
RSX-110

Executive Reference Manual

Order No. DEC-11-0XE RA-B-D

mnmnomo

RSX-110

Executive Reference Manual

Order No. DEC-11-0XE RA-8-D

RSX-llD Version 6

digital equipment corporation · maynard. massachusetts

First Printing, May 1975

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser
under a license for use on a single computer system and can be copied
(with inclusion of DIGITAL's copyright notice) only for use in such
system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright @ 1975 by Digital Equipment Corporation

Associated Documents

Refer to RSX-llD Documentation Directory, DEC-11-0XUGA-B-D.

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDP DIGITAL INDAC PS/8
COMPUTER LAB DNC KAlO QUICKPOINT
COMSYST EDGRIN LAB-8 RAD-8
COMTEX EDU SYSTEM LAB-8/e RSTS
DDT FLIP CHIP LAB-K RSX
DEC FOCAL OMNIBUS RTM
DEC COMM GLC-8 OS/8 RT-11
DECTAPE IDAC PDP SABR
DIBOL IDACS PHA TYPESET 8

UNIBUS

CONTENTS

Page

PU PACE x

CHAPTE:R 1 INTRODUCTION

1.1 SYSTEM EXECUTIVE SOFTWARE 1-2
1.1.1 Tasks 1-2
1.1.2 Memory Management 1-2
1.1.3 Significant Events and System Traps 1-3
1.1.4 System Directives 1-4

1.2 DEVICE HANDLERS 1-4

CHAPTER 2 RSX-llD EXECUTIVE

2.1 MEMORY MANAGEMENT 2-1
2.1.1 Partitions 2-2
2.1.2 Shared Global Areas 2-2
2.1. 3 System Communication Area (SCOM) 2-2

2.2 CONTROL OF TASK EXECUTION 2-3
2.2.1 Multiprogramming 2-3
2.2.2 Significant Events 2-4
2.2.3 System Traps 2-5

2.3 SYSTEM TABLES AND SYSTEM LISTS 2-5
2.3.l Clock Queue 2-5
2.3.2 I/O Request Queue 2-6
2.3.3 Global Common Directory 2-6
2.3.4 Physical Unit Directory 2-6
2.3.5 System Task Directory 2-6
2.3.6 Send/Receive Queues 2-7
2.3.7 Task Partition Directory 2-7
2.3.8 Node Pool 2-7
2.3.9 Interrupt Connect Node 2-7
2.3.10 Memory Required List (MRL) 2-7
2.3.11 Checkpointable Task List (CTL) 2-7
2.3.12 Fixed Task List (FTL) 2-8
2.3.13 MCR Command Buffer 2-8
2.3.14 Batch Command Buff er 2-8
2.3.15 Asynchronous System Trap Queue 2-8

2.4 I/O OPERATIONS 2-9

CHAPTER 3 SYSTEM DIRECTIVES

3.1 INTRODUCTION 3-1

3.2 DIRECTIVE IMPLEMENTATION 3-1

3.3 CONVENTIONS 3-3

iii

3.4

3.5
3.5.1
3.5.2

3.6
3.6.1

3.7

3.8

3.9

3.10

3 .11

3.12

3.13

3.14

3.15

3.16

3 .17·

3.18

3.19

3.20

3.21

3.22

3.23

3.24

3.25

3.26

3.27

3.28

3.29

3.30

3.31

ERROR RETURNS

USING THE DIRECTIVE MACROS
Symbolic Off sets
Examples of Macro Calls

DIRECTIVE SUMMARIES
SEND and RECEIVE Directives

ABRT$ {ABORT TASK}

ALTP$ {ALTER PRIORITY)

ALUN$ {ASSIGN LUN)

ASTX$ {AST SERVICE EXIT)

CLEF$ (CLEAR EVENT FLAG)

CMKT$ (CANCEL MARK TIME REQUESTS)

CSRQ$ (CANCEL SCHEDULED REQUESTS)

DIR$ (DIRECTIVE)

DECL$ (DECLARE SIGNIFICANT EVENT)

DSBL$ (DISABLE}

DSCP$ (DISABLE CHECKPOINTING}

ENAR$ (ENABLE AST RECOGNITION)

ENBL $ (ENABLE)

ENCP$ (ENABLE CHECKPOINTING)

EXEC$ (EXECUTE)

EXIF$ (EXITIF)

EXIT$ (TASK EXIT)

FIX$ (FIX IN MEMORY)

GCOM$ (GET COMMON BLOCK PARAMETERS)

GLUN$ (GET LUN INFORMATION)

GMCR$ (GET MCR COMMAND LINE)

GPRT$ (GET PARTITION PARAMETERS}

GSSW$ (GET SENSE SWITCHES)

GTIM$ (GET TIME PARAMETER&)

GTSK$ (GET TASK PARAMETERS)

iv

Page

3-3

3-4
3-6
3-7

3-8
3-13

3-14

3-15

3-16

3-17

3-19

3-20

3-21

3-22

3-23

3-24

3-25

3-26

3-27

3-28

3-29

3-30

3-31

3-32

3-33

3-35

3-36

3-37

3-38

3-39

3-40

Page

3.32 !HAR$ (INHIBIT AST RECOGNITION) 3-42

3.33 MRKT$ (MARK TIME) 3-43

3.34 QIO$ {QUEUE I/O) 3-44

3.35 QIOW$ {QUEUE I/O AND WAIT) 3-47

3.36 ROAF$ (READ ALL FLAGS) 3-48

3.37 RDEF$ (READ EVENT FLAG) 3-49

3.38 RQST$ (REQUEST) 3-50

3.39 RSUM$ \RESUME) 3-51

3.40 RUN$ (RUN) 3-52

3.41 SCHD$ (SCHEDULE) 3-54

3.42 SETF$ (SET EVENT FLAG) 3-56

3.43 SFPA$ (SPECIFY FLOATING POINT EXCEPTION AST) 3-57

3.44 SPND$ (SUSPEND) 3-58

3.45 SPRA$ (SPECIFY POWER RECOVERY AST) 3-59

3.46 SRDA$ (SPECIFY RECEIVE AST) 3-60

3.47 SVOB$ (SPECIFY SST VECTOR TABLE FOR DEBUGGING
AID) 3-61

3.48 SVTK$ (SPECIFY SST VECTOR TABLE FOR TASK) 3-62

3.49 SYNC$ (SYNCHRONIZE) 3-63

3.50 UFIX$ (UNFIX) 3-65

3.51 VRCD$ (RECEIVE DATA) 3-66

3.52 VRCS$ (RECEIVE DATA OR SUSPEND) 3-68

3.53 VRCX$ (RECEIVE DATA OR EXIT) 3-70

3.54 VSDA$ {SEND DATA) 3-72

3.55 VSDR$ (SEND DATA AND RESUME OR REQUEST
RECEIVER) 3-74

).56 WSIG$ (WAIT FOR SIGNIFICANT EVENT) 3-77

3.57 ETLO$ (WAIT FOR LOGICAL OR OF FLAGS) 3-78

3.58 WTSE$ {WAIT FOR SINGLE EVENT FLAG) 3-79

CHAPTER 4 SIGNIFICANT EVENTS AND SYSTEM TRAPS

4.1 SIGNIFICANT EVENTS 4-1

v

4.2
4.2.1
4.2.2
4.2.3

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

D.l

D.2

D.3

D.4

o.s
D.6

D.7

D.8

0.9

D.10

D.11

D.12

D.13

D.14

D.15

D.16

D.17

D.18

D.19

D.20

D.21

0.22

D.23

SYSTEM TRAPS
Synchronous System Traps
Asynchronous System Traps
Processor Priorities

SYSTEM LISTS AND TABLES

GLOSSARY

QIOMAC.MAC

DIRECTIVE PARAMETER BLOCKS

QUEUE I/O

QUEUE I/O AND WAIT

GET LUN INFORMATION

ASSIGN LUN

ALTER PRIORITY

REQUEST

EXECUTE

SCHEDULE

RUN

SYNC

MARK TIME

CANCEL SCHEDULED REQUESTS

CANCEL MARK TIME REQUESTS

CLEAR EVENT FLAG

SET EVENT FLAG

DECLARE SIGNIFICANT EVENT

READ EVENT FLAG

READ ALL FLAGS

WAIT FOR SINGLE EVENT FLAG

WAIT FOR LOGICAL OR OF FLAGS

WAIT FOR NEXT SIGNIFICANT EVENT

SUSPEND

RESUME

vi

Page

4-3
4-4
4-7
4-9

A-1

:B-1

c-1

D-1

D-1

D-1

D-1

D-1

D-2

D-2

D-2

D-2

D-3

D-3

D-4

D-3

D-4

D-4

D-4

D-4

D-5

D-5

D-5

D-5

D-5

D-6

D-6

Page

D.24 EXIT D-6

D.25 EXIT IF D-6

D.26 GET TIME PARAMETERS D-6

D.27 GET TASK PARAMETERS D-6

D.28 GET PARTITION PARAMETERS D-6

D.29 GET COMMON BLOCK PARAMETERS D-7

D.30 SEND DATA D-7

o. 31 SEND AND REQUEST OR RESUME D-7

D.32 RECEIVE DATA D-7

D.33 RECEIVE DATA OR EXIT D-7

D.34 RECEIVE DATA OR SUSPEND D-8

D.35 ABORT D-8

D.36 FIX-IN-MEMORY D-8

D.37 UNFIX D-8

D.38 DISABLE D-8

D.39 ENABLE D-8

D.40 DISABLE CHECKPOINT ING D-9

D.41 ENABLE CHECKPOINTING D-9

D.42 INHIBIT AST RECOGNITION D-9

D.43 ENABLE AST RECOGNITION D-9

D.44 SPECIFY SST VECTOR TABLE FOR DEBUGGING AID D-9

D.45 SPECIFY SST VECTOR TABLE FOR TASK D-9

D.46 SPECIFY RECEIVE AST D-9

D.47 SPECIFY POWER FAIL AST D-10

D.48 SPECIFY FLOATING POINT EXCEPTION AST D-10

D. 4 9 AST SERVICE EXIT D-10

D.50 GET SENSE SWITCHES D-10

D.51 GET MCR COMMAND LINE D-10

vii

FIGURES

Number Page

3-1 I/O Status Block 3-45

TABLES

Number Page

3-1 RSX-110 Directives 3-8
4-1 Executive Trap Service Routines 4-6

viii

PREFACE

The RSX-110 Executive Reference Manual provides information required
to prepare user programs written in MACR0-11 Assembler Language for
execution under the RSX-110 Operating System. It touches only briefly
on preparing FORTRAN programs, because the FORTRAN Special Subroutines
Reference Manual covers this material.

The manual is organized as follows.

Chapters 1 and 2 present overview information, first on the whole
RSX-110 system, then on the RSX-llD Executive, respectively. Details
on the philosophy of RSX-llD can be obtained l.Jy reading the
introductory chapters of the RSX-llD User's Guide.

Chapters 3 and 4 deal with specific Executive functions and how to use
them.

Appendixes A, B and C cover system list formats, a glossary, and a
sununary of the file QIOMAC.MAC. QIOMAC.MAC provides all symbolic
values for QUEUE I/O function codes as well as symbolic definitions
of status return codes. Appendix D contains directive parameter block
formats for the directives.

iX

CHAPTER 1

INTRODUCTION

RSX-llD is an event-driven multiprogramming operating system with
features that make it appropriate for a wide range of applications
involving real-time operations. RSX-llD provides the basis for
process control systems, online business systems, and communications
systems.

The modular construction of RSX-110 allows the user to configure
available hardware and software resources to fit a particular
processing requirement. The use of memory partitions and priority
scheduling facilitates user control over the execution of many
parallel real-time functions.

RSX-110 features include:

Fast interrupt response and servicing,

Simultaneous monitoring of multiple activities,

250 priority levels for task execution,

Priority servicing of I/O requests,

Convenient storage and recall of disk-resident programs,

Efficient, convenient task scheduling facilities,

Dynamic memory partitions to contain tasks of varying sizes,

Event flags for task synchronization and notification,

Checkpointing (roll-in/roll-out), a form of memory sharing,

Online program development, concurrent with task execution,

FORTRAU, COBOL*, and MACR0-11 programming languages and
utilities,

Asynchronous execution of I/O-dependent code,

Support of m.ultiuser programs and re-entrant code,

Dynamic shared global areas.

*Separate license

1-1

1.1 SYSTEM EXECUTIVE SOFTWARE

The following paragraphs provide a brief description of RSX-110
software.

1.1.l Tasks

The basic program unit under RSX-llD is called a task. A task
consists of one or more programs that have been written in FORTRAN or
MACR0-11 Asseml>ly Language. Relocatable object modules are generated
and installed into the system online, making them available in
memory-image format on the disk. A task can initiate another task's
execution in various ways. The following are examples:

1. Request inunediate exepution,

2. Request execution contingent upon available memory,

3. Schedule at a future time, with optional rescheduling at
periodic intervals.

All these task ini'tiation functions can be accomplished from an
operator's console as well as from a currently executing task.

1.1.2 Memory Management

There are three basic functional uses for which memory is allocated.
The amount of memory allocated to each function is specified by the
user at SYSGEN time.

The three functional memory areas follow.

1. RSX-110 Executive code.

2. Partitions space for tasks and shared global areas.

a. User-controlled partitions in which only one task or
shared global area can occupy the partition at a time

b. System-controlled partitions in which the Executive
controls allocation of memory in the parti·bion and allows
multiple tasks or shared global areas within the
partition at one time

3. System lists and system tables.

1-2

1.1.3 Significant Events and System Traps

RSX-110 is an event-driven system in which task execution is governed
by the occurrence of significant events. A significant event is any
change in system status that affects the execution of a task. For
example, completion of an I/O operation is a significant event.

One of the ways that significant events are signalled is through event
flags. There are 64 event flags. Flags 1 through 32 are local to the
task, while event flags 33 through 64 are conunon to all tasks. A task
can set, clear, test, and wait for any event flag or combination of
event flags, to achieve efficient synchronization between itself and
other tasks in the system.

When a significant event occurs, the Executive scans an active task
list, described in Chapter 2, seeking the highest priority task that
can be executed. When an eligible task is found, it is run until it
exits, suspends execution, waits for a significant event, or a
significant event occurs.

System traps are another means of governing task execution. While
significant events have a system-wide scope, traps are local to a
task. Traps interrupt the sequence of instruction execution in the
task and cause control to be transferred to a prespecif ied point in
the program. Traps can be either synchronous or asynchronous.

Synchronous system traps (SSTs) allow servicing of fault conditions,
such as memory protection violation, that can occur internally in a
task.

Asynchronous system
significant events.
significant event is
respect to the task.

traps (ASTs) are executed as the result of
Because the task has no control over when the
to occur, ASTs execute asynchronously with

Trap service routines may or may not be provided by the user to handle
the synchronous and asynchronous traps. If no synchronous trap
service routine is provided, the faulting task is aborted. If no
asynchronous trap service routine is provided, the task continues to
execute without interruption.

1-3

1.1.4 System Directives

System directives are instructions to RSX-llD to perform functions for
an executing task. System directives allow tasks to perform the
following:

Schedule other tasks,

Communicate with other tasks,

Measure time intervals,

Perform I/O functions,

Suspend execution,

Exit.

Directives are generated by MACR0-11 programs via macro calls and are
supported for FORTRAN by library routines supplied by DIGITAL. Refer
to Chapter 3 of this manual for details of directive usage in MACR0-11
programs.

1.2 DEVICE HANDLERS

Device Handlers are tasks that support I/O devices. These
similar to normal tasks within the system with the
additional features:

They usually contain an interrupt service routine
to respond to hardware interrupts,

They are allowed to gain access to any memory
areas including privileged ones.

tasks are
following

By convention, device handler task names consist of two alphabetic
characters followed by four dots. For example, the line printer
handler is named as follows.

LP ••••

Device handler tasks are loaded into memory on command from the
operator as needed. Requ,~sts from user tasks are queued by the
Executive to the device handler according to the priority of the I/O
request. If no priority is specified, that of the requesting task is
used by default. When necessary, however, the requesting task can
reserve a device for its exclusive use for a period of time by
attaching it using the ATTACH function.

1-4

CHAPTER 2

RSX-110 EXECUTIVE

This chapter acquaints the user with the basic design elements of the
RSX-110 Executive. It is not intended to provide the detail required
by a systems programmer for modification of RSX-110.

The primary functions of the Executive include memory and disk
management, supervision of task execution and scheduling, intertask
communication, I/O queuing, console command monitoring, and
maintenance of system integrity.

The basic program unit under RSX-110 is called a task and consists of
a program or set of programs that have been written in FORTRAN and/or
MACR0-11 assembly language. Relocatable task modules are created
either online or offline and are installed into an RSX-110 system.
This process results in the recording of the task on the system disk
in memory image form~ i.e., the task is in executable form.

2 .1 MEMORY MAI.JAGEMENT

There are three different functional memory spaces. The size of each
is specified during system generation. These areas are:

1. The Executive,

2. Partitions,

a. System-controlled partitions

b. User-controlled partitions

3. System communication area (SCOM).

2-1

2.1.1 Partitions

Partitions are areas of contiguous real memory that are used for task
execution. There are two modes of partition usage: user-controlled
where only one task at a time can occupy the partition and
system-controlled where the system controls allocation of memory
within the partition for execution of one or more tasks. The name,
base address, size, and mode of each partition are specified during
system generation and cannot be changed online. Tasks are installed
to run in a particular partition but, upon specific request, can run
in any partition that is large enough.

Normally, an active task remains resident in its memory space until
its execution is completed. A checkpointable task, however, can be
forced to relinquish its memory for execution of a higher priority
task.

2.1.2 Shared Global Areas

Shared global areas (libraries, global common blocks, and pure areas
of multiuser tasks) require space in partitions. They can be fixed in
memory or can be assigned memory by the Executive when tasks that use
them are activated.

Libraries normally are read-only and are used for code.

Global common blocks can be addressed on a per-task basis as
read/write or read-only. This is a characteristic of the task rather
than the global area and is specified during task building. The
global area includes FORTRAN COMMON space and, normally, is used for
intertask exchange of large amounts of data. SEND and SEND AND
REQUEST also can be used to exchange small amounts of data among
tasks. They should not be used for large amounts of data.

Multiuser tasks consist of a pure area and an impure area. The pure
area of multiuser task is the area that is not modified during task
execution and can be shared among multiple versions of the task. The
impure area changes during execution; one copy of the impure area
exists for each simultaneous user of the task.

2.1.3 System Communication Area (SCOM)

This memory space contains the tables, lists, system subroutines, and
other information required by the Executive to perform its functions
and maintain control of the system. It consists of a number of fixed
tables or lists and code, with the remaining space being available in
variable-length nodes. These nodes are used by the Executive and for
intertask communication.

2-2

2.2 CONTROL OF TASK EXECUTION

RSX-110 is event-driven, in contrast to systems which use a time slice
mechanism for determining a task's eligibility to execute. Under
RSX-llD, the highest priority task can run continuously until some
event or condition in the system causes it to be suspended. Another
event or change in system status can reactivate the task.

Tasks can be activated either by the operator or by another task.
Activation can be conditional, based on currently available partition
space (EXECUTE), or it can occur as soon as possible (REQUEST}. Also
it can occur as soon as possible after some future time (SYNC,
SCHEDULE, and RUN).

2.2.1 Multiprogramming

Effective multiprogramming is achieved when many tasks reside in
memory simultaneously, spending some of their residency waiting for
I/O completion, waiting for synchronization with other tasks, or in
some way being unable to continue execution. While one or more tasks
are waiting, another task can utilize the central processor's
resources.

Under RSX-llD, tasks are run at a software priority level ranging from
a low of 1 through a high of 250. The Executive grants central
processor resources to the highest priority task capable of execution.
When a task becomes ready to execute and it has a higher priority than
the currently executing task, the Executive interrupts the lower
priority task and allows the higher priority task to run. Execution
of the interrupted task continues when it once again becomes the
highest priority task capable of execution. The environment of an
interrupted task is preserved; except for elapsed time, interruption
is transparent to an interrupted task.

This multiprogramming scheme normally applies only to memory-resident
tasks. Once a task is in memory, the Executive allows it to run to
completion in a multiprogramming fashion even if its memory becomes
required for the execution of a higher priority, non-resident task.
However, if it is desirable to free memory for execution of a higher
priority task, a task can be declared checkpointable when it is task
built. A checkpointable task is swapped out when its memory is
required for a higher priority task and swapped in when it once again
becomes the highest priority task requiring its memory.

Normally, a task is brought into memory when requested, executes, and
is removed from memory upon completion. This process frees memory for
another task to execute. However, a task can be fixed in memory to
permit faster response to requests for its execution. It remains in
the partition until it is explicitly removed by an UNFIX directive.
Tasks fixed in a system-controlled partition have no effect on the
rest of the partition which remains available for execution of other
tasks.

2-3

2.2.2 Significant Events

A task is considered active from the time its execution starts until
the time it has exited. While the task is active, it is included in a
priority-ordered list of active tasks called the active task list
(ATL). The system uses the ATL in the following way.

When a significant event is declared, the Executive interrupts the
executing task and scans the active task list examining the status of
tasks until a task capable of execution is found. Execution of that
task is then initiated, or continued, until one of the following
occurs.

l. The task exits.

2. The task must wait for another event (e.g., I/O completion).

3. A significant event occurs and a higher priority task is
capable of execution.

Task switching occurs as a result of a significant event, and
significant events occur only when declared explicitly or implicitly
by tasks.

NOTE

Task switching occurs
implicitly when a lower
priority task is eligible for
execution and the currently
executing task performs one of
the following actions:

Suspends itself,
Waits for an event
(e.g., I/0 completion),
Exits.

Event flags are associated with significant events. Declaration of a
significant event indicates that something has happened in the system,
and the possible setting of a particular event flag indicates what has
happened. For example, upon completion of I/O requests, a device
handler task normally sets a requester-indicated event flag and
declares a significant event. If a requesting task instructs the
system that it cannot run until an event flag is set (signalling task
I/O completion), other eligible tasks of lower priority may run. In
the scan of the active task list, a task that is awaiting I/O
completion is by passed until a significant event is declared through
the setting of a event flag upon task I/O completion.

Each task has access to 64 event flags of which 1 through 32 are
unique to each task and 33 through 64 are common to all tasks. The
use of event flags is detailed in Chapter 4.

2-4

2.2.3 System Traps

The ability to service certain conditions without continuously testing
for their existence is provided via system traps. As discussed in
Chapter l, two types o·f traps are defined: synchronous and
asynchronous (also see Chapter 4). A trap is a linkage method for
optional in-task service routines. Service routines must be included
as a part of the task, limited by the same restrictions as the task,
and run at the task's priority as a result of a system trap condition,
(e.g., fault, I/O completion). This facility also provides a means of
responding to the execution of privileged instructions and non-RSX-110
EMT's.

If the system is not explicitly notified of the existence of a system
trap service routine, the system trap does not occur.

2.3· SYSTEM TABLES AND SYSTEM LISTS

RSX-110 uses linked lists and fixed-length tables to maintain system
information. Fixed-length tables are lists with elements that reside
in consecutive memory locations. This format is used when lists are
static, when list scan time is critical, or both.

Most linked lists are linked as double-ended queues and are called
deques (pronounced "decks•). Oeques allow list elements to be added
or deleted from either end, since they include backward and forward
pointers. An RSX-llD deque consists of a listhead and list elements
(nodes), circularly linked by both ba<:'!kward and forward pointers. The
first word of a node (or listhead) is a forward pointer, i.e., the
address of the ·next node (or listhead) looking forward. The second
word of a node (or listhead) is a backward pointer, i.e., the address
of the next node (or listhead) looking backward.

A listhead is a node that consists of only a forward and a backward
pointer, and is used as a reference point. Hence, a listhead
identifies a deque, and indicates both the beginning and end of the
circularly linked list. All nodes are a multiple of eight words in
length. Usually the first two words contain pointers and the third
defines the node's owner. The following paragraphs describe the major
lists used in RSX-110. Their formats and contents are described in
Appendix A.

2.3.1 Clock Queue

The clock queue is a linked list with its listhead in SCOM. It
consists of one node for each operation to be performed at some time
in the future. A ticks-till-due count in the first node of the clock
queue is decremented at each clock tick until the node becomes due
(i.e., until the count is zero). Then the indicated operation is
performed. The nodes are linked in the order in which they come dua.
Each node is 16 words.

2-5

2.3.2 I/O Request Queue

The I/O request queue is a linked list with a listhead in the physical
unit directory entry for the unit to which the request has been
queued. Each entry is 16 words.

2.3.3 Global Common Directory

The global common directory (GCD) is a linked list of entries for each
global common block and library installed in the system. The GCD
listhead is in SCOM. Each entry is 16 words.

The GCD entries are created by INSTALL for the pure area of multiuser
tasks and for global common areas (libraries and global conunon). GCD
entries are linked into the GCD at run time and are pointed to by the
task's STD.

2.3.4 Physical Unit Directory

The physical unit directory (PUD) is a table of entries for each
physical unit specified during system generation. When a logical unit
number is assigned to a physical unit, the physical unit is
represented by the address of the corresponding PUD entry. Each entry
is 25 words.

2.3.5 System Task Directory

The system task directory (STD) is a table that provides information
about each task installed in the system. The information recorded in
a task's STD entry includes the following:

1. Information required when the task is not active (viz.,
receive linked list listhead) ,

2. Information required to load a task into memory (viz., task
name, disk address of image).

Under RSX-llD, tasks are referred to by name, and the STD is searched
for an indicated task name at each reference. The STD is structured
to enable this search to be performed rapidly, without imposing naming
conventions, order of installation, or the dedication of a large
memory area.

The STD consists of a table of entry pointers (alpha table) for the
maximum number of installed tasks and a 16-word entry for each task
that is installed. The table is maintained by the programs that
install and remove tasks such that the number of entries is known and
consecutive table words point to task STD entries ordered
alphabetically by task name. Thus, a task name can be found rapidly
using a binary search and memory is not dedicated for STD entries
until it is needed. The maximum size of the STD is specified during
system generation.

The 16-word block of memory for an STD entry is taken from the pool
when a task is installed and returned when a task is removed.

2-6

2.3.6 Send/Receive Queues

The send/receive queues are linked lists with listheads in the STD
entries for each task. Entries are created and queued in priority
order by the SEND directives and removed by the RECEIVE directives.
Entries are variable in length up to 255 words.

2.3.7 Task Partition Directory

The task partition directory (TPD) is a table of entries for each task
partition defined during system generation. Each entry is 10 words.

2.3.8 Node Pool

A node is a block of memory that is a multiple of eight words in
length. Empty nodes for use in any deque are initially provided by
the system generation routine in the form of a long block called the
pool. When a node is needed to expand a list, it is taken from the
pool. When a node is no longer needed, it is returned to the pool.

2.3.9 Interrupt Connect Node

Interrupt connect nodes connect the trap
service routine of a device handler task.

2.3.10 Memory Required List (MRL)

vector to the interrupt
Each node is 16 words.

The memory required list is a priority-ordered linked list of active
task list nodes for active tasks that require memory in a partition.
Its listhead is in the task partition directory (TPD). There is an
MRL for each partition. Whenever a nonfixed task exits, the MRL
associated with that partition is scanned, and an attempt is made to
assign memory to the highest-priority task in the list. If the
attempt is successful, the task's node is moved from the MRL to the
active task list. Each node is 24 words.

2.3.11 Checkpointable Task List (CTL)

For each partition, there is a priority-ordered list of checkpointable
tasks that are active in that partition. Actually, this list is a set
of links threaded through the ATL and not a distinct physical set of
nodes. The CTL listhead is in the TPD. Each entry is 24 words.

2-7

2.3.12 Fixed Task List (FTL)

The fixed task list (FTL) is a deque of active task list nodes for
tasks that have · been fixed in memory but are not active. The FTL
listnead is in SCOM. When a fixed task is made active, its node is
relinked from the FTL to the ATL. When the task exits it is relinked
into the FTL, Each node is 24 words.

2.3.13 MCR Conunand Buffer

The MCR command buffer is 96-byte buffer that holds the data for a
reque•ted MCR function task. The buffer is set up by the MCR dispatch
task. The nod•• req~ired for the buffer are returned to the pool
after the GET MCR COMMAI~D LINE directive passes the command line to
the MCR function task.

2.3.14 Batch Conunand Buffer

The batch command buffer is a 96-byte buffer that holds data for the
batch processor. It functions in the same manner as the MCR command
buffer.

2.3.15 Asynchronous System Trap Queue

The asynchronous system trap queue (ASQ) is a linked list that
operates on a first-in/first-out basis. Its listhead is in ATL
entries. It con$ists of one node for each AST (asynchronous system
trap) to be executed for the task as defined by the STD entry. Each
node is eight words.

2-8

2.4 I/O OPERATIONS

The Executive's main function in I/O operations is to handle I/O
requests from tasks and pass the requests to the appropriate device
handler task. The general method follows.

1. A QIO directive (see Chapter 3) is issued by a task.
The task specifies a number of parameters that are
required in processing the I/O request. One of
these parameters is the logical unit number (LUN)
assigned to a device by the task.

The directive is issued
software emulated trap.
PDP-11 trap sequence.

by means of a
It follows the

normal
normal

2. The Executive examines the LUN parameter of the QIO
directive to determine which device handler is to
process the request. The particular device handler
is chosen by mapping the LUN of a particular task
into an entry in the physical unit directory using
the logical unit table.

3. The I/O request is put in the request queue of a
device handler (one of a set of special tasks).

The requesting task can either suspend operation until the I/O request
is completed or continue to operate until interrupted by an
asynchronous system trap (see Chapter 4). RSX-110 permits parallel
I/O requests to be issued by the same task. That is, the task
continues executing after issuing a QIO; subsequently the task can
issue further QIO requests without waiting for the previous request to
be completed.

Some device handlers operate in conjunction with the file control
primitives (FCP) to manipulate files. When an FCP routine is
required, the device handler issues a SEND/REQUEST which injtiates
operation of the specified FCP routine.

I/O requests are queued for each unit by priority at requester task
priority unless otherwise specified. The handler tasks pick requests
from the top of request queues. Thus, preferential service is given
to high priority requests. However, when appropriate, devices can be
attached to a task,·in which case only requests from the attached task
or express request are dequeued. This continues until a
detach-unit-from-task request is dequeued, causing requests to be
dequeued by priority from the top of the I/O request queue once again.

The right to attach and detach devices is controlled by access
privileges defined for each device. Requests to attach a device are
rejected if the requester does not have the proper access rights.
Because device handler tasks can service many units, they are not
themselves attached.

The interface between a device handler task and the RSX-llD system is
accomplished by directives and system subroutines which attach and
detach devices and dequeue I/O requests.

2-9

CHAPTER 3

SYSTEM DIRECTIVES

3.1 INTRODUCTION

System directives are instructions to the Executive to perform an
indicated operation. The applications programmer uses them to control
the execution and interaction of tasks. The system macro library
contains macro calls, which the programmer can use to execute
directives. The FORTRAN programmer invokes system directives through
a subroutine call, as described in the FORTRAN Special Subroutines
Reference Manual.

Directives are implemented solely through the EMT 377 instruction. By
using only EMT 377, programs using EMT 0 through EMT 376 can be run
via a non-RSX system trap. Any EMT other than EMT 377 traps to a
task-contained service routine that can be written to simulate another
environment to whatever degree is desired.

By using macro calls, instead of executing the directive, the
programmer need only reassemble his program if changes are made in the
directive specifications, rather ·::·, ,,-i. being required to edit the
source code.

3.2 DIRECTIVE IMPLEMENTATION

A Lrief discussion of how directives are implemented will help the
programiner understand and use the macro calls associated with the
directives.

Directive processing consists of five parts.

1. The user issues a directive.
the directive parameters
parameter block {DPB).

Th~
are

directive
placed in

identifier and
the directive

The DPB can either be on the stack or be in the user task
space.

2. An EMT 377 is issued.

3-1

3. The Executive traps the instruction and performs three steps:

1. Determines whether the instruction is an EMT 377.

2. If it is a 377, transfers it to the directive processor.

3. If it is not a 377, determines whether user is capable of
handling the directive. If yes, user is given control.
If not, an error is returned.

4. The Executive processes the directive.

S. The Executive returns to the issusing task through "common
exit," if necessary, and processes any system events.

The EMT 377 is issued with the address of a directive parameter block
(DPB), or a DPB itself, on the top of the issuing task's stack. When
the stack contains a DPB pointer (address), the pointer is removed
(popped) after the directive is processed. When the stack contains a
DPB, the entire DPD is removed as the directive is processed. In
either case, the DPB is not altered when the directive is processed.

With the exception of EXIT directives, control is returned to the
instruction following the EMT, with the C condition code set or
cleared and the directive status word (DSW) set to indicate
performance or rejection. The DSW is at virtual location zero of each
task.

In the case of EXIT directives, control is not returned, but the C
condition code and DSW are set.

When a directive is performed properly, the C condition code in the PS
(CC-C) is cleared and the directive status word (DSW) contains a
positive number" unless otherwise noted in the directive description.
When a directive is rejected, the c condition code is set and the DSW
contains a negative nwnber. The number's value indicates the reason
for rejection.

