
IAS

User's Guide

Order No. DEC-11-0IUGA-A-D

IAS Version 1

Order additional copies as directed on the Software
Information page at the back of this document.

digital equipment corporation · maynard. massachusetts

First Printing, December 1975

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or
reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright @) 1975 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM

DECsystem-lo
DECtape
DIBOL
EDU SYSTEM
FLIP CHIP
FOCAL
IND AC
LAB-8

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-10
TYPESET-11

PART

CHAPTER

CHAPTER

1

1

1.1
1.1.1
1.1.2
1.1.3

1.2
1.2.1
1. 2. 2
1. 2. 3

1.3
1.3.l
1.3.2
1.3.3
1 • 3. 4

2

2.1

2.2

2.3
2.3.l
2.3.1.l
2.3.1.2

2.4
2.4.1
2.4.2
2.4.3

2.5

2.6

2.7

2.8

2.9

2 .10

2 .11

CONTENTS

TUTORIAL

INTRODUCTION TO !AS

TIMESHARING
Real-time Applications
Interactive Processing
Batch Processing

!AS COMMAND LANGUAGE
Interactive Commands
Batch Commands
Restricting the Use of PDS Commands

PROGRAMMING LANGUAGES
BASIC
COBOL
FORTRAN
MACR0-11

A SAMPLE INTERACTIVE SESSION

SAMPLE SESSION

INVOKING PDS

PDS COMMANDS
The LOGIN Command
The User Name
The Password

THE CREATE COMMAND
Correcting Input Errors
Cancelling a Line
Closing a New File

THE TYPE COMMAND

THE FORTRAN COMMAND

THE LINK COMMAND

THE RUN COMMAND

THE DIRECTORY COMMAND

THE RENAME COMMAND

THE DIRECTORY/BRIEF COMMAND

iii

Page

1-1

1-1
1-1
1-1
1-2

1-2
1-2
1-3
1-3

1-4
1-4
1-4
1-4
1-5

2-1

2-1

2-4

2-5
2-5
2-5
2-5

2-6
2-6
2-7
2-7

2-7

2-7

2-8

2-9

2-9

2-10

2-11

CHAPTER

CHAPTER

CHAPTER

CHAPTER

2.12

3

3.1
3.1.1
3 .1. 2

3.2
3.2.1
3. 2. 2
3.2.3

3.3

4

4.1
4 .1.1
4.1.2
4.1.3
4 .1. 4
4 .1. 5

4.2

4.3

4.4
4. 4 .1
4. 4. 2
4.4.3

5

5.1

5.2
5.2.1
5.2.2

5.3

5.4

6

6.1
6.1.1
6 .1. 2
6 .1. 3

6.2
6.2.1
6.2.1.1

CONTENTS

THE LOGOUT COMMAND

KEYBOARD OPERATION

THE KEYBOARD
Keyboard Functions
Control Key Functions

CORRECTING INPUT ERRORS
Cancelling a PDS Command
Deleting Individual Characters
Deleting a Line

USE OF UPPER AND LOWER CASE

ISSUING PDS COMMANDS

COMMAND NAMES AND PARAMETERS
Command Strings
Parameters
Parameter Prompts
Optional Parameters
Parameter Lists

ABBREVIATED INPUT

COMMAND AND FILE QUALIFIERS

UNACCEPTABLE COMMANDS OR SYNTAX
Effect of Tasks Run from a Terminal
Subsystems
Error Messages

BATCH PROCESSING

INTRODUC'rION

BEGINNING AND ENDING A BATCH JOB
The $JOB Command
The $EOJ Command

THE SUBMIT COMMAND

BATCH EDITING

FII,P, HANDLING

I N'I'l-:C.JUCTION
IAS File System
volumes
volume and File Protection

FILE SPECIFICATIONS
Defaults
Changing Default Values

iv

Page

2-11

3-1

3-1
3-1
3-4

3-5
3-5
3-5
3-6

3-6

4-1

4-1
4-1
4-1
4-2
4-3
4-3

4-4

4-4

4-5
4-5
4-5
4-5

5-1

5-1

5-1
5-1
5-2

5-2

5-2

6-1

6-1
6-1
6-1
6-2

6-4
6-6
6-7

CHAPTER

6.2.1.2
6.2.2
6.2.2.l
6.2.2.2
6.2.3

6.3
6.3.1
6.3.2
6.3.2.1
6.3.2.2
6.3.3
6.3.4
6.3.5
6.3.6
6.3.7

6.4
6.4.1
6.4.1.1
6.4.1.2
6.4.1.3
6.4.2
6.4.2.l
6.4.2.2
6.4.2.3
6.4.3
6.4.3.l
6.4.3.2
6.4.3.3
6.4.4
6.4.5

7

7.1
7.1.1
7.1.2
7.1.2.1
7.1.2.2
7.1.2.3
7.1.3
7.1.3.l
7.1.3.2
7.1.3.3
7.1.4
7 .1.4 .1
7.1.4.2
7 .1.4 .3
7 .1.4 .4
7.1.4.5
7.1.4.6
7.1.4.7
7.1.4.8

CONTENTS

Displaying Default Values
Wild-Cards
Input Files
Output Files
valid File Specifications

DEVICE MANAGEMENT
System Devices
Accessing a Device
Logical Device Names
Logical Units
The MOUNT Command
The DISMOUNT Command
The ALLOCATE Command
The DEALLOCATE Command
The ASSIGN Command

FILE MANAGEMENT
Cr ea ting Fil es
user File Directories
The CREATE Command
using the Editor to Create a File
Manipulating Files
The APPEND Command
The COPY Command
Remaining Fil es
Listing Files
Listing Files on the Line Printer
Listing Files at an Interactive Terminal
The DUMP Facility
Deleting Fil es
Summary of File Handling Commands

!AS TEXT EDITORS

The Text Editor
Edi ting Modes
Input M.ode
Creating a New File
The INSERT Command
Changing to Edit Mode
Edit Mode
Editing an Existing File
Block Editing
The Line Pointer
Editor Commands
The CHANGE Command
The DELETE Command
The EXIT Command
The FIND Command
The INSERT Command
The LOCATE Command
The NEXT Command
The NP (Next Print) Command

v

Page

6-8
6-8
6-8
6-8
6-9

6-10
6-10
6-10
6-11
6-11
6-12
6-13
6-13
6-15
6-15

6-16
6-16
6-16
6-17
6-18
6-18
6-18
6-19
6-21
6-21
6-21
6-21
6-22
6-22
6-23

7-1

7-1
7-1
7-2
7-2
7-2
7-2
7-2
7-2
7-2
7-3
7-4
7-4
7-5
7-6
7-7
7-7
7-8
7-8
7-9

CHAPTER

CHAPTER

CHAPTER

7.1.4.9
7.1.4.10
7.1.4.11
7.1.4.12
7.1.4.13
7.1.5

7.2
7.2.1
7.2.1.1
7.2.2
7.2.3
7.2.3.l
7.2.4
7. 2. 5

8

8.1

8.2

8.3
8.3.1
8.3.2

8.4
8. 4 .1
8.4.2

9

9.1

9.2

9.3

9.4

9. 5'

10.l

10.2
10.2.1
10.2.2

10. 3

10. 4

CONTENTS

The PRINT Command
The PLOCATE (Page Locate) Command
The RENEW Command
The RETYPE Command
The TOF (Top of File) Command
Error Messages

BA·rCH EDITING
Invoking SLIFER
Obtaining a Listing
SLIPER Output Files
SLIPER Edit Commands
SLIPER Edit Control Characters
Indirect Files
SLIFER Editing Examples

INTRODUCTION TO PROGRAM CONTROL

PROCESSING MODES

INDIRECT FILES

USER LIBRARIES
Macro Libraries
Object Module Libraries

CREATING SOURCE FILES
The CREATE Command
The EDIT Command

BASIC

I NTRODUC'rION

THE BASIC COMMAND

CTRL/C

TERMINATING A BASIC SESSION

EXAMPLE

COBOL

CREATING SOURCE FILES

THE COBOL COMMAND
Command Qualifiers
Compiler Switches

RUNNING A COBOL PROGRAM

DIAGNOSTIC ERROR MESSAGES

vi

Page

7-10
7-10
7-11
7-11
7-12
7-12

7-13
7-13
7-14
7-15
7-15
7-16
7-1 7
7-18

8-1

8-1

8-1

8-3
8-3
8-3

8-4
8-4
8-4

9-1

9-1

9-1

9-1

9-2

9-2

10-1

10-1

10-1
10-2
10-2

10-3

10-3

CHAPTER

CHAPTER

PART

11

11.l

11.2
11.2.1
11.2.2
11.2.3

11.3
11.3.1
11.3.1.1
11.3.1.2
11.3 .1.3
11.3 .1.4

11.4

12

12.l

12.2
12.2.1
12.2.2

12.3
12.3.1
12.3.1.1
12.3.1.2
12.3.1.3
12.3.1.4

12.4

12.5
12.5.1
12.5.2

2

CONTENTS

FORTRAN

CREATING SOURCE FILES

THE FORTRAN COMMAND
Compiling Source Files
FORTRAN Command Qualifiers
Examples

LINKING OBJECT FILES
The LINK Command
Options
Object Modules
Output Files
Example

RUNNING THE TASK

MACR0-11

CREATING SOURCE FILES

THE MACRO COMMAND
Assembling Source Files
Command and File Qualifiers

LINKING OBJECT FILES
The LINK Command
Options
Object Modules
Output Files
Example

RUNNING THE TASK

DEBUGGING
The On-Line Debugging Techinque
user-Written Debugging Aids

COMMAND SPECIFICA'l1IONS

COMMAND FORMAT

DICTIONARY OF PDS COMMANDS

ABORT
ALLOCll .. TE
APPEND
ASSIGN
BASIC
COBOL
CONTINUE
COPY

vii

Page

11-1

11-1

11-1
11-2
11-2
11-3

11-3
11-3
11-3
11-4
11-5
11-5

11-5

12-1

12-1

12-1
12-2
12-2

12-3
12-3
12-3
12-4
12-4
12-5

12-5

12-6
12-6
12-7

P2-l

P2-2

P2-5

P2-6
P2-7
P2-9
P2-ll
P2-13
P2-14
P2-17
P2-18

Figure
Figure
Figure

Table
Table
Table
Table
Table
Table
Table

3-1
3-2

11-1

3-1
3-2
6-1
6-2
6-3
7-1
7-2

CONTENTS

CREATE
DEALLOCATE
DEASSIGN
DELETE
DIRECTORY
DISMOUNT
DUMP
EDI'r
$EOD
$EOJ
FORTRAN
$JOB
HELP
LIBRARIAN
LINK
LOGIN
LOGOUT
MACRO
MESSAGE
MOUNT
PASSWORD
PRINT
PRO'rECT
QUEUE
RENAME
RUN
SE'r
SHOW
SUBMIT
TYPE
UNLOCK

FIGURES

LA30/VT05 Keyboard
LA36/VT50 Keyboard
Steps in Creating a FORTRAN Program

TABLES

Keyboard Functions
Control Key Functions
IAS Device Types
Standard IAS File Extensions
File Specification Defaults
SLIPER Qualifiers
SLIFER Edit Control Characters

viii

Page

P2-20
P2-22
P2-23
P2-24
P2-26
P2-28
P2-29
P2-32
P2-40
P2-41
P2-42
P2-47
P2-48
P2-49
P2-57
P2-66
P2-67
P2-68
P2-70
P2-71
P2-74
P2-75
P2-77
P2-79
P2-81
P2-82
P2-83
P2-85
P2-87
P2-88
P2-89

3-2
3-2

11-6

3-3
3-4
6-5
6-6
6-7
7-14
7-1 7

PREFACE

0.2 MANUAL OBJECTIVES AND READER ASSUMPTIONS

The IAS User's Guide is intended for the person who wants to use the
Program Development System (PDS) Command Language for interactive and
batch processing. Part 1 is a tutorial which explains how to use most
PDS commands; this part assumes no prior knowledge of the !AS system.
Part 2 is a reference section, primarily consisting of a dictionary of
PDS command specifications, which assumes a knowledge of the
information covered in Part 1.

A copy of this guide should be immediately available to any PDS user
working at a terminal.

0.2 DOCUMENT STRUCTURE

The guide consists of two parts.
containing the following chapters:

Part 1 is the tutorial section

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

1
2
3
4
5
6
7
8
9
10
11
12

Introduction to IAS
A Sample Interactive Session
Keyboard Operation
Issuing PDS Commands
Batch Processing
File Handling
!AS Text Editors
Introduction to Program Control
BASIC
COBOL
FORTRAN
MACR0-11

Part 2 is the reference section. It contains a summary description of
command format .and a dictionary of general PDS commands.

0.3 ASSOCIATED DOCUMENTS

Refer to the !AS Documentation
DEC-11-0IDDA-A-D, for a description of all
IAS documents and their readerships.

ix

Directory, Order Number
the available associated

CHAPTER 1

INTRODUCTION TO IAS

1.1 TIMESHARING

IAS (Interactive Applications System) is a multifunction operating
system for the PDP-11/70 and -11/45 computers. !AS supports the
concurrent execution of three processing modes: Interactive, Batch
and Real-time. Real-time applications operate on a priority basis,
while Interactive and Batch tasks are timeshared. This manual
provides a guide to Interactive and Batch processing. Real-time
applications under IAS are discussed in the !AS Executive Reference
Manual - Volume II.

Since timesharing participants or users', simultaneously require the
system resources, they must be prevented from interfering with one
another. Each IAS user has a User Identification Code (UIC) which the
system associates with all the user's timesharing activities and
files. In addition, system software and user programs and data have
protection codes that determine how and if those areas may be accessed
by different groups of users.

Every user identifies himself to the system by supplying a unique User
Name whenever he initiates an interactive or batch job. Interactive
users must also supply a password that has been previously associated
with the user Name.

1.1.1 Real-time Applications

IAS provides the same real-time capabilities as DIGITAL's RSX-llD
multiprogramming system. These capabilities are designed for
applications that require response to physical events as they occur.
Typical real-time applications include minufacturing process control,
laboratory data acquisition, and communications. See the ~
Executive Reference Manual - volume II, for further details.

1.1.2 Interactive Process~

Operating from an interactive terminal, each user may create and run
programs interactively or submit them to a batch stream:
alternatively, the user may exploit other users' programs or standard
programs provided by the system (if his UIC grants him access). Even

1-1

INTRODUCTION TO IAS

though many users benefit from sharing programs and files, the system
preserves the individual user's privacy and shields the activities of
other users.

Interactive processing offers 2-way communication with the computer.
The user initiates activities and remains in control but regulates
those activities according to information that the system feeds back
to him.

The interactive user communicates with the system by typing commands
at the keyboard of a DECwriter or a VDU (Visual Display Unit). The
standard IAS command language for the general user is PDS (Program
Development System), which is described in this manual; but the user
has the option of creating other command interfaces to suit particular
applications.

1.1.3 ~atch Processing

to the batch stream, it can be executed
Under IAS, programs can be created and

then submitted to a batch stream for
hand, all three operations may be done in

Once a job has been submitted
without user intervention.
tested interactively, and
execution; on the other
batch mode.

In batch mode, programs can be compiled or assembled, linked, and
executed; devices can be claimed and released, and messages can be
issued to the operator. All of these services are invoked by the same
commands used for interactive processing. In interactive mode, the
user can store these commands in a file which is then submitted to the
batch processor. Alternatively, the batch commands may be submitted
on punched cards.

Since batch requirements vary from installation to installation, and
even from day to day, the IAS batch facility can be readily adjusted
to meet the needs of a particular installation. For example, consider
a system manager faced with a large number of daytime interactive
users and a number of large batch jobs. The system manager could
allocate 90% of the system's resources to interactive use during the
day, and reverse the allocation at night. This would allow some batch
jobs to be run during the day and some interactive jobs at night.

1.2 IAS COMMAND LANGUAGE

The standard IAS interface for interactive and batch users is provided
by the Program Development System (PDS) •

1.2.1 Interactive Commands

under PDS, interactive users may create, compile, link and run
programs; submit jobs to a batch stream; use various peripheral
devices and obtain information about the system.

1-2

INTRODUCTION TO !AS

PDS is a command interpreter. After PDS is activated at a terminal,
either automatically or by CTRL/C (Control C), PDS invites the input
of a command by issuing the prompt "PDS>". The user must provide
identification to the system by logging in (entering User Name and
password) before beginning interactive activity. After logging in,
the user is able to make use of those IAS facilities allocated to him
by the system manager (see section 1.2.3).

A typical sequence of activities during an interactive session might
involve entering a source program, getting it translated into
machine-executable form, and then running the program. The user
requires the services of a number of system programs to do these
things: an editor to enter the source program and to correct
typographical and other errors; a language translator to convert the
source program into object code; and, for FORTRAN and MACRO programs,
the Task Builder to create an executable task.

Commands input to PDS invoke the services of these programs. PDS
checks to ensure that input commands are meaningful in the current
context. For example, the FORTRAN command may only be issued after a
user has logged in.

1.2.2 Batch Commands

Most batch commands are identical to interactive PDS commands except
that batch commands always contain a dollar sign ($) in the first
position of the line, e.g. $RUN. The batch user, like the interactive
user, can use PDS commands to create, compile, link and run programs,
and to use various peripherals.

An interactive user may create a file of batch commands and submit the
file to a batch stream; alternatively the batch job could be
submitted on cards.

Interactive and batch commands are described in parallel in Part 2.
The parameters of an interactive PDS command may be either prompted
for, supplied as one line (with continuation characters where
necessary) , or issued in a combination of both methods; whereas all
the parameters of a batch command must be supplied as one string,
using continuation characters between lines when necessary. The
command descriptions provide examples of both PDS and batch usage.

1.2.3 Restricting the use of PDS Commands

An IAS user may discover that the system does not allow him to issue
certain commands from an interactive terminal or within a batch job.
This situation can occur because every manager of an IAS System
determines the groups of commands that each user is allowed to issue.

For instance, the manager may decide that a certain user may only
program in BASIC, and therefore allocates that user only the commands
necessary for developing and running BASIC programs.

1-3

INTRODUCTION TO !AS

!AS allows the system manager to control the way the command language
is used so that the installation's work can be carried out as
efficiently as possible.

1.3 PROGRAMMING LANGUAGES

IAS supports several programming languages, including BASIC, COBOL,
FORTRAN-IV and MACR0-11. The MACR0-11 Assembler is the standard !AS
language, whereas translators for the other languages are optional.

Programs in BASIC and COBOL can be executed immediately after
translation, because they produce intermediate code which is run by an
interpreter. FORTRAN and MACR0~11 produce machine-language code and
therefore require the additional step of linking.

1.3.1 BASIC

BASIC is easy to learn and use, and has found wide ac~eptance in
educational, business, and scientific applications. PDP-11 BASIC's
"immediate" mode allows each statement to be executed as it is typed
in; the computer can be used like a desk calculator. Alternatively,
a program can be entered, edited and then run as a unit.

1.3.2 COBOL

COBOL (COmmon Business Oriented Language) is a pseudo-English
programming language designed primarily for business use. PDP-11
COBOL conforms to the American National Standard 1974 level-1 COBOL
standard, with many high-level features. COBOL is an optional feature
of !AS.

COBOL can be used in both batch and interactive applications. For
situations where the terminal is the only input device, PDP-11 COBOL
provides a simple, terminal-oriented line format. Several utility
programs are provided with COBOL, including a report-generating
program and a reformatting program.

COBOL can be used for both interactive and batch processing.

1.3.3 FORTRAN

The FORTRAN (FORmula TRANslation) language is especially useful in
scientific and mathematical applications. PDP-11 FORTRAN conforms to
the specifications of American National Standard FORTRAN (X3.9-1966),
with substantial extensions to that standard.

The FORTRAN system consists of a compiler, a library of functions, and
an object time system (OTS). The compiler produces object code from
the source program. The OTS consists of routines that are selectively
linked with the user's program to perform certain arithmetic, I/O, and
system-dependent service operations. The OTS also detects and reports
run-time error conditions.

1-4

INTRODUCTION TO !AS

There are two FORTRAN systems supported on !AS: FORTRAN-IV and
FORTRAN IV-PLUS.

FORTRAN can be used for both interactive and batch processing.

1.3.4 MACR0-11

The programmer who wishes to work closely with the PDP-11 hardware and
IAS may use the powerful MACR0-11 assembler. In addition to allowing
the user to invoke machine-language instructions, MACR0-11 allows the
programmer to define "macros" which may be invoked to generate
repetitive coding sequencesG The MACR0-11 language can be used both
in interactive and batch processing applications.

1-5

CHAPTER 2

A SAMPLE INTERACTIVE SESSION

This chapter introduces the user to PDS by demonstrating its use in a
typical session at an interactive terminal. Section 2.1 records the
session, which is then described line by line in the following
sections.

The line numbers at the left hand margin of the page are for reference
purposes and are not part of the actual session. Underlining
indicates text printed by the system.

2.1 SAMPLE SESSION

IAS PROGRAM DEVELOPMENT SYSTEM VERSION 01A 21-JUL-75

17:09:08 21-AUG-75

0 2 PDS> LOGIN

03 USERID? CAROL

04 PASSWORD?

05 USER CAROL UIC [200,200] TT05: TASK 160 17:09:21 21-AUG-75

06 PDS> CREATE ADD.FTN

07 TYPE 1

08 1

09

11 2

12

13

14 3

FORMAT(' ENTER TWO NUMBERS')

APPE\\\"R

ACCEP'l' 2, K, L

FORMAT (2 2 \I 5)

PRINT"U

TYPE 3,K+L

FORMAT(' THE SUM IS ',IS)

2-1

A SAMPLE INTERACTIVE SESSION

15 STOP

16 END

17 "z

18 PDS> TYPE ADD.FTN

19 TYPE 1

20

21

22

23

24

25

26

1. FOR~AT ('ENTER TWO NUMBERS')

ACCEPT 2,K,L

2 FORMAT (2I5)

TYPE 3,K+L

3 FORMAT ('THE SUM IS , ,I5}

s·rop

END

27 PDS> FORTRAN ADD

28 ~7:17:41 TASK TERMINATION

29 CORE SIZE 10K CPU TIME 00:10

30 PDS> LINK ADD

31 17:18:38 TASK TERMINATION

32 CORE SIZE llK CPU TIME 12:06

33 J?DS> RUN ADD

34 17:18:51

35 ENTER TWO NUMBERS

36 12, 78

37 THE SUM IS 90

38 ~08160 -- STOP

39 17:19:14 TASK TERMINATON

40 _CORE SIZE 7K CPU 'rIME 00: 00

2-2

A SAMPLE INTERACTIVE SESSION

41 PDS> DIRECTORY

42 DIRECTORY DB0:[200,200]

43 21-AUG-75 17:20

44 ADD.OBJ;l 2. 21-AUG-75 17:17

45 ADD.FTN;l _L_ 21-AUG-75 17-17

4 6 ADD . 'I'S K ; 1 3 2 • £ 21-AU G- 7 5 1 7 : 18

47 TOTAL OF 35. BLOCKS IN 3. FILES

48 PDS> RENAME ADD.*;* ADDTWO.*;*

49 PDS> DIREXCTORY/BRIEFnU

50 DIRECTORY/BRIEF

51 DIRECTORY DB0:[200,2001

52 ADDTWO.OBJ;l

53 ADDTWO.FTN;l

54 ADDTWO.TSK;l

PDS> LOGOUT 55

56

57

USER CAROL UIC [200,200] TT05: TASK 160 17:23:01

CONNECT TIME 14 M SYSTEM UTILIZATION 12 MCTS

58 BYE

2-3

21-AUG-75

A SAMPLE INTERACTIVE SESSION

2.2 INVOKING PDS

The Program Development System (PDS) provides the standard IAS
interface with the computer. The installation's IAS system manager
determines who may use PDS and decides which terminals will support
it.

Therefore, in order to issue PDS commands at a terminal, a user must
be authorized to do so, and the terminal must support PDS. If these
two conditions have been satisfied, then the following steps should be
taken to invoke PDS:

1. Check that the terminal's power is on.

2. Set the LOCAL/REMOTE switch to REMOTE.

3. Consult installation instructions for additional required
terminal settings and dial-up instructions.

4. Press CTRL/C (that is, type C while holding down the CTRL
key) .

The system responds to CTRL/C by displaying a PDS identifier and the
current time and date. For example:

IAS PROGRAM DEVELOPMENT SYSTEM VERSION 01A 21-JUL-75

18:29:00 28-JUL-75

PDS>

The prompt PDS> is then displayed at the beginning of the next line to
indicate that the system is ready to receive PDS commands.

In some instances the user may discover that a terminal is already
prompting for PDS commands even though no one else is currently using
that terminal. A user can then log into the system immediately since
PDS has already been invoked.

PDS is designed to time out after several minutes (the exact number of
minutes depends on the installation) if no commands have been issued
and no program is running. When this happens, the system displays the
messages

TIMEOUT

BYE

The user must then type CTRL/C to re-invoke PDS.

It is possible for PDS to time out while the user is typing a command;
in this case the entire line must be retyped when PDS is again
prompting.

2-4

A SAMPLE INTERACTIVE SESSION

2.3 PDS COMMANDS

2.3.1 The LOGIN Command

Once PDS is prompting, the user initiates an interactive session by
typing

LOGIN <CR>

The symbol<CR>represents carriage return, which may be activated
either by the carriage return key (CR or RETURN} or by the altmode key
(ESC or ALT}. One of these keys must be pressed to terminate a command
string or any other line of input and to transmit the line to the
system. The carriage return key and the altmode key can have
different effects in certain contexts. The differences are discussed
in Chapter 4, section 4.1.2.

2.3.1.1 The user Name - In response to LOGIN, PDS displays the prompt

USERID?

which asks the user to supply his User Name. The User Name is a
unique 1- to 12-character alphanumeric string that identifies the
individual user to the system. The system then determines the user's
User Identification Code (UIC} from the User Name. The UIC determines
whether the user is privileged to read or manipulate any file he
attempts to access. See Chapter 6, section 6.1.3 for further details.

NOTE

The system manager assigns each user a
User Name, which is then registered with
IAS. A user who does not have a User
Name or has forgotten it should consult
the system manager.

2.3.1.2 The Password An additional security measure to prevent
unauthorized access to the system is the user's password. Once the
user has entered a user Name by activating carriage return, PDS
prompts

PASSWORD?

at the beginning of the next line. The user must then type in a 1- to
6-character alphanumeric string, i.e. a password, that has previously
been associated with the unique user Name.

A user may change his password with the PASSWORD command (see Part 2).

Since the purpose of the password is to verify a user's identity, it
should be kept secret. PDS respects the user's private password by
not displaying the characters typed in after the PASSWORD? prompt.

2-5

A SAMPLE INTERACTIVE SESSION

If the password given
user has three chances
and prints the text
and then LOGIN. When
responds by displaying

is incorrect, PDS prompts PASSWORD? again. The
to type the password correctly before PDS exits
BYE. To begin again, the user must type CTRL/C

the user types the correct password, IAS
the following information (line 5):

USER CAROL UIC[200,200] TT05: TASK 160 17:09:21 21-AUG-75

The TASK number is assigned to the session by IAS and is normally
significant only to the system manager or operator who oversees the
running of the whole computer system.

The above line is followed by a new line beginning with PDS> to
indicate that the system is ready to receive further commands.

2.4 THE CREATE COMMAND

After successfully logging in, the user creates a file called ADD.FTN
(line 6). The CREATE command is one of several PDS commands that can
be used to create a file. "ADD" is the filename and "FTN" is the file
extension, which describes the contents of the file. In this case,
the extension indicates that the file contains a FORTRAN source
program.

After terminating the CREA~E command by pressing carriage return, the
user starts to enter the source program lines from the keyboard. The
first typing position on each line is equivalent to position 1 on a
coding sheet or punched card. The various function keys (described in
Chapter 3) must be used to format the lines as required. For example,
the TAB key may be used to skip 8 spaces to position the text "TYPE l"
in line 7. Carriage return terminates each line and moves the typing
position to position 1 of the next line.

2.4.1 Correcting Input Errors

On line 9, the user makes a typing error, corrected by means of the
DELETE key (sometimes labelled RUBOUT). The user presses the key three
times to delete E, P and then P again:

APPE\\\

Each time the key is pressed, the system deletes the rightmost
character on the line. Terminals with an attached printer display a
backslash (\) for each deleted character. Display units actually
erase each deleted character from the screen and move the printing
position to the left.

In this example, the user presses CTRL/R (by typing R while the CTRL
key is held down) to display the corrected text on a clean line (line
10) as follows:

A

2-6

A SAMPLE INTERACTIVE SESSION

The user then completes the line correctly and terminates it as usual
with carriage return.

ACCEPT 2,K,L

On line 11, the DELETE key is used once more to change the third 2 to
I:

2 FORMAT(22\I5)

2.4.2 Cancelling a Line

By mistake the user proceeds to type "PRINT" on the next line, but
then presses CTRL/U to cancel the line and start again on line 13.
CTRL/U (U pressed while the CTRL key is held down) deletes a line that
has not been terminated by carriage return and advances the typing
position to the beginning of the next line. The user can then enter
the text that was originally intended.

PRIN'l'"U

TYPE 3,K+L

CTRL/U is a useful way to correct a line whenever it is inconvenient
to use the DELETE key.

2.4.3 Closing the New File

The last statement of the source program is "END" (line 16). After
entering the last statement, the user types CTRL/Z (types Z while
holding down the CTRL key) to indicate to the system that the file
ADD.FTN is complete. The system displays "z and then prompts "PDS>"
on the next line.

2.5 THE TYPE COMMAND

In response to the prompt (line 18) the user issues the TYPE command
to display at the terminal the file ADD.FTN as it appears after
corrections. The system responds by printing the contents of the file
on lines 19 through 26.

2.6 THE FORTRAN COMMAND

After checking that the source program is correct, the user decides to
run it. But the program must first be translated into instructions
that the computer can understand. The translated source program is an
"object module" of machine instructions.

2-7

A SAMPLE INTERACTIVE SESSION

In IAS, the FORTRAN command is used to translate a FORTRAN source
program. So on line 27, the user types the following:

FORTRAN ADD

In this case the user specifies the file as ADD rather than ADD.FTN.
The FOR'l'RAN command assumes the file extension to be FTN if it is not
supplied.

