RSX-11D

Executive Reference Manual

Order No. DEC-11-OXERA-B-D

RSX-11D
Executive Reference Manual

Order No. DEC-11-OXERA-B-D

RSX-11D Version 6

digital equipment corporation - maynard. massachusetts

First Printing, May 1975

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser
under a license for use on a single computer system and can be copied
(with inclusion of DIGITAL's copyright notice) only for use in such
system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright (:) 1975 by Digital Equipment Corporation

Associated Documents

Refer to RSX-11D Documentation Directory, DEC-11-OXUGA-B-D.

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDP DIGITAL INDAC PS/8
COMPUTER LAB DNC Kal0 QUICKPOINT
COMSYST EDGRIN LAB-8 RAD-8
COMTEX EDUSYSTEM LAB-8/e RSTS

DDT FLIP CHIP LAB-K RSX

DEC FOCAL OMNIBUS RTM
DECCOMM GLC-8 0s/8 RT-11
DECTAPE IDAC PDP SABR

DIBOL . IDACS PHA TYPESET 8

UNIBUS

CONTENTS

Page
PREFACE X
CHAPTER 1 INTRODUCTION

SYSTEM EXECUTIVE SOFTWARE 1-2
Tasks 1-2
Memory Management 1-2
Significant Events and System Traps 1-3
System Directives 1-4

1-4

. L . . .
N e

L] L[] . .

SWw N

DEVICE HANDLERS

CHAPTER RSX-11D EXECUTIVE

MEMORY MANAGEMENT

Partitions

Shared Global Areas

System Communication Area (SCOM)

* s 0
wWN -
DN
U L
NN

CONTROL OF TASK EXECUTION
Multiprogramming
Significant Events

System Traps

MDD [SIS SN V) N L PP
e o o o

MRNON B

* e
W =
NN NN

SYSTEM TABLES AND SYSTEM LISTS
Clock Queue

I/0 Request Queue

Global Common Directory
Physical Unit Directory

System Task Directory
Send/Receive Queues

Task Partition Directory

Node Pool

Interrupt Connect Node

Memory Required List (MRL)
Checkpointable Task List (CTL)
Fixed Task List (FTL)

MCR Command Buffer

Batch Command Buffer
Asynchronous System Trap Queue

[} [}

WWWwWwwwwbwwwwwwwww
. . L] . . (]] . L] L]
HEFEEREFFHFRFEOONOUTEAWNE
MkWwNhE+-HO

a ¢ o e o e e ° o s ¢ o o

|
(X~ OO ~N~NNNNNNIooao oy e Vb ww

N NN NODNNNNDNDNNONONN
N NNNNNNN?NNNNNNNN

.
£

I/0 OPERATIONS

CHAPTER

w

SYSTEM DIRECTIVES
3.1 INTRODUCTION 3-1
3.2 DIRECTIVE IMPLEMENTATION 3-1

3.3 CONVENTIONS 3-3

iii

w
.
>

www
vt n
N

w w
[e2%e)]
=

3.31

ERROR RETURNS

USING THE DIRECTIVE MACROS
Symbolic Offsets
Examples of Macro Calls

DIRECTIVE SUMMARIES
SEND and RECEIVE Directives

ABRTS
ALTPS
ALUNS
ASTXS
CLEF$
CMKTS$

CSRQ$

(ABORT TASK)

(ALTER PRIORITY)

(ASSIGN LUN)

(AST SERVICE EXIT)

(CLEAR EVENT FLAG)

(CANCEL MARK TIME REQUESTS)

(CANCEL SCHEDULED REQUESTS)

DIR$ (DIRECTIVE)

DECLS$
DSBL$
DSCP$
ENARS
ENBLS
ENCP$
EXECS
EXIFS$

EXITS

(DECLARE SIGNIFICANT EVENT)
(DISABLE)

(DISABLE CHECKPOINTING)
(ENABLE AST RECOGNITION)
(ENABLE)

(ENABLE CHECKPOINTING)
(EXECUTE)

(EXITIF)

(TASK EXIT)

FIX$ (FIX IN MEMORY)

GCOMS$
GLUNS
GMCR$
GPRT$
GSSW$
GTIMS

GTSKS$

(GET COMMON BLOCK PARAMETERS)

(GET LUN INFORMATION)

(GET MCR COMMAND LINE)
(GET PARTITION PARAMETERS)
(GET SENSE SWITCHES)

(GET TIME PARAMETERS)

(GET TASK PARAMETERS)

iv

3-16
3-17
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27
3-28
3-29
3-30
3-31
3-32
3-33
3-35
3-36
3-37
3-38
3-39
3-40

CHAPTER

3.32

3.34
3.35

3.36

3.38
3.39

3.40

3.42
3.43
3.44

3.45

IHARS$ (INHIBIT AST RECOGNITION)

MRKTS$ (MARK TIME)

QIOS (QUEUE I/0)

QIOWS$ (QUEUE I/O AND WAIT)

RDAFS$ (READ ALL FLAGS)

RDEF$ (READ EVENT FLAG)

RQST$ (REQUEST)

RSUM$ {(RESUME)

RUN$ (RUN)

SCHD$ (SCHEDULE)

SETF$ (SET EVENT FLAG)

SFPAS (SPECIFY FLOATING POINT EXCEPTION AST)
SPND$ (SUSPEND)

SPRAS (SPECIFY POWER RECOVERY AST)

SRDAS (SPECIFY RECEIVE AST)

SVDB$ (SPECIFY SST VECTOR TABLE FOR DEBUGGING
AID) .
SVTK$ - (SPECIFY SST VECTOR TABLE FOR TASK)
SYNC$ (SYNCHRONIZE)

UFIX$ (UNFIX)

VRCD$ (RECEIVE DATA)

VRCSS (RECEIVE DATA OR SUSPEND)

VRCX$ (RECEIVE DATA OR EXIT)

VSDA$ (SEND DATA)

VSDR$ (SEND DATA AND RESUME OR REQUEST
RECEIVER)

WSIG$S (WAIT FOR SIGNIFICANT EVENT)

ETLOS (WAIT FOR LOGICAL OR OF FLAGS)
WTSES (WAIT FOR SINGLE EVENT FLAG)
SIGNIFICANT EVENTS AND SYSTEM TRAPS
SIGNIFICANT EVENTS

4.2 SYSTEM TRAPS 4-3
4.2.1 Synchronous System Traps 4-4
4.2.2 Asynchronous System Traps 4-7
4.2.3 Processor Priorities 4-9
APPENDIX A SYSTEM LISTS AND TABLES A-1
APPENDIX B GLOSSARY B-1
APPENDIX C QIOMAC.MAC c-1
APPENDIX D DIRECTIVE PARAMETER BLOCKS D-1
D.1 QUEUE I1/0 D-1
D.2 QUEUE I/O AND WAIT D-1
D.3 GET LUN INFORMATION D-1
D.4 ASSIGN LUN D-1
D.5 ALTER PRIORITY D-2
D.6 REQUEST D-2
D.7 EXECUTE D-2
D.8 SCHEDULE D-2
D.9 RUN D-3
D.10 SYNC D-3
D.11 MARK TIME D-4
D.12 CANCEL SCHEDULED REQUESTS D-3
D.13 CANCEL MARK TIME REQUESTS D-4
D.14 CLEAR EVENT FLAG D-4
D.15 SET EVENT FLAG D-4
D.16 DECLARE SIGNIFICANT EVE&T D-4
D.17 READ EVENT FLAG D-5
D.18 READ ALL FLAGS D-5
D.19 WAIT FOR SINGLE EVENT FLAG D-5
D.20 WAIT FOR LOGICAL OR OF FLAGS D-5
D.21 WAIT FOR NEXT SIGNIFICANT EVENT D-5
D.22 SUSPEND D-6
D.23 RESUME D-6

vi

D.24
D.25
D.26

D.27

EXIT

EXITIF

GET TIME PARAMETERS

GET TASK PARAMETERS

GET PARTITION PARAMETERS

GET COMMON BLOCK PARAMETERS

SEND DATA

SEND AND REQUEST OR RESUME
RECEIVE DATA

RECEIVE DATA OR EXIT

RECEIVE DATA OR SUSPEND

ABORT

FIX-IN-MEMORY

UNFIX

DISABLE

ENABLE

DISABLE CHECKPOINTING

ENABLE CHECKPOINTING

INHIBIT AST RECOGNITION

ENABLE AST RECOGNITION

SPECIFY SST VECTOR TABLE FOR DEBUGGING AID
SPECIFY SST VECTOR TABLE FOR TASK
SPECIFY RECEIVE AST

SPECIFY POWER FAIL AST

SPECIFY FLOATING POINT EXCEPTION AST
AST SERVICE EXIT

GET SENSE SWITCHES

GET MCR COMMAND LINE

vii

Page

D-6

D-10
D-10

D-10

Number

3-1

Number

3-1
4-1

FIGURES

I/0 Status Block

TABLES

RSX-11D Directives
Executive Trap Service Routines

viii

Page

3-45

Page

3-8
4-6

PREFACE

The RSX-11D Executive Reference Manual provides information required
to prepare user programs written in MACRO-1ll Assembler Language for
execution under the RSX-11lD Operating System. It touches only briefly
on preparing FORTRAN programs, because the FORTRAN Special Subroutines
Reference Manual covers this material.

The manual is organized as follows.

Chapters 1 and 2 present overview information, first on the whole
RSX-11D system, then on the RSX~1lD Executive, respectively. Details
on the philosophy of RSX-1lD can be obtained by reading the
introductory chapters of the RSX-1llD User's Guide,

Chapters 3 and 4 deal with specific Executive functions and how to use
themn.

Appendixes A, B and C cover system list formats, a glossary, and a
summary of the file QIOMAC.MAC. QIOMAC.MAC provides all symbolic
values for QUEUE I/0 function codes as well as symbolic definitions
of status return codes. Appendix D contains directive parameter block
formats for the directives.

ix

CHAPTER 1

INTRODUCTION

RSX-11D is an event-driven multiprogramming operating system with
features that make it appropriate for a wide range of applications
involving real-time operations. RSX-11lD provides the basis for
process control systems, online business systems, and communications
systems.
The modular construction of RSX~-1llD allows the user to configure
available hardware and software resources to fit a particular
processing requirement., The use of memory partitions and priority
scheduling facilitates user control over the execution of many
parallel real-time functions.
RSX-11D features include:

Fast interrupt response and servicing,

Simultaneous monitoring of multiple activities,

250 priority levels for task execution,

Priority servicing of I/O requests,

Convenient storage and recall of disk-resident programs,

Efficient, convenient task scheduling facilities,

Dynamic memory partitions to contain tasks of varying sizes,

Event flags for task synchronization and notification,

Checkpointing (roll-in/roll-out), a form of memory sharing,

Online program development, concurrent with task execution,

FORTRAN, COBOL*, and MACRO-1l1] programming languages and
utilities,

Asynchronous execution of I/O-dependent code,
Support of multiuser programs and re-entrant code,
Dynamic shared global areas.

*Separate license

l.1 SYSTEM EXECUTIVE SOFTWARE

The following paragraphs provide a brief description of RSX-11D
software.

l.1.1 Tasks

The basic program unit under RSX-11lD is called a task. A task
consists of one or more programs that have been written in FORTRAN or
MACRO-11l Assembly Language. Relocatable object modules are generated
and installed into the system online, making them available in
memory-image format on the disk. A task can initiate another task's
execution in various ways. The following are examples:

l. Request immediate execution,
2. Request execution contihgent upon available memory,

3. Schedule at a future time, with optional rescheduling at
periodic intervals.

All these task initiation functions can be accomplished from an
operator's console as well as from a currently executing task.

l.1.2 Memory Management

There are three basic functional uses for which memory is allocated.
The amount of memory allocated to each function is specified by the
user at SYSGEN time.
The three functional memory areas follow.

l. RSX-11D Executive code.

2. Partitions space for tasks and shared global areas.

a. User-controlled partitions in which only one task or
shared global area can occupy the partition at a time

b. System—-controlled partitions in which the Executive
controls allocation of memory in the partition and allows
multiple tasks or shared global areas within the
partition at one time

3. System lists and system tables.

1.1.3 Significant Events and System Traps

RSX~-11lD is an event-driven system in which task execution is governed
by the occurrence of significant events, A significant event is any
change in system status that affects the execution of a task. For
example, completion of an I/O operation is a significant event.

One of the ways that significant events are signalled is through event
flags. There are 64 event flags. Flags 1 through 32 are local to the
task, while event flags 33 through 64 are common to all tasks. A task
can set, clear, test, and wait for any event flag or combination of
event flags, to achieve efficient synchronization between itself and
other tasks in the system.,

When a significant event occurs, the Executive scans an active task
list, described in Chapter 2, seeking the highest priority task that
can be executed. When an eligible task is found, it is run until it
exits, suspends execution, waits for a significant event, or a
significant event occurs.

System traps are another means of governing task execution. While
significant events have a system-wide scope, traps are local to a
task. Traps interrupt the sequence of instruction execution in the
task and cause control to be transferred to a prespecified point in
the program. Traps can be either synchronous or asynchronous.

Synchronous system traps (SSTs) allow servicing of fault conditions,
such as memory protection violation, that can occur internally in a
task.

Asynchronous system traps (ASTs) are executed as the result of
significant events. Because the task has no control over when the
significant event is to occur, ASTs execute asynchronously with
respect to the task.

Trap service routines may or may not be provided by the user to handle
the synchronous and asynchronous traps. If no synchronous trap
service routine is provided, the faulting task is aborted. If no
asynchronous trap service routine is provided, the task continues to
execute without interruption.

1.1.4 System Directives

System directives are instructions to RSX-11D to perform functions for
an executing task. System directives allow tasks to perform the
following:

Schedule other tasks,

Communicate with other tasks,

Measure time intervals,

Perform I/0 functions,

Suspend execution,

Exit.
Directives are generated by MACRO-1ll programs via macro calls and are
supported for FORTRAN by library routines supplied by DIGITAL. Refer

to Chapter 3 of this manual for details of directive usage in MACRO-1l1l
programs.

1.2 DEVICE HANDLERS

Device Handlers are tasks that support I/0 devices. These tasks are
similar to normal tasks within the system with the following
additional features:

They usually contain an interrupt service routine
to respond to hardware interrupts,

They are allowed to gain access to any memory
areas including privileged ones.

By convention, device handler task names consist of two alphabetic
characters followed by four dots. For example, the line printer
handler is named as follows.

LP..'.

Device handler tasks are loaded into memory on command from the
operator as needed. Requests from user tasks are queued by the
Executive to the device handler according to the priority of the 1I/0
request. If no priority is specified, that of the requesting task is
used by default. When necessary, however, the requesting task can
reserve a device for its exclusive use for a period of time by
attaching it using the ATTACH function.

CHAPTER 2

RSX-11D EXECUTIVE

This chapter acquaints the user with the basic design elements of the
RSX-11D Executive. It is not intended to provide the detail required
by a systems programmer for modification of RSX-11D.,

The primary functions of the Executive include memory and disk
management, supervision of task execution and scheduling, intertask
communication, I/0 queuing, console command monitoring, and
maintenance of system integrity.

The basic program unit under RSX-11lD is called a task and consists of
a program or set of programs that have been written in FORTRAN and/or
MACRO-11 assembly language. Relocatable task modules are created
either online or offline and are installed into an RSX-11D system.
This process results in the recording of the task on the system disk
in memory image form; i.e., the task is in executable form.

2,1 MEMORY MANAGEMENT

There are three different functional memory spaces. The size of each
is specified during system generation. These areas are:

l. The Executive,

2. Partitions,
a. System—controlled partitions
b. User-controlled partitions

3. System communication area (SCOM).

2.1.1 Partitions

Partitions are areas of contiguous real memory that are used for task
execution. There are two modes of partition usage: user-controlled
where only one task at a time can occupy the partition and
system—-controlled where the system controls allocation of memory
within the partition for execution of one or more tasks. The name,
base address, size, and mode of each partition are specified during
system generation and cannot be changed online. Tasks are installed
to run in a particular partition but, upon specific request, can run
in any partition that is large enough.

Normally, an active task remains resident in its memory space until
its execution is completed. A checkpointable task, however, can be
forced to relinquish its memory for execution of a higher priority
task.

2.1.2 Shared Global Areas

Shared global areas (libraries, global common blocks, and pure areas
of multiuser tasks) require space in partitions. They can be fixed in
memory or can be assigned memory by the Executive when tasks that use
them are activated.

Libraries normally are read-only and are used for code.

Global common blocks can be addressed on a per-task basis as
read/write or read-only. This is a characteristic of the task rather
than the global area and is specified during task building. The
global area includes FORTRAN COMMON space and, normally, is used for
intertask exchange of large amounts of data. SEND and SEND AND
REQUEST also can be wused to exchange small amounts of data among
tasks. They should not be used for large amounts of data.

Multiuser tasks consist of a pure area and an impure area. The pure
area of multiuser task is the area that is not modified during task
execution and can be shared among multiple versions of the task. The
impure area changes during execution; one copy of the impure area
exists for each simultaneous user of the task.

2.1.3 System Communication Area (SCOM)

This memory space contains the tables, lists, system subroutines, and
other information required by the Executive to perform its functions
and maintain control of the system. It consists of a number of fixed
tables or lists and code, with the remaining space being available in
variable-length nodes. These nodes are used by the Executive and for
intertask communication.

2.2 CONTROL OF TASK EXECUTION

RSX-11D is event-~driven, in contrast to systems which use a time slice
mechanism for determining a task's eligibility to execute. Under
RSX-11D, the highest priority task can run continuously until some
event or condition in the system causes it to be suspended. Another
event or change in system status can reactivate the task.

Tasks can be activated either by the operator or by another task.
Activation can be conditional, based on currently available partition
space (EXECUTE), or it can occur as soon as possible (REQUEST). Also
it can occur as soon as possible after some future time (SYNC,
SCHEDULE, and RUN).

2.2.1 Multiprogramming

Effective multiprogramming is achieved when many tasks reside in
memory simultaneously, spending some of their residency waiting for
I/0 completion, waiting for synchronization with other tasks, or in
some way being unable to continue execution. While one or more tasks
are waiting, another task can utilize the central processor's
resources.

Under RSX-11lD, tasks are run at a software priority level ranging from
a low of 1 through a high of 250. The Executive grants central
processor resources to the highest priority task capable of execution.
When a task becomes ready to execute and it has a higher priority than
the currently executing task, the Executive interrupts the 1lower
priority task and allows the higher priority task to run. Execution
of the interrupted task continues when it once again becomes the
highest priority task capable of execution. The environment of an
interrupted task is preserved; except for elapsed time, interruption
is transparent to an interrupted task.

This multiprogramming scheme normally applies only to memory-resident
tasks. Once a task is in memory, the Executive allows it to run to
completion in a multiprogramming fashion even if its memory becomes
required for the execution of a higher priority, non-resident task.
However, if it is desirable to free memory for execution of a higher
priority task, a task can be declared checkpointable when it is task
built. A checkpointable task is swapped out when its memory is
required for a higher priority task and swapped in when it once again
becomes the highest priority task requiring its memory.

Normally, a task is brought into memory when requested, executes, and
is removed from memory upon completion. This process frees memory for
another task to execute. However, a task can be fixed in memory to
permit faster response to requests for its execution. It rémains in
the partition until it is explicitly removed by an UNFIX directive.
Tasks fixed in a system-controlled partition have no effect on the
rest of the partition which remains available for execution of other
tasks.

2.2.2 Significant Events

A task is considered active from the time its execution starts until
the time it has exited. While the task is active, it is included in a
priority-ordered list of active tasks called the active task 1list
(ATL). The system uses the ATL in the following way.

When a significant event is declared, the Executive interrupts the
executing task and scans the active task list examining the status of
tasks until a task capable of execution is found. Execution of that
task is then initiated, or continued, until one of the following
occurs,

1. The task exits.
2, The task must wait for another event (e.g., I/0 completion).

3. A significant event occurs and a higher priority task is
capable of execution.

Task switching occurs as a result of a significant event, and
significant events occur only when declared explicitly or implicitly
by tasks.

NOTE
Task switching occurs
implicitly when a lower

priority task is eligible for
execution and the currently
executing task performs one of
the following actions:

Suspends itself,

Waits for an event
(e.g., I/0 completion),
Exits.

Event flags are associated with significant events. Declaration of a
significant event indicates that something has happened in the systemn,
and the possible setting of a particular event flag indicates what has
happened. For example, upon completion of I/0 requests, a device
handler task normally sets a requester-indicated event flag and
declares a significant event. If a requesting task instructs the
system that it cannot run until an event flag is set (signalling task
I/0 completion), other eligible tasks of lower priority may run. In
the scan of the active task 1list, a task that is awaiting I/0
completion 1is by passed until a significant event is declared through
the setting of a event flag upon task I/0 completion.

Each task has access to 64 event flags of which 1 through 32 are
unique to each task and 33 through 64 are common to all tasks. The
use of event flags is detailed in Chapter 4.

2.2.3 System Traps

The ability to service certain conditions without continuously testing
for their existence is provided via system traps. As discussed in
Chapter 1, two types of traps are defined: synchronous and
asynchronous (also see Chapter 4). A trap is a linkage method for
optional in-task service routines. Service routines must be included
as a part of the task, limited by the same restrictions as the task,
and run at the task's priority as a result of a system trap condition,
(e.g., fault, I/0 completion). This facility also provides a means of
responding to the execution of privileged instructions and non-RSX-11D
EMT's.

If the system is not explicitly notified of the existence of a system
trap service routine, the system trap does not occur,

2.3 SYSTEM TABLES AND SYSTEM LISTS

RSX=-11D uses linked lists and fixed-length tables to maintain system
information. Fixed-length tables are lists with elements that reside
in consecutive memory locations. This format is used when 1lists are
static, when list scan time is critical, or both.

Most linked lists are linked as double-ended queues and are called
deques (pronounced "decks"). Deques allow list elements to be added
or deleted from either end, since they include backward and forward
pointers. An RSX-~11lD deque consists of a listhead and list elements
(nodes), circularly linked by both backward and forward pointers. The
first word of a node (or listhead) is a forward pointer, i.e., the
address of the next node (or listhead) looking forward. The second
word of a node (or listhead) is a backward pointer, i.e., the address
of the next node {(or listhead) looking backward.

A listhead is a node that consists of only a forward and a backward
pointer, and is used as a reference point. Hence, a listhead
identifies a deque, and indicates both the beginning and end of the
circularly 1linked list, All nodes are a multiple of eight words in
length. Usually the first two words contain pointers and the third
defines the node's owner. The following paragraphs describe the major
lists used in RSX-11D. Their formats and contents are described in
Appendix A,

2.3.1 Clock Queue

The clock queue is a linked 1list with its 1listhead in SCOM. It
consists of one node for each operation to be performed at some time
in the future. A ticks=till-due count in the first node of the clock
queue is decremented at each clock tick until the node becomes due
(i.e., until the count is zero). Then the indicated operation is
performed. The nodes are linked in the order in which they come due.
Each node is 16 words.

2.3.2 I/0 Request Queue

The I/0O request queue is a linked list with a listhead in the physical
unit directory entry for the unit to which the request has been
queued. Each entry is 16 words.

2.3.3 Global Common Directory

The global common directory (GCD) is a linked list of entries for each
global common block and 1library installed in the system. The GCD
listhead is in SCOM. Each entry is 16 words.

The GCD entries are created by INSTALL for the pure area of multiuser
tasks and for global common areas (libraries and global common). GCD
entries are linked into the GCD at run time and are pointed to by the
task's STD.

2.3.4 Physical Unit Directory

The physical unit directory (PUD) is a table of entries for each
physical unit specified during system generation. When a logical unit
number is assigned to a physical unit, the physical unit is
represented by the address of the corresponding PUD entry. Each entry
is 25 words.,

2.3.5 System Task Directory

The system task directory (STD) is a table that provides information
about each task installed in the system, The information recorded in
a task's STD entry includes the following:

l. Information required when the task is not active (viz.,
receive linked list listhead),

2. Information required to load a task into memory (viz., task
name, disk address of image).

Under RSX-11D, tasks are referred to by name, and the STD is searched
for an indicated task name at each reference. The STD is structured
to enable this search to be performed rapidly, without imposing naming
conventions, order of installation, or the dedication of a large
memory area.

The STD consists of a table of entry pointers (alpha table) for the
maximum number of installed tasks and a l6-word entry for each task
that is installed. The table is maintained by the programs that
install and remove tasks such that the number of entries is known and
consecutive table words point to task STD entries ordered
alphabetically by task name., Thus, a task name can be found rapidly
using a binary search and memory is not dedicated for STD entries
until it is needed. The maximum size of the STD is specified during
system generation.

The 16-word block of memory for an STD entry is taken from the pool
when a task is installed and returned when a task is removed.

2.3.6 Send/Receive Queues

The send/receive queues are linked lists with 1listheads in the STD
entries for each task. Entries are created and queued in priority
order by the SEND directives and removed by the RECEIVE directives.
Entries are variable in length up to 255 words.

2.3.7 Task Partition Directory

The task partition directory (TPD) is a table of entries for each task
partition defined during system generation., Each entry is 10 words.

2.3.8 Node Pool

A node is a block of memory that is a multiple of eight words in
length. Empty nodes for use in any deque are initially provided by
the system generation routine in the form of a long block called the
pool. When a node is needed to expand a list, it is taken from the
pool. When a node is no longer needed, it is returned to the pool.

2.3.9 Interrupt Connect Node

Interrupt connect nodes connect the trap vector to the interrupt
service routine of a device handler task. Each node is 16 words.

2.3.10 Memory Required List (MRL)

The memory required list is a priority-ordered linked list of active
task list nodes for active tasks that require memory in a partition.
Its listhead is in the task partition direectory (TPD). There 1is an
MRL for each partition. Whenever a nonfixed task exits, the MRL
associated with that partition is scanned, and an attempt is made to
assign memory to the highest-priority task in the list. If the
attempt is successful, the task's node is moved from the MRL to the
active task list. Each node is 24 words.

2.3.11 Checkpointable Task List (CTL)

For each partition, there is a priority-ordered list of checkpointable
tasks that are active in that partition. Actually, this list is a set
of links threaded through the ATL and not a distinct physical set of
nodes. The CTL listhead is in the TPD. Each entry is 24 words.

2,3.12 Fixed Task List (FTL)

The fixed task list (FTL) is a deque of active task 1list nodes for
tasks that have been fixed in memory but are not active. The FTL
listhead is in SCOM, When a fixed task is made active, its node is
relinked from the FTL to the ATL. When the task exits it is relinked
into the FTL, Each node is 24 words.

2.3.13 MCR Command Buffer

The MCR command buffer is 96~-byte buffer that holds the data for a
requested MCR function task. The bhuffer is set up by the MCR dispatch
task. The nodes required for the buffer are returned to the pool
after the GET MCR COMMAND LINE directive passes the command line to
the MCR function task.

2.3.14 Batch Command»Buffer

The batch command buffer is a 96-byte buffer that holds data for the
batch processor. It functions in the same manner as the MCR command
buffer.

2.3.15 Asynchronous System Trap Queue

The asynchronous system trap queue (ASQ) is a 1linked 1list that
operates on a first-in/first-out basis, Its listhead is in ATL
entries. It consists of one node for each AST (asynchronous system
trap) to be executed for the task as defined by the STD entry. Each
node is eight words.

2.4 I/O OPERATIONS

The Executive'’s main function in I/O operations is to handle 1I/0
requests from tasks and pass the requests to the appropriate device
handler task. The general method follows.

1. A QIO directive (see Chapter 3) is issued by a task.
The task specifies a number of parameters that are
required in processing the I/0 request. One of
these parameters is the logical unit number (LUN)
assigned to a device by the task.

The directive 1is issued by means of a normal
software emulated trap. It follows the normal
PDP~11 trap sequence,

2. The Executive examines the LUN parameter of the QIO
directive to determine which device handler is to
process the request., The particular device handler
is chosen by mapping the LUN of a particular task
into an entry in the physical unit directory using
the logical unit table.

3. The I/O request is put in the request queue of a
device handler (one of a set of special tasks).

The requesting task can either suspend operation until the I/O request
is completed or continue to operate until interrupted by an
asynchronous system trap (see Chapter 4). RSX-11D permits parallel
I/0 requests to be 1issued by the same task. That is, the task
continues executing after issuing a QIO; subsequently the task can
issue further QIO requests without waiting for the previous request to
be completed.

Some device handlers operate in conjunction with the £file control
primitives (FCP) to manipulate files. When an FCP routine is
required, the device handler issues a SEND/REQUEST which initiates
operation of the specified FCP routine.

I/0 requests are queued for each unit by priority at requester task
priority unless otherwise specified. The handler tasks pick requests
from the top of request queues. Thus, preferential service is given
to high priority requests. However, when appropriate, devices can be
attached to a task, in which case only requests from the attached task
or express request are dequeued, This continues until a
detach-unit-from-task request is dequeued, causing requests to be
dequeued by priority from the top of the I/O request queue once again,

The right to attach and detach devices 1is controlled by access
privileges defined for each device. Requests to attach a device are
rejected if the requester does not have the proper access rights,
Because device handler tasks can service many units, they are not
themselves attached.

The interface between a device handler task and the RSX-1llD system is
accomplished by directives and system subroutines which attach and
detach devices and dequeue I/0 requests.

CHAPTER 3

SYSTEM DIRECTIVES

3.1 INTRODUCTION

System directives are instructions to the Executive to perform an
indicated operation. The applications programmer uses them to control
the execution and interaction of tasks. The system macro library
contains macro calls, which the programmer can use to execute
directives. The FORTRAN programmer invokes system directives through
a subroutine call, as described in the FORTRAN Special Subroutines
Reference Manual.

Directives are implemented solely through the EMT 377 instruction. By
using only EMT 377, programs using EMT 0 through EMT 376 can be run
via a non-RSX system trap. Any EMT other than EMT 377 traps to a
task-contained service routine that can be written to simulate another
environment to whatever degree is desired.

By wusing macro calls, instead of executing the directive, the
programmer need only reassemble his program if changes are made in the
directive specifications, rather “":1 being required to edit the
source code,

3.2 DIRECTIVE IMPLEMENTATION

A brief discussion of how directives are implemented will help the
programmer understand and use the macro calls associated with the
directives.,

Directive processing consists of five parts.
1. The user issues a directive. The directive identifier and
the directive parameters are placed in the directive
parametexr block (DPB).

The DPB can either be on the stack or be in the user task
space,

2. An EMT 377 is issued.

3. The Executive traps the instruction and performs three steps:
l. Determines whether the instruction is an EMT 377.
2. If it is a 377, transfers it to the directive processor.

3. If it is not a 377, determines whether user is capable of
handling the directive. If yes, user is given control.
If not, an error is returned.

4. The Executive processes the directive.

5. The Executive returns to the issusing task through "common
exit," if necessary, and processes any system events.

The EMT 377 is issued with the address of a directive parameter block
(DPB), or a DPB itself, on the top of the issuing task's stack. When
the stack contains a DPB pointer (address), the pointer 1is removed
(popped) after the directive is processed. When the stack contains a
DPB, the entire DPB is removed as the directive 1is processed. In
either case, the DPB is not altered when the directive is processed.

With the exception of EXIT directives, control is returned to the
instruction following the EMT, with the C condition code set or
cleared and the directive status word (DSW) set to indicate
performance or rejection. The DSW is at virtual location zero of each
task.

