
BASIC-PLUS
Language Manual

Order No. AA-2623D-TC

(\

BASIC-PLUS
Language Manual

Order No. AA-2623D-TC

December 1981

This manual describes the BASIC-PLUS language and the use of this
language on the RSTS/E operating system.

OPERATING SYSTEM AND VERSION: RSTS/E V7.1

SOFTWARE VERSION: BASIC-PLUS V7.1

digital equipment corporation, maynard, massachusetts

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corpora
tion. Digital Equipment Corporation assumes no responsibility for any
errors that may appear in this document.

The software described in this document is furnished under a license, and
may be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip
ment that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1975, 1976, 1979, and 1981 Digital Equipment Corporation

The postage-paid READER'S COMMENTS form on the last page of this
document requests your critical evaluation to assist us in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC VT lAS
DECUS DECsystem-10 MASSBUS
DECnet DECSYSTEM 20 PDT
PDP DECwriter RSTS
UNIBUS DIBOL RSX
VAX EduSystem VMS

Commercial Engineering Publications typeset this manual using DIGITAL's
TMS-ll Text Management System.

Contents

Preface

Part I Developing BASIC-PLUS Programs

Chapter 1 Introduction to BASIC-PLUS

1.1
1.2

Programming in BASIC-PLUS
Commands and Statements . .

1.2.1 BASIC-PLUS Terminal Session.

1.2.1.1 Creating the Program.
1.2.1.2 Listing the Program ..
1.2.1.3 Running the Program.
1.2.1.4 Saving the Program. .
1.2.1.5 Retrieving and Changing the Program.
1.2.1.6 Saving the Modified Program

1.2.2 A Sample Program

Chapter 2 BASIC-PLUS and RSTS I E

2.1 Terms
2.2 The BASIC-PLUS Run-time System.
2.3 Types of RSTS IE Systems.
2.4 Using BASIC-PLUS on a BASIC-PLUS System.
2.5 Using BASIC-PLUS on Other RSTSIE Systems.

2.5.1 DCL Systems
2.5.2 Other Non-BASIC-PLUS Systems. . . .

Chapter 3 Overview of BASIC-PLUS Program Development

3.1 Source and Translated Programs ..
3.2 The Current Program.
3.3 Command and Statement Summary.

Chapter 4 Creating and Running a BASIC-PLUS Program

4.1 Creating a Program.

4.1.1 The NEW Command .
4.1.2 Entering the Program.

4.1.2.1
4.1.2.2
4.1.2.3
4.1.2.4

Correcting Typing Errors
Correcting Syntax Errors
Program Translation. . .
The TEMPnn.TMP File.

4.2 Calling an Existing Program - The OLD Command .
4.3 Displaying a Program - The LIST Command
4.4 Running a Program - The RUN Command

Page

.1-2

.1-3

.1-3

.1-3

.1-4

.1-4

.1-5

.1-5

.1-6

.1-7

.2-1

.2-2

.2-3

.2-3

.2-3

.2-4

.2-4

.3-1

.3-2

.3-2

.4-1

.4-1

.4-2

.4-2

.4-3

.4-3

.4-3

.4-4

.4-5

.4-6

4.5 Saving a Source Program - The SAVE Command4-7
4.6 Saving a Compiled Program - The COMPILE Command. . 4-8
4.7 Getting Information. 4-9

4.7.1 Listing Files in a Directory - The CATALOG Command. .4-9
4.7.2 Displaying a Program's Length in Memory-

The LENGTH Command 4-10
4.7.3 Displaying the Scale Factor - The SCALE Command 4-11

4.8 Changing Modes - EXTEND and NOEXTEND 4-12

Chapter 5 Modifying BASIC~PLUS Programs

5.1

5.2

5.3
5.4

Editing a BASIC-PLUS Program

5.1.1 Entering New Program Statements ..
5.1.2 Using the DELETE Key and CTRL/U.
5.1.3 The DELETE Command.

Changing a Program's Name or File Specification .

5.2.1 The RENAME Command
5.2.2 The NAME-AS Statement.

Replacing a Saved Program - The REPLACE Command.
Deleting a Saved Program. . . .

5.4.1
5.4.2

The UN SA VE Command
The KILL Statement

5.5 Merging Programs - The APPEND Command.

Chapter 6 Immediate Mode and Program Debugging

w

6.1

6.2

6.3

6.4
6.5

Immediate Mode

6.1.1 Immediate Mode Examples
6.1.2 Variable Assignments ...
6.1.3 Limitations of Immediate Mode

Background for Debugging - The Ready State .

6.2.1 Entering the Ready State
6.2.2 Program Status .
6.2.3 Possible Actions. . . .
6.2.4 Summary.......

Debugging in Immediate Mode

6.3.1 The STOP Statement .
6.3.2 The CONT Command .
6.3.3 The CCONT Command
6.3.4 The GOTO Statement.
6.3.5 Debugging Example Using STOP and CONT

Halting and Checking Execution - CTRL/C and PRINT LINE.
Controlling Terminal Output

6.5.1 Stopping Output with CTRL/O
6.5.2 Suspending and Resuming Output with CTRL/S and

CTRL/Q
6.5.3 Suspending and Resuming Output with the NO SCROLL

Key

.5-1

.5-1

.5-2

.5-2

.5-3

.5-3

.5-4

.5-6

.5-6

.5-6

.5-7

.5-8

.6-2

.6-2

.6-3

.6-3

.6-4

.6-5

.6-6

.6-7

.6-8

.6-8

.6-8

.6-9

.6-9

.6-9
6-10

6-12
6-13
6-13

6-13

6-14

6.6 Getting a Cross-Reference Listing - The BPCREF Program

6.6.1 Running BPCREF. . . .
6.6.2 Output Listing Contents.

6.6.3

6.6.2.1
6.6.2.2
6.6.2.3
6.6.2.4

6.6.2.5

Header Line.
Cross-Reference Table.
Statistical Data
Optional List of Suspect Line Numbers and
Variables
Global and Local Listings

Erro:r Messages

PART II Elementary Language Features

Cha.pter 7 Building a Program

7.1
7.2

7.3

Sample BASIC-PLUS Program
Parts of a Program . .

7.2.1 Line Numbers
7.2.2 Statements.....

Line and Statement Formats

7.3.1
7.3.2
7.3.3

Multi-Statement Lines
Multi-Line Statements
Spaces and Tabs. . . .

7.4 Remarks and Comments

7.5 EXTEND and NOEXTEND Modes

7.5.1
7.5.2

Changing Modes
EXTEND and NOEXTEND Program Formats .

7.5.2.1 Variable and Function Names.
7.5.2.2 Spaces and Tabs. .
7.5.2.3 Continuation Lines
7.5.2.4 Comments.

Chapter 8 Building Statements

8.1 BASIC-PLUS Character Set.
8.2 Keywords.....
8.3 Data

8.4

8.3.1

8.3.2

Constants.

8.3.1.1
8.3.1.2
8.3.1.3

Real Constants
Integer Constants
String Constants.

Variables

8.3.2.1
8.3.2.2
8.3.2.3
8.3.2.4

Naming Variables.
Real Variables. .
Integer Variables
String Va:riables .

Expressions.

8.4.1 Arithmetic Expressions

6--14

6--14
6--16

6--17
6--17
6--18

6--18
6--19

6--20

.7-1

.7-1

.7-1

.7-3

.7-4

.7-4

.7-5

.7-6

.7-6

.7-9

.7-9
7-10

7-11
7-11
7-12
7-12

.8--1

.8--1

.8--2

.8--3

.8--3

.8-4

.8--4

.8-5

.8--6

.8--6

.8-6

.8--7

.8--7

.8--8

v

8.4.2 String Expressions
8.4.3 Relational Expressions

8.4.3.1 Numeric Relational Expressions.
8.4.3.2 String Relational Expressions

8.4.4 Logical Expressions.
8.4.5 How Expressions Are Evaluated.

Chapter 9 Elementary Statements and Features

PART III

9.1 LET Statement
9.2 Introduction to Programmed Input and Output

9.2.1 PRINT Statement.

9.2.2
9.2.3
9.2.4

9.2.1.1 Printing Numbers and Character Strings
9.2.1.2 Formatting the Output

INPUT Statement.
READ and DATA Statements. .
RESTORE Statement

9.3 Unconditional Branch, GOTO Statement
9.4 Conditional Branch, IF-THEN and IF-GOTO Statements
9.5 Program Loops

9.5.1 FOR and NEXT Statements. .
9.5.2 WHILE and NEXT Statements
9.5.3 UNTIL and NEXT Statements.

9.6 Subscripted Variables and the DIM Statement.
9.7 Mathematical Functions

9.7.1
9.7.2
9.7.3
9.7.4

Sign Function, SGN(X)
Integer Function, INT(X)
Random Number Function, RND
RANDOMIZE Statement

9.8 User-Defined Functions ..
9.9 Subroutines.........

9.9.1 GOSUB Statement .
9.9.2 RETURN Statement.
9.9.3 Nesting Subroutines.

9.10 END Statement.
9.11 STOP Statement

Advanced Language Features

Chapter 10 Strings and String Functions

vi

10.1 Strings

10.1.1 String Constants
10.1.2 String Variables.
10.1.3 Subscripted String Variables
10.1.4 String Size
10.1.5 RelationalOperators

8-10
8-10

8-11
8-12

8-14
8-16

.9-2

.9-3

.9-3

.9-4

.9-5

.9-7

.9-9
9-12

9-13
9-13
9-15

9-17
9-22
9-23

9-24
9-27

9-27
9-28
9-29
9-30

9-31
9-35

9-36
9-36
9-36

9-37
9-38

10-1

10-1
10-1
10-2
10-3
10-3

10.2 ASCn String Conversions, CHANGE Statement.
10.3 String Input.

10.3.1 READ and DATA Statements.
10.3.2 INPUT Statement. . . .
10.3.3 INPUT LINE Statement.

10.4 String Output.
10.5 String Functions

10.5.1 CVT$$ Function.
10.5.2 XLATE Function

10.6 User-Defined String Functions
10.7 String Arithmetic

10.7.1 String Arithmetic Precision.
10.7.2 Combining String Arithmetic Functions.

Chapter 11 Integer and Floating-Point Operations

11.1 Introduction to Integers
11.2 Internal Integer Format
11.3 Integer Constants and Variables.
1L4 Integer Arithmetic
11.5 Integer 1/0
11.6 User-Defined Integer Functions.
11.7 Logical Operations on Integer Data

11.7.1 The Logical Values -1% and 0%.

11.7.1.1 Relational Expressions.
11.7.1.2 Logical Expressions ..

11.7.2 Other Logical Values
11.7.3 How BASIC-PLUS Performs Logical Operations.
11.7.4 Programming Applications

11.7.4.1 Bit Tests
11.7.4.2 Setting or Clearing Bits.
11.7.4.3 Bit Masks.

11.8 Floating-Point Arithmetic.
11.9 Mixed-Mode Arithmetic.
11.10 Scaled Arithmetic

11.10.1 The Scale Factor .
11.10.2 The SCALE Command

Chapter 12 Matrix Manipulation

12.1 Array Storage ...
12.2 MAT READ Statement .
12.3 MAT PRINT Statement.
12.4 MAT INPUT Statement.
12.5 Matrix Initialization Statements.
12.6 Matrix Calculations. . . .

12.tU Matrix Operations.
12.6.2 Matrix Functions ,

10-3
10-6

10-6
10-7
10-7

10-9
10-9

.10-12

.10-17

.10-18

.10-19

.10-21

.10-24

11-1
11-2
11-4
11-4
11-5
11-5
11-6

11-6

11-6
11-7

11-8
11-8

.11-11

.11-11

.11-11

.11-12

.11-13

.11-14

.11-15

.11-15

.11-17

12-1
12-2
12-2
12-4
12-6
12-7

12-7
12-8

vii

Chapter 13 Advanced Statements and Features

13.1 DEF* Statement, Multiple-Line Function Definitions
13.2 ON-GOTO Statement. . . .
13.3 ON-GOSUB Statement
13.4 IF-THEN-ELSE Statement
13.5 Conditional Termination of FOR Loops
13.6 Statement Modifiers

13.6.1 IF Statement Modifier
13.6.2 UNLESS Statement Modifier
13.6.3 FOR Statement Modifier . .
13.6.4 WHILE Statement Modifier.
13.6.5 UNTIL Statement Modifier .
13.6.6 Multiple Statement Modifiers

13.7 Error Handling

13.7.1 ON ERROR GOTO Statement.
13.7.2 RESUME Statement
13.7.3 Disabling the Error Handling Subroutine
13.7.4 The ERL Variable ...

13.8 System Functions.
13.9 SLEEP and WAIT Statements.
13.10 CHAIN Statement

PART IV Data Handling

Chapter 14 Overview of Data Handling

viii

14.1
14.2

14.3

14.4
14.5

14.6

Files and Devices
Accessing a File or Device from a Program

14.2.1 Opening the File
14.2.2 Reading and Writing Data.
14.2.3 Closing the File

BASIC-PLUS File Organizations

14.3.1 Formatted ASCII Files
14.3.2 Virtual Array Files
14.3.3 Block I/O Files.

Choosing an I/O Method .
OPEN Statement

14.5.1 Forms of the OPEN Statement
14.5.2 File-Structured and Non-File-Structured Devices.
14.5.3 OPEN Statement Options. . . .

14.5.3.1 RECORDSIZE Option .
14.5.3.2 CLUSTERSIZE Option.
14.5.3.3 FILE SIZE Option .
14.5.3.4 MODE Option.

CLOSE Statement.

14.6.1 CLOSE.
14.6.2 CLOSE with a Negative Channel Number.

13-1
13-4
13-4
13-5
13-7

.13-10

.13-10

.13-11

.13-11

.13-12

.13-13

.13-14

.13-14

.13-15

.13-15

.13-16

.13-17

.13-18

.13-20

.13-22

14-2
14-2

14-2
14-3
14-3

14-4

14-4
14-4
14-5

14-5
14-6

14-7
.14-10
.14-10

.14-10

.14-12

.14-14

.14-14

.14-15

.14-15

.14-15

14.7 NAME-AS Statement (File Protection and Renaming) .
14.8 KILL Statement.

Chapter 15 Formatted ASCII Input and Output

15.1 PRINT Statement.

.14-16

.14-17

15-1

15.1.1 Printing Data to a File or Device (Formatted ASCII Output). 15-3
15.1.2 PRINT-USING Statement. . 15-4

15.1.2.1 Exclamation Point.
15.1.2.2 String Field. .
15.1.2.3 Numeric Field. . .
15.1.2.4 Asterisks
15.1.2.5 Exponential Format.
15.1.2.6 Trailing Minus Sign.
15.1.2.7 Dollar Signs
15.1.2.8 Commas
15.1.2.9 Insufficient Format
15.1.2.10 Format Too Large.
15.1.2.11 Formatting and Literal Characters.

15.1.3 MAT PRINT Statement.
15.1.4 PRINT Functions

15.2 INPUT Statement.

15.2.1 Reading Data from a File or Device .
15.2.2 Opening Your Terminal as an I/O Channel
15.2.3 INPUT LINE Statement.
15.2.4 MAT INPUT Statement.

15.3 Formatted ASCII Examples .

Chapter 16 Virtual Arrays

16.1 Virtual Array DIM Statement.
16.2 Virtual Array String Storage
16.3 Opening and Closing a Virtual Array File.

16.3.1 Preextending a Virtual Array ..
16.3.2 Closing a Virtual Array File. . .

16.4 Virtual Array Programming Conventions

16.5

16.4.1 Virtual Array Storage
16.4.2 Translation of Array Subscripts into File Addresses
16.4.3 Access to Data in Virtual Arrays
16.4.4 Allocating Disk Storage to Virtual Array Files.
16.4.5 Simultaneous Access of a Virtual Array .

Programming Examples.

Chapter 17 Block 1/0

17.1 Opening a Block 110 File.

17.1.1 STATUS Variable.
17.1.2 BUFSIZ Function.

15-4
15-5
15-5
15-6
15-6
15-6
15-7
15-7
15-7
15-8
15-8

15-9
.15-10

.15-11

.15-13

.15-15

.15-15

.15-16

.15-17

16-2
16-2
16-3

16-4
16-5

16-5

16-5
16-6

.16-10

.16-11

.16-12

.16-12

17-3

17-3
17-3

17.2 Closing a Block I I 0 File
17.3 Reading and Writing Data - The GET and PUT Statements.

17.3.1 BLOCK Option.
17.3.2 RECORD Option
17.3.3 COUNT Option.
17.3.4 USING Option .
17.3.5 RECOUNT Variable.
17.3.6 Extending Disk Files
17.3.7 Alternate Buffer I/O

17.4 Accessing the 1/0 Buffer ..

17.4.1 FIELD Statement ..
17.4.2 The LSET and RSET Statements
17.4.3 Differences between the LET Statement and the

LSET IRSET Statements.

17,5 Converting Numeric Data - CVT Functions and SWAP%

17.5.1 CVT Conversion Functions
17.5.2 SWAP% Function.

17.6 Block I I 0 Examples.
17.7 UNLOCK Statement

Appendix A Language Summary

A.l
A.2
A.3
A.4

A.5

Summary of Variable Types.
Summary of Operators . . .
Summary of Functions and Variables
Summary of Statements. . .

AA.l Statements
A.4.2 Statement Modifiers.

Reserved Keywords .

Appendix B Command Summary

Appendix C Error Messages

C.l Interpretation of Error Messages
C.2 The "?Program Lost-Sorry" Error

C.3

C.2.1
C.2.2
C.2.3
C.2.4

Checksum Error on a .BAC File.
Unrecoverable Disk Error Reading a .BAC File
Incorrect .BAC File Size. . . .
Unmatched Version Numbers.

Reporting Software Problems

Appendix D Character Set

Appendix IE Hints for BASIC-PlUS/BASIC-PlUS-2 Compatibility

x

17-4
17-5

17-6
17-7
17-7
17-8
17-9
17-9

.17-10

.17-11

.17-12

.17-14

.17-15

.17-16

.17-16

.17-17

.17-18

.17-21

.A-l

.A-2

.A-2

.A-7

.A-8
. A-lO

. A-20

· .C-l
· C-14

· C-15
· C-15
· C-16
· C-16

· C-16

Appendix F Programming Hints

Glossary

Index

Figures

F.1 Optimizing BASIC-PLUS Programs.

F.1.1 Optimizing Statement Formats
F.1.2 Using Variables Efficiently .
F.1.3 Using Constants Efficiently ..
F.1.4 Statement Modifiers
F.1.5 Optimizing Statement Structure.

F.2 Decreasing Disk Access Time ..
F.3 Manipulating Strings Efficiently
F.4 Converting Numeric Data
F.5 Accessing Algorithm for Virtual Arrays.

6-1
7-1
7-2
7-3
9-1
9-2
11-1
F-1
F-2
F-3
F-4

Sample Cross-Reference Listing.
Sample BASIC-PLUS Program
NOEXTEND Format
EXTEND Format. .
Nesting Techniques .
Array Structure. . .
Internal Integer Format.
CVT Conversion of Integer Data.
CVT Conversion of Two-Word Floating-Point Data.
CVT Conversion of Four-Word Floating-Point Data
Virtual Array Accessing Algorithm

.F-1

.F-1

.F-2

.F-3

.F-4

.F-4

.F-5

.F-6

.F-6

.F-9

6-17
.7-2
7-10
7-10
9-20
9-25
11-2
.F-7
.F-8
.F-8

. F-10

xi

Tables

xii

3-1
3-2
3-3
6-1
6-2
6-3
6--4
8--1
8--2
8--3
8--4
8--5
8--6
8--7
9-1
10-1
10-2
10-3
11-1
13-1
13-2
14-1
14-2
14-3
16-1
17-1
17-2
17-3
A-1
B-1
B-2
C-1
C-2
C-3
C-4
C-5
D-1
D-2

BASIC-PLUS Commands
BASIC-PLUS Statements
Control Characters and Terminal Keys
Program Status in the Ready State
BPCREF Command Formats
BPCREF Command Switches
BPOREF Error Messages .
BASIC-PLUS Data Types. .
Arithmetic Operators
Numeric Relational Operators.
String Relational Operators. .
Logical Operators.
Truth Values for Logical Operations.
Operator Precedence . .
Mathematical Functions.
String Functions
Optional String Arithmetic Functions .
Precision Values in PROD$, QUO$, and PLACE$ Functions.
Truth Values for Logical Operations.
System Functions. . . .
TIME$ String Examples. .
OPEN Statement Errors ..
Default Device Buffer Sizes
Use of RECORD SIZE .
Virtual Array Storage .. .
STATUS Variable
Device Record Characteristics .
CVT Conversion Functions
Reserved Keywords
BASIC-PLUS Commands ...
Control Characters and Terminal Keys
Severity Standard in Error Messages .
Special Abbreviations for Error Descriptions.
N ontrappable Errors in Recoverable Class.
User-Recoverable Error Messages.
Nonrecoverable Error Messages .
Special Symbols and Keys.
ASCII Character Codes

.3-2

.3-3

.3-4

.6-8
6-15
6-16
6-21
.8--3
.8--9
8--11
8--12
8--15
8--15
8--16
9-28
10-9

.10-20

.10-24
· 11-9
.13-18
.13-20
· 14-9
.14-11
.14-11

16-6
· 17-4
· 17-6
.17-16
· A-20

.B-1

.B-5

.C-2

.C-2

.C-3

.C-4
· C-10

.D-1
· .D-3

Preface

This manual describes the BASIC-PLUS programming language as imple
mented for the RSTS/E operating system.

BASIC-PLUS is an easy language for beginning programmers to learn. It
also provides many advanced features for experienced programmers. This
manual is intended for all BASIC-PLUS programmers but is organized to
help the beginner.

Manual Structure

This manual has four parts, each containing several chapters. The manual
also has six appendixes.

Part I (Chapters 1 through 6) introduces BASIC-PLUS, explains the rela
tionship between BASIC-PLUS and the RSTS/E operating system, and
describes the commands and features used to write, run, modify, and debug
programs.

Part II (Chapters 7 through 9) describes elementary BASIC-PLUS fea
tures. It describes EXTEND and NOEXTEND program formats and
BASIC-PLUS data types and expressions. It also introduces BASIC-PLUS
statements such as LET, GOTO, INPUT and PRINT, and features such as
mathematical functions and subroutines. You can solve many program
ming problems using the statements and features described in Part II.

Part III (Chapters 10 through 13) describes the advanced features of
BASIC-PLUS, including string functions, statement modifiers, error
handling, and matrix manipulation statements.

Part IV (Chapters 14 through 17) describes BASIC-PLUS data handling:
formatted ASCII, virtual array, and block 1/0 files.

The appendixes:

• Review the BASIC-PLUS language in summary form

• List error messages that BASIC-PLUS users can encounter

• List hints for writing BASIC-PLUS programs that are compatible with
BASIC-PLUS-2

• Provide programming hints for the advanced user

Related Documents

The RSTS IE Primer and the Introduction to BASIC introduce the RSTS/E
operating system and the BASIC-PLUS programming language.

The RSTSIE System User's Guide describes how to use RSTS/E system
programs and how to work with files and devices.

xiii

The RSTS I E Programming Manual describes advanced BASIC-PLUS pro
gramming techniques, including the use of SYS system function calls and
device-dependent features.

See the RSTS IE Documentation Directory for more information on RSTS IE
manuals.

Conventions

xiv

This manual uses the following conventions:

Color Red print shows what you type in examples.

UPPERCASE In statement descriptions, items in capital letters (LET,
IF, and THEN, for example) must be typed exactly as
shown. They are BASIC-PLUS keywords.

< > Angle brackets enclose essential elements of the state
ment or command being described. For example, you
must specify a variable and an expression in the LET
statement:

[LET] <variable> = <expression>

{ } Braces indicate a required choice of one element among
two or more possibilities. For example:

THEN <statement>
IF <condition> THEN <line number>

GO TO <line number>

[] Square brackets indicate an optional statement element
or a choice of one element among two or more optional
elements. For example:

IF <condition>
THEN <statement>
THEN <line number>
GOTO <line number>

[ELSE <statement>]
ELSE <line number>

CTRL /x This symbol indicates a control key combination, such
as CTRL/U or CTRL/O. To enter a control key combi
nation, hold the CTRL key down while you press the
indicated key.

The circumflex is a control character's echo. For exam
ple, when you enter CTRL/U, the system displays "AU"
on the terminal. The circumflex also means exponentia
tion, the mathematical operation that raises a number
to a power.

~ This symbol represents the cursor, the blinking white
line or rectangle that marks the current position on
your terminal screen.

(ill This symbol represents the LINE FEED key on your
terminal.

(BIT) This symbol represents the RETURN key on your
terminal.

Most examples in this manual do not show the RETURN key symbol. It
appears in the introductory examples to help you get started but does not
appear in the rest of the manual. If you try examples at your terminal,
always press the RETURN key when you finish typing a command,
immediate mode statement, or line in a program unless the example indi
cates otherwise.

The programming examples in this manual shows programs as they appear
when you finish entering them at the terminal, or when you display them
on your screen with the LISTNH command. (LISTNH displays the program
currently in memory.) In addition, most examples contain EXTEND mode
features, such as the ampersand/RETURN key combination for line contin
uation. If you get error messages when you try the examples, your system
probably uses NOEXTEND as the default mode. To correct the problem,
enter the EXTEND command or enter an EXTEND statement at the begin
ning of the program. Both put BASIC-PLUS in EXTEND mode.

This manual uses the following terms:

BASIC-PLUS Means the BASIC-PLUS language, the BASIC-PLUS
run-time system (the system software that accepts and
executes BASIC-PLUS programs), or both, depending on
the usage.

System Means the RSTS/E operating system.

Print and Type BASIC-PLUS prints on the terminal; you type at the
keyboard.

Statement A single BASIC-PLUS language instruction identified
by one or more BASIC-PLUS language keywords.

Program A series of instructions written in BASIC-PLUS or
another programming language.

Command An instruction that causes BASIC-PLUS or a system
program to perform some operation immediately.
Commands are not part of a program and are not pre
ceded by a line number.

xu

n

u

PART I
Developing

BASIC-PLUS
Programs

Chapter 1
Introduction to BASIC-PLUS

BASIC-PLUS is a version of BASIC available on RSTS/E. (BASIC, which
stands for Beginner's All-purpose Symbolic Instruction Code, is a registered
trademark of Dartmouth College.)

BASIC-PLUS is both a programming environment and a programming
language. The programming environment is a set of commands for working
with programs; the programs themselves are composed of statements writ
ten in the BASIC-PLUS language.

The BASIC-PLUS programming environment is one of several command
environments available on RSTS IE. It is the main command environment
on many, but not all RSTS/E systems. You can recognize BASIC-PLUS by
its "Ready" prompt.

The BASIC-PLUS programming language has both standard features and
optional features. With standard features, you can solve a wide variety of
programming problems. Optional features, on the other hand, provide more
specialized capabilities. They let you:

• Do more precise calculations than you can with standard features

• Work with matrices using special statements that operate on an entire
matrix

• Print data in special formats

• Take advantage of built-in mathematical functions

This manual describes all BASIC-PLUS features and tells you which are
optional.

1-1

1.1 Programming in BASIC-PLUS

BASIC-PLUS is an interactive programming environment. After you enter
each line in your program, BASIC-PLUS checks to make sure its format
and syntax are correct. If they are correct, BASIC-PLUS translates the line
into code that the system can execute. If the format and syntax are not
correct, BASIC-PLUS prints an error message on your terminal and lets
you reenter the line correctly. Because BASIC-PLUS translates each line
as you enter it, you can run a program right after you finish entering it. If
the program does not work correctly, you can easily modify and rerun
it. The terminal session in this chapter shows interactive use of
BASIC-PLUS.

Immediate mode, another BASIC-PLUS feature, lets you execute state
ments without writing a complete program. When you enter statements
into a program, you use line numbers. To enter an immediate mode state
ment, omit the line number. BASIC-PLUS executes the statement after
you enter it instead of storing it in a program. Immediate mode operation is
especially useful in two areas: debugging programs and performing simple
calculations. For example, in immediate mode you can examine or
change variables in the current program or use BASIC-PLUS as a "desktop
calculator."

The following example shows how immediate mode works. To try the exam
ple, log in and then type the portions of the example in red. If you see the
"Ready" system prompt, you are in the BASIC-PLUS environment and
can proceed. If your system prompt is not "Ready," you must enter the
BASIC-PLUS environment.

If you are on a DCL system, type the following command to enter
BASIC-PLUS. You can recognize DCL by its "$" prompt.

$ ElASIC/ElPLUS(@)

If your system prompt is a different character, such as ">" or ".", type the
following command to enter BASIC-PLUS:

>RUN $SWITCH(@)
K e)' to 0 a r oj M 0 nit 0 r to SIAl i t c h to? El A 5 I C(@)

The system displays the Ready prompt. Now type:

PRINT 54+4G(@)

BASIC-PLUS adds these two numbers and displays the result:

100

If you want to try the terminal session in the next section, stay in
BASIC-PLUS. Otherwise, type RUN $SWITCH and press the RETURN

1-2 Introduction to BASIC-PLUS

" /

key twice to return to your system's main command environment or use the
BYE command to log out. (BYE is described in the RSTSIE System User's
Guide.)

1.2 Commands and Statements

BASIC- PLUS has both commands and statements. In general, you use
BASIC- PLUS commands to develop programs - that is, to create, modify,
and run them. BASIC-PLUS statements, on the other hand, make up the
BASIC-PLUS language. You use statements in programs to input data, do
computations, and print results. Part I of this manual explains how to work
with programs; Parts II, III, and IV describe the BASIC-PLUS program
ming language.

1.2.1 BASIC-PLUS Terminal Session

The following example introduces the BASIC-PLUS commands. It shows
you how to create, display, save, run, retrieve, change, and replace a simple
BASIC-PLUS program. Do not be concerned about what the statements in
the program mean; they will be explained later. Just follow the steps below.
Type the portions of the example shown in red.

The sample program computes the factorial of a number. (The factorial of a
number n is the product of all positive integers from 1 to n.) When run, the
program asks you for a number from 1 to 15 and prints its factorial.

This terminal session assumes that you are logged in. Although the exam
ple shows all commands and statements in uppercase, you can enter them
in either upper- or lowercase. Once again, if you see the Ready prompt on
your terminal, you can proceed. Otherwise, use the SWITCH program or
the BASIC IBPLUS command to enter BASIC-PLUS.

1.2.1.1 Creating the Program

To create a BASIC-PLUS program, you first use the NEW command to
name the program, and then you enter the program statements. The sam
ple program name is FACTOR. Press the RETURN key after each program
statement. The RETURN key ends the statement and moves the cursor to a
new line.

NEW@
NelAI file narrle -- FACTOR@

Ready

10 PRINT "Enter a nUMber betlAleen 1 and 1S"@
20 PRINT "and this pro~raM IAlill calculate its factorial."@
30 INPUT N@
40 LET F=1@
50 FOR }(= 1 TO N@
GO LET F=F*)-(@
70 NEXT X@
80 PR I NT "T h e fa c tor i a 1 0 f" ; N ; " is" ; F@
90 END@

Introduction to BASIC-PLUS 1-3

Use the DELETE key to correct typing mistakes as you enter the state
ments. You can use the DELETE key only before you press the RETURN
key; if you do not notice your mistake until after you press the RETURN
key, retype the line number and the corrected statement. BASIC- PLUS
replaces the incorrect line in your program with the new line.

Suppose, for example, that you forget the first quotation mark in line 10,
which is required for the statement to be correct. The system prints an
er,ror message followed by the Ready prompt. Reenter line 10 correctly
before typing other program statements.

10 PRINT Enter a nUIllber betlAleen 1 and 15"@
? SYntax error at line 10

10 PRINT "Enter a nUIllber betlAleen 1 and 15"@

1.2.1.2 Listing the Program

Although BASIC-PLUS checks for errors in the syntax or format of your
BASIC-PLUS statements as you type them, it does not detect other types of
errors. For example, BASIC-PLUS does not print an error message if you
misspell a word inside quotation marks or if you enter a statement that is
formatted correctly but does not produce the results you want when you run
the program.

Looking at your program is one way to check for correctness. Display the
program on your terminal by typing:

LIST@

If any statements contain typing mistakes, correct them. Retype the line
number and statement, and press the RETURN key. After making correc
tions, list the program again.

1.2.1.3 Running the Program

You are now ready to run the program. Type:

RUN@

The program prints a header line and prompts you for input with a ques
tion mark. Enter the value shown.

FACTOR 01:50 PM 03-Feb-81
Enter a number between 1 and 15
and this program will calculate its factorial.
? 9@
The factorial of 9 is 362880

Ready

1-4 Introduction to BASIC-PLUS

If you wish, run the program again and enter a different number. If you
enter a number larger than 9, the result will be greater than six digits.
BASIC-PLUS will print the result in exponential format, a mathematical
"shorthand" used for large numbers. For example:

RUNOOJ
FACTOR 01:51 PM 03-Feb-81
Enter a nUMber between 1 and 15
and this proYraM will calculate its factorial.
? 12001
The factorial of 12 is .479002E 9

Ready

1.2.1.4 Saving the Program

The sample program is currently in memory. The program will be deleted
from memory if you create a new program with NEW, retrieve an existing
BASIC-PLUS program with the OLD command, run another program, or
log out. Use the SA VE command to save the sample program in a disk file
in your user account. The program is saved with the name FACTOR. Type:

5 A l.,1 EOOJ

SAVE copies the program; it does not remove the program from memory.
Use the SAVE command to save a copy of a program after you create it.

1.2.1.5 Retrieving and Changing the Program

Now you are going to change the sample program. Before making any
changes, however, use the OLD command to retrieve a "clean" copy of the
program from disk and place it in memory. While not required, this step is
good programming practice because it clears your memory area. Clearing
memory ensures that your program takes up the smallest possible amount
of memory space. Type:

OLD FACTOROOJ

As mentioned previously, if you use the sample program to calculate the
factorial of a number greater than 9, it prints the result in exponential
format. You are going to change the PRINT statement in line 80 and add a
new line. These changes cause the program to print large numbers in a
more readable format. Type the following lines:

80 PRINT "The factorial of";N;"is ";001
85 PRINT NUM1$(F)00J

Introduction to BASIC-PLUS 1-5

After you type the new lines, use the LIST command to display the program
on your terminal and then run the program one or more times. For
example:

RUN@
FACTOR 02:03 PM 03-Feb-81
Enter a nUMber between 1 and 15
and this prograM will calculate its factorial.
? 12@
The factorial of 12 is 478002000

NOTE

BASIC- PLUS has two types of math packages: single
precision and double-precision. Depending on which math
package is installed on a system, BASIC-PLUS calculates
numbers to six or fifteen significant digits. The two math
packages are described later in this manual.

This example was run on a BASIC-PLUS system with the
single-precision math package. If your system has the
double-precision math package, it displays the following
value for the factorial of 12:

478001600

1.2.1.6 Saving the Modified Program

The version of FACTOR that is currently in memory contains the changes
you made, but the version of FACTOR that you saved on disk with the
SAVE command still contains the old program.

To replace the old version of FACTOR with the current version, type:

REPLACE@

Use the REPLACE command often during a BASIC-PLUS programming
session to save changes to a program as you make them. Certain
BASIC- PLUS commands and all system commands entered from the
BASIC- PLUS environment delete your current program from memory.
Thus, you can lose the latest version of your program if you do not use
REPLACE. (Later chapters explain which commands delete your current
program.)

If you want to keep the old version of FACTOR, you can save the new
version with a new name. For example:

SAI.IE FACT2

This SA VE command creates a new disk file in your account that contains
the modified F ACT2 program. From now on, always use the name F ACT2
to work with this version of the program.

1-6 Introduction to BASIC-PLUS

You are finished with this terminal session. Use the BYE command to log
out or the SWITCH program to return to your system's main command
environment.

1.2.2 A Sample Program

The terminal session introduced six BASIC-PLUS commands: NEW, LIST,
RUN, SAVE, OLD, and REPLACE. These and other commands are
described in detail in Chapters 4 and 5 of this manual. Now let's look at the
language itself, which is composed of statements.

The program used in the terminal session illustrates the syntax of the
BASIC-PLUS language and contains several types of statements. Here
again is the sample program:

10 PRINT "Enter a number between 1 and 15"
20 PRINT "and this pro'ram will calculate its factorial,"
30 INPUT N
1I0 LET F=l
50 FOR X=l TO N
60 LET F=F*X
70 NEXT >{
80 PRINT "The factorial of";N;"is ";
85 PRINT NUM1$(F)
90 END

This program contains PRINT, INPUT, LET, FOR, NEXT, and END
statements.

You must follow certain rules when you compose BASIC-PLUS statements;
these rules are called the syntax of the BASIC-PLUS language. Look at
line 10 of the sample program, which contains a PRINT statement. When
you run the program, this line causes the system to print the following text
on your terminal:

Enter a number between 1 and 15

In line 10, the word PRINT, the blank space after the word PRINT, and the
quotation marks around the text are all part of the syntax of BASIC-PLUS.
For example, one BASIC-PLUS syntax rule states that you must enclose
text to be printed in quotation marks. Parts II, III, and IV of this manual
describe the syntax rules of the BASIC-PLUS language in detail.

When you run the sample program, it:

• Prints information on the terminal to indicate the input it wants

• Accepts input

• Performs calculations on the input

• Prints the results, or output, on the terminal

Introduction to BASIC-PLUS 1-7

Each of these operations corresponds to a statement or group of statements
in the program:

• The PRINT statements in lines 10 and 20 print information that asks for
input.

• The INPUT statement in line 30 accepts data.

• Lines 40 through 70 contain statements that perform calculations on the
data. Line 40 is a LET statement, which assigns a value to a variable;
lines 50 through 70 are a group of statements called a FOR loop, used to
perform an operation repetitively.

• The PRINT statements in lines 80 and 85 print the results of these calcu
lations on the terminal.

These and other BASIC-PLUS statements are described in detail in Parts
II, III, and IV of this manual.

1-8 Introduction to BASIC-PLUS

Chapter 2
BASIC~PLUS and RSTS / E

2.1 Terms

This chapter explains the relationship betw-een the BASIC-PLUS com~
mand environment and the RSTS/E operating system. It also tells you how
to enter and leave the BASIC-PLUS environment on different types of
RSTS/E systems.

To understand how you, BASIC-PLUS, and RSTS/E work together, you
need to know these terms:

Job

The unit that RSTS/E uses to keep track of you (and other users)
during a terminal session. When you log in, the system creates a job for
you and assigns it a job number. The system uses your job number to
keep track of everything you do from the time you log in to the time you
log out.

Run-Time System

System software that manages part of the RSTS IE system. For exam
ple, the BASIC-PLUS run-time system manages the BASIC-PLUS
programming environment.

Keyboard Monitor

The part of a run-time system that you communicate with. When you
work in the BASIC-PLUS programming environment, for example, you
type commands to the BASIC-PLUS keyboard monitor. Each RS'l'S IE
keyboard monitor has an identifying "prompt" it displays when it
expects input from you. The BASIC-PLUS keyboard monitor's prompt
is "Ready."

2-1

Default Keyboard Monitor

The main keyboard monitor that you work in on a RSTS/E system. You
enter the default keyboard monitor after you log in. The system mana
ger chooses the default keyboard monitor for a particular system.

Job Keyboard Monitor

The keyboard monitor that manages ajob. Your job keyboard monitor is
the same as the default keyboard monitor unless you change it. Chang
ing your job keyboard monitor lets you work in a RSTS/E command
environment that differs from the main command environment on your
system.

You change your job keyboard monitor by using the SWITCH program.
After you change your job keyboard monitor, you stay in that keyboard
monitor until you log out or use SWITCH to change keyboard monitors
agaIn.

Del (DIGITAL Command language)

A set of commands available on many different DIGITAL systems. DCL
commands perform basic tasks like copying files, printing files, and
running programs. On RSTS/E, the DCL command environment is
managed the DCL run-time system. Like BASIC-PLUS, the DCL
run-time system has a keyboard monitor.

eel (Concise Command language)

A shorthand way to call a RSTS/E system program, a DIGITAL
supplied program such as EDT, or a user program and give it one line of
input on a single command line. The system manager chooses the CCL
commands for a particular RSTS/E system.

2.2 The BASIC-PLUS Runm Time System

BASIC-PLUS is one of several RSTS/E run-time systems. You communi
cate with the BASIC-PLUS run-time system through a keyboard monitor
that understands a set of commands. Many commands, such as NEW, OLD,
COMPILE, and SAVE, act only on BASIC-PLUS programs. One command,
RUN, can run both BASIC-PLUS programs and other types of programs:

iii RSTS I E system programs

@ DIGITAL-supplied programs such as the EDT editor

@ User programs written in languages such as BASIC-PLUS-2, COBOL,
and MACRO

Other keyboard monitor commands log you in and out (HELLO, BYE) and
let you work with devices (ASSIGN, DEASSIGN). Appendix B of this
manual summarizes all the BASIC-PLUS keyboard monitor commands.

Except for the summary in Appendix B, the rest of this manual discusses
only the BASIC-PLUS keyboard monitor commands used for program
development. Commands such as HELLO, BYE, ASSIGN, and DEASSIGN
are described in the RSTS I E System User's Guide.

2-2 BASIC-PLUS and RSTS/E

Besides keyboard monitor commands, you can use two other kinds of com
mands in the BASIC-PLUS environment: CCL commands, which your sys
tem manager defines, and DCL commands, available if your system has the
DCL run-time system. To enter a CCL command, type its name; to enter a
DCL command, type the letters "DCL", a space, and then the command
name. Although CCL and DCL commands use other run-time systems, they
return you to the BASIC-PLUS run-time system when they are finished.
(Refer to the RSTSIE System User's Guide for information on CCL com
mands and the RSTSIE DeL User's Guide for information on DCL
commands.)

Every run-time system has a name. The most common name for the
BASIC-PLUS run-time system is "BASIC." It is possible, however, for a
system manager to give the BASIC-PLUS run-time system a different
name. In addition, some RSTS/E systems have more than one
BASIC-PLUS run-time system. Each may have different optional features
and a different name. Check with your system manager for information
about BASIC-PLUS run-time systems on your system.

2.3 Types of RSTS / E Systems

Some RSTS/E systems have only the BASIC-PLUS run-time system;
others have several run-time systems installed. On systems with several
run-time systems, one run-time system is the default keyboard monitor;
this default is often, but not always, BASIC-PLUS. You can recognize the
BASIC-PLUS keyboard monitor by its "Ready" prompt on your terminal.
Other RSTS/E systems have run-time systems such as DCL or RSX for the
default keyboard monitor. You can recognize DCL by its "$" prompt and
RSX by its ">" prompt. It is important for you to know your default key
board monitor because it affects the way you work in the BASIC-PLUS
environment.

2.4 Using BASIC-PLUS on a BASIC-PLUS System

If your system has only BASIC-PLUS or if BASIC-PLUS is your system's
default keyboard monitor, you see the Ready prompt after you log in. You
can use BASIC-PLUS commands such as NEW, OLD, RUN, and SAVE to
work with BASIC-PLUS programs. You can also use CCL commands and
run other types of programs available on your system. You stay in the
BASIC-PLUS environment until you log out or until you use the SWITCH
program to change your job keyboard monitor.

2.5 Using BASIC-PLUS on Other RSTS / E Systems

On RSTS/E systems that have DCL or another run-time system for the
default keyboard monitor, you must enter the BASIC-PLUS environment
before you can use BASIC-PLUS commands. As on BASIC-PLUS systems,
you can use both BASIC-PLUS commands and CCL commands after you
enter BASIC-PLUS, and you stay in BASIC-PLUS until you log out or use
the SWITCH program. But how you enter BASIC-PLUS depends on what
type of RSTS IE system you work on.

BASIC-PLUS and RSTS IE 2-3

2.5.1 DCl Systems

On a DCL-based RSTS/E system, you can enter the BASIC-PLUS envi
ronment with the BASIC/BPLUS command or the SWITCH program.
Both methods make BASIC-PLUS your job keyboard monitor. Enter the
BASIC IBPLUS command in response to the "$" DCL prompt:

$ BAS I C / B PLUS@)

Ready

To run the SWITCH program, enter:

$ RUN $SWITCH@)
Key to 0 a r d M 0 nit 0 r to S 'A' i t c h to? BAS I C@)

Ready

You can start using BASIC-PLUS commands when you see the Ready
prompt. When you finish working in BASIC-PLUS, use the SWITCH pro
gram to return to the DCL environment or the BYE command to log out.

2.5.2 Other Non-BASIC-PlUS Systems

Some RSTS/E systems use RSX or other run-time systems for the default
keyboard monitor. On these systems you enter BASIC-PLUS by running
the SWITCH program.

The following example shows how to use SWITCH to enter the
BASIC-PLUS environment on an RSX-based RSTS/E system:

>RUN $SWITCH@)
Ke}'tooard Monitor to s'A.itch to? BASIC@)

Ready

You can start using BASIC-PLUS commands when you see the Ready
prompt. When you finish working in BASIC-PLUS, use the SWITCH pro
gram to return to the default keyboard monitor or use the BYE command to
log out.

2-4 BASIC-PLUS and RSTS/E

Chapter 3
Overview of BASIC-PLUS Program Development

This chapter introduces the BASIC-PLUS commands and other features
used to develop (write, run, edit, save, and debug) programs. It also defines
terms used often in the command descriptions in Chapters 4, 5, and 6.

You enter BASIC-PLUS commands at a terminal, in response to the Ready
prompt. Because commands are not part of a program, you do not use line
numbers. Commands cannot be abbreviated except where noted. When you
finish typing a command, press the RETURN key. If the command is cor
rect, the system executes it and displays the Ready prompt when it is fin
ished. If the command is incorrect, the system displays an error message
followed by the Ready prompt.

3.1 Source and Translated Programs

There are two types of BASIC-PLUS programs: source programs and trans
lated programs. Both source and translated programs can be stored on disk.
A source program:

• Is stored on disk in human-readable (ASCII) format

• Must be translated by BASIC-PLUS before it can be executed

• Is available to you for listing (displaying at the terminal) and for
changing (editing and debugging)

Source programs are stored with .BAS file types and are sometimes called
BAS programs. Most of the commands and operations described in Part I
work on source programs.

3-1

A translated program:

• Is not human-readable. Do not display it on your terminal or print it on
the line printer.

• Has already been translated by BASIC-PLUS and is stored in its trans
lated form, called intermediate code.

• Is available to you for running, but not for listing or changing.

Translated programs are stored with .BAC file types and are sometimes
called BAC programs.

3.2 The Current Program

The current program is the program that you are currently working with in
memory. You can be writing, editing, listing, running, or debugging it. This
"current program" can be a new program that you created during the pres
ent timesharing session or an existing ("old") program that you retrieved
from your disk storage area. It can be a source program or a translated
program.

When your current program is a source program, BASIC-PLUS always
keeps a translated copy of it available so you can run it. But when your
current program is a translated program, you can only run it.
BASIC-PLUS does not keep a source copy available for listing or changing.

Your area in memory can contain only one current program at a time.
Creating, retrieving, or running another program (a BASIC-PLUS pro
gram or other type of program) erases your current program from memory.

3.3 Command and Statement Summary

Table 3-1 summarizes the BASIC-PLUS commands and shows where in
this manual they are described. Tables 3-2 and 3-3 list BASIC-PLUS
statements and RSTS/E features that are helpful in developing programs.

Table 3-1: BASIC-PLUS Commands

Command Purpose

APPEND Merges the contents of a previously saved source program with
the current program. See page 5-8.

CATALOG or CAT Displays your file directory. See page 4-9.

CCONT Continues execution of the current program after a STOP; also
detaches your job from the terminal. CCONT is used in debugging
and requires privilege. See page 6--9.

COMPILE Saves a translated program in a disk file. See page 4-8.

CONT Continues execution of the current program after a STOP. CONT
is used in debugging. See page 6--9.

(continued on next page)

3-2 Overview of BASIC-PLUS Program Development

Table 3-1: BASIC-PLUS Commands (Cont.)

Command Purpose

DELETE Removes one or more lines from your current program. See page
5-2.

EXTEND Puts BASIC-PLUS in EXTEND mode; allows you to run pro-
grams with EXTEND mode features. See page 4--12.

LENGTH Displays the amount of memory used by the current program and
the maximum amount it can use. See page 4--10.

LIST Displays the current program on your terminal. See page 4--5.

NEW Clears memory and names a new program. See page 4--1.

NOEXTEND Puts BASIC-PLUS in NOEXTEND mode. You can no longer run
programs with EXTEND mode features. See page 4--12.

OLD Retrieves a saved source program from disk and places it in mem-
ory. See page 4-4.

RENAME Changes the name of the program currently in memory. See page
5-3.

REPLACE Copies the source program currently in memory into a disk file;
replaces any existing file with the same name. See page 5-6.

RUN Runs a program. See page 4--6.

SAVE Copies the source program currently in memory into a disk file.
SAVE does not replace an existing file with the same name. See
page 4--7.

SCALE Displays or sets the scale factor. See page 4--11.

UNSAVE Deletes a file from a directory. See page 5-6.

Table 3-2: BASIC-PLUS Statements

Statement

GOTO

KILL

NAME-AS

PRINT

PRINT LINE

STOP

Purpose

Used in immediate mode to continue program execution at a speci
fied line after a STOP. Immediate mode GOTO statements are
useful in debugging. See page 6-9.

Deletes a file from a directory. See page 5-7.

Changes a file name, file type, or protection code. See page 5-4.

Displays values of program variables that you specify. Use
immediate mode PRINT statements in debugging to display cur
rent variable values after a STOP. See page 6-11.

Displays the BASIC-PLUS variable LINE. When you halt a pro
gram with CTRL/C, LINE contains the line number where the
halt occurred. See page 6-12.

Halts a program's execution at a specified line. STOP is used
mainly in debugging. See page 6-8.

Overview of BASIC-PLUS Program Development 3-3

Table 3-3: Control Characters and Terminal Keys

Key Purpose

CTRL/C Halts execution of the current program. See page 6-12.

CTRL/O Stops and restarts terminal output while a program is running.
CTRL/O can be useful in debugging. See page 6-13.

CTRL/S Suspends terminal output while a program is running. CTRL/S
can be useful in debugging. See page 6-13. /

CTRL I Q Resumes terminal output suspended by CTRL I S while a program
is running. CTRL/Q can be useful in debugging. See page 6-13.

CTRL/U Deletes the current terminal line. CTRL/U is useful in program
editing. See page 5-2.

DELETE key Erases the last character typed. The DELETE key is useful in
program editing. See page 5-2.

RUBOUT key Appears on some terminal keyboards instead of the DELETE key.
Like the DELETE key, the RUBOUT key erases the last character
typed and is useful in program editing. See page 5-2.

3-4 Overview of BASIC-PLUS Program Development

Chapter 4
Creating and Running a BASIC-PLUS Program

This chapter describes the BASIC-PLUS commands that create, retrieve,
display, run, and save programs: NEW, OLD, LIST, RUN, SAVE, and
COMPILE. In addition, it describes commands for getting information
about programs (CATALOG, LENGTH, SCALE) and commands used to
change modes (EXTEND, NOEXTEND).

The commands in this chapter are grouped by function; they are not neces
sarily in the order that you would use them when developing a
BASIC-PLUS program. If you are a new BASIC-PLUS user, review the
sample terminal session in Chapter 1 of this manual before reading this
chapter. The terminal session shows you the steps to follow in developing a
simple BASIC-PLUS program.

4.1 Creating a Program

To create a new BASIC-PLUS program, use the NEW command and then
enter the program statements into the system.

4.1.1 The NEW Command

The NEW command clears memory and names a new program. NEW
deletes any program currently in memory. The command format is:

NEW [filename]

4-1

If you do not specify a file name, NEW prompts you for one. If you press the
RETURN key in response to the prompt, NEW names the program
NONAME. The following examples show different ways to enter the NEW
command:

NEW(fiill
NelAI File nalTle- -CASH01(fiill

NEW CASH01(fiill

NEW(fiill
NelAI File narTle- -ID

4.1.2 Entering the Program

NEW creates a program named CASHOl.

NEW creates a program named CASHOl.

NEW creates a program named NONAME.

After you create a program in memory with the NEW command, you enter
the BASIC-PLUS program statements. To enter a BASIC-PLUS state
ment, type a line number, a space or tab, and the statement. Then press the
RETURN key. Follow these steps for each program statement. For
example:

10 PRINT 16"(fiill
20 X=2*3(fiill
30 PRINT x(fiill ,
lI0 ENO(fiill

4.1.2.1 Correcting Typing Errors

If you make a typing mistake, correct it with the DELETE key (RUBOUT
on some terminals) or CTRL/U. The DELETE key erases individual char
acters. On video terminals, the deleted characters disappear; on hardcopy
terminals, the deleted characters are printed between backslashes. Retype
the correct characters on the same line. (Because a hardcopy terminal
prints deleted characters between backslashes, a line with deletions can
become difficult to read. You can reprint the line by pressing CTRL/R.
Hold the CTRL key down and press the R key.)

CTRL/U deletes the current line on your terminal. To enter a CTRL/U,
hold the CTRL key down and press the U key. Unlike the DELETE key,
CTRL I U does not erase characters from the screen. Instead, the system
displays ""U" and moves the cursor to the next line. You can then retype
the line.

You can use DELETE or CTRL/U only before you press the RETURN key.
If you notice a typing mistake after you press the RETURN key, retype the
line number followed by the correct statement.

See the following chapters or manuals for more information:

BASIC-PLUS editing features Chapter 5
Using a terminal RSTSIE System User's Guide

4-2 Creating and Running a BASIC-PLUS Program

4.1.2.2 Correcting Syntax Errors

BASIC-PLUS checks each statement you enter for syntax errors after you
press the RETURN key. If the statement is correct, the cursor waits on the
next line for your input. If the statement has one or more syntax errors,
BASIC-PLUS prints an error message below the incorrect statement,
followed by the Ready prompt. To correct a syntax error, retype the line
number followed by the corrected statement. For example:

10 PRINT "THIS IS A TEST"
20 PRINT THIS IS A TEST
? SYntax error at line 20

20 PRINT "THIS IS A TEST"

4.1.2.3 Program Translation

Each time you enter a correct line of source code, BASIC-PLUS translates
the line into code that the system can execute. BASIC-PLUS keeps this
translated code in your current program's memory area.

Because BASIC-PLUS translates each line of your program as you enter it,
you can run your program as soon as you finish entering it. See the RUN
command for more information.

4.1.2.4 The TEMPnn.TMP File

When you create a program with the NEW command, the system creates
the file TEMPnn.TMP in your account on the public structure; nn is your
job number. TEMPnn.TMP contains the text of your source program and
any changes you make to that text. Do not work with the TEMPnn.TMP
file or type it on your terminal. The system uses TEMPnn.TMP as a
"scratch file" and deletes it when you log out. It is noted here because it
uses disk space in your area and appears in a directory listing of your files
during a BASIC-PLUS session.

NOTE

Besides using NEW and entering a program in
BASIC-PLUS, you can also create (and edit) a BASIC-PLUS
source program with a text editor such as EDT. Assign a
.BAS file type when you name the file. This method is not as
interactive as using the BASIC-PLUS editing features; for
example, you may not discover syntax errors in your program
until you retrieve it with the OLD command or run it with
the RUN command. However, you can take advantage of text
editing features not available in BASIC-PLUS.

Creating and Running a BASIC-PLUS Program 4-3

4.2 Calling an Existing Program - The OLD Command

The OLD command retrieves a previously saved BASIC-PLUS source
program and places it in memory. OLD deletes the program currently in
memory.

As OLD retrieves each line of the saved source program, it:

• Translates the source code into executable code

• Places the translated code in your current program's memory area

Besides translating the source program so you can run it (or save it on disk
with the COMPILE command), the OLD command also makes the source
program available to you for listing or changing. You must retrieve a saved
source program with OLD before you can list or edit the program.

OLD has the format:

OLD [filespec]

where filespec is a complete RSTS IE file specification of the form:

dev:[acct]filename.typ / switch(es)

Except for the file name, all parts of the file specification are optional. If
you type OLD and press the RETURN key, you are prompted to enter a file
name:

OLD(@)
OLD file nafrle--

Press the RETURN key to retrieve NONAME.BAS; otherwise, enter all or
part of a file specification. The OLD command default is a .BAS file in your
account on the public structure. You receive an error message if the file
does not exist or is protected against you.

The following examples show how OLD works:

OLD TA){ES

OLD TA){ES. TTL

Retrieves the file T AXES.BAS from your account
on the public structure. (You must specify the file
type if it is not .BAS.)

Retrieves TAXES.TTL from your account on the
public structure. When you specify a file type other
than .BAS, be sure it is a BASIC-PLUS source
program.

OLD DM1: [200 ,233JTA){ES Retrieves TAXES.BAS from [200,233] on DM1:.

4-4 Creating and Running a BASIC-PLUS Program

Usage Notes

1. Make sure that any file you specify in the OLD command is a
BASIC-PLUS source program. If you specify a different kind of file,
BASIC-PLUS prints numerous error messages on your terminal; use
CTRL/C to abort the OLD command.

2. The system creates a TEMPnn.TMP file in your area when you retrieve
a saved source program with the OLD command. The file contains the
text of the source program you just retrieved. See the NEW command
for information about this file.

4.3 Displaying a Program - The LIST Command

After you enter a new program, retrieve an existing program, or edit a
program, display it on your terminal with the LIST command to make sure
all statements are correct. You can display the entire program or one or
more lines; you can display the program with or without header informa
tion. When you ask for header information, LIST displays the program
name and the current date and time. You can use LIST to display only the
program currently in memory.

The LIST command has the format:

LIST[NH] [line numbers]

NH means no header. The following examples show how the LIST
command works:

LIST

LISTNH

LIST 100

LIST 100 - 200

Displays the entire program including header
information.

Displays the entire program without header information.

Displays line 100 with header information.

Displays lines 100 through 200 with header information.

LISTNH 25,34,80-85 Displays lines 25, 34, and 60 through 85 without header
information.

You need not specify lines in sequential order; lines are displayed in the
order you request.

LIST prints a ? at the left of a program line that contains a syntax error.
For example:

LISTNH
10 LET A=25
15 LET 5=38
?20 PPRINT A+5

Ready

Creating and Running a BASIC-PLUS Program 4-5

Note that LIST sends output to your terminal only. Use the QUE program,
the DCL PRINT command, or SAVE LP: to print a copy of your program on
the line printer. The QUE program and the DCL PRINT command are the
recommended methods; they place your request in the printer queue. SA VE
LP:, on the other hand, sends output directly to the line printer if it is free.
See the following manuals or sections in this manual for more information:

SA VE LP: Section 4.5
QUE program RSTSIE System User's Guide
DCL PRINT command RSTSIE DeL User's Guide

4.4 Running a Program - The RUN Command

The RUN command runs (executes) a BASIC-PLUS source program, a
BASIC-PLUS translated program, or any other executable program (such
as the executable form of a BASIC-PLUS-2 or COBOL program). You can
run the current program or a program stored on disk.

The RUN command has the format:

RUN[NH] [filespec]

NH means no header. Before executing the current program, the RUN
command prints a program header that consists of the program name and
the current system date and time. When you run the current program,
you can add NH to the RUN command to avoid printing this header
information.

The filespec is a complete RSTS/E file specification of the form:

dev:[acct]filename.typ/switch(es)

Use the file specification to run a program not currently in memory. When
you run a program not currently in memory, your current program is
deleted from memory.

The following examples show how RUN works:

RUN Runs the current program.

RUNNH Runs the current program without printing header
information.

RUN TAXES Runs the program TAXES in your account on the
public structure.

RUN DM1: [ZOO ,Z30JTAXES Runs the program TAXES in [200,230] on DMl:.

When you specify the file name of a program not currently in memory:

1. The system looks first for an executable program with the name you
specify. An executable program is a file whose protection code includes
the value 64. A BASIC-PLUS translated program (.BAC file) is an
executable program. If an executable program exists, the system loads
it and runs it.

4-6 Creating and Running a BASIC-PLUS Program

2. If no executable program exists, the system looks for a BASIC-PLUS
source program (,BAS file) with the name you specify. If the source
program exists, the system loads it, translates it, and runs it.

Usage Notes

1. If you have programs with duplicate file names in your directory,
always specify the .BAC or .BAS file type in the RUN command. If you
do not, it is possible for the system to run an executable file that is not a
BASIC-PLUS program.

2. In NOEXTEND mode, you cannot run a saved program whose file name
begins with the letters NH. BASIC-PLUS interprets these letters as
"no header" instead of running the specified program.

4.5 Saving a Source Program - The SAVE Command

The SAVE command copies the source program currently in memory into a
disk file.

SA VE has the format:

SAVE [filespec]

where filespec is a complete RSTS IE file specification of the form:

dev:[acct]filename.typ / switch(es)

All parts of the file specification are optional.

The following examples show how SA VE works:

SAI,JE NEWNAM

Creates a file in your account on the public structure. The
file name is your current program name; the file type is
.BAS.

Creates a file NEWNAM. BAS in your account on the public
structure.

SAI.JE NEWNAM, E 12 Creates a file NEWNAM.E12 in your account on the public
structure.

SAI.JE DL 1 : [3 ,222] Creates a file in [3,222] on DLl:. The file name is your
current program name; the file type is .BAS.

SA VE does not supersede existing files. If the file you specify already
exists, you :receive the message:

?File exists-RENAME/REPLACE

Reente:r the SAVE command and specify a new file name or use the
REPLACE command, described in Section 5.3, to replace the existing file
with your current program.

Creating and Running a BASIC-PLUS Program 4-7

Usage Notes

1. You can use SAVE LP: to print your current program on the line
printer. However, it is recommended that you use the QUE program or
the DCL PRINT command instead of SAVE LP:. The QUE program and
the DCL PRINT command place your request in the line printer queue.
Your request is printed when the printer is available and contains
header pages to identify it. Use SAVE LP: if your system does not have
the QUE program or the DCL PRINT command. SA VE LP: does not
queue your request or print identifying header pages; it simply prints
the program on the line printer if it is free. The system displays a
message if the line printer is busy, and your program does not get
printed. See the RSTS IE System User's Guide for information about
the QUE program and the RSTSIE DeL User's Guide for information
about the DCL PRINT command.

2. If you use NOEXTEND mode, do not save a program with a file name
that begins with the letters NH. When you specify the program in the
RUN command, BASIC-PLUS interprets NH as "no header" instead of
running the specified program.

4.6 Saving a Translated Program - The COMPILE Command

There are two types of BASIC-PLUS code: source code and translated code.
When you use the RUN command to run a program, the system executes
translated code, not source code. If only source code has been saved,
BASIC-PLUS automatically translates the source code before it is
executed.

Translating a source program can take considerable system time. You can
save this time by using the COMPILE command, which saves an image of a
translated BASIC-PLUS program in a disk file.

You can use the COMPILE command only on a program that is currently in
memory. Thus, you must retrieve an existing source program with the OLD
command before using COMPILE. (OLD translates the program as it places
it in memory.) The COMPILE command has no effect on either the current
program or its source file on disk.

The COMPILE command has the format:

COMPILE [filespec]

where filespec is a complete RSTS IE file specification of the form:

dev:[acct]filename.typ / switch(es)

All parts of the file specification are optional. The default file name is your
current program name; the default file type is .BAC. A translated program
can be stored only on disk; therefore, the dev: portion of the file specifica
tion must be a disk pack.

4-8 Creating and Running a BASIC-PLUS Program

The following examples show how the COMPILE command works:

COI'1PILE Saves a translated image of your current program in a .BAC
file in your account on the public structure. The file name is the
current program name.

COM PI L E PRO G 1 Saves a translated image of your current program in the file
PROG l.BAC in your account on the public structure.

COM PI LED L1 : Saves a translated image of your current program on disk pack
DLl:. The file name is the current program name; the file type
is .BAC.

Usage Notes

1. Translated programs are stored with a default protection code that is
the sum of the system default (usually 60) plus 64, which indicates an
executable file. To store the translated program with a different protec
tion code, use the IPROTECT switch. For example:

COI'IPILE/PR:40

The translated program is saved with a protection code 104, the sum
of 40 and 64.

As in previous versions of RSTS IE, you can also ,enclose the protection
code in angle brackets. However, it is recommended that you use the
IPROTECT switch. See the RSTSIE System User's Guide for more
information about protection codes.

2. Each translated file requires a minimum of 7 disk blocks, Thus, while
storing translated programs saves execution time, translated programs
can use more disk space than source programs. The translated file is
contiguous if enough disk space is available. Otherwise, the system
creates a noncontiguous file.

3. If you use NOEXTEND mode, do not save a translated program with a
file name that begins with the letters NH. When you specify the
program in the RUN command, BASIC-PLUS interprets the letters as
"no header" instead of running the specified program.

4.7 Getting Information - CATALOG, LENGTH, and SCALE

This section describes how to get a directory listing files, display the
length of the current program, and display the scale factor.

4.7.1 listing Files in a Directory - The CATALOG Command

The CATALOG command displays information about all flIes in your direc
tory on the public structure or a private disk. For each file, CATALOG lists
the file name and file type, file size in blocks, protection code, date of crea
tion, and date and time of last access. CATALOG has no effect on your
current program.

Creating and Running a BASIC-PLUS Program 4-9

You can also specify a directory other than your own. If you do, CATALOG
displays information about files in the directory to which you have read
access. (Your system manager can change the system so that CATALOG
displays information on all files in the directory you specify, not just files to
which you have read access.)

The CATALOG command has the format:

CATALOG [dev:[acct]]

The following examples show how CATALOG works. You can abbreviate
the command to CAT. The examples assume you have read access to the
files.

CATALOG Lists all files in your account on the public structure.

CATALOG [100,102] Lists all files in [100,102] on the public structure.

CATALOG [1,2] Lists all files in the system library account [1,2] .

CATALOG OMO: Lists all files in your account on disk DMO:.

CATALOG MMO: [200 ,222] Lists all files in account [200,222] on magnetic tape
unit MMO:.

Here is a sample directory listing produced by the CATALOG command:

CAT
AI.JERAGE. BAS
PERCNT .BAS
TERM • DOC
EX PENS .BAS

Usage Note

2 GO
2 GO
11 GO
29 GO

28-0ct-81 28-0ct-81 02:37 PM
28-0ct-81 28-0ct-81 03:22 PM
28-0ct-81 28-0ct-81 04: 10 PM
28-0ct-81 28-0ct-81 04:40 PM

You can also use the DCL DIRECTORY command or the PIP or DIRECT
programs to get a directory listing of your files. Unlike the CATALOG
command, however, these methods delete your current program from
memory.

4.7.2 Displaying a Program's Length in Memory - The LENGTH
Command

The LENGTH command displays the current program's length in memory
and the maximum amount of memory that the program can use. The length
of the current program is displayed in K words to the next highest 1K
increment. (K stands for 1024.)

The LENGTH command has the format:

LENGTH

For example:

LENGTH(lli)
S(1GIK of memory used

4-10 Creating and Running a BASIC-PLUS Program

In this example, the current program uses 5K words of memory; its maxi
mum allowed length is 16K words. The minimum length displayed for a
current program is 2K words, even when you have no program in memory.
The system reserves this memory space for its own use.

4.7.3 Displaying the SCALE Factor - The SCALE Command

The SCALE command controls the BASIC-PLUS scaled arithmetic feature.
This feature, available only on systems with the double-precision math
package, lets you avoid accumulated roundoff and truncation errors in frac
tional compututations.

You work with scaled arithmetic by setting the scale factor. The scale
factor determines the number of decimal places used in floating-point
calculations during program execution. However, BASIC-PLUS estab
lishes the scale factor for a program during translation, not during
execution.

The SCALE command has two functions: it displays and sets the scale
factor. This section shows how to use SCALE to display the scale factor. See
Section 11.10 for a complete description of how to work with scaled arith
metic and how to use the SCALE command to set the scale factor.

The scale factor has a default value of 0, which means that BASIC-PLUS
uses no scale factor when translating a program. On systems with the
single-precision math package, the scale factor is always O. (On systems
with the double-precision math package, the system manager can change
the scale factor's default value.)

BASIC- PLUS keeps track of two scale factors: the current scale factor, used
when your current program was translated, and the pending scale factor, to
be used the next time translation occurs. One value is printed if both scale
factors are the same.

To display the scale factor, type:

SCALE

For example:

SCALEffi)
8.2

The first number is the pending scale factor; the second is the current scale
factor. Thus, this display tells you that your current program was trans
lated using a scale factor of 2 and that next time translation occurs the
scale factor will be 6.

Creating and Running a BASIC-PLUS Program 4-11

4.8 Changing Modes - EXTEND and NOEXTEND

BASIC-PLUS has two modes of operation: EXTEND mode and
NOEXTEND mode. When you work in EXTEND mode, you can use fea
tures not available in NOEXTEND mode, such as long variable names.
However, the format requirements for your program are more stringent in
EXTEND mode than in NOEXTEND mode.

EXTEND is the default mode on most systems; however, the system mana
ger can change the default mode to NOEXTEND. It is recommended that
you write programs in EXTEND mode for compatibility with
BASIC-PLUS-2. NOEXTEND mode, on the other hand, is compatible with
previous versions of BASIC-PLUS. The examples in this manual are writ
ten to execute in EXTEND mode.

EXTEND and NOEXTEND can be used either as commands or as program
statements. Their actions differ depending on how you use them. This sec
tion shows you how EXTEND and NOEXTEND work when used as com
mands. Section 7.5 compares the actions of EXTEND and NOEXTEND
when used as commands and program statements and explains the differ
ence between EXTEND and NOEXTEND program formats.

The following examples assume you are logged into a system where
NOEXTEND is the default mode. To change to EXTEND mode, type:

EXTEND

You stay in EXTEND mode until you either:

• Enter the NOEXTEND command

• Use the NOEXTEND statement in your current program

• Run an executable (but not a source) program

• Enter a CCL or DCL command

• Switch to another keyboard monitor

• Log out

To change back to NOEXTEND mode, type either:

NOEXTEND

NO EXTEND

No change occurs if you enter the command for the mode that the system is
currently in.

4-12 Creating and Running a BASIC-PLUS Program

Chapter 5
Modifying BASIC-PLUS Programs

This chapter describes commands and features for modifying existing
BASIC-PLUS programs. Topics include:

• Editing a program

• Changing a program's name or file specification

• Replacing or deleting a program

• Merging programs in memory

5.1 Editing a BASIC-PLUS Program

If you read Chapters 1 and 4 of this manual, you already know how to edit a
BASIC-PLUS program. These chapters showed you how to correct program
statements with the DELETE key and CTRL/U and how to replace an
incorrect statement with a new statement. This section reviews these topics
and introduces the DELETE command.

The editing features of BASIC-PLUS can be used only on the program that
is currently in memory. The program must be a source program; you cannot
edit a translated program. Thus, before editing a BASIC-PLUS program,
you must retrieve its source file from disk storage with the OLD command.
Use the LIST command to display the program after you retrieve it. OLD
and LIST are discussed in Chapter 4.

5.1.1 Entering New Program Statements

After retrieving a program, you add new statements or replace existing
statements the same way you do when working with a new program. To
add a new statement, type a new line number, a space or tab, and the

5-1

statement. Then press the RETURN key. BASIC-PLUS informs you of
syntax errors after you press the RETURN key. To replace a program state
ment, simply retype the statement using the same line number. You need
not enter line numbers in order; BASIC-PLUS orders the line numbers as
you enter them. See Chapter 1 or 4 for examples of entering statements.

5.1 .2 Using the DELETE Key and CTRL / U

Use the DELETE key (RUBOUT on some terminals) and CTRL/U to cor
rect typing mistakes as you enter a program statement, but before you
press the RETURN key. The DELETE key erases the last character you
typed; CTRL/U erases the entire line and moves the cursor to the next line.
The following examples show the actions of the DELETE key and CTRL/U
on a video terminal.

Enter the following statement on your terminal but do not press the
RETURN key:

10 PRINT This.

Note that you omitted the first quotation mark. Press the DELETE key
four times. The DELETE key erases the characters "This" and moves the
cursor back four spaces:

10 PRINT m

Now use CTRL/U to erase the rest of the line. The system displays "AU"
and moves the cursor to the beginning of the next line on the screen:

10 PRINT "'U

You can now enter another program statement.

Usage Notes

1. On hardcopy terminals, the DELETE or RUBOUT key echoes the
erased characters between backslashes. If you use this key several
times, the line may become difficult to read. Use CTRL/R to reprint the
line before you press the RETURN key.

2. CTRL IU erases the current terminal line. If you continue a
BASIC-PLUS statement on more than one line, the current terminal
line may contain only part of the statement. CTRL IU erases only the
portion of the statement on the current terminal line.

5.1 .3 The DELETE Command

The DELETE command erases one or more lines from the current program.
DELETE has the format:

DELETE [line number(s)]

5-2 Modifying BASIC-PLUS Programs

You can delete a single line by typing just the line number followed by the
RETURN key. When you delete more than one line, you need not specify
line numbers in sequential order. Typing DELETE without a line number
deletes all lines from your current program.

The following examples show how DELETE works:

DELETE Deletes all lines from the current program.

DELETE 10 Deletes line 10 from the current program.

10 Deletes line 10 from the current program.

DEL E TEl 00- 200 Deletes lines 100 through 200 from the cur
rent program.

DELETE 100-200,24,35,300-400 Deletes lines 100 through 200, line 24, line
35, and lines 300 through 400 from the cur
rent program.

Usage Notes

1. Be sure to specify one or more line numbers in the DELETE command
unless you want to delete all lines in your current program.

2. Before deleting a program line, check your program for references to
that line number (in GOTO statements, for example) and make the
necessary changes to the program.

3. The BASIC-PLUS DELETE command differs from the DCL DELETE
command. The DCL DELETE command deletes a file from a directory.

NOTE

You can also use a text editor such as EDT to edit any
BASIC-PLUS source program that you have saved in a disk
file. While this method does not detect syntax errors, it lets
you take advantage of text editing features not available in
BASIC-PLUS.

5.2 Changing a Program's Name or File Specification

The RENAME command and the NAME-AS statement both change the
name of a program. However, they perform different functions. The
RENAME command changes the name of the current program; the
NAME-AS statement can change a program's file name, file type, and
protection code.

5.2.1 The RENAME Command

The RENAME command changes the name of the program currently in
memory. The old program name is discarded. The RENAME command does
not change the file name of a saved program on disk. The command has the
format:

RENAME filename

Modifying BASIC-PLUS Programs 5-3

where filename is a RSTS/E file name.

For example, to change the name of your current program to NEWNAM,
type:

RENAME NEWNAM

If you now use SAVE to save your program, it is saved in the file
NEWNAM.BAS by default.

Usage Note

The BASIC-PLUS RENAME command differs from the DCL RENAME
command. The DCL RENAME command renames a file.

5.2.2 The NAME-AS Statement

Unlike the RENAME command, which changes the name of the program
currently in memory, the NAME-AS statement can change the file name,
file type, and protection code of a program stored on disk.

NAME-AS can be used in a BASIC-PLUS program or as an immediate
mode statement. When used as an immediate mode statement (without a
line number), its acts like a command; that is, it is executed as soon as you
press the RETURN key. This section discusses its use as an immediate
mode statement. See Chapter 14 for information on using NAME-AS in a
BASIC-PLUS program.

The NAME-AS statement has the format:

NAME <string> AS <string>

where string is all or part of a RSTS/E file specification of the form:

"dev:[acct)filename. typ IPR[OTECT):n"

Replace n with a valid RSTS/E protection code.

As in previous versions of RSTS/E, you can also enclose the protection
code in angle brackets. However, it is recommended that you use the
IPROTECT switch. See the RSTSIE System User's Guide for more infor
mation about protection codes.

You must use single or double quotation marks around both strings. The
file specified in the first string is renamed to the file specified in the second
string.

NAME-AS defaults to your account on the public structure. When you
specify a file located in another device or account, you need only specify the
device or account in the first string. However, to retain a file type, you must
specify it in both strings, even if you do not want to change it. If you do not,
the renamed file has no file type.

The following examples show how NAME-AS works:

NAME "OLO.8AS" AS "NEW.8AS"

Renames the file OLD.BAS to NEW.BAS.

~ Modifying BASIC-PLUS Programs

NAME "OLO.BAS" AS "NEW"

Renames the file OLD.BAS to NEW. The file now has no file type.

NAME "DMO:OLD.BAS" AS "DMO:NEW.BAS"

Renames the file stored in your account on DMO: from OLD.BAS to
NEW.BAS.

NAME "OMO:OLD,BAS" AS "NEW.BAS"

Performs the same action as the previous example. It renames the file
stored in your account on DMO: from OLD.BAS to NEW.BAS.

NAME "[200.201JOLO.BAS" AS "[200.201lNEW.BAS"

Renames the file stored in [200,201] on the public structure from OLD.BAS
to NEW.BAS.

NAME "[200.201JOLD.BAS" AS "NEW.BAS"

Performs the same action as the previous example. It renames the file
stored in [200,201] on the public structure from OLD.BAS to NEW.BAS.

NAME "OLD.BAS" AS "OLD.BAS/PR:LlO"

Changes the protection code of OLD.BAS from its present value to 40.

NAME "OLD.BAS" AS "NEW.BAS(LlO)"

Renames the file OLD.BAS to NEW. BAS and changes its protection code
from its present value to 40.

Usage Notes

1. NAME-AS cannot copy files. Thus, while NAME-AS can change the
file name, file type, or protection code of a file located in another
account or device, NAME-AS cannot transfer a file to a different
account or device.

2. To use NAME-AS to change a file name or protection code, you must
have write access to the file.

3. When you use NAME-AS to assign protection codes, the results
depend on your privilege.

Only privileged users can assign a protection code greater than 63 to a
source or data file or a protection code less than 64 to an executable file.
If a nonprivileged user specifies a protection code greater than 63 for a
source or data file, the system subtracts 64 (the executable code) from
the value specified. For example:

NAME "NEW.BAS" AS "NEW.BAS/PR:l0Ll"

The system assigns a protection code of 40.

Modifying BASIC-PLUS Programs 5-5

If a nonprivileged user specifies a protection code less than 64 for an
executable file, the system adds 64 to the value specified. For example:

NAME "NEW,6AC" AS "NEW,6AC/PR:40"

The system assigns a protection code of 104, the sum of 64 and 40.

5.3 Replacing a Saved Program - The REPLACE Command

The REPLACE command replaces a previously saved BASIC-PLUS source
program with the program currently in memory. REPLACE performs basi
cally the same function as SAVE, but, unlike SAVE, it destroys any exist
ing source program on the disk with the same name.

The REPLACE command has the format:

REPLACE [filespec]

where filespec is a RSTS IE file specification of the form:

dev:[acct]filename.typ / switchCes)

All parts of the file specification are optional. The following examples show
how REPLACE works:

REPLACE Copies the current program to a file in your
account on the public structure. The file
name is your current program name; the
file type is .BAS. Replaces any file with the
same file name and type.