After translating the program, the system prints the following text on
lines 28 and 29.

17:17:41 TASK TERMINATION

CORE SIZE 10K CPU TIME 00:10

The figures "17:17:41" refer to the time at which the system finished
translating the program. Line 29 shows the amount of memory and CPU
time used. "00.10" indicates that the translation required less than
half a second.

The system automatically places the translated FORTRAN program, now an
object module, in a file named ADD.OBJ. (The file extension OBJ
implies that the file contains an object module.)

2.7 THE LINK COMMAND

FORTRAN programs use a standard set of subprograms to perform certain
functions. For example the FORTRAN statements TYPE and ACCEPT require
the subprograms for input/output functions. The system maintains
these subprograms in object module form so that they do not have to be
translated each time someone uses them.

The purpose of the LINK command (line 30) in this sample session is to
couple the object module contained in ADD.OBJ with the FORTRAN
subprograms that it needs.

LINK ADD

The omitted file extension is assumed to be .OBJ. If there is no file
called ADD.OBJ, the system returns an error message. This might occur
if a user tries to link an untranslated FORTRAN program, for instance.

Lines 31 and 32 display statistics about the completed execution of
the LINK command.

The linked, executable program (the translated program linked with the
required subprograms) is then placed in a file called ADD.TSK. The
extension TSK stands for "task" which is IAS terminology for an
executable program.

2-8

A SAMPLE INTERACTIVE SESSION

2.8 THE RUN COMMAND

The FORTRAN and LINK commands have prepared the source program for
execution. The user then issues the RUN command on line 33 to
activate it.

RUN ADD

Again, the file extension may be omitted. In this case the system
assumes it to be .TSK since only programs in task form can be run.
Line 34 shows the time the program began to run.

The FORTRAN program ADD is interactive; it requests the user to enter
two numbers, then adds them together and displays the result (lines 35
to 37}

ENTER TWO NUMBERS

12, 78

THE SUM IS 90

Writers of interactive programs must remember to prompt the user. If
no prompts appear, the user cannot know what data to enter or at what
point to enter it. This program uses the statements on lines 19 and
20 to display the prompt

ENTER TWO NUMBERS

The user supplies the numbers 12 and 78 on the next line and presses
carriage return to terminate the input. The program then obeys the
program statements on lines 23 and 24 by adding the numbers and
declaring the sum to be 90. The STOP statement (line 25} then causes
the program to stop and the system to print the following line:

JOB160 STOP

The job number is the number assigned to the interactive session when
the user logged in (see line 5).

The information displayed on the next two lines is similar to that on
lines 28, 29 and 31, 32 described in previous sections.

2.9 THE DIRECTORY COMMAND

In the session so far, the user has specifically created one file and
caused the system to create two more, namely:

- ADD.FTN
- ADD.OBJ
- ADD.TSK

The system never automatically deletes a file, so all three must still
exist. Only the system manager or users authorized by the file owner
can delete a file.

2-9

A SAMPLE INTERACTIVE SESSION

The DIRECTORY command (line 41) causes the system to display a list of
the user's existing files. File information is stored in
"directories". Line 42 identifies the user's directory as [200,200].

DIRECTORY DB0:[200,200]

The first 200 identifies the user's group and the second 200
identifies the user's number within the group. The text "DB0:"
indicates that the directory resides on a volume mounted on a disk
drive named DB0:

Line 43 states the date and time that the listing was requested.

The next three lines list the directory information:

ADD.OBJ;!
ADD.FTN;l
ADD.TSK;l

2. 21-AUG-75
1. 21-AUG-75
32. C 21-AUG-75

17:17
17:12
17:18

Notice that ";l" appears at the end of each file name. The number 1
is the file's version number and indicates that each file listed is
the first version of the file. If the user were to issue the command
FORTRAN ADD again, the FORTRAN translator would produce a second
object file called ADD.OBJ;2. Users can either delete old versions or
retain them as security against the loss of later versions.

The value in the second column indicates the number of 512 byte blocks
occupied by each file on the disk. The date and time show when each
file was created. The "C" that appears on the third line between the
number of blocks and the date declares that the blocks within
ADD.TSK;l are "contiguous"; that is, they are physically located one
next to the other.

2.10 THE RENAME COMMAND

The RENAME command allows the user to change the name of a file
without changing its contents or location. The user now issues the
command to rename all three files named ADD at the same time (line 48)

RENAME ADD.*;* ADDTWO.*;*

The asterisks (*) that appear in the above line are the mechanism that
allow the user to specify all three files at once. An asterisk or
"wild-card", is a shorthand notation for "all". ADD.*;* means all the
files that have ADD as a filename, disregarding the file extension and
version number. In this case, ADD.*;* refers to the files ADD.FTN;l,
ADD.OBJ;! and ADD.TSK;l. The user could also refer to these three
files in the following manner:

ADD.*;l

since all the files have the same version number but different
extensions.

2-10

A SAMPLE INTERACTIVE SESSION

The command issued on line 48 changes the files' name from ADD to
ADDTWO. The wild-cards in the text "ADDTWO.*;*" mean that the renamed
files retain their original extensions and versions. The files are
now called

- ADDTWO.FTN;l
- ADDrrwo. OBJ; 1
- ADDTWO.TSK;l

2.11 THE DIRECTORY/BRIEF COMMAND

When the user reissues the DIRECTORY command (lines
system lists the files with their new filenames.
was pressed to cancel line 49 because of a typing
description of CTRL/U in section 2.4.2).

49 and 50) the
(Note that CTRL/U
error. See the

This instance of the DIRECTORY command includes the text "/BRIEF" a
"qualifier" which modifies the action of the command. /BRIEF causes
the system to list only the names of the files and to omit' information
about blocks and time of creation.

Most commands have one or more qualifiers. A slash (/) always
precedes the qualifiers name. When a user specifies more than one,
the slashes sepaarate one from the next, no spaces are allowed between
qualifiers or between the command name and the first qualifier.

2.1.2 THE LOGOUT COMMAND

To end the interactive session, the user issues the LOGOUT command
(line 55). The system then displays user and accounting information on
the next two lines and the text "BYE" on the third line.

The terminal is now inactive and CTRL/C must be pressed to invoke PDS
once more.

2-11

CHAPTER 3

KEYBOARD OPERATION

The purpose of this chapter is to acquaint the user with the
layouts of interactive terminals and to describe the
functions and how to use them under !AS. Instructions on how
into the system and to use PDS are contained in Chapter 4.

3.1 THE KEYBOARD

keyboard
keyboard
to log

The interactive user types data directly into the system from a
terminal (for example, a DECwriter or a display unit} instead of
supplying input data on punched cards or paper tape. The keyboard
layout of an interactive terminal is very similar to the layout of an
ordinary typewriter. The number and letter keys are in the
traditional typewriter format, but punctuation marks, special
characters and function keys may differ in position from one type of
terminal to another (see Figures 3-1 and 3-2).

3.1.1 Keyboard Functions

The user types the input text one line at a time, terminating each
line with carriage return (CR or RETURN} or altmode (ALT or ESC}. The
system either prints the terminal input on the terminal printer or
displays it on the screen of a display unit (except when the user
types a password, see Chapter 2, section 2.3.1.2).

Function keys can be used to format a line (Space Bar, TAB}, to edit a
line (RUBOUT/DELETE}, or to access the uppermost of two characters
that appear on a key (SHIFT, SHIFT LOCK}. The CTRL key, when pressed
simultaneously with a letter key, provides further keyboard functions;
these functions are described in detail in section 3.1.2. Typing a
carriage return (CR or RETURN} causes the system to store the current
line or to carry out some specified action.

Table 3-1 describes the function keys and the effects of their use
under IAS.

3-1

w
I

N

BB@J~~C§JC!J0@JC!J@J0riJ~0
BEJ0~[E:J0@JC8JQJ0[gITJ[IJ~

~B00@J00~~[1J[::JITJ8W
Figure 3-1

LA30/VT05 Layout

~ITJ[!]WITJ~~rnwrnrn~w~ :.~~a

EJ@J~~~ITJ0@JCIJ@J0WITJ~B
I CTRL I ~~~ 0 @] [E:J [£] ~ [8J 0 [KJ CT] D CJ CJ I RETURN I

JsHIFTI 0 0@] 0 ~ ~ ~ ~ ~ rn 1$HIFTI IREPEATI

Figure 3-2
LA36/VT50 Layout

KEYBOARD OPERATION

Table 3-1
Keyboard Functions

!------------~-----------------------------------

CR or RETURN

CTRL

DELETE
RUBOUT

ESC or ALT

LINE FEED or
LF

SHIFT

SHIFT LOCK

SPACE BAR

Description

Carriage return. Transmits the current line to
the computer and performs a carriage return.

When keyed after a PDS command string, it causes
PDS to suppress prompts for parameters that are
optional or can be defaulted.

Is part of several 2-key combinations that produce
a variety of functions. See section 3.1.2.

Deletes the last printed or displayed character or
space. May be used repeatedly.

On a display unit, the current printing position
moves to the left and the deleted character is
erased. On other terminals, the system prints a
backslash (\) for each deleted character and moves
the current printing position to the right.

See Section 3.2

When keyed after a PDS command string, it causes
PDS to prompt for the next parameter (if any).

Has no control effect under IAS.

Prints or displays the uppermost of two characters
appearing on a key typed while SHIFT is held down.
SHIFT has no effect when used with keys that have
only one character.

Alternately locks and unlocks SHIFT mode.

Advances the current printing position one space
at a time.

~--------+---

TAB Causes the current printing position to move to
the next tab stop on the line. A line
conventionally contains tab stops every 8 spaces.

3-3

KEYBOARD OPERATION

3.1.2 Control Key Functions

Typing a character key while pressing the control key (CTRL) invoke~
one of the functions listed in the following table. The combination
of CTRL and another character key is called a control character. In
this manual a control character is written "CTRL/X" where X is the
variable character key.

The effect of a control character sometimes depends on the activity
that the terminal is currently supporting.

Table 3-2 lists all the control characters supported under !AS and
their associated functions.

~ontrol
Character

CTRL/C

CTRL/I

CTRL/K

Table 3-2
Control"Key---punctions

Function

Before a user has logged in, invokes PDS.

Suspends the user's executing task and returns
control to PDS.

Cancels a command if issued between the PDS>
prompt and carriage return.

Causes the current printing position to move to
the next tab stop on the line.

Performs the same action as the TAB key.

Advances the current line to the next vertical tab
stop. Equivalent to a Line Feed.

---------+-------------------------------------...;

CTRL/L

CTRL/O

CTRL/Q

Advances continuous stationery to the next top of
form. Equivalent to a Form Feed.

Alternately suppresses and continues the printing
of logical units of output on the terminal. It
has no effect upon task execution.

Restarts suspended terminal output (see CTRL/S
below) •

3-4

KEYBOARD OPERATION

Table 3-2 (Cont.)
Control Key Functions

Control Function
Character

CTRL/U Deletes the current line. See Section 3.2.2.

CTRL/R Retypes the current line with any deleted
characters removed. See Section 3.2.2.

CTRL/S Suspends printing of current terminal output until
CTRL/Q is pressed.

-
CTRL/Z Terminates a file input from a terminal, that is,

signals "end of file".
-

3.2 CORRECTING INPUT ERRORS

Before terminating a line, the user can correct typing errors or
change the line completely by using RUBOUT or DELETE or CTRL/U.
However, once the line has been terminated and thus transmitted to the
computer, it can be corrected only by means of an editing program.

3.2.1 Cancelling a PDS Command

Typing CTRL/C cancels a PDS command that has not yet been terminated.

3.2.2 Deleting Individual Characters

The RUBOUT or DELE'l'E key deletes individual characters or spaces
beginning with the last one entered and moving to the left. Each time
the key is pressed, the system echoes a backslash (\) except when the
terminal is a display unit. On a display unit, the RUBOUT or DELETE
key erases the deleted characters and moves the print position to the
left.

For example, to change ACCDE to ABCDE, the user presses the RUBOUT or
DELETE key four times to override the characters CCDE. On any
interactive terminal other than a display unit, the string then looks
like this: ACCDE\\\\. The user then enters the correct sequence,
BCDE. The backslashes and deleted characters are not included in the
line transmitted to the computer when it is finally terminated.

3-5

KEYBOARD OPERATION

On a display unit, the same correction sequence appears as follows:
pressing the DELETE or RUBOUT key four times reduces the string ACCDE
to A. The user then types the string BCDE to make the correct
sequence ABCDE. The system displays the corrected line exactly as it
is transmitted to the computer when the user presses carriage return.

3.2.3 peleting a Line

CTRL/U deletes all characters on the line, prints ~U and performs a
carriage return. The user can then enter the text correctly.

For example, if a user types ACCDEFGHI, but meant to type B for the
first C, pressing the RUBOUT key eight times would be tedious and the
result confusing. It would be easier to press CTRL/U and start again.
The latter solution would appear as follows:

ACCDEFGHI ~U
ABCDEFGHI

After using the RUBOUT or DELETE key to correct a line and before
terminating the line, the user can ensure that the final result is in
fact correct. To display the line as it will be sent to the computer,
simply press CTRL/R.

Further corrections can be made at this point if necessary.

3.3 USE OF UPPER AND LOWER CASE

On terminals that are equipped with upper and lower case letters, PDS
commands may be entered in either case. The command is always printed
in upper case no matter how it is entered. The use of lower case as
input data to a program depends on the program.

3-6

CHAPTER 4

ISSUING PDS COMMANDS

4.1 COMMAND NAMES AND PARAMETERS

The user tells PDS what to do by issuing commands at an interactive
terminal or by submitting commands to a batch queue. A command
consists of a command name which describes the action the system is to
take (COPY or LOGIN, for example), usually accompanied by one or more
parameters. Parameters either describe the items on which the command
is to act or further define the function of the command.

Commands can only be entered at an interactive terminal when the
system is prompting "PDS>". Some PDS commands (EDIT and BASIC, for
example) invoke a program that accepts its own set of commands, valid
only while that program is running. In turn, PDS commands are not
valid while that program is running; the user must first return
control to PDS. The specifications of EDIT and BASIC in part 2
describe how to terminate the invoked program's execution.

4.1.1 Command Strings

Batch command strings contain the command name and parameters in a
single or continued line. Interactive users can either supply the
command name followed by the parameters on one line or enter the
parameters in response to prompts (see section 4.1.3 below). In both
batch and interactive mode, when two or more parameters are on one
line, they must be separated by a comma, spaces and/or tabs.

If a command runs to more than one line, a hyphen (-) as the last
chatacter on the line or card causes the command to be continued onto
the next line.

An exclamation mark (!) after the last character of any command line
indicates the start of a comment. The comment text appears after the
exclamation mark. If the comment is to appear on a line that has been
continued by a hyphen, the exclamation mark must immediately follow
the hyphen.

4.1.2 Parameters

The parameters to the COPY command (see Chapter 6, section 6.4.2.2),
which are an input file specification and an output file
specification, can be input in any one of the following ways.

4-1

ISSUING PDS COMMANDS

In interactive mode:

1. PDS> COPY RISE.MAC WORK.MAC

2 • PDS> COPY RISE.MAC ' WORK.MAC

3. PDS> COPY

FROM? RISE.MAC WORK.MAC

4. PDS> COPY RISE.MAC

TO? WORK. MAC

5. PDS> COPY

FROM? RISE. MAC

TO? WORK. MAC

In batch mode:

1. $COPY RISE.MAC WORK.MAC

2. $COPY RISE.MAC,WORK.MAC

3. $COPY RISE.MAC, WORK.MAC

4.1.3 ?arameter Prompts

The LOGIN command demonstrates how PDS prompts for command parameters
at an interactive terminal (See Chapter 2, section 2.2). The prompting
facility greatly minimizes input errors by interactive users who are
unsure of the command parameters.

The more experienced user may be very familiar with the commands and
not need the prompts. PDS therefore suppresses prompts for parameters
that are included on the previous line. For example, the LOGIN
command may be input as follows:

PDS> LOGIN WILSON

PASSWORD?

Because the User Name (WILSON) was typed on the same line as LOGIN,
separated from the command by a space, PDS suppresses the prompt
USER-ID? and displays the next one, i.e. PASSWORD?.

NOTE

The user s password should
for in order to allow
suppress its display.

4-2

be prompted
the system to

ISSUING PDS COMMANDS

4.1.4 Optional Parameters

Interactive PDS commands prompt for both mandatory and optional
parameters. To display the prompt for an optional parameter, however,
the user must use ALTmode (ESCape) rather than carriage return after
the last mandatory parameter. For example:

PDS> MOUNT <CR>

DEVICE? DK: <CR>

VOLUME-ID? CHARLY <ALT>

LOGICAL NAME? AB

where LOGICAL NAME? is an optional prompt.

To suppress the prompt LOGICAL NAME?, the user must press carriage
return after CHARLY. For example:

PDS> MOUNT DK2: CHARLY <CR>

NOTE

Carriage return and ALTmode have the
same effect on a command line when not
used immediately before an optional
prompt.

If an optional prompt has been invoked
carriage return immediately after the prompt.

PDS> MOUNT DK2: CHARLY <ALT>

LOGICAL NAME? <CR>

by mistake, simply press
For example:

Batch users may either omit the optional parameter from the command
string if it is the last parameter, or replace the optional parameter
with two commas if there are further parameters to be specified.

4.1.5 Parameter Lists

Some parameters may be replaced by a list of parameters enclosed in
parentheses and separated by spaces, tabs and/or a comma. Parentheses
are not required, however, when the list replaces a parameter that is
the last or only parameter in the command.

4-3

ISSUING PDS COMMANDS

Examples:

1. PDS> APPEND (FILEA.FTN,FILEB.FTN) FILEC.FTN

2. $DELETE AB.CBL;l, AB.OBJ;l

4.2 ABBREVIATED INPUT

A user only needs to enter enough of a command to distinguish it from
all other PDS commands. All command names can be uniquely abbreviated
to four letters.

For example, the LOGIN command may be shortened to:

LOGI

and still be accepted by the system; but LOG is not acceptable
because it does not distinguish LOGIN from LOGOUT.

4.3 COMMAND AND FILE QUALIFIERS

The command string

PDsi PRINT/DELETE

is an example of the PRINT command (see Chapter 6, section 6.4.3.l).
The command requests the system to output on the line printer the file
specified on the next line, and to delete the file after it has been
printed.

Command qualifiers modify the function of the command. The main
purpose of the PRINT command is to output one or more specified files
on a line printer. To delete the file or files is an option that the
user indicates by specifying the command qualifier /DELETE.

For example, the qualifiers to the FORTRAN command (see Chapter 11
section 11.2), which invokes the FORTRAN compiler, determine the form
of the output generated by the compiler.

Each qualifier may be abbreviated by supplying enough characters to
distinguish it from any other possible qualifiers.

File specifications may also have qualifiers; these qualifiers
describe properties the file has or is to have. For example, the
/PROTECTION qualifier may modify the file specification supplied with
the CREATE command {see Chapter 6, section 6.4.1.2). The qualifier
determines the protection code applied to the newly-created file.

4-4

ISSUING PDS COMMANDS

Example:

$CREATE NEWFILE.DAT/PROTECTION:(SY:RWED, OW:RWED,GR:R, WO:R)

4.4 UNACCEPTABLE COMMANDS OR SYNTAX

There are many reasons why PDS may not be able to execute a command.

4.4.1 Effect of Tasks Run from a Terminal - in IAS terms, a running
program is called a "task". The IAS Executive Reference Manual, Volume
One describes tasks in detail.

When a task is running from an interactive terminal, the user may not
issue any PDS commands until the task has terminated or been
suspended. To suspend the task, the user must press CTRL/C. The user
might then issue the SHOW STATUS command to check on the progress of
the task. Depending on the information displayed, the user would
either issue the ABORT command to abandon the task or the CONTINUE
command to resume execution.

Most PDS commands cannot be issued while a task is suspended at a
terminal. If the user tries to issue an unacceptable command, IAS
displays the message:

COMMAND NOT ALLOWED SUSPENDED TASK

The user must either issue ABORT to abandon the task or CONTINUE to
resume it.

4.4.2 ?ubsystems

PDS commands are not valid when the user is operating within a
subsystem such as BASIC or the Line Text Editor. The user must first
return control to PDS and then issue a PDS command.

4.4.3 Error Messages

When a command fails, PDS displays an error or diagnostic message that
indicates where the problem lies.

The following interactive session includes examples of command
failures and the resultant system responses:

PDS> LOG

*COMMAND NOT UNIQUE

PDS> LOG!

4-5

ISSUING PDS COMMANDS

USERID? SMITJ ----
*USER NAME NOT AUTHORIZED

PDS> LOG! SMI'rH

PASSWORD? (The terminal does not display the password.)

*PASSWORD?

*PASSWORD?

USER SMITH JOB 40 TIME 16:29:10 ll-APR-75

PDS> COPY

FRGr.1£ A$B

~A FILE NAME AND/OR EXTENSION MISSING

*$B IGNORED

PDS> DIRECTORY <ALT>

*A ILLEGAL DEVICE

*ILLEGAL FILE-SPECIFICATION

*: B -- IGNORED

The lines that indicate failure of one sort or another are preceded by
asterisks. The reasons for their occurrence are as follows:

1.

2.

3.

4.

COMMAND NOT UNIQUE - The user did not type enough of the
command to make it unique. The system could not tell whether
LOG was a shortened form of LOGIN or LOGOUT.

USER NOT AUTHORIZED - The User Name (SMITJ) supplied did not
grant the user access to PDS because the user had mistyped
the last character.

PASSWORD? - By repeating the password
indicated that the user SMITH had
password (see Section 3.3.1.2).

prompt, the system
not typed the correct

A FILE NAME AND/OR EXTENSION MISSING

$B IGNORED

"$" is not a valid character within a file specification.

4-6

ISSUING PDS COMMANDS

5. A - ILLEGAL DEVICE

ILLEGAL FILE-SPECIFICATION

:B - IGNORED

"A" is not a valid IAS device name.

Common errors include:

mistyping characters within a command

not leaving a space where it is needed to distinguish between
command components

providing parameters in the incorrect order

specifying incorrect devices

4-7

CHAPTER 5

BATCH PROCESSING

5.1 INTRODUCTION

Almost all IAS commands are applicable to both interactive and batch
processing. Batch users, however, begin and end a job with the $JOB
and $EOJ (End of Job) commands, rather than with LOGIN and LOGOUT (see
Chapter 2). Batch commands must always begin with a dollar sign ($) in
the first position of a line.

Batch users may submit a job either:

1. From an interactive terminal, or
2. Via a card reader

The first method requires the PDS command SUBMIT, which submits a file
of batch commands to the batch processor. The processor queues the
submitted job until all the jobs preceding it in the queue have
terminated. See section 5.3 for a full description of the SUBMIT
command.

When submitting a job via a card reader, the user includes the batch
commands in the input stream.

For example:

$JOB GRAHAM CATJOB 3
$COBOL JOB.CBL
$EOJ

This example invokes the COBOL compiler to compile ~nd run the source
program held in the file JOB.CBL.

5.2 BEGINNING AND ENDING A BATCH JOB

The $JOB and $EOJ commands delimit a single batch job.

5.2.1 The $JOB command

The $JOB command marks the beginning of a batch job. Parameters to
the command consist of, in the following order, the user Name, a job
identifier and a time limit in minutes for the job's elapsed time.

5-1

BATCH PROCESSING

For example:

$JOB CATHY TEST 3

CATHY is the user Name and TEST is the job identifier. The number 3
instructs the system to terminate the job after it has used 3 minutes
of elapsed time.

The User Name is a 1- to 12-character alphanumeric string that is
unique to the individual user: it is identical to the User Name
parameter to the LOGIN command (see Chapter 2, section 2.3.1.1.).

The job identifier is a 1- to 6-character alphanumeric string that
identifies the job.

5. 2. 2 ~rhe $ EOJ Command

The $EO~r command terminates a batch job. It has no parameters.

5.3 THE SUBMIT COMMAND

The SUBMIT command submits a file of batch commands to a batch queue
from an interactive terminal. When batch is activated to process
entries from the batch queue, it begins with existing queue entries
and then processes any jobs submitted while it is still active.

For example:

PDS > SUB MI •r BATCHJOB. CMD

Submit the file BATCHJOB.CMD to the PDS batch processor.

See Chapter 6, section 6.4.1, for instructions on creating a file to
contain the batch commands.

5.4 BATCH EDITING

IAS provides a batch-oriented editor to create and maintain source
language files and data files on disk. This editor, called the Source
Language Input Program (SLIPER) ~ is described in Chapter 7.

5-2

CHAPTER 6

FILE HANDLING

6.1 INTRODUCTION

All the information that is stored in a computer system is held in
logical units called files. A file is defined as an ordered
collection of information. In order to store information, a source
program, for instance, a user must create a file and input the source
program to it.

Any subsequent attempts to access or manipulate the source program
must be made in terms of the file that contains it, that is, by
supplying a file specification. A file specification gives the system
all the details it needs to identify the file: the device on which it
is stored, the directory of the file, the file name, the extension and
the version.

This chapter describes IAS file handling commands and how to use them.

6.1.l IAS File System

The standard IAS file system for disks, DECtapes and magnetic tapes is
the Files-11 system. Files-11 magnetic tapes conform to American
National Standard Magnetic Tape Labels and File Structure for
Information Interchange, X3.27-1969. A detailed description of the
Files-11 file system is contained in the IAS Executive Reference
Manual - Volume II and the IAS/RSX I/O Operations Reference Manual.
Most PDS commands can only operate on Files-11 files.

6.1.2 Volumes

The magnetic media on which files are stored are called volumes, for
example, disks, magnetic tapes. In order to access a file held on a
volume, that volume must be mounted, that is, physically loaded on a
disk or tape drive and connected to the user's task or session by the
MOUNT command (see section 6.3.1). Volumes that do not hold files in
Files-11 format must be.mounted using the qualifier /FOREIGN.

6-1

FILE HANDLING

6.1.3 Volume and File Protection

IAS protects the individual user's privacy and the system's security
by providing a facility to restrict access to a volume. Magnetic
tapes written in Files-11 format have a volume level protection code:
that is, the protection assigned to the volume applies equally to
every file within it. Disks and DECtapes, however, have both an
overall protection code for access to the volume and individual
protection codes for each file within it.

For the purposes of assigning protection codes, IAS defines four types
of access, read (R), write (W), extend (E) and delete (D), and four
categories of user, system, owner, group, world. The protection code
designates the kind of access each user category is allowed. The user
categories are defined as follows:

SYSTEM:

OWNER:

GROUP:

WORLD:

Description

All tasks that run under a system User Identification
Code (UIC) •

All tasks that run under the UIC of the owner of the
file or volume.

All tasks that run under a UIC that has the same group
number as the UIC of the owner of the file or volume.

Any task that does not fit into one of the three
categories above.

The system uses the user Identification Code to determine file
ownership. The system identifies a user's UIC from his User Name.
The code is not necessarily unique to each user.

Volume protection is applied when the volume is initialized by the IAS
system manager and can be re-specified via the MOUNT command (see the
specification of MOUNT in Part 2).

A file's protection code is applied when the file is created and the
code may subsequently be modified by the PROTECT command. If the user
does not explicitly specify a protection code for a newly-created
file, the system automatically applies the volume's default code.

Example:

PDS> PROTECT

FILE? MYFILE.DAT

PROTECTION? (SYS:RWED, WO:, G:RW)

6-2

FILE HANDLING

The example above changes the protection code of the file MYFILE.DAT
so that the system (SYS:) has all four types of access, the world
(WO:) is denied all types of access, the group (G:) has read and write
access, and the allowed access of the owner does not change. This
example illustrates the following rules:

1. The protection code must always be enclosed in parentheses.

2. The four user categories are represented by codes followed by
colons. The codes may be abbreviated to one or more letters.
The codes are:

SYSTEM:

OWNER:

GROUP:

WORLD:

3. The four types of access are represented by single letters as
follows:

R Read

w Write

E Extend

D Delete

4. Each category that is mentioned is allocated the types of
access specified after the code and denied any type of access
not specified; for example, GR:RW gives group members read
and write access only.

If no types of access are specified after a category, all
types of access are denied to it, for example, WO:

5. Any category not mentioned keeps the access privileges
previously allocated to it.

6. The user categories and types of access may be specified in
any order.

6-3

FILE HANDLING

6.2 FILE SPECIFICATIONS

A file specification provides the system with all the details it needs

to create a file

to identify an .existing file stored on a volume

to read a file from or write a file to a device such as a
line printer or a card reader

The basic format of a file specification is as follows:

where

dev: [ufd]name.ext;ver

dev:

[ufd]

n~e

ext

ver

is a device name of the form XXnn: where XX is a
2-letter mnemonic for the device (see Table 6-1) and nn
is a 1- or 2-digit number, an octal number from 0 to
77.

The device mnemonics are listed in Table 6-1.

The device field may be replaced by a logical name (see
Section 6.3.1).

is the UFD (User File Directory) of the form [m,n]
where m and n are octal numbers from 1 to 377.

is the name of the file, an alphanumeric character
string from 1- to 9-characters long.

is a 1- to 3-alphanumeric character extension that
usually identifies some aspect of the file contents.
Table 6-2 lists standard extensions for IAS files. For
example, the extension FTN indicates that the file
contains a FORTRAN source program.

is the version number, an octal number in the range 1
to 77777 used to differentiate among versions of the
same file. For example, when a file is created, the
system assigns the file a version number of 1. If that
file is subsequently opened for editing, the editor
keeps the original file for backup and creates a new
file with the same filename and extension, but with a
version number of 2.

6-4

FILE HANDLING

Table 6-1 lists the 2-character mnemonics conventionally used in the
device name field of file specifications.

