RSTS/E

System Directives Manual
Order Number: AA-EZ10B-TC

RSTS/E
System Directives Manual

Order Number: AA-EZ10B-TC

This manual contains general information on run-time systems and describes RSTS/E monitor,
RSX emulator, and RT11 emulator directives for the assembly-language programmer.

Operating System and Version: RSTS/E Version 10.0
Software Version: RSTS/E Version 10.0

digital equipment corporation
maynard, massachusetts

August 1990

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may only be used
or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment not supplied
by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer

Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1990. All rights reserved.

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document requests
the user’s critical evaluation to assist in preparing future documentation. The following are

trademarks of Digital Equipment Corporation:

ALL—IN-1 DEUNA
DEC/CMS DIBOL
DECdx EDT
DEC/FMS—11 IAS
DECmail LA
DECnet LNO1
DECnet/E Micro/RSX
DECSA 0s/8
DECserver PDP
DECsystem-10 PDP-11
DECSYSTEM-20 PDT
DECUS Q-BUS
DECworld RMS—-11
DELUA RSTS
DEQNA

RSX

RT
RT-11
TOPS-10
TOPS-21
ULTRIX
UNIBUS
VAX
VAXmate
VMS

VT
WPS-PLUS
Rainbow

IBM is a registered trademark of International Business Machines Corporation.
RMS is a trademark of American Management Systems, Inc.

.

Contents
Preface e xiii
Partl Introduction
Chapter 1 Introduction
1.1 Run-Time Systems e e 1-1
1.1.1 User Environment 1-1
1.1.2 Program Environment 1-2
1.1.2.1 High-Level Languages 1-2
1.1.2.2 Program Development Tools 1-3
1.1.2.3 Resident Libraries 1-3
1124 Instruction and Data Space 14
1.1.3 Directives for Each Programming Environment 14
1.1.4 Writing or Modifying a Run-Time System 14
1.2 Jobs .. 1-5
Chapter 2 General RSTS/E Environment
21 How RSTS/E Aliocates Memory: Physical and Virtual Addressing 2-1
2.2 Job Space: High Segment and Low Segment 2-6
2.2.1 Low-Segment Details: First 512. Bytes of the Low Segment. 2-9
222 High-Segment Details: Pseudovectors. 2-186
2221 Run-Time System Capability and Default Definitions 2-18
2222 Synchronous Exception Handler Addresses 2-21
2223 Asynchronous Exception Handler Addresses 2-23
2224 Entry Points 2-25

Pari il Monitor Directives

Chapter 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.1

3.12

3.13

3.14

3.15

3.16

General Monitor Directives

Summary of General Monitor Directives

3.1.1 Prefix File COMMON.MAC i,
3.1.1.1 How to Assemble with COMMON.MAC
3.1.1.2 Macros Provided in COMMON.MAC

3.1.2 Error Mnemonics: Symbol Table File ERR.STB.

3.1.3 Programming Hints. i

Trap Handling with SupervisorMode

.AST—Enable/Disable AST Delivery i,

ASTX—EXxit from AST Routine

CALFIP — Call the File Processoriiiiiininenennn
3.5.1 ASSFQ (Allocate a Device) i
3.5.2 CLSFQ (CloseaChannel).
3.5.3 CRBFQ (Create a B|nary [Executable] File and Open |t on a

Channel) i i i i i
3.5.4 CREFQ (Create a File and OpenltonaChannel)
3.5.5 CRTFQ (Create and Open a Temporary File)
3.5.6 DALFQ (Deallocate All Devices and Deassign All User Logicals)
3.5.7 DEAFQ (Deallocate a Device)
3.5.8 DIRFQ (Get Directory Information)
3.5.9 DLNFQ (Delete a File),
3.5.10 ERRFQ (Return Error Message Text)
3.5.11 LOKFQ (Disk File/Wildcard Lookup)
3.5.12 OPNFQ (Open a File/Device ona Channel)
3.5.13 RENFQ (Rename aFile) it
3.5.14 RSTFQ (Reseta Channel) 0.,
3.5.15 UUOFQ (Hook to File Processor)

.CCL — Check Stringfor CCLCommand

.CHAIN — Execute Under Same RTS i

.CLEAR — Clear Keyword Bits

.CMDLN—Read/Write Command Line

.CORE — Change Memory Size

.DATE — Return Current Dateand Time

.ERLOG — Logan Error fromBTS

.EXIT — Exit to Default Keyboard Monitor

.FSS — Check File Specification String,

.LOGS — Check for Logical Device Names

.MESAG — Message Send/Receive i
Declare Receiver Subfunction
Remove Receiver Subfunction
Send Local Data Message Subfunction

3.16.1
3.16.2
3.16.3
3.16.4

Receive Subfunction

...................................

3-1
3-2
3-3
3-3
3-6
3-6

3-8

3-10

3-11

3-12
3-13
3-16

3-18
3-23
3-30
3-34
3-35
3-37
3-42
3-44
3-46
3-53
3-59
3-61
3-63

3-64

3-68

3-69

3-71

3-73

3-77

3-79

3-80

3-100
3-100
3-103
3-104
3-107

3.16.5 Send Privileges Subfunction o o0 oL 3-110

3.16.6 Create Local LAT Port i i 3-113

3.16.7 Delete Local LAT Port. i i e 3-115

3.16.8 Assigna Local LAT Port i 3-117

3.16.9 Deassign Local LATPort. 3-120

3.16.10 Return Local LAT Port Status. 3-122

3.16.11 Return Local LAT Port Characteristics 3-125

3.16.12 Show LAT Sessionso vt ittt it it it e 3—131

3.17 .NAME — Set Program Name 3-135
3.18 .PEEK — Look at Monitor Memory 3-137
3.19 .PLAS — Access Resident Library o o oL 3-139
3.19.1 ATRFQ (Attach Resident Library) 3-140

3.19.2 CRAFQ (Create Address Window) 3-144

3.19.3 DTRFQ (Detach Resident Library) 3-149

3.19.4 ELAFQ (Eliminate Address Window) 3-151

3.19.5 MAPFQ (Map Address Window) 3-154

3.19.5.1 Fast-Mapping Facility 3-159

3.19.6 UMPFQ (Unmap Address Window) 3-161

3.20 .POSTN — Return Current Horizontal Position 3-163
3.21 .READ — Read Data from Fileor Device 3-165
3.22 .READA—Read Data from a Device (Asynchronous) 3-170
3.23 .RTS — Pass Control to Run-Time System 3-178
3.24 LRUN —RunaProgramt i 3-182
3.25 SET —SetKeyword Bits i 3-185
3.26 SLEEP —Suspend Job e 3-187
3.27 .SPEC—Special Functions for /O 3-189
3.27.1 SPEC for Disk . . v oo i ittt e e e e 3-190

3.27.2 .SPEC for Ethernet Interface 3-193

3.27.2.1 SetNew Physical Address 3-193

3.27.22 Enable Multicast Addresses 3-194

32723 GetCircuitCounters. iinnn 3-195

32724 GetlineCounters, 3-196

3.27.25 Transfer Circuit Counters. 3-197

3.2726 TransferLineCounters oo 3-199

3.27.3 .SPEC for Flexible Diskette 3-204

3.27.4 SPEC for Line Printer o, 3-206

3.27.5 .SPEC for Magnetic Tape 3-209

3.27.6 .SPEC for Pseudo Keyboards 3-214

3.27.7 SPEC for Terminalt i e 3-216

3.28 .STAT — Return Job Statistics 3-225
3.29 .TIME — Return Timing Information 3-227
3.30 JTAPE — Enter Tape Mode i 3-229
3.31 .TTDDT — Disable Full-Line Buffering 3-230

3.32 .TTECH — Undo .TTAPE or TTNCH 3-231

3.33 JTINCH —Stop Echo i 3-232
3.34 JTTRST — Restart Output it 3-233
3.35 .ULOG — Modify User Logicalu... 3-234
3.35.1 UU.ASS (Allocate/Reallocate a Device, or Assign or List User
logical) i e 3-235
3.35.2 UU.DAL — Deallocate All Devices and Deassign All User Logicals ... 3-243
3.35.3 UU.DEA — Deallocate a Device or Deassign a User Logical 3-245
3.36 .UUO — Execute BASIC-PLUS SYS Call 3-248
3.36.1 UU.ACT (Accounting Information Dump) 3-251
3.36.2 UU.ASS (Allocate/Reallocate Device) 3-252
3.36.3 UU.ATR (Read/Write Attributes) 3-254
3.36.4 UU.ATT (Attach/Reattach Job/Swap Console) 3-262
3.36.5 UU.BCK (Change File Statistics) 3-266
3.36.6 UUBYE (Logout) i i e it e e e e e 3-267
3.36.7 UU.CCL (Add/Delete CCLCommand) 3-269
3.36.8 UU.CFG (Set Device/System Default Characteristics) 3-271
3.36.9 UU.CHE (Enable/Disable Disk Caching). 3-282
3.36.10 UU.CHK (Check File Access/Privilege Name/Privilege Mask
Handling) i i e e 3-284
3.36.11 UU.CHU (Set Password, Change Password/Quota/Expiration Date,
Disable Terminal,Kill Job) 3-290
3.36.12 UU.CNV (Date and Time Conversion) 3-295
3.36.13 UU.DAL (Deallocate All Devices and Deassign All User Logicals) 3-297
3.36.14 UU.DAT (Change System Date/Time) 3-298
3.36.15 UU.DEA (Deallocate Device), 3-299
3.36.16 UUDET (Detach). 3-300
3.36.17 UU.DIE (System Shutdown)ot 3-302
3.36.18 UU.DIR (Directory Lookup), 3-303
3.36.19 UU.DLU (Delete User Account)ccuvuun... 3-307
3.36.20 UU.DMP (Snap Shot Dump) i, 3-308
3.36.21 UU.ERR (Return Error Messages) 3-309
3.36.22 UU.FCB (Get Open Channel Statistics: WCB/DDB/FCB) 3-311
3.36.23 UU.FIL (File Placement and Modification). 3-315
3.36.24 UUHNG (HangUpaDataset) 3-319
3.36.25 UUJOB (Create Job) i 3-320
3.36.26 UULLIN (Login)t e e e e e 3-327
3.36.26.1 Verify System Password Function 3-330
3.36.27 UU.LOG (Set Number of Logins) 3-332
3.36.28 UU.LOK (Disk Directory Lookup by File Name/Wildcard Lookup) 3-334
3.36.29 UU.MNT (Disk Pack Status) 3-338
3.36.30 UU.NAM (Associate a Run-Time System witha File) 3-342
3.36.31 UU.NLG (Disable Further Logins) 3-343
3.36.32 UU.ONX (Open Next Disk File) 3-344
3.36.33 UU.PAS (Create User Account)c.ivuuunnun.. 3-348
3.36.34 UU.POK (Poke Memory)ttt i iiiien 3-352
3.36.35 UU.PPN (Wildcard PPN Lookup), 3-353
3.36.36 UU.PRI (Change Priority/Run Burst/Job Size) 3-355
3.36.37 UU.PRV (Set/Clear/Read Current Privileges) 3-356
3.36.38 UU.RAD (Read or Read-and-Reset Accounting Data) 3-358
3.36.39 UU.RTS (Add/Remove/Run-Time System or Resident Library, or Create
Dynamic Region) 3-362
3.36.40 UU.SLN (System Logical Names) 3-374

3.36.41 UUSPL (Spooling)« ot e e e e e 3-379

3.36.42 UU.STL (Stall/Unstall System) 3-382
3.36.43 UU.SWP (Add, Remove, and List System Files) 3-383
3.36.44 UU.SYS (Return Job Status Information) 3-389
3.36.45 UU.TB1 (Get Monitor Tables, Partl) 3-394
3.36.46 UU.TB2 (Get Monitor Tables, PartIl) 3-396
3.36.47 UU.TB3 (Get Monitor Tables, Part Ill) 3-398
3.36.48 UU.TRM (Set Terminal Characteristics) 3—400
3.36.49 UU.YLG (Enable Logins)ot e i i i 3-409
3.36.50 UU.ZER (Zero Device)ttt 3-411
3.36.51 UU.3PP (Third-Party Privilege Checking) 3413
3.37 .WRITA — Write Data to File or Device (Asynchronously) 3414
3.38 .WRITE — Write Data to Fileor Device. 3419
Partlii RSX and RT11 Emulator Directives
Chapter 4 RSX Run-Time System Environment
4.1 Advantage: Transportable Code 41
4.2 General Services e e 41
4.3 RSX Directive Emulation Within RSTS/E Monitor. 4-2
4.4 System Macro Library 4-2
4.5 Directive Processing i e 4-3
4.6 Directive Forms ($, $C, $S) and Their Expansions. 4-4
4.6.1 $ Form (and DIR$ Directive)coiiiieunnennn. 44
4.6.2 BC Form . . . o e e 4-6
4.6.3 BS Form . . . e 4-7
47 Using Resident Library Access Directives from FORTRAN 4-8
4.8 First 512. Bytes of Low Segment for RSX 4-9
Chapter 5 RSX Emulator Directives
5.1 ABRTS — Abort 54
5.2 ALUN$ — Assign Logical Unit Number 5-5
53 ASTX$ — Asynchronous Exception Exit. 58
5.4 ATRG$ — Attach Resident Library 5-8
5.5 CRAWS$ — Create Address Window, 5-11
5.6 CRRG$ — Create Dynamic Region. 5-16
5.7 DTRG$ — Detach Resident Library, 5-18

vii

viii

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

5.22

5.23

5.24

5.25

5.26

5.27

5.28

5.29

5.30

5.31

5.32

5.33

5.34

ELAW$ — Eliminate Address Window
EXIT$ — Task Exit
EXST$ — Exit with Status
EXTK$ — Extend Task

EXTM$—Extend Task by Mask.

FEADF$ — Define System Feature Labels

FEAT$ — Test for System Feature . .
GLUN$ — Get LUN Information

GMCR$ — Get MCR (CCL) Command

Line........... ...

GPRT$ — Get Partition (Job) Parameters

GTIM$ — Get Time Parameters
GTSK$ — Get Task (Job) Parameters

MAP$ — Map Address Window

..............................

5.20.0.1 Fast-Mapping Facility

MSDS$—Map Supervisor Mode D-Space

QIO$ and QIOW$ — Queue /O Request (and Wait)

RDBBK$ and RDBDF$—Define and Fi

SCCA$S — Specify Control/C AST. .

WRDBs,

SFPA$ — Specify Floating-Point-Processor Exception Address

SPND$S — Suspend

SSTX$ — System Synchronous Trap Exit.