In the case of EXIT directives, control is not returned, but the C
condition code and DSW are set,

When a directive is performed properly, the C condition code in the PS
(CC-C) 1is cleared and the directive status word (DSW) contains a
positive number, unless otherwise noted in the directive description.
When a directive is rejected, the C condition code is set and the DSW
contains a negative number. The number's value indicates the reason
for rejection.

The first word of all DPB's contains a directive identification code
(DIC) byte and a DPB size byte. The DIC indicates which directive is
to be performed. The size byte indicates the DPB length in words.
The DIC is in the low-order byte of the word and the size is in the
high-order byte.

3.3 CONVENTIONS

The following conventions and assumptions are standard for all
directives.

l. Task and partition names can be up to six characters
long and are always represented as two words in
radix-50 form.

2, Device names are two characters 1long and are
represented by one word in ASCII form.

3. Time unit indicators, used for initial and repeated
requests, are 1 for clock ticks, 2 for seconds, 3
for minutes, and 4 for hours.

4, The term "background task" indicates a task that is
initiated from batch,

3.4 ERROR RETURNS

Directive rejections are divided into two classes: those where a
programmed recovery would be common and those where it would be
unlikely. The error code, always negative, is returned in the DSW at
virtual location 0, Rejections with expected programmed recoveries
(i.e., where a branch is taken to an error routine) have values
between =1 and -19, Error codes indicating errors for which
programmed recoveries are not feasible are in the range from =20
through «~99.

The error codes that can be received for a particular directive are
listed with the individual directive descriptions.,

3.5 USING THE DIRECTIVE MACROS

This discussion applies to MACRO-1l1l programs. FORTRAN programmers
should refer to the FORTRAN Special Subroutines Reference Manual for a
description of the library subroutines which support the directives
for that language.

Directives are issued by including appropriate macro calls in the
program. Macro names consist of up to four letters followed by a
dollar sign and, optionally, one letter. The optional letter
specifies which of three possible expansions of the macro is desired.

If the optional letter is S, the macro produces code to push a DPB
onto the stack, followed by an EMT 377.

If the optional 1letter is omitted, the macro produces only the
directive's DPB, The macro expansion is inserted at the point of
macro invocation, but it does not contain executable code.

When the user uses the $ or $C form of the macro call, specifying the
generation of a DPB at assemble time, it 1is assumed that the
parameters required for DPB construction are valid expressions to be
used in MACRO-11 data storage instructions (e.g., .BYTE, .WORD,
.RADSO) .

If, however, the $S form is used, specifying the generation of code to
store the DPB in the stack, the parameters must be valid source
operands to be placed directly in MOV instruction.

Only the $S form produces the DPB dynamically. The other two forms
produce the DPB at assembly time.

If the user has a predefined DPB, i.e., has used the § or $C form of
the macro, and wishes to avoid the creation of another one, the DIRS
macro should be used instead of one that identifies the function.
This macro pushes the DPB address onto the stack using MOV SSS,-(SP),
where the macro parameter (shown here as 8SS), is any valid
representation of the DPB address. The instruction is followed by EMT
377.

In addition to the macro routines that correspond to the directives,
the DIR$ macro is useful to the programmer, particularly in cases
where the DPB has been defined independently of the execution of the
directive,
DIR$ generates an RSX-11D Executive trap with a predefined DPB.

Macro Call: DIRS adr,err

Three forms are possible, with the following interpretation:

DIRS Assumes that the address of the DPB or the
DPB itself has already been pushed onto the
stack.

DIR$ adr Generates the code to push the parameter adr

onto the stack.

DIRS$ adr,err Generates the code to push the parameter adr
onto the stack, executes an EMT 377,
generates a branch on carry clear to the
address of the branch +4 (or +6 if
necessary) and generates a JSR PC to the err
address.

3-4

The argument adr is optional but, if present, must be a valid
assembler source operand used to push the DPB address onto the stack.

The argument err is optional. If defined, it must be a valid
assembler destination operand to permit a Jump to Subroutine (JSR)
instruction to an error handler if the directive is rejected.

If the optional letter is C, the macro generates a DPB in a separate
program section, called DPBS$., The DPB is followed by a return to
the original program section, an instruction to push the DPB address
onto the stack, and an EMT 377. To ensure that the correct program
section is re-entered, the user must specify its name in the argument
list immediately following the required DPB parameters. If the
argument is not specified, the blank (unnamed) program section is
assumed.,

The $C form of the macro call accepts an optional argument, PSECT.
This argument allows return to the PSECT specified rather than to the
default PSECT.
The $C and $S forms of macro calls and DIR$ accept an optional final
argument. If included, the argument must be a valid assembler
destination operand to call a user error routine. The argument
generates the following code.

OPENSW #FDBADR,,,,,,OPEERR

BCC «+6 ;BRANCH ON DIRECTIVE ACCEPTANCE

JSR PC,OPEERR sELSE, CALL ERROR SERVICE ROUTINE

This option is ignored when the user specifies the generation of the
DPB only.

3.5.1 Symbolic Offsets

Most system directive macro calls generate local symbolic offsets.
The symbols are unique to each directive and are assigned the values
of the byte offset from the start of the directive's DPB to the DPB
elements.

Because the offsets are defined symbolically, the programmer who must
refer to or modify DPB elements can do so without calculating the
offsets., Symbolic offsets also preclude the necessity of rewriting
programs to accommodate changes in DPB specifications.

All $ and $C forms of macros that generate DPB's longer than one word
generate local offsets. All informational directives, including the
$S, form generate local symbolic offsets for the parameter block in
question.

If any of the § or $C forms of the macros is invoked and the wuser
defined symbol $$SGLB is 1included, the DPB is not expanded.
Furthermore, if the macro produces symbolic offsets, they are
generated as global symbols, unless previously defined. The symbol
$$$GLB has no effect on the expansion of $S macros.

3-6

3.5.2 Examples of Macro Calls

l. MRKTS 1,5,2,MTRAP [generate DPB only in current PSECT]
«BYTE 23.,5. ;s "MARK-TIME" DIC AND DPB SIZE
+WORD 1 ;EVENT FLAG NUMBER
+WORD 5 ;TIME INTERVAL MAGNITUDE
+WORD 2 sTIME INTERVAL UNIT
+WORD MTRAP +AST ENTRY POINT

2, MRKT$C 1,5,2,MTRAP,PROG1l,ERR [generates DPB in separate PSECT]

«PSECT DPBS$
8=. ;DEFINE TEMPORARY SYMBOL

.BYTE 23.,5. ; "MARK TIME" DIC AND DPB SIZE

WORD 1 ;EVENT FLAG NUMBER

+WORD 5 ;TIME INTERVAL MAGNITUDE

.WORD 2 ;TIME INTERVAL UNIT

«WORD MTRAP ;AST ENTRY POINT

+«PSECT PROG1 [return to the original PSECT]

MOV #$$$,-(SP) ;PUSH DPB ADDRESS ON STACK

EMT 377 ;TRAP TO THE MONITOR

BCC .+6 ;BRANCH ON DIRECTIVE ACCEPTANCE

JSR PC,ERR ;ELSE, CALL ERROR SERVICE ROUTINE
3. MRKTSS #1,#5,4#2,R2,ERR [push DPB onto stack]

MOV R2,-(SP) ;PUSH AST ENTRY POINT

MoV #2,-(SP) s TIME INTERVAL UNIT

MOV #5 ,~-(SP) ;TIME INTERVAL MAGNITUDE

MOV #1,-(SP) ;EVENT FLAG NUMBER

MOV (PC) +,=-(SP) ;AND MARK TIME®™ DIC & DPB SIZE

+BYTE 23.,5. ;ON THE STACK

EMT 377 ;TRAP TO THE MONITOR

BCC +6 ;BRANCH ON DIRECTIVE ACCEPTANCE

JSR PC,ERR ;ELSE,CALL ERROR SERVICE ROUTINE
4, DIRS @R1, (R3) [DPB already defined. DPB address in Rl.]

MOV @Rl ,-(SP) ;PUSH DPB ADDRESS ONTO STACK

EMT 377 ;TRAP TO THE MONITOR

BCC o+ ;BRANCH ON DIRECTIVE ACCEPTANCE

JSR PC, (R3) ;ELSE, CALL ERROR SERVICE ROUTINE

3.6 DIRECTIVE SUMMARIES

Each directive description consists of a narrative explanation of its
function and wuse, the name of the macro associated with it and its
parameters, and the possible - irn values of the directive status
word (DSW), which is virtual memory location zero,

Only the $ form of the macro name is given, although all three options
are available unless otherwise specified.

The directive descriptions are presented in alphabetic order by macro
call for ease of reference. However, the directives can be
categorized according to their function. Table 3-1 1lists the
directives by function and describes them briefly.

Table 3-1
RSX-11D Directives

—
ASSOCIATED

DIRECTIVE MACRO CALL FUNCTION

DIRECTIVE DIRS Generates an RSX=-11D trap with a
predefined DPB.

Task Execution

Control

EXECUTE EXECS$ Executes a task only if sufficient
memory 1is available at the present
time. If memory is not available, the
request is not queuned.

REQUEST RQSTS Runs a task contingent wupon priority
and memory availability. If the task
cannot be run immediately, the request
is queued.

SCHEDULE SCHDS Requests a task using the ROSTS
directive at a specific future time
and, optionally, repeats the request
periodically; e.g., the request can -
be scheduled for 11:35 a.m.

RUN RUNS Requests a task using the RQSTS
directive at a specified interval from
the current time and, optionally,
repeats the request periodically,

SYNCHRONIZE SYNCS Requests a task using RQST$ at a
specific interval from a specified
future time and, optionally, repeats
the request periodically.

CANCEL SCHEDULED CSRQ$ Cancels scheduled requests for task

REQUESTS executions.

SUSPEND SPNDS Suspends execution of the task issuing
the directive.

Table

3-1 (Cont.)

RSX-11lD Directives

ASSOCIATED

DIRECTIVE MACRO CALL FUNCTION

RESUME RSUMS Resumes the execution of a task that
has suspended itself,

TASK EXIT EXITS Terminates execution of the task
issuing the directive and causes a
significant event,

ABORT TASK ABRTS Terminates execution of another task.

Task Status Control

FIX IN MEMORY FIXS$ Fixes in memory (makes permanently
resident) an inactive, installed task.

UNFIX UFIX$ Negates a FIX$ directive and frees the
memory allocated to the task.

DISABLE DSBLS Rejects future attempts to execute or
fix an indicated task using any of the
following directives: RQST$, EXECS,
SCHD$, RUNS, SYNC$, or FIXS.

EJABLE ENBLS$ Makes a specified disabled task
capable of being run,

DISABLE DSCP$ Disables the checkpointability of the

CHECKPOINTING issuing task.

ENABLE ENCPS$ Makes the issuing task checkpointable

CHECKPOINTING if checkpointing was previously
disabled.

ALTER PRIORITY ALTPS Alters the priority of the specified
active task to the new priority
indicated in the directive,

Informational

Directives

GET TIME PARAMETERS GTIMS Fills an indicated 8-word buffer with
current time and date information.

GET COMHMON BLOCK GCOMS$ Fills an indicated 8-word buffer with
PARAMETERS information for a specific common
block.

GET PARTITION GPRTS Fills an indicated 3-word buffer with
PARANMETERS information for a specific partition.
GET TASK PARAMETERS GTSK$ Fills an indicated l6-word buffer with

information about the task issuing the
directive.

Table

3-1 (Cont.)

RSX=-11lD Directives

ASSOCIATED
DIRECTIVE MACRO CALL FUNCTION
GET SENSE SWITCHES GSSW$S Obtains the status of the console
sense switches and stores it in the

issuing task's directive status word.

GET LUN GLUNS Fills a 6-word buffer with information
about a physical unit to which the
task is assigned

Event-Associated

Directives

DECLARE SIGNIFICANT DECLS$ Declares a significant event and,

EVENT optionally, sets an event flag and
reports the status of the flag before
it was set, DECL$ causes an ATL scan.

SET EVENT FLAG SETFS Sets an indicated event flag and
reports the status of the flag before
it was set., SETF$ does not cause a
significant event.

CLEAR EVENT FLAG CLEF$ Clears an indicated event flag and
reports the flag's status before
clearing. CLEF$ does not cause a
significant event,

READ EVENT FLAG RDEF$ |Reads a specified event f£flag and
indicates by the return code in the
directive status word whether the flag
is set or cleared.,

READ ALL FLAGS RDAFS$ Reads all 64 event flags and records
their status by setting or clearing
corresponding bits in a 64=-bit
(4-word) buffer,

WAIT FOR SINGLE WTSES$ |Suspends execution of the issuing task

EVENT FLAG until the indicated event flag is set,

WAIT FOR LOGICAL OR WTLO$ |Suspends execution of the issuing task

OF FLAGS until any indicated event flag in one
of five groups is set,

WAIT FOR WSIG$ |Suspends execution of the issuing task
SIGNIFICANT EVENT until the next significant event
occurs.

EXIT IF EXIF$ Terminates the execution of the

issuing task 1if an indicated event
flag is not set.

Table

3-1 (Cont.)

RSX=11D Directives

ASSOCIATED
DIRECTIVE MACRO CALL FUNCTION
Trap-Associated
Directives
MARK TIME MRKT$ Declares a significant event after an

indicated time interval starting at
issuance of the directive, An event
flag also can be set when the
significant event is declared,

CANCEL MARK TIME CMKTS$ Cancels any mark time requests made by

REQUESTS the issuing task.

INHIBIT AST IHARS Inhibits recognition of asynchronous

RECOGNITION system traps for the issuing task.

ENABLE AST ENARS Recognizes asynchronous system traps

RECOGNITION for the issuing task.

SPECIFY POWER SPRAS |Tells the system whether or not power

RECOVERY AST recovery AST's are desired for the
issuing task, If desired, this
directive indicates where control |is
to be transferred when the AST occurs,

SPECIFY FLOATING SFPA$ | Tells the system whether or not

POINT EXCEPTION AST PDP=11/45 f£floating point exception
AST's are desired for the task. If
desired, the directive indicates where
control 1is to be transferred when the
AST occurs.

SPECIFY RECEIVE AST SRDA$ | Allows a task to determine whether
another task has sent data to it
without waiting for an event flag or
continually checking the buffer, When
data is detected, an AST is executed.

SPECIFY SST VECTOR SVDB$ | Specifies the virtual address of a

TABLE FOR DEBUGGING table of synchronous system trap

AID service routine entry points for use
by ODT or other debugging aids. SVDBS$
takes precedence over SVTK$,

SPECIFY SST VECTOR SVTK$ | Specifies the virtual address of a

TABLE FOR TASK table of synchronous system trap
service routine entry points for use
by the issuing task.

TERMINATE AST ASTX$ | Terminates execution of an

EXECUTION asynchronous system trap service
routine,

Table

3"1 (Cont 3)

RSX=11lD Directives

ASSOCIATED

DIRECTIVE MACRO CALL FUNCTION

I/0 Related

Directives

QUEUE I/0 QIOS Places an I/0 request for an indicated
device in a priority=-ordered queue of
requests for that unit.

QUEUE I/O AND WAIT QIOWS Performs the functions of both WTSES$
(see above) and QIOS.

ASSIGN LUN ALUN$ |[Assigns a logical unit number (LUN) to
a physical device unit.

SEND DATA VSDAS$ Queues a variable-length data block by
priority for a task to receive. '

SEND DATA AND VSDRS$ Queues a variable-length data block

RESUME OR by priority for a task to receive and

REQUEST RECEIVER resumes or requests execution of the
receiving task,

RECEIVE DATA VRCD$ Receives a variable-length data block
that was queued by another task.

RECEIVE DATA OR VRCXS$ Receives a variable-length data block

EXIT that has been queued by another task
or exits if none is queued.

RECEIVE DATA OR VRCS $ Receives a variable-length data block

SUSPEND if one is queued for the task or
suspends the task.

GET MCR COMMAND GMCRS Transfers an 80-byte command line to

LINE

the issuing task.,

For Information About:

SDAT$
SDRQ$
RCVD$
RCVX$

NOTE

Refer To:

VSDAS
VSDR$
VRCDS$

VRCXS$

3.6.1 SEND and RECEIVE Directives

The following additional information about SEND and RECEIVE directives
should be noted.

1.

2.

Variable~length data up to 255 words can be sent and
received.

If the receiver's buffer is too small to hold all the data
sent, the excess is lost and the receiver is notified by an
error code in the directive status word (DSW).

The TI of a task is the same as the TI of the terminal from
which the task was initiated. If the task was initiated by
another task, the TI of the requesting task becomes the TI of
the requested task also.

Certain directives can be issued only to affect tasks with
the same TI: RESUME, ABORT TASK, ALTER PRIORITY, and CANCEL
SCHEDULED REQUEST,

Multiuser tasks issuing receive directives are passed only
that data sent with the same TI as the multiuser task. This
approach ensures the proper flow of data among several
multiuser tasks and a single-user task when the single-user
task is receiving from and sending to the multiuser tasks.

Up to three data words can be transmitted in a single 8-word
node; the other five words are used for SEND/RECEIVE
overhead.

The default buffer length (13 words) requires a 24-word node,
rather than 16 woxds,

3-13

ABRTS

3.7 ABRT$ (ABORT TASK)

The ABORT TASK directive terminates the execution of the indicated
task. This directive 1is intended for use as an emergency exit or
fault exit. It causes a printout at the console each time it is
invoked. A task can abort any other task., If the task being aborted
is a multiuser task, it is aborted only if its TI matches that of the
task issuing the ABORT directive. ABORT TASK cannot be issued by a
background task.

Macro Call:s ABRTS$ task
task = Task name,

The following symbol is locally defined with its assigned value equal
to the byte offset from the start of the DPB to the DPB element,

A,BTTN = (lLength is 4 bytes) Task name
DSW return codes:

+1 =~ Successful completion
=02 == Task not installed
-07 =-- Task not active
-08 == Task loading or exiting
=10 =-- Task is not abortable
~-80 == Directive issued by background task
-98 =~ Part of DPB is out of issuing task's address space
=99 == DIC or DPB size is invalid

Macro Expansions

ARQTS YOURS
wEYTE 834,84
LFADSE /YDJRS/

3

14

3.8 ALTP$ (ALTE

ALTPS

R PRIORITY)

The ALTER PRIORI
active task to
task is multiuse

TY directive alters the priority of the specified
the new priority indicated in the directive., If the
r, its priority is altered only if its TI matches that

of the calling task.

Macro

task =

pri =

Call; ALTPS task,pri

the name of the task whose priority is to be changed.
If task is not specified, the calling task's priority
is changed to its default priority.

the new priority (1-250) for the task., If pri is not
specified, the new priority is the priority specified
at task build or installation., If a priority was not
specified during task build or installation, a system
default of 50 (decimal) is used.

The following symbols are defined locally with their
assigned values equal to the byte offset of the DPB.

A.LTTN = task name (4 bytes)

A.LTPR = priority (2 bytes)

DSW return

+l -
-07 =~

codes:

- Successful completion
- Task not installed
- Task not active

-08 == Task in process of being loaded or exiting

-80 -
-98 =

Macro Expansion:

ALTRA
FYTE
LEAnSD
DR

- Directive issued by background task
- Invalid priority
- Part of DPB is out of issuing task's address space

TLSK1g,107
Q.,Q
ITARKY A/

107

ALUNS

3.9 ALUNS$ (ASSIGN LUN)

The ASSIGN LUN directive assigns a logical unit number (LUN) to a
physical device unit.

Macro Call: ALUNS$ 1lun,devnam,devnum

lun = Logical unit number
devnam = Physical device name (two characters)
devnum = Physical device unit number

If devnam and devnum are omitted, the LUN is assigned as null. If it
has previously been assigned, omitting devnam and devnum deassigns the

LUN.

The following symbols are locally defined with their assigned values
equal to the byte offset from the start of the DPB to the respective

DPB elements.,

A,LULU = (Length 2 bytes) logical unit number
A.LUNA = (2) Physical device name
A.LUNU = (2) Physical device unit number

DSW return codes:

+01 - Successful completion

-90 -~ LUN usage interlocked (via file open)

-92 == Invalid device and/or unit

-96 -- Invalid logical unit number

-98 =~ Part of DPB is out of issuing task's address space
=99 == DIC or DPB size is invalid

Macro Expansion:

ALINS L2,
J3YTE 7,4
R 4
«ASCII /u/
JASCIU 72y

. NYN A

3-16

ASTXS

3.10 ASTX$ (AST SERVICE EXIT)

The AST SERVICE EXIT directive terminates execution of an asynchronous
system trap service routine., ASTs are described in Section 4.2,

If another AST is queued, and ASTs are not inhibited, the next AST is
executed, Otherwise, the task's pre-AST state is restored.

When an AST service routine is entered, the stack contains certain
information. This information is required because the AST routine
runs with the same ATL node, task header, and DSW as the main part of
the task., Those portions of control areas that can be used to effect
requests from AST service routines are 'saved on the stack. The
following information is on the stack.

SP+14 -~ Event flag mask word for flags 1-16

SP+12 -~ Event flag mask word for flags 17-32

SP+10 == Event flag mask word for flags 33-48

SP+06 ~= Event flag mask word for flags 49-64

SP+04 -~ The pre-AST task's program status (PS)
SP+02 -~ The pre-AST task's program counter (PC)
SP+00 =-- The pre-AST directive status (virtual zero)
Additional parameters, if any

The stack can contain additional information as well, For power
recovery AST's, no information is added, but for I/0 done the stack
contains the address of the I/0 status block; for MARK TIME, the
stack contains the event flag number; and for an 11/45 floating point
exception, the stack contains the exception code, and the exception
address.

AST service routines must save and restore all registers used.

The AST service routine must remove any information on the stack that
is additional to the seven words shown above before issuing an AST
SERVICE EXIT directive, The following example shows how this is done
when an AST routine is used on I/O completion:

;MAIN BODY OF PROGRAM
START: . ;s PROCESS

QIO$S #I0.WVB,#2,,,#IOSTBK, #ASTSER,< #BUFFER, #60.,#40>
. ;PROCESS & WAIT

EXITSS ;EXIT TO MONITOR

IOSTBK: ,BLKW 2
BUFFER: .BLKW 60,

sAST SERVICE

ASTSER: .
TST(SP) + ; REMOVE ADDR OF I/0 STATUS BLOCK
ASTXSS ;AST EXIT MACRO

3

17

Macro Call: ASTXS

DSW return codes:

+01 == Successful completion
=80 =- Directive not issued from an AST service routine
«38 == Part of DPB or table is out of task's address

space
=99 == DIC or DPB size is invalid

Macro Expansion:

AZTXS
JAYTE 115,..,1

3-18

CLEF$

3.11 CLEF$ (CLEAR EVENT FLAG)

The CLEAR EVENT FLAG directive clears an indicated event flag and
reports the flag's polarity before clearing in the DSW, Clearing an
event flag does not cause a significant event.

Macro Call: CLEFS efn
efn = Event flag number

The following symbol is locally defined with its assigned value equal
to the byte offset from the start of the DPB to the DPB element,

C.LEEF = (length 2 bytes) event flag number
DSW return codes:

+00 =- Flag was already clear

+02 == Flag was set

=97 =~ Event flag number <1l or 64

=98 == Part of DPB is out of issuing task's address
space

-99 =~ DIC or DPB sjize is invalid

Macro Expansion:

CLEFS 4
ohYTE 3ler?2
o WIRD 4

CMKTS$

3.12 CMKT$ (CANCEL MARK TIME REQUESTS)

The CANCEL MARK TIME REQUEST directive cancels MARK TIME requests that
have been made by the issuing task. If no parameters are supplied
with the macro call, all MARK TIME requests that have been made by the
issuing task are cancelled. Parameters are specified to cancel only
mark time requests that set an indicated event flag or cause an AST at
an indicated location.

Macro Call: CMKT$ efn,ast

efn = event flag number (0 implies no event flag)
ast = AST service routine entry address

The following symbols are locally defined with their assigned values
equal to the byte offset from the start of the DPB to respective DPB
elements.

C.MKEF = (length 2 bytes) Event flag number
C.MKAE = AST service routine entry address

DSW return codes:

+1 == Successful completion

~90 == No EFN or AST entry specified

=97 == Invalid event flag number (event flag number <1 or
>64)

-98 -=- Part of DPB is out of issuing task's address space

~99 -- DIC or DPB size is invalid

Macro Expansion:

cMCTS 3,CMTAST
«8YTE 27.,%
JWRN S

S W3RN ovVTAST

CSRQ$

3.13 CSRQ$ (CANCEL SCHEDULED REQUESTS)

The CANCEL SCHEDULED REQUESTS directive cancels scheduled requests for
task executions, All requests to run a specified task can be
cancelled, or only those issued for a specified task by another
specified task. If the task to be cancelled is a multiuser task, it
is cancelled only if its TI matches that of the scheduler, This
directive cannot be issued by a background task.

Macro Call: CSRQS ttask,rtask

ttask = Scheduled (requested) task name,
rtask = Scheduler (requester) task name,

The following symbols are locally defined with their assigned values
equal to the byte offset from the start of the DPB to the respective
DPB elements.,

C.SRTN = (length 4 bytes) target task name
C.SRRN = (4) Regquester task name

The issuing task is taken as the scheduler task when not specified.
DSW return codes:

+1 -- Successful completion

=02 == Task not installed

-80 =~- Directive issued by background task

-98 == Part of DPB is out of issuing task's address space
-99 == DIC or DPB size is invalid

Macro Expansion:

CE228 T4s<£1,TASK?
JYTE 5,8
JRANSL /TASKYY/
JFADS2E sTASK2Y

DIRS

3.14 DIRS (DIRECTIVE)

DIRS$ generates an RSX-11lD Executive trap with a predefined DPB,
Macro Call: DIRS adr ,err

Three forms are possible, with the following interpretation:

DIRS$ assumes the address of the DPB or the DPB
itself has already been pushed onto the
stack.,

DIRS$ adr generates the code to push the parameter adr

onto the stack.

DIR$ adr,err generates the code to push the parameter adr
onto the stack, executes an EMT 377,
generates a branch on carry clear to the
address of the branch +4 (or +6 if
necessary) and generates a JSR PC to the err
address.

The argument adr is optional but, if present, must be a valid
assembler source operand used to push the DPB address on the stack.

The argument err is optional. If defined, it must be a valid
assembler destination operand to permit a jump to subroutine (JSR)
instruction to an error handler if the directive is rejected.

Macro Expansion:

nIYs #A
MOV #A,=(5P)
EMr 377

3-22

DECLS

3.15 DECL$ (DECLARE SIGNIFICANT EVENT)

The DECLARE SIGNIFICANT EVENT directive declares a significant event
and, optionally, sets an event flag and reports its state before it
was set., Declaring a significant event causes a scan of the active
task list (ATL). The directive performs four functions:

1. Tests an event flag,

2, Sets the event flag,

3. Declares a significant event,

4, Reports the flag's polarity prior to being set in the
DSW,

Macro Call: DECLS efn

efn = event flag number (an event flag number of 0 implies
no event flag number)

The following symbol is locally defined with its assigned value equal
to the byte offset from the start of the DPB to the DPB element.

D,CLEF = (Length 2 bytes) event flag number
DSW return codes:

+1 =~ No event flag specified

+0 =~- Specified flag was cleared

+2 == Specified flag was set

-97 == Event flag number <1 or >64

~-98 == Part of DPB is out of issuing task's address space
=99 == DIC or DPB size is invalid

Macro Expansion:

DECL® an
«2YTF 35,07
«rIRD 30

3-23

DSBL$S

3.16 DSBL$ (DISABLE)

The DISABLE directive instructs the system to reject future attempts
to run or fix an indicated task (REQUEST, EXECUTE, SCHEDULE, RUN,
SYNCHRONIZE, and FIX-IN-MEMORY directives). It is used effectively to
remove a task from a system without actually deleting its STD entry.
DISABLE cannot be issued by a background task. If the task to be
disabled is active, it is not disabled until it becomes inactive,

When a task is installed into a system, it is not disabled, i.e., it
is runnable.

Macro Call: DSBL$ task
task = Task name,

The following symbol is locally defined with its assigned value equal
to the byte offset from the start of the DPB to the DPB element,

D.SBTN = (Length 4 bytes) task name
DSW return codes:

+1 -~ Successful completion
-02 =- Task not installed
~-08 == Task is already disabled
=10 =-- Task is not to be disabled
=80 == Directive issued by a background task
-98 == Part of DPB is out of issuing task's address space
-99 —- DIC ox DPB size is invalid

Macro Expansion:

NS4LS ety
.EYTF Q’-.OS
fSALSP /DITTY/

DSCP$

3.17 DSCP$ (DISABLE CHECKPOINTING)

The DISABLE CHECKPOINTING directive disables the checkpointability of
an issuing task that has been task built as being checkpointable,
This directive cannot be issued by a background task.

When a checkpointable task's execution is started, checkpointing is
not disabled, i.e., the task can be checkpointed.

Macro Call: DSCP$
DSW return codes:

+1 -- Successful completion)

-08 == Task checkpointing already disabled

-10 == Issuing task not installed as checkpointable

-80 == Directive issued by a background task

-98 ~~ Part of DPB is out of issuing task's address space
-99 -- DIC or DPB size is invalid

Macro Expansion:

ENARS

3.18 ENARS (ENABLE AST RECOGNITION)

The ENABLE AST RECOGNITION directive allows recognition of
asynchronous system traps for the issuing task, i.e., nullifies an
INHIBIT AST RECOGNITION directive. AST's that have occurred whilce
recognition was inhibited are effected at issuance., When a task's
execution is started, AST recognition is not disabled. ASTs are
described in Section 4.2, '

AST service routines must save and restore all registers used.
Macro Call: ENARS
DSW return codes:
+1 == Successful completion
-08 == AST recognition not inhibited
-98 == Part of DPB is out of issuing task's address space
-99 == DIC or DPB size is invalid

Macro Expansion:

FNARS
LRYTE 171..1

ENBLS

3.19 ENBL$ (ENABLE)

This directive instructs the system to make an indicated disabled task
runnable, i.e., to nullify a DISABLE directive. ENABLE cannot be
issued by a background task.

When a task is installed into a system, it is not disabled, i.e., it
is runnable,

Macro Call: ENBLS$ task
task = Task nane,

The following symbol is locally defined with its assigned value equal
to the byte offset from the start of the DPB to the DPB element.

E.NBTN = (Length 4 bytes) Task name
DSW return codes:

+l -~ Successful completion

=02 == Task not installed (No STD entry found)

-08 == Task is not disabled

-80 == Directive issued by a background task

-98 ~-- Part of DPB is out of issuing task's address space
~99 =~ DIC or DPB size is invalid

Macro Expansion:
FR3Ls TrRES

YTE V2,,%
JHANRT /TAZKS)Y/

3-27

ENCPS

3.20 ENCP$ (ENABLE CHECKPOINTING)

The ENABLE CHECKPOINTING directive makes the issuing task
checkpointable after its checkpointability has been disabled, i.e., to
nullify a DISABLE CHECKPOINTING directive, Checkpoint cannot be
enabled for a task that was not built as being checkpointable.