The first word of
(DIC) byte and a
to be performed.
The DIC is in
high-order byte.

all DPB's contains a directive identification code
DPB size byte. The DIC indicates which directive is
The size byte indicates the DPB length in words.

the low-order byte of the word and the size is in the

3-2

3.3 CONVENTIONS

The following conventions and assumptions are standard for all
directives.

1. Task and partition names can be up to six characters
long and are always represented as two words in
radix-SO form.

2. Device names are two characters long and are
represented by one word in ASCII form.

3. Time unit indicators, used for initial and repeated
requests, are 1 for clock ticks, 2 for seconds, 3
for minutes, and 4 for hours.

4. The term "background task• indicates a task that is
initiated from batch.

3.4 ERROR RETURNS

Directive rejections are divided into two classes: those where a
progranuned recovery would be common and those where it would be
unlikely. The error code, always negative, is returned in the DSW at
virtual location o. Rejections with expected programmed recoveries
(i.e., where a branch is taken to an error routine) have values
between -1 and -19. Error codes indicating errors for which
programmed recoveries are not feasible are in the range from -20
through -99.

The error codes that can be received for a particular directive are
listed with the individual directive descriptions.

3-3

3.5 USING 'L'HE DIRECTIVE MACROS

This discussion applies to MACR0-11 programs. FORTRAN programmers
should refer to the FORTRAN Special Subroutines Reference Manual for a
description of the library subroutines which support the directives
for that language.

Directives are issued by including appropriate macro calls in the
program. Macro names consist of up to four letters followed by a
dollar sign and, optionally, one letter. The optional letter
specifies which of three possible expansions of the ~aero is desired.

If the optional letter is S, the macro produces code to push a DPB
onto the stack, followed by an E~rr 377.

If the optional letter is omitted, the macro produces only the
directive's DPB. The macro expansion is inserted at the point of
macro invocation, but it does not contain executable code.

When the user uses the $ or $C form of the macro call, specifying the
generation of a DPB at assemble time, it is assumed that the
parameters required for DPB construction are valid expressions to be
used in MACR0-11 data storage instructions (e.g., .BYTE, .WORD,
• RADS O).

If, however, the $S form is used, specifying the generation of code to
store the DPB in the stack, the parameters must be valid source
operands to be placed directly in rmv instruction.

Only the $S form produces the DPB dynamically. The other two forms
produce the DPB at assembly time.

If the user has a predefined DPB, i.e., has used the$ or $C form of
the macro, and wishes to avoid the creation of another one, the DIR$
macro should be used instead of one that identifies the function.
This macro pushes the DPB address onto the stack using MOV SSS,-(SP),
where the macro parameter (shown here as SSS), is any valid
representation of the DPD address. The instruction is followed by EMT
377.

In addition to the macro routines that correspond to tl1e directives,
the DIR$ macro is useful to the programmer, particularly in cases
where the DPB has been defined independently of the execution of the
directive.

DIR$ generates an RSX-llD Executive trap with a predefined DPB.

Hacro Call: DIR$ adr,err

Three forms are possible, with the following interpretation:

DIR$

DIR$ adr

DIR$ adr,err

Assumes that the address of the DPB or the
DPB itself has already been pushed onto the
stack.

Generates the code to push the parameter adr
onto the stack.

Generates the code to push the parameter adr
onto the stack, executes an EMT 377,
generates a branch on carry clear to the
address of the branch +4 (or +6 if
necessary) and generates a JSR PC to the err
address.

3-4

The argument adr is optional but, if present, must be a valid
assembler source qperand used to push the DPB address onto the stack.

The argument err is optional. If defined, it must be a valid
assembler destination overand to permit a Jump to Subroutine (JSR)
instruction to an error handler if the directive is rejected.

If the optional letter is c, the macro generates a OPB in a separa.te
program section, called $DPB$$. The DPB is followed by a return to
the original program section, an instruction to push the DPB address
onto the stack, and an EMT 377. To ensure that the correct program
section is re-entered, the user must specify its name in the argument
list immediately following the required DPB parameters. If the
argument is not specified, the blank (unnamed) program section is
assumed.

The $C form of the macro call accepts an optional argument, PSECT.
This argument allows return to the PSECT specified rather than to the
default PSECT.

The SC and $S forms of macro calls and DIR$ accept an
argument. If included, the argument must be a
destination operand to call a user error routine.
generates the following code.

OPEN$W #FDBADR,,,,, ,OPEERR

optional final
valid assembler

The argument

BCC .+6 ;BRANCH ON DIRECTIVE ACCEPTANCE

JSR PC,OPEERR ;ELSE, CALL ERROR SERVICE ROUTINE

This option is ignored when the user specifies the generation of the
DPB only.

3-5

3.5.l Symbolic Offsets

Most system directive macro calls generate local symbolic offsets.
The symbols are unique to each directive and are assigned the values
of the byte offset from the start of the directive's DPB to the DPB
elements.

Because the offsets are defined symbolically, the programmer who must
refer to or modify DPB elements can do so without calculating the
offsets. Symbolic offsets also preclude the necessity of rewriting
programs to acconunodate changes in DPB specifications.

All $ and $C forms of macros that generate DPB's longer than one word
generate local offsets. All informational directives, including the
$S, form generate local symbolic offsets for the parameter block in
question.

If any of the $ or $C forms of the macros is invoked and
defined symbol $$$GLB is included, the DPB is not
Furthermore, if the macro produces symbolic offsets,
generated as global symbols, unless previously defined.
$$$GLB has no effect on the expansion of $S macros.

3-6

the user
expanded.

they are
The symbol

3.5.2 Examples of Macro Calls

1. MRKT$
• BYTE
.WORD
.WORD
.WORD
.WORD

1,5,2,MTRAP
23.,S •
1
5
2
MTRAP

[generate DPB only in current PSECT]
; "MARK-TIME" DIC AND DPB SIZE
;EVENT FLAG NUMBER
;TIME INTERVAL MAGNITUDE
;TIME INTERVAL UNIT
;AST ENTRY POINT

2. MRKT$C l,S,2,MTRAP,PROGl,ERR [generates DPB in separate PSECT]

.PSECT

$$$•.

• BYTE
.WORD
.WORD
.WORD
.WORD

.PSECT

MOV
EMT
BCC
JSR

3. MRKT$S

MOV
MOV
l'10V
MOV
MOV
.BYTE
EMT
nee
JSR

4. DIR$
MOV
EMT
BCC
JSR

$DPB$$

23.,5 •
1
5
2
MT RAP

PROGl

#$$$,-:(SP)
377
.+6
PC,ERR

;DEFIUE TEMPORARY SYMBOL

;"MARK TIME" DIC AND DPB SIZE
;EVENT FLAG rmMBER
;TIME INTERVAL MAGNITUDE
;TIME INTERVAL UNIT
;AST ENTRY POINT

[return to the original PSECT]

;PUSH DPB ADDRESS ON STACK
;TRAP TO THE MONITOR
;BRANCH ON DIRECTIVE ACCEPTANCE
;ELSE, CALL ERROR SERVICE ROUTINE

#l,#5,f2,R2,ERR [push DPB onto stack]

R2 ,- (SP)
#2,-(SP)
#5 ,- (SP)
11,- (SP)
(PC)+,-(SP)
23.,S.
377
.+6
PC,ERR

@Rl I (R3)
@Rl ,- (SP)
377
.+4
PC~ (R3)

;PUSH AST ENTRY POINT
;TIME INTERVAL UNIT
;TIME INTERVAL MAGNITUDE
;EVENT FLAG NUMBER
;AND MARK TIME" DIC & DPB SIZE
;ON THE STACK
;TRAP TO THE MONITOR
;BRANCH ON DIRECTIVE ACCEPTANCE
;ELSE,CALI~ ERROR SERVICE ROUTINE

[DPB already defined. DPB address in Rl.]
;PUSH DPB ADDRESS ONTO STACK
;TRAP TO THE MONITOR
;BRANCH ON DIRECTIVE ACCEPTANCE
;ELSE, CALL ERROR SERVICE ROUTINE

3-7

3.6 DIRECTIVE SUMMARIES

Each directive description consists of a narrative explanation of its
function and use, the name of the macro associated with it and its
parameters, and the possible: :'.'.'•~ · lrn values of the directive status
word (DSW) , which is virtual memory location zero.

Only the $ form of the macro name is given, although all three options
are available unless otherwise specified.

The directive descriptions are presented in alphabetic order by macro
call for ease of reference. However, the directives can be
categorized according to their function. Table 3-1 lists the
directives by function and describes them briefly.

DIRECTIVE

DIRECTIVE

Task Execution
Control

EXECUTE

REQUEST

SCHEDULE

RUN

SYNCHRONIZE

CANCEL SCHEDULED
REQUESTS

SUSPEND

Table 3-1
RSX-llD Directives

ASSOCIATED
MACRO CALL

DIR$

EXEC$

RQST$

SCHD$

RUN$

SYNC$

CSRQ$

SPND$

FUNCTION

Generates an RSX-llD
predefined DPB.

trap with a

Executes a task only if sufficient
memory is available at the present
time. If memory is not available, the
request is not queued.

Runs a task contingent upon priority
and memory availability. If the task
cannot be run inunediately, the request
is queued.

Requests a task using the RQST$
directive at a specific future time
and, optionally, repeats the request
periodically; e.g., the request can
be scheduled for 11:35 a.m.

Requests a task using the RQST$
directive at a specified interval from
the current time and, optionally,
repeats the request periodically.

Requests a task using RQST$ at a
specific interval from a specified
future time and, optionally, repeats
the request periodically.

Cancels scheduled requests for task
executions.

Suspends execution of the task issuing
the directive.

3-8

DIRECTIVE
-

I

RESUME

TASK EXIT

ABORT TASK

Task Status Control

FIX IN MEMORY

UNFIX

DISABLE

EiJADLE

DIS ADLE
CIIECKPOIHTING

ENABLE
CHECKPOIHTING

ALTER PRIORI':i.1Y I
I
I

Inf orP1.ational i
Directives i
GET TIME PARAHETERSI

GET COMMON BLOCK
PARAMETERS

GET PARTITION
PARAllETE RS

GET TASK PARAHETERS

Table 3-1 (Cont.)
RSX-llD Directives

ASSOCIATED
MACRO CALL FUNCTION

RSUM$ Reswnes the execution of a task that
has suspended itself.

EXIT$ Terminates execution of the task
issuing the directive and causes a
significant event.

ADRT$ Ten11inates execution of another task.

FIX$ Fixes in memory (makes permanently
resident) an inactive, installed task.

UFIX$ Negates a FIX$ directive and frees the
memory allocated to the task.

DSBL$ Rejects future attempts to execute or
fix an indicated task using any of the
following directives: RQST$, EXEC$,
SCUD$, RUN$, SYNC$, or FIX$.

ENBL$ M.akes a specified disabled task
capable of being run.

DSCP$ Disables the checkpointability of the
issuing task.

ENCP$ Hakes the issuing task checkpointable
if checkpointing was previously
disabled.

ALTP$ Alters the priority of the specified
active task to the new priority
indicated in the directive.

GTIH$ Fills an indicated a-word buffer with
current time and date information.

GCOM$ Fills an indicated a-word buffer with
information for a specific conunon
block.

GPRT$ Fills an indicated 3-word buffer ~ith
information for a specific partition.

GTSK$ Fills an indicated 16-word buffer with
information about the task issuing the
directive.

3-9

DIRECTIVE

GET SENSE SWITCHES

GET LUN

Event-Associated
Directives

DECLARE SIGNIFICANT
EVENT

SET EVENT FLAG

CLEAR EVENT FLAG

READ EVENT FLAG

READ ALL FLAGS

WAIT FOR SINGLE
EVENT FLAG

WAIT FOR LOGICAL OR
OF FLAGS

WAIT FOR
SIGNIFICANT EVENT

EXIT IP

Table 3-1 (Cont.)
RSX-llD Directives

ASSOCIATED
MACRO CALL FUNCTION

GSSW$ Obtains the status of the console
sense switches and stores it in the
issuing task's directive status word.

GLUN$ Fills a 6-word buff er with information
about a physical unit to which the
task is assigned

DECL$ Declares a significant event and,
optionally, sets an event flag and
reports the status of the flag before
it was set. DECL$ causes an ATL scan.

SETF$ Sets an indicated event flag and
reports the status of the flag before
it was set. SETF$ does not cause a
significant event.

CLEF$ Clears an indicated event flag and
reports the flag's status before
clearing. CLEF$ does not cause a
significant event.

ROEF$ Reads a specified event flag and
indicates by the return code in the
directive status word whether the flag
is set or cleared.

ROAF$ Reads all 64 event flags and records
their status by setting or clearing
corresponding bits in a 64-bit
(4-word) buffer.

WTSE$ Suspends execution of the issuing task
until the indicated event flag is set.

WTLO$ Suspends execution of the issuing task
until any indicated event flag in one
of five groups is set.

WSIG$ Suspends execution of the issuing task
until the next significant event
occurs.

EXIF$ Terminates the execution of the
issuing task if an indicated event
flag is not set.

3-10

DIRECTIVE

Trap-Associated
Directives

MARK TIME

CANCEL MARK TIME
REQUESTS

INHIBIT AST
RECOGNITION

ENABLE AST
RECOGNITION

SPECIFY POWER
RECOVERY AST

SPECIFY FLOATING
POINT EXCEPTION AS~

SPECIFY RECEIVE AS~

SPECIFY SST VECTOR
TABLE FOR DEBUGGING
AID

SPECIFY SST VECTOR
TABLE FOR TASK

TERMINATE AST
EXECU'l'ION

Table 3-1 (Cont.)
RSX-llD Directives

ASSOCIATED
MACRO CALL FUNCTION

MRKT$ Declares a significant event after an
indicated time interval starting at
issuance of the directive. An event
flag also can be set when the
significant event is declared.

CMKT$ Cancels any mark time requests made by
the issuing task.

IHAR$ Inhibits recognition of asynchronous
system traps for the issuing task.

ENAR$ Recognizes asynchronous system traps
for the issuing task.

SPRA$ Tells the system whether or not power
recovery AST's are desired for the
issuing task. If desired, this
directive indicates where control is
to be transferred when the AST occurs.

SFPA$ Tells the system whether or not
PDP-11/45 floating point exception
AST' a are desired for the task. If
desired, the directive indicates where
control is to be transferred when the
AST occurs.

SlU>A$ Allows a task to determine whether
another task has sent data to it
without waiting for an event flag or
continually checking the buffer. When
data is detected, an AST is executed.

SVOB$ Specifies the virtual address of a
table of synchronous system trap
service routine entry points for use
by OD'l' or other debugging aids.
takes precedence over SVTK$.

SVOB$

SVTK$ Specifies the virtual address of a
table of synchronous system trap
service routine entry points for use
by the issuing task.

ASTX$ Terminates execution of an
asynchronous system trap service
routine.

3-11

DIRECTIVE

I/O Related
Directives

QUEUE I/O

QUEUE I/O AND WAIT

ASSIGN LUN

SEND DATA

SEND DATA AND
RESUME OR
REQUEST RECEIVER

RECEIVE DATA

RECEIVE DATA OR
EXIT

RECEIVE DATA OR
SUSPEND

GET MCR COMMAND
LINE

Table 3-1 (Cont.)
RSX-llD Directives

ASSOCIATED
MACRO CALL FUNCTION

QIO$ Places an I/O request for an indicated
device in a priority-ordered queue of
requests for that unit.

QIOW$ Performs the functions of both WTSE$
(see above) and QIO$.

ALUN$ Assigns a logical unit number (LUN) to
a physical device unit.

VSDA$ Queues a variable-length data block b:y
priority for a task to receive.

VSDR$ Queues a variable-length data block
by priority for a task to receive and
resumes or requests execution of the
receiving task.

VRCD$ Receives a variable-length data block
tbat was queued by another task.

VRCX$ Receives a variable-lenqth data block
that has been queued by another task
or exits if none is queued.

VRCS$ Receives a variable-length data block
if one is queued for the task or
suspends the task.

GMCR$ Transfers an 80-byte conunand line to
the issuing task.

NOTE
--

For Information About: Refer To:

SDAT$ VSDA$

SDRQ$ VSDR$

RCVD$ VRCD$

RCVX$ VRCX$

3-12

3.6.l SEND and RECEIVE Directives

The following additional information about SEND and RECEIVE directives
should be noted.

1. Variable-length data up to 255 words can be sent and
received.

2. If the receiver's buffer is too small to hold all the data
sent, the excess is lost and the receiver is notified by an
error cod~ in the directive status word (DSW).

3. The TI of a task is the same as the TI of the terminal from
which the task was initiated. If the task was initiated by
another task, the TI of the requesting task becomes the TI of
the requested task also.

Certain directives can be issued only to affect tasks with
the same TI: RESUME, ABORT TASK, ALTER PRIORITY I and CANCEL
SCHEDULED REQUEST.

4. Multiuser tasks issuing receive directives are passed only
that data sent with the same TI as the multiuse~ task. This
approach ensures the proper flow of data among several
multiuser tasks and a single-user task when the single-user
task is receiving from and sending to the multiuser tasks.

s. Up to three data words can be transmitted in a single 8-word
node1 the other five words are used for SEND/RECEIVE
overhead.

6. The default buffer length (13 words) requi~es a 24-word node,
rather than 16 words.

3-13

ABRT$

3 . 7 ABRT$ (ABORT TASK)

The ABORT TASK directive terminates the execution of the indicated
task. This directive is intended for use as an emergency exit or
fault exit. It causes a printout at the console each time it is
invoked. A task can abort any other task. If the task being aborted
is a multiuser task, it is aborted only if its TI matches that of the
task issuing the ABORT directive. ABORT TASK cannot be issued by a
background task.

Macro Call: ABRT$ task

task • Task name.

The following symbol is locally defined with its assigned value equal
to the byte offset from the start of the DPB to the DPB element.

A.BTTN = (Length is 4 bytes) Task name

DSW return codes:

+l Successful completion
-02 Task not installed
-07 Task not active
-08 Task loading or exiting
-10 Task is not abortable
-80 Directive issued by background task
-98 Part of OPB is out of issuing task's address space
-99 DIC or DPB size is invalid

Macro Expansion:

ARH~ V("IJP'l
.~;VT!;'. 53., ~
.~A050 /V:"IJ~S/

3-14

ALTP$

3.8 ALTP$ (ALTER PRIORITY)

The ALTER PRIORITY directive alters the priority of the specified
active task to the new priority indicated in the directive. If the
task is multiuser, its priority is altered only if its TI matches that
of the calling task.

Macro Call: ALTP$ task,pri

task ~ the name of the task whose priority is to be changed.
If task is not specified, the calling task's priority
is changed to its default priority.

pri = the new priority (1-250) for the task. If pri is not
specified, the new priority is the priority specified
at task build or installation. If a priority was not
specified during task build or installation, a system
default of 50 (decimal) is used.

The following symbols are defined locally with their
assigned values equal to the byte offset of the DPB.

A.LTTN = task name (4 bytes)

A.LTPR = priority (2 bytes)

DSW return codes:

+l Successful completion
-02 Task not installed
-07 Task not active
-oa Task in process of being loaded or exiting
-80 Directive issued by background task
-95 Invalid priority
-98 Part of DPB is out of issuing task's address space

Macro Expansion:

ALT~~ T'S~tS,1~~

.rvr'?.: i::.,.:i

.~A!".!t°''' /TAt:V.l.~/

• t•· thFl 1 r: 7i

3-15

ALU NS

3.9 ALUN$ (ASSIGN LUN)

The ASSIGN LUN directive assigns a logical unit number (LUN) to a
physical device unit.

Macro Call: ALUN$ lun,devnam,devnum

lun =
devnam =
devnum =

Logical unit number
Physical device name (two characters)
Physical device unit nwnber

If devnam and devnum are omitted, the LUN is assigned as null. If it
has previously been assigned, omitting devnam and devnum deassigns the
LUN.

~he following symbols are locally defined with their assigned values
equal to the byte off set from the start of the DPB to the respective
DPB elements.

A.LULU = (Length 2 bytes) logical unit number
A.LUNA = (2) Physical device name
A.LUNU = (2) Physical device unit number

DSW return codes:

+01 Successful completion
-90 LUN usage interlocked (via file open)
-92 Invalid device and/or unit
-96 Invalid logical unit number
-98 Part of DPB is out of issuing task's address space
-99 DIC or DPB size is invalid

Macro Expansion:

·\ L .l'J q;
.9YTf:
• ,j J~I}

.~-:;en

• UC It
• ·" 1 ~ f)

') d.:.>. :'I ., ' ~
" 11.1
/~! ,,

3-16

ASTX$

3.10 ASTX$ (AST SERVICE EXIT)

The AST SERVICE EXIT directive terminates execution of an asynchronous
system trap service routine. ASTs are described in Section 4.2.

If another AST is queued, and ASTs are not inhibited, the next AST is
executed. Otherwise, the task's pre-AST state is restored.

When an AST service routine is entered, the stack contains certain
information. This information is required because the AST routine
runs with the sar.te ATL node, task header, and DSW as the main part of
the task. Those ·portions of control areas that can be used to efeect
requests from AST service routines are ·saved on the stack. The
following information is on the stack.

SP+l4
SP+l2
SP+lO
SP+06
SP+04
SP+02
SP+OO
Additional

Event flag mask word for flags 1-16
Event flag mask word for flags 17-32
Event flag mask word for flags 33-48
Event flag mask word for flags 49-64
The pre-AST task's program status (PS)
The pre-AST task's program counter (PC)
The pre-AST directive status (virtual zero)

parameters, if any

The stack can contain additional information as well. For power
recovery AST's, no information is added, but for I/O done the stack
contains the address of the I/O status block; for MJ\RK TIME, the
stack contains the event flag number; and for an 11/45 floating point
exception, the stack contains the exception code, and the exception
address.

AST service routines must save and restore all .registers used.

The AST service routine must remove any information on the stack that
is additional to the seven words shown above before issuing an AST
SERVICE EXIT directive. The following example shows how this is done
when an AST routine is used on I/O completion:

;MAIN BODY OF PROGRAM
STAR'r:

•

;PROCESS

QIO$S #IO.WVB,#2,,,iIOSTBK,iASTSER,<#BUFFER,#60.,140)
;PROCESS & WAIT .

EXIT$$;EXIT TO MONITOR

IOSTBK: .BLKW 2
BUFFER: .BLKW 60.

;AST SERVICE
ASTSER: •

.
TST(SP)+
ASTX$S

;REMOVE ADDR OF I/O STATUS BLOCK
;AST EXIT MACRO

3-17

Macro Call: ASTX$

OSW return codes:

+01 Successful completion
-so Directive not issued from an AST service routine
-98 Part of DPB or table is out of task's address

space
-99 DIC or DPB size is invalid

Macro Expansion:

115 •• 1

3-18

CLEFS

3.11 CLEF$ (CLEAR EVENT FLAG)

The CLEAR EVENT FLAG directive clears an indicated event flag and
reports the flag's polarity before clearing in the nsw. Clearing an
event flag does not ca~se a significant event.

Macro Call: CLEF$ efn

efn • Event flag number

The following symbol is locally defined with its assigned value equal
to the byte offset from the start of the DPB to the DPB element.

C.LEEF • (Length 2 bytes) event flag number

DSW return codes:

+00 Flag was already clear
+02 Flag was set
-97 Event flag number <l or >64
-98 Part of DPB is out of issuing task's address

space
-99 DIC or DPB size is invalid

Macro Expansion:

rLEF$
.~YT~

.~1~n

~1 •• ~

3-19

CMKT$

3.12 CMKT$ (CANCEL MARK TIME REQUESTS)

The CANCEL MARK TIME REQUEST directive cancels MARK TIME requests that
have been made by the issuing task. If no parameters are supplied
with the macro call, all MARK TIME requests that have been made by the
issuing task are cancelled.· Parameters are specified to cancel only
mark time requests that set an indicated event flag or cause an AST at
an indicated location.

Macro Call: CMKT$ efn,ast

efn = event flag number (O implies no event flag)
ast = AST service routine entry address

The following symbols ar~ locally defined with their assigned values
equal to the byte offset from the start of the DPB to respective DPB
elements.

C.MKEF = (length 2 bytes) Event flag nwnber
C.MKAE = AST service routine entry address

DSW return codes:

+l Successful completion
-90 No EFN or AST entry specified
-97 Invalid event flag number (event flag number <l or

)64)
-98 Part of DPB is out of issuing task's address space
-99 DIC or DPB size is invalid

Macro Expansion:

C :HT i
• ~ VTF.:
• w :HH)
.wJ~I)

'5,C~fA~;T

21., ~
c;
:.vTAST

3-20

CSRQ$

3.13 CSRQ$ (CA~CEL SCHEDULED REQUESTS)

The CANCEL SCHEDULED REQUESTS directive cancels scheduled requests for
task executions. All requests to run a specified task can be
cancelled, or only those issued for a specified task by another
specified task. If the task to be cancelled is a multiuser task, it
is cancelled only if its TI matches that of the scheduler. This
directive cannot be issued by a background task.

Macro Call: CSRQ$ ttask,rtask

ttask = Scheduled (requested) task name,
rtask = Scheduler (requester) task name.

The following symbols are locally defined with their assigned values
equal to the byte off set from the start of the DPB to the respective
DPB elements.

C.SRTN ~ (length 4 bytes) target task name
C.SRRN = (4) Requester task name

The issuing task is taken as the scheduler task when not specified.

DSW return codes:

+l Successful completion
-02 Task not installed
-80 Directive issued by background task
-98 Part of DPB is out of issuing task's address space
-99 DIC or DPB size is invalid

Macro Expansion:

C~~1~ T~S~t,TA~~~

• ~· v T ~ ~ ~ • , "
• "' ti ~) ~ L1 I 'i' A ~'I. 1 I
.~:.t_~·.;.> /TA~.1(2/

3...,.21

DIR$

3.14 DIR$ (DIRECTIVE)

DIR$ generates an RSX-110 Executive trap with a predefined DPB.

Macro Call: DIR$ adr,err

Three forms are possible, with the following interpretation:

DIR$

DIR$ adr

DIR$ adr,err

assumes the address of the DPB or the DPB
itself has already been pushed onto the
stack.

generates the code to push the parameter adr
onto the stack.

generates the code to push the parameter adr
onto the stack, executes an EMT 377,
generates a branch on carry clear to the
address of the branch +4 (or +6 if
necessary) and generates a JSR PC to the err
address.

The argument adr is optional but, if present, must be a valid
assembler source operand used to push the DPB address on the stack.

The argument err is optional. If defined, it must be a valid
assembler destination operand to permit a jwnp to subroutine (JSR)
instruction to an error handler if the directive is rejected.

Macro Expansion:

1i J ~ $ ii A
~.., (. \/ H , • C S?)
f:r.11 r H7

3-22

DECL$

3.15 DECL$ (DECLARE SIGNIFICANT EVENT)

The DECIARE SIGNIFICANT EVENT directive declares a siqnificant event
and, optionally, sets an event flaq and reports its state before it
was set. Declaring a significant event causes a scan of the active
task list (ATL). The directive performs four functions:

l. Tests an event flag,
2. Sets the event flag,
3. Declares a significant event,
4. Reports the flag's polarity prior to being set in the

osw.

Macro Call: DECL$ efn

efn = event flag number (an event flag number of 0 implies
no event flag nwnber)

The following symbol is locally defined with its assigned value equal
to the byte offset from the start of the DPB to the DPB element.

D.CLEF = (Length 2 bytes) event flag number

DSW return codesi

+l No event flag specified
+O Specified flag was cleared
+2 Specified flag was set

-97 Event flag number <l or >64
-98 Part of DPB is out of issuing task's address space
-99 DIC or DPB size is invalid

Macro Expansion:

0~CL,

.evTF.

.kJRn

3-23

DSBLS

3.16 DSBL$ (DISABLE)

The DISABLE directive instructs the system to reject future attempts
to run or fix an indicated task (REQUEST, EXECUTE, SCHEDULE, RUN,
SYNCHRONIZE, and FIX-IN-MEMORY directives). It is used effectively to
remove a task from a system without actually deleting its STD entry.
DISABLE cannot be issued by a background task. If the task to be
disabled is active, it is not disabled until it becomes inactive.

When a task is installed into a system, it is not disabled, i.e., it
is runnable.

Macro Call: DSBL$ task

task = Task name,

The following symbol is locally defined with its assigned value equal
to the byte offset from the start of the DPB to the DPB element.

o.SBTN = (Length 4 bytes) task name

DSW return codes:

+l
-02 ... -
-08
-10
-ao
-98
-99

Macro Expansion:

successful completion
Task not installed
Task is already disabled
Task is not to be disabled
Directive issued by a backqround task
Part of DPB is out of issuing task's address space
DIC or DPB size is invalid

M""'L.$ ')C~l:T
.t<vTi;: 01.,5
.c;Al''iC" /i)Jtr/

3-24

DSCP$

3.17 DSCP$ (DISABLE CHECKPOINTING)

The DISABLE CHECKPOINTING directive disables the checkpointability of
an issuing task that has been task built as being checkpointable.
This directive cannot be issued by a background task.

When a checkpointable task's execution is started, checkpointing is
not disabled, i.e., the task can be checkpointed.

Macro Call: DSCP$

DSW return codes:

+l Successful completion
-08 Task checkpointing already disabled
-10 Issuing task not installed as checkpointable
-so Directive issued by a background task
-98 Part of DPB is out of issuing task's address space
-99 DIC or DPB size is invalid

Macro Expansion:

,., ~-CP ¢,

• '.._< "l :: qr,;;. , 1

3-25

ENAR$

3.18 ENAR$ (ENABLE AST RECOGNITION)

The ENABLE AST RECOGNITION directive allows recognition of
asynchronous system traps for the issuing task, i.e., nullifies an
INHIBIT AST RECOGNITION directive. AST's that have occurred while
recognition was inhibited are effected at issuance. When a task's
execution is started, AST recognition is not disabled. ASTs are
described in Section 4.2.

AST service routines must save and restore all registers used.

Macro Call: ENAR$

DSW return codes:

+l Successful completion
-08 AST recognition not inhibited
-98 Part of DPB is out of issuing task's address space
-99 DIC or DPB size is invalid

Macro Expansion:

\"1 •• 1

3-26

ENBL$

3.19 ENBL$ (ENABLE)

This directive instructs the system to make an indicated disabled task
runnable, i.e., to nullify a DISABLE directive. ENABLE cannot be
issued by a background task.

When a task is installed into a system, it is not disabled, i.e., it
is runnable.

Macro Call: ENBL$ task

task = Task name,

The following symbol is locally defined with its assigned value equal
to the byte offset from the start of the DPB to the DPB element.

E.NBTN = (Length 4 bytes) Task name

DSW return codes:

+l Successful completion
-02 Task not installed (No STD entry found)
-os Task is not disabled
-so Directive issued by a background task
-98 Part of DPB is out of issuing task's address space
-99 DIC or DPB size is invalid

Macro Expansion:

r \. ' L 5 l /. !' j("\)'
.r.vrF: tl.~.,~

.~'.I.1''l~· /Tt.Sl(5~/

3-27

ENCP$

3. 20 ENCP$ (Et~ABLE CHECKPOINTING)

The ENABLE CHECKPOINTING directive makes the issuing task
checkpointable after its checkpointability has been disabled, i.e., to
nullify a DISABLE CHECKPOINTING directive. Checkpoint cannot be
enabled for a task that was not built as being checkpointable.

Macro Call: ENCP$

osw return codes:

+l Successful completion
-08 Checkpointing not disabled
-so Pirective issued by background task
-98 Part of DPB is out of issuing task's address space
-99 DIC o~ OPB size is invalid

Macro Expansion:

r;~·c:FJ~

.~VTE '>7.,t

3-28

EXEC$

3.21 EXEC$ (EXECUTE)

The EXECUTE directive activates a task only if the memory required for
its execution is presently available. It cannot be issued by a
background task.

Macro Call: EXEC$ task,part,pri,ugc,upc

= Task name, task
part
pri
ugc
upc

= Partition name,
= ~riority,
= UIC group code,
= UIC programmer code.

A partition cannot be specified for a multiuser task1 i.e., the task
must be requested to execute in its default partition.

The following symbols are locally defined with their assigned values
equal to the byte off set from the start of the DPB to the respective
DPB elements.

E.XCTN = (length 4 bytes) task name
E.XCPN = (4) Partition name
E.XCPR = (2) Priority
E.XCGC = (1) UIC group code
E.XCPC = (1) UIC programmer code

DSW return codes:

+l Successful completion
-01 Insufficient pool nodes available to requester
-02 Task not installed
-03 No memory for execution
-06 Handler task not resident to load task
-07 Task is active
-08 Task is disabled
-so Directive issued by background task
-91 invalid UIC
-94 Partition not in system
-95 Invalid Priority specified (<O or)250)
-98 Part of DPB is out of issuing task's address space
-99 DIC or DPB size is invalid

Macro Expansion:

EXFC~ ~VFA5~,Pl~T,~~,2~~,2~~

.6YTE \3.,f

.~t1~0 /~VTASK/

.~AO~~ /PA~T/

.~~~~ ,,

.~YTE ?~~.~~~

3-29

EXIF$

3.22 EXIF$ (EXITIF)

The EXITIF directive terminates the execution of the issuing task if
an indicated event flag is NOT set. Control is returned if the
specified event flag is set.