SVDB$ — Specify SST Vector Table for Debugging Aid

SVTK$ — Specify SST Vector Tablefor Task

TFEA$ — Test for Task Feature

UMAP$ — Unmap an Address Window

WDBBK$ and WDBDF$—Defineand FlWDBs

WSIG$ — Wait for Significant EventFlag

WTSE$ — Wait for Single Event Flag

5-20

5-22

5-23

524

5-26

5-29

5-30

5-31

5-33

5-52

5-54

5-55

5-56

5-57

5-58

Chapter 6 RT-11 Run-Time System Environment

6.1 Advantage: Transportable Code 6-1
6.2 General Services e e e e 6-2
6.3 System Macro Library 6-3
6.4 Directive Processing i e 64
6.5 Call FOrmMS o it e e e e s 6-5

6.5.1 Format for Calls Using ArgumentBlocks 6-5

6.5.2 Format for Calls Not Using ArgumentBlocks 67
6.6 Channel Number and Device Block Arguments 6-7

6.6.1 Channel Number Arguments, 67

6.6.2 Device Block Arguments i i 6-8
6.7 Low 512. Bytes for RT-11 Run-Time System 6-9
6.8 Scratch Pad AreainUserJoblmage 6-10

Chapter 7 RT-11 Emulator Directives

71 .CHAIN — Pass Control to Another Program Under RT-11 7-6
7.2 .CLOSE —Closea Channel i, 7-8
73 .CLRFQB — Clearthe FIRQB 7-9
7.4 .CLRXRB — Clearthe XRB i i e 7-10
7.5 .CSIGEN — Examine String for RT Command, Open Files 7-11
7.6 .CSISPC — Examine String for RT Command, Create Devblk 7-15
7.7 .DATE — Return Current Dateto RO 7-18
7.8 DATTIM — Return Dateor Time iiiiinnn 7-20
7.9 .DELETE — Delete File from Disk or DECtape 7-22
7.10 DOCCL —DoaRSTS/E.CCL 0.ttt 7-23
7.1 DOFSS — Do aRSTS/E.FSS i 7-24
712 .DORUN — Chain to Non-RT-11 RTS Program 7-25
713 .DSTATUS — Return Device Status 7-26
7.14 .ENTER — Open File for Output 7-28
7.15 .ERRPRT — Print RSTS/E Error Message 7-30
7.16 EXIT —Program Exit. ..o oo e 7-31
7147 .FETCH — Check Whether Device Exists 7-32

7.18

7.19

7.20

7.21

7.22

7.23

7.24

7.25

7.26

7.27

7.28

7.29

7.30

7.31

7.32

7.33

7.34

7.35

7.36

7.37

7.38

7.39

7.40

7.41

7.42

7.43

7.44

7.45

.GETCOR — Changes Job Image Size
.GTIM — Return Time-of-Day
.GTJB — Return Job High Limit
.GTLIN — Get Line from Job’s Terminal
.GVAL — Get Value from Scratch Pad
.HRESET — Hardware Reset
.LOOKUP — Open Fileforlnput
.PRINT — Display String on Job’s Terminal
.PURGE — Release Channel

.RCTRLO — ResetCtrl/O

.....................

.REOPEN — Reopen File Closed with .SAVESTATUS

.SAVESTATUS — Save Status of Filefor Later REOPEN

.SCCA — Pass Ctrl/Z to User Program
.SETCC — Process Ctri/C
.SETFQB — SetUp FIRGB
.SETTOP — Expand to Start of Scratch Pad
.SFPA — Set Floating-Point Error Address
.SPFUN — Special Functions for /O
.SRESET — Software Reset

.TRPSET — Intercept Trapsto4and 10

.TTYIN/. TTINR — One-Character Read From Terminal

.TTYOUT/.TTOUTR — Transfer One Character to Job’s Terminal...........

JWAIT — Timed Wait,
.WAIT — Check for Channel Open
-WRITE/.WRITW/.WRITC — Write Data

..V1./.V2.. — Use Version 1/Version 2 Expansion

.....................

7-33

7-34

7-35

7-36

7-37

7-38

7-39

7-41

7-42

743

7-44

746

7-47

7-48

7-49

7-51

7-52

7-563

7-54

7-55

7-57

7-58

7-59

7-61

7-62

7-63

7-64

766

Appendixes

Appendix A Full List of Errors

Appendix B

Device Information

B.1 DisKS B-1
B.2 Flexible Diskettes B-3
B.3 Magnetic Tape B4
B.4 Line Printers B-6
B.5 Terminals. B-7
B.6 Pseudo Keyboards e B-10

Index

Figures
2-1 How a Physical Address Is Formed 2-2
2-2 Memory Mapping withthe APRs 2-4
2-3 Conventional Task Linked to a Library in an I&D-Space System 2-5
24 1&D-Space Task Mapping in an 1&D-Space System 2-6
2-5 Job Area in Virtual Memory 2-8
2-6 First 512. Bytesof Low Segment 2-10
2-7 General FIRQB Format i e 2-13
2-8 General XRB Format 2-14
2-9 Format of Pseudovector Region of High Segment 2-16
41 General Form of the Directive Parameter Block 4-3

Tables
1-1 RSX and RT-11 Development Tools 1-3
3-1 Summary of General Monitor Calls 3-1
3-2 Summary of CALFIP Subfunctions 3-12
3-3 Fixed Monitor Locations 3-138
34 Summary of .PLAS Subfunctions 3-139
3-5 Data Input with .READ 3-166
3-6 Special Functions for Magnetic Tape 3-210
3-7 Value Returned by .SPEC for Magnetic Tape 3-211
3-8 Private Delimiter Masks 3-220
3-9 Summary of .ULOG Subfunctions 3-234
3-10 .UUO Subfunctions — Calls to the File Processor (FIP) 3-248
3—11 Data Output with WRITE i, 3-419
41 Example of RSX Directive Forms 44

Xi

xii

4-2
5-1
5-2
6-1
6-2

7-1
7-2
A1

FERTLRE

B-9

B-10
B—11
B-12
B-13
B-14
B-15
B-16

First 512. Bytes of Low Segmentfor RSX 4-9

Summary of the RSX Directives i 51
Vertical Format Control Characters e 549
EMT Instructions Recognized by the RT-11 Run-Time System 6-5
Locations in First 512. Bytes That RT-11Uses 6-9
Offsets to Important Scratch Pad Area Locations 6-11
RT-11 Calls Not Functionalon RSTS/E i, 7-1
RT-11 Run-Time System Directives 7-2
RSTS/E EIMOrS .o ittt it ittt et e e e et te et it i e e s A
MODE Values for File-Structured Disk Access (FIRQB+FQMODE) B-1
MODE Values for Non-File-Structured Disk Access (FIRQB+FQMODE). B-2
Disk Device Sizesttt ittt ittt B-2
Flexible Diskette MODE Values (FIRQB+FQMODE) B-3
Flexible Diskette RECORD Values (XRB+XRBLK) B-3
MODE Values for File-Structured Magnetic Tape (FIRQB+FQMODE) B4
CLUSTERSIZE Values for File-Structured Magnetic Tape Files

(FIRQB+FQCLUS) it i it i et et et e s B4
Line Printer MODE Values (FIRQB+FQMODE) B-6
Line Printer RECORD Values (XRB+XRMOD). i, B-6
Terminal MODE Values (FIRQB+FQMODE) B-7
RECORD Values for Terminal Input (XRB+XRMOD) B-7
RECORD Values for Terminal Output (XRB+XRMOD) B-8
Echo Control Mode Character Set, B-8
Pseudo Keyboard MODE Values (FIRQB+FQMODE) B-10
RECORD Option Bit Values for Pseudo Keyboard Output (XRB+XRMOD) B-10
Possible Errors on Pseudo Keyboard Output Request B-11

Preface

Objectives

This manual describes directives to the RSTS/E monitor, the RSX emulator,
and the RT11 emulator that you can use in MACRO programs. To use these
directives, you should be familiar with the MACRO-11 assembly language.
MACRO is the standard assembler for DIGITAL PDP-11 computers and is
available under various operating systems for the PDP-11. Note that the syntax
is basically the same for all operating systems.

Manual Structure

This manual contains seven chapters and two appendixes:

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5

Chapter 6
Chapter 7

Appendix A
Appendix B

Gives an overview of run-time systems and jobs as they relate to the
system directives.

Describes the RSTS/E environment (memory allocation and job space) for
the general monitor directives.

Contains reference material for the general monitor directives that you
can use in programs compiled under either the RSX or RT11 run-time
gystems.

Describes the RSX environment for the RSX directives.

Contains reference material for the directives processed by the RSX
emulator or the RSX run-time system.

Describes the RT11 environment for the RT11 directives.

Contains reference material for the directives processed by the RT11
emulator in the RT'11 run-time system.

Lists the RSTS/E errors you can get during directive processing.

Summarizes MODE and RECORD values and other useful information
for disks, flexible diskettes, magnetic tape, line printers, terminals, and
pseudo keyboards.

xiii

Related Documents

For information about the syntax of MACRO assembly language, see the PDP-11
MACRO-11 Language Reference Manual.

Where appropriate, this manual references the following manuals from the RSTS
/E documentation set:

RSTS/E System Installation and Update Guide
RSTS/E System Manager’s Guide

RSTS/E System User’s Guide

BASIC-PLUS Language Manual

RSTS/E Programming Manual

RSTS/E Programmer’s Utilities Manual
RSTS/E Task Builder Reference Manual

Conventions

Xiv

This manual uses the following conventions:

—_—

0

(1

{)

<>

The arrow means points to, or contains the address of, as when the stack
pointer register points to the first item in the stack. For example:
SP—s item at top of stack
item one word down from top of stack

Parentheses mean the contents of the item that the parentheses surround. For
example, the contents of the program counter would be represented as:

(PC)
Brackets around an item indicate that the item is optional. For example:
QIO$ paraml [,param2]

Braces around two or more items indicate that you must choose one of the
enclosed items. For example:

{ Gows }

Angle brackets around two or more items tell the MACRO assembler that the
items make up a list. For example:

GLOBAL<namel[,name2,...]>

Summary of Technical Changes for V10.0

Significant changes to the RSTS/E System Directives Manual are:

®

Allowable pack cluster sizes now go up to 64. See Appendix B.

RSTS/E now supports the RA70, RA90, RD31, RD32, RD53, and RD54 disk
drives. See Chapter 2.

RSTS/E now supports online creation and deletion of the virtual disk (device
DVO0:). See Chapter 3, the section ".UUO—Execute BASIC-PLUS SYS Call,"
the subsection "UU.RTS."

RSTS/E now supports Local Area Transport (LAT) for both in-bound and
host-initiated connections. See Chapter 3, the section "MESAG—Message
Send/Receive."

RSTS/E now supports command recall and command line editing. See
Chapter 3, the section ".UUO—Execute BASIC-PLUS SYS Call," the sub-
section "UU.TRM."

RSTS/E now has a new in-memory structure called the job header, used
for user logical names and command line editing information. See Chapter
2 and Chapter 3, the sections "FSS—Check File Specification String" and
UU.ASS—Allocate/Reallocate a Device, or Assign or List User Logical."

RSTS/E now supports extended user and system logical names. See Chapter
2 and Chapter 3, the sections "FSS—Check File Specification String" and
UU.ASS—Allocate/Reallocate a Device, or Assign or List User Logical."

You can now use the UU.FIL call to control a file’s BACKUP and IGNORE
bits. See Chapter 3, the section ".UUO—Execute BASIC-PLUS SYS Call," the
subsection "UU.FIL."

RSTS/E now supports floating resident libraries. See Chapter 3, the section
" UUO—Execute BASIC-PLUS SYS Call," the subsection "UU.RTS."

You can now use the UU.CFG call to set Answerback messages for electronic
messaging services such as TELEX and TWX. See Chapter 3, the section
".UUO - Execute BASIC-PLUS SYS Call," the subsection "UU.CFG."

RSTS/E now supports the new RSX emulator directives, EXTM$, FEADF$,
FEAT$, MSDS$, SSTX$, TFEA$, and the fast-mapping facility. See Chapter 5.

XV

Partl
Introduction

Chapter 1

Introduction

There are two MACRO assemblers available for the run-time systems on RSTS/E:
one for RSX and one for RT-11. You will use one of these two run-time systems
to assemble and, in most cases, run your programs. In addition to user programs,

you can also write or modify run-time systems that run under direct control of
the RSTS/E monitor.

This manual describes the three types of system directives available to RSTS/E
assembly language programmers:

e General monitor directives
e RSX emulator directives

e RT-11 emulator directives

Before you start using these directives, it is helpful to understand some basic
concepts about RSTS/E run-time systems and jobs.

1.1 Run-Time Systems

A run-time system lets you write code that can be shared by many users when
it is in memory. In a time-sharing system such as RSTS/E, shareable code is an
important consideration.

Run-time systems are normally written as pure (or shareable) code. This means
they have only instructions and fixed data, and contain no variable data. Such
code saves space, since many jobs can use it. It also saves time since run-time
systems are not swapped in and out of memory like user programs. Because the
run-time systems contain no variable data, they do not need to be swapped out to
disk; they are simply reloaded when they are needed again.

1.1.1

User Environment

The DCL, BASIC-PLUS, RSX, and RT-11 run-time systems all have a keyboard
monitor. That is, they can accept, analyze, and act on commands you type at a
terminal keyboard. The RSTS/E System User’s Guide gives an overview of the
user environment these run-time systems provide.

Introduction 1-1

1.1.2 Program Environment

Run-time systems also provide an environment for programs. A run-time system
may include:

e A loader. This code loads a program from disk into memory and starts its
execution.

¢ An emulator. This code emulates directives handled by Digital’s RT-11
operating system for the PDP-11 computer.

* A command interpreter. This code receives command lines from the user and
acts on them.

NOTE

The RSX run-time system provides only a user (command) environ-
ment. Both the program loader and the emulation functions for the
RSX environment are built into the RSTS/E V10.0 monitor.

A run-time system usually takes up space in the 34K-word area called the user
job area. Therefore, it limits the size of your program to less than 32K words.
The RT-11 run-time system takes 4K words of virtual memory. Since the monitor
emulates the RSX directives, programs running under the RSX run-time system
do not give up any addressing space. Chapter 2 explains space requirements in
greater detail.

Should you program under the RSX or RT-11 run-time system? RSX is usually a
better choice because it is in the monitor and it offers easy access to most resident
libraries. Your decision depends on:

¢ Whether you are coding MACRO subroutines for use in a high-level language
program

¢ Which set of program development tools better satisfies your needs
e Whether you want to use resident libraries

¢ Whether you need separate Instruction and Data Space (I&D Space) support
for programs larger than 32K words

1.1.2.1

1-2

Introduction

High-Level Languages

When you write MACRO subroutines for use in high-level language programs,
the high-level language dictates which run-time system you must use. BASIC-
PLUS-2, COBOL~81, PDP-11 COBOL, DIBOL, and FORTRAN-77 all run under
the RSX emulator, while FORTRAN-IV runs under the RT-11 run-time system.
You must compile, link, and run all the modules in your program under the same
run-time system, whether your program is written in MACRO or in a high-level
language.

1.1.2.2 Program Development Tools

As Table 1-1 shows, RSTS/E provides one set of program development tools for
the RSX environment and another set for the RT-11 environment.

Table 1-1: RSX and RT-11 Development Tools

Tool RSX RT-11
Assembler ' MAC MACRO
Linker TKB LINK
Librarian LBR LIBR
Patch Utility PAT PAT

While the tools for each environment perform similar functions, they differ in
their speed and capabilities:

¢ Assemblers—RSTS/E supports two MACRO-11 assemblers, the RSX-based
MAC assembler and the RT-11-based MACRO assembler. The two assemblers
are nearly identical in function and performance and produce similar output.

¢ Linkers—RSTS/E supports two linkers: the Task Builder (TKB) for RSX-
based programs and LINK for RT-11-based programs. While LINK is faster
than the Task Builder, the Task Builder is more powerful. It can link much
larger and more complex overlay structures (including co-trees) than LINK.
Unlike LINK, the Task Builder has options for linking to resident libraries
and support for separation of instructions and data.

¢ Librarians—RSTS/E provides LBR for RSX-based programs and LIBR for
RT-11-based programs. You can create object and macro libraries with either
utility. LBR also lets you create universal libraries, which can contain any
type of file, including text files.

e Object module patch utilities—RSTS/E provides a PAT utility for each envi-
ronment. Both let you update code in a relocatable binary object module.

For details on these program development tools, see the:

* RSTS/E Task Builder Reference Manual—Describes the Task Builder

e RSTS/E Programmer’s Utilities Manual—Describes the RSX-based MACRO
assembler, librarian, and object module patch utilities

e RSTS/E RT-11 Utilities Manual—Describes the RT-11-based MACRO assem-
bler, librarian, linker, and object module patch utilities

e PDP-11 MACRO-11 Language Reference Manual—Describes the MACRO-11
relocatable assembler

1.1.2.3 Resident Libraries

When you program under RSX, you can easily use Digital-supplied resident
libraries (such as RMS—-11 and FMS-11) as well as create your own resident
libraries. Also, because of the Task Builder’s cluster library feature, many

resident libraries can share the same virtual address space in your program.

You can also use resident libraries under the RT-11 emulator, but the coding is
more difficult. Unlike RSX, you must use .PLAS directives to map and create
address windows inside your task. Coding these directives can be quite complex.
The Task Builder, on the other hand, has options that build tables describing
your task and the window to map, and automatically includes the code to perform

Introduction 1-3

the necessary .PLAS directives for you. Thus, RSX is a more practical choice than
RT-11 if you plan to use resident libraries.