Mnemonic

AD
AF
co
CR
CT
DB
DF
DK
DP
DS
DT
LP
LS
MM
MO
MT
SY
TI
TO
UD

Table 6-1
IAS Device Types

Device Type

AD01 A/D converter
AFCll Analog input
Console output
Card reader
Cassette
RP04 disk
RFll disk
RK05 disk
RP02 or RP03 disk
RS03 or RS04 disk
DECtape
Line printer
LPS A/D converter
TU16 magnetic tape
Message output
TU10 magnetic tape
user's system disk
user's data input stream
User's data output stream
UDCll Universal Digital Control

TI and TO are logical device names for a user's input and output data
streams. For example, when a user wishes to read from his terminal he
specifies ·rr:

PDS> COPY

FROM? TI:

TO? MYFI LE. DA'r

transfers the input text typed at the user's terminal to the file
named MYFILE.DAT.

6-5

FI LE HANDLING

Table 6-2 lists all the standard IAS file extensions.

Extension

CBL
CMD

DAT
DIR
FTN
LST
MAC
MAP
MLB
OBJ
ODL
OLB
SAV
SML
SPR
SR'!'
STB
TMP
TSK

6.2.1 Defaults

Table 6-2
Standard IAS file Extensions

Description

A COBOL language source file
A file containing a list of commands (an indirect
file)
A data file
A directory file
A FORTRAN language source file
A file in print-image format
A MACR0-11 assembly language source file
A file containing a memory allocation map
A macro library file
An object program (output from MACR0-11 or FORTRAN)
An overlay file
An object library file
A saved system memory image file
A system macro library file
A spooled output file
A sort work file
A symbol table file
A temporary file
A task image file produced by the Task Builder and
suitable for execution.

A user may omit the device name and/or the UFO field of any file
specification. In this case, the system replaces the null fields with
the user's default values.

The version number may also be omitted, in which case, the system
assumes::

1. The highest version number for an input file specification
or

2. The highest version increased by one for an output file
specification or 1 if no previous version exists.

The device and UFD defaults are determined initially as follows:

1. The default device is determined for each user by the system
manager.

2. The default UFO is equivalent to the UIC (see section 6.1.3)
associated with the user's user Name (submitted at log in).

6-6

FILE HANDLING

The following table lists the default values, if any, of the various
fields.

Table 6-3
File s12ecification Defaults

Field Default

device name At log in, the user
,

s system device. May be changed
subsequently by the SET command. The new default
device must be mounted and the user must have access to
it. Not to be defaulted when the file specified is to
be written to or read from a record-oriented device
(see section 6.2.3)

I ufd
At log in, the default UFD is equivalent to the

,
user s

UIC. May be changed subsequently by the SET DEFAULT
command. A user must have access to any UFD selected
as a default.

name None

extension May be defaulted in the appropriate context. IAS has
standard extensions (see Table 6-2) that it uses as
defaults in defined contexts.

version For input specifications, the highest version number.

For output specifications, the highest version
increased by 1 or 1 if no previous version exists.

6.2.1.1 Changing Default Values (The SET Command) The default
device or UFD used in file specifications may be changed at any time
by the SET command.

To change the default device:

PDS> SET DEFAULT device-name

where device-name is the new default device.

To change the default UFD:

PDS> SET DEFAULT ufd

where ufd is the new default UFD in the format [m,n] and m and n are
octal numbers between 1 and 377.

6-7

FI LE HANDLING

See Part 2 for a complete description of the SET command.

6.2.1.2 Displaying Default Values (The SHOW Command) The current
default values for the device field and UFO field can be displayed at
an interactive terminal by using the SHOW command (see Part 2) as
follows:

PDS~ SHOW DEFAULT

The system responds by displaying the user's default device and ufd.

6.2.2 Wild-cards

6.2.2.1 Jnput Files The user may specify more than one file in a
single input file specification by using an asterisk (*) convention
called a wild-card. An asterisk may be placed in any field of a
specification except the device field.

The asterisk or wild-card causes the system to ignore the contents of
the "wild" field and to select all the files that satisfy the
remaining fields.

Examples:

DEL CATH.DAT;*

DIR DKl: [200 ,200] * .LST

PRINT [30,4]*.MAC;*

DELETE [*,*]TONY.DAT:*

COPY *[90,4]FORT.FOR;*

Delete all versions of the
named CATH.DAT stored on
default device and UFD.

file
the

Display information about all the
highest versions of files on DKl:
in UFD [200,200] that have a LST
extension.

Print all versions of the files on
the default device in UFD [30,4]
that have a MAC extension.

Delete all versions of the file
named TONY.DAT in every directory
on the user's default device.

Illegal specification. The devi~e
field cannot be wild.

6.2.2.2 Output Files When a wild-card (*) replaces a field in an
output file specification, it instructs the system to replace the wild
field with the corresponding field in the input file specification.
The device field may not be wild.

6-8

FILE HANDLING

Example:

PDS> COPY CATH.DAT

TO? DK2:*.*

Copy the highest version of the file CATH.DAT from the default device
to DK2:. If no version of CATH.DAT exists in the output file UFD, the
version number of the output file is 1. If the output file UFD already
contains one or more versions of CATH.DAT, the newly-copied CATH.DAT
is given a version number one greater than the previously highest
version.

Example:

PDS> COPY

FROM? CATH.DAT

TO? DK2:*.*;*

By placing a wild-card in the version field of the output file
specification the user instructs the system to retain the same version
number as the input file. The system returns an error message if the
output file UFD contains a file with the same name and version number
as the output file.

6.2.3 Valid File Specifications

The fields of a file specification that must be supplied, depend on
the type of file being described. There are two types of file:

1. Retrievable files written to or stored on disks, DECtapes or
magnetic tapes. These files are called named files because
they have file names that the system can access.

2. Files that are read from or written to record-oriented
devices (for example, a card reader or a line printer) or
files held on unlabelled tapes. These files are called
unnamed files.

The filename field of a named file must always be supplied; that is,
the user must give an alphanumeric filename or a wild-card(*). Many
commands have a default value for the extension field. However, with
any command that has no default; the file extension field of a named
file must always be supplied. The device, UFO and version fields may
be omitted because they do have default values (see section 6.2.1).
The device field may also be replaced by a logical name (see section
6.3.1).

The use of wild-cards in a file specification depends on the IAS
command with which it is issued. Where it is relevant, the command
descriptions in Part 2 describe restrictions on the use of wild-cards.

The specification of any unnamed file, a file read from or written to
a record-oriented device, consists only of the device field, which may
be a specific device or a logical name (see section 6.3.1). If any

6-9

FILE HANDLING

other field is supplied, it is ignored by the system because UFDs,
file names, extensions and versions have significance only for named
files. The device field may not be wild.

6.3 DEVICE MANAGEMENT

Before a batch or interactive user can access a device, the device
must be available. In other words, the device must be attached to the
system and, in the case of a removable volume, the volume must be
physically loaded. Also, if the device is nonsharable, no-one else
must be using it. For example, if all tape drives are already in use,
the system cannot grant a new request for a tape drive.

If the conditions are such that a device is available, the user then
gains access to the device by "allocating" it, that is, by issuing a
command that requests the system's permission to use it (see section
6.3.2). An exception to this procedure occurs when the user wants to
access a system device.

6.3.1 System Devices

A system device is a device allocated to all users by the system
manager. For example, the user's system disk, the line printer and
the card reader are normally system devices.

A device such as a line printer cannot be shared by two user's
simultaneously, but many users may want to access it at the same time.
The system manager may therefore choose to adopt a technique called
spooling. In the case of a line printer, spooling causes all output
written to the printer to be queued. The system then creates disk
files of all line printer output, maintains a queue containing a list
of these files and prints them one at a time.

6.3.2 Accessing a Device

In order to use a non-system device, three mechanisms are required:

1. A means of obtaining access to the device (the MOUNT and
ALLOCATE commands) •

2 • A means of keeping commands, especially
independent of a particular physical device
Names) .

in batch mode,
(Logical Device

3. A means of keeping the Input/Output statements in a pro~ram
independent of a particular physical device (Logical Unit
Numbers).

Access to a non-system device is obtained by issuing the ALLOCATE
and/or the MOUNT command. Some devices, such as disk drives, are
shareable. Thus a user may mount a disk even though it has already
been mounted by another user. The volume is physically unloaded when
the last user to access it dismounts it.

6-1 r)

FI LE HANDLING

A user is granted exclusive access to non-sharable devices.

Note that access to any volume is subject to the normal protection
restrictions (see section 6.1.3).

6.3.2.1 Logical Device Names IAS uses logical names to permit the
commands written by a user to be independent of a particular physical
device. If, for example, an installation has two tape drives called
MT0: and MTl:, specifying MT0: in batch commands or indirect command
files would prevent the user from using the other tape drive without
changing the commands. The user may define a logical device name,
TA:, for example, and use it in place of the corresponding physical
device name in all subsequent commands.

Once an equivalence has been established between a logical device name
and a physical device name, the logical device name may be used in any
command. If a logical device name is the same as a physical device
name, IAS assumes that the reference is to the logical device name.

Logical device names may be defined in ALLOCATE or MOUNT commands. A
logical name has the syntax:

XX [nn] :

where XX represents two alphabetic characters and nn is an optional
unit number, an octal number ranging from 0 to 77. If nn is omitted 0
is assumed.

6.3.2.2 Logical Units All program Input/Output (I/O) is performed
on logical units, which are identified by numbers (logical unit
numbers or luns). Before a logical unit can be used for I/O, a
physical device or file must be assigned to it. Since different
devices or files may be assigned to the logical units on successive
runs of a program, the program itself can be device-independent.

Users may assign logical units in three ways:

1. By using a LINK option during task build.

2. By issuing an ASSIGN command.

3. By establishing the assignment within the program before the
file in question is accessed.

The LINK option and the ASSIGN command may be used to assign a
physical or logical device to a logical unit. From within a program,
however, the user may assign a named file to a logical unit. See one
of the following manuals for further details:

6-11

FILE HANDLING

1. The !AS Executive Reference Manual - Volume II

2. The appropriate IAS FORTRAN User's Guide

3. The PDP-11 COBOL Language Reference Manual

4. The BASIC-11 Language Reference Manual

5. The IAS/RSX-11 MACR0-11 Reference Manual

6.3.3 The MOUNT command

In order to access a file held on magnetic media, the volume on which
it is held must be physically loaded and mounted. System devices are
already mounted for and allocated to every user. For all other
volumes, however, the user must issue a MOUNT command to make the
device available and gain access to the volume residing on it.

Example:

PDS> MOUNT

DEVICE? DK2:
~--~

VOLUME-ID? TESTER

The command above mounts the volume labelled "TESTER" on DK2:. The
user can now access any file on the mounted volume, as long as the
file's protection code permits the attempted access.

The unit number in the device specification may be omitted if the user
does not know or care on which unit the volume is to be mounted. If
the unit number has been omitted in batch mode, the user must then
supply a logical name for the device; the logical name replaces the
device name in subsequent file specifications. In interactive mode,
the system displays a message giving the unit on which the volume was
actually loaded.

Example:

$MOUNT DK: TESTER DR0:

The user assigns the logical name DR0: to the unknown unit. The
logical name can now be used instead of the physical device name in
subsequent commands.

Files-11 disks and DECtapes are shareable volumes which can be mounted
and accessed by more than one user. Magnetic tape, however, can only
be mounted and accessed by one user at a time.

The system considers any volume not in Files-11 format to be
"foreign". A foreign volume can only be mounted by one user at a time
and the system must be told that it is foreign.

6-12

FILE HANDLING

Example

PDS> MOUNT/FOREIGN

DEVICE? DT0:

VOLUME-ID? TESTER

The command qualifier /FOREIGN tells the system that TESTER is not in
Files-11 format and prevents other users from mounting it.

If the foreign volume is in DIGITAL's DOS or RT-11 format, file
qualifiers to the COPY, DELETE and DIRECTORY commands allow the user
to access files held on the volume. Otherwise, most PDS commands do
not apply to foreign files.

See the specification of the MOUNT command in Part 2 for further
details.

6.3.4 The DISMOUNT Command

When a user has finished accessing a volume, the DISMOUNT command
should be issued in order to dismount the device and make it available
for other users.

The DISMOUNT command automatically deallocates the device unless the
user specifies the qualifier /KEEP. See the command specification in
Part 2 for further details.

Examples:

1. PDS> DISMOUNT

DEVICE? DK0:

VOLUMEID? TESTER

2. $DISMOUNT DT0: TAPEA

The parameters to DISMOUNT are the device specification or logical
name of the device to be dismounted and the volume identification.

6.3.5 The ALLOCATE Command

If a device is not a system device and it cannot be mounted, the
ALLOCATE command must be used to access it.

6-13

FILE HANDLING

Example:

PDS> ALLOCATE

RESOURCE? DEVICE

DEVICE? LPl: -----
The above example allocates a line printer to the user. No one else

can use the printer until the user who allocated it issues a
DEALLOCATE command (see section 6.3.5).

The ALLOCATE command may also be used to obtain exclusive access to a
shareable device.

Example:

$ALLOCATE DEVICE DK: MC0:

$MOUNT MC0 VOLl

In the above example, a batch user has allocated a DK type disk drive
and assigned it the logical name MC0:. No one else is allowed to
access that drive until is has been deallocated.

Once a device has been allocated, several volumes may be mounted one
after the other.

For example:

$ALLOCATE DEVICE DK: DVl:

$MOUNT DVl: VOLl

$DISMOUNT/KEEP DVl:

$MOUNT DVl: VOL2

$DISMOUNT DVl:

In this example, the user obtains exclusive access to a disk drive via
the ALLOCATE command. A volume labelled VOLl is then mounted on the
drive. When the user dismounts VOLl, the /KEEP qualifier retains the
user's exclusive access to the disk. When VOL2 is dismounted,
however, the disk is deallocated since the user does not specify
/KEEP.

6-14

FILE HANDLING

6.3.6 The DEALLOCATE Command

After issuing an ALLOCATE command to obtain exclusive use of a
non-mountable device (a line printer or card reader, for example), a
user must issue the DEALLOCATE command to free the device.

Example:

$ALLOCATE DEVICE LPl:

$DEALLOCATE DEVICE LPl:

The DISMOUNT command automatically deallocates an allocated mountable
device unless the user specifies the /KEEP qualifier.

Example:

$ALLOCATE DEVICE DK: MC0:
$MOUNT MC0: CATH

$DISMOUNT/KEEP MC0:

$DEALLOCATE DEVICE MC0:

6.3.7 The ASSIGN Command

The ASSIGN command is used to associate a logical or physical device
with a logical unit. (See section 6.3.2 for a definition of logical
devices and logical units.)

Example:

PDS> ASSIGN

FILE? LP0:

LUN? 6

This command assigns LP0: to the logical unit 6. If a program writes
to logical unit 6 via The FORTRAN statement WRITE (6 ... , for example,
the results of the write will be printed on the line printer.

6-15

FILE HANDLING

6.4 FILE MANAGEMENT

6.4.1 Creating Files

6.4.1.1 user File pirectories To create a file on a volume, the
volume must be mounted (see section 6.3) and the user must have write
access to a user File Directory (UFD) on the volume. A UFD is a file
that contains details of all the files that have been created on that
volume under the UFD identifier (i.e. [m,n] where m and n are octal
numbers from 1 to 377).

Interactive users can issue the DIRECTORY command to display the
contents of a user File Directory at the terminal. In batch mode, the
directory information is sent to the user's output stream (TO).

Example:

PDS> DIRECTORY

DIRECTORY DB0: [200,200]

21-AUG-75 17:20

ADD.OBJ; 1
ADD.FTN;l
ADD.TSK;l

21-AUG-75 17:17
21-AUG-75 17:17

C 21-AUG-75 17:18

TOTAL OF 35. BLOCKS IN 3. FILES

If no parameter is supplied, the system displays information about the
user's current default UFD. However, by supplying one or more file
specifications the user can interrogate other directories or specific
files.

Example:

PDS> DIRECTORY ADD.OBJ

DIRECTORY DB0: [200,200]

21-AUG-75 17:20

ADD.OBJ;l 2. 21-AUG-75 17:17

TOTAL OF 17. BLOCKS IN 1. FILE

6-16

FILE HANDLING

To interrogate DOS or RT-11 files, modify the file specification with
the /DOS or /RTll file qualifier.

Example:

PDS> DIRECTORY

FILE? RTFILE.MAC/RTll

A user File Directory is like any other file; it has a protection
code which determines who has access to it. A user may therefore
create a file under any UFD to which he has write access.

6.4.1.2 The CREATE Command Both batch and interactive users may
create files by using the IAS command CREATE.

The interactive user types CREATE and supplies a file specification
(no wild-cards allowed), optionally modified by the /PROTECTION
qualifier. If the /PROTECTION qualifier is not specifically supplied,
the new file is assigned the default file protection associated with
the volume.

For example:

PDS> CREATE

FILE? FORT.FTN/PRO:(OW:RWED SY: GR: WO:)

The system uses default values (see section 6.2.1) for the device, UFD
and version fields.

Once the command string has been terminated, the user types input to
the new file, line by line.

When terminated, each line is sent to the file exactly as it has been
formatted at the terminal. The user then closes the file by typing
CTRL/Z.

The batch user supplies the command name optionally modified by
/DOLLARS and a file specification (no wild-cards allowed), optionally
modified by the /PROTECTION qualifier. The qualifier /DOLLARS tells
the system that the file will be closed by the $EOD command.
Otherwise, any $ (i.e. batch) command terminates the file. Therefore,
the /DOLLARS qualifier must be specified whenever a record in the file
being created contains a $ in position 1.

Examples:

1. $CREATE/DOLLARS FORTRAN.FTN/PRO:(OW:RWED SY: GR: WO:)

$EOD

6-17

FILE HANDLING

2. $CREATE DK2: [30,4]CALCULATE.MAC

6.4.1.3 using the Editor to Create a File Users can also create
files by means of the EDIT command. See Chapter 7 for a description
of the IAS text editors.

6.4.2 ~anipulating Files

This section describes how to use various IAS commands to manipulate
existing files in the following ways:

To append one or more files to an output file

To copy a file

To rename an .existing file

6.4.2.1 The APPEND Command The APPEND command may be used to add
one or more files onto the end of an existing file.

Examples:

1. PDS> APPEND (A.CBL, B.CBL)

TO? C. CBL

Append files A.CBL and B.CBL to the end of the file C.CBL.

2. $APPEND MYFILE.MAC YOURFILE.MAC

Append MYFILE.MAC to the end of YOURFILE.MAC.

NOTE

A user must have extend access to a file
before appending to it.

The user specifies the input file or files (enclosed in parentheses if
more than one) first and then the output file.

Input files may be retrieved from a mounted volume, input from a
record-oriented device (for example, a card reader) or typed in from
an interactive terminal. When more than one input file is supplied,
the system appends the files in the order in which they are specified.

If one of the files is to be input from the user's terminal (TI), the
system transfers to the input file everything typed at the terminal
after the command string until the user types CTRL/Z to close the
file.

6-18

FILE HANDLING

Example:

1. $APPEND (FILEl.MAC, FILE2.MAC), FILE3.MAC

The system adds the input files FILEl.MAC and FILE2.MAC to
the file FILE3.MAC.

2. PDS> APPEND

FILE? JUD.CBL

TO? GRAVES.CBL

The file JUD.CBL is appended to the output file GRAVES.CBL.

6.4.2.2 The COPY Command The COPY command creates a duplicate of
the contents of an input file in a specified output file. Optiunal
command qualifiers allow the output file to be modified in various
ways.

Examples:

1. PDS> COPY

FROM? MT2:FRED.MAC

TO? DK2:JIM.MAC

2. $COPY MT2:FRED.MAC, DK2:JIM.MAC

The examples above copy the highest version of FRED.MAC on MT2: to
DK2: and change the file name to JIM on DK2:. As well as copying from
one device to another, the COPY command can be used to copy a file
from one user File Directory to another.

Example:

1. PDS> COPY [30,4]FRED.MAC

TO? [100,100]FRED~MAC

This example copies the file FRED.MAC in [30,4] to UFD [100,100]; the
filename remains unchanged.

Four of the possible command qualifiers are:

/ALLOCATION:n

/CONTIGUOUS

/OWN

/REPLACE

6-19

FILE HANDLING

These are explained in detail in Part 2, but some examples of their
use are shown below:

1. $COPY/ALLOCATION:20 DK2:0LDFILE.DAT DK0:0LDFILE.DAT

Copy OLDFILE.ONE from DK2: to DK0: and make the output file
20 blocks long. The /ALLOCATION qualifier is useful for
copying a contiguous file and changing its size.

2. PDS> COPY/CONTIGUOUS

FROM? MT2:TU71.MAC DKl:*.*

Copy TU71.MAC from MT2: to DKl: and make the output file
contiguous. The wild-cards (*) indicate that the fields of
the output specification in which they occur take the
corresponding field values of the input file specification.

3. $COPY/REPLACE MTl:SAME.OBJ;4 DK2:SAME.OBJ;4

The /REPLACE qualifier indicates that the output file
overrides a file in the user's default UFD that has the same
name, extension and version number. That is, if a file
called SAME.OBJ;4 already exists on DK2: in the default UFD,
it is deleted and replaced by the new one copied from MTl:

There are two file qualifiers available with the COPY command, /RTll
and /DOS, that allow the user to copy files to or from an RT-11 or DOS
formatted volume. The qualifier must modify the specification of the
file currently in DIGITAL's DOS or RT-11 format. DOS and RT-11 files
cannot be renamed within IAS; therefore, the filename and extension
fields of the output file specification must always be wild.

Examples:

1. PDS> COPY

FROM? DK2:FRED.DAT/RT11

TO? * *

Copy the RT-11 file FRED.DAT from the foreign volume on DK2:
to the user's default device and UFO. The /RTll qualifier
instructs the system to translate the RT-11 file into
Files-11 format.

2. $COPY TEST.MAC;8 DT0:*.*/DOS

Copy the Files-11 file TEST.MAC;8 to a DOS-formatted foreign
volume held on DT0:.

6-20

FILE HANDLING

6.4.2.3 Renaming Files The RENAME command may be used at any time
to change the name of a file. The examples below change the file name
DEBUG.MAC;! to RUN.MAC;!.

1. $RENAME DEBUG.MAC;l RUN.MAC;!

2. PDS> RENAME

OLD? DEBUG.MAC;!

NEW? RUN.MAC;!

6.4.3 Listing Files

Files may be listed on a line printer or at the user's terminal. One
of the commands discussed below should be used; the choice is
dependent on the kind of listing desired and whether the user is
operating in interactive or batch mode.

6.4.3.1 Listing on the Line Printer The PRINT command may be used
to print files on the line printer. The system often queues all line
printer output until all output previously submitted to the queue has
been processed. The output files are normally printed in the order in
which they were submitted to the queue.

The PRINT
printer.

command is
For example:

the simplest way to submit a file to the line

1. PDS> PRINT

FILE? FILEl.DAT, FILE2.DAT, FILE3.DAT

2. $PRINT LIST.MAP

The file or files to be printed are specified after the command.

The PRINT command provides the option to delete files after they have
been printed. The user indicates this option by supplying the command
qualifier /DELETE. For example:

$PRINT/DELETE MYFILE.DAT

6.4.3.2 Listing Files at an Interactive Terminal The TYPE
command causes one or more specified files to be printed at the user's
interactive terminal.

Examples:

1. PDS> TYPE

FILE? FIRST.MAC, SECOND.MAC

2. PDS> TYPE TYPE.CBL

6-21

FILE HANDLING

6.4.3.3 The DUMP Facility The DUMP command lists a specified
file on the user's terminal (TO) or sends the listing to a specified
output file. Command qualifiers modify the form of the listing. For
example, the user may spedify that the file be dumped in ASCII mode.
The DUMP facility is useful for debugging programs and for displaying
nonprintable characters in ASCII or octal format. See the full
specification of DUMP in Part 2 for all the available options.

Examples:

1. PDS> DUMP/ASCII

2.

FILE? DUMP.CBL

List the file DUMP.CBL in ASCII format on the user's
terminal.

$DUMP/BYTE/OUTPUT:DK2:DISKFILE.OBJ OBJECT.DAT

Send a listing of the file OBJECT.DAT in byte octal format
to a file named DISKFILE.DAT on DK2:

3. PDS> DUMP/OUT:LP0: FILE.DAT

List the file FILE.DAT in word octal format (the default) on
the line printer.

6.4.4 peleting Files

The DELETE command deletes files held on Files-11 disks or DECtapes,
or DIGITAL's RT-11 or DOS files held on foreign disks or DECtapes.

Specifications of DOS or RT-11 files must be modified by a file
qualifier, either /DOS or /RTll as appropriate.

Wild-cards(*) (see section 6.2.2) are allowed in the file
specification. If the version field is omitted or wild, the command
qualifier /KEEP:n may be supplied to preserve the highest n versions
of the file or files specified.

Examples:

1. PDS> DELETE/KEEP:2

2.

FILE? MA'rRIX.DAT;*

Delete all but the last 2 versions of the file MATRIX.DAT

$DELE'I'E ROW.OBJ;4 COLUMN.MAC;4 PEEK.*;*

Delete all files named PEEK and the fourth version of the
files ROW.OBJ and COLUMN.MAC.

3. PDS> DELETE DK2:DOSFILE.DAT;4/DOS

Delete the file DK2:DOSFILE.DAT;4, which is in DIGITAL's DOS
format.

6-22

FI LE HANDLING

The PRINT command modified by the /DELETE qualifier can be used to
delete files that have been submitted to the line printer. See
section 6.4.3.1.

6.4.5 Summary of File Handling Commands

Command Function

ALLOCATE
$ALLOCATE

APPEND
$APPEND

ASSIGN
$ASSIGN

COPY
$COPY

CREATE
$CREATE

DEALLOCATE
$DEALLOCATE

DEASSIGN
$DEASSIGN

DELE'rE
$DELETE

DISMOUNT
$DISMOUNT

DUMP
$DUMP

EDIT
$EDI'l1

MOUNT
$MOUNT

PRINT
$PRINT

RENAME
$RENAME

PROTECT
$PROTECT

TYPE

Allocate a specified device to the user.

Add one or more files to the end of a specified
file.

Assign a device to a logical unit.

Copy an input file to a specified output
file.

Create a file as specified. File contents to be
input from an interactive terminal, or, in batch,
to follow immediately after the $CREATE command.

Deallocate a specified device.

Deassign a device from a logical unit.

Delete specified Files-11, DIGITAL's DOS
or RT-11 formatted files.

Dismount a specified volume.

List the contents of a file on a line printer.

Edit an existing file or create a new file.

Make a volume available to the user.

Print one or more files on the line printer.

Change the filename of an existing file.

Assign a specified protection code to a file.

List a file at the user's interactive terminal.

6-23

CHAPTER 7

IAS TEXT EDITORS

This chapter provides the user with the basic information needed to
run either of the two IAS editors:

The Text Editor (EDI), primarily for interactive use, and

The Source Language Input Program and Editor (SLIPER), a
batch-oriented editor.

The IAS Editing Utilities Reference Manual contains a complete
description of both editors.

7.1 THE TEXT EDITOR

The EDIT command automatically invokes the Text Editor, also known as
EDI, unless the qualifier /SLIPER has been specified. EDI is an
interactive context-editing program that uses editor commands to
create and modify source programs and other files containing ASCII
data. The specification of the EDIT Command in Part 2 contains a
complete list of editor commands. This section introduces some basic
editing concepts and describes a useful subset of commands.

Editor commands, as in PDS, describe the action to be performed. Each
command consists of a command name followed by a single parameter.
Most command names can be abbreviated to 1, 2 or 3 letters. Some
command names, however, are themselves abbreviations of their function
and cannot be abbreviated further. For example, NP which stands for
Next Print, has no alternative form.

7.1.1 Editing Modes

EDI operates in two modes:
EDI considers all lines
file. This mode is used to
into an existing file. In
terminal as editor commands
text.

input mode and edit mode. In input mode,
entered at the terminal to be input to the
create a file and to insert lines of text
edit mode, EDI treats lines entered at the
intended to modify or manipulate existing

7-1

IAS TEXT EDITORS

7 .1. 2 Input Mode

7.1.2.1. Creat~~ a New File if the user specifies a
non-existent file with the EDIT Command, EDI automatically creates a
new file and enters input mode. The specification of the file must
include an extension. For example:

PDS> EDIT NEWFILE.DAT
TEDI -- CREATING _NEW __ FILfil
INPUT

The user then begins to enter text on the next line. All characters
typed are written to the file. The function and CTRL characters are
used to format the lines of text (see Chapter 3).

To enter a blank line into the text, type one or more spaces at the
beginning of a new line, followed by carriage return.

7.1.2.2 The INSERT Command - If EDI is operating in edit mode, the
editor command INSER;r,--immediately followed by carriage return,
changes the operating mode to input.

7.1.2.3 Changing to Edit Mode - To switch from input to edit mode,
type carriage return--a-s ___ thef:lrst character in a line. EDI responds
by displaying an asterisk (*) on the next line. The asterisk is the
EDI prompt for editor commands.

7.1.3 Edit Mode

The asterisk (*) prompt indicates that EDI is operating in edit mode,
and is therefore only accepting editor commands.

7.1.3.1 Editing an Existing File - To edit an existing file, supply
the specification of the file with the EDIT command. The
specification must include an extension. If the version number is
omitted, EDI selects the highest version of the file. EDI then
retrieves the input file and prompts for an editor command. For
example:

PDS> EDIT
FILE? OLDFILE.DAT
[PAGE: 1)

*

7.1.3.2 Block Editing
blocks, called pages.

By default, EDI accesses a file in 80-line
(This chapter discusses only this method of

7-2

IAS TEXT EDITORS

access to the file; the alternative method, called line-by-line mode,
is described in the IAS Editing Utilities Reference Manual.) The.
editor command SIZE may be used to change the number of lines per page
(see the specification of the EDIT command in Part 2).

7.1.3.3 The Line Pointer - EDI is a context editor; it locates the
line to be edited by means of text contained within the line, rather
than by sequence numbers, as does the batch editor SLIPER, described
in section 7.2. EDI uses a line pointer to indicate the current line
to be edited.

When edit mode is first entered, the line pointer points to a line
immediately preceding the first line of text in the file. The user
then moves the line pointer by searching for a particular piece of
text or by using commands that reposition the pointer.

