

OVERLAYS

Examples of ODL

l.

X, the root of a task, calls subroutines Y and Z.

.ROOT X-(Y¥,2)
. END

Explanation: X is the root segment, Y and Z are each

overlay segments. Virtual addresses are assigned to X
first. Starting after that, Y and Z begin at the same
virtual address. Either Y or Z (never both) is loaded

and mapped using those virtual addresses.

Using the information from Example 1, Y calls subroutines
U and V.

.ROOT X-(Y-(U,V),Z)
.END

Explanation: Add to Example 1. U and V are overlay
segments which overlay each other. After the last
address for Y, virtual addresses begin for U and V.

243

OVERLAYS

TYPES OF OVERLAYS

There are two types of overlays available, disk-resident
overlays and memory-resident overlays. 1In fact, both are loaded
from disk. The distinction is that disk-resident overlays are
loaded from disk every time they are needed, while
memory-resident overlays are loaded from disk only the first time
they are needed. After that, they remain in memory and remapping
is used to overlay segments as needed.

Disk-Resident

Disk-resident overlays are available on all RSX-11M systems.
An example of a task with a root segment and three disk-resident
‘overlays is shown in Figure 6-3.

On initial load, only the root segment MAIN 1is loaded.
Overlay segments are loaded from disk whenever required. This
typically occurs when a subroutine in the segment is called. So
if the root segment MAIN contains a call for subroutine A, for
example, segment A is loaded from disk prior to the transfer of
control to A.

If, after the subroutine returns control to MAIN, a call is
made to subroutine B, segment B is loaded into memory right over
segment A, If a call is later made to subroutine C, segment C is
loaded right over segment B. This loading of overlay segments is
performed whenever necessary. The subroutines may be <called in
any order, and each subroutine may be called any number of times
in the course of task execution,

The same starting virtual address is assigned to all three
overlay segments, A, B, and C, beginning at the next 32(19) word
boundary after the code for MAIN. So A, B, 'and C use the same
virtual addresses and are loaded starting at the same physical
address. One virtual address window maps the entire task; just
the code in memory is changed when an overlay is loaded.

This technique is useful when the entire task is too 1large
to fit into the space allowed for it. 1In the example in Figure
6-3, a 22K word task runs in 15K words of physical memory.
Disk-resident overlays are the default overlay type. The ODL
examples in the ©previous section all produce disk-resident
overlays.

245

OVERLAYS

Memory-Resident

Memory-resident overlays are available only on mapped
systems which support the memory management directives. Figure
6-4 shows the same task as 1in Figure 6-3, this time with

memory-resident overlays. On initial load, again only the root
segment MAIN is loaded. The first time an overlay segment is
needed it is loaded from disk. However, once a segment is

loaded, it remains in memory and is not reloaded from disk.

If subroutine A is called first, overlay segment A is loaded
and virtual address window 1 is mapped to A. 1If, after the
subroutine returns control to MAIN, a call is made to subroutine
B, then segment B is loaded, but not directly over A. Instead,
it is loaded into another area of memory, and then virtual
address window 1 1is mapped to B. 1If a call is later made to
subroutine C, segment C is loaded into another area of memory,
and virtual address window 1 is mapped to C.

The real gain in run time efficiency is made when an overlay
is needed again. 1If another call is made to A, overlay segment A
does not have to be loaded again from disk. It 1is already
memory-resident. Therefore, virtual address window 1 is simply
remapped from segment C to segment A. Any additional overlaying
is performed by remapping, with no further loading of overlay
segments necessary. Again, the subroutines may be called in any
order and each subroutine may be called any number of times.

The advantage of this approach is that after the first load,
it 1is much faster than using disk-resident overlays. However,
there are no savings in the use of physical memory. 1In fact, a
bit more memory 1is required than with a non-overlaid task. So
the main use of memory-resident overlays is for overcoming the
32K word virtual address limit when execution time efficiency is
important. A 44K word task can use memory-resident overlays Iif
there is enough memory available and the time necessary for
loading disk-resident overlay segments is unacceptable.