11.24

Instruction and Data Space

The manipulation of Instruction and Data Space (I&D Space) is an advanced
programming technique that effectively doubles the user’s virtual address range
from 32K words to 64K words. The memory management unit in some PDP-11
processors can relocate data and instruction references with separate base ad-
dress values. Thus, it is possible to have a user program of 64K words consisting
of 32K words of pure instructions or procedure code and 64K words of data—all
within a program’s virtual address range.

1.1.3 Directives for Each Programming Environment

RSTS/E has three types of directives:

e Monitor ("native" RSTS/E directives)
e RSX emulator

¢ RT-11 emulator

Monitor directives are processed directly by the RSTS/E monitor (see Chapter 3).
You can assemble monitor directives using either the RSX-based or the RT-11-
based MACRO assembler, and you can use these directives in both user programs
and run-time systems. (When you write a program to run under the RT-11
run-time system, you must precede all monitor directives with a special "prefix
EMT"; see Chapter 6 for details.)

The RSX emulator, which is part of the RSTS/E monitor, processes the RSX
emulator directives. These directives, which have basically the same form and
function as a subset of the RSX-11M—-PLUS operating system monitor directives,
perform non-file-structured 1/0, trap handling, and memory management.

You must use the RSX-based MAC assembler to assemble the RSX emulator
directives, and you can use them only in a user program that runs under the RSX
emulator. Chapters 4 and 5 describe the RSX run-time system environment and
emulator directives in detail.

RT-11 emulator directives are processed by the RT-11 emulator, which is in

the RT-11 run-time system. These directives provide most of the single-job
programmed requests available to MACRO programmers using the RT-11
operating system. The RT-11 run-time system also provides directives for the
RSTS/E environment not available under the RT-11 operating system. You must
use the RT-11-based MACRO assembler to assemble RT-11 emulator directives;
you can use them only in a user program that runs under the RT-11 run-time
system. Chapters 6 and 7 describe the RT-11 run-time system environment and
emulator directives in detail.

1.1.4 Writing or Modifying a Run-Time System

1-4

Introduction

If you want to modify an existing run-time system or code your own run-time
system, you can use either assembler. You may find the RT-11-based program-
ming tools easier to use for this purpose than the RSX-based programming tools,
mainly because it is easier to link run-time systems with the LINK program than
with the Task Builder. Run-time systems always have a specific address for their
top (highest) address. When you use LINK, you can specify the top address the
first time you link the run-time system. But when you use the Task Builder, you

have to link your run-time system twice—once to find its size, and again to adjust
its top address to the value you want.

Unlike a program, a run-time system can contain monitor directives only, not
RSX or RT-11 emulator directives. In addition, you must store the run-time
system file (the product of assembling and linking) on the system disk in save
image library (SIL) format. To create a SIL file, use:

e [1,2IMAKSIL.TSK—For run-time systems assembled with MAC and linked
with the Task Builder

e [1,2]SILUS.SAV—For run-time systems assembled with MACRO and linked
with LINK.

1.2 Jobs

Like run-time systems, you can view "jobs" from several angles. To the RSTS/E
monitor, a job is a unit of work generally associated with activity at a terminal.
For example, suppose that a user types a line at a previously inactive terminal.
The monitor creates a job, assigning a job number and allocating internal tables
for bookkeeping. The monitor then passes control to a new-user entry point in
the default keyboard monitor, DCL.RTS.

The default keyboard monitor has code at this entry point that causes the LOGIN
program to be loaded from the system disk and executed. LOGIN analyzes what
was typed and performs the normal log-in dialogue. When LOGIN exits for

a valid login, control passes to the default keyboard monitor, which waits for
further input from the terminal.

The monitor considers running the LOGIN program and the default keyboard
monitor, and whatever else occurs at the terminal until the user logs out as the
same job. (If the log-in sequence was not valid, LOGIN exits with the job still
logged out. The monitor destroys the job and releases the job number.)

As a MACRO programmer, your awareness of the job concept probably focuses
on the work space RSTS/E provides for each job, and the fact that the run-time
gystem can take part of this work space. Chapter 2 describes the allocation of
work space.

Introduction 1-5

Chapter 2
General RSTS/E Environment

This chapter explains how and why one copy of a run-time system, shared by
many users, can still take up space in each user’s work area. The sections in this
chapter and their purposes are:

e How RSTS/E Allocates Memory: Physical and Virtual Addressing
This section provides some background on memory accessing in the PDP-11.
¢ Job Space: High Segment and Low Segment

This section explains how RSTS/E uses memory accessing to define a job
space for each user to run programs.

® Important Installation Options

This section briefly describes resident libraries and the special-case
disappearing RSX run-time system.

e Low-Segment Details: First 512. Bytes of the Low Segment

This section gives specifics on how the monitor uses the low 512. bytes of
virtual address space.

¢ High-Segment Details: Pseudovectors

This section explains how the monitor and the run-time systems use
pseudovectors to communicate with each other.

2.1 How RSTS/E Allocates Memory: Physical and Virtual
Addressing

All RSTS/E systems use the memory management feature available on PDP-11
computers. This feature extends the addressable memory range of the PDP-11
processor by using hardware registers called Active Page Registers (APRs).

The PDP-11 processor handles 16-bit operand addresses. The PDP-11 is
byte-addressable, so the address range is from 0 through 2716 -1 (65535
decimal, 177777 octal), which equals 64K bytes or 32K words. With the memory
management unit, RSTS/E treats a 16-bit address as a relocatable (virtual)
address that is combined with information in an APR to form an 18-bit (22-bit,
for the PDP-11/23+, 11/44, 11/53, 11/70, 11/73, 11/83, 11/84, 11/93, and 11/94)
physical address. On some PDP-11s (11/44, 11/45, 11/50, 11/53, 11/55, 11/70,
11/73, 11/83, 11/84, 11/93, and 11/94), the memory management unit gives you
two areas of 32K words each. You can put code (instructions) in one of these
areas and data in the other. RSTS/E requires that you write your program using
special techniques to take advantage of both of these areas. This capability is

General RSTS/E Environment 2-1

known as Instruction and Data (I&D) Space. You have to use the RSX tools
(specifically TKB) to build programs with separate instruction and data sections.

The PDP-11 Architecture Handbook explains in detail how the APRs function.
Briefly, an APR consists of two 16-bit registers. These registers define a page
of contiguous memory. The Page Address Register (PAR) defines the physical
memory location where the page begins. The Page Descriptor Register (PDR)
defines, among other things, the maximum length of the page and how you can
access it (for example, read/write or read-only).

In Figure 2-1, the virtual address of 72322 (octal) identifies APR 3 and byte
12322 (octal) of the page defined by APR 3. The PAR of APR 3 indicates a
starting address of 146000 (octal) for the page. The physical address obtained is
1460004012322, or 160322 (octal). The byte offset field in the virtual address is
13 bits long. The maximum size of a page, then, is 2413 bytes, or 4096 words. In
other words, one APR can map a virtual address range of up to 4K words into an
equal extent of physical memory.

Figure 2-1 shows how you can combine a virtual address and a PAR to form a
physical address in memory.

Figure 2-1: How a Physical Address Is Formed

Virtual Address

15 13 12 0
0111t010011010010

3 1 2 3 2 2

W_/\ Vv /

APR byte offset within page
Page Address Register
(21) (18 17) (6) (0)
15 12 11 0

0000j001100110000/000000

K1 4 6 0 0 0)

Y
starting address of page

21 18 17 6 0
oooo0j0o01110000011/010010

1 6 0 3 2 2
N _/

v
Physical Address

2-2 General RSTS/E Environment

The 16-bit virtual address defines which APR the system uses and the byte offset
within that page. The system handles the PAR of the indicated APR as though it
contains bits 6-17 (6-21 for the PDP-11/23+, 11/24, 11/44, 11/70, 11/73 and 11/84)
of an 18-bit (or 22-bit) physical address, defining the start of the page.

The memory management unit on the PDP-11 consists of two sets of APRs; eight
in each set on machines without I&D Space, 16 in each set on machines with
separate 1&D Space. Since each APR can map a 4K segment of virtual memory
to physical memory, each set of APRs can provide access to 32K words of physical
memory on non-I&D Space machines, or 64K words on machines with I&D Space
capability.

NOTE

The PDP-11/44, 11/45, 11/50, 11/53, 11/55, 11/70, 11/73, 11/83, 11/84,
11/93, and 11/94 have three sets of APRs; the additional set is for
supervisor mode mapping. RSTS/E supports supervisor mode only
under the RSX run-time system. Using supervisor mode outside the
RSX run-time system may cause unpredictable results, including fatal
aborts.

The monitor uses one set, called the "kernel mode APRs," to map itself in physical
memory. It uses the other set, called the "user mode APRs," to map the job that
is active during the current time slice of time-shared processing.

Figure 2-2 shows the concept of mapping with the APRs.

General RSTS/E Environment 2-3

Figure 2-2: Memory Mapping with the APRs

ACTUAL ADDRESSES
(PHYSICAL MEMORY)

0

USER'S VIRTUAL
ADDRESS RANGE

MONITOR’S VIRTUAL
ADDRESS RANGE

0

KERNEL}:
APR

4KW 4KW

8KW 8KW

12KW 12KW

16KW 16KW

MEMORY)

20KW 20KW

24KW 24KW

28KW

28KW

32KW : N I e 32KW

| |(NON-EXISTENT
\| MEMORY)

On the PDP 11/44, 11/45, 11/50, 11/53, 11/565, 11/70, 11/73, 11/83, 11/84, 11/93,
and 11/94, the RSTS/E monitor can take advantage of a hardware function, called
I1&D Space. This function lets a program separate its instructions and data into
their own virtual address space. On these processors, there are actually two sets
of eight APRs for each mode. RSTS/E uses one set to map instructions, and the
other set to map data. So, instead of 32K maximum job size, there can be 32K of
I-Space and 32K of D-Space.

The monitor may use this type of mapping, depending on the number of small
buffers the system manager selects with the INIT option. (The RSTS/E System
Installation and Update Guide describes INIT.) For example, if the number of

2-4 General RSTS/E Environment

requested small buffers is large enough, the monitor may use D-Space APR 1 to
map small buffers and I-Space APR 1 to map common routines.

Figure 2-3 shows a task executing on an I&D-Space system wiﬁhout using
separate I&D Space. Note how the I-Space APRs and the D-Space APRs point to
the same physical memory.

Figure 2-3: Conventional Task Linked to a Library in an I&D-Space System

PHYSICAL
MEMORY
D-Space
VIRTUAL APRs
ADDRESS 7 —
SPACE *_3 - 8K
Library I TASK
28KW _ _
1 _
20KW 0 —
I-Space
BKW APRs
7 _
6 _ 8K
OKW - - Library
1 _
0

General RSTS/E Environment 2-5

Figure 24 shows a task using separate I&D Space. Note how the task’s I-Space
APRs and D-Space APRs point to different physical memory. User programs
can also take advantage of I&D Space to increase their available virtual address
space.

Figure 2-4: 1&D-Space Task Mapping in an I&D-Space System

PHYSICAL
MEMORY
D-Space . .
2KW
3 Library }
D-Space|
24KW : D D—Spaoe
i APRs
12KW T
Task e -
& 6 - 8K
D-Space - -
Stack ~ - LIBRARY
OKW 3 -
1 -
0 -
30KW I-Space
I-Space
APRs /
24KW {7 _]
6 - 20K
- - TASK
8KW - -
Task 1 -
I-Space 0 -
OKW —

2.2 Job Space: High Segment and Low Segment

The RSTS/E monitor is designed to handle work requested by a user through

an interface: the run-time system. For example, the BASIC-PLUS, DCL, RSX,
and RT-11 run-time systems (available as part of a RSTS/E system) each provide
their own keyboard monitor to accept and process user commands. Some of
these run-time systems also contain code to handle their own sets of directives,
accepting and expanding user program calls to the monitor. For example, the
RT-11 run-time system provides I/O calls to the monitor using the monitor
requests native to RT-11, which the run-time system translates to the equivalent
requests known to RSTS/E, which are handled directly by the monitor.

Thus, the run-time system communicates with both the user program and
the monitor. Execution control passes back and forth between these three
independent elements; data is passed between them using established ranges of
virtual addresses. The monitor must be able to access both the run-time system

2-6 General RSTS/E Environment

and the user job image at any given time. The monitor does this by setting up
the run-time system as part of the 32K words accessible through the eight user
APRs.

The monitor assigns an area for the run-time system in the high portion of virtual
address space, called the high segment. The user job image (that is, the utility
program, compiler, assembler, or executable user program that is currently being
executed for the job) is in the low portion of virtual address space, called the low
segment.

NOTE

If you are using the monitor’s RSX emulation, there is no high segment
at all.

As part of its housekeeping for each job, the monitor keeps track of:
* Where the currently appropriate run-time system is
e Where the user job image is

* What the values were in the program counter register (PC), program status
word (PSW), and other job-context information at the end of the last time
slice

Before the next time slice for the job, the monitor loads the APRs with the correct
values for the job and loads the PC, PSW, and so forth, so execution continues
where it left off.

In any case, the high segment or run-time system takes up some multiple of

4K words of virtual address space, due to the APR mapping (see the previous
section). For example, the BASIC-PLUS run-time system, can take from 13 to
16K words of physical memory, depending on options selected when the system is
installed. Even though the physical memory required may be only 13K words, it
still requires four APRs to map this range, leaving four APRs (or a maximum of
16K words) for a user program. The monitor uses certain areas within the high
segment and the low segment to get information from the job (defining what work
the monitor is to do for it) and to pass information back to the job.

General RSTS/E Environment 2-7

Figure 2-5 shows the job area in virtual addresses. RSTS/E uses the first 512.
bytes to pass information between the monitor, the run-time system, and the
user job image for certain types of monitor directives. The monitor uses the
pseudovector region in high virtual memory to determine, for example, where
control is to be passed when a job is initially entered. The run-time system loads
this area with entry points and values to define itself to the monitor.

Figure 2-5: Job Area in Virtual Memory

Used by monitor, run—time
system, and user job image

to exchange information SJS::
777 > ob Image

(Low
Segment)

A
"j obll
> to
RSTSE
Run-Time
> System
(High
Pseudovector region used by the Segment)
monitor and the run—time system
177777 < /

The following subsections give more detail on these areas:

® If you are interested in using the general monitor directives Chapter 3
describes, read the next section in this chapter, "Low-Segment Details: First
512. Bytes of the Low Segment."

® If you want to code your own run-time system or modify one of the existing
ones and need to know about the pseudovector region, read the section in this
chapter entitled "High-Segment Details: Pseudovectors."

® If you are using only the directives Chapters 5 or Chapter 7 describe, the RSX
and RT-11 run-time system directives set up the first 512. bytes of memory
for you.

2-8 General RSTS/E Environment

2.2.1 Low-Segment Details: First 512. Bytes of the Low Segment

The monitor attaches special significance to the first 512. bytes of virtual
address space in the low segment. The RSX Task Builder and RT-11 Linker
automatically allocate this space. These programs always assign relocatable
addresses beginning at location 1000 unless you request otherwise. If you want
to use the general monitor directives Chapter 3 describes, your program must
fill parts of this area with information for the monitor; the monitor passes
information back in this area.

Rather than use octal addresses, you can use the COMMON.MAC prefix file,
which Chapter 3 describes ("Prefix File COMMON.MAC"), to assign mnemonic
names to commonly used addresses and offsets. COMMON.MAC does not allocate
space, but rather assigns mnemonic names to areas within the first 512. bytes
of virtual address space. Use the mnemonics assigned with COMMON.MAC to
make the code more readable and easier to maintain.

Figure 2-6 shows the general regions in this area. Note that a run-time system
may use some of the areas differently when it assumes control. For example,
the RSX emulator uses the memory labeled default SP stack area as a table of
logical units. The Task Builder automatically generates a user stack after the
first 512. bytes of virtual address space. The section titled "First 512. Bytes of
Low Segment for RSX" in Chapter 4 briefly describes how RSX uses the first 512.
bytes.

