
PDP-11 SORT/MERGE
User's Guide
Order Number: AA-CI67B-TC

PDP-11 SORT/MERGE
User's Guide
Order Number: AA-CI67B-TC

August 1990

This manual describes the use of the PDP-11 SORT/MERGE Utility to reorder and
combine files on RSTS/E, RSX-11M, RSX-11M-PLUS, and Micra'RSX.

Revision/Update Information: This revised manual supersedes the
PDP-11 SORT/MERGE User's Guide,
Version 3.0. (Order No. AA-CI 67A-TC)

Operating System and Version: Micra'RSX 4.2 or a higher version
RSTS/E 10.0 or a higher version
RSX-11 M 4.5 or a higher version
RSX-11M-PLUS 4.3 or a higher version

Software Version: PDP-11 SORT/MERGE Version 3.1

digital equipment corporation
maynard, massachusetts

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation.

Digital Equipment Corporation assumes no responsibility for any errors that may appear in
this document.

Any software described in this document is furnished under a license and may be used
or copied only in accordance with the terms of such license. No responsibility is assumed
for the use or reliability of software or equipment that is not supplied by Digital Equipment
Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to re­
strictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1984, 1990.

All rights reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request your critical
evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

ALL-IN-1 EduSystem RT
DEC lAS ULTRIX
DEC/CMS MASSBUS UNIBUS
DEC/MMS PDP VAX
DECnet PDT VAXcluster
DECmate P/OS VMS
DECsystem-10 Professional VT
DECSYSTEM-20 Q-bus Work Processor
DECUS Rainbow
DECwriter RSTS

~BmBDmD" DIBOL RSX

Contents

Preface. vii

Chapter 1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Chapter 2

2.1

2.2

2.3

2.4

Getting Started

Sorting Records .. .
1.1.1 The SORT Command

1 .1 .1 .1 Input and Output Files
1.1 .1 .2 Qualifiers and Switches

Identifying a Key Field for SORT/MERGE

Merging Records
1.3.1 The MERGE Command•.................

1.3.1.1 Input and Output Files
1.3.1.2 Qualifiers and Switches

Invoking the SORT/MERGE Utility from the MCR Command Line Interpreter ..

Default File-Name Extensions

Continuing a Long Command Line to a Second Line

Running SORT and MERGE Batch Jobs

Defining SORT and MERGE Operations

SORT and MERGE Commands
SORT

1-1
1-2
1-2
1-3

1-3

1-5
1-6
1-6
1-7

1-7

1-7

1-8

1-8

2-1
2-2

MERGE. 2-8

Specifying Key-Field Attributes
2.2.1 Order .. .
2.2.2 Type of Data

2.2.2.1 Size Limitations of Key Fields According to Data Type
2.2.2.1.1 Obtaining Size Information for Key Fields
2.2.2.2 Representing Data Other Than Character or ASCII in Input

Files
2.2.3 Collating Sequence
2.2.4 Specifying Key-Reid Information in MCR

Using Multiple Key Fields

Dealing with Equal Key Fields

2-14
2-14
2-15
2-16
2-17

2-17
2-17
2-18

2-18

2-19

iii

2.5 The Sorting Process.

2.6 Specifying File Attributes
2.6.1 Input File Attributes

2.6.1 .1 File Organization
2.6.1 .2 Record Format and Longest Record Length
2.6.1.3 File Size
2.6.1.4 File Shareability

2.6.2 Output File Attributes
2.6.2.1 File Organization
2.6.2.2 Record Format and Longest Record Length
2.6.2.3 File Size

2.7 Chaining to a SORT or MERGE Image (RSTS/E only)

2.8 Merging Flies .. .

2.9 Optimizing the SORT/MERGE Work Area

Chapter 3 Using a Specification File

3.1 Creating a Specification File

3.2 Processing a Specification File

3.3 Specification File Qualifiers

3.4 Identifying Record Fields
3.4.1 Specifying Key Fields
3.4.2 Formatting Data for the Output File
3.4.3 Defining and Using Conditions

3.4.3.1 Changing the Contents of a Field
3.4.3.2 Specifying Records for Inclusion or Omission
3.4.3.3 Representing Data Other Than Character or ASCII in

Conditions

3.5 Sorting Files with More than One Record Format

3.6 Specifying a Collating Sequence
3.6.1 Defining Your Own Collating Sequence
3.6.2 FOLD and TIE_BREAK Subqualifiers
3.6.3 Modifying the Collating Sequence
3.6.4 Example of a User-Defined Collating Sequence

3.7 Reassigning Work Files

3.8 Specifying a New Pad Character

3.9 Format of Qualifiers In a Specification File

3.10 Sample Specification File

iv

2-19

2-22
2-22
2-22
2-22
2-23
2-23
2-24
2-24
2-24
2-25

2-25

2-26

2-27

3-1

3-2

3-3

3-4
3-6
3-6
3-7
3-8
3-9

3-9

3-10

3-11
3-11
3-12
3-13
3-15

3-15

3-16

3-16

3-18

Chapter 4

4.1

4.2

4.3

404

405

4.6

Chapter 5

5.1

502

5.3

5.4

Using SORT and MERGE in a Program

language Support

Accessing Callable SORT and MERGE

Specifying Your Own Routines

Calling the SORT Subroutines
4.4.1 Using the File Interface
4.4.2 Using the Record Interface
4.4.3 Using Mixed-Mode Interface
4.4.4 Passing File Names and Initializing the Sort Process
4.4.5 Passing Records to SORT
4.4.6 Returning Records to Your Program
4.4.7 Sorting Records
4.4.8 Ending a Sort Operation

Calling the MERGE Subroutines
4.5.1 File Interface
4.5.2
4.5.3
4.5.4
4.5.5

Record Interface
Mixed-Mode Interface
Initializing the Merge Process
Sum mary of SORT Subroutine Calls

Task Building .. .
4.6.1 Overlay Descriptor Language Files
4.6.2 Task Building with User-Defined Routines
4.6.3 Usage of Logical Unit Numbers

Customizing SORT

SORT and MERGE Internal Operation
5.1.1 Initialization Phase
5.1.2 Sort Phase .. .
5.1.3 Merge Phase
5.1.4 Cleanup Phase

Understanding and Using SORT/MERGE Statistics
5.2.1 Using Statistics with Callable SORT/MERGE

Modifications the User Can Make
5.3.1 Work Files .. .
5.3.2 Input File Allocation
5.3.3 Output File Pre allocation
5.3.4 Process .. .

Modifications the System Manager Can Make

4-1

4-2

4-3

4-3
4-4
4-5
4-5
4-5

4-11
4-11
4-12
4-13

4-13
4-14
4-15
4-15
4-15
4-18

4-21
4-21
4-23
4-25

5-1
5-1
5-2
5-3
5-3

5-4
5-6

5-7
5-7
5-8
5-8
5-9

5-10

v

Appendix A Error Messages

Appendix B Sample Programs

B.1 BASIC-PLUS-2 Program Using the MERGE File Interface B-2

B.2 BASIC-PLUS-2 Program Using Both SORT and MERGE Mixed-Mode
Interfaces .. . B-3

B.3 COBOL-81 Program Using the MERGE Record Interface B-7

B.4 COBOL-81 Program Using the SORT Record Interface B-9

B.S FORTRAN Program Using the MERGE File Interface B-12

B.6 FORTRAN Program Using the SORT File Interface B-14

Appendix C DIGITAL Multinational and ASCII Collating Sequences

Index

Tables
2-1 SORT Processes . 2-20

4-1 SORT Subroutines . 4-4

4-2 Parameters for SRTINI. SRTINB. and SRTINC . 4-5

4-3 Parameters for SRTRLS. SRTRLB. and SRTRLC . 4-11

4-4 Parameters for SRTRTN. SRTRTB. and SRTRTC . 4-12

4-5 MERGE Subroutines .. 4-14

4-6 Parameters for MRGINI. MRGINB. and MRGINC 4-16

4-7 Summary of SORT Subroutine Calls for the File Interface. 4-18

4-8 Summary of SORT Subroutine Calls for the Record Interface 4-19

4-9 Summary of SORT Subroutine Calls for File-Interface Input and Record-Interface
Output . 4-20

4-10 Summary of SORT Subroutine Calls for Record-Interface Input and File-Interface
Output . 4-21

4-11 SORT/MERGE ODL Files . 4-22

A-1 SORT/MERGE Utility Error Messages . A-1

C-1 DIGITAL Multinational Collating Sequence. C-1

C-2 ASCII Collating Sequence . C-7

vi

Preface

This manual describes the use of PDP-ll SORTIMERGE to reorder and com­
bine files on the following systems: RSTSIE, RSX- llM, RSX-llM-PLUS, and
MicrdRSX.

Intended Audience

This manual is intended for all users of PDP-ll SORTIMERGE.

Conventions

The following conventions are used in this manual:

Conventions

[]

{ }

()

Color

Meaning

The symbol I CTRUx I indicates that you hold down the key labeled CTRL
while simultaneously pressing the specified letter key; for example,
I CTRUC I, I CTRUO I·
A symbol with an abbreviation indicates that you must press a key on
the terminal; for example, I RETU RN 1 and ~ indicate that you press the
RETURN key and the TAB key on your terminal.

Brackets usually indicate optional syntax. Brackets that are part of
directory names, however, do not indicate optional syntax.

Braces indicate that you may select only one of several choices.

A vertical ellipsis indicates that you can include additional syntax
between the listed elements.

Parentheses indicate that you must enclose the choices that you select
in parentheses.

Color is used to show user input.

vii

Chapter 1

Getting Started

PDP-ll SORTIMERGE is a utility that accepts as input up to 10 RMS-ll
formatted files and produces as output one reordered RMS-ll formatted file.
Records may be sequenced in ascending or descending order by as many as 16
key fields, with a total key-field size of 512 bytes. (The key field is the field of a
record on which SORTIMERGE performs an operation.) The utility supports all
PDP-ll RMS files.

SORT reorders data, and MERGE combines data. For example, with SORT
you can arrange a computer file of employee records by employee name or by
identification number. With MERGE you can combine two or more files into a
single file .

This chapter shows the syntax required for simple sort and merge operations. It
includes formats for both the DIGITAL Command Language (DCL) and Monitor
Console Routine (MCR) command line interpreters.

1.1 Sorting Records

PDP-ll SORT reads records from as many as 10 input files, sorts them according
to the field or fields you specify, and generates one reordered output file . Suppose
a file named DATA.DAT contains the data records of a magazine subscription list.
One record exists for each subscriber, and each record has 5 fields, as follows:

• Name

• Street

• City

• State

• Expiration date of the subscription

Name

Yellen Mark
Germont Alfredo
Thompson Lynda
Fallon Curtis
Tosca Floria
Weaver Stephen
Marsh Beverly
Ling Kemlo

Street

90 Lynwood Lane
15 Town House Dr
395 N Main St
56 Juniper Lane
108 Winfield Dr
72 Newton Ave
305 Cambridge St
81 River St

City State Exp Date

Westfield MA 901231
Waltham MA 910501
Easton MA 931130
Lenox MA 941101
Rome NY 920630
Hyde Park NY 940509
Pittsfield MA 901015
Belmont NY 941031

To create a new file with the subscription list ordered alphabetically by subscriber
name, use the SORT command as follows:

DCL> SORT DATA.DAT NAME.DAT
MCR> SRT NAME.DAT=DATA.DAT

Getting Started 1-1

The output file appears as follows:

Name Street City State Exp Date

Fallon Curtis 56 Juniper Lane Lenox MA 941101
Germont Alfredo 15 Town House Dr Waltham MA 910501
Ling Kemlo 81 River St Belmont NY 941031
Marsh Beverly 305 Cambridge St Pittsfield MA 901015
Thompson Lynda 395 N Main St Easton MA 931130
Tosca Floria 108 Winfield Dr Rome NY 920630
Weaver Stephen 72 Newton Ave Hyde Park NY 940509
Yellen Mark 90 Lynwood Lane Westfield MA 901231

The input file is DATA.DAT, and the output file is NAME.DAT. The entire file is
sorted by default in alphabetical order (A to Z), which is the default. The data
in DATA.DAT is arranged in field::; separated by space, such as Yellen Mark, 90
Lynwood Lane, and Westfield . The field according to which the data is sorted, in
this example the subscriber name, is the key field.

1.1.1 The SORT Command

The SORT command invokes the SORT Utility. It requires an input file name and
an output file name. The function of the command is modified by qualifiers and
subqualifiers that describe the key field, specify options, or define other aspects of
the sort operation or the input and output files . The format of the command line
is as follows:

DCl:

SORT {lqualifier:n/qualifier=(subqualifier, subqua/ifier:n)] input-file{lqualifier=(subqualifier)]
output-file{lqualifier=(subqualifier)]

MCR:

SRT [output-file[/switch:n/switch:subswitch:n]= input-fileVswitch:n])

1.1.1.1 Input and Output Files

The input file is the file to be sorted. SORT processes up to 10 input files and
places the sorted data in one output file in a single operation. If you have more
than 10 files to sort and you want to have the output data in a single file, you can
sort 10 files at a time and then use the MERGE command to create a single file
from the output files . If you do not supply an input file name, SORT prompts you
for it.

The output file is the file that SORT creates. It contains the sorted data from the
input file or files . You can specify only one name for the output file . If you do not
supply an output file name, SORT prompts you for it.

When you have more than one input file for a sort operation, use a comma to
separate the individual input file specifications. For example, if you have three
input files named SALESl.DAT, SALES2.DAT, and SALES3.DAT that you want
to sort into a single output file named SALES.DAT, use the following command
line:

DCL> SORT SALES1.DAT,SALES2.DAT,SALES3.DAT SALES.DAT
MCR> SRT SALES.DAT=SALES1.DAT,SALES2.DAT,SALES3.DAT

1-2 Getting Started

1.1.1.2 Qualifiers and Switches

DCL qualifiers and MCR switches following the command or file name allow you
to modify the sort operation, for example, by identifying key fields or specifying
the format of the input or output files. A slash (/) is the first character in the
name of every qualifier and switch. Both SORT and MERGE provide default
values for qualifiers. You need only use a qualifier when you want to override the
default value.

Subqualifiers, subswitches, or values following a qualifier or switch modify the
action of the qualifier or switch.

An equal sign (=) separates the DCL qualifier from the subqualifier and value,
as in IPROCESS=TAG, and IBUCKET_SIZE=10. If you use more than one
subqualifier, enclose them in parentheses and separate them by commas, as
in /KEY=(POSITION:10,SIZE:5). When a subqualifier takes a value, as in
/KEY=POSITION:lO, separate the subqualifier from its value with a colon (:).
You can use an equal sign instead of the colon between a subqualifier and its
value; however, it is good practice to use a colon in order to distinguish between
qualifiers and subqualifiers. The negative form of a qualifier consists of the
letters NO before the qualifier, as in /NOSTABLE.

MCR switches are two letters in length. A colon separates the switch from both
the subswitch and value, as in /CS:ASCII and IBU:10. A colon also separates the
subswitch and value, as in /FO:VARIABLE:71. The negative form of a switch in­
cludes a minus sign between the slash and the two-letter mnemonic (for example,
/-ST).

Chapter 2 lists and describes the SORT qualifiers and switches. Chapter 5
describes the qualifiers that you can use to customize SORT for your own envi­
ronment.

1.2 Identifying a Key Field for SORT/MERGE

On the magazine subscription list, we performed a sort operation that reordered
the file according to the field that occupies the first position in the record,
the default key field. Suppose, however, that you want to sort the magazine
subscription list by the expiration date. To do so, you must identify the key field.
This section describes how to identify key fields other than the default for the
SORT Utility. The procedure is the same for the MERGE utility, except that for
the MERGE Utility the default key field is the entire record.

Following is the DATA.DAT file again, this time with the fields numbered for
purposes of explanation.

Name street City State Exp Date
(1-19) (20-39) (40-51) (52-59) (60-65)

Yellen Mark 90 Lynwood Lane Westfield MA 941231
Germont Alfredo 15 Town House Dr Waltham MA 910501
Thompson Lynda 395 N Main St Easton MA 931130
Fallon Curtis 56 Juniper Lane Lenox MA 941101
Tosca Floria 108 Winfield Dr Rome NY 920630
Weaver Stephen 72 Newton Ave Hyde Park NY 940509
Marsh Beverly 305 Cambridge st Pittsfield MA 901015
Ling Kemlo 81 River St Belmont NY 941031

The numbers in parentheses indicate the position of each field in the record. For
example, the Name field begins at position 1 and ends at position 19. Its size
is 19: each position holds one character, and one character, including the space
character, is equivalent to 1 byte. (Note that this equivalent relationship between
characters and bytes is not true for non-ASCII numerical data, which is discussed

Getting Started 1-3

in Chapter 2. If you use the TAB character in a file, it is treated as a single
ASCII character.

The Expiration Date field begins at position 60 and its size is 6. You identify the
Expiration Date field as the key field by means of the DCL /KEY qualifier or the
MCR /KE switch. In DCL you also use two subqualifiers to the /KEY qualifier,
POSITION:n and SIZE:n, which indicate the position and size of the field, as
follows:

DCL> SORT/KEY=(POSITION:60, SIZE:6) DATA.DAT EXPDAT.DAT

The POSITION:60 subqualifier identifies the position of the first character in the
key field, and the SIZE subqualifier (SIZE:6) indicates the number of characters
in the key field.

In MCR you indicate the position and size of the key field by adding values to the
/KE qualifier. The position value comes after the colon and is separated from the
size value by a decimal point (.), as follows:

MCR> SRT EXPDAT.DAT=DATA . DAT/KE:60.6

Following is the EXPDAT.DAT file with the data arranged by expiration date.

Name Street City State Exp Date
(1-19) (20-39) (40-51) (52-59) (60-65)

Marsh Beverly 305 Cambridge St Pittsfield MA 901015
Germont Alfredo 15 Town House Dr Waltham MA 910501
Tosca Floria 108 Winfield Dr Rome NY 920630
Thompson Lynda 395 N Main St Easton MA 931130
Weaver Stephen 72 Newton Ave Hyde Park NY 940509
Ling Kemlo 81 River St Belmont NY 941031
Fallon Curtis 56 Juniper Lane Lenox MA 941101
Yellen Mark 90 Lynwood Lane Westfield MA 941231

The expiration dates are now in ascending order, beginning with the expiration
date that is earliest (has the lowest number) 901015, and ending with the date
that is latest (has the highest number) 941231. Note that you cannot use the
SIZE subqualifier with the DCL D_FLOATING and F _FLOATING data types
(discussed in Chapter 2), because these types of data have implicit sizes.

A primary key field is the first field by which records are sorted. However, if
some of your records have identical data in the primary key field, you may want
to specify a secondary key field. For example, suppose you want to arrange the
information in DATA.DAT by state. You choose the state field as the primary key
field, but five records have MA as the state and three have NY as the state. To
solve this problem, you can sort the records first alphabetically by state and then
alphabetically by name. The name field is the secondary key field. To specify a
secondary key field in DCL, use the /KEY qualifier twice. The first /KEY qualifier
specifies the position and size of the primary key field, and the second /KEY
qualifier specifies the position and size of the secondary key field, as follows:

To specify a secondary key field in MCR, you use a single IKE qualifier and add
a second colon and values after the position and size values specified for the first
key field.

DCL> SORT/KEY=(POSITION:52, SIZE:8)/KEY= (POSITION: 1, SIZE :19) DATA.DAT EXPDAT.DAT
MCR> SRT EXPDAT.DAT=DATA.DAT/KE:52.8:1.19

Following is the EXPDAT.DAT file with the names listed alphabetically by
Massachusetts subscribers, then alphabetically by New York subscribers.

1-4 Getting Started

1.3

Name Street City State Exp Date

Fallon Curtis 56 Juniper Lane Lenox MA 941101
Germont Alfredo 15 Town House Dr Waltham MA 910501
Marsh Beverly 305 Cambridge St Pittsfield MA 901015
Thompson Lynda 395 N Main St Easton MA 931130
Yellen Mark 90 Lynwood Lane Westfield MA 941231
Ling Kemlo 81 River St Belmont NY 941031
Tosca Floria 108 Winfield Dr Rome NY 920630
Weaver Stephen 72 Newton Ave Hyde Park NY 940509

Merging Records

The MERGE Utility combines files that have prp,viously been sorted by the
same field or fields specified in the merge operation. In addition, MERGE can
determine whether or not a file has been sorted according to a specified set
of keys. The MERGE Utility accepts up to 10 input files and combines them
according to the fields specified. Like SORT, MERGE generates a single output
file.

The following files, BILL1.DAT and BILL2.DAT, which have been sorted
alphabetically by name, are merged to create one output file, MAIL.DAT,
which contains all the records from both files. The following MERGE Utility
commands, containing the input and output file specifications, create the output
file MAIL.DAT:

DCL> MERGE BILL1.DAT,BILL2.DAT MAIL.DAT
MCR> MGE MAIL.DAT=BILL1.DAT,BILL2.DAT

BILL1.DAT
Coolidge Sue 98034
Erickson Sam 72931 MAIL.DAT
McKee Michael 64388

Brown Thomas
========> Coolidge Sue

BILL2.DAT Erickson Sam
Brown Thomas 23581 McKee Michael
Waters Mary 44567 Waters Mary
Woo Lee 99807 Woo Lee

23581
98034
72931
64388
44567
99807

In this example, no key field is specified, because the default behavior of the
MERGE command is to merge the entire record.

The following files, named PLANT1.DAT and PLANT2.DAT, contain quality­
control data from two plants in a manufacturing company:

PLANT1.DAT

Date Plant Part Qty Qty Percent
Code Num Manuf Rej Usable

(1-6) (11) (17-20) (25-28) (33-34) (42-45)

901109 1 0275 1000 37 96.3
901109 1 7820 1200 28 97.6
901109 1 2064 800 12 98.5
901109 1 4016 950 11 98.8
901109 1 3198 1500 11 99.3

PLANT2.DAT

Date Plant Part Qty Qty Percent
Code Num Manuf Rej Usable

(1-6) (11) (17-20) (25-28) (33-34) (42-45)

Getting Started 1-5

1.3.1

821109
821109
821109
821109
821109

2
2
2
2
2

4016
0275
2064
3198
7820

l300
700

1800
1650
1400

33
13
25
21
14

97.4
98.1
98.6
98.7
99.0

Each of the records in the two files contains six fields (Date, Plant Code, Part
Number, Quantity Manufactured, Quantity Rejected, and Percent Usable). Each
of the files has been sorted by the field containing the percent usable figure; this
field begins in position 42 and is 4 characters long.

To merge these files according to the Percent Usable field, use the following
command line:

DCL> MERGE/KEY=(POSITION:41,SIZE:4) PLANT1.DAT,PLANT2.DAT REPORT.DAT
MCR> MGE REPORT.DAT=PLANT1.DAT,PLANT2.DAT/KE:42.4

In this merge operation, the /KEY qualifier is required because the key field is
not the default key field, which in the MERGE Utility is the entire record. The
POSITION and SIZE sub qualifiers are required whenever you use the DCL /KEY
qualifier. Likewise, the postion and size values are required whenever you use
the MCR /KE: qualifier.

The following is the merged file, REPORT.DAT:

Date Plant Part Qty Qty Percent
Code Num Manuf Rej Usable

821109 1 0275 1000 37 96.3
821109 2 3198 l300 33 97.4
821109 1 7820 1200 28 97.6
821109 2 2064 700 13 98.1
821109 1 2064 800 12 98.5
821109 2 7820 1800 25 98.6
821109 1 0275 1650 21 98.7
821109 2 4016 950 11 98.8
821109 1 4016 1400 14 99.0
821109 2 3198 1500 11 99.3

The MERGE Command

The MERGE command invokes the MERGE Utility. It requires an input file
name and an output file name. The function of the command is modified by
qualifiers and subqualifiers that describe the key field, specify options, or define
other aspects of the sort operation or the input and output files. The format of
the command line, which is identical to that for SORT, is as follows:

DCl:

MERGE [/qualifier:n/qualifier=(subqualifier, subqualifier:nJ] input-fiIe[/qualifier=(subqualifierJ]
output-fife[lqualifier=subqualifier]

MCR:

MGE [output-fife=[lswitch/switch:n:subswitch:n] input-file[/switch:nJ)

1.3.1.1 Input and Output Files

The input file parameter identifies the file or files that you want to merge. In
a single operation, MERGE allows you to merge up to 10 presorted input files
into one output file . A comma must separate multiple input file names. The key
field specified must be the same in each of the input files. If you do not supply an
input file name, MERGE prompts you for it.

1-6 Getting Started

The output file parameter identifies the name of the file that MERGE creates;
this file contains the data from the input file or files. You can identify various
characteristics of the output file by using qualifiers, which are described in
Chapter 2. You can specify only one output file; if you do not supply an output file
name, MERGE prompts you for it.

1.3.1.2 Qualifiers and Switches

DCL qualifiers and MCR switches following the command or file name allow you
to modify the merge operation, for example, by identifying key fields or specifying
the format of the input or output files. A slash (I) is the first character in the
name of every qualifier and switch. Both SORT and MERGE provide default
values for qualifiers. You need only use a qualifier when you want to override the
default value.

Subqualifiers, subswitches, or values following a qualifier or switch modify the
action of the qualifier or switch.

The DCL qualifier is separated from subqualifiers and values by an equal sign
(=), as in IPROCESS=TAG, and IBUCKET_SIZE=10. If you use more than
one sub qualifier, enclose them in parentheses and separate them by commas,
as in IKEY=(POSITION:10,SIZE:5). When a subqualifier takes a value, in
IKEY=POSITION:10, separate the subqualifier from its value with a colon.
You can use an equal sign instead of the colon between a subqualifier and its
value; however, it is good practice to use a colon in order to distinguish between
qualifiers and subqualifiers. The negative form of a qualifier consists of the
letters NO before the qualifier, as in INOSTABLE.

MCR switches are two letters in length. The MCR switch is separated from both
subswitches and values by a colon, as in ICS:ASCII and IBU:10. Subswitches and
values are also separated by a colon, as in /FO:VARIABLE:71. The negative form
of a switch includes a minus sign between the slash and the two-letter mnemonic
(for example, I-ST).

Chapter 2 lists and describes the MERGE qualifiers and switches.

1.4 Invoking the SORT/MERGE Utility from the MCR Command
Line Interpreter

Using the MCR command line interpreter, you can invoke the SORTIMERGE
Utility by typing the SRT or MGE commands without a file name. When you do
so, the operating system displays the SRT> or MGE> prompts, respectively. You
can then enter the remainder of the command line as follows:

SRT> output-file/switch:subswitch=input-file/switch:subswitch

Invoking SORTIMERGE in this way makes it unnecessary to retype the command
each time you enter a new command line. You can also enter the command
and file names together, as shown in the examples in this manual for display
purposes.

1.5 Default File-Name Extensions

The SORTIMERGE Utility provides default file-name extensions when you do not
specify a file-name extension in your command line. With the DCL command line
interpreter, the default extension for SORT and MERGE input and output file
names is DAT.

Getting Started 1-7

If you use DeL, you must provide a file name for at least one input file and for
the output file. If you do not enter an input file specification in your command
line, the following prompt is displayed on your terminal:

INPUT FILE?

SORT also prompts you if you do not provide an output file specification.

In MeR the default name for the input file in the sort or merge operation is
SRT.DAT. If you have more than one input file, you must specify all file names.
The default file name for the output file is OUT.DAT. If you do not specify a
file-name extension, the system uses the DAT default for input and output files.

When you use MeR and enter one or more characters after the SRT> or MGE>
prompt and then press RETURN, SORT or MERGE substitutes default values for
any missing values in the command line. For example, if you enter only an equal
sign (=), and then press RETURN at the SRT> prompt, SORT substitutes the
default value of SRT.DAT for the input file and OUT.DAT for the output file.

1.6 Continuing a Long Command Line to a Second Line

When a command is too long to fit on one line on the screen, use the hyphen (-)
continuation character to finish it on another line, as follows:

DeL> SORT/KEY=(POSITION:52,SIZE:8)/KEY=(POSITION:l,SIZE:19)-I RETURN I
DeL> EXPDAT. DAT

MeR> SRT EXPDAT. DAT=DATA-I RETURN I
_MeR> .DAT/KE=:52.8:1.19

When you type the hyphen and press RETURN, the operating system responds
with a special prompt, which allows you to finish typing the command on another
line.

1.7 Running SORT and MERGE Batch Jobs

You can run a sort or merge operation as a batch job on the RSTSIE and
RSX-llM-PLUS operating systems. Batch processing frees your terminal for
other work and is particularly useful when you are performing frequent or
lengthy sort or merge operations. See the documentation for your operating
system for more information about creating and submitting batch jobs.

1-8 Getting Started

Chapter 2

Defining SORT and MERGE Operations

This chapter describes the order in which data is reordered in sort and merge
operations, the different ways in which key-field data may be stored in records,
and the method the SORTIMERGE Utility uses to process key fields. It lists the
DIGITAL Command Language (DCL) qualifiers and the Monitor Console Routine
(MCR) switches that are used to provide information to the utility and to modify
aspects of the sort or merge operation. Examples show syntax for both the DCL
and MCR command line interpreters.

2.1 SORT and MERGE Commands

This section describes the SORT and MERGE commands and their qualifiers.

Defining SORT and MERGE Operations 2-1

SORT

SORT

The SORT command reads up to 10 input files, reorders the data, and produces 1
output file.

Format (DCl)

SORT [/qualifier=(subqualifier:n, subqualifier} /qualifier=n]
input-file. DAT [/qualifier] output-file. DAT[/qualifier]

Format (MCR)

SRT output-file.DAT/[switch:subswitch:n/switch] =
input-file.DAT[/switch:n]

DCl Qualifiers
IAllOCATION
IBUCKET _SIZE
ICOlLATING_SEQUENCE
ICONTIGUOUS
INODU PLiCATES
IFORMAT
IINDEXED _SEQUENTIAL
IKEY
ILOAD_FILL
lOVE R LAY
IPROCESS
IRELATIVE
ISEQUENTIAL
ISHAREABLE
ISPECIFICATION
I[NO]STABLE
ISTATISTICS
/TREE_SPACE
/wORK_FILES
Not available in DCL

MCR Switches
IAL
IBU
ICS
ICO
IND
IFO, IBK, IBl, lSI
liN

IKE
ILO
IOV
IPR
IRE
ISE
ISH
ISF
1ST
ISS
IPT
IFI, IDE
ICN

The following qualifier definitions for the SORT command are grouped alpha­
betically by Command Language Interpreter, DCL qualifier followed by MCR
switch.

2-2 Defining SORT and MERGE Operations

Qualifiers

IALL OCATION= 1-(132-1)
I AL:0-(132-1)

SORT

Specifies file size in blocks for use in optimization, described in Chapter 5. In
DCL this is an output :file qualifier; in MCR it is both an input and output file
switch. As an input file switch, it specifies file size for the initial allocation of
work files.

IBUCKET_ SIZE=1-15
1-32

IBU:1-15
1-32

Specifies RMS bucket size for disk files, for use in optimization, described in
Chapter 5: 1-15 is for RSTSIE systems, 1-32 for RSX systems. This is an output
file qualifier (switch) in both DCL and MCR.

Not available In DCL
ICN[:n]
Identifies the file to be chained to, where n is a decimal number that represents
the line number in the program being chained to (RSTSIE only).

ICOLLATING_ SEQUENCE=(ASCII)
(EBDIC)
(MULTINATIONAL)

ICS=ASCII
EBDIC
MULTINATIONAL

Specifies ordering systems for character data; ASCII is the default. In DCL this
is a command qualifier, in MCR an input file switch.

I[NO]CONTIGUOUS
ICO
Specifies contiguous allocation of data for use in optimization, described in
Chapter 5. In DCL this is an output file qualifier, in MCR both an input and
output file switch.

INODUPLICATES
IND
Determines that when two or more key fields are equal, only the first that
SORTIMERGE encounters is preserved. /STABLE (1ST) and /NODUPLICATES
(IND) cannot be used in the same operation. In DCL INODUPLICATES is a
command qualifier; in MCR IND is an input :file switch. /DUPLICATES is the
default.

IFORMAT=([FILE_SIZE: 1-(132-1)])
([RECORD_SIZE: 1-32767])
([VARIABLE[:1-32767]])
([RMS_STREAM])
([STREAM])
([CONTROLLED[:1-32767]])

[,FSZ:1-255]
IFO:CONTROLLED:n

Defining SORT and MERGE Operations 2-3

SORT

FIXED:n
RMS_STREAM:n
STREAM:n
UNKNOWN:n
VARIABLE:n

IBK:1-{:i32-1)
IBL:18~192
ISI:n
Defines input and output file format and record format: FILE_SIZE is required
for files not on disk or magnetic tape; RECORD_SIZE is required for files not on
disk or magnetic tape or files whose longest record length is unavailable. IBK
specifies file size for files not on disks or magnetic tapes. IBL specifies block size
for nonstandard magnetic tapes. The CONTROLLED, FIXED, RMS_STREAM,
STREAM, UNKNOWN, and VARIABLE subqualifiers specify record format.
CONTROLLED is for use with controlled records. RMS_STREAM and STREAM
are synonymous. The !FORMAT qualifier (switch) is also used in optimization,
described in Chapter 5. In both DCL and MCR this is an input and output file
qualifier (switch).

In MCR specifies record format and maximum record size (from 1 to 32767). IBK
is an MCR input file switch that specifies file size for files not on disk or magnetic
tape. IBL is an MCR output file switch that specifies block size for nonstandard
magnetic tapes. lSI, an MCR input and output file switch, specifies the cluster
size for RSTSIE or the retrieval window size for RSX-llM/M-PLUS.

IINDEXED_ SEQUENTIAL=1-255
IIN:[1-255]
Defines input or output file organization, required for indexed-sequential files.
The number of index keys defaults to 1 if a number is not specified. The output
file must already exist and be empty when this qualifier (switch) is used as an
output file qualifier; by default the output file is overlaid. This is an input and
output file qualifier (switch) in both DCL and MCR.