Macro Call: ENCP$
DSW return codes:
+1 - Successful completion
-08 == Checkpointing not disabled
~-80 -~ Directive issued by background task
-98 «~- Part of DPB is out of issuing task's address space
-99 - DIC or DPB size is invalid

Macro Expansion:

EMCPS
JEYTE T .0t

EXECS

3.21 EXEC$ (EXECUTE)

The EXECUTE directive activates a task only if the memory required for
its execution is presently available. It cannot be issued by a
background task.

Macro Call: EXEC$ task,part,pri,ugc,upc
task = Task name,

part = Partition name,

pri = Priority,

ugce = UIC group code,

upc = UIC programmer code,

A partition cannot be specified for a multiuser task; i.e., the task
must be requested to execute in its default partition,

The following symbols are locally defined with their assigned values
equal to the byte offset from the start of the DPB to the respective
DPB elements.

E.XCTN (length 4 bytes) task name

E.XCPN = (4) Partition name
E.XCPR = (2) Priority

E.XCGC = (1) UIC group code
E.XCPC = (1) UIC programmer code

DSW return codes:

+1 =~ Successful completion ‘
=01 -- Insufficient pool nodes available to requester
~-02 -=- Task not installed
=03 =-- No memory for execution
=06 -- Handler task not resident to load task
=07 =-- Task is active
-08 -- Task is disabled
-80 -~ Directive issued by background task
~91 == invalid UIC
=94 -~ Partition not in system
=95 -~ Invalid Priority specified (<0 or >250)
-98 -- Part of DPB is out of issuing task's address space
-99 -=- DIC or DPB size is invalid

Macro Expansion:

EXFCS MY 1ASK,PART, §0,2072,297
soYTE 13,,7

JFADSQ /MYTASK/

JRANKA /PART/

L L

.S YTE 202,277

EXIFS$

3.22 EXIF$ (EXITIF)

The EXITIF directive terminates the execution of the issuing task if
an indicated event flag is NOT set, Control is returned if the
specified event flag is set.

Macro Call: EXIF$ efn
efn = event flag number

The following symbol is locally defined with its assigned value equal
to the byte offset from the start of the DPB to the DPB element.

E.XFEF = (length 2 bytes) event flag number

DSW return codes:

+l == Indicated event flag cleared, task exited
+2 -- Indicated event flag set, task not exited
-97 == No event flag specified in mask word(s),
or invalid event flag number (event flag number <1
or >64) :
~98 == Part of DPB is out of issuing task's address space
=99 ~= DIC or DPB size is invalid

Macro Expansion:

EXIFE 58
.RYTE 5307‘4
JNIRD 5

EXITS

3.23 EXIT$ (TASK EXIT)

The TASK EXIT directive terminates the execution of the issuing task.
Macro Call: EXITS
DSW return codes:
The DSW return codes can be tested only if the EXIT$ directive fails,
+1 - Successful completion
-98 == Part of DPB is out of issuing task's address space
-99 == DIC or DPB size is invalid

Macro Expansion:

EXTTS
«3YTE 51.01

w
1

31

FIX$

3.24 FIX$ (FIX IN MEMORY)

The FIX IN MEMORY directive fixes an inactive, installed task in
memory. Once fixed in memory, the task cannot be checkpointed, and it
does not relinquish its memory space until removed by the UNFIX
directive,

The use of this directive is desirable when the timing of a task's
execution is critical, or when it is requested very frequently. when
fixed, a fresh copy of the task is not 1loaded for each request,
FIX~IN-MEMORY may not be issued by a background task.

Macro Call: FIX$ task
task = Task name,

The following symbol is locally defined with its assigned value equal
to the byte offset from the start of the DPB to the DPB element.

F,IXTN = (length 4 bytes) task name
DSW return codes:

+]1 == Successful completion
=01 -~ Insufficient pool nodes available to requester
-02 ~- Task not installed
<03 ~=- Partition too small for task
-~06 == Handler task not resident to load task
=07 -- Task is active
-08 == Task is disabled
=09 -~ Task is already fixed
=10 -~ Task not fixable
=11 -- Task is checkpointable
~80 ~-=- Directive issued by background task
~98 -~ Part of DPB is out of issuing task's address space
=99 -~ DIC or DPB size is invalid.

Macro Expansion:

FIX$ TASKD
«NYTE AS,,3
SFADSA /TASK2y

GCOMS$

3.25 GCOMS$ (GET COMMON BLOCK PARAMETERS)

The GET COMMON BLOCK PARAMETERS directive f£ills an indicated 8-word
buffer with common block parameters.,

The 8-word buffer is filled as follows:

wd.
wd.
wd.
wd.
wd.
wd.
wd.
wd.

00
01
02

Macro Call:

1/64th base address of common block
1/64th size of common block
Creation year

Creation month

Creation day

Owner identification code (UIC)
Starting ASR (APR)

Common block flags byte (low order)
and status byte (high order)

GCOM$ blknam,bufadr

blknam = Name of the common block
bufadr = Adress of 8-word buffer

The following symbols are locally defined with their assigned
equal to the byte offset from the start of the DPB element,

value

G.COBN = (4) Common block name
G.COBA - (2) Buffer address
The following offsets are assigned relative to the start of the common
block parameters buffer,
G.COBB - (2) 1/64 common block base address
G.COBS - (2) 1/64 common block size
G.COYR -~ (2) Creation year
G.COMO - (2) Creation month and day
G.COSA - (2) Status and starting APR
G.COUI - (2) Owner identification (UIC)
G.,CQTP - (2) TPD
G.COFW -~ (2) Common block flags byte address

The flags byte and
flags byte is in the low-order position and the status byte is in the
high-order position,

the status byte are in the same word (G.COFW).

The following bits are defined for the flags byte,

Bit

> WO

Meaning When Set

Library or common area loaded
1 =library, 0 = common area
GCA is position independent
Nonowner has write access
Nonowner has read access

3-33

The

The following values are defined for the status byte.

Value

0
2
4
6
52
54
56

DSW Status:

+1
-02
~-98

-99

Macro Expansion:

GCIOMS
«BYTE
«RADSY
QV'ORD

Meaning

Global area not in use
Load request queued
Load request succeeded
Load request failed
Record request queued
Record request succeeded
Record request failed

Successful completion

Indicated common block not in system

Part of DPB or buffer is out of task's address
space

DIC or DPB size is invalid

SYSRES,COMBUF
£7,,4
/SYSRES/
COMRUF

3-34

GLUNS

3.26 GLUN$ (GET LUN INFORMATION)

The GET LUN INFORMATION directive fills a 6-word buffer with
information about a physical unit to which the specified logical unit
is assigned for the requesting task. If requests to the physical unit
have been redirected to another unit, the information returned
describes the effective assignment.

The 6-word buffer of LUN information comprises the first six words of
the PUD., See Appendix A,

Macro Call: GLUNS$ lun,bufadr

lun
bufadr

Logical unit number
Address of 6-word buffer which holds LUN
information

The following symbols are locally defined with their assigned values
equal to the byte offset from the start of the DPB to the respective
DPB elements.

G,LULU - (length 2 bytes) Logical unit number
G.LUBA - (2) Buffer address

DSW return codes:

+1 - Successful completion
=05 == Unassigned LUN
=96 == Invalid logical unit number
-98 =~ Part of DPB or buffer is out of task's address
space
=99 - DIC or DPB size is invalid

Macro Expansion:

sLOINS 3, LUNAUF
o"YTE 33

« 47RO 5

DL D] LAINAYE

GMCRS$

3.27 GMCR$ (GET MCR COMMAND LINE)

The GET MCR COMMAND LINE directive instructs the system to transfer a
command line to the issuing task. The issuing task is an MCR function
task requested by the MCR dispatcher task. The command line can be 1
through 80 bytes in length, It was placed in a list in SCOM by the
MCR dispatcher. The GMCR$ macro call should be issued as soon as
possible by MCR function tasks (...xxx) in order to free pool space.

If the command line is terminated by a carriage return, a flag is set
in the task's header to cause the MCR dispatcher task to be requested
upon exit.

The command line is read into a buffer that is picked from the pool by
the MCR dispatcher task. It is linked into the MCR queue or the batch
queue by the batch processor.

The format of the buffer is a standard MCR buffer,

The DSW contains the character count for the command 1line excluding
the carriage control characters if the directive executes
successfully.

Macro Call: GMCRS

The following symbol is locally defined with its assigned value equal
to the byte offset from the start of the DPB to the respective DPB
element,

G.MCRB = (Length 80 bytes) MCR line buffer
DSW return codes.
+nn -- Character count
-80 -- No buffer exists or illegal task name
-98 -- Part of DPB or buffer is out of issuing task's

address space
=99 ~~ DIC or DPB size is invalid

NOTE

No "$S" macro form exists for this
directive,

Macro Expansion:

sMIRS
«3YTE 127..41,

w
[}

36

GPRTS

3.28 GPRTS$ (GET PARTITION PARAMETERS)

The GET PARTITION PARAMETERS directive £ills an indicated 3-word
buffer with partition parameters, If a partition is not specified,
the partition of the issuing task is assumed,

The 3-word buffer is filled as follows:
Wwd., 00 - 1/64th base address of partition

Wd. 01 =~ 1/64th size of partition
Wd., 02 =~- partition flags byte

Macro call: GPRT$ prtnam,bufadr

prtnam = Partition name
bufadr = Address of buffer

The following symbols are locally defined with their assigned value
equal to the byte offset from the start of the DPB to the DPB element.

G.PRPN - (4) Partition name
G.PRBA - (2) Buffer address

The following offsets are assigned relative to the start of the
partition parameters buffer:

G.,PRPB ~ (2) 1/64 partition base address
G.PRPS - (2) 1/64 partition size
G.PRFW - (2) Partition flags byte

The following bits are defined for the flags byte,

Bit Meaning When Set
0 User-controlled partition
1 Occupied user-controlled partition
2 System-controlled partition
3 Active system-controlled partition

DSW:
+0 -- Successful completion
-02 =-- Indicated partition not in system
-98 == Part of DPB or buffer is out of task's address
space
=99 ~- DIC or DPB size is invalid

Macro Expansion:

GFTS GENFL,PARBUF
RYTFE 68,4

JHADSY /GENRL/

o AR PARAUF

3-37

GSSW$

3.29 GSSW$ (GET SENSE SWITCHES)

This directive instructs the system to get the status of the console
sense switches and store it in the issuing task's directive status

word.,

Macro call: GSSW$

DSW Codes:

Successful completion is indicated if CC-C is clear. Switch
values will be found in the DSW, Unsuccessful completion is
indicated by CC~-C set and one of the following codes in the

DSW,

-98 -~ Part of DPB is out of issuing task's address space
-99 - DIC or DPB size is invalid

Macro Expansion:

GSSWS
+BYTE 125.,1

3-38

GTIMS

3.30 GTIM$ (GET TIME PARAMETERS)

The GET TIME PARAMETERS directive fills an indicated 8-word buffer
with current time and date parameters, All values are in binary. The
8-word buffer is filled as follows,

wWb. O - Year (since 1900),

Wb. 1 == Month of year,

WD, 2 - Day of month,

WD, 3 - Hour of day,

WD, 4 - Minute of hour,

WD. 5 - Second of minute,

WD, 6 -= Tick of second,

Wb, 7 - Ticks per second (depends on frequency of

clock).
Macro Call: GTIM$ bufadr
bufadr = Address of 8-word buffer

The following symbol is locally defined with its assigned value equal
to the byte offset from the start of the DPB to the DPB element.

G.TIBA =-(length 2 bytes) Buffer address

The following offsets are assigned relative to the start of the time
parameters buffer,

G.TIYR = (2) Year

G.TIMO = (2) Month

G.TIDA = (2) Day

G.TIHR = (2) Hour

G.TIMI = (2) Minute

G.TISC = (2) Second

G.TICT = (2) Clock tick

G.TICP = (2) Clock ticks per second

DSW return codes:

+l == Successful completion

=98 == Part of DPB or buffer is out of task's address
space

99 ~-- DIC or DPB size is invalid

Macro Expansion:
GTIMS TIM3LF

."YTI’: ;‘:1..?
JWORN TIMRUF -

GTSK$

3.31 GTSK$ (GET TASK PARAMETERS)

The GET TASK PARAMETERS directive fills an indicated 1l6-word
with parameters relating to the issuing task.

The l6-word buffer is filled as follows:

WD, 00
wD. 01
WD, 02
WD, 03
WD. 04

wD. 05

WD, 06
WD, 07

WD, 10
WD, 11
WD. 12
WD, 13
WD, 14
WD, 15
WD, 16
WD, 17

-~ 1Issuing task's name (first half),

-~ 1Issuing task's name (second half),

-- Partition name (first half),

-= Partition name (second half),

-- Name of the task to which the ATL
node is accounted; usually task name of
requester of issuing task (first half),

-= Name of the task to which the ATL node is

accounted; usually task name of requester
of issuing task (second half),

== Run priority

-=- User identification code (UIC for file
control services)

=~ Number of logical I/0 units (LUN's)

buffer

-~ Machine type indicator e.g., 45, for PDP-~11/45

-- STD flags words,
-= [Address of task SST vector tables],

-~ [Size of task SST vector table (in words)l,

~-- Zero (reserved)
== Zero (reserved)
-- Zero (reserved)

Macro Call: GTSK$ bufadr

bufadr

= Address of a l6-word buffer,

The following symbol is locally defined with its assigned value equal
to the byte offset from the start of the DPB to the DPB element,

G.TSBA

= (length 2 bytes) Buffer Address,

The following offsets are assigned relative to the start of the
parameters buffer:

G.TSTN
G.TSPN
G.TSRN
G.TSPR
G.TSGC
G.TSPC
G.TSNL
G.TSMT
G.TSFW
G.TSVA
G.TSVL

(4) Task name,

(4) Partition name,

(4) Name of task's requester,
= (2) Priority,

(1) UIC Group code

(1) UIC Programmer code

(2) Number of logical units,

(2) Machine type,

(2) sSTD flags word

(2) Task's SST vector address

(2) Task's SST vector (word) length

task

The following bits are defined for the flags word,

Bit Meaning When Set
0 STD is 24 words long rather than 16 words long
1 Task is fixed in memory
3 Task is disabled
4 Task is being fixed in memory
6 Task is multiuser
7 Task is privileged
8 Network attribute bit
9 Restricted usage level one (background batch jobs)
10 Regtricted usage level two
11 Task cannot be aborted
12 Task cannot be disabled
13 Task cannot be fixed in memory
14 Task cannot be checkpointed

DSW:

+01 <=~ Successful completion

-98 == Part of DPB or buffer is out of task's address
space

=99 == DIC or DPB size is invalid

Macro Expansion:

LTSKR TSKRIF
.BYfE “3.02
Jenan TIKRUF

IHARS

3.32 IHARS (INHIBIT AST RECOGNITION)

The INHIBIT AST RECOGNITION directive inhibits recognition of
agsynchronous system traps for the issuing task. The AST's are queued
as they occur and are effected when AST recognition is enabled. There
is an implied AST inhibit whenever an AST service routine is
executing. When a task's execution is started, AST recognition is not
disabled., ASTs are described in Section 4.2,

It is the recognition only which is inhibited. The ASTs are still
queued by the system. They are queued FIFO and occur in that order.

AST service routines must save and restore any registers used,

Macro Call: IHARS
DSW return codes:

+]l == Successful completion
=08 == AST recognition already inhibited
-98 == Part of DPB is out of issuing task's address space
=99 ~~ DIC or DPB size is invalid

Macro Expansion:

IHARS
JBYTE 99,1

3

42

MRKT$

3.33 MRKT$ (MARK TIME)

The MARK TIME directive declares a significant event after an
indicated time interval. The interval begins at issuance of the
directive, If an event flag is specified, it is cleared at issuance
and set at the time of the significant event, If an AST entry point
is specified, an asynchronous system trap occurs at the time of the
significant event, At the AST, the task's PS, PC, virtual zero
(directive status), and the event flag mask are pushed onto the task's
(user) stack. If neither an event flag number nor an AST service
entry point is specified, the significant event still occurs after the
indicated time interval. ASTs are described in Section 4.2.

Macro Call: MRKT$ efn,timmag,timunit,ast

efn = %vgnt flag number (0 implies no event
lag)
timmag = Timg interval magnitude; i.e., how many time
interval units
timunit = Time interval unit
1 = clock ticks
2 = gseconds
3 = minutes
4 = hours
ast = AST entry address

The following symbols are locally defined with their assigned values
equal to the byte offset from the start of the DPB to the respective
DPB elements,

M,KTEF = (Length 2 bytes) event flag
M,KTMG = (2) time magnitude

MKTUN = (2) Time unit

M.KTAE = (2) AST entry address

DSW return codes:

+l1 == Successful completion

=01 == Unavailable pool node

=93 «= Invalid time specified

=97 == 1Invalid event flag number (event flag number <1 or
264)

=98 == Part of DPB is out of issuing task's address space

=99 == DIC or DPB size is invalid

Macro Expansion:

MRKTS 4,27,2,MTASY
BYTE 23,09

+ #ORND 4
JWORD 2n
JWIRD 2

JRIROD MTAST

3-43

Qlo$

3.34 QIO0$ (QUEUE I1/0)

The QUEUE 1/0 directive places an I/0 request for an indicated device
in a queue of priority-ordered requests for that device unit. The
device unit is specified as a logical unit number (LUN),

Normally, a significant event is declared by handler tasks (via system
subroutines) wupon I/0 completion, If an event flag is specified, it
is cleared when the request is queued, and 8set at the significant
event. The I/O Status block is also cleared when the request is
queued.

If an AST service entry point is specified, the AST occurs upon I/O
completion with the task's PS, PC, virtual zero (directive status),
and the address of the I/0 status block is pushed onto the task's
(user) stack. Refer to Section 4,2,

Macro Call: QIOS$ fnc,lun,efn,pri,iost,ast,prmlst

fnc = I/0 function code (see Appendix C for symbols)
lun = Logical unit number
efn = Event flag number (0 implies no event flag)
It can be either global or local.
pri = Priority
iost = Address of I/0O status block
ast = Address of I/O done AST entry point
prmlst = Parameter list of the form <Pl,....,P6> .

Three error indicators are used in conjunction with QIOS:
1, The C bit,
2., The directive status word,
3. The I/0 status block.

The C bit is set to indicate that the format of the macro call was
incorrect; i.e,, it indicates that the Executive rejected the macro
call because it resulted in an incorrect DPB, If the C bit is clear,
format of the macro call is correct, but the I/0 has not necessarily
been successful. '

The directive status word can be tested to determine whether the
Executive successfully queued the I/O request. It is tested following
the WISE$ macro call associated with the QIO$., If the request was not
queued, the directive status word contains one of the error codes
listed below,

The I/0 status block can be tested upon I/0 completion to determine
the success or failure of the actual transfer. The format of the I/0
status block is illustrated below, I/0 status error codes are
provided in Appendix C.

The first call of this macro defines the following symbols and
assigns, as values, their byte offset from the beginning of the DPB,

Q.IOFN = (length 2 bytes) I/O function

Q.IOLU = (2) Logical unit number

Q.,IOCEF = (1) Event flag number

Q.IOPR = (1) Priority

Q.,I0OSB = (2) Address of I/O status block

Q.IOAE = (2) Address of I/O done AST entry point
Q.IOPL = (l12) Parameter list (up to 6 words).

DSW return codes:

+1 - Successful completion
-01 -- Unavailable pool node for request queue
-05 == Unassigned LUN
-06 == Handler task not resident
-95 -- Invalid Priority (>250)
-96 == Invalid LUN
=97 - Invalid event flag number (<1 or >64)
~-98 =~ Part of DPB is out of issuing task's address space
-99 == DIC or DPB size is invalid

Figure 3-1 illustrates the content of the I/O status block.

Byte 1 Byte 0
Word 0 TTY Termination Success Indicator
Character
OR

CTRL 2 (EOF) Indicator

Word 1 Number of Characters Transmitted

Figure 3-1
I/0 Status Block

Word 0 can contain two l-byte entries (TTY termination character and
success indicator) or it can contain a =10 to indicate CTRL Z (EOF).
If two entries are placed in word 0, the success indicator contains a
1 to indicate that the operation was successful or an error code, as
described in Appendix C,.

The TTY termination character is used by teletype handler tasks and
similar handler tasks (e.g., DECwriter) and can be one of the
following:

15(8) = CR,
33(8) = ALT,
0 = maximum number of characters received.,

Word 1 contains the number of characters transmitted to or from the
I/0 device,

3-45

Macro Expansion:

AI0s 1J.Wva,5,9,30,1088,Q10A8T,«BUF,512,47>
«JYTE 1 3334ARG
«WJIRN I0,4vE

RbLD) 3
«BYTE 5,59
«NORD 1088
«WIRN QIJAST
« 40RN BUF
«<WORY $12

< NORD L

3-46

QliOwW$

3.35 QIOWS (QUEUE I/O AND WAIT)

The QUEUE I/0 AND WAIT directive performs the functions of both QUEUE
I/0 and WAIT FOR SINGLE EVENT FLAG (WTSES$). The format of the call
and other related information is identical with that of QIO$, with the
following exception: if event flag 0 is specified, the queue I/0 is
performed, but the wait is not performed,

The user should check the C bit and the I/0O status block immediately
after the macro call.

Macro Call: QIOWS
DSW return codes:

All those returned for QIO
=97 == Event flag >64

Macro Expansion:

ATIAS 17.7LR2.5,3%,279,10881,RDAST, <INBUF,SIZ2E>
2BYTE 3, 888ARG

<HIRN I0.RLH

« WARN 9

«RYTE 3,220

«¥IRD 1989

«WIRD RNAST

e 473N INBUF

« 49R0 L3 ¥4

RDAF$

3.36 RDAFS$ (READ ALL FLAGS)

The READ ALL FLAGS directive reads all 64 event flags for the issuing
task and records their polarities in a 64-bit (4-word) buffer,

Macro Call: RDAFS$S bufadr
bufadr = Address of 4-word buffer.

The following symbol is locally defined with its assigned value equal
to the byte offset from the start of the DPB to the DPB element,

R.DABA = (Length 2 bytes) buffer address
DSW return codes:
+1 == Successful completion

-98 == Part of DPB or buffer is out of issuing task's

address space
-99 == DIC or DPB size is invalid

Macro Expansion:

RLAFS FLAGS
JEYTE 39,2
L+DAR FLAGS

3-48

RDEF$

3.37 RDEF$ (READ EVENT FLAG)

The READ EVENT FLAG directive tests an indicated event flag and
reports its polarity in the DSW,

Macro Call: RDEFS$ efn
efn = Event flag number

The following symbol is locally defined with its assigned value egqual
to the byte offset from the start of the DPB to the DPB element.

R.DEEF = (Length 2 bytes) event flag number
DSW return codes:
+0 ~-- Flag was cleared
+2 - Flag was set
=97 == Event flag number <1 or >64
-98 == Part of DPB is out of issuing task's address space
-99 ~- DIC or DPB size is invalid

Macro Expansion:

RCEFS 5
LRYTFE 37e22
L NORN 6

3-49

RQST$

3.38 RQST$ (REQUEST)

The REQUEST directive activates a task, i.e., enables and runs the
task contingent wupon priority and memory availability. If the task
cannot be run immediately, the request is retained so that the task
exacutes when conditions change, i.e., when more memory is availabla.
It cannot be issued by a background task.

Macro call: RQST$ task,part,pri,ugc,upc

task = Tagk name,

part = Partition name,

pri = Priority

uge = UIC group code,

upc = UIC programmer code,

A partition cannot be specified for a multiuser task; i.e., the task
must be requested to execute in its default partition.

The following symbols are locally defined with their assigned values
equal to the byte offset from the start of the DPB to the respective
DPB elements.

R.QSTN = (length 4 bytes) task name in radix 50
R.QSPN = (4) Partition name

R.QSPR = (2) Priority

R.,QSGC = (1) UIC group code

R.,QSPC = (1) UIC programmer code

DSW return codes:

+1 =-- Successful completion

=01 == Insufficient pool nodes available to requester
=02 == Task not installed

=03 -- Partition too small for task

=06 -- Handler task not resident to load task

-07 == Task is active

-08 == Task is disabled

-80 -~ Directive issued by background task

~9]1 -= Invalid UIC

=94 -~ Partition not in system (no TPD entry found)
=95 -~ Invalid priority specified (<0 or >250)

-98 == Part of DPB is out of issuing task's address space
=99 -~ DIC or DPB size is invalid

Macro Expansion:

ROSTS MYTASY,GEMRL,S,102,87
“EYTE 11,,7

,FANSH /MYTASK/

«RADS? /RENZL/

L, ¥RN S

EYTE 52,127

RSUMS$

3.39 RSUM$ (RESUME)

The RESUME directive instructs the system to resume the execution of a
task that has issued a suspend directive. If the task being resumed
is a multiuser task, it is resumed only if its TI matches that of the
task issuing the RESUME directive. The RESUME directive cannot be
issued by a background task,

NOTE

It is possible for a task to
RESUME itself using the
asynchronous trap feature,

Macro Call: RSUMS$ task

task = Task name,

The following symbol is defined locally with its assigned value equal
to the byte offset from the start of the DPB to the DPB element,

R,SUTN = (length 4 bytes) task name
DSW return codes:

4+l =~= Successful completion

=02 == Task not installed

-07 == Task not active

-08 =~ Task not suspended

-80 =~- Directive issued by background task

-98 == Part of DPB is out of issuing task's address space
~99 == DIC or DPB size is invalid

Macro Expansion:

REUMS TASKY
«PYTE 27.,3
SRENSA /TASKS/

3-51

RUNS

3.40 RUNS$ (RUN)

The RUN directive causes a task to be requested at a specified future
time, and optionally repeated periodically. The schedule time is
specified in terms of delta time from issuance, The RUN directive
cannot be issued by a background task.

Macro Call: RUNS$ tsk,prt,pri,ugc,upc,smg,snt,rmg,rnt

tsk = Task name,
prt = Partition name,
pri = Priority
ugc = UIC group code
upc = UIC programmer code,
smg = Schedule delta magnitude i.,e., how many schedule
units,
snt = Schedule delta unit,
1= clock ticks
2= seconds
3= minutes
4= hours
rmg = Reschedule interval magnitude,
rnt = Reschedule interval unit

A partition cannot be specified for a multiuser task; i.e., the task
must be requested to execute in its default partition.

The following symbols are locally defined with their assigned values
equal to the byte offset from the start of the DPB to the respective
DPB elements.

R.UNTN = (length 4 bytes) task name
R.UNPN = (4) Partition name

R.UNPR = (2) Priority

R.UNGC = (1) UIC group

R.UNPC = (1) UIC programmer

R.UNSM = (2) Schedule magnitude
R.,UNSU = (2) Schedule unit

R,UNRM = (2) Reschedule magnitude
R.,UNRU = (2) Reschedule unit

DSW return codes:

+1 == Successful completion

=01 -- Insufficient pool nodes available to requester
=02 =-- Task not installed

-03 -=- Partition too small for task

-80 -- Directive issued by background task

=91 -- 1Invalid UIC

=93 -=- 1Invalid time parameter specified

=94 -~ Partition not in system

~95 == 1Invalid priority specified (<0 or >250)

-98 -=- Part of DPB is out of issuing task's address space
=99 -~ DIC or DPB size is invalid

3-52

Macro Expansion:

RUNS "GIT,M0SPAR,25,3%1,47,10,3,15,3
SRYTE 17.,11,

.FADSe /DALYy

RANSE /MOSPAR/

<WIARN ’s
«w IR 19
L WIRD 3
«WIRD 1s
«WIARN 3

3-53

SCHD$

3.41 SCHDS$ (SCHEDULE)

The SCHEDULE directive causes a task to be requested at a specified
future time, and optionally, repeated periodically. The schedule time
is specified in terms of absolute time-of-day. The SCHEDULE, RUN, and
SYNC directives are the same, differing only in the form in which the
schedule data is presented., SCHEDULE cannot be issued by a background
task.

Macro Call: SCHD$ tsk,prt,pri,ugc,upc,hrs,min,sec,tck,rmag,rnt

tsk = Task name,

prt = Partition name,

pri = Priority,

ugc = UIC group code,

upc = UIC programmer code,

hrs = Schedule hours,

min = Schedule minutes,

sec = Schedule seconds,

tck = Schedule clock ticks,
rmag = Reschedule interval magnitude (how many of the units

defined by rnt),
rnt = Reschedule interval unit,

1l = clock ticks
2 = geconds

3 = minutes

4 = hours

A partition cannot be specified for a multiuser task; i.e., the task
must be requested to execute in 4its default partition,

The following symbols are locally defined with their assigned values
equal to the byte offset from the start of the DPB to the respective
DPB elements.

S.CHTN = (length 4 bytes) Task name
S.CHPN = (4) Partition name
S.CHPR = (2) Priority

S.CHGC = (1) UIC group

S.CHPC = (1) UIC programmer
S.CHHR = (2) Hours

S.CHMI = (2) Minutes

S.CHSC = (2) Seconds

S.CHCT = (2) Clock ticks

S,CHRM = (2) Reschedule magnitude
S.CHRU = (2) Reschedule unit

DSW return codes:

+]1 ~= Successful completion

=01 == Insufficient pool nodes available to requester
=02 == Task not installed

=03 =~ Partition too small for task

=80 ~-= Directive issued by background task

=9]1 == Invalid UIC

=93 == Invalid time parameter specified

=94 == Partition not in system

=95 == Invalid priority specified (<0 or >250)

-98 =~ Part of DPB is out of issuing task's address space
=99 == DIC or DPB size is invalid

3-54

Macro Expansions

SCHDS POIL,CIORE,2049,40,40,1M,30,00,04,5,3
WBYTE 15.,,13,

«RANSY /POOL/

«PANSE /CQORE/

«WIRD 2223

«BYTE 42,42

L D] 12

< KORD 32
JWORN k]
L ¥(IRN AR
«#JR’N)
L WORN 3

3-55

SETF$

3.42 SETF$ (SET EVENT FLAG)

The SET EVENT FLAG directive sets an indicated event flag and reports
the flag's polarity before setting in the DSW. Setting an event flag
does not cause an ATL scan,

Macro Call: SETF$ efn
efn = event flag number

The following symbol is locally defined with its assigned value equal
to the byte offset from the start of the DPB to the DPB element.

S.ETEF = (Length 2 bytes) event flag number
DSW:

+0 - Flag was cleared

+2 -- Flag was set

-97 == Event flag number {1 or >64

-98 -~ Part of DPB is out of issuing task's address space
=99 -- DIC or DPB size is invalid

NOTE

It is recommended that the wuser avoid
specifying event flag numbers from 59 to
64, which are reserved for RSX-11D.

Macro Expansion:

SETFS 33
+EYTE 33,,7
«#0ORD 13

3-56

SFPA$

3.43 SFPA$ (SPECIFY FLOATING POINT EXCEPTION AST)

The SPECIFY FLOATING POINT EXCEPTION AST directive instructs the
system to record one of the following two items:

1. That floating point exception ASTs for the issuing
task are desired and where control 1is to be
transferred when a floating point exception AST
occurs,

2. The floating point exception ASTs for the issuing
task are no longer desired.

When an AST service entry point is specified, future floating point
exception ASTs occur for the issuing task, and control is transferred
to the indicated location whenever a floating point exception AST
occurs,

When an AST service entry point is not specified (zero in the second
DPB word), future floating point exception ASTs do not occur until an
AST entry point is specified again., ASTs are described in Section
4.2,
If SFPA$ is not used, no AST is queued.
AST service routines must save and restore all registers used.