If you use the general RSTS/E directives, you should reference only the areas that
are shown with mnemonics provided by COMMON.MAC. The mnemonics to the
right in Figure 2-6 are assigned through COMMON.MAC. A general description
of these mnemonics follows Figure 2-6. The general monitor calls in Chapter 3
describe specific formats for the areas the calls use.

Jobs do not have access to the job headers as part of the low segment.

General RSTS/E Environment 2-9

Figure 2-6: First 512. Bytes of Low Segment

0
controlled solely by job-user job
image or run-time system

60

used by monitor for job

context information to make job swappable
110
used by monitor for
hardware floating-point context information

to make job swappable

170

default SP stack area

400 KEY USRSP

keyword
402 FIRQB
file request block
442 XRB
transfer request block
460 CORCMN
core common area
660
controlled solely by job
734 USRPPN
user-assignable project-programmer number
736 USRPRT
user-assignable default protection code
740 USRLOG
old user logical device name table
776

KEY (Keyword)

The keyword defines the job’s status in the time-sharing environment; for exam-
ple, the job’s privilege. Bits in the keyword can be set and cleared by the monitor
or by the job (either the run-time system or the user job image). The job can
manipulate some bits in the keyword with the .SET and .CLEAR directives.

The keyword is "refreshed" by the monitor at certain points; for example, when a
run-time system is entered at PRUN, where the intent is to load and execute a
program file in the user job image (RUN directive). For a keyword refresh, the
monitor clears bit 15 and bits 7-0 and sets the remaining bits to indicate the job’s
current status. Only seven bits (8-14) are significant to the monitor. You can use

the other bits in whatever manner you want.

JFSPRI
JFFPP i

JFPRIV
JFSYS
JFNOPR
JFBIG
JFLOCK
1 Y
12 11

15 14 13 i0 9 8 7 0

status bits

2-10 General RSTS/E Environment

The following descriptions apply when the keyword status bit is set to one:

JFLOCK

JFBIG

JFNOPR

JFSYS

JFPRIV

JFFPP

JFSPRI

The job does not want to be swapped. You can change this bit with .SET and
.CLEAR. When this bit is set, the only normal condition that causes the job
to be swapped is when the job asks for a memory size expansion (see .CORE
directive) and there is not enough room to do the expansion where the job now
is in memory.

The job can exceed its private memory maximum (see .CORE directive). This
bit is set if the job currently has EXQTA privilege, usually because the job is
running a privileged program. JFBIG is an informational bit that the system
updates whenever the EXQTA privilege is turned on or off.

The job is not yet logged in. JFNOPR is an informational bit that the monitor
can alter when the job is logged in.

The job is currently running with temporary privileges. The monitor sets
JFSYS when a job with insufficient privileges needs to run a privileged
program. Once the program is run, the job can regain temporary privilege by
setting this bit and can drop privilege temporarily by clearing it.

NOTE

When a job exits from a privileged utility
that can be executed by users with insuffi-
cient privileges, the monitor clears this bit
so another user cannot use the temporary
privilege set up for the job.

This bit is only for compatibilty with RSTS/E releases prior to V9.0. JFPRIV
is set if the current job has all of the following privileges: HWCFG, SWCFG,
SYSIO, RDMEM, and WWRITE.

NOTE

Any new software should not reference
JFPRIV.

The contents of the hardware floating-point unit (if any) should be part of
the context of this job. That is, information in the floating-point registers
should be saved and restored along with the rest of the user job image during
swapping. Any program that uses the hardware floating-point unit should set
this bit. It can be changed with the .SET and .CLEAR directives.

The job is running with a special run priority: 1/2 level higher than normal.
This bit can be changed with the .SET and .CLEAR directives. The monitor
clears JFSPRI when the program exits.

USRSP (User Space)

COMMON.MAC assigns the value 400 to USRSP. The monitor automatically
loads this value into the stack pointer register (SP) when a job is created. SP is
also reset to this value under certain conditions, effectively establishing a default
user stack area for the job beginning at word 376. The user stack area ends at
location 170. Any attempt to push the stack past location 170 results in a stack
overflow error that is handled by the run-time system (see the description of
P.BAD later in this chapter).

General RSTS/E Environment 2-11

You can change SP if you want. However, any attempt to reset SP to any location
between 0 and 167 causes a stack overflow error. In addition, the monitor resets
SP to 400 when a run-time system is entered with a .RUN, .CCL, or .RTS direc-
tive, and when certain catastrophic errors occur, such as a fatal disk error while
the user job image was being swapped.

NOTE

You need to be aware that the monitor resets SP at these times only if
you are coding or modifying a run-time system. The system does not
return control to a user program under these conditions, because the
program cannot recover.

FIRQB (File Request Block)

The FIRQB is the main communication area between the monitor and the job for
monitor directives that involve file or device operations such as open, close, and
so forth. Either the run-time system or the user job image can use this area:

¢ If you use the general monitor directives that Chapter 3 describes, your
MACRO program must store values in the FIRQB before issuing some of the
directives.

e If you choose to use the directives in the RSX emulator or the RT-11 run-time
system, the RSX or RT-11 emulation code intercepts the request, sets up the
FIRQB and other relevant areas, then calls the monitor to handle the request.

Figure 2-7 shows the general format of the FIRQB, with all mnemonics that
COMMON.MAC assigns. In addition, the size of the FIRQB (32. bytes) has the
mnemonic FQBSIZ.

2-12 General RSTS/E Environment

Figure 2-7: General FIRQB Format

Mne- Octal Octal Mne-
monic Offset Offset monic
1 1111171707 returned status 0 FIRQB
FQFUN 3 CALFIP/.UUO subfnec. job number * 2 2 FQJOB
FQSIZM 5 MSB of file size channel number * 2 4 FQFIL/
FQERNO
7 project number programmer number 6 FQPPN
11 file name in RAD50 format 10 FQNAMH1
(2 words)
13 12
15 file type in RAD50 format (1 word) 14 FQEXT
17 LSB of file size 16 Fasiz
21 buffer length 20 FQBUFL/
FQNAM2
23 mode 22 FQMODE
25 status flags 24 FQFLAG
FQPROT 27 protection code =0, prot. code real 26 FQPFLG
31 device name (2 ASCI| characters) 30 FQDEV
33 =0,unit number real device unit number 32 FQDEVN
35 cluster size 34 FQCLUS
37 number of entries in directory lookup 36 FQNENT

XRB (Transfer Request Block)

The XRB is the main communication area between the monitor and the user for
monitor directives handling file or device I/O. It is also the area in which the
monitor stores information requested by straightforward information-request
calls. As with the FIRQB, the general monitor directives (see Chapter 3) require
that you store and retrieve information directly to and from the XRB. The RSX
and RT-11 emulators handle additional directives, which they translate to calls
using the XRB (see Chapters 5 and 7). Figure 2-8 shows the general format of
the XRB, with all mnemonics that COMMON.MAC assigns. In addition, the size
of the XRB (14. bytes) has the mnemonic XRBSIZ.

General RSTS/E Environment 2-13

Figure 2-8: General XRB Format

Mne- Octal Octal Mne-
monic Offset Offset monic
1 buffer size in bytes 0 XRLEN
3 number of bytes transferred 2 XRBC
5 buffer address 4 XRLOC
XRBLKM 7 MSB of block number channel number * 2 6 XRCI
11 LSB of block number 10 XRBLK
13 wait time for terminals 12 XRTIME
15 device modifier 14 XRMOD

A buffer, as defined by XRLOC for its start and (XRLOC+XRLEN)-1 for its last
byte, can be either an input buffer or an output buffer. RSTS/E uses input
buffers to read data into user memory and output buffers to write data from user
memory. These buffers must lie wholly within either the job-image (low segment),
or the run-time system (high segment), or they must start in a window mapped to
some library. Buffers within libraries must lie wholly within the library, but need
not be wholly mapped.

For input buffers, the value passed in XRB+XRBC must be zero. For output
buffers, the value passed in XRB+XRBC is the number of bytes to be sent and
cannot be zero if the value in XRB+XRLEN is nonzero. In addition, input buffers
are subject to the following rules:

e If the buffer is in the low segment, the address defined by the contents of
XRB+XRLOC must be greater than 170 to avoid destroying the job-context
data used in swapping the job.

e If the buffer is in the high segment, it must not fall within the pseudovector
region. That is, it must not fall above the location P.OFF. In addition, the
run-time system must currently be mapped read/write because the monitor
is writing data to the buffer for the receive (see PF.RW bit description in
P.FLAG word).

e If the buffer is in a library window, the library must be installed as read/write
and must be attached and mapped read/write.

CORCMN (Core Common Area)

The CORCMN is used as a common data exchange area when it is necessary
to exchange lengthy data (such as strings) between the monitor and the job or
between programs running under the same job number.

2-14 General RSTS/E Environment

For example, the monitor uses CORCMN to pass to the job a string that is the
full name of a command that has been recognized as a valid Concise Command
Language (CCL) command. The RSTS/E CCL lets users type one-line commands
to call utilities that might otherwise require several input lines from the terminal.
For example:

CCL Form

$ PIP FILEl.=FILE2.
$

Regular Form

$ RUN $PIP
*FILEl.=FILE2.
*AY

$

To centralize decoding, the monitor analyzes CCL commands by comparing them
to those defined by the system manager (usually during system start-up). With
the .CCL directive, a job can ask the monitor to analyze a string to see if it is an
acceptable command. If it is, the monitor passes control to the run-time system
associated with that CCL command and passes the command and any arguments
to the job in the CORCMN area.

The general format of the CORCMN area is:

byte 1 of string number of bytes 460 CORCMN
in string
byte 3 of string byte 2 of string 462

(up to 127. bytés of data)

USRPPN, USRPRT, USRLOG and the Extended Logical Area

These bytes are set up using the .ULOG directive to store the assigned project-
programmer number (USRPPN), default protection code (USRPRT), and assigned
logical device names (USRLOG or the extended logical area of the job header),
which the monitor then uses when an .FSS directive is executed. The .FSS
directive causes the monitor to convert a file name string to the standard RSTS/E
file specification format; that is, to the FIRQB format.

The USRLOG byte is no longer used in RSTS/E V10.0. The information formerly
passed in that byte is now passed in the extended logical area of the job header.
The .FSS directive first processes the extended logical area of the job header. If
there are no logicals there, it checks the old USRLOG area for logicals before
returning an error.

The .ULOG and .FSS directives also let you define and use some nonstandard
area to contain these values (see Chapter 3). However, the .ULOG directive now
sets up the extended logical area of the job header; the .FSS directive expects
these values in the same relative locations.

NOTE

The only way you can manipulate the extended logical area of the job
header is by using the the .ULOG directive.

General RSTS/E Environment 2-15

2.2.2 High-Segment Details: Pseudovectors

The monitor and the run-time system use the pseudovector region to communicate
with each other. Figure 2-9 shows the general layout of this area. As with

the low 512. bytes of virtual address space, the file COMMON.MAC assigns
mnemonic names to locations in this area. These names are shown to the right
in Figure 2-9. The following text describes each of these areas in detail. If you
want to modify or code your own run-time system, the format and meaning of
these areas is important. Otherwise, you might want to examine them to see how
the run-time system and the monitor communicate.

Figure 2-9: Format of Pseudovector Region of High Segment

Addresses Mnemonics

flags describing the run-time system 177732 P.FLAG/
normal executable file type 177734 ESE;T
” (reserved) 177736
minimum size, in K words, of user job image 177740 P.MSIZ
exception address for FIS hardware option 177742 P.FiS
(reserved) 177744
(reserved) 177746
entry point for new user 177750 P.NEW
entry point for new user with program to run 177752 P.RUN
exception address for various "bad" errors 177754 P.BAD
exception address for BPT instruction and T-bit 177756 P.BPT
exception address for IOT instruction 177760 P.IOT
exception address for nonmonitor EMT instruction 177762 P.EMT
exception address for all TRAP instructions 177764 P.TRAP
exception address for FPP or FPU 177766 P.FPP
exception address when user types one CTRL/C 177770 P.CC
exception address when user types two CTRL/Cs 177772 P.2CC
maximum size (in K words) of user job image 177774 P.SIZE
(reserved) 177776

In general, the pseudovector region contains:

® Values and flags that define the capabilities of the run-time system for the
monitor. For example, one flag indicates whether the run-time system has a
keyboard monitor.

2-16 General RSTS/E Environment

e Addresses pointing to locations in the run-time system where the monitor is
to pass control when certain conditions occur. These addresses fall into three
categories:

— Addresses for Synchronous Exceptions. Control passes to these locatinns
when the job executes an instruction that causes a trap to the monitor.
The monitor passes control to the run-time system along with the contents
of the program counter (PC) and program status word (PSW). The term
"synchronous" is used in the sense that the trap occurs at the same time
as (and is a direct result of) some instruction executed by the job. These
traps may or may not indicate an error. For example (except for the
PDP-11/23 PLUS or 11/24), if the job executes an instruction with an odd
address, control passes to one of these trap addresses. If the job simply
executes a BPT instruction, control passes to another of these addresses.

— Addresses for Asynchronous Exceptions. Control passes to these locations
as a result of some event, which can be either of the following:

* External to the execution of the job (for example, the user types a
Ctrl/C at the terminal)

¢ Internal but asynchronous process (such as an error in the hardware
floating-point processor, whose execution overlaps that of the PDP-11
CPU)

When such conditions occur, control passes to the monitor, which passes
control to the run-time system, along with the contents of the PC and
PSW. If a floating-point trap occurred, the monitor also passes along the
floating exception code (FEC) and floating exception address (FEA). For
the asynchronous traps, the PC and PSW do not refer to the instruction
that caused the trap, but to the instruction that was executing in the
central processor when the trap occurred.

— Entry Point Addresses. The monitor passes control to the run-time system
at entry-point addresses when some major transition point is reached for
the job. For example, when you type a RUN or CCL command at the
terminal, the monitor passes control to an entry point in the appropriate
run-time system, to load and execute the requested program.

NOTE

The term pseudovector arises from the relationship of some of these
(one-werd) trap addresses in the pseudovector region to the (two-word)
vector addresses in kernel-mode memory set up to handle error traps
and interrupts in the PDP-11. When the RSTS/E monitor receives
control as a result of a trap to certain of these vector addresses, it
passes control on to the run-time system at addresses specified in the
pseudovector region.

Normally, you code the contents of the pseudovector region as part of the run-
time system file. However, the INSTALL/RUNTIME_SYSTEM command, used
to define a file as an auxiliary run-time system, has qualifiers that cause the
monitor to override certain portions of the pseudovector region in the file and use
values assigned in the INSTALL command. For example, one bit in one word

of the pseudovector region states whether the run-time system is read/write or
read-only when it is loaded in memory. Normally, this would be read-only, but
for debugging a run-time system with the Octal Debugging Tool (ODT), which
allows you to change memory, the run-time system must be read/write. The
/NOREAD_ONLY qualifier in the INSTALL command lets you tell the monitor
that until further notice, this run-time system is read/write, regardless of what is

General RSTS/E Environment 2-17

specified in the pseudovectors. The RSTS/E System Manager’s Guide describes
the INSTALL/RUNTIME_SYSTEM command.

2.2.2.1 Run-Time System Capability and Default Definitions

The following mnemonics refer to values and flags that define run-time system
capabilities for the monitor.

P.OFF

Use the P.OFF mnemonic to define the first word of the pseudovector region. It is
currently set equivalent to 177732, the same as PFLAG.

P.FLAG

The monitor expects the PFLAG word to be set with flags that define the capabil-
ities of the run-time system:

PF.KBM————
PF.1US————

PF.R
PF.NE
PF.RE
PF.CSZ:
PF.EMT
16 14

i3 12 11 10 9 8 7 0

3
ey
s

flags (prefix EMT code if PF.EMT=1)

PF.EMT

This bit is set to indicate that the run-time system wants to handle a call that
would normally be handled by the monitor. To show how the bit works, it is
necessary to first describe what normally happens when a monitor directive is
translated and executed.