IKEY=POSITION:1-255
SIZE: 1-255

1,2,4, or 8
1-31

[ASCENDING]
[DESCENDING]

[ASC/LFLOATING]
[ASC/LZONED]
[BINARY]

[SIGNED]
[UNSIGNED]

[CHARACTER]
[DECIMAL]

[SIGNED]
[UNSIGNED]
[TRAILlNG_ SIGN]
[LEADING_ SIGN]
[OVERPUNCHED_SIGN]

[SEPARATE_SIGN]

2-4 Defining SORT and MERGE Operations

[D/BOL_ZONED1
[D_FLOATING1
[F_FLOATlNG1
[PACKED_DECIMAL1

IKE=A
B
C
D
F
I
J
K
L
P
S
U
Z

N
o

1-65535
1-255

SORT

Describes key fields, including position, size, and data type of the field and the
order of the sort operation (ASCENDING is the default order). A key field of
character data can be 1-255 characters in length; a key field of binary data can
be 1, 2, 4, or 8 bytes; and a key field of decimal data can be 1-31 bytes. Omit the
SIZE subqualifier with the DCL D_FLOATING and F_FLOATING data types,
because these data types have implicit sizes. See Section 2.2.2 for information on
default data types.

In MCR specify key-field information in this order: data type, sort order, key
position, and key-field size. The following is a key to the MCR abbreviations:

A (ASCII Floating)
B (COBOL COMP-6 word, signed binary)
C (Character)
D (Decimal, unsigned or trailing, overpunched sign)
F (Floating-point)
I (Decimal, leading separate sign)
J (Decimal, trailing separate sign)
K (Decimal, leading overpunched sign)
L (Decimal, DIBOL zoned)
P (Packed decimal)
S (Signed binary)
U (Unsigned binary)
Z (ASCII zoned)

N (Ascending)
o (Descending)

Defining SORT and MERGE Operations 2-5

SORT

1-65535 (Position)
1-255 (Size)

In MCR IKE is an input file switch and in DCL a command qualifier.

ILOAD_FILL
ILO
Specifies fill factor when used with INDEXED_SEQUENTIAL files in optimiza­
tion, described in Chapter 5. This is an output file qualifier (switch) in both DCL
and MCR.

I[NO]OVERLAY
1[-]0 V
Specifies that the output file is to be overlaid on, or written to, an existing empty
file. In both DCL and MCR, /OVERLAY is an output file qualifier (switch).

IPROCESS=ADDRESS
INDEX
RECORD
TAG

IPR=A
I
R
T

Defines the sort process; choose one only. RECORD (R) is the default. In DCL
this is a command qualifier, whereas in MCR it is an input file switch.

IRELATIVE
IRE
Requests relative organization; /SEQUENTIAL is the default. In both DCL and
MCR, this is an output file qualifier (switch).

ISEQUENTIAL
ISE
Requests sequential file organization, which is the default. In both DCL and
MCR, this is an output file qualifier (switch).

I[NO]SHAREABLE
ISH
Specifies that the input file is to be opened in a write-shareable mode. Specify for
each shareable file. /NOSHAREABLE is the default.

ISPECIFICATION=file-speciflcatlon
ISF
Identifies a specification file, described in Chapter 3. In MCR this is an input file
switch and in DCL a command qualifier.

I[NO]STABLE
I[-]ST
Maintains the order of the input file when two or more key fields are equal.
/NOSTABLE (I-ST), which is the default, causes the order to be unpredictable. In
MCR this is an input file switch and in DCL a command qualifier.

2-6 Defining SORT and MERGE Operations

I[NOJSTATISTICS
I[-JSS

SORT

Displays a statistical summary of the operation, primarily for help with optimiza­
tion, described in Chapter 5. /NOSTATISTICS (I-8S) is the default. In MCR this
is an input file switch and in DCL a command qualifier.

ITREE_ SPACE=0-1 00
IPT:0-100
Specifies the percentage of available work area assigned to SORTIMERGE data
structures in optimization, described in Chapter 5. This is an input file qualifier
(switch) in both DCL and MCR.

/wORK_FILES=(NUMBER:0,3-10)
(DEVICE:ddnn:)
(ALLOCATION:1-(2!2_1))
([NOJCONTIGUOUS)
(SIZE:1-255)

IDE:ddnn:
IFI:O

3-10
Specifies the number of work files for purposes of optimization, described in
Chapter 5. In MCR the IDE switch places work files on an alternate device, and
the IFI switch specifies the maximum number of work files to be used. Both MCR
switches are input file switches. In DCL /wORK_FILES is a command qualifier.

Defining SORT and MERGE Operations 2-7

MERGE

MERGE

The MERGE command reads two or more previously sorted input files, combines
the data, and produces one output file.

Format (DCl)

MERGE (/qualifier=(subqualifier:n, subqualifier) /qualifier=n]
input-file.DAT [/qualifier] output-file.DAT[/qualifier]

Format (MCR)

MGE output-file.DAT/[switch:subswitch:n/switch] =
input-file.DAT[Iswitch:n}

DCl Qualifiers
IAllOCATION
IBUCKET _SIZE
I[NO]CHECK_SEQUENCE
ICOlLATING_SEQUENCE
ICONTIGUOUS
INODUPLICATES
IFORMAT
liN DEXED _SEQUENTIAL
IKEY
IlOAD_Flll
IOVERLAY
IRELATIVE
ISEQUENTIAl
ISHAREABlE
ISPECIFICATION
I[NO]STABlE
ISTATISTICS
/TREE_SPACE
Not available in DCl

MCR Switches
IAl
IBU
/[-]CH
ICS
ICO
IND
IFO, IBK, IBl, lSI
liN

IKE
IlO
IOV
IRE
ISE
ISH
ISF
1ST
ISS
IPT
ICN

The following qualifier definitions for the SORT command are grouped according
to Command Language Interpreter, DCL qualifier followed by MCR switch.

2.,.8 Defining SORT and MERGE Operations

Command Qualifiers

IALLOCATION:1-(:P2-1)
IAL:0-(j32_1)

MERGE

Specifies file size in blocks for use in optimization, described in Chapter 5. In
DCL this is an output file qualifier in MCR both an input and output file switch.
As an input file switch, it specifies file size for the initial allocation of work files.

IBUCKET_SIZE=1-15
1-32

IBU:1-15
1-32

Specifies RMS bucket size for disk files, for use in optimization, described in
Chapter 5: 1-15 is for RSTSIE systems, 1-32 for RSX systems. This is an output
file qualifier (switch) in both DCL and MCR.

Not available in DCL
ICN[:nj
Identifies the file to be chained to, where n is a decimal number that represents
the line number in the program being chained to (RSTSIE only).

ffNOjCHECK_SEQUENCE
1[-jCH
Verifies that the input files have been sorted. The positive form is the default; the
negative form causes sequence checking to be waived. In MCR this is an input
file qualifier and in DCL a command qualifier.

ICOLLATING_ SEQUENCE=(ASCII)

ICS=ASCII
EBDle
MULTINATIONAL

(EBDlC)
(MULTINATIONAL)

Specifies ordering systems for character data; ASCII is the default. In DCL this is
a command qualifier. In MCR this is an input file switch, and in DCL a command
qualifier.

I[NOjCONTIGUOUS
ICO
Specifies contiguous allocation of data; used in optimization, described in
Chapter 5. In DeL this is an output file qualifier; in MCR it is both an input and
output file switch.

INODUPLICATES
IND
Determines that when two or more key fields are equal, only the first that
SORTIMERGE encounters is preserved. /STABLE (1ST) and INODUPLICATES
(IND) cannot be used in the same operation. In DCL INODUPLICATES is a
command qualifier; in MCR IND is an input file switch. /DUPLICATES is the
default.

Defining SORT and MERGE Operations 2-9

MERGE

IFORMAT=([FILE_SIZE: 1-{232-1)])
([RECORD_SIZE: 1-32767])
([VARIABLE[:1-32767]))
([RMS_STREAM))
([STREAM))
([CONTROLLED[:1-32767]))

IFO:CONTROLLED:n
FIXED:n
RMS_STREAM:n
STREAM:n
UNKNOWN:n
VARIABLE:n

IBK:1-{232-1)
IBL:18-8192
ISI:n

[,FSZ:1-255)

Defines input and output file format and record format: FILE_SIZE is required
for files not on disk or magnetic tape; RECORD_SIZE is required for files not on
disk or magnetic tape or files whose longest record length is unavailable. IBK
specifies file size for files not on disks or magnetic tapes. IBL specifies block size
for nonstandard magnetic tapes. The CONTROLLED, FIXED, RMS_STREAM,
STREAM, UNKNOWN, and VARIABLE subqualifiers specify record format.
CONTROLLED is for use with controlled records. RMS_STREAM and STREAM
are synonymous. The !FORMAT qualifier (switch) is also used in optimization,
described in Chapter 5.) In both DCL and MCR this is an input and output file
qualifier (switch).

In MCR specifies record format and maximum record size (from 1 to 32767).) IBK
is an MCR input file switch that specifies file size for files not on disk or magnetic
tape. IBL is an MCR output file switch that specifies block size for nonstandard
magnetic tapes. lSI, an MCR input and output file switch, specifies the cluster
size for RSTSIE or the retrieval window size for RSX-llM/M-PLUS.

IINDEXED _ SEQUENTIAL=1-255
IIN:[1-255)
Defines input or output file organization; required for indexed-sequential files.
The number of index keys defaults to 1 if a number is not specified. The output
file must already exist and be empty when this qualifier (switch) is used as an
output file qualifier; by default the output file is overlaid. This is an input and
output file qualifier (switch) in both DCL and MCR.

IKEY=POSITION:1-255
SIZE:1-255

1,2,4, or 8
1-31

[ASCENDING)
[DESCENDING)

[ASCILFLOATING)
[ASCILZONED)
[BINARY)

[SIGNED)
[UNSIGNED)

2-10 Defining SORT and MERGE Operations

[CHARACTER}
[DECIMAL}

[SIGNED}
[UNSIGNED]
[TRAILlNG_ SIGN]
[LEADING_SIGN]
[OVERPUNCHED_SIGN]

[SEPARATE_ SIGN]
[DIBOL_ZONED]
[D_FLOATING]
[F_FLOATING]
[PACKED_DECIMAL]

IKE=A
B
C
D
F
I
J
K
L
p

S
U
Z

N
o

1-65535
1-255

MERGE

Describes key fields, including position, size, and data type of the field and the
order of the sort operation (ASCENDING is the default order). A key field of
character data can be 1-255 characters in length; a key field of binary data can
be 1, 2, 4, or 8 bytes; and a key field of decimal data can be 1-31 bytes. Omit the
SIZE subqualifier with the DCL D_FLOATING and F _FLOATING data types,
because these data types have implicit sizes. See Section 2.2.2 for information on
default data types.

In MCR specify key-field information in this order: data type, sort order, key
position, and key-field size. The following is a key to the MCR abbreviations:

A (ASCII Floating)
B (COBOL COMP-6 word, signed binary)
C (Character)
D (Decimal, unsigned or trailing, overpunched sign)
F (Floating-point)
I (Decimal, leading separate sign)
J (Decimal, trailing separate sign)
K (Decimal, leading overpunched sign)
L (Decimal, DIBOL zoned)
P (Packed decimal)
S (Signed binary)

Defining SORT and MERGE Operations 2-11

MERGE

U (Unsigned binary)
Z (ASCII zoned)

N (Ascending)
o (Descending)

1-65535 (Position)
1-255 (Size)

In MCR IKE is an input file switch and in DCL a command qualifier. See
Section 2.2.2 for information on default data types.

ILOAD_FILL
ILO
Specifies fill factor when used with INDEXED_SEQUENTIAL files in optimiza­
tion, described in Chapter 5. This is an output file qualifier (switch) in both DCL
and MCR.

I[NO]OVERLAY
1[-]0 V
Specifies that the output file is to be overlaid on, or vvTitten to, an existing empty
file. In both DCL and MCR, /OVERLAY is an output file qualifier (switch).

IRELATIVE
IRE
Requests relative organization; /SEQUENTIAL is the default. In both DCL and
MCR, this is an output file qualifier (switch).

ISEQUENTIAL
ISE
Requests sequential file organization, which is the default. In both DCL and
MCR, this is an output file qualifier (switch).

I[NO]SHAREABLE
ISH
Specifies that the input file is to be opened in a write-shareable mode. Specify for
each shareable file. INOSHAREABLE is the default.

ISPECIFICATION=flle-speciflcatlon
ISF
Identifies a specification file, described in Chapter 3. In MCR this is an input file
switch and in DCL a command qualifier.

I[NO]STABLE
I[-]ST
Maintains the order of the input file when two or more key fields are equal.
INOSTABLE (I-ST), which is the default, causes the order to be unpredictable. In
MCR this is an input file switch and in DCL a command qualifier.

I[NO]STATISTICS
I[-]SS
Displays a statistical summary of the operation, primarily for help with optimiza­
tion, described in Chapter 5. INOSTATISTICS (I-SS) is the default. In MCR this
is an input file switch and in DCL a command qualifier.

2-12 Defining SORT and MERGE Operations

/TREE_ SPACE=0-1 00
IPT:0-100

MERGE

Specifies the percentage of available work area assigned to SORTIMERGE data
structures in optimization, described in Chapter 5. This is an input file qualifier
(switch) in both DCL and MCR.

Defining SORT and MERGE Operations 2-13

2.2 Specifying Key-Field Attributes

In addition to size and position, discussed in Chapter 1, you can also specify other
attributes of the key field, such as the order in which it is sorted or merged and
the type of data it contains.

2.2.1 Order

Store Dept
(1-2) (6-7)

1E B1
2E B1
1E B1
1E B1
2E A1
1E A1
2E B1
2E A1
2E A1
1E A1

Following is a file named SALES.DAT, which contains quarterly sales totals for
individual salespersons in thousands of dollars:

Name Q1 Q2 Q3 Q4 Total
(12-27) (34-36) (42-44) (50-52) (58-60) (66-69)

Emery Patrick 6.5 6.2 5.9 6 . 7 25.3
Applebaum George 6.9 7 . 3 6.4 6.8 27.4
Kilpatrick Karyn 6.3 5 .8 6.7 6.2 25. 0
Hoffman Cheryl 6.8 6 . 4 6 . 9 7 .0 27.1
Sterling Martha 8 . 3 7 .9 7.8 8.1 32.1
Griffen Michael 7.5 7.3 7.4 7.6 29.8
Fenster Barbara 6 . 7 6.4 6.6 6 . 5 26.2
Gates Stephen 7.1 7.0 6.9 7.1 28.1
Ling Kem10 6.7 6.6 6.8 6.7 26.8
Albertson Ronald 6.9 6 . 7 6.8 6.8 27.2

The positions of the fields are indicated in parentheses. To sort the figures in
the Total field in descending order, highest total sales to lowest, enter one of the
following commands:

DCL> SORT/KEY=(POSITION:66,SIZE:4,DESCENDING) SALES.DAT DOLLAR.DAT
MCR> SRT DOLLAR.DAT=SALES.DAT/KE:066.4

The key field is the Total field, which is in position 66 and is 4 characters long.
The DCL DESCENDING sub qualifier to the /KEY qualifier is added after the
POSITION and SIZE subqualifiers and preceded by a comma. To sort this
file in ascending order, lowest to highest total sales, you would not need to
specify the ASCENDING subqualifier, because it is the default. Alphabetical
(A to Z) order and lowest to highest number are ascending order. Sequence is
determined by the number that a character or digit equates to in the collating
sequence you are using. For example, uppercase A is equivalent to 65 in the
DIGITAL Multinational Collating Sequence, and uppercase Z is equivalent to 90.
Appendix C lists the DIGITAL Multinational Collating Sequence and the ASCII
Collating Sequence.

The MCR letter 0 in KE:066.4, represents opposite and specifies that the data
is to be sorted in descending order. To sort the data in ascending order, you can
either omit the letter designation (since ascending order is the default) or include
N (for normal) after the colon. You must indicate the sort order before you list
the numbers indicating position and size.

Following is the output file, DOLLAR.DAT, with the total sales figures in
descending order.

2-14 Defining SORT and MERGE Operations

2E Al Sterling Martha 8.3 7.9 7.8 8.1 32.1
IE Al Griffen Michael 7.5 7.3 7.4 7.6 29.8
2E Al Gates Stephen 7.1 7.0 6.9 7.1 28.1
2E B1 Applebaum George 6.9 7.3 6.4 6.8 27.4
IE B1 Hoffman Cheryl 6.8 6.4 6.9 7.0 27.1
IE Al Albertson Ronald 6.9 6.7 6.8 6.8 27.2
2E Al Ling Kemlo 6.7 6.6 6 . 8 6.7 26.8
2E B1 Fenster Barbara 6.7 6.4 6.6 6.5 26.2
IE B1 Emery Patrick 6 . 5 6.2 5.9 6.7 25.3
IE B1 Kilpatrick Karyn 6 . 3 5 . 8 6.7 6.2 25 . 0

Specify a descending sort order when you have numeric data that you want to
order from highest to lowest, or when you have alphabetic character data that
you want in reverse alphabetic order.

2.2.2 Type of Data

In the examples thus far, we have sorted and merged only text, or character data.
The SORTIMERGE Utility accepts 17 types of data, which have the following
syntax in DCL (the default data types are in boldface):

CHARACTER
ASCII_FLOATING
ASCII_ZONED
BINARY

SIGNED
UNSIGNED

DECIMAL
SIGNED
UNSIGNED
TRAILING_SIGN
LEADING_SIGN
OVERPUNCHED_SIGN
SEPARATE_SIGN
DIBOL_ZONED

DECIMAL
TRAILING
OVERPUNCHED SIGN

D_FLOATING
F_FLOATING
PACKED_DECIMAL

The MCR syntax for data types is listed separately in this section. If the data in
your key field is of any type but one of these defaults, it is necessary to identify
the data type as a sub qualifier to the IKEY qualifier (IKE switch) in the command
line, as follows:

DCL> SORT/KEY=(POS:66,SIZ:4,DESC,DEClMAL,UNSIGNED)-~
DCL> SALES.DAT DOLLAR.DAT

This command specifies a descending sort operation on the field with the total
sales figures in SALES.DAT, which is a numeric field and contains unsigned
decimal data. As this example shows, you can abbreviate qualifiers and sub­
qualifiers as long as the abbreviations are unique. You can also abbreviate MCR
subswitches.

If the data in your key field is binary and signed, you need specify only BINARY,
since BINARY,SIGNED is the default. However, if your key data type is binary
and unsigned, you must specify BINARY,UNSIGNED.

Defining SORT and MERGE Operations 2-15

If key-field data is decimal and its sign is trailing and overpunched (the default),
you may specify DECIMAL only. If your key-field data is decimal but unsigned,
you must specify DEClMAL,UNSIGNED. Note that you must use a comma
between the data type and its optional arguments.

If your key-field data is decimal and its sign is trailing but separate, specify
TRAILING_SIGN and SEPARATE_SIGN. If your data is decimal and its sign is
leading and overpunched, specify LEADING_SIGN and OVERPUNCHED_SIGN.
If your data is decimal and its sign is leading and separate, specify
LEADING_SIGN and SEPARATE_SIGN.

In MCR the names of the data types are abbreviated, as follows:

A (ASCII floating string)
B (Signed two's complement binary, COBOL COMP-6)
C (Character, ASCII, EBCDIC, or MULTINATIONAL)
D (Decimal, unsigned, trailing overpunched sign)
F (Floating point)
I (Decimal, leading separate sign)
J (Decimal, trailing separate sign)
K (Decimal, leading overpunched sign)
L (DIBOL zoned decimal, trailing overpunched sign)
P (Packed decimal)
S (Signed binary, COBOL COMP or FORTRAN integer)
U (Unsigned binary)
Z (ASCII zoned)

To specify a decimal, unsigned data type for a descending sort operation on the
field with the total sales figures in the SALES.DAT file, use the following MCR
command line:

MeR> SRT DOLLAR.DAT=SALES .DAT, KE:D066.4

Note that the MCR data type is specified after the colon on the IKE: switch
and before the order of the operation. Section 2.2.4 summarizes the methods of
specifying key-field information in MCR.

2.2.2.1 Size Limitations of Key Fields According to Data Type

You must always specify the size of a key field that is not the default key field.
The size specification of a key field, given in bytes, depends on the data type.

The following rules apply to the size of a key field according to the type of data it
contains:

• With CHARACTER data, the size of the key field cannot exceed 255 bytes
(equivalent to 255 characters for the CHARACTER data type).

• With BINARY data, you must specify the size of the key field as 1,2,4, or 8
bytes.

• With DECIMAL data, the maximum size of the key field is 31 digits; if a
decimal number has a plus sign (+) or minus sign (-), the sign must be
counted in the total number of digits.

• With floating-point data, the size of the key field must be either 4 or 8 bytes
except that with the ASCII FLOATING, D_FLOATING, and F _FLOATING
data types, the size of the key field is implicit and cannot be specified.

2-16 Defining SORT and MERGE Operations

2.2.2.1.1 Obtaining Size Information for Key Fields

You can determine the size of key fields of CHARACTER and ASCII data by
counting the characters in the field. This is so because a single character or
ASCII digit is stored in a single byte. Numerical data other than ASCn is
not stored in the same manner and is not collated by SORT!.MERGE as ASCII
data is collated. For example, three characters of PACKED-DECIMAL data are
compressed into the space normally occupied by two ASCII characters.

To obtain the key-field size that you supply to SORT, consult the Data Division
map that is listed in the map file generated when you compile your program.

2.2.2.2 Representing Data Other Than Character or ASCII in Input Files

If the data in the field being sorted is numerical and non-ASCII, care must be
taken to ensure that the data is represented correctly. SORTIMERGE translates
character and ASCII data into its machine-language representation, which is
necessary for correct processing by the Central Pro(.;essing Unit (CPU). The utility
does not translate other types of data. Therefore, to sort other types of data, you
must represent it in octal, decimal, or hexadecimal form, whlch can be read by
the CPU. The octal representation must be preceded by %0, the decimal by %D,
and the hexadecimal by %X. For further information on the use of other types of
data, consult the user's guide to your programming langauge.

2.2.3 Collating Sequence

Depending on the type of data you are sorting, you may want to specify a
collating sequence. By default, SORTIJY.[ERGE arranges characters in American
Standard Code for Information Exchange (ASCII) sequence. The utility also
allows you to use either the Extended Binary Coded Decimal Interchange Code
(EBCDIC) or MULTINATIONAL collating sequence. You might use EBCDIC,
for example, as input to a program that requires EBCDIC sequence; you might
use MULTINATIONAL if your records use the DIGITAL Multinational Character
Set. When you select EBCDIC, input files are sorted as if the EBCDIC key field
were translated into ASCII and then sorted as an ASCII key field. Records do not
change.

The DCL command qualifiers for specifying a coUating sequence are as follows:

ICOLLATING_SEQUENCE=(ASCII)
ICOLLATING_SEQUENCE=(EBCDIC)
ICOLLATING_SEQUENCE=(MULTINATIONAL)

The MCR input file switches for specifying a collating sequence are as follows:

ICS:ASCU
ICS:EBCDIC
ICS:MULTINATIONAL

When you use the MULTINATIONAL collating sequence, the following ordering
procedures are applied.

@ All diacritical forms of a character (that is, all forms of a character that
include any accent mark) are given the collating value of the character; for
example, A' , A", and A an collate as A.

It Lowercase characters are given the collating value of their uppercase equiva­
lents; for example, a collates asA and a" collates asA".

Defining SORT and MERGE Operations 2-17

• If two strings compare as equal, tie-breaking is performed. The strings are
compared to detect differences due to diacritical marks, ignored characters,
or characters that collate as equal although they are actually different. If
the strings still compare as equal, another comparison is done based on
the numeric codes of the characters. In this final comparison, lowercase
characters are ordered before uppercase.

NOTE

Exercise care when you use the MULTINATIONAL collating
sequence for records and files that will be processed later by a
program. Sequence-checking procedures in most programming lan­
guages compare the numeric values that represent the individual
characters. Because MULTINATIONAL is based on actual graphic
characters, and not the codes representing those characters, normal
sequence checking will not work.

Appendix C lists the DIGITAL Multinational Collating Sequence and the ASCII
Collating Sequence).

2.2.4 Specifying Key-Field Information in MeR

The order for specifying key information with the /KE: switch in MCR is as
follows:

1. Data type is the first element specified after the colon on the /KE switch.
In the MCR example in Section 2.2.2, the data type is unsigned decimal,
represented by D in /KE:D066.4 .

2. Sort order is the second element after the colon. In the same example, the
order is descending (opposite), represented by 0, in KE:D068.4.

3. Position of the field is the third element after the colon and is specified as
an integer represented by 66 in KE:D066.4.

4. Size of the field is the fourth element after the colon and is specified as an
integer separated from position by a decimal point (.), as in KE:D066.4.

2.3 Using Multiple Key Fields

You can specify up to 16 key fields in a sorting operation, with a total key-field
size of up to 512 bytes. You must choose an order of priority for multiple key
fields and list them in that order in the command string: primary key followed by
secondary key and so on.

For example, to arrange the sales records in SALES.DAT by store, by department,
and in descending order of total sales, specify the store field as the primary key,
the department field as the secondary key, and the total sales field as the tertiary
key, as follows:

DCL> SORT/KEY=(POS:l,SIZ:2)/KEY=(POS:6,SIZ:2)-~
DCL> /KEY=(POS:66,SIZ:4,DESC) SALES.DAT STORES.DAT

MCR> SRT STORES.DAT=SALES.DAT/KE:l.2:6.2:066.4

In DCL you must use a separate /KEY qualifier for each sort key. If SORT
finds the POSITION and SIZE sub qualifiers repeated after a single /KEY
qualifier, it does not treat them as specifications for multiple key fields. Instead,
SORT causes the sub qualifiers most recently encountered to override previous
subqualifiers.

2-18 Defining SORT and MERGE Operations

In MCR you must repeat the colon and the values for each of the subsequent key
fields after the IKE switch for the primary key, but you do not need to repeat the
IKE switch.

Mter this multiple-key operation is completed, the sorted sales records appear as
follows in STORES.DAT:

Store Dept Name Ql Q2 Q3 Q4

IE Al Griffen Michael 7.5 7.3 7.4 7.6
IE A1 Albertson Ronald 6.9 6.7 6.8 6.8
1E B1 Hoffman Cheryl 6.8 6.4 6.9 7.0
1E B1 Emery Patrick 6.5 6.2 5.9 6.7
IE Bl Kilpat.rick Karyn 6.3 5.8 6.7 6.2
2E A1 Sterling Martha 8.3 7.9 7.8 8.1
2E A1 Gates Stephen 7.1 7.0 6.9 7.1
2E A1 Ling Kemlo 6.7 6.6 6.8 6.7
2E B1 Applebaum George 6.9 7.3 6.4 6.8
2E Bl Fenster Barbara 6.7 6.4 6.6 6.5

Note that the records in the output file are ordered first by store, then by
department, and finally by the highest total sales figure.

2.4 Dealing with Equal Key Fields

Total

29.8
27.2
27.1
25.3
25.0
32.1
28.1
26.8
27.4
26.2

Your input files may contain records with key fields that are equal. These records
will be grouped together in the output file, and, by default, their sorted order
(with reference to each other) will be unpredictable. However, you can use one of
two qualifiers to modify the sort order of equal key fields: ISTAELE (1ST switch)
and INODUPLICATES (lND switch). The ISTABLE qualifier causes records with
equal keys to be directed to the output file in the order in which they were input
to SORTIMERGE, and INODUPLICATES causes SORT/MERGE to retain only
the first of the equal records it encounters. The default is INOSTABLE (I-ST).
Note that you cannot use both the INODUPLICATES and the ISTABLE qualifiers
in the same operation.

If you specify ISTABLE (1ST) when sorting multiple input files, the output file
will contain records with equal keys from the first file preceding those from the
second file, and so on.

To specify which of the duplicate records SORTIMERGE is to keep, use SORT
/MERGE in a program, write your own equal-key routine, and name it SRTCLB.
Then either pass your equal-key routine address to the callable SORTIMERGE
initialization program (SRTINI or MRGINI) or link the program with your
equal-key routine. Chapter 4 discusses calling SORT from a program.

The qualifiers and switches that can be used to modify sort and merge operations
are described at the end of this chapter.

2.5 The Sorting Process

The examples thus far have used only the record sorting process, which produces
an output file containing the complete records from the input file or files. It
is also possible to reorder records from one file in several ways for different
purposes. SORT provides four processing methods for sorting data: record, tag,
address, or index.

Record sort is usually the most appropriate choice if you want to print your
output file, if your record size is not large, and if adequate temporary storage
space is available. If you want to print your output file, but adequate temporary
storage space is not available, tag sort is the recommended choice. If, instead of

Defining SORT and MERGE Operations 2-19

printing them, you want to use the sorted records in a program that performs
calculations, for example, then address sort would be the appropriate choice. If
you want to use the sorted records in a program that needs to access key-field
data, then index sort would be the preferred choice. Table 2-1 summarizes
information about these processes.

Table 2-1: SORT Processes

Process Input Device Output Device Description

Address Disk only Any device that Address sorts only key fields.
accepts binary data The output file contains only a

list of pointers to the records
in the input file. The list
consists of 3-word record file
addresses (RFAs) in binary
format, and I-word input file
numbers if multiple input files
are being sorted.

Index Disk only Any device that Index sorts only key fields.
accepts binary data The output file contains only a

list of pointers to the records
in the input file. The list
consists of key fields, 3-word
RFAs in binary format, and
I-word input file numbers if
multiple input files are being
sorted.

Record Any RSTSIE or Any RSTSIE or Record keeps record intact
RSX-llMIM-PLUS RSX-llMIM-PLUS throughout the sort operation.
input device output device The output file contains

complete records.

Tag Disk only Any RSTSIE or Tag sorts only key fields,
RSX-llMIM-PLUS then reaccesses the input file
input device records to create the output

file. The output file contains
complete records.

To select a sort process, consider the following factors:

1. How you will use the output file:

• Because record and tag sorts generate output files containing entire
sorted records, the output files are ready for use. ,

• Both address- and index-sorted output files can be processed by a program
written in native-mode BASIC, MACRO, or BLISS.

• Address sort creates a list of pointers to the records in the input file. This
list consists of file addresses of binary records, plus a file number when
sorting multiple input files. A program accesses the records by means of
the pointers.

• Index sort creates an output file containing both record file addresses
(RFAs) and key fields, plus a file number when sorting multiple files. The
format of these key fields is the same as it is in the input files. If the
program needs key-field content for a decision during future processing,
select index sort rather than address sort. (See the RMS-ll User's Guide
and RMS-ll MACRO-ll Reference Manual for more information about
RFAs.) Note that the index sort process is unrelated to the RMS indexed
file organization.

2-20 Defining SORT and MERGE Operations

If you need to reorder records from one file in several ways for different
purposes, store several output files from address or index sort and use the
files to access the records in the main file in the sorted order you want.

2. The temporary storage space available for the sort operation:

• Tag sort uses less temporary storage space than record sort. Because
record sort keeps the record intact during the sort operations, it uses
much more work space when the files are large.

• Address and index sort use little temporary storage space.

3. The type of input and output device used:

• Record sort is the only process that can accept input from cards, magnetic
tape, and disk.

• Output from tag and record sorts can go to any output device; output from
address and index sort must go to a device that accepts binary data.

4. Differences in speed:

• If you plan to retrieve the sorted records at some point in the operation,
record sort is usually the fastest process.

• Because tag sort moves only key fields instead of complete records, it can
be faster than record sort when record size is very large and key-field size
is small. Tag sort can also be faster for extremely large files and devices
with short seek times (the time required to position the record pointer to
the correct record in the input file). In most cases, however, the time that
tag sort takes to reaccess the input file to create the output file makes it
slower than record sort.

• Address and index sort are the fastest processes.

To specify a sort process with DCL, use one of the following command qualifiers:

RECORD
TAG

~ROCESS= ADDRESS

INDEX

Note that the ~ROCESS qualifier is applicable to SORT only.

To specify a sort process with MCR, use one of the following input file switches:

R (record)
~R' T (tag)

. A (address)
I (index)

None of the examples in this chapter has specified the sort process, so, by default,
each has used record sort. To use a tag sort for the descending sort operation on
the SALES.DAT file, use one of the following command lines:

DCL> SORT/KEY=(POS:66,SIZ:4,DESC)/PROCESS=TAG SALES.DAT DOLLAR.DAT
MCR> SRT DOLLAR.DAT = SALES.DAT/KE:066.4/PR:T

Defining SORT and MERGE Operations 2-21

2.6 Specifying File Attributes

Under certain circumstances, you are required to specify file attributes and under
others you may choose to change file attributes. This section explains how to
provide information on file attributes to SORTIMERGE.

PDP-ll SORTIMERGE accepts all PDP-ll Record Management Services (RMS)
files; that is, it accepts sequential, relative, or indexed-sequential data files on one
or more mass-storage devices, containing records of fixed, variable, variable with
fixed-length control (VFC), or RMS stream format. You can specify up to 10 input
files; the input files need not have the same record formats and file organizations.

2.6.1 Input File Attributes

This section discusses the input file attributes: file organization, longest record
length, file format, and file size.

2.6.1.1 File Organization

The three types of file organization are relative, sequential, and indexed­
sequential. If the organization of your input file is indexed-sequential, you must
specify this organization and indicate the number of key fields in the indexed file.
If you do not specify the number of key fields, the SORTIMERGE Utility uses a
default of 1. It is necessary to indicate this number so that SORTIMERGE can
allocate sufficient RMS space. You need not specify relative or sequential file
organization, as SORTIMERGE allocates sufficient RMS space for these types of
files by default.

