RSTS/E
Programming Manual

Order No. AA-EZ09A-TC
Including AD-EZ09A-T1,T2

June 1987
This manual describes RSTS/E special programming techniques. It contains

information on device-dependent features and the use of system function
calls.

OPERATING SYSTEM AND VERSION: RSTS/E V9.4
SOFTWARE VERSION: RSTS/E Vo.4

digital equipment corporation, maynard, massachusetts

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corpora-
tion. Digital Equipment Corporation assumes no responsibility for any errors
that may appear in this document.

The software described in this document is furnished under a license and
may be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip-
ment that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1982, 1985, 1987 by Digital Equipment Corporation. All
rights reserved.

The postage-paid READER’'S COMMENTS form on the last page of this
document requests your critical evaluation to assist us in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

mn@nan ™ DECUS Rainbow
DECwriter ReGIS

DATATRIEVE DIBOL RSTS

DEC FMS-11 RSX

DECmail LA RT

DECmate MASSBUS UNIBUS

DECnet PDP VAX

DECsystem-10 P/OS VMS

DECSYSTEM-20 Professional VT

DECtape Q-bus Work Processor

WPS-PLUS

PREFACE

CONTENTS

SUMMARY OF TECHNICAL CHANGES

PART I

CHAPTER 1

Devices

System Structure and Disk Operations

System Accounts . . . e e e e e e e .
System Library Account {l 2] C e e e e e e
System Account [0,1] o . .

Allocating Disk Storage Space
Bad Block File
System Overlay File
DECtape Directory File . . . e e e e e
Monitor Save Image Library Flle e e e e
Error Messages File
Saving Information After a Crash

Run-Time System Files
System Program Resident Library

Initialization Code+ . .
Swapping Storage
System Account [0,1] on Nonsystem DlSkS .
Storage of Accounting Data . . . e e e e e .

Accounting Data on the System Dev1ce .« e e .
Accounting Data on Nonsystem Disks

Privileges « « « « « o 4 o o 0 0.
Multiple Privileges « .« .« . .
Classes of System Functions
Account Management Activities
File Access Activities o . .
Multiple Privilege Masks
Multiple Privileges and Jobs
Job Creation+ . o o . ..
Login . . . « v « v i e e e e v e e e e e
Logout . . e e e e e e e e e e e e e e e
Spawned Jobs c e e . .

Writing Applications U51ng Multlple Pr1v1leges
Writing Programs Protected <124> and <104>
Writing Programs Protected <232>
Program Access and Privilege Checks
Program Exit e

Multiple Privilege System Functlon Calls e ..

Non-File-Structured Disk Operation
Opening a Disk for Non-File-Structured
Processing . . . v v ¢ ¢ 4 e e e e e e e . .
Accessing Device Clusters

iii

T el]
1

XV

xix

R e el el
i
NHWOEODIILITOANC W N

[l o I |

|
= -
L S

CHAPTER 2

File-Structured Disk Operation . . .

Non-File-Structured Block Access: MODE 128%
Access to Bad Block Information: MODE 512%
Privilege and Access .
Allocating a Disk Unit
Reading and Writing Disk Files: MODE 0%
Updating Disk Files: MODE 1%, MODE 4%+1%

RSTS/E File Updating Capabilities

File Update: MODE 1% . e e e e e

Guarded File Update: MODE 4%+1% . . .
Appending Data to Disk Files: MODE 2%
Special Mode for Extending Files: MODE 8%
Creating a Contiguous File: MODE 16%
Creating a Tentative File: MODE 32%

Creating a Contlguous File Conditionally: MODE
64% e e e e e

No Supersede MODE 128%

Data Caching: MODES 256%, 2048% .
Cache Size
Caching Control .
Random Mode Data Cachlng MODE 256°
Sequential Mode Data Caching: MODE 2048%

Creating and Placing a File at the End of the

Directory: MODE 102 . ..

Creating and Plac1ng a File at the Beglnnlng of

the Directory: MODE 1536% .

Reading a File During Processing: MODE 4096°

Read-Only Access to a File: MODE 8192% .

Write Access to a Directory: MODE 16384%

Simultaneous Disk Access

Disk Optimization e e e .

Partial Block Operdtlons on Dlsk e e e

» -

.

The Virtual Disk - DV0O: .
Asynchronous I/0 Reguests
Disk Special Function: SPEC%
RX01/02 Flexible Diskettes . .

Block Mode: MODE 0%

Sector Mode: MODE]6384ﬁ

Flexible Diskette RECORD Modlflers
Deleted Data Marks

Partial Block Operations on Flexlble Dlskettes
Flexible Diskette Special Function: SPEC%

The Null Device - NL:

Magnetic Tape

Overview of Tape Operations

File-Structured and Non-File- Structured
Processing

Magnetic Tape Labels

iv

1-31
1-31
1-31
1-32
1-32
1-34
1-34
1-34
1-35
1-36
1-37
1-38
1-38
1-39

1-39
1-40
1-40
1-41
1-41
1-42
1-42

1-44
1-44
1--45
1-45
1-45
1-46
1-47
1-48
1-49
1-49
1-51
1-52
1-54
1-55
1-56
1-56
1-57
1-59

Data and Label Handling in File-Structured

Processing . . e e e e e s . e e . . 2-4
The File- Structured Magnetlc Tape OPEN FOR INPUT . 2-6
Searching for a Label on INPUT . . . e« « . . 2-8
Rewinding the Tape: MODES 2%, 32%, 64% e« .+ . . 2-8
Example of OPEN FOR INPUT Statement 2-9
Reading Data v e e e e o . 2=9
The File-Structured Magnetic Tape OPEN FOR OUTPUT 2-10
Searching for a Label on OUTPUT 2-11
Writing a Label: MODES 16%, 512% 2-12
Extending a File: MODE 128% 2-13
DOS and ANSI Format Labels: MODES 16384%,
24576% 0 o v 4 e e e e e e e e e e . 2-13
Processing DOS Magnetic Tape Files 2-13
Processing ANSI Magnetic Tape Files . . . 2-14
Processing Multivolume ANSI Magnetic Tape Flles 2-17
Example of OPEN FOR OUTPUT Statement 2-18
Writing Data and Processing End-of-Tape . . . 2-18
The File-Structured Magnetic Tape OPEN 2-20
The File-Structured Magnetic Tape CLOSE 2-20
The Non-File-Structured Magnetic Tape OPEN . . . 2-21
The Non-File-Structured Magnetic Tape CLOSE . . 2-22
The MODE Specification in Non-File-Structured
Processing ¢ ¢ v i e 4 v e e e .. 2-22
The MAGTAPE Function . . . e e e e e e e e . 224

Off-line (Rewind and Off- llne) Function . . . 2-26
Write Tape Mark Function 2-26

Rewind Function 2-26
Skip Record Function 2=27
Backspace Function 2=27
Set Density and Parity Function 2-28
Tape Status Function 2=29
Return File Characteristics Function 2-32
Rewind on CLOSE Function 2-34
Write End-of-vVolume Labels on CLOSE Functlon . 2-35
Error Condition Acknowledged 2-35
Extended Set Density Function 2-36
Asynchronous I/0 Requests « « « « « « . 2-37
Magnetic Tape Special Function: SPEC% 2-37
Magnetic Tape Error Handling 2-38
Parity (Bad Tape) Error +« « &« « « + . 2-39
Record Length Error 2-39
Offline Error« « . <« « « « < . . 2-39
Write Lock Error« « « .+ « « « .+ . . . 2-40
Writing Beyond EOT Error « + « « « . . 2-40
Magnetic Tape Programming Examples 2-40
Writing a Magnetic Tape File 2-40
Reading a Magnetic Tape File c e .. 2-41
Reading a Magnetic Tape Non-File- Structured . 2-42

CHAPTER 3

CHAPTER 4

Line Printer

Special Character Handling . . . e e e e e
Line Printer Control with the MODE Optlon o e .
Line Printer Control with the FILESIZE Statement
Change ESC to §: MCDE 16%
Set NOWRAP for Excess Lines: MODE 32%
Software Formatting: MODE 512%+N% e e
Enable Hardware Form Feed: MODE 4096% . . .
Translate Numeric 0 to Letter O: MODE 128%
Truncate Long Lines: MODE 256%
Translate Lowercase to Uppercase: MODE 1024° .
Skip Lines at Perforation: MODE 2048%
Suppress Form Feed on CLOSE: MODE 8192% . .
Line Printer Control with the RECORD Option . .
Print Over Perforations: RECORD 2%
Delay Return Until Output Complete: RECORD 4%
Clear Buffers Before Returning Control: RECORD
8% e e e e e e e e e
Truncate Long Lines: RECORD 32%

-

. . . . - . -

Binary Output: RECORD 4096%
No Stall Option: RECORD 8192%
Line Printer Special Function: SPEC%
Error Handling e ..

Terminals

Conditional Input from a Terminal: RECORD 8192%

No Stall Option on Terminal Output: RECORD 8192%
Force Interactive Input: RECORD 256% ..
Multiterminal Service on One I/0 Channel: RECORD

32767%+1% . . . e e e e e e e e e
Multiterminal Servzce Outputo
Multiterminal Service Input . e e e e

Terminal Control with the MODE Optlon e e

Binary Data Output and Input: RECORD 4096% and
MODE 1% e e e e e

sSuppress Automatlc Carrlage Return/Line Feed
MODE 4% . .

Echo Control: MODE 86 . e ..
Prevent CTRL/C Interruptlon and Hlbernatlon
MODE 16% . . .
Enable Incomlng XON/XOFF Proc9531ng MODE 32%
Special Use of RUBOUT: MODE 128% . .

. - . . - » . . . -

. . - . .

Escape Sequence Mode: MODE 256% . .

Escape Sequences . . e« + e .
vT100- and VT200- Famlly Escape Sequences
Programming Example
Output Escape Sequences
Input Escape Sequences

vi

I WWwwWwwwwwwwwwwww
1
QOWOOOWOO~I~I~NOhU bW

P

4-20
4-21
4-21
4-22
4-23
4-24
4-28
4-29
4-29

CHAPTER 5

CHAPTER 6

Transparent Control Character Output:

16384% and MODE 16384%
Private Delimiters . . . e .

RECORD

. -

Characteristics of Prlvate Delimiters .

Usage Notes for Private Delimiters
Terminal Special Function: SPEC%
Pseudo Keyboards . . .

Accessing the Pseudo Keyboard

Creating the Controlled Job

Pseudo Keyboard 10

Pseudo Keyboard Input
Pseudo Keyboard Output

- -

- - -

Pseudo Keyboard Escape Sequence Processing

Programming Example
Pseudo Keyboard Special Function:

DECtape, Paper Tape, and Card Reader

File-Structured DECtape: TUS6 . . .
Non-File-Structured DECtape: TUS6 .
Paper Tape . . . - . .
Punching with Parlty on Paper Tape
Parity Checking on Paper Tape . .
Card Reader « « . . .
ASCII Mode: MODE 0%
Packed Hollerith Mode: MODE 1% .
Binary Mode: MODE 2%
Setting Read Modes

DMC11/DMR11l Interprocessor Link

Using the DMCll/DMR11l Interprocessor

Point-to-Point Configurations . . .

The OPEN Statement
MODE Value . . . Coe e e e e
CLUSTERSIZE Value e e e e e e e
FILESIZE Value
RECORDSIZE Value
Errors . . . e e e e e

The GET Statement and RECORD Optlons
Count and Status Information .

The PUT Statement e e e e

The CLOSE Statement

Hardware ECrors . . .« « « « « «

vii

SPEC%

.

in

4-33
4-34
4-35
4-36
4-37
4-37
4-40
4-40
4-41
4-41
4-41
4-45
4-45
4-47

LA I B [N T |
O~ O UTULD BN

cuoUutumorurt gty gt A
1

| I 1
W ~J B WWwWwNhNNDE-H

AT DTN OO
i

PART I1

CHAPTER 7

System Function Calls and Programming Hints

SYS System Function Calls

.

SYS System Function Calls
SYS System Function Formats and Codes
Cancel CTRL/0O Effect on Terminal . .
Enter Tape Mode on Terminal
Enable Echoing on Terminal e e e e
Disable Echoing on Terminal
Enable ODT Submode on Terminal . e
Exit with No Prompt Message
FIP Function Call
Get Core Common String e e e e e e
Put Core Common String e e e e e e
Exit and Clear Program e e e e e e
Cancel All Type Ahead
Return Information on Last Opened Flle
Execute CCL Command
SYS System Function Calls to FIP (F= 6) .
Building a Parameter String
Unpacking the Returned Data
Notation and References Used in SYS Call
Descriptions + .+ « .+ . .
Project-Programmer Number
Integer (2-Byte) Numbers
Unsigned Integer (2-Byte) Numbers
Negative Byte Values

File Name String Scan Format . . .
MACRO Mnemonic Cross-References

Organization of This Section

File Name String Scan
Get Monitor Tables - Part III
Spooling . e e e e e e e e e e e
Snap Shot Dump e e e e e e e e

File Utility Functions - e .

Manipulate File, Pack, and Account Attributes

Read File Attributes e e e e e e

Write File Attributes
Read Pack Attributes e e e e e e
Read Account Attributes
Write Account Attributes e e e
Delete Account Attributes
Add/Delete CCL Command e e e e
Set Special Run Priority e e e e
Drop/Regain Temporary Privileges ..
Lock/Unlock Job in Memory
Set Logins .« . . e e . .

Manipulate Run- Tlme System, R651dent Library,

Dynamic Region

. -

viii

~ ~
i

=
NN NAN

7-20
7-21
7-22
7-24
7-25
7-26
7-27
7-28
7-30
7-31
7-34
7-36
7-37
7-38

7-40
7-41
7-41
7-42
7-43
7-43
T-44
7-44
7-45
7-58
7-61
7-66
7-67
7-74
7-75
7-1717
7-79
7-81
7-85
7-87
7-89
7-92
7-93
7-96
7-98

Add a Run-Time System . . .
Remove a Run-Time System .
Unlocad a Run-Time System
Add a Resident Library .

Remove a Resident Library . .
Unload a Resident Library . .
Create Dynamic Region
Associate a Run-Time System with
Shut Down System e e e e e

Accounting Dump
Change Date and Time e e e e

a

.

-

Change Priority, Run Burst, and Maximum Size

Get Monitor Tables - Part II .
Change File Statistics e e
Hang Up a Dataset

Get Open Channel Statistics . .
Enable CTRL/C Trap e e e e

Poke Memory « .« . . .
Broadcast to a Terminal

Force Input to a Terminal . . .
Get Monitor Tables - Part I .

Disable Further Logins . e .
Enable Further Logins
Create User Account

Create User Account (New Format)
Create User Account (0ld Format)

Delete User Account
Disk Pack Status
Login/Verify Password

Logout e e e e e e e e e e e

Attach« . . ¢ . . 0 . .
Attach e e e e e e e e e e
Reattach e e e e e e e e e
Swap Console e e e e e e

Detach e e e e e e e e e e

.

.

Change Quota, Password, Expiration

Date/Password (0ld Format) .

Change Quota (0ld Fozmat)/Explratlon

Date/Password (0ld Format)
Set Password (New Format)

Kill Job e e e e e e
Disable Terminal e e e e
Return Error Message o e e

Allocate Device/Assign User Loglcal

Allocate/Reallocate Device . .
Assign User Logical

-

.

.

Date
Change Quota (New' Format)/Expiration

-

.

.

-

Deallocate a Device or Deassign User Loglcal

Deallocate All Devices
Zero a Device « e a

Read/Read and Reset Accountlng Data

Directory Lookup

ix

.

7-100
7-104
7-106
7-108
7-112
7-113
7-114
7-117
7-119
7-120
7-122
7-124
7-127
7-129
7-132
7-134
7-137
7-140
7-141
7-143
7-144
7-147
7-148
7-149
7-149
7-154
7-158
7-160
7-166
7-170
7-173
7-174
7-176
7-178
7-180
7-183

7-183

7-187
7-189
7-191
7-193
7-195
7-197
7-197
7-201
7-203
7-205
7-206
7-210
7-217

CHAPTER 8

Directory Lookup on Index 1-220
Special Magnetic Tape Directory Lookup .. 71222
Disk Directory Lookup by File Name 1-225
Disk Wildcard Directory Lookup e e e . T=227
Set Terminal Characteristics 7-229
Set Terminal Characteristics - Part I . . . 7-230
Set Terminal Characteristics - Part II . . . 7-242

Enable and Disable Disk Caching 7-249
Date and Time Conversion v e e« « « . . 1-253
System Logical Names e e e e e e e e e .. T1-255
Add New Logical Names 7-257
Remove Logical Names e e e e e e e . 7-260

Change Disk Logical Name e e e e e e .. 7282
List Logical Names . . . e e e e e e ... T-264
Add, Remove, and List System Files e e . . . 1-2867
Add System Files e e e e e e e e e e ... 1-268
Remove System Files 7=-271
List System File e e e e e e e e e e e 7273

Create a Job N A)
Wildcard PPN Lookup « 7-283
Return Job Status e . . o« . . 1-285

Set, Clear, or Read Current Pr1v1leges 71-290
Set/Clear/Read Current Pr1v11eges e+« . . 1-290
Stall/Unstall System .. e e e e e e e .. T1-292

Third Party Privilege Check e e e e e 4 . .. 7294
Check Access Function 1-296
Check File Access Rights 7-296
Convert Privilege Name to Mask 7-298
Convert Privilege Mask to Name 7-300
Open Next Disk File . .. c 7-302
Set Device Charactorlstlcs and System Defaults 7-305
Set Device Characteristics 7-305
Set Line Printer Characteristics 7-309

Set System Defaults
Load Monitor Overlay Code and Return
Status/Remove Monitor Overlay Code 7-315
The PEEK Function e e e e« o . . 1-319
Fixed Locations in Monitor e e e e+ . . . 7-320
Finding the Currenz PPN 7-321

. .. 7-312

System Calls for Local Interjob Communication

Local Interjob Communication 8-1
Format of the Send/Receive SYS Calls 8-2
Privileges Required for Send/Receive 8-3
Declare Receiver e - R
Send Local Data Message . .« o+« . < . 8-13
Send Local Data Message Wlth Pr1v1lege Mask . . 8-18
Recelve . . . + « « v+ v v v e e e e e e e 0. 821
Remove Receiver + « « « < < . . 8=31
Local Send/Receive Examples 8-33

CHAPTER 9

CHAPTER 10

CHAPTER 11

Declare Receiver Example

Send Local Data Examples
Receive Examples
Summary of Data Values

System Call for Print/Batch Services
Sending a User Reguest Packet . .

