
RSTS/E Programming Manual
Order Number: AA-EZ096-TC

RSTS/E Programming Manual
Order Number: AA-EZ09B-TC

August 1990

This manual describes RSTS/E special programming techniques. It contains information on
device-dependent features and the use of system function calls.

Operating System and Version: RSTS/E Version 10.0

Software Version:

digital equipment corporation
maynard, massachusetts

RSTS/E Version 10.0

August 1990

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may only be used
or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment not supplied
by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1990. AI! rights reserved.

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document requests
the user's critical evaluation to assist in preparing future documentation. The following are
trademarks of Digital Equipment Corporation:

ALL-IN-1 DEUNA RSX
DEC/eMS DrBOL RT
DECdx EDT RT-11
DEC/FMS-11 lAS TOPS-10
DECmaii LA TOPS-21
DECnet LN01 ULTRIX
DECnetiE Micro'RSX UNIBUS
DECSA OS/8 VAX
DECserver PDP VAXmate
DECsystem-10 PDP-11 VMS
DECSYSTEM-20 PDT VT
DECUS Q-BUS WPS-PLUS
DECworld RMS-11 Rainbow
DELUA RSTS

~DmDDma'" DEQNA

IBM is a registered trademark of International Business Machines Corporation.
RMS is a trademark of American Management Systems, Inc.

(

(

Contents

Preface . xvii

Part I Devices

Chapter 1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

System Structure and Disk Operations

System Accounts
1.1.1 System Library Account [1,2]
1.1.2 System Account [0,1]

1.1.2.1 Allocating Disk Storage Space
1.1.2.2 Bad Block File
1.1.2.3 System Overlay File
1.1.2.4 Monitor Save Image Library File
1.1 .2.5 Error Messages File
1.1.2.6 Saving Information After a Crash
1.1.2.7 Run-Time System Files
1.1.2.8 System Program Resident Library
1.1.2.9 Initialization Code
1.1.2.10 Swapping Storage
1.1.2.11 System Account [0,1] on Nonsystem Disks

Storage of Accounting Data
1 .2.1 Accounting Data on the System Device
1.2.2 Accounting Data on Nonsystem Disks

Privileges .. .

Multiple Privileges .. .

Classes of System Functions
1 .5.1 Account Management Activities
1 .5.2 File Access Activities

Multiple Privilege Masks

Multiple Privileges and Jobs
1 .7.1 Job Creation .
1.7.2
1.7.3
1.7.4

Login .. .
Logout
Spawned Jobs

Writing Applications Using Multiple Privileges
1.8.1 Writing Programs Protected <124> and <104>
1.8.2 Writing Programs Protected <232>

1-1
1-1
1-2
1-2
1-4
1-4
1-5
1-5
1-5
1-5
1-6
1-6
1-6
1-8

1-8
1-8
1-9

1-10

1-10

1-11
1-11
1-12

1-14

1-15
1-15
1-15
1-15
1-15

1-16
1-16
1-17

iii

1.9

1.10

1.11

1.12

1.13

1.14

1.15

1.16

iv

1.8.3
1.8.4

Program Access and Privilege Checks
Program Exit

Multiple Privilege System Function Calls

Non-File-Structured Disk Operation
1.10.1 Opening a Disk for Non-File-Structured Processing
1.10.2 Accessing Large Clusters
1.10.3 Accessing Device Clusters
1.10.4 Non-File-Structured Block Access: MODE 128%
1.10.5 Access to Bad Block Information: MODE 512%
1.10.6
1.10.7

Privilege and Access
Allocating a Disk Unit

File-Structured Disk Operation
1.11.1 Reading and Writing Disk Files: MODE 0%
1.11.2 Updating Disk Files: MODE 1 %, MODE 4%+1%

1.11.3
1.11.4
1.11.5
1.11.6
1.11.7
1.11.8
1.11.9

1.11.10

1.11.11

1.11.12
1.11.13
1.11.14
1.11.15
1.11.16
1.11.17

1.11.2.1 RSTS/E File Updating Capabilities
1.11.2.2 File Update: MODE 1 %
1.11.2.3 Guarded File Update: MODE 4%+1%
Appending Data to Disk Files: MODE 2%
Special Mode for Extending Files: MODE 8%
Creating a Contiguous File: MODE 16%
Creating a Tentative File: MODE 32%
Creating a Contiguous File Conditionally: MODE 64%
No Supersede: MODE 128%
Data Caching: MODES 256%, 2048%
1.11.9.1 Cache Size
1.11.9.2 Caching Control
1.11.9.3 Random Mode Data Caching: MODE 256%
1.11.9.4 Sequential Mode Data Caching: MODE 2048%
Creating and Placing a File at the End of the Directory: MODE
1024%
Creating and Placing a File at the Beginning of the Directory: MODE
1536%
Reading a File During Processing: MODE 4096%
Read-Only Access to a File: MODE 8192%
Write Access to a Directory: MODE 16384%
Simultaneous Disk Access
Disk Optimization
Partial Block Operations on Disk

The Virtual Disk-DVO:

Asynchronous I/O Requests

Disk Special Function: SPEC%

RX01/02 Flexible Diskettes
1.15.1 Block Mode: MODE 0%
1.15.2 Sector Mode: MODE 16384%
1.15.3
1.15.4
1.15.5
1.15.6

Rexible Diskette RECORD Modifiers
Deleted Data Marks
Partial Block Operations on Flexible Diskettes
Rexible Diskette Special Function: SPEC%

The Null Device - NL: .. .

1-18
1-18

1-19

1-19
1-19
1-20
1-20
1-22
1-22
1-23
1-23

1-23
1-24
1-24
1-25
1-25
1-26
1-26
1-27
1-27
1-28
1-28
1-29
1-29
1-30
1-30
1-30
1-31

1-31

1-32
1-32
1-32
1-33
1-33
1-33
1-35

1-35

1-36

1-36

1-38
1-39
1-40
1-41
1-41
1-42
1-42

1-44

Chapter 2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

Mag netic Tape

Overview of Tape Operations
2.1.1 File-Structured and Non-File-Structured Processing
2.1.2 Magnetic Tape labels
2.1.3 Data and Label Handling in File-Structured Processing
2.1.4 Streaming Tape Drives

The File-Structured Magnetic Tape OPEN FOR INPUT
2.2.1 Reading the Current Record: MODE 0% or No Mode
2.2.2 Rewinding the Tape: MODES 2%,32%,64%
2.2.3 Example of OPEN FOR INPUT Statement
2.2.4 Reading Data

The File-Structured Magnetic Tape OPEN FOR OUTPUT
2.3.1 Searching for a Label on OUTPUT
2.3.2 Writing a Label: MODES 16%, 512%
2.3.3 Extending a File: MODE 128%
2.3.4 DOS and ANSI Format Labels: MODES 16384%, 24576%
2.3.5 Processing DOS Magnetic Tape Files
2.3.6 Processing ANSI Magnetic Tape Files
2.3.7 Processing Multivolume ANSI Magnetic Tape Files
2.3.8 Example of OPEN FOR OUTPUT Statement
2.3.9 Writing Data and Processing End-of-Tape

The File-Structured Magnetic Tape OPEN

The File-Structured Magnetic Tape CLOSE

The Non-File-Structured Magnetic Tape OPEN

The Non-File-Structured Magnetic Tape CLOSE

The MODE Specification in Non-File-Structured Processing

The MAGTAPE Function
2.9.1 Off-line (Rewind and Off-line) Function
2.9.2 Write Tape Mark Function
2.9.3 Rewind Function
2.9.4 Skip Record Function
2.9.5 Backspace Function
2.9.6 Set Density and Parity Function
2.9.7 Tape Status Function
2.9.8 Return File Characteristics Function
2.9.9 Rewind on CLOSE Function
2.9.10
2.9.11
2.9.12

Write End-oi-Volume labels on CLOSE Function
Error Condition Acknowledged .
Extended Set Density Function

Asynchronous 110 Requests

Magnetic Tape Special Function: SPEC%

Magnetic Tape Error Handling
2.12.1 Parity (Bad Tape) Error
2.12.2 Record Length Error
2.12.3 Offline Error

2-1
2-1
2-3
2-3
2-5

2-5
2-7
2-7
2-7
2-8

2-8
2-9
2-9

2-10
2-10
2-11
2-11
2-13
2-14
2-14

2-16

2-16

2-16

2-17

2-17

2-19
2-20
2-20
2-20
2-20
2-21
2-21
2-23
2-25
2-26
2-26
2-27
2-27

2-28

2-29

2-29
2-30
2-30
2-30

v

2.13

Chapter 3

3.1

3.2

3.3

3.4

3.5

3.6

Chapter 4

4.1

4.2

4.3

4.4

4.5

vi

2.12.4
2.12.5

Write Lock Error
Writing Beyond EOT Error

Magnetic Tape Programming Examples
2.13.1 Writing a Magnetic Tape File
2.13.2 Reading a Magnetic Tape File
2.13.3 Reading a Magnetic Tape Non-File-Structured

Line Printer

Special Character Handling

Line Printer Control with the MODE Option

Line Printer Control with the FILESIZE Statement
3.3.1 Change ESC to $: MODE 16%
3.3.2 Set NOWRAP for Excess Lines: MODE 32%
3.3.3 Software Formatting: MODE 512%+N%
3.3.4 Enable Hardware Form Feed: MODE 4096%
3.3.5 Translate Numeric 0 to Letter 0: MODE 128%
3.3.6
3.3.7
3.3.8
3.3.9

Truncate Long Lines: MODE 256%
Translate Lowercase to Uppercase: MODE 1024%
Skip Lines at Perforation: MODE 2048%
Suppress Form Feed on CLOSE: MODE 8192%

Line Printer Control with the RECORD Option
3.4.1 Print Over Perforations: RECORD 2%
3.4.2 Delay Return Until Output Complete: RECORD 4%
3.4.3 Clear Buffers Before Returning Control: RECORD 8%
3.4.4 Truncate Long Lines: RECORD 32%
3.4.5 Binary Output: RECORD 4096%
3.4.6 No Stall Option: RECORD 8192%

Line Printer Special Function: SPEC%

Error Handling

Terminals

Conditional Input from a Terminal: RECORD 8192%

No Stall Option on Terminal Output: RECORD 8192%

Force Interactive Input: RECORD 256%

Multiterminal Service on One I/O Channel: RECORD 32767%+1%
4.4.1 Multiterminal Service Output
4.4.2 Multiterminal Service Input

Terminal Control with the MODE Option
4.5.1 Binary Data Output and Input: RECORD 4096% and MODE 1 %
4.5.2 Suppress Automatic Carriage ReturnlLine Feed: MODE 4%
4.5.3 Echo Control: MODE 8%
4.5.4
4.5.5

Prevent CtrilC Interruption and Hibernation: MODE 16%
Enable Incoming XONIXOFF Processing: MODE 32%

2-30
2-31

2-31
2-31
2-31
2-32

3-1

3-2

3-2
3-3
3-3
3--4
3--4
3-5
3-5
3-5
3-5
3-6

3--6

3-7
3-7
3-7
3-8
3-8
3-8

3-9

3-9

4-1

4-2

4-2

4-2
4-3
4--4

4-5
4--6
4-8
4-8

4-14
4-15

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

Chapter 5

5.1

5.2

5.3

5.4

4.5.6
4.5.7

Special Use of RUBOUT: MODE 128%
Escape Sequence Mode: MODE 256%

Escape Sequences
4.6.1 VTi00-, VT200-, and VT300-Family Escape Sequences

4.6.2
4.6.3
4.6.4

4.6.1.1 VT52-Compatible Mode
4.6.1.2 ANSI-Compatible Mode
Programming Example
Output Escape Sequences
Input Escape Sequences.

Transparent Control Character Output: RECORD 16384% and MODE
16384% .. .

Private Delimiters
4.8.1 Characteristics of Private Delimiters
4.8.2 Usage Notes for Private Delimiters

Terminal Special Function: SPEC%

Keyboard Numbering .. .

Pseudo Keyboards .. .
4.11.1 Accessing the Pseudo Keyboard
4.11.2 Creating the Controlled Job
4.11 .3 Pseudo Keyboard I/O ..

4.11.3.1 Pseudo Keyboard Input
4.11.3.2 Pseudo Keyboard Output

4.11.4 Pseudo Keyboard Escape Sequence Processing
4.11.5 Programming Example
4.11.6 Pseudo Keyboard Special Function: SPEC%
4.11.7 Dynamic Pseudo Keyboards

Local Area Transport (LAT)
4.12.1 LAT Ports
4.12.2 Enabling LAT
4.12.3 Host-Initiated LAT Connections
4.12.4 Isolation of LAT Problems

Command line Editing and Command Recall
4.13.1 Terminal Attributes
4.13.2 Terminal OPEN Modes
4.13.3 Echo on Read .

Card Readers

ASCII Mode: MODE 0%

Packed Hollerith Mode: MODE 1%

Binary Mode: MODE 2%

Setting Read Modes

4-15
4-16

4-17
4-17
4-17
4-18
4-20
4-21
4-22

4-25

4-25
4-26
4-27

4-27

4-28

4-29
4-30
4-31
4-31
4-31
4-32
4-34
4-35
4-36
4-37

4-38
4-38
4-39
4-39
4-43

4-43
4-43
4-45
4-45

5-1

5-2

5-3

5-3

vii

Chapter 6

6.1

6.2

6.3

6.4

6.5

6.6

Chapter 7

7.1

7.2

viii

DMC11/DMR11 Interprocessor Link

Using the DMC11/DMR11 Interprocessor Link in Point-to-Point
Configurations

The OPEN Statement .. .
6.2.1 MODE Value
6.2.2
6.2.3
6.2.4
6.2.5

CLUSTERSIZE Value
FILESIZE Value
RECORDSIZE Value
Errors

The GET Statement and RECORD Options
6.3.1 Count and Status Information

The PUT Statement

The CLOSE Statement

Hardware Errors .. .

Ethernet Operations

Ethernet Concepts .. .
7.1.1 The Conversation Analogy.
7.1.2 Ethernet and DECnetlE
7.1.3 Ethernet Terms

7.1.3.1 Physical Layer
7.1.3.2 Channel, Controller, and Data Link Layer
7.1.3.3 Protocol Type and Portal•...................
7.1.3.4 Counters
7.1.3.5 Physical Addressing
7.1.3.5.1 DECnetlE on Ethernet
7.1.3.6 Multicast Addressing

7.1.4 Ethernet Addresses .

Commands for Ethernet
7.2.1 OPEN

7.2.1.1 Padded and Unpadded Protocols
7.2.1.2 System Receive Buffers

7.2.2 CLOSE .. .
7.2.3
7.2.4
7.2.5

GET .. .
PUT
Special Ethernet Functions
7.2.5.1 Set New Physical Address
7.2.5.2 Enable Multicast Addresses
7.2.5.3 Get Circuit Counters and Get Line Counters
7.2.5.4 Transfer Circuit Counters and Transfer Line Counters

6-1

6-1
6-1
6-2
6-2
6-2
6-2

6-3
6-4

6-5

6-6

6-6

7-1
7-1
7-2
7-2
7-2
7-3
7-3
7-3
7-3
7-4
7-4
7-4

7-5
7-5
7-43
7-7
7-7
7-7
7-9

7-10
7-10
7-10
7-10
7-11

Part II System Function Calls and Programming Hints

Chapter 8 SYS System Function Calls

8.1

8.2

8.3

SYS System Function Calis
8.1.1 SYS System Function Formats and Codes
8.1.2 Cancel Ctrl/O Effect on Terminal
8.1.3
8.1.4
8.1.5
8.1.6
8.1.7
8.1.8
8.1.9
8.1.10
8.1.11
8.1.12
8.1.13
8.1.14

Enter Tape Mode on Terminal
Enable Echoing on Terminal
Disable Echoing on Terminal
Enable ODT Submode on Terminal
Exit with No Prom pt Message
FIP Function Call
Get Common COfe String
Put Common Core String
Exit and Clear Program
Cancel All Type Ahead
Return Information on last Opened File or Device
Execute CCl Command

System Function Calls to FIP, F=6
8.2.1 Building a Parameter String
8.2.2 Unpacking the Returned Data
8.2.3 Notation and References Used in SYS Call Descriptions

8.2.3.1 Project-Programmer Number
8.2.3.2 Integer (2-Byte) Numbers
8.2.3.3 Unsigned Integer (2-Byte) Numbers
8.2.3.4 Negative Byte Values
8.2.3.5 File Name String Scan Format
8.2.3.6 MACRO Mnemonic Cross-References

Organization of This Section
8.3.1 File Name String Scan
8.3.2 Get Monitor Tables-Part III
8.3.3
8.3.4
8.3.5
8.3.6

8.3.7
8.3.8
8.3.9
8.3.10
8.3.11
8.3.12
8.3.13
8.3.14
8.3.15
8.3.16
8.3.17
8.3.18

Spooling .. .
Snap Shot Dump
Rle Utility Functions
Manipulate Attributes
8.3.6.1 Read File Attributes
8.3.6.2 Write File Attributes
8.3.6.3 Read Pack Attributes
8.3.6.4 Read Account Attributes
8.3.6.5 Write Account Attributes
8.3.6.6 Delete Account Attributes
Add/Delete CCl Command
Set Special Run Priority
Drop/Regain Temporary Privileges
lock/Unlock Job in Memory.
Set logins .. .
Manipulate RTS, Resident Library, Dynamic Region
Add a Run-Time System
Remove a Run-Time System
Unload a Run-Time System
Add a Resident Library
Remove a Resident Library
Unload a Resident Library

8-1
8-2

8-11
8-12
8-12
8-13
8-14
8-15
8-15
8-15
8-16
8-16
8-17
8-18
8-19

8-20
8-21
8-22
8-24
8-24
8-24
8-25
8-26
8-26
8-27

8-27
8-27
8-35
8-37
8-41
8-41
8-46
8-47
8-48
8-49
8-50
8-53
8-54
8-55
8-57
8-57
8-59
8-60
8-60
8-61
8-63
8-64
8-65
8-68
8-69

ix

x

8.3.19
8.3.20
8.3.21
8.3.22
8.3.23
8.3.24
8.3.25
8.3.26
8.3.27
8.3.28
8.3.29
8.3.30
8.3.31
8.3.32
8.3.33
8.3.34
8.3.35
8.3.36
8.3.37
8.3.38

8.3.39

8.3.40
8.3.41
8.3.42
8.3.43
8.3.44

8.3.45
8.3.46

8.3.47
8.3.48
8.3.49

8.3.50
8.3.51
8.3.52
8.3.53
8.3.54
8.3.55

8.3.56

8.3.57

8.3.58

Create Dynamic Region
Create/Delete a Virtual Disk.
Associate a Run-Time System with a File
Shut Down System
Accounting Dump
Change Date and Time.
Change Priority, Run Burst, and Maximum Size
Get Monitor Tables-Part II
Change File Statistics
Hang Up a Dataset
Get Open Channel Statistics
Enable Ctrl/C Trap
Poke Memory
Broadcast to a Terminal
Force Input to a Terminal
Get Monitor Tables-Part I
Disable Further Logins
Enable Further Logins
Create User Account
Create User Account (New Format)
8.3.38.1 Create User Account (New Format)
Create User Account (Old Format), FO=O (UU.PAS)
8.3.39.1 Create User Account (Old Format)
Delete User Account
Disk Pack Status
LoginlVerify Password
Logout
Attach
8.3.44.1 Attach
8.3.44.2 Reattach
8.3.44.3 Swap Console
Detach
Change Quota, Password, Expiration Date
8.3.46.1 Change Quota (New Format)/Expiration Date/Password (Old

Format)
8.3.46.2 Change Quota (Old Format)/Expiration Date/Password (Old

Format)
8.3.46.3 Set Password (New Format)
8.3.46.4 Kill Job
8.3.46.5 Disable Terminal
Return Error Message
Allocate Device, Assign/List User Logical
Allocate/Reallocate Device
8.3.49.1 Allocate/Reallocate Device
8.3.49.2 Assign User Logical
8.3.49.3 List User Logicals
Deallocate a Device or Deassign a User Logical
Deallocate All Devices and Deassign All Logicals
Zero a Device
Read, or Read and Reset Accounting Data
Directory Lookup
Directory Lookup on Index
8.3.55.1 Special Magnetic Tape Directory Lookup
Disk Directory Lookup by Rle Name, FO=17 (UU.LOK)
8.3.56.1 Disk Wildcard Directory Lookup
Set Terminal Characteristics
8.3.57.1 Set Terminal Characteristics - Part I
8.3.57.2 Set Terminal Characteristics - Part II
Disk Directory Lookup

8-69
8-71
8-73
8-73
8-74
8-75
8-76
8-77
8-79
8-81
8-81
8-83
8-85
8-86
8-87
8-88
8-89
8-90
8-90
8-90
8-90
8-93
8-93
8-96
8-97

8-101
8-104
8-106
8-106
8-107
8-109
8-110
8-111

8-112

8-114
8-115
8-116
8-117
8-118
8-119
8-119
8-119
8-121
8-122
8-123
8-124
8-125
8-127
8-132
8-133
8-135
8-137
8-138
8-139
8-140
8-148
8-153

8.4

Chapter 9

9.1

9.2

9.3

9.4

I 9.5
\

9.6

8.3.59
8.3.60
8.3.61
8.3.62
8.3.63
8.3.64
8.3.65
8.3.66
8.3.67
8.3.68
8.3.69
8.3.70
8.3.71
8.3.72
8.3.73
8.3.74
8.3.75
8.3.76
8.3.77
8.3.78
8.3.79
8.3.80
8.3.81
8.3.82
8.3.83
8.3.84
8.3.85
8.3.86
8.3.87
8.3.88
8.3.89
8.3.90
8.3.91
8.3.92

Enable and Disable Disk Caching
Date and Time Conversion
System Logical Names
Add New Logical Name, FO=21 (UU.SLN)
Remove Logical Names
Change Disk Logical Names
List Logical Names
Send/Receive Message
Determine LAT Server and Port IDs
Create a Local LAT Port
Delete a Local LAT Port
Assign a Local LAT Port
Deassign a Local LAT Port
Return Local LAT Port Status
Return Local LAT Port Characteristics
Add, Remove, and List System Files
Add System Files
Remove System Files
List System Files, FO=23
Create a Job .
Wildcard PPN Lookup
Return Job Status
Set/Clear/Read Current Privileges
Stall/Unstall System
Third-Party Privilege Check
Check Access Function
Check File Access Rights
Convert Privilege Name to Mask
Convert Privilege Mask to Name
Open Next Disk File
Set Device Characteristics and System Defaults,
Set Line Printer Characteristics
Set System Defaults
Load/Remove Monitor Overlay Code
8.3.92.1 Load Monitor Overlay Code and Return Status/Remove

Monitor Overlay Code
8.3.92.2 Set and Return System Answerback Message

The PEEK Function
8.4.1 Fixed Locations in Monitor .
8.4.2 Finding the Current PPN

System Calls for Locallnterjob Communication

8-154
8-156
8-157
8-158
8-160
8-161
8-162
8-162
8-163
8-165
8-166
8-167
8-169
8-170
8-173
8-177
8-177
8-180
8-181
8-182
8-188
8-189
8-191
8-193
8-194
8-195
8-195
8-196
8-197
8-198
8-200
8-203
8-205
8-206

8-206
8-209

8-210
8-211
8-212

Locallnterjob Communication. 9-1

Format of the Send/Receive SYS Calls. 9-2
9.2.1 Privileges Required for Send/Receive . 9-2

Declare Receiver .. 9-3

Send Local Data Message . 9-9

Send Local Data Message With Privilege Mask . 9-12

Receive. 9-13

xi

9.7 Remove Receiver

9.8 Local Send/Receive Examples
9.8.1 Declare Receiver Example
9.8.2 Send Local Data Examples
9.8.3 Receive Examples
9.8.4 Summary of Data Values

Chapter 10 Communicating with Print/Batch and Operator/Message Services

xii

10.1

10.2

10.3

10.4

10.5

Sending a Request Packet

Confirming a User Request
10.2.1 Declaring a Receiver for Confirmation

Request Packets
10.3.1 Sending an Operator Request Packet

PRINT/BATCH Command Values
10.4.1 The PRINT command
10.4.2 The SUBMIT command

Operator Command Values
10.5.1 The NOP command
10.5.2 The REPLY command
10.5.3
10.5.4
10.5.5
10.5.6

The REQUEST command
The SET OPERATOR_SERVICES command
The STOP/OPERATOR_SERVICES command
The DELETE/REQUEST command

10.6 Data Fields

10.7 Print/Batch Data Field Values

10.8 Operator Data Field Values

10.9 NOP Command Data Fields

10.10 REPLY Command Data Fields
10.10.1 Reply Text Field
10.10.2 Request ID Field

10.11 REQUEST Command Data Fields
10.11.1 Reply Text Field
10.11.2 I[NO]REPLY Field
10.11.3 IFACIUTY Field

10.12 SET OPERATOR_SERVICES Command Data Fields
10.12.1 IKEEP Field

10.13 STOP/OPERATOR_SERVICES Command Data Fields
10.13.1 I[NO]ABORT Field

10.14 Receiving Confirmation Messages

9-20

9-21
9-21
9-21
9-22
9-25

10-1

10-1
10-1

10-2
10-2

10-4
10-4
10-4

10-4
10-4
10-4
10-4
10-5
10-5
10-5

10-5

10--6

10-19

10-19

10-19
10-20
10-20

10-20
10-20
10-21
10-21

10-22
10-22

10-22
10-22

10-23

(
\

10.15 Messages Received by the REQUEST/REPLY Command
10.15.1 Number of Confirmation Messages
10.15.2 Reply Messages from Operators

10.16 Program Example

Chapter 11

11.1

11.2

System Programming Hints

Designing a Program to Run Using a CCl Command
11.1 .1 System Processing of CCl Commands
11.1.2 CCl Precedence Rules
11.1.3
11.1.4
11.1.5
11.1.6
11.1.7

Effect of CCls on Your Job Area
CCl Syntax and Switches
CCl Command Line Parsing
BASIC-PLUS Action
Conventions Used in BASIC-PLUS Programs

SLEEP and Conditional SLEEP Statements

Appendix A Magnetic Tape Label Formats

A.1 DOS Magnetic Tape Format
A.1.1 DOS labels

A.2 ANSI Magnetic Tape Format
A.2.1 ANSI labels

A.2.1.1 Volume label
A.2.1.2 Header 1 label (HDR1)
A.2.1.3 Header 2 label (HDR2)
A.2.1.4 End-of-File or Volume 1 label (EOF1 or EOV1)
A.2.1.5 End-of-File or Volume 2 label (EOF2 or EOV2)

A.3 Initializing Magnetic Tapes

Appendix B Card Codes

Appendix C Error Messages

C.1 User Recoverable Errors

C.2 Nonrecoverable Errors

C.3 BASIC-PlUS-2 Errors .. .

C.4 The ??Program lost-Sorry Error
C.4.1 Checksum Error on a .BAC File
C.4.2 Unrecoverable Disk Error Reading a .BAC File
C.4.3 Incorrect .BAC File Size
C.4.4 Unmatched Version Numbers

C.5 Software Performance Report Guidelines

10-26
10-26
10-27

10-27

11-1
11-1
11-2
11-2
11-2
11-3
11-5
11-6

11-6

A-1
A-2

A-3
A-5
A-5
A-6
A-7
A-8
A-9

A-10

C-3

C-13

C-20

C-21
C-21
C-22
C-22
C-22

C-22

xiii

Appendix D Radix-50 and ASCII Character Sets

0.1 Radix-50 Character Set

0.2 ASCII Character Codes

Appendix E Device Handler Index

Appendix F Monitor Directives

Appendix G EMT Logger Send/Receive Calls

G.1

G.2

G.3

Index

Figures

xiv

1-1

4-1

4-2

4-3

5-1
5-2
8-1

8-2

8-3

9-1

A-1

A-2

A-3

A-4

G-1

EMT Logging and Send/Receive

Declaring an EMT Logger

Receiving an EMT Logger Message
G.3.1 Message Format
G.3.2 EMT Root and FIRQB Fields
G.3.3 Message from SHUTUP

RSTS/E File Protection Codes

Input Escape Sequence Processing

Pseudo Keyboard Operations

PUT Statement Actions for Pseudo Keyboard Output .

Packed Hollerith Read Mode

Binary Read Mode

Integer Representation of Changed Characters

Reversal of Bytes by SWAP%() Function

High-Order Bits of CPU Time and KCTs

Summary of Send/Receive Data

DOS-Labeled Magnetic Tape File

DOS Magnetic Tape Consisting of 3 Files of 10 Data Records Apiece

ANSI-Labeled Magnetic Tape File

ANSI Magnetic Tape Consisting of 3 Files of 10 Data Records Apiece

EMT Data Packet Layout

0-1

D-3

G-1

G-2

G-3
G-4
G-5
G-6

1-13

4-22

4-30

4-33

5-2
5-3

8-23

8-23

8-131

9-26

A-2
A-2

A-4

A-4

G-5

Tables

1-1

1-2

1-3

1-4

1-5

1--6

1-7

1--8

1-9
2-1

2-2

2-3

2-4

2-5
2--6

2-7

2--8

3-1

3-2

3-3

3-4

4-1

4-2

4-3

4-4

4-5

4--6

5-1

8-1

8-2

8-3

8-4

8-5

8--6

8-7

8--8

8-9

9-1

9-2

10-1

10-2

10-3

10-4

10-5

10--6

Valid Cluster Size Ranges

Swap limes

Account Information Stored on the System Device

RSTS/E Privileges .

Account Management Privileges

File Access Privileges

Non-File-Structured Disk Default Characteristics

MODE Specifications for Disk Files

MODE Specifications for Flexible Diskette

Statements and Functions for Accessing Magnetic Tapes

System Density Values for Magnetic Tape

Magnetic Tape OPEN FOR INPUT MODE Values

Magnetic Tape OPEN FOR OUTPUT MODE Values

ANSI Magnetic Tape ClUSTERSIZE Values

MAGTAPE Function Summary

Magnetic Tape Status Word

Magnetic Tape File Characteristics Word for ANSI Format

lP11 Characters .. .

line Printer OPEN MODE Values

Additional OPEN MODES with FllESIZE 32767%+1%

line Printer RECORD Values

Multiple Terminal RECORD Values for S%

Summary of MODE Values for Terminals

Echo Control Mode Character Set

ANSI-Compatible Escape Sequences: VT100-, VT200- and VT300-Family
Terminals

Escape Sequence Terminators

Command line Editing and Recall Availability

Specifying Read Modes on Card Reader

SYS System Function Calls (by Function Code)

SYS System Function Calls (by Function Name)

FIP SYS Calls (by Subfunction Code)

FIP SYS Calls (by Function Name)

File Name String Scan Flag Word 1

File Name String Scan Flag Word 2

SYS 14 legal Byte Value Combinations

Internal Speed Values for Terminal Interface lines

Monitor Fixed locations

RSTS/E Reserved Names .

Sender Selection Summary

Message Parameter Area on Send .

Print/Batch Command Values

Operator Command Values

User Request Data Fields ..

Operator Request Data Fields .

Parameter Area on Receive.

1-3

1-7

1-9

1-10

1-12

1-14

1-20

1-24

1-39

2-2

2-2

2--6

2-9

2-12

2-19

2-23

2-25

3-1

3-2

3-3

3--6

4-5

4-5

4-9

4-19

4-24

4-45

5-4

8-3

8-3

8-4

8--8

8-30

8-31

8-130

8-142

8-211

9-7

9-19

10-3

10-3

10-3

10--6

10-19

10-25

xv

xvi

10-7

10-8

11-1

A-1

A-2

A-3
A-4
A-5
A-8
B-1

C-1

C-2

C-3

C-4

C-5

C-6

D-1

D-2

E-1

F-1

Confirmation Error Codes

Parameter Area for Reply Messages

STATUS Variable After CCl Entry

DOS label Record Bytes

Volume label Format

Header 1 label Format .. .

Header 2 label Format .. .

End-of-File or Volume (EOF or EOV) 1 Record Format

End-of-File or Volume (EOF or EOV) 2 Record Format

Card Reader Codes .. .

Severity Standard in Error Messages

Special Abbreviations for Error Descriptions .

Nontrappable Errors in Recoverable Class

User Recoverable Errors .

Nonrecoverable Errors .. .

BASIC-PlUS-2 Errors

Radix-50 Character Positions

ASCII Character Codes .. .

Handler Index .. .

Monitor Directives

10-25

10-27

11-8

A-3
A-5
A-8
A-7

A-8
A-9
B-1

C-2

C-2

C-3

C-3

C-13

C-20

0-2

D-3

E-1

F-1

Objectives

Audience

Preface

This manual describes RSTS/E programming techniques. The descriptions in
clude:

• Directions on how to optimize the use of devices on RSTS/E

• Descriptions of system function calls to the RSTS/E monitor

• General information and programming hints for the system programmer

This manual is for BASIC-PLUS, BASIC-PLUS-2, and MACRO programmers.
It assumes that you know how to program in one of these languages and are
familiar with RSTS/E system concepts and features.

If you program in BASIC-PLUS or BASIC-PLUS-2, this manual contains all
the information you need to use device-dependent features and system function
calls. If you program in MACRO, however, you will need to use this manual as a
companion to the RSTS/E System Directives Manual.

Document Structure

Part I, Devices, contains six chapters. Each chapter describes programming
techniques for a different type of device:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Describes file-structured and non-file-structured disk and flexible
diskette operations. It also describes RSTSIE system files and
privileges.

Describes file-structured and non-file-structured magnetic tape
operations and explains how to process DOS- and ANSI-labeled
tapes.

Describes system features for controlling line printers.

Describes system features for controlling terminals, such as
echo control and multiterminal service. It also describes pseudo
keyboards.

Describes card readers.

Describes the DMClllDMRll interprocessor link.

Describes Ethernet and the commands for using it.

xvii

Part n, System Function Calls and Programming Hints, contains four chapters:

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Describes system function calls available to BASIC-PLUS and
BASIC-PLUS-2 programmers. These calls let you communicate
with the RSTSIE monitor, perform special 110 functions, and set
terminal and job characteristics. Although the call descriptions
are tailored for BASIC programmers, MACRO programmers can
consult this chapter for a detailed description of the corresponding
monitor directives.

Describes system function calls for local message send/receive
operations. As in Chapter 8, the call descriptions are tailored
for BASIC programmers but are intended for use by MACRO
programmers as welL

Describes the system function call for a PrintlBatch Services (PBS)
or Operator Message Services (OMS) request.

Contains system programming hints. It describes the CCL facility
and explains how the monitor handles the SLEEP and conditional
SLEEP statements.

This manual also has seven appendixes:

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G

Describes magnetic tape label formats for DOS and ANSI tapes
and explains how RSTSIE initializes the two types of tapes.

Lists card codes.

Lists RSTSIE and BASIC-PLUS error messages.

Summarizes the Radix-50 and ASCII character sets.

Lists device handler indexes.

Lists the monitor directives that correspond to the BASIC-PLUS
system function calls.

Describes the use of parameters and other features of the
send/receive calls that are specific to an EMT logging program.

Related Documents

xviii

The RSTS / E System User's Guide describes RSTS/E system concepts, and ex
plains how to work with files and devices.

The RSTS / E Utilities Reference Manual describes the use of RSTS/E system
programs.

The BASIC-PLUS Language Manual describes how to program in BASIC-PLUS.

The RSTS / E System Directives Manual describes monitor directives available to
MACRO programmers.

See the RSTS / E Documentation Directory for more information on RSTS/E
manuals.

Conventions

This manual uses the following conventions:

<> Angle brackets enclose essential elements of the item being described.
For example, you must supply an expression in the statement:

SLEEP <expression>

[] Square brackets indicate an optional element or a choice of one element
among two or more optional elements. For example, the CCL DETACH
switch has the form:

[<space>]!DET[A[C[H]]]

The required part of the switch is IDET.

Ctrllx This symbol indicates a control key combination, such as CtrlJU or Ctrl
/0. To enter a control key combination, hold the Ctrl key down while
you press the indicated key.

All examples in this manual are written to execute in BASIC-PLUS EXTEND
mode unless otherwise noted. If you enter them at your terminal, remember
to press the RETURN or LINE FEED key after each command, statement, or
program line.

Summary of Technical Changes for V10.0

Significant changes to the RSTS / E Programming Manual are:

• During installation, the system now copies CSP100.LIB, the system program
resident library, into [0,1]. See Chapter 1.

• Allowable pack cluster sizes now go up to 64. See Chapter 1.

• RSTS/E now supports the RA70, RA90, RD31, RD32, RD53, and RD54 disk
drives. See Chapter 1.

• RSTS/E now supports online creation and deletion of the virtual disk (device
DVO:). See Chapters 1 and 8.

• This manual now includes descriptions of the escape sequences for VT100-,
VT200-, and VT300-family terminals. See Chapter 4.

• RSTS/E now supports Local Area Transport (LAT) for both in-bound and
host-initiated connections. See Chapters 4 and 8.

• RSTS/E now supports dynamic pseudo keyboards. See Chapters 4.

• RSTS/E now supports command recall and command line editing. See
Chapter 4.

• RSTS/E now has a new in-memory structure called the job header, used for
user logical names and command line editing information. See Chapter 8.

xix

xx

• RSTSIE now supports extended user and system logical names. See Chapter
8.

• You can now use the UU.FIL call to control a file's I[NO]BACKUP and
I[NO]IGNORE characteristics. See Chapter 8.

• RSTSIE now supports floating resident libraries. See Chapter 8.

• You can now use the UU.CFG call to set Answerback messages for electronic
messaging services such as TELEX and TWX. See Chapter 8.

• RSTSIE now supports the Operator/Message Services package (OMS). See
Chapter 10.

Part I
Devices

Chapter 1

System Structure and Disk Operations

Disks are file-structured, random access devices. They are the fastest, most
reliable, and most durable type of peripheral device.

RSTSIE is a disk-based system. During timesharing, some parts of the monitor
and run-time system code are always in memory; other parts are on the system
disk and are loaded into memory only when needed. The system disk also stores
system programs and user files.

Because the RSTSIE system is built around disks and their characteristics, this
chapter differs from other chapters on peripheral devices in this manual. Besides
describing both file-structured and non-file-structured disk operations, it also
describes how RSTSIE system accounts are set up and how RSTSIE handles
privileges. This chapter also describes flexible diskettes and the "null device,"
a software structure available on all RSTSIE systems for debugging and for
creating a buffer without tying up a physical device.

1.1 System Accounts

RSTSIE systems have two accounts that are essential to system operation: the
system library account and the system account. The system library account, [1,2],
stores a library of system programs and message and control files. This account
must be present on the system disk. The system account, [0,1], contains RSTSIE
monitor files and routines that are critical to system operation.

The following sections explain these two accounts in detail.

1.1.1 System library Account [1,2]

During system installation, the initialization procedure creates the system library
account [1,2] on the system disk. The system program installation procedure
populates the account with system programs. This section briefly describes the
contents of account [1,2]. See the RSTS / E System Installation and Update Guide
for a directory listing of the account.

The system library stores many of the system programs that are available to
general and privileged users. It also contains text files used by system programs.

System Structure and Disk Operations 1-1

During nonnal system start-up or automatic crash recovery, the START option
accesses the system library automatically. The console keyboard is logged in
automatically under account [1,2]. Then the system invokes the START.COM file
in account [0,1] as a DCL command file. One of the steps in the system start-up
procedure runs the ERRCPY program. Depending on the contents of the start-up
command file, other programs may be started up in account [1,2] as well, or the
system manager may elect to run any of these programs in some other account.

1.1.2 System Account [0,1]

During system installation, the initialization procedure creates the system
account [0,1] on the system disk. The procedure creates two files required for
all RSTSIE disks and stores them in [0,1]: the storage allocation file SATT.SYS
and the bad block file BADB.SYS. Account [0,1] on the system disk also contains
files used for system operation. During system installation, the system copies the
necessary files into [0,1]. See the RSTS / E System Installation and Update Guide
for a directory listing of the account. Some of the most important files are:

• INIT.SYS, the system initialization code

• SWAP.SYS, the primary swapping file

• CRASH.SYS, the crash dump data file

• A file with the file type .SIL, the monitor code

• DCL.RTS, the system default keyboard monitor

• RTll.RTS, a required auxiliary run-time system

• ERR.ERR, the error message text

• CSP100.LIB, the system program resident library

• PKGOO1.MSG and PKG002.MSG, the DCL error message files

The following sections describe the RSTSIE system files.

1.1.2.1 Allocating Disk Storage Space

RSTSIE uses the SATT.SYS file to control the allocation and deallocation of
storage space for a disk. The file maps the entire space on the disk in a bit
map called a storage allocation table (SAT). Each bit in a SAT represents either
allocated or unallocated space. The system sets a bit in the SAT to 1 when that
space is allocated for any purpose.

The system allocates storage space in tenns of pack clusters. Each bit in the SAT
represents one cluster of disk space. A cluster is a fixed number of contiguous
512-byte blocks of storage on the disk. The cluster size defines how many con
tiguous 512-byte blocks are contained in the cluster. RSTSIE defines cluster sizes
for disks, directories, and files.

1-2 System Structure and Disk Operations

Table 1-1 presents the types of clusters and related infonnation.

Table 1-1: Valid Cluster Size Ranges

Maximum
Cluster Size Minimum Size Size

Pack (for any Device Cluster 64
disk) Size (see Table

1-7)

Directory Pack Cluster 16
Size

File Pack Cluster 256
Size

When Defined

At initialization time with DSKINT
option, or on line with the DCL
INITIALIZE command.

At creation of the directory with
either the DSKINT initialization op
tion, CREATE/ACCOUNT command,
or SYS system function.

At creation of the file with either an
OPEN or OPEN FOR OUTPUT state
ment, or the DCL CREATE or COPY
command. Specify cluster size with
the CLUSTER SIZE option. Note that
when you specify a negative cluster
size, the system uses either the abso
lute value of the argument specified
or the pack cluster size, whichever is
greater.

The system manager specifies the disk cluster size either during disk initializa
tion (DSKINT) or on line with a qualifier to the DCL INITIALIZE command. The
pack cluster size defines the minimum number of contiguous 512-byte blocks that
a cluster comprises on a specific disk; thus, the extent of contiguous space each
bit represents in the SAT. A pack cluster size of 1 means that one 512-byte block
of storage is allocated for each bit set to 1. A pack cluster size of 2 means that
two contiguous 512-byte blocks are allocated for each bit set to 1. The minimum
value for a pack cluster size is the device cluster size for the disk type. Allowable
pack cluster sizes are 1, 2, 4, 8, 16, 32, or 64 as long as the pack cluster size is
equal to or greater than the device cluster size of the disk. See Table 1-7 for a
list of disk device cluster sizes.

The pack cluster size affects the efficiency of storage space allocation. A large
size improves access time to programs and files but may waste disk space. For
example, if the pack cluster size is 16, the system allocates one cluster of 16
contiguous blocks to a one-block file: fifteen blocks are wasted. A 15-block file
also requires one cluster but only one block is wasted. Thus, the system manager
must choose the pack cluster size that best fits the type of processing and the
access requirements of the local installation.

Because of the problem of wasted space, Digital recommends you do not use
disks of extended cluster size (32 or 64) for system disks. Use them for a limited
number of accounts and for large data files.

One processing consideration is the use of data caching on the system (see the
section "Caching Control"). While the pack cluster size is set during disk initial
ization and the cache cluster size can be set and changed during timesharing, the
relationship between the two affects the optimal use of the cache. For example, if
the pack cluster size and file cluster size are both 4 and you specify a cache clus
ter size of 8 (see the SET CACHE command in the RSTS / E System Manager's
Guide, or SYS Call 19, Enabling and Disabling Disk Caching), 4 blocks in the
cache contain your file's data and 4 may contain unrelated data. Therefore, if you
plan to use data caching on your system, the pack cluster size that the system

System Structure and Disk Operations 1-3

manager specifies during disk initialization should be equal to or greater than
any cache cluster size you specify during timesharing.

The User File Directory (UFD) has a defined directory cluster size. Its minimum
value is the pack cluster size (or 16 on disks where the pack cluster size is greater
than 16) . The system manager specifies the cluster size during account creation.
A directory cluster size must be a power of 2 up to a maximum of 16 and must be
greater than or equal to the pack cluster size. Thus, for a pack cluster size of 2,
the directory cluster size on that device can be 2, 4, 8, or 16. For a pack cluster
size of 8, a directory cluster size on that device can be 8 or 16.

The directory cluster size limits the size to which a directory can expand. A
directory expands to catalog files and can occupy a maximum of seven clusters.

The directory cluster size determines how many files a user can create under
one account. The following formula gives the number of user files (UF) for each
allowable directory cluster size (UC). (The formula assumes that all files are a
minimum size between 1 and 7 clusters and have no attributes.)

(217 x UC) - 1

3

The maximum number of user files is 72 for a UFD cluster size of 1 and the
maximum UF is 1157 for a UFD cluster size of 16. Note that system performance
is maximized when the UFD contains fewer files.

1.1.2.2 Bad Block File

The bad block file BADB.SYS is the mechanism which the system manager uses
to remove unreliable storage blocks on system and nonsystem disks from use.
The DSKINT option or the DCL INITIALIZE command creates BADB.SYS in
account [0,1]. DSKINT can thoroughly check each block on a disk for reliability.
If any block on a disk pack or cartridge is faulty, DSKINT allocates the pack
cluster in which the bad block resides to the file BADB.SYS. The bad block file,
therefore, contains no data but merely removes from use those clusters found to
contain unreliable blocks.

As a disk is exercised during time-sharing operations, more unreliable portions
of a disk may be uncovered. By checking the data errors recorded in the sys
tem error log, the system manager can isolate these bad blocks. Through the
REFRESH initialization option (see the RSTS / E Installation and Update Guide),
the manager can add newly discovered bad blocks to BADB.SYS. Once the system
allocates a bad block to BADB.SYS, it cannot be deallocated.

Note that MSCP disk controllers for RA-, RC-, and RD-series disks provide their
own built-in handling of bad disk blocks. This is transparent to the system; the
disk appears to have the full number of good data blocks. Occasionally, bad blocks
show up despite the replacement mechanism. So you can still access BADB.SYS,
even on MSCP disks.

1.1.2.3 System Overlay File

The OVR.SYS file contains certain monitor code that resides on disk, not in
memory. The system loads this code into memory on demand and overlays a
certain part of the monitor. The monitor Save Image Library (SIL) normally
contains the overlay code. The system achieves optimum efficiency when this
code resides on the logical center of a fast-access disk.

1-4 System Structure and Disk Operations

If the system disk is not a fast-access disk, the system manager can use the DCL
INSTALL/OVERLAY_ FILE command to create a separate, contiguous file that
contains the overlay code. The manager can optimally position this file on a fast
disk. At the start of time-sharing operations, the system manager can add the
overlay file to the system. Thereafter, the system accesses the copy of the overlay
code in the optimally positioned file rather than in the original code in the SIL.

1.1.2.4 Monitor Save Image Library File

All monitor code, whether permanently resident in memory or loadable as over
lays, resides in account [0,1] on the system disk. This file is structured in Save
Image Library format and must have a file type of .SIL. Multiple monitor files
can reside on the system disk but the system only installs one such file at a time.
The system marks the installed monitor file as nondeletable and loads the file
from disk to memory when time-sharing operations begin.

1.1.2.5 Error Messages File

The ERR.ERR file contains the system error messages. Digital distributes
ERR.ERR with each RSTSIE system. ERR.ERR must exist in account [0,1]
on the system disk.

The DCL INSTALLIERROR_FILE command allows the system manager to create
a separate contiguous file and position it on any disk. The standard name for
this file is ERR.SYS. The system achieves optimum efficiency when this code
resides on a fast-access disk. At the start of time-sharing operations, the system
manager can add this separate file to the error message file on the system.
The monitor copies the contents of the established default error message file to
this optimally positioned file. Thereafter, the system accesses the copy in the
optimally positioned file instead of the established default file.

1.1.2.6 Saving Information After a Crash

The system uses the file CRASH.SYS to save a dump of the read/write area of the
monitor and the extended buffer pool (XBUF) at the time of a system crash.

INIT.SYS automatically creates the CRASH.SYS file on the system disk during
system start-up. If INIT.SYS cannot find sufficient contiguous disk space to
create CRASH.SYS, it prints a warning message before starting the system.

The size of CRASH.SYS depends on the size of the monitor read/write area and
XBUF. The monitor read/write area size varies according to the hardware and
software configuration but is between 64 and 112 blocks. To estimate the number
of blocks needed for XBUF, use the formula:

Size of XBUF in K words * 4

1.1.2.7 Run-Time System Flies

The account [0,1] on the system disk must contain at least one file with a file type
of .RTS. This file is the default keyboard monitor and is automatically loaded
into memory by the monitor at the start of timesharing. The default keyboard
monitor must reside on the system disk because that disk is the only one logically
mounted at system start-up time.

DCL.RTS is the system default keyboard monitor. In addition, RT11.RTS is also
required on the system. The system manager can add auxiliary run-time systems
(other files with .RTS file types in account [0,1]).

System Structure and Disk Operations 1-5

All run-time system files (as wen as resident library files) must occupy contiguous
space on disk. This condition allows a run-time system (or resident library) to be
loaded into memory as fast as possible.

1.1.2.8 System Prog ram Resident library

Account [0,1] on the system disk contains the resident library CSPI00.LIB.
Because nearly all system programs use CSPI00.LIB, this resident library is
required on the system. CSPI00.LIB is automatically installed during system
start up.

CSPI00.LIB is a floating resident library. See the system function call,
Manipulate Run-Time System, Resident Library, Dynamic Region (SYS -18),
for more information about floating libraries.

1.1.2.9 Initialization Code

The INIT.SYS file contains the system initialization code. INIT.8YS resides
in account [0,1] on the system disk. When the system disk is bootstrapped, a
secondary bootstrap loads the main part of the initialization code into memory.
The initialization code is a large, stand-alone program that performs consistency
checks on system software and hardware. It allows the system manager to:

• Initialize and format disks

.. Install patches

.. Enable and disable device controllers

.. Manipulate files in account [0,1] on both system and non-system disks

• Change some default timesharing characteristics

ill Add bad blocks to the bad block file BADB.SYS in account [0,1J.

At the start of timesharing, the RSTSIE monitor code replaces the initialization
code in memory.

1.1.2.10 Swapping Storage

Nonresident jobs on RSTSIE are kept in predefined areas on disk called swap
files. RSTSIE provides four distinct swap files: SWAP. SYS , SWAPO.SYS,
SWAP1.SYS, SWAP3.SYS. Swap file number 2, named SWAP.SYS, is required
on all systems; the other files are optional. SWAP.SYS must reside on the system
disk.

During system installation, INIT.SYS automatically creates the SWAP.SYS
file in account [0,1] at a size large enough for 1 job. Later on in the system
installation, the system manager can create a SWAP1.SYS file at a size large
enough to hold the rest of the jobs on the system. Or, the system manager can
later create multiple swap files (up to a total of 4) to provide swap space for all
jobs. The system manager can locate some or all of these files on disks other than
the system disk, preferably on high speed disks that do not contain frequently
accessed files. See the RSTS / E System Installation and Update Guide for details.

RSTSIE uses swap files in a predefined way. For example, the system stores a
highly interactive job that must be removed from memory in the lowest numbered
file available. The system searches for an empty space starting at the lowest
numbered active file. On the other hand, a job with infrequent activity is stored
in the highest numbered file available. Such relatively inactive jobs are those
that sleep until an event occurs. The system error logging program ERRCPY is
an example of a relatively inactive job.

1-6 System Structure and Disk Operations

(

A swap file can be either a file or an entire device, for example, a high speed disk.
The best device to use for swap files on a system depends on the types of devices
available and the amount of data swapped.

Table 1-2 shows the approximate amount of time (in seconds) needf'd to transfer
different size job images for various types of disks. Actual times will be longer if
the disk is accessed in other ways, for example to read user file data.

Table 1-2: Swap Times

Job Size (in words)

Disk 8K 16K 28K 32K 64K

RLOll02 .10 .13 .IS .19 .32

RK05 .16 .25 .3S .43 .7S

RK06/07 .OS .11 .15 .17 .29

RP04 .06 .OS .11 .12 .20

RP05/06 .06 .OS .11 .12 .20

RM02 .06 .OS .11 .12 .20

RM03/05 .05 .06 .OS .09 .14

RMSO .05 .06 .OS .09 .14

RA60 .06 .07 .OS .OS .11

RA70 .03 .05 .07 .07 .12

RABO .05 .06 .OS .09 .14

RASI .04 .05 .06 .07 .10

RA90 .02 .04 .05 .05 .07

RC25 .04 .06 .07 .OS .13

RD31132 .07 .09 .14 .15 .27

RD51 .11 .14 .17 .19 .29

RD52 .OS .10 .14 .15 .26

RD53/54 .06 .09 .13 .14 .25

Calculate the swap times for each disk by using the formula:

Job size· 2
Swap time = Avg access time + ----

Transfer speed

where:

Average access time

Transfer speed

Job size

measured in seconds, is defined as the sum of the average seek
time and the average latency time.

is measured in kilo-bytes per second (KB/S).

is measured in kilo-words (KW).

When a file is used as a swap file, the system manager can further reduce the
swap time by using the !POSITION switch on the file specification to position the
file in the middle of the disk. This minimizes the time required for positioning
the read/write heads. On systems with multiple disks, the system manager can
position two files on separate drives to take advantage of overlapped seeks.

System Structure and Disk Operations 1-7

A swap file other than file 2 (SWAP.SYS) is dynamic. The system manager adds
files at the start of timesharing to allow the maximum number of jobs to run.
During timesharing, a swap file can be removed and added again as another
device or file. Dynamic addition and removal of swap files allows timesharing to
continue when hardware problems on a device being used for swapping would
normally require discontinuing system operation.

1.1.2.11 System Account [0,1] on Nonsystem Disks

The system account [0,1] on a nonsystem disk initially contains two required
files: SATT.SYS and BADB.SYS. The DSKINT initialization option or the DCL
INITIALIZE FILE command similarly creates these files for nonsystem disks as
for the system disk. Account [0,1] on a nonsystem disk, either public or private,
can contain other optional system files.

The REFRESH initialization option manipulates system files in account [0,1]
on a nonsystem disk as well as on the system disk. The following DCL com
mands perform related operations: the !ERROR_FILE, /SWAP _FILE, and
/OVERLAY_FILE qualifiers of the INSTALL and REMOVE commands; the SET
FILE/[NO]DELETABLE command. See the RSTS / E System Managers Guide for
more information about these commands.

Both the REFRESH option and DCL commands can create and position contigu
ous files (such as a swap file or the overlay file) on a nonsystem disk. They can
also mark files in account [0,1] as nondeletable. Note that only REFRESH can
add blocks to the BADB.SYS file. Nonsystem disks can also contain auxiliary
run-time system files.

1.2 Storage of Accounting Data

This section describes how accounting data is stored on system and nonsystem
disks. It describes:

• Accounting data on the system device.

• Accounting data on nonsystem disks.

1.2.1 Accounting Data on the System Device

Project-programmer numbers (PPN) and passwords control access to the RSTS!E
system. The system manager, or anyone who has sufficient privilege (GACNT for
group, WACNT for all), creates a new account by using the CREATE/ACCOUNT
command (see the RSTS/E System Manager's Guide). The manager enters the
PPN and password for the new account, along with other information, to allow a
user access to system facilities.

The new account information is stored on the system device. During account
creation, the system manager has the option to preextend and position the UFD
(see SYS Call 0, Create User Account). By default, the system preallocates
one cluster for the UFD. The UFD is related directly to the user's account and
contains information about the files created under that account number.

The system disk structure contains information about all UFDs (accounts) on
the system. When a user tries to gain access to the RSTS!E system by giving an
account and password, the system program LOGIN checks whether the PPN and
password given match one stored on disk. If so, the system allows access.

1-8 System Structure and Disk Operations

Besides the LOGIN program, other system commands and programs also access
the account information. For example, the SHOW ACCOUNT command refer
ences the accwnulated system accounting information. The system manager uses
the SET/ACCOUNT command to reset this accounting data or change certain
parameters such as disk quota. The LOGOUT system program references the
disk quota information.

Table 1-3 lists the account information that the system keeps for each account.

Table 1-3: Account Information Stored on the System Device

Type

Identification

Accumulated Usage

Description

Project-programmer
number (account)

Password

Central Processor Unit
(CPU) time (Run Time)

Connect Time (log-in
time)

Kilo-core-ticks (KCTs)

Device time

Disk Storage and Quota
System Resource Usage

Explanation

The PPN has the format [n,m]
where nand m are decimal num
bers that identify the user.

6 letters and/or digits (old format).
14 ASCII characters (new format).

Processor time the account has
used to date, in tenths of a second.

Number of minutes the user has
been connected to the system
through a terminal or remote line.

Memory usage factor. One KCT is
the usage of 1K words of memory
for one tenth of a second.

Number of minutes of peripheral
device time the account has used.

Number of 512-byte blocks the
user is allowed to retain. Types of
quotas include logged-out, logged
in, job, detached-job, message, and
RIB.

Using SYS system function calls, users who have GACNT or WACNT privilege
can write programs that access the accounting information. See the description of
the system function calls in Chapter 8.

1.2.2 Accounting Data on Nonsystem Disks

The system disk exists in what is called the public structure. The system
manager can add additional disks to the public structure or add them as private
disks. Disks other than the system disk are called non system disks. Each disk
added to the system also contains its own directory structure, which is created
when the system manager initializes the disk. A nonsystem disk initially contains
UFD information for account [0,1] as well as storage information.

Accounts on public disks are treated differently from accounts on private disks.
RSTSIE allocates space for a user's file in the public structure on the disk that
has the most free space. (RSTSIE never puts files on the virtual disk, DVO:,
automatically.) If the user's account does not yet exist on the disk with the most
free space, the account nwnber is added dynamically to that disk and a UFD is
created for the user on that disk. A user cannot create a file on a private disk
unless the account nwnber already exists on that disk. The system manager or a
sufficiently privileged user grants access to a private disk by entering the account
information on the desired disk with the CREATE/ACCOUNT command.

System Structure and Disk Operations 1-9

1 .3 Privi leges

The system manager must have a way to prevent general access to activities
that can damage the system. Prior to Version 9.0, RSTS/E allowed the system
manager to divide users into privileged and nonprivileged groups. Nonprivileged
users were restricted to activities that could cause no system damage. Privileged
users had access to aU activities.

The multiple privileges feature gives the system manager finer control over access
to activities. Now the system manager can limit the user's access to just those
activities suitable to the user's job. Multiple privileges gives the system manager
a tool to enhance system performance, security, and more easily delegate certain
operations.

1.4 Multiple Privileges

The multiple privilege feature groups similar system functions into sets and
defines a privilege to control access to each set of functions. A group of 35
privileges govern the entire set of RSTSIE system functions. The privileges
given to an account determine the range of functions available to the user. Some
privileges apply to very specific functions; others control functions within broader
classes of system use.

Table 1-4 summarizes the RSTSIE privileges.

Table 1-4:

Privilege

DATES

DEVICE

EXQTA

GACNT

GREAD

GWRITE

HWCFG

HWCTL

INSTAL

JOBCTL

MOUNT

OPER

PBSCTL

RDMEM

RSTS/E Privileges

Description

Change system date/time and file dates.

Access restricted devices.

Exceed quotas or memory maximum. (Not usually given to users; used
by privileged programs.)

Perform accounting operations on accounts in the user's group.

Read or execute any file in the user's group, regardless of protection
code.

Write, delete, create, or rename any file in the user's group, regardless
of protection code.

Set hardware configuration parameters; for example, set terminal
characteristics.

Control devices; for example, disable a device or hang up a dial-up line.

Install run-time systems, swap files, and resident libraries.

Manipulate other jobs; for example, detach or kill a job.

Mount or dismount disks other than NOSHARE.

Enable or disable operator terminals, and show or reply to requests.

Control PrintlBatch Services (PBS); for example, turn servers on or off,
and change printer forms.

PEEK at memory. (Not usually given to users; used by privileged
programs.)

(continued on next page)

1-10 System Structure and Disk Operations

Table 1-4 (Cont.): RSTS/E Privileges

Privilege

RDNFS

SEND

SETPAS

SRUTUP

SWCFG

SWCTL

SYSIO

SYSMOD

TMPPRV

TUNE

USERl-8

WACNT

WREAD

WRTNFS

WWRITE

Description

Read a disk non-file-structured.

Broadcast to terminals and send messages to restricted receivers.

Change your own password.

Shut down the system.

Set software configuration parameters; for example, installation name.

Control software components; for example, turn DECnet on and off.

Perform restricted 110 operations; for example, gain write access to files
in account [0,*], or set the privilege bit on nonexecutable files.

Perform functions that could easily modify the system; for example,
poke memory.

Set privilege bit (128) in the protection code of an executable program.

Control system tuning parameters; for example, caching or job priority.

Available for customer applications. Not used by RSTSIE.

Perform accounting operations on any account.

Read or execute any file regardless of protection code.

Read/write a disk non-file-structured.

Write, delete, create, or rename any file regardless of protection code.
(For [0,*] accounts, SYSIO is required in addition to WWRITE.)

1.5 Classes of System Functions

Most system activities fall into two general classes:

• Account Management Activities

• File Access Activities

The next two sections describe these two classes of system activities and discuss
the privileges that control them.

1.5.1 Account Management Activities

A user accesses a computer through an account. The individual account is a
member of the "group," which contains all accounts with the same project number.
The group, in turn, is a subset of the "world," which contains all accounts on the
system. Account management activities include creating and deleting accounts,
as well as changing passwords, disk quotas, and expiration dates.

The following privileges control account management:

GACNT

WACNT

SETPAS

Group Account Management-Grants account management privileges
within the user's group.

World Account Management-Grants account management privileges
for all accounts.

Set Password-Allows changing one's own password.

System Structure and Disk Operations 1-11

Table 1-5 outlines the account management activities and the privileges required
to perform them.

Table 1-5: Account Management Privileges

Activity Self Group World

Create/delete account GACNT or WACNT (for GACNTor WACNT
nonsystem disks), WACNT

Set account parameters GACNT or WACNT GACNTor WACNT
WACNT

Set password SETPAS or GACNT or GACNT or WACNT
WAC NT WACNT

Read account data Always allowed, except GACNTor WACNT
/parameters password WACNT

Read/reset account data GACNT or WACNT GACNTor WACNT
WACNT

·Create does not apply to the system disk; you cannot delete your own account.

1.5.2 File Access Activities

Users routinely access files. The user creates some files, which reside in the
individual's account. Other files reside in the accounts of other users or in system
accounts. File access activities include: creating, deleting, renaming, reading,
writing, and executing files.

Both the protection code of the file and the privileges granted to the user can
affect whether the system grants or denies file access.

On a system with equal privileges granted to all users, protection codes control
the operations that a user can perform on a file. The SET PROTECTION
command (or the !PROTECTION switch in the RSTSIE file specification) passes a
value to the system that sets bits in the protection code byte. When a bit is set,
the system prohibits activity named by that bit.

Figure 1-1 shows the value and meaning of each protection code bit.

1-12 System Structure and Disk Operations

Figure 1-1: RSTS/E File Protection Codes

If Executable Bit Not Set

128 64 32 16 8 4 2

Priv Exe (0) Write Read Write Read Write Read
World World Group Group Owner Owner

If Executable Bit Set

128 64 32 16 8 4 2

Priv Exe (1) Read, Exe Read, Exe Read, Exe
Write World Write Group Write Owner
World Group Owner

Certain privileges also govern file access activities. Some privileges override
protection codes completely. The following privileges grant a user the right to
perform certain file access activities, regardless of protection codes:

GREAD

WREAD

GWRITE

WWRITE

Group Read-Read the data in any file within the group. Also, execute
a program, if the executable bit is set.

World Read-Read the data in any file in on the system. Also, execute
a program, if the executable bit is set.

Group Write-Modify, extend, or delete the data in any file within the
group.

World Write-Modify, extend, or delete the data in any file on the
system.

System Structure and Disk Operations 1-13

Table 1-6 summarizes the file access activities and the rules that govern file
access.

Table 1-6: File Access Privileges

Function Self Group World

Read Yes, if protection GREAD or WREAD or protection
code permits, WREAD or code permit
or GREAD or protection code
WREAD permit

WritelDelete Yes, if protection GWRITE or WWRITE or protection
code permits, WWRITE or code permit (and SYSIO
orGWRITE or protection code if account [0,*])
WWRITE permit

Execute Yes, if protection GREAD or WREAD or protection
code permits, WREAD or code permit
orGREAD or protection code
WREAD permit

CreatelRename/Zero Yes GWRITE or WWRITE (and SYSIO if
WWRITE account [0,*])

1.6 Multiple Privilege Masks

The system manager assigns a certain set of privileges to each account. The
system stores this set of privileges in privilege masks. A privilege mask is a set
of flag bits with one bit corresponding to each privilege. When a flag bit is set,
the user acquires the corresponding privilege.

For each active job, RSTSIE keeps three masks:

• Authorized mask-The set of privileges that the system manager gives to the
account. You can use the SHOW ACCOUNTIFULL command to list the set of
privileges available to your account.

• Current mask-The set of privileges now in effect for the job. The system
always references this mask when it performs a privilege check. You can raise
or lower your privileges (up to your authorized limit) with the SetiClearlRead
Current Privileges SYS Call (SYS 28), or the DCL SET JOB!PRIVILEGE
command. You can list your current set of privileges with the SHOW JOB
!PRIVILEGE command.

• Saved mask-The saved record of the current privileges when a job gains
temporary privileges (see the section "Temporary Privileges").

When a user attempts to perform an activity that is restricted by one or more
privileges, the system performs a privilege check. This check examines the
current mask to determine if the requesting job has all the privileges required to
perform the activity. If the requesting job has insufficient privilege to perform the
activity, the system returns one of the following errors:

?Protection violation (ERR=10)

?Illegal SYS() usage (ERR=18)

1-14 System Structure and Disk Operations

1.7 Multiple Privileges and Jobs

The following sections describe how the monitor handles privilege information
during the life of a job. They describe:

• Job creation

• Login

• Logout

• Spawned jobs

1.7.1 Job Creation

1.7.2 Login

At job creation, the monitor initializes both the CUlTent mask and the authorized
mask, giving them all privileges except SYSMOD and TMPPRV. This applies to
all newly created jobs with the exception of those created by SYS 24, Create a Job
(see Chapter 8).

When a job logs in, the Login SYS call (SYS 4) looks up the authorized mask in
the account attributes. It copies this mask into the saved and authorized masks,
ORs it into the CUlTent mask, and sets the job status to indicate the job has
temporary privileges in effect.

If a program logs in, it now has all the privileges it originally had, plus possibly
some new ones. When a program exits, the user has all authorized privileges
enabled.

A user who logs in may not want all his authorized privileges to be active at
login. In that case the user can employ a LOGIN. COM file to initially drop some
privileges.

1.7.3 Logout

When a job logs out, the monitor clears the group-related privileges GACNT,
GREAD, and GWRITE in all three privilege masks. This is done because the
job is currently running with PPN = 0, effectively putting it in group zero. The
monitor drops group privileges because the intent of these privileges is to allow
access to the user's group, not group zero.

Apart from losing group privileges, a job neither gains nor loses any privileges as
a result of logging out. Note that the Logout SYS call (SYS 5) performs a self-kill
except when the job cUlTently has WACNT privilege.

1.7.4 Spawned Jobs

The Create A Job SYS call (SYS 24) creates a spawned job. For jobs spawned
logged-in, the monitor usually gives the spawned job the same set of authorized
and CUlTent privileges as the account it logs in to. This is done before the
program, if any, is run. If the program is a privileged program, the usual
additional privilege processing takes place (see the section "Running a Privileged
Program").

System Structure and Disk Operations 1-15

As an option, the caller of the Create a Job SYS call can specify that the created
job have fewer privileges.

Jobs spawned logged-out are given the same privileges as the job issuing the
spawn function.

Spawning a job logged-in to an account other than the caller's requires accounting
(GACNTIWACNT) privilege. Logged-out spawn requires WACNT privilege.
Spawn therefore allows users with accounting privilege to create jobs that have
some other account's privileges, possibly more than their own.

1.8 Writing Applications Using Multiple Privileges

When you write applications in RSTSIE V9.0 or later, you must correctly use
the multiple privileges features. The following sections explain how to best use
multiple privileges within your program. They describe:

• Writing programs protected <124> and <104>

• Writing programs protected <232> (privileged programs)

• Performing access and privilege checks

• Program exit

• Multiple privilege system function calls

1.8.1 Writing Programs Protected <124> and <104>

Before V9.0, only a "privileged" user could run an executable program residing
in a [1,*] account with a protection code of <124> (60+64). These programs could
safely assume that anyone able to run the program had all the privileges required
to perform all of the program's steps (an exception to this was POKE, which
required the program to be run from account [1,1]).

Since V9.0, the concept of "privileged" user is no longer all inclusive. If you have
WREAD (world read) privilege, you can execute any program protected <124>
on the system, even though you may not have all the privileges required for the
program to work properly.

It may be acceptable to simply leave programs protected <124> as is. These
programs will succeed or fail depending on the privileges of the user who executes
them. However, some <124> programs may require the user to have several
different privileges in order to succeed. If a user has some but not all of the
privileges required, the program may partly succeed; it can complete some of its
tasks but may fail at others. This may be undesirable, especially where failing
part way through a multistep operation could leave a file or other data corrupted.

The solution to this problem is for such programs to do a privilege check at the
beginning of the program, to ensure that the user has all the required privileges
before proceeding. You can use the Check Access Function SYS call (SYS 32)
to determine if a user has a particular privilege. See Chapter 8 for a complete
description of this call.

Once you add a privilege check to <124> programs, you can safely lower the
program's protection code to <104> (40+64). Protection code <104> allows any
user on the system to run the program. The up-front privilege check terminates
the program if its user does not have the proper privileges.

1-16 System Structure and Disk Operations

For example, suppose a program requires HWCFG, SWCFG, and TUNE privilege
in order to work properly. The program should initially perform a check to ensure
that any user running the program has all three privileges before continuing. If
the user has HWCFG and SWCFG privilege, but lacks TUNE privilege, then the
program issues an error message and terminates.

If you still want program privacy, you can leave the program's protection code
<124>, allowing only users with WREAD (or GREAD if the program resides in
the same group as the user) to access the program or display it in a DIRECTORY
listing.

1.8.2 Writing Programs Protected <232>

In some cases, you may not want to require users to have aU the privileges
that a program needs to work properly. In such cases, you can give a program
temporary privilege by setting the privilege bit (128) in its protection code. When
a privileged program is executed, it receives aU privileges except SYSMOD and
TMPPRV,

Any program with a protection code of <192> or higher is privileged. The nonnal
protection code associated with privileged executable programs is <232>, granting
execute access to all, but restricting read/write access to the owner.

For security purposes, the system places two restrictions on privileged programs:

., You need TMPPRV privilege to designate a program as privileged.

• A privileged program that resides on a disk mounted /NOSHARE will not
have temporary privileges when run. This restriction prevents an outsider
from acquiring privileges by bringing in a privileged program on a private
pack. To be able to mount a disk ISHARE, you need MOUNT privilege.

Privileged programs may be available to all users (for example, SYSTAT), or they
may be restricted by including a check for some privilege at the beginning. Using
the previous example, if you make a <104> program privileged (protection code
<232», it can check at the beginning for only TUNE privilege. The program
proceeds for those users with TUNE privilege, even though the program itself
requires HWCFG and SWCFG privilege as well. Be sure to drop temporary
privilege before doing the privilege check, so that the user's privileges are
checked, not the program's (see the next section).

SHUTUP is an example of such a privileged program. It requires a variety of
privileges to remove jobs, remove runtime systems, dismount disks, and issue the
Shut Down System SYS call (SYS -16). Instead of requiring a user to have all of
these privileges, SHUTUP is installed as a privileged program (protection code
<232» and only requires the user to have SHUTUP privilege in order to perform
all of its steps. SHUTUP returns the error message ?SHUTUP privilege required
if a user without SHUTUP privilege attempts to run it.

Whenever such a program drops temporary privilege, the program's privileges are
saved and the user's own privileges are re-enabled. When temporary privileges
are regained, the two sets of privileges are exchanged again. If temporary
privileges are permanently dropped, then the user's privileges are re-enabled and
the program's temporary privileges are lost.

You should be careful when you create privileged programs. In general, a
privileged program should execute most of its functions with temporary privileges
dropped, raising them just before executing a privileged operation and then
dropping them immediately following the operation.

System Structure and Disk Operations 1-17

Pay special attention to BASIC-PLUS error handling under such conditions. If a
privileged operation causes an error, control may be passed to an error handler
with temporary privileges still enabled. Be sure that there are no paths in the
program where temporary privileges may be accidentally left enabled.

1.8.3 Program Access and Privilege Checks

When designing programs, avoid duplicating the monitor's access and privilege
checks in your program. When performing an operation that depends on the
user's privileges and/or a file's protection code, a program should simply perform
the operation (with temporary privileges disabled if a privileged program), and let
the monitor enforce its access and privilege rules. Duplicating such checks in the
program itself is inefficient and may lead to incompatibility in the future.

For example, suppose you want to design a privileged program that creates a
file in a user-specified location (device and account). Rather than having the
program determine if the user is authorized to create the file in the location
specified, simply drop temporary privileges and create the file. If the user lacks
the required privileges, the monitor blocks the file's creation and returns an
error. The program can then report the error and reprompt the user for a new
file location. Note that this program win continue to function properly, even if
RSTSIE access and privilege rules change in the future.

Several system function calls allow programs to more easily establish access
rights and privileges. Digital recommends you use these calls where possible. See
the section "Multiple Privilege System Function Calls" for a summary of the calls.

1.8.4 Program Exit

Whenever a program exits or chains to another program, the monitor performs
the following privilege-related cleanup:

• If temporary privileges are in effect, the monitor cancels them.

• The monitor cancels any third-party privilege check currently in effect. (See
the Third-Party Privilege Check SYS call, SYS 31.)

• If the job is currently logged-out and does not have WACNT privilege, and the
program exits, the monitor kills the job. Chaining among programs is possible
without restriction when logged out, but other operations that exit the current
program result in a self-kill. Note that the Logout SYS call (SYS 5) performs
a self-kill immediately unless the caller has the WACNT privilege.

" If the program being exited is a privileged program, the monitor clears the
job's memory and sets the job size to the minimum size for the job's default
keyboard monitor.

" All open files are closed.

1-18 System Structure and Disk Operations

1.9 Multiple Privilege System Function Calls

Five SYS calls control multiple privileges:

• DroplRegain Temporary Privileges (SYS -21}-This call allows a program to
selectively use temporary privileges.

• SetiClearlRead Current Privileges (SYS 28}-This call reads the current mask
and selectively sets and/or clears bits in it. The SET JOBIPRIVILEGE and
SHOW JOBIPRIVILEGE commands use this call.

• Third-Party Privilege Check (SYS 31}-This call enables or disables third
party privilege checking. Server programs such as spoolers use this call to
perform privilege checks for users who request the service.

• Check Access Function (SYS 32}-This call performs a variety of privilege
checking functions. It checks file access rights, converts a privilege mask to
names, and converts privilege names to mask.

• Send Privileges (SYS 22}-This new subfunction of the SendlReceive call
permits a program to pass a job's current privileges to another program.

See Chapter 8 for a detailed description of each SYS call.

1.10 Non-File-Structured Disk Operation

Non-file-structured disk operation lets sufficiently privileged users (RDNFS,
WRTNFS privileges) access specific blocks on a disk.

You can process non-RSTS/E file-structured disks under RSTS/E and use an
entire disk as a single file. Non-file-structured processing also allows system
programs, such as SAVEIRESTORE (see the RSTS / E System Manager's Guide),
to optimally process file-structured disks.

NOTE

The data you look at when reading a disk as a non-file-structured
device is internal to RSTS/E and is subject to change at any time.

1.10.1 Opening a Disk for Non-File-Structured Processing

If you have RDNFS privilege, you can open a disk in non-file-structured mode. To
access a disk for non-file-structured processing, specify only a device designator
in the OPEN statement. Only the OPEN and OPEN FOR INPUT statements are
valid. The following two sample statements are equivalent:

100 OPEN "DL1:" FOR INPUT AS FILE 1%

100 OPEN "DL1:" AS FILE 1%

Both allow reading and writing of physical blocks on RL unit 1. An OPEN FOR
OUTPUT statement results in the error ?Disk pack is not mounted (ERR=21).
For example:

100 OPEN "DL1:" FOR OUTPUT AS FILE 1%

You need RDNFS privilege to read a disk that is open in non-file-structured mode.
You need WRTNFS privilege to write to the disk. To prevent other programs from
accessing a non-file-structured disk, a job with HWCTL privilege can allocate the
device.

System Structure and Disk Operations 1-19

1.10.2 Accessing Large Clusters

For cluster sizes greater than 16 (on RA82 disks, for example), the default buffer
size to access the disk in cluster mode is larger than other disks. This may cause
user programs to receive a "?Maximum memory exceeded" error when they use
cluster mode I/O on the extended disks. This does not happen with small disks
of pack cluster size greater than 16, but only with disks with device cluster sizes
greater than 16.

Since RSTSIE uses an MFD/GFDIUFD cluster size of 16 on disks with a pack
cluster size greater than 16, user programs that directly access directory struc
tures may have to be modified. Any program that calculates the cluster ratio
by dividing the MFD/GFDIUFD cluster size by the pack cluster size must be
modified. Since the cluster ratio is less than one, the program should set it to
one.

1.10.3 Accessing Device CI usters

Before writing a program that accesses a disk as a non-file-structured device,
you need to understand the terms logical block, device cluster, device cluster size,
device cluster number, and default buffer size:

• A logical block is 512 bytes of disk data. Logical blocks are numbered starting
at O.

• A group of contiguous logical blocks forms a device cluster. The device cluster
size is the number oflogical blocks in the group. It is fixed for each type
of disk at 1, 2, 4, 8, 16, 32, or 64. The device cluster size represents the
minimum amount ofinformation (the minimum number oflogical blocks) that
can be retrieved or written in one non-file-structured 110 operation. Device
clusters are numbered from 0 to the maximum shown in Table 1-7.

• The default buffer size for all disk units when open in non-file-structured
cluster mode is the device cluster size multiplied by 512 bytes.

Table 1-7 lists the default disk characteristics.

Table 1-7: Non-File-Structured Disk Default Characteristics

Minimum
Device Cluster Default Buffer Total Size (in Maximum Device Cluster

Device Size Size (Bytes) Blocks) Number

RX33 1 512 2400 2399

RX50 1 512 800 799

RK05 1 512 4800 4799

RK05F 1 512 4800 per unit; 2 4799 per unit; 2 units per
units per drive drive

RL01 1 512 10,220 10,219

RL02 1 512 20,460 20,459

RD31 1 512 41,560 41,559

RD32 2 1024 83,204 41,601

(continued on next page)

1-20 System Structure and Disk Operations

Table 1-7 (Cont.): Non-File-Structured Disk Default Characteristics

Minimum
Device Cluster Default Buffer Total Size (in Maximum Deyice Cluster

Deyice Size Size (Bytes) Blocks) Number

RD51 1 512 21,600 21,599

RD52 1 512 60,480 60,479

RC25 1 512 50,902 per unit; 50,901 per unit; 2 units per
2 units per spindle
spindle

RK06 1 512 27,104 27,103

RK07 1 512 53,768 53,767

RD53 4 2048 138,668 34,666

RM02/03 4 2048 131,648 32,911

RP04/05 4 2048 171,796 42,948

RM80 4 2048 242,575 60,643

RM05 8 4096 500,352 62,543

RP06 8 4096 340,664 42,582

RA60 8 4096 400,175 50,021

RA70 16 8192 547,040 34,189

RA80 4 2048 237,208 59,301

RA81 16 8192 891,056 55,697

RA82 32 16,384 1,216,640 38,019

RA90 64 32,768 2,376,128 37,126

Virtual disk 1 1 512 4 * #Kwords Varies with size
allocated

IThe virtual disk is not a physical device. It is a logical device created from memory.

After you open a disk for non-file-structured processing, use the RECORD or
BLOCK option in GET and PUT statements to read and write a specific cluster
on the disk. The number you specify designates a device cluster number. Thus,
on an RK05, BLOCK 4100 refers to device cluster number 4100 on the disk,
because the device cluster size for an RK05 is 1.

The system can access device cluster 0 only immediately after an OPEN state
ment. The GET or PUT statement that accesses device cluster 0 must either
specify BLOCK 0 or omit the BLOCK option. Once the disk has been accessed,
omitting the BLOCK option or specifying BLOCK 0 in a GET or PUT statement
accesses the next sequential device cluster. Note that you can use COUNT to
read a partial block (see the section "Partial Block Operations on Disk"), however
the system positions itself at the start of the next cluster following the operation.

After you perform 110 to the disk, the only way you can access device cluster 0 is
by closing the disk and reopening it for non-file-structured access. This statement
reads the first block of an RK05:

100 OPEN "DK1:" AS FILE 1%

\ GET *1%, BLOCK O.

System Structure and Disk Operations 1-21

CAUTION

On a RSTSIE file-structured disk, logical block 0 contains the bootstrap.
The remaining blocks, if any, in device cluster 0 contain no data.
Writing to device cluster 0 on a RSTSIE file-structured disk destroys
the bootstrap. Because of this, you must have the SYSMOD privilege
to write to device cluster O.

If the program attempts to read or write beyond the end of the disk, the ?End of
file on device (ERR=l1) error occurs.

You can improve total throughput by specifying a large buffer size. This permits
a single disk transfer to read a large quantity of data. 'Ib change the buffer size,
include the RECORDSIZE option in the OPEN statement.

The RECORDSIZE specified should be an integral multiple of 512 times the
device cluster size. For example, the following statement opens the RK05 disk on
unit 1 for non-file-structured processing and sets the buffer size to 2048 bytes:

100 OPEN "DK1:" AS FILE 1%, RECORDSIZE 2048%

See the BASIC-PLUS Language Manual for a description of the RECORDSIZE
option in OPEN statements.

1.10.4 Non-File-Structured Block Access: MODE 128%

Specify MODE 128% in a non-file-structured OPEN statement to access logical
disk blocks instead of device clusters. MODE 128% lets you perform read/write
operations on individual disk blocks.

'Ib access blocks on the disk, specify MODE 128% in the OPEN statement and
use the BLOCK option in the GET or PUT statement. The BLOCK option accepts
a floating-point argument that represents the desired block (where block 1 is the
first block on the disk, the pack label). See the BASIC-PLUS Language Manual
for a description of the BLOCK option in GET and PUT statements. You may
need MODE 128% to access large disks with large buffersize requirements (32 or
64).

1.10.5 Access to Bad Block Information: MODE 512%

MODE 512% in a non-file-structured OPEN statement allows a program to read
beyond the last writable portion of a disk. The DCL INITIALIZE command uses
this mode to read the factory bad block file, which is located beyond the last
writable portion of the disk.

MODE 512% also suppresses errors normally logged by the system error logger.
The system sends these errors to your program if you declare the program as a
local receiver with object type code 64% (see Chapter 9).

Note that this mode is reserved for use by the disk initialization program and is
not intended for general use.

1-22 System Structure and Disk Operations

1.10.6 Privilege and Access

You do not need to logically mount a disk that is being processed in non·file·
structured mode. Mter you insert the disk into its drive, you can read or
write to it if you have the appropriate privilege (RDNFS, WRTNFS). If you
only have RDNFS privilege, you can read the disk regardless of the number of
users accessing it, but if you attempt to write on the disk while another user is
accessing it, a ?Protection violation error occurs.

If the disk is logically mounted, you have only read access while doing non· file·
structured processing, unless you have both WRTNFS and SYSMOD privilege
and specify MODE 16384.

By testing bits 9 and 10 of the BASIC·PLUS variable STATUS, the user program
can detennine what accesses it has. See the BASIC-PLUS Language Manual for
a description of the STATUS variable.

1.10.7 Allocating a Disk Unit

1.11

You can allocate a dismounted disk unit to your current job if you have the
HWCTL privilege. This action prevents access by other users to the drive when
you perfonn non· file· structured operations on a volume mounted in the drive.

When a dismounted disk is allocated, the system limits access to the drive. The
drive cannot be logically mounted. If the job to which the drive is allocated
has the necessary privileges, it has both read and write access to the disk.
Other users who have the RDNFS or WRTNFS privilege can read the disk in
non·file·structured mode but cannot write on the disk.

Allocating the disk unit can be useful when perfonning I/O. If you need to CLOSE
and reopen and GET or PUT block 0, you do not lose ownership of the disk while
it is closed.

The output of the SHOW DISK command shows an allocated drive as non·file·
structured (NFS) and private (Pri). For example, the following portion of a SHOW
DISK command output shows that disk DM1 is assigned.

Disk Structure:
Dsk Open Size Free Clu Err Name Level Comments
DM1 1 1 0 Pri, R-O, NFS
DR1 45 131648 30052 22% 4 0 A 1.2 Pub, DLW, LDX
DR2 0 242576 33040 13% 8 0 R 1.1 Pri, R-O, DLW
DR3 8 500352 56296 11% 8 0 W 1.2 Pri, DLW, LDX
DR4 0 242572 17528 7% 4 0 M 1.1 Pri, DLW, LDX
DR5 0 500352 76152 15% 8 0 H 1.1 Pri, R-O, DLW

File-Structured Disk Operation

In file-structured disk operation, data is organized in files. The system manager
uses the DSKINT option during system initialization or the DCL INITIALIZE
command to set up a skeletal file structure on a RSTSIE disk. During time·
sharing, you can create files with the CREATE command, a text editor such as
EDT, or the OPEN and OPEN FOR OUTPUT statements. See the BASIC·PLUS
Language Manual for a complete discussion of BASIC·PLUS I/O methods.

You can open disk files in one of several modes. The following sections describe
these modes; Table 1-8 summarizes them.

System Structure and Disk Operations 1-23

The general form of the OPEN statement with the MODE option is:

100 OPEN "FILE.DAT" AS FILE N%, MODE M%

where N% is the internal 110 channel number and M% is the mode in which the
file FILE.DAT is to be opened.

Note that if a nonprivileged job attempts to open a file in a mode that requires
privilege, the system ignores that particular mode value. Table 1-8 lists the disk
file MODE specifications.

Table 1-8: MODE Specifications for Disk Files

MODE

0%

1%

2%

5%

8%

16%

32%

64%

128%

256%

512%

1024%

2048%

4096%

8192%

16384%

Meaning

Normal read/write

UPDATE mode

APPEND to file

Guarded UPDATE (4%+1%)

Special extend

Create contiguous file

Create tentative file

Create contiguous file conditionally

No supersede

Random data caching (requires TUNE privilege)

Create file-Place at beginning of directory (with 1024%)

Create file-Place at end of directory

Sequential data caching (with 256%)

Read normally regardless

OPEN file read only

Write UFD (requires WRTNFS privilege)

1.11.1 Reading and Writing Disk Files: MODE 0%

Specify MODE 0% or omit the MODE option to open a disk file for normal
reading and writing (the system default). In default mode, an OPEN FOR INPUT
statement opens an existing file for read and write access (if the protection code
of the file permits it). OPEN FOR OUTPUT deletes an existing file and creates
a new file with the same name. An OPEN statement without an INPUT or
OUTPUT specification attempts to perform an OPEN FOR INPUT operation. If
this fails, the system creates a new file.

OPEN, OPEN FOR INPUT, and OPEN FOR OUTPUT statements control only
the actions the system performs when it opens the disk file. See the BASIC-PLUS
Language Manual for a description of these statements.

1.11.2 Updating Disk Files: MODE 1%, MODE 4%+1%

In certain applications (for example, inventory updating) several users may need
read and write access to a single master file. In such cases, it is time consuming
to continually close and reopen the file to obtain and relinquish write access. For
this reason, RSTSIE provides an update option that gives several users write
access to a file while guarding against simultaneous writing of the same data.

1-24 System Structure and Disk Operations

The following sections describe the capabilities RSTSIE provides and those that
are available through BASIC-PLUS.

1.11.2.1 RSTS/E File Updating Capabilities

In file updating operations, RSTSIE allows locks to be applied on blocks in a file.
A single lock can apply to a single block or to a range of blocks. The blocks within
the range of a single lock must be logically sequential; they need not be physically
clustered. Because RSTSIE permits multiple locks at the same time on the same
file, logically nonsequential blocks within a file can be updated in the same time
period.

1.11.2.2 File Update: MODE 1 %

Use MODE 1% in the OPEN statement to open a file for update. For example:

100 OPEN 'MASTER. OAT' AS FILE 1%, MODE 1%

This statement opens MASTER.DAT for update on channell and creates a
512-byte buffer in your job space.

After a program opens a file for update, the system allows the program to access
data simultaneously with other programs but enforces certain safeguards. When
a program performs any read operation on the file, RSTSIE puts the block ac
cessed in a locked state. An attempt by another program to access any data in
that locked block results in the error ?Disk block is interlocked (ERR=19). This
error signals that the data required is being accessed on another channel in the
current program or by another program and is perhaps being updated.

The program accessing the data makes the data available to another program by
unlocking the block. Several ways exist for a program to unlock a locked block.
The program can:

.. Perform any write operation on the file.

.. Execute the UNLOCK statement on the channel where the file is open. The
UNLOCK statement has the fonn:

UNLOCK <expression>

where expression is the internal channel number of the file that is opened for
update.

.. Read another block. (However, this action locks the newly retrieved block.)

.. Execute a CLOSE statement on the file. (Executing an END or CHAIN
statement or executing the last statement of the program implicitly closes all
files.)

Additionally, the system unlocks a block when the program encounters an error
while accessing the file.

You cannot open a file simultaneously in both normal and update mode. An
attempt to perform an open in one mode when the file is currently open in the
other mode generates the error ?Protection violation (ERR=10). The same error
occurs if the protection code of the file prohibits read and write access.

Even if a file is open in update mode, a program can still gain read access to
the file. It can open the file with MODE 4096% (see the section "Reading a File
During Processing: MODE 4096%"). This mode allows normal read access but
not write access, regardless of whether the file is open for update.

System Structure and Disk Operations 1-25

BASIC-PLUS allows a program to lock several logically consecutive blocks during
a GET operation. The number of blocks is established by the RECORDSIZE
option. For example:

100 OPEN 'MASTER. OAT' AS FILE 1%, RECORDSIZE 1024%, MODE 1%

The RECORDSIZE 1024% option causes BASIC-PLUS to create a 1024-byte
buffer. Therefore, a GET operation on channel 1 retrieves 2 blocks and puts both
blocks together in the locked state. RSTSIE allows up to 31 blocks in the buffer to
be locked in this manner and allows up to seven locks on the file (see the section
"Disk Special Function: SPEC%"). Note that the same rules for a single locked
block apply for the range of locked blocks.

You can open a file in UPDATE mode (1% or 5%) and extend it beyond the current
end-of-file (EOF). To extend the file, follow these steps:

1. OPEN the file in UPDATE mode.

2. GET block 1 (the first block of the file).

3. Use the SPEC% function (see the section "Disk Special Function: SPEC%") to
place an explicit lock on block 1.

4. Extend the file to the desired length beyond the current EOF with PUT
statements.

5. Unlock block 1 (see the section "Disk Special Function: SPEC%").

The extended blocks are now available to users of the file.

1.11.2.3 Guarded File Update: MODE 4%+1%

Guarded file update in the OPEN statement provides the same update processing
as MODE 1% with one more processing feature. The program can write a block
or range of blocks only after it has read and locked the data. If your program
attempts to write data that is not currently locked, the result is a ?Protection
violation error (ERR=10). This feature prevents a program from updating data
that it has not accessed. Note that you must use MODE 4% and 1% to gain
special update; MODE 4% alone is equivalent to MODE 0%.

You can open a file in UPDATE mode and extend it beyond the current EOF. See
the previous section for a description of the extend procedure.

1.11.3 Appending Data to Disk Files: MODE 2%

Use MODE 2% in the OPEN statement to write data to a new block following
the current EOF in a disk file. Do not use the OPEN FOR OUTPUT statement,
because it deletes the existing file. Specify MODE 2% only with non-RMS block
110 files. For example:

100 OPEN "DATA. OAT" FOR INPUT AS FILE 1%, MODE 2%

The system opens the file DATA.DAT under the current account on the system
disk. The next output operation creates a new block and appends it to the last
block in the file that contains data. Any fill characters in the previous last block
of the file remain when the system appends the new last block. A PUT statement
that the system later executes on the file need not specify a BLOCK number.
When the PUT statement does not include the BLOCK option, the system writes
the next sequential block.

1-26 System Structure and Disk Operations

The following sample program illustrates append mode by showing its use in a
classroom environment. Each student enters experimental data into a class data
file. The complete class data file can then be input to another program to produce
a class curve for the experiment.

100 DIM X(10%), X$(10%)
\OPEN "SCIENC.EXP" AS FILE 1%, MODE 2%
\IF (STATUS AND 1024%) THEN

PRINT "WRITE ACCESS NOT GRANTED."
\PRINT "TRY AGAIN IN A FEW MINUTES."
\GOTO 800

400 FIELD #1%, 8%*I% AS B$, 8% AS X$(I%)
FOR I%=1% TO 10%

500 PRINT "YOUR VALUES FOR X ARE";
\MAT INPUT X

600 LSET X$(I%)=CVTF$(X(I%»
FOR I%=l% TO 10%

700 PUT #1%
\PRINT "THANK YOU"

800 CLOSE 1%
\END

Note that in certain applications, you may want to append records to a file on one
channel and read the appended records on another channel. The most current file
size information is available to all channels on which a file is open.

1.11.4 Special Mode for Extending Files: MODE 8%

Use MODE 8% in the OPEN, OPEN FOR INPUT, or OPEN FOR OUTPUT
statement to force RSTS/E to update a file's size data and retrieval pointers on
the disk during extend operations. In normal processing, RSTS/E maintains
a file's size data in memory. RSTS/E does not update this size on disk until it
allocates a new cluster to the file. By specifying MODE 8%, you force RSTS/E
to update the on-disk file size as well as the retrieval pointers for each allocated
cluster for every block added to the file. For example:

10 OPEN 'DATA.DAT' AS FILE 1%, MODE 8% + N%

where the value N% can be any other disk MODE option. The system creates the
file if it does not exist.

Extending a disk file using MODE 8% increases the processing overhead because
the system must access the disk more times for every block added. The extra
overhead is warranted for applications where the system must correctly preserve
a file's size in the event of a system crash or power failure.

1.11.5 Creating a Contiguous File: MODE 16%

Use MODE 16% with the FILESIZE option in the OPEN FOR OUTPUT state
ment to create a contiguous file on disk. Contiguous means that the clusters
allocated to the file are physically adjacent. For example:

10 OPEN 'DATA.1' FOR OUTPUT AS FILE 1%, FILESIZE 12%, MODE 16%

You can use other options with MODE 16% to specify the buffer size
(RECORDSIZE) and the file cluster size (CLUSTERSIZE).

You must use the FILESIZE option with MODE 16%. It preextends the file to
its maximum length, thereby telling the system how much contiguous space is
required. If sufficient contiguous space is not available, the system generates the
error ?No room for user on device (ERR=4). Note that you can specify MODE
64% (see the section "Creating a Contiguous File Conditionally: MODE 64%")

System Structure and Disk Operations 1-27

to create a contiguous file conditionally. The file is made contiguous if possible;
otherwise, it is made noncontiguous and no error is returned.

Processing a contiguous file greatly reduces overhead because it minimizes
directory accesses and movement of read/write heads. Files for run-time sYl'ltems
and swapping must be contiguous because the monitor accesses these files
independently of the normal file processor. However, you cannot extend a
contiguous file. An attempt to extend a contiguous file generates the error
?Protection violation (ERR=10).

1.11.6 Creating a Tentative File: MODE 32%

Use MODE 32% in the OPEN FOR OUTPUT statement to create a file that does
not become permanent until it is closed with the CLOSE statement. If a file of
the same name currently exists, the system does not supersede it until you close
the tentative file. Tentative files have the IGNORE attribute set, so that the
system automatically excludes them from BACKUP operations.

When you create a tentative file, the system searches for an existing file of the
same name. If you do not specify an explicit disk name, the system searches the
public structure. If the system finds a file of the same name, and its protection
code does not allow deletion, you receive the error ?Protection violation (ERR=lO).
If the system finds a file of the same name, and it can be deleted, it is left intact
(not deleted) until a CLOSE on the tentative file is executed.

A successful OPEN statement causes an entry for the tentative file to be made
in the directory. The entry marks the tentative file for deletion. If the system
crashes or the job resets the channel (with a negative channel number in the
CLOSE statement) before closing the file, the tentative file is deleted. Note that
tentative file directory entries appear only on a directory listing that contains
files marked for deletion.

When you close a tentative file, the system again searches for a file of the same
name. If such a file is found and it can be deleted, the system deletes it and
makes the tentative file permanent. If a file of the same name is found and its
protection code does not allow deletion, the error ?Protection violation (ERR=10)
occurs. However, the system closes the tentative file and renames it to:

TM?nnn.TMP

where:

? is an alphabetic indication of the file's channel (A=O, B=l, C=2, and so on).

nnn is the job number.

Note that this operation can cause multiple copies of this name to exist in a
directory.

1.11.7 Creating a Contiguous File Conditionally: MODE 64%

Use MODE 64% in the OPEN FOR OUTPUT statement to create a conditionally
contiguous file. MODE 64% causes the monitor to create a contiguous file based
on the following conditions:

• If there is enough contiguous space available on the disk to contain the file,
the monitor creates a contiguous file.

1-28 System Structure and Disk Operations

• If there is not enough contiguous space on the disk to contain the file, the
monitor creates a noncontiguous file. If the monitor can create the file, it does
not return an error.

Note that the monitor ignores MODE 64% if MODE 16% is also set for the file
(see the section "Creating a Contiguous File: MODE 16%").

1.11.8 No Supersede: MODE 128%

Use MODE 128% in the OPEN FOR OUTPUT statement to create a file that
will not supersede an existing file of the same name. MODE 128% notifies the
monitor that, if a file of the same name currently exists, the existing file should
not be deleted. Instead, the system returns the error ?Name or account now
exists (ERR=16).

1.11.9 Data Caching: MODES 256%,2048%

When your job executes a read request, the monitor performs a disk access
and transfers the requested data from the disk to the your job's I/O buffer. On
systems with many jobs that use large amounts of data, the resulting large
number of disk accesses can slow response time. You can reduce the number of
data transfers from disk through data caching.

When you enable caching, the monitor stores the most recently read (accessed)
data blocks in an area of memory called the cache, which is part of XBUF. If
your job requests a data block that is present in the cache, the monitor copies the
requested data directly from the cache into the job's 1/0 buffer and thus avoids a
physical disk access.

Data caching is most useful for read operations because it can minimize disk
transfers. In a write operation that modifies existing data, the data is updated on
disk and in the cache, but no new data is installed in the cache.

The system manager installs caching on the system and optionally sets its
parameters during system start-up. When caching is enabled, the monitor
examines the cache for all data transfer requests that are directed to the disk
driver. If the requested data is in the cache, the read operation completes without
placing a load on the disk driver.

The monitor constantly updates the cache so that it contains the most recently
requested data by adding data clusters or replacing data clusters (if the cache
is full). The monitor schedules a job's data transfers into the cache based on
the time since last access. A data cluster currently in the cache is eligible for
replacement if it:

• Is the data with the longest time since last access

• Has been in the cache for more than the minimum residency established by
the system manager (the cache replacement timer, set with the SET CACHE
command).

System Structure and Disk Operations 1-29

1.11.9.1 Cache Size

The amount of data that can be in the cache at any given time depends on the
cache cluster size, which can be 1, 2, 4, or 8 blocks. In many cases, the cache
cluster size determines the number of read requests that can be resolved in the
cache before a disk access is required. For example, when the cache cluster size
is 8 blocks, a read operation that installs data in the cache causes the installation
of 8 physically contiguous blocks (including the requested blocks).

The system manager sets the cache cluster size during system start-up or with
the Enable Disk Caching SYS call (SYS 19). For optimum performance, the
cache cluster size should equal the pack cluster size set during disk initialization.
If that is not possible, then the cache cluster size should be smaller than the
pack duster size. The monitor allocates cache space from XBUF (see the section
"Enable and Disable Disk Caching," in Chapter 8).

1.11.9.2 Caching Control

If you have the TUNE privilege, you can enable or disable caching and determine
the size of the cache by using the Enable Disk Cache SYS call (SYS 19) or the
SET CACHE command (see the RSTS/E System Manager's Guide). In addition,
if you have TUNE privilege, you can specify caching for a file on a system where
caching is enabled.

You can cache a file in either random or sequential mode. Random mode is the
default; Digital recommends it for files that are accessed randomly, such as RMS
indexed files. Sequential mode caching is designed for files that are accessed
sequentially. If you are not sure in advance how a file will be accessed, you
should specify random mode caching.

1b specify caching for a file, you can either:

.. Mark its UFD entry with the File Utility Functions SYS call (SYS -26) or the
SET FILE command

.. Specify MODE 256% or MODE 2048% in the OPEN statement

Both methods let you specify either random or sequential mode caching.

The best way to specify caching for a file depends on its use. If you are creating
a file for use in a specific program, use the following MODE values to specify
caching when you open the file. However, if you are creating a file for general
use, it is better to mark the file's UFD entry with the File Utility Functions SYS
call (SYS -26) or the SET FILE command. The use of caching MODE values
requires TUNE privilege. However, a file whose UFD is marked for caching is
cached on OPEN, regardless of the user's privilege, as long as caching is enabled
on the system.

1.11.9.3 Random Mode Data Caching: MODE 256%

Use MODE 256% in the OPEN statement to cache data transfers to and from a
file in random mode. MODE 256% has effect only if data caching is enabled on
the system (see the section "Enable and Disable Disk Caching", in Chapter 8).

When a read on a randomly cached file occurs, the monitor examines the cache to
determine if the requested data item is present. If the data is in the cache, the
monitor copies the data from the cache buffer that contains it to the program's
1/0 buffer. The monitor then links the cache buffer to the beginning of the list
of cache buffers and clears its time of residency since last access. The monitor
maintains the list of cache buffers in order of increasing time since last access.

1-30 System Structure and Disk Operations

If the requested data item is not in the cache, the monitor examines the list of
cache buffers to determine the time of last access for the oldest cluster in the
cache. If the time is less than the minimum residency, the requested data cannot
be installed in the cache, so the monitor automatically performs a normal disk
read. If the time is greater than the minimum residency, the monitor replaces the
current data in the cache buffer with the new data and then transfers it to the
program's I/O buffer.

1.11.9.4 Sequential Mode Data Caching: MODE 2048%

Use MODE 2048% in the OPEN statement to cache data transfers to and from a
file in sequential mode. MODE 2048% has effect only if the file is being cached.
That is, either MODE 256% is set, the file's UFD entry is marked for caching (see
the section "File Utility Functions," in Chapter 8), or caching is set for all data
on the system (see the section "Enable and Disable Disk Caching", in Chapter 8).
Note that sequential mode caching has no effect for a cache cluster size equal to
1, although no error is returned if the cluster size is 1.

Sequential mode works like random mode caching except for the way the monitor
handles:

• A read on the last block of a cache cluster

• A read on more than one cache cluster

In sequential mode caching, a read on the last block of a cluster makes the cluster
eligible for replacement, regardless of the amount of time it has been in the cache.
This speeds the replacement process in the cache and minimizes the space that
the cache requires. The monitor handles a read on any other block in the cache
cluster the same as in random mode caching: the cluster becomes eligible for
replacement only when its minimum residency time in the cache expires.

In a read on more than one cache cluster, the monitor transfers all the requested
data blocks to the program's I/O buffer but only installs the last cache cluster in
the cache. Furthermore, if the last data block read is the last block in a cache
cluster, the monitor does not install any data in the cache. Thus, if you define the
cache cluster size as 1 and specify sequential mode, no data blocks are installed
in the cache because every data block is the last block in a cache cluster.

1.11.10 Creating and Placing a File at the End of the Directory: MODE 1024%

Use MODE 1024% to override the pack default and specifically place a file at the
end of the current account's directory. This file placement is useful for files that
are infrequently accessed or are not time critical. Because the monitor always
searches for files starting at the beginning of the directory, placing noncritical
files at the end speeds access to the first part of the directory.

Use MODE 1024% only in the OPEN FOR OUTPUT statement to create a
new file. If you do not specify MODE 1024%, the monitor places the file in the
directory as directed by the pack default. This default depends on the system
manager's response to the New files first? DSKINT question. For example, if
you create the file on DB1: and do not specify MODE 1024%, the monitor uses
the DB1: default to place the file. If the device is part of the multidisk public
structure (SY:), the monitor selects the disk pack with the most free space and
uses that pack's default. (The monitor will not select DVO:, the virtual disk.)

System Structure and Disk Operations 1-31

1.11.11 Creating and Placing a File at the Beginning of the Directory: MODE
1536%

Specify MODE 1536% (MODE 1024% + 512%) in the OPEN FOR OUTPUT
statement to cause the monitor to override the pack default and place a file at
the beginning of the current account's directory. If you do not specify MODE
1536%, the monitor places the file in the directory as directed by the pack default.
This default depends on the system manager's response to the New files first?
DSKINT question. For example, if you create the file on DB1: and do not specify
MODE 1536%, the monitor uses the DB1: default to place the file. If the device
is part of the multidisk public structure (SY:), the monitor selects the disk pack
with the most free space and uses that pack's default. (The monitor will not
select DVO:, the virtual disk.)

Use MODE 1536% for files that are frequently accessed. For example, if a
program is used very heavily, you can place it at the start of the directory.
For example, the $PIP program is heavily used on many RSTSIE systems. In
this case, placing $PIP at the start of the [1,2] directory may improve system
performance.

1.11.12 Reading a File During Processing: MODE 4096%

In certain applications, you may need to read a data file regardless of what other
processing is in progress. Under normal circumstances, the system prohibits
opening a file while the file is currently open for update (MODE 1% or MODE
4%+1 %). However,. with MODE 4096% you can open a file for read access
regardless of whether the file is being updated. When a file is opened using
MODE 4096%, other users can open the file in update mode. For example:

10 OPEN 'DATA.2' FOR INPUT AS FILE 1%, RECORDSIZE R%, MODE 4096%

You cannot perform write operations. If you attempt a write operation, the system
generates the error ?Protection violation (ERR=10). If the file is simultaneously
open for update, the system does not generate the normal error ?Disk block is
interlocked (ERR=19) when the program reads a block being updated (although
that block may contain inconsistent data).

NOTE

Use MODE 4096% with care because of the danger involved in reading
data that is subject to change.

1.11.13 Read-Only Access to a File: MODE 8192%

Certain applications require simple read access to a data file and do not want
to preclude write access by other applications. Under normal circumstances, an
OPEN FOR INPUT statement for a disk file possibly gains write access on the
1/0 channel involved. To gain read access to a data file when you do not want
write access, use MODE 8192% in the OPEN FOR INPUT statement. The system
never grants write access to a file opened with MODE 8192%.

1-32 System Structure and Disk Operations

You can use MODE 8192% on files that are opened normally (MODE 0%).
However, you cannot use MODE 8192% to open a file that is currently opened
for update (MODE 1%). If a file is currently opened for update, you must specify
MODE 8192%+1% in order to open the file read-only. If the file is not yet opened
and you specify MODE 8192%+1%, subsequent opens on that file must be made
with MODE 1%. For example:

10 OPEN 'DATA.3' FOR INPUT AS FILE 1%, RECORDSIZE R%, MODE 8192%

Mter execution of this statement, the program has only read access to the file
DATA.3. If the file is currently open for update, however, the system generates
the normal error ?Protection violation (ERR=10).

1.11.14 Write Access to a Directory: MODE 16384%

If you have the WRTNFS privilege, you can write into a directory by specifying
MODE 16384% in the OPEN statement. For example, the following statement
allows you to read and write into the UFD of account [5,10]:

199 OPEN "DK1: [5,10]" AS FILE 2%, MODE 16384%

An OPEN FOR OUTPUT statement is invalid for a UFD. Without MODE
16384%, the system allows only read access if you have the appropriate READ
privilege (GREAD for group, WREAD for all).

1.11.15 Si mu Itaneous Disk Access

RSTSIE permits several users to read from the same file simultaneously, but only
one user can write to a file (unless the file is open in update mode). Without this
limitation, two users could try to write the same record of the file simultaneously,
resulting in a loss of data. To avoid this conflict, the system permits only one
user at a time to have write access to any file. If a second user attempts to write
into the file, the error ?Protection violation (ERR=10) results. Thus, users may
fail to obtain write access to a file that is not write-protected against them. If
this failure occurs, the second user must close the file and reopen it after the first
user has closed it.

The system does not permit a file to be open simultaneously in update mode
and in normal mode. If your program attempts to do so, it results in the error
?Protection violation (ERR=10). However, a file can be open simultaneously in
update mode and read during processing mode (see the section in this chapter,
"Reading a File During Processing: MODE 4096%"). In addition, a file can be
open in update mode by multiple users.

By checking bits 9 and 10 of the STATUS variable immediately after the OPEN
statement, a program can ascertain whether the current job has read and write
access to a file. The example in the section in this chapter, "Appending Data to
Disk Files: MODE 2%", performs this check. See the BASIC-PLUS Language
Manual for a description of the STATUS variable.

1.11.16 Disk Optimization

Whenever you open a file on the public structure, the system searches the
directories of aU public disks to determine whether the file exists. To avoid the
overhead of searching multiple directories, you can put the file on a private disk.

System Structure and Disk Operations 1-33

When you dedicate a private disk to a large production file, it minimizes overhead
to access data and ensures an efficient directory organization. If you find this
impractical and must store more than one such file on one private disk, dedicate
an entire account to each file. This arrangement reduces directory search
overhead.

However, if you must save more than one file under an account, create the more
frequently accessed ones first or use MODE 1536% (see the section "Creating and
Placing a File at the Beginning of a Directory: MODE 1536%") to ensure better
directory organization.

If you cannot do this, the system manager can optimally reorder the file directory
with the REORDR system utility (see the RSTS / E System Manager's Guide).
With REORDR, you can order files on an account in either forward or reverse
direction, by either date and time of creation or date of last access.

If you need to put a small nwnber of large files in a single volwne, use extended
cluster-size disks (cluster size 32 or 64). However, do not use extended cluster
size disks for system disks or to hold large numbers of accounts. The more
accounts you keep on an extended cluster-size disk, the more space will be
wasted-a maximwn of 112 blocks per account for cluster size 32, or 224 blocks
per account for cluster size 64. Minimize the wasted space by minimizing the
nwnber of accounts and the nwnber of files in each account.

When you create a large file, specify a large file cluster size to increase efficiency.
A large cluster size reduces the number of UFD blocks required to describe
the file. Performance improves because the system can read or write multiple
blocks in a single transfer. In addition, you can preextend a disk file to its
maximum length when you create it and can specify that contiguous space be
used. Preextension reduces directory fragmentation. Contiguous space reduces
window turning, which is the process of following UFD retrieval pointers to locate
a specific block within a file.

If you have the appropriate accounting privilege (GACNT for group, WACNT for
all), you can use the Create User Account SYS call (SYS 0) to optimally preextend
and place directories. By doing this, you may improve system performance.

If you preextend a disk file with the FILESIZE modifier on the OPEN statement
and you do not specify the cluster size with the CLUSTERSIZE modifier, the
monitor computes the clustersize that is optimal for fast access. The monitor uses
the formula FILESIZE17, rounded up to the nearest cluster size. For example:

100 OPEN "MYFILE.DAT" FOR OUTPUT AS FILE 1%, FILESIZE 100%

This OPEN statement preextends the file MYFILE.DAT to a size of 100 blocks.
The monitor automatically computes a cluster size of 16 (10017, rounded up).
Note that the largest possible cluster size is 256 blocks.

If a program requires simultaneous access to more than one data file, it is best
to place each file on a different private disk. Overhead increases if the files
reside on the same disk because the disk head must move whenever the program
accesses a different file. Thus, a large percentage of execution time is spent in
moving the disk head back and forth.

Use different accounts to store different kinds of files. To minimize the nwnber
of poorly ordered accounts, dedicate certain accounts to files that are created
once and remain fairly static, and reserve other accounts for transient files. To
further optimize the structure, minimize the number of files in one account. For
example, it is better to have 30 files each in 10 accounts than to have 300 files in
one account.

1-34 System Structure and Disk Operations

1.11.17 Partial Block Operations on Disk

In general, the buffer you use for disk 110 should be a multiple of 512 bytes in
length. Specify the buffer size by using the RECORDSIZE option in the OPEN
statement.

By default, GET and PUT statements transfer the entire buffer. If you want to
transfer less data, use the COUNT option. The COUNT option used in a GET
statement specifies the maximum number of characters to be read in the current
record regardless of the buffer size. In the following example the file is opened
with RECORDSIZE 1024% and you want to read only 520 bytes:

100 OPEN "MYFILE.DAT" AS FILE 1%, RECORDSIZE 1024%
110 GET #1%, COUNT 520%

This GET operation on channel 1% fills the buffer to the requested number of
bytes. The disk software then skips the rest of the last disk block read and
positions itself to access the next block. To satisfy the COUNT of 520, the
software reads the current block (for 512 bytes), reads 8 bytes of the next block,
and positions itself to access the following block.

For GET or PUT operations, you can use any value for RECORD or BLOCK.
For example, with a COUNT of 520 bytes, BLOCK 1 accesses the first block
and 8 bytes of the second block. BLOCK 2 in the GET statement retrieves the
entire contents of the second block plus 8 bytes of the third block. The file is
then positioned to access the block following the last one accessed (block 4 in the
previous example).

For PUT operations, the COUNT must be a multiple of 512 bytes (or exactly 512
bytes when writing a UFD). For GET operations, COUNT must be even. In all
cases, the COUNT value must not be greater than the buffer size (RECORDSIZE
option of the OPEN). See the BASIC-PLUS Language Manual for more informa
tion.

1.12 The Virtual Disk-DVO:

The virtual disk lets you store temporary data within the system's memory. The
virtual disk is not a physical hardware device, but it contains the same structures
as a physical disk device. You can use the virtual disk for file-structured or
non-file-structured 110 in the same way you use any other disk device, with one
exception: all data written to the virtual disk is lost when the RSTSIE system
shuts down or crashes. Because of this, the system does not place files on the
virtual disk unless explicitly ordered to do so. DVO: is the device designator for
the virtual disk.

The system manager allocates memory to the virtual disk with the DCL
command CREATEIVIRTUAL_DISK. Use the SHOW DISK command to find out
if the virtual disk is enabled on your system.

You can use the virtual disk to store temporary files or any file that has a
very short lifespan. Examples of temporary files are work files created by an
application program like SORTIMERGE that are later deleted; virtual arrays
created by BASIC-PLUS that are no longer needed once the program exits; or
temporary files used for entering data in applications that give users a chance to
edit data before updating a permanent file.

System Structure and Disk Operations 1-35

You can also place copies of read-only files that never change and are frequently
accessed on the virtual disk. For example, place in virtual memory a copy of an
index file that is used to access other files. Or, place heavily overlaid programs
(like TKB) on the virtual disk to improve performance. The virtual disk is
especially useful on large memory systems. Because the virtual disk never
requires physical 110, it is the fastest disk on your system. It is even faster than
data caching for these reasons:

• A file placed on the virtual disk always remains in memory. On the other
hand, a cached file remains in memory based on frequency of access.

• When you write to a file on the virtual disk, no physical 1/0 takes place.
When you write to a cached file, physical 110 takes place. The file processor
first performs a physical write, then it updates memory.

The virtual disk takes memory away from user space. On a small memory
system, this may detract from overall performance. In addition, you cannot use
the virtual disk for any permanent files because all data is lost when the system
shuts down or crashes.

Data transfers to and from the virtual disk use much more CPU time than the
. equivalent transfers on physical disks. Do not use the virtual disk on systems
with little spare CPU time.

1.13 Asynchronous I/O Requests

An asynchronous read or write request performs the same basic function as
the synchronous read or write request: it moves data between a device and
a program. The difference lies in the completion of the request. While a
synchronous request stalls the job's execution until the request is complete, an
asynchronous request does not stall the program. The program continues to run
regardless of the state of the 1/0 request. When the 110 request completes, the
RSTS/E monitor executes an asynchronous completion routine (ACR) in the user
program. This routine notifies the user job of the 1/0 completion.

The ACR is a section of code within the user job that executes when an 1/0
request completes. The ACR is the only section of code in the program that can
check for any device dependent errors.

BASIC-PLUS programmers cannot use asynchronous 110. BASIC-PLUS-2
programmers can use this feature, but must write a MACRO subroutine. See the
RSTS / E System Directives Manual for details.

1 .14 Disk Special Fu nction: SPEC%

The SPEC% function performs special operations on disks, flexible diskettes,
magnetic tapes (see Chapter 2), line printers (see Chapter 3), terminals (see
Chapter 4), and pseudo keyboards (see Chapter 4).

On disks, the SPEC% function allows you to explicitly lock a maximum of seven
disk block ranges on a file that is open for update (MODE 1% or MODE 1%+4%,
see the section in this chapter, "Updating Disk Files"). A locked range (from
1 to 31 blocks) is one that cannot be accessed by another user or from another
channel. Thus, SPEC% extends the use of update and guarded update modes,
which locks the last block or blocks read on a file.

1-36 System Structure and Disk Operations

SPEC% also allows you to release explicit or implicit locks. (An explicit lock is
a lock done by the user. An implicit lock is done automatically, by the system.)
Note that when you close a file, all explicit and implicit locks are released for that
file.

The SPEC% function for disk files has the format:

VALUE%=SPEC%(FUNCTION%, BLOCK, CHANNEL%, 0%)

where:

VALUE%

FUNCTION%

BLOCK

CHANNEL%

0%

depends on the particular function code you specify in FUNCTION%.
In most cases, VALUE% is equal to the BLOCK parameter.

is a function code that specifies the desired operation. During normal
I/O operations, a block, or range of blocks, is implicitly locked when
you read the file with a BASIC-PLUS GET statement. The SPEC%
function allows you to convert implicit locks to explicit locks and to
release selected locked blocks. The code specified in FUNCTION%
determines the use of SPEC%. The codes are:
FUNCTION%=O% releases all locked blocks.

FUNCTION%=l% releases the current implicit lock.

FUNCTION%=2% converts the current implicit lock to an
explicit lock.

FUNCTION%=3% releases the explicitly locked block specified
in the BLOCK parameter. If BLOCK is

FUNCTION%=4%

FUNCTION%=5%

0, all explicitly locked blocks are released.
However, implicitly locked blocks remain
locked.

converts an implicit lock to an explicit lock
and release the implicit lock.

truncates the file on CHANNEL% * 2 at the
block number given by BLOCK

specifies the starting block number for releasing an explicit lock. Note
that BLOCK must be a floating-point number.

is the I/O channel on which the operation is to be performed.

is the handler index for disk devices.

If you open a file with a RECORDSIZE greater than 512, SPEC% allows you to
lock more than one block when you read a range of blocks into the buffer with
the GET statement. For example, if you open the file with RECORDSIZE 1024%,
each GET operation reads (and implicitly locks) two blocks. For example, suppose
you explicitly lock blocks 2 and 3:

100 GET #1%, RECORD 2%
\ VALUE%=SPEC%(2%,0,1%,0%)

You can then read blocks 3 and 4 (GET RECORD 3%) and cause implicit locks
on these blocks. Note that if you attempt to lock a range of blocks that overlap
an already explicitly locked range, the monitor returns the error ?Disk block
is interlocked (ERR=19). In addition, if a range of blocks is locked, an explicit
release of those blocks must refer to the first block in the range.

System Structure and Disk Operations 1-37

The following errors are possible during a SPEC% operation:

Meaning

'lBAn DffiECTORY FOR DEVICE

The directory of the device is unreadable or corrupted.

?ACCOUNT OR DEVICE IN USE

The file being truncated is open on more than one channel or by
another user.

?NO ROOM FOR USER ON DEVICE

There are too many locks pending on this channel. You can lock a
maximum of seven ranges of blocks on a file.

'lCAN'T FIND FILE OR ACCOUNT

You specified function code 3 for FUNCTION% and attempted to
unlock a block that was not locked.

'lIfO CHANNEL NOT OPEN

The file is not open on the given channel.

1PROTECTION VIOLATION

You do not have write access to this file, or you attempted to
explicitly lock a block that had not been implicitly locked. An
attempt to lock a block after a PUT or UNLOCK can cause this
error.

'lEND OF FILE ON DEVICE

The truncation request for a size greater than the size of the
current file.

'lDEVICE HUNG OR WRITE LOCKED

Hardware conditions have changed since the file was opened.

'lDISK BLOCK IS INTERLOCKED

You attempted to explicitly lock a range of blocks that overlaps an
already explicitly locked range of blocks.

1.15 RX01/02 Flexible Diskettes

ERR Value

1

3

4

5

9

10

11

14

19

The RSTSIE monitor handles the RXlllRXOl and RX211IRX02 flexible diskettes
(sometimes caned floppy disks) as non-file-structured devices. The device name
for the flexible diskette is DX.

NOTE

The RX50 and RX33 flexible disks are not in this category. They are
treated as file-structured disks with the device name DU.

BASIC-PLUS, which uses the standard monitor I/O services for flexible diskettes,
lets you store only one file on a diskette. For example:

SAVE DX1:

This command stores one .BAS file on a diskette. To read the file from the
diskette or to run it, use:

OLD DX1:
RUN DX1:

1-38 System Structure and Disk Operations

The system utility program FIT lets you store more than one file on a flexible
diskette. This program transfers specially formatted data between a flexible
diskette and the RSTS/E environment. See the RSTS / E Utilities Reference
Manual for more information.

A flexible diskette is divided into 77 tracks (numbered 0 through 76), each of
which consists of 26 sectors (numbered 1 through 26). Thus, there are 2002
records (numbered 0 through 2001). Each record is 128 bytes for RX01 and
single-density RX02, or 256 bytes for double-density RX02 on each diskette.

Table 1-9 shows that you can open and access a flexible diskette in either of two
modes.

Table 1-9: MODE Specifications for Flexible Diskette

MODE Meaning

0%

16384%

Read and write in block mode (default)

Read and write in sector mode

The following sections describe the MODE specifications.

1.15.1 Block Mode: MODE 0%

In block mode, the buffer size is 512 bytes, equivalent to four 128-byte records.
The four sectors are interleaved according to the following algorithm, where N is
the value specified in RECORD:

TEMPI = INT(N/26)

TEMP2 = N - INT(N/26)*26

TEMP2 = TEMP2 * 2

TEMP2 = TEMP2+1 IF TEMP2 >=26

TEMP2 = TEMP2 + 6*TEMP1

TRACK = TEMPI + 1

SECTOR = TEMP2 - INT(TEMP2I26)*26 + 1

This interleaving algorithm is standard in other PDP-ll operating systems
for the flexible diskette (for example, RSX-llM, RT-ll). Note that track 0 is
unavailable; its use is reserved for IBM-compatible labels.

The following statement opens the diskette on unit 3 in block mode on 110
channell:

10 OPEN "DX3:" AS FILE 1%

A GET statement reads a 512-byte block from the diskette. The RECORD option,
if present, defines a specified sector starting point for the read. If you omit the
RECORD option or include RECORD 0%, the next sequential block is read. For
example:

100 GET *1%, RECORD N%

System Structure and Disk Operations 1-39

where:

N% is the number of the sector at which the block begins. It can be any number
from 1 through 493. (Only the first GET statement after the device is opened
can access the first block on the diskette).

A PUT statement writes a 512-byte block on the diskette:

200 PUT *1%, RECORD N%, COUNT C%

where:

N% is the number of the sector at which the block begins. The RECORD option
can also include 16384% to write a Deleted Data Mark with each of the
sectors (see the section "Deleted Data Marks").

C% must be a positive nonzero number.

You can perform block mode operations in sector mode. The following example
opens an RX01 diskette with this statement:

20 OPEN "DX3:" AS FILE 1%, RECORDSIZE 512%, MODE 16384%

Then use the GET (or PUT) statement:

30 GET *1%, RECORD N%*4% + 32767% + 1%

where:

32767%+1%

N%*4%

specifies sector interleaving

defines 512-byte blocks at 4-sector intervals

1.15.2 Sector Mode: MODE 16384%

In sector mode, the buffer size is 128 bytes for RX01 and 256 bytes for RX02.
Open the diskette on unit 3 in sector mode with the following statement:

10 OPEN "DX3:" AS FILE 1%, MODE 16384%

When you use GET and PUT statements, you can calculate track and sector
numbers from the RECORD number. If you specify the desired record number
as N (any number from 0 through 2001), you can specify the track and sector to
access as:

TRACK = INT (N/26)

SECTOR = N - INT(N/26)*26 + 1

A GET statement reads a 128-byte single-density or a 256-byte double-density
record from the diskette. The RECORD option, if present, defines a specific record
on the diskette. If you omit the RECORD option or include RECORD 0%, the
next sequential record is read. For example:

100 GET *1%, RECORD N%

where N% is the record number and can be any number from 1 through 2001.
(Only the first GET statement after the file has been opened can access record 0.)

If you include -32768% (formed by 32767% + 1%) in the RECORD option (for
example, RECORD N%+32767%+1%), sectors are interleaved according to the
algorithm discussed in the section "Block Mode - MODE 0%."

A PUT statement writes a 128-byte single density or a 256-byte double density
record on the diskette. For example:

200 PUT *1%, RECORD N%, COUNT C%

1-40 System Structure and Disk Operations

where:

N% is the record number. The RECORD option can also include -32768% for
interleaving (see the section Block Mode - MODE 0%) and 16384% to write a
Deleted Data Mark (see the section "Deleted Data Marks") with each of the
records.

C% must be a positive nonzero number.

NOTE

If you insert a single-density diskette into an RX02 drive, the buffer
size on a sector mode open is 256 bytes (the length of two sectors).
Thus, the statement GET RECORD N% reads record N% and record
N%+l%. To make sure that you read only one record, include COUNT
128% in the GET statement.

