the dispatching module
! examines the note file to determine if the note module
! NRM23 should be called to print the notes specified by
! index number.
1
! If the unused bits 5 to 7 are set in the RMDA register.
1
IF (REGISTER.RMDA (5:3] NE #BB'0')
THEN
]
! Print the note saying that it may cause an invalid
! sector address to be recognized resulting in a
! possible invalid address error.
1
PUT NOTE_NUMBERS INDEX = 1 ;
END_IF ;
END ;
END_IF ;
END ;
END_MODULE ;

ERROR LOG CONTROL FILE ARCHITECTURE
RSX-11M Dispatcher Module

4.6.2 DSP2M1 Dispatcher Module for RSX-11M

Following is an annotated listing of the DSP2M1l dispatcher module for
RSX-11M.

MODULE DSP2M1 'M01.00' ;
!

ERROR LOG CONTROL FILE MODULE: DSP2M1

COPYRIGHT (c) 1981 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD
MASSACHUSETTS. ALL RIGHTS RESERVED.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED
AND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE
AND WITH THE INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS
SOFTWARE OR ANY OTHER COPIES THEREOF, MAY NOT BE PROVIDED OR
OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON. NO TITLE TO AND
OWNERSHIP OF THE SOFTWARE IS HEREBY TRANSFERED.

THE INFORMATION 1IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT
NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
EQUIPMENT CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF
ITS SOFTWARE ON EQUIPMENT THAT IS NOT SUPPLIED BY DIGITAL.

1

!

1

1

1

1

!

1

1

1

!

]

!

!

!

!

!

!

!

]

! VERSION 01.00

1

! C. PUNTAM 22-SEP-80

1

! This module is called to process Device Error packets.
!

! Module Name: DSP 2 M 1

1 —

1

! Module Prefix: ——-—mee—w- [
! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
L

!
1
Error Code: —-cwccmmcccanm—— [
!

Operating System: -~——-—-——-w—-o !

S G e P pem P

Packet Format: ——-—eemeeemmeee]

The following Error Subcodes are defined:

Subcode Mnemonic Meaning
1 E_$SDVH Device Hard Error
2 E_$SDvVS Device Soft Error
3 E_$STMO Device Interrupt Timeout

Define any literals used in this module.

ITERAL DSP2 SUB ANY.FORMAT 1 =
'I/0 Operation Information:!l1FL'
et s e 12FL’
' 15FCDevice Function!38FCType of Error!2FL' |
'15FC!30DP!38FC!30DP{3FL"' ;

ERROR LOG CONTROL FILE ARCHITECTURE
RSX-11M Dispatcher Module

LITERAL DSP2_SUB_ANY.FORMAT_2 =
'‘Device Error Position Information:!1FL®
Vermm mmmem e e ma——a 12FL’
'15FCCylinder!15FCGroup!22FCHead ! 28FCSector!36FCBlock!2FL" |
'I5FCI8DP!15FC!5DP!22FCI4DP!28FC!6DPI36FC!10DP! 2FL' ;
PROCEDURE START_MOD

BEGIN
1

Create the Subcode Conversion table.

!
!
TABLE SUBCODE ;

NUMBER :WORD ;
TEXT :ASCII [18] ;

BEGIN TABLE
17 'Device Hard Error' ;
2, 'Device Soft Error' ;
3, '‘Device Timeout' ;

END_TABLE ;
1

! First check to see if PERIPHERAL errors are selected. If they are not,
! simply return. Also determine the packet subtype. If it is a known

! subtype code, then proceed. Otherwise it is an error.
!
I

F NOT REPORT.PERIPHERAL

FIND SUBCODE NUMBER = HEADER.CODE SUBTYPE ;
IF NOT SUBCODE.CONTEXT
THEN

BEGIN

SIGNAL 'ILLPACSBC' PARAMETERS
REPORT.PACKET IDENT,
$CNV_SDECIMAL(HEADER.CODE_TYPE, 3),
$CNV_$DECIMAL (HEADER.CODE SUBTYPE, 3)

-

RETURN ;
END ;

END_IF ;

Find the device name by calling the DEVICE NAME procedure.

() o= o= o=

ALL MODULE 'DEVSM1l' PROCEDURE 'DEVICE_NAME®' ;

(2]

Prepare the NOTE NUMBERS file for any notes that may be requested.

Mg o= 0= 0=

OINTER NOTE_NUMBERS CLEAR ;

ERROR LOG CONTROL FILE ARCHITECTURE
RSX-11M Dispatcher Module

3]

Now set up the procedure DEVICE ERROR and the appropriate device level
module as a coroutine pair.

!
!
!
!
c

ALL MODULE INTERMOD DEVERR.DISP NAME PROCEDURE 'DEVICE_ENTRY'
COROUTINE 'DEVICE ERROR' ;

END ; -

PROCEDURE DEVICE ERROR

BEGIN -

]

The following is used to format the output for the
'Device Hard Error', 'Device Soft Error' and
'Device Interrupt Timeout' Device Error packets.

The DEVICE ID subpacket contains information about the
device on which the error occured.

The DEVICE OP subpacket contains information about the I/0
Operation In progress on the device at the time of the error.

4]

= =t 4= tam se o= 0= sme

Obtain information from the coroutine partner.

Q) = o= =

OROUTINE ;

(5]

Assume the serial number test will succeed or be irrelevent.
ET INTERMOD_DEVERR.REJECT_FLAG TO FALSE ;

Now test to see if this device passes the drive serial number test.

P R L R

F REPORT.DRIVE SN_VALID AND
(INTERMOD_DEVERR.DRIVE_SN NE $CNV_$BCD (REPORT.DRIVE SN, 12))

THEN
Indicate that the test failed.

ET INTERMOD DEVERR.REJECT FLAG TO TRUE ;

Determine the type of report and format the output
accordingly.

ASE REPORT.MODE OF
['BRIEF']:
1
The BRIEF report is one line long.

!
!
BEGIN
1
! Now ouput the information based on the result of the test.
!

ERROR LOG CONTROL FILE ARCHITECTURE
RSX-11M Dispatcher Module

(6]

IF NOT INTERMOD DEVERR.REJECT_ FLAG

THEN

Now output the brief report.

1
1
!
WRITE
REPORT.PACKET IDENT,
$CNV_$RSX_ TIME (HEADER.TIME STAMP, 0),
SUBCODE. TEXT,
DISP.DEVICE STRING,
INTERMOD DEVERR.ERROR TYPE,
'Function = ' | INTERMOD_DEVERR.DEV_FUNCTION

FORMAT
REPORT.BRIEF_FORMAT ;

!
! Now go back to the partner. It will simply return
! without printing.

SET INTERMOD DEVERR.PRINT FLAG TO FALSE ;
END ;

['FULL', 'REGISTERS']:

The FULL report contains detailed information
about the error.
EGIN

Now output the information based on the result of the test.

— v o= [o = 4= e

7]

IF NOT INTERMOD DEVERR.REJECT_FLAG

THEN

!
! Output the first page if the report type is 'FULL'.
1

BEGIN

IF REPORT.MODE EQ 'FULL'

THEN
!
! Now output the information for the standard subpackets.
BEGIN

CALL MODULE REPORT.FULL _MOD_1 PROCEDURE 'OUTPUT_PACKETS'
CALL MODULE REPORT.FULL MOD_2 PROCEDURE ‘'OUTPUT_ PACKETS'
CALL MODULE REPORT.FULL MOD_3 PROCEDURE 'OUTPUT_PACKETS'

CALL MODULE REPORT.FULL_MOD_4 PROCEDURE 'OUTPUT_PACKETS'

-

-e

.

ERROR LOG CONTROL FILE ARCHITECTURE
RSX-11M Dispatcher Module

Now output the Data subpacket information.

S e 0= e

RITE
INTERMOD DEVERR.DEV_FUNCTION,
INTERMOD DEVERR.ERROR_TYPE
FORMAT -
DSP2_SUB_ANY.FORMAT 1 ;

Now output the Device Error Position information
if it is applicable.

v 4= b

IF INTERMOD DEVERR.ERROR_CYLINDER NE '?222'
THEN

WRITE

INTERMOD DEVERR.ERROR CYLINDER,
INTERMOD DEVERR.ERROR_GROUP,
INTERMOD DEVERR.ERROR_HEAD,
INTERMOD DEVERR.ERROR SECTOR,
INTERMOD DEVERR.BLOCK NUMBER

FORMAT - -
DSP2_SUB_ANY.FORMAT 2 ;

END_IF ;

A full report is wanted, so print the record I1.D.
and header.

-t gy =

WRITE
REPORT.PACKET_ IDENT
FORMAT
'I1FPISFCEntry !DP!22FC(continued)!3FL' |
'Device Supplied Information:!FL'
B ittt {2FL' ;

ELSE

Only a register dump is requested, therefore print
the banner from the full report.

RITE
REPORT.PACKET IDENT,
$CNV_SDECIMAL_P (HEADER.ERROR_SEQ, 8),
DISP.DEVICE STRING,

SUBCODE. TEXT,

$CND_SIF ((INTERMOD DEVERR.ERROR_TYPE NE NULL),
" (' | INTERMOD DEVERR.ERROR_TYPE | ')°',
NULL) ,

$CNV_SRSX_TIME (HEADER.TIME_STAMP, 0)

ERROR LOG CONTROL FILE ARCHITECTURE
RSX-11M Dispatcher Module

FORMAT
!

! Select the format statement
! based on the desired width.

CND_SIF(REPORT.WIDE,

OO0 e

WIDE is selected.

- o

't1FPI5FCEntry !7DP!20FCSequence !9DP' |
'140FCI!6DP!48FC!18DPIDPI2FS!120DP! 3FL" |
‘Device Supplied Information:!FL' |
OO i 12FL',

1
! NARROW is selected.

]

'11FP!S5FCEntry !7DP!20FCSequence !9DP!40FC!6DP!FL’ |
'ISFCI18DP!IDPI2FS!120DP! 3FL"

'Device Supplied Information:!FL'

e mee e tae e 12FL') ;

! Now indicate we want to have the device module print.
]

SET INTERMOD DEVERR.PRINT FLAG TO TRUE ;
END ;

ELSE
!
E The packet was rejected. Don't print anything.
éET INTERMOD_DEVERR.PRINT_FLAG TO FALSE ;

END IF ;

! Now go back to the partner. It will output the device registers
1 if the print flag is true.
1

END ;

(8]
[*NONE']:
!
! If the report type is NONE, output nothing.

1
SET INTERMOD DEVERR,.PRINT FLAG TO FALSE ;

END_CASE ;

!

! Now COROUTINE back to the partner., It will print if instructed to do so.
!

COROUTINE ;

ERROR LOG CONTROL FILE ARCHITECTURE
RSX-11M Dispatcher Module

©

' n .

! Now see if any notes were requested and print them if there were.
, ,

IF NOTE_NUMBERS.CONTEXT THEN

BEGIN
SET INTERMOD DEVERR.DISP NAME TO 'N'
$STR_ $REMAINING(INTERMOD DEVERR. DISP NAME, 2) ;

IF %PKT_$MODULE (INTERMOD DEVERR.DISP_NAME)
THEN

CALL MODULE INTERMOb_DEVERR.DISP;NAME PROCEDURE 'NOTES' ;
ELSE

SIGNAL 'NONOTES' PARAMETERS INTERMOD DEVERR,DRIVE_TYPE ;

END_IF ;
END ;

END_IF ;
END ;

END_ MODULE ; ! DSP2M1.CNF

ERROR LOG CONTROL FILE ARCHITECTURE
RSX-11M - PLUS Dispatcher Module

ERROR LOG CONTROL FILE ARCHITECTURE
RSX-11M-PLUS Dispatcher Module

LITERAL DSP2_SUB_ANY.FORMAT
'Device Error Pos

!
! :
TABLE SUBCODE
NUMBER
TEXT
BEGIN_TABLE

END_TABLE ;

!
!
1 i
DECLARE INDICATE

TAPE_FLAG
END_DECLARE ;

RETURN

END_IF ;

ERROR LOG CONTROL FILE ARCHITECTURE
RSX-11M-PLUS Dispatcher Module

Now flnd the d vice name by call1ng the DEVICE NAM

‘DEVICE NAME'

ALL M.DULE V”MI' PROCEDURE

Sl Rt R e)

CALL‘MQDU&E 1N énon DEVERR DI’P'NAME pnocnouaa 'agv;qg ENTRY'
G s ' , 5 o = ; = :

BEGIN ‘ : :
:Thé‘féi}§;i ‘f ﬁused to format the ontput for the

ror', 'Device Soft Error', ‘'Device Int’rrupt Tlmeout'
'terrupt' Dev1ce Brror packets.,,fff B i

/o‘xn the system.'~

ubga‘ et . contalns informat;on about T e‘I/G
ress on the dev1ce at the tlme o 34

‘-'-,My—.-.-.—c‘-u'0—i4¢'l-‘.—0—0~'~

ion from ‘the ¢orout1ne partner. g

‘er test w111 succeed or be irr

RR. REJECT FLAG TO FALSE

ut the information based on the resul

ERROR LOG CONTROL FILE ARCHITECTURE
RSX-11M-PLUS Dispatcher Module

IF NOT INTERMOD_DEVERR.REJECT_FLAG

THEN

!

! Now output the brief report.

1

BEGIN

WRITE
REPORT.PACKET IDENT,
$CNV_SRSX_TIME (HEADER.TIME_STAMP, 0),
SUBCODE.TEXT,
DISP.DEVICE STRING,
INTERMOD DEVERR.ERROR TYPE,

'Function = ' | INTERMOD_DEVERR.DEV_FUNCTION
FORMAT
REPORT.BRIEF_FORMAT ;
(2

]

! Now increment the printed packet count.
1

INCREMENT REPORT.PRINT_COUNT ;

END ;

END_IF ;

1
! Now go back to the partner. It will simply return
{ without printing.

!

SET INTERMOD DEVERR.PRINT FLAG TO FALSE ;

END ;

['F?LL', 'REGISTERS']:
i The FULL report contains detailed information
i about the error.
éEGIN
1
E Now output the information based on the result of the tes:.

IF NOT INTERMOD DEVERR.REJECT_ FLAG

THEN

1

E Output the first page if the report type is '"FULL'.

BEGIN

IF REPORT.MODE EQ 'FULL'

THEN
]
i Now output the information for the standard subpackets.
1
BEGIN

CALL MODULE REPORT.FULL MOD PROCEDURE 'OUTPUT_PACKETS' ;
! N

Now output the Data subpacket information.

!
!
WRITE
INTERMOD_DEVERR.DEV_FUNCTION,
INTERMOD_ DEVERR.ERROR_TYPE
FORMAT
DSP2_SUB_ANY.FORMAT_1 ;

ERROR LOG CONTROL FILE ARCHITECTURE
RSX-11M-PLUS Dispatcher Module

evice Error Position information

OR_CYLINDER NE '2??'

EV“RR ERROR CYLINDER,
: RR.ERROR_GROUP, -
R.ERROR_HEAD,

. ERROR_SECTOR,

R .BLOCK_NUMBER

FORMAT 2 ;
!;sb}pzintfthe zecord i;D;;
pzzchgcontxnued)zaFL'{[“;

,,Infarmation'!FL'”]
d<«u0f U2FL| _.‘

is requested therefore prlnt
11 report.;‘~ ;
8’)’0" s

OD:DEVERR 'ERROR TYPE NE NULL),
_DEVERR.ERROR_TYPE | R ‘

(HEAQER;TIME_STAMP,;O)

ERROR LOG CONTROL FILE ARCHITECTURE
RSX-11M-PLUS Dispatcher Module

FORMAT
1 L
! Select the format statement
‘| based on the desired width.
o
%CND $IF(REPORT WIDE,

! WIDE is selected.
i

'11FP!SFCEntry !7DP!20FCSequence !9DP'
'140FC16DP!48FC!18DPIDP!2FSI20DP! 3FL’ |
'Dev1ce Supplied Information:!FL' |

i i n i e --12FL',

1
| NARROW is selected.
v o : }
‘11FPISFCEntry !7DP!20FCSequence !9DP!40FC!6DP!FL' |
'1S5FCI18DPIDPY2FSI20DP! 3FL' |
'Device Supplied Information:!FL' |

. .

e e wemeee—mem<ed 2FLY)

END__ IF ;

{ Now 1ncrement the prlnted packet count and tell the device
! module we ‘want it to print.
!

INCREMENT REPORT PRINT COUNT ;

SET INTERMOD | DEVERR PRINT FLAG TO TRUE ; -
END ; . :

ELSE
!
! We don't want to pr:nt because the packet was rejected.
!
SET INTERMOD DEVERR PRINT PLAG TO FALSE ;

END_IF ;

' N

! Now go back to the partner. It w111 output ‘the device registers
! if the print flag is true.

1 .

END ;

['NONE'] :
!

{ If the report type is NONE, output nothing.
1
SET INTERMOD_DEVERR.PRINI_FLAG TO FALSE ;

END_CASE ;
! .
! Now COROUTINE back to the partner. It will print if instructed to do so.
!

COROUTINE ;

ERROR LOG CONTROL FILE ARCHITECTURE
RSX-11M-PLUS Dispatcher Module

4 v bt vy b o b o om e

ERROR LOG CONTROL FILE ARCHITECTURE
RSX-11M-PLUS Dispatcher Module

IF REPORT.ERROR

THEN
\ ,

!" This type of summary is d351red.

'

BEGIN

POINTER ERROR_ INFO E FIRST ;

. ol o S o

! Now try to flnd a record that matchesgqn all of the keys.

i : vt SR

FIND ERROR INFO E *1

NAME = DISP. DEVICE STRING,: ~ .

DEVICE_TYPE %CNDOSIF(INTERMOD DEVE

S INTERMOD DEVERR

PACK_SN = DEVICE ID.PACK SN,“ :

DRIVE SN = INTERMOD DEVERR, DRIVE SN'

VOLUME LABEL = DEVICE 1D.VOLUME LABE

ERROR TYPE = INTERMOD DEVERR ;RROR T PE b

2 MISMATCR FLAG, ‘*‘, ﬁuaL)@i
IVE_TYPE, S S A

1
! See if there was a match.
1 .
IF ERROR_INFO_E.CONTEXT

THEN
1 . p
' There was a match Update the record to
! show that thls ezror occutrad.
!
BEGIN

INCREMENT ERROR _ INFO E, ERROR COUNT
IF DISP.PACKET DATE LT ERROR INFO E. FIRST D&TE
THEN |

BEGIN
SET ERROR_INFO_ E FIRST DATE ‘TO DISP PACKET DATE

SET ERROR INFO E. FIRST PACKET TO REPORT
END ;

END_IF ; ; ; ,
IF DISP.PACKET DATE GT ERROR_INFO_E.LAST DATE
THEN '

BEGIN . i i :
SET ERROR. INFO_E.LAST DATE TO DISP PACKET DATE ;‘

SET ERROR_ INFO E. LAST PACKET TO REPORT PACKET IDENT F3
END ; |

END_IF ;
END ;

ERROR LOG CONTROL FILE ARCHITECTURE
RSX-11M-PLUS Dispatcher Module

ERROR LOG CONTROL FILE ARCHITECTOURE
RSX-11M-PLUS Dispatcher Module

THEN

! .
i’ There was
1E shogfi ‘that

he record tc o

snaTcu ELAG, 11, NULL) |

; chxﬁDER,
EVERR. Ekka,ysﬁbwon,
VERR. nnocx~uuxann,

END_IF
END ;

END_IF ;
END ;

END_MODULE ; | DSP

ERROR LOG CONTROL FILE ARCHITECTURE
Notes Module

4.6.4 RM02/03 Notes Module NRM23

Following is an annotated listing of the notes module for the RM02 and
RMO3 disk drives.

MODULE NRM23 'M01.00' ;
ERROR LOG CONTROL FILE MODULE: RMO2, RM03 Notes

COPYRIGHT (c) 1981 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD
MASSACHUSETTS. ALL RIGHTS RESERVED.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED
AND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE
AND WITH THE INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS
SOFTWARE OR ANY OTHER COPIES THEREOF, MAY NOT BE PROVIDED OR
OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON. NO TITLE TO AND
OWNERSHIP OF THE SOFTWARE IS HEREBY TRANSFERED.

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT
NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
EQUIPMENT CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF
ITS SOFTWARE ON EQUIPMENT THAT IS NOT SUPPLIED BY DIGITAL.

VERSION 01.00
R. Ryan 30-Jun-81
This is one of the many device modules,which is called by the device

error dispatcher (DSP2cl) or device information dispatcher (DSP3cl)
to process notes for all the device dependent information.

(2]

6= s G tms 4= S G St Sam G S b= Gms G G G G fem gme Sam e Gem ge= Som bv S 0 G

PROCEDURE NOTES

This procedure, which is called from the DSP2cl module, processes any
requests for notes.

EGIN

Print the NOTE header and define the format for the NOTE section.

L v v B

©

WRITE FORMAT
'!13FLNotes on RMO2, RM03 errors:!2FL' ;

POINTER NOTE NUMBERS FIRST ;

WHILE NOTE NUMBERS.CONTEXT DO

ERROR LOG CONTROL FILE ARCHITECTURE
Notes Module

BEGIN
SELECT NOTE_NUMBERS.INDEX OF
1
! Note number 1.
1
BEGIN
WRITE FORMAT
vk RMDA bits 5,6,7 are unused, however if they are'

WRITE FORMAT
! set, they will be interpreted as the high order'

WRITE FORMAT
! bits of the sector address. This may result in'

WRITE FORMAT
' an Invalid Address Error.!3FL' ;

END ;
ELSE

(5]

This is an unknown note number.

!
!
!
SIGNAL 'UNKNWNNOT' PARAMETERS
$CNV_$DECIMAL P (NOTE_NUMBERS.INDEX, 3),
INTERMOD DEVERR.DRIVE_TYPE ;

END SELECT ;

POINTER NOTE_NUMBERS NEXT ;
END ;

END ;

END MODULE ; ! NRM23.CNF

~e

ERROR LOG CONTROL FILE ARCHITECTURE
Notes Module

4.6.5 Subpacket Definitions

The following sections list the DIGITAL-standard subpackets. They are
listed under the modules that declare them.

4.6.5.1 Subpackets Declared by DISPATCH - The HEADER subpacket
contains information largely from SYSCM, It describes the
characteristics of the system and packet. This subpacket 1is always
required.