Confirming a User Request
Send User Request Packet

System Programming Hints

Designing a Program to Run by a CCL Command

System Processing of CCL Commands

CCL Precedence Rules
Effect of CCLs on Your Job Area .
CCL Syntax and Switches
CCL Command Line Parsing
BASIC-PLUS Action

.

.

Conventions Used in BASIC PLUS Programs

SLEEP and Conditional SLEEP Statements

Ethernet Operations

Ethernet Concepts
The Conversation Analogy . . .
Ethernet and DECnet/E ...
Ethernet Terms
Physical Layer
Channel, Controller, and Data Link
Protocol Type and Portal
Counters e e .
Physical Addre551ng e e e e e
DECnet/E on Ethernet
Multicast Addressing
Ethernet Addresses
Commands for Ethernet . . .
OPEN

Padded and Unpadded Protocols ..
System Receive Buffers

CLOSE . . .+ « « o v o « o « v o
GET C e e e e e e e e

PUT o e e
Spe01al Ethernet Functlons c e e

Set New Physical Address .
Enable Multicast Addresses

.

-

-

Get Circuit Counters and Get Line Counters

xi

8-33
8-34
8-35
8-38

W W W
[
B

10-1
10-1
10-2
10-3
10-3
10-4
10-6
10-8
10-8

11-1
11-2
11-2
11-3
11-3
11-4
11-4
11-4
11-5
11-5
11-5
11-6
11-7
11-8
11-10
11-10
11-11
11-11
11-13
11-15
11-15
11-16
11-16

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

Transfer Circuit Counters and Transfer Line

Counters

Magnetic Tape Label Formats

DOS Magnetic Tape Format
DOS Labels e e e .
ANSI Magnetic Tape Format
ANSI Labels
Volume Label e e e e .
Header 1 Label (HDR1) .
Header 2 Label (HDR2)

End-of-File or Volume 1 Label (EOFl or EOV1)
End-of-File or Volume 2 Label

Initializing Magnetic Tapes

Card Codes

Error Messages

User Recoverable Errors . .
Nonrecoverable Errors . . .
BASIC-PLUS-2 Errors e e e .

.

The ? ?Program Lost-Sorry Error

Checksum Error on & .BAC File . e e
Unrecoverable Disk Error Reading a .BAC File

Incorrect .BAC File Size
Unmatched Version Numbers

.

. . - . . .

(EOF2 or EOQV2)

- . -

. 3 . .

- . . -

Software Performance Report Guidelines . e .

Radix-50 and ASCII Character Sets

Radix-50 Character Set .
ASCII Character Codes .

Device Handler Index

Monitor Directives

EMT Logger Send/Receive Calls

EMT Logging and Send/Receive
Declaring an EMT Logger .

Receiving an EMT Logger Message

Message Format

xii

-

11-16

N I

1
- 1
DWWy BN

> >

. C-5
C-15
c-21
C-23
C-24
C-25
C-25
C-25
Cc-25

EMT Root and FIRQB Fields G-8
Message from SHUTUP « « « v « « -« « . . G=9
INDEX
FIGURES
4-1 Input Escape Sequence Processing 4-30
4-2 Pseudo Keyboard Operations v« . . 4-39
4-3 PUT Statement Actions for Pseudo Keyboard Output 4-43
5-1 TU56 DECtape Format 5-3
5-2 Packed Hollerith Read Mode 5-7
5-3 Binary Read Mode + « ¢ + « « « « o 5-8
7-1 Integer Representation of Changed Characters . . 7-39
7-2 Reversal of Bytes by SWAP%() Function 7-40
7-1 High-Order Bits of CPU Time and KCTs 7-216
8-1 Summary of Send/Receive Data 8-39
A-1 DOS-Labeled Magnetic Tape File+ . . A=2
A-2 DOS Magnetic Tape Consisting of 3 Files of 10 Data
Records Apiece ¢ ¢ v 4 4« + 4« 4 & « . . A-2
A-3 ANSI-Labeled Magnetic Tape File A-4
A-4 ANSI Magnetic Tape Consisting of 3 Files of 10
Data Records Apiece A-5
G-1 EMT Data Packet Layout G=7
TABLES
1-1 valid Cluster Size Ranges . . . « . +« + « « + + . 1-4
1-2 Swap Times+« .+ . 1-10
1-3 Account Information Stored on the System Device 1-13
1-4 RSTS/E Privileges « « « « . . 1=-15
1-5 Account Management Privileges 1-18
1-6 RSTS/E File Protection Codes 1-19
1-7 File Access Privileges 1=20
1-8 Non-File-Structured Disk Default Characteristics 1-28
1-9 MODE Specifications for bisk Files 1-33
1-10 MODE Specifications for Flexible Diskette . . . 1-52
2-1 Statements and Functions for Accessing Magnetic
TapPesS « v & ¢ « o« + . e e e e e e e e e e . 2-2
2-2 System Density Values for Magnetlc Tape 2-3
2-3 Magnetic Tape OPEN FOR INPUT MODE Values 2-7
2-4 Magnetic Tape OPEN FOR OUTPUT MODE Values . . . 2-11
2-5 ANSI Magnetic Tape CLUSTERSIZE Values 2-15
2-6 MAGTAPE Function Summary 2-25
2-7 Magnetic Tape Status Word 2-30
2-8 Magnetic Tape File Characteristics Word for ANSI
Format ¢« ¢« .+ + v ¢ 4 e 4 v 4« w + . . 2-33
3-1 LP1ll Characters« + + ¢ v v ¢ & « o « « « . 3-1
3-2 Line Printer OPEN MODE Values . . . e e+ o« o+ . 3-3
3-3 Additional OPEN MODES with FILESIZE 32767%+1% . . 3-4
3-4 Line Printer RECORD Values e+ « « « . 3-9
4-1 Multiple Terminal RECORD Values for S9 e e e o . . 4-6

xiii

RN R N B BN BE N RS) I AN
t | N TR S A R N A N N | [|
NHEFOUV S WD, > W N

N W O

| A I I N = O B |

B 0 0O~

B

| [N A Y N NN N R N S | !
HHEHNEFEOOO S WM (o))

Lo BeBoNoNoNONSNS NN

]

Summary of MODE Values for Terminals
Echo Control Mode Character Set e e
ANSI-Compatible Escape Sequences: VT100- and
VvT200-Family Terminals
Escape Sequence Terminators . . . e e
Specifying Read Modes on Card Reader ..

SYS System Function Calls (by Function Code)
SYS System Function Calls (by Function Name)
FIP SYS Calls (by Subfunction Code) . ..
FIP SYS Calls (by Function Name)
File Name String Scan Flag Word 1
File Name String Scan Flag Word 2 . . .

SYS 14 Legal Byte Value Combinations
Internal Speed Values for Terminal Interface

Lines .. e e e e e e e e e e e e
Monitor leeo Locatlons e e e e e e e
RSTS/E Reserved Names . . . « « + « 4« + &
Sender Selection Summary
User Request Data Fields
STATUS Variable After CCL Entry
DOS Label Record Bytes
Volume Label Format « .« . .
Header 1 Label Format
Header 2 Label Format
End-of-File or Volume (EQF or EOV) 1 Record
Format e e . .

End-of-File or Volume (EOQOF or EOV) 2 Record
Format e e e e e e e e e e e
Card Reader Codes e e e e e e e e e e
Severity Standard in Error Messages
Special Abbreviations for Error Descriptions

Nontrappable Errors in Recoverable Class . .
User Recoverable Errors « . . .
Nonrecoverable Errors
BASIC-PLUS~-2 EILLOLS . & + o « o « o o o o &
Radix-50 Character Positions
ASCII Character Codes « .« . .+ . .
Handler Index v v 4« o v« v « o « =

Monitor Directives«+ . .

Xiv

>
e JRNNG

o
'—J
[e]

>
rtaoaoaawd
Floe

a0
R Rele iy
[SN |
H R AN UOIUTS WW

1

Preface

Objectives
This manual describes RSTS/E programming techniques. 1It:

o Explains how to optimize the use of devices on RSTS/E

o Describes system function calls to the RSTS/E monitor

0o Provides general information and programming hints for the

system programmer

Audience
This manual is for BASIC-PLUS, BASIC-PLUS-2, and MACRO programmers.
It assumes that you know how to program in one of these languages and
are familiar with RSTS/E system concepts and features.
If you program in BASIC-PLUS or BASIC-PLUS-2, this manual contains all
the information you need to use device-dependent features and system
function calls. If you program in MACRO, however, you will need to
use this manual as a companion to the RSTS/E System Directives Manual.

Document Structure

Part I, Devices, contains six chapters. Each chapter describes
programming techniques for a different type of device:

Chapter 1 Describes file-structured and non-file-structured disk
and flexible diskette operations. It also describes
RSTS/E system files and privileges.

Chapter 2 Describes file-structured and non-file-structured
magnetic tape operations and explains how to process DOS-
and ANSI-labeled tapes.

Chapter 3 Describes system features for controlling line printers.

Chapter 4 Describes system features for controlling terminals, such
as echo control and multiterminal service. It also
describes pseudo keyboards.

Chapter 5 Describes DECtape, paper tape, and card readers.

Chapter 6 Describes the DMC1l/DMR11l interprocessor link.

XV

art II, System Function Calls and Programming Hints, contains four

hapters:

hapter 7

“hapter 8

“hapter 9

chapter 10

“hapter 11

Describes system function calls available to BASIC-PLUS
and BASIC-PLUS-2 programmers. These calls let you
communicate with the RSTS/E monitor, perform special I/O
functions, and set terminal and job characteristics.
Although the call descriptions are tailored for BASIC
programmers, MACRO programmers can consult this chapter
for a detailed description of the corresponding monitor
directives.

Describes system function calls for local message
send/receive operations. As in Chapter 7, the call
descriptions are tailored for BASIC programmers but are
intended for use by MACRO programmers as well.

Describes the system function call for a Print/Batch
Services (PBS) request.

Contains system programming hints. It describes the CCL
facility and explains how the monitor handles the SLEEP
and conditional SLEEP statements.

Describes Ethernet and the commands for using it.

rhis manual also has seven appendixes:

\ppendix A

\ppendix B
\ppendix C
\ppendix D
\ppendix E

\ppendix F

\ppendix G

June 1987

Describes magnetic tape label formats for DOS and ANSI
tapes and explains how RSTS/E initializes the two types
of tapes.

Lists card codes.

Lists RSTS/E and BASIC-PLUS error messages.

Summarizes the Radix-50 and ASCII character sets.

Lists device handler indexes.

Lists the monitor directives that correspond to the
BASIC-PLUS system function calls.

Describes the use of parameters and other features of the

send/receive calls that are specific to an EMT logging
program.

Xxvi

Related Documents

The RSTS/E System User’s Guide describes RSTS/E system concepts, and
explains how to work with files and devices.

The RSTS/E Utilities Reference Manual describes the use of RSTS/E
system programs.

The BASIC-PLUS Language Manual describes how to program in BASIC-PLUS.

The RSTS/E System Directives Manual describes monitor directives
available to MACRO programmers.

See the RSTS/E Documentation Directory for more information on RSTS/E

manuals.

Conventions

This manual uses the following conventions:

< > Angle brackets enclose essential elements of the item being
described. For example, you must supply an expression in
the statement:

SLEEP <expression>

[1 Square brackets indicate am optional element or a choice of
one element among two or more optional elements. For
example, the CCL DETACH switch has the form:
[<space>]/DET[A[C[H]]]

The required part of the switch is /DET.

CTRL/x This symbol indicates a control key combination, such as
CTRL/U or CTRL/0O. To enter a control key combination, hold
the CTRL key down while you press the indicated key.

All examples in this manual are written to execute in BASIC-PLUS

EXTEND mode unless otherwise noted. If you enter them at your

terminal, remember to press the RETURN or LINE FEED key after each
command, statement, or program line.

xvii

Summary of Technical Changes for RSTS/E V9.0

Version 9.0 is a major release of the RSTS/E operating system. This
manual contains support for the following new features:

0o Multiple privileges: A set of priviieges now control access
to system functions.

o Print/Batch Services (PBS): A new spooling package provides
improved print and batch capability. V9.0 still supports the
OPSER-based spooling package.

o Quota specification: You can specify logged-in, logged-out,
and detached account quotas. In addition, the system now
performs logged-in guota checking. V9.0 still supports the
0ld guota format.

o Long passwords: You can specify an account password as 14
ASCII characters. V9.0 still supports the old format
password.

o Expiration date: You can specify an account expiration date

o 8-bit character support: The system provides transparent
handling of 8-bit characters.

¢ Virtual disk: A logical device that supports the storage of
temporary data within system memory.

o Nine character logical names.
0 New terminal features.

RSTS/E V9.0 supports the following new hardware: PDP-11/73 and
PDP-11/84 systems, DHUll/DHV1l multiplexer, VT220,/240 and LA200
terminals, RD52 disk, RC25 disk, TK25 tape, LNO3 laser printer, and
LQP03 printer. See the RSTS/E V9.0 Release Notes for a complete list
of supported hardware.

RSTS/E V9.0 no longer supports the following hardware: RF1ll disks,
RS03/RS04 disks, RKO5 as a system disk, VT05 and VT50 terminals, TUS58
DECtape-II. See the RSTS/E V9.0 Release Notes for a complete list of
unsupported hardware.

Xix

System Function Call Changes

V9.0 has five new SYS system function calls. Many existing calls have
expanded functions. The following is a summary:

New System Function Calls

Set/Clear/Read Current Privileges (SYS 28) ,
This call reads the current privilege mask and selectively sets
and/or clears bits in it.

Third Party Privilege Check (SYS 31)
Server programs such as spoolers use this call to perform
privilege checks on users who request the service.

Check Access Function (SYS 32)
This call performs a variety of privilege checking functions. It
checks file access rights, converts a privilege mask to names,
and converts privilege names to mask.

Open Next Disk File (SYS 33)
This call opens a disk file or a series of disk files matching a
wildcard specification.

Set Device Characteristics/Set System Defaults (SYS 34)
This call sets certain device characteristics, line printer
characteristics, and the following system defaults: date, time,
magnetic tape labeling, and magnetic tape density. The call also
loads and removes certain monitor overlay codes.

New Subfunctions of Existing System Function Calls

Send Print/Batch Services Request (Message Send/Receive, SYS 22)
This call allows an application program to issue a request for
print/batch services. It has the same range of capabilities as
the DCL PRINT or SUBMIT commands.

Send Local Data Messages With Privileges (Message Send/Receive,

SYS 22)
This subfunction provides a method for a program to tell another
program about a job'’s current privileges.

Change Quota/Expiration Date/Password (SYS 8)
This call is restructured to accomodate quota checking and
password changing in both the new and old format. It also lets
you specify an account expiration date.

Read Pack Attributes, Read/Write/Delete Account Attributes (SYS -25)

These subfunctions expand your ability to manipulate accounting
information.

XX

List Logical Names (SYS 21)
In addition to the new List subfunction, this call now supports
nine-character logical names.

Set Terminal Characteristics - Part II (SYS 16)
This subfunction expands the range of settable terminal
characteristics. The call now supports terminal settings for
8-bit characters, auto-baud, CTRL/C and CTRL/X, terminal
capability flags, separate control characters, and terminal type.

Create Dynamic Region (SYS -18)
This subfunction creates both named and unnamed dynamic regions
of memory.

vVerify Password (SYS 4)
This addition to the Login call allows an application to verify &
password without having to first logout.

Return Job Status (8YS 26)

A new subfunction returns information on I&D space as well as the
current privilege mask.

Deleted System Function Calls

Clean a Disk (S¥S 2)
The DCL MOUNT command now performs this function.

Declare Default Keyboard Monitor (subfunction of SYS -18)

In V9.0, DCL is always the system default keyboard monitor.
Other System Function Call Changes
All SYS calls that handle gquota, password, or privilege checking now
support the v9.0 format. Among the calls affected are SYS calls 0, 5,
6, 14, and 24.

There are also minor changes to SYS calls -29, -28, -26, 10, 15, and
17.

Xx1i

Other Technical Changes

For line printers, new MODE values let you specify a form length up to
255 lines, disable escape sequences, and set NOWRAP. For individual
output steps, new RECORD modifiers let you truncate long lines and
enable binary output. Two new SPEC% functions return page counter and
line position information.

For magnetic tape, a new MAGTAPE function lets you write an
end-of-volume (EOV) tape mark, providing support for multivolume ANSI
tape processing. Another new MAGTAPE function provides support for
error handling in asynchronous I/0 requests.

For terminals, you can now use a new MODE value and RECORD modifier to
correctly handle a 256-character set. 1In addition, a new RECORD
modifier lets you force program input from a terminal even when the
program is running under the control cf a DCL command file.

For pseudo keyboards, a new SPEC% function returns the exit status of
a controlled job.

Summary of Technical Changes for RSTS/E V9.1l

Version 9.1 is a mini-release of the RSTS/E V9.0 operating system.
This manual contains support for the following new features:

All references to the primary run-time system have been changed to the
default keyboard monitor. Specifically, pages 1-3, and 1-8.

TMPPRV privilege description has been added to Table 1-4.

Default Characteristics for the RD53 disk have been added to Table
1-8.

System Density Values for the TK50 magnetic tape drive have been added
to Table 2-2.

A new subfunction code has been added to the MAGTAPE and SPEC% calls.
This function can be used to set the density of a tape drive, or to
return density information about a drive. See pages 2-24, 2-25, and
2-36.

Two new subfunction codes have been added to the Disk Pack Status S8SY¥S
call (F0=3). These functions can be used to load the Storage
Allocation Table (SAT) of a disk into memory or unload a SAT from
memory. See pages 7-160 to 7-164.

The data passed and returned for the Set System Defaults Function of

the Set Device Characteristics and System Defaults SYS call (F0=34)
have been changed. See page 7-311.

xxii October 1985

Summary of Technical Changes for V9.4
Significant changes to the RSTS/E Programming Manual for V9.4 are:

Ethernet has been added. See Chapter 11 for an overview of Ethernet
and a description of how to use its local area networking features on

RSTS/E.

June 1987 xxiii

PART |
Devices

Chapter 1

System Structure and Disk Operations

Disks are file-structured, random access devices. They are the
fastest, most reliable, and most durable type of peripheral device.