Macro Call: SFPAS$ ast

ast = AST service entry address,

The following symbol is locally defined with its assigned value equal
to the byte offset from the start of the DPB to the DPB element,

S.FPAE = (Length 2 bytes) AST entry address
DSW return codes:

+1 -- Sucessful completion
=01 =-- No pool node available
-08 —- AST entry already un-specified
-80 ==~ Directive issued during AST service
=98 == Part of DPB is out of issuing task's address space
=99 -- DIC or DPB size is invalid

NOTE
This directive applies only for
PDP-11/45, It has no effect on
PDP~11/40, For the PDP-11/40, refer to

SVTKS.

Macro Expansion:

SF2A% FPAST
CRYTE 111.,2
JNIRD FPAST

SPND$

3.44° SPND$ (SUSPEND)

The SUSPEND directive suspends the execution of the issuing task. A
task can suspend only itself and not another task. The SUSPEND
directive cannot be issued by a background task.

Macro Call: SPND$

DSW return codes:

+2 ==
-8 ~-
“98 ==

Hacro Expansion:

SPNDS
SBYTE

Successful completion

Directive issued by background task

Part of DPB is out of issuing task's address space
DIC or DPB size is invalid

45,1

SPRAS

3.45 SPRA$ (SPECIFY POWER RECOVERY AST)

The SPECIFY POWER RECOVERY AST directive instructs the system to
record either of the following:

1. That power recovery AST's for the issuing task are
desired, and where control is to be transferred when
a power recovery AST occurs, or

2, That power recovery AST's for the issuing task are
no longer desired.

When an AST service routine entry point 1is specified, future power
recovery ASTs occur for the issuing task, and control is transferred
to the indicated location whenever a power recovery occurs, When an
AST service entry point is not specified (zero in the second DPB
word) , future power recovery ASTs do not occur until an AST entry
point is specified again. ASTs are described in Section 4.2,

If SPRAS is not used, no AST is queued.
AST service routines must save and restore all registers used.
Macro Call: SPRAS ast

ast = AST service routine entry address or zeros if none is
desired.

The following symbol is locally defined with its assigned value equal
to the offset from the start of the DPB to the DPB element,

S.PRAE = (Length 2 bytes) AST entry address
DSW return codes:

+]l == Successful completion

=01 == No pool node available

~08 -= AST entry already unspecified

=80 == Directive issued during AST service

~98 ~- Part of DPB is out of issuing task's address space
~-99 ==~ DIC or DPB size is invalid

Macro Expansion:

SPIAS PWRAST
«3YTE 123,,2
«WIRD PHRAST

SRDAS$

3.46 SRDAS$ (SPECIFY RECEIVE AST)

The SPECIFY RECEIVE AST directive allows a task to determine whether
another task has sent data to it. when the sending of data is
detected, the AST is executed., Use of this directive eliminates the
need for the receiving. task to check a buffer constantly for the
presence of data. ASTs are described in Section 4.2.

Macro Call: SRDAS ast

ast = AST service entry point, If ast is specified, receive
occurs for the issuing task and control is transferred
to the entry point, If ast is not specified, ASTs do
not occur.

The following symbol is defined locally with its assigned value equal
to the byte offset from the start of the DPB,

S.RDAE = AST entry address (two bytes)
DSW return codes:

+1 =~- Successful completion
-0l == No pool node available ;
=08 ==~ AST entry already unspecified
-80 =~ Directive issued during AST service
-98 =~ Part of DPB is out of issuing task's address space
~-99 =~ DIC or DPB size is invalid

AST service routines must save and restore all registers used.

Macro Expansion:

SROAS RCVAST
BYTE 127,,2
JWIRN FCVAST

w
!

60

SVDB$

3.47 SVDBS$ (SPECIFY SST VECTOR TABLE FOR DEBUGGING AID)

The SPECIFY SST VECTOR TABLE FOR DEBUGGING AID directive specifies the
virtual address of a table of synchronous system trap service routine
entry points for use by an intratask debugging aid (e.g., ODT). SSTs
are described in Section 4,2,

When both the issuing task table and the ODT exist and both contain an
entry for a particular trap, the ODT table takes precedence.

The table can contain up to eight entry points. Each entry point
corresponds to a type of error that could occur or an instruction.
The table is in the following format.

WD. 00 =-- 0dd address error or other trap through 4
WD, Ol =-- Segment fault

WD. 02 -- T-bit trap or execution of a BPT instruction
WD, 03 -~ Execution of an 'IOT' instruction

WD. 04 -- Execution of a reserved instruction

WD, 05 =-- Execution of non-RSX EMT,

WD, 06 =-- Execution of a trap instruction,

WD. 07 =-- PDP-11/40 floating point exception

If the table does not exist and one of the errors or instructions
listed in the table above occurs, the task is aborted., Likewise, the
task is aborted if the table exists but does not contain an entry
point that corresponds to a particular exror or instruction and that
error or instruction occurs,

The table does not exist if SVDB$ was not specified or if the macro
call contained incorrect parameters.

SST service routines must save and restore all registers used,
Macro Call: SVDB$ adr,len

Address of SST vector table
Number of entries in table

adr
len

The following symbols are locally defined with their assigned values
equal to the byte offset from the start of the DPB to the respective
DPB elements.

S.VDTA = (Length 2 bytes) table address
S,VDTL = (2) Table length

DSW return codes:
+01 == Successful completion
-98 -~ Part of DPB or table is out of task's address
space, or table address not specified (zero
address)
=99 == DIC or DPB size is invalid

Macro Expansion:

3V)33 S3rT43L,4

«RYTE 138,,3
«VIRD SSTTAL
« 40X 1

3-61

SVTK$

3.48 SVTK$ (SPECIFY SST VECTOR TABLE FOR TASK)

The SPECIFY SST VECTOR TABLE FOR TASK directive specifies the virtual
address of a table of synchronous system trap service routine entry
points for use by the issuing task. When both the issuing task table
and the ODT table exist and both contain an entry for a particular
trap, the ODT table takes precedence, SSTs are described in Section

The table can contain up to eight entry points, Each entry point
corresponds to a type of error that could occur or an instruction.
The table is in the following format.,

WD.00 =-- 0dd address error,

WD.01 =-- Segment fault

WD,.02 == T-Bit trap or execution of a BPT instruction
WD,03 =- Execution of an IOT instruction

WD.04 == Execution of a reserved instruction

WD,05 == Execution of non-RSX EMT,

WD,06 == Execution of a trap instruction

WD.07 == PDP-11/40 floating point exception,

If the table does not exist and one of the errors or instructions
listed in the table above occurs, the task is aborted. Likewise, the
task is aborted if the table exists but does not contain an entry
point that corresponds to a particular error or instruction and that
error or instruction occurs.

The table does not exist if SVITKS was not specified or if the macro
call contained incorrect parameters,

SST service routines must save and restore all registers used.,
Macro Call: SVTK$ adr,len

adr = Address of SST vector table
len = Length of (number of entries in) table

The following symbols are locally defined with their assigned values
equal to the byte offset from the start of the DPB to the respective
DPB elements.

S.VITA = (Length 2 bytes) table address
S.VITL = (2) Table length

DSW return codes:

+1 =-- Successful completion
-98 == Part of DPB or table is out of task's address
space, or table address is not specified (zero
address)
=99 =- DIC oxr DPB size is invalid

Macro Expansion:

SVTKS IS5Tr4L,2
«3YTE 123,,3
RUBLD] 337T713L
«WIRN 2

3

62

SYNCS$

3.49 SYNC$ (SYNCHRONIZE)

The SYNCHRONIZE directive requests a task at a specified future time,
and optionally, repeats it periodically., The schedule time is
specified in terms of delta time from clock unit synchronization.
Clock unit synchronization is specified for a future time,
SYNCHRONIZE differs from RUN in that RUN requests task execution for
delta time from the present time, not delta time from a future time,
The SYNCHRONIZE directive cannot be issued by a background task.

Macro Call: SYNC$ tsk,prt,pri,ugc,upc,smg,snt,sync,rmg,rnt

tsk = Task name,
prt = Partition name,
pri = Priority,
ugc = UIC group code,
upc = UIC programmer code,
smg = Schedule delta magnitude; i.e., how many delta units
snt = Schedule delta unit,
1 = clock ticks
2 = seconds
3 = minutes
4 = hours
sync = Synchronization unit,

rmg = Schedule interval magnitude,
rnt = Schedule interval unit,

A partition cannot be specified for a multiuser task; i.e., the task
must be requested to execute in its default partition.

The following symbols are locally defined with their assigned values
equal to the byte offset from the start of the DPB to the respective
DPB elements.

S.YNTN = (length 4 bytes) task name
S.YNPN = (4) Partition name

S.YNPR = (2) Priority

S.YNGC = (1) UIC group code

S.YNPC = (1) UIC programmer code
S.YNSM = (2) Schedule magnitude
S.YNSU = (2) Schedule unit

S.YNSY = (2) Synchronization
S.YNRM = (2) Reschedule magnitude
S.,YNRU = (2) Reschedule unit

DSW return codes:

+1 -~ Successful completion

-0l ==~ Insufficient pool nodes available to requester
=02 == Task not installed
=03 =- Partition too small for task

~80 = Directive issued by background task
-91 =~ Invalid UIC
~93 == Invalid time parameter specified

“94 - Partition not in system
=95 == Invalid priority specified (<0 or >250)
-98 -- Part of DPB is out of issuing task's address space

=99 == DIC OR DPB size is invalid

3-63

Macro Expansion:

SYNCS THIS, RENRL,55,142,1202,6,2,3,10,°2
JHYTE 19.,12,

~RADSD /THIS/

«RKA8DS0 /LENRL/

JWORD <5
«BYTE 102,120
L WIARD [

SHWIRD 2

+ VIR 3

«ORD 10
+WORD]

3-64

UFIX$

3.50 UFIX$ (UNFIX)

The UNFIX directive negates a FIX directive that has been issued to
make a task permanently memory-resident. The task specified in the
UNFIX directive must have the same TI as the issuing task. The task
then can be removed from memory. UNFIX cannot be issued by a
background task.

Macro Call: UFIX$ task
task = Task name,

The following symbol is locally defined with its assigned value equal
to the byte offset from the start of the DPB to the DPB element.

U.FXTN = (length 4 bytes) task name
DSW return codes:

+1 == Successful completion
=02 == Task not installed
~-09 =-- Task is already unfixed
~-80 =~ Directive issued by background task
-98 == Part of DPB is out of issuing task's address space
=99 -=- DIC or DPB size is invalid

Macro Expansion:

UFTYSs rPOCL
.RVTE F.’ol‘
.R805¢ /POCL/

3-65

VRCD$

3.51 VRCD$ (RECEIVE DATA)

The RECEIVE DATA directive receives a variable-length data block that
has been queued for it according to priority. The SEND DATA or SEND
DATA AND RESUME OR REQUEST RECEIVER directives queue data for a
receiver.,

When a sender task is specified, only data sent by the indicated task
is received.

If the buffer size is not specified, a default size of 13 words is
used., A 2~word sending task name and the data block are placed in the
indicated buffer. The task name is in the first ¢two words, The
buffer length should not include these two words.,

If the location to store the TI is specified, the TI indicator is
transferred from the SEND/RECEIVE node to this location.

If the receiver task 1s multiuser, only data with the same TI
assignment is received.

Data is transferred from the sending task to the receiving task by
means of nodes picked from the pool. The number of nodes picked is
charged to the sender. When the data is received, the nodes are
returned and subtracted from sender's usage count,

Macro call: VRCD$ task,bufadr,buflen,ti

task = gender task name
bufadr = buffer address
buflen = buffer length

ti address to store TI

The following symbols are locally defined with their assigned values
equal to the byte offset from the start of the DPB to the respective
DPB elements,

R.,VDTN = (length 4 bytes) task name
R.VDBA = (2) buffer address

R.VDBL = (2) buffer length

R.VDTI = (2) address in which to store TI

Condition codes:

CC=C = cleared to indicate successful completion.
CC=-C = set (with CC-V unaltered) if rejection occurs.
CC-V - set if sender task is privileged

DSW return

+01
-02
-08
«15
-89
-98

-99

codes:

successful completion

sender task not installed

no data queued (sent)

receiver's buffer too small, data truncated

invalid buffer size (>255)

part of DPB or buffer is out of task's address
space

DIC or DPB size is invalid,

An alternate macro call is RCVD$ which receives a 13-word data block.

Macro call: RCVD§ task,bufadr

Macro Expansion of VRCDS$:

VRIINSE
«dYTE

«RANSAH

JWARN

OTHER, DATAIN,25,, TIADDR
T9.0 58879

/ITHER/

DATAIN

L L1IF GBF S85T9e5, ,WORD 25,
JYIF B2 855T9ma, ,WNRD TIADDR

VRCS$

3.52 VRCS$ (RECEIVE DATA OR SUSPEND)

The RECEIVE DATA OR SUSPEND directive receives a variable~length data
block that has been queued according to priority for it or suspends if
no data blocks can be received. The SEND DATA and SEND DATA AND
RESUME OR REQUEST RECEIVER are used to queue data for a receiver.
This directive cannot be issued by background task.

When a sender task is specified, only data sent by the indicated task
is received.

If the buffer size is not specified, a default size of 13 words is
used. A 2=-word sending task name and the data block are returned in
the indicated buffer. The task name is in the first two words. The
buffer length should not include these two words.

If the location at which to store TI is specified, the TI indicator is
transferred from the SEND/RECEIVE node to this specified location.

If the receiving task is multiuser, only data with the same TI
assignment is received.

Data is transferred from the sending task to the receiving task by
means of nodes picked from the pool. The number of nodes picked is
charged to the sender. When the data is received, the nodes are
returned and subtracted from sender's usage count.

Macro call: VRCS$ task,bufadr,buflen,ti

task = sender task name

bufadr = buffer address

buflen = buffer length

ti = address in which to store TI

The following symbols are defined locally with their assigned values
equal to the byte offset from the start of the DPB to the respective
DPB elements,

R.VSTN = (length 4 bytes) task name
R.VSBA = (2) buffer address

R.VSBL = (2) buffer length

R.VSTI = (2) address in which to store TI

Condition codes:

CC~C =~ cleared to indicate successful completion.
CC~C = set (with CC-V unaltered) if rejection occurs.
CC-V = set if sender task is privileged

DSW return codes:

+01 ~-- successful completion

-02 -- gender task not installed

=15 -=- receiver's buffer too small, data truncated

-80 == directive issued by background task

-89 == invalid buffer size (>255).

-98 -- part of DPB or buffer is out of task's address
space

-99 -= DIC or DPB size is invalid.

An alternate macro call is RCVS$ which receives a 1l3-word data block.
Macro call: RCVS$ task,bufadr

Macro Expansion of VRCSS$:

IRCSS TASYR,DATAIN, 14, TTADDR
HYTE 79,,8837T9

.RANS2 /TAS¥?/

L AIRN JATALH

JUIF BE 333T9es, ,WOPNH 17,
JITF £ 3358THas, , wNIN TLADDR

3-69

VRCX$

3.53 VRCX$ (RECEIVE DATA OR EXIT)

The RECEIVE DATA OR EXIT directive receives a variable-length data
block that has been queued for it according to priority or exits if no
data block can be received. The SEND DATA and SEND DATA AND RESUME OR
REQUEST RECEIVER directives queue data for a receiver.,

When a sender is specified, only data sent by the indicated task is
received.,

If the buffer size is not specified, a default size of 13 words is
used. A 2-word sending task name and the data block are returned in
the indicated buffer. The task name is in the first two words, The
buffer length should not include these two words,

If the location to store TI is specified, the TI indicator is
transferred from the SEND/RECEIVE node to this specified location,

If the receiving task is multiuser, only data with the same TI
assignment is received.

Data is transferred from the sending task to the receiving task by
means of nodes picked from the pool. The number of nodes picked is
charged to the sender., When the data is received, the nodes are
returned and subtracted from sender's usage count,

Macro call: VRCX$ task,bufadr,buflen,ti

task = gender task name

bufadr = buffer address

buflen = buffer length

ti = address at which to store TI

The following symbols are locally defined with their assigned wvalues
equal to the byte offset from the start of the DPB to the respective
DPB elements,

R.VXTN = (length 4 bytes) task name
R.VXBA = (2) buffer address

R.VXBL = (2) buffer length

R.VXTI = (2) address in which to store TI

Condition codes:

cc~-C cleared to indicate successful completion.
cCc=-v set (with CC~V unaltered) if rejection occurs.
CC-C - set if sender task is privileged

DSW return codes:

+01 -~ gsuccessful completion

-02 -~ gender task not installed

=15 -=- receiver's buffer too small, data truncated

-89 == invalid buffer size ()>255)

-98 -- part of DPB or buffer is out of task's address
space

-99 == DIC or DPB size is invalid.

An alternate macro call is RCVX$ which receives a 13=word data block.

Macro call: RCVX$ task,bufadr

Macro Expansion of VRCX$:

YROXS TaSK9,HUFIN,R,, TLANDR
~OYTF 17 .,55879

~RADSA /TASKY9/

<WORN JUFIN

TIF GE $1STHeR|, ,WNRN 1,
JITF EN $33T79=n, ,ANRD TIADDR

3-71

VSDAS

3.54 VSDAS$ (SEND DATA)

The SEND DATA directive queues a variable-~length data block according
to priority for a task to receive.

If the buffer size is not specified, a default of 13 words is used,

When an event flag is specified, a significant event is declared if
the directive 1is performed; the indicated event flag is set,
Normally, the event flag is used to trigger the receiver into some
action, The wuser must distinguish between the task's event flags (1l
through 32) and the systems's event flags (33 through 64). To be
effective, the task must set a system event flag.

If no priority is specified, the priority of the sending task is used,

If a TI is specified for the receiving task, the specified TI is
inserted in the SEND/RECEIVE node; an AST is declared if an active
task with the same TI is found, If no TI is specified, the sender's
TI is inserted in the SEND/RECEIVE node; an AST is declared if the
task is active regardless of its TI.

Data is transferred from the sending task to the receiving task by
means of nodes picked from the pool. The number of nodes picked is
charged to the sender. "When the data is received, the nodes are
returned and subtracted from sender's usage count,

Macro Call: VSDAS$ task,bufadr,buflen,efn,sndpri,ti

task = receiver task name

bufadr = address of data block

buflen = length of buffer (1 through 255 words)

efn = event flag number (0 implies no event flag)
sndpri = priority of send (1 through 250)

ti = TI indicator

The following symbols are defined locally with their assigned values
equal to the byte offset from the start of the DPB to the respective
DPB elements.

(length 4 bytes) task name

S.DATN =

S.DABA = (2) buffer address
S.DAEF = (2) event flag number
S.DABL = (2) buffer length
S.DASP = (2) send priority
S.DATI = (2) TI indicator

3-72

DSW return codes:

+01
=02
-04
-88
-89
-97

-98
-99

An alternate

-~ guccessful completion

-- receiver task not installed

-= insufficient pool nodes for SEND

== invalid TI

-= invalid buffer size (size > 255)

-= invalid event flag number (event flag number ¢ 0 or >
64)

-- part of DPB or data block is out of task's address
space

-- DIC or DPB size is invalid

macro call is SDATS$ which sends a 13-word data block.

Macro call: SDATS$ task,bufadr,efn

Macro Expansion of VSDAS$:

Vidas TA3¢4,0ATA,24,%6,227, TIADDR
'«*YTE 71-' 63\1’9

L2092 /TARKY/

RBEN JATA

NI 34
JITF GE 335T49as, CIDRD 24
LITF 3E §38T9w7, <WORD 210
JITF EN 333T49=R,, < AORD TLADDR

VSDR$

3.55 VSDR$ (SEND DATA AND RESUME OR REQUEST RECEIVER)

The SEND DATA AND RESUME OR REQUEST RECEIVER queues a variable-~length
data block according to priority for a task to receive and to request
or resume the execution of the receiver. This directive cannot e
issued by a background task.

This directive has the effect of issuing a SEND DATA directive
followed by a REQUEST directive with the following exceptions:

l. No task switching occurs between the SEND and the RECEIVE or
RESUME,

2, If the SEND is not performed, neither the RESUME nor the
REQUEST is attempted.

If the buffer size is not specified, a default buffer size of 13 words
is used.

When an event flag is specified, a significant event 1is declared if
the directive is performed; the indicated event flag is set. The
event flag is used commonly to trigger the receiver into some action.
The user must distinguish between task event flags (1 through 32) and
system event flags (33 through 64),.

To be effective, the task must set a system event flag, If the send
priority 1is not specified, the priority of the sender is used to
insert the SEND/RECEIVE node into the receiver's queue,

If a TI is specified for the receiving task, the specified TI is
ingserted in the SEND/RECEIVE node. An AST is declared if an active
task is found with the same TI and the task has specified RECEIVE AST.
If no TI is specified, the TI of the sending task is inserted in the
SEND/RECEIVE node; an AST 4is declared if the task 1is active
regardless of its TI,

Data is transferred from the sending task to the receiving task by
means of nodes picked from the pool. The number of nodes picked is
charged to the sender. When the data is received, the nodes are
returned and subtracted from sender's usage count,

Macro call: VSDR$ task,part,pri,ugc,upc,bufadr,buflen,efn,sndpri,ti

task = receiver task name

part = partition

pri = priority

ugce = UIC group code

upc = UIC programmer code

bufadr = address of data block

buflen = length of data block in words

efn = event flag number (0 implies no event flag)
sndprli = priority of send

ti = TI indicator

The following symbols are locally defined with their assigned values
equal to the byte offset for the start of the DPB to the respective
DPB elements.

S.DRTN = (length 4 bytes) task name)
S.DRPN = (4) partition name

S.DRPR = (2) request priority
S.DRGC = (1) UIC group

S.DRPC = (1) UIC programmer

S.DRBA = (2) buffer address

S.DREF = (2) event flag

S.DRBL = (2) buffer length

S.DRSP = (2) send priority

S.DRTI = (2) TI indicator

DSW return codes:

In the following code descriptions, R indicates that the
REQUEST or RESUME was rejected, and B indicates that both the
SEND and REQUEST or RESUME were rejected.

+01 - data sent and task requested
+02 - data sent and task resumed

+03 - data sent to a non=-suspended task

=01 - [R] insufficient pool nodes available for REQUEST
-02 - [B] receiver task not installed

=03 - [R] partition too small for receiver task

=04 - [B] insufficient pool nodes for SEND

=06 - [R] handler task not resident to load task

-08 - [R] receiver task is disabled

=80 - [B] directive issued by background task

-88 = [B] invalid TI indicator

=89 = [B] invalid buffer size (>255)

=91 = [R] invalid uic

=94 - [R] partition not in system

=95 « [R] invalid priority specified (<0 or >250)

-97 - [B] invalid event flag number (efn<0 or >64)

-98 -~ [B] part of DPB or data block is out of the task's

address space
=99 - [B] DIC or DPB size is invalid.

NOTE

The SEND portion of this directive can
complete and the REQUEST portion fail,

An alternate macro call is SDRQ$ which sends a l3=-word data block.

Macro call: SDRQ$ task,part,pri,ugc,upc,bufadr,efn

3-75

Macro Expansion of VSDRS:

J5)38 YOS, PART 40,220,220 ,MYDATA,37,60,30, TIADDR
JHYTE 73.,55%519

LRADSY /Y2

JIIF LT $%88T1e4, LWOR) @

<RADSQ /PART/

hLL 40

<RYTE 233,201

JHIIRN 4YIATA

.W']Rn a4

JIIF 5F FESTI=1D,, 4NN 30
L1TF G¥ $88T9%=11.,.,90R0 34
JITF L) $ESTI=12,, ,AORD FLADUR

3-76

WSIGS

3.56 WSIGS$ (WAIT FOR SIGNIFICANT EVENT)

The WAIT FOR SIGNIFICANT EVENT directive suspends execution of the
issuing task until the next significant event occurs. It is an
especially effective way to suspend a task which cannot continue

because of a lack of pool nodes,

Macro Call: WSIGS

DSW return codes:

+1 ~-- Successful completion

Macro Expansion:

3-77

WTLOS

3.57 WTLO$ (WAIT FOR LOGICAL OR OF FLAGS)

The WAIT FOR LOGICAL OR OF FLAGS directive suspends the execution of

the issuing task

until any indicated event flag of one of the

following groups of event flags is set.

GR 0 ==
GR1l ==
GR 2 ==
GR3 =-
GR 4 ~-

FLAGS 1~-16
FLAGS 17-32
FLAGS 33-48
FLAGS 49-64
FLAGS 1-64

If the indicated condition is met at issuance, task execution is
effectively not suspended,

Mask word bits from right-to-left represent increasing event flag
numbers. A set mask word bit indicates that the task is to wait for
the corresponding event flag.

Macro Call: WTLOS set,mask

set = Desired set of event flags

mask = If set is 0,1,2,3, mask is a 16 bit (lé6-flag) mask
worxd;

If set is 4, mask provides a list of four mask words
in the form: < M1, M2, M3, M4),

If zero is specified in the $S form of the macro, do
not use a number sign (#) preceding it.

Example: The following macro is used to wait for flag 19, or flag 20,
or flag 21, or flag 32,

WTLOS

1,100034

Example: This macro waits for 1, 19, 20, 21, 32 or 64.

WTLOS

4,<000001,100034,0,100000>

DSW return codes:

+]1 -
-97 -
-«08 ==
=99 -—es

Macro Expansion:

wi_L0%
+EYTE
+ WORN
«WDRD
W3RN
2 ARN

Successful completion

No event flag specified in mask word(s)

or; Flag set indicator other than 0,1,2,3, or 4
Part of DPB is out of issuing task's address space
DIC or DPB size is invalid

4,€1,570,2,343>
43,.,5

1

22

=4

Ing

WTSES

3.58 WTSES$ (WAIT FOR SINGLE EVENT FLAG)

The WAIT FOR SINGLE EVENT FLAG directive suspends the execution of the
issuing task until an indicated event flag is set, If the flag is set
at issuance, task execution is effectively not suspended.

Macro Call: WTSES efn

efn = event flag number

The following symbol is locally defined with its assigned value equal
to the byte offset from the start of the DPB to the DPB element,

W.TSEF = (Length 2 bytes) event flag number
DSW return codes
+]1 == Successful completion
=97 =« Invalid event flag number (<1 or >64)
-98 == Part of DPB is out of issuing task's address space
=99 == DIC or DPB size is invalid

Macro Expansion:

wTSES 19,
WEVYTE 41,,°2
o #IRG 19,

3

79

CHAPTER 4

SIGNIFICANT EVENTS AND SYSTEM TRAPS

Understanding of trap logic and EMT handling as described in the

PDP-11 Processor Handbook is a prerequisite to understanding this
chapter.

Significant events and system traps are the means by which
communication is effected among various parts of the system. Events
and traps appear to overlap in some areas, but three points may help
to clarify their function and use,

1. A significant event causes a change in system status; it
causes the Executive to re-evaluate the eligibility for
execution of all tasks.

2. System Traps are exclusive to a single task; they are useful
for intra-task communication and control,

3. The occurrence of an event can only change the eligibility of
a task to run, A trap, however, is a real interrupt; the
sequence of instructions being executed by the task is
interrupted and control is transferred to another place in
the program. This process may be invisible to the user in
gome cases. However, it is a difference between events and
traps .

4.1 SIGNIFICANT EVENTS

Significant events provide a mechanism for achieving dynamic control
of task execution. Tasks are able to declare and recognize
significant events through event—-associated directives. The
declaration and occurrence of significant events provide dynamic
control over the execution of tasks. Waiting for an event, such as
the waiting for an I/0 request, can suspend a high priority program
until that event occurs. Meanwhile, lower priority programs are
allowed to run,

Event flags.are the means by which RSX-11lD and tasks distinguish one
event £from another. Associated with each task are 64 event flags.
The first 32 flags (1-32) are unique to each task, and are set or
cleared only as a result of that task's operation. The integrity of
these flags is maintained by the task. They are stored in the task's
ATL and are not available to other tasks.

The second 32 flags (33-64) are common to all tasks, and can be set or
cleared as a result of any task's operation. Therefore, they require
system management to preserve their significance and are stored in
SCOM,

Event flags usually are set when significant events occur, and tasks
can read and/or clear them using system directives. Also, task
execution can be suspended until a particular event flag or a logical
combination of event flags is set.

Some system processes running for the user need event flags. The last
eight local (25-32) and global (57-64) event flags are reserved by
convention for use by RSX-11lD. Accounting uses flags 61 and 62,

In addition, device handler tasks use event flag 1 for express
requests and event flag 2 for normal requests.

All significant events occur as the result of a task's having issued a
system directive; some directives have the event explicitly noted,
while in others it is implicit. Refer to Chapter 3 for a complete
discussion of the directives.

1., The DECLARE SIGNIFICANT EVENT directive allows any task to
stimulate the event-driven system whenever necessary;

2. The SEND, SEND AND RESUME OR REQUEST, or RESUME directives
also cause a significant event at issuance;

3, The directives that cause task execution (REQUEST, EXECUTE,
SCHEDULE, RUN, and SYNCHRONIZE) also cause a significant
event whenever task execution is initiated;

4. The MARK TIME directive causes a significant event at a
specified time interval after issuance;

5. Most I/O operations (initiated by the QUEUE I/0 directive)
cause a significant event upon completion. Successful
completion of the QUEUE I/O directive itself causes a
significant event.

The following examples show the usage of the common event flags for
task synchronization,

Example 1 ~~ Global Flags

Task B specifies a global event flag (e.g., event flag number 35) in a
WAITFOR directive, and task A specifies the same event flag in a SET
EVENT FLAG directive at the time it 1s appropriate for task B to
proceed.

Example 2 ~- Global Flags

Task A specifies task B and a global event flag in a SEND directive,
Task B has specified the same common event flag in a WAITFOR directive
and issues a RECEIVE directive (to dequeue a block of data sent by
task A) when activated because the WAITFOR is satisfied,

Following are examples of event flag usage to detect I/O completion,
and to indicate that a specified period of time has elapsed.

Example 3 == Local Flags

If an event flag is specified in QUEUE I/0 and associated WAITFOR
directives, the flag is cleared when the request is queued. When the
task executes a WAITFOR predicated on the same event flag and the
requested action is not yet completed, execution of the task is
suspended.

The task performing the requested service sets the specified event
flag when the request 1is completed, and the task's execution is
resumed.,

Example 4 -- Local Flags

If an event flag is specified in MARK TIME and WAITFOR directives, the
flag is cleared at MARK TIME issuance and set after the indicated time
has elapsed, and the task's execution 1is suspended for the indicated
interval of time.

In the above examples, computation and/or event flag testing are not
precluded prior to, or instead of, the WAITFOR directive, i.e.,
specifying an event flag does not imply that a WAITFOR directive must
be used. Event flag testing can be performed at any time. The
purpose of a WAITFOR directive is to stop execution until an indicated
significant event occurs, It 1is not necessary to issue a WAITFOR
directive immediately following the issuance of a QUEUE I/O or a MARK
TIME directive.

4,2 SYSTEM TRAPS

System traps are task interrupts initiated by the Executive to allow
servicing of certain conditions or situations that can occur.

When a task plans to use the system trap facility, it must contain a
trap service routine. This routine is automatically entered when the
trap occurs with the task's normal priority and privilege. The action
taken by the Executive if a service routine is not supplied is
dependent upon the type of trap and is described below.