The root segment uses one window, plus each overlay area
requires a separate window. That means that virtual addresses
for each overlay segment begin at the starting virtual address
for the next highest APR, corresponding to a 4K word boundary.
Notice that A, B, and C all begin at virtual address 60000(8),
for APR3, because MAIN is 9K words long. MAIN uses all 4K words
in APRs @ and 1, plus 1K word in APR2 (virtual addresses 40000 (8)
through 43777(8)) .

247

WINDOW
1

{

160000 APR7

120000 APR5 K

100000 APR4

60000 APR3

40000 APR2
gvmoow 20000 APR1
0 APRO

Figure 6-4

///

140000 APR6 K

OVERLAYS

VIRTUAL
MEMORY

249

- - - -
— -—
yﬁy
Py - - — T T
TIME2 = —
) | gsiw) =
/////// 7 —
MAIN
(ROOT SEGMENT)
(9K WORDS) INITIAL LOAD
b A
HEADER AND STACK _AEMi_

PHYSICAL
MEMORY

MAIN

HEADER AND STACK 7

(ROOT SEGMENT)

TK-7767

An Example of Memory-Resident Overlays

OVERLAYS

LOADING METHODS

There are two loading methods, autoload and manual 1load.
With autoload, any necessary 1loading and/or remapping (in the
case of memory-resident overlays) is done automatically and is
transparent to the program. With manual 1load, the overlay
segments are loaded by specific user calls to a loading routine.
Autoload and manual load cannot be mixed in the same task.

Autoload

When a call is made to a subroutine in an overlay segment,
an autoload routine takes <control before the transfer to the
subroutine is made. It checks to find out whether the required
segment is already loaded, or loaded and mapped. It performs any
necessary loading and/or remapping. After that, the transfer to
the called subroutine is made.

Autoload is path loading, meaning that all segments along
the path to the required overlay segment are loaded. For
example, in example 2 in the previous section, with root X and
subroutines Y, U, V, and Z, if a call from segment X is made to
subroutine U, both Y and U are loaded. Note that autoload 1loads
only overlay segments along the path which are not already
loaded.

Autoload is indicated by an asterisk (*) before an overlay
specification in an ODL 1line. An asterisk outside a set of
parentheses applies to all levels inside the parentheses.

The advantages of autoload are that it is easy to wuse and
does not require changes in the source code. One disadvantage is
that it increases the size of the segments because the autoload
code plus 1its data structures must be included in the task.
Another is that it executes slower than manual load, because the
autoload code has to check for whether the required segment is
available or not each time an autoloadable segment is called. 1In
addition, autoload must be performed synchronously. See section

4.1 on Autoload in the RSX-11M/M-PLUS Task Builder Manual for
more information.

251

OVERLAYS

Manual Load

With manual load, you must call the subroutine $LOAD to load
and/or map any required overlay segment before calling a
subroutine in that segment. You must also keep track of which
segments are currently available, to avoid a transfer of control
to an incorrect segment and to avoid unnecessary calls to the
loading subroutine. Manual load is not path loading. In Example
2 of the previous section, if X calls U, it can load just segment
U, without loading segment Y, unless it is desirable to load
both. See section 4.2 on Manual Load in the
RSX-11M/M-PLUS Task Builder Manual for more information.

Manual load is the default loading method. Whenever there
are no asterisks (*) in an ODL file, manual load is used.

The advantages of using manual load are that it results in
smaller overlay segments, is usually more run time efficient, and
overlay segments can be loaded either synchronously or
asynchronously. The disadvantages are that you must keep track
of which overlay segments are loaded and use special code in the
source program.

Comparison of a Task With No Overlays, to One With Disk-Resident
Overlays, and One With Memory-Resident Overlays

Example 6-1, shown earlier in the module, and repeated below
for convenience, shows a main program which calls a subroutine,

which in turn calls another subroutine, etc. Note that the sizes
shown for the various parts of the task are only approximate.