SUBPACKET HEADER = DISP.NEXT PACKET ;

SUBPKT FLAGS :WORD ; ! ESHSBF
SFLG HDR :BIT (0] ; ! Header Subpacket
SFLG TSK :BIT [1] ; ! Task Subpacket
SFLG DID tBIT [2] ; ! Device I1d. Subpacket
SFLG DOP :BIT [3] ; ! Device Op. Subpacket
SFLG DAC :BIT [4] ; ! Device Ac. Subpacket
SFLG DAT :BIT [5] ; ! Data Subpacket
SFLG MBC +BIT [13) ; ! 22-bit Massabus Controller
SFLG CMD :BIT [14] ; ! Command Subpacket
SFLG ZER :BIT [15] ; ! 1/0 counts zeroed

oP SYS :BYTE ; t ESHSYS

FORMAT ID :BYTE ; ! E$SHIDN

OP SYS ID :ASCII [4] ; t ESHSID

CONTEXT CODE :BYTE ; ! ESHCTX
CC_NOR :BIT [0] ; ! Normal Entry
CC STA :BIT [1] ; ! Start Entry
CC CDhA :BIT [2] ; ! CDA Entry

FLAGS :BYTE ; ! ESHFLG
FLG ADR tFIELD [0:2] ; ! Addressing mode
FLG:COU :BIT [2] ; ! Error Counts supplied
FLG QBS :BIT [3] ; ! Q-BUS system

ENTRY SEQ :WORD ; ! ESHENS

ERROR SEQ :WORD ; ! ESHERS

CODE_TYPE :BYTE ; ! ESHTYC

CODE SUBTYPE :BYTE ; ! ESHTYS

TIME_STAMP :RSX_TIME ; ! ESHTIM

PROC_TYPE :BYTE ; ! ESHPTY

RESERVED :BYTE ; ! Reserved byte

PROC_ID :WORD ; ! ESHURM
URM CPU :FIELD {0:4] ; ! Processor Identifier

END_PACKET j

The TASK subpacket contains information either about the task that
logged the packet, or the task that caused the packet to be logged.

SUBPACKET TASK = DISP.NEXT PACKET ;

TASK NAME : LONGWORD ; ! ESTTSK
vIic — :WORD ; ! ESTUIC
UIC MEMBER tFIELD [0:8] ; ! Member number in UIC
UICZGROUP :FIELD [8:8] ; ! Group number in UIC
TI DEV :ASCII [2] ; ! ESTTID
TI:UNIT :BYTE ; { ESTTIU
FLAGS :BYTE ; I ESTFLG
FLG_PRV :BIT [0] ; ! Privileged Task
FLG_PRI :BIT [1] ; ! Privileged Terminal

The DEVICE_ID subpacket contains information about the device on which
the error occurred.

ERROR LOG CONTROL FILE ARCHITECTURE
Notes Module

SUBPACKET DEVICE_ID = DISP.NEXT_PACKET ;

MNEMONIC $ASCII [2]
LOGICAL UNIT :BYTE ;
CONTROLLER NUM :BYTE ;
PHYS UNIT :BYTE ;
PHYS SUB UNIT :BYTE ;

$IF SUPPORT.RSX_ 11M PLUS
STHEN

IF OP_SYS.SUFFIX EQ 'P'

THEN
BEGIN
PHYS DEV_MNEMON :ASCII [2]
END ;
END_IF ;
$END_IF
DEV_FLAGS :BYTE ;
DFLG_SUB :BIT [0] ;

$IF SUPPORT.RSX 11M PLUS

$THEN

DFLG_NUX :BIT [1] ;
SEND IF
RESERVED :BYTE ;
VOLUME_LABEL :ASCIT [12]
PACK_SN : LONGWORD
DEV_TYPE_CLASS :WORD ;
DEV_TYPE : LONGWORD
10 _COUNT : LONGWORD
SOFT_ERCNT :BYTE ;
HARD_ERCNT :BYTE ;

$IF SUPPORT.RSX_11M PLUS
STHEN
IF OP_SYS.SUFFIX EQ 'P'
THEN
BEGIN
WRD_XFR_COUNT : LONGWORD
CYL_CRS_COUNT : LONGWORD
END ™ ;
END_IF ;
$END_IF

END_PACKET ;

14

~

14

-t g = em

= b em e b= gem b= gm

ESILDV
ESILUN
ESIPCO
ESIPUN
ESIPSU

ESIPDV

ESIFLG
Subcontroller device

No UCB extension

Reserved byte
ESIVOL
ESIPAK
ESIDCL
ESIDTY
ESIOPR
ESIERS
ESIERH

ESIBLK
ESICYL

ERROR LOG CONTROL FILE ARCHITECTURE
Notes Module

The DEVICE OP subpacket contains information about the requested 1/0

operation.

SUBPACKET DEVICE OP = DISP.NEXT PACKET ;

TASK_NAME :LONGWORD ;
UIC :WORD ;

UIC MEMBER :FIELD [0:8] ;

UIC_GROUP :FIELD [8:8] ;
TI_DEV :ASCII [2] ;
T1 UNIT :BYTE ;
RESERVED :BYTE ;

I0 FUNCTION :WORD ;
T SF 1QX :BIT [0] ;

SF_10Q :BIT [1] ;

SF IQUMD :BIT [2] ;
FLAGS :BYTE ;

FLG TRA :BIT (0] ;

FLG DMA :BIT [1] ;

FLG BAE :BIT [2] ;
RESERVED :BYTE ;

XFER ADDRESS 1 :WORD ;

XFER1 HIGH 2 :FIELD [4:2] ;

XFER1 HIGH 6 :FIELD {0:6] ;
XFER ADDRESS 2 :WORD ;

XFER2 TAUB :FIELD [0:13] ;
XFER_BYTE COUNT :WORD ;
RETRIES LEFT :BYTE ;

MAX RETRIES :BYTE ;

END_PACKET ;

Ses Se ges S hme e pm Smm fs G Gen Bme b b= G Gmm gme Sm pm fue e S gee G

ESOTSK

E$OUIC

Member number in UIC
Group number in UIC
ESOTID

ESOTIU

Reserved Byte

ESOFNC

10.X subfunction bit
1Q.Q subfunction bit
IQ.UMD subfunction bit
ESOFLG

Transfer operation

DMA device

22 bit addressing device
Reserved Byte

ESOADD + 0

High Order 2 bits of address
High Order 6 bits of address
ESOADD + 2

T. A. in units of bytes
ESOSIZ

ESORTY

ESORTY+1

The IO_ACTIVITY subpacket contains information about other 1I/0 going
on in the system at the time the error was detected.

SUBPACKET IO_ACTIVITY = DISP.NEXT PACKET REPEATED ;

MNEMONIC :ASCII [2]
LOGICAL UNIT :BYTE ;
CONTROLLER NUM :BYTE ;
PHYS UNIT :BYTE ;
PHYS SUB_UNIT :BYTE ;

SIF SUPPORT.RSX_11M PLUS
STHEN

IF OP_SYS.SUFFIX EQ 'P'

THEN
BEGIN
PHYS DEV_MNEMON :ASCII [2]
END ;
END_IF ;
$END_IF
DEV_FLAGS :BYTE ;
DFLG_SUB :BIT [0] ;

’

r

!
!
!
!
]
]

14

ESALDV
ESALUN
ESAPCO
ESAPUN
E$SAPSU

ESIPDV

ESIFLG
Subcontroller device

ERROR LOG CONTROL FILE ARCHITECTURE
Notes Module

$IF SUPPORT.RSX 11M PLUS

$THEN
DFLG_NUX sBIT (1] ; ! No UCB extension
$END_IF
TI UNIT :BYTE ; ! ESATIU
TASK NAME : LONGWORD ; ! ESATSK
uic :WORD ; ! ESAUIC
UIC MEMBER :FIELD [0:8] ; ! Member number in UIC
UIC GROUP :FIELD [8:8] ; ! Group number in UIC
TI DEV :ASCII [2] ; ! ESATID
10 _FUNCTION :WORD ; ! ESAFNC
SF IQX :BIT [0] ; ! IQ.X subfunction bit
SF 1QQ :BIT [1] ; ! I0.Q subfunction bit
SF_IQUMD :BIT [2] ; ! IQ.UMD subfunction bit
FLAGS :BYTE ; ! ESAFLG
FLG TRA :BIT [0} ; ! Transfer operation
FLG_DMA :BIT [1] ; ! DMA device
FLG BAE :BIT [2] ; ! 22 bit addressing device
RESERVED :BYTE ; ! Reserved Byte
XFER ADDRESS 1 :WORD ; ! ESAADD + 0
XFERL HIGH 2 ¢:FIELD [4:2] ; ! High Order 2 bits of address
XFER1 HIGH 6 :FIELD [0:6] ; ! High Order 6 bits of address
XFER ADDRESS 2 :WORD ; ! ESAADD + 2
XFER2 TAUB :FIELD [0:13] ; ! T. A. in units of bytes
XFER_BYTE_COUNT :WORD ; ! ESASIZ

END PACKET ;

4.6.5.2 Subpackets Declared by DSP1M1/DSP1Pl - There are several
different DATA subpackets declared by DSP1M1/DSP1lPl. Here are
descriptions of each of them.

The following DATA subpacket (Code = 1, Subcode = 1) contains
information about a "Status change" operation:

SUBPACKET DATA = DISP.NEXT PACKET ;

LIMIT CODE :BYTE ;

LOG CODE :BYTE ;

FLAGS :BYTE ;
FLG_CRE :BIT [0] ;

FILE SPEC_LEN :BYTE ;

FILE SPEC ¢+ASCII [80] ;

END PACKET ;

The following DATA subpacket (Code = 1, Subcode = 2) contains
information about a "Switch Logging Files"™ operation:

SUBPACKET DATA = DISP.NEXT PACKET ;

RESERVED :WORD ;
FLAGS :BYTE ;
FLG CRE :BIT (0] ;
FLG DEL tBIT [1] ;
FILE SPEC_LEN :BYTE ;
FILE SPEC :ASCII [80] ;

END PACKET ;

ERROR LOG CONTROL FILE ARCHITECTURE
Notes Module

The following DATA subpacket (Code = 1, Subcode = 3) contains
information about an "Append to File" operation:

SUBPACKET DATA = DISP.NEXT PACKET ;

RESERVED tWORD ;

FLAGS :BYTE ;
FLG_CRE :BIT [0] ;
FLG_DEL ¢BIT [1] ;

FILE SPEC_LEN tBYTE ;

FILE SPEC :ASCII [80] ;

END_PACKET ;

The following DATA subpacket (Code = 1, Subcode = 4) contains
information about a "Set Backup File" operation:

SUBPACKET DATA = DISP.NEXT PACKET ;

RESERVED :WORD ;
FLAGS :BYTE ;
FILE SPEC LEN :BYTE ;
FILE SPEC :ASCII [80] ;

END_PACKET ;

The following DATA subpacket (Code = 1, Subcode = §6) contains
information about a "Change Limits" operation:

SUBPACKET DATA = DISP.NEXT PACKET REPEATED ;

HARD LIM_FLAG :BYTE ;

NEW LIMH +BIT [0] ;
HARD LIMIT :BYTE ;
SOFT_LIM_FLAG :BYTE ;

NEW LIMS tBIT [0] ;
SOFT_LIMIT :BYTE ;
MNEMONIC :ASCII [2] ;
LOGICAL UNIT :BYTE ;
RESERVED :BYTE ;

END_PACKET ;

4.6.5.3 Subpackets Declared by DSP2M1/DSP2P1 - The DATA subpackets
for device errors (Code = 2, Subcodes = 1, 2, 3) contain information
that is specific to each device. Please see the appropriate
device-level module for the format of the DATA subpacket.

4.6.5.4 Subpackets Declared by DSP3M1/DSP3Pl - The DATA subpackets
for device information messages (Code = 3, Subcode = 1) contain
information that 1is specific to each device. Please see the
appropriate device-level module for the format of the DATA subpacket.

ERROR LOG CONTROL FILE ARCHITECTURE
Notes Module

4.6.5.5 Subpackets Declared by DSP4M1/DSP4Pl - There 1is no DATA
subpacket for "Mount", "Dismount”, and "Device Info Reset" events
(Code = 4, Subcodes =1, 2, 3).

The following DATA subpacket (Code = 4, Subcode = 4) contains
information about a "Block Replacement" operation:

SUBPACKET DATA = DISP.NEXT PACKET ;

FLAGS :WORD ;
PRIMARY RBN :BIT [0] ;
SUCCESS™ :BIT (1] ;

LBN +:LONGWORD ;

NEW RBN :LONGWORD ;

OLD RBN :LONGWORD ;

END_PACKET ;

4.6.5.6 Subpackets Declared by DSP5M1/DSP5P1 - This DATA subpacket
(Code = 5, Subcode = 1) contains information about a "Memory Parity
Error" event:

SUBPACKET REGISTER = DISP.NEXT PACKET NAMED ;

RESERVED :WORD ; ! Mask for Cache Registers
RESERVED :WORD ; ! Mask for Parity CSR's
P_CSROO :WORD ; ! Memory Parity CSR 00
P_CSRO1 :WORD ; ! Memory Parity CSR 01
P_CSRO02 :WORD ; ! Memory Parity CSR 02
P_CSRO3 :WORD ; ! Memory Parity CSR 03

P CSR04 :WORD ; ! Memory Parity CSR 04

P CSRO5 :WORD ; ! Memory Parity CSR 05

P CSRO6 :WORD ; ! Memory Parity CSR 06

P CSRO7 :WORD ; ! Memory Parity CSR 07

P CSRO8 :WORD ; ! Memory Parity CSR 08

P CSRO9 :WORD ; ! Memory Parity CSR 09

P CSR10 :WORD ; ! Memory Parity CSR 10

P CSR11 tWORD ; ! Memory Parity CSR 11

P _CSR12 :WORD ; ! Memory Parity CSR 12

P CSR13 :WORD ; ! Memory Parity CSR 13

P CSR14 :WORD ; ! Memory Parity CSR 14
P_CSR15 tWORD ; ! Memory Parity CSR 15
LOW_ERR :WORD ; ! Low Error Address Register
HIGHERR :WORD ; ! High Error Address Register
CACHERR :WORD ; ! Cache Error Register
CSHCTRL tWORD ; ! Cache Control Register
CSHMAIN :WORD ; ! Cache Maintenance Register
CACHHIT :WORD ; ! Cache Hit/Miss Register

END_PACKET ;

The following DATA subpacket (Code = 5, Subcode = 2) contains
information about an "Unknown Interrupt" event:

SUBPACKET DATA = DISP.NEXT PACKET ;
VECTOR_OVER_FOUR :BYTE ;
LOST INT :BYTE ;

END_PACKET ;

4.56.5.7 Subpackets Declared by DSP6M1/DSP6P1 - The "Power Recovery"
event (Code = 6, Subcode = 1) has no DATA subpacket.

ERROR LOG CONTROL FILE ARCHITECTURE
Notes Module

4.6.5.8 Subpackets Declared by DSP7M1/DSP7P1 - The following DATA
subpacket (Code = 7, Subcode = 1) contains information about a "Time

Change" event:

SUBPACKET DATA = DISP.NEXT PACKET
NEW_TIME :RSX_TIME
END_PACKET ;

we we

The following DATA subpacket (Code = 7, Subcode = 2)
information about a "System Crash" event:

SUBPACKET DATA = DISP.NEXT PACKET ;
;

CRASH TIME :RSX TIME
OP_SYS :BYTE ;
FORMAT ID :BYTE ;
OP SYS ID :ASCII [4] ;
TASK_NAME : LONGWORD ;
TI_DEV :ASCII [2]) ;
TI UNIT :BYTE ;
FLAGS :BYTE ;
KERNEL APR5 : LONGWORD ;
URM :WORD ;

URM CPU :FIELD [0:4] ;

END_ PACKET ;

The following DATA subpacket (Code = 7, Subcodes = 3, 4)
information about a "Driver Load" or "Driver Unload" event:

SUBPACKET DATA = DISP.NEXT PACKET ;
DRIVER NAME :ASCIT [2] ;
END_PACKET ;

The following DATA subpacket (Code = 7, Subcode = 6)
information about a "System Message" event:

SUBPACKET DATA = DISP.NEXT PACKET ;
MESSAGE_LEN tWORD ;
MESSAGE TEXT ¢+ASCII [80] ;

END_PACKET ;

contains

contains

contains

CHAPTER 5

CONTROL FILE LANGUAGE GUIDE

This chapter describes the Control File Language used by the Report
Generator of the Error Logging System. The preceding chapter
describes how to include support for non-DIGITAL devices in the Error
Logging System.

5.1 CONTROL FILE OVERVIEW

The control file for the Report Generator (RPT) describes the format
of the error 1log file and the format of reports based on the file.
The actions specified are executed for each event to produce a report.
The control file specifies the format of the data in an error log
packet, and the output format of the report. In addition, the control
file specifies information on the accumulation of summary information,
how to derive additional information, and the handling of selection
criteria for reports.

Control file modules are ASCII text files containing a series of
statements written in the Control File Language (CFL). The CFL
compiler produces intermediate form modules which are placed 1in a
universal library. This library is the control file.

5.1.1 Report Generator General Processing

RPT is an interpreter for the intermediate form modules contained in
the control file. RPT processes control file modules which can, in
turn, process error log files. The control file module, written in
CFL, specifies the processing to be performed on the current packet.
The processing wusually involves calling subroutines from other
modules.

CFL includes primitives that stop packet processing on an error or
because the packet does not meet specified selection criteria.

CONTROL FILE LANGUAGE GUIDE

5.1.2 The General Format of an Error Log Packet

Here is the general format of an error log packet:

o e - +
| Packet Length |
g +
l Length of Subpacket 1 |
_______________________________ +
Data for Subpacket 1
o +
| Length of Subpacket 2
T Cp, +
Data for Subpacket 2
o e +
l |
T +
| Length of Subpacket n |
B T e +
Data for Subpacket n
b T T TP S S, +

Each subpacket contains a different type of data. The information in
the subpackets, taken together, describes an event logged by the error
logging system. The control file contains primitives for describing a
subpacket so that its contents can be symbolically manipulated. Other
primitives describe the entire packet as a unit.

5.1.3 Control File Language

CFL is a specialized language designed for this application. It is a
statement-oriented, block-structured language similar in concept to
Pascal and Algol. Unlike BLISS, CFL is not expression-oriented. CFL
does differentiate between statements and expressions.

However, CFL has some of the capabilities of BLISS in that expressions
can contain conditionals. This feature handles the more complex data
formats of error log files. CFL does not 1include the full set of
primitives required of an ordinary general-purpose language. A number
of specialized primitives speed up and simplify the handling of common
error log data formats.

5.1.4 General Format of Control File Modules

Each control file module contains lines of ASCII text. Each line is a

sequence of elements - keywords, variable names, numbers, operators,
and the like. Spaces and tabs separate atomic items, such as keywords
or names. Excess spaces and tabs are ignored and can be used freely

for formatting.

CONTROL FILE LANGUAGE GUIDE

Insert comments in the module text by prefixing them with an
exclamation point (1!). The compiler 1ignores any text on a line
following an exclamation point.

The three basic elements of CFL are statements, expressions and
declarations.

1. A statement describes an action. Statements begin with a
keyword and are terminated by a semicolon (;).

2. An expression describes a computation. Expressions are
terminated by any nonexpression keyword, or by a comma (,).
A nonexpression keyword is a keyword that is not valid in an
expression. Expressions can also be terminated 1like a
statement, with a semicolon (;). Expressions can also be
included in an expression-list, wusing conditionals to
determine whether or not a given statement or expression |is
to be executed. Expression-lists consist of a fixed number
of expressions, separated by commas (,).

3. A declaration defines the content of packets and subpackets
and defines groups of tables for evaluating packets and
subpackets. The syntax of a declaration differs for each
use. Group declarations start with DECLARE and end with
END DECLARE, Table declarations begine with TABLE and end
with END_TABLE. Dynamic table declarations begin with
DYNAMIC TABLE and end with END_TABLE. Packet and subpacket
declarations begin with PACKET and SUBPACKET, respectively,
and end with END_PACKET.

5.1.5 Files

CFL can obtain input from and direct output to any one of a set of
files. The files have the following internal names:

e INPUT

The data input file. Data packets are read from the file.
The control file can open this file, close it, and read
packets from it.

® REPORT

The report output file. Lines of ASCII text are written to

this file. The control file can open this file, close it, and
write ASCII text to it. Automatic paging 1is available for
this file.

e USER

The user prompting file., The user can be prompted for input,
and input read from this file. The control file can open this
file, close it, and read ASCII data from this file, with
optional prompting.

¢ COMMAND

The command input file. The user can be prompted for input,
and input read from this file. The control file can read
ASCII data from this file, with optional prompting.

CONTROL FILE LANGUAGE GUIDE

e ERROR

The error output file. The control file can write ASCII data
to this file,

5.2 TYPES AND EXPRESSIONS

RPT types data to allow easy manipulation of error 1log information.
Expressions describe data values used by RPT. This section describes
the attributes of supported data types and the format of expressions.

5.2.1 Data Types

CFL supports seven data types: logical, string, numeric, field,
pointer, RSX TIME and VMS_TIME. The evaluation of an expression
results in a value. This value is one of the supported data types.
The data type of an expression is determined from its context.

The only automatic conversions are from string values to numeric
values, and conversions of numeric values between different numeric
types and field types.

The following sections describe the types in detail.

5.2.1.1 LOGICAL Type - The LOGICAL type expresses the Boolean values,
TRUE and FALSE. A LOGICAL type is equivalent to a BIT type. No other
automatic conversions are performed to or from LOGICAL types. Express
the literal values for this type with the keywords TRUE and FALSE.

5.2.1.2 STRING Type - The STRING type represents strings of binary
bytes. Literal values for the string type cannot be represented.
String operations must be used to construct string literals.

For purposes of conversion, numeric values are considered exactly
equivalent to strings. The 1length of the string is the number of
bytes used to represent a value of the numeric type. For example, a
WORD is equivalent to a string of 1length 2, The following
equivalences are used:

Type Equivalent string
BYTE String of length 1
WORD String of length 2
LONGWORD String of length 4
QUADWORD String of length 8

Strings of length four or less are converted to numeric types by
appending leading zero bytes to form a longword. Strings of length
five to eight are converted to numeric types by appending leading zero
bytes to form a quadword. Strings of length greater than eight are
not converted to numeric types.

String declaration requires specification of the maximum size of the
string. The syntax for string declaration is:

STRING[size]

CONTROL FILE LANGUAGE GUIDE

If the string is a variable, it can contain any number of elements up
to and including the specified maximum. If the string is part of a
data declaration, it contains exactly the number of characters
specified.

5.2.1.3 ASCII Type - The ASCII type represents character strings.
ASCII string literals are represented by character strings enclosed in
a pair of apostrophes ('string'). Two successive apostrophes in a
quoted string represent a single quoted apostrophe. Therefore the
string 'ABC''DE' represents the string literal ABC'DE. The keyword
NULL represents the null string. There is no automatic conversion to
or from ASCII strings. You cannot use the quotation mark (") to
enclose such strings, nor does the quotation mark require flagging.