There are two types of system traps: synchronous system traps (SST's)
and asynchronous system traps (AST's).

SST's provide a means of servicing fault conditions within a task,
such as memory protection violation and PDP-11/40 floating point
exceptions, These conditions, which are internal to a task and are
not significant events, occur synchronously with respect to task
execution, In these cases, if an SST service routine is not included
in the task, the task's execution is aborted.

AST's commonly occur as the result of a significant event and thus
occur asynchronously with respect to a task's execution, i.e., a task
does not have direct or complete control over when AST's occur. A
characteristic of AST's is that they are for information purposes,
such as signifying an I/0 completion that a task wants to know about
immediately and PDP-11/45 floating point exceptions, If an AST
service routine is not provided, a trap does not occur and task
execution is not interrupted.

It should be emphasized that SST's only are initiated by the
Executive; no further action, is taken. That is, they appear to the
Executive just like normal task execution, The Executive having
initiated an SST, cannot determine that the task is in the SST service
routine, Thus, an SST service routine can be interrupted by another
SST or an AST., SST's can be nested.

SST's are caused by activities internal to the task, while AST's occur
as a result of an external event. The Executive keeps track of all
AST's, queues them (FIFO) and is aware of when a task is executing an
AST.

4.2.1 Synchronous System Traps

Before reading this section, it is advisable to review the vector
interrupt logic as described in the PDP-11l Processor Handbook.

When an SST occurs, the task's PSW (program status word) and PC
(program location counter) are pushed onto its stack, and return from
the SST routine is accomplished by issuing an RTI or RTT instruction,

Execution of an SST service routine is indistinguishable from task
execution, and an SST service routine can perform any operation that
the task can., However, if a service routine for a system trap is to
cause that same system trap to occur, it must be re-—entrant.

SST service routine entry points are provided in a trap vector table
which is contained in the task. The trap vector table is described in
Section 3,41.

A zero address in the vector table is interpreted as if no entry point
were specified. If an SST occurs and no entry point is specified, the
task's execution is aborted. If an invalid address is specified as an
SST service address, an attempt is made to transfer control to the
address specified, which probably results in an odd-address or segment
fault. The SST vector table is given to the monitor by the task by
use of the DECLARE SST VECTOR TABLE Directive.

On entry to an SST service routine, the stack contains the following
standard PDP~11l trap vector information:

SP+02 PS
SP+00 PC

At the start of SST service, the stack can contain additional
information depending on the cause of the trap, as follows.

1. Segment Fault -
Segmentation Status Register 1
Segmentation Status Register 2
Segmentation Status Register 0
2. EMT Other Than 377 -
Instruction Operand (low-order byte) times two
Items 1 and 2, above, must be removed from the stack before the SST
exit 4is taken. Exit from SST's is by means of an RTI or RIT
instruction,
The RTI or RTT instruction removes PC and PS from the stack.
The additional data is pushed on the stack by the RSX-1llD interrupt
service routines. Seven trap service routines are provided as part of

the RSX~11D Executive. Table 3-2 lists the ISRs and describes their
functions.

Table 4-1

Executive Trap Service Routines

ISR

FUNCTION

Memory Parity Interrupt

Traps at location 114, If a parity
error occurs at other than processor
priority zero (Executive code), the
system is crashed. If a parity error
occurs at processor priority zero, the
task's status is changed to task parity
error and the task is effectively locked
in memory and can execute no move,

0dd Address and
Miscellaneous Error

Traps at location 4. If the cause of
the trap is a red or vyellow trap
violation, the system crashes.If the
trap was in task code and the SST vector
table is defined, the SST service
routine executes, If the SST vector
table is not defined, the task |is
aborted. For other ¢traps refer to
Section 4.2,.3.

Segment Faults

Traps at location 250, If the segment
fault occurs at other than task level,
the system is crashed. If the segment
fault was caused by task-level code, the
user task is notified by means of an SST
or aborted.

EMTs and Traps

Traps at locations 30 and 34, If the
instruction is an EMT 377, control is
transferred to the RSX-1lD EMT handler.
If the instruction was a, trap and the
previous mode was kernel, control is
transferred to the directive status
return routine in the Executive. For
other EMTs or traps, the user task is
notified by an SST or is aborted.

T Bit and BPT

Traps at location 14.

IOT and Reserved
Instruction

Traps at locations 20 and 10,

Floating Point
Exception

Traps at location 244, SST for 11/40

and AST for 11/45,

4-6

4.2.2 Asynchronous System Traps

When an AST occurs, the task's PSW and PC are pushed onto its stack.
There also can be other parameters pushed onto the stack depending
upon the cause of the AST.

After processing an AST, the trap dependent parameters must be removed
from the task's stack, and an EXIT AST SERVICE directive is issued
with the task's stack set as indicated in the description of the AST
SERVICE EXIT directive.

Upon AST service exit, control is returned to one of three places:
1. Another (queued) AST;
2, The task;

3. Another task (e.g., the corresponding task was not in
execution).

Five variations on the stack format, depending upon the AST origin,
are as follows:

l. If a task is to be notified of power failure recoveries, a
SPECIFY POWER RECOVERY AST directive is issued.,

SP+04 =~ PS of task at AST (interrupt),
SP+02 == PC of task at AST (interrupt),
SP+00 -~ Task's directive status (virtual zero).

It is not necessary to pop any of this from the stack.

2, When an I/0 request is queued, an AST service entry point may
be specified in the macro. If specified, an AST occurs upon
cgmpletion of the request with the task's stack containing
t following information:

SP+16 -- Event flag mask word for flags 1l-16

SP+14 -~ Event flag mask word for flags 17-32

SP+12 -- Event flag mask word for flags 33-48

SP+t0 -= Event flag mask woxrd for flags 49-64

SP+06 == PS of task at AST (interrupt),

SP+04 -~ PC of task at AST (interrupt),

SP+02 -~ Task's directive status (virtual zero),

SP+00 -- Address of I/0 status block for request (or
zero if none specified). Must be popped off
stack before AST exit.

3. When a MARK TIME directive is issued, an AST service entry
point can be specified in the DPB, If specified, when the
indicated time interval has elapsed, an AST occurs with the
task's stack as follows:

SP+16 == Event flag mask word for flags 1-16

SP+14 -- Event flag mask word for flags 17=32

SP+12 ~-- Event flag mask word for flags 33-48

SP+10 =-- Event flag mask word for flags 49-64

SP+06 =-- PS of task at AST (interrupt),

SP+04 == PC of task at AST (interrupt),

SP+02 == Task's directive status (virtual zero),

SP+00 -- Event Flag number (oxr zero it none
specified),. Must be popped off stack before
AST exit.

4-7

5.

If a task is to be notified of PDP-11/45 floating point
hardware exceptions, a SPECIFY FLOATING POINT EXCEPTION AST
directive is issued, and following floating point exceptions
will cause AST's to occur with the task's stack as follows:

SP+20 -- Event flag mask word for flags 1-16

SP+16 -- Event flag mask word for flags 17-32

SP+14 == Event flag mask word for flags 33-48

SP+12 == Event flag mask word for flags 49-64

SP+10 -~ PS of task at AST (interrupt),

SP+06 =~ PC of task at AST (interrupt),

SP+04 == Task's directive status (virtual zero),

SP+02 -- Floating point exception code, must be popped
off stack before AST exit,

SP+00 -- Floating point exception address, must be
popped off stack before AST exit,

For SPECIFY RECEIVE AST, nothing is placed on the stack. The
actual RECEIVE can be performed by the AST service routine,

The following are some general notes on the characteristics and use of

AST's.

1.

2,

3.

5.

6.

Two directives, INHIBIT AST RECOGNITION and ENABLE AST
RECOGNITION, allow AST's to be queued for subsequent
execution during critical periods. If AST's occur while AST
recognition is inhibited, they are queued (FIFO), and are
processed when AST recognition is enabled.

If an AST occurs while another AST is being processed, it is
queued (FIFO), and is processed when the preceding AST
service is completed unless AST recognition was disabled by
an AST service routine.,

If an AST occurs while an SST is being processed, the SST
service routine execution is not distinguished from task
execution, and is interrupted for execution of the AST
service routine,

If an AST occurs while the related task is suspended, the
task remains suspended after execution of the AST service
routine unless explicitly resumed by the AST,

If an AST occurs while the related task is waiting for an
event flag setting (WAITFOR directive), the task remains in a
wait state after execution of the AST service routine unless
an appropriate event flag is set by the AST or other routine.

If an AST occurs while the related task is in execution, the
task is interrupted for the execution of the AST service
routine. This interrupt is transparent to the task unless
the trap service routine changes the context of the task.

If an AST occurs while a task is checkpointed, the task
remains checkpointed and the AST is queued for execution
after the task is reloaded.

4.2.3 Processor Priorities

Seven processor priorities are used by the PDP-ll, as described in the
PDP-11 Processor Handbook. Peripheral device interrupt service
routines run at processor priority levels four through seven. In
addition, software modules that cannot be interrupted run at priority
level seven for short periods of time.

Priority levels zero through three are used by the system as operation
indicators; i.e., no software interrupts occur, and therefore, no
precedence is implied or invoked by levels zero through three,

Level zero is used exclusively for task execution., If a segment fault
occurs at level 2zero, a system trap is caused if the task has a
service routine to handle it., Otherwise, the task is aborted.

Level one is used for the servicing of trap type instructions, e.q.,
EMT IOT, TRAP, and is used for the following:

l. The processing of system directives (EMT 377s),

2, The causing of a synchronous system trap if a trap-type other
than BPT trap executes at priority one or the priority of the
interrupt service routine, whichever is higher.

Level two is used for the recognition of system events. These events
are indicated in the system event recognition flag called .SERFG and
are recognized only when returning to task execution, e.g., from an
interrupt or from a directive, System events are significant event
declarations, clock ticks, and power failure recoveries.

Level three is used for execution of routines that cannot be
interrupted by significant event recognition or clock tick
recognition, but that can be interrupted by peripheral device
interrupts, e.g., the system subroutine to dequeue a request for a
device handler task. In these cases, the level can be set to three by
any means, but it must be lowered to zero by transferring control to
subroutine ..ENBO to allow recognition of system events that might
have occurred while running at priority level three. The system trace
debugging routine also runs at level three,

APPENDIX A
SYSTEM LISTS AND TABLES

RSX11D e RESIUENT EXECUTIVE

478
479
.7}
481
482
483
["1.Y']
48s
48e
“87
488
489
490
49}
492
493
494
498
496
497
498
w99
See
521
Se2

cepeen

vagevs
veQees
egon1e
vevo12
veeeld
voevols
peor2e
vegoae

oeee2d

eepoet
vepee?
beveod
0o¢P10

MACRO D@718 24=APR=7S 12156 PAGE 10
EXEC MCDULE OME == SYMBOLIC DEFINITIOAS

TPD == TASK PARTITION DIRECTORY

THE "TPD" 1S A FIXED LIST OF ENTRIES DESCRIBING EACK PARTITION IN A
THIS DIRECTORY 1S CREATED BY THE SYSTEM CONFIGURATION,
ROUTINE (SYSGEN) CONSISTING OF ENTRIES OF THE FOLLOWING FORMAT}

!
'
'
1 SYSTEM,
!
!
T

«PN3822 g WD, PO (B 0@) == PARTITION NAME (FIRST kALF)
1 WD, @1 (B P2) =~ PARTITION NAME (SECOND MALF)

T.BAz=04 3 WD, P2 (B 04) == 1/64TH BASE ADDRESS OF PARTITION (IN BYTES)
T,PZz326 3 WD, @3 (B @6) == 1/64TH STIZE OF PARTITION (IN BYTES)
T.FWwseid § WD, B4 (B 10) == PARTITION FLAGS WORD '
T,HPE=12) WD, @S (B 12) = 1/64TH BASE ADR OF FIRST HOLE., OR JERO IF NO HOLFS,
T.RFE314 3 WD, 06 (B 12) == MRL LISTHEAD (FORWARD LINKAGE)
ToRB3216 3 WO, @7 (B 14) == MRL LISTHEAD (BACKWARD LINKAGE)
T.CFaz20 § WO, 18 (B 20) == CTL LISTHEAD (FORWARD LINKAGE)
T,CB=zm22 y WD, 11 (B 22) == CTL LISTHEAD (RACKWARD LINKAGE)

]
T.52s324 18YIZE C(IN BYTES) OF TPD ENTRIES

1}

! FLAGS WORD BIY DEFINITIONS:

1
TF.UCssDpegry 1{02) SET IF USER CONTROLLED PARTITION,
TF,O0ussRaree2 1{81) SEY IF OCCUPIED USER CONTROLLED PARTITTION,
TF.1S33002004 1{02) SET IF A TIME SHARED PARTITICN
TF.ACE20020010 1{03] SET IF A TIME SHARED PARTITICN 18 ACTIVE

€-v

RSX1310 e« RESICENT EXECUTIVE MACRO DP710 QR4=APRe»75 12156 PAGE 11}
EXEC MODULE UME == SYMBOLIC DEFINITIOANS

Sed 3 GCD == GLOBAL COMMON DIRECTYORY

5@% '

SQe 1 GLOBAL COMMCN AREAS ARE SHARABLE AREAS OF MEMORY FOR USE AS

Se7 t LIBRARIES, CR FOR COMMON DATA STCRAGE,

Se8 t THE "GCC"™ IS A LINKED LIST OF ENTRIES DESCRIBING EACH GLOBAL COMMON
See t BLOCK IN A SYSTEM, TKIS LIST IS CREATED BY INSTALL

S10 9t AND COMNSISYS OF ENTRIES OF THE FOLLOWING FORMAY, NOTE THAY GCD TYPE AODFS
511 1 ARE CREATED BY INSTALL FOR THE PURE AREAS OF MULTIeUSER TASKS, BYY
Sie t THESE NCDES ARE NOT LINKED INTO TWE GCD, BUT ARE POINTED TO MY THE
513 1y TASKS’ STD NODES,

S14 '

S48) WD, 00 (8 P@) == FORWARD LINK

S1e 3 WD, @1 (B P2) == BACKWARD LINK

817 oeeo0u G.BN2304 3 WD, P2 (B P4) == COMMON BLOCK NAME (& CHAR IN RADIX=SH, 2«WORNDS)
918 eopPL0 G,BA=E10 5 WD, 04 (B 10) »= 1/6UTH BASE ADDRESS OF COMMON BLOCK

519 unRole G.CZ=z®32) WD, BS (B 12) == 1/64TH S12E OF COMMON BLPCK

520 orP014 G.CTeeid j wD, @6 (B 14) e« CREATION TIME (TWO WORDS: YEAR, MONTH/DAY)
FY-3Y vooveeo G.6S5==N,8SBywD, 10 (B 20) == GLOBAL AREA STATUS

S22 vedael G,SA==21 (B 21) == STARTING APR

523 ooveee G,0Iea22 3 wD, {1 (B 22) == OWNER IDEANTIFICATION (UIC)

524 002224 G,PD=m2d y WD, 12 (B 24) == GLOBAL AREA TPD ADDRESS

52s PRvees G,FBeE2b) WD, 13 (B 26) =« FLAGS BYTYE

S26 w0027 G.D1zz27 (B 27) =« CISK INDICATOR

Se7 veoelo G,AC=x30) WD, {4 (B 32) == ACTIVE REFERENCE COUNT (BYYE)

528 vweonlt G,I1Cex3y (B 31) == INSTALLED REFERENCE COUNY (BYTE)

529 veve32 G, NAzE32 j WD, 15 (B 32) == 1/0 NODE ADDRESS

939 Ve0034 G.DA==3d4 y WD, 16 (B 34) o= GLOBAL AREA DISK ADDRESS

534 [

53¢ 1THE FCLLOWING ARE GLOBAL AREA STATUSES:

533 1

S34 pogepe GS.NULE3Q0D tGLOBAL AREA NOT IN USE

535S 0ovee 6S.LRGAE=Q2 1 LOAD REQUEST QUEUED

53¢ padeod 6GS.LRS==Q4 1 LOAD REQUESY SUCCEEDED

537 1.1} GS.LRF==p06 1LOAD REQUEST FAILED

538 00veSe GS.RRAE3PS52 tRECORD REQUEST OUEUED

539 000054 GS.RRSs3054 tRECORD REQUEST SUCCEEDED

Sup 11131 GS.RRFE=p%s tRECORD REQUEST FAILED

5S4y]

S42 '

543 veovoue G.SZ=e40 tSIZE (IN BYTES) OF GCD ENTRIES

Sdy]

S4s] FLAGS WCRD BIT DEFINITIONS

Sde . 1

S47 0ovoRl GF.EI==0020001) 1 (@) EXISTENCE INDICATOR (SET WHEN LIB OR’CONMON LOACED)
S48 Vedtuve GF.L1zz000002 {011 LIBRARY COMMCN INDICATOR e= 13l IR QtCOM

949 0P000u GF.R1=2000004 1 {@2) LIBRARY RELOCATABILITY INDICATOR == SET FOR PIC CODE
5S¢ e0d210 GF.NWE3000010 1 (@3 SET WHEN NON«wOWNER WAS WRITE ACCESS

594 200020 GF.NRz2000020 1 [@4) SET WHEN NONmOWNER HAS READ ACCESS

RSX$IC == RESICENT EXECUTIVE MACRO Ce7ie 24=~APR=75 12356 PAGE 12
EXEC MCDULE ONE w= SYMBOLIC CEFINITIOANS

553 t PUD == PKYSICAL UNIT DIRECTORY

554]

55% 1 THE "PUD" 1S 4 FIXED LIST CF ENTRIES DESCRIBING EACH PHYSICAL DEVICE=

556 1 UNIT IM A SYSTEM, THIS LIST IS CREATED BY THE SYSTEM CONFIGURAT]ON

857 t ROUTINE (SYSGEN) AND CONSISTS OF ENTRIES OF THE FOLLOWING FORMAT:

S5y !

559 vapee? U,CNz300 1 WD, 28 (B P0@) == DEVICE MAME (2 ASCII CHARS)

Sép voRoee U,UNs=@2) WD, 01 (B 22) == UNIT NUMBER (BYTE)

S61 veoees U,FB=se3 [(B 03) o~ FLAGS (BYTE)

See pepeou V.Claxdd ! WD, P2 (B B4) == CHARACTERISTICS WORD ONE (DEVICE INDFPENCENT INDICATORS)
563 VPRV U,C2ex06 1 WD, @3 (B 26) == CHARACTERISTICS WORD TWO (DEVICE_ DEPENDENT INDICATORS) .
ELY) voee1o U,C3salo 1 WO, B4 (B 1@) =e CHARACTERISTICS WORD THREE (DEVICE DFPENDENTY INDTCATORS)
565 gogate U.Cusmy t WD, 05 (B 12) == CHARACTERISTICS WORD FOUR (SYZF OF BLOCK, BUFFFR, | INE)
S66 TRy UsAF=s1d 1 WD, @6 (B 14) == ATTACKH FLAG (ATL NODE ADDRESS OF ATTACHMING TASK)
Sé7 paoR1e U,RPex16 1 WD, @7 (B 16) == REDIRECT POINTER

Seé8 peoree UsHA=22D 3 WD, 18 (B 20) w= WANDLER TASK ATL NODE ADDRESS

S69 poveze Uy XCee22 1) WD, 11 (B 22) == COUNT OF EXPRESS REQGUESTS IN GUEUE

ST voveed U,RFs=24 1 WD, 12 (8 24) e= UNIY REQUEST DEQUE LISTHEAD (FWD PNTR)

571 vRRRe26 U,RBsm26 $ WD, 13 (B 26) == UNIT REGUEST DEQUE LISTHEAD (BXD PNTR)

572 veenla U, TvER30 1t WD, 14 (B 30@) == INTERRUPT TRAP VECTOR ADDRESS _

573 voapnie U, P32 1 WD, 1S (B 32) =« INTERRUPY PRIORITY (IN BITS Sa7)

874 peoeld U,DAs=34 1} WD, 16 (B 34) == [(DEVICE PAGE ADDRESS)

57% 1)

S7¢ 1 PHYSICAL UNITS ARE CONSIDERED "VOLUMES™ BY THE FILES SYSTEM, AND THE

577 1 REMAINDER OF THE PUD ENTRY IS A "VOLUME CCNTROL BLOCK".,

$78]

579 eegelde U,vamzlé ? WD, 17 (8 36) == ADDRESS OF VOLUME CONTROL BLOCK EXTENSIOA

581 VeG4 UsUlessip 1t WD, 20 (B 4@) == USER IDENTIFICATION COOF (UIC)

581 V22242 U,PCezd0] (B 4@) == UIC PROGRAMMER CODE

582 g2elut U,GC=mdy ' (8 43) == UIC GROUP CODE)

983 vavzue U,VPEsd42 1 WD, 21 (B 42) == VOLUME PROTECTION WORD

584 veaede U.CHEB4R 1 (8 42) == CHARACTERISTICS FLAGS

585] (B 43) == RESERVED BYTE ,

586 ¢PgRud U,ARB344 ?} WG, 22 (B 44) e» ACCESS RIGHTS FLAGS WORD

s87 vaeeye U.DACP==46 3 WD, 23 (B 46) == DEFAULT ACP NAME, RACS® (FIRST_WCRD)

S88 ¢onese U.ACP2250 y WD, 24 (B S8) == STD ENTRY ADDRESS COF CURRENT ACP

589 2eens? U, TFza52 1 WD, 25 (B S2) =« TERMINAL FLAGS WORD _

S9¢ vARes52 U,PR=2S2 1 WD, 25 (B S2) == TERMINAL PRIVILEGE BYTE

591 Q00nss U, F0s=53 ! (B 53) == TERMINAL FORMS BYTE , B

59¢ vovesd U.LBHEES4 j WD, 26 (B 54) == HIGH ORDER = TOTAL # OF BLKS FOR OEVICE

593 eroe2se UsLBNEESE 3 WD, 27 (B 56) == LOW ORDERe TOTAL & OF BLOCKS FOR DFVICF

So4 s WD, 30 (B 68) =« RESERVED WORD

598

J
596 vepee2 U,S2sz62 tSIZE (IN BYTES) OF PUD ENTRIES

597
598
599
620
601
622
oP3
604
2%
606
027
(11}
609

RSX110 we RESIDENT EXECUTIVE
EXEC MODULE CME e= SYMBOLIC CEFINITIONS

(3%
611
612
613
6ly
615
blé
617
618
619
62y
LY-31
022
623
624
625
6206
627
628
629
[X))
631
032
633
634
635
636
637
638
639
odp

booouo
veceoe
vegiee
gegeun

vACeol
peone2
peeedd

peonte
voaeeae
Clpoun
voJup?
geiepe
62200
poyepe
oieeoe
vevooP
pdoeoe
170002

pooepy

gcee209
¢vovioe
pooeun
0R2020
voorio
vPvolb!

Q200!
peeree
eeoe0y

1 FLAGS BYTE BIT CEFINITIONS
t
UF.ROE=040 3 RRRANAAARAR R TEMPCRARY A u R AN RA RN R AR NN ANRRY
UF.RMHEB2Q0 1 [7) SET WHEN HANDLER TASK 1S DFCLARED RES!DENT.
UF.TL==100Q 1t [6) SET WHEN MANCLER TASK RECOGMNIZES LOAD ANE RECORD
UF,CFL==04e vy [5) SEY WHEN DEVICE 1S OFFLINE
!
1 BIT DEFINITIONS FCR CHARACTERISTICS WORD ONE
'
UC.REC==p00001 (0@} SET IF RECORD ORYENTED DEVICE (V1Z,, T¥., LP, CR)
uC.CCLe=goped2 1(21) SET IF CARRIAGE CONTROL DEVICE (VIZ., TT LP)
UC.TTYEEQ00004 ¢[@2) SET IF TTY DEVICFE (VIZ., KSR, LAYD)

MACRO 02710 24~APR=7S 12156 PAGE 1{2ef
UC.DIR==p2@P10 +(@3) SET IF DEVICE IS A DIRECTORY DEV!CE
UC.SDI==pRa@2¢ 1 (0uU) SET IF DEVICE I8 A SINGLE DIRECTORY DEVICE
UC.SGDs=peom4e 1(0S) SET IF DEVICE 1S A SEQUENTTIAL DEVICE.
UC. INBEZp00U02 14003 (08} SET IF THE DEVICE, IS INTERMEDTIATE BUFFERED
uc.Swis=oo1¢e0@ 1+(09) SET IF THE DEVICE I8 SOFTHARE WRITE LOCKED
UC.1SPe=go200e (12} SET IF DEVICE IS INPUT SPOCLED
UC.0SP==p@ueee 1(11) SET IF DEVICE IS OUTPUT SPOOLED
UC.PSE®=01000P0 1([12) SET IF DEVICE IS PSEUDD DEVICE
UC.COME=220P08 1 (13} SET IF DEVICE IS COMMUNICATICNS CHANNEL
UC.Fiiesgloppe 1([14) SET IF DEVICE IS FILESeyt
UC.MNTE= 100002 s(15) SET IF DEVICE IS MOUNTABLE
[}
] BIT DEFINITIONS FOR CHARACTERISTICS WORD TWO
[] R
UC.wCK==0000a4 1[02) SET IF A READ AFTER WRITE CHECK 1S REQUIRED
! . . .
1 BIT DEFINITIONS FOR VOLUME CHARACTERISYICS BYTE U.CH
!
CH.OFF=2200 1VOLUME 1S OFFe=LINE
CH.FORs=100 sVOLUME IS8 FOREIGN
CH.UNLSSg 1DISMOUNT PENDING
CH,NATE=20 1ATTACH/DETACH NCT PERMITTED.
CH.NDCE=10 1DEVICE CONTROL FUNCTIONS NOYT PERMITTED
CH.LABE=} tVOLUME IS LABELED TAPE
L}
?
1 BIT DEFINITIONS FOR TERMINAL PRIVILEGE BYTE
[}
UT.PREE] 1SET IF TTvy 1S PRIVLEGED
UT,.SLss2 1SEY IF TTY IS SLAVED
UT.LGesd 1SET IF TERMINAL IS LOGGED ON

RSX14D =w RESIDENT EXECUTIVE
EXEC MODULE OUME == SYMBOLIC DEFINITIONS

su2
643
ouy
(T'}-1
640
647
oué
049
(31}
o5}
652
653 veovv
654
655 Ce0o04
056 0veRARe
57 00012
658 vAgoLL
659 oRegal1e
662 vPAdG14d
661 ©eeaole
662 eeeeLy
063 Powo20
664 ¢0p0ee
665 20¥R24
066 . rry
667
668 ¢ecele
669
670
671
672
673
674
67s
676
617
678 geoeol
879 pedese
[1-1"] voorRY
68} 0000210
682 pope29
683 000242
684 600100
68§ vov2e0

MACRO Do71e

S,
S,
S,
S,
s,
S,
s,
8.
S,
s,
S.
8.

24=APRe7S 12156 PAGE 13

§TD== SYSTEM TASK DIRECTORY

THE SYSTEM TASK DIRECTORY IS A MEMORY RESIDENT DIRECTORY OF ALL TASKS
WHICH HAVE BEEN INSTALLED INTO A SYSTEM, THIS DIRECTORY CONSISTS OF TWO
PARTS: (1) A FIXED SI1ZE AREA OF ONE WORD FOR EACk TASK THAY MAY

BE INSTALLED AT ANY TIME, AND (2) AM STD ENTRY FCR EACH TASK THAT 18
INSTALLED, THE FIXED SIZED AREA IS CALLED THE "ALPHA TABLE"™ AND
PROVIDES SPACE FOR AN ALPHABETICALLY ORDERED CONTIGUOUS LISY OF POINTERS
TO STD ENTRIES TO FACILITATE SEACH FCR STD ENTRY BY TASK NANE,

EACH STD ENTRY IS OF THE FOLLOWING FORMAT}

TN2200 y WD, @0 (B 0@) =~ TASK NAME (6 CHAR IN RADIX=SA, 2 WECRDS)
? WD, @1 (B @2) == (SECOND WALF OF TASK NAME)

TO=agd y wD, @2 (B 94) == DEFAULY TASK PARTITION (TPD ADDRESS)

Fwez=@6 y WD, A3 (B B6) »= FLAGS WORD

OPsmi® 3 wD, @4 (B 10) ==~ DEFAULY PRIORITY (BYTE)

Dilz=11 (B 11) == SYSTEM DISK INDICATOR (BYTE)

LZe®12 3 WD, @5 (B 12) =« {/64TH SIZE OF LOAD IMAGE

TZa=14 3 WD, @6 (B 16) == 1/64TH MAX TASK SIZE

Avzm16) WD, @7 (B 16) == MUMBER OF ACTIVE VERSIONS OF TASK (BYTF)

PvesiY (B 17) == TASK POOL LIMIT PER VERSICN (BYTF)

PUsm29 y WD, 10 (B 20) == TASK POOL UTILIZATION

RFes22 y WD, 11 (B 22) == RECEIVE DEQUE LISTHEAD (FWD PATR)

RB=E2d ¢ WD, 12 (B 24) == RECEIVE DEQUE LISTHEAD (BKG PNTR)

DL=326 3 WD, 13 (B 26) == LOAD IMAGE FIRST BLOCK NUMBER (37=«BITS)
? WD, 14 (B 3@) (SECOND HALF OF DISK ADDRESS)

GCzz32 3 WD, 15 (B 32) == BEGINNING OF GCD POINTER AREA

THE SYSTEM DISK INDICATOR SPECIFIES WHICK 1/0 REQUESY QUEUE 718 P
TO RECEIVE A "LOAL TASK IMAGE®" REQUEST, BY PROVIDING A "PUD ENTRY INCEX®'
E.Ger A ZERC WOULD INDICATE THE REQUEST QUEUE FOR THE DEVICEUNIT
REPRESENTED BY THE FIRST (ENTRY ZERO) PUD ENTRY,

FLAGS WCRD BIT DEFINITIONS?

§F.24ss000001 1 {081 STD IS 24 WORDS LONG (DEFAULY 18 16)
SF,Fx==Do0DR2 1{01) SET WHEN TASK IS8 FIXED IN MENORY
SF.,RMz8000004 1 (02) SET WHEN STD 18 YO BE REMOVED
SF.TD==000010 1 [03) SET WHEN TASK 18 DISABLED

SF.BFs3000020 1(04) SET WHEN A TASK IS BEING FIXED IN MEMORY
SF.XTe=po0ou0 1 [(@5) SET WHEN A TASK 1S TO BE REMOVED ON EXTIT
SF.MUsa220100 1{@6] SET WHEN TASK I8 MULTI=USER

SF.PTxz000200 1[07) SET WHEN TASK 1S A PRIVILEGED TASK

686
687
688
689
690
691
692
693
694
695

RSx11D o= RESIDENT EXECUTIVE

VPbLLO
celdoe
veeron
oeuo0n
elpeen
v2vae0
gUgoo?

goveuo

MACRO De?