For example:

PDS> EDIT NEWFILE.DAT
TE51 -- CREATING NEW FILE]
INPUT
THIS IS LINE l ENTERED
HERE IS LINE 2
LINE 3
LINE 4 WHICH IS ALSO THE LAST LINE
<CR>
*TOF
[PAGE 1)
*LOCATE LINE 1
THIS IS LINE 1 ENTERED
~NEXT
~PRINT
HERE IS LINE 2
~LOCATE ALSO
LINE 4 WHICH IS ALSO THE LAST LINE
~LOCATE ENTERED
[EDI EXIT]

In this example, the user has created a file consisting of 4 lines.
When the prompt for editor commands (*) appears, the user issues the
TOF (Top of File) command to move the line pointer to the top of the
file. "Top" means the line immediately preceding the first line of
text. The user then types "LOCATE LINE l" to find the first line that
contains the character string "LINE l". EDI moves the pointer to that
line and prints it. The LOCATE command always searches down the file
beginning at the line immediately following the current line.

The NEXT command is used to advance the line pointer to the next line,
which is "HERE IS LINE 2". The PRINT command then causes EDI to
display the new current line without moving the pointer. "LOCATE
ALSO" causes the line pointer to be moved to the fourth line, which is
then printed.

The command "LOCATE ENTERED" causes the editor to print
"[EDI -- *EOB*] ". "EOB" is the abbreviation for End Of Buffer. Since
the line pointer only moves down the text when searching for character

7-3

IAS TEXT EDITORS

strings, it encounters the end of the buffer without finding the
string "ENTERED." the TOF command could then be used to reposition the
line pointer at the beginning of the text.

7.1.4 Editor Commands

This section describes a useful subset of EDI commands. The complete
set is listed in the specification of EDIT in Part 2. The IAS Editing
Utilities Reference Manual specifies all the commands in detail.

The subset of commands is described in alphabetical order. Brackets
([and]) indicate that the enclosed value is optional.

Note that the function keys carriage return (CR or RETURN) and ALTmode
(ALT and ESC) can be used as editor commands. See the description of
the NP Command, section 7.1.4.8. CTRL/Z may also be used to close the
editing session and return control to PDS; but it is advisable to use
the editor command EXIT for this purpose.

The subset includes:

CHANGE
DEL.ETE
EXI'r
FIND
INSERT
LOCA'rE
NEXT
NP
PRINT
PLOCA'rE
RENEW
RETYPE
TOF

7.1.4.1 'l'he CHANGE Command

Sections

(section 7.1.4.1)
(section 7.1.4.2)
(section 7.1.4.3)
(section 7.1.4.4)
(section 7.1.4.5)
(section 7.1.4.6)
(section 7.1.4.7)
(section 8.1.4.8)
(section 7.1.4.9)
(section 7.1.4.10)
(section 7.1.4.11)
(section 7.1.4.12)
(section 7.1.4.13)

[n]CHANGE /string-1/string-2[/]

where string is a character string. The slashes (/) delimit each
string, and are therefore called delimiters. The delimiters may be
any matching characters that do not appear in either string. The
first character following the command is considered to be t~e first
delimiter. The closing delimiter is optional.

n is a positive integer.

The command name may be abbreviated to one or more letters.

7-4

IAS TEXT EDITORS

Function

This command searches for string-1 in the current line and, if found,
replaces it with string-2. If string-1 is given but EDI cannot locate
the string in the current line, EDI prints "NO MATCH" and returns an *
prompt. The command can be reentered using the correct string
construct. If string-1· is null (not given), string-2 is inserted at
the beginning of the line.. If string-2 is null, string-1 is deleted
from the current line. The search for string-1 begins at the
beginning of the current line and proceeds across the line until a
match is found. If string-1 occurs more than once on the current
line, only the first occurrence is changed.

A numeric value n preceding the command
occurrences of string-1 being changed to
replacement of string-1 with string-2, the
beginning at the first character in the line.
generate a string of n characters as shown in

results in the first "n"
string-2. For each

entire line is rescanned
This allows the user to

the example below.

If no match occurs, a NO MATCH message is displayed.

The Line Pointer

The CHANGE command does not change the position of the line pointer.

Examples

1. The current line reads "333". The following command changes
it to "C33":

*C/3/C/

2. The current line reads "DIAGNOSIS". The following command
changes it to read "DIAGNOSTICS":

3.

7.1.4.2

Format

*CHA "IS"TICS"

The current line
changes it to read

*4C/;/;;

The DELETE Commanq

contains "A;B;C;D".
"A;;;; ;B;C;D:

DELETE [n]

where n is a positive or negative integer.

The following command

The command name may be abbreviated to one or more letters.

7-5

IAS TEXT EDITORS

Function

This command causes lines of text to be deleted in the following
manner:

1. If n is positive, the current line and n-1 lines following
the current line are deleted. The line-pointer advances to
the line following the last deleted line.

2. If n is negative, the current line is not deleted, but the
specified number of lines that precede it are deleted. The
line pointer remains unchanged.

3. If n is omitted, the current line is deleted and the line
pointer advances to the next line.

The Line Pointer

See items 1, 2 and 3 in the Function section above for the command's
effect on the line pointer.

Examples

To delete the previous five lines in the block buffer, type the
following command:

*D -5

7.1.4.3 The EXIT Command

EXI'r

The command name may be abbreviated to two or more letters.

Function

This command transfers all remaining lines in the block buffer and
input file (in that order) into the output file, closes the file and
causes EDI to exit. The system then prompts for PDS commands.

Example:

*EX
(EDI -- EXIT]

PDS>

7-6

IAS TEXT EDITORS

7.1.4.4 The FIND Command

Format

[n] FI ND [s t'r i ng]

where n is a positive integer and string is a
begins in the first position of a line.
abbreviated to one or more letters.

Function

character string that
The command name may be

This command searches the block, beginning at the line following the
current line, for string, which must begin in column one of the lines
searched. If string is not specified, the line pointer simply
advances one line. If n is given, EDI searches for the nth occurrence
of string and positions the line pointer at the line that contains it.

FIND is useful for locating FORTRAN statement numbers and MACR0-11
statement labels.

The Line Pointer

If string is not given, the line pointer advances one line.

If string is given, the line pointer moves to the first· or nth line
containing string.

Example

~F LOOK
LOOK AT THE FIRST CHARACTER IN THE LINE

The above command causes EDI to search the block for a line beginning
with LOOK and to print the line when it is found.

7.1.4.5 The INSERT Command

Format

INSER'I' [string]

where string is a character string.

The command name may be abbreviated to one or more letters.

Function

This command inserts string immediately following the current line.
If string is omitted, EDI enters input mode.

The Line Pointer

The line pointer moves to the line in which string is inserted, that
is, the line following the current line.

7-7

IAS TEXT EDITORS

Example

*I TEXT INSERT IN EDIT MODE

~F ABC

ABC IS THE START OF THE ALPHABET

*I

TEXT INSERT 1 IN INPUT MODE

TEXT INSERT 2 IN INPUT MODE

E'l1 C.

7 .1.4 .6 The LOCATE Command

[n]LOCATE [string]

Inserts a
immediately

- line.

line of text
after the current

Finds a line beginning with
ABC.

This is the line found.

An I followed by a carriage

return causes EDI to switch

to the input mode and a

series of new lines can be
input following the current
line.

where n is a positive integer and string is a character string.

The command name may be abbreviated to 1 or more letters.

Function

This command causes a search of the buffer beginning at the line
following the current line for string, which may occur anywhere in the
line sought. If string is not specified, the line following the
current line is considered a match. A numeric value n preceding the
command results in locating the nth occurence of string. EDI then
prints the located line.

The Line Pointer

EDI moves the line pointer to the line containing string or the nth
occurence of string.

Example

See section 7.1.3.3.

7.1.4.7 The NEXT Command

Format ---

NEXT [n]

where n is a positive or negative integer.

7-8

!AS TEXT EDITORS

The command name may be abbreviated to one or more letters.

Function

If n is omitted, this command causes the line pointer to advance one
line.

If n is supplied, the line pointer moves forward n lines if n is
positive, or back n lines if n is negative.

Example

The following command moves the current line pointer back five lines:

*N -5

7.1.4.8 The NP (Next Print) Command

Format

NP [n]

where n is a positive or negative integer.

The command cannot be abbreviated.

Function

This command has the same function as the NEXT command (see section
7.1.4.7) except that it prints out the new current line.

Note that pressing carriage return (CR or RETURN) performs the same
function as NP 1, and pressing ALTmode (ALT or ESC) performs the same
function as NP -1.

Example

The following four lines are contained in the file and the line
pointer is at the first line.

LINE 1 OF THE FILE
LINE 2 OF THE FILE
LINE 3 OF THE FILE
LINE 4 OF THE FILE

If the following command is issued, EDI would return the following
printout

~NP 2
LINE 3 OF THE FILE

7-9

!AS TEXT EDITORS

7.1.4.9 The PRINT Command

PRINT [n]

where n is a positive integer.

The command name may be abbreviated to one or more letters.

Function

This command prints out the current line and the next n-1 lines on the
terminal. If n is omitted, the command prints the current line.

The Line Pointer

The line pointer is positioned at the last line printed if n is given.
If n is omitted, the line pointer does not move.

Example:

~P3

7.1.4.10

Prints out the current line then the next two
lines.

Prints the current line only (the last line
printed by the previous command).

·rhe PLOCATE (Page Loca_teL Command

[n]PLOCATE [string]

where n is a positive integer and string is a character string.

The command name may be abbreviated to two or more letters.

Function

This command searches for string in the current block and successive
blocks, starting from the line following the current line. String may
be positioned anywhere in the line in which it occurs. If n is
specified, EDI searches for the nth occurrence of string. The line
containing string is then printed.

If string is omitted, the line pointer advances one line.

The Line Pointer

The line pointer advances to the line containing st~ing (or the nth
occurrence of string) or to the line following the current Line if
string is omitted.

7-10

IAS TEXT EDITORS

Example

The following command locates the line "HAPPY DAYS ARE HERE AGAIN",
which occurs somewhere in the file ahead of the current line.

~PL PPY
HAPPY DAYS ARE HERE AGA_l_N

7.1.4.11 The RENEW Commanq

Format

RENEW [n]

where n is a positive integer.

The command name may be abbreviated to three or more letters.

Function

If n is omitted, the command writes the current block into the output
file and reads a new block into the buffer. If n is specified, EDI
reads n-1 blocks into the buffer and then writes them to the output
file. The nth block is then read into the buffer and the line pointer
positioned at the top of it.

Example

*RENEW 10

In this example, ten consecutive blocks are transferred from the input
file to the block buffer. Only nine blocks, however, are transferred
to the output file. The current line pointer is pointing to the first
line in the tenth block which is currently in the block buffer.

7.1.4.12 The RETYPE Command

Format

RETYPE [string]

where string is a character string.

The command name may be abbreviated to one or more letters.

Function

This command replaces the current line with string. If string is
omitted, the command deletes the current line.

The Line Pointer

The line pointer does not move.

7-11

!AS TEXT EDITORS

Example

~RETY THIS IS A NEW LINE

In this example, the string "THIS IS A NEW LINE" replaces the current
line.

7.1.4.13 The TOF (Top Of File) Command

Format

TOF

The command cannot be abbreviated.

Function

This command returns the line pointer to the top of the input file and
saves all blocks (pages) previously edited. The "top" of the file is
the line that immediately precedes the first line of text in the file.

Example

*TOF

This command causes the previously edited pages to be written into the
output file. The line pointer then moves back to the top of the file.

7 .1. 5 Error Messages

Refer to the !AS Editing Utilities Reference Manual for a list of EDI
error messages and recommended responses.

7-12

IAS TEXT EDITORS

7.2 BATCH EDITING

The Source Language Input Program and Editor (SLIPER) is a
batch-oriented editing program used to create and maintain source
language files on disk. It permits the user to:

1. Edit an existing source file. Commands are provided to:

a. Delete

b. Replace

c. Insert

2. Obtain line number listings of files.

SLIPER accepts input from

1. The input stream

2. Any Files-11 volume, i.e. a disk or DECtape in IAS format
(see Chapter 6, section 6.1.1)

Before starting SLIPER, the user should be aware of the following
restrictions.

1. Before editing a file, the user must know the numbers of the
lines to be edited. A current line-number listing must
therefore be at hand.

2. The batch editor does not accept input lines greater than 80
ASCII characters in length. If more than 80 characters are
specified, an error is declared.

3. Line numbers to which the edit commands refer must be in
ascending sequence throughout the file. Form feeds and page
directives are treated as part of the text.

7.2.1 Invoking SLIPER

To invoke SLIFER the user must issue the EDIT command modified by the
command qualifier /SLIPER. For example:

$EDIT/SLIPER OLDFILE.MAC

Further EDIT command qualifiers applicable only to SLIPER determine
the format of the output files.

7-13

!AS TEXT EDITORS

Table 7-1 lists the SLIPER qualifiers and their effects.

Qualifier

/OUTPUT[:filespec]

Table 7-1
SLIFER Qualifiers

Description

Produce an output file. Unless filespec
is specified, the file is given the
same name as the input file, with a
version number increased by 1.

/NOOUTPUT Do not produce an output file.

Default

/OUTPUT

--------\---- ----~---------------1-~--------i

/LIST[: filespec] If /OUTPUT has been specified print a
listing of the output file on the line
printer.

If /NOOUTPUT has been specified, print
a listing of the input file on the line
printer.

If filespec has been specified, name
and store a listing file accordingly.

/LIST

--------------------+--------------------------------------+-------I

/AUDIT Enable the editing audit trail,
which indicates the changes made during
the most recent editing session.

/AUDIT

1----------~--------~----------------------------------t--------1

/NOAUDIT

/BLANK

/NOBLANK

Disable the editing audit trail.

Insert blanks at the end of the text
line (rather than tabs) to
right-justify the audit trail text.

Do not insert blanks at the end of the
text line.

Produce a double-spaced listing file.

/BLANK

/NO DOUBLE
---------1-------------------------------+--------I

/DOUBLE

/NODOUBLE Produce a single-spaced listing file.

7.2.1.1 Obtaining a Listing - Note that to produce a listing of the
file to be edited, the user must specify the /NOOUTPUT qualifier. For
example:

PDS > EDI'l1/SL I/NOOUTPUT/LI ST CHARLES. MAC

The command above prints a listing of CHARLES.MAC on the line printer.
In batch, the default is /LIST, but interactive users must specify
that qualifier to obtain a listing. The listing provides the line
numbers to be used in subsequent editing of CHARLES.MAC.

7-14

IAS TEXT EDITORS

7.2.2 SLIPER Output Files

When a file is edited, SLIPER produces an output file on disk under
the name specified by the user. If the /AUDIT qualifier is specified
(default condition), the file contains an audit trail, indicating
changes effected by the editing session.

Each line that has been inserted during the last editing session is
flagged by appending the characters ;**NEW** to the line.

The line following the inserted line(s) may be flagged by the
characters ;**-n, where n is a decimal value equal td the number of
lines that were deleted from the old file. For example:

;THIS IS A NEW LINE ADDED TO THE FILE ;**NEW**
;THIS IS THE NEXT LINE ;**-1

indicates that the new line has simply replaced one of the old lines;
that is, the edit command looked like:

;THIS IS A NEW LINE ADDED TO THE FILE
-m, m

where m is the number of the line that was replaced. There may also
be entries of the following kind:

;THIS LINE IS A REPLACEMENT ;**NEW**
;NEXT OLD LINE ;**-16

indicating that a new line has been inserted, but 16 lines have been
deleted immediately preceding the next old line.

Lines may also be flagged with the characters ;**N, with no preceding
new lines, to indicate that lines have been deleted without being
replaced.

If /AUDIT has been specified, the current flags are stripped before
the updated file is output; thus, the flags are reliable indicators
of the most recent update of the file.

7.2.3 SLIPER Edit Command~

Following the initial command line, the user enters text lines, or
deletes or corrects lines in· the original source file. Text that is
to be inserted at the beginning of the file is entered immediately
following the initial command line. To correct or replace one or more
lines, or to insert text in the middle or at the end of the file, the
user must first specify an edit command in line position 1, followed
by a decimal value that refers to a line in the input file. For
example:

-9

7-15

!AS TEXT EDITORS

The minus sign and line number may appear as the only element on the
line, or they may be followed by a comma and a second line number, as:

-9,12

or

-9,9

SLIFER interprets the user's purpose by examining the edit command.
When a single line number is specified {e.g. -9 alone), SLIPER
interprets the user's purpose to be the insertion of new text lines
into the source file. The line number indicates that the new text is
to be inserted following the specified line {in the first example, new
text would be placed in the file following line 9).

When the user provides an edit command in the second format (-9,-12),
SLIFER deletes all text lines from line 9 through line 12,
inclusively. The user can follow the edit command with lines of text,
which will be inserted into the file in the location previously
occupied by the deleted lines (that is, the first new line is the new
line 9) ..

The edit command (-9,9) indicates that SLIPER is to delete line 9. If
a text line {or lines) follows. It replaces the deleted line.

NOTE

Line numbers must always be specified in
ascending sequence. Thus, -9,8 is
illegal, and an error message is
printed. It is also illegal to refer to
a line number lower than a line number
that was referred to in a prior edit
command.

7.2.3.1 SLIPER Edit Control Characters
characters as edit control characters when
position 1:

The minus sign {-)

The "less than" sign(<}

The slash {/)

The "at" sign {@)

7-16

SLIPER recognises four
they appear in line

IAS TEXT EDITORS

Table 7-2 describes their use as edit control characters.

Character l
-(minus}

I (slash}

Table 7-2
SLIPER Edit Control Characters

Function

Indicates that an editing function is to be
performed, with reference to the line
number(s} specified.

-n Insert text following line n.

-n,n Delete line n.

-n,m Delete lines n
inclusively (m must
than n} •

through m
be greater

The slash is placed in the first position of
a line to indicate that the editing of a file
is completed.

!---------+--------------------------------·----------------

7.2.4

@ (at}

<(less than}

The @ character is put in the first location
of a line to indicate that SLIPER is to seek
input from an indirect file. The user must
specify the indirect file immediately after
the @ sign; for example:

@DK2:DKSFIL.CMD

instructs SLIPER to read input from the file
DKSFIL.CMD on physical device unit DK2:.
Indirect files are more fully described in
Section 7.2.4. Unless otherwise specified,
the file extension defaults to .CMD.

The < character is used when entering a line
that begins with one of the special edit
control characters. It causes the line to be
shifted one character to the left, with the
result that the < is deleted, and the desired
control character is entered into the file as
the first character on the line.

Indirect Files

Indirect files can be used to contain both editing commands and
correction lines to be-inserted into the file being edited. (See
Chaptef 8, Section 8.2.)

7-17

IAS TEXT EDITORS

7.2.5 SLIPER Editill9_ Examples

The following examples show the various editing functions that SLIPER
can perform, and the command formats used.

EXAMPLE A

$EDIT/SL! JONES.MAC

-23,23

Rl=SIZE OF BLOCK TO ALLOCATE IN BYTES

-33

MOV $FRHD,R2 GET ADDRESS OF FREE POOL HEADER

-36,36

-39,39

ASR Rl ;CONVERT TO WORDS

I

This example performs the following editing functions:

EXAMPLE B

Line 23 is replaced by a corrected version (i.e.; Rl SIZE
OF BLOCK TO ALLOCATE IN BYTES.);

A new line is inserted after line 33;

Line 36 is deleted (and not replaced);

Line 39 is replaced by a corrected version (i.e., ASR Rl
CONVERT TO WORDS),

$EDI/SL! CATHS

-55,55

BCS 60$;IF CS YES

-107,107

CALL $ERMSG ;OUTPUT ERROR MESSAGE

I

Example B performs the following editing functions:

Line 55 is replaced by a corrected line;

Line 107 is replaced by a corrected line.

7-18

IAS TEXT EDITORS

EXAMPLE C

$EDI/SLIP/OUTPUT:CHAS.MAC CATHS.MAC

-15,16

CNTRL: .BYTE

-33,35

$CDTD: : MOVB

-38,38

COTB:: MOVB

-43,45

CMPB

BEQ

CMPB

BEQ

-47,50

3$: MOV

I

, 9, , 0

#'9,CNTRL

#'0,CNTRL

#, ,R

1$

#HT,R5

1$

R5,R2

;SET DECIMAL LIMIT

;SET OCTAL LIMIT

;BLANK?

;IF EQUAL YES

;HT?

;IF EQUAL YES

; SE'r TERMINAL CHARACTER

Example c performs the following editing functions:

Lines 15 and 16 are deleted and replaced by a corrected
line;

Lines 33 through 35 are deleted and replaced by the line
starting with $CDTD;

Line 38 is replaced;

Lines 43 through 45 are replaced by four text lines:

Lines 47 through 50 are deleted;

Line beginning with 3$: is inserted.

The output file is created under the name CHAS.MAC.

7-19

CHAPTER 8

INTRODUCTION TO PROGRAM CONTROL

IAS supports several programming languages, including BASIC, COBOL,
FORTRAN and MACR0-11. MACR0-11 is a standard feature of !AS; the
other language translators are optional. This chapter is an
introduction to some language-independent aspects of running programs
under !AS. The next four chapters, one on each language, describe how
to use !AS commands to transform source programs into executing
programs or tasks.

8.1 PROCESSING MODES

Whether it is better to operate in batch or in interactive mode
depends on the nature of the programmer's job and the requirements of
the installation. Interactive mode is convenient for complicated
editing of source programs, for instance, or the execution of programs
that require small amounts of input data. On the other hand, batch
processing is usually the best mode for processing large amounts of
data, for example, a payroll or accounts receivable.

8.2 INDIRECT FILES

An indirect file is a sequential file containing command input. For
example, rather than repeatedly typing commonly used command
sequences, the user can type the sequence once and store it in a file.
To execute the sequence, the user issues an "at" sign (@) followed by
the file specification instead of the first command in the sequence.
The indirect file may be invoked from any position within the command
string, but any characters that follow the indirect file specification
are ignored. The system then retrieves the indirect file and executes
the commands contained therein.

Example:

PDS> EDIT FILE.CMD

[EDI CREATING NEW FILE]

INPUT

FORTRAN/OBJECT/LIST:CPROG CPROG

8-1

INTRODUCTION TO PROGRAM CONTROL

LINK CPROG

RUN CPROG

<CR>

*EXIT

PDS>

PDS> @FILE

The indirect file called FILE.CMD, created by means of the Line Text
Editor, contains commands to compile, link and run the source program
CPROG.FTN.

These commands are executed when the user invokes the file by typing
@FILE in response to the PDS prompt. CMD is the default extension for
indirect files in both interactive and batch mode.

In a batch context, the same command sequence could be created and
invoked in the following manner:

$CREATE/DOLLARS FILE.CMD

$FORTRAN/OBJECT/LIST:CPROG CPROG

$LINK CPROG

$RUN CPROG

$EOD

@FILE

Note that the $CREATE command string must include the qualifier
/DOLLARS, so that the system recognizes the following text as input
and not as further batch commands to be processed. The $EOD command
terminates the file to be created.

The command file may be invoked subsequently by the command line
@FILE. No dollar sign ($) is needed.

Both batch and interactive users may invoke indirect files on up to
three levels. An indirect file can itself invoke another indirect
file: the second file may invoke a third: but the third file may not
invoke a fourth indirect file.

See Chapter 6, section 6.4.1 for a description of file creation.

8-2

INTRODUCTION TO PROGRAM CONTROL

8.3 USER LIBRARIES

The IAS command LIBRARIAN allows users to create and maintain their
own libraries of commonly-used macros (macro libraries) and routines
(object module libraries).

8.3.1 Macro Libraries

MACR0-11 macros may be held in source (text) form in a macro library.
Each macro is identified by its macro name. To use one or more macros
contained in a macro library file, the programmer must supply the
library file specification, modified by the qualifier /LIBRARY, in the
list of input files to the MACRO command. (see the description of the
MACRO command in Part 2.) The macro library must be specified before
the module that calls it.

8.3.2 Object Module Libraries

Commonly-used routines are stored in object (that is, compiled or
assembled) code which the user can then incorporate in a task. The
object code routines are called object modules; the files in which
they are held are called object module libraries.

A programmer invokes an object module from within the program, then
specifies the library containing the module by means of the /LIBRARY
qualifier to the LINK command (see Chapter 11, section 11.3). The Task
Builder automatically searches all system libraries; but it only
searches user-written libraries that have been explicitly specified in
the command.

The IAS Task Builder Reference Manual describes object
libraries in detail.

module

The specification of the LIBRARIAN command in Part 2 describes how to
create and maintain the libraries.

8-3

INTRODUCTION TO PROGRAM CONTROL

8.4 CREATING SOURCE FILES

Either the CREATE command or the EDIT command may be used to create
source files. The EDIT command has the advantage that it allows the
user immediate access to all its editing facilities. To correct
errors made while using the CREATE command, however, the user must
rely on keyboard facilities or close the file and then issue the EDIT
command.

8.4.1 The CREATE Command

To create a source file with the CREATE command, the user must do one
of two things:

1. In batch mode, issue the command $CREATE, optionally modified
by the qualifier /DOLLARS, followed by a file specification
of the file to be created. Insert the source program
immediately after the command name. The source file is
terminated either by another batch command or, if /DOLLARS
has been specified, by the command $EOD.

2. At an interactive terminal, issue the PDS command CREATE
followed by the file specification of the file to be created.
Begin to input the source program at the beginning of the
next line. Close the file by typing CTRL/Z.

The CREATE command is described in greater detail in Chapter 6,
section 6.4.1.1.

Examples:

1. $CREATE/DOLLARS COBOL.CSL

00078

00079

00080

00081

00082

00083

$EOD

IF NF-DELIMITER = CR

PERFORM READ-TRAN-LINE

IF EOFFOUND GO TO G5999

ELSE GO TO GS5

IF CHAR-COUNT ZERO

IF INMARKER < TRAN-LINE-LIMIT GO TO G25.

8-4

INTRODUCTION TO PROGRAM CONTROL

2. PDS> CREA'rE

FILE? TEST.FTN

SUBROUTINE PROCI

C FIRST DATA PROCESSING ROUTINE

C COMMUNICATION REGION

COMMON/OTA/ A (2 0 0)i , I

RETURN

END

CTRL/Z

8.4.2 The EDIT Command

The EDIT command allows thE~ interactive user both to create and edit a
source file via the Text Editor. Batch users should use the CREATE
command to create a source file, which may be edited subsequently in
either interactive or batch mode (See Chapter 7).

When the EDIT command specifies a non-existent file, the Line Text
Editor creates one and prompts for input. For example:

PDS> EDIT

FILE? NEWSOURCE.CBL

[EDI -- CREATING NEW FILE]

The user then begins to enter the source file beginning at the first
position of the next line after 'INPUT'.

See Chapter 7 for details on how to use the Text Editor to edit the
new file as it is being created.

To close the new file, the user must type carriage return as the first
character in the line. This action causes the Editor to display an
asterisk (*), which indicates that it expects an editor command rather
THAN further input to the file because the command mode has changed
from insert to edit. To close the file and exit to PDS, use the
command EXIT. If the user wants to create further files, the EDIT
command must be reissued.

8-5

INTRODUCTION TO PROGRAM CONTROL

Example:

PDS> EDIT

FILE? TONY.FTN

[EDI -- CREATING NEW FILEJ

INPUT

SUBROUTINE REPORT

C INTERIM REPORT PROGRAM

C COMMUNICATION REGION

COMMON/DTA/A(200),

RETURN

END
<CR>

!_EX

[EX! T] ---
PDS>

8-6

CHAPTER 9

BASIC

9.1 INTRODUCTION

BASIC-11 provides immediate translation and storage of a user program
while it is being input from an interactive terminal. The PDS user
invokes the BASIC interpreter by typing the command BASIC. The BASIC
system may not be used in batch mode under !AS.

The interactive nature of BASIC removes the need for separate steps in
the development of a program. Once BASIC has been invoked, a program
may be created, translated and run in a single session.

This chapter describes how to invoke BASIC, create and execute a
program and then terminate a session. The following manuals describe
the BASIC language itself:

BASIC-11 Language Reference Manual

!AS BASIC User's Guide

9.2 THE BASIC COMMAND

When the user issues the BASIC Command, BASIC displays as follows:

PDS> BASIC

The text 'READY' indicates that BASIC is ready to receive a command or
program line.

The BASIC command has no parameters or command qualifiers.

9.3 CTRL/C

If the user presses CTRL/C while a BASIC program is running, the
system stops execution after the current line and dislays the number
of the last line executed. The user may then issue further BASIC
commands.

9-1

BASIC

CTRL/C typed during the execution of a BASIC LIST or SAVE command or
an immediate mode statement stops.the execution of those commands or
statements. It has no effect on the execution of other BASIC
commands.

9.4 TERMINATING A BASIC SESSION

To terminate a BASIC session and return control to PDS, the user must
type 'BYE' on a new line. The system then prints information about
the session and prompts for further PDS commands. For example:

BYE

15.57.32 TASK TERMINATION

9.5 EXAMPLE

PDS> BASIC
READY
OLD MYBASIC
LISTNH
10 REM PROGRAM TO TRANSLATE MONTH NAMES TO NUMBERS
50 TS = "JANFEBMA-RAPRMAYJUNJULAUGSEPOC'rNOVDEC"
100 PRINT "TYPE THE FIRST 3 LET'rERS OF A MONTH_'._'._;_
110 INPUT M$
120 IF LEN {M$) <> 3 GO TO 200
13 0 M= { POS { T$, M$, 1) + 2) _n_
140 REM CHECK IF MONTH IS SPELLED CORRECTLY
150 IF M <> JNT {M) GO TO 200
160 PRINT M$" IS MONTH NUMBER"M
170 GO TO urn
200 PRINT "BAD MONTH" GO TO 100
READY

RUNNH
TYPE THE FIRST 3 LETTERS OF A MONTH?
NOV IS MONTH NUMBER 11
TYPE THE FIRST 3 LETTERS OF A MON'I'H?
DEC IS MONTH NUMBER 12
TYPE THE FIRST 3 LETTERS OF A MONTH?
JAN IS MONTH NUMBER 1
TYPE THE FIRST 3 LETTERS OF A MON'rH?
BAD MONTH
'rYPE THE FIRST 3 LE'rTERS OF A MONTH?
STOP AT LINE 110
READY
BYE
12.39.27 TASK TERMINATIO~
PDS>

9-2

NOV

DEC

JAN

AUD

CTRL/C

BASIC

In this example the user first invokes BASIC by issuing the BASIC
command. BASIC indicates that it is ready to accept BASIC program
lines and commands by printing READY. The user then retrieves an
existing BASIC program by entering the OLD command. This program is
printed and executed by the LIST and RUN commands respectively. Since
this program is written as a loop, that is, after executing line 200
it loops back to line 100, it will execute indefinitely. By entering
CTRL/C the user terminates the program execution. BASIC then prints
the number of the line at which execution was stopped. The BYE
command terminates the BASIC session.