ASCII string declaration requires specification of the maximum length
of the string. Specify the maximum string length as follows:

ASCII[size]
If the ASCII string is a variable, it can contain any number of

characters up to the specified maximum. If the ASCII string is a data
item, it must contain exactly the number of characters specified.

5.2.1.4 Numeric Types - Numeric data types represent numbers for
computation. The numeric types are distinguished only by the length
of the bit field used to contain the number, A BYTE 1is a one-byte
field, a WORD a two-byte field, a LONGWORD a four-byte field, and a
QUADWORD an eight-byte field. For purposes of conversion, the numeric
types are considered equivalent to strings, with the length determined
by the type.

The special numeric type VALUE indicates a natural machine value. A
VALUE is a WORD on the PDP-11 and a LONGWORD on the VAX-11,

Numeric types have a default output radix of decimal. The syntax for
expressing a numeric type is:

type option,option,...
The valid options are divided 1into radix options and attribute
options. The radix options determine the print radix. They are
DECIMAL, OCTAL, HEX, BCD, BINARY, or RADSO.
The attribute options are WIDTH and FILL.
The WIDTH option has the format
WIDTH=n
and specifies the width of print field in characters.,
The FILL option has the format

FILL='character'

and specifies the fill character.

CONTROL FILE LANGUAGE GUIDE

Here are the default print field width and £fill character for each
choice of radix:

Radix Fill Print Field Width
BYTE WORD LONGWORD QUADWORD

DECIMAL space 3) 10 20
OCTAL ‘0’ 3 6 11 22
HEX 0 2 4 8 16
BCD 'o! 2 4 8 16
BINARY '0°' 10 20 40 80
RAD50 space n/a 3 6 12

The default radix is DECIMAL.

For example, here is the specification for a LONGWORD to be printed in
BCD using leading spaces and a field six characters wide:

LONGWORD BCD,WIDTH=6,FILL=" '

The special radix MACHINE is the normal radix used to express values
for the host machine. The MACHINE radix is OCTAL for the PDP-11 and
HEX for the vaXx-11.

You can express numeric literals in a number of ways. A sequence of
digits 1is, by default, interpreted as a VALUE numeric literal. The
number is assumed to be decimal. Express a numeric 1literal of a
specified type and radix as follows:

<type indicator> ‘'<character string>'

The character string is interpreted according to the specification
given by the type indicator. The type indicator 1is a one- or
two-character string specifying the type of the number and the radix
in which to interpret the character string. The first character of
the type indicator is the type of the number, as shown:

B Byte

W Word

L Longword
Q Quadword
\Y Value

The second character of the type indicator is the radix in which to
interpret the <character string. If the radix is not specified, the
character string is assumed to be decimal. The valid radix indicators
are:

ASCII
Binary
Decimal

Bit value
Octal

Radix 50
Hexadecimal

XWOHOW P

A minus sign (-) preceding any character string interpreted as a
number indicates the two's complement of that number in the indicated
radix, that is, binary, octal, decimal, and hexadecimal.

CONTROL FILE LANGUAGE GUIDE

For example, the character string to represent a byte that contains
the octal value "17" would be:

$BO'17'

while the character string to represent a word containing the value
"-16." would be:

$w'-16"

The bit value radix indicator specifies that the quoted number is a
decimal number representing a bit position. The value of the literal
is 2 raised to the power of the bit position.

5.2.1.5 Field Types - The field types represent fields of numeric
types. The BIT type represents a single bit of a numeric type, and is
equivalent to a LOGICAL type. The FIELD type represents a
one-or-more-bit field of a numeric type, and 1is equivalent to a
numeric type. A field type is always a field of a numeric variable.
There are no literal values for field types.

The syntax for expressing a BIT type is:
BIT[bit number]
The syntax for expressing a FIELD type is:
FIELD[low bit number : field length in bits]

In either case a field type is declared directly following the numeric
type of which it is a field.

5.2.1.6 POINTER Type - The POINTER type is a table pointer. Use it
to declare variables that temporarily store pointers for later use.
The POINTER type cannot be converted to or from any other type. There
is no literal representation of the POINTER type.

The value of the POINTER type is specific to a given table. A POINTER
variable containing a value specifying a table entry for a given table
cannot be used to reference an entry in another table. The variable
can, however, be 1loaded with another value referencing an entry in
another table.

5.2.1.7 RSX TIME Type - The RSX TIME type represents a time in RSX

format. RSX time is represented as six sequential bytes, containing
the year since 1900, the month, day, hour, minute, and second in that
order. This is a compression of the format returned by the Executive

GTIMS directive.

The RSX_TIME type can only be printed or compared to other RSX_TIME
types, or converted using one of the %TIM functions.

5.2.1.8 VMS_TIME Type - The VMS TIME type represents a time in VMS
format. VMS time is represented as a quadword containing the time in
hundreds of nanoseconds since 17 November 1858,

CONTROL FILE LANGUAGE GUIDE

The VMS_TIME type can only be printed or compared to other VMS TIME
types, or converted using one of the %TIM functions.

5.2.2 Variables

The named variable is the fundamental wunit for data manipulation.
Named variables are defined in a given module, and available to that
module and any modules called by the module. Named variables are
declared in named groups. The full name of a variable, that is, the
name by which it is referenced, is the name of the group, a period
(.), and the name of the variable in the group:

<group name>.<variable name)

The group and variable names cannot be more than 15 characters. Names
can include the characters A through Z, the numbers 0 through 9, the
dollar sign ($), and the underscore (). The leading character of a
name must be alphabetic. Use the same syntax to reference data in
either packets or subpackets.

The CFL compiler assigns each variable a type through declarations.
(See Section 5.4 for a description of the declaration process.)
Variables that are not fixed-length, such as ASCII and STRING type
variables, are assigned a maximum length as well. The variable can
contain any amount of data that fits in its maximum length specified.

A field in the current record of a table can be referenced in the same
manner as a variable, as follows:

<table name>.<field name>

The field value referenced is the specified field in the current
record of the table. If there is no current record for the table, an
error results.

Several special variables provide information about a group, packet,
subpacket, or table. Reference the special variables as follows:

<group, [sub]lpacket or table name>.<special variable name>
The special variables are described below:
® LENGTH

LENGTH is the length of the data in the group in addressable
units of the host machine (bytes for the PDP-11 and VAX-11).
LENGTH includes all repetitions for repeated data or records
for tables.

e POINTER

POINTER returns the current pointer for the specified group.
POINTER 1is not wvalid for any data structure that would not
have a current record context. This includes variables and
non-repeated data. There 1is a current record context for
tables and repeated data.

e CONTEXT
CONTEXT returns a logical value. If the specified group has a

current record context, the value is TRUE. 1If the specified
group has no current record context, the value is FALSE.

CONTROL FILE LANGUAGE GUIDE

e COUNT

COUNT returns a numeric value representing the number of
records 1in a group. For groups of variables, it is always 1.
For packets or subpackets, it is the number of repetitions of
the data. For tables it 1is the number of records in the
table.

5.2.3 Literals
Literal values can be assigned symbolic names (See Section 5.6.2 for
information on the LITERAL statement). These symbolic names have the

same syntax restrictions as variable names. Literal names are
considered equivalent to their values in expressions.

5.2.4 Expressions

Expressions describe a computation through a sequence of operands and

operators. Operands are variables or literals. Operators direct the
computation. Expression evaluation is from 1left to right, and
operator precedence 1is observed. Use parentheses, (() and ()), to

override precedence.
Operators are either unary, which means that they take one operand, or
binary, which means that they take two operands. Unary operators can
either precede the operand, in which case they are called prefix
operators, or succeed the operand, in which case they are called
suffix operators. Binary operators are always between the two
operands.
Operators are type-specific, that 1is, they operate between two
elements of a specific type to produce a result of a specific type.
The elements of an expression can be any of the following:
e Literals
Literals express fixed values of a given type.
e Variables
Variables reference previously computed values,

® Subexpressions in parentheses

Any valid expression enclosed in parentheses can be used as an
element to an operator.

e Functions
A function is a predefined computation. (See Section 5,3.)

The following sections describe the operators in detail,

5.2.4.1 String Operators - String operators produce either binary or
ASCII string results. The result is a string with the same type as
the operand string or strings. The string operators are:

CONTROL FILE LANGUAGE GUIDE

e String concatenation - | binary operator

The string concatenation operator concatentates the first
operand with the second. Both strings must be of the same
type. For example, the following expression:

'ABC' | 'DEF'
produces the string:
'ABCDEF'
® Substring extraction - <n:m> unary suffix operator
The substring extraction operator produces the string formed
by character n and the next m elements. String element
numbers start with 1. For example, the expression:
'ABCDEFGH'<4: 3>
produces the string:
'DEF'
Both n and m must be word values.
® Element Extraction - <n> unary suffix operator
The element extraction operator 1is a special case of the
substring extraction operator which extracts the nth element
as a single-character substring. For example, the expression:
'ABCDEFGH'<4>

produces the string:

lDl

5.2.4.2 Logical Operators - Logical operators perform operations on
logical variables, or compare string or numeric variables to yield
logical results.
Here are the logical operators:

e Logical AND binary operator

The logical AND operator does a logical AND of the two
expressions. For example, the following expression:

TRUE AND FALSE
produces the logical value FALSE.
e Logical OR binary operator

The 1logical OR operator does a logical OR of the two
expressions. For example, the following expression:

TRUE OR FALSE

produces the logical value TRUE.

CONTROL FILE LANGUAGE GUIDE

e Logical Exclusive-OR (XOR) binary operator

The logical exclusive-OR operator does a logical exclusive-OR
of the two expressions. For example, the following
expression:

TRUE XOR TRUE
produces the logical value FALSE,
® Logical NOT unary prefix operator

The logical NOT operator produces the logical complement of a
single variable, For example, the following expression:

NOT TRUE
produces the logical value FALSE,

There is also a logical operator to produce 1logical results from
numeric expressions:

e Bit extraction - [n] unary suffix operator

The bit extraction operator is TRUE if and only if bit n of
the longword expression operand is set. For example, the
following expression:

#WO'305"' [4]

produces the logical value FALSE. The binary value of octal
305 is 011000110, with the fourth bit clear. Bits are
numbered from 0.

5.2.4.3 Relational Operators - Relational operators compare string,
time, or numeric operands. The comparisons are string comparisons if
both operands are string or ASCII string operands. The comparisons
are numeric comparisons if one operand is numeric and the other is
either numeric or string. You cannot compare ASCII string operands
and numeric operands. The comparisons are time comparisons if both
operands are times of the same type. You cannot compare different
types of time.

In numeric comparisons, the larger numeric value is greater.

In string comparisons, CFL stops at the first two characters that
don't match and performs an ASCII sort, That is, CFL compares the
ASCII values of the characters.

NOTE

Although Z is greater than A in ASCII,
an ASCII sort 1is not the same as an
alphabetical sort. Any lowercase letter
has greater value than any uppercase
letter, for instance, but any
alphabetical character has greater value
than any numerical character, and so
forth. See any standard reference.

CONTROL FILE LANGUAGE GUIDE

If one string is longer than the other and the shorter string has the
same leading elements as the longer, the longer string is greater.

In time comparisons, later times are greater,

Here are the relational operators:

Equality (EQ) binary operator

The equality operator is TRUE if and only if the operands are
equal. For example, the following expression:

#WD'123' EQ #WD'355"
produces the logical value FALSE.
Inequality (NE) binary operator

The inequality operator is TRUE if and only if the operands
are not equal. For example, the following expression:

'ABCDEF' NE 'ABC'
produces the logical value TRUE.
Greater~-than (GT) binary operator
The greater-than operator is TRUE if and only if the first
operand 1is greater than the second operand. For example, the
following expression:

123 GT 355
produces the logical value FALSE.
Less-than (LT) binary operator
The less-than operator is TRUE if and only if the first
operand is less than the second operand. For example, the
following expression:

'ABCDEF' LT 'ABCzzZ'
produces the logical value TRUE,
Greater-than-or—-equal (GE) binary operator
The greater-than-or-equal operator is TRUE if and only if the
first operand is greater than or equal to the second operand.
For example, the following expression:

45 GE 45
produces the logical value TRUE.
Less~than-or-equal (LE) binary operator
The less~than-or-equal operator is TRUE if and only if the
first operand 1is 1less than or equal to the second operand.
For example, the following expression:

lzl LE IAl

produces the logical value FALSE,

CONTROL FILE LANGUAGE GUIDE

String-matching (MATCH) binary operator

The MATCH operator compares strings. The strings are examined
to determine which is shorter. The shorter string is compared
character-by-character to the longer string. If all
characters in the shorter string match with characters in the
longer string, then the strings are equal and the value is
TRUE. This means a null string always matches any other
string. For example:

'ABCDEF' MATCH 'AB'
produces the logical value TRUE and the expression:
'ABCDEF' MATCH 'ABCX'

produces the logical value FALSE.

5.2.4.4 Numeric Operators - Numeric operators operate on numeric
variables as unsigned longwords. The numeric operators are:

Field extraction ([n:m]) suffix unary operator

The field extraction operator produces the longword formed by
taking the m-bit field beginning at bit n in the longword.
Bit positions are numbered from least significant to most
significant, beginning with 0. For example, the expression:

$WO'357"' [3:6]

produces the octal 35. Octal 357 has the binary value
0l1101111. Bit three and the next six bits have the binary
value 011101, or octal 35.

Logical SHIFT binary operator

The SHIFT operator produces the first operand shifted by the
number of bit positions specified by the second operand. Each
left shift of one bit is the equivalent of multiplying by 2
and each right shift of one bit is the equivalent of dividing
by 2. Indicate a left shift by making the second operand
positive, and a right shift by making the second operand
negative. If the second operand is zero, nothing shifts. The
shifting 1is 1logical shifting; there is no sign extension on
right shifts.

For example the following expression:

$WD'205"' SHIFT 2
produces decimal 820, which is decimal 205 multiplied by 4.
Multiplication (*) binary operator
The multiplication operator produces the product of the two
operands. The result of the multiplication is truncated to
the 32 low-order bits.
For example, the expression:

5 * 3

produces decimal 15.

CONTROL FILE LANGUAGE GUIDE

Division (/) binary operator

The division operator produces the integer quotient of the two
operands.

For example, the expression:
15 / #B'2'

produces decimal 7.

Modulus (MOD) binary operator

The MOD operator produces the remainder of the integer
division of the two operands.

For example, the expression:
15 MOD 2

produces decimal 1.

NOTE
A division or modulus operation with zero as the
divisor causes an error.
Addition (+) binary operator

The addition operator produces the sum of the two operands.
The sum is truncated to the 32 low-order bits.

For example, the expression:
5 + 12
produces decimal 17.
Subtraction (—).binary operator
The subtraction operator, or minus, produces the difference of
the two operands. The difference 1is truncated to the 32
low-order Dbits.
For example, the expression:
12 - 3
produces the decimal value 9.

Negation (-) unary prefix operator

The negation operator, or minus, produces the two's complement
of the operand. For example, the expression:

- #B'8'

produces the decimal value -8.

NOTE

The minus is both a unary and binary operator.

CONTROL FILE LANGUAGE GUIDE

Other numeric operators perform bitwise logical operations between two
numeric operands. That is, rather than comparing the numeric operands
as numbers, these operators compare the numeric operators bit by bit.

Here are the bitwise logical operators:

Bitwise AND binary operator

The bitwise AND operator produces the bitwise logical AND of
the two operands. For example, the following expression:

#B0'41' AND #BO'3'

produces the octal value 1. The binary value of octal 41 is
00100001 and the binary value of octal 3 is 00000011. The
bitwise AND operation determines that the 1least significant
bit 1is set in both operands and returns the binary value

0000001, or octal 1.

Bitwise OR binary operator

The bitwise OR operator produces the bitwise logical OR of the
two operands. For example, the following expression:

#B0'41' OR #BO'3’

produces the octal value 43, That is, the bitwise OR of the
binary values returns the binary value 00100011, or octal 43.

Bitwise Exclusive-OR (XOR) binary operator

The bitwise XOR operator produces the bitwise logical
Exclusive-OR of the two operands. For example, the following
expression:

#B0'41' XOR #BO'3!'

produces the octal value 42, That is, the bitwise
exclusive-OR of the binary values returns the binary value
00100010, or octal 42,

Bitwise complement (NOT) unary operator
The bitwise NOT operator produces the bitwise complement
(logical negation) of the operand. For example, the following
expression:

NOT #BO'41l'’
produces the octal value 336. That is, the binary value of

octal 41 is 00100001 and its complement is 11011110, or octal
3360.

5.2.5 Operator Precedence

Operations occur in the order defined by operator precedence unless
overridden using parentheses. Operator precedence in CFL is the same
as in most other languages, such as FORTRAN. Operators with higher
precedence are evaluated before operators with lower precedence. For
example, the expression:

A +B*C

CONTROL FILE LANGUAGE GUIDE

is evaluated as A + (B * C) rather than (A + B) * (C, because the
multiplication operator, *, has higher precedence than the addition
operator, +. In general expressions are evaluated from left to right,
taking into account operator precedence, unless overridden by
parentheses.

Operators are classified into the categories shown in the following
table, 1listed in order of decreasing precedence. The order in which
operators are listed within a category is not significant.

Highest precedence class - prefix/suffix unary operators:

- Numeric negation
NOT Logical or numeric bitwise negation

[n:m] Numeric field extraction
[n] Logical value extraction
<n:m> Substring extraction
<n> Element Extraction
Multiplication precedence class - numeric binary operators:
* Numeric multiplication
/ Numeric division
SHIFT Numeric logical shifting
MOD Numeric modulus

Addition precedence class - numeric binary operators:

+ Numeric addition
- Numeric subtraction

Logical operation class - logical/bitwise logical operators:

AND Logical and bitwise logical AND

OR Logical and bitwise logical OR

XOR Logical and bitwise logical XOR
Relational class - logical comparison operators:

EQ Equality

NE Inequality

GT Greater than

GE Greater than or equal to

LT Less than

LE Less than or equal to

5.3 FUNCTIONS

Functions provide special computations or special values not otherwise
available to a program written in CFL.

A reference to a function in an expression has the format:

$ <function >[(argument [= value] , ...) 1
Function names have the format % <class name>$<function name)>. Some
functions require arguments. Functions return a value of a type that
is fixed for a given function. For example, the following function:

$PKTSIDENT

returns the identification code of the current data packet as an ASCII
string.

CONTROL FILE LANGUAGE GUIDE

The following sections list by class name the CFL functions and the
values they return.

5.3.1 $%CND Functions - Conditional Functions

The %CND functions select one of a set of expressions for evaluation.
You can state criteria to select one of the arguments to be evaluated
in a given context.

NOTE

All expressions are evaluated before
determining a result. This means all
expressions must be valid for any
possible value of the logical
expression. That 1is, &CNDSIF 1is not
entirely equivalent to an IF-THEN-ELSE
statement, and $CNDSSELECT is not
entirely equivalent to a SELECT
statement.

The functions are:
® 2CNDSIF (<logical>,<true exp>,<false exp>)

Evaluates the specified logical expression. If the expression
is true, the true expression is returned as the value of the
function. 1If the expression is false, the false expression is
returned as the value of the function.

® 3CNDSSELECT (<selector>,<exp else>,<exp 0>,<exp 1>,...)

Evaluates the specified selector expression. If the value of
the expression 1is 2zero, the exp 0 expression is returned as
the value of the function. If the value of the expression 1is
one, the exp 1 expression 1is returned as the value of the
function. 1In general, if the value of the selector expression
is n, the value of exp n is returned as the value of the
expression., If no expression is provided corresponding to the
value of the selector expression, the value of exp else is
returned as the value of the expression.

5.3.2 $CNV Functions - Conversion Functions

The %CNV functions convert expressions to ASCII strings. This is done
primarily for printing. The conversions allow specification of the
output radix, leading fill character (if any), and number of digits
converted.

5.3.2.1 $CNV Functions - Numeric Conversion Functions - The numeric
conversicn functions convert numeric values to ASCII strings in the
radix of the specific function. The syntax of these functions is as
follows:

3CNVSxxx (<numeric_value>[,<field width>[,<fill character>]])

CONTROL FILE LANGUAGE GUIDE

where xxx is the radix. If no field width is specified, the default
is 0. If no fill character 1is specified, the default is the null
character. The field width and the fill character control the length
of the returned string and justification of the digits in the string.
The numeric conversion functions behave as follows. CFL converts the
numeric value to an ASCII string wusing the appropriate radix, and
calculates the number of resulting digits. The following algorithm
formats the returned string.

if field width = 0 then

return a string of length number of digits containing only the
converted digits

else
if number of digits > field width then
return a string of length field width filled with asterisks
else
if fill _character = null character then

return a string of length field width with the digits left
justified and pad the string with trailing blanks

else

return a string of length field width with the digits right
justified preceded by the specified fill character

° %CNV$OCTAL(<numeric_value>[,<fie1d_width>[,<fi11_character>]])
Converts the number from binary to ASCII octal representation.
) %CNV$DECIMAL(<numeric_value>[,<fie1d_width>[,<fill_character>]])

Converts the number from binary to ASCII decimal
representation.

e 3CNVSDECIMAL P (<numeric value>[,<field width>[,<fillcharacter>]])
This function is identical to $CNVS$SDECIMAL function, except
that it appends a decimal point to the end of the output ASCII
string. The decimal point is not counted in the field width.

® 3ICNVSHEX (<Knumeric_value>[,<field_width>[,<fill_character>]])

Converts the number from binary to ASCII hexadecimal
representation.

° %CNV$BCD(<numeric_va1ue>[,<field_width>[,<fi11_character>]])

This function is identical to $CNVS$HEX. Converts the number
from binary to ASCII hexadecimal representation.

° %CNV$BINARY(<numeric_va1ue>[,<field_width>[,<fill_character>]])

Converts the number from binary to ASCII binary
representation,

CONTROL FILE LANGUAGE GUIDE

e S$CNVSMACHINE (<numeric_value>[,<field width>[,<fill_character>]])

Converts the number from binary to ASCII representation in the
natural machine radix, which 1is octal for the PDP-11 and
hexadecimal for the VAX-11.

e 3CNVSRAD50 (<numeric_value>[,<field_width>[,<fill_character>]])

This function converts a numeric type to an ASCII string using
Radix-50 conversion. The numeric value must be a word,
longword, or quadword.

5.3.2.2 $CNV Functions - Miscellaneous Conversion Functions - A
number of other conversion functions are available:

® 3FCNVSSTRING(<string>)

Performs a hexadecimal conversion of the specified string to
ASCII.