RSTS/E is a disk-based system. During timesharing, some parts of the
monitor and run-time system code are always in memory; other parts are
on the system disk and are loaded into memory only when needed. The
system disk also stores system programs and user files.

Because the RSTS/E system is built around disks and their
characteristics, this chapter differs from other chapters on
peripheral devices in this manual. Besides describing both
file-structured and non-file-structured disk operations, it also
describes how RSTS/E system accounts are set up and how RSTS/E handles
privileges. This chapter also describes flexible diskettes and the
"null device," a software structure available on all RSTS/E systems
for debugging and for creating a buffer without tying up a physical
device.

System Accounts

RSTS/E systems have two accounts that are essential to system
operation: the system library account and the system account. The
system library account, [1,2], stores a library of system programs and
message and control files. This account must be present on the system
disk. The system account, [0,1], contains RSTS/E monitor files and
routines that are critical to system operation.

The following sections explain these two accounts in detail.

System Structure and Disk Operations

System Library Account [1,2]

During system installation, the initialization procedure creates the
system library account [1,2] on the system disk. The system program
installation procedure populates the account with system programs.
This section briefly describes the contents of account [1,2]. See the
RSTS/E System Installation and Update Guide for a directory listing of
the account.

The system library stores many of the system programs that are
available to general and privileged users. It also contains text
files used by system programs.

During normal system start-up or automatic crash recovery, the START
option accesses the system library automatically. The console
keyboard is logged in automatically under account [1,2]. Then the
system invokes the START.COM file in account [0,1] as a DCL command
file. One of the steps in the system start-up procedure runs the
ERRCPY program. Depending on the contents of the start-up command
file, other programs may be started up in account [1,2] as well, or
the system manager may elect to run any of these programs in some
other account.

System Account [0,1]

During system installation, the initialization procedure creates the
system account [0,1] on the system disk. The procedure creates two
files required for all RSTS/E disks and stores them in [0,1]: the
storage allocation file SATT.SYS and the bad block file BADB.SYS.

System Structure and Disk Operations

Account [0,1] on the system disk also contains files used for system

- operation. During system installation, the system copies the
necessary files into {0,1]. See the RSTS/E System Installation and
Update Guide for a directory listing of the account. Some of the most
important files are:

o INIT.SYS, the system initialization code

0 SWAP.SYS, the primary swapping file

o CRASH.SYS, the crash dump data file

o A file with the file type .SIL, the monitor code
o DCL.RTS, the system default keyboard monitor

o RT11.RTS, a required auxiliary run-time system

o ERR.ERR, the error message text

o CSPLIB.LIB, the system program resident library

The following sections describe the RSTS/E system files.

Allocating Disk Storage Space

RSTS/E uses the SATT.SYS file to control the allocation and
deallocation of storage space for a disk. The file maps the entire
space on the disk in a bit map called a Storage Allocation Table
(SAT). Each bit in a SAT represents either allocated or unallocated
space. The system sets a bit in the SAT to 1 when that space is
allocated for any purpose.

The system allocates storage space in terms of pack clusters. Each
bit in the SAT represents one cluster of disk space. A cluster is a
fixed number of contiguous 512-byte blocks of storage on the disk.
The cluster size defines how many contiguous 512-byte blocks are
contained in the cluster. RSTS/E defines cluster sizes for disks,
directories, and files.

October 1985 1-3

System Structure and Disk Operations
Table 1-1 presents the types of clusters and related information.

Table 1-1: Valid Cluster Size Ranges

R L I doem e T T I IR +

| Cluster | | Maximum | |

| Size | Minimum Size | Size | When Defined

R I I I e e T T L I I AP +
Pack (for Device 16 At initialization time with

Cluster Size
(see Table
1-8)

any disk) DSKINT option, or on line
with the DCL INITIALIZE

command.

Pack Cluster
Size

Directory At creation of the directory
with either the DSKINT
initialization option,
CREATE/ACCOUNT command, or
SYS system function.

either an OPEN or OPEN FOR
OUTPUT statement, or the DCL
CREATE or COPY command.
Specify cluster size with the
CLUSTERSIZE option. Note that
when you specify a negative
cluster size, the system uses
either the absolute value of
the argument specified or the
pack cluster size, whichever
is greater.

I

|

|

|

|

I

|

|

I

I

|

|

At creation of the file with |
Size |
I
|
|
|
|
|
I
|
I
|

I |
I I
| I
| I
| I
I |
I I
| |
| |
| |
| |
| File Pack Cluster | 256
I I
I |
I |
I |
| |
| I
| |
I |
| |
I |
I I

The system manager specifies the disk cluster size either during disk
initialization (DSKINT) or on line with a qualifier to the DCL
INITIALIZE command . The pack cluster size defines the minimum number
of contiguous 512-byte blocks that a cluster comprises on a specific
disk; thus, the extent of contiguous space each bit represents in the
SAT. A pack cluster size of 1 means that one 512-byte block of
storage is allocated for each bit set to 1. A pack cluster size of 2
means that two contiguous 512-byte blocks are allocated for each bit
set to 1. The minimum value for a pack cluster size is the device
cluster size for the disk type. Allowable pack cluster sizes are 1,
2, 4, 8, or 16, as long as the pack cluster size is equal to or
greater than the device cluster size of the disk. See table 1-8 for a
list of disk device cluster sizes.

The pack cluster size affects the efficiency of storage space
allocation. A large size improves access time to programs and files

1-4

System Structure and Disk Operations

but may waste disk space. For example, if the pack cluster size is
16, the system allocates one cluster of 16 contiguous blocks to a
one-block file: fifteen blocks are wasted. A 15-block file also
requires one cluster but only one block is wasted. Thus, the system
manager must choose the pack cluster size that best fits the type of
processing and the access requirements of the local installation.

One processing consideration is the use of data caching on the system
(see the section "Caching Control"). While the pack cluster size is
set during disk initialization and the cache cluster size can be set
and changed during timesharing, the relationship between the two
affects the optimal use of the cache. For example, if the pack
cluster size and file cluster size are both 4 and you specify a cache
cluster size of 8 (see the SET CACHE command in the RSTS/E System
Manager’s Guide, or SYS Call 19, Enabling and Disabling Disk Caching),
4 blocks in the cache contain your file’s data and 4 may contain
unrelated data. Therefore, if you plan to use data caching on your
system, the pack cluster size that the system manager specifies during
disk initialization should be equal to or greater than any cache
cluster size you specify during timesharing.

The User File Directory (UFD) has a defined directory cluster size.
Its minimum value is the pack cluster size. The system manager
specifies the cluster size during account creation. A directory
cluster size must be a power of 2 up to a maximum of 16 and must be
greater than or equal to the pack cluster size. Thus, for a pack
cluster size of 2, the directory cluster size on that device can be 2,
4, 8, or 16. For a pack cluster size of 8, a directory cluster size
on that device can be 8 or 16.

The directory cluster size limits the size to which a directory can
expand. A directory expands to catalog files and can occupy a maximum
of seven clusters.

The directory cluster size determines how many files a user can create
under one account. The following formula gives the number of user
files (UF) for each allowable directory cluster size (UC). (The
formula assumes that all files are a minimum size between 1 and 7
clusters and have no attributes.)

(217 x uc) - 1

The minimum number of user files is 72 for a UFD cluster size of 1 and
the maximum UF is 1157 for a UFD cluster size of 16. Note that system
performance is maximized when the UFD contains fewer files.

1-5

System Structure and Disk Operations

Bad Block File

The bad block file BADB.SYS is the mechanism which the system manager
uses to remove unreliable storage blocks on system and nonsystem disks
from use. The DSKINT option or the DCL INITIALIZE command creates
BADB.SYS in account [0,1]. DSKINT can thoroughly check each block on
a disk for reliability. 1If any block on a disk pack or cartridge is
faulty, DSKINT allocates the pack cluster in which the bad block
resides to the file BADB.SYS. The bad block file, therefore, contains
no data but merely removes from use those clusters found to contain
unreliable blocks.

As a disk is exercised during time-sharing operations, more unreliable
portions of a disk may be uncovered. By checking the data errors
recorded in the system error log, the system manager can isolate these
bad blocks. Through the REFRESH initialization option (see the RSTS/E
Installation and Update Guide), the manager can add newly discovered
bad blocks to BADB.SYS. Once the system allocates a bad block to
BADB.SYS, it cannot be deallocated.

Note that MSCP disk controllers provide their own built-in handling of
bad disk blocks. This is transparent to the system; the disk always
appears to have the full number of good data blocks. This applies to
RA80, RA81, RA60, RC25, RD51, and RD52 disks.

System Overlay File

The OVR.SYS5 file contains certain monitor code that resides on disk,
not in memory. The system loads this code into memory on demand and
overlays a certain part of the monitor. The monitor Save Image
Library (SIL) normally contains the overlay code. The system achieves
optimum efficiency when this code resides on the center of a
fast-access disk.

If the system disk is not a fast-access disk, the system manager can
use the DCL INSTALL/OVERLAY_FILE command to create a separate,
contiguous file that contains the overlay code. The manager can
optimally position this file on a fast disk. At the start of
time-sharing operations, the system manager can add the overlay file
to the system. Thereafter, the system accesses the copy of the
overlay code in the optimally positioned file rather than in the
original code in the SIL.

DECtape Directory File
The BUFF.SYS file is used in DECtape processing. When you open a file

on DECtape, the system writes the directory of the DECtape to the file
BUFF.SYS. The BUFF.SYS file requires three 512-byte blocks for each

1-6

System Structure and Disk Operations

DECtape drive on the system. Any updates to the DECtape directory
during processing cause the system to manipulate the copy in BUFF.SYS.
This technique eliminates the need for continuous winding and
rewinding of DECtape. The copy of the DECtape directory in BUFF.SYS
is written back to the DECtape when the last file open on the DECtape
unit is closed or any output file is closed.

During system installation, the system automatically creates the
BUFF.SYS file if it is needed.

Monitor Save Image Library File

All monitor code, whether permanently resident in memory or loadable
as overlays, resides in account [0,1] on the system disk. This file
is structured in Save Image Library format and must have a file type
of .SIL. Multiple monitor files can reside on the system disk but the
system only installs one such file at a time. The system marks the
installed monitor file as nondeletable and loads the file from disk tc
memory when time-sharing operations begin.

Error Messages File

The ERR.ERR file contains the system error messages. DIGITAL
distributes ERR.ERR with each RSTS/E system. ERR.ERR must exist in
account [0,1] on the system disk.

The DCL INSTALL/ERROR_FILE command allows the system manager to create
a separate contiguous file and position it on any disk. The standard
name for this file is ERR.SYS. The system achieves optimum efficiency
when this code resides on a fast-access disk. At the start of
time-sharing operations, the system manager can add this separate file
to the error message file on the system. The monitor copies the
contents of the established default error message file to this
optimally positioned file. Thereafter, the system accesses the copy
in the optimally positioned file instead of the established default
file.

Saving Information After a Crash

The system uses the file CRASH.SYS to save a dump of the read/write
area of the monitor and the extended buffer pool (XBUF) at the time of
a system crash.

INIT.SYS automatically creates the CRASH.SYS file on the system disk
during system start-up. If INIT.SYS cannot find sufficient contiguous

System Structure and Disk Operations

disk space to create CRASH.SYS, it prints a warning message before
starting the system.

The size of CRASH.SYS depends on the size of the monitor read/write
area and XBUF. The monitor read/write area size varies according to
the hardware and software configuration but is between 48 and 96
blocks. To estimate the number of blocks needed for XBUF, use the
formula:

Size of XBUF in K words * 4

Run-Time System Files

The account [0,1] on the system disk must contain at least one file
with a file type of .RTS. This file is the default keyboard monitor
and is automatically loaded into memory by the monitor at the start of
timesharing. The default keyboard monitor must reside on the system
disk because that disk is the only one logically mounted at system
start-up time.

DCL.RTS is the system default keyboard monitor. In addition, RT11.RTS
is also required on the system. The system manager can add auxiliary
run-time systems (other files with .RTS file types in account [0,1]).

All run-time system files (as well as resident library files) must
occupy contiguous space on disk. This condition allows a run-time
system (or resident library) to be loaded into memory as fast as
possible.

System Program Resident Library

Account [0,1} on the system disk contains the resident library
CSPLIB.LIB. Because nearly all system programs use CSPLIB.LIB, this
resident library is required on the system. CSPLIB.LIB is
automatically installed during system start up.

CSPLIB.LIB is a floating resident library. See the system function

call, Manipulate Run-Time System, Resident Library, Dynamic Region
(SYS -18), for more information about floating libraries.

Initialization Code

The INIT.SYS file contains the system initialization code. INIT,SYS
resides in account [0,1] on the system disk. When the system disk is

1-8 October 1985

System Structure and Disk Operations

bootstrapped, a secondary bootstrap loads the main part of the
initialization code into memory. The initialization code is a large,
stand-alone program that performs consistency checks on system
software and hardware. It allows the system manager to:

o Initialize and format disks
o 1Install patches
o Enable and disable device controllers and units

o Manipulate files in account [0,1] on both system and non-
system disks

0 Change some default timesharing characteristics

An important feature of the initialization code is that it allows bad
blocks to be added to the bad block file BADB.SYS in account [0,1].
At the start of timesharing, the RSTS/E monitor code replaces the
initialization code in memory.

Swapping Storage

Nonresident jobs on RSTS/E are kept in predefined areas on disk called
swap files. RSTS/E provides four distinct swap files: SWAP.SYS,
SWAP0.SYS, SWAPl.SYS, SWAP3.SYS. Swap file number 2, named SWAP.SYS,
is required on all systems; the other files are optional. SWAP.SYS
must reside on the system disk.

During system installation, INIT.SYS automatically creates the
SWAP.SYS file in account [0,1] at a size large enough for 1 job.

Later on in the system installation, the system manager can create a
SWAP1l.SYS file at a size large enough to hold the rest of the jobs on
the system. Or, the system manager can later create multiple swap
files (up to a total of 4) to provide swap space for all jobs. The
system manager can locate some or all of these files on disks other
than the system disk, preferably on high speed disks that do not
contain frequently accessed files. See the RSTS/E System Installation
and Update Guide for details.

RSTS/E uses swap files in a predefined way. For example, the system
stores a highly interactive job that must be removed from memory in
the lowest numbered file available. The system searches for an empty
space starting at the lowest numbered active file. On the other hand,
a job with infrequent activity is stored in the highest numbered file
available. Such relatively inactive jobs are those that sleep until
an event occurs. The system error logging program ERRCPY is an
example of a relatively inactive job.

System Structure and Disk Operations

A swap file can be either a file or an entire device, for example, a
high speed disk. The best device to use for swap files on a system
depends on the types of devices available and the amount of data
swapped.

Table 1-2 shows the approximate amount of time (in seconds) needed to
transfer different size job images for various types of disks. Actual
times will be longer if the disk is accessed in other ways, for
example to read user file data.

Table 1-2: Swap Times

I R R I +
| Disk | Job Size (in words) |
Fommemme e 4o do--e-- 4------- R 4o +
| | 8K | 16K | 28K | 32K | 64K |
R 4o 4o R 4o +e------ +
E RLO1,/02 1 .10 I .13 I .18 I .19 : 32 I
: RKO5 : .16 } .25 I .38 } .43 : 78 :
: RK06,/07 ! .08 i .11 I .15 } .17 : .29 :
} RP02/03 : .10 I .16 I .24 i .27 : .50 I
i RPO4 : .06 I .08 : .11 } .12 i .20 {
: RP05/06 { .06 I .08 } .11 l .12 { .20 :
; RMO2 { .06 I .08 i .11 : .12 : .20 :
I RM03/05 I .05 : .06 i .08 : .09 = .14 {
| mso .05 | .06 | .08 | .00 | .14 |
: RA60 { .06 : .07 : .08 I .08 I .11 I
1 RAS80 l .05 I .06 ‘ .08 } .09 } .14 %
: RA81 : .04 } .05 } .06 I .07 I .10 }
: RC25 : .04 i .06 } .07 I .08 I .13 :
I RD51 E .11 ! .14 : .17 { .19 : .29 i
I RD52 1 .08 i .10 ‘ .14 I .15 : .26 1
R +--mm--- R R 4o 4o +

System Structure and Disk Operations

Calculate the swap times for each disk by using the formula:

Job size * 2
Swap time = Avg access time + --------------
Transfer speed

where:

Average access time measured in seconds, is defined as the sum of
the average seek time and the average latency
time.

Transfer speed is measured in kilo-bytes per second (KB/S).

Job size is measured in kilo-words (Kw).

See the appropriate Peripherals Handbook for the average access time
and transfer speed of each disk.

When a file is used as a swap file, the system manager can further
reduce the swap time by using the /POSITION switch on the file
specification to position the file in the middle of the disk. This
minimizes the time required for positioning the read/write heads. On
systems with multiple disks, the system manager can position two files
on separate drives to take advantage of overlapped seeks.

A swap file other than file 2 (SWAP.SYS) is dynamic. The system
manager adds files at the start of timesharing to allow the maximum
number of jobs to run. During timesharing, a swap file can be removed
and added again as another device or file. Dynamic addition and
removal of swap files allows timesharing to continue when hardware
problems on a device being used for swapping would normally require
discontinuing system operation.

System Account [0,1] on Nonsystem Disks

The system account [0,1] on a nonsystem disk initially contains two
required files: SATT.SYS and BADB.SYS. The DSKINT initialization
option or the DCL INSTALL FILE command similarly creates these files
for nonsystem disks as for the system disk. Account [0,1l)] on a

" nonsystem disk, either public or private, can contain other optional
system files.

The REFRESH initialization option manipulates system files in account
[0,1] on a nonsystem disk as well as on the system disk. The
following DCL commands perform the same operations: the /ERROR_FILE,
/SWAP_FILE, and /OVERLAY_FILE qualifiers of the INSTALL and REMOVE
commands; the SET FILE/[NO]DELETABLE command. See the RSTS/E System
Managers Guide for more information about these commands.

System Structure and Disk Operations

Both the REFRESH option and DCL commands can create and position
contiguous files (such as a swap file or the overlay file) on a
nonsystem disk. They can also mark files in account [0,1] as
nondeletable. Note that only REFRESH can add blocks to the BADB.SYS
file. Nonsystem disks can also contain auxiliary run-time system
files.

Storage of Accounting Data

This section describes how accounting data is stored on system and
nonsystem disks. It describes:

0 Accounting data on the system device.

o Accounting data on nonsystem disks.