REPLACE NEWNAM Copies the current program to the file
NEWNAM.BAS in your account on the pub
lic structure. Replaces any existing
NEWNAM.BAS file.

REPLACE DMO:C12t24JNEWNAM,I.J1 Copies the current program to the
file NEWNAM.Vl in [12,24] on DMO:.
Replaces any existing file with the same file
specification.

5.4 Deleting a Saved Program

You can delete a source or translated program from disk storage with the
UNSA VE command or the KILL statement.

5.4.1 The UNSAVE Command

The UNSA VE command deletes a file from a directory. The file can be a
BASIC-PLUS program or other type of file.

The command has the format:

UNSA VE [filespec]

5-6 Modifying BASIC-PLUS Programs

where filespec is a RSTS IE file specification of the form:

dev:[acct]filename.typ / switch(es)

All parts of the file specification are optional. The default file name is your
current program name; the default file type is .BAS. Yau must have write
access to the file. The following examples show how UNSA VE works:

UNSAI.JE Deletes from your account on the public struc
ture a .BAS file with the same name as the cur
rent program.

UNSAI.JE TA){ES Deletes the file TAXES.BAS from your account
on the public structure.

UNSAI.JE TA){ES. BAC Deletes the file TAXES.BAC from your account
on the public structure.

UNSAI)E DL 1: Deletes from your account on DLl: a file with
the same name as the current program and a
.BAS file type.

UNSAVE [200,201 JTA){ES. BAC Deletes the file TAXES.BAC from [200,201] on
the public structure.

5.4.2 The KILL Statement

Like the UNSA VE command, the KILL statement deletes a file from a
directory. The file can be a BASIC-PLUS program or other type of file.

The KILL statement can be used in a BASIC-PLUS program or as an
immediate mode statement. Its use as an immediate mode statement is
discussed here; see Chapter 14 for information on using the KILL state
ment in a program.

The KILL statement has the format:

KILL <string>

where <string> is a RSTS IE file specification of the form:

"[dev:[acct]]filename.typ"

You must enclose the file specification in quotation marks. The KILL state
ment defaults to a file in your account on the public structure, but, unlike
the UN SA VE command, it has no default file name or type. You must
specify the file name and type. You must also have write access to the file.

The following examples show how the KILL statement works:

KILL "TAXES.BAS" Deletes the file T AXES.BAS from your
account on the public structure.

KILL "DL 1 : TEST. BAC" Deletes the file TEST.BAC from your account
on DL1:.

KILL "DL1: [2 Ii 24] PROG 1. BAS" Deletes the file PROG1.BAS from account
[2,124] on DL1:.

Modifying BASIC-PLUS Programs 5-7

5.5 Merging Programs - The APPEND Command

The APPEND command merges the contents of a previously saved
BASIC-PLUS source program with the program currently in memory. The
line numbers in the two programs determine how they are combined (see
the Usage Notes).

The command has the format:

APPEND [filespec]

where filespec is a RSTS/E file specification of the form:

dev:[acct]filename.typ / switch(es)

If you do not specify a file name, APPEND prompts you for one. The file you
specify must be a BASIC-PLUS source program. Note that APPEND
merges a copy of the saved program with your current program; the disk
file is not affected.

The following examples show how APPEND works:

APPEND(@)
Old file na'tle-- (@)

APPEND(@)
Old file naMe-- PROG2

APPEND PROG2

Merges the file NONAME.BAS in your account
on the public structure with your current
program.

Merges the file PROG2.BAS in your account
on the public structure with your current
program.

Merges the file PROG2.BAS in your account on
the public structure with your current program.

APPEND DMO: [12,12] PROG. V2 Merges the file PROG.V2 in account [12,12] on
DMO: with your current program.

Usage Notes

1. APPEND works on source programs only, not translated programs.
Both the program currently in memory and the program you specify in
the APPEND command must be source programs.

2. APPEND combines the two programs according to their line numbers.
The combined program contains the lines from both programs in
ascending order. If both programs contain the same line number, the
line from the appended program replaces the line in memory.

3. To save the new program, use the SAVE or REPLACE command.

4. APPEND lets you work with modular programs. You can write small
programs that perform functions you need in several programs and
store them in separate source files. You can then use APPEND to com
bine in memory the specific set of modules you want to run.

5. You can include immediate mode statements (that is, statements with
no line numbers) in a source file to be appended to your current pro
gram. (Immediate mode is described in Chapter 6.)

5-8 Modifying BASIC-PLUS Programs

BASIC-PLUS executes immediate mode statements when it encounters
them during an APPEND. They do not become part of your current
program in memory; however, they can be used to modify variables in
the program.

The following example shows a possible use of immediate mode state
ments in a source file. The first statement in the file is an immediate
mode PRINT statement, which is executed during the APPEND. (The
rest of the statements in the file, which have line numbers, become part
of the current program.) The PRINT statement tells you which module
of a large program is being appended to the current program and also
prints the time of day.

PRINT "Appending Payroll Calculation Routine, ";TIME$(O/.,)
20010
20020

32767 END

Note that your system manager can change BASIC-PLUS so that it
does not execute immediate mode statements during an APPEND.

6. The BASIC-PLUS APPEND command differs from the DCL APPEND
command. The DCL APPEND command appends one file to the end of
another.

You should not use the DCL APPEND command to merge
BASIC-PLUS source files. When you later retrieve or run the resulting
source file, you lose program lines if the file contains more than one
END statement. BASIC-PLUS only processes statements that appear
before the first END statement.

Do not merge .BAC files with the DCL APPEND command. You will
not be able to execute the resulting file.

Modifying BASIC-PLUS Programs 5-9

Chapter 6
Immediate Mode and Program Debugging

A program rarely works correctly the first time you run it. It must be tested
and corrected. This process is called debugging.

This chapter describes the features that BASIC-PLUS and RSTS/E pro
vide for debugging BASIC-PLUS programs. The principal BASIC-PLUS
debugging feature is immediate mode. When used with the STOP, GOTO,
and PRINT statements and the CONT and CCONT commands, immediate
mode lets you debug programs without having to run them over and over.
Use these BASIC-PLUS debugging features to test and correct source pro
grams before you save them in translated form.

In addition to showing how to debug a source program in immediate mode,
this chapter shows some other uses of immediate mode, describes its limita
tions, and also describes the "Ready state." Ajob is in the Ready state when
the system is waiting for terminal input. Understanding the Ready state
can help you debug programs.

RSTS/E provides another tool for debugging BASIC-PLUS programs, the
BPCREF utility program. BPCREF, the last topic presented in this chap
ter, produces a cross-reference listing of a translated BASIC-PLUS pro
gram. BPCREF is useful for debugging large and complex programs.

Unlike the previous five chapters, which are mainly for new BASIC-PLUS
users, this chapter is written for both new users and users who are familiar
with the BASIC-PLUS language and have written some programs. New
users may want to read just the section on immediate mode and the exam
ple in Section 6.3.5 to become familiar with the mechanics of debugging.
The rest of the chapter, which describes the Ready state, the debugging
process, and the BPCREF program, is primarily for the more experienced
user.

6-1

6.1 Immediate Mode

Immediate mode lets you execute BASIC-PLUS statements without
writing a complete program. When you type a statement without a line
number, BASIC-PLUS treats it like a command, translating and executing
it immediately. On the other hand, when you type a statement with a
line number, BASIC-PLUS translates it and stores it for later execution.
Immediate mode is useful for two different purposes: debugging programs
and performing simple calculations at your terminal.

6.1.1 Immediate Mode Examples

The following example shows how BASIC-PLUS treats the same statement
typed with and without a line number. Type:

10 PRINT 54+4G@
111

This statement produces no output on your terminal. The cursor simply
moves to the next terminal line and waits for more input. Now type:

PRINT 54+4G@

BASIC-PLUS prints the sum of the two numbers on your terminal and
then displays the Ready prompt:

100

Ready

You can execute only one statement at a time in immediate mode. State
ments you type in immediate mode, however, can refer to variables defined
in the current program or in other immediate mode statements. For
example:

A=3

Ready

B=4

Ready

PRINT AlB
.75

Ready

PRINT SQR (A"2 + B"2)
:;

Ready

6-2 Immediate Mode and Program Debugging

You can print a table of square roots with the following immediate mode
statement:

PRINT I ,SQR(I)
1
2
3
4
5
6
7
8
9
10

FOR I = 1 TO 10
1
1.41421
1.73205
2
2.23607
2.44949
2.64575
2.82843
3
3.16228

6.1.2 Variable Assignments

A value you assign to a variable with an immediate mode statement lasts
until either:

• You change its value with another immediate mode statement

• A statement in your current program changes its value

BASIC-PLUS sets all variables to 0 or the null string when you use the
NEW, OLD, or RUN commands, enter a CCL or DCL command, switch to
another keyboard monitor, or log out.

6.1.3 Limitations of Immediate Mode

Some BASIC-PLUS statements cannot be executed in immediate mode.
These statements cannot stand alone; instead, they must interact with
other statements in a program to produce results. These statements are:

DEF
DEF*
FNEND
DIM
DATA
FOR
WHILE
UNTIL
NEXT

When you type these statements In immediate mode, BASIC-PLUS
displays the message:

?Illegal in immediate mode

Note that while FOR, WHILE, and UNTIL cannot be used as statements in
immediate mode, they can be used as statement modifiers. The example in
Section 6.1.1 that prints a square root table uses FOR as a statement modi
fier; see also Section 13.6.

Immediate Mode and Program Debugging 6-3

In programs, you can place more than one statement on a single line by
using the backslash (\) between statements. However, you cannot enter
multiple statements on a single line in immediate mode. You get an error
message and the statements are not executed. For example:

A=l.\ PRINT A
?Illegal in iMMediate Mode

Ready

6.2 Background for Debugging - The Ready State

When the system is waiting for input from a job's keyboard, the job is said
to be in the Ready state. When you work in BASIC-PLUS, you can usually,
but not always, recognize the Ready state by the BASIC-PLUS "Ready"
prompt on your terminal.

Most of the time, you only need to know that BASIC-PLUS expects input
from you. But a more complete_ understanding of the Ready state can be
helpful, especially during program debugging. Many commands and state
ments that you use during program debugging place your job in the Ready
state. So do certain error conditions that occur during program execution.
Thus, this section is presented as an introduction to debugging, and the
specifics of debugging are described in the sections that follow.

NOTE

This description of the Ready state discusses BASIC-PLUS
statements and concepts that are covered later in this man
ual. Cross-references to chapters and sections are provided. If
you do not yet know the BASIC-PLUS language, you may
want to postpone reading this section until you learn more
about the language.

In BASIC-PLUS, a job enters the Ready state when:

• A program runs to completion and exits .

• BASIC-PLUS finishes executing a command or immediate mode
statement .

• BASIC-PLUS finishes translating a line of code you just entered into the
current program. (BASIC-PLUS does not display the Ready prompt after
it translates a line of code.)

A job also enters the Ready state when a program's execution is halted
before it is complete, either by the user or by the system. Halting a program
at various points during execution to examine variables or change a pro
gram is an integral part of program debugging in BASIC-PLUS.

The Ready state is also called the "CTRL /C state" or the "keyboard moni
tor wait state." You may see these terms in other manuals. The SYSTAT
and CTRL IT displays use ""c" to denote the Ready state.

6-4 Immediate Mode and Program Debugging

The rest of this section describes:

• How a job executing a program enters the Ready state

• What information about the program that was executing (called
"program context" or "context information") is saved

• What to do next (for example, how to continue executing a program that
was halted)

6.2.1 Entering the Ready State

A job executing a program enters the Ready state when the program runs
to completion. In addition, certain other events cause the system to halt the
program before execution is complete and place the job in the Ready state.
This action occurs when the system:

• Executes a STOP statement in the program

• Receives a CTRL/C from the keyboard

• Encounters an "untrapped" error, that is, one the program does not pro
cess using an ON ERROR GOTO statement

The STOP statement and CTRL/C, which are described in Section 6.3, give
you control over program execution. STOP, an important BASIC-PLUS
debugging feature, lets you halt a program at specific points during execu
tion to examine or change data values or modify the program.

Pressing CTRL/C while a program is running also halts execution. For
example, you need to press CTRL I C to halt a program that contains a logic
error called an infinite loop. An infinite loop is a section of code that causes
the program to keep executing the same sequence of instructions indefi
nitely. Use CTRL/C with caution, though, because you cannot control
where the program will halt.

The system halts a program during execution when it encounters an error
condition for which the program has no error-handling code. For example,
when you run a program that tries to open a nonexistent file with an OPEN
FOR INPUT statement, the "?Can't find file or account" error results. If the
program contains code to process the error, the system provides the pro
gram with information about the error and gives control to the program.
(See Section 13.7, Error Handling, for information on how to process errors
in a program.) If the program does not contain code to process the error, the
system notifies you instead. It displays a message on your terminal and
places your job in the Ready state. In this example you see:

?Can't find file or account at line n

Ready

Immediate Mode and Program Debugging 6-5

6.2.2 Program Status

BASIC-PLUS saves information about the program that was executing and
sometimes performs "housekeeping" actions when it places a job in the
Ready state. The information saved and the actions performed depend on:

• Whether or not the program is privileged

• What caused the job to enter the Ready state

If the program is privileged (that is, the program is stored on disk with a
protection code that includes the value 128), BASIC-PLUS deletes the pro
gram from memory before it places the job in the Ready state. See the
RSTS / E Programming Manual for more information about privileged pro
grams. The rest of this discussion applies to nonprivileged programs.

BASIC-PLUS always saves the current values of program variables when
a job running a nonprivileged program enters the Ready state. Program
variables are saved when a program runs to completion; they are also saved
after BASIC-PLUS executes an immediate mode statement. (During
debugging, you can change the values of program variables by typing
immediate mode statements.)

Besides saving variables, BASIC-PLUS also closes all I/O (input/output)
channels after program execution is complete. An I/O channel is a logical
connection between your program and a file or device. Closing I/O channels
closes files and frees devices for other use. See Chapter 14, Overview of
Data Handling, for more information about I/O channels.

BASIC-PLUS closes I/O channels when it executes either an explicit or an
implicit END statement. An explicit END statement appears in the pro
gram. BASIC-PLUS executes an implicit END statement when the END
statement does not appear in the program. (You can also type an END
statement in immediate mode.)

When a STOP statement, a CTRL/C, or an untrapped error halts a pro
gram before execution is complete, BASIC-PLUS saves current values of
program variables, but does not close I/O channels. In addition:

1. When CTRL/C halts a program, the BASIC-PLUS variable LINE con
tains the line number where the halt occurred.

2. When an untrapped error halts a program:

• The BASIC-PLUS variable ERR contains the error number that
halted the program.

• The BASIC-PLUS variable ERL contains the line number where the
error occurred.

See Section 13.7 for more information about error handling and Appen
dix C for a list of error messages and their ERR values.

~ Immediate Mode and Program Debugging

6.2.3 Possible Actions

You can perform many different actions when your job is in the Ready
state. These actions have different effects on your program context.

If you are in the Ready state because a program ran to completion, or you
do not want to continue executing the program that halted, you can either:

• Enter an immediate mode statement

• Enter a BASIC-PLUS command

• Modify the program by changing lines or entering new lines

• Run another program

• Enter a system command (CCL or DCL) or run a system program

Some BASIC-PLUS commands (such as NEW, OLD, and RUN) and all
CCL and DCL commands delete your current program from memory,
destroying all program context. Other BASIC-PLUS commands, such as
LIST and SAVE, do not affect your current program. Immediate mode
statements do not delete your current program, but do change the values of
any variables that you specify.

If you are in the Ready state because of a program halt, you can continue
executing the halted program. How to continue depends on what caused the
program to halt.

If a STOP statement or a CTRL / C halted the program, you can either:

• Enter the CONT command or the privileged CCONT command to con
tinue executing the program at the point where it halted. (See Sections
6.3.2 and 6.3.3.)

• Enter an immediate mode GOTO statement to continue execution at a
specified line number. (See Section 6.3.4.)

• Enter an immediate mode END statement to end the program and close
open I/O channels.

If an untrapped error halted the program, you can either:

• Enter an immediate mode GOTO statement to continue execution at a
specified line number.

• Enter an immediate mode END statement to end the program and close
open II 0 channels.

You cannot use CONT or CCONT to continue executing a program that
halted because of an untrapped error. BASIC-PLUS displays the message
"?Can't CONTinue."

Immediate Mode and Program Debugging 6-7

6.2.4 Summary

Table 6-1 summarizes the information presented in this section.

Table 6-1: Program Status in the Ready State

Continuing or
Cause of Halt Program Status Ending Execution

END Variables saved.
I I 0 channels closed.

STOP Variables saved. CONTor CCONT
I I 0 channels open. Immediate Mode GOTO

Immediate Mode END

CTRL/C Variables saved. CONT or CCONT
I I 0 channels open. Immediate Mode GOTO
LINE contains line number where Immediate Mode END
error occurred.

Untrapped Error Variables saved. Immediate Mode GOTO
I I 0 channels open. Immediate Mode END
ERR contains error number.
ERL contains line number where
error occurred.

Any cause; Program deleted from memory.
privileged program II 0 channels closed.

The rest of this chapter describes in detail the BASIC-PLUS and RSTS IE
features for debugging programs.

6.3 Debugging in Immediate Mode

Use of STOP statements in a program, combined with the use of CONT and
CCONT commands and immediate mode GOTO statements, lets you:

• Halt a program's execution

• Examine variables

• Make any necessary changes to the program

• Continue program execution at the next line or another location

This section describes the use of these BASIC-PLUS debugging features.

6.3.1 The STOP Statement

The STOP statement halts program execution and prints a message con
taining the line number where the halt occurred. For example, if you place
a STOP statement on line 50 in a program, the following message is dis
played when the program is executed:

Stop at line 50

Ready

6-8 Immediate Mode and Program Debugging

The program is no longer running. You can now examine data values with
immediate mode PRINT statements or change data values with immediate
mode LET statements. If you are working with a source program (as you
usually are while debugging) you can also add, delete, or change lines with
BASIC-PLUS editing features.

6.3.2 The CONT Command

After you halt execution and examine or change your program, you can
use the the CONT command to continue program execution. Enter the
command as:

CONT

The program resumes execution at the line after the STOP statement.

Usage Note

Certain error conditions can prevent the CONT command from continuing
program execution. If execution cannot be continued, the system displays:

?Can't CONTinlle

Ready

Depending on the cause of the error, run the program again, type an imme
diate mode GOTO statement to continue execution, or type an immediate
mode END statement to end the program.

6.3.3 The CCONT Command

The CCONT command, available to privileged users only, performs the
same action as CONT but also detaches the job from the terminal. Use it to
resume execution of a job that needs to run for a long time without further
terminal interaction. To enter the CCONT command, type:

CCONT

If you are not a privileged user, the system displays the message
"?Protection violation." Use the CONT command to continue executing the
program.

6.3.4 The GOTO Statement

Instead of continuing execution at the next line in the program after a halt,
you can use the GOTO statement in immediate mode to resume execution
at any line in the program. For example, enter the following statement to
resume execution at line 100 of the program:

GOTO 100

Immediate Mode and Program Debugging 6-9

10

20
100

200

Be sure to specify the correct line number. Any GOTO statement that
causes transfer of control into or out of a FOR loop, function, or subroutine
can cause unexpected results.

Note that when a program halts because of an untrapped error, you can
resume execution only with the GOTO statement, not with CONT or
CCONT. See Section 13.7 for information on error handling.

6.3.5 Debugging Example Using STOP and CONT

The following example uses an octal-to-decimal conversion program that
contains a bug. Assume that you have written the program. When you run
it, you find that it returns incorrect results; for example, it converts the
octal number 23 to the decimal number 40 instead of 19. You decide to
debug the program using STOP statements, the CONT command, and
immediate mode. A program listing is on the next page. The step-by-step
procedure to debug the program appears after the program listing.

This example uses a fairly advanced BASIC-PLUS program. The program
contains several functions, a FOR loop, and an error handling routine. The
lines of text that start with an exclamation point (!) are called comments.
Comments describe the program but do not affect its execution. Even if you
do not fully understand how the program works, you can still step through
the debugging procedure to become familiar with the debugging process.

!This is an octal to deciMal conversion prollraM. &
!It is written in extend Mode.
EXTEND
ON ERROR GOTO 900 &
\ PRINT
\ PRINT "OCTAL TO DECIMAL CONVERTER"
\ PRINT "CONI)ERTS NUMBERS BETWEEN 0"
\ PRINT "AND 177777 (OCTAL> TO" &
\ PRINT "THEIR DECIMAL EQUIVALENTS"

INPUT "OCTAL NUMBER";S$
\ LX. = LEN(S$)
\ GOTO 800 IF L% = 0%

&

p r i n t out the &
instructions &
header &

input char strinll &
lIet its lenllth &
close out if &
lenllth is O.

210 !Startinll with low order dillit, &

300

!for each dillit, take value of dillit (V%), &
!Multiply it by 8 to proper order (0%), &
land add result to accuMulator (0%) &

OX. = -1%
\ D·X. = OX.
\ FOR Z% = L% TO 1% STEP -1%

\
\
\

\

0% = OX. + 1 X.
V% = ASCII(RIGHT(S$,Z%»
IF V% < a8% OR V% > 55% THEN

PRINT "INVALID INPUT"
GOTO 200

initialize order &
and accuMulator &
for each dillit froM &

the low order to &
the hillh order &

increMent order &
pick UP next dillit &
if out of ranlle: &
print Messalle &
ask for More input &

(continued on next page)

6-10 Immediate Mode and Program Debugging

400

500

\
V '1.,
0%

\ NEXT 2'1.,

V 'X, AND 7%
0% + (V% * INT(8% • 0%»

PRINT "DECIMAL VALUE IS ";NUM1$(D%)
\ GOTO 200

chan9'e ascii &,
to a numeric &,
and the value will &,
accumulate in 0%. &,

t.:
9'0 bacK and do next &,
di9'it if there &,
is one. t.:

print the result &,
and tn' another. t.:

600 GOTO 32767

700 ! This error routine handles numbers too lar9'e to convert.
900 IF ERL = 400 THEN &,

910

32767

PRINT "NUMBER " ;S$;" TOO BIG FOR CONVERSION" &,
\
PRINT
\

RES UME 200
ERR,ERL &,

RES UME 32767
END

1. You suspect that the bug is in line 300 or 400 and therefore insert a
STOP statement before each of these lines, at lines 250 and 350:

250 STOP
350 STOP

If you now list the program, you see that it contains the STOP state
ments you inserted.

2. Now run the program and input the octal number 23. The program
stops at line 250:

RUNNH

OCTAL TO DECIMAL CONVERTER
CONVERTS NUMBERS BETWEEN 0
AND 177777 (OCTAL) TO
THEIR DECIMAL EQUIVALENTS
OCTAL NUMBER? 23
Stop at line 250

Ready

3. Check the value of the variable L%, which contains the number of
digits in the octal number you input. Issue a PRINT statement in
immediate mode:

PRINT L%
2

Ready

Immediate Mode and Program Debugging 6-11

300

RUNNH

4. The value of L% is correct; 23 has 2 digits. Type the CONT command to
continue program execution. The program stops at the next STOP
statement.

CONT
Stop at line 350

5. Now check the values of the variables D%, 0%, V%, and Z%. Issue
another PRINT statement in immediate mode:

PRINT D%,O%,V%,Zl
o 1 51 2

You see that the value of 0%, printed as 1, should be 0 at this point in
the program. (The program is using the digit in position 0 and 0% was
initialized to -1.) You list the program and find the error in the sixth
text line at line 300, where 0% (the letter variable that stands for
"order") was mistyped as 0% (zero).

6. If you wish, you can now retype line 300 or use a text editor to correct
the typing error and then run the program again:

o 'X, = -l'X, initialize order &
and aCCUMulator & \ D'X, = 01.,

\ FOR Z% = L% TO 1% STEP -1%

\
\
\

\

o 'X, = 01., + 11.,
V% = ASCII(RIGHT(S$,Z%))
IF V% (48% OR V% > 55% THEN

PRINT "INVALID INPUT"
GoTo 200

for each di~it frOM &
the low order to &
the hi~h order j!"

increMent order &
picK UP next di~it &
if out of ran~e: &
print Messa~e &:
asK for More input &

OCTAL TO DECIMAL CONVERTER
CONVERTS NUMBERS BETWEEN 0
AND 177777 (OCTAL) TO
THEIR DECIMAL EQUIVALENTS
OCTAL NUMBER? 23
DECIMAL VALUE IS 18

After making one or more corrections, use the REPLACE command to save
the latest version of your program in a disk file. See Section 5.3.

6.4 Halting and Checking Execution - CTRL/C and PRINT LINE

Pressing CTRL/C while a program is running also halts program execu
tion. However, CTRL/C gives you less control over where the program
halts than the STOP statement because you cannot specify where the halt
is to occur.

6-12 Immediate Mode and Program Debugging

When a program is halted by CTRL I C, the special variable LINE contains
the line number of the statement being executed at the time of the halt.
After using CTRL/C, you can display the contents of LINE by typing a
PRINT LINE statement in immediate mode:

"'C

Ready

PRINT LINE
300

Use the CONT command, the CCONT command, or an immediate mode
GOTO statement to continue program execution.

Notes

1. If a multi-statement line is being executed when CTRL/C interrupts a
program, you cannot determine where in the line the program stopped.

2. Special programming techniques are available to prevent program
interruption by CTRL/C. See the RSTS IE Programming Manual .

6.5 Controlling Terminal Output

Sometimes you may want to stop and restart output to your terminal while
a program is running without stopping program execution. Several control
keys allow you to do this.

6.5.1 Stopping Output with CTRL 10

CTRL/O stops output to the terminal without stopping program execution.
The program continues to produce output, but the system discards it. The
system often, but not always, displays the Ready prompt when the program
is finished.

If you want to resume terminal output before the program is finished run
ning, press CTRL/O again.

A program cannot determine whether a CTRL I 0 has been entered at the
terminal. However, there is a system function call that cancels the effect
of a CTRL I 0 that has been entered. Refer to the RSTS IE Programming
Manual for more information.

6.5.2 Suspending and Resuming Output with CTRL/S
and CTRL/Q

If your terminal has the STALL characteristic set (most video terminals
do), you can use CTRL/S and CTRL/Q to suspend and resume terminal
output while a program is running. Press CTRL/S to suspend output; press
CTRL/Q to resume it.

Immediate Mode and Program Debugging 6-13

The system handles CTRL/S and CTRL/Q differently than CTRL / O. The
system saves program output after you press CTRL I S instead of discarding
it. Thus, all output is displayed after you press CTRL I Q. If the program
finishes executing after you press CTRL I S, the system does not display the
Ready prompt until you press CTRL I Q.

(See the RSTSIE System User's Guide for information about the STALL
characteristic.)

6.5.3 Suspending and Resuming Output with the NO SCROLL Key

The NO SCROLL key on the VT100 terminal performs the same function
as CTRL/S and CTRL/Q. The terminal STALL characteristic must be set.
Press NO SCROLL to suspend terminal output while a program is running;
press NO SCROLL again to resume terminal output.

(See the RSTS IE System User's Guide for information about the STALL
characteristic.)

6.6 Getting a Cross-Reference Listing - The BPCREF Program

The BPCREF (BASIC-PLUS cross reference) program is a useful debug
ging tool for large and complex programs. BPCREF produces a cross
reference listing of a translated BASIC-PLUS (.BAC) program. The default
listing includes variables, line number references, and some statistical
data. You can ask BPCREF to include the source file in the listing, print
local or global references, and queue the output to the line printer spooler.

The references in the BPCREF listing can help you find errors in your
program and assist you in modifying your code. For example, local
and global references can be useful when you segment a BASIC-PLUS
program into chainable modules or convert a BASIC-PLUS program to
BASIC-PLUS-2.

BPCREF works only on BASIC-PLUS translated images (that is, .BAC
files). It does not work on BASIC-PLUS source files or BASIC-PLUS-2
object code or task images.

6.6.1 Running BPCREF

Check with your system manager to find out where BPCREF is installed. If
it is installed in the system library account, type the following command to
run it:

RUN S6PCREF

BPCREF prints a header line and prompts you for input:

6PCREF C o ftlftl an d?

~14 Immediate Mode and Program Debugging

You need to specify the files to be processed. Type the command in the
format:

output.crf = input.bac [,input.bas] [/ switches]

where:

output.crf is the cross-reference listing file.

input.bac is the translated file to process.

input.bas is the source file to include in the listing.

I switches are one or more switches that specify the action to be taken on
the files.

You need not specify the entire command line as shown; there are defaults
for both file names and types. Note that you can use the ISOURCE switch
to include a listing of the .BAS file if it has the same file name and is
located in the same account as the .BAC file. Otherwise, you must specify
the source file in the BPCREF command. Table 6-2 shows several ways to
enter the BPCREF command and describes the result.

Table 6-2: BPCREF Command Formats

Format Result

filel BPCREF examines filel.BAC and produces an output file with the
same name and the file type .CRF.

filel = file2 BPCREF examines file2.BAC and produces an output file named
filel.CRF.

filel,file2 BPCREF examines filel.BAC; includes the source listing of
file2.BAS in the output file filel.CRF.

filel = file2,file3 BPCREF examines file2.BAC; includes in the output file filel.CRF
the source listing of file2.BAC, which is in file3.BAS.

The BPCREF command switches, listed in Table 6-3, let you print the
listing on the line printer and tailor its format and contents. You can
abbreviate switches to one or more characters. Table 6-3 shows the
required number of characters for each switch; optional characters are
inside square brackets. If you use an undefined or incorrect switch in a
command that does not include the I QUEUE switch, BPCREF prints a
warning message and ignores the undefined switch. If you use an undefined
or incorrect switch in a command that includes the I QUEUE switch,
BPCREF passes the undefined switch to the spooling program and notifies
you with a message.

When you use the IQUEUE switch, the output file is queued to the default
line printer, LPO:. However, you can direct BPCREF output to a different
printer by specifying it as the output file, for example, LPl: = filel I Q or
LPl: = file 1. The first command queues filel to LPl:; the second command
sends filel directly to LPl:.

Immediate Mode and Program Debugging 6-15

6-16

Table 6-3: BPCREF Command Switches

Switch Format

IHEL[P] Displays information about BPCREF command formats.

INOD[ELETE] Tells the spooling program not to delete the output files after printing.

INOH[EADER] Omits header lines in the output file. The resulting .CRF file is more
suitable as input to the FILCOM program.

IP[AGE]:nnn Specifies nnn as the number of lines per page to print in the output
listing. Sixty lines per page is the default.

IQ[UEUE] Automatically queues the output file to the line printer. The output
file is deleted after printing unless you use the INODELETE switch.

IS[OURCE] Includes the source file in the output file. Use this switch when the
.BAS file is in the same account and has the same file name as the
.BAC file., Otherwise, specify the source file in the BPCREF command.

IW[IDTH]:nnn Sets the width of the cross reference listing to nnn columns per line.
The default width is 132 columns; the minimum width is 72 columns.

IGL[OW]:nnn Used as a pair, these switches specify a global listing. BPCREF prints
IGH[IGH]:nnn line numbers and variables referenced both inside and outside the

program boundaries indicated by the line numbers nnn. BPCREF does
not print line numbers or variables referenced only inside or outside
the boundaries. The default value for IGL is 0 and the default value
for IGH is 32767.

ILL[OW]:nnn Used as a pair, these switches specify a local listing. BPCREF prints
I LH[IGH]:nnn the line numbers and variables referenced inside the program bounda-

ries indicated by the line numbers nnn. BPCREF does not print line
numbers or variables referenced outside the boundaries or referenced
both inside and outside the boundaries. The default value for ILL is 0
and the default value for ILH is 32767.

INOC[REF] Omits the full cross reference listing. Use it when you want only a
local or global listing.

6.6.2 Output Listing Contents

BPCREF produces an output file that contains:

• An ordered and cross-referenced list of line numbers and variables in the
translated image and the line numbers on which they are referenced

• A list of line numbers and variables whose use is questionable

• A statistical summary

If you include the source file in your listing, it is printed at the beginning of
the output file.

Figure 6-1 shows a cross-reference listing of the octal-to-decimal conver
sion program used in the debugging example. (The bug was not corrected.)
The following command was used to produce this listing:

BPCREF COMMand? OCTOEC/WIOTH:7Z

Immediate Mode and Program Debugging

The IWIDTH switch set the listing's width to 72 columns. BPCREF placed
the output in the file OCTDEC.CRF.

Figure 6-1: Sample CrossDReference Listing

Header Line

(

Cross Reference Listinl of OCTDEC on 25-AIJI-81 1at 02:13 PM Pale 1

*I: 200 300

*' 800 200
*I: 800 100

"* 32787 800
D/:', 300@
ERL 800
ERR 810
L'X,
0%
S$
I) 'X,
Z/:',

200@
300@
200@
300@
300@

8 ',lariables
52 Narlle bytes

8 Total tiflle

K-"'Iords Reserved
Data 2.41
Code .58

Total 3.00

500 800

810
400 400@ 500
810

200 300
300@ 400
200 300 800
300 300 400
300 400

33 References
150 Code bytes

4 CPU tirlle

Used
1.37

.24
1 .81

Free
1.05

.34
1.39

400@ 400

15 Stateillents

The following sections describe each part of the listing.

6.6.2.1 Header line

Cross-Reference
Table

Statistical Data

Each page of the output file has a header line that contains the translated
program name, the current date and time of day, and a page number. Use
the INOHEADER switch to omit this line.

6.6.2.2 CrossaReference Table

A cross-reference table of line numbers and variables is printed under the
header line. Lines that start with a number sign (#) show references to line
numbers made in the program. If no lines in the program reference other
lines, this information is omitted.

For example:

200 300 500 900

This line means that line number 200 is referenced in lines 300, 500, and
900 of the OCTDEC program. Each of these lines contains a GOTO 200
statement.

Immediate Mode and Program Debugging 6-17

BPCREF prints cross-references to variables below the cross-references to
line numbers. Each line consists of a variable name followed by one or more
line numbers. The following codes (printed after line numbers) show the
kind of references to variables:

@ Destructive reference The reference to the variable on the line
changed the value of the variable.

Definition

For example:

o 'x, 300@ £100

A DIM statement or function defines the
variable.

£l00@ 500

This line means that the variable D% is referenced once in lines 300 and
500 and twice in line 400. The value of D% changes in references marked
with the @ symbol.

6.6.2.3 Statistical Data

The last part of BPCREF's output, the statistical data, includes:

• The number of variables in the code

• The number of references to line numbers and variables

• The number of statements in the code

• The number of bytes needed to store variable definitions (name bytes)

• The number of internal code elements (code bytes)

• The elapsed and processor time (in seconds) used to create the output

BPCREF also prints the size (in K words) of the program's data and code
areas, and the amount of memory reserved, actually used, and free for
program expansion.

6.6.2.4 Optional List of Suspect Line Numbers and Variables

BPCREF determines, by cross-checking references to variables, whether a
variable may be incorrectly referenced (never read, never written, never
defined) and prints a list of these variables. The optional list of suspect line
numbers and variables is introduced by the line:

Please checK that the followin~ variables have been referenced properly:

This list points out possible typing errors in the source code. Note that
BPCREF cannot logically analyze the program but can find simple typing
and logic errors.

6-18 Immediate Mode and Program Debugging

BPCREF finds no suspect line numbers or variables in the octal-to-decimal
conversion program. However, the following program contains typing and
logic errors that BPCREF can find. Line 200 references line 90, which
does not exist, and two variable names, RADIUS and VOLUME, are
misspelled. Because VOLUME is misspelled, its value is not calculated. A
cross-reference listing that shows the suspect line numbers and variables
follows the program text.

100 EXTEND
200 ON ERROR GOTO 80 Error here
300 INPUT "Radius"; RADIUS
400 AREA = PI * RADIUS· 2.0
500 VOLUEE = PI * RADIAS • 3.0 Errors here
800 PRINT "Area ="; AREA; "t VoluMe ="; VOLUME
700 GOTO 300
888 END

Cross Reference Listing of DEMO on 2S-Aug-81 at 02:30 PM

80 200
300 700
AREA 400@ 800
PI 400 500
RADIAS 500
RADIUS 300@ 400
VOLUEE SOO@
VOLUME 800

Please check that the following variables have been referenced properly:
80 RADIAS VOLUEE VOLUME

6.6.2.5 Global and Local Listings

Global and local listings let you divide a program into two regions and
print listings of variable references that indicate whether the reference is
inside one region (local) or common to both (global). Such listings are useful
if you plan to segment the program into chainable modules or convert the
program to BASIC-PLUS-2.

To request a global or local listing, use the global (I GL and I GH) or local
(ILL and ILH) switches on the BPCREF command line. Global and local
listings follow the full cross-reference listing. Each global or local listing
you request appears on a separate page. Statistical information is printed
after global and local listings. (If you want only a local or global reference
listing, specify the INOCREF switch to omit the full reference listing.)

You can combine the global and local switches to get a listing of both types
of references. For example:

BPCREF cOMMand? OCTDEC/GL:300/GH:400/LL:300/LH:400/W:72

Immediate Mode and Program Debugging 6-19

0%
L%
S$

o "X.
V "X.
Z"X.

Cross

200

This command adds the following information to the sample listing of the
octal-to-decimal conversion program:

Reference Listin!t of OCTDEC on 25-Au!t-81 at 02: 18 PM Pa!te 2

Global ran !te is 300 to 400

300 500 800
300@ 400 400@ 500
200@ 200 300
200@ 200 300 800

This global listing means that line number 200 and the variables D%, L%,
and S$ are referenced both inside and outside the global range, line
numbers 300 through 400 in the program. References marked with the @
symbol are destructive. All other variables in lines 300 through 400 are
referenced only inside the global range.

Cross Reference Listin!t of OCTDEC on 25-Au!t-81 .t 02:18 PM Pa!te 3

300@
300@
300@

Local ran!te is 300 to 400

300@
300
300

400
300
400

400 400@ 400

This local listing means that the variables 0%, V%, and Z% are referenced
only inside the local range 300 through 400. References marked with the @
symbol are destructive. No line numbers are locally referenced in this
range.

When more than one global or local switch of the same boundary type
appear on the command line, BPCREF uses the last specification. For
example:

BPCREF COMMand? OCTDEC/GL:30/GL:20

BPCREF uses line number 20 as the global reference lower boundary.

6.6.3 Error Messages

BPCREF displays error messages if you give incorrect input or if it finds
fatal or unexpected conditions during processing. The messages are listed
and described in Table 6-4. The first character of each message shows the
severity of the error. The % character indicates a warning; BPCREF contin
ues processing but may not produce the results you expect. The? character
indicates a fatal error; BPCREF cannot finish processing and returns you to
system command level.

6-20 Immediate Mode and Program Debugging

Table 6-4: BPCREF Error Messages

?BPCREF version fatal error mmm at line nnn - text

BPCREF or its auxiliary module BPCRFl encountered the condition described by
RSTS IE error number mmm while executing an operation at line number nnn.
BPCREF cannot continue. (Error numbers are listed in Appendix C.)

?Can't open filename - text

BPCREF cannot access the named file because of the condition described by the
RSTS/E error text.

?Command error - text

While processing the command you entered, BPCREF encountered the RSTS/E error
described in the text. BPCREF prints a help message and redisplays the BPCREF
Command? prompt.

%Correct prime - nnn

BPCREF has been incorrectly modified to change the variable table size. See your
system manager.

?Could not chain to filename - text

BPCREF must chain to the auxiliary module BPCRFl described by filename. The
RSTS/E error is printed in text. See your system manager.

%Illegal width, minimum = 72

You specified a value in the IWIDTH switch that is less than the allowed minimum.
BPCREF sets the width to the minimum (72 columns) and continues processing.

?filename is not compiled BASIC-PLUS program

The file indicated by filename is not a valid BASIC-PLUS translated image.
BPCREF cannot process a source file, task image, or any other type of file.

?Maximum memory exceeded

Because of the high number (or great length) of variable names, the BPCREF varia
ble table overflowed. Subdivide the program and process each module separately.

?filename must be on disk

The file named in filename is not on a disk device. BPCREF processes only disk files.

?Please run BPCREF

You tried to run the BPCRFl module, which is part of the BPCREF program.
BPCRFl prints this message and returns you to system command level.

%Reference table full

An internal table is full. BPCREF continues processing but loses some data. Subdi
vide the program and process each module separately.

%Unknown compiled code nn at line mm

BPCREF encountered a BASIC-PLUS operation code (nn) that it did not recognize.
BPCREF continues processing but it may lose some data or output incorrect data (for
example, the program may miss a variable reference at this point).

%Unknown switch(es), text

You specified an undefined switch in a BPCREF command without the IQUEUE
switch. BPCREF ignores the switch and continues processing.

(continued on next page)

Immediate Mode and Program Debugging 6-21

6-22

Table 6-4: BPCREF Error Messages (Cont.)

%Unknown switch(es), text will be passed to queue manager

You specified an undefined switch in a BPCREF command containing the IQUEUE
switch. BPCREF passes the information in "text" to the spooling program.

% Variable table full

BPCREF can process a maximum of 421 variables (plus line numbers used in GOTO
and GOSUB statements). Decrease the number of variables in the program and try
again, or subdivide the program and process each module separately. Note that the
system manager can increase the maximum number of variables that BPCREF can
process.

Immediate Mode and Program Debugging

n PART II
Elementary

Language
Features

Chapter 7
Building a Program

This chapter describes the structure and format of BASIC-PLUS programs.
It describes line numbers, statements, remarks, and comments, and
explains the difference between EXTEND and NOEXTEND format.

7.1 Sample BASIC-PLUS Program

The program in Figure 7-1 is written in the BASIC-PLUS language, using
EXTEND format. It illustrates the syntax of the language, the format of
statements, and the appearance of terminal output.

The program calculates totals from random dice rolls. When you run the
program, you enter the number of dice per roll and the number of rolls.

7.2 Parts of a Program

A BASIC-PLUS program consists of lines of statements that contain
instructions. Each line starts with a line number.

7.2.1 Line Numbers

Line numbers, which can range from 1 to 32767, specify the order in which
statements are to be executed. You can enter lines in any order when you
type the program into the system; BASIC-PLUS always keeps the program
in order by line number.

7-1

Figure 7- 1: Sample BASIC-PLUS Program

LISTNH
50 E){TEND
100 RANDOM I ZE &:

!THIS IS A RANDOM DICE ROLL ROUTINE &
!THE USER CAN SPECIFY HOW MANY DICE TO BE IN &
!EACH ROLL AND HOW MANY ROLLS ARE TO BE MADE. &
IWHETHER TO PRINT THE TOTAL OF EACH ROLL IS ALSO &
!UNDER USER CONTROL

110 PRINT 'THIS PROGRAM GIVES RANDOM DICE ROLLS' &
\ PRINT 'HOW MANY DIES IN EACH ROLL' ; &
\ INPUT N &:
\ PRINT 'HOW MANY ROLLS' ; &
\ INPUT D &:
\ PRINT 'IF YOU WANT THE TOTAL OF EACH ROLL , TYPE Y'; &
\ INPUT R$ &:
\ PRIN T

120 FOR J = 1 TO D &
\ PR I NT 'THE';N ; ' DIES OF ROLL';J ; 'ARE :' ;

130 FOR I 1 TO N &
\ LET A%=IINTI6 *RND) + 1) &
\ LET B%=A% + B% &
\ PRINT A'X, ; &:
\ NE){T I

lao IF R$ = 'Y' THEN PRINT ' - --TOTA L OF RO LL =';B'X,
150 PRINT &:

\ LET B'X, = 01., &:
\ NE){T J

32767 END

RUNNH
THIS PROGRAM G I I,IES RANDOM DICE
HOW MANY DIES IN EACH ROLL? 5
HOW MANY ROLLS? 3
I F YOU WANT THE TOTAL OF EACH

THE 5 DIES OF ROLL ARE : a 2

THE 5 DIES OF ROLL 2 ARE : 6 5

THE 5 DIES OF ROLL 3 ARE: 5 5

Read}'

RUNNH

ROLLS

ROLL,

a a

a

a 6

THIS PROGRAM GIVES RANDOM DICE ROLLS
HOW MANY DIES IN EACH ROLL? 2
HOW MANY ROLLS? 5

TYPE Y? Y

3 ---TOTAL

5 ---TOTAL

5 ---TOTAL

IF YOU WANT THE TOTAL OF EACH ROLL, TYPE Y? N

THE 2 DIES OF ROLL ARE: 2 3
THE 2 DIES OF ROLL 2 ARE: a a
THE 2 DIES OF ROLL 3 ARE : a 3
THE 2 DIES OF ROLL a ARE: 3 6
THE 2 DIES OF ROLL 5 ARE : 3 5

Read}'

7-2 Building a Program

OF

OF

OF

ROLL

ROLL

ROLL

(~

17

21

25

Line numbers also:

• Let you change the order in which statements are executed. You can
include statements in a program to make execution branch or loop around
parts of the program. (See the sections on the GOTO, GOSUB, and
IF-THEN statements in Chapter 9 for more information.)

• Help you debug and edit programs. BASIC-PLUS debugging features let
you stop execution at any line in a program, examine variables and mod
ify code, and then resume execution at any line. BASIC-PLUS editing
features let you change one or more program lines without affecting
the rest of the program. (See Chapters 5 and 6 in Part I for more
information.)

When you first write a program, number lines in increments of 10 or more.
This practice lets you insert new lines when debugging or enhancing the
program. You may also want to start numbering at line 100 so you can
enter a large amount of code at the beginning of your program at a later
time.

7.2.2 Statements

You give instructions to BASIC-PLUS by writing statements. One or more
BASIC-PLUS statements follows each line number in a program. The
first word of each statement, called a keyword, identifies it, telling
BASIC-PLUS which operation to perform and how to treat the rest of the
statement.

The rest of a BASIC-PLUS statement consists of operators and operands.
An operator is a symbol that specifies the action to perform (such as + for
addition); an operand is the data on which to perform the action. Operands
can be constants, which have fixed values, or variables, whose values can
change during program execution. When you write statements, you com
bine operators and operands into expressions,_ which are groups of symbols
that BASIC-PLUS evaluates. Chapter 8 describes keywords, constants,
variables, operators, and expressions in more detail.

The sample program contains several different types of BASIC-PLUS
statements, which in turn contain expressions composed of constants, vari
ables, and operators. Consider these statements from line 130 of the sample
program:

LET 5X,=AX, + 5X,
PR I NT AX, i

The first statement, called an assignment statement, assigns a value to the
variable B%. The part of the statement to the right of the equals sign is an
arithmetic expression. It is composed of the variables A % and B% separated
by a plus sign, which specifies addition. During program execution,
BASIC-PLUS evaluates this expression by adding the current values of
A% and B% and then assigns their sum to B%.

Building a Program 7-3

The next statement, a PRINT statement, prints the current value of the
variable A % on the terminal. A % is the operand in this PRINT statement.

Other PRINT statements in the sample program have text as an operand.
For example:

PRINT 'THIS PROGRAM GIVES RANDOM DICE ROLLS'

This statement prints on the terminal:

THIS PROGRAM GIVES RANDOM DICE ROLLS

You must enclose text in quotation marks when you write this kind of
PRINT statement.

7.3 Line and Statement Formats

There are two types oflines in a BASIC-PLUS program: program lines and
terminal lines, also called text lines. Program lines always have a line
number. You can write a complete program line on one terminal line or you
can continue a program line over several terminal lines. For example:

150

32767

PRINT &m
\ B'X. = 0 &:m
\ NE)<T Jm
ENDm

Line 150 is a program line that is continued over three terminal lines. The
first two terminal lines in line 150 end with an ampersand (&) followed by
the RETURN key. This sequence indicates that the program line is contin
ued on the next terminal line. The last terminal line in line 150 ends with
just the RETURN key; this indicates the end of the program line. Line
32767 is a complete program line on one terminal line.

The simplest way to format a program is to place a single statement on
each program line. However, BASIC-PLUS lets you place multiple state
ments on a single program line, and it also lets you continue a single
statement on successive terminal lines.

7.3.1 Multi-Statement Lines

To write multiple statements on a single program line, end each statement
(except the last) with a backslash (\).

The following examples show two ways to write a program line that con
tains three statements. In both examples, all three statements (LET,
PRINT, and IF-THEN) are part of line 20 of the program. The first exam
ple uses a single terminal line; the second uses three terminal lines:

20 LET X=X+1. \ PRINT X ,Y ,Z\ IF Y=2. THEN GoTO 10m

20 LET X=X+1. &m
\ PRINT X,Y,Z &m
\ IF Y=2. THEN GoTD 10m

7-4 Building a Program

Writing each statement on a separate terminal line makes your program
easier to read. In addition, if you use EXTEND mode, you can place a
comment after each statement (see Section 7.4).

7.3,2 Multi-line Statements

You continue a single BASIC-PLUS statement on successive terminal lines
by ending each terminal line with the LINE FEED key (in both EXTEND
and NOEXTEND modes) or an ampersand (&) character followed by the
RETURN key (in EXTEND mode only). The ampersand/RETURN key
combination is preferred. For example:

10 LET W7=(W-X4*31*(Z-A/@
(A-81-17)@)

10 LET W 7 = (W -)(4 * 3 I * (Z - A I &,@)
(A-8)-171@)

These statements are the same as:

10 LET W7=(W-xa*31*(Z-A/(A-81-17)@)

You cannot separate parts of a language keyword, a constant, a variable
name, or a line number when you continue a statement. The following
examples show correct and incorrect statement continuation. In the exam
ples, Ai is a variable name and 100 is a line number. The first incorrect
example inserts a break in the variable name; the second incorrect example
inserts a break in the line number.

Correct

1 0 I F A 1 = o. &@)
THEN GOTO 100

incorrect

10 IF A &@)
1=0. THEN GOTO 100@)
?Illelal conditional clause

10 I F A 1 = O. THE N GOT a 1 &,@)
00
?Modifier error at line 10

Any illegal statement produces an error message.

BASIC-PLUS recognizes several phrases as single keywords that cannot be
broken by a line continuation. These phrases are:

GO TO
GO SUB
ON ERROR GO TO
INPUT LINE
NO EXTEND

AS FILE
FOR INPUT AS FILE
FOR OUTPUT AS FILE
FILE SIZE

MAT READ
MAT PRINT
MAT INPUT
MAT LET

Building a Program 7-5

Note that besides indicating continuation, the ampersand/RETURN key
also signals the end of a comment. The LINE FEED key indicates continua
tion only; it does not signal the end of a comment. See Section 7.4 for more
information.

1.3.3 Spaces and Tabs

Spaces and tabs make programs easier to read. Use spaces between line
numbers and statements. Also use spaces between parts of a statement. For
example:

10 LET X = '1'*2 + 1

10 LET)-(='(*2+1

These two LET statements are both valid, but the first is easier to read
than the second.

You use spaces differently in EXTEND and NOEXTEND mode formats.
See Section 7.5.2 for details.

The following example shows use of tabs:

2000 FOR K=l TO 3
2010 FOR I ::: i TO 10
2020 FOR J=l TO 10
2030 A (I ,J) = 1</(I+J-l)+A(I,J)
2040 NE){T J
2050 NE)<T I
2060 NE)<T K
32767 END

This example shows how tabs can make a program with nested FOR loops
easier to read. FOR loops are used in programs to perform operations repet
itively; each FOR loop starts with a FOR statement and ends with a NEXT
statement. Nesting means placing one FOR loop inside another FOR loop.
(FOR loops and nesting are explained in Chapter 9.)

7.4 Remarks and Comments

It is good programming practice to document a program as you develop it
by including remarks and comments in the program. For example, the
following kinds of information are useful to someone reading or modifying a
program:

~ The name and purpose of the program

CI How to use the program

G How certain parts of the program work

• Expected results at various points in the program

7-6 Building a Program

You can insert this kind of information into a program with the REM
statement and the exclamation point (!). Messages in REM statements are
called remarks; those after the exclamation point are called comments. For
example, line 100 of the program shown in Figure 7-1 contains several
comments that describe the program:

100 RANDOMIZE &:
THIS IS A RANDOM DICE ROLL ROUTINE &:
THE USER CAN SPECIFY HOW MANY DICE TO BE IN &:
EACH ROLL AND HOW MANY ROLLS ARE TO BE MADE. &:
WHETHER TO PRINT THE TOTAL OF EACH ROLL IS ALSO &:
UNDER USER CONTROL

Remarks and comments are printed when you list your program but they
do not affect program execution. They can, however, affect program size.

REM statements can contain any printing characters on the keyboard.
In EXTEND mode, the word REM must be followed by a space or tab.
BASIC-PLUS ignores, but includes in the line, anything that follows the
letters REM. You can use the line number of a REM statement in a GOTO
or GOSUB statement as the destination of a branch in program execution
(see Sections 9.3 and 9.9). Typical REM statements are:

10 REM - THIS PROGRAM COMPUTES THE
11 REM - ROOTS OF A QUADRATIC EQUATION

Comments can be placed on the same line as statements. The exclamation
point (!) ends the executable part of the line and begins the comment part of
the line. When a line begins with an exclamation point, BASIC-PLUS
treats the entire line as a comment. In the next example, BASIC-PLUS
executes the LET statement on line 125 and the PRINT statement on line
130 but does not execute the PRINT statement on line 140:

125 LET A = 2+4*SQR(CI !SET A EQUAL TO INITIAL VALUE
130 PRINT A/2 + 1 !PRINT SECOND CALCULATED VALUE
140 !COMMENT \ PRINT "THIS LINE IS A COMMENT"

In every statement except the DATA statement, BASIC-PLUS ignores
everything on the line after the exclamation point. An exclamation point
must not appear on the same program line as a DATA statement unless it
is one of the items in the DATA statement list. The exclamation point
becomes part of the data. (See Chapter 9 for a description of the DATA
statement.)

The following examples show four ways of putting the same information on
two lines. Lines 10 and 11 are REM statements. Line 20 is one REM state
ment broken into two lines with the LINE FEED key. Line 30 is one com
ment (begun with a "!") broken into two lines with the LINE FEED key.
Line 40 is one comment broken into two lines with ampersand/RETURN,
which is legal only in EXTEND mode.

Building a Program 7-7

10 REM THIS PROGRAM COMPUTES THE
11 REM ROOTS OF A QUADRATIC EQUATION

20 REM THIS PROGRAM COMPUTES THE @
ROOTS OF A QUADRATIC EQUATION

30 ! THIS PROGRAM COMPUTES THE @
ROOTS DF A QUADRATIC EQUATION

40 ! TH I S PROGRAM COMPUTES THE &:00l
!RooTS OF A QUADRATIC EQUATIDN

Note that besides indicating continuation, the ampersand/RETURN key
also signals the end of a comment. This EXTEND mode feature lets you
alternate comments and code over several text lines. For example:

10 E)<TEND
20 PRINT "This exaMPle"

\ PRINT "illustrates"
! CO IMII e n t &:00l
!CoMMent &00l

\ PRINT "how COMMents and
\ PRINT "can be used with

s tat e III e n t s " ! COllI III e n t &00l
&:lRETURN in E)<TEND Mode."OOl

30 END

When you run this program, it prints:

This exalllPle
illustrates
how COMMents and stateMents
can be used with &/RETURN in EXTEND Mode.

BASIC-PLUS begins to recognize characters as statements instead of com
ments when it encounters the ampersand /carriage return. Thus, when you
use this sequence to continue a comment on the next terminal line, you
must start the continuation line with an exclamation point. Otherwise, the
line will be interpreted as an executable statement. For example:

10 E)<TEND
20 ! TH I S PROGRAM COMPUTES THE &:00l

! ROOTS OF A QUADRAT I C EQUAT I DN &:00l
PRINT "ENTER THREE COEFFICIENTS" 00l

RUNNH
ENTER THREE COEFFICIENTS

Ready

Unlike the ampersand/RETURN key, the LINE FEED key does not signal
the end of a comment. Thus, if you use the LINE FEED key for continua
tion instead of the ampersand/RETURN key (in either EXTEND or
NOEXTEND mode), BASIC-PLUS treats all characters between the excla
mation point and the end of the program line as a comment. For example:

10 PRINT "This is a statelllent," !COllllllent@
\ PRINT "but the rest of this pro~raM line is a COMMent."

20 END

7-8 Building a Program

When you run this program, only the first PRINT statement is executed.
Thus, the program prints:

This is a stateMent.

7.5 EXTEND and NOEXTEND Modes

BASIC-PLUS has two modes of operation: EXTEND and NOEXTEND.
The mode you work in determines which BASIC-PLUS features you can
use and how you must format your programs.

The examples in this manual are written to execute in EXTEND mode, the
recommended mode of operation. This section explains how to change
modes and describes the differences between EXTEND and NOEXTEND
program formats.

7.5.1 Changing Modes

The system manager determines which mode is the default on each system.
However, you can change modes at any time by using EXTEND or
NOEXTEND as a command or a program statement. Enter EXTEND or
NOEXTEND as a command to set the mode for the current terminal ses
sion; use EXTEND or NOEXTEND as the first statement in a program to
set the mode for the current program.

The following examples show use of EXTEND as a command and a state
ment. These examples assume you are working on a system where
NOEXTEND is the default mode.

Here the EXTEND command puts you in EXTEND mode:

EXTEND

Ready

You stay in EXTEND mode until you either:

• Enter the NOEXTEND command

• Use the NOEXTEND statement in your current program

• Run an executable (not a source) program

• Use a CCL or DCL command

• Switch to another keyboard monitor

• Log out

In the next example, you use EXTEND as a program statement:

NEW PRDGl

Ready

100 EXTEND

Building a Program 7-9

You are in EXTEND mode while this program is your current program.
However, the system puts you back in NOEXTEND mode if you run
another program (with RUN, a eCL command, or a DeL command), create
a program with NEW, or retrieve an existing program with OLD.

While BASIC-PLUS allows you to change modes within a program, this
practice is not recommended. Write an entire program in either EXTEND
or NOEXTEND mode - the program will be much easier to debug and
maintain.

It is recommended that you work in EXTEND mode. You can use features
not available in NOEXTEND mode, such as long variable names. In addi
tion, programs written in EXTEND format are more compatible with other
DIGITAL versions of BASIC. However, EXTEND format rules are more
stringent than NOEXTEND format rules.

7.5.2 EXTEND and NOEXTEND Program Formats

Figures 7 -2 and 7 -3 show the differences between EXTEND and
NOEXTEND format. Figure 7-2 is line 300 of the program OCTDEC.BAS
written in NOEXTEND format; Figure 7-3 is the same line written in
EXTEND format.

Figure 7-2: NOEXTEND Format

300 0% = -1% \ 0% = 0%
\ FOR Z% = L% TO 1% STEP -1%
\ Oy'," 0'7" + 1 'X,
\ In, '" ASCII (RIGHT(S$ iZ'l,,»
\ IF V% < 48% OR V% > 55% THEN

PRINT 'INt,IAUO INPUT f

\ GOT020!)
I initialize order and aCCUMulator for each dilit

frOM the low order to the hilh order.
increment order,
pick UP next dilit,
if out of ranle: asK for more input
and print Messale.

Figure 7-3: EXTEND Format

300 ORDER% = -1% ! initialize order &
I and aCCUMulator & \ ACCUMULATOR% = 0%

\ FOR Z% LNGTH% TO 1% STEP -1% for each dilit from &
the low order to &

I the hilh order &
\ ORDER% = ORDER% + LX increment order &
\ VALUE% = ASCII(RIGHTISS,Z%» I picK UP next dilit &
\ IF VALUE% < 48% OR VALUE% > 55% THEN if out of ranle: &

PRINT "INVALID INPUT" print messale &
\ GOTO 200 I ask for More input &

7-10 Building a P:rogram

EXTEND and NOEXTEND formats differ in their:

• Rules for naming variables and functions. (A function is a named set of
instructions.)

4» Use of spaces and tabs.

;» Line continuation.

4» Placement of comments.

7.5.2.1 Variable and Function Names

In EXTEND format, a variable or function name consists of a letter fol
lowed by 0 to 29 characters from the set:

Letters
Digits
Period

(A,B,,..,Z and a,b, ... ,z)
(0,1, ... ,9)
(.)

Some examples are RECORD.NUMBER, BIG47, J.I0. If you use an exist
ing BASIC-PLUS keyword or built-in function name, BASIC-PLUS
returns the error "%Illegal symbol." (Appendix A lists all BASIC-PLUS
keywords.)

In NOEXTEND format a variable or function name consists of a letter
optionally followed by a digit. Some examples are A, AI, B4.

Note that in both EXTEND and NOEXTEND formats, you add a percent
(%) sign suffix to the variable name to indicate an integer variable; you add
a dollar ($) sign suffix to the variable name to indicate a string variable.
For example:

AI.,
A$

RECORD. NUMBER'X,
ADDRESS$

See Section 8.3.2 for more information.

7.5.2.2 Spaces and Tabs

Spaces and tabs are significant in EXTEND format but not in NOEXTEND
format. Thus, the following statements are illegal in EXTEND mode:

10GOT0200

10 L ET){

This statement needs a space between line number 10
and GOTO and between GOTO and line number 200.
Write the statement as "10 GOTO 200".

'{ * 2 + 1 The keyword LET contains embedded spaces that must
be removed. In addition, a space must be inserted
between the keyword LET and the variable name X.
Write the statement as: "10 LET X = Y*2 + 1".

The next statement is valid in both EXTEND and NOEXTEND mode but
has a different action in each:

10 LETX = Y*2 + 1

Building a Program 7-11

In EXTEND mode, this statement assigns the value of (Y *2 + 1) to the
variable named LETX. In NOEXTEND mode this statement assigns the
value of (Y *2 + 1) to the variable named X.

1.5.2.3 Continuation Lines

In EXTEND format you can continue a program line onto the next terminal
or text line with either the LINE FEED key or the ampersand/RETURN
key combination. The ampersand /RETURN key combination is the pre
ferred method because:

• It is compatible with BASIC-PLUS-2

Ii It allows you to alternate comments and statements on a program line
that continues over several text lines, as shown in Figure 7-3

In NOEXTEND format you must use the LINE FEED key to continue a
program line onto the next terminal or text line.

1.5.2.4 Comments

When you write a program line on one terminal line, the rules for placing
comments and statements on the same line are the same in EXTEND and
NOEXTEND modes. You can place a comment after a statement, but you
cannot place a statement after a comment.

When you continue a program line over two or more text lines, however,
the rules for using comments differ depending on whether you indicate
continuation with the ampersand/RETURN key combination, legal only in
EXTEND mode, or the LINE FEED key, legal in both EXTEND and
NOEXTEND modes.

You can alternate comments and statements on the same line, as shown in
Figure 7-3, only if you use the ampersand/RETURN key combination (not
the LINE FEED key) to indicate continuation. See Section 7.4 for details.

7-12 Building a Program

Chapter 8
Building Statements

Chapter 7 introduced you to BASIC-PLUS statements; this chapter
describes the elements that statements are composed of: keywords, data,
and expressions. In addition, this chapter summarizes the BASIC-PLUS
character set, which you use to specify these elements.

8.1 BASIC-PLUS Character Set

BASIC-PLUS uses the full ASCII character set. This set includes:

• The letters A through Z, in both upper- and lowercase

• The digits 0 through 9

• Special characters, such as the period (.) and the asterisk (*)

Appendix D lists the complete BASIC-PLUS character set. The appendix
includes special symbols and keys and lists ASCII character codes.

BASIC-PLUS treats upper- and lowercase letters the same except in string
data and ignores characters in REMARK statements and comments.

8.2 Keywords

The BASIC-PLUS language reserves a set of words and phrases for its own
use. These words and phrases are called keywords.

BASIC-PLUS keywords include:

• Statement names, such as PRINT and LET

• Built-in function names, such as SIN and TAN

• Built-in variable names, such as ERR and STATUS

• Option names, such as MODE and FILESIZE

8-1

8.3 Data

You cannot use BASIC-PLUS keywords as names for your own variables or
functions unless you modify them. For example, you cannot name a varia
ble FILE SIZE , but you can name it FILE.SIZE. Appendix A contains a
complete list of BASIC-PLUS keywords.

BASIC-PLUS has three types of data:

• Real data

• Integer data

• String data

Real data and integer data are numeric data; string data are character
data. BASIC-PLUS stores the three types of data using different internal
formats.

Real data are stored as floating-point numbers. (The term floating-point
refers to the decimal point.) Unlike integers, which are whole numbers,
real numbers can have a fractional part. You can specify a real number in
decimal format or in exponential format. Both formats are explained in
Section 8.3.1.1.

Floating-point numbers are stored in memory in either a two-word or four
word format, depending on which math package you have on your system.
The two-word format, called single-precision, provides six significant digits;
the four-word format, called double-precision, provides fifteen significant
digits. Floating-point numbers, and thus real data, can range in value from
10 A -38 to 10 A38.

By default, BASIC-PLUS prints numbers with more than six digits in
exponential or E format. BASIC-PLUS prints a minus sign after the E if
the exponent is negative (IE-09) and prints a space after the E if
the exponent is positive (IE 09). See Section 8.3.1.1 for a description of
E format.

Integer data are whole numbers without decimal points. Integers are stored
in memory in binary form. Each integer uses one word of memory.
BASIC-PLUS converts the binary integer to a decimal number before
returning its value to you. Integers can rahge in value from -32768 to
32767.

String data are stored as groups of ASCII characters. BASIC-PLUS treats
all the characters in a string as a unit. Each character in a string uses one
byte (half a word) of memory storage. BASIC-PLUS keeps track of the
length of a string as well as the characters it contains.

Table 8-1 summarizes the three data types.

8-2 Building Statements

Table 8-1: BASIC-PLUS Data Types

Data Type Internal Format Value Range

Real Two-word or four-word 10 ~-38 to 10 ~38
floating-point

Integer One-word binary -32768 to 32767

String ASCII format; one byte o to 32767 characters
(half-word) per character per string

All three types of data can be represented as constants or variables. Con
stants keep the same value throughout a program and are specified in the
program itself. Variables can change in value during program execution.
When you write expressions, you use constants and variables as operands.
The following sections describe constants and variables in more detail.

8.3.1 Constants

BASIC-PLUS has real, integer, and string constants,

8.3.1.1 Real Constants

A real constant is one or more decimal digits, either positive or negative,
with an optional decimal point. For example:

+2t
-3.875
1234.58
-123458
-.000001

These numbers are in decimal format. Although the decimal point is
optional, its use is recommended because it avoids unnecessary data
conversions and makes your program easier to read.

You can input large and small numbers using exponential format. This
mathematical shorthand uses the format:

\ ~ number E \ ~ n

where:

+ or - is the number's sign. The plus sign is optional, but the minus
sign for a negative number is required.

number is the number carried to a maximum of six decimal places
for single-precision or fifteen decimal places for double
precision.

Building Statements 8-3

E stands for "multiplied by 10 to the power of."

+ or- is the exponent's sign. The plus sign is optional, but the
minus sign is required.

n is an integer constant (the power of 10). It can be zero but not
blank.

For example:

.000123456
1234560000.
-12345678800.

can be written as
can be written as
can be written as

123456E-8
123456E4
-1.23456788E10

The E format is flexible; you can write .001 as lE-3, .01E-l, or 100E-5.

Note that, by default, BASIC-PLUS prints numbers with fewer than six
digits in decimal format and numbers with more than six digits in exponen
tial format.

8.3.1.2 Integer Constants

An integer constant is a whole number followed by a percent sign. For
example:

28X, -8'X.
3432'X, 1 X,
12345'X, 205X,

Integer constants can range in value from -327.67% to 32767%. Because the
largest integer has only five digits, BASIC-PLUS always prints integers in
decimal format.

8.3.1.3 String Constants

A string constant is a series of ASCII characters enclosed in single or
double quotation marks (called the string delimiter). Some examples of
string constants are:

"THE RECORD NUMBER ODES NOT EXIST"
'THIS PROGRAM GIVES RANDOM DICE ROLLS'
"4 BaYMeadow Drive"

Characters in string constants can be letters, numbers, spaces, tabs, or any
ASCII character except the string delimiter. BASIC-PLUS prints every
character between delimiters exactly as you type it in the source program,
including upper- and lowercase letters; tabs; special characters; and lead
ing, trailing, and embedded spaces. For example, these two string constants
are different:

"END-OF-FILE REACHED"
END-OF-FILE REACHED

S-4 Building Statements

"

BASIC-PLUS does not print the delimiting quotation marks when execut
ing the program. For example:

10 PRINT "END - OF-FILE REACHED"
20 END
RUNNH
END-OF-FILE REACHED

To print quotation marks, enclose single quotation marks inside double
marks or vice versa. For example:

10 PRINT 'FAILURE CONDITION: "RECORD LENGTH'"
20 END
RUNNH
FAILURE CONDITION: "RECORD LENGTH"

You cannot mix single and double quotation marks. The following is not a
valid string:

"Quotation MarKs do not Match'

BASIC-PLUS lets you omit the second quotation mark but not the first .
This string is valid:

"Second quotation MarK Missing

But this string is not valid:

First quotation MarK Missing"

A string can contain up to 32767 characters but is limited by the amount of
available memory. You cannot use the LINE FEED key or the & I RETURN
key combination to type a string on two or more terminal lines. To create a
string longer than a termInal line, use string concatenation, described in
Section 8.4.2, or other string operations described in Chapter 10. You can
also save long strings in disk files.

8.3.2 Variables

You specify constants as numbers or quoted strings; you specify variables
by name. A variable reserves a location in the computer's memory. The
variable names the location and lets you assign any legal number or string
to it. Each memory location can hold only one value at a time.

Depending on the operations you specify, the value of a variable can change
as each statement in your program is executed. BASIC-PLUS uses the
most recently assigned value when performing calculations. The value
remains the same until another statement assigns a new value to the
variable.

Building Statements 8-5

BASIC-PLUS sets all numeric variables equal to 0 and all string variables
equal to the null (empty) string before program execution. Thus, you need
to assign an initial value to a variable only when you want a different
value. However, it is always good programming practice to assign initial
values to variables at the beginning of the program.

BASIC-PLUS has real, integer, and string variables. The two types of
numeric variables, real and integer, reserve locations for numeric values.
String variables reserve locations for string values. All types of variables
can have subscripts. Subscripted variables break up memory into compart
ments and let you store data in arrays. (See Chapter 9.)

8.3.2.1 Naming Variables

All variable names must start with a letter and can be followed by up to 29
letters, digits, or periods (in EXTEND mode) or a single digit (in
NOEXTEND mode). Variable names cannot contain embedded spaces.

You add a percent sign (%) suffix to the variable name to define an integer
variable; you add a dollar sign ($) suffix to the variable name to define a
string variable. Real variable names have no suffix.

Note that variables with the same name but different suffixes are different
variables. For example, if you use A and A % in the same program,
BASIC-PLUS defines two variables: A, a real variable, and A%, an integer
variable. The next three sections describe each type of variable.

8.3.2.2 Real Variables

A real variable is a named memory location that stores a real (floating
point) number. For example:

C
Ml

L ••• 5
BIG47

IO.NUMBER
STORAGE.LOCATION.FOR.XX

If you assign an integer constant to a real variable, BASIC-PLUS converts
the integer to a real number. For example:

10 LET A lOX.
20 PRINT A
30 END
RUNNH

10

8.3.2.3 Integer Variables

An integer variable is a named memory location that stores a whole num
ber. An integer variable name ends with a percent sign (%). For example:

B%
A3%

C.8%
D6ETx.

8-6 Building Statements

RECORD. NUMBER'X,
COUNTER%

If you assign a real constant to an integer variable, BASIC-PLUS drops the
fractional portion of the constant; it does not round to the nearest integer.
For example:

6·X. = 5.7

BASIC-PLUS assigns the value 5 to the integer variable, not 6.

Use integer variables, not real variables, for working with whole numbers
in the range -32767 to 32767. Integers use less memory storage space than
floating-point numbers and are more efficient for the computer to process.

8.3.2.4 String Variables

A string variable is a named memory location that stores a string value. A
string variable name ends with a dollar sign ($). For example:

A$
T •• $

M2$
L.B$

EMPLOYEE.NAME$
TEXH

Strings have both value and length. BASIC-PLUS sets all string variables
to a default length of zero when it translates your program. During pro
gram execution, however, the length of a character string associated with a
string variable can vary from zero (a null or empty string) to 32767 charac
ters (including spaces).

8.4 Expressions

Expressions consist of operands (constants, variables, functions) separated
by arithmetic, relational, or logical operators. Depending on the data types
of the operands (real, integer, string), the three types of operators produce:

• Arithmetic expressions

• String expressions

• Relational expressions

• Logical expressions

Here are some examples of expressions:

PI * RADIUS ·2
FILENAME$ + "." + TYPE$
A < 6
(A < 6) AND (6 < C)

Arithmetic Expression
String Expression
Relational Expression
Logical Expression

Like a constant and a variable, an expression is a way to represent a value
in BASIC-PLUS. When you use an expression in a statement,
BASIC-PLUS evaluates or "solves" it, using the same kinds of rules you do
when you solve mathematical problems. After evaluating the expression,
BASIC-PLUS uses the result in program execution.

Building Statements S-7

In many BASIC-PLUS statements, you can specify either a constant, a
variable, a function, or an expression. (Functions are described later in this
manual.) The KILL statement, which deletes a file, is a good example. In
Chapter 5, you learned how to use KILL as an immediate mode statement;
KILL can also be used in a program.

When you write a KILL statement, you specify the file to be deleted as a
string. The string can be a string constant, a string variable, a string func
tion (see Chapter 10), or a string expression. For example:

10 KILL "TAXES.DAT"
20 KILL FILESPEC$
30 KILL FILENAME$ + ".DAT"

String Constant
String Variable
String Expression

The string constant in line 10 specifies the file directly; BASIC-PLUS
deletes TAXES.DAT every time this KILL statement is executed.

The string variable in line 20 refers to a location where a file specification
is stored. When this KILL statement is executed, BASIC-PLUS deletes the
file whose file specification is currently stored in FILESPEC$. Depending
on how the rest of the program is written, the contents of FILESPEC$ may
differ each time the program is run or each time this KILL statement is
executed during the same program run.

The string expression in line 30 contains both a string variable and a string
constant. When this KILL statement is executed, BASIC-PLUS evaluates
the string expression to determine which file to delete. The plus (+) sign
causes BASIC-PLUS to form a single string made up of the characters
stored in the variable FILE NAME $ followed by the characters ".DAT".
BASIC-PLUS deletes the file specified by this string. Like line 20, this
expression may cause a different file to be deleted each time the program
is run or each time this KILL statement is executed during the same pro
gram run.

Many statement descriptions in this manual indicate that you must supply
an expression. When you write these statements, you can use a constant, a
variable, a function, or an expression.

The following sections describe the four types of expressions in detail and
explain how BASIC-PLUS evaluates them.

8.4.1 Arithmetic Expressions

Arithmetic expressions are real or integer operands separated by arithme
tic operators. These expressions tell BASIC-PLUS to add, subtract, multi
ply, or divide numbers or to raise a number to a power, which is called
exponentiation. The five arithmetic operators are shown in Table 8-2.

8-8 Building Statements

Besides the circumflex (A), you can also use double asterisks (**) to denote
exponentiation. However, the circumflex is preferred because it is the stan
dard BASIC-PLUS symbol for exponentiation. Use of the circumflex
ensures compatibility with other versions of BASIC.

Table 8-2: Arithmetic Operators

Operator Example Meaning

+ A+B Adds B to A

- A-B Subtracts B from A

* A*B Multiplies A by B

/ AlB Divides A by B
~ KB Calculates A to the B power

The following examples show how BASIC-PLUS handles real and integer
data in arithmetic expressions. An operation on two numeric operands of
the same data type yields a result of that type. For example:

A% + B% produces an integer value.

A + B produces a real value.

An integer and a real quantity produce a real value. For example:

A * B% produces a real value.

6.87 * 5% produces a real value.

When you assign a value of one data type to a variable of a different data
type, BASIC-PLUS converts the value to the variable's data type. For
example:

A = 5'1. * 35'1.

Even though 5% and 35% are integer values, this statement assigns the
real value 175.0 to the real variable A.

In general, two arithmetic operators cannot occur consecutively in the same
expression. The exceptions are the unary plus and unary minus, which
specify that a number is positive or negative. For example:

A * +B is valid

A * -B is valid

A * (-B) is valid

A - * B is not valid

Because BASIC-PLUS assumes unsigned numbers are positive, the unary
plus is optional. You must use the unary minus to specify a negative
number.

Building Statements 8-9

8.4.2 String Expressions

String expressions are strings separated by the plus sign (+). The plus sign
concatenates (combines) the strings. For example:

10 C$ = "The street naMe" + " is Seashore Drive "
20 PRINT C$
30 END
RUNNH
The street naMe is Seashore Drive

You can use string expressions to:

• Create long strings

• Combine string constants and string variables

• Combine several string variables

8.4.3 Relational Expressions

A relational expression consists of two operands (constants, variables, func
tions, or expressions) separated by a relational operator. The relational
operator causes BASIC-PLUS to compare the two operands and determine
if the indicated relationship is true or false.

There are two types of relational expressions, numeric and string. Numeric
relational expressions compare numeric operands; string relational expres
sions compare string operands.

You use relational expressions in conditional statements (such as
IF-THEN statements and conditional FOR loops) and in statement modi
fiers to control the order of program execution. String relational expres
sions also let you sort string data into alphabetical order.

The following IF-THEN statement contains a relational expression that
controls program execution:

300 IF ANSWER$ = "YES" THEN GO TO 1000

When this statement is executed, BASIC-PLUS tests the current value
of the string variable ANSWER$. If ANSWER$ contains the value YES,
BASIC-PLUS evaluates the expression ANSWER$ = "YES" as "true" and
control goes to line 1000 in the program. If ANSWER$ contains any other
string value, BASIC-PLUS evaluates the expression ANSWER$ = "YES"
as "false" and control goes to the next line number in the program.

Relational expressions are evaluated as -1 if the relation is true and 0 if
the relation is false. These numbers are logical values. You need not
remember these values to use relational expressions; BASIC-PLUS uses
them to mean "true" and "false" and continues executing your program
accordingly. You do need to know these values, however, if you want to
process them in a program. (Chapter 11 explains how to process logical
values.)

S-lO Building Statements

The rest of this section describes relational expressions in detail and gives
more examples of how to use them.

8.4.3.1 Numeric Relational Expressions

Numeric relational expressions consist of numeric operands separated by
relational operators. When used with numeric operands, relational opera
tors compare the operands to determine if a numeric expression is true or
false.

Table 8-3 lists numeric relational operators.

Table 8-3: Numeric Relational Operators

BASIC-PLUS
Symbol

<

Example Meaning

A=B A is equal to B.

A <B A is less than B.

< = A < = B A is less than or equal to B.

> A> B A is greater than B.

>= A> = B A is greater than or equal to B.

<> A<>B A is not equal to B.

A = = B A is approximately equal to B.