® S$CNVSRSX TIME (<RSX time value>[,<fields>])

Converts the RSX time value to a string of the format:
yy-mmm-dd hh:mm:ss. The optional fields numeric parameter
specifies the number of fields of the date to be converted.
To convert only the date, specify 3. To convert the date and
time, exclusive of the seconds, specify 5. The default 1is
full date and time expressed in six fields.

e 3CNVSVMS TIME (<KVMS time value>(,<fields>])

Converts the VMS time value to a string of the format:
yy-mmm-dd hh:mm:ss. The optional fields numeric parameter
specifies the number of fields of the date to be converted.
To convert only the date, specify 3. To convert the date and
time, exclusive of the seconds, specify 5. The default is
full date and time expressed in six fields.

5.3.3 %COD Functions - Encoding Functions

The encoding functions convert ASCII strings into numeric values.
various functions do the conversion using different radixes.

e %CODSOCTAL (<string>)

Converts the string to a VALUE using octal radix. The string
may contain only the digits 0 through 7 and optional leading
spaces or the minus (-).

e $%$CODSDECIMAL (<string>)

Converts the string to a VALUE using decimal radix. The
string may contain only the digits 0 through 9 and optional
leading spaces or the minus (-).

® %CODSHEX (<string>)
Converts the string to a VALUE using hexadecimal radix. The

string may contain only the digits 0 through 9 and A through
E, and optional leading spaces or the minus (-).

CONTROL FILE LANGUAGE GUIDE

$CODSBCD (<string>)

Same as %CODSHEX. Converts the string to a VALUE using
hexadecimal radix. The string may contain only the digits 0
through 9 and A through E, and optional leading spaces or the
minus (-).

$CODSBINARY (<string>)

Converts the string to a VALUE using binary radix. The string
may contain only the digits 0 and 1, and optional leading
spaces or the minus (-).

$CODSMACHINE (<string>)

Converts the string to a VALUE using the natural radix for the
MACHINE, which is OCTAL for the PDP-11 and HEX for the VAX-11.

3CODSRSX TIME (<string>)

Converts the string to a date in RSX format. The string must
be of the form dd-mmm-yy [hh:mm{:ss]]. The date and time can
occur in either order; the seconds (:ss) are optional. The
default for the time fields is 00:00:00.

$CODSVMS_TIME (<string>)
Converts the string to a date in VMS format. The string must

be of the form dd-mmm-yy hh:mm:ss. The date and time can
occur in either order; the seconds (:ss) are optional.

$COM Functions -Computational Functions

$COMSAND (<numeric expression> , <numeric expressiond>)

Returns the logical AND of the two numeric expressions. Both
expressions must be machine VALUEs or shorter. This function
is used primarily for overlay reasons on the PDP-11.

$COMSHARDWARE (<numeric expression>)

Returns the ASCII character corresponding to the numeric
expression in the DEC hardware alphabet, which is
ABCDEFHJKLMNPRSTUV, numbered from 0 through 17. A
$COMSHARDWARE(0) returns an "A",

$COMSLONGWORD (<value> , <bit> , <value> , <bit> ...)

Returns a LONGWORD value. Each value 1is shifted by the
specified number of bits and then all the values are ORed.

%$COMSNEGATE (<value>)

Returns the negative of the specified value. This 1is the
two's complement of the value.

$COMSNULL (<expression>)
Returns a TRUE if the result of the expression is a value of

length zero, a FALSE if the result of the expression is a
value with length other than zero.

CONTROL FILE LANGUAGE GUIDE

5.3.5 $%CTL Functions - RPT Control

e 3CTLSOPEN(<Kfile>,<file spec>,<default spec>)

Opens the file using the file specification and the default
file specification. The value of the function is the fully
qualified file specification for the file.

e ZCTLSSTATUS (<filed>)

Returns the value TRUE if the file is open and FALSE 1if the
file is not open.

e 3%CTLSFILE_STATUS

Returns the numeric status value returned by the file system
after the last file open operation.

e $CTLSEOF (<Kfile>)

Returns the value TRUE if the specified file is at EOF, FALSE
if the file is not at EOF.

® 3%CTLSCLOSE (<file>)

Closes the file. The value of the function is the number of
records written to the file.

e SCTLSINPUT(<low> , <high>)

Sets the lowest and highest packets to be processed by RPT.
Returns a TRUE if both packet specifications are syntactically
correct and a FALSE if either is not syntactically correct.

This implicitly sets the processing direction, as well,
because if the high packet is lower than the low packet, the
file is processed backwards. A null packet specification
takes the default, the beginning of file for the low packet
and the end of file for the high packet.

5.3.6 $LOK Functions - Lookahead Functions

The %LOK functions obtain information in undeclared data packets or
subpackets. There 1is a $%LOK function for each of the data types
supported for lookahead. All offsets are byte offsets. Here are the
functions:

) %LOK$BYTE(<subpacket_number>,<offset>)

Returns the specified byte from the current data packet. The
subpacket number is the number of the subpacket from which the
data is to be obtained. 1If the subpacket number is zero, the
data 1is obtained from the packet itself. The offset is the
byte offset in the subpacket for the data item.

° %LOK$WORD(<subpacket_numbet>,<offset>)

Returns the specified word from the current data packet. The
subpacket number is the number of the subpacket from which the
data is to be obtained. 1If the subpacket number is zero, the
data 1is obtained from the packet itself. The offset is the
byte offset in the subpacket for the data item.

5.3.7

CONTROL FILE LANGUAGE GUIDE

LOKSLONGWORD (<subpacket number>,<offset>)

Returns the specified longword from the current data packet.
The subpacket number is the number of the subpacket from which
the data is to be obtained. If the subpacket number is zero,
the data 1is obtained from the packet itself. The offset is
the byte offset in the subpacket for the data item.

$LOKSLENGTH (<subpacket number>)

Returns the length of the data in the specified subpacket.
The subpacket number 1is the number of the subpacket whose
length is to be returned. If the subpacket number 1is zero,
the length of the data packet is returned.

$PKT Functions - Packet Information

The $%PKT functions obtain information about the current packet:

5.3.8

$PKTSMODULE (<module name>)

Returns the value TRUE if the specified module exists 1in the
control file, and FALSE if it does not exist.

$PKTSIDENT

Attempts to get the next packet from the input file 1in the
range specified by %CTLSINPUT and makes it the current packet.
If no more packets exist within that range, a null string is
returned. Otherwise, $PKTSIDENT returns the current packet
identification as a fixed-length ASCII string of eight
characters.

$RPT Functions - Report Control

The %$RPT functions control report generation:

$RPTSPAGE_SIZE (<lines>)

The default page size is 57 lines of text plus headers and a
form feed. $RPTSPAGE SIZE changes the number of lines per
page to the specified value. If the value is zero, the page
size is infinite. The function returns the previous number of
lines per page before the function was executed.
%RPT$PAGE_DEFAULT

Returns the default number of lines per page of RPT, which is
decimal 57.

%RPT$PAGE_CURRENT
Returns the current number of lines per page.
%RPTSPAGE_REMAINING

Returns the number of lines remaining on the current page.

5.3.9

CONTROL FILE LANGUAGE GUIDE

$RPTSLINE_SKIP(<interval>,<lines>)

Causes RPT to skip the specified number of 1lines every
interval number of lines. If the interval is zero, automatic
line skipping 1is suppressed. The function value 1is the
previous interval.

%RPTSLINE_REMAINING

Returns the number of lines remaining in the current interval.
$RPT SCOMMAND

Returns the command line as a string.

$RPTSIDENT

Returns RPT ident as a string.

$RPTSSTATUS (<status>)

Sets the exit status of RPT to the specified status value if
it 1is more severe than the current exit status. If it is not
more severe, no action is taken. The actual status value |is
determined by the control files using this function based on
the value given by the <status> argument. A status value Iis

considered a SUCCESS, or TRUE, status if the low bit is 1, and
a FAILURE, or FALSE, statue if the low bit is 0.

The following algorithm, where NEW_STATUS is the value of the
<status> argument and EXIT_STATUS is the current exit status,
is used to update the exit status:

IF NEW_STATUS

THEN
BEGIN
IF EXIT_STATUS AND (NEW_STATUS GT EXIT_STATUS)
THEN
SET EXIT_STATUS TO NEW_STATUS ;
END ; -
ELSE
BEGIN
IF EXIT STATUS OR (NEW _STATUS GT EXIT STATUS)
THEN
SET EXIT STATUS TO NEW STATUS
END ; - -

The function returns to original value of EXIT_STATUS rather
than the potentially updated EXIT_ STATUS.

$STR Functions - String Handling

The %STR functions manipulate ASCII and binary strings:

%$STRSTRAIL (<string>,<element>)

Removes all trailing repetitions of the specified element from
the specified string. The value of the function is the
original string without the trailing characters.

$STRSLENGTH (<{string>)

Returns the length of the specified string as a numeric.

CONTROL FILE LANGUAGE GUIDE

$STRSPARSE (<string>,<pointer>,<control>)

¥STRSPARSE performs a simple parse by returning a pointer to
the end of the substring beginning at the specified pointer
position in the string and terminated by any of the characters
in the control string or by the end of the string.

$STRSQUOTE (<string>,<pointer>,<control>,<quote>)

STRSQUOTE performs a simple parse with quote characters.
STRSQUOTE works the same as STRSPARSE except STRSQUOTE handles
quote characters. The quote argument is a character string of
two characters. For clarity, the two characters should match
in some way, but this is not required. 1If the first character
of the pair 1is encountered, checking for control characters
stops until the second character of the pair appears. For
example, the quote string '<>' causes anything between a
left-angle bracket (<) and a right-angle bracket (>) to Dbe
considered as "quoted" and treated as a unit,

$STRSREMAINING (<string>,<pointer>)

Returns the substring of the specified string consisting of
all characters including and following the specified pointer
position.

$STRSMATCH (<string>,<string>)

Performs an element-by-element comparison of the two strings.
The comparison continues only as long as there are elements to
compare. That is, with strings of different 1lengths, the
comparison stops with the last element in the shorter string.
$STRSMATCH returns TRUE if the elements match and FALSE 1if
they do not.

$STRS$SSEARCH (<string>,<pointer>,<string>)

Searches the first string, beginning at the specified pointer
position, for the second string. The pointer returns to the
position in the first string at which the second string
begins. If the second string isn't found, $%$STR$SEARCH returns
a zero.

%$STRSPAD (<string>,<paddingstring>,<lead>,<trail>)

$STRSPAD creates a new string consisting of the specified
string padded with the single-character padding string. The
lead and trail numeric expressions specify how many padding
characters you wish to lead or trail the original string.

$STRSFILE (<string>,<pointer>)

$STRSFILE assumes the pointer is at the beginning of file
specification. It returns a pointer to the character
following the file specification. If the string pointed to is
not a valid file specification, %STRSFILE returns a zero.

$STRSUPCASE (<value>)

Returns the specified string with all lowercase letters
converted to uppercase.

$STRSCHAR (<value>)

Returns the character corresponding to the specified value.

5.3.10

CONTROL FILE LANGUAGE GUIDE

$TIM Functions - Time Handling

The %TIM functions manipulate times. Remember that the time values

include

both date and time unless otherwise noted. Here are the %TIM

functions:

RSX Time Functions:

%TIM$RSX_CURRENT

Returns the current date and time as a value in RSX format.
$TIMSRSX DATE (<RSX time valued)

Returns the date only in RSX format.

$TIMSRSX VMS (<VMS time>)

Returns an RSX time value corresponding to the specified VMS
time.

$TIMSRSX_NULL

Returns a null RSX time value. This value prints as all blank
spaces.

VMS Time Functions:

5.3.11

%TIM$VMS_CURRENT

Returns the current date and time as a value in VMS format.
$TIMSVMS DATE (<VMS time value>)

Returns the date only in VMS format.

%TIMSVMS_PLUS((VMS time> ,<days>)

Returns a VMS time value containing the specified time plus
the specified number of days.

$TIMSVMS MINUS (KVMS time>,<days>)

Returns a VMS time value containing the specified time minus
the specified number of days.

$TIMSVMS RSX (<RSX time>)

Returns a VMS time value corresponding to the specified RSX
time.

$TIMSVMS NULL

Returns a null VMS time value. This value prints as all blank
spaces.

$USR Function - User I/0 Function

The %USR function performs input and output to and from the user of

RPT:

CONTROL FILE LANGUAGE GUIDE

® 3FUSRSSTRING(Kfile),<prompt>,<maximum length)>)

Writes out the prompt string if the specified file 1is a
terminal, and reads a string input whose maximum length is
specified by the length parameter. If the specified output
file is not a terminal, there is no prompt and only the read
is performed.

5.4 DECLARATIONS

This section describes the declaration of variables and data items. A
declaration includes print-formatting information along with the
definition of data items; it is different from declaration in most
languages.

5.4.1 Scope of Declarations

Data items can be referenced during the scope of the declaration, that
is, from the point they are declared until the declaration is
discarded. 1If a declaration is made in a given procedure, data items
can be referenced in the defining procedure or any procedure called by
it. What about coroutine interactions.

5S.4.2 DECLARE Statement

The DECLARE statement begins the declaration of a block of variables.
Here is the format:

DECLARE <group name> [NAMED] ;
<variable name> : <type> |
<variable name> : <type> [
<variable name> : <type> [

END DECLARE ;

<print expressions>]
<print expressions>]
<print expressions>]

~s we e

The group name is the prefix name by which the group variables are
referenced. Each of the group variables is referenced using the name:

<group name>.<variable name>

The variable type is one of the RPT data types: LOGICAL, STRING,
ASCII, NUMERIC, FIELD, RSX TIME or VMS_TIME.

The optional NAMED qualifier specifies that the symbol names are to be
kept and used with the WRITE_GROUP statement FORMAT clause qualifiers
that print a symbol name.

The optional print expressions specify expressions to be evaulated and
printed if the group is printed using the WRITE_GROUP statement. If
you specify more than one expression, separate them by commas.

The print information consists of one or more expressions separated by
commas. If the WRITE GROUP statement is used to print the data group,
the print expressions are evaluated and printed.

Declaration of a numeric type can be followed by declaration of one or
more field types. The field types are considered fields of the
preceding numeric type declaration.

CONTROL FILE LANGUAGE GUIDE

Print information for field types is handled specially. The variable
names for field types do not appear when the WRITE GROUP statement is
used, and the print expressions following a field type declaration are
considered to apply to the preceding numeric type. Of the print
expressions following a field type, one is selected based on the field
value.

For BIT fields, the first print expression is used if the BIT is TRUE,
and the second if the BIT is FALSE.

For FIELD fields, the first print expression is used if no other print
expression applies. The second print expression is used if the FIELD
value is zero, the third if the field value is one, the fourth if the
field value is two, and so on.,

When a print expression is printed for a field type, it is printed in
the following format:

plh:l] ttt...ttt
using the following symbols:

P - The leading character of the print expression. This appears
as a prefix to the print field.

h - The high bit number of the FIELD, or the bit number of the
BIT. The brackets are printed.

1 - The low bit number of the FIELD. The "1" field and the
leading colon are printed as blanks for BITs.

t - The trailing characters of the print expression. The

trailing characters are any characters following the first
character.

For example, take the following definition:
DECLARE EXAMPLE

VARIABLE 1
FIELD [6:2]

WORD :
'*The value of this field 1is 2 or

se s0 o0

3',
' The value of this field is 0' ,
' The value of this field is 1' ;

When EXAMPLE is printed with a WRITE_GROUP statement, the
field will be printed as follows, depending on whether bits
6 through 7 contain the value 0, 1, 2, or 3:

[7: 6]} The value of this field is 0

{ 7: 6] The value of this field is 1

*[7: 6] The value of this field is 2 or 3
NOTE

The field is declared in the form [6:2],
meaning that it starts at bit 6 and is
two Dbits 1long. However, the print
format 1is expressed in the form [7:
6], meaning that it consists of bits 6
through 7.

CONTROL FILE LANGUAGE GUIDE

5.4.3 PACKET Statement

The PACKET statement declares an input data packet. Here 1is the
format:

PACKET <name> [REPEATED] [NAMED] ;
<name> : <type> : <print information> ;
<name> : <type> : <print information> ;
<name> : <type> : <print information> ;

END_PACKET ;

The REPEATED data attribute 1is optional. A PACKET without this
attribute specifies a single packet. The REPEATED specifies that the
data in the packet is repeated. The number of repetitions is computed
by dividing the packet length by the length of the data items. Note
that the items must be referenced as for a DYNAMIC_TABLE; they cannot
be referenced directly.

The optional NAMED qualifier specifies that the symbol names are to be
kept and used with the WRITE_GROUP statement FORMAT clause qualifiers
that print a symbol name.

Declaration of data defines the special variable LENGTH, referenced as
the data items themselves would be referenced:

<data group name>.LENGTH

Note that the length can be referenced directly, even for a REPEATED
data group.

Each of the data item names is declared, along with the type and print

information. The name 1is the name by which the data element is
referenced.

Here is the format for a data element reference:
<data group name)>.<data element name>

The data item type is declared as specified 1in Section 5.2.1, Data
Types.

The special variable name RESERVED in place of an element declaration
specifies a sequence of undefined values, The type declaration
specifies the length of the undefined area. This cannot be "a field
type. The syntax is as follows:

PACKET <name> <data organization> ;
<name> : <type> : <print information> ;
RESERVED : <type> ;
<name> : <type> : <print information> ;
END PACKET ;

A RESERVED declaration in a PACKET or SUBPACKET indicates to the
compiler (and RPT) that the area is currently unused, but to use its
length in determining the size of the PACKET or SUBPACKET and the
offsets of elements following the RESERVED declaration. Use RESERVED
either to reserve space for future use or to force word-boundary
alignments.

Note that an element name could be used in these situations, but that
RESERVED serves as a documentation aid, and saves having to define
unique element names if there are multiple unused areas in a packet or
subpacket.

CONTROL FILE LANGUAGE GUIDE

5.4.4 SUBPACKET Statement

The SUBPACKET statement declares an input data SUBPACKET. Here is the
format:

SUBPACKET <name> = <expression> <data attribute> [NAMED] ;
<name> : <type> [: <print information>] ;
<name> : <type> [: <print information>] ;
<name> : <type> [: <print information>] ;

END_PACKET ;

The attribute, if present, 1is REPEATED. A SUBPACKET without an
attribute specifies a single subpacket. The leading REPEATED
attribute specifies that the data in the subpacket is repeated. The
number of repetitions is computed by dividing the subpacket length by
the length of the data items. Note that the items must be referenced
as for a DYNAMIC TABLE; they cannot be referenced directly.

The optional NAMED qualifier specifies that the symbol names are kept
and used with the WRITE GROUP statement FORMAT clause qualifiers that
print a symbol name.

The handling of SUBPACKET is otherwise the same as for PACKET.

5.4.5% Conditional Declarations

RPT provides a mechanism for conditional declaration of data items.
Conditional declaration can only be used for data, that is, PACKET and
SUBPACKET declarations. FIELD and BIT declarations cannot cross
conditionals. all FIELD and BIT declarations must be in the same
conditional as their data item.

The conditionals allowed in declarations are as follows:
e IF
IF has the following syntax:
<name> <type> [: <print information>]

<name> : <type> [: <print information>]
<name> : <type> [: <print information>]

- wo weo

IF <expression>

THEN
BEGIN
<name> : <type> [: <print information>] ;
<name> : <type> [: <print information>] ;
<name> : <type> [: <print information>] ;
END

ELSE
BEGIN
<name> : <type> [: <print information>] ;
<name> : <type> [: <print information>] ;
<name> : <type> [: <print information>] ;
END

END_IF ;

<name> : <type> [: <print information>] ;

<name> : <type> [: <print information>] ;

<name> : <type> [: <print information>] ;

If the expression is TRUE, the THEN clause is defined. 1If the
expression 1is FALSE, the ELSE clause is defined. The ELSE
clause is optional.

e CASE

CASE has

<name>
<name>
<name>

CONTROL FILE LANGUAGE GUIDE

the following syntax:

<type> [
<type> [
<type> |

<print information>]
<print information>]
<print information>]

we we we

CASE <expression> OF

[<expression> , <expression> , ...] :

BEGIN

<name> : <type> [: <print information>] ;
<name> : <type> [: <print information>] ;
<name> : <type> [: <print information>] ;
END

[<expression> , <expression> , ...

]

BEGIN
<name> : <type> [: <print information>] ;
<name> : <type> [: <print information>] ;
<name> : <type> [: <print information>] ;
END
[<expression> , <expression> , ...] :
BEGIN
<name> : <type> [: <print information>] ;
<name> : <type> [: <print information>] ;
<name> : <type> [: <print information>] ;
END
ELSE
BEGIN
<name> : <type> [: <print information>] ;
<name> : <type> [: <print information>] ;
<name> : <type> [: <print information>] ;
END
END_CASE ;
<name> : <type> [: <print information>] ;
<name> : <type> [: <print information>] ;
<name> : <type> [: <print information>] ;

The expression in the CASE statement is evaluated and the
expression lists searched to find a matching expression value.
If a match is found the declaration is made. If no matching
expression value 1is found, the optional ELSE clause is
executed. Otherwise, an error occurs.

5.5 ACTION STATEMENTS

Action statements perform processing. CFL has a limited set of action
statements because it 1is a simple, special-purpose language. The
statements provided have capabilities designed to make the handling of
error log data as simple as possible.

CONTROL FILE LANGUAGE GUIDE

5.5.1 SET Statement

SET sets the value of a variable to the results of a computation.
Here is the format:

SET <variable name> TO <expression> ;

The expression is evaluated using the type of the specified variable,
and the variable is set to the value of the expression.

5.5.2 INCREMENT and DECREMENT Statements
INCREMENT and DECREMENT adjust the wvalue of numeric variables of
length VALUE or less by a value. The value defaults to 1. The format
of the statements are:

INCREMENT <variable name> [BY <numeric expression>] ;

DECREMENT <variable name> [BY <numeric expression>] ;
The value of the variable is increased by the value of the numeric

expression for the INCREMENT statement, and decreased by the value of
the numeric expression for the DECREMENT statement.

5.5.3 WRITE Statement

WRITE writes information to a specified ouput. Here is the format:
WRITE <expression> , ... TO <output> FORMAT <format> ;

The expressions are printed in the order specified. The optional

output clause can contain either the specifications REPORT or ERROR.

ERROR directs output to the invoking terminal. REPORT is the default

and directs output to the output report. The REPORT file must be

open. The ERROR file is always open. The format is described in
section 5.10, Print Formatting.

5.5.4 WRITE_GROUP Statement

WRITE GROUP writes a decoded block of data. The data definitions
define the formatting. Here is the format:

WRITE_GROUP <group name> TO <output> FORMAT <format> , <format> ;
The group name is the name of the group of variables or data items to
be written. The optional output specification is the same as for the
WRITE statement, and has the same defaults. The format 1is described
in Section 5.10, Print Formatting.
The group name can be followed by a symbol list:

<group name> <symbol name>,<symbol name>,...

In this case only the specified symbols are listed.

The first FORMAT clause is for printing all data items, the second
FORMAT clause is for printing all BIT and FIELD items.