Accounting Data on the System Device

Project-programmer numbers (PPN) and passwords control access to the
RSTS/E system. The system manager, or anyone who has sufficient
privilege (GACNT for group, WACNT for all), creates a new account by
using the CREATE/ACCOUNT command (see the RSTS/E System Manager'’s
Guide). The manager enters the PPN and password for the new account,
along with other information, to allow a user access to system
facilities.

The new account information is stored on the system device. During
account creation, the system manager has the option to preextend and
position the UFD (see SYS Call 0, Create User Account). By default,
the system preallocates one cluster for the UFD. The UFD is related
directly to the user’s account and contains information about the
files created under that account number.

The system disk structure contains information about all UFDs
(accounts) on the system. When a user tries to gain access to the
RSTS/E system by giving an account and password, the system program
LOGIN checks whether the PPN and password given match one stored on
disk. If so, the system allows access.

Besides the LOGIN program, other system commands and programs also
access the account information. For example, the SHOW ACCOUNT command
references the accumulated system accounting information. The system
manager uses the SET/ACCOUNT command to reset this accounting data or
change certain parameters such as disk quota. The LOGOUT system
program references the disk quota information.

System Structure and Disk Operations

Table 1-3 lists the account information that the system keeps for each
account.

Table 1-3: Account Information Stored on the System Device

The PPN has the format
[n,m] where n and m are
decimal numbers that
identify the user.

Identification Project-programmer

number (account)

Password 6 letters and/or digits
(old format).
14 ASCII characters (new

format).

Processor time the
account has used to date,
in tenths of a second.

Central Processor
Unit (CPU) time
(Run Time)

Accumulated Usage

| |

| I

| |

| I

I |

| I

I I

I I

I I

I |

I |

I I

| |

| |

| I
Connect Time | Number of minutes the |
(log-in time) | user has been connected |
| to the system through a |

| terminal or remote line. |

I I

Kilo-core-ticks | |
(KCTs) | |
| |
I |
| I
I |
| I
I I
| |
| |
| I
I I
I |
| |
| |
| I

Memory usage factor. One
KCT is the usage of 1K
words of memory for one
tenth of a second.

Number of minutes of
peripheral device time
the account has used.

Device time

Quota Number of 512-byte blocks
the user is allowed to
retain. Types of quotas
include logged-out,
logged-in, job,
detached-job, message,
and RIB.

Disk Storage and
System Resource
Usage

Using SYS system function calls, users who have GACNT or WACNT
privilege can write programs that access the accounting information.
See the description of the system function calls in Chapter 7.

System Structure and Disk Operations

Accounting Data on Nonsystem Disks

The system disk exists in what is called the public structure. The
system manager can add additional disks to the public structure or add
them as private disks. Disks other than the system disk are called
nonsystem disks. Each disk added to the system also contains its own
directory structure, which is created when the system manager
initializes the disk. A nonsystem disk initially contains UFD
information for account [(0,1] as well as storage information.

Accounts on public disks are treated differently from accounts on
private disks. RSTS/E allocates space for a user’s file in the public
structure on the disk that has the most free space. 1If the user’s
account does not yet exist on the disk with the most free space, the
account number is added dynamically to that disk and a UFD is created
for the user on that disk. A user cannot create a file on a private
disk unless the account number already exists on that disk. The
system manager or a sufficiently privileged user grants access to a
private disk by entering the account information on the desired disk
with the CREATE/ACCOUNT command.

Privileges

The system manager must have a way to prevent general access to
activities that can damage the system. 1In previous releases, RSTS/E
allowed the system manager to divide users into privileged and
nonprivileged groups. Nonprivileged users were restricted to
activities that could cause no system damage. Privileged users had
access to all activities.

The V9.0 multiple privileges feature gives the system manager finer
control over access to activities. Now the system manager can limit
the user’s access to just those activities suitable to the user’s job.
Multiple privileges gives the system manager a tool to enhance system
performance, security, and more easily delegate certain operations.

Multiple Privileges

The multiple privilege feature groups similar system functions into
sets and defines a privilege to control access to each set of
functions. A group of 34 privileges govern the entire set of RSTS/E
system functions. The privileges given to an account determine the
range of functions available to the user. Some privileges apply to
very specific functions; others control functions within broader
classes of system use.

System Structure and Disk Operations

Table 1-4 summarizes the RSTS/E privileges.

Table 1-4: RSTS/E Privileges

DATES Change system date/time and file dates.

| | |
! | l
l | |
| DEVICE | Access restricted devices. |
| | |
i !

EXQTA	Exceed quotas or memory maximum. (Not usually given to
	users; used by privileged programs.)
GACNT	Perform accounting operations on accounts in the
	user’s group.
!	
GREAD	Read or execute any file in the user’s group,
	regardless of protection code.
1 l	
GWRITE	Write, delete, create, or rename any file in the
	user’s group, regardless of protection code.
	l
HWCFG	Set hardware configuration parameters; for example,
	set terminal characteristics.
l I	
HWCTL	Control devices; for example, disable a device or hang
	up a dial-up line.
I !	
INSTAL	Install run-time systems, swap files, and resident
	libraries.
l	!
JOBCTL	Manipulate other jobs; for example, detach or kill a
1	job. l
I 1 I	
MOUNT	Mount or dismount disks other than NOSHARE.
I	l
PBSCTL	Control Print/Batch Services (PBS); for example, turn
	servers on or off, and change printer forms.
RDMEM	PEEK at memory. (Not usually given to users; used by
	privileged programs.)
RDNFS	Read a disk non-file-structured.
I I I	
SEND	Broadcast to terminals and send messages to restricted
	receivers.
I	
SETPAS	Change your own password.

System Structure and Disk Operations

Table 1-4: RSTS/E Privileges (Cont.)

I T T +
| Privilege | Description

e T T T T T T T T +
| I

{ SHUTUP | Shut down the system.

| |

|

| SWCFG | Set software configuration parameters; for example,

| | installation name.

| | '

| SWCTL | Control software components; for example, turn DECnet
| | on and off.

I |

| 8YSIO | Perform restricted I/0 operations; for example, gain

| | write access to files in account [0,*], or set the

| | privilege bit on executable files.

l |

| SYSMOD | Perform functions that could easily modify the system;
! | for example, poke memory.

I |

| TMPPRV | Set privilege bit (128) in the protection code of an

| | executable program.

l I

| TUNE | Control system tuning parameters; for example, caching
[| or job priority. -

f

(|

| USER1-8 | Available for customer applications. Not used by

| | RSTS/E.

I I

| WACNT | Perform accounting operations on any account.

| I

| WREAD | Read or execute any file regardless of protection

| | code. :

| |

| WRTNFS | Read/write a disk non-file-structured.

| |

| WWRITE | Write, delete, create, or rename any file regardless

| | of protection code. (For [0,*] accounts, SYSIO is

l | required in addition to WWRITE.) ‘

dom e e +

1-16 October 1985

System Structure and Disk Operations

Classes of System Functions

Most system activities fall into two general classes:
o0 Account Management Activities
o File Access Activities

The next two sections describe these two classes of system activities
and discuss the privileges that control them.

Account Management Activities

A user accesses a computer through an account. The individual account
is a member of the "group," which contains all accounts with the same
project number. The group, in turn, is a subset of the "world," which
contains all accounts on the system. Account management activities
include creating and deleting accounts, as well as changing passwords,
disk quotas, and expiration dates.

The following privileges control account management:

GACNT Group Account Management -- Grants account management
privileges within the user’s group.

WACNT World Account Management -- Grants account management
privileges for all accounts.

SETPAS Set Password -- Allows changing one’s own password.

Table 1-5 outlines the account management activities and the
privileges required to perform them.

System Structure and Disk Operations

Table 1-5: Account Management Privileges

I L L LR I R e L L I +
| Activity | Self | Group | World |
T L R L I S S L +
| | I | |
| Create/delete | GACNT or WACNT | GACNT or WACNT | WACNT 1
| account | (for nonsystem | |

	disks *)		
	I :		
Set account	GACNT or WACNT	GACNT or WACNT	WACNT
parameters			
l		I	
Set password	SETPAS or	GACNT or WACNT	WACNT
	GACNT or WACNT	[
I		:	I
Read account	Always allowed,	GACNT or WACNT	WACNT [
data/parameters	except password		

l I I I |
| Read/reset | GACNT or WACNT | GACNT or WACNT | WACNT |
| account data | | : | |
I | | | |
I I L I I I demmem e +

| * Create does not apply to the system disk; you cannot delete |
| your own account. |

File Access Activities

Users routinely access files. The user creates some files, which
reside in the individual’s account. Other files reside in the
accounts of other users or in system accounts. File access activities
include: <creating, deleting, renaming, reading, writing, and
executing files.

Both the protection code of the file and the privileges granted to the
user can affect whether the system grants or denies file access.

On a system with equal privileges granted to all users, protection
codes control the operations that a user can perform on a file. The
SET PROTECTION command (or the /PROTECTION switch in the RSTS/E file
specification) passes a value to the system that sets bits in the
protection code byte. When a bit is set, the the system prohibits
activity named by that bit.

System Structure and Disk Operations

Table 1-6 shows the wvalue and meaning of each protection code bit.

Table 1-6: RSTS/E File Protection Codes

I1f Executable Bit Not Set

128 64 32 16 8 4 2

| I | I | | I

| | I | | | I

Priv Exe (0) Write Read Write Read Write
World World Group Group Owner

If Executable Bit Set

128 64 32 16 8 4 2

| | | | | | I

I | I | I I I

Priv Exe (1) Read, Exe Read, Exe Read,
Write World Write Group Write
World Group Owner

Certain privileges also govern file access activities.
privileges override protection codes completely.

Some
The following

privileges grant a user the right to perform certain file access
activities, regardless of protection codes:

GREAD Group Read

Also, execute a program, if the executable bit is

WREAD World Read

-- Read the data in any file in on the

Also, execute a program, if the executable bit is

GWRITE Group Write
file within

WWRITE World Write
file on the

-- Modify, extend, or delete the data
the group.

-- Modify, extend, or delete the data
system,

-- Read the data in any file within the group.

set.

system.
set.

in any

in any

System Structure and Disk Operations

Table 1-7 summarizes the file access activities and: the rules that
govern file access. :

Table 1-7¢ File Access Privileges

R I R R +
| Function | Self | Group . World

R L e B L B +
I I | | |
Read	Yes, if protection	GREAD or WREAD	WREAD or
	code permits, or	or protection	protection code
	GREAD or WREAD	code permit	permit
I I I I			
Write/Delete	Yes, if protection	GWRITE or WWRITE	WWRITE or
!	code permits, or	or protection	l protection code
	GWRITE or WWRITE	code permit	permit (and
	I [[0,%*])		
[I I	
Execute	Yes, if protection	GREAD or WREAD	WREAD or
i	code permits, or	or protection	protection code
	GREAD or WREAD	code permit	permit
I I		I	
Create/Rename	Yes	GWRITE or WWRITE	WWRITE (and
/Zero i		8YSIO if account	
I I I L [0,*%]) I
R I LI L R R +

Multiple Privilege Masks

The system manager assigns a certain set of privileges to each
account. The system stores this set of privileges in privilege masks.
A privilege mask is a set of flag bits with one bit corresponding to
each privilege. When a flag bit is set, the user acquires the
corresponding privilege.

For each active job, RSTS/E keeps three masks:

o Authorized mask -- The set of privileges that the system
manager gives to the account. You can use the SHOW
ACCOUNT/FULL command to list the set of privileges available
to your account.

0 Current mask -- The set of privileges now in effect for the
job. The system always references this mask when it performs
a privilege check. You can raise or lower your privileges
(up to your authorized limit) with the Set/Clear/Read Current
Privileges SYS Call (SYS 28), or the DCL

System Structure and Disk Operations
SET JOB/PRIVILEGE command. You can list your current set of
privileges with the SHOW JOB/PRIVILEGE command.
o Saved mask -- The saved record of the current privileges when
a job gains temporary privileges (see the section "Temporary
Privileges").
When a user attempts to perform an activity that is restricted by one
or more privileges, the system performs a privilege check. This check
examines the current mask to determine if the requesting job has all
the privileges required to perform the activity. If the requesting
job has insufficient privilege to perform the activity, the system
returns one of the following errors:
?Protection violation (ERR=10)

?Illegal SYS() usage (ERR=18)

Multiple Privileges and Jobs

The following sections describe how the monitor handles privilege
information during the life of a job. They describe:

0 Job creation
o Login
o Logout

o Spawned jobs

Job Creation

At job creation, the monitor initializes both the current mask and the
authorized mask, giving them all privileges except SYSMOD. This
applies to all newly created jobs with the exception of those created
by SYS 24, Create a Job (see Chapter 7).

Login

When a job logs in, the Login SYS call (SYS 4) looks up the authorized
mask in the account attributes. It copies this mask into the saved
and authorized masks, ORs it into the current mask, and sets the job
status to indicate the job has temporary privileges in effect.

System Structure and Disk Operations

If a program logs in, it now has all the privileges it originally had,
plus possibly some new ones. When a program exits, the user has all
authorized privileges enabled.

A user who logs in may not want all his authorized privileges to be
active at login. 1In that case the user can employ a LOGIN.COM file to
initially drop some privileges.

Logout

When a job logs out, the monitor clears the group-related privileges
GACNT, GREAD, and GWRITE in all three privilege masks. This is done
because the job is currently running with PPN = 0, effectively putting
it in group zero. The monitor drops group privileges because the
intent of these privileges is to allow access to the user’s group, not
group zero.

Apart from losing group privileges, a job neither gains nor loses any
privileges as a result of logging out. Note that the Logout SYS call
(SYS 5) performs a self-kill except when the job currently has WACNT

privilege.

Spawned Jobs

The Create A Job SYS call (SYS 24) creates a spawned job. For jobs
spawned logged-in, the monitor usually gives the spawned job the same
set of authorized and current privileges as the account it logs in to.
This is done before the program, if any, is run. If the program is a
privileged program, the usual additional privilege processing takes
place (see the section "Running a Privileged Program").

As an option, the caller of the Create a Job SYS call can specify that
the created job have fewer privileges.

Jobs spawned logged-out are given the same privileges as the job
issuing the spawn function.

Spawning a job logged-in to an account other than the caller’s
requires accounting (GACNT/WACNT) privilege. Logged-out spawn
requires WACNT privilege. Spawn therefore allows users with
accounting privilege to create jobs that have some other account’s
privileges, possibly more than their own.

1-22

System Structure and Disk Operations

Writing Applications Using Multiple Privileges

When you write applications in RSTS/E V9.0, you must correctly use the
multiple privileges features. The following sections explain how to
best use multiple privileges within your program. They describe:

o Writing programs protected <124> and <104>

0o Writing programs protected <232> (privileged programs)
o Performing access and privilege checks

0o Program exit

0 Multiple privilege system function calls

Writing Programs Protected <124> and <104>

Before v9.0, only a "privileged" user could run an executable program
residing in a [1,*] account with a protection code of <124> (60+64).
These programs could safely assume that anyone able to run the program
had all the privileges required to perform all of the program’s steps
(an exception to this was POKE, which required the program to be run
from account [1,1]).

In V9.0, the concept of "privileged" user is no longer all inclusive.
If you have WREAD (world read) privilege, you can execute any program
protected <124> on the system, even though you may not have all the
privileges required for the program to work properly.

It may be acceptable to simply leave programs protected <124> as is.
These programs will succeed or fail depending on the privileges of the
user who executes them. However, some <124> programs may require the
user to have several different privileges in order to succeed. 1If a
user has some but not all of the privileges required, the program may
partly succeed; it can complete some of its tasks but may fail at
others. This may be undesirable, especially where failing part way
through a multistep operation could leave a file or other data
corrupted.

The solution to this problem is for such programs to do a privilege
check at the beginning of the program, to ensure that the user has all
the required privileges before proceeding. You can use the Check
Access Function SYS call (SYS 32) to determine if a user has a
particular privilege. See Chapter 7 for a complete description of
this call.

Once you add a privilege check to <124> programs, you can safely lower
the program’s protection code to <104> (40+64). Protection code <104>

1-23

System Structure and Disk Operations

allows any user on the system to run the program. The up-front
privilege check terminates the program if its user does not have the
proper privileges.

For example, suppose a program requires HWCFG, SWCFG, and TUNE
privilege in order to work properly. The program should initially
perform a check to ensure that any user running the program has all
three privileges before continuing. 1If the user has HWCFG and SWCFG
privilege, but lacks TUNE privilege, then the program issues an error
message and terminates.

If you still want program privacy, you can leave the program’s
protection code <124>, allowing only users with WREAD (or GREAD if the
program resides in the same group as the user) to access the program
or display it in a DIRECTORY listing.

Writing Programs Protected <232>

In some cases, you may not want to require users to have all the
privileges that a program needs to work properly. In such cases, you
can give a program temporary privilege by setting the privilege bit
(128) in its protection code. When a privileged program is executed,
it receives all privileges except SYSMOD.

Any program with a protection code of <192> or higher is privileged.
The normal protection code associated with privileged executable
programs is <232>, granting execute access to all, but restricting
read/write access to the owner.

For security purposes, the system places two restrictions on
privileged programs:

0 You needs SYSIO privilege to designate a program as
privileged.

o A privileged program that resides on a disk mounted /NOSHARE
will not have temporary privileges when run. This
restriction prevents an outsider from acquiring privileges by
bringing in a privileged program on a private pack. To be
able to mount a disk /SHARE, you need MOUNT privilege.

Privileged programs may be available to all users (for example,
SYSTAT), or they may be restricted by including a check for some
privilege at the beginning. Using the previous example, if you make a
<104> program privileged (protection code <232>), it can check at the
beginning for only TUNE privilege. The program proceeds for those
users with TUNE privilege, even though the program itself requires
HWCFG and SWCFG privilege as well. Be sure to drop temporary
privilege before doing the privilege check, so that the user’s

1-24

System Structure and Disk Operations

privileges are checked, not the program’s (see the next section).

SHUTUP is an example of such a privileged program. It requires a
variety of privileges to remove jobs, remove runtime systems, dismount
disks, and issue the Shut Down System SYS call (SYS -16). 1Instead of
requiring a user to have all of these privileges, SHUTUP is installed
as a privileged program (protection code <232>) and only requires the
user to have SHUTUP privilege in order to perform all of its steps.
SHUTUP returns the error message ?SHUTUP privilege required if a user
without SHUTUP privilege attempts to run it.