Specify indexed-sequential organization with the input file qualifier
IINDEXED_SEQUENTIAL[=n] (IIN[:n] switch), where n equals the number of
key fields, as follows:

DeL> SORT/KEY=(POS:I0,SIZ:2)/KEY=(POS:20,SIZ:4) LIST.DAT-IRETURNI
DCL> /INDEXED SEQUENTIAL=2 STAT.DAT

MCR> SRT STAT.DAT=LIST.DAT/KE:I0.2:20.4/IN:2

2.6.1.2 Record Format and Longest Record Length

If you are sorting files not residing on disk or standard ANSI magnetic tape (for
example, if you are passing a file from a program and the file is in memory), you
must specify the size of the longest record in your input files as well as the size of
your files . To determine the longest record length, consult the documentation for
your programming language. The record size that you specify overrides the size
defined in the file header or label.

You specify the the longest record length in bytes. The longest record length
allowed for the three types of file organization is as follows:

File Organization

Sequential

Relative

Indexed-sequential

Longest Record Length

32,765

16,381

16,369

These totals include control bytes for variable records with VFC format. For
multiple input files, the longest record length is the length of the longest record
among all of the files .

2-22 Defining SORT and MERGE Operations

In DCL, to specify the longest record length in the input file, use the
IFORMAT=(RECORD_SIZE:n) input-file qualifier.

In MCR you must also specify the record format when you specify the longest
record length. Use one of the following input file switches:

IFO:CONTROLLED:n
FIXED:n
RMS_STREAM:n
STREAM:n
VARIABLE:n
UNKNOWN:n

RMS_STREAM and STREAM are duplicates of each other: Version 3 and higher
versions of PDP-ll SORTIMERGE support the STREAM syntax for compatibility
with Version 2. If the longest record length cannot be obtained from RMS (that
is, if the file was created by a version of RMS that does not include information
on the longest record length), you must specify it. To specify the longest record
length for a descending sort operation on the total sales figures in SALES.DAT,
use the following DCL command:

DCL> SORT/KE=(POS:66,SIZ:4,DESC) SALES.DAT/FORMAT=(RECORD s-I RETURN I
_DCL> IZE:71)DOLLAR.DAT -

The same command line in MCR is as follows:

MCR> SRT DOLLAR . DAT=SALES . DAT/KE:066 . 4/FO:V:71

As this example shows, you can abbreviate MCR subswitches to one letter.

2.6.1.3 File Size

You specify file size in blocks. (To determine file size, use the DCL DIRECTORY
command or MCR PIPILI command.) SORT uses file-size information to estimate
the file size of the temporary files used for the sort operation. The maximum
file size accepted is 4,294,967,295 or (232_1) blocks. For multiple input files, the
size is the sum of the sizes of the individual files. SORT allocates 1000 blocks by
default if you do not specify the file size.

In DCL specify input file size with the IFORMAT=FILE_SIZE:n input file quali­
fier. In MeR specify input file size with the IBK:n input-file switch.

The DeL command line for a descending sort on the sales figures in SALES.DAT
with the longest record length and file-size specified is as follows:

DCL> SORT/KEY=(POS:66,SIZ:4,DESC) SALES.DAT/FORMAT=(RECORD S-IRETURNI
_DCL> IZE:71,FILE_SIZE:3) DOLLAR.DAT -

The same command line in MeR is as follows:

MCR> SRT DOLLAR.DAT=SALES.DAT/KE:066.4/FO:V:71/BK:3

2.6.1.4 File Shareability

If you want to sort files that may be updated by another user during the sort op­
eration, then you must specify that your input files be opened in write-shareable
mode. By default, the files are not shareable. For each shareable file, use the
DCL input file qualifier ISHAREABLE or the MCR file switch ISH. The default is
INOSHAREABLE.

Defining SORT and MERGE Operations 2-23

2.6.2 Output File Attributes

You can specify the file organization and record format of the output file. If you
direct the output file to a magnetic tape device, you can also specify file size.

2.6.2.1 File Organization

The default file organization for the output file in a sort or merge operation is
sequential. You can override this default in either of the following ways:

1. Use one ofthe following qualifiers or switches to specify the file organization:

• DCL output file qualifier

/SEQUENTIAL
IRELATIVE
IINDEXED_SEQUENTIAL[=n]

• MCR output file switch

/SE (sequential)
IRE (relative)
IIN[:n] (indexed-sequential)

If you specify indexed-sequential organization, an empty indexed­
sequential file of the same name must already exist. SORT writes over
the existing file. SORTIMERGE does not create an indexed output file if
no such file exists. You can optionally specify the number of key fields in
the indexed-sequential file.

2. Use the /OVERLAY output file qualifier in DCL (lOV switch in MCR). When
you use the /OVERLAY qualifier, the output file must already exist and be
empty, and its file organization must have been previously defined. If you use
the /OVERLAY qualifier, you cannot use any of the file organization qualifiers.

In general, to write sorted records to an existing empty file, you should use the
/OVERLAY qualifier.

2.6.2.2 Record Format and Longest Record Length

If you want the record format in the output file to differ from that of your first
input file, you must specify the output format. You can specify fixed-length
records, variable-length records, variable with fixed-length control (VFC) records,
or stream records (for RMS stream files only). If you do not specify the record
format for the output file, with the record or tag sort processes it defaults to the
record format of the first input file, and with address or index sort it defaults to
fixed-record format.

In specifying the output record format, you can optionally indicate the longest
record length (in bytes) of the output records. The default maximum record
length is a length long enough to hold the longest record. The longest record
lengths allowed for the three types of file organization are as follows:

File Organization

Sequential

Relative

Indexed-sequential

Longest Record Length

32,765

16,381

16,369

2-24 Defining SORT and MERGE Operations

Indicate the new record format by using one of the following qualifiers or
switches, where n is the size of the longest record:

• DCL output-file qualifier:

FIXED:n
VARIABLE:n

/FORMAT= RMS_STREAM:n
STREAM:n
CONTROLLED:n,FSZ:m

The FSZ subqualifier is used with VFC (CONTROLLED) records. It specifies
the size in bytes of the fixed portion of the record, up to a maximum of 255
bytes. If you specify this size as 0, RMS uses a default value of 2 bytes. If
you do not specify FSZ, the default is the maximum size of the fixed-control
portions of all VFC input files . If you do not specify FSZ and there are no
VFC input files, the default is 2 bytes.

• MCR output-file switch:

FIXED:n
VARIABLE:n

/FO: RMS_STREAM:n
STREAM:n
CONTROLLED:n:m

The STREAM subswitch exists for compatibility with Version 2 and is the
same as RMS_STREAM. You can specify a second value m for CONTROLLED
records to give the size in bytes of the fixed portion of the record, up to a
maximum of 255 bytes. If you specify this size as 0, RMS uses a default value
of 2 bytes. If you do not specify this size, the default is the maximum size of
the fixed control portions of all VFC input files. If you do not specify this size
and there are no VFC input files, the default is 2 bytes.

In both DCL and MCR, you can truncate record format values to the first letter.

2.6.2.3 File Size

If you direct your output file to magnetic tape, you can specify the block size of
the file in bytes or you can accept the default. If one or more of the input files is
a tape file, the block size of the output file defaults to the maximum of the block
sizes of all tape input files. If the input file is a disk file, the default value is 512
bytes.

In DCL specify the block size of a file with the BLOCK_SIZE:n subqualifier in
the /FORMAT output file qualifier (for example, /FORMAT=(FIXED,BLOCK_
SIZE:800).

In MCR specify the block size of a file with the output file switch IBL:n.

2.7 Chaining to a SORT or MERGE Image (RSTS/E only)

If you are using the RSTS/E operating system, you can chain from one executable
image to another. PDP-ll SORTIMERGE supports RSTS/E chaining from the
MCR command line interpreter with the ICN output switch. Chaining is not
available with the DCL command line interpreter.

For example, you can request that the SORT Utility chain to an image
MYPROG.TSK generated by BASIC-PLUS-2 upon completion of the requested
ordering operation. The MCR command is as follows:

SRT> OUT I MYPROG/CN=INP. DAT

Defining SORT and MERGE Operations 2-25

The name of the chain image is listed as a second output file, but with the ICN
switch appended. The switch is required. In addition, you can specify the line
number of the image where execution is to begin. For example, the following
command line causes the image MYPROG.TSK to begin at line 1400:

SRT> OUT,MYPROG/CN:1400=INP.DAT

Compilers or programs other than the BASIC-PLUS-2 compiler or programs
may interpret the meaning of the chain value (for example, 1400 in the above
example) in different ways. SORT or MERGE places the value in the FQNENT
field of the FIRQB block. See the RSTS / E Systems Directive Manual for details.

It is also possible to chain into SORT or MERGE from other tasks. To accomplish
this, place the sort command line into the RSTSIE core common, place the value
30000 in the FQNENT field of the FIRQB, and then chain to the desired SORT
or MERGE task file. Consult the RSTS / E System Directives Manual and the
RSTS / E Programming Manual for your language for details . For example, the
following BASIC-PLUS-2 program chains into the sort image SRTUTL.TSK:

10 V$ = SYS(CHR$(8
%)+"SOR OUT=INPUT/FO : V: 3/SS")
15 CHAIN "LB: [1,2]SRTUTL . TSK" LINE 30000
20 STOP

(To chain to MERGE, replace SRTUTL.TSK with MGEUTL.TSK) Line 10 in the
program places the command line in core common. Line 15 first causes the value
30000 to be placed into the FIRQB and then chains to the SORT image.

2.8 Merging Files

The MERGE Utility allows you to combine up to 10 presorted files. All your input
files must have been already sorted by the same key fields according to which you
intend to merge. You specify the same key-field information and file attributes for
MERGE as for SORT. The MERGE Utility prompt is MGE>.

However, you do not specify any processes or work files with MERGE. Also, a
function unique to MERGE called sequence checking (invoked with the ICHECK_
SEQUENCE qualifier in DCL and ICH switch in MCR) verifies that your input
files are sorted.

You can use qualifiers to indicate explicitly whether or not sequence checking
should be performed. Use these qualifiers if you do not want sequence checking
performed (to override the default) or if you want to ensure that sequence
checking is performed (for example, to override an instruction in a specification
file that cancels sequence checking).

In DCL specify whether or not sequence checking is done with the command
qualifier ICHECK_SEQUENCE or INOCHECK_SEQUENCE. The default is
CHECK_SEQUENCE.

In MCR specify whether or not sequence checking is done with the input file
switch ICH or I-CH. The default is ICH.

When you use the INOCHECK_SEQUENCE qualifier (/-CH switch), the records
are not checked for order. If you have only one input file, the records are listed in
the output file in the same order as they are listed in the input file; if you have
more than one input file, the order of the records on output may be unpredictable.

When you use sequence checking to verify that the records have been sorted, the
records are still merged into an output file, which you must specify. If you are
checking that records are sorted on a key field that is other than the entire record

2-26 Defining SORT and MERGE Operations

(the default), then you must specify key-field information along with requesting
sequence checking.

In addition to sequence checking, you can use MERGE on one or more files to
change file characteristics such as format, organization, record size, or VFC size.
For example, the following MCR command changes the file SALARY.DAT from a
variable sequential file with a 50-byte maximum record size to a fixed relative file
with 80-byte maximum record size (null-filled with binary 0 where necessary).

MGE> SALARY.DAT/RE/FO:F:80 = SALARY.DAT/-CH/FO:V:50

2.9 Optimizing the SORT/MERGE Work Area

By default, SORTIMERGE divides available work area between tree-related data
structures and input/output-related data structures in such a way as to ensure
the best performance for a typical sort operation. However, in some instances
the input/output (I/O) requirements of your job may require more space than the
default provides. The frREE_SPACE qualifier (in DCL) or IPT switch (in MCR)
allows you to override this default and choose the distribution of available work
area between SORTIMERGE data tree structures and I/O data structures.

For SORT, the default division is 55 percent to the tree and 45 percent to I/O. For
MERGE,the default division is 30 percent to the merge list and 70 percent to I/O.
If you use a consistently large number of input files, or if the majority of the files
you are sorting (for example, an INDEXED file with many key fields) require a
large number of I/O data structures, you may want to alter the ratio so that there
will be enough room for the I/O requirements. For example, if you are sorting
several indexed files, each having many key fields, it may be desirable to allow
SORT a smaller tree, thereby allocating more room for RMS-required structures.

In DCL, to allocate the work area, use the input file qualifier frREE_SPACE=n,
where n is the percentage of work space allocated to data tree structures.

In MCR use the input file switch lPT:n, where n is the percentage of work space
allocated to data tree structures.

Defining SORT and MERGE Operations 2-27

Chapter 3

Using a Specification File

This chapter describes how to create and use a specification file. A specification
file provides parameters and qualifiers for a sort or merge operation, supple­
menting and extending the SORT or MERGE command line. You can use a
specification file to give you added control over your sort and merge operations. It
can include instructions to perform the following functions:

• Change the format and length of the records in the output file

• Conditionally alter record order and data fields

• Specify certain records for the sort or merge process to include or omit

• Modify one of the predefined collating sequences or specify one of your own

• Reassign work files

• Specify an alternate record-padding character

To perform any of the following functions, it is necessary to use a specification
file:

• Reformat the output records

• Use conditional key fields or data

• Specify multiple record formats

• Crea te or modify a collating sequence

You can also use a specification file to reassign work files, to define sort or merge
operations that you use frequently, and to execute many of the sort or merge
operations described in Chapter 2.

3.1 Creating a Specification File

To create a specification file, use a text editor. It is good practice to place
each qualifier on a separate line. Generally, you can specify the qualifiers in a
specification file in any order. The order becomes significant, however, when you
use a specification file to perform the following tasks:

• Sort on more than one key field

• Describe the output format

• Define multiple record types

• Modify the collating sequence using subqualifiers with the /COLLATING_
SEQUENCE keyword

Using a Specification File 3-1

To begin your specification file, enter whatever instructions you require for
the sort process, equal key fields, and sequence checking. The default values
for qualifiers in a specification file are the same as the default values for the
corresponding command qualifiers.

You can use specification-file instructions in combination with SORT!MERGE
command-line instructions, whether entered interactively or passed at the
program level, but instructions entered at either command or program level
override corresponding entries in the specification file. If you specify any /KEY
qualifier in the DCL command line (or /KE switch in MCR), for example, SORT
!MERGE ignores all /KEy, !DATA, /INCLUDE, and /OMIT qualifiers in the
specification file.

Note that in the specification file syntax, whenever you have quotation marks
within a quoted string, you must double each quotation mark. For example,
"A""B" specifies the three-character string A"B.

One special use of the specification file is in combination with MERGE on a single
file that mayor may not have been previously sorted. The specification file gives
you access to such features as record omission and record reformatting. For a
single-file merge operation, you can specify INOCHECK_SEQUENCE, so that
MERGE will not check the order of the input records.

To include comments anywhere on a line in a specification file, use an exclamation
point (!) as follows:

/KEY=YEAR
/KEY=MONTH
/KEY=DAY

!Prirnary key field
!Secondary key field
!Tertiary key field

NOTE

If you intend to place a specification file in a program, do not use
comment characters (!), because the SORT!MERGE Utility may not
interpret them correctly when the program is executed.

3.2 Processing a Specification File

To process a specification file, use one of the following command line formats:

DCl:

SORT /SPECIFICATJON=specification-file input-file, input-file output-file

MCR:

SRT output-file = input-file,specification-file/SF

The following command lines sort the input files SALESl.DAT and SALES2.DAT
into an output file named SALES.DAT, according to the instructions in the
specification file named SPECl.SRT.

DCL> SORT/SPECIFICATION = SPEC 1 SALESl.DAT,SALES2.DAT SALES.DAT
MCR> SRT SALES.DAT = SALESl.DAT,SALES2.DAT,SPECl/SF

The default file extension for a specification file is SRT.

When using a specification file, you can still include in the command line any
qualifiers that you might use without a specification file. Any qualifier that you
use in the DCL or MCR command line overrides any corresponding qualifier in
the specification file .

3-2 Using a Specification File

When you call SORT or MERGE from a program, you can use a specification file
either by identifying a specification file in your command line or by placing the
specification file within a program and then passing it to SORT or MERGE.

Chapter 4 discusses using Callable SORT and MERGE from a program.

3.3 Specification File Qualifiers

Many of the qualifiers used in specification files are the same as the DCL
qualifiers and sub qualifiers listed in Chapter 2.

Qualifier
/[NOjCHECK_SEOUENCE
/COLLATING_SEOUENCE
/CONDITION
/DATA
/FIELD
/INCLUDE
/KEY
/OMIT
IPAD
/PROCESS
I[NO]STABLE
/wORK_FILES

Qualifiers

/[NO]CHECK_SEQUENCE

Restriction
MERGE only

SORT only

SORT only

Verifies that the input files have been sorted. The positive form is the default; the
negative form causes sequence checking to be waived.

/COLLATING_SEQUENCE=(ASCII)
(EBDIC)
(MULTINATIONAL)
(user-defined)

Specifies one of three predefined ordering systems, or a user-defined ordering
system, for character data; ASCII is the default.

/CONDITION
Defines conditions for key and data handling and for record selection.

/DATA
Specifies the fields in the output file.

/FIELD
Defines the fields in the input file or files.

/INCLUDE
Selects records, as well as multiple record formats, for inclusion.

/OMIT
Selects records, as well as multiple record formats, for omission.

/KEY
Identifies key fields, including position, size, and data type of the field and the
order of the sort operation.

Using a Specification File 3-3

/PAD
Specifies a new record-padding character. The default is the null character.

/PROCESS=ADDRESS
INDEX
RECORD
TAG

Defines the sort process; choose one only. RECORD (R) is the default.

/[NO]STABLE
Maintains the order of the input file when two or more key fields are equal.
INOSTABLE, which is the default, causes the order to be unpredictable.

/WORK_FILES=(NUMBER:0,3-10)
(DEVICE:ddnn:)
(ALLOCATION:1-{232_1 »
([NO]CONTIGUOUS)
(SIZE:1-255)

Specifies the number of work files for purposes of optimization, described in
Chapter 5.

3.4 Identifying Record Fields

Whenever you wish to override the default values for fields, you must provide
information about each field in the records. You must always provide the
following information:

• A name that you assign to each field

• The position in the record and size of the field

• The data type of the field

To supply this information, you include a line for each field in the specification
file, as follows:

IFIELD=(NAME=field-name,POSITION=n,SIZE=n,data-type)

The field name must begin with an alphabetic character and can include only 8
characters, which must be letters, numbers, or underscores. The SORTIMERGE
Utility does not accept other characters or blank spaces in field names.

The POSITION subqualifier identifies the position of the field when used with
the /KEY qualifier as described in Chapter 2; that is, the position is equal to the
number of characters (bytes) from the beginning of the record.

The SIZE subqualifier gives the length of the field in bytes. You determine the
size of the field exactly as when you use the SIZE subqualifier with the /KEY
qualifer (as explained in Chapter 2).

The default data type with the /FIELD qualifier is character. The following data
types are recognized by PDP-ll SORTIMERGE (the default data types are in
boldface):

CHARACTER
ASCII_FLOATING
ASCII_ZONED
BINARY

SIGNED
UNSIGNED

DECIMAL

3-4 Using a Specification File

SIGNED
UNSIGNED
TRA.ll.ING_SIGN
LEADING_SIGN
OVERPUNCHED_SIGN
SEPARATE_SIGN
DIBOL_ZONED

DECIMAL
TRAILING
OVERPUNCHED SIGN

D_FLOATING
F_FLOATING
PACKED_DECIMAL

For example, in the sample magazine subscription file in Chapter 1, the data is
arranged as follows:

Name Street City state
(1-19) (20-39) (40-51) (52-59)

Yellen Mark 90 Lynwood Lane Westfield MA
Germont Alfredo 15 Town House Dr Waltham MA
Thompson Lynda 395 N Main St Easton MA
Fallon Curtis 56 Juniper Lane Lenox MA
Tosca Floria 108 Winfield Dr Rome NY
Weaver Stephen 72 Newton Ave Hyde Park NY
Marsh Beverly 305 Cambridge St Pittsfield MA
Ling Kemlo 81 River st Belmont NY

To identify the fields, use the following lines in a specification file:

/FIELD
/FIELD
/FIELD
/FIELD
/FIELD

(NAME=CUSTNAME,POSITION=1,SIZE=19)
(NAME=STREET,POSITION=20,SIZE=20)
(NAME=CITY,POSITION=40,SIZE=12)
(NAME=STATE,POSITION=52,SIZE=8)
(NAME=EXP_DATE,POSITION=60,SIZE=6)

Exp Date
(60-65)

901231
910501
931130
941101
920630
940509
901015
941031

In this example, all of the fields have a character data type, so it is not necessary
to specify the data type within the /FIELD qualifier.

When you use the SIZE subqualifier, PDP-ll SORTIMERGE reads the size of
all data types as byte lengths, and VAX. SORTIMERGE also reads the size of all
but decimal data as byte lengths. VAX. SORTIMERGE reads the size of decimal
data as digits. Therefore, if you want to use your files with VAX. SORTIMERGE,
you must specify the size of decimal data types in digits by using the DIGITS
subqualifier instead of SIZE; for example:

/FIELD=(NAME=PERCENT,POSITION=28,DIGITS=4,DEClMAL)

When you use the DIGITS subqualifier, PDP-ll SORTIMERGE makes the
conversion to byte lengths.

The size of a field that contains character data cannot exceed 255 characters (255
bytes). Specify a value of 1, 2, 4, or 8 for the size of a field containing binary data.
The size of a field containing decimal data cannot exceed 31 bytes (or 31 digits
with VAX. SORTIMERGE). Do not specify size for the DCL D_FLOATING and
F _FLOATING data types, because these data types have implicit sizes. Chapter 2
lists the default values for sizes and describes how to determine field sizes for
data types other than CHARACTER or ASCII.

You can shorten any qualifier or subqualifier to its unique abbreviation (for
example, /FIELD to!FI or POSITION to POS). Enclose the set of subqualifiers
for each !FIELD qualifier entry in parentheses; separate the subqualifiers (for
example, POS=60,SIZ=6) with commas.

Using a Specification File 3-5

3.4.1 Specifying Key Fields

If you are sorting the entire record and your data is characters, you need not
specify a key field. Otherwise, you must use a /KEY qualifier for each of the keys
by which you want to sort, in the order of their priority. You can sort by as many
as 16 key fields. The /KEY qualifier provides information about how to sort a
particular field. You identify a field to the /KEY qualifier by using the name that
you assigned in the !FIELD qualifier.

To indicate multiple key fields to SO RTIME RGE , use a series of /KEY qualifiers.
The first key field that you list is the primary key field, the next is the secondary
key field, and so on. For example, suppose your specification file includes the
following three /KEY qualifiers:

/KEY=CUSTNAME
/KEY=CITY
/KEY=EXP_DATE

The primary key field is CUSTNAME, the secondary key field is CITY, and the
tertiary key field is EXP _DATE.

The default sorting order is ascending; you must specify sort order for a key field
only if you want the field sorted in descending order. Indicate descending order
for a key field in the /KEY qualifier, for example:

/KEY=(EXP_DATE,DESCENDING)

Separate the subqualifiers in a /KEY qualifier with commas.

3.4.2 Formatting Data for the Output File

By default, the format of data for an output file is the same as that for the
input file. For example, suppose you identify the data as we did in the magazine
subscription file, as follows:

/FIELD
/FIELD
/FIELD
/FIELD
/FIELD

(NAME=CUSTNAME,POSITION=1,SIZE=19)
(NAME=STREET,POSITION=20,SIZE=20)
(NAME=CITY, POSI'rION=40, SIZE=12)
(NAME=STATE,POSITION=52,SIZE=8)
(NAME=EXP_DATE,POSITION=60,SIZE=6)

When you sort the file, the data in the output file will be arranged as indicated
here. However, you can override this default arrangement with the /DATA
qualifier. For example, suppose that you want the output data from this example
arranged as follows:

State
(1-2)

City
(6-20)

Customer Name
(24-43)

Street
(47-66)

To ensure that the output-file data is arranged as it is in this example, you would
use the /DATA qualifier in your specification file, as follows:

/DATA = STATE
/DATA = CITY
/DATA = CUSTNAME
/DATA = STREET

The order in which you list the !DATA qualifiers, using the field names defined
by previous !FIELD qualifiers, determines the ordering of fields in your output
file. If you use the /DATA qualifier to change the formatting of your output file
records, you must have a /DATA qualifier for each field that you direct to your
output file.

3-6 Using a Specification File

If you want to have blank spaces between fields, you can use the /DATA statement
with a pair of quotation marks to include spaces between fields. The number of
spaces between the quotation marks is the number of spaces that is inserted
between the fields; for example:

/DATA = STATE
/DATA =" "
/DATA = CITY
/DATA = "
/DATA = CUSTNAME
/DATA =" "
/DATA = STREET

3.4.3 Defining and Using Conditions

When you use a specification file, you can sort your records based upon certain
conditions that you specify with the /CONDITION qualifier. The /CONDITION
qualifier is used after a !FIELD qualifier; it can establish a means of reordering a
field based on data that does not exist by itself in any specific field.

For example, suppose that you have a series of customer records in the magazine
subscription list, as follows:

Name Street City State Exp Date
(1-19) (20-39) (40-51) (52-59) (60-65)

Ling Kemlo 81 River St Belmont NY 941031
Campbell Aidan 16 Newheart Rd Nashua NH 911229
Tosca Floria 108 Winfield Dr Rome NY 920630
Weaver Stephen 72 Newton Ave Hyde Park NY 940509
Sacajewea 9 Slippery Rock Rd Clifden NJ 890103
Washington Paul 10 Mountain St Johnstown PA 900214
Kauffman Beverly 12 Steele St Clinton DE 911130
O'Brien Nelson 1324 Cherry St Baltimore MO 920529
Szymczak Pat 45 Hartford St Roanoke VA 930614

Now suppose that your sales area is divided into three regions, depending on
the customer's home state. You can use the /CONDITION qualifier, followed by
a /KEY qualifier and optionally a /DATA qualifier, to sort your records by sales
region even though you do not have a field devoted specifically to sales region.
Use the /CONDITION qualifier as follows:

/FIELD= (NAME=STATE,POS=52, SIZ=8)
/CONDITION=(NAME=REGION1, TEST=(STATE EQ "NY"»
/CONDITION=(NAME=REGION2, TEST=(STATE EQ "NJ" OR STATE EQ "PA"»
/CONDITION=(NAME=REGION3, TEST=(STATE EQ "DE" OR

/KEY (IF REGION1
IF REGION2
IF REGION3

/DATA = (IF REGION1
IF REGION2
IF REGION3

/DATA = STATE
/DATA =" "
/DATA = CITY
/DATA =" "
/DATA = CUSTNAME
/DATA =" "
/DATA = STREET

THEN
THEN
THEN

THEN
THEN
THEN

STATE EQ "MO" OR
STATE EQ "VA"»

1 ELSE
2 ELSE
3 ELSE
4)

"REGION 1" ELSE
"REGION 2" ELSE
"REGION 3" ELSE
"ERROR If)

Using a Specification File 3-7

The information supplied with the /FIELD qualifier identifies the field on which
the conditional testing is to be done. The /CONDITION qualifier tests for matches
between record data and the values that you specify. When data in a record field
matches a value in a /CONDITION qualifier, a sorting tag (such as "I") is given
to the record field by means of the /KEY qualifier.

In this example, REGION1 is the name of a test that succeeds when the value
"NY" is in the STATE field; REGION2 is a test that succeeds when "NJ" or "PA"
is in the STATE field; and REGION3 is a test that succeeds when "DE," "MD,"
or "VA" is in the STATE field. The /KEY qualifier then assigns sorting values
to the tested field; in this case, the digits 1 through 3 for the three regions, and
the digit 4 for all other values). When your records are sorted with this /KEY
statement, the values that you assign with the /KEY qualifier are the basis for
sorting; that is, all of the records with value "I" (which was defined as the test
REGION1, which was in turn defined as the value "NY" in the STATE field) are
listed, followed by the records with value "2," and so on.

The /DATA qualifier attaches a text string to the output file. In this example, the
records with the sort tag "I" have the text string "REGION 1," and so on. Thus,
the output for each record includes the customer's name, street address, city, and
state, as well as a designation of "REGION 1, If "REGION 2, If or "REGION 3."
Any customer address that is not entered with an acceptable state code (NY, NJ,
PA, DE, MD, or VA), such as Aidan Campbell's, is output with an error message.

To define conditionals, use the TEST sub qualifier with the following two-letter
operators:

Operator Meaning

EQ Equal to

NE Not equal to

GT Greater than

GE Greater than or equal to

LT Less than

LE Less than or equal to

In collating terms, less than means coming before in sequence, and greater than
means coming after in sequence. Sequence is determined by the number that
a character or digit equates to in the collating sequence you are using. For
example, uppercase A is equivalent to 65 in the DIGITAL Multinational Collating
Sequence, and uppercase Z is equivalent to 90. Appendix C lists the DIGITAL
Multinational Collating Sequence and the ASCII Collating Sequence.

Use AND and OR to include more than one conditional test with a TEST
subqualifier, and enclose TEST and its parameters in parentheses. If the data
in the field is alphabetic and you use the operators GT, GE, LT, or LE, then by
default the ASCII value of the alphabetic data is compared to the ASCII value of
the text you supplied with the TEST sub qualifier.

3.4.3.1 Changing the Contents of a Field

You can also use the /CONDITION qualifier to change the contents of a field.
For example, suppose that some of your records contain a spelling error, such
as "CINNCINATTI," which should be spelled "CINCINNATI.") You could use the
/CONDITION qualifier to correct the error as follows:

3-8 Using a Specification File

/FIELD = (NAME = CITY,POS = 6,8IZ = 15)
/CONDITION = (NM~E CINCI

TEST = (CITY EQ "CINCINNATI" OR
CITY EQ "CINNCINATTI"»

Next, you define the text that you want to replace either of the two conditions by
using the /DATA qualifier:

/DATA=(IF CINCI THEN "CINCINNATI")

When the data is sorted, all references in the field CITY to either CINCINNATI
or CINNCINATTI will appear in the output file as CINCINNATI. Since no /KEY
qualifier was used with the ICONDITION qualifier, this operation does not affect
the order of the sorted output.

3.4.3.2 Specifying Records for Inclusion or Omission

To select records that you want to include or exclude from the sorl or merge
operation, use the ICONDITION qualifier as a subqualifier to an /INCLUDE or
IOMIT qualifier. For example, if you wanted to sort only the records of customers
in California, you could use the following syntax:

/FIELD = (NAME = STATE,POS = 56,SIZ = 2)
/CONDITION = (NAME = CALIF

TEST = (STATE EQ "CAli»
/INCLUDE=(CONDITION = CALIF)

In tr.is example, orJy those recol'd8 that satisfy the condition named. CALIF (that
is, only those records with "CAn in the STATE field) are included in the sorting or
merging process defined in the remainder of the specification file. If you use the
ICONDITION qualifier with an IOMIT qualifier, all records satisfying the named
condition are excluded from the sorting or merging process.

The order in which you list /INCLUDE or IOMIT statements is the order in
which they are evaluated. Thus, if you exclude a record with an IOMIT qualifier
and subsequently include the record with an /INCLUDE qualifier, the record is
included in the output file. However, only the key fields that were indicated prior
to the IOMIT statement and after the /INCLUDE statement are sorled.

When you use IOMIT or /INCLUDE, you can either specify the criteria for
omission or inclusion (lOMIT=(CONDITION=condition-name) or not specify any
criteria (lOMIT without a CONDITION statement). If the last instruction that
specifies criteria is IOMIT, then everything not specifically omitted is included;
if the last instruction that specifies criteria is /INCLUDE, then everything not
specifically included is omitted. If the last instruction that does not specify
criteria is /INCLUDE or IOMIT, then everything not specifically omitted is
included (with /INCLUDE), or everything not specifically included is omitted
(with IOMIT).

3.4.3.3 Representing Data Other Than Character or ASCII in Conditions

Note that the data supplied with the TEST sub qualifier to the ICONDITION
qualifier must be of the same type as the data in the field being tested. In the
sales region example in Section 3.4.3, the data supplied with TEST is NY, NJ, PA,
DE, MD, and VA, which is character data, the same type of data contained in the
STATE field: NY, NH, NJ, PA, DE, MD, and VA.

If the data in the field being tested is numerical and non-ASCII, care must be
taken to ensure that the data is represented correctly. SORT/MERGE translates
character and ASCII data into its machine-language representation, which is
necessary for correct processing by the Central Processing Unit (CPU). The utility
does not translate other types of data. Therefore, if you wish to sort other types

Using a Specification File 3-9

of data, you must represent it in octal or hexadecimal form, which can be read by
the CPU. The octal representation must be preceded by %0 and the hexadecimal
by%X.

For example, SORTIMERGE does not translate the ASCII representation of the
packed decimal number shown in the following /CONDITION statement:

/PROCESS=RECORD
/FIELD = (NAME = MYREC, pos = 1, SIZ = 4, PACKED_DECIMAL)
/CONDITION = (NAME = TESTREC, TEST = (MYREC EQ "0100003C"»
/INCLUDE = (CONDITION = TESTREC)

The test condition in this /CONDITION statement will result in an error mes­
sage. The decimal number being represented is 0.00001. To use the PACKED
DECIMAL data type with this number, you can represent the number in octal
form, as follows:

/PROCESS=RECORD
/FIELD = (NAME = MYREC, pos = 1, SIZ = 4, PACKED DECIMAL)
/CONDITION = (NAME = TESTREC, TEST = (MYREC EQ %011400000001»
/INCLUDE = (CONDITION = TESTREC)

For further information on the use of other types of data, consult the user's guide
to your programming langauge.

3.5 Sorting Files with More than One Record Format

By specifying condition tests and record selection, you can sort records that have
their fields formatted differently. Suppose you have two files from two different
branches of a real estate agency. The records in the first file start with an "A" in
the first position and are formatted as follows (the beginning position of each field
is indicated below the format):

A PRICE TAXES STYLE ZIP
1 2 10 14 24

The records in the second file start with a "B" in the first position but have the
style and zip code fields reversed, as follows:

B PRICE TAXES ZIP STYLE
1 2 10 14 19

Suppose you want these two files sorted on the zip code field in the format of
record "A." For this sort operation, you indicate the following information in your
specification file. (Comments are permitted in the text of a specification file and
begin with an exclamation mark, as shown in this example. Do not use comments
if you will use the specification file in a program that calls SORT or MERGE.)