1.15.3 Flexible Diskette RECORD Modifiers

When you perform 110 operations on flexible diskettes, you can include three
special RECORD values in GET and PUT statements to modify the actions of the
diskette drive:

RECORD 8192%

RECORD 16384%

RECORD 32767%+1%

1.15.4 Deleted Data Marks

Allows you to access logical record zero on the flexible
diskette. Under normal operation, the system does not
allow access to logical record zero after the first I/O operation
is performed. However, the following statement accesses
logical record zero:

GET #N%, RECORD 8192%

Writes a Deleted Data Mark to the diskette when used in
the PUT statement (see the following section "Deleted Data
Marks").

Causes the specified 110 operation to be performed in block
mode. That is, when you want block mode on a diskette
that is open in sector mode (MODE 16384%), you can specify
RECORD 32767%+1% in the GET or PUT statement. With
RECORD 32767%+1%, the I/O operation you perform is done
in block mode.

Each sector of a flexible diskette contains a bit called the Deleted Data Mark
in addition to its data. When an INPUT or GET operation from the diskette
encounters a Deleted Data Mark, the error ?Data format error (ERR=50) occurs.

In a GET operation, the contents of the buffer are valid even if this error occurs.
So it is possible to examine the contents of the record containing the Deleted Data
Mark. When the record size specified is larger than one sector, the last sector
read into the buffer is the data that had the Deleted Data Mark.

The RECOUNT variable reflects the amount of data read up to and including this
mark. To write a Deleted Data Mark to a diskette, include RECORD 16384% in
the PUT statement.

System Structure and Disk Operations 1-41

1.15.5 Partial Block Operations on Flexible Diskettes

Use the RECORDSIZE option in the OPEN statement on a flexible diskette to
specify a value that is not a multiple of the default buffer size (512 bytes in block
mode; 128 bytes or 256 bytes in sector mode). Be careful, however, in using the
GET and PUT statements.

For GET operations with a nondefault buffer size (or a multiple of the default),
the software retrieves the required number of bytes and positions itself to the
next boundary. In block mode, this boundary is the next block (sector number
times 4 for RX01, times 2 for RX02); in sector mode, this boundary is the next
sector. Thus, for a buffer size of 520 bytes, a GET statement in block mode
returns in the buffer the current sector, the next three sectors, and the first eight
bytes of the fourth sector. The software then skips the rest of the fourth sector
and all of the fifth, sixth, and seventh sectors to position itself at the beginning of
the next block boundary for the next GET operation. A GET statement in sector
mode returns the required number of bytes and skips the rest of the partial sector
to position itself at the beginning of the next sector boundary.

You can use any legal value in the RECORD option with the GET statement.
Thus, with a buffer size greater than 512 bytes, you can overlap record values to
recover skipped data.

NOTE

When you use the COUNT option in a GET statement, the COUNT
argument must be a positive even number. If an odd number (or 0)
appears in the COUNT, the error ?Illegal byte count for 110 (ERR=31)
is returned.

For a PUT operation with a nondefault buffer size (or a multiple of the default),
the software performs the same skipping and positioning as with the GET
statement. The software writes null bytes in the skipped data. If you include the
COUNT option in the PUT statement, the software writes the specified number of
bytes from the buffer and writes null bytes for the rest of the buffer and for the
skipped data.

1.15.6 Flexible Diskette Special Function: SPEC%

The SPEC% function performs special operations on flexible diskettes, disks,
magnetic tape (see Chapter 2), line printers (see Chapter 3), terminals (see
Chapter 4), and pseudo keyboards (see Chapter 4).

For flexible diskettes, the SPEC% function lets you:

• Find out the density (single or double) of the current diskette

• Mount a new diskette and recompute the density

• Reformat an RX02 diskette for a desired density

Because the RX02 flexible diskette drive supports single- and double-density
diskettes, the SPEC% function is useful for programmed diskette operations.
For example, SPEC% allows you to mount a series of single- and double-density
diskettes without having to close and reopen the device for each mount. Normally
the driver computes density once, during the initial open. If you insert a second
diskette that is incompatible with the initially computed density, read or write
opera tions fail.

1-42 System Structure and Disk Operations

SPEC% permits you to include an instruction in your program that causes the
driver to recompute the density. In addition, for RX02 flexible diskette drives,
SPEC% lets you specify a density reformat operation.

The SPEC% function for flexible diskettes has the format:

VALUE%=SPEC%(FUNCTION%,PARAMETER,CHANNEL%,18%)

where:

VALUE%

FUNCTION%

PARAMETER

CHANNEL%

18%

depends on the function code you specify in FUNCTION%.

is a function code that specifies the desired operation. The codes are:

FUNCTION%=O% returns the density of the currently mounted
diskette in the form: DENSITY%=VALUE%
AND 255%. If DENSITY%=l %, the diskette
is single-density; if DENSITY%=2%, the
diskette is double-density. Note that
PARAMETER must also be o.

FUNCTION%=l% causes the diskette driver to recompute
density. If the diskette has been changed in
the drive without closing and reopening the
I/O channel, issue this code prior to any I/O
operation on the diskette. This function also
returns the computed density as described in
FUNCTION%=O%. Note that PARAMETER
must be O.

FUNCTION%=2% reformats the current diskette to the density
in PARAMETER. PARAMETER equals 1 for
single-density and 2 for double-density. Note
that this operation is allowed only on RX02
drives and that any data on the diskette
prior to the operation is lost.

see the description of FUNCTION%.

is the I/O channel on which the operation is to be performed.

is the handler index for flexible diskettes.

SPEC% can take up to 20 seconds to reformat the density of an RX02 diskette and
cannot be interrupted with Ctr1fC. If the operation is interrupted by power failure
or catastrophic error, the diskette will contain both single- and double-density
and cannot be used. To recover, you must reformat the diskette.

The following errors are possible during a SPEC% operation:

Meaning

1DEVICE HUNG OR WRITE LOCKED

A hardware error occurred. This can often be a transient condi
tion. Retry the operation.

1MISSING SPECIAL FEATURE

An attempt was made to reformat on an RXOI flexible diskette
drive. The use of SPEC% to reformat diskette density is allowed
only on RX02 drives.

ERR Value

14

66

System Structure and Disk Operations 1-43

SPEC% is useful in flexible diskette programming to make sure that sector
opens are correctly handled. You can resolve the conflict between 128-byte
single-density buffer sizes and 256-byte double-density buffer sizes by using the
following procedure:

To field the buffer:

FIELD #channel number, 128%*DENSITY% AS BUFFER.RX02$

To write the buffer:

PUT #channel number, COUNT 128%*DENSITY%

DENSITY% is defined as:

DENSITY%=SPEC%(O%, 0, CHANNEL%, 18%) AND 255%

1.16 The Null Device - NL:

The null device exists as a debugging aid on all RSTSIE systems. It provides a
means for a program to check out all I/O routines without reference to an actual
device. A read access for the null device returns the error ?End of file on device
(ERR=l1) and a write access simply returns control to your program.

You can use the null device to dynamically allocate buffer space in memory. It
has a default buffer size of 2 bytes, which is adequate for performing alternate
buffer I/O operations with data on another channel. To specify a different buffer
size, use the RECORDSIZE option in the OPEN statement. The null device can
use any even buffer size. For example, the following statement allocates 132
bytes of buffer space:

100 OPEN 'NL:' AS FILE 12%, RECORDSIZE 132%

Opening the null device is also a convenient way to set up a buffer for message
send/receive operations. Use the RECORDSIZE option in the OPEN statement
to specify the buffer size. See Chapter 9 for more information on message send
/receive operations.

The null device is shareable by all users on the system: no user can assign it.

1-44 System Structure and Disk Operations

Chapter 2

Magnetic Tape

Magnetic tape is a compact, relatively inexpensive medium that can provide large
amounts of off-line data storage. One reel of magnetic tape can store many files.
In addition, through multivolume ANSI processing, you can store one or more
large files on several reels of tape.

Unlike disks, which can be accessed randomly or sequentially, magnetic tape is
a sequential access device. In most applications, a magnetic tape file is read or
written from beginning to end, and each record in the file is processed in order.

Magnetic tape is used for backing up disks on many RSTSIE systems. The
RSTSIE BACKUP and SAVEIRESTORE programs (see the RSTS / E System
Manager's Guide), the PIP program (see the RSTS / E Utilities Reference Manual),
and the DCL COpy command (see the RSTS/E System User's Guide) can all
perform this function. In addition, the RMSBCK and RMSRST utility programs
(see the RMS-ll User's Guide) can back up and restore RMS-ll files between
disk and magnetic tape.

Other uses for magnetic tape include journaling and data interchange. Some
applications track transactions as they are processed by journaling each
operation to a magnetic tape as well as to a disk. Magnetic tape is also useful
for transferring data between different computer systems. Finally, you may want
to use magnetic tape instead of disk for applications that require infrequent
processing (particularly batch processing) and use large amounts of data.

2.1 Overview of Tape Operations

RSTSIE offers a variety of utility programs and software features for processing
magnetic tapes. The utility programs can fill most general needs. This chapter
discusses the software features, which provide extra flexibility and control for
special applications. These features include:

• MODE values for use in file-structured and non-file-structured processing

• FILESIZE, CLUSTERSIZE, and POSITION values for ANSI tapes

• MAGTAPE and SPEC% functions

2.1.1 File-Structured and Non-File-Structured Processing

RSTSIE can process magnetic tape as either a file-structured or a non-file
structured device. File-structured processing lets you take advantage of built-in
system file handling functions; thus, it is easier to program than non-file
structured processing. On the other hand, non-file-structured processing gives
you more control over tape operations. (For example, you may need to process a

Magnetic Tape 2-1

tape written in a nonstandard fonnat by another system or recover a file from a
corrupted tape in non-file-structured mode.)

Table 2-1 summarizes the BASIC-PLUS statements used to access magnetic
tape on RSTSIE. These are the same statements used to access disks. See the
BASIC-PLUS Language Manual for complete descriptions of the statements.

Table 2-1: Statements and Functions for Accessing Magnetic Tapes

Stream ASCII Block I/O
Function (File-Structured) (File- or Non-File-Structured)

Open OPEN OPEN

Access Buffer FIELD

Read INPUT GET
INPUT LINE

Write PRINT PUT

Special MAGTAPE, SPEC%

Close CLOSE CLOSE

The KILL and NAME AS statements (see the BASIC-PLUS Language Manual)
apply only to disk and DECtape files; you cannot use them with magnetic tape
files.

RSTSIE provides several MODE values for use with the OPEN statement to
control file-structured and non-file-structured tape operations. The MODE values
differ for file-structured and non-file-structured processing. The MAGTAPE and
SPEC% functions, used mostly in non-file-structured processing, give you still
more control over magnetic tape operations. In addition, the Special Magnetic
Tape Directory Lookup SYS call (SYS 15) is available to look up directories on
magnetic tape (see Chapter 8).

RSTSIE writes tape records of 512 bytes by default. Table 2-2 lists standard
system defaults for magnetic tape density and parity. Note that all tape drives ex
cept for the TK25 and TK50 use 9-track magnetic tape. The Set System Defaults
SYS call (SYS 34) changes the system tape density default. See Chapter 8 for
details.

Table 2-2: System Density Values for Magnetic Tape

Tape Drive Density

TEIO 800 bpi only

TE16 800 or 1600 bpi

TK25 Special format

TK50 Special format

TS03 800 bpi only

TSll 1600 bpi only

TS05 1600 bpi only

(continued on next page)

2-2 Magnetic Tape

Table 2-2 (Cont.): System Density Values for Magnetic Tape

Tape Drive Density

TU10 800 bpi only

TU16 800 or 1600 bpi

TU45 800 or 1600 bpi

TU77 800 or 1600 bpi

TU80 1600 bpi only

TU81 1600 or 6250 bpi

TU81-E 1600 or 6250 bpi

You can override the system defaults by using the MOUNT command. In
addition, you can override both system and assigned defaults in a program by
using the MODE option (in non-file-structured processing) and the MAGTAPE
and SPEC% functions (in both file-structured and non-file-structured processing).

2.1.2 Magnetic Tape Labels

RSTSIE supports two types of magnetic tape file labels in file-structured process
ing: ANSI (American National Standards Institute) and DOS (Disk Operating
System). These labels contain information about data on the tape, but they have
different formats. The ANSI label has a more complex format and contains more
information than the DOS label. A specific tape must contain only one type of
label.

NOTE

Where ANSI is used in RSTSIE documentation, it refers to the RSTSIE
implementation of American National Standard X3.27-1978 - magnetic
tape labels and file structure for information exchange. RSTSIE
implements a subset of this standard.

In addition, RSTSIE uses U (undefined) record format, which is not
defined in ANSI standard X3.27-1978.

The system manager sets the default label format with the DCL SET SYSTEM
command or with the Set System Defaults SYS call (34). If you want to use a
different label, you can either select a label format for your current job with the
MOUNT command or specify a label in a program by use of MODE values in
the OPEN statement. The MOUNT command overrides the system default; the
MODE values override both the system default and the job default.

2.1.3 Data and Label Handling in File-Structured Processing

File-structured magnetic tape processing involves two types of operations:

• Da ta handling

• Label handling

Magnetic Tape 2-3

Data handling, which is done by your program, is no different from data handling
on any other device: the operations you perform depend on the I/O method you
use. In BASIC-PLUS, you can use either stream (formatted) ASCII or block
110. Stream ASCII 110 limits you to stream ASCII records, but BASIC-PLUS
takes care of record blocking and deblocking, buffer management, and conversion
between ASCII and numeric data types. Block I/O lets you read or write any type
of data record, but your program must do its own blocking and deblocking, buffer
management, and data conversion. Note that you may be able to use PIP instead
of writing your own program (see the RSTS / E Utilities Reference Manual). Or,
you may be able to use the DCL COpy command (see the RSTS / E System User's
Guide).

Label handling, on the other hand, is done by the system. (Your program needs
to read and write magnetic tape labels only when you process tapes in non-file
structured mode.) The system needs information from you to write or read tape
labels; you supply this information when you open the file. The way you supply
information and the amount you supply depends on whether you are using a DOS
or ANSI tape.

In general, the system requires no special information from your program to write
a DOS tape. You can use standard BASIC-PLUS programming techniques (such
as the RECORDSIZE option in the OPEN statement to specify a buffer size other
than the default). However, when you write an ANSI tape, you need to supply
some special information, which you place in the CLUSTERSIZE and FILESIZE
options and the POSITION switch when you open the file. CLUSTERSIZE,
FILESIZE, and POSITION for ANSI tapes have different meanings than they do
for disk files. These parameters:

• Specify information about record format and length to be written at certain
positions in the tape label

• Determine the I/O buffer size

• Specify a section number for a multivolume file; that is, a file too large to fit
on one tape

See the section "Processing ANSI Magnetic Tape Files" laster in this chapter for
more information.

Note that although the system writes the label based on information you specify,
it does not check this information when you write data records to the tape.
Instead, your program must ensure that the label information and the data
format agree.

Reading a magnetic tape also differs depending on whether it has DOS or ANSI
labels. When you open a DOS tape for input, the system creates a 512-byte I/O
buffer unless you specify a different buffer size in the RECORDSIZE option.
However, when you open an ANSI tape for input, the system determines the I/O
buffer size from information in the label. Do not use the RECORDSIZE option
when opening an ANSI tape.

The rest of this chapter describes magnetic tape operation in detail:

• File-structured processing

• Non-file-structured processing

• Multivolume ANSI processing

• MAGTAPE and SPEC% functions

• Asynchronous I/O processing

2-4 Magnetic Tape

• Error Handling

• Programming Examples

Note that Appendix A of this manual describes DOS and ANSI label formats and
explains how RSTS/E initializes the two types of tapes. This information is useful
for reading a tape from another operating system or writing a tape for use on
another operating system.

2.1.4 Streaming Tape Drives

Tape drives can be classified as start-stop or streaming. On start-stop tape
drives, such as the TSll, TS03, TU10frE10, TU16frE16, TU45, or TU77, the
tape motion stops after each tape record is read or written. The maximum speed
of such a tape drive, and the amount of data that can be written onto the tape, is
relatively independent of the speed at which the host system can deliver the data.
On streaming drives, such as the TS05, TU80, TU81, TK25 and TK50, the drive
continues to move the tape after a data transfer, in anticipation of the next data
transfer. This mode of operation results in higher I/O transfer speeds and more
tape capacity than with start-stop drives.

However, if data is not supplied to a streaming tape drive quickly enough, the
drive reverts to start-stop mode. Since the drive mechanism is not designed to
reposition the tape as quickly as a start-stop drive, this mode of operation is
inefficient, resulting in slow operation and less tape capacity. This is especially
true of cartridge tape drives such as the TK50. For this reason, Digital strongly
recommends that you use a streaming tape drive only in applications where the
drive can be made to stream consistently.

Any program that uses a streaming drive should use the asynchronous I/O
directives (.READA, .WRITA) and the program should be written so that the data
is supplied to the drive as fast as possible. In addition, any program that uses
streaming tape drives must have enough system resources available (buffer space,
CPU time, disk availability) so that it can deliver data to the drive fast enough to
let it stream consistently.

The only Digital-supplied utility for RSTS/E that meets this requirement is
BACKUP. Digital recommends that you use BACKUP for all streaming tape drive
operations, and strongly discourages using the DCL COpy command, PIp, and
the AUXLIB$:COPY utility with streaming tape drives, especially the TK50.

It is normal for TK50 drives to log some soft errors in the system error log,
especially when reading tapes containing data blocks of 512 bytes or less. These
soft errors use some space in your system error log, but they are otherwise
unimportant.

2.2 The File-Structured Magnetic Tape OPEN FOR INPUT

To open a magnetic tape file for file-structured processing, specify the device
name and file name in the OPEN statement. For example:

100 OPEN "MTO:ABC" FOR INPUT AS FILE N%, MODE M%

The OPEN FOR INPUT statement searches for the specified file on a designated
tape unit. Use OPEN FOR INPUT when you want to read a magnetic tape.
Unlike disk operation, OPEN FOR INPUT on magnetic tape permits read access
only. An attempt to write to the file generates the error ?Protection violation
(ERR=10). If the system detects a logical end-of-tape before finding a file, the
error ?Can't find file or account (ERR=5) occurs.

Magnetic Tape 2-5

In the previous example, the system associates tape unit 0 with the channel
designated by N% and searches for file ABC under the current account according
to the value of M% in the MODE specification. Note that account numbers are
ignored on ANSI-labeled tapes.

Table 2-3 shows the MODE values that you can use in an OPEN FOR INPUT
statement. The MODE value can be the sum of any combination of these single
values, as long as they do not represent conflicting operations.

Table 2-3: Magnetic Tape OPEN FOR INPUT MODE Values

MODE

0%

2%

32%

64%

16384%

24576%

Meaning

Read file label record at current tape position.

Do not rewind tape when searching for specified file.

Rewind tape before searching for specified file.

Rewind tape upon executing a CLOSE.

Search for a DOS-formatted file label.

Search for an ANSI-formatted file label.

If the system finds the file, it opens the file for read access only. If you later
execute a GET statement on channel N%, it makes a block of the file available to
the program in the channel's buffer.

For ANSI-labeled tapes, the system reads the block length from the header 2
label (HDR2) when it opens the file. The system creates the buffer at the size
given by the block length. However, if the block length is odd, the system rounds
the value down to make the buffer size an even number of bytes. (To avoid loss
of data when a magnetic tape file is read, make sure the block length is an even
value when you write the file.)

Under DOS file-structured operations, a GET statement reads magnetic tape
records into a 512-byte buffer. However, in certain cases you may need to process
records larger than 512 bytes. Use the RECORDSIZE option to allocate more
buffer space than the default provides. The form of the statement is:

100 OPEN "MTO:FIDO" FOR INPUT AS FILE N%, MODE M%, RECORDSIZE
R%

where:

N% is the internal I/O channel on which the file is open,

M% is the MODE value

R% is the desired record length. The system rounds R% down to an even number if
R% is odd.

This statement opens the file FIDO under the current account on tape unit 0 for
input and allocates R% bytes of buffer space for data transfer operations.

To open a file stored on a DOS file-structured magnetic tape under an account
other than the current account, supply the project-programmer number in the
OPEN statement. For example:

100 OPEN "[3,214]MTO:ABC" FOR INPUT AS FILE N%, MODE M%

In this example, the system associates tape unit 0 with the channel designated
by N% and searches for file ABC under account [3,214] according to the value of
M% in the MODE specification.

2-6 Magnetic Tape

2.2.1 Reading the Current Record: MODE 0% or No Mode

Omitting the MODE specification or using a MODE 0% specification reads the
record at the current position of the tape. The system expects the label format
to be the system-wide default unless you changed the format when the unit was
allocated to the job with the MOUNT command. If the label format differs or the
tape is not properly positioned, the system generates the error ?Bad directory
for device (ERR=1). No match causes the system to rewind the tape and check
successive label records until the label record for the desired file is found or the
logical end-of-tape is detected. The system does not rewind the tape when the
program executes a CLOSE statement on channel N%.

2.2.2 Rewinding the Tape: MODES 2%, 32%, 64%

As mentioned before, MODE 0% reads the tape from its current position. If the
file name specified in the OPEN statement does not match the label record, the
system automatically rewinds the tape to the first file label record and begins
reading labels file by file.

1b override this automatic rewind feature, include MODE 2% in the OPEN
statement. In this case, the system reads the tape from its current position and,
if no match occurs, continues reading file label records from that position forward
until it either finds the file or detects the logical end-of-tape. The system does not
rewind the tape when it performs a CLOSE operation.

MODE 32% rewinds the tape to the first label record before reading any label.
Once again, no match causes the system to check successive label records until it
finds the file or detects the logical end-of-tape. The system does not rewind the
tape when it performs the CLOSE operation on channel N%.

Including MODE value 64% with any of the above modes rewinds the tape when
you issue a CLOSE statement on channel N%.

2.2.3 Example of OPEN FOR INPUT Statement

You can use the MODE values in any combination as long as they do not
represent conflicting operations. (For example, MODE 16384%+24576% causes
illogical results because DOS and ANSI formats are mutually exclusive.)

Consider the following:

10 OPEN "MT1:NATHAN" FOR INPUT AS FILE 3%, MODE (32%+64%+24576%)

This statement opens the file NATHAN on tape unit 1 and associates it with
channel 3%. You can also specify MODE 24772%, the sum of the three modes.

When the system executes this statement, it rewinds the tape to the first label
record (MODE 32%) and begins to read successive file label records until it either
finds the file or detects the logical end-of-tape. The search is successful only ifthe
system finds the file label NATHAN, written in ANSI format (MODE 24576%).

When the search is successful, the file NATHAN is available for input by means
of GET, INPUT, or INPUT LINE statements. Remember, since the file is open for
input only, attempting to execute PUT or PRINT statements results in the error
?Protection violation (ERR=10).

The next CLOSE statement rewinds the tape (MODE 64%).

Magnetic Tape 2-7

2.2.4 Reading Data

Three types of statements read magnetic tape data: INPUT, INPUT LINE, and
GET statements.

If a tape contains stream ASCII data, you can read it with INPUT or INPUT
LINE statements. These statements work the same way they do for disks.

To read other types of data, use the GET statement. GET reads a single record of
data into the I/O buffer from a magnetic tape file that is open for input. Do not
use both GET and INPUT statements to read the same file.

The GET statement for magnetic tape has the form:

100 GET #N%

where:

N% is the channel on which the device is open.

This statement reads the next sequential record in the file. For DOS format
tapes, the buffer is 512 bytes long unless you specify a larger buffer with the
RECORDSIZE option when you open the file. For ANSI-labeled tapes, the buffer
size is the block length read from the header 2 label (HDR2).

Magnetic tape hardware allows only sequential access. Therefore, you cannot
use the RECORD option in the GET statement. Mter the GET, the number of
bytes read is available in the RECOUNT variable. To associate string variables
with all or part of the data in the I/O buffer, use a FIELD statement (see the
BASIC-PLUS Language Manual). Attempting to read beyond the end of the file
results in the error ?End of file on device (ERR=l1).

If the system reads a block that is larger than the buffer, it transfers the amount
of data that fits, skips the excess data, and returns the error ?Magtape record
length error (ERR=40). The next GET statement then reads the next block.

The GET statement does not perform any data conversions or record blocking and
deblocking. Your program must interpret the data retrieved.

2.3 The File-Structured Magnetic Tape OPEN FOR OUTPUT

The OPEN FOR OUTPUT statement searches for a specified file on a designated
tape unit. Use OPEN FOR OUTPUT when you want to write a magnetic tape.
(Unlike disk operations, OPEN FOR OUTPUT on magnetic tape allows write
access only.) For example:

10 OPEN "MTO:ABC" FOR OUTPUT AS FILE N%, MODE M%

The system associates tape unit 0 with the internal channel designated by N%
and searches for the file ABC in the current account according to the value M%
in the MODE specification. Note that the system ignores account numbers on
ANSI-labeled tapes.

If it does not find the file, the system writes a magnetic tape label record for
the file at the logical end-of-tape and leaves the unit open with write access
only. A PUT or PRINT statement subsequently executed on channel N% writes
the channel's buffer to the tape. Since the file is open solely for output, a GET,
INPUT, or INPUT LINE statement executed on channel N% generates the error
?Protection violation (ERR=10).

The search is successful when the system locates the specified file. The value of
M% in the MODE specification determines how the system searches for and acts
on the file when it is found.

2-8 Magnetic Tape

Table 2-4 shows the MODE values that can be used in an OPEN FOR OUTPUT
statement. The MODE value can be the sum of any combination of these single
values, as long as they do not represent conflicting operations.

Table 2-4: Magnetic Tape OPEN FOR OUTPUT MODE Values

MODE

0%

2%

16%

32%

64%

128%

512%

1024%

16384%

24576%

Meaning

Read file label record at current tape position.

Do not rewind tape when system searches for the file.

Write over existing file. (Destroy any subsequent files currently on the tape.)

Rewind tape before searching for the file.

Rewind tape upon executing the CLOSE statement.

Open for append.

Write new file label record without searching.

Use block length field as specified in IFILESIZE in place of record length
field in ICLUSTERSIZE. Only meaningful on ANSI tape, when the record
length field is zero. (See Table 2-5).

Search for a DOS-formatted file label.

Search for an ANSI-formatted file label.

2.3.1 Searching for a Label on OUTPUT

Omitting the MODE specification or using a MODE 0% specification reads the
tape at its current position. The system expects the label format to be the system
default unless you changed the format when the unit was allocated to the job
using the MOUNT command.

If the label format differs or the tape is not correctly positioned, the system
generates the error ?Bad directory for device (ERR=l).

If the system finds a file label record, and its file name (and account for DOS
tapes) matches that of the file specified in the OPEN statement, the system
generates the error ?Name or account now exists (ERR=16).

No match causes the system to rewind the tape and to check successive file label
records until it either finds a match or detects the logical end-of-tape. If the
system detects the logical end-of-tape, the search is unsuccessful. As a result,
the system backspaces over the logical end-of-tape, writes a file label record fot
the file, and allows write access to the file. The system does not rewind the tape
when the program executes a CLOSE statement on channel N%.

2.3.2 Writing a Label: MODES 16%, 512%

As mentioned before, a search is successful when the system finds the specified
file on the magnetic tape. The error ?Name or account now exists occurs when
this happens. This is a precaution to prevent you from unintentionally writing a
file at this point. (Doing so will write over the current file and destroy all later
files on the tape.) Include a value of 16% in the MODE specification to suppress
this error message and cause the system to write over an existing file on magnetic
tape.

NOTE

Writing over a file causes any files after the overwritten file to be lost.

Magnetic Tape 2-9

When 16% appears alone in the MODE specification, the system first reads the
tape at its current position. If the system finds a file label record and the file
specification in the label record matches the file specification in the OPEN FOR
OUTPUT statement, it backspaces over the file label record. writes a new label
record over the existing label, and allows the program write access to the file.
If the logical end-of-tape is at the current position, the system backspaces one
record, writes a new file label record, and allows write access to the file. No
match causes the system to rewind the tape and to check label records until it
either locates the file or detects the logical end-of-tape. Detecting the logical
end-of-tape before locating the file causes the system to backspace one record,
write a tape label for the file, and allow write access to the file.

When you include 512% in the value for the MODE option, the system writes a
file label record at the current tape position. No label record reading occurs. The
system simply writes a new file label record, destroying all subsequent files on
the tape. Only the value 32%, which causes the tape to rewind (see the section
"Rewinding the Tape"), takes precedence over 512%. Therefore, when you use
512% with any combination of values, not including 32%, the system writes a file
record label at the current tape position.

NOTE

Any MODE value that includes 512% causes the files after an overwrit
ten file to be lost. The overwritten file is always the one at which the
tape is currently positioned, except when you also include 32% in the
MODE value.

2.3.3 Extending a File: MODE 128%

When you include 128% in the value for the MODE option, the system attempts
to open an existing file and position the tape so you can append information to
it. The file must already exist; if it does not exist, the error ?Can't find file or
account (ERR=5) occurs. The file must also be the last file on the tape before the
logical end-of-tape. If it is not the last file on the tape, the system cannot locate
the trailing EOF tape marks and the error ?Protection violation (ERR=10) occurs.
As for all other MODE values, you can use 128% alone or with any combination
of values.

2.3.4 DOS and ANSI Format Labels: MODES 16384%, 24576%

By default, the system assumes that label records on a tape (either DOS or ANSI)
are in the system default format or the format you select for your job with the
MOUNT command. The MODE values 16384% and 24576% override any current
defaults for labeling.

MODE 16384% in the OPEN FOR OUTPUT statement causes the system to
search for a specified magnetic tape file. The search succeeds only if the file is
written in DOS format (that is, preceded by a DOS label).

MODE 24576% in the OPEN FOR OUTPUT statement causes the system to
search for a specified magnetic tape file. In this case, the search succeeds only if
the file label is written in ANSI format.

If the tape format (either ANSI or DOS) differs from that used in the search,
the system generates the error ?Bad directory for device (ERR= 1). If the system
finds the file, it returns the error ?Name or account now exists (ERR=16).

2-10 Magnetic Tape

The system reads the tape from its current position. If it does not find the
file, the system rewinds the tape and reads file labels one by one until it finds
the correct file. If the system detects the logical end-of-tape, it automatically
backspaces over the logical end-of-tape, writes a DOS or ANSI label record for the
file, and allows write access to the file.

2.3.5 Processing DOS Magnetic Tape Files

If the tape being processed is in DOS format, use the RECORDSIZE option in
the OPEN FOR OUTPUT statement to designate the block length. Omitting the
RECORDSIZE option from the OPEN FOR OUTPUT statement is the same as
specifying RECORDSIZE O. BASIC-PLUS creates a 512-byte buffer, the default
for DOS magnetic tape processing. PUT statements write blocks on tape equal to
the buffer size (512 bytes).

To write blocks larger than 512 bytes, specify an even value equal to or greater
than 512 in the RECORDSIZE option. If the value is odd, BASIC-PLUS rounds
the buffer size down to make it even.

To write blocks smaller than 512 bytes, create a buffer smaller than 512 bytes.
Specify 32767%+1% plus an even value equal to or greater than 14 in the
RECORDSIZE option. The minimum block for DOS format tapes is 14 bytes. For
example:

100 OPEN 'MT1.ABC' FOR OUTPUT AS FILE 1%, RECORDSIZE 32767%+1%+130%

In this example, the 32767%+1% value sets the sign bit and tells BASIC-PLUS
to use the value specified (130 in this case) instead of the default value of 512. If
the sign bit is not set, the system creates a 512-byte buffer. If the value given is
odd (and the sign bit is set), BASIC-PLUS rounds the buffer size down to make it
even.

PUT statements write blocks on tape equal to the buffer size. You can use the
COUNT option to write tape blocks smaller than the buffer size but not less than
the minimum of 14 bytes.

2.3.6 Processing ANSI Magnetic Tape Files

If the system is processing a tape with ANSI labels, use the CLUSTERSIZE and
FILESIZE options in the OPEN FOR OUTPUT statement to designate the record
format and length, file characteristics, and block length. Use the !POSITION
switch to specify a section number of a multivolume file.

The system uses these values to create the corresponding fields in the file label
and to set the 1/0 buffer size. The FILE SIZE and CLUSTERSIZE options and
the !POSITION switch have effect only when the tape being processed has ANSI
labels. The general form of the statement with options is:

10 OPEN'MTO:ABC!PO[SITION]:n' FOR OUTPUT AS FILE N%,
CLUSTERSIZE Q%, FILESIZE P%, MODE 24576% + M%

You must specify the options in the exact order shown; otherwise, the system
generates the error ?Modifier error. To apply the system default for any option,
omit that specification from its place in the statement.

In the previous example, the system associates tape unit 0 with the channel
designated by N%. The system searches for file ABC according to the value
specified by M% in the MODE option. The value 24576% in the MODE option
ensures that ANSI label processing is done because any system or device defaults

Magnetic Tape 2-11

are overridden by the value in the MODE option. For the search to succeed, the
file name ABC must match the file identifier in the file label on the tape.

The value n in the !POSITION switch designates the section number of a
multivolume file. If you do not specify the !POSITION switch, the default section
number is 1. See the following section "Processing Multivolume ANSI Magnetic
Tape Files."

The value Q% in the CLUSTERSIZE option designates the record length, record
format, and characteristics of the file created. The value given causes the system
to write the appropriate data in the label fields of the header and end-of-file
records on tape.

Table 2-5 shows the label data for values of Q%. The value specified with
CLUSTERSIZE is the sum of values chosen from Table 2-5.

Table 2-5: ANSI Magnetic Tape CLUSTERSIZE Values

Label Field Name

Record Format

Record Length
(in bytes)

System Dependent
(File Characteristics)

CLUSTERSIZE
Value

0%
16384%
32767%+1%

-16384%

Between 0% and
4095%,
or FILE SIZE

0%
4096%
8192%

Label Result

U = Undefinedl

F = Fixed length
D = Variable length
S = Spanned2

For U, always 0%
For F, value gives fixed record length.
For D, value gives maximum record length.
For S, value is unused.2

If this value is 0% and mode 1024% is used,
then the record length field is set equal to the
block length value specified in IFILESIZE=.

M ;:: carriage control embedded
A = FORTRAN carriage control.
(space) ;:: Implied carriage control (when
printed, line feed precedes and carriage
return follows each record).

lRSTSIE undefined record format tapes cannot be processed directly by most other operating
systems.
2RSTSIE does not support ANSI format S records.

If you omit the CLUSTERSIZE option from the OPEN FOR OUTPUT statement,
the system applies CLUSTERSIZE 0%. The system creates a file with undefined
(U) record format and embedded carriage control with record length 0%. (Use the
default CLUSTERSIZE if you plan to use PRINT to write a stream ASCII tape.)

NOTE

U format records do not conform to ANSI standard X3.27-1978.
Non-RSTSIE operating systems may not be able to read tapes with
undefined format.

The record length that the CLUSTERSIZE option specifies is the value that the
system writes in character positions 11 through 15 of the header 2 (HDR2) label
record. For fixed-length records, this value should equal the number of bytes you
use in the FIELD statement to subdivide the I/O buffer. The subdivisions created
to load records into the I/O buffer then equal the record length on the tape label.
For variable-length records, this value should be the maximum length of a record.
RSTSIE does not allow recordsizes greater than 4095%. In applications where

2-12 Magnetic Tape

you need large tape blocks, you can use mode 1024% to make the record length
field equal to the block length field. In these cases, you must specify a recordsize
of 0% along with mode 1024%.

The value P% in the FILESIZE option designates the block length for the file.
The system writes this value in character positions 6 through 10 of the header
2 (HDR2) label when it opens the file. If you omit the FILESIZE option (the
same as specifying FILESIZE 0%) from the OPEN FOR OUTPUT statement, the
system sets the block length to 512 bytes. In the FILE SIZE option, you must
specify a value between 18 (the minimum allowed on ANSI-labeled tape) and
32767%. Because a record cannot span blocks, the FILESIZE value for fixed
length records must be a multiple of the CLUSTERSIZE value, and greater than
the CLUSTERSIZE value for variable-length records.

In ANSI label processing, the system uses the block length from the HDR2 label
to create the magnetic tape 110 buffer. This action allows the program to write
blocks of data on tape equal in size to the 1/0 buffer. The block length in the
FILESIZE option should correspond to the total size of the 110 buffer defined by
the FIELD statement.

You can use the FILESIZE option in ANSI label processing to create an 110 buffer
other than 512 bytes. The specified block length is written in the HDR2label.
The block length on the tape should be an even number. If the block length is
odd, the system rounds it down one byte to make the 1/0 buffer an even number
of bytes.

Note that the action of the FILESIZE option in ANSI label processing is similar to
the action of the RECORDSIZE option in DOS label processing. However, if you
use the RECORDSIZE option in ANSI label processing, and the value you specify
is larger than the block length in the HDR2 label, the system establishes the 1/0
buffer at the size given in the RECORDSIZE option. No advantage is gained from
using a buffer size larger than the block length. Thus, Digital recommends that
you do not use the RECORDSIZE option in ANSI label processing.

Data to be written to ANSI-labeled tape is not automatically converted by RSTS
IE to the appropriate ANSI record format. Your program must format the data in
the 1/0 buffer before writing the buffer to the tape. In addition, data read from
an ANSI-labeled tape must be interpreted in the appropriate ANSI record format
by the program. It is not in the scope of this manual to fully describe ANSI record
format; refer to ANSI standard X3.27 - 1978. However, the PIP utility can create
and read ANSI format records (see the RSTS / E Utilities Reference Manual).

2.3.7 Processing Multivolume ANSI Magnetic Tape Files

If you are processing large ANSI magnetic tape files, you can use the !POSITION
switch in the file specification to label files that reside on more than one volume.
The general form of the statement is:

10 OPEN "MTO:ABC!POSITION:n" [FOR OUTPUTIINPUT] AS FILE N%, MODE
M%

Magnetic Tape 2-13

where n indicates the volume number of the file. Legal values for n are:

OPEN FOR OUTPUT

o
1-9999

Writes volume number 1 mark on the file

Writes the volume number specified on the file.

If you specify a value other than 0 or 1, the file must be the first data on the
tape to ensure sequential processing.

OPEN FOR INPUT

o
1-9999

Searches for the first file that matches the filename.ext

Searches for the first file that matches both the file name, file type, and the
volume number specified. If the file is found but the volume numbers do not
match, the error ?Pack IDs don't match (ERR=20) is returned.

When you are at the end of a tape and you know that there is more data for
another tape, issue MAGTAPE function 10 (End-of-Volume Mark on CLOSE)
before the CLOSE statement. When you issue the CLOSE statement, this
MAGTAPE function writes an ANSI EOV label on the tape instead of the EOF
label. See the section "The MAGTAPE Function" for more information on writing
an EOVmark.

Multivolume magnetic tape processing works only on ANSI-labeled files.

2.3.8 Example of OPEN FOR OUTPUT Statement

You can use the MODE values available with OPEN FOR OUTPUT in any
combination as long as they do not specify conflicting operations. For example:

10 OPEN "MTO:LLL317" FOR OUTPUT AS FILE 2%, MODE 16466%

This statement opens the file LLL317 on tape unit 0 and associates it with
channel 2%. MODE 16466% is the sum of MODE 2% + 16% + 64% + 16384%.

When the system executes line 10, it determines whether the current label record
is in DOS format (MODE 16384%). If the file is not found, the system does
not rewind the tape (MODE 2%); instead it continues to search for labels in
DOS format from the next record on. If the correct label record is found (that
is, LLL317 exists), the system backspaces one record and writes the new label
over the existing label (MODE 16%). If the logical end-of-tape is found first,
the system backspaces one EOF record and writes the new label, allowing write
access to the new file.

Once the new label record is written, the file LLL317 is available for output.
Since the file is open for output only, attempting to execute GET or INPUT
statements results in the error ?Protection violation (ERR=10).

The next CLOSE statement rewinds the tape (MODE 64%).

2.3.9 Writing Data and Processing End-of-Tape

You can write data to a magnetic tape file with either PUT or PRINT statements.
Do not use both statements to write the same file.

The PUT statement writes the contents of the I/O buffer for the specified
1/0 channel to the next sequential record of the file. The general form of the
statement is:

100PUT#N%

2-14 Magnetic Tape

where:

N% specifies the internal channel on which the file is open.

PUT writes a single record to a magnetic tape file.

The PRINT statement writes stream ASCII data to a magnetic tape file. Use
PRINT only if you plan to use the tape on a RSTSIE system. Other operating
systems may not be able to read BASIC-PLUS stream ASCII data.

If RSTSIE finds the physical end-of-tape marker while writing to tape using a
PUT statement, the system writes the entire record and returns the error ?No
room for user on device (ERR=4).

However, if RSTSIE finds the physical end-of-tape marker while writing to tape
using a PRINT statement, the system may not write the last item printed. The
system returns the error ?No room for user on device (ERR=4).

The error condition does not harm the data. GET statements (when the file is
later opened for input) access data at and beyond the marker without error. If
you see this error, use one of these recovery procedures:

@ Close the file as soon as the error occurs, and then create another file on
another tape for the remainder of the data.

e If the tape is ANSI format and you want to use multivolume processing,
follow these steps:

1. Issue the SPEC% or MAGTAPE function to write an end-of-volume mark
on the tape.

2. Close the tape.

3. Open the next volume of the file as the first file on another tape. Use the
same name, but include the !POSITION switch to specify the next higher
section number of the file.

4. Continue writing the file on the next volume. If the error ?No room for
user on device (ERR=4) occurs again, go to step 1.

• If the file is DOS format or if the file is ANSI format and you do not want to
use multivolume ANSI processing, include a subroutine that writes a logical
end-of-tape mark at the end of the previous file in the program. You can then
write the file that generated the error condition to another tape. Follow these
steps:

1. Backspace with the MAGTAPE function using the maximum parameter
32767% (see the section "Backspace Function"). Repeat this procedure
until the status function (see the section "Tape Status Function") indicates
the tape is at beginning-of-tape (BOT) or that it detects a tape mark
(end-of-file [EOFJ).

2. If no error occurs during the backspace, check the tape status function
(see the section "Tape Status Function") to see whether the tape is at BOT
or EOF. If any error occurs, the data may be corrupt.

3. If the tape is at BOT, the file will not fit on the tape. Write three tape
marks (see the section "Write Tape Mark Function") to zero the tape, then
try a longer tape. Finding BOT should occur only on DOS tapes. ANSI
tape files contain a tape mark between the label records; thus, the system
should find a tape mark before finding BOT.

4. If the tape is at a tape mark and is in DOS format, write three tape
marks. On an ANSI-labeled tape, backspace to the next tape mark, and
then write three tape marks.

Magnetic Tape 2-15

2.4 The File-Structured Magnetic Tape OPEN

The OPEN statement performs an OPEN FOR INPUT operation for a designated
file on a specific tape unit. For example:

10 OPEN "MTO:ABC" AS FILE N%, MODE M%

The system associates tape unit 0 with the internal channel designated by N%
and searches for the file ABC as if you specify an OPEN FOR INPUT statement
with M% in the MODE specification. An OPEN statement without a MODE
specification is treated the same as MODE 0%. If the OPEN FOR INPUT
operation succeeds, the program has read access to the file on the channel's
buffer. If the system cannot open the file for input, it performs an OPEN FOR
OUTPUT operation using the MODE M% specification.

Use OPEN FOR INPUT or OPEN FOR OUTPUT instead of OPEN with magnetic
tape. OPEN FOR INPUT and OPEN FOR OUTPUT allow the system to
immediately determine which operation is needed.

2.5 The File-Structured Magnetic Tape CLOSE

The CLOSE statement terminates processing of a magnetic tape file. If the file
is open for input, the system skips to EOF or EOV (if it is not already there)
and frees the buffer space for other use within the program. If the file is open
for output and the file label is in ANSI format, the system writes a trailer label
group (see Appendix A). The system writes three EOF records to mark the logical
end-of-tape, regardless of the file label format. It then backspaces the tape over
two of the EOF records to position the tape for later output and frees the buffer
space for other use within the program.

If you issue the Write EOV Mark on CLOSE MAGTAPE function (code 10) prior
to the CLOSE, the system writes EOV labels instead of EOF labels.

In addition, the system rewinds the tape if you include the value 64% in the
MODE specification when you open the tape. Otherwise, the system does not
rewind the tape.

2.6 The Non-File-Structured Magnetic Tape OPEN

In non-file-structured processing, the system does no label processing. Essentially,
the system passes all data directly between the magnetic tape and the user
program. You can read or write tapes of any format with non-file-structured
magnetic tape operations, as long as the program is set up to handle the actual
tape format correctly. You can only write records of 14 bytes or longer. However,
other operating systems may not be able to process records of less than 18 bytes,
which is the minimum record length allowed by ANSI standard X3.27-1978.
Attempting to write a shorter record results in the error ?Illegal byte count for
I/O (ERR=31).

To indicate non-file-structured processing, specify only the tape unit in the
OPEN statement. Do not include a file name. There are three types of OPEN
statements. The first two are:

100 OPEN "MTO:" FOR INPUT AS FILE 1%

100 OPEN "MTO:" AS FILE 1%

The OPEN FOR INPUT and simple OPEN statements are equivalent. No tape
movement occurs; the system permits both reading and writing of records.

2-16 Magnetic Tape

The third form of the OPEN statement is slightly different:

100 OPEN "MTO:" FOR OUTPUT AS FILE 1%

In this example, the OPEN FOR OUTPUT statement permits writing- only. The
next section discusses this method of opening a tape for writing and the actions
that occur on CLOSE.

2.7 The Non-File-Structured Magnetic Tape CLOSE

CLOSE has no special action on non-file-structured tapes unless you used an
OPEN FOR OUTPUT statement. On a magnetic tape that is open for output,
the CLOSE statement causes three trailing tape marks to be written, followed by
backspacing over two of these tape marks, which positions the tape correctly for
later output operations.

In any case, if the tape is open for non-file-structured processing, it is not
rewound on CLOSE.

2.8 The MODE Specification in Non-File-Structured Processing

The MODE specification in non-file-structured magnetic tape processing can be
used with some 9-track devices to indicate parity. For 800 bpi tape density, the
standard parity is odd. Digital does not recommend using the MODE specification
to specify even parity. Digital recommends the use of odd parity. Even parity,
although available, cannot be used to write binary data. In addition, few other
operating systems (or tape drives) support the use of even parity.

For 1600 bpi tape densities, parity is odd and nonselectable. The system ignores
any attempt to specify even parity in the MODE specification.

See Table 2-2 for information on the density of 9-track devices.

MODE in the OPEN statement is evaluated by the following algorithm:

D+P+S

where:

D (density) is:

12 = 800 BPI
256 = 1600 BPI

P (parity) is:

o = odd parity
1 = even parity

S (stay) is:

o = MODE value does not stay after CLOSE
8192 = MODE value stays after CLOSE

If you do not specify a MODE value in the OPEN statement, the system processes
the tape using the system density default and odd parity.

If you add 8192% to the MODE value, the associated parity and density settings
remain in effect for the job if the tape unit was allocated to the job, even after the
channel has been closed.

Magnetic Tape 2-17

'lb allow read and write access to a tape, use the OPEN or OPEN FOR INPUT
statement. For example:

100 OPEN "MTO:" AS FILE 1%, MODE 12%

100 OPEN "MTO:" FOR INPUT AS FILE 1%, MODE 12%

Either statement makes the tape on the 9-track drive unit 0 available for
execution of GET and PUT statements on channel 1%. The system accesses
tape with a density of 800 bpi and odd parity. The system does not perform
tape positioning or status checking. You must perform such operations using the
MAGTAPE function described in the next section.

'lb allow only write access to a tape, use the OPEN FOR OUTPUT statement.
For example:

OPEN "MT1:" FOR OUTPUT AS FILE 1%, MODE 12%

If the unit is write-locked (that is, the write-enable ring on the reel is removed),
the system generates the error ?Device hung or write locked (ERR=14) and does
not open the device. Otherwise, the statement makes the tape on unit 1 available
for execution of PUT statements on channel 1%. Since the device is open solely
for write access, an attempt to execute a GET statement on the channel causes
the error ?Protection violation (ERR=10). The system writes records in odd parity
at a density of 800 bpi. Your program must check the status of the device and
control the device by use of the MAGTAPE function described in the next section.

'1b read and write records larger than 512 bytes, include the RECORDSIZE option
in the OPEN statement. For example:

100 OPEN "MTO:" AS FILE 1%, RECORDSIZE 1000%, MODE 12%

This statement associates the tape on unit 0 with channel 1%. The RECORDSIZE
option creates a buffer of 1000 bytes. If insufficient memory is available, you see
the error ?Maximum memory exceeded. You must then either reduce the size of
the program or increase the maximum size to which the job can grow. The buffer
length must be an even number greater than 512. If the number given is odd, the
system rounds it down one byte to make it even. If the number is less than 512,
the system uses the default buffer length of 512.

Subsequent GET and PUT operations on channel 1% read and write records 1000
bytes long. Attempting to read a record longer than the buffer generates the
error ?Magtape record length (ERR=40). The RECOUNT variable contains the
number of bytes read.

'lb write records smaller than the buffer size, open the device normally and
specify the COUNT option in the PUT statement. For example:

205 PUT #1%, COUNT 76%

This statement writes a 76-byte record. If you do not use COUNT, PUT writes
an entire buffer, regardless of whether the buffer contains meaningful data. A
record must be at least 14 bytes (18 bytes to conform to the ANSI standard), and
no larger than the I/O buffer.

If a record smaller than the buffer size is read, the BASIC-PLUS RECOUNT
variable contains the number of bytes read. Every input operation on any
channel (including channel 0) sets RECOUNT. Thus, you should test or save
RECOUNT immediately after each GET statement.

2-18 Magnetic Tape

2.9 The MAGTAPE Function

The MAGTAPE function gives a program control over all magnetic tape oper
ations. You can use MAGTAPE in either file-structured or non-file-structured
processing, although it is mainly used in non-file-structured processing.

The general form of the MAGTAPE function is:

1% = MAGTAPE (F%,P%, U%)

where:

F% is the function code (1 to 12).

P% is an integer parameter.

U% is the internal channel number on which the selected tape is open.

1% is the value returned by the function.

F% determines the effect of the MAGTAPE function. The following sections
describe these functions, beginning with function code 1. In all examples in these
sections, assume that tape unit 1 is open on channel 2. Table 2-6 summarizes
the MAGTAPE function codes and includes the designations IMMEDIATE and
WAIT. IMMEDIATE means that the monitor starts the action and returns control
to your program immediately; WAIT means that the monitor returns control to
your program only after the operation is complete.

Table 2-6: MAGTAPE Function Summary

Function
Action Code Parameter Value Returned Wait or Immediate

Rewind and offline 1 Unused 0 Immediate

Write tape mark 2 Unused 0 Wait

Rewind 3 Unused 0 Immediate

Skip record 4 No. of records No. of records not Wait
to skip skipped

Backspace over record 5 No. of records No. of records not Wait
to backspace backspaced

Set density and parity 6 D+P+S 0 Immediate

Tape status function 7 Unused Status Immediate

File characteristics 8 Unused File characteristics Immediate

Rewind on CLOSE 9 Unused 0 Immediate

End-of-volume (EOV) 10 Unused 0 Immediate
labels on CLOSE

Error condition acknowl- 11 Unused 0 Wait
edged (only meaningful
for asynchronous I/O)

Extended set density 12 Density to set Actual Density set Immediate
Icheck Ichecked

Magnetic Tape 2-19

2.9.1 Off-line (Rewind and Off-line) Function

Function code = 1

Parameter = unused

Value returned = 0

The OFF-LINE function causes the specified magnetic tape to be rewound and set
to OFF-LINE. For example:

200 1% = MAGTAPE (1%, 0%, 2%)

This statement rewinds and sets the magnetic tape open on internal channel 2 to
OFF-LINE.

2.9.2 Write Tape Mark Function

Function code = 2

Parameter = unused

Value returned = 0

The Write Tape Mark function writes one tape mark record at the current position
of the magnetic tape. For example:

200 1% = MAGTAPE (2%, 0%, 2%)

This statement writes a tape mark on the magnetic tape that is open on internal
channel 2.

2.9.3 Rewind Function

Function code = 3

Parameter = unused

Value returned = 0

The Rewind function rewinds the selected magnetic tape. For example:

200 1% = MAGTAPE (3%, 0%, 2%)

This statement rewinds the magnetic tape open on internal channel 2. (This
function does not cause the tape to be set to OFF-LINE.)

2.9.4 Skip Record Function

Function code = 4

Parameter = number of records to skip (0 to 32767)

Value returned = number of records or tape marks not skipped (0 unless the system
finds a tape mark)

The Skip Record function advances the tape. If you set the parameter to any
number in the range 1 to 32767, the function advances the tape by records.
The tape continues to advance until either the specified number of records is
skipped, in which case the value returned by the function is 0, or a tape mark is
encountered, in which case the value returned is the specified number of records
to skip minus the number actually skipped. (The system counts the tape mark as

2-20 Magnetic Tape

a record skipped.) For example, to skip from the current tape position to just past
the next tape mark, use the function:

200 1% = MAGTAPE(4%,32767%,2%)

This statement assumes there are fewer than 32767 records before the next tape
mark. In the section, "Tape Status Function," a more complex example using the
MAGTAPE function shows how to skip an entire file regardless of the number of
records.

If you set the parameter to zero, the function always advances the tape one tape
mark, skipping over any intervening records. The function positions the tape
after the tape mark and returns the number of tape marks not skipped (0 if the
tape mark was found, 1 if it was not).

2.9.5 Backspace Function

Function code = 5

Parameter = number of records to backspace (1 to 32767)

Value returned = number of records not backspaced (0 unless the system finds a tape
mark or BOT)

The Backspace function is similar to the Skip function, except that tape motion
is in the opposite direction. The beginning-of-tape (BOT or Load Point) as wen
as tape marks can cause premature tennination of the Backspace operation, in
which case the value returned is the specified number of records to backspace
minus the number actually backspaced. (The system counts the tape mark as
a record actually backspaced.) The BOT is neither skipped nor counted as a
skipped record. For example:

200 1% = MAGTAPE (5%, 1%, 2%)

This statement backspaces one record on the magnetic tape opened on internal
channel 2, unless the tape was already at BOT.

If you set the parameter to zero, the function always backspaces the tape one
tape mark, skipping over any intervening records. The function positions the tape
before the tape mark and returns the number of tape marks not skipped (0 if the
tape mark was found, 1 if it was not).

To skip past the previous tape mark with TK50 drives, do not adapt the example
from the Skip Record function to the Backspace function. Instead, use the
Backspace function, with the parameter set to O. For example, to skip from the
current tape position to just past the previous tape mark, use the function:

200 1% = MAGTAPE (5%, 0%,2%)

2.9.6 Set Density and Parity Function

NOTE

This function does not support the TK25, TK50, or TU81 magnetic
tape drives. It is provided only for compatibility with existing software.
Digital recommends that the Extended Set Density Function (code 12)
be used in future program development.

Magnetic Tape 2-21

Function code = 6

Parameter = D+P+S

Value returned = 0

where:

D (density) is:

12 = 800 bpi
256 = 1600 bpi

P (parity) is:

o = odd parity
1 = even parity (not recommended; see the section "The MODE

Specification in Non-File-Structured Processing")

S (stay) is:

o = MODE value does not stay after CLOSE
8192 = MODE value stays after CLOSE

A tape drive is set to the system default for density and odd parity unless you
change the default when you allocate the unit (with a MOUNT command) or
when you open the unit. If the tape drive has more than one density and/or
parity option available, this function changes the density and/or parity according
to the value given as the parameter.

See Table 2-2 for information about 9-track tape drive densities, and the section
"The MODE Specification in Non-File-Structured Processing" for information on
parity settings.

The system interprets the parameter exactly as it does the MODE value in a
non-file-structured OPEN statement. For example:

10

20

OPEN "MMO:" AS FILE 2%

I% = MAGTAPE (6%, 256%, 2%)

These statements set the density and parity of the 9-track tape drive open on
channel 2 to 1600 bpi, odd parity. The density and parity that you specify in
the parameter are in effect until channel 2 is closed. The system sets 1% to 0
to indicate successful completion. If this function is executed on a tape open in
file-structured mode, the system ignores the request and returns the same value
as the value passed.

If the unit is allocated, adding 8192% to the parameter value (making it
8192%+256%) keeps the new density/parity setting in effect even after the
associated channel is closed. The next OPEN statement without a MODE op
tion, associating any channel number with tape unit 0, automatically opens it
with that new density/parity setting. A DISMOUNT command for a previously
allocated unit returns the density/parity setting for the tape unit to the system
default value. Specifying another parameter value also changes the density and
parity setting. The setting remains if ownership of the unit is passed to another
job.

The following immediate mode routine sets tape unit 2 to 800 bpi, odd parity,
using DOS labels. In this example, once channel 3 is closed, the new density
/parity setting is now in effect and remains in effect until a DISMOUNT operation
is executed on tape unit 2.

2-22 Magnetic Tape

ASSIGN MM2: .DOS
OPEN "MM2:" AS FILE 3%
I% = MAGTAPE(6%, 8192%+12%, 3%)
CLOSE 3%

2.9.7 Tape Status Function

Function code = 7

Parameter = unused

Value returned = status

The Tape Status function returns the status of the specified magnetic tape as a
I6-bit integer, with certain bits set, depending on the current status.

Table 2-7 shows the status word format.

Table 2-7: Magnetic Tape Status Word

Bit

15

14-13

12

11

10

9

8

7

6

5

4

3

Test

1%< 0%

(1% AND 24576%)/8192%

(1% AND 4096%) = 0%
(1% AND 4096%) <> 0%

(1% AND 2048%) = 0%
(1% AND 2048%) <> 0%

(1% AND 1024%) <> 0%

(1% AND 512%) <> 0%

(1% AND 256%) <> 0%

(1% AND 128%) <> 0%

(1% AND 64%) <> 0%

(1% AND 32%) <> 0%

(1% AND 16%) = 0%
(1% AND 16%) = 1%

(1% AND 8%) = 0%
(1% AND 8%) = 1%

Meaning

Last command caused an error.

If bit 3 = 0, density:

0= reserved
1 = reserved
2 = reserved
3 = 800 bpi

If bit 3 = 1, density:

0= 1600 bpi
1 = reserved
2 = reserved
3 = reserved

9-track tape.
Reserved.

Odd parity.
Even parity.

Tape is physically write-locked.

Tape is beyond physical EOT marker.

Tape is at BOT (load point).

Last command detected a tape mark (EOF
marker).

The last command was READ and the record read
was longer than the I/O buffer size (that is, part
of the record was lost).

Unit is nonselectable (OFF-LINE).

Unit does not accept 1600 bpi.
Unit accepts 1600 bpi.

See values for bits 14-13.
See values for bits 14-13.

(continued on next page)

Magnetic Tape 2-23

Table 2-7 (Cont.): Magnetic Tape Status Word

Bit Test Meaning

2-0 (1% AND 7%) Indicates last command issued:

0= OFF-LINE
1 = READ
2 = WRITE
3 = WRITE TAPE MARK
4 = REWIND
5 = SKIP RECORD
6 = BACKSPACE RECORD

NOTE

Bits 3, 4, and 11 to 14 are maintained only for backwards compatibility.
Digital recommends that you use the Extended Set Density Function
(code 12) for all future software development.

The following example obtains the status of the magnetic tape opened on internal
channel number 2:

200 1% = MAGTAPE(7%,0%,2%)

When the value of 1% returned is 24,848 decimal (or 60420 octal), the magnetic
tape is 800 bpi, 9-track, odd parity, and the last command issued was OFF-LINE.
You can determine this information by testing the value of 1%, bit by bit, against
Table ~7. For example:

1% 24,848 (decimal)

6 0 4 2 0 (octal)

110 000 100 010 000 (binary)

The test for density uses bits 14 and 13:

(1% AND 24576%)/8192%

The following diagram shows the result:

1% 110 000 100 010 000

AND 24576% 110 000 000 000 000

Result 110 000 000 000 000

If you divide the result of (1% AND 24576%), which in this example is 24576%,
by 8192%, the quotient can equal 0, 1, 2, or 3. In this case, 24576/8192 = 3,
indicating that the tape density is 800 bpi.

The results of bit 12 (1% AND 4096%) and bit 11 (1% AND 2048%) are both zero,
indicating a 9-track tape with odd parity.

Bit 8 (1% AND 256%) and bit 4 (1% AND 16%) both return a value of 1, indicating
that the tape is at the load point and that the unit accepts 1600 bpi.

Bit 2-0 (1% AND 7%) returns a value of 0, indicating the last command issued
was OFF-LINE.

2-24 Magnetic Tape

Use the Skip Record function to advance to the next tape mark (that is, skip over
the current file). You can use one Skip Record function unless the file is longer
than 32,767 records (in which case the system must execute several skip record
functions) or the system detects a physical EOT within a file. The following
statements execute a Skip Record function until the next tape mark is found:

20 I% ~ MAGTAPE (4%,32767%,2%) !Do one set of skips &
\GOTO 20 UNLESS (MAGTAPE (7%, 0%,2%) AND 128%) !Do another unless &

!tape mark found

2.9.8 Return File Characteristics Function

Function code = 8

Parameter = unused

Value returned = file characteristics

This function returns the status of the specified file-structured magnetic tape
file as a I6-bit integer, with certain bits set depending on the current file
characteristics. Nonzero integers are returned for ANSI files; zero is always
returned for DOS files.

Table ~ shows file characteristics word for ANSI format.

Table 2-8: Magnetic Tape File Characteristics Word for ANSI Format

Bit Test

15-14 (SWAP%(I%) AND 192%)164%

13-12 (1% AND 12288%)14096%

11-0 1% AND 4095%

Meaning

ANSI format:

o = U (undefined)!
1 = F (fixed-length)
2 = D (variable-length)
3 = S (spanned)2

Format U operation:

o (default)

Format D, Sand F operation:

o (carriage control embedded "M")
1 (FORTRAN carriage control "A")
2 (implied LF/CR II ")

Format U operation:

o = (default)

Format F operation:

Record length

Format D operation:

Maximum record length

Format S operation:

unused2

lU (undefined) format does not conform to ANSI standard X3.27-1978.
2RSTSIE does not support ANSI format S.

Magnetic Tape 2-25

The following example obtains the characteristics of a file on a magnetic tape
opened on channel 2:

400 1% = MAGTAPE (8%, 0%, 2%)

When the value of 1% returned is 16464 (16384% + 64% + 16%) decimal (40120
octal), the magnetic tape file is in ANSI format F, carriage control is embedded
"M", and the record length is 80 bytes. You can determine this information by
testing the value of 1%, bit by bit, against Table 2-8. For example:

1% 16464 (decimal)
= 0 4 0 1 2 0 (octal)
= 0 100 000 001 010 000 (binary)

The test for ANSI format type is (SWAP%(I%) AND 192%)/64%, where 192% =
128% + 64%.

SWAP % (1%) 0 101 000 001 000 000

AND 192%

Result

11 000 000

1 000 000

Dividing the result of SWAP%(I%) AND 192% (which in this case is 64%) by 64%,
the quotient equals 64%/64% = 1, indicating that the tape file is in ANSI format
F.

The result of (1% AND 12288%)/4096% is 0 in this example, indicating that the
carriage control is embedded "M".

Finally, the result of (1% AND 4095%) yields 80 in this case, so the record length
is 80 bytes.

2.9.9 Rewind on CLOSE Function

Function code = 9

Parameter = unused

Value returned = 0

The Rewind on CLOSE function causes the selected magnetic tape to be rewound
when the CLOSE statement is executed. For example:

1% = MAGTAPE(9%,0%,2%)

This statement rewinds the tape open on internal channel 2 when you issue
CLOSE from a program or in immediate mode.

You must use the Rewind on CLOSE function after the OPEN statement and
before the CLOSE statement. This function overrides all MODE specifications
that, in the OPEN statement, instruct the system not to rewind on closing the
file. Once the system executes the Rewind on CLOSE function, it cannot be
cancelled.

2.9.10 Write End-ot-Volume Labels on CLOSE Function

Function code = 10

Parameter = unused

Value returned = 0

2-26 Magnetic Tape

This function writes end-of-volume (EOV) labels on the selected ANSI mag
netic tape when the close statement is executed. This function is mainly for
multivolume ANSI processing. For example:

1% = MAGTAPE(10%,0%,2%)

This statement causes EOV labels to be written to the file on execution of the
CLOSE statement. Normally, end-of-file (EOF) labels are written. You must use
the Write End-of-Volume Labels function after the OPEN statement and before
the CLOSE statement.

This function works only on ANSI labeled magnetic tapes. An attempt to write
end-of-volume labels on DOS-labeled or non-file-structured tapes results in the
error ?Illegal MAGTAPE () usage (ERR=65).

2.9.11 Error Condition Acknowledged

Function code = 11

Parameter = unused

Value returned = 0

This function acknowledges an error condition that has occurred during an asyn
chronous I/O operation. When an error occurs while performing asynchronous
I/O, the tape driver does not execute any more requests until this function has
been issued. This is because asynchronous 1/0 allows multiple requests to be
outstanding, but they may be invalid if the user knows of the error condition that
occurred. All requests between the original errored request and the error con
dition acknowledged function call return the error ?Device hung or write locked
(ERR=4). Once the error condition acknowledged function has been issued, the
driver resumes normal processing, on the assumption that the user is aware of
the error and is taking whatever steps are appropriate to correct it. For example:

1% = MAGTAPE (11%, 0%,2%)

This statement acknowledges the error condition that occurred from the asyn
chronous 1/0 operation on the magnetic tape open on internal channel 2.

The Error Condition Acknowledged function returns no errors and will never fail
when issued. If not required, it is simply ignored.

2.9.12 Extended Set Density Function

Function code = 12

Parameter = Density to set/check

Value returned = Actual density

You can use this function to set the density of a tape drive, or get density
information about a drive. The action that RSTSIE takes depends on the value of
the parameter.

Magnetic Tape 2-27

If the parameter value is zero, RSTSIE returns the current density of the tape
drive. If bit 15 is set, RSTSIE attempts to set the density of the tape drive to the
value in bits 14-0 as follows:

Value

32767

1

n

Meaning

Sets the density to the highest legal density allowed for that tape drive. The
value returned is the density set. No error is returned.

Sets the density to the lowest legal density allowed for that tape drive. The
value returned is the density set. No error is returned.

Attempts to set the density to the value specified. If the value is not legal for
that tape drive, RSTSIE returns an ?Illegal number error message (ERR=52)
and leaves the density of the drive unchanged.

If bit 15 is clear, RSTSIE does not change the drive's density but only tests the
value passed in bits 14-0 as follows:

Value

32767

1

n

Meaning

Returns the highest legal density for this drive.

Returns the lowest legal density for this drive.

Returns the lowest legal density for this drive that is greater than or equal
to the parameter value. If the parameter value is less than the drive's lowest
legal density, RSTSIE returns the lowest legal density. If the parameter value
is greater than the highest legal density, RSTSIE returns the highest legal
density.

Any density changes made by this call, remain in effect until either a new
density is set or a magnetic tape is read that has a density different than the
one formerly set. This action is equivalent to the STAY value 8192% in the Set
Density and Parity Function (function code 6).

NOTE

For MT, MM, and MU tape drives, a tape must be mounted and be at
beginning-of-tape (BOT) to set the drive density. If this condition is
not met and an attempt is made to change the drive's density, RSTSIE
returns an ?Illegal MAGTAPE() usage error message (ERR=65). A tape
does not have to be mounted on the drive to check legal densities or
return the current density of a drive.

2.10 Asynchronous I/O Requests

An asynchronous read or write request performs the same basic function as the
traditional synchronous read or write request: it moves data between a device
and a program. The difference lies in the completion of the request. While a
synchronous request stalls the job's execution until the request is complete, an
asynchronous request does not stall the program. The program continues to run
while the 110 request completes in the background.

When the asynchronous 110 request completes, the system informs the program
that issued the request of the completion and status of the request. The system
notifies the program by forcing it to run an asynchronous completion routine to
notify the user job of the 1/0 completion. The asynchronous completion routine is
a section of code within the user job that executes when an 110 request completes.
When the asynchronous completion routine is entered, it can check for any device
dependent errors.

2-28 Magnetic Tape

(

\

2.11

Asynchronous I/O is only meaningful on MS: tapes (TSll, TK25, TS05, TU80) and
MU: tapes (TK50, TU81). Other tape drives accept asynchronous I/O requests
and emulate asynchronous behavior, but the job stalls and few advantages are
gained from its use.

NOTE

Digital strongly recommends you use only asychronous I/O with TK50
tape.

BASIC-PLUS programmers cannot use asynchronous I/O. BASIC-PLUS-2
programmers can use this feature, but must do so using a MACRO subroutine.
See the RSTS / E System Directives Manual for details.

Magnetic Tape Special Function: SPEC%

The SPEC% function performs special operations on magnetic tape, disks (see
Chapter 1), flexible diskettes (see Chapter 1), line printers (see Chapter 3),
terminals (see Chapter 4), and pseudo keyboards (see Chapter 4).

The SPEC% function for magnetic tape performs the same operations as the
MAGTAPE function. It allows you to rewind the tape, skip records on the tape,
and set tape density and parity. See the section "The MAGTAPE Function" for
details.

The SPEC% function for magnetic tape has the format:

VALUE%=SPEC%(FUNCTION%,PARAMETER,CHANNEL%,14%)

where:

VALUE%

FUNCTION%

PARAMETER

CHANNEL%

14%

depends on the function code specified in FUNCTION%.

is the function code.

depends on the function code specified in FUNCTION%.

is the I/O channel on which the operation is to be performed.

is the handler index for magnetic tape.

The code you specify in FUNCTION% determines the operation performed. These
operations duplicate those performed by the MAGTAPE function codes (see
Table 2-6). The following MAGTAPE and SPEC% functions are equivalent:

I% = MAGTAPE(F%,P%,U%)

I% = SPEC%(FUNCTION%-1%,PARAMETER,CHANNEL%,14%)

2.12 Magnetic Tape Error Handling

RSTSIE recognizes the following magnetic tape error conditions:

• Parity error

• Record length error

• Offline (not ready) error

• Write lock error

• Write beyond EOT error

For other error conditions that can occur with magnetic tape (Illegal byte count,
File exists, Protection violation), see Appendix C.

Magnetic Tape 2-29

2.12.1 Parity (Bad Tape) Error

If the system detects a parity error on a read attempt, it tries to reread the record
up to 15 times. If the error condition persists, the error ?Data error on device
(ERR=13) occurs. In this case, the read has been completed, but the data in the
VO buffer cannot be considered correct.

For TMSCP tapes, the controller handles the retries in a manner transparent
to the operating system. For other tapes, if the first attempt to write a record
fails, the system tries to rewrite the record up to 15 times using write with
Extended Interrecord Gap to space past a possible bad spot on the tape. If the
error condition persists, the error ?Data error on device (ERR=13) occurs. In both
cases, the tape is positioned just past the record on which the error occurred.

If you have error logging on your system, a magnetic tape error may be logged for
each parity error that occurs. Consult the ERRDIS full error report to see if the
problem is due to a malfunctioning or poorly aligned magnetic tape drive.

2.12.2 Record Length Error

The record length error can occur only during a read operation when the record
on the tape is longer than the VO buffer size, as determined by the OPEN
statement. The extra bytes in the record are not read into memory but are
checked for possible parity errors. If a parity error occurs, the error ?Data error
on device (ERR=13) is returned to your program, and bit 6 of the tape status word
is set. Therefore, if you are reading records of unknown length from magnetic
tape, you must check for possible record length errors after every read operation.
Use a statement of this form:

200 PRINT "RECORD TOO LONG" IF MAGTAPE (7%,0%,2%) AND 64%

Note that if bit 6 is set in the tape status word, the IF condition in this example
tests as TRUE. The error ?Magtape record length error (ERR=40) occurs when
the tape block is too long, in either file-structured or non-file-structured magnetic
tape.

2.12.3 Offline Error

The system determines the status of the tape unit by testing bit 5 of the returned
value of the tape status function shown in Table 2-7. If bit 5 is set, the tape
unit is offline. The error ?Magtape select error (ERR=39) occurs if you attempt to
access an offline drive.

2.12.4 Write Lock Error

Attempting any write operation on a magnetic tape that is physically write-locked
(that is, a tape that does not have the write-enable ring inserted) results in the
error ?Device hung or write locked (ERR=14).

2-30 Magnetic Tape

2.12.5 Writing Beyond EOT Error

Attempting to write a record beyond the end-of-tape reflective marker writes the
entire record but returns the error ?No room for user on device (ERR=4). This
error condition is a warning to the user program; it does not harm the data.
The program can recover in one of two ways; see the section "Writing Data and
Processing End-of-Tape."

2.13 Magnetic Tape Programming Examples

The following examples show how to read and write a magnetic tape file.

2.13.1 Writing a Magnetic Tape File

The following BASIC-PLUS program opens an existing magnetic tape file for
output and appends data to the file:

100 M%=16384%+128%+64%+32%
\OPEN "MMO:RECORD.FIL" FOR OUTPUT AS FILE 1%, MODE M%
\FIELD #1%, 2% AS S$, 8% AS M$, 2% AS Y$, 8% AS C$, 2% AS D$
\INPUT "HOW MANY RECORDS TO ENTER";A%

400 FOR 1%=1% TO A%
\INPUT "RECORD";S%
\INPUT K$
\INPUT Y%
\INPUT L$
\INPUT D%

500 LSET S$=CVT%$(S%)
\LSET Y$=CVT%$(Y%)
\LSET D$=CVT%$(D%)
\LSET M$=K$
\LSET C$=L$
\PUT 1%, COUNT 22%
\NEXT 1%
\CLOSE 1%

3000 END

The program opens the file RECORD.FIL, which is on a DOS tape (MODE
16384%), for append (MODE 128%). The system rewinds the tape before it
searches for the file (MODE 32%) and when it executes a CLOSE statement on
the file (MODE 64%). Mter the user types in each record, the program converts
the data, builds a record, and writes the record to the file. Finally, after all
records have been written, the program closes the file and ends.

2.13.2 Reading a Magnetic Tape File

The following BASIC-PLUS program opens a magnetic tape file for input and
reads records from the file. It assumes a file in which records are identifiable by
an integer key. For example:

150 M%=16384%+64%+32%
\OPEN "MMO:RECORD.FIL" FOR INPUT AS FILE 1%, MODE M%

200 INPUT "HOW MANY RECORDS"; F%
210 FOR 1%=1% TO F%

\N%=O%
\INPUT "RECORD TO FIND";J%

Magnetic Tape 2-31

300 GET U%
\FIELD *1%, 2% AS S$, 8% AS M$, 2% AS Y$, 8% AS C$, 2% AS D$

500 N%=N%+l%
\S%=CVT$%(S$)
\GOTO 300 IF J%<>S%

625 Y%=CVT$%(Y$)
\D%=CVT$%(D$)

750 PRINT S%
\PRINT M$
\PRINT Y%
\PRINT C$
\PRINT D%
\T%=MAGTAPE(5%,N%,1%)
\NEXT I%
\CLOSE 1%

2000 END

The program opens the magnetic tape file RECORD.FIL on I/O channell with
read access only. The tape is in DOS format and is rewound both before the
system searches for the file and when the system closes the file (MODE 16384% +
32% +64%). The program searches for the record the user specifies and converts
the data in the record to a recognizable form before printing it.

Because magnetic tape is a sequential access device, the program uses the
MAGTAPE function to backspace the tape to the beginning of the file following
each record retrieval. This allows the user to request records in any order.
Finally, the program closes the file and ends.

2.13.3 Reading a Magnetic Tape Non-File-Structured

The following program reads a DOS magnetic tape label record. See Appendix A
for a description of the DOS label format.

100 DEF FNZ$(Z$)=RAD$(SWAP%(CVT$%(Z$»)
110 INPUT "WHICH DRIVE";M$

\OPEN M$ AS FILE 1%
200 FIELD *1%, 2% AS F$, 2% AS N$, 2% AS X$, 1% AS P$, 1% AS J$,

1% AS C$, 1% AS U$, 2% AS D$, 2% AS U1$
\GET U%

250 F1$=FNZ$ (F$) +FNZ$ (N$)+". "+FNZ$ (X$)
300 P%=ASCII(P$)

\J%=ASCII (J$)
\C%=ASCII (C$)

400 D%=SWAP%(CVT$%(D$»
\Y$=DATE$ (D%)

500 PRINT F1$,P%,J%,C%,Y$
600 CLOSE 1%
32767 END

The program opens the tape for non-file-structured processing on I/O channel
1. No MODE specification is necessary because the tape is 9-track, 800 bpi,
odd parity. After reading the 14-byte label record, the program converts the file
name (bytes 0-5) from Radix-50 notation to the ASCII character string F1$. The
program then converts the project-programmer number (PPN) and protection
code (P$, J$, and C$) to integer format. It next changes the creation date of the
file (D$) to PDP-ll internal form and uses the DATE$ function to obtain the
creation date in DD-MMM-YY format. Finally, the program prints all the label
information and ends.

2-32 Magnetic Tape

Chapter 3

Line Printer

RSTS/E provides several MODE and RECORD options as well as one SPEC%
function for controlling line printer output. It also provides a FILESIZE modifier
to enable extended software formatting. This chapter describes these options. In
addition, it describes special character handling for line printers.

3.1 Special Character Handling

Certain non printing characters have special significance on line printer output.
Table 3-1 summarizes LPll operation under RSTS/E for each of these special
characters.

Table 3-1: LP11 Characters

Character

CHR$(8)

CHR$(9)

CHR$(10)

CHR$(ll)

CHR$(12)

LPll Action

BS - Backspace. This action depends on the !BACKSPACE qualifier of the
SET PRINTER command.

1. Prints line
2. Returns carriage
3. Spaces to position immediately before previous position on line

Tab - Horizontal Tab. This action depends on the /TAB qualifier of the
SET PRINTER command.

1. Spaces over to next tab position (columns 1, 9, 17, 25, and so on)

LF - Line Feed
1. Prints line
2. Returns carriage
3. Advances paper one line

VT - Vertical Tab

1. Advances paper one line and resets line counter

FF - Form Feed
1. Prints line
2. Returns carriage
3. Advances paper to the top of the next form (see the
section Line Printer Control with the MODE Option)

(continued on next page)

Une Printer 3-1

Table 3-1 (Cont.): LP11 Characters

Character

CHR$(13)

CHR$(96) to
CHR$(126)

LPn Action

CR - Carriage Return
1. Prints line
2. Returns carriage
3. No line feed (may be used for overprint)

Lowercase printing characters, converted to uppercase except on an
uppercasellowercase printer.

3.2 Line Printer Control with the MODE Option

The MODE specification in the OPEN statement allows you to control line printer
operations. For example:

OPEN ItLP: It AS FILE N%, MODE M%

The system associates line printer unit 0 with channel N%. The value of M% in
the MODE specification determines the actions the system performs at the line
printer.

Table 3-2 shows the line printer MODE values.

Table 3-2: Line Printer OPEN MODE Values

MODE Value Line Printer Action

0% to 127%

128%

256%

512%

1024%

2048%

4096%

8192%

Defines form length in number of lines per page. 0% indicates the
default form length. You set the default form length with the SET
PRINTER command. Also included when specifying nonstandard form
length with software formatting (512%) and/or automatic page skip
(2048%). This feature is maintained for backward compatibility only.
Use the FILE SIZE form (see the next section) in all new program
development.

Changes the character 0 (zero) to the letter 0 ("ohlt).

Truncates lines that are longer than the form width. If MODE 256%
is not set, then lines longer than the form width are wrapped onto the
next line.

Enables software formatting. Allows special characters to position
paper at a specific line.

Translates lowercase characters to uppercase characters.

Skips six lines (that is, skips over perforation) at the bottom of each
form.

Enables hardware form feed.

Suppresses form feed on CLOSE. Normally, two form feeds are gener
ated whenever the line printer is closed.

3.3 Line Printer Control with the FILESIZE Statement

3-2 Line Printer

The FILESIZE specification in the OPEN statement allows you to use extended
software formatting. This feature handles a line printer form length specification
of up to 255 lines. It also enables two additional mode values: Change <ESC> to
$ - MODE 16%, and Set NOWRAP - MODE 32%.

You enable extended software fonnatting with a FILESIZE 32767%+1% modifier
in the OPEN statement. For example:

10 OPEN "LP:" AS FILE 1%, FILESIZE 32767%+1%+N%, MODE M%

The system associates line printer unit 0 with channel 1. The value N% specifies
the fonn length and can be any value from 0-255. A value of 0 indicates the
default fonn length. The FILESIZE value 32767%+1% sets the FILESIZE sign
bit, thereby enabling extended use of the MODE values. M% specifies the MODE
value.

Table 3-3 lists the MODE values available for use with the FILESIZE
32767%+1 % modifier.

Table 3-3: Additional OPEN MODES with FILESIZE 32767%+1%

MODE Value Line Printer Action

16% Changes ESC to $. This mode disables escape sequences in data
output to the device.

32% Sets NOWRAP mode for lines that are longer than the printer's form
width. Excess characters continue to be output to the device. Mode
256% overrides this mode.

The following sections describe the various uses of the MODE option.

3.3.1 Change ESC to $: MODE 16%

You can use MODE value 16% only when you include the FILE SIZE 32767%+1%
modifier in the OPEN statement. This mode value instructs the line printer
driver to change any ESC character to a dollar sign ($) character. For example:

10 OPEN "LP:" AS FILE 1%, FILESIZE 32767%+1%+60%, MODE 16%

This statement enables extended software fonnatting and sets the page length to
60 lines per page. MODE 16% disables escape sequences in all data output to the
device.

3.3.2 Set NOWRAP for Excess Lines: MODE 32%

You can use MODE value 32% only when you include the FILE SIZE 32767%+1%
modifier in the OPEN statement. This mode value instructs the line printer
driver to continue to output excess characters to the device. For example:

10 OPEN "LP:" AS FILE 1%, FILESIZE 32767%+1%+60%, MODE 32%

This statement enables extended software fonnatting and sets the page length to
60 lines per page. The driver continues to output excess characters to the device.

Nonnally, the driver inserts a line feed character in lines that exceed the printer's
fonn width, causing the line to be wrapped onto the next line. With MODE 32%
enabled, the driver passes excess characters to the device without inserting a
line feed character. the hardware characteristics of the device itself detennine
the actual display of excess characters. Note that the driver's horizontal position
counter remains at the rightmost position of the fonn width, even though
characters that exceed the line width are being sent to the device.

Note that MODE 256%, Truncate Long Lines, always takes precedence over
MODE 32%.

Line Printer 3-3

3.3.3 Software Formatting: MODE 512%+N%

The MODE value 512% allows you to pass special control characters to position
the paper on a specified line number. Note that if your system manager specifies
8 bit capabilities for a line printer (which allows 8 bit characters to be sent to the
printer) you cannot perform software formatting to that printer. If you attempt to
do so, the system generates the error ?Missing special feature (ERR=66).

For example:

100 OPEN "LPO:" AS FILE 1%, MODE 512%+30%

This statement enables software formatting and sets the form length to 30 lines
per page. If you do not specify the form length, the system uses the default
defined with the SET PRINTER command. Lines are numbered from zero to one
less than the length specified. Thus, in the previous example, lines are numbered
from 0 to 29.

Mter enabling software formatting with MODE 512%, you specify the line
number on which to position the printer paper by sending a special character to
the line printer in PUT or PRINT statements. The system skips to this line by
sending the proper number of line feed characters to the printer.

The special character is of the form CHR$(128%+L%), where L% is the line
number to advance to. For example:

200 PRINT #1%, CHR$(128%+19%);

This statement causes the system to advance the paper to line 19. If the line
value L% is greater than the page length, the system ignores it. If the line value
L% is greater than the current line number, the printer skips to that line number
on the current page. If the line value L% is less than or equal to the number of
the current line, the system moves the paper to the top of the next page and then
skips to the appropriate line.

NOTE

To enable the program to properly perform software formatting of print
lines using special characters, load the paper in the line printer with
the top of form aligned properly and with the tractors set at their
top-of-form position.

The system treats characters whose values lie between 0 and 127 as the standard
ASCII equivalents as shown in Appendix D. If you do not specify MODE
512% in the OPEN statement, and, if you do not specify 8 hit capabilities for the
line printer, characters whose values lie in the range 128% to 255% are treated
as (value - 128%).

3.3.4 Enable Hardware Form Feed: MODE 4096%

3-4 Line Printer

The form feed (FF) character advances the paper to the top of the next page.
When you use the default form length, the FF character is sent directly to the
device. If you use a form length other than the default, the system translates FF
to the proper number of line feed (LF) characters to advance to the next page.

MODE 4096% causes the system to always send a FF to the device, regardless
of the form length. This mode disables FF-to-LF translation. MODE 4096% is
useful for devices that can be set to variable page lengths.

NOTE

If you include both 4096% and 512% values in the MODE option, a FF
character sent to the line printer remains untranslated. The form feed
positions the paper at the top of hardware form. This action results
in unpredictable output because the line counting done by the MODE
512% processing does not take into account the movement of the paper
to the top of hardware form.

3.3.5 Translate Numeric 0 to Letter 0: MODE 128%

A value of 128% in the MODE specification causes the system to print all 0
(zero) characters as 0 (uppercase "oh") characters. This feature is often used
in commercial applications where there can be no possibility for confusion. For
example:

10 OPEN "LPO:" AS FILE 1%, MODE 128%+60%

This statement indicates that the line printer should translate 0 to 0 (128%) on
line printer unit 0 with a form length of 60.

3.3.6 Truncate Long Lines: MODE 256%

'Ib truncate lines greater than the width of the line printer, include 256% in the
MODE value. For example:

10 OPEN "LPO:" AS FILE 1%, MODE 256%+128%+22%

The statement sets the MODE value 128% on line printer unit 0; it also discards
excess characters from each line printed (MODE 256%). The form length is 22
lines. When you do not use 256% in the MODE value, the system prints excess
characters on a second physical line (unless you use MODE 32%).

3.3.7 Translate Lowercase to Uppercase: MODE 1024%

'Ib translate lowercase characters to uppercase characters, include 1024% in the
MODE value. For example:

10 OPEN "LPO:" AS FILE 1%, MODE 1024%+256%+128%

This statement sets the MODE values 128% and 256%. The default form
length is used. In addition, it causes the system to translate all characters
with representations between CHR$(96%) and CHR$(122%) to their equivalents
between CHR$(65%) and CHR$(90%). The system also translates characters
with representations between CHR$(224%) and CHR$(254%) to their equivalents
between CHR$(192%) and CHR$(222%). This feature is always set for an
uppercase-only printer.

3.3.8 Skip Lines at Perforation: MODE 2048%

'Ib skip six lines at the bottom of each form, include 2048% in the MODE value.
For example:

10 OPEN "LPO:" AS FILE 1%, MODE 2048%+1024%+256%+128%+60%

Line Printer 3-5

The statement sets the MODE values 128%, 256%, and 1024%, and also skips six
lines at the bottom of each to page. Note that form length is specified by 60%.
With MODE 2048% in effect, the system does not print on the last six lines of
each form. This feature is useful when you are printing continuous listings to be
placed in horizontal binders. If you load the line printer so that the top of form
is the third physical line on the page, the system leaves three blank lines at the
bottom and top of each page. When the listings are placed in binders, printed
material is located three lines from the perforations of the page for easy reading.

3.3.9 Suppress Form Feed on CLOSE: MODE 8192%

For certain applications, it is necessary to maintain the current print position on
the line printer during a CLOSE operation. Normally, the system automatically
generates two form feeds (FF) on either an implicit CLOSE (for example, a
CHAIN operation) or an explicit CLOSE. By specifying MODE 8192% in the
OPEN statement, the program tells the system not to generate any form feed
when it performs the CLOSE operation on the channel open for the line printer.
For example:

10 OPEN "LPO:" AS FILE 1%, MODE 8192% + N%

The value N% can be any other combination of MODE values valid for line
printer operation.

3.4 Line Printer Control with the RECORD Option

The RECORD option in a PUT or PRINT statement modifies the operation of the
line printer and enables discrete control of individual output steps.

Table 3-4 lists the values allowed in the RECORD option.

Table 3-4: Line Printer RECORD Values

Value

2%

4%

8%

32%

4096%

8192%

Meaning

Print over perforation (disables MODE 2048% for this output step).

Do not return control to the program until output is complete or until the
system encounters an error.

Clear pending output buffers before buffering characters for the request.

Truncate long lines (enables MODE 256% for this output step).

Enable binary output, pass all characters to the device "as is."

Return control to the program if an output stall is to occur on the device.

The general format of the RECORD option for line printer operation is either one
of these two forms:

3-6 Line Printer

10 PUT #N%, RECORD R%, COUNT C%

10 PRINT #N%, RECORD R%, A$

The following sections describe the RECORD values.

3.4.1 Print Over Perforations: RECORD 2%

By specifying RECORD 2% in the PUT or PRINT statement, you can temporarily
override the effect of MODE 2048% on an output form. For example, an appli
cation program that usually skips six lines at the bottom of forms might need to
print an identification or special page requiring all lines on the page. RECORD
2% allows the program to print in the lines normally skipped.

3.4.2 Delay Return Until Output Complete: RECORD 4%

For line printer output, the system transfers data from program buffers to
the device by using intermediate storage areas called system buffers. This
intermediate buffering allows the faster computational process to continue
unhindered by the slower output action of the line printer. For each output
request, the system transfers the data to system buffers. At the same time, at its
own speed, the line printer driver extracts the data from the system buffers and
outputs it to the device.

Normally, completion of an output request occurs when the data is buffered.
Mer buffering the data, the system returns control to the program at the next
statement. If the program finishes its output routine but an error occurs at
the device before the data is actually printed, recovery can be difficult under
programmed control.

The RECORD 4% option in an output request tells the system not to return
control until the data is actually printed. This mechanism allows a program
greater control over error recovery-although at the cost of increased execution
time. To use this mechanism, print a NUL character with the RECORD 4%
option. For example:

10 PRINT #1%, RECORD 4%, CHR$(O%);

The output operation has no effect on the line printer because the system
discards all NUL characters. The program maintains control of the output
operation because the system does not complete the request until it prints all
previously buffered characters. If an error occurs, the program can take recovery
action and resume at this operation. When control passes to the next statement,
the output operation is complete.

If you combine the RECORD 4% option with the RECORD 8192% ("No stall")
option, the monitor returns an error message if the printer is offline.

3.4.3 Clear Buffers Before Returning Control: RECORD 8%

Sometimes it is advantageous for a program to stop printing characters already
buffered for output. Because characters to be printed on a line printer are kept
in intermediate buffers, interrupting the output routine only prevents additional
characters from being buffered. Normally, characters already buffered for output
by the system continue printing until the buffers are clear or until an error
occurs.

The RECORD 8% option in an output request tells the system to terminate
the print operation and clear all pending output buffers before buffering the
characters in the request. For example:

10 PRINT #1%, RECORD 8%, CHR$(13%);

Line Printer 3-7

The system clears all pending output buffers and then sends the carriage return
(CR) character to the printer. The CR character flushes out any characters
in the printer hardware buffers by forcing them to print. Mter the successful
completion of this statement, the printer and its buffers are clear, the vertical
position counter is reset to top of form, and the horizontal position counter is reset
to the left margin. (Although the driver's internal vertical form position counter
is reset to top of form, you may need to align the form itself to its top-of-form
position.)

3.4.4 Truncate long lines: RECORD 32%

RECORD 32% enables MODE 256% for one output step. RECORD 32% causes
the driver to truncate lines greater than the width of the line printer.

3.4.5 Binary Output: RECORD 4096%

RECORD 4096% disables all formatting of characters sent to the line printer for
one output step. The driver outputs all characters to the device "as is." Note that
the driver does not update the vertical and horizontal position counters and the
page counter when this modifier is in effect.

Note that you cannot output null characters to the printer when using binary
output.

3.4.6 No Stall Option: RECORD 8192%

3-8 Line Printer

RECORD 8192% provides a "no stall" option for line printer output. RECORD
8192% causes the monitor to return control to your program if an output stan is
to occur on the device. You can determine the number of bytes still to be written
by checking the contents of the XRB+XRBC. The XRB is accessible only through
MACRO; see the RSTS / E System Directives Manual.

RECORD 8192% is useful for programs that must perform several different
functions with optimal performance (such as a line printer spooler that performs
message send/receive and prints files at the same time). When an output stall
does occur, the program can perform other processing before trying to write the
remaining bytes to the line printer or terminal.

When you use the "no stall" option, you can perform a special test to see if the
line printer is busy without causing your program to stall. To perform the test,
print a single null character and specify RECORD (8192%+4%). When you specify
both values, the system returns control to your program instead of stalling it. If
the system returns 0 at XRB+XRBC, the line printer buffers are empty, which
means there are no characters still to print. A nonzero value at XRB+XRBC
means that the line printer buffer still contains one or more characters to print.
In this case, repeat the test until the system returns 0 at XRB+XRBC.

Note that BASIC-PLUS programmers cannot use this RECORD modifier. BASIC
PLUS-2 programmers can use this modifier, but must use a MACRO subroutine
to check the XRB. See the RSTS / E System Directives Manual for details.

3.5 Line Printer Special Function: SPEC%

The SPEC% function perfonns special operations on line printers, tenninals,
disks, flexible diskettes, magnetic tapes, and pseudo keyboards.

For line printers, the SPEC% function lets you:

• Read the current value of the page counter.

• Read the current vertical and horizontal line positions.

The SPEC% function for line printers has the fonnat:

VALUE% = SPEC%(FUNCTION%,PARAMETER%,CHANNEL%,6%)

where:

VALUE%

FUNCTION%

PARAMETER%

CHANNEL%

6%

depends on the function code specified in FUNCTION%.

is the function code. The SPEC% function performs various func
tions on line printers as determined by the function code. These
codes are:

FUNCTION%=O

FUNCTION%=l

is unused.

returns current value of page counter.

returns current vertical and horizontal line
positions.

specifies the I/O channel for the line printer.

is the handler index for line printers.

SPEC% subfunction 0 returns the current value of the page counter as a 16-bit
value. SPEC% subfunction 1 returns a 16-bit value with the current vertical line
position in the low byte and the horizontal position in the high byte.

3.6 Error Handling

An error condition at the line printer causes the system to interrupt the transfer
of data from the buffers to the device, but not from the program to the buffers.
Since any number of unpredictable events such as a ribbon jam or a paper
tear can cause an error condition, the system retains the unprinted data in the
buffers until either the error is cleared (the unit becomes ready again) or the user
program executes a CLOSE operation.

The system checks the status of the line printer every ten seconds and, upon
detecting the ready condition, continues output from the small buffers without
loss of data. If a program closes the line printer while the error is still pending,
the system returns the small buffers to the pool without printing their contents.
The data transferred from the program, but not yet printed, is lost.

If the program disregards the error condition and continues processing, the
system does not transfer more data to additional small buffers. No output occurs
at the line printer while the error condition remains in effect.

To prevent loss of data, your program must properly detect a line printer error
condition and perfonn appropriate error handling. The system indicates a line
printer error by generating the error ?Device hung or write locked (ERR=14).
The first time the system returns this error after an output request (for example,
PUT), the data is fully buffered by the monitor. No data is lost, but the buffered
data cannot be sent to the printer because of the error condition.

Line Printer 3-9

Because all of the data is buffered, you should not write exceptionally large
buffers to the line printer. The monitor checks the printer's status every 10
seconds. It resumes printing when the error condition is removed. To prevent
filling up monitor buffer space, subsequent output requests return immediately
with the error ?Device hung or write locked (ERR=14). No data is buffered while
the error condition persists. When an output request returns without error, the
printer error is cleared. However, it is good programming practice to force the
monitor to wait until line printer output is complete before printing any more
data.

The following sample program demonstrates code that:

• Opens the line printer, inputs a line from the disk file, and performs output
to the line printer

• Performs efficient error handling as described in this section

10 HOUSEKEEPING
20 OPEN "DATA.DAT" FOR INPUT AS FILE 1%

100

\OPEN "LPO:" AS FILE 2%, RECORDSIZE BUFSIZ(l%)
\FIELD 1%, BUFSIZ(l%) AS 1$
\FIELD 2%, BUFSIZ(2%) AS 0$
\FIELD 2%, 1% AS 01$
\E% = 0%
\ON ERROR GOTO 200

COpy LOOP
110 GET U%

\C% = RECOUNT
\LSET 0$ = 1$

120 PUT *2%, COUNT C%
\GOTO 100

130 LINE PRINTER OUTPUT ERROR - DATA PUT
AT LINE 120 IS BUFFERED

140 LSET 01$ = CHR$ (0%)
150 PUT 2%, RECORD 4%, COUNT 1%

\E% = 0%
\PRINT IF POS (0%)
\GOTO 100

PUT A NULL (IGNORED BY MONITOR)
AND WAIT FOR PRINTER READY
IF IT MAKES, PRINTER IS OK, SO GO
BACK TO COPY LOOP

160 PRINT 'PRINTER HUNG - PLEASE FIX IT';

200

UNLESS E%
\PRINT CHR$ (7%);
\E% = -1%
\SLEEP 10%
\GOTO 150

ASK FOR REPAIRS ONCE, DING EACH
TIME, SLEEP AND RETRY
ERROR HANDLING

210 RESUME 300 IF ERR = 11% AND ERL = 110%
\RESUME 130 IF ERR 14% AND ERL 120%
\RESUME 160 IF ERR = 14% AND ERL = 150%
\ON ERROR GOTO 0

300
310
32767

3-10 line Printer

DONE
CLOSE 1%, 2%
END

Chapter 4

Terminals

RSTSIE provides several features for use in interactive terminal applications. You
access most of these features through the MODE option in the OPEN statement
and the RECORD option in GET and PUT (or PRINT) statements. For example,
by using various MODE and RECORD options you can:

• Display and process screen forms using echo control

• Perform 1/0 to several terminals using one 1/0 channel

This chapter describes these and other terminal features. It also describes:

• Escape sequences

• Private delimiters

• Pseudo keyboards

Except for the section on escape sequences, which contains information about the
VT100-, VT200-, and VT300- family terminals, this chapter describes only the
general-purpose software features that the RSTSIE operating system provides.
See the user's guide for your terminal for hardware-specific information.

4.1 Conditional Input from a Terminal: RECORD 8192%

Sometimes a program must execute an input request from a terminal without
waiting for data to be available. For example, the terminal may be opened on a
specific 110 channel or may be one of many terminals opened on one 1/0 channel
(see the section "Multiterminal Service on One 1/0 Channel"). Normally, the
system stalls a program that is executing an input request until data is available
in the keyboard input buffer (that is, until a user types a line terminator at the
keyboard). To avoid waiting for data, use RECORD 8192% in the GET statement.
For example:

GET #1%, RECORD 8192%

If a terminated data line is available from the terminal open on channell, the
system transfers it to the program's channel 1 buffer. The number of bytes read
from the terminal input buffer is given by the RECOUNT variable. If no data
is available, the system generates the error ?Data error on device (ERR=13). In
both cases, the system reports the results immediately.

You can use RECORD 8192% with the SLEEP statement to wait for input. When
you type a delimiter at a terminal or when a receiving job has received a message,
the system cancels the sleep operation. This feature is useful for determining

Terminals 4-1

whether the sleep operation was canceled by terminal input or the expiration of
a receive call's wait time (see the section "Receive" in Chapter 9). The following
sample routine shows the procedure for cancellation on terminal input:

100 OPEN "KB:" AS FILE *1%
110 ON ERROR GOTO 200

\GET *1, RECORD 8192%
\GOTO 1000
!GOT DATA, GO PROCESS IT

200 IF ERR=13 AND ERL=110 THEN RESUME 300
ELSE ON ERROR GOTO 0

300 SLEEP 5%
\GOTO 110

If data is not available at the terminal, a message is pending. If no delimited
data is available, the program can process it.

4.2 No Stall Option on Terminal Output: RECORD 8192%

When performing output to a terminal, you can also include the value 8192% in
the RECORD option. Note that RECORD 8192% works differently for terminal
input and output. When used on output, RECORD 8192% causes the monitor
to return control to your program if an output stall occurs on the device. If an
output stall does occur, the program can perform other processing before trying
to write the remaining bytes to the terminal. This modifier performs a similar
function to the "no stall" option for line printer output (see the section "No Stall
Option" in Chapter 3).

4.3 Force Interactive Input: RECORD 256%

You can use the RECORD 256% modifier on a GET statement to force the
program to always take input from the terminal, even if a command file is in
effect. Normally, if you read from a terminal and there is a DCL command file
active, then the program takes input from the command file. See the RSTS / E
Guide to Writing Command Procedures for more information on DCL command
files. For example:

GET *1%, RECORD 256%

This modifier is useful in programs that need to ask questions of a user, even
when running under the control of a command file. The DCL command INQUIRE
uses this modifier.

4.4 Multiterminal Service on One 1/0 Channel: RECORD
32767%+ 1 %

4-2 Terminals

The multiterminal feature allows one program to interact with several terminals
on one I/O channel instead of opening each terminal for input or output. This
feature is useful in applications such as order entry, inventory control, and
query-response where the same function is performed on several terminals but a
separate job for each terminal is undesirable or inefficient.

To control several terminals, you must first establish a master terminal by
opening a keyboard on a nonzero channel. Two forms of the OPEN statement are
possible:

10 OPEN "KB:" AS FILE N%

10 OPEN "KB4:" AS FILE N%

The first form associates channel N% with the job console keyboard and defines it
as the master terminal. The second form associates channel N% with keyboard
number 4 and defines it as the master terminal.

You can then control additional. or slave, terminals through Elpecial fonnEl of the
block 110 GET and PUT statements. The program must allocate the terminal to
the job but must not open it. You can establish the terminals as slave terminals
with the ALLOCATE command before you run the program. You can also allocate
these terminals by executing the AllocatelReallocate Device SYS call (SYS 10).
Your program can control any number of terminals up to the maximum number
of terminals on the system.

When a program interacts with several terminals on one 1/0 channel, the
system services the terminals in round-robin fashion, determined by the numeric
sequence of the terminals. To perform input and output, use GET (or INPUT)
and PUT (or PRINT and PRINT-USING) statements in a special manner, as the
following sections describe. Note that the RECORD option specifies a particular
action and keyboard number.

4.4.1 Multiterminal Service Output

Use a PUT statement of the following form to perform output to a keyboard,
either master or slave:

10 PUT #1%, RECORD 32767%+1 %+K%, COUNT N%

where:

K% is a variable in the RECORD modifier that specifies the unit number of the
keyboard to which output is directed.

N% is a variable in the COUNT modifier that specifies the number of characters to
transfer from the buffer on channel 1 to the designated keyboard.

The only special error that can occur is ?Not a valid device (ERR=6), indicating
that the terminlll addressed is neither the master keyboard nor a slave keyboard
reserved by the program. Other possible errors, such as ?IIO channel not open
(ERR=9), work in the standard way.

You can use the RECORD option with the PRINT or PRINT-USING statement as
well as with the PUT statement. For example, the following statements output
the string Z$ to the unit designated by K%:

20 PRINT *1%, RECORD 32767%+1%+K%, Z$;

20 PRINT *1%, RECORD 32767%+1%+K%, USING "11"" , Z$;

When you use PRINT or PRINT-USING, you do not need to use FIELD, LSET,
and RSET statements to move data to an output buffer. It is also easier to format
the data with PRINT or PRINT-USING than with block 1/0 statements.

You can output binary data using multiterminal service by including the value
4096% in the RECORD option. For example:

100 PUT *N%, RECORD 32767%+1%+4096%+K%, COUNT M%

This statement outputs the number of bytes of binary data specified by M% to the
keyboard whose unit number is the variable K%.

Note that when you use multiterminal service, the system keeps track of the
current position (using the CPOS() function) of the output line of the master
keyboard but does not keep track of the current position of the output line of the
slave keyboards. Thus, you should keep a count of characters printed to the slave
keyboards if you need to know exactly what the current position is on the line.

Terminals 4-3

4.4.2 Multiterminal Service Input

4-4 Terminals

In multitenninal service, you can request:

• Input from a specific keyboard

• Input from any of the multiple tenninals

You specify each type of input request by including certain values in the GET
statement RECORD option. The rest of this section describes the two types of
input requests in detail.

Use a GET statement of the following fonn to request input from a specific
keyboard, either master or slave:

10 GET #1%, RECORD 32767%+1%+K%

where the variable K% in the RECORD modifier specifies the keyboard number
of the terminal from which input is requested. The GET statement transfers
the data from the terminal's input buffer to the 110 buffer for the designated
channel. The first character in the buffer contains the number of the keyboard
from which the input came. The total number of characters transferred, including
the keyboard number, is available in the RECOUNT variable. You can access
the data with a standard FIELD statement. Because the first character of the
1/0 buffer is the keyboard number, the length of the data input is equal to
RECOUNT-1 %.

If no input is available from the designated tenninal, the error ?Data error on
device (ERR=13) results. Because this error is recoverable, your program can
execute an appropriate ON ERROR GOTO routine. The system does not allow a
stall on input from a specific keyboard in multiple terminal arrangements.

The following GET statement requests input from anyone of the multiple
terminals:

10 GET #1%, RECORD 32767%+1%+16384%+S%

If input is pending from any tenninal, the system transfers the contents of that
terminal's buffer to the buffer for the designated channel. The first character in
the buffer is the keyboard number of the terminal from which input came. As
with input from a specific keyboard, you can use FIELD to access the sending
keyboard number and the data sent. The variable 8% tells the system how long
to stall the program to wait for input. Table 4-11ists the values 8% can have.
If no input is pending from any tenninal, the program stalls as described for
8%=0% in Table 4-1.

Table 4-1: Multiple Terminal RECORD Values for S%

Value Meaning

S% = 0% GET statement waits until input is available from anyone of the
tenninals. The system waits indefinitely if no input is pending. When
input is available, the system transfers the data and the program
accesses the data as described in the previous section. The error ?Data
error on device (ERR=13) may occur due to a race condition with
CtrllC. No data is lost; simply reissue the GET statement to continue
operation. A race condition can occur when two jobs are accessing the
same data. That is, one job attempts to access data while another job
is in the act of changing that data. The system cannot resolve these
two conditions.

1 %<S%<255% GET statement waits up to S% seconds for input from any tenninal. If
no input is available from any tenninal in S% seconds, the error ?Data
error on device (ERR=13) occurs.

S% = 8192% If no input is pending from any of the tenninals, the error ?Data error
on device (ERR=13) occurs immediately.

In multiterminal service, the system handles CtrllC differently for slave and
master terminals. A CtrllC entered at anyone of the slave terminals passes
a CHR$(3) character to the program but does not terminate the program. The
RECOUNT variable contains the value 2%, representing the keyboard number
and the CtrllC character. The program can process the CtrllC character as
a special character. If CtrllC is entered at the master terminal, the system
terminates the program in the standard fashion.

A CtrllZ entered at either a master or slave terminal produces the error ?End of
file on device (ERR=l1). The system returns the unit number of the keyboard
causing the error as the first character in the channel buffer.

4.5 Terminal Control with the MODE Option

You can control a terminal in several ways with the MODE option in the OPEN
statement. Table 4-2 summarizes the MODE values you can use for terminals.

Table 4-2: Summary of MODE Values for Terminals

MODE

1%

2%

4%

8%

16%

32%

64%

128%

256%

16384%

Meaning

Enable binary input from a terminal

Reserved for TECO

Suppress automatic carriage return/line feed at right margin

Enable echo control (turns off other modes and automatically enables MODE 4%)

Guard program against CtrllC interruption and dial-up line hibernation

Enable incoming XONIXOFF processing

Reserved

Enable special scope RUB OUT

Set escape sequence mode

Enable transparent control character output

Do not use MODE 512% together with multi terminal service. This is the
conditional sleep mode; if you use this mode on the master terminal, it also
affects all the slave terminals.

Terminals 4-5

The following sections describe the various MODE options.

4.5.1 Binary Data Output and Input: RECORD 4096% and MODE 1 %

4-6 Terminals

To perform binary data output to a terminal, either opened on its own 1/0 channel
or opened as one of many terminals on one 110 channel, use a statement of the
following form:

PUT #N%, RECORD 4096%, COUNT M%

This statement transfers the number of bytes specified by M% to the output
buffer of the terminal open on channel N%. You do not need any special form
of the OPEN FOR OUTPUT statement. Specifying RECORD 4096% in the
PUT statement disables all output formatting on the terminal for that output
operation.

You can obtain binary input from a keyboard by including MODE 1% in the
OPEN statement. For example:

10 OPEN "KB6:" AS FILE N%, MODE 1%

This statement associates channel N% with keyboard number 6 in binary input
mode. As a result, characters received are not echoed by the system and are not
altered in any way.

A program can read binary data from:

• A terminal paper tape reader

• The terminal itself

• Any device connected to the system through a keyboard interface.

To start a transfer of data, use the GET statement. For example:

GET#N%

The system transfers some number of characters from the keyboard open on
channel N% to the buffer for that channel. If no data is available, the system
stalls the program until data is received from the keyboard. When data is
received, the system makes the program eligible to run and transfers the data
to the program's 110 buffer. The program must execute GET statements often
enough to avoid losing data from the transmitting device.

The number of characters received is always at least one and never more than
the channel buffer size. The default buffer size for keyboards is 128 characters.
You can override the default buffer size by using the RECORDSIZE option
in the OPEN statement. However, because the system must first buffer the
characters before they can be transferred to the program's buffer, changing the
RECORDSIZE may not help increase the number of characters read by each read
operation. (The system limit is approximately 180, but will vary depending on
other system activity.) The RECOUNT variable contains the actual number of
characters received.

Normally, the system terminates a read after every character typed at a terminal
open for binary input. However, if you set one or more private delimiters for that
terminal, the system terminates a read only when you type a private delimiter.

The system accepts and does not alter any characters received from a terminal
open for binary input. Thus, entering CtrllC has no effect. For this reason, the
system disables binary input mode under any of the following conditions:

• The period for a WAIT statement expires. (The error ?Keyboard wait ex
hausted (ERR=15) occurs.)

• You execute any input or output statement on channel zero when the user's
keyboard is open for binary input.

• You execute an OPEN statement in normal mode on the device but on a
different channel.

• You execute a CLOSE statement on any channel associated with a keyboard
open for binary input.

Under condition 1, the system disables binary input mode if time for a WAIT is
exhausted. For example:

10 WAIT 10%
20 GET #1%

If the system does not detect data within 10 seconds on channell, which is open
for binary input, it disables binary mode in addition to generating the error
?Keyboard wait exhausted (ERR=15). The keyboard stays open for normal ASCII
data transfers.

Under condition 2, the system disables binary input mode when the program
performs 1/0 on channel 0 and the user's keyboard is open for binary input on a
nonzero channel. For example:

10 OPEN "KB:" AS FILE 1%, MODE 1%
20 GET #1%

40 PRINT "MESSAGE";

The statement at line 10 opens the user's keyboard for binary input on a nonzero
channel (channell). The statement at line 20 performs binary input from
the keyboard. However, at line 40 the system executes a PRINT statement
on channel 0, which disables binary input mode. The user's terminal remains
open on channell for normal ASCII data transfers. Note that a PRINT or PUT
statement on channel 1 does not turn off binary input mode. Under condition 3,
the system disables binary input on a channel if the program executes a normal
OPEN on the same device but on a different channel. For example:

10 OPEN "KB6:" AS FILE 1%, MODE 1%

100 OPEN "KB6:" AS FILE 2%

When the system executes line 100, it disables binary input on keyboard 6. If
line 100 contained MODE 1%, the system would open keyboard 6 for binary input
on channel 2. Therefore, keyboard 6 would be open for binary input on both
channels.

Terminals 4-7

Under condition 4, the system disables binary input if the program executes a
CLOSE statement on any channel associated with a keyboard open for binary
input. For example:

10 OPEN "KB6:" AS FILE 1%, MODE 1%
20 OPEN "KB6:" AS FILE 2%, MODE 1%

100 CLOSE 2%

The CLOSE statement at line 100 disassociates channel 2 from keyboard 6 but
also disables binary input on channel 1. Keyboard 6 remains open in normal
mode on channel 1. Digital recommends using binary input mode by opening a
device other than the user's terminal for binary input on any nonzero channel.
Your program can interact normally with the user's terminal by executing
standard INPUT and PRINT statements and can gather data from the binary
device on the nonzero channel by executing GET statements.

Because binary input disables all special character handling, the system cannot
detect an end-of-file on a terminal transmitting binary data.

4.5.2 Suppress Automatic Carriage Return/line Feed: MODE 4%

RSTSIE normally performs a carriage return/line feed (CRlLF) operation when
the right margin of a terminal is to be exceeded. (The SET TERMINAL command
sets the right margin by means of the width characteristic.) You can suppress
this automatic operation by opening the terminal with the MODE 4% option. For
example:

OPEN "KB13:" AS FILE 1%, MODE 4%

The system opens keyboard number 13 on channel 1 in suppress CRILF mode.
The system places all terminals allocated by the job but not opened in the same
mode. (This action follows the multiterminal service rules; see the section,
"Multiterminal Service on One 1/0 Channel.") Thus, all slave terminals have the
same control characteristics as the master terminal.

MODE 4% stays in effect until the terminal is either closed or opened again
without MODE 4%. All slave terminals stay in this mode until the master
terminal is either closed or opened again without MODE 4%.

MODE 4% is normally used for echo control and is automatically enabled with
the MODE 8% option, which the next section describes.

4.5.3 Echo Control: MODE 8%

4-8 Terminals

Echo control mode gives programs better control over screen-oriented input
handling, for example, a forms-oriented data entry application where the program
prompts for and accepts input to various fields on the screen. Echo control
is typically used in video terminal applications, but can can also be used on
hard-copy terminals.

Echo control mode provides several features for screen-oriented applications:

• Automatic display of a "paint" character-When you declare a field on the
screen, you can define a special paint character for character deletion in the
field. When you delete characters from the field, the system refreshes the
paint character on the screen to maintain the appearance of the field. The
system maintains the declared paint character automatically; your program

can display prompts or forms on the screen, accept input from one field at a
time, and format the data for processing.

• Other special character handling-For example, if you type too many charac
ters in a field, the system can echo them as BEL characters or Rt.orp. them as
input for the next field. You specify which type of processing you want when
you declare the field.

'lb enable echo control, use the MODE 8% option in the OPEN statement:

OPEN "KBn:" AS FILE 1%, MODE 8%

where n designates the keyboard to be opened on channel 1 in echo control
mode. A nonzero channel is required. The system also places all terminals
allocated by the job but not opened in echo control mode. (This action follows
the multiterminal service rules; see the section, "Multiterminal Service on One
110 Channel." Thus, all slave terminals are in the same mode as the master
terminal.)

MODE 8% turns off other MODE options in effect (except MODE 16% and MODE
128%) and turns on MODE 4%.

Echo control remains in effect until one of the following conditions is met:

• A CLOSE is performed on the channel

• The terminal is opened again without MODE 8%

• Any input or output is performed on channel 0 (the job's console terminal)

The system automatically disables Line Editing and Command Recall whenever
the terminal is open in echo control mode, regardless of the setting of the
terminal's LINE_EDITING and RECALL attributes.

In echo control mode, the system strips the parity bit from all characters. All
characters returned to the user have ASCII values in the range 1 to 127. The
system does not pass synchronization and editing characters to the program. The
system passes delimiters to the program but they are never echoed.

Table 4-3 summarizes how the system treats these characters in echo control
mode.

Table 4-3: Echo Control Mode Character Set

ASCII
Code

o

Private

3

4

10

Code
Returned
to User

?

3

4

10

Comments

Ignored Characters

Used as filler for timing.

Delimiter Characters

Private delimiter.

AC (CtrlJC combination).

AD (CtrlJD combination).

Line feed.

(continued on next page)

Terminals 4-9

4-10 Terminals

Table 4-3 (Cont.): Echo Control Mode Character Set

ASCII
Code

12

13

26

27

125

126

127

21

32-95

96-126

96-126

192-254

192-254

Code
Returned
to User

12

13,10

26

27

27 or 125

27 or 126

32-95

64-94

96-126

192-221

223-254

Comments

Delimiter Characters

Form feed.

Carriage return (with line feed appended).

I\Z (CtrllZ combination); generates ERR=l1.

If you use the SET TERMINALINOESCAPE_SEQUENCE
command and output an escape character, the system returns
27 to the user and treats it as a delimiter.

If you use the SET TERMINAIJESCAPE_SEQUENCE
command, the escape character triggers an escape sequence.
The system returns an escape sequence to the user and
considers the whole sequence as the delimiter.

If you use the SET TERMINAIlALTMODE command, 125 is
translated to escape (27).

If you use the SET TERMINALINOALTMODE command, 125
is data.

If you use the SET TERMINAIlALTMODE command, 126 is
translated to escape (27).

If you use the SET TERMINALINOALTMODE command, 126
is data.

Editing Characters

Rubout (DEL character); on video terminals, generates
a backspace followed by the paint character and another
backspace; on hard-copy terminals, echoes deleted characters
between backslashes.

"U (Ctrl/U combination); repeatedly simulates RUBOUT until
no characters remain in field.

Data Characters

Normal 64-character graphic set.

If you use the SET TERMINAIlUPPERCASE=INPUT com
mand, lowercase letters are translated to uppercase.

If you use the SET TERMINALILOWERCASE=INPUT
command, lowercase letters are returned to the user.

If you use the SET TERMINAIlUPPERCASE=lNPUT com
mand, lowercase letters are translated to uppercase.

If you use the SET TERMINALILOWERCASE=INPUT
command, lowercase letters are returned to the user.

(continued on next page)

Table 4-3 (Cont.): Echo Control Mode Character Set

AScn
Code

17

19

Code
Returned
to User Comments

Synchronization Characters

XON (CtrllQ combination); resumes suspended output (if you
use the SET TERMINALfITSYNC command).

XOFF (CtrllS combination); suspends output (if you use the
SET TERMINALfITSYNC command).

Other Characters

1,2,5-9,11,
14-16,18,20
22-25,28-31

Echoed as BEL (code 7); otherwise, ignored.

17,19 If you use the SET TERMINAUNOTTSYNC command,
synchronization characters are treated as other (echoed as
BEL; otherwise, ignored).

When you open the tenninal in echo control mode, you must next declare a field
before issuing a GET statement to input characters from the terminal. Declaring
a field:

• Establishes field size, which is the maximum number of characters the field
can hold.

• Specifies how overflow characters are handled. Two methods are available:

Nonnal. A field is tenninated by receiving a delimiter. Any characters
received in excess of the field size are treated as other (see Table 4-3) and
echoed as BEL characters.

Keypunch. A field is tenninated either by receiving a delimiter or
by entering the nth character in an n-character field. If the field is
tenninated by size (receiving the maximum number of characters allowed)
rather than by a delimiter, a fonn feed (code 12) is appended to the field.
The terminal does not echo any excess characters but retains them as
input for the next field.

• Defines a special paint character to be echoed for character deletion se
quences. The default is the space character, which actually erases a visible
character on a video screen. However, you can use a character like under
score C) to indicate, or paint, the field. A line editing character (Ctrl/U or
DELETE) causes the defined paint character to be echoed in place of the
default space character. This action maintains the visual indicator of the field
during any character deletion sequence.

To declare a field, execute a special fonn of the PUT or PRINT statement on the
channel where the tenninal is open with MODE 8%. Use the RECORD 256% and
COUNT N% options in the PUT statement to declare the field:

PUT #C%, RECORD 256%, COUNT N%

where:

N% is in the range of 1% to the size of the buffer declared on channel C% and
indicates how many bytes in that buffer represent the field declaration.

Terminals 4-11

4-12 Terminals

Define the field as follows:

N%= 1%

N%=2%

N%>2%

The byte contains the field size and overflow handling information. The
field size must be in the range of 1 to 127. If you attempt to declare
a size of 0, the system returns the error ?Illegal byte count for I/O
(ERR=31).

If you add 128 to the field size, it indicates that keypunch overflow
handling is to be used instead of normal overflow handling.

The first byte contains the field size declaration as described in N% =
1%.

The second byte contains the ASCII value of the paint character. If this
byte is 0 or N% = 1%, then a space is the paint character by default.

The first N minus 2 bytes contain a prompt that is to print on the
terminal before the field.

Byte N minus 1 is the field size declaration as described for N% = 1%.
The last byte is the paint character as described for N% = 2%.

For example:

COUNT 1%

COUNT 2%

COUNT 20%

Specifies that the first byte in the buffer declares the field size. Space
becomes the paint character by default.

Specifies that the first byte in the buffer declares the field size. The
second byte in the buffer declares the paint character. If you want to
use a space as the paint character, specify 0% or the ASCII value for
space in this byte.

Specifies that the first 18 bytes in the buffer contain the prompt. The
prompt is a string of ASCII characters. Byte 19 in the buffer contains
the field size. Byte 20 in the buffer contains the paint character.

You can also use the PRINT statement to declare a field, using a method similar
to that of the PUT statement. The PRINT statement must include a RECORD
256% modifier to indicate the field declaration and string specifications (in place
of the COUNT option) to declare field parameters. For example:

10 PRINT #C%, RECORD 256%, CHR$(M%+S%);
10 PRINT #C%, RECORD 256%, CHR$(M%+S%)+'P';
10 PRINT #C%, RECORD 256%, A$+CHR$(M%+S%)+CHR$(P%);

where:

C% is the nonzero channel open with MODE 8%.

M% is the overflow handling code:

M% = 128% for keypunch.
M% = 0% for normal.

S% is the field size in the range of 1 to 127.

+ concatenates the field declarations.

'P' is the ASCII paint character.

A$ is the prompt.

P% is the decimal code for the paint character; for example, underline is CHR$(95%).

terminates the string (suppresses CRJLF).

When you use the PRINT statement instead of the PUT statement to declare
a field, it saves space in your program because it eliminates the need for the
statements to define and load a buffer. Note that you should output all necessary
bytes as one string, as in the previous examples. Do not use multiple elements
separated by semicolons (;).

Mter you declare the field, the field is considered active. Once you issue a GET
statement, the system begins echoing typed characters until the field is filled or
a delimiter is typed. The terminal handles subsequent characters according to
the overflow mode in effect for the field. When the terminal receives a delimiter
(or the nth character for an n-character keypunch field), it deactivates the field
and disables echoing. The system retains characters typed after the field is
deactivated until the next field is declared and another terminal read occurs.

Attempting to declare a field when one is currently active and the system has
input characters for your program generates the error ?Account or device in use
(ERR=3). Use the cancel type ahead SYS call to deactivate an active field.

You can combine 256% with other values in the RECORD option of the PUT or
PRINT statement for multiterminal service operations. Combining RECORD
values lets you declare a field for either the master or a slave terminal. You need
not declare fields on all terminals, only on those terminals from which input is
solicited. If your program tries to input data without declaring a field on any
terminal, the system returns the error ?Data error on device (ERR=13).

Digital recommends the following sequence when interacting with a video
terminal in echo control mode:

1. Open any terminal on a nonzero channel with MODE 8%.

2. Optionally, execute the Cancel All Type Ahead SYS call (SYS 11), to cancel
any type ahead characters. This step is not required, since type ahead
characters are not echoed until a GET statement is executed.

3. Position the cursor to top of screen and clear the screen.

4. Print any prompting text and display paint characters in all fields. (The
program must initially display the paint characters that will be maintained
by terminal service during any deletion sequences.)

5. Position the cursor to the beginning of the first field (by direct cursor address
ing).

6. Declare the field with the desired size and prompt and a paint character that
matches the one displayed.

7. Execute the GET statement to retrieve input. Any type ahead characters will
be echoed when the GET statement is executed.

NOTE

The INPUT, INPUT LINE and MAT INPUT statements recognize
only the standard BASIC-PLUS delimiters (carriage return,
line feed and form feed) and should not be used in echo control
input operations. With the GET statement you can use a private
delimiter.

8. Extract data from the buffer and store it for processing.

9. Continue positioning the cursor, declaring fields, retrieving input, and
extracting data as required.

For hard-copy terminals, the sequence is slightly different:

1. Open the terminal on a nonzero channel with MODE 8%.

2. Optionally, execute the Cancel All Type Ahead SYS call (SYS 11).

3. Position the paper at top of form. (If the terminal has hardware top of form,
print a form feed; otherwise, print several line feeds.)

Terminals 4-13

4. Print any prompting text for the first field.

5. If the terminal can backspace and has the underline character, paint the field
with underlines and print the appropriate number of backspaces to fix the
printing position at the start of the field.

6. Declare the field with the desired size, overflow handling mode, and prompt.
Do not declare a paint character because it has no effect on a hard-copy
terminal.

7. Execute the GET statement to retrieve input. Any type ahead characters will
be echoed when the GET statement is executed. Do not use INPUT, INPUT
LINE, or MAT INPUT statements.

8. Extract data from the buffer and store it for processing.

9. Position the paper and printing mechanism for the next field by printing
carriage return, line feeds, and spaces as required. Use only one field for each
line because characters removed during a deletion sequence are echoed, which
can cause the next intended field to be used.

10. Repeat the sequence from step 4 until all fields are satisfied.

It is possible to use ODT submode (see SYS call 4, Enable ODT Submode) with
echo control. Combining these features allows a program to examine every input
character while ensuring that type ahead stays within the bounds of a field.
However, some special processing is required for the program to work correctly.

Completion of an ODT submode input request does not necessarily terminate an
echo control field. Therefore, if the program tries to declare the next field while
the previous field is still active, one of two conditions occurs:

• If there is no pending input for the program, the system cancels the existing
field and defines the new one.

• If there is pending input for the program, the system notifies the program
by returning the error ?Account or device in use (ERR=3), and the field
declaration fails.

To handle the second condition, you can trap the error and have the program read
the rest of the characters in the field.

Digital recommends using private delimiters instead of ODT submode (see the
section "Private Delimiters").

4.5.4 Prevent Ctri/C Interruption and Hibernation: MODE 16%

4-14 Terminals

MODE 16% protects a program from:

• Aborting when CtrllC is entered at the terminal.

• Hibernating when it becomes detached and attempts terminal 110 on a
nonzero channel. A job becomes detached when it executes the detach system
function call or when it is running over a dial-up line that gets hung up.

Entering CtrllC at a terminal that is open with MODE 16% cancels any pending
output to the terminal, sets CtrllO, and is interpreted as an ASCII 3. The
program can recover and continue output.

Hanging up a dial-up line (without using MODE 16%) causes a job to be detached
and to enter the hibernation state as soon as it does terminal 110. The job must
wait until it is attached, through some external process, before it can recover.
With MODE 16%, an immediate exit to the error ?IIO to detached keyboard
(ERR=27) occurs when terminal I/O is attempted, which allows the program to
recover. To take advantage of MODE 16%, your program must trap this error.
Otherwise, the job goes into hibernation because BASIC-PLUS uses channel zero
to display the error message on the terminal.