EXEC MOCULE OME == SYMBOLIC CEFINITIONS

697
698
099
700
101
702
Tel
724
705
726
707
708
709
710
714
712
713
714
715
T16
717
718
719
720
721
722
123
724
725
726

Pegoovd
coe00s
poRRLn
vovet
pagese
vopol1l
voeold
vopeys
vRApRie6
020016
000020
©vopR21
1-r1.rY]
pRpoRY

peonl3e

SF.NT==000up0 1 [08) NMNETWORK ATTRIBUTE BIT
SF.Rics001200 1 (09] RESTYRICTED USAGE LEVEL ONE (BACKGROUND BATCK JOBS)
SF.R2832002000 1{10) RESTRICTED USAGE LEVEL TWO (UNIMPLEMENTEE)
SF.XAxz20Q4000 1(11) SET WHEN TASK 1S NEVER TO BE ABORTED
SF.XDez010000 1{12) SET WHEN TASK IS NEVER 70 BE DISABLER
SF.XFsED20000 1[13) SEY WHEN TASK I8 NEVER TO BE FIXED IN MENORY
SF.XCezulp00 1{14) SET WHEN TASK IS NEVER YO BE CHECKPOINTED

1 [1S) UNUSED BIY
]
§$,81z=332, 1SIZE OF STD IN BYTES

10 2U=APR=75 12156 PAGE 14

ATL == ACTIVE TASK LIST

THE "ATL" 1S5 A PRIORITY ORDERED OEQUE OF "ATL"™ NCDES FOR ACTIVE TASKS
THAT HAVE MEMCRY ALLOCATED FOR THEIR EXECUTION, THE TASKS REPRESENTED
BY ENTRIES IN TWE ATL ARE EITHER MEMORY RESIDENT, OR A REQUEST FOR THEIR
LOADING WAS BEEN QUEUED, THE LISTHEAD FOR THIS DEQUE I8 JIN YTHF SYSTEM
COMPUNICATIONS AREA (SCOM), AND THE NODES ARE OF THE FOLLOWING FORMATY

} WD, 2@ (B Q@) ==~ FORWARD LINKAGE
? WD, @1 (B 22) e« BACKWARD LINKAGE
? WD, 92 (B @4) == NODE ACCOUNTING WORD (STD ENTRY ADR OF REQUESTOR!

A ROBEN, AW
A, TIseN,TIsWD, 23 (B @6) == T! IDENTIFICATION = PUD ADDRESS
A,RPea{@ 3y WD, P24 (B {Q) == TASK’S RUN PRIORITY (BYTE)

A,IRs2yf 3 (B 11) == TASK 1/0 IN PROCESS COUNT (BYTE)

A INE=12 j WD, B5 (B 12) == TASK 1/0 PENDING_COUNT (BYTE)

A,C8=313 (8 13) == SAVED STATUS OF CHECKPOINTED YASK
A,MTe814 3 WD, 26 (B 14) »= TASK MARK TIME PENDING COUNY (BYTIE)
A,CPexi5 (B 15) == SAVED PRIORITY OF CHECKPOINTED TASK (BYTE)
A, HASB16 ND. BT (B 1b6) == (/64TH REAL ADR OF LOAD IMAGE

A NARs A, HA o= 1/0 NODE ADDRESS WHEN TASK IS IN MRL

A, 15--h.seouo. 10 (B 20) »= TASK STATUS (BYTE)

A, ASsx2] (B 21) == AST INDICATOR (PREVIOUS STATUS) BYTE
A.rocczz WD, 11 (B 22) we SYSTEM TASK DIRECTORY (STD) ENTRY ADDRESS

A,EFss2i

WD, 12 (B 24) == TASK’S EVENY FLAGS ({=32)
W0, 13 (B 26) == (SECOND WALF OF TASK®S EVENT FLAGY)

WD, 15 (B 32) == (SECOND WORD OF FLAGS FASK)
WD, 16 (B 34) == (THIRD WORD OF FLAGS MASK)
WD, 17 (B 36) e= (FOURTH WORD OF FLAGS FMASK)

'
)
’
A FMsa3@ 5 WD, 14 (B 30) == TASK’S EVENT FLAGS MASKS (64=BITS)
!
’
)

8-Y

127
728
129
1730
3
732
733
734
738
13e
37
738
139
T40
T4
T42
743
T4
148
Tde
147
748
749
71590
751
1%
753

RSX1iD == WESICEMY EXECUTIVE

7154
7558
756
757
758
759
160
761
762
763
764
7169
766
167
768
769

veo2ua
0042
poooud
voeeue

voeoes2
0eposSy
ceeoss

Leoeot
pogeve
©oY0pd
cauverlo
©vo2r22
oeoeqe
¢oo1pa
pagaee
wopueR
eol100e
veaeed
Ceurod
dloooo

0e0e60

A, PDE2Gd
A, AFm34
A, ABz344
A, IAm34b

A, TFzaS2
A, CFasS4
A,CBeuSe
1

WD,
wo,
wo,
WD,
WD,

INITIALLY

28 (B 4@) ==
21 (B 42) w=
22 (B 44) »=
23 (B Ub) o=

24

s §,0L

TASK?S RUN PARTITION (YPD ADORESS)
AST DEQUE LISTHEAD (FWD POINTER)
AST DEQUE LISTHEAD (BKWD POINTER)
TASK IMAGE DISK ADDRESS _

(SECOND WORD OF IMAGE ADORESS)

CONTAINS CHECKPOINT ADRS IF TASK IS CHECKPOINTED

WD, 25 (B 52 == TASK FLAGS) .

W0, 26 (B S4) == CHECKPOINT TASK LIST FCRWARD POINTER
WD, 27 (B S6) == CHECKPOINTY TASK LIST BACKWARD POINTER

BEFCRE EXECUTION , THE s
FLAGS MASK WORDS ARE USED AS FOLLOWSt

MACRO DO710 24=APRe75 {2156 PAGE
EXEC MCDULE OME == SYMBOLIC DEFINITIONS

!

AF . CP=30p1
AF.RD=s2Q2
AF . AD==004
AF,.CD=m210
AF MCez020
AF.GC=2040
AF,10==100
AF,1Tzz200
AF .GR=®400

AF ,BFzs1p00
AF . FXex2000
AF . ASER4000
AF,RAEE10000

?
A,SIZ=34g8,

WHEM
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEMN
WhEN
WHEN
WHEN
WHEN

TASK 3TATUS VALUES ARE DESCRIBED AT °aSXDT*

AyF¥+@ == ADDRESS OF TASK LOAD 1/0 REQUEST DEQUE LISTHEAD,
ALFFel == TASK UIC.

AFTER TASK EXECUTION, *A.FM¢Q* IS SET AS FOLLOWS!

BIT=8 IS SET WHEN THE LOW ORDER BYTE (BITS @=7) CONTAIN &
TERFINATION NCTIFICATION CODE (CODES DESCRIBED AT *Sc.CACY)

81T=9 IS SET WHEN 1/0 RUNDOWN MESSAGE IS RFQUIRED.
FLAGS WCRD BIT DEFINITIONS

14my

TASK IS CHECKPOINTED ,

TASK’S 1/0 IS BEING RUN DOWN

TASK AST RECOGNITION JS INWIBITED
CHECKPOINTING 18 DISABLED ,

TASK 18 MARKED FOR CHECKPOINTING

TASK I8 HOLDING A COMMAND BUFFER

TASK HAS AN 1/0 COMPLETION EVENT IN ITS ASY QUEUE
TASK HAS AN INTERMEDIATE TRANSFER IN PROGRESS
TASK’S SHARED GLOBAL AREAS WAVE BEEN RELEASED
A TASK IS TO RE FIXED

A TASK IS FIXED

AN AST HAS BEEN DECLAREL

THERE 18 A POTENTIAL RECEIVE ASY

OF ATL IN BYTES

6-Y

RSX13D == KESIDENT EXECUTIVE
EXEC MODULE CNE == SYMEOLIC CEFINITIONS

71
172
773
774
778
776
177
778
779
782
781

RSX110 == WESIDENT EXECUTIVE
EXEC MQCULE ONE = SYMBOLIC CEFINITIONS

783
784
788
786
787
788
789
79¢
71914
192
793
794
799
196
797
798
799
8eQ
82y
80¢e
ae3
8ty
8es
826
807
628
8e9

177730
177764
177734
177738
177736
177740
177741
177742
177742
177744
177748
177746

MACRO CP71@ 24=APR=75 {12156 PAGE 15

MRL == FEVMORY REQUIRED LIST

THE "MRL® IS A PRIORITY ORDERED DEQUE OF "ATL® NCDES FOR ACTIVF TASKS
THAT REQUIRE MEMORY IMN A PARTITION, EACH PARTITION HWAS ITS OWN MRL,
WHENEVER A NOMNeFIXED TASK RUNNING IN A PARTITION EXITS, AN
ATTEMPT IS MADE TO ASSIGN MEMORY TO THE FIRST (MIGHEST PRIORTTY)
TASK IN THE LIST, IF MEMORY IS FOUND, THE TASK®S NODE IS

MOVED FRCM THE "MRL™ TO THE "ATL" DEQUE, THE MRL LISTHEAD I8 1IN

THE TPD EMTRY FOR THE CCRRESPONDING PARTITION,

MACRC DO71@ Q2U=APR=75 12156 PAGE 16

CTL == CHECKPCINTABLE TASK LIST

THE "CTL" IS A PRICRITY CRDERED DEQUE OF ENTRIES FOR CHECKPOINYABLE
TASKS THAT ARE ACTIVE IN A PARTITION, EACH PARTITION HAS ITS QWA
CTL, TRE CTL LISTHEAD IS IN THE TPD ENTRY FOR THE CORRESPONCING
PARTITION,

THE CTL IS REALLY JUST A RELINKING CF THE ATL, MCWEVFR, AND NAS

NC UNIQUE NCDES OR FCRMAY CF ITS OWM, . A

THE CTL FCRWARD AND BACKWARD POINTERS ARE THE LAST TWO WORDS IN

THE ATL ACDE, AND , CCNSEQUENTLY, NEGATIVE OFFSEYS MUST BE DFFINED
SO TFAT PARAMETERS MAY BE REFERENCEC WITH RESPECT YO THE CTL FORWARD
POINTER,

K.RG=2A,RQeA,CF
K.,PDz3A,PDeA,CF
K.RP=sA,RPeA,.CF
Ky IR32A,IRep, CF
Ky INEZA, INa A, CF
K MYzmA MTwA, CF
K. CP'.A. CP.A. CF
K NAZBA NA=sA,CF
KeHASZ A HAwA,CF
KeT5=2A,T8xA,CF
K, ASExA, As-l.CF
K,TDemA,TDeA,CF

0T-¥

810
811
812
813
814
818
816
817
818

RSX11D == RESIDENT EXECUTIVE

821
822
823
824
825
826
827
828
829
839
831
832
833
834
83s
836
837
838
839
84¢
84y
84
8u}3
844
845
846
847
848
849
850
854
8Se2
853

177759
177784
177732
177766
177770
177772
177776
1177y

pogo0u
200006
[‘1lT2Y
©0Rp0L 1
eoge12
000213
02¢014d
poeols
eog020
pop022
vovee?
voveesl
eoeReud

voeoaue

K EFmmA EFed,CF
K,FMezA,FMaA,CF
K.TI'.‘QTI.‘.CF
K, AFssA ,AFeA CF
K.‘a..‘. Ae-‘.cr
KelAmBA,lAea, CF
KeTF2A,TFad, CF
KoeCSuxA,CSwA,CF

MACRO DO71@ 24°APRe75 12156 PAGE 18
EXEC MODULE UNE == SYMBOLIC DEFINITIONS

IRQG == I/C REQUEST GUEUE

THE "IRG" 18 A PRIORITY ORDERED DEQUE OF 1/0 REQUEST NODES WITH ITS
LISTHEAD IN THE PUD ENTRY OF THE PHYSICAL UNIT FOR WHILKH THE 1/0
REQUEST wAS QUEUED. EACH PHYSICAL UNIT HAS ITS CWN I/0 REQUFST QUEUE,
170 REQUEST NCDES ARE CREATED AND GUEUED PRIMARILY BY THE "QUEUE 1/0"
DIRECTIVE, HCWEVER, THE EXEC ALSO CREATES 1/0 REQUESTS 101

(1) LOAD & TASK IMAGE, (2) RECORD A TASK IMAGE f[CHECKPOINTING), AND
(3) TO RUNDCWA 1/0 CN AN EXITPED TASK, 1/0 REQUEST NODES ARE OF

THE FOLLOWING FORMAT,

WD, 00 (B 00) =« FORWARD LINKAGE
WD, 21 (B @2) == BACKWARD LINKAGE
W0, @2 (B @4) == NODE ACCOUNTING WORD (STD ENTRY ADR OF REQUESTORY

'

1

!
R.TD:IN.AN
R,AT=2206) WD, @3 (B @6) == ATL NODE OF REQUESTOR www
R.,PRe210 3 WD, 04 (B 1P) =« PRIORITY (BYTE)
R,DOP=sil (B {1) =« DPB SIZE (BYTE) wwwn
R.LUs=12 3 WD, @5 (B 12) =« LOGICAL UNIT NUMBER (BYTE)
R,FNE313 (B {3) =« EVENY FLAG NUMBER (BYTE)
R.FCmzid 3 WD, @6 (B 14) == 1/0 FUNCTION CODE
R,88z216 3 wD, 27 (B 16) == VIRTUAL ADDRESS OF STATUS BLOCK
R,AEe=20 j WD, 12 (B 20) =< VIRTUAL ADDRESS OF AST SERVICE ENTRY
R.,UI==22) wD, 11 (B 22) == USER IDENTIFICATION COOE
R.,PCsm22 (B 22) == PROGRAMMER CODE
R,GCmr23 (8 23) == GROUP CODE
R.,PBe=2d 3 WD, 12 (B 24) == PARAMETER #¢

) WD, {3 (B 26) == PARAMETER #2

$ WO, 14 (B 30) == PARAMETER ¥}

3 WO, 1S (B 32) »e PARAMETER Wy

9 WD. 16 (B 34) == PARAMETER &S

1 WD, 17 (B 36) == PARAMETER #¢
R,PD=z4d 3 WD, 20 (B 4@) == PUD POINTER FOR THIS REQUESY

TT-¥

854
85%
856
857
858
859
86p
86}
862
863
864
865
866
867
868
869
8709
871
872
873
874
875
876

RSX11D == RESIDENT EXECUTIVE

878
879
680
881
882
883
884
88s
886
887

888

889
890
894
892
893
694
89%

¢dwdu?
wdVduu

v2eesu
vepase

eeoeol
pooee2
02004

0002D4
ooo026
o001

R,

EL==42 3 WD, 21 (B 42) == ERROR LOG BUFFER POINTER/FLAG

ReWAEZ44 3 wD, 22 (B 4u) == FLAG BYTE FOR EXEC

R,
R,uB==256

) WD, 22 (B 4S) == WORK AREA FOR DEVICE HANDLERS
? wD., 23 (B U6) == WORK AREA FOR DEVICE WANDLERS
} WD, 24 (B S@) == WORK AREA FOR DEVICE HANDLERS
) WD, 25 (B 52) == WORK AREA FOR DEVICE HANDLERS
182854 3 wD, 26 (B S4) ~= INTERMEDIATE BUFFER ADCRESS
!

WD. 27 (B 56) == USER BUFFER ADDRESS(INTERMEDIATE TRANSFER)

THE LOW ORDER THREE=BITS OF THE 1/0 FUNCTION CODE ARF USED BY THF SYSTFM
AS FCLLCwS:

1}

RF,1T=s000001 t[@) == RESERVED FOR FUTURE USE
RF,XRez0Q0002 1{1) == “YEXPRESS REQUEST"
RF,IR=:000004 1 [2) == RESERVED FOR FUTURE USE

wwx WHENEVER AN I/0 REGUEST 18 QUEUED BY THE "QUEUE 1/0" DIRECTIVE, THF
DPB SIZE AND THE REQUESTOR’S ATL NODE ADDRESS ARE RECORDED IN THF 1/C
REGUEST NODE, WHENEVER AN 1/0 REQUEST IS GUEUED AS 4 RESULT OF ANOTHER
DIRECTIVE (VIZ., "REQUEST" CAUSING A TASK IMAGE TO BE LOADFD), THE DPB
SIZE AND THE REQUESTOR’S ATL NODE ADDRESS ARE SET 70 IERQ. THUS, MOTH
BOTH THE DPB SIZE AND THE ATL NODE ADDRESS ARE ALSO "EXEC REQUEST"
INDICATCRS.

MACRO CO7102 24=APR=75 12156 PAGE 19
EXEC MUDULE ONE == SYMBOLIC DEFINITIONS

C.
C.
.

CKQ == CLOCK QUEUE

THE CLOCK QUEUE 15 A DEQUE CONSISTING OF ONE NCDE FOR EACH OPERATION
SCHEDULED TC BE PERFORMED AT SOME PUTURE TIME, A "SCHEDULE NELTA=
TIVME®™ IN THE FIRSY ANODE (IF ANY) OF THE CLOCK QUEUE 18 DECREMENTED

AT EACH CLOCK TICK UNTIL THE NODE "COMES DUE", AT WHICH TIME THE
INDICATED OPERATION IS PERFORMED, CLOCK QUEUE NCDES ARE LINKED

IN TRE CRDER IN WHICH THEY WILL COME DUE, AND THE SCHEBULE DELTA=TIME
IN EACH NODE (EXCEPT THE FIRST) IS RELATIVE T0 THE SCHEDULE TIME

OF THE PREVIOUS CLOCK QUEUE NODE. CLOCK QUEUE NCDES ARE OF THE
FOLLCWING FORNVAT,

WD, 0@ we FORWARD LINKAGE
WD, @1 =e BACKWARD LINKAGE
WD, 82 == NODE ACCOUNTING WORD (STD ENTRY ADR QF REQUESTOR)

- e e

TDzmN, AK
AYs=06 3 WD, @3 == ATL NODE ADDRESS OF REQUESTOR
S0=%10) WD, 04 == SCHEDULE DELTA IN TICKS (64=B1TS)

AL 4

896
897
898
899
900
901
902
903
904
9085
Qe
907
908
929
910
914
91ie
913
914
915
96
917
918
919
929
921
922
923
924
925

Qepo1u

e0a0e16
©vApa2n
pege22
0eeo2d

000016

oagaz2
oepead
oeeoas
202030
poepr3e

p2pgua2

C,RT==d

|}

C.FMazib
C.Faxn20
C.FNEz22
C.AE=m24

'
C.RImmib

C.R2sE22
C.R3z=24
C.RUsm2b
CoUulszl0
C, 71232

- v W w e w

M. SL=z400

- W w < w w e W W w

WD,
ho.

WD,
wD,
WD,
w0,

2s
o6

e7
10
11
12

(5 UMNUSED

WD,
WD,
w0,
WD,
wD,
WD,
w0,

ar
10
1"
12
13
14
15

(2 UNUSED

(LOWER ORDER MALF OF SCHEDULE DELYA)
REGQUESY TYPE INDICATOR & UNUSED BYTE

[MTY FLAG MASK (BIS SRC)

[MT) FLAGS WORD ADR (BIS DSY ADR)

[MT] EVENT FLAG NUMBER

[MY] VIRTUAL ADDRESS OF AST SERVICE ENTRY
WORDS)

[TS] RESCHEDULE INTERVAL IN TICKS (64=BITS)

[T8) (LOW ORDER HALF OF RESCHEDULE INTERVAL) .
{TS) STD ENTRY ADR OF REQUESTED TASK (R? FOR ’,REQS®)
[TS] TPD ENTRY ADR, OR ZERO_(R3 FOR ’,.REQY®)

[TS) RUN PRIORITY, OR ZERO (R4 FOR °.REQS’)

{T8) UIC INDICATOR FOR ‘. REQS’ .

{T8) TI IDENTIFICATION FOR °*.REQS’

WORDS)

[MT] == MARK TIME NODE ENTRIES
(TS8) ®= TASK SCHEDULING NODE ENTRIES

REQUEST TYPE INDICATORS:

® == MARK TIME

18UB CODE FOR AN INTERNAL TIME SLICE

i == TASK SCHEDULING (SINGLE SHOT)
2 == TASK SCHEDULING WITH PERIODIC RESCHEDULING

NOTE == THE CLOCK QUEUE SCAN ROUTINE IN "CANCEL SCHEQULED REQUESTYS®
ASSUMES TASK SCHEDULING IF NON=ZERO REQUEST TYPE INDICATOR,

€1-¥Y

RSx11C == KESIDENT EXECUTIVE

927
928
929
930
933
932
933
934
93s
936
937
938
939
940
9uy
9ue
943
QU4
94§
946
947
948
949
950
951
952

¢apeos
gage1e
vee212

eRQ40N
eeguopt
geloe2
veveos
poeded
eel4e7

MACRO DP71Q0 24~APR=TS 12156
EXEC MODULE CME e SYMBOLIC DEFINITIOAS

FORMAT,

- W w ww w w

WD,
WD,
WD,
Wb,
\ND.
w0,
w0,
wD,

Y,TT2206
Y.AEs=310
Y.PisE}l2

- e W W e e we W we

e
e
n2
23
od
oS
2]
26

ETC,

PAGE 20

ASQ == AYNCHRONCUS SYSTEM TRAP QUEUE

THE "ASQG" IS A DEQUE (FIFO0), WITH LISTHEAD IN ATL ENTRIES, CONSISTING
OF CNE NODE FOR EACH AST (ASYNCHRONOUS SYSTEM TRAP) TO BE FXFCUTED FCR
THE TASK DEFINED BY THE STD ENTRY, ASQ NODES ARE OF THE FOLLOWING

FORWARD LINKAGE

BACKWARD LINKAGE

ACCOUNTING WORD (STD ENTRY ADDRESS OF CHARGED TASK)
AST TYPE & NUMBER OF PARAMETERS aw

AST ENTRY POINTY

AST PARAMETER 1

AST PARAMETER 2

AST PARAMETER 3

1
1t #* THE AST TYPE & NUMBER OF PARAMETER DEFINITIONS ARE AS POLLOWS?

'
YF.MT=304<y@Ony
YF.ICRZ2lecy@ony

>
»

YF.FEE=2+<yppe2>
YF.PRER3+<4@2v0>
YF.REsBUe<400%0>
YF.PCeETecuppnl>»

IMARK®sTIME (PARAMETER1 EVENT FLAG NUMBER)

11/0 COMPLETION {PARAMETERY STATUS BLOCK ADDRESS)
1F.P, EXCEPTICN (PARAMETERS; EXCEPTION CODEF & ADDRESS)
1POWER RECOVERY (NO PARAMETERS)

1RECEIVE GUEUE‘D (NO PARAMETERS)

1COMMUNICATIONS AST

bT-¥¢

RSX11D o= RESIDENT EXECUTIVE MACRO DA71@ 2u=APR=75 12156 PAGE 21
EXEC MODULE ONE == SYMBOLIC OEFINITIOANS

954

1
9SS 1 SRQ == SEND/RECEIVE QUEUE
956 1
957 1 THE "SRG"™ IS A DEQUE (FIFO0), WITH LISTHEAD IN STD ENTRIES, CONSISTING
958 31 ONE MODE FOR FACH BLOCK OF DATA "SENT® (VIA "SENP" OR "SEND R REQUEST"
989 s DIRECTIVES) YO THE TASK DEFINED BY THE SYD ENTRY. RQOS NODES ARE OF
9682 t THE FOLLOWING FORMAT,
961 []
962 3 WD, 08 =« FORWARD L INKAGE
963 3 WD, 01 o= BACKWARD LINKAGE
964 proeoy D,SIzahgAW ¢ WD, 02 (8 B4) == SENDER ID (NAW)Y
965 200006 D.T13sN,TI 3 WD, B3 (8 26) == TI INDICATOR
Q66 oepgeLo D.,PRzs192 3 W0, @4 (B 108) == PRIORITY QOF SEND
967 ©voveLl D,BSs=1}] (B §1) == BUFFER SIZE (WORDS)
968 aegelre2 D.D1=212 9 WD, 05 (B 12) == FIRSY WORD OF DATA BLOCK

R8X14D == RESIDENT EXECUTIVE MACRO DN71@ 24~APR=75 12156 PAGE 22
EXEC MODULE ONE == SYMBOLIC DEFINITIONS

970 $ MCR == MCR COMMAND BUFFER

971]

972 1 THE MCR COMMAND BUFFER IS A 96 BYTE BUFFER THAY HOLDS THE DATA
973 t FOR A REQUESTED MCR FUNCTION.THE BUFFER 18 SET UP BY THE MCR
974 s DISPATCH FUNCYION AND 18 RETURNED TO THE POOL BY THE *GEY MCR
97% t COMMAND LINE DIRECTIVEAFTER THE INFORMATION MWAS BEEN PASSFD
97e 1 TO THE MCR FUNCTICN,THE BUFFERS ARE LINKED TO THE MCR BUFFER
977 + LIST BY THE MCR DISPATCH FUNCTIOAN,

978]

979] 1 WD. 00 == FORWARD LINKAGE

980] 1 WD, 03 ==~ BACKWARD LINKAGE

981 1t WD, B2 =« NODE ACCOUNTING WORD

982 veo00e M,TNESS 1t WD, @3 ==« SECOND HALF OF MCR TASK NAME

983 00010 M, TIz210 1 WD. B4 == T ADDRESS OF MCR FUNCTYION

984 gepole M.BCz=my2 1 WD. @S == N0, OF BYTES IN COMMAND LINE

985S [LIL2Y M, BFsE1d 1 WO, 06 == STARY OF DATA AREA IN BUFFER

ATL (Active Task List)

CLOCK QUEUE

COMMON BLOCK, INTERNAL

COMMON BLOCK, SYSTEM

DEFAULT PRIORITY

DEQUE

DEVICE HANDLER

DIRECTIVE

DISK-RESIDENT TASK

APPENDIX B

GLOSSARY

A priority-ordered list of Active
Tasks used to drive the system.
The ATL is a deque consisting of
one node for each Active Task in
the system.

The Clock Queue is a deque
consisting of one node for each
item to be done at some time in the
future, such as scheduling of Tasks
(Via the SCHEDULE and MARK TIME
Directives), and rescheduling of
Tasks (Clock interrupt service
routine). The nodes are linked in
the order in which they come due.

An area of contiguous memory within
a partition, available only to the
Task in the partition during its
residency.

An area of contiguous memory,
defined at System Generation time,
where data can be stored and

referenced by all Tasks. A SYSTEM
COMMON BLOCK is referenced by using
a COMMON name matching a SYSTEM
COMMON BLOCK name and declaring
that COMMON as SYSTEM COMMON to the
Task Builder.

A priority given to a Task during
Task Building or Task Installation
that is used when a priority is not
specified and the Task's execution
is requested or scheduled.

A double-ended queue consisting of
a listhead and list elements
(nodes), circularly linked by both
forward and backward pointers.
Deques or linked lists are used to
store system information.

A Task in the RSX-11D system which
drives or services an I/0 device.
Handler tasks are activated using
the Queue I/O0 directive.

See SYSTEM DIRECTIVE
A Task which normally resides on

the disk and 1is brought into a
memory partition to execute.

DPB (DIRECTIVE PARAMETER BLOCK)

EVENT FLAG

EXECUTIVE

I/0 RUNDOWN

LISTHEAD

LINKED LIST

LUN (LOGICAL UNIT NUMBER)

LUT (LOGICAL UNIT TABLE)

MCR (MONITOR CONSOLE ROUTINE)

A Dblock of up to 12 (decimal)
contiguous words containing
information needed in processing a
System Directive.

One of 64 bits associated with a
Task, which 1is set or cleared to
indicate that a particular
Significant Event has occurred.

The Executive coordinates all ac-
tivities in the system including
Task scheduling, I/O supervision,
resource allocation, and interactive
operator communication.

A process which delays the avail-
ability of a partition until all
transfers to and from that partition
have been stopped or have been al-
lowed to complete. I/O RUNDOWN is
invoked when a Task is terminated

by the Executive or by the ABORT
MCR Function Task and has outstand-
ing transfers pending to/from its
partition.

A 2-word memory block with forward
and backward pointers pointing to
the next and previous 1list node or
to itself if empty. The listhead
is a reference point in a circularly-
linked list.

A deque consisting of nodes and
a listhead used to store system
information. An empty list con-
sists of only a listhead.

Logical Unit Numbers are used to
represent logical I/0 device units
rather than physical units. Each
Logical Unit Number is represented
by an entry in the Logical Unit
Table.

A block of contiguous memory with a
l-word entry, or slot, for each
Logical Unit Number. When a LUN is
assigned to a physical device unit,
the corresponding LUT slot contains
the address of the appropriate

Physical Unit Directory node.

The MCR allows the user to com-
municate on-line with the system
from the console Teletype. The MCR
consists of the Resident MCR Task,
whicn accepts user's commands, and
the MCR Functions, which actually
carry out the indicated requests.

MEMORY-RESIDENT TASK

MONITOR CONSOLE

NODES

PARTITION

PUD (PHYSICAL UNIT DIRECTORY)

POOL (POOL OF EMPTY NODES)

SIGNIFICANT EVENT

STD (SYSTEM TASK DIRECTORY)

SYSTEM GENERATION

SYSTEM DIRECTIVES

TASK

TKB (TASK BUILDER)

A Task which has been fixed-in-memory
or which is assembled as part of the
Executive.

The control Teletype of the RSX-11D
system where MCR Function requests
may be issued by the operator.

The list elements of a deque. All
nodes (of dynamic lists) consist of
the 1listhead, followed by data
(1ist elements).

An area of contiguous memory within
which Tasks are executed; defined
at System Generation time.

A table constructed during System
Generation to describe the I/0
devices and units in the system.
When a logical I/0 number is
assigned to a physical unit, the
device and unit are set in a LUT
entry corresponding to the LUN.

Empty l17-word nodes for use in any
deque. The poocl 1is generated by
System Generation from a core area
not specified for other use.

An event which results in the
scanning of the active task list.

The following events are considered
significant events: 1) I/0 queuing,
2) normal 1/0 request completion,

3) a task request, 4) a scheduled
RUN, SCHEDULE, or SYNC coming due,
5) a Mark Time expiration, 6) a task
resumption (Resume directive), and
7) a task exit(Exit directive).

A directory of all tasks installed
in the system.

The process through which the wuser
tailors the RSX-11D system to best
fit his requirements.

Instructions to the RSX~-11D
Executive to perform special
functions, such as I/0, etc.

A program written by the user or
supplied by Digital which is built
via the Task Builder, installed in
the system via the Monitor Console
Routine, and scheduled and. exacuted
on a priority basis.

The Task Builder program is used to
build Task files from relocatable
binary files.