All of the monitor directives that this manual describes are translated to emulator
trap (EMT) instructions. The direct monitor calls are one-for-one translations;
that is, one call is translated to one EMT (see Chapter 3). The code to process the
call is in the monitor itself.

The RSX and RT-11 emulator calls may be translated to more than one instruc-
tion, but the code always contains an EMT. In addition, the direct monitor calls
are translated to an EMT with a low byte that is an even number within the
range 0 to 114 (octal). When such an instruction is executed, control transfers
directly to the monitor, the call is processed, and control returns to the instruction
following the EMT.

An EMT instruction with an odd value in the range 1 to 113 in the low byte,

or any value in the range 115 to 377, also transfer control to the monitor. The
monitor examines the low byte, discovers that the EMT is not one of its own, and
transfers control to the run-time system at the entry point defined by location
PEMT in the pseudovector region.

Now the PF.EMT bit is set to one to indicate that the run-time system wants
to process EMTs that are normally processed by the monitor, that is, with an
even low byte in the range 0 to 114. When PF.EMT is set to one, all EMTs cause
control to pass to the run-time system at the PEMT entry point, except those

2-18 General RSTS/E Environment

immediately preceded by a special prefix EMT—an EMT whose low byte is equal
to the low byte of PFLAG.

Specifically, when PF.EMT equals one, the monitor handles all EMT instructions
as follows:

e Any EMT whose low byte is not equal to the low byte of PFLAG causes
control to pass through the monitor (unprocessed except for examination), and
back to the run-time system at the address contained in the PEMT word.

e An EMT whose low byte is equal to the low byte of PFLAG causes control
to pass to the monitor, which looks at the word following the EMT with the
special code; that is, at the word in location (PC)+2. Action is taken according
to the value of this word:

(PC)+2 = \ NO Pass control to
an EMT instruction?/ > (P.EMT)
YES
\
\ NO Pass control to
Low byte of (PC)+2 > (P.EMT)
even, 0 - 1147 /
YES

Y

Execute second EMT
@(PC)+2 as normal,
return control to (PC)+4

In other words, the run-time system does special processing for all EMTs, except
those preceded by a special prefix EMT. The RT-11 run-time system uses this
feature so it can emulate the RT-11 operating system’s directives properly.

PF.CSZ

For a user job image executed as a result of a .RUN directive, the monitor
preallocates memory based on information provided by the run-time system
under which the image is executing. When this bit is set, the monitor preallocates
memory based on the size of the file referenced in the .RUN directive:

space (in K words) = (filesize + 3)/4

Filesize is the number of 512-byte blocks required for the file on disk. (The
division by four is performed because there are four 512-byte blocks in 1K word.
The addition of three rounds any fraction of the integer divide to the next whole
integer.)

When PF.CSZ is clear, the monitor preallocates memory for the image according
to the value specified in the PMSIZ word of the pseudovector region.

General RSTS/E Environment 2-19

PF.REM

When the PF.REM bit is set, the monitor immediately removes the run-time
system from memory when no job is using it. When this bit is clear, the monitor
leaves the run-time system in memory until the space is actually needed by
something else.

PF.NER
When this bit is set, the monitor does not log errors occurring within the run-time
gystem to the system error log.

PF.RW

When this bit is set, the monitor maps the run-time system as read/write. (See
the read/write feature of the Page Descriptor Register of an APR, in the section,
"How RSTS/E Allocates Memory: Physical and Virtual Addressing.") This is a
useful feature when debugging a run-time system. In normal operation, this bit
should be clear, indicating that the run-time system is to be mapped read-only.

PF.1US

When the PF.1US bit is set, the monitor allows only one job to use the run-time
system; that is, it is not handled as shareable code.

PF.KBM

When this bit is set, the monitor expects that the run-time system can function
as a keyboard monitor. Note that the run-time system can function as a job
keyboard monitor only when this bit is set. See the .RTS directive in Chapter 3
for a discussion of job keyboard monitors.

P.FLAG COMBINATIONS

The PF.1US, PF.RW, PF.NER, and PF.REM bits are useful flags when you are
debugging a run-time system:

e PF.1US limits access to the run-time system to one user.
* PF.RW is necessary if you want to use the ODT routine to change memory.

e PF.NER keeps the run-time system from logging useless errors while debug-
ging.

¢ PF.REM ensures that the run-time system will be reloaded each time it is
used. (Otherwise, an old copy might still remain in memory when you really
wanted to debug a new copy.)

P.DEXT

You can set this word to three Radix—50 characters that the monitor uses as a
default runnable file type. If a .RUN directive executes with no file type given,
the monitor scans its list of installed run-time systems in the order they were
installed (see Chapter 3).

NOTE

The order of installation shows up in the display that the SHOW
RUNTIME_SYSTEM command produces.

2-20 General RSTS/E Environment

The monitor first checks for .TSK files which are executed by the null run-time
system. If such a file is found, it is set up for the RUN. If no such file is found,
the monitor searches for a file with the given file name and the next run-time
system’s default runnable file type, and so forth. Note that the order in which
the file types are chosen does not depend in any way on the run-time system
executing the .RUN.

P.MSIZ

The PMSIZ word gives the minimum allowable size for a user job image, in K
words, for this run-time system. The monitor uses this value as a check when the
job issues a .CORE directive to change the size of the user job image in memory
(see Chapter 3). The value of PMSIZ must be an integer between 1 and the value
in P.SIZE, inclusive.

P.SIZE

The P.SIZE word contains the maximum size, in K words, that a user job image
can be for this run-time system. The monitor uses this value as a check when a
job issues a .CORE directive to change the size of the user job image in memory.
P.SIZE must be an integer between 1. and 32., inclusive. The effective upper
limit is 32. minus the size of the run-time system, rounded up to a multiple of
four. (Remember that the APR mapping requires that space for the run-time
system be allocated in units of 4K words.) Thus, a run-time system that required
5K words could set an upper limit here of 24. (32.-8.). However, it could set
P.SIZE to some smaller value.

2.2.2.2 Synchronous Exception Handler Addresses

These mnemonics refer to locations in the run-time system where control is to
pass for synchronous exceptions.

P.FIS

The monitor interprets the PFIS word as the trap address for the hardware
floating-point instruction set available on the PDP-11/35 and 40. Whenever
an instruction from this set causing a trap to the kernel mode vector at 244
is executed, the monitor passes control to the run-time system at the location
specified by the contents of the P.FIS word.

This exception pushes two words onto the user’s SP stack: the contents of the PC
and PS registers at the time of the exception. For example:

SP— (PC) at the time of the exception
(PS) at the time of the exception
word to which SP pointed before the exception

Whatever action the run-time system wants to take for this exception should be
done at the location specified by the contents of PFIS. A return from interrupt
(RTI) instruction returns control to the point where it was when the exception
occurred.

P.BAD — Synchronous Exceptions

The monitor passes control to the run-time system at the location specified by the
contents of P.BAD when any of the following synchronous exceptions occur:

¢ Memory management unit exception (trapped to kernel mode vector at 250).

e The job tries to execute a reserved instruction (trapped to kernel mode vector
at 10).

General RSTS/E Environment 2-21

¢ The job issues an instruction with an odd address (trapped to kernel mode
vector at 4).

This exception pushes two words onto the user’s SP stack: the contents of the PC
and PS registers at the time of the exception. For example:

SP— (PC) at the time of the exception
(PS) at the time of the exception
word to which SP pointed before the exception

The monitor returns an error code in the first byte of the FIRQB so the run-time
system can determine which error occurred. The error codes are:

B4 0Odd address
B.10 Reserved instruction
B.250 Memory management unit exception

The run-time system is responsible for processing these errors in whatever
manner it sees fit. In general, most run-time systems provided with RSTS/E
systems report the error, using the UU.ERR subfunction of the .UUO directive
and perhaps print the PC value from the top of the stack. You can use an RTI
instruction to return control to the point where it left off when the exception
occurred. Note that some asynchronous exceptions also use this address.

P.BPT

The P.BPT word contains the exception address for a BPT instruction and for
T-bit exceptions. When the job issues a BPT instruction or a T-bit exception
occurs (to the kernel mode vector at 14), the monitor passes control to the run-
time system for the job at the address specified by the contents of this word.

This exception pushes two words onto the user’s SP stack: the contents of the PC
and PS registers. For example:

SP— (PC) at the time of the exception
(PS) at the time of the exception
word to which SP pointed before the exception

The run-time system processes these exceptions in any fashion it sees fit at the
location specified by the contents of PBPT. The RTI or RTT instructions can be
used to return control to the user’s program at the point where it was when the
exception occurred.

P.IOT

The PIOT word contains the exception address for an IOT instruction. Whenever
the job issues an IOT instruction (trapped to kernel mode vector at 20), the
monitor passes control on to the run-time system at the address specified by the
contents of this word.

This exception pushes two words onto the user’s SP stack: the contents of the PC
and PS registers at the time of the exception. For example:

SP— (PC) at the time of the exception
(PS) at the time of the exception
word to which SP pointed before the exception

The run-time system can process the exception in any fashion it sees fit. You
can use an RTI instruction to return control to the point where it was when the
exception occurred.

2-22 General RSTS/E Environment

P.EMT

This word contains the location to which control is transferred for nonmonitor
EMT instructions; that is, for EMT instructions whose low byte is odd within the
range 1 to 113 or any value in the range 115 to 377. If the PF.EMT bit is set in
the PFLAG word in the pseudovector region, control is transferred here for all
EMT instructions except those preceded by the special prefix EMT, as described
previously.

The exception pushes two words onto the user’s SP stack: the contents of the PC
and PS registers at the time of the exception. For example:

SP— (PC) at the time of the exception
(PS) at the time of the exception
word to which SP pointed before the exception

The run-time system is responsible for processing the EMT as it sees fit. You
can use the RTI instruction to return control to the point where it was when the
exception occurred.

NOTE
All EMT instructions are reserved for use by Digital.

P.TRAP

This is the location to which control is transferred for all TRAP instructions
(operation codes 104400 through 104777, inclusive). Whenever the job executes
such an instruction (trapped to kernel mode vector 34), the monitor passes control
to the run-time system at the location specified by the contents of this word.

This exception pushes two words onto the user’s SP stack: the contents of the PC
and PS registers at the time of the exception. For example:

SP— (PC) at the time of the exception
(PS) at the time of the exception
word to which SP pointed before the exception

The run-time system is responsible for processing the exception as it sees fit. You
can use an RTI instruction to return control to the point where it was when the
exception occurred.

2.2.2.3 Asynchronous Exception Handler Addresses

These mnemonics refer to locations within the run-time system where control is
to pass for asynchronous exceptions.

P.FPP

This location is the exception address for the hardware floating-point processor
(FPP) for the PDP-11/34A, 44, 45, 50, 53, 55, 60, 70, 73, 83, 84, 93, and 94
asynchronous unit or the KEF11-AA or FPF-11 for the PDP-11/23-PLUS and 24.
Whenever the unit takes an exception trap (to kernel mode vector at 244), the
monitor passes control to the run-time system at the location specified by the
contents of this word. The Floating-point Exception Code (FEC) and Floating-
point Error Address (FEA) of this unit are not otherwise accessible.

General RSTS/E Environment 2-23

Therefore, the monitor pushes these two values onto the user’s SP stack, in
addition to the contents of the PC and PS registers at the time of the interrupt.
For example:

SP— FEC
FEA
(PC) at the time of the exception
(PS) at the time of the exception
word to which SP pointed before the exception

The run-time system can process the exception as appropriate, clean the stack
(remove the FEC and FEA), and issue an RTI instruction to return control to the
user’s program at the point where it was when the exception occurred.

P.CC

This is the location to which control passes when a Ctrl/C is entered at any termi-
nal on any channel that this job accepts. The monitor stops further programmed
output for the job (Ctrl/O effect) and cancels any pending character output.

The user’s SP stack is modified at entry. For example:

SP— (PC) at the time of the exception
(PS) at the time of the exception
word to which SP pointed before the exception

The run-time system can process the Ctrl/C as you want. All run-time systems
supplied with a RSTS/E system abort the job, unless the user job image has
indicated that it wants to handle Ctrl/C traps itself (see the SCCA$S and the
SETCC directives).

P.2CC

This is the exception address taken when the user enters a second Ctrl/C before
the run-time system has been able to respond to the first Ctrl/C. (That is, the
monitor has received two Ctrl/Cs before it has been able to pass control to the
run-time system at the location specified by the contents of P.CC in the time-
sharing environment.) As with one Ctrl/C, when the P2CC point is entered,
further programmed output is canceled (Ctrl/O effect), and any pending character
output is canceled. Two words are pushed onto the user’s SP stack. For example:

SP— (PC) at the time of the exception
(PS) at the time of the exception
word to which SP pointed before the exception

The run-time system can process the condition as you want (BASIC-PLUS exits
immediately, returning control to the PNEW entry point in the default keyboard
monitor). An RTI instruction would return control to the point where the program
left off, but this annoys the user who entered the two Ctrl/Cs expecting to get out.

P.BAD — Asynchronous Exceptions

The monitor passes control to the location specified by PBAD whenever any of
the following asynchronous errors occur:

¢ The user’s SP stack overflows.

® A fatal disk error occurs when the job is swapped. The original contents of
the user job image are lost.

* A memory parity fault occurs in the user job image. The original contents of
the user job image are lost.

2-24 General RSTS/E Environment

* A fatal disk error occurs when a run-time system or resident library is loaded.
Control passes to PBAD in the default keyboard monitor when the load error
occurs for a run-time system.

None of these errors are recoverable. An error is returned in the first byte of the
FIRQB to indicate which error occurred, KEY is refreshed, and the contents of the
general registers (RO through R5) are random. SP is reset to the value USRSP.

In general, most run-time systems provided with RSTS/E systems report the er-
ror, using the UU.ERR subfunction of the .UUO directive, and also the ??Program
lost-sorry message (UU.ERR call with FUCORE value). Then, the run-time
systems exit to the job keyboard monitor, using .RTS. The ??Program lost-sorry
message prints to warn you that the program is no longer in memory and you
user logical values may have been lost.

The error codes that RSTS/E returns in the first byte of the FIRQB are:

B.STAK The user’s SP stack overflowed

B.SWAP Fatal disk error on swap

B.PRTY Memory parity fault

NRRTS Fatal disk error on run-time system or resident library load

Control is also transferred to P.BAD for some synchronous exceptions.

2.2.2.4 Entry Points

These mnemonics refer to locations within the run-time system where control is
to pass at certain transition points for the job.

P.NEW

The monitor passes control to this entry point under the assumption that new
user or next request processing is to be done. Compare this to the PRUN entry
point, where a specific program is to be run under this run-time system. PNEW
is commonly used as the entry point to switch back to a job’s keyboard monitor.
For example, the .EXIT directive passes control to this entry point in the system
default keyboard monitor. You can use the .RTS directive to pass control to
PNEW in a job’s keyboard monitor or a specifically named run-time system. Note
that a job can establish its own job keyboard monitor, which is different from the
default keyboard monitor (see the section on .RTS in Chapter 3).

By examining KEY and the XRB, the run-time system can determine how and
by whom it was entered at PNEW), if this is significant. (Run-time systems that
do not have keyboard monitors would probably want to exit (using .EXIT) to the
default keyboard monitor at PNEW.)

The three conditions under which control passes to the PNEW entry are:

e Brand new job on the system—In this case, JENOPR (bit 12 in KEY) is set
(the job is not yet logged in), and the words at location XRB+2 and XRB+4 are
zero (the monitor requested the entry, not a run-time system). This indicates
that the monitor has passed control to this location, having received input
over channel zero in a logged-out state (occurs only for the default keyboard
monitor).

The run-time system should run some predetermined program to read (READ
directive) the input line that the monitor has buffered. For example, DCL
executes SY:[1,2]LOGIN.* (the LOGIN utility) in this case.