MODE 16% remains in effect until one of the following conditions is met:

• A CLOSE is performed on the channel

• The terminal is opened again, without MODE 16%

• Any I/O is performed on channel 0 (the job's console terminal)

4.5.5 Enable Incoming XON/XOFF Processing: MODE 32%

When an OPEN statement includes MODE 32%, an incoming XOFF character
(ASCII 19) suspends output to the terminal; an incoming XON character (ASCII
17) resumes output to the terminal.

When the OPEN statement also includes MODE 1% (for binary input), the
terminal processes all other incoming characters as for MODE 1%. However, the
terminal ignores all other incoming characters when the OPEN statement does
not also include MODE 1%.

MODE 32% remains in effect until one of the following conditions is met:

• A CLOSE is performed on the channel.

• The terminal is opened again without MODE 32%.

• Any 110 is performed on channel 0 (the job's console).

• An input timeout occurs, producing the error ?Keyboard wait exhausted
(ERR=15).

4.5.6 Special Use of RUBOUT: MODE 128%

MODE 128% allows video terminals to use RUB OUT as a delimiter. RUBOUT's
use as a delimiter is subject to these conditions:

• If a typed character is the object of a RUBOUT operation and is a printing
character (CHR$(32) to CHR$(126) or CHR$(160) to CHR$(254)), the terminal
deletes the character.

• If there is no typed character or if the character is nonprinting (CHR$(O) to
CHR$(31) and CHR$(127)), the terminal does not delete a character. The
terminal buffers RUBOUT as a delimiter and marks the job as eligible to run.

The ability of MODE 128% to buffer RUBOUT as a delimiter is particularly
useful to screen-oriented editors.

NOTE

MODE 128% is reserved for use with Digital-supplied software and it
is subject to change in future releases.

Terminals 4-15

4.5.7 Escape Sequence Mode: MODE 256%

4-16 Terminals

When a tenninal is in escape sequence mode, RSTSIE interprets the ESC
character (CHR$(27%» as the start of an escape sequence instead of as a
delimiter. You can set escape sequence mode either by opening the tenninal with
MODE 256% or by setting the tenninal's escape sequence characteristic with the
SET TERMINAUESCAPE_SEQUENCE command. MODE 256%, the method
Digital recommends, sets escape sequence mode even if the tenninal is set to
/NOESCAPE_SEQUENCE.

Digital recommends MODE 256% because, in addition to setting escape sequence
mode, it modifies the way the system handles escape sequences that end with
P. When you use MODE 256%, the system recognizes P as an escape sequence
tenninator. On the other hand, when you set the terminal's escape sequence
characteristic, the system requires another character after P to tenninate an
escape sequence. See the section "Input Escape Sequences" for more infonnation
about escape sequence tenninators.

NOTE

As an alternative to MODE 256%, an optional patch is available to
cause the system to recognize P as an escape sequence tenninator.
Unlike MODE 256%, this patch affects all tenninals on the system.
See the RSTS / E Maintenance Notebook for details.

Because the system recognizes P as an escape sequence tenninator with MODE
256%, you can use the same code to read incoming escape sequences from all keys
on VT52-, VT100-, VT200- and VT300-family terminals in ANSI mode. On the
other hand, when you set escape sequence mode through the tenninal's escape
sequence characteristic, you cannot use the same code to read incoming escape
sequences from the VT100-, VT200- or VT300-family PFl key and the VT52 blue
key, which are in the same place on the keypad. Both keys send escape sequences
that end with P. See the section "Escape Sequences" for a complete description of
escape sequences.

The following statement opens keyboard unit 46 in escape sequence mode on I/O
channel 2:

100 OPEN "KB46:" AS FILE #2%, MODE 256%

This mode follows multitenninal service rules, which means that all tenninals
allocated but not opened by the job are also placed in escape sequence mode. See
the section "Multitenninal Service on One I/O Channel" for more infonnation
about multitenninal service.

MODE 256% remains in effect until either:

• A CLOSE is perfonned on the channel

• The tenninal is opened again without MODE 256%

If the tenninal's escape sequence characteristic is set, escape sequence mode stays
in effect when you cancel MODE 256%.

4.6 Escape Sequences

An escape sequence is a series of characters that performs a control function on
the terminal, such as moving the cursor forward or backward or erasing part
of the screen. The first character of an escape sequence is an ESC. The ESC
character is a prefix that causes the terminal to treat subsequent characters as a
command instead of echoing them on the screen.

One common use of escape sequences is cursor control. Cursor control is a
feature of many video terminals, including the VT100-, VT200-, and VT300-family
terminals. As its name suggests, cursor control allows a program to manipulate
the screen cursor. Cursor control is often used with the RSTSIE echo control
feature in data entry applications.

This section:

III Summarizes commonly-used escape sequences for the VT100-, VT200-, and
VT300-family terminals.

III Shows how to use ANSI-compatible escape sequenees to control the cursor and
use two graphics features: reverse video and double-height characters. (The
example is intended to show the technique, not to be a practical application.)

III Explains how the system handles input and output escape sequences for all
types of terminals.

4.6.1 VT100-, VT200u , and VT300-Family Escape Sequences

VT100-, VT200- and VT300-family terminals can operate in either VT52-
compatible mode or ANSI-compatible mode. Each mode has a different set of
escape sequences.

4.6.1.1 VT52-Compatible Mode

In VT52-compatible mode, the VT100-, VT200- and VT300-family terminal re
sponds to escape sequences like a VT52 terminal. VT52-compatible escape
sequences let you execute programs on the VT100-, VT200- and VT300-family
terminals that are written for the VT52 terminal. However, they do not let
you take advantage of advanced features, such as reverse video. In addition,
VT52-compatible escape sequences are not ANSI-standard.

If you write programs for the VT52 as well as the VT100-, VT200- and VT300-
family terminals, or if you are converting from the VT52 to a more advanced
terminal, be aware of differences between the terminals. For example:

III The "home" cursor position differs among the VT100-, VT200- and VT300-
family terminals and the VT52. Home, which is the top left corner of the
screen, is:

(1,1) for the VT100-, VT200- and VT300-family terminals in ANSI
compatible mode

(32,32) for the VT52 and the VT100-, VT200- and VT300-family in VT52-
compatible mode

III When you use cursor control functions on the VT52 or the VT100-, VT200-
and VT300-family terminal in VT52-compatible mode, you must output the
line and column positions as one-byte ASCII values. (You can use the CHR$
function to perform the necessary conversion.)

Terminals 4-17

On the other hand, when you use cursor control functions on the VT100-,
VT200- and VT300-family terminals in ANSI-compatible mode, you output
line and column positions as string data. No conversion is necessary.

See the appropriate hardware manuals for a complete discussion of terminal
hardware and software.

4.6.1.2 ANSI-Compatible Mode

4-18 Terminals

Table 4-4 summarizes the VT100-, VT200- and VT300-family ANSI-compatible
escape sequences that move the cursor, erase all or part of the screen, and control
line size and character attributes (bold, underscore, blink, and reverse video).
Table 4-4 uses the symbols PI, Pc, and Pn:

PI means line number.

Pc means column number.

Pn is a decimal parameter expressed as a string of ASCII digits. The parameter's
meaning for each escape sequence is explained in Table 4-4. Separate multiple
parameters with a semicolon (;). If you omit a parameter or specify 0, the
terminal uses the default parameter value for that escape sequence.

Be sure to include the left square bracket ([) in the escape sequence prefix where
Table 4-4 indicates. Note that escape sequences cannot contain embedded spaces.
See the VT100 User Guide for a complete description of VT100 escape sequences.
See the VT220 User Guide, VT240 User Guide, or VT241 User Guide, for a
complete description of VT200-family escape sequences. See the VT330/VT340
Programmer Reference Manual, Part I and Part II, for a complete description of
VT300-family escape sequences.

Table 4-4: ANSI-Compatible Escape Sequences: VT1 00-, VT200- and VT300-
Family Terminals

Escape Sequence Description

ESC[PnA

ESC[PnB

ESC[PnC

ESC[PnD

ESC[Pl;PcH

ESCD

ESCM

ESCE

ESC[K or ESC[OK

ESC[lK

ESC[2K

ESC[J or ESC[OJ

ESC[lJ

ESC[2J

ESC[PnM

ESC[PnP

Cursor Movement

Moves the cursor up n lines without affecting the column position.
The parameter Pn specifies the number of lines. The default value
is one line.

Moves the cursor down n lines without affecting the column posi
tion. The parameter Pn specifies the number of lines. The default
value is one line.

Moves the cursor forward (right) n columns without affecting the
line position. The parameter Pn specifies the number of columns.
The default value is one column.

Moves the cursor backward Geft) n columns without affecting the
line position. The parameter Pn specifies the number of columns.
The default value is one column.

Direct cursor address. Moves the cursor to the specified line and
column position. If you do not specify a line or column position, the
cursor moves to the home position, which is the top left corner of
the screen.

Index. Moves the cursor to the current column position on the next
line.

Reverse index. Moves the cursor to the current column position on
the preceding line.

Moves the cursor to the first column position on the next line.

Erasing

Erases from the current cursor position to the end of the line.

Erases from the beginning of the current line to the cursor.

Erases the entire line containing the cursor.

Erases from the current cursor position to the end of the screen.

Erases from the beginning of the screen to the current cursor
position.

Erases the entire screen.

VT200- and VT300-family terminals only. Erases multiple lines
below the cursor. As lines are deleted, the remaining lines move up.
The parameter Pn specifies the number of lines.

Erases multiple character to the right of the cursor. As characters
are deleted, the remaining characters move to the left.

(continued on next page)

Terminals 4-19

Table 4-4 (Cent.): ANSI-Compatible Escape Sequences: VT100-, VT200- and
VT300-Family Terminals

Escape Sequence Description

ESC#3

ESC#4

Line Size (Double Height and Double Width)

Changes the current line to the top half of a double-height, double
width line.

Changes the current line to the bottom half of a double-height,
double-width line.

ESC#5 Changes the current line to a single-width, single-height line.

ESC#6 Changes the current line to a double-width, single-height line.

To display double-height characters, use the ESC#3 and ESC#4 sequences as a pair
on adjacent lines and send the same characters to both lines. The use of double-width
characters reduces the number of characters on each line by half.

Character Attributes (Require Advanced Video Option on VT100)

ESC[Pn;Pn;Pnj ... ;m Turns bold, underscore, blink, and reverse video attributes ON and
OFF. Pn can have the following values:

ESC[Pn$}

ESC[Pn$-

o or none All attributes OFF
1 Bold ON
4 Underscore ON
5 Blink ON
7 Reverse video ON

For VT300-family terminals only:

8 Invisible

22 Bold OFF

24 Underline OFF

25 Blink OFF

27 Reverse video OFF

28 Invisible OFF

The terminal executes the parameters in order and ignores any
other parameter values. Unlike line size commands, which affect
only the current line, the character attributes affect the entire
screen. Remember to turn them OFF before ending your program.

Status Line Control (VT300-Family Only)

Controls the destination of data sent to the terminal.
Pn = O-send data to screen

1-send data to status line only

Controls type of status line.
Pn = O-no status line

I-terminal indicator status line

2-host writable status line

4.6.2 Programming Example

4-20 Terminals

The following example shows how to use VT100-, VT200- and VT300-family
ANSI-compatible escape sequences in BASIC-PLUS. The program uses PRINT
statements to send the escape sequences to the terminal and the special value
CHR$(155%) for the ESC character. (See the section "Output Escape Sequences.")

Each PRINT statement ends with a semicolon to prevent BASIC-PLUS from
printing a carriage return/line feed (CRlLF) as the last step in the PRINT
statement. You need separate PRINT statements to print each half of the double
height line.

10 EXTEND
100 ESC$ = CHR$(155%) !Set up variables
120 PREFIX$ = ESC$ + ' ['
125 CLEAR$ = PREFIX$ + '2J'

!for ESC and ESC[prefix
land to clear the screen

130
132 ! Escape sequences to move cursor and erase screen.
133 !
135 PRINT CLEAR$; ! Clear screen
140 PRINT PREFIX$ + '16;4H'; !Move cursor to 16,4
160 PRINT 'Move the cursor to line 16, column 4 and print this text.';
170 SLEEP 3%

!Erase text 180 PRINT PREFIX$ + 'lK';
186 PRINT PREFIX$ + '16;4H';
200 PRINT PREFIX$ + 'SA';
220 PRINT 'Then move the cursor
225 SLEEP 3%

!Move cursor back to 16,4
!Move cursor up 5 lines

up 5 lines';

230 PRINT CLEAR$; !Clear screen
250 PRINT PREFIX$ + '10C'; !Move cursor forward 10 spaces
270 PRINT 'and forward 10 spaces';
280 SLEEP 3%
290 PRINT CLEAR$;
300 PRINT PREFIX$ + 'H';
310

!Clear screen
!Back to home position

320 ! Escape sequences for line size control and reverse video
350 !
370 PRINT PREFIX$ + '7m'; !Turn on reverse video
390 PRINT PREFIX$ + '16H' + ESC$ + '*3';
395 !Change line 16 to double-height top half
400 PRINT 'Double height line in reverse video';
410 !Change line 17 to double-height bottom half
420 PRINT PREFIX$ + '17H' + ESC$ + '*4';
430 PRINT 'Double height line in reverse video' ;
450 SLEEP 3%
460 PRINT PREFIX$ + 'm'; !Turn off reverse video
470 PRINT CLEAR$!Clear screen
32767 END

4.6.3 Output Escape Sequences

When you send an escape sequence to a terminal, use the value CHR$(155%)
for the escape character if the terminal is in normal output mode. Do not use
CHR$(27%), which is the ASCII decimal code for the ESC character, unless you
are using transparent control character mode. The system translates CHR$(27%)
to CHR$(36%), the dollar sign ($) character. CHR$(155%), an ESC with the high
order bit set, is a special value that prevents the system from translating the
ESC character to a $ character. When you use CHR$(155%), it causes the real
CHR$(27%) to be sent, allowing the terminal to interpret the transmitted escape
sequence. See the section, "Transparent Control Character Output: RECORD
16384% and MODE 16384%" for more information.

In processing output escape sequences, the system counts the escape characters
along with the other characters to be output. This causes lines to wrap prema
turely on video terminals. To avoid this line wrap, open the terminal in MODE
4% (suppress automatic CRlLF).

Terminals 4-21

4.6.4 Input Escape Sequences

4-22 Terminals

Under RSTSIE, terminals can operate in either escape sequence mode or no
escape sequence mode. Digital recommends that you set escape sequence mode
by using MODE 256% in the OPEN statement (see the section "Escape Sequence
Mode: MODE 256%"). For compatibility with existing applications, you can set
either mode with the Set Terminal Characteristics SYS call (SYS 16), or the SET
TERMINAL command (see the RSTS / E System User's Guide). New applications
should use MODE 256%.

When a terminal is in normal mode, the system recognizes an incoming ESC
character, CHR$(27%), as a delimiter and echoes a CHR$(36%), the $ character.
When a terminal is in escape sequence mode, however, the system does special
processing of input escape sequences. This special processing is useful for
applications such as reading input from keypad function keys.

NOTE

To cause a terminal to send escape sequences instead of numbers
when keypad keys are pressed, you must send an escape sequence to
the terminal. For the VT100 in ANSI-compatible mode, this escape
sequence is "ESC=". See the appropriate hardware manual for details.

When a terminal is in escape sequence mode, the system processes input escape
sequences so that:

• The characters in the escape sequence do not echo on the terminal.

• A BASIC-PLUS program can read and test escape sequences.

Input escape sequences are processed after CtrllS and CtrllQ (if the TTSYNC
characteristic is set) but before private delimiters and all other characters. In
brief, the system moves the ESC character from the beginning to the end of
the escape sequence so that BASIC-PLUS can recognize the ESC character as a
delimiter. The program receives the escape sequence as follows:

1. A CHR$(128%) value

2. The characters in the ESC sequence (minus the ESC character that started
the sequence) without normal data conversions

3. A CHR$(155%) value, which signals the end of the escape sequence

Figure 4-1 shows an example of this conversion process.

Figure 4-1: Input Escape Sequence Processing

U CHR$(27%'+O~ LJ _C_H_R_$_{1_2_8°_Yo_) +_·_o_p·_+_C_H_R_${_15_5_% '. D
Terminal System User Program

MK-OOS97-o0

Use GET statements to read incoming escape sequences, not INPUT or INPUT
LINE statements. Unlike INPUT and INPUT LINE, GET does not strip the high
order bit or discard nulls.

It is also a good idea to cance.l t:vpe ahead right after you change a terminfll'fl
escape sequence characteristic or open a terminal in escape sequence mode {see
SYS call 11, Cancel All Type Ahead). Canceling type ahead makes sure that
the terminal's type ahead buffer does not contain a mixture of data processed in
normal and escape sequence modes.

VT52 and VT100 ANSI-compatible escape sequences are defined so that matching
keys on each terminal send escape sequences that end with the same character.
Thus, you can use the same code to read incoming escape sequences from both
terminals, regardless of whether the VT100s are in ANSI- or VT52-compatible
mode.

For example, the up arrow key on a VT52 terminal (and a VT100 terminal in
VT52-compatible mode) sends the sequence ESC+"A". Your program receives
this sequence as CHR$(128%)+"A"+CHR$(155%). The up arrow key on a VT100
terminal in ANSI mode sends the sequence ESC+"[A"; your program receives
this sequence as CHR$(128%)+"[A"+CHR$(155%). By checking for an "A", your
program can recognize the up arrow key from both terminals. Incoming escape
sequences for other keys follow the same pattern. When you use this technique:

• Use MODE 256% to set escape sequence mode instead of setting the termi
nal's escape sequence characteristic. The system handles escape sequences
that end with P differently for each method. See the section "Escape Sequence
Mode: MODE 256%" for more information.

• Remember that it works only for reading incoming escape sequences; on
output, your program must distinguish between a VT100 and a VT52. See
the section "VT100-, VT200- and VT300-Family Escape Sequences" for more
information.

The rest of this section provides more detailed information on how the system
processes escape sequences in escape sequence mode.

In escape sequence mode, an incoming ESC character CHR$(27%) sets a flag
indicating that an escape sequence follows. The system does not echo the ESC
character as a $ character and does not echo other characters in the sequence
except for certain control characters. The terminal handles the characters in the
escape sequence as follows:

1. The ASCII control characters (CHR$(O%) through CHR$(31 %) and
CHR$(127%)) are processed first. Except for DELETE (CHR$(127%)) and
CtrllU (CHR$(21%)), their functions do not change. The terminal discards
DELETE and CtrllU and does not pass them to the user. The control charac
ter CHR$(27%) (escape) starts a new escape sequence.

Note that control characters in escape sequences violate the ANSI standard
and should not be used.

2. Normal data conversion, such as translating lowercase letters to uppercase
letters, is not done for characters inside an escape sequence.

3. The system resumes normal data conversions after it terminates the escape
sequence.

Terminals 4-23

4-24 Terminals

Table 4-5 describes how the system terminates the escape sequence when it
receives one of the escape sequence terminators.

Table 4-5: Escape Sequence Terminators

Sequence

Y <2 characters>

O<modifier>
?<modifier>

P<modifier>

P

[<n fillers><terminator>

<n fillers><terminator>

Examples Comments

<ESC>Y<line#><col#> The VT52 terminal uses this es
cape sequence for direct cursor
addressing.

<ESC>[5A
<ESC>[lO;15H

<ESC>#4
<ESC>=
<ESC>Q

The modifier can be any character
except a control character. VT52 and
VT100 terminals transmit escape
sequences of this type when the
terminal is in keypad application
mode and a keypad key is pressed.

The modifier can be any character
except a control character. The
system recognizes this sequence
as an escape sequence terminator
when you set the terminal's ESC
SEQUENCE characteristic but not
when you open the terminal with
MODE 256%. See the section Escape
Sequence Mode: MODE 256%.1

The system recognizes P as an es
cape sequence terminator when you
open the terminal with MODE 256%
but not when you set the terminal's
ESC SEQUENCE characteristic. See
the section Escape Sequence Mode:
MODE 256%.1

The filler characters must be in
the range CHR$(32%) through
CHR$(63%). The terminator charac
ter must be in the range CHR$(64%)
through CHR$(128%). These are
ANSI-compatible escape sequences.

The filler characters must be in
the range CHR$(32%) through
CHR$(47%). The terminator charac
ter must be in the range CHR$(48%)
through CHR$(126%). These are
ANSI-compatible escape sequences.
Some VT52 escape sequences, such
as <ESC>Q (red key), are also
recognized by this rule.

lAs an alternative to MODE 256%, an optional patch is available that causes the system to recognize
"P" as an escape sequence terminator. Unlike MODE 256%, this patch affects all terminals on the
system. See the RSTS / E Maintenance Notebook for details.

The system starts another escape sequence whenever it receives another ESC
character. If the ESC character precedes or is embedded in one of the character
sequences in Table 4-5, the system does not append the CHR$(155%) value to the
escape sequence it was processing before it starts processing the next one.

4.7 Transparent Control Character Output: RECORD 16384% and
MODE 16384%

Until recently, most terminals had a character set of 128 characters. The
characters were stored as 8 bits of data and were usually transmitted that way
as well. The top bit (sign bit) of the 8-bit byte was always zero.

Now, many terminals support the international character set of 256 characters.
For these terminals, all 8 data-bits are significant. You can set the terminal to
correctly handle the 256-character set using the lEIGHT_BIT qualifier of the SET
TERMINAL command. See the RSTS / E System Manager's Guide for details.

RSTS/E terminal output processing normally modifies control characters in
a variety of ways. For example, the terminal prints many characters with
up-arrows, and converts ESC to $. To suppress these conversions, programs
can add 128 to the value of the character to be printed. However, this is often
inconvenient, especially in programs that must also run on other operating
systems. It also causes additional problems on 8-bit terminals.

On 8-bit terminals, the characters in the range 128-159 are caned Cl control
characters and have a different meaning from the corresponding characters with
the sign bit cleared. Since RSTS/E normally assumes that characters in the
range 128-159 are used to represent "real" control characters in the range 0-31,
the new C1 control characters are not normally available.

Transparent control character output solves these problems. You specify it by
using MODE 16384% in the OPEN statement, or by using the RECORD 16384%
modifier in the PRINT or PUT statements. For example:

PUT #1%, RECORD 16384%

Transparent control character output is, in a sense, an intermediate form
between "normal" and "binary" output. It processes the backspace, tab, line feed,
vertical tab, form feed, and carriage return control characters in the usual way
(for example, if the No Tab characteristic is set, tab expansion is performed).
It transmits all other control characters unchanged, including the C1 control
characters. Character codes 27 (ESC) and 155 (CSI) reset the position counter
(CCPOS function value) to zero. Other control characters do not affect the
position counter at all. Graphic (printable) characters are output in the same way
as normal output.

4.8 Private Delimiters

A "private delimiter" is a character used as a delimiter within a program. You
can define any printing or nonprinting character to be a private delimiter. For
example:

• A letter

.. A function key, such as DELETE

.. A control character, such as CtrllZ

.. A standard delimiter, such as LINE FEED

A private delimiter is useful on a data entry terminal with a specialized keyboard.
You can use a large or conveniently located key as the delimiter key. Private
delimiters are also useful in keypad applications.

Terminals 4-25

You can declare one character as a private delimiter on any RSTSIE system. Use
the Set Terminal Characteristics SYS call (SYS 16), or the .SPEC directive (see
the RSTS / E System Directives Manual).

Some RSTSIE systems allow the use of multiple private delimiters. If your
system has this feature, you can declare up to 256 private delimiters with the
.SPEC directive, available through MACRO. Multiple private delimiters let you
do special character processing without using single character I/O. For example,
by combining escape sequences with private delimiters, you can define your own
function keys in keypad applications.

The .SPEC directive lets you set, read, and clear multiple private delimiters.
You cannot set or read multiple private delimiters in BASIC-PLUS. For more
information about the .SPEC directive, see the RSTS / E System Directives
Manual. The rest of this section provides general information about private
delimiters for both BASIC-PLUS and MACRO programmers.

4.8.1 Characteristics of Private Delimiters

4-26 Terminals

When you declare a character as a private delimiter with either the Set Terminal
Characteristics SYS call (SYS 16) or the .SPEC directive, it overrides the existing
ASCII code for the character. Thus, unlike a standard delimiter such as RETURN
or LINE FEED, a private delimiter does not echo at the terminal. In addition, a
special character no longer performs its normal function. For example, when the
DELETE key is a private delimiter, it does not erase the last character typed.

A private delimiter has basically the same characteristics as a standard delimiter.
Like a standard delimiter, it:

• Terminates a read operation.

• Cannot be deleted (except with CtrllX). The DELETE key and CtrllU do not
affect private delimiters in the type ahead buffer.

• Causes the system to awaken a sleeping job when typed at a terminal that
the job has open or assigned. If the job cannot be awakened, the system
stores the private delimiter character.

Once set, a private delimiter remains in effect for a terminal until either:

• The program clears it.

• The job releases the terminal by deassigning it or by closing the 110 channel
where the terminal is open.

In addition, the system clears private delimiters when a dial-up line is hung up
or the job controlling the terminal is killed.

Private delimiters change the way characters are processed in binary mode
(MODE 1%). When a terminal is open in binary mode and no private delimiter
is in use, the system terminates a read after every character. However, if one
or more private delimiters are in use, the system terminates a read only when a
private delimiter is typed.

The system processes private delimiters after processing CtrllS and CtrllQ (if the
TTSYNC characteristic is set) and escape sequences (if the terminal is in escape
sequence mode). This feature prevents a terminal from becoming permanently
stalled, and it also lets you use private delimiters and escape sequences in the
same program.

The system processes private delimiters before all other characters, including
control characters (for example, Ctrl/C). Thus, when you use a standard delimiter
character as a private delimiter, it does not echo on the terminal.

4.8.2 Usage Notes for Private Delimiters

Follow these guidelines when using private delimiters:

• In a BASIC-PLUS program that uses a private delimiter, you must read input
from the terminal with GET statements. Private delimiters do not work with
INPUT, INPUT LINE, or MAT INPUT statements.

• By combining escape sequences with private delimiters, you can define your
own function keys without using single character 110. Follow these steps:

1. Make sure the keypad is in the right mode for your application.

2. Define each function as the PF1 key followed by a character.

3. Define each character as a private delimiter so it does not echo on the
terminal.

For example, you might define PF1 + A as one function and PF1 + M as
another function.

• To return a private delimiter character to its normal function, execute the
Set Terminal Characteristics SYS call (SYS 1M or the .SPEC directive again.
Note that while you can set and read multiple private delimiters only with
the .SPEC directive, you can clear multiple private delimiters with either
the .SPEC directive or the BASIC-PLUS SPEC% function (see the section
"Private Delimiters").

4.9 Terminal Special Function: SPEC%

The SPEC% function performs special operations on disks (see Chapter 1),
flexible diskettes (see Chapter 1), magnetic tapes (see Chapter 2), line printers
(see Chapter 3), and terminals and pseudo keyboards (see Chapter 4).

For terminals, the SPEC% function allows you to cancel CtrllO, set modes for
tape, echo, and ODT, cancel type ahead, and clear private delimiters. The SPEC%
function for terminals has the format:

VALUE%=SPEC%(FUNCTION%,PARAMETER,CHANNEL%,2%)

where:

VALUE%

FUNCTION%

depends on the function code specified in FUNCTION%.

is the function code. The SPEC% function performs various operations
on terminals as determined by the FUNCTION% code. These codes
are:

FUNCTION%=O
FUNCTION%=l
FUNCTION%=2
FUNCTION%=3
FUNCTION%=4
FUNCTION%=7
FUNCTION%=9

Cancel Ctr1l0.
Set tape mode.
Enable echo and clear tape mode.
Disable echo.
Set ODT mode.
Cancel all type ahead.
Clear all private delimiters.

Terminals 4-27

PARAMETER

CHANNEL%

2%

specifies the terminal on which the operation is to take place. If
PARAMETER is 0, the system performs the operation on the currently
open terminal. If you specify a keyboard number in PARAMETER, the
system performs the operation on that terminal. Note t.hat you must
allocate the keyboard to the calling job but you must not open it.

specifies the I/O channel for the terminal in PARAMETER.

is the handler index for terminals.

4.10 Keyboard Numbering

4-28 Terminals

RSTSIE maintains two types of keyboards: static and dynamic.

Static keyboards are either physical terminal lines, such as DL-lllines or
DHU multiplexer sub-lines, or static pseudo keyboards - those configured in
the monitor via the SET SYSTEMlPSEUDO_KEYBOARD=n command. Static
keyboards are fixed in the monitor; they change only when terminal hardware is
added or deleted, or a different number of static pseudo keyboards is specified.

Dynamic keyboards are created by the monitor as needed - they do not refer to
a physical terminal line. RSTSIE uses dynamic keyboards for creating local LAT
terminal ports (either host initiated or terminal server initiated), and for creating
dynamic pseudo keyboards. The number of dynamic keyboards available on a
system is equal to the maximum keyboard limit (127) minus the number of static
keyboards defined.

RSTSIE assigns numbers to static keyboards from 0 to the maximum static
keyboard number - 1. (RSTSIE sets this maximum number depending on the
hardware of your particular system.) Within this range, it numbers keyboards in
the following order:

• Single line interfaces (DLll-AIB/CID)

• Static pseudo keyboards

• Multiplexers

DJll

DHll

DZ11/DZVllIDZQll

DHV11/DHUllIDHQll

That is, RSTSIE lists all single line interfaces first, followed by all static pseudo
keyboards, and so on.

RSTSIE starts numbering dynamic keyboards at the maximum static keyboard
number + 1, up to an absolute maximum of 127. If your system uses LAT
terminals and dynamic pseudo keyboards, it lists these terminals just above their
existing terminal interfaces. To see this list, enter the DCL command SHOW
DEVICE KB.

When a pseudo keyboard opens, RSTSIE returns the keyboard number in
FQSIZM. The number returns as KBnumber * 1. This method works for both
static and dynamic pseudo keyboards.

To determine the pseudo keyboard number, use a statement similar to the
following, immediately after an OPEN statement in BASIC-PLUS:

KB%=ASCII(MID(SYS(CHR$(12%»,4%,1%»

4.11 Pseudo Keyboards

A pseudo keyboard is a logical device that has the characteristics of a terminal
but has no tenninal associated with it. Like a tenninal, a pseudo keyboard has
an input buffer and an output buffer, both of which come from the small buffer
pool. User programs can send input to and get output from these buffers.

Using a pseudo keyboard lets one job control other jobs on the system. Pseudo
keyboards are especially useful for batch operations because they let you do
tenninal 110 without tying up a tenninal.

The system manager sets the number of pseudo keyboards on the system during
system installation. The system assigns a device name of PKn: to each pseudo
keyboard and associates each one with a keyboard unit number KBn: but not
with a physical terminal. For example, the system may associate PK5: with KB8:
even though no physical keyboard 8 exists.

Using a pseudo keyboard involves a controlling job and a controlled job. The
controlling job (your program) creates the controlled job and then does 1/0 to it
through the pseudo keyboard, PKn:. You can run LOGIN and use both system
and program commands to control the job.

The controlling job uses the pseudo keyboard to perfonn input to and extract
output from the controlled job (which runs on KBm: associated with PKn:).
However, the controlled job does not know it is working with a pseudo keyboard.
Instead, it does input and output on its own keyboard, KB:.

Terminals 4-29

Figure 4-2 shows the interaction between the controlled and controlling jobs.

Figure 4-2: Pseudo Keyboard Operations

PKm:

KBn:

GET
INPUT
INPUT

,

CONTROLLING
JOB

PUT,
LINE PRINT

OUTPUT INPUT
BUFFER BUFFER

FOR FOR
------ ------
CONTROLLED CONTROLLED

JOB JOB

GET ,
UT, INP UT,

Controlling
job does I/O
to PKm:

P
P RINT INP UT LINE

Controlled
job does I/O
to KBn:

CONTROLLED
JOB

MK-00696-00

The system transfers data to a pseudo keyboard in full duplex mode. This means
that strings sent by PUT or PRINT statements are echoed in the output buffer
of the associated keyboard unit. Your program can read this echo with GET,
INPUT, or INPUT LINE statements. In addition, when you send a carriage
return character (CHR$(l3%)) to the controlled job's input buffer, the system
automatically appends a line feed character.

The rest of this section contains the following pseudo keyboard information:

• How to access a pseudo keyboard, create a controlled job, and perform pseudo
keyboard 110

• A sample program

• The SPEC% function for pseudo keyboards

4.11.1 Accessing the Pseudo Keyboard

4-30 Terminals

Use the OPEN statement to access a pseudo keyboard. For example:

10 OPEN "PKO:" AS FILE #1%

This OPEN statement associates pseudo keyboard unit 0 with 110 channell
and sets up its input and output buffers. Use this simple form of the OPEN
statement; the system ignores the optional phrases FOR INPUT and FOR
OUTPUT when opening pseudo keyboards.

Two MODE values are available for pseudo keyboards. MODE 0%, the default,
causes the system to kill the controlled job when you close the pseudo keyboard.
MODE 1% requires EXQTA privilege and causes the system to detach the
controlled job when you close the pseudo keyboard. For example:

100 OPEN "PK3:" AS FILE #1%, MODE 0%
200 OPEN "PK5:" AS FILE #2%, MODE 1%

300 CLOSE #1%, #2%

When these statements execute, the system kills the job running on PK3: and
detaches the job running on PK5:.

When the PK side of a pseudo keyboard is open, its KB side functions like a real
keyboard. It can be opened, closed, assigned, and deassigned. You can broadcast
data to it and force input to it. However, when the PK side of a pseudo keyboard
is not open, its KB side functions like a disabled terminal. The system does not
process input from it or send output to it. See the Disable Terminal SYS call
(SYS 8) for more information about disabled terminals.

Two errors can occur when you open a pseudo keyboard:

• If the device you specify does not exist on the system, the error ?Not a valid
device (ERR=6) occurs.

• If another job has the device assigned or opened, the error ?Device not
available (ERR=8) occurs.

4.11.2 Creating the Controlled Job

Mter you open a pseudo keyboard, you must start the controlled job. The normal
way to create the controlled job is with the Create A Job SYS call, (SYS 24). In
some cases, you could force the LOGIN dialogue instead, but that requires you
know the account password.

Mter the controlled job is running, you can send system commands, program
commands, and program responses to the PK device by using PUT or PRINT
statements with various RECORD options. Use GET statements to obtain output
from the controlled job. The next section explains pseudo keyboard 110 in detail.

4.11.3 Pseudo Keyboard 1/0

Reading from a pseudo keyboard is the same as reading from the controlled job's
screen; writing to a pseudo keyboard is the same as typing at the controlled job's
terminal or forcing input to the controlled job's keyboard.

4.11.3.1 Pseudo Keyboard Input

'lb obtain output from the controlled job, execute a GET statement on the 110
channel where the pseudo keyboard is open. For example, the following statement
transfers data from the controlled job's output buffer to your program's channel 1
buffer:

100 GET #1%

Terminals 4-31

The system never stalls the controlling program to wait for data. Instead, it
immediately returns the contents of the controlled job's output buffer to the
controlling job. The buffer contents may be a single message, several messages,
or a message fragment. If no input is available, the error ?End of file on device
(ERR=l1) occurs.

If the controlled job performs output faster than the controlling job can execute
GET statements, the keyboard output buffer fills. As a result, the controlled
job enters an output wait state (TT) as if it were waiting for a real terminal.
When the stall occurs, the system makes the controlling job eligible to run (if it
was in the SLEEP state) so that it can execute GET statements and receive the
controlled job's output.

4.11.3.2 Pseudo Keyboard Output

4-32 Terminals

To perform output to a pseudo keyboard, execute a PRINT or PUT statement with
a coded value in the RECORD option. For example:

100 PUT #N%, RECORD R%, COUNT C%

where:

N% is the I/O channel where the PK device is open

C% is the number of bytes to send from the I/O buffer to the controlled job's input
buffer.

If you omit the COUNT option, the PUT statement sends either 128 bytes (the
pseudo keyboard's default buffer size) or the number of bytes specified in the
RECORDSIZE option of the OPEN statement.

R% determines the actions the system performs for a specific PRINT or PUT state
ment. R% is an integer whose value the system interprets on a bit-by-bit basis.
The system tests the low order four bits in R% (the bits numbered 0 through
3 from right to left) and executes the PRINT or PUT statement depending on
whether certain bits are on or off.

Figure 4-3 explains the bit tests.

Figure 4-3: PUT Statement Actions for Pseudo Keyboard Output

WAIT UNTIL
ROOM IS

AVAILABLE

ON=1

SEND
CHARACTERS

TO KB

NO

RETURN
CONTROL
TO USER

MK-00031-01

Terminals 4-33

Figure 4-3 shows the actions the system perfonns by testing the bits in R%. In
summary:

Bit 0 (value = 1)

Bit 1 (value = 2)

Bit 2 (value = 4)

Bit 3 (value = 8)

If set, the system does not check job status before sending data to
the pseudo keyboard.

If set, the system tests whether the pseudo keyboard is waiting for
a system command ("C state) or is waiting for program input (KB
wait state).

If set, the system does not send data to the pseudo keyboard but
instead returns control to the controlling program.

If set, and there are no small buffers for keyboard input, the system
waits until small buffers are available. However, your program
receives an error if the output buffer chain is full.

The data you send to a pseudo keyboard must have the same fonnat as data
typed at a keyboard. For example, if you send a line that would nonnally end
with the RETURN key, you must end the line with a carriage return character
(CHR$(13%)). In addition, the value you specify in the COUNT option must
include the carriage return character. Do not end the line with a carriage return
/line feed sequence; the system automatically appends a line feed character to a
line that ends with a carriage return character (just as it does when you enter a
line at a tenninal with the RETURN key).

Your program should send only one line at a time and retrieve each program or
system response separately. Sending multiple lines fills up small buffers. For
the same reason, the user should not type ahead. In addition, do not send a line
unless the PK device is waiting for input. Always check PK device status before
sending data.

Use the RECORD 6% option (values 2 and 4) in a PUT or PRINT statement
to ensure that the controlled job is at command level. If the job is waiting for
keyboard input but is not at command level, the error ?Programmable I\C trap
(ERR=28) occurs. You must force a Ctr1lC to the controlled job; otherwise, control
returns to your program, which can then send a system command.

'lb run a program under the controlled job:

1. Use a PUT or PRINT statement with the RECORD 6% option to make sure
that the controlled job is at command level.

2. Send the RUN command followed by the program name to the PK device.

The RECORD 16% option lets you kill any job currently running on the pseudo
keyboard. In the PUT statement, specify the 110 channel where the pseudo
keyboard is open. For example:

100 PUT *8%, RECORD 16%

This statement kills the job currently running on the PK: unit open on channel 8.

4.11.4 Pseudo Keyboard Escape Sequence Processing

4-34 Terminals

When you output escape sequences on a pseudo keyboard, the tenninal driver
translates CHR$(155%) to an escape ESC character (ASCII 27). The translation
is necessary to properly handle eight bit terminal input. ATPK takes that pseudo
keyboard output and displays it on your terminal. However the terminal driver
now translates the ESC character to a $ character.

To make pseudo keyboard processing work correctly when using escape sequences,
use either binary MODE (1%), or transparent control character output MODE
(16384%) as an open mode, or use the RECORD 4096% modifier. This allows
the terminal driver to correctly read escape characters back from the pseudo
keyboard (without translation). See the sections "Binary Data Output and Input:
RECORD 4096% and MODE 1%" and "Transparent Control Character Output:
RECORD 16384% and MODE 16384%" for more information.

4.11.5 Programming Example

The following sample program uses a pseudo keyboard to process a command file:

10 EXTEND
100 OPEN "PR8:" AS FILE #1%
110 PRINT "What command file do you want to use";
120 INPUT LINE FILENAME$
130 OPEN FILENAME$ FOR INPUT AS FILE #2%
140 PRINT "What is the account to log into";
150 INPUT LINE PPN$
160 PPN$ = CVT$$(PPN$,4%)
170 INPUT "What is the password"; PW$
180 PRINT #1%, RECORD 1%, "HELLO "; PPN$; CHR$(13%);
190 PRINT #1%, RECORD 1%, PW$ + CHR$(13%);
200 ON ERROR GOTO 19000
210 SLEEP 1%
220 GET #1%
230 FIELD #1%, RECOUNT AS A$
240 PRINT A$;
250 GOTO 220
260 PRINT #1%, RECORD 4%
270 INPUT LINE #2%, B$
280 B$ = CVT$$(B$,4%)
290 PRINT #1%, B$; CHR$(13%);
300 GOTO 220
19000 IF ERR = 11% AND ERL = 220% THEN RESUME 260 &

ELSE IF ERR = 3% AND ERL = 260% THEN RESUME 210 &
ELSE IF ERR = 11% AND ERL = 270% THEN RESUME 19100 &
ELSE ON ERROR GOTO 0

19100 CLOSE #1%, #2%
32767 END

Line 100 opens the pseudo keyboard on I/O channel 1. Lines 110 through 170 ask
the user (the controlling job) for a command file name and accounting information
for the controlled job. Lines 180 and 190 create the controlled job by sending
LOGIN input to the pseudo keyboard. Both PRINT statements use RECORD 1%
to ten the system not to check job status before sending data.

The next section of the program consists of two loops:

.. The first loop (lines 220 through 250) repeatedly gets data from the controlled
job's output buffer and prints it on the controlling job's terminal. When there
is no more data in the buffer, control goes to the error handling routine at
line 19000.

.. The second loop (lines 260 through 300) first uses a PRINT statement with
RECORD 4% to see if the controlled job is waiting for keyboard input. If it is,
the program reads a line from the command file and sends it to the controlled
job's input buffer. Control then goes back to the first loop.

If the controlled job is not waiting for keyboard input, control goes to error
handling routine.

Terminals 4-35

The error handling routine (lines 19000 through 19100) processes two errors:

• ?End of file on device (ERR=l1). This error can occur for two different reasons
in this program:

The controlled job's output buffer is empty.

There are no more commands in the command file.

If the output buffer is empty, control goes to the loop that reads the next
command from the command file. If there are no more commands in the
command file, the program closes 1/0 channels and ends.

• ?Account or device in use (ERR=3). This error occurs if the controlled job is
busy (that is, not waiting for keyboard input) when the program checks to
see if it is ready for another command. The error handling routine transfers
control to the SLEEP statement at line 210, which suspends program
execution for one second before starting to execute the first loop again. The
program works without the SLEEP statement but makes less efficient use of
system resources.

4.11.6 Pseudo Keyboard Special Function: SPEC%

4-36 Terminals

The SPEC% function performs special operations on disks (see Chapter 1),
flexible diskettes (see Chapter 1), magnetic tapes (see Chapter 2), line printers
(see Chapter 3), and pseudo keyboards and terminals (see Chapter 4).

For pseudo keyboards, the SPEC% function lets you:

• Disable and enable echo at the controlled job's keyboard (that is, the KB side
of the pseudo keyboard)

• Read a flag word that tells you whether echo is ON or OFF at the controlled
job's keyboard

• Read the current exit status of the job you are controlling.

A pseudo keyboard receives two kinds of output from a controlled job: character
echo, which is done by the RSTSIE monitor, and program output, which occurs
when a program writes to the controlled job's keyboard. The SPEC% function
affects only character echo, not program output.

Character echo is enabled by default. However, in some pseudo keyboard
applications it is more convenient to disable character echo. For example, in a
pseudo keyboard application that uses both a terminal and a pseudo keyboard;
you get character echo from the terminal; you also get character echo and
program output from the pseudo keyboard. You can use this function to disable
character echo at the pseudo keyboard.

The SPEC% function for pseudo keyboards has the format:

VALUE% = SPEC%(FUNCTION%, PARAMETER%, CHANNEL%, 16%)

where:

VALUE%

PARAMETER%

CHANNEL%

16%

depends on the function code you specify in FUNCTION%.

FUNCTION%=O% a flag word that contains information about the
controlled job's keyboard. By testing bit 5 in
VALUE%, you can determine whether keyboard
echo is enabled or disabled. The tests are:

VALUE% AND 32% <> 0%
Keyboard echo is disabled.

VALUE% AND 32% = 0%
Keyboard echo is enabled.

FUNCTION%=l% returns the current exit status and the worst
exit status for the job you are controlling:

VALUE% AND 7%
The current exit status, from the list below.

(VALUE%/16%) AND 7%
The worst exit status the job has had, from the
list below.
Value Status

0% Warning

1% Success

2% Error

4% Severe error

depends on the function code you specify in FUNCTION%.

FUNCTION%=O% specifies the operation to perform:
Value Operation

0% Read the flag word

255%

-1%

FUNCTION%=l% unused

Enable echo

Disable echo

specifies the 110 channel where the pseudo keyboard is open.

is the device handler index for pseudo keyboards.

4.11.7 Dynamic Pseudo Keyboards

Dynamic pseudo keyboards are devices the monitor creates as needed. RSTSIE
limits access to dynamic pseudo keyboards according to the number of other
terminal devices on the system, and according to the EXQTA privilege. If the
job has the EXQTA privilege, it is allowed to open as many dynamic pseudo
keyboards as possible; without the privilege, it can open only one. If the job
tries to open a second dynamic pseudo keyboard without the EXQTA privilege, it
gets Error 69, the ?Quota exceeded message. The absolute maximum number of
keyboards is 128.

Since the monitor creates dynamic pseudo keyboards only when they are needed,
their terminal characteristics cannot be set before they are used. Otherwise,
dynamic pseudo keyboards are identical to static pseudo keyboards.

Terminals 4-37

To access a dynamic pseudo keyboard, always open PKO: using mode 16. Here is
an example in BASIC-PLUS:

OPEN "PKO:/MODE:16" AS FILE #1%

or

OPEN "PKO:" AS FILE #1%, MODE:16

Since mode 16 allows funy dynamic creation and use of pseudo keyboards, you get
the ?No room for user on device error message if all 128 keyboards are already in
use, of if the system does not have enough small buffers to create more dynamic
pseudo keyboards. Every time you open PKO: in mode 16, you create a new
dynamic pseudo keyboard.

4.12 Local Area Transport (LAT)

RSTSIE supports Local Area Transport (LAT). This feature lets users with
terminals connected to terminal servers reach any RSTSIE system on the
Ethernet that has LAT and DECnetIE support. LAT on RSTSIE also supports
host-initiated LAT connections, letting users connect to application devices such
as terminals, printers, and modems that are physically connected to ports on the
server. This lets users share these resources with other systems on the Ethernet.

Users on terminal servers can also have multiple sessions. This means they
can connect to several systems or the same system multiple times from a single
terminal.

In order to use LAT on RSTSIE you must have Ethernet hardware, DECnetlE,
and one or more of the following terminal servers:

.. Digital Ethernet Terminal Server (DECSA)

.. DECserver 100

OJ DECserver 200

.. DECserver 500

'" DECserver 550

• VAXmate systems

.. IBM-PC systems running DECnet-DOS

4.12.1 lAT Ports

4-38 Terminals

LAT ports differ from most terminals on your system, since they are not physi
cally connected to the system using terminal interfaces. Instead, RSTSIE connects
LAT ports to terminal server ports using Ethernet hardware and software.

Like dynamic pseudo keyboards, LAT ports are dynamic keyboards. Like other
dynamic keyboards, a LAT port does not have a unique keyboard unit number
until it is created. Dynamic keyboards are numbered sequentially, starting with
the first available keyboard unit number greater than the maximum physical
(static) keyboard unit number.

As with other dynamic keyboards on RSTSIE, you can reference LAT ports using
standard keyboard syntax (for example, KB45:), or device controller syntax (such
as KBI3:). Use the controller designator I to identify LAT ports. When you create
a LAT port for host-initiated connections, you can either specify the number of
the port you want to create or let the system pick the next available number.

4.12.2 Enabling LAT

To support LAT terminal servers, the system must have DECnetIE and the
Ethernet hardware. If it has these, RSTS/E automatically makes LAT available.

Use the SHOW SYSTEM command to determine the current state of LAT and
the state that will take effect after the next reboot (if different from the current
state).

Use the SHOW TERMINAL command to list the LAT server and port name for
those connections coming from LAT terminal servers.

Use the following DCL commands to set parameters for the LAT software:

Privilege
Command Required Description

ASSIGNIPORT SWCFG Assigns a LAT port to a remote
terminal server.

CREATEIPORT SWCTL Creates a LAT port.

CREATE/SERVICEILAT SWCFG Creates a LAT service.

DEASSIGNIPORT SWCFG Deassigns a LAT port from a remote
terminal server.

DELETEIPORT SWCTL Deletes a LAT port.

DELETE/SERVICEiLAT SWCFG Deletes a LAT service.

SET NODEILAT SWCFG Sets LAT node characteristics.

SET PORT SWCFG Sets LAT port characteristics.

SET SERVICEILAT SWCFG Sets LAT service characteristics.

SET SYSTEMILAT SWCFG Enables LAT at next system restart.

SHOW COUNTERSILAT SWCTL Shows LAT related counters.

SHOW NODEILAT None Shows LAT node characteristics.

SHOW PORT None Shows LAT port characteristics.

SHOW SERVICEILAT None Shows LAT service characteristics.

SHOW SESSIONS None Shows information about LAT ses-
sions.

SHOW TERMINAL_SERVERSILAT None Shows terminal servers known to
LAT.

STARTILAT SWCTL Starts LAT on an Ethernet device.

STOPILAT SWCTL Stops LAT on an Ethernet device.

Each of these commands is described more fully in the RSTS / E System Manager's
Guide.

4.12.3 Host-Initiated LAT Connections

A host-initiated LAT connection lets you establish a connection from a RSTS/E
system to a remote device, such as a printer, modem or terminal, attached to
an Ethernet terminal server. For example, if you connect an LN03 printer to
your server, and set the proper characteristics of the remote port on the server
according to the guidelines described in the documentation for the server, users
on any RSTS/E system on the Ethernet could print files on the LN03. This
feature lets you share your resources over the entire local area network rather
than restricting them to individual local systems.

Terminals 4-39

4-40 Terminals

In general, you can use tenninals connected to tenninal servers as you would
use any other tenninals on your system, including for multi-tenninal service and
other special-purpose tenninal uses. While there are some extra steps that must
be taken to define and set up a local LAT tenninal for host-initiated connects,
once those steps are completed (generally as part of system startup), you can use
LAT tenninals as you would any other tenninal.

Creating and Assigning LAT Ports

Before you can begin using host-initiated LAT connections, you must first create a
LAT port and then assign it to a remote port and/or service on a tenninal server.
To create a LAT port you issue the DCL command CREATE/PORT. For example,
the following command creates a LAT port using dynamic keyboard line KBIO:
(KB47: in the example):

$ CREATE/PORT KBIO:
Port KB47: created

If you want, you can also assign the LAT port to a remote port or service on
the tenninal server when you create the LAT port. Use the ITERMINAL_
SERVER qualifier (to specify the name of the server to use) and either or both the
/REMOTE_PORT qualifier (to specify the name of the remote port on the server
that the device is connected to) or the /SERVICE qualifier (to specify the service
on the server you want to use). For example, the following command creates a
LAT port using keyboard KB47: and assigns it to port PORT_72 on tenninal
server LAT890.

$ CREATE/PORT/TERMINAL_SERVER=LAT890/REMOTE_PORT=PORT_72 KB47:
Port KB47: created
Port KB47: assigned with queueing to terminal-server LAT890

remote-port PORT 72

Similarly, the following command creates a LAT port using dynamic keyboard line
KBIO: and assigns it to any port on tenninal server LAT890 offering the service
named LN03:

$ CREATE/PORT/TERMINAL_SERVER=LAT890/SERVICE=LN03 KBIO:
Port KB47: created
Port KB47: assigned with queueing to terminal-server LAT890

remote-service LN03

You can specify the name of the port to create - using standard keyboard syntax
(KBn:) or controller syntax (KBIn: for dynamic keyboards) - or simply let the
system select the next available dynamic keyboard number to use (the CREATE
/PORT command displays the designator of the keyboard used to create the LAT
port).

In cases where you have applications that must reference a LAT port via a specific
device designator-such as PBS print servers-make sure that the LAT port is
created using the correct keyboard or controller syntax designator. Otherwise, the
desired port may be unavailable, or already assigned to another job or function.
Avoid this problem by creating all necessary LAT ports in the START.COM
system startup command file, before other users or jobs can create them.

NOTE

When you add these commands to your START. COM file, put the
startup of LAT and the creation of the LAT ports before the startup of
the PBS package. PBS expects the ports to have already been created
when it starts up the print servers.

Once the LAT port is created, you can set the characteristics of the port using
the SET TERMINAL command, as you would for any standard terminal. By
default, a newly created LAT port has the settings of a hardcopy terminal. For
example, if port KB60: is assigned to a port on a terminal server which has an
LN03 printer connected to it, you would issue the following command to set the
port's characteristics to that of an LN03:

$ SET TERMINAL/DEVICE=LN03/PERMANENT KB60:

A LAT port must be assigned to a terminal server, and either a remote port or
service or both before it can be used.

If you do not assign a LAT port to a terminal server at the time the port is
created, or you want to reassign the port to a different terminal server, port or
service, use ASSIGNIPORT. For example, the following command assigns LAT
port KB47: to port PORT_72 on terminal server LAT890:

$ ASSIGN/PORT/REMOTE_PORT=PORT_72 KB47: LAT890
Port KB47: assigned with queueing to terminal-server LAT890

remote-port PORT 72

LAT Queueing

Some terminal servers can put host-initiated requests on a queue when they
cannot be processed immediately. This happens when the remote port is busy
with another request. When the remote port becomes available, the server
notifies the requesting host node that the connection can now be established.

On RSTSIE, LAT ports are created with queued access as the default. You can
remove the port's queue access by including the /NOQUEUED qualifier on the
CREATEIPORT command when the port is created, or the ASSIGNIPORT or SET
PORT commands after the port is created. If you set the LAT port to no queue
access, then the server rejects the connection request if the remote port is not
currently available. Likewise, you can change the port's setting to queued access
by including the IQUEUED qualifier on the same commands.

NOTE

Not all terminal servers provide queueing. Refer to the server's docu
mentation to determine whether or not this feature is available.

Impact on Applications

Most existing applications that perform terminal 110 should work without mod
ification. Some applications may require changes, depending on how they were
designed to open terminals and perform terminal 110.

For LAT ports, the request to initiate a connection takes place when the port is
first assigned or opened. Because the connection request can be delayed for a
period of time, the assign or open request always completes immediately, even
though the connection is not yet established. If the connection is established
when the first write request for the terminal is issued, then the write completes
normally. However, if the connection is still not established when the program
issues a write request for the terminal, the action taken depends on the type of
write operation:

• All Except NOSTALL Writes:

If a normal write request Call except NOSTALL writes) is issued and the
connection is still not completed, then the user's job is stalled in a TT state
until one of the following conditions occurs:

The connection is established, at which time the write request is pro
cessed.

Terminals 4-41

4-42 Terminals

The connection is rejected or times out, in which case the ?IIO to detached
keyboard error is returned.

• NOSTALL Writes:

If the write request is a NOSTALL write, then the user's job is not stalled and
one of the following events occurs:

The connection has been established, in which case the write request is
processed.

The connection request is still being processed, in which case the error
?Device not available is returned immediately.

The connection is rejected or times out, in which case the ?I/O to detached
keyboard error is returned immediately.

Note that an application issuing NOSTALL writes can, if it receives the
Device not available error, simply reissue the write request until the connec
tion is established.

Some application programs may need to be modified to handle these types of
conditions specific to LAT ports being used for host-initiated connections.

RSTSIE provides a new SYS call, Return Local LAT Port Status, to let application
programs find out the current status of the port. In addition to the port status,
the SYS call also returns the queue position, if the request has been queued, and
reject reason code, if the request was rejected. With this SYS call, application
programs can continually reissue the call after assigning or opening the port
waiting for the establishment or rejection of the connection before attempting any
110. This gives the application program the chance to do other tasks while waiting
for the connection to be established. See Chapter 8, function code 22, or RSTS / E
Directives Manual for further details on this SYS call.

Dial-out Modems

Applications written for dial-out modem access should work without modifica
tions. To use modems with LAT:

• Connect the modem to a port on the server following the guidelines detailed
in your users manual that came with the server.

• Create the local LAT port on the RSTS system using the CREATEIPORT
command and assign it to the remote port or the service on the server.

• Set the characteristics of the newly created port via the SET TERMINAL
command as you would any static terminal line except for the DIALUP
characteristic. Because the modem is connected directly to the server, the
server is responsible for handling all the modem signals. Therefore, the
/DIALUP characteristic should not be set. An error is issued if you attempt to
set this characteristic on any LAT port.

Once you have taken the steps outlined above, the port is ready to be used and no
further action is needed.

4.12.4 Isolation of LAT Problems

'lb isolate LAT problems, use the DCL commands SHOW COUNTERSILAT and
SHOW COUNTERSILATIDEVICE, and the DECnetIE Network Control Program
(NCP) utility. This may require the SWCTL privilege. To invoke NCp, type:

$ RUN DECNET$:NCP

You should then get the NCP> prompt. The following NCP commands are
particularly useful in isolating LAT problems:

NCP> SHOW LINE dev COUNTERS

NCP> LOOP CIRCUIT dev PHYSICAL ADDRESS ethernet-address

Note that dev is the name of the device being used (UNA-O or QNA-O) and
ethernet-address is the Ethernet address of the terminal server under question.
See the DECnet / E System Manager's Guide for more information on these
commands.

For more information on LAT activity, ask the system manager to consult the
console terminal. The LOGIN and LOGOUT commands automatically send
the server and port names for LAT terminals to the OPSER program or OMS
(Operator/Message Services), which relays the names to the console. (If neither
OPSER nor OMS is not running, LOGIN and LOGOUT send the names to KBO:.)

The LOGIN command also sends the server and port names to [O,1]LOGIN.COM,
which you can modify to respond to the information as you see fit. LOGIN. COM
automatically passes the names to the group and user LOGIN.COM files in
Parameter P5, and executes a SET TERMINALIINQUIRE command for the LAT
terminal.

4.13 Command Line Editing and Command Recall

Command line editing and command recall reduce the number of keystrokes
required to enter commands or correct typing errors. Because these features are
implemented in the RSTSIE monitor, they are available at the DCL command
level, within other keyboard monitors, and at the application program level.

4.13.1 Terminal Attributes

Command line editing and recall are available on all terminals capable of
processing and displaying ANSI escape sequences (terminals with the ANSI
terminal attribute). RSTS/E automatically disables command line editing on
terminals set to NOANSI. Command recall is still available on terminals set
NOANSI, but the terminal displays recalled commands on the next line instead
of the current line.

Command line editing and recall are always available at the DCL level, and
within other keyboard monitors, unless the keyboard monitor opens the terminal
in a mode that forces the feature to be disabled. The modes that automatically
disable command line editing and recall are:

• Binary or ODT (MODE 1%)

.. TECO (MODE 2%)

• Echo Control (MODE 8%)

Terminals 4-43

4-44 Terminals

In Escape Sequence mode (MODE 256%), command line editing and recall are
possible using control character, but function keys and arrow keys are disabled
and available for application uses. Because Escape Sequence mode intercepts the
editing and recall control characters, these characters can not reach application
programs from terminals in Escape Sequence mode.

Within an application, command line editing and recall are determined by the
LINE_EDITING and RECALL terminal attributes. These attributes can be
controlled with DCL before entering the application. 'lb control the attributes,
use:

• The I[NO]LINE_EDITING qualifier to the SET TERMINAL command. This
disables or enables command line editing in the next application run.

• The [NO]RECALL command. This disables or enables command line recall in
the next application run.

The new attributes control their functions only within an application or program.
Note that they do not apply to commands entered at DCL or other keyboard
monitors.

Two additional terminal attributes determine how characters are handled as they
are typed within a line (where the cursor is not positioned at the end of the line).
These are the OVERSTRIKE and INSERT attributes. 'lb control these attributes,
use:

• The /OVERSTRIKE qualifier to the SET TERMINAL command. This
indicates that each new character should replace (overstrike) the character
positioned at the cursor.

• The !INSERT qualifier to the SET TERMINAL command. This indicates
that each new character should be inserted at the current cursor position;
characters to the right of the cursor are shifted right one character to make
room for the new character.

The /OVERSTRIKE or /INSERT qualifier affects line editing both for DCL and
for applications. The qualifier remains in effect until it is changed or until the
terminal is reinitialized by a login or a !RESET command. The terminal then
goes back to its permanent characteristic (OVERSTRIKE mode, unless the system
manager has changed it).

Type CtrllA at any time to switch back and forth between INSERT and
OVERSTRIKE mode until you end the line. At the beginning of the next line, the
terminal goes back to the current mode.

4.13.2 Terminal OPEN Modes

Certain applications, such as EDT and DECmail-ll, use the terminal's arrow
keys or other control characters for their own purposes. Some keyboard monitors
may do the same. RSTSIE automatically disables command line editing or recall
or both if the program or keyboard monitor opens the terminal in a special mode,
as shown in Table 4-6.

Table 4-6: Command Line Editing and Recall Availability

OPEN Mode Line Editing Recall
Mode Description Available? Available?

0 Normal Yes Yes

1 Binary or ODT No No

2 TECO No No

4 Suppress CRLF Yes Yes

8 Echo control No No

16 Guard CtrllC Yes Yes

32 Enable XON/OFF Yes Yes

128 Special Rubout Yes Yes

256 Escape Sequence Yes1 Yes1

16384 Transparent Controls Yes Yes

INote that while in mode 256, Escape Sequence Mode, Command Line Editing and Command Recall
are only available using control characters. Function keys and the arrow keys are available for the
application's use. This table applies to both programs and keyboard monitors.

In addition, command line editing and recall are automatically disabled in any
applications that use FMS.

You may have an application that does not open the terminal in a mode that
automatically disables command line editing or recall, thought you may still
want to disable one or both functions. In such cases, use the Set Terminal
Characteristics SYS call to disable the LINE_EDITING or RECALL attributes or
both, and then restore them on exit.

4.13.3 Echo on Read

Echo on read is the processing and echoing of characters typed on a terminal
only when a read occurs. In versions of RSTSIE prior to V10.O, characters
were processed and echoed as soon as you typed them, even if no read was
pending. In some instances, these typeahead characters would be processed
incorrectly. For example, if you begin typing your password before LOGIN issues
its Password: prompt, the characters you type are echoed, since the terminal
is not yet set to NOECHO mode. Another example is processing of escape
sequences when starling the EDT text editor. On startup, EDT sets the terminal
to NOES CAPE_SEQUENCE mode. However, if you type ahead while EDT is
starting up, and your terminal is set to ESCAPE_SEQUENCE, the characters
you type will not be processed correctly, since they will be processed based on
your terminal's current settings and open modes, rather than those established at
the time of the read.

Terminals 4-45

4-46 Terminals

Echo on read solves these problems. With the addition of command line editing
and recall, the position of the cursor on the command line becomes more impor
tant than before. Without echo on read, the position of the cursor with respect
to the characters output to the terminal becomes erratic and unpredictable.
Consider the case of typing ahead while a DIRECTORY command is being ex
ecuted. The typeahead characters are echoed interspersed with the directory
listing characters, and editing the line becomes virtually impossible. In such
cases, you would need to type CtrllR to redisplay your current command so you
know where on the command line the cursor is located. Echo on read solves this
problem as well.

In RSTSIE VlO.O, characters are stored in the typeahead buffer but not processed
or echoed, if there is no outstanding read request. When a read is issued, any
characters in the type ahead buffer (up to the first line delimiter) are processed.
This ensures that any typeahead characters are processed based on the correct
terminal open mode, terminal characteristics, etc.

Echo on read is compatible with the way VMS handles character processing.
Special interrupt characters (for example CtrlIT and CtrllC) continue to be
processed immediately, regardless of whether or not a read is outstanding.

Echo on read has lacks any visual cue when you type ahead (since typeahead
characters are no longer echoed until a read occurs). Some inexperienced users
may conclude that their terminal or the system is not functioning properly. Users
should be encouraged to type CtrllT to see that their terminal and the system are
still operating.

Chapter 5

Card Readers

This chapter describes the use of card readers on RSTSIE.

The card reader reads data from standard (80-column) punched cards. Data is
read from the card one column at a time in one of three modes: ASCII, packed
Hollerith, or binary. One card can be read (and the data on it stored) in any
mode.

5.1 ASCII Mode: MODE 0%

The card reader reads cards punched with the standard ASCII codes, as shown in
Appendix B. One of four sets of codes can be used: ANSI, 029, 026, or 1401. The
code set for the system is specified during system installation. Cards punched
in other formats are not acceptable to RSTSIE in ASCII mode. The end-of-file
card for RSTSIE contains a 12-11-0-1 or a 12-11-0-1-6-7-8-9 punch in card column
1. Reading an end-of-file card causes the error ?End of file on device (ERR=l1),
which can be trapped with an ON ERROR GOTO statement.

The RECOUNT variable (see the BASIC-PLUS Language Manual) contains the
number of characters read following every input operation. In the ASCII read
mode, trailing spaces are ignored and carriage return and line feed characters
are appended, making the value of the RECOUNT variable two more than the
number of punched columns per card. Consequently, the RECOUNT variable can
have a value between 2 (for a blank card) and 82 (for 80 columns of data). For
example, consider a card punched as follows:

ABCDEFGHIJKLMNOPQRSTlNWXYZ

Columns 1 to 26 are punched and 27 through 80 are blank. The following
program executes as shown:

100 OPEN "CR:" AS FILE 1%
\INPUT LINE #1%, A$
\PRINT LEN (A$)
\PRINT ">" ;A$; "<"

32767 END

RUNNH

28
>ABCDEFGHIJKLMNOPQRSTUVWXYZ
<

In this example, the trailing spaces in card columns 27 through 80 are deleted,
and the two characters, carriage return and line feed, are added, making a total
of 28 characters in the string A$.

Card Readers 5-1

You can read cards with INPUT, INPUT LINE, or GET statements. If a card is
misread or contains any illegal punches, the error ?Data error on device (ERR=13)
occurs. With INPUT or INPUT LINE statements, any columns containing illegal
punches are stored as BACKSLASH (ASCII 92) codes. If you read the card with
a block 1/0 GET statement, the buffer contains data for each column punched,
and any columns that contain illegal punches are stored as ASCII 220 code
(BACKSLASH with the high order bit set). By checking the characters for code
220, your program can determine in which columnCs) the error(s) occurred.

5.2 Packed Hollerith Mode: MODE 10/0

In packed Hollerith read mode, the value of the RECOUNT variable is always
80, because each of the 80 card columns corresponds to a single data byte and
trailing spaces are not ignored. The value of each byte is the sum of the punched
row positions.

Figure 5-1 shows the packed Hollerith read mode values

Figure 5-1: Packed Hollerith Read Mode

#12
#11
0
1
2

ROWS # 3
4
5
6
7
8
9

COLUMNS

BIT 7 6 5 4 3 2 0

ROW 112 111 1 0 1 9 I 8 1-7

VALUE 128 64 32 16 8 4 2

Associated Values of Rows

______ 128
______ 64
______ 32
______ 1
______ 2
______ 3
______ 4
______ 5

------6 ______ 7

------8 ______ 16

MK-00033-01

Note that the associated values of rows 1 through 7 are simply 1 through 7,
respectively. Only one of these seven rows can be punched per column. If none of
these seven rows is punched, the value of the byte is O.

5-2 Card Readers

5.3 Binary Mode: MODE 2%

The binary read mode associates two data bytes with each card column.
Therefore, the value of the RECOUNT variable is always 160. Once again, the
value of each byte is the swn of the values of the punched row positions.

Figure 5-2 shows the binary read modes.

Figure 5-2: Binary Read Mode

Associated Values of Rows

#12 --t-- 8
#11 4
0 2 SECOND BYTE
1 -- _'t'_ 1
2 I

128

ROWS # 3 64
4 32
5 16 FIRST BYTE
6 _1_ 8
7 4
8 2
9 -- -

COLUMNS

BIT 14 13 12 11 10 9 8 7

ROW

SECOND BYTE FIRST BYTE

MK-{)O{)34.()1

5.4 Setting Read Modes

You can specify a read mode in an OPEN statement (with the MODE option)
or a GET statement (with the RECORD option). Table 5-1 shows the MODE
and RECORD values that correspond to each read mode. The default mode is 0
(ASCII).

Card Readers 5-3

As shown in Table 5-1, you must specify an explicit value when you use the
MODE or RECORD option; failure to do so results in an error message.

Table 5-1: Specifying Read Modes on Card Reader

Statement Option Specified Read Mode

OPEN MODE 0 ASCII

MODEl Packed Hollerith

MODE 2 Binary

GET RECORD 256 ASCII

RECORD 257 Packed Hollerith

RECORD 258 Binary

For example:

60 OPEN "CR:" FOR INPUT AS FILE 2%, MODE 1%
110 GET #2%, RECORD 258%

Line 60 of the example specifies packed Hollerith read mode. Line 110 specifies
binary read mode for the first card.

A read mode specified in an OPEN statement supersedes previous read mode
specifications. A read mode specified in a GET statement, however, overrides
previous read mode specifications in the program for one card only. Consider the
following sample program segment:

100 OPEN "CR:" FOR INPUT AS FILE 1%, MODE 1%
\GET #1%, RECORD 256%
\GET #1%

350 CLOSE 1%
400 OPEN "CR:" FOR INPUT AS FILE 6%, MODE 0%

\GET #6%
\GET *6%, RECORD 258%
\CLOSE 6%

32767 END

Specified Read Mode
at This Point

Hollerith
ASCII
Hollerith

ASCII
ASCII
Binary

Line 100 of the sample program sets the read mode to Hollerith and then
overrides it, setting the read mode to ASCII temporarily. When the last
statement on the line is executed without a RECORD option, however, the read
mode reverts to the OPEN mode - in this case, Hollerith. The next OPEN
statement (line 400) supersedes the previous one, setting the read mode to ASCII.
However, a RECORD 258% option changes the mode to binary. Closing a file
cancels the card reader's read mode. When a file has been closed, executing an
OPEN statement is the only way to reestablish a read mode.

5-4 Card Readers

Chapter 6

DMC11/DMR11 Interprocessor Link

This chapter describes how to use the DMCll and DMRll devices in a program
to set up a communication link to another processor. Although the DMRll differs
in some details from the DMCll, they appear identical to your program.

6.1 Using the DMC11/DMR11 Interprocessor link in Point=to=Point
Configurations

The DMClllDMRll Network Link (device XM: on RSTSIE) provides high speed
local or remote interconnection of computers over a serial synchronous link.
It uses the Digital Data Communications Protocol (DDCMP) to provide data
transmission and uses Non-Processor Request (NPR) data transfers to and from
memory to provide high throughput and minimize processor overhead.

Normally, the DMClllDMRll is used by the DECnetIE package, which supports
multiple node networks, user data security, multiple logical links over a single
physical link, and other network features. When in use by DECnetlE, the
DMClllDMRll is not available to you except through DECnetlE. However, in
point-to-point configurations, DECnetIE may not be needed. In these cases, you
can access the XM: device directly from a program to obtain a communication link
with another processor. DECnetIE need not even be configured into the RSTSIE
system.

6.2 The OPEN Statement

The DMClllDMRll is not a file-structured device. However, you must specify
certain parameters at open time to establish the device's operating mode. In
addition, when you execute an OPEN statement on a DMCIDMR with an
autoanswer/autodial phone connection, the Data Terminal Ready (DTR) modem
control signal is automatically raised to enable data transmission.

6.2.1 MODE Value

The MODE value used when opening a DMClllDMRll indicates whether the
unit is to be run in full-duplex or half-duplex mode. These modes are described
in the Terminals and Communications Handbook. To cause the DMClllDMRll
to hang up a phone connection when it receives a DDCMP restart, add 512 to
the specified MODE value. To specify full duplex, omit the MODE option in the
OPEN statement, or specify a MODE value of zero. To specify half duplex, use a
MODE value of 1024.

DMC11/DMR11 Interprocessor link 6-1

6.2.2 ClUSTERSIZE Value

To ensure that messages from the remote processor to the local RSTSIE system
are received without need for retransmission, the DMClllDMRll allocates one
or more receive buffers to the unit when it is opened. Whenever a message is
received over the link, it is placed in one of the allocated buffers. That buffer is
then placed on a queue of received messages, called the receive complete queue.
When you issue a GET statement on the open channel of the DMCllIDMRll,
the message is copied from the system buffer to your I/O buffer, and the system
buffer is released.

Because a buffer on the receive complete queue is no longer available for use
by the DMCllIDMRll, the driver tries to replace it with another buffer from
the monitor's extended buffer pool or from the small buffer pool. The number of
buffers that the driver attempts to keep allocated to the DMClllDMRll receiver
side is called the buffer quota for the unit. You specify it at open time as the
CLUSTERSIZE value. Any number from 1 to 127 is valid as a buffer quota, but
values above 4 are not recommended except when a very large volume of traffic on
a high speed (higher than 56K baud) line is expected; allocating too many buffers
to the DMClllDMRll needlessly ties up system resources. However, if the buffer
quota is too low, overrun errors may occur on the unit. These do not cause any
loss of data, but do result in reduced performance due to retransmissions.

6.2.3 FILESIZE Value

The value used in the FILESIZE option at open time specifies the size of the
buffers allocated to the DMClllDMRll receiver. This value limits the length
of a received message and must be between 1 and 632 inclusive. If the remote
processor sends a message larger than the receiver buffer size, the message is lost
and the DMClllDMRll halts operation. Note that the 632-byte limit on receive
buffer size does not limit the length of transmitted messages. The DMCIDMR
driver limits transmitted message lengths to a maximum of 8000 bytes. However,
to avoid message truncation, you must be careful to stay within the remote
system's receive buffer size. For example, if the remote system is also RSTSIE,
the length of transmitted messages is limited to 632 bytes maximum or a smaner
value that is equal to the receive buffer size, as established by the FILE SIZE
value (specified in the OPEN statement for the remote DMCllIDMRll).

6.2.4 RECORDSIZE Value

The RECORDSIZE value establishes the I/O buffer size for the DMCllIDMRll.
The default buffer size is 512 bytes. While you can specify any even buffer size,
it is good practice to make the I/O buffer the same size or larger than the device's
receive buffer (see the section, "The GET Statement and RECORD Options").

6.2.5 Errors

Only two errors specific to the DMClllDMRll can occur at open time. The error
?Device hung or write locked (ERR=14) occurs if the driver cannot initialize the
device. The error ?No buffer space available (ERR=32) occurs if the driver cannot
obtain a 264-byte buffer to use as the hardware base table.

6-2 DMC11/DMR11 Interprocessor Link

6.3 The GET Statement and RECORD Options

The GET statement copies the next message from the DMClllDMRll queue
of received messages into your program's 1/0 buffer. If the received message is
longer than your buffer, the monitor truncates it with no warning. Therefore, it is
good practice to specify a RECORDSIZE in the OPEN statement that is greater
than or equal to the FILE SIZE value (see the section, "FILESIZE Value").

The value in the RECORD option of GET statements determines how the
program treats message unavailability. If no message is available and the
DMClllDMRll is still running (that is, the physical link is intact), you can
cause your job to get an error indication immediately or to sleep until a message
is received. A RECORD value of 0 (or omitting the RECORD option) tells the
monitor to generate the error ?Can't find file or account (ERR=5) immediately. A
RECORD value of 8192% tells the monitor to stall the job until either:

• A message is available from the remote processor, in which case the message
is returned in the user's buffer as usual

• A DMC111DMRll error occurs, in which case the program receives the error
?Device hung or write locked (ERR=14)

A RECORD value of 16384%+n%, where n% is a number between 0 and 255,
causes the monitor to put the job to sleep. It is awakened by any of the following
conditions:

• A message is received on the DMC111DMRll.

• An error occurs on the DMCllIDMRll.

• A message is received through the local send/receive mechanism.

• A delimiter is typed on one of the job's keyboards.

• The number oflogins is set to 1.

• N seconds have expired and n is not O.

If the job is awakened because a message is received, the monitor copies the
message to its buffer, just as if the GET had succeeded without sleeping. If it is
awakened because an error occurred, it receives the error ?Device hung or write
locked (ERR=14). If it is awakened for any other reason, it receives the error
?Can't find file or account (ERR=5).

When the DMC111DMRll driver detects a failure in the physical link, it shuts
down the unit. Any messages received before the hardware failure are returned
to the job as it executes GET statements. No error indication appears until the
receive complete queue is empty. At that point, the job receives the error ?Device
hung or write locked (ERR=14). The only recourse is to close the channel on
which the unit is open.

DMC11/DMR11 Interprocessor Link 6-3

6.3.1 Count and Status Information

If the 4096% bit is on in the RECORD value in a GET statement, the driver does
not return a message from the DMC11/DMRll. Instead, it returns count and
status infonnation to the user. Twenty-six bytes of infonnation are returned in
the following fonnat:

BYTES

1

2

3

4

5

6

7-8

9

10

11-12

13-14

15-16

MEANING

Number of transmit buffers actually being processed by the DMC11IDMR11
hardware.

Total number of transmit buffers waiting to be sent, including those given to
the hardware (that is, number of uncompleted PUT statements).

Number of messages on the receive queue waiting to be given to the job.

Reserved.

Number of receive buffers actually given to the DMC11IDMR11 hardware.

Total number of buffers allocated to the DMCl1/DMR11 receiver, including
those given to the hardware.

Length of the first message on the receive queue (0 if byte 3 is 0).

If the DMC11IDMR11 is not running (see byte 10), this is a code indicating
the type of error:

o Hardware error (see control-out information in bytes 19-20).

1 Unknown control-out operation.

2 Illegal input interrupt.

3 Illegal output interrupt.

4 Unsolicited input interrupt.

5 Unexpected output interrupt.

6 DDCMP maintenance mode/message received.

7 Lost data error.

8 Reserved.

9 Disconnect code.

10 DDCMP start received.

11 UNIBUS address timeout on DMCIDMR access.

12 Procedure error.

255 Timeout error.

Status flags, encoded as a combination of bits:
4 The first transmit since the DMC11IDMR11 was opened is com

plete, indicating that a link has been established and that further
transmits will be timed out.

64 The driver is waiting for buffers to satisfy receive buffer quota.

128 Unit is running. If this bit is off, the DMCl1/DMRll was halted
for the reason given in byte 9.

All other bits are reserved.

Receive buffer size (from the FILE SIZE value when the DMClllDMRll was
opened).

Operational mode (from the MODE value when the DMC11IDMRll was
opened).

Reserved.

6-4 DMC11/DMR11 Interprocessor Link

BYrES

17

18

19-20

21-22

23-24

25-26

MEANING

Receive buffer quota (from the CLUSTERSIZE value when the DMCll
IDMRll was opened).

Reserved.

Value of SEL6 hardware register at most recent control-out interrupt. If the
DMCll1DMRll was halted due to a hardware error, the specific error (or
errors) can be found here. For the format of this word, see the description of
the DMCll and DMRll in the DMRlI Synchronous Controller User's Guide.

Data check count. A data check ettor occurs when the DMCll1DMRll has
tried seven retransmissions of a message without success. This indicates that
the physical channel is defective or that the remote processor does not have
a buffer to receive the message. The DMClllDMRll continues to retry the
transmission and reports a data check error every seven retries. The total
number of data check errors that have occurred since the DMClllDMRll unit
was opened is returned in this word.

Timeout count. A timeout error occurs when the DMCll1DMRll has received
no response from the remote end of the link for 21 seconds. This indicates a
broken communications channel or a failure at the other end of the link. The
number of timeout errors since the OPEN is returned in this word.

Overrun count (the number of overrun errors since the OPEN). An overrun
error indicates that a message was received but no buffer was available. This
is nonfatal because the remote system retransmits the message (and possibly
logs data check errors). You can reduce overrun errors by increasing the
buffer quota for the unit (see CLUSTERSIZE in OPEN). Overrun errors can
also occur when the driver is not able to obtain a buffer allowed by the buffer
quota value. To reduce this type of overrun error, increase the size ofXBUF
at the start of the next time-sharing session.

Three errors (data check, timeout, and overrun) that are detected by the DMCll
IDMRll are only warnings. These are nonfatal and do not cause the unit to halt.
Your program is not informed when they occur. However, if any of them occurs
frequently, it indicates that the program has set the wrong CLUSTERSIZE value
or that there is trouble on the physical line between the two processors. The
driver counts the number of times each error occurs and returns those counts as
part of the status information.

Your program never stalls when it issues a count and status request.
Furthermore, this request is legal whether or not the unit is running. Thus,
you can use it to determine the specific DMClllDMRll problem after the
program receives an ERR 14.

6.4 The PUT Statement

The PUT statement copies data from your program's I/O buffer to a system
buffer and queues the buffer for transmission. The number of bytes to transmit
is specified in the COUNT option and can be from 1 to 8000. A COUNT value
outside that range generates the error ?Illegal byte count for 110 (ERR=31). If
the monitor cannot obtain a buffer big enough to hold the message, it returns the
error ?No buffer space available (ERR=32). The program can sleep for a while
and retry the PUT, waiting for adequate buffer space to become available. Note
that on a given configuration it may be impossible to obtain a buffer of the proper
size. It is good practice to limit the retry operations to a small number after
receiving ERR=32.

DMC11/DMR11 Interprocessor Link 6-5

If the physical link has gone down, the driver immediately returns the error
?Device hWlg or write locked (ERR=14). As with the GET statement, the only
recourse is to close the channel.

The PUT statement queues messages to the DMClllDMRll to be sent al'l soon
as possible. Your program is not normally notified when the actual message
transmission is done, nor whether it is ever done (in case of a physical link
failure). You can modify this action by using the RECORD option of the PUT
statement. A RECORD value of 0 (or omitting the RECORD option) tells the
monitor to queue the data for transmission, and the program immediately
continues processing. RECORD 8192% tells the monitor to stall the job Wltil all
pending transmissions have completed successfully (in which case the program
continues processing normally) or Wltil a DMClllDMRll error occurs (in which
case the program receives error 14). RECORD 16384%+n%, where n% is a
number between 0 and 255, causes the monitor to put the job to sleep. It is
awakened by any of the following conditions:

• All pending transmissions have completed successfully.

• An error occurs on the DMCllIDMR11.

• A message is received through the local send/receive mechanism.

• A delimiter is typed on one of the job's keyboards.

• The number of logins is set to 1.

• N seconds have expired and n is not O.

If the job is awakened for the second reason, it receives the error ?Device hWlg
or write locked (ERR=14). If it is awakened for any other reason, it receives no
error and continues processing normally. To find the number of transmissions
still outstanding, use a GET with RECORD 4096% and examine the value in byte
2. Adding the value 4096% to any of the above RECORD values tells the monitor
not to transmit any data, but to do the WAIT operation specified.

6.5 The CLOSE Statement

If a DMClllDMRll Wlit is open by a user on more than one channel, no CLOSE
except the last has any effect. When the last CLOSE is issued, the unit is halted,
any received messages not given to the user are discarded, any messages queued
for transmission but not transmitted are discarded, and all buffers are returned to
the monitor. It is normally good practice to issue a PUT statement with RECORD
4096%+8192% to wait for all transmissions to complete before executing a CLOSE
statement. The CLOSE call cannot fail. When the CLOSE statement is executed
on a DMCIDMR with an autoanswer/autodial phone connection, the DTR (Data
Terminal Ready) modem control signal is automatically dropped to disable data
transmission.

6.6 Hardware Errors

Any fatal error detected by the DMC111DMRll (that is, any error not listed as
nonfatal in the cOWlt and status description) causes the monitor to shut down the
link. The monitor reports the error ?Device hWlg or write locked (ERR =14) to
your job on all subsequent PUT operations and on any GET operations after all
queued messages have been received. (GET operations with RECORD 4096% are
always legal, whether or not the unit is rWlning.)

6-6 DMC11/DMR11 Interprocessor Link

Chapter 7

Ethernet Operations

This chapter presents an overview of Ethernet and describes how to use its local
area networking features on RSTSIE with BASIC-PLUS or BASIC-PLUS-2. Some
special functions work only through MACRO-ll programs. You can use Ethernet
without these functions, but they can greatly increase an application's flexibility
and its ability to monitor the network. For descriptions of these special functions,
see the RSTS / E System Directives Manual, under the .SPEC listing for Ethernet.

7.1 Ethernet Concepts

Ethernet consists of a single coaxial cable that connects computers, terminals,
and other devices within a limited geographic area. All nodes on an Ethernet
have equal access to the interconnecting cable. Ethernet's access method is called
"Carrier-Sense, Multiple-Access with Collision Detect" (CSMAlCD). These terms
mean:

• Carrier Sense-Each node checks the cable before it sends a message or data
packet. If another node is transmitting, the first node delays transmission
until the cable is no longer busy.

• Multiple Access-All nodes are on the same coaxial cable, and all the nodes
can hear all message or data packets sent on the Ethernet. The intended
recipient nodes recognize incoming packets by addresses which are specified
within the packets.

• Collision Detect-If two or more nodes send packets at the same time, their
signals collide. Each node hears such collisions, then waits before sending a
packet again.

'lb use Ethernet, you only need four BASIC statements: OPEN, CLOSE, GET,
and PUT. See the section Commands for Ethernet for full descriptions of these
functions. You may also wish to use the special Ethernet .SPEC functions that
have been added to MACRO-H. See the RSTS/E System Directives Manual for
full descriptions.

7.1.1 The Conversation Analogy

In many ways, Ethernet resembles ordinary conversation at a social gathering.
'lb be polite, you do not speak while someone else is talking; you listen before you
speak. This resembles the carrier-sense feature of Ethernet; each node makes
sure the cable is clear before sending any information.

Ethernet Operations 7-1

In a conversation, anyone may begin to talk once they determine that no one else
is talking. (Compare this to a lecture, where only one person talks.) This equal
right to speak resembles the multiple-access feature of Ethernet; many nodes can
use the same cable.

If two people start to talk at the same time, they note the fact and stop talk
ing (that is, each listens while talking and stops ifinterfering with someone
else). This resembles the collision-detect feature of Ethernet; if two nodes start
transmitting at the same time, both nodes detect this and stop.

When the two people stop talking, they wait and start over again. On Ethernet,
this situation is called backoff and retransmission; a delay before retransmission
will eventually clear the collision situation.

There is another useful analogy between Ethernet and a social event. When
someone at the party talks, everyone (usually) can hear what is being said. Some
of what is said is intended for everyone, some is intended for a smaller group (for
example, everyone over 21), and some is intended for an individual. Likewise,
nodes on an Ethernet can hear every message. Some messages are intended for
all nodes (broadcast address), some are intended for a subset (multicast address),
and some are intended for individual stations (physical address).

7.1.2 Ethernet and DECnet/E

DECnetIE is a Digital product using the Ethernet data link layer and Ethernet
physical link layer to communicate. It uses the Digital Network Architecture
for network control. In order to increase the flexibility of Ethernet on RSTSIE,
Digital has provided a direct interface to the Ethernet data link layer for RSTS
IE users. This interface resembles the interface provided for the DMCIDMR
communications devices, and can be programmed with or without DECnetIE on
the system.

If DECnetIE is on the system, you should start it before any other jobs are
allowed to perform OPENs to the Ethernet devices.

7.1.3 Ethernet Terms

'Ib make Ethernet easier to use, you should become familiar with these terms:

• Physical layer

• Channel, controller, and data link layer

• Protocol type and portal

• Counters

• Physical addressing and hardware addressing

• Multicast addressing

7.1.3.1 Physical Layer

Digital Equipment Corporation, Intel Corporation, and Xerox Corporation collab
orated in producing the Ethernet specification to develop a variety of local area
network products. Digital's implementation of the Ethernet specification consists
of the lowest two levels of the overall DNA specification-the physical layer and
the data link layer.

7-2 Ethernet Operations

The physical layer of Ethernet is a bus in the shape of a branching tree. The
medium is a shielded coaxial cable using Manchester-encoded, digital signaling.
Each Ethernet can support up to 1023 nodes. The maximum length of the cable
is 2.S kilometers (1.74 miles).

7.1.3.2 Channel, Controller, and Data Link Layer

Each Ethernet has one channel. The channel is made up of the physical cable
connecting the nodes, together with the nodes' controllers. A controller is a RSTS
IE device connected directly to the cable. Each node has one or two controllers
connecting to the Ethernet. The controllers and their device drivers make up the
Ethernet data link layer. Controllers come in four types:

• DELUA, a UNIBUS controller (called UNA in DECnet, XE: in RSTSIE)

• DEUNA, an older UNIBUS controller (called UNA in DECnet, XE: in RSTS
IE)

• DELQA, a Q-Bus controller (called QNA in DECnet, XH: in RSTSIE)

• DEQNA, an older Q-Bus controller (called QNA in DECnet, XH: in RSTSIE)

7.1.3.3 Protocol Type and Portal

All incoming Ethernet messages have a protocol type, an identifying string
near the beginning, that identifies the proper portal to receive the message (for
instance, the DECnetiE portal). The portal is the logical access from the user
software to the channel.

7.1.3.4 Counters

The Ethernet controller keeps records of link performance called the counters.
For example, the counters record the number of times the controller had to
throwaway a packet because it ran out of buffer space. Use the counters to
find problems and fine-tune the system. For example, if the counters show the
controller throws away packets too often, you should give the controller more
buffers, or read from it more often.

There are two kinds of counters, circuit counters and line counters. A circuit
counter monitors a single portal. A line counter monitors the whole channel. You
cannot work with counters through BASIC programs; you must use MACRO-H.

7.1.3.5 Physical Addressing

You address nodes on Ethernet lines by their Ethernet physical addresses.
Because the Ethernet is a multiaccess broadcast device, all nodes connected
to an Ethernet line are equally accessible. Therefore, each node on an Ethernet
is assigned a unique Ethernet physical address which is set by the controller soft
ware at the node, or is set to a default value at the factory. This default physical
address is the hardware address. Xerox Corporation assigns a block of hardware
addresses for Digital to use with its DEUNA, DELUA, and DEQNA Ethernet
controllers. One address from the assigned block is permanently associated with
each controller in read only memory.

Ethernet addresses are represented by six pairs of hexadecimal numbers sepa
rated by hyphens, OS-OO-2B-06-06-90 for example.

Ethernet Operations 7-3

7.1.3.5.1 DECnetiE on Ethernet

If you have DECnetiE, the controller software sets the physical address to be
within an assigned block of addresses when the node is powered up. The con
troller constructs the physical address by appending a hexadecimal number to
the constant hexadecimal number AA-OO-04-00. The controller software uses the
node address (area-number. node-number) to construct the last two pairs of hex
adecimal numbers it appends to the constant, D7-0C for example. In this case,
the physical address is AA-OO-04-00-D7-0C.

NOTE

The system manager must start DECnetiE before any user portals
open. Once a portal opens, no users can modify the controller's charac
teristics.

7.1.3.6 Multicast Addressing

Use multicast address to send messages to more than one node. A multicast
address can be:

• A multicast group address, which is an address assigned to any number of
nodes. Use the group address to send a message to all nodes in the group
with a single transmission.

• The broadcast address, which is a single address, the hexadecimal number
FF-FF-FF-FF-FF-FF. Use a broadcast address to transmit a message to all
nodes on a given Ethernet.

NOTE

The use of the broadcast address on Ethernet severely burdens the
network resources. Digital does not recommend using a broadcast
address on a heavily populated Ethernet.

7.1.4 Ethernet Addresses

Certain Ethernet addresses and ranges of addresses have specialized functions.
Digital physical addresses are in the range:

AA-OO-OO-OO-OO-OO through AA-OO-04-FF-FF-FF

Multicast addresses assigned for use in cross-company communications are:

Value

FF-FF-FF-FF-FF-FF

CF -00-00-00-00-00

Meaning

Broadcast

Loopback assistance

Digital multicast addresses assigned to be received by other Digital nodes on the
same Ethernet are:

Value

AB-OO-OO-O 1-00-00

AB-OO-OO-02-00-00

AB-OO-OO-03-00-00

AB-OO-OO-04-00-00

7-4 Ethernet Operations

Meaning

Dumplload assistance

Remote console

All phase IV routers

All phase IV end nodes

AB-OO-OO-05-00-00
through
AB-OO-03-FF-FF-FF

Reserved for future use

AB-OO-04-00-00-00
through
AB-OO-04-FF-FF-FF

For use hy Digital customers for their own applications

7.2 Commands for Ethernet

You can use the following BASIC statements on the Ethernet:

• OPEN

• CLOSE

• GET

• PUT

In addition, only the Ethernet controllers use the following special functions:

• Set New Physical Address

• Enable Multicast Addresses

• Get Circuit Counters

• Get Line Counters

• Transfer Circuit Counters

• Transfer Line Counters

Programs written in BASIC-PLUS and BASIC-PLUS-2 can use the OPEN,
CLOSE, GET, and PUT statements to operate the Ethernet interface. To use the
special functions, you must use MACRO-ll programs. See the RSTS / E System
Directives Manual, the .SPEC listings for Ethernet.

7.2.1 OPEN

Example Open statement:

OPEN "XEO:/PO:1600" AS FILE U, CLUSTERSIZE 4, RECORDSIZE 512%+6%+6%+2%+2%

• no specifies Ethernet controller 0

• IPO:1600 specifies protocol type 1600. This is the position modifier.

• FILE.l specifies RSTSIE channel 1.

• CLUSTERSIZE 4 specifies four system receive buffers. You cannot specify
more than 127. Digital does not recommend specifying more than 10.

• RECORDSIZE 512%+6%+6%+2%+2% specifies 512 bytes for the size of the
110 buffer, with 6 bytes each for the source and destination addresses, 2 bytes
each for the portal protocol type and the Ethernet length field.

• MODE 0% is the default and so was not written in the example. 0% defines
the portal as using a "padded" protocol. Use MODE 128% for an "unpadded"
protocol. (See below for descriptions of padded and unpadded protocols.)

Ethernet Operations 7-5

The format of the OPEN statement for Ethernet is:

OPEN "XEa:/PO:b" AS FILE #c, CLUSTERSIZE d,
RECORDSIZE e%+6%+6%+2%+2%, MODE f%

where a, b, c, d, e, and f are the variables described in the preceding example.

Use the OPEN statement to open a portal on a given Ethernet controller. The
OPEN statement also lets you allocate receive buffers and set the portal protocol
type.

Mter the OPEN statement, the portal receives incoming messages for the
specified protocol type at the physical address of the controller.

NOTE

If you intend to use DECnetlE, be sure you start DECnetiE before you
issue any OPEN statements for users. Since DECnetlE has to modify
the node's physical address before it can start, it must be the first
portal opened on a channel.

Possible Errors

Meaning

?NO BUFFER SPACE AVAILABLE

There are not enough buffers available in the small buffer pool
to create the portal's data structures, or the extended. buffer
pool (XBUF) is too small or fragmented to allocate the requested
number of system receive buffers.

?ACCOUNT OR DEVICE IN USE

The protocol type requested is already open on the channel.

?DEVICE HUNG OR WRITELOCKED

The controller is disabled or inoperative.

Note the following restrictions:

. ERR Value

32

3

14

• Each portal supports only one protocol type. On OPEN, the protocol for the
portal is defined. You can enable multiple protocol types by opening several
different portals on different RSTSIE channels.

• You cannot open the same protocol type on two portals on the same channel.

• The Ethernet controller physical address is not available to anyone above the
data link layer.

7.2.1.1 Padded and Unpadded Protocols

Protocols may be padded or unpadded. When you issue an OPEN statement, you
must decide whether to do the following send and receive operations in padded
or unpadded mode. Specify MODE 0% for a padded protocol, MODE 128% for
unpadded. Padded is the default. It is easier to use but takes up more space.

In the padded mode, the data link layer automatically fills in the length field
of the receive buffer and makes sure the message is long enough to be put on
Ethernet, using the length field of the packet. It also uses the length field of
incoming packets. In the unpadded mode, the data link layer leaves the length
field blank and leaves it to you to make sure you have the minimum length of 60
bytes.

7-6 Ethernet Operations

7.2.1.2 System Receive Buffers

Since a user job may not be in memory when a message for it arrives on the
Ethernet, RSTSIE lets you allocate system receive buffers to hold messages until
the job can pick them up (using GET statements). Allocate these system receive
buffers using the CLUSTERSIZE parameter on the OPEN statement.

Under the current version of RSTSIE, each system receive buffer is 632 bytes
long. Every message received for the portal uses at least one buffer, and long
messages may use as many as three of these system receive buffers, depending on
their length.

RSTSIE keeps careful count of available system receive buffers for each portal.
When a message comes in for a portal and there are not enough system buffers
available to the portal, RSTSIE discards the message. When the user next issues
a GET command, it returns ERROR 13 (?Data Error on Device), meaning that at
least one message was dropped by RSTSIE due to a shortage of system receive
buffers.

On a normal GET command, the system copies a message (of one or more system
receive buffers) into the buffers in the user program. Once this copy is complete,
the system receive buffers are once again available to receive incoming messages.

Digital does not recommend allocating more than 10 system receive buffers to
a portal. Digital also recommends that user portals do not routinely handle
messages which are larger than can fit into one system receive buffer.

7.2.2 CLOSE

7.2.3 GET

Example CLOSE statement:

CLOSE #1%

• :/#1% specifies the device open on RSTSIE channel 1 as the device with the
portal to close. The format to close any channel n is:

CLOSE #n%

Use the CLOSE statement to close the portal on a given Ethernet controller.
RSTSIE closes the portal on the data link side and frees all the system resources
reserved for it for other system processes. The CLOSE statement requires no
parameters and returns no errors.

Example GET statement:

GET #1% &, RECORD 0%

• :/#1 % & specifies the device on RSTSIE channel 1 as the device with the portal
to read from.

• RECORD 0% specifies that the GET operation should not be stalled. If there
are new messages waiting, the GET operation returns the first one. If not,
the GET fails with the error message ERR 5 (?Can't find file or account).

Users can also use RECORD 8192% to specify a stan for the GET. With a
stall, the GET returns the first message, if there are any messages waiting.
Otherwise, it stalls the job in an XE state, waiting for an Ethernet message
addressed to the portal. Users can interrupt this stalled GET with CtrllC, in
case nothing comes over the Ethernet.

Ethernet Operations 7-7

The fonnat for any channel a, stalled or not according to the value of b, is:

GET ta% &, RECORD b%

Use the GET statement to read data from a portal previously opened on t.he
channel. If the portal was OPENed in padded mode, then the first 16 bytes
are header infonnation, including the length field. If the portal was OPENed
in unpadded mode, only the first 14 bytes are header infonnation, followed
immediately by message data.

The amount of data read depends on the device and the size of the buffer area, as
defined in the XRB. The number of bytes transferred is always less than or equal
to the buffer size. The actual number of bytes read is returned in the XRB when
the directive is complete.

The receive buffer, which must start on a word boundary, contains the following
fields upon completion of a GET:

DESTINATION ADDRESS FIELD

6 bytes

SOURCE ADDRESS FIELD

6 bytes

PROTOCOL TYPE FIELD
2 bytes

LENGTH FIELD ..- (Unless you specify a
2 bytes

DATA

46 - 1500 bytes

Possible Errors

Meaning

?MAGTAPE RECORD LENGTH ERROR

Message truncated to fit.

?DATA ERROR ON DEVICE

Lost packets (user buffer unavailable).

?CAN'T F1ND FILE OR ACCOUNT

"no padding" portal on
OPEN)

For no stall GETs, when no messages are pending.

7-8 Ethernet Operations

ERR Value

40

13

5

7.2.4 PUT

Example PUT statement:

PUT *1%, COUNT 6%+6%+2%+2%+LEN(D$)

• 11% specifies the device on RSTSIE channel 1 as the device with the portal to
write to.

• COUNT 6%+6%+2%+2%+LEN(D$) specifies 6 bytes each for the source
and destination addresses, 2 bytes each for the portal protocol type and the
Ethernet length field, and LEN(D$) for the length of the user string to send
(that is, the data to be sent is in buffer D$).

The format for any channel a, field length b, is:

PUT *a%, COUNT 6%+6%+2%+2%+b

Use the PUT statement to send information through the data link layer to
another node. In padded mode, the data link layer fills in the length bytes with
the length of the data sent. The data link layer always makes sure the transmit
packet is between 60 and 1514 bytes long, and will fill in the source address and
protocol type, using the type passed in the OPEN statement.

The PUT statement expects you to PUT a buffer in the following format, provid
ing for space for the following information in addition to the actual data to be
transferred:

DESTINATION ADDRESS FIELD

6 bytes
Specified by User

SOURCE ADDRESS FIELD

6 bytes
Filled in by the
data link layer
(RESERVED)

PROTOCOL TYPE
2 bytes

Filled in by the
data link layer

(RESERVED)

LENGTH
2 bytes

Filled in by the
data link layer

DATA

46 - 1500 bytes

~ Specifies the address
of the machine that
will receive the message.

~ Specifies the address
of the originating
node (you).

~ Specifies the portal
that you expect will
receive the message.
Specified during OPEN.

~ Specifies the length of
the message.
This field is present only
for padded protocols.

~ Contains the
message's data.

Note the following requirements and restrictions:

• The total buffer size must be between 60 and 1514 bytes in length.

• The buffer must start on a word boundary, but can contain an even or odd
number of bytes.

Ethernet Operations 7-9

• The user specifies the destination address field.

• The data link layer always specifies the source address field, which is reserved
for Digital use.

• The data link layer also specifies the protocol type, which is reserved for
Digital use.

• If the protocol is a padded protocol, then the data link layer fills in the length
field as calculated from the information passed in the XRBC.

Possible Errors

Meaning

?ILLEGAL BYTE COUNT FOR JlO

The count is not between 60 and 1514 bytes, or starts on an odd
address.

?DATA ERROR ON DEVICE

The device is disabled or inoperative.

?DEVICE HUNG OR WRITE LOCKED

The controller is disabled or inoperative.

7.2.5 Special Ethernet Functions

ERR Value

31

13

14

MACRO-ll provides the following functions to give greater flexibility in using
and monitoring the Ethernet. These functions are not available in BASIC. See
the RSTS / E System Directives Manual under .SPECs for Ethernet for more
information.

7.2.5.1 Set New Physical Address

Use the Set New Physical Address function to change the physical address of the
Ethernet controller. It is a .SPEC function and requires too many parameters to
call using BASIC-PLUS or BASIC-PLUS-2. Use MACRO-ll.

7.2.5.2 Enable Multicast Addresses

Use the Enable Multicast Addresses function to let the portal receive multicast
messages. This is a device dependent .SPEC function. The XRB contains pointers
identifying the User Multicast Address Buffer. RSTSIE allows a maximum of five
multicast addresses per portal on an Ethernet channel.

This is a .SPEC function and requires too many parameters to call using BASIC
PLUS or BASIC-PLUS-2. Use MACRO-ll.

7.2.5.3 Get Circuit Counters and Get Line Counters

Use the Get Counters functions to bring the counters up to date. The controllers
maintain counters in several places. You must tell the data link layer when you
want to collect them. The controllers update line or circuit counters only when
you issue the call.

These are .SPEC functions and require too many parameters to call using BASIC
PLUS or BASIC-PLUS-2. Use MACRO-ll.

7-10 Ethernet Operations

7.2.5.4 Transfer Circuit Counters and Transfer Line Counters

Use the Transfer Counter functions to read the counter information from the data
link layer to the user space once you have updated the information with the (':ret
Counters function.

These are .SPEC functions and require too many parameters to call using BASIC
PLUS or BASIC-PLUS-2. Use MACRO-H.

Ethernet Operations 7-11

Part II
System Function Calls and Programming Hints

Chapter 8

SYS System Function Calls

This chapter describes the system function calls, also known as SYS calls.
System function calls let you perform many special functions, such as:

• Establish special characteristics for a job

• Perform special 110 functions

• Set terminal characteristics

• Modify account characteristics

• Manipulate account privilege information

The SYS call whose function code is 6 is a specialized case of the general system
function call. SYS call 6 contains a subfunction code called the FIP code. The
FIP code causes a dispatch call to be made to special resident or nonresident code
that performs file processing. The subfunctions of SYS call 6 are called FIP calls.
Because programmers generally use FIP calls more frequently than the SYS
calls, the FIP calls are also commonly referred to as SYS calls. This chapter also
uses SYS call as the preferred term.

The calls described in this chapter are organized as follows:

• SYS system function calls (F=O to F=14). The calls are arranged in ascending
numerical order. Tables 8-1 and 8-2 summarize these calls.

• SYS system function calls to FIP (FO=-29 to FO=34). With two exceptions,
the calls are arranged in ascending numerical order. Tables 8-3 and 8-4
summarize these calls.

• The PEEK function. This function lets a user who has RDMEM privilege
examine any word location in the monitor part of memory.

8.1 SYS System Function Calls

SYS system function calls let you perform special 110 functions, establish special
characteristics for a job, set terminal characteristics, and cause the monitor to
execute special operations.

The SYS call format is used for two reasons. First, the calls are unique to the
RSTSIE implementation of the BASIC-PLUS language. As such, the calls are
system-dependent and have calling formats different from any BASIC-PLUS
language call. Second, the SYS format allows the use of a variable number of
parameters.

SYS System Function Calls 8-1

Some SYS calls provide one set of functions to a nonprivileged user, while
providing the privileged user with a more powerful set. To find out what
privileges are associated with each call, see Tables 8-1 through 8-4, as well as the
individual description of each SYS call.

If you are not sure what privileges your account has, use the SHOW JOB
/PRIVILEGES command to list them. If you have more privileges than you
need to use a certain call and want to temporarily disable them, use the SET
JOB/PRIVILEGES command. The DCL commands associated with privileges are
described in the RSTS / E System User's Guide.

The first part of Chapter 8 describes all system function calls with function codes
other than 6. The second part of Chapter 8 describes system function calls to the
file processor (FIP calls). These calls are associated with system function call 6.

8.1.1 SYS System Function Formats and Codes

The general format of the SYS call is:

V$ = SYS(CHR$(F%) + 0$)

where:

V$ is the data (target) string returned by the call.

F% is the SYS system function code.

0$ is the optional (by function code) parameter string passed by the call.

F% in the general format denotes function codes that range from 0 through
14, inclusive. SYS calls that specify a code outside of this range or that pass a
zero lengtli string generate the error ?Illegal SYS() usage (ERR=18). Table 8-1,
organized by code number, summarizes the codes and their functions. Table 8-2,
organized alphabetically by function name, provides the same information.

The SYS call whose function code is 6 is a more specialized case of the general
system function call. It is specialized by a subfunction code called the file
processor (FIP) code. The FIP code causes a dispatch call to be made to special
code that performs file processing.

The format of the call is:

V$ = SYS(CHR$(6%) + CHR$(FO%) + 0$)

where:

V$ is the data (target) string returned by the call.

FO% is the FIP subfunction code.

0$ is the optional (by function code) parameter string passed by the call.

The section "SYS System Function Calls to FIP" describes the purpose, calling
format, and use of each FIP system function call (F=6). It also describes how to
build the parameter string to pass to the monitor and how to extract data from
the returned string.

Table 8-3 in this section is a quick reference index of the FIP functions in order
of FIP code (FO). Table 8-4 provides the same information, but is arranged al
phabetically by function name. For detailed information on each of the functions,
refer to the page shown beside the name in the table.

8-2 SYS System Function Calls

In Tables 8-1 through 8-4, the Relevant Privileges column lists the privileges
associated with each SYS call. A user who attempts to call a SYS function
without sufficient privilege receives the error ?Illegal SYS() usage (ERR=18)
or the error ?Protection violation (ERR=10). 'Ib avoid repetition, this chapter
describes error 18 for calls only if it has a meaning different from nonprivileged
attempts to use the call.

Table 8-1: SYS System Function Calls (by Function Code)

Function Relevant
Code(F) Function Name Privileges Page

0 Cancel Ctr1l0 effect on terminal None 8-12

1 Enter tape mode on terminal None 8-12

2 Enable .echoing on terminal None 8-13

3 Disable echoing on terminal None 8-13

4 Enable ODT submode on terminal None 8-14

5 Exit with no prompt message None 8-15

6 SYS call to the file processor See individual 8-15
FIP call

7 Get core common string None 8-16

8 Put core common string None 8-16

9 Exit and clear program None 8-16

10 Reserved for special implementations

11 Cancel all type ahead None 8-17

12 Return information on last opened file None 8-18

13 Reserved for special implementations

14 Execute CCL command Execute access 8-19
to file

Table 8-2: SYS System Function Calls (by Function Name)

Function Relevant
Function Name Code (F) Privileges Page

Cancel all type ahead 11 None 8-17

Cancel Ctr1l0 effect on terminal 0 None 8-12

Disable echoing on terminal 3 None 8-13

Enable echoing on terminal 2 None 8-13

Enable ODT submode on terminal 4 None 8-14

Enter tape mode on terminal 1 None 8-12

Execute CCL command 14 Execute access 8-19
to file

Exit and clear program 9 None 8-16

Exit with no prompt message 5 None 8-15

Get core common string 8 None 8-16

Put core common string 8 None 8-16

(continued on next page)

SYS System Function Calls 8-3

Table 8-2 (Cont.): SYS System Function Calls (by Function Name)

Function Name

Reserved for special implementations

Reserved for special implementations

Return information on last opened file

SYS call to the file processor

Function
Code(F)

10

13

12

6

Table 8-3: FIP SYS Calls (by Subfunction Code)

Function
Code(FO) Function Name

-29 Get monitor tables - part III

-28 Spooling (Obsolete, use PBS request)

-27 Snap shot dump

-26 File utility functions

-25 Read/write file attributes

-25 Read pack attributes

-25 Read/write account attributes

-25 Delete account attributes

-24 Add/delete CCL command

-23 Terminating file name string scan

-22 Set special run priority

-21 Drop/regain (temporary) privileges

-20 Lock/unlock job in memory

-19 Set number of logins

-18 Add run-time system

-18 Remove run-time system

-18 Unload run-time system

-18 Add resident library

-18 Remove resident library

-18 Unload resident library

-18 Create dynamic region

-18 CreatelDelete virtual disk

8-4 SYS System Function Calls

Relevant
Privileges

None

See individual
FIP call

Page

8-18

8-15

Relevant Privileges

None

Read access
Write access

SYSIO

Read access
Write access
DATES
TUNE
SYSIO

Read access
Write access

DEVICE

GACNT
WACNT

GACNT
WACNT

INSTAL

None

TUNE

None

TUNE

'SWCTL

INSTAL

INSTAL

INSTAL

INSTAL

INSTAL

INSTAL

INSTAL

INSTAL
HWCFG

Page

8-35

8-37

8-41

8-41

8-48

8-50

8-51

8-57

8-57

8-27

8-59

8-60

8-61

8-62

8-63

8-65

8-66

8-67

8-70

8-71

8-71

8-74

(continued on next page)

Table 8-3 (Cont.): FIP SVS Calls (by Subfunction Code)

Function
Code(FO) Function Name Relevant Privileges Page

-17 Name run-time system Write access 8-75

-16 Shut down system SRUTUP 8-76

-15 Accounting dump GACNT 8-77
WACNT

-14 Change system date/time DATES 8-78

-13 Change priority/run burst/job size TUNE 8-78

-12 Get monitor tables - part II None 8-80

-11 Change file backup statistics DATES 8-81

-10 File name string scan None 8-27

-9 Rang up a dataset HWCTL 8-83

-8 Get open channel statistics None 8-84

-7 Enable CtrllC trap None 8-86

-6 Poke memory SYSMOD 8-88

-5 Broadcast to terminal SEND 8-88

-4 Force input to terminal SYSIO 8-89

-3 Get monitor tables - part I None 8-90

-2 Disable logins SWCTL 8-92

-1 Enable logins SWCTL 8-92

0 Create user account (new format) GACNT 8-93
WACNT

0 Create user account (old format) GACNT 8-96
WACNT

1 Delete user account GACNT 8-1
WACNT

2 Reserved

3 Disk pack status MOUNT 8-100
HWCFG

4 Login None 8-104

4 Verify password DEVICE 8-104
GACNT
WACNT

5 Logout EXQTA 8-106
WACNT

6 Attach GACNT 8-108
WACNT

6 Reattach DEVICE 8-111

6 Swap Console None 8-112

7 Detach JOBCTL 8-113

8 Change quota (old format)/expiration date/password GACNT 8-114
(old format) WACNT

(continued on next page)

SYS System Function Calls 8-5

Table 8-3 (Cont.): FIP SYS Calls (by Subfunction Code)

Function
Code(FO) Function Name

8 Change quota (new fonnat)/expiration
date/password (old fonnat)

8 Set password (new fonnat)

8 Bllljob

8 Disable tenninal

9 Return error messages

10 Allocate/reallocate device

10 Assign user logical

10 List user logical names

11 Deallocate a device or deassign user logical

12 Deallocate all devices

13 Zero a device

14

15

15

16

16

17

17

18

19

20

21

21

21

21

22

22

22

22

Read/read and reset accounting data

Directory lookup on index

Special magnetic tape directory lookup

Set tenninal characteristics - part I

Set tenninal characteristics - part II

Disk directory lookup on file name

Disk wildcard directory lookup

Obsolete (use function code 22)

Enable/disable disk caching

Convert date and time

Add new logical names

Remove logical names

Change disk logical name

List logical names

Message send/receive

Send local data message with privileges

Send PrintlBatch Services request

Create and delete a local LAT port

8-6 SYS System Function Calls

Relevant Privileges

GACNT
WACNT

GACNT
WACNT

JOBCTL

HWCTL

None

DEVICE
HWCTL

None

None

None

None

DEVICE
Create/rename access to
account

GACNT
WACNT

DEVICE
Read or execute access

DEVICE

HWCFG

HWCFG

DEVICE
Read or execute access

DEVICE
Read or execute access

TUNE

None

INSTAL

INSTAL

INSTAL

None

JOBCTL
SEND
SWCFG
SWCTL
SYSIO

SEND

None

SWCTL

Page

8-115

8-118

8-119

8-120

8-121

8-122

8-124

8-125

8-126

8-127

8-128

8-130

8-136

8-137

8-143

8-152

8-139

8-141

8-158

8-160

8-162

8-164

8-165

8-166

8-166

Ch.10

Ch.10

8-169

(continued on next page)

Table 8-3 (Cont.): FIP SYS Calls (by Subfunction Code)

Function
Code(FO) Function Name Relevant Privileges Page

22 Assign, deassign, and set local LAT ports SWCFG 8-171

22 Return LAT port characteristics None 8-176

23 Add system files Write access 8-181
INSTAL

23 Remove system files Write access 8-183
INSTAL

23 List system files None 8-184

24 Create a job Execute access 8-186
EXQTA
JOBCTL
TUNE
WACNT

25 Wildcard PPN lookup DEVICE 8-191

26 Return job status JOBCTL 8-192
TUNE

27 Reserved

28 Set/clear current privileges None 8-194

28 Read current privileges None 8-194

29 StalllUnstall system HWCTL 8-196

30 Reserved

31 Third-party privilege check None 8-198

32 Check file access rights None 8-198

32 Convert privilege name to mask None 8-199

32 Convert privilege mask to name None 8-200

33 Open next disk file DEVICE 8-201
Read access
Write access
DATES

34 Set device characteristics HWCFG 8-204
HWCTL

34 Set line printer characteristics HWCFG 8-206

34 Set system defaults HWCFG 8-208
SWCFG

34 Load monitor overlay code and return sta- SWCFG 8-209
tus/remove monitor overlay code

PEEK function RDMEM 8-214
SYSMOD

SYS System Function Calls 8-7

Table 8-4: FIP SYS Calls (by Function Name)

Function
Function Name Code(FO) Relevant Privileges Page

Accounting dump -15 GACNT 8-169
WACNT

Add/delete CCL command -24 INSTAL 8-57

Add new logical names 21 INSTAL 8-162

Add system files 23 Write access 8-181
INSTAL

Add resident library -18 INSTAL 8-67

Add run-time system -18 INSTAL 8-63

Allocate/reallocate device 10 DEVICE 8-122
HWCTL

Assign a local LAT port 22 SWCFG 8-171

Assign user logical 10 None 8-124

Attach 6 GACNT 8-108
WACNT

Broadcast to terminal -5 SEND 8-88

Change disk logical name 21 INSTAL 8-165

Change file backup statistics -11 DATES 8-81

Change quota/expiration date/password 8 GACNT 8-115
WACNT

Change priority/run burst/job size -13 TUNE 8-78

Change system date/time -14 DATES 8-78

Check file access rights 32 None 8-198

Convert date and time 20 None 8-160

Convert privilege mask to name 32 None 8-200

Convert privilege name to mask 32 None 8-199

Create a job 24 Execute access 8-186
EXQTA
JOBCTL
TUNE
WACNT

Create dynamic region -18 INSTAL 8-71

Create a local LAT port 22 SWCTL 8-169

Create user account (new format) 0 GACNT 8-93
WACNT

Create user account (old format) 0 GACNT 8-96
WACNT

Deallocate all devices 12 None 8-127

Deallocate a device or deassign user logical 11 None 8-126

Deassign a local LAT port 22 SWCFG 8-171

Delete account attributes -25 GACNT 8-57
WACNT

Delete a local LAT port 22 SWCTL 8-169

(continued on next page)

8-8 SYS System Function Calls

Table 8-4 (Cont.): FIP SYS Calls (by Function Name)

Function Nrune

Delete user account

Detach

Directory lookup on index

Disable logins

Disable terminal

Disk directory lookup on file name

Disk pack status

Disk wildcard directory lookup

Drop/regain (temporary) privileges

Enable CtrllC trap

Enable logins

Enable/disable disk caching

File name string scan

File utility functions

Force input to terminal

Get monitor tables - part I

Get monitor tables - part II

Get monitor tables - part III

Get open channel statistics

Hang up a dataset

Kill job

Return local LAT port characteristics

List logical names

List user logical names

List system files

Load monitor overlay code and return status

Lock/unlock job in memory

Login

Logout

Function
Code(FO) Relevant Privileges

1 GACNT
WACNT

7 JOBCTL

15 DEVICE

-2

8

17

3

17

-21

-7

-1

19

-10

-26

-4

-3

-12

-29

-8

-9

8

22

21

10

23

34

-20

4

5

Read or execute access

SWCTL

HWCTL

DEVICE
Read or execute access

MOUNT
HWCFG

DEVICE
Read or execute access

None

None

SWCTL

TUNE

None

Read access
Write access
DATES
TUNE
SYSIO

SYSIO

None

None

None

None

HWCTL

JOBCTL

None

None

None

None

SWCFG

TUNE

None

EXQTA
WACNT

Page

8-99

8-113

8-136

8-92

8-120

8-139

8-100

8-141

8-60

8-86

8-92

8-158

8-27

8-41

8-89

8-90

8-80

8-35

8-84

8-83

8-119

8-176

8-166

8-125

8-184

8-209

8-61

8-104

8-106

(continued on next page)

SYS System Function Calls 8-9

Table 8-4 (Cont.): FIP SYS Calls (by Function Name)

Function
Function Name Code(FO) Relevant Privileges Page

Message send/receive 22 JOBCTL 8-166
SEND
SWCFG
SWCTL
SYSIO

Name run-time system -17 Write access 8-75

Open next disk file 33 DEVICE 8-201
Read access
Write access
DATES

PEEK function RDMEM 8-214
SYSMOD

Poke memory -6 SYSMOD 8-88

Read current privileges 28 None 8-194

Read pack attributes -25 DEVICE 8-50

Read/read and reset accounting data 14 GACNT 8-130
WACNT

Read/write account attributes -25 GACNT 8-51
WACNT

Read/write file attributes -25 Read access 8-48
Write access

Reattach 6 DEVICE 8-111

Remove logical names 21 INSTAL 8-164

Remove monitor overlay code 34 SWCFG 8-209

Remove resident library -18 INSTAL 8-70

Remove run-time system -18 INSTAL 8-65

Remove system files 23 Write access 8-183
INSTAL

Return error messages 9 None 8-121

Return job status 26 JOBCTL 8-192
TUNE

Send local data message with privileges 22 SEND Ch.l0

Send PrintlBatch Services request 22 None Ch. 10

Set/clear current privileges 28 None 8-194

Set device characteristics 34 HWCFG 8-204
HWCTL

Set local LAT port characteristics 22 SWCFG 8-171

Set line printer characteristics 34 HWCFG 8-206

Set system defaults 34 HWCFG 8-208
SWCFG

Set number of logins -19 SWCTL 8-62

Set password 8 GACNT 8-118
WACNT

(continued on next page)

8-10 SYS System Function Calls

Table 8-4 (Cont.): FIP SYS Calls (by Function Name)

Function
Function Name Code(FO)

Set special run priority -22

Set terminal characteristics - part I 16

Set terminal characteristics - part II 16

Shut down system -16

Snap shot dump -27

Special magnetic tape directory lookup 15

Spooling (obsolete: use PBS request) -28

StalllUnstall system 29

Swap Console 6

Terminating file name string sean -23

Third-party privilege check 31

Unload resident library -18

Unload run-time system -18

Verify password 4

Wildcard PPN lookup 25

Zero a device 13

8.1.2 Cancel Ctri/O Effect on Terminal

Data Passed

Bytes

1

Meaning

CHR$(O%), the cancel CtrllO code.

Relevant Privileges Page

TUNE 8-59

HWCFG 8-143

HWCFG 8-152

SHUTUP 8-76

SYSIO 8-41

DEVICE 8-137

Read access 8-37
Write access

HWCTL 8-196

None 8-112

None 8-27

None 8-198

INSTAL 8-71

INSTAL 8-66

DEVICE 8-104
GACNT
WACNT

DEVICE 8-191

DEVICE 8-128
Create/rename access to
account

2 CHR$(N%), where N% is the number (between 0 and 12) of the channel on
which the system executes the call. If you do not specify this byte, the call uses
channelO.

3 CHR$(K%), where K% is the number (between 0 and 127) of the keyboard
assigned but not open by the job. This follows the multiterminal service rule.
The keyboard is the slave terminal under control of a master terminal open on
the channel you specify in byte 2.

If you do not specify this byte, the keyboard affected is the one open on the
channel you specify in byte 2.

Data Returned

The target string is equivalent to the passed string.

Privileges Required

None.

Cancel Ctrl/O, F=O 8-11

Discussion

This call cancels the effect of a Ctr1l0 typed at the specified terminal. The
call selects the terminal open on the channel number you pass in byte 2. (The
terminal must be open on that channel.) If you use a slave terminal, byte 2 must
be a nonzero channel number on which the master terminal is open; byte 3 must
contain the keyboard number of the slave terminal. See the RSTS / E System
User's Guide for a description of Ctr1l0.

8.1.3 Enter Tape Mode on Terminal

Data Passed

Bytes

1

2

3

Meaning

CHR$(1%), the enter tape mode code.

CHR$(N%), where N% is the number (between 0 and 12) of the channel on
which the system executes the call. If you do not specify this byte, the call uses
channelO.

CHR$(K%), where K% is the number (between 0 and 127) of the keyboard
assigned but not open by the job. This follows the multiterminal service rule.
The keyboard is the slave terminal under control of a master terminal open on
the channel you specify in byte 2.

If you do not specify this byte, the keyboard affected is the one open on the
channel you specify in byte 2.

Data Returned

The target string is equivalent to the passed string.

Privileges Required

None

Discussion

This call is specifically for use with ASR33 terminals that have a low-speed paper
tape reader. The call disables echoing on the terminal and places the terminal
in tape mode so that a program can be read into the system from the low-speed
reader.

The action of this call is the same as that of the TAPE command (see the BASIC·
PLUS Language Manual). The call selects the terminal open on the channel
number you pass in byte 2. (The terminal must be open on that channel.) If you
use a slave terminal, byte 2 must be a nonzero channel number on which the
master terminal is open; byte 3 must contain the keyboard number of the slave
terminal.

Note that Ctr1lC cancels tape mode.

8.1.4 Enable Echoing on Terminal

Data Passed

Bytes

1

8-12 Enable Echoing, F=2

Meaning

CHR$(2%), the enable echoing code.

2 CHR$(N%), where N% is the number (between 0 and 12) of the channel on
which the system executes the call. If you do not specify this byte, the call uses
channelO.

3 CHR$(K%), where K% is the number (between 0 and 127) of the keyboard
assigned but not open by the job. This follows the multiterminal service rule.
The keyboard is the slave terminal under control of a master terminal open on
the channel you specify in byte 2.

If you do not specify this byte, the keyboard affected is the one open on the
channel you specify in byte 2.

Data Returned

The target string is equivalent to the passed string.

Privileges Required

None.

Discussion

This code cancels the effect of SYS calls with codes 1 and 3. The call selects the
terminal open on the channel number you pass in byte 2. (The terminal must
be open on that channel.) If you use a slave terminal, byte 2 must be a nonzero
channel number on which the master terminal is open; byte 3 must contain the
keyboard number of the slave terminal.

8.1.5 Disable Echoing on Terminal

Data Passed

Bytes

1

2

3

Meaning

CHR$(3%), the disable echoing code.

CHR$(N%), where N% is the number (between 0 and 12) of the channel on
which the system executes the call. If you do not specify this byte, the call uses
channelO.

CHR$(K%), where K% is the number (between 0 and 127) of the keyboard
assigned but not open by the job. This follows the multiterminal service rule.
The keyboard is the slave terminal under control of a master terminal open on
the channel you specify in byte 2.

If you do not specify this byte, the keyboard affected is the one open on the
channel you specify in byte 2.

Data Returned

The target string is equivalent to the passed string.

Privileges Required

None.

Discussion

This call prevents the system from echoing information typed at the terminal.
As a result, information such as a password is kept secret but accepted as valid
input by the system. The call selects the terminal open on the channel number
you pass in byte 2. (The terminal must be open on that channel.) If you use a
slave terminal, byte 2 must be a nonzero channel number on which the master
terminal is open; byte 3 must contain the keyboard number of the slave terminal.

Note that CtrllC reenables terminal echo.

Disable Echoing, F=3 8-13

8.1.6 Enable OOT Submode on Terminal

Data Passed

Bytes

1

2

3

Meaning

CHR$(4%), the enable ODT submode code.

CHR$(N%), where N% is the number (between 0 and 12) of the channel on
which the system executes the call. If you do not specify this byte, the call uses
channelO.