B-3

APPENDIX C

QIOMAC.MAC

QIOMAC = QTOSYM MACRD DEFINITIO MACRO DB710 25eMARe7S 14123 PAGE 1

1 «TITLE OQIOMAC = QIOSYM MACRO DEFINITION
2 3 ALTERED SUNDAY 24=NOVeY4 13108

3 3 ALTERED TUESDAY 28=JANe?S 131501D¢

a $ ALTERED THURSDAY 06-FEB<?5 153150

5 3 ALTERED MONDAY 24=FEB=75 15140108 BY ED MARISON

6 } ALTERED TUE 25«MAR=75 15138 EDIT » +@u1

4 ’

8 } 4essé ALWAYS UPDATE THE FOLLOWING TWO LINES TUGETHER

9 JIDENT /0304/

10 [PTXIY GI,vER=Q304

11 H

12 3 COPYRIGHT 1974,1975, DIGITAL €QUIPMENT CORP,, MAYNARD MASS,

13

14 3 THIS SOFTWARE IS FURNISHED TO PURCHASER UNDER A LICENSE FOR USE
15 ? ON A SINGLE COMPUTER SYSTEM AND CAN BE COPIED (WITH INCLUSION
16 3 OF DEC'S COPYHIGHMT NOTICE) ONLY FOR USE IN SUCH SYSTEM, EXCEPT
17 7 AS MAY OTHERWISE BE PROVIDED IN WRITING BY DEC,

18

19 ? THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT
22 7 NOTICE AND SHOULD NOT Bt CONSTRUED AS A COMMITMENT BY DIGITAL
21 ; EGUIPMENT CORPORATION,

22

23 3 DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY

24 3 OF 1TS SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC,

25]

26 s

27 3

28 e

29 3 MACRO TO DEFINE STANDARD QUEUE I/0 DIRECTIVE FUNCTION' VALUES
0 3 ANO T0SO RETURN VALUES, TO INVOKE AT ASSEMBLY TIME (wITH LOCAL
3 3 DEFINITION) USES

32 '

3 ; G108YS JDEFINE SYMBOLS

34 H

38) TO ORTAIN GLOBAL DEFINITION OF THESE SYMBOLS USEt

3¢ 3

37) 0105Ys DEFSG 1SYMBOLS DEFINED GLOBALLY

38 :

30 3 THE MACRO CAN BE CALLED ONCE ONLY AND THEN

42 3 REDEFINES TYSELF AS NULL,

a1 -

42

43 LMACRU QI0OSYS S$S5$GBL,SSSMSG

4 JIIF 10N, <$$8GBL>, <DEFSG>, «6LOBL QI,VER

45 . 1F 10N, <$$SMSG>, <DEFSS>

4h $SSMAX=D

a7 $SMSGEY

48 JIFF

49 S$MSG=0

50 LENDC

51 «MCALL T0EKRS

52 TOERS $$SGBL 3170 ERROR CODES FROM HANDLERS, FCP, FCS
53 +MCALL DRERRS
54 OKFKRS $SSGRL JDIRECTIVE STATUS WORD £RROR CODES
55 WIF DIF,<$88MSG>, <DEFS$S>

55 JMCALL FILIOS

57 FILINS SSSGBAL JDEF INE GENERAL G1/0 FUNCTION CODES

€-0

QIOMAC = OTOSYM MACRN DEFINITIO MACRO DO71® 25=MARe75 14123 PAGE =i

58 +MCALL S8SPCIOS

59 SPCI0S $$SGBL JDEVICE DEPENDENY I/0 FUNCTION CODES
6@ +MACRO OI0SYS ARG,ARG1,ARG2 JRECLAIM MACRO STORAGE

61 «ENDM Q10SYS$

62 «ENDC

63 +ENOM Q]OSYS

QIOMAC » QIQOSYM MACRO DEFINITIO MACRO DO71@ 25=MAR«7S5 14323 PAGE 2
65
66 H
67 ? DEFINE TWE ERROR CODES RETURNED BY DEVICE HANDLER AND FILE PRIMITIVES
68 5 IN THE FIRSY WORD OF THE 1/0 STATUS BLOCK
69 3 THESE CODES ARE ALSO RETURNED BY FILE CONTROL SERVICES (FCS) IN THE
70) BYTE F,ERR IN THE FILE DESCRIPYOR BLOCK (FDB)
71 ’ THE BYTE F,ERR¢1 IS @ IF F,ERR CONTAINS A WANDLER OR FCP ERROR CODE,
72 }
73 +MACRO IOERRS SSSSGBL
74 «MCALL L,I0ER,,DEFINS
75 «IF ION,<583GBL>,<DEF$G>
76 eesGBLEL
77 JIFF
78 seeGBLE0
79 LENDC
&80 JIIF NDF , $SMSG, SSM5G=Q
81 3
82 ? SYSTEM STANDARD CODES, USED BY ALL FUNCTIONS
83 ’
84 »I0ER, IE,BAD,=-01,,<BAD PARAMETERS>
85 JIOER, T1E,IFC,=B2.,<INVALIV FUNCTION CODE>
86 .I0ER, 1I1E,DNR,=@3,,<DEVICE NOT READY>
87 JIODER, 1E,VER,=04,,<PARITY ERROR ON DEVICE>
88 JIDER, 1I1E,ONP,=05,,<HARDWARE OPTION NOT PRESENT>
89 +I0ER, TE,SPC,=06,,<ILLEGAL USER BUFFER>
90 JINER, TE,DNA,=07,,<DEVICE NOT ATTACHED>
91 JIDER, TE.DAA,~08,,<DEVICE ALREADY ATTACHED>
92 JI0ER, TE,DUN,=29,,<DEVICE NOT ATTACHABLE>
93 +JOER, TELEOF,=104,<END OF FILE DETECTED>
94 JJOER, IELEOV,=11,,<END OF VOLUME DETECTED>
95 JINER, JTE.wLK,=12,,<wRITE ATTEMPTED YO LOCKED UNIT>
96 JI0ER, T1E,DAD,=13,,<DATA OVERRUN>
97 .10ER, IE,SRE,=14,,<SEND/RECEIVE FAILURE>
y8 LIDER, I1E,ABD,=15,,<REQUEST TEWMINATED>
90 ,10eR, 1E,PRl,=16,,<PRIVILEGE VIOLATION>
100 JIOER, 1E,RSU,=17,,<SHARABLE RESOURCE IN USE>
101 JINER, TE,UVR,=18,,<l1LLEGAL OVERLAY REQUEST>
102 JI0ER, IE,BYT,=19,,<0DD BYTE COUNT (OR VIRTUAL ADDRESS)>
103 JIDER, TE.BLK,=204,<LOGICAL BLOCK NUMBER TOO LARGE>
104 JI0ER, TE.MOD,=21,,<INVALID UDC MODULE #>
109 JINER, TE,.CON,=22,,<UDC CONNECT ERROR>
106 JI0ER, TE,BBE,=56,,<BAD BLOCK ON DEVICE>
1p? JIDER, 1E,STK,=58,,<NOT ENOUGH STACK SPACE (FCS OR FCP)»>
18 LI0ER, IE.FHE,=59,,<FATAL HARDWARE ERROR ON DEVICE>
102 JINDER, IE.EOT,=62,,<END OF TAPE DETECTED>
1yn .J0ER, I1E,OFL,=65,,<DEVICE OFF LINE>
111 L10ER, 1E,BCC,=66,,<BLOCK CHECK OR CRC ERROR>
112
113
114 [}
115 3 FILE PRIMITIVE CODES
116 3
117
118 LI0ER, IE,NOD,=23,,<CALLER'S NODES EXmAUSTED>
119 .IDER, 1E,DFU,=24,,<DEVICE FULL>
120 JIDER, TE,IFU,=25,,<INDEX FILE FULL>

121 . I0ER,

TE,NSF,=26,,<NO SUCH FILE>

GIOMAC « QJOSYM MACRO DEFINITIO MACRO D@71@ 25=MAR«75 143123 PAGE 2-1

122 JIOER, 1E,LCK,=27,,<LOCKED FROM WRITE ACCESS»
123 .I0ER, IE.HFU,=28,,<FILE WEADER FULL>

124 JI0ER, 1E,WAC,=29,,<ACCESSED FOR WRITE>

125 JI0ER, 1E,CKS,=30,,<FILE HEADER CHECKSUM FAILURE>

126 LI0ER, IE,WAT,=31,,<ATTRIBUTE CONTROL LIST FORMAT ERKOR>»

127 .IDER, 1E.RER,=32,,<FILE PROCESSOR DEVICE READ ERROR»

3128 ,I0tR, 1E,WER,=33,,<FILE PROCESSOR DEVICE WRITE ERROR>

129 JIDER, I1E,ALN,=34,,<FILE ALREADY ACCESSED ON LUN>

130 JIDER, 1I1E,SNC,=35,,<FILE ID, FILE NUMBER CHECK>

131 «I0ER, TE.S0C,=36,,<FILE ID, SEQUENCE NUMBER CHECK>

132 JIOER, TENLN,=37,,<NO FILE ACCESSED ON LUN>

133 + 10ER, 1E,CLO,=36,,<FILE wWAS NOT PROPERLY CLOSED»>

134 J10ER, I1E,DUP,=57,,<ENTER « DUPLICATE ENTRY IN DIRECTORY>
135 JI0ER, 1E,BVR,=63,,<BAD VERSION NUMBER>

136 LI0ER, 1E,BHD,=64,,<8AD FILE HEADER>

137 JIOER, IELEXP,=75,,<FILE EXPIRATION DATE NUT REACHED>

138 JIOER, 1E.BTF,=76,,<B5AD TAPE FURMAT>

139

140] ‘

141 3 FILE CONTROL SERVICES CODES

142 ;

143

144 LJIOER, 1E,NBF,=39,,<0PEN = NO BUFFER SPACE AVAILABLE FUR FILE>»
145 JI0ER, TE,KBG,=d0.,<ILLEGAL RECORD SIZE>

146 JI0ER, IE.NBK,=d81,,<FILE EXCEEDS SPACE ALLUCATED, NO BLOCKS>
147 JIOER, 1E,ILL,=42,,<ILLEGAL OPERATION ON FILE DESCRIPTOR BLOCK>
148 +I0ER, I1t&,BTP,=43,,<BAD RECORD TYPE> '

149 WIOER, JE.RAC,»d4,,<ILLEGAL RECORD ACCESS BITS SET>

150 LJI0ER, IE,RAT,=45,,<ILLEGAL RECORD ATTRIBUTES B6ITS SET>

151 .I0ER, TIE.RCN,=d6,,<ILLEGAL RECORD NUMBER = T00 LARGE>

152 JIOER, TE, MBK,=4?,,<MULTIPLE BLOCK READ/WRITE = NOT IMPLEMENTED YET>
153 JIDER. 1E,20v,=486,,<RENAME = 2 DIFFERENT DEVICES>

154 JIOER, I1E,FEX,=49,,<RENAME = NEW FILE NAME ALREADY IN USE>
158 JIOER, 1E,BDR,=50,,<BAD DIRECTORY FILE>

156 JINER, TE,RNM, 51,,<CAN!'T RENAME OLD FILE SYSTEM>

157 JJ0ER, 1E.BDI,=52,,<BAD DIRECTORY SYNTAX>

158 JI0ER, 1E,FOP,=53,,<FILE ALREADY OFEN>

159 JI0ER, 1&,BNM,=54,,<BAD FILE NAME>

160 JI0ER, 1E,BDV,=55,,<BAD DEVICE NAME>

161 JIOER, JENF1l,=60,,<FILE 1D WAS NOT SPECIFIED>

162 JIOER, TE,I18Q,=61,,<ILLEGAL SEQUENTIAL OPERATION>

163 JI0ER, TELNNC,=77,,<NOT ANSI 'D! FORMAT BYTE COUNT>

164 - }

165 3 NETWORK ACP CODES

166 ; ;

167 JIOER, TE.AST,=67,,<NO AST SPECIFIED IN CONNECT>

168 LI0ER, TE,NNN,=68,,<NO SUCH NODE>

160 I0ER, TIE,NFW,=69,,<PATH LOST TO PARTNER> pe0@{ THIS CODE MUST BE 000
170 JIOER, 1E,BLB,=70.,<BAD LOGICAL BUFFER> j+0@1

171 JIOER, TE,TMM,=71,,<T00 MANY OUTSTANDING MESSAGES>

172 JIDER, TIELNDR,*72,,<NO DYNAMIC SPACE AVAILABLE>

173 JI0ER, TE,CNR,=73,,<CONNECTION REJECTED>

174 LINER, Tk,TMO,=74,,<TIMEOUT ON REQUEST>

175 JINER, TELNNL,=78,,<NOT A NETWORK LUN> J+001

176

177

}
178 7 SUCCESSFUL RETURN CODES===

9~D

QIOMAC = GIOSYM MATRO DEFINITIO MACRO DO71@ 25-MAR7S 143123 PAGE

179
180
181
182
183
184
185
188
187
188
189
192
191
192
193
194
195
196
197
198
199
200
201
22
263
204
245
2us
2e7

e s v e W ve

DEFINS 1IS,PND,+00,
DEFINS 18,SUC,+d4,
DEFINS 1S5,8BV,+05,

TTY SUCCESS CODESH

2=2

JOPERATION PENDING

J10PERATION COMPLETE, SUCCESS

JON A/D READ, AT LEAST ONE BAD VALUE
IwAS READ (REMAINOER MAY 8E G0OD),
3BAD CHANNEL IS INDICATED BY A
INEGATIVE VALUE IN THE BUFFER,

DEFINS 1IS5,CR,<{5+498+1> JCARRIAGE RETURN WAS TERMINATOR
NEFINS T85,E8C,<33%420+1> JESCAPE (ALTMODE) WAS TERMINATOR

bbb

THE NEXT AVAILABLE ERROR NUMBER 183 =79,

ALL LOWER NUMBERS ARE IN UuSELl

LA RN R J
oIF EQ,$3MSG
+MACRO TOEKRS A
«ENDM I0ERRS
+ENDC
«ENDM T0ERRS

L=-D

QIOMAC = QI08YM MACRO DEFINITIO MACRO D@71@ 25<MAR<75 14123 PAGE 3

209
210
211
212
213
214
215
216
217
218
219
220
221
22?7
223
224
22%
226
227
228
220
230
231
232
233
234
238
236
237
238
230
240
241
242
243
244
245
248
247
2a8
249
25n
251
252
253
254
255
256
257
258
259
260
261

- e Nk %e e e s we

. e we

-~ %o we

DEFINE THE DIRECTIVE ERROR CODES RETURNED IN THE DIRECTIVE STATUS WORD

FILE CONTROL SERVICES (FCS) RETURNS THESE CODES IN THE BYTE F ERR
OF THE FILE DESCRIPYOR BLOCK (FDB), YO DISTINGUISH THEM FROM THE
OVERLAPPING CODES FROM HANDLER AND FILE PRIMITIVES, THE BYTE
FL,ERR+y IN THE FDB WILL BE NEGATIVE FOR A DIRECTIVE ERROR CODE,

+MACRO DRERRS $3$3GBL
+MCALL ,LOT0E,,DEFINS

. IF IDN,<3GBL>,<DEFSG>
e0eGBLEY

JIFF

O..GBL.O

JENDC

WIIF NDF ,S5M8G,8$3MSGsQ

STANDARD ERROR CODES RETURNED BY DIRECTIVES IN THE DIRECTIVE STATUS WORD

JOTOE, T1E,UPN,=81,,<INSUFFICIENT DYNAMIC STORAGE>
+GT0E, TE,INS,=082,,<SPECIFIED TASK NUT INSTALLEO>

LUT0E, TE,ULN,=85,,<UN=ASSIGNED LUN>

WOTOE, 1E,HWK,=06,, <HANDLER TASK NOT RESIDENT>

JOTOE, TE.ACY,=87,,<TASK NOT ACTIVE>

WWTOE, TE.175,~08,,<DIRECTIVE INCONSISTENT WITH TASK STATE>
LO10E, 1E,CKP,=19,,<ISSUING TASK NOT CHECKPOINTABLE>

+OT10E, 1T1E.AS8T,=-80,,<DIRECTIVE ISSUED/NOY ISSUED FROM AST>»
JOIO0E, I&,LNL,~99,,<LUN LOCKED IN USE>

2WGIDE, TELIDVU,)=924y<INVALID DEVICE OR UNIT>

JGI0E, TELITI,=93,,<INVALID TIME PARAMETERS>

+WI0E, TELIPK,=95,,<INVALID PRIORITY (,6T7, 250,)>

JUIOE, Tt,ILU,=96,,<INVALID LUN>

LW10€E, YE,IEF,=97,,<INVALID EVENT (,GT, 64,)>

+WI0E, IE,ADP,=98,,<PARY OF DPB QUT (OF USEK'S SPACE>
LGT10E, IE.SOP,=99,,<DIC OR DPB SI2t INVALID>

SUCCESS CODES FKOM DIRECTIVES = PLACED IN THE DIRECTIVE STATUS wORD

DEFINS IS,CLR,® JEVENT FLAG WAS CLEAR

JFROM CLEAR EVENT FLAG DIRECTIVE
DEFINS IS,SET,2 JEVENT FLAG wWAS SETY

JFROM SEY EVENY FLAG DIRECTIVE
DEFINS 1IS,SPD.2 JTASK WAS SUSPENDED
o IF EG,$8MSC

.MACRO DRERR® A
+ENDM DRERPS
JENDC

+ENDM DRERRS

QIOMAC » QTOSYM MACRO DEFINITIOC MACRO DU718 25=MAR=75 {43123 PAGE 4

263 ’

264 3 DEFINE THE GENERAL Q1/0 FUNCTION CODES = DEVICE INDEPENDENTY
265)

266 +MACRO FILIOS $SSGBL

267 +MCALL WORD,,DEFINS

268 JIF IDN, <$$SGBL>, <DEFSG>

269 20sGBLEY

270 JIFF

271 esoGBLEO

272 JENDC

273 ’

274 3 GENERAL QI/0 QUALIFIER BYTE DEFINITIONS

275 ’

276 JHORD, 1Q,X,001,00¢ INO ERROR RECOVERY

Y «WORD, 1G,0,002,000 JQUEUE REQUEST IN EXPRESS QUEUVE
278 11 +WORD, 1G,,004,000 JRESERVED

279 H

289 3} EXPRESS OUEUE COMMANDS

281 H

282

243 «WORD, TU,KIL,012,000 JKILL CURRENT REQUEST

284 «WORD, T0,RDN,022,000 J1/0 RUNDOWN

28% «WORD, I0,UNL,042,000 JUNLOAD I/0 HANDLER TASK

286 oWORD, T0,LTK,250,008 JL0AD A TASK IMAGE FILE

287 JWORD, T0,RTK,060,000 JRECORD A TASK IMAGE FILE
288 ’

289 } GENERAL DEVICE HANDLER CODES

290 ’

291 «WORD, T10,WLB,0P0,801 3wRITE LOGICAL BLOCK

292 «WORD, 10,RLB,088,002 JREAD LOGICAL BLOCK

293 JWKORD, 10,L0V,010,202 JLOAD OVERLAY (DISK DRIVER)
294 JWORD, IG,ATT,000,083 JATTACH A DEVICE YO A TASK
295% +WORD, 10,DET,000,004)JDETACH A DEVICE FROM A TASK
296 H

297 3 DIRECTORY PRIMITIVE CODES

298 [

299 JWORD, I10,FNA,008,811 JFIND FILE NAME IN DIRECTORY
pn JWNRD, 10,RNA,008,213 JREMOVE FILE NAME FROM ODIRECTURY
3u1 JWORD, I10,ENA,2P2,014 JENTER FILE NAME IN DIRECTORY
3e2 ’

303 # FILE PRIMITIVE CODES

304 H

395 «WORD, 10,CLN,200,0@7 3CLOSE OUY LUN

306 «WORD, TU,ACR,Q00,0815 JACCESS FOR READ

397 JWORD, T0U,ACW,000,016 JACCESS FOR WRITE

3ea +WORD, TO,ACE,Q@0,017 JACCESS FOR EXTEND

309 +WORD, 10,DAC,000,020 JDE~ACCESS FILE

310 +WORD, I0,RVB,028,821 JREAD VIRITUAL BLOCK

314 .WORD, 10,wVB,008,022 JIWRITE VIRITUAL BLOCK

312 «WORD, 10,EXT,800,023 JEXTEND FILE

313 +WORD, 10,CRE,9008,024 JCREATE FILE

314 JNORD, 10,0EL,Q00,025 IDELETE FILE

315 JWORD, T0,RAT, Q00,026 JREAD FILE ATTRIBUTES

316 ¢WORD, T0,wAT,000,027 JwRITE FILE ATYRIBUTES

317 JWORD, T0,APY,210,030 JPRIVILEGED ACP CUNTRUL

318 JWORD, T10,APC,200,038 1ACP CONTROL

319

QIOMAC = QTIOSYM MACRO DEFINITIO MACRO D@710 26=MAR=75 14123 PAGE 4=\

320)
321 +MACRO FILIOS 4
322 JENDM FILIOS

323 sENDM FILIOS

0T-D

QIOMAC = QIOSYM MACRO DEFINITIO MACRD 02718 25=MAR7S 14323 PAGE 5

32%
328
327
328
J29
330
331
332
333
334
338
338
337
338
339
Ja0
341
342
343
344
345
346
347
348
3a9
jse
351
352
353
354
358
356
387
b8
359
369
3ot
362
363
364
365
366
367
368
J69
370
371
372
373
374
37%
376
377
378
379
3an
J8at

DEFINE THE QI/0 FUNCTION CODES THAY ARE SPECIFIC YO INDIVIODUAL DEVICES

+MACRO
«MCALL
oIF

eseGBLEY

oIFF

eeoBBLE0

+ENDC

SPCI0S 333GBL
o+WORD, ,DEFINS

IDN, <$83GBL >, <DEF $G»

GI/0 FUNCTION CODES FOR SPECIFIC DEVICE DEPENDENT FUNCTIONS

+WORD,
«WORD,
+WORD,
+WORD,
«WORD,
+WORD,
+WORD,
+WORD,
+WORD,
«WORD,
«WORD,
+WORD,
+WORD,
+WOKD,
s WORD,
+WORD,
+WORD,
+WORD,
+WORD,
«WORD,
+WORD,
«WORD,
+WORD,
«WORD,
+WORD,
«WORD,
«WORD,
+WORD,
+WORD,
+WORD,
+WORD,
+WORD,
+WORD,
+WORD,
+WORD,
+WORD,
«WORD,
+ WORD,
+WORD,
+WORD,
+WORD,
+WORD,
«WORD,
+WORD,

10,wLV,1008,001
I0,wWLS,010,001
I0,WNS,020,001
I0,RLV, 100,002
10,RNC,040,002
I0,RAL,010,002
I10,RNE, 020,002
10,RDB, 200,002
10,RHMD,010,002
10,RNS,020,0202
10,CRC,040,002
I0,R1C,000,005
10,INL,000,005
I0,TRM, 010,005
I10,RBC,000,006
10,M00,000,006
10,HOX,010,006
I0.FDX,620,006
J0,SYN,040,006
I0,RTC,000,007
10,RWD,000,085
10,5PB,020,005
10,SPF,040,005
I0.EOF,000,006
10,8TC,100,005
10,SEC,120,005
10.RWU,140,005
10.5M0,160,005
10,5A0,000,010
10,580,000,0211
10,M80,000,012
10.,5L0,000,013
I10,MLO,002,014
10,LED,000,024
10,500,000,025
10,801,000,026
10,SC8,000,026
10,REL,200,027
10,MCS8,000,027
10,AD05,000,030
10,CC1,000,030
10,MD1,000,0314
10,0C1,000,031
10,XMT,080,031

JWRITE LOGICAL REVERSE (DECTAPE)

} (COMMUNICATIONS) WRITE PRECEVED BY SYNC TRAIN
J(COMMUNICATIONS) WRITE, NC SYNC TRAIN
JREAD REVERSE (DECTAPE))

JREAD = NO LOWER CASE CONVERT (TTY)
JREAD PASSING ALL CHARACTERS (TTY)

JREAD WITHOUY ECHO (TTY)

SREAD BINARY MODE (CARD READER)
J(COMMUNICATIONS) READ, STRIP SYNC

) (COMMUNICATIONS) READ, DON!T STRIP SYNC
3 (COMMUNICATIONS) READ, DON!T CLEAR CRC
JREAD SINGLE CHANNEL (AFC, ADBY, UDC)

) (COMMUNICATIONS) INITIALIZATION FUNCTION
3 (COMMUNICATIONS) TERMINATION FUNCTION
JREAD MULTICHANNELS (BUFFER DEFINES CHANNELS)
J (CUMMUNICATIONS) SETMODE FUNCTION FAMILY
3} (COMMUNICATIONS) SET UNIT HALF DUPLEX

$ (CCOMMUNICATIONS) SET UNIT FULL DUPLEX

) (COMMUNICATIONS) SPECIFY SYNC CHARACTER
JREAD CHANNEL = TIME BASED

JREWIND (MAGTAPE, DECTAPE)

JMAGTAPE, SPACE "N" BLOCKS

JMAGTAPE, SPACE "N“ EQF MARKS

JMAGTAPE, WRITE EOF

JMAGTAPE, SET CHARACTERISTIC

JMAGTAPE, SENSE CHARACTERISTIC

JREWIND AND UNLOAD (MAGTAPE, DECTAPE)
JMAGTAPE, MOUNT & SET CHARACTERISTICS
JUDC SINGLE CHANNEL ANALOG OUTPUT

JUDC SINGLE SHOT, SINGLE POINT

JUDC SINGLE SHOT, MULTI=POINT

JUDC LATCHING, SINGLE POINT

JUDC LATCHING, MULTI=POINT

JLPS1{ WRITE LED DISPLAY LIGHTS

JLPS11 WRITE OIGITAL OUTPUT REGISTER
JLPS11 READ OIGITAL INPUT REGISTER

JUDC CONTACT SENSE, SINGLE POINT

JILPS1) WRITE RELAY

JUDC CONTACT SENSE, MULTI-POINT

JLPS{1 SYNCHRONQUS A/D SAMPLING

JUDC CONTACT INT = CONNECT

JLPS11 SYNCHRONOUS DIGIYAL INPUT

JUDC CONTACT INT = DISCONNECY

J(COMMUNICATIONS) TRANSMIT SPECIFIED BLOCK WITH ACK

IT-°

QIOMAC = QIOSYM MACRO DEFINITIO MACRO DO718 23-MAR-7S

382
383
384
385
386
387
3se
389
3g0
391
392
303
394
395
396
397
398
399
409
401
ap?
403
404
405
406
487
408
440
410
411
412
413
414
415
a16
417
ai8
419
420
421
422
423
424

+WORD,
+WORD,
+WORD,
«WORD,
+WORD,
JWORD,
.WO“D.
+WORD,
LWORD,
LWORD,
+WORD,
+WORD,
+WORD,
JWORD,
<WORD,
+WORD,
LWORD,
+WORD,
+WORD,
JWORD,
o+ WORD,
+WORD,
JWORD
o WOKD,
+WORD,
<WORD,
+WORD,
<WORD,
WORD,
«WORD,
+WORD,
+WORD,
+WORD,
. WORD,
2 WORD
.WORD,
«WORD,
JWORD,

+MACRO
s ENDM

14123 PAGE S8-f

JI0,XNA,210,031
10,M18,000,032
I0,RCI,000,032
10,RCvV,000,032
10,MD0,000,033
10,Cv1,000,033
10,CON,000,033
10,CPR,010,033
10,CAS,020,032
10,CRJ,040,033
10.C80,110,033
10,CTR,210,033
10,GN],010,035
10,6L1,020,835
I10,6LC,030,035
10.GRI,040,035
10,G6RC, 450,035
10,GRN,260,035
10.C8M,070,035
10,CIN,100,035
10,CBN,110,0835
10,C80,320,035
10,0T],000,0834
10,018,000,034
10,MDA,000,0134
JO,RT]1,000,035
10,CTL,000,0835
10.8T7P, 000,035
10,171,000,0236
10,WPB,040,00%
I0,RPB, 040,002
10,8HY,010,005
10,587,030,005
10,SEM, 040,005
10,SNM, 250,005
10,CCT,0260,005
10,0CY,070,005
10,E8A,100,005

SPCIOS A
SPCIO0%
SPCIO0S

) (COMMUNICATIONS) TRANSMIT WITHOUT ACK

SLPS11 SYNCHRONOUS HISTOGRAM SAMPLING

JUDC CONTACT INT = READ

$ (COMMUNICATIONS) RECEIVE DATA IN BUFFER SPECIFIED
JLPS11 SYNCHRONOUS DIGITAL OUTPUT

JUDC TIMER =~ CONNECT

» (COMMUNICATIONS) COMMUNICATIONS CONNECT FUNCTION

) (COMMUNICATIONS) COMMUNICATIONS CONNECT NO TIMEOUTS
J (COMMUNICATIONS) COMMUNICATIONS CONNECT WITH ASY

? (COMMUNICATIONS) COMMUNICATIONS CONNECTY REJECY
14001 (COMMUNICATIONS) COMMUNICATIONS BOOT CONNECT
34001 (COMMUNICATIONS) COMMUNICATIONS TRANSPARENT CONNECY
}(COMMUNICATIONS) COMMUNICATIONS GET NODE INFO

J (COMMUNICATIONS) COMMUNICATIONS GET LINK INFO

} (COMMUNICATIONS) GEY LINK INFO CLEAR COUNTERS

J (COMMUNICATIONS) GET REMOTE NODE INFO

14004 (COMMUNICATIONS) GET REMOTE NODE ERROR COUNTS
14001 (COMMUN,) GET REMOTE NODE NAME

p+0B81 (COMMUNICATIONS) CHANGE SOLO MODE

$+001 (COMMUN,) CHANGE CONNECTION INMIBITY

J+201 (COMMUNICATIONS) CIRCULAR BUFFER NCS

34001 (COMMUNICATIONS) CIRCULAR BUFFER DDCMP

JUDC TIMER = DISCONNECT

J(COMMUNICATIONS) COMMUNICATIONS DISCONNECT FUNCTION
ILPSL{] SYNCHRONQOUS D/A QUTPUT

JUDC TIMER = READ

P (COMMUNICATIONS) NETWORK CONTROL FUNCTION

3LPSt1 STOP IN PROGRESS FUNCTION

JUDC TIMER = INITIALIZE

5} RX@§ « FLOPPY DISK WRITE PHYSICAL BLOCK

} RX@1 ~ FLOPPY DISK READ PHYSICAL BLOCK

SJSET MORIZONTAL TAB POSITIONS

ISET SPECIAL TERMINATOR CHARACTERS

JSET TERMINAL MODE (CHARACTERISTICS)

JSENSE TERMINAL MODE

JCONNECT TO REMQOTE TERMINAL (AUTO DIALOUT)
JOISCONNECT FROM REMOTE TERMINAL (MANGUP)

JENABLE STATUS aST

¢1-0

QIOMAC « QIOSYM MACRO DEFINITIO MACRO DO71@ 25+MAR=75 14323 PAGE 6

426
427
428
429
430
431
432
433
434
43s
436
437
438
439
440
44
442
443
aa4
445
446
447
448
449
450
a51
452
453
ase
458
456
457
458
459
460
461
462
463
464

