

OVERLAYS

STEPS IN PROGRAM DEVELOPMENT USING OVERLAYS

Use the following steps to develop a task which uses
overlays.

1. Assemble each module, producing an .OBJ file for each

2. Use the editor to create an overlay descriptor file
(defines the overlay structure for the Task Builder).

3. Task-build using the overlay descriptor file as the input
file.

THE OVERLAY DESCRIPTOR LANGUAGE (OOL)

The overlay descriptor language (ODL) is a fairly simple
language which is used to define the overlay structure for the
Task Builder. Statements are placed in a text file which has a
file type 'ODL' (e.g., EXAMPLE. ODL). This text file is identified
to the Task Builder as a special file by using the
IOVERLAY DESCRIPTION input file qualifier (IMP in MCR) in the
task-build command line.

ODL Command Line Format

The ODL command lines use the format that follows.

label: directive argument-list icomment

where:

label - A one- to six-character symbolic, required only
on an .FCTR directive.

directive - one of the following:

.ROOT - indicates the start of the overlay tree

.END - ind icates the end of input

• FCTR - allows naming of subtrees

• NAME - allows naming a segment and assigning
attr ibutes

.PSECT - allows special placement of a global
program section (Psect).

241

OVERLAYS

Examples of ODL

1. X, the root of a task, calls subroutines Y and z.

.ROOT

.END

Y

X

X-(Y,Z)

z

Explanation: X is the root segment, Y and Z are each
overlay segments. virtual addresses are assigned to X
first. Starting after that, yand Z begin at the same
virtual address. Either Y or Z (never both) is loaded
and mapped using those virtual addresses.

2. using the information from Example 1, Y calls subroutines
U and V.

.ROOT

.END

u I
Y

V

Z

X

X-(Y-(U,V) ,Z)

Explanation: Add to Example 1. U and V are overlay
segments which overlay each other. After the last
address for Y, virtual addresses begin for U and V.

243

OVERLAYS

TYPES OF OVERLAYS

There are two types of overlays available, disk-resident
overlays and memory-resident overlays. In fact, both are loaded
from disk. The distinction is that disk-resident overlays are
loaded from disk every time they are needed, while
memory-resident overlays are loaded from disk only the first time
they are needed. After that, they remain in memory and remapping
is used to overlay segments as needed.

Disk -Resident

Disk-resident overlays are available on all RSX-IIM systems.
An example of a task with a root segment and three disk-resident

'overlays is shown in Figure 6-3.

On initial load, only the root segment MAIN is loaded.
Overlay segments are loaded from disk whenever required. This
typically occurs when a subroutine in the segment is called. So
if the root segment MAIN contains a call for subroutine A, for
example, segment A is loaded from disk prior to the transfer of
control to A.

If, after the subroutine returns control to MAIN, a call is
made to subroutine S, segment S is loaded into memory right over
segment A. If a call is later made to subroutine C, segment C is
loaded right over segment S. This loading of overlay segments is
performed whenever necessary. The subroutines may be called in
any order, and each subroutine may be called any number of times
in the course of task execution.

The
overlay
bo undary
virtual
address.
the code

same starting virtual address is assigned to all three
segments, A, S, and C, beginning at the next 32(10) word
after the code for MAIN. So A, S, 'and C use the same
addresses and are loaded starting at the same physical

One virtual address window maps the entire task; just
in memory is changed when an overlay is loaded.

This technique is useful when the entire task is too large
to fit into the space allowed for it. In the example in Figure
6-3, a 22K word task runs in 15K words of physical memory.
Disk-resident overlays are the default overlay type. The ODL
examples in the previous section all produce disk-resident
overlays.

245

OVERLAYS

Memory-Resident

Memory-resident overlays are available only on mapped
systems which support the memory management directives. Figure
6-4 shows the same task as in Fig ure 6 -3, thi s time wi th
memory-resident overlays. On initial load, again only the root
segment MAIN is loaded. The first time an overlay segment is
needed it is loaded from disk. However, once a segment is
loaded, it remains in memory and is not reloaded from disk.