General RSTS/E Environment 2-25

e Switch to this run-time system when job logged out—In this case, JFNOPR
(bit 12 in KEY) is set, and the name of the calling run-time system is given
as two RAD50 words in locations XRB+2 and XRB+4. The calling run-time
system is the run-time system under whose control the directive was issued
that caused the switch.

For this case, the run-time system should issue a logged-out prompt message.
For example, the BASIC-PLUS run-time system prints "Bye" and returns
control to the monitor. (Normally, control does not pass to the run-time
system in this case. If LOGIN does not recognize the line that it read (as in
previous case), it kills itself, destroying the job and returning control to the
monitor.)

o Switch to this run-time system when job logged in—In this case, JFNOPR (bit
12 in KEY) will be clear. The name of the calling run-time system is given as
two words of RAD50 in locations XRB+2 and XRB+4 or is zero if this job was
just created by UU.JOB (see Chapter 3).

For this situation, the run-time system should issue its logged-in prompt and
attempt to read the next command from the terminal open on channel zero.
BASIC-PLUS prints "Ready”, DCL prints "$", RSX prints ">", and RT-11
prints ".". Then, all wait for further input.

Keyboard monitors should read channel zero (the job’s terminal) using the key-
board monitor wait feature of READ. The monitor will kill jobs that execute this
read in a logged-out state; otherwise, it is an infinite-wait read.

The monitor usually does some housekeeping for the job at the time the PNEW
entry point is entered. Specifically, the word at location FIRQB+FQJOB is always
set to two times the job number assigned by the monitor when the job was
created, and KEY is refreshed with current information about the job. Third-
party privilege checking is turned off if it was on (see UU.3PP). Furthermore, SP
is reset to 400 (see USRSP description), all the general registers (RO through R5)
contain zero, and all I/O channels are closed.

On exit from privileged programs, some additional clean-up is done:
e Temporary privileges are dropped
¢ User memory is cleared (upwards from location 1000)

e User job image size is reset to the value in PMSIZ

NOTE

This housekeeping is not done if a specific request is made to pass con-
trol to a run-time system without changing the job-context information
(see the .RTS directive).

2-26 General RSTS/E Environment

The following information exists in the XRB at the time the PNEW entry point is
entered:

XRB on P.NEW Entry

Octal Octal Mne-
Offset Offset monic
1 1 for switch without housekeeping; else 0 0 XRLEN
3 2 XRBC
name of the calling run-time system
5 (2 words in RAD50 format) 4 XRLOC
7 -1 if calling RTS = new RTS; else 0 6 XRCI
11 10 XRBLK
whatever values were here
13 when the switch was made 12 XRTIME
15 14 XRMOD
XRB+0 This word contains a value of one, if control was transferred by an .RTS direc-

tive using the switch without changing the job-context option (see Chapter 3).

XRB+2 The two words beginning here contain the name of the calling run-time
system, in RAD50 format. If control was transferred here directly by the
monitor, these two words contain zero.

XRB+6 This word contains minus one if the calling run-time system is the same
as the one that now has control. This word is zero otherwise; that is, if the
calling run-time system is not the same as the called run-time system.

XRB+10 The contents of the next three words will be the same as they were when
the switch occurred. That is, data can be passed from run-time system to
run-time system here. If control has been transferred to PNEW directly by
the monitor, these three words are zero.

P.RUN

The monitor passes control to the PRUN entry point when an executable program
is to be run for a job under control of this run-time system. This can occur as the
result of either a .RUN or a .CHAIN directive (in which a job has directly asked
for a file to be run) or a .CCL directive (in which a job has asked the monitor

to check a string to see if it is a valid CCL command, and if so, execute the
appropriate file).

The monitor opens the file to be run (a disk file) on channel 15. However, the file
has not been read; it is up to the run-time system to load and execute the file.
The run-time system should also reset all I/O channels except 15, in case they are
open.

The monitor performs the same housekeeping operations as with PNEW (reset
the stack, and so on). In addition, if the program to be run is a privileged
program, and the caller does not have all of the program’s privileges, the monitor
sets the JFSYS bit in KEY, saves the current privileges, and adds the program’s
privileges to the current privileges.

General RSTS/E Environment 2-27

The monitor passes data to the run-time system in the XRB, FIRQB, and KEY
areas of the user job image (low segment).

XRB on P.RUN Entry

Octal Octal Mne-
Offset Offset monic
1 flag bits describing entry conditions 0 XRLEN
3 2 XRBC

name of run-time system which issued

5 the call to this one 4 XRLOC
7 random value 6 XRCI

11 10 XRBLK

13 same value as when the caller 12 XRTIME

issued the .RUN or .CCL

i5 14 XRMOD

XRB+0 This word contains flag bits that describe the entry conditions. (The
STATUS variable in BASIC-PLUS returns these values.)

Bit Meaning

0-7 If the value of these bits is zero, then no special size for this
program run is called for. If the value is greater than zero, it
indicates the size, in K words, that the program should be run
at. If the value is less than zero, the absolute value indicates
an increment, in K words, to the size that the program would
normally run at.

8-12 Reserved for future use.

13 When set, indicates that the caller issued a directive with a
/SIZE switch; that is, the file is to be run at a specific size. The
size is given in bits 0-7. It is up to the run-time system to set
the size as indicated (see the .CORE directive).

14 When set, indicates the caller issued a .CCL directive with a
/DETACH switch, with the intent that this run-time system
executes the file in detached mode. It is up to the run-time
system to take action on this flag. You can detach a job by
using the UU.DET subfunction of the .UUO directive; see
Chapter 3.

15 When set, indicates the entry was made as the result of a .CCL
directive. When clear, indicates the entry was made as the
result of a .RUN or a .CHAIN directive.

XRB+2 These two words contain the name of the run-time system under which
the .RUN, .CHAIN, or .CCL directive to this run-time system was issued,
in RAD50 format.

XRB+6 The contents of this word are random.

XRB+10 The three words beginning here contain the same information that they

held when the job issued the .RUN, .CHAIN, or .CCL directive.

2-28 General RSTS/E Environment

FIRQB on P.RUN Entry

Mne- Octal Octal Mne-
monic Offset Offset monic
1 1Lt 0
3 111rrrirrey job number * 2 2 FQJoB
5 LELLTTELrrrirrrrir g 4
7 project number programmer number 6 FQPPN
11 file name in RAD50 format 10 FQNAM1
(2 words)
13 12
15 file type in RAD50 format (1 word) 14 FQEXT
17 file size in 512-byte blocks 16 FQSIZ
21 default buffer size for disk 20 FQBUFL
23 LT Lrrrrrririririnri 22
25 device description 24 FQFLAG
FQPROT 27 protection code cluster size 26 FQPFLG
31 device name (2 ASCII characters) 30 FQDEV
33 flag byte device unit number 32 FQDEVN
35 file identification index 34 FQCLUS
37 entry parameter 36 FQNENT

FIRQB+FQJOB The job number (assigned by the monitor when this job was
created) times two.

FIRQB+FQPPN The project-programmer number for the file that is to be run.

FIRQB+FQNAM1 The name of the file that is to be run, as two words in RAD50
format.

FIRQB+FQEXT The type of the file that is to be run, as one word in RAD50
format.

FIRQB+FQSIZ The file size, in 512-byte blocks.

FIRQB+FQBUFL The recommended size, in bytes, for the buffer size in a .READ
directive for this file.

FIRQB+FQFLAG Flag bits defining the device. They are set to indicate that this is
a disk file. (See the FQFLAG description in the open function of
the CALFIP directive.)

FIRQB+FQPFLG The file cluster size, modulo 256. (That is, a file cluster size of
256 is indicated by a zero byte here.) This byte is the same as
the FQCLUS value supplied in the open functions of the CALFIP
directive, except that it is returned in a byte instead of a word.

FIRQB+FQPROT The protection code of the file.

FIRQB+FQDEV The device name of the disk device, as two ASCII characters.

FIRQB+FQDEVN The unit number of the disk device.

General RSTS/E Environment 2-29

FIRQB+FQDEVN+1

FIRQB+FQCLUS

FIRQB+FQNENT

2-30 General RSTS/E Environment

The low-order two bits of this byte are set to indicate whether or
not the device is part of the public structure:

Bit 0 =0 The device is in the public structure.
=1 The device is a private disk.
Bit 1 =0 A specific device was not specified in the open
function.
=1 A specific device was specified in the open func-
tion.

The file identification index of this file. This word is significant
in that you can use it in place of the file name in subsequent
opens of the file on disk. You can open the file with the OPNFQ
subfunction of CALFIP, using:

e An explicit PPN in FIRQB+FQPPN

e A zero word in FIRQB+FQNAM1

e An explicit device name in FQDEV and FQDEVN
¢ The file identification index in FIRQB+FQNAM1+2

Parameter word from the caller. The .RUN or .CHAIN directive,
which causes entry at PRUN in a run-time system, allows the
caller to specify a parameter word to be passed to the run-time
system. Bit 15 of this word may or may not be the same as

the caller passed, however. If the RUN or .CHAIN directive

was issued from a privileged program with temporary privileges
enabled, bit 15 is passed by the caller. Otherwise, bit 15 is cleared.

For .CCL entries, bit 15 is set by the monitor. If the CCL defini-
tion for the CCL being executed has the /PRIVILEGED qualifier
included in it, the bit 15 is set; otherwise, it is cleared.

Part I
Monitor Directives

Chapter 3

General Monitor Directives

This chapter describes the general directives to the RSTS/E monitor. These
directives are available to the MACRO programmer under both the RSX and
RT-11 run-time systems. They are Emulator Trap (EMT) instructions that are
processed directly by the monitor. A run-time system does not examine or process
these general directives.

3.1 Summary of General Monitor Directives

Table 3—1 summarizes the general monitor directives. Detailed descriptions are
given in the sections that follow this introductory material. The descriptions are
arranged alphabetically by mnemonic name.

Some directives, which cause a change in run-time system or change in job size,
should not be executed by a program (user job image) running under the RT-11
run-time system, or unpredictable results may occur. These directives are marked
with a dagger (1) or double dagger (1) in Table 3—1. (Note, however, that these
are not restrictions for assembling using MACRO—the assembler for the RT-11
run-time system. If you are coding a run-time system, you use these directives
and assemble under either MACRO or MAC.)

Table 3—-1: Summary of General Monitor Calls

EMT
Code
Name (Octal) Description
CALFIP 0 Call the File Processor portion of the RSTS/E monitor. Includes
"housekeeping" functions for file/device I/O such as OPEN,
CLOSE.
.READ 2 Read from a previously opened file or device.
WRITE 4 Write to a previously opened file or device.
.COREY} 6 Change memory size allocated for user job image.
.SLEEP 10 Sleep job for n seconds.
.PEEK 12 Peek at the monitor’s memory.
.SPEC 14 Special function.
.TTAPE 16 Enter tape mode.

+These directives should not be used by a program running under control of the RT-11 run-time
system. -

(continued on next page)

General Monitor Directives 3-1

Table 3—1 (Cont.): Summary of General Monitor Calls

EMT
Code
Name (Octal) Description
.TTECH 20 Enable echo on a channel.
.TTNCH 22 Disable echo on a channel.
.TTDDT 24 Enter ODT submode on a channel.
.TTRST 26 Cancel Ctrl/O effect.
.TIME 30 Get timing information.
.POSTN 32 Get device’s horizontal position.
.DATE 34 Get current date.
.SET 36 Set keyword bits.
.STAT 40 Get statistics for job.
.RUNY¥ 42 Run new program (user job image).
.NAME 44 Install a new program name.
EXITt 46 Exit to default keyboard monitor.
.RTS?t 50 Switch to new run-time system.
.ERLOG 52 Log an error from run-time system.
.LOGS 54 Check for logical devices.
.CLEAR 56 Clear keyword bits.
.MESAG 60 Message send/receive.
.CCL#¥ 62 Check string to see if Concise Command Language (CCL).
FSSt 64 Scan a string for valid RSTS/E file specifications.
.Uuo 66 Execute monitor FIP call (access to BASIC-PLUS SYS calls to
FIP).
.CHAIN}f 70 Execute user job image under same run-time system.
.PLAS 72 Access a shared library.
.ULOG 76 Assign/reassign/deassign device or user logical.
.READA | 102 Asynchronous read.
WRITA 104 Asynchronous write.
ASTX 106 AST exit.
.CMDLN 112 Read/write command line buffer.
AST 114 AST enable/disable.

1These directives should not be used by a program running under control of the RT-11 run-time
system.

$This directive should not be used by a program running under control of either the RT-11 run-time
system or the RSX emulator.

3.1.1 Prefix File COMMON.MAC

The monitor directives that this chapter describes require that you pass param-
eters to the monitor in the FIRQB and XRB; values are also returned to your
program in these areas. The file COMMON.MAC, provided with all RSTS/E kits,
relates mnemonics to often-used addresses, offset values, and function codes,
eliminating the need for octal coding and addressing. These mnemonics are
used in the directive descriptions that follow; Digital recommends their use for
readable, maintainable code.

3-2 General Monitor Directives

3.1.1.1

How to Assemble with COMMON.MAC

COMMON.MAC is a prefix file; it is assembled with your other MACRO
source files under either the RSX or RT-11 run-time systems. For example,
under the RT-11 run-time system, the following sequence would assemble the
files COMMON.MAC, SRC1.MAC, and SRC2.MAC into the object module file
OBJ.OBJ with an assembly listing file OBJ.LST:

RUN $MACRO
*OBJ, OBJ=COMMON, SRC1, SRC2

Similarly, under the RSX run-time system, this sequence would assemble the
files COMMON.MAC, SRC1.MAC, and SRC2.MAC into the object module file
OBJ.OBJ with an assembly listing file OBJ.LST:

RUN $MAC
MAC>OBJ, OBJ=COMMON, SRC1, SRC2

You can also use the INCLUDE assembly directive to include COMMON.MAC.
Use the following line as the first line of the source file:

. INCLUDE /COMMON/

3.1.1.2 Macros Provided in COMMON.MAC

In addition to providing mnemonics, the COMMON.MAC file contains macros
that can be used in programs assembled under either the RSX or RT-11 run-time
systems, as long as COMMON.MAC is assembled with the source, as described
previously. These macros are:

TITLE name,desc,nn,date,editors

The TITLE macro sets a title (TITLE) from the name and description (desc)
parameters and builds an identification (IDENT) from the specified number
nn. The IDENT has the form xx.xnn, where xx.x is the current RSTS/E ver-
sion number (09.0 for V9.0), and nn is the edit level you specify. Descriptive
information is placed in the table of contents as follows:

EDIT: DATE: BY:
nn date editors
ORG section[,offset]

ORG defines the origin address of a program section. The first occurrence of
an ORG with a given section name causes all instructions requiring memory
space following the ORG to be assigned consecutive relocatable addresses
starting with zero or, if an offset is given, with the octal address given. Later
occurrences of an ORG with the same section name causes resumption of
addressing wherever it left off before, because of an intervening ORG.

The ORG macro also defines a symbol with the same name as the section at
the first relative location within the section. Every invocation of ORG also
defines (or redefines) the section to be returned to by the macro UNORG.

DEFORG section

The DEFORG macro is the same as the ORG macro except that the symbol at
relative O (the section name) is declared as a global symbol. By convention,
the module that defines the section (rather than just uses it) issues the
DEFORG macro.

General Monitor Directives 3-3

TMPORG section|[,offset]

TMPORG is the same as ORG except that it does not define (or redefine) the
section to be reentered by the UNORG macro. In this way, the module can
temporarily enter a new section and then return to the main section using
UNORG without having to know the main section name.

UNORG

The UNORG macro will reenter the section most recently declared in an ORG
or DEFORG macro.

INCLUDE namel[,name2,...]

The INCLUDE macro indicates that the module issuing the INCLUDE
requires the named modules (namel, ...). The name(s) should be declared
with DEFORG(s) in the required modules.

INCLUDE declares the listed section names as global symbols and issues
the macro directive .SBTTL with the heading "INCLUDE FROM LIBRARY
‘name™ to be inserted in the assembly listing table of contents. INCLUDE
documents the named sections as required by this section.