CONTROL FILE LANGUAGE GUIDE

5.5.5 DECODE Statement

The DECODE statement performs specialized declaration-to-text
translation. The statement has the form:

DECODE <variable name> = <group name>
<data item> [<bit number>] ;
<data item> [<bit number>] ;
<data item> [<bit number>] ;

END_DECODE ;

-,

Each of the data items must be a data item in the specified group.
The bit numbers are numbers of bits in the data item. The DECODE
statement processes the data items in the order specified, checking
the specified bits. If a bit is found to be TRUE, the corresponding
bit-to-text translation for that bit is performed, and the result
returned 1in the specified variable. This completes the statement. A
data item can be preceded by a NOT, which indicates the specified bit
must be FALSE for the bit-to-text translation to be performed. If no
bit-to-text translation is found, the null string is returned.

5.6 CONTROL STATEMENTS

Control statements direct RPT. Control statements define and invoke
procedures and control termination of the procedure. Other control
statements also conditionally control the execution of statements in a
procedure., These are called conditional statements.

5.5.1 MODULE Statement

MODULE declares the name of the module being compiled. Here 1is the
format:

MODULE <name> <ident> (attribute , attribute , ...) ;

MODULE must be the first statement in any module. Each module must
end with an END MODULE ; statement.

The module name specifies the name to be used when the module is
inserted into the control file library.

The module ident is a quoted string to be inserted in the module
header.

The optional module attributes specify information to be used in
processing the module. Two attributes are recognized:

e KEEP

KEEP specifies that if a module cache is wused by RPT, the
module should be kept because it is likely to be used again.

e FLUSH

FLUSH specifies that if a module cache is wused by RPT, the
module should be flushed because it is unlikely to be used
again.

CONTROL FILE LANGUAGE GUIDE

5.6.2 LITERAL Statement

LITERAL assigns a name to a literal value. All LITERAL statements in
a module must precede any PROCEDURE statement. The format of a
LITERAL statement is:

LITERAL <group>.<name> = <compiletime constant expression> ;

The name is equivalent to the value of the compiletime constant
expression, and can be used in any expression or compiletime constant
expression to represent the specified value,

5.6.3 CALL Statement
CALL invokes a subroutine. CALL has the following format:

CALL [MODULE <module name expression>]
PROCEDURE <procedure name expression>
[COROUTINE <procedure name expression>] ;

The optional module name expression specifies the module to be called.
If the module name 1is not specified, the specified procedure is
assumed to be in the current module. The procedure name specifies the
procedure to call.

The optional COROUTINE argument specifies that the two called
procedures are coroutines, The first called procedure is specified as
in the normal form of a CALL statement. The procedure specified using
the COROUTINE keyword 1is executed first. That procedure can then
execute a statement that passes control to the other procedure
specified in the CALL. None of the declarations are lost.

The two procedures can trade control back and forth wusing the
COROUTINE statement. Each time a COROUTINE statement is executed, the
other procedure resumes execution from the point of the last COROUTINE
statement. If one of the procedures returns, control passes to the
other as if a COROUTINE statement were executed. When both have
completed, the coroutines exit to the caller.

5.6.4 RETURN Statement
RETURN forces a return from a procedure to the calling procedure.
RETURN 1is optional at the end of a procedure. The format of the
RETURN statement is:

RETURN ;

This terminates the current procedure and returns control to the
calling procedure.

5.6.5 PROCEDURE Statement

PROCEDURE declares the beginning of a procedure. It has the following
format:

PROCEDURE <name> <statement block> ;

CONTROL FILE LANGUAGE GUIDE

The procedure name cannot be more than 15 characters. Names can
include the characters A through Z, the numbers 0 through 9, the
dollar sign ($), and the underscore (). The leading character of a
name must be alphabetic. -

The statement block is executed as the named procedure.

5.6.6 IF-THEN-ELSE Statement

IF-THEN-ELSE is the most Dbasic conditional statement. Other
conditional statements are provided to simplify the handling of common
situations that would be cumbersome with IF-THEN-ELSE. The

IF-THEN-ELSE has the following format:
IF <logical expression> THEN <block> ;
[ELSE <block>;] END_IF ;

If the logical expression is TRUE, the block following the THEN
statement 1is executed. 1If the logical expression is FALSE, the block
fcllowing the ELSE statement 1is executed. The ELSE clause is
optional. If it 1is not specified, no action is performed if the
expression is FALSE.

Each block consists of a single statement. Using BEGIN-END, a block
can contain a compound statement. See Section 5.6.11 on BEGIN-END
statements for a description of how to use BEGIN-END statements to
make multiple statements appear as a single 1logical entity to
conditional statements.,

5.6.7 CASE Statement

CASE selects one of a set of possible outcomes based on an expression.
The format of a CASE statement is as follows:

CASE <expression> OF

[<expression> , <expression> , ...] : <block> ;
[<expression> , <expression> , ...] : <block> ;
[<expression> , <expression> , ...] : <block> ;

[ELSE <block> ;]
END CASE ;

This executes the block corresponding to the first expression equal to

the selector numeric expression. If ELSE is specified, it is executed
if no expression matches.

5.6.8 SELECT Statement

SELECT is a special case of CASE. SELECT selects one of a given set
of blocks. The general format is:

SELECT <numeric expression> OF
<block> ;
<block> ;
<block> ;

[ELSE <block>

END_SELECT;

CONTROL FILE LANGUAGE GUIDE

SELECT selects the nth block, where n is the value of the numeric
expression and is greater than or equal to 1. If the last block is
preceded by ELSE, the block is executed if and only if the value of
the numeric expression exceeds the number of blocks supplied.

5.6.9 WHILE/UNTIL/DO Statements

The WHILE/UNTIL/DO statements control conditional looping. To specify
a conditional loop, specify a block of statements to be conditionally
executed and an expression to control the execution.

The DO statement specifies the block of statements to be conditionally
executed.

The WHILE statement specifies an expression to be considered satisfied
if it is TRUE.

The UNTIL statement specifies an expression to be considered satisfied
if it is FALSE.

A DO statement must be specified with a WHILE or UNTIL statement. The
block of statements specified by the DO statement is executed until
the condition specified by the WHILE or UNTIL statement is no longer
satisfied.

If DO WHILE oxr DO UNTIL is specified, the DO is executed once before
testing the condition. If WHILE DO or UNTIL DO is specified, the
condition is tested first before executing the DO statement. This
leads to the following statement combinations:

DO <block> WHILE <expression> ;

Executes the block once, then evaluates the expression. If the
expression is TRUE, the block 1is repeated. If the expression is
FALSE, execution continues following the WHILE statement.

DO <block> UNTIL <expression> ;

Executes the block once, then evaluates the expression. If the
expression is FALSE, the block 1is repeated. 1If the expression is
TRUE, execution continues following the UNTIL statement.

WHILE <expression> DO <block>
Evaluates the expression. If the expression is TRUE, the block is
executed and the process repeated. If the expression is FALSE,
execution continues following the DO statement.

UNTIL <expression> DO <block>
Evaluates the expression. If the expression is FALSE, the block is

executed and the process repeated. If the expression 1is TRUE,
execution continues following the DO statement.

5.6.10 LEAVE Statement

LEAVE immediately terminates the current DO statement. The control

expression 1in the associated UNTIL or WHILE statement is considered
satisfied and is not reevaluated.

CONTROL FILE LANGUAGE GUIDE

5.6.11 BEGIN-END Statement

BEGIN-END statements force a compound statement to be treated as one
statement for purposes of conditionals. For example, to process two
statements in the THEN clause of an IF statement, use the the
following construct:

IF <logical expression>
THEN
BEGIN
<{statement 1> ;
<{statement 2> ;
END ;
ELSE
<statement> ;
END_IF ;

5.6.12 Lexical Conditionals

Lexical conditionals perform conditional handling at compilation. A
lexical conditional 1is valid wherever a statement is valid. Lexical
conditionals have the following format:

SIF <compiletime constant expression>

STHEN

<statement block>
[SELSE

<{statement block>]
$END_IF

The SELSE block is optional. 1If the compiletime constant expression
is TRUE, everything in the $THEN block is compiled and the SELSE block
is not compiled. 1If the compiletime constant expression is FALSE, the
STHEN block 1is not «compiled and the $ELSE block, if present, is
compiled.

Lexical conditionals can be nested to any level.

5.7 TABLES

The table is one of the fundamental units of data organization for
RPT. RPT uses tables to structure large amounts of data to be
referenced during report generation.

5.7.1 Table Structure

Tables are sets of similar records containing fields by which the
records can be referenced. Tables, and the data in them, can either
be declared statically as part of the definition of a given «control
file module, or dynamically during the operation of RPT. Static
tables hold reference data, while dynamic tables store information
computed during the operation of RPT.

Each record in a table is a sequence of named fields. The definition
of the table defines the names of the fields and their sequence.

Reference tables by name. Table names follow the ordinary rules for
naming groups. The name cannot be more than 15 characters. Names can

CONTROL FILE LANGUAGE GUIDE

include the characters A through Z, the numbers 0 through 9, the
dollar sign ($), and the underscore (_). The leading character of a
name must be alphabetic.

Fields in a table are also named. Field names follow the same rules.

Table entries are manipulated by setting the current entry pointer for
a table, and then using either the table manipulation statements or
simple variable references to read or modify the data in the table.

The following sections describe each of the table-definition and
table-manipulation statements in detail.

5.7.2 TABLE Statement
TABLE defines a static table. The format of the statement is:

TABLE <table name> ;
<name> : <type> [: <print expressions>]
<name> : <type> [: <print expressions>]
<name> : <type> [: <print expressions>]
BEGIN_ TABLE
<value> , <value> , <value> , ...
<value> , <value> , <value> , ...
<value> , <value> , <value> , ...
END_TABLE ;

~e we we

No we W

The declaration list following the TABLE statement specifies each of
the fields, their types, and print information. The format is the
same as for DECLARE. The 1list values are individual compile-time

constant expressions separated by commas. Each sequence of list
values separated by commas (,) and terminated by a semicolon (;)
represents one TABLE record. Each table value must be of the same

type as the corresponding declaration from the declaration 1list.
TABLE records cannot be modified at run time.

5.7.3 DYNAMIC_TABLE Statement

DYNAMIC_TABLE declares a dynamic table. The format of a DYNAMIC_TABLE
statement is as follows:

DYNAMIC TABLE <table name> ;
<name> : <type> [: <print expressions>]
<name> : <type> [: <print expressions>]}
<name> : <type> [: <print expressions>]
END_TABLE ;

~eo ws we

Records are placed in the DYNAMIC TABLE at run time through use of the
PUT statment, and can be modified by some of the POINTER statements.

5.7.4 FILE Statement

FILE is identical to DYNAMIC TABLE. It is included for compatibility
only and you should use DYNAMIC_TABLE. The FILE statement may be
removed in a future release.

CONTROL FILE LANGUAGE GUIDE

FILE declares a dynamic table. The format of a FILE statement 1is as
follows:

FILE <table name> ;
<name> : <type> [: <print expressions>]
<name> : <type> [: <print expressions>]
<name> : <type> [: <print expressions>]
ENDFILE

~e we we

Records are placed in the FILE dynamically at run time through use of
the PUT statement and can be modified by some of the POINTER
statements,

5.7.5 POINTER Statement

POINTER adjusts the current pointer for a table wusing the following
syntax:

POINTER <table name> <action> <optional pointer variable> ;
Each of the actions is described below:
e FIRST

Sets the current table pointer to the first record of the
table. If there 1is no next record, then the current table
pointer is set to null (see RESET).

® NEXT

Sets the current table pointer to the next record of the
table. If there 1is no next record, then the current table

pointer is set to null (see RESET).
e PREVIOUS

Sets the current table pointer to the previous record of the
table. If you back up past the beginning, then the table
pointer is set to null (see RESET).

e RESET

Sets the current table pointer to null, that is, there 1is no
table pointer.

e LOAD <pointer variable>

Sets the current table pointer to the value of the pointer
variable.

e CLEAR

The specified table must be a DYNAMIC TABLE. Deletes all
records from the DYNAMIC TABLE and sets the current table
pointer to null (see RESET).

e DELETE

The specified table must be a DYNAMIC TABLE. Deletes the
current record and advances the pointer to the next record.
If there is no next record, then the current table pointer is
set to null (see RESET).

CONTROL FILE LANGUAGE GUIDE

® MOVE <pointer variable>

The specified table must be a FILE. The record pointed to by
the pointer variable is moved to the current record position
and the current record and all following records are moved up
one record. This is wused mainly for sorting records in a
FILE.

5.7.6 FIND Statement

FIND finds a record in a table using one or more key values. The
format of the FIND statement is:

FIND <table> <field>=<value> , ... SELECT <expression)> ;

The table is searched until an entry with all specified fields having
the specified value is encountered. Tables are searched sequentially
from the current pointer position. If no record is found, the current
pointer for the table is set to null.

If you specify the optional SELECT clause, a record does not satisfy

the search «criteria unless the select expression, evaluated with the
current record for the table set to the specified record, is TRUE.

5.7.7 PUT Statement

PUT creates a new record in a table. The specified table must be a
DYNAMIC_TABLE. PUT has the following format:

PUT <table> <field>=<expression> , ... ;
Sets the specified fields of the record to the values of the specified

expressions. Note that all fields must be specified; none of the
fields of the record are optional.

5.8 LISTS

This section describes the expression-list-handling facilities of CFL.

5.8.1 LIST Statement

LIST declares a list of expression groups. The format of LIST 1is as
follows:

LIST <list name> ;
<expression> , <expression> , ... <expression>

<expression> , <expression> , ... <expression>
<expression> , <expression> , ... <expression)>

we we wo

END LIST ;

The expression lists can then be referenced by other statements
described in this section.

CONTROL FILE LANGUAGE GUIDE

5.8.2 SEARCH Statement

SEARCH locates a specific entry in a LIST. SEARCH has the following
format:

SEARCH <list name)> <expression> , ... , <expression>
GET <variable> , ... <variable>
FLAG <variable> ;

The specified list is searched sequentially until an entry 1is found
where each of the SEARCH expressions is equal 1in value to the
corresponding LIST expression 1in the same expression list. The
variables in the GET clause are then set to the corresponding
remaining expressions of the expression list, and the FLAG variable is
set to TRUE. If no match is found, the variables specified in the GET
clause are unchanged, and the FLAG variable is set to FALSE.

5.9 SIGNALLING

This section describes the signalling facilities of CFL.

5.9.1 Signalling

Signalling breaks the control flow in the report to handle special
conditions. Control goes to a special routine established by the user
called a handler routine. When a condition is signalled by the user
using the signalling statements, the most recently declared handler
routine is called. The handler routine can then take the appropriate

action.

Any routine can establish a handler routine. When a «condition is
signalled by the user, the user can optionally suppress the change in
the flow of control, and cause the handler to return to the routine
executing the signal.

When a condition is signalled, a message describing the event |is
appended to the file ERROR, if the file exists. The message inserted
in the ERROR file consists of a sequence of comma-delimited quoted
strings, corresponding to the arguments to the SIGNAL-class
statements.

5.9.2 ENABLE Statement
ENABLE has the following format:
ENABLE [MODULE <expression)>] PROCEDURE <expression)> ;

The procedure becomes the condition handler for this procedure and all
called procedures, unless a called procedure in turn has an ENABLE.

5.9.3 SIGNAL Statement
SIGNAL has the following format:

SIGNAL <message code> PARAMETERS <expression list> ;

CONTROL FILE LANGUAGE GUIDE

The message code and expressions in the expression 1list are ASCII
strings. When the SIGNAL statement is executed these expressions are
‘evaluated and the resulting ASCII strings are appended to the ERROR
file as quoted strings separated by commas, as follows:

'‘<{message code>','<expressionl>','<expression2>'...,'<expressionN>’

The signal-handling routine is then called. After execution of the
signal-handling procedure, execution resumes following the statement.

5.9.4 SIGNAL STOP Statement

The SIGNAL_STOP statement is the same as the SIGNAL statement, except
that after execution of the signal-handling procedure, execution
resumes following the call to the procedure that executed the ENABLE
statement.

SIGNAL_ STOP <message code> PARAMETERS <expression list> ;

5.9.5 MESSAGE Statement

MESSAGE has the same format as SIGNAL. It causes the appended string
to be placed in the ERROR file, but does not cause any signal
processing.

MESSAGE <message code> PARAMETERS <expression list> ;

5.9.6 CRASH Statement
CRASH causes an immediate abort of RPT. Use it 1in cases of error
handling where the signalling mechanism 1is inadequate. The CRASH
statment has the following format:

CRASH ;

CRASH causes a detailed dump of many of RPT's internal data
structures.

5.10 PRINT FORMATTING

This section describes the output-formatting facilities of CFL.

5.10.1 FORMAT keyword string

The FORMAT keyword on the WRITE and WRITE_GROUP statements expresses
output-formatting information. The keyword has the following syntax:

FORMAT <format string>

The format string can be any ASCII string. The string 1is output,
after substitution specified by output directives. The directives
have the format

!n(mdd)

CONTROL FILE LANGUAGE GUIDE

where dd is the two-character directive, m is the optional argument,
and n 1is the optional repeat count. The parentheses need not be
included if there is no repeat count. This syntax is the same as that
for the VMS %FAO facility. A double-exclamation mark, !!, prints as a
single exclamation mark.

Multiple format strings can be specified one after the other separated

by the concatenation operator, the vertical bar (], ASCII 174). They
are treated as one concatenated string.

The allowable directives are specified in the following sections.

5.10.1.1 Control Directives - The control directives control the
processing of the format string. Here are the control directives:

! nCE Repeat the FORMAT clause.

I'nCF When used with a WRITE statement, this directive
terminates output 1if the values of all expressions have
been output. When used with a WRITE_GROUP statement, this
directive terminates output if all fields in the specified
group have been output. The effect in both cases 1is to
terminate evaluation and output of the format string if
there are no more values to be output.

5.10.1.2 Formatting Directives - The formatting directives output
carriage-control information. Here are the formatting directives:

tnFC Print following output beginning at column n.
tnFS Space the current output print column forward n columns.

!nFL Output n-1 blank lines. Printing resumes on the line
following the blank lines. The default, n=1, causes
output to begin on the line following the current line,

InFP Output a page break.

5.10.1.3 Data-formatting Directives - The data-formatting directives
control the output of data. Here are the data-formatting directives:

{nDF Print the field name of the current output field. The
argument specifies the field width to be used for the
name. The name is printed left-justified.

!nDP Print the current output field.

The argument specifies the field width to be used for the
field. For numeric fields, the field width n must be
greater than the field width specified when the field was
defined. 1f all fields have been printed, output
terminates.

CONTROL FILE LANGUAGE GUIDE

5.11 USER INTERFACE HANDLING

This section describes the user interface to the compiler.

5.11.1 Overview of User Interface Handling

The compiler implements two user interface modes, command mode and
OPTION mode. In OPTION mode, the compiler requests a command line,
followed by requests for OPTIONS, which are terminated when a 1line
beginning with a slash (/) is entered, at which point the compilation
takes place.

5.11.2 Command Mode

In command mode, the compiler requires a command line of the following
syntax:

<output>,<listing>,<symbols>=<input>,<symbols>

All files on the left of the equals (=) character are output files,
and all files to the right of the = character are input files.

The output file is the compiled module output file, It has the
default file type .ICF.

The listing file is the compilation listing file. It has the default
file type .LST.

The symbols output file is the compilation symbol table, which must be
used as 1input to any compilation of a module to be called from this
module at execution time. It has the default file type .SYM.

The input file is the .CNF source file.

The symbols input file is a compilation symbol table from the module
which calls the module being compiled at execution time.

5.11.3 Option Mode
In option mode, the compiler accepts the following option:
e LITERAL

The LITERAL option has the form:
LITERAL group.name = value
This is the same syntax as for the LITERAL statement in the
source. The LITERAL is declared for the duration of the
compilation. The only valid values are single items: quoted
strings, numeric values, and logical TRUE and FALSE values.

Numeric values must be positive decimal values that are
treated as a machine values.

5-43

CONTROL FILE LANGUAGE GUIDE
5.12 ERLCFL REPORT MESSAGES

ERLCFL-F-ASCIIBIG, ASCII literal quoted string too long for type.

Explanation: An ASCII radix numeric literal in a control

file

source module contains too many characters for the specified

numeric type.
User Action: Correct the user-written module or submit an
for DIGITAL-supplied modules.

ERLCFL-F-BADDIGIT, Invalid numeric digit in conversion.

Explanation: A numeric literal or the ASCII string argument

the %CODSOCTAL, %CODSDECIMAL, %CODSHEX, %COD$BCD, %CODSBINARY,

$CODSMACHINE function contains an 1illegal character for
specified radix or was null or blank.

User Action: Correct the user-written module or submit an
for DIGITAL-supplied modules.

ERLCFL-F-BITFLDSIZ, Bit or field too large in extraction operation.

SPR

for

or
the

SPR

Explanation: The bit or field in an extraction operation exceeds

the size of the value on which the extraction is performed.

User Action: Correct the user-written module or submit an
for DIGITAL-supplied modules.

ERLCFL-F-BITNOPREC, A BIT or FIELD must have a preceding data item.

SPR

Explanation: A BIT or FIELD declaration in a control file source

module must be preceded by a data item within the declaration.

User Action: Correct the user-written module or submit an
for DIGITAL-supplied modules.

SPR

ERLCFL-F-BITNOTVAR, A BIT or FIELD not allowed on variable-length data

item.

Explanation: A BIT or FIELD declaration in a control file source

module is not allowed on a variable length data item.

User Action: Correct the user-written module or submit an
for DIGITAL-supplied modules.

ERLCFL-F-BITNUMINV, BIT number outside the declared data item.

SPR

Explanation: The bit number in a BIT declaration for a data item

is too large for the data item.

User Action: Correct the user-written module or submit an
for DIGITAL-supplied modules.

SPR

CONTROL FILE LANGUAGE GUIDE

ERLCFL-F-BITTOOHIG, Bit number too large for specified storage unit.
Explanation: The bit number specified by the character string
portion of a #BI, #WI, #LI, #QI, or #VI numeric literal is too
large for the specified value size.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLCFL-F-BYTERAD50, A BYTE data item cannot print in RADSO0.

Explanation: The print radix for a BYTE declaration can not be
RADSO0.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.
ERLCFL-F-CASENOTDAT, A declaration clause must be in a data

declaration.

Explanation: A declaration CASE clause attempted to declare data
but was not contained within a declaration.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.
ERLCFL-F-CFLINPUT, Could not open input source file.

Explanation: CFL could not open the input source file specified
on the command line.

User Action: Check the file specification, and make sure that
you have access to the specified file.
ERLCFL-F-CFLISTING, Could not create listing output file.