Whenever such a program drops temporary privilege, the program’s
privileges are saved and the user’s own privileges are re-enabled.
When temporary privileges are regained, the two sets of privileges are
exchanged again. If temporary privileges are permanently dropped,
then the user’s privileges are re-enabled and the program’s temporary
privileges are lost.

You should be careful when you create privileged programs.- In
general, a privileged program should execute most of its functions
with temporary privileges dropped, raising them just before executing
a privileged operation and then dropping them immediately following
the operation.

Pay special attention to BASIC-PLUS error handling under such
conditions. If a privileged operation causes an error, control may be
passed to an error handler with temporary privileges still enabled.

Be sure that there are no paths in the program where temporary
privileges may be accidentally left enabled.

Program Access and Privilege Checks

When designing programs, avoid duplicating the monitor’s access and
privilege checks in your program. When performing an operation that
depends on the user’s privileges and/or a file'’s protection code, a
program should simply perform the operation (with temporary privileges
disabled if a privileged program), and let the monitor enforce its
access and privilege rules. Duplicating such checks in the program
itself is inefficient and may lead to incompatibility in the future.

For example, suppose you want to design a privileged program that
creates a file in a user-specified location (device and account).
Rather than having the program determine if the user is authorized to
create the file in the location specified, simply drop temporary
privileges and create the file. 1If the user lacks the required
privileges, the monitor blocks the file’s creation and returns an
error. The program can then report the error and reprompt the user
for a new file location. Note that this program will continue to
function properly, even if RSTS/E access and privilege rules change in
the future.

System Structure and Disk Operations

Several system function calls allow programs to more easily establish
access rights and privileges. DIGITAL recommends you use these calls
where possible. See the section "Multiple Privilege System Function
Calls" for a summary of the calls.

Program Exit

Whenever
performs

(e}

Multiple
Five SYS

e}

a program exits or chains to another program, the monitor
the following privilege-related cleanup:

If temporary privileges are in effect, the monitor cancels
themn.

The monitor cancels any third-party privilege check currently
in effect. (See the Third-Party Privilege Check SYS call,
SYS 31)

If the job is currently logged-out and does not have WACNT
privilege, and the program exits, the monitor kills the job.
Chaining among programs is possible without restriction when
logged out, but other operations that exit the current
program result in a self-kill. Note that the Logout SYS call
(SYS 5) performs a self-kill immediately unless the caller
has the WACNT privilege.

If the program being exited is a privileged program, the
monitor clears the job’s memory and sets the job size to the
minimum size for the job’s default keyboard monitor.

All open files are closed.

Privilege System Function Calls
calls control multiple privileges:

Drop/Regain Temporary Privileges (SYS -21) -- This call
allows a program to selectively use temporary privileges.

Set/Clear/Read Current Privileges (SYS 28) -- This call reads
the current mask and selectively sets and/or clears bits in
it. The SET JOB/PRIVILEGE and SHOW JOB/PRIVILEGE commands
use this call.

Third-Party Privilege Check (SYS 31) -- This call enables or
disables third-party privilege checking. Server programs
such as spoolers use this call to perform privilege checks
for users who request the service.

1-26 October 1985

System Structure and Disk Operations

0o Check Access Function (SYS 32) -- This call performs a
variety of privilege checking functions. It checks file
access rights, converts a privilege mask to names, and
converts privilege names to mask.

0o Send Privileges (SYS 22) -- This new subfunction of the
Send/Receive call permits a program to pass a job’s current
privileges to another program.

See Chapter 7 for a detailed description of each SYS call.

Non-File-Structured Disk Operation

Non-file-structured disk operation lets sufficiently privileged users
(RDNFS, WRTNFS privileges) access specific blocks on a disk.

You can process non-RSTS/E file-structured disks under RSTS/E and use
an entire disk as a single file. Non-file-structured processing also
allows system programs, such as SAVE/RESTORE (see the RSTS/E System
Manager’s Guide), to optimally process file-structured disks.

Note

The data you look at when reading a disk as a
non-file-structured device is internal to RSTS/E and
is subject to change at any time.

Opening a Disk for Non-File-Structured Processing

If you have RDNFS privilege, you can open a disk in
non-file-structured mode. To access a disk for non-file-structured
processing, specify only a device designator in the OPEN statement.
Only the OPEN and OPEN FOR INPUT statements are valid. The following
two sample statements are equivalent:

100 OPEN "DL1l:" FOR INPUT AS FILE 1%

100 OPEN "DL1l:" AS FILE 1%
Both allow reading and writing of physical blocks on RL unit 1. An
OPEN FOR OUTPUT statement results in the error ?Disk pack is not
mounted (ERR=21). For example:

100 OPEN "DL1l:" FOR OUTPUT AS FILE 1%

System Structure and Disk Operations

You need RDNFS privilege to read a disk that is open in
non-file-structured mode. You need WRTNFS privilege to write to the
disk. To prevent other programs from accessing a non-file-structured
disk, a job with HWCTL privilege can assign the device.

Accessing Device Clusters

Before writing a program that accesses a disk as a non-file-structured
device, you need to understand the terms logical block, device
cluster, device cluster size, device cluster number, and default
buffer size:

o A logical block is 512 bytes of disk data. Logical blocks
are numbered starting at 0.

o A group of contiguous logical blocks forms a device cluster.
The device cluster size is the number of logical blocks in
the group. The device cluster size is fixed for each type of
disk; it can be 1, 2, 4, 8, or 16. The device cluster size
represents the minimum amount of information (the minimum
number of logical blocks) that can be retrieved or written in
one non-file-structured I/0 operation. Device clusters are
numbered from 0 to the maximum shown in Table 1-8.

o The default buffer size for all disk units when open in
non-file-structured cluster mode is the device cluster size
multiplied by 512 bytes.

Table 1-8 lists the default disk characteristics.

Table 1-8: Non-File-Structured Disk Default Characteristics

R I b I I R I +
| | Minimum | Default | f |
} | Device | Buffer | | |
| | Cluster | Size | Total Size | Maximum Device |
| Device | Size | (Bytes) | (in Blocks) | Cluster Number |
demm - I o e R +
l I | | ! |
| RX50 1 1 | 512 | 800 | 799 |
l I | | 1 I
| RKOS | 1 | 512 | 4800 | 4799

I | | t | |
[RKOSF | 1 | 512 | 4800 per unit; | 4799 per unit;

| I | | 2 units/drive | 2 units/drive |
| ! l | | l
| RLO1 1 1 | 512 | 10220 | 10219

| I | | | l
| RLO2 1 1 | 512 | 20460 | 20459

1-28 October 1985

System Structure and Disk Operations

Table 1-8: Non-File-Structured Disk Default Characteristics (Cont.)

R RIS I R LI I +
	Minimum	Default		
	Device	Buffer		
	Cluster	Size	Total Size	Maximum Device
Device	Size	(Bytes)	(in Blocks) i Cluster Number	
R I R R eI I I I I L +				
I I I I I				
RD51	1	512 [21600	21599 I	
I I ! I i				
RD52	1	512	60480	60479
I	I I I			
RC25	1	512	50902 per unit	50901 per unit
			2 units/spindle	2 units/spindle
I			I I	
RKO6	1	512	27104	27103
I		I		
RKO7	1	512	53768	53767 I
I		I I		
RPO2	2	1024	40000	19999
	I I I			
RPO3	2	1024	80000	39999
I I	I I			
RD53	4	2048	138668	34666
I		I I		
RM02/03	4	2048	131648	32911
:	I I	I		
RPO4,/05	4	2048	171796	42948
I I l				
RM8O	4	2048	242575	60643
I I I	I I			
RMO5	8 I 4096	500352	62543 I	
!		I		
RPO6	8	4096	340664	42582
	I			
RA60	8	4096	400175	50021
I I I	I			
RABO0	4	2048 -	237208	59301
I			I	
RA81	16	8192	891056	55697
	I I	I		
Virtual	1	512	4 * #K words	Varies with size
disk *			allocated	i
R o R R e I T I I +				
* The virtual disk is not a physical device. It is a logical I				
device created from memory.				
R T e I I +

After you open a disk for non-file-structured processing, use the
RECORD or BLOCK option in GET and PUT statements to read and write a

October 1985 1-29

System Structure and Disk Operations

specific cluster on the disk. The number you specify designates a
device cluster number. Thus, on an RKO05, BLOCK 4100 refers to device
cluster number 4100 on the disk, because the device cluster size for
an RK0O5 is 1. On an RP03, BLOCK 4100 refers to device cluster number
4100, which contains logical blocks 8200 and 8201 because its device
cluster size is 2. 1In this case, the program accesses both logical
blocks. The following example reads the last two blocks of an RP03:

100 OPEN "DP1:" AS FILE 1%
\\ GET #1%, BLOCK 39999.

After the program opens the disk, the GET statement reads device
cluster 39999, which contains the last two blocks of the disk.

The system can access device cluster 0 only immediately after an OPEN
statement. The GET or PUT statement that accesses device cluster 0
must either specify BLOCK 0 or omit the BLOCK option. Once the disk
has been accessed, omitting the BLOCK option or specifying BLOCK 0 in
a GET or PUT statement accesses the next sequential device cluster.
Note that you can use COUNT to read a partial block (see the section
"Partial Block Operations on Disk"), however the systém positions
itself at the start of the next cluster following the operation.

After you perform I/0 to the disk, the only way you can access device
cluster 0 is by closing the disk and reopening it for
non-file-structured access. This statement reads the first block of
an RKO05:

100 OPEN "DKl:" AS FILE 1%
\\ GET #1%, BLOCK 0.

Caution

On a RSTS/E file-structured disk, logical block 0
contains the bootstrap. The remaining blocks, if any,
in device cluster 0 contain no data. Writing to
device cluster 0 on a RSTS/E file-structured disk
destroys the bootstrap.

If the program attempts to read or write beyond the end of the disk,
the ?End of file on device (ERR=11) error occurs.

You can improve total throughput by specifying a large buffer size.
This permits a single disk transfer to read a large guantity of data.
To change the buffer size, include the RECORDSIZE option in the OPEN
statement.

The RECORDSIZE specified should be an integral multiple of 512 times
‘the device cluster size. For example, the following statement opens

System Structure and Disk Operations

the RK05 disk on unit 1 for non-file-structured processing and sets
the buffer size to 2048 bytes:

100 OPEN "DK1:" AS FILE 1%, RECORDSIZE 2048%

See the BASIC-PLUS Language Manual for a description of the RECORDSIZE
option in OPEN gtatements.

Noniﬁjfrstructured Block Access: MODE 128%

Specify MODE 128% in a non-file-structured OPEN statement to access
logical disk blocks instead of device clusters. MODE 128% lets you
perform read/write operations on individuval disk blocks.

To access blocks on the disk, specify MODE 128% in the OPEN statement
and use the BLOCK option in the GET or PUT statement. The BLOCK
option accepts a floating-point argument that represents the desired
block (where block 1 is the first block on the disk, the pack label).
See the BASIC-PLUS Language Manual for a description of the BLOCK
option in GET and PUT statements.

Access to Bad Block Information: MODE 512%

MODE 512% in a non-file-structured OPEN statement allows a program to
read beyond the last writable portion of a disk. The DCL INITIALIZE
command uses this mode to read the factory bad block file, which is
located beyond the last writable portion of the disk.

MODE 512% also suppresses errors normally logged by the system error
logger. The system sends these errors to your program if you declare
the program as a local receiver with object type code 64% (see Chapter
8).

Note that this mode is reserved for use by the disk initialization
program and is not intended for general use.

Privilege and Access

You do not need to logically mount a disk that is being processed in
non-file-structured mode. After you insert the disk into its drive,
you can read or write to it if you have the appropriate privilege
(RDNFS, WRTNFS). 1If you only have RDNFS privilege, you can read the
disk regardless of the number of users accessing it, but if you
attempt to write on the disk while another user 1is accessing it, a
?Protection violation error occurs.

System Structure and Disk Operations

If the disk is logically mounted, you have only read access while
doing non-file-structured processing, unless you have both WRTNFS and
SYSMOD privilege.

By testing bits 9 and 10 of the BASIC-PLUS variable STATUS, the user
program can determine what accesses it has. See the BASIC-PLUS
Language Manual for a description of the STATUS variable.

Allocating a Disk Unit

You can allocate a dismounted disk unit to your current job if you
have the HWCTL privilege. This action prevents access by other users
to the drive when you perform non-file-structured operations on a
volume mounted in the drive.

When a.dismounted disk is allocated, the system limits access to the
drive. The drive cannot be logically mounted. 1If the job to which
the drive is allocated has the necessary privileges, it has both read
and write access to the disk. Other users who have the RDNFS or
WRTNFS privilege can read the disk in non-file-structured mode but
cannot write on the disk.

Allocating the disk unit can be useful when performing I/0. 1If you
need to CLOSE and reopen and GET or PUT block 0, you do not lose
ownership of the disk while it is closed.

The output of the SHOW DISK command shows an allocated drive as
non-file-structured (NFS) and private (Pri). For example, the
following portion of a SHOW DISK command output shows that disk DMl is
assigned.

Disk Structure:
Dsk Open Size Free Clu Err Name Level Comments

DM1 1 1 0 Pri, R-O, NFS
DR1 45 131648 30052 22% 4 0 A 1.2 Pub, DLW, LDX
DR2 0 242576 33040 13% 8 0 R 1.1 Pri, R-O, DLW
DR3 8 500352 56296 11% 8 0 W 1.2 Pri, DLW, LDX
DR4 0 242572 17528 7% 4 0 M 1.1 Pri, DLW, LDX
DR5 0 500352 76152 15% 8 0 H 1.1 Pri, R-O, DLW

File-Structured Disk Operation

In file-structured disk operation, data is organized in files. The
system manager uses the DSKINT option during system initialization or
the DCL INITIALIZE command to set up a skeletal file structure on a
RSTS/E disk. During timesharing, you can create files with the CREATE
command, a text editor such as EDT, or the OPEN and OPEN FOR OUTPUT

1-32 October 198t

System Structure and Disk Operations

statements. See the BASIC-PLUS Language Manual for a complete
;. discussion of BASIC-PLUS I/0 methods.

You can open disk files in one of several modes. The following
sections describe these modes; Table 1-9 summarizes them.

Table 1-9: MODE Specifications for Disk Files

IR T T I P +
| MODE | Meaning |
Fm s I T +
| ! l
| 0% | Normal read/write 1
: 1% { UPDATE mode 1
: 2% { APPEND to file I
: 5% } Guarded UPDATE (4%+1%) {
: 8% : Special extend :
; 16% : Create contiguous file ;
:(32% : Create tentative file 1
{ 64% { Create contiguous file conditionally E
: 128% : No supersede i
? 256% { Random data caching (requires TUNE privilege) :
: 512% : Create file -- Pléce at beginning of directory (with

! | 1024%) 1
{ 1024% : Create file -- Place at end of directory :
; 2048% } Sequential data caching (with 256%) :
I 4096% } Read normally regardless 1
: 8192% i OPEN file read only i
} 16384% { Write UFD (requires WRTNFS privilege) }
I T e I +

The general form of the OPEN statement with the MODE option is:

100 OPEN "FILE.DAT" AS FILE N%, MODE M%

System Structure and Disk Operations

where N% is the internal I/0 channel number and M% is the mode in
which the file FILE.DAT is to be opened.

Note that if a nonprivileged job attempts to open a file in a mode
that requires privilege, the system ignores that particular mode
value. Table 1-9 lists the disk file MODE specifications.

Reading and Writing Disk Files: MODE 0%

Specify MODE 0% or omit the MODE option to open a disk file for normal
reading and writing (the system default). In default mode, an OPEN
FOR INPUT statement opens an existing file for read and write access
(if the protection code of the file permits it). OPEN FOR OUTPUT
deletes an existing file and creates a new file with the same name.

An OPEN statement without an INPUT or OUTPUT specification attempts to
perform an OPEN FOR INPUT operation. If this fails, the system
creates a new file.

OPEN, OPEN FOR INPUT, and OPEN FOR OUTPUT statements control only the
actions the system performs when it opens the disk file. See the
BASIC-PLUS Language Manual for a description of these statements.

Updating Disk Files: MODE 1%, MODE 4%+1%

In certain applications (for example, inventory updating) several
users may need read and write access to a single master file. 1In such
cases, it is time consuming to continually close and reopen the file
to obtain and relingquish write access. For this reason, RSTS/E
provides an update option that gives several users write access to a
file while guarding against simultaneous writing of the same data.

The following sections describe the capabilities RSTS/E provides and
those that are available through BASIC-PLUS.

RSTS/E File Updating Capabilities

In file updating operations, RSTS/E allows locks to be applied on
blocks in a file. A single lock can apply to a single block or to a
range of blocks. The blocks within the range of a single lock must be
logically sequential; they need not be physically clustered. Because
RSTS/E permits multiple locks at the same time on the same file,
logically nonsequential blocks within a file can be updated in the
same time period.

System Structure and Disk Operations

The general form of the OPEN statement with the MODE option is:
100 OPEN "FILE.DAT" AS FILE N%, MODE M%

where N% is the internal I/0 channel number and M% is the mode in
which the file FILE.DAT is to be opened.

Note that if a nonprivileged job attempts to open a file in a mode
that requires privilege, the system ignores that particular mode
value. Table 1-9 lists the disk file MODE specifications.

Table 1-9: MODE Specifications for Disk Files

Normal read/write

1% UPDATE mode
2% APPEND to file
% Guarded UPDATE (4%+1%)
8% Special extend
16% Create contiguous file
32% Create tentative file
64% Create contiguous file conditionally

| |
| |
| I
| l
| I
| 1
| |
| |
| |
| |
| !
| |
| l
| |
| |
l |
128% | No supersede |
| l
| I
| 1
| |
| I
| |
| i
| |
| I
| |
| |
| |
| |
| |
| |

256% Random data caching (requires TUNE privilege)
512% Create file -- Place at beginning of directory (with
1024%)
1024% Create file -- Place at end of directory
2048% Sequential data caching (with 256%)
4096% Read normally regardless
8192% OPEN file read only
16384% Write UFD (requires WRTNFS privilege)
I R I I R +

System Structure and Disk Operations

Reading and Writing Disk Files: MODE 0%

Specify MODE 0% or omit the MODE option to open a disk file for normal
reading and writing (the system default). 1In default mode, an OPEN
FOR INPUT statement opens an existing file for read and write access
(if the protection code of the file permits it). OPEN FOR OUTPUT
deletes an existing file and creates a new file with the same name.