253

OVERLAYS

Task~-build command:

LINK/MAP PROG,SUB1,A,B,SUB2,SUB3,C,D,E

Fartition mame ! GEN

Identification { 0Ol

Task UIC P L305,3011

Stack limits?! 000284 0012¥3 001000 00HL2.

FRG xfr address! 021254

Total address windows? 1.

Task imadge sizxe ¢ 17792, words

Task address Llimits?! 000000 105357

R-W dislk blk limits? 000002 000107 00010&6 00070,

¥k ROOT SEGMENT! FROG

R/7W mem limitsed Q00000 103357 105360 35568,
Disk blk limits? 000002 000107 000106 00070,

Example 6-2 Map File of Example 6-1 Without Overlays

255

OVERLAYS

PROG.ODL file:

.ROOT PROG-*(SUB1-(A,B) ,SUB2,SUB3-(C,D,E))
.END

Task-build command:

LINK/MAP PROG/OVERLAY DESCRIPTION

Fartition name ! GEN

Identification ! 01

Task UIC t L305,3010

Stack Limitse?! 000260 001257 01000 00%512.

FRG xfr address: 021260

Total asddress windows?: 1.

Task imade size $ 8800, words

Tashk address limits?d 000000 042237

R-W disk blk limits: 000002 000120 000117 006079,

EX63.TSK Overlaw descrirtion?

Base Tos Length

000000 022177 022200 (09344, FROG

Q22200 032233 010034 04124, SUR1L
032234 036237 004004 02052, A
032234 042237 010004 04100, E
Q22200 036203 014004 06148, SUR2
022200 026247 004050 02088, SURI
Q26250 032253 004004 02052, C
Q26250 036253 010004 04100, n
Q26250 032233 004004 02052, E

Example 6-3 Map File of Example 6-1 With Disk-Resident Overlays

257

OVERLAYS

PROG.ODL file:

.ROOT PROG-*! (SsuB1-!(A,B) ,SuUB2,SUB3-!(C,D,E))
. END

Task-build command:

LINK/MAP PROG/OVERLAY DESCRIPTION

Fartition mame ! GEN

Idemtification § 01

Task UIC 3 L3053011

Stack Timits?! 000320 001317 001000 00512,

FRG xfr address: 021320

Totel address windows? 3.

Task image size ¢ 18464, words

Task address limits: 000000 077777

Fo-W disk bll limits? 000003 000122 000120 00080,

EXDOVR.TSK QOverlay descristion?

Rase Tor L.endgth

000000 023077 23100 09792, FROG

Q40000 050077 010100 041460, SURL
060000 064077 004100 02112, A
Q40000 Q70077 010100 04160, B
Q40000 054077 014100 046208, SUR2
040000 044077 004100 02112, SUR3
060000 064077 004100 02112, G
060000 070077 010100 04160,]
060000 064077 004100 02112, E

Example 6-4 Map File of Example 6-1 With Memory-Resident Overlays

259

OVERLAYS

Table 6-1 Comparison of Overlaying Methods (Cont)

Table 6-1 compares the three overlaying methods. 1In addition
to the various sizes, it lists the advantages and disadvantages of
each approach.

Remember that it is also possible to mix memory-resident and
disk-resident overlays in a task. For example, the first level
(suBl1l, SUB2, and SUB3) could be memory-resident, and either or
both second levels (A, B or C, D, E) could be disk-resident.

2601

OVERLAYS

Include needed modules from FOROTS.OLB in the root segment
in segment A, and in segment B. You should specify the
library in each segment which may need it. Otherwise, if
segment A needs a library module not already included for
the root segment, the library is not searched again for
module A,

An Qverlay Example

Example 6-5 is a simple task with a root segment ROOT and two
overlay segments, P and Q. The following calling sequence is used
during the execution of the task.

ROOT calls P
ROOT calls @

Figure 6-5 shows an overlay tree and a memory allocation
diagram for this task.

The code for Example 6-5 is separated 1into three different
modules, one for each segment. The source file for the root
segment ROOT contains the startup code and controls the overlay
loading by calls to the subroutines. The source file for each
overlay segment, P and Q, contains the subroutine code.