If subroutine A is called first, overlay segment A is loaded
and virtual address window 1 is mapped to A. If, after the
subroutine returns control to MAIN, a call is made to subroutine
B, then segment B is loaded, but not directly over A. Instead,
it is loaded into another area of memory, and then virtual
address window 1 is mapped to B. If a call is later made to
subroutine C, segment C is loaded into another area of memory,
and virtual address window 1 is mapped to C.

The real gain in run time efficiency is made when an overlay
is needed again. If another call is made to A, overlay segment A
does not have to be loaded again from disk. It is already
memory-resident. Therefore, virtual address window 1 is simply
remapped from segment C to segment A. Any additional overlaying
is performed by remapping, with no further loading of overlay
segments necessary. Again, the subroutines may be called in any
order and each subroutine may be called any number of times.

The advantage of this approach is that after the first load,
it is much faster than using disk-resident overlays. However,
there are no savings in the use of physical memory. In fact, a
bit more memory is required than with a non-overlaid task. So
the main use of memory-resident overlays is for overcoming the
32K word virtual address limit when execution time efficiency is
important. A 44K word task can use memory-resident overlays if
there is enough memory available and the time necessary for
loading disk-resident overlay segments is unacceptable.

The root segment uses one window, plus each overlay area
requires a separate window. That means that virtual addresses
for each overlay segment begin at the starting virtual address
for the next highest APR, corresponding to a 4K word boundary.
Notice that A, B, and C all begin at virtual address 60000(8),
for APR3, because MAIN is 9K words long. MAIN uses all 4K words
in APRs 0 and 1, plus lK word in APR2 (virtual addresses 40000(8)
th r 0 ug h 43777 (8» •

247

160000 APR7

140000 APR6

120000 APR5

{

100000 APR4
WINDOW
1

60000 APR3

~INDOW 20000 APR1

OVERLAYS

VIRTUAL
MEMORY

--~

MAIN
(ROOT SEGMENT)

(9K WORDS) INITIAL LOAD

AND MAP
~

{

40000 APR2

o APRO _______ "'- _ __ _

-

-

PHYSICAL
MEMORY

C

B

A

MAIN

(ROOT SEGMENT)

HEADER AND STACK

TK-7767

Figure 6-4 An Example of Memory-Resident Overlays

249

OVERLAYS

LOADING METHODS

There are two loading methods, autoload and manual load.
With autoload, any necessary loading and/or remapping (in the
case of memory-resident overlays) is done automatically and is
transparent to the program. With manual load, the overlay
segments are loaded by specific user calls to a loading routine.
Autoload and manual load cannot be mixed in the same task.

Autoload

When a call is made to a subroutine in an overlay segment,
an autoload routine takes control before the transfer to the
subroutine is made. It checks to find out whether the required
segment is already loaded, or loaded and mapped. It performs any
necessary loading and/or remapping. After that, the transfer to
the called subroutine is made.

Autoload is path loading, meaning that all segments along
the path to the required overlay segment are loaded. For
example, in example 2 in the previous section, with root X and
subroutines Y, U, V, and Z, if a call from segment X is made to
subroutine U, both yand U are loaded. Note that autoload loads
only overlay segments along the path which are not already
loaded.

Autoload is indicated by an asterisk (*) before an overlay
specification in an ODL line. An asterisk outside a set of
parentheses applies to all levels inside the parentheses.

The advantages of autoload are that it is easy to use and
does not require changes in the source code. One disadvantage is
that it increases the size of the segments because the autoload
code plus its data structures must be included in the task.
Another is that it executes slower than manual load, because the
autoload code has to check for whether the required segment is
available or not each time an autoloadable segment is called. In
addition, autoload must be performed synchronously. See section
4.1 on Autoload in the RSX-llM/M-PLUS Task Builder Manual for
more information.

251

OVERLAYS

Manual Load

With manual load, you must call the subroutine $LOAD to load
and/or map any required overlay segment before calling a
subroutine in that segment. You must also keep track of which
segments are currently available, to avoid a transfer of control
to an incorrect segment and to avoid unnecessary calls to the
loading subroutine. Manual load is not path loading. In Example
2 of the previous section, if X calls U, it can load just segment
U, without loading segment Y, unless it is desirable to load
both. See section 4.2 on Manual Load in the
RSX-llM/M-PLUS Task Builder Manual for more information.