Macro Call: EXIF$ efn

efn a event flag nwnber

The following symbol is locally defined with its assigned value equal
to the byte offset from the start of the DPB to the DPB element.

E.XFEF = (length 2 bytes) event flag number

DSW return codess

+l Indicated event fla,g cleared, task exited
+2 Indicated event flag set, task not exited

-97 No event flag specified in mask word(s),
or invalid event flag number (event flag number <l
or >64)

-98 Part of DPB is out of issuing task's address space
-99 DIC or DPB size is invalid

Macro Expansion:

F.'<CJF$
.RYTF:
.~1Rii

3-30

EXIT$

3.23 EXIT$ (TASK EXIT)

The TASK EXIT directive terminates the execution of the issuing task.

Macro Call: EXIT$

osw return codes:

The OSW return codes can be tested only if the EXIT$ directive fails.

+l Successful completion
-98 Part of DPB is out of issuing task's address space
-99 DIC or DPB size is invalid

Macro Expansion:

n:rn
• ~VH'. c;1.,1

3-31

FIX$

3.24 FIX$ (FIX IN MEMORY)

The FIX IN ~MORY directive fixes an inactive, installed task in
memory. Once fixed in memory, the task cannot be checkpointed, and it
does not relinquish its memory space until removed by the UNFIX
directive.

The use of ~his directive is desirable when the timing of a task's
execution is critical, or when it is requested very frequently. when
fixed, a fresh copy of the task is not loaded for each request.
FIX~IN-MEMORY may not be issued by a background task.

Macro Call: FIX$ task

task = Task name,

The following symbol is locally defined with its assigned value equal
to the byte offset from the start of the DPB to the DPB element.

F.IXTN = (length 4 bytes) task name

DSW return codes:

+l Successful completion
-01 -· Insufficient pool nodes available to requester
-02 Task not installed
-03 Partition too small for task

· -06 Handler task not resident to load task
-07 Task is active
-os Task is disabled
-09 Task is already fixed
-10 Task not fixable
-11 Task is checkpointable
-so Directive issued by background task
-98 Part of DPB is out of issuing task's address space
-99 -· DIC or DPB size is invalid.

Macro Expansion:

FtO
• f.i v T€
.i.;·A0'5;"

TASI<~

"5 •• 3
/TA5r<U

3-32

GCOM$

3.25 GCOM$ (GET COMMON BLOCK PARAMETERS)

The GET COMMON DLOCK PARAMETERS directive fills an indicated 8-word
buffer with common block parameters.

The 8-'WOrd buffer is filled as follows:

Wd. 00
Wd. 01
Wd. 02
Wd. 03
Wd. 04
Wd. 05
Wd. 06
Wd. 07

l/64th base address of common block
l/64th size of common block
Creation year
Creation month
Creation day
Owner identification code (UIC)
Starting ASR (APR)
Conunon block flags byte (low order)
and status byte (high order)

Macro Call: GCOM$ blknam,bufadr

blknam = name of the cormnon block
buf adr ~ Adress of 8-word buffer

The following symbols are locally defined with their assigned value
equal to the byte offset from the start of the DPB element.

G.COBN - (4) Common block name
G.COBA - (2) Buffer address

The following offsets are assigned relative to the start of the common
block parameters buffer.

G.COBB - (2) 1/64 common block base address
G.COBS - (2) 1/64 common block size
G.COYR - (2) Creation year
G.COMO - (2) Creation month and day
G.COSA - (2) Status and starting APR
G.COUI - (2) Owner identification (UIC)
G.COTP - (2) TPD
G.COFW - (2) Common block flags byte address

The flags byte and the status byte are in the same word (G.COFW). The
flags byte is in the low-order position and the status byte is in the
high-order position.

The following bits are defined for the fla9s byte.

Bit Meaning When Set

O Library or common area loaded
1 1 =library, 0 = common area
2 GCA is position independent
3 Nonowner has write access
4 Nonowner has read access

3-33

The following values are defined for the status byte.

0
2
4
6

52
54
56

DSW Status:

Meaning

Global area not in use
Load request queued
Load request succeeded
Load request failed
Record request queued
Record request succeeded
Record request failed

+l Successful completion
-02 Indicated conunon block not in system
-98 Part of DPB or buffer is out of task's address

space
-99 DIC or DPB size is invalid

Macro Expansion:

GCOMi SYSR~S,C0~8UF

.PYTF: ~7 •,a

.P40'5!6 /SYS~ES/

• 11. o Q o c: c; M ~ , 1 F

3-34

GLUNS

3.26 GLUN$ (GET LUN INFORMATION)

The GET LUN INFORMATION directive
information about a physical unit to
is assigned for the requesting task.
have been redirected to another
describes the effective assignment.

fills a 6-word buffer with
which the specified logical unit
If requests to the physical unit

unit, the information returned

The 6-word buffer of LUN inforrnation comprises the first six words of
the Pun. See Appendix A.

Macro Call: GLUN$ lun,bufadr

lun
buf adr

= Logical unit number
= ~ddress of 6-word buffer which holds LUN

information

The following symbols are locally defined with their assigned values
equal to the byte offset from the start of the nPB to the respective
DPB elements.

G.LULU - {length 2 bytes) Logical unit number
G.LUBA - (2) Buffer address

DSW return codes:

+l Successful completion
-OS Unassigned LIB~
-96 Invalid logical unit number
-98 Part of DPB or buffer is out of task's address

space
-99 DIC or nPB size is invalid

Macro Expansion:

_;L .hi'S
• ;l 'f Tl:'.
.... ")~11

• "")~!')

-;; , L.U B•JF
'), J
5
i..U 'Jd'Jf-"

3-35

GMCR$

3.27 GMCR$ (GET MCR COMMAND LINE)

The GET MCR COMMAND LINE directive instructs the system to transfer a
command line to the issuing task. The issuing task is an MCR function
task requested by the MCR dispatcher task. The command line can be 1
through 80 bytes in length. It was placed in a list in SCOM by the
MCR dispatcher. The GMCR$ macro call should be issued as soon as
possible by MCR function tasks (••• xxx) in order to free pool space.

If the command line is terminated by a carriage return, a flag is set
in the task's header to cause the MCR dispatcher task to be requested
upon exit.

The command line is read into a buffer that is picked from the pool by
the MCR dispatcher task. It is linked into the MCR queue or the batch
queue by the batch processor.

The format of the buffer is a standard MCR buffer.

The DSW contains the character count for the
the carriage control characters if
successfully.

Macro Call: GMCR$

conunand line
the directive

excluding
executes

The following symbol is locally defined with its assigned value equal
to the byte offset from the start of the DPB to the respective DPB
element.

G.MCRB = (Length 80 bytes) MCR line buffer

DSW return codes.

+nn
-so
-98

-99

Character count
No buffer exists
Part of DPB or
address space
DIC or DPB size

or illegal task name
buffer is out of

is invalid

NOTE

No "$S" macro form exists for this
directive.

Macro Expansion:

.;~1;: H
• -3VTF. 1~7 •• 4t •

3-36

issuing task's

GPRT$

3.28 GPRT$ (GET PARTITION PARAMETERS)

The GET PARTITION PARAMETERS directive fills an indicated 3-word
buffer with partition parameters. If a partition is not specified,
the partition of the issuing task is assumed.

The 3-word buffer is filled as follows:

Wd. 00
Wd. 01
Wd. 02

Macro call:

l/64th base address of partition
l/64th size of partition
partition flags byte

GPRT$ prtnam,bufadr

prtnam = Partition name
bufadr = Address of buffer

The following symbols are locally defined with their assigned value
equal to the byte off set from the start of the DPB to the DPB element.

G.PRPN - (4) Partition name
G.PRBA - (2) Buffer address

The following offsets are assigned relative to the start of the
partition parameters buffer:

G.PRPB - (2) 1/64 partition base address
G.PRPS - (2) 1/64 partition size
G.PRFW - (2) Partition flags byte

The following bits are defined for the flags byte.

Bit Meaning When Set

0 User-controlled partition
1 Occupied user-controlled partition
2 System-controlled partition
3 Active system-controlled partition

DSW:
+O Successful completion

-02 Indicated partition not in system
-98 Part of DPB or buffer is out of task's address

space
-99 DIC or DPB size is invalid

Macro Expansion:

G F-' ~ f '. Gt. '.: ~ L , ~ ~ IH~ U F
.BVTF. b'5.,4
.~AD50 /GE\llo(L/
• J.. 1 R ;) PA~ ~1 1.J F

3-37

GSSW$

3.29 GSSW$ (GET SENSE SWITCHES)

This directive instructs the system to get the status of the console
sense switches and store it in the issuing task's directive status
word.

Macro call: GSSW$

DSW Codes:

Successful completion is indicated if cc-c is clear. Switch
values will be found in the osw. Unsuccessful completion is
indicated by cc-c set and one of the following codes in the
osw.

-98
-99

Macro Expansion:

GS~AS

.~VTE

Part of DPB is out of issuing task's address space
DIC or DPB size is invalid

\25.,1

3-38

GTIM$

3.30 GTIM$ (GET TIME PARAMETERS)

The GET TIME PARAMETERS directive fills
with current time and date parameters.
8-word buffer is filled as follows.

an indicated 8-word buff er
All values are in binary. The

WO. 0
wo. 1
wo. 2
wo. 3
wo. 4
wo. 5
wo. 6
wo. 7

Year (since 1900),
Month of year,
Day of month,
Hol.lr of day,
Minute of hour,
Second of minute,
Tick of second,
Ticks per second (depends on frequency of
clock).

Macro Call: GTII-1$ bufadr

buf adr = Address of 8-word buff er

The following symbol is locally defined with its assigned value equal
to the byte offset from the start of the DPB to the DPB element.

G.TIBA ='(length 2 bytes) Buffer address

The following offsets are assigned relative to the start of the time
parameters buffer.

G.TIYR = (2) Year
G.TIMO = (2) Month
G.TIOA = (2) Day
G.TIHR = (2) Hour
G.TIMI = (2) Minute
G.TISC = (2) Second
G.TICT :;: (2) Clock tick
G.TICP = (2) Clock ticks per second

OSW return code$:

+l Successful completion
-98 ·- Part of DPB or buffer is out of task's address

space
-99 DIC or DPB size is invalid

Macro Expansion:

GlIM~

JYTf.
• ~· \1Rl1

T P1'3UF

;.~ '· • ' ?
T!M~UF -

3-39

GTSK$

3. 31 GTSK$ (GET TASK PARAMETERS)

The GET TASK PARAMETERS directive fills an indicated 16-word buffer
with parameters relating to the issuing task.

The 16-word buffer is filled as follows:

wn. 00
WD. 01
wo. 02
WD. 03
WD. 04

wo. 05

wo. 06
WD. 07

wo. 10
WD. 11
wo. 12
wo. 13
WD. 14
WD. 15
WD. 16
wo. 17

Macro Call:

Issuing task's name (first half),
Issuing task's name (second half),
Partition name (first half),
Partition name (second half),
Name of the task to which the ATL
node is accounted; usually task name of
requester of issuing task (first half),
Name of the task to which the ATL node is
accounted; usually task name of requester
of issuing task (second half),
Run priority
User identification code (UIC for file
control services)
Number of logical I/O units (LUN's)
Machine type indicator e.g., 45, for PDP-11/45
STD flags words,
[~dress of task SST vector tables),
[Size of task SST vector table (in words)],
Zero (reserved)
Zero (reserved)
Zero (reserved)

GTSK$ buf adr

bufadr = Address of a 16-word buffer.

The following symbol is locally defined with its assigned value equal
.to the byte offset from the start of the DPB to the DPB element.

G.TSBA = (length 2 bytes) Buffer Address,

The following offsets are assigned relative to the start of the task
parameters buffer:

G.TSTN = (4) Task name,
G.TSPN = (4) Partition name,
G.TSRN = (4) Name of task's requester,
G.TSPR = '(2) Priority,
G.TSGC = (1) UIC Group code
G.TSPC = (1) UIC Programmer code
G.TSNL = (2) Number of logical units,
G.TSMT = (2) Machine type,
G.TSFW = (2) STD flags word
G.TSVA = (2) Task's SST vector address
G.TSVL = (2) Task's SST vector (word) length

3-40

The following bits are defined for the flags word.

DSW:

Bit Meaning When Set

o STD is 24 words long rather than 16 words long
1 Task is fixed in memory
3 Task is disabled
4 Task is being fixed in memory
6 Task is multiuser
7 Task is privileqed
8 Network attribute bit
9 Restricted usage level one (background batch jobs)

10 Restricted usage level two
11 Task cannot be aborted
12 Task cannot be disabled
13 Task cannot be fixed in memory
14 Task cannot be checkpointed

+01 Successful completion
-98 Part of DPB or buffer is out of task's address

space
-99 DIC or DPB size is invalid

Macro Expansion:

~, 5!<'
.~vfE
• '":'IQ!'\

f Sl(Pi!F

'-3.,~
TSi<?l'F

3-41

IHARS

3.32 IHAR$ (INHIBIT AST RECOGNITION)

The INHIBIT AST RECOGNITION directive inhibits recognition of
asynchronous system traps for the issuing task. The AST's are queued
as they occur and are effected when AST recognition is enabled. There
is an implied AST inhibit whenever an AST service routine is
executing. When a task's execution is started, AST recognition is not
disabled. ASTs are described in Section 4.2.

It is the recognition only which is inhibited. The ASTs are still
queued by the system. They are queued FIFO and occur in that order.

AST service routines must save and restore any registers used.

Macro Call: IHAR$

DSW return codes:

+l Successful completion
-08 AST recognition already inhibited
-98 Part of DPB is out of issuing task's address space
-99 DIC or DPB size is invalid

Macro Expansion:

Q'!l., t

3-42

MRKT$

3.33 MRKT$ (MARK TIME)

The MARK TIME directive declares a 1ignificant event after an
indicated time interval. The interval beqins at issuance of the
directive. If an event flag ia specified, it is cleared at issuance
and set at the time of the siqnificant event. If an AST entry point
is specified, an asynchronous system trap occurs at the time of the
aiqnificant event, At the 1$T, the task's PS, PC, virtual zero
(directive status), and the event flag mask are pushed onto the task's
(user) stack. If neither an event flag number nor an AST service
entry point is specified, the siqnificant event still occurs after the
indicated time interval. ASTs are described in Section 4.2.

Macro Calls MRKT$ efn,timmag,timunit,ast

efn •

timmag •

timunit •

E~nt flag number (O implies no event
flag)
Time interval magnitude, i.e., how many time
int(;!rval units
Time interval unit
l • clock ticks
2 • seconds
3 • minutes
4 ~ hours

ast • AST entry address

The following symbols are locally defined with their assigned values
equal to the byte offset from the start of the DPB to the respective
DPB elements.

M.KTEF •
M.KTMG •
M.K'l'UN •
M.KTAE •

(Length 2 bytes) event flag
(2) time maqnitude
(2) Time unit
(2) AST entry address

DSW return codes1

+l -- Successful completion
-01 Unavailable pool node
-93 ·- Invalid time specified
-97 Invalid event flag number (event flag number

-98 -100'

-99

Macro Expansions

.~q!(f'

,t'HF.
•'NOR!')
,WOR"
,wi~o

.~;O~f)

)64)
Part of OPB is out of issuing
DIC or DPB size ia invalid

4,~·a,2,MTAST

'.!.,';
4
~~
~
~UST

3-43

task's address

<l or

space

010$

3.34 QIO$ (QUEUE I/O)

The QUEUE I/O directive places an I/O request for an indicated device
in a queue of priority-ordered requests for that device unit. The
device unit is specified as a loqical unit number (LUN).

Normally, a significant event is declared by handler tasks (via system
subroutines) upon I/O completion. If an event flag is specified, it
is cleared when the request is queued, and set at the significant
event. The I/O Status block is also cleared when the request is
queued.

If an AST service entry point is specified, the AST occurs upon I/O
completion with the task's PS, PC, virtual zero (directive status),
and the address of the I/O status block is pushed onto the task's
(user) stack. Refer to Section 4.2.

Macro Call: QIO$.fnc,lun,efn,pri,iost,ast,prmlst

f nc
lun
efn

= I/O function code (see Appendix C for symbols)
= Logical unit number
= Event flag number (O implies no event flag)

It can be either global or local.
pri = Priority
iost = Address of I/O status block
ast = Address of I/O done AST entry point
prmlst =Parameter list of the form <P1, •••• ,P6> •

Three error indicators are used in conjunction with QIO$:

1. The C bit,

2. The directive status word,

3. The I/O status block.

The C bit is set to indicate that the format of the macro call was
incorrect1 i.e., it indicates that the Executive rejected the macro
call because it resulted in an incorrect DPB. If the C bit is clear,
format of the macro call is correct, but the I/O has not necessarily
been successful.

The directive status word can be tested to determine whether the
Executive successfully queued the I/O request. It is tested followinq
the WTSE$ macro call associated with the QIO$. If the request was not
queued, the directive status word contains one of the error codes
listed below.

The I/O status block can be tested upon I/O completion to determine
the success or failure of the actual transfer. The format of the I/O
status block is illustrated below. I/O status error codes are
provided in Appendix c.

3-44

The first call of this macro defines the following symbols and
assigns, as values, their byte offset from the beginning of the DPB.

Q.IOFN = (length 2 bytes) I/O function
Q. IOLU = (2) Logical unit number
Q. IOEF = (1) Event flag number
Q.IOPR = (1) Priority
Q.IOSB = (2) Address of I/O status block
Q.IOAE = (2) Address of I/O done AST entry point
Q.IOPL = (12) Parameter list (up to 6 words).

DSW return codes:

+l Successful completion
-01 Unavailable pool node for request queue
-OS Unassigned LUN
-06 Handler task not resident
-95 Invalid Priority ()250)
-96 Invalid LUN
-97 Invalid event flag nwnber (<l or >64)
-98 Part of DPB is out of issuing task's address space
-99 DIC or DPB size is invalid

Figure 3-1 illustrates the content of the I/O status block.

Word 0

Word 1

Byte 1 Byte o

TTY Termination Success Indicator
Character

OR

CTRL Z (EOF) Indicator

Number of Characters Transmitted

Figure 3-1
I/O Status Block

Word 0 can contain two 1-byte entries (TTY termination character and
success indicator) or it can contain a -10 to indicate CTRL Z (EOF).
If two entries are placed in word o, the success indicator contains a
l to indicate that the operation was successful or an error code, as
described in Appendix c.

The TTY termination character.is used by teletype
similar handler tasks (e.g., DECWriter) and
following:

15(8) =CR,

33(8) =ALT,

handler
can be

0 = maximum number of characters received.

tasks and
one of the

Word 1 contains the number of characters transmitted to or from the
I/O device.

3-45

Macro Expansions

1~rns
.HTE
.w~Rn

• ~rn~r>
,BVT!
,NO~t)

• w :)jlf,,
.~O~D
• w~~·l
• Wl'.JIM

tJ.w~~.1,9,3e,to!a,Q10AST,c1u,,stz,4~>
l1UHH!i
rn.wve
3
:;,50
IOSS
~IJAST

Su'
S?Z
.i~

3-46

QIOWS

3.35 QIOW$ (QUEUE I/O AND WAIT)

The QUEUE I/O AHO WAIT directive performs the functions of both QUEUE
I/O and WAIT FOR SINGLE EVENT FLAG (WTSE$). The format of the call
and other related information is identical with that of QIO$, with the
following exception: if event flag 0 is specified, the queue I/O is
performed, but the wait is not performed.

The user should check the C bit and the I/O status block inunediately
after the macro call.

Macro Call: QIOW$

DSW return codes1

All those returned for QIO
-97 Event flaq >64

Macro Expansion:

:H'h''
.i;Hf
• :~ryiql)
.Wl)~t)

.to4vr~

.:..i1Rll
• w;Jilfn . ·-~ ,~,,
·"i~ri

t~.~L~.S,1,2~~,I~S~t,HUAST,~X~MU~,SIZ~>
],·tUAlifG
tLl.Rt..rit
';

·', a0~
t~S'H
Q'')ASr
t l\JiiUI'
't lS::

3-47

ROAF$

3.36 ROAF$ (READ ALL FLAGS)

The READ ALL FLAGS directive reads all 64 event flags for the issuing
task and records their polarities in a 64-bit (4-word) buffer.

Macro Call: ROAF$ bufadr

bufadr = Address of 4-word buffer.

The following symbol is locally defined with its assigned value equal
to the byte offset from the start of the DPB to the DPB element.

R.DABA = (Length 2 bytes) buffer address

DSW return codes:

+l Successful completion
-98 Part of DPB or buffer is out of issuing task's

address space
-99 DIC or DPB size is invalid

Macro Expansion:

~r1 AF~

.Ev Te:

... o~"
FL.AGS
39.,e
FLAGS

3-48

RDEFS

3.37 RDEF$ (READ EVENT FLAG)

The READ EVENT FLAG directive tests an indicated event flag and
reports its polarity in the osw.

Macro Call: RDEF$ efn

efn = Event flag number

The following symbol is locally defined with its assigned value equal
to the byte off set from the start of the DPB to the DPB element.

R.DEEF = (Length 2 bytes) event flag number

DSW return codes:

+O Flag was cleared
+2 Flag was set

-97 Event flag nwnber <l or)64
-98 Part of DPB is out of issuing task's address space
-99 DIC or DPB size is invalid

Macro Expansion:

~0EF~

.~vri:.:

.w:i~n

3-49

RQST$

3.38 RQST$ (REQUEST)

The REQUEST directive activate• a taak, i.e., enable• and runs the
task continqent upon priority and memory availability. If the task
cannot be run immediately, the request is retained so that the task
executes when condition• change, i.e., when more memory is available.
It cannot be issued by a backqround task.

Macro calla RQST$ task,part,pri,uqc,upc

task • Task name,
part • Partition name,
pri • Priority
ugc • UIC qroup code,
upc • UIC programmer code.

A partition cannot be specified for a multiuser taskr i.e., the task
must be requested to execute in its default partition.

The followinq symbols are locally defined with their assigned values
equal to the byte off set from the start of the DPB to the respective
DPB elements.

R.QSTN • (lenqth 4 bytes) task name in radix SO
R.QSPN • (4) Partition name
R.QSPR - (2) Priority
R.QSGC • (1) UIC qroup code
R.QSPC • (1) UIC proqrammer code

DSW return codes1

+l Successful completion
-01 Insufficient pool nodes available to requester
-02 Task not installed
-03 Partition too small for task
-06 Handler task not resident to load task
-01 Task is active
-08 Task is disabled
-so Directive issued by backqround task
-91 Invalid UIC
-94 Partition not in system (no TPD entry found)
-95 Invalid priority specified (<O or >250)
-98 Part of DPB is out of issuinq task's address space
-99 DIC or DPB size is invalid

Macro Expansion:

1-rn~T-S

.F.YTE

.i:-AnSvJ

.~4Di::;QI

•. ,; ::n~ ,,
.EYT~

~YTAi~,GENQL,~,l~A,5~
t 1 .• , .,
/'HT 431(/
/~E~~L/

5
5~,1)1/l

3-50

RSUM$

3. 39 RSUM$ (RESUME)

The RESUME directive instructs the system to resume the execution of a
task that has issued a auspend directive. If the task being resumed
is a multiuser task, it is resumed only if its TI matches that of the
task issuing the RESUME directive. The RESUME directive cannot be
issued by a background task.

NOTE

It is possible for a task to
RESUME itself using the
asynchronous trap feature.

Macro Call: RSUM$ task

task • Task name.

The following symbol is defined locally with its assiqned value equal
to the byte offset from the start of the DPB to the DPB element.

R.SUTN • (length 4 bytes) taak name

DSW return codeas

+l Successful completion
-02 Task not installed
-07 Task not active
-os Task not suspended
-so Directive issued by background task
-98 Part of OPB is out of issuing task's address space
-99 DIC or DPB size is invalid

Macro Expansiona

~H lJ '1 ;; U S I(i;
.~YT~ ~·1.,-s
.~Ar),~ /TAt;I(~/

3-51

RUN$

3 . 4 0 RUN$ (RUN)

The RUN directive causes a task to be requested at a specified future
time, and optionally repeated periodically. The schedule time is
specified in terms of delta time from issuance. The RUN directive
cannot be issued by a background task.

Macro Call: RUN$ tsk,prt,pri,ugc,upc,smg,snt,rmg,rnt

tsk =
prt =
pri =
ugc =
upc =
smg =
snt =

rmg =
rnt =

Task name,
Partition name,
Priority
UIC group code
UIC programmer code,
Schedule delta magnitude i.e., how many schedule
units,
Schedule delta unit,
l= clock ·ticks
2= seconds
3= minutes
4= hours

Reschedule interval magnitude,
Reschedule interval unit

A partition cannot be specified for a multiuser task1 i.e., the task
must be requested to execute in its default partition.

The following symbols are locally defined with their assigned values
equal to the byte offset from the start of the DPB to the respective
DPB elements.

R.UNTN =
R.UNPN =
R.UNPR =
R.UNGC =
R.UNPC =
R.UNSM =
R.UNSU =
R.UNRM =
R.UNRU =

(length 4 bytes) task name
(4) Partition name
(2) Priority
(1) UIC group
(1) UIC programmer
(2) Schedule magnitude
(2) Schedule unit
(2) Reschedule magnitude
(2) Reschedule unit

DSW return codes:

+l Successful completion
-01 Insufficient pool nodes available to requester
-02 Task not installed
-03 Partition too small for task
-80 Directive issued by background task
-91 Invalid UIC
-93 Invalid time parameter specified
-94 Partition not in system
-95 Invalid priority specified (<O or >250)
-98 Part of DPB is out of issuing task's address space
-99 DIC or DPB size is invalid

3-52

Macro Expansion:

~l'~~

• RYT€
.~Al)50

• IH n.50
• w :Fm
.f;VTF.
.~:iq·i

• W :')QI)

• ;.j :i"" i)
• "':'.'t~i')

~CIT,MOSPA~,25,31,4~,1013115,3
11.,u •
/DOI 1'I
/'1i)S~Hi/
;:t C\
.:11, St
1:'~

'3
1.5
~

3-53

SCHD$

3.41 SCHD$ (SCHEDULE)

The SCHEDULE directive cau•e• a ta•k to be reque•ted at a specified
future time, and optionally, repeated periodically. The schedule time
is specified in terms of absolute time-of-day. The SCHEDULE, RUN, and
SYNC directives are the same, differinq only in the form in which the
schedule data is presented. SCHEDULE cannot be issued by a background
task.

Macro Call: SCHD$ tsk,prt,pri,ugc,upc,hrs,min,sec,tck,rmaq,rnt

tsk •
prt •
pri •
ugc •
upc •
hrs •
min -
sec •
tck a

rmag •

rnt •

Task name,
Partition name,
Priority,
UIC group code,
UIC proqrammer code,
Schedule hours,
Schedule minutes,
Schedule seconds,
Schedule clock ticks,
Reschedule interval magnitude (how many of the
defined by rnt),
Reschedule interval unit.
1 • clock ticks
2 • seconds
3 • minutes
4 • hours

units

A partition cannot be specified for a multiuser task1 i.e., the task
must be requested to execute in its default partition.

The following symbols are locally defined with their assigned values
equal to the byte off set from the start of the DPB to the respective
DPB elements.

S.CHTN •
S.CHPN •
S.CHPR •
S.CHGC •
S.CHPC •
S.CHHR •
S.CHMI =
S.CHSC •
S.CHCT •
S.CHRM •
S.CHRU •

(length 4 bytes) Task name
(4) Partition name
(2) Priority
(1) UIC group
(1) UIC proqrammer
(2) Hours
(2) Minutes
(2) Seconds
(2) Clock ticks
(2) Reschedule magnitude
(2) Reschedule unit

DSW return codes:

+l -- Successful completion
-01 -- Insufficient pool nodes available to requester
-02 Task not installed
-03 Partition too small for task
-so Directive issued by background task
-91 Invalid UIC
-93 Invalid time parameter specified
-94 Partition not in system
-95 Invalid priority specified C<O or >250)
-98 Part of DPB is out of issuing task's address space
-99 DIC or DPB size is invalid

3-54

Macro Expansions

SC"4(U
• evr~
.P.:l!i50
• ~unslr!'
• \I/ :I" 1
.t3VTE
• 14 t'Hl,,
• ._'.0M11
._IAl\Htn
• .. inRr:>
• ~1a~n
.i.inQli

~01L,rJ~E,~~~,40,40,1~,3~,00,0~,~,~
ts., 1~ •
/POOL./
/COQ~/

~~a
4~:,'171

U'I
3~
~~A

"~
5
3

3-55

SETFS

3.42 SETF$ (SET EVENT FLAG)

The SET EVENT FLAG directive sets an indicated event flag and reports
the flaq's polarity before settinq in the osw. Settinq an event flaq
does not cause an ATL scan.

Macro Call: SETF$ efn

efn • event flaq nwnber

The followinq symbol is locally defined with its assigned value equal
to the byte offset from the start of the DPB to the DPB element.

DSW:

s.ETEF • (Length 2 bytes) event flaq number

+0 Flag was cleared
+2 Flag was set

-97 Event flag number <l or >64
-98 Part of DPB is out of issuing task's address space
-99 DIC or DPB size is invalid

NOTE

It is recommended that the user avoid
specifyinq event flaq numbers from 59 to
64, which are reserved for RSX-llD.

Macro Expansion:

SETF$
.~YTE
.~ORD

3-56

SFPA$

3.43 SFPA$ (SPECIFY FLOATING POINT EXCEPTION AST)

The SPECIFY FLOATING POINT EXCEPTION AST directive instructs the
system to record one of the following two items:

1. That floating point exception ASTs for the issuing
task are desired and where control is to be
transferred when a floating point exception AST
occurs,

2. The floating point exception ASTs for the issuing
task are no longer desired.

When an AST service entry point is specified, future floating point
exception ASTs occur for the issuing task, and control is transferred
to the indicated location whenever a floating point exception AST
occurs.

When an AST service entry point is not specified (zero in the second
DPB word), future floating point exception ASTs do not occur until an
AST entry point is specified again. ASTs are described in Section
4.2.

If SFPA$ is not used, no AST is queued.

AST service routines must save and restore all registers used.

Macro Call: SFPA$ ast

ast = AST service entry address.

The following symbol is locally defined with its assigned value equal
to the byte offset from the start of the DPB to the DPB element.

S.FPAE = (Length 2 bytes) AST entry address

DSW return codes:

+l Sucessful completion
-01 No pool node available
-08 AST entry already un-specified
-so Directive issued during AST service
-98 Part of DPB is out of issuing task's address space
-99 DIC or DPB size is invalid

NOTE

This directive applies only for
PDP-11/45. It has no effect on
PDP-11/40. For the PDP-11/40, refer to
SVTK$.

Macro Expansion:

,SP4'
• AHE
• ·o~n

F?A)r

111 •• ~
FPAST

3-57

SPND$

3.44° SPND$ (SUSPEND)

The SUSPEND directive suspends the execution of the issuing task. A
task can suspend only itself and not another task. The SUSPEND
directive cannot be issued by a background task.

Macro Call: SPND$

DSW return codesa

+2 Successful completion
-so Directive issued by background task
-98 Part of DPB is out of issuing task's address space
-99 DIC or DPB size is invalid

i1acro Expansions

SP~n~

.BVT~

3-58

SPRA$

3. 4 5 SPRA$ (SPECIFY POWER RECOVERY AST)

The SPECIFY PCMER RECOVERY AST directive instructs the system to
record either of the following:

1. That power recovery AST's for the issuing task are
desired, and where control is to be transferred when
a power recovery AST occurs, or

2. That p<Mer recovery AST's for the issuing task are
no longer desired.

When an AST service routine entry point is specified, future power
recovery ASTs occur for the issuing task, and control is transferred
to the indicated locat~on whenever a power recovery occurs. When an
AST service entry point is not specified (zero in the second DPB
word), future power recovery.ASTs do not occur until an AST entry
point is specified again. ASTs are described in Section 4.2.

If SPRA$ is not used, no AST is queued.

AST service routines must save and restore all registers used.

Macro Call: SPRA$ ast

ast = AST service routine entry address or zeros if none is
desired.

The following symbol is locally defined with its assigned value equal
to the offset from the start of the DPB to the DPD element.

s.PRAE = (Length 2 bytes) AST entry address

DSW return codes:

+l Successful completion
-01 No pool node available
-08 AST entry already unspecified
-80 Directive issued during AST service
-98 Part of DPB is out of issuing task's address space
-99 DIC or DPB size is invalid

Macro Expansion:

SP~U

.3YTE
• r,.i,)Qi)

PWRAST
t~~ •• 2
Pi•JiUST

3-59

SRDA$

3.46 SRDA$ (SPECIFY RECEIVE AST)

The SPECIFY RECEIVE AST directive allows a task to determine whether
another task has sent data to it. When the sending of data is
detected, the AST is executed. Use of this directive eliminates the
need for the receiving. task to check a buffer constantly for the
presence of data. ASTs are described in Section 4.2.