Explanation: CFL could not create the 1listing output file
specified on the command line.,

User Action: Check the file specification, and make sure that
you have access to the specified file.
ERLCFL-F~-CFLMODULE, Could not create module output file.

Explanation: CFL could not create the module output file
specified on the command line.

User Action: Check the file specification, and make sure that
you have access to the specified file.
ERLCFL-F-CFLSYMBOL, Could not open symbol file for input.

Explanation: CFL could not open the input symbol file specified
on the command line.

User Action: Check the file specification, and make sure that
you have access to the specified file.

CONTROL FILE LANGUAGE GUIDE

ERLCFL-F-CFLSYMOUT, Could not create symbol output file.

Explanation: CFL could not create the output symbol
specified on the command line.

User Action: Check the file specification, and make sure
you have access to the specified file.
ERLCFL-F~-CMDOPTERR, Option line syntax error.

Explanation: CFL encountered a syntax error on the option
input.

User Action: If the error occurred in a DIGITAL-supplied command
file please submit an SPR, otherwise correct the error and run

CFL again.

ERLCFL~-F-CMDSPCERR, Command line syntax error.

Explanation: CFL encountered a syntax error on the command
input.

User Action: If the error occurred in a DIGITAL-supplied command
file please submit an SPR, otherwise correct the error and run

CFL again.

ERLCFL-F-DECTOOBIG, Declaration too large, too many symbols.

Explanation: A declaration in a control file is too large to
compiled.

User Action: Correct the user-written module or submit an
for DIGITAL-supplied modules.
ERLCFL-F-DIVZERO, Attempt to divide by zero.

Explanation: A control file module contains a division by
in a compile-time constant expression.

User Action: Correct the user-written module or submit an
for DIGITAL-supplied modules.

ERLCFL-F-EXPTOOBIG, Operator stack overflow. Expression too complex.

Explanation: An expression in a control file source module
too complex to be compiled.

User Action: Correct the user-written module or submit an
for DIGITAL-supplied modules.

ERLCFL-F-EXPTOOLAR, Operator stack overflow. Expression too complex.

Explanation: An expression in a control file source module
too complex to be compiled.

User Action: Correct the user-written module or submit an
for DIGITAL-supplied modules.

CONTROL FILE LANGUAGE GUIDE

ERLCFL-F-FIELDBIG, FIELD exceeds size of the declared data item.

Explanation: A FIELD declaration in a control file source module
exceeds the bounds of its corresponding data item.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.
ERLCFL-F-FIELDBITI, FIELD starting bit is outside the declared data

item.

Explanation: A FIELD declaration in a control file source module
exceeds the bounds of its corresponding data item.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.
ERLCFL-F-FIELDSMAL, FIELD width must be at least one bit.

Explanation: A FIELD declaration in a control file source module
did not have a width specified.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.
ERLCFL-F-FILERCLOS, File close error.

Explanation: An error occurred when CFL attempted to close a
file.

User Action: Check for file access conflicts, device errors, or
low pool condition.
ERLCFL-F-FILERREAD, File read error.

Explanation: An error occurred when CFL attempted to read a
file.

User Action: Check for file access conflicts, device errors, or
low pool condition.
ERLCFL-F-FILERWRIT, File write error.

Explanation: An error occurred when CFL attempted to write to a
file.

User Action: Check for file access conflicts, device errors, or
low pool condition.

ERLCFL-F-FILINTOPN, Internal error - file already open.
Explanation: This is an internal error within CFL.

User Action: Please submit an SPR with any information you have.

CONTROL FILE LANGUAGE GUIDE
ERLCFL-F-FILINVCOD, Internal error - invalid file code for specified
operation.
Explanation: This is an internal error within CFL.

User Action: Please submit an SPR with any information you have.

ERLCFL-F~-FLUSHINV, FLUSH attribute not allowed with KEEP attribute.

Explanation: A control file source module had both the FLUSH and
KEEP module attributes specified.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.
ERLCFL-F-FUNFIELDS, Invalid conversion code argument to time

conversion function.

Explanation: A control file module contains a time conversion
function with an illegal value for the conversion code argument.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLCFL-F-FUNINVPOI, Invalid string pointer value in string function.
Explanation: A control file module contains a $STRSPARSE or
$STRSQUOTE function where the value of the pointer argument is
larger than the length of the string argument.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLCFL-F-FUNNOTCHA, Argument to STRSCHAR is not in wvalid range for

character.

Explanation: The value of the argument for the $STRSCHAR
function must be in the range 0 to 127(10).

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLCFL-F-FUNNOTCOM, Function call not allowed in compile-time constant
expression.
Explanation: A control file module contains a function call that
could not be evaluated at compile-time, where a compile-time
constant expression was required.
User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLCFL-F-FUNQUOODD, Quote string in STRS$QUOTE function must have even
length.

Explanation: A control file module contains a $STRSQUOTE
function, where the quote string argument is not an even length.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

5-48

CONTROL FILE LANGUAGE GUIDE

ERLCFL-F~FUNSTRSIZ, Output string from string function too large.

Explanation: A control file module executed a string function
which resulted in a string longer than 255 characters.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.
Ef LCFL-F-FUNWRONGA, Incorrect number of arguments in function call.

E .planation: A control file source module contains a function
call with the wrong number of arguments.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.
ERLCFL-F-FUNWRONGC, Incorrect number of arguments in function call.

Explanation: A control file source module contains a function
call with the wrong number of arguments.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.
ERLCFL-F-HEAPOVERF, Heap too small to hold value. Overflow.

Explanation: The heap used for processing values and expressions
has overflowed.

User Action: Edit CFLBLD.CMD to increase the psect extension for
psect VHEAPO, and rebuild CFL.

ERLCFL-F-IFNOTDATA, A declaration IF clause must be in a data
declaration.

Explanation: An IF clause cannot be used to declare data outside
of a declaration in a control file source module.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.
ERLCFL-F-ILLCHAR, Illegal character in input.

Explanation: An illegal character was found in a control file
source module,

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLCFL-F-INTEOTMAN, Internal - More than one operator on stack at term
end.

Explanation: This is an internal error within CFL.

User Action: Please submit an SPR with any information you have.

CONTROL FILE LANGUAGE GUIDE
ERLCFL-F-INTEOTNUL, Internal - End of term reached with null operator
stack.
Explanation: This is an internal error within CFL.

User Action: Please submit an SPR with any information you have.

ERLCFL-F-INTEXPNOO, Internal - Operator missing from operator stack.

Explanation: This is an internal error within CFL.

User Action: Please submit an SPR with any information you have.
ERLCFL-F-INTFUNEND, Internal -~ Stack entry missing at function

termination.

Explanation: This is an internal error within CFL.

User Action: Please submit an SPR with any information you have.
ERLCFL-F-INTFUNMIS, Internal - Function code missing from operator

stack.

Explanation: This is an internal error within CFL.

User Action: Please submit an SPR with any information you have.
ERLCFL-F-INTFUNNOT, Internal - Function code missing at function

termination.

Explanation: This is an internal error within CFL.

User Action: Please submit an SPR with any information you have.

ERLCFL-F-INTOPRNOT, Internal - Operator outside of an expression term.
Explanation: This is an internal error within CFL.
User Action: Please submit an SPR with any information you have.
ERLCFL-F-INTPROUND, Internal - Compiler internal production stack
underflow.
Explanation: This is an internal error within CFL.
User Action: Please submit an SPR with any information you have.
ERLCFL-F-INTSYMLNK, Internal error - Invalid symbol linkage setup in
module.
Explanation: This is an internal error within CFL.

User Action: Please submit an SPR with any information you have.

CONTROL FILE LANGUAGE GUIDE
ERLCFL-F-INTWRONGP, Internal - Wrong production popped internal
production.
Explanation: This is an internal error within CFL.

User Action: Please submit an SPR with any information you have.

ERLCFL-F-INVFUNCT, Invalid function name specified.

Explanation: A control file source module specified an invalid
function name.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLCFL-F-INVNUMSIZ, Internal - A numeric variable has an invalid size.
Explanation: This is an internal error within CFL.

User Action: Please submit an SPR with any information you have.

ERLCFL~-F-INVPOIACT, Invalid POINTER-statement action name.

Explanation: A control file source module specified an invalid
action for a POINTER statement.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLCFL-F-INVRADCNV, Internal error - Invalid radix code for
conversion.

Explanation: This is an internal error within CFL.

User Action: Please submit an SPR with any information you have.

ERLCFL-F-KEEPINV, KEEP attribute not allowed with FLUSH attribute.

Explanation: A control file source module had both the FLUSH and
KEEP module attributes specified.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLCFL-F-LITINVTYP, Internal error - Literal in 1literal table has
invalid type.

Explanation: This is an internal error within CFL.

User Action: Please submit an SPR with any information you have.

ERLCFL-F-LITNOVALU, Internal error - no value to 1load into 1literal
value.

Explanation: This is an internal error within CFL.

User Action: Please submit an SPR with any information you have.

CONTROL FILE LANGUAGE GUIDE

ERLCFL-F-MODATTRIN, Invalid module attribute name specified.

Explanation: A control file source module specified an invalid
module attribute.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.
ERLCFL-F-MODZERO, Attempt to modulus by zero.

Explanation: A control file source module contains a modulus by
zero in a compile-time constant expression.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.
ERLCFL-F-NOQUOTE, String literal missing closing quote.

Explanation: A string literal in a control file source module
was not terminated by a closing quote.

User Action: Correct the user-written module or submit an SPR

for DIGITAL-supplied modules.

ERLCFL-F-NULLOPERA, Internal -~ Null suffix operand on non-suffix
operator.

Explanation: This is an internal error within CFL.

User Action: Please submit an SPR with any information you have.
ERLCFL-F-NUMFILLCH, A print fill character string must contain one

character.

Explanation: A print fill character in a declaration 1in a
control file source module must contain one charatcer.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLCFL-F-NUMINVOPR, Invalid numeric double-operand operation code.
Explanation: This is an internal error within CFL.

User Action: Please submit an SPR with any information you have.

ERLCFL-F-OPRFLSCOM, Internal error - attempt to flush a CTCE operand.
Explanation: This is an internal error within CFL.

User Action: Please submit an SPR with any information you have.

CONTROL FILE LANGUAGE GUIDE

ERLCFL-F-OPRINVLOG, Attempt to perform logical operation on an invalid
type.

Explanation: A control file source module attempted to perform a
logical operation with operands that were neither NUMERIC nor
LOGICAL.
User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLCFL-F-OPRNOTCOM, Operator in CTCE cannot be evaluated at
compile-time.
Explanation: A compile-time constant expression 1in a control
file source module contains an operator which could not be
evaluated at compile-time.
User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLCFL-F-OPRNOTIMP, Operation not implemented.

Explanation: A control file source module attempted to perform a
multiplication where both operands were larger than a word value.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.
ERLCFL-F-PARSEREOF, Premature EOF encountered.

Explanation: The end-of-file was reached on a control file
source module, before the end of the module was reached.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLCFL-F-PROSTKOVR, Compiler internal production stack overflow.
Explanation: This is an internal error within CFL.

User Action: Please submit an SPR with any information you have.

ERLCFL-F-PRSSTKOVR, Parse stack overflow.
Explanation: This is an internal error within CFL.

User Action: Please submit an SPR with any information you have.

ERLCFL-F-RAD50BYTE, Cannot convert a byte using RAD50 conversion.

Explanation: A control file source module attempted to convert
an ASCII string or numeric literal to a BYTE using RADS5S0
conversion.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

CONTROL FILE LANGUAGE GUIDE

ERLCFL-F-RADINVCOD, Invalid radix code string in radix literal.

Explanation: A control file source module contains an invalid
radix code in a numeric literal.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLCFL-F-RADINVRAD, Invalid radix character specified in radix
literal.

Explanation: A control file source module contains an invalid
radix code in a numeric literal.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLCFL-F-RADLITINV, Invalid literal type character in radix literal.

Explanation: A control file source module contains an invalid
type character in the radix portion of a numeric literal.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.
ERLCFL-F-RELINVCOD, Invalid relational operator.
Explanation: This is an internal error within CFL.
User Action: Please submit an SPR with any information you have.
ERLCFL-F-RESBITILL, A BIT or FIELD data item cannot be declared
RESERVED.

Explanation: A control file source module contains a BIT or
FIELD declaration for a RESERVED data item.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.
ERLCFL-F-RESINVPRT, Print expression 1list not allowed on RESERVED

data.

Explanation: A control file source module contains a print
expression for a RESERVED data item.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLCFL-F-SPCNOTVAR, Special variable cannot be used in a CTCE.
Explanation: A control file source module used one of the
predeclared special variables in a compile-time constant

expression.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

CONTROL FILE LANGUAGE GUIDE

ERLCFL-F-SRCDATERR, Failed to get creation date of source file

Explanation: An error occurred when CFL tried to get
creation date of the control file source module.

User Action: Check for file access conflicts, device errors,
low pool condition.

ERLCFL-F-SUBEXTBIG, Substring extraction end element exceeds string.

Explanation: A control file module attempted to perform

substring extraction in which the substring exceeded the end of

the string.

User Action: Correct the user-written module or submit an
for DIGITAL-supplied modules.

ERLCFL-F-SYMNOTCOM, A variable is not valid in a compile-time constant

expression.

Explanation: A control file source module contains a variable in

a compile-time constant expression.

User Action: Correct the user-written module or submit an
for DIGITAL-supplied modules.

ERLCFL-F~-SYMNOTLIT, Specified LITERAL symbol name not part of LITERAL

group.

Explanation: A control file module contains a reference to

LITERAL symbol which has not been defined for the specified

LITERAL group.
User Action: Correct the user-written module or submit an
for DIGITAL-supplied modules.

ERLCFL-F-SYNTAXERR, Syntax error.

Explanation: CFL encountered a syntax error while compiling
control file source module.

User Action: Correct the user-written module or submit an
for DIGITAL-supplied modules.

ERLCFL-F-TABLEBIG, TABLE element has too many literal values.

Explanation: A control file source module contains a TABLE

element with too many values for the corresponding TABLE.

User Action: Correct the user-written module or submit an
for DIGITAL-supplied modules.

ERLCFL-F-TABLESMAL, TABLE element has too few literal values.

Explanation: A control file source module contains a TABLE

element with too few values for the corresponding TABLE.

User Action: Correct the user-written module or submit an
for DIGITAL-supplied modules.

CONTROL FILE LANGUAGE GUIDE

ERLCFL-F-VALSTKOVR, Value stack overflow.

Explanation: The stack used for processing values and
expressions has overflowed.

User Action: Edit CFLBLD.CMD to increase the psect extension for
psect VLSTKO, and rebuild CFL.

ERLCFL-F-VALUESIZE, Value in expression is too large.
Explanation: A control file source module contains a
compile-time constant expression in which an intermediate value

or the final value is too large.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLCFL-F-VALUETYPE, Value in expression is wrong type.

Explanation: A control file source module contains a

compile-time constant expression in which an intermediate value
or the final value is the wrong type.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.
ERLCFL-F-VARLITGRP, A variable name cannot have the same group name as

a LITERAL.

Explanation: A control file module contains a declaration with
the same group name as a LITERAL declaration.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

ERLCFL-F-WRITEDES, WRITE-class statement has invalid destination.
Explanation: A control file module contains an invalid
destination for the TO clause of a WRITE or WRITE GROUP

statement.

User Action: Correct the user-written module or submit an SPR
for DIGITAL-supplied modules.

APPENDIX A

TUNING THE ERROR LOGGING UNIVERSAL LIBRARY

When RPT starts operation, it scans ERRLOG.ULB and generates
descriptors in 1its work space for all the modules it finds in the
library. RPT searches these descriptors for the appropriate modules
when it generates reports. Therefore, if you remove modules for
devices that your system does not have, RPT operation 1is faster and
does not require as much memory or disk space.

An indirect command file, TUNE.CMD, 1is 1included with vyour Error
Logging System. The command file 1is in the wuniversal 1library
LB:[1,6]ERRLOGETC.ULB. This command file allows you to remove
unneeded modules from ERRLOG.ULB.

To use TUNE.CMD you must first extract it from the library, using the
following LBR command:

LBR TUNE.CMD=LB:[1,6]ERRLOGETC.ULB/EX:TUNE @ET

The file, TUNE.CMD, is copied to your current directory and you can
execute the command.

The file prompts you for a processor type and for a 1list of the
devices you want to wuse with Error Logging. It then removes the
devices you do not select from ERRLOG.ULB and writes a new ERRLOG.ULB
to the current UFD.

TUNE.CMD requires the actual physical names of the devices you select
(RLO1, RLO2, for example). Since some modules in ERRLOG.ULB handle
more than one physical device type, the tune command only includes the
module once. If you select a device name more than once, the command
displays the following message on your terminal:

Module <module name> replaced.

The message is only for your information. The command file then
continues to include the other modules you specified.

Example A-1 is an example of use of the RSX-11lM version of TUNE.CMD.
Files for other systems are similar. This file creates a library for
an 11/70 with:

Devices
TU45 RKO5
RP0O6 RKO0O6
RPO5S RKO7
RMO3 TU56
RMOS5 RX02
RM80 TUS8
RS04

TUNING THE ERROR LOGGING UNIVERSAL LIBRARY

Example A-1 Sample Execution of TUNE.CMD

@LB: [1,6]TUNE @ET

B Se Ne Ne Ne s Ns e Ne No we N Ne

*~e

¥ e we e we

WSS Ne N Se Ne Se S e S

B e Ne we we we

68 N4 N Ne Ne Se we e we

e Se Ny we me we we we

This command procedure is used to tune the Error Log Control file for
your system configuration. The procedure prompts for the location of
the master control file (the shipped file), the CPU type, and the
error logging devices available on your system. It then creates a new
version of the control file that contains only the required support.
The original control file is left unchanged.

All files are <created in your default directory on the default
device., When cleaning up, all files with the extension of .ICF as
well as TEMPTUNEO.TMP;* and TEMPTUNE1l.TMP; * are deleted.

Continue? [Y/N]: Y @D

Location of master file [D: LB:[1,6]ERRLOG.ULB] [S]: ®ET

Enter

Enter

Enter

Now enter the CPU type. Hit the escape key for a list of legal
CPU types.

CPU type [S]: ESC
The acceptable CPU types are:

11,03, 11704, 11/05, 11/10
11/20, 11/23, 11/24, 11/34
11/35, 11/40, 11/44, 11/45
11/50, 11/55, 11/60, 11/70
11/74

CPU type [S]: 11/70

Now enter the devices in your configuration separated by commas.
Terminate by entering a period. Hit the escape key for a list of
acceptable device names.

device name(s) [S]: s

Below 1is a list of acceptable device names., If you have more than
one type of device listed as "x or y or z" you need enter only one.
For example, if you have RP04s and RP06s you need only enter RP04
or RP06 - not both,

The acceptable device names are:

TUS56 (DECtape)

TU58 (DECtape II)
TU60 (Cassette)

RP04 or RPO0O5 or RPO06
RPO7

RS11

RK0O3 or RKO05

RLOl1 or RLO2

RKO6 or RKO7

(continued on next page)

TUNING THE ERROR LOGGING UNIVERSAL LIBRARY

Example A-1 (Cont.) Sample Execution of TUNE.CMD

RP02 or RPO3

RM0O2 or RMO3

RMO 5

RM80

RS03 or RS04

RAG60

RA80/RA81

RC25 or RD51 or RXS50

RX01

RX02

ML1l1

TE16 or TUlé or TU4d5

TU77

TE10 or TUlO0 or TSO03

TU78

TS1ll or TU8O

TSV0S
Enter device name(s) [S]: TU45,RP06,RP05,RM03,RM05,RM80
Enter device name(s) [S]: RS04,RK05,RK06,RK07,TU56,RX02,TUS58 @ED
Enter device name(s) [S]: . G

WSO Ne N N Ne Ne Ne Ne Ne Ne Ne Ne Ne Se e we e

* *

Extract the files from the master library.

BR @TEMPTUNEOQ.TMP

we we Ne e Se [Tt ae we v

produce this message. This type of message can be ignored.

LBR @TEMPTUNE1l.TMP

Module "ERP456" replaced
Module "ERK67 " replaced
Module "NRK67 " replaced

: Now clean up.

i

PIP TEMPLIB.ULB/TR

PIP ERRLOG.ULB/RE/NV=TEMPLIB.ULB

PIP *,ICF;*,TEMPTUNEO.TMP; *,TEMPTUNE1l,TMP; */DE

’

: Finished.

.
’

You can then copy the new library to [1,6] where it will become the
default library for RPT. You . should maintain the original
DIGITAL-supplied ERRLOG.ULB, either on LB:[1,6] or in another
location., You can then use TUNE.CMD again later, on the original ULB,
to add support for devices that you have taken out.

To list the modules in the library, use the following LBR command:
>LBR ERRLOG.ULB/LI @E]

Table A~1 lists the modules in the DIGITAL-supplied 1library for
RSX~-11M. :

Build the new library. Note that you may see messages like "Module
"XYZZY" replaced" 1if vyou have selected more than one device having
the same mnemonic. For example, selecting RK06 and RKO7 support will

TUNING THE ERROR LOGGING UNIVERSAL LIBRARY

Table A-1l
Modules in ERRLOG.ULB for RSX-11M

Module Name Module Description

DEVSM1 Defines tables for device modules
DEVUDA MSCP related module

DISPAT Entry module for error log control file
DMPALL Processes errors from unknown events

DSP 1M1 Processes Error Logger Command Packets
DSP2M1 Processes device error packets

DSP3M1 Processes device information packets
DSP4M1 Processes device control information
DSPS5M1 Processes CPU/memory detected errors
DSP6M1 , Processes system control information
DSP7M1 Processes control information packets

EML11)
ERKOS5
ERK67
ERL12
ERMOS5
ERM23
ERM80
ERPO7
ERP23
ERP456
ERS11 Control File Device Modules
ERS34 >

ERX01
ERX02
ETAll
ETC11
ETS11
ETUS58
ETU77
ET0310
ET1645
ETSV05

ERRORM Processes control file error conditions
EUNKWN « Processes errors from unknown devices

E11XX

E1134

E1144 Processes CPU/memory packets
E1160 :

E117X

FINLM1 Cleans up control file after processing

FMI1NM1

FM1WM1

FM2CM1 ;

FM3CM1 Prints narrow or wide width reports
FM4NM1

FM4WM1

(continued on next page)

TUNING THE ERROR LOGGING UNIVERSAL LIBRARY

~ Table A-l1 (Cont.)
Modules in ERRLOG.ULB for RSX-11M

:'M°d°1e Némé5 S ',:MQdule Des¢riptibn

INITM1 1 . ‘Initializés;control fi1e m9dbié$

MSCPCE } L
MSCEAT : : i

'MSCP80
MscP60) A
"MSCPEN | MSCP Device Modules
mscero | ‘
MSCPSD

.