3-10 Using a Specification File

/FIELD (NAME=REC_TYPE, POS=l, SIZ=l)
/FIELD (NAME=PRICE, POS=2, SIZ=8)
/FIELD (NAME=TAXES, POS=lO, SIZ=5)
/FIELD (NAME=STYLE_A, POS=14, SIZ=lO)
/FIELD (NAME=STYLE_B, POS=19, SIZ=lO)
/FIELD (NAME=ZIP_A, POS=24, SIZ=5)
/FIELD (NAME=ZIP B, POS=14, SIZ=5)
/CONDITION = (NAME=FORMAT_A,

TEST=(REC_TYPE EQ "A"»
/CONDITION (NAME=FORMAT_B,

TEST= (REC_TYPE EQ "B"»
/INCLUDE = (CONDITION=FORMAT_A,

KEY=ZIP_A,
DATA=PRICE,
DATA=TAXES,
DATA=STYLE A,
DATA=ZIP_A)

/INCLUDE (CONDITION=FORMAT_B,
KEY=ZIP_B,
DATA=PRICE,
DATA=TAXES,
DATA=STYLE_B,
DATA=ZIP_B)

Record's type, l-byte field
Price field, both files
Taxes field, both files
Style field, format A file
Style field, format B file
Zip code field, format A file
Zip code field, format B file
Condition test, format A file

Condition test, format B file

Output format, type-A records

Output format, type-B records

Thus, on output, this sort operation changes the format of the records of type B
to that of the records of type A.

NOTE

If you specify any key fields or data fields with the !INCLUDE qualifier,
you must explicitly specify all the key fields and data fields in the
operation with the !INCLUDE qualifier.

By default, the key fields are not prefixed to the output record. However, you can
specify conditional key and data fields, as explained in the previous example, to
override this default.

Section 3.10 includes a sample specification file, which shows the use of the
/CONDITION statement.

3.6 Specifying a Collating Sequence

The default collating sequence for character data is ASCII. You can specify ASCII,
EBCDIC, Multinational, or your own collating sequence, as follows:

(ASCII)
(EBCDIC)

/COLLATING_SEOUENCE=(SEOUENCE= (MULTINATIONAL)

(user-defined-seq uence)

The MULTINATIONAL collating sequence is the DIGITAL Multinational
Collating Sequence listed in Appendix C. The ASCII Collating Sequence is listed
in Appendix C also.

3.6.1 Defining Your Own Collating Sequence

This section describes how YQU can modify the ASCII, EBCDIC, and Multinational
collating sequences to suit your needs. If none of these collating sequences
is suited to your needs, you can define your own. (You can modify your own
collating sequence also; for more information on modifying your own sequence,
see Section 3.6.3.)

Using a Specification File 3-11

To define your own collating sequence, specify a string of characters (single or
double), or ranges of single characters. A double character is any set of two single
characters that you want to collate as if they were a single character. Enclose
each character in quotation marks, separate characters (or sets or ranges) by
commas, and enclose the entire list in parentheses. For example:

/COLLATING_SEQUENCE= (SEQUENCE= ("A"-"L", "Ll", "M"-"Z"»

This sequence signifies that the double character L1 collates as a single character
between Land M. If you were to use this collating sequence to sort a field
containing the names "Lancaster, Llewellyn, and Lonergan," the names would
be sorted in the order of "Lancaster, Lonergan, and Llewellyn" instead of their
normal alphabetical order. By default, this collating sequence does not define the
lowercase characters a through z.

When you specify a collating sequence, uppercase characters and lowercase
characters are treated separately. By default, uppercase characters are collated
before lowercase characters. To collate lowercase characters before uppercase,
include the following line in your specification file:

/COLLATING_SEQUENCE=(SEQUENCE=("a"-"z","A"-"Z"»

The records are collated first using lowercase a-z and then uppercase A-Z, as in
the following file, VEG.DAT:

cucumbers
eggplant
turnip
ASPARAGUS
MUSHROOMS
ZUCCHINI

When you define a collating sequence, SORTIMERGE creates an ordering table
based on the sequence that you define. This table replaces the predefined ASCII,
EBCDIC, or MULTINATIONAL tables. When you have finished creating your
own collating sequence, the corresponding ordering table should represent a
complete specification of all the characters appearing in the character key fields
in your sort or merge operation. SORTIMERGE ignores any character to which
you have not given a collating value.

The following rules apply to defining a collating sequence:

• Define a character only once.

• Specify the null character with the %XO rather than "". %X is the hex­
adecimal radix operator. You can also represent other characters by their
corresponding octal, decimal, or hexadecimal values, by using the octal,
decimal, and hexadecimal radix operators, %0, %D, and %X respectively.
For information on representing non-ASCII data in a specification file, see
Section 3.4.3.3.

• Specify quotation marks (",,) by enclosing them within quotation marks (""'",)
or by using a radix operator.

3.6.2 FOLD and TIE_BREAK Subqualifiers

To cause uppercase and lowercase characters to be collated together, use the
subqualifier FOLD with the /COLLATING_SEQUENCE qualifier. When you use
FOLD, SORTIMERGE does not discriminate between uppercase and lowercase
characters. Use FOLD as follows to sort VEG.DAT:

/COLLATING_SEQUENCE= (SEQUENCE= ("a"-"z", "A"-"Z", FOLD»

3-12 Using a Specification File

The output is as follows:

ASPARAGUS
cucumbers
eggplant
MUSHROOMS
turnip
ZUCCHINI

FOLD causes all lowercase characters to be given the collating value of their
uppercase equivalents. In effect, FOLD is the same as using the following
expression:

MODIFICATION = ("a"="A","b"="B", ... "z"="Z")

If you specify FOLD after you define a double character that contains no low­
ercase letters (for example, "CH">"C"), then any lowercase or mixed-case
combinations of the defined double character will have a collating value equiv­
alent to the defined double character. (For example, "ch", "Ch", and "CH" all
have the same collating value greater than "C".) However, if you specify FOLD
before you define the "CH">"C" double character, then only the uppercase "CH"
collates greater than "C."

Use TIE_BREAK to indicate that you want further processing to be performed
after an initial comparison of collating values results in equal values. This
tie-breaking process arranges the characters according to a predefined order, as
shown in the DIGITAL Multinational Character Set collating sequence table in
Appendix C. For ASCII, EBCDIC, and any user-defined collating sequence, the
tie-breaking is based on the numeric code values of the characters. You must
explicitly specify tie-breaking for these character sets; you should usually use
tie-breaking after specifying FOLD or MODIFICATION.

With the Multinational Collating Sequence, tie-breaking is the default unless
you explicitly specify NOTIE_BREAK. If you use NOTIE_BREAK with the
Multinational Collating Sequence, only an initial comparison of the collating
values is made, and some unexpected ordering may result.

3.6.3 Modifying the Collating Sequence

You can modify whatever collating sequence you select by instructing
SORTIMERGE to change the order in which certain characters appear in the
given sequence. To indicate your instructions for any modifications, use the
keyword MODIFICATION with the /COLLATING_SEQUENCE qualifier, as
follows:

/COLLATING_SEQUENCE=(SEQUENCE=collating-sequence
{character> character

, MODIFICATION=(character < character [, ••. J)
character = character}

The following rules apply to using the /COLLATING_SEQUENCE qualifier:

• Use a comma between subqualifiers.

• Enclose the characters to be modified in quotation marks or use a radix.

• If you make more than one modification to your collating sequence, separate
the modifications with commas.

To modify any of the predefined collating sequences (ASCII, EBCDIC, or
MULTINATIONAL), or to use FOLD, IGNORE, or TIE_BREAK, specify the
sequence in the /COLLATING_SEQUENCE qualifier as follows: /COLLATING_
SEQUENCE = (SEQUENCE = (EBCDIC), MODIFICATION= ...)).

Using a Specification File 3-13

The kinds of modifications permitted with the MODIFICATION subqualifier are
as follows:

• Equating a single or double character to a single character. The second
character must already have a collating value.

Thus, if you want to modify the previous example of the user-defined collating
sequence so that M has the same collating value as N, specify the following:

,MODIFICATION= ("N"="M")

• Causing a single or double character to collate after a single character that
has already been assigned a collating value.

For example, if you want M to collate after N, express this modification as
follows:

,MODIFICATION= ("M">"N")

• Causing a single or double character to collate before a single character that
has already been assigned a collating value.

If, for example, you want the double character CH to collate after C and
before D, you specify this modification in either of the following ways:

,MODIFICATION=("CH"<"D")
,MODIFICATION= ("CH">"C")

• Equating a double character to a previously defined double character.

For example, if you have previously assigned a value to the double character
PH, you can then equate the double character GH to it, as follows:

,MODIFICATION= ("GH"="PH")

• Equating a single character to a two-character sequence.

Thus, if you want the ligature lE to collate in the same position as the
two-character sequence of AE, you specify the following:

,MODIFICATION= ("lE"="AE")

To request that SORTIMERGE ignore a character or character range within the
given collating sequence, use the IGNORE subqualifier, as follows:

,IGNORE=(character)

For example, the following line:

,IGNORE= ("-"," ")

would cause the following fields to be compared as equal:

252-3412

252 3412

2523412

In the MULTINATIONAL collating sequence, two defaults exist that are not
present in the ASCII and EBCDIC collating sequences, FOLD and TIE_BREAK.

To override the default tie-breaking algorithm when using the MULTINATIONAL
collating sequence, specify the subqualifier NOTIE_BREAK. To use tie breaking
in the other collating sequences, specify the subqualifier TIE_BREAK.

3-14 Using a Specification File

3.6.4 Example of a User-Defined Collating Sequence

The following file, named SEMNAR.DAT, contains a schedule of seminars sorted
by title:

11 Jan ' 93 Assertiveness Training
16 NOV 1994 Communication Skills
05 APR 1993 Coping with Alcoholism
12 OCT 1994 Improving Productivity
15 MAR 1993 Living with Your Teenager
08 FEB 1993 Single Parenting
07 Dec ' 94 Stress: Causes and Cures
14 SEP 1994 Time Management

To sort the file by date, assign the year field as the primary key and the month
field as the secondary key. Because the month field is not numeric and you want
the months ordered chronologically, you must define your own collating sequence.
You can do this by sorting on the second two letters of each month in their
chronological sequence, thereby giving each month a unique abbreviation.

Specify the specification file text for this sort operation in the following file,
SPEC.SRT:

/FIELD=(NAME=DAY,PO=1,SIZ=2)
/FIELD=(NAME=MONTH,PO=5,SIZ=2)
/FIELD=(NAME=YEAR,PO=8,SIZ=4)
/KEY=YEAR
/KEY=MONTH
/KEY=DAY

/COLLATING SEQUENCE=(SEQUENCE=
("AN", "EB", "AR", "PR", "AY", "UN", "UL",
"UG","EP","CT","OV","EC","0"-"9"),

MODIFICATION=("'''=''19''),
FOLD)

Primary key field
Secondary key field
Tertiary key field

User-defined sequence
that gives each month
a unique value
in its chronological order

Include this specification file in a SORT command string as follows:

DCL> SORT/SPECIFICATION=SPEC.SRT SEMNAR.DAT SCHED.DAT
MCR> SCHED.DAT=SEMNAR.DAT,SPEC.SRT/SF

The output from this sort operation appears as follows:

11 Jan ' 93 Assertiveness Training
08 FEB 1993 Single Parenting
15 MAR 1993 Living with Your Teenager
05 APR 1993 Coping with Alcoholism
14 SEP 1994 Time Management
12 OCT 1994 Improving Productivity
16 NOV 1994 Communication Skills
07 Dec ' 94 Stress: Causes and Cures

3.7 Reassigning Work Files

Placing work files on different disk-structured devices, by means of a specification
file, maximizes the performance of SORT. Specify the reassignment as follows:

/WORK_FILES=(workfile,workfile, •.•)

where workfile is in the format ddnn: (for example, /wORK_FILES = (dbO:,dmO:).
The first work file is placed on the first device listed, the second work file on the
second device listed, and so on.

Using a Specification File 3-15

3.8 Specifying a New Pad Character

By default, SORTIMERGE uses a null character to pad records. However, you
can specify your own pad character to reformat records or to compare strings
of different lengths by using the /pAD qualifier in your specification file. Do
not specify a double character as a pad character, even if you equate a double
character to a single character elsewhere in the specification file. The format for
specifying a pad character is as follows:

/PAD=x

where x is one of the following:

%D<decimal-digit>
%O<octal-digit>
%X<hex-digit>
"<character> "

3.9 Format of Qualifiers in a Specification File

This section lists the formats of the qualifiers and subqualifiers that you can
use in a specification file. The notation used is as follows: brackets [] indicate
that an element is optional; braces { } indicate that you may select only one of
the possible choices; parentheses () indicate that parentheses must enclose your
choices; and boldface indicates default elements.

I[NO]CHECK_SEOUENCE I This qualifier is applicable to merge operations only.

ICOLLATING_SEOUENCE=

{
(ASCII) }
(EBCDIC)

(SEOUENCE= (MULTINATIONAL) ,

(user-defined sequence)

ICONDITION=(NAME=condition-name,TEST =(field-name1

MODIFICATION=(char {: } char, ...

IGNORE=({ chhar } , ...)
car-range

FOLD
[NO]TIE_BREAK

EO
NE
GT
GE
LT
LE

{ field-name } ... [{AND }
constant OR

field-name1

[EO]
[NE]
[GT]
[GE]
[LT]
[LE]

{ field-name }]»
constant

3-16 Using a Specification File

IDATA=key-data-clause I Format of key-data-clause is as follows:

field-name

{

(field-name) }
(constant)

constant (IF condition-name THEN constant)
([[ELSE] IF condition-name THEN constant ...])
(ELSE constant)

[(,ASCENDING)]
(,DESCENDING)

IFIELD=

{
SIZE=1-255 Icharacter data }

(NAME=field-name,POSITION=integer, 1,2,4,8 Ibinary data ,
DIGITS=1-31 !decimal data

[
(CONDITION=condition-name) 1

IINCLUDE= ,(KEY=key-data-clause ...)
,(DATA=key-data-clause ...)

[CHARACTER]
[ASCII_FLOATING]
[ASCI LZONED]
[BINARY]

[,SIGNED]
[,UNSIGNED]

[DECIMAL]
[,SIGNED]
[,UNSIGNED]
[,TRAILING_SIGN]
[,LEADING_SIGN]
[,OVERPUNCHED _SIGN]
[,SEPARATE_SIGN]
[,DIBOL_ZONED]
[,D _FLOATING]
[,F _FLOATING]
[,PACKED_DECIMAL]

IKEY=key-data-clause I See the IDATA qualifier for the format of key-data-clause.

IOMIT =[(CONDITION=condition-name)]

{
%D<decimal-digit> }

IPAD= %O<octal-digit>
%X<hexadecimal-digit>
"<character> "

h . {<single_char> } <c ar> .==
<double_char>

Using a Specification File 3-17

%D<decimal-digits>
{

<character> }

<single_char> :== %O<octal-digits>
%X<hex_digits>
"<character> "

d bl h . {<single-char><single-char>} < ou e car> .= =
- "<character><character> "

<char-range> :== <single-char>-<single-char>

. { <char> } <user-defined-sequence> := = h
<c ar-range>, ...

t t . %O<octal-digits> {
<decimal-digits> }

<cons an> .== ..
%X<hex-digits>
"<character> "

{
RECORD }

/PROCESS= TAG
ADDRESS
INDEX

I This qualifier is applicable to sort operations only.

/wORK_FILES={workfile,workfile, ...) I The format of the workfile parameter is ddnn:. This
qualifier is applicable to sort operations only.

3.10 Sample Specification File

Sort Specification File
!
/FIELD= (NAME=AGENT,POSITION=l, SIZE=15)
/FIELD=(NAME=ZIP,POSITION=16,SIZE=5)
/FIELD=(NAME=STYLE,POSITION=21,SIZE=l)
/FIELD=(NAME=CONDITION,POSITION=22,SIZE=l)
/FIELD=(NAME=PRICE,POSITION=23,SIZE=8)
/FIELD=(NAME=TAXES,POSITION=31,SIZE=4)
!
/CONDITION=(NAME=LOCATION,TEST=(ZIP EQ "01863"»
/CONDITION=(NAME=GAMBREL,TEST=(STYLE EQ "1"»
/CONDITION=(NAME=SPLIT,TEST=(STYLE EQ "2"»
/CONDITION=(NAME=TRILEV,TEST=(STYLE EQ "3"»
/CONDITION=(NAME=RANCH,TEST=(STYLE EQ "4"»

3-18 Using a Specification File

/KEY=(IF LOCATION THEN 1 ELSE 2)
/KEY=ZIP
/DATA=ZIP
/DATA=" "
/DATA=PRICE
/DATA=" "
/DATA=TAXES
/DATA=" "
/DATA=(IF GAMBREL THEN "GAMBREL "ELSE

IF SPLIT THEN "SPLIT LEVEL" ELSE
IF TRILEV THEN "TRI-LEVEL "ELSE
IF RANCH THEN "RANCH " ELSE

/DATA=" "
/DATA=CONDITION
/DATA=" "
/DATA=AGENT

"UNKNOWN ")

NOTE

The exclamation-point comment character (!) is included in this
sample specification file. If you plan to include the specification file in
a program, do not use any comment characters.

Using a Specification File 3-19

Chapter 4

Using SORT and MERGE in a Program

This chapter describes how to access SORTIMERGE from a program at run time,
using the subroutines that SORTIMERGE provides. You can use SORTIMERGE
to arrange data before or after it is processed by a program. This chapter covers
the languages that support SORTIMERGE, the two callable interfaces, and the
SORTIMERGE subroutines and their parameters.

Appendix B of this manual contains six sample programs that demonstrate how
to use the callable SORT and MERGE subroutines.

4.1 Language Support

The following PDP-ll native-mode languages allow you to invoke SORTIMERGE
from a program:

BASIC-PLUS-2
COB0L-81
MACRO-ll
PDP-ll C
PDP-ll FORTRAN-rv
PDP-ll FORTRAN-77

Note that COB0L-81 includes the COBOL syntax for many SORT and MERGE
functions. You can the SORTIMERGE subroutines directly for those functions
that are not provided by the ANSI COBOL standard syntax.

Individual calls from your program can access a specific SORT or MERGE
subroutine and pass parameters to it. You place the syntax to define your sort or
merge operation in your calling program.

Calls and the associated parameters conform to the calling standard of PDP-ll
FORTRAN. The parameters used in calling SORTIMERGE are passed by
reference.

BASIC and COBOL allow you to pass data descriptors for string or character
fields. BASIC uses two types of descriptors: string descriptors and array
descriptors. The BASIC string descriptor is 2 words, containing the address
and the length, in that order. The BASIC array descriptor is also 2 words, but
it lists the length first and then the address. The COBOL descriptors used for
SORTIMERGE are all 2-word descriptors, containing a length first and then an
address. See the BASIC or COBOL documentation for your operating system
to learn about using BASIC or COBOL descriptors and the required order for
passing information.

Using SORT and MERGE in a Program 4-1

If you write your program in BASIC or COBOL and pass information by
descriptor, the SORT subroutine names are slightly different from the subroutine
names for the other supported languages. If you use BASIC or COBOL and do
not pass information by descriptor, use the same SORT subroutines as for all of
the other supported languages.

All those parameters for which SORTIMERGE requires only an address, and not
a length, are passed by reference.

Because programming languages express parameters differently, this chapter
does not give detailed instructions for each language. For further information,
see the reference manual or user's guide for the PDP-ll programming language
in which you are writing your program.

At installation time, the SORTIMERGE subroutines are placed in the system
library directory. When permitted by your programming language, it is good
practice to use function references to invoke the subroutines.

4.2 AcceSSing Callable SORT and MERGE

You can access the SORT or MERGE subroutines through one of two interfaces:
the file interface and the record interface. The file interface allows you to submit
your records for sorting or merging as complete files. The record interface allows
you to submit your records individually. You can use both interfaces within the
same SORT or MERGE operation by using one interface for input and the other
for output; this is called using a mixed-mode interface.

When your program submits one or more files to SORT or MERGE (resulting in
the creation of one sorted or merged output file), you are using the file interface.
When your program submits records one at a time and then receives the ordered
records one at a time, you are using the record interface. You can combine the
file interface with the record interface by having your program perform one of the
following steps:

• Submit files as input and receive the output as ordered records

• Submit records as input and have the ordered records written to an output
file

The file interface executes faster than the record interface and is easier to
incorporate into your program. When you use this interface, you sort (or merge)
all records in the files without processing them either before or after sorting.
When you use the record interface, you can perform an operation on each record
before or after sorting. For example, you would use the record interface if you
want to keep a tally of the number of duplicate records that are returned to your
program.

If you use the mixed-mode interface with the file interface on input, you can
perform an operation on the records after they are sorted. In the mixed-mode
interface with the file interface on output, you can perform an operation on the
records before they are sorted. The calls that you use in your program differ for
the file and record interfaces, as described later in this chapter.

4-2 Using SORT and MERGE in a Program

4.3 Specifying Your Own Routines

You can specify your own routines to accomplish special tasks for your sort or
merge operation. For example, you can specify your own key-field comparison
routine. (All these routines are explained in detail in the descriptions of the
subroutine parameters later in this chapter.) However, since a BASIC routine can
be called only by another BASIC routine, these user-defined routines cannot be
written in BASIC-PLUS-2.

Depending on what your programming language allows, you specify the use of
your own routines in one of two ways:

1. If the language you are using permits, specify the address or addresses of
your routine or routines as an optional parameter in the first SORTIMERGE
subroutine called in your program.

2. If you cannot use this method with your programming language, you can
write these routines as separate subprograms. You must use the same global
symbols for the entry points as SORT and MERGE use for their default
processing: SRTxxx for SORT, and MRGxxx for MERGE. When task building,
you must modify the appropriate SORT or MERGE overlay description
language file (ODL), as explained later in this chapter. In this way, the
addresses of the routines will be resolved with your object module, rather
than with the default SORTIMERGE subroutines.

Pass all parameters to these routines by reference. Begin each argument list with
a word containing the number of parameters being passed. Use Register 5 (R5)
as the linkage register.

4.4 Calling the SORT Subroutines

SORT requires the same type of user input whether you access the utility from
a program, from the command level, or from a specification file. Specifically, you
provide the following information:

• File specifications (when you use the file or mixed-mode interface)

• Information about key fields (for example, position, size, and data type)

• Instructions about the sorting process

You pass this information to SORT by using subroutine parameters. After being
called, each subroutine performs its function and then returns control to the
program. One of the parameters to SORT and MERGE subroutine calls is a
4-word error buffer. The routine status is placed in word 1 before control is
returned to your program. Words 2, 3, and 4 may contain additional information,
depending on the nature of any error that occurs. For example, if an 110 error
occurs during a call to SORT, words 2 and 3 of the error buffer will contain the
error's status-code-field (STS) and status-value-field (STV) values. (See your
operating system's Record Management Services (RMS) documentation for more
information on these values.) Your program can test the values of words 1 to 4 to
determine success or failure conditions.

SORT subroutine have both both required and optional parameters. Required
parameters appear first in the argument list; you can include optional parameters
only after you have listed all of the required parameters. Include all parameters
in the order in which they are positioned in the argument list, using a comma
to separate them. Null parameters are indicated when no value follows the
comma in the parameter's position in the argument list. If your programming

Using SORT and MERGE in a Program 4-3

language does not permit null parameters, use a 0 or -1 to indicate them in the
parameter's position in the argument list. You can end your argument list after
you have specified all the required parameters.

Table 4-1 lists the standard calls for the record and file interfaces and briefly
describes the function of each. The following sections describe each SORT
subroutine in detail, including required and optional parameters.

Table 4-1: SORT Subroutines

Subroutine

File Interface

SRTINI

SRTSRT

SRTEND

Record Interface

SRTINI

SRTRLS

SRTRTN

SRTEND

Function

Initializes sort operation by passing file names, key information and
sort options

Reads the input file or files, sorts the records, and writes the records to
the output file

Performs cleanup functions, such as closing files and releasing memory

Initializes sort operation by passing key information and sort options

Passes one input record to SORT; must be called once for each record

Returns one sorted record to your program; must be called once for
each record

Performs cleanup functions, such as closing files and releasing memory

4.4.1 USing the File Interface

For a sort task using the file interface, first call the initialization subroutine
SRTINI. Note that if you are using BASIC or COBOL and pass information
by descriptor, you use different entry points to initialize a sort operation: the
initializing subroutine for BASIC is SRTINB; the initializing subroutine for
COBOL is SRTINC. (If you write your program in BASIC or COBOL and you do
not pass information by descriptor, use the SRTINI subroutine.)

The first parameters passed to SRTINI define the address of an error buffer and
set up work areas. Then you pass the address of a command line buffer, in which
you use an MCR command line to specify your input and output:file names and
your instructions about key fields and sort options. You also indicate whether
you want comparisons of key fields to be done by SORT or by your own key-field
comparison routine. You may want to provide your own comparison routine to
handle special sorting requirements; for example, if you are using a data type not
supported by SORT.

The next step is to call SRTSRT (SRTSRB for BASIC, SRTSRC for COBOL) to
execute the sort and to direct the sorted records to the output :file. Finally, call
SRTEND (SRTENB for BASIC, SRTENC for COBOL) to end the sort and to
release resources.

A program may call the SRTEND subroutine at any time between calls to the
other subroutines to abort a sort operation and to release all resources allocated
to the sort or merge process. If a fatal error condition occurs, SORT automatically
releases all allocated resources.

4-4 Using SORT and MERGE in a Program

4.4.2 Using the Record Interface

When you are using the record interface, first call SRTINI (SRTINB for BASIC,
SRTINC for COBOL). As with the file interface, this subroutine sets up work
areas and passes parameters that define key fields and sort options.

Next, call SRTRLS (SRTRLB for BASIC, SRTRLC for COBOL) to release a record
to the sort process. Your program must call SRTRLS once for each record to be
released.

Now, call SRTRTN (SRTRTB for BASIC, SRTRTC for COBOL) to return the
sorted records to your program. Your program must call SRTRTN once for each
record to be returned. When all the records have been returned, an end-of-file
code is returned to the error buffer on the next call to SRTRTN.

After each record has been returned, call the last subroutine, SRTEND (SRTENB
for BASIC, SRTENC for COBOL), to complete the sort task and release memory.

4.4.3 Using Mixed-Mode Interface

When you are using a mixed-mode interface, order the SORT subroutine calls to
match your output interface. If you use the file interface on output, use the calls
SRTINI, SRTSRT, and SRTEND. If you use the record interface on output, use
the SRTINI, SRTSRT, and SRTRTN subroutines once for each record, followed by
the SRTEND subroutine to end the MERGE operation.

4.4.4 Passing File Names and Initializing the Sort Process

As described in Section 4.4, each interface (file, record, and mixed-mode) begins
with a call to the SRTINI subroutine. (For BASIC, the corresponding subroutine
is SRTINB; for COBOL, it is SRTINC.) You use this subroutine to pass files, if
there are any, and to pass key-field information and key-field options.

When you call the SRTINI initializing subroutine, you must include 6 required
parameters, and you may include and 8 optional parameters. The SRTINB (for
BASIC) and SRTINC (for COBOL) subroutines each have 4 required parameters
and 6 optional parameters. Table 4-2 lists the required and optional parameters
for SRTINI and usage information for SRTINB and SRTINC. A discussion of each
parameter follows the table. (Unless otherwise noted, pass all parameters by
reference.)

Table 4-2: Parameters for SRTINI, SRTINB, and SRTINC

Parameters

1. Error address

2. Work area address

3. Work area length

4. Command line buffer

5. Command line length

6. Longest record length1

BASIC/COBOL Usage Information

Pass by descriptor

Omit

Pass by descriptor

Omit

lRequired when longest record length is unavailable

(continued on next page)

Using SORT and MERGE in a Program 4-5

Table 4-2 (Cant.): Parameters for SRTINI, SRTINB, and SRTINC

Parameters

7. Specification file buffer2

8. Specification file buffer length2

9. Logical unit number (LUN) buffe~

10. LUN buffer length2

11. Input file size2

12. Warning routine address2

13 Comparison routine address2

14. Equal-key routine address2

2 Optional

1. Error address

BASIC/COBOL Usage Information

Pass by descriptor

Omit

Pass by descriptor in COBOL; by array
descriptor in BABIC

Omit

Specify a four-word buffer for this required parameter that will contain the
SORT status code and any other information that can be returned to the
calling program, such as the STS and STV codes for errors involving I/O. Your
program must check the status code when control is returned. Otherwise, the
results of subsequent SORTIMERGE calls may be undefined.

The SORTIMERGE error codes returned in the first word of the error buffer
are as follows:

Zero Success
Positive number Exception code or warning
Negative number = Fatal error

2. Work area address

Specify the work area to be used by your sort operation, including the sort
tree and any needed buffers for work files and I/O, in this required parameter.

Only as much memory is used for a sort operation as is necessary. The
amount required varies greatly with the parameters of the sort. In general,
the more memory provided the faster the sort. Excess memory is used for
multiblocking the I/O read and write operations (multiblocking refers to the
capability of RMS to to read or write more than one block of a file into the I/O
buffer at a time). The following formulas can be used for rough calculations
of the minimum memory needed for a particular sort operation. All sizes are
in bytes and values in decimal.

Let INP = number of input files
OUT = number of output files
WRK = number of work files
TAP = total number of input and output files on tape
lOX = total number of indexed keys in all input and output files
IKS = maximum size of all input and output indexed keys
TBS = maximum tape block size of all input and output files on tape
LRL = maximum length of all input records in all input files

The formula for a sort operation is as follows:

(100 • INP) + ((800 + LRL) • WRK) + ((800 + LRL) • OUT)+ ((2 • IKS + 600) • KEY) + (TBS • TAP) + (4 • LRL)
+ 1000

4-6 Using SORT and MERGE in a Program

Some sort operations may require more or less than the amoWlts given by the
above formula. Where work area is at a premium, some fine tuning may be
needed. Otherwise, as much work area as possible should be given to increase
the performance of the operation.

In BASIC (SRTINB) or COBOL (SRTINC) programs, pass this parameter by
descriptor.

3. Work area length

For supported languages other than BASIC or COBOL, you must specify a
word containing the length of the work area in bytes. In BASIC or COBOL
programs, you do not pass this parameter for calls to SRTINB and SRTINC,
because you specified this length as part of the work area address descriptor.

4. Command line buffer

For this required parameter, specify a word that gives the address of the
buffer containing the MCR command line for your sort operation. Chapter 2
describes the use of the MCR switches.

The command line in this buffer differs from the MCR line used at the
command level only when you are not passing files either on input or output.
For the record interface, specify only the MCR switches that define the sort
operation (but not those that define the input or output files). When you use
the record interface only for output, include the input file specifications and
any switches that describe the input files. When you use the record interface
only for input, include the output file specification and any switches that
describe the output file. The following example shows a command line with
the file interface used on output and the record interface used on input.

SRTLIS.DAT=/KE:068.4/FO:V:71/BK:3

For SRTINB and SRTINC, pass this parameter by descriptor.

If you are using the record interface on input, and if you do not specify any
output file switches in your command line buffer, SORT provides the following
output defaults:

• Noncontiguous, sequential file with variable-length records

• Maximum record size equal to the length of the longest input record, as
specified in the LRL parameter to SRTINI

• Bucket size of one

• Retrieval window size (RSX-llMIM-PLUS) or cluster size (RSTSIE) of
zero

If you are using the record interface on input, you can perform only a record
sort process. However, you can specify anyone of the four sort processes for
the file interface on input in your command line buffer.

5. Command line length

For this required parameter, provide a word giving the length of the command
line in bytes. For the following example, you would specify a command line
length of 33 bytes:

SRTLIS.DAT=/KE:068.4/FO:V:71/BK:3

Do not use this parameter if you are using BASIC or COBOL and passing
parameters by descriptor, since the command line length was included in the
command line buffer descriptor.

Using SORT and MERGE in a Program 4-7

6. Longest record length (LRL)

This parameter is required in the following instances.

• When you use the record interface on input

• When you have input files not on disk

• In any other instance where the input file LRL is not available

Provide a word giving the size of the longest record that will be released for
sorting. If you do not specify the LRL, and an LRL is not available from RMS,
SORT returns a fatal error status.

7. Specification file buffer

Use this optional parameter when you want to define specification file text
in your program without using an external specification file. Specify a word
that gives the address of the buffer containing your specification file text.
Chapter 3 discusses how to specify instructions for a sort operation in a
specification file. Note that you cannnot use any comment characters (!) in
the specification file text placed in an internal buffer.

For SRTINB and SRTINC, pass this parameter by descriptor.

As an alternative to using this parameter to pass specification file text to
SORT, you can specify the /SF switch and the specification file name in the
MCR command line buffer. However, if both methods of passing specification
file information to SORT are present in the same call to SRTINI, SORT
returns a fatal error status.

8. Specification file buffer length

If you pass the specification file buffer parameter, you must also pass the
length of this buffer. Specify a word giving the length of the specification file
text in bytes.

Do not use this parameter for SRTINB or SRTINC, since the length is
included in the previous parameter passed by descriptor.

9. LUN (Logical Unit Number) buffer

SORT needs a logical unit (often called a channel in RSTSIE documentation)
for each work file requested, for each input file, if any, and for the output
file, if any. Use this optional parameter if the default LUN assignments are
inadequate for your sort operation.

The default LUNs that SORT uses are determined when SORT is installed.
Unless otherwise specified at installation time, the default LUNs are as
follows:

1. LUN 2-for specification file

2. LUN 3-for output file

3. LUN 4-for 1st input file

After LUN 4, an additional LUN exists for each input file, followed by one
LUN for each scratch file. (For example, if you have two input files and two
scratch files, LUN 5 is for the second input file, and LUNs 6 and 7 are for the
two scratch files.)

Specify a word giving the address of a buffer that contains a word for each
LUN that SORT is to use. The LUNs passed need not be consecutive;
however, if SORT needs more LUNs than are passed, it will number the
additional LUNs consecutively from the last number passed.