Macro Call: SRDA$ ast

ast = AST service entry point. If ast is specified, receive
occurs for the issuing task and control is transferred
to the entry point. If ast is not specified, ASTs do
not occur.

The following symbol is defined locally with its assigned value equal
to the byte offset from the start of the DPB.

s.RDAE = AST entry address (two bytes)

DSW return codes:

+l Successful completion
-01 No pool node available
-08 AST entry already unspecified
-so Directive issued during AST service
-98 Part of DPB is out of issuing task's address space
-99 DIC or DPB size is invalid

AST service routines must save and restore all registers used.

Macro Expansion:

SRi)U
.BYTE
• W'.llH)

~C\#AST

\~7.,2
~C\f AH

3-60

SVOB$

3.47 SVOB$ (SPECIFY SST VECTOR TABLE FOR DEBUGGING AID)

The SPECIFY SST VECTOR TABLE FOR DEBUGGING AID directive specifies the
virtual address of a table of synchronous system trap service routine
entry points for use by an intratask debugging aid (e.g., ODT). SSTs
are described in Section 4.2.

When both the issuing task table and the CDT exist and both contain an
entry for a particular trap, the CDT table takes precedence.

The table can contain up to eight entry points. Each entry point
corresponds to a type of error that could occur or an instruction.
The table is in the following format.

WD. 00
wo. 01
WD. 02
WD. 03
wo. 04
wo. 05
WD. 06
WD. 07

Odd address error or other trap through 4
Segment fault
T-bit trap or execution of a BPT instruction
Execution of an 'IOT' instruction
Execution of a reserved instruction
Execution of non-RSX EMT.
Execution of a trap instruction,
PDP-11/40 floating point exception

If the table does not exist and one of the errors or instructions
listed in the table above occurs, the task is aborted. Likewise, the
task is aborted if the table exists but does not contain an entry
point that corresponds to a particular error or instruction and that
error or instruction occurs.

The table does not exist if SVOB$ was not specified or if the macro
call contained incorrect parameters.

SST service routines must save and restore all registers used.

Macro Call: SVOB$ adr,len

adr = Address of SST vector table
len = Number of entries in table

The following symbols are locally defined with their assigned values
equal to the byte offset from the start of the DPB to the respective
DPB elements.

S.VDTA = (Length 2 bytes) table address
s.VDTL = (2) Table length

DSW return codes:

+01 Successful completion
-98 Part of DPB or table is out of task's address

space, or table address not specified (zero
address)

-99 DIC or DPB size is invalid

Macro Expansion:

°"V >H
.~'fT~
• ·Oiofl)

• "tH'J

S'Hf;iL,"
'H. I 3
SS Tf ~L
!l

3-61

SVTK$

3.48 SVTK$ (SPECIFY SST VECTOR TABLE FOR TASK)

The SPECIFY SST VECTOR TABLE FOR TASK directive specifies the virtual
address of a table of synchronous system trap service routine entry
points for use by the issuing task. When both the issuing task table
and the ODT table exist and both contain an entry for a particular
trap, the ODT table takes precedence. SS~s are described in Section
4.2.

The table can contain up to eight entry points. Each entry point
corresponds to a type of error that could occur or an instruction.
The table is in the ·following format.

wo.oo
WD.01
WD.02
WD.03
WD.04
wo.os
WD.06
WD.07

Odd address error,
Segment fault
T-Bit trap or execution of a BPT instruction
Execution of an IOT instruction
Execution of a reserved instruction
Execution of non-RSX EMT,
Execution of a trap instruction
PDP-11/40 floating point exception.

If the table does not exist and one of the errors or instructions
listed in the table above occurs, the task is aborted. Likewise, the
task is aborted if the table exists but does not contain an entry
point that corresponds to a particular error or instruction and that
error or instruction occurs.

The table does not exist if SVTK$ was not specified or if the macro
call contained incorrect parameters.

SST service routines must save and restore all registers used.

Macro Call: SVTK$ adr,len

adr a Address of SST vector table
len = Length of (number of entries in) table

The following symbols are locally defined with their assigned values
equal to the byte offset from the start of the DPB to the respective
DPB elements.

s.VTTA = (Length 2 bytes) table address
S.VTTL = (2) Table length

DSW return codes:

+l Successful completion
-98 Part of DPB or table is out of task's address

space, or table address is not specified (zero
address)

-99 DIC or DPB size is invalid

Macro Expansion:

SVT!<'
.~~YTF.
• i'it)~;)

.l~11M

ssrP4L,2
1 ·-~ 'i. , 3
S:HT ~'-
"-

3-62

SYNC$

3.49 SYNC$ (SYNCHRONIZE)

The SYNCHRONIZE directive requests a task at a specified future time,
and optionally, repeats it periodically. The schedule time is
specified in terms of delta time from clock unit synchronization.
Clock unit synchronization is specified for a future time.
SYNCHRONIZE differs from RUN in that RUN requests task execution for
delta time from the present time, not delta time from a future time.
The SYNCHRONIZE directive cannot be issued by a background task.

Macro Call: SYNC$ tsk,prt,pri,ugc,upc,smg,snt,sync,rmg,rnt

tsk
prt
pri
ugc
upc
smg
snt

sync
rmg
rnt

• Task name,
= Partition name,
• Priority,
• UIC group code,
• UIC programmer code,
=Schedule delta magnitude1 i.e., how many delta units
• Schedule delta unit,

1 • clock ticks
2 = seconds
3 • minutes
4 = hours

= Synchronization unit,
= Schedule interval magnitude,
= Schedule interval unit.

A partition cannot be specified for a multiuser task1 i.e., the task
must be requested to execute in its default partition.

The following symbols are locally defined with their assigned values
equal to the byte offset from the start of the DPB to the respective
DPB elements.

S.YNTN = (length 4 bytes) task name
S.YNPN = (4) Partition name
S.YNPR • (2) Priority
S.YNGC • (1) UIC group code
S.YNPC - (1) UIC progranuner code
S.YNSM = (2) Schedule magnitude
S.YNSU • (2) Schedule unit
S.YNSY • (2) Synchronization
S.YNRM • (2) Reschedule magnitude
S.YNRU = (·2) Reschedule unit

DSW return codes:

+l Successful completion
-01 Insufficient pool nodes available to requester
-02 Task not installed
-03 Partition too small for task
-80 Directive issued by background task
-91 Invalid UIC
-93 Invalid time parameter specified
-94 Partition not in system
-95 Invalid priority specified (<O or >250)
-98 Part of DPB is out of issuing task's address space
-99 DIC OR DPB size is invalid

3-63

Macro Expansion:

S'NCS
• fiVTE
.~AO'i~
.f(AO'i'-11
.. i-i0~i1
.Mr TE
.l·i~w:"\

.l•JwRi)
• lo'! :i ~ !)
.iH~~,,

• It.' ~Iii I)

T~I~,r,E~QL,55,1~0,1~~.6,2,3,101~
1Q., t? •
/T~lS/

1r.E'J~LI

55
tnJ,1'!0
6
~
:J
U'I
?.

3-64

UFIX$

3.50 UFIX$ (UNFIX)

The UNFIX directive negates a FIX directive that has been issued to
make a task permanently memory-resident. The task specified in the
UNFIX directive must have the same TI as the issuing task. The task
then can be removed from memory. UNFIX cannot be issued by a
background task.

Macro Call: UFIX$ task

task = Task name,

The following symbol is locally defined with its assigned value equal
to the byte offset from the start of the DPB to the DPB element.

U.FXTN = (length 4 bytes) task name

DSW return codes:

+l Successful completion
-02 Task not installed
-09 Task is already unfixed
-so Directive issued by background task
-98 Part of DPB is out of issuing task's address space
-99 DIC or DPB size is invalid

Macro Expansion:

Ufl(~ PN1l.
.P.YTE F7.,~

·"A[J;e" /POCL/

3-65

VRCD$

3.51 VRCD$ (RECEIVE DATA)

The RECEIVE DATA directive receives a variable-lenqth data block that
has been queued for it accordinq to priority. The SEND DATA or SEND
DATA AND RESUME OR REQUEST RECEIVER directives queue data for a
receiver.

When a sender task is specified, only data sent by the indicated task
is received.

If the buffer size is not specified, a default size of 13 words is
used. A 2-word sendinq task name and the data block are placed in the
indicated buffer. The task name is in the first two words. The
buffer lenqth should not include these two words.

If the location to store the TI is specified, the TI indicator is
transferred from the SEND/RECEIVE node to this location.

If the receiver task is multiuser, only data with the same TI
assiqnment is received.

Data is transferred from the sending task to the receivinq task by
means of nodes picked from the pool. The number of nodes picked is
charqed to the sender. When the data is received, the nodes are
returned and subtracted from sender's usaqe count.

Macro call: VRCD$ task,bufadr,buflen,ti

task • sender task name
bufadr • buffer address
buf len = buffer lenqth
ti • address to store TI

The following symbols are locally defined with their assiqned values
equal to the byte off set from the start of the DPB to the respective
DPB elements.

R.VDTN • (length 4 bytes) task name
R.VDBA • (2) buffer address
R.VDBL = (2) buffer length
R.VDTI • (2) address in which to store TI

Condition codes1

cc-c - cleared to indicate successful completion.
cc-c - set (with cc-v unaltered) if rejection occurs.
cc-v - set if sender task is privileqed

3-66

DSW return codes:

+01 successful completion
-02 sender task not installed
-08 no data queued (sent)
-15 receiver's buffer too small, data truncated
-89 invalid buffer size (>255)
-98 part of DPB or buffer is out of task's address

space
-99 DIC or DPB size is invalid.

An alternate macro call is RCVD$ which receives a 13-word data block.

Macro call: RCVD$ task,bufadr

Macro Expansion of VRCD$:

v~~~s OT~~~.DATAIN,25.,TlAOOR
.H1T~ 7~.,i$1Tq
.rt\0"i0 /!JTHF.R/
.'1-!!J~fl !)\T4!:'11
.!IF G~ ~~lTq.~,.WORO 25 •
• 1.'. ~F ~".l t;·.ssT·~ .. n, .wn1rn 'flAODR

3-67

VRCS$

3.52 VRCS$ (RECEIVE DATA OR SUSPEND)

The RECEIVE DATA OR SUSPEND directive receives a variable-length data
block that has been queued according to priority for it or suspends if
no data blocks can be received. The SEND DATA and SEND DATA AND
RESUME OR REQUEST RECEIVER are used to queue data for a receiver.
This directive cannot be issued by background task.

When a sender task is specified, only data sent by the indicated task
is received.

If the buffer size is not specified, a default size of 13 words is
used. A 2-word sending task name and the data block are returned in
the indicated buffer. The task name is in the first two words. The
buffer length should not include these two words.

If the location at which to store TI is specified, the TI indicator is
transferred from the SEND/RECEIVE node to this specified location.

If the receiving task is multiuser, only data with the same TI
assignment is received.

Data is transferred from the sending task to the receiving task by
means of nodes picked from the pool. The number of nodes picked is
charged to the sender. When the data is received, the nodes are
returned and subtracted from sender's usage count.

Macro call: VRCS$ task,bufadr,buflen,ti

task = sender task name
buf adr = buffer address
buf len = buffer length
ti = address in which to store TI

The following symbols are defined locally with their assigned values
equal to the byte offset from the start of the DPB to the respective
DPB elements.

R.VSTN • (length 4 bytes) task name
R.VSBA = (2) buffer address
R.VSBL = (2) buffer length
R.VSTI = (2) address in which to store TI

Condition codes:

cc-c
cc-c
cc-v

- cleared to indicate successful completion.
- set (with cc-v unaltered) if rejection occurs.
- set if sender task is privileged

DSW return codes:

+01 successful completion
-02 sender task not installed
-15 receiver's buffer too small, data truncated
-so directive issued by background task
-89 invalid buffer size ()255).
-98 part of DPB or buffer is out of task's address

space
-99 DIC or DPB size is invalid.

3-68

An alternate macro call is RCVS$ which receives a 13-word data block.

Macro call: RCVS$ task,bufadr

Macro Expansion of VRCS$:

J Q c 5 .; T t\ -; '(-? I l_I AT A I ~J ' 1 "' • , T I A f) [Hl

.~VT~ l~.,$~1Tq

4~.\1')5~ /TAS~?/

• :..i:) ~ ") HT A r :,J
.t!F ;~ ~~~Tq.,,.WQP~

.!tF f1 ;~~Tq-~,.~n~~

3-69

VRCXS

3. 53 VRCX$ (RECEIVE DATA OR EXIT)

The RECEIVE DATA OR EXIT directive receives a variable-length data
block that has been queued for it according to priority or exits if no
data block can be received. The SEND DATA and SEND DATA AND RESUME OR
REQUEST RECEIVER directives queue data for a receiver.

When a sender is specified, only data sent by the indicated task is
received.

If the buffer size is not specified, a default size of 13 words is
used. A 2-word sendinq task name and the data block are returned in
the indicated buffer. The task name is in the first two words. The
buffer length should not include these two words.

If the location to store TI is specified, the TI indicator is
transferred from the SEND/RECEIVE node to this specified location.

If the receiving task is multiuser, only data with the same TI
assignment is received.

Data is transferred from the sending task to the receiving task by
means of nodes picked from the pool. The number of nodes picked is
charged to the sender. When the data is received, the nodes are
returned and subtracted from sender's usage count.

Macro call: VRCX$ task,bufadr,buflen,ti

task = sender task name
bufadr • buffer address
buf len • buffer lenqth
ti • address at which to store TI

The following symbols are locally defined with their assigned values
equal to the byte offset from the start of the DPB to the respective
DPB elements.

R.VXTN • (lenqth 4 bytes) task name
R.VXBA • (2) buffer address
R.VXBL • (2) buffer length
R.VXTI • (2) address in which to store TI

Condition codes:

cc-c
cc-v
cc-c

- cleared to indicate successful completion.
- set (with cc-v unaltered) if rejection occurs.
- set if sender task is privileged

DSW return codes:

+01 successful completion
-02 sender task not installed
-15 receiver's buffer too small, data truncated
-89 invalid buffer size ()255)
-98 part of DPB or buffer is out of task's address

space
-99 DIC or DPB size is invalid.

An alternate macro call is RCVX$ which receives a 13-word data block.

Macro call: RCVX$ task,bufadr

3-70

Macro Expansion of VRCX$:

'JRr;n
.dYTF.
• :u L1Cj0
.wCJ~I')

.ttF GF.

.tu: F,tl

T~i;;(Q, 11UFIN, Ii\,., T U•)i)R
11.,~ .. urq
ITHl(q/
~ll.JF I r-J
$1~Tq·~ •• wnP~ ~.

~JiTq•e •• w~~u flAOOR

3-71

VSDA$

3.54 VSDA$ {SEND DATA)

The SEND DATA directive queues a variable-length data block according
to priority for a task to receive.

If the buffer size is not specified, a default of 13 words is used.

When an event flag
the directive is
Normally, the event
action. The user
through 3 2) and the
effective, the task

is specified, a significant event is declared if
performed; the indicated event flag is set.
flag is used to trigger the receiver into some
must distinguish between the task's event flags (1
systems's event flags (33 through 64). To be
must set a system event flag.

If no priority is specified, the priority of the sending task is used.

If a TI is specified for the receiving task, the specified TI is
inserted in the SEND/RECEIVE node; an AST is declared if an active
task with the same TI is found. If no TI is specified, the sender's
TI is inserted in the SEND/RECEIVE node; an AST is declared if the
task is active regardless of its TI.

Data is transferred from the sending task to the receiving task by
means of nodes picked from the pool. The number of nodes picked is
charged to the sender. ·when the data is received, the nodes are
returned and subtracted from sender's usage count.

Macro Call: VSDA$ task,bufadr,buflen,efn,sndpri,ti

task = receiver task name
buf adr = address of data block
buflen = length of buffer (1 through 255 words)
efn = event flag nwnber (O implies no event flag)
sndpri = priority of send (1 through 250)
ti = TI indicator

The following symbols are defined locally with their assigned values
equal to the byte offset from the start of the DPB to the respective
DPB elements.

S.DATN = (length 4 bytes) task name
S.DABA = (2) buffer address
S.DAEF = (2) event flag number
S.DABL = (2) buffer length
s.DASP = (2) send priority
S.DATI = (2) TI indicator

3-72

DSW return codes:

+01 successful completion
-02 receiver task not installed
-04 insufficient pool nodes for SEND
-as invalid TI
-89 invalid buffer size (size > 255)
-97 invalid event flag number (event f laq number < O or >

64)
-98 part of DPB or data block is out of task's address

space
-99 DIC or DPB size is invalid

An alternate macro call is SDAT$ which sends a 13-word data block.

Macro call: SDAT$ task,bufadr,efn

Macro Expansion of VSDA$:

l~l~i TAa<J,lATA,~4,1~,~~~.TIAPOR
• ;vrE 11., n-;rq
.~\1)C)~;, /q:;"<~I

• "LH'.l H TA
... ,·~1) 3..,
.lt~ Li~ ~~'Hq-~,

• r { r ·:; E ;; HT q • . , '

.1r~ E~ i~ir~-A.,

• -~ ~HH> ;. "
•"'ORO r?~rn
•

11 t1 ~ 0 TI Al'l!H~

3-73

VSDR$

3. 55 VSDR$ (SEND DATA AND RESUME OR REQUEST RECEIVER)

The SEND DATA AND RESUME OR REQUEST RECEIVER queues a variable-length
data block according to priority for a task to receive and to rPqnf•f1 ~
or resume the execution of the receiver. This directive canuol '"·~
issued by a background task.

This directive has the effect of issuing a SEND DATA directive
followed by a REQUEST directive with the following exceptions:

1. No task switching occurs between the SEND and the RECEIVE or
RESUME,

2. If the SEND is not performed, neither the RESUME nor the
REQUEST is attempted.

If the buffer size is not specified, a default buffer size of 13 words
is used.

When an event flag is specified, a significant event is declared if
the directive is performed; the indicated event flag is set. The
event flag is used commonly to trigger the receiver into some action.
The user must distinguish between task event flags (1 through 32) and
system event flags (33 through 64).

To be effective, the task must set a system event flag. If the send
priority is not specified, the priority of the sender is used to
insert the SEND/RECEIVE node into the receiver's queue.

If a TI is specified for the receiving task, the specified TI is
inserted in the SEND/RECEIVE node. An AST is declared if an active
task is found with the same TI and the task has specified RECEIVE AST.
If no TI is specified, the TI of the sending task is inserted in the
SEND/RECEIVE node; an AST is declared if the task is active
regardless of its TI.

Data is transferred from the sending task to the receiving task by
means of nodes picked from the pool. The number of nodes picked is
charged to the sender. When the data is received, the nodes are
returned and subtracted from sender's usage count.

Macro calls VSDR$ task,part,pri,ugc,upc,bufadr,buflen,efn,sndpri,ti

task = receiver task name
part • partition
pri -priority
uqc -UIC group code
upc -UIC programmer code
buf adr -address of data block
buf len • length of data block in words
efn • event flag number (O implies no event flag)
sndpri • priority of send
ti -TI indicator

3-74

The following symbols are locally defined with their assigned values
equal to the byte offset for the start of the DPB to the respective
DPB elements.

s.DRTN • (length 4 bytes) task name)
s.DRPN • (4) partition name
s.DRPR • (2) request priority
S.DRGC a (1) UIC group
S.DRPC • (l) UIC programmer
S.DRBA • (2) buffer address
s.DREF • (2) event flag
S.DRBL • (2) buffer length
s.DRSP • (2) send priority
S.DRTI - (2) TI indicator

DSW return codes:

In the following code descriptions, R indicates that the
REQUEST or RESUME was rejected, and B indicates that both the
SEND and REQUEST or RESUME were rejected.

+01 - data sent and task requested
+02 - data sent and task resumed
+03 - data sent to a non-suspended task
-01 - [R] insufficient pool nodes available for REQUEST
-02 - [B] receiver task not installed
-03 - [R] partition too small for receiver task
-04 - [BJ insufficient pool nodes for SEND
-06 - [R] handler task not resident to load task
-OS - [R) receiver task is disabled
-so - [B] directive issued by background task
-as - [B] invalid TI indicator
-89 - [B] invalid buffer size (>255)
-91 - [R) invalid uic
-94 - [R] partition not in system
-95 - [R] invalid priority specified C<O or)250)
-97 - [B] invalid event flag number (efn<O or >64)
-98 - [B] part of DPB or data block is out of the task's

address space
-99 - [B] DIC or DPB size is invalid.

NOTE

The SEND portion of this directive can
complete and the REQUEST portion fail.

An alternate macro call is SDRQ$ which sends a 13-word data block.

Macro call: SORO$ task,part,pri,ugc,upc,bufadr,efn

3-75

Macro Expansion of VSOR$:

JS H~
• ~'I Tr:
.~A!)'i'J

.IIF t.T
• ~ Ut;'°'
• ;JQQr}

.~HE

.~i1·1~,,

• w1Rn
.l!F
• I! F
.t~F

V1J,PA~T,a~,~~~,2~~,MYOATA,3~,&~,3~,TIAOD~
13.,~:;;rq

l'f.1U.1

' ' ' f 1 • ·~ , • ~.J 0 R :J r;11

/Pt\l'lT I

"~
?~':i, ~~-,

~11·U ·r A

GE l$~f1·1~ ••• ~nRn 3~
GS: $~~Tq•l 1., .~.,U~J ~~
~J ~~$Tq·1~.,.~0RO flAOU~

3-76

3.56 WSIG$ (WAIT FOR SIGNIFICANT EVENT)

The WAIT FOR SIGNIFICANT EVENT directive suspends execution
issuing task until the next significant event occurs.
especially effective way to suspend a task which cannot
because of a lack of pool nodes.

Macro Call: WSIG$

DSW return codes:

+1 Successful completion

Macro Expansion:

WStG'
.evre:

3-77

WSIG$

of the
It is an
continue

WTLO$

3.57 WTLO$ (WAIT FOR LOGICAL OR OF FLAGS)

The WAIT FOR LOGICAL OR OF FLAGS directive suspends the execution of
the issuing task until any indicated event flag of one of the
following groups of event flags is set.

GR 0 FLAGS 1-16
GR 1 FLAGS 17-32
GR 2 FLAGS 33-48
GR 3 FLAGS 49-64
GR 4 FLAGS 1-64

If the indicated condition is met at issuance, task execution is
effectively not suspended.

Mask word bits from right-to-left represent increasing event flag
numbers. A set mask word bit indicates that the task is to wait for
the corresponding event flag.

Macro Call: WTLO$ set,mask

set • Desired set of event flags

mask • If set is 0,1,2,J, mask is a 16 bit (16-flag) mask
word1

If set is 4, mask provides a list of four mask words
in the form: < Ml, M2, MJ, M4>.

If zero is specified in the $S form of the macro, do
not use a nwnber sign (I) preceding it.

Example: The following macro is used to wait for flag 19, or flag 20,
or flag 21, or flag 32.

WTLO$ 1,100034

Example: This macro waits for 1, 19, 20, 21, 32 or 64.

WTLO$ 4,<00000l,100034,0,100000>

DSW return codes:

+l Successful completion
-97 No event flag specified in mask word(s)

or1 Flag set indicator other than 0,1,2,3, or 4
-98 Part of DPB is o~t of issuing task's address space
-99 DIC or DPB size is invalid

Macro Expansion:

wTLO'
.svn:
• lti Oi:tl'l
.w~.~i)

• w'.)~!')
.~,~,,

l.l 1 <t,5r1'~,2,343>
43.,'5
l
5.:i1 ~
?.
31n

3-78

WTSE$

3.58 WTSE$ (WAIT FOR SINGLE EVENT FLAG)

The WAIT FOR SINGLE EVENT FLAG directive suspends the execution of the
issuing task until an indicated event flag is set. If the flag is set
at issuance, task execution is effectively not suspended.

Macro Call: WTSE$ efn

efn • event flag number

The following symbol is locally defined with its assigned value equal
to the byte offset from the start of the DPB to the DPB element.

W.TSEF • (Length 2 bytes) event flag number

osw return codes

+l Successful completion
-97 Invalid event flag nwnher C<l or >64)
-98 Part of DPB is out of issuing task's address space
-99 DIC or DPB size is invalid

Macro Expansion:

~rse~

.~VT~

.11~~

3-79

CHAPTER 4

SIGNIFICANT EVENTS AND SYSTEM TRAPS

Understanding of trap logic and
PDP-11 Processor Handbook is
chapter.

EMT handling as described in the
a prerequisite to understanding this

Significant events and system traps are the means by which
communication is effected among various parts of the system. Events
and traps appear to overlap in some areas, but three points may help
to clarify their function and use.

1. A significant event causes a change in
causes the Executive to re-evaluate
execution of all tasks.

system status1 it
the eligibility for

2. System Traps are exclusive to a single taskJ they are useful
for intra-task communication and control•

3. The occurrence of an event can only change the eligibility of
a task to run_. A trap, however, is a real interrupt; the
sequence of instructions being executed by the task is
interrupted and control is transferred to another place in
the program. This process may be invisible to the user in
some cases. However, it is a difference between events and
traps.

4.1 SIGNIFICANT EVENTS

Significant events provide a mechanism for achieving dynamic control
of task execution. Tasks are able to declare and recognize
significant events through event-associated directives. The
declaration and occurrence of significant events provide dynamic
control over the execution of tasks. Waiting for an event, such as
the waiting for an I/O request, can suspend a high priority program
witil that event occurs. Meanwhile, lower priority programs ar~
allowed to run.

Event flags.are the means by which RSX-llD and tasks distinguish one
event from another. Associated with each task are 64 event flags.
The first 32 flags (1-32) are unique to each task, and are set or
cleared only as a result of that task's operation. The integrity of
these flags is maintained by the task. They are stored in the task's
ATL and are not available to other tasks.

4-1

The second 32 flags (33-64) are common to all tasks, and can be set or
cleared as a result of any task's operation. Therefore, they require
system management to preserve their significance and are stored in
SCOM.

Event flags usually are set when significant events occur, and tasks
can read and/or clear them using system directives. Also, task
execution can be suspended until a particular event flag or a logical
combination of event flags is set.

Some system processes running for the user need event flags. The last
eight local (25-32) and global (57-64) event flags are reserved by
convention for use by RSX-110. Accounting uses flags 61 and 62.

In addition, device handler tasks use event flag 1 for express
requests and event flag 2 for normal requests.

All significant events occur as the result of a task's havinq issued a
system directive, some directives have the event explicitly noted,
while in others it is implicit. Refer to Chapter 3 for a complete
discussion of the directives.

1. The DECLARE SIGNIFICANT EVENT directive allows any task to
stimulate the event-driven system whenever necessary;

2. The SEND, SEND AND RESUME OR REQUEST, or RESUME directives
also cause a significant event at issuance,

3. The directives that cause task execution (REQUEST, EXECUTE,
SCHEDULE, RUN, and SYNCHRONIZE) also cause a significant
event whenever task execution is initiated,

4. The MARK TIME directive causes a siqnificant event at a
specified time interval after issuance,

s. Most I/O operations (initiated by the QUEUE I/O
cause a significant event upon completion.
completion of the QUEUE I/O directive itself
significant event.

directive)
Successful

causes a

The following examples show the usaqe of the conunon event flags for
task synchronization.

Example l -- Global Flaqs

Task B specifies a global event flag (e.q., event flag number 35) in a
WAITFOR directive, and task A specifies the same event flaq in a SET
EVENT FLAG directive at the time it is appropriate for task B to
proceed.

Example 2 -- Global Flags

Task A specifies task B and a qlobal event flag in a SEND directive.
Task B has specified the same common event flaq in a WAITFOR directive
and issues a RECEIVE directive (to dequeue a block of data sent by
task A) when activated because the WAITFOR is satisfied.

Following are examples of event flag usage to detect I/O completion,
and to indicate that a specified period of time has elapsed.

4-2

Example 3 -- Local Flags

If an event flag is specified in QUEUE I/O and associated WAITFOR
directives, the flag is cleared when the request is queued. When the
task executes a WAITFOR predicated on the same event flag and the
requested action is not yet completed, execution of the task is
suspended.

The task performing the requested service
flag when the request is completed,
resumed.

Example 4 -- Local Flags

sets the specified event
and the task's execution is

If an event flag is specified in MARK TIME and WAITFOR directives, the
flag is cleared at MARK TIME issuance and set after the indicated time
has elapsed, and the task's execution is suspended for the indicated
interval of time.

In the above examples, computation and/or event flag testing are not
precluded prior to, or instead of, the WAITFOR directive, i.e.,
specifying an event flag does not imply that a WAITFOR directive must
be used. Event flag testing can be performed at any time. The
purpose of a WAITFOR directive is to stop execution until an indicated
significant event occurs. It is not necessary to issue a WAITFOR
directive immediately following the issuance of a QUEUE I/O or a MARK
TIME directive.

4.2 SYSTEM TRAPS

System traps are task interrupts initiated by the Executive to allow
servicing of certain conditions or situations that can occur.

When a task plans to use the system trap facility, it must contain a
trap service routine. This routine is automatically entered when the
trap occurs with the task's normal priority and privilege. The action
taken by the Executive if a service routine is not supplied is
dependent upon the type of trap and is described below.

There are two types of system traps: synchronous system traps (SST's)
and asynchronous system traps (AST's).

SST's provide a means of servicing fault conditions within a task,
such as memory protection violation and PDP-11/40 floating point
exceptions. These conditions, which are internal to a task and are
not significant events, occur synchronously with respect to task
execution. In these cases, if an SST service routine is not included
in the task, the task's execution is aborted.

4-3

AST's conunonly occur as the result of a significant event and thus
occur asynchronously with respect to a task's execution, i.e., a task
does not have direct or complete control over when AST's occur. A
characteristic of AST's is that they are for information purposes,
such as signifying an I/O completion that a task wants to know about
immediately and PDP-11/45 floating point exceptions. If an AST
service routine is not provided, a trap does not occur and task
execution is not interrupted.

It should be emphasized that SST's only are initiated by the
Executive; no further action. is taken. That is, they appear to the
Executive just like normal task execution. The Executive having
initiated an SST, cannot determine that the task is in the SST service
routine. Thus, an SST service routine can be interrupted by another
SST or an AST. SST's can be nested.

SST's are caused by activities internal to the task, while AST's occur
as a result of an external event. The Executive keeps track of all
AST's, queues them (FIFO) and is aware of when a task is executing an
AST.

4.2.1 Synchronous System Traps

Before reading this section, it is advisable to review the vector
interrupt logic as described in the PDP-11 Processor Handbook.

When an SST occurs, the task's PSW (program status word) and PC
(program location counter) are pushed onto its stack, and return from
the SST routine is accomplished by issuing an RTI or RTT instruction.

Execution of an SST service routine is indistinguishable from task
execution, and an SST service routine can perform any operation that
the task can. However, if a service routine for a system trap is to
cause that same system trap to occur, it must be re-entrant.

SST service routine entry points are provided in a trap vector table
which is contained in the task. The trap vector table is described in
Section 3.41.

A zero address in the vector table is interpreted as if no entry point
were specified. If an SST occurs and no entry point is specified, the
task's execution is aborted. If an invalid address is specified as an
SST service address, an attempt is made to transfer control to the
address specified, which probably results in an odd-address or segment
fault. The SST vector table is given to the monitor by the task by
use of the DECLARE SST VECTOR TABLE Directive.

On entry to an SST service routine, the stack contains the following
standard PDP-11 trap vector information:

SP+02 PS
SP+OO PC

4-4

At the start of SST service, the stack can contain additional
information depending on the cause of the trap, as follows.

1. Segment Fault -

Segmentation Status Register 1

Segmentation Status Register 2

Segmentation Status Register 0

2. EMT Other Than 377 -

Instruction Operand (low-order byte) times two

Items 1 and 2, above, must be removed from the stack
exit is taken. Exit from SST's is by means
instruction.

before the SST
of an RTI or RTT

The RTI or RTT instruction removes PC and PS from the stack.

The additional data is pushed on the stack by the RSX-llD interrupt
service routines. Seven trap service routines are provided as part of
the RSX-llD Executive. Table 3-2 lists the ISRs and describes their
functions.

4-5

Table 4-1
Executive Trap Service Routines

ISR

Memory Parity Interrupt

Odd Address and
Miscellaneous Error

Segment Faults

EMTs and Traps

T Bit and BPT

IOT and Reserved
Instruction

Floating Point
Exception

FUNCTION

Traps at location 114. If a parity
error occurs at other than processor
priority zero (Executive code), the
system is crashed. If a parity error
occurs at processor priority zero, the
task's status is changed to task parity
error and the task is effectively locked
in memory and can execute no move.

Traps at location 4. If the cause of
the trap is a red or yellow trap
violation, the system crashes.If the
trap was in task code and the SST vector
table is defined, the SST service
routine executes. If the SST vector
table is not defined, the task is
aborted. For other traps refer to
Section 4. 2. 3.

Traps at location 250. If the segment
fault occurs at other than task level,
the system is crashed. If the segment
fault was caused by task-level code, the
user task is notified by means of an SST
or aborted.