The term "approximately equal to" means that the two quantities look the
same when you print them with the PRINT statement. Numbers are stored
internally at greater than 6 digits of precision but are rounded to 6 digits
for output. Two numbers that are identical when rounded to 6 digits of
precision are approximately equal (= =). These numbers may be close
enough in value for some calculations. By contrast, two numbers equal to
the internal limits of precision are truly equal (=).

The next example compares two real numbers:

10 INPU T "Enter a ()alue for A"iA
20 INPUT "Enter a ()alue for 6"i6
30 IF A = 6 THEN PRINT " A is e9ual to 6"
40 IF A < 6 THEN PRINT "A is less than 6"
SO IF A > 6 THEN PRINT "A is ~reater than 6"
32767 END

When you run this program, it prompts you to enter values for the real
variables A and B. It compares the two values and then prints one of three
messages depending on the values you entered. For example:

RUNNH
Enter a ()alue for A? lO.021Bm
Enter a ()alue for 6? lO.0211Bm
A is less than 6

ReadY

Building Statements 8-11

8.4.3.2 String Relational Expressions

St.ring relational expressions consist of string operands separated by rela
tional operators. The relational operators compare the value of the string
operands, which can be strings or string expressions. Like numeric rela
tional expressions, string relational expressions are evaluated as true or
false.

BASIC-PLUS uses the ASCII character collating sequence to determine
the relative character values (see Appendix D). ,It compares the strings
character by character, from left to right, until it finds a difference in
ASCII value. Because the ASCII collating sequence is an alphabetic
sequence, you can use string relational expressions to sort string data into
alphabetical order.

Table 8-4 lists string relational operators and their meanings.

Table 8-4: String Relational Operators

Operator Example Meaning

= A$ = B$ The strings A$ and B$ are equal, exept for possible trailing
spaces.

< A$ <B$ String A$ precedes string B$ in alphabetic sequence.

<= A$ <= B$ String A$ is equal to or precedes string B$ in alphabetic
sequence.

> A$ > B$ String A$ follows string B$ in alphabetic sequence.

>= A$ >= B$ String A$ is equal to or follows string B$ in alphabetic
sequence.

<> A$ <> B$ The strings A$ and B$ are not equal.

-- A$ == B$ The strings A$ and B$ are identical, including traiiing spaces.
That is, the strings have both the same length and character
composition.

BASIC-PLUS ignores trailing spaces in a string comparison, except when
you use the = = operator. When you use other operators, "YES" is the
same as "YES ".

Like numeric relational expressions, string relational expressions let you
control the order in which statements are executed. For example:

10 A$ = "ABC"
20 B$= "DEF"
30 IF A$ < B$ GDTD 60
40 PRINT A$
50 PRINT B$
60 END

8-12 Building Statements

When you run this program, BASIC-PLUS compares the first character in
each string to determine if A$ occurs first in ASCII collating sequence.
Because "A" precedes "D" in the ASCII table, A$ precedes B$ in the collat
ing sequence. Program control shifts to line 60 and program execution ends.
No values are printed.

If you change the program so that A$ is the string "DEF" and B$ is the
string "ABC", A$ no longer precedes B$ in the collating sequence. Program
execution continues at line 40. The program prints the values of A$ and B$
before execution ends. For example:

10 A$ = "DEF"
20 B$ = "ABC"
30 IF A$ < B$ GOTO 60
40 PRINT A$
50 PRINT B$
60 END
RUNNH
DEF
ABC

When BASIC-PLUS compares two strings of unequal length, it compares
the shorter string (length n) with the first n characters of the longer string.
When the first n characters of the strings are the same, the strings are
equal if the rest of the characters in the longer string are blanks. Other
wise, the longer string is greater than the shorter string. The following
example compares strings of equal and unequal lengths:

100 INPUT "Enter a liall.le for A$"iA$
200 INPUT "Enter a value for B$"iB$
300 IF A$ > B$ THEN &

PR I NT A$ i " COMES AFTER " i B$ &:
ELSE IF B$ > A$ THEN &

PR I NT A$ i " COMES BEFORE " i B$ &:
ELSE PRINT A$i " IS THE SAME AS "i B$

32767 END

When you run this program, it prompts you to enter values for the string
variables A$ and B$. It compares the two values and then prints one of
three messages depending on the values you entered. For example:

RUNNH
Enter a value for A$? ABC(fi@
Enter a value for B$? ABCDEF(fi@
ABC COMES BEFORE ABCDEF

Ready

RUNNH
Enter a value for A$? ABCDEF(fi@
Enter a value for B$? ABC(fi@
ABCDEF COMES AFTER ABC

Ready

Building Statements 8-13

RUNNH
Enter a value for A$? APPLE (8fl)
Enter a value for B$? APPLE(8fl)
APPLE IS THE SAME AS APPLE

Ready

A null string has a length of zero and is therefore less than any string of
length greater than zero. However, a null string is the same as a string of
blanks. Consider the following immediate mode example (the symbol 11 11

represents a null string):

IF "" = "
EQUAL

" THEN PRINT "EQUAL" ELSE PRINT "NOT EQUAL"

8.4.4 Logical Expressions

A logical expression contains either:

• One operand and a logical operator

• Two operands separated by a logical operator

Here are some examples of logical expressions:

(A < 0.) AND (B = 1.)
«A> B) OR (C > 0» AND AlB <> CID
NOT A

Logical expressions are valid wherever numeric expressions are valid.

There are two types of logical expressions: those with relational expressions
as operands and those with integers as operands. The two types of logical
expressions have different uses in BASIC-PLUS programming. This sec
tion describes logical expressions with relational expressions as operands;
see Chapter 11 for information on logical expressions with integers as
operands.

Logical expressions that have relational expressions as operands are like
relational expressions. BASIC-PLUS tests the relationship between the
two operands and evaluates the expression as true or false. The logical
operator determines what type of test BASIC-PLUS performs (see Table
8-5). Like relational expressions, this type of logical expression returns -1
for true and 0 for false.

You use this type of logical expression the same way you use relational
expressions; that is, in IF-THEN statements, conditional FOR loops, and
certain other statements to control the order in which program statements
are executed.

8-14 Building Statements

Table 8-5 lists the logical operators. Assume that A and B are relational
expressions.

Table 8-5: Logical Operators

Operator Example Meaning

NOT NOTA The logical opposite of A. If A is true, NOT A is false. If A is
false, NOT A is true.

AND AANDB The logical product of A and B. A AND B is true only if A is
true and B is true.

OR AORB The logical sum of A and B. A OR B is true if either A or B or
both are true. A OR B is false only if both A and B are false.

XOR AXORB The logical exclusive OR of A and B. A XOR B is true if either
A or B (but not both) is true. Otherwise, A XOR B is false.

EQV AEQVB The logical equivalence of A and B. A EQV B is true if A and B
are both true or both false. Otherwise, A EQV B is false.

IMP AIMPB The logical implication of A and B. A IMP B is false if A is true
and B is false. Otherwise, A IMP B is true.

The truth values in Table 8-6 summarize the results of these logical
operations.

Table 8-6: Truth Values for Logical Operations

A B AANDB A B AORB

T T T T T T
T F F T F T
F T F F T T
F F F F F F

A B AXORB A B AEQVB

T T F T T T
T F T T F F
F T T F T F
F F F F F T

A B AIMPB A NOTA

T T T T F
T F F F T
F T T
F F T

Building Statements 8-15

Note the following:

• The operators XOR and EQV are opposites .

• BASIC-PLUS generally accepts any nonzero value as true.

8.4.5 How Expressions Are Evaluated

BASIC-PLUS evaluates expressions according to its rules of operator pre
cedence. Imagine a list of all the arithmetic, string, relational, and logical
operators described in this chapter. Each operator has a fixed position or
rank in this list. The operator's position tells BASIC-PLUS when to per
form the operation. You can use parentheses to change the order of preced
ence. Table 8-7 shows operator precedence.

Table S-7: Operator Precedence

Exponentiation r or **)

Unary minus (-)

Multiplication and division (*,1)

Addition and subtraction (+ ,-)

String concatenation (+)

All relational operators

NOT

AND

OR,XOR

IMP

EQV

Highest

Lowest

BASIC-PLUS evaluates expressions according to the following rules:

1. Expressions inside parentheses are evaluated first. When you place one
set of parentheses inside another set (called nesting), the expressions
are evaluated from the inside out. For example:

B = 5 * (2 • (3 + 2»

This expression assigns the value 160 to B. Because (3 + 2) is the
innermost parenthetical expression, BASIC-PLUS evaluates it first.
Then it evaluates (2 5) and finally (5 * 32).

2. After expressions in parentheses are evaluated, BASIC-PLUS performs
operations in the order they appear in Table 8-7. The expression
from the previous example without parentheses shows the order of
operations:

B = 5 * 2 • 3 + 2

S-16 Building Statements

This expression assigns the value 42 to B. First BASIC-PLUS evalu
ates 2 A 3, then 5 * 8, and finally 40 + 2.

3. When expressions contain operators of equal rank in the table,
BASIC-PLUS performs operations from left to right. For example,
BASIC-PLUS evaluates A"B"C as (AABrC, AlBIC as (A/B)/C, and
A*B IC as (A*B) Ie.

You are encouraged to use parentheses even though they are not required.
They make expressions easier to read and also help you write correct
expressions.

Building Statements 8-17

Chapter 9
Elementary Statements and Features

This chapter describes the elementary BASIC-PLUS statements and
features. Here is a guide to its contents:

Topic Statements or Functions

Assigning Values to Variables LET

Introduction to Input/Output PRINT, INPUT, READ, DATA, RESTORE

Unconditional Branching GOTO

Conditional Branching IF-THEN,IF-GOTO

Program Loops FOR-NEXT, WHILE-NEXT, UNTIL-NEXT

Subscripted Variables DIM

Mathematical Functions ABS, SGN, INT, FIX, COS, SIN, TAN, ATN, SQR, EXP,
LOG, LOGIO, PI, RND, RANDOMIZE

User-Defined Functions DEF*

Subroutines GOSUB, RETURN

Ending or Halting Execution END, STOP

The statements and features described in this chapter are sufficient, by
themselves, for the solution of many programming problems. Once you
master them, you can investigate their more advanced applications, as well
as other statements and features described in Parts III and IV. The more
advanced features can help you solve more complex problems and write
more efficient programs.

9-1

9.1 LET Statement

The LET statement assigns a value to a variable. LET has the form:

[LET] <variable(s» = <expression>

The LET statement does not indicate algebraic equality. Instead, it assigns
the results of the expression to the indicated variable. For example:

10 LET)-(=)-(+1
20 LET W2 = (A4-X3)*(Z-A/6)

In line 10, the old value of X is increased by 1 and becomes the new value
ofX. In line 20, the expression on the right-hand side is evaluated using the
current values for A4, X3, Z, A, and B, and the result is assigned to W2.

The LET statement can be a simple numerical assignment, such as:

50 LET A = 35

For example:

50 LET A 35
60 PRINT A
70 LET A A+1
80 PRINT A
90 END
RUNNH

35
36

Ready

The LET statement can also evaluate an expression that is continued on
more than one line. For example:

40 LET X = (W-X4*3)*(Z-AI &
(A-6)-17)

For convenience, you can omit the word LET from the LET statement.
Omitting LET does not change the effect of the statement. For example,
you may find it easier to type the first statement than the second
statement:

10 X = 12*(6+7)

10 LET X = 12*(6+7)

9-2 Elementary Statements and Features

You can use the LET statement anywhere in a multiple statement line. For
example:

10 X = 44 \ Y =X"2+Yl \ 62 = 35*A

The LET statement also lets you assign the same value to several variables
in the same statement. For example:

10 LET X, Y, Z = 5.7

Line 10 sets each of the three variables equal to 5.7.

Do not use a LET statement of this form to assign the same value to several
variables:

20 LET X = Y = 5.7

This statement assigns the value -1 to X if the expression (Y = 5.7) is true
and the value 0 to X if the expression (Y = 5.7) is false. (See Section 8.4.3.)

9.2 Introduction to Programmed Input and Output

This section describes the basic techniques for performing BASIC-PLUS
program input/output, usually abbreviated to I/O. The term I/O means
bringing data from a file or device into a program for processing and send
ing it to a file or device after processing. The file may be stored on disk or
magnetic tape; the device may be a terminal, a line printer, or other periph
eral device.

You perform basic I/O operations in BASIC-PLUS with PRINT and
INPUT statements. The basic forms of these statements are presented in
this section to help you create simple BASIC-PLUS programs and get tan
gible results. This section also describes the READ, DATA, and RESTORE
statements, which you use to supply a fixed list of values to your program.
The values are contained in the program itself; they are not supplied from
outside the program.

Part IV of this manual describes more advanced I/O techniques.

9.2.1 PRINT Statement

The PRINT statement prints data to a device or file. In this introduction to
the PRINT statement, your terminal is the output device. Chapter 15 con
tains a complete description of the PRINT statement.

The format of the PRINT statement is:

PRINT [list]

Elementary Statements and Features 9-3

The list, which is optional, can contain expressions, character strings,
numeric constants, and variables. A PRINT statement without any
operands prints a blank line.

PRINT statements evaluate expressions and print results. All expressions
in a list are evaluated before BASIC-PLUS prints a value. Consider the
following program:

LISTNH
2000
2100
2200
32767

Ready

RUNNH

7

Ready

LET A=1 \ LET 6=2 \ LET C=3+A
PRINT
PRINT A+6+C
END

You can use the PRINT statement anywhere in a multi-statement line. For
example:

10 A=1 \ PRINT A \ A=A+5 \ PRINT \ PRINT A

This line prints:

6

BASIC- PLUS prints a carriage return / line feed at the end of each PRINT
statement by default. Thus, the first PRINT statement prints a "1" and a
carriage return / line feed. The second PRINT statement prints the blank
line, and the third PRINT statement prints a "6" and another carriage
return / line feed.

9.2.1.1 Printing Numbers and Character Strings

When printing positive numbers, BASIC-PLUS adds a leading and a trail
ing blank space. When printing negative numbers, BASIC- PLUS adds a
leading minus sign and a trailing blank space. For example:

PRINT 10;-20;30
10 - 20 30

(The semicolon prints values in a "packed" format - see Section 9.2.1.2.)

9-4 Elementary Statements and Features

(
The PRINT statement can also print characters. You delimit characters for
printing by placing single or double quotation marks at each end of the
string. The same type of quotation mark is necessary at the beginning and
the end of each string. For example:

PRINT "TIME'S UP"
LISTNH
100
110
32767

PRINT 'QUOTH THE RAI.IEN, "NEI.IERMORE"'
END

Ready

RUNNH
TIME'S UP
QUOTH THE RAVEN, "NEVERMORE"

Ready

When BASIC-PLUS prints a string, it does not add leading or trailing
spaces. Only the characters between quotation marks appear. To add lead
ing and trailing spaces, type them inside the quotation marks with the
keyboard space bar. Spaces are output exactly as you type them inside the
quotation marks.

You can also use PRINT to print combinations of characters and numeric
values. For example:

550 >(=83.4
580 PR I NT "AI.IERAGE GRADE IS";)<

This example prints:

AVERAGE GRADE IS 83.4

9.2.1.2 Formatting the Output

You specify how you want output formatted by using either commas or
semicolons between items in the PRINT list. Use commas if you want
values widely spaced across the terminal line; use semicolons if you want
values printed without added spaces.

Commas print items in print zones. BASIC-PLUS considers a terminal line
to be divided into print zones of 14 spaces each. On terminals where the
maximum print line contains 80 character positions, there are 5 print
zones. Terminals with 84 or more characters per line have additional print
zones of 14 spaces each.

Elementary Statements and Features 9-5

When a comma follows an item in a PRINT statement, the next value to be
printed appears in the next available print zone. For example:

Ll STNH
10 LET A=3. \ LET B=2.
20 PRINT A.B.A+B.A*B.A-B.B-A.A"B

RUNNH

3
- 1

2 5
8

6

BASIC-PLUS prints the sixth element in the PRINT list as the first entry
on a new line because an 80-character line has five print zones.

Two commas together in a PRINT statement cause a print zone to be
skipped. For example:

LlSTNH
100 REM ILLUSTRATES PRINT ZONES AND LINE CONTINUATIONS.
110 LET A=l &:

\ LET B=2 &,

\ PRINT A.B •• A+B &,

!NOTE DOUBLED COMMA AFTER B
32767 END

Ready

RUNNH
1

Ready

2 3

Use the semicolon between PRINT list items instead of the comma if you
want a tighter packing of printed values. A semicolon prints no extra
spaces. The following examples compare the effects of the semicolon and
comma.

LISTNH
100

110
120
130
1110
150
160
32767

Ready

RUNNH
1 2
1
6561

50

Ready

3

LET A=l &:
\ LET B=2 &:
\ LET C=3
PRINT AiBiCi
PRINT A+li B+li C+l
PRINT A.B.C.
PRINT A+B+C.C"B.C"(B"C)
PRINT
PRINT 50.100i150i200.250.300
END

2 3 1I
2

100 150 200

3

9-6 Elementary Statements and Features

6 8

250 300

LISTNH
150
160
170
180

300
640
650
660
32767

Ready

RUNNH

LET){=2574. !STUDENT NUMBER
LET G=89. !GRADE
LET A=90.6 ! AI.JERAGE
LET R=14 !RANK

N=562
PRINT 'STUDENT NUMBER' i){ I 'GRADE =' iG i
PRINT 'AVERAGE ='i A
PRINT' RANK IN CLASS'i Ri 'DF'i N
END

STUDENT NUMBER 2574 GRADE 89 AI.JERAGE
RANK IN CLASS 14 OF 562

90.6

You can omit the semicolon between a text string and another item. How
ever, its use is recommended for compatibility with BASIC-PLUS--2.

As noted, BASIC-PLUS automatically prints a carriage return/line feed
at the end of each PRINT statement. To suppress the automatic carriage
return / line feed, end the PRINT list with a comma or a semicolon. If you
use a comma, the next PRINT statement starts printing in the next avail
able print zone. For example:

LlSTNH
110 LET A = 1 &:

\ B = 2 &:
\ C = 3

130 PRINT A I
140 PRINT B
150 PRINT C
32767 END

Ready

RUNNH
1 2
3

Ready

If you use a semicolon, the next PRINT statement starts printing in the
next space on the terminal line.

9.2.2 INPUT Statement

The INPUT statement provides data to a program while it is running. The
data comes from a device or a file. In this section, which introduces the
INPUT statement, your terminal is the input device. Chapter 15 of this
manual contains a complete description of the INPUT statement.

Elementary Statements and Features 9-7

The INPUT statement has the form:

INPUT <variable list>

The list can contain real, integer, and string variables. When an INPUT
statement is executed, the program halts, and BASIC-PLUS prints a ques
tion mark on the terminal and waits for you to supply data.

For example, suppose you enter this INPUT statement into a program:

50 INPUT A,B,C

During program execution, this statement causes BASIC-PLUS to print a
question mark on the terminal and wait for you to enter three numeric
values. For example:

RUNNH
?

In response to the question mark, type three numeric values separated by
commas. After entering the values, press the RETURN key to pass the
values to your program.

If you type too few values on a line, BASIC-PLUS prints another question
mark to indicate that it needs more data. If you type too many values on a
line, BASIC-PLUS ignores any extra ones. Enter no more than 132 charac
ters, including commas between values, before you press the RETURN key.
The INPUT statement allows you to enter more than 132 characters on a
line but may not always read long input lines correctly.

The example just shown points out a problem with the prompting question
mark; it lets you know that input is expected, but it does not tell you what
kind of input to enter or how many values to type. To avoid this problem,
you can add a PRINT statement to print a prompting message at execution
time. For example:

40 PRINT "Enter 3 numbers separated by commas and press RETURN."
50 INPUT A,B,C

RUNNH
Enter 3 numbers s eparated by commas and press RETURN.
?

You can also include a prompting message in the INPUT statement itself.
Use single or double quotation marks to set the message off from other
parts of the statement. For example, the following statements have the
same result:

110 INPUT "YOUR AGE I5"jA

110 INPUT 'YOUR AGE I5'jA

9-8 Elementary Statements and Features

Either statement has the same result as:

110 PRINT "YOUR AGE IS";
120 INPUT A

When you include a prompting message in an INPUT statement, you can
use either a comma or a semicolon to separate the string you want printed
from the input variable names. These formatting characters work the same
way they do in the PRINT statement.

The following program computes the academic standing of a student. Four
INPUT statements prompt for the necessary data. Each INPUT statement
prints a prompt to indicate what kind of data to enter. The program uses
PRINT statements to print the results. The PRINT statements also print
text to describe the results. The output for the program begins after the
command RUNNH.

LISTNH
150
160
170
180

INPUT 'STUDENT NUMBER';){
INPUT 'GRADE';G
I N PUT 'AI,JERAGE'; A
INPUT 'RANK';R

N=562 300
640
650
660
32767

PRINT 'STUDENT NUMBER';){ f 'GRADE =';G;
PRINT 'AI,JERAGE ='; A
PRINT' RANK IN CLASS'; R; 'OF'; N
END

Re ad >'

RUNNH
STUDENT NUMBER? 2574
GRADE? 89
Al..JERAGE? 90.6
RANK? 14
STUDENT NUMBER 2574 GRADE

RANK IN CLASS 14 OF 562

Read>'

9.2.3 READ and DATA Statements

88 AI.JERAGE 80.6

Like the INPUT statement, the READ and DATA statements supply data
to a program. However, unlike INPUT, the data is contained in the pro
gram itself instead of coming from a source outside the program (such as
your terminal).

READ and DATA differ from INPUT in another way. When you use
INPUT to supply data, it can differ each time the program is run. On the
other hand, READ and DATA supply a fixed list of data values to your
program, You must edit the program to change the values.

Elementary Statements and Features 9-9

A READ statement inputs the list of variables whose values it gets from a
DATA statement. Neither statement works without the other, and the two
statements must have compatible sequences.

A READ statement has the form:

READ <variable list>

A DATA statement has the form:

DATA <value list>

With a READ statement, the variables you list are assigned values sequen
tially from the set of DATA statements in the program. Before you run the
program, BASIC-PLUS takes all DATA statements in the order they
appear and creates a data block. Each time a READ statement is encoun
tered, BASIC-PLUS supplies the next value from the data block. If
the data block runs out of data and another READ statement is executed,
BASIC-PLUS prints the message:

?Out of data at line n

READ and DATA statements appear as follows:

150 READ)(, y"/.., Z, SI, '(2, Q9
330 DATA 4. 2, 1.7
340 DATA G.73E-3, -17/:1.321,3.1415927

Line 150 makes the assignments:

X = 4.0
Y% = 2%
Z = 1.7
S1 = 6.73E-3
Y2 = -174.321
Q9 = 3.1415927

Do not include the percent (%) character when you specify integer values in
a DATA statement. If you do, you get the following error when you run the
program:

%Data forMat error at line n

The next example contains real, integer, and string data:

10 READ AI AS, A%. 55
50 DATA 12.5. NOW, 12, "QUOTED STRING"

This example assigns 12.5 to the real variable A, NOW to the string varia
ble A$, 12 to the integer variable A %, and QUOTED STRING to the string
variable B$.

9-10 Elementary Statements and Features

You can read a numeric value without a decimal point into an integer
variable or a real variable. For example:

10 READ A
50 DATA 12

10 READ AI.,
50 DATA 12

In the first example, 12 is stored as a floating-point number. In the second
example, 12 is stored as an integer. However, you cannot read a floating
point number into an integer variable:

10 READ AI.,
20 DATA 1.1
RUNNH
%Data forMat error at line 10

If you read a number into a string variable, the number is stored as a string
of ASCII characters. For example:

30 READ A$
1I0 DATA 100

These statements read the character string "100" into A$.

When you specify strings in DATA statements, include quotation marks
around strings that contain:

• One or more commas

• Significant spaces or tabs

• Lowercase letters that should not be converted to uppercase

If you do not include quotation marks, BASIC-PLUS ignores spaces and
tabs in the string and converts lowercase letters to uppercase.

The optional MAT READ statement allows you to read matrices from
DATA statements. See Chapter 12 for more information.

You must read in data before you can use it in a program. Thus, you
normally place READ statements near the beginning of a program. You
can place DATA statements anywhere in a program; however, it is good
programming practice to place DATA statements together near the end of
the program. DATA statements are read in order of their line numbers, so
they must appear in the correct sequence.

You can place a READ statement anywhere in a multi-statement line. But
a DATA statement must be the only statement in a line or the last state
ment in a multi-statement line.

You cannot place a comment at the end of a DATA statement. If you
include a comment and the last item in the DATA statement is a string,
BASIC-PLUS converts the comment to uppercase, removes spaces and
tabs, and includes it in the string. If you include a comment and the last

Elementary Statements and Features 9-11

item in the DATA statement is an integer or floating-point number,
BASIC-PLUS returns the "%Data format error" when you run the
program.

9.2.4 RESTORE Statement

You may need to use the same data more than once in a program. The
RESTORE statement lets you recycle through the complete set of DATA
statements in the program, beginning with the lowest numbered DATA
statement.

The RESTORE statement has the form:

RESTORE

RESTORE causes the next READ statement to begin reading data from the
first DATA statement in the program. It does so regardless of where it read
the last data value.

You can use the same variable names the second time through the data,
since the values are being read as though for the first time. Place dummy
variables in the READ statement to skip unwanted values. (A "dummy"
variable is a variable you make no further use of in the program.) Consider
the following example of the RESTORE statement:

LISTNH
100 REM THIS PROGRAM ILLUSTRATES USE OF THE RESTORE STATEMENT
1500 READ N \ PRINT 'VALUES OF X ARE:'
1600 FOR I = 1 TO N \ READ X \ PRINT X.
1700 NEXT I
1800 RESTORE
1800 PRINT \ PRINT 'SECOND LIST OF X VALUES'
2000 PRINT 'FOLLOWING RESTORE STATEMENT:'
2100 FOR 1=1 TO N \ READ X \ PRINT X.
2200 ND(T I
6000 DATA a.l.2
6100 DATA 3.a
32767 END

Ready

RUNNH
VALUES OF :< ARE:

1 2 3 a
SECOND LIST OF X VALUES
FOLLOWING RESTORE STATEMENT:
a 1 2 3

Ready

Note that BASIC-PLUS prints the following on the last line:

a 2 3

These numbers are printed because BASIC-PLUS did not skip the value for
the original N when it executed the loop beginning at line 2100.

9-12 Elementary Statements and Features

9.3 Unconditional Branch, GOTO Statement

The GOTO statement transfers program execution immediately and uncon
ditionally to a specified program line number. (Usually the specified line is
not the next sequential line in the program.) The statement has the form:

GOTO <line number>

The line number to which program execution branches can be greater than,
less than, or the same as the current line number.

Consider the following example:

LISTNH
10 LET A=2
20 GO TO 50
30 LET A=SQR (A+14)
50 PRINT A,A*A
32767 END

Ready

RUNNH
2

Ready

When the program reaches line 20, control transfers to line 50. After line
50 is executed, the program ends. Line 30 is never executed. Any number of
lines can be skipped in either direction.

Because any statement after GOTO on the same line is never executed,
GOTO should always be the last statement on a multi-statement line. For
example:

110

370

LET A=517. &
\PRINT A &
\GD TO 370
PRINT 'FINISHED'
END 32767

RUNNH
517

FINISHED

Ready

110

370
32767
RUNNH

LET A=517. &
\GD TO 370 &:
\PRINT A
PRINT 'F I NISHED'
END

FINISHED

Ready

9.4 Conditional Branch, IF-THEN and IF-GOTO Statements

The IF-THEN and IF-GOTO statements conditionally transfer program
execution to a specified line number or statement, depending on the out
come of some test or relationship. The format of the IF statement is:

THEN <statement>
IF <condition> THEN <line number>

GOTO <line number>

Elementary Statements and Features 9--13

When the IF statement is executed, the specified condition is tested. If the
condition is false, control goes to the next sequentially numbered line after
the IF statement. If the condition is true, the statement after THEN is
executed or control is transferred to the line number given after THEN
or GOTO. (Section 13.5 describes an extension of this statement, the
IF -THEN-ELSE statement.)

The deciding condition can be either:

• A simple relational expression where two numeric or string expressions
are separated by a relational operator

• A logical expression where two relational or logical expressions are sepa
rated by a logical operator

For example:

Relational Expression
A + 2 > B

Logical Expression
(A > B) ANO (B < = SQR (C))

When either type of expression is evaluated, the result is either true or
false. Sections 8.4.3 and 8.4.4 describe the relational and logical operators.
They also appear in Appendix A.

The following line contains a relational expression:

75 IF A*B>=B*(B+l) THEN LET 04=04+1

This line compares the quantities A*B and B*(B + 1). If the first value is
greater than or equal to the second value, the program increments the
variable D4 by 1. The program does not increment D4 if B*(B + 1) is greater
than A*B; instead, control passes immediately to the line following line 75.

When a line number follows the word THEN, the IF-THEN statement is
the same as the IF-GOTO statement. Any executable BASIC-PLUS state
ment can follow the word THEN, including another IF statement. For
example:

250 IF A>B THEN IF B>C THEN PRINT "A>B>C"
250 IF A>B ANO B>C THEN PRINT "A>B>C"

The preceding two lines are logically equivalent. If B is less than A and
greater than C, BASIC-PLUS prints:

A>B>C

Otherwise, the next line is executed.

In the following example, the IF-GOTO statement in line 110 limits the
value of the variable A in line 100. It uses a program loop to do so (see
Section 9.5). A program loop is a series of statements written so that, when
the statements are executed, control transfers to the beginning of the state
ments. This process continues until some terminating condition is reached.
Execution of the loop continues until the relationship A>4 is true, and then
line 32767 is executed to end the program.

9-14 Elementary Statements and Features

LISTNH
100 LET A=A+l &

110
120
130
32787

Ready

RUNNH

IF A)4 GO TO 32787
PRINT '){= ')(i " AND I)ALUE OF A IS' A
GO TO 100
END

X= 1 , AND I)ALUE OF A IS 1
X= 4 , AND VALUE OF A IS 2
X= 9 , AND VALUE OF A IS 3
)(= 18 , AND I)ALUE OF A IS 4

Ready

The next example uses IF-THEN statements:

100 IF A)6 THEN 340
200 IF (A=6) OR (6=C) THEN 280
300 IF A)6 THEN A=-6 CONDITIONAL ASSIGNMENT
400 IF (X>Y) IMP ('{)Z) THEN PRINT "QED"

To avoid confusion, you usually make an IF statement the last statement
on a multi-statement line.

When an IF statement is not the last statement on a multi-statement line,
all statements on a program line after the THEN keyword are executed
only if the related expression is true.

For example:

LISTNH
90 INPUT 'ENTER A VALUE'iA
100 IF A=1 THEN PRINT Ai &

\ PRINT "TRUE CASE" &
\ GOTO 32787

110 PRINT "NOT = I"
32787 END

Ready

RUNNH
ENTER A I)ALUE? 2
NOT = 1

Ready

RUNNH
ENTER A VALUE? 1

1 TRUE CASE

Ready

9.5 Program Loops

Computers perform repetitive tasks with speed and accuracy. For example,
a computer can compute the square roots of all integers between 1 and 100
in a very short amount of time.

Elementary Statements and Features 9-15

Because computers are so well suited to repetitive tasks, programs are
often written to repeat sequences of instructions.

An efficient way to repeat a series of instructions is to write a program loop.
When a loop is executed, the series of statements in the loop is repeated
until a terminating condition is met. While you can write your own pro
gram loops, the BASIC-PLUS language provides statements that are
designed for building program loops. These statements are FOR, WHILE,
UNTIL, and NEXT. The rest of this section shows you the advantages of
program loops, describes their characteristics, and explains how to write
them.

The best way to see the advantage of loops is by example. The following
three program segments all perform the same function. Each prints a table
of the square roots of the positive integers 1 through 100, together with
their square roots. The first program segment does not use a loop,
the second contains a user-written loop, and the third uses a built-in
BASIC-PLUS feature called a FOR-NEXT loop.

Without a loop, the first program segment is 101 lines long and reads:

10 PR I NT 1, SQR (1)
ZO PRINT Z, SQR(Z)
30 PRINT 3, SQR(3)

880 PRINT 88, SQR(88)
1000 PRINT 100, SQR(100)
3Z787 END

The second example uses a user-written loop to obtain the same table:

10 LET X = 1
ZO PRINT X,SQR(X)
30 LET X = X+l
40 IF X (=100 THEN ZO
50 END

Statement 10 assigns a value of 1 to X, initializing the loop. In line 20, both
the value of X and its square root are printed. In line 30, X is incremented
by 1. Line 40 checks whether X is still less than or equal to 100; if so, the
next value of X and its square root are printed.

You can also print the square root table with a FOR-NEXT loop:

10 FOR X = 1 TO 100
ZO PRINT X, SQR(X)
30 NEXT X
40 END

9-16 Elementary Statements and Features

Lines 10 through 30 of this program segment contain the FOR-NEXT loop.
The FOR and NEXT statements in lines 10 and 30 cause the PRINT state
ment in line 20 to execute 100 times. After the number 100 and its square
root are printed, X becomes 101. The condition in line 30 is now false, so
control does not return to line 10. Control goes to line 40, which ends the
program.

All program loops have four characteristic parts:

1. Initialization, the conditions that must exist for the first execution of
the loop.

2. The body of the loop, where the operation to be repeated is performed.

3. Modification, which alters some value and makes each execution of the
loop different from the one before and the one after.

4. Termination condition, an exit test that, when satisfied, completes the
loop. Execution continues to the program statements after the loop.

BASIC-PLUS has two types of loops:

1. FOR-NEXT loops, which use a counter to determine how many times to
repeat a series of instructions.

2. UNTIL-NEXT and WHILE-NEXT loops, which use a conditional
statement to determine how many times to repeat a series of
instructions.

As their names indicate, a FOR-NEXT loop contains a FOR statement, an
UNTIL-NEXT loop contains an UNTIL statement, and a WHILE-NEXT
loop contains a WHILE statement. All three loops contain a NEXT
statement.

9.5.1 FOR and NEXT Statements

The FOR and NEXT statements together define a FOR-NEXT loop. The
FOR statement begins the loop; the NEXT statement ends the loop. You
code the body of the loop between them.

FOR-NEXT loops are controlled by a counter whose value is modified
each time the body of the loop executes. This counter is called the control
variable or loop index. You can let the control variable act only as a counter
(and not reference it in body of the loop) or you can use the control variable
inside the loop for processing.

The FOR statement has the form:

FOR <variable> = <expression> TO <expression> [STEP <expression>]

where:

<variable> is a numeric variable without a subscript

<expression> is a numeric expression

Elementary Statements and Features 9-17

The variable in the FOR statement is the loop's control variable. While the
control variable must be unsubscripted, it is common in the body of a loop
to deal with subscripted variables, using the control variable as the sub
script of a previously defined variable. (See Section 9.6 for information on
subscripted variables.) For the greatest efficiency, use integer variables for
control variables in the range -32767 to 32766. Use real variables for
larger values or fractional values.

The expressions in the FOR statement must be numeric expressions as
defined in Section 8.4. The first expression is the starting value for the
control variable; the second is its final or terminal value. The optional
STEP expression specifies the amount by which the control variable
changes each time the loop is executed.

A positive STEP value increments the control variable; a negative STEP
value decrements the control variable. If you omit the STEP expression,
BASIC-PLUS assumes a value of + 1. (Because + 1 is a common STEP
value, that portion of the statement is often omitted.)

An example of the FOR statement is:

10 FOR K% = 2% TO 20% STEP 2%

This statement cycles program execution through a loop using values
for K% of 2, 4, 6, 8, and so on until 20. After the loop is executed with
K% = 20%, the program exits from the loop. Control then passes to the line
after the associated NEXT statement.

The NEXT statement signals the end of a loop that begins with a FOR
statement. The NEXT statement has the form:

NEXT <variable>

The variable in a NEXT statement is the same one as in the FOR state
ment. Together the FOR and NEXT statements describe the boundaries of
the program loop.

Upon encountering the NEXT statement, BASIC-PLUS adds the STEP
value to the variable. Then it checks to see if the variable is still less than
or equal to the terminal value. When the variable exceeds the terminal
value, control falls through the loop to the statement following the NEXT
statement.

The expressions within the FOR statement are evaluated before the initial
entry into the loop. The test for completion of the loop is made before the
loop is executed and at the end of each iteration of the loop. If the first test
indicates completion, the loop is never executed.

Although you can modify the control variable within the loop, this practice
is not recommended. When control falls through the loop, the control varia
ble retains the last value used inside the loop. However, the terminal and
STEP values are calculated only upon entry to the loop and do not change
for the duration of the loop.

9-18 Elementary Statements and Features

Consider the following program:

LISTNH
100 A=2.5
110 FOR 1=1. TO 2. *A
120 PRINT IIA
130 A=1.
140 NE)<T

Ready

RUNNH

2
3
4
5

2.5

The loop stops when I equals 5, even though the value of A changed within
the loop.

The following examples show two loops that perform the same function.
The loops are executed 10 times; the value ofI is 10 when control leaves the
loop (+ 1 is the assumed STEP value):

LISTNH
10 FOR 1=1 TO 10
20 PRINT Ii
30 NE)<T I
40 PRINT I

LI STNH
10 1=1
20 PR I NT I i
30 IF 1(10 THEN &

1=1+1 &:
\ GO TO 20

40 PRINT I

Both program segments produce the same result when run:

RUNNH
1 2 3 4 5 G 7 8 9 10 10

The numbers 1 through 10 are printed when the loop is executed. When I
equals 10, control passes to line 40. Therefore 10, which is the current
value of I, is printed again. Suppose line 10 had been:

10 FOR I = 10 TO 1 STEP -1

The value printed by line 40 would be 1. Note that a minus sign is neces
sary for decrementing a loop.

The following loop is executed only once, since the value of I = 44 is reached
in the first iteration and the termination condition is satisfied.

10 FOR I = 2 TO 44 STEP 2
20 LET I = 44
30 NEXT I

Elementary Statements and Features 9-19

If, however, the initial value of the variable is greater than the terminal
value, the loop is never executed unless a negative STEP value is specified.
A statement of the following format cannot be used to begin a loop:

10 FOR I = 20 TO 2 STEP 2

The statement that will execute the loop properly is:

10 FOR I = 20 TO 2 STEP -2

For positive STEP values, the loop is executed until the control variable is
incremented past its final value. For negative STEP values, the loop contin
ues until decrementing the control variable causes the variable to be less
than its final value.

FOR loops can be nested but not overlapped. Nesting is a programming
technique where one or more loops are contained inside another loop. The
range of one loop (the numbered lines from the FOR statement through the
corresponding NEXT statement) must not cross the range of another loop.

The depth of nesting you can use depends on the size of the your program
and the amount of memory that you have available. Figure 9-1 shows
correct and incorrect nesting of loops.

Figure 9-1: Nesting Techniques

Correct Incorrect

Two-Level Nesting

uFOR 11 • I
TO 10 [fFOR II ~ TO 10

[FOR 12 = 1 TO 10 FOR 12 = TO 10
NEXT 12 NEXT 11

[FOR 13 = 1 TO 10 NEXT 12
NEXT 13
NEXT 11

Three-Level Nesting

FOR 11 = 1 TO 10 FOR 11 = TO 10

~FOR 12 ~ 1 TO 10 FOR 12 = TO 10
[FOR 13 = 1 TO 10 [FOR 13 = TO 10

NEXT 13 NEXT 13
[FOR 14 = TO 10 [FOR 14 = TO 10

NEXT 14 NEXT 14
NEXT 12 NEXT 11
NEXT 11 NEXT I2

9-20 Elementary Statements and Features

An example of nested FOR-NEXT loops follows:

LISTNH
100 FOR A 'X. = 1'1. TO 5'1.
110 FOR 6'X.=2'X. TO 10'X. STEP 2'X.
120 PRINT A'X.i6'X .•
130 NEXT 6'X.
140 PRINT
150 NEXT A 'X.
32767 END

Ready

RUNNH
1 2 4 6 8 10

2 2 2 4 2 6 2 8 2 10

3 2 3 4 3 6 3 8 3 10

4 2 4 4 4 6 4 8 4 10

5 2 5 4 5 6 5 8 5 10

You can exit from a FOR-NEXT loop without the control variable reaching
the termination value by executing a GOTO, GOSUB, or computed GOTO.
When you transfer control into a loop, you should only enter a loop left
incomplete earlier. This transfer ensures that termination and STEP
values are assigned. It is not good programming practice to enter loops
anywhere but at the beginning of the loop.

Both FOR and NEXT statements can appear anywhere in a multi
statement line. For example:

LISTNH
100 FOR 1=1 TO 10 STEP 5\ NEXT I \PRINT 'I='iI

Ready

RUNNH
1= 6

Ready

Neither the FOR nor NEXT statement is executed conditionally in an IF
statement. The following statements are incorrect:

15 IF I <>J THEN NEXT I
15 IF I=J THEN FOR 1=1 TO J

Both statements generate the error message:

?Ille~al IF stateMent at line 15

Elementary Statements and Features 9-21

NOTE

When the body of a loop contains only one statement, you can
use FOR as a statement modifier to create a loop that is more
efficient than a FOR-NEXT loop. See Section 13.6.3 for infor
mation about the FOR statement modifier.

9.5.2 WHILE and NEXT Statements

You can use the WHILE and NEXT statements to perform a loop while a
specific condition continues to be true. A WHILE-NEXT loop is similar to a
FOR-NEXT loop.

The WHILE statement has the form:

WHILE <condition>

where <condition> is a relational or logical expression.

The NEXT statement has the form:

NEXT

Do not include a variable in the NEXT statement.

The following is an example of a WHILE-NEXT loop. The sample program
runs until you respond:

LISTNH
10 A$ =
20 WHILE LEN(A$) = 0%
30 INPUT "Enter nafrle"j A$
40 A$ = CVT$$(A$,255%)
50 NEl-(T
32767 END

Ready

RUNNH
Enter n afrle? !B@
Enter n aflle? !B@
Enter naflle? !B@
Enter naftle? JDE!B@

Read}'

Unlike a FOR-NEXT loop, a WHILE-NEXT loop does not have a control
variable that is automatically incremented. However, a WHILE-NEXT
loop works much like a FOR-NEXT loop. For example, the rules for termi
nation are similar. Before the loop is executed, BASIC-PLUS tests to see if
a condition is true. If it is, a pass through the loop is made. If the condition
is false, the loop is not executed. Compare the following:

FDR I = 1 TO 5
NEXT I

WHILE I < 5
NEXT

9-22 Elementary Statements and Features

The FOR and NEXT statements execute the loop five times; the WHILE
and NEXT statements execute the loop until the value of I is no longer less
than five.

Both FOR-NEXT and WHILE-NEXT loops follow the same rules for
nesting.

NOTE

When the body of a loop contains only one statement, you can
use WHILE as a statement modifier to create a loop that is
more efficient than a WHILE-NEXT loop. See Section 13.6.4
for information about the WHILE statement modifier.

9.5.3 UNTIL and NEXT Statements

You can use the UNTIL and NEXT statements to perform a loop until a
condition is true. An UNTIL-NEXT loop is similar to a FOR-NEXT loop
and a WHILE-NEXT loop.

The UNTIL statement has the form:

UNTIL <condition>

where <condition> is a relational or logical expression.

The NEXT statement has the form:

NEXT

Do not include a variable in the NEXT statement.

The following example uses an UNTIL-NEXT loop. Like the example in
the previous section, the sample program runs until you respond:

LISTNH
10 A$ =
20 UNTIL LEN(A$) > 0%
30 INPUT "Enter naMe"; A$
40 A$ = CVT$$(A$,255%)
50 NE)<T
32767 END

Ready

RUNNH
Enter name? (Bill
Enter n ar~e? (Bill
Enter n ar~e? (Bill
Enter n ar~e? JIM(Bill

Ready

Like a WHILE-NEXT loop, an UNTIL-NEXT loop does not have a control
variable that is automatically incremented. However, an UNTIL-NEXT
loop works much like a FOR-NEXT loop. For example, the rules for termi
nation are similar. Before the loop is executed, BASIC-PLUS tests to see if
a condition is false. If it is, a pass through the loop is made. If the condition
is true, the loop is not executed.

Elementary Statements and Features 9-23

UNTIL-NEXT loops follow the same rules for nesting as FOR-NEXT and
WHILE-NEXT loops.

NOTE

When the body of a loop contains only one statement, you can
use UNTIL as a statement modifier to create a loop that
is more efficient than an UNTIL-NEXT loop. See Section
13.6.5 for information about the UNTIL statement modifier.

9.6 Subscripted Varia.bles and the DIM Statement

In addition to the simple variables described in Chapter 8, you can also use
subscripted variables in BASIC-PLUS. A subscripted variable lets you
break up a variable's storage area into several compartments. You can then
refer to each compartment as a unique storage location. A set of compart
ments defined by a subscripted variable is called a matrix or, more com
monly, an array.

You can use subscripted variables for additional computing capa
bilities with lists, tables, matrices, or any set of related variables. In
BASIC-PLUS, subscripted variables can have one or two subscripts.
BASIC-PLUS has default sizes for one- and two-dimensional arrays. How
ever, you can specify the size of an array with the DIM statement.

The name of a subscripted variable is any acceptable BASIC-PLUS varia
ble name, followed by one or two integer expressions in parentheses. If you
use a floating-point number instead of an integer, the fractional portion is
truncated. In other words, A(2.8) becomes A(2).

The following example lists A(I), where I goes from 0 to 5. (All arrays are
created with a zero element, even if that element is never specified.)

A(O), A(1), A(Z), A(3), AUI), A(5)

You can access each of six elements in the list, which can be shown as a
one-dimensional array:

A(O)

A(1)

A(2)

A(3)

A(4)

A(5)

You can define two~dimensional array B(I,J) in a similar manner, as m
Figure 9-2.

Subscripts used in subscripted variables can be constants or numeric
expressions. You can use the same variable name as both a subscripted and
an unsubscripted variable. Both A and A(I) are valid variables that can be

9-24 Elementary Statements and Features

used in the same program without affecting one another. However, you
cannot use the same variable name as both a singly and a doubly sub
scripted variable in the same program.

Figure 9-2: Array Structure

B(O,O) B(O,l) B(0,2) B(0 ,3) B(O.J)

B(l ,O) B(l,1) B(1,2) B(1,3) B(1.J)

B(2,1) B(2,2) B(2,3)

B(3,1) B(3,2)

H-MK-00045-00

Consider the following example:

LISTNH
100 A=7
200 A(G)=lL1
300 PRINT A
LlOO PRINT A(G)

Ready

RUNNH
7
lLi

Read}'

The preceding program segment is legal. If, however, you try to assign one
variable name as both singly and doubly subscripted, the program does not
run correctly:

100 A(G)=lL1
200 A(G,2)=7

Lines 100 and 200 generate the error message:

%Inconsistent subscript use at line 200

NOTE

There are cases where a variable name without subscripts
refers to an entire array and not to a simple numeric varia
ble. See the CHANGE statement, described in Section 10.2,
and the MAT statements, described in Chapter 12.

Elementary Statements and Features 9-25

The dimension (DIM) statement defines the maximum number of elements
in an array. The DIM statement has the form:

DIM <variable(dimension(s))> [,<variable(dimension(s))> , ...]

The variables in a DIM statement are indicated with their maximum sub
script value(s). For example:

10 DIM){(5) , Y(lI,2), A(10 dO)
12 DIM IlI(100)

You can use only nonnegative integer constants in DIM statements to de
fine the size of an array. Any number of arrays can be defined in a single
DIM statement as long as the variables defining them are separated by
commas.

If you use a subscripted variable without using a DIM statement,
BASIC-PLUS assumes the variable's highest element to be 10 in each
dimension. The variable has elements 0 through 10 for a total of 11. How
ever, you should correctly dimension all arrays in a program.

The first element of every array is automatically assumed to have a
subscript of O. Dimensioning A(6,10) sets up room for an array with 77
elements, arranged in 7 rows and 11 columns. The following program illus
trates the 0 element:

LISTNH
10 REM - MATRIX CHECK PROGRAM
20 DIM A(8,10)
30 FOR 1=0 TO 8
1I0 LET A(1,0) =1
50 FOR J=O TO 10
80 LET A(O,J)=J
70 PRINT A(I,J);

\ NE)(T J
\ PRINT
\ NE)(T I

32787 END

Ready

RUNNH
0 1 2 3 1I 5 8 7 8 9 10

0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0
1I 0 0 0 0 0 0 0 0 0 0
5 0 0 (I 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0

Read}'

Note that an array element, like a simple variable, has a value of 0 until it
is assigned a value.

The size and number of arrays you can define depends on the amount of
memory available in your program area. Additional information on arrays
can be found in Chapter 12.

It is more efficient to dimension multiple arrays in one statement than to
have multiple DIM statements.

9-26 Elementary Statements and Features

You can place a DIM statement anywhere in a multi-statement line and
anywhere in the program. It need not appear prior to the first reference to
an array that it defines. DIM statements should be placed at or near the
beginning of a program, however, to make them easy to change. You must
not have two DIM statements referring to the same variable.

NOTE

For compatibility with BASIC-PLUS--2, it is recommended
that you place the DIM statement before the first reference to
the array it defines.

9.7 Mathematical Functions

Sometimes you need the computer to perform relatively common mathe
matical operations. You can often find the results of these operations (such
as sine, cosine, square root, and log) in volumes of mathematical tables.

Several built-in mathematical functions are available as an optional
BASIC-PLUS language feature. If your system has these built-in func
tions, you never have to consult tables or write your own code to find the
value of the sine of 23 degrees or the natural log of 144. When you need
these values in an expression, you can substitute the BASIC- PLUS func
tions. For example:

SIN(23.*PI/180.)
LOG(ll1l1.)

The various mathematical functions available in BASIC-PLUS are
detailed in Table 9-1. These functions return a value in floating-point for
mat. Note that these functions may not be available on all systems.

Most of these functions are self-explanatory; the rest are described in the
following sections.

9.7.1 Sign Function, SGN(X)

The sign function returns a value of + 1 if X is a positive value, 0 if X is 0,
and -1 if X is negative. For example: SGN(3.42) = 1, SGN(-42) = -1, and
SGN(23-23) = o.

LISTNH
10 REM - SGN FUNCTION DEMO
100 READ A,6 &

\ PRINT 'A='iA, '6='i6
110
120
1000
32767

PRINT 'SGN(A)='iSGN(A), 'SGN(6)=' SGN(6)
PRINT 'SGN(INT(A»='iSGN(INT(A»
DATA -7.32, 0.1I1i
END

Ready

RUNNH
A=-7.32 6= .1I1i
SGN(A)=-l SGN(6)=
SGN (I NT (A)) = - 1

Ready

Elementary Statements and Features 9-27

9-28

Table 9-1: Mathematical Functions

Function
Code Meaning

ABS(X) Returns the absolute value of X.

SGN(X) Returns the sign function of X, a value of 1 preceded by the sign of X,
SGN(O)=O.

INT(X) Returns the largest integer less than or equal to X (INT(-.5) =-1) as a real
number.

FIX (X) Returns the value of X as an integer with any fractional portion removed
(FIX(-.5) = 0).

COS(X) Returns the cosine of X (X in radians).

SIN (X) Returns the sine of X (X in radians).

TAN(X) Returns the tangent of X (X in radians).

ATN(X) Returns the arc tangent (in radians) of X.

SQR(X) Returns the square root of X.

EXP(X) Returns the value ofeAX, where e=2.71828 ...

LOG(X) Returns the natural logarithm of X, log. X.

LOG10(X) Returns the common logarithm of X, loglo X.

PI Has a constant value of 3.14159 ...

RND Returns a random number between 0 and 1. Unless the RANDOMIZE
statement appears in the program before the RND function, the program
produces the same sequence of random numbers each time it runs. The
value of X is ignored and can be omitted.

9.7.2 Integer Function, INT(X)

The integer function returns the value of the largest integer not greater
than X. For example, INT(34.67) = 34. You can use INT to round numbers
to the nearest integer with the expression INT(X + .5). For example,
INT(34.67 + .5) = 35. You can also use INT to round to any given decimal
place, for example:

INTIX*10," D+,5)/10,"D%

D is the number of decimal places desired. Consider the following program:
LISTNH
10 DEMDNSTRATIDN DF INTEGER lINT) FUNCTION &

INT DOES NOT ROUND TO NEAREST &
INTEGER, BUT DROPS THE FRACTION PART

100 INPUT 'NUMBER TO BE PROCESSED BY INT FUNCTION';A
110 INPUT 'NUMBER OF DECIMAL PLACES FOR ROUNDING';D
120 PRINT 'TRUNCATED INTEGER=';INTIA)
130 PRINT 'ROUNDED INTEGER=';INTIA+.5)
140 PRINT 'ROUNDED TO ';D; 'PLACES=';~"

INTIA*10"D+,5)/ll0"D)
150 PRINT
160 PRINT 'ENTER ANOTHER NUMBER, TYPE A ZERO TO STOP
170 INPUT A
180 IF A <> 0 GO TO 110
32767 END
Ready

Elementary Statements and Features

RUNNH
NUMBER TO BE PROCESSED BY INT FUNCTION? 23.67
NUMBER OF DECIMAL PLACES FOR ROUNDING? 1
TRUNCATED INTEGER= 23
ROUNDED INTEGER= 24
ROUNDED TO 1 PLACES= 23.7

ENTER ANOTHER NUMBER, TYPE A ZERO TO STOP
? 456.50505
NUMBER OF DECIMAL PLACES FOR ROUNDING? 2
TRUNCATED INTEGER= 456.
ROUNDED INTEGER= 457
RDUNDED TO 2 PLACES= 458.51

ENTER ANOTHER NUMBER, TYPE A ZERO TO STOP -
? 0

Ready

For negative numbers, the largest integer contained in the number is a
negative number with the same or a larger absolute value. For example:
INT(-23) = -23, but INT(-14.39) = -15.

9.7.3 Random Number Function, RND

The random number (RND) function produces a random number greater
than or equal to 0 but less than 1. You can reproduce the numbers in the
same order for later checking of a program. You do not need an argument
with the RND function, although you may use one. This argument can
be any number, since its value is ignored. For compatibility with
BASIC-PLUS-2, you should not use an argument with the RND function.

LISTNH
10 REM - RANDOM NUMBER DEMONSTRATION
20 INPUT "HOW MANY RANDOM NUMBERS";N
30 FOR 1=1 TO N
40 PRINT RND,
50 NE:<T I
32787 END

Ready

RUNNH
HOW MANY RANDOM NUMBERS? 13

.204935

.783713

.882372
Ready

.229581

.741854

.991239

.533074

.397713

.808084

.132211

.709588

To obtain random digits from 0 to 9, change line 40 to read:

40 PRINT INT(10*RNDl ,

Then run the program again. The results of the second run are:

RUNNH
HOW MANY RANDOM NUMBERS? 13

2 2 5 1
7 7 3 7
8 9 8

Read}'

.995802

.87811

9
8

Elementary Statements and Features 9-29

You can generate random numbers over any range. In general, if you want
the range (A,B), use either:

(B - A l *RND (:< l +A

(B-Al*RND+A

This produces a random number in the range A<n<B.

9.7.4 RANDOMIZE Statement

The RANDOMIZE statement has the form:

RANDOM[IZE]

Use the RANDOMIZE statement with the RND function to obtain different
random numbers every time you run a program. Place RANDOMIZE before
the first RND function in the program. When executed, RANDOMIZE
causes the RND function to choose a random starting value, so that the
same program run twice gives different results. For this reason, it is a good
practice to debug a program completely before inserting the RANDOMIZE
statement.

To demonstrate the effect of the RANDOMIZE statement on two runs of the
same program, the RANDOMIZE statement appears in statement 15 of the
following program:

LISTNH
10
15

REM - RANDOM NUMBER DEMONSTRATION
RANDOMIZE

20
30

INPUT "HOW MANY RANDOM NUMBERS";N
FOR I = 1 TO N

40 PR I NT RND t

50
32767

NE:<T I
END

Ready

RUNNH
HOW MANY RANDOM

.541559

.563214

.191913

.058857

.344403

.931222

.893713

Read)'

RUNNH
HOW MANY RANDOM

.448782

.29851

.975321

Ready

NUMBERS?
.249281
.468236
.774316
.430996
.858497
.338373
.452437E-1

NUMBERS?
.692627
.422888E-1
.588409

35
.621653
.740494
.918683
.562636E-1
.513523E-1
.649245
.228047

12
.116732
.567144

The output from each run is different.

9-30 Elementary Statements and Features

.486387 .32345

.228836 .708573

.543249 .99135

.458616 .245325

.581639 .276619E-1

.850108 .25744.8

.961087 .714104

.466741 .749863

.022262 .292799E-1

9.8 User-Defined Functions

Sometimes you want a program to execute the same sequence of statements
or mathematical formulas in several different places. BASIC-PLUS allows
you to define your own functions and call them in the same way you call the
standard functions, such as RND, SQR, or COS.

A user-defined function name consists of FN followed by any valid variable
name. For example:

FNA
FNAl

Because A and Al are real variables, FNA and FNAI are real functions.
They return floating-point values. You can also define string functions
(which return string values) and integer functions (which return integer
values). To do so, append a string or integer variable name to FN. For
example:

FNA$
FNA'X.

Like variables, functions with the same name but different suffixes are
different functions. See Chapters 10 and 11 for more information on string
and integer functions.

You can define a function anywhere in the program. Write the defining, or
DEF*, statement as:

DEF* FN<variable(arguments» = <expression(arguments»

NOTE

For compatibility with previous versions of BASIC-PLUS,
DEF is supported as a synonym of DEF*. However, DEF* is
preferred for compatibility with BASIC-PLUS-2.

The arguments in a DEF* statement can consist of zero to five dummy
variables. The expression, however, need not contain all the arguments and
can also contain other program variables not among the arguments. For
example:

The preceding statement causes line 20 to be evaluated as R= 17:

20 LET R = FNA(a)+l

Elementary Statements and Features 9-31

The following example causes the function to be evaluated using the cur
rent value of the variable X in the program:

50 DEF* FN6CA.6) = A+X"2
60 Y=FN6CI4.4.R3)

The dummy argument in this case (B, which becomes the actual argument
R3 in the function call) is not used.

The following two programs illustrate the use of a user-defined function.
The first program uses different variables for the dummy argument in the
DEF* statement and the actual argument in the function call; the second
program uses the same variable for both the dummy argument and the
actual argument. Otherwise, the two programs are identical. Both produce
the same output.

Program 1

LISTNH
10 DEMO OF FUNCTION DEFINITION
100 OEF* FNSCA)=A"A
110 FOR 1=1 TO 5 &

\ PR I NT I. FNS C I) eo:
\ NE){T I

32767 END

Ready

Program 2

LISTNH
10 DEMO OF FUNCTION DEFINITION
100 DEF* FNSCI)=I"I
110 FOR 1=1 TO 5 &

\ PR I NT I. FNS C I) eo:
\ NEXT I

32767 END

Ready

The output is:

RUNNH

2
3
4
5

Ready

1
4
27
256
3125

9-32 Elementary Statements and Features

DEF* statement arguments are dummy variables. When your program
invokes the defined function, the first value passed in the function call is
assigned to the first dummy variable. The second value is passed to the
second dummy variable, and so forth. The number of values passed must
match the number of dummy variables in the DEF* statement:

100 DEF* FNAIX) = X"2+3*X+4
200 DEF* FNBIX) FNAIX)/2 + FNAIX)
300 DEF* FNCIX) SQRIX+4) + 1

The arguments of a user-defined function can be numbers, variables, other
functions, or mathematical expressions. For example:

40 LET R = FNAIX+Y+Z)*N/IY"2+D)

A user-defined function can have zero to five arguments:

25 DEF* FNLIX,Y,Z) = SQRIX"2 + Y"2 + Z"2)

A later statement in a program containing this user-defined function might
look like:

55 LET B = FNLID,L,R)

where D, L, and R have some values in the program.

The number of arguments you use to call a user-defined function must
agree with the number of arguments that defined it. Otherwise, you get an
error message. For example:

10 DEF* FNA IX) = X*2
20 PRINT FNAI3,2)

These statements cause the error message:

?ArgUMents don't Match at line 20

You can use a DEF* statement or function reference, where a function has
zero arguments, to write the function name with or without parentheses.
For example:

LISTNH
10
20
30
32767

Ready

RUNNH

DEF* FNA=){"'2
INPUT 'TYPE A NUMBER';X
PR I NT FNA; FNA I)
END

TYPE A NUMBER? 3.65
13.3225 13.3225

ReadY

Elementary Statements and Features 9-33

9-34

When you call a user-defined function, you can use any legal expression as
an argument. BASIC-PLUS substitutes the value of each expression for
the corresponding function variable. For example:

LISTNH
10 DEF* FNZ(X)=X"2
20 LET A=2 fI:

\PRINT FNZ(2+A)
32767 END

Ready

RUNNH
16

Ready

If you define the same function name more than once, an error message is
printed:

100 DEF* FNX(X)=X"2
110 DEF* FNX(X)=X"4
?Ille~al FN redefinition at line 110

Ready

The function variable need not appear in the function expression. For
example:

LI STNH
100
110
120
130

32767

Ready

RUNNH
3
7
11
15

Ready

FUNCTION VARIABLE NOT IN FUNCTION EXPRESSION
DEF* FNA(X) = 4*A + 2
FOR A = 0 TO 3
LET R = FNA(10) + 1 &
\ PRINT R &
\ NEXT A
END

The next program contains examples of multi-variable DEF* statements in
lines 30, 50, and 70.

LI STNH
30
50
70
100
110
200
210
300
310
32767

Ready

DEF* FNA(X,Y) = X + Y
DEF* FNM(X,Y) = X * Y
DEF* FNU (A ,B ,C ,0 ,E) = ((A-B) *C) + (D-A) / (E+4)
INPUT "2 nUMbers to ADD"; A,B
PRINT "The SUfll of"; A; "+"; B; "is"; FNA(A,B)
INPUT "2 nUfllbers to MULTIPLY"; E,F
PRINT "The product of"; E; "*"; F; "is"; FNM(E,F)
INPUT "5 nUfllbers to play with"; A,B,C,D,E
PRINT "The unusual result of that is"; FNU(A,B,C,D,E)
END

Elementary Statements and Features

RUNNH
2 numbers to ADD? 5,6
The sum of 5 + 6 is 11
2 numbers to MULTIPLY? 4,5
The product of 4 * 5 is 20
5 numbers to play with? 6,2,3,14,8
The unusual result of that is 12.6667

Ready

9.9 Subroutines

A subroutine is a section of code that can be called at more than one point
in the program. A subroutine can perform a complicated I /O operation for a
volume of data, a mathematical evaluation, or any number of other opera
tions. The first line in the subroutine can be a remark or any executable
statement; the remaining lines in the subroutine perform whatever opera
tion you specify.

Like user-defined functions, subroutines let you execute the same sequence
of instructions at more than one point in a program. Unlike user-defined
functions, which are called by name, subroutines are called by line number.

You can use more than one subroutine in a single program. They are nor
mally placed in line number sequence at the end of the program.

A useful practice is to assign distinctive line numbers to subroutines. For
example, if the main program uses line numbers up to 199, use 200 and 300
as the first numbers of two subroutines. Consider the following subroutine
that uses both the GOSUB and RETURN statements:

LISTNH
10 PRINT "HI THERE." &

\ GOSUB 1000 &
\ PRINT "I'M BACK AT LINE 10" &
\ GOSUB 1000

20 PRINT" I'M BACK AT LINE 20 NOW" &
\ GOTO 32767

1000 PRINT "JUMPING JEHOSOPHAT!" &
\ RETURN

32767 END

Ready

RUNNH
HI THERE.
JUMPING JEHOSOPHAT!
I'M BACK AT LINE 10
JUMPING JEHOSOPHAT!
I'M BACK AT LINE 20 NOW

Ready

Elementary Statements and Features 9-35

9.9.1 GOSUB Statement

Subroutines usually are placed near the end of a program before any DATA
statements and must go before the END statement. The GOSUB statement
calls the subroutine. Your program continues until it encounters a GOSUB
statement of the form:

GOSUB <line number>

The line number after the word GOSUB is the first line number of
the subroutine. Control then transfers to that line in the subroutine. For
example:

SO GOSUB 200

Control transfers to line 200 in your program subroutine.

9.9.2 RETURN Statement

A RETURN statement is necessary to exit a subroutine. It has the form:

RETURN

You use RETUB,N in the following sequence:

1. The program encounters a GOSUB statement.

2. The system internally records the location of the next executable
statement.

3. Control transfers to the subroutine.

4. A RETURN statement at the end of the subroutine transfers control
back to where it left off in the main program.

In this way, no matter how many times you call subroutines, the pro
gram returns to the right place. For example, refer to the subroutine in
Section 9.9.

9.9.3 Nesting Subroutines

Subroutines can be nested; that is, one subroutine can call another sub
routine. If the execution of a subroutine encounters a RETURN statement,
it returns control to the statement after the GOSUB that called the sub
routine. Therefore, a subroutine can call another subroutine, including
itself.

Subroutines can be entered at any point and can have more than one
RETURN statement. You can transfer to the beginning or to any part of a
subroutine. Multiple entry points and returns can make a subroutine more
versatile, although more difficult to debug and maintain.

The maximum level of GOSUB nesting depends on the size of your program
and the amount of memory available. Exceeding this limit generates a
message of the form:

?MaxiMUM MeMOry exceeded at line <line nUMber>

9-36 Elementary Statements and Features

9.10 END Statement

The END statement is the last statement in a BASIC-PLUS pro
gram. When executed, it closes all open I/O channels and halts program
execution.

While BASIC-PLUS lets you omit the END statement, you should always
include it to guarantee an orderly end to program execution.

The END statement has the form:

END

Its line number should be the largest line number in the program. Pro
grammers often place the END statement at line 32767 (the largest line
number allowed) to guarantee that it is the last line in the program.

BASIC-PLUS lets you create a program that has statements after the END
statement. However, when you run or retrieve this program, BASIC-PLUS
ignores all statements that follow the END statement. Suppose, for exam
ple, that you write a program where an END statement is followed by
additional statements:

NEW TEST

Ready

100 PRINT "HELLO"
200 PRINT "GOODBYE"
300 END
400 LET C = 5
500 PRINT C

You see all the lines when you list the program, but lines 400 and 500 do
not execute when you run the program. Similarly, you can save the pro
gram, but lines 400 and 500 are lost when you use the OLD command to
retrieve the program. For example:

SAVE TEST

Ready

OLD TEST

Ready

LI STNH
100 PRINT "HELLO"
200 PRINT "GOODBYE"
300 END

Ready

You can run a program that does not contain an END statement.
BASIC-PLUS executes an implicit END statement and does not print an
error message. However, BASIC-PLUS prints the following message when
you retrieve a program without an END statement:

?End of file on device

Elementary Statements and Features 9-37

9.11 STOP Statement

Like the END statement, the STOP statement halts program execution.
Unlike the END statement, however, the STOP statement does not close
I/O channels. In addition, the STOP statement does not usually appear in a
finished BASIC-PLUS program. Instead, is a debugging tool. STOP lets
you halt execution at various points in a program to examine variables and
make changes to the program.

The STOP statement has the form:

STOP

When executed, STOP halts the program and prints:

Stop at line <line nUMber>

Ready

The <line number> is the line containing the STOP statement. Chapter 6
of this manual describes the use of the STOP statement in program
debugging.

Usage Note

When you debug an error-handling routine, be aware that STOP resets the
values of the BASIC-PLUS variables ERR and ERL, which are used in
error-handling routines. STOP sets ERR (the error number) to 123, which
is the "Stop at line <line number> " message. STOP sets ERL, (the line
where the error occurred), to the line containing the STOP statement.

See Section 13.7 for information about error-handling routines.

9-38 Elementary Statements and Features

PART III
Advanced
Language
'Features

Chapter 10
Strings and String Functions

This chapter reviews string constants and variables and describes string
conversion, string input and output, and string functions.

10.1 Strings

Chapter 9 describes the manipulation of numeric information.
BASIC-PLUS also processes information in strings. A string is a sequence
of ASCII characters treated as a unit. Notice the messages that the INPUT
and PRINT statements print in Sections 9.3.2 and 9.3.3 with the input and
output of numeric values. These messages consist of string constants. Just
as there are numeric constants and functions, there are also string con
stants and functions.

10.1.1 String Constants

BASIC-PLUS lets you use string constants as well as numeric constants.
String constants are delimited by either single or double quotation marks.
For example:

100 LET Y$ = "FILE4"
200 61$ = 'CAN'
300 IF A$ = "YES" GOTO 250

"FILE4", <CAN' and "YES" are string constants.

1 0.1.2 String Variables

You can define variable names for simple strings and also for lists and
matrices composed of strings (one- and two-dimensional string arrays). Any
legal variable name followed by a dollar sign ($) is a legal name for a string

10--1

variable. (Section 8.3.2 describes the rules for forming legal variable
names.) For example:

A$
C7$
NAME.OF.CUSTOMER$ (EXTEND mode only)

These are simple string variables. Any subscripted variable name followed
by a dollar sign ($) denotes a string array. For example:

1,J$(N) M2$(N)
C$(M,N) G1$(M,N)

M and N indicate the position of the array element in the array.

BASIC-PLUS automatically initializes numeric variables to zero when you
run a program. Likewise, it initializes string variables to null strings
(strings containing no characters).

10.1.3 Subscripted String Variables

Define string arrays with the DIM statement, as you do for numeric arrays.
For example:

100 DIM S1$(5)

This statement means that S1$ is a string array with six elements, S1$(0)
through S1$(5), which you access individually. If you do not use a DIM
statement, BASIC-PLUS assumes that a subscripted string variable has a
dimension of 10 in each direction (11 elements including zero). Note that
the dimension of a string array specifies the number of strings, not the
number of characters in any string. For example, consider that the first
statements in a program are:

1050 FOR I=l TO 7 &
\ LET B$(I)="PDP-ll" ~"

\ NE)<T I

BASIC-PLUS creates an array B$(n) with 11 accessible elements, B$(O)
through B$(10). The elements B$(1) through B$(7) are set equal to
"PDP-11". The others are null strings:

LISTNH
1050 FOR I=l TO 7 &

\ LET B$(I)="PDP-ll" B:
\ NE)<T I

1060 FOR H=O TO 10 &
\ PRINT H,B$(H) &
\ NE)<T H

32767 END

Ready

10-2 Strings and String Functions

RUNNH
0

PDP-11
2 PDP-11
3 PDP-11
4 PDP-11
5 PDP-11
G PDP-11
7 PDP-11
8
9
10

Ready

In general, dimension all arrays to the maximum size that the program
refers to.

10.1.4 String Size

A string can contain up to 32767 characters, but is limited by the amount of
available memory.

You cannot use the LINE FEED key to type a string on two or more termi
nallines. To create a string longer than a terminal line, use string opera
tions (such as concatenation and other operations that are described later).
Since memory is limited, you can also save strings in disk files.

10.1.5 Relational Operators

When you apply relational operators to string operands, the operators indi
cate alphabetical order. For example:

55 IF A$(I><A$(1+1) GOTO 100

A$(I) and A$(I + 1) are compared at line 55. If A$(I) occurs earlier in alpha
betical order than A$(I + 1),execution continues at line 100. See Section
8.4.3.2 for more information on string relational expressions.

10.2 ASCII String Conversions, CHANGE Statement

You can reference individual characters in a string with the CHANGE
statement. It has the form:

CHANGE { <arr.ay na~e> } TO { <string variable> }
<strmg varIable> <array name>

The CHANGE statement lets you convert either a string into a list of
numeric values or a list of numeric values into a string. You can convert
each character in a string to its ASCII equivalent or vice versa.

Strings and String Functions 10-3

Table D-1lists the ASCII characters and their corresponding decimal val
ues. Several ASCII characters have no graphic equivalent; they do not
cause a character to be printed.

The following program uses CHANGE to convert a string into a list of
numerIC values. The program stores the numeric values in an integer
array.

LISTNH
1000 REM -- STRING/ASCII CHANGE DEMO
1010 DIM){'X.(3)

1020 LET A$ = "CAT"
1030 CHANGE A$ TO XX
1040 XX=XX(0)+XX(3) &

\ PRINT '){'X,='j)-('X.,'THE ARRAY)-(1.. IS 'j &:
)-(1..(0) j){·X.(1) j){'X.(2) j){·X.(3)

1050 !IN A CHANGE STATEMENT THE NUMERIC ARRAY &
!IS REFERENCED WITHOUT SUBSCRIPTS. AS THIS &
!EXAMPLE SHOWS, HAVING A SINGLE-VALUE VARIABLE &
!WITH THE SAME NAME IN THE PROGRAM CAUSES &
! NO AMB I GU ITY •

32767 END

RUNNH
)-(1..= 87 THE ARRAY XX IS 3 67 65 84

X%(1) through X%(3) contain the ASCII values of the characters in the
string variable A$. The first element of array X%, X%(O), becomes the
number of characters in A$.

If more characters are present in the string variable than are dimensioned
in the numeric list, the message "?Subscript out of range" is printed. The
first element of the list (element 0) becomes the number of characters in the
string and is greater than the dimension of the list.

Notice that line 1010 creates the four-element array, X%. Use a DIM state
ment in this instance. Otherwise, BASIC-PLUS creates a default eleven
element array (X%(10)), which wastes space in your memory area.

Another program that converts a string into a list of numeric values
follows:

LISTNH
100 DIM A'X.(65)
110 READ B$
120 CHANGE B$ TO AX
130 FOR 1=0 TO AX(O) &

\ !AX(O) GIVE LENGTH OF STRING
140 PR I NT AI.. (!) j &:

\ NEXT I
200 DATA ABCDEFGHIJKLMNOPQRSTUVWXYZ
32767 END

Read¥

10-4 Strings and String Functions

RUNNH
26 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
82 83 84 85 86 87 88 89 90

Ready

Notice that A %(0) equals 26, the number of letters in the alphabet.

So far, you have seen how to convert a string into a list of numeric values.
You can also use the CHANGE statement to convert the numeric (ASCII)
representation of characters into string characters.

The following example uses CHANGE to convert an array of ASCII values
into a string. A%(O) specifies the number of characters in the string. The
ASCII values for the characters start at A%(1).

LISTNH
100 REM -- ASCII NUMBER TO STRING CONVERSION DEMO
110 FOR 1=0 TO 5 &

\ READ AI., (I) t.:
\ NE){T I

120 CHANGE AX TO B$ &
\ PRINT B$

200 DATA 6,65,66,67,68,69,70
32767 END

Ready

RUNNH
ABCDE

Ready

This program prints ABCDE because the numbers 65 through 69 are the
ASCII code numbers for A through E. Although the DATA statement con
tains a value for A%(6), the program does not read it into the array. Thus,
only five characters (ABCDE) are printed. ASCII 0 (the contents of A%(6))
is not a printable character.

When you use CHANGE to convert an array to a string, you must indicate
the number of characters in the string. Place this number in the zero
element of the array. If element zero has a value less than or equal to zero,
the CHANGE statement generates a zero-length string.

NOTE

The CHANGE statement is different from the intrinsic func
tions VAL(X$) (which converts a number's string representa
tion to a number) and NUM$(X) (which converts a number to
its string representation). See Table 10-1 for information
about the V AL and NUM$ functions.

Strings and String Functions 10-5

10.3 String Input

You can input strings with READ and DATA, INPUT, and INPUT LINE
statements.

10.3.1 READ and DATA Statements

The READ and DATA statements enter string variables into a program. A
READ statement can appear anywhere in a multi-statement line, but a
DATA statement must be the last statement on a line.

Here is an example of READ and DATA:

10 READ A$, B, C, D
20 DATA 17, 14, 13.4, CAT

These statements cause BASIC-PLUS to make the following assignments:

A$ = the character string "17"
B 14
C = 13.4

Attempting to read CAT into D causes BASIC-PLUS to print the message:

?Ille.al nUMber at line 10

You need quotation marks (") around a string item in a DATA statement
only when:

• The string contains a comma

• Leading, trailing, or embedded spaces within the string are significant

• Lowercase letters should not be converted to uppercase

BASIC-PLUS always accepts single or double quotation marks around
string items, even when they are not necessary. For example, the items in
line 500 in the following program are acceptable strings:

LISTNH
100 READ A$,B$,C$,D$,E$
110 PRINT A$;Bf;C$;D$;E$
120 PRINT A$,B$,C$,D$,E$
500 DATA 'MR. JONES', MS SMITH, "MRS.BROWN", 'MS', '''MR'' ,
32767 END

Ready

RUNNH
MR. JONESMSSMITHMRS.BROWNMS"MR"
MR. JONES MSSMITH MRS.BROWN MS "MR"

Ready

10-6 Strings and String Functions

Although the string MS SMITH is acceptable without quotation marks,
embedded spaces in the string are discarded.

BASIC-PLUS stores all values from the programmed DATA statements as
an ASCII string list. When it reads a numeric variable, BASIC-PLUS per
forms the appropriate ASCII-to-numeric conversions. When a string varia
ble is read, the string is used as it appears in the DATA statement. If the
item is not in quotation marks, BASIC-PLUS ignores leading, trailing, and
embedded spaces. If the item appears in quotation marks, the string varia
ble is equated to the string within the quotation marks.

See Section 9.2.3 for more information about READ and DATA. See also
the MAT READ statement, Section 12.2. MAT READ reads numeric and
string matrices.

10.3.2 INPUT Statement

You can use the INPUT statement to input strings. For example:

10 INPUT "YOUR NAME";N$

This statement is equivalent to:

100 PRINT ' YOUR NAME';
110 INPUT N$

When an INPUT statement is executed, it prompts you for input with a
question mark. To ensure that BASIC-PLUS reads your input correctly, it
is recommended that you enter no more than 132 characters (including
commas between values) before you press the RETURN key. See Sections
9.2.2 and 15.4 for more information about the INPUT statement.

10.3.3 INPUT LINE Statement

Besides INPUT, you can also input strings with the statement:

INPUT LINE <string variable>

For example:

10 INPUT LINE A$

This statement causes the program to accept a line of input from the termi
nal with embedded spaces, punctuation characters, or quotation marks.

You cannot print a text string with the INPUT LINE statement. For
example:

10 INPUT LINE 'YOUR NAME'; A$
?5vntax error at line 10

To print a text string, use the PRINT statement.

Strings and String Functions 10-7

LISTNH
100

327G7

Ready

RUNNH

An INPUT LINE statement reads the line as you type it, including the line
terminating character(s). You can terminate the line in one ofthe following
ways:

1. Carriage returnlline feed-press the RETURN key (appends ASCII val
ues 13 and 10 to the character string).

2. Line feed-press the LINE FEED key (appends ASCII values 10, 13,
and 0 to the character string).

3. ESCAPE-press the ESCAPE, ALT MODE or PREFIX key,
depending on the terminal (appends ASCII value 27 to the character
string).

4. Form feed-press CTRL/L (appends ASCII value 12 to the character
string).

When BASIC-PLUS encounters an INPUT or INPUT LINE statement, it
displays a prompt (a question mark and a space). This signals that the next
line typed will be treated as input.