OVERLAY TREE

MEMORY ALLOCATION DIAGRAM

P o P Q

ROOT ROOT

TK-7755

Figure 6-5 Task With Two Overlay Segments

263

OVERLAYS

The notes below are keyed to Example 6-5.
On initial load only the root segment ROOT is loaded.

@® with autoload, the call to subroutine P causes the
autoload routine to load overlay segment P from disk, and
then transfer control to the subroutine.

G’ Subroutine P displays a message and returns.

@O rThe call to subroutine Q causes the autoload routine to
load overlay segment Q from disk over segment P, and then
transfer control to the subroutine.

G’ Subroutine Q displays a message and returns.

If another call were added to subroutine (@, the autoload
routine would check to make sure that overlay segment Q is already
loaded, and would then transfer control to Q. If another call
were added to subroutine P, the autoload routine would check and
find that overlay segment P is not loaded. It would then 1load
segment P over segment Q and transfer control.

To use manual load, use additional code to load the segments
into the root segment ROOT. Also, modify the .ODL file, omitting
the asterisk (*). The files MLROOT.MAC and MLEXDOVR.ODL on the
tape provided with this course are modifications of ROOT.MAC and
EXDOVR.ODL for manual load. Check UFD [282,3] for these files.
See your course administrator if you have difficulty finding them.

265

OVERLAYS

1 STITLE Q

2 « IDENT /017

3 +ENARL LC ¥ Enable lower case

4 i+

] # FILE Q.MAC

&4 $

7 # This subroutine disrlaus 8 message and returns.

8 ;.m

9 +MCALL QIOWSC i External sustem macros

10 H

11 MES +ASCITI /SEGMENT Q IS NOW LOADED. SUBROUTINE Q7

12 +ASCTIT /7 I8 EXECUTING./

13 LMES = , -~ MES

14 +EVEN i Move Lo word bhoundary

15 H

16 QA QIDWSC TOWVRsSelvryy MESYLMES»40r 3 Disrlay
o [17 i messade

18 RETURN # Return

19 +END

Rurn Session

FRUN EXDOVR

THE MAIN SEGMENT IS RUNNING AND WILL CALL F.
SEGMENT F IS NOW LOADED, SURROUTINE P IS EXECUTING.
THE MAIN SEGMENT WILL NOW CALL Q.

SEGMENT Q IS NOW LOADED. SUBROUTINE Q I8 EXECUTING.
THE MAIN SEGMENT WILL NOW EXIT.

Example 6-5 A Task With Two Overlay Segments (Sheet 2 of

267

OVERLAYS

Table 6-2 How Global Symbols Are Resolved

269

OVERLAYS

Subroutine Calis

With manual load, since the global symbols are resolved
directly to the virtual address corresponding to the symbol, the
transfer is directly to the subroutine. The program must ensure
that the correct overlay segment is loaded before making the call.
Otherwise, the transfer will transfer <control to that wvirtual
address in the wrong code, causing unexpected results.

With autoload, the global symbols are resolved directly for
calls downward toward the root. This works because path loading
ensures that the segments along the path closer to the root are in
fact 1loaded. The calls to subroutines away from the root are
resolved through autoload vectors. This causes the <call to the
subroutine to transfer control first to the autoload routine,
allowing it to check and load any needed overlay segments before
transferring control to the virtual address of the subroutine.

Data References

The safest place for all data is in the root segment. Data
placed in an overlay segment is only accessible when the overlay
segment is loaded and the reference is resolved directly. This
means that with manual 1load, the data is accessible when the
segment is loaded.

With autoload, on the other hand, it's not that simple.
References out from the root are usually not resolved directly,
but through autoload vectors. For example, the reference to the
global symbol A, a data 1label, is resolved to the label of an
autoload vector within the same overlay segment. The actual
virtual address of A is a value within the autoload vector.
Therefore, a reference to A references the autoload vector, not
the data itself. 1In addition, a reference to A does not cause the
overlay segment to be loaded. It is loaded only on a call to a
subroutine. Although there are some ways with autoload to get
references resolved directly, it is difficult.