NML11
‘NRK67 , i SHER
NRMO5 - Generates notes from device modules
NT0310 |
NTS11

PARSEM) ;
PARS1M i e e o
PARS2M \ RPT command line parser
PARS3M

Selects packets to process?

(continued on next page)

TUNING THE ERROR LOGGING UNIVERSAL LIBRARY

d on next page)

inue

(cont

TUNING THE ERROR LOGGING UNIVERSAL LIBRARY

APPENDIX B

DRIVE SERIAL NUMBERS

RPT reports drive serial numbers for those devices that have serial
numbers. Table B-1 lists the drives that provide serial numbers and
the significant digits RPT uses from those serial numbers. The number
of digits varies by drive type. They appear in binary coded decimal
(BCD) format.

RPT obtains the serial number from the device electronics. The number
is selected through a series of jumpers within the device that are set
at manufacturing time. These jumpers match the low order digits of
the actual device serial number. If any of these jumpers is altered,
the drive will have a different serial number, unless the new jumpers
are set to reflect the actual device serial number. Therefore, the
number RPT prints may not be the same as the number on the device
identification plate.

Table B-1
Significant Digits in Drive Serial Numbers

Device/Controller Significant Digits in Serial Number
RK06 12 bits, 3 BCD digits
RKO7 12 bits, 3 BCD digits
RM80 16 bits, 4 BCD digits
TU77 16 bits, 4 BCD digits
TU78 16 bits, 4 BCD digits
RP0O4 16 bits, 4 BCD digits
RPO5 16 bits, 4 BCD digits
RP0O6 16 bits, 4 BCD digits
RPO7 16 bits, 4 BCD digits
RX01 N/A
RX02 N/A
RMO02 16 bits, 4 BCD digits
RMO3 16 bits, 4 BCD digits
RMO5 16 bits, 4 BCD digits
TAll N/A
RS11 N/A
RP0O2 N/A
RPO3 N/A
ML11 16 bits, 4 BCD digits
TE16/RH11/RH70 16 bits, 4 BCD digits
TUl6/RH11/RH70 16 bits, 4 BCD digits
TU45 16 bits, 4 BCD digits
TS03 N/A
TE10/TMB11l N/A
TU10/TMB11 N/A

(continued on next page)

DRIVE SERIAL NUMBERS

Table B-1 (Cont.)
Significant Digits in Drive Serial Numbers

Device/Controller Significant Digits in Serial Number
RSO3 N/A

RS04 N/A

TS11 N/A

TC1l1l N/A

RLO1 N/Aa

RLO2 N/A
TSV05 N/A
RA60/RA80/RA81 6 digits
RC25/RD51/RX50 6 digits
TUSO N/A

APPENDIX C

ERROR LOG PACKET FORMAT

Example C-1 shows the format of an error log packet in memory, as
described in the system macro EPKDF.MAC.

When a device error is logged, the error log packet contains device
supplied information to describe the error. This information usually
consists of the device registers and some additional information
supplied by the system.

Error logging also writes context information into the error log
packet. This information 1includes the time and date of the error,
information about the system that logged the error, and information
about the I/0 operation that generated the error,

The error logging system also creates packets for events in the system
that are not errors, but are important to the interpretation of
errors, such as the time error logging starts or stops.

Example C-1 Error Log Packet Format

.IIF NDF SSSYDF , .NLIST

COPYRIGHT (c) 1983 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD,
MASSACHUSETTS. ALL RIGHTS RESERVED,

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
TRANSFERRED.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF 1ITS
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.

IDENT /1.03/
Modified By:

C. PUTNAM - 03-FEB-82 1.01
- Add M-PLUS Definition of 'NUX' (No UCB extension) bit

e NS N NS NG Ne N6 Ne NE NE NE Ne WE e e We Ne Ne we e W& NS Ne WO Ne we

(continued on next page)

ERROR LOG PACKET FORMAT

Example C-1 (Cont.) Error Log Packet Format

C. PUTNAM - 13-SEP-82 1.02
- Add Q-BUS flag to HEADER subpacket

C. PUTNAM - 06-JAN-83 1.03
- Add ES$STMS (recovered timeout) device error
- Now ES$STMO means unrecovered timeout device error

e we Ne e e e we

.MACRO EPKDFS$,L,B

+

Error Message Block Definitions

~e wo we

.ASECT

Header Subpacket

F o e e +
| Subpacket Length in Bytes |
gy g gy +
| Subpacket Flags !
S ——————— Fmmm e +
| Format Identification | Operating System Code |
T RSP oo +

e g +
| Flags | Context Code |
S g S +
| Entry Sequence I
g g gy +
| Error Sequence |
o e o e +
| Entry Type Subcode Entry Type Code |
T g g +

Time Stamp

@ NG NS NP Ne NS M NS N WO NS We N4 N e WE e WE NS e We We Ne NC NP Ne e Ne Ne N w4 wo

T T SR +
| Reserved | Processor Type |
g g g gy WS +
| Processor Identification (URM) |
. +
=0
ES$SHLGH: 'L’ .BLKW 1 ; Subpacket length in bytes
ESHSBF: 'L’ .BLKW 1 ; Subpacket Flags
ESHSYS: 'L’ .BLKB 1 ; Operating System Code
ESHIDN: 'L’ .BLKB 1 ; Format Identification
ESHSID: 'L’ .BLKB 4 ; Operating System Identification
ESHCTX: 'L' .BLKB 1 ; Context Code
ESHFLG: 'L’ .BLKB 1 ; Flags
ESHENS: 'L’ . BLKW 1 ; Entry Sequence Number
ESHERS: 'L’ .BLKW 1 ; Error Sequence Number
ESHENC: 'L’ ; Entry Code
ESHTYC:'L' .BLKB 1 ; Entry Type Code
ESHTYS:'L' .BLKB 1 ; Entry Type Subcode
ESHTIM: 'L’ .BLKB 6 ; Time Stamp
ESHPTY: 'L’ .BLKB 1 ; Processor Type
.BLKB 1 ; Reserved

(continued on next page)

ESHURM: 'L’

Example C-1

.EVEN

ESHLEN: 'L’

~e we we

~e wo we

~e wo we

~s N Ne we we we

«BLKW

ERROR LOG PACKET FORMAT

1

Subpacket Flags for ES$HSBF

SM.ERR ='B'
SM.HDR ='B'
SM.TSK ='B'
SM.DID ='B'
SM.pop ='B'
SM.DAC ='B'
SM.DAT ='B'
SM.MBC ='B'
SM.CMD ='B'
SM.ZER ='B'

Codes for field ESHIDN

EHSFOR ='B'

Flags for the error log flags

ES.INI ='B'
ES.DAT ='B'
ES.LIM ='B'
ES.LOG ='B'

1
2
4
10

e N Mo WS we We N We we S

~

(Cont.) Error Log Packet Format

Processor Identification (URM)

Length

Error Packet

Header Subpacket

Task Subpacket

Device Identification Subpacket
Device Operation Subpacket

Device Activity Subpacket

Data Subpacket

22-bit massbus controller present
Error Log Command Packet

Zero I/0 Counts

Current packet format

byte (SERFLA) in the exec.

~e we we we

Error log initialized
Error log receiving data packets
Error limiting enabled
Error logging enabled

Type and Subtype Codes for fields E$HTYC and ESHTYS

Symbols with
symbols with

ESCCMD ='B'
E$SSTA ='B'
ESSSWI ='B'
E$SAPP ='B'
ESSBAC ='B'
ESSSHO ='B'
ESSCHL ='B'
ESCERR ='B'
E$SDVH ='B'
E$SDVS ='B'
ESSTMO ='B'
E$SUNS ='B'
ESSTMS ='B'
ESCDVI ='B'
E$SDVI ='B'
E$CDCI ='B'
ESSMOU ='B'
ESSDMO ='B'
E$SRES ='B'
E$SRCT ='B'
ESCCPU ='B'
E$SMEM ='B'

names ES$Cxxx
names E$Sxxx

AU W

= W N WwWwhoHND

H U WN

e wo W we we ws N

we we Ne e e we

~ e

e Wo Ne WO we No we

are type codes for field ESHTYC,
are subtype codes for field ES$HTYS.

Error Log Control
Error Log Status Change
Switch Logging Files
Append File
Declare Backup File
Show
Change Limits

Device Errors
Device Hard Error
Device Soft Error
Device Interrupt Timeout (HARD)
Device Unsolicited Interrupt
Device Interrupt Timeout (SOFT)

Device Information
Device Information Message

Device Control Information
Device Mount
Device Dismount
Device Count Reset
Block Replacement
CPU Detected Errors
Memory Error

(continued on next page)

ERROR LOG PACKET FORMAT

Example C-1 (Cont.) Error Log Packet Format
ESSINT ='B' 2 Unexpected Interrupt
ESCSYs ='B' 6 ; System Control Information
ESSPWR ='B' 1 ; Power Recovery
ESCCTL ='B' 7 ; Control Information
ESSTIM ='B' 1 ; Time Change
ESSCRS ='B' 2 System Crash
E$SLOA ='B' 3 Device Driver Load
ESSUNL ='B' 4 ; Device Driver Unload
E$SHRC ='B'’ 5 Reconfiquration Status Change
ESSMES ='B' 6 Message
ESCSDE ='B' 10 ; Software Detected Events
ESSABO ='B' 1 ; Task Abort
H
;7 Codes for Context Code entry ESHCTX
H
EHSNOR ='B' 1 ; Normal Entry
EH$STA ='B' 2 ; Start Entry
EHSCRS ='B' 3 ; Crash Entry
H
; Codes for Flags entry ESHFLG
H
EHSVIR ='B' 1 ; Addresses are virtual
EHSEXT ='B' 2 ; Addresses are extended
EH$COU ='B' 4 ; Error counts supplied
EHSQBS ='B' 10 ; Q-BUS CPU
H
; Task Subpacket
H
; e it ikt ettt it +
; | Task Subpacket Length |
; R e e e +
; Task Name in RADSO
H
: SRSy Ry Sy S S USSR +
; | Task UIC |
; F +
H | Task TI: Device Name |
; g S +
; | Flags] Task TI: Unit Number |
; ey Fer e ———— +
.=0
ESTLGH: 'L «BLKW 1 ; Task Subpacket Length
ESTTSK: 'L’ .BLKW 2 ; Task Name in RADS50
ESTUIC: 'L’ +BLKW 1 ; Task UIC
ESTTID: 'L’ .BLKB 2 ; Task TI: Device Name
ESTTIU: 'L’ .BLKB 1 ; Task TI: Unit
ESTFLG: 'L’ .BLKB 1 ; Flags
.EVEN
ESTLEN: 'L’
i
; Flags for entry ESTFLG
H
ET$PRV ='B!' 1 ; Task is Privileged

(continued on next page)

ERROR LOG PACKET FORMAT

Example C-1 (Cont.) Error Log Packet Format

ETSPRI ='B’ 2 ; Terminal is Privileged

Device Identification Subpacket

g g gy O +
| Device Identification Subpacket Length |
F o e e +
| Device Mnemonic Name |
T e e T TP +
| Controller Number | Device Unit Number |
W g +
| Physical Subunit # | Physical Unit # |
Fomm e L T . +
| Physical Device Mnemonic (RSX-11M-PLUS only) |
T T PP Fm e +
| Reserved | Flags |
S gy R T T T TP +

Volume Name of Mounted Volume

| Hard Error Count | Soft Error Count |
o Ry B S S Sy S +

Blocks Transferred Count (RSX-11M-PLUS only)

. MO MO WE WE NS NE NE NG N NI WO NP N NP M WS N NP NS WO NI WME MO NI WE WS NP NP NI N NE N ME NG WS N WE e N N NS N W
+
]
|
]
i
|
|
]
i
i
]
[}
[}
]
|
[}
|
|
|
|
]
]
]
|
[}
1
1
]
|
i
|
]
[}
]
i
[}
i
]
i
|
|
|
|
i
1
|
]
i
+

ey OGS PPy S S +
=0
ESILGH:'L' .BLKW 1 ; Device Identification Subpacket Length
ESILDV:'L' «BLKW 1 ; Device Mnemonic Name
ESILUN:'L"* .BLKB 1 ; Device Unit Number
ESIPCO:'L" .BLKB 1 ; Controller Number
ESIPUN: 'L’ .BLKB 1 ; Physical Unit Number
ESIPSU:'L" .BLKB 1 ; Physical Subunit Number
.IF DF RS$SMPL
ESIPDV:'L" +BLKW 1 ; Physical Device Mnemonic
.ENDC ; R$SSMPL
ESIFLG: 'L’ .BLKB 1 ; Flags
.BLKB 1 ; Reserved
ESIVOL: 'L’ .BLKB 12. ; Volume Name

(continued on next page)

ESIPAK:
ESIDEV:
ESIDCL:
ESIDTY:
ESIOPR:
ESIERS:
ESIERH:

ESIBLK:
ESICYL:

ESILEN:

~e wo we

® MO NE NE Ne WO NE W WE W WS e N NE NG NG W e NE W e We W e N we N we

ESOLGN:
ESOTSK:
ESOUIC:
ESOTID:
ESOTIU:

ERROR LOG PACKET FORMAT

Example C-1 (Cont.) Error Log Packet Format

'L? .BLKB 4 ; Pack Identification

'L ; Device Type

‘L' .BLKW 1 ; Device Type Class

'L . BLKW 2 ; Device Type

'L .BLKW 2 ; I/0 Operation Count Longword

'L .BLKB 1 ; Soft Error Count

'L .BLKB 1 ; Hard Error Count
.IF DF RSSMPL

'L .BLKW 2 ; Blocks transferred count

'L’ «BLKW 2 ; Cylinders crossed count
.ENDC ; RSSMPL

. EVEN

'L ; Subpacket Length

EI

EI

+-

|Ll
'L'
ILI
IL|
lLl

Flags for field ESIFLG

ssuB ='B' 1 ; Subcontroller device
.IF DF RSSMPL
SNUX ='B' 2 ; No UCB extension, data invalid

.ENDC ; R$SMPL

Device Operation Subpacket

__ +
Device Operation Subpacket Length |
__ +
Task Name in RAD50
.. +
Task UIC |
.. +
Task TI: Logical Device Mnemonic |
---------------------- e
Reserved | Task TI: Device Unit |
---------------------- R T i —
I1/0 Function Code |
---------------------- T T T R |
Reserved | Operation Flags |
---------------------- T T T T TR |
Transfer Operation Address
__ +
Transfer Operation Byte Count |
__ +
Current Operation Retry Count |
__ +

.BLKW 1 ; Subpacket Length

.BLKW 2 ; Task Name in RADS0

.BLKW 1 ; Task UIC

.BLKB 2 ; Task TI: Logical Device Mnemonic
.BLKB 1 ; Task TI: Logical Device Unit
.BLKB 1 ; Reserved

(continued on next page)

ERROR LOG

Example C-1 (Cont.,)

ESOFNC: 'L’ «BLKW 1 ;
ESOFLG: 'L’ .BLKB 1 ;

.BLKB 1 H
ESOADD: 'L’ . BLKW 2 ;
ESOSIZ: 'L’ «BLKW 1 H
ESORTY: 'L’ +BLKW 1 ;

. EVEN

ESOLEN: 'L’ ;

~e wo we

Flags for field ESOFLG

EOSTRA ='B' 1 ;
EOSDMA ='B' 2
EOSEXT ='B' 4 ;
EOSPIP ='B' 10 ;

I/0 Activity Subpacket

PACKET FORMAT

Error Log Packet Format

I1/0 Function Code

Operation Flags

Reserved

Transfer Operation Address
Transfer Operation Byte Count
Current Operation Retry Count

Device Operation Subpacket Length

Transfer Operation

DMA Device

Extended Addressing Device
Device is positioning

L] MO Me NS N we me W
<+
|
1
1
i
|
|
1
|
|
)
]
[}
|
1
|
1
|
[}
|
[}
]
|
1
|
]
]
i
)
|
|
|
|
|
t
[}
I
[}
[}
]
|
|
]
|
|
[}
i
|
+

gy gy SO +
=0

ESALGH: 'L’ .BLKW 1 ; Subpacket Length

H

; I/0 Activity Subpacket Entry

;

H T +
; | Logical Device Name Mnemonic |
; N P e +
; | Controller Number | Logical Device Unit |
; . g S +
; | Physical Subunit # | Physical Unit Number |
: e g +
; | Physical Device Mnemonic (RSX-11M-PLUS only) |
: L ey +
; | Task TI: logical unit | Device flags |
; B T B bl] +
; Requesting Task Name in RADS50

’

: g U +
; | Requesting Task UIC |
; Qg gy U g +
; | Task TI: Logical Device Name |
: e e e +
: | I/0 Function Code |
H B ket tatatatatad R ettt +
: | Reserved | Flags |
; T e R +
; Transfer Operation Address

H

; o e +
; | Transfer Operation Byte Count |
; R et e +
H

.=0

(continued on next page)

ERROR LOG

Example C-1 (Cont.)

.BLKW 1 ;
.BLKB 1 ;
.BLKB 1 ;
.BLKB 1 ;
.BLKB 1 ;

.IF DF RSSMPL

.BLKW 1

~e

.ENDC

.BLKB
.BLKB
.BLKW
.BLKW
.BLKW
-BLKW
.BLKB
.BLKB
«BLKW
- BLKW

HNHHERFFHN -

Mo NP Ne NE Mo Ne Ne N N we

~e

for field ESADFG

=IB| l ;
.IF DF R$SMPL
='R! 2 :

.ENDC ; R$SMPL

for field ESAFLG

ESALDV:'L"
ESALUN:'L"
ESAPCO:'L"
ESAPUN: 'L’
ESAPSU: 'L’
ESAPDV: 'L’
ESADFG:'L"'
ESATIU: 'L’
ESATSK:'L"
ESAUIC:'L"
ESATID: 'L’
ESAFNC: 'L’
ESAFLG: 'L’
ESAADD: 'L’
ESASIZ: 'L’
.EVEN
ESALEN:'L"
H
; Flags
H
EASSUB
EASNUX
H
; Flags
H
EASTRA
EASDMA
EASEXT
EASPIP
. PSECT
+MACRO
. ENDM
.ENDM

=IBI 1 ;
='R! 2 ;
='B! 4 ;
='B' 10 ;

EPKDFS X,Y

.IIF NDF SSYDF , .LIST

PACKET FORMAT

Error Log Packet Format

Logical Device Name Mnemonic
Logical Device Unit
Controller Number

Physical Unit Number
Physical Subunit Number

Physical Device Mnemonic

Device flags

Task TI: Logical Unit
Requesting Task Name in RADS50
Requesting Task UIC

Task TI: Logical Device Name
I1/0 Function Code

Flags

Reserved

Transfer Operation Address
Transfer Operation Byte Count

Subpacket Entry Length

Subcontroller device

No UCB extension, data invalid

Transfer Operation

DMA Device

Device has Extended Addressing
Device is positioning

ACTION statement, 5-30

/AP switch, 2-3, 2-8

Append switch, 2-3, 2-8
Delete subswitch, 2-3, 2-8

Architecture
control file module, 4-1
error log control file, 4-1

/BA switch, 2-3, 2-9
Backup switch, 2-3, 2-9
BEGIN-END statement, 5-36
$BMSET, 4-20

Brief format report, 3-11

CALDEV, 4-24
CALL statement, 5-33
CASE statement, 5-34
CDA, 1-1
CFL, 1-1, 1-3, 1-5, 5-1
declaration
conditional, 5-29 to 5-30
data item, 5-26
definition, 5-3
scope, 5-26
variable, 5-26
definition, 5-2
expression
conditionals in, 5-2
list handling, 5-39
intermediate form modules,
5-1
lexical conditionals, 5-36
signalling, 5-40
spaces and tabs in text, 5-2
statement
ACTION, 5-30
BEGIN-END, 5-36
CALL, 5-33
CASE, 5-34
CONTROL, 5-32
CRASH, 5-41
DECLARE, 5-27
DECODE, 5-32
DECREMENT, 5-31
DYNAMIC TABLE, 5-37
ENABLE, 5-40
FILE, 5-37 to 5-38
FIND, 5-39
IF-THEN-ELSE, 5-34
INCREMENT, 5-31
LEAVE, 5-35
LIsST, 5-39
LITERAL, 5-33
MESSAGE, 5-41
MODULE, 5-32

CFL
statement (Cont.)
PACKET, 5-28
POINTER, 5-38 to 5-39
PRINT FORMATTING, 5-41
PROCEDURE, 5-33 to 5-34
PUT, 5-39
RETURN, 5-33
SEARCH, 5-40
SELECT, 5-34 to 5-35
SET, 5-31
SIGNAL, 5-40 to 5-41
SIGNAL STOP, 5-41
SUBPACKET, 5-29
TABLE, 5-37
WHILE/UNTIL/DO, 5-35
WRITE, 5-31
WRITE GROUP, 5-31
table structure, 5-36
user interface
command mode, 5-43
option mode, 5-43
CFL command line
DEVSM1, 4-36
CFL command mode, 5-43
CFL comments, 5-3
CFL data type
ASCII, 5-5
automatic conversion, 5-4
binary byte, 5-4
bit, 5-4, 5-7
expression, 5-4
logical, 5-4
numeric, 5-5
attribute option, 5-5
byte, 5-5
default, 5-5
longword, 5-5
quadword, 5-5
radix option, 5-5
value,; 5-5
word, 5-5
numeric field, 5-7
numeric literal, 5-6
pointer, 5-7
RSXTIME, 5-7
string, 5-4
numeric value, 5-4
VMSTIME, 5-7
CFL expression, 5-9
definition, 5-3
logical operators, 5-10
numeric operators, 5-13 to
5-15

Index-1

CFL expression (Cont.)
relational operators, 5-11 to
5-13
string operators, 5-9
CFL file
command, 5-3
error, 5-4
input, 5-3
report, 5-3
user, 5-3
CFL function
$CND, 5-17
$CNV, 5-17 to 5-18
$CNVSRSXTIME, 5-19
$CNVSSTRING, 5-19
$CNVSVMSTIME, 5-19
$COD, 5-19
$COM, 5-20
%CTL, 5-21
format, 5-16
$LOK, 5-21
$PKT, 5-22
$RPT, 5-22
$STR, 5-23
$TIM, 5-25
$USR, 5-25
CFL literals, 5-9
CFL named variable,
CONTEXT, 5-8
COUNT, 5-9
LENGTH, 5-8
FOINTER, 5-8
CFL operands
literals, 5-9
variables, 5-9
CFL operator precedence,
CFL option mode, 5-43
CFL primitives, 5-1
CFL statement
definition, 5-3
$CND function, 5-17
.CNF module, 4-1
$CNV function, 5-17 to 5-18
$CNVSRSXTIME, 5-19
$CNVSSTRING, 5-19
$CNVSVMSTIME, 5-19
$COD, 5-19
$COM, 5-20
Compilation path
RSX-11M, 4-11
RSX-11M-PLUS, 4-12
Compiler conditional
literal declaration, 4-12
Computational function, 5-20
Concurrent 1/0 activity, 4-22,
4-24
optional logging, 4-23
Concurrent I/O error logging,
1-5
Conditional declaration, 5-30
Conditional function, 5-17
Control file
universal library,

to 5-24

5-8

5-15

5-1

INDEX

Control File

definition
See also CFL, 4-2

Control File Language compiler
See also CFL

Control file module, 1-3
architecture, 4-1 to 4-2
compilation path, 4-11
CPU level module, 4-7
data subpacket, 4-3
definition, 4-1
device activity subpacket,