Traps at locations 30 and 34. If the
instruction is an EMT 377, control is
transferred to the RSX-110 EMT handler.
If the instruction was a .. trap and the
previous mode was kernel,· control is
transferred to the directive status
return routine in the Executive. For
other EMTs or traps, the user task is
notified by an SST or is aborted.

Traps at location 14.

Traps at locations 20 and 10.

Traps at location 244. SST for 11/40
and AST for 11/45.

4-6

4.2.2 Asynchronous System Traps

When an AST occurs, the task's PSW and PC are pushed onto its stack.
There also can be other para..~eters pushed onto the stack depending
upon the cause of the AST.

After processing an AST, the trap dependent parameters must be removed
from the task's stack, and an EXIT AST SERVICE directive is issued
with the task's stack set as indicated in the description of the AST
SERVICE EXIT directive.

Upon AST service exit, control is returned to one of three placesz

1. Another (queued) AST1

2. The task;

3. Another task (e.g., the corresponding task was not in
execution).

Five variations on the stack format, depending upon the AST origin,
are as follows:

1. If a task is to be notified of power failure recoveries, a
SPECIFY POWER RECOVERY AST directive is issued.

SP+04
SP+02
SP+OO

PS of task at AST (interrupt),
PC of task at AST (interrupt),
Task's directive status (virtual zero).

It is not necessary to pop any of this from the stack.

2. When an I/O request is queued, an AST service entry point may
be specified in the macro. If specified, an AST occurs upon
c~mpletion of the request with the task's stack containing
tni following information:

SP+l6 Event flag mask word for flags 1-16
SP+l4 Event flag mask word for flags 17-32
SP+l2 Event flag mask word for flags 33-48
SP+50 Event flag mask word for flags 49-64
SP+ 6 PS of task at AST (interrupt),
SP+04 PC of task at AST (interrupt),
SP+02 Task's directive status (virtual zero),
SP+OO Address of I/O status block for request (or

zero if none specified). Must be popped off
stack before AST exit.

3. When a MARK TIME directive is issued, an AST service entry
point can be specified in the DPB. If specified, when the
indicated time interval has elapsed, an AST occurs with the
task's stack as followss

SP+l6
SP+l4
SP+l2
SP+lO
SP+06
SP+04
SP+02
SP+OO

Event flag mask word for flaqs 1-16
Event flag mask word for flags 17-32
Event flag mask word for flags 33-48
Event flag mask word for flags 49-64
PS of task at AST (interrupt) ,
PC of task at AST (interrupt),
Task's directive status (virtual zero),
Event Flag number (or zero if none
specified). Must be popped off stack before
AST exit.

4-7

4. If a task is to be notified of PDP-11/45 floating point
hardware exceptions, a SPECIFY FLOATING POINT EXCEPTION AST
directive is issued, and following floating point exceptions
will cause AST's to occur with the task's stack as follows:

SP+20
SP+l6
SP+l4
SP+l2
SP+lO
SP+06
SP+04
SP+02

SP+OO

Event flag mask word for flags 1-16
Event flag mask word for flags 17-32
Event flag mask word for flags 33-48
Event flag mask word for flags 49-64
PS of task at AST (interrupt) ,
PC of task at AST (interrupt),
Task's directive status (virtual zero),
Floating point exception code, must be popped
off stack before AST exit,
Floating point exception address, must be
popped off stack before AST exit.

s. For SPECIFY RECEIVE AST, nothing is placed on the stack. The
actual RECEIVE can be performed by the AST service routine.

The following are so~e general notes on the characteristics and use of
AST's.

1. Two directives, INHIBIT AST RECOGNITION and ENABLE AST
RECOGNITION, allow AST's to be queued for subsequent
execution during critical periods. If AST's occur while AST
recognition is inhibited, they are queued (FIFO), and are
processed when AST recognition is enabled.

2. If an AST occurs while another AST is being processed, it is
queued (FIFO), and is processed when the preceding AST
service is completed unless AST recognition was disabled by
an AST service routine.

3. If an AST occurs while an SST is
service routine execution is
execution, and is interrupted
service routine.

being processed, the SST
not distinguished from task
for execution of the AST

4. If an AST occurs while the related task is suspended, the
task remains suspended after execution of the AST service
routine unless explicitly resumed by the AST.

s. If an 1\ST occurs while the related task is waiting for an
event flag setting (WAITFOR directive), the task remains in a
wait state after execution of the AST service routine unless
an appropriate event flag is set by the AST or other routine.

6. If an AST occurs while the related task is in execution, the
task is interrupted for the execution of the AST service
routine. This interrupt is transparent to the task unless
the trap service routine changes the context of the task.

7. If an AST occurs while a task
remains checkpointed and the
after the task is reloaded.

4-8

is checkpointed, the task
AST is queued for execution

4.2.3 Processor Priorities

Seven processor priorities are used by the PDP-11, as described in the
PDP-11 Processor Handbook. Peripheral device interrupt service
routines run at processor priority levels four through seven. In
addition, software modules that cannot be interrupted run at priority
level seven for short periods of time.

Priority levels zero through three are used by the system as operation
indicators1 i.e., no software interrupts occur, and therefore, no
precedence is implied or invoked by levels zero through three.

Level zero is used exclusively for task execution. If a segment fault
occurs at level zero, a system trap is caused if the task has a
service routine to handle it. Otherwise, the task is aborted.

Level one is used for the servicing of trap type instructions, e.g.,
EMT IOT, TRAP, and is used for the following:

1. The processing of system directives (EMT 377s),

2. The causing of a synchronous system trap if a trap-type other
than BPT trap executes at priority one or the priority of the
interrupt service routine, whichever is higher.

Level two is used for the recognition of system events. These events
are indicated in the system event recognition flag called .SERFG and
are recognized only when returning to task execution, e.g., from an
interrupt or from a directive. System events are significant event
declarations, clock ticks, and power failure recoveries.

Level three is used for execution of routines that cannot be
interrupted by significant event recognition or clock tick
recognition, but that can be interrupted by peripheral device
interrupts, e.g., the system subroutine to dequeue a request for a
device handler task. In these cases, the level can be set to three by
any means, but it must be lowered to zero by transferring control to
subroutine •• ENBO to allow recognition of system events that might
have occurred while running at priority level three. The system trace
debugging routine also runs at level three.

4-9

APPENDIX A

SYSTEM LISTS AND TABLES

A-1

RS~llD •• ~~SI~E~T EXECUTIVE MACRO 00110 l"•APA•T5 1215• PAGE t0
EXEC MODUL~ O~E •• SY~80LIC OEFINITIO~S

ttT8 I TPO •• TASK PARTITl~N OIR~CTOAV
"79 I
'680 1 T~E "TPD" IS A FIXED LIST OF E~TRIES D£SCAI9INC ~A~M PARTJT!PN !N A
"81 1 SYSTEM. TMIS DIRfCTOPV IS CRf ATfO BV TM! SYSTEM CON,IGURAT!DN
tit&c 1 ROUTI~f CSYSCf~) CO~SISTING OF ENTRIES OF TM£ FOLL~WtNC ~~A~AT~
't8l I
.. 84 fe00Pl00 T.P~a•00 r WO. ~I CB 01) •• PARTITION ~·~~ CFIR~T ~ALF,
£t8S r WD. Sl CB •2> •• PARTITION ~A~E (SECO~O MALf) 4h kH'J~QlitG T.BA••04 , wo. 02 ce 04) •• t/64TM BASE ~DDR~SS OF PARTITIQN (IN BYT~S>
4'81 1&1G'l000b T.Pz••lb ' ~o. 01 (8 0~) •• 1/~UTM SIZE Of PARTITION (IN !VTESl
488 001iHH0 T.FW••10 I WO. 04 CB l~) •• PARTITION FLAGS WOAD
489 ~PI00U T.MP••1Z J wo. 05 (8 12) •• tl~4T~ !ASE ADA ~F FIRST MOL!. OA 7ERO I~ ~o MnL'S~ "'0 000014 T.RF••14 f ~O. 0& CB 12) •• MAL LtSTMEAO (FORWARD Lt~KAGE>
491 '6CJl!i>01 b T,RB==lb f WO. 07 CB 14) •• MRL LISTMfAO (BACKWARD LINKAGf)
49l IO~IOV.20 T.CF••20 J wo. 10 ce ze> •• CTL LtSTMEAD (FORWARD LI~KAGE)
491 000022 T.CB••22 I wo. 11 ca 2Z) •• CTL LISTMEAO (BACKWARD LtNKAC!)
4CJ4 I
4q5 0eiee2" T1 SZ••2U 1SlZE CIN BYTES> OF TPD ENTRl!S

> 4'-1'0 • I qQ7 I FLAGS WCAD BIT O!,INITIO~S1 N "98 1
'6~9 ~00001 TF.UCU0000Qlt 1(1~1 SET IF USER CONTROLLED PAAYITION.
sei0 ioei0e02 TF. cu-=010012 t(0tl SET IF OCCU9!EC USER CCNTRCL~ED PARTtTT~~.
~01 ~0¥Je.01i TF. TSH0H8f!4 1(021 SET IF l TI"£ S~lREO PAATITJ~N
5fli 00~010 TF • .tcn000011 tt011 1ET IF A Tl~! S~lAED PARTITJC~ !S ACTIVE

)::I
I

w

MSXt1D •• MESICENT EXECUTIVf M•CRO 0~710 2"•APR•7~ 1215& PAGE 11
EXEC ~OOULt u~l •• SY~80~IC OEFINITIO~S

501.i
50~
~00

S07
508
509
S10
)11
51i
SU
SU
515
Ste
~17
~t~
~1q

520
~ll
~22
S2l
524
525
52&
5C7
52&
529
S30
531
S3t?
s:u
s:u
535
Sl~
~17
538
539
Sl.10
s" 1
5£1i
Sl.ll
544
545
54&
547
St.i8
Sl.19
550
551

0e000U
~Y1'0~10
I000~12
0~001 u
160~0i0

"'U!?l21
001ll0i2
00002"
00002&
~000i7
!000030
~000l 1
I00~0l2
0Ql00l4

000000
00~002

0et000"
00000&
0U052
iJ00051.1
ia000So

k>00040

lil00001
0000!02
000004
000010
0000i0

t GCO •• GLOB•L COMMON DIRECTORY

GLOBAL CO~MCN AREAS ARE SMARABLE AREAS 0, ~E~ORY FOR USE AS
LIBRARIES, CR FOR co~~c~ DATA STORAGE.

f T~E "GCC" IS A LI~KEC LIST OF ENTRIES OESCRIBI~G EAC~ GLOBAL co~~ON
BLOCK I~ A SYSTEM. T~IS LIST IS CREATED BY INST~Ll
A~D CO~SISTS CF E~TRIES OF T~E FOLLOWING FOR~AT. NOTE T~AT Gen TYPE ~00,S

ARE CREATED BY INSTALL fOR TM~ PURE AREAS CF ~ULTI•USER TA~K$, B~T
f T~ESE NCDf.S ARE NOT Ll~KED I~TO T~f Geo, BUT ARE POINTED TO ~y THE
t TASKS' STO ~ODES.

wo. 00 (8 00) ••
wo. 01 CB P2) ••
wo. 02 (8 0l0
WO, 04 CB UJ)
wo. 05 CB tz)
wo. 0& CB 11.1)

FOR w AR 0 LI~ I<
BACIOiARO LJNI<
COM~ON BLOCK NA~E (6 C~AR t~ RAD!~-5~. 2-weAns'
t/~4T~ BASE ADDRESS OF COM~ON ~LnCK
t/&4TM SIZE OF CO~MC~ BL9C~

G.BN:•04
G, 8AU10
G.CZ:=-12
G.CTss1u
G,GSa•l',S
G,SA==21
G, Oln22
G,P0=•24
G,FBs11ib
G,01•=27
G,ACs•30
G. 1Ccs31
G,NAc•l2
G, 0An34

t~O. 10 CB 20)
CREATION Tt~E (TWO WORes1 YEAR, MC~T~/DAY)
GLOBAL AREA STATUS

I

CB 21)
wo. 11 (8 22)
wo. 12 (8 24)
wo, u ce 2&>

c e n> •• wo, 14 CB 3lll)
c e 31'

wo. 1'5 (8 32) ••
wo. 1& (8 34) ...

STARTING APR
OWNER IOE~TlFtCATION CUIC)
GLOBAL AREA TPD ADDRESS
FLAGS BYTE
CISI< I~DICATOR
ACTIVE REFEPENCE COU~T (BYYEl
INSTALLED REFERE~CE COU~T C8YTf)
I/O NODE ADDRESS
GLOBAL ARf A OISI< ADDRESS

tTME FOLLOWING ARE GLO!•L AREA STATUSfS1
I
GS,NUL••00
GS,LRQs:02
GS,LRS••01.1
GS.LRF:=00&
GS. fH~Qn0s2
GS, RRSn05"
GS,RRFne'So

I
G,sz:1140

tGLOBAL AREA NOT IN USE
1LOAO REQUEST QU~UED

tLOAO REQUEST SUCCEEDED
tLOAD REQUEST FAILED
tRECCRO REQUEST QUEUED
1RECCRO REQUEST SUCCEEDED
tRECORO REQUEST FAILED

tSIZE CIN BVTES) OF GCO ENTRIES

I

I
FLAGS WCRO BIT DEFtNtTtO~S

GF. E 1u00eeei 1
GF. L IU000002
GF • R In000H4
GF. Nwu000010
GF. NAU000020

t [001 EXISTE~CE JNCICATOR tSET W~E~.LI8 OA,CCMMON LOACED'
1(011 LIBRARY co~~o~ l~OIC~TOR •• t1~I8 eeco~
1[021 LIBRARY RELOCATABtLITV tNO?CATO~ ••SET FOR PI~ COO£
1[031 SET WMfN NON•OW~ER ~AS WRIT! ACCESS
1(041 SET WMEN ~ON•OW~EA ~AS READ ACC!SS

!J:>I
I
~

NSX11C •• RESICE~T EXECUTIVE ~•CAO 00710 24•AP~•T5 12156 P•GE t2
EXEC ~OOUL~ ONE •• SY~BOLIC CEFI~ITIO~S

S53
554
55S
55b
557
~Set
55q
Sb"'
Sbl
Sb~
563
Sci.I
Sb5
560
567
5&8
Sb9
57111
571
S72
57l
574
575
57o
"7 7
57S
~1q

!> 8 ki
581
~82
~8l
561.t
58~
~Bb
587
see
S69
590
sen
sqc
SH
5q"
5q5
59b

000e0vi
000~02
~~0~03
000004.l
~000166

~0001~
fcHH~012

00001u
!00012' 1 b
~e~n0

"01be22
~0"'02a
12100ne
~0003"'
ld00lH2
00003U

~01cHHt
\?016~4.&0

t>i?.~12140

0e"~" 1
~00~~2

k10~21.i2

'°~~"~"
IO~!Ol?.4o

~0!0050

~~0PS2

ld0~052
00"105l
0011'0SU
wrn"esf>

I0~0eto2

PUO •• P~YSICAL U~IT DIAECTOPV

I THE "PUO" IS • ,IXEC LIST CF f~TRifS O~ScRrer~G fAC~ P~VSICAL OEVICE•
1 UNIT I~ A SVSTE~. T~IS LIST IS CREATED 8~ T~! SV$TE~ CON'l~UR~TJON
1 ROUTI~E CSVSGE~) A~D CO~SISTS OF E~TRIES OF TME ~CLLOW!NG '0A~AT1
I
U,Ct\:•00
u.u~•=02
u, Fene3
u.c1ueci
U,C2••0b
U,Cl••10
U,CUs:•12
U1 AF:•14
U1 RPcs16
u.HA:•Z0
1J, xc••c2
U1 RF1u24
U,AB:•26
U,TV•s:30
u.IPs:•32
u.ou:Ju

' lllD, 00
wo. 01

(8 0111)
CB 02)
CB 03)

wo.
wo.
wo.
we,
WO,
we.
wo.
wo.
wo.

, wo.
, wo.

i-o,
wo.

ei2 ce u>
01 CB 0~)
04 (8 ll!l)
05 ce tz>
0b CB 14)
07 CB 1~)
10 CB 20)
11 CB 22)
U < B 24)
u ce 26>
11.& ce 10>
15 CB 32)
lb CB 34)

DEVICE ~A~E f2_ASCtI C~ARS)
U~IT ~V~BER CBVTEl
FLAGS CBVTE>
C~ARACTERIST!CS WORO ONE (O!VICE INDFP!~C!~T.I~D?C~T~AS>

•• CMARACTER!ST?CS WOAD T~O CD~VICf_OFPfNDE~T .lND!CATCR~).
•• c MAR ACT EA !ST res WORD T ~RE!. c O!V l~f o,,~~O!NT - I ND TC~ TORS,

CHARACTER!STJCS wopo FOU~ csu, 0, .BLOCIC, 8U~F~R. I IN!,
•• ATTACH ,LAG CATL NOOE ADDR!SS O' ATTACMI~G TASK)

REDIRECT PCI~TER
•• ~ANOLER TASK ATL ~ODE AODR!SS

COUNT O~ EXPRESS REQUESTS J~ QU!UE
UNIT REQU!ST DEQUE LiSTH!AQ f '~O P~TR)
U~IT REQUEST OfQUf.LIST~EAC CBKO P~TR)
INTERRUPT TA~P VECTOR ADOR!SI _
I~TfRRUPT PRIORITY CtN BITS ~·1)

•• CDEVtCE PAGE ADDRESS1
' .
I PHYSICAL UNITS ARE CO~SIOERED "VOLU~ES" av THE f IL!S SVSTf~, AND T~E
I RE~AI~OfR OF T~E PUD E~TRV IS A "VOLUME CCNTRCL BLOCK"~

' Ll,Vl••3b
U,Uic•40
U,PCc:40
U,GCn41
U, \1Pi::c:42
U,C,..••42

lJ,AR••4"
u.OACP==afl
u. ACP1n50
U,TFa:s52
u.PR:•52
U,F0•=53
u. LBt;i::aS"
U, LB~u:5~

' u.szu:b2

1i10. 17
1110. 20

wo, 21

._c. 22
'1110. 21
we. 24
WO, 25
wo. 25

wo. 26
1110. 27
wo. 30

ce 36>
ce 40>
re u> ••
CB 4'1) ••
CB U)

ce u> •• ce l.IJ> u

CB 44) ••
CB U)
CB 50)
< e 51>
CB 52)
(B 53) ••
CB 54)
(8 56) ••
(8 60) ...

ADDRESS OF VOLUME CO~TAOL BLOCk EXTENSfO~
USER IPE~T!FtCAT!ON COD! (U!C)
UIC PROGRAM~ER CODE
UIC GROUP COOE
VOLU~E PROTECTION WORD
C~ARACTfRteTtCS FLAGS
Rf SERVED BYTE
ACCESS R!G~TS FLAGS ~~AC
DEFAULT ACP NA~f, ~AC51 CFIRST_lllCRn)
STD ENTRY ADDR!SS 0' CURRE~T ACP
TERM?~AL FLAGS WORD _
TERMINAL PRIVILEGE BVTE
TERMINAL FOR~S BYTE
HIGH. ORDER •.TOTAL ~ OF ~LKS FPA DEVICE
LOW ORDER• TOTAL * OF BLOCKS ,OR DFVIC~
RESERVED WOAC

1SIZE CIN BYTES) OF PUD ENTRIES

::i::ii
I

U1

~q7

5qt;
5q~

b00
b01
b~2

b~l
001.t
oes
oh
007
o0S
oeq

"~0~'40
0ee200
-'00100
0U~~40

"~~001
0~0002

i1JQl00~"

I

I FLAGS BVTE BIT CEF!NIT!O~S
I
UF.R0•=0"0
UF.Rfojc•200
UF • fLU100
uF. cn==0"0

I ***********•TE~PCRARV•****************** . .. ~ ,
I [71 SET W~EN MANCLER TASK rs D,C~ARED ~EStCE~T.
1 [61 SET WMEN ~ANCLER TASK RECOG~!ZES LCAC ANt AEeO~D
I [5] SET WMEN DEV!C! rs CFFLINE

BIT DEFt~ITIO~S FCR CMARACTERISTtCS WOAD O~E
I
UC. R Etn0u001
UC. CCLn000002
UC• T TYUQJ00U4

1[001 SET !F RECORD OR!£NTED DEVICE cvtz,, TT, LP, CA)
1[011 SET tF CARRIAGE CO~TRO~ DEVICE <vtz •• TTL')
1(021 SET IF TTV DEVtCE tvtz •• kSA, LA10,

HSX110 •• "~&IDE~T EXECUTIVE MACRO 00710 2"•APR•75 12156 PAGE 12•1
~x~c ~OOULE G~E •• SY~dOLIC CE~I~ITIONS

oU
b11
b12
b13
b 1 ..
t>1S
010
017
018
01q
02k)
b21
o2~
on
b21.1
02i;
o2o
027
026
o2'i
Ol(r)
031
032
eH
o3"
03!)
o3o
037
b36
03q

""0

00001 QI
I00~e'i~
~1(1~~"0
~00400

0r100e
002000
0~~e00
01~~0~

!021600~
0~0000

1l"00~0

000~04

eu2e-0
~0kj 100
000~"0
000020
!000010
I00I00!01

000001
l000Ui
000004

UC• 0IR-=00BG'10
UC• SO In000020
UC.SlilD•=0e0eiae
uc.I~B==000400
uc. si.L==001 rme
UC. ISPn002001r.
UC. OSP==HIUH
UC. PSEH010el00
UC• C Of"n02eie100
UC. Ft 1 UfiU&000QI
UC. M~Ta: 1 P0000

1[031 SET IF DEVICE JS A DIRECTORY D~VtCE
1(04'1 SET IF DEVICE rs A SINGLE OtRECTORY OEVICE
1[05] SET IF DEVICE rs A S~QUENTfAL DEvrtE. - -
1+003 [08] SET IF T~E DEVICE IS tNTER~fOtATE !UFFERE~
1£0q1 SET IF TME DevtcE is sc,+~~RE wRtTE Lcc~Eo
1C1e1 SET IF DEVICE rs INPUT SPOPLED
I [11] SET IF DEVICE rs OUTPUT SPOO~ED
1£121 SET IF OEVICE IS P~EUOO OEVI~E
1(13] SET IF OEV?CE rs COMMU~ICATICNS C~ANNEL
1(141 SET IF DEVICE IS F!LES•tl
1[151 SET IF DEVICE IS MOUNTABLE

1 BIT DEFI~ITIO~S FCR CMARACTER!STtCS WORD TWO
I -
uc.wcK=•000004 1[021 SET IF A READ AFTER WRITE CMECK rs REQUIRE~

BIT DEFINITIONS FOR VOLU~E CMARACTERISTICS BVT! U.C~
I
Cl-4. OFF=-200
CM. FOR••U0
CM. U"L::ue
c1-1. ~nn20
CM.NDCc:10
C~.LABUl

1VOLU~E IS OFF•LINE
1VOLU~E rs FOREIGN
tDIS~OU~T PfhDING
1ATTACM/DETACH NOT PER~!TTEO.
1DEVICE CONTROL FU~CTICNS NOT PER~tTT!D
tVOLU~E tS LABELED TAPE

I BIT DEFINITIONS ,OR TER~tNAL PRIVILEGE BVTE
I
UT.PR•s1
UT• SL.n,2
UT. L.G1u4

tSET IF TTY IS PAtVLEGED
1SET IF TTV IS SLAVED
1SET tF TERMINAL IS LOGGED ON

);I
I

°'

RSX110 •• ~ESIOE~T EXECUTIVE MACPO 00110 2~•APR•75 121§~ PAGE 13
EXEC ~ODuLt O~E •• SV~80LIC OfFINITIO~S

0£12
01.11
OCll.i
01.15
040
01.11
01.18
ol.19
b5IO
051
oSi
o5J
051.i
oss
o5o
057
058
059
&U
Ul
b&i
eel
bb'f
us
eh
807
068
b&9
070
1171
Uc
e7]
oh
us
oh
017
078
en
080
081
082
Ul
OS'f
us

000000

~~'1001.i
0001110&
000010
161'10011
_,01d012
~00011.i

00001&
-'C?l0011
0000i0
0000i2
00~021.l
00002~

0HIZ'll

000001
0U0~Z
V'00001.l
000010
0000i0
0000U
Wj00100
00U00

STD•• SYSTE~ TASK OIRECTORY

TME SYSTE~ TASK DIRECTORY IS A ME~ORY RESIDENT DIRECTORY or ALL TA~MS
WMIC~ MAVE BEEN ?~STALLED INTO A SYSTEM. JMIS DIRECTORY CONSISTS ~~ TWO
PARTS1 (1) A FIXED SIZE AREA OF ONE WORD FOR EAC~ TASK TMAT ~AY
BE !~STALLED AT ANY TIME, AND (2) A~ STD E~TRV FeR EACM TASW TMAT TS
INSTALLED, TME FIXEO SiiED AREA IS CALLED TM~ "ALP~A TA8LE" ~NO
PROVIDES SPACE FOR AN ALPHABETICALLY ORDERED CONTIGUOUS LIST OF POTNT!RS
TO STD E~TRIES TO FACILITATE SEACM ~OR STD ENTRY BY TASM NA~,.
EACM STO ENTRY IS OF THE FOLLOWI~G FORMATi

.TN••00 ' wO. 00 C

S.TD••01.i
S,Fws•0b
S •OP•• 10
s.Dls•11
S,LZu12
S,TZ••14
S,AV••l&
S.PV••11
S,PU••20
S.RF .. 22
S.AB••21.i
S.DL=•2b

S, GCnlZ

1110. 01 (
i-io. 02 c
~o. l'!l c
""o· 04 c

(

w D • 0S
wo, 06
wo. 01

(
(
(
(

we.
we.
wo.
wo.
1110.
wo.

UC
11 (
12 (
1l (
14 (
15 (

00) •• TAS~ NA~E (~ CMAR IN RADYX·5~. z weAnS)
fl) •• CSECC~D MALF OF TASM ~AM!)
e4) •• DEFAULT TASk PARTITION CTP~ ADDRESS)
06) •• FLAGS ~CAD
10) •• DEFAULT PRIORITY CB~TE)
11) •• ~YSTEM DISM ~NDieATOA CBYTE)
12) •• 1/64TM SIZE 0, LOAD IMAGE
16) •• il&4TM ~AX TASK SIZf
16) ••~UMBER.~, ACTIVE VERSIONS. OF.T~Sk tBVT~)
17) •• TASk POOL LI~tT P!R VERJ!CN CBVTf)
20) •• TASM POOL UTtLIZAT!C~
22) •• RECEIV! DEQU! LtSTMEAD (FWO P~TR)
24) •• R!CE!Vf DEQU! LISTM!~D (BMG P~YRl
26) •• LOAD I~•GE FIRST BLOCK NU~BER t3~·~tTS)
31) CSECOND MA~F O~ OIIK •DDRE$S)
32) •• BEGINNI~G CF GCD POINTER AREA

TME SYSTE"1 CISK I~DICATCA SP£CIFl£S WMtC~ t/C A!QU!ST QU!U! TS
I TO RECEIVE • "LOAC TAS~ l~AGE" RfQUESTt BY PROVJCtNG A "PUC fNTRV t~e!x•~

£.G,, A ZERO ~CULD t~DICATE TM£ ~EQUEST QUEUE 'OA T~! C!Vlt!•U~!T
REPRESE~TED BV TME ,I~ST (ENTRY ZERO) PUD ENTRY.

FLAGS WCRO BIT OEFl~ITIO~Si
I
8,. 24 .. 00Uei 1
SF• FX .. 000H2
S, • R"1H000004
SF. TOH000010
S, • 8FU000020
SF .• XTH000QJIUI
SF'. MUU000100
SF .PTn0002u

1(001 STD IS 24 WORDS LONG CD!,AULT IS t~)
1[011 SET WMEN TASK JS 'IX!D IN ~E~OAV
1(021 SET W~fN STD IS TO BE AEMOVEC
1[031 SET WMEN TASM IS O?SABLED
1[041 SET W~fN A TASK IS ~ftNG 'I~ED IN ~!~ORV
I [05] SET WHEN A TASK IS TO BE R!MeV!D o~ !X!T
1(061 SET W~fN TASM JS MULTI•USf~
1[07] SET W~EN TAS~ ts A PAIV!L!C!e TASK

);"
I

......

080 I0~0UI00 SF. ~T••0004e.0 ' [08] ~ETWORK ATTRIBUTE BIT
087 ~0100e SF.R1U00l000 t[0~l RESTRICTED USAGE LEV!L ON~ ceACKGROUNO 8ATC~ JCB!)
088 "'Qli"'00 Sf'. RZ .. 00i000 1(101 RESTRICTED USAGE LEVEL TWO CUN!MPLE~ENTEC)
b89 004000 SF.Un00U00 t[111 SET WM!N TAS~ IS N~VER TO BE A!O~TEO
0~0 010000 SF.XOU0100P0 t[121 S!T WMEN TASK tS NEVER T~ BE DtSABLfD
091 !0216~00 SF. >nrn020u0 t[131 SET WMEN TAS~ tS NEVER TO BE FIXfO J~ ~f~CAY
oe>i 04000~ SF•)(Caa0U0H t[141 SET WMEN TASM rs NEVER TO BE CMECMPOTNTEO
o9J I (15] UNUSED en
o9" I
095 00~U0 S,SU••32, tSIZE OF STD lh BYTES

ASXllO •• RESIDE~T EXECUTIVE ~ACRO 0~710 24•APR•75 1215• PAGE t4
EXEC MOCUL~ O~t •• SY~BOLIC CEFI~ITIO~S

ocn
bq8
.. q~
700
701
10&
70J
7U
705
700
707
708
709
7U
711
7li
7U
7U
715
7Ut
717
711
719
720
721
722
72J
724'
725
12•

0000i"'
~0"00~
0'110010
lt'0~~ l 1
00!01Z' 12
k)00013
000014
000~15
0el00 l &
VJ.a001&
000020
000021
ki0!0022
000024

0000Jl0

ATL •• ACTIVE TASK LIST

T~E "ATL" IS A PRIORITY ORDERED DEQUE OF "~TL". NCO!S FOR ACTfVE TAS~S
TMAT MAVE ME~CRV ALLOCATED FOR TMEIR EXECUTION. T~E TAS~S REPRE~ENT!D
BY E~TRtES r~ T~E ATL ARE EITMER ~!~CRV RESIDENT, OR A A~QUEST 'CR T~ftR

1 LOADI~G ~AS BEE~ QUEUED~ T~f LISTMEAD FDR TMt~ DEQU! !8 !~ ™' ~YST!M
I co~~U~ICATIO~S AREA CSCC~), ANO T~E ~ODES ARE OF TM! FOLLOW!~G ,OR~ATI

r wo. 00 CB 01) ••
r ~D. 01 (B 0l) ••
r ~D. 02 CB 04)

FORWARD LIM<AGE
BAC~WARO LINKAGE
~ODE ACCOU~Tt~G WORD CSTD E~TRV ADA 0, R!QUESTnR,

0•>
ti)
1l)
12)
1])
14)
15)
U•>

A,RQ••~ 1 Aw
A.TI••~.Tit~O. 03 CB
A,RP••l0 f ~O. 04 CB
A,IR••ll r CB
A,INs•U r WO, 05 CB
A,CS••13 I CB
A,~T••14 r ~D. 0• (8
A,CP••l5 ' CB
A,MA••l• J WO, 07 CB
A,NA••A,HA f
A,TS••~.se,wo, 10
A,ASuZl r

(8 zeJ)
(8 21)
CB 22)
CB 24)
ce 2•>
(8 31>
(8 32)
(8 !4)
(8 ,.,

A,TD••22 S WO, 11
A,EF••24 J ~O, 12

' 1'0, u
A,F~••ll I WO. 14

J WO, 15
J WO, lb
' wo. 11

TI !DE~TYFtCATtO~ • ~U~ ADOR!SS
•• TASK•S AUN PAIPRITV tBYTf)
•• TASK 110 t~ ~RCC!SS COUNT (BVTE)
•• TASK I/O PENDJNG_COUNT (BVTE,
•• SAVED STATUS OF CM!CKPCtNTfD TAS~
•• TAS~ ~ARK TI~f P!NDING C~UNT (!V!!l .
•• ~AVED PRtORtTV er CM,CKPOtNTED TASK t8VT~)
•• tl64TM REAL ADA 0, LCAO !MAG!
•• I/O NOD! ADO~ESS WHEN TASK rs JN ~AL
... TASI< STATUS. CBYT!>
•• AST INDICATOR (P~f~IPU' STATUS> evt!
•• SVST~M TASK DIAECTOAX (STOl ENTAV AODR~SS
•• TASK'S !VENT FLAGS <t•~ll
•• (SECOND ~AL, OF TASK'S rviNT 'lAGSl
•• TASK'S fVfNT fLAGS MASKS ('4•8!TI)
•• (SECOND WORD OF 'LAGS ~All<)
•• <T~tRD wbRo o,_,~•GS ~ASK>
•• CFOU~T~ WORD O' 'LAGS ~ASK)

)=-
I

00

727 ~000U
728 000042
729 000044
730 00004'~
731
73i
733
134' ~00052
735 00005U
73e 0000Sb
737
738
7H
740
741
74i
7" l
7h
745
74b
7" 1
748
71.1~

750
751
75ii
75]

A,PD••40 , ~o. 21 (8 41) •• TASK•s AU~ PARTITION CtPD. ~DDAESS)
A,AF••4Z r WD, 21 (B 42) •• AST DEQUE LIST~fAO ('WD PO,NTE~)
A,AB••44 r WD, 22 (8 44) •• AST D!QUE L!STMEAD CBKWD POJ~T~A)
A,IA••46 f ~D. 2J CB 46) •• TASK !~AC~ OJ~k ADDRESS

~o. 24 •• <SECOND WOAD D, IMAGE ADDR!SS)
INITIALLV • S.DL
CO~TAI~S CM£CKPOI~T AORS IF TASK is CMfCKPOi~T!D

l,TF••52 r ~D. 25 CB 52 •• TASK FL~GS
A,CF••54 r ~o. 2• (8 54) •• CHECKPOI~T T~SK LIST FCR~A~D_PO~~T!R
A,CB••56 r ~O. 27 CB 56) •• CHECKPOINT TASK LIST BACKWARD POtNT!R

TASk STATUS VALUES AA! DESCRIBED AT .ASXDT•

BEFORE EXECUTJO~ , THE
FLAGS MAS~ WORDS ARE USED AS FOLLOwsi

A.F~+e •• ADDRESS o~ TASK LOAD JIO R!QUEST D!QUE LISTH!AD,
A.F~+4 •• TASk urc.