With disk-resident overlays, another problem arises with any
data changed at run time. 1If the data is in an overlay segment,
it is reinitialized every time the segment is reloaded from disk,
since the original copy of the code is reloaded. This problem
occurs with both manual load and autoload.

271

OVERLAYS

The Task Builder normally combines together allocations for
Psects of the same name. If the Psects have the local (LCL)
attribute, combining is only done within a single overlay segment.
If the Psects have the global (GBL) attribute, combining is done
across overlay segment boundaries. For Psects with the GBL
attribute, by default, these allocations are collected in the
segment specifying the Psect which is closest to the root segment.
Therefore, if the Psect MYDATA is specified in the root segment
and also in one or more overlay segments, the complete allocation
is placed in the root segment. The OVR attribute tells the Task
Builder to begin both allocations at the same virtual address.
Consider Example 2 above. The local symbol M, defined locally in
the overlay segment, corresponds to the beginning of the Psect in
the root segment, the address of the first 2. The instruction INC
M+2 again increments the second 2 to a 3.

See Appendix E for additional information on how the Task
Builder uses the various Psect attributes. Also see section 3.2.4
(on Allocation of Program Sections in a Multisegment Task) in the
RSX-11M/M-PLUS Task Builder Manual for a description of how the
Task Builder allocates Psects in an overlaid task.

Two other methods can be used to place in the root a Psect
which 1is not defined in the root. If a Psect has the SAV
attribute, the Task Builder automatically places that Psect's
allocation in the root. If the Psect does not have the SAV
attribute, then the .PSECT Overlay Descriptor Language statement
can be wused to specify placement of a particular Psect in the
root, overriding the default placement. See section 3.4.5 (on the
.PSECT Directive) in the RSX-11M/M-PLUS Task Builder Manual for an
example of the use of .PSECT ODL directive.

Example 6-6 is a more complex example of the use of overlays.
It shows the use of both techniques for placing data in the root
and referencing it from overlay segments. The program calling
sequence is shown below.

273

OVERLAYS

The following notes are keyed to the example.

The Psect OTHER is set up for wusing overlaid Psects to
reference the data. Since it is defined in the root, the
entire allocation for OTHER is in the root segment. OoP1,
OP2, and ANS can be Jjust 1locally defined, since the
overlay segments define the locations as offsets from the
start of the Psect. On the other hand, global symbols can
be used instead, if desired. The data 1is an argument
block for a call to $EDMSG.

The references to the data from overlay segment JOB1l are
set up by specifying the Psect OTHER, then defining local
symbols. .BLKW statements are used because you are Jjust
defining symbols and offsets. The local symbols NUM1,
NUM2, and SUM correspond to oP1, OoP2, and ANS,
respectively, in MAIN.

The references to the data from overlay segment JOBXX are
set up in a similar way. This time the same local symbols
OP1, OP2, and ANS are used again.

The references to the data from overlay segment A are also
set up in a similar way. This time only the starting
address of the argument block is needed.

The grand total and the ASCII operand (for $EDMSG) are
defined with the global symbols TOT and OP.

The reference to TOT and OP in JOB1l, and JOBXX, are
automatically resolved directly. No special coding is
needed in the referencing segment. TOTAL also references
TOT, this time from the root segment (because TOTAL is
also in the root segment).

Note that data which is pure (read-only) and referenced
within the overlay segment only, causes no problems when
placed in an overlay segment. The references are direct
and the data 1is only referenced while the segment is
loaded.

The input buffer for the Jjob number typed in by the
operator, and the output buffer for displaying an
operation's results are contained in an overlay segment
and changed at run time. However, since the data is
accessed only from within the overlay segment, and only
while the segment 1is still loaded, no problems result,
I1f, in fact, the MAIN segment referenced this data after a
call to B was made, it would no longer work correctly
because on reload, the data is reinitialized.