CHR$(K%), where K% is the number (between 0 and 127) of the keyboard
assigned but not open by the job. This follows the multiterminal service rule.
The keyboard is the slave terminal under control of a master terminal open on
the channel you specify in byte 2.

If you do not specify this byte, the keyboard affected is the one open on the
channel you specify in byte 2.

Data Returned

The target string is equivalent to the passed string.

Privileges Required

None.

Discussion

ODT submode allows the system to accept less than a full line as input from the
terminal. Normally, the system waits to accept terminal input until it receives a
line terminated by a delimiting character: carriage return, line feed, form feed,
escape character, or CtrllD combination. However, in ODT submode the system
does not wait for a delimiting character. Instead, one or more characters typed at
the terminal are passed immediately to the program by the next keyboard input
request statement. This input mode is called ODT submode because it is used in
the system program ODT.BAS and the debugging routine ODT.OBJ.

You must enable this function before every input request statement that imme
diately passes characters to the program. You must use a GET statement as
the input request statement. (You must not use INPUT or INPUT LINE state
ments, because they cause repeated generation of the input request until a line
terminator is detected.)

If a program performs other lengthy operations before it executes either another
SYS call and GET statement or other input/output operation at the terminal, it
allows time for the user to type more than one character. To provide for such
a possibility, the program should examine the system variable RECOUNT after
executing each GET statement. This procedure determines how many characters
the user typed between keyboard input operations and enables the program to
process all the characters without losing any.

The call selects the terminal open on the channel number you pass in byte 2.
(The terminal must be open on that channel.) If you use a slave terminal, byte 2
must be a nonzero channel number on which the master terminal is open; byte 3
must contain the keyboard number of the slave terminal.

8-14 Exit with No Prompt, F=5

8.1.7 Exit with No Prompt Message

Data Passed

Byte Meaning

1 CHR$(5%), the exit with no prompt code.

Data Returned

None.

Privileges Required

None.

Discussion

This type of exit does not clear the program from memory, and thus allows you to
continue running the program. The specific effects are:

• Keeps the files open.

• Saves the current program state, which allows you to continue execution.

• Drops temporary privilege.

• Does not generate a prompting message.

• Has the BASIC-PLUS keyboard monitor wait for a command.

8.1.8 FIP Function Call

The SYS call whose function code is 6 is a specialized case of the general system
function call. SYS call 6 contains a subfunction code called the FIP code. The
FIP code causes a dispatch call to be made to special resident or nonresident code
that performs file processing. The entire class of subfunctions of SYS call 6 are
called FIP calls.

See the section "SYS System Function Calls to FIP" for a description of SYS calls
to the file processor.

8.1.9 Get Common Core String

Data Passed

Byte Meaning

1 CHR$(7%), the get a string from core common code.

Data Returned

The target string is the contents of the job core common area.

Privileges Required

None.

Get Common Core String, F=7 8-15

Discussion

This call allows a program to extract a single string from a data area loaded by
another program previously nm by the same job. The data area is called core
common and is from 0 to 127 bytes long. This can does not alter the cont.ents of
the core common area. See SYS call 8, Put Core Common String.

8.1.10 Put Common Core String

Data Passed

Bytes

1

2-128

Meaning

CHR$(8%), the put string into core common code.

The string to put in core common.

Data Returned

The target string is the passed string.

Privileges Required

None.

Discussion

This call allows a program to load a single string into a common data area called
core common. Another program running under the same job and called by the
CHAIN statement can extract this string later. The string can be from 0 to 127
bytes long. If the string to be put into the core common area is longer than 127
bytes, the system sets the length of the core common string to O.

This function provides a way to pass a limited amount of information when a
program executes a CHAIN statement. If you want to pass a larger amount of
information, it must be written to a disk file and read back by the later program.

8.1.11 Exit and Clear Program

Data Passed

Bytes

1

2-3

4-5

6

Meaning

CHR$(9%), the exit and set up NONAME code.

The first three characters of the run-time system name, in Radix-50 format, to
which control is to pass. If bytes 2-5 are zero, the call selects your job keyboard
monitor.

The last three characters of the run-time system name, in Radix-50 format, to
which control is to pass.

If you do not specify this byte, the call establishes the run-time system you
name in bytes 4-5 as the job keyboard monitor. Otherwise, CHR$(N%); the
following values of N% determine the action performed:

Value Action

255%

0%

Establish the run-time system as the job keyboard monitor.

Enter the specified run-time system without establishing it as the
job keyboard monitor.

Data Returned

None.

8-16 Exit and Clear Program, F=9

Privileges Required

None.

Discussion

This call clears the current progTam from memory and returns control to your
job keyboard monitor or the run-time system you specify in bytes 2-5. It also
closes all channels without cleaning up partial buffers. (That is, any 1/0 in
progTess is not completed.) This is the proper way of stopping a progTam that is
not to be rerun. Such progTams are those that terminate on an error and have
the privileged bit set in the protection code. The BASIC-PLUS command NEW
NONAME performs the same action.

If bytes 2 through 5 specify a run-time system, the call transfers control to that
run-time system and establishes it as the job keyboard monitor. If you do not
specify bytes 2 through 5, the call transfers control to the job keyboard monitor.
If you specify byte 6 with a value of 0, it causes a temporary switch to the
run-time system named in bytes 2-5.

The run-time system to which control is returned prints its prompting message.
For the BASIC-PLUS run-time system, two prompts are possible. If the job
is logged in to the system, BASIC-PLUS prints carriage return, line feed, and
Ready prompt followed by one carriage return and two line feeds. If the job is not
logged in, BASIC-PLUS prints carriage return, line feed and Bye followed by one
carriage return and two line feeds.

8.1.12 Cancel All Type Ahead

Data Passed

Bytes

1

2

3

Meaning

CHR$(l1%), the cancel type ahead code.

CHR$(N%), where N% is the number (between 0 and 12) of the channel on
which the system executes the call. If you do not specifY this byte, the call uses
channelO.

CHR$(K%), where K% is the number (between 0 and 127) of the keyboard
assigned but not open by the job. This follows the multiterminal service rule.
The keyboard is the slave terminal under control of a master terminal open on
the channel you specifY in byte 2.

If you do not specifY this byte, the keyboard affected is the one open on the
channel you specify in byte 2.

Data Returned

The target string is equivalent to the passed string.

Privileges Required

None.

Discussion

This call clears all unread, pending input from a terminal's buffers, which cancels
any input typed before a progTam requests it. This call is mainly intended for
echo control operations, where echoing of unsolicited input ruins the appearance
of painted fields. See the section "Echo Control: MODE 8%" in Chapter 4 for the
discussion of controlling echo and declaring a field on a screen to have a special
paint character.

Cancel All Type Ahead, F=11 8-17

The call selects the terminal open on the channel number you pass in byte 2.
(The terminal must be open on that channel.) If you use a slave terminal, byte 2
must be a nonzero channel number on which the master terminal is open; byte 3
must contain the keyboard number of the slave terminal.

8.1.13 Return Information on last Opened File or Device

Data Passed

Byte Meaning

1 CHR$(12%), the return information about the last opened file or device code.

Data Returned

Bytes

1

2

3

4

5-6+

7-10+

11-12+

13-14+

15-16+

17-18+

19-20

21+

22+

23-24+

25+

26

27-30

Meaning

The current job number times 2.

Internal coding.

The channel number (times two) on which the file or device was opened.

The most significant bits ofthe file size (MSB size). Ifthe call returns a nonzero
number, it indicates a file whose size is greater than 65535 blocks. If the call is
to a pseudo keyboard, this byte contains the actual keyboard number associated
with the device.

Project-programmer number.

File name in Radix-50 format.

File type in Radix-50 format.

The least significant bits (LSB) ofthe file size (in blocks).

The default buffer size (in bytes).

The OPEN MODE value.

Status (the same information returned by the BASIC-PLUS STATUS variable).

File cluster size (MOD 256).

Protection code of the file opened.

The physical device name, in ASCII format.

The device's unit number (a real number).

Bit :flags that specify whether the device is part of the public structure. See
Discussion.

Internal coding.

Privileges Required

None.

Discussion

When you execute a compiled program under the BASIC-PLUS run-time system
(by a RUN command, a CHAIN statement, or a CCL command that executes a
.BAS or .BAC file), BASIC-PLUS saves several pieces of information about the
program, including its file specification and job number.

When the file is opened, BASIC-PLUS saves the information in file name string
scan format (identified by the + in the Data Returned). BASIC-PLUS keeps this
information until another file is opened, at which time it updates the information.
This SYS call allows you to obtain the information that BASIC-PLUS saves. See
the section "File Name String Scan Format" for more information.

8-18 Return Information on last Opened File/Device, F=12

For a file-structured OPEN, byte 26 of the returned string contains the following
information in bits 1 and 0 (the other bits are meaningless):

Bit 0 = 0

Bit 0 = 1

Bit 1 = 0

Bit 1 = 1

The device is in the public structure.

The device is a private disk.

A specific device was not specified.

A specific device was specified.

These bits are meaningless for a non-file-structured OPEN.

Examples

The following two examples illustrate the Return Information on Last Opened
File SYS call:

• DB3: is a public disk. If the file SY:FOO was last opened and the file is on
DB3:, bytes 23-25 contain DB3. However, the program can examine byte 26
(using the AND operator) to determine that:

Byte 26 AND 1 = 0

Byte 26 AND 2 = 0

The device is part of the public structure.

The public structure was specified.

Therefore the correct device designator is SY:.

• DB3: is the public disk. Using DB3:FOO as last opened file, the correct device
designator would be DB3: since:

Byte 26 AND 1 = 0

Byte 26 AND 2 = 2

The device is part of the public structure.

The device has a specific unit number - in byte 29.

Note that this call returns information about the file last opened, no matter how
it was opened. For example, suppose the call is made after you type:

OLDPROG
RUN

The last file opened is a BASIC-PLUS work file, not the program PROG.BAS.

8.1.14 Execute CCl Command

Data Passed

Bytes

1

2-128

Meaning

CHR$(14%), the execute a CCL command code.

The string to be executed.

Data Returned

The target string is equivalent to the passed string.

Privileges Required

None

GREAD
WREAD

The protection code grants you execute access

Execute any program within the group

Execute any program

Execute CCl Command, F=14 8-19

Possible Errors

Meaning

?UNE TOO LONG

The string you passed is too long to be executed as a eeL com
mand. Note that the monitor expands eeL abbreviations to their
full syntax.

?ILLEGAL NUMBER

You used a nonnumeric value as an argument in one of the eeL
switches. For example, a /SIZE:A switch specification can cause
this error.

?ILLEGAL SWITCH USAGE

You specified an illegal switch for the eeL command. For exam
ple, requesting a size that is larger than the system's SWAP MAX
can cause this error.

Discussion

ERR Value

47

52

67

This call causes the monitor to scan the string in bytes 2-128 to determine if
it is a valid CCL command. If the string is valid, the call removes the current
program from memory and executes the CCL command as though it had been
typed directly to a keyboard monitor. Note that this call has the same effect on
your current program as a CHAIN statement: both cause your current program
to be terminated and removed from memory.

If the string is not valid because of one of the previously described error condi
tions, the program terminates (unless an error handling routine is in effect). If
the string is valid but no such CCL command is defined, the monitor returns
control to the caller (with no error) at the next program statement.

Other errors can be detected after the call removes the current program and
the system attempts to execute the CCL command (see the RSTS / E System
Directives Manual).

8.2 System Function Calls to FIP, F=6

The SYS call whose function code is 6 is a specialized case of the general system
function call. SYS call 6 contains a subfunction code called the FIP code. The FIP
code causes a dispatch call to be made to special resident or nonresident code that
performs file processing. The entire class of subfunctions of SYS call 6 are called
FIP calls. Because programmers generally use FIP calls much more frequently
than the SYS calls, the FIP calls are also commonly referred to as SYS calls. This
chapter also uses SYS call as the preferred term.

The format of the call is:

V$ = SYS(CHR$(6%) + CHR$(FO%) + 0$)

where:

V$ is the data (target) string returned by the call.

FO% is the FIP subfunction code.

0$ is the optional (by function) parameter string.

8-20 System Function Calls to FIP, F=6

The general format of the target variable (V$) is:

Bytes

1

Meaning

Job number times 2.

2

3-30

Value of internal function called (normally meaningless to general users).

Data returned.

NOTE

Except for the Message SendlReceive calls (SYS 22), the call always
returns 30 bytes. Unused bytes are not defined. Digital reserves the
right to change the values returned in these bytes at any time.

The proper use of the FIP system function call requires that you build a
parameter string to pass and that you later extract the data from the returned
string, called the target string. Each can returns a string of 30 bytes. Only some
bytes contain useful information for the call. The descriptions of the FIP codes
specify the contents of each useful byte in the string. Use these descriptions to
determine whether you need the information.

8.2.1 Building a Parameter String

Some SYS calls require no parameters except the function and subfunction codes;
other SYS calls require either variable length parameter strings or very simple
parameter strings. For such SYS calls, it is usually more convenient to set up and
execute the function call in a single statement. The following sample statements
show the procedure:

A$ = SYS(CHR$(6%) + CHR$(-7%»
!ENABLE CTRLC TRAP
! (NO PARAMETER STRING)

A$ SYS(CHR$(6%) + CHR$(-lO%) + "DKO:FILE.TYP")
!FILE NAME STRING SCAN
! (VARIABLE LENGTH
!PARAMETER STRING)

A$ SYS(CHR$(6%) + CHR$(-8%) + CHR$(l%»
!FCB/DDB INFORMATION
!FOR FILE OPEN ON
!CHANNEL 1
! (SIMPLE PARAMETER
! STRING)

Many SYS calls require more complex data formats. For example, the Kill A Job
SYS call, (SYS 8), requires byte 3 to be the job number to kill, byte 27 to be 0, and
byte 28 to be 255. To build the complex parameter string to pass to a function,
Digital recommends that you dimension a 30-element integer array and set the
items in the array to values that map into those required in the parameter string
format. You can then convert the array to a character string by the CHANGE
statement before passing it as the parameter string of the SYS system function
call. The resulting character string is in the proper format and contains the
correct byte values to be placed as the parameter string of the SYS call.

System Function Calls to FIP, F",6 8-21

For example:

10 DIM A%(30%)
\J% = 4%
\A%(I%) 0% FOR I%
\A%(O%) 30%
\A%(1%) = 6%
\A%(2%) = 8%
\A%(3%) = J%
\A%(27%) = 0%
\A%(28%) = 255%

0% TO 30%

Following the code that builds the list is the CHANGE statement and the call
itself:

100 CHANGE A% TO A$

200 B$ SYS(A$)

!GENERATES CHARACTER
!STRING FROM THE
!INTEGER LIST

!INVOKE SYSTEM FUNCTION CALL

In the SYS call descriptions, certain parts of parameter strings are documented
as "Reserved; should be 0." You should fill these bytes with NUL characters
(ASCII code 0). You can use the STRING$(n,O%) function (where n is the number
of NUL characters needed) to generate a string of proper length or place 0%
in the appropriate array elements. By placing 0% in these bytes you will be
sure that your code is upward compatible if future releases of RSTSIE use these
currently unused bytes. If not, your code may produce unpredictable results with
future releases of RSTSIE.

8.2.2 Unpacking the Returned Data

In the example shown in the previous section, the action performed (kill a job),
rather than the data returned, is the objective of the call. However, many SYS
calls return a data string that is your primary objective. In such a case, you must
unpack the data in the string.

When you build the parameter string, Digital recommends two ways to unpack
the returned string:

Method 1:

If you need only a few pieces of data, it may be more convenient to operate
directly on the returned string. For example, if you want only the 4-byte
Radix-50 representation of a 6-byte string, you can use the File Name String
Scan SYS call (SYS -10):

A$ = MID(SYS(CHR$(6%) + CHR$(-10%) + S$), 7%, 4%)

The MID function extracts bytes 7 through 10 of the returned string. To extract
numeric data, you can use the ASCII or CVT$% functions. See the BASIC-PLUS
Language Manual for more information.

Method 2:

If you need many pieces of the returned data, or if you need to use the string
returned by the SYS can to set up another SYS call, you can transform the
returned string to a 30-element integer array using a CHANGE statement. For
example:

CHANGE A$ TO A %

CHANGE SYS(. ..) TO A%

8-22 System Function Calls to FIP, F=6

When you convert the returned string in this manner, you need to do further
conversions to get numeric data into a usable form. Consider, for example, the
data returned by a the Directory Lookup On Index call (SYS 15). The layout
of the data returned specifies that bytes 11 and 12 are the file type encoded in
Radix-50 format. 'lb convert those bytes into an ASCII string (for example, to
open the file), you must convert the two bytes to a single integer and then use the
BASIC-PLUS RAD$ function. However, the integer representation of each byte
occupies a full word; 16 bits in length.

Figure 8-1 shows array elements 11 and 12.

Figure 8-1: Integer Representation of Changed Characters

15

A%(11)

15

A%(12)

7 o

o BYTE 11

7 o

o BYTE 12

A%(l1) contains the low byte portion of the Radix-50 word; A%(12) contains the
high byte portion of the Radix-50 word. You must combine the two bytes into a
single word and convert them to the proper character string representation:

S$ = RAD$(A%(l1) + SWAP%(A%(12)))

Figure 8-2 shows that the SWAP% function reverses the bytes (the low byte takes
the high byte position and vice versa) in an integer word.

Figure 8-2: Reversal of Bytes by SWAP%() Function

15 7

o

o 15 7 o

BYTE 12 1-----lI~SWAP% (A%(12)) BYTE 12 o

Thus, byte 12 takes the high byte position in the word. The + operator then
combines the two words to form one word. The RAD$ function performs the
conversion on that one integer word to produce the three-character string rep
resentation of the file type. See the BASIC-PLUS Language Manual for a more
detailed description of the SWAP% function and its use with the CVT functions.

The character string is assigned to the character variable S$ and is in ASCII
format.

System Function Calls to FIP, F=6 8-23

To convert a longer string from Radix-50 to ASCII format, you must use this
procedure on each pair of bytes in the string. For example, SYS call 15 returns
the file name in bytes 7 through 10. To convert these bytes to ASCII format, use
the following routine:

A$= RAD$(A%(7%) + SWAP%(A%(8%»)
B$ = RAD$(A%(9%) + SWAP%(A%(10%»)
F$ =A$ + B$

You can also use the statement:

F$ = RAD$(A%(7%) + SWAP%(A%(8%») + RAD$(A%(9%) + SWAP%(A%(10%»)

8.2.3 Notation and References Used in SYS Call Descriptions

This section describes conventions used in the SYS call descriptions. It also
provides programming hints for working with SYS calls. Because programmers
commonly refer to the FIP calls as SYS calls, the term SYS call is used in the
individual description of each call.

8.2.3.1 Project-Programmer Number

Many SYS calls require that you specify a project-programmer number (PPN) in
the calling string, and several return a PPN. In these cases, the PPN field is in
the general form:

Bytes X and (X+l) PPN

where:

Byte X

Byte (X+l)

holds the programmer number

holds the project number

For example, to set up a SYS call to zero an account on a disk . (SYS 13), the
calling format shows:

Bytes 5-6 Project-programmer number

If the call is to be set up in a 30-element array A%, then the format requires that:

A%(5%) = programmer number

A%(6%) = project number

8.2.3.2 Integer (2-Byte) Numbers

Many of the SYS calls described in this chapter return or require integer data in
two consecutive bytes of the returned data string. In this case, the field in the
returned string is described in the format:

Bytes X and (X+l) integer value

If you are processing the returned string directly (that is, without changing it to
an integer array), then you can obtain the integer value of the two bytes with the
statement:

1% = SWAP%(CVT$%(MID(A$,X,2%»)

where A$ holds the returned string. See the BASIC-PLUS Language Manual for
a discussion of the SWAP% function with the CVT functions.

8-24 System Function Calls to FIP, F=6

If you convert the returned data string to an integer array A% using the
CHANGE statement, then you can obtain the integer value with the statement:

1% = A%(X) + SWAP%(A%(X+l %»

For example, the Get Monitor Tables - Part I SYS call (SYS -3) returns the
address of the monitor's job table in bytes 11 and 12. If A$ holds the returned
string, then either of the following two routines puts the address of the job table
into the integer variable 1%:

1% = SWAP%(CVT$%(MID(A$,l1 %,2%»)

CHANGE A$ TO A%
1% = A%(l1 %) + SWAP%(A%(12%»

8.2.3.3 Unsigned Integer (2-Byte) Numbers

In some integer fields in the FIP calls, the value is a full 16-bit unsigned integer
between 0 and 65535. The sign bit indicates an extra power of two rather than
positive or negative. Because an integer value in BASIC-PLUS is between -32768
and +32767, any value greater than 32767 must be stored as a floating-point
value. Assume that in some SYS call, the call returns an unsigned integer in
bytes 5 and 6 and that the returned string has been changed to an array, A%.
As always, the high byte of the integer is in byte 6, the low byte in byte 5. The
following statement places the full 16-bit value into the floating-point variable Q:

Q = 256.*A%(6%) + A%(5%)

where Q is always positive. Note that replacing the 256.* in the statement
with SWAP%() causes the expression to be first evaluated as a normal integer
expression and then changed to a floating-point value. This operation is not
desirable because the resulting value is between -32768 and +32767. The 256.*
forces the expression to be evaluated as a floating-point number.

Converting an unsigned integer to two bytes to pass to a SYS call also requires
special processing. Assume that Q holds the unsigned value and that the value
is to be placed in A%(5%) (low order) and A%(6%) (high order). The most direct
method of transformation is:

A%(6%) = Ql256.

A%(5%) = Q-A%(6%)*256.

On PDP-ll computers without floating-point hardware (FIS or FPP), division
operations are relatively slow. On these machines, a faster method is the routine:

10 Q% = Q - 32768.
\ Q% = Q% EQV 32767%
\ A%(5%) = Q% AND 255%
\ A%(6%) = SWAP% (Q%) AND 255%

However, this second method requires more code.

System Function Calls to FIP, F=6 8-25

8.2.3.4 Negative Byte Values

Many FIP calls pass and return integer values in one byte of the data string.
Some call descriptions refer to negative byte values.

While negative byte values are meaningful to MACRO programmers, BASIC
PLUS treats all byte values as positive. Where the term "negative" byte value is
used, it refers to an integer value between 128% and 255%. To obtain the actual
signed value, use the following statement:

S% = SWAP%(B%)/256%

where B% is the byte to convert.

8.2.3.5 File Name String Scan Format

The File Name String Scan SYS call (SYS -10) is useful as a "front-end" for many
SYS functions. Most of the SYS calls that require device or file information in
their parameter strings expect information in the format in which the SYS -10
call returns it. For example, SYS call 17, Disk Directory Look Up On File Name,
expects its calling string to be passed in exactly the same format as that returned
by the SYS -10 call, with a change of only four data bytes. The following routine
sets up and executes the look up call on the file DKO:[10,20]INVENT.DAT, using
the File Name String Scan SYS call:

10 DIM A%(30%)
\A$="DKO: [10, 20] INVENT.DAT"
\CHANGE SYS(CHR$(6%)+CHR$(-10%)+A$) TO A%
\A%(0%)=30%
\A%(I%)=6%
\A%(2%)=17%
\A%(3%),A%(4%)=0%
\CHANGE A% TO A$
\CHANGE SYS(A$) TO A%

32767 END

Many calls require a file name, password, pack identification label or other six
character string to be passed as two words in Radix-50 format. The File Name
String Scan call is the only means provided to convert the string to the proper
format. The section "File Name String Scan" (SYS=-10, SYS=-23) describes how
this conversion is done.

NOTE

The SYS call descriptions that follow use a special convention to avoid
repetition. A plus sign (+) postscript identifies fields in the calls that
are either passed or returned in the same format as that returned
by SYS call -10, File Name String Scan. See the section "File Name
String Scan" (SYS=-10, SYS=-23) for a detailed description of the fields
returned by File Name String Scan.

See Table 8-3 in the beginning of this chapter for a quick reference
index of the SYS functions ordered by FIP code (FO). See Table 8-4 for
a quick reference index of the SYS functions arranged alphabetically by
function name.

8-26 System Function Calls to FIP, F=6

8.2.3.6 MACRO Mnemonic Cross-References

The RSTS / E System Directives Manual describes monitor directives for MACRO
programmers. Many directives correspond to the SYS calls described in the
following sections. In each section that follows, the SYS call number (FO =)
appears in bold type at the top of the page. The corresponding MACRO directive
appears in parenthesis below it. For a summary of SYS call codes and their
corresponding monitor directives, see Table F-l. For information on the use of
MACRO directives, see the RSTS / E System Directives Manual.

8.3 Organization of This Section

The system function calls to FIP are listed by number, from the most negative to
the most positive. There are three exceptions to this sequence:

• File Name String Scan (FO=-10, FO=-23). Because this call is used as a "front
end" for many calls, it is described first.

• Directory Lookup Calls (FO=15, FO=17). Because these calls are related, SYS
17 is right after SYS 15.

.. Message SendlReceive (FO=22). See Chapters 8 and 9 for a description of this
call.

The PEEK function is described at the end of this chapter.

8.3.1 File Name String Scan

Data Passed

Bytes

1

2

3-?

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(-10), the file name string scan code. CHR$(-23) is the same as CHR$(-10)
except that the scan tenninates on certain characters. See Discussion.

Character string to scan; can be any length.

Data Returned

Sets the STATUS variable and returns the following:

Bytes

1

2

3-4

5-6

7-10

11-12

13-14

15-16

Meaning

The current job number times 2.

The Most Significant Bits (MSB) of the file size as specified in the
IFILESIZE:n (or /SIZE:n) file specification switch. If the call returns a
nonzero number, it indicates a file whose size is greater than 65535 blocks.

Internal coding.

Project-programmer number (PPN). 0 means the current account. See the
Discussion for infonnation about translation of special characters.

File name in Radix-50 fonnat. See Discussion.

File type in Radix-50 fonnat. See Discussion.

The number of blocks specified in the IFILESIZE:n (or /SIZE:n) file specifica
tion switch; for files that are larger than 65535 blocks, the Least Significant
Bits (LSB) of the file size.

The file cluster size given in the /CLUSTERSIZE:n file specification switch.

File Name String Scan, FO=-10 FO=-23 (.FSS) 8-27

17-18

19-20

21

22

23-24

25

26

27-28

29-30

The value for MODE, if specified in the /MODE:n (or /RONLY) file spec
ification switch, with the sign bit set; 0 if /MODE or /RONLY were not
specified.

The value for file pmlit.ion in the IPOSITION:n switch, where n represent.s
the device cluster number at which the first. block of the file is placed.

If no protection code is found, this byte is 0 unless a job default protection
is currently assigned. If a protection code is found or if no protection code is
found when a job default protection is currently set, this byte is nonzero and
byte 22 contains the protection code.

Protection code when byte 21 is nonzero.

To determine what is returned for a device, flag word 2 must be checked. If
no colon was found in the string, these two bytes and byte 25 and 26 are o.
If a colon was found, a device name mayor may not have been found.

A device name can be a physical device name or a logical device name.
If a physical device name was found, these bytes contain two characters
in ASCII format. (For example, DK yields D in byte 23 and K in byte
24.) Bytes 25 and 26 contain unit number information. If a logical name
(either job-specific or system-wide) was found and that logical name was
translatable (the name was currently assigned to a physical device), the
call translates the name and returns the full physical device information
in bytes 23 through 26. If the logical device name was untranslatable, the
call returns the logical name in Radix-50 format in bytes 23 through 26.
For logical names longer than 6 characters, the call returns only the first
6 characters. The monitor does not translate the logical device name if the
name is not currently assigned to a physical device or if the first character
of the logical name string is an underscore (for example, OPEN "_KB:").

Note that, if a physical device name is passed to this call and the device
is not configured on the system, the name is treated as an untranslatable
logical name.

If a physical device name is returned in bytes 23 and 24, this byte contains
unit number information. The unit number here is real if byte 26 is 255.

If this byte is 0, no explicit unit number was found for the device. If this
byte is 255, the value in byte 25 is the explicitly specified device unit
number. The 255 value here indicates that a zero in byte 25 is explicitly
unit 0 of the device.

First flag word. See Discussion.

Second flag word. See Discussion.

Privileges Required

None.

Possible Errors

Meaning

?ILLEGAL FILE NAME

The character string scanned contains unacceptable characters.
See the RSTS IE System User's Guide for a description of a file
specification. If you are using the -10 version of the call, the
string may contain other than a valid file specification switch.

?ILLEGAL NUMBER

The argument on a file specification switch is missing or contains
an illegal character.

8-28 File Name String Scan, FO=-10 FO=-23 (.FSS)

ERR Value

2

52

Meaning

?ILLEGAL SWITCH USAGE

A file specification switch in the string scanned is not the last
element in the file specification, is missing a colon, or is not a
valid form of the switch.

Discussion

ERR Value

67

The file name string scan function determines specific file syntax information
(for example, whether a given file name is valid) and returns information in the
format required for all other file- and device-related SYS calls. The can also
processes the allowable RSTSIE file specification switches. See the RSTS / E
System User's Guide for a description of the format of these switches.

NOTE

This can is the only means provided to pack a string in Radix-50
format.

The can does the following for each component of a file specification:

o For a device specification, the call processes physical device names and
unit number information. If you pass a logical name, the call attempts to
translate it to a physical name. Note that if the logical name string contains
an underscore as the first character, the call does not translate the logical
name. The STATUS variable is set for the device type found in the string
scanned.

• For a project-programmer specification, the call validates the format. If you
pass a character denoting an account, the call translates it to the proper
numbers. For example, if $ is assigned to the system library account, [1,2],
$ is returned as 2 in byte 5 and 1 in byte 6. Besides the $, the call also
translates the characters !, %, &, # and @ if they are assigned to accounts and
indicates whether the wildcard character was found.

NOTE

Special PPN characters other than the dollar sign ($) may not be
available in future releases of RSTSIE.

• For a file name, the can validates the format and translates the name into
Radix-50 format. It also notes the presence of wildcard characters.

• For a file type, the call validates the format and translates it into Radix-50
format. The call also notes the presence of wildcard characters.

• For a protection code, the can validates the format of the numbers. If a
protection code is not found, the call returns the assigned value or, if an
assignable code is not current, returns zero.

" For file specification switches, the call validates the placement of the switches
in the string and the format of each switch found. It notes the presence of
those switches found and returns switch arguments.

The following example shows how to convert a string to Radix-50 format with a
user-defined function and the file name string scan SYS can:

10 DEF FNPO$(A$) = MID (SYS(CHR$(6%)+CHR$(-10%)+A$),7%,4%)&
\ ! PACK 6 CHARACTERS TO RADIX-50

File Name String Scan, FO=-10 FO=-23 (.FSS) 8-29

The function FNPO$ returns a four-character string that is the Radix-50 repre
sentation of the first six characters of A$. (Note that the function does not include
error handling and that errors can occur.) The File Name String Scan SYS call
is the only function that packs a string in Radix-50 format. To pack strings
longer than six characters, you must make multiple calls to the SYS function.
You can pack up to nine characters in a single call if a period separates the first
six characters from the last three characters (the file name and type format).

The two words in bytes 27 and 28 and in bytes 29 and 30 hold easily accessible
flags indicating exactly what fields in the source string were found and what kind
of information they contained. For the purposes of the discussion, it is assumed
that the returned string was converted by a CHANGE statement to an integer
array, M%(30%). The flag words are then created by doing the proper arithmetic
operations on the bytes, as shown:

flag word 1:
flag word 2:

SO% = M%(27%)+SWAP%(M%(28%))
Sl% = M%(29%)+SWAP%(M%(30%))

Once you create these two words, the information in them is accessible by means
of an AND operation between the word and the bit relating to a particular piece
of information. Each bit of the PDP-ll word holds a YES or NO answer; see
Tables 8-5 and 8-6 for details.

Flag word 1 indicates whether file specification switches were detected in the
string passed. Flag word 2 contains information about elements found in the
file specification. The high byte of flag word 1 is retained for compatibility with
previous versions of RSTSIE.

Tables 8-5 and 8-6 assume that bytes 27 and 28 have been put into SO% and
bytes 29 and 30 have been put into Sl %, as described in the previous example.

Table 8-5: File Name String Scan Flag Word 1

Flag word 1: where 80% = M%(27%)+8WAP%(M%(28%»

Bit

o

1

2

3

Comparison

(SO% AND 1%)<>0%

(SO% AND 1%) = 0%

(SO% AND 2%)<>0%

(SO% AND 2%) = 0%

(SO% AND 4%)<>0%

(SO% AND 4%) = 0%

(SO% AND 8%)<>0%

(SO% AND 8%) = 0%

4-7 Reserved.

8

9

10

(SO% AND 256%)<>0%

(SO% AND 256%) = 0%

(SO% AND 512%)<>0%

(SO% AND 512%) = 0%

(SO% AND 1024%)<>0%

Meaning

The /CLUSTERSIZE:n switch was specified.

No /CLUSTERSIZE:n was found.

Either the IMODE:n or IRONLY switch was specified.

Neither IMODE:n nor IRONLY was found.

Either the IFILESIZE:n or /SIZE:n switch was specified.

Neither the IFILESIZE:n nor /SIZE:n switch was found.

The IPOSITION:n switch was specified.

No IPOSITION:n switch was found.

A file name was found in the source string (and is returned in
Radix-50 format in bytes 7 through 10).

No file name was found.

A period (.) was found in source string.

No period was found in source string implying that no file type was
specified.

A project-programmer number (PPN) was found in source string.

(continued on next page)

8-30 File Name String Scan, FO=-10 FO=-23 (.FSS)

Table 8-5 (Cont.): File Name String Scan Flag Word 1

Bit

11

12

13

15

Flag word 1: where 80% = M%(27%)+8WAP%(M%(28%»

Comparison

(80% AND 1024%) = 0%

(80% AND 2048%)<>0%

(80% AND 2048%) = 0%

(80% AND 4096%)<>0%

(80% AND 4096%) = 0%

(80% AND 8192%)<>0%

(80% AND 8192%) = 0%

80%<0%

Meaning

No PPN was found.

A left angle bracket «) or IPR was found in source string, implying
that a protection code was found.

No left angle bracket «) or IPR was found (no protection was
specified).

A colon (but not necessarily a device name) was found.

No colon was found, implying that no device could have been speci
fied.

Device name was specified and was a logical device name.

Device name (if specified) was an absolute (nonlogical) device name.
(If device name was not specified, this is 0.)

80urce string contained wildcard characters (either? or * or both)
in file name, file type or PPN fields. In addition, the device name
specified, though a valid logical device name, does not correspond to
any of the logical device assignments currently in effect or contains
an underscore as the first character. You must test bits of flag word
2 for wildcard characters and device name found.

Table 8-6: File Name String Scan Flag Word 2

Bit

o

1

2

3

4

5

6

7

Flag word 2: where 81% = M%(29%)+SWAP%(M%(30%»

Comparison

(81% AND 1%)<>0%

(81% AND 1%) = 0%

(81% AND 2%)<>0%

(81% AND 2%) = 0%

(81% AND 4%)<>0%

(81% AND 4%) = 0%

(81% AND 8%)<>0%

(81% AND 8%) = 0%

(81% AND 16%)<>0%

(81% AND 16%) = 0%

(81% AND 32%)<>0%

(81% AND 32%) = 0%

(81% AND 64%)<>0%

(81% AND 64%) = 0%

(81% AND 128%)<>0%

Meaning

File name was found in the source string.

No file name was found. The next two comparisons return O.

File name was an asterisk (*) character and is returned in bytes 7
through 10 as the Radix-50 representation ofthe string "??????".

File name was not an * character.

File name contained at least one question mark (?) character.

File name did not contain any? characters.

A period (.) was found.

No period was found, implying that no file type was specified. The
following three comparisons return O.

A file type was found (that is, the field after the period was not null).

No file type was found. (The field after the period was null-the next
two comparisons return 0.)

File type was an * character and is returned in bytes 11 and 12 as
the Radix-50 representation of the string "???".

File type was not an * character.

File type contained at least one? character.

File type did not contain any? characters.

A PPN number was found.

(continued on next page)

File Name String Scan, FO=-10 FO=-23 (.FSS) 8-31

Table 8-6 (Cont.): File Name String Scan Flag Word 2

Bit

10

11

12

13

14

15

Flag word 2: where SI % = M%(29%)+SWAP%(M%(30%»

Comparison

(SI% AND 128%) = 0%

(81% AND 256%)<>0%

(81% AND 256%) = 0%

(81% AND 512%)<>0%

(81% AND 512%) = 0%

(81% AND 1024%)<>0%

(81% AND 1024%) = 0%

(81% AND 2048%)<>0%

(81% AND 2048%) = 0%

(81% AND 4096%)<>0%

(SI% AND 4096%) = 0%

(81% AND 8192%)<>0%

(81% AND 8192%) = 0%

(81% AND 16384%)<>0

(81% AND 16384%) = 0%

81% < 0%

81% >= 0%

Meaning

No PPN was found. (The next two comparisons return 0.)

Project number was an * character (that is, the PPN was of the form
[* ,PROG]) and is returned in byte 6 as 255.

Project number was not an * character.

Programmer number was an * character (that is, the PPN was of the
form [PROJ, *]) and is returned in byte 5 as 255.

Programmer number was not an * character.

A protection code was found.

No protection code was found.

The protection code currently set as default by the current job was
used.

The assignable protection code was not used.

A colon (:), but not necessarily a device name, was found in the
source string.

No colon was found (no device could have been specified); the
following three comparisons return o.
A device name was found.

No device name was found; the following two comparisons return o.
Device name specified was a logical device name.

Device name specified was an actual device name; the following
comparison returns o.
The logical device name specified was invalid for one of the following
reasons:

• The device name contained an underscore (J but did not corre
spond to any physical device on the system.

• The device name did not contain an underscore but could not be
translated to a physical device name.

The logical name is returned in bytes 23 through 26 as a Radix-50
string.

The device name specified, if any, was either an actual device
name or a logical device name to which a physical device has been
assigned. The physical device name is returned in bytes 23 and 24
and the unit information is returned in bytes 25 and 26.

lNote that if the PPN was of the form [*,*], then both hit 8 and hit 9 of the data byte returned are nonzero values.

Since flag word 2 contains the high order byte of flag word 1 plus some additional
information, it is the more useful of the two words. The following sample program
uses this word and prints out a list of all the bits returned in the word.

8-32 File Name String Scan, FO=-10 FO=-23 (.FSS)

5 DIM M%(30%) ! SET UP AN ARRAY TO RETURN TO
10 PRINT "STRING TO SCAN";
20 INPUT LINE S$
30 S$=CVT$$(S$,-l%) ! GET RID OF GARBAGE BYTES
40 CHANGE SYS(CHR$(6%)+CHR$(-10)+S$) TO M%
50 Sl%=M%(29%)+SWAP%(M%(30%»
100 IF Sl% AND 1% THEN PRINT "FILENAME FOUND"
110 IF Sl% AND 2% THEN PRINT "FILENAME WAS AN ,*,,,
120
130
140
150
160
170
180
190
200

IF Sl% AND 4%
IF Sl% AND 8%

THEN PRINT "FILENAME HAD '?' SIt
THEN PRINT "DOT (.) FOUND"

IF Sl% AND 16%
IF Sl% AND 32%
IF Sl% AND 64%
IF Sl% AND 128%
IF Sl% AND 256%
IF Sl% AND 512%
IF Sl% AND 1024%

THEN PRINT "NON-NULL FILE TYPE FOUND"
THEN PRINT "FILE TYPE WAS ,*,,,
THEN PRINT "FILE TYPE HAD '?'S"
THEN PRINT "PPN FOUND"
THEN PRINT "PROJECT NUMBER WAS ,*,,,
THEN PRINT "PROGRAMMER NUMBER WAS ,*,,,

THEN PRINT "PROTECTION CODE FOUND"
210 IF Sl% AND 2048% THEN PRINT "ASSIGN'D PROTECTION USED"
220 IF Sl% AND 4096% THEN PRINT "COLON (:) FOUND"
230 IF Sl% AND 8192% THEN PRINT "DEVICE NAME FOUND"
240 IF Sl% AND 16384% THEN PRINT "DEVICE NAME WAS LOGICAL"
250 IF Sl%<O% THEN PRINT "DEVICE NAME NOT ASSIGN'D OR UNDERSCORE"
260 IF Sl% AND 4096% THEN

IF Sl%>O% THEN PRINT "'STATUS' HAS BEEN SET"
490 PRINT FOR I%=l% TO 2%
500 GO TO 10
32767 END

The following examples show some of the previous messages:

STRING TO SCAN? ABCDEF.TYP
FILENAME FOUND
DOT (.) FOUND
NON-NULL FILE TYPE FOUND

STRING TO SCAN? SY:FILENM.DEX
FILENAME FOUND
DOT (.) FOUND
NON-NULL FILE TYPE FOUND
COLON (:) FOUND
DEVICE NAME FOUND
'STATUS' HAS BEEN SET

STRING TO SCAN? SY:FILENM.TYP[1,203]
FILENAME FOUND
DOT (.) FOUND
NON-NULL FILE TYPE FOUND
PPNFOUND
COLON (:) FOUND
DEVICE NAME FOUND
'STATUS' HAS BEEN SET

STRING TO SCAN? SY:FILENM.TYP[2,103]IPR:52
FILENAME FOUND
DOT (.) FOUND
NON-NULL FILE TYPE FOUND
PPNFOUND
PROTECTION CODE FOUND
COLON (:) FOUND
DEVICE NAME FOUND
'STATUS' HAS BEEN SET

File Name String Scan, FO=-10 FO=-23 (.FSS) 8-33

STRING TO SCAN? SY:FILENM.TYP[,201]
FILENAME FOUND
DOT (.) FOUND
NON-NULL FILE TYPE FOUND
PPNFOUND
PROJECT NUMBER WAS "
COLON (:) FOUND
DEVICE NAME FOUND
'STATUS' HAS BEEN SET

STRING TO SCAN? SY:A.
FILENAME FOUND
DOT(.) FOUND
NON-NULL FILE TYPE FOUND
FILE TYPE WAS "
COLON (:) FOUND
DEVICE NAME FOUND
'STATUS' HAS BEEN SET

STRING TO SCAN? SY:FILE??TYP
FILENAME FOUND
FILENAME HAD 'TS
DOT (.) FOUND
NON-NULL FILE TYPE FOUND
COLON (:) FOUND
DEVICE NAME FOUND
'STATUS' HAS BEEN SET

STRING TO SCAN? :A
FILENAME FOUND
COLON (:) FOUND
'STATUS' HAS BEEN SET

The STATUS variable is set or not set depending on the presence or absence of a
device in the string scanned. The following three conditions apply:

• When no device name is found in the string; that is, no colon is found, the
STATUS is unpredictable. This condition applies when bit 12 of flag word 2
tests as equal to O.

• When the device name is logical and untranslatable (an actual device is not
assigned or the logical name string begins with an underscore), STATUS is
unpredictable. This condition applies when bits 12, 13, and 14 of flag word 2
test as not equal to 0 and bit 15 tests as on (Sl %<0%).

• When the device name is either an actual device name or is logical and
translatable, STATUS is set for the device. This condition applies when bit 12
tests as not equal to 0 and bit 15 tests as equal to 0 (Sl%>=O%).

Line 260 of the sample program shows the test to determine when STATUS is set
by the call.

The file name string scan call has two versions. Both calls process RSTSIE
file specification switches. The -10 version of the call processes a RSTSIE file
specification only. If other than a valid form of a file specification switch is found,
it generates the error ?Illegal file name (ERR=2). The -23 version of the call
processes a full command line, which can contain multiple file specifications and
switches other than valid forms of the file specification switches. To process a full
command line, the call terminates the scan on certain characters.

8-34 File Name String Scan, FO=-10 FO=-23 (.FSS)

The file name string scan using CHR$C-23%) in place of CHR$C-IO%) tenninates
without error on the following characters:

= Equal sign

/ Slash unless part of a valid file specification switch

Semicolon

Comma unless between brackets or parentheses (indicates PPN) end of string

The scan is done from left to right. If the scan finds a valid file specification
switch, it processed the switch and continues the scan. If the scan finds other
than a file specification switch, the scan tenninates. The program must process
the switch and also check for remaining switches. The scan does not process
any file specification switches following a switch that terminates the scan. The
BASIC-PLUS variable RECOUNT returns the number of unscanned characters.
For example:

S$=SYSCCHR$C6%) + CHR$C-23%) + "SY:[1,4]ABCIPR:40")

This call returns the data as described for CHR$C-IO%) and RECOUNT equals
O. The following call returns the data described for CHR$C-lO%) for the string
"SY:[1,4]ABCIPR:40" and RECOUNT equals 7:

S$ = SYSCCHR$C6%) + CHR$C-23%) + "SY:[1,4]ABCIPR:40,DT:DEF")

The scan terminates on the comma between file specifications. Any other charac
ters generate an error and none of the data is returned.

8.3.2 Get Monitor Tables-Part III

Data Passed

Bytes

1

2

3-30

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(-29%), the get monitor tables - part III code.

Reserved; should be O.

Data Returned

Bytes

1

2

3-4

5-6

7-8

9-10

11-12

13-14

15

16-20

21-22

23-24

Meaning

The current job number times 2.

Not used.

(DDCTBL) - The controller/device table.

(UCTTBL) - The unit/controller table.

(SATEND) - The disk size table.

(UNTLVL) - The disk structure level table.

(MFDPTR) - The MFD pointer table.

(MAGLBL) - The magnetic tape label default table.

The number of jobs currently on the system.

Internal code.

Hardware configuration word. See Discussion.

(UNTERR) - The unit error table.

Get Monitor Tables-Part III, FO=-29 (UU.TB3) 8-35

25-26 (DEVCLU) - The low byte contains the device cluster size. The high byte
contains the CLUFAC table.

27-28 (NULRTS) - The nun run-time system block pointer.

29-30 (DSTPTR) - The memory management unit (MMU) address ofthe disk st.at.istics
table if this monitor is generated with the unsupported disk statistics feature.
Otherwise, O.

Privileges Required

None.

Possible Errors

None.

Discussion

The three Get Monitor Table SYS calls to FIP return to your program either an
address or a data value. The calls are commonly used with the PEEK function
to read various system parameters and tables that give configuration and run
time information. Because it is beyond the scope of this manual to describe
the monitor, this section only briefly describes the information returned by the
monitor table functions. For a description of Get Monitor Tables - Part I, see SYS
can -3. For a description of Get Monitor Tables - Part II, see SYS can -12. The
section "The PEEK Function" describes the use of the PEEK function for certain
convenient programming operations.

In this call, a name in all uppercase letters denotes each item of information de
scribed. This name is the same one used to identify the information in the RSTS
IE assembly listings. If the name is in parentheses, the information returned is
an address of the data described. If the name is not in parentheses, the informa
tion returned is the actual data value. For example, Get Monitor Tables - Part I
returns CNT.KB-1 in byte 3. The value returned is the number of terminal lines
minus 1 configured on the system. However, bytes 11 and 12 return (JOBTBL),
the address of the table of jobs. Use the PEEK function to inspect the address.

NOTE

All information returned by the call described in this section is internal
to RSTSIE and is subject to change at any time.

DDCTBL and UCTTBL (bytes 3-6) are pointers to monitor tables that allow
system programs to translate communications device names from one format to
another. For example, DECnet, which runs on many different Digital systems,
uses a different format for device names than RSTSIE. Thus, programs that
print information about communications devices need these tables. The SYSTAT
system program also uses this call to print its busy devices and disk status
reports.

SATEND (bytes 7-9) is a pointer to a disk size table that the SYSTAT program
uses to compute sizes for its display. 'UNTLVL (bytes 9-10) is a pointer to the
disk structure level table, MFDPTR (bytes 11-12) is a pointer to the MFD pointer
table, and MAGLBL is a pointer to the magnetic tape label table. Byte 15
contains the number of entries in the monitor's job table structure that includes
jobs in any state.

8-36 Get Monitor Tables-Part III, FO=-29 (UU.TB3)

The hardware configuration word (bytes 21-22) contains a bit mask specifying
configuration data. The most useful bit flags are the following:

Value

8%

32%

512%

1024%

8192%

8.3.3 Spooling

Meaning

FIS available. If bit is OFF, FIS is not available.

Q-BUS system. If bit is OFF, UNIBUS system.

FPP available. If bit is OFF, FPP is not available.

CIS available. If bit is OFF, CIS is not available.

System has Instruction and Data (I&D) space. If bit is OFF, system does not
have I&D space.

Data Passed

Bytes

1

2

3-4

5-6+

7-10+

11-12+

13-14

15

16

17-18

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(-28%), the spool request code.

Reserved; should be O.

The PPN of the file to spool. If bytes 5-6 are zero, the call uses the current user
account. The call does not allow wildcards.

The file name (which can include wildcards), in Radix-50 format, of the file to
spool.

The file type (which can include wildcards), in Radix-50 format, of the file to
spool.

The two-character, ASCII spooled device name field to which the file is sent.
Ifbytes 13-14 are zero, LP is used. These bytes may affect whether requests
are channeled to the PrintlBatch Services (PBS) package or the OPSER-based
spooling package. See Discussion.

The unit number of the device name field specified in bytes 13-14.

The unit number real flag of the device specified in bytes 13-14. SpecifY-l
if byte 15 contains an actual unit number. Specify a if bytes 13-14 contain a
generic device name, in which case the monitor issues a request for the default
print or batch queue. See Discussion.

Reserved, must be zero.

Spooling. FO=-28 (UU.SPL) 8-37

19-20

21-22

23-24+

25+

26+

27-30

The flag word to specify whether to route the request to the PrintlBatch
Services (PBS) or the OPSER-based (OPSER) spooling package:
Value Meaning

0% The default. See Discussion.

4096% Network print or batch request. Only meaningful for PBS. See
Discussion.

8192% Always route request to the OPSER-based spooling package

16384% Always route request to the PBS package

You can specify the following values for the PBS package:
Value Meaning

4% Delete the file after spooling; same as DeL PRINT command's
!DELETE qualifier.

32% No header; same as DeL PRINT command's INOFLAG_PAGES
qualifier. This value is ignored for batch requests.

You can specify the following values for the OPSER spooling package:
Value Meaning

1% File is spooled with FORTRAN carriage control; equivalent to QUE
ITYP:FTN option.

2% Restart; equivalent to QUE IRE option.

4% Delete the file after spooling; equivalent to QUE !DE option or DeL
PRINT command's !DELETE qualifier.

8% Binary file; equivalent to QUE IBI option.

16% End; equivalent to QUE lEND option.

32% No header; equivalent to QUE INH option or DeL PRINT command's
INOFLAG_PAGES qualifier.

Reserved; should be O.

The device name where the file to be spooled is located. The device must be a
disk. If bytes 23-24 are zero, SY (the public structure) is used.

The unit number of the device containing the file to be spooled. This byte is
ignored if byte 26 is zero.

The unit number real flag of the device containing the file to be spooled. A
nonzero value indicates a real unit number in byte 25.

Reserved; should be O.

Data Returned

No meaningful data is returned.

Privileges Required

None

GREAD

WREAD

GWRITE

WWRITE

8-38 Spooling, FO=-28 (UU.SPL)

Spool a file if the protection code permits access

Spool a file INODELETE in any account within the group

Spool any file INODELETE

Spool a file !DELETE in any account within the group

Spool any file !DELETE

Possible Errors

Meaning

?NO ROOM FOR USER ON DEVICE

The number of messages pending for the queue is at its declared
maximum. This may be a transient condition; retry the operation.

'lCAN'T FIND FILE OR ACCOUNT

The account specified in bytes 5-6 does not exist on the device
specified, the file name or type specified in bytes 7-12 cannot be
found, or neither PBS nor QUEMAN (OPSER spooler) is installed
as a message receiver.

?NOT A VALID DEVICE

An attempt was made to spool a file to a spooling device that had
a unit number greater than 7, or the file to be spooled is contained
on an invalid device.

?PROTECTION VIOLATION

An attempt was made to queue a file to which the user did not
have read access or queue a compiled file.

1DEVICE HUNG OR WRITE LOCKED

This error is caused by a hardware condition. For example, the
specified disk could not be accessed.

?DISK PACK IS NOT MOUNTED

The specified disk device is not mounted; logically mount the disk
with the MOUNT command (requires MOUNT privilege).

?DISK PACK IS LOCKED OUT

The disk is in a locked state. Execute the call under a sufficiently
privileged account to override this condition.

?DEVICE NOT FILE STRUCTURED

The device specified in bytes 23-24 of the call is not a file
structured device.

?NO BUFFER SPACE AVAILABLE

System buffers are not currently available to store this message.
This may be a transient condition; retry the operation.

Discussion

ERR Value

4

5

6

10

14

21

22

30

32

RSTSIE has two spooling packages: the PrintlBatch Services package (PBS) and
the OPSER-based spooling package (OPSER).

Spooling, FO=-28 (UU.SPL) 8-39

The system sends the request either to PBS or OPSER according to the value you
specify in bytes 19-20. Bits 8192% and 16384%, if set, determine the routing. If
both bits are clear, then the next two rules apply:

• If the spooled device name field in bytes 13-14 is null or LP, then the system
sends the request to PBS if it is running. Otherwise, the system sends the
request to OPSER.

• If the spooled device name field in bytes 13-14 is BA and the filetype is .COM,
then the request is routed to PBS. Otherwise, the system sends the request to
OPSER.

PBS and OPSER interpret the device name field passed in bytes 13-14 and 15
differently.

PBS requests:

Data Call Interpretation
Passed

null Default print queue

LP: Default print queue

LPn: Print queue named LPn:

BA: Default batch queue

BAn: Batch queue named BAn:

If you specify the value 4096% in bytes 13-14, PBS sends print requests to
NET$PRINT and batch requests to NET$BATCH.

OPSER requests:

Data Call Interpretation
Passed

null Print queue LPO:

LP: Print queue LP:

LPn: Print queue LPn:

BA: Batch queue BA:

BAn: Batch queue BAn:

Byte 16 is the unit number real flag. A nonzero value instructs the monitor to
issue the request for the queue with the same name as the device name field. For
this to work properly with the PBS package, the system manager must define
queues named LPO: - LP7:, and BAO: - BA7:.

When the monitor executes this call, it performs the following checks:

1. Ensures that the specified file name is legally formatted.

2. Ensures that the specified device (the device containing the specified file) is a
mounted RSTSIE disk and that the user has access to it.

3. If no wildcards are specified in bytes 7-12, ensures that the specified file exists
and that the user has read access to it.

4. Performs all appropriate send/receive buffer quota checks and ensures that
the spooler is available (not hibernating).

If any of these conditions are not met, the call is aborted and an error is returned
(see Possible Errors).

8-40 Spooling, FO=-28 (UU.SPL)

8.3.4 Snap Shot Dump

Data Passed

Meaning Bytes

1

2

3-30

CHR$(6%), the SYS call to FIP.

CHR$(-27%), the snap shot dump code.

Reserved; should be O.

Data Returned

No meaningful data is returned.

Privileges Required

SYSIO

Possible Errors

Meaning

?CAN'T FIND FILE OR ACCOUNT

The call attempted to write data to the crash dump file, but crash
dump was not enabled at system start-up time because sufficient
space was not available on the system disk.

ERR Value

5

Note that this call also returns device-dependent errors such as ?Device hung or
write locked (ERR=14).

Discussion

This call writes the current monitor image executing in memory and the contents
of the extended buffer pool (XBUF) to the crash dump file [O,l]CRASH.SYS.
XBUF contains monitor data structures, including DECnetJE data structures and
caching information. You can analyze the contents of the CRASH.SYS file with
the ANALYS program (see the RSTS I E System Manager's Guide).

8.3.5 File Utility Functions

Data Passed

Bytes

1

2

3

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(-26%), the file utility code.

CHR$(N%), where N% is the internal channel number (in the range 1 to 12) on
which the file is open.

If N% is 0, specify the target file by PPN and file name and type in bytes 5
through 12.

File Utility Functions, FO=-26 (UU.FIL) 8-41

4 The first flag byte. (Byte 27 is the second flag byte). CHR$(F%), where F%
specifies the file utility function. The function F% is one (or the sum) of the
following codes:

5-6+

7-10+

11-12+

13-16

Value Meaning

1% Set or reset the file's placed bit (cannot be used with code 8%). See
byte 15.

2% Modify code 16% to return 0 as the device cluster number (DCN) if
the file's placed bit is not set.

4% Change the file's backup statistics. Requires DATES privilege if the
date oflast access is changed (bytes 17-18 are nonzero).

8% Change the file's run-time system name field.

16% Return the file's retrieval information. That is, 16% causes the
monitor to map the virtual block number (VBN) of the file into the
disk DCN. You cannot use this with code 8%. You can use this code
to obtain an existing file's DCN in order to place a new file near it.
See Discussion.

32%

64%

128%

Unset the file's contiguous bit. This code allows you to extend a
contiguous file; however, the file is made noncontiguous.

Enable/disable sequential mode caching if the file is cached. You
cannot use this with code 8%. Also see bytes 13-16. (Requires
TUNE privilege.)

Enable/disable data caching on the file. You cannot use this with
code 8%. See byte 15. (Requires TUNE privilege.)

If N% in byte 3 is 0, specify the PPN of the file you want to modify.

If N% is nonzero, these bytes are ignored.

If N% in byte 3 is 0, specify the file name (in Radix-50 format) of the file you
want to modify.

If N% is nonzero, the call ignores these bytes.

If N% in byte 3 is 0, specify the file type (in Radix-50 format) of the file you
want to modify.

If N% is nonzero, the call ignores these bytes.

The specifications in these bytes depend on the function code specified in byte
4:
If byte 4 AND 8%<>0%, then bytes 13 through 16 contain the new run-time
system name field in Radix-50 fonnat.

If byte 4 AND 16%<>0%, then bytes 13 and 14 contain the low order word
of the VBN you want to locate, byte 15 contains 0% or is used by another
operation, and byte 16 contains the high order byte of the VBN you want to
locate.

If byte 4 AND 1%+64%+128%, then bytes 13, 14 and 16 contain zeros or are
used by another operation, byte 15 contains flags for the following operations:

Flag Meaning

2%

4%

8%

32%

64%

128%

New value for the placed bit if byte 4 AND 1%<>0%.

New value for sequential bit if byte 4 AND 64%<>0%.

New value for no backup bit if byte 27 AND 8%<>0%.

New value for no deletelrename bit if byte 27 AND 1%<>0%.

New value for ignore bit if byte 27 AND 64%<>0%.

New value for cached bit if byte 4 AND 128%<>0%.

8-42 File Utility Functions, FO=-26 (UU.FIL)

17-18

19-20

21-22

23-24+

25-26+

27

28-30

If you select the change file backup statistics function in byte 4 (code 4), these
bytes specifY a new date of last access for the file. If you do not want to change
the date, specifY O. If you do not select the statistics function, the call ignores
these bytes.

If you select the change file backup statistics function in byte 4 (code 4), these
bytes specify a new date of creation for the file. If you do not want to change
the date, specifY O. If you do not select the statistics function, the call ignores
these bytes.

If you select the change file backup statistics function in byte 4 (code 4), these
bytes specify a new time of creation for the file. If you do not want to change
the time, specifY O. If you do not select the statistics function, the call ignores
these bytes.

If N% in byte 3 is 0, specifY the name of the device that contains the file you
want to modify. The device must be a disk, and a specification of 0 in bytes 23
and 24 indicates the public disk structure.

If N% is nonzero, the call ignores these bytes.

If N% in byte 3 is 0, specify the unit number and unit number flag associated
with the file you want to modifY.

If N% is nonzero, the call ignores these bytes.

The second flag byte. CHR$(K%), where K% is the sum of the selected func
tions:

Value Meaning

1 % Change the value of the file's no delete/rename bit. See byte 15.
Cannot be used with byte 4, code 8%. (Requires SYSIO privilege.)

2% Do not return the error ?Protection violation if the operation will not
succeed. See Discussion.

4% Change the value of the file's no backup bit. When set, this bit
excludes the data portion of the file from BACKUP operations.

8% Change the value of the file's ignore bit. When set, this bit excludes
the file from BACKUP operations.

16% Ifthe file is opened, use the date oflast access in bytes 17-18 if bit 2
of FIRQB+FQSIZM is set.

Reserved; should be O.

Data Returned

Bytes

1

2

Meaning

Not used.

The file characteristics:

byte 2=2% File is placed.

byte 2=4%

byte 2=8%

byte 2=16%

byte 2=32%

byte 2=64%

byte 2=128%

File will be cached sequentially, if at all.

File has no backup bit set.

File is contiguous.

File has the no delete/rename bit set.

File has ignore bit set.

File will be cached when open.

3-4 If the file's VBN was passed in byte 16 and file retrieval information (code 16)
was requested in byte 4 (see Data Passed), these bytes contain the DON of the
file's VBN. Note that these bytes return 0 if the specified VBN is larger than
the file size or if the file was not placed and function code 2 was not passed in
byte 4.

File Utility Functions, FO=-26 (UU.FIL) 8-43

5-26

27-30

File attribute data; unused words are filled with zeros.

The file's run-time system name in Radix-50 format.

Privileges Required

None

GREAD

WREAD

GWRITE

WWRITE

DATES

TUNE

SYSIO

Read or set file flags, if the protection code permits

Read file flags in any account within the group

Read file flags in any account

Set file flags in any account within the group

Set file flags in any account

Change file last access date

Set or clear file caching bits

Set or clear nodelete/rename bit

Possible Errors

Meaning

1CAN'T FIND FILE OR ACCOUNT

The file or account specified in bytes 5 through 12 is not present
on the disk.

1110 CHANNEL NOT OPEN

The channel specified in byte 3 is not open.

1PROTECTION VIOLATION

The file open on the channel specified in byte 3 is not a disk file,
or the job lacks the privilege required for the specified operation.

?ILLEGAL SYS() USAGE

The file open on the specified channel is not a disk file or is a user
file directory.

Discussion

ERR Value

I)

10

18

This call supplements the functions of the Name Run-time System SYS call (SYS
-17) and the Change File Backup Statistics SYS call (SYS -11). This call provides
support for files larger than 65535 blocks and for file placement. You can also
use this call to obtain a file's run-time system name and attribute data without
opening the file.

This can is heavily used. To improve performance, use the DCL command LOAD
/OVERLAY FILE_UTILITY to move the code for the call into memory. To remove
it from memory, use the DCL command UNLOAD/OVERLAY FILE_UTILITY.

The run-time system name field (see Data Passed, bytes 4 and 27 through 30)
in the accounting entry of the file's User File Directory (UFD) contains file size
information for large files. The call decodes the two-word run-time system name
field as follows:

.. If the first word is nonzero, the data in both words is the run-time system
name. The file size is limited to 65535 blocks.

8-44 File Utility Functions, FO=-26 (UU.FIL)

• If the first word is 0, the low order byte of the second word contains the most
significant bits of the file size. The file size is limited to 2"23-1 blocks. The
high order byte of the second word is reserved and must be O.

The following restrictions apply to large files:

• Because an executable file cannot have both a run-time system name and a
most significant bit indication in the field, large files are not executable.

• You cannot extend a compiled file beyond block 65535. An attempt to extend
a compiled file past block 65535 results in the error ?Protection violation
(ERR=10).

• You cannot rename a file that is larger than 65535 blocks with the intent of
assigning a compiled protection code. The attempt is rejected with no error
and the compiled bit remains off.

• When you extend a file past block 65535, it loses its run-time system name.

• You cannot change the run-time system name of a file that is larger
than 65535 blocks. The attempt results in the error ?Protection violation
(ERR=10).

• You cannot change the run-time system name of a compiled file to two words
of zeros. The attempt results in the error ?Protection violation (ERR=10).
Note that you can perform this operation on a noncompiled file.

• You cannot change the run-time system name of any file to a zero word
followed by a nonzero word.

To place a file in a particular position on the disk, specify the desired disk DCN
(Device Cluster Number) as returned in bytes 3 and 4 of this call in the file
specification /POSITION switch (see the RSTS/E System User's Guide). The
monitor attempts to place the first block of the file at or after the specified DCN.
If the file placement is successful, the placed bit (bit 1, mask value 2) in the
file's UFD entry is set (see SYS calls -10 and -23). If the file placement is not
successful, the first block of the file is placed at the lowest free block on the disk,
the UFD placed bit is not set, and no error is returned.

Note that you can use either this call or SYS call -11, Change File Statistics, to
change data in a file's accounting entry. However, the two calls work differently
when you open a file, write to it, change the date of last access in the file's
accounting entry, and then close the file.

When you use this SYS call to change the date oflast access before closing the
file (by specifying 4% in byte 4 and a new date in bytes 17 and 18), the system
updates the file's accounting entry to contain the current date when it closes the
file. Use SYS call -11 if you want the file's accounting entry to retain the date
specified in the call after the file is closed.

To change the value of the file's no backup bit, pass the new value as the value
8% in byte 15. The contents of the file's no backup bit is returned as the value 8%
in byte 2. This bit sets the file's [NO]BACKUP flag, as does the I[NO]BACKUP
qualifier to the SET FILE command. The default for all files is BACKUP. If
NOBACKUP is set, the file's attributes-name, type, size, and so forth-are
included in the backup operation, but the data portion of the file is not. A
RESTORE operation restores the file to its original size, but its contents are
random. Assign NOBACKUP to highly volatile files.

File Utility Functions, FO=-26 (UU.FIL) 8-45

To change the value of the file's no delete/rename bit, pass the new value as the
value 32% in byte 15. The contents of the file's no delete/rename bit is returned
as the value 32% in byte 2. An attempt to reset the bit in the following files
generates the error ?Protection violation: [0 , I]SATT.SYS, [O,I]BADB.SYS, or
SYO:[O,I]INIT.8YS. For more information about the no delete/rename bit, see
the REFRESH FILE suboption of INIT, in the RSTS / E System Installation and
Update Guide.

To change the value of the file's ignore bit, pass the new value as the value 64% in
byte 15. The contents of the file's ignore bit is returned as the value 64% in byte
2. This bit sets the file's [NO]IGNORE flag, as does the ![NO]IGNORE qualifier
to the SET FILE command. The default for all files is NOIGNORE. If IGNORE is
set, BACKUP ignores the file during a BACKUP operation. You do not need touse
the !EXCLUDE qualifier to exclude the file.

Because you can specify several functions for this call to perform at once, you
can use the value 2% in byte 27 to avoid the error ?Protection violation. This
value instructs the call to disregard any invalid requests while still processing
valid ones. In previous versions of RSTS!E, the can returned the error if any
requested function could not be executed, even if some of the requested functions
were perfectly valid.

8.3.6 Manipulate Attributes

This call has the following subfunctions:

• Read File Attributes

.. Write File Attributes

.. Read Pack Attributes

• Read Account Attributes

co Write Account Attributes

• Delete Account Attributes

Certain PDP-ll record organizations, such as RMS-ll, define characteristics
for files that they create. These characteristics are called file attributes. File
attributes are defined when the file is created and must be retained during the
existence of the file. In RSTS!E, file attributes are kept on disk in a UFD entry.
See the RSTS / E System User's Guide for a description of file attributes.

Account attributes, on the other hand, are divided into "attribute blocks." Each
block is identified by a type code in the range 1 to 255 and contains 13 bytes
of data. The account attribute calls identify the attribute to be accessed using
the type code. Type codes in the range 1 to 127 are reserved for use by Digital.
Type codes in the range 128 to 255 are for customer use. Customer applications
(typically account management related programs) can use these codes for storing
moderate amounts of account-related information. Because excess use of account
attributes decreases the number of possible accounts per group, applications that
need to store a lot of data should use an auxiliary file. Currently, approximately
five additional (user-supplied) account attributes can be used per account without
affecting the 255 account per group limit. Note that this is subject to change
because future releases of RSTS!E may use additional account attributes.

Because these subfunctions deal with internal data structures, any reading or
writing account attributes controlled by Digital may cause problems in future
releases. If you have data that needs to be manipulated or read by a significant
number of programs, use one of the other SYS calls provided.

8-46 Manipulate Attributes, FO=-25 (UU.ATR)

The account attribute calls differ from the file attribute calls by the negative
value passed in byte 3 rather than a channel number of an open file.

8.3.6.1 Read File Attributes

Data Passed

Bytes

1

2

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(-25%), the read/write attributes code.

3

4

CHR$(N%), where N% is the channel number on which the file is open.

CHR$(O%), to specify read.

5-30 Reserved; should be O.

Data Returned

Bytes

1

Meaning

Current job number times 2.

Not used. 2-4

5-26

27-30

File attribute data. If file has no attributes, all bytes contain nulls 1.

Name of run-time system under which file was created, in Radix-50 format.

ITo determine the number of attributes returned, scan backwards from byte 26 (in words) to find the
first word that is not null. Then calculate the number of attributes returned. If all the words are
null, no attributes were returned.

Privileges Required

None.

Possible Errors

Meaning

?IfO CHANNEL NOT OPEN

Channel specified in byte 3 must have file open.

?PROTECTION VIOLATION

Job does not have read access to the file, or the channel is open on
a UFD. (UFDs do not have attributes.)

'lDEVICE NOT FILE STRUCTURED

Device on which file is open must be disk.

?ILLEGAL I/O CHANNEL

Attributes can be accessed only on channels 1 through 15.

ERR Value

9

10

30

46

Manipulate Attributes, FO=-25 (UU.ATR) 8-47

8.3.6.2 Write File Attributes
Data Passed

Bytes

1

2

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(-25%), the read/write attributes code.

3 CHR$(N%), where N% is the channel number on which file is open. (You must
have write access on the open channel.)

4

5-26

27-30

CHR$(N%), where N% is the number of words to write (1<=N<=l1).

The attribute data to write, 2 bytes per attribute.

Reserved; should be o.

Data Returned

None.

Privileges Required

None.

Possible Errors

Meaning

?NO ROOM FOR USER ON DEVICE

The UFD of the account is full. Some files must be deleted to free
entries for attributes.

?I/O CHANNEL NOT OPEN

Channel specified in byte 3 must have file open.

?PROTECTION VIOLATION

Job does not have write access to the file open on channel, or the
channel is open on a UFD. (UFDs do not have attributes.)

?DEVICE NOT FILE STRUCTURED

Device on which file is open must be disk.

?ll.LEGAL BYTE COUNT FOR I/O

No more than 11 can be specified in byte 4.

?ILLEGAL I/O CHANNEL

Attributes can be accessed only on channels 1 through 15.

NOTE

ERR Value

4

9

10

30

31

46

Digital-supplied software depends on file attribute data defined by
the system. User-written software must not write attribute data that
conflicts with system-defined attribute data.

8-48 Manipulate Attributes, FO=-25 (UU.ATR)

8.3.6.3 Read Pack Attributes
Data Passed

Bytes

1

2

3

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(-25%), the read/write attributes code.

CHR$(-4%), the code to read pack attributes.

Reserved; should be O. 4-22

23-26+ The name and unit number of the disk device whose attributes are to be
returned.

27-30 Reserved; should be O.

Data Returned

Bytes

1-6

7-8

9-10

11

12

13-14

15-18

19-20

21

22

23-24

25-26

27-28

29-30

Meaning

Not used.

Starting device cluster number of the MFD.

Pack revision level.

Pack cluster size.

Not used.

Pack status/flags. See the Discussion.

Pack ID, in Radix-50 format.

Size of disk in device cluster numbers.

Device cluster size.

o if disk is not system disk; 1 if disk is system disk.

UNTCNT for the disk.

Reserved for special applications.

Number of free device clusters.

Not used.

Privileges Required

DEVICE Access a restricted disk

Possible Errors

Meaning

?NOT A VALID DEVICE

Device specified is not a valid device.

?DEVICE NOT FILE STRUCTURED

Device specified is not a logically mounted disk.

Discussion

ERR Value

6

30

This call returns information about mounted disks. You can use it to obtain the
characteristics of a disk and the drive on which the disk is mounted.

Manipulate Attributes, FO=-25 (UU.ATR) 8-49

The following are the defined bits returned in the pack statuslHags:

Bit Value Meaning

9 512% Pack is initialized "new files first"

11 2048% Pack is initialized to maintain date of last write

12 4096% Pack is initialized as a read-only pack

14 16384% Pack is initialized as a private/system disk

All other values are reserved.

8.3.6.4 Read Account Attributes

Data Passed

Bytes

1

2

3

4

5-6

7-8

9-22

23-26+

27-30

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(-25%), the read/write attributes code.

CHR$(-I%), the read account attributes subfunction code.

CHR$(N%), where N% is the attribute type code for the account to be accessed.
The following values are the currently defined attribute type codes:
Value Meaning

0% Lookup by index

1% Quotas

2% Authorized privilege mask

3% Password

4% Date/time information

5% Name entry

6% Nondisk quotas

You may also use type codes in the customer-defined range (128-255).

PPN of the account to be accessed.

CHR$(I%)+CHR$(SWAP%(I%», where 1% is the index number of the account to
read. Used only if byte 4 is 0; otherwise, O. An index of 0 returns the account's
accounting data.

Reserved; should be O.

The name and unit number of the disk device where the account resides.

Reserved; should be O.

Data Returned

Bytes

1-6

7-20

21-30

Meaning

Not used.

Account attribute data. The first byte contains the attribute type code, as
passed in byte 4. If byte 4 is 0, the first byte returns the type code of the
attribute found. The remaining 13 bytes contain the actual attribute data. See
the Discussion for a description of the 13 data bytes of attribute codes 1, 2, and
4.

Not used.

8-50 Manipulate Attributes, FO=-25 (UU.ATR)

Privileges Required

None Read attributes 1, 2, and 4-191 in your own account. That is, you can
read all Digital-defined attributes except password as well as t.he first 64
user-defined attributes (128-191).

GACNTor
GREAD

WACNTor
WREAD

Read all attributes in group accounts.

Read all attributes in all accounts.

Possible Errors

The following error messages are possible with the read, write, and delete account
attributes subfunctions of this call.

Meaning

?CAN'T FIND FILE OR ACCOUNT

The account you specified does not exist.

?NOT A VALID DEVICE

The device you specified does not exist.

?PROTECTION VIOLATION

You do not have sufficient privilege to perform the specified
subfunction.

?DISK PACK IS NOT MOUNTED

The disk you specified is not mounted.

?DEVICE NOT FILE STRUCTURED

The device on which the file is open must be a disk.

?END OF FILE ON DEVICE

The attribute you specified was not found. If you specified a
lookup by index, the index is greater than the number of at
tributes.

This error message can only occur with the read account at
tributes subfunction.

Discussion

ERR Value

5

6

10

21

30

11

This call searches for the specified attribute type and returns the data as 7 words,
beginning in byte 7. The first byte is the type code; the remaining 13 bytes are
the actual attribute data.

You can also specify a search by index number by passing a value of 0 in byte
4. This type of search enables programs like BACKUP to read all the account
attributes without trying each of the 255 possible type codes. The program can
issue successive calls, incrementing the index value by 1 each time.

The layouts of the data returned in bytes 7-20 for attribute type codes 1, 2, 4,
and 6 are listed below. The data shown is considered internal information and is
subject to change without notice.

Manipulate Attributes, FO=-25 (UU.ATR) 8-51

Type 1: Quota information

Byte Meaning

7 1, the attribute type code

8 Detached job quota

9-10 Logged-out quota (LSB)

11-12 Logged-in quota (LSB)

13 Logged-in quota (MSB)

14 Logged-out quota (MSB)

15 Reserved

16 Current usage (MSB)

17-18 Reserved

19-20 Current usage (LSB)

Type 2: Authorized privilege mask

Byte

7

8

9-16

17-20

Meaning

2, the attribute type code

Reserved

Authorized privilege mask

Reserved

Type 4: Date/time information

Meaning

4, the attribute type code

Keyboard oflast login (-1 iflast login was detached)

Date of last login, in RSTSIE internal format

Byte

7

8

9-10

11-12 Time of last login, in RSTSIE internal format in bottom 11 bits. Flags in high 5
bits.

Date of last password change 13-14

15-16

17-18

19-20

Time of last password change, in bottom 11 bits. Flags in high 5 bits.

Date of account creation

Expiration date (-1 if no expiration)

Flags in bytes 11-12 are:

2048%

Others

No password is required to log in to this account

Reserved

Flags in bytes 15-16 are:

2048%

4096%

8192%

16384%

32767%+1%

Password cannot be looked up

No dialup logins allowed

No network logins allowed

No interactive logins allowed (spawn and batch only)

Captive account

8-52 Manipulate Attributes, FO=-25 (UU.ATR)

Type 6: Nondisk quotas

Byte

7

8

9-10

11-12

13-20

Meaning

6, the attribute t.ype code

Total job quota

RIB quota

Message quota

Reserved

8.3.6.5 Write Account Attributes
Data Passed

Bytes

1

2

3

4

5-6

7-20

21-22

23-26+

27-30

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(-25%), the read/write attributes code.

CHR$(-2%), the write account attributes subfunction code.

CHR$(N%), where N% is the attribute type code for the account to be accessed.
Values for attribute type codes are:

Value Meaning

0% Accounting Data

1% Quotas

2% Authorized privilege mask

3% Password

4% Date/time information

5% Name entry

6% Nondisk quotas

You may also use type codes in the customer-defined range (128-255).

PPN of the account to be accessed.

The new account attribute data. The first byte contains the attribute type code.
The remaining bytes contain the actual attribute data. See the Discussion for a
description of the 13 data bytes of attribute codes 1, 2, and 4.

Reserved; should be O.

The name and unit number of the disk device where the account resides.

Reserved; should be O.

Data Returned

None.

Privileges Required

GACNT

WACNT

Write attributes for accounts in the group

Write attributes for all accounts

Manipulate Attributes, FO=-25 (UU.ATR) 8-53

Possible Errors

In addition to the general error messages listed in the read account attributes
subfunction, this call returns the following errors:

Meaning ERR Value

?NO ROOM FOR USER ON DEVICE

The attribute block does not exist yet, and it cannot be added
because the directory is full.

?PROTECTION VIOLATION

You do not have sufficient privilege to perform this subfunction, or
the disk you specified is write-locked.

Discussion

4

10

This can searches for the attribute type code you specify in byte 4. If no match is
found, it attempts to allocate a new directory entry to hold the new attribute.
Next, it writes the data passed in bytes 7-20 into the attribute block. See
the Discussion in the previous subfunction, "Read Account Attributes," for a
description of the data passed in bytes 7-20.

This call writes the data exactly as passed, with two exceptions:

.. Authorized privilege mask (attribute type 2}-When writing the mask, the
call ignores any attempt to turn on privilege bits if the caller does not have
the corresponding privilege currently in effect. This applies only to attempts
to change a bit from OFF to ON. Writing a bit as ON is allowed without
checking if it was ON already.

• Date/time information (attribute type 4}-The last login fields are always
left alone unless they are currently null. This ensures that any logins to an
account leave a trace that cannot easily be altered.

8.3.6.6 Delete Account Attributes

Data Passed

Bytes

1

2

3

4

5-6

7-22

23-26+

27-30

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(-25%), the read/write attributes code.

CHR$(-3%), the delete account attributes subfunction code.

CHR$(N%), where N% is the attribute type code for the account to be accessed.
Values for attribute type codes are limited to those in the customer defined
range (128 to 255).

PPN of the account to be accessed.

Reserved; should be O.

The name and unit number of the disk device where the account resides.

Reserved; should be O.

Data Returned

No meaningful data is returned.

8-54 ManipUlate Attributes, FO=-25 (UU.ATR)

Privileges Required

GACNT

WACNT

Delete attributes for accounts in the group

Delete attributes for all accounts

Possible Errors

In addition to the general error messages listed in the read account attributes
subfunction, this call returns the following errors:

Meaning ERR Value

?PROTECTION VIOLATION 10

You do not have sufficient privilege to perform this subfunction; or
the disk you specified is write-locked; or you attempted to delete
attributes in the Digital reserved attribute type range.

?END OF FILE ON DEVICE 11

The attribute you specified was not found.

Discussion

This subfunction deletes an attribute block for a specified account. It searches
for the attribute type specified in byte 4. If found, the attribute block is deleted.
This call applies only to attribute type codes in the customer defined range (128
to 255).

8.3.7 Add/Delete CCl Command

Data Passed

To add a CCL command, specify the bytes described below.

Bytes

1

2

3

4

5-6

7-10

11-12

13-21

22

23-24

25

26

27-28

29-30

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(-24%), the code to add/delete CCL.

CHR$(O%), to add a CeL command.

CHR$(U%), where U% is the number of unique characters in the command.
U% must be between 1 and the length of the command. This defines the
abbreviation point.

PPN under which program to run is stored.

File name, in Radix-50 format, of the program to run.

File type, in Radix-50 format, of the program to run.

CCL command; from 1 to 9 ASCII characters padded with NUL characters.

Must be CHR$(O%).

Name of device on which program to run is stored; must be disk.

Device unit number if byte 26 is 255.

Ifthis byte is 255, the value specified in byte 25 is the explicitly specified unit
number.

Line number at which to start program (add 32767% + 1% to keep privileges).

Reserved; should be O.

Add/Delete CCl Command, FO=-24 (UU.CCl) 8-55

To delete a CCL command, specify the bytes described below.

Bytes

1

2

3

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(-24%), the code to add/delete CCL.

CHR$(-2%) to delete a CCL command.

4 CHR$(U%), where U% is the number of unique characters in the command. U%
must be between 1 and the length of the command and defines its abbreviation
point.

5-12

13-21

22-30

Reserved; should be O.

CCL command to delete.

Reserved; should be O.

Data Returned

No meaningful data is returned.

Privileges Required

INSTAL

Possible Errors

For the add CCL call:

?ILLEGAL FILE NAME

Meaning

The CCL command being added either begins with a number or
contains an otherwise unacceptable character.

?ACCOUNT OR DEVICE IN USE

The CCL command being added is already defined.

For the delete CCL call:

?CANT FIND FILE OR ACCOUNT

The CCL command specified does not exist.

Discussion

ERR Value

3

5

This call adds and deletes CCL commands. Chapter 10 of this manual describes
the operation and design of CCL commands.

The command can be a string from one to nine characters long. The allowed
single-character commands are A through Z, the at sign (@) character, the dollar
sign ($) character, and the number sign (#) character. For commands longer
than one character, the string must begin with a letter, and the remaining
characters can be letters or digits. The command cannot begin with a numeric
character because BASIC-PLUS interprets digits at the beginning of a line as a
line number, not a command.

Commands have an abbreviation point after the first character. The abbrevi
ation point is specified by the value in byte 4. If you specify an abbreviation
point that equals the number of characters in the command, the command can
not be abbreviated. An example of an abbreviated CCL command is DIR (the
abbreviation point follows the R), which uniquely defines the CCL command
DIRECTORY. Any of the following abbreviations are also valid: DIR, DIRE,

8-56 Add/Delete CCl Command, FO=-24 (UU.CCl)

DIREC, DIRECT, DIRECTO, DIRECTOR, and DIRECTORY. If the abbreviation
point for DIRECTORY follows the Y, then no abbreviation is valid.

Because of the way RSTSIE interprets CCL commands, you must make sure
that you define similar commands in the correct order. For example, you must
define MACRO before MAC. See the RSTS / E System Manager's Guide for more
information about defining CCL commands.

8.3.8 Set Special Run Priority

Data Passed

Meaning Bytes

1 CHR$(6%), the SYS call to FIP.

2

3-30

CHR$(-22%), the code to set special run priority.

Reserved; should be O.

Data Returned

No meaningful data is returned.

Privileges Required

TUNE

Possible Errors

None.

Discussion

This SYS call sets the special run priority bit in the job priority word. This action
raises the priority of the job slightly above that of other jobs in its priority class.
The priority bit is cleared whenever the job returns to the job keyboard monitor
or whenever a program chains to another program. Thus, an appropriately
privileged job can raise its priority without protecting against a user typing
Ctrl/C and retaining the higher priority.

8.3.9 Drop/Regain Temporary Privileges

Data Passed

Bytes

1

2

3

4-30

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(-21%), the code to drop temporary privileges.

If you do not specify a value, the call permanently drops temporary privileges.
Otherwise, CHR$(N%), where N% means either of the following:
255% Temporarily drop temporary privileges.

0% Regain temporary privileges dropped by 255% value.

Reserved; should be O.

Data Returned

No meaningful data is returned.

Privileges Required

None.

Drop/Regain Temporary Privileges, FO=-21 (.SET/.CLEAR) 8-57

Possible Errors

None.

Discussion

This call allows a program to selectively use temporary privileges. (See Chapter 1
for a description of temporary privileges.)

This call allows a program to activate temporary privileges for sections of code
where they are needed, but take advantage of built in monitor protections (such
as protection code arbitration) elsewhere. The call does not affect the permanent
privileges of an account.

Good programming practice suggests two general approaches to using and con
trolling temporary privilege. If temporary privilege is required only for some
initial set-up, the program can concentrate the code requiring privilege "up front"
and then drop temporary privileges permanently. The remainder of the program
can then rely on the monitor's built-in protection, appropriate to the account the
program is running in. The following sample code illustrates this approach:

10 V$ = SYS(CHR$(6%) + CHR$(-22%»
!SET SPECIAL RUN PRIORITY - THIS REQUIRES PRIVILEGE

20 OPEN "$SYSTEM.FIL" FOR INPUT AS FILE 1%, MODE 8192%
!OPEN A "REFERENCE" FILE, REGARDLESS OF PROTECTION
! (USING READ-ONLY MODE, OFTEN GOOD PRACTICE, ALSO)

30 V$ = SYS(CHR$(6%) + CHR$(-21%»

40

!HAVING DONE THE NECESSARY SET-UP, DROP TEMPORARY
!PRIVILEGES FOR THE REMAINDER OF THE PROGRAM

A different approach is appropriate when a program needs temporary privileges
at several points during execution. In this case, good programming practice
suggests that temporary privileges be dropped early, and then regained just long
enough to be used where needed. The following sample code illustrates this
approach. (This sample uses line numbers appropriate for a program designed to
be invoked by CCL. See Chapter 11 for more information on these conventions.)

1
2
\

30000

\

\

EXTEND
PRINT '?PLEASE USE THE "xxxxx" CCL COMMAND'
GOTO 32767 !DISALLOW SOMEONE INVOKING THE PROGRAM BY RUN

!CONVENTIONAL CCL ENTRY POINT

DROP.PRIVILEGES$ = CHR$(6%) + CHR$(-21%) + CHR$(255%)
!COMPOSE THE "DROP PRIVILEGES" CALL STRING

V$ = SYS(DROP.PRIVILEGES$)
!GO AHEAD AND DROP THEM, FIRST THING

REGAIN.PRIVILEGES$ = CHR$(6%) + CHR$(-21%) + CHR$(O%)
!COMPOSE THE "REGAIN PRIVILEGES" CALL STRING,
!FOR LATER USE

(FOLLOWING CODE CAN NOW EXECUTE
WITHOUT PRIVILEGE)

!NOW, YOU REACH A POINT WHERE PRIVILEGE IS REQUIRED
! (OPEN A PROTECTED FILE)

8-58 Drop/Regain Temporary Privileges, FO=-21 (.SET/.CLEAR)

\
\

\

V$ = SYS(REGAIN.PRIVILEGES$) !GET PRIVILEGES TEMPORARILY
OPEN "$SYSTEM.FIL" FOR INPUT AS FILE 1%, MODE 8192%

!OPEN A "REFERENCE" FILE, REGARDLESS OF PROTECTION
! (USING READ-ONLY MODE, OFTEN GOOD PRACTICE, ALSO)

V$ = SYS(DROP.PRIVILEGES$) !AND DROP PRIVILEGES AGAIN

(AND SIMILARLY FOR OTHER OPERATIONS
THROUGHOUT THE PROGRAM)

32767 END

8.3.10 Lock/Unlock Job in Memory

Data Passed

Bytes

1

Meaning

CHR$(6%), the SYS call to FIP.

2

3

4-30

CHR$(-20%), the lock/unlock a job in memory code.

CHR$(N%), where N% is 0% for lock and 255% for unlock.

Reserved; should be O.

Data Returned

No meaningful data is returned.

Privileges Required

TUNE

Possible Errors

None.

Discussion

This call prevents unnecessary swapping by forcing the job executing the call to
remain in memory. The call performs this action without affecting the job priority
or run burst. The call merely eliminates the swapping time between run bursts.

You may want to use this call in a program with certain time-sensitive routines.
The locked time must be very short to avoid degrading system performance.
Depending on the memory configuration, a locked job can cause fragmentation
of user space and prohibit the system from swapping any other job into memory.
If the job expands its size in memory, the system can swap it out of memory
regardless of its locked status.

The following sample code demonstrates the lock and unlock procedure:

10 A$

100 A$

SYS(CHR$(6%) + CHR$(-20%) + CHR$(O%»
! LOCK JOB IN MEMORY

SYS(CHR$(6%) + CHR$(-20%) + CHR$(255%»
! UNLOCK JOB FROM MEMORY

Set Logins, FO=-19 (UU.LOG) 8-59

8.3.11 Set Logins

Data Passed

Bytes

1

2

3

4-30

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(-19%), the set logins code.

CHR$(N%), where N% is the number oflogged in jobs to allow.

Reserved; should be O.

Data Returned

Bytes

1

2

3

4-30

Meaning

The current job number times 2.

Not used.

CHR$(N%), where N% is the actual number oflogins set.

Not used.

Privileges Required

SWCTL

Possible Errors

None.

Discussion

This call sets the number of allowable logins to the number specified in byte 3. A
value of 0 sets the number of allowed jobs to 1. The upper limit for the number
of logins is either the system JOB MAX or the number of jobs that can currently
be swapped, whichever is lower. If you specify a larger value, the system sets the
number of logins to the upper limit. You do not receive an error.

The number of jobs that can log in to a RSTSIE system is limited by the swapping
space available, the JOB MAX set at system start-up, and the set maximum
number of logins. However, console terminal KBO: is a special terminal that can
log in regardless of the set login maximum, provided that swapping space and
JOB MAX permit. The system manager can install a patch that changes the
number of the special keyboard from KBO: to some other keyboard.

8.3_12 Manipulate RTS, Resident Library, Dynamic Region

This call has the following subfunctions:

• Add Run-Time System

• Remove Run-Time System

• Unload Run-Time System

• Add Resident Library

• Remove Resident Library

• Unload Resident Library

8-60 Manipulate RTS, Resident Library, Dynamic Region, FO=-18 (UU.RTS)

• Crea te Dynamic Region

• Crea te Virtual Disk

• Delete Virtual Disk

8.3.13 Add a Run-Time System

Data Passed

Bytes

1

2

3

4

5-6+

7-10+

11-12

13-14

15-16

17

18

Me~g

CHR$(6%), the SYS call to FIP.

CHR$(-18%), the run-time system manipulation code.

CHR$(N%), where N% is:
0% Use values for all bytes as specified in this call.

128% Use values defined in the .RTS file for bytes 13-14, 15-16, 19-20, and
21-22.

Reserved; should be O.

PPN of the file to add; if none is specified, [0,1] is the default.

Run-time system name in Radix-50 format.

CHR$(A%)+CHR$(SWAP%(A%», where A% is the lK-word section of memory
at which this run-time system is to be loaded. The numbering begins at 0 and
ends at n-l (where n is the total number of lK-word sections of memory on the
system).

If A% is 0% and the run-time system requires a fixed address (read/write or
ISTAY run-time system), the monitor finds the address progressing from high to
low memory. Otherwise, the monitor uses an area of memory calculated when
the run-time system is actually needed.

If A% is -1%, the monitor calculates a fixed address, regardless of whether or
not the run-time system requires one.

Maximum allowed user image size, in K words (the P.SIZE symbol). If byte 3 is
128%, these bytes are ignored.

Minimum allowed user image size, in K words (the P.MSIZ symbol). If byte 3 is
128%, these bytes are ignored.

CHR$(P%), where P% is the position in the linked list of run-time system
(RTS) description blocks to place the description block for this run-time system.
If P% is 1%, the call places the description block immediately after that of
the primary RTS. If P% is a nonzero value less than or equal to the number
of blocks currently in the list, the call places this new block in that position
following the primary RTS block. If P% is 0% or a value greater than the
number of blocks currently in the list, the call places this new block at the end
of the list.

CHR$(S%), where S% is the stay flag. If S% is 128% (the high bit is set), this
RTS is kept permanently resident. If S% is 0%, the memory occupied by this
RTS can be released as user job space whenever the usage count of the RTS
goes to O.

Add a Run-Time System, FO=-18 (UU.RTS) 8-61

19-20 CHR$(F%) + CHR$(SWAP%(F%», where F% is a flag word whose bits define
this run-time system's characteristics. If byte 3 is 128%, these bytes are
ignored. Only the high byte is used for flag bits. F% is the sum of the bits set
as follows:
Value Meaning

This RTS is a keyboard monitor. 256%

512% This RTS handles only one user; that is, it is not shared by
multiple users.

1024% This RTS allows read and write access to its memory rather
than read-only access.

2048% Errors that occur under the control of this RTS should not be
recorded in the system error log.

4096% This RTS should be immediately removed from memory when
its usage count goes to O.

8192% The monitor computes the proper job image size (in K words)
for any program running under this RTS as (file-size+3)/4.

16384% Reserved; should be O.

32767%+1% This RTS emulates trap instructions by using a special EMT
prefix. If this characteristic is specified, the EMT prefix code is
in the low byte (0 < code < 255).

21-22 The normal executable file type, in Radix-50 format, for this run-time system
(the P.DEXT symbol). If byte 3 is 128%, the call ignores these bytes.

23-24+ Name of the device (must be disk) on which the run-time system file is stored.
If you do not specify a name, the call uses SY:.

Unit number. 25+

26+

27-30

Unit number flag.

Reserved; should be O.

Data Returned

No meaningful data is returned.

Privileges Required

INSTAL

Possible Errors

Meaning

?NO ROOM FOR USER ON DEVICE

If the monitor were to load this run-time system at the address
specified in bytes 11 and 12, memory would be fragmented and a
swapping violation would occur. See the discussion of assigning
and allocating memory in the RSTS / E System Installation and
Update Guide for guidelines on how to avoid fragmenting memory.

This error can also occur when the monitor attempts to determine
the address assignment but cannot find any valid load address
due to lack of memory.

?CAN'T FIND FILE OR ACCOUNT

A file with the name specified in bytes 7 through 10 and a file
type of .RTS cannot be found in the account and device specified
in this call (bytes 5-6 and bytes 23-26).

8-62 Add a Run-Time System, FO=-18 (UU.RTS)

ERR Value

4

5

Meaning

?PROTECTION VIOLATION

The file to be added as the lUn-time system has a bad format. For
example, the file is not contiguous or has illegal entries in the SIL
index.

?NAME OR ACCOUNT NOW EXISTS

A run-time system with the same name currently exists.

?ILLEGAL BYTE COUNT FOR 110

The range of memory starting at the load address given in bytes
11 and 12 is not available. See the SYSTAT memory status report
to select an available range of memory.

?NO BUFFER SPACE AVAILABLE

Adding a run-time system description block requires a small
buffer and one is not currently available.

Discussion

ERR Value

10

16

31

32

This SYS function adds a run-time system description block to the linked list of
blocks in the monitor. Run-time systems other than the primary run-time system
(RSX) and the default keyboard monitor (DeL) are transient from one time
sharing session to another. Thus, systems that offer auxiliary run-time systems
must define them for each time-sharing session.

8.3.14 Remove a Run-Time System

Data Passed

Bytes

1

Meaning

CHR$(6%), the SYS call to FIP.

2

3

CHR$(-18%), the run-time system manipulation code.

CHR$(4%), remove run-time system.

Reserved; should be O. 4-6

7-10+

11-30

Run-time system name in Radix-50 format.

Reserved; should be O.

Data Returned

No meaningful data is returned.

Privileges Required

INSTAL

Remove a Run-Time System, FO=-18 8-63

Possible Errors

Meaning

?ACCOUNT OR DEVICEIN' USE

This run-time system is currently being loaded into memory or is
resident and in use. It cannot be removed until usage count is o.

?CAN'T FIND FILE OR ACCOUNT

The run-time system specified in bytes 7 through 10 is not cur
rently defined.

?PROTECTION VIOLATION

The run-time system specified in bytes 7 through 10 is the pri
mary RTS or the system default keyboard monitor and cannot be
removed by this call.

Discussion

ERR Value

3

5

10

This call removes a run-time system from memory, deletes the monitor struc
ture that defines this run-time system, and closes the run-time system file.
The SHUTUP system program automatically performs these actions when it
terminates time-sharing operations.

8.3.15 Unload a Run-Time System

Data Passed

Bytes

1

2

3

4-6

7-10+

11-30

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(-18%), the run-time system manipulation code.

CHR$(6%), unload run-time system.

Reserved; should be o.
Run-time system name in Radix-50 format.

Reserved; should be o.

Data Returned

No meaningful data is returned.

Privileges Required

INSTAL

Possible Errors

Meaning

?ACCOUNT OR DEVICE IN' USE

The run-time system specified in bytes 7 through 10 is currently
being loaded into memory or is resident and in use by the job that
is currently running. It cannot be unloaded now; a later attempt
might succeed.

8-64 Unload a Run-Time System, FO=-18

ERR Value

3

Meaning ERR Value

?CAN'T FIND FILE OR ACCOUNT I)

The run-time system specified in bytes 7 through 10 is not cur
rently defined.

Discussion

This call frees the portion of memory occupied by the run-time system. The
memory is made available as user job space. The run-time system will be loaded
again when it is needed. This function is valid for the primary run-time system,
in which case it simply causes the run-time system to be reread from disk. In all
other cases, the unload function also clears the "stay" flag set when the run-time
system was last added or loaded.

8.3.16 Add a Resident library

Data Passed

Bytes

1

2

3

4

5-6+

7-10+

11-12

13-17

18

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(-18%), the resident library manipulation code.

CHR$(16%), add a resident library.

Reserved; should be O.

The PPN of the file to add; if none is specified, [0,1] is the default.

The resident library name in Radix-50 format.

CHR$(A%)+CHR$(SWAP%(A%», where A% is the lK-word section of memory
at which the resident library is to be loaded. The numbering begins at the
first available lK-word section and ends at n-l (where n is the total number of
1K-word sections of memory on the system).

If A% is 0% and the library requires a fixed address (read/write or /STAY
library), the monitor finds the address progressing from high to low memory.
Otherwise, the monitor uses an area of memory calculated when the library is
actually needed. See the Discussion for restrictions on specifying A%=O%.

If A% is -1%, the monitor finds the first free space large enough to hold the
resident library, starting from the top of memory.

If A% is -2%, and you add the library neither read/write nor /STAY, the monitor
calculates an address for the library when it is actually needed. See the
Discussion for restrictions on specifying A%=-2%.

Reserved; should be O.

CHR$(S%), where S% is the stay flag. S% can be one of the following values:

Value Meaning

0%

128%

The memory occupied by this library can be freed for user job space
whenever the usage count of the RTS is 0 (no active task is accessing
the library).

The library is made permanently resident.

Add a Resident Library, FO=-18 8-65

19-20

21-22+

23-24+

25+

26+

27-30

CHR$(F%)+CHR$(SWAP%(F%», where F% is the flag word that defines the
characteristics of the library. Only the high byte is used for flag bits. F% is the
sum of the bits set, as follows:

Value Meaning

256%

512%

1024%

2048%

4096%

8192%

16384%

32767%+1%

Reserved; should be O.

The resident library is available to only one user. It is not
shared by multiple users.

The resident library allows read/write access to its memory,
rather than read- only access.

Reserved; should be O.

The resident library does not record errors in its code in the
system error log.

The resident library is immediately removed from memory
when its usage count equals zero.

Reserved; should be O.

Reserved; should be O.

Protection code for the installed resident library. To specify a protection code,
place a nonzero value in byte 21 and the protection code in byte 22. To accept
the default protection, specify 0 in byte 21. The default protection code is 42,
which means that the monitor grants read access to all users but denies write
access.

The name of the disk device on which the resident library is to be stored. If no
name is specified, SY: is used.

Unit number.

Unit number flag.

Reserved; should be O.

Data Returned

No meaningful data is returned.

Privileges Required

INSTAL

Possible Errors

Meaning

?NO ROOM FOR USER ON DEVICE

You specified an address in bytes 11 and 12 that would cause the
monitor to load the library so that memory would be fragmented
and a swapping violation would occur. See the RSTSIE System
Installation and Update Guide for guidelines on avoiding memory
fragmentation.

This error can also occur when the monitor attempts to determine
the address assignment but cannot find any valid load address
due to lack of memory.

8-66 Add a Resident Library, FO=-18

ERR Value

4

Meaning

?CAN'T FJND FILE OR ACCOUNT

You specified a file name in bytes 7 through 10 that cannot be
found in the account specified in bytes 5 and 6 on the device
specified in bytes 23 through 26. Make sure that the file name
you specify has a .LIB file type and is located in the specified
account and device.

?PROTECTION VIOLATION

The file you want to add is in improper format. For example,
this error occurs if you specify a file that is not contiguous or has
illegal entries in the SIL index.

?NAME OR ACCOUNT NOW EXISTS

You specified the file name of a resident library that already
exists.

?ILLEGAL BYTE COUNT FOR 110

You did not specify a load address in bytes 11 and 12 or the
address you specified is not available. Refer to the memory status
report of a display program to determine an available range of
memory.

?NO BUFFER SPACE AVAILABLE

A small buffer is required for the description block of an added
resident library. This error is t:eturned if a small buffer is not
available.

Discussion

ERR Value

5

10

16

31

32

This SYS call adds a specified library to the monitor's list of resident libraries.
This call is similar to that used to add a run-time system.

If you specify a value of 0 in bytes 11-12, and you add the library neither as
readlwriteable nor with /STAY, the monitor calculates an address for the library
when it is actually needed. This is called a restricted floating resident library.
This type of library has the following restrictions:

• Only 1 such resident library may be mapped by a program at any time.

• A program mapping to the library must be running under the NULL run-time
system.

• The maximum size of the library is 28K words.

• The start address for mapping the library may not be any higher than:

32K-s

where s is the size of library rounded up to the next highest 4K boundary.

If you specify a value of -1 in bytes 11-12, the monitor automatically decides
where to load the resident library, finding the first free space large enough to
hold the library, starting from the top of memory. This is called a fixed resident
library. The library file does not have to reside in account [0,1]; however, the file
type must be .LIB.

Add a Resident Library, FO=-18 8-67

If you specify a value of -2 in bytes 11-12, and you add the library neither read
Iwrite nor ISTAY, the monitor calculates an address for the library when it is
actually needed, as it does for a value of O. This is called an unrestricted floating
resident library. This type of library has the following restrictions:

• A program mapping to the library must be running under the NULL run-time
system.

• The maximum size of the library is 255K words.

If you install either type of floating library with ISTAY or /NOREAD_ONLY, you
override the "floating" designation and the monitor installs the library as a fixed
library, with the value -l.

See the RSTS / E Thsk Builder Reference Manual for more information on creating
and using resident libraries.

8.3.17 Remove a Resident Library

Data Passed

Bytes

1

2

3

4-6

7-10+

11-30

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(-18%), the resident library manipulation code.

CHR$(20%), remove a resident library.

Reserved; should be O.

The resident library name in Radix-50 format.

Reserved; should be O.

Data Returned

No meaningful data is returned.

Privileges Required

INSTAL

Possible Errors

Meaning

?ACCOUNT OR DEVICE IN USE

You attempted to remove a library that is being loaded into
memory or is in use by the currently running job. A resident
library cannot be removed while a job is still attached to it.

?CAN'T FIND FILE OR ACCOUNT

You specified a resident library name in bytes 7 through 10 that
is not currently defined.

Discussion

ERR Value

3

5

This SYS call removes a library from physical memory, deletes the monitor
structure that defines the library, and closes the library file.

8-68 Remove a Resident Library, FO=-18

8.3.18 Unload a Resident Library

Data Passed

Meaning Bytes

1 CHR$(6%), the SYS call to FIP.

2

3

CHR$(-18%), the resident library manipulation code.

CHR$(22%), to unload a resident library.

4-6

7-10+

11-30

Reserved; should be O.

The resident library name in Radix-50 format.

Reserved; should be O.

Data Returned

No meaningful data is returned.

Privileges Required

INSTAL

Possible Errors

Meaning

?ACCOUNT OR DEVICE IN USE

You attempted to unload a resident library that is in the process
of being loaded or is in use by the currently running job. A library
cannot be unloaded while a job is still attached to it.

?CAN'T FIND FILE OR ACCOUNT

You specified an undefined resident library name in bytes 7
through 10.

Discussion

ERR Value

3

5

This SYS call removes a library from memory and frees that portion of memory
for use by other jobs. The system reloads the library when it is needed. If the
"stay" flag has been set by a previous add or load function, the call clears it.

8.3.19 Create DynamiC Region

Data Passed

Bytes

1

2

3

4-6

7-10+

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(-18%), the run-time system manipulation code.

CHR$(24%), create dynamic region.

Reserved; should be O.

Region name in Radix-50 format. If zero is passed, this creates an unnamed
dynamic region. See Discussion for information on unnamed dynamic regions.

Create Dynamic Region, FO=-18 8-69

11-12 CHR$(A%)+CHR$(SWAP%(A%», where A% is the lK-word section of memory
at which this dynamic region is to be loaded. The numbering begins at 0 and
ends at n-l (where n is the total number of lK-word sections of memory on the
system). If A% is 0%, the monitor finds the first free space large enough to hold
the region, starting from the top of memory.

13-14 Size of region in K-words, between 1 and 255 K If you include a value of 128%,
the monitor creates the region even if the full amount of memory requested is
not available.

15-16

17

18

19-20

21

22

23-30

Reserved; should be O.

CHR$(N%), where N% can be:
0% Do not attach job to region.

128% Attach job to region.

CHR$(N%), where N% can be:

0% Delete region when all users detach.

128% Do not delete region when all users detach.

CHR$(N%)+CHR$(SWAP%(N%», where N% can be:

0%

512%

The region can be shared.

The region cannot be shared.

Protection code flag. If set, the protection code is real.

Protection code of region.

Reserved; should be zero.

Data Returned

Bytes

5-6

Meaning

RegionID.

13 Size of the created region, in K words.

Privileges Required

INSTAL. See Discussion.

Possible Errors

Meaning

?NO ROOM FOR USER ON DEVICE

If loaded at the address specified, memory would be fragmented
and a swapping violation would occur. If the monitor is choosing
the address, there is not enough free memory to create the region.

?NAME OR ACCOUNT NOW EXISTS

You specified a name of a dynamic region or resident library that
already exists.

?ILLEGAL BYTE COUNT FOR 110

You attempted to create a region of invalid size. Also, if the caller
specified a load address, the load address was not valid.

8-70 Create Dynamic Region, FO=-18

ERR Value

4

16

31

Meaning

?NO BUFFER SPACE AVAILABLE

A small buffer was not available for t.he region description block.
Also, if attachment was specified, a small buffer was not available
for the window descriptor block.

Discussion

ERR Value

32

A dynamic region is a portion of memory that is used to store data. This SYS call
creates a dynamic region of memory. You can create two types of regions: named
and unnamed.

A named dynamic region is typically used when multiple programs desire attach
ment to the region. The name of the region must be unique.

An unnamed dynamic region is used when a program wants exclusive use of an
area of memory. When the monitor detaches from an unnamed dynamic region, it
always removes the region from memory. In addition, the caller is automatically
attached to a dynamic region on creation.

If you specify attachment to the region or create an unnamed region, the region
ID is returned in bytes 5-6. This region is used in subsequent .PLAS directives.
See the RSTS / E System Directives Manual for more information. Since BASIC
PLUS does not support the .PLAS directive, only named dynamic regions are
useful to BASIC-PLUS programs.

A user without the INSTAL privilege can still create a dynamic region if the total
size of all dynamic regions created without the INSTAL privilege is less than the
dynamic region limit set by the system manager.

8.3.20 Create/Delete a Virtual Disk

Data Passed

Bytes

1

2

3

4-10

11-12

13-14

15-30

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(-18%), the virtual disk manipulation code

CHR$(26%), create/delete virtual disk

Reserved; should be O.

CHR$(A%)+CHR$(SWAP%(A%», where A% is the 1K-word address at which
the virtual disk should be created, or -1% to let the RSTSIE monitor select the
"best-fit" address.

CHR$(N%)+CHR$(SWAP%(N%», where N% is the size in K words ofthe virtual
disk to create (from 1 to 2044), or 0 to delete the current virtual disk. If you
specify 0, the address paramater in bytes 11-12 is ignored.

Reserved; should be O.

Data Returned

No meaningful data is returned.

Privileges Required

INSTAL and HWCFG

Create/Delete a Virtual Disk, FO=-18 8-71

Possible Errors

When creating a virtual disk:

Meaning

?PROTECTION VIOLATION

The user or program did not have HWCFG and INSTAL privilege

?NO ROOM FOR USER ON DEVICE

There was not enough contiguous memory available to create the
virtual disk at the requested size.

?ILLEGAL BYTE COUNT FOR 110

The specified size or address was invalid or, if an address was
given, the virtual disk would not fit at that address.

?NO BUFFER SPACE AVAILABLE

Not enough small buffers were available to build the required
memory descriptor blocks.

?NAME OR ACCOUNT NOW EXISTS

A virtual disk had already been created.

When deleting a virtual disk:

Meaning

?PROTECTION VIOLATION

The user or program did not have HWCFG and INSTAL privilege

?ACCOUNT OR DEVICE IN USE

The virtual disk was mounted, has open files, or was opened in
non-file-structured mode.

?NOT A VALID DEVICE

There was no virtual disk to delete.

Discussion

ERR Value

10

4

31

32

16

ERR Value

10

3

6

This call allocates memory for the virtual disk. Any memory so allocated is not
available for other uses, and it can not be windowed or mapped with the .PLAS
directive. This memory becomes available again when the virtual disk is deleted.

When the system creates a virtual disk, the memory manager must sometimes
rearrange things such as jobs and run-time systems, to make enough contiguous
memory space for the virtual disk. This may take some time, especially on busy
systems. Therefore, the virtual disk driver checks before the first attempted
access to a virtual disk, to make sure that all the necessary memory has been
allocated. If not, it returns the ?Device hung or write locked error. The job
receiving the error should sleep a few seconds, then try again.

When the system creates a virtual disk, it does not automatically initialize it as a
RSTSIE volume. Use the INITIALIZE and MOUNT commands, if necessary.

8-72 Create/Delete a Virtual Disk, FO=-18

8.3.21 Associate a Run.;Time System with a File

Data Passed

Bytes

1

2

3

4-7

8-30

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(-17%), the associate run-time system code.

CHR$(N%), where N% is the channel number.

Run-time system name in Radix-50 format.

Reserved; should be O.

Data Returned

No meaningful data is returned.

Privileges Required

None

GWRITE

WWRITE

SYSIO

Specify a file with a protection code that permits write access

Specify a file in any account within the group

Specify any file

For files in [0,*] accounts

Possible Errors

Meaning

?IJO CHANNEL NOT OPEN

The channel specified in byte 3 of the call is not open.

?PROTECTION VIOLATION

The file open on the channel specified in byte 3 is not a disk file,
or the job executing the call does not have write access to the file.

Discussion

ERR Value

9

10

This SYS call writes the name of the run-time system given in bytes 4 through 7
to the file open on the channel specified in byte 3.

With the exception of files that are larger than 65535 blocks (see Discussion in the
section "File Utility Functions, SYS -26"), every file on RSTSIE has an associated
run-time system under which it was created. The name of the run-time system is
stored in Radix-50 format in the file's UFD accounting entry. The monitor looks
at this run-time system name only for executable files on RUN requests. This call
is used by utility programs to allow an executable file created by another run
time system to be run under an auxiliary run-time system supported by RSTSIE.

8.3.22 Shut Down System

Data Passed

Bytes

1

2

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(-16%), the system shut down code.

Shut Down System, FO=-16 (UU.DIE) 8-73

3 The automatic reboot flag. Set to 0 for no reboot, 1 for reboot.

4-30 Reserved; should be O.

Data Returned

No meaningful data is returned.

Privileges Required

SHUTUP

Possible Errors

See Discussion.

Discussion

This SYS call logs out the current job (as does the FIP system function call code
5). In addition, this call bootstraps the initialization code after the job is logged
out.

Before this SYS call can execute properly, several system conditions must be true:

• Only one job can be running on the system when you invoke the SYS call.

• The number of logins allowed on the system must be 1; that is, LOGINS
DISABLED. (See Disable Further Logins, SYS -2).

• No disks except the system disk can be mounted.

• No files can be open on the system disk.

If all of these conditions are met, the system shuts down. If any are not met,
any attempt to invoke this SYS call results in the error ?Illegal SYS() usage
(ERR=18).

8.3.23 Accounting Dump

Data Passed

Bytes

1

2

3-4

5-6+

7-30

Meaning

CHR$(6%), the SYS call to FIP.
CHR$(-15%), the accounting dump code.

Reserved; should be O.

PPN of the account to which the system dumps the accumulated usage data.
See Discussion.

If both bytes are zero, the data is dumped to the current account.

Reserved; should be O.

Data Returned

No meaningful data is returned.

Privileges Required

GACNT

WACNT

Access any account within the group

Access any account

8-74 Accounting Dump, FO=-15 (UU.ACT)

Possible Errors

Meaning ERR value

?CAN'T F1ND FILE OR ACCOUNT 5

The account specified in bytes 5 and 6 does not exist.

Discussion

This call allows a program to dump accumulated accounting data to the account
specified in bytes 5 and 6. This enables user-callable utility programs to run on
an account different from the account that called them and still charge the calling
account for the time accumulated by the utility.

This call forces the accumulated accounting values in memory to be written to
disk. The values in memory are zeroed. To charge accounting data to another
user's account, do the following:

1. Dump accounting data to the current account. This procedure zeros the data.

2. Perform processing for the account to be charged.

3. Dump accounting data to the account to be charged.

This procedure makes sure that only the time expended for another account is
charged to that account.

8.3.24 Change Date and Time

Data Passed

Bytes

1

2

3

4

5

6

7-30

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(-14%), the change date and time code.

CHR$(D%), where D% is in the required format to generate the date by the
function DATE$(D%). See the BASIC-PLUS Language Manual for a description
of the DATE$ function. Note that if D% in bytes 3 and 4 is 0%, no change is
made to the current date.

CHR$(SWAP%(D%», where D% is the same value used in byte 3. This gener
ates the high byte of the value used by the DATE$(O%) function.

CHR$(T%), where T% is in the required format to generate the time by the
function TIME$(T%). See the BASIC-PLUS Language Manual for a description
of the TIME$ function. Note that ifT% in bytes 5 and 6 is 0%, no change is
made to the current time.

CHR$(SWAP%(T%», where T% is the same value used in byte 5. This gener
ates the high byte ofthe value used by the TIME$(O%) function.

Reserved; should be O.

Data Returned

No meaningful data is returned.

Privileges Required

DATES

Possible Errors

None.

Change Date and lime, FO=-14 (UU.DAT) 8-75

Discussion

This function changes the monitor date and time of day values that are returned
by the DATE$(O%) and TIME$(O%) functions in BASIC-PLUS.

The execution of this function causes the monitor to awaken all sleeping jobs to
inform them of the date/time change.

Note that you cannot specify a date earlier than I-Mar-85.

8.3.25 Change Priority, Run Burst, and Maximum Size

Data Passed

Bytes

1

2

3

4

5

6

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(-13%), the change priority, run burst, and maximum size code.

CHR$(J%), where J% is the job number affected or is 255% to denote the
current running job.

CHR$(A%), where A% is 0% to indicate no change to the parameter in byte 5 or
is nonzero to indicate a change to the parameter as specified in byte 5.

CHR$(P%), where P% is the value of the running priority and ranges from -128
to + 120 in steps of 8.

CHR$(A%), where A% is 0% to indicate no change to the parameter in byte 7
or is nonzero to indicate a change to the parameter as specified in byte 7. See
Discussion.

7 CHR$(R%), where R% is the run burst. R% should be a value from 1% to
127%. When you specify a value outside this range, the monitor sets the run
burst to 6.

8 CHR$(A%), where A% is 0% to indicate no change to the parameter in byte 9 or
is nonzero to indicate a change to the parameter as specified in byte 9.

9 CHR$(S%), where S% is the maximum size, in 1024-word units, to which a job
can expand and is between 1 and 255. If this value exceeds SWAP MAX, the
system uses the value of SWAP MAX. See Discussion.

Data Returned

No meaningful data is returned.

Privileges Required

TUNE

Possible Errors

?ILLEGAL SYS() USAGE

Meaning

The specified job number does not exist.

Discussion

ERR Value

18

This call allows a user with TUNE privilege to give a running job an increased
or decreased chance of gaining run time in relation to other running jobs, and
to determine how much CPU time the job can have if it is compute-bound. The
CPU time is called the job's run burst. It is measured by the number of clock
interrupts during which the job can run if it is compute-bound.

8-76 Change Priority, Run Burst, and Maximum Size, FO=-13 (UU.PRI)

The initial size of a job running under the BASIC-PLUS run-time system is
set to 2K words and can grow during processing to a size limited by the value
of SWAP MAX. The system manager determines the size of SWAP MAX. (See
the discussion of the START and DEFAULT options in the RSTS / E $ystem
Installation and Update Guide.) The maximum size to which a job can grow
can never be greater than the currently assigned value of SWAP MAX, which
should be between 1K and 64K words. A job can expand to 64K words with
user I&D space when SWAP MAX is 64K words. Note that BASIC-PLUS jobs
can never grow beyond 16K regardless of the job's maximum size. Therefore,
the appropriately privileged user has the option of limiting the size to which
a BASIC-PLUS job can grow by specifying a value for S% between 2 and the
maximum of SWAP MAX.

You must specify values for each of the variables in the parameter string. In
the description of the data passed, the value A % before the related parameter
variable determines whether that parameter changes or remains unchanged.

The system does not perform error checking on the data passed by the user.
Values are used as passed even if they produce illogical results. For instance, if
you specify a priority that is not a multiple of 8, its value is truncated to the next
lowest multiple of 8. A priority greater than 127 is considered negative. Setting a
priority to -128 suspends that job. The monitor does not schedule that job to run
again until its priority is set to a value other than -128. Setting a job's run burst
to 0 causes the monitor to set the job's run burst to 6. Setting a compute-bound
job's run burst to some high number tends to lock out other jobs. However, you
do not override the system maximum by setting S% to 255% or any value greater
than SWAP MAX.

The monitor uses 256 queues to schedule jobs and polls each queue in sequential
priority order. The monitor chooses the highest priority runnable job as the
job to be run. Thus, a high priority compute-bound job can monopolize system
resources.

The following rules apply for a job running on a pseudo keyboard:

• The job can never lower the priority of the controlling job below its own
priority.

• The job can never raise its own priority above the priority of the controlling
job. Any attempt to do so causes the system to set both priorities to the
priority of the controlling job.

8.3.26 Get Monitor Tables-Part II

Data Passed

Bytes

1

2

3-30

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(-12%), the get monitor tables - part II code.

Reserved; should be O.

Data Returned

Bytes

1

2

Meaning

The current job number times 2.

Not used.

Get Monitor Tables-Part II, FO=-12 (UU.TB2) 8-77

3-4

5-6

7-8

9-10

11-12

13-14

15-16

17-18

19-20

21-22

23-24

25-26

27-28

29-30

(FREES) - The table of free (small and large) buffer information.

(DEVNAM) - The device name table.

(CSRTBL) - The CSR table of physical device addresses.

(DEVOKB) - The number of disk devices times 2 in the DEVNAM table.

(TTYHCT) - The number of hung terminal errors since system start-up.

(JOBCNT) - The count of jobs currently running (low byte) and the number of
logins currently allowed (high byte).

(RTSLST) - The root link word in the linked list of run-time system description
blocks.

(ERLCTL) - Error logging control data.

(SNDLST) - The list of eligible message receiving jobs.

(DSKLOG) - The disk logical table.

(DEVSYN) - Start of synonym names in DEVNAM.

(MEMSIZ) - The word containing the size of memory physically present on the
system. Size is in K words times 32.

(CCLLST) - The root link word in the linked list of concise command language
(CCL) description blocks.

These bytes contain a pointer to the FCBLST table. FCBLST contains a word,
for each generated unit, that is the root of a linked list of file control blocks
(FCBs) for open files on that unit.

Privileges Required

None.

Possible Errors

None.

Discussion

The three Get Monitor Table SYS calls return to your program either an address
or a data value. The calls are commonly used with the PEEK function to read
various system parameters and tables that give configuration and run-time
infonnation. Because it is beyond the scope of this manual to describe the
monitor, this section only briefly describes the infonnation returned by the
monitor table functions. For a description of Get Monitor Tables - Part I, see SYS
call -3. For a description of Get Monitor Tables - Part III, see SYS call -29. The
section "The PEEK Function" describes the use of the PEEK function for certain
convenient programming operations.

This call denotes each item of information described by a name in all uppercase
letters. This name is the same one used to identify the information in the RSTS
IE assembly listings. If the name is in parentheses, the information returned
is an address of the data described. If the name is not in parentheses, the
information returned is the actual data value. For example, the Get Monitor
Tables - Part I call returns CNT.KB-1 in byte 3. The value returned is the
number of terminal lines minus 1 configured on the system. However, bytes 11
and 12 return (JOBTBL), the address of the table of jobs. Use the PEEK function
to inspect the address.

NOTE

All information returned by the call described in this section is internal
to RSTSIE and is subject to change at any time.

8-78 Get Monitor Tables-Part II, FO=-12 (UU.TB2)

8.3.27 Change File Statistics

Data Passed

Bytes

1

2

3

4-5

6-7

8-9

10-30

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(-l1%), change file statistics code.

CHR$(N%), where N% is the internal channel on which the file is open and
must be between 1 and 12, inclusive.

Date of last access to place in the file's accounting entryl. SpecifY the date
as CHR$(D%)+CHR$(SWAP%(D%», where D% is in the form required by
the BASIC-PLUS DATE$(D%) function. (See the sample program in the
Discussion.)

Date of creation to place in the file's accounting entry. SpecifY the date
as CHR$(D%)+CHR$(SWAP%(D%», where D% is in the form required by
the BASIC-PLUS DATE$(D%) function. (See the sample program in the
Discussion.)

Time of creation to place in the file's accounting entry. Specify the time
as CHR$(T%)+CHR$(SWAP%(T%», where T% is in the form required by
the BASIC-PLUS TIME$(T%) function. (See the sample program in the
Discussion.)

Reserved; should be O.

lThe DSKINT initialization option or the INITIALIZE command can change the meaning of date of
last access to date of last modification for some disks. The SHOW DISK command tells which disks
record the date of last modification.

Data Returned

No meaningful data is returned.

Privileges Required

DATES Modify date oflast access (other fields require no privilege)

Possible Errors

Meaning

?PROTECTION VIOLATION

The disk is write-protected or you do not have write access to the
file.

?ILLEGAL SYS() USAGE

The file open on the channel specified is not a disk file or is a user
file directory.

Discussion

ERR Value

10

18

The data passed by this call replaces the related data in the accounting entry of
the file open on the channel specified in byte 3. No error checking is done on the
date and time values passed. Because the call does not supply default values, you
must supply all three date and time values each time the call executes.

Change File Statistics, FO=-11 (UU.BCK) 8-79

The following is a partial directory listing of an account, showing the file whose
statistics are to be changed:

CAT
CTPBLD.BAS o 60 30-Sep-91 30-Sep-91 03:13 PM

Ready

The following program changes the date and time of creation to 12:00 noon, 21-
Jul-91, and the date of last access to 21-Jul-91, as shown in the partial directory
listing following the program:

10 D% = 15202%
!21-JUL-91 IS (202) + «1991-1970)*1000)

20 T% = (24% * 60%) - (12% * 60%)
!12 NOON IS 720 MINUTES BEFORE MIDNIGHT

100 OPEN 'CTPBLD.BAS' AS FILE 1%
\DIM M%(30%)
\M%(O%) = 30%
\M%(l%) = 6%
!OPEN FILE TO CHANGE, USE ARRAY TO SET UP CALL

200 M%(2%) = -11%
\M%(3%) = 1%
!SET UP FOR CHANGE STATS CALL ON CHANNEL 1

300 M%(4%) = D% AND 255%
\M%(5%) = SWAP%(D%) AND 255%
!SET UP THE DATE OF LAST ACCESS

400 M%(6%) = D% AND 255%
\M%(7%) = SWAP % (D%) AND 255%
!SET UP THE DATE OF CREATION

500 M%(8%) = T% AND 255%
\M%(9%) = SWAP % (T%) AND 255%
!SET TIME OF CREATION TO T%

1000 CHANGE M% TO M$
\M$ = SYS (M$)
!SET ARRAY UP AS STRING AND DO CALL

2000 CLOSE 1%
32767 END

Ready

RUNNH

Ready

CAT
CTPBLD.BAS

Ready

o 60 21-Jul-91 21-Jul-91 12:00 PM

Note that you can use either this call or SYS call -26, File Utility Functions, to
change data in a file's accounting entry. However, the two calls work differently
when you open a file, write to it, change the date of last access in the file's
accounting entry, and then close the file.

When you use this SYS call to change the date oflast access before closing the
file, the system does not update the file's accounting entry when it closes the file.
Mter the file is closed, the file's accounting entry contains the date specified in
the call, not the current date, as the date of last access. Use SYS call -26 if you
want the date of last access to be changed to the current date when the file is
closed.

8-80 Change File Statistics, FO=-11 (UU.BCK)

8.3.28 Hang Up a Dataset

Data Passed

Bytes

1

2

3

4

5-30

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(-9%), the hang up a dataset code.

CHR$(N%), where N% is the keyboard number ofthe line to hang up.

CHR$(S%), where S% is the number of seconds to wait before hanging up the
line. If no value is specified, the line is hung up after 2 seconds. See Discussion
for values.

Reserved; should be O.

Data Returned

No meaningful data is returned.

Privileges Required

HWCTL

Possible Errors

None.

Discussion

This SYS call allows a dial-up line to be connected or disconnected under program
control. A dial-up line can be connected but not be performing any processing.
This condition prevents other users from gaining access to the system. Byte 4 of
the data passed can contain the following values:

Value

S%=-l%

Meaning

Set "Data Terminal Ready" to permit a modem connected to a RSTS
IE system to dial out. Should a connection not be established in 127
seconds, perform an automatic hang-up of the dataset.

S%=O%

S%=1%-127%

Hang up in two seconds.

Hang up in one to 127 seconds.