You can enter up to 132 characters. If you enter more than 132 characters,
BASIC-PLUS may not read them correctly. Your string variable will have
unpredictable contents. For example:

PRINT 'ENTER LONG STRING' &
\ INPUT LINE A$ &
\ PRINT &
\ PRINT A$
END

ENTER LONG STRING
? t./[';;']":]\PO[\OIJKMNH FFFFFFFFFFFFFFF555555555GGGGG7777BBB901111122
233344RRFFCOSSWWEERGNNMttKKLL:::::DDDD#####**** ________ ++++++UUUIKOL6666
666FFFFFFFFFFFFFRRRRRRRRR4444444555555G? GGGGG777777BBBBBB9999IIIIIIIUUU
UYYYYFFFFFFVVVVV6666NNNNMMMVV ? VVCCCSSSSAAAAQQQSSSSWWWEEDDD4444444444444
4444ZZZZZZZZ······&&&&&&$$$$$$#####@@@@!!!! !HHHHHGGGGGG777777BBBB?Line t
00 long at line 100
? HH

4444444444444444'1.,%i.''"1.,i.''"1.,"Xi.','''' ,', , •• ,"&&&&&t.:$$$$$$#####@@@@! ! ! ! ! HHHHHH

Ready

You can also input string information in the form of records with the GET
statement. See Section 17.3 for further information.

10-8 Strings and String Functions

10.4 String Output

Use the PRINT statement to print string data. When a PRINT statement
includes string values (either alone or with other string and numeric
values), BASIC-PLUS does not add leading or trailing spaces to the string.
Only the actual content of the string is printed. If you want to print leading
or trailing spaces, you must include them in the string when you define it.
The following example shows how BASIC-PLUS prints strings:

LISTNH
100 REM -- STRING OUTPUT DEMO
200 A$="PART 1"
300 B$="PART 2"
400 C$="PART 3"
500 PRINT A$;B$;C$;
32767 END

Ready

RUNNH
PART lPART 2PART 3
Ready

The use of semicolons to separate character string constants from other list
items is optional in BASIC-PLUS. However, their use is recommended
because they make the program more transportable and readable.

10.5 String Functions

BASIC-PLUS provides built-in mathematical functions for numeric quan
tities (for example, SIN and LOG). Similarly, the language offers a set of
functions to simplify the handling of strings. These functions, described
in Table 10-1, are particularly useful when dealing with whole lines of
alphanumeric information input by an INPUT LINE statement. Through
out Table 10-1, A$ in the immediate mode examples is the string:
"ABCDEFGHIJKLMNOPQRSTUVWXYZ" .

Table 10-1: String Functions

Function Code Meaning

LEFT(A$,N) Indicates a substring of the string A$ from the first character
through the Nth character (the leftmost N characters of the string
A$). For example:

A$='ABCDEFGHIJKLMNDPQRSTUVWXYZ'

Ready

PRINT LEFT(A$,7)
ABCDEFG

(continued on next page)

Strings and String Functions 10-9

10-10

Table 10-1: String Functions (Cont.)

Function Code Meaning

RIGHT(A$,N) Indicates a substring of the string A$ from the Nth character
through the last character in A$ (the rightmost characters of the
string A$ starting with the Nth character). For example:

MID(A$,N1,N2)

LEN(A$)

PRINT RIGHT (A$,20Z)
TUI,JW>{YZ

Indicates a substring of the string A$, starting with character N1,
that is N2 characters long (the characters between and including
the N1 through N1 + N2-1 characters of the string A$). For
example:

PRINT MID (A$,15Z,5Z)
OPQRS

Returns an integer that indicates the number of characters in the
string A$ (including trailing blanks). For example:

PRINT LEN (A$)
26

+ Indicates a concatenation operation on two strings. For example,
"ABC" + "DEF" is equivalent to "ABCDEF", and "12"+"34"+"56"
is equivalent to "123456".

CHR$(N) Generates a one-character string with the ASCII value of N. For
example, CHR$(65) is equivalent to "A". Only one character can be
generated.

ASCII(A$) Generates an integer that is the ASCII decimal value of the first
character in A$. For example, ASCII("X") is equivalent to 88, the
ASCII equivalent of X. If B$ = "XAB", then ASCII(B$) = 88.

RAD$(I%) Converts an integer to a three-character string. This function lets
you convert a value in Radix-50 format back into ASCII. (Radix-50
is explained in the RSTS / E Programming Manual.)

INSTR(N1,A$,B$) Indicates a search for the substring B$ within the string A$, begin
ning at character position N1. Returns a value of 0 if B$ is not
in A$. Returns the character position of B$ if B$ is found in A$.
(Character position is measured from the start of the string, with
the first character counted as character 1.) For example:

SPACE$(N)

PRINT INSTR(5Z,A$,'OP')
15

If B$ (the search string) is a null string (B$ = ""), the INSTR
function returns the value 1. The null string is a proper substring of
any string; it is treated conventionally as the first element of A$ in
null string search operations. In addition, if both A$ and B$ are
null strings, the INSTR function returns the value 1.

Indicates a string of N spaces; used to insert spaces in a character ·
string.

(continued on next page)

Strings and String Functions

Table 10-1: String Functions (Cont.)

Function Code Meaning

NUM$(N) Returns a string of numeric characters representing the value of N
as a PRINT statement would print it. NUM$(n) = (space)n(space) if
n>O and NUM$(n) =-n(space) if n<O. For example:

NUM1$(N)

VAL(A$)

TIME$(N)

DATE$(N)

PRINT NUM$(7485088702134)
.74851E 13

Returns a string of numeric characters representing the integer or
floating-point value N. This is similar to the NUM$ function,
except that no spaces or E-format results are returned. You can use
it to convert an integer or floating-point value for use as a string
function operand. For example:

PRINT NUMl$(PI>
3.14158285358878

This example uses a four-word format, which allows you to carry
out PI to 15 significant digits. Using a two-word format, PI would
equal 3.14159.

Here is another example:

PRINT NUM1$(87.5*30458.23+3.03 A 5.1)
288878.78154885

Computes the numeric value of the string of numeric characters A$
and returns it as a floating-point number. A$ may include digits, a
leading plus (+) or minus (-), a period (.) and E. For example:

PRINT VAL< '14.3E-5')
.000143

If A$ contains a character not acceptable as numeric input with the
INPUT statement, an error results.

Where N = 0, this function returns the time of day as a string. For
example:

01 : 30 PM

Where N<>O, the function translates N% into a time string. If the
run-time system was generated using the 24-hour time option,
01:30 PM is returned as 13:30 followed by 3 spaces. TIME$ always
returns an 8-character string.

Where N = 0, this function returns the current date in the form:
<day>-<month>-<year>. For example:

12-All!l-81

Note that dates are output using both upper- and lowercase letters.
When the output device does not generate lowercase letters, the
ASCII values still imply lowercase. Where N<>O, the function
translates N into a date string. If the run-time system was gener
ated with the numeric date option, 12-Aug-81 is returned as
81.08.12.

(continued on next page)

Strings and String Functions 10-11

10-12

Table 10-1: String Functions (Cont.)

Function Code Meaning

STRING$(N1,N2) Creates a string of length N1 that consists of characters whose
ASCII decimal value is N2. For example, to create a string com
posed of 10 "A" characters (CHR$(65)), execute the statement:

CVT$$(S$,M)

XLATE(S$,T$)

PRINT STRINGS(10,GS)
AAAAAAAAAA

See Table D-1 for the decimal values of ASCII characters.

Converts the source character string S$ according to the decimal
value of the integer M. Section 10.5.1 describes this function in
detail.

Translates source string S$ from its existing storage code to a code
indicated by the table string T$, and returns the translated form of
string S$ as the target string.

A complete description of this function appears in Section 10.5.2.

10.5.1 CVT$$ Function

The CVT$$ function manipulates a character string and generates a new
character string. The output string is converted according to the integer
value that your program gives. You specify CVT$$ in the form:

CVT$$ (S$,M%)

where:

S$ is the string to convert

M% is an integer value

The bits of M% are interpreted as follows:

1 Trim the parity bit.

2 Discard spaces and tabs.

4 Discard carriage return (8IT), line feed @ , form feed ®, escape @g,
rubout (lli), and fill or null characters.

8 Discard leading spaces and tabs.

16 Reduce spaces and tabs to one space.

32 Convert lowercase to uppercase.

64 Convert square brackets to parentheses; for example, 'T' to "(" and
"]" to ")".

128 Discard trailing spaces and tabs.

256 Do not allow al~eration of characters inside single or double quota
tion marks except parity bit trimming.

Strings and String Functions

You can use these bits in combination. For instance, if M% is given as 21 %,
the result is the same as if you had used three CVT$$ functions with M%
values of 1 %, 4%, and 16%.

The value 1% in the CVT$$ function removes the parity bit (most signifi
cant bit) from each character in the string. Under RSTS/E, characters are
usually represented with no parity. All comparison of characters assume no
parity.

The value 2% removes all space characters (CHR$(32)) and horizontal tab
characters (CHR$(9)) from the string. Values 8%, 16%, and 128% remove
only selective occurrences of space and horizontal tab characters. The ter
minating and excess characters which the value 4% removes in the CVT$$
function usually have no informational value in a string.

For example:

A$=" __ abcde __
TAB 5 spaces

PRINT CVT$$(A$,2Z)
abcde

Ready

PRINT CVT$$(A$,lGZ)
abcde

The value 32% converts all lowercase characters in a string to uppercase.
This feature is valuable because some terminals transmit both forms of
alphabetic characters. The lowercase characters are between CHR$(97) and
CHR$(122); uppercase characters are between CHR$(65) and CHR$(90).

For example:

A$=" a bcde"

PRINT CVT$$(A$,32Z)
ABCDE

The value 64% in the CVT$$ function lets you use parentheses instead of
square bracket characters as delimiters of a project-programmer number.

For example:

A$=1[200,245]"

PRINT CVT$$(A$,G4Z)
(200,245)

Strings and String Functions 10-13

10-14

Use the value 64% when printing account numbers to terminals without
square bracket characters. Most terminals have parenthesis characters,
whereas many terminals lack square bracket characters.

The value 256% in the CVT$$ function prevents any alteration of charac
ters inside quotation marks, except parity bit trimming-set by M% = 1 %.
Regardless of other values in the parameter M%, when 256% is included no
operations are performed in the source string on characters inside quota
tion marks.

For example:

A$="abcde' f.h 'iJk"

Ready

PRINT CUT$$IA.,BZ+32Z+256ZI
ABCDE' flh 'IJK

Generally, the precedence of operations that BASIC-PLUS performs on the
string is in increasing order of the values in the parameter M%. (The 256%
value, however, is the exception; its precedence ranks between 1% and 2%.)
This order implicitly determines which operations are performed on the
string.

For example, consider the case where characters in the source string have
their parity bit set, and you do not select the parity trimming option. Sub
sequent comparisons required by other options might not be successful,
because the system compares source characters with ASCII characters that
lack parity. A space (SP) character in no parity or odd parity form
(CHR$(32)) does not equal a space (SP) character in even parity form
(CHR$(160)).

In some text processing applications, the parity bit of each character func
tions as a flag instead of a parity bit. It is important in such cases to keep
the parity bit in the input character of the string. BASIC-PLUS does not
change or discard these flagged characters if you do not select the parity
trimming option.

The precedence of operations affects the result of values given in the
CVT$$ function. If you give the values 2% or 8% in the CVT$$ function, the
values 8%, 16%, and 128% have no effect on the output string. Because the
first option performed (2%) removes all space and tab characters from the
string, the remaining values dealing with space and tab characters have no
effect.

In like manner, the value 16% applies to all space and tab characters not
discarded by the 2% and 8% options. Thus, to maintain at least a single
space interval in a string, your program must give the 16% value and omit
the 2% and 8% values.

The CVT$$ function often eliminates the need for special code in
BASIC-PLUS programs to handle string input. For example, the following
program manipulates an input string at lines 1020 through 1050.

Strings and String Functions

10 D(TEND ! USE BASIC-PLUS EXTEND MODE &

800 DIM IN.CHARSy',(128'X,), DUT.CHARS'X,(128Y.,) 11,
DIMENSION TWO ARRAYS TO HANDLE THE BYTE REPRESENTATION &

! OF THE INPUT AND OUTPUT STRINGS. &

1000 PRINT "This pro~ram will remove all leadin. spaces and tabs" &
\ PRINT "frolll a string, and convert all characters to uppercase," 11,
\ PRINT &,

1010 PRINT "Your strin~"; &
\ INPUT LINE IN.STRING$ &

1015 &
LINES 1020 - 1050 PERFORM THE CONVERSIONS &

1020 CHANGE IN,STRINGS TO IN.CHARS% &
! CONVERT THE INPUT STRING TO BYTES &

\ IN.LEN% = IN.CHARS%(O%) &
! REMEMBER THE LENGTH OF THE INPUT STRING &

\ OUT.PTR% = 0% &
INITIALIZE THE OUTPUT CHARACTER POINTER &

1030 GOTO 10aO UNLESS IN.CHARS%(IN.PTR%)=8% OR IN.CHARS% (IN.PTR%)=32% &
FOR IN.PTR%=l% TO IN.LEN% &

I SKIP OVER ALL LEADING TABS (8) AND SPACES (32), LEAVE &
THIS LOOP WHEN WE ENCOUNTER A SIGNIFICANT CHARACTER &
OR THE END OF THE STRING. &

1040 FOR IN.PTR% = IN.PTR% TO IN.LEN% &
! NOW COPY ANY REMAINING CHARACTERS IN THE INPUT STRING, &

CONVERTING TO UPPERCASE, AS NECESSARY. &
\ OUT,PTR% = OUT,PTR% + 1% &

! POINT TO THE NEXT OUTPUT CHARACTER. &
\ IN.CHAR% = IN,CHARS%(IN.PTR%) &

! GET A CHARACTER FROM THE INPUT STRING. &
\ IF IN.CHAR%)= 97% AND IN,CHAR% (= 122% THEN &

! I F CHAR I S BETWEEN LOWERCASE "A" AND "Z" THEN &
OUT.CHARS%(OUT,PTR%) = IN.CHAR% - 32% &

MAKE THE CHARACTER UPPERCASE. NOTE &
THAT ASCII (LOCASE CHARACTER)-32 EQUALS &
ASCII (UPCASE CHARACTER). &

ELSE OUT.CHARS%(OUT.PTR%) = IN,CHAR% &
I IF THE CHARACTER IS NOT LOWERCASE, THEN &

COPY IT DIRECTLY. &

1050 NEXT IN.PTR% &
! GO GET THE NEXT CHARACTER &

\ OUT.CHARS%(O%) = OUT.PTR% &
! SET THE LENGTH OF THE NEW STRING. &

\ CHANGE OUT.CHARS% TO OUT.STRING$ &
! CONVERT THE BYTE REPRESENTATION TO A STRING. &

1060 PRINT &
\ PRINT "The old string was =)"; IN.STRINGS; &
\ PRINT "The ne ' strin9' is ==)"; OUT,STRING$j B,

! PROVE THAT THE CONVERSION WORKED. NOTE THAT THE &
CARRIAGE RETURN AND LINE FEED THAT THE USER TYPED &
WILL BE PRINTED HERE, SINCE THEY ARE A PART OF THE &
STRING. &:

32767 END

Ready

Strings and String Functions 10-15

RUNNH
This pro~raM will reMove all leadin~ spaces and tabs
froM a strin~, and convert all characters to uppercase.

Your strin~? ThIS STrin~ WILl be fixeD

The old strin~ was =) ThIS STrin~ WILl be fixeD
The new strin~ is ==)THIS STRING WILL BE FIXED

LISTNH
10 EnEND

You can replace lines 1020 through 1050 with a single CVT$$ function at
line 1020, as shown in the following sample code. The value of 40%
(32% + 8%) in the CVT$$ function in line 1020 produces the same results as
lines 1020 to 1050 in the original program.

USE BASIC-PLUS EXTEND MODE &

1000 PRINT "This pro~raM will reMove all leadin~ spaces and tabs" &
\ PRINT "frOM a strin~, and convert all characters to uppercase." &
\ PRINT &:

1010 PRINT "Your strin~"j &:
\ INPUT LINE IN.STRING$ &

1015 &:
! DO THE CONVERSION AT LINE 1020 &

1020 oUT.STRING$ = CVT$$(IN.STRING$, 32%+8%) &
CLEAN UP THE INPUT STRING: &
32 CONVERT TO UPPERCASE, AND &
8 = DISCARD LEADING SPACES AND TABS &

1060 PRINT &:
\ PRINT "The old strin~ '.'as =)"j IN.STRING$j &:
\ PRINT "The ne'.' strin~ is ==)"j oUT.STRING$j &:

32767 END

Ready

RUNNH

! PROVE THAT THE CONVERSION WORKED. NOTE THAT THE &
CARRIAGE RETURN AND LINE FEED THAT THE USER TYPED &
WILL BE PRINTED HERE, SINCE THEY ARE A PART OF THE &
STRING. &:

This pro~raM will reMove all leadin~ spaces and tabs
frOM a strin~, and convert all characters to uppercase.

Your strin~? conVert THis strinG TO ALL caps

The old strin~ was =) conVert THis strinG TO ALL caps
The new strin~ is ==) CONVERT THIS STRING TO ALL CAPS

Ready

10-16 Strings and String Functions

50 EXTEND

10.5.2 XLATE Function

The XLATE function translates a string from one storage code into
another, using a translation table that you supply. For example, while
reading a magnetic tape file, you may need to translate data from EBCDIC
code to ASCII code so that it can be processed by the PDP-ll.

The XLATE function has the form:

XLATE «string1> ,<string2>)

The first argument, <string1> , is the source string; the second argument,
< string2 > , is the table string. XLATE returns a string value called the
target string.

To perform the XLATE function, BASIC-PLUS operates sequentially on
the characters in the source string. BASIC-PLUS uses the numeric value of
each character (0 to 255) as an index into the table string. (Zero means the
first character, 1 means the second, and so forth.)

For each character in the source string, BASIC-PLUS looks up the index
value in the table string. If the selected character in the table string is not
zero and if the index value is in the table, BASIC-PLUS appends the char
acter value from the table string to the target string. BASIC-PLUS does
not transfer any character to the target string if these two conditions are
not met. Thus, the target string is equal to or shorter than the source
string. In addition, the target string cannot contain null characters (ASCII
code 0).

For example, suppose the first character in the source string is an upper
case A (ASCII code 65). BASIC-PLUS looks at the sixty-fifth character in
the table string. If it is an uppercase A, BASIC-PLUS transfers an A to the
first position in the target string. If it is another character (for example, an
asterisk), BASIC-PLUS transfers that character into the first position in
the target string. BASIC-PLUS does not transfer any character into the
first position of the target string if the sixty-fifth character in the table
'string is a zero or if the table string contains fewer than 65 characters.

The following program uses the XLATE function to translate all lowercase
letters in a string to uppercase and to remove characters other than letters
or digits. Uppercase letters and digits do not change.

100 ! Build the table strin~t (For each place that a zero'
! appears in the table strin~t the character in that ,
! position will not appear in the tar~et strin~t) ,

200 TABLE$ = STRING$(48%tO%) !Do not translate CHR$(O%) throu~h "'" ,
+ "0123458789" !Keep di~its the saMe'
+ STRING$(7%tO%) !Do not translate A:" throu~h "@" ,
+ "ABCDEFGHIJKLMNOPQRSTUVWXYZ" !Keep uppercase letters the saMe'
+ STRING$(8%tO%) !Do not translate "[A throu~h "'" ,
+ "ABCDEFGHIJKLMNOPQRSTUVWXYZ" !Translate lowercase letters'

! to l.lppe rcase ,

(continued on next page)

Strings and String Functions 1~17

!Table ends here. Characters "{" through <RUBOUT> (CHR$(127'1.,) &,
!will be left out of target string by default. &,

300 PRINT f"
\ INPUT "String to translate "jTEST.STRING$
\ GOTO 32767 UNLESS LEN(TEST.STRING$) <> 0%

!Get user's test string &,
!Quit if user types <RETURN> &,

400 TRANSLATED.STRING$ = XLATE(TEST.STRING$,TABLE$) !Translate test string &,

500 PRINT "The string you entered translated to "jTRANSLATED.STRING$j f"
\PRINT f"
\REMOVED.COUNT% = LEN(TEST.STRING$) - LEN(TRANSLATED.STRING$) &,
\PRINT CHR$(7'1.,) jREMOI,'ED.COUNT'1.,j" error characters rerlloved" j &,

IF REMDVED.COUNT% <> 0% &,
\PRINT f"
\GDTO 300

32767 END

RUNNH
String to translate? abcdefg*$.123ABC
The string YOU entered translated to ABCDEFG123ABC

3 error characters reMoved

10.6 User-Defined String Functions

10-18

You can define your own string functions with the DEF* statement, Write
string functions like numeric functions (see Sections 9,9 and 13.1). Indicate
the function as a string function with a dollar sign ($) after the function
name.

User-defined string functions return string values, For example, the follow
ing multi-line function returns the string that comes first in alphabetical
order:

100 DEF* FNF$(A$,B$) &,
\ FNF$=A$ &,
\ IF A$>B$ THEN FNF$=B$

110 FNEND

See Section 13.1 for more information about multi-line functions.

The following function combines two strings into one string:

10 DEF* FNC$(X$,Y$)=X$+Y$

String functions can have both numeric and string arguments. However,
you cannot use numbers as arguments in a function where strings are
expected or vice versa. Line 80 is unacceptable because FNA$ is defined to
have a string argument:

10 DEF* FNA$(A$) = CHR$(LEN(A$)+l)
80 LET Z=FNA$(4)

BASIC-PLUS prints:

?ArgUMents don't Match at line 80

Strings and String Functions

A function can have arguments of mixed types. BASIC-PLUS converts
integers to floating-point numbers (and vice versa) when it needs an argu
ment. Integer and floating-point values, however, are not interchangeable
with strings. (See Chapter 11 for information on integer and floating-point
operations.)

The following example defines a function with a string argument, a
floating-point argument, and an integer argument:

DEF* FNA$(A$,B'Y..,C)=A$+I(I+NUM1$(B'Y..)+") is "+NUM1$(C»

You can call this function with either of these statements:

Xl$ FNA$ (A$, p, 3%)
Xl$ FNA$ (A$, PI, 3)

By comparison, the next statement is incorrect because the arguments are
not in the right order::

X1$ = FNA$ (P, A$, 3)

The following code is a string function that returns the leftmost five charac
ters from the sum of three arguments:

LISTNH
75 DEF* FNA$(){ ,Y ,Z) = LEFT (NUM$(){+Y+Z) ,5)
80 PRINT FNA$(100,20,3)
32767 END

Ready

RUNNH
123

Ready

NUM$(123) is the five-character string:

"(space)123(space)"

1 0.7 String Arithmetic

The optional string arithmetic feature consists of six functions that treat
strings of numeric characters as arithmetic operands. String arithmetic
offers greater arithmetic precision with large numbers and fractions than
floating-point arithmetic. Thus, it eliminates the need for scaling.

Table 10-2 describes the six functions that make up the optional string
arithmetic feature: SUM$, DIF$, PROD$, QUO$, PLACE$, and COMP%.

The arguments A$ and B$ in these functions can be string constants, string
variable names, or string expressions. Specify strings that consist of
numeric characters with an optional leading sign and an optional decimal
point. A$ and B$ can each be up to 56 characters long, including the plus or
minus sign and the decimal point.

Strings and String Functions 10-19

Remember to end numeric string variable names with a dollar sign ($) and
to enclose numeric string constants in single or double quotation marks.

The P% argument is an integer expression that specifies the level of preci
sion. See Section 10.7.1 for more information.

Table 10-2: Optional String Arithmetic Functions

Function Code Meaning

SUM$(A$,B$) Yields the arithmetic sum A$ + B$ of numeric strings A$ and B$.

DIF$(A$,B$)

PROD$(A$,B$,P%)

QUO$(A$,B$,P%)

For example:

81$='12349.1789'

Ready

PRINT 8UM$(81$,'89.4545454545')
12438.6334454545

Yields the arithmetic difference, A$-B$, of numeric strings A$
and B$. For example:

6$='9876.54321'

Ready

PRINT OIF$(6$,'78.89')
9797.65321

Yields the product, A$ times B$, rounding to P places. For
example:

A$='12345.6789'

6$='9876.54321'

PRINT PROO$(A$,6$,6)
121932631.112635

Yields the quotient, A$ divided by B$, with rounding to P places.
For example:

C$='3.5'

V9$=QUO$ (C$, ' 1.7777' ,3)

Ready

PRINT V9$
1.969

(continued on next page)

10-20 Strings and String Functions

Table 10-2: Optional String Arithmetic Functions (Cont.)

Function Code Meaning

PLACE$(A$,P%) Rounds A$ to P places. For example:

A$='12345.B789'

Ready

PRINT PLACE$(A$,3)

12345.679

COMP%(A$,B$) Yields a truth value based on the result of a numeric comparison:

-1 if A$ < B$
o if A$ = B$
1 if A$ > B$

For example, if A$ has the same value as in the previous example
and A1$ is equal to PLACE$(A$,3):

PRINT COMP'X.(A$,AU)
- 1

Ready

PRINT COMP'X.(AU ,A$)
1

10.7.1 String Arithmetic Precision

In SUM$ and DIF$, the precision of the larger argument determines the
precision of the result. For example:

10 A$ = "89516.332848661"
20 B$ = "3602.58618"
30 PRINT SUM$(A$,B$)
32767 END
RUNNH
83118.928138661

The result is expressed to the precision of A$, the more precise argument.

10 A$ = "88516.332848661"
20 B$ = "3602.58618"
30 PRINT DIF$(A$,B$)
32767 END
RUNNH
85813.736758661

The result is expressed to the precision of A$, the more precise argument.

The PROD$, QUO$, and PLACE$ functions let you specify the level of
arithmetic precision you want in their results. You specify the level of
precision with the P% argument.

Strings and String Functions 10-21

LISTNH
100

110

120

32767

Ready

RUNNH

P% is an integer expression. It can be positive or negative. A positive P%
value less than 5000 rounds the result to P significant digits to the right of
the decimal point. For example:

E)<TEND
'ALLOWS LONG VARIABLE NAMES
INPUT 'ENTER TWO NUMERIC STRINGS TO BE MULTIPLIED';&

STRING.A$,STRING.B$ &
\ INPUT 'TO HOW MANY DECIMAL PLACES';PNO%
PR$=PROD$(STRING.A$,STRING.B$,PND%) &
\ PRINT 'ANSWER IS ';PR$
END

ENTER TWO NUMERIC STRINGS TO BE MULTIPLIED? 58453.348, '878.0004532'
TO HOW MANY DECIMAL PLACES? 12
ANSWER IS 48622516.718654072

Ready

RUNNH
ENTER TWO NUMERIC STRINGS TO BE MULTIPLIED? .00008087543,0134.2340345
TO HOW MANY DECIMAL PLACES? 10
ANSWER IS .0121717288

Ready

10-22

You can use a negative P% value if you want an approximate result. For
example:

100 PRINT 'ENTER A LARGE NUMBER' &
\INPUT A$ r"
\IF A$ = '0' THEN 150

110 LET B$ = SUM$(A$,B$) &

120
150
180
32787

! ACCUMULATE TOTAL OF INPUT STRINGS
GO TO 100
B$ = PLACE$(B$,-6%)
PRINT 'TOTAL IS APPRQ)(!MATELY '; B$; , MILLION'
END

You can also use the following statement in place of lines 150 and 160:

150 PRINT 'TOTAL IS APPRQ){!MATELY ';PLACE$(B$,-6%); 'MILLION'

To truncate a result instead of rounding it, specify P% in the form:

P% + 10000%

For example, in the following PROD$ function, a P% value of 10012% trun
cates the result to 12 significant digits to the right of the decimal point:

10 A$ = "88516.332848661"
20 B$ = "3602.58618"
30 P'X, = 100121.,
40 PRINT PROD$(A$,B$,P%)
32767 END
RUNNH
322491200.023617584201

Strings and String Functions

When P% is negative, the result of P% + 10000% can be in the range 0 to
10000. To distinguish between a large value of P and truncation after scal
ing, BASIC-PLUS compares P% to 5000. The result is rounded if P% is less
than 5000. Otherwise, the result is divided by 10"P and truncated.

Negative P% causes the result to be effectively divided by 10"P and
rounded P places to the left of the decimal point.

To illustrate, the following examples compare the results you get when you
specify positive and negative P% values with the same arguments:

10 A$ = "89516.332948661"
20 5$ = "3602.59619"
30 P'X = 14·X.
40 PRINT PROD$(A$,5$,P'X)
32767 END
RUNNH
322491200.02361758420159

10 A$ = "89516.332948661"
20 5$ = "3602.59619"
30 P·X. = -l·X.
40 PRINT PROO$(A$,5$,P'X)
32767 END
RUNNH
32249120

10 A$ = "89516.332948661"
20 PI.. = 41..
30 PRINT PLACE$(A$,P'X)
32767 ENO
RUNNH
89516.3329

10 A$ = "89516.332948661"
20 P·X. = -3·X.
40 PRINT PLACE$(A$,P'X)
32767 END
RUNNH
90

The following examples show results obtained for P% values between 5000
and 10000:

10 A$ "89516.332948661"
20 5$ "3602.59619"
30 PI.. 55001..
40 PRINT QUO$(A$,5$,P'X)
32767 END
RUNNH
o

10 A$ = "89516.332948661"
20 PI.. = 9997'X.
30 PRINT PLACE$(A$,P'X)
32767 END
RUNNH
89

Strings and String Functions 10-23

10-24

If you specify a value outside the range for P%, you receive the error mes
sage "%Floating point error at line n." BASIC-PLUS returns the result
with as much precision as possible. For example:

100 A$ = '2'
200 5$ = '3'
300 PRINT QUO$(A$,5$,GOI
327G7 END
RUNNH
%Floatinl point error at line 300

.GG

Table 10-3 summarizes the values of P% and their effects on Y$ (the value
returned by PROD$, QUO$ and PLACE$).

Table 10-3: Precision Values in PROD$, QUO$, and PLACE$
Functions

Value ofP% Effect on Y$

0< = P% < 5000 Y$ is rounded P significant digits to the right of the decimal
point.

P% = P% + 10000 Y$ is truncated P significant digits to the right of the decimal
point.

P% < 0 Y$ is divided by lO~P and rounded.

5000 < = P% < 10000 Y$ is divided by 10~P and truncated.

10.7.2 Combining String Arithmetic Functions

You can nest string arithmetic functions (as operands in other string arith
metic functions, for example) to specify complicated arithmetic or algebraic
operations. For example, consider the following LET statement:

)-(= A*5 + C/D

You can write this in string arithmetic as:

X$ = SUM$(PROD$(A$,5$,10I, QUO$(C$,D$,1011

The following statement is legal, but it concatenates the product and quo
tient strings instead of summing them:

X$ = PROD$(A$,5$,101 + QUO$(C$,D$,101

Strings and String Functions

The following program illustrates these two ways of combining string
functions:

LISTNH
100 A$="12." !EI.JALUATE (12*3.3) + (10/4)
110 6$="3.3"
120 C$="10."
130 D$="4."
180 !
200 X$=SUM$ (PROD$(A$,6$,10.), QUO$(C$,D$,10.» !THE RIGHT WAY
210 PRINT "DOING IT THE RIGHT WAY,){$=";){$
220
300){$=PROD$(A$,6$,10.) + QUO$(C$,D$,10.) !THE WRONG WAY
310 PRINT "DOING IT THE WRONG WAY, X$="; X$
320
32767 END

Ready

RUNNH
DOING IT THE RIGHT WAY, X$=42.1
DOING IT THE WRONG WAY, X$=38.62.5

Ready

Strings and String Functions 10-25

Chapter 11
Integer and Floating-Point Operations

BASIC-PLUS has two numeric data types: floating-point numbers and
integers. Floating-point numbers can have fractional parts; integers are
whole numbers. This chapter describes the operations you can perform
using these two data types.

Topics include:

• Integer arithmetic

• Logical operations on integers

• Floating-point and scaled arithmetic

• Mixed-mode arithmetic

11.1 Introduction to Integers

BASIC-PLUS stores integer data in binary form. Each integer uses one
PDP-11 16-bit word of memory.

Integers have two characteristics you can take advantage of in
BASIC-PLUS programming:

1. They are numbers.

2. They are bit patterns.

As numbers, integers can range in value from -32768% to 32767%. Integers
are useful as counters in program loops and other repetitive operations.
Your programs will be smaller and more efficient if you use integers for
arithmetic operations that involve whole numbers in the range -32768% to
32767%. Integers use less space than floating-point numbers, and integer
arithmetic is faster than floating-point arithmetic. For information on inte
ger arithmetic, see Sections 11.3 through 11.6 of this chapter.

11-1

Like everything else inside a computer, an integer is a bit pattern. Each
integer value corresponds to a unique sequence of bits that have either the
value 1 or O. A bit whose value is 1 is "on" or "set"; a bit whose value is 0 is
"off" or "clear."

BASIC-PLUS uses integers as bit patterns to perform logical operations
(such as determining whether a logical expression is true or false). In addi
tion, BASIC-PLUS gives you access to this process as a programming tool.
By performing logical operations on integers, you can test and manipulate
individual bits inside a PDP-11 16-bit word. Section 11.7 describes
the technique, which has several useful applications in BASIC-PLUS
programming.

Whether you use integers as numbers or as bit patterns, you always specify
them to BASIC-PLUS as positive or negative decimal numbers, and
BASIC-PLUS always returns them to you in the same form.

While working with integers as decimal numbers is natural when you use
them to do arithmetic, you need to do some "translation" when you use
them as bit patterns. The next section gives you the information you need
to make that translation. It also explains why integer arithmetic in
BASIC-PLUS works the way it does.

11.2 Internal Integer Format

This section explains how an integer is stored in memory. If you plan to use
integers only in arithmetic operations, you may want to skip this section
for now. But if you plan to use integers in logical operations, read this
section before you read Section 11.7.

Figure 11-1 shows the internal format of an integer.

Figure 11-1: Internal Integer Format

BIT 15 14 13 12 11 10 9 8 7 6 5 432 o
Is I

HIGH BYTE LOW BYTE

The first 15 bits (0 through 14) each correspond to a positive power of2. For
example, a value of 1 in bit 0 means 1% (2A O), a value of 1 in bit 3 means 8%
(2A 3), and a value of 1 in bit 8 means 512% (2A 8).

Bit 15, the leftmost bit, has a special purpose: it stores a number's sign.
Thus, it is called the "sign bit." A value of 0 in the sign bit means a number
is positive; a value of 1 in the sign bit means a number is negative.

Bits 0 through 7 are called the ((low byte" or the ((low order bits"; bits 8
through 15 are called the ((high byte" or the ((high order bits." (You will
encounter these terms later in this manual; they are also used in the
RSTSIE Programming Manual.) The low byte can store a value in the
range 0% through 255%; the high byte can store a value in the range 512%
through 32512%.

11-2 Integer and Floating-Point Operations

A word that contains values of 1 in bits 0 through 14 (and 0 in bit 15) stores
the value 32767%, the largest value an integer can have in BASIC-PLUS.
A word with all bits set to 0 stores the value 0%.

Each integer value has a unique bit pattern. To find the value of an integer
from its bit pattern, you add the powers of 2 that correspond to each of the
"1" bits. For example, consider a word where bits 0, 3, and 8 are 1 and the
rest of the bits in the word are O. The bit pattern is:

0000000100001001

The integer value stored in this word is 1% + 8% + 512%, or 521%. The
number is positive because the sign bit is O.

You use the same process for negative numbers. The key to deciphering
negative numbers is the sign bit. The sign bit has value as well as sign; its
value is -32768%.

The following example shows how to determine the value of a negative
number from its bit pattern. The internal format for the integer value -1%
is:

BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

\11111 1 11

The integer value -1% has "all bits on." To see why, add the values of all
the bits. Bit 15 has the value -32768%; the rest of the bits are positive
powers of 2 and add up to 32767%. The result is -1%.

The sign bit has the value -32768% because the PDP-11 computer does
calculations using numbers in their "two's complement" form. (A binary
number's "two's complement" is its value with all the bits reversed, plus 1.)
This method allows arithmetic to be done inside the machine as a continu
ous operation, regardless of whether numbers are positive or negative.

Two's complement arithmetic has the following characteristics:

• There are 32,768 positive integers: 0% to 32767%.

• There are 32,768 negative integers: -1% to -32768%.

• When 1 is added to the highest number in the range, the result is the
lowest number. For example, 32767% + 1% yields -32768%, the value of
the sign bit. (You can use this expression in certain statements to set a
word's sign bit. Setting the sign bit causes the system to perform special
functions. See Section 14.5.3.1 for an example.)

The next four sections describe the arithmetic operations you can perform
using integers as whole numbers. In Section 11.7, which describes logical
operations on integers, you will see how to use integers as bit patterns.

Integer and Floating-Point Operations 11-3

11.3 Integer Constants and Variables

Numeric variables and constants without a % suffix are stored internally as
floating-point numbers. When operations deal with whole numbers, you
can achieve significant economies in storage space and execution time with
the integer data type, which uses only one computer word per value. Inte
ger arithmetic is also significantly faster than floating-point arithmetic.
Integer variables can assume values in the range -32768% to + 32767%.
Integer constants can assume values in the range -32767% to + ~767%.

You specify that a constant, variable, or function is to be an integer by
ending its name with the % character. For example:

AX,
AU

100%
4%

FNX%(Y)
FNL% (NX, tL%)

When you assign a floating-point value to an integer variable, the frac
tional portion of that number is lost. The number is not rounded to the
nearest integer value. (A FIX function is performed rather than an INT
function; see Section 9.8.) For example:

AX, = 1 + 1

AX, = 1.8

Either of these would assign the value 1 to A%.

11.4 Integer Arithmetic

In integer arithmetic, the number range -32768 to + 32767 is treated as
continuous, with the number after + 32767 equal to -32768. But adding
large positive numbers can result in unexpected negative numbers, as in
32767% + 2% = -32767%.

Integer division forces truncation of any remainder; for example 5%/7% = 0
and 199%/100% = 1. Integer and floating-point data can be freely mixed in
such operations (see Section 11.9). The answer is stored in the format indi
cated as the resulting variable. For example:

125 LET X% = NI:. + FNA(R)*2.

BASIC-PLUS evaluates the expression to the right of the equal sign and
then truncates the result to provide an integer value for X%.

Where program size is critical, use the % character to generate integer
values because it uses significantly less storage space. For example:

120 FOR II:. = 1% TO 10%

This statement takes less storage space and executes faster than:

120 FOR I = 1 TO 10

11-4 Integer and Floating-Point Operations

11.5 Integer I/O

Input and output of integer variables is performed in exactly the same
manner as input and output ort floating-point variables. (Remember that
where a floating-point variable has an integer value, BASIC-PLUS auto
matically prints it as an integer. The value is still stored internally as a
floating-point number, however, thus taking more storage space.)

It is illegal to provide a floating-point value for an integer variable through
either a READ or INPUT statement. For example:

LISTNH
110 READ AX. &:

\ PR I NT AX.
800 DATA 2.7
32787 END

Ready

RUNNH
%Data forMat error at line 110

Ready

Change line 600 to:

800 DATA 3

The result is:

RUNNH
3

Ready

11.6 User-Defined Integer Functions

You can write functions to handle integer variables as well as floating
point variables. You define an integer function by ending its name with the
% character.

For example, you can define a function that returns the remainder when
one integer is divided by another:

110 DEF FNR%CI%,J%) = I%-CCI%/J%)*J%)

You can call this function later in the program as:

200 PRINT FNR%CA%,ll%)

Integer and Floating-Point Operations 11-5

You can use integer arguments where floating-point arguments are
expected and vice versa. BASIC-PLUS performs the necessary conversions.
You cannot, however, use strings and numbers interchangeably.

75 DEF FNA%(X%) = X% - 1%
80 LET Z% = FNA%(12.34)

This example is acceptable. Z equals 11 after line 80 has been executed.

11.7 Logical Operations on Integer Data

So far, you have learned how to use integers as whole numbers in
mathematical calculations. You can also use integers as logical values in
BASIC-PLUS.

BASIC-PLUS produces logical values when it evaluates expressions that
contain:

• Relational operators, such as = and <

• Logical operators, such as AND, OR, and XOR

These operators cause BASIC-PLUS to compare two operands and store the
result of the comparison in a one-word integer variable. This result is a
logical value.

11.7.1 The Logical Values -1% and 0%

If you have written programs with IF-THEN statements, you have already
used the logical values -1% and 0%. You know these values as "true" and
"false."

BASIC-PLUS uses -1% (all bits on) to mean "true" and 0% (all bits oft) to
mean "false." Two types of expressions always return one of these two
values:

• Relational expressions

• Logical expressions that compare two relational expressions

11.7.1.1 Relational Expressions

In evaluating a relational expression, BASIC-PLUS compares two num
bers or two string values. The comparison has two possible results: the
logical value -1% (true) or the logical value 0% (false). BASIC-PLUS stores
the result in an integer variable, in one PDP-ll word of memory. For
example:

15 IF A% > B% THEN GOTO 100

11-6 Integer and Floating-Point Operations

BASIC-PLUS performs two steps when it executes this statement:

1. It compares the current values of A % and B% and stores the result
(-1 % or 0%) in an integer variable.

2. It tests the value of this integer variable. If its value is 0%,
BASIC-PLUS executes the next line in the program; if it is -1 % (or any
other nonzero value), BASIC-PLUS transfers control to line 100.

You can program this operation as two separate steps. You can store a
logical value in an integer variable at one point in a program and perform
one or more logical tests on this stored integer at another point in the
program.

For example:

20 X% = (A% > B%)

50 IF X% THEN GOTO 100

When line 20 is executed, BASIC-PLUS evaluates A % > B% and stores the
logical value -1% or 0% in the integer variable X%. When line 50 is exe
cuted, BASIC-PLUS tests the current value of X% to determine if it is true
or false and proceeds accordingly.

11.7.1.2 Logical Expressions

BASIC-PLUS also evaluates as -1% or 0% a logical expression that com
pares two relational expressions. For example:

20 IF (A > B%) AND (C% < D%) THEN GOTO 4000

To evaluate this logical expression, BASIC-PLUS first evaluates each rela
tional expression. For each relational expression, BASIC-PLUS stores
a logical value of either -1% or 0% in an integer variable. Next
BASIC-PLUS compares the contents of these two integer variables based
on the logical operator AND. The result of the AND operation is a single
logical value of either -1% (true) or 0% (false). BASIC-PLUS uses this
logical value to determine whether to execute line 4000.

You can store the result of a logical expression in one statement and test it
in another statement:

20 X% = (A% < B%) AND (C% > D%)

50 IF X% THEN GDTO 5000

As before, BASIC-PLUS interprets 0% as false and -1 % or any other non
zero value as true.

Integer and Floating-Point Operations 11-7

11.7.2 Other Logical Values

Logical values are not restricted to 0% or -1%; every integer value is a
logical value. Thus, you can store any integer value in a variable and test it
at a later time.

For example:

20 XX. = 5X.

50 IF X% THEN GOTO 1000

Since 5% is interpreted as true, control goes to line 1000. Line 20 can also
contain an integer expression. For example:

20 X% = CA% + B%)/ 2%

You can use any expression or function that yields an integer value in an
IF-THEN statement. For example:

30 IF LENCTYPED.RESPDNSE$) THEN GO TO 2000

This statement, which contains the string function LEN, transfers
control to line 2000 if there are characters in the string variable
TYPED.RESPONSE$. If TYPED.RESPONSE$ contains no characters,
BASIC-PLUS executes the next line in the program.

11.7.3 How BASIC-PLUS Performs Logical Operations

Up to now, you have used logical values to mean true or false. But logical
values have another use in BASIC-PLUS programming. You can use the
logical operators to examine, set, and clear individual bits inside PDP-11
16-bit words. To see how to use logical operators for this purpose, you need
to know more about how BASIC-PLUS performs logical operations.

The BASIC-PLUS logical operators (AND, OR, NOT, XOR, IMP, and EQV)
act on entire 16-bit PDP-11 words. A logical operation is the result of 16
single-bit logical operations.

BASIC-PLUS performs a logical operation by comparing the bit patterns of
two integers, one bit at a time. The type of comparison that BASIC-PLUS
makes for each pair of bits depends on the logical operator that you specify.

The truth tables in Table 11-1 show, for each logical operator, how
BASIC-PLUS compares bit pairs in two integers.

For each operator in this table, A is a bit in one integer value, and B is the
bit that occupies the same position (the "matching" bit) in the other integer
value. The result of the logical comparison, shown on a third line, is stored
in a third integer value. The NOT operator, unlike the rest, has only one
operand.

11-8 Integer and Floating-Point Operations

Table 11-1: Truth Values for Logical Operations

AND OR

A 1 1 0 0 A '1 1 0 0

B 1 0 1 0 B 1 0 1 0

AANDB 1 0 0 0 AORB : 1 1 1 0

XOR EQV

A 1 1 0 0 A 1 1 0 0

B 1 0 1 0 B 1 0 1 0

AXORB 0 1 1 0 AEQVB 1 0 0 1

IMP NOT

A 1 1 0 0 A

I~
0

B 1 0 1 0 NOTA 1

AIMPB 1 0 1 1

The following examples show how BASIC-PLUS produces logical values.
Each example compares the integers 85% and 28% using a different logical
operator.

The first example prints the logical product of two integers, 85% and 28%,
in immediate mode. (A logical product is the result of an AND operation.)
An AND operation yields a 1 only when matching bits are both 1 and clears
bits that are not set in both values. You can use an AND operation to see if
two values have any set bits in common, to test specific bits, or to "mask"
certain bits (see Section 11.7.4.3).

PRINT 851 AND 281
20

Ready

To find the logical product of 85% and 28%, BASIC-PLUS performs 16
AND operations, one on each pair of matching bits in the integers 85% and
28%. BASIC-PLUS stores the result of these 16 AND operations in a third
integer value. The following diagram shows the bit pattern of 85%, 28%,
and the result.

BIT

85%

28%

85% AND 28%

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
o 0 0 0 0 0 000 o o o

o 0 0 0 0 0 0 0 0 0 0 o 0

o 0 0 0 0 0 0 0 0 0 0 o o 0

Integer and Floating-Point Operations 11-9

11-10

The bit pattern in the result is the integer value 20% (16% + 4%). This
result occurs because the 16% bit and the 4% bit are set in both values
being compared.

The second example prints the logical sum of 85% and 28%. (The logical
sum is the result of an OR operation.) Because an OR operation yields a 1 if
either or both bits in a position are 1, you can use the OR operator to set
specific bits in a word.

PRINT 85% OR 28%
83

To find the logical sum of 85% and 28%, BASIC-PLUS performs 16 OR
operations, one on each pair of matching bits in 85% and 28%. The follow
ing diagram shows this operation:

BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

85% 0 0 0 0 0 0 0 0 0 0 0 0

28% 0 0 0 0 0 0 0 0 0 0 0 0 0

85% OR 28% 0 0 0 0 0 0 0 0 0 0 0

The logical sum of 85% and 28% is 93% (64% + 16% + 8% + 4% + 1%).
The OR operator sets a bit if one or both bits being compared are set.

The third example prints the logical difference of 85% and 28%. (The logical
difference is the result of an XOR operation.) An XOR operation yields a 1
only if either bit in a matching pair is set; otherwise it yields a O. You can
use XOR to toggle specific bits in a word. ("Toggling" a bit means setting a
o bit to 1 or a 1 bit to 0.)

PRINT 85% XOR 28%
73

Ready

To find the logical difference, BASIC-PLUS performs 16 XOR operations.
The following diagram shows the result:

BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

85% = 0 0 0 0 0 0 0 0 0 0 0 0

28% 0 0 0 0 0 0 0 0 0 0 0 0 0

85% XOR 28% 0 0 0 0 0 0 0 0 0 0 0 1. 0 0

The logical difference of 85% and 28% is 73% (64% + 8% + 1%).

Integer and Floating-Point Operations

11.7.4 Programming Applications

Each bit in a PDP-ll word. can store a piece of information. A set (1) bit
can indicate the presence of a condition; a clear (0) bit can indicate the
absence of a condition. Thus, a single word in memory can store up to 16
pieces of information.

Both BASIC-PLUS and RSTS IE take advantage this compact form of
information storage. For example, when you open a device with the OPEN
statement, BASIC-PLUS places several pieces of information about the
device in the special variable STATUS. By testing bits in the STATUS
variable, you can get information about the device you just opened. (Section
17.1.1 describes the STATUS variable and shows you how to test the bits.)

SYS system function calls let you communicate with the RSTS IE monitor.
In some calls, the monitor returns information to your program in string
form. Certain bytes in the string contain several "bits" of information. To
read this information, you can convert the string to an integer and then use
logical operations to perform bit tests. (The RSTS I E Programming Manual
describes how to perform the conversion and test the bits,)

You can also use this technique in your own programs. You can use an
integer variable to store several of information. Then, at various
points in a program, you can perform logical operations on that variable to
test, set, and clear specific bits,

The rest of this section shows some ways to use logical operations.

11.7.4.1 Bit Tests

The AND operator performs a bit test. You can use AND on an integer
variable and a power of 2 to see if a specific bit is on in a word. For example:

20 IF AX AND 8% THEN PRINT "Bit 3 is set" &
ELSE PRINT "Bit 3 is clear"

This is the technique you use to test bits in the STATUS variable and
in "flag words" of data returned certain SYS cans. (See the RSTS IE
Programming Manual.)

11.7.4.2 Setting or Clearing Bits

The following statements set and clear bit 7 in the integer variable
FLAG%:

250 FLAG/.. FLAG:::'. OR 128:~. !Turn on bit 7

2GO FLAG% = FLAG% MOR 128% !Turn it off if it is on!
!Turn it on if it is of'

270 FLAG% - FLAG% AND (NOT (281) !Turn it off unconditionally

Integer and Floating-Point Operations 11-11

11-12

11 ,1.4,3 Bit Masks

Sometimes you may he interested in some but not an of the information
stored in a word of memory. You can use an AND operation to hide or
"mask" part of a hit pattern so you can access the part you are interested in.
For example:

30 L% = W% AND 255%

'This statement masks out the hig-h order bits (8-15) of W%. The value
255% contains Is in hits 0 through 7 and Os in hits 8 through 15. Because
an AND operation yields a 1. only ifhoth hits are 1, the integer L% contains
Os in hits 8 through 15 and the same bit pattern as W% in bits 0 through 7.
The following diagram shows this operation (W% is an arbitrary bit
pattern):

BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
W% o 1 0 0 o o o o o

255''10 0 0 0 0 0 0 0 1

W'% AND 255% o 0 000 0 000 o o o
(stored in L %)

The result shows that L% has the same bit pattern as W% in the low order
bits and all Os in the high order bits. The value 255% is a "bit mask" to hide
the high order bits of a word.

One application of bit masking is reading data returned by the file name
string scan SYS call, which is described in the RSTS / E Programming
Manual. For example, the monitor returns the project-programmer number
of the file in one word, as shown:

BIT 15 14 13 12 11 10 9 8

I Project Number =
7 6 5 4 3 2 1 0

Programmer Number 1
HIGH BYTE LOW BYTE

The data comes back in string form, so you must first convert the string
data to integer data. (You can do this with the CVT$% function; see Section
17.5.1.) Assume that you do the conversion and you store the contents of
this word the integer variable PPN%. You can then read either half of
the word by using 255% as a bit mask. For example:

PROGRAMMER'X, ::: P PN:X, AND 255';:,
PROJECT% ::: SWAPX(PPN%) AND 255%

The SW AP% function swaps the two bytes in the word. Using SW AP% to
put the project number in the low byte lets you read the project number
using the same bit mask you used for the programmer number. See Section
17.5.2 for information on the SWAP% function. For information on using
system function calls, see the RSTS / E Programming Manual.

Integer and Floating-Point Operations

Here is another example of bit masking:

PRINT CHR$(ASCII("a") AND (NOT (32%»
A

Ready

The ASCII value of a lowercase letter and its uppercase form differ by 32. A
lowercase value has bit 5 on; an uppercase value has bit 5 off. Except for
this bit, an uppercase letter and a lowercase letter have the same value.

You convert a letter from its lowercase form to its uppercase form by clear
ing bit 5. The value NOT 32% is a "mask" to clear bit 5 because the value
NOT 32% has all bits on except bit 5.

The CVT$$ function performs this operation as part of its function that
converts letters to uppercase.

11.8 Floating-Point Arithmetic

Floating-point numbers occupy either two or four 16-bit words of storage in
memory. BASIC-PLUS uses two words with the single-precision math
package and four words with the double-precision math package. Section
F.4 describes the internal format of the two math packages.

With the two-word format, you can accurately represent numbers up to six
decimal digits. The four-word format lets you represent numbers up to 15
decimal digits. Both formats allow numbers in the range 10"-38 to 10"38,
approximately. An attempt to assign or compute a number outside the
allowed range causes the "%Floating'point error" (ERR = 48).

BASIC-PLUS prints numeric results of floating-point calculations in deci
mal or exponential format, as described in Section 8.3. To print numbers
larger than six digits, you can tailor the format with the PRINT-USING
statement (see Section 15.3.2).

Usually you cannot represent fractional numbers exactly in binary nota
tion. Also, certain calculations in floating-point result in an accumulated
error. The following calculation, run in standard four-word floating-point,
results in an accumulated error. The error results because the floating
point fraction .01 cannot be represented internally as that precise value.

LISTNH
100 X = 0.
110 X = X + .01 FOR 1% = 1% TO 10000%
120 PRINT NUM1$(X-I00.)
32787 END

Ready

RUNNH
-.00000000000177835883840025

Ready

Integer and Floating-Point Operations 11-13

If no accumulated error exists, the result is o. Running the example on a
system using the two-word format generates a much greater accumulated
error (approximately .00295).

NOTE

The scaled arithmetic feature, available only on systems with
the double-precision math package, lets you avoid or reduce
accumulated error. Section 11.10 describes scaled arithmetic.

11.9 Mixed Mode Arithmetic

11-14

You can perform arithmetic operations using a mix of integer and floating
point numbers. To force a floating-point representation of an integer con
stant, end it with a decimal point. To force an integer representation of a
constant, end it with the % character. Constants without a decimal point or
% character are termed ambiguous. The rest of this section describes the
results of arithmetic operations using a mixture of integer and floating
point numbers.

If both operands of an arithmetic operation are explicitly either integer or
floating-point, BASIC-PLUS generates integer or floating-point results,
respectively. If one operand of an arithmetic operation is an integer and
another is floating-point, BASIC-PLUS converts the integer to a floating
point representation and generates a floating-point result. For example:

PRINT U/Z'X,; 1./Z.; U/Z.; 1./Z'X.
o .5 .5 .5

Ready

In the first two operations, BASIC-PLUS generates the explicit results; in
the second two, BASIC-PLUS converts the explicit integer and generates
floating-point results.

Sometimes an ambiguous constant appears in an arithmetic expression (for
example, 10 as opposed to 10% or 10.). If an integer variable or constant
occurs anywhere to the left of the ambiguous constant, BASIC-PLUS
represents it in integer format. Otherwise, BASIC-PLUS treats the ambig
uous constant as a floating-point number. For example:

PRINT l'X,/Z; l/Z'X,; liZ
o .5 .5

Ready

In the first operation, BASIC-PLUS treats the «2" as an integer. It does so
because an explicit integer representation appears to the left in the expres
sion. In the next two operations BASIC-PLUS treats the ambiguous
constants as floating-point numbers. It does so because no explicit integer
variable or constant appears to the left of the ambiguous constant in the
expression.

Integer and Floating-Point Operations

Because formatting determines the results of many operations, you should
explicitly impose the correct format with the percent sign or the decimal
point. Compare the following calculations, assuming A%(2%) = 0 in each
expression:

PR I NT A1 (2%) + (32767+2); A 'X, (2'ot) + (32787. +2)
-32787 32789

Ready

The percent sign in the first expression forces an integer result. The deci
mal point in the second expression forces a floating-point result. The same
principle applies in the following example:

PRINT 11 + 1/2; 1. + 1/2; 1 + 1/2
1 1.5 1.5

Ready

Use of an explicit percent sign or decimal point lets you control the result in
mixed-mode operations.

11.10 Scaled Arithmetic

On a system with the double-precision floating-point (four-word) math
package, the scaled-arithmetic feature lets you avoid or reduce accumu
lated error in the fractional part of a number. Systems with two-word preci
sion do not have scaled arithmetic. To work with the scaled arithmetic
feature, you use the SCALE command to specify a scale factor.

NOTE

The optional string arithmetic feature provides another
alternative to scaled arithmetic for providing better precision
in non-integer arithmetic. Unlike scaled arithmetic, which is
limited to a scale factor between 1 and 6, string arithmetic
has many digits of accuracy. However, string arithmetic
achieves higher precision at the cost of slower calculation
speed.

11.10.1 The Scale Factor

You can select a scale factor of 0 to 6. BASIC-PLUS uses the scale factor to
preserve the accuracy of fractional numbers to that number of decimal
places. The value 0, which is the default scale factor, is a special scale factor
that disables the scaled-arithmetic feature. When the scale factor is 0,
BASIC-PLUS performs calculations using standard double-precision
floating-point arithmetic. (Note that your system manager can change the
default scale factor to a nonzero value.)

Integer and Floating-Point Operations 11-15

11-16

The scale factor is set to its default value when you enter BASIC-PLUS.
Each time you reenter BASIC-PLUS, the scale factor is reset to its default
value. For example, you reenter BASIC-PLUS after executing system pro
grams, such as PIP, that are not compiled with the same run-time system
you are in.

BASIC-PLUS uses the scale factor when it translates a program. The scale
factor in effect during translation determines how floating-point calcula
tions will be performed when the program is executed. Suppose you specify
a scale factor of 2 and then use OLD to retrieve a program. BASIC-PLUS
translates the program using a scale factor of 2. Now you run the program
and input a floating-point number. BASIC-PLUS internally moves the
decimal point 2 places to the right and truncates it to an integer.
BASIC-PLUS performs all subsequent calculations with the floating-point
integers. Next, BASIC-PLUS translates the result of each arithmetic oper
ation into a floating-point integer with the scale factor 2. On output,
BASIC-PLUS moves the decimal point to the left 2 places (descales) and
passes the result to the PRINT or PRINT-USING routines to format.

For example, with a scale factor of 2 in effect, the following statement
causes BASIC-PLUS to move the decimal point two places to the right:

}{ = .01

If any rounding is necessary, it is done at this point. BASIC-PLUS converts
the result, 1, to a floating-point representation. Similarly, .1 becomes 10
internally and all numbers less than .005 become O.

The scaled arithmetic conversion thus avoids the loss of precision inherent
in representing fractional numbers in binary notation. BASIC-PLUS can
represent the integer accurately in floating-point format. This feature,
therefore, allows more predictable arithmetic results. For example, running
the following calculation without a scale factor yields a result of
-.177636E-ll. But running the same calculation with a scale factor yields
a result of 0:

SCALE 2

Ready

100
110
120
32767
RUNNH

o

Ready

x = O.
X = X+.01 FOR 1% =
PRINT X-100
ENO

1 X. TO 10000%

The scale factor of 2 eliminates the inaccuracy in representing a fraction
two places to the right of the decimal point.

Integer and Floating-Point Operations

The range of integer numbers that can be accurately represented decreases
according to the scale factor in effect. For example, with a scale factor of 2
in effect, two of the 15 digits represent the two digits of fraction. Thirteen
places are left to accurately represent the integer portion of the number.

With a scale factor in effect, BASIC-PLUS handles output by PRINT and
PRINT-USING statements in the standard manner. The PRINT statement
still handles six digits or less, using the E format for numbers larger than
six digits. The PRINT-USING statement formats numbers according to the
specified string.

You can use the mathematical functions described in Section 9.8 in con
junction with the scaled-arithmetic feature. With a nonzero scale factor in
effect, BASIC-PLUS automatically:

1. Descales the number passed

2. Computes the value of the function

3. Converts the value returned to an appropriately scaled floating-point
integer

No rounding occurs; places outside the scale factor range are truncated.

11.10.2 The SCALE Command

The SCALE command lets you control the scale factor. SCALE is a
BASIC-PLUS command; it cannot be used as a program statement.

BASIC-PLUS establishes the scale factor for a program during translation,
not during execution. Translation occurs when you use the NEW or OLD
command, and when you run a program from its source (.BAS) file. Thus, if
you want to set the scale factor for a program, use the SCALE command
before NEW, OLD, or RUN.

BASIC-PLUS keeps track of two scale factors: the current scale factor, used
when your current program was translated, and the pending scale factor, to
be used the next time translation occurs. The scale factor has a default
value of 0, which means that BASIC-PLUS uses no scale factor when
translating the program. On systems with the single-precision math pack
age, the scale factor is always O. The system manager can change the scale
factor's default value on systems with the double-precision math package.

The SCALE command has two functions: it displays the two scale factors
and lets you set a new pending scale factor.

The SCALE command has the format:

SCALE [n]

where n is an integer between 0 and 6.

Integer and Floating-Point Operations 11-17

11-18

The following examples show how the SCALE command works:

SCALE Displays the current scale factor and the pending scale factor. For
example:

SCALE
Bt2

This display means that your current program was translated using a
scale factor of 2; the next time translation occurs, the scale factor will
be 6. One value is printed if both scale factors are the same.

SCALE 2 Sets the scale factor to 2; this value is used the next time translation
occurs. On systems with the single-precision math package, the mes
sage "?Missing special feature" is printed when you try to set the scale
factor.

SCALE 0 Disables the scaled arithmetic feature. BASIC-PLUS uses no scale fac
tor when translating a program.

Examples

SCALE 2

Ready

NEW TEST

Ready

1 0 PR I NT .01 t .025 t .003
20 END
RUNNH

.01 .02

Ready

10 PRINT 1000.00*.075
RUNNH

70

Usage Notes

o

1. Remember that BASIC-PLUS establishes the scale factor for a pro
gram during translation, not during execution. To change the scale
factor for a program, always issue the SCALE command just before
translation occurs, that is, before you use the NEW or OLD command,
or before you run a program from its source (.BAS) file.

2. When you run a program, the scale factor used in computations is
always the scale factor that was in effect when the program was
translated.

3. If you set a new pending scale factor while yo~ have a program in
memory that was translated using a different scale factor, and then you
run the program in memory, BASIC-PLUS displays the warning mes
sage "%Scale factor interlock." This message reminds you that the scale

Integer and Floating-Point Operations

factor you set has not yet taken effect. The program runs, but numeric
results are computed using the scale factor in effect when the program
was translated. (The new scale factor takes effect when you use NEW or
OLD, or run a program from its source file.)

4. If you set a new pending scale factor and then run a .BAC file that was
translated using a different scale factor, BASIC-PLUS again computes
results using the scale factor in effect when the .BAC file was trans
lated. In this case, BASIC-PLUS does not display the "%Scale factor
interlock" message.

5. When you run a .BAC file, BASIC-PLUS changes the current scale
factor to the scale factor in effect when the .BAC file was translated.
The pending scale factor does not change.

For example, suppose that the current scale factor is 2 and the pending
scale factor is 6:

SCALE
8,2

You run a .BAC file that was translated using a scale factor of 0:

RUN ZERO.BAC

If you again display the current and pending scale factors, you see that
the current scale factor is now 0 but the pending scale factor is still 6:

SCALE
8,0

6. Immediate mode statements are always translated using the current
scale factor. If you set a new pending scale factor and then enter an
immediate mode statement:

• The scale factor you specify has no effect.

• The "%Scale factor interlock" message is displayed on your terminal.

7. The scale factor is reset to its default value whenever your user job
changes run-time systems. This happens when you:

• Run a RSTS/E system program such as PIP or QUE, using RUN or a
CCL command

• Use a DCL command

• Change your job keyboard monitor with SWITCH

• Use another language compiler such as BASIC-PLUS-2 or COBOL

The scale factor is also reset to its default value when you log out.

Integer and Floating-Point Operations 11-19

Chapter 12
Matrix Manipulation

This chapter describes the BASIC-PLUS matrix manipulation statements.
These statements, called MAT statements, operate on entire matrices.
MAT statements are an optional BASIC-PLUS feature, so they may not be
available on your system.

Matrices (also called arrays) can be composed of variables of any type. A
single matrix, however, is composed of a single type of data: floating-point,
integer, or string. Note that the MAT operations in this chapter do not use
the zero elements [A(O), or B(O,n) and B(n,O)] of the specified matrix.

12.1 Array Storage

You can define the size of a matrix either explicitly or implicitly. To explic
itly define the size of a matrix, use the DIM statement. If you do not
explicitly dimension the matrix with the DIM statement, BASIC-PLUS
assumes the matrix has eleven elements in each dimension you reference.
A one-dimensional matrix has eleven elements; a two-dimensional matrix
has eleven rows and eleven columns. Each dimension includes a zero row
and column, which are ignored by MAT statements. When you use matrices
with fewer than eleven elements in each dimension, explicitly dimension
them to conserve memory space.

Implicitly dimensioning the matrix A(I,J) has the same effect as explicitly
including the following statement:

100 DIM A(10.10)

Dimensioning a matrix establishes two quantities for BASIC-PLUS: the
maximum number of elements in each row and column, and the maximum
number of elements in the matrix.

12-1

You can change the number of elements in each row and the number of
columns in the matrix with the MAT statements. However, the total num
ber of elements cannot exceed the number defined when the matrix was
dimensioned. Changing the number of elements in either or both dimen
sions is called redimensioning the matrix.

When you use a matrix, be careful not to reference elements outside its
dimensioned range. If the range of matrix A is 5-by-7, for example,
referencing A(3,8) is improper.

Depending on which subscript is out of bounds (and by how much), either a
"?Subscript out of range" error is generated or an unexpected element of
the matrix will change. This result occurs because BASIC-PLUS tracks
only the total size of the array, not the bounds of each subscript.

12.2 MAT READ Statement

The MAT READ statement reads the value of each element of a matrix
from DATA statements. The statement has the form:

MAT READ <list of matrices>

Each element in the list of matrices indicates the maximum amount of the
matrix to be read. This amount cannot be greater than the dimensioned
size of the matrix. The individual elements are separated by commas. If you
use the matrix name without a subscript, the entire matrix is read. For
example:

100 DIM A%(20,20)
110 MAT READ A%

The preceding lines read a 20-by-20 matrix of integer data. Data is read
row by row; that is, the second subscript varies most rapidly. The following
statement reads a 5-by-15 matrix and redimensions the matrix A% to be
5-by-15:

110 MAT READ A%(S,lS)

12.3 MAT PRINT Statement

The MAT PRINT statement prints each element of a one- or two
dimensional matrix, except elements in row 0 and column o. The statement
has the form:

MAT PRINT <matrix name> [';]
If the matrix name consists of an unsubscripted matrix name,
BASIC-PLUS prints the entire matrix. If the matrix name is subscripted,
then the subscript indicates the maximum size of the matrix to be printed.
The matrix, however, is not redimensioned. Only one matrix can be output
by a single MAT PRINT statement.

12-2 Matrix Manipulation

The semicolon and the comma determine the output format of the matrix. If
the matrix name is followed by a semicolon (;), BASIC-PLUS prints out
data values in a packed fashion. If a comma follows the matrix, the data
values are printed across the line, one value per print zone. If neither
character f6llows the matrix name, each element is printed on a separate
line. Note the difference between matrix A; and matrix B(4,6), in the fol
lowing example:

100 DIM A(10.10),El(20,20)
110 MAT PRINT A; &

!PRINT 10-ElY-l0 MATRIX, PACKED FDRMAT
120 MAT PRINT El(4 ,6), ~"

!PRINT 4-ElY-6 MATRIX, 5 ELEMENTS PER LINE

Line 110 prints out a 10-by-10 matrix, with no extra spaces between
elements. Line 120 prints a 4-by-6 matrix with wider spacing between
elements.

BASIC-PLUS can print one-dimensional arrays in either row or column
format. In the following examples, V is a one-dimensional array. This state
ment prints the array V as a column matrix:

220 MAT PRINT V

This statement prints the array V as a row matrix, five values per line:

220 MAT PRINT V,

This statement prints the array V as a row matrix, closely packed:

220 MAT PRINT v;

For example:

LISTNH
100 DIM A(7), X(5)
110 MAT READ A,X
120 MAT PRINT A; &

\ PRINT !'.:
\ MAT PRINT X

200 DATA 21,22,23,24,35,36,37,51,52,53,54,55
32767 END

Ready

RUNNH
21 22 23 24 35 36 37

51
52
53
54
55

Ready

Matrix Manipulation 12-3

Two-dimensional arrays are printed in ascending (row by row) sequence.
This means that the second subscript varies most rapidly. For example:

LISTNH
100 DIM A(2,3)
110 FOR 1% = 1% TO 2% &

\ FOR J% = 1% TO 3% &
\ LET A(I%,J%) = 1%*100% + J% &
\ NE){T J'Y" &
\ NE){T I 'x. &
\ PRINT

120 MAT PRINT A;
32787 END

Ready

RUNNH

101 102 103

201 202 203

Ready

12.4 MAT INPUT Statement

You can use the MAT INPUT statement to input the value of each element
of a matrix. The statement has the form:

MAT INPUT <list of matrices>

BASIC-PLUS reads input from the keyboard, as with a normal INPUT
statement, and prints a ? character when ready to accept the input. You can
use the LINE FEED key to continue typing data on successive lines. Use
the RETURN or ESCAPE key to enter the data into the system. MAT
INPUT does not affect row 0 or column 0 of the matrix.

The MAT INPUT statement allows input of integer, floating-point, or
string values, depending on the variable names. When more than one
matrix is to be input by the same MAT INPUT statement, separate the
names by commas. For example:

100 DIM A%(20); 5(15)
110 MAT INPUT A%, 5

These statements cause the program to input 20 integer elements for the
array A % and 15 floating-point values for the array B.

Only 25 elements of the array are input in the following example, where an
array or matrix element is specified:

200 MAT INPUT N%(25)

12-4 Matrix Manipulation

This result occurs regardless of the number of elements originally specified
when the array was dimensioned. The array is then redimensioned. For
example:

LISTNH
100 DIM A(20.20)
110 MAT INPUT A(4.3)
120 PRINT E.:

\ MAT PRINT A.
32767 END

Ready

RUNNH
? 5.8.lI.5.2.0.1.9.2.0.6.8.2.7.3.01.6.3l15

5 8 4.5

2 0

9.2 0 6'13

2.7 3.01 6.345

Read}'

The matrix A is redimensioned in line 110. The INPUT statement accepts
input until the entire matrix has been read or until it encounters the
RETURN or ESCAPE delimiter. You can input several lines by ending the
terminal line with a LINE FEED to indicate continuation on the following
line.

Following the input of a matrix, the two variables NUM and NUM2 con
tain the number of elements input. NUM contains the number of rows
input or, for a one-dimensional matrix, the number of elements entered.
NUM2 contains the number of elements in the last row. The following
sample program inputs a variable size matrix (up to 10-by-lO):

LISTNH
100 DIM A(10 .10)
110 INPUT 'TYPE MATRI:< DIMENSIONS UP TO 10.10' iN.M &

\ MAT INPUT A(N.M)
120 PRINT 'NUM =' iNUM. 'NUM2 =' iNUM2
130 IF NUM*NUM2=N*M THEN PRINT 'MATRIX FILLED' &

\ GO TO 32767
140 PRINT 'MATRIX NOT FILLED'
32767 END

Ready

RUNNH
TYPE MATRIX DIMENSIONS UP TO 10.10? lI.8
? 123.lI56.3l15.909.765.lI56.123.1 .2,3.lI.5.6,7.8.9.0.0.9.8.7.lI5
NUM = 3 NUM2 = 6
MATRIX NOT FILLED

Ready

Matrix Manipulation 12->-5

The following statement checks the contents of the matrix:

MAT PRINT A;
123 456 345 808 765 456 123

2 3 4 5 6 7 8 8

0 0 8 8 7 45 0 0

0 0 0 0 0 0 0 0

Unlike the INPUT statement, the MAT INPUT statement does not permit
the output of a text string. For example:

100 MAT INPUT 'CONTENTS OF MATRIX';A%
?Syntax error at line 100

Ready

12.5 Matrix Initialization Statements

A matrix initialization statement lets you create initial values for the ele
ments of a matrix. You can also use a matrix initialization statement to
redimension an array. The statement has the form:

I ZER
MAT <matrix name> = CON [(dimension(s))]

IDN

where:

<matrix name> Is the name of a predimensioned matrix.

ZER Sets elements of the matrix to O. (BASIC-PLUS sets all
matrix elements to 0 when it creates a matrix.)

CON Sets elements of the matrix to 1.

IDN Sets an identity matrix; all elements are 0 except those
on the diagonal, A(I,I), which are 1.

ZER, CON and IDN do not affect row 0 or column 0 of the matrix.

The optional dimensions indicate the size of the matrix. When specified,
they cause the matrix to be redimensioned. When you do not specify dimen
sions, the existing dimensions of the matrix are assumed to be unchanged.

The following example shows the use of matrix initialization statements:

LISTNH
100
110

120

130

32767

Ready

DIM A(10.10). El(15). C(20.20)
MAT A=ZER &
!SETS ALL ELEMENTS OF A EQUAL TO 0
MAT 6=CON(10) &
!SETS FIRST 10 ELEMENTS OF 6 EQUAL TO 1
MAT C=IDN(10.10) &
!SETS UP AN IDENTITY MATRIX
END

12-6 Matrix Manipulation

12.6

RUNNH

Ready

MAT PRINT C i

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

ReadY

Matrix Calculations

You can use matrices with mathematical operators and two intrinsic
functions.

12.6.1 Matrix Operations

You can perform addition and subtraction on matrices with the common
mathematical symbols. The following program uses both addition and sub
traction of matrices:

LISTNH
100
110
120
130
1110
150
160
170

Ready

RUNNH
3 6 8
1 2 3

Ready

DIM A(3) t 6(3). C(3)
A(I)=I FOR 1=1. TO 3.
6(1)=1*2. FOR 1=1. TO 3.
MAT C=A+6
MAT PRINT Ci
MAT C=6-A
MAT PRINT Ci
END

!ELEMENTS OF A ARE 1.2.3
!ELEMENTS OF 6 ARE 2.1I.6
! 1+2. 2+1I. 3+6

!2-1. 1I-2. 6-3

Matrix Manipulation 12-7

You can perform addition and subtraction only on matrices that are the
same size. The following example shows that you cannot indicate a subset
of one matrix as part of an operation:

110 DIM A(SO), B(2S), C(SO)
120 MAT C=A+B

RUNNH
? Matrix diMension error at line 120

For line 120 to execute properly, line 110 should read:

110 DIM A(SO), B(SO), C(SO)

There are two kinds of multiplication for matrices: scalar multiplication
and multiplication of conforming matrices. You can multiply conforming
matrices as follows:

100 DIM D(10,S), C(SdO), R(10dO)
110 MAT R=D*C

D, C, and R in line 110 are conforming matrices because the number of
columns in matrix D equals the number of rows in matrix C. The dimen
sions of the matrix R must be large enough to contain the number of col
umns in D and the number of rows in C.

You can perform scalar multiplication of a matrix as follows:

lS0 MAT C = (K)*A

Each element of matrix A is multiplied by the scalar value (constant, varia
ble, or expression) K, indicated in parentheses. The form MAT A = (KhA is
also legal.

Matrix A can be copied into matrix C (providing enough space is available
in matrix C) as follows:

160 MAT C = A

12.6.2 Matrix Functions

Three functions allow transposition and inversion of matrices:

TRN - Transposes the matrix
INV - Inverts the matrix
DET - Returns the value of the determinant of the matrix after inversion

The following statement causes matrix C to be set equal to the transposi
tion of matrix A:

lS0 MAT C = TRN(A)

12-8 Matrix Manipulation

That is, C(I,J) = A(J ,I) for all I,J; matrix C is redimensioned if necessary.
For example:

10 DIM X(15,25), N(5t10), M(5,5)
90 MAT N=INV(M)
100 PRINT "DETERMINANT DF MATRIX MIS"; DET

This causes N to be computed as the inverse of matrix M (M must be a
square matrix). After the inversion is complete, the function DET is set to
the value of the determinant of matrix M. (If the matrix being inverted is
singular, and thus cannot be inverted, the message "?Can't invert matrix"
is printed.) You can use the value of DET in subsequent computations, as
you use any other function. For example:

LISTNH
200 MAT A = INV(X) &

\Dl=DET
210 MAT B = INV(A) &

\D2=DET
220 IF Dl=1/D2 GD TO 340 ELSE PRINT 'RELATIONSHIP TRUE'

Ready

Matrix inversion, like the other BASIC-PLUS matrix operation&>, does not
operate on the elements of the row 0 and column 0 of the matrix. Inversion,
however, destroys the previous contents of these elements. The operation
MAT A = INV(A) is legal.

Matrix Manipulation 12-9

Chapter 13
Advanced Statements and Features

This chapter describes advanced BASIC-PLUS statements and features.
Several statements III this chapter are more advanced forms of statements
described in Chapter 9.

This chapter describes the following topics:

Topic Statements or Functions

Multiple Line Function Definitions DEF*

Conditional Transfer of Control ON-GOTO, ON-GOSUB, IF-THEN-ELSE

Conditional Termination of FOR Loops FOR-WHILE, FOR-UNTIL

Statement Modifiers IF, UNLESS, FOR, WHILE, UNTIL

Error Handling ON ERROR GOTO, RESUME

System Functions DATE$, TIME$, TIME

Suspending Program Execution SLEEP , WAIT

Transferring Control Between Programs CHAIN

13.1 DEF* Statement, Multiple-Line Function Definitions

The DEF* statement, described in Section 9.9, shows how to create a one
line function that you can use as an element in a BASIC-PLUS statement.
You can also use DEF* to define multiple-line functions. The format for a
multiple-line function definition is:

DEF* FN <variable(arguments»
<body of definition>
FNEND

13-1

As in the single-line DEF* function, the arguments can be zero to five
dummy variables of any type or mixture of types. However, unlike the
single-line DEF* function, the multiple-line DEF* function has no equal
sign after the function name on the first line.

Within the multiple-line definition, you should have a statement of the
form:

[LET] FN <variable> = <expression>

The DEF* function returns the value of FN <variable> when it reaches the
FNEND statement.

The value of this expression is returned as the value of the function. There
can be more than one such statement. The following example returns the
larger of the two numbers:

100 DEF* FNM(X,Y)
110 LET FNM=){
120 IF X(=Y THEN GOTO 140
130 LET FNM=Y
140 FNEND

The next example shows a recursive function that computes N-factorial.
The term "recursive" refers to the repetitive process where the result of
each cycle depends on the result of the previous cycle.