9-3

PART 1

TUTORIAL

CHAPTER 10

COBOL

To create an executable COBOL program, the programmer needs to create
a source file and submit the source to the COBOL compiler. When the
program has been successfully compiled, the programmer uses the RUN
command to execute it. The object program produced by the COBOL
compiler runs within the framework of the COBOL system. A COBOL
program cannot be linked to programs written in other languages.

This chapter describes how to use !AS commands to create source files
and to compile and run COBOL programs. See Chapter 5 for a
description of the SUBMIT command, which allows the user to create a
file of I~S commands to be submitted to a batch stream. Consult the
following manuals for information about programming in COBOL on PDP-11
machines:

PDP-11 COBOL Language Reference Manual

PDP-11 COBOL User's Guide

10.1 CREATING SOURCE FILES

Either the CREATE command or the EDIT command may be used to create
source files. See Chapter 8, section 8.3. The EDIT command has the
advantage that it allows the interactive user immediate access to all
its editing facilities. To correct errors made while using the CREATE
command, however, the user must rely on keyboard facilities or close
the file and then issue the EDIT command.

10.2 THE COBOL COMMAND

By default, the COBOL command compiles a source program, produces an
object file and. in batch mode, produces a listing file. For example:

PDS> COBOL

FILE? SOURCE.CSL

This command string compiles the program SOURCE.CSL. and produces an
object file named SOURCE.OBJ. If the user omits the extension field in

10-1

COBOL

the specification of the source file, the COBOL complier assumes it to
be CBL.

10.2.1 Command Qualifiers

The qualifiers to the COBOL command are:

/OBJECT[:filespec]
/NOOBJECT
/LIST[: filespec]
/NOLI ST
/SWITCHES:(switches)

The compiler produces an object file unless the user specifies
/NOOBJECT. The object file may be named by default or given a name
specified after /OBJECT. See the command specification in Part 2 for
further details.

In batch mode, the compiler automatically produces a listing file
unless the user specifies /NOLIST. Interactive users must specify
/LIST to obtain a listing. The /LIST:filespec qualifier also allows
the user to send the listing to a file; otherwise, the listing file
is printed at the line printer and then deleted.

The qualifier /SWITCHES is described in the next section.

10.2.2 Compiler Switches

The PDP-11 COBOL compiler provides switches to tailor compilation to
particular needs. The user specifies the switches by means of the
/SWITCHES qualifier to the COBOL command. For example:

$COB/SWITCHES:(/MAP) SOURCE.CBL

The switch /MAP tells the compiler to produce a Data Division map.
The compiler automatically prints a listing file.

The specified switches must be enclosed in parentheses. For example:

PDS> COBOL/SWI'rCHES (/ERR: 2/MAP /CVF) /LIST: ACCOUNT. LST

FILE? ACCTS.CBL

When the user does not specify any switches, the compiler operates
according to defaults. The default switches are:

(/ERR:0/ACC:l/NOMAP)

The COBOL command specification in Part 2 defines all the possible
compiler switches.

10-2

COBOL

10.3 RUNNING A COBOL PROGRAM

To run a compiled COBOL program, issue the RUN command and specify the
program file modified by the /COBOL qualifier.

Example:

$RUN TEST/COBOL

If the extension is omitted. the system assumes it to be OBJ.

10.4 DIAGNOSTIC ERROR MESSAGES

The compiler generates diagnostic error messages whenever it detects
an error in the source program. With some exceptions, a source error
detected by the compiler results in the associated diagnostic message
being embedded within the source program listing. That is, when an
error is detected in the source program, the compiler prints the
diagnostic message either before or after the erroneous source program
statement.

See the PDP-11 COBOL User's Guide for a detailed description of
diagnostic error messages.

10-3

CHAPTER 11

FORTRAN

A FORTRAN programmer must complete four steps to transform a FORTRAN
source program into an executing task:

1. Create one or more source files,

2. Compile the source files,

3. Link the compiled, i.e. object, files, and

4. Run the executable task.

This chapter describes how to use IAS commands to perform these steps.

See Chapter 5 for a description of the SUBMIT command, which allows
the user to submit a file of IAS commands to a batch stream. A user
could create such a file to compile, link and run his task in a single
batch job.

Consult the following manuals for information about programming in
FORTRAN IV or FORTRAN IV-PLUS:

IAS/RSX-11 FORTRAN IV user's Guide
FORTRAN IV-PLUS User's Guide
PDP-11 FORTRAN Language Reference Manual

11.1 CREATING SOURCE FILES

Either the CREATE command or the EDI'r command may be used to create
source files. See Chapter 8, section 8.3. The EDIT command has the
advantage that it allows the user, immediate access to all its editing
facilities. To correct errors made while using the CREATE command,
however, the user must rely on keyboard facilities or close the file
and then issue the EDIT command.

11.2 THE FORTRAN COMMAND

The basic function of the FORTRAN command is to compile one or more
FORTRAN source programs. Command qualifiers, including compiler
switches and options, determine the form of the output to be generated
by the compiler.

11-1

FORTRAN

11.2.1 Compiling Source Files

Only one source file may be specified with each FORTRAN command. The
following command strings all compile the source file INVERT.FTN.

1. PDS> FORTRAN

FILE? INVERT

2. $FORTRAN INVERT

3. PDS> FORTRAN INVERT

Each of the command strings above instructs the system to compile the
source file specified and to produce compiler output as the defaults
dictate.

By default, the compiler:

1. Produces an object file which is given the name of the
source file and the extension OBJe

2. In batch mode, produces a listing file on the line printer.
No listing is produced in interactive mode unless the user
requests it.

3. Compiles the source file according to the compiler's default
switches. (See the FORTRAN command specification in Part 2
for a description of the compiler switches.)

11.2.2 fORTRAN Command Qualifiers

Command qualifiers, each preceded by a slash (/), immediately follow
the command name. For example:

PDS): FORTRAN/LIST/OBJEC'r/SWITCHES: (/CK) SOURCE. FTN

A programmer specifies command qualifiers in order to modify the
function of the FORTRAN command according to the needs of the program.
Qualifiers may also be specified merely to affirm default compiler
actions. For instance, the example above specifies /OBJECT even
though the FORTRAN command produces an object file by default. (See
section 11.2.1 for a list of compiler defaults.)

Compiler switches are listed after the /SWITCHES: qualifier. The list
of switches must be enclosed in parentheses. The slash preceding each
switch separates one from the next within the list. For example:

$FORTRAN/SWITCHES:(/CK/C0=7/TR:LINES) PROGl.FTN

The possible switches depend on whether the programmer is using
FORTRAN IV or FORTRAN IV-PLUS. Both sets of switches are listed in
the specification of the FORTRAN command in Part 2.

11-2

FORTRAN

11 • 2 . 3 Ex amp 1 es

The following commands all compile a FORTRAN source file:

1. $FORTRAN/OBJECT/LIST:PRINT RDIN

Compile the source program RDIN.FTN, create an object file
name RDIN.OBJ and create a listing file called PRINT.LST.

2. $FORTRAN/OBJECT/LIST:LPROC1 PROCl

Compile the source program PROCl.FTN, create an object file
named PROCl.OBJ and create a listing file called LPROCl.LST.

3. $FORTRAN/OBJECT/LIST:READ RPRT.FTN

Compile the source program RPRT.FTN, create an object file
named RPRT.OBJ and create a listing file called READ.LST.

Note that the file specifications to the /LIST qualifier need not
include an extension. In this case, the system assumes the extension
to be LST.

11.3 LINKING OBJECT FILES

The user issues the LINK command to link FORTRAN object files to
create an executable task.

11.3.1 The LINK Command

The LINK command invokes the IAS Task Builder to build an executable
task from object files generated by the FORTRAN command and from
object modules held in user-written and system library files (see
Chapter 8, section 8.2).

The IAS Task Builder Reference Manual contains a complete description
of the Task Builder.

This section gives information to help the programmer use the LINK
command. The user modifies the action of the Task Builder by
specifying or defaulting various options.

To link one or
Builder switches
followed by the
executable task.

For example:

more FORTRAN programs using the system default Task
and options, the user issues the LINK command
list of object files to be linked together into an

LINK PERFECT NUMBER

links together the FORTRAN object files PERFECT.OBJ and NUMBER.OBJ.

11.3.1.1 Options - The qualifier /OPTIONS allows the user to
Task Builder options. In interactive mode the presence

11-3

specify
of the

FORTRAN

qualifier /OPTIONS in the command qualifier list causes the Task
Builder to prompt OPTIONS? after the input files have been specified.
For example:

PDS): LINK/OPTIONS

FILE? PROG.OBJ,REPORT.OBJ

OPTIONS?

The user then enters the options one line at a time. A slash (/) as
the first character in a line then terminates the option input and the
Task Builder resumes execution.

For example:

PDS>. LINK/OP'rIONS

FILE~ FORT.OBJ, FROG.OBJ

OPTIONS? ACTFIL=8

OPTIONS? MAXBUF=l60

OPTIONS? UNITS=9

OPTIONS? ASG=DT1:7:8:9

OPTIONS? /

In batch mode, the presence of the /OPTIONS qualifier in the command
qualifier list causes the Task Builder to expect one or more options
to be specified on one or more lines immediately following the command
string. A line containing a slash (/) in the first character position
terminates the list of options.

For example:

$LINK/OPT IONS FROG.OBJ, REPORT.OBJ

ACTFIL=8

MAXBUF=l60

UNITS=9

ASG=DTl : 7: 8: 9

I

The Task Builder options are summarized in a table in the LINK command
in Part 2. The table indicates with an 'F' the options that are
relevant to FORTRAN programs.

11.3 .1.2 Object Modules - The file qualifier /LIBRARY specifies a
library file that contains the user-written object modules to be
incorporated in the task. The Task Builder automatically searches
system object module libraries for referenced modules.

11-4

FORTRAN

Example:

$LINK (FORT.LIB/LIBRARY: (MOD1,MOD2), FORTRAN.OBJ)

11.3.1.3 Output Files - The Task Builder does not generate any output
files, other than an executable task image, unless the user
specifically requests them by supplying the relevant qualifiers. The
possible output files and the associated qualifiers are:

Output File

Task image file

Memory allocation map file

Symbol definition file

Qualifier

/TASK [: filespec]

/MAP [: filespec]

/SYMBOLS[:filespec]

11.3.1.4 Example - The following example links three object files.

PDS> LINK/TASK:CALC/MAP:CALC/OPTIONS

FILES? RDIN.OBJ, PROCl.OBJ, RPRT.OBJ

OPTIONS? UNITS = 5

OPTIONS? ASG=DT2:1:2,TI:3,MT:4:5

OPTIONS? /

The LINK command links the three object files to create a task image
file named CALC.TSK and a map file named CALC.MAP.

11.4 RUNNING THE TASK

A FORTRAN programmer compiles and links a task in separate operations.
The RUN command is then used to execute the task image created by the
LINK command.

To run a linked FORTRAN task, issue the RUN command and specify the
task image file generated by the LINK command.

Examples:

1. PDS> RUN
FILE? CALC

2. $RUN CALC

Both examples instruct the system to run the task named CALC.TSK.

11-5

PD~ FORTRAN

COMPILER
OBJECT

MODULE

FORTRAN

PDS>LINK

TASK
BUILDER

Figure 11-1

TASK
IMAGE

Steps in Creating a FORTRAN Program

11-6

PDS> RUN

EXECUTING
TASK

CHAPTER 12

MACR0-11

A MACR0-11 programmer must complete four steps to transform a MACR0-11
program into an executing task:

1. Create one or more source files,

2. Assemble the source files,

3. Link the assembled- i.e. object, files, and

4. Run the executable task.

This chapter describes how to use IAS commands to perform these steps.
It also introduces the On-line Debugging Technique (ODT), a system
program which aids in debugging assembled and linked object programs
(section 12.5). Consult the IAS/RSX-11 MACR0-11 Reference Manual for
information about programming in MACR0-11.

See Chapter 5 for a description of the SUBMIT command. It allows the
user to submit a file of IAS commands to a batch processor. A user
could create such a file to compile, link and run his task in a single
batch job.

12.1 CREATING SOURCE FILE~

Either the CREATE command or the EDIT command may be used to create
source files. See Chapter 8, section 8.3. The EDIT command has the
advantage that it allows the user immediate access to all its editing
facilities. To correct errors made while using the CREATE command,
however, the user must rely on keyboard facilities or close the file

·and then issue the EDIT command.

12.2 THE MACRO COMMAND

The MACRO command assembles one or more ASCII source files containing
MACR0-11 statements into a single relocatable binary object file.
Command qualifiers, including assembler switches, determine the output
to be generated by the assembler.

12-1

MACR0-11

1 2 • 2 • 1 Ass em b li I}g__§.Q u r c e Fil es

The following command string assembles the source files LOCATE.MAC
and FIND.MAC:

1. PDS> MAC

FILES? LOCATE+FIND

2. $MACRO LOCATE+FIND

Each of the command strings above instructs the system to assemble the
source files specified and to produce assembler output as the defaults
dictate. Note that the MACRO command requires the source files to be
concatenated with a plus sign (+); the assembler does not accept the
more common list format, that is, a list enclosed in parentheses, with
list items separated by a comma, spaces or tabs. By default, the
assembler:

1. Produces an object file which is given the name of the last
source file specified and the extension OBJ.

2. In batch mode, produces a listing which is printed on the
line printer. Interactive users must specifically request a
listing by means of the /LIST qualifier (see section 12.2.2).

12.2.2 Command and File Qualifiers

Command qualifiers, each preceded by a slash (/), immediately follow
the command name.

For example:

PDS> MACRO/LIST/OBJECT LOCATE+ FIND

The programmer specifies file qualifiers immediately after the
relevant file specification. For example:

$MAC MACLIB.MLB/LIB+TEST

the /LIBRARY qualifier instructs the assembler to treat MACLIB.MLB as
a macro library file. The /LIST qualifier requests a listing to be
sent to the line printer.

A programmer specifies command and file qualifiers in order to modify
the function of the MACRO command according to the needs of the
program. Qualifiers may also be specified merely to affirm default
assembler actions. For instance, the first example above specifies
/.LIST and /OBJECT even though the MACRO command produces an object
file by default. (See section 12.2.1 for a list of assembler
defaults.)

The specification of the MACRO command in Part 2 lists all the
possible command and file qualifiers. Programmers should consult the
IAS/RSX-11 MACR0-11 Reference Manual for a full description.

12-2

MACR0-11

Example:

PDS> MACRO/OBJECT:FINAL

FILE? ROUT.MAC+MAIN.MAC

Assemble the source programs ROUT.MAC and MAIN.MAC to produce an
object file named FINAL.OBJ.

12.3 LINKING OBJECT FILES

The user issues the LINK command to link MACR0-11 object files to
create an executable task.

See Section 12.5 for information about debugging linked object
programs.

12.3.1 The LINK Command

The LINK command invokes the IAS Task Builder to build an executable
task from object files generated by the FORTRAN or MACRO command and
from object modules held in user-written and system library files (see
section 12.3.1.3).

The !AS Task Builder Reference Manual contains a complete description
of the Task Builder. This section gives information to help the
programmer use the LINK command.

The user may modify the action of the Task Builder by specifying
various options. To link one or more MACR0-11 programs with the
system default Task Builder switches and options, the user issues the
LINK command followed by the list of object files to be linked
together into an executable task.

For example:

$LINK REALTIME ADCONVERT

links together the object programs REALTIME.OBJ and ADCONVERT.OBJ.

12.3.1.1 Options - The /OPTIONS qualifier allows the user to specify
Task Builder options. In interactive mode the presence of the
qualifier /OPTIONS in the command qualifier list causes the Task
Builder to prompt OPTIONS? after the input files have been specified.
For example:

PDS> LINK/OPTIONS

IT!&] PROG.OBJ, REPOR'r.OBJ

OPTIONS?

12-3

MACR0-11

The user then enters the options one line at a time. A slash (/) as
the first character in a line then terminates the list of options and
the Task Builder resumes executing.

For example:

PDS> LINK/OPTIONS

~LE? MAIN.OBJ, FROG.OBJ

OPTIONS? TASK=SYSMAN

OPTIONS? UIC=[l,l]

OPTI0NS? LIBR=SYSRES:RO

OPTIONS? /

In batch mode, the presence of the /OPTIONS qualifier in the command
qualifier list causes the Task Builder to expect one or more options
to be specified on one or more lines immediately following the command
string. The user must specify a single option on each line. A card
or line containing a slash (/) in the first character position
terminates the list of options.

For example:

$LINK/OPTIONS FROG.OBJ, REPORT.OBJ

TASK=SYSMAN

UIC=[l,l]

LIBR=SYSRES:RO

I

The Task Builder options are summarized in the specification of the
LINK command in Part 2. The summary marks the options that are
relevant to MACRO programs with the letter M.

12.3.1.2 Object Modules - ·The file qualifier /LIBRARY specifies the
library files that contain the user-written object modules to be
incorporated in the task. The Task Builder automatically searches
system object module libraries for referenced modules.

Example:

$LINK MACRO.LIB/LIBRARY: (MACl, MAC2) MACRO.OBJ

12.3.1.3 Output Files The Task Builder does not generate any
output files, other than an executable task image, unless the user
specifically requests them by supplying the relevant qualifiers. The
possible output files and the associated qualifiers are:

12-4

Output File

TasK image file

Memory allocation map file

Symbol definition file

MACR0-11

gualifier

/TASK [: filespec]

/MAP [: filespec]

/SYMBOLS[:filespec]

12.3.1.4 Example The following example links three object files
to form a task named CALC.TSK.

PDS> LINK/TASK:CALC/MAP:CALC/DEBUG/OPTIONS

FILE? (SEGl.OBJ, SEG2.0BJ, MACRO.OBJ)

OPTIONS? UNITS = 5

OPTIONS? ASG=DT2:1:2,TI:3,MT:4:5

OPTIONS? /

The command string above links the three object files to create a task
image file named CALC.TSK and a map file named CALC.MAP. The /DEBUG
qualifier instructs the Task Builder to include a debugging aid (i.e.
the ODT program, see section 12.5.1) and Task Builder options assign
logical unit numbers.

12.4 RUNNING THE TASK

A MACR0-11 programmer assembles and links a task in separate
operations. The RUN command is then used to begin execution of the
task image created by the LINK command.

When used to execute a MACR0-11 task, the RUN command has no
qualifiers and only one parameter, the file specification of the task
to be run. The file containing the executable task is the task image
file generated by LINK.

Examples:

1. PDS> RUN

FILE? CALC.TSK

2. $RUN CALC.TSK

Both examples instruct the system to run the task named CALC.TSK.

12-5

MACR0-11

12.5 DEBUGGING

12.5.1 The On-line Debugging Techniaue

!AS provides the On-line Debugging Technique (ODT) to help programmers
debug linked and assembled object programs. To incorporate ODT in the
linked program, the programmer specifies the /DEBUG qualifier to the
LINK command (see section 12.3.1.1).

For example:

$LINK/DEBUG MACRO.OBJ

The Task Builder then automatically includes ODT in the task image.

The IAS/RSX-11 ODT Reference Manual contains a complete description of
ODT. In brief, however, the programmer interacts with ODT and the
object ;~rogram from an interactive terminal to:

1. Print the contents of any location for examination or
alteration.

2. Run all or any portion of the object program using the
breakpoint feature.

3. Search the object program for specific bit patterns.

4. Search the object program for words which reference a
specific word.

5. Calculate a block of words or bytes with a designated value.

6. Fill a block of words or bytes with a designated value.

The breakpoint is one of ODT'S most useful features. When debugging a
program, it is often desirable to allow the program to run normally up
to a predetermined point. at which time the contents of various
registers or locations can be examined and possibly modified. To
accomplish this, ODT acts as a monitor to the user program.

During a debugging session you should have the assembly listing of the
program to be debugged at the terminal. Minor corrections to the
program may be made on-line during the debugging session. The program
may then be run under control of ODT to verify any changes made.
Major corrections, however, such as a missing subroutine, should be
noted o~ the assembly listing and incorporated in a subsequent updated
program assembly.

12-6

MACR0-11

12.5.2 user-Written De~ing Aids

A programmer may also incorporate a user-written debugging aid in a
linked object program. The file containing the debugging aid is
specified with the /DEBUG qualifier.

For example:

PDS> LINK/DEBUG:DEBUG.OBJ

FILES? MACRO.OBJ

12-7

INDEX

*(asterisk),
EDI prompt, 7-2
wild-card, 2-10, 6-8

@(at sign),
invoking indirect file, 8-10
SLIFER control character, 7-16

! (comment character), 4-1
${dollar sign), 5-1
-{hyphen), continuation
character, 4-1

<(less than),
SLIFER control character, 7-16

-(minus sign),
SLIFER control character, 7-16

I (slash) ,
character string delimiter, 7-4
qualifiers, 2-11
SLIFER control character, 7-16
terminator of Task Builder

options, 11-4, 12-4

Abbreviated input,
EDI commands, 7-1
PDS commands, 4-4
qualifiers, 4-4

ABORT command, 4-5, P2-6
Access, types of, 6-2
ALLOCATE command, 6-10, 6-13,

P2-7, to P2-8
Allocating a device, 6-13, P2-7

to P2-8
ALTmode {ESCape), 2-5, 4-3
within EDI, 7-9

APPEND command, 6-18, P2-9 to
P2-10

Appending files, 6-18, P2-9 to
P2-10

Assembling MACR0-11 source files,
12-2

ASSIGN command, 6-11, 6-15, P2-ll
to P2-12

Assigning logical units, 6-15
Asterisk,{*)

EDI prompt, 7-2
wild-card, 2-10, 6-8

At sign {@),
invoking indirect files, 8-10
SLIPER control characteru 7-16

BASIC, 1-4, 9-1 to 9-3
sample session, 9-2

BASIC command, 9-1, P2-13
Batch,

commands, 1-3
mode, 1-2, 5-1

Batch job,
beginning, 5-1
ending, 5-2
identifier, 5-2
submitting from card reader, 5-1
submitting from interactive

terminal, 5-2
Block editing, 7-2
BYE,

BASIC command, 9-2
within PDS, 2-11

Cancelling a line, 2-7
Cancelling a PDS command

{CTRL/C), 2-5
Carriage return, 2-5, 3-1
within EDI, 7-9

Case, use of upper and lower, 3-6
CHANGE editor command, 7-4
Changing the name of a file,

2-10, P2-81
Closing a file,

CTRL/Z, 2-7, 3-4
$EOD, 6-17

COBOL, 1-4, 10-1 to 10-3
diagnostic error messages, 10-3

COBOL command, 10-1, P2-14 to
P2-16

Command names ,
EDI, 7-1
PDS I 4-1

Command qualifiers, 2-11, 4-4
Command strings, 4-1
Command syntax, P2-2
Commands, 4-1 to 4-7
batch, 5-1 to 5-2
EDI, 7-4 to 7-12, P2-33 to P2-38
interactive, 2-1 to 2-11
restricting use of PDS, 1-3
SLIPER (batch editor), 7-15

Comment character {!), 4-1
Compiling source program,

COBOL, 10-2, P2-14
FORTRAN, 11-2, P2-42

Contiguous, 2~10
Continuation character{-), 4-1
CONTINUE command, 4-5, P2-17
Control key functions, 3-4
COPY command, 6-19 to 6-20, P2-18

to P2-19
Copying files, 6-19, P2-18
Correcting input errors, 2-6, 3-5
CR (carriage return), 2-5, 3-1

within EDI, 7-9
Creating a file, 6-16

CREATE command, 2-6, 6-17, P2-20

Index-!

INDEX (Cont.)

to P2-21
EDI (TP.Xt Editor)' 7-2
indirect file, 8-1
source file, 6-16

CTRL functions, 3-4
CTRL/C,
cancelling PDS command, 3-5
invoking PDS, 2-4
suspending a task, 4-5
when using BASIC interpreter,

9-1
CTRL/R, 2-6, 3-5
CTRL/U, 2-7, 3-5
CTRL/Z, 2-7, 3-4, 6-17

within EDI, 7-4

DEALLOCATE command, 6-15, P2-22
Deallocating a device, 6-13,

6-15, P2-22
DEASSIGN command, P2-23
Debugging aids, 12-6
Defaults,
displaying default values, 6-8
within file specification, 6-6

to 6--8
DELETE command (PDS), 6-22, P2-24
DELETE editor command, 7-5
DELETE/RUBOUT key, 2-6, 3-3, 3-5
Deleting,

characters or lines via EDI, 7-5
to 7--6

characters or lines via SLIFER,
7-16

current input line (CTRL/U),
2-7, 3-5

files, 6--22
individual characters via

keyboard function, 2-6, 3-5
Delimiters, 7-4
Device,
accessing a, 6-10
allocating a, 6-13, P2-7 to P2-8
assigning to logical unit, 6-15,

P2-ll to P2-l 2
deallocating, 6-15, P2-22
deassigning from logical unit,

P2-23
logical name for, 6-11
management, 6-10 to 6-15
mnemonic!:;, 6-5
name, 6-4
non-shareable, 6-11
shareable!, 6-10
system, 6-10
types, 6-·5

pirectories, 2-9, 6-16
DIRECTORY command, 2-9, 2-11,

6-16, P2-2 to P2-27
DISMOUNT command, 6-13, P2-28
Dollar siqn ($), 5-1
DOS (DIGITAL'S) formatted

volumE~s, 6-13

DUMP command, 6-22, P2-29 to
P2-31

EDI (Text Editor), 7-1 to 7-12,
P2-32 to P2-38

EDIT command, 7-2, 7-13,
P2-32 to P2-39

Editing an existing file, 7-2,
7-13

Editor,
batch, 7-13 to 7-19, P2-32,

P2-39
commands, 7-4, 7-15
interactive, 7-1 to 7-12, P2-32

to P2-38
Source Language Input Program

and Edi tor (SL I PER)' 7-13,
P2-32, P2-39

Text Editor (EDI)' 7-1
Ending,

batch job ($EOD)' 5-2, P2-40
interactive session (LOGOUT) ,

2-11, P2-67
$EOD command, 5-2, P2-40
$EOJ command, 5-2, P2-41
Error messages, 4-5

COBOL diagnostic, 10-3
Errors in command input, 4-5
ESCape (ALTmode), 2-5, 4-3
within EDI, 7-9

Exclamation mark (!) , 4-1
EXIT editor command, 7-6
Extension, 2-6, 6-4

Fil es,
appending, 6-18, P2-9 to P2-10
command, 8-1
copying, 6-19, P2-18
d e 1 et i ng , 6 - 2 2
ed i t i ng , 7 -1 to 7 -1 9
extensions, 2-6, 6-4
indirect, 8-1
li st i ng , 6 - 21
named, 6-9
names, 6-3
protection, 6-2 to 6-3, P2-77
qualifiers, 2-11, 4-4
renaming, 2-10, 6-21
specifications, 6-4
systems (Files-11), 6-1
un-named, 6-9
valid specifications, 6-9

FIND editor command, 7-7
Foreign volumes,

copying files to and from, 6-20
deleting files from, 6-22
DOS (DIGITAL'S) formatted, 6-13
interrogating (DIRECTORY

command) , 6-1 7
mounting, 6-12
RT-11 formatted, 6-13

Index-2

INDEX (Cont.)

Form feed (CTRL/L) , 3-4
FORTRAN, 1-4, 11-1, 11-5
FORTRAN command, 11-1, P2-42 to

P2-46
Functions,
Control (CTRL) key, 3-4
keyboard, 3-1

HELP command, P2-48
Hyphen (-) as continuation

character, 4-1

Indirect files, 8-1
containing SLIFER commands, 7-17

INSERT editor command, 7-2, 7-7
Input mode (EDI) , 7-2
Interactive mode, 1-1
Invoking,

EDI (Text Editor)' 7-2, P2-32
PDS, 2-4
SLIFER (batch editor)' 7-13'

P2-32

$JOB command, 5-1, P2-47
Job identifier, 5-2

Keyboard,
functions, 3-1
layout, 3-2

Less than sign (<), 7-16
SLIPER control character, 7-16

LIBRARIAN command, 8-3, P2-49 to
P2-56

Libraries, 8-3, P2-49 to P2-46
macro, 8-3
object module, 8-3
system, 11-4, 12-4

Line pointer, 7-3
LINK command, 11-3, 12-3, P2-57

to P2-65
options, 11-3, 12-3, P2-59 to

P2-60
Linking object modules, 11-3,

12-3, P2-57
Listing files, 6-21
at interactive terminal, 6-21
COBOL, 10-2, P2-15
FORTRAN, 11-2, P2-43
MACR0-11, 12-2, P2-68
on line printer, 6-21
to be edited (SLIFER)' 7-14
using DUMP facility, 6-22

Logical device names, 6-11
Logical Unit-Numbers (luns), 6-11
assigning, 6-15

Logical Units, 6-11
LOGIN command, 2-5, P2-16

LOGOUT command, 2-11, P2-67
Luns (Logical Unit Numbers), 6-11

MACRO command, 12-1, P2-68 to
P2-69

MACR0-11 Assembler, 1-5
MESSAGE command, P2-70
Minus sign (-),

SLIFER control character, 7-16
Modes, 1-1, 8-1

batch, 1-2
editing (EDI) ' 7-1
interactive, 1-1
real-time, 1-1

MOUNT command, 6-12, P2-71 to
P2-73

Named file, 6-9
NEXT editor command, 7-3, 7-8
Non-shareable devices, 6-11
NP editor command, 7-9

Object module, 2-6
libraries, 8-3

ODT (On-line Debugging
Technique) , 12-6

Optional parameters, 4-3

Par am e t er s , 4 -1
lists, 4-3
optional, 4-3
prompts, 4-2

Password, 2-5
PASSWORD command, 2-5, P2-74
PLOCATE editor command, 7-10
PRINT command, 6-21, P2-75
PRINT editor command, 7-10
Prompts for parameters, 4-2
optional, 4-3

PROTECT command, 6-2, P2-77
Protection codes, 6-2

Qualifiers, 2-11, 4-4
QUEUE command, P2-69 to P2-70

Real-time mode, 1-1
RENAME command, 2-10, 6-21
Renaming files, 2-10, 6-21
RENEW editor command, 7-11
Restarting suspended task, 4-5
Restarting terminal output,

CTRL/O (in logical units), 3-4
CTRL/Q, 3-4

RETYPE editor command, 7-11
Retyping current line (CTRL/R),

2-6' 3-5
RT-11 formatted volumes, 6-13

Index-3

INDEX (Cont.)