4-8 Using SORT and MERGE in a Program

For SRTINB, pass this parameter by array descriptor; for SRTINC, pass it by
descriptor.

10. LUN buffer length

If you pass the LUN buffer parameter, you must also pass this parameter to
specify a word giving the length of the LUN buffer in words. Do not use this
parameter with SRTINB or SRTINC, since the information was passed by
descriptor with the previous parameter.

11. Input file size

You can use this optional parameter to improve the efficiency of your particu­
lar sort operation by overriding the default resources allocated by SORT. By
default, SORT estimates work file requirements as follows:

• Input file size for the file interface when the input file is on disk

• 1000 blocks for the file interface when the input file is not on disk

• 1000 blocks for the record interface

To use this parameter, specify a word containing the input file size in blocks.

12. Warning routine address

Use this optional parameter to declare a warning handler and override the
default actions for warning situations. To use the parameter, specify the
address of a warning condition handling routine that SORT is to call when
a warning situation occurs. The warning handler routine should evaluate
any warning and return a value to SORT that indicates whether the sort
operation terminates or continues.

SORT calls this routine with 2 parameters passed by reference, the error
buffer address and a return status code address. The error buffer is the
4-word error buffer that you specified in the first parameter passed to the
SRTINI subroutine. The second parameter, a return status code address, is
the address of a word in which you will place the return status code value: +1
for continuation and 0 for termination. Any value other than +1 or 0 causes
abnormal termination of the sort process.

This routine is called with the global symbol SRTWRN. If your language
requires that you write this routine as a separate subprogram, you must use
the same global symbol for the entry point. When task building, you must
specify the object module for this subprogram. See Section 4.6 for information
about task building.

13. Comparison routine address

This optional parameter allows you to use your own comparison routine
rather than the key-field comparisons that SORT provides. SORT calls this
routine with 5 reference parameters:

• The address of the buffer containing the first record

• The length of the first record

• The address of the buffer containing the second record

• The length of the second record

• The status code return

Using SORT and MERGE in a Program 4-9

The routine that you write must pass a parameter back to SORT using the
following status code values:

.. -1 if the first record collates before the second

.. 0 if the records collate as equal

co +1 if the first record collates after the second

Any other value will cause abnormal termination of the sort process.

Do not call this routine if you give key-field specifications in the command
line buffer or specification file text.

Use the global symbol SRTCMP to call this routine. If your language requires
that you write this routine as a separate subprogram, you must use the same
global symbol for the entry point. When task building, you must specify the
object module for this subprogram. See Section 4.6 for information about the
use of task building.

14. Equal-key-field routine address

For key fields that collate as equal, you can specify the address of an
equal-key routine. Using an equal-key-field routine gives you control over
record deletion, which you cannot achieve through the use of the IND
(NODUPLICATES) switch. However, you should not use this parameter if
you specify the 1ST (STABLE) or IND switch in the command line. Note also
that you can pass t.his parameter only if you are using a record sort process.

SORT calls the equal-key routine with 5 reference parameters:

.. The address of the buffer containing the first record

.. The length of the first record

.. The address of the buffer containing the second record

.. The length of the second record

.. The status code return

The routine must pass a parameter back to SORT with one of the following
status code values:

.. 0 = delete both records

• 1 = keep the first record only

.. 2 = keep the second record only

.. 3 = keep both records

Any other value will cause abnormal termination of the sort process.

You can modify the records passed to this routine before returning the status
value. For example, you may want to reformat the records or modify a nonkey
field. Suppose you are sorting, by employee name, a file that contains all the
pay checks issued for one year. If you need only the total amount paid to each
employee, you can add one pay check amount into a second duplicate record
and then delete the first record.

Call this routine with the global symbol SRTCLB. If your language requires
that you write this routine as a separate subprogram, you must use the same
global symbol for the entry point. When task building, you must specify the
object module for this subprogram. See Section 4.6 for information about task
building.

4-10 Using SORT and MERGE in a Program

4.4.5 Passing Records to SORT

When you use either the record interface or a mixed-mode interface with the
record interface on input, you must call SRTRLS in order to pass records to
SORT. Call this subroutine once for each record to be sorted. For BASIC, use the
subroutine SRTRLB; for COBOL, use SRTRLC. You must set up a record buffer
in your program's data area that will be used to contain the records.

SRTRLS has three required parameters (two for SRTRLB and SRTRLC), as
shown in Table 4-3. An explanation of each parameter follows the table.

Table 4-3: Parameters for SRTRLS, SRTRLB, and SRTRLC

Parameters

1. Error address

2. Record buffer

3. Record length

1. Error address

BASIC/COBOL Usage Information

Pass by descriptor

Omit

The error address, a required parameter for the SRTRLS call, is the same as
for the SRTINI subroutine, as described earlier in this chapter.

2. Record buffer

For the required record buffer parameter, provide a word giving the address
of the buffer that contains the record to be sorted. For BASIC (SRTRLB) and
COBOL (SRTRLC), you pass this parameter by descriptor.

3. Record length

For this parameter, which is required for all languages other than BASIC and
COBOL (for which the information was passed by descriptor in the previous
parameter), you specify a word that gives the length of the record to be sorted.

4.4.6 Returning Records to Your Program

When you use either the record interface or a mixed-mode interface with the
record interface on output, you must call SRTRTN to return the sorted records
to your program. Call this subroutine once for each record that is to be sorted.
SRTRTN places the record in a record buffer that you set up in your program's
data area, returning an end-of-file status (+1) in the first parameter if there
are no more records. If your application program is written in BASIC and you
are passing information by descriptor, use the subroutine call SRTRTB; if your
program is in COBOL and you are passing information by descriptor, use the
subroutine call SRTRTC.

Table 4-4 shows the parameters for the SRTRTN subroutine. An explanation of
.the individual parameters follows the table.

Using SORT and MERGE in a Program 4-11

Table 4-4: Parameters for SRTRTN, SRTRTB, and SRTRTC

1. Error address

2. Record buffer

3. Record buffer length

4. Returned record length

5. Record location

BASIC/COBOL Usage Information

Pass by descriptor

Omit

INote that when you use SRTRTN, you must pass either a record buffer or a record location. When
you pass a record buffer, you must also pass the length of the record buffer. If you use BASIC
(SRTRTB) or COBOL (SRTRTC), pass the record buffer by descriptor and omit the record buffer
length.

1. Error address

The error address is the same as for the SRTINI subroutine, as described
earlier in this chapter.

2. Record buffer

For the record buffer parameter, provide a word that gives the address of the
buffer that is to contain the returned record. For SRTRTB and SRTRTC, pass
this parameter by descriptor.

If you do not pass this parameter, you must pass the record location parame­
ter.

3. Record buffer length

Provide a word giving the length of the record buffer. If you use the SRTRTB
(BASIC) or SRTRTC (COBOL) subroutine, do not include this parameter
since the information will have been passed by descriptor in the previous
parameter.

4. Returned record length

For this parameter, specify the address of a word that is to receive a value
representing the length of the returned record.

5. Record location

Use this parameter if you want SORT to return the address of the returned
record (in the SORT internal buffer) rather than move the returned record to
a buffer in your program. You must specify either a record buffer and length
or a record location.

4.4.7 Sorting Records

When you use either the file or mixed-mode interfaces, you must call the SRTSRT
subroutine to sort the records. When you use the file interface on input, SRTSRT
is the second subroutine that you call; it reads the input file or files and sorts
the records. If you use the file interface on output and record interface on input,
SRTSRT is the third subroutine that you call; it sorts the records and writes them
to the output file. For BASIC, the corresponding subroutine is named SRTSRB;
for COBOL, it is SRTSRC.

SRTSRT has one required parameter: error address. This parameter is the same
as the error address parameter for SRTINI and each of the other subroutines
discussed thus far.

4-12 Using SORT and MERGE in a Program

4.4.8 Ending a Sort Operation

Call the SRTEND subroutine to end a sort operation; use SRTEND either at
the end of a successful sorting operation or when the progTam encounters an
error during a sorting operation. This subroutine closes files, cleans up sort work
areas, and releases memory. For BASIC, the corresponding subroutine is named
SRTENB; for COBOL, it is SRTENC.

If an error occurs during the sort operation, SORT automatically closes files,
cleans up work areas, and releases memory.

SRTEND has one required parameter: error address. The error address parame­
ter for SRTEND is the same as the error address parameter for each of the other
subroutine calls discussed in this chapter.

If you are using SORT from your progTam more than once, you must use
SRTEND once for each time that you use SRTINI. That is, you must issue a call
to the SRTEND subroutine to end a sort operation before you issue a subsequent
call to SRTINI to begin another sorting operation.

4.5 Calling the MERGE Subroutines

A progTam calls MERGE in the same way that it calls SORT. For a merge
operation at the progTam level, you must provide MERGE with the number of
input files, the file specifications (when using either file or mixed-mode interface),
information about key fields, and an input routine (when using either record
interface or mixed-mode with record interface on input).

As with SORT, you pass this information to MERGE by using subroutine
parameters. Mter being called, each subroutine performs its function and returns
control to your progTam. You must also pass the address of the first word in a
4-word error buffer to each of the subroutines.

MERGE returns a value to the error buffer to indicate the success or error
status for each call that you issue. You can have your progTam test that value to
determine success or failure.

MERGE subroutines have both required and optional parameters. Required
parameters appear first in the argument list. Include all parameters in the
order in which they are positioned in the argument list, separating them with
commas. Null parameters are indicated when no value follows the comma in the
parameter's position in the argument list. If your progTamming language does
not permit null parameters, use a 0 or -1 to indicate them in the parameter's
position in the argument list. You can end your argument list at any time after
you have specified all the required parameters.

Table 4-5 shows the standard calls for record and file interfaces and briefly
describes the function of each. Explanations of each of these subroutine calls
follow the table.

Using SORT and MERGE in a Program 4-13

Table 4-5: MERGE Subroutines

Subroutine

File Interface

MRGINI

MRGMRG

MRGEND

Record Interface

MRGINI

MRGRTN

MRGEND

4.5.1 File Interface

Function

Initializes merge operations by passing file names, key-field
information, and merge options

Reads the input file or files, merges the records, and writes the
records to the output file

Performs cleanup functions, such as closing files and releasing
memory

Initializes merge operations by passing key-field information and
merge options

Calls input routine and returns one merged record to your pro­
gram; must be called once for each record

Performs cleanup functions, such as closing files and releasing
memory

For a merging task using the file interface, the first step is to call the initializa­
tion subroutine MRGINI. (As with SORT, if you are using BASIC or COBOL and
pass information by descriptor, you use different entry points to initialize a merge
operation. The initializing subroutine for BASIC is MRGINB; for COBOL it is
MRGINC.)

The first parameters passed to MRGINI define the address of an error buffer and
set up work areas. Then you pass the address of a command line buffer, in which
you specify your input and output file names and your instructions about keys
and merge options. You can merge up to 10 input files; you always have one and
only one output file.

You also indicate whether you want key comparisons to be done by MERGE or by
your own key-comparison routine. You may want to provide your own comparison
routine to handle special sorting requirements; for example, if you are using a
data type not supported by MERGE.

The next step when using the file interface in your program is to call MRGMRG
(MRGSRB for BASIC, MRGSRC for COBOL) to execute the sort operation and to
direct the sorted records to the output file. Finally, call MRGEND (MRGENB for
BASIC, MRGENC for COBOL) to end the sort operation and to release resources.

Your program may call the MRGEND subroutine at any time between calls to
the other subroutines to abort a merge operation and to release all resources
allocated to the sort or merge process. If a fatal error condition occurs, SORT
automatically releases all allocated resources.

4-14 Using SORT and MERGE in a Program

4.5.2 Record Interface

When you are using the record interface, first call MRGINI (MRGINB for BASIC,
MRGINC for COBOL). As with the file interface, this subroutine sets up work
areas and passes parameters that define key fields and merge options. When
you use the record interface with MERGE, you must also provide the address
of a user-defined input routine when you call MRGINI. This is explained in
Section 4.5.4 in the discussion of MRGINI.

Next, call MRGRTN (MRGRTB for BASIC, or MRGRTC for COBOL) to return
the merged records to your program. MRGRTN calls the input routine as needed.
Unlike SORT, MERGE does not need to hold all the records before it can begin
returning them in the desired order. The releasing, merging, and returning of
records all take place in this phase of the merge. You must call the MRGRTN
subroutine once for each record to be returned and pass a parameter that tells
MERGE where to place the merged record.

Mter all the records have been returned, call the last subroutine, MRGEND
(MRGENB for BASIC, MRGENC for COBOL), to release resources.

4.5.3 Mixed-Mode Interface

When you are using a mixed-mode interface, order the MERGE subroutine calls
to match your output interface. If you use the file interface on output, use the
calls MRGINI, MRGMRG, and MRGEND. If you use the record interface on
output, use the MRGINI, MRGMRG, and MRGRTN subroutines once for each
record, followed by the MRGEND subroutine to end the MERGE operation.

The following section describes only the parameters passed in the initialization
subroutine that are unique to MERGE. Unless otherwise specified in the following
sections, the parameters passed for calls to MERGE subroutines are identical to
the parameters passed for calls to SORT subroutines.

4.5.4 Initializing the Merge Process

Regardless of the interface that you use (file, record, or mixed-mode), you must
first call MRGINI to initialize the merge process. For BASIC, the corresponding
subroutine is called MRGINB, and for COBOL it is called MRGINC. This
subroutine passes parameters that provide the number of input files, the key
specifications, and merge options.

When you call the MRGINI initializing subroutine, there are seven required
parameters that you must include and nine optional parameters that you
may include, depending on your requirements. The MRGINB (for BASIC) and
MRGINC (for COBOL) subroutines each have five required parameters and seven
optional parameters. Table 4-6 shows the required and optional parameters for
MRGINI and usage information for MRGINB and MRGINC. Following the table
is a discussion of those parameters that are different for MERGE than for SORT.

Using SORT and MERGE in a Program 4-15

Table 4-6: Parameters for MRGINI, MRGINB, and MRGINC

Parameters

1. Error address

2. Work area address

3. Work area length

4. Command line buffer

5. Command line length

6. Longest record length1

7. Merge order2

8. Specification file buffers

9. Specification file buffer lengths

10. LUN buffers

11. LUN buffer lengths

12. Input file sizes

13. Input routine address2s

14. Warning routine addresss

15. Comparison routine addresss

16. Equal-key routine addresss

BASIC/COBOL Usage Information

Pass by descriptor

Omit

Pass by descriptor

Omit

Pass by descriptor

Omit

Pass by descriptor in COBOL, by array
descriptor in BASIC

Omit

lRequired when longest record length (LRL) is unavailable
2Required for record interface, or in mixed-mode interface on input
sOptional

2. Work area address

You must specify the size of the work area to be used by your merge operation.
To estimate, in bytes, the minimum size of this area, use the following
algorithm:

Let INP = number of input files
OUT = number of output files
WRK = number of work files
TAP = total number of input and output files on tape
lOX = total number of indexed keys in all input and output files
IKS = maximum size of all input and output indexed keys
TBS = maximum tape block size of all input and output files on tape
LRL = maximum length of all input records in all input files

The formula for a merge operation is as follows:

((800 + 2 • LRL) • INP) + ((800 + LRL) * OUT) + ((2 • IKS + 600) • KEY) + (TBS * TAP) + 1000

A particular merge operation may require more or less than the amounts
given by the above formula. In situations where work area is at a premium,
some fine tuning may be needed. Otherwise, as much work area as possible
should be allowed to enchance the performance of the operation.

For BASIC (MRGINB) and COBOL (MRGINC), pass this parameter by
descriptor.

4-16 Using SORT and MERGE in a Program

7. Merge order

Specify this required parameter by providing a word that gives the number
of input files. You can have up to 10 input files for a merging operation.
MERGE ignores this value if you are using the file interface or mixed-mode
interface with file interface on input.

13. Input routine address

This parameter is required when you use either the record interface or the
mixed-mode interface with the record interface on input. In either of these
cases, you must write an input routine that releases a record to the merge
operation. Give the address of the routine that you created for this parameter.
MRGINI and MRGRTN call this routine until all records have been passed.

Your routine must read (or construct) a record, place it in a record buffer,
store its length in an output parameter, and then return control to MERGE.
MERGE compares key fields and returns records in merged order until it has
processed all records.

The input routine must accept four parameters and return a status value in
one of them. Specify the following fourreference parameters, in order, in your
input routine:

(j The address of the buffer in which the record will be placed

" A word in which to place the length of the record read

.. A word containing the file number from which to input a record (the first
file is 1, the second 2, and so on)

.. The status code return

The routine must pass a parameter back to MERGE with one of the following
status code values:

.. -1 for a fatal error; end the MERGE

.. 0 for a successful read

.. +1 when end-of-file status is reached

Any other value will cause abnormal termination of the merge process. When
the input routine returns an end-of-file status, it means that there is no valid
record in the buffer.

Call this routine with the global symbol MRGINP. If your language requires
that you write this routine as a separate subprogram, you must use the same
global symbol for the entry point. When task building, you must specify the
object module for this subprogram. See Section 4.6 for information for further
information about task building.

14. Warning routine address

Call this routine with the global symbol MRGWRN. Otherwise, this parame­
ter is identical to the SORT warning routine address parameter.

15. Comparison routine address

Call this routine with the global symbol MRGCMP. Otherwise, this parameter
is identical to the SORT comparison routine address parameter.

Using SORT and MERGE in a Program 4-17

16. Equal-key routine address

Call this routine with the global symbol MRGCLB. Otherwise, this parameter
is identical to the parameter for the SORT equal-key-field routine address.

4.5.5 Summary of SORT Subroutine Calls

Table 4-7, Table 4-8, Table 4-9, and Table 4-10 summarize the SORT subroutine
calls.

Table 4-7: Summary of SORT Subroutine Calls for the File Interface

Subroutine

SRTINI
SRTINB
SRTINC

SRTSRT
SRTSRB
SRTSRC

SRTEND
SRTENB
SRTENC

Parameters

Error address
Work area address
Work area length
Command line buffer
Command line length
Longest record length1

Specification file buffez-2
Specification file buffer length2

LUN buffez-2

LUN buffer length2

Input file size2

Warning routine address2

Comparison routine address2

Equal-key routine address2

Error address

Error address

1 Required if unavailable from the record
20ptional

4-18 Using SORT and MERGE in a Program

BASIC/COBOL Usage
Information

Pass by descriptor
Omit
Pass by descriptor
Omit

Pass by descriptor
Omit
Pass by descriptor in COBOL;
pass by array descriptor in
BASIC
Omit

Table 4--$: Summary of SORT Subroutine Calls for the Record Interface

Subroutine

SRTINI
SRTINB
SRTINC

SRTRLS
SRTRLB
SRTRLC

SRTRTN
SRTRTB
SRTRTC

SRTEND
SRTENB
SRTENC

Parameters

Error address
Work area address
Work area length
Command line buffer
Command line length
Longest record length1

Specification file buffe~
Specification file buffer length2

LUNbuffe~

LUN buffer length2

Input file size2

Warning routine address2

Comparison routine address2

Equal-key routine address2

Error address
Record buffer
Record length

Error address
Record bufferS
Record buffer lengthS
Returned record length
Record locations

Error address

1 Required if unavailable from record
20ptional

BASIC/COBOL Usage
Information

Pass by descriptor
Omit
Pass by descriptor
Omit

Pass by descriptor
Omit
Pass by descriptor in COBOL;
pass by array descriptor in
BASIC
Omit

Pass by descriptor
Omit

Pass by descriptor
Omit

3Use either record buffer and record buffer length or record location

Using SORT and MERGE in a Program 4-19

Table 4-9: Summary of SORT Subroutine Calls for File-Interface Input and
Record-Interface Output

Subroutine

SRTINI
SRTINB
SRTINC

Parameters

Error address
Work area address
Work area length
Command line buffer
Command line length
Longest record length 1

Specification file buffe~
Specification file buffer length2
LUNbuffe~

BASIC/COBOL Usage
Information

Pass by descriptor
Omit
Pass by descriptor
Omit

Pass by descriptor
Omit
Pass by descriptor in COBOL;
pass by array descriptor in
BASIC

LUN buffer length2 Omit

SRTSRT
SRTSRB
SRTSRC

SRTRTN
SRTRTB
SRTRTC

SRTEND
SRTENB
SRTENC

Input file size2
Warning routine address2
Comparison routine address2
Equal-key routine address2

Error address

Error address
Record bufferS
Record buffer lengths
Returned record length
Record locations

Error address

lRequired if unavailable from record
20ptional

Pass by descriptor
Omit

sUse either record buffer and record buffer length OR record location

4-20 Using SORT and MERGE in a Program

Table 4-10: Summary of SORT Subroutine Calls for Record-Interface Input and
File-Interface Output

Subroutine

SRTINI
SRTINB
SRTINC

Parameters

Error address
Work area address
Work area length
Command line buffer
Command line length
Longest record length 1

Specification file buffe~
Specification file buffer length2

LUN buffe~

BASIC/COBOL Usage
Information

Pass by descriptor
Omit
Pass by descriptor
Omit

Pass by descriptor
Omit
Pass by descriptor in COBOL;
pass by array descriptor in
BASIC

LUN buffer length2 Omit

SRTRLS
SRTRLB
SRTRLC

SRTSRT
SRTSRB
SRTSRC

SRTEND
SRTENB
SRTENC

Input file size2

Warning routine address2

Comparison routine address2

Equal-key routine address2

Error address
Record buffer
Record length

Error address

Error address

lRequired if unavailable from record
2 Optional

4.6 Task Building

Pass by descriptor
Omit

Because the callable SORTIMERGE subroutines are overlaid, you must create
an overlay descriptor language (ODL) file in order to use the subroutines in your
program. This section describes the use of ODL files, logical units, and user­
defined routines for task building. For general information about task building
and ODL files, consult the documentation for your operating system.

4.6.1 Overlay Descriptor Language Files

SORTIMERGE provides seven overlay descriptor language (ODL) files. When
you use SORTIMERGE in a program, you must create your own ODL file that
references one of the SORTIMERGE ODL files. Reference a SORTIMERGE ODL
file by using the @ symbol followed by the SORTIMERGE ODL file specification
in the ODL file that you create. Of the seven ODL files that SORTIMERGE
provides, the one that you reference depends on the following factors:

• The operation that you are performing: sort, merge, or a combination of both

• The interface: file, record, or mixed-mode

Using SORT and MERGE in a Program 4-21

.. Use of the SORTIMERGE resident library: whether or not you are using or
not using this library

Table 4-11 lists the SORTIM:ERGE ODL files, their use, and the approximate
amount of memory that they require.

Table 4-11: SORT/MERGE ODl Files

Memory
Requirements

Operation Interface File Name (in words)

SORT File or mixed-mode SRTFIL.ODL 8750

SORT Record SRTREC.ODL 7750

MERGE File or mixed-mode MGEFIL.ODL 8600

MERGE Record MGEREC.ODL 7500

Combined SORTIMERGE File or mixed-mode STMGFL.ODL 10,250
(SRTMRG.005)

Combined SORTIMERGE Record STMGRC.ODL 9100
(SRTMRG.OO6)

Combined SORTIMERGE File, record, or SMSHR.ODL 8350
Resident Library mixed-mode

Note that the file or mixed-mode interface requires RMSllX.ODL. The record interface requires only
sequential I/O and can use RMSllS.ODL.

On RSTSIE systems, the SORTIMERGE ODL files reside in LB:. On RSX-11M
and RSX-llM-PLUS systems, the ODL files reside in LB:[l,l]. You reference the
SORTIMERGE ODL file from the ODL file that you create.

Whichever ODL file you use, the .ROOT statement in your ODL file must refer to
the SORT or MERGE root portion and co-trees. You must concatenate SMROT
(code for SORTIMERGE nonoverlaid portion) with your root segments and make
SMOVR (code for SORTflvlERGE overlaid portion) and STMGIN (code for SORT
/MERGE callable interface routines) co-trees with RMS.

The following example shows an ODL file created for a FORTRAN program
that uses the file interface to SORT on an RSX system. The program name
is YEARLY.FOR; the object file is YEARLY.OBJ. Any line that begins with a
semicolon (;) is a comment line.

4-22 Using SORT and MERGE in a Program

OOL File YEARLY.OOL

reference program YEARLY:

YEARLY: .FCTR YEARLY.OBJ

reference FORTRAN OTS:

F770TS: .FCTR LB: [l,l]F4POTS/LB

reference the appropriate SORT OOL:

@LB: [l,l]SRTFIL.OOL

reference the RMS OOL:
;
@LB: [l,l]RMSllX.OOL

combine all the parts:

. NAME TSTF77
M$PROG: .FCTR YEARLY-F770TS
M$ROOT .FCTR TSTF77-M$PROG-RMSROT-SMROT

.ROOT M$ROOT,RMSALL,SMOVR,STMGIN

.ENO

NOTE

If you use the COB0L-81 SORTIMERGE syntax, you automati­
cally create the OOL file when you use the COB0L-81 Build OOL
Utility, and no further work with OOL files is required. However, if a
COB0L-81 program calls SORT or MERGE directly using the CALL
verb (rather then using the embedded SORTIMERGE syntax), the
procedures described above for creating an OOL file must be followed.

Use the file SMSHR.OOL when task building with the SORTIMERGE resident
library, which is optionally created when SORTIMERGE is installed on your
system. (Check with your system manager to ensure that SMSHR.OOL is
installed on your system.) The SORTIMERGE resident library is called SMRES,
and it is designed to be used in a cluster with RMS and your programming
language. In order to cluster SORTIMERGE, SMRES must appear in your Task
Builder CLSTR option. For example, in order to cluster SMRES with RMS and
the COB0L-81 resident library, you would pass the following option to the Task
Builder:

CLSTR = C81LIB,RMSRES,SMRES:RO

4.6.2 Task Building with User-Defined Routines

SORTIMERGE allows you to use four user-defined routines in your application
program:

• Key comparison routine

• Equal key callback routine

• Warning handler routine

• MERGE input routine (not available for SORT)

Using SORT and MERGE in a Program 4-23

In most cases, indicate that you want to use one of these routines by passing
SORTIMERGE the address of the routine as one of the optional parameters to the
SRTINI (SRTINB, SRTINC) or MRGINI (MRGINB, MRGINC) calls. However, if
your programming language does not allow you to pass this address, you can still
use your own routines by making a copy of the SORTIMERGE ODL file that you
will use and then altering the appropriate line in the ODL file.

CAUTION

Before altering the SORTIMERGE ODL file, ensure that the file you
intend to change is your local copy and not the ODL file in the system
library.

The following chart shows the line of the ODL file that you should edit in order to
use your own routine. In each instance, replace only the information that follows
'.FCTR' with the name of the OBJ file of your subroutine.

• To use your own SORT or MERGE key-comparison routine, edit the following
lines:

SCMP:
MCMP:

.FCTR

.FCTR
LB: [l,l]SRTLIB/LB:$VCCMP
LB: [l,l]MGELIB/LB:$VCCMP

• To use your own SORT or MERGE equal key callback routine, edit the
following lines:

SCLB:
MCLB:

.FCTR

.FCTR
LB: [l,l]SRTLIB/LB:$VCCLB:CALLBK
LB: [l,l]MGELIB/LB:$VCCLB:CALLBK

• To use your own SORT or MERGE warning routine, edit the following lines:

SWRN:
MWRN:

.FCTR

.FCTR
LB: [l,l]SRTLIB/LB:$VCWRN:SRTWRN
LB: [l,l]MGELIB/LB:$VCWRN:SRTWRN

• To use your own MERGE input routine, edit the following line:

MINP: .FCTR LB: [l,l]MGESHR/LB:$VCINP:MRGINP

Note that you must edit this line to reference your own merge input rou­
tine if you are using the record interface to MERGE (that is, using either
MGEREC.ODL or STMGRC.ODL)

NOTE

If you use the SORTIMERGE resident library and task build against
the file SMSHR.ODL, then the ODL file will read SRTSHR or
MGESHR rather than SRTLIB or MGELIB. For example, the line
for a SORT key-comparison routine using the resident library is as
follows:

SCMP : .FCTR LB: [l,l]SRTSHR/LB:$VCCMP

For example, suppose you write a program in COBOL that calls SORT directly
(using the record interface), you do not use the ANSI COBOL syntax, and you
want to use your own equal-key-field callback routine. The name of the object file
for your equal-key-field callback routine is EQUAL.OBJ.

Make a copy of SRTREC.ODL, and then modify the following line:

SCLB: .FCTR LB: [l,l]SRTLIB/LB:$VCCLB:CALLBK

to read as follows:

SCLB: .FCTR EQUAL.OBJ

4-24 Using SORT and MERGE in a Program

If you use both SORT and MERGE in the same task (therefore using either
STMGFL.ODL or STMGRC.ODL) and want to use your own routine in both
SORT and MERGE, you must change both the SORT and MERGE lines in the
ODL file, as follows:

SCLB:
MCLB:

. FCTR

. FCTR
EQUAL.OBJ
EQUAL.OBJ

The symbols MINP, SCLB, MCLB, SWRN, MWRN, SCMp, and MCMP are
referenced later in the ODL files, so be sure that you do not change any of these
when modifying the ODL file.

4.6.3 Usage of Logical Unit Numbers

SORT requires the following number of logical unit numbers (LUNs):

• One LUN for a specification file (if used)

• One LUN for the output file

• One LUN for each input file

• One LUN for each work file

MERGE requires the same number of LUNs as SORT, except that MERGE does
not use work file LUNs.

Using SORT and MERGE in a Program 4-25

Chapter 5

Customizing SORT

PDP-ll SORTIMERGE is designed for an environment of random-access disks,
fairly large files, and medium-size records. PDP-ll SORTIMERGE automatically
provides an efficient sort or merge operation for the data types listed in
Chapter 2.

Rather than use the defaults provided by PDP-ll SORTIMERGE, you can design
your ordering routine to work at maximum efficiency in the environment in which
it is likely to be used most frequently. The environment includes such elements
as input/output (I/O) devices, key-field data types, file sizes, and key-field and
record sizes.

This chapter is intended to help you understand the factors to consider when
fine-tuning your ordering operations. It provides a brief description of how SORT
operates internally; explains the meaning and use of SORTIMERGE statistics;
and suggests procedures for tailoring ordering operations to your environment.

5.1 SORT and MERGE Internal Operation

This section summarizes SORT's internal operation. It emphasizes the internal
sorting data structure and work files, because you can modify these for greater
efficiency.

You can use SORT in either of two ways:

• As a utility program that you invoke with a DCL or MCR command

• As a package of subroutines that you call from a program

The utility uses the subroutines to perform a sort operation. Almost no difference
exists in the way that the utility and a user-written program operate. The
following sections describe the phases of a sort operation.

5.1.1 Initialization Phase

During the initialization phase, SORT performs the following tasks:

1. Interprets the command line

2. Interprets the specification file if one is in use

3. Opens all the input files to determine longest record length, total input
allocation, and file format and organization

4. Opens the output file

5. Divides the memory between SORT or MERGE data structures and 110 work
area

Customizing SORT 5-1

6. Initializes the SORT or MERGE data structures

7. Creates and opens the specified number of work files

SORT uses a replacement selection algorithm to create ordered strings (or runs),
which are then merged using a polyphase merge algorithm. The replacement
selection algorithm uses a tree structure consisting of nodes of information about
the records being sorted. The internal node size varies depending upon the type
of sort operation being performed. Node size is discussed further in Section 5.2.

First, certain data structures containing information about key fields, record
formats, collating sequences, and so on, are set up in the data structure portion of
the work area; then the remaining area is given to the tree. The number of nodes
in the tree is determined by dividing this area by the internal node size. In most
cases, the more nodes in the tree, the faster the sort operation.

The 1/0 area is set up with all the required RMS data structures, as well as some
necessary SORT I/O-related data structures. Then the remaining 1/0 area is
divided into blocks and dynamically assigned as buffers for multiblock read and
write operations.

Before the polyphase merge phase begins, a second initialization phase occurs
in which the work area is redistributed. Since the merge normally involves
significantly less work area for the data structure (there are fewer nodes), a
greater proportion of the work area is allocated for 1/0 use. This allows larger
multiblock counts during the merge phase.

The MERGE Utility (not to be confused with the merge phase of SORT) uses
a straight n-way merging algorithm to merge the n input files. This requires
n nodes plus one or two extra nodes for certain kinds of processing during the
merge operation. Since fewer merge nodes exist than sort nodes, less space is
needed for the merge data structures. Therefore, the proportion of memory given
for I/O area is larger, and more multiblocking (RMS read or writes more than
one block of a file into the 1/0 buffer at a time) occurs for I/O read and write
operations.

5.1.2 Sort Phase

Mter the initialization phase, SORT reads the input records (or has the records
released to it), converts them to the internal format, and places them in the
sort data structure, calling the key-field-comparison and equal-key-field routines
as needed. This continues until the sort data structure is full or all records
have been read. If all records fit into the sort data structure, they are sorted in
memory, and the work files that were created are not used.

If the sort data structure becomes full, SORT selects the record with the smallest
value for a given key field from the sort data structure (or the largest value if you
specified descending sort order), and writes it to a work file. This frees space for
the next record to be read. SORT then reads another record into the sort data
structure. Again, it selects the record with the smallest value for a given key field
(but not smaller than that of the record just written to the work file), and writes
it to the work file.

This process continues, producing a string of records that are in sequence (called
a run), either until all the records have been read or there is no record in the
data structure with a key field that is larger than the previous record written to
the work file. If there is such a record, SORT begins building a second run, again
first selecting the record with the smallest value for a given key field from those
in the sort data structure, and continues reading records and writing them to the
work files.