LISTNH
100 DEF* FNF(M%)
105 IF M% = 0% THEN FNF = &

\ GO TO 120
110 IF M% = 1% THEN FNF = &

120
130
140
32767

Ready

RUNNH

ELSE FNF = M% * FNF(M%-l%)
FNEND
INPUT 'VALUE FOR FACTORIAL'; M%
PRINT M%; 'FACTORIAL EQUALS'; FNF(M%)
END

VALUE FOR FACTORIAL? 6
6 FACTORIAL EQUALS 720

Ready

RUNNH
VALUE FOR FACTORIAL? 0
o FACTORIAL EQUALS 1

Re a.,j y

Any non-dummy variable you reference in a function definition has the
current value of that variable in your program. These variables retain any
value you assign during execution. Also note that not all context informa
tion is saved in functions. Function parameters are saved and restored, but
variables and information stored in temporary locations are not saved.

13-2 Advanced Statements and Features

You can nest multiple-line DEF* function calls; that is, one multiple-line
function can reference another. A multiple-line function lets you transfer
control outside its boundaries with GOSUB, ON ERROR... RESUME,
nested function references, or GOTO. However, you must follow certain
rules when you transfer control out of a function or enter a function from
outside its boundaries. For example, once a function is entered, it must be
exited through its FNEND statement. Also note that an error occurs if
BASIC-PLUS encounters an FNEND statement whose companion DEF*
FN ... statement has not been executed. You should avoid transfers out of
function boundaries-they may not execute as expected in other versions of
BASIC.

The parameters you use to call a user-defined function are formal. This
means that their former values are retained after the function has been
invoked. For example:

LISTNH
100 DEF* FNB (X)

110 x=o &,

\FNB=10
120 FNEND
200 A=l &,

\B=FNB(A) &,

\PRINT A,B
32767 END

Ready

RUNNH
10

Ready

Note that A is not set to 0 by the function FNB(A).

You can write functions using a variety of argument types. For example:

LISTNH
100 DEF* FNA$(A,B,C%)
110 IF A)B THEN FNA$ = CHR$(A+C%) &,

ELSE FNA$ = CHR$(A+1)
120 FNEND
200 INPUT 'VALUES FOR A,B,C%'; A,B,C%
210 PRINT 'FNA$(A,B,C%) = ';FNA$(A,B,C%)
32767 END

Ready

RUNNH
VALUES FOR A,B,C%? 36,7.5,24
FNA$(A,B,C%) = {

Ready

RUNNH
VALUES FOR A,B,C%? 45.2,5.67,8
FNA$(A,B,C%) = 5

Ready

Advanced Statements and Features 13-3

13.2 ON-GOTO Statement

The simple GOTO statement transfers control of the progTam to another
line number. The ON-GOTO statement transfers control to one of several
lines, depending on the value of an expression, when the statement is exe~
cuted. The statement has the form:

ON <expression> GOTO <list of line numbers>

BASIC-PLUS evaluates the expression, using the integer part as an index
to one of the line numbers in the list. For example:

50 ON X GOTD 100.200,300

This statement transfers control to line number:

100 if X is greater than or equal to L and less than 2.

200 if X is greater than or equal to 2. and less than 3.

300 if X is greater than or equal to 3. and less than 4.

Note that the preceding line 50 is equivalent to:

50 IF X=l THEN &
GOTD 100 &

ELSE IF X=2 THEN &
GOTO 200 &,
ELSE IF X=3 THEN &

GOTO 300

However, the ON-GOTO statement in line 50 requires less storage space
and executes faster.

Values of X out of the range 1, 2, 3 in this example cause the error message:

?On stateMent out of ran.e at line 50

However, you can transfer to an ON ERROR GO TO routine, checking for
ERR = 58, (See Section 13.7.)

13,3 ON-GOSUB Statement

The GOSUB statement transfers control of your program to a subroutine;
the RETURN statement returns control from that subroutine to normal
program execution (see Section 9.10 for details). The ON-GOSUB state
ment conditionally transfers control to one of several subroutines or to one
of several entry points in one (or more) subroutine(s). (See ON-GOTO con
ditions, Section 13.2.) The statement has the form:

ON <expression> GOSUB <list of line numbers>

13-4 Advanced Statements and Features

The integer value of the expression determines which line number control
transfers to. When the RETURN statement is executed, control transfers to
the line following the ON-GO SUB line.

Consider the following example:

80 ON X%-Y% GOSUB 800t833tl014

When line 80 is executed, the value of X%-Y% is calculated. If the value is
1, control transfers to line 900; if the value is 2, control goes to line 933; if
the value is 3, control goes to line 1014. If the quantity X%-Y% is not equal
to 1, 2 or 3, the following error message is printed:

?On statement out of ran~e at line 80

You can transfer to an ON ERROR GOTO routine with ERR = 58 (see
Section 13.7).

Since you can transfer into a subroutine at different points, you can use
the ON-GO SUB statement to determine which portion of the subroutine
should execute.

13.4 IF-THEN-ELSE Statement

The IF-THEN statement transfers control to another line or executes a
specified statement, depending on a stated condition.

The IF-THEN-ELSE statement is the same as the IF-THEN statement.
But instead of executing the line that follows the IF statement, you can
specify another line number or statement for execution when the condition
is not met. The statement has the form:

IF <condition>
THEN <statement>
THEN <line number>
GOTO <line number>

[ELSE <statement>]
ELSE <line number>

The <condition> is either a relational expression or a logical expression.

A relational expression is defined as:

<expression> <relational operator> <expression>

The relational expression is described in Section 8.4.3.

Advanced Statements and Features 13-5

A logical expression is one of the fonowing:

1. An integer expression (FALSE if 0, TRUE if <>0)

2. A set of relational expressions, connected by logical operators

3. A set of integer expressions, logical expressions, or both, connected by
logical operators

The condition is tested; if it is true, the system executes the THEN or
GOTO part of the statement. If the condition is false, the ELSE part of the
statement is executed.

Here is an example of an IF-THEN-ELSE statement:

75 IF X)Y THEN PRINT "GREATER" ELSE PRINT "NOT GREATER"

Another IF statement can follow either the THEN or ELSE clause in the
preceding example. In this way, you can nest the IF statement to any level
you want. Use line continuation and spaces or tabs to make these complex
statements easier to read. For example:

[.
100, INPUT 'ENTER THREE NUt1BERS I iA ,B IC
110 IF A)6 THEN &:

32767 END

Read}'

ENTER THREE
A)B)-C

Ready

ENTER THREE
C>A)B

IF B)C THEN PRINT 'A)B)C ' &:
ELSE IF C)-A &:

THEN PRINT 'C)-A)-B' &
ELSE PRINT 'A)-C>B ' &:

ELSE IF A)-C THEN PRINT 'B)A)C' &:
ELSE IF B >C Ii:

THEN PRINT 'B)C)-A' &:
ELSE PRINT 'C)-B>A '

NUMBERS?

NUMBERS?

The IF-THEN-ELSE statement can appear anywhere in a multi-statement
line. However, if any other statements follow, aU statements up to the next
line number are part of the THEN or ELSE clause. For example:

210 IF A=l.O THEN GOTO 100 ELSE PRINT A\ PRINT 'ABNORMAL'

13-6 Advanced Statements and Features

The value of A and the text string ABNORMAL are both printed when
A<>1.

20 IF A>B THEN IF B<C THEN PRINT "B<C" II:
\ GOTO 30

25 PRINT"A<B"
30 STOP

The statement GOTO 30 is encountered and executed only when "B<C" is
printed. If either A <B or B>C, the line "A <B" is printed.

13.5 Conditional Termination of FOR Loops

In the simple FOR-NEXT loop described in Section 9.5.1, the format of the
FOR statement is given as:

FOR <variable> = <expression> TO <expression> [STEP <expression>]

Often you do not know the final value of the loop variable, and you want to
execute the loop many times to satisfy some condition. This condition might
be the point where further iterations of a function contribute no accuracy to
the result. BASIC-PLUS provides a convenient way of specifying that a
loop is executed until a condition is detected or while some condition is
true. These statements take the form:

FOR <variable> = <expression> [STEP <expression>] { ~~~~~ } <condition>

The <condition> is either a relational expression or a logical expression.
BASIC-PLUS evaluates the condition before the loop executes and also
at each loop iteration. The iteration proceeds if the result is true
(FOR-WHILE) or false (FOR-UNTIL).

There is a notable difference between a FOR loop with WHILE or UNTIL
and one with a terminal value for the loop variable. Consider the two loops
in the following program:

LISTNH
10 FOR 1%=1% TO 10% &

\ PRINT II..i II:
\ NE){T I 'X.

20 PRINT 'II..='i!'X.
50 FOR 1%=1% ~NTIL 1%>10% &

\ PRINT II..i II:
\ NEXT I 'X.

60 PRINT '!'X.='i!'X.
32767 END

Ready

RUNNH
1 2 3 4 5 6 7 8 9 10 1%= 10
1 2 3 4 5 6 7 8 9 10 1%= 11

Ready

Advanced Statements and Features 13-7

Each loop prints the numbers from 1 to 10. When the loop at line 10 is done,
however, the loop variable is set to the last value used (that is, 10). In the
second loop beginning at line 50, the loop variable is set to the value that
caused the loop to be terminated (that is, 11).

Now consider the next two loops:

LISTNH
10 X=10
20 FOR 1=1 TO X &

\ X=)-(/2 e.:
\ PRINT I,){ e.:
\ NEXT I

30 PRINT e.:
\){=10

40 FOR 1=1 UNTIL I)X &
\){=X/2 &
\ PRINT I,){ e.:
\ NEXT I

32767 ENO

Ready

RUNNH
1
2
3
4
5
6
7
8
9
10

2

Ready

5
2.5
1.25
.625
.3125
.15625
.078125
.390625E-1
.195313E-1
.976563E-2

5
2.5

In the loop beginning with line 20, the iteration stops when I exceeds the
initial value of X (that is, 10). Even though the value of X changes in the
loop, the initial value of X determines the performance of the loop.

In the second loop, the current value of X determines when the iteration
ceases. Thus, after three iterations, I is greater than X in the second loop
and the program ends. (When you omit the STEP value, it is assumed to
be 1.)

These forms of loop control are useful in iterative applications where data
generated during the loop execution determines loop completion.

Consider the problem of scanning a table of values until two successive
elements are both 0 or the end of the table is reached:

100 FOR IX=lX UNTIL IX=NX OR XIIX)=O ANO XIIX+1X)=0
200 PRINT XlIX)
300 NEXT II.,

13-8 Advanced Statements and Features

The following two programs also illustrate the FOR-UNTIL and
FOR-WHILE constructs:

LISTNH
100 INPUT 'LETTER IS' i Y$
110){$="

120 FOR 1%=0% UNTIL X$=Y$ OR X$
\ READ){$ &:
\ NEXT IX.

I ZZZ I ~:

130 IF X$ = 'ZZZ' THEN PRINT 'IMPROPER INPUT' &:
\ GO TO 32767

140 PRINT 'LETTER IS NUMBER'iI%i 'IN ALPHABET'
500 DATA A ,B ,e ,0 ,E ,F ,G ,H tI tJ ,K ,L ,M ,N ,0 ,p ,I:) ,R ,S , T ,U ,t) ,W ,x ,y ,Z ,ZZZ
32767 END

Ready

RUNNH
LETTER IS? J
LETTER IS NUMBER 10 IN ALPHABET

Ready

RUNNH
LETTER IS? 9
IMPROPER INPUT

Ready

RUNNH
LETTER I S? X
LETTER IS NUMBER 24 IN ALPHABET

Ready

RUNNH
LETTER IS? CC
IMPROPER INPUT

Ready

LISTNH
100 INPUT 'WORD'iY$
110){$="
120 FOR I% =0% WHILE X$(=Y$ &:

\ READ){$ &:
\ NEXT I ·X.

130 IF I% = 1% THEN PRINT 'IMPROPER INPUT' &:
\ GO TO 32767

140 PRINT 'WORD BEGINS WITH LETTER'iI%-l%
500 DATA A ,B ,C ,0 ,E ,F ,G ,H, I tJ ,K ,L ,M ,N ,0 ,p ,I:) ,R ,S ,T ,U ,t) ,W ,x ,,(,Z ,ZZZ
32767 END

Ready

RUNNH
WORD? SECOND
WORD BEGINS WITH LETTER 19

Ready

RUNNH
WORD? IMESSAGE
IMPROPER INPUT

Ready

Advanced Statements and Features 13-9

13.6 Statement Modifiers

13-10

BASIC-PLUS provides five statement modifiers to increase the flexibility
and ease of expression in a program line: IF, UNLESS, FOR, WHILE, and
UNTIL. Append these modifiers to program statements to conditionally
execute statements or create implied FOR loops. AU statement modifiers
operate on only one statement.

Where possible, use statement modifiers instead of IF statements and loops.
Your programs will be more efficient.

13.6.1 IF Statement Modifier

The IF statement modifier has the form:

<statement> IF <condition>

is analogous to the form IF <condition> THEN <statement>.

For example:

10 PRINT X IF X<>O

statement is the same as:

10 IF X<>O THEN PRINT X

BASIC-PLUS executes this statement if the condition is true.

Because the IF statement modifier affects only one statement, you can use
fewer line numbers in a program when you use IF statement modifiers
instead of IF statements. Each line number in a program uses memory
space; thus, using fewer line numbers makes a program more efficient. For
example, suppose you want to print two values, X and A. You want to print
X only if a specified condition is true, but you always want to print A. To
write this code using an IF statement, you need two line numbers:

10 IF X<>O THEN PRINT X
20 PRINT A

If you write these statements on a multi-statement line, A is printed
only when X <>0 is true. Otherwise, control goes to the next line in the
program:

10 IF X<>O THEN PRINT X &
\ PRINT A

20 END

On the other hand, you can write this code using one line number when you
use the IF statement modifier:

10 PRINT X IF X<>O &
\ PRINT A

Advanced Statements and Features

When a statement modifier appears to the right of an IF-THEN statement,
the modifier operates on either the THEN clause or the ELSE clause,
depending on the modifier's placement to the left or right of ELSE. For
example:

100 IF 1=1 THEN PRINT "HELLO" ELSE PRINT "BYE" IF 2=2

This statement prints HELLO because the test 1 = 1 is true. The modifier
IF 2 = 2 is also true, but it applies only to the ELSE clause and is never
tested. You cannot include an ELSE clause when using IF as a modifier.

You can use several modifiers within the same statement. For example:

70 PRINT X(I,J) IF I=J IF X(I,J)<>O

Line 70 prints the value ofX(I,J) only if the value ofX(I,J) is not zero and if
I equals J. When more than one modifier is on a line, the modifiers are
executed in a right-to-Ieft order. The term nested modifiers describes this
situation.

13.6.2 UNLESS Statement Modifier

The UNLESS statement modifier causes a statement to be executed if a
condition is false. It has the form:

<statement> UNLESS <condition>

This form simplifies the negation of a logical condition. For example, the
following statements are equal:

10 PRINT A UNLESS A=O
10 PRINT A IF NOT A=O
10 IF NOT A=O THEN PRINT A
10 IF A<>O THEN PRINT A

13.6.3 FOR Statement Modifier

The FOR statement modifier creates an implied FOR loop on one line. This
modifier has the form:

<statement> FOR <variable> -= <exp> TO <exp> [STEP <exp>]

[{ WHILE} d. .] UNTIL <con ltion>

An example that uses none of the optional elements is:

10 PRINT I, SQR(I) FOR 1=1. TO 10.

Advanced Statements and Features 13-11

13-12

This statement is equivalent to the following FOR-NEXT loop:

ZO FOR 1=1 TO 10 &
\PRINT ItSQR(I) &
\NEXT I

NOTE

An implied FOR loop executes only one statement in the
program.

Like all modifiers, a FOR modifier in an IF statement operates only on the
associated THEN or ELSE clause. It never operates on the conditional
expression to the left of THEN. Thus, if you intend to print nonzero values
in a matrix X(100), the following program does not operate properly:

10 DIM X(100%)
15 READ X(I%) FOR 1%=1% TO 100%
ZO IF X(IX.)OO. THEN PRINT I'X,iX(IX,) i FOR IX. = 1''', TO 100'X,

The implied FOR loop at line 20 applies only to the THEN PRINT ... part of
the statement and not to the IF ... part. The first value of X that the system
tests is X(100), since I remained at 100 from statement 15.

For proper operation, line 20 should be a PRINT statement with nested
modifiers:

ZO PRINT I%;X(I%)t IF X(I%)(>O. FOR 1%=1% TO 100%

In this form, the nested modifier rule tests and prints the values of X(I%)
appropriately.

13.6.4 WHILE Statement Modifier

The WHILE statement modifier repeatedly executes a statement while a
specified condition is true. It has the form:

<statement> WHILE <condition>

For example:

10 LET X=X"Z% WHILE X"Z%(16000

The preceding line 10 is a more efficient way of writing the loop than the
following WHILE-NEXT construct:

10 WHILE X"Z%(16000
ZO LET X=X"Z%
30 NEXT

Advanced Statements and Features

The WHILE statement is also more efficient than the following IF-THEN
construct:

10 LET X=X'Z% &
IF X'Z<16000 THEN 10

The WHILE modifier (and the UNTIL modifier described in Section 13.7.5)
is useful only in iterative loops, where the logical loop structure modifies
the values that terminate the loop. This differs significantly from FOR
loops, where the control variable automatically iterates. A WHILE state
ment does not automatically increment a control variable. The following
infinite loops never terminate:

10 X=X+l. WHILE 1<1000
15 PRINT I,A(I) WHILE A(I)<>O

In both cases, the program fails to change the values that terminate the
loop.

A correct use of the WHILE modifier is:

110 X=X+l. WHILE X<100.
lZ0 PRINT X
3Z767 END

Ready

RUNNH
100

Ready

13.6.5 UNTIL Statement Modifier

The UNTIL statement modifier repeatedly executes a statement until a
condition is true. It has the form:

<statement> UNTIL <condition>

For example:

10 X=X+l. UNTIL X<>SQR(X'Z%)
ZO PRINT X

The preceding example is more efficient than the UNTIL-NEXT construct
in this example:

100 UNTIL X<>SQR(X"Z%)
zoo X=X+l.
300 NEXT
400 PRINT X

Advanced Statements and Features 13-13

The UNTIL statement is also more efficient for this loop than the
IF-THEN-ELSE construct:

100 IF X = SQR(X"2%) THEN GO TO 110 ELSE GO TO 130
110){ '"){+1.

120 GO TO 100
130 PRINT){

13.6.6 Multiple Statement Modifiers

You can use more than one modifier in a single statement. BASIC-PLUS
processes multiple modifiers from right to left. For example:

iUO LET A=8 IF A)O IF 8)0

Line 100 is equivalent to each of the following:

100 IF 5)0 THEN IF A)O THEN A=B

100 IF 5)0 AND A)O THEN LET A=B

100 IF 5(=0 THEN 150
110 IF A(=O THEN 150
120 LET A=5
150 ! TEST OF A AND B COMPLETE

The following statement causes BASIC-PLUS to read a two-dimensional
matrix (M by N) one row at a time:

150 READ All ,Jl FOR J=l TO M FOR 1=1 TO N

Each of the following examples is equivalent to the preceding line:

150 MAT READ A(N,M) 150
160
170
180
180

FOR 1=1 TO N
FOR J=l TO M
READ A(! ,j)
NEl<T J
NEXT I

Section 13.6.3 describes the interaction of FOR and IF modifiers.

13.7 Error Handling

13--14

BASIC-PLUS detects certain errors during program execution. These
errors fall into two broad areas:

1. Computational errors (such as division by 0)

2. I/O errors (such as reading an end-of-file character (CTRL/Z) as input
to an INPUT statement)

Advanced Statements and Features

BASIC-PLUS normally does two things when it detects an error: it prints
an error message and terminates your program. However, BASIC-PLUS
allows you to continue program execution after it encounters some errors.
In these cases you can use the ON ERROR GOTO statement to ten
BASIC-PLUS that a subroutine exists at a specified line number to analyze
errors and attempt to recover from them. This section describes ON ERROR
GOTO and two other features used in error handling, the RESUME state
ment and the ERL variable.

13.7.1 ON ERROR GOTO Statement

The format of the ON ERROR GO TO statement is:

ON ERROR GOTO [<line number>]

Place this statement before any executable statements that will use the
error handling routine. If an error occurs, the system interrupts execution
of your program and transfers control to your error subroutine at the
number indicated. The variable ERR assumes one of the values listed in
Appendix C.

When BASIC-PLUS encounters an error in your program, it to see
if the program has executed the ON ERROR GOTO statement. If not, a
message prints at your terminal and the program proceeds (that is, if the
error does not terminate execution), If the ON ERROR GOTO statement
was executed, the program continues at the specified line number. The
program can test the variable ERR to discover what error occurred and to
decide what action to take.

NOTE

An ON ERROR GOTO statement with an incorrect target
statement number can cause error messages that are confus~
ing or inappropriate.

13.7.2 RESUME Statement

The RESUME statement in an error handling routine is like a RETURN
statement in a subroutine. After the error handling routine has processed
the error, the RESUME statement allows your program to exit from the ON
ERROR GOTO routine and continue execution. The RESUME statement
causes execution to be continued at the program line that caused the error.
Place the RESUME statement at the end of the error handling routine. The
format of the RESUME statement is:

RESUME [<line number>]

For example:

2000 RESUME

Advanced Statements and Features 13-15

13-16

Line 2000 restarts your program at the line where BASIC-PLUS detected
the error. To continue execution at some other point (as for a noncorrect~
able problem), specify the new line number at the end of the error handling
routine. For example:

2001 RESUME 100

When a RESUME or RESUME 0 statement passes control to a multi
statement line, control goes to the DIM, DEF*, FNEND, FOR, NEXT,
or DATA statement immediately preceding the statement that caused the
error. If none of these six statements are on the line, BASIC-PLUS passes
control to the first statement on the line. The first statement on a multi
statement line should be the one that is most likely to generate a trappable
error.

Consider the line:

50 A=A+l \ PRINT A \ FOR M%=l% TO 3% &
\ INPUT >:(1'1'1.,) &,

\ NENT MX,

there is an error in the INPUT statement, control passes to the preceding
FOR statement on the same line, instead of to the first statement on the
line. But BASIC-PLUS does not reinitialize the loop; it retries the INPUT
statement without changing M%.

If an error handling routine contains code that can generate errors, it
should execute a RESUME statement before continuing to process the orig
inal error.

13.7,3 Disabling the Error Handling Subroutine

In certain portions of a program, you may want BASIC-PLUS, and not
your program, to process errors. You can disable the error handling subrou
tine by executing one of the fonowing statements:

100 ON ERROR GOTO 0
100 ON ERROR GOTD

These statements return control of error handling to the system. In
the second form, line 0 is assumed. Note that you should specify 0 for
compatibility with BASIC-PLUS-2. When you execute either statement,
BASIC-PLUS treats errors as if no ON ERROR GOTO had executed.

Generally, your error handling subroutine will detect and handle only a
few specific errors. It is useful to have BASIC-PLUS handle other errors as
they occur. For this reason, your program can execute the ON ERROR
GOTO statement inside the error subroutine.

Advanced Statements and Features

When the ON ERROR GOTO 0 statement is executed in an error-handling
routine, disabling occurs retroactively. The system reports the error that
caused the error subroutine to execute. A message is printed as though the
ON ERROR GO TO statement had not been in effect.

The following example shows how an error handling routine can help inex
perienced users interact with a BASIC-PLUS program. These users may
not know what to type at the terminal, so the program prompts them. The
program uses the WAIT statement to allow up to 60 seconds for the user to
respond (see Section 13.9). After 60 seconds, the error "?Keyboard WAIT
exhausted" signals the program that the user has not replied. Then the
program prints additional information for the user.

The program requests your name with the INPUT statement on line 120;
line 110 allows you 60 seconds to respond. The system executes the ON
ERROR GOTO statement on line 100.

LISTNH
100 ON ERROR GOTO 1000 &

! SET UP ERROR ROUTINE
110 WAIT 60 &:

! WAIT 60 SECONDS FOR REPLY
120 INPUT ' YOUR NAME' jN$ &

! GET STUDENT NAME
150 STOP

1000 ! THIS IS THE ERROR HANDLING ROUTINE
1010 IF ERR< >15 THEN ON ERROR GO TO 0 &

! WAIT ERRORS ONLY
1020 PRINT &:

! SKIP TO NEW LINE
1030 PRINT 'PLEASE TYPE YOUR NAME' &

\ PRINT 'AND THEN HIT "RETURN" KEY'
1050 RESUME &

! TRY AGAIN
32767 END

If some error other than "?Keyboard WAIT exhausted" (ERR = 15) called
the error subroutine, the program exits through the ON ERROR GOTO 0 in
line 1010. This permits the system to print the appropriate error message
at your terminal. Note that exiting through the RESUME at line 1050
causes the INPUT statement to be executed again.

13.7.4 The ERL Variable

Sometimes you need to know the line number where an error occurred.
After error detection, the integer variable ERL contains the line number of
the error. (The exception is the "?Programmable "C trap" error, (ERR = 28);
see the RSTS / E Programming Manual. In this case ERL is not set, but the
LINE variable is set to the line number executing when CTRL / C was
typed.)

For example, you can use ERL to indicate which INPUT statement caused
an "?End of file on device" error. But you must be careful when using the

Advanced Statements and Features 13-17

ERL variable. When you change or resequence the line numbers of state
ments within the program, you can alter the value of the ERL variable
within an expression context. For example:

100
110
120
130
1110
150

1000
1010
1020
1030
32767

Ready

RUNNH

ON ERROR GOTO 1000
INPUT' TYPE TWO NON-ZERO NUMBERS'; A,B
LET){=A/B
LET){=){+B/A
PRINT){
STOP

IF ERR<>61 THEN ON ERROR GOTO 0
PRINT 'FIRST NUMBER WAS 0' IF ERL=130
PRINT 'SECOND NUMBER WAS 0' IF ERL=120
RESUME 32767
END

TYPE TWO NON-ZERO NUMBERS? 5,10
2.5

Stop at line 150

Ready

RUNNH
TYPE TWO NON-ZERO NUMBERS? 6,0
SECOND NUMBER WAS 0

Ready

RUNNH
TYPE TWO NON-ZERO NUMBERS? 0,7
FIRST NUMBER WAS 0

ReadY

If you move the LET statements in lines 120 and 130 to some other line
numbers, lines 1010 and 1020 also require a change.

13.8 System Functions

13-18

BASIC-PLUS has several system functions that get information about or
perform operations with the system. Table 13-1 describes these functions.

Table 13-1: System Functions

Function Meaning Sample Usage

DATE$(O%) Returns the current day, month PRINT DATE$(O)
and year. 10-Jan-78

Note that the date contains both Ready
upper- and lowercase letters.
If your system uses the numeric 76.03.22
date format, DATE$ returns the
date as year, month, and day.

(contmued on next page)

Advanced Statements and Features

Table 13-1: System Functions (Cont.)

Function Meaning

DATE$(N%) Returns a character string cor
responding to a calendar date.
The , formula used to translate
between N and the date is:

(day of year) + [(number of years
since 1970)*1000]

DATE$(l%) = "01-Jan-70"
DATE$(2060%) = "29-Feb-72"

Sample Usage

If your system uses the numeric 78 • 02 • 29
date format, DATE$ returns the

TIME$(O%)

TIME$(N%)

TIME(O%)

TIME(l%)

TIME(2%)

TIME(3%)

TIME(4%)

date as year, month, and day.

Returns the current time of day
as a character string.

Returns a string corresponding
to the time at N% minutes be
fore midnight.

TIME$(l %) = "11:59 PM"
or "23:59 "

TIME$(1440%) = "12:00 PM"
or "00:00 "

TIME$(721 %) = "11:59 AM"
or "11:59 "

N% must be less than 1441 to
return a valid string. The system
manager determines whether
your system uses the AM I PM
or 24-hour time format (for ex
ample, 02:40 PM or 14:40).

Returns the clock time in sec
onds since midnight.

Returns the central processor
(CPU) time used for the job in
0.1 second quanta.

Returns the connect time (dura
tion of time that you have been
logged onto the system) for the
job in minutes.

Returns the number of kilo-core
ticks (KCTs) that your job used.
(See the RSTSIE System User's
Guide for an explanation of
KCTs.)

Returns the device time for the
job in minutes. The time is accu
mulated by the RSTS I E monitor.

75 IF TIME$(O) >="05:45 PM"
THEN PRINT "TIME TO QUIT"

PRINT TIME$(U)

11 : 59 PM

Read y

PRINT TIME$ (1400%)

12:40 AM

25 I F TIME(O) >43200

I

THEN PR I NT "AFTERNOON"

10 IF TIME(1) >30 THEN STOP

10 IF TIME(2) >1000 THEN STOP

80 PRINT TIME(3)

40 IF TIME(4) 180 >2.5 THEN 90

Advanced Statements and Features 13-19

The string that the TIME$ function returns conforms to standard usage.
The string is always 8 characters in length. For 24-hour time, the format
is "hh:mm ", where midnight is "00:00 " and noon is "12:00 ". For
AM/PM time, the format is "hh:mm xx", where midnight is "12:00 PM"
and noon is "12:00 M ". Table 13-2 shows examples of these formats.

Table 13-2: TIME$ String Examples

24-hour AM/PM
Format Format Description

00:00 12:00 PM Midnight
00:01 12:01 AM 1 minute after midnight

00:59 12:59 AM 59 minutes after midnight
01:00 01:00 AM 1 hour after midnight

11:59 11:59 AM 1 minute before noon
12:00 12:00 M Noon
12:01 12:01 PM 1 minute after noon

12:59 12:59 PM 59 minutes after noon
13:00 01:00 PM 1 hour after noon

23:59 11:59 PM 1 minute before midnight

In addition to the functions listed in Table 13-1, BASIC-PLUS has three
other functions that allow you to perform more complex operations with the
RSTS / E system:

SYS Lets you communicate with the RSTS/E monitor.

SPEC% Performs special operations on disks, flexible diskettes, mag
netic tape, terminals, and pseudo keyboards.

MAGTAPE Performs special operations on magnetic tape.

These functions are described in the RSTS / E Programming Manual .

. 13.9 SLEEP and WAIT Statements

13-20

You can use two special statements in a BASIC-PLUS program: SLEEP
and WAIT. Both statements let you suspend your program for a stated
interval.

The SLEEP statement has the form:

SLEEP <expression>

Advanced Statements and Features

(
SLEEP suspends the running program for the number of seconds that the
expression indicates. After this period the program runs again. Thus, you
request these seconds of idle time. To call a job from SLEEP before the
specified number of seconds expires, type a delimiter (RETURN, LINE
FEED, FORM FEED, or ESCAPE) at your job terminal. You can also call a
job from SLEEP at any other terminal that is opened by your job.

The following program segment overrides line terminating delimiters and
insures continuous SLEEP for a specified time:

100 T=TIME(O)
110 SLEEP T+30-TIME(0) &

\ IF TIME(0)-T<30 GOTO 110
120 INPUT X

In this program, the INPUT statement is executed only if the time elapsed
is equal to or greater than 30 seconds. But if you type a delimiter, SLEEP is
executed again for the length of time remaining in the original 30 seconds
or until you type another line terminating character.

A job is also awakened when the system manager disables logins or one of
several other conditions occurs. See the RSTS / E Programming Manual for
details.

The WAIT statement has the form:

WAIT <expression>

WAIT sets a maximum period for the system to wait for input from your
keyboard. If you do not type a delimiter (RETURN, LINE FEED, ESCAPE,
or FORM FEED) within the number of seconds that the expression speci
fies, program execution continues and a "?Keyboard WAIT exhausted"
error (ERR = 15) occurs. You can detect this error using ON ERROR GOTO.

The WAIT statement works with the INPUT statement. For example:

LISTNH
10 ON ERROR GOTO 100
20 WAIT 15
30 INPUT' 16 + 16 =';A
40 WAIT 0
50 IF A=32 THEN PRINT 'RIGHT!' &

ELSE PRINT 'NO, TRY AGAIN' &
\ GOTO 10

60 STOP
100 IF ERR<>15 THEN ON ERROR GOTO 0
110 PRINT 'WAKE UP!'
120 RESUME 30
32767 END

Ready

RUNNH
16 + 16 =? WAKE UP!
16 + 16 =? 30
NO, TRY AGAIN
16 + 16 =? 32
RIGHT!
Stop at line 60

Ready

Advanced Statements and Features 13-21

In this example, the WAIT statement at line 20 causes the system to wait
15 seconds for keyboard input when the INPUT statement is executed. Line
100 executes only if you fail to respond within 15 seconds.

A WAIT statement affects the entire program. The specified wait period is
in effect for all terminal input until another WAIT statement is executed.
Use the WAIT 0 statement to restore the terminal to its normal state where
no timeout occurs. In this state, the system waits until a line is entered,
however long it takes.

13.10 CHAIN Statement

13-22

The CHAIN statement transfers control from one BASIC-PLUS program to
another. Use CHAIN when a program is too large to load into memory and
run in one operation. Break the program into two or more separate pro
grams and then use the CHAIN statement in these separate programs to
call other programs into memory to be run.

NOTE

This discussion of the CHAIN statement uses terms that may
be unfamiliar to you. These terms relate to working with
data files. Part IV of this manual discusses data files in
detail.

The CHAIN statement has the format:

CHAIN <string> [[LINE] <line number>]

The string is a file specification that names the program for BASIC-PLUS
to load, translate, and execute. Only the file name is required; all other
parts of the file specification are optional. LINE, which means line number,
is an optional word included for compatibility with BASIC-PLUS-2. The
line number, if included, specifies the line where execution is to start. If
you omit the line number, execution starts at the first line in the program.
Consider the following examples:

1000 CHAIN "MAIN.BAC"

1000 CHAIN "MAIN.BAC" LINE 2000

1000 CHAIN "MAIN.BAC" 2000

All three statements load and execute the program MAIN.BAC. In the first
statement, execution starts at the first line in MAIN.BAC; in the second
and third statements, execution starts at line 2000.

The CHAIN statement works much like the RUN command. Like RUN, it
loads and executes a translated (.BAC) file by default. If no translated
program exists, it loads, translates, and executes the corresponding source
(.BAS) file. Because .BAS files require translation each time they are run,
it is more efficient to chain to .BAC files. The system displays an error
message if you specify a file that does not exist.

Advanced Statements and Features

You can pass data between chained programs using common memory or
data files. Common memory (also called "core common") is a data area in
your job's memory area. It can hold a string up to 127 bytes long. You use
system function calls to put a string into this area and get it out (see the
RSTS IE Programming Manual). Data files are described in Part IV of this
manual.

Before CHAIN loads a new program, it closes all open files and other I 10
channels for the current program. Thus, the new program must open all
files and I I a channels it needs to use. CHAIN closes I 10 channels implic
itly, not explicitly, which means that the last buffer of data is not written to
the file. It is therefore advisable to close all files explicitly with a CLOSE
statement before chaining to another program; the implicit close can cause
the contents of partially filled output buffers or modified virtual array ele
ments to be lost.

Keep the following information in mind when you use CHAIN:

1. It is recommended that you include the file type in the CHAIN state
ment, especially if you have programs with duplicate file names in your
directory. RSTS/E supports many different programming languages
under its various run-time systems. If you do not specify the .BAC or
.BAS file type, it is possible for the CHAIN statement to load and exe
cute a compiled file that is not a BASIC-PLUS program.

2. The file operations that CHAIN performs can take considerable system
time. So use CHAIN only when necessary-that is, only when your
programs are too large to fit in memory.

3. When you enter a program through the CHAIN statement, the system
sets the STATUS variable. See the RSTSIE Programming Manual for
more information.

4. On RSTS/E systems with several run-time systems installed, CHAIN
can work differently for source and translated programs. For example,
suppose you switch to DCL, making it your job keyboard monitor. Then
you run a translated BASIC-PLUS program using the DCL RUN com
mand. If that translated program chains to a source program, you will
be in the BASIC-PLUS keyboard monitor after the source program is
finished executing. On the other hand, if that translated program
chains to another translated program, the second translated program
returns you to the DCL keyboard monitor when it is finished executing.

5. If a CHAIN statement in a nonprivileged program names a privileged
program, the CHAIN statement should not include a line number. You
must execute the entire chained program or else the system will not
retain the chained program's privilege. (There are some exceptions to
this rule-see the RSTS IE Programming Manual.)

6. If a CTRL I C is typed while a CHAIN statement is executing, execution
halts. The halt always occurs, even if one or both programs have CTRL I C
trapping enabled.

Advanced Statements and Features 13-23

- ----------_. ---

PART IV
Data Handling

Chapter 14
Overview of Data Handling

Chapters 9 and 10 introduce data handling. They describe how to enter
data into a program with the INPUT and INPUT LINE statements, using
your terminal as the input device. They also describe the READ and DATA
statements, where the data is contained in the program itself. While these
techniques are satisfactory when you need to input a small amount of data,
they are inefficient when your program has large amounts of data to
process.

Chapters 9 and 10 also show you how to print data on your terminal with
the PRINT statement. This technique lets you display the results of your
program, but it does not provide a permanent record of its output.

Besides these disadvantages, the I/O methods described so far have
another shortcoming. Processing data in a computer is often repetitive.
Programs process the same data many times, changing the data each time
it is processed. READ, DATA, and simple terminal I/O are not designed for
this kind of repetitive processing.

I

Data files can fill all these needs. They:

• Are an efficient way to store and input data for a program to process

• Provide a permanent record of program input and output

• Allow you to repeatedly process data that changes each time it is pro
cessed

• Allow different programs to share the same data

This section of the manual describes how to work with data files in
BASIC-PLUS. This chapter covers basic concepts, introduces the three
types of BASIC-PLUS files, and descrl.bes the OPEN, CLOSE, NAME-AS,
and KILL statements, which you use for all types of files. Chapters 15, 16,
and 17 describe each type of I/O in detail.

14-1

14.1 Files and Devices

A BASIC-PLUS data file consists of data to be transferred between
programs executing in memory and devices outside memory. The most com
mon peripheral devices are:

• Terminals

• Disks

• Magnetic tape

• Line printers

• Flexible diskettes

Disks and magnetic tape are file-structured devices; the rest are non-file
structured. You can store many different files on a file-structured device.
Each file has a file specification that uniquely identifies it. In contrast, you
specify only a device name to identify a non-file-structured device like a
terminal or line printer. The system treats the entire device as a single
"file."

Note that while disks and magnetic tape are file-structured devices, you
can also use them as non-file-structured devices on RSTS/E. The RSTS IE
Programming Manual describes special programming techniques for each
type of peripheral device.

14.2 Accessing a File or Device from a Program

To access a file or device from a program, you open a file, read data, write
data (or both), and then close the file.

14.2.1 Opening the File

The first step in accessing a file or device is to make it available to your
program. You do this by "opening" it with the BASIC-PLUS OPEN state
ment. In the OPEN statement, you specify (at a minimum) the file or device
name and a channel number, which must be an integer from 1 to 12.

The OPEN statement makes the file or device available to your program
by:

• Creating a logical connection between your program and the file or
device, called an I I 0 channel.

• Setting aside an area in memory to be an intermediate storage area
between your program and the file or device. This area is called the lIO
buffer or the channel buffer.

14-2 Overview of Data Handling

The 1/ 0 channel is identified by the number you specify in the OPEN
statement. You use this channel number to refer to the file or device in
other program statements. Channels 1 through 12 are available to your
program. The system uses channel 0 for your terminal, so you cannot open
a file or device on channel O.

The I/O buffer is located in your program's memory area; thus, opening a
file causes your program to expand. The size of the buffer depends on the
type of device you open. The system has a default buffer size for each
device; the default buffer size for disks is 512 bytes. You can also specify a
buffer size as an optional part of the OPEN statement.

The data in the 1/0 buffer has the same format as it does on the storage
device. In formatted ASCII and virtual array 1/0, BASIC-PLUS performs
all the processing necessary to make the data available to your program as
integer, floating-point, and string data. In block 1/0, however, your pro
gram controls the buffer directly. You access the data in the buffer as string
data, and use conversion functions to make it available to your program as
integers or floating-point numbers. You then convert numeric data back to
string data for output.

Besides creating an 1/0 channel and establishing an 1/0 buffer, the OPEN
statement can also perform several other functions. For example, OPEN
can create a file with specific characteristics or open a file in a special
"mode." Section 14.5 describes the OPEN statement in more detail.

14.2.2 Reading and Writing Data

After you open a file or device, it is available to your program. You can read
input from it and write output to it. The statements you use to do this and
the amount of processing that BASIC-PLUS performs for you depend on
the type of file you choose to work with.

Reading and writing data is a two-step process. When you read data, it
moves first from the file to the I 10 buffer and then from the I I 0 buffer to
your program. When you write data, the path is reversed. In formatted
ASCII and virtual array 1/0, BASIC-PLUS handles the buffer. From your
point of view, it looks like data moves directly between your program and
the file. In block 1/0, however, you control both steps in the process.

14.2.3 Closing the File

When yoU: are finished using the file or device, you close it with the CLOSE
statement, which closes the I I 0 channel. This action frees the space taken
by the I I 0 buffer for other use and "disconnects" the file or device from
your program. Except when you use block I 10 or enter a special form of
the CLOSE statement, CLOSE writes the data in the I 10 buffer out to the
file or device before freeing the buffer space and breaking the logical
connection.

The next section introduces the three types of BASIC-PLUS files.

Overview of Data Handling 14-3

14.3 BASiC-PLUS File Organizations

BASIC-PLUS provides three file organizations:

@ Formatted ASCII, also called ASCII stream

Ill! Virtual Array

e Block 1/0

You use different programming techniques to work with each type of file.
Formatted ASCII files are the simplest files to work with; block I 10 files
are the most complex. BASIC-PLUS does not support RMS-l1 files.

14.3.1 Formatted ASCII Files

If you know how to use the PRINT and INPUT statements for terminal
1/0, you already have most of the information you need to work with for
matted ASCII files. BASIC-PLUS handles a formatted ASCII file the same
way it handles a terminal,

Formatted ASCn files store ASCII characters sequentially in variable
length records. Each record is the same as a line on your it
consists a line of text a ,
record delimiter. The record delimiter can be a RETURN (carriage return I
line feed), a LINE FEED, a FORM FEED, an ESCAPE, or a VT (vertical
tab). A CTRL/Z marks the end of the file. Formatted ASCII files do not
usually contain any null characters (ASCII code 0) because the system
discards them when it processes formatted ASCII files.

To access a formatted ASCII file, you open it on a channel and then use
channel number in INPUT and PRINT statements. BASIC-PLUS handles
the exchange of data between the file, the 1/0 buffer, and your program,
and also performs necessary data conversions between ASCII and numeric
data types.

Formatted ASCII files are sequential access files; you cannot access data
randomly. You can store formatted ASCII files on disk and tape devices.
See Chapter 15 for more information on working with formatted ASCII
files.

14.3.2 Virtual Array

Virtual arrays are arrays stored on disk. Except for a few differences, which
are described in Chapter 16, you work with virtual arrays using same the
programming techniques you use for memory arrays.

You can use virtual array files to store arrays that are too large to fit in
memory. One file can contain several arrays. Each "record" in a virtual
array file is one array element, and virtual arrays can contain real, integer,
or string data. You access the data in the using the same methods you
use for memory arrays; no special input or output statements are required.
BASIC-PLUS performs the necessary read and write operations to the disk
and also manages the I I 0 buffer.

14-4 Overview of Data Handling

You can access data in virtual arrays randomly or sequentially, just as you
access arrays in memory" You can store virtual arrays only on disk devices.
See Chapter 16 for more information on virtual arrays.

14.3.3 Block I/O Files

Block I/O is the most flexible way to do I/O in BASIC-PLUS; it is also the
most difficult to program. You will need to learn several new programming
techniques to use block I/O.

Block I/O files are sequential or random access files that contain a series of
numbered records. Each record in the file corresponds to one physical block
on the storage device. You can store block I I 0 files on disk or tape devices.
The record size varies depending on the storage medium.

When you use block I/O, BASIC-PLUS does much less processing for you
than when you use formatted ASCII files or virtual arrays. Instead, your
program is in control. For example, you:

~ Control read and write operations between the I/O buffer and the file

@ Operate on the data in the buffer directly

@! Define the and location of

See Chapter 17 for a complete description of
you need to use block I/O.

14.4 Choosing an I/O Method

The I/O method to choose depends on:

@ The nature of your application

file

statements and functions

~ The amount of time you want to spend developing the program

Formatted ASCII and virtual arrays provide enough flexibility for many
kinds of applications. They are also relatively easy to program because
BASIC-PLUS does most of the special processing for you.

Formatted ASCII I/O lets you access all devices the same way-you do not
have to know the characteristics of a device in order to use it. Because
formatted ASCII files are text files, you can edit them, display them on the
terminal, and print them on the line printer. But converting data between
ASCII and numeric formats consumes processor time, and ASCII data takes
up a lot of storage space. In addition, formatted ASCII files allow sequential
access only.

Virtual arrays provide a random access disk file that is easy to use. They
also allow you to work with arrays that are too large to be stored in mem
ory. However, the way your program accesses data in the array is very
important. To use virtual arrays efficiently, you need to minimize the num
ber of disk accesses; otherwise, your program runs very slowly. Chapter 16
provides the information you need to make efficient use of virtual arrays.

Overview of Data Handling 14-5

Block I/O provides the additional control and flexibility you need when
your application is complex or when speed of execution is very important.
Unlike formatted ASCII I/O and virtual arrays, block I/O lets you tailor
your program to the characteristics of each device. You can also process any
type of logical data record.

BASIC-PLUS provides a set of tools (statements, functions, and special
variables) for using block I/O. However, programs that use block I/O are
more difficult to develop and debug.

The rest of this chapter describes the basic statements for working with all
types of files: OPEN, CLOSE, NAME-AS, and KILL.

14.5 OPEN Statement

The OPEN statement associates a file or device with an I/O channel num
ber. (The I/O channel is a logical entity, having no specific relationship to
hardware.)

A channel can be associated with either a file-structured or a non-file
structured device. Consider this example for a file-structured device, such
as a disk:

OPEN 'FDD.DAT' AS FILE #1

An example for a non-file-structured device, such as a terminal, is:

OPEN 'K6:' AS FILE #2

BASIC-PLUS permits your program to have up to 12 files open at a given
time. Channel numbers 1% to 12% can be used with any file or device.
(Channel number 0% specifies the terminal owned by your job.)

The general form of the OPEN statement is:

. [{FOR INPUT }] . OPEN <strmg> FOR OUTPUT AS FILE [#] <expresslOn>

The <string> is either a string constant, a string variable, or a string
expression that contains a RSTS /E file specification of the form:

dev:[acct]fllename.typ / switch(es)

The file name is required for file-structured devices; the device name is
required for non-file-structured devices. All other parts of the file specifica
tion are optional. By default, the OPEN statement opens a file in your
account on the public structure and assigns a protection code of 60. The
OPEN statement has no default file type.

After opening a file or device, you perform input and / or output by referring
to the channel number. Specify the channel number in the OPEN state
ment with the integer expression after the keyword FILE. The expression
must be an integer from 1 to 12. You cannot open channel 0 because the
system opens your terminal on channel 0 when you log in.

14-6 Overview of Data Handling

Protection codes are normally specified only in the NAME-AS statement,
which changes the name and protection code of an existing file (see Section
14.7). However, protection codes can be specified as an optional part of any
file specification.

Use the IPROTECT switch to specify the protection code. For example:

300 OPEN 'FILE.TVP/PR:40' FOR OUTPUT AS FILE #1%

The file FILE.TYP is created with a protection code of 40 and is opened on
channell.

As in previous versions of RSTS/E, you can also enclose the protection
code in angle brackets. However, it is recommended that you use the
IPROTECT switch. See the RSTSIE System User's Guide for more
information.

You can append any or all of the following options to the end of the OPEN
statement:

[,RECORDSIZE <expression>] [,CLUSTERSIZE <expression>]

[,FILESIZE <expression>] [,MODE <expression>]

Options must be in the order RECORDSIZE, CLUSTERSIZE, FILE SIZE ,
MODE. If options are out of order, you get the message:

?SYntax error

Note that except for RECORDSIZE, these options can also be specified as
RSTS/E file specification switches. If an OPEN statement contains a
switch and an option with the same name, the value specified in the OPEN
statement option has precedence over the value specified in the file specifi
cation switch.

Omitting an option is the same as specifying that option with a parameter
of 0%. In both cases, the option's default value is used. (The MODE option
for non-file-structured magnetic tape is an exception; see the RSTS IE
Programming Manual.)

14.5.1 Forms of the OPEN Statement

The OPEN statement has three distinct forms:

OPEN <string> FOR INPUT AS FILE <expression>
OPEN <string> FOR OUTPUT AS FILE <expression>
OPEN <string> AS FILE <expression>

The form of the OPEN statement determines whether you open an existing
file or create a file:

1. An OPEN FOR INPUT statement searches for an existing file (the
statement indicates the file is an input file). If the system does not find
a file, it returns the error: "?Can't find file or account" (ERR = 5).

Overview of Data Handling 14-7

2. An OPEN FOR OUTPUT statement searches for an existing file and
deletes it if found. A new file with the same name is then created. (See
the RSTS IE Programming Manual for special OPEN modes that can
prevent supersession of existing files or that open tentative files.)

3. An OPEN statement without an INPUT or OUTPUT designator
attempts to perform an OPEN FOR INPUT operation described in item
1. If this fails, the system creates a new file.

NOTE

The OPEN statement does not restrict a program from per
forming both input and output operations on a disk file. Nor
does it grant read or write access to the file. These privileges
are controlled by the file protection code and MODE value.
Magnetic tape and DECtape are exceptions; see the RSTS IE
Programming Manual for more information.

If the program cannot access the file or device, an error is returned. Table
14-1 summarizes common errors that occur on attempted file access.

On DECtape and magnetic tape devices, the FOR INPUT and FOR
OUTPUT clauses restrict operations on that file to the operation specified.

When used with disk files, OPEN FOR INPUT and OPEN FOR OUTPUT
allow either read or write operations on the opened file. The system allows
write access to a file if the protection code permits and if no other user has
write access to the file.

For example, if user 1 opens a file, he has read and write access. If user 2
opens the same file, he has read access only; a "?Protection violation" error
occurs when he attempts to write on that file. When user 1 subsequently
closes the file, no user has write access until the next open operation. User
3 can now open the file for both read and write access, because no other
user currently has write access to that file.

There are two ways to open a file without gaining write access. You can
either specify the IRONL Y switch at the end of a file specification or open
the file with the Read Only mode. (See the RSTS IE Programming Manual
for more detail.) Both ways bypass the normal mechanism that grants write
access.

You can determine whether the current job has read or write access to a file
by testing the STATUS variable immediately after the OPEN statement.
The STATUS variable is described in Section 17.1.1.

NOTE

Only one user at a time can have write access to a disk file
unless that file is opened in update mode or unguarded mode
(MODE value = 1% or 5%).

14-8 Overview of Data Handling

Table 14-1: OPEN Statement Errors

r-v-a~l-u-e--O-f-r--------------~--------r---~-----------------------------~I

ERR Message Explanation

2

4

5

6

8

10

14

?Illegal file name

?N 0 room for user on device I
?Can't find file or account

?Not a valid device

The file name specified is not acceptable. It
contains unacceptable characters, or else it
violates the file specification format.

The directory space of your device IS

exceeded, or the device is too full to accept
further data.

The file or account number is not found on
the specified device.

The device specification is not valid for one
I of the following reasons:

The unit number or its type is not in Ii

the system configuration.

?Device not available

?Protection violation

?Device hung or write
locked

1.

2. The logical name has no associated
physical device and is thus untranslat
able.

The de"'l).ce exists on the sy8teln~
but you cannot assign or open it for one of
the following reasons:

1. The device is reserved for another job.

2, You lack necessary access privileges for
the device.

3. The device is disabled.

4, The device is a keyboard line for pseudo
keyboard use only.

You do not have access privileges for the
file.

Check the hardware condition of the device
you requested. Possible causes of this error
include a line printer out of paper or a high-
speed reader off-line.

17 ?Too many open files on unit The system permits only one open output
file per DECtape drive and only one open
file per magnetic tape drive.

32 ?No buffer space available You accessed a file and the monitor requires
one sman buffer to complete the request. No
small buffer is available.

39 ?Magtape select error When you attempted to access a magnetic
tape drive, it was off-line.

46 ?Illegal 1/0 channel You specified an 1/0 channel number out
side the range of integers 1 through 12.

Overview of Data Handling 14-9

14--10

14.5.2 File-Structured and Non~FilewStructured Devices

RSTS/E distinguishes between file-structured devices (disk, DECtape, and
magnetic tape) and non-file-structured devices (terminals, for example).
You handle them differently when you want to find or create a file.

For a file-structured device, you must include both a device name (or accept
the default public disk structure) and a file name in the file specification
string of the OPEN statement.

For non-file-structured devices, the device name identifies a file; file name
and type, if specified, are ignored. For example:

K B S4 : Specifies keyboard number 54.

L P 1 : Specifies line printer unit 1.

L P 1 : F I L E Same as LP1:; the file name is ignored.

D){ 1 : Specifies diskette unit L

You need not specify the default device (the public disk storage area).

You can also open a file-structured device in non-file-structured mode. For
example:

160 OPEN 'DK2:' AS FILE S'X,

Line 160 opens a disk in non-file-structured mode. The RSTS / E
Programming Manual describes device-dependent features.

14.5.3 OPEN Statement Options

The next four sections describe the RECORDSIZE, CLUSTERSIZE,
FILESIZE and MODE options of the OPEN statement. As these are sophis
ticated file-handling tools, new users may wish to skip these sections for
now and continue with Section 14.6.

14.5.3.1 RECORDSIZE Option

When you open a file, BASIC-PLUS creates an I/O buffer in your memory
area to transmit data to and from the file. Normally the device determines
the space reserved, because each device has a default buffer size. Table
14--2 lists the default buffer size for each device.

With the RECORDSIZE option, you can allocate more buffer space than is
provided by the default case. However, the device may not let your program
use additional space.

Table 14--3 shows the buffer sizes you can specify for each device.

The buffer size you specify should be an even number. If you specify an odd
number, BASIC-PLUS rounds it down to the next even number.

Overview of Data Handling

Table 14-2: Default Device Buffer Size

Default Device Buffer Size
Device (characters or bytes)

Disk 512*

Diskette 512

DECtape 510*

Magnetic tape (DOS or ANSI) 512**

High-speed paper-tape reader 128

High-speed paper-tape punch 128

I
Line printer 128

Card reader

I
160

User terminal 128
I

Null device 2***

DMCll IDMRll 512

*'The default buffer size may differ when you use the device as a non-me-structured
device.

**For ANSI magnetic tape, the system reads a value from the header label to establish
the buffer size.

***8ee the RSTS /E Programming Manual for more information about the null device.

Table 14-3: Use RECORDSIZE

Device Possible Buffer Alterations

Disk A disk may use any buffer size that is an integral multiple of 512
bytes.

DECtape DECtapes use only the first 510 bytes of the available buffer space
(512 bytes for non-me-structured DECtape).

Magnetic tape Magnetic tapes use only enough bytes for one physical magnetic
(DOS or ANSI) tape record. Each physical record must be at least 14 bytes and no

larger than the buffer size.

High-speed reader 'rhese non-me-structured devices can use any buffer size greater
High-speed punch than the default size. The card reader uses only enough bytes for
Line printer one card's data.
User Terminal

Diskette Diskettes use any buffer size that is an integral multiple of 128
bytes.

Null device The null device can use any even buffer size.

DMCll/DMRll The DMCll /DMRll can use any even buffer size. However, you
usually make the I/O buffer the same size as the device's receive
buffer, which cannot exceed 632 bytes. You can specify the receive
buffer size with the FILE SIZE option. See the RSTS / E Program-
ming Manual for more information.

Overview of Data Handling 14-11

14-12

When you specify a value less than the default, BASIC-PLUS uses the
device's default buffer size. To get a buffer size less than the default, specify
the desired buffer size, plus 32767%, plus 1%. Smaller buffer sizes are often
useful when performing alternate buffer I/O (see Section 17.3.7).

For example, to open a paper-tape reader with a buffer size of two bytes for
use with alternate buffer I/O, type:

10 OPEN 'PR:' FOR INPUT AS FILE *,l'X" 1\,
RECORDSIZE 32767% + 1% + 2%

The RECORDSIZE option has significant advantages when you use it with
magnetic tape and disk files. On a disk file, you can improve total through
put by using a larger buffer size. This permits a single disk transfer to :read
a large quantity data. For example:

100 OPEN "MASTER. OAT" FOR I NPUT AS FILE 1 '1." RECORDS I ZE 2048'1.,

If the file MASTER.DAT occupies a contiguous area on a disk, one
2048-byte transfer takes Otherwise, the RSTS /E monitor breaks
this quantity into as many as four 512-byte transfers, which takes longer.

way, the overhead to perform the transfer is less.

To ensure that a file occupies a contiguous disk area, use the MODE option
(see the RSTS /E Programming Manual) or the CLUSTERSIZE option
described in Section 14.5.3.2.

14,5.3.2 CLUSTERSIZE Option

The CLUSTERSIZE option applies to disk and ANSI magnetic tape files
that you create with an OPEN or OPEN FOR OUTPUT statement. The
following description applies to disk files, (Refer to the RSTS / E System
User's Guide for device-specific information and the RSTS / E Programming
Manual for more details on cluster sizes.)

The RSTS/E system divides each disk into a number of 256-word blocks.
Each block is assigned a unique logical block number starting at 1. Block 0
of each disk is reserved for a bootstrap record and is not used by any file.

block numbers are assigned such that n is contiguous with
blocks n + 1 and n-l.

Contiguous blocks taken together as a unit are caned a cluster. RSTS /E
permits clusters to have 1, 16, 32, 64, 128 or 256 blocks. When the
disk initialized (cleared for use on RSTS /E), a minimum cluster size is
established. This minimum duster size, called the pack cluster size, can be
1, 2, 4, 8, or 16 blocks.

To compute the optimal CLUSTERSIZE for a file, divide the file size by 7
and round the result to the next power of 2 (maximum). If you get a result
larger than 256, then either use a duster size of 256 or make the entire file
contigu.ous. CLUSTERSIZE cannot be less than the minimum, o:r pack,
cluster size.

Overview of Data Handling

For each file on the system, an entry is made in the User File Directory, or
UFD. This entry contains the retrieval information for the file: file name,
cluster size, and a sequential list of clusters belonging to that file.

The maximum size of a UFD is seven times its cluster size, which is estab
lished when the account is created. The UFD cluster size can be 1, 2, 4, 8, or
16 blocks. A UFD on a disk cannot exceed 112 (decimal) blocks (28,672
worQ,s). If files are a minimum size (7 or fewer clusters), a UFD clustered as
16 can hold a maximum of 1157 files. To keep the list of file blocks short,
the UFD contains a one-word entry for the first block of each cluster. The
first block number of the cluster and the cluster size is sufficient to deter
mine the blocks in the cluster.

Because of the size limit on the UFD, it is a good idea to specify large
cluster sizes for large files. In an extreme example, the UFD would be filled
by a single file of 24,283 blocks where the file cluster size is one block.
However, with a cluster size of 256 blocks, only 128 words of the UFD are
required to describe this file.

Omitting the CLUSTERSIZE option is equivalent to specifying CLUSTER
SIZE 0%. This assigns a cluster size equal to the pack cluster size for the
disk where the file resides. If you attempt to specify a cluster size less than
the pack cluster size or if it is not a power of 2, an "?Illegal cluster size"
error message (ERR = 23) results.

When you specify a negative CLUSTERSIZE for a file, the system uses
either the absolute value of the argument specified or the pack cluster size,
whichever is greater. A negative cluster size is useful in a program that
you plan to run on both large and small systems or on systems that have
mixtures of large and small disks. For example, suppose you want to create
files with a cluster size of 2. If you specify -2, the program can also create
files on disks where the pack cluster size (the minimum cluster size permit
ted) is greater than 2. For these disks, the system will use the pack cluster
size instead of the cluster size you specify.

A sample use of the CLUSTERSIZE option is:

100 OPEN "MAT.DAT" FOR OUTPUT AS FILE #l%t CLUSTERSIZE 128%

In this example, the file MAT.DAT is created with a cluster size of 128
blocks. MAT.DAT is initially 0 blocks long and is extended as needed in
128--block increments.

The system extends files a cluster at a time. Since clusters are contiguous
blocks, you may not find enough contiguous blocks to extend the file (even
if enough free, but not contiguous, blocks are available on the disk). If not,
the system prints the "?No room for user on device" error message
(ERR=4). You should be aware of this when creating a file with a cluster
size larger than the pack cluster size (the minimum cluster size for that
disk).

As another example:

100 DPEN "DATA" FOR OUTPUT AS FILE #l%t &
RECORDSIZE 2048%t &
CLUSTERS I ZE 41.

Overview of Data Handling 14-13

14-14

When the system can read or write multiple blocks in a single tral1sfer, the
RECORDSIZE option improves disk throughput (see Section 14.5.3.1). By
creating the file with a cluster size of 4 (2048 bytes per cluster), you guar
antee that virtual blocks 1-4, 5-8, and so forth are contiguous on the disk.
These file clusters could be read or written in a single operation.

14.5.3.3 FllESIZE Option

You can pre extend a disk file (and only a disk file) by using the FILESIZE
option in an OPEN statement. The format for the FILE SIZE option is:

OPEN <string> [FOR OUTPUT] AS FILE <expr> ,FILE SIZE <expr>

For example:

100 OPEN 'VALUES' FOR OUTPUT AS FILE .3%, FIlESIZE 50%

The data file VALUES is opened and automatically preextended to 50
512-byte blocks.

The argument used with the FILESIZE option must be an integer. To spec
ify a file size of N, where N is between 32768 and 65535 inclusive, specify
the FILE SIZE argument as 32767% + 1% + (N-32768). This expression
converts a signed integer to its unsigned value; that is, its value where hit
15 is 32768 instead of -32768. (See Sections 11.1 and 11.2 for more informa
tion on the internal format of integer data.)

You can use the FILE SIZE option to preextend files to 65535 blocks only. If
you want to preextend a file to more than 65535 blocks, use the IFILESIZE
switch in the file specification:

100 OPEN 'VALUES/FILESIZE:70000' FOR OUTPUT AS FILE #3%

See the RSTS I E System User's Guide for more information about the
IFILESIZE switch.

You can also use the FILESIZE option on ANSI magnetic tape files, but for
a different purpose than described here. See the RSTS IE Programming
Manual.

14.5.3.4 MODE Option

The OPEN statement allows another option: the MODE field. The format of
the OPEN statement, including the MODE field, is:

. [{FOR INPUT tJ OPEN <strmg> FOR OUTPUTf AS FILE <expr>, MODE<expr>

The MODE option establishes device-dependent properties of the file. See
the RSTS IE Programming Manual for device-dependent features.

Overview of Data Handling

14.6 CLOSE Statement

The CLOSE statement terminates I/O between a BASIC-PLUS program
and a peripheral device. After execution of a CLOSE, BASIC-PLUS
reclaims the buffer space assigned to the file and closes the I/O channel
between your program and the file. It is good programming practice to close
all I/O channels before program execution ends.

The CLOSE statement has the form:

CLOSE [#] <expression> [,[#] <expression> , ...]

The <expression> is the channel number of the file to close. You can close
any number of files with a CLOSE statement. To close more than one file,
separate the expressions by commas. For example:

2ao CLOSE # lOX.
250 CLOSE #2%1 #a%
260 CLOSE 1% FOR 1% = 1% TO 12%

Line 240 closes the file open on 1/0 channel 10. Line 250 closes the files
that are open on I/O channels 2 and 4. Line 260 doses all I 10 channels
available to your program.

You can specify two kinds of CLOSE operations in BASIC-PLUS, a normal
CLOSE and a CLOSE with a negative channel number.

14.6.1 Normal CLOSE

To specify a normal CLOSE, simply list the channel numbers of the files to
close, as shown in the preceding examples.

The I/O method you use determines the action of a normal CLOSE. In a
normal CLOSE of a formatted ASCII or virtual array file, BASIC-PLUS
writes the contents ofthe I/O buffer out to the file before closing it. In block
I/O, however, your program controls the I/O buffer; thus, a CLOSE state
ment does not write the buffer out to the file before closing it.

14.6.2 CLOSE with a Negative Channel Number

When you use a negative channel number in the CLOSE statement,
BASIC-PLUS does not write the contents of the I/O buffer out to a format
ted ASCII or virtual array file before reclaiming the buffer space assigned
to the file. (This is the type of CLOSE that a CHAIN statement performs.)

This type of CLOSE is useful if the last operation you perform on the file
(either a read or a write) could place erroneous information in the file or if
the last block of the file might not fit on the output device.

Overview of Data Handling 14-15

A sample program segment that uses a CLOSE with a negative channel
number is:

10 E>:TEND

8000 ON ERROR GOTO 19000
8100 CLOSE CHAN%
9200 GOTO 32767
18000 IF ERL=9100% AND &

ERR=Ll'X, &
THEN CLOSE -CHAN%

18010 PRINT "END OF FILE HAS BEEN LOST"
19020 RESUME 32787
32767 END

This example shows part of a program that writes data to a disk. The disk
may be so full that there is no room for the last block of data from the file.

When the CLOSE statement is executed, it is possible that the final buffer
of data to be written to the output file might not fit. In this case, program
execution goes to line 19000, and the program checks to see if that was the
problem. If so, the program performs the CLOSE with a negative channel
number to suppress the output of the remaining data. The program then
prints a message to notify you that the output file does not contain an the
expected data.

You can also use a negative channel number to close a channel where a
tentative file has been opened. This type of CLOSE (which is especially
useful for temporary work files) deletes the tentative file. See the RSTS / E
Programming Manual for more information.

14.7 NAME-AS Statement (File Protection and Renaming)

14-16

The NAME-AS statement renames or assigns protection codes to a disk
file. This statement can be used only by someone who has write access to
the file. The format of the statement is:

NAME <string> AS <string>

The file specified in the first string is renamed to the file specified in the
second string. When the file is on a device other than the system disk, you
must specify the device in the first string and, optionally, in the second
string. NAME-AS has no default file type. You must specify the file type in
both strings if there is a file type in the old file name or if you want one in
the new file name. For example:

110 NAME "DMO:OLD.BAS" AS "NEW.BAS"

This statement is equivalent to:

110 NAME "DMO:OLD.BAS" AS "DMO:NEW.BAS"

Overview of Data Handling

However, the next statement is not advised because FILE2 has no file type
for the system to recognize:

190 NAME "FILE1.BAS" AS "FILE2"

Use:

190 NAME "FILE1.BAS" AS "FILEZ.BAS·

You can specify a file protection code as part of the second string. Enclose
the protection code in angle brackets «» or use the IPROTECT switch.
(The IPROTECT switch is the recommended method.) If you specify a new
file protection code, the new code is assigned to the renamed file. If you do
not specify a new protection code, the old protection code is retained. See
the RSTS IE System User's Guide for a complete description of protection
codes.

The following statements both change the protection code of the
file FILKTYP on the system disk to 40. The first statement uses the
IPROTECT switch; the second uses angle brackets.

200 NAl"iE "FILE.TYP" AS "FILE,TYP/PR:40"
200 NAME "FILE.TYP" AS "FILE.TYP(40)"

The next statement changes the name of the file ABC.BAS on DMO:

200 NAI'1E II Dt'lO: ABC. BAS" AS "i<YZ. BAS"

NOTE

You cannot use NAME-AS to change the device or account
in which the file resides.

Because you cannot transfer a file from one device to another
with the NAME-AS statement, you need not specify the
device (DMO: in the previous example) twice. The system
generates an error if you specify a device other than the old
one.

See Section 5.2.2 for more information about the NAME-AS statement.

14.8 Kill Statement

The KILL statement has the form:

KILL <string>

KILL deletes the file that is named in <string> from your account. You
can no longer open this file. If already open, the file remains available until

Overview of Data Handling 14-17

14-18

it is closed. For example, when you complete work with the file XYZ.DAT
on the system disk, you can remove the file from storage by executing the
statement:

lIGO KILL "}(YZ,DAT"

You cannot KILL a file that is write-protected against you.

See Section 5.4.2 for more information about the KILL statement.

Overview of Data Handling

Chapter 15
Formatted ASCII Input and Output

This chapter describes formatted ASCII 110, the simplest way to do 110 in
BASIC-PLUS. If you know how to use PRINT and INPUT for terminal 110,
you already have most of the information you need to do formatted ASCII
I I ° to other devices. By combining the PRINT and INPUT statements with
the OPEN statement, you can:

• Store formatted ASCII data in disk and magnetic tape files

• Read data from these files

• Do formatted ASCII I I ° to line printers or other devices

Be sure to close the file or device with the CLOSE statement when you
finish using it.

Formatted ASCII files are sequential access files; they do not allow you to
access data randomly or to update data without copying from one file to
another.

This chapter reviews the basic forms of the PRINT and INPUT statements,
describes their more advanced forms, and shows you how to use them with
the OPEN statement.

15.1 PRINT Statement

Earlier chapters show you how to use the PRINT statement in its basic
form to print numeric or string data at your terminal. This section reviews
this information. It also describes:

• How to use PRINT to write formatted ASCII output to a disk file or other
device

• How to tailor the format of output with the PRINT-USING statement, an
optional BASIC-PLUS feature

15-1

The basic form of the PRINT statement is:

PRINT <list>

This form of the PRINT statement prints a list of values at your terminal.
The list can contain any combination of numeric and string values, and
each item in the list can be any legal expression. When an item is not a
simple variable or constant, BASIC-PLUS evaluates the expression before
it prints a value. When you omit the print list, BASIC-PLUS prints a
blank line on your terminal.

When printing numbers, BASIC-PLUS:

• Does not print leading zeros or trailing zeros to the right of a decimal
point. When a whole number has a decimal point, BASIC-PLUS does not
print the decimal point.

• Prints numbers with up to six digits in decimal format and numbers with
more than six digits in exponential format .

• Prints all values with six significant digits. To print more than six signif
icant digits, use the PRINT-USING statement.

BASIC-PLUS prints character strings without leading or trailing blank
spaces.

Use commas or semicolons between list elements. These characters deter
mine how output is spaced. For example:

100

110
32767
RUNNH

1 6

A'y', = 1 'y., &:
\ 6'y', = 2'Y., &:
\ C'Y., = 3'Y.,
PRINT A'Y.,; A'Y., + 6'Y., + C'Y." C'Y., - A'Y." "END"
END

2 END

The comma prints items in print zones. BASIC-PLUS divides a terminal
line into print zones of 14 spaces each. (The actual number of print zones is
INT (n/14), where n is the size of the print line.) The comma moves the
print head to the next available print zone. If the last print zone on a line is
filled, the print head moves to the first print zone on the next line. Extra
commas make BASIC-PLUS skip print zones.

The semicolon prints items in a packed format. When you use the semicolon
between list elements, BASIC-PLUS prints a positive number with a lead
ing and a trailing blank space, a negative number with a leading minus
sign and a trailing blank space, and a string exactly as it appears inside
quotation marks. No leading or trailing spaces are added. You can omit the
semicolon between a string constant and another value. However, its use is
recommended for compatibility with BASIC-PLUS-2.

BASIC-PLUS automatically prints a carriage return/line feed at the end
of a PRINT statement. To suppress the automatic carriage return/line feed,
place a comma or a semicolon at the end of the PRINT list. A comma causes

15-2 Formatted ASCII Input and Output

BASIC-PLUS to start printing in the next print zone; a semicolon causes
BASIC-PLUS to start printing in the next blank space.

See Section 9.2.2 for examples of the basic PRINT statement.

15.1.1 Printing Data to a File or Device (Formatted ASCII Output)

To direct output to a device other than your terminal, open the file or device
with the OPEN statement and then use the following PRINT statement:

PRINT #<expression>, <list>

The <expression>, which must have the same value as the expression in
the OPEN statement, is the channel number of the output file. Its value
must be a number from 1 to 12. The <list> can contain one or more varia
ble names, expressions, or constants separated by commas.

For example:

100 OPEN 'DATA1.DAT' FOR DUTPUT AS FILE #7%
110 PRINT #7%, 'START OF DATA FILE'

These lines open a file called DATA1.DAT on the disk. DATA1.DAT uses
channel number 7. The first line in the file reads:

START OF DATA FILE

When you use the PRINT statement to send output to a file, BASIC-PLUS
outputs data to the file the same way it prints data on the terminal. The
resulting file is called a formatted ASCII or stream ASCII file. Formatted
ASCII files are text files; you can display them on your terminal or print
them on a line printer.

You can use commas in the PRINT statement to format the data in the file
in columns, just as you do when printing data on the terminal. When you
use the comma for formatting and print to a device other than a terminal,
each line in the file is 72 spaces wide and contains 5 print zones of 14 spaces
each.

To write nonprinting ASCII values into the file, use the CHR$ or the
STRING$ functions. For example, a CHR$(12%), which is a form feed char
acter, causes line printers and certain types of terminals to skip to the top
of the next page. You can force a logical end-of-file by printing a
CHR$(26%), which is a CTRL/Z. When you use nonprinting characters,
keep in mind the effect they will have when read by a program or sent to an
output device.

If you plan to read data from the file with an INPUT statement:

1. Be sure to write commas between data items in the file with string
constants. For example:

PR I NT # 1 1:., NAME$ i", II i ACCTI:. i", II i AMOUNT

Formatted ASCII Input and Output 1&-3

2. Be sure that each output line contains a terminator. The INPUT state
ment expects a terminator (usually a carriage return/line feed) at the
end of each line. Remember that ending a PRINT statement with a
comma or semicolon produces an output line with no terminator.

3. Do not print records that are more than 132 characters in length,
including nulls, line feeds, and carriage returns. The PRINT statement
lets you create records with more than 132 characters, but the INPUT
statement may not read them correctly.

You can also print data to a file or device with the the PRINT-USING and
the MAT PRINT statements, which are described in the next two sections.

15.1.2 PRINT-USING Statement

On systems with the optional PRINT USING feature, you can tailor the
format of output with the statement:

PRINT [#<expression> ,] USING <string>, <list>

The <expression>, which is optional, indicates the channel number of the
output file . The <string> is either a string constant, string variable, or
string expression that is an image of the line to be printed. This string is
called the format field.

The <list> shows items to be printed in the format specified by the format
field. BASIC-PLUS prints characters in the string as they appear, except
for the special formatting characters and character combinations described
on the following pages. The string (or portions of it) is repeated until the
list is exhausted. The rest of this section explains how to construct the
format field.

While the examples in this section show terminal output, you can also print
to a file or device by including a channel number in the PRINT-USING
statement.

15.1.2.1 Exclamation Point

An exclamation point in the format field identifies a one-character string
field. This variable string is specified in the PRINT statement list. For
example:

LISTNH
100 PRINT USING '!!!', 'AB', 'CD', 'EF'
32767 END

RUNNH
ACE

BASIC-PLUS prints the first character from each of the three string con
stants or variables. Any characters beyond the first are ignored.

15-4 Formatted ASCII Input and Output

15.1.2.2 String Field

You can specify a string field of two or more characters in the format field
with spaces inside backslashes. On some keyboards you can produce the
backslash character (\) by typing SHIFT fL. No enclosed spaces indicates a
field two columns wide; one enclosed space indicates a field three columns
wide, and so on. For example:

100 PR I NT US I NG '\ \ \ \', 'ABeD', 'EFGH I '

This statement prints:

AB EFGH

The first two backslashes have no enclosed spaces, hence they permit the
printing of two characters (AB). The second two backslashes enclose two
spaces and permit the printing of four characters (EFGH).

15.1.2.3 Numeric Field

Use the number character (#) in the format field to indicate numeric fields.
You can specify any decimal point arrangement this way. Rounding (not
truncation) is performed as necessary. For example, this statement prints
12.35 at your terminal:

100 PRINT USING '###.##' ,12.345

Also consider the following:

100 PRINT USING '####', 12.345
110 PRINT USING '####.', 12.345
120 PRINT USING '##', 100
RUNNH

12
12.

'1., 100

Ready

Numeric fields are right-justified. If a number does not fill the allotted
space, then spaces precede the number. When the field you specify is too
small to print a constant or variable, BASIC-PLUS prints the percent char
acter (%) to indicate the error and then prints the number without refer
ence to the format field.

NOTE

If the numeric field is more than 20 character spaces larger
than required to print a constant or variable, a "?Print-using
buffer overflow" non-recoverable error may occur.

If the format field specifies a digit preceding the decimal point, at least one
digit is always output before the decimal point. If necessary, that digit is
zero.

Formatted ASCII Input and Output 15-5

15.1.2.4 Asterisks

If a numeric field designation in the format field begins with two asterisks
(**), BASIC-PLUS fills unused spaces in the format field with asterisks.
For example:

100 A=27.95 e.:

RUNNH

\ 6=107.50 e.:
\ C=1007.50 e.:
\ PRINT USING '**##.##' I AI6,C

**27.95
*107.50
1007.50

The asterisks (**) act as additional number characters (#), as well as filling
unused spaces.

You cannot use exponential format in a field with leading asterisks. Nega
tive numbers cannot be output using asterisk fill, unless a minus sign
follows the number. The use of leading dollar signs ($$) and leading aster
isks in the same format field is not compatible with BASIC-PLUS-2.

15.1.2.5 Exponential Format

To print a number in exponential format, use a string that matches the
exponential format described in Chapter 8. Use number characters (#) for
the number and four circumflex characters (A) for "E±nn", where n is the
power expressed in two digits. For example:

LISTNH
100 F$='## '''' ·''·'
110 A=10000.
120 PRINT USING F$,A

Ready

RUNNH
10E 03

All format positions output a number with an exponent. BASIC-PLUS left
justifies significant digits and adjusts the exponent.

15.1.2.6 Trailing Minus Sign

If you end a numeric format field with a minus sign, BASIC-PLUS prints
the sign of the output number after it. A blank space indicates a positive
number. For example:

LISTNH
100 A=-10.5
110 PRINT USING '##.##- ####.##',A,A

Ready

RUNNH
10.50- -10.50

15-6 Formatted ASCII Input and Output

If you do not use the trailing minus sign, you must reserve space in the
numeric format field for the sign to precede the number. (An explicit lead
ing minus sign is treated as a literal and therefore is always included.)

15.1.2.7 Dollar Signs

Begin a numeric format field with two dollar signs ($$) to print a dollar
sign immediately before the first digit of the number. For example:

100 A=77.44 &:
\ 6=304.55 &:
\ C=2211.40

110 PRINT USING '$$ ••••• ',A,6,C

Ready

RUNNH
$77.44

$304.55
'X. 2211.4

The two dollar signs ($$) provide for the printing of one additional digit in
the number, preceded by one dollar sign ($).

You cannot use exponential format in a field with leading dollar signs.
Furthermore, the floating dollar character cannot output negative numbers
unless the minus sign follows the number. The use ofleading asterisks (**)
and leading dollar signs in the same format field is not compatible with
BASIC-PLUS-2.