RUBOUT/DELETE key, 2-6, 3-3, 3-5
RUN command, P2-82
Running,

COBOL program, 10-3, P2-82
executable task, 2-9, 11-5,

12-15, P2-82

SET command, P2-83
Shareable devices, 6-10
SHOW command, 6-8, P2-85
Slash (/),
character string delimiter, 7-4
qualifiers, 2-11
SLIPER control characters, 7-16
Terminator of Task Builder

options, 11-4, 12-4
SLIPER (batch editor)' 7-13

commands, 7-15
control characters, 7-16

Spooling, 6-10
SUBMIT command, 5-2, P2-87
Submitting batch job,

from card reader, 5-1
from interactive terminal, 5-2

Suppressing terminal output,
CTRL/O, 3-4

Suspending,
BASIC program, 9-1
task, 4-5
terminal output (CTRL/S), 3-5

Switches,
COBOL compiler, 10-2, P2-15
FORTRAN compiler, 11-2, P2-43 to

P2-46
System,
device, 6-10
file (Files-11), 6-1

Tabs,
horizontal (CTRL/I), 3-4
'rAB key, 3-3
vertical (CTRL/K) , 3-4

Task,
abandoning suspended task, 4-5,

P2-6
creating, 2-8, 11-3, 12-3, P2-57
effect of executing task, 4-5
image file, 11-3, 12-3
restarting suspended task, 4-5

running, 2-9, 11-5, 12-5, P2-82
suspending, 4-5

Task Builder, 11-3, 12-3, P2-57
options, 11-3, 12-3

Terminating,
BASIC session, 9-2
batch job, 5-2, P2-41
EDI session, 7-6
interactive session, 2-11
SLIPER job, 7-17

Terminating a file,
in batch mode, 6-17
in interactive mode, 2-7, 3-4,

6-1 7
TI (terminal input), 6-5
Timesharing, 1-1
'l'iming out, 2-4
TO (terminal output), 6-5
TOF editor command, 7-12
Translating source program, 2-7

COBOL, 10-1
FORTRAN, 2-7, 11-2,
MACR0-11, 12-2

TYPE command, 6-21, P2-88

UFD (User File Directory), 6-6,
6-16

UIC (User Identification Code),
1-1' 6-2' 6-6

UNLOCK command, P2-89
Un-named files, 6-9
User File Directory (UFD), 6-6,

6-16
User Identification Code (UIC),

1-1, 6-2' 6-6
User categories (for protection

codes), 6-2, P2-77
User Name, 2-5, 5-3

Version numbers, 2-10, 6-4, 6-6,
6-7

Volumes, 6-1
DOS (DIGITAL's) formatted, 6-13
foreign, 6-1
protection, 6-2, P2-77
RT-11 formatted, 6-13

Wild-card (*) , 2-10, 6-8

Index-4

PART 2

COMMAND SPECIFICA'rIONS

P2-l

COMMAND SPECIFICATIONS

COMMAND FORMAT

The general format of a command is:

[$]command-name [qualifiers] [par ame teer-1] [, .•• , par ameter-n]

The following rules apply:

1. Brackets - In the description of commands in this manual,
brackets ([and]) are used to surround optional values. For
example:

COPY [qualifiers]

indicates that the user does not need to supply any
qualifiers to issue a valid COPY command.

2. Dollar Sign ($} The dollar-sign ($) must appear in
position 1 of a command to be executed in batch mode. It may
optionally appear in a command executed in interactive mode.

3. Command Names The command name describes the action the
command is to perform. With the exception of LOGIN, LOGOUT,
DEASSIGN and DEALLOCATE, which can be abbreviated to 4
letters, all commands can be abbreviated to 3 letters.
Additional letters are acceptable, for example; LOGOUT, LOGOU
and LOGO are all correct.

4. Parameters A parameter either describes a value that a
command is to use when executing or it further defines the
action a command is to take. Interactive users may supply
parameters in response to prompts (see Chapter 4, section
4~1). Otherwise, at least one space must separate the first
parameter from the command-name; parameters are then
separated from each other by one or more spaces and/or a
sing le comma (,) •

5. Parentheses and Ellipses Some commands permit the user to
replace a single parameter by a list of values. When this is
done the list may be surrounded by parentheses. Parentheses
are not required when the parameter being replaced is the
only or the last parameter in the command string.

Examples:

a. DELETE (A B C)

The parentheses are optional

b. APPEND (A B C) D

The parentheses are required because the parameter being
replaced is not the last parameter. (This command specifies
that files A, B and C are to be added to the end of file D).

P2-2

COMMAND SPECIFICATIONS

In the description of a command's format, ellipses (three
dots " •.. ") indicate that a list of values of the same type
may replace a single value.

6. Qualifiers A qualifier is used to modify the default
action of a command. There are defaults for all qualifiers,
i.e. they are never required. A qualifier always begins
with a slash (/). Both command names and parameters can be
qualified.

Examples:

PRINT/DELE'rE MYFI LE. DA'!'

RUN MY PROGRAM/COBOL

Many qualifiers have associated qualifier values. The
qualifier is separated from the qualifier value by a colon
(:), e.g. KEEP:JL. Whenever a qualifier requires a list of
values, that list must be enclosed in parentheses, e.g.

/BLOCKS: (m-n)i

A qualifier may not contain any spaces.

7. Continuation Character (-) A hyphen (-), which may be
optionally followed by spaces and/or a comment, is used to
indicate that a command is to be continued on the next line.

Example:

COPY A.DAT -

B.DAT

8. Comment Character (!) An exclamation mark deli mi ts the
start of a comment. Comments can occur only after the last
character of a command or after a hyphen. Comments are for
the user's information only and do not affect the processing
of the command. Note that a comment character that appears
on a continued line must immediately follow the hyphen.

Examples:

COPY A.DAT B.DAT !FILE A TO FILE B.

MOUNT/DENSITY:800 MT: - MOUNT MY
VOLID3 TU10: ! TAPE ON ANY TU10

P2-3

COMMAND SPECIFICATIONS

9. Concatenation Character {+) - A plus sign {+) indicates
concatenation, that is, the records in the file specified on
the left of the plus sign are processed followed by the
records in the file specified on the right of the plus sign.

Example:

MACRO A+B

The MACR0-11 statements
MACR0-11 statements in
assembler.

in file A.MAC followed by the
file B.MAC are read by the MACR0-11

P2-4

COMMAND SPECIFICATIONS

DICTIONARY OF PDS COMMANDS

The following PDS commands are specified in this section.

ABORT DISMOUNT MOUNT
$DISMOUNT $MOUNT

ALLOCATE
$ALLOCA'rE DUMP PASSOWRD

$DUMP
APPEND PRINT
$APPEND EDIT $PRINT

$EDIT
ASSIGN PROTECT
$ASSIGN $EOD $PROTECT

BASIC $EOJ QUEUE

COBOL FOR'rRAN RENAME
$COBOL $FOR'l'RAN $RENAME

CONTINUE $JOB RUN
$RUN

COPY HELP
$COPY SET

LIBRARIAN $SET
CREA'rE $LIBRARIAN
$CREATE SHOW

LINK
DEALLOCATE $LINK SUBMIT
$DEALLOCATE

LOGIN TYPE
DEASSIGN
$DEASSIGN LOGOUT UNLOCK

$UNLOCK
DELE'rE MACRO
$DELETE $MACRO

DIRECTORY MESSAGE
$DIRECTORY $MESSAGE

P2-5

COMMAND SPECIFICATIONS

ABORT

The ABORT command causes the currently suspended user task to be
aborted.

FORMAT

PDS2. ABORT

The ABORT command has no parameters .

. DESCRIPTION

The ABORT command may only be issued after the current user task has
been suspended by typing CTRL/C. The ABORT command must then be issued
before the system accepts any command other than CONTINUE, HELP, SHOW,
MESSAGE or STATUS. Typing ABORT then causes the suspended task to be
terminated.

EXAMPLE

CTRL/C

TASK SUSPENDED

PDS2_ ABORT

PDS>

P2-6

COMMAND. SPECIFICATIONS

ALLOCATE
$ALLOCATE

The ALLOCATE command allocates a specified device to the user and
optionally associates a logical name with the device.

FORMAT

or

PDS> ALLOCATE

RESOURCE? DEVICE

DEVICE? device-name

LOGICAL NAME? logical-name

$ALLOCATE DEVICE device-name logical-name

where

device-name

logical-name

DESCRIPTION

is the specification of the device to be allocated to
the user.

is a logical name to be associated with the device.

The user obtains exclusive access to the allocated device.

The system automatically deallocates the device when the user
dismounts it or deassigns the last logical unit number to which that
device is assigned, unless the user modifies the DISMOUNT or DEASSIGN
command with the qualifier /KEEP.

The user may not explicity allocate a system device, that is, a device
allocated to all users by the system manager. If device-name does not
include a unit number, the system allocates any available device of
the specified type and, in interactive mode, prints at the user's
terminal the physical unit allocated. In this case, the batch user
must define a logical name in order to refer to that device in
subsequent commands.

P2-7

COMMAND SPECIFICATIONS

EXAMPLE:S

1. PDS> ALLOCATE

RESOURCE? DEVICE

DEVICE? MT: <ALT>

LOGICAL NAME? Mvq:

PDS> MOUNT MY0:

VOLUME-ID? VOL 7 5

PDS> DISMOUNT/KEEP

DEVICE? MY0

VOLUME-ID? VOL74

PDS> MOUNT MY0: VOL73

PDS> DISMOUNT

DEVICE? MY0

VOLUME-ID? VOL75

2. $ALLOCATE DEVICE MT: LM0

P2-8

COMMAND SPECIFICA'rIONS

APPEND
$APPEND

The APPEND command adds the contents of one or more input files, in
the order in which they are specified, to the end of an output file.

FORMAT

PDS> APPEND

FILE? [(]infile-1[, ••• infile-n)]

TO? outfile
or

$APPEND [(]infile-1[, ••• infile-n)] outfile

where

inf ile is an input file specification

outfile is an output file specification

DESCRIPTION

If one or more files in a list of input files is in error, the system
ignores the file errors and appends the rest to the output file.

Wild-cards are allowed in any input file specification. All file
specifications must include a filename and an extension.

If a version number is not specified, the system assumes the highest
version number for the input file, and the highest version plus 1 for
the output file.

If one of the specified files is to be input from the user's terminal
(TI:), the system transfers all that the user types in after the
completed command string. The transfer continues until the user types
CTRL/Z to terminate the input file.

EXAMPLES

1. PDS> APPEND (A.OBJ. B.OBJ) C.OBJ

2. PDS> APPEND
FILE? (ABC.FTN DEF.FTN)
TO? XYZ.FTN

P2-9

COMMAND SPECIFICATIONS

3. PDS> APPEND TWO.MAC, ONE.MAC

4. PDS> APPEND (A.EXT B.EXT} D.EXT

5. $APPEND (ABC.DAT, DEF.DAT}, XYZ.DAT

P2-10

COMMAND SPECIFICA'rIONS

ASSIGN
$ASSIGN

The ASSIGN command assigns a device to a logical unit.

FORMAT

PDS> ASSIGN

FILE? device-name

LUN? lun

or

$ASSIGN device-name lun

where

device-name is the specification of the device to be assigned to
the logical unit.

lun

The device must be one allocated to the user by the
ALLOCATE or MOUNT command, or one to which all users
have access.

is a logical unit number.

DESCRIPTION

users may assign logical 1Jnit numbers at three points:

1. By means of the ASSIGN command before the user runs a task.

2. By means of a Task Builder option when a task is linked (see
the IAS Task Builder Reference Manual).

3. From within a program by means of the system directive ALUN$
or OPEN$ or the FORTRAN subroutines ASSIGN and ASNLUN (see
the !AS Executive Reference Manual, Volume One).

This command associates a device name with a logical unit number so
that user programs can be written independently of specific devices.
The assignment applies only to programs executed by means of a batch
or interactive RUN command.

If the ASSIGN command associates a device name with a logical unit
number, that assignment overrides any made for that logical unit
number by the Task Builder. And if an executing program assigns a
logical unit, that assignment overrides the action of any ASSIGN
command for that logical unit number.

P2-ll

COMMAND SPECIFICA'rIONS

The syst~m automatically deassigns logical units when the associated
volume is dismounted or device deallocated. The user may also issue
the DEASSIGN command to deassign a device from a logical unit.

EXAMPLES

1. $ASSIGN DP0: 7

2. PDS> ASSIGN

FILE? LP0:

LUN? 6

3. PDS> ASSIGN DK2:

LUN? 5

P2-12

COMMAND SPECIFICATIONS

BASIC

The BASIC command invokes the BASIC interpreter.

FORMAT

BASIC

The BASIC command has no parameters.

DESCRIP'rION

When the user issues the BASIC command, BASIC indicates that the
interpreter is ready to receive a command or program line by typing
"READY".

To terminate a BASIC session and return control to PDS, the user types
'BYE' on a new line. The system then prints information about the
session and prompts for further PDS commands. For example:

BYE

15:57:32 TASK TERMINATION

Effect of CTRL/C

When the BASIC interpreter is executing a program, CTRL/C causes the
system to stop execution after the current line. The terminal
displays the number of the last line executed and the user may then
issue further BASIC commands.

CTRL/C typed during the execution of a BASIC LIS'r or SAVE command or
an immediate mode statement stops the execution of those commands or
statements. It has no effect on the execution of other BASIC
commands.

P2-13

COBOL
$COBOL

COMMAND SPECIFICATIONS

The COBOL command compiles a COBOL source program.

FORMAT

PD:3> COBOL [qualifiers]

FI .LE? file spec

or

$COBOL[qualifiers] filespec

where

f ilespec is a specification of the file containing the COBOL
program. The specification must contain a filename. If
the extension is omitted, the system assumes it to be CBL.

qualifiers are one or more of the following:

Qualifier Meaning

/OBJECT[:filespec]

/NOOBJECT

/LIST [: f ilespec]

/NOLIST

Produce an object file, named according to
filespec if it is supplied (no wild-cards
allowed). The default extension is OBJ. /OBJECT
is the default qualifier.

Do not produce an object file.

Produce a listing file named according to
filespec if it is supplied (no wild-cards
allowed). The default extension is .LST. /LIST
is the default condition for batch mode.

Do not produce a listing file (the default
condition for interactive mode).

/SWITCHES:(switches) Apply the specified COBOL compiler switches.
See the section calLed Compiler Switches below.

Defaults

Object File If the qualifier /OBJECT is specified without a file
specification, the object file is given the name of the source file
and the extension .OBJ. The system default is /OBJECT.

P2-14

COMMAND SPECIFICATIONS

Listing File If /LIST is supplied without a filespec in
interactive mode, the listing file is sent to the line printer. In
batch mode, the system assumes the /LIST qualifier by default and
automatically prints the listing on the line printer.

Compiler Switches

The COBOL command includes compiler switches that permit the user to
tailor the compilation listing to meet particular needs. Other
switches are available at execution time that may be interrogated by
the object program.

A list of switches and their meanings follow:

Switch

/ERR:n

/ACC:n

/MAP

/LOD

/CVF

/USW:n ••• :m

Meaning Default

Suppress the printing of diagnostics with a /ERR:0
severity number of less than n. The range of n
must be 0<n<2. The switch cannot suppress
severity 2 (fatal) diagnostics. (An entry of
2 suppresses the printing of all severity
numbers that are less than 2.)

Produce an object program only if the source /ACC:l
program contains diagnostics with severities
equal to or less than n. The range of n must
be 0<n<2.

Produce
memory

a Data
addresses

Division
for Data

map showing the
Division entries.

Print the starting and ending addresses of
the Data and Procedure Division blocks.
Indicate the number of PD blocks available and
the version number of the compiler that
produced this object program.

The source program is in conventional format
(i.e., 80-character images with Area A
beginning in character position 8).

Turn on switches n through m. The system sets
to OFF all of the switches that are not named.
The switches n through m must be in the range
1 to 16 (decimal) or 1 to 20 (octal). Switch
numbers that are expressed in decimal must be
followed by a decimal point (for example,
switch 14 (decimal) should be expressed as
/USW:l4.). If the decimal point is omitted,
the system interprets /USW:l4 (decimal) as an
octal number and sets switch 12 on. Each
switch in a series must be separated from the
other switches by colons.

P2-15

/NO MAP

/NOLOD

COMMAND SPECIFICATIONS

Examples

1. PDS> COBOL COBPROG.CBL

2. PDS> COBOL/SWITCHES:(/MAP/LOD)

[.!1&1 COBPROG.CBL

3. $COBOL BATCHCOB

P2-16

COMMAND SPECIFICATIONS

CONTINUE

The CONTINUE command causes the currently suspended user task to
resume execution.

FORMAT

PDS> CONTINUE

The CONTINUE command has no parameters.

DESCRIP'rION

The CONTINUE command may only be issued after the user task has been
suspended by typing CTRL/C. Typing r.oNTINUE reactivates the currently
suspended task.

EXAMPLE

CTRL/C

TASK SUSPENDED

PDS> CONTINUE

P2-17

COMMAND SPECIFICATIONS

The COPY command copies:

or

1. one file to another file,

2. a group of files to another group of files,

3. the concatenation of a number of files to a single file.

PDE~ COPY [qualifiers]

FROM? inf il e [file-qualifier]

'rO~ outfile[file-qualifier]

$COPY[qualifiers] infile[file-qualifier], outfile[file-qualifier]

where

inf ile

outfile

quali f i E~r s

is an input file specification. Concatenated files are
linked by a plus sign (+).

For example:

filespec+filespec+filespec+ •••.

is an output file specification.

are one or more of the following:

Qualifier Meaning

/ALLOCATION:n Allocate n blocks to the output file

/CON'rIGUOUS Make the output file contiguous

/OWN Copied file (s) owned by output file
(UFO) •

/REPLACE Replace the existing output file, if
any.

P2-18

COMMAND SPECIFICATIONS

file-qualifier modifies the specification
DIGITAL's DOS or RT-11 format.

DESCRIP'rION

/DOS
/RTll

of a foreign file
The qualifiers are:

in

If infile or outfile has a filename then it must also have an
extension.

If the version number is omitted from the input file then the highest
version number is used. If it is omitted from the output file then
the highest version number plus 1 is used.

Wild-cards are allowed whenever an input file specification does not
describe concatenated files. If any of the filename, extension or
version fields of the output file contain a wild-card, all fields must
be wild; the version field, however, may be omitted. If one part of
the output file UFD is a wild-card, both parts must be wild.

If /DOS or /RTll modifies either file specification, then the input
files may not be concatenated and the output filename and extension
must be wild (that is, foreign files may not be renamed).

If the user enters infile from the user's terminal (TI:), the system
transfers to the output file all that the user types in after the
completed command string. The transfer continues until the user types
CTRL/Z to terminate the input file.

If either, infile or outfile is not in Files-11 format, its
specification must be modified by either /DOS or /RTll. The system
does not accept any other foreign formats.

EXAMPLES

1. PDS> COPY A. CBL B .. CBL

2. $COPY E.EXT, F.EXT

3. PDS> COPY
FROM? E.EXT
TO? F.EXT

4. PDS> COPY/OWN DK0~[*,*]*.*
TO? DKl: [* , *] *. *

5. PDS> COPY DATA.DAT DT0:*.*

P2-19

CREATE
$CREA:TE

COMMAND SPECIFICATIONS

The CREATE command creates a file and
following the command in a batch
terminal.

copies
stream

into it source lines
or input entered from a

FILE~ filespec [/PROTECTION: (code)]

terminal-input

CTRL/Z

or

$CREATE[/DOLLARS] filespec[/PROTECTION: (code)]
source-file-lines

where

file spec

termi nal--i npu t

source-file-lines

is a single file specification. Wild-cards are
not allowed. A file extension must be included.

is everything that the user types at the terminal
between the command terminator and CTRL/Z (see
Description below).

are the source-lines to be copied into the new
file.

/PROTECTION: (code) assigns protection as specified in code to the
newly created file (see Chapter 6, section 6.1.3).

/DOLLARS (Valid only in batch mode) specifies that the file
will be terminated by $EOD.

DESCRIPTION

Batch Mode

In batch mode the text to be placed in the new file follows the
command. Any $ command terminates the file unless the CREATE command
string includes the qualifier /DOLLARS, which specifies that only the
command $EOD can terminate the file.

P2-20

COMMAND SPECIFICATIONS

Interactive Mode

The CREATE command reads the input to the new file from the user's
terminal. Pressing CTRL/Z terminates the file.

The CREATE command has the same function as a COPY command that
specifies TI: as the device in the input file specification.

EXAMPLES

1. PDS> CREATE

2.

FILE? MYDATA.DAT;S

ABCD

EFGH

CTRL/Z

PDS> CREATE ANOTHER.DAT/PROTECTION:(OW:RW)

CTRL/Z

$CREATE/DOLLARS DEBUG.MAC

$EOD

P2-21

DEALLOCATE
$DEALLOCATE

COMMAND SPECIFICATIONS

The DEALLOCATE command deallocates a specified device.

FORMAT

or

PDS> DEALLOCATE

RESOURCE? DEVICE

DEVICE? device-name

$DEALLOCATE DEVICE device-name

where

device-name

DESCRIPTION

is the device specification or the logical name of the
device to be deallocated.

Normally the system automatically deallocates a device when the user
dismounts the volume on it or deassigns it from a logical unit number.
However, when the user has issued the ALLOCATE command to obtain
access to a non-mountable device that has not been assigned to a
logical unit, the DEALLOCATE command must be used to release it. It
may also be used after a DEASSIGN/KEEP or DISMOUNT/KEEP command.

EXAMPLES.

1. PDS> DEALLOCA'rE DEVICE LP0:

2. $DEALLOCATE DEVICE DD:

P2-22

COMMAND SPECIFICA'rIONS

DEASSIGN
$DEASSIGN

The DEASSIGN command dissociates a device from a logical unit.

FORMAT

PDS> DEASSIGN[/KEEP]

LUN? lun

or
$DEASSIGN[/KEEP] lun

where

/KEEP inhibits any deallocation or dismounting of the associated
device.

lun is the logical unit number to be deassigned.

DESCRIPTION

If the specified logical unit number is the last to which a device is
assigned, the device is dismounted or deallocated unless the user
specifies the command qualifier /KEEP.

EXAMPLES

1. PDS> DEASSIGN
LUN? 7

2. $DEASSIGN/KEEP 3

P2-23

COMMAND SPECIFICATIONS

DELE~TE

$DEL.ETE

The DEL~TE command deletes one or more specified files.

FORMAT

PDS> DELETE[/KEEP:n]

FILE? filespec-1 [file-qualifier] [, ... filespec-n]

or

$DELETE[/KEEP:n] filespec-l[file-qualifier] [, ... filespec-n]

where

KEEP [: n] prevents the latest n versions of a specified file from
being deleted. It can only be used when the version
field in a file specification is omitted or wild. If n
is omitted, it is assumed to be 1.

f ilespec is the file specification of a file to be deleted. A
specified.
extension
must be

filename and an extension must be
Wild-cards are allowed in the UFD, filename,
and version fields. The version field
supplied.

file-qualifier modifies the specification of a foreign file
DIGITAL's DOS or RT-11 format. The qualifiers are:

DESCRIPTION

/DOS
/RTll

The user cannot recover a deleted file.

in

In order to delete a file in DOS or RTll format, the user must modify
the file specification with the /DOS or /RTll file qualifier.

EXAMPLgs

1. PDS> DELETE, (A.EXT:l, B.EXT:l, DK0:C.*:*)

2. PDS> DELETE/KEEP:l
FILE? DK1:[200,200]*.XYZ:*

P2-24

COMMAND SPECIFICATIONS

3. $DELETE/KEEP DK0:[200,200]*.LIS;*

4. R.Q.§2 DELETE DT0:TEST.MAC/DOS

P2-25

COMMAND SPECIFICATIONS

DIRECTORY
$DIRECTORY

The DIRECTORY command lists details about a file or a group of files
at a specified output device or to a specified file. Command
qualifiers allow the user to request greater or less detail.

FORMAT ---
PDS> DIRECTORY[qualifier(s)]

FILE? filespec-1 [file-qualifier] [, .• filespec-n]]

or

$DIRECTORY f ilespec-1 [file-qualifier] [, .•. f ilespec-n]

where

f ilespec

qualifier (s)

is a file specification that indicates the directory
entries to be listed. Wild-cards are allowed.

If no files are specified, the system lists information
about all the files in the user's directory.

are one or more of the following:

Qualifier Meaning

/OUTPUT:outfile List information in the specified
output file.

/BRIEF

/FREE

/FULL

List only the name, type and
version of the file(s).

Show free space available within
the user's directory.

List all
details:

the following file

1. Name, extension and version

2. File identification number in the
format:(file number, file sequence number)

3. Number of blocks used or allocated.

4. File code

null
c
L

P2-26

non-contiguous
contiguous
).ocked

file-qualifier

DESCRIPTION

COMMAND SPECIFICATIONS

s. Creation time and date

6. Owner UIC and file protection in the format:
(g r o up , owner) (system , owner , g r o up , wo r 1 d)

7. Date and time of the last update and the
number of revisions.

modifies a foreign file in DIGITAL'S DOS or RT-11
format. The qualifiers are:

/DOS
/RTll

By default, the DIRECTORY command lists at the user's terminal
(interactive mode) or in the user's output stream (batch mode) the
name, extension, version, size, file code, and date and time of
creation of all the files in the user's directory.

The user may not examine the files in a directory for which he does
not have read access.

To interrogate the directories of DOS or RT-11 volumes, the user must
modify the file specification with the /DOS or /RT-11 file qualifier.

The directory listing of a DOS or RT-11 file corresponds to the
directory format of the foreign volume. The qualifiers /BRIEF and
/FULL are not valid when requesting foreign directory information.

EXAMPLES

1. PDS> DIREC'rORY <AL'r>

FILE? MATRIX.DAT/DOS

2. PDS> DIR/FULL/OUTPUT:LP0: <ALT>

FILE? DK1:[200,200]*.LST

3. $DIR/BR FRED.*

4. $DIRECTORY DKl:*.*/RTll

P2-27

COMMAND SPECIFICA'rIONS

DISMOUNT
$DISMOUNT

THE DISMOUNT command causes the volume on the specified device to be
dismounted.

FORMAT

PDS> DISMOUNT[/KEEP]

DEVICE? device-name

or

$DISMOUNT[/KEEP] device-name volume-label

where

/KEEP

device-name

instructs the system not to deallocate the device

is the physical or logical name of the device to be
dismounted.

volume-label is an optional parameter that specifies the label of the
volume to be dismounted (see the MOUNT command).

DESCRI P'I' ION

If the user does not specify /KEEP, the system dismounts the volume on
the device, deallocates the device, and deassigns it from any logical
unit number.

The command qualifier /KEEP prevents the system from deallocating the
device.

EXAMPLE

1. PDS~ DISMOUNT

DEVICE? MY0:

VOLUME-ID?

2. $DISMOUNT/KEEP TUl: ACCTS

P2-28

COMMAND SPECIFICATIONS

DUMP
$DUMP

The DUMP command produces a printed listing of the contents of a file
that ignores any print formatting characters that may appear in the
records. The listing is printed a~ the user's terminal by default,
but the user may specify a different output device.

FORMAT

PDS> DUMP[gualifier(s)]

FILE? filespec

or

$DUMP[gualifier(s)] filespec

where

f ilespec

gualifier(s)

Qualifier

is the specification of the file or device to be
dumped.

are one or more of the following command qualifiers:

~eaning

/OUTPUT:filespec Output the listing to the specified file or
device.

/ASCII

/BLOCKS:(m-n)

The /ASCII switch specifies that the data should
be listed in ASCII mode. The control characters
(0 37) are printed as ~ followed by the
alphabetic character corresponding to the
character code +100(octal). For example, bell
(code 7) is printed as ~G (code 107). Lower case
characters (140 - 177) are printed as % followed
by the corresponding upper case character
(character code -40)

Specifies the first (m) through the last (n)
logical or virtual blocks to be listed, where m
and n are octal numbers. If either m or n is
greater than 16 bits (that is, greater than
177777) then the user must specify it as two
numbers as follows: (a,b) where a is the first
16 bits and b is the second 16 bits. If the
/BLOCKS: (m-n) switch is specified as /BLOCK:0 in
file mode, no physical blocks will be listed.

P2-29

/BYTE

/HEADER

/START

/NUMBER[:n]

COMMAND SPECIFICATIONS

This is useful when the user wishes tp list only
the header portion of the file. (See the /HEADER
switch below).

This qualifier is necessary in device mode; it
specifies the range of physical blocks to be
listed.

The /BYTE qualifier specifies that the data
should be listed in byte octal format.

If specified, /HEADER causes the file header as
well as the specified portion of the file to be
listed.

If just
required,

the header portion of the file is
the user can specify /HEADER/BLOCKS:0.

This qualifier gives the user only the starting
block number of the file and an indication of
whether or not it is contiguous.

Example:

DUMP/START DK0:RICKSFILE.DAT;3
STARTING BLOCK NUMBER= 0.135163 C

File RICKSFILE.DAT, version 3 is a contiguous
file starting at block no. 0,135163,
(See /BLOCKS:(m-n) for a description of block and
number format.)