5-2 Customizing SORT

The runs thus produced are distributed among n-1 of the n work files in such
a way that the number of runs in the work files approximates a generalized
Fibonacci number. (A Fibonacci number is an integer in the infinite sequence
1,1,2,3,5,8,13, ... of which the first two terms are 1 and 1 and each succeeding
term is the sum of the two immediately preceding.) Since the number of runs
produced depends on the data, there may be some instances when not all the
work files are used even though there are many input records, and there may
be some instances when all of the work files are used with a relatively small
number of records, (For a discussion of generalized Fibonacci numbers, as well as
the replacement selection and polyphase merge algorithms, see Donald Knuth's
Sorting and Searching, Volume 3 in his multivolume set The Art of Computer
Programming.) Dummy runs (containing no records) are assumed to exist in
work files as needed so that the number of runs in the work files exactly equals
a generalized Fibonacci number. The distribution is carried out in such a way as
to mi.nimize the number of dummy runs used. After all the records have been
read, the sort data structure is emptied to the work files as one or two final runs.
In general, the higher the Fibonacci level reached, the more time the polyphase
merge phase will require, The more work files available, the lower the resulting
Fibonacci leveL

Therefore, it would appear to be best to use the maximum number of work files.
A tradeoff exists, however, since the more work files there are in use, the less
I/O multiblocking space is available for each work file, thus increasing the time
required for work-file read and write operations.

The default number of work files that SORT.IMERGE provides is 5, which produce
the best performance for most operations. You can change this default when
you install SORTIMERGE, but Digital recommends that you use caution when
changing the default. For any SORT operation, you can change the number of
work files, by using the !wORK_FILES qualifier (IFI:n switch), to a number
between 3 and 10. For more information on work files, see Section 5.3.1.

5.1.3 Merge Phase

If the Fibonacci level reached is greater than 1 (that is, at least one work file
contains more than one run), then SORT merges runs from n-l work files to
an empty work file. Whenever a work fiie becomes depleted of runs (including
dummy runs), the next lower Fibonacci level is reached. That work file then
receives the merged output from the other (n-l) work files. When Fibonacci
level 1 is reached, there is one run in each work file, At that point, SORT either
merges the n-l work files with runs in them to the output file or returns them to
the calling program.

5.1.4 Cleanup Phase

After the last record is written, SORT closes the input and output files, and then
closes and deletes the work files. If you used the /STATISTICS qualifier (ISS
switch), the utility displays the SORT statistics after the last record has been
written and all files have been closed.

Customizing SORT 5-3

5.2 Understanding and Using SORT/MERGE Statistics

Using the /STATISTICS qualifier (ISS switch) causes SORTIMERGE to display
statistics on your output device. You can also have statistics returned from
Callable SORT or MERGE.

The following is the statistics display that the SORTIMERGE Utility returns:

PDP-11 SORT/MERGE V3.1

Elapsed time (hh:mm:ss.ss): 00:00:07.86

Process: record sort

Collating sequence: ASCII

Input files: 1

Work files: 0

Number of records output:

Number of records input:

Number of records omitted:

Number of keys: 1

Total key size: 4

Number of initial runs: 0

10

10

0

Total input file allocation: 2

Total work file allocation: 0

Final output file allocation: 2

Longest input record found: 70

Node size: 83

Number of nodes: 226

Initial I/O area size: 15390

Fibonacci level: 0

You can use these statistics to evaluate the efficiency of your ordering operation
and to determine adjustments that could improve its performance. The statistics
also include information about the sort or merge operation to help you determine
if it proceeded as you had intended. The statistics include the following
information:

• Identification shows the version and maintenance release numbers of
SORTIMERGE. For example, V3.1 is version 3, maintenance release l.

• Elapsed time is the clock time from the beginning of the initialization phase
to just before the statistics are output. Note that this is not CPU time.

• Process is the process type (record, tag, index, address, or merge), whether it
was stable or nonstable, whether or not duplicate records were allowed, and
whether the sort was external (that is, required work files) or internal.

• Collating sequence is the collating sequence used: ASCII, EBCDIC,
multinational, or user-defined. This statistic also indicates whether or not the
basic collating sequence was modified (using a specification file).

• Input :files shows the number of input files that were sorted or merged.

• Work :files (SORT only) is the number of work files that were used. If a
work file was opened but data was not written to it, the work file is still
counted. All work files are opened at the same time.

• Number of records output is the number of records written to the output
file or returned to the calling program.

• Number of records input is the number of records read from the input files
or passed to the callable subroutines.

• Number of records omitted is the number of records omitted from the sort
or merge operations. Records are omitted because of an /OMIT qualifier in a
specification file, a /NODUPLICATES qualifier (or /ND switch), or because an
equal-key-field callback routine returned a request that deleted a record.

5-4 Customizing SORT

.. Number of keys is the number of key fields used in the sort or merge
operation.

" Total key size is the maximum length of the key fields of the record formats
in the sort or merge operation.

" Total input allocation is the total allocation of space (in blocks) for all input
files.

.. Total work allocation (SORT only) is the total allocation of space (in
blocks) for all work files in a single operation. This is the final space
allocation after an necessary extensions have been made during the sort.

e Total output allocation is the total space allocation (in blocks) for the
output file. This is the final allocation after all necessary extensions have
been made during the sort operation.

.. Longest input record found is the length of the longest record in the input
files, including omitted records. The longest record length (LRL) information
kept by RMS on a file may not be accurate if records have been deleted from
the file.

" Node size varies depending upon the type of sort operation being per­
formed. For a record sort operation or a merge operation, the node size is
approximately the sum of the following numbers:

The maximum longest record length for the input files
Approximately 6 to 10 bytes of information about the record
Approximately 8 bytes of pointers for the replacement selection and
polyphase merge or merge algorithm

For a tag, index, or address sort, the node size is approximately the sum of
the following numbers:

The total key-field size for the sort operation
Approximately 12 to 16 bytes of information about the record
Approximately 8 bytes of pointers for the replacement selection or
polyphase merge algorithm

For large record size and small key-field size, the tag sort process will have
a smaller internal node size than a record sort process. It will therefore
have more tree nodes, fewer runs, and a lower Fibonacci level. The tag sort
operation may still run slower, however, since it requires reaccessing the
input file randomly to retrieve the output data from the input records.

" Number of nodes is the number of nodes in the replacement selection tree
for a sort operation, or the number of nodes in the merge list for a merge
operation. In a sort operation, if the number of nodes initially allocated to
the tree is larger than the number of records being sorted, SORT uses only
the smallest subtree necessary. The statistics nevertheless reflect the total
number of nodes initially allocated to the tree.

" Initial I/O area size is the size (in bytes) of the area provided for I/O data
structures and buffers. For a sort operation, this applies only to the sort
distribution phase. Generally, more area is given for I/O during the polyphase
merge phase.

.. Number of initial runs (SORT only) is the number of ordered strings
(runs) written to work files during the sort distribution phase.

" Fibonacci level (SORT only) is the Fibonacci level, as discussed in
Section 5.1.2. If the sort operation was internal (that is, it required no work
files), the Fibonacci level is zero.

Customizing SORT 5-5

• Merge order (MERGE only) is the number of input files.

5.2.1 Using Statistics with Callable SORT/MERGE

If you generate statistics when using SORT or MERGE from an application
program, the statistical information is placed at the beginning of the work buffer
that you specify. The following list shows the order in which the statistics are
listed in the work buffer; the numbers in parentheses indicate the space (in
words) that is allocated for each statistic.

1. SORT or MERGE version number

Binary number specifying major release number (1 word)
Binary number specifying update number (1 word)

(In Version 3.1, for example, the two words would contain 000011 and 000001)

2. Process Type (1 word)

o = Record sort
1 = Tag sort
2 = Address sort
3 = Index sort
4 = Merge

3. Collating sequence (1 word)

o = Unmodified ASCII
1 = Unmodified EBCDIC
2 = Unmodified Multinational
3 = User-defined
4 = Modified ASCII
5 = Modified EBCDIC
6 = Modified Multinational

4. Stablelnostable (1 word)

0= Nostable
1 = Stable

5. Duplicateslnoduplicates (1 word)

o = Noduplicates
1 = Duplicates

6. Number ofinput files (1 word)

7. Total input file allocation (2 words)

8. Number of work files (1 word)

9. Total work file allocation (2 words)

10. Final output file allocation (2 words)

11. Size of sort tree node (1 word)

12. Number of nodes in SORTIMERGE data structure (1 word)

13. Size ofI/O buffer area (1 word)

14. Number of input records (2 words)

15. Number of bytes in longest input record (1 word)

16. Number of records sorted or merged (2 words)

~ Customizing SORT

17 . Number of records ami tted during record selection (2 words)

18. Number of records output (2 words)

19. Number of key fields (1 word)

20. Total composite key-field size (1 word)

21. Number of initial runs produced by SORT (1 word)

22. Fibonacci level for sort or merge order for MERGE (1 word)

23. Elapsed clock time in hrs, mins, sees, 11100 sees (4 words)

5.3 Modifications the User Can Make

After evaluating the variables in the environment for your sort or merge
operation, consider the following possibilities for increasing SORT efficiency:

III Sorting fewer records: you can use a specification file to include only those
records that you need to output.

.. Sorting shorter records: you can also use a specification file to reformat
records to eliminate fields that you do not need to output.

Additional strategies for increasing efficiency are as follows:

" Changing the number or assignment of work files

II Specifying input file allocation

.. Adjusting output file allocation

" Changing the sort process

.. Using the /TREE_SPACE qualifier or !PT switch

The following sections discuss these options in detail.

5.3.1 Work Files

Unless you specifically request that no work files be created, (using the /WORK_
FILES=NUMBER:O qualifier or the IFI:O switch), SORT creates work files during
the initialization phase to ensure that there will be sufficient disk space to
perform the sort operation. By default, five work files are created, and this
number provides the best performance for typical sort operations. If your
available disks are too small or too full for SORT work files, you can increase the
number of work files to make each work file smaller, and you can also assign the
work files to different devices. However, the more work files SORT uses, the less
I/O area each work file receives for multiblocking; thus the operation requires
more time.

You can improve performance by using fewer work files. For example, if you know
that the input file is almost in the desired order to begin with and will therefore
produce only one or two long initial runs, the use of fewer work files is likely to
improve the performance.

In addition to specifying the number of work files, you can also improve SORT
efficiency by assigning the location of your work files to alternate random-access,
mass-storage devices, such as disks. You can place work files on the fastest
device available, the device having the least activity, or the least full device
available. Use the /wORK_FILES=DEVlCE qualifier or IDE switch (as indicated
in Chapter 2 to select a different device for the work files.

Customizing SORT 5-7

When you use the /wORK_FILES qualifier (IDE switch) in a SORT command
line, the work files are assigned to a single alternate device for the entire sort
operation. If you use a specification file for SORT, you can assign individual work
files to separate devices.

You can further increase SORT efficiency by specifying contiguous allocation for
your work files with the ALLOCATION and CONTIGUOUS subqualifiers to the
/wORK_FILES qualifier. The initial block allocation for each work file is derived
as follows:

1. Multiply the estimated number of input records by the node size (provided in
the statistics display).

2. Divide the product by 1 less than the number of work files.

3. Divide the resultant figure by 512 and round the result up to the next integer.
This is the initial allocation, in blocks.

You can change this initial allocation of space to the work files, and you can
request that this allocation be contiguous, if possible. However, you will receive
no indication if it is necessary to extend a work file during the sort operation,
making the space allocation noncontiguous.

You can also specify the RSTS/E file cluster size or the RSX-llM/M-PLUS
retrieval window size for your work files using the SIZE subqualifier to the
/wORK_FILES qualifier or the lSI input file switch. See your operating system
documentation for more information on file cluster size and retrieval window size.

Chapter 2 shows the syntax for the sub qualifiers to the /wORK_FILES qualifier
and for the corresponding file switches IDE, IAL, ICO, and lSI. Note that the
subqualifiers must be enclosed in parentheses and separated by commas.

5.3.2 Input File Allocation

SORT uses input file size information to determine the size of the work files.
Usually, RMS determines the file size. However, if you are sorting files not
residing on disk or standard ANSI magnetic tape and you do not provide the
file size, SORT sets a default file size of 1000 blocks. The default for the record
interface on input is also 1000 blocks.

If this space allocation is too large, SORT overestimates its memory and work
file requirements; therefore, your sort operation is more efficient if you specify a
smaller input file size. If the default of 1000 blocks is insufficient space, SORT
underestimates its memory requirements and, conversely, your sort operation is
more efficient if you specify a larger input file size.

Chapter 2 describes the use of the FILE_SIZE subqualifier to the !FORMAT
qualifier and IBK switch to specify file size.

5.3.3 Output File Preallocation

SORTIMERGE preallocates space for your output file based on the total amount
of space allocated to input files. This avoids the overhead of extending the file
each time additional blocks are written to it.

However, if you know that your output file allocation will differ substantially from
the total input file allocation (for example, because you are reformatting data or
omitting records), you can specify the number of blocks to be preallocated for the
output file using the IALLOCATION output-file qualifier or the IAL output-file
switch. See Chapter 2 for syntax information on this qualifier and switch.

~ Customizing SORT

By default, SORTIIvIERGE does not allocate the output file in contiguous blocks.
You can request that the output file be stored in contiguous disk blocks, thereby
decreasing access time, by using the ICONTIGUOUS qualifier or the ICO output
file switch. However, if the preallocated space is too small, RMS may be unable
to extend the file contiguously.

Two other output file options are available for fine-tuning your ordering oper­
ations: specifying the fill factor (!LOAD_FILL qualifier or !La switch) and the
bucket size (IBUCKET_SIZE=n qualifier or IBU:n switch).

You can specify the fill factor only for indexed-sequential files. RMS loads
the buckets according to the fill size established when the file was created,
minimizing bucket splitting if many records are added later.

If you use relative or indexed-sequential output, you can specify the bucket size to
indicate RMS bucket size (that is, the number of 512-byte blocks per bucket). If
the output file organization is the same as for the input files, the default value is
the same as for the input file bucket size. If output file organization is different,
the default value is 1. The maximum number of blocks per bucket is 32 for
RSX-llM and RSX-llM/IvI-PLUS and 15 for RSTSIE.

Chapter 2 provides syntax information for the fill factor and bucket size options.

By default, SORTIMERGE divides available work area between tree-related data
structures and input/output-related data structures in such a way as to ensure
the best performance for a typical sort operation. However, in some instances
the input/output (lIO) requirements of your job may require more space than the
default provides. The /TREE_SPACE qualifier (in DCL) or IPT switch (in MCR)
allows you to override this default and choose the distribution of available work
area between SORTIMERGE data tree structures and 1/0 data structures.

For SORT, the default division is 55 percent to the tree and 45 percent to 1/0. For
MERGE,the default division is 30 percent to the merge list and 70 percent to 1/0.
If you use a consistently large number of input files, or if the majority of the files
you are sorting (for example, an INDEXED file with many key fields) require a
large number of I/O data structures, you may want to alter the ratio so that there
will be enough room for the 1/0 requirements. For example, if you are sorting
several indexed files, each having many key fields, it may be desirable to allow
SORT a smaller tree, thereby allocating more room for RMS-required structures.

The /TREE_SPACE qualifier (1Pr switch) allows you to override the default
division of work-area space and to choose the distribution of available work area
between SORTIMERGE data structures and 1/0 data structures.

In DCL, to allocate the work area, use the input file qualifier ITREE_SPACE=n,
where n is the percentage of work space allocated to data tree structures.

In MCR use the input file switch IPT:n, where n is the percentage of work space
allocated to data tree structures. Chapter 2 shows the syntax for the ITREE_
SPACE qualifier and IPT switch.

5.3.4 Process

Although you usually select a sort process for reasons other than performance,
there are differences in speed among the four sort processes. See Chapter 2 for a
description of these differences. In any operation in which the sorted records are
to be retrieved in order, record sort is usually the fastest sort process. If limited
work space is available, or your records are very large relative to the total size of
the key fields, consider using tag sort, which sorts only key fields and reaccesses

Customizing SORT 5-9

the input file to create the output file. Tag sort therefore requires less space than
record sort.

5.4 Modifications the System Manager Can Make

The following are modifications the system manager can make for maximum
SORTIM:ERGE performance:

• Designate one batch queue for sorting jobs and provide this queue with
characteristics that improve system performance or SORT performance. In
addition, job-process parameters can be adjusted for greatest SORT efficiency_

• Modify the ODL file used to compile the SORTIM:ERGE Utility to improve
performance with regard to the type of data that you routinely sort or merge.

• Modify the default installation parameters. Although the default
SORTIM:ERGE installation yields optimum performance for most applications,
your special needs may require that different defaults be installed. See the
PDP-ll SORT/MERGE Installation Guide for your operating system to
install SORTIM:ERGE with different default parameters.

5-10 Customizing SORT

Appendix A

Error Messages

This appendix lists the error messages generated by the SORT and MERGE
utilities. If you use SORT or MERGE from a DCL or MCR command line, error
messages are displayed on your output device as an error code (for example,
%SORT_F _EXTSRT) followed by a brief explanation of the error (for example,
SORT requires work files).

The error messages listed are all for SORT. MERGE error messages are identical
to SORT messages, except that they begin with %MERGE rather than %SORT.

If you use the callable SORT or MERGE subroutines from an application
program, a numeric code for the error messages is placed in the first word of
your error buffer. In this case, a positive number at the beginning of the word
indicates a nonfatal exception or warning message, and a negative number
indicates a fatal error message.

Table A-I lists the error messages in the order of their error code. The numeric
code shown with the error message is the number that is returned to the error
message buffer.

Following the table are all of the SORTIMERGE error messages listed in
alphabetical order.

Table A-1: SORT/MERGE Utility Error Messages

No. No. No.
Code Message Code Code Message Code Code _dessage Code

0 %SORT_ W _SUCCESS 32 %SORT_F _XSLUNS 65 %SORT_F _MISPRM

1 %SORT_ W _EOFEXC 33 %SORT_F _NUFRAB 66 %SORT_F _BADVAL

2 %SORT_ W _BUFOVR 34 %SORT_F _NUFBUF 67 %SORT_F _INVSWH

3 %SORT_ W _MRGORD 35 %SORT_F _EXTSRT 68 %SORT_F _MAXINP

4 %SORT_ W _LCKBKT 36 %SORT_F_CRSFOO 69 %SORT] _MAXOUT

5 %SORT_W_WRTSHR 37 %SORT_F _CNSFOO 70 %SORT] _MISLRL

6 %SORT_ W _SPCIVC 38 %SORT_F _ WRSFOO 71 %SORT_F _NOTMRG

7 %SORT_ W _SPCIVD 39 %SORT_F _RDSFOO 72 %SORT_F _NOTSRT

8 %SORT_W_SPCIVF 40 %SORT_F _DCSFOO 73 %SORT_F _BADSEQ

9 %SORT_ W _SPCIVI 41 %SORT_F _RWSFOO 74 %SORT_F _ZMGORD

10 %SORT_ W _SPCIVK 42 %SORT_F_CLSFOO 75 %SORT_F _CHNPRS

11 %SORT_ W _SPCIVP 43 %SORT_F _OPlFOO 76 %SORT_F _CHNERR

(continued on next page)

Error Messages A-1

Table A-1 (Cant.): SORT/MERGE Utility Error Messages

No.
Code

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

No. No.
Message Code Code Message Code Code Message Code

% SORT_ W _SPCNS 44 %SORT_F _CNIFOO 77 %SORT_F _CHNFIL

%SORT_ W _SPCIVX 45 %SORT_F _RDIFOO 78 %SORT] _ODADTR

%SORT_ W _SPCMIS 46 %SORT] _DCIFOO 79 %SORT_F _MEMPRO

%SORT_ W _SPCOVR 47 %SORT] _ CLIFOO 80 %SORT_F _BPTBIT

% SORT_ W _SPCSIS 48 %SORT_F_CROFOO 81 %SORT_F _IOTTRP

%SORT_ W _TRNREC 49 %SORT_F_OPOFOO 82 %SORT] _ILOPTR

%SORT_ W _NUMTRN 50 %SORT_F_CNOFOO 83 %SORT] _EMTTRP

% SORT_ W _LSTWRN 51 %SORT] _ WROFOO 84 % SORT] _TRPTRP

%SORT]_BADFLD 52 %SORT] _DCOFOO 85 %SORT_F _FPTRAP

%SORT_F _MIXKEY 53 %SORT] _ CLOFOO 90 %SORT_F _SPCADJ

%SORT]_GCMBAD 54 %SORT_F_OPSPOO 91 %SORT_F _SPCPLX

% SORT] _MULSPC 55 %SORT]_CNSPOO 92 %SORT] _SPCCHR

% SORT] _NOIORM 56 %SORT] _RDSPOO 93 %SORT_F _SPCPAD

%SORT_F _ILCALL 57 %SORT_F _DCSPOO 94 %SORT_F _SPCTHR

%SORT_F _ WKAREA 58 %SORT_F _ CLSPOO 95 %SORT_F _INCNOKEY

% SORT] _RLFAlL 60 %SORT]_INTERR 96 %SORT] _INC NODATA

%SORT_F _RSFAlL 61 %SORT_F _BADCMP 97 %SORT_F _ WRTIOO

%SORT_F _NSFRAB 62 %SORT_F_BADCLB 133 %SORT_F _BADORG

%SORT_F _NSFBUF 63 %SORT] _BADINP 139 %SORT_F _LSTMSG

%SORT] _NOSCBF 64 %SORT_F _NOMSG

%SORT_F _BADCLB, Bad return from equal key callback routine

Callable returned error buffer: first word = -62.

Explanation: User-supplied equal key callback routine has returned
illegal status.

%SORT_F _BADCMP, Bad return from comparison routine

Callable returned error buffer: first word = -6l.

Explanation: User-supplied comparison routine has returned illegal
status.

%SORT_F _BADFLD, Bad field in record number:

Callable returned error buffer:

first word = -20
second word = low word of record number
third word = high word of record number.

Explanation: Given record contains an invalid field. Record number
displayed assumes all input files are concatenated.

%SORT_F _BADINP, Bad return from merge input routine

Callable returned error buffer: first word = -63.

Explanation: A user-supplied merge input routine has returned invalid
status.

A-2 Error Messages

%SORTFBADORG, Organization of existing file incorrectly specified

Callable returned error buffer: first word = 133.

Explanation: You specified a file organization in the command line that
did not match the actual organization of an existing input or output
file. For output files, this can occur only if you are attempting to overlay
an existing output file. For input files, this can occur if you specify as
indexed-sequential a file that is not index-sequential, or if you fail to
specify an index-sequential :file as index sequential.

%SORT_F _BADSEQ, Bad sequence in input file

Callable returned error buffer:

first word = -73
second word = input :file number

Explanation: Given input file is out of sequence for merge operation.

%SORT_F _BADVAL, Bad switch value

Callable returned error buffer:

first word = -66
second word ::= offset into command line of bad switch

Explanation; Command line has an invalid switch value.

%SORT_F _BPTBIT, Breakpoint or T-bit exception

Callable returned error buffer: No return to callable.

Explanation: Register dlLmp will follow. Please submit it with an SPR.

%SORT_ W _BUFOVR,

Callable returned error buffer:

first word = 2
second word = length of output record
third word = buffer size

Explanation: A user-supplied buffer was not big enough to hold a
returned record. Normally just a warning. The record is truncated. If
this message occurs in utility SORT or MERGE, please submit an SPR.

%SORT_F _CHNERR, Failed to chain: .RUN return status = (RSTSIE only)

Callable returned error buffer:

first word = -76
second word == .RUN directive return status

Explanation: SORT or MERGE was unable to chain to requested task.

%SORT_F _CHNFIL, Bad chain file specification: XRB flag2/flagl: (RSTSIE
only)

Callable returned error buffer:

first word = -77
second word = XRB flag 2
third word = XRB flag 1

Explanation: You specified an invalid chain :file.

Error Messages A-3

%SORT_F _CHNPRS, Error parsing chain file: .FSS return status = (RSTSIE
only)

Callable returned error buffer:

first word = -75
second word = .FSS directive return status

Explanation: Unable to parse chain file specification.

%SORT_F _CLIFOO, Error closing input file: RMS codes

Callable returned error buffer:

first word = -47
second word = RMS STS code
third word = RMS STV code
fourth word = input file number

Explanation: RMS could not close the given input file. See the
RMS-ll MACRO Programmer's Manual for information on status-code­
field (STS) and status value field (STV) codes.

%SORT_F _CLOFOO, Error closing output file: RMS codes

Callable returned error buffer:

first word = -53
second word = RMS STS code
third word = RMS STV code

Explanation: RMS could not close the output file. See the RMS-ll
MACRO Programmer's Manual for information on status-code-field
(STS) and status-value-field (STV) codes.

%SORT_F _CLSFOO, Error closing work file: RMS codes

Callable returned error buffer:

first word =-42
second word = RMS STS code
third word = RMS STV code
fourth word = work file number

Explanation: RMS could not close the given work file. See the
RMS-ll MACRO Programmer's Manual for information on status-code­
field (STS) and status value field (STV) codes.

%SORT_F _CLSPOO, Error closing specification file: RMS codes

A-4 Error Messages

Callable returned error buffer:

first word = -58
second word = RMS STS code
third word = RMS STV code

Explanation: RMS could not close the specification file. See the
RMS-ll MACRO Programmer's Manual for information on status-code­
field (STS) and status-value-field (STV) codes.

%SORT_F _CNIFOO, Error connecting to input tile: RMS codes

Callable returned error buffer:

tirst word = -44
second word = RMS STS code
third word = RMS STV code
fourth word = input tile number

Explanation: RMS could not connect to the given input tile. See the
RMS-ll MACRO Programmer's Manual for information on status-code­
field (STS) and status-value-field (STV) codes.

%SORT_F _CNOFOO, Error connecting to output file: RMS codes

Callable returned error buffer:

first word = -50
second word = RMS STS code
third word = RMS STV code

Explanation: RMS could not connect to the output file. See the
RMS-ll MACRO Programmer's Manual for information on STS and
STV codes.

%SORT_F _CNSFOO, Error connecting to work file: RMS codes

Callable returned error buffer:

first word = -37
second word = RMS STS code
third word = RMS STV code
fourth word = work file number

Explanation: RMS could not connect to the given work file. See the
RMS-ll MACRO Programmer's Manual for information on status-code­
field (STS) and status-value-field (STV) codes.

%SORT_F _CNSPOO, Error connecting to specification file: RMS codes

Callable returned error buffer:

first word = -55
second word = RMS STS code
third word = RMS STV code

Explanation: RMS could not connect to the given specitication file.
See the RMS-ll MACRO Programmer's Manual for information on
status-code-field (STS) and status-value-field (STV) codes.

%SORT_F _CROFOO, Error creating output file: RMS codes

Callable returned error buffer:

first word = -48
second word = RMS STS code
third word = RMS STV code

Explanation: RMS could not create the output file. See the RMS-ll
MACRO Programmer's Manual for information on status-code-field (STS)
and status-value-tield (STV) codes.

Error Messages A-5

%SORT_F _CRSFOO, Error creating work file: RMS codes

Callable returned error buffer:

first word = -36
second word = RMS STS code
third word = RMS STV code
fourth word = work file number

Explanation: RMS could not create the given work file. See the
RMS-ll MACRO Programmer's Manual for information on status-code­
field (STS) and status-value-field (STV) codes.

%SORT_F _DCIFOO, Error disconnecting from input file: RMS codes

Callable returned error buffer:

first word = -46
second word = RMS STS code
third word = RMS STV code
fourth word = input file number

Explanation: RMS could not disconnect from the given input file.
See the RMS-ll MACRO Programmer's Manual for information on
status-code-field (STS) and status-value-field (STV) codes.

%SORT_F _DCOFOO, Error disconnecting from output file: RMS codes

Callable returned error buffer:

first word = -52
second word = RMS STS code
third word = RMS STV code

Explanation: RMS could not disconnect from the given output file.
See the RMS-ll MACRO Programmer's Manual for information on
status-code-field (STS) and status-value-field (STV) codes.

%SORT_F _DCSFOO, Error disconnecting from work file: RMS codes

Callable returned error buffer:

first word = -40
second word = RMS STS code
third word = RMS STV code
fourth word = work file number

Explanation: RMS· could not disconnect from the given work file.
See the RMS-ll MACRO Programmer's Manual for information on
status-code-field (STS) and status-value-field (STV) codes.

%SORT_F _DCSPOO, Error disconnecting from specification file: RMS codes

A-6 Error Messages

Callable returned error buffer:

first word = -57
second word = RMS STS code
third word = RMS STV code

Explanation: RMS could not disconnect from the given specification
file. See the RMS-ll MACRO Programmer's Manual for information on
status-code-field (STS) and status-value-field (STV) codes.

%SORT_F _EMTTRP, Non-RSX EMT trap

Callable returned error buffer: No return to callable.

Explanation: Register dump will follow. Please submit with an SPR.

%SORT_ W _EOFEXC,

Callable returned error buffer: first word = 1.

Explanation: End of file returned from Callable interface. If this
message occurs in utility SORT or MERGE, please submit an SPR.

%SORT_F _EXTSRT, SORT requires work files: RMS codes

Callable returned error buffer:

first word = -35
second word = RMS STS code
third word = RMS STV code
fourth word = input file number

Explanation: You did not indicate work files, but the sort operation
could not be done internally. See the RMS-ll MACRO Programmer's
Manual for information on status-code-field (STS) and status-value-field
(STV) codes.

%SORT_F _FPTRAP, Floating-point exception

Callable returned error buffer: No return to callable.

Explanation: Register dump will follow. Please submit with an SPR.

%SORT_F _GCMBAD, Cannot get command line: GCML error

Callable returned error buffer:

first word = -22
second word = GCML error code

Explanation: RMS was unable to get a command line. The GCML
error codes are as follows:

-1 I/O error occurred during command line input.
-2 Unable to open command file; make sure that command file

name is correct and exists
-3 Syntax error in command file name
-4 Command file nesting level exceeded
-5 Command line in file is too long. (Use hyphen continuation

character (-) to divide line into smaller units.)
-40 Command line input buffer too small for total

command line; shorten your command line

%SORT_F _ILCALL, Illegal calling sequence: state

Callable returned error buffer:

first word = -25
second word = SORT or MERGE internal state code

Explanation: You called sort or merge subroutines in incorrect order. If
this message occurs in utility SORT or MERGE, please submit an SPR.

Error Messages A-7

%SORT_F _ILOPTR, Illegal instruction trap

Callable returned error buffer: No return to callable.

Explanation: Register dump will follow. Please submit with an SPR.

%SORT_F _INCNODATA, INCLUDE specification references no data

Callable returned error buffer:

first word = -96
second word = specification file line number

Explanation: In specification file, INCLUDE specification has to con­
tain a DATA clause.

%SORT_F _INCNOKEY, INCLUDE specification references no keys

Callable returned error buffer:

first word = -95
second word = specification line number

Explanation: In specification file, /INCLUDE specification has to
contain a /KEY specification.

%SORT_F _INTERR, Internal SORTIMERGE error

Callable returned error buffer: first word = -60

Explanation: Please submit an SPR.

%SORT_F _INVSWH, Invalid or redundant switch

Callable returned error buffer:

first word = -67
second word = location (offset into command line) of bad switch

Explanation: Command line has invalid switch or two switches that
should not be used together.

%SORT_F _IOTTRp, lOT trap

Callable returned error buffer: No return to callable.

Explanation: Register dump will follow. Please submit with an SPR.

%SORT_ W _LCKBKT, Locked bucket in input file

A-8 Error Messages

Callable returned error buffer:

first word = 4
second word = input file number

Explanation: RMS attempted to read a bucket that was locked in the
input file. SORTIMERGE will retry reading bucket the number of times
specified at installation. If the retry fails, a read error is issued.

%SORT_F _LSTMSG,

Callable returned error buffer:

first word = -139
second word = message number

Explanation: Message code is too large; this is probably an internal
error. Please submit an SPR.

%SORT_ W _LSTWRN,

Callable returned error buffer:

first word = 19
second word = message number

Explanation: Warning message code is too large; this is probably an
internal error. Please submit an SPR.

%SORT_F _MAXINp, Too many input files

Callable returned error buffer: first word = -68.

Explanation: Too many input files are specified in the command line.

%SORT_F _MAXOUT, Too many output files

Callable returned error buffer: first word = -69.

Explanation: Too many output files are specified in the command line.

%SORT_F _MEMPRO, Memory protect error

Callable returned error buffer: No return to callable.

Explanation: Register dump will follow. Please submit with an SPR.

%SORT_F _MISLRL, No LRL found for file

Callable returned error buffer:

first word = -70
second word = input file number

Explanation: The longest record length for each input file must be
made known to SORT or MERGE either through RMS or by a /FORMAT
qualifier (/FO switch)

%SORT_F _MISPRM, Missing required parameter

Callable returned error buffer: first word = -65.

Explanation: You did not pass a required parameter to callable subrou­
tine.

%SORT_F _MIXKEY, Incompatible key comparison

Callable returned error buffer: first word = -21.

Explanation: SORT or MERGE attempted to compare two key fields
that were not compatible. This should only occur when you use a
specification file to specify multiple record formats.

Error Messages A-9

%SORT_ W _MRGORD,

Callable returned error buffer: first word = 3.

Explanation: You passed a merge order to callable SORTIMERGE in
which the number of files specified did not equal the number of files
specified in the passed MCR command line. The passed merge order
will be ignored. If you are not using callable file or mixed file-to-record
interface, please submit an SPR.

%SORT_F _MULSPC, Multiply defined specification file

Callable returned error buffer: first word = -23.

Explanation: You passed a specification file buffer as well as a com­
mand line containing a file specification for a specification file. If this
message occurs in the utility SORT or MERGE, please submit an SPR.

%SORT_F _NOIORM, No room for 110 pool space

Callable returned error buffer: first word = -24.

Explanation: The I/O area provided for the SORT or MERGE was not
big enough for the current operation. For callable SORT, pass a larger
work area, or use the /PT switch to allocate more of the given work area.
for 110 use.

%SORT_F _NOMSG, Message number

Callable returned error buffer:

first word =-64
second word = bad message number

Explanation: This is an internal error; please submit an SPR.

%SORT_F _NOSCBF, Out of work file 110 buffer space

Callable returned error buffer: first word = -31.

Explanation: This is probably an internal error; please submit an SPR.