Manual load is the default loading method. Whenever there
are no asterisks (*) in an ODL file, manual load is used.

The advantages of using manual load are that it results in
smaller overlay segments, is usually more run time efficient, and
overlay segments can be loaded either synchronously or
asynchronously. The disadvantages are that you must keep track
of which overlay segments are loaded and use special code in the
so urce prog ram.

Comparison of a Task With No Overlays, to One With Disk-Resident
Overlays, and One With Memory-Resident Overlays

Example 6-1, shown earlier in the module, and repeated below
for convenience, shows a main program which calls a subroutine,
which in turn calls another subroutine, etc. Note that the sizes
shown for the various parts of the task are only approximate.

253

OVERLAYS

Task-build command:

LINK/MAP PROG,SUBl,A,B,SUB2,SUB3,C,D,E

Partition name : GEN
Identification : 01
Task UIC [305,301]
Stack limits: 000254 001253 001000 00512.
PRG xfr address: 021254
Total address windows: 1.
Task imase Slze 17792. words
Task address limits: 000000 105357
R-W disk blk limits: 000002 000107 000106 00070.

*** ROOT SEGMENT: PROG

R/W mem limits: 000000 105357 105360 35568.
Disk blk limits: 000002 000107 000106 00070.

Example 6-2 Map File of Example fi-l Without Overlays

255

OVERLAYS

PR OG • OD L f i 1 e :

.ROOT PROG-*(SUB1-(A,B) ,SUB2,SUB3-(C,D,E))

.END

Task-build command:

LINK/MAP PROG/OVERLAY_DESCRIPTION

Partition name : GEN
Identification : 01
Task urc [305,301J
Stack limits: 000260 001257 001000 00512.
PRG xfr address: 021260
Total address windows: 1.
Task ima~e size 8800. words
T~sk address limits: 000000 042237
R-W disk blk limits: 000002 000120 000117 00079.

EX63.TSK Overla~:l df~sc T' :i. Fit i on:

Bas)(-? Top Len~.=ith
.. __ _

000000 022177 022200 09344. F'ROG
()22200 0:~2233 010034 04124. SUB1
()32234 0362:~7 004004 02052.
032234 042237 OJ.0004 04100.
022200 0:~6203 014004 0614B. SUB2
022200 026247 004050 02088. SUB3
()26250 032253 004004 ()2052.
026250 036253 010004 04100.
()26250 032253 004004 020~7;2 •

A
B

C
D
E

Example 6-3 Map File of Example 6-1 With Disk-Resident OVerlays

257

OVERLAYS

PR OG • 00 L f i 1 e :

.ROOT PROG-*! (SUB1-! (A,B) ,SUB2,SUB3-! (C,D,E))

.END

Task-build command:

LINK/MAP PROG/OVERLAY_DESCRIPTION

Partition name : GEN
Identification : 01
Task UIC [305,3013
Stack limits: 000320 001317 001000 00512.
PRG xfr address: 021320
Total address windows: 3.
Task ima~e size 18464. words
Task address limits: 000000 077777
R-W disk blk limits: 000003 000122 000120 00080.

EXDOVR.TSK Overlay df.~sC T' :i. F,t :i. ('),..,:

B'3~:;.e TOF' I...€~ngth --_ -..
000000 023077 023100 09792. PROG
040000 050077 01.0100 04:1.60 + SUBl
060000 064077 004100 021.12.
060000 070077 010100 04160.
040000 054077 014100 06208. SUB2
040000 044077 004100 021.:1.2. SUB3
060()()0 064077 004100 02112.
060000 070077 010:1.00 ()4160.
060000 064077 004100 021.:1.2.

A
B

C
II
E

Example 6-4 Map File of Example 6-1 With Memory-Resident OVerlays

259

OVERLAYS

Table 6-1 Comparison of Overlaying Methods (Cont)

Table 6-1 compares the three overlaying methods. In addition
to the various sizes, it lists the advantages and disadvantages of
each approach.