This qualifier allows control of line numbers.
Line numbers are normally reset to zero whenever
a block boundary is crossed. The /NUMBER[:n]
qualifier allows lines to be numbered
sequentially for the full extent of the file;
i.e., the line numbers are not reset when block
boundaries are crossed. The optional value (:n)
allows the user to specify the value of the first
line number. The default is 0.

P2-30

COMMANDS SPECIFICATIONS

DESCRIPTION

The DUMP command operates in either one of two modes:

1. File Mode

In file mod~, the user specifies a file; all, or a specified
range (see(/BLOCKS~(m-n)) of virtual blocks of the named file
are listed. Virtual blocks refer to the physical blocks of
data in the files. The blocks are numbered from 1 through n,
where the first block is 1 and the last block in the file is
numbered n. The input volume must be mounted and it must
contain named files.

2. Device Mode

EXAMPLES

In device
specified
listed.

mode,
range

the user specifies a device; then a
(/BLOCKS: (m-n)) of physical blocks to be

a. The /BLOCKS:(m-n) qualifier is required.

b. Physical blocks refer to the actual 512-byte blocks on
disk and DECtape, and physical records on magtape and
physical records on magtape and cassette. The DUMP
command handles physical records up to 2048 bytes in
length.

c. Physical blocks are numbered from 0 to n, where n is the
last logical block on the device.

d. The volume to be listed must be mounted as FOREIGN.

1. PDS> DUMP MYFILE.DAT

2. PDS> DUMP/ASCII

FILE? MYDATA.DAT

3. $DUMP A.MAC;4

P2-31

EDIT
$EDIT'

The EDI'r

1.

2.

COMMAND SPECIFICATIONS

command invokes one of the following !AS text editors:

The Line Text Editor (ED I} , an editor primarily for
interactive use

The Source Language Input Program and Editor (SLIPER}, a
batch-oriented editor.

Chapter 7 describes how to use both editors.
Reference Manual specifies both in full.

The JAS Editing

FORMAT ---
PDS): EDIT[/editor] [qualifier (s}]

FILE? filespec

or

$EDIT[/editor] [qualifier(s}] filespec

where

/editor

qualifier (s}

f ilespec

is either:

/EDI which invokes the Line Text Editor, or

/SLIPER which invokes the batch editor SLIPER

The default is /EDI

are one or more command qualifiers that are only valid
if /SLIFER has been specified. The qualifiers are
described in detail in Chapter 7, Section 7.2.1. They
are:

/OUTPUT[:filespec]
/NOOU'I1PUT
/LIS'r [: f ilespec]
/NOLIS'l'
/AUDIT
/NOAUDI'I'
/BLANK
/NOBLANK
/DOUBLE
/NO DOUBLE

Default

/OUTPUT

/LIST (batch mode}
/NOLIST (interactive mode}
/AUDI'I'

/BLANK

/NO DOUBLE

is the specification of an existing file to be edited
or a new file to be created. An extension must be
included.

P2-32

COMMAND SPECIFICATIONS

The Line Text Editor (EDI)

The Line Text Editor is described in Chapter 7. A complete
specification is contained in the IAS Editing Utilities Reference
Manual. This section lists all the editor commands that can be issued
once the user has invoked the Line Text Editor.

ADD
A[DD] string

ADD AND PRINT
AP string

BEGIN
B [EGIN]

BLOCK ON or OFF
BL[OCK] [ON] or [OFF]

BOT'rOM
BO[TTOM]

CHANGE
[n]C[HANGE] /string-1/string-2

CLOSE
CL [OSE]

CLOSES
CLOSES

CLOSE AND DELETE·
CDL

P2-33

Add the text specified
by "string" to the end
of the current line.

Same as ADD, except
the new current line
is printed out.

Sets the current line
pointer to the top of
the block buffer or
input file.

Switch editing modes.

Sets the current line
pointer to the bottom
of block buff er or
input file.

Search for string-I
and replace it with
the text specified in
string-2. n allows the
user to repeat the
command, thus allowing
string-2 to be sub
stituted for string-!
n times within the
current line.

Transfer the remaining
lines in the block
buffer and the input
file into the output
file, then close both
the input file and the
output file.

Close secondary
file, and
selecting lines
the input file.

input
begin

from

Same as the CLOSE
command except that

COMMAND SPECIFICATIONS

CONCATENATION CHARACTER
CC character

DELETE
D[ELETE] [n] or [-n]

DELETE AND PRINT
DP [n] or [-n]

END
E [ND]

ERASE
ERASE [n]

EXIT
EX [IT]

EXI'r AND DELETE
EDX

FOHM FEED
FF

FILE
FI [LE]

FIND

f ilespec

[n] F [IND] string

P2-34

the input
deleted.

file is

Change command concat
enation character to
the specified
character (default is
&) •

Delete the current and
next n-1 lines, if n
is positive; delete n
lines preceding the
current line, but not
the current line, if n
is negative.

Same as DELETE except
that the new current
line is printed out.

Same as the
command.

BOTTOM

Erase the entire block
buffer, the current
line, and the next n
blocks.

Same as CLOSE command.

Exit from the editing
session, close the
output file, delete
the input file.

Insert form feed into
block buffer.

Transfer lines
the input file to
file specified
filespec.

from
the
by

Find the line starting
with "string" or, if n
is specified the nth
line starting with
"string".

COMMAND SPECIFICATIONS

INSERT
I [NSERT] [string]

KILL
KILL

LINE CHANGE
[n]LC /string-1/string-2

LIST ON TERMINAL
LI[ST]

LOCA'rE
[n] L [OCATE]

MACRO

string

MA[CRO] x definition

MACRO CALL
MC [ALL]

MACRO EXECu·rE
[n]Mx[a]

MACRO IMMEDIATE
[n]<definition>

NEXT
N[EXT] [n] or [-n]

P2-35

Insert "string" imme
diately following the
current line. If
" st r i ng" i s nu 11 , ED I
enters Input Mode.

Terminate this editing
session; close input
and output files;
delete the output
file.

Same as CHANGE except
that all occurrences
of string-1 in the
current line are
changed to string-2.

Print on user terminal
all lines in block
buffer or all
rema1n1ng lines in
input file, starting
with current line.

Search the block
buffer for "string"
or, if n is specified
the nth occurrence of
"string".

Define macro x to be
"definition".

Retrieve macros from
the latest version of
file MCALL.EML.

Execute Macro x for n
executions passing it
the numeric argument
a.

Immediate Macro - this
allows the user to
define and execute a
macro in one step.

Establish a new
current line + or - n

COMMAND. SPECIFICATIONS

NEX'J~ PRINT
NP [n] or [-n]

OLD PAGE
OL[DPAGE] n

OPENS
OPENS filespec

OUTPUT ON or OFF
OU[TPUT] [ON] or [OFF]

OVERLAY
0 [VERLAY] [n]

PAGE
PAG [E] [n]

PAGE FIND
I'. n] PF [IND] string

PAGE LOCATE
[n]PL[OCATE]string

PASTE
PA[STE] /string-1/string-2

P2-36

lines from the current
line.

Next Pr int: same as
Next command, but the
new current line is
printed out.

Back up to page n.

Open secondary input
file.

Turn output on or off.

Delete the current
line and the next n-1
lines, and enter
Input Mode.

Enter block edit mode,
if not already in
block edit mode, and
read page n into the
block buffer.

Identical to FIND
command except that it
searches successive
pages until the nth
occurrence of "string"
is found.

Same as LOCATE
command, except that
successive pages are
searched for the
value specified by
"string".

~he same as the LINE
CHANGE command except
that all lines in the
remainder of the input
file or block buffer
are searched for

string-!. Wherever
found, string-! is
replaced with
string-2.

COMMAND SPECIFICATIONS

PRINT
P [RINT] [n]

READ
REA [D] [n]

RENEW
REN [EW] [n]

RETYPE
R[ETYPE] [string]

SAVE
SA[VE] [n] [filespec]

SEARCH & CHANGE
SC /string-1/string-2

SELECT PRIMARY
SP

SELECT SECONDARY
SS

SIZE
SIZE n

TAB ON or OFF
'rA[B] [ON] or [OFF]

P2-37

Print out the next
line, and the next n-1
lines, on the
terminal.

Read the next n pages
into the block
buffer.

Write the current
buffer, and read in
the next page.

Replace the current
line with the text of
"string".
is null;
deleted.

If "string"
the line is

Save the current line,
and the next n-1
lines, in the file
specified by filespec.

Search for string-1,
in the block buffer or
input file starting
with the line follow
ing the current line.
When string-1 is
found, replace all
occurrences in line
with string-2.

Select primary input
file.

Select secondary input
file.

Specify maximum number
of lines to be read
into the block buffer
on a single READ.

•rurn
tabbing

automatic
on or off.

COMMAND SPECIFICATIONS

TOP
T[OP] Same as BEGIN command.

TOP OF FILE
'L10F

TYP1E:
1rY [PE] [n]

UN SAVE
IJNS [AVE] [filespec]

VERIFY ON or OFF
V [ERIFY] [ON] or [OFF]

WRPrE
~~[RITE]

P2-38

Returns to the top
the input file,
block edit mode,
saves all pages
viously edited.

of
in

and
pre-

Same as PRINT command
except that the
current line pointer
does not change.

Retrieve the lines
which were previously
saved on filespec and
insert them
immediately following
the current line.

Allows user to
whether or
locative and
commands are
verified.

select
not

change
to be

Write the current
block to the output
file, and erase the
contents of the
buffer.

COMMAND SPECIFICATIONS

The Source Language Input Program and Editor (SLIFER)

The SLIFER edit control characters are as follows:

Character

-(minus}

/(slash}

@(at}

<(less than}

Function

Indicates that an editing function is to be performed,
with reference to the line number(s} specified.

-n Insert text following line n.

-n,n Delete line n.

-n,m Delete lines n through m inclusively.

The slash is placed in the first position of a line to
indicate that the editing of a file is completed.

The @ character is put in the first location of a line
to indicate that SLIFER is to seek input from an
indirect file. The user must specify the indirect file
immediately after the @ sign; for example:

@DK2:DKSFIL.CMD

instructs SLIFER to read· inout from the file DKSFIL.CMD
on physical device unit DK2;. Indirect files are more
fully described in Section 7.2.4.

The < character is used when entering a line that
begins with one of the special edit control characters.
It causes the line to be shifted one character to the
left, with the result that < is deleted, and the
desired control character on the line.

P2-39

COMMAND SPECIFICATIONS

$EOD
The $EOD (End of Data) command terminates a data stream or the input
to a file created by a $CREATE/DOLLARS command.

FORMA'r ---
$EOD

The command has no parameters.

EXAMPLE ----
$CREATE/DOLLARS BATCH.CMD

$JOB WILSON TESTRUN 2

$MOUNT DK: VOL273 DD0:

$ASSIGN DD0 : 3

$RUN TEST

$DISMOUNT DD0:

$EQf

$EOD

This example uses $EOD to terminate a file of batch commands (an
indirect file). The /DOLLARS qualifier instructs the system to accept
the following lines of text as input to the file rather than batch
commands to be processed.

P2-40

COMMAND SPECIFICATIONS

$EOJ

The $EOJ (End of Job) command terminates a batch job.

FORMAT

$EOJ

The command has no parameters.

DESCRIPTION

THE $EOJ command must be the last command in a batch job command
stream.

EXAMPLE

$JOB WILSON TESTRUN 2

$MOUNT DK: TEST DD0:

$ASSIGN DD0: 7

$RUN TEST

$DISMOUNT DD0:

$EOJ

P2-41

FORTRAN
$FO~tTRAN

COMMAND SPECIFICATIONS

The FORTRAN command invokes a FORTRAN compiler to compile one
FORTRAN-IV or FORTRAN-IV PLUS source file. Command qualifiers control
output file options and subsequent processing.

FORMAT

PDS> FORTRAN[qualifier(s)]

FILE? filespec

o:r

$FORTRAN[qualifier(s)] filespec

where

f ilespec

qualifier (s)

Qualifier

/.E"OR

/NP

is the specification of a source program file to be
compiled.

If the extension is omitted, the system assumes it to
be FTN. No wild-cards allowed.

are one or more of the following command qualifiers:

Invoke the FORTRAN-IV compiler. Applicable
to systems that have both FORTRAN IV and
FORTRAN IV PLUS compilers. If omitted, the
system invokes its default compiler.

Invoke the FORTRAN IV-PLUS compiler.
Applicable to systems that have both FORTRAN
IV and FORTRAN IV PLUS compilers. If
omitted, the system invokes its default
compiler.

/LIST[: filespec] Produce a listing file; re-name as
indicated. If an extension is omitted from
filespec, the system assumes it to be .LST.

/NOLIST

/OBJECT[:filespec]

Do not produce a listing file.

Produce an
specified.

object file;

/NOOBJECT Do not produce an object file.

re-name as

/SWITCHES: (/SW! •.• /SWn) Use specified FORTRAN IV or FORTRAN IV-PLUS
switch options. For further details, see.
the appropriate FORTRAN User's Guide.

P2-42

COMMAND SPECIFICA'rIONS

DEFAULTS

1. By default, the compiler produces an object file with the
name of the source file and the extension OBJ.

2. By default, the compiler:

a. Sends a listing to the line printer in batch mode.

b. Does not produce a listing file in interactive mode. If
/LIST is specified without a filespec then the listing
file is printed on the line printer.

FORTRAN-IV Switches

Switch Default

/LI:n /LI:3

/DE /NODE

/EX /NOEX

/ID /NOID

Description

Specifies the listing options. The argument n is
encoded as follows:

/LI:0 or /NOLI list diagnostics only
/LI:l or /LI:SRC list source program and

diagnostics only
/LI:'2 or /LI: MAP list storage map and

diagnostics only
/LI~4 or /LI: COD list generated code and

diagnostics only

Any combination of the above list options may be
specified by summing the numeric argument values
for the desired list options. For example:

/LI:7 or /LI:ALL

requests a source listing, a storage map listing,
and a generated code listing. If this switch is
omitted the default list option is /LI:3, source
and storage map.

Compile lines are with a D in column one. These
lines treated as comment lines by default.

Read a full 80 columns of each record in the
source file. Only the first 72 columns are read
by default

Print FORTRAN identification and version number.
The default (/NOID) causes the identification and
version number not to be printed.

P2-43

Switch Default ---

/OP /OP

/SN /SN

/I4 /NOI4

/VA /VA

/WR /WR

COMMAND SPECIFICATIONS

Description

Enable the Common Subexpression Optimizer (CSE).
In general the CSE optimizer will make the program
run faster. However, the size of the program may
be different than with no optimization.

Include internal sequence numbers (ISN). The
option reduces storage requirements for generated
code and slightly increases execution speed but
disables line number information during Traceback.

Two word default allocation for integer variables.
Normally, single storage words will be the default
allocation for integer variables not given an
explicit length specification (i.e., Integer*2 or
integer*4). Only one word is used for computation.

Enable vectoring of arrays (see section 2.5 of the
FORTRAN IV user's Guide).

Enable compiler warning diagnostics.

Switch default summary:

(/LI:3/NODE/NOEX/NOID/OP/SN/NOI4/VA/WR)

FORTRAN·-IV Plus Switches

Switch Default

/CK /NOCK

/CO:n /C0:5

/DE /NODE

/ID /NOID

Description

Code is generated to check that all array
references are within the array bounds specified
by the program. Individual subscripts are not
checked against dimensional specifications.

A maximum of n continuation lines is permitted in
the program, 0<n<99. The default value is n=5.
Note that n may be expressed either in octal or
decimal radix. If a decimal point follows the
number, it is interpreted in decimal radix;
otherwise, it is interpreted in octal radix.

Compile lines with a D in column one. These lines
are treated as comment lines by the default /NODE
(see the FORTRAN Language Manual).

Print FORTRAN IV-PLUS identification and version
number.

P2-44

Switch Default

/I4 /NOI4

/LI:n /LI:l

COMMAND SPECIFICA'rIONS

Description

Allocates two words for default length of Integer
and Logical variables. Normally, single storage
words will be the default allocation for all
Integer or Logical variables not given an explicit
length definition (i.e., INTEGER*2, LOGICAL*4).
See Section 3.3 of the FORTRAN IV-PLUS User's
Guide.

Specifies listing options; 0<n<3. The argument is
code as follows:

n=0 minimal
messages
only

listing file: diagnostic
and program section summary

n=l (default) source listing and program
section summary

n=2 source listing, program section summary
and symbol table

n=3 source listing, assembly code, program
section summary, and symbol table

/TR:XXX /TR:BLOCKS The /TR switch cont~ols the amount of extra code
included in the compiled output for use by the OTS
during error traceback. This code is used in
producing diagnostic information and in
identifying which statement in the FORTRAN source
program caused an error condition to be detected
at execution. /TR:XXX can have the following
forms:

/TR Same as TR:ALL

/TR:ALL Error traceback information is compiled for all
source statements, and function and subroutine
entries.

/TR:LINES Same as ALL option.

/TR:BLOCKS Traceback information is compiled for subroutine
and function entries and for selected source
statments. The source statements selected by the
compiler are initial statements in sequences
commonly called basic blocks. The compiler
treats such a sequence of statements as a unit
for performing certain types of optimization.
Basic blocks generally begin at each labelled
statement, each DO statement, and so on.

/TR:NAMES Traceback information is compiled
subroutine and function entries.

P2-45

only for

Switch Default

/TR:NONE

/NOTR

COMMAND SPECIFICATIONS

Description

No traceback information is produced.

Same as NONE.

The switch setting /TR is generally advisable during program
development and testing. The default setting /TR:BLOCKS is
generally advisable for most programs in regular use. The
setting /NOTR may be used for obtaining fast execution and
smallest code, but it provides no information to the OTS for
diagnostic message traceback.

Compiler switch default summary:

(/NOCK/C0:5/NODE/ID/NOI4/LI:l/TR:BLOCKS)

fURTHER INFORMATION

For further information on the use of the FORTRAN sytems, refer to the
following documents:

PDP-11 FORTRAN Language Reference Manual

IAS/RSX-11 FORTRAN-IV User's Guide

FORTRAN IV-Plus User's Guide

EXAMPL.ES

1. PDS> FORTRAN NEWFILE

2. PDS> FORTRAN/SW:(/CK/C0:7) FILES.FTN

3. $FORTRAN/OBJ:YRFILE.OBJ MYFILE

P2-46

COMMAND SPECIFICATIONS

$JOB

The $JOB command initiates a batch job.

FORMAT

$JOB username jobid time-limit

where

user name

jobid

time-limit

DESCRIPTION

is an alphanumeric string 1 to 12 characters long which
is unique to the user.

is an alphanumeric string 1 to 12 characters long which
identifies the job. The system prints the jobid at the
beginning and end of the job's printed output.

is the time-limit (in integer format) in minutes of the
job's elapse time.

THE $JOB command must be the first command in a batch job command
stream.

E~AMPLES

1. $JOB PIERCE JOBONE 2

2. $JOB PARKER ANALYSIS 3

P2-47

COMMAND SPECIFICA'rIONS

HELP

The HELP command displays information at an interactive terminal to
assist the user in issuing PDS commands.

PDS> HELP

The command has no parameters

DESCRIPTION

The precise information displayed depends on the users current
activity.

P2-48

COMMAND SPECIFICATIONS

LIBRARIAN
$LIBRARIAN

The LIBRARIAN command allows the user to create, delete and maintain
object module libraries and MACR0-11 macro libraries.

FORMAT

or

where

PDS> LIBRARIAN
OPERATION? operation[qualifiers]
LIBRARY? libspec
[librarian prompt? text]

$LIBRARIAN operation[qualifiers] filespec [text]

operation

libspec

qualifiers
librarian prompt
text

is the librarian operation to be performed.
The operations are:

COMPRESS
CREATE
DELETE
INSERT
LIST
REPLACE

is a file specification of the library file on
which the operation is to be performed.

are all dependent on the operation specified
and are described accordingly
below

Library Types

There are two types of library:

those containing object modules (object module libraries)
and

those containing macros (macro libraries).

Object module libraries are created with a default extension of .OLB.
Each object module inserted into the library has its module name
(taken from the .TITLE statement) added to the module name table (MNT)
and its entry points (globals) added to the entry point table (EPT).

Macro libraries are created with a default extension of •MLB. Each
macro inserted into the library has its module name (taken from the
.MACRO statement) added to the module name table (MNT).

P2-49

COMMAND SPECIFICATIONS

Restrictions

The following restrictions apply to the handling of object modules:

1. The size of a module is limited to 65,536 words.

2. The size of the library file is limited to 65,536 words.

3. Tables and contiguous space should be allocated the maximum
anticipated size. Expanding space allocations require the
COMPRESS operation to copy the entire file.

4. A fatal error results if an attempt is made to insert a
module into a library which contains a differently named
module with the same entry point.

COMPRESS

The COMPRESS operation physically deletes logically deleted (by the
DELETE operation) modules in the file specified and re-arranges the
file, putting all free space at the end of the file, where it is
available for new module inserts.

or

where

PDE!2 LIBRARIAN
OPERATION? COMPRESS[qualifiers]
LIBRARY? libspec
NEW LIBRARY? newlibspec

$LIBRARIAN COMPRESS[qualifiers] libspec newlibspec

libspec is a specification of the library file to be
compressed (no wild-cards allowed).

newlibspec is a specification of the compressed library file (no
wild-cards allowed) .

The operation qualifiers are as follows:

Quali f i E~r

/SIZE:n

/EPT:n

Description

The size in 256-word blocks of the
compressed file.

The number of entries to allocate in
the entry point table (not greater
than 1024). A macro library has no
entry point table. n is rounded up
to the nearest multiple of 64.

P2-50

100

512 (object)
0 (macro)

COMMAND SPECIFICATIONS

/MNT:n The number of entries to allocate in
the module name table (not greater
than 1024). n is rounded up to

256

the nearest multiple of 64.

Examples

1. PDS> LIBRARIAN COMPRESS/SIZE:l50

LIBRARY? PEEK~OLB

NEW LIBRARY? PEEK2.0LB

The object library file PEEK.OLB is compressed to 150 blocks
with 512 EPT entries and 256 MNT entries by default. The
compressed file is called PEEK2.0LB.

2. $LIBRARIAN COMPRESS FREAN.MLB FREAN2.MLB

The macro library file FREAN.MLB is compressed to 100 blocks
with no EPT entries and 256 MNT entries by default. The
compressed file is called FREAN2.MLB

CREATE

The CREATE operation allocates a contiguous library file on a direct
access device (e.g. disk), and initializes the library header and
tables.

Format

or

where

PDS? LIBRARIAN
(5P'ERATION? CREATE/[gualifiers]
LIBRARY? libspec
FILE? infile-1[, ••• infile-n]

$LIBRARIAN CREATE[qualifiers] libspec infile-1[, .•. infile-n]

libspec

infile

is a specification of the library file to be created
(no wild-cards allowed).

is a specification of a file to be input to the new
library file. If no infiles are supplied, an empty
library file is created as the qualifiers dictate.

The operation qualifiers are as follows:

Qualifier

/SIZE:n

Description

The size in 256-word blocks
of the library file to be
created.

P2-51

Default

100

/EPT:n

/MNT:n

COMMAND. SPECIFICATIONS

The number of entries to allocate
in the entry point table (not
greater than 1024). A macro library
has no entry point table. n is
rounded up to the nearest multiple
of 64.

The number of entries to allocate
in the module name table (not
greater than 1024). n is
rounded up to the nearest
multiple of 64.

512 (object)
0 (macro)

256

/TYPE:type The type of library being created.
type is either OBJECT or MACRO.

OBJECT

/SELECT

/SQUEEZE

Examples

The LINK command will use the file
to define required global symbols
at task build. (Object files only.)

Reduce the macro file by erasing
all trailing blanks and tabs, blank
lines and comments from the source
text. (Macro files only).

1. PDS> LIBRARIAN
OPERATION? CREATE/SI:200/E:l024/M:512/TYPE:OBJ
LIBRARY? MYLIB.OLB
FILE? ONE.OBJ, TWO.OBJ, THREE.OBJ

Create an object library file named MYLIB.OBJ with a size of
200 blocks with 1024 EPT entries and with 512 MNT entries,
from three input files.

2. $LIBRARIAN CREATE/TYPE:MAC BATMAC.MAC INPUT.MAC

Create a macro library file named BATLIB.MAC from one input
file (INPUT. MAC) •

The DELETE operation performs two kinds of deletion:

1. It deletes modules, and all their associated entry points,
from the library file specified.

2. It deletes specified entries in the entry point table (EPT).

Up to 15 modules may be deleted in one DELETE operation. If no module
of the specified name exists in the library, DELETE has no effect on
the library. A deleted module is marked as deleted, but remains
physically in the file until a COMPRESS operation is performed.

P2-52

COMMAND SPECIFICATIONS

Format

or

PDS> LIBRARIAN
OPERATION? DELETEquali. f ier
LIBRARY? libspec
ENTRIES? name-1[, ••• name-n]

$LIBRARIAN DELETEqualifier libspec name-1[, ..• name-n]

where

libspec

name

qualifier

Qualifier

/MODULES

/GLOBAL

is a specification of the library file that contains
the modules or entry points to be deleted.

is a module name or the name of an entry in the entry
point table.

is one of the following:

Description

Delete the
qualifier).

specified module

Delete the EPT entries specified.

(the default

Examples

1. PDS> LIB DELETE/MODULES
LIBRARY? MYLIB. MLB
ENTRIES? NAMEA, NAMEB, NAMEC

Delete the macros NAMEA, NAMEB and NAMEC from the macro
library file MYLIB.MLB.

2. $LIBRARIAN DELETE/GLOBAL MACLIB.OLB NAMEX

Delete the EPT entry named NAMEX contained in the library
file MACLIB .OLB.

INSERT

The INSERT operation inserts modules into the specified library file.
Any number of input files are allowed and all input files are
considered to contain concatenated object modules.

Format

or

PDS> LIBRARIAN
OPERATION? INSERT[qualifier]
LIBRARY? li bspec
FILE? infile-1[, .•. infile-n]

P2-53

COMMAND SPECIFICATIONS

$LIBRARIAN INSERT[qualifier] libspec infile-1[, •.• infile-n]

where

libspec

inf ile

is a specification of the library file into which
modules are to be inserted (no wild-cards allowed).

is the specification of a file containing
concatenated object modules to be inserted into
libspec.

qualifier is one of the following:

/SELECT

/SQUEEZE

The LINK command will use the file to define required
global symbols at task buld. (Object files only.).

Reduce the macro-file by eliminating all trailing
blanks and tabs, blank lines and comments from the
source text. (Macro files only).

1. PDS> LIBRA
OPERATION? INSERT/SQUEEZE
LIBRARY? MACLIB.MLB
FILE? ONE.MAC, TWO.MAC

Insert the modules contained in the files ONE.MAC and TWO.MAC
into the library file name MACLIB.MLB.

2. $LIBRARIAN INSERT MYLIB.OLB, MODULE.OBJ
Insert the modules contained in the file MODULE.OBJ into the
library file named MYLIB.OLB.

The LIST operation causes a library file directory to be printed at an
output device (TO: by default) or to be sent to an output file. The
operation qualifier also determines the amount of detail contained in
the directory. By default, the directory lists all the modules in the
library.

or

PDS> LIBRARIA
OPERATION? LIST[qualifier]
LIBRARY? libspec

$LIBRARIAN LIST[qualifier] libspec

P2-54

COMMAND SPECIFICATIONS

where

libspec

qualifier

Qualifier

is the specification of the library file to be listed
(no wild-cards allowed).

is one of the following:

Description

/OUTPUT::outfile

/ENTRIES

Send the output to the specified file.

Produce a directory of all modules and list
entry points for each.

/FULL Produce a directory of all
full module descriptions:
insertion and version.

modules, giving
size, date of

Examples

1. PDS> LIBRARIAN LIST MYLIB. MLB

List at the user's terminal a directory of all the modules
contained in MYLIB.MLB.

2. $LIBRARIAN LIST/FULL/OUTPUT:LP0: MACLIB.OLB

List at the line printer a directory of all the modules and
their descriptions contained in the library file MACLIB.OLB.

REPLACE

The REPLACE operation replaces old modules in the library with new
modules of the same name. That is, a new module that has the same
name as a module already contained in the library replaces the
existing module. The old module is simply deleted.

Format

or

where

PDS> LIBRARIAN
OPERATION? REPLACE[qualifier]
LIBRARY? libspec
FILE? infile-1[, .•. infile-n]

$LIBRARIAN REPLACE[gualifier] libspec infile-1[, .•. infile-n]

libspec

infile

is the specification of the library file containing
the modules to be replaced (no wild-cards allowed).

is the specification of a file containing the new
modules (no wild-cards allowed)

P2-55

COMMAND SPECIFICATIONS

qualifier is one of the following:

/SELECT

/SQUEEZE

The LINK command will use the file to define required
global symbols at task build. (Object files only).

Reduce the macro file by eliminating all trailing
blanks and tabs, blank lines and comments from the
source text. (Macro files only.)

1. PDS> LIBRARIAN
<5PERATION? REPLACE
LIBRARY? MACLIB.OLB
FILE? NEWMOD.OBJ

Replace modules in the file MACLIB.OLB with modules of the
same name in the file NEWMOD.OBJ.

2. $LIBRARIAN REPLACE OLDLIB.OLB ONELIB.OBJ,TWOLIB.OBJ

Replace modules in the file OLDLIB.OLB with modules of the
same name in the files ONELIB.OBJ and TWOLIB.OBJ.

P2-56

COMMAND SPECIFICATIONS

LINK
$LINK

The LINK command links object files (that is, compiled or assembled
modules) to form an executable task and produces output as directed by
command qualifiers.

The !AS Task Builder Reference Manual describes the Task Builder
procedures and options in full; anyone using Task Builder options
should first read the Task Builder manual.

FORMAT

PDS>LINK[qualifiers]

FILE? infile-1 [file-qualifier] [, ..• ,infile-n]

or

$LINK[qualifiers] infile-1 [file-qualifier] [, .• ,infile-n]

where

infile

file-qualifier

qualifier (s)

is the specification of an input file. See the
section called Input Files below for further
information.