%SORT_F _NOTMRG, Non-MERGE switch

Callable returned error buffer:

first word =-71
second word = location of switch (offset into MCR command line)

Explanation: You specified a MERGE command line switch that is
valid only for SORT.

%SORT_F _NOTSRT, Non-SORT switch

Callable returned error buffer:

first word = -72
second word = offset into MCR command line.

Explanation: You specified a SORT command line switch that is valid
only for MERGE.

%SORT_F _NSFBUF, Out of work file buffer space

Callable returned error buffer: first word = -30.

Explanation: This is probably an internal error; please submit an SPR.

A-10 Error Messages

%SORT_F _NSFRAB, Out of work file RAB space

Callable returned error buffer: first word = -29.

Explanation: This is probably an internal error; please submit an SPR.

%SORT_F _NUFBUF, Out of user file buffer space

Callable returned error buffer: first word = -34.

Explanation: This is probably an internal error; please submit an SPR.

%SORT_F _NUFRAB, Out of user file RAB space

Callable returned error buffer: first word = -33.

Explanation: This is probably an internal error; please submit an SPR.

%SORT_ W _NUMTRN, Number of records truncated:

Callable returned error buffer:

first word = 18
second word = low word of number of records truncated
third word = high word of number of records truncated

Explanation: See warning message %SORT_ W _TRNREC.

%SORT_F_ODADTR, Odd address trap

Callable returned error buffer: No return to callable.

Explanation: Register dump will follow. Please submit with an SPR.

%SORT_F _OPIFOO, Error opening input file: RMS codes

Callable returned error buffer:

first word =-43
second word = RMS STS code
third word = RMS STV code
fourth word = input file number

Explanation: RMS could not open the given input file. See the
RMS-ll MACRO Programmer's Manual for information on status-code­
field (STS) and status-value-field (STV) codes.

%SORT_F _OPOFOO, Error opening output file: RMS codes

Callable returned error buffer:

first word = -49
second word = RMS STS code
third word = RMS STV code

Explanation: RMS could not open the given output file. See the
RMS-ll MACRO Programmer's Manual for information on status-code­
field (STS) and status-value-field (STV) codes.

Error Messages A-11

%SORT_F _OPSPOO, Error opening specification file: RMS codes

Callable returned error buffer:

first word = -54
second word = RMS STS code
third word = RMS STV code

Explanation: RMS could not open the given specification file. See the
RMS-ll MACRO Programmer's Manual for information on status-code­
field (STS) and status-value-field (STV) codes.

%SORT_F _RDIFOO, Error reading from input file: RMS codes

Callable returned error buffer:

first word = -45
second word = RMS STS code
third word = RMS STV code
fourth word = input file number

Explanation: RMS failed while trying to read the given input file.
See the RMS-ll MACRO Programmer's Manual for information on
status-code-field (STS) and status-value-field (STV) codes.

%SORT_F _RDSFOO, Error reading from work file: RMS codes

Callable returned error buffer:

first word = -39
second word = RMS STS code
third word = RMS STV code
fourth word = work file number

Explanation: RMS failed while trying to read the given work file.

%SORT_F _RDSPOO, Error reading from specification file: RMS codes

Callable returned error buffer:

first word = -56
second word = RMS STS code
third word = RMS STV code

Explanation: RMS failed while trying to read the specification file.
See the RMS-ll MACRO Programmer's Manual for information on
status-code-field (STS) and status-value-field (STV) codes.

%SORT_F _RLFAIL, Failure t.o release allocated pool block

Callable returned error buffer: first word = -27.

Explanation: This is probably an internal error; please submit an SPR.

%SORT_F _RSFAIL, Failure to allocate requested pool block

Callable returned error buffer: first word = -28.

Explanation: This is probably an internal error; please submit an SPR.

A-12 Error Messages

%SORT_F _RWSFOO, Error rewinding work file: RMS codes

Callable returned error buffer:

first word = -41
second word = RMS STS code
third word = RMS STV code
fourth word = work file number

Explanation: RMS could not rewind the given work file. See the
RMS-ll MACRO Programmer's Manual for information on status-code­
field (STS) and status-value-field (STV) codes.

%SORT_F _SPCADJ, Invalid collating sequence definition

Callable returned error buffer: first word = -90.

Explanation: Collating sequence in the specification file is not valid.

%SORT_F _SPCCHR, Invalid character definition

Callable returned error buffer: first word = -92.

Explanation: Character definition in the specification file is not valid.

%SORT_ W _SPCIVC, Invalid collating sequence, on line

Callable returned error buffer:

first word = 6
second word = specification file line number

Explanation: Collating sequence in the specification file is not valid.

%SORT_ W _SPCIVD, Invalid data type, on line

Callable returned error buffer:

first word = 7
second word = specification file line number

Explanation: Data type found in the specification file is not valid.

%SORT_ W _SPCIVF, Invalid field, on line

Callable returned error buffer:

first word = 8
second word = specification file line number

Explanation: Field definition in the specification file is not valid.

%SORT_ W _SPCM, Invalid include or omit, on line

Callable returned error buffer:

first word = 9
second word = specification file line number

Explanation: Include or omit definition in the specification file is not
valid.

Error Messages A-13

%SORT_ W _SPCIVK, Invalid key or data, on line

Callable returned error buffer:

first word = 10
second word = specification file line number

Explanation: Key field definition in the specification file is not valid.

%SORT_ W _SPCIVP, Invalid sort process, on line

Callable returned error buffer:

first word = 11
second word = specification file line number

Explanation: Sort process found in the specification file is not valid.

%SORT_ W _SPCIVS, Invalid specification line

Callable returned error buffer:

first word = 12
second word = specification file line number

Explanation: The given line in the specification file contains an error.

%SORT_W_SPCIVX, Invalid condition, on line

Callable returned error buffer:

first word = 13
second word = specification file line number

Explanation: Condition definition in the specification file is not valid.

%SORT_ W _SPCMIS, Invalid merge specification, on line

Callable returned error buffer:

first word = 14
second word = specification file line number

Explanation: Specification given in a MERGE specification file that is
valid only for SORT.

%SORT_ W _SPCOVR, Specification overridden, on line

Callable returned error buffer:

first word = 15
second word = specification file line number

Explanation: Specification has been overridden by command line or
callable parameter.

%SORT_F _SPCPAD, Invalid pad character

Callable returned error buffer: first word = -93.

Explanation: Pad character definition in specification file is not valid.

A-14 Error Messages

%SORT_F _SPCPLX, Collating sequence too complex

Callable returned error buffer: first word = -91.

Explanation: The collating sequence in the specification file has too
many collating values.

%SORT_ W _SPCSIS, Invalid sort specification, on line

Callable returned error buffer:

first word = 16
second word = specification file line number

Explanation: You have specified a qualifier or switch in the SORT
specification file that is valid only for MERGE.

%SORT_F _SPCTHR, Cannot define three-byte collating value

Callable returned error buffer: first word = -94.

Explanation: You attempted to define 3-byte collating value in a
specification file.

%SORT_ W _SUCCESS,

Callable returned error buffer: first word = O.

Explanation: Success returned from callable interface. If this message
occurs in utility SORT, please submit an SPR.

%SORT_ W _TRNREC, Truncating records longer than specified LRL of

Callable returned error buffer:

first word = 17
second word = specified LRL

Explanation: At least one record in an input file was longer than the
longest record length (LRL) you specified. All such records are truncated.

%SORT_F _TRPTRP, TRAP instruction execution

Callable returned error buffer: No return to callable.

Explanation: Register dump will follow. Please submit with an SPR.

%SORT_F _ WKAREA, Insufficient work area (bytes):

Callable returned error buffer:

first word = -26
second word = number of bytes of work area supplied

Explanation: Work area supplied is insufficient for the SORT or
MERGE operation.

Error Messages A-15

%SORT_F _ WROFOO, Error writing to output file; RMS codes

Callable returned error buffer:

first word = -51
second word = RMS STS code
third word = RMS STV code

Explanation: RMS failed while trying to write to the given output
file. See the RMS-ll MACRO Programmer's Manual for information on
status-code-field (STS) and status-value-field (STV) codes.

%SORT_F _ WRSFOO, Error writing to work file

Callable returned error buffer:

first word = -38
second word = RMS STS code
third word = RMS STV code
fourth word = work file number

Explanation: RMS failed while trying to write to the given work file.
See the RMS-ll MACRO Programmer's Manual for information on
status-code-field (STS) and status-value-field (STV) codes.

%SORT_F _ WRTIOO, Error writing to terminal device

Callable returned error buffer: first word :::::: -97.

Explanation: RMS failed while trying to write to the terminal device.

%SORT_ W _ WRTSHR, Input file opened allowing writes-file number

Callable returned error buffer:

first word = 5
second word = input file number

Explanation: Warning that the input file could be modified during the
SORT or MERGE operation.

%SORT_F_XSLUNS, Too many LUNs required (required/max allowed);

Callable returned error buffer:

first word = -32
second word = number ofLUNs required
third word = maximum LUNs allowed

Explanation: The total number of logical unit numbers (LUNs) re­
quired (because of the number of input, output, work, and specification
files) exceeds the maximum allowed on the system.

%SORT_F _ZMGORD, Invalid merge order

A-Hi Error Messages

Callable returned error buffer: first word = -74.

Explanation: You passed a zero merge order to a callable MERGE
record operation.

Appendix B

Sample Programs

This appendix includes sample application programs that demonstrate the use
of the callable SORT and MERGE subroutines. The purpose of the sample
programs is to show the subroutines in program source code; the programs have
not necessarily been designed to demonstrate common applications, performance
optimization, or programming practices.

This appendix includes six sample programs, as follows:

• A BASIC-PLUS-2 program using the MERGE file interface

• A BASIC-PLUS-2 program using both SORT and MERGE mixed-mode
interfaces

• A COB0L--81 program using the MERGE record interface

• A COB0L--81 program using the SORT record interface

• A FORTRAN program using the MERGE file interface

• A FORTRAN program using the SORT file interface

The BASIC-PLUS-2 and COBOL programs pass arguments by descriptor, so
they use the special subroutine names for BASIC and COBOL (for example,
SRTINB and SRTINC). The FORTRAN programs use the standard subroutine
names (for example, SRTINI).

Sample Programs B-1

B.1 BASIC-PLUS-2 Program Using the MERGE File Interface

1 EXTEND
10 DECLARE &

INTEGER &

1un _buf (0%), &

err_buff (4%)
20 DECLARE &

STRING &

command line &

40 MAP (WORK) &
STRING wrk area = 15000 &

1910 command line = "output=bmgfil/fo:v:80,bmgfl1/fo:v:80/ke:co1.1/ss" &

1920 lun_buf(O) = 6%

1990 PRINT "calling MRGINB"
2000 CALL MRGINB (err_buff() BY REF,

wrk_area BY DESC,
command_line BY DESC,
0% BY VALUE,
0% BY VALUE,
0% BY VALUE,
lun_buf() BY DESC,
0% BY VALUE,
0% BY VALUE,
0% BY VALUE,
0% BY VALUE,
0% BY VALUE)

2100 IF err~uff(O) = 0 THEN GOTO 2300

2110 PRINT "error in MRGINB:
2120 PRINT "
2130 PRINT "
2140 PRINT "
2200 GOTO 30000

2300 PRINT "calling MRGMRB"

err_buff (0)
err_buff (1)
err_buff (2)
err_buff (3)

3000 CALL MRGMRB (err_buff() BY REF)
3100 IF err_buff(O) = 0 THEN GOTO 4990

3110 PRINT "error in MRGMRB: err_buff (0)
3120 PRINT" err_buff (1)
3130 PRINT" err_buff (2)
3140 PRINT" err_buff (3)
3150 GOTO 30000

4990 PRINT "calling MRGENB"
5000 CALL MRGENB (err_buff() BY REF)

5105 IF err_buff (0) = 0 THEN GOTO 30000

5110 PRINT "error in MRGENB: err_buff (0)
5120 PRINT" err_buff (1)
5130 PRINT" err_buff (2)
5140 PRINT" err_buff (3)

30000 END

B-2 Sample Programs

&

&

&

&

&

&

&

&

&

&

&

&

&

",err_buff(O)
", err_buff (1)
", err_buff (2)
",err_buff(3)

",err_buff(O)
", err_buff (1)
", err_buff (2)
", err_buff (3)

",err_buff(O)
",err_buff(l)
",err_buff(2)

&

&

&

&

&

", err_buff (3) &

&

B.2 BASIC-PlUS-2 Program Using Both SORT and MERGE
Mixed-Mode Interfaces

1 EXTEND
10 DECLARE &

INTEGER &

lun _buf (0%) , &

err_buff (4%), &

inp_lrl
20 DECLARE &

STRING &

command line &

25 MAP (DISK) &

STRING rec buf 80 &

40 MAP (WORK) &

STRING wrk area = 10000 &

1900 ON ERROR GOTO 30000 &
! DEFINE THE ENVIRONMENT

1910 command line = "temp1/al:6=/ke:co1.1/pt:30/fi:3" &

1905 inp_lrl = 80%
1920 lun_buf(O) = 6% &

1990 PRINT "calling SRTINB"
2000 CALL SRTINB (err_buff() BY REF, &

wrk_area BY DESC, &

command line BY DESC, &
inp_lrl-BY REF, &

0% BY VALUE, &

lun_buf() BY DESC, &
0% BY VALUE, &

0% BY VALUE, &

0% BY VALUE, &

0% BY VALUE) &

2100 IF err_buff (0) = 0 THEN GOTO 2300 &

2110 PRINT "error in SRTINB: err _buff (0)
2120 PRINT " err_buff (1)
2130 PRINT " err_buff (2)
2140 PRINT " erryuff(3)
2200 GOTO 30900

2250 PRINT "open the input file"

",err_buff (0)
", err_buff (1)
", err_buff (2)
",err_buff(3)

2300 OPEN "BSMMIX.DAT" FOR INPUT AS FILE 1%,
ORGANIZATION SEQUENTIAL FIXED,

MAP DISK,
ACCESS READ,
ALLOW NONE

2800 GET U

2990 PRINT "calling SRTRLB"
3000 CALL SRTRLB (err_buff() BY REF,

rec_buf BY DESC)
3100 IF err_buff (0) = 0 THEN GO TO 2800

&

&

&

&

&

&

&

&

&

Sample Programs 8-3

3110 PRINT "error in SRTRLB:
3120 PRINT "
3130 PRINT "
3140 PRINT "
3150 GOTO 30900

3300 PRINT "calling SRTSRB"
4000 CALL SRTSRB (err_buff 0
4100 IF err_buff(O) = 0 THEN

4110 PRINT "error in SRTSRB:
4120 PRINT "
4130 PRINT "
4140 PRINT "
4150 GOTO 30900

4990 PRINT "calling SRTENB"
5000 CALL SRTENB (err_buff ()

5105 IF err_buff (0) = 0 THEN

5110 PRINT "error in SRTENB:
5120 PRINT "
5130 PRINT "
5140 PRINT "

err_buff (0)
err_buff (1)
err_buff (2)
err_buff (3)

BY REF)
GOTO 4990

err _buff (0)
err_buff (1)
err_buff (2)
err_buff (3)

BY REF)

GOTO 5150

err _buff (0)
err_buff (1)
err_buff (2)
err_buff (3)

",err_buff(O)
",err_buff(l)
",err_buff (2)
",err_buff(3)

",err_buff (0)
",err_buff (1)
",err_buff(2)
",err_buff (3)

&

&

&

&

&

", err_buff (0)
", err_buff (1)
", err_buff (2)
", err_buff (3) &

5150 command line "=BSMMIX/FO:V:80/ke:co1.1/pt:30/fi:3" &

5155 CLOSE U
5160 PRINT "calling SRTINB"
6000 CALL SRTINB (err_buff() BY REF,

wrk_area BY DESC,
command line BY DESC,
inp_lrl-BY REF,
0% BY VALUE,
lun_buf() BY DESC,
0% BY VALUE,
0% BY VALUE,

0% BY VALUE,
0% BY VALUE)

6100 IF err_buff(O) = 0 THEN GO TO 6300

6110 PRINT "error in SRTINB:
6120 PRINT "
6130 PRINT "
6140 PRINT "
6200 GOTO 30900

err_buff (0)
err_buff (1)
err_buff (2)
err_buff (3)

",err_buff(O)
",erryuff(l)
",err_buff(2)
",err_buff(3)

6300 OPEN "TEMP2.DAT" FOR OUTPUT AS FILE 1%,
ORGANIZATION SEQUENTIAL FIXED,
MAP DISK,
ACCESS WRITE,
ALLOW NONE

8-4 Sample Programs

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

6400 PRINT "calling SRTSRB"
7000 CALL SRTSRB (err_buff () BY REF)
7100 IF err_buff (0) = 0 THEN GOTO 7200 &

7110 PRINT "error in SRTSRB: err_buff (0) ",err buff(O)
7120 PRINT " err_buff (1) ", err:=buff (1)
7130 PRINT " err_buff (2) ", err_buff (2)
7140 PRINT " erryuff(3) ", err_buff (3)
7150 GOTO 30900 &

7200 CALL SRTRTB (err_buff() BY REF, &

rec_buf BY DESe, &

rtn_len BY REF) &

7300 IF err_buff (0) 0 THEN GOTO 7400 &

7305 IF err_buff (0) 1 THEN GOTO 7500 &

7310 PRINT "error in SRTRTB: err_buff (0) ", err_buff (0)
7320 PRINT " err_buff (1) ", err_buff (1)
7330 PRINT " err_buff (2) ",err_buff(2)
7340 PRINT " err_buff (3) ", err_buff (3)
7350 GOTO 30900 &

7400 PUT U &

7410 GOTO 7200 !loop back for next output record &

7500 PRINT "calling SRTENB"
7510 CALL SRTENB (erryuff ()

7515 IF err_buff(O) = 0 THEN

7600 PRINT "error in SRTENB:
7610 PRINT "
7620 PRINT "
7630 PRINT "

7700 CLOSE U

BY REF)

GOTO 7700

err_buff (0)
err_buff (1)
err_buff (2)
err_buff (3)

&

&

", err_buff (0)
",err_buff (1)
", err_buff (2)
", err_buff (3) &

! now for a merge mixed file to record

&

&

&

7800 command line "=templ/FO:V:80,temp2/fo:v:80/ke:col.l" &

7990 PRINT "calling MRGINB"
8000 CALL MRGINB (erryuff() BY REF,

wrk area BY DESC,
command_line BY DESC,
inp_lrl BY REF,
0% BY VALUE,
0% BY VALUE,
lun_buf() BY DESe,
0% BY VALUE,
0% BY VALUE,

0% BY VALUE,
0% BY VALUE,
0% BY VALUE)

&

&

&

&

&

&

&

&

&

&

&

&

Sample Programs 8-5

8100 IF err_buff (0) = 0 THEN

8110 PRINT "error in MRGINB:
8120 PRINT "
8130 PRINT "
8140 PRINT "
8200 GOTO 30900

8275 PRINT "calling MRGMRB"
8300 CALL MRGMRB (err_buff 0
8310 IF err_buff(O) = 0 THEN

8320 PRINT "error in MRGMRB:
8340 PRINT "
8350 PRINT "
8360 PRINT "
8370 GOTO 30900

GOTO 8275

err_buff (0)
err_buff (1)
err buff(2)
err=:buff(3)

BY REF)
GOTO 8500

err_buff (0)
err_buff (1)
err buff(2)
err=:buff(3)

",err_buff (0)
",err_buff(l)
", err_buff (2)
", err_buff (3)

", err_buff (0)
", err_buff (1)
", err_buff (2)
", err_buff (3)

8500 OPEN "OUTPUT.DAT" FOR OUTPUT AS FILE 1%,
ORGANIZATION SEQUENTIAL FIXED,
MAP DISK,
ACCESS WRITE,
ALLOW NONE

8600 PRINT "calling MRGRTB"
8620 CALL MRGRTB (err_buff() BY REF,

rec_buf BY DESC,
rtn_len BY REF)

8640 IF erryuff(O) 0 THEN GOTO 8900

8650 IF err_buff (0) 1 THEN GOTO 9000

8660 PRINT "error in MRGRTB: err_buff (0)
8670 PRINT " err_buff (1)
8675 PRINT " err_buff (2)
8680 PRINT " err_buff (3)
8690 GOTO 30900

8900 PUT #1

",err_buff (0)
",err buff (1)
",err::y,uff(2)
",err_buff (3)

8910 GOTO 8620 !loop back for next output record

9000 PRINT "calling MRGENB"
9010 CALL MRGENB (err_buff 0 BY REF)

9020 IF err_buff(O) = 0 THEN GO TO 30900

&

&

&

&

&
&

&

&

&

&

&

&

&

&

&

&

&

&

&

9030 PRINT "error
9040 PRINT "
9050 PRINT "
9060 PRINT "

in MRGENB: err buff(O)
err=:buff(l)
err_buff (2)
err_buff (3)

", err_buff (0)
", err_buff (1)
",err_buff (2)
",err_buff(3) &

9070 GOTO 30900 lit's allover

30000
ERROR HANDLER

30100 IF ERR 11% AND
ERL = 2800
THEN RESUME 3300 lit was end of input file

30300 PRINT "falling through error handler"
30900 ON ERROR GOTO 0
32000 END

8-6 Sample Programs

&

&
&

&

&

&

B.3 COBOL-51 Program Using the MERGE Record Interface

IDENTIFICATION DIVISION.
PROGRAM-ID. C81TST.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PDP-ll.
OBJECT-COMPUTER. PDP-ll.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT OUTFIL ASSIGN TO "OUTPUT.DAT".
DATA DIVISION.
* PIC X IS ALPHA-NUMERIC
* PIC 9 IS NUMERIC (S MEANS SIGNED)
* COMP IS BINARY S9(4) COMP IS BINARY STORED IN ONE-WORD
FILE SECTION.
FD OUTFIL

LABEL RECORD STANDARD.
01 OUTREC PIC X(100).
WORKING-STORAGE SECTION.
01 SRT-WRK-AREA PIC X(9000).
01 SRT-WRK-LEN PIC S9(4) COMP VALUE 9000.
01 ERR-BUF.

03 SRT-CODE PIC S9(4) COMPo
03 RMSSTS PIC S9(4) COMPo
03 RMSSTV PIC S9(4) COMPo
03 SRT-EXTRA PIC S9(4) COMPo

01 CMD-BUF PIC X(l) VALUE "=".
01 CMD-BUF-LEN PIC S9(4) COMP VALUE 1.
01 INP-LRL PIC S9(4) COMP VALUE 80.
01 MRG-ORD PIC S9(4) COMP VALUE 3.
01 SPEC-BUF PIC S9(4) COMP VALUE O.
01 LB.

03 LBX PIC S9(4) COMP VALUE 6.
03 LUN-BUF REDEFINES LBX PIC XX.

01 LUN-BUF-LEN PIC S9(4) COMP VALUE 1.
01 REC-LEN PIC S9(4) COMP VALUE 100.
01 RTN-LEN PIC S9(4) COMP VALUE 666.
01 MISC-AREA.

03 INCTR PIC 9(4) COMP VALUE O.
03 RELCTR PIC 9(4) COMP VALUE O.
03 RTNCTR PIC 9(4) COMP VALUE O.
03 OUTCTR PIC 9(4) COMP VALUE O.

Sample Programs B-7

01 DISP-AREA.
03 LINE-l.

05 FILLER PIC X(17) VALUE "SORT TEST DISPLAY".
03 LINE-2.

05 FILLER PIC X(17) VALUE "RECORDS READ : "
05 D-INCTR PIC 9(5) VALUE O.

03 LINE-3.
05 FILLER PIC X(17) VALUE "RECORDS RELEASED:".
05 D-RELCTR PIC 9(5) VALUE O.

03 LINE-4.
05 FILLER PIC X(17) VALUE "RECORDS RE TURNED: " .
05 D-RTNCTR PIC 9(5) VALUE O.

03 LINE-S.
05 FILLER PIC X(17) VALUE "RECORDS WRITTEN : "
05 D-OUTCTR PIC 9(5) VALUE O.

03 LINE-SA.
05 FILLER PIC X(17) VALUE "SORT ERROR REPORT".

03 LINE-6.
05 FILLER PIC X(17) VALUE "SORT ERROR CODE :".
05 D-SRT-CODE PIC S9(6) VALUE O.

03 LINE-7.
05 FILLER PIC X(17) VALUE "RMS STS VALUE :".
05 D-RMSSTS PIC S9(6) VALUE O.

03 LINE-8.
05 FILLER PIC X(17) VALUE "RMS STV VALUE :".
05 D-RMSSTV PIC S9(6) VALUE O.

03 LINE-8A.
05 FILLER PIC X(17) VALUE "EXTRA SORT INFO :".
05 D-SRT-EXTP~ PIC S9(6) VALUE O.

03 LINE-9.
05 FILLER PIC X(17) VALUE "EXCEPTION REPORT ".

03 LINE-IO.
05 FILLER PIC X(17) VALUE "SRT RTN LENGTH :".
05 D-RTN-LEN PIC S9(6) VALUE O.

PROCEDURE DIVISION.
START-UP.

OPEN OUTPUT OUTFIL.
DISPLAY "CALLING MRGINC".
CALL "MRGINC" USING BY REFERENCE ERR-BUF,

BY DESCRIPTOR SRT-WRK-AREA,
BY DESCRIPTOR CMD-BUF,
BY REFERENCE INP-LRL,
BY REFERENCE MRG-ORD,
BY REFERENCE SPEC-BUF,
BY DESCRIPTOR LUN-BUF.

IF SRT-CODE NOT = 0
PERFORM ERROR-RTN
GO TO THE-END.

DISPLAY "CALLING MRGRTC".
RTN-LOOP.

CALL "MRGRTC" USING BY REFERENCE ERR-BUF,
BY DESCRIPTOR OUTREC,
BY REFERENCE RTN-LEN.

IF SRT-CODE NOT = 0
PERFORM ERROR-RTN
GO TO THE-END.

ADD 1 TO RTNCTR.
WRITE OUTREC.
ADD 1 TO OUTCTR.
GO TO RTN-LOOP.

THE-END.

8-8 Sample Programs

DISPLAY "CALLING MRGENC".
CALL "MRGENC" USING BY REFERENCE ERR-BUF.

* MOVE INCTR TO D-INCTR.
* MOVE RELCTR TO D-RELCTR.
* MOVE RTNCTR TO D-RTNCTR.
* MOVE OUTCTR TO D-OUTCTR.
* DISPLAY LINE-l.
* DISPLAY LINE-2.
* DISPLAY LINE-3.
* DISPLAY LINE-4.
* DISPLAY LINE-5.

CLOSE OUTFIL.
STOP RUN.

ERROR-RTN.
MOVE SRT-CODE TO D-SRT-CODE.
MOVE RMSSTS TO D-RMSSTS.
MOVE RMSSTV TO D-RMSSTV.
MOVE SRT-EXTRA TO D-SRT-EXTRA.
DISPLAY LINE-5A.
DISPLAY LINE-6.
DISPLAY LINE-7.
DISPLAY LINE-S.
DISPLAY LINE-SA.

B.4 COBOl-81 Program Using the SORT Record Interface

IDENTIFICATION DIVISION.
PROGRAM-ID. CS1TES.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PDP-ll.
OBJECT-COMPUTER. PDP-ll.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INFILE ASSIGN TO "CS1REC.DAT".
SELECT OUTFIL ASSIGN TO "OUTPUT.DAT".

DATA DIVISION.
* PIC X IS ALPHA-NUMERIC
* PIC 9 IS NUMERIC (S MEANS SIGNED)
* COMP IS BINARY S9(4) COMP IS BINARY STORED IN ONE-WORD
FILE SECTION.
FD INFILE

LABEL RECORD STANDARD.
01 INREC PIC X(lOO) .
FD OUTFIL

LABEL RECORD STANDARD.
01 OUTREC PIC X(lOO) .
WORKING-STORAGE SECTION.
01 SRT-WRK-AREA PIC X(9000) .
01 SRT-WRK-LEN PIC S9(4) COMP VALUE 9000.
01 ERR-BUF.

03 SRT-CODE PIC S9(4) COMPo
03 RMSSTS PIC S9(4) COMPo
03 RMSSTV PIC S9(4) COMPo
03 SRT-EXTRA PIC S9(4) COMPo

01 CMD-BUF PIC X (14) VALUE "/KE: CNl. 2/FI: 3" .
01 CMD-BUF-LEN PIC S9(4) COMP VALUE 14.
01 INP-LRL PIC S9(4) COMP VALUE 100.
01 SPEC-BUF PIC S9(4) COMP VALUE O.
01 LB.

03 LBX PIC S9(4) COMP VALUE 6.
03 LUN-BUF REDEFINES LBX PIC XX.

01 LUN-BUF-LEN PIC S9(4) COMP VALUE 1.
01 REC-LEN PIC S9(4) COMP VALUE 100.
01 RTN-LEN PIC S9(4) COMP VALUE 666.
01 MISC-AREA.

Sample Programs 8-9;

01

03 INCTR PIC 9(4) COMP VALUE O.
03 RELCTR PIC 9(4) COMP VALUE O.
03 RTNCTR PIC 9(4) COMP VALUE O.
03 OUTCTR PIC 9 (4) COMP VALUE O.
DISP-AREA.
03

03

03

03

03

LINE-1.
05 FILLER PIC X(17) VALUE "SORT TEST DISPLAY".
LINE-2.
05 FILLER PIC X(17) VALUE "RECORDS READ : n .
05 D-INCTR PIC 9(5) VALUE O.
LINE-3.
05 FILLER PIC X(17) VALUE "RECORDS RELEASED: " •
05 D-RELCTR PIC 9(5) VALUE O.
LINE-4.
05 FILLER PIC X(17) VALUE "RECORDS RETURNED:".
05 D-RTNCTR PIC 9(5) VALUE O.
LINE-S.
05 FILLER PIC X(17) VALUE "RECORDS WRITTEN :".
05 D-OUTCTR PIC 9(5) VALUE O.

03 LINE-SA.

03

03

05 FILLER PIC X(17) VALUE "SORT ERROR REPORT" .
LINE-6.
05 FILLER PIC X(17) VALUE "SORT ERROR CODE :" .
05 D-SRT-CODE PIC S9(6) VALUE O.
LINE-7.
05 FILLER PIC X(17) VALUE "RMS STS VALUE :".
05 D-RMSSTS PIC S9(6) VALUE O.

03 LINE-8.
05 FILLER PIC X(17) VALUE "RMS STV VALUE :".
05 D-RMSSTV PIC S9(6) VALUE O.

03 LINE-8A.
05 FILLER PIC X(17) VALUE "EXTRA SORT INFO :".
05 D-SRT-EXTRA PIC S9(6) VALUE O.

03 LINE-9.
05 FILLER PIC X(17) VALUE "EXCEPTION REPORT ".

03 LINE-10.
05 FILLER PIC X(17) VALUE "SRT RTN LENGTH :".
05 D-RTN-LEN PIC S9(6) VALUE O.

PROCEDURE DIVISION.
START-UP.

OPEN INPUT INFILE.
OPEN OUTPUT OUTFIL.
DISPLAY "CALLING SRTINC".
CALL "SRTINC" USING BY REFERENCE ERR-BUF,

BY DESCRIPTOR SRT-WRK-AREA,
BY DESCRIPTOR CMD-BUF,
BY REFERENCE INP-LRL,
BY REFERENCE SPEC-BUF,
BY DESCRIPTOR LUN-BUF.

IF SRT-CODE NOT = 0
PERFORM ERROR-RTN
GO TO THE-END.

DISPLAY "ENTERING SRTRLC LOOP".

8-10 Sample Programs

READ-LOOP.
READ INFILE

AT END
DISPLAY "ENTERING SRTRTC LOOP"
GO TO RTN-LOOP.

ADD 1 TO INCTR.
CALL "SRTRLC" USING BY REFERENCE ERR-BUF,

BY DESCRIPTOR INREC.
IF SRT-CODE NOT = 0

PERFORM ERROR-RTN
GO TO THE-END.

ADD 1 TO RELCTR.
GO TO READ-LOOP.

RTN-LOOP.
CALL "SRTRTC" USING BY REFERENCE ERR-BUF,

BY DESCRIPTOR OUTREC,
BY REFERENCE RTN-LEN.

IF SRT-CODE NOT = 0
PERFORM ERROR-RTN
GO TO THE-END.

ADD 1 TO RTNCTR.
IF RTN-LEN NOT = 100

THEN MOVE RTN-LEN TO D-RTN-LEN
DISPLAY LINE-9
DISPLAY LINE-10
PERFORM ERROR-RTN
GO TO THE-END.

WRITE OUTREC.
ADD 1 TO OUTCTR.
GO TO RTN-LOOP.

THE-END.
DISPLAY "CALLING SRTENC".
CALL "SRTENC" USING BY REFERENCE ERR-BUF.
MOVE INCTR TO D-INCTR.
MOVE RELCTR TO D-RELCTR.
MOVE RTNCTR TO D-RTNCTR.
MOVE OUTCTR TO D-OUTCTR.
DISPLAY LINE-1.
DISPLAY LINE-2.
DISPLAY LINE-3.
DISPLAY LINE-4.
DISPLAY LINE-S.
CLOSE INFILE.
CLOSE OUTFIL.
STOP RUN.

ERROR-RTN.
MOVE SRT-CODE TO D-SRT-CODE.
MOVE RMSSTS TO D-RMSSTS.
MOVE RMSSTV TO D-RMSSTV.
MOVE SRT-EXTRA TO D-SRT-EXTRA.
DISPLAY LINE-SA.
DISPLAY LINE-6.
DISPLAY LINE-7.
DISPLAY LINE-S.
DISPLAY LINE-SA.

Sample Programs 8-11

B.5 FORTRAN Program Using the MERGE File Interface

C
C
C

C
C
C
C

C
C

C
C
C
C
C

C
C
C
C
C

C
C
C

C
C
C
C

C
C
C
C

C
C
C

PROGRAM FMGFIL

THIS PROGRAM TESTS THE MERGE FILE INTERFACE.