275

OVERLAYS

52 § Set ur for loos
53 MOV *#3sR4 # Counter
54 LOOF? QIOWSC TOWVRySylyry s “MESIyLMES3»40> § Write MES3
53 CLR ANS i Clear answer in case
1) i of mo oreration
57 CaLL A i Call subroutine A
58 SOR R4 LOOF ¢ Decrement counter and
59 ¥ loor back until done
60 QIOWSC I0.WVEBySelsrsy s MES4,LLMES4y40> 5 Write MES4
61 caLL TOTAL. i Call routine to
62 i disrlaw drand totsl
&3 QIOWSC I0.WVEB»Sylyyyy<MESSYLLMESS»40> 3 Write MESS
64 EXIT$S i Exit
69 JENDII START
1 +TITLE A
2 +IDENT /01/
3 +ENARLE LC ¥ Enable lower case
4 $+
5 # FILE A.MAC
é H
7 # This subroutine disrlavs 2 messade and then asks which
8 i of two Jdobs to do. It calls the arrrorrizte subroutine
9@ § to do the Jdoby disrlavs the resultsry and then returns
10 #F to the main srogram.
i1 §
12 +MCALL QICWsC,QI0WSS i Sustem macros
13 +NLIST BEX i Do not list binary
14 A i extensions
15 +FSECT OTHER NsGRLsOVRYRELRW % PSECT with dats
" 16 ARG +BLKW 4 i Set address Tor start
17 i of argument block
18 +FSECT i Rack to blank PSECT
1.9 MES? +ASCTIT <11x/SEGMENT A IS NOW LOADED. SURROUTIN/
20 JABCIT /Z7E A IS EXECUTING./
21 LMES=, ~MES
" 22 FMES JASBCIT <11x=/700 YOU WANT TO DO JOR 1 OR JOR 27 /
23 LFMES=, ~FMES
24 EMES JASCIT <18 11»/N0 SUCH JOEB. SORRY./
25 LEMES=,~EMES
Lﬁé OFMT JASCIZ 1 Lx/700 ZA AL = ZDJAN/
27 OBUFF3? JRLKER 100, ¢ Buffer for diserlaw of
O :: 5 ob results
L2329 BUFF 3 +BLKE 1 # Buyffer for insut char
y

30 +EVEN Move to word bhoundary

Example 6-6 Complex Example Using Overlays (Sheet 2 of 6)

277

OVERLAYS

18011011 /78EGMENT JORL I8 NOW LOADED./

155

12

1150115 /8URROUTINE JORL IS EX/

ZECUTING ./
LMES= ., ~MES

REX

a

List binary extensions

IO{UUB?S!lvyyv'{MESyLMESy‘}O} # DNisplaw

H messade

NUM1 » SUM ¢ First orerand to ans
NUM2» SUM F Add in other orerand
SUM,TOT ¢ Add this answer Lo total
¥+ 0F # Move orerand Tor outrut
¥ disrlay
i Return
JOBXX
/01/
1.C i Enable lower case

This subroutine rerforms a multislication oreration.
It is assumed that local swmbols O0Fly OFP2 and ANS
same local sumbols in MAIN. The
defined in MAINy ig the address
the drand total is maintained.

QRIOWSC i External sustem macros
BEX # Do mot list binary
i extensions
OTHER DyGRLsOVRYREL sRW # Data FSECT
1 i lst orerandg
1 i Address of oreration
§ i ASCII
1 i 2nd orerand
1 i Answer
i Rack to blank FSECT
1024 . %2 i Leave srace to make
§ module larder