Remember that it is also possible to mix memory-resident and
disk-resident overlays in a task. For example, the first level
(SUB1, SUB2, and SUB3) could be memory-resident, and either or
both second levels (A, B or C, D, E) could be disk-resident.

261

OVERLAYS

Include needed modules from FOROTS.OLB in the root segment
in segment A, and in segment B. You should specify the
library in each segment which may need it. otherwise, if
segment A needs a library module not already included for
the root segment, the library is not searched again for
mod ule A.

An Overlay Example

Example 6-5 is a simple task with a root segment ROOT and two
overlay segments, P and Q. The following calling sequence is used
during the execution of the task.

ROOT calls P
ROOT calls Q

Figure 6-5 shows an overlay tree and a memory allocation
diagram for this task.

The code for Example 6-5 is separated into three different
modules, one for each segment. The source file for the root
segment ROOT contains the startup code and controls the overlay
loading by calls to the subroutines. The source file for each
overlay segment, P and Q, contains the subroutine code.

OVERLAY TREE

MEMORY ALLOCATION DIAGRAM

P Q P Q

T
ROOT ROOT

TK-7755

Figure 6-5 Task With Two Overlay Segments

263

OVERLAYS

The notes below are keyed to Example 6-5.

o
o

e
o

o

On initial load only the root segment ROOT is loaded.

with autoload, the call to subroutine P causes the
autoload routine to load overlay segment P from disk, and
~hen transfer control to the subroutine.

Subroutine P displays a message and returns.

The call to subroutine Q causes the autoload routine to
load overlay segment Q from disk over segment P, and then
transfer control to the subroutine.

Subroutine Q displays a message and returns.

If another call were added to subroutine Q, the autoload
routine would check to make sure that overlay segment Q is already
loaded, and would then transfer control to Q. If another call
were added to subroutine P, the autoload routine would check and
find that overlay segment P is not loaded. It would then load
segment P over segment Q and transfer control.

To use manual load, use additional code to load the segments
into the root segment ROOT. Also, modify the .ODL file, omitting
the asterisk (*). The files MLROOT.MAC and MLEXDOVR.ODL on the
tape provided with this course are modifications of ROOT.MAC and
EXDOVR.ODL for manual load. Check UFD [202,3] for these files.
See your course administrator if you have difficulty finding them.

265

1
2
3
4
5
6
7
8
9

lO
11
12
13
14
15

[

16 o 17
18
19

;+

;

OVERLAYS

.TITLE 0

.IDENT 10:/.1

.ENABL. LC

FILE Q.MAC

Enable lower case

; This subroutine displa~s a messsSe and returns.

.MCALL aIOW$C External 5~5tem macros
;
MES: .ASCII ISEGMENT 0 IS NOW LOADED. SUBROUTINE 0/

.ASCII I IS EXECUTING./
LMES ::: •. - MES
.EVEN Move to word boundar~

RETURN
.END

; Return

Di~;F'J.a~

me5~;ai:jf~

F~l.Jn Sess i on

>RUN EXDOVR
THE MAIN SEGMENT IS RUNNING AND WILL. CALL P.
SEGMENT P IS NOW LOADED. SUBROUTINE P IS EXECUTING.
THE MAIN SEGMENT WIL.L NOW CALL o.
SEGMENT a IS NOW LOADED. SUBROUTINE Q IS EXECUTING.
THE MAIN SEGMENT WILL NOW EXIT.

Example 6-5 A Task With Two Overlay Segments (Sheet 2 of 2)

267

OVERLAYS

Table 6-2 How Global Symbols Are Resolved

269

OVERLAYS

Subroutine Calls

With manual load, since the global symbols are resolved
directly to the virtual address corresponding to the symbol, the
transfer is directly to the subroutine. The program must ensure
that the correct overlay segment is loaded before making the call.
Otherwise, the transfer will transfer control to that virtual
address in the wrong code, causing unexpected results.

With autoload, the global symbols are resolved directly for
calls downward toward the root. This works because path loading
ensures that the segments along the path closer to the root are in
fact loaded. The calls to subroutines away from the root are
resolved through autoload vectors. This causes the call to the
subroutine to transfer control first to the autoload routine,
allowing it to check and load any needed overlay segments before
transferring control to the virtual address of the subroutine.