8.3.29 Get Open Channel Statistics

Data Passed

Bytes

1

2

3

4

5-30

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(-8%), the get open channel statistics code.

CHR$(N%), where N% is the channel number (between 0 and 12) of either the
Device Data Block (DDB) for nondisk devices, the Window Control Block (WCB)
for the file system, or the File Control Block (FCB).

CHR$(S%), where S% is 0% or 1%. The value of S% determines the information
returned on the job. See Data Returned.

Reserved; should be O.

Get Open Channel Statistics, FO=-8 (UU.FC8) 8-81

Data Returned

IfS% is 0%:

Bytes

1

2

3-4

5-6

27-28

29-30

Meaning

The current job number times 2.

Not used.

Word 1 of either the DDB or WCB.

Word 2 of either the DDB or WCB.

Word 13 of either the DDB or WCB.

Word 14 of either the DDB or WCB.

IfS% is 1%:

Bytes

1

2

3

4

5

6

7-8

9-10

11-14

15-16

17-22

23-24

25-26

27-30

Meaning

The current job number times 2.

Not used.

The number of users who have a file open in a mode other than read regardless.

The number of users who have a file open in read regardless mode.

The status byte, which contains the following internal flag information:
Bit Meaning
Value

1 Reserved.

2 File is placed.

4 Some job has write access now.

8 File is open in update mode.

16 File is contiguous; no extend available.

32 No delete or rename allowed.

64 File is a UFD.

128 File is marked for deletion.

The most significant bits (MSB) of the file size. If a nonzero number is re
turned, it indicates a file whose size is greater than 65535 blocks.

The least significant bits (LSB) of the file size (in blocks).

The PPN of the file. The project number is in byte 9; the programmer number
is in byte 10.

The name of the file, in RAD50 format, left-justified and padded with blanks.

The file type, in RAD50 format, left,..justified and padded with blanks.

Not used.

The device the file is opened on. The name is returned as two ASCII characters.

The unit number and flag. The unit number is in byte 25 and the flag is in byte
26. If there was no explicit unit number, the flag is zero; otherwise, it is 255.

Not used.

Privileges Required

None.

8-82 Get Open Channel Statistics, FO=-8 (UU.FC8)

Possible Errors

Meaning ERR Value

?NOT A VALID DEVICE 6

You requested FCB information (byte 4 is 1) for a nondisk file.

?JJO CHANNEL NOT OPEN 9

No file or device is open on the channel specified.

?ILLEGAL SYS() USAGE 18

You used a subcode other than 0 or 1 in byte 4.

?ILLEGAL JJO CHANNEL 46

The channel specified is outside the range 0 to 12.

Discussion

This call returns information kept in the DDB, WCB or FeB. Note that these
data structures are internal to RSTSIE and subject to change at any time.

Specifying 0 in byte 4 returns information kept in the DDB or WCB data struc
tures.

Specifying 1 in byte 4 returns information kept in the FeB including open
counts, status byte, and current file size. RMS uses this call to determine file
characteristics.

For an alternative to this call, see the description of the STATUS variable in the
BASIC-PLUS Language Manual.

8.3.30 Enable Ctri/C Trap

Data Passed

Bytes

1

2

3-30

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(-7%), the enable CtrlJC trapping code.

Reserved; should be O.

Data Returned

No meaningful data is returned.

Privileges Required

None.

Possible Errors

None.

Enable CtrllC Trap, FO=-7 8-83

Discussion

After a program executes this SYS call, the run-time system treats the first CtrllC
typed on any terminal belonging to the job as a trappable error (?Programmable
I\C trap, ERR=28). Upon execution of the trap, the system passes control im
mediately to the numbered program statement that has been designated as the
error-handling routine by the last execution of an ON ERROR GOTO statement.
After the trap, the system disables CtrllC trapping. To keep CtrllC trapping in
effect, you must execute the SYS call again.

However, such trapping of CtrllC guarantees only that a defined set of statements
is executed when you type a CtrllC. It is not always possible to resume execution
at the exact point where the CtrllC occurred. The BASIC-PLUS variable LINE
gives the number of the line being executed when the CtrllC was typed. The
variable ERL is not set when trapping is in effect and the error ?Programmable
I\C trap (ERR=28) occurs. The variable ERL refers to the last error trapped by
the program.

The following sample routine shows the procedure:

100
200

300

400

1000

2000
32767

ON ERROR GOTO 1000
X = X/O.O
!THIS GIVES ERR 61, ERL 200
Q$ = SYS(CHR$(6%) + CHR$(-7%))
!SET CTRL/C TRAPPING
SLEEP 100%
\GOTO 400
!WAIT FOR CTRL/C TO BE TYPED
RESUME 2000 IF ERR=28
\RESUME 300 IF ERR=61
\ON ERROR GOTO 0
PRINT LINE, ERL
END

When you type CtrllC at the terminal, the variable LINE is set to 400. The
variable ERL remains set to 200 from error number 61 at line number 200.

Several methods are available to protect a program from Ctrl/C aborts. For
example, you can:

• Open the console terminal in binary input mode, MODE 1% (see Chapter 4).

• Detach the program.

• Open the console terminal with MODE 16% (see Chapter 4).

If one of these three actions occurs, program execution under the job is immune
to any CtrllC.

The following sample program shows the procedure:

10 ON ERROR GOTO 100
\A$ = SYS(CHR$(6%) + CHR$(-7%))

30 PRINT "HI ";
\SLEEP 10%
\GOTO 30

100 IF ERR <> 28% THEN ON ERROR GOTO 0

110

32767

ELSE RESUME 110
PRINT "CTRL/C TRAPPED"
\SLEEP 10%
\GOTO 10
END

8-84 Enable Ctri/C Trap, FO=-7

The program prints "HI" at the keyboard every ten seconds until you type a
CtrIlC. Then it prints the "CTRUC TRAPPED" message and performs a sleep
operation for ten seconds before reenabling the CtrIlC trap and printing "HL"
The ten-second sleep allows you to type a second CtrIlC and actually stop the
program.

Ordinarily, two CtrIlC characters typed very quickly at a terminal stop a program
even if CtrIlC trapping is enabled. However, on a lightly loaded system, it is
sometimes possible for the program to react quickly enough to the first CtrIlC
that the second one can also be trapped. In this situation, the only means of
stopping the job is through the Kill a Job SYS call (SYS 8), or the REMOVE/JOB
command. In this example, you can stop the program after the original trap by
typing CtrIlC within ten seconds. Digital recommends that you design programs
that trap CtrIlC characters to include a certain amount of time after a trap in
which a second CtrIlC actually stops the program.

When a Ctrl/C is input from a terminal, further output is inhibited, similar to the
effect of the CtrIlO. This is true whether the error condition caused by CtrIlC is
processed directly by BASIC-PLUS or is handled by the user's program. When
the CtrIlC error condition is processed by BASIC-PLUS, it reenables output just
prior to printing the Ready prompt. When the CtrIlC error condition is trapped
into the user's own error handling routine, the output to the terminal is reenabled
just before executing the ON ERROR GOTO statement.

8.3.31 Poke Memory

Data Passed

Bytes

1

2

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(-6%), the poke memory code.

3-4 CHR$(A%)+CHR$(SWAP%(A%», where A% is the address to change. The
address must be an even number.

5-6 CHR$(V%)+CHR$(SWAP%(V%», where V% is the value to insert at the address
specified by bytes 3 and 4.

7-30 Reserved; should be O.

Data Returned

No meaningful data is returned.

Privileges Required

SYSMOD

Possible Errors

Meaning

?PROTECTION VIOLATION

The job executing the call does not have SYSMOD privilege, or
the address specified in the call is an odd value.

Discussion

ERR Value

10

This call changes a word in the monitor part of memory to the value the user
specifies. This is a dangerous capability, and is therefore heavily protected. It
requires the SYSMOD privilege.

Poke Memory, FO=-6 (UU.POK) 8-85

The poke call allows only full word changes. If you want to change a byte, read
the word using the PEEK function (see the section "The PEEK Function" at the
end of this chapter), change the desired byte, and rewrite the entire word (using
the Poke Memory call).

8.3.32 Broadcast to a Terminal

Data Passed

Bytes

1

2

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(-5%), the broadcast to a terminal code.

3 CHR$(N%), where N% is the keyboard number of the terminal to receive the
message.

4-? M$ is the message to broadcast; LEN(M$) can be greater than 27. The string
must not be null.

Data Returned

No meaningful data is returned.

Privileges Required

SEND

Possible Errors

Meaning

?PROTECTION VIOLATION

The job does not have sufficient privilege, or byte 3 contains an
illegal KB: number.

?ILLEGAL BYTE COUNT FOR 110

An attempt was made to broadcast a zero-length message.

Discussion

ERR Value

10

31

The call prints the data broadcast on the destination keyboard. The received mes
sage affects any output formatting being performed on the destination keyboard.

If the data is broadcast to a disabled keyboard line, a hung-up modem line, or a
terminal for which broadcast is disabled (that is, the terminal is SET TERMINAL
INOBROADCAST), the call returns control to the program. The call takes no
action, and does not generate a system error. In this case, RECOUNT is equal to
the length of the string that was passed.

Because the actual number of bytes broadcast depends on the availability of small
buffer space, the destination keyboard may not receive all of the bytes broadcast.
Therefore, the program should test the value of the RECOUNT system variable
to determine the number of characters not broadcast. If RECOUNT is not equal
to zero, the program should then issue another broadcast call to transmit the
remaining bytes. See the BASIC-PLUS Language Manual for information on
RECOUNT.

8-86 Broadcast to a Terminal, FO=-5 (.sPEC)

The following sample program segment shows how you can use this SYS call and
the RECOUNT variable to ensure transmission of complete messages:

100 A$=SYS(CHR$ (6%)+CHR$ (-5%)+CHR$ (N%)+M$)
110 IF RECOUNT <> 0% AND RECOUNT <> LEN(M$) THEN

M$=RIGHT(M$,LEN(M$)-RECOUNT+1%)
\SLEEP 1%
\GOTO 100

While the RECOUNT variable is nonzero, the remainder of the string M$ is
rebroadcast. When the complete message is broadcast and RECOUNT is 0, the
program exits from the loop. The program also exits if RECOUNT is equal to the
length of the string, which occurs if the terminal has broadcast disabled or is a
disabled terminal.

8.3.33 Force Input to a Terminal

Data Passed

Bytes

1

2

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(-4%), the force input to a terminal code.

3 CHR$(N%), where N% is the keyboard number of the terminal to receive the
forced input.

4-? 1$ is the input string to force to the terminal. The string must not be null.
LEN(I$) can be greater than 27.

Data Returned

No meaningful data is returned.

Privileges Required

SYSIO

Possible Errors

Meaning

?PROTECTION VIOLATION

The job does not have sufficient privilege, or byte 3 contains an
illegal KB: number.

?ILLEGAL BYTE COUNT FOR 110

An attempt was made to force a zero-length string.

Discussion

ERR Value

10

31

The data forced is seen as input by the system. If the data is forced to a disabled
keyboard line or to a hung-up modem line, control is returned to the program.
The system takes no action and does not generate a system error.

Because the actual number of bytes forced depends on the availability of small
buffer space, the destination keyboard may not receive all of the bytes forced.
Unlike a broadcast to the terminal, however, the system discards characters it
cannot store. Thus, the program cannot determine how many characters were
actually forced.

Force Input to a Terminal, FO=-4 (.SPEC) 8-87

8.3.34 Get Monitor Tables-Part I

Data Passed

Bytes

1

2

3-30

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(-3%), the get monitor tables - part I code.

Reserved; should be O.

Data Returned

Bytes

1

2

3

4

5-6

7-8

9-10

11-12

13-14

15-16

17-18

19-20

21-22

23-24

25-26

27-28

29-30

Meaning

The current job number times 2.

Not used.

(CNT.KB-l) - The maximum keyboard number configured on the system.

(MAXCNT) - The maximum job number allowed during the current time
sharing session.

(DEVCNT) - The table of maximum unit numbers for all devices configured on
the system.

(DEVPTR) - The table of pointers to device data blocks (DDB).

(MEMLST) - The root link word in the first memory control subblock.

(JOBTBL) - The job table.

(JBSTAT) - The job status table.

(JBWAIT) - The table of job wait flags.

(UNTCLU) - The table of unit cluster sizes (low byte) for disks. (UNTOWN)
The table of unit owners (high byte) for disks.

(UNTCNT) - The status table of all disk devices on the system and the count of
open files on each device.

(SATCTL) - The table of free block counts for each disk (other than swapping
disks) on the system. The table SATCTL contains the least significant word
(16 bits) of the double-precision unsigned integer (32 bits) count of free blocks.
Each word applies to a separate disk unit.

(JSBTBL) - The table of job status bits ordered by driver index.

(SATCTM) - The table of free block counts for each disk (other than swapping
disks) on the system. The table SATCTM contains the most significant word
(16 bits) of the double-precision unsigned integer (32 bits) count of free blocks.
Each word applies to a separate disk unit.

Current date in internal format.

(UNTOPT) - The table of unit options.

Privileges Required

None.

Possible Errors

None.

8-88 Get Monitor Tables-Part I, FO=-3 (UU.TB1)

Discussion

The three Get Monitor Table SYS calls return either an address or a data value
to your program. The calls are commonly used with the PEEK function to
read various system parameters and tables that give configuration and run
time information. Because it is beyond the scope of this manual to describe
the monitor, this section only briefly describes the information returned by the
monitor table functions. For a description of Get Monitor Tables - Part II, see
SYS call -12. For a description of Get Monitor Tables - Part III, see SYS call -29.
The section "The PEEK Function" describes the use of the PEEK function for
certain convenient programming operations.

In this section, a name in all uppercase letters denotes each item of informa
tion described. This name is the same one used to identify the information in
the RSTS/E assembly listings. If the name is in parentheses, the information
returned is an address of the data described. If the name is not in parentheses,
the information returned is the actual data value. For example, the Get Monitor
Tables - Part I call returns CNT.KB-1 in byte 3. The value returned is the num
ber of terminal lines minus 1 configured on the system. However, bytes 11 and
12 return (JOBTBL), the address of the table of jobs. Use the PEEK function to
inspect the address.

NOTE

All information returned by the call described in this section is internal
to RSTS/E and is subject to change at any time.

8.3.35 Disable Further logins

Data Passed

Meaning Bytes

1

2

3-30

CHR$(6%), the SYS call to FIP.

CHR$(-2%), the disable further logins code.

Reserved; should be O.

Data Returned

No meaningful data is returned.

Privileges Required

SWCTL

Possible Errors

No errors are possible.

Discussion

This call sets the number of logins allowed on the system to 1. If no jobs are
active on the system, one user can successfully log in to the system. However,
once one user is logged in, any delimiter typed at a logged out terminal returns
the NO LOGINS message.

The number of jobs that can log in to a RSTSIE system is limited by the swapping
space available, the JOB MAX set at system start-up, and the set maximum
number of logins. However, console terminal KBO: is a special terminal and can
log in regardless of the set login maximum, provided that swapping space and

Disable Further Logins, FO=-2 (UU.NLG) 8-89

JOB MAX permit. The system manager can install a patch that changes the
number of the special keyboard from KBO: to some other terminal.

8.3.36 Enable Further logins

Data Passed

Bytes

1

2

3-30

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(-l%), the enable further logins code.

Reserved; should be O.

Data Returned

Bytes Meaning

1 CHR$(J%), where J% is the job number times 2 of the job executing this call.

2 Not used.

3 CHR$(N%), where N% is the number oflogins allowed.

4-30 Not used.

Privileges Required

SWCTL

Possible Errors

None.

Discussion

This call sets the number of logins allowed to the maximum number possible,
given that swap file space may have been added. The call returns this value in
byte 3. The number of logins never exceeds that specified at start-up time (JOB
MAX).

8.3.37 Create User Account

This call has two subfunctions:

.. Create User Account (New Format)

.. Create User Account (Old Format)

8.3.38 Create User Account (New Format)

8.3.38.1 Create User Account (New Format)
Data Passed

Bytes

1

2

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(O%), the create user account code.

8-90 Create User Account (New Format), FO=O (UU.PAS)

3 CHR$(N%), where N% is the number of clusters to preextend the User File
Directory (UFD). See the Discussion for the values you can use.

4 Flag byte. CHR$(128%) to specify disk quotas in the new format.

5-6 CHR$(N%)+CHR$(SWAP%(N%), where N% is the starting device cluster
number for UFD. (Use -1 to place UFD at middle of disk).

7-8

9-12

13-14

15-16

17-18

19

20

21-22

23-24+

25+

26+

27

28

29-30

PPN. The project number can be between 0 and 254 with the exception of
account [0,1]; the programmer number can be between 0 and 254.

Password in Radix-50 format. For a long password, specify 0 in bytes 9-12. See
the Discussion for the procedures to set a long password.

Logged-out quota (LSB).

Expiration date, in RSTSIE internal format: (day of year) + [(number of years
since 1970) * 1000]. Specify 0 to indicate "no expiration."

Logged-in quota (LSB).

Logged-in quota (MSB).

Logged-out quota (MSB).

Reserved; should be O.

Device name.

Unit number.

Unit number flag.

CHR$(C%), where C% is user file directory (UFD) cluster size; 0 means use the
pack cluster size. A negative value means use the absolute value of the number
if it is larger than the pack cluster size. Otherwise, use the pack cluster size.

Reserved; should be O.

Reserved; should be O.

Data Returned

Bytes

17-18

19-20

21-22

23-24

25-26

27-28

29-30

Meaning

CVT%$(SWAP%(X%», where X% is the device cluster number for cluster 0 of
theUFD.

CVT%$(SWAP%(X%», where X% is the device cluster number for cluster 1 of
theUFD.

CVT%$(SWAP%(X%», where X% is the device cluster number for cluster 2 of
theUFD.

CVT%$(SWAP%(X%», where X% is the device cluster number for cluster 3 of
the UFD.

CVT%$(SWAP%(X%», where X% is the device cluster number for cluster 4 of
theUFD.

CVT%$(SWAP%(X%», where X% is the device cluster number for cluster 5 of
the UFD.

CVT%$(SWAP%(X%», where X% is the device cluster number for cluster 6 of
the UFD.

Privileges Required

GACNT

WACNT

Create an account within the group

Create any account

Create User Account (New Format), FO=O (UU.PAS) 8-91

Possible Errors

Meaning

1NO ROOM FOR USER ON DEVICE

The monitor cannot allocate one cluster for the UFD you are
creating because the disk is too full.

?PROTECTION VIOLATION

The PPN is [0,0], or either the project or programmer number is
255.

1FATAL SYSTEM I/O FAILURE

The account has been entered and the directory has been preex
tended. However, the account has not been given a password or
quota because an internal consistency check has failed. Submit
an SPR along with a SAVRES of the disk if you get this error.

1NAME OR ACCOUNT NOW EXISTS

The account specified in the call currently exists on the device
specified.

1ILLEGAL CLUSTER SIZE

The cluster size specified in the call is either greater than 16 or
is nonzero and less than the pack cluster size. See the RSTS / E
System Manager's Guide for a discussion of valid cluster size
values.

1DEVICE NOT FILE STRUCTURED

The device specified is not a disk or the disk is open in non-file
structured mode.

1ILLEGAL BYTE COUNT FOR I/O

The number of clusters specified in byte 3 is less than 0 or greater
than 7.

Or, the position specified in bytes 5 and 6 is beyond the end of the
disk or the UFD, if placed at the specified position, will extend
beyond the end of the disk. See Table 1-1 for information on disk
sizes.

?MISSING SPECIAL FEATURE

You issued the new format call on a disk with RDS1.1 or RDSO.O
disk structure (pre-V9.0). The call returns this error if you:

• Specify a logged-out quota of 0 or between 65536 and
16777214 (2"24-2)

• Specify a logged-in quota other than 16777215 (2"24-1)

Discussion

You can use this call to perfonn the following operations:

• Create accounts on any disk that is mounted.

8-92 Create User Account (New Format), FO=O (UU.PAS)

ERR Value

4

10

12

16

23

30

31

66

II> Preextend and position the UFD which contains the directory entries for all
of the files for the account you are creating. You may improve performance
by preextending UFDs; however, this takes up additional disk space if the
directory space is not used. In general, positioning the directory at the micldle
of the disk improves system performance.

.. Set logged-in and logged-out disk quotas for the account you are creating.
These quotas define the amount of disk space an account may use while
logged-in and logged-out, as well as the maximum amount of disk space a
logged-in account may use.

Byte 3 specifies the number of clusters to preextend the UFD. This byte can
contain the following values:

Bn ~eaning

o Preextend 1 cluster.

1-7 Preextend specified number of clusters.

Any other value returns the error ?IUegal byte count for I/O (ERR=31).

Bytes 5 and 6 specify where on the disk to place the UFD. Device clusters are
numbered from 0 to the maximum shown in Table 1-1. Note that you receive
the error ?Illegal byte count for I/O (ERR=31). if the device cluster number you
specify plus the number of clusters to preextend exceeds the disk size.

Bytes 9-12 are used to specify the password. To establish a long password, specify
o in these bytes. The program should then issue a Set Password SYS call (SYS 8)
to establish the desired password for the account.

Bytes 13, 14, and 20 specify the logged-out quota. Bytes 17, 18, and 19 specify
the logged-in quota. On RDS1.2 disks (V9.0 format), quota values must be in the
range 0 to 16777215 (21\24-1), with 0 meaning no allocation allowed and 16777215
meaning unlimited, On RDS1.1 or RDSO.O disks (pre-V9.0 disks), logged-out
quotas must be in the range 1 to 65535 or 16777215 (meaning unlimited), and
logged-in quotas must be 16777215.

The data returned in bytes 17-30 gives you the device cluster number for each
cluster of the UFD. Check the data returned to determine if there was enough
space on the disk to completely preextend the UFD.

The monitor tries to extend the UFD contiguously, but it allocates non
contiguously if it must. If the monitor finds at least one cluster, no error is
returned. You must check the data returned to see if the number of clusters you
specified were allocated (or to determine if they were allocated contiguously).

8.3.39 Create User Account (Old Format), FO=O (UU.PAS)

8.3.39.1 Create User Account (Old Format)

Data Passed

Bytes

1

2

3

4

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(O%), the create user account code.

CHR$(N%), where N% is the number of clusters to preextend the User File
Directory (UFD). See the Discussion for the values you can use.

Flag byte. CHR$(O%) to indicate old format disk quotas.

Create User Account (Old Format), FO=O (UU.PAS) 8-93

5-6 CHR$(N%)+CHR$(SWAP%(N%), where N% is the starting device cluster
number for UFD. (Use -1 to place UFD at middle of disk.)

7-8 PPN. The project number can be between 0 and 254 with the exception of
account [0,1]; the programmer number can be between 0 and 254.

9-12 Password in Radix-50 format. For a long password, specify 0 in bytes 9-12. See
the Discussion for the procedures to set a long password.

13-14

15-16

17-22

23-24+

25+

26+

27

28-30

Disk quota as an unsigned number. See the section "Unsigned Integer
Numbers" for a description of unsigned numbers. Use 0 for an unlimited
quota.

Expiration date, in RSTSIE internal format: (day of year) + [(number of years
since 1970) * 1000]. Specify 0 to indicate "no expiration."

Reserved; should be O.

Device name.

Unit number.

Unit number flag.

CHR$(C%), where C% is user file directory (UFD) cluster size; 0 means use the
pack cluster size. A negative value means use the absolute value of the number
if it is smaller than the pack cluster size. Otherwise, use the pack cluster size.

Reserved; should be O.

Data Returned

Bytes

17-18

19-20

21-22

23-24

25-26

27-28

29-30

Meaning

CVT%$(SWAP%(X%», where X% is the device cluster number for cluster 0 of
the UFD.

CVT%$(SWAP%(X%», where X% is the device cluster number for cluster 1 of
theUFD.

CVT%$(SWAP%(X%», where X% is the device cluster number for cluster 2 of
the UFD.

CVT%$(SWAP%(X%», where X% is the device cluster number for cluster 3 of
theUFD.

CVT%$(SWAP%(X%», where X% is the device cluster number for cluster 4 of
theUFD.

CVT%$(SWAP%(X%», where X% is the device cluster number for cluster 5 of
the UFD.

CVT%$(SWAP%(X%», where X% is the device cluster number for cluster 6 of
theUFD.

Privileges Required

GACNT

WACNT

Create an account within the group

Create any account

Possible Errors

Meaning

?NO ROOM FOR USER ON DEVICE

The monitor cannot allocate one cluster for the UFD you are
creating because the disk is too full.

8-94 Create User Account (Old Format). FO=O (UU.PAS)

ERR Value

4

Meaning ERR Value

'lPROTECTION VIOLATION

The PPN is [0,0], or either the project or programmer number is
255.

'lFATAL SYSTEM I/O FAILURE

The account has been entered and the directory has been pre ex
tended. However, the account has not been given a password or
quota because an internal consistency check has failed. Submit
an SPR along with a SAVRES of the disk if you get this error.

'lNAME OR ACCOUNT NOW EXISTS

The account specified in the call currently exists on the device
specified.

'!ILLEGAL CLUSTER SIZE

The cluster size specified in the call is either greater than 16 or
is nonzero and less than the pack cluster size. See the RSTS / E
System Manager's Guide for a discussion of valid cluster size
values.

?DEVICE NOT FILE STRUCTURED

The device specified is not a disk or the disk is open in non-file
structured mode.

?ILLEGAL BYTE COUNT FOR I/O

The number of clusters specified in byte 3 is less than ° or greater
than 7.

Or, the position specified in bytes 5 and 6 is beyond the end of the
disk or the UFD, if placed at the specified position, will extend
beyond the end of the disk. See Table 1-1 for information on disk
sizes.

Discussion

You can use this call to perform the following operations:

e Create accounts on any disk that is mounted.

10

12

16

23

30

31

• Preextend and position the UFD which contains the directory entries for all
of the files for the account you are creating. You may improve performance
by preextending UFDs; however, this takes up additional disk space if the
directory space is not used. In general, positioning the directory at the middle
of the disk improves system performance.

• Set a logged-out disk quota for the account you are creating.

• Specify an expiration date for the account you are creating.

Byte 3 specifies the number of clusters to preextend the UFD. This byte can
contain the following values:

Bit Meaning

° Preextend 1 cluster.

Create User Account (Old Format), FO=O (UU.PAS) 8-95

1-7 Preextend specified number of clusters.

Any other value returns the error ?Illegal byte count for I/O (ERR=31).

Bytes 5 and 6 specify where on the disk to place the UFD. Device clusters are
numbered from 0 to the maximum shown in Table 1-1. Note that you receive the
error ?Illegal byte count for I/O if the device cluster number you specify plus the
number of clusters to preextend exceeds the disk size.

Bytes 9-12 are used to specify the password. To establish a long password, specify
o in these bytes. The caller should then issue a Set Password SYS call (SYS 8) to
establish the desired password for the account.

Bytes 13-14 specify the disk quota. Quota values must be in the range 0 to 65535.
If you issue the old format call on an RDS1.2 disk (V9.0 format), the call sets the
following quotas:

G Sets the logged-out quota to the value specified in bytes 13-14. If you specify
0, it sets the logged-out quota to 16777215.

.. Sets the logged-in quota to 16777215.

The data returned in bytes 17-30 gives you the device cluster number for each
cluster of the UFD. Check the data returned to determine if there was enough
space on the disk to completely preextend the UFD.

The monitor tries to extend the UFD contiguously. If the monitor finds at least
one cluster, no error is returned. You must check the data returned to see if the
number of clusters you specified were allocated (or to determine if they were
allocated contiguously).

8.3.40 Delete User Account

Data Passed

Bytes

1

2

3-S

7-8

9-22

23-24+

25+

2S+

27-30

Meaning

CHR$(S%), the SYS call to FIP.

CHR$(I%), the delete user account code

Reserved; should be 0.

PPN. This call generates an error if you specify account [0,0] or [0,1].

Reserved; should be 0.

Device name; must be a disk.

Unit number.

Unit number flag.

Reserved; should be 0.

Data Returned

No meaningful data is returned.

Privileges Required

GACNT
WACNT

Delete an account within the group

Delete any account

8-96 Delete User Account, FO=1 (UU.DLU)

Possible Errors

Meaning

?ACCOUNT OR DEVICE IN USE

For an account being deleted from the public structure, a user is
currently logged in to the system under the account.

?CAN'T FlND FILE OR ACCOUNT

The specified account does not exist.

?DEVICE NOT AVAILABLE

The disk is mounted INOSHARE by another user.

?PROTECTION VIOLATION

Account specified is either [0,0] or [0,1].

?NAME OR ACCOUNT NOW EXISTS

The account contains files (it has not been zeroed).

?DEVICE NOT FILE STRUCTURED

Device specified is not a disk or is a disk open in non-file
structured mode.

Discussion

ERR Value

3

5

8

10

16

30

This call deletes a user account from a private disk or the public structure. If the
error ?Device not available (ERR=8) occurs, you must first delete all files in the
account and release the UFD clusters with the Zero a Device SYS call (SYS 13) or
the DeL DELETE command.

8.3.41 Disk Pack Status

Data Passed

Bytes

1

2

3

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(3%), the disk pack status code.

CHR$(N%); the following values of N% determine the action performed:
Value Action

0% Mount a disk pack or cartridge.

2% Dismount a disk pack or cartridge.

4% Restrict a disk pack or cartridge.

6% Unrestrict a disk pack or cartridge.

8% Load SAT of a disk into memory.

10% Unload SAT of a disk from memory.

For all values of N%:

23-24+ Device name.

Disk Pack Status, FO=3 (UU.MNT) 8-97

25+ Unit number.

26+ Must be 255.

For Mount:

7-10+

11-12

13-16

17-18

19-20

Pack identification label in Radix-50 format.

CHR$(F%), where F% is a flag that determines whether a logical name is to
be used. If both bytes are 0, the call attempts to use the pack identification. If
both bytes are 255%, the call attempts to substitute the name given in bytes 13
through 16 for the pack identification.

First six characters of the logical name for this disk, in Radix-50 format (see
bytes 19-20). Ifbytes 11-12 are 255%, the logical name given here and in bytes
19-20 replaces the pack identification as the system-wide logical name. If bytes
11-12 are 255% and these bytes are 0, the system places 0 in the logical name
table.

Mode word. If the sign bit is not set (bit 15 is 0), a mode value is not used on
the mount operation. Ifthe sign bit is set (32767%+1% is included in the value
of this word), the following bit definitions are recognized:

Value ~eaning

256% Mount disk INOQUOTA.

1024% Mount with pack identification lookup. See Discussion.

2048% Mount disk for one user only (INOSHARE).

4096%

8192%

16384%

Mount disk read/write even if disk was initialized as read-only.

Mount disk for read-only access.

Mount as a private disk (!PRIVATE).

Note that you can combine the various mode bits where appropriate.

Last three characters of the logical name for this disk, in Radix-50 format (see
bytes 13-16). When you use a logical name of fewer than 9 characters, you must
fill the extra space with blanks. If bytes 11-12 are 255%, the logical name given
here and in bytes 13-16 replaces the pack identification as the system-wide
logical name. If bytes 11-12 are 255% and these bytes are 0, the system places
o in the logical name table.

Data Returned (Mount a disk pack or cartridge)

Bytes

1

2-12

13-16

17-18

19-20

21-30

Meaning

The current job number times 2.

Not used.

First two words of the logical name used for this disk, in Radix-50 format.

Not used.

Third word of the logical name used for this disk, in Radix-50 format.

Not used.

Data Returned (Load SAT into Memory)

Bytes

1

2-12

13-14

17-30

Meaning

The current job number times 2.

Not used.

The amount of memory used (in bytes).

Not used.

8-98 Disk Pack Status, FO=3 (UU.MNT)

Privileges Required

HWCFG Declare a mounted disk as restricted or unrestricted

MOUNT Mount or dismount a disk /SHARE;
Dismount a disk owned (INOSHARE) by another account;
Mount a disk INOSHARE for a job running under another PPN;
Mount a dirty disk

SWCTL Load SAT of a disk into memory or unload SAT of a disk from memory

Possible Errors

Meaning

1ACCOUNT OR DEVICE IN USE

An attempt is made to dismount a disk that has an open file.

1NOT A VALID DEVICE

The device specification supplied in bytes 23 through 26 is illegal
because the unit or its type is not configured on the system.

1110 CHANNEL ALREADY OPEN

An attempt was made to load the SAT of a disk into memory more
than once.

1110 CHANNEL NOT OPEN

You tried to unload a SAT that was not loaded.

1PROTECTION VIOLATION

An attempt is made to mount a disk that does not contain the
RSTSIE file structure. Use either the INITIALIZE command, the
online DSKINT program, or the DSKINT initialization option to
initialize the disk. Or, you do not have the required privilege for
the attempted operation.

1DEVICE HUNG OR WRITE LOCKED

An attempt is made to mount a disk read/write that is not write
enabled. Or, an attempt was made to load the SAT of a read-only
disk.

1ILLEGAL SYS() USAGE

An attempt to mount a disk that is already mounted or that
resides in a non-dismounted drive; or disk specified is the system
disk.

1PACK IDS DON'T MATCH

An attempt is made to mount a disk with an incorrect pack label.

1DISK PACK IS NOT MOUNTED

An attempt is made to lock, unlock, or dismount a disk that is not
mounted. Or, an attempt is made to load or unload the SAT of a
disk that is not mounted.

ERR Value

3

6

7

9

10

14

18

20

21

Disk Pack Status, FO=3 (UU.MNT) 8-99

Meaning

?DISK PACK NEEDS REBUILDING

The storage allocation table on the disk needs to be restructured
because the disk was not properly dismounted when it was last
used. Before using the disk, use the MOUNT command or the
ONLCLN program to rebuild the storage allocation table. Note
that when this error occurs, the disk is always mounted read-only
with the "dirty" bit set.

?FATAL DISK PACK MOUNT ERROR

The disk structure is invalid. For example, the cluster size is
larger than 16 or the storage allocation table is unreadable.

?DEVICE NOT FILE STRUCTURED

An attempt is made to restrict, unrestrict, or dismount a disk
currently opened in non-file-structured mode. Or, an attempt is
made to load or unload the SAT of a disk currently opened in
non-file-structured mode.

?NO BUFFER SPACE AVAILABLE

An attempt was made to load the SAT of a disk into memory and
no memory is available.

Discussion

ERR Value

25

26

30

32

This call lets you mount, dismount, restrict, and unrestrict a disk, load the
Storage Allocation Table (SAT) of a disk into memory, or unload the SAT of a disk
from memory. For a discussion of disk management on RSTSIE, see the RSTS / E
System Manager's Guide.

The load SAT subfunction is used to load the SAT of a disk into memory. Loading
the SAT of a unit reduces the amount of disk I/O which the file processor needs
to do, thereby increasing overall system throughput. The unload SAT subfunction
frees XBUF for other use.

The mode value in bytes 17 and 18 of the mount call modifies the mount opera
tion:

• MODE values 16384% and 8192% correspond to the /PRIVATE and
/NOWRITE qualifiers of the DCL MOUNT command.

• MODE value 4096% mounts packs initialized as /NOWRITE in read/write
mode (normally such packs are mounted read-only). This mode is used by the
!WRITE qualifier of the DCL MOUNT command.

• MODE value 2048% mounts the disk for a single user. Only that user can
access the disk; other users receive the error ?ACCOUNT OR DEVICE IN
USE (ERR = 3). In addition, mounting a disk /NOSHARE disables any
privileged programs on that disk. The system automatically dismounts the
disk when the user logs out or the job is killed.

• MODE value 1024% mounts a disk without specifying the pack identification
label. The system looks up the pack identification label on the disk.

• MODE value 256% mounts a disk /NOQUOTA. This instructs the monitor not
to perform quota checking on the unit.

8-100 Disk Pack Status, FO=3 (UU.MNT)

The mount version of this can first mounts the disk pack or cartridge and then
determines whether a logical name should be placed in the system logical name
table. If the mount operation fails, an error is returned to the program. If the
mount succeeds, the call checks bytes 11 and 12 of the data passed.

Null characters in bytes 11 and 12 mean that the pack identification is to be
placed in the table as the logical name for that disk unit. The call scans the
entire table. If the name is not currently in use, the pack identification is placed
in the table and is written in bytes 13 through 16 of the data returned to the
program. This action notifies the program that a logical name is current for
that disk unit. If the pack identification is currently in use as a logical name
for another device, the call writes null bytes in the table. To notify the program
that a logical name was not placed in the table, null characters are written in
bytes 13-16 and 19-20 of the data returned. No error is returned to the program
because the mount operation itself succeeded.

If bytes 11 and 12 of the data passed are 255%, the call attempts to place in the
logical name table the name found in bytes 13-16 and 19-20. Ifbytes 13-16 and
19-20 contain null bytes, no name is placed in the table. When bytes 13-16 and
19-20 contain a logical name, the call performs the same actions as previously
described for the pack identification to place the name in the table. The program
should check the data returned to determine whether a logical name is in effect.
If the call found the logical name currently in use, it does not attempt to use the
pack identification.

8.3.42 loginlVerify Password

Data Passed

Bytes

1

2

3

4

5-6+

7-20

21-22

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(4%), the LOGIN code.

Reserved; should be O.

CHR$(L%+P%), where:

L% indicates whether to perfonn a LOGIN or check a password. L% can be one
of the following values:

Value Meaning

0% Perfonn the login function.

1 % Check the password only.

4% Check the system password. See Discussion.

8% Perfonn the login function without checking the password.

P% indicates the password fonnat. P% can be one of the following values:

Value Meaning

0% The password is specified as 2 words of Radix-50 data (old fonnat).

2% The password is specified as 14 bytes of ASCII data (new fonnat).

PPN; must not be group [0,*].

Password of the account specified in bytes 5 and 6. If P% in byte 4 is 0, specify
the password in bytes 7-10 in Radix-50 fonnat, and pad the extra bytes with
nulls. If P% in byte 4 is 2, specify the password as 14 bytes of ASCII data.

Reserved; should be O.

Login/Verify Password, FO=4 (UU.LlN) 8-101

23-24+ Device name; must be a disk. You must specify the device if you are verifying
a user password (L%=1). This field is reserved for login (L%=O% or L%=8%)
and verify system password (L%=4%). However, you do not need to specify the
device if you are verifying a system password (L%=4).

25+

26+

27-30

Device unit number.

Unit number real flag.

Reserved; should be O.

Data Returned for Login Function

Bytes

1

2

Meaning

The current job number times 2.

Flag byte. See Discussion.

3 Total number of jobs logged in to the system under this account.

4-30 Job numbers of each job running detached under this account. A byte of
CHR$(O%) signifies the end of the list. Only the first 25 job numbers are
returned.

Data Returned for Check Password Function

No meaningful data is returned.

Privileges Required

None Login to an account with the correct password

GACNT For any account within the group: check password, or log in without check
ing password

WACNT

DEVICE

For any account: check password, or log in without checking password

Check any password on a restricted disk (required in addition to the GACNT
IWACNT privilege)

Possible Errors

Meaning

?BAD DIRECTORY FOR DEVICE

The account does not have all the necessary directory structures.

?ILLEGAL FILE NAME

When verifying a password other than the system password, the
given password does not match the account password.

?CAN'T FIND FILE OR ACCOUNT

One of the following conditions occurred:

• The PPN specified in the call is [0,1] or does not exist.
• The password specified in the call does not match the pass

word of the account on the system.

• The system password specified in the call does not match the
password block that exists in account [0,1].

8-102 LoginNerify Password, FO=4 (UU.LlN)

ERR Value

1

2

5

Meaning

?PROTECTION VIOLATION

You tried to verify a user password but did not specify the device
name and unit number.

?NO BUFFER SPACE AVAILABLE

No buffers are available to create the necessary internal struc
tures.

Discussion

This call performs three functions:

ERR Value

10

32

• Logs in a job. If the calling job is already logged in to the system, this call
does not change the job's account. The data returned in bytes 3 through
30 refers to the same account under which the job is running. The caller
specifies passwords either as two words of Radix-50 data (old format), or as
14 bytes of ASCII data (new format).

• Verifies a password while logged in. This function allows a program to verify
a user-supplied password without having to log out and back in.

• Checks a system password.

Bit 2 of byte 4 is the system password flag. If bit 2 is set, then the system
performs the check system password function. Successful completion of this
function sets a "system password verified" flag in the job data structure, which is
checked by the Login function. The caller passes the system password to check
in bytes 7-20. The system follows these procedures when performing a system
password check:

1. If the caller already has the "system password verified" flag set, then this
function completes immediately.

2. The system checks whether the system password applies to this job. The
system manager uses the SET SYSTEMIPASSWORD_PROMPT command
to specify which jobs require the system password. For example, the system
password may be set to apply only to dial-up and network jobs. In that
case, local jobs do not require a system password. The function completes
successfully, but it does not set the "system password verified" flag.

3. If a system password applies to the job, the system looks for the password
block of the [0,1] account on the system disk. If there is none, the function
completes successfully.

4. If a password block exists in account [0,1], then the system compares it
against the specified value. If they match, the function completes successfully.
Otherwise, it returns the error ?Can't find file or account (ERR=5).

Byte 2 is the flag byte. On the login function, this byte reports cases where the
password and PPN are valid but the job or detached quota for the account are
exceeded. Values are:

Value Meaning

-1 Login succeeded

-2 Login rejected, detached job quota exceeded

o or Positive Login rejected, job quota exceeded

If the call returns a value other than -1, the job is still logged out.

LoginlVerify Password, .FO=4 (UU.LlN) 8-103

If the login is for a physical keyboard or pseudo keyboard, the directive updates
the date and time for the last interactive login. If the login is for a batch process
or network server, the directive updates the date and time for the last non
interactive login.

8.3.43 Logout

Data Passed

Bytes

1

2

3-4

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(5%), the LOGOUT code.

CVT%$(SWAP%(N%+NO%», where N% and NO% can have the following values:
N%=O% Close files, deassign devices, remove receivers, and dismount disks

mounted INOSHARE.

N%=I% Log out without closing files, deassigning devices, removing re
ceivers, and dismounting disks mounted INOSHARE.

NO%=O% Check detached job and disk quotas on all mounted disks before
logout.

NO%=2% Perform logout without checking quotas.

N% is forced to zero if you do not have WACNT privilege. NO% is forced to zero
if you do not have EXQTA privilege.

5-30 Reserved; should be O.

Data Returned

Bytes

1-2

3-4

5-12

13

Meaning

Not used.

Logout status. The following values can be returned:
o = No quota is exceeded. If you have WACNT privilege, the system

returns control to your program, and you can examine the data
returned. If you do not have WACNT privilege, the system does not
return control to your program. Instead, the system kills your job
after performing necessary clean-up functions.

-1 = Either the disk or detached job quota is exceeded; your job is still
logged in. (Byte 13 tells you which quota is exceeded.)

-2 = A disk quota is exceeded; your job is logged out. If you have WACNT
privilege, the system returns control to your program. If you do not
have WACNT privilege, the system kills your job after performing
necessary clean-up functions.

See the Discussion for an explanation of quota checking.

Not used.

If bytes 3-4 contain -1, or -2, this byte indicates which quota is exceeded by
returning one of the following values:

o = Disk quota.
1 = Detached job quota.

If a quota is exceeded, the following data is returned:

15 Ifbyte 13 is 0, this byte returns the current disk quota (MSB) in blocks as an
unsigned integer.

8-104 Logout, FO=5 (UU.BYE)

16

17

18

19-20

21-22

23-24+

25+

26+

27-30

Ifbyte 13 is 0, this byte returns the current disk usage (MSB) in blocks as an
unsigned integer.

If byte 13 is 1, this byte contains the number of detached jobs currently active
in the account.

If byte 13 is 1, this byte contains the number of detached jobs allowed on logout.
(Byte 17 minus byte 18 is the number of detached jobs over quota.)

Ifbyte 13 is 0, these bytes return the current disk quota (LSB) in blocks as an
unsigned integer. (See the section "Unsigned Integer Numbers.")

If byte 13 is 0, these bytes return current disk usage in blocks (LSB) as an
unsigned integer. (See the section "Unsigned Integer Numbers. ")

Ifbyte 13 is 0, these bytes return the disk name as 2 ASCII characters as an
unsigned integer. (See the section "Unsigned Integer Numbers.")

If byte 13 is 0, this byte contains the unit number as 2 ASCII characters.

Unit number flag.

Not used.

Privileges Required

None

WACNT

EXQTA

Log out normally

Log out without self-kill

Suppress quota checks on logout (NO%=2% in bytes 3-4)

Possible Errors

None.

Discussion

The LOGOUT and LOGIN system programs use this call. It can close all open
channels, deassign all devices, and clear the job from the monitor message table
(depending on the values passed in bytes 3-4). In addition, the call updates
statistics on the disk and disassociates the PPN from the job number. The call
also enforces quotas on all disks at log-out time (all disks mounted read/write
with quota checking enabled must be under quota at log-out time).

Note that if the caller has WACNT privilege, this call does not immediately
terminate the job. Instead, the monitor terminates a logged-out job when the
program the job is running finishes executing. If the caller does not have WACNT
privilege, this call terminates the job immediately, effectively performing a
self-kill.

If a quota is exceeded, byte 13 of the returned data indicates which quota (the
system only reports this information for the first encountered quota exceeded). If
the detached job quota is exceeded, the call does not perform the logout. If a disk
quota is exceeded and bytes 3-4 are returned as -2, at least one other attached
job is logged in to the account, and the call performs the logout with a quota
warning. However, if a disk quota is exceeded and bytes 3-4 are equal to -1, the
call does not perform the logout. Note that the calling program should examine
bytes 3-4 to determine if the logout function was performed. For callers without
sufficient privilege, control returns to the program only if the call did not perform
the logout (bytes 3-4 are returned as -1).

Logout, FO=5 (UU.BYE) 8-105

8.3.44 Attach

This call has three subfunctions:

III Attach

III Reattach

III Swap Console

Th use this call, you need to understand the concept of terminal ownership. A
terminal is "owned" when:

III It becomes attached to a job by logging in. When data is entered at a free
terminal, the system starts a job to handle the input and gives the job the
next available job number. The system then starts the LOGIN program to
allow the user to log in to the system. (See the RSTS / E System User's Guide
for the operational details.)

When a user is logged in to the system, the system associates the activated
job with both the terminal at which the user is typing and the account
number used for system identification. The job is then considered active
on the system and in attached mode (or attached to the terminal). The
system associates I/O channel 0 with the terminal that activated the job.
The terminal associated with channel 0 is called the job's console terminal or
console keyboard. A job can have only one console terminal, the keyboard to
which it is attached.

III It is opened on a nonzero channel. A job can own several terminals that are
open on nonzero channels.

III It is allocated for the use of a job (with the the DeL ALLOCATE command).

8.3.44.1 Attach

Data Passed

Bytes

1

2

3

4

5-6+

7-20

21-30

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(6%), the attach and reattach code. The attach code is the same as the
reattach code, except that the format of the data passed is different. See the
next section for the format of the Reattach SYS call.

The number of the job to attach to the terminal.

CHR$(N%+P%), where N% is 0 and P% can be one ofthe following values:

P%=O% The password is specified as 2 words of Radix-50 data (old format).

P%=2% The password is specified as 14 bytes of ASCII data (new format).

P%=4% Suppress the password check.

PPN of the job to attach to the terminal, or zero to specifY the same PPN as the
caller.

Password of the account specified in bytes 5 and 6 (not necessary if the PPN of
the job being attached matches that of the caller). If P% in byte 4 is 0, specifY
the password in bytes 7-10 in Radix-50 format, and pad the extra bytes with
nulls. If P% in byte 4 is 2, specifY the password as 14 bytes of ASCII data and
pad the the extra bytes with nulls. See Discussion.

Reserved; should be O.

Data Returned

No meaningful data is returned.

8-106 Attach, FO=6 (UU.ATI)

Privileges Required

None

GACNT

WACNT

Attach to a job running under the caller's PPN

Attach to a job in anot.her account within the same group

Attach to a job in any account

Possible Errors

Meaning ERR Value

?ILLEGAL SYS() USAGE

One of the following conditions generates the error:

.. The job executing the call has an open channel.

• The job executing the call is a source (.BAS) program rather
than a compiled (.BAC) program.

• The job number specified in byte 3 is not a detached job.

• The account in the call does not match the PPN of the job
being attached.

• The job being attached has a PPN different from that of the
caller, and the password does not match.

.. The job executing the call is detached.

• The caller does not have sufficient privilege to attach to a job
that is running under a different PPN than the caller.

Discussion

18

The LOGIN system program executes this call. See the description of the
ATTACH command in the RSTS/E System User's Guide for an example of
the call's use. Note that, if byte 3 is the number of the job executing the call, the
system performs the reattach action. See the next section for a description of the
reattach process.

If the job being attached has the same PPN as the caller, no password is needed.
However, if the job being attached has a PPN different from the caller, the
password is required unless the suppress password check flag is set (P%=4%).

8.3.44.2 Reattach
Data Passed

Bytes

1

2

3

4

5-30

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(6%), the attach and reattach code. The reattach code is the same as the
attach code, but the format of the data passed is different. See the previous
section for the attach format.

CHR$(J%), where J% is the number of the job executing the call.

CHR$(K%), where K% is the keyboard number of the terminal to which the
calling job is to be attached.

Reserved; should be O.

Attach, FO=6 (UU.ATT) 8-107

Data Returned

No meaningful data is returned.

Privileges Required

DEVICE Reattach to a tenninal that is a restricted device

Possible Errors

Meaning

?ILLEGAL SYS() USAGE

One of the following conditions generates the error:

" The job number specified in byte 3 is less than 1 or greater
than the JOB MAX value on the system.

" The job executing the call is not detached.
" The keyboard number in byte 4 is out of range.

" The tenninal specified by the keyboard number in byte 4 is
currently assigned, opened, or the console keyboard of some
job other than the calling job.

" The tenninal specified is a restricted device and you do not
have the DEVICE privilege.

Discussion

ERR Value

18

This call performs differently for users with or without DEVICE privilege. If a
job with DEVICE privilege executes the reattach can, the call establishes the
terminal specified in byte 4 as the job's console keyboard. In this manner, a job
can reattach to a terminal after having detached.

This call is also available to users who do not have DEVICE privilege, with
certain restrictions. If the job issuing the reattach request has the specified
terminal assigned, the request is accepted. If the terminal is free (not assigned),
the reattach is allowed only if the terminal has not been marked restricted (by
the SET DEVICE command). If the terminal is marked restricted and is free, the
job must have DEVICE privilege to reattach to it.

8-108 Attach, FO=6 (UU.ATT)

8.3.44.3 Swap Console
Data Passed

Bytes

1

Meaning

CHR$(6%), the SYS call to FIP.

2 CHR$(6%), the attach, reattach, and swap console code. The swap console code
is the same as the attach and reattach code, but the format of the data passed
is different. See the previous two sections for the attach and reattach formats.

3 CHR$(J%), where J% is the job number to swap with. If the calling job is
attached, this job must be detached. If the calling job is detached, this job must
be attached. Both the calling job and this job must be running under the same
PPN.

4 CHR$(S%), where S% is 1 to indicate the swap console function.

Data Returned

No meaningful data is returned.

Privileges Required

None.

Possible Errors

Meaning

?ILLEGAL SYS () USAGE

One of the following conditions generates this error:

• Both the calling job and the job specified in byte 3 are de
tached, or neither job is detached.

• The job specified in byte 3 has a PPN different from the
caller's.

• The value in byte 4 is neither 0 nor 1.

Discussion

ERR Value

18

The swap console call allows two jobs, one of which is detached, to exchange own
ership of a console terminal. In effect, this call combines a detach of the attached
job with a reattach of the detached job. Its purpose is to allow detached pro
grams to temporarily obtain ownership of a console to perform certain functions
at the request of the program running at that terminal. Once these functions
are performed, ownership of the console can then be returned to the requesting
program.

This call requires no privileges and can be executed by either a detached job or
an attached job. Both jobs must be running under the same PPN. If the caller
is detached, the job specified must be attached. If the caller is attached, the job
specified must be detached. If these conditions are met, the job that was attached
will be detached from its console, and the job that was detached will be attached
to that console.

This call does not affect open files or ownership of devices with one exception:
any channels open on KB:. These channels are affected because the job that
was detached now has its console back, and the job that was attached no longer
has a console. The effect is the same as an ordinary detach (with CLOSE option
specified, see SYS call 7, Detach) or reattach operation.

Attach, FO=6 (UU.ATI) 8-109

8.3.45 Detach

Data Passed

Bytes

1

2

3

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(7%), the detach code.

CHR$(J%+C%), where:

J% is the number of the job to detach:
J%=O% Detach the calling job (also the case if byte 3 is not specified).

J%=l %-63% Detach another job.

C% is the CLOSE flag:

C%=O% Do not deassign the console or close its 1/0 channels (also the
case if byte 3 is not specified).

C%=128% Deassign the console and close all I/O channels on which the
console is open after detaching the job.

Data Returned

No meaningful data is returned.

Privileges Required

None Detach your own job

Detach another job JOBCTL

EXQTA Detach the job even if the detached job quota is exceeded

Possible Errors

Meaning

?NO ROOM FOR USER ON DEVICE

There are no more job slots available, or no small buffers to create
the new job.

?ILLEGAL SYS() USAGE

The job is already detached.

?NO BUFFER SPACE AVAILABLE

No small buffers are available for a context buffer to create the
new job.

?QUOTA EXCEEDED

You exceeded the detached job quota.

Discussion

ERR Value

4

18

32

69

To use this call, you need to understand the concept of terminal ownership. See
the introduction to the Attach SYS call (SYS 6) for more information on terminal
ownership.

8-110 Detach, FO=7 (UU.DET)

This can disassociates the calling job or another job from its console keyboard.
The following sample program segment prints a message and detaches itself from
the keyboard:

100 PRINT "DETACHING ... "
! NOTIFY THE USER

110 A$ = SYS(CHR$(6%) + CHR$(7%»
! DO THE DETACH

It is possible for a job to be detached while still maintaining ownership of a
terminal.

By executing this call, a job can detach itself from its console terminal, or,
if it has the required privilege, detach another attached job from its console
terminal. Mter a job is placed in the detached state, it runs like any other job
on the system, but it does not have access to its console terminal (on channel
0). The detached state is advantageous for noninteractive jobs. By detaching,
the job frees a terminal for other use and becomes immune from interruption by
CtrllC. (See Chapter 4 for a description of MODE 16%, which prevents CtrllC
interruption and hibernation.)

The values passed in byte 3 specify the job number to detach and determine
whether I/O channels are closed. The following paragraphs explain how the "close
flag" (bit 7, value 128%) works.

If the detached job has its console terminal open on some nonzero channel, and
128% is not specified in byte 3 of the data passed, the job can perform I/O on
the keyboard from which it is detached. However, it must use a nonzero I/O
channel. In addition, a terminal that is previously assigned remains assigned. If
the detached job tries to perform I/O on channel 0, the system places the job in
the hibernate state. (A job in the hibernate state is suspended until some user
attaches to it.) A detached job that performs 110 to the detached keyboard on
a nonzero channel, however, retains control of the terminal (I/O is performed).
Thus, the terminal is not free for other use.

Specifying 128% in byte 3 of the data passed forces the system to disassociate the
terminal from any nonzero I/O channel being used. This value also forces deas
signment of the console terminal if it was previously assigned. The disassociation
that the detach call performs thus includes all channels on which the console
terminal is open. The keyboard from which the job is detached is explicitly forced
to be free. An attempt by the detached job to perform I/O to the terminal on the
nonzero channel causes the system to place the job in the hibernate state (or if
the terminal was opened with MODE 16%, returns the error ?I/O to detached
keyboard).

If a job running under the control of a DCL command file detaches itself using
this call, a new job is created at that terminal, logged in to the same account,
and execution of the command file continues with the new job. The call creates
a new job only if the terminal is closed (with the dose flag) or is not open on
any channel. See the Guide to Writing DCL Command Procedures for more
information on writing DCL command files.

8.3.46 Change Quota, Password, Expiration Date

This call has five subfunctions:

e Change Quota (New Format)lExpiration DatelPassword (Old Format)

• Change Quota (Old Format)lExpiration DatelPassword (Old Format)

• Set Password (New Format)

Change Quota, Password, Expiration Date, FO=8 (UU.CHU) 8-111

e Kill Job

e Disable Terminal

8.3.46.1 Change Quota (New Format)/Expiration Date/Password (Old Format)

Data Passed

Bytes

1

Meaning

CHR$(6%), the SYS call to FIP.

2

3

CHR$(8%), the change quota, password, kill job, and disable terminal code.

Detached job quota.

4 Flag byte. See the Discussion for the values you can use.

Reserved; should be O.

PPN. Zero for both values means the current account.

5-6

7-8

9-12 New password in Radix-50 format (pre-V9.0 format). All zeros means no
change. See the next section, "Set Password," for a description of how to set
passwords using V9.0 format.

Logged-out quota (LSB). 13-14

15-16 Expiration date, in RSTSIE internal format: (day of year) + [(number of years
since 1970) * 1000). CHR$(O%) indicates no change.

17-18

19

20

Logged-in quota (LSB).

Logged-in quota (MSB).

Logged-out quota (MSB).

21 CHR$(255%) to change any quota (see byte 4). CHR$(O%) to indicate that no
change is to be made to the quota.

22 Reserved; should be O.

23-24+

25+

26+

27-28

29-30

Device name. If no device name is specified, SY: is used.

Unit number.

Unit number flag.

Must be CHR$(O%).

Reserved; should be O.

Data Returned

No meaningful data is returned.

Privileges Required

GACNT

WACNT

Change quota or expiration date within the group

Change any quota or expiration date

Possible Errors

Meaning

1BAD DffiECTORY FOR DEVICE

The account does not have all the necessary directory structures.

8-112 Change Quota, Password, Expiration Date, FO=8 (UU.CHU)

ERR Value

1

Meaning ERR Value

?ILLEGAL FaE NAME

You specified a password that was less than six characters. Or,
you specified a password that contained illegal characters (such as
?).

?CAN'T F1ND FILE OR ACCOUNT

The account is not present on the disk specified.

?NOT A VALID DEVICE

The device specification supplied in bytes 23 through 26 is illegal
because the unit or its type is not configured on the system.

?ILLEGAL SYS() USAGE

The device specified is not a disk.

?MlSSING SPECIAL FEATURE

You issued the new format call on a disk with RDS1.1 or RDSO.O
disk structure (pre-version 9.0). The call returns this error if you:

• Specify a logged-out quota of 0 or between 65536 and
16777214 (2"'24-2)

• Specify a logged-in quota other than 16777215 (2"'24-1)

Discussion

2

5

6

18

66

You can use this call to perlorm any or all of the following operations:

• Change logged-in and logged-out disk quotas for the account. These quotas
define the amount of disk space an account can use while logged-in and
logged-out, as well as the maximum amount of disk space a logged-in account
can use.

• Change a user's password using the old format. To change a password using
the new 14 character ASCII format, see the next section, "Set Password."

Byte 4 specifies the flag byte. This byte can contain the following values:

Value

0%

1%

2%

4%

8%

16%

32%

64%

128%

Meaning

Change disk quota using old format (see next subfunction)

Change logged-out quota (new format)

Change logged-in quota (new format)

Reserved

Change detached job quota (new format)

Reserved

Reserved

Reserved

Change disk quota using new format

Bytes 13, 14, and 20 specify the logged-out disk quota. Bytes 17, 18, and 19
specify the logged-in quotas. Quota values must be in the range 0 to 16777215
(21\24-1). On pre-version 9.0 disks, logged-out quotas must be in the range 1 to
65535 or 16777215, and the call rejects logged-in quotas other than 16777215.

Change Quota, Password, Expiration Date, FO=8 (UU.CHU) 8-113

8.3.46.2 Change Quota (Old Format)/Expiration Date/Password (Old Format)

Data Passed

Bytes

1

Meaning

CHR$(6%), the SYS call to FIP.

2

3

CHR$(8%), the change quota, password, kill job, and disable terminal code.

Reserved; should be O.

4 CHR$(O%), to indicate the old format quotas.

Reserved; should be O.

PPN. Zero for both values means the current account.

5-6

7-8

9-12 New password in Radix-50 format (pre-V9.0 format). All zeros means no
change. See the next section, "Set Password," for a description of how to set
passwords using V9.0 format.

13-14 CHR$(N%)+CHR$(SWAP%(N%», where N% is the number of blocks for the
quota. If N% is zero, the quota is unlimited (see byte 21).

15-16 Expiration date, in RSTSIE internal format: (day of year) + [(number of years
since 1970) * 1000]. CHR$(O%) to indicate no change.

Reserved; should be O. 17-20

21 CHR$(255%) to change the logged-out disk quota (see bytes 13-14). CHR$(O%)
to indicate that no change is to be made to the quota.

22

23-24+

25+

26+

27-28

29-30

Reserved; should be O.

Device name. If no device name is specified, SY: is used.

Unit number.

Unit number flag.

Must be CHR$(O%).

Reserved; should be O.

Data Returned

No meaningful data is returned.

Privileges Required

GACNT

WACNT

Change quota or password within the group

Change any quota or password

Possible Errors

Meaning

1ILLEGAL FILE NAME

You specified a password that was less than six characters. Or,
you specified a password that contained illegal characters.

?CAN'T FIND FILE OR ACCOUNT

The account is not present on the disk specified.

?NOT A VALID DEVICE

The device specification supplied in bytes 23 through 26 is illegal
because the unit or its type is not configured on the system.

8-114 Change Quota, Password, Expiration Date, FO=8 (UU.CHU)

ERR Value

2

5

6

Meaning ERR Value

?ILLEGAL SYS() USAGE 18

The device specified is not a disk.

Discussion

You can use this call to perfonn any or all of the following operations:

• Change logged-out disk quotas for the account using the old fonnat.

• Change a user's password using the old fonnat. 'lb change a password using
the new 14 character ASCII fonnat, see the next section, "Set Password."

• Change the expiration date for the account.

Bytes 13-14 specify the logged-out disk quota. Quota values must be in the range
o to 65535. A value of 0 means unlimited; for RDS1.1 disks, this is converted into
16777215 (21\24-1).

8.3.46.3 Set Password (New Format)
Data Passed

Bytes

1

2

3-4

5-6+

7-20

21-22

23-24+

25+

26+

27

28

29-30

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(8%), the change quota, password, kill job, and disable terminal code.

Reserved; should be O.

PPN. Zero for both values means the current account.

New password as 14 bytes of ASCII data (V9.0 format), padded with nulls if
necessary. If the first byte is 0, the password information is deleted, signifying
an account that cannot be logged in to in any way. See Discussion.

Reserved; should be O.

Device name. If no device name is specified, SY: is used.

Unit number.

Unit number flag.

Must be CHR$(255%).

Must be CHR$(O%).

Reserved; should be O.

Data Returned

No meaningful data is returned.

Privileges Required

GACNT

WACNT

Change any password within the group

Change any password

Change Quota, Password, Expiration Date, FO=8 (UU.CHU) 8-115

Possible Errors

Meaning

?ILLEGAL FILE NAME

You specified a password that was less than six characters. Or,
you specified a password that contained illegal characters (such as
?).

?CAN'T FIND FILE OR ACCOUNT

The account is not present on the disk specified.

?NOT A VALID DEVICE

The device specification supplied in bytes 23 through 26 is illegal
because the unit or its type is not configured on the system.

?ILLEGAL SYS() USAGE

The device specified is not a disk.

Discussion

ERR Value

2

5

6

18

You can use this call to set a 14 character ASCII password for an account.
Passwords can contain any printing character except question mark (?), including
punctuation and supplemental characters. The system does not distinguish
lowercase from uppercase characters. If the account is set up to have a readable
password (!LOOKUP qualifier on the SET ACCOUNT or CREATE/ACCOUNT
command), then the password must be 6 alphanumeric characters long.

You specify the new password in bytes 7-20. If the first byte is 0, the system
deletes the password information, in effect changing the account into a no-user
account. See the RSTS / E System Manager's Guide for more information on
accounts.

8.3.46.4 Kill Job

Data Passed

Bytes

1

2

3

4-26

27

28

29-30

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(8%), the change password/quota, kill job, and disable terminal code.

CHR$(N%), where N% is the number of the job to kill, or 0 to kill the caller's
job.

Reserved; should be O.

Must be CHR$(O%); this byte differentiates the kill job call from the disable
terminal call.

Must be CHR$(255%).

Reserved; should be O.

Data Returned

No meaningful data is returned.

Privileges Required

JOBCTL

8-116 Change Quota, Password, Expiration Date, FO=8 (UU.CHU)

Possible Errors

Meaning ERR Value

?ILLEGAL SYS() USAGE 18

The job number specified is invalid.

Discussion

This call provides the normal way for a privileged job to terminate itself under
programmed control. The job must execute the Kill a Job SYS call with job
number specified as O. The kill does all of the cleanup that the Logout SYS
call (SYS 5) does and can be executed under program control by any privileged
program.

Note that if you do not have JOBCTL privilege, you use the Logout call instead of
this call to kill your current job. See SYS call 5, Logout.

8.3.46.5 Disable Terminal
Data Passed

Bytes

1

Meaning

CHR$(6%), the SYS call to FIP.

2

3

4-26

27

CHR$(8%), the change password/quota, kill job, and disable terminal code.

CHR$(N%), where N% is the keyboard number of the terminal to disable.

Reserved; should be O.

28

29-30

Must be CHR$(255%) to differentiate this call from the kill job call.

Must be CHR$(255%).

Reserved; should be O.

Data Returned

No meaningful data is returned.

Privileges Required

HWCTL

Possible Errors

?ILLEGAL SYS() USAGE

Meaning

Keyboard number is greater than the number of terminals on the
system; keyboard number corresponds to a line used by a pseudo
keyboard; or the terminal is currently opened or assigned by a job.

Discussion

ERR Value

18

This SYS call disables a keyboard line. Mter the system executes this function,
it does not process or echo input from the disabled keyboard. The system also
ignores any output for the disabled keyboard. Once a keyboard is disabled, it
remains disabled until the next time-sharing session is started or the line is
reenabled with the Set System Defaults SYS call (SYS 34).

This call cannot disable the system console terminal (KBO:). Disabling KBO: is
a dangerous operation because the SHUTUP system program only runs on that
terminal.

Change Quota, Password, Expiration Date, FO=8 (UU.CHU) 8-117

To disable a terminal (other than REO:) for more than one time-sharing session,
use the DCL SET command (see the RSTS/E System Manager's Guide).

8.3.47 Return Error Message

Data Passed

Bytes

1

2

3

4-30

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(9%), the return error message code.

CHR$(E%), where E% is the RSTSIE ERR variable number and is between 0
and 127.

Reserved; should be O.

Data Returned

Bytes

1

2

3-30

Meaning

The current job number times 2.

If job is attached, current keyboard number times 2 of terminal to which job is
attached. If job is detached, the logical complement (NOT) of keyboard number
times 2 from which job detached.

Error message. If message is less than 28 characters, remainder is padded to
length 28 with CHR$(O) characters.

Privileges Required

None.

Possible Errors

None.

Discussion

This call extracts error message text from the error message file installed during
the current time-sharing session or from the default error message file if an
error message file is not currently installed. The text is associated with the
value of the ERR variable passed as byte 3 of the call. The number in byte 2 of
the returned string is two times the number of the keyboard on which the job
is running. This is an exception to the conventional contents of byte 2, which
usually contains internal data. A sample use of the call is to print the system
header line containing the system name and the local installation name. To do
this, use the character representation of the ERR value of CHR$(O%) in the call.

The following sample program extracts and prints the message associated with
an error number that you supply:

10 INPUT "ERROR NUMBER";E%
\S$=SYS(CHR$ (6%)+CHR$(9%)+CHR$ (E%»
\SI$=CVT$$(RIGHT(S$,3%),4%)
\PRINT SI$
\PRINT FOR I%=I% TO 2%
\GOTO 10

32767 END

RUNNH
ERROR NUMBER? 0
RSTS V9.0 SYSTEM #880

8-118 Return Error Message, FO=9 (UU.ERR)

To extract the message text from the data returned by the SYS call, the pro
gram executes a RIGHT() function to discard the first two bytes. The CVT$$()
function discards any excess null characters. The first character of the text (ex
cept for message number 0) is the severity indication. See Appendix C for more
infonnation.

Error numbers used in the call can include those associated with recoverable and
nonrecoverable errors.

8.3.48 Allocate Device, Assign/Ust User logical

This call has three subfunctions:

• AllocatelReallocate Device

• Assign User Logical

• List User Logicals

8.3.49 Allocate/Reallocate Device

8.3.49.1 Allocate/Reallocate Device

Data Passed

Bytes

1

2

3-4

5-6

7-10

11-12+

13-16

17-18

19-22

23-24+

25+

26+

27-30

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(10%), the allocate/reallocate device and assign and list user logical code.

Reserved; should be O.

Ifbytes 7 through 10 are 0, these bytes contain the assignable PPN (@).

If bytes 7 through 10 contain a logical device name, these bytes contain the
PPN assigned to that logical device.

To allocate a device, bytes 7 through 10 must be O.

To reallocate a device, byte 7 is the job number to which the device is reallo
cated. Bytes 8 through 10 must be O.

Either DOS or ANS (in Radix-50 format) to specify DOS or ANSI label format
for the magnetic tape drive.

Reserved; should be O.

CVT%$(SWAP%(-32767%», to allocate a device that is currently allocated to
another user. This use requires HWCTL privilege and requires that the target
device not be open.

CVT%$(SWAP%(-32766%», to set the port INOQUEUED.

CVT%$(SWAP%(-32764%», to set the port /QUEUED.

Reserved; should be O.

Device name.

Unit number.

Unit number flag.

Reserved; should be O.

Allocate/Reallocate Device, FO=10 (UU.ASS) 8-119

Data Returned

Bytes

1-2

Meaning

Not used.

3 The job number of the previous owner of the device. A value of 0 indicates the
device was not previously allocated.

4-30 Not used.

Privileges Required

Allocate a restricted device DEVICE

HWCTL Reallocate a device to a job in another account, or seize a device

Possible Errors

Meaning

1ACCOUNT OR DEVICE IN USE

During a reallocate call, the specified device is currently open or
has an open file.

1NOT A VALID DEVICE

The device name specified in bytes 23 and 24 is a logical device
name for which a physical device is currently not assigned.

1DEVICE NOT AVAILABLE

The device specified in bytes 23 through 26 exists on the system
but the operation fails for one for the following reasons:

• The device is currently reserved by another job (see bytes 17
and 18).

• The user does not have sufficient privilege to own the de
vice. For example, a user without HWCTL privilege tried to
allocate a device that is currently allocated to another user.

• The device or its controller is disabled.
• The device is a keyboard line for a pseudo keyboard only.
• The device is a local LAT port and LAT is not enabled.

1PROTECTION VIOLATION

You do not have sufficient privilege to perform either of these
operations:

• Allocate or reallocate a restricted device.
• Reallocate a device to a job that is logged in to an account

other than your current account.

1ILLEGAL NUMBER

An attempt is made to transfer control to a nonexistent job. This
error can occur only during a reallocate call.

Discussion

ERR Value

3

6

8

10

52

The AllocatelReallocate call uses bytes 17 and 18 to allocate or reallocate a device
that is currently allocated by another job. For the call to be successful, the caller

8-120 Allocate/Reallocate Device, FO=10 (UU.ASS)

must have HWCTL privilege, the target device must not be open, and the current
owner cannot be performing a directory operation on that device.

The allocate call reserves a physical device to a job; the reallocate transfers
assignment of a currently owned device to another job. (The SET DEVICE
!RESTRICT command designates that certain devices are restricted and therefore
require DEVICE privilege to be allocated.) The action is equivalent to the DCL
ALLOCATE command (see the RSTS / E System User's Guide). Users without
HWCTL privilege can only reallocate a device to a job running under the same
PPN as the caller.

Example

10 A$= SYS(CHR$(6%)+CHR$(10%)+STRING$(20%,0%)+
"LP" + CHR$ (1%)+CHR$ (255%))
! ALLOCATE LP1: TO CURRENT JOB.

20 INPUT "ALLOCATE LP1: TO WHICH JOB"; X%
30 A$= SYS (CHR$ (6%)+CHR$ (10%)+STRING$(4%,0%)+

CHR$(X%)+CHR$(0%)+STRING$(14%,0%)+
"LP"+CHR$(1%)+CHR$(255%»
! REALLOCATE LP1: TO JOB * X%.

8.3.49.2 Assign User Logical
Data Passed

Bytes

1

2

3

4

5-6+

7-16

17-20

21

22

23-24+

25+

26+

27-30

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(10%), the assign/reassign device and assign user logical code.

CHR$(N%), where N% is one of the following values:

Value Meaning

0% Replace the existing logical name with the new name in bytes 7-16.
See Discussion.

128% Do not replace the existing logical name with the new name. See
Discussion.

Reserved; should be O.

The PPN to be assigned.

The logical device name (in Radix-50 format) to be assigned.

Reserved; should be O.

CHR$(255%) to enable protection code assignment (see byte 22).

The protection code to be assigned. Byte 21 must be 255.

Device name.

Device Unit number.

Unit number flag.

Reserved; should be O.

Data Returned

No meaningful data is returned.

Privileges Required

None.

Allocate/Reallocate Device, FO=10 (UU.ASS) 8-121

Possible Errors

Meaning

?ACCOUNT OR DEVICE IN USE

During an assign call, the job ran out of space in the extended
logical name area, or the logical device name in bytes 7 to 16
already exists but no replacement is indicated in Byte 4.

?NOT A VALID DEVICE

The device name specified in bytes 23 and 24 is a logical device
name for which a physical device is currently not assigned.

?NAME OR ACCOUNT NOW EXISTS

The logical name specified already exists and the no-replace flag
in byte 3 is set. The logical name is not replaced.

Discussion

ERR Value

3

6

16

This call assigns logical device names in Radix-50 format, logical PPNs, and
default output protection codes.

To assign a user logical device name, bytes 7 through 16 must contain the logical
device name, up to 15 characters, composed of alphanumeric characters and
underscores C). The first character must be alphanumeric. Note that spaces are
invalid characters. Bytes 23 through 26 must contain a physical device name and
unit number.

To assign a user logical PPN, specify the number in bytes 5 and 6. To assign a
user default protection code, specify the code in bytes 21 and 22 and put zeros in
bytes 7-16.

This call replaces the logical if it already exists in the logical table or the user low
core area (the standard locations) and byte 3 is set to 0%. If there is an identical
logical in a nonstandard location, the nonstandard logical is not deassigned but
the new logical takes precedence over the nonstandard one.

8.3.49.3 List User Logicals

Data Passed

Bytes

1

2

3-4

5-6

7

8-30

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(10%), the allocate/reallocate device, assign/reassign device, and list user
logicals code.

CHR$(N%)+CHR$(SWAP(N%», where N% is the index ofthe logical to list.

Reserved; must be O.

CHR$(128%)

Reserved; must be O.

Data Returned

Bytes

1-2

3-4

Meaning

Not used.

The index incremented (N + 1).

8-122 Allocate/Reallocate Device, FO=10 (UU.ASS)

5-6

7-16

17-22

23-24

25

26

27-30

PPN of the account associated with the logical name. 0% if no PPN is associ
ated with the logical name.

The user logical name, in Radix-50 format.

Not used.

The device name of the Nth logical.

The unit number of the Nth logical.

The unit real flag of the Nth logical. Bytes 23-26 are 0% if no device name is
associated with the logical name.
If bytes 23-24 contain a device name but byte 26, the unit real flag, is 0%, then
the logical is associated with SY:.

Not used.

Privileges Required

None.

Possible Errors

Meaning ERR Value

?CAN'T FIND FILE OR ACCOUNT 5

The index entry specified in byte 3 is out of range.

?ILLEGAL SYS() USAGE 18

You specified an illegal value.

Discussion

This call scans the user logical name table and lists the logical name that corre
sponds to the index number passed in bytes 3 and 4. You can list all logicals by
repeated calls with an index value, starting at 1. The RSTSIE monitor automati
cally increments the index value by 1 each time you do the syscall.

8.3.50 Deallocate a Device or Deassign a User Logical

Data Passed

Bytes

1

2

3-4

5-6

7-16

17-20

21

22

23-24

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(l1%), the code to deallocate a device or deassign user logical.

Reserved; should be O.

For user logical, -1 to deassign the default PPN.

For device deallocation, must be O.

For user logical, the logical device name (in Radix-50 format) to be removed.

Otherwise, must be O.

Reserved; should be O.

For user logical, CHR$(255%) to enable protection code removal. Otherwise,
must be O.

Reserved; should be O.

For device deallocation, the device name to be deallocated. For user logical,
must be O.

Deallocate a Device or Deassign a User Logical, FO=11 (UU.DEA) 8-123

25 For device deallocation, the device unit number to be deallocated. For user
logical, must be O.

26 For device deallocation, the unit number flag. For user logical, must be O.

27-30 Reserved; should be O.

Data Returned

No meaningful data is returned.

Privileges Required

None.

Possible Errors

?NOT A VALID DEVICE

Meaning

The device or device type specified in bytes 23 through 26 is not
configured on the system. This error can occur only on device
deallocation calls.

Discussion

ERR Value

6

This call deassigns logical device names, logical PPNs, and default output protec
tion codes. To deassign a logical device name, specify the 15-character name in
bytes 7 through 16. To deassign a PPN, specify the number in bytes 5 and 6. To
deassign a user logical protection code, specify 255 in byte 21. Note that if these
bytes do not contain specific deassignments, the call deassigns all user logical
device names, PPN, and protection code assignments.

The Deallocate a Device call performs the same action as the DEALLOCATE DCL
command (see the RSTS/E System User's Guide). For example, the following
statement deallocates line printer unit 1, which is allocated to the current job:

10 A$ = SYS (CHR$ (6%)+CHR$ (11%)+STRING$(20%,0%)+
"LP"+CHR$(1%)+CHR$(255%»
! DEALLOCATE LP1:

8.3.51 Deallocate All Devices and Deassign All Logicals

Data Passed

Bytes

1

2

3

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(12%), the deallocate all devices code.

CHR$(N%), the deassign-only flag:

1% The call deassigns all logicals but does not deallocated devices.

Not 1% The call both deassigns all logicals and deallocates all devices.

4-30 Reserved; should be O.

Data Returned

No meaningful data is returned.

Privileges Required

None.

8-124 Deallocate All Devices, FO=12 (UU.DAL)

Possible Errors

None.

Example

The following statement deallocates all devices currently allocated to the job:

10 A$ = SYS(CHR$(6%) + CHR$(12%»

8.3.52 Zero a Device

Data Passed

Bytes

1

2

3

4

5-6+

7-10+

11-22

23-24+

25+

26+

27-30

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(13%), the zero a device code.

For disk, CHR$(N%), where N% determines the action taken on the files and
the UFD:

0%

255%

Delete all files except those write-protected against owner; retain
UFD.

Delete all files regardless of their protection codes; delete UFD
(requires GACNT or WACNT privilege).

For magnetic tape and DECtape, set this byte to O.

Reserved; should be O.

PPN. See Discussion.

Volume ID, in two Radix-50 words, for volume label (ANSI format magnetic
tape only).

Reserved; should be O.

Device designator (disk, magnetic tape, or DECtape). If no device is specified,
SY: (the public structure) is used.

Unit number.

Unit number flag.

Reserved; should be O.

Data Returned

No meaningful data is returned.

Privileges Required

None Zero your own account if it does not reside on a restricted device

GWRITE Zero any account in the group

WWRITE Zero any account

SYSIO Zero any account in group [0,*] (with WWRITE)

GACNT Deallocate UFD of any account in the group

WACNT Deallocate UFD of any account

DEVICE Access restricted devices

Zero a Device, FO=13 (UU.ZER) 8-125

Possible Errors

Meaning

?ILLEGAL FILE NAME

The specified device is a magnetic tape with ANSI format, and the
volume ID specified in bytes 7-10 is either missing or invalid.

?CAN'T FIND FILE OR ACCOUNT

The account specified in bytes 5 and 6 does not exist on the device
and unit number specified in bytes 23-26.

?NOT A VALID DEVICE

The device or its type specified in bytes 23 through 26 is not
configured on the system.

?DEVICE NOT AVAILABLE

The specified device in bytes 23 through 26 exists on the system
but the attempt to zero it is prohibited for one of the following
reasons: a file is currently open on the device, the device is
currently reserved by another job, or the device or its controller
has been disabled by the system manager.

?PROTECTION VIOLATION

You attempted to zero an account other than your own without
sufficient privilege.

?ILLEGAL SYS() USAGE

Bytes 5 and 6 do not contain a valid PPN.

?DEVICE NOT FILE STRUCTURED

The specified device does not allow access by file name.

ERR Value

2

5

6

8

10

18

30

This call also returns device-dependent errors such as ?Disk pack not mounted
(ERR=21) and ?Magtape select error (ERR=39).

Discussion

This call zeros DECtape, magnetic tape, or disk.

For DECtape or magnetic tape, this call zeros the entire medium. On DECtape,
this call also clears the directory. The section "Initializing Magnetic Tapes," in
Appendix A, describes what actions occur when magnetic tape is zeroed.

For disk, you can delete files in a directory. If you do not have sufficient privilege
you can specify only the current directory, and you cannot delete the UFD.
Furthermore, if your account resides on a restricted disk, you must have the
DEVICE privilege.

If you have GACNT privilege, you can delete files and the UFD for any account in
your group. If you have WACNT privilege, you can delete the files and the UFD
of any account. Note that this call does not delete accounts. To delete an account,
use the Delete User Account call, SYS 1.

Bytes 5 and 6 must contain a valid PPN. The system returns the error ?Illegal
SYS() usage (ERR = 18) if bytes 5 and 6 are zero.

8-126 Zero a Device, FO=13 (UU.ZER)

The value in byte 3 detennines what happens to the files and the UFD. A value
of 0% in byte 3 deletes files in a directory that are not write-protected against
the owner and retains the UFD. A value of 255% in byte 3 deletes all files in a
directory, regardless of protection code. In addition, if you have the appropriate
GACNT or WACNT privilege, the value 255% in byte 3 deletes the UFD (deallo
cates the disk space that was allocated to the UFD). The UFD is always retained
for insufficiently privileged users.

Note that you should not nonnally use the option to delete the UFD. When the
account is created, the UFD is often placed in a specific location on the disk to
optimize disk perfonnance. Deleting the UFD causes any prior placement to be
lost.

Example

10 PO%=10%
\Pl%=20%

20 A$=SYS (CHR$ (6%)+CHR$ (13%)+STRING$(2%,0%)+
CHR$(P1%)+CHR$(PO%)+STRING$(24%,0%»

ZERO [10,20] ON THE SYSTEM.
IF NONPRIVILEGED, CURRENT ACCOUNT
MUST BE [10,20]
UFD AND ANY FILES WRITE-PROTECTED
AGAINST OWNER ARE RETAINED.

30 A$=SYS(CHR$(6%)+CHR$(13%)+STRING$(20%,0%)+
"MT"+CVT%$ (0%»
! ZERO MT:

8.3.53 Read, or Read and Reset Accounting Data

Data Passed

Bytes

1

2

3-4

5-6

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(14%), the read or read and reset accounting data code.

CHR$(I%)+CHR$(SWAP%(I%», where 1% is the index number ofthe account to
read. 1% can be one of the following values:
0% Read the account specified in bytes 7 and 8.

Nonzero Search for an account based either on this index entry or on a
wildcard PPN search. The value of W% in byte 9 controls which
function the call performs. See the table in the Discussion for a
summary of legal byte values.

CHR$(R%), where R% can be one ofthe following values:

0% Indicates read-only.

Nonzero Indicates read and reset. See the Discussion for a list of the
accounting data that gets reset. If the job executing this call does
not have the appropriate privileges, the system does not access
this word and performs only a read operation.

7-8 PPN. Ifbytes 7 and 8 are 0%, data for the current account is returned. IfW%
in byte 9 is 2%, bytes 7 and 8 can be 255% to indicate that the PPN contains
wildcards. See the section "Project-Programmer Number" for a description of
each byte; see the table in the Discussion for a summary of legal values.

Read, or Read and Reset Accounting Data, FO=14 (UU.RAD) 8-127

9

10-22

23-24+

25+

26+

27-30

CHR$(D%+W%+Q%+P%), where:

D% indicates whether to return the number of blocks owned by the account:

D%=O% Call returns number of blocks used.

D%=I% Call does not return this data.

W% indicates whether the PPN in bytes 7 and 8 contains wildcards:

W%=O% PPN corresponds to a real account.

W%=2% PPN contains a wildcard.

Q% indicates the type of accounting information to return:

Q%=O% Call returns general accounting information.

Q%=4% Call returns disk quota information.

P% indicates whether to return a protection violation if a caner attempts to
perform a function without sufficient privilege:

P%=O% Do not perform a privilege check. The call performs a read-only
lookup on the caller's PPN.

P%=8% Perform a privilege check and return the error ?Protection viola
tion (ERR=10) if the caller does not have sufficient privilege.

Reserved; should be O.

Device name; must be a disk. A zero in both bytes indicates SY: (the public
structure).

Unit number.

Unit number flag.

Reserved; should be O.

Data Returned when Q% in byte 9 = 0% (accounting information format)

Bytes

1

2

3-4

5-6

7-8

9-12

13-14

15-16

17-18

19-20

21-22

23-26

27-28

29

30

Meaning

The current job number times 2.

The number of clusters used to store the User File Directory (UFD).

Same as bytes 3-4 in data passed.

Number of blocks used. The maximum number returned is 65535 blocks.
If more than 65535 blocks are in use, only 65535 is returned. The quota
information is accurately returned in the quota information format of this call.

PPN of the account read.

Password of the account read, in Radix-50 format. If the password is marked
as not readable (INOLOOKUP), 0 is returned. This data is returned only if the
caller has the appropriate privileges (GACNT for group; WACNT for all).

Low-order word (16 bits) of the CPU time (in tenths of seconds) used by the
account.

Connect time (in minutes) used by the account.

Low-order word (16 bits) of kilo-core ticks used by the account.

Device time (in minutes) used by the account.

High-order bits for CPU time and kilo-core ticks. See the Discussion for an
explanation of how the values are stored.

Same as bytes 23-26 in data passed.

Logged-out disk quota in number of blocks; 0 means unlimited quota. This
value is 16 bits. 24 bit quotas are returned by the quota information format of
this call.

User file directory cluster size.

Not used.

8-128 Read, or Read and Reset Accounting Data, FO=14 (UU.RAD)

Data Returned when Q% in byte 9 = 4% (quota information format)

Bytes

1

2

3-4

5-6

7-8

9-10

11-12

13

14

15

Meaning

The current job number times 2.

Reserved.

Same as bytes 3-4 in data passed.

Reserved.

PPN of the account read.

Logged-out quota (LSB).

Logged-in quota (LSB).

Logged-in quota (MSB).

Logged-out quota (MSB).

Reserved.

Current usage (MSB).

Reserved.

Current usage (LSB).

16

17-18

19-20

21-22 Count of open files, and logged in jobs in that account. Open files = low 10 bits,
number of jobs = high 6 bits.

23-26

27-30

Device name and number as passed.

Reserved.

Privileges Required

None Read information for your own account

GACNT

WACNT

Read or read and reset information for accounts in the group

Read or read and reset information for all accounts

Possible Errors

Meaning

?BAD DffiECTORY FOR DEVICE

The account does not have all the necessary directory structures.

?CAN'T FIND FILE OR ACCOUNT

The PPN specified does not exist on the disk, the index specified is
greater than the number of accounts on the disk, or you specified
an illegal combination of values in bytes 3-4, bytes 7-8, and byte
9.

?PROTECTION VIOLATION

The caller does not have sufficient privilege to perform the indi
cated function.

?ILLEGAL SYS() USAGE

Device specified is not a disk.

ERR value

1

5

10

18

Read, or Read and Reset Accounting Data, FO=14 (UU.RAD) 8-129

Discussion

This SYS call perfonns the following functions:

• Looks up accounts on a disk and reads accounting data. You can:

Specify an individual account

Specify a search based on an index number

Specify a search based on a wildcard PPN match

• Looks up accounts on a disk and reads and resets accounting data. You can
use the same three methods to control the account search. This call resets the
following accounting data to zero:

CPU time

Connect time

Kilo-core ticks

Device time

• Returns infonnation about the number of blocks used and the logged-out disk
quota. If you are using the new fonnat disk quotas feature (V9.0 and later),
this call returns infonnation about the logged-in and logged-out quotas, as
well as the current usage.

Note that this system function call does not always perfonn a password lookup.
This affects programs that currently look up passwords for the purpose of log
ging in to a given account. These programs should use the "spawn logged in"
subfunction of the Create a Job SYS call (SYS 24).

Bytes 3-4, bytes 7-8, and byte 9 control how the call looks up accounts. Table 8-7
lists the legal combinations of byte values and their corresponding results. Any
other combination of values returns the error ?Can't find file or account (ERR=5).

Table 8-7: SYS 14 Legal Byte Value Combinations

Bytes 3-4 Byte 9 Bytes 7-8
1% W% PPN Account Accessed

0 0 0 Current account

0 0 PPN Account specified by PPN

Nonzero 0 Forced to The 'Ith' account, where I is the value speci-
[255,255] fied in bytes 3-4

Nonzero 2 [255,y] The 'Ith' account matching [*,y], where I is
the value specified in bytes 3-4

[x,255] The 'Ith' account matching [x,*], where I is
the value specified in bytes 3-4

[255,255] The 'Ith' account, where I is the value speci-
fied in bytes 3-4

If you want to look up all accounts on a disk, start the index (bytes 3 and 4) at 1
and increment it for each call.

8-130 Read, or Read and Reset Accounting Data, FO=14 (UU.RAD)

Note that this call works differently for users without the appropriate GACNT
or WACNT privilege. If a job without sufficient privilege executes this call, the
system forces bytes 3 through 8 in the data passed to the values shown:

Byte

3-4

5-6

7-8

Value

0%

0%

current PPN

Action

Look up the account specified in bytes 7 and B.

Read-only.

Look up data for current PPN.

A job with the appropriate privileges can both read and reset accounting data.
GACNT privilege grants access to any account in the group. WACNT privilege
grants access to all accounts.

You can instruct the call to perform a privilege check by setting P% in byte 9.
This allows a program to make sure that the system is performing the proper
function, rather than just performing a lookup on the caller's account.

If an appropriately privileged job executes this call and bytes 5 and 6 of the data
passed are nonzero, the following account information is read and reset to zero:

• CPU time

• Kilo-core ticks

• Connect time

• Device time

Because the system must scan the entire directory to return the number of blocks
owned by an account, significant extra processing time is required to obtain usage
information. This applies to RDS1.1 and RDSO.O format disks. If you do not need
this information, specify a value of 1 for D% in byte 9 to speed up the execution
of this call. For RDS1.2 format disks, no time is saved by using this option.

The word returned in bytes 21 and 22 holds the high-order bits of CPU time and
kilo-core ticks. The bottom ten bits of this word apply to kilo-core ticks, and the
top six bits apply to CPU time. Figure 8-3 is a graphic representation.

Figure 8-3: High-Order Bits of CPU Time and KCTs

bit 15

High-Order Part
of CPU Time

10 9

High-Order Part
of KCT

o

MK-00037-01

Read, or Read and Reset Accounting Data, FO=14 (UU.RAD) 8-131

8.3.54 Directory Lookup

This section describes the SYS calls that look up file specifications under program
control. Although only two codes are available, four different operations are
possible:

• Directory lookup on index (SYS 15)

• Special magnetic tape directory lookup (SYS 15)

• Disk directory lookup by file name (SYS 17)

• Disk wildcard directory lookup (SYS 17)

As a result, four descriptions appear in this section.

The four operations return data in the following format:

Data Returned

Bytes

1

2

Meaning

The current job number times 2.

Not used.

3-4 Same as bytes 3-4 in data passed.

5-6 PPN (if applicable) of the file read. For magnetic tape, these bytes return the
value passed.

7-10

11-12

13-14

15

16

17-18

19-20

21-22

23-26

27-28

29

File name in Radix-50 format. See the section "Unpacking the Returned Data,"
earlier in this chapter for a description of converting a string in Radix-50
format.

File type in Radix-50 format.

Length in blocks. Not used for Special Magnetic Tape Directory Lookup call
(SYS 15); Least Significant Bits (LSB) for files larger than 65535 blocks.

Protection code of the file.

The Most Significant Bits (MSB) of the file size. If a nonzero number is re
turned, it indicates that the file size is greater than 65535 blocks. (The Special
Magtape Directory Lookup call (SYS 15) does not return this information.}

For disk, the date of last access; for DECtape and magnetic tape, returns
the date of creation. (Note that the system manager can use the DSKINT
initialization option on a particular disk to change the meaning of date of last
access to date of last modification.)

The date of creation for disk.

The time of creation for disk; for DOS magnetic tape, the PPN.

Same as data passed. (Device name, unit number, and flag byte.)

For disk, the file cluster size; for tape, not used.

Number of entries returned: for disk, 8; for tape, 6. (Not returned for SYS 17.)

8-132 Directory Lookup, FO=15 FO=17

30 The USTAT byte from the UFD Name entry (returned for disk only).

This byte contains the following internal flag information:

Value Meaning

1 % Reserved.

2% File is placed.

4% Some job has write access now.

8% File is open in update mode.

16% File is contiguous; no extend available.

32% No delete or rename allowed.

64% Reserved.

128% File is marked for deletion.

Keep this information in mind when you use the Directory Lookup calls:

• If you specify either DECtape or magnetic tape, the monitor allocates the
related unit to the calling job while the call executes. The unit remains
allocated after the call completes.

• When you repeatedly execute one of the calls on disk and increment the index
for each repetition, the execution time increases for each successive call.
The increase occurs because the monitor must read the file name blocks for
indexes numbered 0 through N-l before it reads the file name block for index
number N. The process is the only one possible because the index value has
no other relationship to the actual disk address of the file name block. Note
that the index scheme for SYS call 16 (and 25) differs from that of SYS call
14.

The Open-Next SYS can (SYS 33), on the other hand, has constant execution
time throughout a directory, because it uses an 1/0 channel to keep context
information.

• When you repeatedly execute one of the calls on a system di3k structure
having multiple public disks, the increase in execution time related to the
index value is more critical. Because the monitor cannot determine how
many files exist on each unit of a multiple public disk structure, it must read
the file name blocks of each unit beginning at unit 0 until the Nth file is
read. Therefore, on such a system, you can decrease the execution time by
executing the call repeatedly on each specific unit of the public structure (for
example, DKO:, DK1:, and upward) rather than on the entire public structure
(SY:).

The Open-Next SYS call (SYS 33) does not have this limitation.

8.3.55 Directory lookup on Index

Data Passed

Bytes

1

2

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(15%), the directory lookup on index code.

Directory Lookup on Index, FO=15 (UU.DIR) 8-133

3-4

5-6

7-16

17-18

18-22

23-24+

25+

26+

27-30

CHR$(N%)+CHR$(SWAP%(N%», where N% is the index ofthe file to read. If
N% is 0, the call returns the data for the first file in the directory. If N% is x,
(some nonzero value), the call returns the data for the x+l file in the directory.
On magnetic tape, N% must be 0 to rewind the tape before reading the first
file. See the Special Magnetic Tape Directory Lookup SYS call (SYS 15) for a
description of magnetic tape operations. On DECtape, N% must be 0 to read
the directory blocks from the tape before reading the first file. Subsequent calls,
where N% is not zero, read the directory from the BUFF.SYS file.

PPN of the directory to look up. If both bytes are 0 and the device specified in
bytes 23 and 24 is disk, the call returns information for the current account. If
both bytes are 0 and the device specified in bytes 23 and 24 is magnetic tape,
the call returns information for each file read. If the device specified in bytes 23
and 24 is DECtape, the call does not use these bytes but returns information for
each file read. See the section, Project-Programmer Number, for a description
of these bytes.

Reserved; should be O.

CHR$(M%)+CHR$(SWAP%(M%)), where M% indicates whether to return
information about files that are marked-for-delete:

M%=O% Skip marked-for-delete files.

M%=16384% Return information about marked-for-delete files.

Reserved; should be O.

Device name to look up. If both bytes are 0, SY: (the public structure) is used.

Unit number.

Unit number flag.

Reserved; should be O.

Data Returned

See the introductory section, "Directory Lookup," for a description of the Data
Returned.

Privileges Required

None Look up files in your own directory, or in the directory of another account to
which you have read or execute access

GREAD

WREAD

DEVICE

Look up files in the directory of any account in the group

Look up files in the directory of any account

Access restricted devices

Possible Errors

Meaning ERR Value

?CAN'T FIND FILE OR ACCOUNf

The account specified does not exist on the device specified or no
more files exist on the account (the index value is greater than
the number of files on the account).

?DEVICE NOT FILE STRUCTURED

The device specified in the call is not a file-structured device.

5

30

The call also returns device-dependent errors such as ?Device hung or write
locked (ERR=14) and ?Disk pack not mounted (ERR=21).

8-134 Directory lookup on index, FO=15 (UU.DIR)

Discussion

This call returns directory information on a file. The DCL DIRECTORY command
uses the same routines as this call to print a directory listing. The order of
the files in the listing is by index value from the lowest to the highest. You
can therefore determine the index value for a file by counting its position in a
DIRECTORY listing and subtracting one.

If the device specified is magnetic tape, the monitor, after reading a file label,
skips to the end of the file on the tape to determine the number of blocks in the
file.

8.3.55.1 Special Magnetic Tape Directory Lookup
Data Passed

Bytes

1

Meaning

CHR$(6%), the SYS call to FIP.

2

3-4

CHR$(15%), the directory lookup on index code.

CHR$(N%)+CHR$(SWAP%(N%», where N% is the index ofthe file to read. If
N% is 0, the call rewinds the tape and returns the data for the first file in the
directory. If N% is some nonzero value, the call returns the data for the next
file on the tape. See Discussion.

5-6 Both bytes are CHR$(255%) to execute the special magnetic tape directory
lookup.

7-22

23-24

25+

26+

27-30

Reserved; should be O.

Device name, must be a magnetic tape (not DECtape).

Unit number.

Unit number flag.

Reserved; should be O.

Data Returned

See the introductory section, "Directory Lookup," for a description of the Data
Returned.

Privileges Required

DEVICE Access restricted devices

Possible Errors

Meaning ERR Value

?CAN'T FIND FILE OR ACCOUNT 5

No more files exist on the tape.

?DEVICE NOT FILE STRUCTURED 30

The device specified in bytes 23 and 24 is not file structured.

Discussion

The standard Directory Lookup on Index call (SYS 15) executed on a magnetic
tape unit causes the monitor to:

1. Read one record from the tape (a label record). The procedure works for
either DOS or ANSI labeling. The description, however, does not distinguish
between the different types of label records in ANSI processing.

Directory Lookup on Index, FO=15 (UU.DIR) 8-135

2. Space the tape forward to the next end-of-file (EOF) or end-of-volume (EOV)
record and calculate the number of records in the file.

3. Return the directory information if the account number of the file matches
the one specified in the call or if both bytes in the account specification in the
call are zero.

When the monitor executes the action that step 1 describes, you must position
the tape immediately before a label record. Otherwise, the operation generates
an error or returns incorrect information.

In an application program that must search a tape for a specific file and read each
specific file found, the OPEN FOR INPUT statement necessitates a rewind oper
ation. When you execute an OPEN FOR INPUT statement on a file-structured
magnetic tape, the monitor:

1. Reads one record from the tape (must be a label record).

If the read operation is successful, the monito opens the file and returns
control to the user program.

If the read operation is unsuccessful and this is the first label read, the
monitor rewinds the tape and reads the first record, the label record, as
described in step one of the previous list.

2. Returns an error if it detects the logical end-of-tape.

3. Skips to the end of the file and executes the action in step 1 if the label read
does not match.

The required rewind operations consume time. To avoid the rewind operations,
you can execute the special magnetic tape directory lookup call and perform
certain actions. By specifying both bytes 5 and 6 as CHR$(255%) in the call, you
cause the monitor to:

1. Read a record from the tape, which must be a label record.

2. Backspace one record, which leaves the tape in a position to read the label
record again.

3. Return the directory information (except for file length) to the program.

To take advantage of these special actions, you must determine from the informa
tion returned whether the file is the one required. Then follow this procedure:

1. If the file is the one required, execute the OPEN FOR INPUT statement
using the file name and requesting no rewind. The action executes without a
rewind because the tape is positioned properly.

If the file is not required, issue the normal form of the directory lookup
function (Directory Lookup on Index, SYS 15) with a nonzero index value in
bytes 3-4. This causes the file to be skipped properly on either DOS or ANSI
format tape. See Chapter 2 for more information.

2. Mter processing the required file, execute a CLOSE statement to position the
tape at the tape mark and to be ready to execute another call.

The Special Magnetic Tape Directory Lookup call returns directory information on
each file read regardless of its account number. However, the OPEN FOR INPUT
statement must specify the correct account number if the account number of the
file does not correspond to the current account number.

8-136 Disk Directory Lookup by File Name, FO=17 (UU.LOK)

8.3.56 Disk Directory Lookup by File Name, FO=17 (UU.LOK)

Data Passed

Bytes

1

2

3-4

5-6+

7-10+

11-12+

13-22

23-24+

25+

26+

27-30

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(l7%), the disk directory lookup by file name and disk wildcard direc
tory lookup code. See the next section for a description of the Disk Wildcard
Directory Lookup call.

Both bytes must be CHR$(255%).

PPN of the file to look up. If both bytes are 0, the current account is used.

File name in Radix-50 format.

File type in Radix-50 format.

Reserved; should be O.

Device name; must be disk. If both bytes are 0, SY: (the public structure) is
used.

Unit number.

Unit number flag.

Reserved; should be O.

Data Returned

See the introductory section, "Directory Lookup," for a description of the Data
Returned.

The following bytes differ for this call.

Meaning Bytes

23-26 If a name of the public structure, such as SY: or DK:, is passed, or if no device
name is passed, then the actual device where the file resides (for example,
DB2:) is returned.

29-30 The file identification index is returned.

Privileges Required

None Look up files in your own directory, or in the directory of another account to
which you have read or execute access

GREAD

WREAD

DEVICE

Look up files in the directory of any account in the group

Look up files in the directory of any account

Access restricted devices

Possible Errors

Meaning ERR Value

?ILLEGAL FILE NAME

File name in bytes 7 through 10 is missing.

?CAN'T FIND FILE OR ACCOUNT

The device specified in bytes 23 and 24 is not a disk, or the file
specified does not exist on the specified disk.

This error also occurs when the user does not have sufficient
privilege to read the specified file.

2

5

Disk Directory Lookup by File Name, FO=17 (UU.LOK) 8-137

Discussion

This call works only on disk files and returns directory infonnation for the
specified file. If you try to look up a file in some other account, you must have
read or execute access to the file for the lookup to succeed. If you do not have
access rights, the call returns the error ?Can't find file or account (ERR=5).

8.3.56.1 Disk Wildcard Directory Lookup
Data Passed

Same as that described in the previous section, "Disk Directory Lookup by File
Name," except for:

Bytes

3-4

7-10+

11-12+

17-18

Meaning

CHR$(I%) + CHR$(SWAP%(I%». IfI% is 0, the call returns the data for the
first file that matches the wildcard specification. If 1% is x (some nonzero
value), the call returns the data for the x + 1 file that matches the wildcard
specification.

Radix-50 representation of a wildcard file name specification where an *
character can replace the file name or a ? character can replace any character
in the file name. Used with the file type in bytes 11 and 12 to create a wildcard
file specification.

Radix-50 representation of a wildcard file type specification, where an asterisk
(*) character can replace the file type or a question mark (?) character can
replace any character in the file type. Used with the file name in bytes 7
through 10 to create a wildcard file specification.

CHR$(M%)+CHR$(SWAP%(M%», where M% indicates whether to return
information about files that are marked-for-delete:
M%=O% Skip marked-for-delete files.

M%=16384% Return information about marked-for-delete files.

Data Returned

See the introductory section, "Directory Lookup," for a description of the Data
Returned.

Privileges Required

None Look up files in your own directory, or in the directory of another account to
which you have read or execute access

GREAD

WREAD

DEVICE

Look up files in the directory of any account in the group

Look up files in the directory of any account

Access restricted devices

Possible Errors

Meaning ERR Value

?ILLEGAL FILE NAME

No file name appears in bytes 7 through 10.

?CAN'T FIND FILE OR ACCOUNT

The device specified in bytes 23 and 24 is not a disk, or no match
exists for the index value given in bytes 3 and 4.

8-138 Disk Directory Lookup by Rle Name, FO=17 (UU.LOK)

2

5

Meaning

?DEVICE IS RESTRICTED

The disk is in the restricted state and the job does not have
DEVICE privilege.

Discussion

ERR Value

22

This call allows a program to supply a wildcard specification and to increment an
index value to get directory information for all occurrences of files matching the
wildcard specification. The following are typical wildcard specifications:

Specification

FILE??*

*.BAS

*.BA?

Meaning

All files with FILE as the first four characters in the name and with
any file type (including no file type).

All files with .BAS file types.

All files with BA as the first two characters in the file type.

The program supplies an index of 0 and executes the call. The system returns
directory information for the first file that matches the wildcard specification.
The program can increment the index by 1 and execute the call again to gain
directory information for second and subsequent matching occurrences of files.
The system returns the error ?Can't find file or account (ERR=5) to indicate no
more matching occurrences exist in the account. The entire procedure relieves
the program of the overhead required to translate each file name in the directory
and to compare for a match.

8.3.57 Set Terminal Characteristics

This call has two subfunctions:

• Set Terminal Characteristics - Part I

• Set Terminal Characteristics - Part II

To use this call, you need to understand the concept of terminal ownership. A job
"owns" a terminal when:

• It becomes attached to the terminal by logging in. A user enters data at a
free terminal; the system starts a job to handle the input and gives the job
the next available job number. The system then starts the LOGIN program to
allow the user to log in to the system. (See the RSTS / E System User's Guide
for the operational details.)

When a user is logged in to the system, the system associates the activated
job with both the terminal at which the user is typing and the account
number used for system identification. The job is then considered active
on the system and in attached mode (or attached to the terminal). The
system associates I/O channel 0 with the terminal that activated the job.
The terminal associated with channel 0 is called the job's console terminal or
console keyboard. A job can have only one console terminal, the keyboard to
which it is attached.

• The job opens the terminal on a nonzero channel. A job can own several
terminals that are open on nonzero channels.

• The DCL ALLOCATE command gives the terminal to the job.

Set Terminal Characteristics, FO=16 (UU.TRM) 8-139

8.3.57.1 Set Terminal Characteristics - Part I

Data Passed

Bytes

1

2

3

4

5

6

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(16%), the set terminal characteristics code.

CHR$(O%), the code to specify part I ofthe SYS call.

CHR$(N%), where N% is 255% for the current keyboard (requires no privilege)
or is the kilyboard number of the terminal to alter (requires HWCFG privilege
or ownership).

CHR$(N%), where N% is 0% for no change or is the terminal width plus 1. The
call sets the number of characters for each line to N%-I, where N% is in the
range 2% to 255%. The WIDTH n command sets this byte.

CHR$(N%), where N% is:
0%

128%

No change.

Enable the hardware horizontal tab feature. The /TAB qualifier of
the SET TERMINAL command sets this characteristic. (The device
must have the necessary hardware.)

255% Enable software horizontal tab positions, which are set every 8
character positions beginning at position 1. The INOTAB qualifier of
the SET TERMINAL command sets this characteristic.

7 CHR$(N%), where N% is:
0%

128%

255%

No change.

Enable the software to perform form feed and vertical tab operations
by executing four line feed operations. The INOFORM_FEED
qualifier of the SET TERMINAL command sets this characteristic.

Enable hardware form feed and vertical tab. The /FORM_FEED
qualifier of the SET TERMINAL command sets this characteristic.
(The device must have the necessary hardware.)

8 CHR$(N%), where N% is:

0%

128%

255%

No change.

Allow the terminal to receive and print lowercase characters
(CHR$(96%) through CHR$(126%». The ILOWERCASE=OUTPUT
qualifier of the SET TERMINAL command sets this characteristic.

Have the system translate lowercase characters to uppercase before
transmitting to a terminal. The /uPPERCASE=OUTPUT qualifier
of the SET TERMINAL command sets this characteristic.

9 CHR$(N%), where N% is:
0%

128%

255%

No change.

Have the terminal not respond to XON CHR$(17%) and XOFF
CHR$(19%) characters because it lacks the necessary hardware.
The INOHOST_SYNC qualifier of the SET TERMINAL command
sets this characteristic.

The terminal has the necessary hardware to respond to XON and
XOFF characters. The terminal stops sending characters when
it receives a CHR$(19%) character (XOFF) and resumes sending
characters when it receives a CHR$(17%) character (XON). The
/HOST_SYNC qualifier of the SET TERMINAL command sets this
characteristic.

8-140 Set Terminal Characteristics, FO=16 (UU.TRM)

10 CHR$(N%), where N% is:

0%

128%

255%

No change.

Have characters that are typed at the terminal sent to t.he computer
only. The computer echoes (transmits back to the terminal) the
characters it receives and performs any necessary translation. The
INOLOCAL_ECHO qualifier of the SET TERMINAL command sets
this characteristic.

Have the terminal (or its modem) locally echo the characters typed.
The computer does not echo the characters received. The ILOCAL_
ECHO qualifier of the SET TERMINAL command sets this charac
teristic.

11 CHR$(N%), where N% is:

0%

128%

255%

No change.

The terminal does not have features of a video display terminal. The
!HARDCOPY qualifier of the SET TERMINAL command sets this
characteristic. Specifying this value causes byte 17 to be set to 128
(INOTTSYNC).

The terminal is a video display, or cathode ray tube (CRT), and uses
the following features:

.. Responds to the synchronization protocol described by byte 17.

.. The system executes a DELETE character by sending a
backspace, a space, and a backspace to the terminal.

• Any location on the screen can be addressed by direct cursor
placement.

The ISCOPE qualifier of the SET TERMINAL command sets this
characteristic. Specifying this value causes byte 17 to be set to 255
(ITTSYNC).

12 CHR$(N%), where N% is:

0%

128%

255%

No change.

The system treats certain characters that it receives as follows:

• Translate CHR$(125%) and CHR$(126%) into the ESC char
acter CHR$(27%) (unless the INOALT_MODE characteristic is
subsequently set).

• Translate lowercase characters (CHR$(64%) through CHR$(94%»
to uppercase equivalents (CHR$(96%) through CHR$(126%».

The fUPPERCASE=INPUT qualifier of the SET TERMINAL com
mand sets this characteristic.

The terminal transmits the full ASCII character set and the system
treats special characters as follows:

• Treat only CHR$(27%) as an escape character (echoed as the $
character and handled as a line terminating character).

.. Treat CHR$(125%) and CHR$(126%) as printed characters} and

• Do not translate lowercase characters to uppercase format.

The ILOWERCASE=INPUT qualifier of the SET TERMINAL com
mand sets this characteristic.

Set Terminal Characteristics, FO=16 (UU.TRM) 8-141

13 CHR$(N%), where N% is:
0% No change.

1% No fin factor for the tenninal. The INOCRFILL qualifier of the SET
TERMINAL command sets this characteristic.

n% Set fill factor ofthe tenninal to N%-I. The /CRFILL=n qualifier of
the SET TERMINAL command sets this characteristic.

255% Reserved.

14 CHR$(N%), where N% is:
0% No change.

n% The internal speed value to detennine the baud rate at which
the tenninaI receives characters. If byte 16 is 0, this value also
detennines the transmit (output) baud rate (requires HWCFG
privilege).

Note that you can set internal speed value only for DH11, DZ11
IDZV11IDZQIl , and DHVlllDHUIl interface lines as shown in
Table 8-8. The /SPEED qualifier of the SET TERMINAL command
sets this characteristic.

Table 8-8: Internal Speed Values for Terminal Interface Lines

DHll: DZllIDZVllIDZQll: DHVllIDHUll:

Code Speed Code Speed Code Speed

1 0 1 0 1 0

2 50 2 50 2 75

3 75 3 75 3 110

4 110 4 110 4 134.5

5 134.5 5 134.5 5 150

6 150 6 150 6 300

7 200 7 300 7 600

8 300 8 600 8 1200

9 600 9 1200 9 1800

10 1200 10 1800 10 2000

11 1800 11 2000 11 2400

12 2400 12 2400 12 4800

13 4800 13 3600 13 Reserved

14 9600 14 4800 14 9600

15 7200 15 19200

16 9600

8-142 Set Terminal Characteristics, FO=16 (UU.TRM)

15 CHR$(N%), where N% is:

0% No change.

1 % Do not set the output parity bit. The INOPARTTY qua lifter of the
SET TERMINAL command sets this characteristic.

2% Generate the output parity bit for even parity format. The
IPARITY=EVEN qualifier of the SET TERMINAL command sets
this characteristic.

3% Generate an output parity bit for odd parity format. The
IPARITY=ODD qualifier of the SET TERMINAL command sets
this characteristic.

4% Inhibit altering of the data length. The data length is the number of
data bits (not counting start, stop, or parity bits) transmitted on the
line. See Discussion.

16% Turn off the 8-bit characteristic (7 bits). The INOEIGHT_BIT
qualifier of the SET TERMINAL command sets this characteristic.
See Discussion.

24% Set the 8-bit characteristic. The lEIGHT_BIT qualifier of the SET
TERMINAL command sets this characteristic. See Discussion.

16 CHR$(N%), where N% is:

0% Both the receive (input) and transmit (output) speeds are deter
mined by the value n in byte 14. The ISPEED qualifier of the SET
TERMINAL command sets this characteristic.

n% The internal speed value to determine the baud rate at which the
terminal transmits characters when a split speed setting is used
(requires HWCFG privilege). You can use split speed settings with
the DH11 interface line only. The ISPEED=(input[,output)] qualifier
of the SET TERMINAL command sets this characteristic.

17 CHR$(N%), where N% is:

0%

128%

255%

No change.

The terminal ignores the synchronization protocol that is described
in the following 255 value. The /HARDCOPY and INOTTSYNC
qualifiers of the SET TERMINAL command set this characteristic.
In addition, the system automatically sets this value when byte 11
is 128.

The terminal obeys the synchronization protocol:

• The computer stops sending characters if the terminal transmits
a CHR$(19%) character (XOFF, or the CtrllS combination).

• The computer resumes sending characters when the termi
nal transmits a CHR$(17%) character (XON, or the CtrllQ
combination).

The ISCOPE and ITTSYNC qualifiers of the SET TERMINAL com
mand set this characteristic. In addition, the system automatically
sets this value when byte 11 is 255.

18 CHR$(N%), where N% is:

0%

128%

255%

No change.

The system prints a control character as the up arrow or circumflex
character (i or A) followed by the equivalent printable character.
For example, the CtrllD combination is printed as AD, CHR$(94%)
followed by CHR$(68%). The /uP_ARROW qualifier of the SET
TERMINAL command sets this characteristic.

The system treats control characters as such. The INOUP _ARROW
qualifier of the SET TERMINAL command sets this characteristic.

Set Terminal Characteristics, FO=16 (UU.TRM) 8-143

19 No effect.

20 CHR$(N%),where:

N%=8+DATA+STOP+PARITY

where:
DATA is 0% for 5 bits per character.

1% for 6 bits per character.

2% for 7 bits per character.

3% for 8 bits per character.

STOP is 0% for 1 stop bit per character

4% for 2 stop bits per character.

or 1.5 bits if DATA=O%.

PARITY is 0% for no parity bit.

16% for even parity format.

48% for odd parity format.

This byte applies only to interfaces that support DATAISTOPIPARITY features.
When you use this byte with these interfaces, it overrides the setting of byte
15. In addition, when you use byte 20, byte 14 must be set to a nonzero value.

21 CHR$(N%), where N% is:

0%

128%

No change.

Return the permanent characteristics.

255% Set the characteristics for a terminal to always default to permanent
characteristics when the terminal is released (for example, logout or
kill). The !PERMANENT qualifier of the SET TERMINAL command
determines this value (requires HWCFG privilege).

22 CHR$(N%), where N% is:
0% No change.

128% The system treats an incoming ESC, CHR$(27%), character as
a line terminating character and echoes it as the $ character.
The INOESCAPE_SEQUENCE qualifier of the SET TERMINAL
command sets this characteristic.

255% The system treats an incoming ESC, CHR$(27%), character and
the following incoming characters as a special escape sequence.
See Chapter 4 for a description of incoming escape sequences. The
/ESCAPE_SEQUENCE qualifier of the SET TERMINAL command
sets this characteristic.

23 CHR$(N%), where N% is:

0%

128%

128%+n%

No change.

Disable (clear) the private delimiter. The INODELIMITER quali
fier of the SET TERMINAL command sets this characteristic.

Set the private delimiter to ASCII code n (in the range 1 to 127).
If the character has a special meaning (for example, horizontal
tab or the CtrlJZ combination), the private delimiter usage has
higher precedence. You cannot use the delimiter with INPUT,
INPUT LINE, or MAT INPUT statements. These statements
recognize only standard delimiters. See Chapter 4, Table 4-3 and
the section "Private Delimiters" for a discussion of delimiters.

The !DELIMITER qualifier of the SET TERMINAL command
sets this characteristic.

8-144 Set Terminal Characteristics, FO=16 (UU.TRM)

24 CHR$(N%), where N% is:

0%

128%

255%

No change.

The terminal in use does not have the ESC key that generates
CHR$(27%). Therefore, translate ALT MODE, CHR$(125%), and
PREFIX, CHR$(126%), to CHR$(27%). The IALT_MODE qualifier of
the SET TERMINAL command sets this characteristic.

The terminal in use has an ESC key that generates CHR$(27%).
Therefore, do not translate CHR$(125%) and CHR$(126%) but treat
them as their ASCII characters, right brace (}) and tilde (-). The
/NOALT_MODE qualifier of the SET TERMINAL command sets this
characteristic.

25 CHR$(N%), where N% is:

0%

128%

255%

No change.

Disable the CtrllR and CtrllT facilities. The /NOCONTROL=R AND
/NOCONTROL=T qualifiers of the SET TERMINAL command set
this characteristic.

Enable the CtrllR and CtrllT facilities. The ICONTROL=R and
ICONTROL=T qualifiers of the SET TERMINAL command set this
characteristic.

The CtrllR facility retypes your terminal's pending input buffer. CtrllT produces
a status report for the current keyboard (unless this byte is set to 128 to disable
CtrllT). This byte is only for compatibility with previous releases. When writing
new applications, use Part II of the call instead.

26 CHR$(N%), where N% is:

0%

128%

255%

No change.

Define XOFFIXON processing such that the keyboard resumes
typeout and echo only after XON or CtrllC is typed. The
IRESUME=CONTROL_C qualifier of the SET TERMINAL command
sets this characteristic.

Define XOFFIXON processing such that the keyboard resumes
typeout and echo when any character is typed after XON. The
IRESUME=ANY qualifier of the SET TERMINAL command sets this
characteristic.

27 CHR$(N%), where N% is:

0% No change.

128% Treat BREAK key as a null. The /NOBREAK qualifier of the SET
TERMINAL command sets this characteristic.

255% Translate BREAK key to CtrllC. The !BREAK qualifier of the SET
TERMINAL command sets this characteristic.

28 CHR$(N%), where N% is:

0%

128%

255%

No change.

Enable broadcast to the terminal. The !BROADCAST qualifier of
the SET TERMINAL command sets this characteristic.

Disable broadcast to the terminal. The /NOBROADCAST qualifier
of the SET TERMINAL command sets this characteristic.

Set Terminal Characteristics, FO=16 (UU.TRM) 8-145

Data Returned

Bytes

3

Meaning

This byte ret.urns t.he st.at.us of t.he keyboard specified in byte 4 of t.he dat.a
passed. The following bit t.ests show the information returned:
Value Information

Byte 3 AND 1%<>0%

Byte 3 AND 126%=0%

Byte 3 AND 126%<>0%

Byte 3 AND 128%<>0%

Disabled keyboard or pseudo keyboard that is not
in use.

No job owns keyboard.

(Byte 3 AND 126%)/2 is t.he job number that owns
the keyboard.

Modem line hung up or pseudo keyboard that is not
in use.

5-28 These bytes return values that define the current keyboard characteristics, with
three exceptions:

• If you specify 128 in byte 21, then the call returns the permanent terminal
characteristics.

• Byte 20 is always returned as O.

• Byte 19 returns a code that defines the type ofinterface forthe line, where:

Value Type

o DLIIA, DLllB

2 reserved

4

6

8

10

12

14

16

DLllC, DLllD

DLllE

pseudo keyboard

DJll

DHll

DZlllDZVll

DHVlllDHUll

29 CHR$(N%), where N% is:

16 The 8-bit characteristic is OFF.

24 The 8-bit characteristic is ON.

Privileges Required

None S~t the characteristics of your own terminal

HWCFG Set the characteristics of a terminal other than your own, or set permanent
terminal characteristics

Possible Errors

Meaning

?DEVICE NOT AVAILABLE

The terminal has been disabled by INIT.SYS. You cannot set or
retrieve information from it.

8-146 Set Terminal Characteristics, FO=16 (UU.TRM)

ERR Value

8

Meaning

?PROTECTION VIOLATION

You do not have sufficient privilege to perform any of these
operations:

• Read the characteristics of a terminal not owned by your job.
• Change the characteristics of a terminal not owned by your

job.
• Change the speed setting for your terminal. (Byte 14 or 16 is

nonzero.)

• Set the permanent characteristics for a remote terminal line
(byte 21 is nonzero).

?ILLEGAL SYS() USAGE

1. The keyboard number specified in byte 4 of the call is out of
the range of valid keyboard numbers.

2. The current keyboard is specified (byte 4=255) but the calling
job is detached.

Discussion

ERR Value

10

18

Use this call to determine the current or permanent keyboard characteristics and
then to make changes to those characteristics.

Permanent characteristics are default terminal characteristics, determined by the
system manager. Whatever current characteristics you give a terminal, it goes
back to the permanent characteristics once it is free. If you have not allocated
the terminal, it becomes free when you close the channel. If you have allocated
the terminal, it becomes free when you deallocate it; closing and re-opening the
channel do not free it.

If you do not have HWCFG privilege, you can still read or change the charac
teristics of any terminal that you have opened or assigned or have as your job's
console terminal (KB:). However, you cannot set speed, input buffer quota, or
permanent characteristics.

Byte 15 sets the output parity bit, data length, and 8-bit characteristic. When
the 8-bit characteristic is OFF, incoming data is trimmed to 7 bits (when not in
binary mode). When the 8-bit characteristic is ON, incoming data is not trimmed.
Al3 a result, all 8 data bits are passed to the user program. Digital recommends
you set the 8-bit characteristic to OFF on all 7-bit terminal lines because some
terminals send 7-bit data with the eighth bit set rather than cleared. Setting the
8-bit characteristic to OFF also ensures that terminals configured to send 7 data
bits with a parity bit, connected to a line configured for no parity checking, will
work as they did in the past.

If you want to use the 8-bit feature with parity on a terminal, you must also set
up the data length properly. The data length is the number of actual data bits
transmitted on the line. The default data length in RSTSIE is 8 bits, and the
default parity setting is "disabled."

Normally, when you enable parity, the number of data bits decreases to seven.
This would have the wrong effect on 8-bit terminals. Therefore, the system
suppresses the changing of the data size when the 8-bit characteristic is set. If
you want to suppress the data size change without using the 8-bit setting, set bit
4 in byte 15 when changing the parity setting.

Set Terminal Characteristics, FO=16 (UU.TRM) 8-147

The SET TERMINAL commands use this call to set tenninal characteristics. See
the RSTS / E System Manager's Guide for more infonnation.

8.3.57.2 Set Terminal Characteristics - Part II

Data Passed

Bytes

1

2

3

4

5

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(16%), the set terminal characteristics code.

CHR$(l%), the code to specify part II of the SYS call.

CHR$(N%), where N% is 255% for the current keyboard (requires no privilege)
or is the keyboard number of the terminal to alter (requires HWCFG privilege
or ownership).

CHR$(N%), where N% is the terminal type code. Legal values (0%-255%) are:

Value Code

0% No change

1% Unknown

2% LA36

3% VT52

4% VT55

5% LA180S

6% VT100

7% LA120

8% LA12

9% LA100

10% LA34

11% LA38

12% LA50

13% VT101

14% VT102

15% VT125

16% VT131

17% VT132

18% VT220

19% VT240

20% VT241

21% VT105

8-148 Set Terminal Characteristics, FO=16 (UU.TRM)

22% VKI00

23% RT02

24% LA30

25% VT50

26% VT50H

27%-28% Reserved

29% LA30S

30%-34% Reserved

35% LN03

36%-43% Reserved

44% LA210

45% LQP03

46% LQP02

47% LA75

48% VT330

49% VT340

50% VT320

51% LA324

52%-127% Reserved

128%-255% Available for customer use

The trYPE qualifier of the SET TERMINAL command sets this characteristic.

6-18 Reserved; should be O.

19 CHRS$(N%), where N% is:

Value

0%

1%

2%

4%

8%

Meaning

No change.

Enable operator messages. (Requires OPER privilege.)

Enable operator requests. (Requires OPER privilege.)

Enable application line editing.

Enable application command recall.

128% Enable insert line editing mode.

20 CHRS$(N%), where N% is:

Value

0%

1%

2%

4%

8%

128%

Meaning

No change.

Disable operator messages. (Requires OPER privilege.)

Disable operator requests. (Requires OPER privilege.)

Disable application line editing.

Disable application command recall.

Enable overstrike line editing mode.

Set Terminal Characteristics, FO=16 (UU.TRM) 8-149

21 CHR$(N%), where N% is:

Value

0%

128%

255%

Meaning

No change.

Return the terminal's permanent characteristics.

Set the characteristics for a terminal always to default to
permanent characteristics when the terminal is released (for
example, logout or kill). The /PERMANENT qualifier of the
SET TERMINAL command determines this value (requires
HWCFG privilege).

22 CHR$(N%), where N% is:

23

Value

0%

6%-255%

Meaning

No change.

The terminal's new input buffer quota. The default value is
6. The /BUFFER_QUOTA qualifier of the SET TERMINAL
command sets this characteristic (requires HWCFG privilege).
See Discussion.

CHR$(N%), where N% is:
Value Meaning

0% No change.

1% Enable the CtrllC control character.

2% Enable the CtrllT control character.

4% Enable the CtrllR control character.

8% Enable the CtrllX control character.

16% Enable the autobaud facility.