An OPEN statement without an INPUT or OUTPUT specification attempts to
perform an OPEN FOR INPUT operation. 1If this fails, the system
creates a new file. '

OPEN, OPEN FOR INPUT, and OPEN FOR OUTPUT statements control only the
actions the system performs when it opens the disk file. See the
BASIC-PLUS Language Manual for a description of these statements.

Updating Disk Files: MODE 1%, MODE 4%+1%

In certain applications (for example, inventory updating) several
users may need read and write access to a single master file. 1In such
cases, it is time consuming to continually close and reopen the file
to obtain and relinquish write access. For this reason, RSTS/E
provides an update option that gives several users write access to a
file while guarding against simultaneous writing of the same data.

The following sections describe the capabilities RSTS/E provides and
those that are available through BASIC-PLUS.

RSTS/E File Updating Capabilities

In file updating operations, RSTS/E allows locks to be applied on
blocks in a file. A single lock can apply to a single block or to a
range of blocks. The blocks within the range of a single lock must be
logically sequential; they need not be physically clustered. Because
RSTS/E permits multiple locks at the same time on the same file,
logically nonsequential blocks within a file can be updated in the
same time period.

System Structure and Disk Operations

File Update: MODE 1%

Use MODE 1% in the OPEN statement to open a file for update. For
example:

100 OPEN 'MASTER.DAT’ AS FILE 1%, MODE 1%

This statement opens MASTER.DAT for update on channel 1 and creates a
512-byte buffer in your job space.

After a program opens a file for update, the system allows the program
to access data simultaneously with other programs but enforces certain
safeguards. When a program performs any read operation on the file,
RSTS/E puts the block accessed in a locked state. An attempt by
another program to access any data in that locked block results in the
error 2Disk block is interlocked (ERR=19). This error signals that
the data required is being accessed on another channel in the current
program or by another program and is perhaps being updated.

The program accessing the data makes the data available to another
program by unlocking the block. Several ways exist for a program to
unlock a locked block. The program can:

o Perform any write operation on the file.

0o Execute the UNLOCK statement on the channel where the file is
open. The UNLOCK statement has the form:

UNLOCK <expression>

where expression is the internal channel number of the file
that is opened for update.

o Read another block. (However, this action lbcks the newly
retrieved block.)

o Execute a CLOSE statement on the file. (Executing an END or
CHAIN statement or executing the last statement of the
program implicitly closes all files.)

Additionally, the system unlocks a block when the program encounters
an error while accessing the file.

You cannot open a file simultaneously in both normal and update mode.
An attempt to perform an open in one mode when the file is currently
open in the other mode generates the error ?Protection violation
(ERR=10). The same error occurs if the protection code of the file
prohibits read and write access.

Even if a file is open in update mode, a program can still gain read

1-35

System Structure and Disk Operations

access to the file. It can open the file with MODE 4096% (see the
section "Reading a File During Processing: MODE 4096%"). This mode
allows normal read access but not write access, regardless of whether
the file is open for update.

BASIC-PLUS allows a program to lock several logically consecutive
blocks during a GET operation. The number of blocks is established by
the RECORDSIZE option. For example:

100 OPEN ’'MASTER.DAT’ AS FILE 1%, RECORDSIZE 1024%, MODE 1%

The RECORDSIZE 1024% option causes BASIC-PLUS to create a 1024-byte
buffer. Therefore, a GET operation on channel 1 retrieves 2 blocks
and puts both blocks together in the locked state. RSTS/E allows up
to 31 blocks in the buffer to be locked in this manner and allows up
to seven locks on the file (see the section "Disk Special Function:
SPEC%"). Note that the same rules for a single locked block apply for
the range of locked blocks.

You can open a file in UPDATE mode (1% or 5%) and extend it beyond the
current end-of-file (EOF). To extend the file, follow these steps:

1. OPEN the file in UPDATE mode.
2. GET block 1 (the first block of the file).

3. Use the SPEC% function (see the section "Disk Special
Function: SPEC%") to place an explicit lock on block 1.

4, Extend the file to the desired length beyond the current EOQF
with PUT statements.

5. Unlock block 1 (see the section "Disk Special Function:
SPEC%").

The extended blocks are now available to users of the file.

Guarded File Update: MODE 4%+1%

Guarded file update in the OPEN statement provides the same update
processing as MODE 1% with one more processing feature. The program
can write a block or range of blocks only after it has read and locked
the data. If your program attempts to write data that is not
currently locked, the result is a ?Protection violation error
(ERR=10). This feature prevents a program from updating data that it
has not accessed. Note that you must use MODE 4% and 1% to gain
special update; MODE 4% alone is equivalent to MODE 0%.

System Structure and Disk Operations

You can open a file in UPDATE mode and extend it beyond the current
EOF. See the previous section for a description of the extend
procedure.

Appending Data to Disk Files: MODE 2%

Use MODE 2% in the OPEN statement to write data to a new block
following the current EOF in a disk file. Do not use the OPEN FOR
OUTPUT statement, because it deletes the existing file. Specify MODE
2% only with block I/0 files. For example:

100 OPEN "DATA.DAT" FOR INPUT AS FILE 1%, MODE 2%

The system opens the file DATA.DAT under the current account on the
system disk. The next output operation creates a new block and
appends it to the last block in the file that contains data. Any fill
characters in the previous last block of the file remain when the
system appends the new last block. A PUT statement that the system
later executes on the file need not specify a BLOCK number. When the
PUT statement does not include the BLOCK option, the system writes the
next sequential block.

The following sample program illustrates append mode by showing its
use in a classroom environment. Each student enters experimental data
into a class data file. The complete class data file can then be
input to another program to produce a class curve for the experiment.

100 DIM X(10%), X$(10%)
\OPEN "SCIENC.EXP" AS FILE 1%, MODE 2%
\IF (STATUS AND 1024%) THEN
PRINT "WRITE ACCESS NOT GRANTED."
\PRINT "TRY AGAIN IN A FEW MINUTES."

\GOTO 800
400 FIELD #1%, 8%*I% AS BS, 8% AS XS$(I%)
FOR I%=1% TO 10%
500 PRINT "YOUR VALUES FOR X ARE";
\MAT INPUT X
600 LSET XS$S(I%)=CVTFS$(X(I%))
FOR I%=1% TO 10%
700 PUT #1%
\\PRINT "THANK YOU"
800 CLOSE 1%
\\END

4

Note that in certain applications, you may want to append records to a
file on one channel and read the appended records on another channel.
The most current file size information is available to all channels on
which a file is open.

System Structure and Disk Operations

Special Mode for Extending Files: MODE 8%

Use MODE 8% in the OPEN, OPEN FOR INPUT, or OPEN FOR OUTPUT statement
to force RSTS/E to update a file’s size data and retrieval pointers on
the disk during extend operations. 1In normal processing, RSTS/E
maintains a file’s size data in memory. RSTS/E does not update this
size on disk until it allocates a new cluster to the file. By
specifying MODE 8%, you force RSTS/E to update the on-disk file size
as well as the retrieval pointers for each allocated cluster for every
block added to the file. For example:

10 OPEN ’'DATA.DAT’ AS FILE 1%, MODE 8% + N%

where the value N% can be any other disk MODE option. The system
creates the file if it does not exist.

Extending a disk file using MODE 8% increases the processing overhead
because the system must access the disk more times for every block
added. The extra overhead is warranted for applications where the
system must correctly preserve a file’s size in the event of a system
crash or power failure.

Creating a Contiguous File: MODE 16%

Use MODE 16% with the FILESIZE option in the OPEN FOR OUTPUT statement
to create a contiguous file on disk. Contiguous means that the
clusters allocated to the file are physically adjacent. For example:

10 OPEN 'DATA.1’ FOR OUTPUT AS FILE 1%, FILESIZE 12%, MODE 16%

You can use other options with MODE 16% to specify the buffer size
(RECORDSIZE) and the file cluster size (CLUSTERSIZE).

You must use the FILESIZE option with MODE 16%. It preextends the
file to its maximum length, thereby telling the system how much
contiguous space is required. If sufficient contiguous space is not
available, the system generates the error ?No room for user on device
(ERR=4). Note that you can specify MODE 64% (see the section
"Creating a Contiguous File Conditionally: MODE 64%") to create a
contiguous file conditionally. The file is made contiguous if
possible; otherwise, it is made noncontiguous and no error is
returned.

Processing a contiguous file greatly reduces overhead because it
minimizes directory accesses and movement of read/write heads. Files
for run-time systems and swapping must be contiguous because the
monitor accesses these files independently of the normal file
processor. However, you cannot extend a contiguous file. An attempt
to extend a contiguous file generates the error ?Protection violation
(ERR=10).

System Structure and Disk Operations

Creating a Tentative File: MODE 32%

Use MODE 32% in the OPEN FOR OUTPUT statement to create a file that
does not become permanent until it is closed with the CLOSE statement.
If a file of the same name currently exists, the system does not
supersede it until you close the tentative file.

When you create a tentative file, the system searches for an existing
file of the same name. If you do not specify an explicit disk name,
the system searches the public structure. If the system finds a file
of the same name, and its protection code does not allow deletion, you
receive the error ?Protection violation (ERR=10). If the system finds
a file of the same name, and it can be deleted, it is left intact (not
deleted) until a CLOSE on the tentative file is executed.

A successful OPEN statement causes an entry for the tentative file to
be made in the directory. The entry marks the tentative file for
deletion. If the system crashes or the job resets the channel (with a
negative channel number in the CLOSE statement) before closing the
file, the tentative file is deleted. Note that tentative file
directory entries appear only on a directory listing that contains
files marked for deletion.

When you close a tentative file, the system again searches for a file
of the same name. 1If such a file is found and it can be deleted, the
system deletes it and makes the tentative file permanent. If a file
of the same name is found and its protection code does not allow
deletion, the error ?Protection violation (ERR=10) occurs. However,
the system closes the tentative file and renames it to:

TM?nnn.TMP
where:

? is an alphabetic indication of the file’s channel (A=0, B=1l,
C=2, and so on).

nnn is the job number.

Note that this operation can cause multiple copies of this name to
exist in a directory.

Creating a Contiguous File Conditionally: MODE 64%
Use MODE 64% in the OPEN FOR OUTPUT statement to create a
conditionally contiguous file. MODE 64% causes the monitor to create
a contiguous file based on the following conditions:
o If there is enough contiguous space available on the disk to
contain the file, the monitor creates a contiguous file.

1-39

System Structure and Disk Operations

o If there is not enough contiguous space on the disk to
contain the file, the monitor creates a noncontiguous file.
If the monitor can create the file, it does not return an
error.

Note that the monitor ignores MODE 64% if MODE 16% is also set for the
file (see the section "Creating a Contiguous File: MODE 16%").

No Supersede: MODE 128%

Use MODE 128% in the OPEN FOR OUTPUT statement to create a file that
will not supersede an existing file of the same name. MODE 128%
notifies the monitor that, if a file of the same name currently
exists, the existing file should not be deleted. 1Instead, the system
returns the error ?Name or account now exists (ERR=16).

Data Caching: MODES 256%, 2048%

When your job executes a read request, the monitor performs a disk
access and transfers the requested data from the disk to the your
job’s I/0 buffer. On systems with many jobs that use large amounts of
data, the resulting large number of disk accesses can slow response
time. You can reduce the number of data transfers from disk through
data caching.

When you enable caching, the monitor stores the most recently read
(accessed) data blocks in an area of memory called the cache, which is
part of XBUF. 1If your job requests a data block that is present in
the cache, the monitor copies the requested data directly from the
cache into the job’s I/0 buffer and thus avoids a physical disk
access.

Data caching is most useful for read operations because it can
minimize disk transfers. 1In a write operation that modifies existing
data, the data is updated on disk and in the cache, but no new data is
installed in the cache.

The system manager installs caching on the system and optionally sets
its parameters during system start-up. When caching is enabled, the
monitor examines the cache for all data transfer reguests that are
directed to the disk driver. 1If the requested data is in the cache, a
read operation occurs without placing a load on the disk driver.

The monitor constantly updates the cache so that it contains the most
recently requested data by adding data clusters or replacing data
clusters (if the cache is full). The monitor schedules a job’s data
transfers into the cache based on the time since last access.

System Structure and Disk Operations

A data cluster currently in the cache is eligible for replacement if
it

o 1Is the data with the longest time since last access

o Has been in the cache for more than the minimum residency
established by the system manager (the cache replacement
timer, set with the SET CACHE command).

Cache Size

The amount of data that can be in the cache at any given time depends
on the cache cluster size, which can be 1, 2, 4, or 8 blocks. 1In many
cases, the cache cluster size determines the number of read requests
that can be resolved in the cache before a disk access is required.
For example, when the cache cluster size is 8 blocks, a read operation
that installs data in the cache causes the installation of 8
physically contiguous blocks (including the requested blocks).

The system manager sets the cache cluster size during system start-up
or with the Enable Disk Caching SYS call (SYS 19). For optimum
performance, the cache cluster size should equal the pack cluster size
set during disk initialization. If that is not possible, then the
cache cluster size should be smaller than the pack cluster size. The
monitor allocates cache space from XBUF (see the section
"Enable/Disable Disk Caching," in Chapter 7).

Caching Control

If you have the TUNE privilege, you can enable or disable caching and
determine the size of the cache by using the Enable Disk Cache SYS
call (SYS 19) or the SET CACHE command (see the RSTS/E System
Manager’s Guide). 1In addition, if you have TUNE privilege, you can
specify caching for a file on a system where caching is enabled.

You can cache a file in either random or sequential mode. Random mode
is the default; DIGITAL recommends it for files that are accessed
randomly, such as RMS indexed files. Sequential mode caching is
designed for files that are accessed sequentially. If you are not
sure in advance how a file will be accessed, you should specify random
mode caching.

System Structure and Disk Operations

To specify caching for a file, you can either:

o Mark its UFD entry with the File Utility Functions SY¥S call
(SYS -26) or the SET FILE command

o Specify MODE 256% or MODE 2048% in the OPEN statement
Both methods let you specify either random or sequential mode caching.

The best way to specify caching for a file depends on its use. If you
are creating a file for use in a specific program, use the following
MODE values to specify caching when you open the file. However, if
you are creating a file for general use, it is better to mark the
file’s UFD entry with the File Utility Functions SY$ call (SYS -26) or
the SET FILE command. The use of caching MODE values requires TUNE
privilege. However, a file whose UFD is marked for caching is cached
on OPEN, regardless of the user’s privilege, as long as caching is
enabled on the system.

Random Mode Data Caching: MODE 256%

Use MODE 256% in the OPEN statement to cache data transfers to and
from a file in random mode. MODE 256% has effect only if data caching
is enabled on the system (see the section "Enable/Disable Disk
Caching", in Chapter 7).

When a read on a randomly cached file occurs, the monitor examines the
cache to determine if the requested data item is present. If the data
is in the cache, the monitor copies the data from the cache buffer
that contains it to the program’s I/0O buffer. The monitor then links
the cache buffer to the beginning of the list of cache buffers and
clears its time of residency since last access. The monitor maintains
the list of cache buffers in order of increasing time since last
access.

If the requested data item is not in the cache, the monitor examines
the list of cache buffers to determine the time of last access for the
oldest cluster in the cache. 1If the time is less than the minimum
residency, the requested data cannot be installed in the cache, so the
monitor automatically performs a normal disk read. If the time is
greater than the minimum residency, the monitor replaces the current
data in the cache buffer with the new data and then transfers it to
the program’s I/O buffer.

Sequential Mode Data Caching: MODE 2048%

Use MODE 2048% in the OPEN statement to cache data transfers to and
from a file in sequential mode. MODE 2048% has effect only if the

1-42

System Structure and Disk Operations

file is being cached. That is, either MODE 256% is set, the file'’s
UFD entry is marked for caching (see the section File Utility
Functions, in Chapter 7), or caching is set for all data on the system
(see the section "Enable/Disable Disk Caching", in Chapter 7). Note
that sequential mode caching has no effect for a cache cluster size
equal to 1, although no error is returned if the cluster size is 1.

Sequential mode works like random mode caching except for the way the
monitor handles:

o A read on the last block of a cache cluster
o A read on more than one cache cluster

In sequential mode caching, a read on the last block of a cluster
makes the cluster eligible for replacement, regardless of the amount
of time it has been in the cache. This speeds the replacement process
in the cache and minimizes the space that the cache requires. The
monitor handles a read on any other block in the cache cluster the
same as in random mode caching: the cluster becomes eligible for
replacement only when its minimum residency time in the cache expires.

In a read on more than one cache cluster, the monitor transfers all
the requested data blocks to the program’s I/O buffer but only
installs the last cache cluster in the cache. Furthermore, if the
last data block read is the last block in a cache cluster, the monitor
does not install any data in the cache. Thus, if you define the cache
cluster size as 1 and specify sequential mode, no data blocks are
installed in the cache because every data block is the last block in a
cache cluster.

Creating and Placing a File at the End of the Directory: MODE 1024%

Use MODE 1024% to override the pack default and specifically place a
file at the end of the current account’s directory. This file
placement is useful for files that are infrequently accessed or are
not time critical. Because the monitor always searches for files
starting at the beginning of the directory, placing noncritical files
at the end speeds access to the first part of the directory.

Use MODE 1024% only in the OPEN FOR OUTPUT statement to create a new
file. 1If you do not specify MODE 1024%, the monitor places the file
in the directory as directed by the pack default. This default
depends on the system manager’s response to the New files first?
DSKINT question. For example, if you create the file on DBl: and do
not specify MODE 1024%, the monitor uses the DBl: default to place the
file. 1If the device is part of the multidisk public structure (SY:),
the monitor selects the disk pack with the most free space and uses
that pack’s default.

System Structure and Disk Operations

Creating and Placing a File at the Beginning of the Directory: MODE
1536%

Specify MODE 1536% (MODE 1024% + 512%) in the OPEN FOR OUTPUT
statement to cause the monitor to override the pack default and place
a file at the beginning of the current account’s directory. If you do
not specify MODE 1536%, the monitor places the file in the directory
as directed by the pack default. This default depends on the system
manager’s response to the New files first? DSKINT question. For
example, if you create the file on DBl: and do not specify MODE 1536%,
the monitor uses the DBl: default to place the file. 1If the device is
part of the multidisk public structure (8Y:), the monitor selects the
disk pack with the most free space and uses that pack’s default.