Data References

The safest place for all data is in the root segment. Data
placed in an overlay segment is only accessible when the overlay
segment is loaded and the reference is resolved directly. This
means that with manual load, the data is accessible when the
segment is loaded.

With autoload, on the other hand, it's not that simple.
References out from the root are usually not resolved directly,
but through autoload vectors. For example, the reference to the
global symbol A, a data label, is resolved to the label of an
autoload vector within the same overlay segment. The actual
virtual address of A is a value within the autoload vector.
Therefore, a reference to A references the autoload vector, not
the data itself. In addition, a reference to A does not cause the
overlay segment to be loaded. It is loaded only on a--Call to a
subroutine. Although there are some ways with autoload to get
references resolved directly, it is difficult.

With disk-resident overlays, another problem arises with any
data changed at run time. If the data is in an overlay segment,
it is reinitialized every time the segment is reloaded from disk,
since the original copy of the code is reloaded. This problem
occurs with both manual load and autoload.

271

OVERLAYS

The Task Builder normally combines together allocations for
Psects of the same name. If the psects have the local (LCL)
attribute, combining is only done within a single overlay segment.
If the psects have the global (GBL) attribute, combining is done
across overlay segment boundaries. For psects with the GBL
attribute, by default, these allocations are collected in the
segment specifying the psect which is closest to the root segment.
Therefore, if the Psect MYDATA is specified in the root segment
and also in one or more overlay segments, the complete allocation
is placed in the root segment. The OVR attribute tells the Task
Builder to begin both allocations at the same virtual address.
Consider Example 2 above. The local symbol M, defined locally in
the overlay segment, corresponds to the beginning of the Psect in
the root segment, the address of the first 2. The instruction INC
M+2 again increments the second 2 to a 3.

See Appendix E for additional information on how the Task
Builder uses the various psect attributes. Also see section 3.2.4
(on Allocation of program Sections in a Multisegment Task) in the
RSX-llM/M-PLUS Task Builder Manual for a description of how the
Task Builder allocates Psects in an overlaid task.

Two other methods can be used to place in the root a Psect
which is not defined in the root. If a Psect has the SAV
attribute, the Task Builder automatically places that psect's
allocation in the root. If the Psect does not have the SAV
attribute, then the .PSECT Overlay Descriptor Language statement
can be used to specify placement of a particular psect in the
root, overriding the default placement. See section 3.4.5 (on the
.PSECT Directive) in the RSX-llM/M-PLUS Task Builder Manual for an
example of the use of .PSECT ODL directive.

Example 6-6 is a more complex example of the use of overlays.
It shows the use of both techniques for placing data in the root
and referencing it from overlay segments. The program calling
sequence is shown below.

273

OVERLAYS

The following notes are keyed to the example.

o The psect OTHER is set up for using overlaid Psects to
reference the data. Since it is defined in the root, the
entire allocation for OTHER is in the root segment. aPI,
OP2, and ANS can be just locally defined, since the
overlay segments define the locations as offsets from the
start of the Psect. On the other hand, global symbols can
be used instead, if desired. The data is an argument
block for a call to $EDMSG.

«t The references to the data from overlay segment JOBI are
set up by specifying the Psect OTHER, then defining local
symbols. .BLKW statements are used because you are just
defining symbols and offsets. The local symbols NUMI,·
NUM2, and SUM correspond to aPI, OP2, and ANS,
respectively, in MAIN.

t) The references to the data from overlay segment JOBXX are
set up in a similar way. This time the same local symbols
aPI, OP2, and ANS are used again.