Wild-cards are not allowed.

The user must not include this parameter if th~
command qualifier /OVERLAY has been specified (see
the section called Command Qualifiers below)

is one of the following file qualifiers. See the
section called File Qualifiers for a definition of
each qualifier.

/CONCATENATED

/LIBRARY

/LIBRARY: [(] mod-1 [' ..• ,mod-n)]

/NOCONCATEN A'r ED

/SELECT

are one or more of the command qualifiers listed
below. The section called Command Qualifiers
describes each one in detail.

P2-57

Command Qualifiers

COMMAND SPECIFICA'rIONS

Qualifier Default

/ABORT /ABORT

/CHECKPOINT /CHECKPOINT

/DEBUG[:filespec]

/DISABLE

/EXI'r:n

/FIX

/FLOATINGPOINT

/HEADER

/MAP [: f ilespec]

/MULTIUSER

/OPTIONS

/OVERLAY:filespec

/POSITION INDEPENDENT

/PRIVILEGE

/SEQUENTIAL

/SYMBOLS[:filespec]

/TASK [: filespec]

/TRACE

/NO DEBUG

/DISABLE

/EXIT:l

/FIX

/FLOATINGPOINT

/HEADER

/NO MAP

/NOMUL'rIUSER

/NOOPTIONS

/NOOVERLAY

/NOPOSITIONINDEPENDENT

/NOPRIVILEGE

/NOSEQUENTIAL

/NO SYMBOLS

/TASK

/NOT RACE

All the command qualifiers described in this section may be negated by
the prefix NO. For example, the qualifier /TASK instructs the Task
Builder to keep a task file: whereas the qualifier /NOTASK requests
that a task file not be kept.

/TASK [:file spec]

DE!faul t: /TASK

Keep a task image file.

Unless filespec is given, the task file takes the name of the
first input file except that the extension is TSK.

If filespec is given, the extension field may be omitted: in
which case, the Task Builder assumes it to be TSK.

P2-58

COMMAND SPECIFICATIONS

If the command qualifier /OVERLAY is specified, filespec must be
provided to name the task file.

/MAP[:filespec] or /MAP[: (filespec/SHORT)]

Default: /NOMAP

Produce a memory allocation map.

If filespec is not included with the /MAP qualifier, the map file
is sent to the line printer.

If filespec is given, the extension field may be omitted; in
which case, the Task Builder assumes it to be MAP.

If the command qualifier /OVERLAY is specified, filespec must be
provided to name the map file.

The optional file qualifier /SHORT requests the Task Builder to
produce a short map.

/SYMBOLS[:filespec]

Default: /NOSYMBOLS

Produce a symbol table file.

Unless filespec is given, the symbol table file takes the name of
the first input file, except that the extension is STB.

If filespec is given, the extension field may be omitted; in
which case, the Task Builder assumes it to be STB.

/OPTIONS

Default: /NOOPTIONS

Apply Task Builder options specified after the command string.

In interactive mode, the /OPTIONS qualifier causes the Task
Builder to prompt "OPTIONS?" after the input files have been
specified.

For example:

PDS> LINK/OPTIONS

FILE? PROG REPORT

OPTIONS?

P2-59

COMMAND SPECIFICATIONS

The user then enters the options which are described in the list
below. A slash (/) as the first character in a line then
terminates the list of options and the Task Builder begins
executing. Details of individual option syntax are contained in
the IAS Task Builder Reference Manual.

For example:

PDS> LINK/OPTIONS

FILES? MAIN.OBJ, FROG.OBJ

OPTIONS? ACTFIL=8

OPTIONS? MAXBUF=l60

OPTIONS? UNITS=9

OPTIONS? ASG=DT1:7:8:9

OPTIONS? I

In batch mode, the presence of the /OPTIONS qualifier in the
command qualifier list causes the Task Builder to expect one or
more options to be specified on lines immediately following the
command string.

A line containing a slash (/) in the first character position
terminates the list of options.

The letters F and M in the list of Task Builder options below
indicate for which language, FORTRAN or MACRO, the option is
relevant.

ABSPAT

AC'l~FIL

ASG

BASE

COMMON

EX'l'SCT

EX'I~'rSK

FMTBUF

GBI.DEF

Meaning

Declare absolute patch values.

Declare number of files open simultaneously.

Declare device assignment to logical units.

Define lowest virtual address.

Declare task's intention to access a shareable
global area.

Declare extension of a program section.

Extend task memory allocation at install time.

Declare extension to buffer used for processing
format strings at run-time.

Declare a global symbol definition.

P2-60

M

FM

FM

FM

FM

FM

FM

F

M

Option

GBLPAT

LIBR

MAXBUF

ODTV

PAR

POOL

PRI

STACK

TASK

TSVK

UIC

UNITS

COMMAND SPECIFICATIONS

Meaning

Declare a series of patch values relative to a
global symbol.

Declare_ task's intention to access a shareable
global area.

Declare an extension to the FORTRAN record
buffer.

Declare the address and size of the debugging
aid SST vector.

Declare partition name and dimensions.

Declare pool usage limit.

Declare priority.

Declare the size of the stack.

Declare the name of the task.

Define highest virtual address.

Declare the address of the task SST vector.

Declare the user identification code under
which the task runs.

Declare the maximum number of logical units.

/OVERLAY:filespec

Default: /NOOVERLAY

M

FM

F

M

FM

FM

FM

FM

FM

FM

M

FM

FM

Link the task according to the overlay structure defined in
filespec, which must be included with the /OVERLAY qualifier. If
the extension field of filespec is omitted, the Task Builder
assumes it to be ODL.

The input files to LINK are specified within the overlay
description file; therefore they must not be specified in the
input file parameter list.

/DEBUG[:filespec]

Default: /NODEBUG

If filespec is not given, link the task with the system's
debugging aid.

P2-61

COMMAND. SPECIFICATIONS

If filespec is given, link the task with the debugging aid
contained in the specified file. The debugging aid must be in
object format.

/ABORT

Default: /ABORT

The task can be aborted.

/CHECKPOINT

Default: /CHECKPOINT

The task can be checkpointed.

/DISABLE

Default: /DISABLE

The task can be disabled.

/EXI'r: n

Default: /EXIT:l

Task Builder stops executing after n(decimal) errors.

/FIX

Default: /FIX

The task can be fixed in memory.

/FLOATING PO INT

Default: /FLOATINGPOINT

The task uses the floating point processor.

/HEAD EH

DE~faul t: /HEADER

P2-62

COMMAND SPECIPICA'rIONS

The task includes a header.

/MUL'rIUSER

Default: /NOMULTIUSER

The task is multiuser.

/POSITIONINDEPENDENT

Default: /NOPOSITIONINDEPENDENT

The task code is position independent.

/PRIVILEGE

Default: /NOPRIVILEGE

The task has privileged access rights.

/SEQUENTIAL

Default: /NOSEQUENTIAL

Program sections within the task are to be linked in the order in
which they first appear. Otherwise they are linked in
alphabetical order.

/TRACE

Default: /NOTRACE

The task is traceable.

Input Files

Input files to the LINK command may be specified in one of two ways:

1. In a list of file specificat~ons as a parameter to the
command.

2. From within an overlay description file by means of the
/OVERLAY command qualifier.

If the /OVERLAY qualifier has been used to specify the input files,
they must not also be specified as a command parameter (see item 1
above).

P2-63

COMMAND SPECIFICATIONS

The input files may consist of:

1. Sing le object modules

2. Concatenated object modules

3 .. Object module libraries

4 ,, Symbol table files

File qualifiers must be used to identify concatenated module files and
lib~ary files (see the section called File Qualifiers below). In
addition, the /SELECT qualifier may modify any type of object file;
the Task Builder then uses the modified file only to resolve required
symbol definitions.

The Task Builder provides default extensions in the following cases.
When specifying single or concatenated object modules, the user may
omit thE~ extension field. The Task Builder then assumes the extension
to be .OBJ. The extension field of a library file (a file modified by
the /LIBRARY qualifier) may also be omitted, in which case the Task
Builder assumes the extension to be OLB.

Symbol table files, however, have no default extension, so the
extension field must be supplied.

Wild-cards are not allowed for any type of file specification supplied
with LINK.

File Qualifiers - The following list defines all the available file
quali f i1ers.

File Qualifier

/CONCATENATED

/LIBRARY

/LIBRARY: [(] mod-1 [, .•• ,mod-n)]

/NOCONCATENATED

/SELECT

Description

Identifies the file
concatenated object file.

as a

Identifies the file as an object
module library file.

Identifies the file as an object
module library file where mod is
the name of an object module and
instructs the Task Builder to take
only the modules named.

Instructs the Task Builder to take
only the first module in the file.
If it is a concatenated object
module file, subsequent modules are
ignored.

Instructs the Task Builder to take
only required global symbol
definitions from the file. The
modified file may be any object
file, but it is normally a symbol
table file.

P2-64

COMMl\ND SPECIFICATIONS

EXAMPLES

1. $LINK/OPTIONS/PRIVILEGE A.OBJ/CONCATENATED
UNITS=9
I

2. PDS> LINK/OVERLAY:STRUCTURE/MAP:ROUTE

The system does not prompt FILE? if /OVERLAY has been
specified.

3. PDS> LINK

FILE? A.OBJ, B.OBJ

P2-65

COMMAND SPECIFICATIONS

LOGIN

The LOGIN command initiates an interactive session at a terminal.

PDE!2 LOGIN

USE:RID? username

PASSWORD? password

where

username! is an alphanumeric character string 1 to 12 characters long
which is unique to the user.

password is an alphanumeric character string 1 to 6 characters long
associated with the user's username. As a security measure,
the system does not print the password when it is entered in
response to the PASSWORD? prompt.

DESCRIP'l?ION

The LOGIN command is usually the first command issued by the
interactive user (after the initial CTRL/C).

EXAMPLE~~

1. PDS> LOGI JOHNDOE

PASSWORD? secret

2. PDS> LOGIN

USERID? FREAN

PASSWORD? ca thy

PDS>

P2-66

COMMAND SPECIFICATIONS

LOGOUT

The LOGOUT command terminates the user's interactive session and
releases any allocated devices and mounted volumes.

FORMAT

PDS> LOGOUT

The LOGOUT command has no parameters.

DESCRIPTION

The LOGOUT command causes the system to display the following
information if "QUIET" mode has not been set:

1. The volumes and devices deallocated and dismounted

2. The user's username

3. The logout time

4. The connect time

5. CPU utilization

The message BYE then appears to indicate that the terminal is
inactive.

EXAMPLE

PDS> LOGOUT

BYE

P2-67

MACRO
$MACRO

COMMAND SPECIFICATIONS

The MACRO command assembles one or more ASCII source files containing
MACR0-11 statements into a single relocatable binary object file. The
output optionally consists of a binary object file and an assembly
listing followed by the symbol table listing.

FORMAT

PDS~ MACRO[qualifiers]

FILE? filespec[qualifier] [+ •.. +filespec]

or

$MACRO[qualifiers] filespec [qualifiers][+ •.• +filespec)

where

filespec

guali fi er s

Quali fie~

is the specification of a file that contains MACRO
source code. Multiple input file specifications must
be concatenated with a plus sign (+). No wild-cards are
allowed. Specifications must include a filename. If
the extension is omitted, the system assumes it to be
MAC.

to the command are one or more of the following:

Meaning

/OBJECT[:filespec] Produce an object file (the default
condition), named accordingly if filespec (no
wild-cards) is supplied. Otherwise the file
is named by default (see Defaults below).

/NOOBJEC'r

/LIST[: filespec]

/NOLI ST

Defaults

Do not produce an object file.

Produce a listing file (the default is
/NOLIST in interactive mode and /LIST in
batch mode), nam€d accordingly if filespec is
supplied. Otherwise the file is named by
default (see Defaults below).

Do not produce a listing file.

Object File - By default the assembler produces an object file with
the name of the last source file specified and the extension OBJ.

Listing File - A listing file is sent to the line printer by default
in batch, or if /LIST specified in interactive mode.

P2-68

COMMAND SPECIFICATIONS

COMMENTS

For further information on the use of MACR0-11, refer to the
IAS/RSX-11 MACR0-11 Reference Manual.

EXAMPLES

1. PDS> MACRO/NOLIST
FILE? A.AMC+B.MAC;3

2. $MACRO FILEA.MAC

3. PDS> MAC/OBJ:C.OBJ

4. PDS> MAC MYFILE.MAC.

D.MAC+E.MAC

P2-69

MESSAGE
$MESSAGE

COMMAND SPECIFICATIONS

The MESSAGE command sends a specified message to the operator's
reporting terminal.

FORMAT

PDS>, MESSAGE

MESSAGE? message

or

$MESSAGE message

where

message

EXAMPLE ----

is a string terminated by carriage return in interactive
mode, or

a string written on the same line as the $MESSAGE command in
batch.

$MESSAGE THIS JOB WILL REQUIRE 2 TAPE DRIVES

P2-70

COMMAND SPECIFICATIONS

MOUNT
$MOUNT

The MOUNT command makes a volume available to the user and optionally
associates a logical name with the volume.

FORMAT

PDS> MOUNT[qualifier]

DEVICE? device-name

VOLUME-ID? volume-label

LOGICAL NAME? logical-name

or

$MOUNT[qualifier(s)] device-name volume-label logical-name

where

qualifier (s)

device-name

volume-label

logical-name

DE SCRIPT ION

is one or more qualifiers, most of which may
specified when a volume is initially mounted.
section Command Qualifiers below.

only be
See the

is the device or the logical name of
which the volume is to be mounted.
number may be omitted.

the device on
The device unit

is the volume identification written in the volume's
header if the volume is labelled. If the volume does
not have a label in its header, volume-label is the
identification written on the volume container: in
this case, /FOREIGN must be specified. For disk and
DECtape the volume identification is 1 to 12 characters
long. For ANSI labelled magnetic tape the volume label
is 1 to 6 characters long.

is the logical name to be associated with the device.

The user obtains exclusive access to magnetic tape volumes and to any
volumes mounted as foreign. Files-11 disk and DECtape volumes may be
shared: that is, once the volume has been mounted, other users may
also use it.

The unit number will normally be omitted from the
specification. The system then selects the appropriate unit.

P2-71

device

COMMAND SPECIFICATIONS

The MOUNT command may be qualified in the following circmstances:

1. When a specified Files-11 disk or DECtape volume is not
already mounted in the system.

2. When the user mounts a magnetic tape or foreign volume.

Command Qualifiers

The system ignores command qualifiers other than GLOBAL and REALTIME
if the command is mounting a previously mounted Files-11 disk or
DECtape.

* Qualifiers marked with an asterisk allow the user to override
parameters set when the volume was initialized.

~ali f iE~r

*/ACCESSED:n

*/DENSITY:n

Description

Number of preaccessed directories to be kept {Files-11
disk and DECtape only).

Set magnetic tape density where
n = 800 or 1600

*/EXTENSION:n Set file extension size to n blocks {Files-11 disk and
DECtape volumes only)

*/FILEPROTECTION: {code)

/FOREIGN

/GLOBAL

/NOWRI'rl~

Override default protection code to be given to new
files. {See Chapter 6, section 6.1.3)

The volume to be mounted is foreign. The default is
Files-11 format.

Volume to be mounted for access by any user.
May not be specified for magnetic tape.

Write protected; that is, the volume may
not be written to. Default is write permitted.

/OVERRIDE:(items)
where items are
Parentheses may
specified.

one or more of the following.
be omitted if only one item is

EXPIRATION

SE'l'ID

VOLUME ID

allows the user
unexpired volume.

to over-write an

allows the user to process tapes with
inconsistent file set identifiers.

allows the user to override the volume
identification, thus allowing the user
to mount without specifying a label.

P2-72

COMMAND SPECIFICATIONS

Qualifier Description

/PROTECTION: (code)

/REALTIME

/UNLOCKED

EXAMPLES

Replace volume protection with code specified. (See
Chapter 6, section 6.1.3)

The volume to be mounted is for Realtime use only

Leave index file unlocked (Files-11 disk and DECtape
only). Default is to leave index file locked.

l • PDS> MOUN'r
DEVICE? DT2:
VOLUMEID? RISE <CR>

2. $MOUNT/FOREIGN MT: TESTER CF0:

3. PDS> MOU DK:
VOLUMEID? SAM ALl:

4. $MOUNT/DEN:800 MT: VOL163 TA0:

P2-73

COMMAND SPECIFICATIONS

PASSWORD

The PASSWORD command changes the user's password.

PDS> PASSWORD

OLD PASSWORD? oldpassword

NE:W PASSWORD? newpassword

where

oldpassword is the 1- to 6-character alphanumeric password
currently associated with the user's username.

newpassword is the 1- to 6-character alphanumeric password
that supersedes the old password.

DE SCRIPT ION

The system does not display either the old or the new password.

EXAMPL8

PDS> PASSWORD

OLD PASSWORD? glove

NEW PASSWORD?. mitten

P2-74

COMMAND SPECIFICATIONS

PRINT
$PRINT

The PRINT command causes one or more specified files to be output on
the line-printer. The user may optionally delete the file or files
after they have been printed.

FORMAT

PDS> PRINT[/DELETE] [/FORMS:n] [/COPIES:n]

FILE? filespec-1[, ••• filespec-n]

or

$PRINT[/DELETE] [/FORMS:n] [/COPIES: n] filespec-1 [, ••• filespec-n]

where

/DELETE instructs the system to delete the file or files after they
have been printed.

/FORMS:n (where n is a digit from 0 to 6) indicates the type of form
on which the specified files are to be printed.

Default: /FORMS:0

/COPIES:n (where n is an integer from 1 to 32) determines the number
of file copies to be printed.

Default: /COPIES:l

filespec is the specification of a file to be printed.
are allowed.

DESCRIPTION

Wild-cards

The specified file or files are submitted to the line printer and
subsequently deleted if the user has included the /DELETE qualifier.

P2-75

EXAMPLES

1. ~ PRINT

FILES? A.EXT;4

COMMAND SPECIFICATIONS

2. $PRINT FREAN.MAC;3, PEEK.CAF;*

3. PDS> PRI/DE 84.FAL;l

P2-76

COMMAND SPECIFICA'rIONS

PROTECT
$PROTECT

The PROTECT command applies a n~w protection code to a specified file.

FORMAT

PDS> PROTECT

FILE? f il espec

PROTECTION? (code)

or

$PROTECT f ilespec (code)

where

f ilespec is the specification of the file to which the protection
code is to be applied.

(code) is the protection code to be applied to filespec.
Chapter 6, section 6.1.3.

user categories are:

SYSTEM:

OWNER:

GROUP:

WORLD:

Types of access are:

R read

W write

E extend

D delete

Example

(SY:R, O:RWED, GRO:RW)

See

System has read access only. Owner has all four types of
access. Group has read and write access only. World access
remains unchanged.

P2-77

COMMAND SPECIFICATIONS

EXAMPLE:S

1. PDS> PROTECT CATHS.DAT

PROTECTION? (GRO:R, SY:R, WORLD:, O:RWDE)

2. $PROTECT 'rGNY.MAC (OW:RWED, SY:, GR:, W:)

3. PDS> PROTECT MYPROG.COB (SY:RWED, OW:RWDE, WO:DERW, GR:RWED)

P2-78

COMMAND SPECIFICATIONS

QUEUE

The QUEUE command allows the user to access the queue in three ways:

1. To interrogate the queue (/LIST)

2. To remove an entry from the queue (/REMOVE)

3. To add to the queue (/ADD)

Note that the simpler commands PRINT and SUBMIT should be used to add
files to the line printer and batch queues.

FORMAT

The format of the command depends on the queue operation to be
performed.

The default operation is /ADD.

PDS> QUEUE/LIST

Description

Display the status of the user's queue entries.

REMOVE

where

seqno

PDS> QUEUE/REMOVE

SEQUENCE? seqno

is the sequence number of a queue entry to be removed,
determined by issuing a QUEUE/LIST command.

Description

Remove the queue entry specified by a sequence number.

P2-79

where

COMMAND SPECIFICATIONS

PD~ QUEUE/ADD[/FORMS:n] [/COPIES:n] [/DELETE]

QUEUE? device-name

FI LE? f il espec

/PORMS:n (where n is a digit from 0 to 6) indicates the type of
form on which the specified files are to be printed.

/COPIES:: n

/DELETE

device-name

f ilespec

Description

Default: /FORMS:0

(where n is an integer from 1 to 32) determines the
number of copies to be printed.

Default: /COPIES:l

requests the system to delete the specified fiLes after
they have been processed.

specifies the relevant queued device.

is the specification of a file to be added to the queue
specified. Only one filespec is allowed. It must
contain a filename and an extension. Wild-cards are
allowed.

Add the specified file to the named queue and, optionally, modify the
resultant operation according to any specified qualifiers.

EXAMPLES

1. PDS> QUEUE/LIST

2. PDS> QUEUE/REMOVE 2

3. PDS> QUEUE/ADD/COPIES:4/DELETE
QUEUE? LP0:
FILE? LIST. MAP; 4

P2-80

COMMAND SPECIFICATIONS

The RENAME command renames an existing file.

FORMAT

PDS> RENAME

OLD? oldspec

NEW? newspec

or

$RENAME oldspec, newspec

where

oldspec is the specification of an existing file.

newspec is the new name for oldspec.

DESCRIPTION

RENAME
$RENAME

Both oldspec and newspec must contain a file name and an extension.
Wild-cards are allowed. The device field in both file specifications
must be the same because files cannot be renamed from one device to
another. If the version field is omitted, the normal defaults apply
(see Chapter 6, section 6.2.1).

EXAMPLES

1. PDS> RENAME

OLD? MYFILE.OBJ;l

NEW? BACKUP.OBJ;!

2. $RENAME MYFILE.OBJ;l,BACKUP.OBJ;l

3. PDS> RENAME

OLD? MYFILE.OBJ;l,BACKUP.OBJ;l

4. ~ RENAME CAROL.*;*
NEW? FRED.CBL;*

P2-81

COMMAND SPECIFICATIONS

RUN
$RUN

The RUN command causes an executable task to execute.

PDSL RUN

FILE? filespec[/COBOL]

or

$RUN filespec[/COBOL]

where

filespec is the specification of a file that contains an executable
task. The specification must include a file name. If the
extension is omitted, TSK is assumed, unless /COBOL is
specified. The default extension for a COBOL specification
is OBJ.

/COBOL Declares that filespec contains a compiled COBOL program.

DE SC RI P'r ION

To run a COBOL program, users must include the file qualifier /COBOL.

To suspend an executing task, the user types CTRL/C. The user may
either type CONTINUE to resume task execution or ABORT to abort the
task.

Executing tasks that were submitted to the batch queue cannot be
suspended.

EXAMPLE~

1. PDS> RUN MYPROG

2. $RUN MYPROG

3. $RUN COBOL.OBJ/COBOL

P2-82

COMMAND SPECIFICATIONS

SET
$SET

The SET command either:

1. Establishes a new default
subsequent file specifications
DEFAULT) ' or

device or
supplied

UFD or
by the

both
user

for
(SET

2. Suppresses the output of certain information messages (SET
QUIET)

FORMAT

PDS> SET

fUNCTION? parameter

or

$SET parameter

where

parameter is one of the following:

QUIET Suppress or allow the output of
or informative (usually accounting)
NOQUIET messages. The system default is

SET NOQUIET.

DEFAULT [device-name] [ufd]

DESCRIPTION

Changing Defaults

Change the user's default device and/or
UFD to the value or values specified.
If both device-name and ufd are
omitted, the system reestablishes the
user's initial default settings for
both values.

The system manager allocates a default device to each user, which is
in effect when the user logs in. The initial default UFD is
equivalent to the user's UIC. The user must issue the SET DEFAULT
command to change either or both values for file specifications

P2-83

COMMAND SPECIFICATIONS

included in subsequent commands. The command does not
specifications written in programs. To re-establish
settings in effect at login, the user issues SET DEFAULT
other values.

EXAMPLES

1. PDS> SET QUIET DKl: [200,3]

2. $SET DEFAULT [30,3]

3. PDS> SET DEFAULT DK0:

P2-84

affect file
the default

without any

COMMAND SPECIFICATIONS

SHOW

The SHOW command causes the terminal to display specified information
at the user's terminal. The parameter to SHOW determines the type of
information displayed.

FORMAT

PDS> SHOW

ATTRIBUTE? parameter

where

parameter

Devices

CL!

specifies the type of information to be displayed. The
options are:

Display information
Interpreters (CLis)
system.

about the Command Language
currently running in the

DEFAULT Display the user's current default device and UFO

DEVICES Display information about all the devices known to
the system. See the section called Devices below.

TIME Display the current time and date.

STATUS Display information about the current status of the
user's job.

The command SHOW DEVICES causes the system to display at the user's
terminal the symbolic names of all the devices known to the system.
Physical device names are followed by "**" if they are currently
available for use. System logical device names are followed by the
associated physical device names. The listing also includes messages
giving additional information about particular devices. The messages
and their meanings are:

Message

GLOBAL

MOUNTED

REAL TIME

Meaning

The device has been mounted globally (see the MOUNT
command) •

The device is mounted.

The device is mounted for realtime activity.

P2-85

COMMAND. SPECIFICATIONS

~eaning

SPOOLED The device is spooled.

TIMESHARING:n n is the _number of timesharing users accessing the
device.

EXAMPLES

1. PDS> SHOW TIME

10:53:41 l-OCT-75

2. PDS> SHOW DEVICES

TT0 **
CI0 TT0
C00 TT0
CL0 LP0
SP0 DB0
PI0 ** M00
MM0
DTl **
DT0 ** MOUNTED GLOBAL
LP0 ** SPOOLED
TT10 **
TT7 **
TT6 **
TT5 **
TT4 **
TT3 **
TT2 **
TTl **
DB0 ** MOUNTED GLOBAL TIMESHARING: 4
DKl **
DK0 ** MOUNTED GLQBAL
SY0 DB0

P2-86

COMMAND SPECIFICATIONS

SUBMIT

The SUBMIT command sends a file containing batch commands to the batch
processor.

FORMAT

PDS> SUBMIT

FILE? filespec

where

filespec is the specification of a file containing batch commands.
The specification must contain a filename and an extension.

DESCRIPTION

The system submits the file of batch commands to a queue of jobs to be
run eventually by a batch processor activated to service queu~d input.

EXAMPLES

1. PDS> SUBMIT

FILE? BATCHFILE.CMD

2. PDS> SUBMIT BATCHFILE.CMD

3. PDS> SUBMIT MYJOB.CMD

P2-87

COMMAND SPECIFICATIONS

TYPE

The TYPE command causes the contents of one or more specified files to
be printed at the user's terminal.

FORMAT

PDS> TYPE

FILE? filespec-1[, ••. filespec-n]

where

filespec is the specification of a file. The specification must
contain a filename and an extension. Wild-cards are
allowed.

EXAMPLES

1. PDS> TYPE

FILE? (BARLEY.CBL;2, GRAHAM.CBL;2)

2. PDS> TYPE APPLE.DAT

P2-88

COMMAND SPECIFICATIONS

UNLOCK
$UNLOCK

The UNLOCK command unlocks a file that was locked as a result of being
improperly closed.

FORMAT

PDS> UNLOCK

FILE? filespec-1[, ••• ,filespec-n]

or

$UNLOCK filespec-1[, ••• ,filespec-n]

where

filespec is the specification of the file to be unlocked. Wild-cards
are not allowed.

DESCRIPTION

If a program using File Control Services (FCS) has a file open with
write access and exits without first closing the file, the file will
be locked against further access as a warning that it may not contain
proper information. Typically the following information would not
have been written to the file:

1. The current block buffer being altered.

2. The record attributes which contain the end
information.

of file

By using the UNLOCK command, the user can access the file and can
determine the extent of the damage and perhaps take appropriate
corrective action.

EXAMPLE

PDS> UNLOCK

FILE? THAMES.MAC;?

P2-89

·-----------------------·------.. -----------------------------·- Fold Here--

·--- Do Not Tear • Fold llcre and Staple ---

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Communications
P. 0. Box F
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

READER'S COMMENTS

IAS User's Guide
DEC-11-0IUGA-A-D

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Report (SPR) form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documantation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

0 Assembly language programmer

0 Higher-level language programmer

0 Occasional programmer (experienced)

0 User with little programming experience

0 Student programmer

[] Non-programmer interested in computer concepts and capabilities

CitY~---------------------------State~------------Zip Code~------------
or

Country

If you require a written reply, please check here. []

	001
	002
	003
	004
	005
	006
	007
	008
	009
	01-01
	01-02
	01-03
	01-04
	01-05
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	05-01
	05-02
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	09-01
	09-02
	09-03
	1-001
	10-01
	10-02
	10-03
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	Index-01
	Index-02
	Index-03
	Index-04
	P2-01
	P2-02
	P2-03
	P2-04
	P2-05
	P2-06
	P2-07
	P2-08
	P2-09
	P2-10
	P2-11
	P2-12
	P2-13
	P2-14
	P2-15
	P2-16
	P2-17
	P2-18
	P2-19
	P2-20
	P2-21
	P2-22
	P2-23
	P2-24
	P2-25
	P2-26
	P2-27
	P2-28
	P2-29
	P2-30
	P2-31
	P2-32
	P2-33
	P2-34
	P2-35
	P2-36
	P2-37
	P2-38
	P2-39
	P2-40
	P2-41
	P2-42
	P2-43
	P2-44
	P2-45
	P2-46
	P2-47
	P2-48
	P2-49
	P2-50
	P2-51
	P2-52
	P2-53
	P2-54
	P2-55
	P2-56
	P2-57
	P2-58
	P2-59
	P2-60
	P2-61
	P2-62
	P2-63
	P2-64
	P2-65
	P2-66
	P2-67
	P2-68
	P2-69
	P2-70
	P2-71
	P2-72
	P2-73
	P2-74
	P2-75
	P2-76
	P2-77
	P2-78
	P2-79
	P2-80
	P2-81
	P2-82
	P2-83
	P2-84
	P2-85
	P2-86
	P2-87
	P2-88
	P2-89
	replyA
	replyB