INTEGER*2 IERROR(4), I1LUN, IWKSIZ, I WORK (8000)
RETURN FIRST SCR. WORK
STATUS MERGE AREA AREA

(4 WORDS) LUN SIZE

INTEGER*2 ILUNLN
LUN BUFFER LENGTH

INTEGER*2 MAXREC, ICOMLN, MRGEOF
MAXIMUM COMMAND MERGE
INPUT LINE ERROR
RECORD LENGTH CODE (END OF FILE ERROR)
SIZE

INTEGER*2 INPSIZ, LENGTH, INRECS, OUTRCS
TOTAL INPUT INPUT OUTPUT
INPUT RECORD RECORD RECORD
FILES LENGTH COUNT COUNT
SIZE

INTEGER*2 ENDFIL
END OF FILE FLAG

CHARACTER RUTINE*8, COMAND*55, A(80)
ROUTINE MERGE MISC.
RETURNING COMMAND STRING
THE ERROR LINE

EXTERNAL MRGINI, MRGMRG, MRGEND

MERGE-ll SUBROUTINES

DATA I1LUN,ILUNLN,IWKSIZ/6,1,16000/
DATA MAXREC,IERROR/20,0,0, 0,0/
COMAND 'OUT=FMGFIL/FO:F:20,FMGFL1/FO:F:20/KE:C01.20'
ICOMLN = 43

INITIALIZE MERGE PARAMETERS

RUTINE=' MRGINI '
TYPE 902, RUTINE
CALL MRGINI(IERROR,IWORK,IWKSIZ,COMAND,ICOMLN,MAXREC,O,O,O,

X IlLUN, ILUNLN)

B-12 Sample Programs

C
C
C

C

CALL THE MERGE-11 INITIALIZE ROUTINE

IF (IERROR(l) .NE. 0) THEN
GOTO 900
ENDIF

C EXIT AND TYPE AN ERROR MESSAGE IF MRGINI WAS UNSUCCESSFUL.
C
C

C
C

C

INRECS 0
OUTRCS 0
ENDFIL 0
IFILE = 1

RUTINE=' MRGMRG '
TYPE 902, RUTINE

150 CALL MRGMRG(IERROR)
C
C
C

C

START THE MERGING PROCEDURE

IF (IERROR(l) .NE. 0) THEN
GOTO 900
ENDIF

C EXIT AND TYPE AN ERROR MESSAGE IF MRGRLS WAS UNSUCCESSFUL.
C

C
C
C
C

C

RUTINE=' MRGEND '
TYPE 902, RUTINE
CALL MRGEND (IERROR)

CALL THE MERGE-ll CLEAN-UP .ROUTINES.

IF (IERROR(l) .NE. 0) THEN
GOTO 900
ENDIF

C EXIT AND TYPE AN ERROR MESSAGE IF UNSUCCESSFUL.
C

C
C

C
C
C

STOP 'SUCCESSFUL FORTRAN MERGE TEST.'

900 TYPE 901, RUTINE
901 FORMAT(/' ERROR OCCURRED IN ' ,AS//)
902 FORMAT(/' CALLING' ,AS//)
C
C

C

903
C
C
C
C
C

TYPE ERROR MESSAGE GIVING FAILING ROUTINE.

TYPE 903, IERROR
FORMAT (' ERROR STATUS ',I6,//' STS= ',I6,5X,' STV= 'I6)

TYPE RETURNED STATUS VALUES.

STOP 'AN ERROR OCCURRED CALLING MERGE FROM FORTRAN.'
END

Sample Programs 8-13

B.6 FORTRAN Program Using the SORT File Interface

C
C
C

C
C
C
C

C
C

C
C
C
C
C

C
C
C
C
C

C
C
C

C
C
C
C

C
C
C
C

C

PROGRAM FORFIL

THIS PROGRAM TESTS THE SORT FILE INTERFACE.

INTEGER*2 IERROR(4) , I1LUN, IWKSIZ, IWORK(8000)
RETURN FIRST SCR. WORK
STATUS SORT AREA AREA
(4 WORDS) LUN SIZE

INTEGER*2 ILUNLN
LUN BUFFER LENGTH

INTEGER*2 MAXREC, ICOMLN, SRTEOF
MAXIMUM COMMAND SORT
INPUT LINE ERROR
RECORD LENGTH CODE (END OF FILE ERROR)
SIZE

INTEGER*2 INPSIZ, LENGTH, INRECS, OUTRCS
TOTAL INPUT INPUT OUTPUT
INPUT RECORD RECORD RECORD
FILES LENGTH COUNT COUNT
SIZE

INTEGER*2 ENDFIL
END OF FILE FLAG

CHARACTER RUTINE*8, COMAND*45 , A(80)
ROUTINE SORT MISC.
RETURNING COMMAND STRING
THE ERROR LINE

EXTERNAL SRTINI, SRTSRT, SRTEND

SORT-ll SUBROUTINES

DATA I1LUN,ILUNLN,IWKSIZ/6,1,16000/
DATA MAXREC,IERROR/20,0,0,0,0/
COMAND 'OUT=FORFIL/FO:F:20/KE:CN1.20/FI:3/PT:30'
ICOMLN = 39

C INITIALIZE SORT PARAMETERS
C

C
C
C

C

RUTINE=' SRTINI '
TYPE 902, RUTINE
CALL SRTINI(IERROR,IWORK,IWKSIZ,COMAND,ICOMLN,MAXREC,O,O,

X I1LUN,ILUNLN)

CALL THE SORT-ll INITIALIZE ROUTINE

IF (IERROR(l) .NE. 0) THEN
GOTO 900
ENDIF

C EXIT AND TYPE AN ERROR MESSAGE IF SRTINI WAS UNSUCCESSFUL.
C
C

C
C

8-14 Sample Programs

INRECS °
OUTRCS °
ENDFIL °
IFILE = 1

C
RUTINE=' SRTRLS '
TYPE 902, RUTINE

150 CALL SRTSRT(IERROR)
C
C START THE SORTING PROCEDURE
C

C
C
C

C
C
C
C

C
C

C

C
C
C
C
C
900
901
902
C
C
C

IF (IERROR(l) .NE. 0) THEN
GOTO 900
ENDIF

EXIT AND TYPE AN ERROR MESSAGE IF SRTRLS WAS UNSUCCESSFUL.

RUTINE=' SRTEND '
TYPE 902, RUTINE
CALL SRTEND(IERROR)

CALL THE SORT-11 CLEAN-UP ROUTINES.

IF (IERROR(l) .NE. 0) THEN
GOTO 900
ENDIF

EXIT AND TYPE AN ERROR MESSAGE IF UNSUCCESSFUL.

STOP 'SUCCESSFUL FORTRAN/SORT TEST.'

TYPE 901, RUTINE
FORMAT(/' ERROR OCCURRED IN ' ,AS//)
FORMAT(/' CALLING ',AS//)

TYPE ERROR MESSAGE GIVING FAILING ROUTINE.

TYPE 903, IERROR
903 FORMAT(' ERROR STATUS = ',I6,//' STS= , ,I6,5X,' STV= 'I6)
C
C
C
C
C

TYPE RETURNED STATUS VALUES.

STOP 'AN ERROR OCCURRED CALLING SORT FROM FORTRAN.'
END

Sample Programs 8-15

Appendix C

DIGITAL Multinational and ASCII Collating
Sequences

Table C-1 contains the DIGITAL Multinational Collating Sequence, and
Table C-2 contains the ASCII Collating Sequence.

Table C-1: DIGITAL Multinational Collating Sequence

HEX Octal Decimal Char or
Code Code Code Abbrev. Description

00 000 000 NUL Null character

01 001 001 SOH Start of heading

02 002 002 STX Start of text

03 003 003 ETX. End of text

04 004 004 EOT End of transmission

05 005 005 ENQ Enquiry

06 006 006 ACK Acknowledge

07 007 007 BEL Bell

08 010 008 BS Backspace

09 011 009 HT Horizontal tabulation

OA 012 010 LF Line feed

OB 013 011 VT Vertical tabulation

OC 014 012 FF Form feed

OD 015 013 CR Carriage return

OE 016 014 SO Shift out

OF 017 015 SI Shift in

10 020 016 DLE Data link escape

11 021 017 DC1 Device control 1

12 022 018 DC2 Device control 2

13 023 019 DC3 Device control 3

14 024 020 DC4 Device control 4

15 025 021 NAK Negative acknowledge

16 026 022 SYN Synchronous idle

17 027 023 ETB End of transmission block

(continued on next page)

DIGITAL Multinational and ASCII Collating Sequences C-1

Table C-1 (Cont.): DIGITAL Multinational Collating Sequence

HEX Octal Decimal Char or
Code Code Code Abbrev. Description

18 030 024 CAN Cancel

19 031 025 EM End of medium

lA 032 026 SUB Substitute

IB 033 027 ESC Escape

lC 034 028 FS File separator

ID 035 029 GS Group separator

IE 036 030 RS Record separator

IF 037 031 US Unit separator

20 040 032 SP Space

21 041 033 Exclamation point

22 042 034 Quotation marks (double quote)

23 043 035 # Number sign

24 044 036 $ Dollar sign

25 045 037 % Percent sign

26 046 038 & Ampersand

27 047 039 Apostrophe (single quote)

28 050 040 Opening parenthesis

29 051 041 Closing parenthesis

2A 052 042 * Asterisk

2B 053 043 + Plus

2C 054 044 Comma

2D 055 045 Hyphen or minus

2E 056 046 - Period or decimal point

2F 057 047 / Slash

30 060 048 0 Zero

31 061 049 1 One

32 062 050 2 'I\vo

33 063 051 3 Three

34 064 052 4 Four

35 065 053 5 Five

36 066 054 6 Six

37 067 055 7 Seven

38 070 056 8 Eight

39 071 057 9 Nine

3A 072 058 Colon

3B 073 059 Semicolon

3C 074 060 < Less than

3D 075 061 = Equals

(continued on next page)

C-2 DIGITAL Multinational and ASCII Collating Sequences

Table C-1 (Cont.): DIGITAL Multinational Collating Sequence

HEX Octal DeciJnal Char or
Code Code Code Abbrev. Description

3E 076 062 > Greater than

3F 077 063 ? Question mark

40 100 064 @ Oommercial at

61 141 097 a Lowercase a

41 101 065 A Uppercase A

EO 340 224 a Lowercase a with grave accent

00 300 192 A. Uppercase A with grave accent

E1 341 225 Ii Lowercase a with acute acent

01 301 193 A Uppercase A with acute accent

E2 342 226 a Lowercase a with circumflex

02 302 194 A Uppercase A with circumflex

E3 343 227 a Lowercase a with tilde

03 303 195 A Uppercase A with tilde

E4 344 228 a Lowercase a with umlaut, (diaeresis)

04 304 196 A Uppercase A with umlaut, (diaeresis)

62 142 098 b Lowercase b

42 102 066 B Uppercase B

63 143 099 c Lowercase c

43 103 067 0 Uppercase 0

E7 347 231 {: Lowercase c with cedilla

07 307 199 9 Uppercase 0 with cedilla

64 144 100 d Lowercase d

44 104 068 D Uppercase D

65 145 101 e Lowercase e

45 105 069 E Uppercase E

E8 350 232 e Lowercase e with grave accent

08 310 200 E Uppercase E with grave accent

E9 351 233 e Lowercase e with acute accent

09 311 201 E Uppercase E with acute accent

EA 352 234 ~ Lowercase e with circumflex

OA 312 202 E Uppercase E with circumflex

EB 353 235 e Lowercase e with umlaut, (diaeresis)

OB 313 203 E Uppercase E with umlaut, (diaeresis)

66 146 102 f Lowercase f

46 106 070 F Uppercase F

67 147 103 g Lowercase g

47 107 071 G Uppercase G

68 150 104 h Lowercase h

(continued on next page)

DIGITAL Multinational and ASCII Collating Sequences C-3

Table C-1 (Cont.): DIGITAL Multinational Collating Sequence

HEX Octal Decimal Char or
Code Code Code Abbrev. Description

48 110 072 H Uppercase H

69 151 105 i Lowercase i

49 111 073 I Uppercase I

EC 354 236 Lowercase i with grave accent

CC 314 204 I Uppercase I with grave accent

ED 355 237 f Lowercase i with acute accent

CD 315 205 f Uppercase I with acute accent

EE 356 238 i Lowercase i with circumflex

CE 316 206 I Uppercase I with circumflex

EF 357 239 Lowercase i with umlaut, (diaeresis)

CF 317 207 I Uppercase I with umlaut, (diaeresis)

6A 152 106 j Lowercasej

4A 112 074 J Uppercase J

6B 153 107 k Lowercase k

4B 113 075 K Uppercase K

6C 154 108 Lowercase 1

4C 114 076 L Uppercase L

6D 155 109 m Lowercase m

4D 115 077 M Uppercase M

6E 156 110 n Lowercase n

4E 116 078 N Uppercase N

F1 361 241 fi Lowercase n with tilde

D1 321 209 N Uppercase N with tilde

6F 157 111 0 Lowercase 0

4F 117 079 0 Uppercase 0

F2 362 242 <> Lowercase 0 with grave acent

D2 322 210 () Uppercase 0 with grave accent

F3 363 243 6 Lowercase 0 with acute accent

D3 323 211 6 Uppercase 0 with acute accent

F4 364 244 6 Lowercase 0 with circumflex

D4 324 212 0 Uppercase 0 with circumflex

F5 365 245 0 Lowercase 0 with tilde

D5 325 213 6 Uppercase 0 with tilde

F6 366 246 0 Lowercase 0 with umlaut, (diaeresis)

D6 326 214 0 Uppercase 0 with umlaut, (diaeresis)

F7 367 247 (B Lowercase oe ligature

D7 327 215 <E Uppercase OE ligature

70 160 112 p Lowercase p

(continued on next page)

C-4 DIGITAL Multinational and ASCII Collating Sequences

Table C-1 (Cont.): DIGITAL Multinational Collating Sequence

HEX Octal Decimal Char or
Code Code Code Ahbrev. Description

50 120 080 P Uppercase P

71 161 113 q Lowercase q

51 121 081 Q Uppercase Q

72 162 114 r Lowercase r

52 122 082 R Uppercase R

73 163 115 s Lowercase s

53 123 083 S Uppercase S

DF 337 223 B German lowercase sharp s

74 164 116 t Lowercase t

54 124 084 T Uppercase T

75 165 117 u Lowercase u

55 125 085 U Uppercase U

F9 371 249 U Lowercase u with grave accent

D9 331 217 U Uppercase U with grave accent

FA 372 250 U Lowercase u with acute accent

DA 332 218 U Uppercase U with acute accent

FB 373 251 U Lowercase u with circumflex

DB 333 219 U Uppercase U with circumflex

FC 374 252 ii Lowercase u with umlaut, (diaeresis)

DC 334 220 U Uppercase U with umlaut, (diaeresis)

76 166 118 v Lowercase v

56 126 086 V Uppercase V

77 167 119 w Lowercase w

57 127 087 W Uppercase W

78 170 120 x Lowercase x

58 130 088 X Uppercase X

79 171 121 y Lowercase y

59 131 089 Y Uppercase Y

FD 375 253 Y Lowercase y with umlaut, (diaeresis)

DD 335 221 Y Uppercase Y with umlaut, (diaeresis)

7A 172 122 z Lowercase z

5A 132 090 Z Uppercase Z

E6 346 230 re Lowercase ae diphthong

C6 306 198 ..E Uppercase AE with diphthong

F8 370 248 Iil Lowercase 0 with slash

D8 330 216 0 Uppercase 0 with slash

E5 345 229 a Lowercase a with ring

C5 305 197 A Uppercase A with ring

(continued on next page)

DIGITAL Multinational and ASCII Collating Sequences C-5

Table C-1 (Cont.): DIGITAL Multinational Collating Sequence

HEX Octal Decimal Char or
Code Code Code Abbrev. Description

5B 133 091 Opening bracket

5C 134 092 \ Backslash

5D 135 093] Closing bracket

5E 136 094 A Circumflex

5F 137 095 Underline (underscore)

60 140 096 Grave accent

7B 173 123 Opening brace

7C 174 124 I Vertical line

7D 175 125 } Closing brace

7E 176 126 Tilde

7F 177 127 DEL Delete, rubout

84 204 132 IND Index

85 205 133 NEL Next line

86 206 134 SSA Start of selected area

87 207 135 ESA End of selected area

88 210 136 HTS Horizontal tab set

89 211 137 HTJ Horizontal tab set with justification

8A 212 138 VTS Vertical tab set

8B 213 139 PLD Partial line down

8C 214 140 PLU Partial line up

8D 215 141 RI Reverse index

8E 216 142 SS2 Single shift. 2

8F 217 143 SS3 Single shift. 3

90 220 144 DCS Device control string

91 221 145 PU1 Private use 1

92 222 146 PU2 Private use 2

93 223 147 STS Set transmit state

94 224 148 CCH Cancel character

95 225 149 MW Message waiting

96 226 150 SPA Start of protected area

97 227 151 EPA End of protected area

9B 233 155 CSI Control sequence introducer

9C 234 156 ST String terminator

9D 235 157 OSC Operating system command

9E 236 158 PM Privacy message

9F 237 159 APC Application

Al 241 161 Inverted exclamation mark

A2 242 162 ¢ Cent sign

(continued on next page)

C-6 DIGITAL Multinational and ASCII Collating Sequences

Table C-1 (Cont.): DIGITAL Multinational Collating Sequence

HEX Octal Decimal Char or
Code Code Code Abbrev. Description

A3 243 163 £ Pound sign

A5 245 165 Y Yen sign

A7 247 167 § Section sign

A8 250 168 a General currency sign

A9 251 169 © Copyright sign

AA 252 170 i Feminine ordinal indicator

AB 253 171 « Angle quotation mark left

BO 260 176 0 Degree sign

B1 261 177 ± Plus/minus sign

B2 262 178 2 Superscript 2

B3 263 179 3 Superscript 3

B5 265 181 }l Micro sign

B6 266 182 «]I Paragraph sign, pilcrow

B7 267 183 Middle dot

B9 271 185 Superscript 1

BA 272 186 2 Masculine ordinal indicator

BB 273 187 » Angle quotation mark right

BC 274 188 1A Fraction one quarter

BD 275 189 1;2 Fraction one half

BF 277 191 i, Inverted question mark

Table C-2: ASCII Collating Sequence

ASCII Hex Octal Decimal

NUL 00 000 0

SOH 01 001 1

STX 02 002 2

ETX 03 003 3

EOT 04 004 4

ENQ 05 005 5

ACK 06 006 6

BEL 07 007 7

BS 08 010 8

HT 09 011 9

LF OA 012 10

VT OB 013 11

FF OC 014 12

CR OD 015 13

(continued on next page)

DIGITAL Multinational and ASCII Collating Sequences C-7

Table C-2 (Cont.): ASCII Collating Sequence

ASen Hex Octal Decimal

SO OE 016 14

SI OF 017 15

DLE 10 020 16

DC1 11 021 17

DC2 12 022 18

DC3 13 023 19

DC4 14 024 20

NAK 15 025 21

SYN 16 026 22

ETB 17 027 23

CAN 18 030 24

EM 19 031 25

SUB 1A 032 26

ESC 1B 033 27

FS 1C 034 28

GS 1D 035 29

RS IE 036 30

US IF 037 31

SP 20 040 32

21 041 33

" 22 042 34

:# 23 043 35

$ 24 044 36

% 25 045 37

& 26 046 38

27 047 39

28 050 40

29 051 41

* 2A 052 42

+ 2B 053 43

2C 054 44

2D 055 45

:#. 2E 056 46

/ 2F 057 47

0 30 060 48

1 31 061 49

2 32 062 50

3 33 063 51

4 34 064 52

(continued on next page)

C-8 DIGITAL Multinational and ASCII Collating Sequences

Table 0-2 (Cont.): ASCII Collating Sequence

ASCn Hex Octal Decimal

5 35 065 53

6 36 066 54

7 37 067 55

8 38 070 56

9 39 071 57

3A 072 58

3B 073 59

< 3C 074 60

= 3D 075 61

> 3E 076 62

? 3F 077 63
@ 40 100 64

A 41 101 65

B 42 102 66

C 43 103 67

D 44 104 68

E 45 105 69

F 46 106 70

G 47 107 71

H 48 110 72

I 49 111 73

J 4A 112 74

K 4B 113 75

L 4C 114 76

M 4D 115 77

N 4E 116 78

0 4F 117 79

P 50 120 80

Q 51 121 81

R 52 122 82

S 53 123 83

T 54 124 84

U 55 125 85

V 56 126 86

W 57 127 87

X 58 130 88

Y 59 131 89

Z 5A 132 90

[5B 133 91

(continued on next page)

DIGITAL Multinational and ASCII Collating Sequences C-9

Table C-2 (Cont.): ASCII Collating Sequence

ASCII Hex Octal Decimal

\ 5C 134 92
] 5D 135 93
1\ 5E 136 94

5F 137 95

60 140 96

a 61 141 97

b 62 142 98

c 63 143 99

d 64 144 100

e 65 145 101

f 66 146 102

g 67 147 103

h 68 150 104

i 69 151 105

j 6A 152 106

k 6B 153 107

6C 154 108

m 6D 155 109

n 6E 156 110

0 6F 157 111

P 70 160 112

q 71 161 113

r 72 162 114

8 73 163 115

t 74 164 116

u 75 165 117
v 76 166 118
w 77 167 119

x 78 170 120

y 79 171 121

z 7A 172 122

7B 173 123
I 7C 174 124

I 7D 175 125

7E 176 126

DEL 7F 177 127

C-10 DIGITAL Multinational and ASCII Collating Sequences

A
Address sort, 5-5

reasons for selecting, 2-20
Algorithms

merge, 5-2
polyphase merge, 5-2
replacement selection, 5-2

ASCII Collating Sequence, C-7
ASCII data type, 2-17

B
BASIC-PLU5-2 sample program

using both SORT and MERGE mixed-mode
interfaces, B-3

using the MERGE file interface, B-2
Batch processing, 1-8

using to maximize SORT/MERGE performance,
5-10

BINARY data type, 2-16,2-17
IBK switch, 2-23
Bucket size

default and maximum sizes, 5-9
IBUCKET_SIZE=n qualifier, 5-9
IBU switch, 5-9

c
Callable SORT/MERGE, 4-2, 5-8
Chaining (RSTS/E only), 2-25
CHARACTER data type, 2-16,2-17
ICHECK_SEQUENCE qualifier, 2-26
ICH switch, 2-26
COBOL-81 sample program

using the MERGE record interface, B-7
using the SORT record interface, B-9

Collating sequence, 5-8
ASCII, 2-17
EBCDIC, 2-17
in a specification file, 3-11
MULTINATIONAL, 2-17
rules for defining, 3-12
rules for modifying, 3-14
user-defined, 3-11,3-15

ICOLLATING_SEQUENCE qualifier, 2-17
rules for using, 3-13

Command line
continuing to a second line, 1-8

Comment character (I)
restriction, 3-2

Continuation character, 1-8

Index

ICS switch, 2-17

D
Data types, 2-17,3-9

and determining size of key fields, 2-17
DCL, 2-15
default, 2-15
MCR, 2-16

DECIMAL data type, 2-16,2-17
IDE switch, 5-8
DIGITAL Multinational Collating Sequence, C-1

and sequence checking, 2-18
ordering procedures, 2-17

Dipthong
collating, 3-14

Double character
defining as single, 3-13

D_FLOATING data type
implicit size, 1-4

E
Equal key fields, 4-10
Error messages, A-1

codes, A-1t

F
Fibonacci number

defined, 5-3
Fields

identifying in a specification file, 3-4
File interface

summary of SORT subroutine calls, 4-18,4-19,
4-20

File-name extensions
default, 1-7

File organization
indexed-sequential, 2-22, 2-24
relative, 2-22, 2-24
sequential, 2-22,2-24

Files
See also Input file, Output file, and Work files
having different formats, 3-10
ODL, 4-3, 4-21, 4-22t
sorting multiple, 1-1

File size
default for input file, 2-23
default for output file, 2-25
determining, 2-23

Index-1

File size (Cont.)

maximum for input file, 2-23
IFI switch, 5-3
FOLD subqualifier, 3-12 to 3-13

and collating sequences, 3--14
IFORMAT qualifier, 2-23, 2-25
FORTRAN sample program

using the MERGE file interface, 8-12
using the SORT file interface, B-14

IFO switch, 2-23, 2-25
F _FLOATING data type

implicit size, 1-4

IGNORE subqualifier, 3--14
IINCLUDE qualifier, 3-9
IINDEXED_SEQUENTIAL qualifier, 2-22, 2-24
Index sort, 5-5

reasons for selecting, 2-21
Input file, 1-2, 5-1, 5-8

attributes, 2-22
liN switch, 2-22, 2-24

K
IKE switch, 1-4,2-14
Key field, 1-2

determining size of, 2-17
equal key fields, 2-19
maximum size according to data type, 2-16
mUltiple, 2-18
primary, 1-4
secondary, 1-4
specifying in MCR, 2-18

IKEY qualifier, 1-4,2-14
example, 1-4

Knuth, Donald, 5-3

L
Languages

supported by PDP-11 SORT/MERGE, 4-1
Ligature

collating, 3-14
ILOAD_FILL qualifier, 5-9
Logical unit number

See LUN
Longest record length

See LRL
ILO switch, 5-9
LRL

maximum by file organization, 2-22
LUN usage, 4-25

M
MCR

command line, 1-7
default values, 1-8
using MERGE with, 1-7
using SORT with, 1-7

Memory
minimum amount needed for sort operation, 4-6

MERGE command
format, 1-8

Index-2

MERGE command (Cont.)

using qualifiers, 1-7
using qualifiers in a specification file, 3-16
using switches, 1-7

MERGE MCR command line, 1-7
Merge process

initializing, 4-15
Merge subroutines, 4-13t

functions, 4-13
MODIFICATION subqualifier, 3--13,3--14
MRGCLB global symbol, 4-18
MRGCMP global symbol, 4-17
MRGENB subroutine

using with file interface, 4-14
MRGENC subroutine

using with file interface, 4-14
MRGEND subroutine

using with file interface, 4-14
using with mixed-mode interface, 4-15

MRGINB subroutine, 4-15
using with file interface, 4-14
using with record interface, 4-15

MRGINC subroutine, 4-15
using with file interface, 4-14
using with record interface, 4-15

MRGINI subroutine
required parameters, 4-15
using with file interface, 4-14
using with mixed-mode interface, 4-15
using with record interface, 4-15

MRGINP global symbol, 4-17
MRGMRG subroutine

using with file interface, 4-14
using with mixed-mode interface, 4-15

MRGRTB subroutine
using with record interface, 4-15

MRGRTC subroutine
using with record interface, 4-15

MRGRTN subroutine
using with record interface, 4-15

MRGSRB subroutine
using with file interface, 4-14

MRGSRC subroutine
using with file interface, 4-14

MRGWRN global symbol, 4-17

N
IND switch, 2-19,4-10
Node size, 5-2,5-5
INODUPLICATES qualifier, 2-19
Null character

specifying, 3--12
Null parameter, 4-3

options when not permitted by language, 4-13

o
ODL file, 4-21

location on RSTS/E, 4-22
location on RSX-11M and RSX-11M-PLUS, 4-22
sample, 4-22

IOMIT qualifier, 3--9
Output file, 1-2, 5-1

attributes, 2-24
empty, 2-24
how default size is determined, 5-8

Output file (Cont.)

how to change default size, 5-8
/OVERLAY qualifier, 2-24
IOV switch, 2-24

p
PACKED-DECIMAL data type, 2-17
Pad character

specifying, 3-16
Parameters

passing by descriptor, 4-1
passing by reference, 4-1 to 4-2

POSITION subqualifier, 1-4
example, 1-4
identifying, 1-4

IPROCESS qualifier, 2-21
IPR switch, 2-21
IPT switch, 2-27,5-7, 5-9

Q
Qualfiers

MERGE command, 2-8
SORT command, 2-2

Qualifiers

R

negative form, 1-3
syntax, 1-3
used in a specification file, 3-3

Record format
controlled, 2-23, 2-24,2-25
default for output file, 2-24
differing between input and output files, 2-24
fixed, 2-23, 2-24
RMS stream, 2-23,2-24
stream, 2-23,2-24
unknown, 2-23,2-24
variable, 2-23,2-24

Record interface
summary of SORT subroutine calls, 4-18, 4-19,

4-20
Record Management Services

See RMS
Record sori:

reasons for selecting, 2-20
IRELATIVE qualifier, 2-24
/RE switch, 2-24
RMS

files accepted by SORT/MERGE, 2-22
Routines

equal-key-field, 5-2
user-defined, 4-23

s
Sequence checking, 2-26
SEQUENCE subqualifier, 3-12
/SEQUENTIAL qualifier, 2-24
/SE switch, 2-24
Shareable file, 2-23
SIZE subqualifier, 1-4

example, 1-4

SORT command
format, 1-2
using qualifiers, 1-3
using qualifiers in a specification file, 3-16
using switches, 1-3

SORT MCR command line, 1-7
SORT/MERGE subroutines

See also Sort subroutines and Merge subroutines
location, 4-2

Sort operation
first initialization phase, 5-1
merge phase, 5-3
second initialization phase, 5-2
sort phase, 5-2

Sort processes, 2-19
and node size, 5-5
choosing, 5-9
defined, 2-20t
differences in speed, 5-9
initializing, 4-5
passing file names to, 4-5

Sort subroutines, 4-2, 4-41
accessing, 4-2
BASIC, 4-2
COBOL, 4-2
file interface, 4-2
functions, 4-4
mixed-mode interface, 4--2
names according to language, 4-2
parameters, 4-3
record interface, 4-2
using with file interface, 4--4
using with mixed-mode interface, 4-5
using with record interface, 4-5

Specification file
format, 3-16

SRTCLB global symbol, 4-10
SRTCMP global symbol, 4-10
SRTENB subroutine

using to end a sort operation, 4-13
using with file interface, 4-4
using with record interface, 4-5

SRTENC subroutine
using to end a sort operation, 4-13
using with file interface, 4-4
using with record interface, 4-5

SRTEND subroutine
using to end a sort operation, 4-13
using with file interface, 4-4
using with mixed-mode interface, 4-5
using with record interface, 4-5

SRTINB
required parameters, 4-5

SRTINB subroutine
using with file interface, 4-4
using with record interface, 4-5

SRTINC
required parameters, 4-5

SRTINC subroutine
using with file interface, 4-4
using with record interface, 4-5

SRTINI
required parameters, 4-5

SRTINI subroutine
using with file interface, 4-4
using with mixed-mode interface, 4-5
using with record interface, 4-5

Index-3

SRTRLB subroutine, 4-11
using with record interface, 4-5

SRTRLC subroutine, 4-11
using with record interface, 4-5

SRTRLS subroutine, 4-11
using with record interface, 4-5

SRTRTB subroutine, 4-11
using with record interface, 4-5

SRTRTC subroutine, 4-11
using with record interface, 4-5

SRTRTN subroutine, 4-11
using with record interface, 4-5

SRTSRB subroutine
using with file interface, 4-4
using with file or mixed-mode interfaces, 4-12

SRTSRC subroutine
using with file interface, 4-4
using with file or mixed-mode interfaces, 4-12

SRTSRT subroutine
using with file interface, 4-4
using with file or mixed-mode interfaces, 4-12
using with mixed-mode interface, 4-5

ISS switch, 5-3
ISTABLE qualifier, 2-19, 4-10
Statistics

defined, &-4
sample display, &-4

ISTATIST!CS qualifier, 5-3, 5-6
1ST switch, 2-19
Subqualifiers

syntax, 1-3
Subswitches

syntax, 1-3

Index-4

Switches

T

negative form, 1-3
syntax, 1-3

Tag sort, 5-5
reasons for selecting, 2-20

Task building, 4-3, 4-21
TIE_BREAK subqualifier, 3-12 to 3-13

and collating sequences, 3-14
/TREE_SPACE qualifier, 2-27, 5-7, 5-9

u
User-defined routines, 4-3

and task building, 4-23

w
Work area

data structure, 5-2
default size, 2-27, 5-9
I/O requirements, 2-27
minimum amount needed for merge operation,

4-16
optimizing, 2-27,5-9
tree, 5-2

Work files, 5-2, 5-3, 5-7
default sizes, 4-9
how default size is determined, 5-8
reassigning, 3-15

IWORK_FILES qualifier, 5-3, 5-8

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing
your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using a 1200- or 2400-baud
modem. If you need assistance using the Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Di rect Mai I Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internal l

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

USASSB Order Processing - WMOlE15
or
U.S. Area Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 01473

lFor internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments PDP-11 SORT/MERGE
User's Guide

AA-C167B-TC

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) 0
Completeness (enough information) 0
Clarity (easy to understand) 0
Organization (structure of subject matter) 0
Figures (useful) 0
Examples (useful) 0
Index (ability to find topic) 0
Page layout (easy to find information) 0

I would like to see morelless

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Nametritle

Company

Mailing Address

Good Fair Poor

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

Dept.

Date

Phone

- - - Do Not Tear - Fold Here and Tape -

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
CORPORATE USER PUBLICATIONS
PK03-1/D30
129 PARKER STREET
MAYNARD, MA 01754-9975

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

- - - Do Not Tear - Fold Here and Tape -

Reader's Comments PDP-11 SORT/MERGE
User's Guide

AA-CI67B-TC

Please use this postage-paid fonn to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Perfonnance Report (SPR) service, submit your
comments on an SPR fonn.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) 0
Completeness (enough infonnation) 0
Clarity (easy to understand) 0
Organization (structure of subject matter) 0
Figures (useful) 0
Examples (useful) 0
Index (ability to find topic) 0
Page layout (easy to find infonnation) 0

I would like to see morelless

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

NamelTitle

Company

Mailing Address

Good Fair Poor

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

Dept.

Date

Phone

- - - Do Not Tear - Fold Here and Tape -

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
CORPORATE USER PUBLICATIONS
PK03-1/D30
129 PARKER STREET
MAYNARD, MA 01754-9975

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

- - - Do Not Tear-Fold Here and Tape -

Printed in U.S.A.