AFTER TAS~ EXECUTJO~, .,,,~+0• IS SET lS FOLLOWSi

BIT•! IS SET WHE~ THE LOW PAD!~ ~VTE (81!9.l~J) CO~Tii~ •.
TER~I~ATION NCTI,tCATION CCO! CCOD!S D!SCRtB!D AT •st.CAt•'

8lT•q IS SET WMEN 110 RUNDOWN ~!SSAG£ IS RfQUiR!O.

flAGS WOAD BIT DEFINITIONS

ASX11D •• kESICE~T EXECUTIVE MACRO 00710 Z4•APR•75 12156 PAGE 14•1
EXEC ~ODULt O~E •• SY~BOLIC CEF!~ITIO~S

754 I
755 1:100e01 AF.CPnHl SET W~E~ TASK IS C~fCKPOiNTED
7So 0et0~~2 AF .Ron00z SET WME~ TASK•s 110 r~ B~I~~ AUN DOW~
757 00~0"'" AF.•0••004 SET WME~ TASK A~T RECOGNITION tS INHt8ITED
758 ICVJtiJ~10 AF,CCH010 SET WMEN CMECKPO!NTING IS DISABLED
759 lfJ0iar.i~ AF,MC1:•0Z0 SET W~EN TASK IS ~ARKED FOR C~!CKPOINT?NG
7o"' 000e!l.l0 AF.GC••040 SET WME~ TASK IS MOLDING A, co~~A~P BUFFE~
7U "00101?1 ''· IOn100 SET WME~ TASK MAS AN 110 CC~PL,TIO~ EV!NT IN ITS, AST QU!UE
7oc 000200 AF, JTs•i00 SET W~EN TASK HAS AN INTER~EDIATE TR~NSFEA t~ PR~G~ESS
7U ~00'£00 A.F,GR••400 SET WME~ TASK'S SMAR~O GLOBAL AREAS MAVE BEE~ RELEASro
7b'4 00100~ AF,8F••1000 SET W~EN A TASK IS TQ BE FIXED
a~ !002000 AF,F>Cs•2000 SET WM£~ A TASM IS FIXED
7&D lii~l.t~00 AF, A$H4000 SET W~E~ A~ AST MAS BEEN OfCLAAEC
1e7 01~000 AF,AAU10000 SET W~f~ TMERE IS A POTENTIAL REtEIV~ AST
768 ' 1b~ 0et0~b~ A,SIZ••48, tSIZE OF ATL IN BVTES

):>!
I

\0

RSX110 •• "ESIOE~T EXECUTIVE MACRO 00710 24•APR•75 1215b PAGE 15
EXEC ~COuLE O~E •• SY~80LIC CEFI~ITIO~S

771
77C
77l
714
775
7h
777
71~
77q
780
781

1 ~RL •• ~E~ORY REQUIRED LIST

TME "~RL" IS A PRIORITY ORDERED PE~UE OF "ATL"_NCDES ~OR_ACT,VF TAS~S
TMAT REQUIRE ~E~DRY I~ A PARTITID~. EAC~ PART,T!ON ~AS JTS OWN ~RL.
~~E~EVER A ~O~•FIXED TASK RUNNING ~N A PARTITION E~ITS, AN, . _

I ATTf ~PT IS ~ADE TO ASSIGN ~E~ORY TO TME FIRST (H!GMEST PRtnRTTV)
1 TASK IN T~E LIST. IF ~E~ORY IS FCU~D, TME TASK;S NODE_IS

~OVEC FRO~ TME "MRL" TC THE "ATL" OEQUE. l~E ~RL Lt!TMEAD IS TN
T~E TPD E~TRY FOR T~E CCRRESPONDtNG PARTITION.

RSX11D •• ~ESIO~~T EXECUTIVE ~ACRO 00710 2"•APR•75 t215b PAGE lb
EXEC MODULE O~E •• SY~BOLIC CEFI~ITIO~S

783
786'
785
78&
787
788
78q
7q0
7q1
1fii.
JqJ
7(J6'
7q5
7q"
7fi7
7q5
7qq
800
801
e0c
8Pl
8~"
805
60f)
807
sea
e0q

177710
1 '177b4
177'1lU
1777l5
177731)
1777"0
117741
1777ij2
1777U2
177hU
177h'5
17771HJ

CTL •• CMECKPCI~TABLE TASK LIST

T~E "CTL" IS A PRIORITY ORDERED CE~UE OF ENTRIES FO~ C~fCK~OTNY,AUL~
TAS~S T~AT ARE ACTIVE I~ A PARTITIO~. EACM PARTJTTC~ MAS ,TS ow~
CTL. T~E CTL LIST~EAO IS IN T~E TPC ENTRY FOR T~E CDRAESPDNOI~G
PART IT IO~,
T~E CTL IS REALLY JUST A RELI~KI~G CF T~E ATL, ~CWfVER, AND ~AS
~o U~IQUE ~CDES OR FCR~AT CF ITS o~~. . ~ .
T~E CTL FOR~ARC A~D BACKWARD POI~TERS ARE TME LAST TWO.WORDS t~
T~f ATL ~COE, A~O , CC~SEQUENTLY, ~EGATIVE OFFSETS ~UST ei_DFf1NPO
SO T~AT PARA~ETERS ~AV BE REFERE~CEC WIT~ A!SPECT TC T~E CTL fORWA~C
POI~TER.

,RQ:•A.RQ•A.CF
1<.PO:•A,PO•A.CF
1<.RP:•A.RP•A.CF
1<.IR••A.IR•A.CF
K.IN••Ael~•A.CF
K.MT:•A.MT•A.CF
K.CP••A,CP•A.CF
K.NA:•A.NA•A.CF
K,HA••A,MA•A.CF
K.TS:•A.TS•A.CF
K.AS••A,AS•A.CF
1<.TD••A,TD•A.CF

))I
I

.......
0

810
811
812
813
81't
ens
81~
817
818

177750
177754
177 73?.
1777&&
17717P
177772
17777&
177737

K,Ef'••A,EF•A.CF
1<,FM••A1F~•A.CF
K,TI••AeTZ.A,CF
1< 1 AF1uA.AF•A.CF
1<,AB••A,AB•A.CF
K, IA••A, IA•A,CF
K,TF••A,T,.•A,CF
t<,CS••A,CS•A,CF

RSX110 •• RESIDE~T EXECUTIVE MACRO 00110 24•APR•T5 12156 PAGE 18
E~EC ~OOUL~ O~~ •• SYMBOLIC CEFINITIO~S

tt21
822
823
824
82S
Ue
827
U8
92q
830
831
83i
83l
834
83~
830
837
fU8
839
840
841
84i
8Ul

8 "" 845
8'&b
847
648
849
850
851
852
853

000004'
000006
~00010
i100011
000012
00001 l
00~01"
000016
000020
000022
~0~022
000023
000024

"'01t'04~

t IRQ •• IIC REQUEST QUEUE

TME "IRQ" IS A PRIORITY ORCERED DfQUE 0, 110 REQUEST NODES WTTM TTS
t LISTMEAO IN T~E PUO E~TRY OF TME PMYSJCAL UNIT FpR W~l~M TME llD

REQUEST WAS QUEUED. EACM PMYSICAL UNJT MAS ITS CWN ?IC REQU~ST QUFUE.
l/C RlQUEST NODES ARE CREATED AND QUEUED PAJMARILV BY TM~ "QUEU! l/O•
DIRECTIVE. MCWEVER, TME EXEC ALSO CREATES l/C R~QU~ST~ roi
Ct> LOAD A TASK I~AGE, (2) RECORD A TASK IMAGE [CM!CKPOtNTt~GJ, AN~
(3) TO RUNOCW~ I/O CN A~ EXtT•EO TASK. !/C REQUEST NODES ARF- OF
TME FOLLC~I~G FOR~AT,

f ~O. 00 CB HJ)

' ~o. 01 ce n>
I ..,0, U (B 0'0

FOAWARO LtNIOG!
•• BACKWARD LINKAGE
•• ~OD! ACCOUNTtNG WORO (STD ENTRV AOR OF R~QU!StnR'

R 1 T0••~1AW
R,AT••0b I WO, 03 CB 06)
R.PR••10 I WO, 04 (8 tt) ••
R,OP••11 I (8 11) ••
R,LU••12 ' WO, ~5 CB lZ) ••
R,FN••t3 ' ce 13) ••
R,FC••14 ' ~D. 06 CB 14) ••
R1 S8c•t6 J wO. 07 (B 16) ••
R,AE••20 ' ~D. 10 (8 20) ••
R,Uin22 ' WO, 11 CB 22) ••
R1 PC••22 J (8 22)
R.GC••23 I CB Zl)
R,PB••24 ' wo. 12 ce 24) ••

R.P0••40

1110. u (8 26) ••
wo, u ce 11>
wo. 15 (8 32) ••
wo. 16 CB 34)
.,_D, 17 CB lft)
~o. 20 ce 40> ••

ATL NODE OF ~EQU,STCR ***
PR!OAUV cenn
DPB SIZE (BVTE) ***
LOGICAL UNIT NU~BER (8VTE)
EVENT 'LAG NUM~fR CBVTE)
I/O FU~CTION COD~
VIRTUAL ADDRESS P' STATUS BLOCW
VIRTUAL ADDRfSS OF AST SfAVtCE !NTAV
USER IDENTl,ICATtON CODE
PROGAA,..,..EA CODE
GROUP CODE
PARAMETER #t
PARAMETER #Z
PARAMETER #l
PARAM!TER #4
PARAM!TER #5
PARAMETER h
PUO POl~TER FOR TM!S REQUEST

)I
I

......
......

854
85~
850
857
858
859
8bVJ
Sb1
8b~
86}

8b'6
8bS
tibo
8b7
8b8
8b9
87d
871
87Z
871
87't
875
87b

~~~042 

~~~~4ij 

0~e0su
~0005b

~HhHZ01
00~~02

021~0~1.i

R,EL=•~2 ' ~O. 21 Ce 42) •• ERROR LOG BUFFER POI~TER/FLAG
k.~Aas44 ' ~O. 22 CB UU) •• FLAG BVTE FOR EXEC

wD. 22 (8 45) •• WORK AREA FOR DEVICE HANDLERS
~o. 23 (8 4~) •• wORK AREA FOR DEVICE rANOLERS
wo. 24 CB 50) •• wORK AREA FOR DEVICE HANDLERS
~o. 25 (8 52) •• wORK AREA FOR DEVICE HA.NnL!RS

R,IBs•54 ' ~o. 2b (B 54) -- INTER~EOIATE BUFFER ADtRESS
R.UB••5~ r wO. 27 CB 5~) •• USER BUFFER AODRESS(INTER~EO!AT~ TRANS,ER)
I
I T~E LOw O?OfR THREE•BITS OF THE I/O FUNCTION COOf ARF us~o ev THF SVSTF~
' AS fCLLC~S:

' RF. ITn0000M
RF•)(RU0000P.2
RF. lRs&000004

I (0]
I (1)
I [2)

RESERVED FOR FUTURE USE
"EXPRESS REQUEST"
RESERVED FOR FUTURE USE

1 *** ~HE~EVER AN I/O REQUEST IS QU!~EO BV THE "QU!UE t/0" O!R~CT!VE, TH'
OPB SIZE ANO THE REQUESTOR'S ATL ~ODE ADDRESS AR~ REeORD,O I~ THF ~IC
REQUEST NOOE. WHENEVER AN I/O REQUEST IS QUEUfO AS A RESULT OF ~NOTHER

1 DIRECTIVE (VIZ., "REQUEST" CAUSING A TASK I~AG! TO BE LO~OFD}, TME p~B
SIZE ANO THE REQUESTOR'S ATL NODE ADDRESS ARE SET TO ZERO. TMUS, ~OTM
BOTH TME OPB SIZE ANO THE ATL NODE ADDRESS ARE ALSO "fXEC REQU~ST"

1 INDICATORS.

HSXttO •• RfSIOENT EXECUTIVE ~ACRO 00710 Z4•APR•75 1Zl5b PAGE 1q
EXEC ~oo~~E O~E •• SY~BOLIC DEFINITIONS

878
87~
880
881
88i
Hl
eeu
885
880
887
888
ee~
n0
nt
He
8ql
fS q"
eq~

000UU
0000~b
000010

CKQ •• CLOCK QUEUE

TME CLOCK QUEUE 15 A DEQUE CONSISTING OF ONE N~Of 'O~ !ACM OPERAIIO~
SCMECULED TC BE PER,ORMEO AT SOME FUTURE TjMf. A "SCMEOULE nELT~·
TI~E" I~ TME FIRST ~COE CIF ANV) 0' THE CLOCK QUEUE IS D!CREME~T'D
AT EACM CLOCK TICK U~TIL T~E NOOE "COMES DUE", AY WM!CM TI~! TME
INCICATEC OPERATION IS PfRFOR~EO. CLOCK QUEUE NCC!$ AR.E LtNKfO
IN TrE CROER IN WMICM TMEV WILL CO~E DUf, ANO TMf sc~EOULE C'LTA•TTMF
IN EACH NOOE (EXCEPT TME FIRST) IS RELATIVE TO TME SCMfOUL~ TIME
OF TrE PREVIOUS CLOCK QUEUE NODE. CLOCK QUEUE NCOES ARE 0' TME
FOLLC~I~G FOR~AT,

J WO, 00 •• FORWARD LINKAGE
' ~D, 01 •• BACKWARD LINKAGE
' ~O. 02 •• NOOE ACCOUNTt~G WORD CSTO ENTRY ADR OF REQU~STOR)

C,TD••~.AW

C,AT••0b ' WO, 0l •• ATL ~ODE ADDRESS OF REQUESTQR
C,S0••10. r WD, 04 •• SCMEDULE DELTA I~ TICKS (b4•8ITS)

~
I
~

"'

890
n1
898
809
9NJ
901
902
903
904
905
900
907
908
909
910
911
91i
913
914
'H~
910
917
918
919
920
921
92;!
923
924
~25

00~01"

000014t
000020
00~022
tiH11 0024

000016

000022
000024i
000026
000ei:JQI
00VIP 12

0001J00

C,RT••14
I
C.F~••1b
C,,As•20
C,FNs:22
C • AE=•24

' C.Riu1b

C,R2••22
C,Aln24
C.R4••2b
c.uinl0
c.u .. u

wD, 0~ •• (LOWER ORQER MALF OF SCMEDULE DEL!A)
wo. 06 •• REQUEST TYPE INDICATOR & UNUSED evTr

IND. e7 •• [~T1 FLAG MAS~ f BIS SRC)
we. 10 •• [MT1 FLAGS WORD ADR (!JS OST ADR)
WO, 11 •• CMT1 !VENT FLAG ~UMBER
WO, 12 •• [MT1 VIRTUAL ADDRESS OF AST SERVICE ENTRY
(5 U~USED WORDS>

wo. 07 ••
i-io. u
WD. 11 ••
lliO, 12 ••
WO• l J ••
wo. 1"
"40, 15 ••
C2 U~USED

[TS] RESCMEDULE INTERVAL IN TICKS (64•8!TS)
[TS1 f LOW ORDER MALF 0, R!SCHEDULf J~YEBVA~)
[TS] STO ENTRY ADA OF R{QUESJtD T~SK.JR~ ~QR
[TS1 TPO ENTRY AOR,, OR !!RO. fU ,CR .. '.R!QfJ')
(TS1 RU~ PRIORITY, OR Z~RO fR4 ·fOA '.R!OI')
(TS1 Ult INDICATOR FOR ',REqS' .
fTS1 TI IOENTtfICATION FOR •.REOS•
WCPDS)

(MT) •• ~ARK TI~E NOOE ENTRIES
CTS] •• TASk SCMEOULING NOD£ ENTRIES

1 REQUEST TYPE INDICATORS1

t 0 •• ~ARK TIME
TM.SL=•U00 tSUB CODE FCR AN INTERNAL TI~E SttCE

1 •• TASK SCHEDULING (SINGLE SHOT)
2 •• TASK SCHEDULING WITH PfRtoorc ~fSCMEDULtNG

',REOS;>

NOTE •• THE CLOCK QUEUE SCAN, RO~Tt~f IN "C•NCfl SCHEOV~fp ~EQU!STS"
ASSUMES TASK SCHEDULING IF NO~•ZERO REQUEST TYPE INDtCATOA.

);ii
I

w

RSX110 •• kESIOE~T EXECUTIVE MACRO OP710 24•APR•75 12156 PAGE 20
EXEC ~OOULE v~E -· sv~BOLIC OEFI~ITIO~S

927
928
q2q
930
q11
Hi
q31
cn4
935
'Ho
q37
cne
939
9U0
qui
CIUi
'iUl
94'~
qus
94b
947
946
949
950
951
95i

~0000&
000010
000012

000 'H)~
000u01
H1002
~00003
000001.4
001407

ASQ •• AY~C~RO~OUS SYSTEM TRAP QUEUE

TME "ASQn IS A OEQUE CFIFO), WITM LISTMEAO IN ATL ENTRIES, CONSISTJ~G
CF C~E ~ODE FOR EACM AST (ASYNCHRONOUS SY~TEM TRAP' TO BE ~XPCUT~D FCR

t TME TASK OEFI~ED BY TME STD ENTRY. ASQ NODES ARE 0, TM~ FnLLOW!NG
1 FOR~AT.

wO. 00 •• FORWARD LINKAGE
WO, 01 •• BACKWARD LINKAGE
WD. 02 •• ACCOUNTING WORO CSTO ENTRY ADDRESS OF CMAAGFD TASK)

Y.TTs•06 ' WO. 03 •• AST TYPE & NU~BER OF PARAMETERS **
Y,AE••10 ' ~O. 04 •• AST ENTRY POINT
Y1 P1••12 r WO. 05 •• AST PARAMETER 1

wO. 05 •• AST PARAMETER 2
we. 06 ·- AST PARAMETER 3
•••• ETC,

1 ** T~E AST TYPE & NUMBER OF PARAMETER DEFINITIONS ARE AS '~LLOWSt

' Y,.~T==0+CU00•t>
YF.IC••l+CU00•t>
YF.FE•=2+C400•2>
YF.PR••3+C400•0>
YF.RE••4+C400•0>
YF.PC••7+cue0•3>

t~AR~•TIME (PARA~ETER1 EVE~T F~AG NUM~fR'
1110 COMPLETION fPARAMETER1,STATUS_!~Oek. ADDAESSl
1F.P. ~XCEPTIC~ tP~RAMETERS1 EXC~'TIDN COOP & AOnR~S~)
1POWER RECOVERY (NO PARAMETERS,
1RECEIVE QUEUElo (NO PARAMETERS)
tCOMMUNtCATtONS AST

:t
i
~

RSX1l0 •• RESIOE~T fX£CUTIVE ~ACRO D0110 24•APR·T~ t21~b PAGf 21
EX£C ~ODULE -O~E •• SY~80LIC 0£FI~tTIO~S

9'54
9~5
954
9.57
ne
'59
HI
9b1
CJ&i
9U
9U
CUtS
9h
967
9U

0'100041
0001lH
000010
-IO~hhH1
1u0012

t
t S~Q •• Sf~O/RECEIVE QU£U!

THE "SRQ" IS A OEQUE (FifO), WIT~ tIST~EAD IN STD !~TRJfS,_CCNSISTt~G
ON-E ~COE FOR EAC1'4 8l0CI< 0, DAU "SENT" CYU •sn1J)• OA "Sf'ND ' REQU~ST·
DIRECTIVES) TO THE TASK OEFI~!O av THE STD fNTRY. RQS ~oo~s AR! 0,
T~£ fOllC~ING 10R~AT.

J wo. 10 •• FORWA~D lINkAGE
f WO. 01 •• 8ACK~AAD ll~kAG£

n.SI••~.•w f wo. 02 ce 04) •• S£NO£R IO tNAW)
o.TI••~.TI ' wa. 03 (8 16) •• Tl INDICATOR
O.PR••10 r wo. 04 (B 11) •• PRIORITY Of SfNO
D.8S••11 ' CB tt) •• IUfffR SlZ£ (WORDS>
0.01••12 ' wo. es (8 12) •• f tAST ~o~o 0' ~•TA BLOCK

RSX11D •• RESIOE~T EXECUTIVE "ACRO 00718 24•APR•75 121~6 PAGE 22
EXEC ~OOuLE O~E •• SYM80lIC DEFINITIONS

970
911
Ul
97l
974
ens
no
977
978
09
980
981
98i
983
9U
985

~0000e
~00010
0eiee 12
00~014

MCR •• ~c~ co~~•ND BU,FfR

t THE ~CR COMMA~O BUFFER IS A •6 BYTE BUFF!A THAT ~OLDS TM~ DATA
' FOA A REQUESTED MCR FUNCTION.TH! !U,FEA rs S!T UP av THE MCA
t OISPATC~ FU~CTION A~O IS R!TUAN!D TO THf POOL RV THE 'G!T ~CR
t COMM•~D LINE DtAECTIVEA,TER TH! IN,ORMATION HAS 8!!N PASSFD
t TO T~E MCR FU~CTION.THE BU,FERS A~£ LtNK!D TO THf MCR BUFFrR
t LIST BY THE ~CA DISPATCH ,UNCTtO~.

1 WO. I• •• FORWARD Ll~KAG!
WO. 11 •• 8AC~WARD LINKAGE
WO. IZ •• ~ODE ACCOUNTING ~CAD

M.TN••~ t WO. IJ •• SECOND HALF OF ~CR TAS~ NAM!
~.TI••10 t WO. I~ •• Tl ADDRESS C' MCR 'UNCTION
~.BC••lZ ' we. 15 •• ~o. OF BYTES IN COM~ANC LINE
~.BF••14 t WO. lb •• START CF DATA AREA IN !UFF!A

ATL (Active Task List)

CLOCK QUEUE

COMMON BLOCK, INTERNAL

COMMON BLOCK, SYSTEM

DEFAULT PRIORITY

DE QUE

DEVICE HANDLER

DIRECTIVE

DISK-RESIDENT TASK

APPENDIX B

GLOSSARY

A priority-ordered list of Active
Tasks used to drive the system.
The ATL is a deque consisting of
one node for each Active Task in
the system.

The Clock Queue is a deque
consisting of one node for each
item to be done at some time in the
future, such as scheduling of Tasks
(Via the SCHEDULE and MARK TIME
Directives) , and rescheduling of
Tasks (Clock interrupt service
routine) . The nodes are linked in
the order in which they come due.

An area of contiguous memory within
a partition, available only to the
Task in the partition during its
residency.

An area of contiguous memory,
defined at System Generation time,
where data can be stored and
referenced by all Tasks. A SYSTEM
COMMON BLOCK is referenced by using
a COMMON name matching a SYSTEM
COMMON BLOCK ~ame and declaring
that COMMON as SYSTEM COMMON to the
Task Builder.

A priority given to a Task during
Task Building or Task Installation
that is used when a priority is not
specified and the Task's execution
is requested or scheduled.

A double-ended queue consisting of
a listhead and list elements
(nodes), circularly linked by both
forward and backward pointers.
Deques or linked lists are used to
store system information.

A Task in the RSX-llD system which
drives or services an I/O device.
Handler tasks are activated using
the Queue I/O directive.

See SYSTEM DIRECTIVE

A Task which normally resides on
the disk and is brought into a
memory partition to execute.

B-1

DPB (DIRECTIVE PARAMETER BLOCK)

EVENT FLAG

EXECUTIVE

I/O RUNDOWN

LISTHEAD

LINKED LIST

LUN (LOGICAL UNIT NUMBER)

LUT (LOGICAL UNIT TABLE)

MCR (MONITOR CONSOLE ROUTINE)

A block of up to 12 {decimal)
contiguous words containing
information needed in processing a
System Directive.

One of 64 bits associated with a
Task, which is set or cleared to
indicate that a particular
Significant Event has occurred.

The Executive coordinates all ac
tivities in the system including
Task scheduling, I/O supervision,
resource allocation, and interactive
operator communication.

A process which delays the avail
ability of a partition until all
transfers to and from that partition
have been stopped or have been al
lowed to complete. I/O RUNDOWN is
invoked when a Task is terminated
by the Executive or by the ABORT
MCR Function Task and has outstand
ing transfers pending to/from its
partition.

A 2-word memory block with forward
and backward pointers pointing to
the next and previous list node or
to itself if empty. The listhead
is a reference point in a circularly
linked list.

A deque consisting of nodes and
a list~ead used to store system
information. An empty list con
sists of only a listhead.

Logical Unit Numbers are used to
represent logical I/O device units
rather than physical units. Each
Logical Unit Number is represented
by an entry in the Logical Unit
Table.

A block of contiguous memory with a
1-word entry, or slot, for each
Logical Unit Number. When a LUN is
assigned to a physical device unit,
the corresponding LUT slot contains
the address of the appropriate
Physical Unit Directory node.

The MCR allows the user to ccim
munica te on-line with the system
from the console Teletype. The MCR
consists of the Resident MCR Task,
whicn accepts user's commands, and
the MCR Functions, which actually
carry out the indicated requests.

B-2

MEMORY-RESIDENT TASK

MONITOR CONSOLE

NODES

PARTITION

PUD (PHYSICAL UNIT DIRECTORY)

POOL (POOL OF EMPTY NODES)

SIGNIFICANT EVENT

STD (SYSTEM TASK DIRECTORY)

SYSTEM GENERATION

SYSTEM DIRECTIVES

TASK

TKB (TASK BUILDER)

A Task which has been fixed-in-memory
or which is assembled as part of the
Executive.

The control Teletype of the RSX-llD
system where MCR Function requests
may be issued by the operator.

The list elements of a deque. All
nodes (of dynamic lists) consist of
the listhead, followed by data
(list elements) •

An area of contiguous memory within
which Tasks are executed; defined
at System Generation time.

A table constructed during System
Generation to describe the I/O
devices and units in the system.
When a logical I/O number is
assigned to a physical unit, the
device and unit are set in a LUT
entry corresponding to the LUN.

Empty 17-word nodes for use in any
deque. The pool is generated by
System Generation from a core area
not specified for other use.

An event which results in the
scanning of the active task list.

The following events are considered
significant events: 1) I/O queuing,
2) normal I/O request completion,
3) a task request, 4) a scheduled
RUN, SCHEDULE, or SYNC coming due,
5) a Mark Time expiration, 6) a task
resumption (Resume directive) , and
7) a task exit(Exit directive).

A directory of all tasks installed
in the system.

The process through which the user
tailors the RSX-llD system to best
fit his requirements.

Instructions to the RSX-110
Executive tn perform special
functions, such as I/O, etc.

A program written by the user or
supplied by Digital which is built
via the Task Builder, installed in
the system via the Monitor Console
Routine, and scheduled and. executed
on a priority basis.

The Task Builder program is used to
build Task files from relocatable
binary files.

B-3

APPENDIX C

QIOMAC.MAC

C-1

()
I

"'

GIOMAC • QTOSY~ MACRO OEFINITIO MAC~O 0071~ 25•MAA•75 l4t2l PAGE

t

' J
4

~

~

1
8
q

10 P.\ll0JPl4
11
1'
tJ
14
15
1 fl\
17
18
10
2?.
2t
2'
23
24
25
2~
21
2R
29
Jiii
3t
J2
J:'
Jd
35
Jf\
37
JR
JO
421
4t
4,
4J
44
45
4"
47
48
49
~p

bl
5,
bl
54
55
56
57

,TtTL£ QlOMAC • QIOSYM MACRO DEFINITION
ALTtRtO SUNDAY 24•NOV•74 13100
ALTERtD TUESOAY 28•Jl~·15 tJ1581I~

I ALTERtO THU~SOAY 06•FE8•75 15150
I •LTERlO MONO•Y 24•F£8•75 15140108 8¥ ED MARISON

AlTEREO TU£ 25•MAR•75 15131 EDIT • •S~t

'

***** ALWAYS UPDATE THE FOLLO~ING T~O lINES T-OGETMEM
,!DENT /03.,4/
.QI, vER•0l04

J COPYRIGHT 1974,1975, OIGlTAL fQUIPMENT CORP,, MAYNANO MASS,

THIS snfT~ARE IS FURNISHED TO PURCHAS£~ UNOtR l LICENSE FOR USE
ON A SINGLf. COMPUTER SYSTtM A~O CAN 8£ COPIED (WITH INClUSION
Of O£C1S COPYHIG~T NOTICE) ONLY FOR USE IN SUCH SYSTEM, EXCtPT

1 AS MAY OT~ERWlSf Bf PROVID£0 IN ~RITING SY Oft,

J.

TMf lNFOqMATI-ON I~ THIS OOCUHlNT IS SUBJECT TO CHANuE WlT~OUT
NOTICt ANO SHOULO NOT 8t CONSTRUED AS l COMMITMtN1 oV DIGITAL
fQUJ~MENT CORPO~AllON,

OtC ASSUMtS NO ~ESPONSISILITV FOR THE USE OR HELIA81L1TY
OF ITS SOFTWAwE o~ tQOIPMENT WHICH IS NOT SUP~LIED liY OEC.

I MACRO TO DEFINE SllNOARO QUEUE. l/O OIRECTIVI:. FUNCTION' VALUES
J ANO IOSd ~fTURN VALUfS, TO INVOKt AT lSSEMdLY TIME (wlfH LOCAL
J DtFINITlON) USf 1

a1nsvs JDEFINE SYMBOLS

TO OijTAIN GLOBAL DE~INJTJON OF THESt SYMBOLS USEI

QIOSVS OHSG ISYMBOLS OEfJNEO GLOBALLY

I THE MACRO CAN SE CALLED ONCt ONLY ANO THEN
J REOtFlNES fTSELf AS NULL,
••

.MACRO QIOSVS SSSGBl,SSSMSG
,IIF ION,<SSSGBL>,<DEFSG>, ,GLOBL QI,VER
.IF JON 1 <$SSMSG>,<DtFSS>
SS~MAX•"
U'°'SG• t
,IFF
5SMSG•0
,t.NUC
,MCALL
JOEwRS
.MCALL
OkfkRS
,IF
,MCALL
FILI OS

lOEkRI
ISSGBL 11/U ERROR CODES FAOM ~ANOLERS 1 fCP, fCS
DMEwPS
SSSGRL JOIRECTIVt STATUS WOHO tARO~ CODES
OlF 1 <$S5MSG>,cOfflS>
FILIOi
S$SG8L IOEFJNE G~NfRAL QI/O ~UNCTION coo~s

(')
I
w

QIOMAC - UTOSYM ~•CRn 0£FINITIO MACRO n~71A 25-MlA•75 1•123 PAGE l•l

58
~9
6'1'
61
62
63

.MCALL
SPClOS
,MACRO
.E.tl!OM
,tNOC
,f.NOM

SPCIOS
SSSGBt.
GIOSY$
QIOSVS

QIOSVI

JDEVICE DEPENDENT I/O FUNCTION CODES
AHG 1 AHG1 1 1AG2 JRECLAIM MACRO STORAGE

()

' .a:.