CtrllC usually halts execution of the current command or program and returns
control to the job keyboard monitor. CtrllT produces a status report for the
current keyboard. CtrllR retypes your terminal's pending input buffer. CtrllX
deletes the current line as well as all type-ahead. The ICONTROL qualifier of
the SET TERMINAL command sets the control characteristics.

The IAUTOBAUD qualifier of the SET TERMINAL command sets the autobaud
characteristic. See the Discussion for more information on the autobaud facility.

24 CHR$(N%), where N% is:

Value

0%

1%

2%

4%

8%

Meaning

No change.

Disable the CtrllC control character.

Disable the CtrllT control character.

Disable the CtrllR control character.

Disable the CtrllX control character.

16% Disable the autobaud facility.

The INOCONTROL qualifier of the SET TERMINAL command clears the
control characteristics.

The INOAUTOBAUD qualifier of the SET TERMINAL command clears the
autobaud characteristic.

8-150 Set Terminal Characteristics, FO=16 (UU.TRM)

25-26

27-28

29-30

CHR$(N%)+CHR$(SWAP%(N%», where N% is:

Value

0%

1%

2%

4%

8%

16%

32%

64%

128%

256%

512%

1024%

2048%

4096%

Meaning

No change.

Set ANSI escape sequences (fANS!).

Set advanced video (lADVANCED_ VIDEO).

Set 132 columns (l132_COLUMNS).

Set printer port (/PRINTER_PORT).

Set ReGIS graphics (IRE GIS).

Set sixel graphics (lSIXEL).

Set Katakana character set (IKATAKANA).

Set selectively eraseable characters (lSELECT_ERASE).

Set dynamically redefinable character sets (!LOADABLE).

Set user defined keys, UDKs (/uSER_DEFINED_KEYS).

Set local copy (!LOCAL_ECHO).

Set noninteractive mode. See Discussion.

Set Answerback mode. See Discussion.

These terminal capability flags let a program check which functions a terminal
can perform. If you set these flags, no special processing is performed. See
the documentation on your particular terminal for more information on its
capabilities.

The qualifier of the SET TERMINAL command that sets a characteristic is
shown in parenthesis after each bit value description.

CHR$(N%)+CHR$(SWAP%(N%», where N% is:

Value

0%

1%

2%

4%

8%

16%

32%

64%

128%

256%

512%

1024%

2048%

4096%

Meaning

No change.

Clear ANSI escape sequences.

Clear advanced video.

Clear 132 columns.

Clear printer port.

Clear ReGIS graphics.

Clear sixel graphics.

Clear Katakana character set.

Clear selectively eraseable characters.

Clear dynamically redefinable character sets.

Clear user defined keys (UDKs).

Clear local copy.

Clear noninteractive mode. See Discussion.

Clear Answerback mode. See Discussion.

Reserved; should be O.

The qualifier of the SET TERMINAL command that clears a characteristic is
the same one shown in parenthesis after each bit value description in bytes
25-26, with the NO prefix appended.

Set Terminal Characteristics, FO=16 (UU.TRM) 8-151

Data Returned

Bytes

5

Meaning

This byte ret.urns the value of the current terminal type.

19 This byte returns the current setting of various terminal attributes. Currently,
it returns only line editing and operator attributes. Note that if the 128 bit is
set in this byte, then insert mode is in effect; otherwise, overstrike mode is in
effect.

23 This byte returns the current control character flag status; that is, those flags
that are set.

25-26 These bytes return the current capability flag status; that is, those flags that
are set.

Privileges Required

None Set the characteristics of your own terminal

HWCFG Set the characteristics of a terminal other than your own, set input buffer
quota, or set permanent terminal characteristics

OPER Set bits 1 and 2 in bytes 19 and 20

Possible Errors

Meaning

?DEVICE NOT AVA1LABLE

The terminal has been disabled by INIT.SYS. You cannot set or
retrieve information from it.

?PROTECTION VIOLATION

You do not have sufficient privilege to perform any of these
operations:

• Read the characteristics of a terminal not owned by your job.
• Change the characteristics of a terminal not owned by your

job.

• Change the terminal's buffer quota.

• Enable or disable operator messages or requests.

?ILLEGAL SYS() USAGE

One of the following occurred:

• The keyboard number specified in byte 4 of the call is out of
the range of valid keyboard numbers.

• The current keyboard is specified (byte 4=255) but the calling
job is detached.

• The value in byte 22 is not within the range of 6-255.

Discussion

ERR Value

8

10

18

Use this call to detennine the current or pennanent keyboard characteristics and
then to make changes to those characteristics.

Pennanent characteristics are default tenninal characteristics, detennined by the
system manager. Whatever current characteristics you give a tenninal, it goes
back to the pennanent characteristics once it is free. If you have not allocated
the tenninal, it becomes free when you close the channel. If you have allocated

8-152 Set Terminal Characteristics, FO=16 (UU.TRM)

the tenninal, it becomes free when you deallocate it; closing and re-opening the
channel do not free it.

If you do not have HWCFG privilege, you can read and change the characteristics
of any terminal that you have opened or assigned or have as your job's console
tenninal (KB:). However, you cannot set speed, input buffer quota, or pennanent
characteristics. The SET TERMINAL command uses this call to set tenninal
characteristics. See the RSTS / E System Manager's Guide for more infonnation
on SET TERMINAL.

Byte 22 sets the input buffer quota. The default quota value is 6. Since there
are 30 characters in a buffer, this means that tenninal service attempts to buffer
180 (6 times 30) characters before sending the device an XOFF. Note that there
is no guarantee that a tenninal can allocate its full buffer quota, because a
heavy system load may leave less than the tenninal's full buffer quota available.
Also, excessive use of this feature to allocate large numbers of buffers to several
terminals can create a shortage of small buffers.

Bit value 16 in byte 23 sets the autobaud characteristic. Autobaud enables RSTS
IE to detect and then set terminal speed on a particular multiplexed line. Once
the characteristic is set, the user types carriage return (CR) until the system
prompts with 'User:'. You can set the autobaud feature on DZ11, DZV11, DZQ11,
DH11, DHV11 and DHU11 multiplexers. Autobaud supported speeds are 110,
150, 300, 600, 1200, 1800, 2400, 4800 and 9600 baud. RSTSIE does not support
split speeds when using the autobaud feature. Bit value 16 in byte 24 clears the
autobaud characteristic. The autobaud characteristic is meaningful only when
setting pennanent characteristics.

Bit value 2048% in bytes 25-26 sets noninteractive mode. You can use the
noninteractive characteristic with devices such as printers that are attached
to tenninal lines. These devices do not function as interactive tenninals; in
particular, they are never used to initiate a tenninal session. If the noninteractive
characteristic is set, the system ignores any characters received from the tenninal
if the tenninal is not owned by a job. If the terminal is owned by a job, the
system processes characters nonnally. Bit value 2048% in bytes 27-28 clears
noninteractive mode. The noninteractive characteristic is meaningful only when
setting pennanent characteristics.

Bit value 4096% in bytes 25-26 sets Answerback mode. Answerback is not
compatible with autobaud. Use Answerback mode for terminals serving electronic
messaging systems such as TELEX and TWX. The Answerback text defines the
tenninal's address in the electronic messaging system. See the RSTS / E System
Manager's Guide for more infonnation on Answerback.

When a messaging system calls into RSTSIE for an Answerback tenninal, RSTS
IE responds with its Answerback message (to confinn its address to the caller),
then wait for data from the messaging system and stores the data in a unique
file, named according to the current time, in the EMS$: account. These files can
then be handled as any other file on the system. They may be printed for manual
distribution, or an application may be written to scan the file to detennine which
user on the system should receive this message.

8.3.58 Disk Directory Lookup

See the section "Directory Lookup" (FO=15, UU.DIR), for a description of this call.

Disk Directory Lookup, FO=17 (UU.LOK) 8-153

8.3.59 Enable and Disable Disk Caching

Data Passed

Bytes

1

2

3

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(19%), the enable and disable caching code.

CHR$(N%), where N% is:

Value

0%

1%

Meaning

Enable directory and data caching. In addition to this byte, data
caching requires a value setting in byte 11. Note that bytes 4
through 12 are used only if this byte equals O.

To disable all caching.

128% Return the current caching parameters. A 128 value in this byte
does not enable or disable data caching.

4 CHR$(C%), where C% is the cache cluster size. If C% is 0, the current cluster
size is used. See Discussion. Cache cluster size can be specified as 1,2",4, or 8
blocks. If C% is greater than 8, 8 is used.

5-6 CHR$ (L%)+CHR$(SWAP%(L%», where L% sets a limit on the total number
of cache clusters that can be used. If L% is 0, the current limit is used. See
Discussion. If L% is nonzero, it specifies an upper limit on the number of
clusters in the cache. Note that if the amount of XBUF available to the cache
is less than L%, the cache does not exceed XBUF.

7-8 CHR$(D%)+CHR$(SWAP%(D%», where D% sets a limit on the total number
of cache clusters allocated for directory caching. If D% is 0, the current limit
is used. See Discussion. If D% is nonzero, it specifies an upper limit for the
number of clusters in the cache that are available for directory caching. Note
that the number of clusters allocated for directory caching during a particular
operation can be less than D%.

9-10 CHR$(U%)+CHR$(SWAP%(U%», where U% sets a limit on the total number
of cache clusters allocated to user data caching. If U% is nonzero, it specifies
an upper limit for the number of clusters in the cache that are available for
user data caching. Note that the number of clusters allocated for data caching
during a particular operation can be less than U%.

11 CHR$(E%), where E% modifies the enabling/disabling of data caching as
follows:
E%=O Use the current setting.

E%=l Enable data caching as specified in file OPEN MODE or UFD
setting (see Chapter 1).

E%=64 Cache all data transfers regardless of file OPEN MODE or UFD
setting.

E%=128 Disable all data caching.

12 CHR$(M%), where M% controls the cache's use of the small buffer pool, as
follows:

13

14-30

M%=O Use the current setting.

M%=128 Do not use the small buffer pool.

CHR$(T%), where T% is the new value of the cache replacement time. Specify
0% for no change.

Reserved; should be O.

8-154 Enable and Disable Disk Caching. FO=19 (UU.CHE)

Data Returned

Bytes

1-2

3

Meaning

Internal coding.

Current cache setting and available options:

Value Meaning

o All cache disabled.

1 Directory cache enabled, user data caching disabled.

128 Directory cache disabled, user data caching enabled.

129 Cache enabled, user data caching enabled.

4-12 Current settings of cache parameters, as described for passed data. Note
that these bytes have meaning only if the system manager has installed disk
caching during system installation.

13-14 CHR$(T%), where T% is the time in seconds that an unused cache can be kept
in memory.

Always zero. 15-16

17-18 CHR$(B%), where B% is the amount ofXBUF used for caching (in units of
cache clusters).

19-20 CHR$(N%), where N% is the number of cache clusters in XBUF that are used
for directory caching.

21-22 CHR$(C%), where C% is the number of cache clusters in XBUF that are used
for data caching.

23-24

25-30

CHR$(I%), where 1% is the number of invalid cache clusters.

Not used.

Privileges Required

TUNE

Possible Errors

Meaning

?ACCOUNT OR DEVICE IN USE

All of the clusters allotted to the cache are in use.

?NO ROOM FOR USER ON DEVICE

An attempt was made to enable data caching without sufficient
XBUF space allocated to the cache. The system manager must
allocate at least 2K words of memory to XBUF for caching.

?DEVICE NOT AVAILABLE

An attempt was made to change the cache cluster size (see byte
4) while a cached file disk transfer was in progress. Retry the
operation.

?PROTECTION VIOLATION

You do not have the TUNE privilege.

Discussion

ERR Value

3

4

8

10

Bytes 1, 2, and 3 of this call enable or disable the FIP buffering module that
controls directory caching. The SET SYSTEM command uses these bytes.

Enable and Disable Disk Caching. FO=19 (UU.CHE) 8-155

If the system manager installed user data caching on the system during system
installation, bytes 1-13 enable or disable user data caching and set the param
eters of the cache. The system manager defines the total size of XBUF during
system installation, and some portion of this space is, in turn, used by the cache.
The disk caching SYS call defines the size of the directory portion and data por
tion of the cache. The sizes defined in this call set upper limits, not fixed sizes.
For example, if the system manager defines a 40K word XBUF at system instal
lation, the SYS call can define the directory and data portions of the cache as 25K
words each. That is, data can use the space in the cache up to a maximum of 25K
words, which leaves a minimum of 15K words for the directory. The reverse is
also true. In this manner, data and directory caching are guaranteed a minimum
allocation and are allowed to overlap, which permits the cache to dynamically
adjust to system and program requirements.

This SYS call is also used to limit the size of the total cache. Because both the
cache and DECnetIE use XBUF, limiting the cache guarantees that space is
always available in XBUF for DECnetlE. Note that the system frees the amount
of memory allocated to the cache for other use when it is not performing caching.

Byte 4 of the call sets the cache cluster size. This parameter controls the number
of contiguous blocks that are copied from the disk to the cache whenever a
file or directory is cached (see Chapter 1). The cache cluster size should be small
enough to contain a reasonable number of clusters, but large enough to reduce the
number of disk accesses. That is, you must anticipate data requests and make
sure that the cache is equal to the file cluster size of the most often accessed
file. If you specify a cache cluster size of 1, only random caching is allowed (see
Chapter 1). See the RSTS / E System Manager's Guide for cache cluster size
guidelines.

Note that the parameters for cache cluster size and cluster allocation (bytes 4
through 10) have default settings at system start-up. The default settings are a
cache cluster size of 4, with no limits on directory, data, or total cache size, and a
cache replacement value of 30. The system manager can reset these defaults with
an INIT option, as the RSTS / E System Installation and Update Guide describes.

8.3.60 Date and Time Conversion

Data Passed

Bytes

1

2

3-4

5-6

7-16

17-18

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(20%), the date and time conversion code.

CHR$(D%)+CHR$(SWAP%(D%», where D% is the date to be converted or 0%
for the current date.

CHR$(D%)+CHR$(SWAP%(D%», where:
Value

D%=O

D%<O

D%>O

Meaning

Use the system default format.

Use alphabetic date format.

Use ISO numeric date format.

Reserved; should be O.

CHR$(T%)+CHR$(SWAP%(T%», where T% is the time to be converted or 0%
for the current time.

8-156 Date and lime Conversion, FO=20 (UU.CNV)

19-20 CHR$(T%)+CHR$(SWAP%(T%», where:
Meaning Value

T%=O

T%<O

T%>O

Use the system default format.

Use AMlPM time format.

Use 24-hour time format.

21-30 Reserved; should be O.

Data Returned

Bytes

1

2

Meaning

The current job number times two.

Not used.

Same as data passed. 3-6

7-16

17-20

21-30

The date string, padded to the right with nulls.

Same as data passed.

The time string, padded to the right with nulls.

Privileges Required

None.

Possible Errors

No errors are possible; however, if bytes 3-4 or 17-18 contain illegal date or time
values, unpredictable output may be generated.

Discussion

Use this call in programs that need to override the system date and time defaults.
This call uses the lower twelve bits of the time word and ignores the high three
bits.

8.3.61 System Logical Names

RSTS/E allows users to access devices by logical names as well as by physical
names. Logical names that apply to all users are called system logical names. On
all systems, users can refer to a disk by its pack identification or a logical name
that replaces the pack identification.

This SYS call allows you to add, remove, change, and list system logical names.
The total number of additional system logical names allowed is limited by the
size of the extended buffer pool (XBUF).

RSTS/E maintains a table of system logical names in two parts. The first part,
the disk logical list, exists on all systems and contains an entry for each disk unit
configured on the system. The position of an entry is fixed to a specific disk type
and unit and never has a PPN associated with the logical name.

The second part of the logical name table, the general logical list, is optional.
Space for the table is taken from XBUF. The position of entries in the general
logical list is dynamic. Multiple entries are allowed for a specific device and unit.
Only one entry, however, can appear for any specific logical name. In addition, an
entry in the general logical list can have a PPN associated with the logical name.
This mechanism allows a default account specification to be applied for a logical
name.

System Logical Names, FO=21 8-157

The default account associated with a system logical name applies unless
an account is specified immediately after the logical name. For example, if
you associate the system logical name SCRATCH with account [100,100] on
RP04 unit 2, and open the file SCRATCH:[200,240]OTHERDAT. the system
attempts to access the file OTHERDAT on RP04 unit 2 under account L200,240].
The specification SCRATCH:OTHERDAT refers to the file OTHERDAT in
account [100,100] on RP04 unit 2, the account associated with the logical name
SCRATCH.

The Mount and Dismount SYS calls (SYS 3) create and delete entries in the disk
logical list. The Mount call places a pack identification or logical name in the
entry for the disk being mounted (unless NOLOGICAL is specified or the logical
name is already in use). The Dismount call removes a pack identification or
logical name from the entry for that disk.

The System Logical Name call can change or remove a name (or pack identifi
cation) in the disk logical list. The Logical Name SYS call can add or remove
entries in the general logical list. This call has four subfunctions:

• Add New Logical Names

• Remove Logical Names

• Change Disk Logical Name

• List Logical Names

The following sections describe the variations of the Logical Name SYS call.

8.3.62 Add New Logical Name, FO=21 (UU.SLN)

Data Passed

Bytes

1

2

3

4

5-6+

7-16

17-22

23-26+

27-30

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(21%), the system logical name code.

CHR$(4%), to add a new entry in the logical name table.

CHR$(N%), where N% is one of the following values:

Value Meaning

0% Do not replace an existing logical name. See Discussion.

1% Replace an existing logical name with the new information. See
Discussion.

PPN to be associated with this logical name. If these bytes are 0, no account is
associated with the logical name.

The system logical name, in Radix-50 format.

Reserved; should be o.
The device name and unit number to which the logical name applies.

Reserved; should be o.

8-158 Add New Logical Name, FO=21 (UU.SLN)

Data Returned

Meaning Bytes

4 If you passed a value of 1% in byte 4, the call returns:
Value Meaning

o The logical name did not already exist

1 The logical name existed and was replaced.

Privileges Required

INSTAL

Possible Errors

?ILLEGAL FILE NAME

Meaning

No name is found in bytes 7 through 16, or the name found
contains nonalphanumeric characters.

?ACCOUNT OR DEVICE IN USE

The name specified in bytes 7 through 16 duplicates one already
in either the disk logical or general logical lists.

?NOT A VALID DEVICE

The device specification in bytes 23 through 26 is illegal or the
related device is not configured on the system.

?ILLEGAL SYS() USAGE

You specified an illegal value.

?NO BUFFER SPACE AVAILABLE

There is no more room on the system for a new entry. To free up
an entry, issue the remove logical name SYS call.

Discussion

ERR Value

2

3

6

18

32

System logical names can be up to 15 characters long, composed of alphanumeric
characters, underscores L) and dollar signs ($). Note that spaces are invalid
characters. When adding a name of fewer than 15 characters, you must fill the
extra space at the end in bytes 7-16 with zeros (Radix-50 blanks). This call scans
the entire system logical name table for the name given in bytes 7 through 16.

Byte 4 specifies whether to replace an existing logical name. If you specify a
value of 1% (replace), the system deassigns the existing logical name. The system
follows these procedures to determine whether to add the new logical name to the
disk logical list or general logical list of logical name table:

1. If the device name specified in bytes 23-26 is not a disk, the system adds the
logical name to the general logical list

2. If the device name is a disk and you specified a PPN in bytes 5-6, the system
adds the logical name to the general logical list

3. If the logical name is longer than nine characters, the system puts it in the
general logical list.

Add New Logical Name, FO=21 (UU.SLN) 8-159

4. If the device name is a disk and you did not specify a PPN in bytes 5-6, the
system checks to see if the disk is mounted. If the disk is not mounted, the
system adds the logical name to the general logical list. If the disk is mounted
and currently has no logical name assigned to it, the name is put on the disk
logical list and assigned to that disk. All other cases are put on the general
logical list.

The DeL ASSIGN/SYSTEM command uses this call.

8.3.63 Remove logical Names

Data Passed

Bytes

1

2

Meaning

CHR$(6%), the SYS can to FIP.

CHR$(21%), the system logical name code.

3 CHR$(O%), to remove a system logical name from either the disk logical or
general logical lists of the logical name table.

4-6

7-16

17-30

Reserved; should be O.

The system logical name, in Radix-50 format.

Reserved; should be O.

Data Returned

No meaningful data is returned.

Privileges Required

INSTAL

Possible Errors

?ILLEGAL FILE NAME

Meaning

No name is found in bytes 7 through 16, or the name found
contains nonalphanumeric characters.

?CAN'T FIND FILE OR ACCOUNT

The name specified in bytes 7 through 16 is not currently defined
as a logical name.

?ILLEGAL SYS() USAGE

You specified an illegal value.

Discussion

ERR Value

2

5

18

This call scans the entire system logical name table for the name specified in
bytes 7 through 16. The call removes the logical name or pack identification from
the disk logical list or removes an entire entry from the general logical list.

When you remove a system logical name of fewer than 15 characters, you must
fill the extra space at the end in bytes 7-16 with zeros (RAD50 blanks).

8-160 Remove Logical Names, FO=21

8.3.64 Change Disk Logical Names

Data Passed

Bytes

1

2

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(21%), the system logical name code.

3 CHR$(255%), to change the logical name associated with a disk in the disk
logical list.

Reserved; should be O.

The system logical name, in Radix-50 format.

Reserved; should be O.

4-6

7-12

13-22

23-26+ The name and unit number of the disk device whose logical name is to be
changed.

27-30 Reserved; should be O.

Data Returned

No meaningful data is returned.

Privileges Required

INSTAL

Possible Errors

?ILLEGAL FILE NAME

Meaning

No name is found in bytes 7 through 16, or the name found
contains nonalphanumeric characters.

?ACCOUNT OR DEVICE IN USE

The logical name specified in bytes 7 through 16 duplicates one
already in either the disk logical or general logical lists.

?CAN'T FIND FILE OR ACCOUNT

The disk specified in bytes 23 through 26 is not configured on this
system.

?NOT A VALID DEVICE

The device specified in bytes 23 through 26 is illegally formatted
or is not a disk.

?ILLEGAL SYS() USAGE

You specified an illegal value.

Discussion

ERR Value

2

3

5

6

18

This call accesses the entry in the disk logical list for the disk specified in bytes
23 through 26. The logical name specified in bytes 7 through 12 is placed in the
entry. This call accepts system logical names up to nine characters long. When
changing a logical name of less than nine characters, you must fill the extra space
in bytes 7 through 12 with zeros (RAD50 blanks).

Change Disk Logical Names, FO=21 8-161

8.3.65 List Logical Names

Data Passed

Bytes

1

2

3

4

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(21%), the system logical name code.

CHR$(2%), to list the entries in the logical name table.

Reserved; should be o.
5-6 CVT%$(SWAP%(N%», where N% is the index of the logical name entry to be

listed.

7-30 Reserved; should be o.

Data Returned

Meaning

Not used.

Bytes

1-4

5-6 PPN of the account associated with the logical name. 0% if no PPN is associ
ated with the logical name.

The system logical name, in Radix-50 format.

Not used.

7-16

17-22

23-26+ The device name and unit number of the Nth logical. 0% if no device name is
associated with the logical name.

27-30 Not used.

Privileges Required

None.

Possible Errors

Meaning

?CAN'T FIND FILE OR ACCOUNT

The index entry specified in bytes 5-6 is out of range.

?ILLEGAL SYS() USAGE

You specified an illegal value.

Discussion

ERR Value

5

18

This call scans the system logical name table and lists the logical name that
corresponds to the index number passed in bytes 5-6. You can list all logicals by
repeated calls with an index value, starting at 0 and increasing the index value
by 1 each time.

8.3.66 Send/Receive Message

See Chapter 9 for a description of the SendlReceive system function call. See
Chapter 10 for a description of the System Call for PrintlBatch Services (PBS)
and Operator Message Service (OMS), a subfunction of the SendlReceive call.

8-162 Send/Receive Message, FO=22 (.MESAG)

8.3.67 Determine lAT Server and Port IDs

Data Passed

Bytes

1

2

3

4

5

6

7

8-10

11

12

13-14

15-16

17-24

25-40

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(22%), the send/receive function code.

CHR$(12%), the LAT SHOW function.

CHR$(6%), the SESSION subfunction.

CHR$(I%), the index of the session for which you want information.

CHR$(L%), the length, in bytes, of the server name on which to restrict the
session search. If this byte is 0%, the call reports on sessions on all servers.

CHR$(K%), the keyboard number for which you want session information. If
Byte 6 is not 0%, the system ignores this byte.

CHR$(O%), reserved; should be 0%.

CHR$(C%), the channel number (any value from 1 to 12) for the I/O buffer pro
vided by the caller when the call returns the session information. Typically, the
user application gets a buffer by opening the null device (NL:) and associates
it with a MAP (for BASIC-PLUS-2, or FIELD for BASIC-PLUS) describing the
format of the information.

CHR$(O%), reserved; should be 0%.

L%, the length in bytes of the data being returned in the channel buffer in
the form CVT%$(SWAP%(L%». The length of the buffer must be at least 53
decimal bytes to ensure that all the data can be returned.

If the length is zero, the system uses the whole buffer (that is, from the offset
to the end of the buffer),

CHR$(O%), the offset value in the form CVT%$(SWAP%(O%». The value spec
ifies the offset from the beginning of the buffer where the extended parameter
list begins. The offset must be an even number in the range of zero to (size of
buffer - 1).

CHR$(O%), reserved; should be 0%.

N$, the name string if any. The name string is the name of the server on which
to restrict the session search. You can use a maximum of 16 bytes for passing a
name string to the directive. The system converts the server name to uppercase
characters for comparison and returns it to the extended parameter list exactly
as it was reported to the server.

Data Returned

The data returns to the extended parameter list or the 110 buffer associated
with the channel number passed in Byte 11. The data returns in four fields: the
keyboard field, the server port name field, the server node name field, and the
service name field. These fields are always present and are always shown in the
following order:

Keyboard Field: The keyboard field returns the number for the RSTSIE key
board on which the user is logged in. This field also includes a flag byte indicating
whether or not the user dialed into a LAT terminal server.

Bytes

1

Meaning

CHR$(K%), the number of the RSTSIE keyboard on which the user is logged
in.

Determine LAT Server and Port IDs, FO=22 8-163

2 CHR$(N%), where N% is a bitmask. Bit values are:

(N% AND 128%) not equal 0% indicates the user dialed into the LAT
terminal server or the status was unknown.
(N% AND 128%) equal 0% indicates a line directly connected to the LAT
terminal server.

Server Port Name Field: The server port name is the name given to the port on
which the user is connected. This field immediately follows the keyboard field.

Meaning Bytes

1 CHR$(L%), the length ofthe server port name that follows.

2 N$, the server port name string whose length, in bytes, is given in Byte 1.

Server Node Name Field: The server node name is the name of the server on
which the user is connected. This field immediately follows the server port name
field.

Meaning Bytes

1 CHR$(L%), the length of the server node name that follows.

2 N$, the server node name string whose length, in bytes, is given in Byte 1.

Service Name Field: The service name is the name of the service the user is
running. This field immediately follows the server node name field.

Bytes

1

Meaning

CHR$(L%), the length ofthe service name that follows.

2 N$, the service name string whose length, in bytes, is given in Byte 1.

Privileges Required

None.

Possible Errors

Meaning

?CAN'T FIND FILE OR ACCOUNf

There was no server matching the server specified in the sys-call.

?NOT A VALID DEVICE

The keyboard number was not a valid RSTSIE keyboard number.

?DEVICE NOT AVAILABLE

There was no session matching the specified index.

?ILLEGAL SYS() USAGE

The server name length is not in the range 1-16, or neither a
keyboard nor an index was supplied.

?DISK BLOCK INfERLOCKED

The keyboard number was a valid keyboard number, but it cannot
be a LAT terminal because it is not a dynamic keyboard.

8-164 Determine LAT Server and Port IDs, FO=22

ERR Value

5

6

8

18

19

Meaning

?ILLEGAL BYTE COUNT FOR 110

The buffer supplied did not begin on a word boundary.

?MISSING SPECIAL FEATURE

LAT is not installed on your system.

8.3.68 Create a Local LAT Port

Data Passed

Bytes

1

2

3

4

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(22%), the send/receive function code.

CHR$(-12%), the LAT SET function.

CHR$(4%), the Create a Local Lat Port subfunction.

STRING$(28%,0%), reserved, should be 0%.

ERR Value

31

66

5-32

33-34 Must be the ASCII characters"KB" or zero. If zero, the monitor will select the
first available port.

35

36

37-40

CHR$(K%), the unit number of the port.

CHR$(-l%), the unit real flag; must be nonzero.

STRING$(4%,0%), reserved; should be 0%.

Data Returned

Meaning

Not used.

Bytes

1-32

33-34

35

The ASCII characters "KB".

36

37-40

CHR$(K%), the unit number of the port.

CHR$(-l%), the unit real flag.

Not used.

Privileges Required

SWCTL

Possible Errors

Meaning

?ACCOUNT OR DEVICE IN USE

The dynamic keyboard specified is currently in use.

?NOT A VALID DEVICE

The port-name specified is not a dynamic keyboard.

?PROTECTION VIOLATION

The caller does not have the SWCTL privilege.

ERR Value

3

6

10

Create a Local LAT Port, FO=22 8-165

Meaning ERR Value

?NO BUFFER SPACE AVAILABLE 32

Not enough small buffers to create the local LAT port.

?MISSING SPECIAL FEATURE 66

LAT is not installed on the system.

Discussion

This SYS call creates a local LAT port for the host to use to initiate LAT connec
tions to application devices connected to LAT servers. You can specify the name
and unit number of the port to be created; if you specify no name, the monitor
selects the next available port.

8.3.69 Delete a Local LAT Port

Data Passed

Bytes

1

2

3

4

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(22%), the send/receive function code.

CHR$(-12%), the LAT SET function.

CHR$(5%), the Delete a Local LAT Port subfunction.

5 CHR$(F%), flag byte. If bit zero is set to one, the SYS call aborts any currently
active session on the port.

6-32

33-34

35

36

37-40

STRING$(27%,0%), reserved; should be 0%.

Must be the ASCII characters"KB".

CHR$(K%), the unit number of the port.

CHR$(-l%), the unit real flag.

STRING$(4%,0%), reserved; should be 0%.

Data Returned

If bit zero is set in Byte 5 (CHR$(F%), the flag byte), the port is currently in use.
This port is not deleted until the session completes, unless the abort bit is set.

Privileges Required

SWCTL

Possible Errors

?NOT A VALID DEVICE

Meaning

The port-name specified is not a dynamic keyboard.

?PROTECTION VIOLATION

The caller does not have the SWCTL privilege.

8-166 Delete a Local LAT Port, FO=22

ERR Value

6

10

Meaning ERR Value

?ILLEGAL SYS() USAGE 18

No port name was specified.

?MISSING SPECIAL FEATURE 66

LAT is not installed on the system.

Discussion

This SYS call deletes the local LAT port created by the Create Local LAT Port
SYS call. The caller passes the name of the port to be deleted. If a session is
active on the port, the port is deleted once the session has finished. The caller
can request that the session be terminated immediately by setting the abort bit
in the flag byte passed in Byte 5.

8.3.70 Assign a Local LAT Port

Data Passed

Bytes

1

2

3

4

5

6

7

8

9-10

11

12

13-14

15-16

17-32

33-34

35

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(22%), the send/receive function code.

CHR$(-12%), the LAT SET function.

CHR$(6%), the Set Local LAT Port subfunction.

CHR$(O%), assign port characteristics.

CHR$(O%), reserved; should be 0%.

CHR$(F%), default flags to clear. Ifbit seven is set to one, the access type is set
to NOQUEUED.

CHR$(F%), default flags to set. If bit seven is set to one, the access type is set
to QUEUED.

STRING$(2%,0%), reserved; should be 0%.

CHR$(C%), the channel number for the 110 buffer containing information on
the server, remote service, and/or remote port. Typically, the user application
gets a buffer by opening the null device (NL:) and associating it with a MAP
for BASIC-PLUS-2, or FIELD for BASIC-PLUS, which describes the format
of the information to pass. If this byte contains a channel number (any value
from 1 to 12), a buffer defined by the length and offset values contains the data.
The data should be left-justified in the buffer for channel C%, beginning at the
offset value defined in Bytes 15-16.

CHR$(O%), reserved; should be 0%.

L%, the length in byt.es of the data being returned in the channel buffer in
the form CVT%$(SWAP%(L%». The length of the buffer must be at least 53
decimal bytes to ensure that all the data can be returned.

0%, the offset value in the form CVT%$(SWAP%(L%». The value specifies the
offset from the beginning of the buffer where the data begins. The offset must
be an even number in the range zero to (size of buffer - 1).

STRING$(16%,0%), reserved; should be 0%.

Must be the ASCII characters"KB".

CHR$(K%), the unit number of the port.

Assign a Local LAT Port, FO=22 8-167

36

37-40

CHR$(-I%), the unit real flag.

STRING$(4%,0%), reserved; should be 0%.

Data Returned

No meaningful data is returned.

Privileges Required

SWCFG

Possible Errors

?ILLEGAL Fll..E NAME

Meaning

The remote server, service, or port name contains invalid charac
ters.

?ACCOUNT OR DEVICE IN USE

The port is currently in use.

?NOT A VALID DEVICE

The port-name specified is not a local LAT port.

?PROTECTION VIOLATION

The caller does not have the SWCFG privilege.

?ll..LEGAL SYS() USAGE

The error can occur for the following reasons:

• An invalid type code was encountered in the user buffer.

• The remote server, service, or port name length was not in
the range of 1 to 16 decimal bytes.

• The remote server, service, or port name was not specified.

.. The local LAT port name was not specified.

?ILLEGAL BYTE COUNT FOR I/O

The length of the fields specified in the user buffer exceeds the
length of the buffer as given in Bytes 13 to 14, or the offset value
is not an even number.

?MISSING SPECIAL FEATURE

LAT is not installed on the system.

Discussion

ERR Value

2

3

6

10

18

31

This SYS call lets the caller specify the server name, remote port name, and the
remote service name that the port will be assigned to. It also lets the user set
the default of whether or not requests can be queued. The caller must specify the
server name as well as the remote port name, the remote service name, or both.
The SYS call returns an error if any data is missing.

8-168 Assign a Local LAT Port, FO=22

The caller should provide an I/O buffer of at least 90 decimal bytes. This is
the buffer with the channel nwnber passed in Byte 11. It receives the remote
server, remote service, and remote port names. The caller must always specify
the remote server name, then one or both of the remote service or remote port
names. The format of the buffer is:

I Type I Len I Data I Type I Len I Data OR

The buffer has the long format if the caller uses all three names.

Byte Specification

1 CHR$(T%), where T% is an integer value specifying the type of name that
follows. The valid values for Tare:
o remote server name

1 remote service name

2 remote port name

2 CHR$(L%), where L% is an integer value in the range 1 to 16, giving the length
of the name that follows.

3+ N$, the name of the server, service, or remote port.

The names may contain alphanwneric characters, eight-bit characters with ASCII
values of 192 to 253 decimal, dollar sign ($), hyphen (-), period (.), or underscore
L). Note that spaces are invalid characters.

8.3.71 Deassign a Local LAT Port

Data Passed

Bytes

1

2

3

4

5

6-32

33-34

35

36

37-40

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(22%), the send/receive function code.

CHR$(-12%), the LAT SET function.

CHR$(6%), the Set Local LAT Port subfunction.

CHR$(l%), deassign the local LAT port.

STRING$(27%,0%), reserved; should be 0%.

Must be the ASCII characters "KB".

CHR$(K%), the unit number ofthe port.

CHR$(-l%), the unit real flag.

STRING$(4%,0%), reserved; should be 0%.

Deassign a Local LAT Port, FO=22 8-169

Data Returned

No meaningful data is returned.

Privileges Required

SWCFG

Possible Errors

Meaning

?ACCOUNT OR DEVICE IN USE

The port is currently in use.

?NOT A VALID DEVICE

The port name specified is not the name of a local LAT port.

?PROTECTION VIOLATION

The caller does not have the SWCFG privilege.

?ILLEGAL SYS() USAGE

No local LAT port name was specified.

'lMISSING SPECIAL FEATURE

LAT is not installed on the system.

Discussion

ERR Value

3

6

10

18

66

This SYS call lets the caller disassociate the local LAT port from the server it was
assigned to. Once deassigned, the LAT port cannot be used for host-initiated cans
until it is once more assigned to a server.

8.3.72 Return local lAT Port Status

Data Passed

Bytes

1

2

3

4

5

6

7-32

33-34

35

36

37-40

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(22%), the send/receive function code.

CHR$(12%), the LAT SHOW function.

CHR$(7%), the SHOW PORT subfunction.

CHR$(O%), no index value.

CHR$(l%), must be 1 for getting status.

STRING$(26%,0%), reserved; should be 0%.

Must be the ASCII characters "KB".

CHR$(K%), the unit number of the port.

CHR$(-l%), the unit real flag.

STRING$(4%,0%), reserved; should be 0%.

8-170 Return locallAT Port Status, FO=22

Data Returned

Bytes

1-4

5

6

Meaning

Not used.

CHR$(T%), the port characteristics bit mask:
Bit Description

o Set if application (host-initiated) port

1 Set if interactive (server-initiated) port

2 Set if dialup

7 Set if port has QUEUED access.

CHR$(S%), the port status bit mask:
Bit Description

o Set if connected

1 Set if connection failed

2 Set if connection in progress

7-8 CHR$(Q%), the position in the server's queue if the connection request is
queued and bit 2 of byte 6 is set. This information is returned in the form
CVT%$(SWAP%(Q%».

9 CHR$(E%), the RSTSIE error code if bit 1 of byte 6 is set.
Value

8.

14.

32.

Meaning

Connection request rejected by server.

No response from server.

Insufficient resources on this system to initiate a connection.

Return Local LAT Port Status, FO=22 8-171

10 CHR$(R%), the reject reason code if bit 2 of Byte 6 is set. The meanings of the
reject reason codes are:

11-20

21

22-32

33-34

35

36

37-40

Value Meaning

o Reason iR unlmown.

1 User requested disconnect.

2 System shutdown in progress.

3 Invalid slot received.

4 Invalid service class.

5 Insufficient resources to satisfy request.

6 Service in use.

7 No such service.

8 Service is disabled.

9 Service is not offered by the requested port.

10 Port name is unknown.

11 Invalid password.

12 Entry is not in the queue.

13 Immediate access rejected.

14 Access denied.

15 Corrupted solicit request.

16 Command type is illegal or not supported.

17 Can't send start slot.

18 Queue entry is deleted by local node.

19 Inconsistent or illegal request parameter.

Not used.

Owning job number.

Not used.

The ASCII characters "KB".

CHR$(K%), the unit number of this port.

CHR$(-I%), the unit real flag.

Not used.

Privileges Required

None.

Possible Errors

Meaning

?NOT A VALID DEVICE

The port name specified is not a local LAT port.

?ILLEGAL SYS() USAGE

No local LAT port name specified.

?MISSING SPECIAL FEATURE

LAT is not installed on the system.

8-172 Return Local LAT Port Status, FO=22

ERR Value

6

18

66

Discussion

This SYS call lets the caller get CWTent information on the status of the local
LAT port. The caller must specify the port name of the local LAT port.

8.3.73 Return Local LAT Port Characteristics

Data Passed

Bytes

1

2

3

4

5

6

7

8-10

11

12

13-14

15-16

17-32

33-34

35

36

37-40

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(22%), the send/receive function code.

CHR$(12%), the LAT SHOW function.

CHR$(7%), the SHOW PORT function.

CHR$(I%), the index of the port for which you want infonnation, or 0 if you
request a specific port.

CHR$(O%), must be 0% for returning port characteristics.

CHR$(T%), the port type code:
Value

o
1

Meaning

Specific port requested

Application ports

2 Interactive ports

STRING$(19%,0%), reserved, should be 0%.

CHR$(C%), the channel number (any value from 1 to 12) for the I/O buffer
provided by the caller when the call returns infonnation on the server, the
remote service, or the remote LAT port. Typically, the user application gets
a buffer by opening the null device (NL:) and associating it with a MAP (for
BASIC-PLUS-2, or FIELD for BASIC-PLUS) describing the fonnat of the
infonnation. The size of the buffer must be at least 90 decimal bytes in order to
ensure that all the data can be returned.

CHR$(O%), reserved; should be 0%.

L%, the length in bytes of the data being returned in the channel buffer in
the fonn CVT%$(SWAP%(L%». The length of the buffer must be at least 90
decimal bytes to ensure that all the data can be returned.

0%, the offset value in the fonn CVT%$(SWAP%(O%». The value specifies the
offset from the beginning of the buffer to where the data begins. The offset
must be an even number in the range zero to (size of buffer - 1).

STRING$(16%,0%), reserved; should be 0%.

Must be the ASCII characters "KB" if Byte 5 = 0%.

CHR$(K%), the unit number of the port, if Byte 5 = 0%.

CHR$(-l%), the unit real flag, if Byte 5 = 0%.

STRING$(4%,0%), reserved; should be 0%.

Return Local LAT Port Characteristics, FO=22 8-173

Data Returned

Bytes

1-4

5

6

Meaning

Not used.

CHR$(T%), the port characteristics bit mask:
Bit Description

o Set if application (host-initiated) port

1 Set if interactive (server-initiated) port

2 Set if dialup

7 Set if port has QUEUED access.

CHR$(S%), the port status bit mask:
Bit Description

o Set if connected

1 Set if connection failed

2 Set if connection in progress

7-8 CHR$(Q%), the position in the server's queue if bit 2 of Byte 6 is set and if
the connection request is queued. This information is returned in the form
CVT%$(SWAP%(Q%».

9 CHR$(E%), the RSTSIE error code if bit 1 of Byte 6 is set.
Value Meaning

8. Connection request rejected by server.

14. No response from server.

32. Insufficient resources on this system to initiate a connection.

10 CHR$(R%), the reject reason code, returned by the server if bit 2 of byte 6 is
set. The meanings of the reject reason codes are:
Value Meaning

o Reason is unknown.

1 User requested disconnect.

2 System shutdown in progress.

3 Invalid slot received.

4 Invalid service class.

5 Insufficient resources to satisfy request.

6 Service in use.

7 No such service.

8 Service is disabled.

9 Service is not offered by the requested port.

10 Port name is unknown.

11 Invalid password.

12 Entry is not in the queue.

13 Immediate access rejected.

14 Access denied.

15 Corrupted solicit request.

16 Command type is illegal or not supported.

17 Can't send start slot.

18 Queue entry is deleted by local node.

19 Inconsistent or illegal request parameter.

8-174 Return Local LAT Port Characteristics, FO=22

11-20

21

22-32

33-34

35

36

37-40

Not used.

Owning job number.

Not used.

The ASCII characters "KB".

CHR$(K%), the unit number of this port.

CHR$(-l%), the unit real flag.

Not used.

The caller should provide an I/O buffer of at least 90 decimal bytes. This is the
buffer with the channel number passed in Byte 11. It receives the specified name
of the remote service and the specified and actual names for remote server and
remote port. The format of the buffer is:

I Type I Len I Data I Type I Len I Data

Byte

1

Specification

CHR$(T%), where T% is an integer value specifying the type of name that
follows. The valid values for Tare:

1 specified server name, returned only for application ports

2 specified service name, returned only for application ports, and only
if the local LAT port was assigned to a particular service when it was
created or assigned

3 specified remote port name, returned only for application ports, and
only if a remote LAT port was specified when the local LAT port was
created or assigned

4 actual server name, returned only if the port is connected (byte 6 = 0)

5 actual remote port, returned only if the port is connected (byte 6 = 0)

2 CHR$(L%), where L% is an integer value in the range 1 to 16, giving the length
of the name that follows.

3+ N$, the name of the object specified in Byte 1.

The names may contain alphanumeric characters, eight-bit characters with ASCII
values of 192 to 253 decimal, dollar sign ($), hyphen (-), period (.), or underscore
C). Note that spaces are invalid characters.

Privileges Required

None.

Possible Errors

?NOT A VALID DEVICE

Meaning ERR Value

6

The port name specified is not a local LAT port.

?DEVICE NOT AVAll..ABLE 8

No match for specified index.

Return Local LAT Port Characteristics, FO=22 8-175

Meaning

?ILLEGAL SYS() USAGE

This error can be happen for the following reasons:
An invalid operation code was specified.
An invalid port type code was specified.
The index value was zero but no port name was specified.

?ILLEGAL BYTE COUNT FOR I/O

Either the length of the user's buffer is zero or the offset value
was not an even number.

?MISSING SPECIAL FEATURE

LAT is not installed on the system.

Discussion

ERR Value

18

31

66

This subfunction lets the caner get information on the current char~cteristics of
the local LAT port. The caUermust provide a buffer of at least 90 decimal bytes.
The information returned is:

• Local LAT port name

.. Port type-Application (host-initiated) or Interactive (server-initiated)

.. Actual remote server name

e Actual remort port name

.. Specified remote server name (Application only)

.. Specified remote port name (Application only)

.. Specified remote service name (Application only)

.. Status

.. Queue position

.. Error code

• Reject reason code

.. Owning job number

.. Default queued setting

The caner can request information for a specific port by providing the port
name or by index. When using the index, the caller must specify the type code,
which determines the list to search for the nth port. The subfunction returns
information on only one port at a time. To get information about an local LAT
ports of a given type, the caller must issue the directive repeatedly, incrementing
the index each time. When there are no more ports of that type, the subfunction
returns NOTAVL (ERR=8). An index value of zero means that the port name has
been provided; the subfunction then returns information on the named port. If
the index is zero and no name is provided, the subfunction returns an error.

8-176 Add, Remove, and list System Files, FO=23 (UU.SWP)

8.3.74 Add, Remove, and List System Files

Swap files on RSTS/E are dynamically added at the start of timesharing and
can be added and removed during timesharing. Swap files must be removed to
properly shut down timesharing. Optionally, you can add three other system files
during timesharing to optimize system performance: the overlay file, the error
message file, and the DECnet/E system file.

This SYS call adds and removes these system files and also lets you obtain
their file specifications. Through the INIT.SYS program and the DCL INSTALL
command, a system manager can optionally create and add the swapping files
and create other system files. The SHUTUP system program removes the files
so that the disks on which they reside can be dismounted during the normal
system shutdown. See the RSTS / E System Manager's Guide and the RSTS / E
System Installation and Update Guide for details on these operations. Refer to
the DECnet / E System Manager's Guide for more information on the DECnetIE
system file, also called the DECnetIE volatile parameter file.

The following sections describe the three subfunctions of this SYS call:

• Add System Files

• Remove System Files

• List System Files

8.3.75 Add System Files

Data Passed

Bytes

1

2

3

4

5-6

7-10+

11-22

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(23%), the system files code.

CHR$(N%), where N% designates the file to add:

Value Meaning

0% Swap file 0

1% Swap file 1

2% Illegal - generates error

3% Swap file 3

4% Overlay file

5% Error message file

6% DECnetIE system file

To specify codes 0-5, you need read/write access to the file. Code 6 requires only
read access to the file.

CHR$(l%), to add a system file.

Reserved; should be O.

To add a file that currently exists in directory [0,1] and has a file type of .SYS,
specify the name, in Radix-50 format. If no name is given here (all bytes are
zero), the add operation must be for a non-file-structured disk to be used as a
swapping device. If a file is specified, the system makes sure that it exists, is
large enough, and has proper characteristics.

Reserved; should be O.

Add System Files, FO=23 8-177

23-26+ The name and unit designation of the device (must be disk) on which the file
resides. If all bytes are zero, the public structure (SY:) is used.

27-30 Reserved; should be O.

Data Returned

No meaningful data is returned.

Privileges Required

INSTAL

WRTNFS

Add system files

Add a non-file-structured disk as a swapping device

Possible Errors

Meaning

?ILLEGAL FILE NAME

No name is specified in bytes 7 through 10 when an overlay, error
message, or DECnetiE system file is being added; or the name
specified contains nonalphanumeric characters.

?ACCOUNT OR DEVICE IN USE

A swap file is being added to a non-file-structured disk but the
disk is currently mounted (that is, it is being used as a file
structured device).

?NO ROOM FOR USER ON DEVICE

If an overlay or error file is being added, this error indicates that
the file is not long enough. (The overlay file should be at least 128
blocks and the error file at least 16 blocks.) If a swap file is being
added to a file-structured device, this error means that the file is
not long enough to store even one job.

?CAN'T FIND FILE OR ACCOUNT

A system file is being added to a file-structured disk, but the file
with the name specified in bytes 7 through 10 and with a .SYS file
type does not exist in directory [0,1].

?NOT A VALID DEVICE

The device specified in bytes 23 through 26 is disk but is not
configured on this system.

?DEVICE NOT AVAILABLE

A swap file is being added to a non-file-structured disk, but either
the disk unit or its controller has been disabled. The system
manager must use an initialization option to enable the unit or its
controller.

8-178 Add System Files, FO=23

ERR Value

2

3

4

5

6

8

Meaning

1PROTECTION VIOLATION

A system file is being added to a file-structured disk. Either
the unit is logically write-locked, or the file specified in bytes 7
through 10 is bad (that is, it is not contiguous or is currently
open).

1NAME OR ACCOUNT NOW EXISTS

The system file being added as described in byte 3 is already
installed on the system.

?ILLEGAL SYS() USAGE

The number specified in byte 3 is either 2 or is greater than 6.
The swap file for file 2 must exist on the system disk and cannot
be added during timesharing. System files to be added are defined
only by the values 0, 1,3,4,5, and 6.

?DISK PACK IS NOT MOUNTED

A system file is being added to a file-structured disk but that disk
is not currently mounted. Use the MOUNT command to logically
mount the disk before the file is added.

1DEVICE NOT FILE STRUCTURED

The device specified in bytes 23 through 26 is not a disk device.

Discussion

ERR Value

10

16

18

21

30

This SYS call either designates an entire disk to be added as a swap file or
specifies a file to be added as a swap file, overlay file, error message file, or
DECnetiE system file. By using the initialization options, the system manager
creates system files in account [0,1] on a system disk or on nonsystem (public
or private) disks. This call dynamically assigns system file space to provide
flexibility in system operations.

The RSTS / E System Installation and Update Guide discusses the rules and
guidelines for planning and creating system files. Adding previously created
system files with this call requires that the system manager plan resources
properly. For example, swap files need contiguous space on a disk. If a file on
disk is to be added for swapping, the system manager must have created the
contiguous space at the proper size. If a non-file-structured disk is to be added as
a swap file, the system manager must make sure that the device is available for
such use.

Although this call adds swap file space, it does not alter the job maximum allowed
on the system. Adding a swap file merely increases the capability of the system
to handle a larger number of jobs. To increase the job maximum after a swap
file is added, you must use the Enable Logins SYS call (SYS -1) or the SET
SYSTEMILOGINS command.

Remove System Files, FO=23 8-179

8.3.76 Remove System Files

Data Passed

Bytes

1

2

3

4

5-30

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(23%), the system files code.

CHR$(N%), where N% designates the file to remove:

Value Meaning

0% Swap file 0

1% Swap file 1

2% Illegal - generates error

3% Swap file 3

4% Overlay file

5% Error message file

6% DECnetiE system file

CHR$(O%), to remove a system file.

Reserved; should be O.

Data Returned

1-26

Bytes

27-28

Reserved; should be O.

Meaning

CHR$(N%), where N% is:

Value

0%

-1%

Meaning

System file successfully removed.

System file not found.

29-30 Reserved; should be O.

Privileges Required

INSTAL

Possible Errors

Meaning

?ACCOUNT OR DEVICE IN USE

The swap file to be removed can be properly removed but cur
rently contains one or more swapped-out jobs. The system locks
the file and begins swapping jobs to other files. Retry the call at a
later time when the swapped-out jobs are no longer in this file.

?PROTECTION VIOLATION

A swap file is to be removed, but its removal will decrease the
swap file space below the limit required to store the maximum
number of jobs on the system. To remove the swap file, de
crease the number of logins currently allowed (by either the
SET LOGINS x command or SYS call), wait until the number of
logged-in jobs falls to the maximum, and try the removal opera
tion again. An attempt to remove the DECnetiE system file when
DECnetiE is still on also causes this error.

8-180 Remove System Files, FO=23

ERR Value

3

10

Meaning

?ILLEGAL SYS() USAGE

The number specified in byte 3 is either 2 or is greater than 6.
The swap file for file 2 must exist on the system disk and cannot
be removed during timesharing. System files to be removed are
defined only by the values 0, 1, 3, 4, 5, and 6.

Discussion

ERR Value

18

This SYS call removes a system file from operation. Previously added system
files must be removed in order to shut down time-sharing operations. Removing
system files for other purposes allows a system manager to adjust system opera
tion without ending timesharing. For example, if a disk currently operating as a
swapping device malfunctions during timesharing, the system manager can:

• Decrease the allowed number of logins appropriately

• Remove the swap file for that device

• Dynamically add another device or file to replace the disk as a swap file

• Increase the new allowed number of logins to take advantage of the added
swapping space

Mter shutting down the system, the system manager can disable the malfunc
tioning unit to allow maintenance and to isolate the device from time-sharing
access. Normal time-sharing operations can proceed without further changes to
the system.

8.3.77 list System Files, FO=23

Data Passed

Bytes

1

2

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(23%), the system files code.

3 CHR$(N%), where N% designates the file to list as follows:

Value Meaning

0% Swap file 0

1 % Swap file 1

2% Swap file 2

3% Swap file 3

4% Overlay file

5% Error message file

6% DECnetJE system file

4 CHR$(-l%) to list a system file.

5-30 Reserved; should be O.

List System Files, FO=23 8-181

Data Returned

Meaning Bytes

5-6+

7-10+

PPN. These hytes are 0 if the device is non-file-structured.

File name in Radix-50 format. These bytes are 0 if the device is non-file
structured.

11-12+ File type in Radix-50 format. These bytes are 0 if the device is non-file
structured.

Not used. 13-22

23-24+

25+

26+

27-30

Device name in ASCII format.

Unit number.

Unit number flag.

Not used.

Privileges Required

None.

Possible Errors

Meaning

?CAN'TFIND FILE OR ACCOUNT

The number specified in byte 3 refers to a file that is not currently
installed.

?ILLEGAL SYS() USAGE

The number specified in byte 3 is less than 0 or greater than 6.

Discussion

ERR Value

5

18

This SYS call returns the file specification of a currently installed system file.
When the file is on a non-file-structured device, the call returns the device name.
When the file is on a file-structured device, the call returns the device name,
PPN, file name, and file type.

8.3.78 Create a Job

The Create a Job SYS call allows appropriately privileged users to create logged
out jobs. In addition, it allows both privileged and nonprivileged users to create
jobs that are automatically logged in to an account either to run a program, or to
enter a keyboard monitor.

This section presents the data passed and returned for the three functions of this
call:

• Create Logged-Out Job

• Create Logged-In Job to Run a Program

• Create Logged-In Job to Enter a Keyboard Monitor

The discussion at the end of this section provides further details on all three
functions.

8-182 Create a Job, FO=24 (UU.J08)

Data Passed-logged-Out Job

Bytes

1

2

3

4

5-6+

7-10+

11-12+

13-22

23-26+

27-28

29-30

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(24%), the create a job code.

CHR$(N%), where N% is 128% to create the job even if logins are disabled.
Specify 0% for N% to create the job only if logins are enabled.

Reserved; should be O.

The project-programmer number of the program to run.

File name of the program to run, in Radix-50 format.

File type of the program to run, in Radix-50 format.

Ten bytes of information to be placed into the created job's core common area.
Note that an eleventh byte is appended that contains the job number times 2 of
the job that executed the SYS call.

The device name and unit number of the program to run.

The parameter word to be passed to the program to run. The parameter word
has exactly the same format and functions as the CCL command parameter
word. Note that for jobs created under the BASIC-PLUS run-time system, the
parameter word equals the program line number to which control is transferred
when the job runs.

Reserved; should be O.

Data Returned

Bytes

3

Meaning

The job number times 2 of the job just created.

Data Passed-logged-In Job to Run a Program

Bytes

1

2

3

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(24%), the create a job code.

CHR$(N%), where N% can contain the following bit values when you create a
logged-in job to run a program:

Value Meaning

2%

4%

8%

32%

64%

128%

Do not pass the user logicals of the creating account to the new job.
(Contents of core common are still passed.)

Create the job with current privileges equal to "none."

Create the job with the authorized privileges of the new job equal
to the authorized privileges of the job's account ANDed with the
current privileges of the calling job. If this bit is not set, the new job
is created with the authorized privileges of the job's account.

Create the job logged in to the account specified in bytes 13 and 14
(requires GACNT or WACNT privilege).

Create logged in job. You must specify this value for a logged-in job.
The new job runs under the caner's account unless you also specify
32%.

Create the job even if logins are disabled. This value is ignored if
you do not have JOBCTL privilege. When you do not include this
value, the job is created only if logins are enabled.

Create a Job, FO=24 (UU.JOB) 8-183

4

5-6+

7-10+

11-12+

13-14

15

16

17

18-22

23-26+

27-28

29-30

Keyboard to attach the new job to. To indicate KBO: use 128%. Specify a value
of 0 in this byte to create a detached job.

The PPN of the program to run.

File name of the program to run, in Radix-50 format.

File type of the program to run, in Radix-50 format.

The account under which the job will run (requires GACNT or WACNT privi
lege; bit 32% must be set in byte 3). If you do not have the GACNT or WACNT
privilege, set both bytes to O.

Priority of the new job (requires TUNE privilege). If you specify 0, the system
uses the caller's values. Use 255% to explicitly specify priority O. Users without
TUNE privilege must set this byte to O. Note that if you create the job on
a pseudo keyboard, the system reduces the priority to the controlling job's
priority.

Run burst ofthe new job (requires TUNE privilege). If you specify 0, the system
uses the caller's values. Users without TUNE privilege must set this byte to O.

Maximum job size of the new job (requires TUNE privilege). If you specify 0,
the system uses the caller's values. Users without TUNE privilege must set
this byte to O.

Reserved; should be O.

Device containing the program to be run.

The parameter word.

Reserved; should be O.

Data Returned

Bytes

3

Meaning

The job number times 2 of the job just created.

Data Passed-Logged-In Job to Enter a Keyboard Monitor

Bytes

1

2

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(24%), the create a job code.

8-184 Create a Job, FO=24 (UU.JOB)

3 CHR$(N%), where N% can contain the following bit values when you create a
logged-in job to enter a keyboard monitor:

4

5-6

7-10

11-12

13-14

15

16

17

18-30

Value Meaning

2% Do not pass the user logicals of the creating account to the new job.
(Contents of core common are still passed.)

4% Create the job with current privileges equal to "none."

8% Create the job with the authorized privileges of the new job equal
to the authorized privileges of the job's account ANDed with the
current privileges of the calling job. If this bit is not set, the new job
is created with the authorized privileges of the job's account.

16% Enter keyboard monitor instead of running a program. (You must
include this value.)

32% Create job to run under the account specified in bytes 13 and 14
(requires GACNT or WACNT privilege).

64% Create logged-in job. (You must include this value.) The new job
runs under the caller's account unless you also specify 32%.

128% Create job even if logins are disabled. This value is ignored if you
do not have JOBCTL privilege. When you do not include this value,
the job is created only if logins are enabled.

Keyboard to attach to. The value you specify must be nonzero. To indicate
KBO: use 128%.

Reserved; should be O.

Run-time system name in Radix-50 format. The run-time system you specify
must be installed and must be a keyboard monitor. Specify 0 for the system's
default keyboard monitor, DCL.

Reserved; should be O.

Account under which job will run (requires GACNT or WACNT privilege; the
value 32% must be included in byte 3). If you do not have the GACNT or
WACNT privilege, specify 0 in both bytes.

Priority of new job (requires TUNE privilege). If you specify 0, the system uses
the caller's values. Use 255% to explicitly specify priority O. Users without
TUNE privilege must set this byte to O. Note that if you create the job on
a pseudo keyboard, the system reduces the priority to the controlling job's
priority.

Run burst of the new job (requires TUNE privilege). If you specify 0, the system
uses the caller's values. Users without TUNE privilege must set this byte to O.

Maximum job size of new job (requires TUNE privilege). If you specify 0, the
system uses the caller's values. Users without TUNE privilege must set this
byte to O.

Reserved; should be O.

Data Returned

Bytes

3

Meaning

The job number times 2 of the job just created.

Privileges Required

None

GACNT

WACNT

EXQTA

Create a job in your own account

Create a job in another account in the group

Create a job in any account, or create a logged-out job

Ignore detached-job and total-job quota on create

Create a Job, FO=24 (UU.J08) 8-185

Create a job even if no logins are set JOBCTL

TUNE Specify a priority, run-burst, or maximum job size when creating a job

Possible Errors

Meaning

?NO ROOM FOR USER ON DEVICE

The new job cannot be created. Probable causes are:

• Further logins are disabled, and byte 3 does not include the
value 128%. Or, logins are disabled and byte 3 contains the
value 128%, but you do not have JOBCTL privilege.

• The system's job or swap slots are currently full.

?CAN'T FIND FILE OR ACCOUNT

You have sufficient privilege to create a logged-in job, but the sys
tem cannot log the job in. Possible causes are that you specified a
nonexistent account or a no-user account.

?NOT A VALID DEVICE

The keyboard number specified in byte 4 is invalid.

?DEVICE NOT AVAILABLE

The keyboard specified in byte 4 is open, is in use, or is not
assigned to the calling job. A user without sufficient privilege can
also get this error if the system manager has restricted the device
to users with the DEVICE privilege.

?PROTECTION VIOLATION

You do not have the necessary privilege to perform the specified
operation.

?ILLEGAL SYS() USAGE

You are trying to create a logged-in job to enter a keyboard
monitor, but did not supply a keyboard number in byte 4.

?NO BUFFER SPACE AVAILABLE

You are trying to create a logged-in job, but not enough XBUF is
available for temporary storage of your current job's core common
and user logicals.

ERR Value

4

5

6

8

10

18

32

Note that when you create a logged-in job, you can also get any error that can
occur while logging in, running a program, or those errors associated with the
run-time system. If such an error occurs, the monitor kills the new job and
returns the error to your job instead.

Discussion

Creating a Logged-Out Job

If you have the WACNT privilege, you can use this call to create logged-out jobs.
To do so, specify the complete file specification of the program the created job is to
run in bytes 7-12. You must include the PPN in bytes 5 and 6; there is no default.

The program must be compiled (executable).

8-186 Create a Job, FO=24 (UU.J08)

The created job is not logged in when it runs. Therefore, all files accessed by the
job must be completely specified, including PPNs.

Because the created job runs logged out, the system kills the job if it fails or exits.

The created job runs at priority zero, which, in the case of an infinite loop, can
seriously degrade system performance. To avoid this condition, have the created
job reset its priority on execution.

Note that this option is provided for compatibility with previous versions of
RSTSIE. Due to the limitations of the Create Logged-Out Job function, new
applications should use the Create Logged-In Job function instead.

Creating a Logged-In Job

Both appropriately privileged and nonprivileged users can create jobs that are
automatically logged in to an account, either to run an executable program or
to enter a keyboard monitor at the P.NEW entry point (see the RSTS / E System
Directives Manual).

If you specify 64% in byte 3, the job is created and logged in to your own account.
The directive updates the noninteractive date and time of last login. If you have
GACNT or WACNT privilege (as appropriate), you can create the job to run
under an account other than your own account by specifying 64% and 32% in
byte 3 (specify the account under which the job will run in bytes 13 and 14). In
addition, users who have the JOBCTL privilege can create the job even if logins
are disabled by adding 128% in byte 3.

The value in byte 4 determines if the new job is logged in detached or attached.
If this byte is 0, the new job is created logged-in and detached. If the value in
this byte is nonzero, the system sets the sign bit of the byte to 0, and uses the
resulting value as the keyboard number to attach to. The terminal you specify
in this byte must be a free terminal or must be allocated to the calling job. In
addition, if you do not have the DEVICE privilege you cannot specify a terminal
that is restricted.

When a new job is created logged-in, it receives a copy of all of the core common
and user logicals of the calling job. You can set bit 1 in byte 3 to suppress passing
of user logicals. XBUF must be available because it is used for temporary storage
of this data.

If the new job is detached, its channel 0 Device Data Block (DDB) points to the
console terminal of the calling job.

If you have the TUNE privilege, you can pass priority, run burst, and memory
maximum values to the new job in bytes 15, 16, and 17. If you pass zeros in
these bytes, the system takes them from the calling job. If you do not have TUNE
privilege, the system automatically passes the values from the calling job to the
new job, so specify 0 in all three bytes. Note that if you create the job on a pseudo
keyboard, the system reduces the priority to the controlling job's priority if you
specify a higher priority.

Creating a Logged-In Job to Enter a Keyboard Monitor

As previously mentioned, both appropriately privileged and nonprivileged users
can use this call to enter a keyboard monitor instead of running a program.

To enter a keyboard monitor, you must specify 64% and 16% in byte 3. See the
Data Passed section for other values you can specify.

Create a Job, FO=24 (UU.J08) 8-187

Specify the name of the keyboard monitor to enter in bytes 7-10. When you
specify a keyboard monitor, the new job must be attached to a keyboard (indicated
in byte 4). If you specify zeros in bytes 7-10, the system uses the system's default
keyboard monitor (DeL). Note that the keyboard monitor you specify must be an
installed run-time system.

Bytes 13-17 are used, as previously described, for logged-in jobs that run a
program.

8.3.79 Wildcard PPN Lookup

Data Passed

Bytes

1

2

3-4

5-6

7-22

23-24+

25+

26+

27-30

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(25%), the look up an account number by index code.

CHR$(N%)+CHR$(SWAP%(N%», where N% is the index of the requested
PPN. If N% is 0, the call returns the PPN of the first account on the disk that
matches the wildcard specification. If N% is nonzero, the call returns the PPN
of the N+l account on the specified disk that matches the wildcard specification.

The requested PPN. A value of 255 in either field represents a wildcard. A
value of 0 for N% in bytes 3-4 and a non-255 value in bytes 5-6 (no wildcard)
verifies the existence of the specified account on the disk. If bytes 3-4 and 5-6
are zero, the user's account is looked up. If bytes 3-4 and 5-6 are nonzero and
contain a PPN with no wildcard characters, the call returns error 5.

Reserved; should be O.

The device name, which must be a disk. If bytes 23 and 24 are both 0, SYO:
(the system disk, not the entire public structure) is used.

The device unit number.

The unit number flag. If byte 26 is 0, SYO: (the system disk) is used.

Reserved; should be zero.

Data Returned

Bytes

3-4

5-6+

7-30

Meaning

Internal code.

The PPN located by the call.

Not used.

Privileges Required

DEVICE Access a restricted device

Possible Errors

Meaning

?CAN'T FIND FILE OR ACCOUNT

The specified device in bytes 23-24+ is not a disk, or no match
exists for the specified index value in bytes 3-4 (also see bytes
5-6).

8-188 Wildcard PPN Lookup, FO=25 (UU.PPN)

ERR Value

5

Meaning ERR Value

?DEVICE IS RESTRICTED 22

The disk is restricted. You need DEVICE privilege to override this
condition.

Discussion

This call allows you to specify a wildcard account number and increment an index
value to determine a matching PPN. The wildcard account specification is in the
form that the File Name String Scan call (SYS -10, -23) returns.

8.3.80 Return Job Status

Data Passed

Bytes

1

2

3

4

5-30

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(26%), the return job status code.

CHR$(J%), where J% is the number of the job for which status is desired. If
J% is 0%, information on the caller's job is returned. If the caller does not
have JOBCTL privilege, J% is forced to 0%. Note that if a job is running on a
pseudo keyboard, its controlling job may examine the controlled job regardless
of privilege.

CHR$(S%), where S% is 0%, 1%, or 2%. The value of S% determines the
information returned on the job (see Data Returned).

Reserved; should be O.

Data Returned

IfS% is 0%:

Bytes

1

2

3

4

5

6

7-8

9-10

11-12

13-14

15

Meaning

The calling job's job number times two.

Not used.

Job number times two of the job for which data is being returned.

Keyboard number of the job's console, if the job is attached. The job is detached
if (M%(4%) AND 128%)<>0%; in this case, the keyboard number is equal to
NOT M%(4%). A program that uses this byte should test both possibilities
even if the program is not designed to run detached, because any program
can become detached if a dial-up line loses the telephone connection, or if a
sufficiently privileged user detaches the job.

If the job is attached to a pseudo keyboard, this byte contains the controlling
job's job number times two, plus one; otherwise, it is O.

If the job is swapped out, this byte contains the job's swap slot location; other
wise, it is O.

The job's logged-in CPU time (least significant word) for the current session in
tenths of a second.

The job's current connect time in minutes.

The job's current KCTs (least significant word) for this session.

The job's accumulated device time for the current session in minutes.

The most significant byte of the job's KCT.

Return Job Status, FO=26 (UU.SYS) 8-189

16

17-20

21-22

23-26

27-30

The most significant byte of the job's CPU time.

The job's name in two Radix-50 words.

The job's PPN.

The name of the job keyboard monitor in two Radix-50 words.

The name of the job's current run-time system in two Radix-50 words.

IfS% is 1%:

Bytes

1

2

3

4

5-6

7

8

9-10

11-12

13

14

15-16

17

18

19

20

21-22

23-24

25-26

27-28

29-30

Meaning

The calling job's job number times two.

Not used.

Job number times two of the job for which data is being returned.

Keyboard number of the job's console. If the number is negative, the job is
detached and the number is the one's complement of the keyboard number.

The job's current flag word.

The job's current 10STS byte.

The job's current information posting byte.

The job's current JBSTAT word.

The job's current JBWAIT word.

The size of the job's current user memory area in K words.

The job's control word from its memory control sub-block.

The job's current physical address in 32-word increments.

The job's priority. 0 if the caller does not have TUNE privilege.

The job's allotted run burst in tenths of a second. 0 if the caller does not have
TUNE privilege.

The job's maximum allowable memory size in K words.

The value at offset 6 in the job's work block. This value is usually the channel
number (times two) on which the job is performing an 110 operation.

If bytes 9 through 12 indicate that the job is in a keyboard wait state, bytes 21
and 22 contain the value at offset 12 (octal) in the job's work block. This value
is the timeout parameter for input from the terminal. If the value is negative,
it implies that the terminal is in a keyboard monitor (CtrIlC) input wait state.

If bytes 9 through 12 indicate that the job is in an 110 stall for a nonkeyboard
device, bytes 21 and 22 contain the generic name (in ASCII) of the device for
which the job is stalled.

If bytes 9 through 12 indicate that the job is in a FIP wait state, byte 21
contains the byte value corresponding to the currently executing FIP function
and byte 22 has no meaning.

The value at offset 16 (octal) in the job's work block. This value is usually
an internal code that specifies whether the job is reading or writing on the
current 110 channel. If the job is in an 110 wait state and this value is 2, the
1/0 operation is a read; if this value is 4, the 110 operation is a write.

A pointer to the beginning of the job's Job Data Block.

A pointer to the beginning of the job's second Job Data Block.

If the job is a receiver, these bytes contain the address of the job's first receiver
identification block; otherwise, these bytes are O.

8-190 Return Job Status, FO=26 (UU.SYS)

IfS% is 2%:

Bytes

1

2

Meaning

The calling job's job number times two.

Not used.

3

4

Job number times two of the job for which data is being returned.

Keyboard number of the job's console. If the number is negative, the job is
detached and the number is the one's complement of the keyboard number.

5

6

7-14

15

16-30

Job's current I-space size.

Job's current D-space size.

Job's current privilege mask.

Job's access type:

Value Type

0% Local

1% Dialup

2% Batch

4% Network

6% Server (jobs started by DECnet)

Other values reserved

Reserved.

Privileges Required

None

JOBCTL

TUNE

Read the status of your own job or a job controlled by your job

Read the status of any job

Read the priority or run burst of any job

Possible Errors

Meaning

?PROTECTION VIOLATION

The job whose status is requested does not exist.

?ILLEGAL SYS() USAGE

• The job number's requested status is less than zero or greater
than JOB MAX.

• You have insufficient privilege to get the status of the speci
fiedjob.

8.3.81 Set/Clear/Read Current Privileges

This call has two subfunctions:

• Set/Clear Current Privileges

• Read Current Privileges

ERR Value

10

18

Set/Clear/Read Current Privileges, FO=28 (UU.PRV) 8-191

To set or clear current privileges, specify the following bytes:

Data Passed

Bytes

1

2

3-10

11-14

15-22

23-30

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(28%), the setJclear/read privileges code.

The privilege mask of bits to set. Each set bit corresponds to a bit that is to be
turned ON in the privilege mask.

Reserved; should be O.

The privilege mask of bits to clear. Each set bit corresponds to a bit that is to
be turned OFF in the privilege mask.

Reserved; should be O.

To read current privileges, specify the following bytes:

Data Passed

Bytes

1

2

3-30

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(28%), the setJclear/read privileges code.

Reserved; should be O.

Data Returned

Bytes

1-2

3-10

11-30

Meaning

Not used.

Privileges now in effect.

Not used.

Privileges Required

None.

Possible Errors

None.

Discussion

This SYS call reads the current privilege mask or selectively sets and/or clears
bits in it. This call is distinct from SYS call -21, DroplRegain Temporary
Privileges, which only applies when you are running a privileged program and
then update the entire current mask at once.

You pass the bits to set in bytes 3-10. You pass the bits to clear in bytes 15-22.
Before setting the bits passed in bytes 3-10, the system ANDs the bits passed
with the authorized mask to prevent the caller from setting unauthorized bits.
Note that this happens whether or not temporary privileges are in effect. In
other words, a program with temporary privileges can use this SYS call to drop
any single privilege, but it can regain only those that the user is authorized to
have.

The privileges in effect on completion of the SYS call are returned in bytes 3-10.
To simply read the current privileges, issue the SYS call with zeros in bytes 3-30.

8-192 SeVClear/Read Current Privileges, FO=28 (UU.PRV)

If a privileged program wants to find out what privileges the user (as opposed to
the program) has, it must perform a Drop Temporary Privileges SYS call (SYS
-21) followed by a Read Privileges SYS call. This makes sure that it will read the
normal mask.

See Chapter 1 for more information about privileges.

8.3.82 Stali/Unstall System

Data Passed

Meaning Bytes

1

2

3

CHR$(6%), the SYS call to FIP.

CHR$(29%), stall/unstall system code.

CHR$(N%), where N% is:

Value

0%

1%

Meaning

Return the system to normal (ltunstalledlt) state.

Stall the system (suspend all active jobs).

4-30 Reserved; should be O.

Data Returned

No meaningful data is returned.

Privileges Required

HWCTL

Possible Errors

Meaning ERR Value

?ACCOUNT OR DEVICE IN USE 3

You issued a stall request and the system was already stalled.

?ILLEGAL SYS() USAGE 18

You issued an unstall request and the system was not stalled.

Discussion

This call suspends all currently active jobs except for the calling job. The purpose
of the call is to stop all system activity before spinning down the system disk to
change the removable platter for other applications. This call is used primarily
for the RC25 disk in configurations where the system disk is on the fixed part of
the RC25 and you want to exchange the removable part of that same drive. The
DCL SET SYSTEMIHOLD and SET SYSTEMIRELEASE commands use this call.

The calling job is not affected when the system is stalled and can continue to
perform any operation. However, if the system is stalled for the purpose of
spinning down the system disk, an attempt to do disk 1/0 to that disk results in
an 1/0 error.

Note that logins are disabled while the system is stalled.

Stali/Unstall System, FO=29 (UU.STL) 8-193

8.3.83 Third-Party Privilege Check

Data Passed

Bytes

1

2

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(31%), the third-party privilege check code.

Reserved; should be O. 3-4

5-6+ PPN to enable the third-party privilege check. Zero to disable the third-party
privilege check.

7-14

15-30

A privilege mask.

Reserved; should be O.

Data Returned

None.

Privileges Required

None.

Possible Errors

Meaning

?NO BUFFER SPACE AVAILABLE

A small buffer is needed to store the third-party information, but
none is available.

Discussion

ERR Value

32

This call enables or disables third-party privilege checking. This call is primarily
for server programs such as PrintlBatch Services (PBS) that run detached under
a highly privileged account and perform functions on behalf of normally less
privileged users.

To maintain system security, these server programs must enforce appropriate
privilege restrictions that apply to the user issuing requests to the server. For
example, a print server must enforce the file access restrictions on the user
requesting a printout, but does not want to enforce the access restrictions to
the printer device. third-party privilege checking allows the server program to
correctly perform these checks.

In this call, the server job specifies the PPN and privileges of the requesting
user. From that point, the monitor performs every privilege check twice: once
against the privileges of the server job itself, and once against the privileges of
the third-party. This continues until the server job issues the call again to cancel
third-party privilege checking.

For example, a print server issues the third-party privilege check call to enable
third-party privilege checking prior to opening the file to be printed. If the
requester is not allowed to access the file, the open fails in the usual manner.
The account number of the requester is part of the information passed in the call
because the interpretation of privilege flags and file protection code bits depends
on the account number of the requester.

8-194 Third-Party Privilege Check, FO=31 (UU.3PP)

In order to use the third-party privilege check call, the server must have the cor
rect privilege mask for the requester. The correct way to obtain this information
is for the server to issue the Send Message with Privilege Mask subfunction of
the SendJReceive SYS call (see Chapter 9). The monitor inserts the requester's
current privilege mask as part of the message and sends it to the server, with a
message code of -11 to indicate the mask is present. The server then stores the
requesting PPN and privilege mask, both from the message, and uses them later
in the third-party privilege check call.

Server programs could use other methods to obtain privilege information, such as
reading the authorized privileges of the account from the accounting data stored
on disk. However, this method does not work in all cases. For example, the
request may have come from a privileged program. In this case, the privileges of
the program, not those of the user, are the relevant ones. Or, the user may have
turned off some privileges with the SET JOBIPRIVILEGE command. In this case,
the server should honor the lesser privileges.

8.3.84 Check Access Function

This SYS call performs three privilege checking functions:

• Check file access rights. You can use this subfunction to check access rights
to a file of known protection code and PPN. You can also use this subfunction
to define file-like access rules for objects other than files.

• Convert privilege name to mask. You can use this subfunction to convert a
privilege name to its internal representation or to determine whether a user
has a specific privilege.

• Convert privilege mask to name. You can use this subfunction to generate the
symbolic form of a privilege mask.

8.3.85 Check File Access Rights

Data Passed

Bytes

1

2

3

4

5-6+

7-21

22+

23-30

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(32%), the check access code.

CHR$(O%), the check file access rights code.

Reserved; should be O.

PPN.

Reserved; should be O.

Protection code of the file.

Reserved; should be o.

Data Returned

Bytes

1-2

Meaning

Not used.

Check File Access Rights, FO=32 (UU.CHK) 8-195

3-4 The access flags. The bits are set to indicate access rights as follows:

Bit Meaning

o Create/rename rights are granted

1 Read access is not allowed

2 Write access is not allowed

3-4 Reserved

5 Execute access is not allowed

6 Accounting rights are granted, or PPN is your own. See Discussion.

7 Accounting rights are granted. See Discussion.

8-15 Reserved

5-30 Not used.

Privileges Required

None.

Possible Errors

No errors are possible.

Discussion

This subfunction checks access rights to a file of known protection code and PPN
without opening it.

If you need to check a file's access rights but do not know the protection code, or if
you need to read or write to the file, the most straightforward method is to simply
open it instead, and then check for an error on open or the read/write access flags
returned in the STATUS variable. See the BASIC-PLUS Language Manual for a
description of the STATUS variable.

You can also use this subfunction to define file-like access rules for objects other
than files. For example, PrintlBatch Services (PBS) uses it to control access to
jobs.

The difference between bits 6 and 7 in the returned flags is that bit 6 is set if
the PPN matches the caller's without any privilege requirements, whereas bit 7
is set only if the caller has GACNT or WACNT privileges, even if the PPN is the
caller's.

8.3.86 Convert Privilege Name to Mask

Data Passed

Bytes

1

2

3

4-6

7-12

13-30

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(32%), the check access code.

CHR$(l%), the convert privilege name to mask code.

Reserved; should be O.

The privilege flag name. This must be a six-character uppercase ASCII string.
For flag names of fewer than six characters, fill the extra space at the end with
nulls. Specify ALL to indicate all privileges.

Reserved; should be O.

8-196 Convert Privilege Name to Mask, FO=32 (UU.CHK)

Data Returned

Bytes

1-2

Meaning

Not used.

3 Flag byte. 0 if the job currently has the specified privilege, or the job has all
privileges if ALL was specified in bytes 7-12. Otherwise, 1.

Not used. 4-6

7-14 A privilege mask with one bit set. If you specified ALL in bytes 7-12, the call
returns a privilege mask with all valid bits set (all privilege bits that currently
have meaning).

15-30 Not used.

Privileges Required

None.

Possible Errors

Meaning

?CAN'T FIND FILE OR ACCOUNT

The privilege name passed in bytes 7-12 is not a valid privilege
name.

Discussion

This call performs two functions:

ERR Value

5

• Converts privilege names to their internal representation. This is useful, for
example, when issuing SYS call 28, SetJClearlRead Current Privileges.

• Determines whether a user has a given privilege. A system program might do
this either to verify that a user has sufficient privilege to proceed or to allow
the user additional choices.

8.3.87 Convert Privilege Mask to Name

Data Passed

Bytes

1

2

3

4-6

7-14

15-30

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(32%), the check access code.

CHR$(2%), the convert privilege mask to name code.

Reserved; should be O.

Privilege mask.

Reserved; should be O.

Data Returned

Bytes

1

2-6

7-14

Meaning

The current job number times 2.

Not used.

A privilege mask, with the first set bit cleared (the bit for which the name is
returned in bytes 15-20). Unused bits are also cleared.

Convert Privilege Mask to Name, FO=32 (UU.CHK) 8-197

15-20 The privilege name, as an uppercase ASCII string, padded with nulls to six
characters.

16-30 Not used.

Privileges Required

None.

Possible Errors

Meaning

?CAN'T FIND FILE OR ACCOUNr

The privilege mask passed in bytes 7-14 is zero, or no defined
privilege bits are set.

Discussion

ERR Value

5

This call scans the privilege mask passed in bytes 7-14. First the call clears
undefined bits, then it looks for a set bit. If none are found, it returns the error
?Can't find file or account (ERR=5). Otherwise, it clears the first bit found and
looks up its name. The call returns the name of the privilege in bytes 15-20.

A program can use this function to generate the symbolic form of a privilege
mask simply by copying the mask into bytes 7-14, and repeatedly issuing this
subfunction until the error message is returned. Each time the function returns
success, the caller prints out the string in bytes 15-20.

8.3.88 Open Next Disk File

Data Passed

Bytes

1

2

3

4

5-6+

7-10+

11-12+

13-16

Meaning

CHR$(6%)", the SYS call to FIP.

CHR$(33%), the open next disk file code.

The channel number times two.

Reserved; should be O.

PPN of the file's owner. A value of zero indicates the current account. The
specification cannot contain wildcards.

File name in Radix-50 format. The specification can contain wildcards.

File type in Radix-50 format. The specification can contain wildcards.

Reserved; should be O.

8-198 Open Next Disk File, FO=33 (UU.ONX)

17-18

19-22

23-24+

25-26+

27-30

CHR$(N%)+CHR$(SWAP%(N%», where N% specifies one ofthe following
OPEN modes:
Value Mode

0% Normal read/write.

1% UPDATE mode.

2% APPEND to file.

5% Guarded UPDATE (4%+1%).

8% Special extend.

16% Do not update access dates to files; do not grant write access
(requires DATES privilege).

32% Do not grant any access to files (directory lookup only).

256% User data caching.

2048% Sequential data caching.

4096% Read normally regardless.

8192% Open file read only.

16384% Include files marked-for-delete.

32767%+1% Mode bits are real; you must specify this value for the other
OPEN bits to be examined.

See Chapter 1 for more information about OPEN modes.

Reserved; should be O.

Device name; must be a disk. A zero in both bytes indicates SY: (the public
structure). If you do not specify a name, SY: is used.

Device unit number.

Reserved; should be O.

Data Returned

Bytes Meaning

1-3 Not used.

4 File size (MSB).

7-10+ File name in Radix-50 format.

11-12 File type in Radix-50 format.

13-14 File size (LSB).

15-16 Date of last access.

17-18 Date of creation.

19-20 Time of creation.

21 File cluster size.

22 File protection code.

23-24 Device name.

25-26 Device unit number and flag.

27-28 File identification index.

29-30 Device description.

Open Next Disk File, FO=33 (UU.ONX) 8-199

Privileges Required

None Access your own file, or a file in another account if the protection code
permits

Read a file in any account within the group

Read a file in any account

Write a file in any account within the group

Write a file in any account

GREAD

WREAD

GWRITE

WWRITE

DATES

DEVICE

Use mode bit 16% to suppress updating of last access date

Access a restricted device

Possible Errors

Meaning

?CAN'T FIND FILE OR ACCOUNT

No more files match the passed specification. The channel is
closed.

?ILLEGAL SYS () USAGE

The parameters passed in the call are inconsistent with currently
open channel.

?DISK PACK IS LOCKED OUT

The disk pack is locked, and you do not have the DEVICE privi
lege.

?DEVICE NOT FILE· STRUCTURED

You tried to open a device that is not a disk.

ERR Value

5

18

22

30

This SYS call also returns device-dependent errors, such as ?Device hung or write
locked (ERR=14) and ?Disk pack is not mounted (ERR=21).

Discussion

This SYS call opens a disk file or a series of disk files matching a wildcard
specification. The call requires an I/O channel to use, and grants access to the file
if so desired.

When you specify a closed channel, this call finds the first file that matches the
specification. When you specify an open channel, the call finds the next file that
matches the specification. If there are no more files to find, this call closes the
channel.

Note BASIC-PLUS cannot access the channel, even though it is open. To access
the channel, use a MACRO subprogram (see the RSTS / E System Directives
Manual).

8.3.89 Set Device Characteristics and System Defaults,

.. Set Device Characteristics

• Set Line Printer Characteristics

8-200 Set Device Characteristics, FO=34 (UU.CFG)

II Set System Defaults

II Load Monitor Overlay Code and Return StatuslRemove Monitor Overlay Code

Data Passed

Bytes

1

2

3

4

5

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(34%), the set device characteristics or change system defaults code.

CHR$(O%), the set device characteristics subfunction code.

Reserved; should be O.

CHR$(E%+P%+L%), the flags to indicate changes to device parameters:

E% ENABLEDJDISABLED status change flag.

E% = 0% No change.
E% = 1% Use value in next byte to change status.

P% RESTRICTEDIUNRESTRICTED device ownership change flag.

P%=O%
P%=2%

No change.
Use value in next byte to change ownership.

L% LOCALIMODEM keyboard (KB:) control change flag.

L% = 0% No change.
L% = 4% Use value in next byte to change KB: modem control.

You can use combinations of the above values.

6 CHR$(E%+P%+L%), the values you use to change device parameters. If byte 5
is 0%, then this byte must also be 0%.

7-22

23-24+

25+

26+

27-30

E% ENABLEJDISABLE flag.

E% = 0% Enable device.
E% = 1% Disable device.

P% RESTRICTEDIUNRESTRICTED flag.

P% = 0% No privilege needed for device ownership.
P% = 2% DEVICE privilege needed for device ownership.

L% LOCALIMODEM keyboard (KB:) control.

L%::= 0% No MODEM control.
L% = 4% Enable MODEM control.

You can use combinations of the above values.

Reserved; should be O.

Device name on which to perform the operation. The device cannot be a disk.

Device unit number.

Unit number flag. Should be CHR$(255%) to indicate the device unit number is
real.

Reserved; should be O.

Set Device Characteristics, FO=34 (UU.CFG) 8-201

Data Returned

Bytes Meaning

1-5 . Not used.

6 CHR$(E%+P%+L%), the bit flags indicating device status.

E% = 0 if device enabled and free; 1 if disabled or in use.

P% = 2 if device ownership requires privilege; 0 if not.

L% = 0 if keyboard is LOCAL; 4 if under MODEM control.

7 CHR$(N%), where N% is the job number times 2 of current device owner. If
N%=O%, the device is enabled and free. If N% is an odd integer (other than
3%), the device was disabled by the monitor and cannot be reenabled. If N% is
3%, the device was disabled by this call and can be enabled by this call.

8-30 Not used.

Privileges Required

HWCFG

HWCTL

Change restricted or modem control flags

Enable or disable a device

Possible Errors

Meaning

?ACCOUNT OR DEVICE IN USE

You attempted to disable a device that was either in use or had
been previously disabled. Or, you tried to alter the local/modem
characteristic of a device that was in use.

?DEVICE NOT AVAILABLE

You attempted to enable a device that was not disabled through
the use of this call. For example, the monitor disabled the device.
Or, you tried to alter the local/modem characteristic of a disabled
device.

?PROTECTION VIOLATION

You attempted to alter the device characteristics of a disk unit.

?ILLEGAL SYS() USAGE

You attempted to perform an invalid subfunction by specifying a
value of less than 0 or greater than 3 in byte 3 of the data passed.

Discussion

ERR Value

3

8

10

18

This subfunction allows a caller with the appropriate privilege to set the following
device characteristics online:

• Enable or disable a device.

• Designate a keyboard as local or modem.

• Designate a device as restricted or unrestricted.

8-202 Set Device Char.acteristics, FO=34 (UU.CFG)

8.3.90 Set Line Printer Characteristics

Data Passed

Bytes

1

2

3

4

5

6

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(34%), the set device characteristics or change system defaults code.

CHR$(l%), the set line printer (LP) characteristics subfunction code.

Reserved; should be O.

CHR$(N%), where N% is:

Value Meaning

o No change.

1-254 New value for the default printer page width.

CHR$(N%), where N% is:

Value

o
1-255

Meaning

No change.

New value for the default printer form length.

7-8 CHR$(N%), where N% is 0 for no change or is the combined value of bits to set
in the characteristics flag word. See the Discussion for a description of these
bit flags.

9-10 CHR$(N%), where N% is 0 for no change or is the combined value of bits to
clear in the characteristics flag word. See Discussion.

11 CHR$(N%), where N% is 0 for no change or nonzero to indicate a change to the
line printer special character.

12 Ifbyte 11 is CHR$(l%), then this byte is CHR$(N%), where N% is the ASCII
value of the new special character. Note that CHR$(O%) disables special char
acter handling. The /SPECIAL_ CHARACTER qualifier of the SET TERMINAL
command uses this feature. See the RSTS / E System Manager's Guide for more
information.

13-22

23-24+

25+

26+

27-30

Reserved; should be O.

Device name in two ASCII characters. Must be LP.

Device unit number.

Unit number flag. Should be CHR$(255%) to indicate the device unit number is
real.

Reserved; should be O.

Data Returned

Bytes

1-4

5

6

Meaning

Not used.

Width of the line printer unit specified in bytes 23-26 in Data Passed.

The default printer form length.

7-8 Current characteristics flag word. See the Discussion for a description of these
bit assignments.

9-11 Not used.

12

13-30

Value of the line printer special character. The /SPECIAL_CHARACTER
qualifier of the SET TERMINAL command uses this feature. See the RSTS / E
System Manager's Guide for more information.

Not used.

Set Line Printer Characteristics, FO=34 (UU.CFG) 8-203

Privileges Required

HWCFG

Possible Errors

?NOT A VALID DEVICE

Meaning

You attempted to set the characteristics of a printer that the
monitor does not support, or the device name specified in bytes
23-24 was not LP.

?ILLEGAL SYS() USAGE

You attempted to perform an invalid subfunction by specifying a
value of less than 0 or greater than 3 in byte 3 of the data passed.

%ILLEGAL NUMBER

You attempted to set a value of 3 in the LPI'CHR flag word. See
the Discussion for a detailed description of this error condition.

Discussion

ERR Value

6

18

52

This subfunction allows a caller with HWCFG privilege to set the following line
printer characteristics online:

• Change the default page width

• Change the default form length

• Change or read the line printer characteristic flag word.

• Change or read the line printer special character.

Bytes 7-8 set bits in the characteristics flag word. Bytes 9-10 clear bits in the
characteristics flag word. Legal values are the following:

Value

1%

2%

4%

8%

16%

32%

64%

128%

256%

512%

1024%

2048%

Meaning

Allow BS for backspace (LA180, LN01)

Do not process BS as backspace

Allow 8-bit characters (LNOl)

Allow nonprinting characters (LNOl)

No fill for FF

Allow EOT

No CR required before LF, VT, FF (LPll, LNOl)

Ignore CR if next character is LF (LPll, LNOl)

No TAB expand (LNOl)

Reserved

Reserved

Allow lower case (LN01)

Note that a value of 3 in the bottom two bits of the characteristics word is
illegal. If you attempt to set both bits, the call returns the error %Illegal number
(ERR=52).

8-204 Set Line Printer Characteristics, FO=34 (UU.CFG)

8.3.91 Set System Defaults

Data Passed

Bytes

1

2

3

4

5-6

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(34%), the set device characteristics or change system defaults code.

CHR$(2%), the set system defaults subfunction code.

Reserved; should be O.

CHR$(N%) + CHR$(SWAP%(N%», where N% is:

Value

0%

Meaning

No change.

1%-300% New value for powerfail delay.

7 CHR$(N%), where N% is:

Value

0%

1%

255%

Meaning

No change.

Numeric date format (yy.mm.dd).

Alphabetic date format (dd-mmm-yy).

8 CHR$(N%), where N% is:

Value

0%

1%

255%

Meaning

No change.

24 hour time format (hh:mm).

12 hour time format (hh:mm AMlPM).

9 CHR$(N%), where N% is:

10

11-12

13-14

15-30

Value

0%

1%

255%

Meaning

No change.

DOS magnetic tape label default.

ANSI magnetic tape label default.

Reserved; should be zero.

Default magnetic tape density in bpi.

CHR$(N%) + CHR$(SWAP%(N%», where N% is:
Value

-1%

0%

1%-
2048%

Meaning

o K words limit for nonprivileged dynamic region.

No change.

Dynamic region limit in K words.

The sum of dynamic region sizes owned by nonprivileged users cannot exceed
the limit given here.

Reserved; should be zero.

Data Returned

Bytes

1-4

5-6

7

8

Meaning

Not used.

Number of seconds to delay on powerfail restarts; default is 300.

1 if Numeric date format is the default; 255 if Alphabetic.

1 if 24 hour time format is the default; 255 if 12 hour.

Set System Defaults, FO=34 (UU.CFG) 8-205

9 1 if DOS magnetic tape labeling is the default; 255 if ANSI

10 Not used.

11-12 Magnetic tape density in bpi.

13-14 Default dynamic region limit in K words.

15-30 Not used.

Privileges Required

Set the density default HWCFG

SWCFG Set the date format, time format, label default, dynamic region limit, or
powerfail delay

Possible Errors

Meaning

?ILLEGAL SYS() USAGE

You attempted to perform an invalid subfunction by specifying a
value of less than 0 or greater than 3 in byte 3 of the data passed.

%INTEGER ERROR

You attempted to specify an value greater that 300 for the power
fail delay value in bytes 5-6.

Discussion

ERR Value

18

51

This subfunction allows a caller with the appropriate privilege to set the following
system defaults online:

Ii Date format

e Time format

.. Magnetic tape label

.. Magnetic tape density

• Powerfail delay

e Dynamic region limit

The DeL SET SYSTEM command uses this call. See the RSTS / E System
Manager's Guide for more information on system defaults.

8.3.92 load/Remove Monitor Overlay Code

8.3.92.1 Load Monitor Overlay Code and Return Status/Remove Monitor Overlay Code

Data Passed

Bytes

1

2

3

4

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(34%), the set device characteristics or change system defaults code.

CHR$(4%), the load/remove monitor overlay code subfunction code.

Reserved; should be o.

8'-206 Load/Remove Monitor Overlay Code, FO=34 (UU.CFG)

5 CHR$(N%), where N% is:

0% Load monitor overlay code and return status

1 % Remove monitor overlay code

6 Reserved; should be O.

7-8 The internal overlay name in Radix-50. The following are defined overlay
names:

LIN SYS call -25; Manipulate File, Pack, and Account Attributes

UUO SYS calls -3, -12, -29; Get Monitor Tables, Parts I, II, III. SYS call -8;
Get Open Channel Statistics. SYS call 20; Convert Date and Time.
SYS call 26; Return Job Status. SYS call 9; Return Error Messages.

DLN The RENFQ and DLNFQ subfundions of the CALFIP monitor direc
tive. This code handles file delete and rename operations. See The
RSTS / E System Directives Manual for details.

DIR SYS calls 15, 17; Directory Lookup.

PFB Miscellaneous functions used in indirect command file processing and
DCL.

TRM SYS call 16; Set Terminal Characteristics.

9-30 Reserved; should b~ O.

Data Returned for Load/Return Status

Meaning

Not used.

Bytes

1-4

5-6

7-30

Amount of XBUF used for overlay, in bytes. 0 if overlay is not loaded.

Not used.

Data Returned for Remove

No meaningful data is returned.

Privileges Required

SWCFG

Possible Errors for Load/Return Status

Meaning

?ACCOUNT OR DEVICE IN USE

The overlay you specified is already loaded.

?CAN'T FIND FILE OR ACCOUNT

The overlay name is not valid.

?NOT A VALID DEVICE

The overlay you specified is not loadable.

?PROTECTION VIOLATION

You don't have SWCFG privilege.

ERR Value

3

5

6

10

Load/Remove Monitor Overlay Code, FO=34 (UU.CFG) 8-207

Meaning

?NO BUFFER SPACE AVAILABLE

There is not enough available extended buffer space (XBUF) to
load the overlay.

Possible Errors for Remove

Meaning

?CAN'T FIND FILE OR ACCOUNT

The overlay name is not valid.

?PROTECTION VIOLATION

You don't have SWCFG privilege.

?DISK PACK IS NOT MOUNTED

The overlay name you specified is not loaded.

Discussion

ERR Value

32

ERR Value

5

10

21

This subfunction allows a caller with SWCFG privilege to make certain monitor
overlay code memory resident. This can enhance system performance if the code
is frequently used.

The SYS calls grouped in overlay code UUO return monitor, file, and job informa
tion. You should make these calls memory resident in almost all cases.

The system uses file delete/rename code (overlay code DLN) whenever you delete
and rename files. Make this code memory resident if your system is large or if
your applications require a large number of file delete and rename operations.

The directory lookup code (overlay code DIR) gathers information about disk
directories, performs wildcard disk file lookups, and manipulates file identifi
cation blocks for certain files. The CATALOG command in BASIC-PLUS and
the PIP.SAV program use this code to obtain directory information. The DCL
DIRECTORY and COpy commands also use this code. Make this code memory
resident if you frequently use any of these programs or commands.

The attribute code (overlay code LIN) performs file attribute read/write opera
tions. Make this code memory resident if:

• You plan to use languages such as COBOL-8I, BASIC-PLUS-2, and
FORTRAN-77.

• You plan to use the Task Builder.

e You plan to use RMS-ll.

The indirect command file processing code (overlay code PFB) performs miscella
neous functions related to ICFP. Make this code memory resident if your system
frequently uses indirect command file processing.

8-208 load/Remove Monitor Overlay Code, FO=34 (UU.CFG)

The set tenninal code (overlay code TRM) sets and reads tenninal characteristics.
The SET TERMINAL command also use this code. Make this code memory
resident if your applications use features that frequently reset tenninals (for
example, private delimiters).

The internal overlay names are subject to change in future releases. In ad
dition, the actual function perfonned by the overlays may change, without a
corresponding name change.

The DCL LOAD/OVERLAY and UNLOAD/OVERLAY command uses this call.
See the RSTS / E System Manager's Guide for more infonnation about these
commands.

8.3.92.2 Set and Return System Answerback Message
Data Passed

Bytes

1

Meaning

CHR$(6%), the SYS call to FIP.

2

3

4

CHR$(34%), the set device characteristics or change system defaults code.

CHR$(7%), the set/return system Answerback message subfunction code.

CHR$(N%), where N% is:
-1% Return the Answerback text.

>0% Set the Answerback text.

5-28 Text of the Answerback message, in ASCII.

29-30 Not used.

Data Returned for Remove

Bytes

1-2

Meaning

Reserved; should be O.

3

4

CHR$(7%), the set/return system Answerback message subfunction code.

Reserved; should be O.

5-28

29-30

Text of the Answerback message, in ASCII.

Not used.

Privileges Required

SWCTL

Possible Errors for Load/Return Status

Meaning

?DEVICE NOT AVAILABLE

There is no Answerback text to return.

?PROTECTION VIOLATION

You don't have SWCTL privilege.

?NO BUFFER SPACE AVAILABLE

There are no buffers available to store the text.

ERR Value

8

10

32

Load/Remove Monitor Overlay Code, FO=34 (UU.CFG) 8-209

Discussion

Use Answerback mode for terminals serving electronic messaging systems such
as TELEX and TWX. The Answerback text defines the terminal's address in the
electronic messaging system. See the RSTS / E System Manager's Guide for more
information on Answerback.

- When a messaging system calls into RSTSIE for an Answerback terminal, RSTSIE
responds with its Answerback message (to confirm its address to the caller), then
wait for data from the messaging system and stores the data in a unique file,
named according to the current time, in the EMS$: account. These files can then
be handled as any other file on the system. They may be printed for manual
distribution, or an application may be written to scan the file to determine which
user on the system should receive this message.

8.4 The PEEK Function

The PEEK function lets a user with RDMEM privilege examine any word location
in the monitor part of memory. The user program can examine words in small or
large buffers, in the resident portion of the file processor, and in the low memory
and tables section of memory. The function does not allow a user program to
examine the contents of another user's program.

NOTE

When you use the PEEK function, be aware that Digital reserves the
right to change the monitor structure and internal addresses at any
time, except those addresses listed in Table 8-9. In addition, accessing
some device registers can cause unpredictable system results. Do not
use PEEK to examine device registers. To protect against this, PEEK
requires SYSMOD privilege if the specified address is within the device
register address range (160000 octal or higher).

The PEEK function has the form:

1% = PEEK(J%)

The function takes an (even) integer argument (J%) and returns an integer value
(1%). The value returned is the contents of the address in memory specified
by the argument. Because addresses of word locations are always even on the
PDP-ll computer, and odd addresses indicate byte locations, you must always
be careful to specify an even integer address as the argument to PEEK. To
examine an odd address, you must specify the next lower integer as the argument
to PEEK. The contents of the odd address is the high order byte of the value
returned by PEEK.

You normally use PEEK to examine either addresses returned by Get Monitor
Tables calls or addresses of fixed monitor locations.

8-210 PEEK Function

Possible Errors

Meaning ERR Value

1PROTECTION VIOLATION 10

A user without RDMEM privilege attempted to execute this call.

10DD ADDRESS TRAP 33

The address specified as an argument to PEEK is odd or an
attempt is made to reference a nonexistent or odd address. (For
the PDP-1l/23 and 11124, this error occurs only if nonexistent
addresses are referenced.)

1MEMORY MANAGEMENT VIOLATION 35

The address specified as an argument to PEEK is illegal (not
mapped in the monitor).

8.4.1 Fixed Locations in Monitor

The information shown in Table 8--9 is stored in fixed locations in the monitor
part of memory and is obtained by executing a PEEK(X%), where X% is the
address shown.

Table 8-9: Monitor Fixed Locations

Address (decimal) Name

36(word) IDATE

38(word) ITIME

512(word) DATE

514(word) TIME

518(byte) JOB

520(word) JOBDA

522(word) JOBF

524(word) IOSTS

Meaning

The date when the system was last started.

The time of day when the system was last started.

Current system date.

Current time of day.

Job number times 2 of the job currently running
(always is the user's own job number). For
example:

J% = (PEEK(518%) AND 255%)/2%

where J% is the user's job number.

Address of the job data block (JDB) of the cur
rently running job (always the user's own Job
Data Block).

Address of the JDFLG word in the job data block
of the currently running job (always the user's
own Job Data Block).

Address of the JDIOST (low) byte and JDPOST
(high) byte in the Job Data Block of the currently
running job (always the user's own Job Data
Block).

PEEK Function 8-211

8.4.2 Finding the Current PPN

Two methods exist for a program to determine the PPN under which it is running.
The first method, available to all users, is to execute the Return Job Status SYS
call (SYS 26).

The second method, available only to users with RDMEM privilege, is slightly
faster and involves executing the PEEK function to examine two bytes in the
second Job Data Block (JDB2) of the job. The contents of the JDB2 bytes 24 and
25 is the PPN of the current job. The high byte returned by PEEK is the project
number; the low byte is the programmer number. The address of the JDB of the
currently running job is in the fixed monitor location JOBDA (address 520). The
following statement puts the project-programmer word into the variable A %:

A% = PEEK(PEEK(PEEK(520%)+8%)+24%)

The following statements put the project number in B% and the programmer
number in C%:

B% = SWAP%(A%) AND 255%
C% = A% AND 255%

8-212 PEEK Function

Chapter 9

System Calls for Local Interjob Communication

9.1 Local Interjob Communication

Local communication between jobs running on a single RSTSIE system is a
function of the send/receive facilities available in the RSTSIE monitor. Local
senders can send messages (with the Send Local Data Message call) to local
receivers. The receiver controls the communication by limiting the number of
messages that can be queued and by declaring which senders are allowed to
queue messages. The receiver passes this control information to the monitor by
means of a receiver declaration (with the Declare Receiver call).

The system queues messages until the maximum number of messages specified
by the receiver is pending for that particular receiver. Mter that, if a local job
tries to send another message to that receiver, the system returns an error to the
sender. In general, receivers must process pending messages frequently to avoid
tying up system resources for long periods of time. When message processing
is complete, a job must issue a remove receiver system call so that unwanted
messages are not queued.

DECnetJE network communication uses extensions to the SYS calls presented in
this chapter. DECnetJE is an optional software package that extends RSTSIE to
include network capabilities. You can access the extended send/receive facilities
provided by DECnetlE from BASIC-PLUS, BASIC-PLUS-2, COBOL, FORTRAN,
or MACRO, and through RMS. See the DECnetJE and RMS documentation for
more information.

If the system manager includes DECnetJE during system installation, a local
job can use the network calls to communicate with other local jobs. In this case,
the job functions as a network job. The use of network services to communicate
with local jobs imposes DECnetJE restrictions and additional overhead. Use
of the network calls, however, does allow programs to be coded and debugged
locally before they are run on some other system in the network. It also provides
additional capabilities not provided by the local send/receive functions.

Some parameters or combinations of parameters in the send/receive calls have
meanings that pertain to special applications, such as an EMT logger, which is a
special program that monitors certain types of system activity. These parameters
are mentioned briefly in this chapter. See Appendix G for more information on
EMT logger calls.

Every message is divided into a parameter area and a data area, whether it is
for local or for network communications. For a local message, the parameter area
can contain from 0 to 20 bytes of user-defined data; the data portion can contain
up to 512 bytes. Because the parameter area in a local message can contain data
defined by the sender, the distinction between parameter and data is arbitrary for

System Calls for Local Interjob Communication 9-1

local messages. However, the distinction is important for a network message, in
which DECnetJE uses the parameter area for DECnetJE information.

9.2 Format of the Send/Receive SYS Calls

The general format of the SYS calls described in this chapter is:

V$=SYS(CHR$(6%)+CHR$(22%)+CHR$(S%)+ ... +0$)

where:

V$

=
SYS()

CHR$(6%)

+

CHR$(22%)

CHR$(S%)

0$

is the target string returned by the call.

is an assignment operator (the LET verb is implied).

indicates a system call.

is the system function code for a call to the file processor (that is, the FIP
call).

is the concatenation operator required between function, subfunction,
and argument codes.

is the send/receive function code.

is the user-specified subfunction code. (For example, S%=1 % indicates a
declare receiver and S%=O% indicates a remove receiver system call).

indicates other arguments that must be specified for the system calls.
Byte arguments have the form CHR$(X%) where CHR$ is a function
that converts data to character format, and X% is the user-specified
argument defined by the specific system call. Word arguments have the
form CVT%$(SWAP%(X% ».
is optional user-defined data.

The system call descriptions use the following terms:

Term

Reserved; should be
zero.

Not meaningful; should
be ignored.

Meaning

This field is reserved for future use. You must specify zero for
each byte in the field. Trailing zeros need not be passed.

The bytes in this field do not contain useful information.
However, these bytes may have meaning in future releases.
This term appears in the data returned by the various SYS
calls.

NOTE

Unlike the SYS calls to FIP (see Chapter 8), the arguments passed to
and returned from this SendlReceive call are longer than 30 bytes. You
should dimension the arrays used in CHANGE statements to handle
40-byte strings (see the sections, "Building a Parameter String" and
"Unpacking the Returned Data," in Chapter 8).

9.2.1 Privileges Required for Send/Receive

SEND

SYSIO

JOBCTL

Send to a restricted receiver

Declare a receiver with a nonzero Local Object Type, global name, or nonzero
inbound links limit

Remove the RIB of another account

9-2 System Calls for Local Interjob Communication

9.3 Declare Receiver

Data Passed

Bytes

1

2

3

4

5-10

11-20

21

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(22%), the send/receive function code.

CHR$(l %), the declare receiver subfunction code.

CHR$(O%), reserved; should be O.

The receiver name.

The receiver name must be a one- to six-character ASCII string. It
must be left-justified and padded to six characters with spaces. The
receiver name must contain only printing ASCII characters (characters
with ASCII decimal values in the range 33 to 126) and cannot contain
leading or embedded spaces. However, you can specify a blank receiver
name (six spaces).

If you do not have SYSIO privilege and you specify a nonblank name,
it must contain six characters and the last two characters must be your
job number, as two ASCII digits.

Reserved; should be O.

CHR$(O%), the object type code.

Legal values are 0 through 255. Object type codes for network
send/receive are defined in DECnet / E Network Programming in
BASIC-PLUS and BASIC-PLUS-2. See the Discussion for more in
formation on object type codes for local receivers.

System Calls for Local Interjob Communication 9-3

22

23-24

25

26

27-28

CHR$(L%+P%+N%+O%+S%), Access Control Field.

This byte controls the types of senders that are allowed to queue
messages for this job and also controls system handling of queued
messages. It is the sum of the following five bit values:
L% LocallN 0 Local Senders

If L%=O%, messages from local senders are not queued. Local
senders who use network functions are considered network
senders in this context.

IfL%=l%, messages from local senders are queued.

P% Local Privileged/Local Nonprivileged

This bit is ignored if L%=O% (no local senders allowed).

If P%=O%, local senders without the SEND privilege can queue
messages.

If P%=2%, local senders must have the SEND privilege.

N% Network Logical LinkslNo Logical Links

This bit controls the queueing of requests for DECnetIE logical
links. The DECnet / E Network Programming in BASIC-PLUS
and BASIC-PLUS-2 manual describes network links. For local
inteIjob communication, this bit should be zero.

If the receiver does not have SYSIO privilege, this bit must be
zero.

0% Network Single LinkslNo Single Links

This bit controls the queueing of single network links. For more
information, see DECnet / E Network Programming in BASIC
PLUS and BASIC-PLUS-2. For local intetjob communication,
this bit should be zero.

S% SleepINo Sleep

If S%=O%, pending messages block execution of a conditional
SLEEP. (In a conditional SLEEP, the monitor checks for certain
conditions before executing the SLEEP statement. One of these
conditions is pending messages in the job's message queue. See
the section, "SLEEP and Conditional SLEEP Statements," in
Chapter 11, for more information.)

If S%=16%, pending messages do not block execution of a
conditional SLEEP.

Reserved; should be O.

CHR$(M%), the message maximum.

The message maximum can be any value between 1 and 255. However,
if the job does not have EXQTA privilege, this value cannot exceed the
value in the account's second quota block. See Discussion.

CHR$(L%), the inbound link maximum.

The incoming link maximum declares the maximum number of in
coming DECnet logical links a job will support at anyone time. For
local inteIjob communication, the incoming link maximum should be
O. If you have SYSIO privilege, the incoming link maximum can have
any value between 0 and 255. If the receiver does not have SYSIO
privilege, this value must be zero.

Reserved; should be 0 for all receivers except an EMT logger. See
Appendix G for more information.

9-4 System Calls for Local Interjob Communication

29 CHR$(O%), the outbound link maximum.

DECnet uses this parameter as the number of outgoing links. If you
have EXQTA privilege, the outgoing link maximum can have any value
between 0 and 255. If you do not have EXQTA privilege, t.hi~ value
must be 0 or 1. (Note that in either case, a value of 0 is interpreted as
a default to the maximum value.)

30 Reserved; should be 0 for all receivers except an EMT logger. See
Appendix G for more information.

CHR$(O%), reserved; should be O. 30-34

35 CHR$(R%), the receiver ID block (RIB) number. It must be a value
between 0 and 255; values 128 through 255 are reserved for use by
Digital.

A job that does not have EXQTA privilege can use only the number of
RIBs specified in the account's second quota block.

36-40 CHR$(O%), reserved; should be O.

Data Returned

No meaningful data is returned.

Privileges Required

SYSIO Declare a receiver with a nonzero Local Object Type, global name, or nonzero
inbound links limit

Possible Errors

Meaning

1ILLEGAL FILE NAME

One of the following occurred:

• The receiver name passed in bytes 5-10 contains nonprinting
ASCII characters or leading or embedded spaces.

• A job that did not have SYSIO privilege passed a nonblank
receiver name that does not contain its job number in bytes 9
and 10.

• The specified local object type code is invalid.

1ACCOUNT OR DEVICE IN USE

The calling job already exists in the receiver's list of declared
receivers for the specified receiver ID block (RIB) number. This
error may indicate that the program contains a logic error or that
a previous program running under the same job number failed to
remove itself from the receiver list before terminating. In the last
case, the calling job should remove itself (with a Remove call, see
the section "Remove Receiver").

1PROTECTION VIOLATION

One of the following occurred:

• The specified RIB number is out of range.
• The caller does not have sufficient privilege at the time

certain functions were attempted in the receiver declaration.
(For example, a caller needs SYSIO privilege to declare
"single-instance" local object type.)

ERR Value

2

3

10

System Calls for Local Interjob Communication 9-5

Meaning

?NAME OR ACCOUNT NOW EXISTS

The receiver name passed in bytes 5-10 is already being used as a
receiver ID (this error cannot occur if the name specified is blank),
or a specified "single-instance" local object type is already in use.

?ILLEGAL SYS() USAGE

The receiver name, object type, and access parameters passed are
inconsistent.

?ILLEGAL BYTE COUNT FOR I/O

The value you specified in byte 30 is out of range (refers to an
EMT logger; see Appendix G for more information).

?NO BUFFER SPACE AVAILABLE

When the job attempted to declare itself as a receiving job, there
were no small buffers available for the declaration arguments.
Since the system's use of small buffers is dynamic, a retry may
succeed.

?MISSING SPECIAL FEATURE

The call you attempted requires an optional feature (such as EMT
logging) that is not available on your system.

Discussion

ERR Value

16

18

31

32

66

A program identifies itself to the monitor for message send/receive operations
with a Declare Receiver call. The monitor maintains a list of receiver ID blocks
that hold the arguments passed in the receiver declaration, the message queue,
and other system maintained information. A job can send local messages without
performing a receiver declaration. However, to be eligible to receive messages, a
job must have at least one receiver ID block.

Using Multiple Receiver 10 Blocks

A single job can declare itself as more than one receiver by executing multiple
Declare Receiver calls. Each job has available for its use 256 receiver ID blocks
(RIBs), numbered 0 through 255. RIB numbers 0 through 127 are for customer
use; RIB numbers 128 through 255 are reserved for use by Digital. You specify
the RIB number in byte 35; if you do not want to use multiple RIBs, set this byte
to zero.

The number of RIBs assigned to jobs that do not have EXQTA privilege are
counted and checked against a quota. The quota is stored in the account's second
quota block.

For each successful declare, the system sets up a separate 32-byte RIB. Each RIB
has a separate message queue and can have different characteristics (for example,
message maximum and type of senders allowed). You specify these characteristics
in the call. The system allocates space for each RIB from the small buffer pool.

Multiple RIBs can be useful in a program that performs several functions. For
example, in certain applications, you might want to use one RIB for high priority
messages or messages from specially privileged senders, and another for lower
priority messages or messages from any sender. If the program consists of several

9-6 System Calls for Local Interjob Communication

subroutines or modules, each one can process messages independently using
different RIBs.

Receiver Names

You must associate each RIB that you declare with a receiver name. Place the
receiver name in bytes 5 through 10 of the data passed. While your program
needs to keep track of both the RIB number and the receiver name, other jobs can
send messages to you by using either the receiver name or the job number.

A receiver name must be either unique or blank (six spaces). Receivers that
receive messages by job number rather than by name use blank receiver names.
If you do not have SYSIO privilege, you can use blank names. Any nonblank
names you use must have six characters, and the last two characters must be
the job number. Privileged programs may use other names. However, when
multiple copies of a program are active at the same time, Digital recommends
that privileged programs also use the job number as the last two characters of
the receiver name to avoid name conflicts.

NOTE

To avoid future name conflicts, do not use the $ character in your own
receiver names.

Table 9-1 lists the names currently used by Digital software.

Table 9-1: RSTS/E Reserved Names

Reserved Name

ERRLOG

BAnSPL

LPnSPL

OPSER

QM$CMD

QM$SRV

QM$URP

QUEMAN

OMS

PR$nnx

BA$nnx

SHUTUP

EVTLOG

EVTLSN

FALnnn

NCPnnn

NMLnnn

NWPKnn

NWTI'nn

Local Object
Type

1

3

4

5

6

11

65

66

Use

Error logger

OPSER batch processor

OPSER print spooler

OPSER message manager

PBS spooling package

PBS spooling package

PBS spooling package

OPSER queue manager

OMS--OperatorlMessage Services

PBS spooling package

PBS spooling package

System shutdown program

DECnet/E

DECnet/E

DECnet/E

DECnet/E

DECnet/E

DECnet/E

DECnet/E

System Calls for Local Interjob Communication 9-7

To see which receiver names are reserved on your system, use the SHOW
RECEIVERS command. For example:

$SHOW RECEIVERS

Message
Rcvrid
ERRLOG
OPSER

Receivers:
Job Rib

1 0
2 0

Local Object Types

Obj
1
o

Msgs/Max
0/40
0/30

Links/InMax/OutMax
0/0/0
0/0/255

Access
Prv
Lcl

A receiver ID block can be associated with an object type (specified in byte
21). Object type codes for network send/receive are defined in the DECnetIE
documentation.

If you have SYSIO privilege, you can specify a local object type for receivers that
do not perform network operations. The code you specify indicates that a receiver
performs a specific function. For example, the error logger, which records error
information for the monitor, is assigned local object type 1. If your system uses
an EMT logger, it is assigned local object type 2. You can also specify local object
type 64, which allows error messages to be sent to your program if you open a
disk non-file-structured with MODE 512% (see the section, "Access to Bad Block
Information" in Chapter 1).

Local object types 7 through 63 are "single-instance" local objects used by Digital
supplied programs. The system makes sure that no more than one receiver of
each single-instance type is declared, allowing the system to rapidly locate a
given receiver for certain functions.

Access Control Field

Byte 22 controls the types of network access permitted and the types of local
senders permitted. The possible values are 0-31. However, for local interjob
communication, only the following values are allowed:

1 Any local sender

3 Only senders that have SEND privilege

17 Any local sender; sleep with pending messages

19 Only local senders that have SEND privilege; sleep with pending messages

The "sleep bit" (value 16%) in the access control field is mainly for use with
multiple RIBs. When this bit is set, pending messages do not block execution of a
conditional SLEEP (see the section "SLEEP and Conditional SLEEP Statements"
in Chapter 11). By setting this bit, you can process messages on a specific RIB
only when your program is executing certain code and, at the same time, prevent
pending messages on that RIB from affecting conditional SLEEP statements in
the rest of your program.

Buffer Space for Messages

Each pending message in the system occupies system buffer space. Except for
EMT logger messages, one 16-word buffer from the monitor's buffer pool is
used for each message to hold the user- or DECnet-defined parameters and other
system-specific information. Additional buffer space is needed for the data portion
of the message.

The monitor allocates buffer space for messages from the extended buffer pool
(XBUF).

9-8 System Calls for Local Interjob Communication

Queued Message Limit

The system maintains a count of messages queued for each receiver. The message
maximum (byte 25) limits the number of messages queued for this receiver. This
limit applies both to messages from local senders and network data messages.
Local messages and network data messages are not queued unless the current
count is less than the declared maximum. An error is returned to a local sender
who attempts to send a message to a receiver whose count has reached this
maximum.

The declared value for the message limit is constrained by the account's message
quota, which is stored in the account's record quota block. The sum of the
message limits for all the receivers a job has declared cannot exceed the message
quota. For example, if you have a message quota of 12 (the default), you can
declare one receiver with a message limit of up to 12, or one with a limit of 3
and another with a limit of up to 9. If the job has EXQTA privilege in effect, the
system ignores the message quota.

9.4 Send Local Data Message

Data Passed

Bytes

1

2

3

4

5-10

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(22%), the send/receive function code.

CHR$(-1%), the send local data message subfunction code.

CHR$(J%). If J%=O, the call uses the logical name in bytes 5 through 10 to
determine the receiver. If J%=128+LOT, the call uses the local object type
(LOT) specified in byte 21. Only single-instance object types are valid. See the
Discussion for valid LOTs. Otherwise, J% can be set to the job number times 2
of the local receiving job. For example, specifying J%=8% directs a message to
job 4.

N$, the receiver name.

The receiver name is a one- to six-character ASCII string. It is left-justified
and padded to six characters with spaces. If byte 4 is nonzero and you specify a
receiver name, the send will succeed only if the name in bytes 5-10 is associated
with the job number in byte 4.

11 CHR$(C%), the channel number for the 110 buffer that contains the data
portion of the message.

If this byte is zero, a string beginning at byte 41 contains the data portion of
this message (if any).

If this byte contains a channel number (any value from 1-12), a buffer defined
by the length and offset values contains the data portion of this message. The
message data (up to 512 bytes) should be left-justified in the buffer for channel
C%, beginning at the offset value defined in bytes 15-16.

Channel 0 can be used for the 110 buffer if 128 is added to the channel number,
that is, CHR$(128%+0%). In general, CHR$(128%+C%) allows channels 0
through 12 to be used for I/O buffers.

12 CHR$(O%), reserved; should be O.

System Calls for Local Interjob Communication 9-9

13-14 L%, the length (in bytes) of the message to send from the channel buffer in the
form CVT%$(SWAP%(L%».

If byte 11 is zero, the system ignores these bytes.

For local data messages, this length field can have any value betw€'en zero and
512, subject to the restriction that the length of the message is less than or
equal to the buffer size minus the offset value. If the length is zero, the system
sends the whole buffer (that is, from the offset to the end of the buffer).

15-16 0%, the offset value in the form CVT%$(SWAP%(O%».

The value specifies the offset from the beginning of the buffer where the
message data begins. The offset must be in the range zero to <size of buffer -
1>.

17-20

21-40

CHR$(O%), reserved; should be o.
P$, the optional user parameter string.

A maximum of 20 bytes of user-defined data can be passed as parameters to the
receiver of this message.

41+ D$, the optional data string.

A maximum of 512 bytes of user-defined data can be passed to the receiver's
buffer. The call ignores these bytes if byte 11 is nonzero.

Data Returned

Meaning Bytes

4 The job number times 2 of the receiving job.

Privileges Required

SEND Send to a restricted receiver

Possible Errors

Meaning

?NO ROOM FOR USER ON DEVICE

For local message operations, this error means that the number
of messages pending for this receiver is at its declared maximum.
The sender should try again later. If this error occurs frequently,
the receiver is not processing its messages quickly enough, or the
number of pending messages allowed by the receiver is too small.
This error can also occur if the message receiver is hibernating.
Because the hibernating receiver cannot process messages, the
system sets a flag for messages sent to it and thus minimizes the
number of small buffers that would be tied up.

?CAN'T FIND FILE OR ACCOUNT

For local messages, the receiving job, referenced by job number or
logical name, was not found in the list of declared receivers. The
receiving job must be declared (with the Declare Receiver SYS
call) before any data can be transmitted.

?IlO CHANNEL NOT OPEN

The channel specified in byte 11 of the data passed is not open.
The job must open the channel and try again.

9-10 System Calls for Locallnterjob Communication

ERR Value

4

5

9

Meaning

?PROTECTION VIOLATION

An access violation has occurred. Either the sender is nonprivi
leged and the receiver requires senders to have SEND privilege,
or the receiver does not allow any local senders.

?ILLEGAL SYS() USAGE

The job number passed in byte 4 is odd. Byte 4 must be zero or
the receiver's job number times 2.

?ILLEGAL BYTE COUNT FOR I/O

The offset and/or length fields passed in bytes 13-16 are illegal.
The following relationships must be true for a send call:

• The offset must be less than the buffer size.
• The length must be less than or equal to the buffer size minus

the offset value. The buffer size minus the offset value must
be less than or equal to the maximum message length.

The offset and length fields are checked for validity whenever a
channel number is passed in byte 11.

?NO BUFFER SPACE AVAILABLE

System buffers are not currently available to store this message.
A later retry may proceed without error.

Discussion

ERR Value

10

18

31

32

A local job can send a message to a declared receiver by specifying:

• A job number

• A logical name

• A logical name, while checking the job number

• A single-instance local object type (if appropriate).

If byte 4 of the data passed is nonzero and even, and the name field (bytes 5-10)
is null, the call interprets it as the job number (times 2) of the intended receiver.

If bytes 5-10 are not null, the call attempts to send the message to the receiver
whose logical name matches bytes 5-10 of the data passed. If byte 4 is zero, the
message is sent to the named receiver. If byte 4 is nonzero and even, the message
is sent to the named receiver only if that receiver is owned by the job whose job
number times two is specified in byte 4. Because it does not require a receiver
table search, sending messages by job number or local object type is slightly more
efficient than sending by logical name.

If byte 4 is 128 + LOT (local object type), the call sends the message to the
receiver designated by the local object type value you specify in LOT. Legal values
are:

LOT Receiver

1 Error logger

2 EMT logger

3 PBS spooling package

System Calls for Locallnterjob Communication 9-11

4 PBS spooling package

5 PBS spooling package user request packet

6 OPSER-based spooling package

11 OMS--OperatorlMessage Services

A send by job number works only when the receiving job is receiving messages on
RIB o. (That is, the receiving job must have executed a declare receiver call with
a value of zero in byte 35.) All messages sent by job number are queued on RIB
O. If the job is a receiver on one or more nonzero RIBs but not RIB 0, the send by
job number fails. In contrast, a send by logical name (with or without job number
check) works for any RIB number.