- w we W we - Y. e we we

- e we

HANDLER ERROR

CODES RETURNED IN I/0 STATUS BLOCK ARE DEFINED THROUGH THIS

MACRO WHICH THEN CONDITIONALLY INVOKES THE MESSAGE GENERATING MACRO
FOR THE QIO08YM,MSG FILE

+MACRO
DEFINS
o IF
«MCALL
2+ 10MG,
+ENDC
+ENDM

«JOER, SVYM,LO0,MS86
SYM,LO0

GT,58M86

« 10MG,
SYM,L0,<MSG>

«I0ER,

0170 ERROR CODES ARE DEFINED THOUGM THIS MACRO WHICH THEN INVOKES THE

ERROR MESSAGE

GENERATING MACRO, ERROR CODES =329 THROUGH =256

ARE USED IN THE QIOSYM,MSG FILE

<MACRO
DEF INS
«IF
JMCALL
. 10MG,
<ENDC
JENDM

CONDITIDNALLY

«MACRO
+WORD
+ASCI2Z
« I1F

+ENDM

+GI0E, SYM,L0,MSG
SYyM™M, L0

GT,$SMSG

+10MG,

SYM, <L0~128,>,<MSG>

«Q10E,

GENERATE DATA FOR WRITING A MESSAGE FILE FOR MO
»IOMG, 8YM,LO0,MS86G

eAQ<LO>

AMSGA

LT, A0<c3SSSMAX < 0>>,$SSMAXB=A0< 0>
+ JOMG,

DEFINE THE SYMBOL SYM WHERE LO I8 IS THE LOW ORDER BYTE, WI IS THE HIGH BYTE

+MACRO
DEFINS
<ENDM

+WORD, 8SYM,LO,HI
SYM, <cA0<H]#4@0+L0>>»
+WORD,

I'4

an3* 1080080 2
98430 $ASOID oeeeed |

39Yd €Ztpl SL=HVW=GZ @T1/BC OHIVW OILINIJ3Q ONIVW WASOIO = JVWOlO

C-13

yI-0

GIOMAC « QIOSYM MACRD DEFINIT]IO
SYMBOL TABLE

IE,ABO= 177761 G 1€,1FUs
IE.ACTe {77778 G T1€E,ILL®
I1E,ADPs 177636 G 1€, ILUs
TE,ALN® 177736 6 1E,INSs
TIE,A8Ts 177660 G 1E,IPRs
IE,BADR 177777 G 1e,.130s
IE,BBEs 177710 G IE,IT]s
IE.BCCs 177676 G 1IE,ITSs
1E,BD1ls 177714 G T1E,LCK®
1E.8DRs 177716 G 1E,LNL®
IE.BDVe 177711 © 1E ,MRKS
IE.BHDs 177700 G 1€E,M0Dw
1E.BLBs 177672 G 1E.NBFs
IE,BLks 177754 G 1E ,NBKa
1E.BNMS 177712 G 1E,NDR®
IE,BTFs 177664 G IE NF1e
1E.B8TP= 177725 6 TE NFWs
IE.BVRs 177701 G TE,NLN®
1€E.BYYs 177755 6 18 ,NNCs
IE.CKPs 177766 G TENNLSs
IE.CKSs 177742 G 1E ., NNN®
1E,CLO= 177732 G 1E,NOD®
IE.CNis 177667 G 1E,NSFs
IE.CON? 177752 G 1E,OFLs
1E,DAAs 9127770 6 1E,ONPs
1E.040= 177763 6 IE,OVR=
1E,OFus $177750 G 1E,PR]=
1E.UNAS 177778 6 TE.RACS
1E,DNRs 177775 G T1E,RAT=
IE.DUN® 177767 G IE.RBGs
1E.OUPE 177747 G TE,RCN®
IELEOFs 177766 G 1€ ,RERs
IELEOQTs 177702 6 1€ ,RNMS
IE,EOVs 177765 G 1E ,RSUs
It EXPs 177665 G TE.SOP=s
IE,FEXs 177717 G 1E,SNCe
IE.FHE® 1777905 G 1€,8PCs
IE.FOPs 177713 6 1€,86C=
1E.HFUs 177744 G 1E,SREs
T1E.HWRs 177772 G IE,STks
1E,IDUs 177644 G 1€, TMNa
1E,1EFs 177637 & TE.TMO=
IE.IFCs 177776 6 1E,ULNs=
o« ABS, 0ve000 200
[1] 0ol

ERRORS DETECTED: O

FREE COREt 5669, WORDS
»LP1s [156,1331010MAC, V1

MACRO D750 25«MARe7S 14323 PAGE

177747
177726
177640
177776
177641}
177703
177643
177770
177745
177646
177724
177753
177731
177727
177670
177704
177673
177733
177663
177662
177674
177754
177746
177677
177773
177756
177760
177724
177723
177730
177722
177740
177745
177787
177635
17773%
177772
177734
177762
177706
1776714
177666
177773

O OO NN NN NN OOD

1E ,UPNs
1€,VERs
1E,WACs
IE,WATe
1E,WERs
1€, WiKs
IE,2D0vs
10,ACEs
10,ACRs
JO,ACHWs
10,ADSs
10,APCs
10,APVs
10,ATTs
10,CASs
10,CBDs
10,CBNs
10,CB0s
10,CCIs=
10,CCT=
10,CIN=
I0,CLNs
10,CONs
10,CPRs
10,CRCs
10,CRE»
10,CRJw»
10,CSMs
10,CT]s=
10,CTLe
10,CTRa
10,0ACs
10,0C1s
10,0CTs
10.,DELn
10,DETs
10,018s
10,0T71s
10.ENAS
10,EOFs
10,E8A
10,EXTs
10,FDxs

1777727
177774
177743
177744
177737
177764
177720
207400
0064090
Pp7000
214000
214000
o14e10
eo14e20
015420
816520
016510
215510
214000
002469
216500
003409
015400
015410
001040
812009
0154490
016470
015400
216400
215610
ei0000
014400
002479
212400
202000
816000
956000
206000
2930209
202500
211400
2030920

SO O OO ORI

10 ,FNAs
10,GLCs
10,GL]s
10,GNlm
10,GRCs
10,GR]s
10,GRN®
10,ROXs
10,H18s
I0,INL®
10,IT7]s
10, KILe
10.LEDs
10,LOVe
I0.LTKs
10 .,MCSs
10,MDAS
10,MD]s
10,MD0s
I0,MLOs
I10,M00s
10,MS0s
I0,RALN
I0,RATs
10,RACs
10,RC]=
I10,RCvs
10,RDbs
I0,RONs=
IO RELSs
YO, RHDS
10,RLEs
J0,RLve
I0,RNAS
10,RNCs
I0,RNES
10,RNS=
10,RPBs
10,RTCs
10,RTIs
10,RTKs
I0,RVEs
10,RWD=

004400
216430
016420
816410
016450
016440
016460
LAY
015000
002400
Q17000
@012
012000
Qvi010
200050
013400
216000
814400
015400
006000
203000
205000
201010
213000
203000
215009
215000
201200
d00v22
213400
201010
op1000
201100
005400
001040
201020
001029
001040
203400
016409
290069
210400
002400

DO O D O O N ORI OTOOS

10,RWUs
10,R1C»
10,8A0s
10,8C8»
10,801=
10,300=
10,8ECs
10,SEMs
I0,SHT®
10,S8L0s
10,3M0=
10,SNMs=
10,8P8=
10,8PFs
10,580
10,88Tse
10,S7Cs
10,8TPs
I0,SYNs
10, TRMs
I0,UNLs=
10 ,WATSe
10, wiBs
10,wLSe
I0,WLVS
IO WNSs=
10, wPEs
10,wVBe
10,XMTe
10, XNA®
10,0 =
10, X =
I1S,8v =
18,CLRs
IS.CR =
18,ESCe
IS,PND®
18,8ETe
13,S5PDs
18,8UCs
Ql,vERs
S$EMSG »
saeGBLS

202540
002400
2040200
213000
213000
212400
002529
Q02449
202410
2054020
002560
002450
082420
002440
004400
802439
002500
0164020
203040
Q02419
200042
913400
200400
000410
290500
000420
000440
011000
014400
014410
(11 1"}
280001
20v0o0es5
800009
Q06401
21540}
oovves
200002
gveger
20ovel
200304
o0ece0e
220001

O N NN NN OOOTOOTONTOS®

D.1 QUEUE I/0

A 6- to 1l2-word

WU
wU .,
WU,
Wi,
WU e
wi .
WU
Wi,
WU.
WU,
wie
wi.

Uy ==
vl =--
ve --
U3 ==
Jg ==
US ==
Uo ==
U] ==
10 ==
1l =-
12 =-
13 ==

APPENDIX D

DIRECTIVE PARAMETER BLOCKS

DPB of the following format is used for the Queue 1/0.

DIC (Ul,.,) & UPB SléE (b=1¢),
[/70 FunCliunv Cuutk,

Lun,

lekiv) & [(PRIURLYY), .
LADDRESS OF 170 STATUS BLUCK]),
L1700 pusk AST SERVICE ENTKY POINT),
PARAMEIER 81,

PARAMETER #%,

PARAME[ER 83,

PAKAME LER #4,

PARAMETER 85,

PARAMEIELR #0.

D.2 QUEUE I/O AND WAIT

A 6- to 1l2-word

"U.
TV
Wu.
WO
Wi
Wl
NU o
wl.
w‘).
wu.
NU .
N

Uy ==
ul ==
Us ==
U3 ==
ug ==
Ud ==
Ub ==
vl ==
lu =-
1l ==
1 =-
13 ==

DPB of the following format is used.

DIC (V3,) & LPB Sl4t (o=12),
170 FUnNCLlLUN CUDE,

LUN,

lekv) o (PRIURLLY),

LAODKESS Ul L/0 STATUS BLUCK],
(L7u DUNE AST SERVICE ENTRY PUINIL),
PAKAMELER 81,

PARAMETER #Z,

PARAME iEN #3,

PARAME LR 84,

PARANME LR 85,

PARAME LK 80,

D.3 GET LUN INFORMATION
wUe VU == DIC (Ud,) & UPB Slik (3,),
WU, Ul == LUN,
MU UZ == ADDKESO UF SIX=aURV BUFFER,

D.4 ASSIGN LUN

WU,
wl .
WU,
WU .

VU ==
01 ==
Ve ==
us ==

LIC (V7,) & UPB S1ik (4.),
LUGICAL UNL1 NUMBER,
PHYSICAL vEVICE NAME,
PHYSICAL VEV1ICE UNLIT NUMBEK.

D.5 ALTER PRIORITY

A 4-word DPB in the following format is used.

NU.
Wi e
WU o
wh .

VU == DIC (VUY,) & DPYB SLZLE (4,).
Ul == L[ASK NAME (F1IRST HALY),

02 == TASR wAME (SECUND HALE).

U3 == TASK PrIURLTY.

D.6 REQUEST

A 7-word DPB in the ‘following format is used.

wlhe
Vit e
Al
wb .
Wl .
WU e
WU e

Uy == DIC (11.) ‘& ubPB S14E (7,),

Ul == {ASK NAME (FLIRST HALF),

U2 == LADN NAME (SECUND HALF),

U3 == (PARTITIUN NAME (FIRST hALF)],
Vd == [(PAKRLTI1IUN NAME (SECUND HALF)),
ud == (PRIVRLTY),

Jvo == [UlCJ.

D.7 EXECUTE

A 7-word DPB in the following format is used.

NU-
wb .
WU e
WU e
Vil e
WU,
WD o

UV == DIC (13.).& UPB SIdk (7.),

Ol == {ASKR iNAME (FIKST HALE),

VZ == [ASK NAME (SECUND HALF),

U3 == [PARTLITLIUN NAME (FLIRST HALE)],

04 == LPARLILTIUN NAME (SECUND HALFK)],
UD == (PKIURLLIY), ’
Vo == (ulC].

D.8 SCHEDULE

A 13-word

wle.
vile
Wl e
WD e
Wl
Vil e
wbh o
WU e
WU,
WU'
NiJo
WU .
wh.

DPB in the following format is used.

00 == pIC (1d.) & UPB SlZk (13.),

UL == TASK NAME (FIRSI HALF),

vé == TASKN NAME (SECUND HALF),

U3 == [PARTLITIUN NAME (FIRST HALEF)J,

vd == [PARIITIUN NAME (SECUND BALF)]),
05 == (PRiIURILTY],

vo == (ulC},

0/ == SCHELULE HUURS (0=23),

1V == SCHEVULE MLInUTES (U=5Y),

11 == 3CHELULE SECUNDS (V=5Yv),

l¢ == SCHEDULE [ICRS (0=59),

13 == |RE-SCHEDULE LINTERVAL MAGNLITUYDR],
14 == [Re=SCrEUULE INTERVAL UNLLS (§1-4)),

D.9 RUN

An ll-word DPB in the following format is used.

WUQ
WUQ
wbh .
WU o
Wl
WU-
WU-
wD
wl .
WU .
Wi

OUu == DIC (17.) & LPB SIZE (11,.),

Ui =<= TASK NAME (FLIrRST HALK),

Vs == TASK NAME (SeECUND HALF),

U3 == (PARTITIUN NAME (FIRSI HALF)]),

U4 == (PARTLTION NAME (SECUND HALE)],
U == ([(PRIURLYY),

Vo == {ulcl,

0] == SCHELDULE VELTA MAGNITUDE,

lu == SCHEDULk UELIA UNLILS (1-4),

11 == [KE=SCHEDULE INTExVAL MAGNI{ULE],
1¢ == [(RE=SChEDULE INIERVAL UNLITS (1-4)].

D.10 SYNC

A l12-word

ND o
WD,
WU o
N .
WU .
Wl
AU o
WU .
Wb
wD.
wl.
wid o

DPB in the following format is used.

U0 == DIC (19.) & VPB S14E (12.),

0L == [ASKR NAME (FLRST HALF),

Ue == TASK NAME (SECUND HALE),

U3 == (PAKILITION NAME (FL1RST HALF)]},

04 == (PARTLT10n NAME (SECUND HALE)),
US == [PRIURLITY],

Vo == (ulC]),

U] == SCHELULE LDELTA MAGNLIUDE,

10 == SCHEDULE VELLIA unlTS (1-4),

11 == SYNCHARUNIZATAIUN UNLITS (1-=4),

12 == [ReE=SCHELVJLE INTERVAL MAGNLITUDE]),
13 == [Re=SCnbkvULE LINTERVAL UNLLTS (1-4)).,

TIME

D.11 MARK

A 5~-word DPB in the following format is used.

Wl

wD . 4

wNU o
WD'
wl.

VU == DIC (23.) & uUPB Slie (5.),
Ul == [EVENT FLAG NUMBER (EFnN)),
UZ == TIME INTERVAL MAGNLTUDE,
U3 == TiME 1INTERVAL UNLTS,

U4 == [SYSTEM L'RAP ENTRY PUIN1]),

D.12 CANCEL SCHEDULED REQUESTS

A 3-word DPB in the following format is used to cancel all
requests for an indicated task.

wU.
WU e
wh.

00 == DIC (25.) & DPB SI1ZE (3.),
01 == SCHEDULED TASK NAME (FIRST HALF),
V¢ == SCHEDULED TASK NAME (SECOUND HALF).

scheduled

A 5-word DPB in the following format is used to cancel only those
requests issued for an indicated task by an indicated task.

wU. UU == DIC (25.) & LPy SIZE (5.),

AU. Ul == SCHEUULED TASK NAME (FLRST HALF),

wh, UL == SCHEDULED TASK NAME (SECUNL HALF),

wi, U3 == {SCHEDULER TASK NAME (FIRST HALE))
F)

’
wU. U4 == (SCHEDULER TASK NAME (SECUND HALF)]),

D,13 CANCEL MARK TIME REQUESTS

A l-word DPB of the following format is used to cancel all Mark Time
requests made by the issuing task.

A 3-word directive in the following format is used to cancel only
Mark Time reguest made by the issuing task and that set an indicated
event flag or cause an AST at an indicated location.

Ao VU == UIC (¢/7,) & DpB S14k (3.),

W), Ul == {EVEN] FLAG NUMBER (EEN)],
WU, UZ == LAST SEMVICE KRUUTINE ENI1KY),

D.14 CLEAR EVENT FLAG

A 2-word DPB of the following format is used.

wU, VU == DIC (3l1.) & LPB SILE (2.),
wlhe V1 == evinNTl FLAG NUMBER (EPiN).

D.15 SET EVENT FLAG

A 2-word DPB in the following format is used.

qU. VU == UaC (33,) & bDpB Slek (2.),
wule UL == bVvEN]L FLAG NUMBER (EEN).

D.16 DECLARE SIGNIFICANT EVENT

A 2-word DPB of the following format is used to read an event flag,
set an event flag, declare a significant event, and to report the
pre-event flag polarity.

ale VU == DIC (35.) & UPb Slile (4.),
wl, Ul == prveNL PLAG NUMBEK (KEN).

A l-word DPB in the following format is used to declare a significant
event,

wU, VU == 0IC (35.) & LPB 814k (1.).

D.17 READ EVENT FLAG

A 2-word DPB of the following format is used.

aD. YU == LIC (37,.,) & LPB SIZE (¢.),
“D. U1 == EVENY FLAG NUMBER (BEN).

D.18 READ ALL FLAGS

A 2-word DPB of the following format is used.

whe VU == pDIC (3Y.) & LPB Slék (2.),
wu, Ul == ADDKESS (VIRIUAL) UF ob4-BlT bUFFEK.

D.19 WAIT FOR SINGLE EVENT FLAG

A 2-word DPB of the following format is used.

wUe UU == DIC (4l.) & LPB Slik (2.),
wWU. VUl == EVENT FLAG NUMBEK (EFN).

D.20 WAIT FOR LOGICAL OR OF FLAGS

A 3-word DPB of the following format is used to wait for event flags
of sets 0, 1, 2, or 3.

Wle VU == UIC (43,) & DPB S1lZ2e (3.),
MUe Ul == SET INUVLICATUR (0, 1, &, 3),
aUe U2 == SIXlbEw FLAG MASK wWURD.

A 5-word DPB of the following format is used to wait for event flags
of set 4.

wDe VU == DIC (43.) & VPB Slie (9.7,
WD, Ul == MASK WURD FUR FLAGS l-lo,

whDe UZ ~= MASKR wURD FUR FLAGS 17-32,
e US == MASK wURD FUR I'LAA(!S 33.481
Ve U4 == MASK wWURD FUR FLAGS 49Y9-b4,

D.21 WAIT FOR NEXT SIGNIFICANT EVENT

A l-word DPB of the following format is used.

WDe YU == DIC (4Y.) & VP Slik (1.).

D.22 SUSPEND
A l-word DPB of the following format is used.

wD. UU == DIC (45,) & LPB SIZk (1.).

D.23 RESUME
A 3-word DPB of the following format is used.
whe UU == DIC (47.) & VUPB SI4E (3,),

wl. Ul == TASK NAME (FLIRST HALF),
wle U2 == TASK NAME (SECUND HALF).

D.24 EXIT
A l-word DPB of the following format is used.

whe VU == DIC (51,.) & UPB SL4E (1.).

D.25 EXITIF
A 2-word DPB of the following format is used.

wih, OU == DIC (93.) & UPB SLiE (2.),
wUe. U1 == EVENT PLAG NUMBER.,

D.26 GET TIME PARAMETERS

A 2-word DPB of the following format is used.

whe UU == D.I.C (olo) & UPB leE (2.),
Wpe Ul == ADDRESO UF ¥=wURD BUFFER,

D.27 GET TASK PARAMETERS

A 2~word DPB of the following format is used.

wh, 00 == DIC (63.) & VPB S1ZE (2,),
wbhe ULl =+ ADUKESS UF SIXIekEN wURD BUFFER.

D.28 GET PARTITION PARAMETERS

A 4-word DPB of the following format is used.

W, UU == DIC (65.) & LPB SIiE (4.),

Wie VUl == (PARTLITiON NAME (FIKST HALF)),
WU, UZ == [PARILITIUN NAME (SECOND HALFK)],
wh, U3 == AUURESS UF THREE wURD BUFFER,.

D.29 GET COMMON BLOCK PARAMETERS

A 4-word DPB

D.30 SEND DATA

Ao
WD .
wU e
WU .

uv
ul
ve
vi

of

the following format is used.

LIC (b7.) & LPB Slie (4.),
CUMMUN BLOCK NAME (FLKST HALEF),
CUMMUN BLUCK wAME (SECOND HALF),
ADDRESS UF mLGHAT WURD bBUFFEK.

A 5- to 8-word DPB of the following format is used.

D.31

A 9-

D.32

wh,
wh .
Wb .
wl .
WD.
wh .
WU o
wl,

(1Y)
Uil
Ve
(VK]
v4
us
vob
vl

DIC (71,) & LPB SIZE (5.-8.),
RECEIVER TASK NAME (FLKST HALF),
RECELVER TASK NAME (StCOUND hALE),
ADDRESS OF DATA BLUCK,

LEVENT PLAG NUMBERI],

[BUFFER S1ZE « 1=255.]),

(PRIURITY OF SkinD),

LRECELIVER T1).

SEND AND REQUEST OR RESUME

to 12-word

wb.
Wb,
WU,
NU.
AD .,
WU .
wh o
wD.
W,
wu .
wLD .
Wb

Vo
Vvl
'3
'K}
04
05
Vo
7
10
11
12
13

DPB of the following format is used.

0IC (73.) & uUPB S14E (9.-14.),
RECELVER TASK NAME (FIKST HALF),
RECEIVER TASK NAME (SECUOND HALE),
LPARTLITLIUN NAME (F1RS1 HALE)]),
LPARTLITIUN NAME (SECOND HALF)),
LPRIURLTY S,

tuici,

ADDRESS UF DATA BLUCK,

LEVENT FLAG NUMBER],

(BUFFER S1ZE = 1=255.],
(PRIURLLY UF Sewnvl,

LRECELIVER TlJ.

RECEIVE DATA

A 4~ to 6-word DPB of the following format is used.

D.33

wh.
WL,
wb .
Wb,
WU,
WU o

(1Y
0l
V
03
04
ud

DIC (75.) & UPB S1l4k (4-6),
(SENVER TASK NAME (FL1RST HALFKF)],
[SENVER TASKR wAME (SECUND HALFK)I),
AVDDRESS UF BUFFER.

lbUFFER SLZE = 1%255,),

(LUC. Tu STUKE Tl1).

RECEIVE DATA OR EXIT

A 4~ to 6-word DPB of the following format is used.

Wie
wD .
WU,
WD,
“D.
wU,

vy
vl
Ve
u3
V4
V)

- -

- -

PIC (77.) & UPB SLLE (4-6),
LSENDER TASK nAME (FIRST HALE)],
[SENDER [ASK NAME (SECUNL HALF)],
ADDRESS UF BUFFER,

(BUFFeR SLZE = 1=255,],

tLOC. TUu STOURE (L),

D.34

RECEIVE DATA OR SUSPEND

A 4- to 6-word DPB of the following format is used.

vl o .-
wU e
WU e
wbh .,
WU e
WU e

vu
vl
(VP4
u3
Va
Ub

-

o

.35 ABQRT

A 3-word DPB of

WU . -
wlh e
WU.

uv
vl
Ve

DIC (79.) & LPB SlékE (4=0),
{SENUEK LASK NAME (FIRST HALF)].
LSENOER FASK nAME (SECUND HALF)),
AVUKESS U bpUFFER.

LBUFPER oldk = 1=¢d5,),

LLUC. Tu olurRE IlJ.

the following format is used.

UIC (¥3.) & LPB Sl (3.),
FASKR ivApe (: LKSL HALF),
FASR NAmME (.ECUND HALE),

D.36 FIX-IN-MEMORY

ko

3-word DPB of
UU -
0l
(VP

Wl
Al
WU

D.37 UNFIX
A 3~-word DPB of
(VIV)

vl
V¢

wh o
NU o
wU .

-

D.38 DISABLE

A 3-word DPB of

UU -
vl
v

Wi
WU o
Wi,

D.39 ENABLE

A 3-word DPB of

WU e -
IV
WU,

(V)
Ui
(V]

the following format is used.

LASK NAME (FIRST HALFK),
[ASKR NAME (SECUND HALF).

the following format is used.
LIC (v7.) & LPB SLLE (3.),
[ASK NAME (FLRST HALFKF),

TASK NAME (SECUND HALE).

the following format is used.

DIC (Y1l.) & LUPB 814k (3.).,
1ASK NAME (FLKRST HALEK),
TASK wAME (SECUwND HALF).

the following format is used.

uiC (93.) & VP8 SliE (3,.),
TASK nAME (FIRST HALF),
TASK NAME (SECUND HALF).

.40 DISABLE CHECKPOINTING

l-word DPB of the following format is used.

wby VU == DIC (95,) & bLPB S1l4k (1.).

.41 ENABLE CHECKPOINTING

l-word DPB of the following format is used.

wDe VU == DIC (97,.) & UPB SIZE (1.).

D.42 INHIBIT AST RECOGNITION

l-word DPB of the following format is used.

woe QU == DIC (YY,) & UPB SliE (1.).

.43 ENABLE AST RECOGNITION

l-word DPB of the following format is used.

whe VU == DIC (lUle) & UPB SIZE (1,).

.44 SPECIFY SST VECTOR TABLE FOR DEBUGGING AID

3-word DPB of the following format is used.
#D. VU =+ DIC (104.) & VPB Sl4E (3,),

#Ue VU1 == ADDRESS UF SST VECIUR TABLE,
wU, UZ == NUMbBEK Ut TABLE ENTRILS (38),

.45 SPECIFY SST VECTOR TABLE FOR TASK

3-word DPB of the following format is used.
wbe 00U == DIC (105.) & DPp S1¢E (3.),

wide Ul == ADDRESS UF 85I vECTIUK TABLE,
wWUe U == nUMBER UF L1ABLE ENTRIES (8).

.46 SPECIFY RECEIVE AST

2-word DPB of the following format is used.

wUe VU == DIC (lUls) & DPB SLliE (2.),
wWD. Ul == [ADT SERVICE ENIKRY PULNLI],

D.47 SPECIFY POWER FAIL AST

A 2-word DPB of the following format is used.

wU. VU == ULC (1UY.) & UPB SI1Zb (2.),
wh. Ul == [AS1 SERVICE ENTRY PULNT),

D.48 SPECIFY FLOATING POINT EXCEPTION AST

A 2-word DPB of the following format is used.

wb. UV == DIC (111.) & DPB SIZE (2.),
wu, Ul == [AST SkrViCt ENTRY POINTI],

D.49 AST SERVICE EXIT

A l-word DPB of the following format is used.

Wb, UU == DIC (115.) & vuPB SIZE (1.),

D.50 GET SENSE SWITCHES

A l-word DPB of the following format is used.

wle VU == PIC (145.) & UPB SIZE (1.).

D.51 GET MCR COMMAND LINE

A 41-word DPB of the following format is used.

wU. U0 == DIC (127.) & LPB SIZt (41.),
wpe VUl == FIRST wURD UF BU=BYTE BUFFLEK,

D-10

INDEX

ABORT TASK (ABRTS), 3-14

ALTER PRIORITY (ALTPS), 3-15

ASSIGN LUN (ALUNS), 3-1l6

AST SERVICE EXIT (ASTXS), 3-17

Asynchronous system trap (AST),
4-17

Asynchronous system trap queue,
2-8

Batch command buffer, 2-8

CANCEL MARK TIME REQUESTS (CMKTS),
3-20

CANCEL SCHEDULED REQUESTS (CSRQS),
3-21

C condition code, 3-2

Checkpointable task list, 2-7

CLEAR EVENT FLAG (CLEFS$), 3-19

Clock queue, 2-5

Control of task execution, 2-3

DECLARE SIGNIFICANT EVENT (DECLS),
3-23
Device handlers, 1-4
DIRS, 3-4, 3-22
Directive conventions, 3-3
Directive forms, 3-4, 3-5
$,
s$c,
$s,
Directive implementation, 3-1
Directive status word (DSW), 3-2
Directive summaries, 3-8
DISABLE (DSBLS$), 3-24 :
DISABLE CHECKPOINTING (DSCPS),
3-25

EMT 377, 3-1

ENABLE AST RECOGNITION (ENARS),
3-26

ENABLE (ENBLS$), 3-27

ENABLE CHECKPOINTING (ENCP$), 3-28

Error returns, 3-3

Examples of macro calls, 3-7

EXECUTE (EXECS$), 3-29

EXITIF (EXIFS$), 3-30

EXIT (EXITS), 3-31

Executive trap service routines,
4-6

Fixed task list, 2-8
FIX IN MEMORY (FIX$), 3-32

GET COMMON BLOCK PARAMETERS
(GCOMS$) , 3-33
GET LUN INFORMATION (GLUNS$), 3-35
GET MCR COMMAND LINE (GMCRS),
3-36
GET PARTITION PARAMETERS (GPRTS),
3-37
GET SENSE SWITCHES (GSSW$), 3-38
GET TIME PARAMETERS (GTIMS),
3-39
GET TASK PARAMETERS (GTSKS$), 3-40
Global common directory, 2-6
Global flags, 4-2

INHIBIT AST RECOGNITION (IHARS),
3-42

Interrupt connect node, 2-7

I/0 operations, 2-9

I/0 request queue, 2-6

Local flags, 4-3

MARK TIME (MRKTS$), 3-43
MCR command buffer, 2-8
Memory management, 1-2, 2-1
Memory required list, 2-7
Multiprogramming, 2-3

Node pool, 2-7

Partitions, 2-2

Physical unit directory, 2-6
Processor priorities, 4-9
PSECT, 3-5

QUEUE I/0 (QIO$), 3-44
QUEUE I/0 AND WAIT (QIOWS$), 3-47
QIO directives, 2-9

READ ALL FLAGS (RDAFS$), 3-48

READ EVENT FLAG (RDEF$), 3-49

RECEIVE DATA (VRCD$), 3-66

RECEIVE DATA OR EXIT (VRCXS),
3-70

RECEIVE DATA OR SUSPEND (VRCSS$),
3-68

REQUEST (RQSTS$), 3-50

RESUME (RSUMS$), 3-51

RUN (RUNS$), 3-52

Index-1

SCHEDULE (SCHDS$), 3-54

SCOM, see system communications
area

SEND DATA (VSDAS$), 3-72

SEND DATA AND RESUME OR REQUEST
RECEIVER (VSDRS$), 3-74

SEND and RECEIVE directives,

Send/receive gqueues, 2-7

SET EVENT FLAG (SETFS),

Shared global areas, 2-2

Significant events, 1-3, 2-4, 4-1 -
4-3

SPECIFY FLOATING POINT EXCEPTION
AST (SFPAS), 3-57

SPECIFY POWER RECOVERY AST

SPECIFY RECEIVE AST (SRDAS),

SPECIFY SST VECTOR TABLE FOR
DEBUGGING AID (SVDBS$), 3-61

SPECIFY SST VECTOR TABLE FOR TASK
(SVTKS$) , 3-62

SUSPEND (SPND$), 3-58

SYNCHRONIZE (SYNCS$), 3-63

Synchronous system trap (SST), 4-4

Symbolic offsets, 3-6

System communication area (SCOM),
2-2

3-13
3-56

3-66

System directives, 1-4
System lists, 2-5, A-l
System tables, 2-5, A-1l
System task directory, 2-6
System traps, 1-3, 2-5, 4-3

Task, definition of, 1-2
TASK EXIT (EXITS$), 3-31
Task partition directory, 2-7

UNFIX (UFIXS$), 3-65
Using directives, 3-4

WAIT FOR LOGICAL OR OF FLAGS

(WTLOS$), 3-78

WAIT FOR SIGNIFICANT EVENT (WSIGS),
3-77

WAIT FOR SINGLE EVENT (WTSES),
3~79

Index-2

"neo

ng this

lo

Please cut a

e e mE e v e e G e A mms e Gar = e e mme e e o e e e W bm i e e - — — —

RSX~-11lD Executive
Reference Manual
DEC~11~0XERA-B-D

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form

Did you find errors in this manual? 1If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documeatation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

000000

Non-programmer interested in computer concepts and capabilities

Name Date
Organization
Street
City State Zip Code
or
Country

If you require a written reply, please check here. []

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

dlilgliltlall

Software Communications
P. O. Box F

Maynard, Massachusetts 01754

“Wﬁmww‘

digital equipment corporation