4-3
device ID subpacket, 4-3
device operation subpacket,
4-3

DEVSM1, 4-7
DEVUDA, 4-7
Dispatch, 4-3
dispatching, 4-1

Language

DMPALL, 4-8
DSP1M1l, 4-4
DSP1P1, 4-4
DSP2M1, 4-5
DSP2P1l, 4-5
DSP4M1, 4-5
DSP4P1l, 4-5
DSP5M1, 4-5
DSP5P1, 4-5
DSP6M1, 4-6
DSP6Pl, 4-6
DSP7M1, 4-6
DSP7P1l, 4-6
E1134, 4-8
E1144, 4-8
E1160, 4-8
E117X, 4-8
E11XX, 4-8
ERRORM, 4-7
EUNKWN, 4-8
FINLM1l, 4-6
FINLPl, 4-6
FMINM1, 4-6
FM1WMl, 4-6
FM2CM1, 4-6
FM3CM1, 4-6
FM4NM1, 4-6
FM4WM1, 4-6
FMTNP1, 4-7
format, 5-1
header subpacket, 4-3
INITM1, 4-7
interaction of interface,
4-13

literal declaration, 4-12

naming conventions, 4-1

Non-DIGITAL device module,
4-1

options, 4-12

PARS1M, 4-4

PARS2M, 4-4

PARS3M, 4-4

PARSEM, 4-4

Index-2

Control file module (Cont.)
program control flow, 4-10
PR$S2AM, 4-4
PRS2BM, 4-4
recompilation, 4-13
SELTM1, 4- 4
SMRYEP,
SMRYGP,
SMRYHP,
summary, 4 -3
task subpacket, 4-3

CONTROL statement, 5-32

CPU-level
dispatching module, 4-11

DSP5M1, 4-19
DSP5P1, 4-19

CRASH statement, 5-41

SCRPKT, 4-23

%CTL, 5-21

p.u.u
\1\1q

/DA switch, 3-5, 3-8
Date switch, 3-5, 3-8
/DE switch, 3-5, 3-8
DECLARE statement, 5-26 to 5-27
DECODE statement, 5-32
DECREMENT statement, 5-31
Default f£ill character, 5-6
Default print field width, 5-6
Default radix, 5-6
Defined report string
DIGITAL, 3-27
user, 3-28
Device drivers
without error logging, 1-3
Device error logging, 4-21 to
4-22
concurrent I/0 activity, 4-22
Device errors
error logging, 1-6
hardware register contents,
1-6
Device I/0 activity, 1-1
Device information table, 4-34
ALTPRINTNAME field, 4-35
DISPNAME field, 4-35
DRIVETYPE field, 4-36
MASSBUSFLAG field, 4-36
MNEMONIC field, 4-35
PRINTNAME field, 4-35
SIZE field, 4-36
Device module
EML11, 4-8
ERKOS5, 4-
ERK67, 4-
ERL12, 4-
ERMO5, 4-
ERM23, 4
ERM80, 4-
ERPO7, 4-
ERP23, 4-
ERP456, 4
ERS11,
ERS34, 4

8
8
8
8
-8
8
8
8
-8
-9
9

Device module (Cont.)
ERX01, 4-9
ERX02, 4-9
ET0310, 4-9
ET1645, 4-9
ETAll, 4
ETCl1l, 4-
ETS11, 4-
ETSV05, 4
ETUS8, 4-
ETU77, 4-
MSCP60, 4-9
MSCpP80, 4-9
MSCPAT, 4-9
MSCPE, 4-9
MSCPEN, 4-9
MSCPSD, 4-9
MSCPTO, 4-9
Device switch, 3-5, 3-8
Device timeout, 4-20
Device timeout logging, 4-21
Device-level module, 4-11
adding to system, 4-25
addition to device
information table, 4-34
bit-to-text translation, 4-30
coroutine, 4-30
device data declaration, 4-26
device name, 4-26
error type, 4-30
EUNKWN, 4-37
exit, 4-31
* flag, 4-28
intermodule variable, 4-29
local work variable, 4-29
MASSBUS, 4-33 to 4-34
module statement, 4-26
Non-MASSBUS, 4-33 to 4-34
notes, 4-31
procedure statement, 4-26
register definitions, 4-27
subpacket statement, 4-26
Devices
error logging, 2-4
control file module, 2-4 to

9
9
9
-9
9
9

2-5
DEVSM1, 4-7, 4-18, 4-34, 4-36
SLP, 4-36

DEVUDA, 4-7
Dispatch module, 4-3, 4-11
subpacket definition, 4-69 to
4-71
Dispatch module path
brief report, 4-15
full report, 4-15
no report, 4-15
register report, 4-15
Dispatch procedure, 4-10
Dispatching
event-level, 4-16
DMPALL, 4-8
Drive serial numbers
significant numbers, B-1

Index-3

INDEX

DSP1M1, 4-4 ELI
subpacket definition, 4-72 Log switch (Cont.)
DSP1P1l, 4-4 error limiting and, 2-2
subpacket definition, 4-72 New version subswitch, 2-3,
DSP2M1, 4-5, 4-36, 4-50 to 4-56 2-6
subpacket definition, 4-73 No limit subswitch, 2-3,
DSP2Pl, 4-5, 4-36, 4-57 to 4-66 2-5 to 2-6
subpacket definition, 4-73 No limit switch, 2-3, 2-6
summary report, 4-16 No log switch, 2-4
DSP3M1 /NOLIM switch, 2-3, 2-6
subpacket definition, 4-73 /NOLOG switch, 2-4
DSF3P1 nonprivileged command, 2-2
subpacket definition, 4-73 privileged commands, 2-2
DSP4M1, 4-5 /R switch, 2-4
subpacket definition, 4-74 /RE switch, 2-7
DSP4P1, 4-5 Reset switch, 2-4, 2-7
subpacket definition, 4-74 /SH switch, 2-4, 2-10 to 2-11
DSP5M1, 4-5, 4-19 Show switch, 2-2, 2-4, 2-10
subpacket definition, 4-74 to 2-11
DSP5P1, 4-5, 4-19 /SL switch, 2-4, 2-7
subpacket definition, 4-74 Soft error limit switch, 2-4,
DSP6M1, 4-6 2-7
subpacket definition, 4-74 subswitch summary, 2-3
DSP6P1, 4-6 /SW switch, 2-4, 2-8
subpacket definition, 4-74 switch functions, 2-1
DSP7M1, 4-6 switch summary, 2-3
subpacket definition, 4-75 Switch switch, 2-4, 2-8
DSP7P1l, 4-6 Delete subswitch, 2-4, 2-9
subpacket definition, 4-75 New version subswitch, 2-4,
$DTOER, 4-21 2-9
$SDVCER, 4-21 to 4-22 using ERRLOG defaults, 2-2
$DVERR, 4-21 to 4-22 ELI command
S$DVTMO, 4-21 reset limit, 1-4
$DVTMO and $DTOER, 4-20 ELI show switch
DYNAMIC TABLE statement, 5-37 QIO count, 2-11
ELI switches
E1134, 4-8 type
E1144, 4-8 display, 2-2
E1160, 4-8 file naming, 2-2
E117X, 4-8 limiting, 2-2
E11XX, 4-8 logging, 2-2
ELI, 1-1 EML11, 4-8
/AP switch, 2-3, 2-8 ENABLE statement, 5-40
Append switch, 2-3, 2-8 Encoding function, 5-19
Delete subswitch, 2-3, 2-8 Entry procedure, 4-10
/BA switch, 2-3, 2-9 EPKDF.MAC, 4-16
Backup switch, 2-3, 2-9 ERKO5, 4-8
error messages ERK67, 4-8
console terminal, 2-11 ERL12, 4-8
user terminal, 2-11 ERLCFL Report Messages, 5-44
file naming switch, 2-8 ERLCNF Report Messages, 3-29
Hard error limit switch, 2-3, fatal, 3-29
2-7 information, 3-34
/HL switch, 2-3, 2-7 ERLRPT Report Messages, 3-35
installing control file, 3-35
privileged, 2-1 ERM05, 4-8
startup command file, 2-1 ERM23, 4-8
invoking, 2-2 ERM23 device-level module, 4-37
privileged, 2-1 to 4-49
/LIM switch, 2-3, 2-6 ERM80, 4-8
Limit switch, 2-3, 2-6 ERPO07, 4-8
/LOG switch, 2-2 to 2-5, 2-8 ERP23, 4-8
Log switch, 2-3 to 2-5, 2-8 ERP456, 4-8

Index-4

ERRDEFINE.CFS, 3-27
ERRLOG, 1-1
Backup file, 2-9
backup file, 1-4
defaults, 2-2
ELI commands,
installing
privileged, 2-1
log file, 1-4
mandatory installation, 2-1
ERRLOG Messages, 2-12
ERRLOG.ULB, 3-2
module addition,
tuning, A-1l
ERRLOGETC.ULG, 4-36
Error limit, 1-4
device mount, 2-6
legging and, 2-6
notification, 1-4
reset, 1-4, 2-7
reset counts, 2-6
system reboot, 2-6
Error Log
Interface
See also ELI
Errcr log
command packet, 1-4
control file, 1-3
definition, 4-1
devices, 2-4
file, 1-1
definition, 4-2
format, 5-1
naming, 2-8
RPT, 1-3
packet, 1-1
command, 1-3
creation, 4-23
definition, 4-2

1-3 to 1-4

4-36

ERRSEQ, 1-3

format, 1-4, 5-1, C-1

packet number
definition, 1-3

processing, 5-1
queue, 4-24

remove from queue,
SMSGS$, 1-4
structure,

4-25

4-3

unsolicited interrupt, 4-23

packet number, 3-1
report
context information,
subpacket
definition,
system
task interaction, 1-2
Error log c
ontrol file
architecture,
Error Logger
See also ERRLOG
Error logging
device errors,

1-5

4-2

4-1

1-6

INDEX

Error logging (Cont.)

memory errors,

executive support, 1-6
device errors, 1-6
device timeouts, 1-6
memory errors, 1-6
unexpected traps or
interrupts, 1-6
interrupt timeouts, 1-6
1-6
support on Non-DIGITAL device,
4-19
device level module,
driver, 4-19
universal library entry,
4-19
Unexpected traps or
interrupts, 1-6
unknown device
See EUNKWN
unused vectors,

4-19

1-6

Error logging devices

control file module, 2-4 to

2-5

Error Logging System

1-3
1-3

hard error,
soft error,

Error logging system

ERROR module,

CbA, 1-1
Control file language
compiler, 1-1
device I/0 activity,
Error log interface,
Error logger, 1-1
executive routines, 1-1
mass storage device errors,
1-1
memory errors, 1-1
operating system failure,
Report generator, 1-1
4-19

1-1
1-1

1-1

Error sequence number

See ERRSEQ

Error type definition, 1-5

ERRORM,

4-7

ERRSEQ

ERS11,
ERS34,
ERXO01,
ERX02,
ET0310,
ET1645,
ETAll,
ETC11,
ETS11, 4-
ETSV05, 4-9
ETUSS,
ETU77,
EUNKWN, 4-8,

Append switch, 1-3
change, 1-3
RMD use, 1-3
4-9
4-9
4-9
4-9
4-9
4-9
4-9
4-9
9

4-9
4-9

4-19, 4-37

Event

Index-5

definition, 1-3, 4-2

INDEX

Event-level dispatching, 4-16
control information, 4-17
CPU-detected errors, 4-17
device control information,

4-17
device errors, 4-17
device information, 4-17
dispatcher module, 4-18
error log control code, 4-17
event code, 4-18
event type, 4-18
format, 4-18
system control information,
4-17
Example
Brief format report, 3-13 to
3-14
device information table,
4-34
DSP2M1 dispatch module, 4-14
DSP2M1 dispatcher module,
4-50 to 4-56
DSP2P1, 4-15
DSP2P1 dispatcher module,
4-57 to 4-66
ERM23, 4-26
ERM23 device-level module,
4-37 to 4-49
ERM23 module, 4-14
ERM23 notes file, 4-31
error log packet format, 5-2
error log subpacket format,
5-2
Full format report, 3-16 to
3-17
notes module, 4-67 to 4-68
NRM23 notes module, 4-67 to
4-68
Register report, 3-19
RM02/03
register printing, 4-27
RM02/03 module, 4-38 to 4-49
RM03 module, 4-13
Example ERM23 module, 4-15
Executive error logging support,
1-6
Executive routines
error collection
device registers, 1-3
Executive Send Message
directive
See SMSGS

/F switch, 3-5

FILE statement, 5-37 to 5-38
FIND statement, 5-39

FINLM1, 4-6

FINLP1l, 4-6

FM1NM1, 4-11

FM1WM1l, 4-6, 4-11

FM2CM1, 4-6, 4-11

FM3CM1l, 4-6, 4-11

FM4NM1, 4-6

FM4wMl, 4-6, 4-11
FMTNP1, 4-7, 4-11
FMTP1, 4-11
FNINM1l, 4-6
SFNERL, 4-22
Format module, 4-11
Format switch, 3-5
full report, 3-15
no report, 3-19
Register report, 3-18
Full format report, 3-15
context information, 1-5
device error, 1-5
device supplied information,
1-5
* flag, 1-5
I1/0 operation, 1-5

Hard error
definition, 1-3
Hard error limit switch, 2-3,
2-7
/HL switch, 2-3, 2-7

.ICF module, 4-1
IF-THEN-ELSE statement, 5-34
INCREMENT statement, 5-31
INITM1, 4-7
Installation
RPT, 3-1
Intermodule variable, 4-29
block number, 4-29
cylinder error, 4-29
device function, 4-29
drive serial number, 4-29
drive type, 4-29
error type, 4-29 to 4-30
group error, 4-29
head error, 4-29
MASSBUS, 4-33
Non-MASSBUS, 4-33
physical unit number, 4-29
sector error, 4-29
Intermodule variable
declaration, 4-14
Interrupt timeouts
error logging, 1-6

LBR
module name requirement, 4-17
LBR command line
device-level module, 4-37
DEVSM1, 4-36
DSP2M1, 4-36
DSP2P1, 4-36
LEAVE statement, 5-35
Lexical conditionals, 5-36
/LIM switch, 2-3
/LIM switch, 2-6
Limit switch, 2-3, 2-6
LIST statement, 5-39
Literal declaration, 4-12
LITERAL statement, 5-33

Index-6

/LOG switch, 2-3, 2-5, 2-8
Log switch, 2-3, 2-5, 2-8
New version subswitch, 2-3,
2-6
No limit subswitch, 2-3, 2-5
to 2-6
SLOGER, 4-23
LOGTST
ERROR routines, 4-23
$LOK, 5-21
Lookahead function, 5-21
.LST module, 4-1
LUN
calculation, 4-24
LX:, 3-2

Mass storage device errors, 1l-1
MCR $SM command
See SSM command, 1-3
Memory errors, 1-1
error logging, 1-6
pregenerated systems, 1-6
MESSAGE statement, 5-41
Messages
ERLCFL, 5-44
Mixed MASSBUS configuration,
4-33
MODULE statement, 5-32
MSCP60, 4-9
MSCP80, 4-9
MSCPAT, 4-9
MSCPE, 4-9
MSCPEN, 4-9
MSCPSD, 4-9
MSCPTO, 4-9

Named variable, 5-8
NML11l, 4-9
No limit switch, 2-3, 2-6
No log switch, 2-3
/NOLIM switch, 2-3, 2-6
/NOLOG switch, 2-3
Nonsense interrupt logging,
4-22
Notes module
exit, 4-33
heading, 4-32
MODULE statement, 4-32
NML1l1l, 4-9
note name, 4-32
NRK67, 4-9
NRMO5, 4-9
NRM23, 4-9
NT0310, 4-9
NTS11, 4-9
print declaration, 4-32
print number, 4-33
PROCEDURE statement, 4-32
unknown note, 4-33
user written, 4-31
NRK67, 4-9
NRMO5, 4-9
NRM23, 4-9

$NSIER, 4-22

NT0310, 4-9

NTS11l, 4-9

Numeric conversion function,
5-17 to 5-18

Operating system failure, 1-1

/P switch, 3-5, 3-8

Packet information function,
5-22

Packet number, 3-1

Packet number switch, 3-5, 3-8

Packet selection switches, 3-8

PACKET statement, 5-28

PARS1M, 4-4

PARS2M, 4-4

PARS3M, 4-4

PARSEM, 4-4

$PKT, 5-22

POINTER statement, 5-38 to 5-39

PRINT FORMATTING statement,
5-41

keyword string, 5-41 to 5-42

PROCEDURE statement, 5-33 to
5-34

Processor priority, 4-20

PRS2AM, 4-4

PRS2BM, 4-4

PUT statement, 4-31, 5-39

$QERMV, 4-25
QUPKT, 4-24

/R switch, 2-4, 2-7, 3-6, 3-27
Register report, 3-18
Report control function, 5-22
Report Generator
See also RPT
Report switch, 3-6, 3-27
Reset switch, 2-4, 2-7
RETURN statement, 4-31, 5-33
RM02/03 module, 4-37 to 4-49
RM02/03 notes module, 4-67 to
4-68
%RPT, 5-22
RPT, 1-1
command line, 3-2
input file, 3-2
multiple qualifiers, 3-3
report file, 3-2
switches, 3-2
universal library, 3-2
concurrent I/0 error logging,
1-5
/DA switch, 3-5, 3-8
Date switch, 3-5, 3-8
/DE switch, 3-5, 3-8
Device switch, 3-5, 3-8
multiple qualifiers, 3-4
error log control file, 1-4
error log file, 1-4
Error log packet

Index-7

RPT

Error log packet (Cont.)
number, 3-1

error log packets, 1-4

error type definition, 1-5

/F switch, 3-5, 3-11

Format switch, 3-5,
brief report, 3-11
full report, 3-15
No report, 3-19
Register report, 3-18

information required, 3-2
format selection, 3-2
packet selection, 3-2
summary selection, 3-2

interpreter, 5-1

3-11

/P switch, 3-5, 3-8
Packet number switch, 3-5,
3-8

multiple qualifiers, 3-4
/R switch, 3-6, 3-27
report information selection,
1-4 to 1-5
Report switch, 3-6,
/SE switch, 3-6, 3-9
Serial number switch, 3-6,
3-9
multiple qualifiers, 3-4
/SU switch, 3-6, 3-20
subswitch summary, 3-5
Summary switch, 3-6, 3-20
error report, 3-20
geometry report, 3-23
multiple qualifiers, 3-4
no report, 3-27
summary switch
history report, 3-25
switch summary, 3-5
/T switch, 3-7, 3-9
Type switch, 3-7, 3-9
multiple qualifiers,
/V switch, 3-7, 3-10
Volume label switch,
3-10
/W switch, 3-7, 3-28
width switch, 3-7, 3-28
RPT control function, 5-21
RPT default command line, 3-4
Date switch, 3-4
Device switch, 3-4
Format switch, 3-4
Packet switch, 3-4
Summary switch, 3-4
Type switch, 3-4
Width switch, 3-4
RPT default file specification,
3-3
RPT report switch
format packet, 3-5
select packet, 3-5
summarize packet, 3-5
RPTBLD.BLD file, 3-2
RSXTIME, 5-7

3-27

3-4

3-7,

INDEX

3-9
5-40
5-34 to 5-35

/SE switch, 3-6,
SEARCH statement,
SELECT statement,
SELTM1, 4-4
Serial number switch,
SET statement, 5-31
/SH switch, 2-4, 2-10 to 2-11
/Show switch, 2-10 to 2-11
Show switch, 2-4
SIGNAL statement,
SIGNAL STOP statement,
Signalling
deinition,
/SL switch,
SMRYEP, 4-7
SMRYGP, 4-7
SMRYHP, 4-7
Soft error
definition, 1-3
Soft error limit switch,
2-7
SSM command, 1-3
$STR, 5-23 to 5-24
String conversion function,
5-19
String handling function, 5-23
to 5-24
/SU switch, 3-6, 3-20
Subpacket definition, 4-69
dispatch module, 4-69 to 4-71
DSP1M1, 4-72
DSP1P1l, 4-72
DSP2M1, 4-73
DSP2P1, 4-73
DSP3M1, 4-73
DSP3P1, 4-73
DSP4M1l, 4-74
DSP4P1l, 4-74
DSPSM1, 4-74
DSP5P1, 4-74
DSP6M1, 4-74
DSP6P1, 4-74
DSP7M1, 4-75
DSP7P1l, 4-75
SUBPACKET statement, 5-29
Summary switch, 3-6, 3-20
all report, 3-20
error report, 3-20
geometry report, 3-23
history report, 3-25
no report, 3-27
/SW switch, 2-4, 2-8
Switch switch, 2-4, 2-8
Delete subswitch, 2-4,
New version subswitch,
2-9
System Service Message command
See SSM command

3-6, 3-9

5-40 to 5-41
5-41

5-40

2-4, 2-7

2-4,

2-9
2-4,

/T switch, 3-7, 3-9
Table
definition, 5-36

Index-8

INDEX

Table (Cont.) USERCM, 3-2
RPT use, 5-36 $USR, 5-25
TABLE statement, 5-37
$TIM, 5-25 /V switch, 3-7
Time handling function, 5-25 VMSTIME, 5-7
Type switch, 3-7, 3-9 Volume label switch, 3-7
Unexpected traps or interrupts, /W switch, 3-7, 3-28
1-6 WHILE/UNTIL/DO statement, 5-35
User defined switch string, Width switch, 3-7, 3-28
3-28 WRITE GROUP statement, 5-31
User 1/0 function, 5-25 WRITE statement, 4-30, 5-31

Index-9

RSX-11M/M-PLUS
Error Logging Manual
AA-L674B-TC

READER’S COMMENTS
NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the

company’s discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

[] Assembly language programmer

[Higher-level language programmer

[J Occasional programmer (experienced)

] User with little programming experience
] Student programmer
1 Other (please specify)

Name Date

Organization

Street

City State____ Zip Code
or Country

~— — — DoNotTear-Fold HereandTape — — — — — — — — — — — — — — — —

— — — Do Not Tear - Fold Here

No Postage
Necessary
if Mailed in the
United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS ZK1-3/435
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD

NASHUA, NEW HAMPSHIRE 03061