15.1.2.8 Commas

To print commas in large numbers, insert commas in the numeric format
field every three digits to the left of the decimal point. BASIC-PLUS reads
a comma to the right of the decimal point as a printing character. For
example:

100 PRINT USING '., ••• , •••••••••••• ,.,', 12345.5, 123.456, 1

This statement prints:

12,345.50 123.5,1

15.1.2.9 Insufficient Format

If there are insufficient format characters in a field when a number is
output, BASIC-PLUS prints a percent character (%) in the first position of
the field, followed by the number in standard format. This usually causes
the field to widen to the right. The entire number is printed. For example:

100 PRINT USING ' •••••••••• ', 12.345, -12.5

This statement prints:

12.35 'X,-12.5

Formatted ASCII Input and Output 15-7

There is no room in the format to print the minus sign.

When a number has too many decimal places to print using the format
field, BASIC-PLUS rounds the number. If the rounded number exceeds
the format allowed, BASIC-PLUS prints the percent character (%). For
example:

100 PRINT USING' .## .##', .125, .999

This statement prints:

.13 'X •• 999

In this case .999 rounds to 1, which exceeds the format field.

15.1.2.10 Format Too Large

A numeric format field may attempt to output more significant digits than
are available. In this instance, zeros substitute for digits that follow the
last significant digit. Six significant digits are available with the two-word,
single-precision math package. Fifteen digits are available with the four
word, double-precision math package.

When you use the PRINT-USING statement, BASIC-PLUS permits up to
29 formatting characters for single-precision and 19 formatting characters
for double-precision. An attempt to print fields larger than 29 or 19, respec
tively, results in the error message:

?Print using buffer overflow

In certain cases, BASIC-PLUS truncates a number larger than the format
field without an error message. Check for overflow before attempting to
output numbers near the maximum size.

15.1.2.11 Formatting and Literal Characters

When you use the PRINT-USING statement, the usual formatting charac
ters (commas and semicolons) have no effect on the output format. The
exception is a comma or semicolon at the end ofthe PRINT list that inhibits
termination of the printed line. For example:

LISTNH
100 PRINT USING '## ## ##' ,1;2,3
200 PRINT USING '#.##', 2.5;
300 PRINT 'X'

Ready

RUNNH
123

2.5DX

Ready

15-8 Formatted ASCII Input and Output

The semicolon at the end of line 200 causes X to print on the same line as
2.50.

Characters that do not have special meanings (letters, for example) are
printed as they appear in the PRINT-USING statement. These characters
are called literals. An example that uses literals in the format string is:

100 A=1.32519 &
\ 6=2.45457 &
\ LET F$ = ' A=##.## 6=##.##'

110 OPEN 'LP:' FOR OUTPUT AS FILE #4%
120 PRINT #4%, USING F$, A, 6

This example prints the following on the line printer:

A= 1.33 6= 2.45

15.1.3 MAT PRINT Statement

The MAT PRINT statement, one of the optional matrix manipulation state
ments, allows easy printing of a matrix. The statement has the form:

MAT PRINT [#<expression>,] <matrix name> [~]

The optional <expression> is the channel number of the output file.

BASIC-PLUS prints matrices to a file the same way it prints them on a
terminal. For example: \.

100 DIM A(lS)
120 OPEN 'MAT.oAT' AS FILE #2%
150 MAT PRINT #2%, A(15)

This example prints elements 1 through 15 of the matrix A to the file
MAT.DAT. One element appears on each line in the file.

If the specified matrix name is unsubscripted, BASIC-PLUS prints the
entire matrix (except for the zero elements). Use subscripts to indicate the
maximum size of the matrix to be printed.

You can enter a semicolon after the matrix name to indicate that the val
ues are to be printed without additional spaces between them. You can also
use a comma to indicate that you want each element printed in its zone. For
example:

100 DIM A(10 110), 6(10 ,20)
110 MAT PRINT A; &

! PRINT MATRIX A IN PACKED FORMAT
120 MAT PRINT 6(10110), &

! 10*10 MATRIX PRINTED 5 VALUES PER LINE

Formatted ASCII Input and Output 15-9

This example prints a 10-by-10 matrix with no additional spaces between
elements and then a widely spaced 10-by-10 matrix.

BASIC-PLUS can also print row and column matrices. For example:

10 DIM AIS), 5(10)
20 MAT PRINT A; &

! PRINT MAT A ON ONE LINE
30 MAT PRINT 5 &

! ' PR I NT I N COLUMN FORMAT

RUNNH
o 0 0 0 0
o
o
o
o
o
o
o
o
o
o

Line 20 prints A as a row matrix, closely packed. Line 30 prints B as a
column matrix. Use a comma to print a row matrix with one value per print
zone:

MAT PRINT A,

BASIC-PLUS prints the matrix A as a row matrix (five values per line at
your terminal) .

15.1.4 PRINT Functions

The CCPOS and TAB functions format simple and complex PRINT
statements:

Function

CCPOS(X%)
or

POS(X%)

TAB(X%)

Description

Returns the current position on the output line, where X% is an I/O chan
nel number in the range 0 to 12. CCPOS(O%) or POS(O%) returns the value
for your terminal. Although the two functions are equivalent, CCPOS is
preferred for compatibility with BASIC-PLUS-2.

Tabs to position X% in the print record. For example, a standard terminal
has 72 printable columns numbered 0 through 71. TAB(4%) outputs
enough spaces to move the print head to column 4. If the print head is past
position 4, no spaces are output.

The following example shows the actions of CCPOS and TAB:

100 PRINT '){'; TA51 101.,); CCPOSIO'X,)

,1&-10 Formatted ASCII Input and Output

This statement prints X at position 0, tabs to position 10 and prints the
current position on the output line, which is 10:

X 10

position 0 t 9 spaces t positions 10 and 11

The following example shows a use of CCPOS in a program:

PRINT IF CCPOS(O%)<>O

This statement guarantees that the next PRINT statement will start print
ing at the left margin. The statement tests the current position of the print
head on the terminal. If the current position is at the left margin (that is,
CCPOS(O%) = 0), nothing happens. If the current position is anywhere else
on the line, the program performs a carriage return/line feed to return the
print head to the left margin. This technique is useful for printing prompts
or messages at the left margin.

NOTE

CCPOS counts characters. It does not keep track of escape
sequences for different types of terminals. Thus, CCPOS may
return incorrect results if you are using escape sequences for
cursor control.

15.2 INPUT Statement

The INPUT statement enters data from an external device (such as your
keyboard or a disk) to a running program. The statement's full form is:

INPUT [#<expression>,] <variable list>

The optional <expression> is the channel number of the input file. See
Section 15.2.1 for more information.

When you omit the channel number, your terminal (channel 0) is the input
device:

INPUT <variable list>

This form prints a question mark (?) at your terminal. The system then
waits for you to respond with the values of string or numeric variables. You
can enter one value at a time or you can enter a list of values separated by
commas. If you do not type enough values, the system prints another ques
tion mark (?). If you type too many values, excess values are ignored.

You can insert printed messages between the variables you wish to input.
For example:

100 INPUT 'YOUR NAME IS' N$, 'ACCOUNT NUMBER';A,'THANK YOU'

Formatted ASCII Input and Output 15-11

15-12

When this statement is executed, it causes the following interaction at the
terminal:

RUNNH
YOUR NAME IS? JOE
ACCOUNT NUMBER? 347654
THANK YOU

Read~'

NOTE

U sing more than one prompting message in an INPUT state
ment is not compatible with other versions of BASIC.

ON ERROR GOTO statements can be used to trap recoverable errors that
occur when an INPUT statement is executed. The following errors occur
most frequently.

Error

%Data format error
(ERR = 50)

Description

Data input in an
illegal form

?Illegal number Overflow or
(ERR = 52) underflow

?End of file on device Input CTRLlZ
(ERR = 11)

Examples

3.4.5 or $2 or #16 or 2;3 or LORA input
for a numeric variable; "HELLO" "THERE"
input for a string variable:

10 INPUT "TYPE A STRING"; A$
RUNNH
TYPE A STRING? "HELLO" "THERE"
%Data format error at line 10
TYPE A STRING? CAT

3E + 66 or - 23

BASIC-PLUS assigns values to variables as you input them. You can
assign multiple variables by separating them with commas in the INPUT
variable list. Similarly, use commas or the RETURN key to separate values
as you input them from the keyboard. For example:

100 INPUT X,Y,Z
110 PRINT X,Y,Z
RUNNH
? 3.14
? 14,92

3.14 14 92

Formatted ASCII Input and Output

Do not use commas within a single number; BASIC-PLUS ignores charac
ters input beyond a comma unless another variable is assigned. For
example:

Right

LISTNH
100 INPUT R ~:

\ \ PRINT R

Ready

RUNNH
? 25902

25902

Wrong

LI STNH
100 INPUT R ~:

\ PRINT R

Ready

RUNNH
? 25,902

25

Ready

Use quotation marks (") with string variables when you want to preserve
embedded commas. For example:

Right

LISTNH
100 INPUT M$ ~:

\ PRINT M$

Ready

RUNNH
? 'MOUSE, MICKEY'
MOUSE, MICKEY

Ready

Wrong

LISTNH
100 INPUT M$~:

\ PRINT M$

Ready

RUNNH
? MOUSE, MICKEY
MOUSE

Ready

15.2.1 Reading Data from a File or Device

You can open a file or device for input with the OPEN statement and then
use the INPUT statement to make BASIC-PLUS read input from that file
or device.

Use the following form of the INPUT statement after an OPEN statement:

INPUT #<expression>,<variable list>

The <expression> must have the same value as the expression used in the
OPEN statement. As in the OPEN statement, this expression is the chan
nel number of the input file. Its value must be a number from 1 to 12. The
<list> contains one or more variable names separated by commas.

Formatted ASCII Input and Output 15-13

15-14

The following example shows the use of OPEN and INPUT. This simple
program opens a file, reads three values from it, prints the values on the
terminal, and closes the file. The file must be a formatted ASCII file. When
BASIC-PLUS reads the file, it interprets the data in the file exactly as if it
were typed at the terminal.

100 OPEN "DATA.DAT" FOR INPUT AS FILE #1%
120 INPUT #1%tAt6tC
125 PRINT At6tC
130 CLOSE # 1 1:.
140 END

To read data from a formatted ASCII file, the INPUT statement that reads
the data must match the format of the PRINT statement that wrote the
data. Both statements must contain the same number of data items. (Data
items in PRINT statements can be constants, variables, or expressions;
data items in INPUT statements can only be variables.) The two lists of
data items must contain the same data types, in the same order. The follow
ing two statements illustrate these rules:

300 INPUT #2%t CUSTOMER$tACCTNO%tAMT

The PRINT statement writes data to the file. Be sure to write commas
between data items in the file if you plan to read the data with INPUT.
Remember that INPUT treats the data exactly like terminal input.

The INPUT statement (which may be in a different program) reads data
from the file. The variable list matches the PRINT statement's variable list
in both type and order. Note that if you print data to a file and want to read
it later in the program, you must close the file and reopen it before you can
read data from it.

Each INPUT statement reads data from one record in the file. A record is a
series of ASCII characters up to a line delimiter (RETURN, FORM FEED,
LINE FEED, or ESC). It is recommended that you limit the length of each
record to 132 characters, including line delimiter characters. The INPUT
statement may not always read longer records correctly.

Commas separate individual values in a record. If there are more values in
the record than there are variables in the INPUT statement, BASIC-PLUS
ignores any extra values (as it does with terminal input). However, if the
record contains too few values, BASIC-PLUS returns the error "?Not
enough data in record" (ERR = 59). (This action differs from terminal
input, where the INPUT statement prompts for additional values.)

When an INPUT statement encounters a CTRL/Z, BASIC-PLUS returns
the error "?End of file on device" (ERR = 11). Include an error handling
routine in your program to process this error.

You can also read data from a formatted ASCII file with the INPUT LINE
and MAT INPUT statements. See Sections 15.2.3 and 15.2.4.

Formatted ASCII Input and Output

15.2.2 Opening Your Terminal as an I/O Channel

There are two ways to open your terminal as an I/O channel in
BASIC-PLUS:

1. You can use OPEN and INPUT to open your terminal on a nonzero
channel. For example:

100 OPEN 'K6:' FOR INPUT AS FILE #2%
110 INPUT #2%, A

BASIC-PLUS does not print a prompting question mark at the termi
nal. For example:

100 OPEN 'K6:' FOR INPUT AS FILE #2%
110 INPUT #2%, A
120 PRINT A
130 END

When you run this program, it pauses to let you enter a value for A, but
does not prompt for the value with a question mark:

RUNNH
567.8

567.8

Use this method to open your terminal in a special mode. Do not
include a prompting message in this type of INPUT statement. See
the RSTS / E Programming Manual for information on special terminal
operations.

2. You can use the INPUT statement by itself to access your terminal on
channel O. (You cannot specify a channel number of 0 in an OPEN
statement.) For example:

10 INPUT #o·x., A$

This statement is the same as:

10 INPUT A$

When you specify channel 0, BASIC-PLUS prints the prompting ques
tion mark. You can include a prompting message in this type of INPUT
statement.

15.2.3 INPUT LINE Statement

The INPUT LINE statement lets you enter a line of data as a single charac
ter string, regardless of embedded spaces or punctuation. This is different
from normal string input, where the comma, apostrophe, and single and
double quotation marks have special meanings.

Formatted ASCII Input and Output 15-15

1s,...16

INPUT LINE has the format:

INPUT LINE [#<expression>,] <string variable>

For example:

150 INPUT LINE AS

When this statement is executed, the program pauses to let you enter a line
followed by a RETURN, FORM FEED, LINE FEED, or ESC (see Section
10.3). You can enter a line up to 132 characters long, including line delim
iter characters.

BASIC-PLUS reads every character you type into the variable A$, includ
ing quotation marks, commas, and the line delimiter (for example, carriage
returnlline feed). To remove the line delimiter, use the CVT$$ function or
the LEFT$ function, which are described in Section 10.5. When you input
CTRL/Z, the system returns the error "?End of file on device" (ERR = 11).
Include an error handling routine in your program to process this error.

The INPUT LINE statement can read data from a file as well as from a
terminal. The following example opens file FZ.DAT on channel 7 and reads
a string of characters up to the next terminating character:

100 OPEN 'FZ,DAT' FOR INPUT AS FILE 07%
110 INPUT LINE -7%, B$

To ensure that INPUT LINE reads the string correctly, it is recommended
that you limit its length to 132 characters, including line delimiter
characters.

When reading data from a file, the INPUT LINE statement treats a car
riage return character (ASCII code 13 decimal) differently depending on
what character follows it. When the line feed character (ASCII code 10
decimal) follows the carriage return character, these two characters delimit
(end) the line. The INPUT LINE statement returns a string that ends with
a carriage return I line feed.

When a null character (ASCII code 0) follows the carriage return, the
INPUT LINE statement discards both the carriage return character and
the null character and continues processing the string.

When any other ASCII character follows the carriage return character, the
INPUT LINE statement treats the carriage return character as a normal
data character instead of a line delimiter.

15.2,4 MAT INPUT Statement

The MAT INPUT statement, one of the optional matrix manipulation state
ments, inputs the values of a matrix from a specified input channeL When
you do not specify a channel, your terminal is used. For example:

200 MAT INPUT ACZOI

Formatted ASCII Input and Output

Line 200 reads 20 floating-point values as elements of the matrix A. The
MAT INPUT statement has the form:

MAT INPUT [#<expression>,] <list of matrices>

BASIC-PLUS reads input from a file or device open on the channel indi
cated by the expression.

The following lines open the file DATAl on DM1: on channell (of 12
possible channels), and read a matrix of values to fill B(10,25):

140 DIM 6(10,25)
200 DPEN 'DM1:DATA1' FOR INPUT AS FILE #1%
210 MAT INPUT #1%, 6

The zero elements are not assigned a value. When the input channel is your
terminal (channel 0), BASIC-PLUS prints a question mark (?). However,
reference to another channel does not print the prompting character.
Depending on the name of the matrix, the MAT INPUT statement allows
input of floating-point, integer, or string values.

15.3 Formatted ASCII Examples

The following programs illustrate formatted ASCII input and output. The
first program creates a disk file, prompts the user to enter customer names
and addresses at the terminal, and writes the names and addresses into the
disk file. The second program reads the data from this disk file and prints it
on the terminal.

The first program:

• Does not supersede an existing file. The program has an error handling
routine that prompts the user for a new file name if the name entered
already exists. The program also opens the new file MODE 128%, which
tells the system not to supersede an existing file. (See the RSTS / E
Programming Manual for information about MODE values.)

• Uses INPUT LINE statements to read input from the terminal. Use of
INPUT LINE lets the program read values that contain embedded com
mas. The program then uses the CVT$$ function to strip off the line
terminators that the user types.

• Writes the data into the file with PRINT statements. Each record in the
file contains either a customer name, a street address, or a city and state.

• Prompts the user after each entry to find out if there is more data to be
entered. The user is prompted to answer "YES" or "NO". The program
accepts an answer in either uppercase or lowercase. It uses the CVT$$
function to convert whatever the user types into an uppercase value.

Formatted ASCII Input and Output 15-17

15-18

50 EXTEND
100 PRINT "Enter name of customer file to be created";
110 INPUT LINE CUSNA$!Get name of file from terminal &

!Use INPUT LINE in case the name &
!includes a ppn, which has an &
!embedded comma

120 CUSNA$ = CVT$$(CUSNA$,4%) &
!Strip off line terminators

125 ON ERROR GOTO 18000
130 OPEN CUSNA$ FOR OUTPUT AS FILE #1%, MODE 128% &

!Open file only if it doesn't &
!already exist (MODE 128%)

200 !Now prompt terminal operator for name and address &
!information and write it to the name and address file.

210 PRINT "Enter Customer Name"; &
, INPUT LINE CUST.NAME$!Get whole name &
, CUST.NAME$ = CVT$$ (CUST.NAME$,4%) &

!Strip off line terminators
220 PRINT "Enter Street Address"; &

, INPUT LINE CUST.ADDR1$!Get first address line &
, CUST.ADDR1$ = CVT$$(CUST.ADDR1$,4%) &

!Strip off line terminators
230 PRINT "Enter City and State"; &

, INPUT LINE CUST.ADDR2$!Get second address line &
, CUST.ADDR2$ = CVT$$(CUST.ADDR2$,4%) &

!Strip off line terminators
300 !Now write customer name and address information &

Ito the output file.
310 PRINT #1%, CUST.NAME$!Print the customer's name
320 PRINT #1%, CUST.ADDR1$!Print first line of address
330 PRINT #1%, CUST.ADDR2$!Print second line of address
400 ANYMORE$ = "" !Clear answer strin.
410 PRINT "Any more names and addresses? (Answer YES or NO)" &

'INPUT ANYMORE$ &
!AsK operator if there are any more customers to be &
!added to the name and address file

420 ANYMORE$ = CVT$$(ANYMORE$,511%) &
!Convert lowercase answer to uppercase, remove leadin. &
!spaces and tabs, etc.

430 GOTO 200 IF ANYMORE$ = "YES" !Loop bacK if more
440 IF ANYMORE$ <> "NO" THEN GOTO 410 &

!If user enters incorrect answer, prompt a.ain for yes or no
450 CLOSE #1% !Terminate if no more
460 GOTO 32767
18000 !Error handlin. routine
18010 IF ERR = 16% AND ERL = 130 THEN &

PRINT "File already exists - enter a new file name" &
, RESUME 110 &
!If file already exists, tell user and retrY

18888 RESUME 0 !Let BASIC-PLUS handle all other errors
32767 END

The next example reads the names and addresses from the customer file
and prints them on the terminal. The program:

• Uses INPUT LINE to read the data so that embedded commas are han
dled properly.

• Uses PRINT statements to print each record in the file on the terminal.

Formatted ASCII Input and Output

~ Contains an error handling routine to process the errors "?Can't find file
or account" (ERR = 5) "?End of file on device" (ERR = 11). The first
error occurs when user enters a file name that does not exist; the
second error occurs when the INPUT LINE statement encounters a
CTRL/Z, which ma.rks the end of the file.

50 E)<TEND
100 PRINT "Enter name
110 INPUT LINE CUSNAS

of customer file to be printed";
!Get name of file from terminal &
IUse INPUT LINE in case name &
!contains embedded comma

lZ0 CUSNA$ = CVTSS(CUSNAS,4%) &
IStrip off line terminators

130 ON ERROR GOTD 19000
140 OPEN CUSNA$ FOR INPUT AS FILE -Z% &

!Open file if it already exists &
IUse default RECORDSIZE

150 INow read name and address of one customer. &
!which is stored in three records. one for name, &
lone for streEt address. and one for city and state. &
IUse INPUT LINE so embedded commas are handled properly.

160 INPUT LINE -2%. CUST,NAME$ &
\ CUST.NAMES = CVT$$(CUST.NAMES,4XI &
IRead name and strip off line terminators

170 INPUT LINE a2%, CUST,ADDR1$ &
\ CUST.ADDR1S = CVTSS(CUST,ADDR1S.4X) &
IRead street address and stri off line terminators

180 INPUT LINE .2%. CUST,ADDR2$ &
\ CUST,ADDR2$ = CVTS$(CUST,ADDR2S,4%) &
!Read city and state and strip off line terminators

180 PRINT CUBT.NAMES &
\ PRINT CUST.ADDRi$ &
\ PRINT CUST.ADDR2$ &
\ PRINT !Print name I address. and a blank line

ZOO GOTD 180 !loop back and read next name and address
18000 IF ERR = 5% AND ERl = 140 THEN &

PRINT "The file name YOU entered does not exist." &
\ RESUl"iE 1 00 u:
!If file does not exist. tell user and reprompt for file name.

18010 IF ERR = 11% AND ERL = 160 THEN &
PRINT "Processing is COMPlete" &
\ CLOSE 1$27.. &:
\ RESUI'1E 32767 &:
!End of file
!close file,

18889 RESUME 0
32767 E~ID

reached on input. print COMPletion messale, &
and end PfO!'lr-Clitl.

ILet BASIC-PLUS handle all other errors

Formatted ASCII Input and Output 15-19

Chapter 16
Virtual Arrays

Many applications require you to address and update individual records on
a disk file in a random manner. Other applications require more room for
storing arrays than is economical in main memory. BASIC-PLUS fills both
requirements with a random access file system called virtual arrays.

A virtual array is a data array that is stored in a disk file. By using virtual
arrays, you can:

• Store arrays in a permanent form

• Operate on arrays that are too large to fit in memory

One virtual array file can contain several data arrays.

To use virtual arrays, you combine the programming techniques for mem
ory arrays with the programming techniques for file access. For example, to
set up a virtual array, you use a special form of the DIM statement to
dimension the array, and you open a file. You can then reference any ele
ment of one or more arrays in the file the same way you reference memory
arrays. No explicit I/O statements are needed. BASIC-PLUS automati
cally reads data from the file into the I/O buffer, transfers data between
the buffer and your program, and writes data from the buffer to the file.
When you finish using a virtual array, you close the file.

While virtual arrays are similar to memory arrays, they are not identical.
Unlike memory arrays, for example, virtual array elements are not set to 0
when your program starts executing. Instead, when you open a virtual
array file, elements have whatever value happens to be on the disk. You
must initialize the array in your program. String handling also differs in
memory arrays and virtual arrays.

16-1

Because virtual arrays are disk files, the order in which you reference
array elements can significantly affect execution time. BASIC-PLUS reads
portions of the array from disk into the I/O buffer in response to references
in your program. This chapter describes how virtual arrays are stored and
explains how to reference array elements with a minimum number of disk
accesses.

16.1 Virtual Array DIM Statement

To have a matrix of data in a virtual array, you must declare it in a special
form of the DIM statement. This special DIM statement is:

DIM #<integer constant>, <list>

The integer constant is between 1 and 12. This integer constant corre
sponds to the channel number where the program has opened a disk file.
The variable list appears as it would in a DIM statement for an array in
main memory. Thus, a 100-by-100 array of floating-point numbers is
defined as:

100 DIM #12%, A(100,100)

You can store floating-point constants, integer constants, and strings in
virtual array matrices. You can also specify more than one matrix in a
virtual array file. For example:

250 DrM #17.., A(1000), 67..(2000), C$(2500)

Line 250 allocates space for 1001 floating-point numbers, 2001 integer
numbers, and 2501 16-character strings (note that space for the Oth ele
ment is included for each matrix). However, if you define a virtual array in
this fashion, you should dimension the arrays to the same size with future
references.

16.2 Virtual Array String Storage

String data is handled differently in virtual arrays than in memory arrays.
In memory arrays, you do not specify string length. Instead, it varies
dynamically between 0 and 32767 characters. In virtual arrays, however,
strings have a fixed maximum length. The maximum length must be one of
the following powers of 2:

2,4,8,16,32,64,128,256,512

You specify the maximum length for virtual array strings in the DIM state
ment. Use the form:

DIM #<integer constant>, <stringvar(dimension(s))> [= <constant>]

For example:

150 DIM #1%, A$(100) 327..,6$(100) = 47.., C$(100)

16-2 Virtual Arrays

This statement dimensions a virtual array file that contains three string
arrays:

A$ Consists of 101 strings of 32 characters each, maximum.

B$ Consists of 101 strings of 4 characters each, maximum.

C$ Consists of 101 strings of 16 characters each, maximum.

Each element in a string array has the same maximum length.

Although elements can be shorter than the maximum length,
BASIC-PLUS reserves space in the file for each element to be the maxi
mum length. If you do not specify a maximum length, BASIC-PLUS
assumes a default length of 16 characters.

If you specify a length that is not a power of 2, BASIC-PLUS uses the next
higher size. For example, these two statements have the same result:

100 DIM #l1.t X$(10) = 65

100 DIM #l1.t X$(10) = 128

Both statements set the maximum string length of X$ to 128 characters.

In addition to string length, BASIC-PLUS also handles trailing null
characters differently in memory arrays and virtual arrays. BASIC-PLUS
retains trailing nulls for strings in memory, but drops them when accessing
string data in virtual arrays. (See Section 16.4.1 for more information.)

16.3 Opening and Closing a Virtual Array File

To reference your virtual array file, you must first associate a disk file
name with a channel number from 1 to 12. (You must also use this same
channel number in the virtual DIM declaration.) Do this with an OPEN,
OPEN FOR INPUT, or OPEN FOR OUTPUT statement:

. [{FOR INPUT lJ . OPEN <strmg> FOR OUTPUT f AS FILE [#] <expressIOn>

The string is the disk file name and the expression specifies the channel
number. (This format is described in Section 14.5.) For example:

350 OPEN 'ACCT.DAT' AS FILE #11.

This statement associates the file named ACCT.DAT with I/O channell. If
ACCT.DAT exists, the system uses the existing file. If there is no file
named ACCT.DAT, the system creates one. If you wish to destroy a file
named ACCT.DAT and create a file of the same name, you can use the
statement:

350 OPEN 'ACCT.DAT' FOR OUTPUT AS FILE #11.

Virtual Arrays 1S-3

This statement deletes the existing file and creates a new one. If you want
the system to alert you that the file ACCT.DAT is not present, type:

350 OPEN 'ACCT.DAT' FOR INPUT AS FILE #1%

The system returns an error message if ACCT.DAT is not found:

7Can't find file Dr account at line 350

BASIC-PLUS does not initialize virtual arrays when you open them. Thus,
each element contains whatever value happened to be on the disk when the
file was created. For this reason, immediately after creating a virtual
array, you should:

1. Set all elements of numeric arrays to zero

2. Set an elements of string arrays to the null string (" ")

Virtual arrays permit internal buffers larger than 512 characters. There~
fore, you can use the RECORDSIZE option when opening a virtual array
file. If specified, the RECORDSIZE must be one of the following powers
of 2: 512, 1024, 2048, 4096, 8192, or 16384.

16.3.1 Preextending a Virtual Array

The system overhead for extending a file by one data element or by many
elements is nearly the same. Thus, it is more efficient to immediately
extend a new file to its final length than to extend it many times. When
ever you know the maximum size of a file, you should extend it to its fun
size. For example:

100 DIM #1%. A(10000%)
110 OPEN 'DATA' FOR OUTPUT AS FILE #1%
120 AI10000%I=0

This example extends the virtual array A to its final length. However,
BASIC-PLUS does not initially zero virtual arrays. In the previous exam
ple, A(O) through A(9999) contain indeterminate values. Unless you are
careful, these values could cause a program failure. You should first zero
the virtual array as follows:

300 AII%)= 0,0 FOR 1% = 10000% TO 0% STEP-l%

This statement immediately extends the file to its final size and then zeros
it sequentially. The following statement performs the same function but is
less efficient:

300 AII%)= 0.0 FOR 1% = 0% TO 10000%

This statement extends the file each time it requires another disk block.

16-4 Virtual Arrays

16.3.2 Closing a Virtual Array File

The CLOSE statement terminates 1/0 between the BASIC-PLUS program
and the virtual array. Once you close a virtual array, you can reopen it for
reading or writing on any channel.

You must close virtual arrays before the end of program execution. A
CLOSE statement with a positive channel number outputs the last buffer of
data elements to the virtual array file. A CHAIN statement or a CLOSE
with a negative channel number automatically closes open virtual arrays
but does not output the contents of the 1/0 buffer to the array. The format
of the CLOSE statement is:

CLOSE [#] <expression> [,[#] <expression> , .. .]

The expression has the same value as the expression in the OPEN state
ment. It indicates the channel number of the array to close. You can close
any number of arrays with a single CLOSE statement. To close more than
one array, separate the expressions with commas. For example:

255 CLOSE #2%t#4%
345 CLOSE #10%
495 CLOSE #-5%

Line 255 closes the virtual arrays opened on channels 2 and 4. Line 345
closes the array open on channel 10. Line 495 closes channel 5 without
writing the 1/0 buffer to the disk file.

16.4 Virtual Array Programming Conventions

When you use virtual arrays, you can encounter recoverable errors if your
program does any of the following:

• References a virtual array without first opening the file

• References a nondisk file (for example, a magnetic tape file or a line
printer) as a virtual array

• Defines an array bigger than the available disk storage on the system

Remember that you must close a virtual array file before stopping the
program or chaining to another program.

16.4.1 Virtual Array Storage

Any data element in a virtual array is contained in a single block
(512 bytes) of disk storage. This restriction has no effect on integers and
floating-point items, where the size of data items is fixed. However, it lim
its the maximum length of a virtual array string element to 512 characters.
The number of data elements stored in each disk block depends on the size
of each element.

Virtual Arrays 16-5

The number of elements in virtual strings depends on the maximum string
length you specify in the DIM# statement. The size of a virtual string
defaults to 16 characters; you can specify 2, 4, 8, 16, 32, 64, 128, 256, or 512
characters. Table 16-1 indicates the number of array elements stored in
each block of a virtual array file.

Table 16-1: Virtual Array Storage

Number of Elements
Data Type per Block

Integer (%) 256

Two-Word Floating-Point 128

Four-Word Floating-Point 64

String ($) 512/N
(N equals the maximum length)

Strings in virtual arrays occupy preallocated space in the virtual file. They
differ from strings in memory, where space is allocated dynamically. A disk
block containing virtual strings can be considered to be a succession of
fields, each having the maximum string length.

When a virtual string is assigned a new value, it is stored left-justified in
the appropriate field. If the new string value is shorter than the maximum
length, the remainder of the field is filled with trailing null characters.
When the string is retrieved, its length is computed as the maximum string
length minus the number of trailing null characters.

16.4.2 Translation of Array Subscripts into File Addresses

When you reference a virtual array element, BASIC-PLUS translates
it into a file address. To translate an array subscript into a file address,
BASIC-PLUS computes the relative distance from the specified item to the
first item in the array. Then it adds the relative distance from the first
element of the array to the first item in the file. The first quantity is
computed from the array subscript and the number of elements per block,
as shown in Table 16-1. The second number is a constant for each array
in a file and is computed from the parameters specified in the DIM#
statement.

Since the DIM# statement contains the only information used to define the
structure of a file, you can specify different accessing arrangements for the
same file in one or more programs. For example, you can reference the
same data as either a series of 32-byte strings (A2$) or 16-byte strings
(Al$):

10
20
30

DIM #1%,A1$(1001) = 18
DIM #1%,A2$(SOO) = 32
OPEN 'FIL1.DAT' AS FILE #1%

!18 CHARACTER STRINGS
!32 CHARACTER STRINGS

!VIRTUAL ARRAY FILE

Remember, in BASIC-PLUS array subscripts begin with 0 and not 1. An
array with dimension n or (n,m) contains n + 1 or [en + l)*(m + 1)] elements.

16-6 Virtual Arrays

Your program can define two-dimensional virtual arrays as well as one
dimensional virtual arrays. Two-dimensional arrays are stored linearly,
row-by-row, on disk and in memory. Thus, in the case of an array X(1,2),
the array appears logically as follows:

X(O,O) X(O,1) X(O,2)

X(1,O) X(1,1) X(1,2)

Physically this array is stored as follows:

X(O,O) Lowest Address

X(O,1)

X(O,2)

X(1,O)

X(1,1)

X(1,2) Highest Address

When you reference a virtual array sequentially, it is more efficient to
reference the rows, rather than the columns, in sequence. For example,
Program 1 computes the sum of each row and column in a two-dimensional
array far more efficiently than Program 2.

Program 1

LISTNH
100 REM - PROGRAM 'ONE' TO COMPUTE SUMS EFFICIENTLY &

'ARRAY' CONTAINS VIRTUAL ARRAY &
R(I%) IS SUM OF ROW I &
C(J%) IS SUM OF COLUMN J

110 OIM #11., ,A(1 o 'x. ,501.,) E.:
! 10 ROWS, 50 COLUMNS

120 OIM R(101.,), C(50'X,) E.:
130 OPEN 'ARRAY' FOR INPUT AS FILE #1% &

! OPEN VIRTUAL FILE AND INITIALIZE SUMS WITH MAT
140 MAT R = ZER &

\ MAT C = ZER
150 FOR 1% = 1% TO 10% &

! OPERATE ROW-BY-ROW
160 FOR J% = 1% TD 50% &

! DO EACH COLUMN IN ROW
170 R(I'X,) = R(I'X,) + A(I%,J'X,) E.:

! TOTAL ACROSS ROW
180 C(J%) = C(J%) + A(I%,J%) &

! TOTAL DOWN COLUMN
180 NE)<T J'X, E.:

\ NE){T I% E.:
! COLUMN SUM IS INSIDE LOOP

200 MAT PRINT R; &
\ MAT PRINT C; E.:
! PRINT ROW TOTALS, THEN COLUMN TOTALS

210 CLOSE #11.,
32767 END

Virtual Arrays 1~7

Program 2

LISTNH
100 REM - PROGRAM 'TWO' USES VIRTUAL MEMORY INEFFICIENTLY
110 DIM #1%,All0%,50%) &

! 10 ROWS, 50 COLUMNS
120 0 I M R I 10'1.,), C I 50'1.,) ~:

130 OPEN 'ARRAY' FOR INPUT AS FILE #1% &
! OPEN VIRTUAL FILE AND INITIALIZE SUMS WITH MAT

lao MAT R = ZER &
\ MAT C = ZER

150 FOR J% = 1% TO 50% &
! OPERATE ONE COLUMN AT A TIME

160 FOR 1% = 1% TO 10% &
! AND ACROSS ROW

170 RII'1.,) = RII/.,) + AII'1."J'1.,) &
! TOTAL ACROSS ROW

180 CIJ%) = CIJ%) + AII%,J%) &
! TOTAL DOWN COLUMN

190 NE)<T 1'1., &
\ NE)<T J'1.,

200 MAT PRINT R; &
\ MAT PRINT C; ~:

! PRINT ROW TOTALS, THEN COLUMN TOTALS
210 CLOSE #1'1.,
32767 END

Ready

In virtual arrays, two or more arrays can share the same file. For example,
the following DIM# statement is legal:

100 DIM #1'1., ,AI 10(0) ,5'1.,(999) ,CI 1(00)

Array B% begins immediately after element 1000 of A and array C begins
immediately after B%(999). The disk layout is shown in Figure 16-1.

Figure 16-1: Virtual Array File Layout

1
A(O)

1 A(1)

A(999)
A(1000)
8%(0)
8%(1)

.
8(998)
8(999)
C(O)
C(1)

C(999)
C(1000)

16-8 Virtual Arrays

Because arrays are stored sequentially on disk, you should not set up logi
cal records that consist of matching elements of different arrays. The fol
lowing example, which prints a mailing list, shows an inefficient use of
multiple arrays in a virtual array file:

100 DIM #1101 FIRST .NAME$(1001,), LAST .NAME$(1001,) ,&
ADDRESS$(100%) = 64%

150 DPEN "MAIL.VIR" FDR INPUT AS FILE #1%
200 FDR 1% = 1% TD 100%
210 PRINT FIRST.NAME(I%);" ";LAST.NAME$(I%)
220 PRINT ADDRESS$(I%)
230 PRINT !Blank line
240 NEXT 11,
250 CLOSE # 11,
32767 END

In this example, several disk accesses are needed to print each individual's
name and address.

The following program uses a single array element as a logical record. This
program is more efficient than the first one because only one disk access is
needed to print each individual's name and address.

100 DIM #1%, CUSTOMER$(100%) = 128%
150 OPEN "MAIL.VIR" FOR INPUT AS FILE #1%
200 FOR 1% = 1% TO 100%
210 PRINT LEFT(CUSTDMER$(I''y',)t16%);""; &

PRINT MID(CUSTOMER$(I%) ,161,t16%)
220 PRINT MID(CUSTOMER$(I%) ,331,,641,)
230 PRINT !Blank line
240 NEXT 11,
250 CLOSE # 11,
32767 END

For string arrays in virtual array files, you should specify the maximum
length of the longest element of that array. This is because BASIC-PLUS
allocates a fixed number of bytes in the disk file to elements in string
arrays (see Section 16.2).

A single string element never crosses a disk block boundary, where each
disk block contains 512 bytes or 256 words. For example:

100 DIM #1%,A1,(2) ,B$(1000)=4

BASIC-PLUS allocates the first three words of the disk block to A%. If
array B$ were to begin immediately after A%, one of the elements of B$
would cross a block boundary. Hence, B$ begins at the start of the second
block in the file rather than immediately after A%.

When you assign more than one array to a single virtual array file, each
array begins immediately after the last element of the preceding array.
This occurs unless such an allocation splits an element of the array across
two disk blocks. To avoid this split, the array begins at the start of the next
block of the file. The remaining words in the first block are not used.

Virtual Arrays 1~9

16-10

16.4.3 Access to Data in Virtual Arrays

Only a portion of a virtual array is in memory at once. BASIC-PLUS trans
fers this data directly between the disk and an I/O buffer in your area.
BASIC-PLUS creates the I/O buffer when you execute the OPEN state
ment. This buffer must be a multiple of 512 bytes (one block) long; you may
specify it as several blocks with the RECORDSIZE option in the OPEN
statement. For each virtual array file, BASIC-PLUS notes:

1. Which block of the file is in the buffer

2. Whether the data in the buffer has been modified since it was read into
memory

After BASIC-PLUS translates a virtual array address into a file address, it
checks whether the block containing the referenced item is in the buffer. If
the necessary block is present, the reference proceeds; if not, BASIC-PLUS
reads another portion of the file into the buffer. If you alter the current data
in the buffer, BASIC-PLUS rewrites this data on the disk before reading
new data into the buffer.

BASIC-PLUS ultimately locates all references to virtual arrays by using
file addresses relative to the start of the file. No symbolic information con
cerning array names, dimensions, or data types is stored in the file. Thus,
different programs can use different array names to refer to the data in a
single virtual array file. Be cautious in such operations; it is your responsi
bility to ensure that programs referencing a set of virtual arrays are
referencing the same data. For example:

Program 1 contains:

100 'PROGRAM ONE
110 DH1 #1'1..1){(10), Y(10)
120 OPEN 'FILE,DAT' AS FILE #1%

Program 2 contains:

100 !PROGRAM TWO
110 DU1 # !:X. , Z(10),)-«10)
120 OPEN 'FIlE.DAT' AS FILE -1%

Whenever Program 2 references array Z, it uses the data known to
Program 1 as array X. Both X and Z are the first arrays in their declara
tions, both contain floating-point data, and both are 11 elements
(X(O), ... ,X(10)) long. These two arrays, then, correspond in position, type,
and dimension.

References to the array X in Program 1 and to the array X in Program 2 do
not refer to the same data, even though both use the virtual file FILE.DAT.

Virtual Arrays

Note also that the two statements in Example 1 are not equivalent to the
statement in Example 2:

100
110

Example 1

DIM #1X, ,A(10'X,)
DIM # 1 'x, ,6(10'X,)

Example 2

100 DIM #1%,A(10%), 6(10%)

In Example 1, the arrays A and B equal each other; they constitute the first
array in the file open on channel 1. In Example 2, both arrays A and B exist
in separate areas in the file open on channel 1.

Be careful not to open a file under two channel numbers. For example:

150 DPEN 'VALUES' AS FILE #1% &
\DPEN 'VALUES' AS FILE #2%

200 DIM #1%, X$(20%)
210 DIM #2%, Y$(20%)

This example creates two buffers for the storage of channel 1 and channel 2
I/O. If you change the same block of the file in both buffers, the system
adds the changes from only one of the buffers to the file. The system may
overwrite the buffer you wrote first with the other buffer. Consequently,
any data change in the first buffer is lost.

If you attempt to write on file #2, you get a "?Protection violation" error,
unless the file is open in update mode (see the RSTS / E Programming
Manual). In either case, the write is unsuccessful.

16.4.4 Allocating Disk Storage to Virtual Array Files

The dimensions in a DIM# statement set maximum values for subscripts.
They do not compute the initial size of the virtual array file allocated on
disk. Instead, the system creates the file with a length of zero blocks and
appends blocks to the file for the highest file address referenced in the
array.

You can thus specify array dimensions larger than required when you write
a program. Such programs can operate on larger arrays without modifica
tion and without tying up disk storage. The only place you find areas of
unallocated disk storage is at the end of the file.

As you append blocks to a file, the system does not initialize their contents
to zero. The data previously recorded in a block is available to the new
owner of the block. If your files contain confidential information, you
should overwrite the data before deleting the file.

To override the dynamic virtual array allocation, you can reference the last
element in the virtual array file. This preallocates all blocks in the file. As

Virtual Arrays 16-11

noted earlier, the contents of these blocks appended to the file are
unknown. Use a FOR loop or the MAT ZER statement to initialize array
values to a known (zero) quantity.

16.4.5 Simultaneous Access of a Virtual Array

The system gives write privileges only to the first program to open a file
(array). When a second program attempts to modify an open array, the
system reads the appropriate block from the disk but changes it only in the
second program's buffer-not on the disk. When the second program refer
ences this array and attempts to read another block from the disk, a
"?Protection violation" error occurs. This error occurs because the system
attempts to update the disk with the information in the current block
before the required block is read into memory.

Because the second program has no write privileges, it cannot update
the disk. A CLOSE operation at this point also results in a "?Protection
violation" error for the same reason. Once the job returns to BASIC-PLUS
command level and you execute a NEW, OLD, or RUN command, the sys
tem performs a CLOSE on all channels. In this case, no write is attempted,
so the CLOSE is successful.

To avoid simultaneous write accessing of a virtual array, determine
whether your program has write privileges. Do this by testing the STATUS
variable (see Section 17.1.1):

100 OPEN 'ARRAY' AS FILE -1%
110 IF (STATUS AND 1024%) &

THEN PRINT 'NO WRITE ALLOWED ON ARRAY' &
\ STOP

Do not use MODE 1% to open virtual array files. (MODE 1% allows you to
open a file for simultaneous update by more than one program; see the
RSTS / E Programming Manual for more information.) Your buffer is modi
fied when you open an array with the MODE 1% option; thus, the system
does not update the disk at this time.

Even when the first of several programs unlocks the file, allowing other
programs to access the array, its modifications exist only in the first user's
buffer. The system updates the array only when the first user accesses data
from another block.

16.5 Programming Examples

16-12

As an example of virtual array usage, consider the problem of generating a
large array of random numbers. Since a physical disk block is 256 words,
an efficient array would contain a multiple of 256 elements. The following
example uses a virtual array file, ARRAYl.DAT, that contains 5120 data
elements in a 2-by-2560 array. Twenty physical blocks store this array.
The program creates the virtual array V% by assigning a random value
between 0 and 999 to each element in the array.

Virtual Arrays

LISTNH
1000
1010
1020
1030
1040
1050
32767

Ready

DIM #3%t V%(1%t2559%)
DPEN 'ARRAY1.DAT' AS FILE #3%
FDR 1% = 0% TD 1%
V%(I%tJ%) = RND * 1000% FOR J%
NEl<T I·X.
CLOSE #3r..
END

or.. TO 2559r..

After the file ARRA Y1.DA T is created, you can access the virtual array
elements by their subscripts. The next program prints every 256th value.
Note that the array format in the DIM statement must be identical to the
original format for predictable results. The file's channel number and the
array's name can change, but the array must be formatted the same way
every time it is accessed.

LISTNH
1000
1010
1020
1030
1040
1050
1060
32767

Ready

RUNNH

DIM #4%t l<%(1%t2559%)
OPEN 'ARRAY1.DAT' AS FILE #4%
FOR 1% = 0% TO 1%
PRINT l<%(I%tJ%); FOR J%=O% TO 2559% STEP 256%
NEl<T I r..
CLOSE #4r..
PRINT
END

204 909 954 839 65 131 537 784 371 798 565 173 122 910 39 8 318
468 958 289

Ready

You can change values of array elements with the assignment statements
LET, INPUT, or READ. This program changes the value of specified data
elements:

LISTNH
1000 DIM #3%t V%(1%t2559%)
1010 OPEN 'ARRAY1.DAT' AS FILE #3%
1015 ON ERROR GOTO 1050
1020 INPUT 'ENTER THE I AND J LOCATION OF THE ELEMENT'; I%tJ%
1030 N% = V%(I%tJ%)
1040 INPUT 'ENTER THE NEW VALUE'; V%(I%tJ%)
1045 PRINT &:

\ PR I NT 'OLD VALUE WAS: ' ; N·X. t ' NEW I.)ALUE IS: '; I.)·X. (If.. .Jr..) &:
\ PRINT &:
\ GO TO 1020

1050 CLOSE #3r..
32767 END

Ready

Virtual Arrays 16-13

16-14

RUNNH
ENTER THE I AND J LOCATION OF THE ELEMENT? 0,9
ENTER THE NEW VALUE? 600

OLD VALUE WAS: 678 NEW VALUE I S : 600

ENTER THE I AND J LOCATION OF THE ELEMENT? 1,255
ENTER THE NEW VALUE? 333

OLD VALUE WAS: 937 NEW VALUE IS : 333

ENTER THE I AND J LOCATION OF THE ELEMENT? 0,2225
ENTER THE NEW VALUE? 9999

OLD VALUE WAS: 424 NEW VALUE IS: 9999

ENTER THE I AND J LOCATION OF THE ELEMENT? 9,9

Ready

The last two examples compare different access methods for virtual arrays.
In the previous examples, ARRAY1.DAT was allocated as follows:

Block 1
Block 2
Block 3

Block 10
Block 11

Block 20

V(O,O) - V(O,255)
V(0,256) - V(0,511)
V(0,512) - V(0,767)

V(0,2304) - V(0,2559)
V(1,O) - V(1 ,255)

V(1 ,2304) - V(1 ,2559)

Notice that the second subscript varies from 0 to 2559 for each of the two
values (0 and 1) of the first subscript. The system transfers a physical
record (that is, a block) from the disk to memory at one time. Therefore, the
system performs only one disk access for each group of 256 consecutive data
elements; for example, V(0,256)-V(0,511) . It is more efficient to sequen
tially access data elements in one block than to access data elements in
different blocks.

The following two programs access, but do not print, each element in the
virtual array. The first access method transfers a new block to memory for
each data element accessed, resulting in 5120 disk accesses. The second
method, however, transfers a new block to memory only once per 256 data
elements, resulting in 20 disk accesses. The difference in execution time
between both methods is significant.

Virtual Arrays

Program 1
(Inefficient)

LISTNH
1000 DIM #3%, V%ll%,2559%)
1010 OPEN 'ARRAY1.DAT' AS FILE #3%
1015 T = TIMEIO)
1020 FOR J% = 0% TO 2559%
1030 0% = V%II%,J%) FOR 1% = 0% TO 1%
1040 NE)<T J'X.
1045 PRINT 'THIS ACCESS TOOK' HIMEIO) - Ji 'SECONDS.'
1050 CLOSE #3'1..
32767 END

Ready

RUNNH
THIS ACCESS TOOK 422 SECONDS.

Ready

Program 2
(Efficient)

LISTNH
1000 DIM #3%, V%ll%,2559%)
1000 OPEN 'ARRAY1.DAT' AS FILE #3%
1015 T = TIMEIO)
1020 FOR 1% = 0% TO 1%
1030 0% = V%II%,J%) FOR J% = 0% TO 2559%
1040 NEHT 1'1..
1045 PRINT 'THE SECOND ACCESS TOOK'iTIMEIO) - T 'iSECONDS.'
1050 CLOSE #31..
32767 END

Ready

RUNNH
THE SECOND ACCESS TOOK 2 SECONDS.

Ready

Virtual Arrays 16-15

Chapter 17
Block I/O

The I/O methods described so far are easy to use and flexible enough for
many applications. But each method has its limits. Formatted ASCII I/O
does not allow random access to data. In addition, formatted ASCII process
ing consumes CPU time as it scans for record delimiters and converts
numeric data to and from ASCII format. Virtual arrays provide random
access to files, but the files can be stored only on disks.

Block I/O, the third I/O method in BASIC-PLUS, does not have the limits
of formatted ASCII or virtual arrays. Instead of performing I/O operations
for you in a predefined way, BASIC-PLUS gives you access to the basic I/O
services of the RSTS/E operating system. You can perform any type of
physical I/O available under RSTS/E.

In block I/O, you control both the physical movement of data and the logi
cal meaning of data. You can write programs that perform either or both
types of operations using block I/O techniques.

In block I/O, your program directly controls the transfer of data between a
device and its I/O buffer in your program area. You deal with a block I/O
file as a series of physical records. Each physical record corresponds to one
block on the storage device; the size of the block depends on the device you
are using. In a disk file, each block has a number associated with it. This
number gives you random access to each block in the file.

Because you deal with physical records in block I/O, you can tailor a
program to the characteristics of a particular device. You can also take
advantage of operating system features such as file sharing and multi
terminal I/O. Most of the device-dependent programming techniques
described in the RSTS / E Programming Manual are available to
BASIC-PLUS programmers only through block 110.

17-1

Besides controlling the transfer of data between the device and the I/O
buffer, you also have to make data in the buffer meaningful to the rest of
your program. In all types of BASIC-PLUS I/O, data in the I/O buffer is in
unformatted binary form, just as it is on the storage device. In formatted
ASCII and virtual array I/O, BASIC-PLUS automatically processes the
data in the buffer and makes it available to your program as string, inte
ger, or floating-point data. In block I/O, however, BASIC-PLUS does not
process the data in the buffer. Instead, it provides you with a set of tools for
processing the data yourself. You can read and write any file format using
these tools.

Block I/O is the most powerful I/O method available in BASIC-PLUS. But
it is also the most difficult to method to use because your program has to do
most of the work that BASIC-PLUS does for you in formatted ASCII and
virtual array I/O. You will need to learn several new programming tech
niques to use block I/O.

This chapter describes the statements and functions BASIC-PLUS provides
for doing block I/O. The first part of the chapter describes the GET and
PUT statements, which perform physical I/O. GET and PUT read and
write blocks of data between a device and its I/O buffer. These statements
have options that let you read and write specific blocks in a disk file.

The next part of the chapter describes the tools for making the data in the
I/O buffer meaningful to your program:

FIELD statement Lets you access the I/O buffer as string
data by mapping string variables to buffer
locations.

LSET and RSET statements Move string values from your program into
these buffer locations.

CVT conversion functions Let you convert data from string to integer
or floating-point format (and back) as you
transfer it between the I/O buffer and your
program.

This chapter also describes other BASIC-PLUS features that are often used
with block I/O:

RECOUNT variable

STATUS variable

BUFSIZ function

SWAP% function

17-2 Block I/O

Contains the number of characters read
after an input operation.

Contains information about the device you
last opened.

Returns the buffer si7le of an open channel.

Swaps the low and high order bytes of an
integer.

17.1 Opening a Block 1/0 File

As with all data files, you must open a file before executing block I/O
statements on it. The format of an OPEN statement is:

. [~FOR INPUT }] . OPEN <strmg> tFOR OUTPUT AS FILE [#] <expressIOn>

[,RECORDSIZE <exp>] [,CLUSTERSIZE <exp>] [,FILESIZE <exp>] [,MODE <exp>]

The OPEN statement opens an I/O channel and establishes an I/O buffer.
See Chapter 14 of this manual for a description of the OPEN statement.
The RSTS / E Programming Manual contains additional information about
OPEN statement options. The rest of this section introduces the STATUS
variable and the BUFSIZ function, which you use with the OPEN
statement.

The STATUS variable and the BUFSIZ function return information about
an open I/O channel. These tools are useful when you open a file without
knowing anything about it. For example, if you are writing a general
purpose program, you may want to prompt the user for a file or device to
open.

In this kind of program, you do not know in advance what the user will
specify. You can use STATUS and BUFSIZ to get information about the file
or device after you open it.

17.1.1 STATUS Variable

The STATUS variable contains information about the last channel on
which your program executed an OPEN statement. The variable is a 16-bit
word, each bit of which your program can test to determine status (see
Section 11.7.4.1 for an example of bit testing). Table 17-1 shows the infor
mation, the tests, and the meaning of each bit. Note that the STATUS
variable returns RSTS-specific information.

17.1.2 BUFSIZ Function

In certain applications, it is important for a program to determine the
buffer size of an open channel. This is especially true if the OPEN state
ment specifies a logical device name. You can use the integer function
BUFSIZ to extract this information.

The BUFSIZ function returns the size of the buffer for a specified open
channel as an integer. For example:

20 Y%= BUFSIZ(N%)

This statement returns to Y% the size of the buffer in number of bytes for
channel N%. If the channel is closed, the function returns o.

Block I/O 17-3

Table 17~1: STATUS Variable

Bit Test

0-7 (STATUS AND 255%)

Meaning

The first eight bits of the word contain the han
dler index. The following values apply for vari
ous devices.

o Disk

2 Terminal

4 DECtape

6 Line Printer

8 Paper Tape
Reader

10 Paper Tape
Punch

12 Card Reader

14 Magnetic tape

16 PK: device
(pseudo keyboard)

18 DX: device
flexible diskette

20 RJ: device
(2780 remote job
entry)

22 NL: null device

24 DMCllIDMR11/
DDCMP Interface

26 Auto-Dialer

28 X-Y Plotter

30 TU58 DECtape II

32 KMCll

34 IBM Interconnect

38 DMPll IDMVll

8 (STATUS AND 256%)<>0% The device is open for non-file-structured pro
cessing or is a non-file-structured device,

S (STATUS AND 512%)<>0% The job does not have read access to the device.

10 (STATUS AND 1024%)<>0% The job does not have write access to the device.

11 (STATUS AND 2048%)<>0% The device maintains its own horizontal posi
tion. Such devices are keyboards and line
printers,

12 (STATUS AND 4096%)<>0% The device accepts modifiers. Such devices use
the record number as a modifier word rather
than a physical position of the device. Key
boards, line printers, and card readers are such
devices.

13 (STATUS AND 8192%)<>0% Device is a character device.

14 (STATUS AND 16384%)<>0% Device is an interactive device (keyboard).

15 (STATUS <0%) Device is a random access blocked device, such
as disk and non-file-structured DECtape.

17.2 Closing a Block 1/0 File

17-4

The CLOSE statement (described in Section 14.6) closes open I/O channels,
It has the form:

CLOSE [#] <expression> [,[#] <expression> , ...]

The value of each expression specifies one of the 12 I/O channels.

Block I/O

Unlike formatted ASCII and virtual array I/O, a CLOSE statement on a
block I/O file does not write the contents of the I/O buffer to the file before
closing it. Instead, you must perform all I/O operations with block I/O files
explicitly, using GET and PUT statements. Be sure that your program
writes the last record to the file before you close it.

11.3 Reading and Writing Data - The GET and PUT Statements

You perform input and output operations with block I/O files directly
between the device and the I/O buffer that the OPEN statement creates.
Specify all I/O in terms of single records, using the GET and PUT state
ments. The formats for GET and PUT are:

n [, BLOCK <exp> l 1
uET #<exp> , t RECORD <exp> j ,COUNT <exp> ,USING <exp> J

[{BLOCK <exp> , . , J
PUT #<exp> , RECORD <exp> f ,COUN'I <exp> ,USING <exp>

If you do not use the RECORD or BLOCK option, the GET statement reads
the next sequential block from the file open on the channel designated by
the first expression. The system places the block in the I/O buffer that is
associated with the channel. The size of the block depends on the character
istics of the device that the file is on (see Table 17-2). In block I/O, the
RECORD or BLOCK option refers to a sector whose length is device
specific, not to a logical data record.

When you use the RECORD or BLOCK options in a GET or PUT state
ment, the system accesses a specific block. For example:

100 GET #4%1 RECORD 8%

This statement reads the eighth block of the file opened on channel 4 into
your I/O buffer. Note that the preceding seven records of the file need
not be read. This feature, not available in formatted ASCII files, is caned
random access.

Similarly, if you do not specify any of the options in the PUT statement, it
writes the contents of the I/O buffer for the I/O channel onto the next
sequential block of the file. The first expression specifies the channel num
ber on which you opened the file.

The PUT statement writes a single block on the device. The exception to
this is disk files. One PUT statement writes multiple disk blocks when you
use the RECORDSIZE option in the OPEN statement to increase the I/O
buffer size.

Block I/O 17-5

17-6

Table 17-2: Device Record Characteristics

Device Record Characteristics

Disk In file-structured processing, the default RECORDSIZE for disks is 512
bytes, the length of a disk block. In non-file-structured processing, how
ever, the default RECORDSIZE depends on the device cluster size.
(See the RSTS IE Programming Manual for information on non-file
structured processing.)

You can specify a RECORDSIZE other than 512. When you do, though,
keep this information in mind:

1. The RECORDSIZE must be an even number.

2. The GET and PUT statements transfer data in 512-byte units.
Thus, you lose data when the RECORDSIZE is not a multiple of 512.
In a GET, the system reads as many 512--byte units into the buffer
as its size can accommodate and discards the portion of the last
block that does not fit in the buffer. In a PUT, the system writes this
last block as a partial block. The rest of this block has unpredictable
contents.

The RECORDSIZE value changes the buffer size, but it does not
the record number associated with each block of the disk

file 0 For """mn]" when you specify a RECORDSIZE of 1024, the
system transfers two disk blocks in each GET and PUT. However,
each record in the the file still has the same number as it does when
you use a 512-byte buffer. Use the BLOCK or RECORD option in
GET and PUT statements to specify the correct record number for
each read and write operation. (See Sections 17.3.1 and 17.3.2.)

DECtape For file-structured DECtape, records are always 510 bytes long. For
non-file-structured DECtape, records are always 512 characters.

Magnetic tape When performing file-structured 1/0, magnetic tape records are
normally 512 characters. With non-file-structured 1/0, magnetic tape
records can be of any length. Only one record can be read per GET
statement, and the record length cannot exceed the buffer size (as deter
mined by the RECORDSIZE option). The minimum record size is 14
characters.

Keyboard A keyboard record is a series of characters. The first delimiter marks
the end of the record. The delimiter can be a RETURN, a LINE FEED, a
FORM FEED, an ESCAPE, or a private delimiter (see the RSTSIE
Prograrnming Manual),

Card reader A record consists of a single card. The RECORDSIZE option has no
effect on card reader inputo

Paper tape RSTS/E reads a full buffer of input from the paper tape reader unless
an end-of-tape is detected.

11.3.1 BLOCK Option

With disk files, you can perform random access I/O to any block of the file.
Blocks in a disk file are always 512 bytes long and are logically numbered
within the me from 1 to n, where n is the size of the file.

Block I/O

The BLOCK expression provides logical block of the file to the
GET or PUT statement. The BLOCK option uses a real argument. This
feature allows you to read and write specific blocks of files with more than
65535 blocks.

For example, assume that you open a disk file on channel 1. The fonowing
statement writes the contents the I/O buffer associated with channel 1
on blocks 10 through 99 of that disk file:

200 PUT -1%, BLOCK I FOR 1=10. TO 88.

You can read or write more than one physical block. Just assign a large I/O
buffer to the file with the RECORDSIZE option in the OPEN statement.
The size of the buffer does not affect the numbering of the blocks (512 bytes
each) within the file.

If you open a disk file on channell a RECORDSIZE of 1024 (which
causes two 512-byte blocks to be "nfi·,rn:.n with each PUT), you can write a
PUT statement as:

200 PUT -1%, BLOCK I FOR 1=10. TO 88. STEP 2.

When your program performs a random access GET or PUT on a disk file,
the next GET or PUT statement on that channel accesses the next sequen
tial block if 110 BLOCK number is specified, For example:

280 OPEN "DATA.DAT" AS FILE *l1'X, , I'<ECORDSIZE 512'7.,
300 GET -1%. BLOCK 88.
310 PUT 1*1'1.,

The PUT statem.ent at line 310 writes block 100 of the disk file.

NOTE

Use of the BLOCK option in a GET statement is not compati
ble with other versions of BASIC.

11.3,2 RECORD Option

The RECORD option can also used in GET and PUT statements to
access a specific block. Unlike the BLOCK option, which uses a real argu
ment, the RECORD option accepts an integer argument that specifies the
logical block number in the file. Thus, the RECORD option limits the direct
specification of a block number to 32767 (the largest integer value). You
cannot use the RECORD option to work with large files, Note that the
BLOCK and RECORD options are mutually exclusive.

17.3.3 COUNT Option

You can use the COUNT option in a PUT statement to specify the number
of characters to write in the current record. The COUNT expression, how
ever, cannot be greater than the size of the I/O buffer.

Block I/O 17-7

The COUNT option is usually used in non-file-structured processing. For
example, if magnetic tape unit 0 is open for non-file-structured processing
on channell, you can use the following statement to write an 80-character
record:

100 PUT #1%, COUNT 80%

When you do not use COUNT, the PUT statement writes an entire buffer,
regardless of whether the buffer contains data.

The COUNT option used in a GET statement specifies the maximum num
ber of characters to be read in the current record regardless of the buffer
size. For example, if magnetic tape unit 0 is open on channel 3, you can use
the following statement to limit the GET operation to 50 characters:

250 GET #3%, COUNT 50%

When you do not use COUNT, the GET statement attempts to fill the
entire buffer.

Note that the RECOUNT variable (see Section 17.3.5) is set in all cases. If
the amount of data read by the GET operation is less than the limiting
value of COUNT, the RECOUNT variable contains the actual amount of
data read.

GET with the COUNT option works differently depending on the device
type. For character-oriented devices (such as terminal, paper tape, or card
reader), if the amount of data is greater than the limiting COUNT value,
succeeding GET operations read the remaining data. For block-oriented
devices (DECtape, magnetic tape, disk), the data beyond the limiting
COUNT value in the last block is lost. Succeeding GET operations read
from the next block.

NOTE

Use of the COUNT option in a GET statement is not compati
ble with other versions of BASIC.

17.3.4 USING Option

The RECORDSIZE option in the OPEN statement defines the size of an I/O
buffer. The USING option can be used in a GET or PUT statement to
specify an offset into that I/O buffer. That is, the USING option can cause a
GET or PUT to begin a read or write operation at a specified byte in the
buffer. For example:

200 GET #1%, COUNT 10%, USING 20%

Line 200 reads up to 10 characters into the I/O buffer associated with
channell, beginning at a position 20 bytes into the buffer.

17-8 Block I/O

NOTE

Use of the USING option in a GET statement is not compati
ble with other versions of BASIC.

17.3.5 RECOUNT Variable

Non-file-structured devices can read less than a full buffer of data. To
determine how much data was actually read, RECOUNT, a BASIC-PLUS
variable, contains the number of characters read following every input
operation. RECOUNT is used primarily for non-file-structured input; how
ever, you can also use it with file-structured devices.

RECOUNT is set by every input operation on any channel (including chan
nel 0). It is essential that you test or copy the RECOUNT value immedi
ately after an INPUT or GET statement. The value of RECOUNT is not
defined if an error occurs in the I/O operation. In addition, RECOUNT does
not return useful information in immediate mode.

17.3.6 Extending Disk Files

When you create a disk file with an OPEN FOR OUTPUT (or OPEN)
statement, the file has a length of o. As blocks are written, the file grows in
length. This growth is called extending the file.

A more exact description of the disk file extension process follows:

1. The system checks to see ifthere is room in the last cluster of a file for a
new block. (The cluster size defines the minimum increment by which
you can extend a file on the disk. A file need not occupy all blocks
within the cluster.)

2. If so, then the file length is increased and previously unused space in
that cluster is used.

3. If not, then a new cluster is appended to the file. Go back to Step 1.

The amount of space that the system allocates to a disk file may be greater
than the file length. For example, if the file cluster size is four and you
have written the first six blocks of that file, the file is six blocks long but
has eight blocks (two clusters) of space.

You can extend a disk file by writing beyond the current end-of-file. How
ever, a program must have write access to a file in order to extend it.

You can extend a file that is open in update mode, but only if you first lock
block 1 of the file. You must make a contiguous file non-contiguous before
you can extend it. (See the RSTS / E Programming Manual for more infor
mation about update mode and contiguous files.)

You can extend a file by a number of blocks at one time. For example:

100 OPEN "OATA.OAT" FOR OUTPUT AS FILE #1%
110 PUT #1%, BLOCK 100.

Block I/O 17-9

17-10

These statements create a file DATA.DAT and extend it immediately to
100 blocks. The system overhead for extending a file by a single block and
by many blocks is nearly the same. Therefore, it is much more efficient to
immediately extend a newly created file to its final length than to extend it
many times in increments of a single block. Whenever you know the final
size of a file, you should extend it to its full size in a single operation.

17.3.7 Alternate Buffer I/O

With normal 110, moving data from one device to another requires two
buffers, one for the input device and one for the output device. Your pro
gram also has to move data from the input buffer to the output buffer. But a
special technique in BASIC-PLUS allows you to bypass one buffer. This
technique is called "alternate buffer 110."

With alternate buffer 110, you can:

• Move data from an input buffer directly to an output device, without
using an output buffer.

• Move data from an input device directly to an output buffer, without
using an input buffer .

• Move data between input or output devices and a temporary buffer set up
as a work area.

These techniques are useful for copying one file to another and for record
blocking and deblocking. (You block and deblock records with the FIELD
statement, which is described in Section 17.4.1. For an example of record
blocking and deblocking, see Section 17.6.)

To perform alternate buffer 110, you replace the channel number in a GET
or PUT statement with an expression of the form:

SWAP'X.(B'X.) + I 'X.

B% is the channel number of the buffer to be used, and 1% is the channel
number on which I 10 occurs.

The following example shows a fast copy, using alternate buffer 1/0:

05 ON ERROR GO TO 8000
10 OPEN "RANDOM" FOR INPUT AS FILE #1%
20 OPEN "COPY" FOR OUTPUT AS FILE #2%1 RECORDSIZE 32767%+1%+2%
30 GET #1'X.
40 PUT #SWAP%(I%) + 2%
50 GO TO 30
60 PRINT "FILE COPIED"
70 CLOSE #1%1 #2%
80 STOP
8000 IF ERR=II% AND ERL=30% THEN &

RESUME 60 &
ELSE ON ERROR GO TO 0

32767 END

Block 1/0

In this example, the input device is open on channell and the output device
is open on channel 2. The GET statement in line 30 moves data from the
input device into the input buffer. The PUT statement in line 40 moves the
contents of the input buffer directly to the output device open on channel 2.
With normal 1/0, you have to write two FIELD statements, one for each
buffer, and use an LSET statement to move the data from one buffer to
another (see Section 17.4).

You can also use alternate buffer 1/0 as a spacesaving technique in pro
grams that transfer data among several different files. Open each file with
a small buffer size (for example, 2 bytes) because you will not be using
these I I 0 buffers for data transfers. Open the null device (NL:) to create a
"scratch buffer" at the size you need for data transfers. (You have to use the
RECORDSIZE option when you open the null device because its default
buffer size is 2 bytes.) You can then use alternate buffer I I 0 to transfer
data from an input file to the scratch buffer and from the scratch buffer to
an output file.

You use the expression SWAP%(B%) + 1% to specify alternate buffer 1/0
because BASIC-PLUS stores information about an 1/0 channel in one
word of memory. The low byte of the word contains the channel number;
the high byte of the word contains the channel number of the buffer to use
for 1/0 on that channel. When you specify only a channel number, the high
byte of this word is O. BASIC-PLUS uses the value in the low byte as both
the buffer number and the channel number.

The expression SWAP%(B%) + 1% creates a one-word value that contains a
nonzero buffer number in the high byte and a channel number in the low
byte. For example:

SWAPi.', (17.,) + 2',!',

This expression combines the integers 1% and 2% into a value with the
internal format:

High Low
Byte Byte

When you use this expression in a GET or PUT statement, BASIC-PLUS
tells the system to transfer data to or from the buffer specified in the high
byte instead of the 1/0 channel's default buffer. (See Section 17.5.2 for
more information about SWAP%.)

17.4 AcceSSing the I/O Buffer

So far this chapter has described how to read and write data between a
device and an 1/0 buffer with GET and PUT statements. This section
describes the statements you use to make data in an 1/0 buffer available to
your program.

Block 1/0 17-11

17-12

BASIC-PLUS has three statements that operate on data in an I/O buffer:
FIELD, LSET, and RSET. FIELD lets you access the buffer as string data,
and LSET and RSET move string values from your program into the buffer.
With these statements, you can access and modify each byte of an I/O
buffer.

17.4.1 FIELD Statement

The FIELD statement dynamically associates string variables with parts of
an I/O buffer. The FIELD statement has the form:

FIELD #<exp>,<expl> AS <string varl>[,<exp2> AS <string var2>, ...]

The <exp> is a channel number associated with some file by an OPEN
statement, <exp1> is the length in characters of the associated string vari
able, and <string var1> is a string variable name. The names are associ
ated from left to right with successive characters in the I/O buffer assigned
to the designated channel number. For example:

75 FIELD #2%, 1 o 'X. AS A$, 20'X. AS B$, 3 'X. AS F$

[A$ B$ I F$ [I
~10 ~I" 20 ~I 3 I- .1 512-byte buffer

As shown in the previous diagram, statement 75 associates three strings,
A$, B$, and F$ in the I/O buffer, with lengths of 10, 20, and 3 characters,
respectively. This statement represents a total number of 33 characters.
The total number of characters must be less than or equal to the actual I/O
buffer size (this depends on the device and the RECORDSIZE option; see
Section 14.3.1).

FIELD statements do not move data. Instead, they permit direct access to
sections of the I/O buffer through string variables. The effect on a string
variable is temporary and is nullified by any attempt to assign a value to
the variable (other than with the LSET and RSET statements; see Section
1704.3). For example:

100 DPEN 'FILE' AS FILE #2%
110 FIELD #2%, 5% AS A$
120 LET A$ = 'ABCDE'

The LET statement at line 120 removes the string variable A$ from the
I/O buffer.

A FIELD statement is an executable statement. You can change a buffer
description at any time by executing another FIELD statement. For exam
ple, suppose that each block of a disk file contains sixteen 32-character

Block I/O

subrecords. Each subrecord consists of one 5-character field and one
27-character field. To extract the eighth subrecord from the 1/0 buffer, you
can execute the following statement:

200 FIELD #1%, 2241., AS 0$, 5% AS 6$, 27'Y.. AS A$

, , , , , , I : , ' '
, : ,

I : ' I , ' , .,. : : !! D$ I
, I! ,

f : !
, I I , , ,

I I I , , I I , I ,

-j 32
bytes

f- B$

Line 200 causes the string variables B$ and A$ to point to the desired
subrecord. The string D$ is created to permit the first seven subrecords
(7 *32 = 224) to be skipped. You can use an even more general statement to
obtain any of the subrecords in the I 10 buffer:

180 FOR 1% = 0% TO 15%
200 FIELD #1%, 1%*32% AS 0$, 5% AS 6$, 27% AS A$
210 NEXT 1'1.,

B$ B$ B$ B$ B$ B$ B$ B$ B$

1%=0 1%=1 1%=2 1%=3 1%=4 1%=5 1%=6 1%=7 1%=8

This FOR loop shows how you can repetitively execute a FIELD statement.
Each time the FIELD statement is executed, 1% contains the number of the
subrecord that B$ and A$ are to contain, as an integer from 0 to 15. When
1% = 0, for example, the expression 1%*32% equals O. B$ points to the first
subrecord in the buffer. When 1% = 1, however, the expression 1%*32%
equals 32, so B$ now points to the first subrecord beyond the 32nd charac
ter of the buffer. Each single increment of 1% moves B$ 32 characters
further into the buffer.

You can also use subscripted string variables in FIELD statements. For
example, the following statements allocate the subrecords described in the
previous example to two string arrays:

300 DIM A$(15'1.,), 6$(15'1.,)
310 FOR 1% = 0% TO 15%
320 FIELD # 1%, I'Y..*32% AS 0$, 51., AS 6$ (I'Y..), 27'X, AS A$ (I'Y..)
330 NEXT I'Y..

B$(O) B$(l) B$(2) B$(3) B$(4) B$(5) B$(6) B$(7)

~D$~.~! --~.~I -----r----•• ri-----r-----.+I-----.+i--~.~I
I~ I 1 I I I t

Block 1/0 17-13

17-14

With each iteration of the FIELD statement at line 320, the dummy string
D$ increases by 32 characters. This makes the displacement from the start
ofI/O buffer to the string B$(I%) equal to 32 times 1% characters. Once the
system executes this loop, it fixes the position of each string in the arrays
A$ and B$. A$(O) and B$(O) point to the first subrecord, and A$(15) and
B$(15) point to the last.

You can also use more than one FIELD statement in a program to define
the same buffer in different ways. For example:

20 FIELD #1%. 40% AS WHOLE.FIELD$ &
\ FIELD # 1 '7". 1 0'7., AS A$. 10'7., AS 6$. 10'7" AS C$

The first FIELD statement associates the first 40 characters of a buffer
with the variable WHOLE.FIELD$. The second FIELD statement associ
ates the first 30 characters of the same buffer with the variables A$, B$,
and C$. Later program statements can refer to any of these variables.
(The first example in Section 17.6 illustrates this use of multiple FIELD
statements.)

You must not define virtual array strings as string variables in a FIELD
statement. When you define strings as virtual arrays, they must be in a
fixed place, in both a disk file and the I/O buffer, for that file. Attempting
to specify a virtual array string variable in a FIELD statement has no
effect on the virtual array string.

17.4.2 The LSET and RSET Statements

After you define string variables as part of the I/O buffer with a FIELD
statement, you can store values in these variables without moving them
from the I/O buffer. The LSET and RSET statements store values in a
string variable without redefining the string position. These statements
have the form:

LSET <string var> [,<string var>, ...] = <string>

RSET <string var> [,<string var> , ... J = <string>

Here <string var> is any legal existing string variable name. You can
separate multiple string variable names by commas. The <string> is any
legal string expression.

The LSET and RSET statements store the value of the string expression
into the designated string or strings. The string previously stored in the
variable is overwritten, although the length of the string is not changed.

If a new string is longer than an existing string, the system truncates the
new string. If a new string is shorter than an existing string, it is either
padded with spaces on the right by LSET or padded with spaces on the left
with RSET. LSET causes the string to be left-justified in the field, and
RSET causes the string to be right-justified.

Block I/O

LSET and RSET normally move data to an 1/0 buffer, as this section
describes. They can also move a value into any string variable in your
program.

17.4.3 Differences between the LET Statement and the LSET IRSET
Statements

The LET statement cannot place string values into an 1/0 buffer because it
redefines the string variable. Another restriction on LET occurs when a
statement equates two strings:

100 LET A$ = 6$

To avoid unnecessary character manipulation, BASIC-PLUS makes A$
and B$ to point to the same string in memory. Normally, any operation
that alters B$ causes that string to be moved, so that no conflict arises.
However, LSET and RSET do not move strings; they change existing
strings in a fixed position.

If you change the value of B$ in line 100 with an LSET or RSET statement,
then you also change the value of A$. For example:

LISTNH
400 6$ = "A6C"
410 A$ = 6$
420 LSET 6$ = "XYZ"
430 PRINT A$
32787 END

ReadY

RUNNH
)<YZ

Ready

Both A$ and B$ contain "XYZ" after the execution of line 420.

Note that if you define the string B$ in this example with a FIELD state
ment as pointing to a subrecord in some 1/0 buffer, the string A$ also
points to the same 1/0 buffer (being identical to B$). Executing a GET
statement to read another record into the 110 buffer then changes the
value of A$ as well as B$. For this reason, you should use LSET and RSET
only for block 110 operations; using these statements for other purposes
may cause unexpected results.

When the strings A$ and B$ should not be physically identical, use the
following method to move the string B$ into the string A$:

300 LET A$ = 6$ + ""

This statement causes BASIC-PLUS to create a new string for A$, rather
than pointing A$ and B$ to the same string.

Block 1/0 17-15

17.5 Converting Numeric Data - CVT Functions and SWAPO/o

17-16

This section describes functions that:

• Convert data between numeric and string formats

• Swap the high and low order bytes of an integer

Both types of functions are useful in block I/O.

17.5.1 CVT Conversion Functions

The BASIC-PLUS FIELD, LSET, and RSET statements let you access data
in the I/O buffer as string data only. To process numeric data in your
program, you must convert it from string to numeric format after you move
it from the I/O buffer. After processing, you must convert the numeric data
back to string data before you transfer it to the I/O buffer for output.

BASIC-PLUS provides four CVT conversion functions to convert data
between string format and integer or floating-point formats. Table 17-3
lists these four conversion functions. (A fifth CVT function, CVT$$, helps
you process string data. See Chapter 10.)

NOTE

Do not confuse the CVT conversion functions with the
CHANGE statement or the NUM$ and VAL functions.

Table 17-3: CVT Conversion Functions

Function Form Operation

A$ = CVT%$(I%) Maps an integer into a two-character string.

1% = CVT$%(A$) Maps the first two characters of a string into an integer. If the
string has fewer than two characters, BASIC-PLUS appends null
characters as required.

A$ = CVTF$ (X) Maps a floating-point number into a four- or eight-character string
(depending upon whether you are using the two-word or four-word
math package on the system). You can determine the current math
package by examining LEN(CVTF$(O)).

X = CVT$F (A$) Maps the first four or eight characters (depending upon whether
you are using the two-word or four-word math package on the sys-
tem) of a string into a floating-point number. If the string has fewer
than the required number of characters, BASIC-PLUS appends
null characters.

These CVT functions affect the value's storage format, but not its value.
Each character in a string requires one byte of storage (8 bits). Hence
characters can assume (decimal) values from 0 through 255 only. A 16-bit

Block I/O

quantity can be defined as either an integer or a two-character string. You
can similarly define two-word floating-point numbers as four-character
strings and four-word floating-point numbers as eight-character strings.