DSECT [start][,cref]

The .DSECT macro starts a dummy program section (with the MACRO
directive .ASECT) at relocatable address 0 or at the address given by the
optional argument start. If the cross-reference (cref) parameter is given
(nonblank), the program section is included in the cross-reference listing, if
you request one for the assembly.

The .DSECT macro is used in the file COMMON.MAC to define the system
parameters and offsets.

For example, coding of this form is used in COMMON.MAC to assign the
proper values to the mnemonics in the pseudo-vector region:

.DSECT 177776, NOCREF
.BLKW -1
P.SIZE: .BLKW -1
P.2CC: .BLKW -1
P.CC: -BLKW -1

NOTE

A DSECT is used at the end of the file COMMON.MAC. This
means that you must explicitly start your MACRO program with
an ORG macro or .PSECT directive to begin your program at
relocatable address 0. Otherwise, your code will be regarded as a
continuation of the .DSECT, and the program will not assemble
properly.

3-4 General Monitor Directives

.BSECT [HIGH][,cref]

The .BSECT macro is like the DSECT macro except that the default starting
address is 1 instead of 0. If the argument HIGH is used, the starting address
is 400 (octal). This starting address lets you use .BSECT to generate bit
values. The .BSECT macro is used in COMMON.MAC to define mnemonics
for bit locations. For example, the following coding assigns the mnemonics to
the bit locations in the keyword (KEY; see Chapter 2). Note that the period (.)
after .BLKB is required.

.BSECT HIGH, NOCREF
JFSPR1: .BLKB
JFPP: .BLKB

.EQUATE symbol,value

.EQUATE defines the given symbol to have the supplied value (which may be
an expression) by using the equivalent of:

.DSECT value

.symbol:
UNORG

BLKWO [quantity][,value]

The .BLKWO macro is similar to the MACRO directive . BLKW, which reserves
a specified number of words of storage space. The quantity can be any
expression, the default is one. While .BLKW just reserves space, .BLKWO fills
the space with the value you specify; the default is zero.

.BLKBO [quantity][,value]

The .BLKBO macro is similar to the MACRO directive .BLKB, which reserves
a specified number of bytes of storage space. The quantity can be any expres-
sion, the default is one. .BLKBO fills the space with the value you specify; the
default is zero.

GLOBAL <namel[,name2,...]>
GLOBAL declares the name symbols as external global symbols.

RETURN [register]

The RETURN macro generates an RTS PC by default but can generate any
other RTS instruction if you specify an explicit register.

JMPX label

JMPX is just like the JMP instruction but will also declare the label to be an
external global (that is, jump external).

CALL subroutine[,register[,argument list]]

You can use CALL instead of JSR PC to call subroutines. If an explicit
register is specified, then the call is JSR using that register. If an argument
list is specified, it generates a list of .WORD arguments in line with the
subroutine call.

General Monitor Directives 3-5

CALLR subroutine

CALLR is equivalent to a CALL to a subroutine immediately followed by a
RETURN. CALLR generates a JMP instruction.

CALLX subroutine

CALLX is just like CALL, but it also declares the subroutine name as an
external global symbol.

CALLRX subroutine

CALLRX is just like CALLR except that the subroutine name is declared as
an external global symbol.

3.1.2 Error Mnemonics: Symbol Table File ERR.STB

When the monitor processes the directives that this chapter describes, any errors
that it detects are passed back to the job in the first byte of the FIRQB as a
binary value. The ERR.STB file, provided with all RSTS/E kits, relates mnemonic
values to these binary codes, so you do not have to analyze and process errors

in octal. The descriptions in this chapter all refer to the mnemonics provided by
ERR.STB. See Appendix A for a list of all possible errors.

The symbols are automatically resolved at link time if you include ERR.STB with
the files you link with either TKB (the Task Builder for the RSX run-time system)
or LINK (the linker for the RT-11 run-time system). For example, under the RSX
run-time system, the following code links ERR.STB and MAIN.OBJ to produce
the executable file IMG1.TSK, a memory allocation file MP1.MAP, and a symbol
definition file SF1.STB:

RUN $TKB
TKB>IMG1,MP1, SF1=ERR.STB, MAIN

Similarly, under the RT-11 run-time system, the following sequence links
ERR.STB and MAIN.OBJ to produce the executable file IMG1.SAV, a memory
allocation file MP1.MAP, and a symbol definition file SF1.STB:

RUN S$LINK
*IMG1,MP1, SF1=ERR.STB,MAIN

3.1.3 Programming Hints
Preset the FIRQB and XRB to Zero

The monitor directives in this chapter pass information to the monitor in the
FIRQB and XRB areas of the low 512. bytes of memory. It is usually a good
idea to clear the entire FIRQB and XRB before issuing a call, to ensure that no
extraneous information (for example, from data returned on a previous call) has
been left in the areas that could affect how the call executes.

In some cases, however, you may want to leave the FIRQB and XRB alone. The
FSS call, for example, scans a string and, if it is a valid file specification, returns
to the FIRQB the information needed to open the file with the CALFIP call. You
do not want to clear the FIRQB before opening the file with CALFIP.

NOTE

To ensure compatibility with future releases of RSTS/E, you should
always set to zero any fields in the FIRQB and XRB diagrams that are
shaded or are documented as reserved or not used.

3-6 General Monitor Directives

The following example contains three routines that clear the FIRQB and XRB.

CLRFQX clears both the FIRQB and XRB.
CLRFQB clears the FIRQB.
CLRXRB clears the XRB.

The values FQBSIZ and XRBSIZ used in these routines are defined in
COMMON.MAC.

.ENABL LSB
CLRFQX: : PUSH <RO,R1> ;Save RO,R1
MOV #FIRQB, RO ;Point to FIRQB.
MOV #<<FQBSIZ+XRBSIZ>/2>,R1 ;Compute how many words
BR 108 jto clear.
CLRFQB: : PUSH <RO,R1> ;Save RO,R1
MOV #FIRQB, RO ;Point to FIRQB.
MoV #<FQBSIZ/2>,R1 ;Compute how many words
BR 103 ;jto clear.
CLRXRB: : PUSH <RO, R1> ;Save RO,R1
MOV #XRB, RO ;Point to XRB
MOV #<XRBSIZ/2>,R1 ;Compute how many words
sto clear.
10$: CLR (RO) + ;Zero it out ...
SOB R1,108 ;'til all done
POP <R1,R0O> ;Restore RO,R1.
RETURN
.DSABL LSB

Data Returned to FIRQB and XRB

If a call completes without error, the monitor sets byte 0 of the FIRQB to zero. If
an error occurs on a call, the monitor sets byte 0 of the FIRQB to an error code.
Likewise, the monitor always sets the byte at FIRQB+2 to the current job number
times two when a call completes.

In some circumstances, it may be useful to know what happens to the passed-
data when a call completes. For instance, is the file name still there? Bytes not
specified as containing returned-data are undefined. Do not rely on these values
when coding your programs because Digital reserves the right to change the
values returned in these bytes at any time. In addition, if an error occurs, the
data returned may or may not have replaced the data passed. It depends on how
far processing for the call got before the error occurred.

Channel Numbers for I/O

Directives that handle I/0 use a channel number to refer to a device. In device
or file opens, a channel number is related to a specific device defined in the call.
Directives that transfer data (READ, ‘WRITE, .READA, .WRITA) can then refer
to a channel number rather than define a device or file.

Valid channel numbers range from 0 through 17. Channel 0 is the job’s terminal;
for example, a .WRITE to channel 0 writes to the terminal which is running the
job. Channel 0 is always open. Similarly, the monitor opens a file to be run on
channel 17 when control transfers to the PRUN entry point in a run-time system.
Thus, user jobs may define and use channels 1 to 16.

General Monitor Directives 3-7

Directives That Do I/O

The CALFIP subfunctions OPNFQ, CREFQ, CRBFQ, and CRTFQ open a file or
device and relate the specified channel number to that file or device:

e OPNFQ opens a file or device for input

e CREFQ creates a file, that is, opens a file or device for output
¢ CRBFQ creates a binary (executable) output file on disk

e CRTFQ creates a temporary file on disk

The directives .READ and .WRITE transfer data between memory and a device or
file specified by channel number.

The CLSFQ (close) and RSTFQ (reset) subfunctions of CALFIP close a device or
file and free the associated channel number so it can be used with another device
or file.

Directives That Support I/O

The file string scan (.FSS) directive is useful for programs that process files
specified by a terminal user. The .FSS directive examines a string of characters
and, if it is a valid RSTS/E file specification, converts it to the FIRQB format
used to open a file. Thus, your program can accept a typed string from the job’s
terminal and use .FSS to convert the string to the FIRQB format to do I/O on the
file.

You can use the LOKFQ subfunction of CALFIP to search for disk files that meet
wildcard file specifications. For example, you could search an account on disk for
all files with names beginning with the characters DD.

3.2 Trap Handling with Supervisor Mode

Although asynchronous I/O calls (READA and .WRITA) are illegal for a task
using supervisor mode, other traps may require handling by a task using
supervisor mode. The legal asynchronous system traps for supervisor-mode tasks
are:

e FPP exception
¢ Ctrl/C interception
e all forms of Synchronous Service Traps (SSTs)

The trap service routines for these may be located in either user or supervisor
mode. If the service routines reside in supervisor mode, they must adhere to
additional requirements that their user mode counterparts do not need:

® The service routine must exit via either the SSTX$ or ASTX$ calls. In
user mode only, service routines can clean the PC & PSW off the stack and
continue without returning, but if supervisor mode in use, tasks must use an
exit call. Note that the hardware prohibits an RTI instruction from returning
a task to supervisor mode from a service routine in user mode.

* Routines located in supervisor space must obey all the rules of supervisor
library routines such as not calling user mode routines and having no data
within the code.

3-8 Trap Hanuing with Supervisor Mode

The task tells RSTS/E the space of the service routine when the respective service
vectors are set up. The following calls set up the trap service vectors for the task:

¢ FPPA$—floating point exception

e SCCA$—Ctrl/C interception

e SVTK$—SST trap vector table

o SVDB$—SST debugging trap vector table

In the FPPA$ and SCCA$ calls, the task issues a single address vector. If bit
0 of the vector is zero, the service routine is in user space. If bit 0 is 1 (an odd
address vector), the routine is in supervisor space.

In the SVTK$ and SVDB$ calls, the task issues a list of vectors associated with
the different events (BPT etc.). Bit 0 in each of the individual service routine
vector addresses gives the mode the routine is in, but in a different way from
FPPA$ and SCCAS$. If the vector entry is even, the SST routine executes in the
same mode (either user or supervisor) that the processor was in when the SVTK$
or SVDB$ call was issued. If the vector entry is odd, the SST routine executes in
the other mode.

For example, if the processor is in supervisor mode when an SVTKS$ is issued
and the vector is odd (bit 0 set), the SST routine executes in the user mode. This
method is the same as RSX-11M-PLUS. It lets the individual SSTs be different
modes at the same time (BPT in user and address trap in supervisor). Bit 0,
which is the flag(s), is a member of the vector list, not the address pointer to the
vector list.

Trap Handling with Supervisor Mode 3-9

3.3 .AST—Enable/Disable AST Delivery

3-10 .AST

Form
AST

Function

The .AST directive has two functions: disable AST delivery and enable AST
delivery. The .AST disable function stalls all AST deliveries from the monitor
until the user explicitly enables them with the .AST enable directive.

Privileges Required

None

Data Passed

The only data passed for this directive is in byte 0 of the XRB. If zero, enable
AST deliveries. If minus one, disable AST deliveries.

Data Returned

Except for a possible error code in byte 0 of the FIRQB, this directive does not
return any meaningful data.

Errors

BADFUO Illegal function code.

3.4 .ASTX—EXxit from AST Routine

Form
ASTX

Function

The .ASTX directive is similar to a RETURN in a normal subroutine. It instructs
the monitor that the asynchronous routine has completed and that control should

return to the job at the point it was interrupted. All AST routines must finish
with a .ASTX directive.

When an AST routine issues the .ASTX directive, the PSW previously stored on
the user’s stack is validated. The PSW is forced into the standard mode (previous
user/current user mode, register set 1, and priority 0). The PC and PSW are then
used to return control to the program at the point where it was interrupted.

The XRB and bytes 0, 6, and 7 of the FIRQB are restored. If the user has altered
the PC, PSW, or destroyed the stack contents, no specific error is returned.
Instead, bad PC and/or stack causes fatal errors which are handled in the usual
way (entry to PBAD in the RTS).

The AST routine must make sure all general registers (RO to R5) and the stack
pointer have the same contents as on entry to the AST routine. In addition,

if any part of the FIRQB other than bytes 0, 6, and 7 has been used, the AST
routine must restore the contents of the FIRQB to what it had on entry. Failure
to observe these rules may produce unexpected results.

ASTX 3-11

3.5 CALFIP — Call the File Processor

Form
CALFIP

Function

The CALFIP directive to the RSTS/E monitor handles housekeeping necessary for
input/output on RSTS/E. For example, CALFIP lets you open a channel for file or
device I/0.

You select the particular function by setting a function field in the FIRQB (at
offset FQFUN). Other parameters are also passed to the monitor in the FIRQB,
depending on the function requested.

Table 3-2 lists the CALFIP subfunctions by function code. The sections following
Table 3—2 describe the subfunctions in alphabetical order.

Table 3-2: Summary of CALFIP Subfunctions

FQFUN
Value
(Octal) Mnemonic Action Performed (BASIC-PLUS Equivalent)
0 - CLSFQ Close an open channel (CLOSE)
2 OPNFQ Open a channel (OPEN FOR INPUT)
4 CREFQ Create/extend a file (file-structured OPEN FOR OUTPUT)
6 DLNFQ Delete a file by name (KILL)
10 RENFQ Rename a file (NAME...AS)
12 DIRFQ Get directory information
14 UUOFQ Process UUO
16 ERRFQ Get error message text
20 RSTFQ Reset (close) a channel or all channels (except channel 0)
22 LOKFQ Look up a file
24 ASSFQ Allocate a device
26 DEAFQ Deallocate a device
30 DALFQ Deallocate all devices
32 CRTFQ Create/extend a temporary file on disk ‘
34 CRBFQ Create/extend a compiled image file on disk (file-structured

OPEN FOR OUTPUT, protection code bit 6 always set)

3-12 CALFIP

3.5.1

ASSFQ (Allocate a Device)

Form
MOVB #ASSFQ, FIRQB+FQFUN

(Set up FIRQB to define device)

CALFIP

Function

The ASSFQ subfunction reserves a physical device for a job or transfers assign-
ment of a currently owned device to another job. For host-initiated LAT ports,
this directive initiates a connection to the server currently assigned to the port.

Privileges Required

DEVICE to allocate a device for the current job if the requested device is re-
stricted. HWCTL to seize a device or reallocate a device to a job in another

account.

Data Passed

FIRQB
Mne- Octal Octal Mne-
monic Offset Offset monic
1 1HLLLrrrrrrrrt iy 0
FQFUN 3 ASSFQ (= 24) 1Irrrrriny 2
5 LELELLErrrri i 4
7 LLLLLEELLLrnbrrr i 6
11 1110rrrnry =0,assign;<>0,job no. 10 FQNAM1
13 TILTELrrrriinliiirlnn i2
15 DOS or ANS (1 word RAD50) or 0 (magtape) | 14 FQEXT
17 10LLrrrrrrr iy 16
21 LELLLLLLLEL Ly 20
23 mode 22 FQMODE
25 LELLLLLLLLrrrrrr el 24
27 LELLLLLLLLL il 26
31 device name (2 ASCII characters) 30 FQDEV
33 <>0, unit no. real device unit number | 32 FQDEVN
35 LELLLrrrrrrirtriirlg 34
37 LELELTErrrrrrir iy 36
FIRQB+FQFUN The function code ASSFQ (octal value = 24).

CALFIP—ASSFQ 3-13

FIRQB+FQNAM1 This byte is set to zero to indicate an assign; if nonzero, it is used
as the job number to which the device is to be reassigned. The
high byte of this word (FIRQB+11) must be set to zero. If you do
not have HWCTL privilege, you can reassign a device only to a job
that is logged in to the same account as your current account.