In a receiver declaration, the receiving job specifies the types of senders who
are allowed to send messages. If no local senders are allowed, all attempts to
send messages to the receiver fail. Similarly, if local senders must have SEND
privilege, an attempt by an insufficiently privileged job to send a message to this
receiver also fails. All such access violations terminate with the error ?Protection
violation (ERR=10), and the message is not sent.

9.S Send Local Data Message With Privilege Mask

Data Passed

Bytes

1

2

3

4

5-10

11

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(22%), the send/receive function code.

CHR$(-l1%), the send with privilege mask subfunction code.

CHR$(J%). If J%=O, the call uses the logical name in bytes 5 through 10 to de
termine the receiver. If J%=128+LOT, the call uses the local object type (LOT)
specified in byte 21. Only single-instance object types are valid. Otherwise J%
can be set to the job number times 2 of the local receiving job. For example,
specifying J%=8% directs a message to job 4.

N$, the receiver name.

The receiver name is a one- to six-character ASCII string. It is left-justified
and padded to six characters with spaces. If byte 4 is nonzero, the send will
succeed only if the receiver name is associated with the specified job number.
See Discussion.

CHR$(C%), the channel number for the 110 buffer that contains the data
portion of the message.

If this byte is zero, a string beginning at byte 41 contains the data portion of
this message (if any).

If this byte contains a channel number (any value from 1 to 12), a buffer defined
by the length and offset values contains the data portion of this message. The
message data (up to 512 bytes) should be left-justified in the buffer for channel
C%, beginning at the offset value defined in bytes 15-16.

Channel 0 can be used for the 110 buffer if 128 is added to the channel number,
that is, CHR$(128%+0%). In general, CHR$(128%+C%) allows channels 0
through 12 to be used for 110 buffers.

12 CHR$(O%), reserved; should be o.

9-12 System Calls for Locallnterjob Communication

13-14

15-16

17-28

29-40

41+

L%, the length (in bytes) of the message to send from the channel buffer in the
form CVT%$(SWAP%(L%».

If byte 11 is zero, the system ignores these bytes.

For local data messages, this length field can have any value bet.ween zero and
512, subject to the restriction that the length of the message is less than or
equal to the buffer size minus the offset value. If the length is zero, the system
sends the whole buffer (that is, from the offset to the end of the buffer).

0%, the offset value in the form CVT%$(SWAP%(O%».

The value specifies the offset from the beginning of the buffer where the
message data begins. The offset must be in the range zero to <size of buffer -
1>.
CHR$(O%), reserved; should be O.

P$, the optional user parameter string.

You can pass a maximum of 12 bytes of user-defined data as parameters to the
receiver of this message.

D$, the optional data string.

You can pass a maximum of 512 bytes of user-defined data to the receiver's
buffer. The call ignores these bytes if byte 11 is nonzero.

Data Returned

Bytes

4

Meaning

The job number times 2 of the receiving job.

Privileges Required

SEND Send to a restricted receiver

Possible Errors

This call returns the same errors as the Send Local Data Message call. See the
previous section.

Discussion

This call sends a data message plus a privilege mask supplied by the monitor.
This subfunction provides a method for a program to tell another program about
a job's current privileges and guarantees that the data cannot be falsified.

A local job can send its privileges to a declared receiver in the same way as the
Send Local Data Message call. See the Discussion in the previous section.

9.6 Receive

Data Passed

Bytes

1

2

3

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(22%), the send/receive function code.

CHR$(2%), the receive subfunction code.

System Calls for Locallnterjob Communication 9-13

4

5

CHR$(S%+T%+L%+N%), the modifier for this receive.

The modifier is the sum of the following four values:

S% SleeplNo Sleep

If S%=O% and no messages are pending for this job, the receive call
returns an immediate error (ERR=5).

If S%=l%, the job sleeps until a message is queued. The duration of
the sleep can be limited by bytes 27-28. See Discussion.

T% TruncateINo Truncate

If T%=O%, an attempt to receive a message that is too long for the
buffer (indicated by bytes 11-16 of the data passed) results in a partial
message being transferred to the caller. The remainder of the message
is saved and can be retrieved by subsequent receive calls.

If T%=2%, a message that is too long for the buffer (specified by bytes
11-16 of the data passed) is truncated.

In either case, the number of bytes from the data portion of the
message that was delivered to the buffer is returned in bytes 13-14
of the data returned. The number of bytes remaining (T%=O%) or
discarded (T%=2%) is noted in bytes 9-10 ofthe Data Returned.

L% Local Selection

If L%=O%, local selection is disabled. If N% (described as follows) is
also disabled, the first message on the receiver's queue of pending
messages is delivered to the caller.

If L%=4%, local selection is enabled. Only local messages are de
livered on this receive. The selection can be further qualified to a
particular local sender by bytes 5 and 6.

N% Network Selection

If N%=O%, network selection is disabled. If L% is also disabled, the
first message on the receiver's queue of pending messages is delivered
to the caller.

If N%=8%, network selection is enabled. Only network messages are
delivered on this receive. The selection can be further qualified to
a particular DECnet logical link by specifying a DEC net user link
address in byte 5.

NOTE

If L%=4% and N%=8%, the local bit
setting prevails; the network selective
receive is ignored.

CHR$(S%), the sender selection.

This byte is ignored if both L%=O% and N%=O% in byte 4.

Any nonzero value in this byte selects a particular sending job. Zero is a special
case described for byte 6. See the Discussion for meaningful combinations of
bytes 5 and 6.

For local selection (L%=4% as described previously), if this byte is equal to a
job number times 2, the first message on the queue from that particular job is
delivered to the caller.

For network selection (N%=8% and L%=O%), if this byte is equal to a user link
address, the first message on the queue from that particular DEC net logical
link is delivered to the caller. See the DECnet / E Network Programming in
BASIC-PLUS and BASIC·PLUS·2 Manual for details.

9-14 System Calls for locallnterjob Communication

6 CHR$(Q%), the sender selection qualifier.

This byte is ignored if both L%=O% and N%=O% in byte 4.

This byte is also ignored if byte 5 is nonzero. See the Discussion for meaningful
combinations of bytes 5 and 6.

For local selection, if byte 5 is zero and byte 6 is nonzero, this receive is
requesting a message from the "system" (represented by job 0, which is not
a real job number). This special case is intended for use by ERRCPY or an
EMT logger, which receives messages from the monitor's error logging or EMT
logging routines. The job number in these messages is zero. See Appendix G
for more information on EMT logging.

If both byte 5 and byte 6 are zero, the selection bits (L% and N% as described
above) select only the generic type of message to be delivered to the caller. For
local selection (L%=4%), the first local message on the queue is delivered to the
caller. For network selection (N%=8% and L%=O%), the first network message
on the queue is delivered to the caller.

7-10 Reserved; should be o.
11 CHR$(C%), the channel number for the I/O buffer to receive messages.

12

13-14

15-16

17-20

21-26

27-28

29-34

35

36-40

If C% is between 1 and 12, the system returns the data portion of the message
in the buffer for channel C%. The channel must be open. If C%=O or the buffer
for channel C% is not large enough to accommodate the data portion of the
message, the action taken depends on the value of the truncation bit in the
receive modifier. See Discussion.

Channel 0 can be used for the I/O buffer if 128 is added to the channel number,
that is, CHR$(128%+0%). In general, CHR$(128%+C%) allows channels 0
through 12 to be used for I/O buffers.

CHR$(O%) reserved; should be o.
L%, the maximum message length (in bytes) desired on this receive in the form
CVT%$(SWAP%(L%».

Ifbyte 11 is zero (that is, no channel is specified), the offset and length fields
are ignored.

The length field limits the number of data bytes that are returned on this
receive. If the length is zero, the error ?No room for user on device (ERR=4)
occurs. Otherwise, a maximum of L% bytes is returned on this receive. The
specified length must be less than or equal to the buffer size minus the specified
offset.

0%, the offset from the start ofthe buffer in the form CVT%$(SWAP%(O%».

The offset field determines where in the buffer the data portion of the message
is returned. The offset value is added to the location of the beginning of the
buffer. The offset value must be in the range 0 to (size of buffer - 1).

CHR$(O%) reserved; should be o.
Reserved; should be o.
T%, the sleep time in seconds in the form CVT%$(SWAP%(T%».

If byte 4 requests a sleep and no messages are pending, the sleep is terminated
after T seconds. If T%=O%, the length of the sleep is indefinite; the job is not
awakened until one of six events awakens the job. When the sleep terminates,
the error ?Can't find file or account (ERR=5) occurs. See Discussion.

CHR$(O%) reserved; should be o.
CHR$(R%), the RIB number for this receive. The RIB number must be a value
from 0 to 255; values 128 through 255 are reserved for use by Digital.

CHR$(O%) reserved; should be o.

System Calls for Local Interjob Communication 9-15

Data Returned for local Data Message

Bytes

1-2

3

4

5-6+

7

8

9-10

11-12

13-14

15-20

21-40

Meaning

Not meaningful: should be ignored.

CHR$(-l%), the local data message subfunction code.

CHR$(J%), the job number of the local sender. For local messages, this byte
contains the job number times 2 of the local sender.

PPN of the sender.

Keyboard number of the sender or 255% if the sender is detached.

Not meaningful; should be ignored.

R%, the number of bytes remaining in the data portion of the message.

This is a count of bytes not delivered to the caller on this receive. If truncation
was not requested (T%=O% in byte 4 of the data passed) and not all of the
message was delivered, the message remains queued. The rest of the data can
be retrieved on subsequent receive calls. If truncation was requested (T%=2%
in byte 4 of the data passed), the message is removed from the queue and this
count is the number of bytes discarded.

Not meaningful; should be ignored.

L%, the lei1.gth of the message transferred to the buffer.

This count is the number of bytes actually transferred to the channel buffer
on this receive call. If no channel number was specified (byte 11 = 0% in the
data passed), this count is zero. In this case, the size of the data portion of the
message is available in bytes 9-10 of the data returned.

Note that if the number of bytes transferred (bytes 13-14 of the data returned)
and the number of bytes remaining (bytes 9-10 of the data returned) are both
zero, the entire message consists of parameters that are available in bytes
21-40 of the data returned.

Not meaningful; should be ignored.

P$, the user parameter string.

These bytes contain the data passed as parameters by the sender of this
message. The system pads any unused bytes with zeros to a length of 20 bytes.

Data Returned for Local Data Message with Privilege Mask

Bytes

1-2

3

4

Meaning

Not meaningful; should be ignored.

CHR$(-11%), the local data message with privilege mask subfunction code.

CHR$(J%), the job number of the local sender.

For local messages, this byte contains the job number (times 2) of the local
sender.

5-6+ PPN of the sender.

7 Keyboard number of the sender or 255% if the sender is detached.

8 Not meaningful; should be ignored.

9-10 R%, the number of bytes remaining in the data portion of the message.

11-12

This is a count of bytes not delivered to the caller on this receive. If truncation
was not requested (T%=O% in byte 4 of the data passed) and not all of the
message was delivered, the message remains queued. The rest of the data can
be retrieved on subsequent receive calls. If truncation was requested (T%=2%
in byte 4 of the data passed), the message is removed from the queue and this
count is the number of bytes discarded.

Not meaningful; should be ignored.

9-16 System Calls for Local Interjob Communication

13-14 L%, the length of the message transferred to the buffer.

This count is the number of bytes actually transferred to the channel buffer
on this receive call. If no channel number was specified (byte 11 = 0% in the
data passed), this count. is zero. In this case, the size of the data portion of t.he
message is available in bytes 9-10 of the data returned.

Note that if the number of bytes transferred (bytes 13-14 of the data returned)
and the number of bytes remaining (bytes 9-10 of the data returned) are both
zero, the entire message consists of parameters that are available in bytes
21-40 of the data returned.

15-20

21-28

29-40

Not meaningful; should be ignored.

The sender's privilege mask.

P$, the user parameter string.

These bytes contain the data passed as parameters by the sender of this
message. The system pads any unused bytes with zeros to a length of 12 bytes.

Privileges Required

None.

Possible Errors

Meaning

?CAN'T FIND FILE OR ACCOUNT

If a receive without sleep was issued, this error indicates that no
messages are pending. If a receive with sleep was issued, this
error indicates that no messages were pending when the receive
call was issued or that the sleep timer has expired. The error is
returned when the job is awakened from the sleep. The program
must execute the receive again to retrieve any pending messages
(see the Discussion).

?IJO CHANNEL NOT OPEN

An attempt was made to receive a message, but channel C%,
specified in byte 11 of the data passed, is not open. The program
must open the channel and try again.

?ILLEGAL SYS() USAGE

The job is not a declared receiver on the specified RIB number.
Before any receive can succeed on that RIB number, the job must
be entered in the receiver list.

?ILLEGAL BYTE COUNT FOR IJO

The offset and length fields passed in bytes 13-16 are illegal. The
following relationships must be true for a receive call:

• The offset must be less than the buffer size.

• The length must be less than or equal to the buffer size minus
the offset value.

The offset and length fields are checked for validity whenever a
channel number is passed in byte 11.

Discussion

ERR Value

5

9

18

31

On any receive call, the system checks the eligibility of the job to receive messages
and returns the error ?Illegal SYS() usage (ERR=18) if the specified job and RIB
number are not in the list of declared receivers. If the job is eligible to receive

System Calls for Local Interjob Communication 9-17

messages, the call attempts to receive a message based on the receive modifier
passed in byte 4. Normally, a receive call returns the first message on the
receiver's queue of pending messages. Use the selective receive bits (L% and N%
in byte 4) to select messages from particular senders identified by the local job
number or DECnet user link address (as indicated by byte 5). If the sleep bit is
off (8%=0% in byte 4) and no messages are pending, the system generates the
error ?Can't find file or account (ERR=5) and immediately passes the error to the
calling program. If no messages are pending and the sleep bit is on (S%=l % in
byte 4), the job is put into a sleep state (called a receiver sleep). You can specify
the sleep time in bytes 27-28 of the data passed.

A job in a receiver sleep can be awakened by any of six events:

• A user types a delimiter (RETURN, LINE FEED, FORM FEED, or ESCAPE)
at:

Any terminal opened by the job.

Any terminal allocated to the job if the job also has a keyboard open on a
nonzero channel.

to A dial-up line that is allocated or opened by the job gets hung up.

• The system manager disables logins (that is, sets the number oflogins to 1).

• A state change occurs on a pseudo keyboard opened by the job. This condition
can occur when the opened pseudo keyboard has output for the controlling
job or has entered an input wait state. See the section "Pseudo Keyboards" in
Chapter 4.

• The job has declared itself a receiver and a message is queued for it through
the SendlReceive SY8 calls. See Chapter 9.

• The job has a DMCIDMR (XM:) device open and the device driver receives a
message (see Chapter 6).

In all cases, the job is awakened with an error ?Can't find file or account (ERR=5)
but is not passed a message. To obtain a pending message, the job must execute
the receive call again. Because the job may have been awakened by terminal
input or expiration of the timer, you can check for pending messages by executing
the receive can without a sleep or by executing a terminal input operation using
RECORD 8192% for immediate return.

The receive call returns parameters in the target string and the data portion of
the message (if any) in the I/O buffer specified by byte 11. If the program must
handle any DECnetIE messages, or local messages longer than the 20 bytes of
user-defined parameters, a channel buffer must be available to receive the data
portion of the message.

You can determine the number of bytes from the data portion of a message
actually delivered to the buffer (if any) and the number of bytes remaining in
the message (if any) from the data returned with the receive call. Bytes 13-14
indicate the number of bytes from the data portion of the message that were
delivered to the buffer.

The truncation bit (T%) in byte 4 determines whether the remaining bytes in
the channel buffer are kept or discarded. If you set T%=O%, the remaining bytes
are kept. If T%=2%, the remaining bytes are discarded. Bytes 9-10 indicate the
number of bytes that remain to be transferred or were discarded (depending on
the truncation bit in byte 4).

9-18 System Calls for Local Interjob Communication

When processing large messages in small pieces, each successive receive call
retrieves a limited number of bytes from the same message. The normal sequence
is to issue receive calls until the number of bytes remaining in the data portion
of the message is zero (as indicated by bytes 9-10 of the data returned). The
receiver then knows that the entire message has been delivered and removed
from the queue.

A convenient way to assign a buffer for message operations is to open the null
device (NL:) at the desired buffer size with the RECORDSIZE option in the OPEN
statement. The null device is always available and can be opened as many times
as required to obtain buffer space for any desired function. If you specify a buffer,
the system ensures that the channel is open. If the channel is not open, the call
results in an immediate error ?I/O channel not open (ERR=9).

The program receiving a message selects the particular sender by combining
receive modifier bits (L% and N% in byte 4) and the values of bytes 5 and 6.

Table 9-2 summarizes the possible combinations.

Table 9-2: Sender Selection Summary

Receive
Modifier

Byte 4

N% L%

0% 0%

4%

8% 0%

Data Passed

Byte £)

0%

0%

nonzero

0%

nonzero

ByteS

0%

nonzero

0%

Result

Bytes 5 and 6 ignored; returns first
queued message.

Selects first local message.

Selects job 0; used by error logging
and EMT logging programs to select
messages from monitor routines.

Selects local message by job number
times 2 in byte 5.

Selects first network message.

Selects network message by link (user
link address) in byte 5.

System Calls for Local Interjob Communication 9-19

9.7 Remove Receiver

Data Passed

Bytes

1

2

3

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(22%), the send/receive function code.

CHR$(O%), the remove subfunction code.

4 CHR$(J%), the job number times 2 of the job to remove, or CHR$(O%) to remove
the calling job.

If J%=O%, the calling job need not be privileged. If J% is not 0 and not the
caller, the caller must have JOBCTL privilege. Add 128% to this byte for
"conditional" remove. See Discussion.

CHR$(O%) reserved; should be O. 5-34

35 CHR$(R%), the receiver ID block (RIB) number to remove. The RIB number
must be a value from 0 to 255; values 128 through 255 are reserved for use by
Digital.

36 CHR$(O%) to remove the RIB specified in byte 35. A nonzero value in this byte
removes all RIBs for the job specified in byte 4.

37-40 CHR$(O%) reserved; should be O.

Data Returned

No meaningful data is returned.

Privileges Required

JOBCTL Remove the RIB of another account

Possible Errors

Meaning

?ACCOUNT OR DEVICE IN USE

This occurs for a conditional remove if there still are messages
pending. See Discussion.

?PROTECTION VIOLATION

The caller does not have JOBCTL privilege and has attempted to
remove another job (that is, byte 4 is nonzero and does not match
the caller's job number).

?ILLEGAL SYS() USAGE

The job number passed in byte 4 is odd. The job number must
be zero to remove the caller or job number times two to remove
receivers for another job.

Discussion

ERR Value

3

10

18

This call removes a receiver from the system's list of declared receivers. You can
remove all RIBs for a job or a specific RIB for a job. (Be careful when removing
all RIBs for a job.) When this call is executed, all pending messages for the
receiver are discarded. You should execute this call when message processing
is being terminated but the job is to continue running. This prevents unwanted
messages from accumulating in the queue of pending messages.

9-20 System Calls for Local Interjob Communication

Note that both the LOGOUT SYS function and the KILL SYS function execute
this call with a nonzero value in byte 36.

The "conditional" remove operation is useful for programs that want to process
messages until none remain, then remove the receiver. If you do a receive, find
that there are no more messages, and then do a remove, a message could arrive in
the time between the receive and the remove; the remove operation would discard
that message. To avoid this problem, add 128% to byte 4 for "conditional" remove;
in this case, the system returns the error ?Account or device in use (ERR=3)
rather than discard messages if some messages are still waiting to be received.

9.8 Local Send/Receive Examples

This section gives several examples of the send/receive SYS calls. The examples
include a receiver declaration, two send local data calls, five receives to show
some of the possible options, and a remove receiver call. The series of examples
is a program that can be run to demonstrate the operation of the send/receive
functions. The examples are coded for illustration rather than efficiency. They do
not handle all possible error conditions and do not present all possible options.
The examples should, however, give the general flavor of the services offered.

9.8.1 Declare Receiver Example

The following receiver declaration establishes the caller as a message receiver
with the logical name "DEMO". Only local senders that have SEND privilege are
allowed to send messages to this receiver. Up to five messages are queued for this
receiver before senders receive an error (also ERR=4). Finally, no requests for
incoming DECnet logical links are honored for this receiver.

10 EXTEND
900 DIM X%(40%)
1000

1110
1120
1130

1150
1160
1190

! RECEIVER DECLARATION EXAMPLE

LOGNAME$ "DEMO !THIS RECEIVER'S LOGICAL NAME
OBJTYPE% 0% !ALL ACCESS BY LOGICAL NAME
ACCESS% 1%+2% !ONLY LOCAL SENDERS WITH SEND

!PRIVILEGE ALLOWED
MMAX% 5% !UP TO 5 MESSAGES
LMAX% 0% !NO DECNET LOGICAL LINKS

1200 X$ = SYS(CHR$ (6%)+CHR$ (22%)+CHR$ (l%)+CHR$ (0%)
+ LOGNAME$ + STRING$(10%,0%)
+ CHR$(OBJTYPE%)
+ CHR$(ACCESS%)
+ CVT%$ (0%)
+ CHR$(MMAX%)
+ CHR$ (LMAX%))

9.8.2 Send Local Data Examples

The following local send calls send a message from a string and from a buffer. In
both cases, the receiver is referenced by its logical name. The intended receiver
is the receiver whose logical name is DEMO. Note that if you ran this series of
examples as a single program, the job would be sending messages to itself.

System Calls for Local Interjob Communication 9-21

The first example is a send from a string. There is no need to distinguish between
"parameter" and "data" areas of the message as long as the receiver is aware that
part of the message is delivered in the target string returned by the SYS call and
the remainder is returned in a specified buffer.

2000
LOCAL SEND EXAMPLES

2100 THE FIRST SEND IS A SIMPLE STRING SEND

2110 MSG1$ = "THIS MESSAGE WAS SENT FROM A STRING."
2190
2200 X$ SYS(CHR$(6%)+CHR$ (22%)+CHR$ (-l%)+CHR$ (0%)

+ LOGNAME$ + STRING$(10%,0%)
+ MSG1$)

2210 PRINT "1ST MESSAGE SENT = ";MSG1$

The second send call sends a message from a buffer. In this case, the null device
is opened on channel 2 to obtain buffer space, the message data is loaded into the
buffer using LSET, and the data portion of the message is sent from the buffer.
User-defined "parameters" are also included with this message and are delivered
to the receiver. The use of JUNK$ at the beginning of the buffer illustrates the
use of the buffer offset field in send calls.

2300
! THE SECOND SEND IS A SEND FROM A BUFFER

2310 CHANNEL% = 2%
2320 OPEN "NL:" AS FILE CHANNEL%, RECORDSIZE 100%
2330 FIELD CHANNEL%, 10% AS JUNK$, 90% AS TEXT$
2340 MSG2$ "THIS MESSAGE WAS SENT FROM A BUFFER."
2350 PARAM$ "MESSAGE *2 "
2360 MSGLEN% LEN (MSG2$)
2370 OFFSET% LEN (JUNK$)
2380 LSET TEXT$ = MSG2$
2390
2400

2410
2420
2430

X$ SYS (CHR$ (6%)+CHR$ (22%)+CHR$ (-l%)+CHR$(O%»
+ LOGNAME$
+ CHR$(CHANNEL%)+ CHR$(O%)
+ CHR$(MSGLEN%) + CHR$(SWAP%(MSGLEN%»
+ CHR$(OFFSET%) + CHR$(SWAP%(OFFSET%»
+ STRING$(4%,0%)
+ PARAM$

PRINT "2ND MESSAGE SENT
PRINT "PARAMETERS SENT
PRINT

" ;MSG2$
" ;PARAM$

9.8.3 Receive Examples

This section presents five receive examples. If you ran this series of examples
as a program, the receives would retrieve the two messages sent in the send
examples of the previous section.

9-22 System Calls for Local Interjob Communication

The first receive is a simple receive into a buffer large enough to hold any
expected message. The receiver is willing to wait up to 10 seconds for a message,
so the sleep bit in the receive modifier is turned on, and a 10 second limit is
passed as the sleep timer. Truncation is also requested because no messages
are expected that will be larger than the buffer available. In this example, the
ON ERROR GOTO, which is normally used to field the "sleep expired" error
(ERR=5), is omitted for simplicity. As mentioned in the discussion of the first
send example, part of the message is delivered to the receiver as "parameters" in
the target string, and the rest of the message is delivered to the channel buffer.

3000
RECEIVE EXAMPLES

3100 THIS FIRST RECEIVE WILL RECEIVE THE FIRST MESSAGE SENT

3110 FIELD # CHANNEL%, 100% AS TEXT$
3120 S% 1%\ TIMER% = 10% !REQUEST MAX 10 SECOND SLEEP
3130 T% = 2% !REQUEST TRUNCATION
3190
3200 X$ SYS (CHR$ (6%)+CHR$ (22%)+CHR$(2%)

+ CHR$(S%+T%) + STRING$(6%,O%)
+ CHR$(CHANNEL%) + STRING$(15%,O%)
+ CHR$(TIMER%) + CHR$(SWAP%(TIMER%»)

3210 CHANGE X$ TO X% !MAKE TARGET STRING USABLE
3220 MSGLEN% = X%(13%)+SWAP%(X%(14%» !LENGTH OF RECEIVED MESSAGE
3230 BYTREM% = X%(9%) +SWAP%(X%(10%» !BYTES LOST DUE TO TRUNCATION
3240 IF BYTREM% <> 0% THEN STOP !CANNOT OCCUR IN EXAMPLE
3250 FIELD #2%, MSGLEN% AS MSG$!FIELD FOR LENGTH RECEIVED
3260 PRINT "MESSAGE RECEIVED = ";RIGHT(X$,20%);MSG$!PRINT RCVD MSG

The next receive determines the sender's job number and length of the next
pending message. The call requests an indefinite length sleep to wait for a
message to be queued. In this case, no buffer is provided because the program
does not receive the data portion of any message on this call.

3300

3310
3320
3390
3400

S%
T%

X$

THIS SECOND RECEIVE CALL IS USED TO DETERMINE IF ANY
FURTHER MESSAGES ARE PENDING AND TO DETERMINE THE JOB
NUMBER OF THE SENDER FOR SUBSEQUENT SELECTIVE
RECEIVE EXAMPLES

1%\ TIMER% = 0%
0%

!REQUEST INDEFINITE SLEEP
!NO TRUNCATION ALLOWED NOW

SYS(CHR$(6%)+CHR$(22%)+CHR$(2%)+CHR$(S%»

3410 CHANGE X$ TO X%
3420 SNDJOB% = X%(4%) !GET SENDING JOB 2
3430 BYTREM% = X%(9%)+SWAP%(X%(10%» !GET # BYTES IN DATA PORTION
3440 IF BYTREM% = 0% THEN STOP !IMPOSSIBLE IN THIS EXAMPLE

System Calls for Local Interjob Communication 9-23

The third receive illustrates sender selection. For this example, assume the
second message sent above is the only message pending (which is the case for this
series of examples). If the receive selects some other sender (SNDJOB%+2% in
the example below) and no sleep is requested, an error (ERR=5) should result as
shown. Note that truncation is not allowed on this receive because the program
preserves the pending message.

3500
THE THIRD RECEIVE SELECTS MESSAGES FROM A PARTICULAR
SENDER. IN THIS EXAMPLE A RANDOM JOB IS SELECTED TO
FORCE AN ERROR.

3510 ON ERROR GOTO 3620
3520 LCLSEL% = 4% !REQUEST LOCAL SELECTION
3590
3600 X$ SYS (CHR$ (6%)+CHR$ (22%)+CHR$(2%)

+ CHR$(LCLSEL%)
+ CHR$(SNDJOB%+2%»

3610 STOP !CANNOT OCCUR IN THIS EXAMPLE
3620
3630

IF ERR <> 5% THEN STOP
RESUME 3700

!ERR 5 WAS INTENTIONAL

The sender's job number and the number of bytes in the next pending message
are known. If buffer space is restricted for some reason, it may be necessary to
retrieve the message in several pieces. For the example, the receive arbitrarily
restricts the number of bytes the caller will accept to 20 bytes by using the length
field in the receive call.

3700

3710
3790

THE NEXT RECEIVE SELECTS THE SENDER DETERMINED ABOVE.
ONLY A PORTION OF THE MESSAGE IS RETRIEVED ON THIS CALL.

MAXLEN% = 20% !LENGTH ARBITRARILY RESTRICTED

3800 X$ =SYS(CHR$(6%)+CHR$(22%)+CHR$(2%)
+ CHR$(LCLSEL%)
+ CHR$(SNDJOB%) + STRING$(5%,0%)
+ CHR$(CHANNEL%)+ CHR$(O%)
+ CHR$(MAXLEN%) + CHR$(SWAP%(MAXLEN%»)

3810 CHANGE X$ TO X% !MAKE TARGET STRING USABLE
3820 IF X%(4%) <> SNDJOB% THEN STOP !CANNOT OCCUR IN
THIS EXAMPLE
3830 MSGLEN% = X%(13%)+SWAP%(X%(14%» !GET LENGTH RECEIVED
3840 BYTREM% = X%(9%) +SWAP%(S%(10%» !GET COUNT NOT DELIVERED
3850 IF BYTREM% = 0% THEN STOP !CANNOT OCCUR IN THIS EXAMPLE

9-24 System Calls for Local Interjob Communication

At this point, the program has received part of the message (MSGLEN% charac
ters). The rest of the message (BYTREM% characters) is still queued. The last
receive retrieves the rest of the message and places it in the buffer immediately
after the portion delivered on the previous receive. Sender selection makes sure
that the data received is the remainder of the same message delivered on the
previous call.

3900

3910
3990
4000

THE LAST RECEIVE WILL RETRIEVE THE REST OF THE DATA FROM
THE SECOND MESSAGE SENT IN LINE 2400 ABOVE.

OFFSET% = MSGLEN% !BUFFER OFFSET FOR RECEIVE

X$ SYS(CHR$(6%)+CHR$ (22%)+CHR$ (2%)
+ CHR$(LCLSEL%)
+ CHR$(SNDJOB%) + STRING$(5%,0%)
+ CHR$(CHANNEL%)+ STRING$(3%,0%)
+ CHR$(OFFSET%) + CHR$(SWAP%(OFFSET%»)

4010 CHANGE X$ TO X% !MAKE TARGET STRING USABLE
4020 IF X%(4%) <> SNDJOB% THEN STOP !CANNOT OCCUR IN THIS EXAMPLE
4030 MSGLEN%=MSGLEN%+X%(13%)+SWAP%(X%(14%» !TOTAL LENGTH OF MSG
4040 BYTREM%=X%(9%)+SWAP%(X%(10%» !AND COUNT NOT DELIVERED
4050 IF BYTREM% <> 0% THEN STOP !WHICH SHOULD BE ZERO
4060 FIELD #2%,MSGLEN% AS MSG$!FIELD COMPLETE MESSAGE
4070 PRINT "MESSAGE RECEIVED + ";MSG$!AND PRINT COMPLETE MESSAGE

In the last three receive calls, the examples have been working on a single
pending message. Recall that the data portion of the message was sent from a
buffer and was just received in a buffer.

However, the second send in the previous section also included some "parameters"
that were actually delivered to the receiver on each of the last three receives. You
can verify this by printing the last 20 characters of the target string returned by
the last receive call:

4100
! PRINT PARAMETER AREA OF SECOND MESSAGE FOR VERIFICATION

4110 PRINT "PARAMETER AREA ";RIGHT(X$,20%)

The example ends with a remove receiver call and a close of the channel buffer
used to receive messages:

5000
! REMOVE RECEIVER EXAMPLE

5200 X$ = SYS(CHR$(6%)+CHR$(22%)+CHR$(0%)+CHR$(0%»
6000
6010
32767

CLOSE 2%
END

9.8.4 Summary of Data Values

Figure 9-1 swnmarizes the data passed and returned in the send/receive calls.

System Calls for Local Interjob Communication 9-25

co
I
I\)
m

(f)
'<

(J)

(j)
3
()
~
'fi)

Q
r o
~
~
(j)
~.
CT
()
o
3
3
c
~ o·
a
c5"
~

SEND LOCAL DATA
(Irombv!1Il')

SEND LOCAL DATA
(lfomslril1g)

SEND LOCAl DATA
(from bv!1ef)

SEND LOCAL DATA
(Irom!lring)

SEND LOCAl DATA WITH
PRlVlLEGES (Irom buller)

SEND LOCAL DATA WITH
PRIVILEGES (I",,,, ~1rin91

SEND LOCAl DATA wrrn
PRIVILEGES (Iromhullen

SEND LOCAL DATA WITH
PAIVILEGES (rrom b<JUer)

REMOVE AECEIVER

DEClARE RECEIVER

REcewe

RECEIVE

LOCAL DATA
RETUnNED ON RECEIVE

I ' I 2 I ' I • I ' I 6 I 7 I ' I 9 I " I " I " I " I " I " I " I " 1 " I " I 20 I " I 22 I 2J I " I 25 I " I 27 I " I ,. I '" I " I " I 33 I " I " I 36 I " I " I 39 I " I 4" I
6 22 ., O,J RECEIVERS LOGICAL NAME C 0 LENGTH I OFFSET 0 0 0 0 USER-DEFINED PARAMETERS IPS)

6 22 ., 0) RECEJVER"S LOGICAL NAME 0 0 RESERVED 0 0 0 0 USER-DEFINED PARAMETERS (PS) (D$r I
6 22 ., J 01010101010 c 0 LENGTH I OFFSET 0 0 0 0 USER-DEFINED PARAMETERS WS)

6 22 ., J oLOJO[O[OIO 0 0 RESERVED 0 0 0 0 USER-DEFINED PARAMETERS (PS) 10'11

6 22 ·n O,J RECEIVERS LOGICAL NAME C 0 LENGTH I OFFSET 0 0 0 0 RESERVED USER-OEFINED PARAMETERS (PS)

6 22 ." O,J RECEIVER'S LOGICAL NAME 0 0 RESERVED 0 0 0 0 RESERVED USER-oEFINEO PARAMETERS (PS) 10SII
6 22 ·n J 01010101010 c 0 LENGTH I OFFSET 0 0 0 0 RESERVED USER-DEFINED PARAMETERS (PS)

6 22 ·n J 01010101010 0 0 RESERVED 0 0 0 0 RESERVED USER--oEF'NEO PARAMETERS (PS) 10'11

6 22 0 O,J 01010101010 0 0 RESERVeD 0 0 0 0 RESERVED RIB 0," I RESERVED

, 22 , 0 RECEIVER'S LOGICAL NAME 0 0 RESERVED 0 0 0 0 .g,Bp'EI~cCEssl BMAX IMMAXILMAX I PKT MAX lOMAX I POTA I RESERVED .. , RIB RESERVED

6 22 2 MOO S~rtIJJkLI RESERVED C 0 LENGTH I OFfSET 0 0 0 0 RESERVED I SLEEP TIMER I RESERVED RIB RESERVED

6 22 2 MOO srJelJJkd RESERVED 0 0 RESERVED 0 0 0 0 RESERVED I SLEEP TIMER I RESERVED RIB RESERVED

RESERVED ., J PPN I KB I RES I RE~Xli~TNG RESERVED LENGTH I RESERVED I PS '" USER-OEfINEO PARAMETERS

RESERVED I -11 I J I PPN I KB I RES I RE~1.~~G I RESERVED I LENGTH I RESERveD PRIVilEGE MASK I PS ,., USER-DEFINED PARAMETERS
--- -------

MK-00038-1l1

II
cO'
t:
~
I.D
I

(J)
c::
:3
3
ru

.:c!
o -CJ)
(j)
:l
a.
il
(j)
o
<D
<'
(j)

c
ru -ru

Chapter 10

Communicating with Print/Batch and
Operator/Message Services

This chapter describes the PrintlBatch Services (PBS) and Operator/Message
Services (OMS) packages. User programs can communicate with PBS and OMS
using the send/receive system function call (SYS 22). This allows application
programs to issue commands directly to PBS and OMS.

Application programs can issue PRINT and BATCH commands, as well as most
of the operator related commands available through DCL.

If you are unfamiliar with sending and receiving messages, see Chapter 9,
System Calls for Local Interjob Communication.

10.1 Sending a Request Packet

An application issues a command by creating a request packet and sending it
to PBS or OMS using the send with privileges subfunction of the send/receive
system call.

10.2 Confirming a User Request

An application often needs to know whether a request was accepted or rejected,
and what error (if any) caused the request to be rejected. Request packets allow
an application to include the name of the receiver of the completion status
message. Mter the request has been processed, status information returns to the
designated receiver. If an application does not need confirmation of its request, it
can omit the receiver name from the request.

If the command to be processed requires a response (such as the REQUEST
/REPLY command), then the application must supply a receiver name that will
receive the response.

10.2.1 Declaring a Receiver for Confirmation

In order to declare a receiver for confirmation, the user's job must have either a
nonzero message quota or the EXQTA privilege. There are no other restrictions
for being able to receive a confirmation message.

Communicating with Print/Batch and Operator/Message Services 10-1

The following example establishes a local receiver to be used for the confirmation
message.

1000
1010
1020

J%
J$
S$

ASCII (SYS (CHR$ (6%) + CHR$(26%))
RIGHT(NUM1$(100% + J%), 2%)
SYS(CHR$(6%) + CHR$(22%) +

CHR$(l%) + CHR$(O%) +
"USER" + J$ +
STRING$(10%, 0%) +
CHR$(O%) + CHR$(l%) +
CVT%$(O%) + CHR$(5%))

Get the user's job *
Make it 2 digits, ASCII
Message Send/Receive &

declare receiver &
name is USERnn &
reserved fields &
local, priv'd senders &
up to 5 pending messages

10.3 Request Packets

Use the send/receive system can to send request packets. Since most requests
require privileges, the Send Local Data Message with Privilege Mask subfunction
must be used. The system call sends the request according to local object type to
the PBS or OMS receiver. The local object type for PBS is 5, the local object type
for OMS is 11.

The message parameter portion of the system call contains the type of request,
the receiver ID to be used for confirmation, and a context value to be sent with
the confirmation message.

The data portion of the message contains the command qualifiers and command
parameters of the request. For example, the REQUEST command allows the
I[NO]REPLY qualifier, and has a command parameter that is the actual text of
the REQUEST.

10.3.1 Sending an Operator Request Packet

You can perform the actual send operation in a number of ways. See Chapter 9
for more information.

The following example shows one method of sending a request packet. The
example assumes that the message parameter and data fields have already been
set up.

15000

15010

15020

Subroutine to send a request packet
&

&

Inputs: P$ - The 12-byte message parameter string &
0$ - The message data string (Up to 512 bytes) &
LOT% - Local object to send to (PBS=5, OMS=ll) &

! &
Errors: Any errors possible with message send/receive: &

?No room (4), ?Can't find (5) and ?No bufs (32) &
should be the only ones in this case. &

S$ SYS (CHR$ (6%) + CHR$(22%) +
CHR$ (-11%) +
CHR$(128% + LOT%) +
STRING$(24%, 0%) +
P$ +
0$)

RETURN

Message send/receive &
Send w/priv mask &
Local object type &
Skip to parameters &
Parameter fields &
Data fields

10-2 Communicating with Print/Batch and Operator/Message Services

Table 10-1 describes the layout of the message parameter area when sending a
request packet.

Table 10-1: M(?ssage Parameter Area on Send

Bytes

1

2

3-8

9-10

11-12

Meaning

Command to execute.

Reserved; should be o.
The receiver ID for confirmation. The receiver name is a one- to six-character
ASCII string containing the name of the receiver to which the confirmation
message will be sent. It is leftrjustified and padded to six characters with
spaces. If the first byte is a null, CHR$(O%), then no confirmation message is
returned.

The confirmation message indicates that the request was accepted or rejected.
If the request was rejected, an error code indicating why the request was re
jected, and the field code that caused the error will be returned. See Table 10-7
for a list of error codes.

The confirmation context value. This value will be returned to the requesting
job, allowing it to match a confirmation message with the request message that
was sent. This is useful when an application makes several requests and needs
a separate confirmation for each. In such cases, you should assign a unique
context value to each request so that your program can properly match the
confirmation message with its request. If a confirmation message is not been
requested, then this field is ignored.

Reserved; should be o.

There are only two PRINTIBATCH command values, given in Table 10-2.

Table 10-2: Print/Batch Command Values

Code

1

2

Command

PRINT

SUBMIT

Table 10--3 summarizes the operator command values, in ascending order of code
number.

Table 10-3: Operator Command Values

Code

o
1

2

3

4

Command

NOP (for debugging)

REPLY

REQUEST

SET OPERATOR_SERVICES

STOP/OPERATOR_SERVICES

Communicating with Print/Batch and Operator/Message Services 10-3

10.4 PRINT/BATCH Command Values

The section lists the PrintlBatch commands in order of their command values.

10.4.1 The PRINT command

This command lets an application issue a PRINT command.

10.4.2 The SUBMIT command

This command lets an application issue a SUBMIT command.

10.5 Operator Command Values

This section lists the operator commands in the order of their command values.

10.5.1 The NOP command

The only action taken by the NOP (No OPeration) command is to return a
confirmation message if one was requested.

Use this command when debugging a program to see if it is succesfully sending
messages to OMS. You can also use it to find out if the OMS package has been
started.

10.5.2 The REPLY c()mmand

This command lets an application reply to a request that is currently outstanding.
It also lets an application reply to its own request. An application could reply to
its own request for several reasons:

• If it decided it could not wait any longer for a reply (REPLY/ABORT)

• To send additional information to the operator (REPLYIPENDING)

• To indicate that the request is no longer needed (REPLY/ANSWER)

10.5.3 The REQUEST command

This command lets an application issue a REQUEST command. If the request
requires a reply, then the parameter portion of the message must specify a
confirmation receiver.

10-4 Communicating with Print/Batch and Operator/Message Services

10.5.4 The SET OPERATOR_SERVICES command

This command lets an application change the current settings of the OMS
package.

10.5.5 The STOP/OPERATOR_SERVICES command

This command lets an application program shutdown the OMS package. The
SHUTUP program includes a phase to do this during normal system shutdown.

10.5.6 The DELETE/REQUEST command

This command lets an application program cause OMS to remove a request from
the OMS work file. It is similar to the DELETEIREQUEST command from DCL,
except that it must specify the sequence number of the request and may delete
only one request with each command.

Pending requests (requests that are still waiting for a reply) cannot be deleted
until they are answered or aborted.

10.6 Data Fields

This section describes each of the data fields that you can include in a request
packet. These fields are passed in the data buffer area of the message, beginning
at byte 41. Alternately, an I/O channel buffer may be used to store the data
buffer. See Chapter 8 for more information.

Most of the fields described in this section correspond to a command qualifier, or
command parameter in the corresponding DCL command.

Each field in the data buffer field consists of a l-byte field code followed by one or
more data bytes for the field and must begin on an odd byte. The most common
mistake made when setting up the data buffer is forgetting to align each field to
begin on an odd byte. Fields that use word or double-word values require that
the value starts on an odd byte.

Some fields have a fixed length while others include text strings and are variable
in length. Variable length strings always consist of a length byte followed
immediately by the characters of the string. These are commonly called "counted
ASCII" strings. The length byte of a counted ASCII string does not count itself
in its value; it counts only the number of characters that follow. If the length of
a counted ASCII string is odd, be sure to add a pad character so the next field
begins on a word boundary.

Normally, the individual fields that make up a request packet are stored one after
the other in the data buffer. You can leave some room between fields by filling in
the unused part of the data buffer with nulls. In some cases, this may make it
easier to deal with variable-length fields.

Most of the fields can only be specified once in a request packet. When such a
field is specified more than once, only the last copy of the field win be used.

Communicating with Print/Batch and Operator/Message Services 10-5

10.7 Print/Batch Data Field Values

Table 10-1 summarizes the printJbatch request data fields, in ascending order of
code number. The remainder of this section describes each data field in detail.

Table 10-4: User Request Data Fields

Code Field Request Type

1 /NAME Any

2 IQUEUE Any

3 IOWNER Any

4 !PRIORITY Any

5 IJOB_COUNT Print

6 !FORMS Print

7 IAFTER Any

8 !PAGE_LIMIT Print

9 ICPU_LIMIT Batch

10 !TIME_LIMIT Batch

11 !PARAMETERS Batch

12 I[NO]HOLD Any

13 I[NO]LOG_FILE Flag Batch

14 /LOG_FILE File Specification Batch

15 I[NO]LOG_QUEUE Flag Batch

16 /LOG_QUEUE Name Batch

17 /LOG_DELETE Flag Batch

18 I[NO]NOTIFY Flag Any

128 ASCII File Specification Any

129 Binary File Specification Any

130 I[NO]CONVERT Flag Print

131 ICOPIES Print

132 I[NO]DELETE Flag Any

133 I[NO]FEED Flag Print

134 I[NO]FLAG_PAGES Flag Print

135 I[NO]TRUNCATE Flag Print

136 I[NO]WRAP Fl~g Print

You can use one of two fields to specify a file:

• The ASCII File Specification Field. This variable-length field contains the
name of a RSTSIE file specification as a counted ASCII string.

• The Binary File Specification Field. This fixed-length field contains a RSTSIE
file specification in binary format, similar to that returned by the File Name
String Scan SYS call (SYS -10).

You must include at least one of these two file specification fields in a User
Request Packet. There can be multiple occurrences of either or both file specifica
tion fields; all other fields in the packet are optional. The field descriptions that
follow discuss the default values assigned to such fields.

10-6 Communicating with Print/Batch and Operator/Message Services

/

(

\

Some fields represent file qualifier fields, and are used in conjunction with a file
specification field to provide additional information about the file. For example,
the ICOPIES field indicates the number of file copies to print.

Like file specification fields, you can specify more than one file qualifiE'r field.
Generally, you place each file qualifier field right after its file specification field.
However, you can specify a file qualifier field only once and have it apply to all
file specification fields in the request. PBS interprets file qualifier fields according
to these rules:

• If a file qualifier field appears after a file specification field in the data buffer,
then it applies only to the last file specification field that precedes it.

• If a file qualifier field precedes all file specification fields in the data buffer,
then it applies to all file specification fields in the buffer. This action
corresponds to the standard DCL rules for file qualifiers. For example, if a
ICOPIES field with the value 2 precedes all file specification fields, then PBS
prints two copies of each file in the packet. You can override this global file
qualifier for a single file specification field by placing a second file qualifier
field after it.

• If a file qualifier field does not appear anywhere in a request packet, then
PBS assigns a default value .. For example, if a data buffer includes no
ICOPIES field, then PBS prints one copy of each file in the request.

The following fields represent file qualifier fields:

• I[NO]CONVERT Flag field

• ICOPIES field

• ![NO]DELETE Flag field

• I[NO]FEED Flag field

• I[NO]FLAG_PAGES Flag field

• I[NO]TRUNCATE Flag field

Only file specification fields and file qualifier fields can occur more than once in
a user request packet. If PBS encounters any other field more than once, it uses
only the value of the last copy of a duplicate field.

The data buffer that you pass with a user request can be up to 512 bytes long.
PBS converts a valid user request packet into a queue entry packet and places
the entry in the queue file. The maximum length of an entry packet is also 512
bytes. It is possible for a user request to generate an entry packet that is larger
than 512 bytes. In such cases, PBS rejects the user request packet. The following
fields can affect the size of the internal entry packet:

• ASCII file specification field

• Binary file specification field

• !PARAMETERS field

Generally, you can prevent an overflow condition by reducing the number of file
specification fields or reducing the length of the !PARAMETERS field in a User
Request Packet.

Do not include duplicate !PARAMETERS fields in a request because PBS
attempts to allocate space for each occurrence, even though it only uses the
rightmost occurrence of the field. As a result, an overflow condition can occur.

Communicating with Print/Batch and Operator/Message Services 10-7

Each field described in this section corresponds to a command qualifier, file
qualifier, or command parameter in the DCL PRINT and SUBMIT commands.
See the RSTS / E System Manager's Guide for a complete description of the rules
governing the use of the fields.

Table 10-4 summarizes the user request data fields, in ascending order of code
number. The remainder of this section describes each data field in detail.

/NAME Field

This field specifies the name of the entry to be placed in the queue, and corre
sponds to the entry name specified in the PRINT and SUBMIT commands. If
you omit this field or specify a length of 0, PBS uses the file name of the first file
specification field that represents a valid entry name. Since entry names cannot
consist exclusively of numeric characters, PBS uses the name PRINT or BATCH
if it encounters all numeric file names in the request. PBS truncates all names to
nine characters.

The format of the /NAME field is:

Byte Specification

1 CHR$(l%)

2 CHR$(N%), where N% is the length of the name string.

3+ N$, the entry name.

Since this field is a variable-length field, be sure to add an extra null byte ifthe
length of the text is odd, so that the next field starts on an odd byte.

/QUEUE Field

This field specifies the name of the queue on which PBS is to place the request,
and corresponds to the queue name specified in a PRINT and SUBMIT com
mands. If you omit this field or specify a length of 0, PBS places the request on
the default queue of the same type (print or batch).

The format of the IQUEUE field is:

Byte Specification

1 CHR$(2%)

2 CHR$(N%), where N% is the length ofthe name string

3+ N$, the queue name

Since this field is a variable-length field, be sure to add an extra null byte if the
length of the text is odd, so that the next field starts on an odd byte.

10-8 Communicating with Print/Batch and Operator/Message Services

fOWNER Field

This field specifies the PPN for the owner of the request, and corresponds to the
fOWNER qualifier of the PRINT and SUBMIT commands. If you omit this field,
the packet sender becomes the owner by default. If the PPN specified is [0,0] or
is the same as the sender's, PBS ignores this field.

You need the GACNT privilege to specify a different PPN within the group, and
WACNT privilege to specify any PPN. Note that when you specify fOWNER with
a PPN other than your own, PBS bases all access rights and privileges for the
request on the authorized privileges of that owner's account.

The format of the fOWNER field is:

Byte Specification

1 CHR$(3%)

2 CHR$(O%)

3 Programmer number

4 Project number

fPRIORITY Field

This field defines the priority of the request, and corresponds to the !PRIORITY
qualifier of the PRINT and SUBMIT commands. If you omit this field or specify
a value of 0, PBS uses the default priority for the queue on which the request is
placed. Unless the caller has EXQTA privilege, the priority value cannot exceed
the maximum priority defined for the request's queue.

The format of the !PRIORITY field is:

Byte Specification

1 CHR$(4%)

2 CHR$(N%), where N% is the priority

fJOB_COUNT Field

This field applies to print requests only. It specifies the number of job copies to be
printed, and corresponds to the fJOB_COUNT qualifier of the PRINT command.
If you omit this field or specify the value 0, PBS assumes a job count of 1. PBS
permits any value in the range 1 to 255.

The format of the fJOB_COUNT field is:

Byte Specification

1 CHR$(5%)

2 CHR$(N%), where N% is the job count

Communicating with Print/Batch and Operator/Message Services 10-9

IFORMS Field

This field applies to print requests only. It identifies the forms required for the
print job, and corresponds to the /FORMS qualifier of the PRINT command. If
you omit this field or specify a length of 0, PBS uses the default form name
for the queue on which the request is placed. PBS truncates all names to nine
characters.

Note that PBS does not verify that the specified form name exists in the Forms
Definition file.

The format of the !FORMS field is:

Byte Specification

1 CHR$(6%)

2 CHR$(N%), where N% is the length ofthe form name string

3+ N$, the form name

Since this field is a variable-length field, be sure to add an extra null byte ifthe
length of the text is odd, so that the next field starts on an odd byte.

I AFTER Field

This field specifies a date and time before which PBS will not process the request,
and corresponds to the IAFTER qualifier of the PRINT and SUBMIT commands.
If you omit this field, PBS processes the request as soon as possible. The IAFTER
DatelTime field consists of a standard RSTSIE date word and a standard RSTSIE
time word. If the date word is 0, PBS uses the current system date. If the time
word is 0, PBS uses the time 11:59 PM (end-of-day). An error results if the values
you specify do not represent a valid date or time.

The format of the IAFTER field is:

Byte Specification

1 CHR$(7%)

2 CHR$(O%)

3-4 CHR$(D%) + CHR$(SWAP%(D%», where D% is the after date word

5-6 CHR$(T%) + CHR$(SWAP%(T%», where T% is the after time word

IPAGE_UMIT Field

This field applies to print requests only. It defines the maximum number of pages
that PBS prints in the requested print job, and corresponds to the !PAGE_LIMIT
qualifier of the PRINT command. If you omit this field or specify a value of 0,
PBS uses the default page limit of the request's queue. Unless the caller has
EXQTA privilege, an error results if this value exceeds the maximum page limit
of the request's queue.

The double-word value -1 instructs PBS to impose no page limit on the requested
print job, and is similar to the !PAGE_LIMIT=UNLIMITED qualifier. An error
results if the request's queue does not have its maximum page limit set to
UNLIMITED.

10-10 Communicating with Print/Batch and Operator/Message Services

The format of the !PAGE_LIMIT field is:

Byte Specification

1 CHR$(8%)

2 CHR$(O%)

3-4 CHR$(P%) + CHR$(SWAP%(P%», where P% is the least significant word of the
page limit

5-6 CHR$(P%) + CHR$(SWAP%(P%», where P% is the most significant word of the
page limit

ICPU_LlMIT Field

This field applies to batch requests only. It defines a CPU limit for the requested
batch job, and corresponds to the /CPU_LIMIT qualifier of the SUBMIT com
mand. If you omit this field or specify a value of 0, PBS uses the default CPU
limit of the request's queue. Unless the caller has EXQTA privilege, an error
results if this value exceeds the maximum CPU limit of the request's queue.

The double-word value -1 instructs PBS to impose no CPU limit on the requested
batch job, and is similar to the /CPU_LIMIT=UNLIMITED qualifier. An error
results if the request's queue does not have its maximum CPU limit set to
UNLIMITED.

The format of the /CPU_LIMIT field is:

Byte Specification

1 CHR$(9%)

2 CHR$(O%)

3-4 CHR$(C%) + CHR$(SWAP%(C%», where C% is the CPU limit

ITIME_LlMIT Field

This field applies to batch requests only. It defines an elapsed time limit for the
requested job, and corresponds to the /TIME_LIMIT qualifier of the SUBMIT
command. If you omit this field or specify a value of 0, PBS uses the default time
limit of the request's queue. Unless the caller has EXQTA privilege, an error
results if this value exceeds the maximum time limit defined for the request's
queue.

The value -1 instructs PBS to impose no time limit on the requested batch job,
and is similar to the ITIME_LIMIT=UNLIMITED qualifier. An error results if
the request's queue does not have its maximum time limit set to UNLIMITED.

The format of the /TIME_LIMIT field is:

Byte Specification

1 CHR$(lO%)

2 CHR$(O%)

3-4 CHR$(T%) + CHR$(SWAP%(T%», where T% is the time limit

Communicating with Print/Batch and Operator/Message Services 10-11

IPARAMETERS Field

This field applies to batch requests only. It contains a string of parameters to be
passed to the batch job when it starts, and corresponds to the !PARAMETERS
qualifier of the SUBMIT command. You can specify up to eight paramet.ers,
separated by one or more spaces or tabs (not commas). PBS accepts only printable
characters in the !PARAMETERS string; PBS strips all nonprintable characters
from the string. Also, you must place quotes around any individual parameter
that includes embedded spaces or tabs. If you omit this field or specify a length of
0, PBS passes no parameters to the batch job.

The fonnat of the !PARAMETERS field is:

Byte Specification

1 CHR$(l1%)

2 CHR$(N%), where N% is the length of the parameter string

3+ P$, the parameter string

Since this field is a variable-length field, be sure to add an extra null byte if the
length of the text is odd, so that the next field starts on an odd byte.

I[NO]HOlD Flag Field

This field consists of a flag byte that determines whether PBS initially puts the
request on hold. PBS does not process an entry on hold until you release it with
the SET ENTRYIRELEASE command. This field corresponds to the I[NO]HOLD
qualifier of the PRINT and SUBMIT commands.

If you omit this field or specify a value of 0, PBS does not put the request on hold.
If the flag byte is nonzero, PBS puts the request on hold.

The fonnat of the I[NO]HOLD field is:

Byte Specification

1 CHR$(12%)

2 CHR$(N%), where N% is the flag byte. Values are:
0% No hold (the default)

1% Hold

I[NO]lOG_FllE Flag Field

This field applies to batch requests only. It consists of a flag byte that deter
mines whether PBS creates a log file for the batch job, and corresponds to the
I[NO]LOG_FILE qualifier of the SUBMIT command.

Generally, you include this field to disable logging, since, by default, PBS always
creates a log file. If you omit this field or if the flag byte is nonzero, PBS creates
a log file at the start of the batch job. If you also include a /LOG_FILE File
Specification field, PBS uses that file specification as the log file name.

If the flag byte is ° and you include a /LOG_FILE File Specification field, PBS use
the rightmost rule to resolve the conflicting fields. That is, PBS ignores the first
field and determines whether to create a log file based only on the second field.

10-12 Communicating with Print/Batch and Operator/Message Services

The format of the /[NO]LOG_FILE Flag field is:

Byte Specification

1 CHR$(13%)

2 CHR$(N%), where N% is the flag byte. Values are:
0% No log file

1 % Log file (the default)

fLOG_FILE File Specification Field

This field applies to batch requests only. It specifies the log file that PBS uses
for batch processing, and corresponds to the /LOG_FILE=file-spec qualifier of the
SUBMIT command.

If you omit this field or specify a length of 0 (and you do not specify a value of 0 in
the LOG_FILE Flag field), PBS creates a default log file specification. Generally,
you use this field to specify a log file other than the default, since the /LOG_FILE
Flag field creates the default log file-spec.

If you specify this field and also specify a value of ° in the /LOG_FILE Flag field,
PBS use the rightmost rule to resolve the conflicting fields. That is, PBS ignores
the first field and determines whether to create a log file based only on the second
field.

This field contains a single RSTSIE file specification (dev:[PPN]filnam.typ) as a
counted ASCII string. If you do not specify a device, PBS assumes _SY:. If you
omit the PPN, PBS assumes the sender's PPN. You must specify a file name. If
you omit the file type, then PBS appends the file type .LOG.

The format of the /LOG_FILE field is:

Byte Specification

1 CHR$(14%)

2 CHR$(N%), where N% is the length of the log file specification

3+ L$, the log file specification

Since this field is a variable-length field, be sure to add an extra null byte if the
length of the text is odd, so that the next field starts on an odd byte.

f[NO]LOG_QUEUE Flag Field

This field applies to batch requests only. It consists of a flag byte that determines
whether PBS queues the batch job's log file for printing when the job completes,
and corresponds to the /[NO]LOG_QUEUE qualifier of the SUBMIT command.

If you omit this field or specify a flag byte of 0, PBS does not queue for printing
any log file created for the batch job. If the flag byte is nonzero, PBS queues the
log file for printing on the default queue when the batch job completes. If you
also include a /LOG_QUEUE Name field, PBS uses that file specification as the
queue name.

The /LOG_QUEUE Name field also affects whether PBS queues any log file for
printing. If you specify a flag byte value of ° and you include a /LOG_QUEUE
Name field, PBS use the rightmost rule to resolve the conflicting fields. That is,
PBS ignores the first field and determines whether to create a log file based only
on the second field.

PBS ignores this field if you disable logging by using a /[NO]LOG_FILE Flag field
with a 0 value in its flag byte.

Communicating with PrinVBatch and Operator/Message Services 10-13

The format of the /LOG_QUEUE Flag field is:

Byte Specification

1 CHR$(15%)

2 CHR$(N%), where N% is the flag byte. Values are:

0% No log queue (the default)

1% Log queue

Since this field is a variable-length field, be sure to add an extra null byte if the
length of the text is odd, so that the next field starts on an odd byte.

flOG_QUEUE Name Field

This field applies to batch requests only. It defines the queue on which PBS
places the log file print request after it completes the batch job, and corresponds
to the /LOG_QUEUE=queue-name qualifier of the SUBMIT command.

PBS ignores this field if you disable logging by using a I[NO]LOG_FILE Flag field
with a 0 value in its flag byte.

If you omit this field or specify a length of ° (and you also specify a nonzero value
in the /LOG_QUEUE field), PBS places the log file print request on the default
print queue.

Generally, you include this field to specify a queue other than the default print
queue for PBS to place the log file print request. If you want to place the request
on the default print queue, use the /LOG_QUEUE Flag field instead.

The /LOG_QUEUE Flag field also affects whether PBS queues any log file for
printing. If you omit the /LOG_QUEUE Flag field or specify a flag value ofO, and
you include a /LOG_QUEUE Name field, PBS use the rightmost rule to resolve
the conflicting fields. That is, PBS ignores the first field and determines whether
to create a log file based only on the second field.

The format of the /LOG_QUEUE Name field is:

Byte Specification

1 CHR$(16%)

2 CHR$(N%), where N% is the length ofthe log file queue name

3+ L$, the log file queue name

Since this field is a variable-length field, be sure to add an extra null byte if the
length of the text is odd, so that the next field starts on an odd byte.

f[NO]LOG_DElETE Flag Field

This field applies to batch requests only. It consists of a flag byte that determines
whether PBS deletes the log file after it is printed, and corresponds to the
I[NO]LOG_DELETE qualifier of the SUBMIT command.

PBS ignores this field unless you queue a log file for printing by using the
I[NO]LOG_QUEUE Flag field and /LOG_QUEUE Name field.

If you omit this field or specify a flag byte of 0, PBS does not delete the log file
after printing. If the flag byte is nonzero, PBS deletes the log file after printing.

10-14 Communicating with Print/Batch and Operator/Message Services

The format of the I[NO]LOG_DELETE Flag field is:

Byte Specification

1 CHR$(17%)

2 CHR$(N%), where N% is the flag byte. Values are:
0% No log delete (the default)

1 % Log delete

I[NO]NOTIFY Field

This field consists of a flag byte that determines whether PBS broadcasts a
message to any terminal where the user is logged in, giving notification that
a print or batch job has been completed or aborted. This corresponds to the
I[NO]NOTIFY qualifier of the PRINT and SUBMIT commands.

If you omit this field or specify a value of 0, PBS does not send out a notification.
If the flag byte is nonzero, PBS does send a notification.

The format of the I[NO]NOTIFY field is:

Byte Specification

1 CHR$(12%)

2 CHR$(N%), where N% is the flag byte. Values are:

0% No notify (the default)

1% Notify

ASCII File Specification Field

This field contains the name of a file to be printed (print requests) or a command
file to be processed (batch requests), and corresponds to the file specification
parameter of the PRINT and SUBMIT commands.

This field contains a single RSTS/E file specification (dev:[PPN]filnam.typ) as a
counted ASCII string. If you do not specify a device, PBS assumes _SY:. If you
omit the PPN, PBS assumes the caller's PPN. You must specify a file name. If
you omit the file type, then PBS appends the .LST file type for print requests or
the .COM file type for batch requests. The PPN, file name, and file type fields can
contain wildcard characters.

You must define at least one ASCII or Binary File Specification field jn a user
request packet. One request packet can contain several of these fields.

Note that PBS does not verify the existence of any files matching the field's file
specification.

Communicating with PrintiBatch and Operator/Message Services 10-15

The format of the ASCII File Specification field is:

Byte Specification

1 CHR$(128%)

2 CHR$(N%), where N% is the length of the ASCII file specification

3+ F$, ASCII file specification

Since this field is a variable-length field, be sure to add an extra null byte if the
length of the text is odd, so that the next field starts on an odd byte.

Binary File Specification Field

This field contains, in binary format, the file specification to be printed (print
requests) or the command file to be processed (batch requests), and corresponds
to the file specification parameter of the PRINT and SUBMIT commands.

Unlike the ASCII File Specification field, this field is fixed length. Its format
corresponds closely to that of the data string returned by the File Name String
Scan SYS call (SYS -10) for a file specification. In most cases, your program can
simply copy fields from the data string to the Binary File Specification field in the
packet buffer.

The Binary File Specification field contains a single RSTSIE file specification
(dev:[PPN]filnam.typ). If the device part is null, PBS assumes _SY:. If the PPN
part is null, PBS assumes the caller's PPN. The file name cannot be null. The
PPN, file name, and file type fields can contain wildcard characters.

You must define at least one ASCII or Binary File Specification field in a user
request packet. One request packet can contain several of these fields.

Note that PBS does not verify the existence of any files matching the field's file
specification.

The format of the binary file specification field is:

Byte Specification

1 CHR$(129%)

2 CHR$(O%)

3 Programmer number

4 Project number

5-8 File name in Radix-50 format

9-10 File type in Radix-50 format

11-12 Disk device name

13 Device unit number

14 Unit number real flag

10-16 Communicating with Print/Batch and Operator/Message Services

I[NO]CONVERT Flag Field

This field applies to print requests only. It consists of a flag byte that deter
mines whether PBS converts aU 0 (zero) characters to 0 ("oh") characters, and
corresponds to the I[NO]CONVERT qualifier of the PRINT command.

If the flag byte is nonzero, PBS perfonns zero-to-oh conversion. If you omit this
field or specify a flag byte of 0, PBS does not perfonn a conversion.

The fonnat of the ![NO]CONVERT Flag field is:

Byte Specification

1 CHR$(130%)

2 CHR$(N%), where N% is the flag byte. Values are:
0% Do not convert (the default)

1% Convert

ICOPIES Field

This field applies to print requests only. It indicates the number of file copies to
print and corresponds to the ICOPIES file qualifier of the PRINT command.

If you omit this field or specify a value of 0, PBS prints one copy of each file. PBS
accepts any value in the range 1 to 255.

The fonnat of the ICOPIES field is:

Byte Specification

1 CHR$(113%)

2 CHR$(N%), where N% is the number of copies

I[NO]DELETE Flag Field

This field consists of a flag byte that determines whether PBS deletes the file
after printing or execution, and corresponds to the /DELETE qualifier of the
PRINT and SUBMIT commands.

If the flag byte is nonzero, PBS deletes the file. If you omit this field or specify a
flag byte of 0, PBS does not delete the file.

The fonnat of the ![NO]DELETE Flag field is:

Byte Specification

1 CHR$(132%)

2 CHR$(N%), where N% is the flag byte. Values are:
0% Do not delete (the default)

1% Delete

Communicating with Print/Batch and Operator/Message Services 10-17

I[NO]FEED Flag Field

This field applies to print requests only. It consists of a flag byte that determines
whether PBS performs a form-feed whenever printing reaches six lines from the
bottom of the page, and corresponds to the /FEED file qualifier of t.he PRINT
command.

If the flag byte is nonzero or you omit this field, PBS performs the form-feed. If
the flag byte is 0, PBS performs no form-feed.

The format of the I[NO]FEED Flag field is:

Byte Specification

1 CHR$(133%)

2 CHR$(N%), where N% is the flag byte. Values are:
0% No feed

1 % Feed (the default)

I[NO]FLAG_PAGES Flag Field

This field applies to print requests only. It consists of a flag byte that deter
mines whether PBS prints flag pages at the beginning of each file listing, and
corresponds to the I[NO]FLAG_PAGES file qualifier of the PRINT command.

If the flag byte is nonzero, or you omit this field, PBS prints flag pages based on
the setting of the request's form. If the flag byte is 0, PBS prints no flag pages.

The format of the I[NO]FLAG_PAGES Flag field is:

Byte Specification

1 CHR$(134%)

2 CHR$(N%), where N% is the flag byte. Values are:
0% No flag pages

1 % Flag pages (the default)

I[NO]TRUNCATE Flag Field

This field applies to print requests only. It consists of a flag byte that determines
whether PBS truncates lines that exceed the width of the request's form, and
corresponds to the I[NO]TRUNCATE file qualifier of the PRINT command.

If the flag byte is nonzero, PBS truncates lines. If the flag byte is 0 or you omit
this field, PBS does not truncate lines.

The format of the I[NO]TRUNCATE Flag field is:

Byte Specification

1 CHR$(135%)

2 CHR$(N%), where N% is the flag byte. Values are:
0% No truncate (the default)

1% Truncate

10-18 Communicating with Print/Batch and Operator/Message Services

I[NO]WRAP Flag Field

This field applies to print requests only. It consists of a flag byte that determines
whether PBS wraps the excess portion of lines onto the next line when they
exceed the width of the request's form. This field corresponds to the I[NO]WRAP
qualifier of the print command.

If the flag byte is nonzero or you omit this field, PBS wraps untruncated lines. If
the flag byte is 0, PBS does not wrap the lines and continues to send characters
to the device.

The I[NO]TRUNCATE field has precedence over this field. That is, if you specify
!TRUNCATE, the excess portion of the line is truncated, regardless of the /WRAP
setting.

The format of the I[NO]WRAP Flag field is:

Byte Specification

1 CHR$(136%)

2 CHR$(N%), where N% is the flag byte. Values are:
0% No wrap

1 % Wrap (the default)

10.8 Operator Data Field Values

Table 10-5 summarizes the operator request data fields, in ascending order for
each command value. The remainder of this section describes each data field in
detail.

Table 10-5: Operator Request Data Fields

Command Field Name

NOP (0) None

REPLY (1) 1 Reply Text

2 Request ID

REQUEST (2) 1 Request Text

3 ![NO]REPLY

4 !FACILITY

SET OPERATOR_SERVICES (3) 5 !KEEP

STOP/OPERATOR_SERVICES (4) 6 I[NO]ABORT

10.9 NOP Command Data Fields

The NOP command does not have any data fields associated with it. The data
portion of the message should not be used.

10.10 REPLY Command Data Fields

This section lists the data fields for the REPLY command.

Communicating with PrinVBatch and Operator/Message Services 10-19

10.10.1 Reply Text Field

This field specifies the text of a reply, and corresponds to the reply-text parameter
of the REPLY command. If you omit this field, or specify a length of zero, no text
is sent to the originator of the request.

The format of the reply text field is:

Byte Specification

1 CHR$(l%)

2 CHR$(N%), where N% is the length of the reply text

3+ T$, the text of the reply

Since the text of a reply can be 500 bytes long and counted ASCII strings can
only be 255 bytes long, you can specify multiple text fields in the same request
packet. OMS concatenates these fields to make up the entire text of a reply.

Since this field is a variable-length field, be sure to add an extra null byte if the
length of the text is odd, so that the next field starts at an odd byte.

10.10.2 Request 10 Field

This field specifies the pending request that the reply is for, and how the request
should be answered. If you omit this field, OMS rejects the command with error
code 59, ?Not enough data in record.

This command can be sent by a job that has the OPER privilege enabled, or by
the job that made the request.

The format of the request ID field is:

Byte Specification

1 CHR$(2%)

2 CHR$(Q%), where Q% is the qualifier value. Values are:

1% /PENDING

2% IABORT

4% IANSWER or ITO

3-4 CHR$(N%) + CHR$(SWAP%(N%», where N% is the identification number of
the request that is to receive the reply

10.11 REQUEST Command Data Fields

This section lists the data fields for the REQUEST command.

10.11.1 Reply Text Field

This field specifies the text of a request and corresponds to the request text
parameter of the REQUEST command. If you omit this field, OMS rejects the
command with error code 59, ?Not enough data in record.

10-20 Communicating with Print/Batch and Operator/Message Services

The format of the request text field is:

Byte Specification

1 CHR$(l%)

2 CHR$(N%), where N% is the length of the request text

3+ T$, the text of the request

Since the text of a request can be 500 bytes long, and counted ASCII strings can
only be 255 bytes long, you can specify multiple text fields in the same command
packet. OMS concatenates these fields to make up the entire text of a request.

Since this field is a variable-length field, be sure to add an extra null byte if the
length of the text is odd, so that the next field starts at an odd byte.

10.11.2 I[NO]REPLY Field

This field consists of a :flag byte that tells OMS whether the application requires
a reply to the request, and corresponds to the I[NO]REPLY qualifier of the
REQUEST command.

If you omit this field, or the :flag byte is 0, then the request does not require a
reply. If the field is nonzero, then the request requires a reply, and you must
specify a valid receiver name in the parameter portion of the message so that
OMS can return a confirmation message and the operator's reply. 1

The format of the I[NO]REPLY field is:

Byte Specification

1 CHR$(3%)

2 CHR$(N%), where N% is the flag byte. Values are:

0% No reply is required (The default)

1 % A reply is required

10.11.3 IFACILITY Field

This field specifies the name of a facility to associate with a request. To use this
field, the operator request packet must be sent by a job that has SEND privilege.

The format of the /FACILITY field is:

Byte Specification

1 CHR$(4%)

2 CHR$(N%), where N% is the length ofthe facility name.

3+ N$, the facility name.

Since this field is a variable-length field, be sure to add an extra null byte if the
length of the text is odd, so that the next field starts at an odd byte.

1 An omitted or invalid receiver name cannot return an error because OMS does not know where to send the error
message.

Communicating with Print/Batch and Operator/Message Services 10-21

10.12 SET OPERATOR SERVICES Command Data Fields

This section lists the data fields for the SET OPERATOR_SERVICES command.

10.12.1 /KEEP Field

This field specifies the type of data to be kept in the OMS work file, and corre
sponds with the !KEEP qualifier of the SET OPERATOR_SERVICES command.
If you omit this field, OMS rejects the command with error code 59, ?Not enough
data in record.

If the value of the field is zero, then OMS only stores pending requests in the
work file. Once a pending request is answered, OMS deletes it from the work
file. If the value of the field is nonzero, it specifies the type of requests that OMS
keeps in the work file.

The format of the !KEEP field is:

Byte Specification

1 CHR$(5%)

2 Reserved, should be O.

3 CHR$(K%), where K% is the keep value. Values are:

0% No change

1 % Keep messages (IKEEP=MESSAGES)

2% Keep requests (IKEEP=REQUESTS)

3% Keep both messages and requests (IKEEP=ALL)

4 CHR$(N%), where N% is the "no" keep value. Values are:

0% No change

1% Do not keep messages (IKEEP=NOMESSAGES)

2% Do not keep requests (IKEEP=NOREQUESTS)

3% Do not keep messages nor requests (IKEEP=NONE)

Pending requests always stay in the work file until they have been answered. If
the "no" keep value is 2 or 3, then OMS deletes requests from the work file after
they have been answered.

10.13 STOP/OPERATOR SERVICES Command Data Fields

This section lists the data fields for the STOP/OPERATOR_SERVICES command.

10.13.1 /[NO]ABORT Field

This field specifies how OMS should handle pending requests while shutting down
the operator package. It consists of a flag byte that tells OMS if it should abort
all pending requests before shutting down, or wait until all pending requests
have been answered. This field corresponds to the I[NO]ABORT qualifier of the
STOP/OPERATOR_SERVICES command.

If you omit this field, or the flag byte is 0, OMS waits until all pending requests
are answered before shutting down. If the flag byte is nonzero, OMS aborts all
pending requests before shutting down.

10-22 Communicating with Print/Batch and Operator/Message Services

The fonnat of the I[NO]ABORT field is:

Byte Specification

1 CHR$(6%)

2 CHR$(N%), where N% is the flag byte. Values are:

0% No abort (The default)

1% Abort

10.14 Receiving Confirmation Messages

If a confirmation message has been requested (the first byte of the receiver name
in the parameter portion of the message is nonzero), then the system sends a local
data message to the specified receiver after the command has been processed.

There may be times when the sender does not receive a confinnation packet
even though a valid receiver name is specified. This can occur if an application
perfonns the message send system call incorrectly. This can also occur if the
receiver name specified does not exist, has too many messages waiting for it, or
belongs to a job number that is different from the job that issued the request.

A request packet may still succeed even if the confinnation message fails.
However, in the case of the REQUESTIREPLY command, OMS immediately
aborts the request since it can not send the operator response to the user who
issued the request.

Programs should perfonn the Receive with Sleep system function while wait
ing for confinnation of an operator request packet. See Chapter 9 for more
infonnation.

The time required to process a request packet depends on the request itself and
the overall system load. As a good programming practice, have any programs
waiting for confinnation "time out" after a reasonable amount of time (60 seconds
is usually sufficient) in case the request was passed improperly.

Communicating with Print/Batch and Operator/Message Services 10-23

3000
3010
3020
3030
3040
3050
3100

15100

15110
15120

15130
15140
15150
15160
15170

\
15180
15190
15200
15210
15220

The following example shows one method of receiving a confirmation message.

Get a confirmation packet
OPEN " NL:" AS FILE 1, RECORDSIZE 512%
E% = 0%
T% = 60%
GOSUB 15100
GOTO 32760 IF E%

Got a confirmation, decode it

Get a message buffer
Clear error value
Wait up to 60 seconds
Try to receive it
Quit if nothing received

Subroutine to get a confirmation/reply message from PBS/OMS
&

&

Inputs:
Outputs:

T%, amount of time to wait for message
P$, the confirmation data

&

&

&

&

& Errors:
&

0$, the message data area, if present
L%, the length of the reply text (0$)
?Can't find (5) if no message received

The problem with using a long sleep time is that there are &
many ways for the sleep time to expire. It is better to make &
several receive attempts with short sleeps than one attempt &
with a long sleep. See the RSTS/E Programming Manual for &
more information about message receive and sleep times. &

ON ERROR GOTO 15170
P$ SYS (CHR$ (6%) + CHR$(22%) +

CHR$(2%) + CHR$(5%) +
CHR$(O%) + CHR$(O%) +
STRING$(4%, 0%) +
CHR$(l%) + CHR$(O%) +
CVT%$(SWAP%(512%» +
CVT%$(SWAP%(O%» +
STRING$(10%, 0%) +
CVT%$(SWAP%(2%»

L% = SWAP % (CVT$% (RIGHT (p$, 13%»)
P$ = RIGHT (P$, 29%)
FIELO #1%, L% AS 0$
RETURN
IF ERR <> 5%
THEN &

PRINT "?Error"; ERR; "occurred"
RESUME 15210

T% = T% - 2%
RESUME 15110 IF T% > 0%
PRINT "?Receive timer expired"
E% = ERR
RETURN

Set local error trap
Message send/receive &

Local recv w/sleep &
Recv from any job &
Skip reserved bytes &
Use channel #1 &
Use all 512 bytes &
Starting at offset 0 &
Skip to sleep time &
Sleep up to 2% seconds

Compute reply length
Return parameter area
Return reply text

If unexpected error &

Complain about it &
Get out now
Update time left
Still time, try again
Oh well.
Tell caller what happened
Back to caller

10-24 Communicating with Print/Batch and Operator/Message Services

Table 10-6 describes the layout of the parameter area when receiving a confirma
tion message.

Table 10-6: Parameter Area on Receive

Bytes

1-2

3-4

5-6

7-10

7

8

9

10

11-12

Meaning

The confirmation value passed in the request command packet.

The error status code, indicating whether the request was accepted or rejected.
If this code is 0, the request was accepted. If this code is nonzero, the request
was not accepted, and the value in this field indicates the error code. See
Table 10-7 for a list of error codes.

The field code. For rejected requests, these bytes identify the field in which the
error occurred. A field code of zero means an overall error in the command.
For the PRINT, SUBMIT, and REQUEST commands, these bytes contain the
sequence number that was assigned to the request. For the STOP/OPERATOR_
SERVICES command, these bytes contain the number of pending requests at
the time the command was received. For all other commands, ignore these
bytes.

These bytes are only valid for the operator REQUEST command.

The status of a REQUESTIREPLY command. Values for this field are:
1 The request is pending.

2 The request has been aborted.

4 -The request has been successfully completed.

Not used.

Always zero for a REQUEST confirmation message.

The number of operator terminals to which the request was broadcast.

Not used.

Table 10-7: Confirmation Error Codes

Code

2

Meaning

?Illegal file name

For the !FORMS, !NAME, IQUEUE, or Logfile Queue Name field, the name
specified contains one or more invalid characters.

4 ?No room for user on device

There is not enough disk space to store the request.

5 ?Can't find file or account

For the request number field of the REPLY command, the specified request
number is not pending.

10 ?Protection violation

The application has insufficient privilege to perform the requested operation.

32 ?No buffer space available

There is insufficient buffer space to process the request. This is a temporary
condition. Issue the request again after a short delay.

(continued on next page)

Communicating with Print/Batch and Operator/Message Services 10-25

Table 10-7 (Cont.): Confirmation Error Codes

Code

42

Meaning

?Virtual buffer too large

The internal entry packet generated by the request exceeded 512 bytes.
Reduce the number of file specification fields or reduce the length of the
!PARAMETERS field.

47 ?Line too long

The total length of a reply or request text has exceeded the maximum number
of characters allowed.

52 ?Illegal number

For the request number field of the REPLY command, the value specified was
not in the range 1-9999.

55 ?Subscript out of range

The specified field code was invalid. Only the values listed in Table 10-1 and
Table 10-5 are valid field codes.

59 ?Not enough data in record

For the REPLY command, the request number field was not specified.

For the REQUEST command, the request text field was not specified.

For the SET OPERATOR_SERVICES command, the !KEEP field was not
specified.

63 ?FIELD overflows buffer

The field was incomplete. This error occurs when the end of the data buffer is
encountered before the expected end of a field is reached.

88 ? Arguments don't match

If the field code returned is 0, then the request type specified in byte 1 of the
parameter area was invalid.

If the field code returned is nonzero, then that field conflicted with the request
type specified. For example, the !KEEP field was specified on the REPLY
command.

10.15 Messages Received by the REQUEST/REPLY Command

This section discusses messages sent in response to the operator REQUEST
command with /REPLY qualifier.

10.15.1 Number of Confirmation Messages

OMS sends a confinnation message to the receiver ID specified in the REQUEST
/REPLY command whenever it sends reminder messages to all operator tenninals
that the request is still pending. If OMS does not find that the receiver ID has
too many pending messages, it aborts the request.

10-26 Communicating with Print/Batch and Operator/Message Services

10.15.2 Reply Messages from Operators

When an operator executes a REPLY command, OMS sends the text of the reply
to the originator of the request. OMS passes the text in the data portion of a
confirmation message sent to the receiver ID specified in the original request.
If the status of the request is pending, then the receiver must wait for another
message. If the status is aborted or answered, then OMS can remove the receiver
and take the appropriate action.

Table 10-8 describes the layout of the parameter area when receiving a reply
message from OMS.

Table 10-8: Parameter Area for Reply Messages

Bytes

1·8

9

10

11-12

Meaning

Same as the parameter area of confirmation messages.

The job number of the operator replying to the request. Since the job number
must be nonzero, you can use this value to determine if a confirmation or reply
message has been received.

The keyboard number of the operator replying to the request. A value of 255
means the operator job is detached.

The project-programmer number (PPN) of the operator replying to the request.

10.16 Program Example

1000
1010
1020

2000
2010
2020

2030

2040
2050

The following program combines all the previous code fragments, showing an
example usage of the send/receive interface to the operator services package:

J%
J$
S$

ASCII (SYS (CHR$ (6%) + CHR$(26%»
RIGHT (NUM1$ (100% + J%), 2%)
SYS (CHR$ (6%) + CHR$(22%) +

CHR$(l%) + CHR$(O%) +
"USER" + J$ +
STRING$(10%, 0%) +
CHR$(O%) + CHR$(l%) +
CVT%$(O%) + CHR$(5%»

! Send a command to OMS ...
C% 32767% * RND
P$ ~ CHR$(2%) + CHR$(O%) +

"USER" + J$ +
CVT%$(C%) +
CVT%$(O%)

0$ CHR$(l%) + CHR$(17%) +
"Is anybody there?" + CHR$(O%)
CHR$(4%) + CHR$(l%)

LOT% ~ 11%
GOSUB 15000

Get the user's job #
Make it 2 digits, ASCII
Message Send/Receive &

Declare receiver &
Name is USERnn &
Reserved fields &
Loc, priv'd senders &
5 pending messages &

Random confirm value
Command is request &
Receiver ID for reply &
Confirmation value &
Reserved
Text field and length &
Request text and pad &
/REPLY qualifier field
Send this to OMS
Send the command &

Communicating with Print/Batch and Operator/Message Services 10-27

3020
3030
3040
3050
3100
3110

\
3120
3130
3140

\

3140
3150
3160
3170
3180
3190
3200

\
9999

15000

15010

15020

E% = 0%
T% = 60%
GOSUB 15100

Clear error value
Wait up to 60 seconds
Try to receive it

GOTO 32760 IF E% Quit if nothing received
! Got a confirmation, decode it
IF C% <> CVT$%(P$) Check confirmation t &
THEN PRINT "?Bad confirmation value" No good, get out &

GOTO 32760 Goto exit code
E% SWAP (CVT$%(RIGHT(P$, 3%») Get error status
F% SWAP (CVT$%(RIGHT(P$, 5%») Get field code
IF E% 0% Got an error? &

THEN GOTO 3160 No error, continue &
ELSE PRINT "?Error";E%;"received on" Yes, print error code &

IF F% 0% nonzero error code? &
THEN PRINT" command" No, command in error &
ELSE PRINT" field";F% Yes, print error field

GOTO 32760 Get out on error
S% = SWAP(CVT$%(RIGHT(P$, 7%») Get request status
PRINT "Request"; F%; "is pending" IF S% 1%
PRINT "?Request"; F%; "has been aborted" IF S% = 2%
PRINT "Request"; F%; "has been answered" IF S% = 4%
PRINT 0$ IF L% Print any reply text
IF S% 1% If request is pending &
THEN T% = 60% * 60% Wait 60 minutes for &

GOTO 3040 Another message
GOTO 32760 All done &

S$

Subroutine to send a request packet
&

&

Inputs: p$ - The 12-byte message parameter string &
0$ - The message data string (Up to 512 bytes) &
LOT% - Local object to send to (PBS=5, OMS=ll) &

&

Errors: Any errors possible with message send/receive: &
?No room (4), ?Can't find (5) and ?No bufs (32) &
should be the only ones in this case. &

SYS(CHR$(6%) + CHR$(22%) + Message send/receive &

CHR$(-l1%) + Send w/priv mask &

CHR$(128% + LOT%) + Local object type &

STRING$ (24%, 0%) + Skip to parameters &

P$ + Parameter fields &

0$) Data fields
RETURN &

10-28 Communicating with Print/Batch and Operator/Message Services

15100

15110
15120

15130
15140
15150
15160
15170

\
15180
15190
15200
15210
15220

32760
\
32767

Subroutine to get a confirmation/reply message from PBS/OMS
&

&

Inputs:
Outputs:

T%, amount of time to wait for message
P$, the confirmation data

&

&

&

&

& Errors:
&

0$, the message data area, if present
L%, the length of the reply text (0$)
?Can't find (5) if no message received

The problem with using a long sleep time is that there are &
many ways for the sleep time to expire. It is better to make &
several receive attempts with short sleeps than one attempt &
with a long sleep. See the RSTS/E Programming Manual for &
more information about message receive and sleep times. &

ON ERROR GOTO 15170
p$ SYS (CHR$ (6%) + CHR$(22%) +

CHR$(2%) + CHR$(5%) +
CHR$(O%) + CHR$(O%) +
STRING$(4%, 0%) +
CHR$(1%) + CHR$(O%) +
CVT%$(SWAP%(512%» +
CVT%$(SWAP%(O%» +
STRING$(10%, 0%) +
CVT%$ (SWAP% (2%))

L% = SWAP%(CVT$%(RIGHT(P$, 13%»)
P$ = RIGHT(P$, 29%)
FIELO #1%, L% AS 0$
RETURN
IF ERR <> 5%
THEN &

PRINT "?Error"; ERR; "occurred"
RESUME 15210

T% = T% - 2%
RESUME 15110 IF T% > 0%
PRINT "?Receive timer expired"
E% = ERR
RETURN

S$ = SYS(CHR$(6%) + CHR$(22%»
CLOSE 1%
ENO

Set local error trap
Message send/receive &

Local recv w/sleep &
Recv from any job &
Skip reserved bytes &
Use channel #1 &
Use all 512 bytes &
Starting at offset 0 &
Skip to sleep time &
Sleep up to 2% seconds

Compute reply length
Return parameter area
Return reply text

If unexpected error &

Complain about it &
Get out now
Update time left
Still time, try again
Oh well.
Tell caller what happened
Back to caller

Remove receiver IO &
Close" NL:" channel

Communicating with PrinV8atch and Operator/Message Services 10-29

Chapter 11

System Programming Hints

This chapter provides information for designing a BASIC-PLUS program to run
by a CCL command. It also describes how the monitor handles the SLEEP and
conditional SLEEP statements.

11.1 Designing a Program to Run Using a CCl Command

Many RSTS/E system programs can be run using special commands called
Concise Command Language (CCL) commands. For example, the standard CCL
command PIP runs the PIP system program.

CCL commands let you run programs using commands similar to keyboard
monitor commands. When you enter a CCL command, the monitor loads and
runs a program from a predefined account and device.

CCL commands can run user programs as well as system programs. The system
manager can tailor CCL commands to a system by using the DCL DEFINE
/COMMAND command (see the RSTS/E System Manager's Guide).

CCL commands do not have permanent definitions. Instead, all CCL commands
(including those that run Digital programs) must be either installed at system
start-up or defined during timesharing with the DEFINE/COMMAND command.
See the RSTS / E System Manager's Guide for more information.

The rest of this section describes the CCL facility in detail and explains how it
interacts with the BASIC-PLUS run-time system. With this information, you can
design BASIC-PLUS programs to run using CCL commands.

11.1.1 System Processing of Cel Commands

Mter you enter a line at your terminal, the run-time system passes the line you
entered to the CCL parser in the monitor to see if it is a valid CCL command. If
the line is not a valid CCL command, the monitor returns control to the run-time
system. If the line is a valid CCL command, the monitor:

1. Sets up the job's core common area.

2. Extracts the CCUs parameter word from predefined CCL data, which resides
in a linked list of monitor buffers. (The BASIC-PLUS run-time system uses
the parameter word as the line number where execution is to start; other
run-time systems may interpret it differently.)

System Programming Hints 11-1

3. Sets up the program to run.

4. Transfers control to the run-time system associated with the program. The
run-time system runs the program.

Mter the program is finished running, the system returns control to the keyboard
monitor that you are working in.

11.1.2 eel Precedence Rules

In BASIC-PLUS, the system processes CCL commands before BASIC-PLUS
keyboard monitor commands and immediate mode statements, but after line
numbered statements. BASIC-PLUS scans terminal input at command level and
applies the following rules:

• If the line begins with numbers, the system passes the line to the BASIC
PLUS syntax analyzer for processing and storage as intermediate code.

• If the line begins with nonnumeric characters, the system passes the line to
the CCL command parser for processing and validation.

• If the line does not contain a valid CCL command, the CCL parser passes it
back to the BASIC-PLUS syntax analyzer for immediate mode execution.

• If the line does not contain a valid command or immediate mode statement,
BASIC-PLUS generates an error message.

Thus, a CCL command that duplicates either a BASIC-PLUS command or
immediate mode statement overrides that command or statement.

Except for DCL, other standard RSTSIE run-time systems follow the same
precedence rules for CCL commands as BASIC-PLUS. Like BASIC-PLUS, these
run-time systems process CCL commands before keyboard monitor commands.
On the other hand, DCL processes DCL keyboard monitor commands before CCL
commands unless you use the CCL prefix. See the RSTS / E System User's Guide
for more information.

11.1.3 Effect of eels on Your Job Area

Some CCL commands perform the same functions as BASIC-PLUS keyboard mon
itor commands. Unlike keyboard monitor commands, however, CCL commands
destroy the current contents of your job area.

For example, the BASIC-PLUS CATALOG command and the CCL DIR command
both display directory listings. When you enter the CATALOG command, BASIC
PLUS calls monitor code to produce the listing. Your job space is not affected.
The CCL DIR command, however, loads and runs the DIRECT program from the
system library. DIRECT overwrites your job space.

11.1.4 eel Syntax and Switches

The following lines show the proper syntax for a valid CCL command called
COMMAND that can be abbreviated COM. In these lines, <anything> represents
characters that the CCL parser does not process.

COM[M[A[N[D]]]][<switch(es»] [!<anything>]

COM[M[A[N[D]]]][<switch(es»][<space><anything>]

11-2 System Programming Hints

The CCL command parser passes one of the following forms of the parsed
command in the job core common area:

COMMAND[/<anything>]

COMMAND[<space><anything>]

Note that the CCL parser always expands each command to its fully defined
form.

The command line that the run-time system passes to the parser can contain two
switches (both optional) in the following format:

[<space>]/SI[Z[E]]:[+][#]<digits>[.]

where:

lSI

+

:#

<digits>

denotes the size in K words the program must expand to.

terminates the ISIZE switch.

designates an increment in size over the program's usual size. Without the
plus sign, the digits value is the total size in K words that the program
should expand to.

indicates the digits value is given in octal. The default is decimal.

is the value for size, in K words. Size can be neither less than 1 nor greater
than 32 (decimal).

explicitly indicates a decimal value for digits.

[<space>]IDET[A[C[H]]]

where:

IDET indicates that the program is to be run detached from the job's console
terminal.

The parser strips the optional switches from the command line. The monitor
extracts these switches and sets status bits for the run-time system, but takes no
action on the switches. The run-time system optionally interprets and processes
the status information.

These CCL switches can occur in any order; however, they must immediately
follow the CCL command. If the parser detects a syntax error, it generates either
the error ?Illegal switch usage (ERR=67) or the error ?Illegal number (ERR=52).
If the command line exceeds 127 characters (the maximum size of core common),
the parser generates the error ?Line too long (ERR=47).

Because the parser searches the typed line for special switches, you should not
define program switches that conflict with either lSI or IDET. If such switches are
defined, special instructions are required for their use. For example, to have a lSI
or IDET switch passed to a program, it must be preceded in the command line by
text that does not begin with a slash (/) character (for example, SY_: or another
device specification).

11.1.5 CCl Command Line Parsing

When the CCL parser receives a command string, it:

1. Translates the string.

2. Checks the string for a valid CCL command.

3. Writes the fully expanded CCL command into core common, and makes sure
that it is delimited by a space.

System Programming Hints 11-3

4. Checks the remaining string for both of the valid CCL switches.

5. Writes the remaining line (except for CCL switches) to core common.

6. Sets up the CCL program to run.

7. Sets a flag from data in the CCL command definition block.

8. Passes control back to the program's run-time system, which, in turn, runs
the program (at the appropriate line number for BASIC-PLUS programs).

Run-time system actions are independent of what the CCL parser does.

To translate the command line, the parser performs several steps:

1. For all characters in the input string, it discards end-of-line and excess (NUL
and RUBOUT) characters, and discards leading and trailing space and tab
characters.

2. For the remaining characters not inside quotation marks, the parser changes
all tab characters to spaces, reduces adjacent spaces to a single space,
discards all control characters, and converts lowercase letters (CHR$(97) to
CHR$(122» to uppercase letters (CHR$(65) to CHR$(90».

3. The parser does not alter characters inside quotation marks.

Next, the parser scans the leftmost part of the translated command line for a
potential CCL command. The scan ends on the first occurrence of one of the
following:

• An end-of-line

• A slash (I)

• A space

Note that if the command begins with a non alphanumeric character (that is, if
the command is a single-character CCL), the scan ends on the second character.

The parser compares the scanned string with each entry in the list of valid
CCL commands. If the scanned string matches a defined CCL command at its
abbreviation point or matches any part of a defined CCL command beyond the
abbreviation point, the parser writes the fully expanded CCL command to the
job core common area. If no match is found, the parser writes the translated
command line to core common and returns control to the run-time system.

Because of the translation, spaces typed within a CCL command are critical. A
space typed within the CCL command ends the scan of the command line. For
example, if the CCL command COMMAND (with abbreviation COM) is typed
COM<space>MAND, the parser interprets the COM as a valid abbreviation
for COMMAND and handles <space>MAND as part of the line to pass to the
program. Likewise, the typed command line CO<space>MMAND is not matched
with a command whose minimum abbreviation is COM.

Note that in the case of a single-character, nonalphanumeric CCL, you do not
need to type the delimiter (such as a space) normally required to set off the
command. For example, $ is permanently defined (by the monitor) as the CCL
to invoke a DCL command, so a command typed as $COPY is interpreted and
passed in core common as $ COPY.

11-4 System Programming Hints

Because of the way the parser interprets CCL commands, the system manager
should make sure that similar commands are defined in the correct order. For
example, MACRO must be defined before MAC during system start-up. See the
RSTS / E System Manager's Guide for more information.

When the parser determines that the translated string contains a valid CCL
command, it starts moving the CCL command string to the job's core common
area. Any errors found later by the parser result in unpredictable contents in the
core common area.

If the rest of the translated string begins with either a slash or a space followed
by a slash, the parser checks for a valid CCL switch. If it finds a valid CCL
switch, the parser checks further for another adjacent switch. Duplication of a
switch generates the error ?Illegal switch usage (ERR_=67). Any CCL switches
found are removed from the command line. The parser writes the remaining part
of the command line to core common. If any error is found in the CCL command
or switches, the parser stops processing the command line and returns control to
the run-time system with an error indication.

After processing the command line, the monitor sets up the related CCL program
to run. The monitor passes a flag from the CCL command definition to the
run-time system. The monitor passes the fully defined CCL command and the
remaining string in the core common area.

11.1.6 BASIC-PLUS Action

The BASIC-PLUS run-time system receives control from the CCL parser at one
of two points. If the command is not a valid CCL command or if it generated an
error, control is returned inline. When the monitor fails to validate a CCL com
mand, BASIC-PLUS processes the translated string for execution in immediate
mode. If the parser returns an error, BASIC-PLUS prints the error message and
the Ready prompt. When the monitor does validate a CCL command, it passes
control to the run-time system to run a BASIC-PLUS program. BASIC-PLUS:

1. Sets the STATUS variable.

2. Checks the line number at which the program is to be entered.

3. Checks whether the program is to be detached.

Based on the results of these actions, BASIC-PLUS runs the program.

System Programming Hints 11-5

Table 11-1 gives the rules that BASIC-PLUS uses when setting the STATUS
variable.

Table 11-1: STATUS Variable After CCl Entry

Bit Test

0-7 (STATUS AND 255%)

8-12

Meaning

If bit 13 is 0, this byte must be O. If bit 13 is 1, this
byte is the size value n (in decimal) passed in the
/SIZE:n switch or is -n to indicate that the size value
was passed in the /SIZE:+n switch (the plus character
preceded the size value). (To determine whether the
size value is negative, check the most significant bit
by the (STATUS AND 128%) test.)

Reserved for future use.

13 (STATUS AND 8192%) If the /SIZE:n switch was specified, this bit is 1.
Otherwise, .it is O.

14 (STATUS AND 16384%) If the IDET switch was specified, this bit is 1.
Otherwise, it is O.

15 (STATUS < 0%) This bit is always 1 (the value of STATUS is always
negative for a CCL entry).

If BASIC-PLUS finds that the line number is nonzero, it checks the flag passed
by the monitor. BASIC-PLUS permanently drops temporary privileges unless
the CCL definition indicates that privileges are to be kept for this program.
This action prevents a job from bypassing a program's protection mechanism by
entering it program at a line other than the lowest numbered one. If the IDET
switch was specified, BASIC-PLUS detaches the job and closes all channels on
which the console terminal is open.

BASIC-PLUS takes no action for the /SIZE:n switch. For run-time systems other
than BASIC-PLUS, this switch is a signal that an increase in job size is required.
Other run-time systems may not perform dynamic memory expansion during the
execution of a program, as BASIC-PLUS does, and may require the switch to
expand job size.

11.1.7 Conventions Used in BASIC-PLUS Programs

As a convention, BASIC-PLUS programs supplied by Digital and invoked by
standard CCL commands reserve lines 30000 to 30999 for CCL routines. These
routines extract the parsed command line passed in core common, check for
errors, and transfer control to other routines in the program. This convention
allows programs to determine that they were entered by means of CCL. The
programs execute the SYS call to get the core common string and scan the
string for the specific CCL command expanded by the CCL parser. This action
also allows a single program to be run by one of several CCL commands. Mter
determining which CCL command caused it to run, the program can transfer
control to routines to process the rest of the command line.

11.2 SLEEP and Conditional SLEEP Statements

The BASIC-PLUS SLEEP statement lets a running program stop its own
execution for a specified time period. The statement has the format:

SLEEP <expression>

11-6 System Programming Hints

The <expression> indicates the number of seconds to stop execution. The system
suspends the job that is controlling the program, and execution stops until
the system "awakens" the job at the end of the specified time period. See the
BASIC-PLUS Language Manual for more information.

Although the program controls the sleep state by specifying the time period for
the system to stop execution, certain conditions cause the system to awaken the
job before the time is up:

• A user enters a delimiter (RETURN, LINE FEED, FORM FEED, or ESCAPE)
at:

Any terminal opened by the job.

Any terminal allocated to the job if the job also has a keyboard open on a
nonzero channel.

• A dial-up line that is allocated or opened by the job gets hung up.

• The system manager disables logins (that is, sets the number oflogins to 1).

• A state change occurs on a pseudo keyboard opened by the job. This condition
can occur when the opened pseudo keyboard has output for the controlling
job or has entered an input wait state. Seethe section "Pseudo Keyboards" in
Chapter 4 for more information.

• The job has declared itself a receiver and a message is queued for it through
the SendlReceive SYS calls (see Chapter 8).

• The job has a DMC/DMR (XM:) device open and the device driver receives a
message (see Chapter 6).

• The system date or time is changed.

You can specify a conditional SLEEP by setting the sign bit in the SLEEP
statement argument. To set the sign bit, specify the SLEEP statement argument
as:

SLEEP <expression> + 32767% + 1%

In a conditional SLEEP, the monitor checks for all conditions except disabled
logins before executing the SLEEP statement. The monitor does not execute the
SLEEP statement if the job:

• Has pending terminal input

• Has a dial-up line allocated but not in use

• Has a message queued through send/receive

• Has data pending on the DMC/DMR device (XM:)

• Has a pseudo keyboard open that has pending output or is waiting for input

If any conditions (other than NO LOGINS) that cause a job to to be awakened
is in effect when the conditional sleep is issued, the sleep does not take place.
A "normal" sleep does not check these conditions before sleeping, so the job is
awakened only when one of these conditions occurs again, or when the timer
expires.

System Programming Hints 11-7

Appendix A

Magnetic Tape Label Formats

RSTS/E supports two magnetic tape file label formats: DOS and ANSI. This
appendix discusses DOS and ANSI label formats and describes how RSTS/E
handles tapes written with these labels. Note that the ANSI label format
described in this appendix refers to the RSTS/E implementation of the American
National Standard X3.27-1978 (magnetic tape labels and file structure for
information interchange).

This appendix uses the following terms:

Record

Tape Mark

A physical record on a magnetic tape. It is the unit of data transferred
in a magnetic tape drive operation. Each record on a magnetic tape is
separated from the next by a gap or blank space.

A special kind of record that magnetic tape drives can write and detect. A
tape mark contains no data. Instead, it separates other kinds of records.

A.1 DOS Magnetic Tape Format

This section describes the labels and data records on a magnetic tape in DOS
format as well as the order in which these items are placed on the tape. For
purposes of explanation, assume that the magnetic tape under discussion has
three files, each containing ten data records.

The first part of the magnetic tape is a physical beginning-of-tape (BOT), which
is a reflective (metallic) marker. Right after this marker is the first tape label
record followed, in this case, by ten data records and a tape mark.

All magnetic tape files begin with a tape label record, contain any number of data
records (the default size is 512 bytes per record), and end with a tape mark. DOS
files can contain zero data records, but a label record and tape mark are always
required for each file.

Magnetic Tape Label Formats A-1

Figure A-1 shows the layout of a DOS magnetic tape file.

Figure A-1: DOSmLabeled Magnetic Tape File

L
A E
B N data records 0
E F
L

MK-00039-01

Figure A-2 shows the layout of a DOS magnetic tape that contains three files of
ten data records apiece.

Figure A-2: DOS Magnetic Tape Consisting of 3 Files of 10 Data Records
Apiece

~1stfile~* 2nd file ---100 3rdfile~
;- Logical-End of Tape (LEOT) -

L L L
A T A T A T T T

BOT B 10 data records M B 10 data records M B , 0 data records M M M
INACCESSIBLE PHYSICAL

E E E INFORMATION EDT

L L L

Mter the first file, another label record begins the second file. This label record is
also followed by ten data records and a tape mark. This second file is immediately
followed by the third and last file, which consists of a label record, ten data
records, and a tape mark. In addition, since the third file on this tape is also the
last one, two more tape marks follow. The magnetic tape has three tape marks at
this point, signifying a logical end-of-tape (LEOT).

Mter the logical end-of-tape is written on the magnetic tape, it can be written
over, but it cannot be read over. Therefore, all information beyond the logical
end-of-tape is inaccessible.

If a magnetic tape contains no files, three tape marks follow the beginning-of-tape
marker.

A.1.1 DOS labels

The label record that specifies the beginning of a magnetic tape file in DOS
format is 14 bytes long. Table A-1 shows the information contained in each of the
label record bytes, numbered from 0 to 13.

A-2 Magnetic Tape label Formats

Table A-1: DOS Label Record Bytes

Byte Contents Data Format

0,1,2,3 File name 2 words in RADIX 50.

4,5 File type 1 word in RADIX 50.

6 Programmer number 1 byte in binary.

7 Project number 1 byte in binary.

8 Protection code 1 byte in binary (always 155 (decimal)).

9 Unused 1 byte of zero.

10,11 Creation date 1 word in internal date format.

12,13 Unused 1 word of zero.

The project-programmer number is the account number of the current user,
unless some other number is specified in the OPEN statement. If DOS format
magnetic tapes are to be interchanged with DOS-ll, RSX-ll or VMS systems,
a problem may occur because RSTS/E treats project-programmer numbers as
decimal values, and the others treat these numbers (called UICs) as octal values.
To avoid interchange problems, simply write all files on the tape with a [1,1]
project-programmer number, which is the same in both decimal and octal. For
example:

100 OPEN "MTO: [l,l]ABC" FOR OUTPUT AS FILE 1%

Note that the project-programmer number is part of the file name string. There
could be several files named ABC on a tape having different project-programmer
numbers associated with them. Often a failure to find a file on a magnetic tape is
the result of forgetting to specify the correct account number.

The protection code written by RSTS/E in the DOS label is always 155 decimal
(233 octal), which is acceptable to DOS-ll. RSTS/E and DOS-ll use different
protection code values. RSTS/E ignores the value of the protection code when
reading the file. This avoids interchange conflicts with DOS-ll.

A.2 ANSI Magnetic Tape Format

This section describes the label and data records on a single or multivolume
magnetic tape with ANSI labels. Once again, for purposes of explanation, assume
that the magnetic tape under discussion has three files, each containing ten data
blocks.

The first part of the magnetic tape is a reflective physical beginning-of-tape
marker. The next item is a volume label (VOLl). (A volume is a reel of magnetic
tape. A volume, which may be part of a volume set, can contain part of a file, a
complete file, or more than one file.)

The first RSTS/E file begins with two label records, called header labels (HDRI
and HDR2). These header labels are followed by a tape mark. In this case, ten
data records are written immediately after the tape mark. The data records are
followed, in order, by a tape mark, two trailer label records (EOFI and EOF2 or
EOVI and EOV2), and another tape mark.

When a file is created but no data blocks are written, all the above label records
and tape marks are still present. These labels and end-of-file markers are always
required for each file.

Magnetic Tape Label Formats A-3

Figure A-3 shows the layout of an ANSI magnetic tape file.

Figure A-3: ANSI·Labeled Magnetic Tape File

L L
A A
B B
E E
L L

t t
H H
D D
R R
1 2

TM TM
AA N data records AA
PR PR
EK EK

L L
A A
B B
E E
L L

t t
E E
o 0
F F
1 2

E
0
F

MK-00041-01

Figure A-4 shows the layout of an ANSI magnetic tape that contains three files
of ten data records apiece.

Figure A-4: ANSI Magnetic Tape Consisting of 3 Files of 10 Data Records
Apiece

V H H
000
L A A
1 1 2

E E
o 0
F F
1 2

H
o
A
2

E E H H
o 0 0 0
F F R R
1 2 1 2

E E
o 0
F F
1 2

After the first file, another set of two header records begins the second file. The
second file is identical to the first one, consisting of the two header labels, one
tape mark, ten data records, another tape mark, two trailer labels, and a final
tape mark.

The third file on the tape is identical to the first and second, and is followed by
two more tape marks, signifying a logical end-of-tape (LEOT).

After the logical end-of-tape is written on the magnetic tape, it can be written
over, but it cannot be read over. Therefore, all information beyond the logical
end-of-tape is inaccessible.

A magnetic tape must contain at least one complete set of header and trailer
labels. When no file exists on the tape (as on an initialized magnetic tape), a
dummy file is present with a complete set of labels and tape marks.

A-4 Magnetic Tape Label Formats

A.2.1 ANSI Labels

Each ANSI label record written by RSTS/E is 80 bytes long. Each label can be
identified by its first three characters: VOL (volume), HDR (header), and EOF
or EOV (end-of-file or end-of-volume). The fourth character in each label further
defines the sequence of the label within its group. For example, the first and
second header labels are HDRl and HDR2, respectively.

A.2.1.1 Volume Label

This label identifies which volume (reel) of the magnetic tape is being used.
Table A-2 shows the character position, field name, and contents of each byte
(character) in the volume label.

Table A-2: Volume Label Format

Character Field Name and RSTSIE
Position Usage

1-3 Label Identifier

4 Label Number

5-10 Volume Identifier
(Volume label; one to six al-
phanumerics, blank padded)

11 Accessibility
(RSTSIE writes a space)

12-37 Reserved

38-51 Owner Identifier*
D%B4431JJJGGG

52-79 Reserved

80 Label Standard Version

Contents

VOL

1

1 to 6 alphanumeric characters

Space means no restrictions

Spaces

Contents of this field used for volume
protection

Spaces

3

*The JJJ and GGG in the Owner Identification field represent the user's project and programmer
numbers, respectively. They are written as ASCII digits in decimal notation with leading zeros if
needed. The characters D%B4431 define the corporation (D%=DIGITAL), the computer (B=PDPll),
and a protection code, which RSTS/E does not use.

Magnetic Tape label Formats A-5

A.2.1.2 Header 1 Label (HDR1)

Table A--3 shows the character position, field name, and contents of each byte in
the header 1 label.

Table A-3: Header 1 Label Format

Character Field Name and RSTSIE
Position Usage Contents

1-3 Label Identifier HDR

4 Label Number 1

5-21 File Identifier Any alphanumeric or special charac-
(2 to 10 characters FILNAM. or ter in the ASCII code table.
FILNAM.TYP; blank filled)

22-27 File-set Identifier Volume ID of first volume in the
(Volume Identifier from the volume set.
VOLl1abel)

28-31 File Section Number Numeric characters; starts at 0001.
Identifies a section in the file.
Specified with the !POSITION switch
on the OPEN statement. Defaults to
0001.

32-35 File Sequence Number Numeric characters; starts at 0001.
Identifies a file on the volume.

36-39 Generation Number (0001) Not supported by RSTSIE; always
0001.

40-41 Generation Version (00) Not supported by RSTSIE; always
00.

42-47 Creation Date (SPACE)YYDDD or (SPACE)OOOOO if
Today's date in specified format no date.

48-53 Expiration Date (SPACE)YYDDD or (SPACE)OOOOO if
Today's date in specified format expired.

54 Accessibility Space

55-60 Block Count 000000

61-73 System Code DECRSTSIE Name of system that produced the
volume. Padded by spaces.

74-80 Reserved Spaces

A-6 Magnetic Tape Label Formats

(

\

A.2.1.3 Header 2 Label (HDR2)

Table A-4 shows the character position, field name, and contents of each byte in
the header 2 label.

Table A-4: Header 2 Label Format

Character
Position

1-3

4

5

6-10

11-15

16-50

51-52

53-SO

Field Name and RSTSIE
Usage

Label Identifier

Label Number

Record Fonnat
(U is the default)
(S is unsupported)

BIQck Length
(5l~ js the default)

~~grd Length

l3ysYlm Dependent
(M js the default)

~uffer Offset (00)

Reserved

·U foI'llllit isziof-a~ljD.ed by ANSI standard X3.27-1978.

Contents

HDR

2

F = Fixed
D = Variable
S = Spanned
U = Undefined"

Numeric characters settable by
FILE SIZE option.

Numeric characters settable by
CLUSTERSIZE option.

Bytes 16-36 (Spaces)
Byte 37

= A means first byte of record
contains FORTRAN control
character.
= (Space) means LF character
precedes and CR character
follows each record.
= M means record contains all
fonn control infonnation.

Not supported by RSTSIE; always
00.

Spaces

Magnetic Tape Label Formats A-7

A.2.1.4 End-of-File or Volume 1 Label (EOF1 or EOV1)

The EOF1 or EOV1label is identical to the HDR1label except for characters 1-3
and 55-60. EOF indicates the end of the file; EOV indicates that the end of the
ANSI-labeled magnetic tape volume is reached and the current file is continued
on another volume. For information on supporting EOv, see the magnetic tape
SPEC% function in Chapter 2.

Table A-5 shows the character position, field name, and contents of each byte in
the label.

Table A-S: End-of-File or Volume (EOF or EOV) 1 Record Format

Character
Position

1-3

4

5-21

22-27

28-31

32-35

36-39

40-41

42-47

48-53

54

55-60

61-73

74-80

Field Name and RSTSIE
Usage

Label Identifier

Label Number

File Identifier
(2 to 10 characters FILNAM. or
FILNAM.TYP; blank filled)

File-set Identifier
(Volume Identifier from the
VOLllabel)

File Section Number

File Sequence Number

Generation Number (0001)

Generation Version (00)

Creation Date
Today's date in specified format

Expiration Date
Today's date in specified format

Accessibility

Block Count

System Code DECRSTSIE

Reserved

A-B Magnetic Tape Label Formats

Contents

EOF or EOV.

1

Any alphanumeric or special character
in the ASCII code table.

Volume ID of the first volume in the
volume set.

Numeric characters; starts at 0001.
Identifies a section in the file.
Specified with the /POSITION quali
fier on the OPEN statement. Defaults
to 0001.

Numeric characters; starts at 0001.
Identifies a file on the volume.

Not supported by RSTSIE; always
000l.

Not supported by RSTSIE; always 00.

(SPACE)YYDDD or (SPACE)OOOOO if
no date.

(SPACE)YYDDD or (SPACE)OOOOO if
expired.

Space

Total number of blocks in this file
section.

Name of system that produced the
volume. Padded by spaces.

Spaces.

A.2.1.5 End-of-Flle or Volume 2 Label (EOF2 or EOV2)

The EOF2 or EOV2label is identical to the HDR2label except for characters 1-3.
Table A--6 shows the character position, field name, and contents of each byte in
the label.

Table A-6: End-ot-File or Volume (EOF or EOV) 2 Record Format

Character
Position

1-3

4

5

6-10

11-15

16-50

51-52

53-80

Field Name and RSTS/E
Usage

Label Identifier

Label Number

Record Format
(U is the default)
(S is unsupported)

Block Length
(512 is the default)

Record Length

System Dependent
(M is the default)

Buffer Offset (00)

Reserved

*U format is not defined by ANSI standard X3.27-1978.

Contents

EOFor EOV

2

F = Fixed
D = Variable
S = Spanned
U = Undefined·

Numeric characters settable by
FILESIZE option.

Numeric characters settable by
CLUSTERSIZE option.

Bytes 16-36 (Spaces)
Byte 37

= A means first byte of record
contains FORTRAN control
character.
= (Space) means LF character
precedes and CR character
follows each record.
= M means record contains all
form control information.

Not supported by RSTSIE; always
00.

Spaces

Magnetic Tape Label Formats A-9

A.3 Initializing Magnetic Tapes

This section describes how RSTSIE initializes (zeros) DOS and ANSI magnetic
tapes.

To initialize a magnetic tape written in DOS format, RSTSIE:

1. Rewinds the magnetic tape.

2. Writes three tape marks on the tape.

3. Rewinds the magnetic tape again.

To initialize a magnetic tape written in ANSI format, RSTSIE:

1. Rewinds the magnetic tape.

2. Writes a volwne label (VOLI) on the tape. The volume identifier is in bytes 5
through 10, in ASCII.

3. Writes two header labels (HDRI and HDR2).

4. Writes two tape marks.

5. Writes two trailer labels (EOFI and EOF2).

6. Writes three tape marks.

7. Rewinds the magnetic tape again.

For ANSI-labeled magnetic tapes, the two header labels (HDRI and HDR2), two
tape marks, two trailer labels (EOFI and EOF2) and final tape mark comprise a
dwnmy file. For both DOS and ANSI tapes, three tape marks are the last items
written on the tape. These three tape marks form the logical end-of-tape (LEOT).

To zero a tape on RSTSIE, use one of the following:

• The Zero device SYS call (see Chapter 8)

• The UU.ZER directive (see the RSTS / E System Directives Manual)

• The DCL INITIALIZE command (see the RSTS/E System User's Guide)

• The PIP program (see the RSTS / E Utilities Reference Manual)

A-10 Magnetic Tape Label Formats

Appendix B

Card Codes

The RSTSIE card reader driver can be configured for one of four different ASCII
punched card codes:

• ANSI

• DEC029

• DEC026

• 1401

The system manager determines the set of codes used on the system. In all cases,
the end-of-file (EOF) card must contain a 12-11-0-1 punch or a 12-11-0-1-6-7-8-9
punch in column O.

Table B-1 shows the card codes for DEC029, DEC026, 1401, and the ASCII
equivalent.

Table B-1: Card Reader Codes

Character

SPACE

$
%

&

*
+

AScn10

123

125

32

33

34

35

36

37

38

39

40

41

42

43

44

45

ANSI and DEC029

120

110

NONE
1287

87

83

1183

084

12

85

1285

1185

1184

1286

083

11

DEC026 1401

120 unused

110 unused

NONE NONE
1287 110

085 082

086 83

1183 1183

087 084

1187 12

86 1284

084 87

1284 087

1184 1184

12 085

083 083

11 11

(continued on next page)

Card Codes 8-1

Table 8-1 (Cont.): Card Reader Codes

Character ASCIIlO ANSI and DEC029 DEC026 1401

46 1283 1283 1283

47 01 01 01

0 48 0 0 0

1 49 1 1 1

2 50 2 2 2

3 51 3 3 3

4 52 4 4 4

5 53 5 5 5

6 54 6 6 6

7 55 7 7 7

8 56 8 8 8

9 57 9 9 9

58 82 1182 85

59 1186 082 1186

< 60 1284 1286 1286

= 61 86 83 1187

> 62 086 1186 86

? 63 087 1282 120
@ 64 84 84 84

A 65 121 12 1 121

B 66 122 122 122

C 67 123 123 123

D 68 124 124 124

E 69 125 125 125

F 70 126 126 126

G 71 127 12 7 127

H 72 128 128 128

I 73 129 129 129

J 74 111 111 111

K 75 112 112 112

L 76 113 113 113

M 77 114 114 114

N 78 115 115 115

0 79 116 116 116

P 80 117 117 117

Q 81 118 118 118

R 82 119 119 119

S 83 02 02 02

T 84 03 03 03

(continued on next page)

B-2 Card Codes

Table B-1 (Cont.): Card Reader Codes

Character ASCIII0 ANSI and DEC029 DEC026 1401

U 85 04 04 04

V 86 05 05 05

W 87 06 06 06

X 88 07 07 07

Y 89 08 08 08

Z 90 09 09 09

[91 1282 1185 1285

\ 92 082 87 086

] 93 1182 1285 1185
1\ 94 1187 85 unused

95 085 82 1287

Note: EOF is a 12-11-0-1 punch or a 12-11-0-1-6-7-8-9 punch.

Card Codes 8-3

Appendix C

Error Messages

RSTSIE generates messages for BASIC-PLUS errors and RSTSIE errors. To
avoid confusion, both types of messages are called RSTSIE error messages and
are described as one set. The BASIC-PLUS errors cover compiler and run-time
conditions, such as a violation of the syntax rules (?Syntax error) and referencing
an element of an array beyond the defined limits (?Subscript out of range). The
RSTSIE errors involve operating system conditions, such as failing to locate the
file or account specified (?Can't find file or account) and requesting the hardware
to perform a function for which it is not ready (?Device hung or write locked).
The next two sections describe the RSTSIE error messages.

Different messages are generated while a job is executing programs written
in languages other than BASIC-PLUS. Such programming languages include
COBOL, BASIC-PLUS-2 and FORTRAN-IV. For information about these error
messages, consult the appropriate User's Guides. See Table C-6 for a summary
of BASIC-PLUS-2 errors.

In most cases, if you are not trapping errors (that is, an ON ERROR GOTO
statement is not in effect), BASIC-PLUS stops running the program. It prints the
error message and the line number of the BASIC-PLUS statement that was being
executed when the error occurred. For example:

10 OPEN 'Z' FOR INPUT AS FILE 1%
RUNNH
?Can't find file or account at line 10

Ready

As the Ready prompt indicates, control returns to the system. One exception to
this procedure occurs when you execute an INPUT statement at the job's console
terminal and error trapping is not in effect. The system generates the error
message and executes the statement again:

10 ON ERROR GOTO 0 \ INPUT 'INTEGER VALUE' ;A%
RUNNH
INTEGER VALUE? C
%Data format error at line 10
INTEGER VALUE?

With error trapping disabled at line 10, an invalid response to the INPUT
statement causes the system to print the error message, clear the error condition,
and execute the statement again.

Each message has an associated error value. Whenever an error occurs with
trapping in effect, the system checks the error variable (ERR), which contains
the appropriate decimal error value in the range 0 to 255. An error with a
value between 1 and 70 causes the system to transfer control to the line number
indicated in the ON ERROR GOTO statement. The system does not print the
error message. Your program can check the ERR variable and perform a recovery
procedure. If the error value is between 71 and 127, the system does not transfer

Error Messages C-1

control to the recovery routine but prints the message and returns control to
the system. Error numbers above 127 are reserved for BASIC-PLUS-2. Error
number 0 is reserved to identify the system installation name.

Because a BASIC-PLUS program can recover from certain errors, this appendix
lists errors in two categories - recoverable and nonrecoverable. The recoverable
error messages are listed in ascending order of their error values. A program
can use these error values to differentiate errors. Nonrecoverable errors are in
alphabetical order without error numbers because a program cannot use these
numbers in an error handling routine.

The first character position of each message indicates the severity of the error.
Table 0-1 describes this standard.

Table C-1: Severity Standard in Error Messages

Character Severity

% Warning

? Error

?? Severe Error

none Information

Meaning

Execution of the program can continue but may
not generate the expected results.

Execution cannot continue unless you remove
the cause of the error.

Execution cannot continue, and you probably
cannot remove the cause of the error. In most
cases, there is no opportunity for recovery.

A message beginning with neither a question
mark nor a percent is for information only.

In the error message descriptions in the first two sections, the abbreviations
shown in Table 0-2 denote special characteristics of the error.

Table C-2: Special Abbreviations for Error Descriptions

Abbreviation

(C)

(SPR)

Meaning

Continue. If an ON ERROR GOTO statement is not in effect, execution
continues but with the conditions described.

Software Performance Report. This error should occur only under
the conditions described. If it occurs under any other conditions, you
should document the conditions under which the error occurred and
have the appropriate person at your site send an SPR to Digital.
Section C.4 contains instructions for filling out an SPR.

An error whose description is accompanied by the abbreviation (C) indicates an
exception to the error trapping procedure. If such an error occurs in a program
with no error trapping in effect, BASIC-PLUS prints the error message and line
number but continues running the program. For example:

100 ON ERROR GOTO 0 \ A% = 32768.
200 PRINT A%
RUNNH
%Integer error at line 100

o

Ready

The attempt to compute a value outside the range for integers generates the
INTEGER ERROR at line 100. After BASIC-PLUS prints the error message,
processing continues but with the conditions described in the error meaning.
BASIC-PLUS substitutes 0 for the erroneously computed value.

C-2 Error Messages

The number of RSTSIE error messages is restricted to 255. Because of this
restriction, certain error messages have multiple meanings. The specific meaning
of an error message depends on the operation you are performing when the error
condition occurs. For example, if the system attempts a file access and the file
cannot be located, RSTSIE generates the error Can't find file or account (ERR=5).
That same error condition also applies to other, generically similar access
operations. Thus, if a program tries to send a message to another program and
the system cannot find the proper entry in the system table of eligible receivers,
RSTSIE returns error number 5. Though the second failure does not involve a file
access error, it too is classified as an access failure.

Certain RSTSIE errors, although classified as user-recoverable, cannot be trapped
by a program. Table C-3lists these errors.

Table C-3: Nontrappable Errors in Recoverable Class

ERR Message Printed

34 RESERVED INSTRUCTION TRAP

36 SP STACK OVERFLOW

37 DISK ERROR DURING SWAP

38 MEMORY PARITY FAILURE

These errors involve special conditions that your program cannot control and that
should not occur on a normal system. For example, the error ??Disk error during
swap indicates a hardware problem. The system does not return control to the
program. The error condition itself, however, can be either transient or recurring.

Bring these errors to the attention of your system manager for further
investigation. These errors are recoverable in the strict sense that the monitor
can take corrective action. However, the BASIC-PLUS run-time system does not
return control to your program.

C.1 User Recoverable Errors

Table C-4lists the user recoverable errors. The notations (C) and (SPR) follow
some error explanations. See Table C-2 for an explanation of these special
abbreviations.

Table C-4: User Recoverable Errors

Message and Meaning

(SYSTEM INSTALLATION NAME)

The error code 0 is associated with the system installation name.
System programs use this to print identification lines.

ERR Value

o

(continued on next page)

Error Messages C-3

Table C-4 (Cont.): User Recoverable Errors

Message and Meaning

??BAD DffiECTORY FOR DEVICE

There are two possible causes:

• The directory of the device referenced is in an unreadable
format.

• The magnetic tape label format on tape differs from the
system-wide default format, the current job default format,
or the format specified in the OPEN statement. Use the
MOUNT command to set the correct format default or change
the format specification in the MODE option of the OPEN
statement.

?ILLEGAL FILE NAME

There are two possible causes:

• The specified file name or type is not acceptable. It contains
unacceptable characters or violates the file specification
format.

• The CCL command to be added begins with a number or
contains an illegal character.

?ACCOUNT OR DEVICE IN USE

There are seven possible causes:

• An attempt to reassign or dismount the device fails because
the device is open or has one or more open files.