The CVT functions that change storage format perform two important
functions:

• They permit dense packing of data in records. For example, you can pack
any integer value between -32768 and 32767 in a record in two charac
ters using CVT%$. This is true only for integers between -9 and 99 when
data is stored as ASCII characters .

• Converting the internal numeric representation to an ASCII string (as
with the NUM$ function) is a more ' time-consuming process than that
performed by the CVT functions. Thus, the CVT functions speed the proc
essing of a large amount of data in;a file.

I

Use the CVT functions in LSET, RSET, and LET statements to transfer
numeric data between an I/O buffer and your program. For example, the
following statements store two integers, U% and CL%, and two single
precision floating-point numbers, X and Y, in the I/O buffer for channel 8:

200 FIELD #8%, 2% AS US, 2% AS ClS, 4% AS XS, 4% AS YS
210 lSET US = CVT%S(U%) &

\ lSET ClS = CVT%S(Cl%) &
\ lSET XS CVTFS(X) &
\ lSET YS = CVTFS(Y)

You can retrieve this data from the buffer by converting it from string to
numeric form:

220 lET U% = CVTS%(US) &
\ lET Cl% = CVTS%(ClS) &
\ lET X CVTSF(XS) &
\ lET Y = CVTSF(YS)

Use LSET or RSET statements to move data from your program into the
I/O buffer; use LET statements (or other statements that assign values to
variables) to move data from the I/O buffer to your program's data area.

17.5.2 SWAP% Function

The SW AP% function swaps the low order byte of an integer with its high
order byte. SWAP% returns an integer value with the bytes reversed. For
example:

PRINT SWAP'X.(1'X.)
256

PRINT SWAPZ(26632Z)
2152

Block I/O 17-17

The following diagrams show the internal formats of the integers 1% and
26632% before and after using SW AP%:

1%

SWAP%(1%)

26632%

SWAP%(26632%)

100000000100000001 I
100000001100000000[

High Byte Low Byte

1011010001000010001

1000010001011010001

High Byte Low Byte

SWAP% has several different uses in BASIC-PLUS programming. For
example, Section 17.3.7 shows the use ofSWAP% in alternate buffer I/O to
create a one-word value that contains a channel number in the low byte
and a nonzero buffer number in the high byte. SW AP% is useful for reading
data returned by system function calls. See Section 11.7.4.3 for an example
and the RSTS / E Programming Manual for details. You also need to use
SW AP% with the CVT functions when you read numeric data using block
I/O that w.as written using a different I/O method. See Section F.4 for
more information.

17.6 Block I/O Examples

17-18

The examples in this section show various ways to use block I/O. Some
examples are complete programs, while others are program fragments.
These examples are intended as an introduction - block I/O has many
more possible uses.

The following example prints a line on the terminal:

5 EXTEND
10 OPEN 'KB:' FOR OUTPUT AS FILE #17.. !Create 128-b}·te buffer
20 FIELD #1%, 40% AS WHOLE.FIELD$!Define entire buffer &

&
\ FIELD # 1 7.., 107.. AS A$, 107.. AS B$, 107.. AS C$ &
!Then define three subfields in same buffer &

30 LSET WHOLE.FIELD$ = SPACE$(40%) !Preload buffer with blanKs
40 LSET A$ = "12345" !Load first 10 characters &

\ RSET B$ = "67890" !Load next 10 characters &
\ RSET C$ = "VWXYZ" !Load last 10 characters

50 PUT #1%, COUNT 40% !Write this buffer
60 PRINT #1%, '**' !Show that PUT ~ives no (CR)(LF)
32767 END

When you run this program, it prints:

12345 67890 VWXYZ **
Ready

Block I/O

In this example, the OPEN statement at line 10 opens KB: with the default
buffer size (128 bytes). The FIELD statements at line 20 define the buf
fer, once as a 40-character string WHOLE.FIELD$ and once as three
10-character strings A$, B$, and C$.

The LSET statement at line 30 pre loads WHOLE.FIELD$ (the first 40
characters of the buffer) with blanks to delete whatever data is in that part
of the buffer. (In this case, the blanks delete the program header line that
BASIC-PLUS prints when you run the program. RUNNH stops the header
from being printed, but it is still in the buffer.)

The LSET and RSET statements at line 40 use the variables A$, B$, and
C$ to load the first 30 characters of the buffer with the line to be printed.
(Note that both LSET and RSET write blanks into unused portions of the
10-character fields.) The PUT statement prints the line, and the PRINT
statement shows that the PUT statement does not output a carriage
returnlline feed.

The next example is a program to move data in a file named REPORT.FIL
from a disk to the line printer:

50 EXTEND
110 OPEN 'REPORT.FIL' AS FILE #1%
120 ON ERROR GOTO 200
130 OPEN 'LP:' FOR OUTPUT AS FILE #2%, RECORDSIZE 512%
140 FIELD #1%, 512% AS A$
150 FIELD #2%, 512% AS 6$
180 GET #1%
170 LSET 6$ = A$
180 PUT #27..
190 GOTO 180
200 CLOSE #1%, #2%
32787 END

In this example, the buffers for the line printer and the disk file are both
initialized to 512 characters. The FIELD statements at lines 140 and 150
define A$ and B$ to refer to these buffers.

The LSET statement transfers data read at line 160 to the line printer
buffer. (RSET can also be used here because A$ and B$ are the same
length.) The PUT statement at line 180 outputs the data to the line printer.
The loop terminates when the "?End of file on device" error occurs. The
ON ERROR GOTO statement transfers control to line 200, which closes both
110 channels.

Note that you can write a more efficient version of this program using
alternate buffer 1/0, which is described in Section 17.3.7.

The next two examples show how you can use CVT functions to store
numeric data in compact internal form. The first program creates a mag
netic tape file that has 26 records in each block. Each record consists of an
integer in two-byte internal format and a one-byte string. The second pro
gram reads the file and prints the data on the terminal.

Block 1/0 17-19

50 EXTEND
100 DIM INTEGER$(251.) t LETTER$(25%) !Define arrays of string &:

!l)ariable names
200 OPEN 'MMO:CVT.6LK' FOR OUTPUT AS FILE #l%t RECORDSIZE 78% &:

300 FIELD #l%t 1%*3% AS D$t
21. AS I NTEGER$ (I1.) t
1% AS LETTER$(I%)

FOR 1% = 0% TO 25%

400 FOR 1% =0% TO 25%
410 LET J% = 1% + 65%
500 LSET INTEGER$(I%) = CVT%$(J%)
600 LSET LETTER$(I%) = CHR$(J%)
700 NEXT 11.
800 PUT # l·X.
32767 END

50 EXTEND

!Offset over previous records &:
!Storage for converted integer &:
!Storage for 1-character string &:
!FOR modifier defines record 26 times &:

!Now build one physical blocK

!Store "internal" integer
!Store corresponding letter

!Write the record onto tape

100 0 I M I NTEGER$ (251.) t LETTER$ (251.) t I NTEGER% (251.)
200 OPEN 'MMO:CVT.6LK' FOR INPUT AS FILE #2%t RECORDSIZE 78%
210 GET #21.
300 FIELD #2%t 1%*3% AS D$t !Offset over previous records &:

2% AS INTEGER$(I1.) t !Converted integer &:
1% AS LETTER$(I%) !l-character string &:

FOR 1% = 0% TO 25% !FOR modifier defines record 26 times &:

400 FOR 1% =0% TO 25%
500 LET INTEGER%(I%) = CVT$%(INTEGER$(I%» !Convert stored integer bacK &:

ito internal format
600 PR I NT I NTEGER1. (I1.) t LETTER$ (I1.)
700 NEXT 1%

!Print each integer and letter

32767 END

100 GET #21.

The next example shows how you can use FIELD statements to block and
deblock records. "Deblocking" a record refers to the process of breaking a
physical record from an input device into the logical components that you
process in your program. "Blocking" refers to the process of converting
these logical components back to their physical form for output. In format
ted ASCII and virtual array 110, BASIC-PLUS handles blocking and
deblocking for you. In block 110, you block and deblock records by manipu
lating data in a buffer with FIELD, LSET, and RSET statements.

!Read a blocK
200 FOR 1% = 0% TO 420% STEP 80% !Process each record in blocK
300 FIELD #2% t I1. AS 0$ t

400 NEXT I1.
500 PUT #21.

17-20 Block 110

801. AS R$
!D$ is not usedt it's Just an offset &:
!This is the current record &:
!Process the current record &:

!Field next record in blocK
!Rewrite modified blocK

&:

~\

50 EXTEND

The following program fragment shows how to use the null device and
FIELD to set up a buffer to use for breaking down an arbitrary string:

300 OPEN 'NL:' AS FILE #12%, RECORDSIZE 132% !Create a dUMMY buffer &

400 FIELD #12%, 132% AS WHOLE,LINE$,
\ FIELD #12%, 10% AS ITEM$,

4 'X, AS D$,
50% AS DESCRIPTION$,

6'X, AS D$,
16% AS QUANTITY$,

5% AS D$,
18% AS UNIT,PRICE$,

51., AS D$,
18% AS TTL,PRICE$,

21., AS D$

!(Won't be read or I .. .lritten)
!Giue a naMe to whole buffer &
!Create subfields in buffer &
!Won't reference D$ fields &

&
&
&
&
&
&
&
&
&
&

500 INPUT LINE #L%, D$!Read a record froM input file &
\ LSET WHOLE,LINE$ = L$!Moue it into this buffer &
\ QUANTITY = VAL(QUANTITY$) !Change strings into nUMbers &
\ UNIT,PRICE = VAL(UNIT,PRICE$) !where appropriate &
\ EXTENDED,PRICE = VAL(EXTENDED,PRICE$)

17.7 UNLOCK Statement

Block I/O gives you access to a RSTS/E feature called file sharing. To use
this feature, you open a file in update mode (MODE 1%). Update mode
gives multiple users write access to a file. At the same time, it prevents
simultaneous writing of the same data. When a program performs a read
operation on a file open in update mode, the system "locks" the blocks that
are accessed. This "lock," called an implicit lock because the system does it
automatically, ensures that no other user can modify the blocks.

You can release an implicit lock with the UNLOCK statement. It has the
form:

UNLOCK #<expression>

The <expression> is the channel number of the file that is open for update.

You can explicitly lock and unlock blocks in a file with the SPEC% func
tion. See the RSTS / E Programming Manual for more information about
update mode and the SPEC% function.

Block I/O 17-21

APPENDIXES

/--~

/ ,

Appendix
language Su mary

A.1 Summary Variable Types

In EXTEND mode, a variable name can consist of a letter, followed by 0 to
29 additional each a letter, digit or a periodo

Examples

PER, D I EM, FACTOR (floating-point variable)

Lt., (integer valid also in NOEXTEND)

BRANCH. CONTk'OL'X, (integer variable)

HEAD I NG. A31 • FORM$ (string variable)

DECK. OF • CARDS$ (3 ; 12) (string array)

In NOEXTEND mode a variable name consists of a letter optionally fol
lowed by a digit. The rules for specifying integers, strings, and dimension
elements are the same in EXTEND and NOEXTEND modes.

Type

Floating-Point

Integer

Character String

Floating-Point Array

Integer Array

Character String Array

Variable Name Examples

A variable name with no suffix A

}{3

Any variable name followed by a % B /.,
character D 7 'Y"

Any variable name followed by a $ M $

character R 1 $

Any floating-point variable name
followed by one or two dimension
elements in parentheses

Any integer variable name followed
by one or two dimension elements
in parentheses

Any string variable name followed
by one or two dimension elements
in parentheses

5 (4)
NZ(S)

A 'X, (2)

E3'X, (4)

C$ (1)
AZ$(B)

E (5 t1)
!.18(3.3)

I'X.(3.5)
RZ/.,(Z Ii)

5$ (8,5)
1.,11$(4,Z)

A-I

A.2 Summary of Operators

Type

Arithmetic

Relational

Logical

String

Matrix

Operator

Unary minus
A or ** Exponentiation
*, / Multiplication, division
+ ,- Addition, subtraction

Equals
< Less than
< = Less than or equal to
> Greater than
> = Greater than or equal to
<> Not equal to

NOT
AND
OR
XOR
IMP
EQV

+

+,-

*

*

Approximately equal to (num
bers); Identically equal to
(strings)

Logical negation
Logical product
Logical sum
Logical exclusive or
Logical implication
Logical equivalence

Concatenation

Addition and subtraction of
matrices of equal dimensions,
one operator per statement
Multiplication of conformable
matrices
Scalar multiplication of a
matrix

A.3 Summary of Functions and Variables

Operates On

Numeric variables and constants.

String or numeric variables and
constants.

Relational expressions composed
of string or numeric elements,
integer variables, or integer
expressions.

String constants and variables.

Subscripted var.iables.

This summary includes BASIC-PLUS standard functions, optional func
tions, and built-in variables (such as ERL).

Each function or variable has the format:

Y=function

or

Y=variable

Y is the value returned. Y with no suffix means that the function or varia
ble returns a floating-point value. A % suffix means that the function or
variable returns an integer value; a $ suffix means that the function or
variable returns a string value.

Function arguments can be floating-point, integer, or string. A function
argument without a suffix is a floating-point argument; a % or $ suffix
indicates an integer or string argument.

A-2 Language Summary

You can always replace a floating-point argument with an integer
argument. You can also replace an integer argument with a floating-point
argument (an implied FIX is done) except in the CVT%$ and MAGTAPE
functions. (The 1% argument in these functions means you must supply an
integer.) However, for the greatest efficiency, use an argument of the type
shown.

Type

Mathematical
Functions
(Optional)

Print Functions

String Functions

Function

Y=ABS(X)

Y=ATN(X)

Y=COS(X)

Y=EXP(X)

Y=FIX(X)

Y=INT(X)

Y=LOG(X)

Y=LOGlO(X)

Y=PI

Y=RND

Y=RND(X)

Y=SGN(X)

Y=SIN(X)

Y=SQR(X)

Y=TAN(X)

Y%=CCPOS(X%)
or

Y%=POS(X%)

Y$=TAB(X%)

Y% = ASCII(A$)

Y$=CHR$(X%)

Description

Returns the absolute value of X.

Returns the arc tangent (in radians)
orx.
Returns the cosine of X, where X is in
radians.
Returns the value of
e=2.71828 ...

where

Returns the truncated value of X,
SGN(X)*INT(ABS(X».

Returns the greatest integer in X that
is less than or equal to X.

Returns the natural logarithm of X,
10g(e)X.

Returns the common logarithm of X,
log(lO)X.

Returns the constant 3.14159

Returns a random number between 0
and 1.

Returns a random number between 0
and 1.

Returns the sign function of X; + 1 if
positive, 0 if zero, -1 if negative.

Returns the sine of X, where X is in
radians.

Returns the square root of X.

Returns the tangent of X, where X is
in radians.

Returns the cunent position of the
print head for 1/0 channel X%; chan
nel 0% is your terminal,

Moves print head to position X% in the
current print record, or is disregarded
if the cunent position is beyond X%.
(The first position is counted as 0.)

Returns the ASCII value of the first
character in the string A$.

Returns the character that has the
ASCII value of X. Only one character
is generated.

(continued on next page)

Language Summary A-3

Type Function

String Functions Y$ = CVT%$(I%)

Y$ = CVTF$(X)

Y% = CVT$%(A$)

Y = CVT$F(A$)

Y$ = CVT$$(A$,I%)

Y$=RAD$(N%)

Y%=SWAP%(N%)

Y$ = STRING$(NI %,N2%)

Y$ = LEFT(A$,N%)

Y$=RIGHT(A$,N%)

Y$ = MID(A$,Nl %,N2%)

Y%=LEN(A$)

Y% = INSTR(NI %,A$,B$)

Y$ = SPACE$(N%)

A-4 Language Summary

Description

Maps an integer into a two-character
string.

Maps a floating-point number into a
four- or eight-character string.

Maps the first two characters of string
A$ into an integer.

Maps the first four or eight characters
of string A$ into a floating-point
number.

Converts string A$ to string Y$
according to the value of 1%.

Converts an integer value to a three
character string; is used to convert
from Radix-50 format to ASCII (see
the RSTSIE Programming Manual).

Causes a byte swap operation on the
two bytes in the integer variable N%.

Returns string Y$ of length Nl %,
composed of characters whose ASCII
decimal value is N2%.

Returns a substring of the string A$
from the first character to the N%th
character (the leftmost N% charac
ters).

Returns a substring of the string A$
from the N%th to the last character
(the rightmost characters of the string
starting with the N%th character).

Returns a substring of the string A$
that is N2% characters long and starts
with character Nl% (the characters
between and including the Nl % to
Nl % + N2o/o-1 % characters).

Returns the number of characters in
the string A$, including trailing
blanks.

Indicates a search for the substring B$
within the string A$ beginning at
character position Nl %. Returns a
value 0 if B$ is not in A$. Returns the
character position of B$ if B$ is in A$
(character position is measured from
the start of the string).

Returns a string of N% spaces; is used.
to insert spaces within a charac~
string.

(continued on n~t page)

Type

String Functions

String Arithmetic
Functions
(Optional)

System Functions
and Variables

Function

Y$=NUM$(N%)

Y$=NUM1$(N)

Y=VAL(A$)

Y$=XLATE(A$,B$)

Y$ = SUM$(A$,B$)

Y$ = DIF$(A$,B$)

Y$ = PROD$(A$,B$,P%)

Y$ = QUO$(A$,B$,P%)

Y$ = PLACE$(A$,P%)

T% = COMP%(A$,B$)

Y$=DATE$(O%)

Description

Returns a string of numeric characters
representing the value of N% as it is
output by a PRINT statement.

For example:

NUM$(1.0000) = (space)1(space)
NUM$(-1.0000) = -l(space).

Returns a string of characters repre
senting the value of N%. NUM1$ is
similar to the function NUM$, except
that it does not return spaces or
E-format results.

Computes the numeric value of the
string of numeric characters A$. For
example:

t.JAL (" 15") = 15

If A$ contains any character not
acceptable as numeric input with the
INPUT statement, an error results.

Translates A$ to the new string Y$
using the table string B$.

Returns a numeric string equal to the
arithmetic sum of numeric strings A$
and B$.

Returns a numeric string equal to
the arithmetic difference A$-B$ of
numeric strings A$ and B$.

Returns a numeric string equal to the
product of numeric strings A$ and B$,
rounded or truncated to P% places.

Returns a numeric string equal to the
arithmetic quotient A$/B$ of numeric
strings A$ and B$, rounded or trun
cated to P% places.

Returns a numeric string equal to the
numeric string A$, rounded or trun
cated to P% places.

Returns a value reflecting the result of
an arithmetic comparison between nu
meric strings A$ and B$. T% =-1 for
A$<B$, 0 for A$ = B$, and 1 for
A$>B$.

Returns the current date in the
format:

02-Mar-71

or

71.03.02

(continued on next page)

Language Summary A-5

Type

System Functions
and Variables

A-6 Language Summary

Function

Y$=DATE$(N%)

Y$=TIME$(O%)

Y$=TIME$(N%)

Y=TIME(O%)

Y =TIME(l%)

Y=TIME(2%)

Y =TIME(3%)

Y=TIME(4%)

Y%=STATUS

Y% = BUFSIZ(N)

Y% = LINE

Y%=ERR

Y%=ERL

Description

Returns a character string correspond
ing to a calendar date:

N% = (day of year) + [(number of years
since 1970)*1000]

DATE$(l%) o 1 - Jan - 70 or
70.01.01

Returns the current time of day as a
character string:

TIME$(O%) = 05: 30 PM or 17: 30

Returns a string corresponding to the
time at N% minutes before midnight.

For example:

TIME$(1%)

TIME$(1440%)

TIME$(721 %)

11: 58 PM or
23:58

12: 00 AM or
00:00

11: 58 AM or
11: 59

Returns the clock time in seconds since
midnight as a floating-point number.

Returns the centI'al processor time
used by the current job in tenths of
seconds.

Returns the connect time (during
which you are logged into the system)
for the current job in minutes.

Returns the decimal number of kilo
core ticks (KCTs) that this job uses.

Returns the decimal number of min
utes of device time that this job uses.

Returns the status of the II 0 channel
most recently opened.

Returns the buffer size of the device or
file open on channel N.

Returns the line number of the state
ment being executed at the time of a
CTRL / C interrupt.

Returns the value associated with
the last encountered error if an ON
ERROR GOTO statement appears in
the program.

Returns the line number at which the
last error occurred if an ON ERROR
GOTO statement appears in the
program.

(continued on next page)

Type

Matrix Functions
and Variables
(Optional)

Input / Output

Function

MAT Y=TRN(X)

MAT Y=INV(X)

Y=DET

Y%=NUM

Y%=NUM2

Y% = RECOUNT

Description

Returns the transpose of the matrix X.

Returns the inverse of the matrix X.

Following an INV(X) function evalua
tion, the variable DET is equivalent to
the determinant of X.

Following input of a matrix, NUM con
tains the number of rows input or, in
the case of a one-dimensional matrix,
the number of elements entered.

Following input of a matrix, NUM2
contains the number of elements en
tered in that row.

Returns the number of characters read
following an input operation. Used
primarily with non-file-structured
devices.

A.4 Summary of Statements

The following summary lists in alphabetical order the general formats of
BASIC-PLUS language statements and statement modifiers. For more
detailed information, refer to the section or sections in the manual that
describe the statement.

Statement elements and their abbreviations are:

variable or var Any legal variable (see Section 8.3.2 or A.l).

line number Any legal line number (see Section 7.2.1).

expression or exp Any legal expression (see Section 8.4).

message Any combination of characters.

condition or cond Any relational or logical expression (see Sections
8.4.3 and 8.4.4).

constant Any integer constant (see Section 8.3.1). You do not
have to include a % character.

argument(s) or arg Dummy variable names.

statement Any legal BASIC-PLUS statement.

string Any legal string constant, variable, function, or ex
pression.

protection Any legal protection code, as described in the RSTS / E
System User's Guide.

Language Summary A-7

value(s) Any floating-point, integer, or string constant (see
Section 8.3.1).

list The legal list for the statement.

dimension(s) One or two dimensions of an array, the maximum
dimensions for the statement.

Elements in angle brackets are necessary elements of the statement.
Braces enclose a choice of elements, one of which is required for the state
ment. Square brackets enclose uptional elements of the statement.

A.4.1 Statements

CHAIN - Section 13.10

CHAIN <string> [[LINE] <line number>]

100 CHAIN "PROG3" LINE 75
200 CHAIN 'PROG3' LINE A
440 CHAIN 'PROG2'
550 CHAIN PROGRAMS 2000
570 CHAIN 'PROG5' A 'X,

CHANGE - Section 10.2

CHANGE { <arr.ay na~e> } TO {
<strmg varIable>

300 CHANGE AS TO X
450 CHANGE STRINGS TO ARRAY%
700 CHANGE ARRAY% TO STRINGS

CLOSE - Section 14.6

<string variable> l
<array name> ,

CLOSE [#] <expression> [,[#] <expression> , ... J

780 CLOSE #2':<,
450 CLOSE #1%,#2%t#5%
800 CLOSE #A% + 6%
900 CLOSE #-CHAN% !Close without writin~ buffer to file
850 CLOSE #1% FOR 1% = 1% TO 12% !Close all channels

A-8 Language Summary

COMMENT - Section 7.4

[<statement>] ! <message>

100 !This is a COMMent
150 PRINT !PerforM a CR/LF

DATA - Section 9.2.3

DATA <value list>

1300 DATA 4.3. "STRING", 10, 1000. 1.45E9

DEF*, single line - Sections 9.8, 10.6, 11.6

DEF* FN<variable(arguments» = <expression(arguments»

120 DEF* FNAIX,Y,Z) = SQRIX"2% + Y"2% + Z"2%)

DEF*, multiple line - Section 13.1

DEF* FN <variable(arguments»
<statements>
[LET] FN <variable> = <expression>
FNEND

300 DEF* FNFIM%) !Factorial function
310 IF M% 0% OR M% = 1% &

THEN FNF 1/,.!}:

ELSE FNF = M%*FNFIM% - 1%)
320 FNEND

NOTE

BASIC-PLUS supports DEF as well as DEF* in single
and multi-line functions for compatibility with earlier ver
sions. However, DEF* is preferred for compatibility with
BASIC-PLUS-2.

Language Summary A-9

A-10

DIM - Section 9.6

DIM <variable(dimension(s))> [,<variable(dimension(s))> , ...]

30 DIM A(20), 8$(8,5), CX,(SS)

DIM (Virtual Array) - Section 16.1

DIM # <constant> , < stringvar(dimension(s)) > [= <constant>] [, <var(dimension(s))> , ...]

70 DIM #4X, , A$(100) = 32X, , 8(50,50), CX,(30)

END - Section 9.10

END

32767 END

EXTEND - Section 7.5.1

EXTEND

10 EXTEND !PrOgraM in EXTEND Mode

FIELD - Section 17.4.1

FIELD #<exp>,<expl> AS <string varl>[,<exp2> AS <string var2>, ...]

700 FIELD #2%, 10% AS A$, 20% AS 8$, 5% AS C$

Language Summary

FOR - Section 9.5.1

FOR <variable> = <expression> TO <expression> [STEP <expression>]

200 FOR 1% = 2% TO 40% STEP 2%
300 FOR T% = 0% TO T6% STEP 1%
400 FOR N = A TO (C + Sl)/A

FOR-WHILE, FOR-UNTIL - Section 13.5

FOR <variable> = <expression> [STEP <expression>] { ~~~i~ } <condition>

450 FOR I = 1. STEP 3. WHILE I < X
470 FOR N% = 2% STEP 4% UNTIL N% > A% OR N% B%
500 FOR B = 0. STEP B = 1. UNTIL B > Bl

GET - Section 17.3

GET #<e > [{BLOCK <exp>} ,COUNT <exp> ,USING <exp>] xp 'RECORD <exp>

140 GET #2%1 BLOCK 88.
180 GET #4%1 RECORD 50%

GOSUB - Section 9.9.1

GOSUB <line number>

180 GoSUB 2000

GOTO - Section 9.3

GOTO <line number>

100 GoTo 150

Language Summary A-ll

A-12

IF-THEN, IF-GOTO - Section 9.4

I THEN <statement>
IF <condition> THEN <line number>

GOTO <line number>

50 IF A) 6 OR 6) C THEN PRINT "No"
60 IF FNA(R) = 6 THEN Z50
75 IF L < X"ZI AND L <) O. GoTo 1000

IF-THEN-ELSE - Section 13.4

IF <condition>
THEN <statement>
THEN <line number>
GOTO <line number>

[ELSE <statement>]
ELSE <line number>

ZOO IF 6 = A THEN PRINT 'EQUAL' ELSE PRINT 'NOT EQUAL'
300 IF A == N THEN ZOO ELSE PRINT A \ STOP
400 IF FNA(R) = 6 &

THEN GoTo Z60 &
ELSE LET 6 = 6 + FNA(Rl) &
\GoTo 1000

INPUT - Sections 9.2.2, 10.3.2, 15.2

INPUT [#<expression>,] <variable list>

100 INPUT A$
ZOO INPUT "Enter your nafTle"iA$
300 INPUT #11, ITEM$, PART

INPUT LINE - Sections 10.3.3, 15.2.3

INPUT LINE [#<expression>,] <string variable>

300 INPUT LINE R$
400 INPUT LINE #81, CUSToMER$

KILL - Sections 5.4.2, 14.8

KILL <string>

100 KILL 'oLD.DAT'
ZOO KILL FILE.NAME$

Language Summary

LET - Section 9.1

[LET] <variable(s» = <expression>

110 LET A',\', = 40'X,
120 6 = 22.
130 C, Fl, VIO) = 0 !Multiple assirnment

LSET - Section 17.4.2

LSET <string var> [,<string var>, ...] <string>

100 LSET 5$ = 'XVZ'

MAT Initialization - Section 12.5

ZER
MAT <matrix name> CON [(dimension(s»]

IDN

100 DIM 5115 dO), A(10), C'X,(5)
120 MAT C'X, = CON
130 MAT 5 IDN(10,10)
140 MAT 6 = ZERIN,M)

MAT INPUT - Sections 12.4, 15.2.4

MAT INPUT [#<expression>,] <list of matrices>

150 DIM 6$(40), Fl'X,(35)
200 OPEN "D52:MAT2.DAT" FOR INPUT AS FILE #3%
120 MAT INPUT #3%, 6$, FI%

MAT PRINT - Sections 12.3, 15.1.3

MAT PRINT [#<expression>,] <matrix name> [;]

150 DIM A(20). 6',\',(15,30)
200 MAT PRINT AI !Print 20 ele~lents, five on each line
250 MAT PRINT 6%110.25); !Print 10-by-25 subset of 5%, pacKed
300 MAT PRINT #2%. Al !Print on channel 2

Language Summary A-iS

A-14

MAT READ - Section 12.2

MAT READ <list of matrices>

100 DIM A(ZO) I 6$(3Z) I C'X,(15 dO)
ZOO MAT READ AI 6$(Z5) I C%

NAME-AS - Sections 5.2.2, 14.7

NAME <string> AS <string>

455 NAME "NDNAME" AS "FILE1.DAT/PR:40"
800 NAME 'DL1:MATRIX.DAT' AS 'MATA1.DAT(48)'

NEXT - Section 9.5.1

NEXT <variable>

100 NE~T I 'X,
ZOO NEXT N

NOEXTEND - Section 7.5.1

NOEXTEND

50 NOEXTEND
50 NO EXTEND

ON ERROR GOTO - Section 13.7.1

ON ERROR GOTO [<line number>]

100 ON ERROR GOTO 8000
110 ON ERROR GOTO 0 !Disables error-handlin~ routine
110 ON ERROR GOTO !Disables error-handlin~ routine

Language Summary

ON-GOSUB - Section 13.3

ON <expression> GOSUB <list of line numbers>

230 ON FNCIM) GOSU5 2000, 2400. 3000

ON-GO TO - Section 13.2

ON <expression> GOTO <list of line numbers>

150 ON X% GOTO 170. 570. 430, 300

OPEN - Section 14.5

. [{ FOR INPUT }] . OPEN <strmg> FOR OUTPUT AS FILE [#] <expressIOn>

[,RECORDSIZE <exp>] LCLUSTERSIZE <exp>] [,FILESIZE <exp>] [,MODE <exp>]

100 OPEN 'LP:' FOR OUTPUT AS FILE *151%
200 OPEN "FOO.DAT" AS FILE *13%
300 OPEN 'DM1:OATA.TR' FOR INPUT AS FILE #10%. RECORDSIZE 1024%

PRINT - Sections 9.2.1, 15.1

PRINT [[#<expression> ,] <list>]

130 PRINT !Produces CR/LF
140 PRINT "5esinnins of output:";I. A*I
150 PRINT #2%. 'OUTPUT TO DEVICE';N%
180 PRINT "Title: "HITLE$, "Ref *I"jR$

PRINT-USING - Section 15.1.2

PRINT [#<expression>,] USING <string>, <list>

550 PRINT USING '~u~. ##' ,AA
700 PRINT #7%. USING 6$, A,B,C

Language Summary A-15

A-16

PUT - Section 17.3

[{BLOCK <exp>}] PUT #<exp> , RECORD <exp> ,COUNT <exp> ,USING <exp>

390 PUT #1%, COUNT 80%

RANDOMIZE - Section 9.7.4

RANDOM[IZE]

lIO RANDOMIZE
100 RANDOM

READ - Section 9.2.3

READ <variable list>

100 READ A, B$, F U, B (U), R2

REM - Section 7.4

REM <message>

100 REM - This pro~ram plays solitaire

RESTORE - Section 9.2.4

RESTORE

100 RESTORE

RESUME - Section 13.7.2

RESUME [<line number>]

1000 RESUME 0 !Resume at line where error occurred
1000 RESUME !Equivalent to RESUME 0
650 RESUME 200 !Resume at line ZOO

Language Summary

RETURN - Section 9.9.2

RETURN

375 RETURN

RSET - Section 17.4.2

RSET <string var> [,<string var>, ...]

250 RSET C$ = "12345"

SLEEP - Section 13.9

SLEEP <expression>

<string>

260 SLEEP 20% !Suspend Job for 20 seconds

STOP - Sections 6.3.1, 9.11

STOP

180 STOP

UNLOCK - Section 17.7

UNLOCK #<expression>

500 UNLOCK # 5 'X,

UNTIL - Section 9.5.3

UNTIL <condition>

100 UNTIL LEN(A$) > 0%

Language Summary A 17

A-1S

WAIT - Section 13.9

WAIT <expression>

520 WAIT A 'X,

WHILE - Section 9.5.2

WHILE <condition>

30 WHILE X < Y

A.4.2 Statement Modifiers

FOR - Section 13.6.3_

<statement> FOR <variable> = <exp> TO <exp> [STEP <exp>]

[{ WHILE} d't'] UNTIL <con I Ion>

175 LET 6$(1%) = C$(I%) FOR 1% = 1% TO Jl%
180 READ A(I%) FDR 1% = 0% TD 20% STEP J%

IF - Section 13.6.1

<statement> IF <condition>

100 PRINT T% IF T% > Tl%

UNLESS - Section 13.6.2

<statement> UNLESS <condition>

350 PRINT A$ UNLESS Y% < 0%

Language Summary

UNTIL - Section 13.6.5

<statement> UNTIL <condition>

1080 IF B <> 0 THEN A(II) = B UNTIL II > K

WHILE - Section 13.6.4

<statement> WHILE <condition>

230 LET A(I%) = FNX(I%) WHILE A < 45.5

Language Summary A-l9

A.S Reserved Keywords

A-20

BASIC-PLUS statement, function, variable, and option names are reserved
keywords. This means that you cannot use them for your own variable or
function names.

Table A-I lists all language elements that are reserved for DIGITAL
supplied versions of BASIC-PLUS and BASIC-PLUS-2. Do not use any of
the listed words as the name of a variable or function.

Table A-I: Reserved Keywords

ABS DATA FSP$ NOECHO
ABS% DATE$ FSS$ NONE
ACCESS DEF GE NOREWIND
ALLOW DELETE GET NOSPAN
ALTERNATE DENSITY* GO NOT
AND DESC GOSUB NUL$
APPEND DET GOTO NUM
AS DIF$ GT NUM$
ASCII DIM HT NUMl$
ATN DIMENSION IDN NUM2
BACK DUPLICATES IF ON
BEL ECHO IMP ONECHR
BLOCK EDIT$ INDEXED ONERROR
BLOCKSIZE ELSE INPUT OPEN
BS END INSTR OR
BUCKETSIZE EQ INT ORGANIZATION
BUFFER EQV INV OUTPUT
BUFSIZ ERL KEY PEEK**
BY ERN$ KILL PI
CALL ERR LEFT PLACE $
CCPOS ERROR LEFT$ POS
CHAIN ERT$ LEN PRIMARY
CHANGE ESC LET PRINT
CHANGES EXIT LF PROD$
CHR$ EXP LINE PUT
CLOSE EXTEND** LINPUT QUO$
CL USTERSIZE** FF LOC* RAD$
COM FIELD LOG RANDOM
COMMON FILE LOGIO RANDOMIZE
COMP% FILE$ LSET RCTRLC
CON FILESIZE MAGTAPE RCTRLO
CONNECT FILL MAP READ
CONTIGUOUS FILL$ MAT RECORD
COS FILL% MID RECORDSIZE
COUNT FIND MID$ RECOUNT
CR FIX MODE REF
CTRLC FIXED MODIFY RELATIVE
CVT$$ FNEND MOVE REM
CVT$% FNEXIT NAME RESET
CVT$F FOR NEXT RESTORE
CVT%$ FORMAT$ NOCHANGES RESUME
CVTF$ FROM NODUPLICATES RETURN

(continued on next page)

Language Summary

Table A-I: Reserved Keywords (Cont.)

RIGHT SQR TAPE USING
RIGHT$ STATUS TASK VAL
RND STEP TEMPORARY VAL%
RSET STOP THEN VALUE
SCRATCH STR$ TIME VARIABLE
SEG% STREAM TIME$ VIRTUAL
SEQUENTIAL STRING$ TO VT
SGN SUB TRM$ WAIT
SI SUBEND TRN WHILE
SIN SUBEXIT UNDEFINED WINDOWSIZE
SLEEP SUM$ UNLESS WRITE
SO SWAP% UNLOCK WRKMAP
SP SYS** UNTIL XLATE
SPACE$ TAB UPDATE XOR
SPAN TAN USEROPEN ZER
SPEC

*Reserved word, included for compatibility with DECSYSTEM 20
**Supported on RSTS/E only

Language Summary A-2I

Appendix B
Command Summary

Table B-1 briefly describes the BASIC-PLUS keyboard monitor com
mands. For details on the syntax and use of these commands, see Part I of
this manual and the RSTSIE System User's Guide. (Commands marked
with an asterisk (*) are described in the RSTSIE System User's Guide.)
Table B-2 summarizes control characters and terminal keys.

Table B-1: BASIC-PLUS Commands

Command Description

APPEND Merges the contents of a previously saved source program with the cur-
rent program.

The BASIC-PLUS APPEND command differs from the DCL APPEND
command. The DCL APPEND command appends one file to the end of
another. See the RSTSIE DCL User's Guide for more information.

ASSIGN* Reserves an 1/0 device for use by a job. Only the job that issues the
ASSIGN command can use the device. ASSIGN also assigns a logical
name to a device, assigns an account to the @ character, and sets a
default protection code.

The BASIC-PLUS ASSIGN command differs from the DCL ASSIGN
command. The DCL ASSIGN command only assigns a logical name to a
device. See the RSTS IE DCL User's Guide for more information.

BYE* Logs you out; closes and saves any open files.

After you type BYE and press the RETURN key, the system displays:

Confirm:

You have five options:

? Displays help on valid responses to the "Confirm" prompt.

Y Normal logout.

N No logout; cancels the BYE command.

I Delete files individually before logging out.

F Fast logout.

To request one ofthese options in the BYE command, type BYE, a slash,
and one of the valid responses (BYE IF, for example).

(continued on next page)

B-1

Table B-1: BASIC-PLUS Commands (Cont.)

Command

CAT
CATALOG

CCONT

COMPILE

CONT

DEASSIGN*

DELETE

EXIT

EXTEND

HELLO*

KEY

B-2 Command Summary

Description

Displays your file directory. The default device is the system disk, but
you can specify another device after the word CAT or CATALOG.

For privileged users. Same as CONT command, but detaches the job
from the terminal.

Saves a translated image of the current program in a disk file. The
default file name is the current program name; the default file type is
.BAC.

Continues execution of the current program after execution of a STOP
statement.

Releases a device for use by other jobs. DEASSIGN also releases a logi
cal name for a device, cancels the association between an account and
the @ character, and changes the current default protection code back
to the system default. The system performs an automatic DEASSIGN
when you enter the BYE command.

The BASIC-PLUS DEASSIGN command differs from the DCL
DEASSIGN command. The DCL DEASSIGN command only releases a
logical name for a device. See the RSTS/E DCL User's Guide for more
information.

Removes one or more lines from the program in memory. After the word
DELETE, type the line number of the line to be deleted or two line
numbers separated by a dash (-). You can specify several single lines or
ranges of lines. Use commas to separate line numbers or line number
ranges. Typing DELETE with no line numbers deletes all lines from
your current program.

The BASIC-PLUS DELETE command differs from the DCL DELETE
command. The DCL DELETE command deletes a file from a directory.
See the RSTS /E DCL User's Guide for more information.

Clears memory and returns control to the job keyboard monitor.

Puts BASIC-PLUS in EXTEND mode. You can write and run programs
that include EXTEND mode features.

Tells RSTS /E that you want to log in. The system prompts you for a
project-programmer number and password. You can also use HELLO
to attach a detached job to the terminal or change accounts without
logging out.

Reenables terminal echo after a TAPE command. (Use this command
only with ASR33 terminals that have a low-speed paper-tape reader.)

Press the LINE FEED key before entering the KEY command in case
the last line input did not end with a carriage return/line feed.

Use the LINE FEED or ESCAPE key (not RETURN) to enter the KEY
command. The system does not treat a carriage return character as a
delimiter when the terminal is in tape mode.

(continued on next page)

Table B-1: BASIC-PLUS Commands (Cont.)

Command Description

LENGTH Returns the length of your current program in 1K increments, along
with its maximum allowed size. For example, if the current program
is between 6K and 7K and the maximum size is 16K, BASIC-PLUS
displays:

LIST

LISTNH

NEW

NOEXTEND

OLD

REASSIGN*

RENAME

REPLACE

RUN

RUNNH

SAVE

SCALE

7(lSIK of MeMOry used

Displays all or part of the program currently in memory. The word LIST
by itself displays your entire program. LIST followed by one line num
ber displays that line; LIST followed by two line numbers separated by a
dash (-) displays the lines between and including the indicated lines.
You can display several single lines or ranges of lines. Use commas to
separate line numbers or line number ranges.

Same as LIST, but does not print the header that contains the program
name and current date and time.

Clears your memory area, names a new program, and lets you enter a
new program at the terminal. The default program name is NONAME.

Puts BASIC-PLUS in NOEXTEND mode. EXTEND mode features
are no longer available unless the program contains an EXTEND
statement.

Retrieves a saved source program from disk and places it in memory. By
default, OLD retrieves NONAME.BAS in your account on the public
structure.

Transfers control of a device to another job.

Changes the name of the program currently in memory.

The BASIC-PLUS RENAME command differs from the DCL RENAME
command. The DCL RENAME command renames files. See the RSTS / E
DeL User's Guide for more information.

Copies the source program currently in memory into a disk file. The
default file name is the current program name; the default file type is
.BAS. Unlike the SAVE command, REPLACE replaces an existing file
with the same name.

Executes the program in memory. If you type a file specification after
the word RUN, the system loads the file from disk, translates it ifneces
sary, and executes it.

Executes the program in memory without printing the header that con
tains the program name and current date and time. You can use
RUNNH to run the current program only.

Copies the source program currently in memory into a disk file. The
default file name is the current program name; the default file type is
.BAS. SAVE does not replace an existing file with the same name.

Sets the scale factor to a specified value. When you do not specify a
value, SCALE displays the current and pending scale factors.

(continued on next page)

Command Summary B-3

Table B-1: BASIC-PLUS Commands (Cont.)

Command Description

TAPE Disables terminal echo while the terminal's low-speed reader reads a
paper tape into the system. (Use this command only with ASR33 termi-
nals that have a low-speed paper-tape reader.)

Use the NEW command before the TAPE command. NEW causes
BASIC-PLUS to expect input of a source program. After entering the
TAPE command, insert the tape in the low-speed reader and set the
reader's control switch to START.

After you type the TAPE command, the system ignores RUBOUT char-
acters and does not treat carriage return characters as delimiters. The
program is not printed on the terminal as the system reads it, but error
messages are printed.

Use the KEY command to reenable terminal echo when you finish using
the low-speed reader.

UNSAVE Deletes a file from a directory. The default file name is your current
program name; the default file type is .BAS.

B-4 Command Summary

Table B-2: Control Characters and Terminal Keys

Key Function

CTRL/C Halts execution of the current program and returns control to the job
keyboard monitor. Echoes on the terminal as <tAC".

CTRL/O Stops and restarts terminal output while a program is running.

CTRL/Q Resumes terminal output suspended by CTRL/S while a program is
running. You can use CTRL/Qonly if the terminal STALL characteris-
tic is set. I

CTRL/R Redisplays the current terminal line.

CTRL/S Suspends terminal output while a program is running. You can use
CTRL / S only if the terminal STALL characteristic is set.

CTRLIU Deletes the current terminal line. CTRL/U does not erase characters
from the screen. Instead, it echoes "AU" and moves the cursor to the next
line.

CTRL/Z Is an end-of-file marker.

DELETE Erases the last character typed.

ESCAPE Sends a typed line to the system for processing. Echoes on your terminal
ALTMODE as a "$" and does not perform a carriage return/line feed.

FORM FEED Sends a typed line to the system for processing. Performs a form feed
CTRL/L operation on the terminal.

LINE FEED Continues the current program line on another terminal line. Performs
a line feed / carriage return operation.

It is recommended that you use the ampersand (&) /RETURN key
combination instead of the LINE FEED key to continue the current
program line on another terminal line. You can use the ampersand /
RETURN key combination only in EXTEND mode.

NO SCROLL Performs the same function as CTRL/S and CTRL/Q on a VT100 termi-
nal.The terminal STALL characteristic must be set.

RETURN Sends a typed line to the system for processing. Performs a carriage
return/line feed operation on the terminal.

RUBOUT Erases the last character typed and echoes erased characters inside
backslashes.

TAB Moves the cursor to the next tab stop on the terminal line. By default,
tab stops are eight spaces apart.

Command Summary B-5

Appendix C
Error Messages

C.1 Interpretation of Error Messages

Messages in RSTS/E are generated both for BASIC-PLUS errors and
RSTS I E errors. These messages are called RSTS IE error messages and are
described as one set. The BASIC-PLUS errors cover conditions that occur
during translation and at run time, such as a violation of the syntax rules
(?Syntax error) and referencing an element of an array beyond the defined
limits (?Subscript out of range). The RSTS/E errors involve operating sys
tem conditions, such as failing to locate the file or account specified (?Can't
find file or account) and requesting the hardware to perform a function for
which it is not ready (?Device hung or write locked). Tables C-4 and C-5
describe the RSTS/E error messages.

In most cases, if you are not trapping errors (that is, an ON ERROR GO TO
statement is not in effect), BASIC-PLUS stops running the program. It
prints the error message and the line number of the BASIC-PLUS state
ment that was being executed when the error occurred. The following sam
ple printout shows the procedure:

10 OPEN'Z' FOR INPUT AS FILE 17..
RUNNH
?Can't find file or account at line 10

Ready

As the Ready prompt indicates, control returns to the system.

One exception to this procedure occurs when you execute an INPUT state
ment at the job's console terminal and error trapping is not in effect. The
system generates the error message and executes the statement again, as
shown in the following sample printout:

10 ON ERROR GOTO 0 \ INPUT 'INTEGER VALUE';A%
RUNNH
INTEGER IjALUE? C
%Data format error at line 10
INTEGER IjALUE?

C-l

With error trapping disabled at line 10, an invalid response to the INPUT
statement causes the system to print the error message, clear the error
condition, and execute the statement again.

Associated with each message is an error variable called ERR. Whenever
an error occurs with trapping in effect, the system checks the error variable
(which is a decimal number in the range 0 to 127). An error with a number
between 1 and 70 causes the system to transfer control to the line number
indicated in the ON ERROR, GOTO statement. The system does not print
the error message. Your program is able to check the ERR variable and
perform a recovery procedure.

If the error number is between 71 and 127, the system does not transfer
control to the recovery routine but prints the message and returns control
to the system. (Error number 0 is reserved to identify the system installa
tion name.)

Because a BASIC-PLUS program can recover from certain errors, this
appendix lists errors in two categories-recoverable and nonrecoverable.
The recoverable error messages are in ascending order of their error num
bers. A program can use these error numbers to differentiate errors. Non
recoverable errors are in alphabetical order without error numbers,
because a program cannot use these numbers in an error handling routine.

The first character position of each message indicates the severity of the
error. Table C-1 describes this standard.

Table C-l: Severity Standard in Error Messages

Character Severity Meaning

% Warning Execution of the program can continue but may not gen-
erate the expected results.

? Fatal Execution cannot continue unless you remove the cause of
the error. No space or tab is allowed after the question
mark.

Information A message beginning with neither a question mark nor a
percent sign is for information only.

In the error message descriptions in Tables C-4 and C-5, the abbreviations
shown in Table C-2 denote special characteristics of the error.

Table C-2: Special Abbreviations for Error Descriptions

Abbreviation Meaning

C Continue. If an ON ERROR GOTO statement is not in effect, execu-
tion continues but with the conditions described.

SPR Software Performance Report. This error should occur only under the
conditions described. If it occurs under any other conditions, you
should document the conditions under which the error occurred and
have the appropriate person at your site send an SPR to DIGITAL.

C-2 Error Messages

If an error occurs in a program with no error trapping in effect, shown as
"C" in Table C-2, BASIC-PLUS prints the error message and line number
but continues running the program. The following sample printout shows
the procedure:

100
200
RUNNH

ON ERROR GOTO 0 \ A%
PR I NT AX.

%Inte~er error at line 100
o

Ready

32768.

The attempt to compute a value outside the range for integers generated an
"%Integer error" at line 100. After BASIC-PLUS prints the error message,
processing continues but with the conditions described in the error mean
ing. BASIC-PLUS substitutes 0 for the erroneously computed value.

The number of RSTS IE error messages is restricted to 127. Because of this
restriction, certain error messages have multiple meanings. The specific
meaning of an error message depends on the operation you are performing
when the error condition occurs. For example, if the system attempts a file
access and the designated file cannot be located, RSTS IE generates the
"?Can't find file or account" error (ERR = 5). That same error condition,
however, applies to other, generically similar access operations.

Thus, if a program attempts to send a message to another program and the
system cannot find the proper entry in the system table of eligible
receivers, RSTS/E returns error number 5. Though the second failure does
not involve a file access error, it too is classified as an access failure.

Certain RSTS/E errors, although classified as user-recoverable, cannot be
trapped by a program. Table C-3 lists these errors.

Table C-3: Non-Trappable Errors in Recoverable Class

ERR Message Printed

34 ?Reserved instruction trap

36 ?SP stack overflow

37 ' ?Disk error during swap

38 ?Memory parity failure

These errors involve special conditions that your program cannot control
and that should not occur on a normal system. For example, the "?Disk
error during swap" error indicates a hardware problem. The system does
not return control to the program. The error condition itself, however, can
be either transient or recurring.

Bring these errors to the attention of your system manager for further
investigation. These errors are recoverable in the strict sense that the
monitor can take corrective action. However, the BASIC-PLUS run-time
system does not return control to your program.

Error Messages C-3

Table C-4: User-Recoverable Error Messages

ERR Message Printed

o (system installation name)

1 ?Bad directory for device

2 ?Illegal file name

3 ? Account or device in use

4 ?No room for user on device

5 ?Can't find file or account

C-4 Error Messages

Meaning

The error code 0 is associated with the
system installation name. System pro
grams use this to print identification
lines.

1. The directory of the device referenced
is in an unreadable format.

2. The magnetic tape label format on
tape differs from the system-wide de
fault format, the current job default
format, or the format specified in the
OPEN statement. Use the ASSIGN
command to set the correct format
default or change the format specifi
cation in the MODE option of the
OPEN statement.

1. The file name or type specified is not
acceptable. It contains unacceptable
characters or violates the file specifi
cation format.

2. The CCL command to be added
begins with a number or contains a

. character other than A through Z, 0
through 9, or at sign (@).

1. The account to be deleted has one or
more files and must be zeroed before
being deleted.

2. Reassigning or dismounting of the
device cannot be done because the de
vice is open or has one or more open
files.

3. The run-time system to be deleted is
in use.

4. Output to a pseudo keyboard cannot
be done unless the device is in KB
wait state.

5. An echo control field cannot be de
clared while another field is active.

6. The CCL command to be added
already exists.

You have already used the allowed stor
age space; the device as a whole is too full
to accept further data.

Either the file or account number speci
fied was not found on the device specified,
or the CCL command to be deleted does
not exist.

(continued on next page)

Table C-4: User-Recoverable Error Messages

ERR Message Printed

6 ?Not a valid device

7 ?I 10 channel already open

8 ?Device not available

9 ?I I 0 channel not open

10 ?Protection violation

11 ?End of file on device

12 ?Fatal system 1/0 failure

13 ?Data error on device

Meaning

The device specification supplied is not
valid for one of the reasons:

L The unit number or its type is not
configured on the system.

2. The specification is logical and
untranslatable because a physical de~
vice is not associated with it.

You tried to open one of the twelve 1/0
channels that the program had
opened. (SPR)

The specified device exists on the system,
but you cannot assign or open it for one of
the following reasons:

1. The device is currently reserved
another job,

2. The device requires privileges for
ownership that you do not have,

3, The system ll"lanager has disabled the
device or its controller,

4. The device is a keyboard line for
pseudo keyboard use only.

You tried to perform I lOon one of the
twelve channels that the program has not

, previously opened.

You cannot perform the requested opera
tion because the operation is illegal (such
as from a line printer) or because
you do not have the necessary
(such as deleting a protected file),

You tried to beyond the
end of a data or a BASIC-PLUS
source file is called into memory that does
not contain an END statement.

An I 10 error has occurred on the system
leveL You have no guarantee that the
last operation has been perfonned. This
error is caused by a hardware condition.
Report such occurrences to the system j
manager. !

!
One or more characters may have been I
transmi.tted incorrectly due to a paritYJ ..
error, bad punch combination on a card,
or similar error. L-__ ~ ____________ ~ ____ ~ ________ ~ _____ c __ .~ ____ c~.

(continued on next

Error Messages C-5

Table C-4: User-Recoverable Error Messages (Cont.)

ERR Message Printed

14 ?Device hung or write locked

15 ?Keyboard WAIT exhausted

16 ?Name or account now exists

17 ?Too many open files on unit

18 ?Illegal SYS() usage

19 ?Disk block is interlocked

20 ?Pack IDs don't match

21 ?Disk pack is not mounted

22 ?Disk pack is locked out

23 ?Illegal cluster size

24 ?Disk pack is private

25 ?Disk pack needs 'CLEANing'

26 ?Fatal disk pack mount error

27 ?I / 0 to detached keyboard

C-6 Error Messages

Meaning

Check the hardware condition of the de
vice you are requesting. Possible causes
of this error include a line printer out of
paper or high-speed reader being off-line.

Time that the WAIT statement requests
has been exhausted with no input
received from the specified keyboard.

Either you tried to rename a file with the
name of a file that already exists, or
the system manager tried to insert an
account number that is already in the
system.

Only one open DECtape output file is per
mitted per DECtape drive. Only one open
file per magnetic tape drive is permitted.

Illegal use of the SYS system function.

The requested disk block segment is al
ready in use (locked) by some other user.

The identification code for the specified
disk pack does not match the identifica
tion code already on the pack.

No disk pack is mounted on the specified
disk drive.

The disk pack specified is mounted but is
temporarily disabled.

The specified cluster size is unacceptable.
The cluster size must be a power of 2. For
a file cluster, the size must be equal to or
greater than the pack cluster size and
must not be greater than 256.

For a pack cluster, the size must be equal
to or greater than the device cluster size
and must not be greater than 16. The de
vice cluster size is fixed by type.

You do not have access to the specified
private disk pack.

Nonfatal disk mounting error; run the
ONLCLN system program.

Fatal disk mounting error. Disk cannot
be successfully mounted.

1/0 was attempted to a hung-up dataset
or to the previous, but now detached, con
sole keyboard for the job.

(continued on next page)

Table C-4: User-Recoverable Error Messages (Cont.)

ERR Message Printed

28 ?Programmable AC trap

29 ?Corrupted file structure

30 ?Device not file structured

31 ?Illegal byte count for 1/0

32 ?No buffer space available

33 ?Odd address trap

34 ?Reserved instruction trap

35 ?Memory management violation

Meaning

A CTRL/C was typed while an ON
ERROR GOTO statement was in effect
and programmable CTRL 1 C trapping
was enabled.

Fatal error in CLEAN operation.

An attempt is made to access a device
other than a disk, DECtape, or magnetic
tape device as a file-structured device.
This error occurs, for example, when you I
attempt to get a directory listing of a non
directory device.

This error has two possible causes:

L The buffer size you specified in the
RECORDSIZE option of the OPE.N I
statement or the COUNT of
the PUT statement is not a multiple !
of the block size of the device you are I
using for I or IS illegal for the ,
device.

2.

This error occurs when you attempt to
address nonexistent memory or an odd
address with the PEEK function. If you
get this error for any other reason,
it to your system manager.

An attempt is made to execute an illegal
or reserved instruction or an FPP instruc
tion when floating-point hardware is not
available. (See discussion at beginning of
appendix.)

You specified an illegal monitor address
in the PEEK function. If you get this
error for any other reason, report it to
your system manager.

i
I

(continued on next page)

Error Messages C-7

Table C-4: User-Recoverable Error Messages (Cont.)

ERR Message Printed

36 ?SP stack overflow

37 ?Disk error during swap

38 ?Memory parity failure

39 ?Magtape select error

40 ?Magtape record length error

41 ?Non-res run-time system

42 ?Virtual buffer too large

43 ?Virtual array not on disk

44 ?Matrix or array too big

45 ?Virtual array not yet open

46 ?Illegal II 0 channel

47 ?Line too long

48 %Floating point error

C-8 Error Messages

Meaning

An attempt was made to extend the hard
ware stack beyond its legal size. (See
discussion at beginning of appendix.)
(SPR)

A hardware error occurs when your job is
swapped into or out of memory. The con
tents of your job area are lost, but the job
remains logged into the system and
is reinitialized to run the NONAME
program. Report such occurrences to
the system manager. (See discussion at
beginning of appendix.)

A parity error was detected in the mem
ory occupied by this job. (See discussion
at beginning of appendix.)

When access to a magnetic tape drive was
attempted, the selected unit was found to
be offline.

When performing input from magnetic
tape, the record on magnetic tape was
longer than the buffer designated to han
dle the record.

The run-time system referenced has not
been loaded into memory and is therefore
nonresident.

Virtual array buffers must be 512 bytes
long.

A nondisk device is open on the channel
on which the virtual array is referenced.

Memory array size is too large.

You tried to use a virtual array before
opening the corresponding disk file.

You tried to open a file on an I I 0 channel
outside the range of the integer numbers
1 to 12.

The buffer overflows because of an at
tempt to input a line longer than 255
characters. (This includes any line termi
nator.)

You tried to use a computed floating
point number outside the range 1E-38
<n<1E38 excluding zero. If no transfer to
an error handling routine is made, zero is
returned as the floating-point value. (C)

(continued on next page)

Table C-4: User-Recoverable Error Messages (Cont.)

ERR Message Printed

49 %Argument too large in EXP

50 %Data format error

51 %Integer error

52 ?Illegal number

53 %Illegal argument in LOG

54 %Imaginary square roots

55 ?Subscript out of range

56 ?Can't invert matrix

57 ?Out of data

58 ?ON statement out of range

59 ?Not enough data in record

60 ?Integer overflow, FOR loop

Meaning

Acceptable arguments are within the
approximate range -89<arg< + 88. The
value returned is zero. (C)

A READ or INPUT statement detected
data in an illegal format. For example,
1..2 is an improperly formed number;
1.3 is an improperly formed integer;
"HELLO" "THERE" is an illegal string.
(C)

You tried to use a computed integer
outside the range -32768<n<32767. For
example, you tried to assign to an integer
variable a floating-point number outside
the integer range. If no transfer to an
error handling routine is made, zero is
returned as the integer value. (C)

Integer overflow or underflow, or float
ing-point overflow. The range for integers
is -32768 to +32767; for floating-point
numbers, the upper limit is 1E38. (For
floating-point underflow, the "%Floating
point error" (ERR = 48) is generated.)

Negative or zero argument to LOG func
tion. Value returned is the argument as
passed to the function. (C)

You tried to take the square root of a
number less than zero. The value
returned is the square root of the absolute
value of the argument. (C)

You tried to reference an array element
beyond the number of elements created
for the array when it was dimensioned.

You tried to invert a singular or nearly
singular matrix.

The DATA list was exhausted and a
READ requested additional data.

The index value in an ON-GOTO or
ON-GO SUB statement is less than one or
is greater than the number of line num
bers in the list.

An INPUT statement did not find enough
data in one line to satisfy all the specified
variables.

The integer index in a FOR loop at
tempted to go beyond 32766 or below
-32767.

(continued on next page)

Error Messages C-9

C-IO

Table C-4: User-Recoverable Error Messages (Cont.)

ERR Message Printed Meaning

61 %Division by 0 Attempt in your program to divide some
quantity by zero. If no transfer is made to
an error handling routine, the result is O.
(C)

62 ?No run-time system The run-time system referenced has not
been added to the system list of run-time
systems.

63 ?FIELD overflows buffer You tried to use FIELD to allocate more
space than exists in the specified buffer.

64 ?Not a random access device You tried to perform random access I/O
to a nonrandom access device.

65 ?Illegal MAGTAPE() usage Improper use of the MAGTAPE function.

66 ?Missing special feature Your program uses a BASIC-PLUS fea-
ture not present on the given installation.

67 ?Illegal switch usage This error has two possible causes:

l. A CCL command contains an error in
an otherwise valid CCL switch. (For
example, use of the /SI:n switch with-
out a value for n or a colon; or specifi-
cation of more than one of the same
type of CCL switch.)

2. A file specification switch is not the
last element in a file specification or
is missing a colon or an argument.

Table C-5: Nonrecoverable Error Messages

Message Printed

? Arguments don't match

?Bad line number pair

?Bad number in PRINT-USING

?Can't CONTinue

?Data type error

Error Messages

Meaning

Arguments in a function call do not match, in
number or in type, the arguments defined for the
function.

Line numbers specified in a LIST or DELETE com
mand were formatted incorrectly.

Format specified in the PRINT-USING string can
not be used to print one or more values.

Program was stopped or ended at a spot from which
execution cannot be resumed with CONT or
CCONT.

Incorrect usage of floating-point, integer, or string
variable or constant where some other data type
was necessary.

(continued on next page)

Table C-5: Nonrecoverable Error Messages (Con!.)

Message Printed Meaning

?DEF without FNEND A second DEF statement was encountered in the
processing of a user function without an FNEND.

?End of statement not seen Statement contains too many elements to be pro
cessed correctly.

?Error text lookup failure An 1/0 error occurred while the system was
attempting to retrieve an error message. Possible
cause could be that the device containing the sys
tem error file (ERR.SYS) is off-line or the system
error file contains a bad block.

?Execute only file Attempt was made to add, delete, or list a state
ment in a translated (.BAC) file.

?Expression too complicated This error usually occurs when parentheses have
been nested too deeply. The depth allowed depends
on the individual expression.

?File exists-RENAME I REPLACE A file of the name specified in a SAVE command
already exists. To save the program with the name
specified, use REPLACE, or use RENAME followed
by SAVE.

?FNEND without DEF A FNEND statement was encountered in your pro
gram before a DEF statement was seen.

?FNEND without function call An FNEND statement was encountered in your
program before a function call was executed.

?FOR without NEXT A FOR statement was encountered in your program
without a corresponding NEXT statement to termi
nate the loop.

?Illegal conditional clause Incorrectly formatted conditional expression.

?Illegal DEF nesting The range of one function definition crosses the
range of another function definition.

?Illegal dummy variable One of the variables in the dummy variable list of
user-defined functions is not a legal variable name.

?Illegal expression Double operators, missing operators, mismatched
parentheses, or some similar error was found in an
expression.

?Illegal FIELD variable

?Illegal FN redefinition

?Illegal function name

?Illegal IF statement

?Illegal in immediate mode

?Illegal line number(s)

The FIELD variable specified is unacceptable.

Attempt was made to redefine a user function.

Attempt was made to define a function with a func
tion name of incorrect formaL

Incorrectly formatted IF statement.

You entered a statement in immediate mode that
can only be executed as part of a program.

Line number reference outside the range
1<n<32767.

Error Messages C-ll

C-12

Table C-5: Nonrecoverable Error Messages (Cont.)

Message Printed

?Illegal mode mixing

?Illegal statement

?Illegal symbol

?Illegal verb

%Inconsistent function usage

%Inconsistent subscript use

?Literal string needed

?Matrix dimension error

?Matrix or array without DIM

?Maximum memory exceeded

?Modifier error

?NEXT without FOR

?No logins

Error Messages

Meaning

String and numeric operations cannot be mixed.

Attempt was made to execute a statement that did
not translate without errors.

An unrecognizable character was encountered. For
example, a line consisting of a # character.

The verb portion of the statement cannot be recog
nized.

A function is defined with a certain number of argu
ments but is referenced elsewhere with a different
number of arguments. Fix the reference to match
the definition and reload the program to reset the
function definition.

A subscripted variable is being used with a differ
ent number of dimensions from the number with
which it was originally defined.

A variable name was used where a numeric or char
acter string was necessary.

Attempt was made to dimension a matrix to more
than two dimensions, or an error was made in the
syntax of a DIM statement.

A matrix or array element was referenced beyond
the range of an implicitly dimensioned matrix.

This error has two possible causes:

1. During an OLD operation, the job's private
memory size maximum was reached.

2. While running a program, the system required
more memory for string or I/O buffer space,
and the job's private memory size maximum
or the system maximum (16K words for
BASIC-PLUS) was reached.

This error has two possible causes:

1. Attempt was made to use one of the statement
modifiers (FOR, WHILE, UNTIL, IF or
UNLESS) incorrectly.

2. An OPEN statement modifier, such as a
RECORDSIZE, CLUSTERSIZE, FILE SIZE , or
MODE option, is not in the correct order.

A NEXT statement was encountered in your pro
gram without a previous FOR statement.

Message printed if the system is full and cannot
accept additional users, or if further logins are dis
abled by the system manager.

(continued on next page)

Table C-5: Nonrecoverable Error Messages (Cont.)

Message Printed

?Not enough available memory

?Number is needed

?1 or 2 dimensions only

?ON statement needs GOTO

Please say HELLO

?Please use the RUN command

?PRINT-USING buffer overflow

?PRINT-USING format error

?Programlost-Sorry

?Redimensioned array

?RESUME and no error

?RETURN without GOSUB

%SCALE factor interlock

Meaning

An attempt was made to load a nonprivileged com
piled program that is too large to run given the job's
private memory size maximum. The program must
be made privileged in order to expand above a pri
vate memory size maximum, or the system mana
ger must increase the job's private memory size
maximum to accommodate the program.

A character string or variable name was used
where a number was necessary.

Attempt was made to dimension a matrix to more
than two dimensions.

A statement beginning with ON does not contain a
GOTO or GOSUB clause.

Message printed by the LOGIN system program. A
user who was not logged into the system has typed
something other than a legal, logged-out command.

A transfer of control (as in a GOTO, GOSUB or
IF-GOTO statement) cannot be performed from
immediate mode.

Format specified contains a field too large to be
manipulated by the PRINT-USING statement.

An error was made in the construction of the string
used to supply the output format in a PRINT
USING statement.

A fatal system error caused your program to be lost.
This error can indicate hardware problems or use of
an improperly compiled program. See Section C.2
for more information.

Usage of an array or matrix within your program
has caused BASIC-PLUS to redimension the array
implicitly.

A RESUME statement was encountered where
no error had occurred to cause a transfer into an
error handling routine with the ON ERROR GOTO
statement.

RETURN statement is encountered in your pro
gram when a previous GOSUB statement was not
executed.

1. You set a new scale factor and then executed a
program that was translated using a different
scale factor. The program runs, but BASIC-PLUS
uses the scale factor in effect when the program
was translated. To cause BASIC-PLUS to trans
late the program with the new scale factor, use
REPLACE and OLD.

(continued on next page)

Error Messages C-13

Table C-5: Nonrecoverable Error Messages (Cont.)

Message Printed

%SCALE factor interlock (Cont.)

?Statement not found

Stop

?String is needed

?Syntax error

?Too few arguments

?Too many arguments

?Undefined function called

?What?

?Wrong math package

Meaning

2. You set a new scale factor and then entered an
immediate mode statement. Immediate mode
statements are always translated using the cur
rent scale factor. The new scale factor will take
effect when you use the NEW or OLD command
or run a program from its source file.

See Section 11.10.2 for more information. (C)

Reference is made in the program to a line number
that is not in the program.

STOP statement was executed. You can usually
continue program execution by typing CONT and
the RETURN key.

A number or variable name was used where a char
acter string was necessary.

BASIC-PLUS statement was incorrectly formatted.

The function has been called with a number of
arguments not equal to the number defined for the
function.

A user-defined function can have up to five argu
ments only.

BASIC-PLUS interpreted some statement compo
nent as a function call for which there is no defined
function (system or user).

You entered a command or immediate mode state
ment that BASIC-PLUS cannot process. Illegal
verb or improper format error most likely.

Program was compiled on a system with either the
two-word or four-word math package, and an
attempt is made to run the program on a system
with the opposite math package. Recompile the pro
gram using the math package of the system on
which it will be run.

C.2 The "?Program Lost-Sorry" Error

C-14

The "?Program lost-Sorry" error occurs when BASIC-PLUS tries to run a
program and cannot. BASIC-PLUS clears the job image from memory and
returns control to the user. If possible, BASIC-PLUS prints a second mes
sage that provides more information about what caused the program to be
lost. In several cases, however, only the "?Program lost-Sorry" message is
printed, and the system manager must check the error log to determine the
cause. Always report a "?Program lost-Sorry" message and its associated
message (if printed) to your system manager.

Error Messages

The "?Program lost-Sorry" error has four possible causes:

1. A checksum error occurs on a .BAC file. (A checksum error is usually
the result of a hardware problem.)

2. An unrecoverable disk error occurs while BASIC-PLUS is reading a
.BAC file.

3. BASIC-PLUS tries to load a .BAC file of incorrect size.

4. BASIC-PLUS tries to run a file whose stored version number does not
match the current BASIC-PLUS run-time system's version number.

You can often recover by recompiling the program from its source file and
running it again. To recompile the program:

1. Use the OLD command to translate the program from its source file.
OLD places the translated program in memory.

2. Use the COMPILE command to create a new .BAC file that contains
the translated image.

The next four sections describe each of the possible causes in more detail.

C.2.1 Checksum Error on a .BAC File

A "checksum" is a numeric quantity that is used to detect errors. When you
save a translated program in a disk file with the COMPILE command,
BASIC-PLUS computes a checksum and stores it in the file. BASIC-PLUS
computes another checksum when it loads the .BAC file from disk. An error
occurs if the computed and stored checksums do not match.

If the checksums are not equal, BASIC-PLUS produces an error to be
logged by the RSTS IE monitor, returns the "?Program lost-Sorry"error to
the user, and aborts program execution.

Checksum errors are usually caused by a disk error. The disk error may
have occurred when you created the .BAC file or it may have occurred
while BASIC-PLUS was reading the .BAC file into memory.

You can usually recover by recompiling the program and running it again.

C.2.2 Unrecoverable Disk Error Reading a .BAC File

The "?Program lost-Sorry" error also results when an unrecoverable disk
error occurs while BASIC-PLUS is loading a .BAC file into memory. Unre
coverable disk errors can result from bad disk blocks, dust, problems with
the disk drive, or a transient hardware problem in the disk subsystem.
Sometimes these errors produce a warning message such as "?Disk error
during swap", which is logged in the system error logging file.

Recompiling the program may correct the problem. Be sure to report the
problem to your system manager.

Error Messages C-15

C.2.3 Incorrect .BAC File Size

A .BAC file must be between 2K and 16K words (inclusive). In addition, the
number of blocks in the file must be an integer that is one less than a
multiple of 4.

If the size of the .BAC file does not follow these rules, BASIC-PLUS prints
two messages when it tries to load the file into memory: "?Program
lost-Sorry" and "?Illegal byte count for I 10". These errors are not logged in
the system error logging file.

To correct the problem, recompile the program.

C.2.4 Unmatched Version Numbers

When you use COMPILE to save a translated program, BASIC-PLUS
writes the current version number of the BASIC-PLUS run-time system
into the .BAC file. When BASIC-PLUS runs or chains to a .BAC file, it
checks the version number stored in the file against the version number of
the run-time system being used. If the version numbers do not match, the
"?Program lost-Sorry" error results.

Consult the RSTS/E Release Notes to find out whether recompilation of
current programs is necessary for a new version of BASIC-PLUS.

C.3 Reporting Software Problems

Report problems with DIGITAL software to your system manager. Your
system manager will determine whether the problem needs to be reported
to DIGITAL.

C-16 Error Messages

Appendix D
BASIC-PLUS Character Set

BASIC-PLUS programs are composed of:

• The letters A through Z in both upper- and lowercase

e The digits 0 through 9

o Spaces

~ Tabs

Ij The special symbols and keys listed in Table D-l

Table D-l: Special Symbols and Keys

Symbol or Key Use

$ Suffix for string variables and functions; see Section 8.3 and Chapter
10.

% Suffix for integer variables and functions; see Section 8.3 and
Chapter II.

\

Indicates the decimal point in floating-point numbers and numeric
strings; see Section 8.3. The period is a valid character in EXTEND
mode variable names; see Section 8.3.2.1. The period also separates
the file name and type in a file specification; see the RSTS IE System
User's Guide.

Delimiter for string constants (text strings); see Section 8.3.1.3.

Delimiter for string constants (text strings); see Section 8.3.1.3.

Begins a comment; see Section 7.4.

Separates multiple statements on one program line; see Section 7.3.1.

Separates multiple statements on one program line; accepted for
compatibility with previous versions of BASIC-PLUS. The backslash
(\) is the preferred character.

(continued on next page)

D-l

Table D-1: Special Symbols and Keys (Cont.)

Symbol or Key

&

@

()

[]

+
* I A

Use

Indicates an 1/0 channel number; see Section 14.5. The # is also a
formatting character in the PRINT-USING statement; see Section
15.1.2.

Formatting character in PRINT statement; see Section 9.2.1.2. The
comma is also part of the syntax for several BASIC-PLUS state
ments. For example, you use commas between variable names in the
INPUT statement and between options in statements such as OPEN,
GET, and PUT.

Formatting character in PRINT statement; see Section 9.2.1.2.

Part of the & IRETURN key combination, which indicates that
a statement is continued on the next terminal line; legal only in
EXTEND mode. See Section 7.3.2.

Indicates that a statement is continued on the next terminal line; see
Section 7.3.2. (The &/RETURN key combination is the preferred
way to continue a statement.)

Indicates the assignable account; see the RSTS IE System User's
Guide.

Specify how operations are to be performed in expressions; see
Section 8.4.5. Parentheses also enclose function arguments (see
Chapter 9) or a project-programmer number (see the RSTS IE System
User's Guide).

Enclose a project-programmer number; see the RSTS IE System
User's Guide.

Arithmetic operators; see Section 8.4.1.

= Replacement operator; see Section 9.1. The equal sign also means
"equal to" in numeric and string relational expressions; see Section
8.4.3.

- - Means "approximately equal to" in numeric relational expressions;
see Section 8.4.3.

< Relational "less than" operator; see Section 8.4.3.

> Relational "greater than" operator; see Section 8.4.3.

< > Relational "not equal to" operator; see Section 8.4.3.

D-2 BASIC-PLUS Character Set

Table D-2: ASCII Character Codes

ASCII

Decimal Octal Ch.aracter Remarks

0 000 NUL Null, FILL character
1 001 SOH CTRLlA
2 002 STX CTRL/B
3 003 ETX CTRL/C
4 004 EOT End oftransmission, CTRL/D
5 005 ENQ CTRL/E
6 006 ACK CTRL/F
7 007 BEL Bell,CTRL/G
8 010 BS Backspace, CTRL/H
9 011 HT Horizontal tab, CTRL/I

10 012 LF Line feed, CTRL I J
11 013 VT Vertical tab, CTRL/K
12 014 FF Form feed, page, CTRL/L
13 015 CR Carriage return, CTRL/M
14 016 SO CTRL/N
15 017 SI CTRL/O
16 020 DLE CTRL/P
17 021 DCl CTRL/Q*, XON
18 022 DC2 CTRL/R
19 023 DC3 CTRL/S**, XOFF
20 024 DC4 CTRL/T
21 025 NAK CTRLIU
22 026 SYN CTRL/V
23 027 ETB CTRL/W
24 030 CAN CTRL/X
25 031 EM CTRL/Y
26 032 SUB CTRL/Z, end of file
27 033 ESC Escape***
28 034 FS
29 035 GS
30 036 RS
31 037 US
32 040 SP Space or blank
33 041 ! Exclamation mark
34 042 1/ Quotation mark
35 043 # Number sign
36 044 $ Dollar sign
37 045 % Percent sign
38 046 & Ampersand
39 047

, Apostrophe
40 050 (Left parenthesis
41 051) Right parenthesis
42 052 * Asterisk
43 053 + Plus sign
44 054 , Comma
45 055 - Minus sign or hyphen

(contmued on next page)

BASIC-PLUS Character Set D-3

Table D-2: ASCII Character Codes (Cont.)

ASCII

Decimal Octal Character Remarks

46 056 Period or decimal point
47 057 / Slash
48 060 0 Zero
49 061 1 One
50 062 2 Two
51 063 3 Three
52 064 4 Four
53 065 5 Five
54 066 6 Six
55 067 7 Seven
56 070 8 Eight
57 071 9 Nine
58 072 Colon
59 073 ; Semicolon
60 074 < Left angle bracket, "less than" sign
61 075 = Equal sign
62 076 > Right angle bracket, "greater than" sign
63 077 ? Question mark
64 100 @ At sign
65 101 A Uppercase A
66 102 B Uppercase B
67 103 C Uppercase C
68 104 D Uppercase D
69 105 E Uppercase E
70 106 F Uppercase F
71 107 G Uppercase G
72 110 H Uppercase H
73 111 I Uppercase I
74 112 J Uppercase J
75 113 K Uppercase K
76 114 L Uppercase L
77 115 M Uppercase M
78 116 N Uppercase N
79 117 0 Uppercase 0
80 120 P Uppercase P
81 121 Q Uppercase Q
82 122 R Uppercase R
83 123 S Uppercase S
84 124 T Uppercase T
85 125 U Uppercase U
86 126 V Uppercase V
87 127 W Uppercase W
88 130 X Uppercase X
89 131 Y Uppercase Y
90 132 Z Uppercase Z
91 133 [Left square bracket
92 134 \ Backslash
93 135] Right square bracket
94 136 A

or t Circumflex, up arrow, caret
95 137 -or_ Underscore or back arrow

(contmued on next page)

D-4 BASIC-PLUS Character Set

Table 0-2: ASCII Character Codes (Cont.)

ASCII

Decimal Octal Character Remarks

96 140 Grave accent
97 141 a Lowercase a
98 142 b Lowercase b
99 143 c Lowercase c

100 144 d Lowercase d
101 145 e Lowercase e
102 146 f Lowercase f
103 147 g Lowercase g
104 150 h Lowercase h
105 151 i Lowercase i
106 152 j Lowercase j
107 153 k Lowercase k
108 154 1 Lowercase 1
109 155 m Lowercase m
110 156 n Lowercase n
111 157 0 Lowercase 0

112 160 P Lowercase p
113 161 q Lowercase q
114 162 r Lowercase r
115 163 s Lowercase s
116 164 t Lowercase t
117 165 u Lowercase u
118 166 v Lowercase v
119 167 w Lowercase w
120 170 x Lowercase x
121 171 y Lowercase y
122 172 z Lowercase z
123 173 { Left brace
124 174 I Vertical line
125 175 } Right brace
126 176 ~ Tilde
127 177 DEL,RUBOUT Delete, rubout

* CTRL/Q, or XON, resumes output if the TTYSET STALL characteristic is set.
** CTRL/S, or XOFF, stops output if the TTYSET STALL characteristic is set.