QlOMAC • QIOSVM MACRO OEFINITlO MACRO 00710 2e•MAR•75 14123 PAGE 2

65
66
67
68
69
70
71
1'2
73
74
75
76
71
78
79
8P!
81
8~
83
84
85
86
87
88
89
9PI
91
9?
93
94
9!"
915
91
~A
9Q

10P
t 01
102
103
104
U5
106
107
10~

10~
11~
111
tit>
113
114
1 15
116
111
1 l 8
119
12"'
121

DEFINE TME ERROR CODES RETURNED BY DEVICE HANDLER ANO FlLE PRIMITIVES
IN THt FIRST WORD OF THE I/O STATUS BLOCK
TMESE CODES ARE ALSO RETURNED BY FILE CONTROL SERVICES CFCS) IN THE
BYTE F.ERR IN T~E FILE DESCRIPTOR BLOCK (FD~>

THE BYTE F,ERR+l IS 0 IF F,ERR CONTAINS A HANDLER OR FCP ERROR CODE,

,MACRO IOERRS SSSGBL
,MCALL ,JOER,,OEFINS
,IF ION,<iSIGBL>,<OEFSG>
,.,G8L•l
.IFF
,,,GAL•0
.ENOC
,IIF NOF,SSMSG,SSMSG•0

SYSTE~ STANDARD coots, USED BY ALL FUNCTIONS

,lOER,
,IOER,
,IOER,
,IOER,
,IOER,
,IOER,
.IOER,
,IOER,
,IOER,
, I OE. R •
,lOER,
,lnEP,
,IOER,
.lOE.R,
.IOER,
,IOt.R,
.IOER,
,IOER,
, I (')t:: R,
,IOER,
,IOER,
,IOER,
,IOER,
,Int::R,
.IOER,
,IOER,
.IOEi:;.
.IOER,

IE,BAo,-01,,cSAO PARAMETERS>
IE,IFc,-02.,clNVALI~ fUNCTION CODE>
If.ONR,•03,,<0EVICE NOT READY>
IE,VEM,•04,,<PAHITV EHROR ON DEVICE>
IE,ON~,-0~ 1 ,cHARO~AHE OPTION NOT PRtSENT>
IE.SPC,•06,,<lLLEGAL USER 8UffER>
tE,ONA,•07.,<DEVICE NOT ATTACHED>
IE,OAA,•08,,<0EVICE ALREADY ATTACHED>
If ,OUN,•09,,<0EVICE NOT ATTACHABLE>
IE,EOF,-10,,cENO OF FILE DETECTED>
IE,EOV,•11,,<fNO OF VOLUME OETECTtD>
lE,wLK,•12,,<wRITt ATTEMPTED TO LOCKED UNIT>
If,OA0,•13,,<0ATA OVERRUN>
IE,SRt,•14,,<SENO/RECEIVE FAILURE>
If,A80,•1~,,<REQUEST TEMMJNATEO>
IE.PRl,•16,,<PRJVILEGE VIOLATION>
IE,HSU,•t1,,<SHARA8LE RtSOUHCE IN USE>
It,OVR,•t~.,<lLLEGAL OVERLAY REQUEST>
IE,8VT,•19,,<00D 8VTE COUNT (OR VIRTUAL ADDRESS)>
IE,&LK,·2~ 1 ,<LOGICAL BLOCK NUMBER TOO LARGE>
IE,M00,•21,,<INVALIO UDC MOOULf M>
IE,CON,-22.,cuoc CONNECT ERROR>
IE,BBt 1 •56,,<8AD BLOCK ON OEVICt>
IE,STK,-sa.,cNOT ENOUGH STACK SPACE CFCS OR FCP)>
IE,FHE.,•59,,<FATAL HAROWAME EHROR ON DEVICE>
IE,EOT,•62,,<END OF TAPE DETECTED>
IE,OFL,·6~.,coEvICE OFF LINE>
IE,BCC,•66,,<dLOC~ CHECK OR CRC ERROR>

FILE ~RJMITIVE CODES

.IOER,

.IDER,
,IOERa
,!OER,

It,N00,•2J, 1 <CALLER 1 S NODES EX~AUSTtD>

IE,DFu,•24,,<0EVICE FULL>
IE,IFu,-20,,<INDEX FILE FvLL>
IE,NSF,-2b,,<NO sue~ FILE>

(')
I

U1

QIOMAt • QJOSY~ ~ACRO DEFINITIO MACRO D0110 25•MAR•75 14123 PAGE 2•1

122
123
124
12,
12~
127
128
129
1 JP!
t 31
132
133
134
1J5
136
137
138
13<>
140
1 4 t
14?
143
144
t45
146
147
1 ~u~
149
1 5'11
151
15?.
15J
154
15!;
156
157
l5R
1~9
16QI
161
162
163
1b4
16~
166
167
16A
16Q
17~
171
in
173
174
175
1 7 fi
177
178

,IOER,
,IOER,
,IOER,
,InER,
,IOER,
,IOER,
,IOt:.R,
,IOER,
,IOER,
,IOER,
,IOER,
,IOER,
,IOER,
,IOER,
.IOER,
,lOER,
,IOER,

IE,LCK,•21,,<LOCKED FROM WRITE ACCESS>
tE,HFU,•28,,<FtLE HEADER FULL>
IE,~AC,•29,,<ACCESSED FOR WRITE>
IE,CKS,•J~,,<FILE HEADER CHECKSUM FAILURE>
IE,~AT,•31,,<ATTRIBUTE CONTROL LIST FORMAT ERHOR>
IE,RER,•32,,<FILE PROCESSOR DEVICE READ ERROR>
IE,WER,•JJ,,<FILE PROCESSOR DEVICE WRITE ERROR>
IE,ALN,•34,,<fILE ALREADY ACCtSSEO ON LUN>
IE,SNC,•35,,<FILE IO, FILE NUMBER CHECK>
It,SQC,•36,,<FILE ID, SEQUENCE NUMBER CHECK>
IE,NLN,•37,,cNO FILE ACCESSED ON LUN>
IE,CL0,•38,,<FILE WAS NOT PROPERLY CLOSED>
tE,OUP,•57,,ct:.NTE~ • OUPLICATt:. ENTRY lN DIRECTORY>
IE,bVR,•63 1 ,<SAO VERSION NUMBER>
IE,BH0,•64,,<~AO FILE HEAOEH>
IE,EXP,•15,,<FILE EXPIRATION DATE NUT RtACHED>
IE,BTF,•76,,<~AO TAPE FORMAT>

FILt:. CONT~OL SEHVIC~S CODt:.S

,IOER,
,IOE:.R,
,IOER,
,lOER,
1 IOER 1

,IOt:.R,
,IOER,
,IOER,
1 lOER,
,IOER,
,lOE.R,
,IOER,
,IOER,
,IOER,
,IOER,
,IOER,
,IOER,
.Ioe.~.
,IOER,
,IOt:.R,

IE,NBF,•39,,<0PE.N • NO BUFFER SPACE AVAILABLE FOR FILE>
JE,RBG,•4~,,<IL~EGAL RECORD SlZt>
IE,NBK,•41,,<fILE EXCEEDS SPACE ALLUCATEO, NO BLOCKS>
IE,ILL,•42,,<ILLEGAL OP~RATlON ON FILE DESCRIPTOR BLOCK>
ll:.,BT~,•43 1 ,<BAD RECORD TYPE> .
lf:.,WAC,•44,,cILLEGAL wECOHO ACCESS ~ITS St:.T>
IE,HAT,•4o,,cILLEGAL RECORD ATTRI~UTES bITS StT>
IE,RCN,•4o,,cILLEGAL RECORD NUMBER • TOO LAHGE>
lE,M~K,•41,,<MULTIPLE BLOCK Rt:.AO/wRITI:. • NOT IMPLEMtNTED YET>
IE,2DV,•4b,,<RENAME • 2 DIFFERENT DEVICES>
IE,fEX,•49,,cRENAME • NEW FlLt:. NAME ALRtADV IN USt:.>
lE,BOH,•50,,<8AO DI~ECTORY FILE>
lf,RNM,·•51,,<CAN'T HENAME 01.D FILt:. SYSTl:.M>
It.~OI,•52 1 ,<BAO DIRECTORY SYNTAX>
IE~FOP,•5J,,<FILE ALREADY OPEN>
It:.,BNM,•54 1 ,<SAD FILE NAME:.>
IE,BOV,•5o,,cBAO OEVltE NAME>
IE.,NFI,-60,,cfILE ro ·~AS NOT SPECIFIED>
IE.,ISQ,•61 1 ,clLLEGAL SEQUENTIAL OPERATION>
JE,NNC,•77,,<NOT ANSI IOI FORMAT SYTE COUNT>

NETWOkK ACP CODf:.S

,IOER,
,lOt::R,
,IOER,
,lOER,
,lOE.R,
,IOER,
,IOER,
,IOER,
,IOER,

IE,AST,•67,,<NO AST SPECIFIED IN CONNECT>
If ,NNN,•68,,<NO sue~ NOOE>
IE,NFw,•69,,<PATH LOST TO PARTNER> 1+~01 THIS CODI:. MUST Bt:. ODD
IE,BLB,•7~,,cbAD LOGICAL BUfFtR> 1+~01

IE,TMM,•11,,<TOO MANY OUTSTANDING MESSAGES>
IE,NOR,•72,,<NO DYNAMIC SPACE AVAILAB~E>
IE,CNR,•73 1 ,<CONNECTION RtJECTEO>
It,TM0,•74,,<TIMEOUT ON REQUEST>
lE,NNL,•78 1 ,cNOT A NETWORK LUN> 1+0~1

SUCCESSFUL ~ETURN CODES•••

n
• en

QlO~AC • QIOSYM MACRO DfFl~ITJO MatNO 0871~ 25•M4R•75 14123 PAG£ 2•2

179
ta~

tel
182
183
184
185
186
187
188
lH
19!'1
191
192
t93
19•
195
196
1~7
196
199
20cii
201
2it'?
2~J

2"'
2~5

'"&
2~?

0-EF INS
DE.FINS
Off'INS

I s • PNU' • ee •
rs.suc,.01.
tS.tlV,•05,

JOPERATION PENOlNG
'OPERATION COMPL~TE, SUCCfS8
JON A/O AEAO, AT LfAST O~E tiAO VALUt
l•AS AfAD CREMAlNO£R MO BE .GOOO>e
18AD CHANN£L IS INDICATED 8Y A
JN£GAflV£ VAlU£ IN TWt S1JffEA.

TTY SVCCfSS COOESI

••••••

DEFl~S IS.CR,<15•401•1> JCAAHJAGE RETURN WAS Tt.A-MINATOH
nEFINI rs.t.sC.<33•480•1~ J£SCAPE (lLlMOOtl WAS TfAMINATON

THE ~tXT AVllLA8LE tR~O~ NUMB~A ISi •79,
ALL lO~ER NUMBERS ARE IN USEJ&

•••••
.lF
.MACRO
.t:.NOM
.£NOC
.t.NDM

EQ,SSMSG
IOEWAS l
IOENRS

lOE~AS

()
I

-.)

QlOMAt • QtOSYM ~ACRO OEFINITIO MACRO 00710 25•MAR•75 1•123 PAGE 3

t>09
2UI
211
212
'13
214
21~
21~
21'
21A
'19
220!
221
'2~
223
224
22!'i
22-6
227
nf'
22Q
2J0
2J,
2J'
'3J
23.t
23~
23~
237
nA
2JQ
24111
241
24i?
243
244
24~

246
~47

:>4R
249
251'l!
251
~52

:?53
254
255
2!>6
:n>,
25A
25Q
260
2b\

DEFINE THE DIRECTIVE ERROR CODES RETURNED IN THE OlHECTIVE STATUS WORD

FILE CONTROL SERVICES CFCS) RETURNS THESE CODES IN THE SYTE F.ERA
OF TME FILE DESCRIPTOR SLOCK (FOB), TO DISTINGUISH TMEM fAOM THE
OVERLAPPING CODES FROM ~ANOLER ANO FILE PRIMITIVES, THE BYTE
F,EHA•t I~ TME FOB WILL 8£ NEGATIVE FOR A DlRlCTIV£ ERROR CODE.

.~ACRO DR£RRS SSSGBL

.~CALL ,QtOf,,OEFINS
,IF ION,~SSSGHL>,cOEF$G>

.,,GftL•1

.IFf
,,,G9L•0
,tNOC
,IJF NOF,SSMSG,SSMSG•I

STjNOARO ERHON CODES HETURNED 9Y OlRECTIVES IN THt OlWECTIVt STATUS ~ORO

,<HClf,
, QT OE•
, tH OE,
,QJOE,
,QTOE.
, \ii TOE,
,QJOE,

.QYOE.
,QJOE,
I GI I OE.
,QIOE,
• <.l I OE•
,<.IIOf,
.~lOE.
,1.IJOE,
.QTOE,

It.uPN,-01.,clNSUfFitIENT OYNAMlC SlOJU,E>
lE.lNS,-02,,csPECIFlEU TASK NUT lNSTA~L~O>
It,ULN,·0~ 1 ,c~N·ASSlGNED LUN>
It.H•k,•06, 1 <HANOLER TAS• ~OT R~SIO~NT>
IE.ACT,•01.,cTASK NOT AClIVt>
JE,JTS,•08,,cotRfCTlVE INCO~SISTENT WIT~ TASK STATE>
IE,CKP,·t~,,cISSUING TASK NOT CHECK~Ol~TA~LE>

tE,AST,·8~,,<0IMECTIVt ISSUtO/NOT ISSUED fROM AST>
It.LNl,·9~,,<LUN LOCKtO IN USE>
IE,1ou,-q~.,c1Nv•LIO DEVICE OR UNlT>
IE,lTl,•9J,,cINVALIO TIME PARAMtTtRS>
If,IP~,-95.,cINVALJO PRIORITY C ,GT. 25~.)>
It.lLU,•96.,<INVALIO LUN>
lE,IEf,•91,,<INVALIO tVENT (,GT, 64,)>
IE.,AD~,-98,,<PART OF DPb OUT OF USE~IS SPACE>
IE,SD~,-99,,<DIC OR DPB SIZt INVALI~>

SUCCESS CODES F"OM UIRECTIVES - PLACED IN THE OIRtCTIVE STATUS ~a~o

OE FINS IS,CLR,0 JEVENT ~LAG wAS CLEAR
JFROM CLEAR EVENT FLAG DIRECTlVt

DE Fl Ni IS,SET,2 JEVENT ~LAG WAS SET
JFROM SET EVENT FLAG DIRECTIVE

DE.FI Ni IS,SPL),2 JTASK wAS SUSPENDED

• IF fQ, UMSG
.MACRO O~ERFU A
,ENOM O~EIH~S

.~NOC
,E.NOM DRERRfl

n
t

()0

QIOMAC • QJOSYM MACRO DEFINITIO MACRO 00710 2S•MAR•75 lA123 PAGE 4

263
264
265
266
267
26A
269
27A
271
2n
273
274
27~
27~
277
278
27Q
281A
281
282
2H3
284
28~
286
287
268
289
290!
291
2~n
2Ul
294
29!5
29~
297
29A
290
30QI
3k!t
l0:>
31i:'J
304
Jli/l!li
306
307
J0A
309
JUI
311
31~

3P
314
31~
31~

317
31R
319

DE~INt THE GENERAL QI/O FUNCTION CODES • OEVICE lNDEPENO!NT

,MACRO FILIOS SllGBL
,MCALL ,wORO,,OEFINS
,IF ION,<SSSG8L>,<DEFIG>
,,,GBL•l
, I-FF
,,,G8L•0
,t:NOC

GENERAL QI/O QUALIFIER BYTE D~FINITIONS

JNO EHROR RlCOVERY

"' '

, i'IORD 1

I WORD,
,wORO,

IQ,x,0211 ,eee
IQ 1 Q,1002,ro00
IQ,,0!04,000

JQUEUE ~EQUfST IN EXPRESS QUEUE
IRESEHVEO

I E~PRESS DUEUE COMMANDS
1

,WORD,
• 1110~0'
,wORD,
1 wOHO 1

, wORO,

IO,KIL,0121000
IO,HOlll,02210HI
tO,UN\..10421000
IO,LTK,05'°1000
IO,•H",0601000

GENERAL OtVICE HANDLE~ CODES

, ._,OHO,
, wOHO,
, ii.OMO 1

, lllOHO,
,wORO,

to.wLB,"Qlfd,001
tO.RLB,000,002
!O,LOV,0tri>,002
IO,ATT,0001003
IO,DET,000,004

DIRECTORY PHIMITtVE CODES

.w~HcD.
,wt'H~O,

,wo;rn,

IO,FNA,CiHlld,011
IO,RNA,0001013
IO,E.NA,~H'l01014

FILt PRIMlTIVt CODES

, WOHO,
, WORD,
,wOHD,
, l'llOHO,
, WORD,
, lllORD 1

, "''ORD,
,WOHO,
,wORO,
,WORD,
, WORI),
,wOHO,
1 1110RO 1

, l'IOfo/D,

IO,CLN,001t11007
ICJ,ACR,0001015
IO,ACW,00"',016
tO,ACE,000,017
to, DAC, 1iH''"' ia20
IO,Rva,0ei0,021
tG,.-.vs,'°0ia,022
IO.EXT,0Ql0,02J
IO,CRE,~00,024

IO,OEL10001E25
IO,RAT,00"'1026
IO,..,AT,0001027
T0 1 APVd'll~1030
ro,APC,000,ld30

IKILL CURRENT RlQUEST
'l/O RUNDOWN
IUNLOAO I/O HANOLtR TASK
JLOAO A TASK IMAGE ~ILE
IRECOHO A TASK IMAGE FILE

JwRITE LOGICAL 8LOCK
JHEAO LOGICAL BLOCK
ILOAO OVERLAY COISK DHIVER)
IATTACH A O~VICE TO A TASK
IOETACH A DEVlCt FROM A TASK

JFIND FILE NAME IN OIHECTORY
JREMOVE FILE NAME FkOM DIRECTORY
IENTER FILE NA~E IN DlRECTOHY

ICLOSE OUT LUN
JACCESS FOR RE.AD
JACCESS FOR WRITE
JACCESS FOR EXTEND
JDE•ACCESS FILE
JREAO VIRITUAL BLOCK
JwRlTE VIRITUAL B~OCK
IEXTEND FILE
ICRUTE FILE
10ELETE FILE:.
JREAO FILE ATTRIBUTES
l~RlTE FI~E ATT~IBuTE~
JPRlVlLEG~D ACP CO~T~~L
JACP CO~T~OI.

(')
I

\0

QlOMAC • QJOSYM MACRO DEFINITIO MACRO 00710 2~•MAR•75 14123 PAGE ••1

320
321
322
323

,MACRO
,ENOM
,ENOM

FILI OS
FILI OS
FILI OS

A

()
I

I-'
0

QlOMAC • QIOSYM MACRO 0£FINIT10 MACRO oe11e 25·MAA•75 1•123 PAGE 5

32!15
326
327
328
32C)
3J9
331
332
333
334
335
338
337
3J8
33q
340
341
342
343
344
345
346
347
348
349
35'11
351
352
353
35.t
355
3b,.
357
3!>8
359
36A
3bt
362
363
364
365
366
367
368
369
370
371
372
373
374
37~
376
317
378
379
38Pl
381

DEFINE THE QI/0 FUNCTION CODES TMAT ARE SPECIFIC TO INDIVIDUAL OEVlCES

.MACRO SPCIOI SISGBL

.MCALL 1 wOR0 1 ,0EfINS

.IF ION,cSISG8L>,cOEFSG>
11 ,GBL•l
1If'F
,.,GBL•0
,ENOC

0110 FUNCTION CODES FOA SPECIFIC DEVICE DEPENDENT FUNCTIONS

.woRo.
• lliORO.
.wORO.
.1110"0.
.~ORD.

.1110RO I

1 wORD 1

.wOHO.
1 WOR0 1

.wOMO.

.WC'RD.
• \lllORO,
•"'ORD•
• wOkO,
,WORD.
1 wOHD.
.wOHD.
1 WORO.
• wORD 1

.worto.
, 1110RO,
,wORO,
.wOHD 1

.woRo.
,wORO,
, l!IORO,
.1110F~D I
,WORD,
.~ORD,
, ... OHO,
, wORD,
,WORD,
,WORD,
,WORD,
,WORD,
,WORD,
.WORD,
,WORD,
,WORD,
, w·oRD,
.wORO.
• '-!ORD,
,WORD,
,WORD,

rn.wLv, 110,001
IO.wLs,010,001
IO.wNS,0201001
I 0, RLV, 11110 dJ02
IO,RNC,04",002
IO,RAL,ld10i002
IO,RNt,0201002
ro.ADa.2rae,0e2
IO,RH0,0101002
IO,RNS,020,002
IO.CRC,040,002
IO,RlC,111001005
IO,INL,000100~
IO, TRt4,010,00b
I0 1 t(8C,000,006
IO.MOD,1400,01116
IO,HO>C,~10,006
IO.Fox,020,006
ro.SVN,0416,006
IO,RTC,000,007
10,wwo1000,005
IO,SPB,0201005
IO,SPf ,11J401005
IO.EClF,0001006
IO,STC., 1001005
10.sEc,12fd,00f>
to.Rwu,1•0,005
IO.SMQ, 1601005
IO,SAO,IOH,010
ro,sso,000,011
IO,MS0,000,012
IO,SL0,0001013
IO,ML0,000,014
IO,LED,000102•
10,soo,000,025
IO.so1,000,026
10.scs,eru,026
IO,REL,000,021
IO.MCS,000,021
I0 1 AOS10001030
to,cc1,110,ral0
tO,MDl,H0,li!l31
10,oc1,000,el1
IO,XMT,(r>101031

J~RITE LOGICAL REVERSE (DECTAPE)
J(COMMUNICATIONS) wRlTE PRECEOED SY SYNC TRAIN
J(COMMUNICATIONS) WRITE, NO SYNC TRAIN
JREAD REVERSE COECTAPE)
JREAD • NO LOwEH CASE CONVERT (TTY)
JREAO PASSING ALL C"ARACTtRS CTTY)
JREAD WITHOUT ECHO (TTY)
JREAO BINARY HOOE CCARO RlADEW)
JCCOMMUNICATIONS) RtAO, STRIP SYNC
J(COHMUNICATIONS) READ, DONIT STRIP SYNC
J(COMMUNICATIONS) RtAO, OONIT CLEAR CMC
JREAO SIN~Lt CHANNEL (AFC, &001 1 UOC)
JCCOMHUNICATIONS) INITIALIZATION ~UNCTION
J(COMMUNlCATIONS) TERMINATION FUNCTION
JREAD MULTICHANNELS C~UFFER DEFINES CHANNELS)
J(CUMMUNICATIONS) StTMOOE FUNCTION fAHILY
J(COMMUNICATIONS) StT UNIT HALF DUPLEX
JCCOMMUNICATIONS) SET UNIT FULL DUPLEX
JCCOMHUNICATIONS> SPECIFY SYNC CHARACTER
JREAO CHANNEL • TIME BASED
1REWIND CMAGTAPE, DtCTAPE)
JMAGTAPE, SPACE "N" BLOCKS
JMAGTAPE 1 SPACE "N" EOF MARKS
JMA~TAPE 1 WRITE EOF
JMAGTAPE 1 SET CHARACTERISTIC
JMA,TAPE, SENSE CHARACTERISTIC
JREWIND AND UNLOAD (MAGTAPE, OECTAPt)
JMAGTAPE, MOU~T & S~T CHARACTERISTICS
IUDC SINGLE CHANNEL ANALOG OUTPUT
IUDC SI~GLE SHOT, SINGLE POINT
JUDC SINGLE SHOT, MULTI•POINT
IUDC LATCHING, SINGLE POINT
IUDC LATCHING, MULTI•POlNT
1LPS11 WRITE LED DISPLAY LIG~TS
JLPSll WRITt DIGITAL OUTPUT REGISTER
ILPStl READ DIGITAL INPUT REGISTER
JUDC CONTACT SENSE, SINGLE POINT
JLPS11 WRITE RELAY
IUDC CONTACT SENSt, MULTI•POINT
JLP511 SYNCHRONOUS AIU SAMPLING
JUDC CONTACT INT • CONNECT
JLPSll SYNCHRONOUS DIGITAL INPUT
1UDC CONTACT INT • DISCONNECT
J(COMMUNICATIONS) TRANSMIT SPECIFIED 8LOCK ~ITH ACK

QlOMAC • QIOSYM MACRO DE,INITIO MACAO D87ll

382
383
38'
385
386
387
388
389
39f!I
391
392
393
39•
395
396
397
398
399
•0ei
•0t

0 •02
I •0:.

....... •04
•05
•06
•1111
•011
•M9
•1~
•11
•12
•13
•1•
•15
416
•11
118
•19
•2A
•21
•22
•23
•2•

25•MAA•75 14123 PAGE 5•1

.woRo. IO.XNA,011,031

.wOROe to.Hts1IH1u2

.wORD, 10.RCI1H01032

.wORO, to,Rcv1ae.,1032
1 WORDe IO.MD0 11H01033
.woAD. IO,CTI1000103J
,WORD. IO.CON,f1Hll010J3
.WORD, IO.CPR,0101033
.woRo. IO.CAS11U010Jl
.WORD, IO,CRJ10•0,033
.woRD. 10.ceo, 11010Jl
.wnRo. IO.CTA,210,033
,WOAD. IO,GNl,010,035
.woRo. IO.GLI,02111,035
.WORD. tO.GLC,0J0,0J~
,WORD, IO,GRI,11"01035
.WOHO, IO,GAC.0501035
,WOAD, IO.GAN,0601035
• WORD• IO.CSM,070,0J5
,wOffD, I0 1 CIN11001035
, \liOAO, IO.CBN, 1101035
.woAo. 10.ceo, 120.035
,WORD, I 0, OTI 1001111 03•
,wOkO, 10,01s1000,0J•
.wOAO, IO,MOA 1000103•
.woAn. YO.RTI,0HJ1035
.woND, I0 1 CTL,11JHJ10J5
,wOMO. IO.STP.08'111035
.wORD. rn.n110H10J6
•"'ORO. 10.wPe,0•0,001
1 1-0RD. IO.RP8104I01002
.WOHO. IO.SHT,lllll01005
.wOHO, IO,SST,11130,005
.woRo. IO.SEM,0•01005
.woRo. tO.SNM 1050,005
.tiiiORD. 10,CCT ,060,fH5
.llllORO, 10,0CT ,87'1 IH5
,lifOROe I0 1 ESA1lH1011Jb

.MACAO SPCIO-S A
,ENOM SPCIOI
,ENDM SPCIOI

JCCOMMUNICATIONS) TRANSMIT WITHOUT ACK
JLPSll SYNCHRONOUS HISTOGRAM SAMPLING
JUDC CONTACT INT • AfAO
J(COMMUNICATIONS) RECfIVE DATA IN BUFFER SPECIFIED
JLPStl SYNCHRONOUS DIGITAL OUTPUT
IUDC TIMER • CONNECT
JCCOMMUNICATIONS) COMMUNlCATIONS CONNECT FUNCTION
JCCOMMUNICATIONS) COMMUNICATIONS CONNECT NO TIMEOUTS
JCCOMMUNICATIONS) COMMUNICATIONS CONNECT WITH AST
J(COMMUNICAT!ONS) COMMUNICATIONS CONNECT REJECT
J•001 (COMMUNICATIONS) COMMUNICATIONS BOOT CONNECT
J•00l <COMMUNICATIONS) COMMUNICATIONS TRANSPA~ENT CONNECT
J(COMMUNICATIONS) COMMUNICATION~ GET NODE INFO
JCCOMMUNICATIONS) COMMUNICATIONS GET LINK INFO
JCCOMHUNICATIONS) GET LINK INFO CLEAR COUNTlAS
JCCOMMUNICATIONS) G~T REMOTE NODE INFO
J•0~1 (COMMUNICATIONS) GET REMOTE NOD~ ERMOM COUNTS
J•llJ01 CCOMMuN.) GET REMOTE NODE NAMl
J•l~l CCOMMUNICATIONS) CHANGE SOLO MOOE
1•0~1 (COMMUN.) CHANGt CONNECTION IN~lBIT
J•001 (COMMUNICATIONS) CIRCULAR BUFFER NCS
1•01111 (COMMUNICATIONS) CIRCULAR BUFFER DDCMP
JUDC TIMER • DISCONNECT
J(COMMUNICATIONS) COMMUNICATIONS DISCONNECT FUNCTION
JLPS11 SYNCHRONOUS O/A OUTPUT
JUOC TIMER • READ
JCCOMMUNICATIONS) NETwORK CONTROL FUNCTION
JLPStt STOP IN PAOG~ESS FUNCTION
JUDC TIMER • INITIALIZE
1 AX01 • FLOPPY OISK WRITE PHYSICAL BLOCK
I AX0l • FLOPPY DISK ffEAD PHYSICAL SLOCK
JSET "OAIZONTAL TAB POSITIONS
JSfT SPECIAL TERMINATOR CHARACTtRS
JSET TERMINAL MOOE (CHARACTERISTICS)
JSENSE TERMINAL MOOt
JCONNECT TO REMOTE TERMINAL (AUTO OlALOUT)
JDISCONNECT FROM REMOTE TERMINAL (HANGUP)
JtNABLE STATUS AST

n
I

IV

QIOMlC • QIOSYM MACRO ~EFINITIO MACRO 00711 25•MAA•75 1~12J PAGE 8

•26
•27
08
•29
430
01
•32
•33
•3•
•JS
06
•37
4138
09
00
441
442
Ul

••• 445
A46
U1
448
4140
•5~

•51
452
453
•5•
455
4f)6
457
•58
4159
•60
46t
462
463
46•

'

HANDLER ERROR CODES AETUAN£D lN 1/0 STATUS BLOCK ARE DEFINED THMOUGH THIS
MACAO WHttH THEN CONDITIONALLY INVOKES THE MESSAGE GENERATING MACRO
¥0A T~E QIOSYM.MSG FILE

eMACAO
DEF INS
.IF
a MCALL
eIOMG 1

,ENOC
.ENOM

,IOER, SVM,LO,MSG
SYM,LO
GT,SSMSG
.IOMG,
SYflll1LO,cHSG>

.IOt.A,

~110 EAAOR CODES ARE DEFlNEO THOUGH THIS MACRO WHICH THEN INVOKES THE
E~ROR MESSAGE GENERATING MACRO, ERROR CODES •129 THROUGH •256
AR£ USED IN THE QIOSYM.MSG FILE

.~ACRO
Off INS
.IF
,MCAL-1..
el0f1G.
_.fNOC
.ENOM

,QtOE, SYM,LO,~SG
SYM,LO
GT.SSMSG
al0MG 1

SYM,<LO•t~8 1 >,cMSG•

,QIO£,

J CONDITIONALLY GENERATE uATA FO~ WHITI~G A MESSAGE FILE FOR MO ,
a MACRO
,WORD
.uc !Z
.EVt::H
, IIF
aENDM

,IOMG, 8YM 1 LO,MSG
•AO<LO>
AMSGA

LT 1 AOcSSSMAX•<LU>>,SISMAX••A0CL0>
1 l0Mti,

DEFINE THE SYMBOL SYM WHERE LO IS IS THE LOW ORDER 8VTE 1 HI IS THE HIGH BYTE

.MAC~O
OE FINI
.ENOM

1 WORO, SYM,LO,HI
9YM,cAOcH1•410•L0>~
,WOH0 1

....

...
'5
c ..