Use MODE 1536% for files that are frequently accessed. For example,
if a program is used very heavily, you can place it at the start of
the directory. For example, the SPIP program is heavily used on many
RSTS/E systems. In this case, placing $PIP at the start of the [1,2]
directory may improve system performance.

Reading a File During Processing: MODE 4096%

In certain applications, you may need to read a data file regardless
of what other processing is in progress. Under normal circumstances,
the system prohibits opening a file while the file is currently open
for update (MODE 1% or MODE 4%+1%). However, with MODE 4096% you can
open a file for read access regardless of whether the file is being
updated. When a file is opened using MODE 4096%, other users can open
the file in update mode. For example:

10 OPEN ’'DATA.2' FOR INPUT AS FILE 1%, RECORDSIZE R%, MODE 4096%

You cannot perform write operations. If you attempt a write
operation, the system generates the error ?Protection violation
(ERR=10). If the file is simultaneously open for update, the system
does not generate the normal error ?Disk block is interlocked (ERR=19)
when the program reads a block being updated (although that block may
contain inconsistent data).

Note

Use MODE 4096% with care because of the danger
involved in reading data that is subject to change.

System Structure and Disk Operations

Read-Only Access to a File: MODE 8192%

Certain applications require simple read access to a data file and do
not want to preclude write access by other applications. Under normal
circumstances, an OPEN FOR INPUT statement for a disk file possibly
gains write access on the I/0O channel involved. To gain read access
to a data file when you do not want write access, use MODE 8192% in
the OPEN FOR INPUT statement. The system never grants write access to
a file opened with MODE 8192%.

You can use MODE 8192% on files that are opened normally (MODE 0%).
However, you cannot use MODE 8192% to open a file that is currently
opened for update (MODE 1%). 1If a file is currently opened for
update, you must specify MODE 8192%+1% in order to open the file
read-only. If the file is not yet opened and you specify MODE
8192%+1%, subsequent opens on that file must be made with MODE 1%.
For example:

10 OPEN 'DATA.3’' FOR INPUT AS FILE 1%, RECORDSIZE R%, MODE 8192%

After execution of this statement, the program has only read access to
the file DATA.3. 1If the file is currently open for update, however,
the system generates the normal error ?Protection violation (ERR=10).

Write Access to a Directory: MODE 16384%

If you have the WRTNFS privilege, you can write into a directory by
specifying MODE 16384% in the OPEN statement. For example, the
following statement allows you to read and write into the UFD of
account [5,107]:

199 OPEN "DK1l:{5,10]" AS FILE 2%, MODE 16384%

An OPEN FOR OUTPUT statement is invalid for a UFD. Without MODE
16384%, the system allows only read access if you have the appropriate
READ privilege (GREAD for group, WREAD for all).

Simultaneous Disk Access

RSTS/E permits several users to read from the same file
simultaneously, but only one user can write to a file (unless the file
is open in update mode). Without this limitation, two users could try
to write the same record of the file simultaneously, resulting in a
loss of data. To avoid this conflict, the system permits only one
user at a time to have write access to any file. 1If a second user
attempts to write into the file, the error ?Protection violation
(ERR=10) results. Thus, users may fail to obtain write access to a
file that is not write-protected against them. If this failure

1-45

System Structure and Disk Operations

occurs, the second user must close the file and reopen it after the
first user has closed it.

The system does not permit a file to be open simultaneously in update
mode and in normal mode. If your program attempts to do so, it
results in the error ?2Protection violation (ERR=10). However, a file
can be open simultaneously in update mode and read during processing
mode (see the section "Reading a File During Processing: MODE 4096%").
In addition, a file can be open in update mode by multiple users.

By checking bits 9 and 10 of the STATUS variable immediately after the
OPEN statement, a program can ascertain whether the current job has
read and write access to a file. The example in the section
"Appending Data to Disk Files: MODE 2%", performs this check. See
the BASIC-PLUS Language Manual for a description of the STATUS
variable. '

Disk Optimization

Whenever you open a file on the public structure, the system searches
the directories of all public disks to determine whether the file
exists. To avoid the overhead of searching multiple directories, you
can put the file on a private disk.

When you dedicate a private disk to a large production file, it
minimizes overhead to access data and ensures an efficient directory
organization. 1If you find this impractical and must store more than
one such file on one private disk, dedicate an entire account to each
file. This arrangement reduces directory search overhead.

However, if you must save more than one file under an account, create
the more frequently accessed ones first or use MODE 1536% (see the
section "Creating and Placing a File at the Beginning of a Directory:
MODE 1536%") to ensure better directory organization.

If you cannot do this, the system manager can optimally reorder the
file directory with the REORDR system utility (see the RSTS/E System
Manager’s Guide). With REORDR, you can order files on an account in
either forward or reverse direction, by either date and time of
creation or date of last access.

When you create a large file, specify a large file cluster size to
increase efficiency. A large cluster size reduces the number of UFD
blocks required to describe the file. Performance improves because
the system can read or write multiple blocks in a single transfer. 1In
addition, you can preextend a disk file to its maximum length when you
create it and can specify that contiguous space be used. Preextension
reduces directory fragmentation. Contiguous space reduces window
turning, which is the process of following UFD retrieval pointers to
locate a specific block within a file.

1-46

System Structure and Disk Operations

If you have the appropriate accounting privilege (GACNT for group,
WACNT for all), you can use the Create User Account SYS call (SYS 0)
to optimally preextend and place directories. By doing this, you may
improve system performance.

If you preextend a disk file with the FILESIZE modifier on the OPEN
statement and you do not specify the cluster size with the CLUSTERSIZE
modifier, the monitor computes the clustersize that is optimal for
fast access. The monitor uses the formula FILESIZE/7, rounded up to
the nearest cluster size. For example:

100 OPEN "MYFILE.DAT" FOR OUTPUT AS FILE 1%, FILESIZE 100%

This OPEN statement preextends the file MYFILE.DAT to a size of 100
blocks. The monitor automatically computes a cluster size of 16
(100/7, rounded up). Note that the largest possible cluster size is
256 blocks.

If a program requires simultaneous access to more than one data file,
it is best to place each file on a different private disk. Overhead
increases if the files reside on the same disk because the disk head
must move whenever the program accesses a different file. Thus, a
large percentage of execution time is spent in moving the disk head
back and forth.

Use different accounts to store different kinds of files. To minimize
the number of poorly ordered accounts, dedicate certain accounts to
files that are created once and remain fairly static, and reserve
other accounts for transient files. To further optimize the
structure, minimize the number of files in one account. For example,
it is better to have 30 files each in 10 accounts than to have 300
files in one account.

Partial Block Operations on Disk

In general, the buffer you use for disk I/0 should be a multiple of
512 bytes in length. Specify the buffer size by using the RECORDSIZE
option in the OPEN statement.

By default, GET and PUT statements transfer the entire buffer. If you
want to transfer less data, use the COUNT option. The COUNT option
used in a GET statement specifies the maximum number of characters to
be read in the current record regardless of the buffer size. 1In the
following example the file is opened with RECORDSIZE 1024% and you
want to read only 520 bytes:

100 OPEN "MYFILE.DAT" AS FILE 1%, RECORDSIZE 1024%
110 GET 1%, COUNT 520%

This GET operation on channel 1% fills the buffer to the requested

1-47

System Structure and Disk Operations

number of bytes. The disk software then skips the rest of the last
disk block read and positions itself to access the next block. To
satisfy the COUNT of 520, the software reads the current block (for
512 bytes), reads 8 bytes of the next block, and positions itself to
access the following block.

For GET or PUT operations, you can use any value for RECORD or BLOCK.
For example, with a COUNT of 520 bytes, BLOCK 1 accesses the first
block and 8 bytes of the second block. BLOCK 2 in the GET statement
retrieves the entire contents of the second block plus 8 bytes of the
third block. The file is then positioned to access the block
following the last one accessed (block 4 in the prewvious example).

For PUT operations, the COUNT must be a multiple of 512 bytes (or
exactly 512 bytes when writing a UFD). For GET operations, COUNT must
be even (a multiple of 4 on RP02/03 disks). In all cases, the COUNT
value must not be greater than the buffer size (RECORDSIZE option of
the OPEN). See the BASIC-PLUS Language Manual for more information.

The Virtual Disk - DVO:

The virtual disk lets you store temporary data within the system’s
memory. The virtual disk is not a physical hardware device, but it
contains the same structures as a physical disk device. You can use
the virtual disk for file-structured or non-file-structured I/0 in the
same way you use any other disk device, with one exception: all data
written to the virtual disk is lost when the RSTS/E system shuts down
or crashes. DVO0: is the device designator for the virtual disk.

The system manager allocates memory to the virtual disk with the
INIT.SYS DEFAULT option. Use the SHOW DISK command to find out if the
virtual disk is enabled on your system.

You can use the virtual disk to store temporary files or any file that
has a very short lifespan. Examples of temporary files are work files
created by an application program like SORT/MERGE that are later
deleted; virtual arrays created by BASIC-PLUS that are no longer
needed once the program exits; or temporary files used for entering
data in applications that give users a chance to edit data before
updating a permanent file.

You can also place copies of read-only files that never change and are
frequently accessed on the virtual disk. For example, place in
virtual memory a copy of an index file that is used to access other
files. Or, place heavily overlaid programs (like TKB) in virtual
memory to improve performance.

System Structure and Disk Operations

The virtual disk is especially useful on large memory systems.
Because the virtual disk never requires physical I/0, it is the
fastest disk on your system. It is even faster than data caching for
these reasons:

o A file placed on the virtual disk always remains in memory.
On the other hand, a cached file remains in memory based on
frequency of access.

0 When you write to a file on the virtual disk, no physical I/0
takes place. When you write to a cached file, physical I/0
takes place. The file processor first performs a physical
write, then it updates memory.

The virtual disk takes memory away from user space. On a small memory
system, this may detract from overall performance. 1In addition, you
cannot use the virtual disk for any permanent files because all data
is lost when the system shuts down or crashes.

Asynchronous I/0 Requests

An asynchronous read or write request performs the same basic function
as the synchronous read or write request: it moves data between a
device and a program. The difference lies in the completion of the
request. While a synchronous request stalls the job’s execution until
the request is complete, an asynchronous request does not stall the
program. The program continues to run regardless of the state of the
I1/0 request. When the I/O request completes, the RSTS/E monitor
executes an asynchronous completion routine (AST) in the user program.
This routine notifies the user job of the I/0 completion.

The AST is a section of code within the user job that executes when an
I/0 request completes. The AST is the only section of code in the
program that can check for any device dependent errors.

BASIC-PLUS programmers cannot use asynchronous I/0O. BASIC-PLUS-2
programmers can use this feature, but must write a MACRO subroutine.
See the RSTS/E System Directives Manual for details.

Disk Special Function: SPEC%

The SPEC% function performs special operations on disks, flexible
diskettes, magnetic tapes (see Chapter 2), line printers (see Chapter
3), terminals (see Chapter 4), and pseudo keyboards (see Chapter 4).

on disks, the SPEC% function allows you to explicitly lock a maximum

of seven disk block ranges on a file that is open for update (MODE 1%
or MODE 1%+4%, see the section Updating Disk Files). A locked range

1-49

System Structure and Disk Operations

(from 1 to 31 blocks) is one that cannot be accessed by another user
or from another channel. Thus, SPEC% extends the use of guarded
update, which locks the last block or blocks read on a file.

SPEC% also allows you to release explicit or implicit locks. Note
that when you close a file, all explicit and implicit locks are
released for that file.

The SPEC% function for disk files has the format:
VALUE%=SPEC%(FUNCTION%, BLOCK, CHANNEL%, 0%)
where:

VALUE$% depends on the particular function code you specify in
FUNCTION%. In most cases, VALUE% is equal to the BLOCK
parameter.

FUNCTIONS is a function code that specifies the desired operation.
During normal I/O operations, a block, or range of
blocks, is implicitly locked when you read the file with
a BASIC-PLUS GET statement. The SPEC% function allows
you to convert implicit locks to explicit locks and to
release selected locked blocks. The code specified in
FUNCTION% determines the use of SPEC%. The codes are:

FUNCTION%=0% releases all locked blocks.
FUNCTION%=1% releases the current implicit lock.
FUNCTION%=2% converts the current implicit lock to

an explicit lock.

FUNCTION%=3% releases the explicitly locked block
specified in the BLOCK parameter. If
BLOCK is 0, all explicitly locked
blocks are released. However,
implicitly locked blocks remain
locked.

FUNCTION%=4% converts an implicit lock to an
explicit lock and release the
implicit lock.

BLOCK specifies the starting block number for releasing an
explicit lock. Note that BLOCK must be a floating-point
number.

CHANNEL% is the I/O channel on which the operation is to be

performed.

is the handler index for disk devices.

o
oo

1-50

System Structure and Disk Operations

If you open a file with a RECORDSIZE greater than 512, SPEC% allows
you to lock more than one block when you read a range of blocks into
the buffer with the GET statement. For example, if you open the file
with RECORDSIZE 1024%, each GET operation reads (and implicitly locks)
two blocks. For example, suppose you explicitly lock blocks 2 and 3:

100 GET #1%, RECORD 2%
\. VALUE%=SPEC%(2%,0,1%,0%)

You can then read blocks 3 and 4 (GET RECORD 3%) and cause implicit
locks on these blocks. Note that if you attempt to lock a range of
blocks that overlap an already explicitly locked range, the monitor
returns the error ?Disk block is interlocked (ERR=19). 1In addition,
if a range of blocks is locked, an explicit release of those blocks
must refer to the first block in the range.

The following errors are possible during a SPEC% operation:
Meaning ERR Value

?NO ROOM FOR USER ON DEVICE 4
There are too many locks pending on this channel.
You can lock a maximum of seven ranges of blocks on
a file.

?CAN'T FIND FILE OR ACCOUNT 5
You specified function code 3 for FUNCTION% and
attempted to unlock a block that was not locked.

?PROTECTION VIOLATION 10
You attempted to explicitly lock a block that had
not been implicitly locked. An attempt to lock a
block after a PUT or UNLOCK can cause this error.

?DISK BLOCK IS INTERLOCKED 19
You attempted to explicitly lock a range of blocks
that overlaps an already explicitly locked range of
blocks.

RX01/02 Flexible Diskettes

The RSTS/E monitor handles the RX11l/RX01 and RX211l/RX02 flexible
diskettes (sometimes called floppy disks) as non-file-structured
devices. The device name for the flexible diskette is DX.

Note
The RX50 flexible disk is not in this category. It is

treated as a file-structured disk with the device name
DU.

System Structure and Disk Operations

BASIC-PLUS, which uses the standard monitor I/0 services for flexible
diskettes, lets you store only one file on a diskette. For example:

SAVE DXl:

This command stores one .BAS file on a diskette. To read the file
from the diskette or to run it, use:

OLD DXl:
RUN DXl:

Two system utility programs, FIT and FLINT, let you store more than
one file on a flexible diskette. These programs transfer specially
formatted data between a flexible diskette and the RSTS/E environment.
See the RSTS/E Utilities Reference Manual for more information.

A flexible diskette is divided into 77 tracks (numbered 0 through 76),
each of which consists of 26 sectors {(numbered 1 through 26). Thus,
there are 2002 records (numbered 0 through 2001). Each record is 128
bytes for RX01l and single-density RX02, or 256 bytes for
double-density RX02 on each diskette.

Table 1-10 shows that you can open and access a flexible diskette in
either of two modes.

Table 1-10: MODE Specifications for Flexible Diskette

I i I L I +
| MODE | Meaning |
I I I I NI I S R +
| | |
| 0% | Read and write in block mode (default) |
| ? |
| 16384% | Read and write in sector mode |
Fommmem- R I I I I IR -t

The following sections describe the MODE specifications.

Block Mode: MODE 0%

In block mode, the buffer size is 512 bytes, equivalent to four
128-byte records. The four sectors are interleaved according to the
following algorithm, where N is the value specified in RECORD:

TEMPl = INT(N/26)
TEMP2 = N - INT(N/26)*26
TEMP2 = TEMP2 * 2

System Structure and Disk Operations

TEMP2 = TEMP2+1 IF TEMP2 >=26
TEMP2 = TEMP2 + 6*TEMPl
TRACK = TEMPl + 1

SECTOR = TEMP2 - INT(TEMP2,/26)*26 + 1

This interleaving algorithm is standard in other PDP-11 operating
systems for the flexible diskette (for example, RSX-11M, RT-11). Note
that track 0 is unavailable; its use is reserved for IBM-compatible
labels.

The following statement opens the diskette on unit 3 in block mode on
I/0 channel 1:

10 OPEN "DX3:" AS FILE 1%
A GET statement reads a 512-byte block from the diskette. The RECORD
option, if present, defines a specified sector starting point for the
read. If you omit the RECORD option or include RECORD 0%, the next
sequential block is read. For example:
100 GET #1%, RECORD N%
where N% is the number of the sector at which the block begins. It
can be any number from 1 through 493. (Only the first GET statement
after the device is opened can access the first block on the
diskette).
A PUT statement writes a 512-byte block on the diskette:
200 PUT #1%, RECORD N%, COUNT C%
where:
N% is the number of the sector at which the block begins. The
RECORD option can also include 16384% to write a Deleted Data
Mark with each of the sectors (see the section "Deleted Data
Marks").

C% must be a positive nonzero number.

You can perform block mode operations in sector mode. The following
example opens an RX01 diskette with this statement:

20 OPEN "DX3:" AS FILE 1%, RECORDSIZE 512%, MODE 16384%

System Structure and Disk Operations

Then use the GET (or PUT) statement:

30 GET #1%, RECORD N%*4% + 32767% + 1%
where:

32767%+1% specifies sector interleaving

N%*4% defines 512-byte blocks at 4-sector intervals.

Sector Mode: MODE 16384%

In sector mode, the buffer size is 128 bytes for RX01l and 256 bytes
for RX02. Open the diskette on unit 3 in sector mode with the
following statement:

10 OPEN "DX3:" AS FILE 1%, MODE 16384%

When you use GET and PUT statements, you can calculate track and
sector numbers from the RECORD number. If you specify the desired
record number as N (any number from 0 through 2001), you can specify
the track and sector to access as:

TRACK = INT (N/26)
SECTOR = N - INT(N/26)*26 + 1

A GET statement reads a 128-byte single-density or a 256-byte
double-density record from the diskette. The RECORD option, if
present, defines a specific record on the diskette. If you omit the
RECORD option or include RECORD 0%, the next sequential record is
read. For example:

100 GET #1%, RECORD N%
where N% is the record number and can be any number from 1 through

2001. (Only the first GET statement after the file has been opened
can access record 0.)