*** ALTMODE (ASCII 125) or PREFIX (ASCII 126) keys, which appear on some termi-
nals, are translated internally into ESCAPE.

BASIC-PLUS Character Set D-5

Appendix E
Hints for BASIC-PLUS/BASIC-PLUS-2
Compatibility

The following list contains guidelines for writing BASIC-PLUS programs
that are compatible with BASIC-PLUS-2. Most of the guidelines also
appear in the manual, in the description of the topic they pertain to.

1. Write programs in EXTEND mode.

2. Use the ampersand/RETURN combination, not the LINE FEED key,
for continuation lines. The ampersand should appear either one space
after the last significant character on the line or after one tab on other
wise blank lines.

3. Delimit all string constants with matching single (') or double (")
quotation marks.

4. Include semicolons between strings and other items in PRINT state
ments. For example, enter:

20 PRINT "CustoMer Address"; A$

You cannot use implied semicolons in BASIC-PLUS-2. The following
PRINT statement is not compatible:

20 PRINT "CustoMer Address" A$

5. Use only one prompting message in an INPUT statement. For example:

50 INPUT "Enter your naMe and account nUf~ber" tN$tA

The following INPUT statement, which contains two prompting mes
sages, is not compatible with BASIC-PLUS-2:

50 INPUT "Enter your naMe"; N$t "Enter your account nUMber";A

6. Use DEF*, not DEF, for user-defined functions.

E-l

7. Do not use parentheses when you define or call functions with no argu
ments. Use:

30 DEF* FNA'Y"

Do not use:

30 DEF* FNA'Y., ()

8. Use the CCPOS function instead of the POS function. CCPOS performs
the same function in BASIC-PLUS and BASIC-PLUS-2. POS performs
a different function in BASIC-PLUS and BASIC-PLUS-2.

9. When you write CHAIN statements, always include the optional key
word LINE. Use the form:

CHAIN <string> LINE <line number>

Do not use the form:

CHAIN <string> <line number>

10. When you use arrays, always place the DIM statement before the first
reference to the array it defines. For virtual arrays, place the DIM
statement before the OPEN statement.

11. To disable an error handling subroutine, use the statement:

100 ON ERROR GO TO 0

Do not use:

100 ON ERROR GO TO

12. Always include a RESUME statement in an error handling subroutine.

13. Always include the number sign (#) when specifying a channel num
ber. For example:

500 CLOSE #2%.#4%

14. In the PRINT-USING statement, do not use $$ and ** in the same
format field.

15. Do not use the COUNT option, the BLOCK option, or the USING option
in GET statements. You cannot use these options with GET in
BASIC-PLUS-2.

E-2 Hints for BASIC-PLUS/BASIC-PLUS-2 Compatibility

Appendix F
Programming Hints

This appendix is a collection of programming hints for the advanced
BASIC-PLUS user:

• Section F.l tells how to optimize BASIC-PLUS programs to reduce stor-
age space and execution time.

• Section F.2 describes how to reduce disk access time.

• Section F.3 describes how to manipulate strings efficiently.

• Section F.4 explains in detail how the CVT functions convert data
between numeric and string format. You will need this information if you
plan to read files with block I/O that were created using a different I/O
method.

• Section F.5 shows you the algorithm that BASIC-PLUS uses to access
data in virtual array files. You might find this information useful if you
need to access a virtual array file using block I/O.

F.1 Optimizing BASIC-PLUS Programs

By optimizing your use of statements and variables, you can write pro
grams that use less storage space and execute more quickly.

Most of the time, these two goals are mutually exclusive: you can save
space at the expense of time or vice versa. You need to decide which
approach best fits your needs. If you can optimize both space and time, the
entire system and your program benefit.

F .1.1 Optimizing Statement Formats

When BASIC-PLUS translates a source program into executable code, it
creates structures called "statement headers." Statement headers contain
information that the system needs to execute the program.

F-l

BASIC-PLUS creates a statement header for each line number in a pro
gram. In addition, certain statements always produce a statement header,
regardless of where in a line they occur. These statements are DATA, DEF,
DEF*, DIM, FNEND, FOR, NEXT, WHILE and UNTIL.

You can save statement header space by placing multiple statements on a
single program line. Statements that require a statement header should be
first on a line where possible. When you write multi-statement lines, use a
separate text line for each statement. Your program will be easier to read.

You can also save statement header space by placing comments on the
same line as statements. A REM statement and a comment with its own
line number each require a 12-byte statement header.

F .1.2 Using Variables Efficiently

Assigning a temporary variable sometimes saves array addressing space.
Consider:

10 FOR I ·X. = 1 'iI. TO N'iI. 8.
\ 8 = 8 + X(I'X.) 8.
\ 82 = 82 + X(I'X.) * X (I ·X.)

20 NEXT I'X.

You can decrease the number of bytes required for storage by assigning a
simple variable T equal to the subscripted variable X(I%):

10 FOR I'X. = l·X. TO N'iI. 8.
\ T = X (I'iI.) 8.
\ 8 = 8 + T 8.
\ 82 = 82 +' T * T

20 NEXT I'iI.

Besides using less storage space, this example also executes faster than
the first one because BASIC-PLUS does not have to recalculate array
addresses.

Individual variable names are often more economical than arrays because
they require less overhead. If you use arrays, always dimension them with
a DIM statement.

For efficiency, calculate quantities once and reuse them. For example:

10 0 = 8QR(6"2.-4. * A * C)/2% * A 8.
\ PRINT -6/2% * A + 0; -6/2% * A - D

This line is more efficient than:

10 D = 8QR(6"2.-4. * A * C)/2% * A 8.
\ PRINT -6/2% * A + 8QR(6"2.-4. * A * C)/2% * A; 8.
\ PRINT -6/2% * A - 8QR(6"2.-4. * A * C)/2% * A

F-2 Programming Hints

Use intermediate variables only when necessary. For example:

20 A
\ D
\ F

5 + C &:
= A + E &:

D + G

Unless you plan to use A and D later in the program, condense this line to:

20 F = 5 + C + E + G

Integers use less storage space than floating-point numbers, and integer
arithmetic is much faster than floating-point arithmetic. Thus, you should
use integer variables and constants where possible. Be sure to include the
% suffix.

Use integer variables for array subscripts. Also use integers in FOR-NEXT
loops with STEP values that are whole numbers in the range -32767% to
32766%.

Because of the way BASIC-PLUS stores variables, using variables with the
same names but different data types (for example, A, A % and A$) saves
space. However, this use of variables makes a program difficult to read and
maintain.

Because BASIC-PLUS uses integers for logical operations, integer varia
bles do not have to be compared to zero explicitly. For example:

30 IF M% <> 0 THEN 80

BASIC-PLUS interprets a nonzero value as true; thus, you can write this
statement as:

30 IF MX. THEN 80

Combine this technique with the IF statement modifier for a statement
that uses even less storage space:

30 GOTD 80 IF MX.

F.1.3 Using Constants Efficiently

Avoid ambiguous constants. When you specify constants, make them expli
citly floating-point or integer by including a period (.) or a percent sign (%).
Use integer constants for whole numbers in the range -32767% to 32767%.

BASIC-PLUS optimizes commonly used constants. The integer constants
0% and 1% and certain floating-point constants produce fewer bytes of
translated code than other constants.

Each reference to an integer constant produces three bytes of translated
code. But each reference to the integer constant 0% or 1 % produces only one
byte of translated code.

Programming Hints F-3

Each reference to a two-word floating-point constant produces seven bytes
of translated code; each reference to a four-word floating-point constant
produces eleven bytes of translated code. However, each reference to the
floating-point constants O. or 1. produces only one byte of translated code.
In addition, a reference to one of the following floating-point constants
produces three bytes of translated code:

I!!l Any power of two

~ Any whole number from 2. to 256.

@} A power of ten up to 1000.

Both positive and negative values are optimized in all cases.

F .1.4 Statement Modifiers

Implied FOR loops use less memory and execute faster than FOR-NEXT
loops. Consider:

10 FOR I'X. = 1/., TO 101., /!"
\ RI., ::: R '"2'X, &:
\ NE)<T I%

The FOR and NEXT statements each produce a statement header. A FOR
statement modifier, which produces only one statement header, creates a
more efficient loop:

10 R% = RX"2X FOR IX = 1% TO 10%

This implied FOR loop uses about 30% less memory than the FOR-NEXT
loop.

Where possible, use the WHILE and UNTIL statement modifiers instead of
loops and IF-THEN statements. Consider:

10 IF XX < LX THEN X% = XX * X% &
\ GOTO 10

You can perform this operation more efficiently with the statement:

10 X% = X% * XX WHILE X% < L%

F.1.S Optimizing Statement Structure

When using multiple IF statements, use IF-THEN-ELSE instead of
IF-THEN. Consider:

100 IF }{ 'X, WI., THEN 250
110 IF X'Y" A'y', THEN 300
120 IF XI., K'y', THEN 500
130 IF }{ 'X. L'y', THEN GOO

F -4 Programming Hints

The following IF -THEN-ELSE statement uses 35% less memory than the
previous example:

100 IF Xl = Wl THEN 250 ELSE &
IF XI = Al THEN 300 ELSE &

IF X% = K% THEN 500 ELSE &
IF X% = L% THEN GOO

To compare a variable to a continuous range of values, use the ON-GOTO
statement instead of the IF statement. For example:

100 ON Xl - 3% GOTO 250, 300, 500. GOO

This statement is more efficient than the following IF-THEN-ELSE
statement:

100 IF X% = a% THEN 250 ELSE &
IF Xl = 5% THEN 300 ELSE &

IF Xl = 8% THEN 500 ELSE &
IF X% = 7% THEN 800

You can use a similar technique 'with strings. For example:

80 X% = ASCII(AS) - 84% &
\ ON X% GOTO 100, 200, 300. 400

These statements are more efficient than:

80 IF A$ = "A" THEN GOTO 100 ELSE 1:1:

IF A$ = "6" THEN GOTO 200 ELSE &
IF A$ = "C" THEN GOTO 300 ELSE &

IF A$ = "0" THEN GOTO 400

Use the same method to test random string responses. For example, the
following statement compares A$ with the letters X, K, B, and Y:

80 ON INSTR(i%,"XK6Y" ,AS) + 1% GOTO 100, 200. 300, 400, 500

You can also save space by using subroutines instead of user-defined func
tions, but be sure to exit with RETURN (not GOTO) statements.

F.2 Decreasing Disk Access Time

This section describes how to set up files to reduce disk access time. Some of
these methods may require the assistance of your system manager.

Open files at the beginning of a program and preextend them to their
maximum size. In addition, preallocate scratch files and, when you are
finished using them, close them instead of deleting them. You can then
reuse them with OPEN FOR INPUT statements. These techniques save
disk space, reduce fragmentation of the directory structure, and decrease
access time.

Programming Hints F-5

Keep large, frequently used files on separate disks. When two files are
often open at the same time, they should also be stored on separate disks.
Keep production files and accounts separate from development and scratch
files where possible. If you cannot keep development and scratch files on
separate disks, keep them in separate accounts.

Optimize file cluster sizes to further reduce disk access time. See Chapter
14 of this manual, the RSTSIE System User's Guide, and the RSTSIE
Programming Manual for more information. The RSTS IE Programming
Manual also describes other methods to save access time.

F.3 Manipulating Strings Efficiently

The following three algorithms truncate trailing blanks from a data record.
The first two user-defined functions input a string and return the same
string without trailing blanks and carriage returnlline feeds.

The slowest algorithm successively reassigns the argument until it ends
with a nonblank character:

1000 DEF* FNT$(X$) &
\X$ = LEFT(X$tLEN(X$)-l%) &

WHILE RIGHT(X$tLEN(X$» (= " " &
AND LEN(X$»O%

1010 FNT$ = X$
1020 FNEND

The following algorithm is much more efficient. It scans backwards until a
nonblank character is found. Only one assignment is made.

200 DEF* FNW$(X$) &
\GOTO 2010 IF MID(X$tX%tl%»" " &

FOR X% = LEN(X$) TO 0% STEP -1% &
\ X 'X, 0%

2010 FNW$ = LEFT(X$tX%)
2020 FNEND

The most efficient algorithm uses the data buffer directly, avoiding the
assignment caused by the user-defined function. L%.is the record length.

3000 FOR K% = L% TO 1% STEP -1% &
\FIELD #2%t K%-l% AS L$t 1% AS L$ &
\IF L$)" " THEN &

FIELD #2%t K% AS L$ &
\GOTO 3020

3010 NEXT K'X, &
\LSET L$ = ""

3020 ! DONE

F.4 Converting Numeric Data

BASIC-PLUS stores numeric data in memory in either integer or floating
point format. When you use block 1/0, you manipulate data in an inter
mediate 1/0 buffer. BASIC-PLUS lets you access the data in the buffer as

F-6 Programming Hints

string data only. Thus, to process numeric data in your program, you must
convert it from string to numeric format. After processing, you must con
vert the numeric data back to string data for output.

BASIC-PLUS provides four CVT functions to perform the necessary data
conversions. These functions are implemented for speed instead of logical
ordering. They use stack operations to convert data and thus reverse the
expected ordering of bytes. The CVT$% and CVT%$ functions, which con
vert data between string and integer format, transpose the high and low
order bytes of the word. The CVT$F and CVTF$ functions, which convert
data between string and floating-point format, transpose the high and low
order bytes of each word and also reverse the ordering of the words.

You are usually not aware of this reversal. When you manipulate data with
block 1/0, you use one CVT function when retrieving data from the 1/0
buffer and the related CVT function when loading data back into the I 10
buffer for output. To illustrate, Figure F-l shows the conversion of integer
data by the CVT$% and CVT%$ functions.

Figure F -1: CVT Conversion of Integer Data

Integer String

Byte 1 Byte 0 Byte 1 Byte 0

CVT%$
•

S HIGH LOW LOW S HIGH ..
CVT$%

The CVT%$ function reverses the byte order of the integer data word. The
CVT$% reverses the byte order of the string data, thus returning the inte
ger to its correct byte order.

You do need to be aware of this reversal, however, when you use block 1/0
to read data not written by block 1/0. In this situation, the data read into
the buffer is in the correct byte order. The CVT$% function reverses the
correct byte order of the data in the buffer. You must use the SWAP%
function, which swaps the high and low order bytes of a word, to put the
bytes back in the correct order.

For example, suppose that you need to read the date from a DOS magnetic
tape label using non-file-structured block 1/0. The system writes the stan
dard PDP-ll internal representation of the date on a DOS magnetic
tape label as a one-word integer value. To read the date using non-file
structured block 110, you access it in two bytes of a buffer, which you define
as a string variable (D$). You then move these two bytes into the integer
variable D%, using the CVT$% function to convert the data from string to
integer format. The CVT$% function reverses the order of the bytes, so you
must use the SWAP% function to put them back in the correct order. For
example:

10 0% = SWAP%(CVT$%(O$»

Programming Hints F-7

You can then print the date with the DATE$ function:

20 PRINT DATE$(D%)

A more complex reversal occurs with floating-point data. Figure F-2 shows
the conversion of two-word floating-point data by the CVTF$ and CVT$F
functiohs.

Figure F-2: CVT Conversion of Two-Word Floating-Point Data

Floating-Point (two-word) String

Byte 1 Byte 0 Byte 1 Byte 0

CVTF$
S EXP E HIGH • LOW MED

MED LOW ... E HIGH S EXP
CVT$F

Byte 3 Byte 2 Byte 3 Byte 2

When converting a two-word floating-point value to a four-byte string, the
CVTF$ function stacks the bytes in the reverse of their original order. The
sign and exponent bits are not in the standard format.

The same reversal occurs when the CVTF$ and CVT$F functions convert
data between four-word floating-point and eight-byte string formats.
Figure F-3 shows the results.

Figure F-3: CVT Conversion of Four-Word Floating-Point Data
Floating Point (four-word) String

Byte 1 Byte 0 Byte 1 Byte 0

S EXP E HIGH LOWEST-LOW LOWEST-HIGH

LOW-HIGH LOW-LOW
CVTF$ • LOWER-LOW LOWER-HIGH

LOWER-HIGH LOWER-LOW LOW-LOW LOW-HIGH

CVT$F

LOWEST-HIGH LOWEST-LOW E HIGH S EXP

Byte 7 Byte 6 Byte 7 Byte 6

F -8 Programming Hints

As with integer data, you are not aware of this reversal when you manipu
late floating-point data with block I/O. You convert data from string to
floating-point format using the CVT$F function; you convert the floating
point data back to string format using the related CVTF$ function.

The reversal is evident, however, when you read data with block I/O
that was not written using block I/O. Suppose, for example, that you read
floating-point data from a virtual array file using block I/O methods. The
virtual array processor does not convert data during input and output oper
ations. Thus, data read into an I/O buffer from a virtual array file using
block I/O statements is in correct byte order. But the CVT$F function,
which you must use to convert the data in the buffer from string to floating
point format, reverses the correct byte order. Thus, the resulting numeric
data is bad. (The same problem occurs when you read integer data from a
virtual array file using block I/O.) You can solve this problem by reversing
the byte order of the data in the buffer before converting it.

The following program creates a virtual array file that contains floating
point data. It then reads back the data using block I/O, reverses the byte
order of the data in the buffer, and produces the floating-point representa
tion using the CVT$F function.

100

220

240

280
280

300
32787

OPEN 'VIRT.DAT' FOR OUTPUT AS FILE #1% &
\ DIM #1, A(O) \ A,A(O) = RND * 1000.0 &
\PRINT A &
\ CLOSE 1% &
\OPEN 'VIRT.DAT' FOR INPUT AS FILE #2%
L% = LEN(CVTF$(1.0» &
\ GET #2%
6$ = II &
\ FOR I% = L% - 1% TO 0% STEP -1%

\ NEXT I'X.

FIELD #2%, n. AS 61$, 1,;(. AS 61$
6$ = 6$ + 61$ &

PRINT CVT$F(6$) ;'SHOULD EQUAL';A
CLOSE # 1 'X. , #2% &
\ END

NOTE

Reading a virtual array file using block I/O is not recom
mended because you lose the advantage of the automatic
virtual array addressing mechanism.

F.5 Accessing Algorithm for Virtual Arrays

Figure F-4 shows the algorithm that BASIC-PLUS uses to minimize the
number of disk accesses needed in virtual array I/O. You might find this
information useful if you need to access a virtual array file using block I/O.

Programming Hints F-9

F-IO

Figure F -4: Virtual Array Accessing Algorithm

Programming Hints

Virtual Array

Reference

Translate Sub

script into File

Address

Glossary

You will find the terms in this glossary throughout this manual. They are defined here to
help you if you are unfamiliar with computer terminology. The definitions of these terms
come from a number of sources and are not intended to be absolute. Where possible, the
most common industry usage has been the basis for defining a term.

Absolute value

The size of a quantity expressed without regard for its sign; the magnitude of a
numeric quantity. For example, the numeric quantities + 15 and -15 each have an
absolute value of 15.

Alphanumeric

A contraction of alphabetic-numeric; the set of characters that consists of upper
and lowercase letters and the digits 0 through 9.

Argument

An independent variable whose value determines the value of a function or opera
tion; the entity operated on by a command, function, or other instruction. For
example:

SQR (X)

X is the argument of the SQR function. This function returns the square root of X.

Arithmetic operator

Array

A symbol that represents one of the arithmetic operations, such as plus (+) for
addition and minus (-) for subtraction.

A series of items arranged in an orderly pattern; an ordered arrangement of ele
ments in one or two dimensions.

Glossary-l

Array dimension

One of the two possible array types; a list is a one-dimensional array, and a table
is a two-dimensional array.

Array element

An item in an array.

ASCII code

An acronym for American Standard Code for Information Interchange; a standard
ized 7-bit code representing the 128 characters in which textual information is
recorded.

Backslash

A character (\) used to separate statements when more than one statement appears
on a program line.

Base 10

Base 2

BASIC

Binary

The decimal numbering system; indicates that there are ten symbols (0, 1, 2, 3, 4,
5, 6, 7, 8, and 9) allowed for each position in a decimal number; also Radix-10.

The binary numbering system; indicates that there are two symbols (0 and 1)
allowed for each position in a binary number; also Radix-2.

Acronym for Beginner's All-purpose Symbolic Instruction Code; a computer lan
guage designed for direct communication between terminals (users) and a
computer. BASIC is a registered trademark of Dartmouth College.

A base 2 numbering system; a condition or property that has two possibilities.

Binary digit

One of the two symbols (0 or 1) in the binary numbering system; see also Bit.

Binary number

Bit

The representation of a value as one or more binary digits; binary numbers
increase in value by a factor of 2 for each position to the left (for example, the
binary number 100100 equals the decimal number 36).

A contraction of Binary digit; the smallest unit of binary information.

Glossary-2

Blank

One of the characters in a character set used to denote the presence of no informa
tion; a character used to print an empty space.

Branch

Buffer

The transfer of control from the current instruction sequence within a program to
an instruction other than the next sequential instruction.

A temporary storage area used to contain data. Buffers hold data being passed
between processes or devices that operate at different times or speeds.

Carriage return

A keyboard operation that causes the terminal print head to return to the left
margin; usually combined with a line feed to send input to the computer from a
terminal.

Central Processing Unit

That portion of a computer system that controls the interpretation and execution
of instructions; also CPU or main frame.

Channel

A path between two or more separate units along which information can flow.

Character

One of a set of elementary symbols; a human-readable symbol that can be an
upper- or lowercase letter from A to Z, a number from 0 to 9, or a special symbol; a
machine-readable symbol consisting of a group of binary digits.

Character string

A sequence of characters treated as a single unit by the computer.

Circumflex

Code

A character n used to represent exponentiation.

A set of symbols and rules used to convert data from one representation to
another; a system of correspondence between two units of information. The
BASIC-PLUS language is a kind of code; so is the ASCII code used to store charac
ters on the PDP-ll computer.

Glossary-3

Colon

A character (:) used on some systems to separate statements when more than one
statement appears on a line; see also Backslash.

Command

An order you give to a computer system that performs a predefined operation; the
part of an instruction that specifies the operation to be performed.

Comment

Text that explains a particular program step but has no effect on program
execution.

Compile

To save a translated BASIC-PLUS program in a disk file. (This term has a differ
ent meaning in other programming languages.)

Computer

A device capable of accepting information, processing that information, and
providing a result; a device with self-contained memory that processes given infor
mation using prescribed operations and produces a result.

Concatenate

To unite in a series; to link together many items into one. In BASIC-PLUS, the
plus sign (+) concatenates strings.

Conditional branch

A transfer of program control that takes place only when a pre specified condition
is satisfied; see also Branch.

Constant

A quantity, value, or data representation that does not vary in value.

Continuation

A program state in which a program line is written across two or more terminal or
text lines.

Control character

A special keyboard character that starts, changes, or stops an operation. For exam
ple, CTRL/O stops and restarts terminal output while a program is running.

Control key

A set of keyboard characters that causes a control action; a control key is usually
the combination of the CTRL key and an alphabetic key, such as CTRL/C.

Glossary-4

Counter

A device or storage location that accumulates numbers and allows their value to
increase or decrease; a device used to represent the number of occurrences a
certain event.

CTRlIC

A combination of the keyboard characters CTRL and C that, when pressed simul~
taneously, halts program execution and returns you to command level.

Cursor

Data

On a video terminal, a blinking white line or rectangle that marks the current
position on the screen.

Plural form of datum but commonly used as singular; any element of information
that can be processed by a computer.

Data element

A series of data items within a related set of data.

Data item

A single data unit within a data element or data set.

Debugging

The process of detecting, locating, and correcting any mistakes III a computer
program; the process of testing a program for errors.

Decimal number

A number in the base 10 numbering system. The base 10 numbering system is
composed of ten possible symbols (0 through 9) with each number position repre~
senting that symbol times some power of 10.

Decimal point

The arithmetic symbol (.) appearing in decimal numbers that separates the whole
and fractional parts of the number.

Default

An assumption made by a program when you do not provide a value.

Default keyboard monitor

The main keyboard you work in on a RSTS IE system. You enter the default
keyboard monitor after you log in.

Glossary-5

DELETE key

A terminal keyboard character that erases typed data from memory.

Delimiter

Device

A character (such as a comma or semicolon) that separates the different parts of a
statement. An example of the use of delimiters is:

10 PRINT "23*8=" t 23*8 j 8*23

A mechanical unit; a peripheral unit usually used to perform input and output
operations.

Diagnostic

Pertaining to the detection and isolation of program errors or hardware
malfunctions.

Dimension

The range or size defined for an array; a property whose number is used to
uniquely determine the number of elements in a system of entities.

Directory

Disk

A device area that describes the layout of data on that device; a list of data con
tained in a file storage area in terms of names, length, and position.

A physical storage unit that stores data on rotating platters.

Dummy variable

An artificial value used to fulfill a condition without affecting an operation; a
place holder. For example, the arguments you specify when you define a function
with DEF* are dummy variables.

Editing

The process of modifying data, a program, or a file; the alteration of program
format.

E format

Used in BASIC-PLUS to denote scientific notation. For instance, E + 08 means
"times ten to the eighth power" in this example:

8.867E + 08 = 8.867*10A 8 = 886700000.0

This notation is necessary in BASIC-PLUS, which can print only 1 to 6 or 15
digits (depending on the system).

Glossary-6

Error
A discrepancy between a real quantity and a theoretically correct quantity; a
deviation from true value; a mistake.

Error message
A notice from the computer that indicates an error and usually contains recovery
information; a program message indicating the presence of a mistake.

Execution

Exit

The process of performing an instruction; the series of steps a computer performs
to arrive at a result. The RUN command executes programs.

A method for stopping a program; the point of departure from a routine.

Exponent
Indicates the number of times a value is to be multiplied by itself. For example, in
the expression 2"3, which means 2*2*2, 3 is the exponent.

Expression

Any legal combination of data and operators; a source language combination of
one or more variables and operators.

Fatal error

Field

File

A program error that causes a permanent exit from the current operations; an
error that must be corrected before execution can proceed.

One or more data elements treated as a unit. A field is usually part of a larger
logical unit called a record.

An ordered collection of data capable of storage; a collection of related information;
data to be transferred from executing programs to external (nonmemory) devices.

Format
The arrangement of data; the specified organization of information on a device,
file, or printout.

Format error
A mistake that occurs in the specified organization of data.

Function
In mathematics, the relationship between a dependent variable and one or
more independent variables. In BASIC-PLUS, a named group of instructions.
BASIC-PLUS provides built-in functions (such as SQR and CVT$$) to help you
manipulate numbers and strings. You can also define your own functions.

Glossary-7

Hardware

The physical equipment or machinery that composes a computer system.

Header

The first part of a message; the initial portion of a message that acts as an identi
fying agent.

Increment

Index

To add a quantity to another quantity; the quantity added.

A number or quantity used to identify a particular item within a group of items.
For example, the numeric value of a character is an index in the XLATE function.

Infinite loop

A repetitive instruction set with no means of exit; a loop that continues to repeat.

Initialize

Input

To set up initial conditions. For example, you might set a variable to be incre
mented in a loop to an initial value.

Information to be processed by a computer.

Instruction

A bit pattern that, when interpreted by the computer, directs it to perform an
operation; a set of characters that defines an operation. You give instructions to
BASIC-PLUS by entering commands and statements. BASIC-PLUS translates
your commands and statements into a form that the computer can execute.

Integer

A whole number containing no fractIonal or decimal part, such as 100. In
BASIC-PLUS, you indicate an integer with a % suffix, for example, 100%.

Interaction

A process of mutual communication between a human user and a computer
system.

Interpreter

In BASIC-PLUS, the part of the BASIC-PLUS run-time system that executes
translated code.

Glossary-8

Job

The unit that RSTS/E uses to keep track of everything you do from the time you
log in to the time you log out.

Job keyboard monitor

The keyboard monitor that manages a job. You change your job keyboard monitor
to work in different RSTS/E command environments.

Keyboard

A device that encodes data by converting a pressed character key into an electrical
signal.

Keyboard monitor

The part of a run-time system that you communicate with. Each RSTS/E key
board monitor understands a set of commands.

Keyword

An essential word; a BASIC-PLUS verb that is a necessary element in the
language.

Language

A systematic, unambiguous means for people to communicate with a computer;
a set of representations, conventions, and associated rules used to convey
information.

Language processor

Internal computer code that accepts data in one language and produces equivalent
data in another language.

Line feed

The keyboard operation that shifts from one line position to the same horizontal
position on the next vertical line.

Line number

The beginning number of a program line used for identification; a numeric label.

Login

To gain access to a computer system.

Log out

To leave a computer system.

Glossary-9

Logic error

Loop

A mistake in a program element that performs a decision-making function. For
example, a GOTO statement that contains an incorrect line number is a logic
error.

A sequence of instructions that is repeatedly executed until a terminating condi
tion occurs.

Machine language

Binary instruction code that is directly readable by the computer.

Magnetic tape

A strip of material, usually plastic, that can store data in the form of magnetically
polarized spots.

Magnitude

The absolute size or value of a number.

Main program .
A computer program that controls all operations except those assigned to subpro-
grams or subroutines.

Math function

A built-in routine designed to perform a mathematical computation.

Matrix

A general term for describing all the elements of a subscripted variable; an array.

Memory

A device on which data can be stored and from which it can be retrieved; internal
computer storage.

Multi-statement line

A single program line composed of two or more statements distinguished by a
statement separator. For example:

100 LET A = A+l \ PRINT A

Negative step

A nonpositive loop increment index; a decremental loop. For example:

FOR 1%=100% TO 1% STEP -2%

Nested loop

A loop embedded within another loop.

Glossary-lO

Nested parentheses
A parenthetical operation embedded within another parenthetical operation in an
expression.

Nesting
The process of including a routine or block of data within another routine or block
of data.

Nonprinting character

Null

A character in the computer code set for which there is no corresponding graphic
symbol. For example, the carriage return character (ASCII code 13 decimal) is a
nonprinting character.

The character with the ASCII code 000; an absence of information.

Null string
A string withou~ content; an empty string.

Numeric v~lriable
A variable that reserves a location in memory for a numeric value.

Octal
Pertaining to the base 8 numbering system.

One-dimensional array
An array composed only of rows; a list.

Operands
The data on which an operation is to be performed.

Operating system
Software that controls the execution of computer programs and performs system
functions; an integrated collection of programs that manage computer operations.

Operation
The action specified by a single computer instruction.

Operator
The symbol or code that indicates the action to be performed; the portion of an
instruction that tells the computer what to do. For example, in BASIC-PLUS the
plus sign (+) is an operator that adds numbers and concatenates strings.

Glossary-ll

Output

Data that has been processed by the computer; the data produced as a result of
transfer.

Overflow

A condition caused by a mathematical operation whose result exceeds the capacity
of the computer; the portion of a result that cannot fit into a designated storage
unit.

Paper tape
A strip of paper that can store data in the form of punched holes.

Parentheses

Symbolic language elements used to indicate nesting in an expression; a method of
nesting where expression interpretation proceeds from the innermost to outermost
level.

Peripheral device

Equipment that is separate or separable from the computer's processing unit;
usually equipment that provides communication between the computer and its
environment. Common peripheral devices are terminals, line printers, disks, and
magnetic tapes.

Pointer

An instruction used to indicate the location of data.

Print

A process that causes the display or output of data.

Printer

A device that converts coded characters to human-readable hard copy.

Program

The complete sequence of instructions, data, and routines necessary for the solu
tion of a problem.

Program line

A numbered group of data and instructions that, when combined with other lines,
compose a program. A program line can contain one or more statements and can
consist of one or more terminal or text lines.

Glossary~12

Programming

The process of planning, writing, testing, and correcting the steps required for a
computer to solve a problem.

Prompt

A feature of time-sharing systems that requests user input.

Punctuation

Special language characters such as commas and separators.

Quotation mark

A character (" or ') used in BASIC-PLUS to designate or delimit a string quantity.

Radian

A unit of plane angular measurement that is equal to the angle at the center of a
circle subtended by an arc equal in length to the radius.

Random number

A number that is derived entirely by chance and is free from any bias toward
predictable order.

Record

A group of data items treated as a unit. For example, a formatted ASCII record is a
series of characters up to a line terminator (usually a carriage return/line feed),
which ends the record.

Recursive

The repetitive process where the result of a cycle depends on the result of a previ
ous cycle.

Reference

Data that indicates the location of information. For example, a variable name in a
program is a reference to a memory location that stores a value.

Relational operator

A symbol or code that indicates the quantitative or qualitative relationship
between two items of data.

Remark

See Comment.

Glossary-13

RETURN key

A terminal key that causes typed data to be input to the computer; see also
Carriage return.

Routine

A set of instructions and data that performs one or more specific operations; a
subdivision of a computer program.

RUBOUT key

Run

See DELETE key.

An instruction that transfers a program from a file to memory and initiates execu
tion; a single, continuous execution of a computer program or routine.

Run time

The time in which a program is executed; the actual amount of time required for a
program to complete execution.

Run-time system

System software that manages part of the RSTS IE system. For example,
the BASIC-PLUS run-time system manages the BASIC-PLUS programming
environment.

Scientific notation

Multiplication of a number by a power of 10. For example, "7000" can be
«70 x 102 " or "7 x 103 " in scientific notation. See also E format.

Sequential file

A storage unit in which data is available only in a consecutive sequence.

Sign

The symbol preceding a number that defines it as positive (+) or negative (-).

Software

Sort

All of the programs, procedures, rules, and peripheral information associated with
the operation of a computer system.

The process of arranging items of information according to some portion of each
item's content.

Glossary-14

Source language

A language used by humans to write a computer program; the original form of a
computer program before translation.

Square root

A factor of a number that, when squared, yields the number.

Statement

An expression or instruction written in a source language; an instruction to the
computer to perform some operation.

Statement separator

Step

A character or symbol that differentiates statements when two or more statements
appear on the same program line.

A single operation in a series of computer operations; to cause the execution of a
single or specified number of operations. For example, the STEP value in a FOR
loop increments or decrements the counter that determines how many times the
loop will execute.

Storage

A general term for any device capable of retaining data; a device that receives,
holds, and, at a later time, returns data; see also Memory.

Storage location

An identifiable area of memory that retains data.

String

A group of characters treated as a unit.

String variable

A variable that reserves a location in memory for character data. In
BASIC-PLUS, you specify a string variable with a $ suffix, for example, A$.

Subroutine

A routine designed to be used by other routines to accomplish a specific task.

Subscript

A notation, written below and to the right of a set name, that represents a speci
fied item in that set; an integer that identifies a particular item in an array. For
example, in A(O%), the subscript 0% identifies the first element in the array A.

Glossary-I 5

Subscripted variable

A variable name followed by one or more subscripts in parentheses; a notated
variable that identifies the size of a storage location. For example, A(I%) is a
subscripted variable.

Substring

Syntax

One or more consecutive characters contained within a larger gTOUp of characters.

The rules governing statement structure in a computer language; the structure of
a language.

System

A combination of hardware and software that performs specific processing opera
tions; a collection of components that forms a functional unit.

System commands

Instructions that you give the computer, such as RUN, which executes a program,
and ASSIGN, which reserves an I/O device.

System manager

Table

The person in charge of a computer system.

A collection of data stored for easy reference; data stored in an array of rows and
columns; see also two-dimensional array.

Terminal

A device, consisting of a keyboard and display mechanism, used to enter and
receive data to and from a computer; any device that can send and receive infor
mation over a communication channel.

Terminal line

A horizontal line on the terminal screen. On video terminals, you can usually
enter 80 or 132 characters on one terminal line.

Timesharing

A method of computer operation in which the system is shared by more than one
user in a timeframe that appears to be simultaneous.

Glossary-H)

Translate

To convert source code into executable code. In BASIC-PLUS, translation occurs
when you enter new statements, when you retrieve an existing source program
with the OLD command, and when you run or chain to a source program.

Truncate

To reduce the size of a number by deleting one or more of the least significant
digits; to drop digits from the end of a number, thus reducing precision.

Twomdimensional array

An array composed of columns and rows; a table.

Unconditional branch

An instruction that transfers program control to a specified location; an instruc
tion that interrupts an operation and shifts control to another operation.

Underflow

Value

A condition that occurs because the result of a mathematical operation is smalle
than the program can handle; a situation in which a computed nonzero quantity i,
less than the smallest nonzero quantity that the computer can store.

A quantity; the information represented by a data item.

Variable

An entity that can assume any of a given set of values; the symbolic representa
tion of a storage location; a symbol whose value can change during a program.

Warning error

A mistake in a program that is not severe enough to halt program execution.

Warning message

A notice from the computer that a warning error is present in the program.

Glossary-17

Index

A
ABS function, 9-28t
Account, assignable, D-2
ALT MODE key, 10-8
Alternate buffer I/O, 14-12, 17-10

example of, 17-10
uses of, 17-10, 17-11

Ampersand/RETURN key, to continue line,
7-4,7-5,7-8

AND logical operator, 8-15
AND operation, diagram, 11-9
APPEND command, 5-8

compared to DCL APPEND command, 5-9,
B-1

Arithmetic
expressions, 8-8
floating-point, 11-13
floating-point, accumulated error,

11-13
integer, 11-4
mixed-mode, 11-14 to 11-15
with mixture of integer and floating-point

data, 11-14 to 11-15
operators, 8-9t
scaled, 11-15 to 11-19
string, 10-19
string, precision, 10-21
two's complement, 11-3

Arrays, 9-24 to 9-27
determining size of, 9-26
one-dimensional, 9-24
saving addressing space for, F-2
two-dimensional, 9-25f
virtual, 16-1. See also Virtual

arrays
ASCII

character codes, D-3t
function, 10-10t

ASSIGN command, B-1
compared to DCL ASSIGN command, B-1

Assignable account, D-2
Assigning values to variables, 9-2
ATN function, 9-28t

.BAC file, C-15
size of, C-16

.BAC program, 3-2

.BAS program, 3-1

B

BASIC-PLUS
as default keyboard monitor, 2-3
entering, 2-4
leaving, 2-4
run-time system, 2-2, C-16
sample program, 7-2

BASIC-PLUS-2
compatibility with, 9-29, E-1
converting a program to, 6-14, 6-19

BASIC /BPLUS command, 2-4
Bit mask

diagram of, 11-12
example of, 11-12, 11-13
uses of, 11-12

Bits
masking, 11-12. See also Bit mask
setting or clearing, 11-11
testing, 11-11
toggling (resetting), 11-10

Block 110, 14-6, 17-1
accessing a specific block, 17-6
accessing block of file over 65535 blocks,

17-7
accessing II 0 buffer, 17-11
closing file, 17-4
creating magnetic tape file, 17-19 to

17-20
CVT functions in, 17-16
defining I/O buffer, 17-12
examples of, 17-18
moving data into 110 buffer, 17-14
opening file, 17-3
printing line on terminal, 17-18
processing numeric data, 17-16
reading a block, 17-5
reading and writing data, 17-5
reading magnetic tape file, 17-19 to

17-20
reading non-block I/O data, F-7
reading virtual array data, F-9
record blocking and deblocking, 17-20
specifying number of characters to read,

17-8
specifying number of characters to write,

17-7
specifying offset into 110 buffer, 17-8
storing numeric data in compact form,

17-19 to 17-20
writing a block, 17-5

Index-l

Block I 10 file
access to, 14-5
closing, 14-15
printing on line printer, 17-19
record format, 14-5

BLOCK option, in GET and PUT statements,
17-6

Blocking record, definition, 17-20
BPCREF listing

cross-reference table, 6-17
example of, 6-17f
global variable references, 6-19 to

6-20
header line, 6-17
local variable references, 6-19 to 6-20
printing on line printer, 6-15
statistical data, 6-18
suspect line numbers and variables,

6-18
variable reference codes, 6-18

BPCREF program, 6-14 to 6-22
command format, 6-15
command switches, 6-16t
error messages, 6-2lt
output listing contents, 6-16 to 6-20
running, 6-14
sample cross-reference listing, 6-17f

Branch
conditional, 9-13, 13-4, 13-5
unconditional, 9-13

Buffer
allowed sizes for each device, 14-11t
default sizes for each device, 14-11t
definition, 14-2
determining size of, 17-3
format of data in, 14-3
setting size less than default, 14-12
setting size of, 14-10

Buffer, 1/0, 14-2. See also Buffer
BUFSIZ function, 17-3
BYE command, B-1

C
Card reader, record characteristics, 17-6
CATALOG command, 4-9 to 4-10
CCL,2-2

command, 2-2
command, entering, 2-3

CCONT command, 6-8, 6-9
CCPOS function, 15-10

with cursor control, 15-11
use in program, 15-11

Index-2

CHAIN statement, 13-22
and CTRL/C, 13-23
effect on I/O channels, 13-23, 14-15
file operations, 13-23
with privileged programs, 13-23
with source and translated programs,

13-23

CHANGE statement, 10-3
Channel, I/O, 14-2. See also I/O

channel
Channel 0, 14-3, 14-6
Channel number, 14-2, 14-6
Character data. See String data
Character set, BASIC-PLUS, ~1, D-l
Characters, ASCII codes for, D-3t
Checksum, C-15

CHR$ function, IO-l0t, 15-3
CLOSE statement, 14-3, 14-15

for block I/O file, 14-15
for formatted ASCII file, 14-15
with negative channel number, 14-15
for virtual array, 14-15, 16-5

Cluster, disk, 14-12

Cluster size
negative, 14-13
optimal size for file, 14-12
pack,I4-12
UFD,I4-13

CLUSTERSIZE option, in OPEN statement,
14-12

Code
ASCII character, D-3t
source, 3-1
translated, 3-2

Command
APPEND,5-8
ASSIGN, B-1
BYE, B-1
CATALOG, 4-9 to 4-10
CCL, 2-2, 2-3
CCONT, 6-8, 6-9
COMPILE, 4-8, C-15
CONT, 6-8, 6-9
DCL, 2-2, 2-3
DEASSIGN, B-2
DELETE, 5-2 to 5-3
EXTEND, 4-12, 7-9
HELLO, B-2
KEY, B-2
keyboard monitor, 2-2
LENGTH, 4-10
LIST, 1-4, 4-5

Command (Cont.)
LISTNH,4-5
NEW, 1-3, 4-1 to 4-3
NOEXTEND, 4-12
OLD, 1-5, 4-4, C-15
REASSIGN, B-3
RENAME, 5-3
REPLACE, 1-6, 5-6
RUN, 1-4, 4-6
RUNNH,4-6
SAVE, 1-5, 4-7
SCALE, 4-11, 11-17
summarY,3-2t
TAPE, B-4
UNSAVE, 5-6 to 5-7

Commands, summary of, B-1
Comments, 7-7

continuing with ampersand/RETURN, 7-8
continuing with LINE FEED key, 7-8
optimizing use of, F-2

Common memory, 13-23
COMP% string arithmetic function, 10-2lt
Compatibility with BASIC-PLUS-2, hints for,

E-l
COMPILE command, 4-8, C-15
Compiled program. See Translated

program
Concatenation, string, 8--10, 10-10
Concise Command Language, 2-2. See

also CCL
Conditional

branch, 9-13, 13-4, 13-5
termination of FOR loop, 13-7
transfer to subroutine, 13-4

Constants, 8--3
ambiguous, 11-14, F-3
BASIC-PLUS optimization of, F-3 to F-4
bytes 'of translated code for, F -3 to F-4
integer, 8-4, 11-4
optimizing use of, F-3
real (floating-point), 8--3
string, 8-4, 10-1

CONT command, &-S, &-9
Control keys

CTRL/C, &-12
CTRL/L,10-S
CTRL/O, &-13
CTRL/Q, &-13
CTRL/R,4-2
CTRL/S, &-13
CTRL/U, 4-2, 5-2
CTRL/Z,I4-4
summary of, B-5t

Control variable, in loop, 9-17

Conversion
ASCII to string, 10-5
integer array to string, 10-5
string to ASCII, 10-4
string to integer array, 10-4

Core common, 13-23
COS function, 9-28t
COUNT option

for disk, magnetic tape, and DECtape,
17-8

in GET statement, 17-8
in PUT statement, 17-7
for terminal, paper tape, and card reader,

17-8
CTRL/C, &-5, 6-12

effect on I/O channels, &-6, &-8
effect on program variables, 6-6, 6-8

CTRL/C state. See Ready state
CTRL/L, 10-8
CTRL/O,6-13
CTRL / Q, 6-13
CTRL/R,4-2
CTRL/S, &-13
CTRL/U, 4-2, 5-2
CTRL/Z

in formatted ASCII file, 14-4, 15-14
with INPUT LINE statement, 15-16

Current program, 3-2
CVT functions, 17-16

conversion of integer data, F-7f
examples of, 17-17, 17-19 to 17-20
in LSET, RSET, and LET statements, 17-17
with SWAP%, F-7

CVT$$ function, 10-12 to 10-16
bit mask in, 11-13
with INPUT LINE statement, 15-16

CVT$% function, 17-16t
with file name string scan, 11-12

CVT$F function, 17-16t
CVT%$ function, 17-16t
CVTF$ function, 17-16t

Data
block I/O, 14-5
constant, 8--3
file, 14-1, 14-2

D

floating-point, 8--2, 11-13. See
also Floating-point data

floating-point, conversion with CVT
functions, F -Sf

floating-point (in virtual array), 1&-6
formatted (stream) ASCII, 14-4

Index-3

Data (Cont.)
integer, 8-2, 11-1. See also

Integer
integer, conversion with CVT functions,

F-7f
integer (in virtual array), 16-6
printing on line printer, 17-19
printing on terminal, 9-3, 15-2, 17-18
printing to file or device, 15-3
reading from formatted ASCII file,

15-13
reading from terminal, 15-11
real,8-2
string, 8-2, 10-1
string (in virtual array), 16-2, 16-6
supplying to running program, 9-7, 15-11
tailoring output format of, 15-4
variable, 8-5, A-I
virtual array, 14-4

Data file, 14--1, 14--2
DATA statement, 9-9 to 9-11, 10-6
Data types, 8-3t
DATE$ string function, 10-11t, 13-18t
DCL

keyboard monitor, 2-2
run-time system, 2-2

DeL commands, 2-2
APPEND, compared to BASIC-PLUS

APPEND command, 5-9, B-1
ASSIGN, compared to BASIC-PLUS

ASSIGN command, B-1
BASIC/BPLUS,2-4
DEASSIGN, compared to BASIC-PLUS

DEASSIGN command, B-2
DELETE, compared to BASIC-PLUS

DELETE command, 5-3, B-2
entering, 2-3

RENAME, compared to BASIC-PLUS
RENAME command, 5-4, B-3

DEASSIGN command, B-2
compared to DCL DEASSIGN command,

B-2
Deblocking record, definition, 17-20
Debugging a program, 6-8 to 6-13

example of, 6-10
DECtape

as file-structured device, 14--10
buffer size, 14--11
OPEN statement for, 14--8
record characteristics, 17-6

DEF* statement, 9-31
arguments, 9-31, 9-33
multi-variable, 9-34

Index-4

DEF* statement (Cont.)
multiple-line, 13-1
for string functions, 10-18

Default keyboard monitor, 2-2

DELETE command, 5-2 to 5-3
compared to DCL DELETE command, 5-3,

B-2
DELETE key, 1-4,4--2,5-2
Delimiters

carriage return/line feed, 10-8, 14-4
ESCAPE, 10-8, 14-4
form feed, 10-8, 14-4
in formatted (stream) ASCII file, 14-4
for INPUT LINE statement, 10-8
line feed, 10-8, 14-4
vertical tab, 14-4

DET matrix function, 12-8
Devices

file-structured, 14--2, 14--10
non-file-structured, 14--2, 14--10
record characteristics, 17-6t

DIF$ string arithmetic function, 10-20t
Difference, logical, 11-10
DIGITAL Command Language, 2-2. See

alsoDCL
DIM statement, 9-26, 12-1

virtual array, 16-2
Directory listing, displaying, 4--9 to 4--10
Disk

as file-structured device, 14--10
buffer size, 14--11
default RECORDSIZE in block I/O, 17-6
opening for non-file-structured processing,

14--10
record characteristics, 17-6

Disk access time, decreasing, F-5
Disk file

extending, 17-9
locking and unlocking blocks in, 17-21
multi-user access to, 17-21
preextending to more than 65535 blocks,

14--14
preextending with FILE SIZE option,

14--14
Diskette, buffer size, 14--11
Division with integers, 11-4
DMC11 /DMR11, buffer size, 14--11
Dummy variables, 9-12

E
E format, 8-3
END statement, 6-6, 6-8, 9-37

effect on II 0 channels, 6-6, 6-8

END statement (Cont.)
effect on program variables, 6-6, 6-S
explicit, 6-6
implicit, 6-6

EQV logical operator, 8-15
ERL variable, 6-6, 6-S, 13-17
ERR variable, 6-6, 6-8, 13-15, C-2
Error, untrapped

definition, 6-5
effect on I I 0 channels, 6-6, 6-S
effect on program variables, 6-6, 6-8

Error handling subroutine, 13-14 to 13-1S
disabling, 13-16
transfer of control to multi-statement line,

13-16
Errors

abbreviations in descriptions, C-2t
BASIC-PLUS, C-1
checksum, C-15
disk, C-15
fatal, C-2
information, C-2
multiple meanings for, C-3
nonrecoverable, C-10t to C-14t
nontrappable, C-3t
?Program lost-sorry message, C-14
RSTS/E, C-1
severity, C-2t
trapping, C-1, C-2
user-recoverable, C--4t to C-10t
warning, C-2

ESCAPE key, 10-S
Exclusive OR logical operator, 8-15
Exclusive OR operation, diagram, 11-10
Executable program

file size, 4-9
protection code, 4-9

Execution
halting with CTRL/C, 6-5, 6-12
halting with STOP statement, 6-5, 6-S,

9-3S
suspending with SLEEP statement, 13-20

EXP function, 9-2St
Exponential format, 8-3
Expressions, 7-3, 8-7 to 8-17

arithmetic, 8-S
logical, 8-14, 11-6
logical, evaluation of, 11-7
numeric relational, 8-11
relational, 8-10
relational, evaluation of, 11-6
string, 8-10
string relational, 8-12
use of parentheses in, 8-16

EXTEND command, 4-12,7-9
EXTEND mode, 4-12, 7-9
EXTEND program format, 7-10f

comments, 7-12
line continuation, 7-12
spaces and tabs, 7-11
variable and function names, 7-11

EXTEND statement, 7-9

F
FIELD statement, 17-12

multiple definitions for same buffer,
17-14, 17-1S

processing string with, 17-21
use in record blocking and deblocking,

17-20
use of subscripted string variables in,

17-13
virtual array strings in, 17-14

File
.BAC, 3-2, C-15
.BAC, size of, C-16
.BAS,3-1
block 110, 14-5
changing name, type, or protection code,

5--4, 14-16
closing, 14-3, 14-15
data, 14-1, 14-2
deleting from directory, 5-6, 14-17
extending a (disk), 17-9
formatted (stream) ASCII, 14--4, 15-3,

15-13
opening, 14-2, 14-6
preextending to more than 65535 blocks,

14-14
preextending with FILE SIZE option,

14-14
read and write access to, 14-S
reading and writing, 14-3
sharing, 17-21
virtual array, 14--4, 16-1. See also

Virtual arrays
File name string scan, 11-12
File specification, RSTS/E, 4--4, 4-6, 4-8,

5-6
switches, 14-7

File-structured devices, 14-2, 14-10
FILE SIZE option, in OPEN statement, 14-14
IFILESIZE switch, 14-14
FIX function, 9-2St
Floating-point

arithmetic, 11-13
arithmetic, accumulated error, 11-13

Index-5

Floating-point (Cont.)
constants, 8-3
variables, 8-6

Floating-point data, 8-2
assigned to integer, 11-4

conversion with CVT functions, F -Sf
precision, 11-13
range of values, 11-13
in virtual array, 16-6

FOR loops
conditional termination of, 13-7
implied, 13-11, F-4

FOR statement, 9-17
FOR statement modifier, 13-11
Foreign buffers, 17-10. See also

Alternate buffer I/O
Format

of data in buffer, 14-3
exponential, 8-3
program, 7-10
of statements, optimizing, F-1

Format field, 15-4. See also
PRINT -USING format field

Formatted ASCII file, 15-3
access to, 14-4, 15-1
closing, 14-15
reading data from, 15-13, 15-14
record delimiters, 14-4, 15-14
record format, 14-4, 15-14
recor-d length, 15-4, 15-14
writing data to read with INPUT statement,

15-3
writing nonprinting ASCII values, 15-3

Formatted ASCII 110, 14-5, 15-1
examples, 15-17 to 15-19

Formatting characters, 15-2
in formatted ASCII file, 15-3

Functions
ABS,9-2St
ASCII, 10-10t
ATN,9-2St
BUFSIZ, 17-3
CCPOS, 15-10
CHR$, 10-lOt, 15-3
COMP%, 10-2lt
COS,9-2St
CVT,17-16
CVT$$, 10-12, 10-12t
CVT$%, 17-16t
CVT$F, 17-16t
CVT%$, 17-16t
CVTF$, 17-16t

Index-6

Functions (Cont.)
DATE$, 10-11t, 13-1St
DET,l2-S
DIF$, 10-20t
EXP,9-2St
FIX,9-2St
INSTR, 10-10t
INT, 9-2St, 9-2S
integer, user-defined, 11-5
INV,l2-S
LEFT,10-9t
LEN,10-10t
LOG,9-2St
LOG10,9.,.-2St
MAGTAPE, 13-20
matrix, 12-S
MID,1O-10t
NUM$, 10-11t
NUM1$, 10-11t
PI,9-2St
PLACE$, 10-2lt
POS, 15-10
PRINT, 15-10
PROD$, 10-20t
QUO$, 10-20t
RAD$, 10-10t
recursive, 13-2
RIGHT, 10-10t
RND, 9-2St, 9-29
SGN, 9-27, 9-2St
SIN,9-2St
SPACE$,10-10t
SPEC%, 13-20, 17-21
SQR,9-2St
string, 10-9
string, user-defined, 10-lS
string arithmetic, 10-20t
string arithmetic, nesting, 10-24
STRING$, 10-12t, 15-3
SUM$, 10-20t
summary of, A-2
SWAP%, 17-11, 17-17
SYS, 11-11, 13-20
TAB, 15-10
TAN,9-2St
TIME,13-19t
TIME$, lO-l1t, 13-19t
TIME$, format examples, 13-20t
TRN,l2-S
user-defined, 9-31
user-defined, multiple-line, 13-1
VAL,lO-11t
XLATE, 10-12t, 10-17

G
GET statement, 17-5
GOSUB statement, 9-36
GOTO statement, 6-8, 9-13

in debugging, 6-9

H
Header

program, 4-5, 4-6
statement, F-l. See also Statement

header
HELLO command, B-2
Hints

for BASIC-PLUS-2 compatibility, E-1
programming, F-l

I/O
alternate buffer, 14-12, 17-10
block, 17-1. See also B lock I/O
formatted ASCII, 14-5, 15-1
formatted ASCII (examples), 15-17 to

15-19
terminating, 14-15
virtual array, 16-1. See also

Virtual arrays
I/O buffer, 14--2. See also Buffer
1/0 channel, 6-6, 14-6

closing, 13-23, 14--15
definition, 14--2
determining buffer size of, 17-3
effect of CHAIN on, 13-23
opening terminal as, 15-15

1/0 methods, 14-4 to 14-6
IF-GOTO statement, 9-13 to 9-15
IF statement, 9-13 to 9-15
IF statement modifier, 13-10
IF-THEN-ELSE statement, 13-5
IF-THEN statement, 9-13 to 9-15
Immediate mode

debugging in, 6-8
description, 1-2, 6-2 to 6-4
examples, 6-2
limitations, 6-3
variable assignments, 6-3

IMP logical operator, 8--15
Infinite loop, 6-5
INPUT LINE statement, 10-7, 15-15

delimiters for, 10-8
handling of carriage return character,

15-16
record length for, 15-16

INPUT statement, 9-7, 10-7, 15-11 to
15-15

errors, 15-12
reading data from file, 15-13
reading data from terminal, 15-11
record length for, 15-14
use of prompting message in, 9-8, 15-11

INSTR string function, IO-lOt
INT function, 9-28t, 9-28
Integer, 8--2

arithmetic, 11-4
as bit pattern, 11-2
as logical value, 11-8
as number, 11-1
constants, 8--4, 11-4
conversion with CVT functions, F -7f
division, 11-4
finding value from bit pattern, 11-3
functions, user-defined, 11-5
I/O, 11-5
internal format, 11-2f
in logical operations, 11-2,

11--6 to 11-13
storage, 11-1
value range, 11-1
variables, 8--6, 11--4
in virtual array, 16-6

Integer function, INT, 9-28
Integers, optimizing use of, F-3
INV matrix function, 12-8

J
Job

calling from SLEEP state, 13-21
definition, 2-1

Job keyboard monitor, 2-2

KEY command, B-2
Keyboard

buffer size, 14--11
record characteristics, 17-6

Keyboard monitor, 2-1
command, 2-2
default, 2-2
job, '2-2
wait state. See Ready state

Keywords, 7-3, 8-1
list of reserved, A-20t

KILL statement, 5-7,14-17

Index-7

L
LEFT string function, 10-9t
LEN string function, 10-10t
LENGTH command, 4--10
LET statement, 9-2

effect on string variables, 17-15
Line

continuation, 7-4
multi-statement, 7-4
multi-statement, as space saving technique,

F-2
multi-statement, in immediate mode, 6--4
program, 7-4
terminal,7-4
text, 7-4

LINE FEED key, 7-5, 7-8, 10-8, 14--4
Line numbers, 7-1
Line printer, buffer size, 14--11
LINE variable, ~6, ~8, ~13, 13-17
LIST command, 1-4,4-5
LISTNH command, 4--5
Literal, 15-9
Lock

explicit, 17-21
implicit, 17-21
releasing with UNLOCK statement, 17-21

LOG function, 9-28t
LOG10 function, 9-28t
Logical

difference, 11-10
expressions, 8-14, 11-6
expressions, evaluation of, 11-7
operators, 8-15, 11-6
product, 11-9
sum, 11-10
values. See Logical values

Logical operations
how BASIC-PLUS performs, 11-8
programming applications, 11-11
truth values for, 8-15t, 11-9t

Logical operators
AND,8-15t
EQV,8-15t
IMP,8-15t
NOT,8-15t
OR,8-15t
XOR,8-15t

Logical values, 8-10
-1 % and 0% as, 11-6 to 11-7
integers as, 11-8
in relational expressions, 11-6
storing, 11-7
testing, 11-7

Loop index, 9-17

Index-8

Loops, 9-15 to 9-24
FOR, conditional termination of, 13-7
FOR, implied, 13-11, F-4
FOR-NEXT, 9-17
nested, 9-20
parts of, 9-17
transferring control in and out of, 9-21
types of, 9-17
UNTIL-NEXT, 9-23
WHILE-NEXT,9-22

LSET statement, 17-14
effect on string length, 17-14
effect on string variables, 17-15

M
Magnetic tape

as file-structured device, 14--10
buffer size, 14--11
OPEN statement for, 14--8
record characteristics, 17-6

MAGTAPE function, 13-20
Mask, bit, 11-12. See also Bit mask
MAT initialization statement, 12-6
MAT INPUT statement, 12--4, 15-16
MAT PRINT statement, 12-2, 15-9
MAT READ statement, 12-2
MAT statements, 12-1
Mathematical functions, 9-27
Matrices, conforming, 12-8
Matrix

calculations, 12-7
determinant, 12-8
functions, 12-8
initializing, 12-6
input from file with MAT INPUT, 15-16
input from terminal with MAT INPUT,

12-4, 15-16
inversion, 12-8
manipulation, 12-1
printing to file with MAT PRINT, 15-9
printing to terminal with MAT PRINT,

12-2, 15-9
reading with MAT READ, 12-2
transposition, 12-8

MID string function, 10-10t
Mixed-mode arithmetic, 11-14 to 11-15
Mode

read only, 14--8
update, 14--8

MODE 1%, 17-21
MODE option, 14--8, 17-21
MODE option, in OPEN statement, 14--14

Modifiers
FOR statement, 13-11
IF statement, 13-10
multiple statement, 13-14
nested, 13-11
summary of statement, A-18
UNLESS statement, 13-11
UNTIL statement, 13-13
WHILE statement, 13-12

Multi-line statement, 7-5
Multi-statement line, 7-4

as spacesaving technique, F-2
and error-handling subroutine, 13-16
in immediate mode, 6-4

N
NAME-AS statement, 5-4, 14-16

for nonprivileged users, 5-5
for privileged users, 5-5

Nesting
FOR-NEXT loops, 9-20
IF statements, 13-6
multiple-line DEF* functions, 13-3
string arithmetic functions, 10-24
subroutines, 9-36
techniques, 9-20f

NEW command, 1-3, 4-1 to 4-3
NEXT statement, 9-18
NO SCROLL key, 6-14
NOEXTEND command, 4-12
NOEXTEND mode, 4-12, 7-9
NOEXTEND program format, 7-10f

comments, 7-12
line continuation, 7-12
spaces and tabs, 7-11
variable and function names, 7-11

Non-tile-structured devices, 14-2, 14-10
NOT logical operator, 8-15
Null device

in alternate buffer 1/0,17-11
buffer size, 14-11
use with FIELD statement, 17-21

Null string, 10-2
in INSTR function, 10-10
in relational expressions, 8-14
symbo~ for, 8-14

NUM variable, 12-5
NUM$ string function, 10-11t
NUM1$ string function, 10-11t
NUM2 variable, 12-5
Numbers, floating-point, 11-13. See

also Floating -point data

o
OLD command, 1-5, 4-4, C-15

ON ERROR GOTO statement, 6-5, 13-15,
15-12, C-1, C-2

ON-GO SUB statement, 13-4

ON-GOTO statement, 13-4

OPEN FOR INPUT, 14-7

OPEN FOR OUTPUT, 14-8

OPEN statement, 14-2, 14-3, 14-6 to
14-14

creating file, 14-8
defaults in, 14-6
errors, 14-9t
for tile-structured and non-tile-structured

devices, 14-6
forms of, 14-7
opening existing file, 14-7
options, 14-7, 14-10
options, order of, 14-7
read/write access with, 14-8
for virtual array, 16-3

Operand, 7-3
Operators, 7-3

arithmetic, 8-9t
logical, 8-15, 11-6
numeric relational, 8-11t
precedence rules for, 8-16t
relational, 11-6
string relational, 8-12t, 10-3
summary of, A-2

Optimizing
constants, F-3
tiles, F -5 to F-6
integers, F-3
statement formats, F-1
statement structure, F -4 to F-5
strings, F-6
variables, F-2

Optional features of BASIC-PLUS, 1-1
Options

BLOCK,17-6
CLUSTERSIZE, 14-12
COUNT,17-7
FILE SIZE , 14-14
MODE, 14-8, 14-14, 17-21
RECORD,17-7
RECORDSIZE, 14-10
USING,17-8

OR logical operator, 8-15
OR operation, diagram, 11-10

Index-9

p
Pack cluster size, 14-12
Paper tape, record characteristics, 17-6
Paper-tape punch, buffer size for, 14-11
Paper-tape reader, buffer size for, 14-11
Parentheses, use in expressions, 8-16
Parity bit, 10-13
PI function, 9-28t
PLACE$ string arithmetic function, 10-2lt
POS function, 15-10
Precision, string arithmetic, 10-21

values in PROD$, QUO$, and PLACE$
functions, 10-24t

PREFIX key, 10-8
PRINT statement, 9-3, 10-9, 15-1 to

15-4
formatting characters in, 9-5, 9-6
functions, 15-':10
output rules, 15-2
printing numbers, 9-4, 15-2
printing strings, 9-5, 15-2
in scaled arithmetic, 11-17
specifying output format, 9-5, 9-6,

15-2
suppressing carriage return/line feed,

9-7, 15-2
PRINT-USING format field

asterisk fill, 15-6
comma and semicolon in, 15-8
commas in numeric field, 15-7
dollar sign, 15-7
exclamation point, 15-4
exponential format, 15-6
insufficient numeric format, 15-7
literal characters in, 15-8
numeric field, 15-5
numeric format too large, 15-8
string field, 15-4, 15-5
trailing minus sign, 15-6

PRINT-USING statement, 15-4 to 15-9
printing numbers with, 15-5
printing strings with, 15-4
in scaled arithmetic, 11-17

Print zones
in formatted ASCII file, 15-3
printing data in, 9-5, 9-6, 15-2
size of, 9-5, 15-2

Problems, software, reporting, C-16
PROD$ string arithmetic function, 10-20t

Product, logical, 11-9
Program

.BAC, 3-2, C-15

.BAS, 3-1

Index-lO

Program (Cont.)
chaining to, 13-22
changing file name, 5-4
changing file type, 5-4
changing name, 5-3
changing protection code, 5-4
changing scale factor, 11-18
character set for, 8-1, D-1
compiled. See Program, translated
context, definition, 6-5
continuing execution and detaching job with

CCONT,6-9
continuing execution with CONT, 6-9
continuing execution with GOTO, 6-9
correcting syntax errors, 4-3
correcting typing errors, 1-4,4-2
creating new, 1-3, 4-1
creating with text editor, 4-3
current, 3-2
debugging, 6-8 to 6-13
debugging, example of, 6-10
deleting from disk storage, 5-6
displaying length in memory, 4-10
displaying on terminal, 1-4,4-5
documenting, 7-6
editing, 5-1
entering statements, 4-2
erasing lines, 5-2 to 5-3
formatting, 7-4
halting and checking execution, CTRL / C

and PRINT LINE, 6-12
halting execution with STOP, 6-8, 9-38
header, 4-5, 4-6
line, 7-4
listing on terminal, 1-4,4-5
in memory, 3-2
modifying, 5-1
optimizing, F-l. See also

Optimizing
parts of a, 7-1, 7-3
printing on line printer, 4-8
recompiling, C-15
replacing saved, 1-6
replacing saved source, 5-6
retrieving source from disk, 1-5,4-4
running, 1-4, 4-6
running current, 4-6
running saved, 4-6
sample of, 7-2
saving source on disk, 1-5,4-7
saving translated (executable) on disk,

4-8
source, 3-1
suspending execution, 13-20

Program (Cont.)
symbols in, D-lt
transferring control to, 13-22
translated, 3-2
translation of source code into executable

code, 4-3
use of spaces and tabs in, 7-6

?Program lost-sorry error
causes, C-15
description, C-14

Programming hints, F-1
Programs, combining in memory, 5-8
IPROTECT switch, 4-9, 5-4, 14-7, 14-17
Protection code, 14-7, 14-8

changing, 5-4, 14-16
PUT statement, 17-5

Q
QUO$ string arithmetic function, 10-20t

R
RAD$ function, 10-10t
Random access, 17-6
Random number function, RND, 9-29
RANDOMIZE statement, 9-30
READ statement, 9-9 to 9-11, 10-6
Ready state

definition, 6-4
effect on privileged program, 6-6, 6-8
entering, 6-4, 6-5
possible actions in, 6-7
program status in, 6-6, 6-8t

Real data, 8--2. See also
Floating-point data

REASSIGN command, B-3
Record blocking and deblocking

definition, 17-20
example, 17-20
use of FIELD statement in, 17-20

Record characteristics
for card reader, 17-6
for DECtape, 17-6
for disk, 17-6
for magnetic tape, 17-6
for paper tape, 17-6
for terminal, 17-6

RECORD option, in GET and PUT statements,
17-7

RECORDSIZE option, in OPEN statement,
14-10

RECOUNT variable, 17-8, 17-9
Recursive function, 13-2

Relational
expressions, 8--10
expressions, evaluation of, 11-6
operators, 8--11, 8--12, 11-6

REM statement, 7-7
Remarks, 7-7
RENAME command, 5-3

compared to DCL RENAME command, 5-4,
B-3

REPLACE command, 1-6,5-6
Reporting software problems, C-16
RESTORE statement, 9-12
RESUME statement, 13-15

transfer of control to multi-statement line,
13-16

RETURN key, 1-3, 10-8, 14-4
RETURN statement, 9-36
RIGHT string function, 10-10t
RND function, 9-28t, 9-29
IRONLY switch, 14-8
RSET statement, 17-14

effect on string length, 17-14
effect on string variables, 17-15

RSTS IE file specification, 4-4, 4-6, 4-8,
5-6

switches, 14-7
RUB OUT key, 4-2, 5-2
RUN command, 1-4,4-6
Run-time system

BASIC-PLUS, 2-2, C-16
definition, 2-1

RUNNH command, 4-6

S
SAVE command, 1-5,4-7
SCALE command, 4-11,11-17
Scale factor, 11-15

with .BAC files, 11-19
changing, 11-18
current, 4-11,11-17
default value, 4-11, 11-15
displaying, 4-11, 11-18
effect on floating-point calculations,

11-16
with immediate mode statements, 11-19
pending, 4-11,11-17
resetting to default value, 11-19
values for, 11-15

Scaled arithmetic, 11-15 to 11-19
SGN function, 9-27, 9-28t
Sign bit, 11-2
Sign function, SGN, 9-27
SIN function, 9-28t
SLEEP statement, 13-20

Index-ll

Software Performance Report (SPR), C-2
Software problems, reporting, C-16
Source program, 3-1

retrieving from disk, 4-4
saving on disk, 4-7

SPACE$ string function, 10-10t
SPEC% function, 13-20, 17-21
SPR, C-2
SQR function, 9-28t
Statement, definition, 7-3
Statement header

definition, F-1
saving space in, F-2

Statement modifiers, 13-10
efficient use of, 13-10, F-4
summary of, A-18

Statements
CHAIN,13-22
CHANGE, 10-3
CLOSE, 14-15
DATA, 9-9, 10-6
DEF*, 9-31, 10-18
DEF*, multiple-line, 13-1
DIM, 9-26,12-1
DIM, virtual array, 1~2
END, ~8, 9-37
ending, 1-3
EXTEND,7-9
FIELD, 17-12
FOR,9-17
GET, 17-5
GOSUB,9-36
GOTO, ~8, ~9, 9-13
IF-GOTO, 9-13
IF-THEN, 9-13
IF-THEN-ELSE, 13-5
INPUT, 9-7, 10-7, 15-11 to 15-15
INPUT LINE, 10-7, 15-15
KILL, 5-7,14-17
LET,9-2
LSET,17-14
MAT initialization, 12-6
MAT INPUT, 12-4, 15-16
MAT PRINT, 1~2, 15-9
MAT READ, 12-2
multi-line, 7-5
NAME-AS, 5-4, 14-16
NEXT,9-18
ON ERROR GOTO, 13-15, C-1, C-2
ON-GOSUB, 13-4
ON-GOTO, 13-4
OPEN,14-6
optimizing format of, F-1

Index-12

PRINT, 9-3, 10-9, 15-1 to 15-4
PRINT-USING, 15-4 to 15-9
PUT,17-5
RANDOMIZE, 9-30
READ, 9-9, 10-6
REM,7-7
RESTORE, 9-12
RESUME, 13-15
RETURN, 9-36
RSET,17-14
SLEEP, 13-20
STOP, ~, 9-38
summary of, A-3 to A-18
UNLOCK,17-21
UNTIL,9-23
WAIT,13-21
WHILE,9-22

STATUS variable, 11-11, 14-8, 17-3
bit tests, 17-4t
with virtual arrays, 1~12

STEP expression, 9-18
STOP statement, ~5, ~8, 9-38

effect on error-handling routines, 9-38
effect on 1/0 channels, ~6, ~
effect on program variables, ~6, ~8

Stream ASCII file, 15-3
access to, 14-4, 15-1
closing, 14-15
reading data from, 15-13, 15-14
record delimiters, 14-4, 15-14
record format, 14-4, 15-14
record length, 15-4, 15-14
writing data to read with INPUT statement,

15-3
writing nonprinting ASCII values, 15-3

Stream ASCII 110, examples, 15-17 to
15-19

String
arithmetic, 10-19
arithmetic, precision, 10-21
ASCII conversions, 10-3
concatenation, 8-10, 10-10
constants, 8-4, 10-1
conversion with CVT$$ function, 10-12
data, 8-2, 10-1
efficient use of, F-6
expressions, 8-10, 8-12
functions, 10-9
functions, user-defined, 10-18
input from file using INPUT LINE, 15-15
input using INPUT, 10-7
input using INPUT LINE, 10-7,15-15
input using READ and DATA, 10-6
null,10-2

String (Cont.)
output, 10-9
relational operators, 10-3
size, 8-5, 10-3
subscripted variables, 10-2, 17-13
translation with XLATE function, 10-17
variables, 8-7, 10-1
variables, effect of FIELD statement on,

17-12
variables, effed of LET statement on,

17-15
variables, effect of LSET and RSET

statements on, 17-15
in virtual array, 16-2, 16-6

STRING$ string function, 10-12t, 15-3
Subroutines, 9-35

calling, 9-36
conditional transfer to, 13-4
exiting, 9-36
nesting, 9-36
saving program space with, F-5

Subscripted variables, 9-24 to 9-27
in FIELD statement, 17-13

Sum, logical, 11-10
SUM$ string arithmetic function, 10-20t
Suspending program execution, 13-20
SWAP% function, 17-17

in alternate buffer I/O, 17-11
with bit mask, 11-12
with CVT functions, F-7
effect on integer, 17-18
examples of, 17-18
uses of, 17-18

Switch
IFILESIZE, 14-14
IPROTECT, 4-9, 5-4, 14-7, 14-17
IRONLY,14-8
in RSTS IE file specification, 14-7

SWITCH program, 2-4
Symbols, in programs, D-1 t
Syntax error, correcting, 4-3
SYS function, 11-11, 13-20

TAB function, 15-10
TAB key, B-5

T

TAN function, 9-28t
TAPE command, B-4
TEMPnn. TMP file, 4-3
Terminal

buffer size, 14-11
opening as I/O channel, 15-15

Terminal (Cont.)
opening in special mode, 15-15
record characteristics, 17-6

Terminal keys, summary of, B-5t
Terminal line, 7-4
Terminal output

controlling, 6-13 to 6-14
stopping with CTRL/O, 6-13
suspending and resuming with CTRL/S and

CTRL/Q,6-13
suspending and resuming with NO SCROLL

key, 6-14
Text line, 7-4
TIME function, 13-19t
TIME$ string function, lO-11t, 13-let

format examples, 13-20t
Translated program, 3-2

file size, 4-9
protection code, 4-9

TRN matrix function, 12-8
Two's complement arithmetic, 11-3

u
UFD,14-13
Unconditional branch, 9-13
UNLESS statement modifier, 13-11
UNLOCK statement, 17-21
UNSA VE command, 5-6 to 5-7
UNTIL statement, 9-23
UNTIL statement modifier, 13-13
Update mode, 14-8, 17-9, 17-21

and virtual arrays, 16-12
User-defined functions, 9-31

integer, 11-6
multiple-line, 13-1
string, 10-18

User File Directory, 14-13
USING option, in GET and PUT statements,

17-8

v
V AL string function, 10-11 t
Values, logical. See Logical values
Variables, 8-5

assigning values to, 9-2
ERL, 6-6, 6-8, 13-17
ERR, 6-6, 6-8, 13-15, C-2
initial values for, 8-6
integer, 8-6, 11-4
LINE, 6-6, 6-8, 6-13, 13-17
naming, 8-6, A-I
NUM,12-5

Index-13

Variables (Cont.)
NUM2, 12-5
optimizing use of, F-2
real (floating-point), 8-6
RECOUNT, 17-8, 17-9
STATUS, 11-11, 14-8, 17-3
string, 8-7, 10-1
string, effect of FIELD statement on,

17-12
string, effect of LET statement on,

17-15
string, effect of LSET and RSET statements

on, 17-15
sUbscripted, 9-24 to 9-27, 17-13
summary of, A-I, A-2
temporary, F-2

Virtual array file
access to, 14-4
record format, 14-4

Virtual arrays, 14-5, 16-1, 16-14
accessing algorithm, F-10f
buffer size, 16-4
changing values of elements in, 16-13
CLOSE with negative channel number,

16-5
closing file, 14-15, 16-5
compared with memory arrays, 16-1, 16-2
DIM statement, 16-2
effect of CHAIN statement on, 13-23
efficient referencing of, 16-7, 16-9,

16-14

Index-14

Virtual arrays (Cont.)
examples of referencing, 16-7, 16-9,

16-14
examples of using, 16-12
file layout, 16-8f
initializing, 16-4
open on two 1/0 channels, 16-11
opening file, 16-3
preallocating size of, 16-11
preextending,16-4
reading with block 110, F-9
RECORDSIZE values for, 16-4
simultaneous access of, 16-12
storage on disk, 16-5
string length, 16-2, 16-6
string storage in, 16-2, 16-6
trailing null characters in, 16-3, 16-6
two-dimensional, 16-7

w
WAIT statement, 13-21
WHILE statement, 9-22
WHILE statement modifier, 13-12

X
XLATE string function, 10-12t, 10-17
XOR logical operator, 8-15
XOR operation, diagram, 11-10

") HOW TO ORDER ADDITIONAL DOCUMENTATION

DIRECT TELEPHONE ORDERS

In Continental USA
and Puerto Rico
call 800-258-1710

In Canada
call 800-267-6146

In New Hampshire,
Alaska or Hawaii
call 603-884-6660

DIRECT MAIL ORDERS (U.S. and Puerto Rico*)

DIGITAL EQUIPMENT CORPORATION
P.O. Box CS2008

Nashua, New Hampshire 03061

DIRECT MAIL ORDERS (Canada)

DIGITAL EQUIPMENT OF CANADA LTD.
940 Belfast Road

Ottawa, Ontario, Canada K1G 4C2
Attn: A&SG Business Manager

INTERNATIONAL

DIGITAL EQUIPMENT CORPORATION
A&SG Business Manager

c/o Digital's local subsidary
or approved distributor

Internal orders should be placed through the Software Distribution Center (SDC), Digital
Equipment Corporation, Northboro, Massachusetts 01532

• Any prepaid order from Puerto Rico must be placed
with the Local Digital Subsidiary:

809-754-7575

Reader's Comments

language
AA-26230-TC

Note: This form is for document comments only. Digital will use comments submitted on this form at
the company's discretion. If you require a written reply and are eligible to receive one under
Software Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for

improvement.

---_._-_.,-_. -

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

o Assembly language programmer

o Higher-level language programmer

o Occasional programmer (experienced)

o User with little programming experience

o Student programmer
o Other (please specify) _________________________ _

Organization __________________________________ _

Street ___ __

City _____________________________ ___ State
Zip Code __________ or
Country

- - - -Do Not Tear - Fold Here and Tape - - - - - - - - - - - - - - -

~DmDDmD IIIIII

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POST AGE WILL BE PAID BY ADDRESSEE

ATTN: Commercial Engineering Publications MK1-21 H3

DIGITAL EQUIPMENT CORPORATION

CONTINENTAL BOULEVARD

MERRIMACK N.H. 03054

I

I
----1

No Postage
Necessary

if Mailed in the

United States

I

_J.. __
I

I i

Do Not Tear - Fold Here and Tape - - - - - - - - - - - - - - - - --,

Printed in U.S.A.