FIRQB+FQEXT When the device is magnetic tape, this word can contain either
DOS or ANS in RAD50 format, to indicate DOS or ANSI label
format for the tape drive. It can also be set to zero to indicate the
system default for the drive.

FIRQB+FQMODE This word contains the mode to use when allocating the device.
Valid modes are:
Mode Description
100001 Used to allocate a device that is currently al-
located to another user. This is a snagging

allocation, available to users with the HWCTL
privilege.

100002 Only used when allocating a LAT port and used
to tell the LAT driver that the request to initiate
the connection should not be queued if the remote
port is not available.

100004 Only used when allocating a LAT port and used to
tell the LAT driver that the request to initiate the
connection should be queued if the remote port is
not available.

0 Used when you do not want a snagging allocation
and when you want the LAT driver to use the
port’s default queueing setting.

FIRQB+FQDEV Device name, as two ASCII characters.

FIRQB+FQDEVN The device unit number is passed here in binary. A nonzero value
in FIRQB+FQDEVN+1 indicates an explicit device unit number.
A zero value in FIRQB+FQDEVN+1 indicates no unit number.

Data Returned

Byte 0 of the FIRQB contains a possible error code. FIRQB+FQFIL contains
the previous owner of the device. If the device is a keyboard, FIRQB+FQFIL+1
contains a 0 for an interactive keyboard or a 1 for a LAT port used for host-
initiated connections.

Errors
For Assign (byte at FIRQB+FQNAM]1 = 0):

NODEVC The device name specified at FIRQB+FQDEYV is not a valid device name.

NOTAVL The device and unit specified exists on the system, but the attempt to
reserve it is prohibited because:

e The device is currently reserved by another job.
e The device or its controller has been disabled by the system manager.
e The device is a keyboard line for a pseudo keyboard only.

NOBUFS No buffers available to initiate the connection to the terminal server.
For Reassign (byte at FIRQB+FQNAMI1 +# 0):

BDNERR The job number specified does not exist.
INUSE The device specified is currently open or has an open file.

3-14 CALFIP—ASSFQ

NODEVC The device name is a logical device name for which a physical device is not
currently assigned.

NOTAVL (See previous description for Assign.)

PRVIOL You do not have HWCTL privilege and you tried to reallocate a device to a
job that is logged in to an account other than your current account.

Example

The following code reassigns magnetic tape unit 0 (MTO:) to job 12:

MAGT: .ASCII /MT/
CALL CLRFQB ;CALL ROUTINE TO CLEAR FIRQB
MOVB #ASSFQ, FIRQB+FQFUN ;SET FUNCTION CODE
MOVB #12.,FIRQB+FQNAM1 ;ASSIGN TO JOB 12
MOV #"RANS,FIRQB+14 ;ANSI-LABEL TAPE
MOV MAGT, FIRQB+FQDEV ;MAGTAPE DEVICE
CLRB FIRQB+FQDEVN ;UNIT NO. O
MOVB #377,FIRQB+FQDEVN+1 ;UNIT NO. REAL
CALFIP
TSTB FIRQB ;ANY ERRORS?
BNE ERRTN ;BRANCH TO PROCESS ERROR

See the section entitled "Programming Hints" for information on the CLRFQB
routine.

CALFIP—ASSFQ 3-15

3.5.2 CLSFQ (Close a Channel)

Form/Example

CHANO=8. ; Set value for channel
MOVB #CLSFQ, FIRQB+FQFUN ; Set function code in FIRQB
MOVB #CHANO*2, FIRQB+FQFIL ; Set channel 8 for CLOSE
CALFIP ; Execute monitor directive
Function

The CLSFQ function closes a channel. The specific action taken depends on the
device or file that was previously opened on the channel and whether it was
opened for input or output, as well as the mode with which it was opened. For
example, closing a channel on which a magnetic tape was opened for input in
file-structured mode causes the monitor to position the tape at the end-of-file
(EOF). See the RSTS/E Programming Manual for a description of the actions
taken on closing various devices/files.

Requesting CLSFQ for a channel that is not currently open returns with no action
taken and no error is indicated.

Privileges Required

None

Data Passed

FIRQB

Mne- Octal Octal Mne-
monic Offset Offset monic

1 11Tl irirrellni 0
FQFUN 3 CLSFQ (= 0) 111riinr 2

5 11rrirtnet channel no. * 2 4 FQFIL

7 FETLLLLErrni i iinlli 6

11 [T rrrinilng 10

13 IHLErrrnriirrint iy 12

15 LELELrnrrrrrrriiirnrd 14

17 LITEELELrririiinini 16

21 [ITPHEerrniriinrrlry 20

23 IILLLErnerirriirrl i 22

25 1110 iriiririirrllng 24

27 JI1LLErririrreeri i 26

31 [ITTELLErrrriiiinnrg 30

33 JIHIirrirtirinlny 32

35 LELLLrnnrretlinnng 34

37 TELLLLLErr it rrnlng 36

3-16 CALFIP—CLSFQ

FIRQB+FQFUN The function code CLSFQ (octal value = 0).
FIRQB+FQFIL Channel number times two; defines the channel to be closed.

Data Returned

Except for a possible error in byte 0 of the FIRQB, the CLSFQ function of
CALFIP does not return any meaningful data.

Errors

All errors with the CLSFQ function of CALFIP are device-dependent. See
Appendix A for a full list of errors.

Example
The following MACRO code closes the file or device on channel 12:

CALL CLRFQB ;CLEAR FIRQB

MOVB #CLSFQ, FIRQB+FQFUN ;SET FUNCTION CODE IN FIRQB
MOVB #12.*2,FIRQB+FQFIL ;SET CHANNEL 12 FOR CLOSE
CALFIP ;EXECUTE MONITOR DIRECTIVE
TSTB FIRQB ;TEST BYTE O FOR ERROR

BNE ERRTN ;BRANCH TO PROCESS ERROR

See Programming Hints for information on the CLRFQB routine.

CALFIP—CLSFQ 3-17

3.5.3 CRBFQ (Create a Binary [Executable] File and Open It on a Channel)

Form
MOVB #CRBFQ, FIRQB+FQFUN ;SET FUNCTION CODE

(Set parameters in FIRQB appropriate to device)

CALFIP

Function

The CRBFQ function creates and opens a binary (executable) file. It is identical
to the CREFQ function, except that the protection code is automatically set to
indicate an executable file, and the file must be opened on a disk device.

Privileges Required

TUNE to set caching mode. SYSIO to set the privileged-program bit (bit 7 in
FQPROT). A matching PPN, GWRITE, or WWRITE, and/or SYSIO to create or
rename a file. You also need write access (by protection code, GWRITE, WWRITE,
and/or SYSIO) to supersede an existing file.

Data Passed

FIRQB
Mne- Octal Octal Mne-
monic Offset Offset monic
1 THHTLLLr il 0
FQFUN 3 CRBFQ (= 34) 1rrreiinny 2
FQSIZM 5 (must = 0) channel no. * 2 4 FQFIL
7 project number programmer number 6 FQPPN
11 file name in RAD50 format 10 FQNAM1
13 (2 words) 12
15 file type in RAD50 format (1 word) 14 FQEXT
17 (file size in 512-byte blocks) 16 FQsliz
21 THLTTErLr i rriiiingg 20
23 mode 22 FQMODE
25 LILLTLrrrrrrririrrgi 24
FQPROT 27 file protection <>0, prot.code.real 26 FQPFLG
31 device name (2 ASCI| characters) 30 FQDEV
33 <>0, unit no. real device unit number 32 FQDEVN
35 file clustersize 34 FQCLUS
37 device cluster number for first block 36 FQNENT

3-18 CALFIP—CRBFQ

FIRQB+FQFUN
FIRQB+FQFIL

FIRQB+FQSIZM

FIRQB+FQPPN

FIRQB+FQNAM1
FIRQB+FQEXT
FIRQB+FQSIZ

FIRQB+FQMODE

FIRQB+FQPROT

FIRQB+FQDEV

FIRQB+FQDEVN

FIRQB+FQCLUS

The function code CRBFQ (octal value = 34).

Channel number times two; defines the channel upon which the
file is to be opened.

On other types of create opens, this byte contains the most signifi-
cant bits (MSB) of the file size. Executable (binary) files cannot be
greater than 65,535 blocks so this byte must always be passed as
zero.

The PPN with which the file is to be created. The project number
is in the high byte (FQPPN+1) and the programmer number in
the low byte (FQPPN). A value of zero in both bytes defaults to
the PPN under which the calling program is running.

The file name created, as two words of RAD50 data.
The file type, as one word of RAD50 data.

The desired file size, in 512-byte blocks. The file is preextended to
the specified size; that is, the space for the file is allocated when
the file is opened, rather than as it is written.

The mode with which the file is to be opened; values and actions
taken are as described for the MODE modifier in file-structured
OPEN FOR OUTPUT statements for disk, as the RSTS/E
Programming Manual describes. If a mode value is used, bit

15 of this word must be set to 1.

File protection code; values for this field define read/write and
execute access to the created file (see the RSTS/E System User’s
Guide). If you want a default protection code, then set a full
word of zeros at FIRQB+FQPFLG. In this case, either the system
default for protection code will be used, or, if the CRBFQ will be
deleting a previously existing file with the same file name, type,
PPN, and device, the file protection code of the previously existing
file will be used.

To assign a specific file protection code, a nonzero value is passed
in byte FIRQB+FQPFLG (by convention, 255) and the specific file
protection code in byte FIRQB+FQPROT. Bit 6 is automatically
set, indicating that the file is executable. The RSTS/E System
User’s Guide describes the protection codes for executable files.

The device name is passed here as two ASCII characters; it must
be a disk device. If this word is zero, the public disk structure is
assumed.

The device unit number is passed here in binary. A nonzero value
in FQDEVN+1 indicates an explicit device unit number. A zero
value in FQDEVN+1 indicates no unit number.

This parameter has the same function as the CLUSTERSIZE
option in BASIC-PLUS. The BASIC-PLUS Language Manual
describes the CLUSTERSIZE option for disks.

CALFIP—CRBFQ 3-19

FIRQB+FQNENT

Data Returned

Device cluster number for placement of block 1 of the file. When
you are creating a new file, you can place block 1 of the file on
a particular block by specifying the disk device cluster number
in this word. If this word is zero, no placement is done. If it

is nonzero, the monitor will try to place the file at the specified
device cluster or as near after it as possible.

If the first block of the file can be placed at or after the specified
device cluster number, the monitor sets a bit in the file’s entry in
the User File Directory (UFD). If the first block of the file cannot
be placed at or after the specified device cluster number, the file

is placed at the lowest free block on the disk, the bit in the file’s

entry in the UFD is not set, and no error is returned.

A value of -1 specifies the center of the disk; a value of -2 means
immediately after the directory.

FIRQB
Mne- Octal Octal Mne-
monic Offset Offset monic
1 RNy 0
3 1110111111 current job no. * 2 2 FQJOB
FQSIZM & (always 0) channel number * 2 4 FQFIL
7 project number programmer number 6 FQPPN
11 file name in RAD50 format 10 FQNAMH1
13 (2 words) 12
15 file type in RAD50 format (1 word) 14 FQEXT
17 (file size in 512-byte blocks) 16 FQsizZ
21 reasonable buffer size for device 20 FQBUFL
23 (as passed) 22 FQMODE
25 device description 24 FQFLAG
FQPROT 27 protection code clustersize, mod256 26 FQPFLG
31 device name (2 ASCII| characters) 30 FQDEV
33 flag byte device unit number 32 FQDEVN
35 file identification index 34 FQCLUS
37 (as passed) 36 FQNENT
FIRQB+FQJOB Current job number times two.
FIRQB+FQFIL Channel number times two; defines the channel on which the file
is open.
FIRQB+FQPPN The PPN under which the file is open. An actual PPN is returned
here even if this word was passed as zero.
FIRQB+FQNAM1 The file name created, as two words of RAD50 data.
FIRQB+FQEXT The file type created, as one word of RAD50 data.
FIRQB+FQSIZ The size to which the file was preextended, in 512-byte blocks.

3-20 CALFIP—CRBFQ

FIRQB+FQBUFL

FIRQB+FQFLAG

FIRQB+FQPFLG

FIRQB+FQPROT

FIRQB+FQDEV

FIRQB+FQDEVN

FIRQB+FQCLUS

Errors

Reasonable buffer size for disk reads and writes, in bytes. (Always
512 for disk.)

Description of the device just opened (the same information as
the BASIC-PLUS STATUS variable). The low byte contains the
device’s handler index, always zero (DSKHND) for disk. The high
byte contains a set of status flags, irrelevant here since the device
is always disk. (See the OPNFQ subfunction for more information
on these settings.)

The file cluster size, modulo 256. That is, a file cluster size of
256 is indicated by zero. This is the same as the value passed at
FIRQB+FQCLUS, except that it is returned in a byte instead of a
word.

The protection code of the file. Bit 6 is 1, and bits 5 through 0 are
as passed. Bit 7 is as passed if the caller has SYSIO privilege;
otherwise it is 0.

The device name of the disk device, as two ASCII characters. The
actual device name is returned here, even if this word was passed
as zero.

The device unit number. The actual unit number is returned here,
even if FIRQB+FQDEVN+1 was passed as zero.

The file identification index of this file. This word is significant
mainly in that it can be used in place of the file name in sub-
sequent opens of the file on disk. You can open the file with
the OPNFQ subfunction of CALFIP using an explicit PPN in
FIRQB+FQPPN, a zero word in FIRQB+FQNAM]I, an explicit
device name in FQDEV and FQDEVN, and the file identification
index in FIRQB+FQNAMI1+2.

Note that there is no performance gain for using the file iden-
tification index instead of the file name. The file identification
index is provided for compatibility with RSX. Furthermore, the file
identification index is changed when the REORDR utility is run
(see the RSTS/E System Manager’s Guide).

NOTCLS The specified channel is already open. It must be closed before it can be
opened again.

PRVIOL The specified device is not a disk device. The CRBFQ function can be
executed only for a disk device.

QUOTA Extending the file causes the disk quota to be exceeded. This error does not
occur if the user has EXQTA privilege.

XXXKX Other errors are device-dependent. See Appendix A for a full list of possible
error codes.

CALFIP—CRBFQ 3-21

Example

The following MACRO code sets up the FIRQB for the CRBFQ function of
CALFIP. The PPN is set to 2,210; the file name and type are set to FILNAM.TYP.
The protection code is set such that the file is read/write-protected against ev-
eryone but the caller (user with PPN 2,210), and execute-protected against all
but the caller and those in the caller’s project (users with project number = 2).
The file is opened on disk unit 2 (DK2:). File size and cluster size are not spec-
ified. The cluster size defaults to the pack cluster size and the file size is not

preallocated.
DK: .ASCII /DK/
CALL CLRFQB ;CLEAR FIRQB
MOVB #CRBFQ, FIRQB+FQFUN ;SET FUNCTION CODE
MOVB #4*2, FIRQB+FQF IL ;SET CHANNEL = 4
MOVB #2, FIRQB+FQPPN+1 ;SET PROJECT NUMBER =2
MOVEB #210., FIRQB+FQPPN ;SET PROG. NO.=210.
MOV #*RFIL, FIRQB+FQNAM1 ;SET FILE NAME AND
MOV #"RNAM, FIRQB+FQNAM1+2 ;TYPE TO
MOV #"RTYP, FIRQB+FQEXT ; "FILNAM.TYP"
MOVB #<8.+16.+32.>, FIRQB+FQPROT ;SET PROTECTION CODE
MOVB #255., FIRQB+FQPFLG ;SET PROTECTION CODE REAL
MOV DK, F IRQB+FQDEV ;SET DEVICE TO DISK,
MOVB #2, FIRQB+FQDEVN ;UNIT 2
MOVB #255., FIRQB+FQDEVN+1 ; (EXPLICIT DEVICE NO.)
CALFIP

<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>