C» The references to the data from overlay segment A are also
set up in a similar way. This time only the starting
address of the argument block is needed.

o The grand total and the ASCII operand (for $EDMSG) are
defined with the global symbols TOT and OP.

o The reference to TOT and OP in JOBl, and JOBXX, are
automatically resolved directly. No special coding is
needed in the referencing segment. TOTAL also references
TOT, this time from the root segment (because TOTAL is
al so in the root segment).

o Note that data which is pure (read-only) and referenced
within the overlay segment only, causes no problems when
placed in an overlay segment. The references are direct
and the data is only referenced while the segment is
loaded.

o The input buffer for the job number typed in by the
operator, and the output buffer for displaying an
operation's results are contained in an overlay segment
and changed at run time. However, since the data is
accessed only from within the overlay segment, and only
while the segment is still loaded, no problems result.
If, in fact, the MAIN segment referenced this data after a
call to B was made, it would no longer work correctly
because on reload, the data is reinitialized.

275

OVERLAYS

52 ; Set UP for loop
53 MOV t3,R4 ; Counter
54 lOOP: QIOW$C IO.WVB,5,l",,<MES3,lMES3,40>; Write MES3
55 CLR ANS Clear answer in case
56 of no operation
57 CALL A Call subroutine A
58 SOB R4,lOOP Decrement counter and
59 ; loop back until done
60 QIOW$C IO.WVB,5,1",,<MES4,lMES4,40>; Write MES4
6:1. CAll TOTAL ; Call routine to
62 ; displa~ srand total
63 QIOW$C IO.WVB,5,1",,<MES5,lMES5,40>; Write MES5
64 EXIT$S ; Exit
65 .END START

1
2

;+

.TITL.E A

.IDENT lOll

.ENABlE lC Enable lower case 3
4
5 FILE A.MAC
6
7 This subroutine displa~s a messaSe and then asks which
8 of two Jobs to do. It calls the appropriate subroutine
9 to do the Job, displa~s the results, and then returns

:1.0 to the main proSram.
:I. :I. ; N ••

12
13
14
:L ~5

0[:1.6
:1.7
:I.B
:1.9
2()

21 o 22
2~5

24

ARG:

MEa:

PMES:

EMES:

OFMT:
OBUFF:

BUFF:

.MCALL

.NLIST

.PSECT

.BI . ..I<W

.PSECT

.ASCII

.ASCII

QIOW$C,QIOW$S
BEX

S~stem macros
Do not list binar~

OTHER
4

€~xterls ions
D,GBL,OVR,REL.,RW ; PSECT with data

Set address for start
of arsument block

; Back to blank PSECT
<:I.:I.>/SEGMENT A IS NOW LOADED. SUBROUTINI
IE A IS EXECUTING.I

LMES::::. -MES
~ASCII <1:1.)/DO YOU WANT TO DO JOB :I. OR JOB 21 I
I...PMES=. -·PMES
.ASCII <:1.5><:I.:I.>INO SUCH JOB. SORRY.I
L.EMES::::. -EMES
.ASCIZ <1:1.)/%D %A %D == XD.%NI
tBLKB 100. Buffer for displa~ of

tBlKB
.EVEN

1
,job resul ts

Buffer for input char
Move to word boundar~

Example 6-6 Complex Example Using Overlays (Sheet 2 of 6)

277

o[~~;
28
29
3()
~5:1.

~~2
;~3

o~~~; 36
37 o 38
39
40
41

1

3
4

MES:

,.JUEU: :

;+

OVERLAYS

.ASCII <15><11><11>/SEGMENT JOBI IS NOW LOADED.I

.ASCII <15><12><11><11>/SUBROUTINE JOB1 IS EXI

.ASCII IECUTING.I
I...MES::::. ··"MES
.EVEN
.LIST BEX ; List binarw extensions

QIOW$C

MDV
ADD
ADD
MDV

RETU~~N
.END

.TITLE

.IDENT

.ENABL

NUM1"SUM
NUM~~" SUM
SUM"TOT
:JI:"+"OF'

JOBXX
lOll
LC

; meSScJse
First operand to ans
Add in other operand
Add this answer to total
Move operand for output
displa~

l:;:etuT'n

Enable lower case

FILE JOBXX.MAC

7 This subroutine performs a multiplication operation.
8 It is assumed that local swmbols OF'I" OF'2 and ANS
9 correspond to the same local swmbols in MAIN. The

10 slobal swmbol TOT" defined in MAIN, is the address
11 where the srand·total is maintained.

[

16

• ~i
20
21

23
24
25

0·- [26
27
28
29
:50
31

; " ..