• The account to be deleted has one or more files and must be
zeroed before being deleted.

• The run-time system to be deleted is currently loaded in
memory and in use.

• Output to a pseudo keyboard cannot be done unless the device
is in KB wait state.

• An echo control field cannot be declared while another field is
currently active and the system has input characters for your
program.

• The CCL command to be added already exists.
• The disk being accessed was mounted INOSHARE by another

user.

?NO ROOM FOR USER ON DEVICE

There are four possible causes:

• You have already used the available storage space.

• The device as a whole is too full to accept further data.
• The directory is full.
• You are sending a message to a message receiver that already

has its maximum number of messages pending.

ERR Value

1

2

3

4

(continued on next page)

C-4 Error Messages

Table C-4 (Cont.): User Recoverable Errors

Message and Meaning

?CAN'T FIND FILE OR ACCOUNT

There are two possible causes:

.. The specified file or account number was not found on the
specified device.

.. The CCL command to be deleted does not exist.

?NOT A VALID DEVICE

The device specification supplied is not valid for one of the
following reasons:

• The unit number or its type is not configured on the system.

• The specification is logical and untranslatable because a
physical device is not associated with it.

'lIfO CHANNEL ALREADY OPEN

You tried to open an I/O channel that the program had already
opened. Note that this error cannot occur in BASIC-PLUS or
BASIC-PLUS-2, since both automatically close and then reopen
the channel. (SPR)

'lDEVICE NOT AVAllABLE

The specified device exists on the system but you cannot assign or
open it for one of the following reasons:

.. The device is currently reserved by another job.

• The device requires privileges for ownership that you do not
have.

• The system manager has disabled the device or its controller.

• The device is a keyboard line for pseudo keyboard use only.

'lIlO CHANNEL NOT OPEN

You tried to perform I/O on one of the twelve channels that the
program has not previously opened.

'lPROTECTION VIOLATION

You cannot perform the requested operation because the operation
is illegal (such as input from a line printer) or because you do not
have the necessary privileges (such as deleting a protected file).

'lEND OF FILE ON DEVICE

Attempt to perform input beyond the end of a data file, or a
BASIC-PLUS source file without an END statement is called into
memory.

ERR Value

5

6

7

8

9

10

11

(continued on next page)

Error Messages C-5

Table C-4 (Cont.): User Recoverable Errors

Message and Meaning

??FATAL SYSTEM I/O FAILURE

An 1/0 error has occurred at the system level. You have no
guarantee that the last operation has been performed. This error
is caused by a hardware condition. Report such occurrences to the
system manager. See the discussion at beginning of this appendix.

?DATA ERROR ON DEVICE

One or more characters may have been transmitted incorrectly
due to a parity error, bad punch combination on a card, or similar
error.

?DEVICE HUNG OR WRITE LOCKED

Check hardware condition of the requested device. Possible causes
of this error include a line printer out of paper or device being
offline.

?KEYBOARD WAIT EXHAUSTED

Time that the WAIT statement requests has been exhausted with
no input received from the specified keyboard.

?NAME OR ACCOUNT NOW EXISTS

Either you tried to rename a file with the name of a file that
already exists, or the system manager tried to create an account
number that is already in the system.

?TOO MANY OPEN FILES ON UNIT

Only one open DECtape output file is permitted per DECtape
drive. Only one open file per magnetic tape drive is permitted.

?ILLEGAL SYS() USAGE

Illegal use of the SYS system function.

?DISK BLOCK IS INTERLOCKED

The requested disk block segment is already in use (locked) by
some other user.

?PACK IDS DON'T MATCH

The identification code for the specified disk pack does not match
the identification code already on the pack.

?DISK PACK IS NOT MOUNTED

No disk pack is mounted on the specified disk drive.

ERR Value

12

13

14

15

16

17

18

19

20

21

(continued on next page)

C-6 Error Messages

Table C-4 (Cont.): User Recoverable Errors

Message and Meaning

'1DEVICE IS RESTRICTED

The specified disk pack is marked restricted by another user. You
need DEVICE privilege to access it.

'1ILLEGAL CLUSTER SIZE

The specified cluster size is unacceptable. The cluster size must
be a power of 2. For a file cluster, the size must be equal to or
greater than the pack cluster size and must not be greater than
256. For a pack cluster, the size must be equal to or greater than
the device cluster size and must not be greater than 16. The
device cluster size is fixed by type.

'1 ACCOUNT DOES NOT EXIST

You tried to create a file in a nonexistent account on a private
disk.

%DISK PACK NEEDS REBUILDING

This is a nonfatal disk mounting error. Use the DCL MOUNT
command.

'1'1DISK PACK MOUNT ERROR

This is a fatal disk mounting error. The disk cannot be success
fully mounted. The disk structure is corrupt or it is not a RSTS
disk. Use DSKINT to put the RSTS structure on the disk.

ERR Value

22

23

24

25

26

(continued on next page)

Error Messages C-7

Table C-4 (Cont.): User Recoverable Errors

Message and Meaning

'lIlO TO DETACHED KEYBOARD

This error has the following possible causes:

,. The job is detached and one of the simple terminal SYS
system function calls (function codes 0,1,2,3,4 or 11) is
attempted for the job's console terminal (KB:).

,. The job is detached and an open is attempted using the device
name "KB:".

" Any I/O operation, such as INPUT, PRINT, GET, or PUT, is
attempted to a terminal on a hung-up dial-up line and the
terminal is neither the job's console terminal nor the terminal
from which the job is detached. Opening a dial-up line that is
currently hung up does not cause an error .

., The job is detached and I/O is attempted to a terminal that
was opened with MODE 16%. (When MODE 16% is not
specified, the job hibernates when it becomes detached and
terminal I/O is attempted.)

Note that the system places a detached job in hibernation when
an I/O request is issued to the job's console (KB:) terminal or to
any channel on which that terminal is open. Thus, hibernation
can occur with local terminals if the job detaches. Hibernation
can also occur on dial-up lines if the job detaches or if the line is
hung up, causing the system to automatically detach the job.

A Ctr1JC was typed while an ON ERROR GOTO statement was in
effect and programmable Ctr1JC trapping was enabled.

??CORRUPTED FILE STRUCTURE

Reinitialize the disk.

?DEVICE NOT FILE STRUCTURED

An attempt is made to access a device other than a disk, DECtape,
or magnetic tape as a file-structured device. This error occurs,
for example, when you attempt to get a directory listing of a
nondirectory device.

?ILLEGAL BYTE COUNT FOR 110

This error has the following possible causes:

" The buffer size specified in the RECORD SIZE option of the
OPEN statement or the COUNT option of the PUT statement
is not a multiple of the block size of the device you are using
for I/O or is illegal for the device.

.. You tried to run a compiled file that has improper size due to
incorrect transfer procedure.

• You specified illegal parameters.

ERR Value

27

28

29

30

31

(continued on next page)

C-B Error Messages

Table C-4 (Cant.): User Recoverable Errors

Message and Meaning

?NO BUFFER SPACE AVAILABLE

This error has the following possible causes:

• You accessed a file and the monitor requires one small buffer
to complete the request but there is no buffer available.

• The program is sending a message and a small buffer is not
available for the operation.

??ODD ADDRESS TRAP

This error occurs when you attempt to reference a nonexistent
address, reference an odd address using a word instruction, or
perform a PEEK function with an odd or nonexistent parameter.
If you get this error for any other reason, report it to your system
manager.

??RESERVED INSTRUCTION TRAP

An attempt is made to execute an illegal or reserved instruction or
an FPP instruction when floating-point hardware is not available.
See the discussion at beginning of this appendix.

??MEMORY MANAGEMENT TRAP

You specified an illegal monitor address in the PEEK function. If
you get this error for any other reason, report it to your system
manager.

??SP STACK OVERFLOW

An attempt to extend the hardware stack beyond its legal size is
encountered. See the discussion at beginning of this appendix.
(SPR)

??DISK ERROR DURING SWAP

A hardware error occurs when your job is swapped into or out
of memory. The contents of your job area are lost, but the job
remains logged in to the system and is reinitialized to run the
NONAME program. Report such occurrences to the system
manager. See the discussion at beginning of this appendix.

??MEMORY PARITY FAILURE

A parity error was detected in the memory occupied by this job.
See the discussion at beginning of this appendix.

?MAGTAPESELECTERROR

When access to a magnetic tape drive was attempted, the selected
unit was found to be off line.

ERR Value

32

33

34

35

36

37

38

39

(continued on next page)

Error Messages C-9

Table C-4 (Cont.): User Recoverable Errors

Message and Meaning

?MAGTAPE RECORD LENGTH ERROR

When performing input from magnetic tape, the record on tape
was longer than the buffer designated to handle the record.

??NON·RES RUN·TIME SYSTEM

A hardware error occurred when loading a run-time system or
resident library for your job. Report such occurrences to the
system manager.

?vmTUAL BUFFER TOO LARGE

Virtual array buffers must be a multiple of 512 bytes long.

?vmTUAL ARRAY NOT ON DISK

A nondisk device is open on the channel on which the virtual
array is referenced.

?MATRIX OR ARRAY TOO BIG

Memory array size is too large.

?vmTUAL ARRAY NOT YET OPEN

You tried to use a virtual array before opening the corresponding
disk file.

?ILLEGAL I/O CHANNEL

You tried to open a file on an I/O channel outside the range of the
integer numbers 1 to 12.

?LINE TOO LONG

You tried to input a line longer than 255 characters (which
includes any line terminator). The buffer overflows.

%FLOATING POINT ERROR

You tried to use a computed floating-point number outside the
range lE-38<n<lE38. If no transfer to an error handling routine
is made, zero is returned as the floating-point value. (C)

%ARGUMENT TOO LARGE IN EXP

Acceptable arguments are within the approximate range -
89<arg<+88. The value returned is zero. (C)

ERR Value

40

41

42

43

44

45

46

47

48

49

(continued on next page)

C-10 Error Messages

Table C-4 (Cent.): User Recoverable Errors

Message and Meaning

%DATAFORMATERROR

A READ or INPUT statement detected data in an illegal format.
For example, 1 .. 2 is an improperly formed number, 1.3 is an
improperly formed integer, and "HELLO" "THERE" is an illegal
string. (C)

%INTEGER ERROR

You tried to use a computed integer outside the range -
32768<n<32767. For example, you tried to assign to an integer
variable a floating-point number outside the integer range. If no
transfer to an error handling routine is made, zero is returned as
the integer value. (C)

?ILLEGAL NUMBER

Integer overflow or underflow, or floating-point overflow can
cause this error. The range for integers is -32768 to +32767; for
floating-point numbers, the upper limit is 1E38. (For floating
point underflow, the FLOATING POINT ERROR (ERR=48) is
generated.)

%ILLEGAL ARGUMENT

A negative or zero argument to LOG function causes this error.
Value returned is the argument as passed to the function. (C)

%IMAGINARY SQUARE ROOTS

You tried to take the square root of a number less than zero. The
value returned is the square root of the absolute value of the
argument. (C)

?SUBSCRIPT OUT OF RANGE

You tried to reference an array element beyond the number of
elements created for the array when it was dimensioned.

?CAN'T INVERT MATRIX

You tried to invert a singular or nearly singular matrix.

?OUTOFDATA

The DATA list was exhausted and a READ requested additional
data.

?ON STATEMENT OUT OF RANGE

The index value in an ON-GOTO or ON-GO SUB statement is less
than one or greater than the number of line numbers in the list.

ERR Value

50

51

52

53

54

55

56

57

58

(continued on next page)

Error Messages C-11

Table C-4 (Cont.): User Recoverable Errors

Message and Meaning

?NOT ENOUGH DATA IN RECORD

An INPUT statement did not find enough data in one line to
satisfy all the specified variables.

?INTEGER OVERFLOW, FOR LOOP

The integer index in a FOR loop attempted to go beyond 32767 or
below -32768. .

%DIVISION BY 0

Your program attempted to divide some quantity by zero. If no
transfer is made to an error handling routine, the result is zero.
(C)

?NO RUN-TIME SYSTEM

The run-time system referenced has not been added to the system
list of run-time systems.

?FIELD OVERFLOWS BUFFER

You tried to use FIELD to allocate more space than exists in the
specified buffer.

?NOT A RANDOM ACCESS DEVICE

You tried to perform random access 110 to a nonrandom access
device.

?ILLEGAL MAGTAPE() USAGE

Improper use of the MAGTAPE function.

?MISSING SPECIAL FEATURE

• Your program uses a BASIC-PLUS feature not present on the
given installation.

• You attempted to use MODE 512% on a line printer that has
8 bit capabilities set.

• You attempted to use a DECnet function but DECnetiE is not
installed.

ERR Value

59

60

61

62

63

64

65

66

(continued on next page)

C-12 Error Messages

Table C-4 (Cont.): User Recoverable Errors

Message and Meaning

?ILLEGAL SWITCH USAGE

This error has the following possible causes:

• A CCL command contains an error in an otherwise valid CCL
switch. (For example, the SI:n switch was used without a
value for n or a colon; or more than one of the same type of
CCL switch was specified.)

• A file specification switch is not the last element in a file
specification or is missing a colon or an argument.

?END OF VOLUME

You are reading an ANSI magnetic tape and reached an end-of
volume (EOV) label. The message indicates that the data contin
ues on another volume. (See the section "Processing Multivolume
ANSI Magnetic Tape Files," in Chapter 2.)

?QUOTA EXCEEDED

You exceeded the logged-in disk quota for your account. Or, you
exceeded some other. quota with a SYS function call (job, detached
job, RIB, or message quota).

C.2 Nonrecoverable Errors

ERR Value

67

68

69

Table C-5 lists the nonrecoverable errors. The notations (C) and (SPR) follow
some error explanations. See Table C-2 for an explanation of these special
abbreviations.

Table C-5: Nonrecoverable Errors

Message and Meaning

?ARGUMENTS DONT MATCH

Arguments in a function call do not match, in number or in type,
the arguments defined for the function.

?BAD LINE NUMBER PAIR

Line numbers specified in a LIST or DELETE command were
formatted incorrectly.

?BAD NUMBER IN PRINT· USING

Format specified in the PRINT-USING string cannot be used to
print one or more values.

(continued on next page)

Error Messages C-13

Table C-5 (Cont.): Nonrecoverable Errors

Message and Meaning

?CAN'T CONTINUE

Program was stopped or ended at a spot from which execution
cannot be resumed with CONT or CCONT.

?DATA TYPE ERROR

Incorrect use of floating-point, integer, or character string variable
or constant where some other data type was necessary.

?DEF WITHOUT FNEN

A second DEF statement was encountered in the processing of a
user function without an FNEND.

?END OF STATEMENT NOT SEEN

Statement contains too many elements to be processed correctly.

?ERROR TEXT LOOKUP FAILURE

An I/O error occurred while the system was attempting to retrieve
an error message. Possible causes could be the device containing
the system error file (ERR.SYS) is offline, or the system error file
contains a bad block.

?EXECUTE ONLY FILE

An attempt was made to add, delete, or list a statement in a
compiled file.

?EXPRESSION TOO COMPLICATED

This error usually occurs when parentheses have been nested too
deeply. The depth allowed depends on the individual expression.

?FILE EXISTS-RENAMEIREPLACE

A file of the name specified in a SAVE command already exists. To
save the current program with the name specified, use REPLACE
or RENAME followed by SAVE.

?FNEND WITHOUT DEF

An FNEND statement was encountered in your program before a
DEF statement was seen.

?FNEND WITHOUT FUNCTION CALL

A FNEND statement was encountered in your program before a
function call was executed.

(continued on next page)

C-14 Error Messages

Table C-5 (Cont.): Nonrecoverable Errors

Message and Meaning

?FOR WITHOUT NEXT

A FOR statement was encountered in your program without a
corresponding NEXT statement to terminate the loop.

?ILLEGAL CONDITIONAL CLAUSE

You used an incorrectly formatted conditional expression.

?ILLEGAL DEF NESTING

The range of one function definition crosses the range of another
function definition.

?ILLEGAL DUMMY VARIABLE

One of the variables in the dummy variable list of a user-defined
function is not a legal variable name.

?ILLEGAL EXPRESSION

Double operators, missing operators, mismatched parentheses, or
some similar error was found in an expression.

?ILLEGAL FIELD VARIABLE

The specified FIELD variable is unacceptable.

?ILLEGAL FN REDEFINITION

An attempt was made to redefine a user function.

?ILLEGAL FUNCTION NAME

An attempt was made to define a function with a function name
of incorrect format.

?ILLEGAL IF STATEMENT

You used an incorrectly formatted IF statement.

?ILLEGAL IN IMMEDIATE MODE

You entered a statement in immediate mode that can only be
executed as part of a program.

?ILLEGAL LINE NUMBER(S)

A line number reference is outside the range 1<n<32767.

?ILLEGAL MODE MIXING

String and numeric operations cannot be mixed.

(continued on next page)

Error Messages C-15

Table C-5 (Cont.): Nonrecoverable Errors

Message and Meaning

?ILLEGAL STATEMENT

An attempt was made to execute a statement that did not compile
without errors.

?ILLEGAL SYMBOL

An unrecognizable character was encountered. For example, a
line consisting of a % character causes this error.

?ILLEGAL VERB

The verb portion of the BASIC-PLUS statement cannot be recog
nized.

%INCONSISTENT FUNCTION USAGE

A function is defined with a certain number of arguments but
is referenced elsewhere with a different number of arguments.
Correct the reference to match the definition and reload the
program to reset the function definition.

%INCONSISTENT SUBSCRiPT USE

A subscripted variable is being used with a different number of
dimensions from the number with which it was originally defined.

?LITERAL STRING NEEDED

A variable name was used where a numeric or character string
was necessary.

?MATRIX DIMENSION ERROR

An attempt was made to dimension a matrix to more than
two dimensions, or an error was made in the syntax of a DIM
statement.

?MATRIX OR ARRAY WITHOUT DIM

A matrix or array element was referenced beyond the range of an
implicitly dimensioned matrix.

??MAXIMUM MEMORY EXCEEDED

This error has the following possible causes:

• During an OLD operation, the job's private memory size
maximum was reached.

* While running a program, the system required more memory
for string or I/O buffer space, and the job's private memory
size maximum or the system maximum (16K words for
BASIC-PLUS) was reached.

(continued on next page)

C-16 Error Messages

Table C-5 (Cont.): Nonrecoverable Errors

Message and Meaning

?MODIFIER ERROR

This error has the following possible causes:

• An attempt is made to use one of the statement modifiers
(FOR, WHILE, UNTIL, IF, or UNLESS) incorrectly.

• An OPEN statement modifier, such as a RECORDSIZE,
CLUSTERSIZE, FILESIZE, or MODE option, is not in the
correct order.

?NEXT WITHOUT FOR

A NEXT statement was encountered in your program without a
previous FOR statement.

?NOLOGINS

Message printed if the system is full and cannot accept additional
users or if further logins are disabled by the system manager.

?NOT ENOUGH AVAILABLE MEMORY

An attempt was made to load a nonprivileged compiled program
that is too large to run, given the job's private memory size
maximum. The program must be made privileged to allow it to
expand above a private memory size maximum, or the system
manager must increase the job's private memory size maximum to
accommodate the program.

?NUMBERISNEEDED

A character string or variable name was used where a number
was necessary.

11 OR 2 DIMENSIONS ONLY

An attempt was made to dimension a matrix to more than two
dimensions.

?ON STATEMENT NEEDS GOTO

A statement beginning with ON does not contain a GOTO or
GOSUB clause.

?PLEASE USE THE RUN COMMAND

A transfer of control (as in a GOTO, GOSUB or IF-GOTO state
ment) cannot be performed from immediate mode.

?PRINT-USING BUFFER OVERFLOW

Format specified contains a field too large to be manipulated by
the PRINT-USING statement.

(continued on next page)

Error Messages C-17

Table C-5 (Cont.): Nonrecoverable Errors

Message and Meaning

?PRINT-USING FORMAT ERROR

An error was made in the construction of the string used to supply
the output format in a PRINT-USING statement.

11PROGRAM LOST·SORRY

A fatal system error has occurred that caused your program to
be lost. This error can indicate hardware problems or use of
an improperly compiled program. See the next section for more
information.

1REDIMENSIONED ARRAY

Use of an array or matrix within your program has caused
BASIC-PLUS to redimension the array implicitly.

1RESUME AND NO ERROR

A RESUME statement was encountered where no error had
occurred to cause a transfer into an error handling routine with
the ON ERROR GOTO statement.

1RETURN WITHOUT GOSUB

RETURN statement is encountered in your program when a
previous GOSUB statement was not executed.

%SCALE FACTOR INTERLOCK

This error has the following possible causes:

.. You set a new scale factor and then executed a program that
was compiled (that is, translated) using a different scale
factor. The program runs, but BASIC-PLUS uses the scale
factor in effect when the program was compiled. To cause
BASIC-PLUS to compile the program with the new scale
factor, use REPLACE and OLD.

.. You set a new scale factor and then entered an immediate
mode statement. Immediate mode statements are always
compiled using the current scale factor. The new scale factor
will take effect when you use the NEW or OLD command or
run a program from its source file.

See the BASIC-PLUS Language Manual for more information.
(C)

1STATEMENT NOT FOUND

Reference is made in the program to a line number that is not in
the program.

(continued on next page)

C-1 B Error Messages

Table C-5 (Cont.): Nonrecoverable Errors

Message and Meaning

STOP

STOP statement was executed. You can usually continue program
execution by typing CaNT and the RETURN key.

?STRING IS NEEDED

A number or variable name was used where a character string
was necessary.

?SYNTAX ERROR

BASIC-PLUS statement was incorrectly formatted.

?TOO FEW ARGUMENTS

The function has been called with a number of arguments not
equal to the number defined for the function.

?TOO MANY ARGUMENTS

A user-defined function can have up to five arguments.

?UNDEFINED FUNCTION CALLED

BASIC-PLUS interpreted some statement component as a nmc
tion call for which there is no defined nmction (system or user).

?WHAT?

You entered a command or immediate mode statement that
BASIC-PLUS cannot process. An illegal verb or improper format
error is most likely.

?WRONG MATH PACKAGE

Program was compiled on a system with either the two-word
or four-word math package and an attempt is made to run the
program on a system with the opposite math package. Recompile
the program using the math package of the system on which it
will be run.

Error Messages C-19

C.3 BASIC-PLUS-2 Errors

Table C-6 lists the BASIC-PLUS-2 errors. For explanations of these error
messages, see the appropriate BASIC-PLUS-2 documentation.

Table C-6: BASIC-PLUS-2 Errors

Message Message

?lst arg to SEQ$ > 2nd

? Arrays must be same dim

? Arrays must be square

? Argument out of bounds

?Bad record identifier

?Bad RECORDSIZE on OPEN

?Cannot change array dims

?Cannot open file

?Cannot position to EOF

?CHAIN to non-existent line

%Decimal overflow

?Directive error

?Duplicate key detected

?Error trap needs RESUME

?Exponentiation error

?FILE ACP failure

?File attributes not matched

?File is locked

?Floating overflow

?Floating underflow

?Index not initialized

?Invalid file options

?lllegal key attributes

?Invalid key of reference

?lllegal ALLOW clause

?lllegal exit from DEF*

?lllegal operation

?lllegal or illogical access

?lllegal record format

?lllegal record lock clause

?lllegal record on file

?lllegal RESUME to SUBR

?lllegal string image

?lllegal subroutine return

?Illegal usage

C-20 Error Messages

?Key larger than record

?Key not changeable

?Key size too large

?Move overflows buffer

?Negative fill or string len

?Negative TAB not allowed

?Network operation rejected

?No current record

?N 0 fields in image

?No file name

?No primary key specified

?No support for op in task

?Node name error

?Not at end of file

?Null image

?Numeric image for string

?OPEN Error - file corrupted

?Primary key out of sequence

?Record already exists

?Recordlbucket locked

?Record has been deleted

?Record LOCK failed

?Record not found

?RECORD number exceeds max

?Record on file too big

%RECORDSIZE overflows MAP

?RECORDTYPES not matched

?Recursive subroutine call

?REMAP overflows buffer

?REMAP string is not static

?RRV not fully updated

?Size of record invalid

?String image for numeric

?String too long

?Tape BOT detected

(continued on next page)

Table C-6 (Cont.): BASIC-PLUS-2 Errors

Message

?Illegal usage for device

?Illogical record accessing

?Improper error handling

?Indexed not fully optimized

?Invalid RFA field

?Key field beyond record end

C.4 The ??Program Lost-Sorry Error

Message

rI'ape not ANSI labeled

rI'ape records not ANSI

rI'erminal fmt file required

rI'IME limit exceeded

rI'oo much data in record

?Unaligned REMAP variable

?U nexpired file date

The ??Program lost-sorry error occurs when BASIC-PLUS tries to run a program
and cannot or when the system suffers a fatal error. BASIC-PLUS clears the
job image from memory and returns control to the user. If possible, BASIC
PLUS prints a second message that provides more information about what
caused the program to be lost. In several cases, however, only the ??Program
lost-sorry message is printed, and the system manager must check the error log
to determine the cause. Always report a ??Program lost-sorry message and its
associated message (if printed) to your system manager.

The ??Program lost-sorry error has four possible causes:

• A checksum error occurs on a .BAC file. (A checksum error is usually the
result of a hardware problem.)

• An unrecoverable disk error occurs while BASIC-PLUS is reading a .BAC file.

• BASIC-PLUS tries to load a .BAC file of incorrect size.

• BASIC-PLUS tries to run a file whose stored version number does not match
the current BASIC-PLUS run-time system's version number.

You can often recover by recompiling the program from its source file and running
it again. To recompile the program:

1. Use the OLD command to translate (compile) the program from its source file.
OLD places the translated program in memory.

2. Use the COMPILE command to create a new .BAC file that contains the
translated image.

The next four sections describe each of the possible causes in more detail.

C.4.1 Checksum Error on a .BAC File

A "checksum" is a numeric quantity that is used to detect errors. When you save
a translated program in a disk file with the COMPILE command, BASIC-PLUS
computes a checksum and stores it in the file. BASIC-PLUS computes another
checksum when it loads the .BAC file from disk. An error occurs if the computed
and stored checksums do not match.

If the checksums are not equal, BASIC-PLUS produces an error to be logged
by the RSTSIE monitor, returns the ??Program lost-sorry error to the user, and
aborts program execution.

Error Messages C-21

Checksum errors are usually caused by a disk error. The disk error may have
occurred when you created the .BAC file or it may have occurred while BASIC
PLUS was reading the .BAC file into memory.

You can recover by recompiling the program and running it again.

C.4.2 Unrecoverable Disk Error Reading a .SAC File

The ??Program lost-sorry error also results when an unrecoverable disk error
occurs while BASIC-PLUS is loading a .BAC file into memory. Unrecoverable
disk errors can result from bad disk blocks, dust, problems with the disk drive,
or a transient hardware problem in the disk subsystem. Sometimes these errors
produce an error such as ??Disk error during swap, which is logged in the system
error logging file.

Recompiling the program may correct the problem. Be sure to report the problem
to your system manager.

CA.3 Incorrect .BAC File Size

A .BAC file must be between 2K and 16K words (inclusive). In addition, the
number of blocks in the file must be an integer that is one less than a multiple of
4.

If the size of the .BAC file does not follow these rules, BASIC-PLUS prints two
messages when it tries to load the file into memory: ??Program lost-sorry and
?Illegal byte count for I/O. These errors are not logged in the system error logging
file.

To correct the problem, recompile the program.

C.4.4 Unmatched Version Numbers

When you use COMPILE to save a translated program, BASIC-PLUS writes the
current version number of the BASIC-PLUS run-time system into the .BAC file.
When BASIC-PLUS runs or chains to a .BAC file, it checks the version number
stored in the file against the version number of the run-time system being used.
If the version numbers do not match, the ??Program lost-sorry error results.

Consult the RSTS / E Release Notes to find out whether recompilation of current
programs is necessary for a new version of BASIC-PLUS.

c.s Softwa.re Performance Report Guidelines

The Software Performance Report (SPR) forms let you report problems with
Digital software. Before submitting an SPR, make sure that the problem has not
been corrected in the Release Notes or the Software Dispatch.

C-22 Error Messages

To speed response and prevent processing delays with an SPR, describe the
problem as completely as possible. The following list contains the minimal
information to include in the SPR:

• Complete hardware configuration; including CPU type, system disk, amount
and type of memory, hardware options (such as floating-point processor), and
system peripherals. See the hardware list for INIT.SYS for this information.

• Program name and version number, and any optional patches included in the
program. Also include the account(s) under which the program failed and the
list of privileges assigned to the account.

• The PRIORITY and SWAP MAX. under which the program was running.

• A terminal printout of any relevant command strings and input data.

• A list of any modifications made to the program.

• A listing of any applicable log files.

• If you submit a crash dump, it must include the output of the crash
dump analysis program. Machine-readable submissions must include the
CRASH.SYS file and monitor .SIL file in use at the time of the crash. For
problems related to run-time systems, include the .RTS file as well.

• If the problem is monitor-related or involves a system crash, submit a copy of
the crash dump file (usually [0,1]CRASH.SYS), the monitor .SIL file in use at
the time of the crash, and any relevant .RTS files. If possible, please submit
these on magnetic tape; 1600 bpi, 9-track, or TK50 media are best.

Error Messages C-23

Appendix 0

Radix-50 and ASCII Character Sets

0.1 Radix-50 Character Set

Many items in RSTSIE, such as file names and file types, are stored in Radix-50
format. This format allows three characters to be stored as a two-byte integer
(one 16-bit word). The RAD$ function converts a Radix-50 word to its three
character representation. In addition, the file name string scan SYS calls convert
three-character strings to Radix-50 format.

The following chart shows the complete set of characters that can be represented
in Radix-50 format, their ASCII octal equivalents, and the Radix-50 value for
each character:

Character ASCII Octal Radix-50
Equivalent Equivalent (octal)

space 40 0

A-Z 101-132 1-32

$ 44 33

56 34

? 77 35

0-9 60-71 36-47

The value of a character in its two-byte Radix-50 representation depends on its
position in the string. To obtain the octal value of the character in the Radix-
50 representation, multiply its Radix-50 octal equivalent by the appropriate
power of 50 (octal). To gain the full value of the Radix-50 representation of a
three-character string, add the values of the three characters. For example, the
maximum Radix-50 value (representing the character string 999) is:

47*501\2 + 47*501\1 + 47*501\0 = 174777

Table D-1 provides an easy way to translate between the ASCII character set
and its Radix-50 equivalents based on position within a string.

For convenience, the table contains the decimal value of each character as well
as its octal value. (You can find the decimal value of a Radix-50 word using the
same technique shown here for octal.)

Radix-50 and ASCII Character Sets 0-1

Table 0-1: Radix-50 Character Positions

Single or
lst Char. Octal

A 003100

B 006200

C 011300

D 014400

E 017500

F 022600

G 025700

H 031000

I 034100

J 037200

K 042300

L 045400

~ 050500

N 053600

o 056700

P 062000

Q 065100

R 070200

S 073300

T 076400

U 101500

V 104600

VV 107700

X 113000

Y 116100

Z 121200

$ 124300

127400

? 132500

o 135600

1 140700

2 144000

3 147100

4 152200

5 155300

6 160400

7 163500

8 166600

9 171700

2nd
Decimal Char.

1600 A

3200 B
4800 C

6400 D

8000 E
9600 F

11200 G

12800 H

14400 I

16000 J

17600 K
19200 L

20800 ~

22400 N
24000 0

25600 P

27200 Q
28800 R

30400 S

32000 T
33600 U

35200 V

36800 VV
38400 X

40000 Y
41600 Z
43200 $

44800

46400 ?

48000 0

49600 1

51200 2

52800 3

54400 4

56000 5

57600 6

59200 7

60800 8

62400 9

0-2 Radix-50 and ASCII Character Sets

Octal

000050

000120

000170

000240

000310

000360

000430

000500

000550

000620

000670

000740

001010

001060

001130

001200

001250

001320

001370

001440

001510

001560

001630

001700

001750

002020

002070

002140

002210

002260

002330

002400

002450

002520

002570

002640

002710

002760

003030

3rd
Decimal Char.

40 A

80 B

120 C

160 D

200 E

240 F

280 G

320 H

360 I

400 J

440 K
480 L

520 ~

560 N

600 0

640 P

680 Q
720 R

760 S
800 T

840 U

880 V

920 VV
960 X

1000 Y

1040 Z
1080 $
1120

1160 ?

1200 0

1240 1

1280 2

1320 3

1360 4

1400 5

1440 6

1480 7

1520 8

1560 9

Octal

000001

000002

000003

000004

000005

000006

000007

000010

000011

000012

000013

000014

000015

000016

000017

000020

000021

000022

000023

000024

000025

000026

000027

000030

000031

000032

000033

000034

000035

000036

000037

000040

000041

000042

000043

000044

000045

000046

000047

Dec.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

A three-character string is stored left to right in the Radix-50 word. For example,
given the ASCII string X2B, you can compute the Radix-50 representation as
follows:

X = 113000(octal)
2 = 002400(octal)
B = 000002(octal)

X2B = 115402(octal)

(Note that addition is done in octal.)

'1b represent a three-character string in Radix-50 format:

• Place the first character of a string (or a single character) in the leftmost
position of the Radix-50 word. Thus, for the character X, multiply its
representation 30(octal) by 50"2 to give 113000(octal), the value shown in
Table D-1 for X when it is the first character.

• Place the second character in a string in the next position to the right. For
the character 2 (in the second position), multiply its representation 40(octal)
by 50"1 to give 002400, the value shown in Table D-1 for 2 when it is the
second character.

• Place the third character in the rightmost position. For the character B (in
the third position), multiply its representation by 50"0 (which is 1) to give
000002, the value shown in Table D-1 for B when it is the third character.

'1b get the full octal value of the Radix-50 word, add the value of each character
by its position in the string.

0.2 ASCII Character Codes

Table D-2 lists the ASCII characters and their decimal and octal values.

Table 0-2: ASCII Character Codes

ASCII
Decimal Octal Character Remarks

0 000 NUL Null, FILL character

1 001 SOH CtrllA

2 002 STX CtrllB

3 003 ETX CtrllC

4 004 EOT End of transmission, CtrllD

5 005 ENQ CtrllE

6 006 ACK CtrllF

7 007 BEL Bell, CtrllG

8 010 BS Backspace, CtrllH

9 011 HT Horizontal tab, CtrllI

10 012 LF Line feed, CtrllJ

11 013 VT Vertical tab, CtrllK

(continued on next page)

Radix-50 and ASCII Character Sets 0-3

Table 0-2 (Cont.): ASCII Character Codes

ASCII
Decimal Octal Character Remarks

12 014 FF Form feed, page, CtrllL

13 015 CR Carriage return, CtrllM

14 016 SO CtrllN

15 017 SI CtrllO

16 020 DLE CtrllP

17 021 DC1 CtrllQl, XON

18 022 DC2 CtrllR

19 023 DC3 Ctr1lS2 , XOFF

20 024 DC4 CtrllT

21 025 NAK CtrllU

22 026 SYN CtrW

23 027 ETB CtrllW

24 030 CAN CtrllX

25 031 EM CtrllY

26 032 SUB CtrllZ, end of file

27 033 ESC Escapes

28 034 FS File Separator

29 035 GS Group Separator

30 036 RS Record Separator

31 037 US Unit Separator

32 040 SP Space or blank

33 041 Exclamation point

34 042 Quotation mark

35 043 # Number sign

36 044 $ Dollar sign

37 045 % Percent sign

38 046 & Ampersand

39 047 Apostrophe

40 050 Left parenthesis

41 051 Right parenthesis

42 052 * Asterisk

43 053 + Plus

44 054 Comma

45 055 Hyphen or minus

46 056 Period or decimal point

47 057 / Slash

lCtrllQ, or XON, resumes output if the TTSYNC terminal characteristic is set.
2 CtrllS , or XOFF, stops output if the TTSYNC terminal characteristic is set.
s ALTMODE(ASCII 125) or PREFIX (ASCII 126) keys, which appear on some terminals, are
translated internally into ESCAPE if the ALT MODE terminal characteristic is set.

(continued on next page)

0-4 Radix-50 and ASCII Character Sets

Table 0-2 (Cont.): ASCII Character Codes

) ASCII
Decimal Octal Character Remarks

48 060 0 Zero

49 061 1 One

50 062 2 Two

51 063 3 Three

52 064 4 Four

53 065 5 Five

54 066 6 Six

55 067 7 Seven

56 070 8 Eight

57 071 9 Nine

58 072 Colon

59 073 Semicolon

60 074 < Left angle bracket, "less than" sign

61 075 = Equal sign

62 076 > Right angle bracket, "greater than" sign

63 077 ? Question mark

64 100 @ At sign

65 101 A Uppercase A

66 102 B Uppercase B

67 103 C Uppercase C

68 104 D Uppercase D

69 105 E Uppercase E

70 106 F Uppercase F

71 107 G Uppercase G

72 110 H Uppercase H

73 111 I Uppercase I

74 112 J Uppercase J

75 113 K Uppercase K

76 114 L Uppercase L

77 115 M Uppercase M

78 116 N Uppercase N

79 117 0 Uppercase 0

80 120 P Uppercase P

81 121 Q Uppercase Q

82 122 R Uppercase R

83 123 S Uppercase S

84 124 T Uppercase T

85 125 U Uppercase U

86 126 V Uppercase V

(continued on next page)

Radix-50 and ASCII Character Sets 0-5

Table D-2 (Cont.): ASCII Character Codes

ASCII

Decimal Octal Character Remarks

87 127 W Uppercase W

88 130 X Uppercase X

89 131 Y Uppercase Y

90 132 Z Uppercase Z

91 133 [Left square bracket

92 134 \ Backslash

93 135] Right square bracket

94 136 1\ Circumflex

95 137 Underscore

96 140 Grave accent

97 141 a Lowercase a

98 142 b Lowercase b

99 143 c Lowercase c

100 144 d Lowercase d

101 145 e Lowercase e

102 146 f Lowercase f

103 147 g Lowercase g

104 150 h Lowercase h

105 151 i Lowercase i

106 152 j Lowercase j

107 153 k Lowercase k

108 154 Lowercase 1

109 155 m Lowercase m

110 156 n Lowercase n

111 157 0 Lowercase 0

112 160 p Lowercase p

113 161 q Lowercase q

114 162 r Lowercase r

115 163 s Lowercase s

116 164 t Lowercase t

117 165 u Lowercase u

118 166 v Lowercase v

119 167 w Lowercase w

120 170 x Lowercase x

121 171 y Lowercase y

122 172 z Lowercase z

123 173 Left brace

124 174 Vertical line

(continued on next page)

D-6 Radix-50 and ASCII Character Sets

Table 0-2 (Cont.): ASCII Character Codes

AScn
Decimal Octal Character Remarks

125 175 Right brace 3

126 176 Tilde 3

127 177 DEL Delete

128 200 Reserved

129 201 Reserved

130 202 Reserved

131 203 Reserved

132 204 IND Index

133 205 NEL New line

134 206 SSA

135 207 ESA

136 210 HTS Horizontal tab set

137 211 HTJ

138 212 VTS Vertical tab set

139 213 PLD Partial line down

140 214 PLU Partial line up

141 215 RI Reverse Index

142 216 SS2 Single shift. 2

143 217 SS3 Single shift 3

144 220 DCS Device control string

145 221 PU1

146 222 PU2

147 223 STS

148 224 CCH

149 225 MW

150 226 SPA

151 227 EPA

152 230 Reserved

153 231 Reserved

154 232 Reserved

155 233 CSI Control sequence introducer

156 234 ST String terminator

157 235 OSC

158 236 PM

159 237 APC

160 240 Reserved

161 241 Inverted exclamation point

3ALTMODE(ASCII 125) or PREFIX (ASCII 126) keys, which appear on some terminals, are
translated internally into ESCAPE if the ALT MODE terminal characteristic is set.

(continued on next page)

Radix-50 and ASCII Character Sets 0-7

Table 0-2 (Cont.): ASCII Character Codes

AScn
Decimal Octal Character Remarks

162 242 ¢ Cent sign

163 243 £ Pound sign

164 244 Reserved

165 245 y Yen sign

166 246 Reserved

167 247 § Section sign

168 250 [] General currency sign

169 251 © Copyright sign

170 252 I Feminine ordinal indicator

171 253 « Angle quotation mark left

172 254 Reserved

173 255 Reserved

174 256 Reserved

175 257 Reserved

176 260 0 Degree sign

177 261 :t Plus/minus sign

178 262 2 Superscript 2

179 263 8 Superscript 3

180 264 Reserved

181 265 J.1 Micro sign

182 266 en Paragraph sign, pilcrow

183 267 Middle dot

184 270 Reserved

185 271 Superscript 1

186 272 ~ Masculine ordinal indicator

187 273 » Angle quotation mark right

188 274 14 Fraction one quarter

189 275 l/2 Fraction one half

190 276 Reserved

191 277 l Inverted question mark

192 300 A Uppercase A with grave accent

193 301 A Uppercase A with acute accent

194 302 A Uppercase A with circumflex accent

195 303 A Uppercase A with tilde

196 304 A Uppercase A with diaeresis or umlaut
mark

197 305 A Uppercase A with ring

198 . 306 lE Uppercase A with diphthong

199 307 \) Uppercase C with cedilla

(continued on next page)

0-8 Radix-50 and ASCII Character Sets

Table D-2 (Cont.): ASCII Character Codes

ASCII
Decimal Octal Character Remarks

200 310 E Uppercase E with grave accent

201 311 E Uppercase E with acute accent

202 312 E Uppercase E with circumflex accent

203 313 E Uppercase E with diaeresis or umlaut
mark

204 314 t Uppercase I with grave accent

205 315 f Uppercase I with acute accent

206 316 I Uppercase I with circumflex accent

207 317 I Uppercase I with diaeresis or umlaut
mark

208 320 Reserved

209 321 N Uppercase N with tilde

210 322 6 Uppercase 0 with grave accent

211 323 6 Uppercase 0 with acute accent

212 324 () Uppercase 0 with circumflex accent

213 325 6 Uppercase 0 with tilde

214 326 0 Uppercase 0 with diaeresis or umlaut
mark

215 327 <E Uppercase OE ligature

216 330 0 Uppercase 0 with slash

217 331 iT Uppercase U with grave accent

218 332 U Uppercase U with acute accent

219 333 (j Uppercase U with circumflex accent

220 334 U Uppercase U with diaeresis or umlaut
mark

221 335 Y Uppercase Y with diaeresis or umlaut
mark

222 336 Reserved

223 337 13 German lowercase sharp s

224 340 a Lowercase a with grave accent

225 341 :i Lowercase a with acute accent

226 342 a Lowercase a with circumflex accent

227 343 ii Lowercase a with tilde

228 344 ii Lowercase a with diaeresis or umlaut
mark

229 345 Ii Lowercase a with ring

230 346 re Lowercase ae diphthong

231 347 ~ Lowercase c with cedilla

232 350 e Lowercase e with grave accent

233 351 e Lowercase e with acute accent

(continued on next page)

Radix-50 and ASCII Character Sets D-9

Table 0-2 (Cont.): ASCII Character Codes

ASCII
Decimal Octal Character Remarks

234 352 ~ Lowercase e with circumflex accent

235 353 e Lowercase e with diaeresis or umlaut
mark

236 354 1 Lowercase i with grave accent

237 355 i Lowercase i with acute accent

238 356 i Lowercase i with circumflex accent

239 357 1 Lowercase i with diaeresis or umlaut
mark

240 360 Reserved

241 361 ii Lowercase n with tilde

242 362 0 Lowercase 0 with grave accent

243 363 6 Lowercase 0 with acute accent

244 364 a Lowercase 0 with circumflex accent

245 365 0 Lowercase 0 with tilde

246 366 ij Lowercase 0 with diaeresis or umlaut
mark

247 367 ce Lowercase oe ligature

248 370 S'l Lowercase 0 with slash

249 371 U Lowercase u with grave accent

250 372 U Lowercase u with acute accent

251 373 ft Lowercase u with circumflex accent

252 374 U Lowercase u with diaeresis or umlaut
mark

253 375 Y Lowercase y with diaeresis or umlaut
mark

254 376 Reserved

255 377 Reserved

0-10 Radix-50 and ASCII Character Sets

Appendix E

Device Handler Index

Table E-llists the handler indexes for each device type used on RSTSIE. The
handler index is an internal index into system device tables that the system uses
to identify device families. For example, the handler index is used in SPEC%
functions to ensure that the system operates on the correct device.

Table E-1 : Handler Index

Index Device

0 All disks

2 Terminals

4 DECtape

6 Line Printers

8 Paper Tape Readers

10 Paper Tape Punches

12 Card Readers

14 Magnetic Tapes

16 Pseudo Keyboards

18 Flexible Diskettes [RXOl, RX02]

20 RJ2780

22 Null Device

24 DMClllDMRll DDCMP Interlace

32 KMCll

34 IBM Interlace

38 DMPl1/DMVll

Device Handler Index E-1

Appendix F

Monitor Directives

The RSTS / E System Directives Manual describes monitor directives for MACRO
programmers. Many of these directives correspond to SYS calls described in
Chapter 8 of this manual.

Table F-l lists the SYS can to FIP codes and the corresponding monitor
directives. For information on the use of these directives, see the RSTS / E
System Directives Manual.

Table F-1: Monitor Directives

MACRO
Mnemonic

UU.TB3

UU.SPL

UU.DMP

UU.FIL

UU.ATR

UU.CCL

(.FSS)

(.SET)

(.SET/.CLEAR)

(.SET/.CLEAR)

UU.LOG

UU.RTS

UU.NAM

UU.DIE

UU.ACT

UU.DAT

UU.PRI

UU.TB2

UU.BCK

(.FSS)

Function
Code(FO)

-29

-28

-27

-26

-25

-24

-23

-22

-21

-20

-19

-18

-17

-16

-15

-14

-13

-12

-11

-10

Function Name

Get monitor tables - part III.

Spooling.

Snap shot dump.

File utility functions.

ReadlWrite file attributes; Read pack at
tributes; ReadlWritelDelete account attributes

Addldelete CCL command.

Terminating file name string scan.

Set special run priority.

Drop/regain (temporary) privileges.

Lock/unlock job in memory.

Set number oflogins.

AddiRemovelUnload run-time system;
AddiRemovelU nload resident library; Create
dynamic region; CreatelDelete virtual disk.

Name run-time system.

Shut down system.

Accounting dump.

Change system date/time.

Change priority/run burst/job size.

Get monitor tables - part II.

Change file backup statistics.

File name string scan.

(continued on next page)

Monitor Directives F-1

Table F-1 (Cont.): Monitor Directives

MACRO Function
Mnemonic Code(FO) Function Name

UU.RNG -9 Hang up a dataset.

UU.FCB -8 Get open channel statistics.

-7 Enable CtrlJC trap.

UU.POK -6 Poke memory.

(.SPEC) -5 Broadcast to terminal.

(.SPEC) -4 Force input to terminal.

UU.TBI -3 Get monitor tables - part I.

UU.NLG -2 Disable logins.

UU.YLG -1 Enable logins.

UU.PAS 0 Create user account.

UU.DLU 1 Delete user account.

2 Reserved.

UU.MNT 3 Disk pack status.

UU.LIN 4 Login; Verify password.

UU.BYE 5 Logout.

UU.ATT 6 Attach; Reattach; Swap console.

UU.DET 7 Detach.

UU.CHU 8 Change quota/expiration date/password;Set
password; Kill job; Disable terminal.

UU.ERR 9 Return error messages.

UU.ASS (.UUO) 10 AllocatelReallocate device; Assign user logical;
UU.ASS (.ULOG) List user logicals.

UU.DEA (.UUO) 11 Deallocate device; Deassign user logical.
UU.DEA (.ULOG)

UU.DAL (.UUO) 12 Deallocate all devices; Deassign all user
UU.DAL (.ULOG) logicals.

UU.ZER 13 Zero a device.

UU.RAD 14 ReadiRead and reset accounting data.

UU.DIR 15 Directory lookup on index; Special magnetic
tape directory lookup.

UU.TRM 16 Set terminal characteristics.

UU.LOK 17 Disk directory lookup on file name; Disk
wildcard directory lookup.

UU.CRE 19 Enable/disable disk caching.

UU.CNV 20 Convert date and time.

UU.SLN 21 AddiRemove/ChangelList logical names.

(.MESAG) 22 Message send/receive.

UU.SWP 23 Addlremovellist system files.

UU.JOB 24 Create a job.

UU.PPN 25 Wildcard PPN lookup.

(continued on next page)

F-2 Monitor Directives

Table F-1 (Cont.): Monitor Directives

MACRO
Mnemonic

UU.SYS

UU.PRV

UU.STL

UU.3PP

UU.CHK

UU.ONX

UU.CFG

Function
Code(FO)

26

28

29

31

32

33

34

Function Name

Return job status.

SetiClearlRead current privileges.

StallJUnstall system.

Third-party privilege check.

Check file access rights; Convert privilege
name to mask; Convert privilege mask to
name.

Open next disk file.

Set devicelline printer characteristics; Set
system defaults; LoadlRemove monitor overlay
code.

PEEK function.

Monitor Directives F-3

Appendix G

EMT Logger Send/Receive Calls

EMT logging is an optional feature that provides a "window" on the process by
which time-sharing jobs request and receive services from the RSTSIE monitor.
Thus, EMT logging lets you gather information about the activity on your system.
For example, you might want to know the number of logins on a particular
terminal, how many files are accessed on a certain drive, or which nonresident
FIP overlays get the heaviest use. Such information can help you "tune" a system
for improved performance, identify bottlenecks, establish charging algorithms,
and watch for potential security problems.

To use EMT logging, you must:

It Include optional code in your monitor at system installation time. See the
RSTS / E System Installation and Update Guide for more information.

.. Write a program to process the data extracted by the monitor code.
This program retrieves extracted data by using send/receive calls, which
are described in Chapter 9 of this manual. A demonstration program
(EMTCPY.BAS) is included in the Unsupported Utility system program
package. This unsupported program illustrates sample techniques for
retrieving EMT logging data.

EMT logging provides information on time-sharing activity in terms of what the
monitor sees. Thus, the data returned to your logging program is in terms of
FIRQB and XRB contents, regardless of the language your program is written in.
See the RSTS/E System Directives Manual for information on the FIRQB and
XRB.

EMT logging can affect system performance. The impact is variable, and depends
upon which EMTs you decide to log, for which jobs you log them, and how much
processing your logging program attempts to do for each EMT. Note that a
feature patch is available that allows you to specify which EMTs are to be logged.
See the RSTS / E Maintenance Notebook for details.

This appendix describes the use of parameters and other features of the
send/receive calls that are specific to an EMT logger. For more information on
EMT logging see the RSTS / E System Manager>s Guide.

G.1 EMT logging and Send/Receive

Writing an EMT logging program requires the use of several send/receive calls.
The declare receiver call designates your program as a receiver and tells the
monitor to activate EMT logging and build EMT data packets for selected
directives. The receive local data message call retrieves EMT data packets from
the monitor. The remove receiver call removes your program from the monitor's
local receiver table and deactivates EMT logging.

EMT Logger Send/Receive Calls G-1

An EMT logger program can receive messages from normal senders as well as
from the monitor. (The receive call allows this selection; see Chapter 9.) Your
EMT logger program should periodically check for such messages. For example,
the SHUTUP program sends a message to your program before shutting down the
system after normal time-sharing jobs are logged out or killed. This notification
lets your program do any necessary cleanup and exit under its own control.

G.2 Declaring an EMT logger

Your EMT logger program must declare itself as a receiver to receive messages
from the monitor. The monitor recognizes an EMT logging receiver by the local
object type 2 in byte 21 of the declare call; see Chapter 9.

You also need to specify the following parameters when you declare an EMT
logging receiver:

I» Message maximum (byte 25) - Indicates the maximum number of messages
that the monitor queues for the EMT logger. (Message maximum pertains
only to messages sent by other programs using normal send/receive.)

.. Packet maximum (bytes 27-28) - Indicates the maximum number of EMT data
packets that the monitor queues for the EMT logger. If your program cannot
keep up with the data traffic and this maximum is exceeded, EMT data
packets are missed (that is, not created or queued). EMT data packets may
also be missed if not enough XBUF is available to hold additional packets.
Note that a count of missed EMTs is one of the parameters returned to your
EMT logger program on each receive.

I» Packets per message (byte 30) - Indicates the number of EMT data packets
for the monitor to consider a complete message. Note that this value should
not be greater than the packet maximum specified in bytes 27-28. When your
program issues the receive call, the monitor immediately returns any packets
that are pending, regardless of this parameter. If no packets are pending, and
the receive call specifies a sleep interval, the monitor does not awaken your
job until either the number of packets specified by this parameter are queued
or the sleep expires. This lets your program control how often it is awakened
to handle EMT packets and process more than one packet per receive. Both
operations can reduce overhead.

The declare receiver call for an EMT logger has the following format. An asterisk
(*) identifies fields specific to an EMT logger declare call. Other fields are more
fully described in Chapter 9. Note that this form of declare receiver requires
SYSIO privilege.

Data Passed

Bytes

1

2

3

4

5-10

11-20

21*

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(22%), the send/receive function code.

CHR$(l %), the declare receiver subfunction code.

CHR$(O%), reserved; should be O.

The receiver name.

CHR$(O%), reserved; should be O.

CHR$(2%), the object type code for an EMT logger.

G-2 EMT Logger Send/Receive Calls

22

23-24

25

26

27-28*

29

30*

31-34

35

36-40

CHR$(3%), the value for local, privileged senders (SEND privilege required).

CHR$(O%), reserved; should be O.

CHR$(M%), the message maximum. This parameter pertains only to normal
messages that are sent to your EMT logger.

CHR$(O%), the inbound link maximUm; should be 0 for "no network links."

CHR$(P.MAX%) + CHR$(SWAP%(P.MAX%», the maximum number of EMT
data packets that can be queued at one time.

CHR$(O%), the outbound link maximum; should be 0 for "no network links."

CHR$(P.MES%), the number of packets that the monitor packs into an EMT
logger message before waking up the receiver.

CHR$(O%), reserved; should be O.

CHR$(R%), the receiver ID block (RIB) number.

CHR$(O%), reserved; should be O.

Data Returned

No meaningful data is returned.

Possible Errors

See the Declare Receiver call in Chapter 9.

G.3 Receiving an EMT Logger Message

An EMT logger program asks for messages from the monitor by using a receive
call in the following format. An asterisk (*) identifies fields specific to an EMT
logger receive call. Other fields are more fully described in Chapter 9.

NOTE

The data returned to your EMT logger program depends on the
internal functioning of the monitor. For this reason, both the format
and meaning of data returned are subject to change in future releases
of RSTSIE.

Data Passed

Bytes

1

2

3

4

5

6

7-10

11

12

13-14

Meaning

CHR$(6%), the SYS call to FIP.

CHR$(22%), the send/receive function code.

CHR$(2%), the receive subfunction code.

CHR$(4%), for L%. (N% and S% should be 0; T% has no effect for an EMT
logger.)

CHR$(O%), to select the monitor as the sender (with byte 6).

CHR$(-l%), to select the monitor as the sender (with byte 5).

Reserved; should be O.

CHR$(C%), the channel number for the I/O buffer to receive messages.

CHR$(O%), reserved; should be O.

L%, the maximum message length (in bytes) for this receive, in the form
CHR$(L%) + CHR$(SWAP%(L%».

EMT Logger Send/Receive Calls G-3

15-16

17-26

27-28

29-34
35

36-40

0%, the offset from the start of the buffer, in the form CHR$(O%) +
CHR$(SWAP%(O%».

CHR$(O%), reserved; should be O.

T%, the sleep time in seconds, in the form CHR$(T%) + CHR$(SWAP%(T%».

CHR$(O%), reserved; should be O.

CHR$(R%), the receiver ID block (RIB) number for this receive.

CHR$(O%), reserved; should be O.

Data Returned

Bytes

1-2

3

4

5-6+
7

8

9-10

11-12

13-14

15-20

21-22*

23-24*

25-26*

27-40

Meaning

Not meaningful; should be ignored.

CHR$(-I%), the local data message subfunction code.

CHR$(O%), the sending job (the monitor is the sender).

0%, the sender's project-programmer number (the monitor is the sender).

CHR$(O%), the sender's keyboard number (the monitor is the sender).

Not meaningful; should be ignored.

R%, the number of bytes remaining in the data portion of the message.

Not meaningful; should be ignored.

L%, the length of the message (in bytes) transferred to the buffer.

Not meaningful; should be ignored.

P.REM%, the number of packets remaining in the data portion of the message.

P.EMT%, the number of EMTs missed (due to insufficient buffer space) since
the last receive.

P.TRANS%, the number of packets transferred to the buffer.

Not meaningful; should be ignored.

Possible Errors

See the receive call, in Chapter 9.

G.3.1 Message Format

The information returned to your EMT logger program by the receive call consists
of parameters and data, as described in Chapter 9. The data portion of the
message consists of packets that describe single EMTs that the monitor has
processed. To minimize overhead, the monitor packs as many packets as will fit
into the receive buffer and returns them as a single message.

Three special parameters are returned to your EMT Jogger program:

• P.REM% - Indicates the number of packets pending but not yet transferred

• P.EMT% - Indicates the number of EMTs that have been missed (not logged,
due to insufficient buffer space) since the last receive

• P.TRANS% - Indicates the number of packets transferred in the current
receive call

These three parameters are returned in bytes 21-26 of the receive call. The
monitor also returns the standard data for all receive calls; see Data Returned in
the preceding section.

G-4 EMT Logger Send/Receive Calls

Each packet in the returned message is a counted string. The first two bytes of
each packet contain the number of bytes in that packet, not including the two
count bytes.

The rest of the packet consists of the following two fields:

Context and control information Root

FIRQB Data extracted from the calling program's FIRQB

Although the identities and lengths of the fields returned are the same for
all packets, you should code your EMT logger program to respect the variable
format; that is, honor the packet's count word and the field's count bytes. This
will minimize possible changes in future releases.

Figure G-1 shows the parts of an EMT packet. Each packet contains a count
field as its first two bytes. This field specifies the packet's length, exclusive of the
count bytes. Also, the "parameters" returned by the Receive call contains a word
that gives the number of packets returned to your buffer. The Root field and the
FIRQB field are described in the section that follows.

Figure G-1: EMT Data Packet Layout

PACKET'S BYTE COUNT

ROOT DATA

FIRQB DATA

MK-01019-00

G.3.2 EMT Root and FIRQ8 Fields

This section describes the EMT Root and FIRQB fields. The packet described
here is for a single EMT. Note that a single receive may return a variable number
of packets to your EMT logging program, depending on the buffer space you
provide for the data portion of the message.

The EMT Root field contains the following information:

Bytes

1-2

3

4

5-6

7-8

Meaning

Reserved

Length of FIRQB data field

Length of Root data field

Packet sequence number

System date at reception of EMT

EMT Logger Send/Receive Calls G-5

9-10

11

12

13

14

15

16

18

19

20-21

22-23

24-25

26

27

System time at reception of EMT

Seconds until the next minute at reception of EMT

Ticks until the next second at reception of EMT

Calling job number times two

Reserved

IOSTS byte (at directive's completion). This byte contains the returned error
code. 0 indicates successful completion with no error.

Function code of the directive. The function codes have MACRO mnemonics
of the form xxxFQ. See the RSTS / E System Directives Manual for a list of
function codes.

Reserved

Calling job's keyboard number. In the case of a detached job, this byte is the
complement of the number of the keyboard from which the job detached.

Reserved

Calling job's PPN

Job's virtual PC. This is the virtual address, in the user's job space, of the
instruction following the EMT instruction that invoked the call. The PC may
be of interest if the calling program is written in MACRO. The PC is within the
run-time system in the case of BASIC-PLUS. For example, the PC could equal
Program Counter, the PDP-U's "next instruction" register.

UUO code, if the call was a directive; otherwise 127. The code has a MACRO
mnemonic of the form UU.xxx. See the RSTS/E System Directives Manual for
a list of UUO codes.

Reserved

The EMT FIRQB field contains the fonowing infonnation:

Bytes

1-2

3-4

27-28

Meaning

Third word of the caller's FIRQB. The first two words of the caner's FIRQB are
not returned since the same information is returned in the Root field.

Fourth word of the caller's FIRQB.

Last word of the caller's FIRQB.

See the RSTS / E System Directives Manual for more infonnation about the
FIRQB.

G.3.3 Message from SHUTUP

As previously described, the SHUTUP system program sends a nonnal local data
message to your EMT logger program before the system is shut down, and after
nonnal jobs are removed. This message consists of parameters only (no data),
and contains -1 in the first parameter byte (byte 21 of the returned data) as a
flag.

G~ EMT logger Send/Receive Calls

Pack cluster size
See also Cluster size, pack

Extended buffer pool

See also XBUF
System disk

See also Public structure
Disk file

creating

See also File
File-structured disk

See also Disk
Tentative file

See also File
Data caching

See also Caching
Diskette

See also Flexible diskette
Tape

See also magnetic tape
Video terminal

See also Terminal
Device

nonphysical

See also Pseudo keyboard
FIP SYS call

See also SYS call
A
Abbreviation point

setting for CCl commands, 8-56
Account

charge accounting data to, 8-74
creating, 1-8
managing, 1-11
optimizing user, 1-34
permanent privileges, 8-57
privileges for managing, 1-11, 1-12t
storing information about, 1-8
system, 1-1
zero a, 8-96

Account attributes
deleting, 8-54
description, 8-46
writing, 8-53

Account creation
SYS call for, 8-90

Account deletion
SYS call for, 8-96

Accounting data, 8-127
dump of, 8-74
read, 8-127

Accounting data (Cont.)

read and reset, 8-127
storage, 1-9

Account number
specify wildcard, 8-188

Account [0,11, 1-1
contents, 1-1
creating, 1-2
on nonsystem disk, 1-8

Account [1,2], system library, 1-1
Addresses

Ethernet, 7-3, 7-4
multicast, 7-4
physical, 7-4

IAFTER
PBS data field, 10-10

ANAlYS, system program, 8-41
ANSI format, 2-3

buffer size, 2-8
EOF2 record format, A-9t
EOF label, A-8t
EOV1 label, A-8t
EOV2 record format, A-9t
files, A-4
header 1 label, A-6t
header 2 label, A-7t
initializing magnetic tape, A-10
magnetic tape, A-3, A-4
search for, 2-1 0
volume label, A-5

ANSI magnetic tape, 2-11
block length, 2-11,2-12,2-13
ClUSTERSIZE values, 2-121
COUNT option, 2-13
data conversion, 2-13
default characteristics, 2-12
file characteristics, 2-11
FllESIZE option, 2-13
format, A-3
multivolume processing, 2-13
opening for input, 2-6
record format, 2-12
RECORDSIZE option, 2-13

ANSI processing, 2-13
data conversion, 2-13
multivolume files, 2-13
writing blocks, 2-13

Answerback, 8-153
Application

privilege checking, 1-18
using privileges in writing, 1-16, 1-17

ASCII character codes, D-3t

Index

Index-1

ASCII control characters
in escape sequence, 4-15

ASCII file specification
PBS data field, 10-15

ASSIGN command, 2--3
Assign LAT port, 8-168
Asynchronous completion routine

for asynchronous I/O request, 1--36,2-28
Asynchronous 1/0 request

B

ACR completion routine, 1--36
AST completion routine, 2-28
for disk, 1--36
for magnetic tape, 2-5, 2-28
restriction, 1--36, 2-29

.BAC file
size, C-21

Backspace
MAGTAPE function, 2-21

BACKUP file, 1-2
Backup statistics

change for file, 8-41
BACKUP system program, 2-1
BADB.SYS, bad block file, 1-4, 1-9
Bad block

adding to BADB.SYS, 1-4
BADB.SYS file, 1-4

BASIC-PLUS, 7--3, 7-5, 7-10, 7-11
errors, C-1
programs

CCl routines, 11-6
control from CCl parser, 11-5
conventions, 11-6
designing to run by CCl command, 11-1
recompiling, C-21
using CCl commands, 11-2

Baud rate, setting, 8-142
Binary data

end-of-file on terminal, 4-8
from keyboard interface, 4-6

Binary file specification
PBS data field, 10-16

Binary input, 4-6
disabled

channel 0, 4-7
CLOSE, 4-8
OPEN, 4-8
WAIT,4-7

WAIT conditions, 4-7
Binary mode

effect of private delimiters, 4-26
Block

file greater than 65535, 8-18,8-27
length on magnetic tape, 2-11
locked, 1-25

consecutive, 1-26
range, 1-26
range of, 1-36
releasing, 1--36
single, 1-26
unlocking, 1-25

logical, 1-20
reading non-file-structured, 1-21
writing non-file-structured, 1-21

partial operations on disk, 1--35

Index-2

Block (Cont.)

receiver 10, 9-6
writing on DOS magnetic tape, 2-11

Block mode 1/0, 1-42
flexible diskette, 1--39
magnetic tape, 2-4

BLOCK option
for non-file-structured disk, 1-21

BOT (Beginning-of-Tape), A--3
Buffer

assigning for messages, 9-19
cache, 1-29
default length on magnetic tape, 2-18
monitor space, 3-9
quota for DMC11/DMR11, 6-2
receive (DMC11/DMR11), 6-2
size

channel, 4-6
default for terminals, 4-6
DMC11/DMR11 allocation, 6-2
for magnetic tape, 2-8
on DOS magnetic tape. 2-11
specifying a large, 1-22

Buffering
intermediate line printer, 3-7

c
Cache

data replacement in, 1-29
data transfers, 1-29
limiting size, 8-155
operation, 1-29
read requests in, 1-30
size, 1-29
space for, 1--30
speeding replacement, 1-31
updating, 1-29
use of small buffer pool, 8-154

Cache buffers, 1-29
list, 1--30
minimum residency, 1-29

Cache cluster
first block, 1--31
last block, 1--31

Cache cluster size, 1-30
cluster allocation, 8-155
default settings, 8-155
setting, 8-154,8-155

Caching, 1-29
data, 1--3
disable data, 8-41,8-155
disable disk, 8-154
disable sequential, 8-41
enable data, 8-41,8-155
enable disk, 8-154
enable on the system, 1-29
enable sequential, 8-41
marking UFO entry, 1-30
random mode, 1-30
read operations, 1-29
sequential mode, 1-30, 1-31
SYS call for, 8-154
use of XBUF, 8-155
with OPEN MODE, 1--30
with SYS calls. 1--30
write operations, 1-29

)

Caching parameters
current settings, 8-155
return the current, 8-154
setting, 1-29

Cancel type ahead
SYS call, 4-13

Card reader, 5-1
ASCII codes, 5-1
binary mode, 5-2
binary read mode, 5-3
codes, B-1t
example of read mode usage, 5-4
input operations, 5-1
packed Hollerith read mode, 5-2
punched card codes, B-1t
read operations, 5-1
setting read modes, 5-3
summary of read modes, 5-3

Card reader modes
ASCII, 5-1
binary, 5-1, 5-3
packed Hollerith, 5-1, 5-2

Carriage return
suppress automatic, 4-8

Carrier sense, 7-1
CCL command, 11-1

abbreviation point, 8-56
add, 8-55
and BASIC-PLUS commands, 11-2
BASIC-PLUS actions, 11-5
delete, 8-55
designing programs to run by, 11-1
/DETACH switch, 11-3
effect on job area, 11-2
parsing, 11-2, 11-3
precedence, 11-2
proper syntax, 11-2
/SIZE switch, 11-2
spaces, 11-4
SYS call to execute, 8-19
validating, 11-2

CCL entry
STATUS variable after, 11-6

Channel, 7-3
Channel buffer size, 4-6
Channels

close all, 8-104
Character

ASCII codes, D-3t
finding Radix-50 value, 0-1
integer representation, 8-23f
terminate printing, 3-7

Character input
delimiterless, 8-13
single, 8-13

Character set
Radix-50, 0-1

Checksum, C-21
Circuit counters, 7-10, 7-11
CLOSE statement, 1-25, 7-7

DMC11/DMR11, 6-6
Cluster, 1-2

device, 1-20
pack, 1-2

Cluster size
cache, 1-3, 1-30

cluster allocation, 8-155

Cluster size
cache (Cont.)

default settings, 8-155
relationship to pack, 1-30
setting, 8-154, 8-155

definition, 1-2
directory, 1-4

allowed values, 1-4
setting, 1-4

extended, 1-34
pack

allowed values, 1-3
definition, 1-3
setting, 1-3
with data caching, 1-3

range
for directory, 1-3t
for disk, 1-3t
for file, 1-3t

UFD, 1-4
CLUSTERSIZE option

ANSI magnetic tape, 2-4,2-11
for DMC11/DMR11, 6-2

Code
ASCII character, 0-3t
monitor, 1-2
run-time system, 1-2
system initialization, 1-2, 1--6

Collision detection, 7-1
Command

SET/ACCOUNT, 1-9
Command line editing, 4-43 to 4-46,4-46

availability, 4-45t
echo on read, 4-45
OPEN modes, 4-45
terminal attributes, 4-43

Command recall, 4-43
availability, 4-45t
echo on read, 4-45
OPEN modes, 4-45
terminal attributes, 4-43

Connect time, 1-9t
Console keyboard

detaching from, 8-111
establish terminal as, 8-107
exchange ownership of, 8-109

Contiguous file, 1-28
conditions of, 1-28
creating, 1-27
creating conditionally, 1-28
unset, 8-41

Controlled job
creating, 4-31

Controllers, 7-3,7-4,7--6,7-10,7-11
DELUA, 7-3
DEQNA, 7-3
DEUNA, 7-3
Ethernet, 7-3

/CONVERT flag
PBS data field, 10-17

/COPIES
PBS data field, 10-17

Core common, 8-15,8-16
Core common string

get, 8-15
put, 8-16

Index-3

Counters

circuit, 7-10,7-11
circuit counters, 7-3
line, 7-10,7-11
line counters, 7-3

COUNT option
ANSI magnetic tape, 2-13
for non-file-structured magnetic tape, 2-18

CPU time, 1-9t
allocating, 8-76
run burst, 8-76

ICPU_LlMIT
PBS data field, 10-11

Crash
saving information after, 1-5

CRASH.SYS file, 1-5
estimating size, 1-5

Create LAT port, 8-166
CSP100.LlB

description, 1-6
with system programs, 1-6

ClrVC
enable trapping, 8-83
input from a terminal, 8-85
protecting program from aborts, 8-84

ClrVO
cancel effect on terminal, 8-11

CtrVR
disable, 8-145
enable, 8-145

CtrVT
disable, 8-145
enable, 8-145

Cursor control
on VT100, 4-17
on VT52, 4-17

CVT functions, 8-23

D
Data

forced to disabled terminal, 8-87
forced to hung up modem, 8-87
to a disabled terminal, 8-86
to a hung up dataset, 8-86

Data area
extract string from, 8-15
load a string, 8-16

Data caching, 1-3, 1-29
disable, 8-155
enable, 8-155
mode, 1-30
modify, 8-154

Data field layout, PBS, 10-6
Data format

directory lookup, 8-132
for FIP SYS calls, 8-22

Data link layer, 7-2,7-3, 7-6, 7-10
Data message

send local, by job number, 9-11
send local, by logical name, 9-11
send local example, 9-21

Dataset
data to a hung up, 8-86
hang up a, 8-81

Data transfers
reducing on disk, 1-29

Index-4

Data transfers (Cont.)

scheduling on disk, 1-29
Data transmission

disable, 6-6
Data values

summary of Send/Receive, 9-26
Date changer, 8-75
Date conversion

SYS call for, 8-156
DCl

precedence of CCl commands, 11-2
DDB information, 8-83
DDCMP, 6-1

restart, 6-2
Deallocate a device

SYS call for, 8-123
Deallocate all devices

SYS call for, 8-124
Deassign lAT port, 8-170
Deassign user logical

SYS call for, 8-123
Declare receiver

example, 9-21
SYS call for, 9-1

Declare receiver SYS call, 9-2
access control field, 9-8
buffer space for messages, 9-9
local object types, 9-8
multiple receiver ID blocks, 9-6
queued message limit, 9-9
receiver names, 9-7

DECnetlE, 9-1
Ethernet, 7-2, 7-4
in point-Io-point configuration, 6-1
logical links, 9-2
Network Service Protocol (NSP), 6-1
SYS calls, 9-1

DECtape, TU56
zero device SYS call, 8-126

Deleted Data Mark, 1-40, 1--41
writing, 1-41

!DELETE flag
PBS data field, 10-17

Delete lAT port, 8-167
Delimiter

RUBOUT as, 4-15
Delimiter, private, 8-144
Delimiterless character mode, 8-13
Density

changing default, 2-22
magnetic tape, 2-17
magnetic tape defaults, 2-3
set with MAGTAPE function, 2-22

Detached job
attach 10 terminal, 8-111

Detach job
SYScallto, 8-110

IDETACH switch, in CCl command, 11-3
Device

access by logical name, 8-157
allocate a, 8-119
assign user logical, 8-121
deallocate a, 8-123
entering logical name, 8-122
handler index, E-H
list user logical, 8-122
nonphysical, 4-29

Device (Cont.)

null, 1-44
reallocate a, 8-119
setting characteristics, 8-201
zero (initialize), 8-125

Device, XM:, 6-1
Device cluster

accessing, 1-20
size, 1-20
specifying number, 1-20

Devices
deallocate all, 8-124
deassign all, 8-104

Device time, 1-9t
Dial-up line

connecting, 8-81
disconnecting, 8-81
hanging up a, 4-14
lost connection, 8-109

Digital Data Communications Protocol, DDCMP, 6-1
Directory

default file placement, 1--31, 1--32
entries for tentative files, 1-28
organization, 1--34
placing file at beginning, 1--32
placing file at end, 1-31
reducing fragmentation, 1--34
reducing searches on, 1--34
setting cache clusters, 8-154
speeding access to, 1--31

Directory lookup calls, 8-133
data format, 8-133
data returned in, 8-133
disk wildcard, 8-138
file name on disk, 8-137
on index, 8-133
on magnetic tape, 8-135
tape rewind, 8-136

Disk
as swap file, 8-179
change logical names, 8-161
directory lookup by file name, 8-137
extending file update, 1--36
handler index, 1-36
non-file-structured

accessing logical block 0, 1-21
allocating drive, 1-23
default characteristics, 1-21t
opening, 1-19
privilege and access, 1-23

non-file-structured processing, 1-19
nonsystem, 1-8, 1-9
optimization, 1-33
partial block operations on, 1--35
reducing data transfers, 1-29
scheduling data transfers, 1-29
simultaneous access, 1-33
special function SPEC%, 1--36
system, 1-9
update statistics on, 8-104
wildcard directory lookup, 8-138

Disk caching
disabling, 8-154
enabling, 8-154

Diskette, 1--39
Disk file

appending data to, 1-26

Disk file (Cont.)

creating, 1-23
extending, 1-26, 1-27
multi-user access, 1-24
no supersede, 1-29
open in default mode, 1-24
opening next, 8-198
preextending, 1--34
reading and writing, 1-24
updating, 1-24

Disk pack
status, 8-97

Disk quota
setting, 8-90
SYS call to change, 8-112,8-113

Disks
extended cluster size, 1--34

Disk storage
allocating, 1-2
quota, 1-9t

DMC11/DMR11
access to, 6-1
buffer quota, 6-2
CLOSE statement, 6-6
CLUSTERSIZE value, 6-2
count and status information, 6--3 to 6-5
description, 6-1
disable data transmission, 6-6
DTR (Data Terminal Ready), 6-1
effect on sleeping job, 6-2, 6-6
enable data transmission, 6-1
errors, 6-2, 6--3, 6-6
establish operating mode, 6-1
failure in physical link, 6-3
FILESIZE value, 6-2
full duplex mode, 6-2
GET statement on, 6-2
half duplex mode, 6-2
1/0 buffer size, 6-2
MODE value, 6-2
PUT statement, 6-6
receive buffers, 6-2
RECORD option, 6-2
RECORDSIZE value, 6-2
using in point-to-point, 6-1

DOS format, 2--3
buffer size, 2--8
initializing magnetic tape, A-10
magnetic tape, A-2

contents of label, A-3
data records, A-2

search for, 2-10
DOS format label, A-2t

protection code, A-3
DOS label record

example of reading, 2--32
DOS magnetic tape

block length, 2-11
buffer size, 2-11
opening for input, 2-6
processing files, 2-11
writing blocks, 2-11

DSKINT initialization option, 1-4, 1-8
DTR, Data Terminal Ready, 6-1,6-6
Dump, snap shot

analyzing, 8-41
SYS call for, 8-41

Index-5

Dynamic keyboards, 4-38
Dynamic pseudo keyboards, 4-37
Dynamic region

create, ~9

E
Echo

disable on terminal. 8-13
enable on terminal, 8-12
unsolicited data, 8-17

Echo control mode
character set, 4-91
disabling, 4-9
hard-copy terminal, 4-13
operations, 8-i 7
parity bit in, 4-9
terminal, 4-8

Echo on read, 4-45
EMS$: Logical, 8-153,8-210
EMT logging, G-1 to G-5

and declare receiver SYS call, G-3
and receive SYS call, G-3
and send/receive, G-2
data packet layout, G-5f
data packets, G-2
declaring an EMT logger, G-2
message format, G-4
message from SHUTUP, G-5
message maximum, G-2
packet maximum, G-2
packets per message, G-2
parameters passed, G-2
parameters returned, G-4

End-ol-Volume Labels
MAGTAPE function, 2-26
writing, 2-26

EOF, 2-10
marker, A-4
record format, A-8t, A-9t
tape mark, 2-10
write with MAGTAPE function, 2-20

EOT (End-ol-Tape)
logical, 2-9
marker, 2-15
processing, 2-15
writing logical, 2-15

EOV, A-4
record format, A-8t, A-9t

ERR.ERR file, 1-5
ERRDIS error report, for magnetic lape parity errors,

2-30
.ERR file, 1-2
Error

DMC11/DMR11 indications, 6-3
severity of, C-2

Error Condition Acknowledged
MAGTAPE function, 2-27

Error handling, magnetic tape, 2-29 to 2-31
Error message file

extracting data from, 8-118
Error messages, C-1

abbreviations in descriptions of, C-2t
BASIC-PLUS-2, C-201 to C-21t
file 01, 1-5
nonrecoverable, C-2, C-13t to C-19t
non-trappable, C-3t

Index-6

Error messages (Cont.)

number, C-2
recoverable, C-2, C-3
return, 8-118
severity standards, C-2, C-2t
user recoverable, C-3t to C-13t
with multiple meanings, C-2

Errors
BASIC-PLUS, C-1
DMC11/DMR11, 6-2
magnetic tape, 2-29 to 2-31
nontrappable in recoverable class, C-3
RSTS/E, C-1

Error trapping, C-1
exceptions, C-2
exceptions to, C-2

ERR variable, C-2
Escape sequence, 4-17

ASCII control characters in, 4-16
characters within, 4-16
data conversion in, 4-16
for VT100, 4-17
for VT200-family, 4-17
for VT300-lamily, 4-17
input, 4-16,4-22
interpreting, 4-16
key compatiblity, 4-23
mode setting, 4-21
output, 4-17,4-21
passed to program, 4-21
received by program, 4-22
set special, 8-144
system processing, 4-23
system processing on input, 4-22
terminating, 4-21
terminators, 4-24t
to a terminal, 4-17
VT100 screen control, 4-19
VT200 screen control, 4-19

ESC character
as a delimiter, 4-16
recogition as a delimiter, 4-21
system translation of, 4-21

ESC SEQ mode, 4-16
terminal in, 4-22

Ethernet, 4-38, 6-6
addresses, 7-3,7-4
BASIC statements, 7-5
carrier sense, 7-1
channel, 7-3
CLOSE statement, 7-7
collision detection, 7-1
controllers, 7-3,7-4, 7-6, 7-10, 7-11
counters, 7-3
data link layer, 7-2, 7-3, 7-8
DECnetlE, 7-2, 7-4
Get Counters, 7-10
GET statement, 7-7
multicast addressing, 7-10
multiple access, 7-1
OPEN statement, 7-5
physical addresses, 7-3, 7-8
physical link layer, 7-2
portal, 7-3, 7-6
protocol types, 7-3, 7-8
PUT statement, 7-9
system receive buffers, 7-7

Ethernet (Cont.)

Transfer Counters, 7-11
Exit with no prompt

effect of, 8-14
Exit with no prompt SYS call, 8-14
Expiration date

SYS call to change, 8-112,8-113
Extended buffer pool, 1-5
Extended cluster size

disks, 1-34
Extended Interrecord Gap, 2-30
Extended Set Density Function

MAGTAPE function, 2-27

F
FCB information, 8-83
IFEED flag

PBS data field, 10-18
Field

deactivate a, 4-13
declare on terminal, 4-11
declaring a, 4-11
PRINT statement declares a, 4-12

File
add system, 8-177
associate a run-time system with, 8-73
as swap file, 8-179
BACKUP, 1-2
BADB.SYS, 1-4,1-9
caching, 1-30
change backup statistics, 8-41
change RTS name field, 8-41
checking access rights, 8-195
contiguous

advantages, 1-28
conditions, 1-28
creating, 1-27
creating conditionally, 1-28
disadvantages, 1-28

CRASH.SYS, 1-5
creating, 1-23
creating a large, 1-34
DCl run-time system, 1-2
directory placement, 1-31
.ERR, 1-2
ERR. ERR, 1-5
error messages, 1-5
extending, 1-27
extending on magnetic tape, 2-10
greater than 65535 blocks, 8-18, 8-27, 8-45
INIT.SYS, 1-2
magnetic tape labels, 2-3
matching wildcard specification, 8-138
monitor save image library, 1-5
multiple reads on, 1-32
multiple writes on, 1-32
OVR.SYS, 1-5
placing at beginning of directory, 1-32
placing at end of directory, 1-31
positioning frequently accessed, 1-32
preextend on disk, 1-34
privileges for accessing, 1-12,1-14t
processing contiguous, 1-28
reading during processing, 1-32
read only access to, 1-32
remove system, 8-177

File (Cont.)

restrictions on large, 8-45
return information on last opened, 8-18
return retreival information, 8-41
RMS-11, 2-1
RMS-11 attributes, 8-46
RSTS/E monitor, 1-8
.RTS, 1-2, 1-5
SATI.SYS, 1-2, 1-8
.Sll, 1-2
spooling

SYS call for, 8-37
START. COM, 1-2
swap, 1-6
SWAP.SYS, 1-6
system overlay, 1-5
tentative, 1-28

closing, 1-28
creating, 1-28
directory entries, 1-28
opening, 1-28
renaming, 1-28

unset contiguous bit, 8-41
File, read only

open for update, 1-33
using, 1-33

File attributes, 8-46
description, 8-46
determine number returned, 8-46
reading, 8-47, 8-50
writing, 8-48

File characteristics
ANSI magnetic tape, 2-11
return for magnetic tape, 2-25
word, magnetic tape, 2-25t

File name, 8-29
directory lookup by, 8-137
file name string scan, 8-29
look up under programmed control, 8-132

File name string scan, 8-27
FIP call, 8-23
flag word 1, 8-30, 8-30t
flag word 2, 8-31t
for a device name, 8-29
for a file name, 8-29
for a file name type, 8-29
for a protection code, 8-29
for file switches, 8-29
format, 8-25
for project-programmer number, 8-29
terminating conditions, 8-35

File placement, 8-45
resetting bit, 8-41
setting bit, 8-41

File processor
SYS calls to, 8-15

File size
least significant bits, 8-18,8-27
most significant bits, 8-18,8-27
on large file systems, 1-27
updating, 1-27

FllESIZE option
ANSI magnetic tape, 2-4,2-11,2-13
for DMC11/DMR11, 6-2

FllESIZE statement
with line printer, 3-2

File statistics, change, 8-79

Index-7

File-structured disk, 1-23
File type

file name string scan, 8-29
File update

guarded, 1-26
MODE value, 1-25
on disk, 1-25
safeguards for, 1-25

File utility functions, 8-41
Fill factor

disable, 8-142
enable, 8-142

FIP
function code, 8-21
SYS calls to, 8-21
unpacking SYS call data, 8-23
use of SYS calls, 8-21

FIP (File Processor), 8-21
FIP SYS call, 8-4t to 8-11t

data formats, 8-22
integer numbers, 8-24
methods for unpacking data, 8-23
notations, 8-23
project-programmer number, 8-23
references, 8-23
unpacking data, 8-23
unsigned integer, 8-24

FIT, system program, 1-39
Fixed length records, magnetic tape, 2-12
Flag word 1, file name string scan, 8-30t
Flag word 2, file name string scan, 8-31t
IFLAG_PAGES flag

PBS data field, 10-18
Flexible diskette, 1-39

accessing logical record zero, 1-41
block mode 1/0, 1-39, 1-41
Deleted Data Mark, 1-41
determining density, 1-43
device name, 1-38
handler index, 1-43
interleaving algorithm, 1-39
MODE specifications, 1-39t
mounting new, 1-42
organization, 1-39
partial block operations, 1-42
programming operations, 1-44
RECORD modifiers, 1-41
reformat density, 1-42, 1-43
restrictions on density reformat, 1-44
sector interleaving, 1-39
sector mode 1/0, 1-40, 1-42
single density, 1-40
special function SPEC%, 1-42
writing Deleted Data Mark, 1-41

Flexible diskette drive
modifying actions, 1-41
recomputing density, 1-43

Flexible diskette records
access to, 1-40
double density, 1-40
single density, 1-40

FLINT, system program, 1-39
Format label

ANSI, 2-10
DOS, 2-10

Form feed
enable, 8-140

Index-8

Form feed (Cont.)

line printer, 3-4
suppressing printer, 3~

Form length
default printer, 3-4
line printer, 3-4
setting printer, 3-4

Forms
handling nonstandard printer, 3-4

IFORMS
PBS data field, 10-10

G
GET statement, 7-7

H

for DMC11/DMR11, 6-2
magnetic tape, 2-8
with card readers, 5-1

Handler index, E-1 t
disk, 1-37
flexible diskette, 1-43
magnetic tape, 2-29
pseudo keyboard, 4-36

Hardware address
default, 7-3

Header label, magnetic tape, A-4
HDR1, A-6t
HDR2, 2-13, A-7t

Hibernation, 8-111
IHOLD flag

PBS data field, 10-12

Index value, incrementing, 8-188
INIT.SYS program, 1-2

initialization code, 1-6
Input

echoing of unsolicited, 8-17
force to a terminal, 8-87

INPUT LINE statement
with card readers, 5-1

INPUT MODE values
magnetic tape, 2~t

INPUT statement
with card readers, 5-1

INSERT mode, 4-44
Integers, unsigned

convert to two bytes, 8-25
in SYS calls, 8-24

Integers in SYS calls to FIP. 8-24
Intel Corporation, 7-2
Interjob communication

system calls, 9-1
Internal speed values, 8-142

J
Job

attach/reattach, 8-106
awaken a sleeping, 6-2, 6-6, 11-7
changing expansion size, 8-76
clear from monitor table, 8-104
consequences of locking, 8-59

(

Job (Cont.)

controlled
creating, 4-B1
CtrilC trap, 4-B4
ensuring command level, 4-B4
for pseudo keyboard, 4-29
obtaining output from, 4-B1
output from, 4-30
output wait state, 4-B2
run a program under, 4-B4

controlling, for pseudo keyboard, 4-29
create logged-in, 8-183,8-186,8-187
create logged-out, 8-182,8-186
create to enter keyboard monitor, 8-184, 8-187
create to run a program, 8-183,8-186
declare as message receiver, ~2
detach, 8-110
determining current access, 1-33
hibernation, 8-111
initial size, 8-76
in receiver sleep, ~18
interjob communication, ~1
limiting size, 8-77
lock in memory, 8-59
lock out other, 8-77
logged off the system, 8-73
maximum size, 8-77
network, ~1
priority in monitor, 8-77
priority word, 8-57
privilege handling, 1-15

at creation, 1-15
at login, 1-15
at logout, 1-15
spawned, 1-15

raise priority, 8-57
reattach, 8-107
restrictions on creating, 8-183
return status, 8-189
SYS call to kill, 8-116
terminal reserved to, 4-2
unlock in memory, 8-59

Jobs
local communication between, ~1

IJOB_COUNT
PBS data field, 10-9

K
KCT, 1-9t
Keyboard monitor

default, 1-5
Keyboards

dynamic, 4-38
numbering, 4-28

Keypunch, overflow handling, 4-11
Kilo-core tick, 1-9t

L
Label

DOS format, A-2
search on magnetic tape, 2-7
writing on magnetic tape, 2-9

Label format '
default, 2-9
magnetic tape, A-1 to A-9

Label record
default format, 2-7
write a, 2-9

LAT, 4-B8 to 4-43
assigning ports, 4-40
creating ports, 4-40
enabling LAT, 4-B9
host-initiated connections, 4-B9
LAT problems, 4-43
port, 4-38
queueing, 4-41

LAT, assign port, 8-168
LAT, create port, 8-166
LAT, deassign port, 8-170
LAT, delete port, 8-167
LAT, return port characteristics, 8-176
LAT, return port status, 8-173
LEOT (Logical End-of-Tape), A-4
Line counters, 7-10, 7-11
Line feed, suppress automatic, 4-8
Line printer, 3-1

binary output, 3-8
check status, 3-9
clearing buffers, 3-7
controlling with MODE values, 3-2
controlling with RECORD option, 3-6
delay return for complete output, 3-7
error handling, 3-9,3-10
extended software formatting, 3-2
form lengths, 3-4
hardware form feed, 3-4
intermediate buffering, 3-7
lower to upper case, 3-5
LP11 characters, 3-1, 3-1t
maintain print position, 3--6
MODE values, 3-2, 3-2t
modifying operation, 3-6
nonprinting characters on, 3-1
no stall option, 3-8
operation, 3-9
output and small buffers, 3-8
preventing loss of data, 3-9
print over perforations, 3-7
RECORD values, 3--6t
setting characteristics, 8-203
skipping perforation, 3-5
suppressing form feed, 3--6
terminating print operation, 3-7
translating 0 to 0, 3-5
truncating long lines, 3-5, 3-8
using FILESIZE statement, 3-2

Line printer special function
SPEC%, 3-9

LINE_EDITING, 4-44
Load address

run-time system, 8--61
Local Area Transport

See LAT
Local message, ~1

parameter area, ~2
Local object types

declare receiver SYS call, ~8
Locked blocks

explicit, 1-36
implicit, 1-36
unlocking, 1-25

Index-9

locked job
consequences of, 8-59
procedure for, 8-59

logical block, 1-20
reading non-file-structured, 1-21
writing non-file-structured, 1-21

logical names
access devices by, 8-157
add new, 8-158
add system, 8-157
change disk, 8-161
change system, 8-157
deassign, 8-124
entering, 8-122
listing, 8-123
list system, 8-157
remove, 8-160
remove system, 8-157
SYS call to list, 8-162
table, 8-157
using an underscore, 8-28

login
disable further, 8-89
enable further, 8-90
set maximum number, 8-90
setting number, 8-60
set to one, 8-89
SYS call for, 8-101

lOGIN
system program, 1-8
to create a controlled job, 4-31

lOGIN.COM
lAT reporting, 4-43

lOGIN command
lAT reporting, 4-43

logout, 8-104
and quota enforcement, 8-104
special shutup, 8-73
SYS call for, 8-73

lOGOUT command
lAT reporting, 4-43

lOGOUT system program, 1-9
flOG_DELETE flag

PBS data field, 10-14
flOG_FilE file specification

PBS data field, 10-13
flOG_FilE flag

PBS data field, 10-12
flOG_QUEUE flag

PBS data field, 10-13
IlOG_QUEUE name

PBS data field, 10-14
lowercase characteristics, 8-140

translate to uppercase, 8-140
lowercase characters

enable, 8-141
lP11 characters, 3-1t
lSB (least Significant Bits), 8-18

M
MACRO-11, 7-3,7-5,7-10,7-11
Magnetic tape, 2-1

ANSI file, A-4f
ANSI format, 2-3, A-3
appending data, 2-10
automatic rewind, 2-7

Index-10

Magnetic tape (Cont.)
block length, 2-13
default buffer length, 2-18
density, 2-17,2-22
determining status, 2-24
directory lookup on, 8-135,8-136
DOS file, A-2f
DOS format, 2-3, A-1
EOF marker, A-4
EOV marker, A-4
error conditions, 2-29 to 2-31
error recovery procedures, 2-15
file-structured processing, 2-1

data handling, 2-3
label handling, 2-3
opening, 2-5,2-7

format labels, 2-10
GET statement, 2-8
handler index, 2-29
initializing, A-10
label

search on OUTPUT, 2-9
label formats, 2-3, A-1 to A-9

buffer sizes, 2-8
label search

on INPUT, 2-7
MODE values, 2-6, 2-6t, 2-9t

combining, 2-14
multivolume, 2-26, A-3
non-file-structured MODE value, 2-17

evaluation, 2-17
non-file-structured processing, 2-1
overriding defaults, 2-3
overriding rewind, 2-7
parity, 2-17

default, 2-3
physical record, definition, A-1
processing, 2-11
processing end of tape, 2-15
reading data, 2-8
read-only access, 2-5
recommended block length, 2-6
record

fixed length, 2-12,2-13
variable length, 2-13

record longer than buffer, 2-18
rewinding, 2-7
rewind on CLOSE, 2-7
selecting label format, 2-3
single volume, A-3
special function SPEC%, 2-29
statements and functions for accessing, 2-2t
stay bit, 2-18, 2-22
system defaults, 2-3t
tape mark, definition, A-1
volume label for ANSI format tape, A-5
volume labels, A-5t
write-only access, 2-8
writing a label, 2-9
writing a label record, 2-10
writing data, 2-14,2-15
writing stream ASCII data, 2-15
zero device SYS call, 8-126

Magnetic tape, EOF label
EOF1, A-8t
EOF2, A-9t

(

Magnetic tape, EOV label

EOV1, A-8t
EOV2, A-9t

Magnetic tape, non-file-structured
COUNT option, 2-18
read and write access, 2-17
record shorter than buffer, 2-18
RECORDSIZE option, 2-18
retaining MODE value after CLOSE, 2-18

Magnetic tape file
example of reading, 2-31
example of writing, 2-31
extending, 2-10
file-structured, 2-5,2-8
file-structured CLOSE, 2-16
file-structured OPEN, 2-16
non-file-structured CLOSE, 2-17
non-file-structured OPEN, 2-16
reading non-file-structured, 2-32
terminate processing, 2-16

Magnetic tape file characteristics word, 2-25t
Magnetic tape header label

HDR1, A-6t
HDR2, 2-13, A-7t

Magnetic tape status word, 2-24t
testing bits, 2-24

MAGTAPE function, 2-18
backspace, 2-21
codes, 2-19t
End-of-Volume Labels, 2-26
Error Condition Acknowledged, 2-27
Extended Set Density Function, 2-27
format, 2-18
function codes, 2-19
in processing end-of-tape, 2-15
off-line, 2-20
return file characteristics, 2-25
rewind, 2-20
rewind on CLOSE, 2-26
set density, 2-22
set parity, 2-22
skip record, 2-20
SPEC% function alternate, 2-29
summary, 2-19
tape status, 2-24
write tape mark, 2-20

Mask
privilege, 1-14

Master terminal, 4-2, 4-3
CtrVC on, 4-5
CtrVZ on, 4-5
declaring a field, 4-13
establishing, 4-2
input, 4-4
output, 4-3

Memory, 8-16
change a word in monitor, 8-85
clearing current program from, 8-16
escape sequence to, 4-21
exit and clear, 8-16
lock job in, 8-59
poke, 8-85
protection from CtrVC abort, 8-84
unlock job in, 8-59

Message
assigning buffer, 9-19
buffer space for, 9-9

Message (Cont.)

data area, 9-2
example of receive, 9-22
local, 9-1
parameter area, 9-2
processing, 9-1
processing large, 9-19
queue to DMC11/DMR11, 6-6
receive a, 9-13
transmission of complete, 8-86

Modem
and LAT, 4-42
data forced to hung up, 8-87
permanent characteristics, 8-144

MODE option
terminal control with, 4-6

MODE values, card reader, 5-4t
MODE values, disk

access to bad block information, 1-22
appending data, 1-26
conditionally contiguous, 1-28
contiguous file, 1-27
directory placement, 1-31, 1-32
extending files, 1-27
file update, 1-24
guarded update, 1-26
non-file-structured block access, 1-22
no supersede, 1-29
open for update, 1-33
random caching, 1--30
read only, 1-32
read regardless, 1-32
sequential caching, 1-31
table of, 1-24t
tentative file, 1-28
writing UFO, 1-33

MODE values, flexible diskette, 1-39t
block mode 1/0, 1-39
sector mode 1/0, 1-40

MODE values, line printer, 3-21
form feed, 3-4
lower to upper case, 3-5
nonstandard forms, 3-4
skipping perforations, 3-5
suppressing form feed, 3-6
o to 0, 3-5
truncating lines, 3-5
using FILESIZE modifier, 3-3t

MODE values, magnetic tape, 2-5, 2-6t, 2-9t
ANSI format search, 2-10
appending data, 2-10
CLOSE EOF, 2-10
DOS format search, 2-10
label search, 2-7
non-file-structured, 2-17
override rewind, 2-7
overwrite files, 2-9
rewind on CLOSE, 2-7
tape rewind, 2-7
write label record, 2-9

MODE values, pseudo keyboard
detach job, 4-31
kill job, 4-31

MODE values, terminal, 4-5t, 4-6
echo control, 4-8
prevent interrupt, 4-14
RUBOUT, 4-15

Index-11

MODE values, terminal (Cont.)

suppress CRllF, 4-8
transparent control character output, 4-25
XON/XOFF, 4-15

Monitor
CCl command parsing, 11-2, 11-3
change a word in memory, 8-a5
changing date, 8--75
examine with PEEK, 8--210
fixed locations, 8--211 t
job priority, 8--77
read/write area, size, 1-5
scheduling jobs, 8--77

Monitor code, 1-2
Monitor directives, F-1t
Monitor file, 1-9
Monitor overlay code

loading, 8--206
removing, 8--206
returning status, 8--206

Monitor queues, 8--77
Monitor save image library file, 1-5
Monitor tables

get - part I, 8-a8
get - part II, 8--77
get - part III, 8-35

MOUNT command, 2-3
MSB (Most Significant Bits), 8--18
Multicast addressing, 7-4, 7-10

broadcast address, 7-4
group address, 7-4

Multiple access, 7-1
Multiple sessions, 4-38
Multiterminal

input from, 4-4
RECORD values, 4-4t
stall on input, 4-4

Multiterminal service, 4-2
binary data, 4-3
input, 4-4
operations, 4-13
output, 4-3
rule, 8--12

Multivolume magnetic tape, 2-26, A-3

N
/NAME

PBS data field, 10-8
Names

reserved, 9-7t
Network calls, 9-1
Network job, 9-1
Network message

parameter area, 9-2
NO ESC SEQ mode, 4-16
NONAME, exit and set up, 8--16
/[NO]NOTIFY

PBS data field, 10-15
NPR, Non-Processor Request, 6-1
NSP, DECnetiE Network Service Protocol, 6-1
Null device, Nl:

as a debugging aid, 1-44
assigning, 1-44
default buffer size, 1-44
in message send/receive, 1-44
read access, 1-44

Index-12

Null device, Nl: (Cont.)

sharing, 1-44
write access, 1-44

Number
converting to Radix-50 format. 8--25

o
ODT

submode, 8--13
Off-line

MAGTAPE function, 2-20
OMS

See Operator/Message Services
OPEN FOR INPUT statement

file-structured magnetic tape, 2-5, 2-7
OPEN MODE, caching with, 1-30
OPEN modes, 4-45
OPEN statement, 7-5, 7--f3

for DMC11/DMR11, 6-1
for non-file-structured disk, 1-19

Operator/Message Services, 10-1
Options

BLOCK, 1-21
RECORDSIZE, 1-26

Output buffers
clearing all pending line printer, 3-7

OUTPUT MODE values
magnetic tape, 2-9t

Overflow characters
deletion sequence, 4-11
keypunch mode, 4-11
normal mode, 4-11

Overlay code, 1-5
creating a file for, 1-5

OVERSTRIKE mode, 4-44
OVR.SYS file, 1-5
/OWNER

PBS data field, 10-9

p
Pack attributes

returning, 8--48
Pack cluster, 1-2
Pack cluster size, 1-3
/PAGE_LlMIT

PBS data field, 10-10
Paint character, 4-8, 4-12

default, 4-12
Paper tape reader

binary data from, 4-6
/PARAMETERS

PBS data field, 10-12
Parameter string, 8--21

building, 8--21
portions not used, 8--22

Parity
changing default, 2-22
error handling, 2-29
magnetic tape, 2-17
magnetic tape defaults, 2-3
set with MAGTAPE fUnction, 2-22

Parity bit
in echo control, 4-9
output

generating, 8--143

Parity bit
output (Cont.)

setting, 8---143
Password, 1-9,1-9t

keeping confidential, 8---13
storage, 1-9
SYS call to set, 8---112, 8---113, 8---115
verifying, 8---101

PBS
See PrinVBatch Services

PBS data field, 10--8t
IAFTER, 10--10
ASCII file specification, 10--15
binary file specification, 10-16
ICONVERT flag, 10--17
ICOPIES, 10--17
ICPU_LlMIT, 10--11
IDElETE flag, 10--17
IFEED flag, 10-18
file qualifier fields, 10--7
file qualifiers, 10-7
IFLAG_PAGES flag, 10-18
IFORMS, 10-10
IHOlD flag, 10--12
IJOB_COUNT, 10-9
ILOG_DELETE flag, 10--14
ILOG_FILE Iile specification, 10-13
ILOG_FllE flag, 10--12
ILOG_QUEUE flag, 10--13
ILOG_QUEUE name, 10-14
INAME, 10--8
I[NO]NOTIFY, 10-15
IOWNER, 10-9
IPAGE_LlMIT, 10-10
IPARAMETERS, 10--12
IPRIORITY, 10-9
IQUEUE, 10--8
ITIME_LlMIT, 10--11
ITRUNCATE flag, 10-18
IWRAPflag, 10-19

PBS user request packet
data buffer, 10--7

PEEK function, 8-210
executing, 8-210

Physical addresses, 7-4,7-6,7-10
Ethernet, 7-3

Physical link layer, 7-2
PIP system program, 2-1,2-13
PK device, 4--31
Placed bit, 8--45

resetting for file, 8--41
setting for file, 8-41

Poke memory, 8--85
Port, LAT, 4--38
Portal, 7-3, 7-6
POSITION option

ANSI magnetic tape, 2-4, 2-11
IPOSITION switch, 1--8
PPN (Project-Programmer Number), 8-23
PrinVBatch Services, 10-1

data buffer, 1 0--7
data field layout, 10-6

Print operation
terminating, 3-7

PRINT statement
declaring a field, 4--12
for magnetic tape, 2-14,2-15

Priority
changing, 8-76

IPRIORITY
PBS data field, 10--9

Private delimiter, 4--25,8-144
characteristics, 4--26
declaring, 4--26
defining, 4--25
defining with .SPEC, 4--26
defining with SYS call, 4--26
multiple, 4-26
processing binary mode, 4--26
programming hints, 4--27
using, 4--27, 8-144
using on data entry terminal, 4--25

Private disk
advantages, 1-34
file on, 1-34

Privilege, 1-10, 1-10t
checking during program access, 1-18
clearing current, 8---191
converting mask to name, 8-195, 8-197
converting name to mask, 8-195,8-196
drop temporary, 8-57
masks, 1-14
multiple, 1-10
reading current, 8-191
regain temporary, 8-57
send, by job number, 9-13
send, by logical name, 9-13
setting current, 8-191
SYS calls, 1-19
third-party checking, 8-194
using in applications, 1-16,1-17,1-18

Program
privilege checking, 1-18
privileges on exit, 1-18
running by CCl command, 11-1
running under a controlled job, 4--34

Program execution, CtrllC immunity, 8-84
??Program lost-sorry error

causes, C-21
description, C-21

Project-programmer number, 1-8
assign user logical, 8-122
deassign a, 8-124
disassociate from job, 8-104
file name string scan, 8-29
finding current, 8-211
in SYS call, 8-23
wildcard lookup, 8-188

Prompt message, exit with no, 8-14
Protection code

assign user, 8---122
deassign user, 8-124
DOS label magnetic tape, A-3
file name string scan, 8-29
summary, 1-12t

Protocol types, 7-3, 7-6
padded, 7-6, 7-7
unpadded, 7-6, 7-7

Pseudo keyboard, 4-29
accessing, 4--31
and sleeping job, 11-7
controlled job, 4--29
controlling job, 4--29
creating controlled job, 4--31

Index-13

Pseudo keyboard (Cont.)

defining, 4-29
device designator (PK), 4-29
disable echo, 4-36
dynamic, 4-37
enable echo, 4-36
handler index, 4-36
in full duplex mode, 4-30
input, 4-31
input buffers, 4-29
operations, 4-30
output buffers, 4-29
output to, 4-32
programming example, 4-35
PUT statement actions, 4-34f
RECORD option, 4-34
special function SPEC%, 4-36
using, 4-29

Pseudo keyboard 1/0, 4-31
Pseudo keyboards

numbering, 4-28
Public structure, 1-9

open a file on, 1-.'33
Punched cards

ANSI code, B-1t
1401 code, B-1t
DEC026 code, B-1t
DEC029 code, B-1t

PUT statement, 7-9, 7-10
DMC11/DMR11, ~

Q

for magnetic tape, 2-14, 2-15
on pseudo keyboard, 4-32

IQUEUE
PBS data field, 10-8

R
Race condition, 4-5
Radix-50

character set, D-1
character set values, D-1t
converting numbers, 8-25
packing a string, 8-29
representing character string, D-1

REACT system program, 1-8,1-9
RECALL, 4-44
Receive call

SLEEP cancelled by, 4-1
Receive message

example, 9-22
SYS call, 9-13, 9-22

Receive message SYS call, 9-19
Receiver

declaration, 9-1
example of declaration, 9-21
ID blocks, 9-6
names, 9-7
remove, 9-20
remove example, 9-25

Receiver sleep
awaken from, 9-18
job in, 9-18

Record
skip on magnetic tape, 2-20

Index-14

Record format
specifying on ANSI tape, 2-11

RECORD option
flexible diskette, 1-.'39
for DMC11/DMR11, 6-2
line printer, 3-6

Records, variable length
magnetic tape, 2-12

RECORDSIZE option, 1-26, 1-.'37
ANSI magnetic tape, 2-13
DOS magnetic tape, 2-4,2-11
magnetic tape, 2-8
non-file-structured disk, 1-22
non-file-structured magnetic tape, 2-18

RECORD values, card reader, 5-4t
RECORD values, flexible diskette

block mode 1/0, 1-41
logical record zero, 1-41
write Deleted Data Mark, 1-41

RECORD values, line printer, 3-6t
binary output, 3-8
clear buffers, 3-7
delay return, 3-7
no stall option, 3-7,3-8
print over perforations, 3-7
truncate long lines, 3-8

RECORD values, terminal
conditional input, 4-1
disable formatting, 4-6
multiple service, 4-2
multiterminal, 4-4t
transparent control character output, 4-25

RECOUNT
use on card reader input, 5-1,5-2

RECOUNT variable, 4-4
REFRESH initialization option, 1-2, 1-4, 1-9
Remove receiver SYS call, 9-1,9-20

example, 9-25
REORDR, system utility, 1-34
Reserved names, 9-7t
Resident library

add, 8-65
characteristics, 8-65
control, 8-73
CSP100.LlB, 1-6
default protection, 8-65
fixed, 8-67
for system programs, 1-6
protection code, 8-65
remove, 8-68
restricted floating, 8-67
unload, 8-69
unrestricted floating, 8-67
using, 8-65

Retrieval pointers, updating, 1-27
Return file characteristics

MAGTAPE function, 2-25
Return LAT port characteristics, 8-176
Return LAT port status, 8-173
Rewind

MAGTAPE function, 2-20
Rewind on CLOSE

MAGTAPE function, 2-26
Rewind tape, 2-7
RMSBCK utility program, 2-1
RMSRST utility program, 2-1
RSTS/E errors, C-1

(

RSTS/E monitor, files, 1-8
RSTS/E system, access to, 1-9
.RTS file, 1-2, 1-5
RUBOUT, as a delimiter, 4-15
Run burst

and CPU time, 8-76
changing, 8-76

RUN command
alternatives, 11-1

Run priority, set special, 8-57
Run time, 1-9t

allocating, 8-76
Run-time system, 8-44

add, 8-61
associate with a file, 8-73
auxiliary, 1-5, 8-73
characteristics, 8-61
control, 8-73
description block, 8-63
establishing private default, 8-16
load address, 8-61
name field, 8-45
name field change, 8-41
remove, 8-63
temporary switch, 8-16
unload, 8-64

Run-time system code, 1-2

s
SAT, 1-2
SATT.SYS, storage allocation file, 1-2, 1-8
SAVE/RESTORE system program, 2-1
Sector mode 110, 1-40, 1-42
Send/Receive

and EMT logging, G-1
call argument length, 9-2
data passed, 9-26
data returned, 9-26
examples, 9-21
format of SYS calls, 9-2
function, 9-1
function code, 9-2
obsolete number 18 call, 9-2
sender selection summary, 9-19t
SYS calls, 9-21

Send/Receive data
summary, 9-26f

Send local data message SYS call
example, 9-21

Send local data message with privilege mask SYS call,
9-12

Sessions, multiple, 4-38
SET/ACCOUNT command, 1-9
SET TERMINAL command

/INQUIRE, 4-43
SHOW ACCOUNT command, 1-9
.SIL file, 1-2
Single volume magnetic tape, A-3
/SIZE switch, in CCL command, 11-2
Skip record

MAGTAPE function, 2-20
Slave terminal, 4-2, 4-3

control characteristics, 4-8
controlling, 4-2
CtrVC on, 4-5
CtrVZ on, 4-5

Slave terminal (Cont.)

declaring a field, 4-13
establishing, 4-2
input, 4-4
output, 4-3
terminal as, 4-2

Sleep, conditional, 11-7
SLEEP statement, 11-6

conditional, 11-7
terminals, 4-1

Small buffer pool
using in cache, 8-154

Snap shot dump
SYS call for, 8-41

SPEC% function
disk, 1-36
flexible diskette, 1-42
handler index, E-1
line printer, 3-9
magnetic tape, 2-29
MAGTAPE function alternate, 2-29
pseudo keyboards, 4-36
terminals, 4-27

cancel CtrllO, 4-27
cancel type ahead, 4-27
clear private delimiters, 4-27
set MODE for echo, 4-27
set MODE for ODT, 4-27
set MODE for tape, 4-27

.SPEC directive
defining private delimiters, 4-26

.SPEC functions, 7-5, 7-10, 7-11
Spooling, SYS call, 8-37

monitor actions, 8-39
restrictions, 8-39

Spooling files
SYS call for, 8-37

SPR (Software Performance Report), C-2, C-22
guidelines, C-22
information on a, C-22

Stall/unstall system
SYS call for, 8-193

START.COM file, 1-2
START option, 1-1
Statement

CLOSE, 1-25
GET, for magnetic tape, 2-8
OPEN, for non-file-structured disk, 1-19
PRINT, 4-12
PUT, 4-32
SLEEP, 4-1
UNLOCK, 1-25

Statistics
get open channel, 8-81

Status
check line printer, 3-9
determining disk pack, 8-97
determining terminal, 8-97
DMC11/DMR11 information, 6-3
returning for magnetic tape. 2-24

STATUS variable, 1-33
after CCl entry, 11-6
conditions for setting, 8-34

Status word
magnetic tape, 2-24t

Storage allocation file, SATT.SYS, 1-2
Storage allocation table, 1-2

Index-15

Storage Allocation Table (SAT), 8-100
Storage of accounting data, 1-9
Stream ASCII I/O

magnetic tape, 2-4
Streaming tape drives, 2-5
String

extract from data area, 8-15
load in data area, 8-16
parameter, 8-21
target, 8-21

SWAP% function, 8-23
reversal of bytes, 8-231

SWAP.SYS file, 1--6
Swap files, 1-6,8-179

adding, 1-8
creating optional, 1--6
device as, 1-7
file as, 1-6
naming, 1--6
optimally positioning, 1-8
removing, 1-8
specifying disk as, 8-179
specifying file as, 8-179

SWAP MAX, 8-77
value, 8-77

Swapping
preventing unnecessary, 8-59

Swap times, for disk types and job sizes, 1-7t
Switch

/POSITION, 1-8
Switches, in file

file name string scan, 8-29
SYS call, 8-3t to 8-4t

accounting dump, 8-74
account number lookup on index, 8-188
add a resident library, 8--65
add a run-time system, 8-61
add CCl, 8-55
add new logical name, 8-158
add system files, 8-177
allocate/reallocate device, 8-119
assign user logical, 8-121
associate fun-time system, 8-73
attach job, 8-106
broadcast to a terminal, 8-86
cancel ali type ahead, 8-17
cancel CtrVO effect, 8-11
cancel type ahead, 4-13
change disk logical name, 8-161
change disk quota, 8-112,8-113
change expiration date, 8-112, 8-113
change file characteristics, 8-79
check file access rights, 8-195
clear current privileges, 8-191
convert privilege mask to name, 8-197
convert privilege name to mask, 8-196
create/delete a virtual disk, 8-71
create dynamic region, 8--69
create user account, 8-90
creating a job, <h31
CtrVC trap enable, 8-83
date and time changer, 8-75
date and time conversion, 8-156
deallocate all devices, 8-124
deallocate device, 8-123
deassign user logical, 8-123
declare receiver, 9-1, 9-2

Index-16

SYS call (Cont.)

delete account attributes, 8-54
delete CCl, 8-55
delete user account, 8-96
detach job, 8-110
directory lookup on index, 8-133,8-134
disable further logins, 8-89
disable terminal, 8-117
disable terminal echo, 8-13
disk directory lookup by file name, 8-137
disk pack status, 8-97
disk wildcard directory lookup, 8-138
drop temporary privilege, 8-57
enable/disable cache, 8-154
enable further logins, 8-90
enable single character input, 8-13
enable terminal echo, 8-12
enter tape mode on terminal, 8-12
execute CCl command, 8-19
exit and set up NONAME, 8-16
exit with no prompt, 8-14
file name string scan, 8-25, 8-27
file utility, 8-41
force data to terminal, 8-87
get core common string, 8-15
get monitor tables part I, 8-88
get monitor tables part II, 8-77
get monitor tables - part III, 8-35
get open channel statistics, 8-81
hang up a dataset, 8--81
job creation, 8-182
job scheduling, 8-76
kill a job, 8-116
list logical names, 8-162
list privilege related, 1-19
list system files, 8-181
list user logical, 8-122
load monitor overlay code and return status, 8-206
lock/unlock job in memory, 8-59
login, 8-101
logout, 8-104
ODT submode, 8-13
open next disk file, 8-198
poke memory, 8-85
priority changer, 8-76
put core common string, 8-16
read/reset accounting data, 8-127
read account attributes, 8-50
read accounting data, 8-127
read current privileges, 8-191
read file attributes, 8-47
reattach job, 8-107
receive message, 9-13,9-19
receive message example, 9-22
regain temporary privilege, 8-57
remove a resident library, 8--68
remove a run-time system, 8-63
remove logical name, 8-160
remove monitor overlay code, 8-206
remove receiver, 9-1, 9-20
remove receiver example, 9-25
remove system files, 8-180
return error message, 8-118
return information on last opened file or device,

8-18
return job status, 8-189
return pack attributes, 8-48

(
\

SYS call (Cont.)

run burst changer, 8-76
send/receive, examples, 9-21
send local data message, 9-1
send local data message example, 9-21
send local data message with privilege mask, 9-12
set current privileges, 8-191
set device characteristics, 8-201
set line printer characteristics, 8-203
set logins, 8-60
set password, 8-112,8-113,8-115
set special run priority, 8-57
set system defaults, 8-205
set terminal characteristics, 8-140,8-148
size maximum changer, 8-76
snap shot dump, 8-41
special shutup logout, 8-73
spooling files, 8-37
stalVunstall system, 8-193
swap console, 8-109
terminal status, 8-97
third-party privilege check, 8-194
unload a resident library, 8-69
unload a run-time system, 8-64
verify password, 8-101
write account attributes, 8-53
write file attributes, 8-48
zero a device, 8-125

SYS calls, 8-2
caching with, 1--30
corresponding monitor directives, F-1t
format, 8-2
format of Send/Receive, 9-2
function code format, 8-2
privileges required, 8-2
to file processor, 8-15
to FIP, 8-27
using, 8-2

SYS calls to FIP, 8-4t to 8-11t, 8-21
integer numbers, 8-24
notations used, 8-23
project-programmer number, 8-23
references used, 8-23
unpacking returned data, 8-23
unsigned integer, 8-24
using, 8-21

SYS system function codes, 8-3t to 8-4t
System

access to, 1-8
job logged off, 8-73
setting defaults, 8-205
shutting down, 8-73

System account, 1-1
System disk, 1-9
System files

adding, 8-177
creating, 8-179
listing, 8-181
planning, 8-179
removing, 8-177,8-180,8-181

System initialization code, 1-2
System library account, 1-1

access during system start-up, 1-1
contents, 1-1

System logical names, 8-157
System operation

adjusting, 8-181

System overlay file, 1-5
System program

ANALYS, 8-41
BACKUP, 2-1
FIT, 1-39
FLINT, 1--39
LOGIN, 1-8
LOGOUT, 1-9
PIP, 2-1,2-13
REACT, 1-8, 1-9
REORDR, 1--34
running, 11-1
SAVE/RESTORE, 2-1

System receive buffers, 7-7, 7-8
System start-up procedure, 1-1

T
Tab

enable horizontal, 8-140
enable vertical, 8-140

Tape
logical end of, 2-9
read access, 2-17
rewinding, 2-7
write access, 2-18

Tape mode
enter on terminal, 8-12
set on terminal, 4--36

Tape status
MAGTAPE function, 2-23

Target string, 8-21
TE10 magnetic tape

MODE for 9-track, 2-17
TE16 magnetic tape

MODE for 9-track, 2-17
TELEX, 8-153
Temporary privilege

drop permanently, 8-57
drop temporarily, 8-57

Tentative file, 1-28
closing, 1-28
creating, 1-28
directory entries, 1-28
multiple copies, 1-28
opening, 1-28
renaming, 1-28

Terminal, 4-1
attach detached job to, 8-111
attributes, 4-43
binary input from, 4-6
binary output to, 4-6
broadcast to, 8-86
cancel CtrVO effect on, 8-11
conditional input from, 4-1
control of several, 4-2
control with MODE option, 4-6
CtrllC at, 4-14
CtrllC input from, 8-85
data forced to disabled, 8-87
data to disabled, 8-86
deassigning the console, 8-111
declare a field on, 4-11
default buffer size, 4-6
detaching from, 8-111
difference between VT100 and VT52, 4-17
disable, 8-117

Index-17

Terminal (Cant.)

disable echo, 4-9,8-13
disable scope, 8-141
echo control, 4-8
enable echo, 8-12
enable scope, 8-141
enable XONXOFF, 4-15
end-of-file on, 4-8
enter tape mode on, 8-12
escape sequence to, 4-16
establish as console, 8-107
force input to, 8-87
forcing interactive input, 4-2
handling overflow, 4-11
locally echo, 8-141
losing data, 4-6
master, 4-2,4-3
MODE values, 4-6
multiple service, 4-2
multiple service rule, 8-12
ODT submode on, 8-13
open in echo control mode, 4-11
override default buffer size, 4-6
paint characters, 4-8
prevent CtrVC interrupt, 4-14
prevent hibernation, 4-15
processing, 4-1
prompt on screen, 4-8
reserved to a job, 4-2
same function on several, 4-2
set advanced characteristics, 8-148
set characteristics, 8-140, 8-148
slave, 4-2, 4-3
sleep operation, 4-1
special use of RUBOUT, 4-15
suppress CRlLF, 4-8
synchronization protocol, 8-143
type ahead, 4-8
video, 4-8

Terminal, detached
attaching to, 8-111

Terminal, SPEC%, 4-27
Terminal,VT100

ANSI-compatible mode, 4-17
escape sequences, 4-17
VT52-compatible mode, 4-17

Terminal, VT200-family
escape sequences, 4-17

Terminal, VT300-family
escape sequences, 4-17

Terminal attributes
INSERT mode, 4-44
LINE_EDITING, 4-44
OVERSTRIKE mode, 4-44
RECALL, 4-44

Terminal buffer
clearing input from, 8-17

Terminal characteristics
current and permanent, 8-147,8-152
determining current, 8-146,8-152
setting, 8-140, 8-148
setting advanced, 8-148

Terminal echo, 8-141
Terminal input

cancellation of SLEEP, 4-1
less than a line, 8-13

Terminal output, no stall option, 4-2

Index-18

Terminal servers, 4-38
Terminal service, 4-3

from paper tape reader, 4-6
from terminal, 4-6
output, 4-3, 4-6
transfer, 4-7

Terminal status, 8-97
Time conversion

SYS call for, 8-156
Time of day, changing, 8-75
/TIME_LIMIT

PBS data field, 10-11
TK50 magnetic tape, 2-5
Trapping, of CtrVC, 8-83
!TRUNCATE flag

PBS data field, 10-18
TS03 magnetic tape

MODE for 9-track, 2-17
TS05 magnetic tape

MODE for 9-track, 2-17
TS 11 magnetic tape

MODE for 9-track, 2-17
TU10 magnetic tape

MODE for 9-track, 2-17
TU16 magnetic tape

MODE for 9-track, 2-17
TU45 magnetic tape

MODE for 9-track, 2-17
TU77 magnetic tape

MODE for 9-track, 2-17
TU80 magnetic tape

MODE for 9-track, 2-17
TWX, 8-153
Type ahead, 4-45

cancel all, 8-17
cancelling, 4-23

u
UFD

cluster size, 1-4
contents, 1-8
marked for caching, 1--30
placed bit, 8-45
positioning, 8-90
preextending, 8-90
setting cluster size, 8-90
writing, 1-33

Underscore, in logical device name, 8-28
Unlocked job

procedure for, 8-59
UNLOCK statement, 1-25
Unsigned integer, convert to two bytes, 8-25
Update mode, for disk, 1-24
User logical

assign, 8-121
assign device name, 8-122
assign project-programmer number, 8-122
deassign, 8-124
list, 8-122
listing, 8-123
remove, 8-123,8-124

User request data fields
PBS, 10-8t

User request packet, PBS
data buffer, 10-7

(

v
Variable length records, magnetic tape, 2-12
Variables

ERR, C-2
STATUS, 1--33

Video terminal, 4-8
Virtual disk, 1--35, 8-71

advantages, 1--36
limitations, 1--36
using, 1-35

Volume label, A--3
ANSI magnetic tape, A-5

VT100
ANSI-compatible escape sequences, 4-19t, 4-20
ANSI-compatible mode, 4-17
escape sequences, 4-17
restrictions in VT52-mode, 4-17
VT52-compatible mode, 4-17

VT200
ANSI-compatible escape sequences, 4-19t

VT200-family
escape sequences, 4-17
restrictions in VT52-mode 4-17

VT300-family ,
escape sequences, 4-17
restrictions in VT52-mode, 4-17

w
WCB information, 8-83

Wildcard
disk directory lookup, 8-138

Wildcard lookup, 8-188
Wildcard specifications

files matching the, 8-138
Window turning, 1-34

reducing, 1--34
!WRAP flag

PBS data field, 1 0--19
Write tape mark

MAGTAPE function, 2-20

x
XBUF (Extended Buffer Pool), 1-5, 1--30

caching use of, 8-155
contents, 1-5
estimating size, 1-5
in message send/receive, 9-9

Xerox Corporation, 7-2
XM: device, 6-1
XOFF

define, 8-145
disable, 8-141
enable, 8-141

XON
define, 8-145
disable, 8-141
enable, 8-141

XONXOFF processing, 4-15

Index-19

(

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing
your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using a 1200- or 2400-baud
modem. If you need assistance using the Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internal l

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital subsidiary

Digital Equipment of Canada
Attn: DEC direct Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

USASSB Order Processing - WMOlE15
or
U.S. Area Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 01473

lFor internal orders, you must submit an Internal Software Order Form (EN-01740-07).

I
\

(

Reader's Comments RSTS/E Programming Manual
AA-EZ09B-TC

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments o~ an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) 0
Completeness (enough information) 0
Clarity (easy to understand) 0
Organization (structure of subject matter) 0
Figures (useful) 0
Examples (useful) 0
Index (abHity to find topic) 0
Page layout (easy to find information) 0

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name!l'itle

Company

Mailing Address

Good Fair Poor

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

Dept.

Date

Phone

Do Not Tear - Fold Here and Tape -I

~D~DD~DTM

BUSINESS REPLY MAIL
FIRST- CLASS MAil PERMIT NO.33 MAYNARD MASS.

POSTAGE Will BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
CORPORATE USER PUBLICATIONS
CONTiNENTAL BOULEVARD MK01-2/E12
PO BOX 9501
MERRIMACK NH 03054-9982

III. I I I I II , II " I I I, I, I I" II, III I, I, I I, , I. I , 1.111 II I I

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

I ________ Do Not Tear - Fold Here - _ - - ____________________ ~

I
I
I
I
I
I
I
I
1(,)

c:

{

Reader's Comments RSTS/E Programming Manual
M-EZ09B-TC

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) 0
Completeness (enough information) 0
Clarity (easy to understand) 0
Organization (structure of subject matter) 0
Figures (useful) 0
Examples (useful) 0
Index (ability to find topic) 0
Page layout (easy to find information) 0

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

NametTitle

Company

Mailing Address

Good Fair Poor

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

Dept.

Date

Phone

Do Not Tear - Fold Here and Tape -I
NO POSTAGE

~D~DDmD ™ N'~~~~~i~Y

BUSINESS REPLY MAIL
FIRST- CLASS MAIL PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
CORPORATE USER PUBLICATIONS
CONTINENTAL BOULEVARD MK01-2/E12
PO BOX 9501
MERRIMACK NH 03054-9982

111"",11,11"'11,1"1"11,1,,1,1,,1,,1,,,1,111,,.1

UNITED STATES

I ________ Do Not Tear - Fold Here - - - _____________________ ,

I
I
I
I
I ,

Printed in U.S.A.