" .., ..
~ lal .. 0 -
IO >
I lf)O

ac oz
c -"" z: a .
I .,,

N

• -.... • 0

0
a:
u
c
z:
0 -~ -IL
0 -D • CIC • u • c a
z: •
z:
> 19 .,., ISi
0 m ... IS)

0 s
15

-a.
u
c
7:
0 -Cl

C-13

QIOMAC • QIOSYM MACAO OEFINITIO MACAO 01711
SYMBOL TABLE

2'5•MAA•7'; 14 I 23 PA&E 7•1

IE,ABO• t77781 G IE.IFU• 1111•1 G IE.UPN• 111117 G 10.FNA• 114•11 G IO,AWU• 1125•0 G
IE.ACT• 177771 G IE.ILL• 177126 G IE.V£R• l1777• G IO,GLC• 116431 G 10,RtC• 112481 G
If,ADP• 177636 G 1£,ILU• 177641 G IE,WAC• t7774l G IO,GLI• 11642~ G 10,SAO• 014100 G
JE,ALN• 177736 G IE.INS• 177776 G lE,wAT• 177741 G 10,GNI• 116411 G 10,SCS• 113011 G
JE,AST• 177660 G IE.IPA• 177641 G IE.WEA• 177737 G 10,GRC• 116•50 G 10,801• 113110 G
If,8AD• 111111 G IE.ISQ• 1777~3 G IE.WL~• 177764 G 10,GAI• 1164•0 G 10,SOO• 012•11 G
JE,88E• 177710 G IE.IT!• t7764l G IE,2DV• 177720 G IO.GAN• 116460 G IO,SEC• 102520 G
IE,8CC• 117676 G IE, ITS• 177770 G IO,ACE• 00740~ G IO,HOX• 00301'0 G 10,SEM• 1~2440 G
IE,801• t777t• G IE.LCK• 177745 G IO,ACA• 006410 G IO.HIS• 015000 G I0 1 SHT• 112•11 G
IE,8DR• 177716 G IE,LNL• 177646 G IO,ACW• 007000 G IO,INL• 002411 G 10,SLO• 115410 G
I~.BDV• 177711 G fl.MAK• 177721 G IO.ADS• 014000 G ro.ITI• 011010 G IO.SMO• 0I02b6ll G
tf,8MO• t77700 G IE.MOO• 177753 & IO.APC• 014010 G IO.KIL• 011112 G 10,SNM• H2•50 G
IE,BLB• 177672 G IE.NBF• 177731 G IO.APV• 014010 G IO.LED• 012HI G 10,SPS• 182420 G
It,BLK• t77754 G It.NB~• 177727 G IO.ATT• aet•ero G 10,LOV• 01151010 G I0 1 SPF• 0i12•40 G
IE.BNM• t777t2 b YE.NOR• 177670 G IO,CAS• 015•20 G IO.L. TK• 001050 G IO,SSO• 104•00 G
tE.BTf • t77664 G IE,NFI• 177704 G IO,CBD• 016520 G IO.MCS• 013400 G IO,SST• 002430 G
IE.8TP• t77725 ' tE,NFW• 177673 G 10,CBN• 01651~ G IO,MDA• 0U50H 11 IO,STC• 002500 G
tf.BVR• 1777~1 G TE.NLN• 177733 G 10,CBO• 015~10 G IO,MDl• 114410 G IO,STP• 116400 G
lf.SVT• t711~~ G Il.NNC• 177o6J G IO.CCI• 014000 ' IO,MOO• 015400 G 10,SY~• 003040 G
Jt.CKP• t77766 G JE.NNL• 177662 G tO,CCT• 00246~ G IO I MLO• 006000 G IO, TRI,.. IH24U G
It,CKS• t17742 G It.NNN• 171b74 & IO.CIN• 016500 G IO,MOO• 003018 G IO,UNL.• 000042 G
JE,CLO• 177732 G tE,NOO• 177751 G IO,CLN• 003400 G 10,MSO• 005000 G IO,wAT• 113410 G

() JE,CNw• 177667 G IE.NSF• 177746 b IO.CON• 015400 ~ IO.RAL.• 00t0U G IO.wL8• 000400 ~
I IE,CO~• 1777~2 G IE.OFL• 111b11 G IO.CPR• 015410 G 10,RAT• 013000 G IO,wLS• 100410 G,

tf,DAA• 17777~ G JE.ONP• 177773 G 10.c~c· 0010•i0 G 10,HBC• 003H0 G IO.~LV• 0~0500 G ~
IE,OAO• 177763 G IE,OVR• 177756 G IO,CAE• 012000 ' 10,HCl• 11500~ ~ l0 1 WNS• 1004"20 Ci
JE,OFU• 17775~ G IE,PRl• 177760 G IO,CRJ• 015440 G IO,RCV• 01501~ G IO, wPti• H0440 G
JE,UNA• !77771 G JE,HAC• 177724 G IO.CSM• 016470 G IO,RD~• 001210 G IO,wVB• 111000 G
Il,ONR• !77175 G IE.RAT• 117723 G IO,CTI• 015400 G IO,RO~• 001~22 G IO,XMT• 01440~ G
IE,OU~• 177767 G tE,AffG• 177730 G IO,CTl• 016410 G 10,REL• 013411 G 10,XNA• 114410 G
IE,OUP• t711~7 G !E.,RCN• 117722 G 10,CTR• 015610 G IO,~MO• 101010 G IQ,Q • llJHH2 G
IE,E~F• 1777~6 G JE,RER• 177740 G 10,0AC• 01000~ G 10.RLd• 001000 G IQ.X • li08Hl G
IE,fOT• 1777~2 G tE,RNM• 177715 G IO.OCI• 014400 G tO,RLV• 011Ul0 c, IS,8V • 100015 G
IE,EOV• 17776~ G IE,~SU• 177757 G tO,OCT• 10247~ G 10,HNA• 00540~ G IS,CLR• 100010 G
tt,EXP• ,11665 G JE,SOP• 177635 G 10,0EL•. 012400 G IO,MNC• 001040 G IS,CR • 006401 G
IE,FE~• t77717 G IE.SNC• 17773~ G IO.DET• 002000 G I~ 1 RNE• 101020 G IS,ESC• 115411 G
IE,FHE• f 777~5 G IE,SPC• 177772 G IO,ots• 116100 G IO.RNS• 011020 G IS,PNO• 111080 G
IE.FOP• 117713 G JE,SOC• 177734 G IO,OTl• 816001 G IO,HP8• 0110•0 G lS,SET• 101012 G
IE,HFU• 177144 G If.SAE• 177762 G JO.ENA• 186188 G 10,HTC• 003409 G IS,SPO• 111112 '
IE.HWN• 177172 G IE.STk• 177796 G IO.EOF• ee3ee0 G 10,HTI• 116400 G IS,SUC• 801011 G
IE,lDU• 177644 G IE,TMM• 177671 G IO.ESA• 012510 G 10,RTK• 111860 G QI,VER• 18138• G
IE.lEF• 177637 G YE, TMO• 117666 G IO.EXT• 111408 G IO,RV8• 111411 G SIMSG • IHHI
IE,lFC• 111116 G JE,ULN• 177173 G IO,FOX• 083120 G 10,AWD• 112410 G ,,,GBL• 1eaa01

• ASS, QhH!000 fH0
CIJ0fl0H Ht

ERRORS 0£lfCTEOI 0

FREE CC'IRf I 5b69, wo~os
,~P1•lt56,1J3J0IOMAC,Tt1

APPENDIX D

DIRECTIVE PARAMETER BLOCKS

D.l QUEUE I/O

A 6- to 12-word DPB of the following format is used for the Queue I/O.

•'t U. uu UlC (u 1 • J l.)l:'d S.Llt:. lb• 1 d,
lfv I.). Ul 1/U f lJtK .l .1.Ut'4 Cuvl':..,
1'1 l). Ut LUI'~,

,~ l). UJ l i:; t• j~ J ~ (!JIHUKin:J,

'" L) •
u<t l AUU~t:..S.S Ur i/L) S'l'A'l'US bLUC.:KJ,

NL)• u~ l 1/U UU1'4C: AS'l' St:..KvlC.:t:: l:.1'4 lt< ~ PUlN 1' J ,
;., u. uo t-'AKAMt.H.H # 1 ,
1-wU. ul PAKA1'1t.It.R 11' ,
lfv l). lU t-'AkAMl:::ft.K #3,

'" L). l l l:'At<Af•1t:.. lt.K I"''
... u. u t>ARA:'1~ft..K I! :, ,

lfv I.) • u t->AkAMt:. ft:.H # b.

D.2 QUEUE I/O AND WAIT

A 6- to 12-word DPB of the following format is used.

... u. uu U.lC (u j. J bi Ut>d Sl~t:. lo•lt),
"'LJ. Ul 1/U r Ut-vC l llJN CUUl':..,
.... u. u.: LUN,
ff J. UJ Lt.r 1~1 Ill lPIHUtUBJ,
WU. uq lAJUkt.6.S Ut' l/U ~>l'Al'US bLl.JCK],
1"IU. u~ l !IU UUi'4C.. ASL' .St:..K~1CI:. l:.N'ft<l PUlN lJ,
'" l).

uo PAkAMt::lt:;.K I l ,
w 1). u I PAkA:-1t:.l't:.~ # J. I

IN I.)• lu t:-' AKAl•1l:. lt:;r< # j,
.,. i). ll PAt<AMt.l't.K II 'i '

'" L.J. 1.: t:-'AKA1-Wit. J.'t..K I!:>'
•'WU• 1 J t-'AHAMc.'It.K lb.

D.3 GET LUN INFORMATION

lfv u. uu
'"I.). u l
,.. U. Ui.

D.4 ASSIGN LUN

irvu. vu
... u. 01
·'IU • Ui.
hU • VJ

UlC (U~.) ~ LJ~d Sl~t:. l3.),
LUN,
AUUkt::.S~ U~ SlX·~UHU bUff t:.H.

UlC (UJ.J ~ LJl:'d ~llt:. (4.),
LUGlCAL UN11 NuMblH,
PHYSICAL Ut:.VlCt:: NAM~,
PttiSlCAL UtVlCt UN!T ~U~blk.

D-1

0.5 ALTER PRIORITY

A 4-word DPB in the following format is used.

·".J L). uu IJ J.C (vO:I.) 6r IJPtS .s J.tt; l 4.) •

"''I). vl -~ i'A~I\ 1~AM~ U-lt<~'I' HA Lr'),

'" l). 0111! TA~f\ 1'4A1~I:; l~t.:CUl'W HA,L,f).
141.). VJ lASf. PKlllt<.i'H.

O. 6 REQUEST

A 7-word DPB in the ·following format is used.

wu. vu
WI). Vl
... u. Ui
~l). (Jj

t4U. v4
WIJ. U~

~I.)• VO

D. 7 EXECUTE

lHC ll 1.) '6. LiPli SH,c; (7.),
fASK NAM~ (tlHbT HALf),
tAb~ NAM~ lS~CU~U HALt·J,
lPAHflIJ.U~ ~AM~ lflH~T hALY)J,
(~Ak'llllUN NAMt. lS~CU~U hALt)J,
lt'Hll>Hll~J,
(UlCJ.

A 7-word DPB in the following format is used.

~v lJ • Uv L> lC (lJ.). & Ut>b ~H.t; (7.) ,
"4 lJ. 01 1' A61\ NAM!:; (f!K.S"f HALt) ,
WiJ • u I. f A:)I\ NAMt; (~l:.i.;Ul'W HAL.if),
WI)• uJ (P At< 1' l l 1 l) I~ NAMt.. Ci'l~Sl HALf)J,
~'ii,) • O<t l~Atn i'l'.lU1~ ~AMc; l St;CUNO HAlJi') J ,
~.., u. v~ l ~to< iUkJ.'l x J ,
WlJ. Oo l ~ lC J •

0.8 SCHEDULE

A 13-word DPB in the following format is used.

~L>. OU LJiC l l ~.) ~ Ul'b ~J,Za:; (13.),
ri• IJ. (J i. '!ASK NAMt; lf lt<SI ttA!Jf) ,
ttU. vi. 'i AS1' NAMt. lSl:.CUNO HAt..f),
14 L). OJ lPAH'!'.LTlUi~ NAMt:. lflt<Sl' HALE)J,
ii i.J. v4 li-'Ak'i !l.lUN NAM~ (:;r..cuND hALt·) l ,
v~u. o~ lc'tHUt<l'i'X J,
wu. VO Lu lC J ,
wV I). 01 ~CHtUUi,,t; iilJUI-<~ (O•lJ),
iN u. lU SCHE:;t.iUJ.,t:; Mi1~u1·~~ (0-~IJ),

WU. 11 ~Ct1~1.HJ1'C: .l)l:.l:t)1Wi> (0·!:>~),

II LJ • l~ oCHllJULt.: ClC~S (0•3~J,

Wt)• lJ l Kl:.•~C Ht:OU,L,t. J.Nlt:t<VAJ,, MAGt4J.lUOt:.J,
... (). l4 l t<~·SC ttt.uULt; ltHt.t< VAL U~l'!~ (1•4)J •

0-2

D.9 RUN

An 11-word DPB in the following format is used.

wu. 0 \) lJ lC l l 7.) (i, 1.H'tj Slit; (11.),
~L). O! TA.St.. NAMt:; (i' lt<::>'I HALi"),

wlJ • VJ. 1' J\S K ~AME (St.CU NO HALf),
llfU • UJ LPAt:HU'lU1~ NAMt:: (f!HSl' HAL1' l l ,
~ u. U4 (PA H l' 1 'l' l U 1'4 NAMt.: (::>t:;Cut-40 HALI') l ,
WI)• U5 [f)t<lUHLO j,
w l). Ub lulU,
""I). 0 I SCttt.lJULC: L>l:.LlA MAliN.l llJLH:;,
wu. lu SCttt:.L>Ut.d:. Ut:.L.fA UN! lS (1•4),
WI)• l l L .-<1:.-::;c tti:;L>uLt:: lNft:kvAL MAli~ l 'i'lJlJi:. J ,
WU. li l .k i:.;- .SC n t:: lJ U i, E. !a-..11:.H V Ai.t i.JNllS (l•4Jl.

D.10 SYNC

A 12-word DPB in the following format is used.

'" lJ. OU UlC (1 ~. J b. i.Wd ::; l Zt: (l~.),

~u. 01 l'ASl\ NAM!:; O.lHSl HAi,,11) ,

WI)• Ut. TASK NAi~t:; (S t: C LI I14 () HALto) ,

"'lJ. iJ j ll?Ak'i i'l'lUN NAM!:: (fl HST hALF'l J ,
WU. 0" lt'AtU J. T iUt'f NAMt; (~t:.:\.:UNU ttAL~) J ,
IN I)• (J5 LPKlUtU'fX J,
rJU • Vo l J lC J ,
wu • U I .SCHt.UULi:. Ut:.LT A MAliN 11 U lH~.,
~LI• 10 .SCHt.OUJ.,t:.: uc;1.d'A uN1 ·rs (l •4) ,

"'O • l l S 't ilfC ti~UN .l 'lA l iUN UN.1.TS (1•4),

to u. li l Kt:.•.S(. rtt:..LhJLI:; un.:t<VAL MA(,,r-.1 'l UDI:.: J ,
t~ i) • d U<r.:•.:>C nt:.0ULC: Hdt:.kVA1.1 UNll .S l1•4)J.

D.11 MARK TIME

A 5-word DPB in the following format is used.

14U. VU
1tU. Ul
"4i.J. Ui
~U. U.3
wU. Ut.t

DIC liJ.) ~ OPd Slli (5.),
Lt;Vt.Nl' 1'.LA~ 1W1-\bt:R (1:.i'N)J I

TlMt. lNl~HVAL MAGN!tUU~,
f1M~ lNtt.M~A~ U~llS,

LS~Slt.M fMAP ~NikX PUlN1J.

D.12 CANCEL SCHEDULED REQUESTS

A 3-word DPB in the following format is used to cancel all scheduled
requests for an indicated task.

wu. 00
WU• 0 l
wlJ. Oi

urc (2~.) & UP~ SlZ~ (3.),
bCH~OUL~U TAbK NAMI:.: lflHSl HALF),
SCH~UUL~U fAS~ NAM~ (S~CO~D HALF).

D-3

A 5-word OPB in the following format is used to cancel only those
requests issued for an indicated task by an indicated task.

~u. uu U!C (~~.) ~ u~~ SlZ~ (5.),
~u. Ul sc~~UUL~U TA~K NAM~ CflHST HALf),
~u. u~ -~ ~CH~UU~~u IA~~ NAM~ (S~CUN~ HALf'),
~u. UJ lSCHtUUL~~ {A~~ NAM~ (fl~Sl HAL~)J,
~u. u~ l~CH~UUL~H lAS~ NAM~ (S~COND HALf)J.

D,13 CANCEL MARK TIME REQUESTS

A 1-word DPB of the following format is used to cancel all Mark Time
requests made by the issuing task.

~u. vu ~· ul' lil.J ~ u~~ s1i~ ll.l.

A 3-word directive in the following format is used to cancel only
Mark Time request made by the issuing task and that set an indicated
event flag or cause an AST at an indicated location.

~u. uu
~u. Ul
~u. v~

ui~ c,1.l & o~~ s1i~ (J.l,
l~V~~I Y~A~ NUM~~~ ll~N)J,

(A~l &l~V!~~ kUUTlN~ ~N1k¥J.

0.14 CLEAR EVENT FLAG

A 4-word DPB of the following format is used.

wU. UU
~u. Vl

vlC lJl.J ~ u~b s1i~ l2.J,
~VtNl r~A~ ~UM~~H l~~~).

0.15 SET EVENT FLAG

A 2-word DPB in the following fo~mat is used.

~u. vu
~u. U!

ULC lJJ.J & UPd ~ll~ l2.J,
~v~NA t~A~ ~UMd~H (~~-~).

D.16 DECLARE SIGNIFICANT EVENT

A 2-word DPB of the following format is used to read an event flag,
set an event flag, declare a significant event, and to report the
pre-event flag polarity.

hU. U0 -~ UlC (J~.J ~ U~~ ~li~ (~.),

~u. Vl -- ~v~N! ~~A~ NUMU~~ l~~~J.

A 1-word DPB in the following format is used to declare a significant
event.

D-4

D.17 READ EVENT FLAG

A 2-word DPB of the following format is used.

ulC l31.J ~ UPb SlZ~ l~.),
~~l::,~J ~LA{., ~UMb~K (t.~~).

D.18 READ ALL FLAGS

A 2-word DPB of the following format is used.

·~ lJ. 0 u
fl L.). u l

1Hl l3'1.) bt UPb SJ.~t, U.),
AU0K~,:)~ l~lH[UAL) Uf b4•bll bU~f~~.

D.19 WAIT FOR SINGLE EVENT FLAG

A 2-word DPB of the following format is used.

~u. u v
I'll). Vi

OlC (~l.J ~ UPM Slt~ (~.),

c:vun FLA~ !'4lJ1•lbt.K (t:.H-.).

D.20 WAIT FOR LOGICAL OR OF FLAGS

A 3-word DPB of the following format is used to wait for event flags
of sets 0, 1, 2, or 3.

w'iU. UV
.-iL). Ul
~u. Ui.

uH:: l43,) (I& UP8 s1i~ (J.),
.:>t.J lfW.lCATlJ;.{ (u, 1, J., 3),
,:;txl~~~ iLA~ MAS~ ~URU.

A 5-word DPB of the following format is used tQ wait for event flags
of set 4.

ff l). uu lJ J.C (43.J ~ UPu s J. i.t. (~. J ,
1'o U • Ul l"'ASK wurW f U~ f LA(;S l•lo,
1•1 l) • ui. NA.SI\ wUt<l) f UH. f LAliS 17•32,
t1U. Uj I~ A.SI\ 11\UtW l"uH. r·LA~S B-4~,

!i u. u~ •'1 A.::) I\ WUKI) l'lJK r· LiA<..S 49•b4.

D.21 WAIT FOR NEXT SIGNIFICANT EVENT

A 1-word DPB of the following format is used.

l"U. UV 0.i.C l4~.J ~ UPu Sll~ Cl.).

D-5

D.22 $USPEND

A 1-word DPB of the following format is used.

wu. 00 UlC l~~.J ~ OPli SlZt (1.).

D.23 RESUME

A 3-word DPB of the following format is used.

wl) • UV OlC l 4 I.) ~ IJPU s l l.t. l J.) ,
wl) • 01 'l'A~I\ N"1'lt:; ll' ~K~f HA1.ir·),
~-vu. Vi ·- TAS~ l\IAMi:: (St;CUt~O HALf).

0.24 EXIT

A 1-word DPB of the followipg format is used.

wu. UU ~- UlC l~l.J ~ U~d Sl~~ Cl.).

0.25 EXITIF

A 2-word DPB of the following format is used.

~u. OU -- UlC (~j.J ~ u~~ s1i~ (2.),
wU. Vl ~V~NT ~~A~ NUM~~H.

D.26 GET TIME PARAMETERS

A 2-word DPB of the following format is used.

vvu. vu
wµ. Ol

OlC Col.J ~ OP~ Sli~ l2.),
Avo~~s~ Ul' t$- u1w dur·n:.k.

D.27 GET TASK PA~TERS

A 2-word DPB of the following format is used.

~l>. vO
~IJ. Ul

U1' (oJ.J 6r U.,~ SlZ~ (2.),
AUUk~~~ Uf Sl'l~~h ~UHO bUff~H.

D.28 GET PARTITION PARAMETERS

A 4-word DPB of the following format is used.

ti I). ViJ UlC lb~.) 6r 1).,~ Sil~ (4.) ,
""L). \) l LPAk'l'llJ.UN NAMt; Ct"lt<Sl' HALF)J,
WU. U..! l iJAk l' l HI.JN NAMt:; CSJ::COND HAL~JJ,
wo. OJ AUuk~S~ Ut0 'l'HKt;t!: wUHIJ .bUH.l:.R •

D-6

D.29 GET COMMON BLOCK PARAMETERS

A 4-word DPB of the following format is used.

..vO •
"I).
~-~ l) •

~L).

vu
Ul
Ui
UJ

ulC lb7.) ~ UPb s1i~ (4.J,
CUMMU~ tiLOCk NAMc; (flHST HAL~),
CUM~UN bLUCK NAM~ (S~CONU HAL~),
AUUH~SS U~ ~l~rlt WUKU bU~f~k.

D.30 SEND DATA

A 5- to 8-word DPB of the following format is used.
~u. UU UlC (11.) ~ UP~ SlZ~ l5.·8.),
~u. U! H~C~l~c;H TAS~ NAM~ (flkSl hALf),
~u. Ui H~C~1vc;H !ASK NAM~ (~~CONO hALt),
~U. UJ AUUH~S~ Uf UATA bLUCK,
~~U. U4 lt:;Vt.NT l"LAG NUMt3.Et0,
wu. U~ [bUFFEH SlZ~ • l·i~~.J,
wu. vb Lt>klUHln ur- seNOJ,
wu. U/ LH~C~IVEH f1l.

0.31 SEND AND REQUEST OR RESUME

A 9- to 12-word
wl) • OU
wu. Ul
wu. o~
~i). UJ
;NI.). 0"
Wt)• o~

~u. Ob
wO. U7
tJ l). 10 .--
ltj l). 11
~l). 1~
~u. 13

DPB of the following format is used.
ulC C7J.) ~ UP8 SlGi:. (9.·1~.),
RECElVt.k !ASK NAM~ (flkST HALf),
M~CElVt.H lASK NAM~ (SECU~U MALt),
lPAHllT!UN NAM~ (~lkSl HALf)J,
l~ARlltlUN NAME (S~CUND HALf)J,
lt:>HIUR.U.'X J,
lUlCJ,
AUUH~SS Uf UAIA bLUCK,
l~Vt.Nl ~~A~ NUM~t.HJ,

ltiUff~k SlZ~ - 1•25~.J,
li-'HluR!l' t Ui" ~t.t'40J 1

lH~Cl:.1 Vt:~ 'l'lJ.

D.32 RECEIVE DATA

A 4- to 6-word DPB of the following format is used.

v>tlJ. OU
WU. 01
~u. Oi
wu. OJ
wu. 04
WU• U::>

U!C (7~.) ~ uPb Sli~ (4•b),
lSENU~~ TASK ~AMl (fl~SI HALf)),
lS~NUtK tAS~ ~AM~ (S~CUNU hALf)J,
AUDH~SS Uf bUff~H.

lbU~ft.K S1Z~ • 1~2~~.J,

L~uc. t~ S1Uk~ TlJ.

0.33 RECEIVE DATA OR EXIT

A 4- to 6-word DPB of the following format is used.

wu. UU OlC (77.J ~UP~ Sl~l (4•b),
~U. Ul •• lS~~U~K TASK NAM~ (f1HS1 HALt)J,
wO. Ui [SENU~H fAS~ ~AM~ (S~CU~U HALF)),
~U. UJ AUUH~bS Of dUff~R.

NU. U4 l8Uf~~K S1Z~ • l•l5~.J,

wu. u~ LLUC. tu SIUK~ ill.

D-7

0.34 RECEIVE DATA OR SUSPEND

A 4- to 6-word DPB of the following format is used.

~·· u. u u
1\U. Ul
1'd). u I.
~u. uJ
1·H.1. U 't
1•; l). u ~

D.35 ABORT ---

u1c l7~.J ~ u~u ~''~ C4•b),
l~~~Utk lAti~ ~AM~ (flHST HALf)J,
LS~~UtH fAtiK wAM~ (~~CU~U HALf)J,
ALJUt<t;S~ Ut' tjUtff~~.

l~~t'~t~ ~ii~ - 1•J3~.J,
lLU(. tu ~1UH~ flJ.

A 3-word DPB of the following format is used.

~u. uu -· u1c C~J.J ~ u~~ s1i~ CJ.J,
~v. Ul fAS~ ~AM~ lt1K~l HA~f),
w"U• 1.J'J, l'A.:i!J.. ~A1111t:. (.;~t;UNIJ tfAl,,~).

D.36 FIX-IN-MEMORY

A 3-word DPB of the following format is used.

1411). 1)1,)

... u .. 0 l

..... L). \)I.

D.37 ~

UlC l8~.J ~ u~u &!'~ CJ.),
lA~~ ~AM~ l~ikSf HA~fJ,
fAS~ ~AM~ (b~C~NU riALr> •

A 3-word DPB of the following format is used.

~u. uu UlC (~1.) ~UP~ s1i~ Cl.),
~u. Ul •• IA~~ NAMt l~lHSf HALYJ,
~u. u~ fAbK NAM~ l~tCUNU HAL~).

D.38 DISABLE

A 3-word DPB of the following format is used.

~lJ. vu
~u. u 1
~u. vi.

D.39 ENABLE

01c c~1.J ~ u~~ size cJ.J,
lA~~ ~AM~ (~lk~l HALf),
!AS~ ~AM~ (S~~u~o HALf).

A 3-word DPa of the following format is used.

~I). 00
,,, I). 0 .1

~L). 04'

ulC (~3.J ~ U~d Sil~ C3.J,
IASK ~AM~ (fl~ST rlA~f),

lA5~ NAM~ (~~CU~D HALf).

D.40 DISABLE CHECKPOINTING

A 1-word DPB of the following format is used.

i"<U e uu

D.41 ENABLE CHECKPOINTING

A 1-word DPB of the following format is used.

~o. uu

D. 42 INHIBIT AST. RECOGNITION

A 1-word DPB of the fol'lowing format is used.

1•n). IJ U ulC (9~.J & UPd s1i~ (1.).

D.43 ENABLE AST RECOGNITION

A 1-word DPB of the following format is used.

~u. uu OlC llUl.J ~ UP~ Slil (1.),

D.44 SPECIFY SST VECTOR TABLE FOR DEBUGGING AID

A 3-word DPB of the following format is used.

l'I L). \,) u
hi). Vl
1•,u. U~

UlC llOJ.J ~ uP~ ~l~~ (J,),
AUUHtbS Uf ~Sl ~EClUH TA~~~.
NUM~~~ U~ lA~~~ ~NTHl~S ld),

D.45 SPECIFY SST VECTOR TABLE FOR TASK

A 3-word DPB of the following format is used.

¥'1 u. () u
~'I;,) • I,) 1
..., l;. u J.

01~ llu~.) & LJ~~ SlZ~ (J.),
AUUMt~~ Uf s~r vlClUH lAbL~.
~UM~~H UY 1AtiL~ ~~~Hl~b (ij),

D.46 SPECIFY RECEIVE AST

A 2-word DPB of the following format is used.

•'YU• UU
~LJ. Ul

01c llU/.J & o~~ 5!~~ (i.J,
LA~1 b~HVlC~ ~N1Ht ~U1N1J.

D-9

D.47 SPECIFY POWER FAIL AST

A 2-word DPB of the following format is used.

nu. 00
~LJ. Ul

Ul~ llU~.J & OPb SlZ~ (~.),
(ASl Sl:.t<'V lCt:;. i:;NlRi PlJlt-.TJ,

D.48 SPECIFY FLOATING POINT EXCEPTION AST

A 2-word DPB of the following format is used.

wu. uu
-hu. ul

UlC (111.J ~ U~d SlZ~ li.),
lASt Sl:.~ViC~ l:.NTRX PU!NTJ.

D.49 AST SERVICE EXIT

A 1-word DPB of the following format is used.

"4LJ. I)\) UiC (11~.) & U~d SlZ~ ll.),

D.50 GET SENSE SWITCHES

A 1-word DPB of the following format is used.

~u. vv ulC CllS.J ~ uPd SllE Cl.).

D.51 GET MCR COMMAND LINE

A 41-word DPB of the following format is used.

~u. vu
14V. U 1

UlC (lll.J & UP~ SIZ~ (41.),
flHSl ~UHO Uf 8U·b~T~ bUYt~~.

D-10

INDEX

ABORT TASK {ABRT$) , 3-14
ALTER PRIORITY {ALTP$) , 3-15
ASSIGN LUN {ALUN$) , 3-16
AST SERVICE EXIT (ASTX$), 3-17
Asynchronous system trap {AST) ,

4-17
Asynchronous system trap queue,

2-8

Batch conunand buffer, 2-8

CANCEL MARK TIME REQUESTS {CMKT$) ,
3-20

CANCEL SCHEDULED REQUESTS (CSRQ$) ,
3-21

C condition code, 3-2
Checkpointable task list, 2-7
CLEAR EVENT FLAG {CLEF$) , 3-19
Clock queue, 2-5
Control of task execution, 2-3

DECLAR,E SIGNIFICANT EVENT (DECL$) ,
3-23

Device handlers, 1-4
DIR$, 3-4, 3-22
Directive conventions, 3-3
Directive forms, 3-4, 3-5

$,
$C,
$S,

Directive implementation, 3-1
Directive status word {OSW) , 3-2
Directive sununaries, 3-8
DISABLE {DSBL$) , 3-24
DISABLE CHECKPOINTING {DSCP$) ,

3-25

EMT 377, 3-1
ENABLE AST RECOGNITION (ENAR$) ,

3-26
ENABLE (ENBL$) , 3-27
ENABLE CHECKPOINTING {ENCP$) , 3-28
Error returns, 3-3
Examples of macro calls, 3-7
EXECUTE {EXEC$) , 3-29
EXITIF {EXIF$) , 3-30
EXIT {EXIT$) , 3-31
Executive trap service routines,

4-6

Fixed task list, 2-8
FIX IN MEMORY {FIX$) , 3-32

GET COMMON BLOCK PARAMETERS
(GCOM$), 3-33

GET LUN INFORMATION (GLUN$) , 3-35
GET MCR COMMAND LINE {GMCR$) ,

3-36
GET PARTITION PARAMETERS (GPRT$) ,

3-37
GET SENSE SWITCHES (GSSW$) , 3-38
GET TIME PARAMETERS (GTIM$),

3-39
GET TASK PARAMETERS (GTSK$) , 3-40
Global conunon directory, 2-6
Global flags, 4-2

INHIBIT AST RECOGNITION (IHAR$),
3-42

Interrupt connect node, 2-7
I/O operations, 2-9
I/O request queue, 2-6

Local flags, 4-3

MARK TIME (MRKT$) , 3-43
MCR conunand buffer, 2-8
Memory management, 1-2, 2-1
Memory required list, 2-7
Multiprogramming, 2-3

Node pool, 2-7

Partitions, 2-2
Physical unit directory, 2-6
Processor priorities, 4-9
PSECT, 3-5

QUEUE I/O (QI0$) , 3-44
QUEUE I/O AND WAIT {QIOW$) I 3-47
QIO directives, 2-9

READ ALL FLAGS {ROAF$) , 3-48
READ EVENT FLAG (RDEF$) , 3-49
RECEIVE DATA {VRCD$) I 3-66
RECEIVE DATA OR EXIT {VRCX$),

3-70
RECEIVE DATA OR SUSPEND (VRCS$) ,

3-68
REQUEST (RQST$) , 3-50
RESUME (RSUM$) , 3.-51
RUN (RUN$), 3-52

Index-1

SCHEDULE (SCHD$), 3-54
SCOM, see system communications

area
SEND DATA (VSDA$) , 3-72
SEND DATA AND RESUME OR REQUEST

RECEIVER (VSDR$) , 3-74
SEND and RECEIVE directives, 3-13
Send/receive queues, 2-7
SET EVENT FLAG (SETF$) , 3-56
Shared global areas, 2-2
Significant events, 1-3, 2-4, 4-1 -

4-3
SPECIFY FLOATING POINT EXCEPTION

AST (SFPA$) I 3-57
SPECIFY POWER RECOVERY AST

(SPRA$) , 3-59
SPECIFY RECEIVE AST (SRDA$) , 3-66
SPECIFY SST VECTOR TABLE FOR

DEBUGGING AID (SVOB$), 3-61
SPECIFY SST VECTOR TABLE FOR TASK

(SVTK$) , 3-62
SUSPEND (SPND$) I 3-58
SYNCHRONIZE (SYNC$) , 3-63
Synchronous system trap (SST) , 4-4
Symbolic offsets, 3-6
System communication area (SCOM) ,

2-2

System directives, 1-4
System lists, 2-5, A-1
System tables, 2-5, A-1
System task directory, 2-6
System traps, 1-3, 2-5, 4-3

Task, definition of, 1-2
TASK EXIT (EXIT$), 3-31
Task partition directory, 2-7

UNFIX (UFIX$) I 3-65
Using directives, 3-4

WAIT FOR LOGICAL OR OF FLAGS
(WTLO$), 3-78

WAIT FOR SIGNIFICANT EVENT (WSIG$) ,
3-77

WAIT FOR SINGLE EVENT (WTSE$) ,
3-79

Index-2

READER'S COMMENTS

RSX-llD Executive
Reference Manual
DEC-11-0XERA-B-D

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient docume<ltation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

0 Assembly language programmer
0 Higher-level language programmer
(] Occasional programmer (experienced)

0 User with little programming experience
(] Student progranuner

[] Non-progranuner interested in computer concepts and capabilities

Name Date ________________________ _

Organization--~-------------------

Street---

City __________________________ state~-----------Zip Code----~--------
or

Country

If you require a written reply, please check here. O·

·--Fold llere--

-- Do Not Tear - Fold llere and Staple ---

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

~nmnnma
Software Communications
P. 0. Box F
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

~omoomo
digital equipment corporation

Printed in U.S.A.