OP1:

0f'2:
ANS:

MES:

.MCALL CnOW$C

.NLIST SEX

.PSECT OTHER

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

External s~stem macros
Do not list binar~
e~·~terIS i ems

D"GBL"OVR"REL,RW ; Data F'SECT
1st operand
Address of operation

, in ASCII
2nd operand
Answer

.f'SECT Back to blank PSECT

.BLKW 1024.*2 Leave space to make
, module larser

.ASCII <15><11><11>/SEGMENT JOBXX IS NOWI

.ASCII I LOADED.I<15><12><11><11>

.ASCII /SUBROUTINE JOB2 IS EXECUTING.I
LMES=.-MES
.EVEN
.L1ST BEX , List binarw extensions

Example 6-6 Complex Example Using Overlays (Sheet 4 of 6)

279

1
2
::s
4
I::·
... J

;t

OVERLAYS

.TITLE B

.IDENT 1011

.ENABL LC

FIl.E B.MAC

Enable lower case

b ;
7 ; This subroutine displays a messaSe and returns
f.J ;_.
9

10
11

0[1.2
13
14
1:5
:1.6
:1.7
lB
19
20

MES:

.MCALL QI0W$C

.NLIST BEX
; External system macros
; Do not list binary

eHtensions
.ASCII (ll>/SEGMENT B IS NOW LOADED. SUBROUTINEI
.ASCII I B IS EXECUTING./
I...MES :::: • .- MES
.EVEN

RETur~N

.END

; Move to word boundary

; RetuT'n

DisF,lay
message

1~lJn Sf?~;si on

>RUN MRMAIN
THE MAIN SEGMENT IS RUNNING AND WILL CALL A

SEGMENT A IS NOW LOADED. SUBROUTINE A IS EXECUTING.
DO YOU WANT TO DO JOB 1 OR JOB 21 1

SEGMENT JOBl IS NOW LOADED.
SUBROUTINE JOBl IS EXECUTING.

5 t 2:::: ?

THE MAIN SEGMENT WILL NOW CALL B
SEGMENT B IS NOW LOADED. SUBROUTINE B IS EXECUTING.

THE MAIN SEGMENT WILL NOW CALL A
SEGMENT A IS NOW LOADED. SUBROUTINE A IS EXECUTING.
DO YOU WANT TO DO JOB 1 OR JOB 21 2

SEGMENT JOBXX IS NOW LOADED.
SUBROUTINE JOB2 IS EXECUTING.

~7j * 2 :::: 10

THE MAIN SEGMENT WILL NOW CAl.L A
SEGMENT A IS NOW LOADED. SUBROUTINE A IS EXECUTING.
DO YOU WANT TO DO JOB 1 OR JOB 21 2

SEGMENT JOB XX IS NOW LOADED.
SUBROUTINE JOB2 IS EXECUTING.

5 * 2 ~-:: 10

THE MAIN SEGMENT WILL NOW CALL A
SEGMENT A IS NOW LOADED. SUBROUTINE A IS EXECUTING.
DO YOU WANT TO DO JOB 1 OR JOB 21 1

SEGMENT JOBl IS NOW LOADED.
SUBROUTINE JOBl IS EXECUTING.

:5 + 2 7

THE MAIN SEGMENT WIl.L CALL TOTAL
THE GRAND TOTAL IS 34.

THE MAIN SEGMENT WILL NOW EXIT

Example 6-6 Complex Exa.mple Using Overlays (Sheet 6 of 6)

281

A1

AO

OVERLAYS

A2

I
y
I
X
I

CNTRl

Y

X

CNTRl

B1
B2

BO

TK-8635

Figure 6-7 Task Without Co-Trees

283

OVERLAYS

Now do the tests/exercises for this module in the
Tests/Exercises book. All but the first problem are lab problems.
Check your answers against the provided solutions, either the
on-line files (under UFD [202,2] or the printed copies in the
Tests/Exercises book.

If you think that you have mastered the material, ask your
course administrator to record your progress on your personal
progress Plotter. YoU will then be ready to begin a new module.

If you think that you have not yet mastered the material,
return to this module for further study.

285