L1GE1 1011 /8EGMENT JOBXX 185 NOW/
/ LOARED, /<1801 25011110
/SURROUTINE JOR2 IS EXECUTING./
LMES=,~MES

26 MES S +ASCIT
Q[:e? VASCTX
28 +ASCTI
29
0 +EVEN
31 JLIST
32
33 JORL I QIOWSC
34
e 35 MOV
364 AL
e 37 AL
38 MOy
39
40 RETURN
41 +END
1 +TITLE
2 +IDENT
3 +ENARL
4 it
G i FILE JORXX.MAC
b ¥
7 ;
8 §
9 ¥ corresrond to the
10 ¥ globel sumbol TOTy
11 i where
12 e
13 «MCALL
14 +NLIST
15
16 +PSECT
17 OFLe +BLRKW
o 18 +BLKW
i9
20 OF21: + BLRW
21 ANS ¢ +BLKW
22
23 FBECT
24 « BLKW
25
_ 26 MES? +ASCIT
6[27 JASCIT
28 +ASCTY
29
30 +EVEN
31 JUIBT

Example 6-6

REX

i List binary extensions

Complex Example Using Overlays (Sheet 4 of 6)

279

IR R R

z
L

N D

10
i1

12
o[
14
15
1o
17
18
19
20

R

OVERLAYS

STITLE R
+IDENT /01/ .
+ENARBL LC # Emable lower case
it
i FILE RBR.MAC
H
i This subroutine disrlavs 8 messadge and returns
;....

SMOALL QIDWSC 3 External swustem macros
+NLIST BREX o mot list bimary
extensions
MES S JASCIT <11-/8EGMENT B IS NOW LOADED. SURBROUTINE/
JASCIT / B IS EXECUTING./
LMES = , - MES

a
14
»
¥

+EVEN i Move to word bhoundarw
H
Bi: QIOWSC TOWVBySslery » “MESYyLMES»40> § Disrlaw
i messade
RETURN i Return
+END

Session

FRUN MRMAIN

THE

THE

THE

THE

THE

THE
THE

THE

MAIN SEGMENT I8 RUNNING AND WILL CALL A
SEGMENT A IS NOW LOADED. SURROUTINE A IS EXECUTING.
DO YOU WANT TO DO JOB 1 OR JOR 2% 1
SEGMENT JOR1 IS NOW LOADED.
SURROUTINE .JOR1 IS EXECUTING.

5+ 2= 7

MAIN SEGMENT WILL NOW CALL R
SEGMENT R IS NOW LOADED. SURROUTINE B I8 EXECUTING.
MAIN SEGMENT WILL NOW CALL A
SEGMENT A IS NOW L.OADED. SUBRROUTINE A IS EXECUTING.
I YOU WANT TO DO JOR 1 OR JOB 27 2
SEGMENT JORXX I8 NOW LOADED.
SURROUTINE JORZ2 I8 EXECUTING.
9ok 2 = 10

MAIN SEGMENT WILL NOW CALL A
SEGMENT A I8 NOW LOADED. SURROUTINE A IS EXECUTING.
Do YOU WANT TO DO JORB 1 OR JOR 27 2
SEGMENT JORXX I8 NOW LOADELD.
SURROUTINE JOR2 IS EXECUTING.
5 % 2 = 10

MAIN SEGMENT WILL NOW CALL A
SEGMENT A IS NOW LOADED. SUBROUTINE A IS EXECUTING.
D0 YOU WANT TO IO JOR 1 OR JOR 27 1
SEGMENT JOR1 IS NOW LOALDED.
SURROUTINE JOR1 IS EXECUTING.
9+ 2= 7

MAIN SEGMENT WILL CALL TOTAL
GRAND TOTAL IS 34,

MAIN SEGMENT WILL NOW EXIT

Example 6-6 Complex Example Using Overlays (Sheet 6 of

281

6)

OVERLAYS

Al

B1
A2 B2

A0

BO

CNTRL

Figure 6-7

TK-8635

Task Without Co-Trees

283

OVERLAYS

Now do the tests/exercises for this module in the
Tests/Exercises book. All but the first problem are lab problems.
Check your answers against the provided solutions, either the
on-line files (under UFD [282,2] or the printed copies in the
Tests/Exercises book.

If you think that you have mastered the material, ask your
course administrator to record your progress on your Personal
Progress Plotter. You will then be ready to begin a new module.

If you think that you have not vyet mastered the material,
return to this module for further study.

285