If you include -32768% (formed by 32767% + 1%) in the RECORD option

(for example, RECORD N%+32767%+1%), sectors are interleaved according
to the algorithm discussed in the section Block Mode - MODE 0%.

1-54

System Structure and Disk Operations

A PUT statement writes a 128-byte single density or a 256-byte double
density record on the diskette. For example:

200 PUT #1%, RECORD N%, COUNT C%

where:

N% 1is the record number. The RECORD option can also include
-32768% for interleaving (see the section Block Mode - MODE 0%)
and 16384% to write a Deleted Data Mark (see the section
"Deleted Data Marks") with each of the records.

C% must be a positive nonzero number.
Note

If you insert a single-density diskette into an RX02
drive, the buffer size on a sector mode open is 256
bytes (the length of two sectors). Thus, the
statement GET RECORD N% reads record N% and record
N%+1%. To make sure that you read only one record,
include COUNT 128% in the GET statement.

Flexible Diskette RECORD Modifiers

When you perform I/0 operations on flexible diskettes, you can include
three special RECORD values in GET and PUT statements to modify the
actions of the diskette drive:

RECORD 8192% Allows you to access logical record zero on the
flexible diskette. Under normal operation, the
system does not allow access to logical record
zero after the first I/O operation is performed.
However, the following statement accesses logical
record zero:

GET #N%, RECORD 8192%

RECORD 16384% Writes a Deleted Data Mark to the diskette when
used in the PUT statement (see the following
section "Deleted Data Marks").

RECORD 32767%+1% Causes the specified I/0 operation to be performed
in block mode. That is, when you want block mode
on a diskette that is open in sector mode (MODE
16384%), you can specify RECORD 32767%+1% in the
GET or PUT statement. With RECORD 32767%+1%, the
I/0 operation you perform is done in block mode.

System Structure and Disk Operations

Deleted Data Marks

Each sector of a flexible diskette contains a bit called the Deleted
Data Mark in addition to its data. When an INPUT or GET operation
from the diskette encounters a Deleted Data Mark, the error ?Data
format error (ERR=50) occurs.

In a GET operation, the contents of the buffer are valid even if this
error occurs. So it is possible to examine the contents of the record
containing the Deleted Data Mark. When the record size specified is
larger than one sector, the last sector read into the buffer is the
data that had the Deleted Data Mark.

The RECOUNT variable reflects the amount of data read up to and
including this mark. To write a Deleted Data Mark to a diskette,
include RECORD 16384% in the PUT statement.

Partial Block Operations on Flexible Diskettes

Use the RECORDSIZE option in the OPEN statement on a flexible diskette
to specify a value that is not a multiple of the default buffer size
({512 bytes in block mode; 128 bytes or 256 bytes in sector mode). Be
careful, however, in using the GET and PUT statements.

For GET operations with a nondefault buffer size (or a multiple of the
default), the software retrieves the required number of bytes and
positions itself to the next boundary. 1In block mode, this boundary
is the next block (sector number times 4 for RX01l, times 2 for RX02);
in sector mode, this boundary is the next sector. Thus, for a buffer
size of 520 bytes, a GET statement in block mode returns in the buffer
the current sector, the next three sectors, and the first eight bytes
of the fourth sector. The software then skips the rest of the fourth
sector and all of the fifth, sixth, and seventh sectors to position
itself at the beginning of the next block boundary for the next GET
operation. A GET statement in sector mode returns the required number
of bytes and skips the rest of the partial sector to position itself
at the beginning of the next sector boundary.

You can use any legal value in the RECORD option with the GET
statement. Thus, with a buffer size greater than 512 bytes, you can
overlap record values to recover skipped data.
Note

When you use the COUNT option in a GET statement, the

COUNT argument must be a positive even number. If an

odd number (or 0) appears in the COUNT, the error

?Illegal byte count for I/0 (ERR=31) is returned.

For a PUT operation with a nondefault buffer size (or a multiple of

1-56

System Structure and Disk Operations

the default), the software performs the same skipping and positioning
as with the GET statement. The software writes null bytes in the
skipped data. If you include the COUNT option in the PUT statement,
the software writes the specified number of bytes from the buffer and
writes null bytes for the rest of the buffer and for the skipped data.

Flexible Diskette Special Function: SPEC%

The SPEC% function performs special operations on flexible diskettes,
disks, magnetic tape (see Chapter 2), line printers (see Chapter 3),
terminals (see Chapter 4), and pseudo keyboards (see Chapter 4).

For flexible diskettes, the SPEC% function lets you:

o Find out the density (single or double) of the current
diskette

o Mount a new diskette and recompute the density

o Reformat an RX02 diskette for a desired density
Because the RX02 flexible diskette drive supports single- and
double-density diskettes, the SPEC% function is useful for programmed
diskette operations. For example, SPEC% allows you to mount a series
of single- and double-density diskettes without having to close and
reopen the device for each mount. Normally the driver computes
density once, during the initial open. 1If you insert a second
diskette that is incompatible with the initially computed density,
read or write operations fail.
SPEC% permits you to include an instruction in your program that
causes the driver to recompute the density. 1In addition, for RX02

flexible diskette drives, SPEC% lets you specify a density reformat
operation.

The SPEC% function for flexible diskettes has the format:
VALUE%=SPEC% (FUNCTION%, PARAMETER, CHANNEL%,18%)

where:
VALUE% depends on the function code you specify in FUNCTION%.

FUNCTION% is a function code that specifies the desired operation.
The codes are:

FUNCTION%=0% returns the density of the currently
mounted diskette in the form:

DENSITY%=VALUE% AND 255%.

1-57

System Structure and Disk Operations

If DENSITY%=1%, the diskette is
single-density; if DENSITY%=2%, the
diskette is double-density. Note that
PARAMETER must also be 0.

FUNCTION%=1% causes the diskette driver to recompute

"density. If the diskette has been changed
in the drive without closing and reopening
the I/0 channel, issue this code prior to
any I/0 operation on the diskette. This
function also returns the computed density
as described in FUNCTION%=0%. Note that
PARAMETER must be 0.

FUNCTION%=2% reformats the current diskette to the
density in PARAMETER. PARAMETER equals 1
for single-density and 2 for
double-density. Note that this operation
is allowed only on RX02 drives and that any
data on the diskette prior to the operation
is lost.

PARAMETER see the description of FUNCTION%.

CHANNELS% is the I/0 channel on which the operation is to be
performed.

18% is the handler index for flexible diskettes.

SPEC% can take up to 20 seconds to reformat the density of an RX02
diskette and cannot be interrupted with CTRL/C. 1If the operation is
interrupted by power failure or catastrophic error, the diskette will
contain both single- and double-density and cannot be used. To
recover, you must reformat the diskette.

The following errors are possible during a SPEC% operation:
Meaning ERR Value

?DEVICE HUNG OR WRITE LOCKED 14
A hardware error occurred. This can often be a
transient condition. Retry the operation.

?MISSING SPECIAL FEATURE 66
An attempt was made to reformat on an RX01l flexible
diskette drive. The use of SPEC% to reformat
diskette density is allowed only on RX(02 drives.

SPEC% is useful in flexible diskette programming to make sure that
sector opens are correctly handled. You can resolve the conflict
between 128-byte single-density buffer sizes and 256-byte
double-density buffer sizes by using the following procedure:

1-58

System Structure and Disk Operations

To field the buffer:

FIELD $channel number, 128%*DENSITY% AS BUFFER.RX02$%$
To write the buffer:

PUT #channel number, COUNT 128%*DENSITY%
DENSITY% is defined as:

DENSITY%=SPEC%(0%, 0, CHANNEL%, 18%) AND 255%

The Null Device - NL:

The null device exists as a debugging aid on all RSTS/E systems. It
provides a means for a program to check out all I/0 routines without
reference to an actual device. A read access for the null device
returns the error ?End of file on device (ERR=11) and a write access
simply returns control to your program.

You can use the null device to dynamically allocate buffer space in
memory. It has a default buffer size of 2 bytes, which is adequate
for performing alternate buffer I/O operations with data on another
channel. To specify a different buffer size, use the RECORDSIZE
option in the OPEN statement. The null device can use any even buffer
size. For example, the following statement allocates 132 bytes of
buffer space:

100 OPEN ’'NL:’ AS FILE 12%, RECORDSIZE 132%

Opening the null device is also a convenient way to set up a buffer
for message send/receive operations. Use the RECORDSIZE option in the
OPEN statement to specify the buffer size. See Chapter 8 for more
information on message send/receive operations.

The null device is shareable by all users on the system: no user can
assign it.

Chapter 2

Magnetic Tape

Magnetic tape is a compact, relatively inexpensive medium that can
provide large amounts of off-line data storage. One reel of magnetic
tape can store many files. In addition, through multivolume ANSI
processing of the PIP system program, you can store one or more large
files on several reels of tape.

Unlike disks, which can be accessed randomly or sequentially, magnetic
tape is a sequential access device. 1In most applications, a magnetic

tape file is read or written from beginning to end, and each record in
the file is processed in order.

Magnetic tape is used for backing up disks on many RSTS/E systems.

The RSTS/E BACKUP and SAVE/RESTORE programs (see the RSTS/E System
Manager’s Guide), the PIP program (see the RSTS/E Utilities Reference
Manual), and the DCL COPY command (see the RSTS/E System User’s Guide)
can all perform this function. 1In addition, the RMSBCK and RMSRST
utility programs (see the RMS-11 User’s Guide) can back up and restore
RMS-11 files between disk and magnetic tape.

Other uses for magnetic tape include journaling and data interchange.
Some applications track transactions as they are processed by
journaling each operation to a magnetic tape as well as to a disk.
Magnetic tape is also useful for transferring data between different
computer systems. Finally, you may want to use magnetic tape instead
of disk for applications that require infrequent processing
(particularly batch processing) and use large amounts of data.

Overview of Tape Operations

RSTS/E offers a variety of utility programs and software features for
processing magnetic tapes. The utility programs can fill most general
needs.

Magnetic Tape

This chapter discusses the software features, which provide extra
flexibility and control for special applications. These features
include:

0 MODE values for use in file-structured and
non-file-structured processing

o FILESIZE, CLUSTERSIZE, and POSITION values for ANSI tapes

o MAGTAPE and SPEC% functions

File-Structured and Non-File-Structured Processing

RSTS/E can process magnetic tape as either a file-structured or a
non-file-structured device. File-structured processing lets you take
advantage of built-in system file handling functions; thus, it is
easier to program than non-file-structured processing. On the other
hand, non-file-structured processing gives you more control over tape
operations. (For example, you may need to process a tape written in a
non-standard format by another system or recover a file from a
corrupted tape in non-file-structured mode.)

Table 2-1 summarizes the BASIC-PLUS statements used to access magnetic
tape on RSTS/E. These are the same statements used to access disks.
See the BASIC-PLUS Language Manual for complete descriptions of the
statements.

Table 2-1: Statements and Functions for Accessing Magnetic Tapes

R I I I I I T +
| | | Block I,/0 |

| | Stream ASCII | (File- or |

| Function | (File—-Structured) | Non-File-Structured) |

R I L I A R R +
| | I |

| Open | OPEN | OPEN |

I I I I

| Access Buffer | -- (FIELD |
I I I I

| Read | INPUT | GET |

| | INPUT LINE | |

I I | |

| Write [PRINT | PUT |

' I | I

i

| Special [-- | MAGTAPE, SPEC% |

| | ’ |

| Close | CLOSE | CLOSE ;

R R I R I +

Magnetic Tape

The KILL and NAME AS statements (see the BASIC-PLUS Language Manual)
apply only to disk and DECtape files; you cannot use them with
magnetic tape files.

RSTS/E provides several MODE values for use with the OPEN statement to
control file-structured and non-file-structured tape operations. The
MODE values differ for file-structured and non-file-structured
processing. The MAGTAPE and SPEC% functions, used mostly in
non-file-structured processing, give you still more control over
magnetic tape operations. In addition, the Special Magnetic Tape
Directory Lookup SYS call (SYS 15) is available to look up directories
on magnetic tape (see Chapter 7).

RSTS/E writes tape records of 512 bytes by default. Table 2-2 lists
standard system defaults for magnetic tape density and parity. Note
that all tape drives except for the TK25 use 9-track magnetic tape.
The Set System Defaults SYS call (SYS 34) changes the system tape
density default. See Chapter 7 for details.

Table 2-2: System Density Values for Magnetic Tape

| Tape \ |
| Drive | Density |

| 1 |
| | 800 bpi |
| TUl6 | 1600 bpi |
| | I
| ! I

{ I
| Tsll | 1600 bpi only
| |
| TU80 |

You can override the system defaults by using the MOUNT command. In
addition, you can override both system and assigned defaults in a
program by using the MODE option (in non-file-structured processing)
and the MAGTAPE and SPEC% functions (in both file-structured and
non-file-structured processing).

October 1985 2-3

Magnetic Tape

Magnetic Tape Labels

RSTS/E supports two types of magnetic tape file labels in
file-structured processing: ANSI (American National Standards
Institute) and DOS (Disk Operating System). These labels contain
information about data on the tape, but they have different formats.
The ANSI label has a more complex format and contains more information
than the DOS label. A specific tape must contain only one type of
label. "

Note

Where ANSI is used in RSTS/E documentation, it refers
to the RSTS/E implementation of American National
Standard X3.27-1978 - magnetic tape labels and file
structure for information exchange. RSTS/E implements
a subset of this standard.

In addition, RSTS/E uses U (undefined) record format,
which is not defined in ANSI standard X3.27-1978.

The system manager sets the default label format with the DCL SET
SYSTEM command or with the Set System Defaults SYS call (34). If you
want to use a different label, you can either select a label format
for your current job with the MOUNT command or specify a label in a
program by use of MODE values in the OPEN statement. The MOUNT
command overrides the system default; the MODE values override both
the system default and the job default.

Data and Label Handling in File-Structured Processing

File-structured magnetic tape processing involves two types of
operations:

o Data handling
o Label handling

Data handling, which is done by your program, is no different from
data handling on any other device: the operations you perform depend
on the I/0 method you use. In BASIC-PLUS, you can use either stream
(formatted) ASCII or block I/O. Stream ASCII I/O limits you to stream
ASCII records, but BASIC-PLUS takes care of record .blocking and
deblocking, buffer management, and ccnversion between ASCII and
numeric data types. Block I/O lets you read or write any type of data
record, but your program must do its own blocking and deblocking,
buffer management, and data conversicon. Note that you may be able to
use PIP instead of writing your own program (see the RSTS/E Utilities
Reference Manual). Or, you may be able to use the DCL COPY command
(see the RSTS/E System User’s Guide).

2-4

Magnetic Tape

Label handling, on the other hand, is done by the system. (Your
program needs to read and write magnetic tape labels only when you
process tapes in non-file-structured mode.) The system needs
information from you to write a tape label; you supply this
information when you open the file. The way you supply information
and the amount you supply depends on whether you are writing a DOS or
ANSI tape.

In general, the system requires no special information from your
program to write a DOS tape. You can use standard BASIC-PLUS
programming techniques (such as the RECORDSIZE option in the OPEN
statement to specify a buffer size other than the default). However,
when you write an ANSI tape, you need to supply some special
information, which you place in the CLUSTERSIZE and FILESIZE options
and the POSITION switch when you open the file. CLUSTERSIZE,
FILESIZE, and POSITION for ANSI tapes have different meanings than
they do for disk files. These parameters:

o Specify information about record format and length to be
written at certain positions in the tape label

0 Determine the I/0O buffer size

o Specify a section number for a multivolume file; that is, a
file too large to fit on one tape

See the section "Processing ANSI Magnetic Tape Files" for more
information.

Note that although the system writes the label based on information
you specify, it does not check this information when you write data
records to the tape. Instead, your program must ensure that the label
information and the data format agree.

Reading a magnetic tape also differs depending on whether it has DOS
or ANSI labels. When you open a DOS tape for input, the system
creates a 512-byte I/0O buffer unless you specify a different buffer
size in the RECORDSIZE option. However, when you open an ANSI tape
for input, the system determines the I/O buffer size from information
in the label. Do not use the RECORDSIZE option when opening an ANSI
tape.

The rest of this chapter describes magnetic tape operation in detail:
o File-structured processing
o Non-file-structured processing
o Multivolume ANSI processing

o MAGTAPE and SPEC% functions

Magnetic Tape

o Asynchronous I/0 processing
o Error Handling

o Programming Examples

Note that Appendix A of this manual describes DOS and ANSI label
formats and explains how RSTS/E initializes the two types of tapes.
This information is useful for reading a tape from another operating
system or writing a tape for use on another operating system.

The File-Structured Magnetic Tape OPEN FOR INPUT

To open a magnetic tape file for file-structured processing, specify
the device name and file name in the QPEN statement, For example:

100 OPEN "MTO:ABC" FOR INPUT AS FILE N%, MODE M%

The OPEN FOR INPUT statement searches for the specified file on a
designated tape unit. Use OPEN FOR INPUT when you want to read a
magnetic tape. Unlike disk operation, OPEN FOR INPUT on magnetic tape
pernmits read access only. An attempt to write to the file generates
the error ?Protection violation (ERR=10). 1If the system detects a
logical end-of-tape before finding a file, the error 2Can’t find file
or account (ERR=5) occurs.

In the previous example, the system associates tape unit 0 with the
channel designated by N% and searches for file ABC under the current
account according to the value of M% in the MODE specification. Note
that account numbers are ignored on ANSI-labeled tapes.

Table 2-3 shows the MODE values that you can use in an OPEN FOR INPUT
statement. The MODE value can be the sum of any combination of these
single values, as long as they do not represent conflicting
operations.

Magnetic Tape

Table 2-3: Magnetic Tape OPEN FOR INPUT MODE Values

Read file label record at current tape position.

Do not rewind tape when searching for specified file.

w
8]
)

|
|
|
|
Rewind tape before searching for specified file. |
|
I
|
|
i
|

64% Rewind tape upon executing a CLOSE.
16384% Search for a DOS-formatted file label.
24576% Search for an ANSI-formatted file label.
e mmm . T T T L +

If the system finds the file, it opens the file for read access only.
If you later execute a GET statement on channel N%, it makes a block
of the file available to the program in the channel’s buffer.

For ANSI-labeled tapes, the system reads the block length from the
header 2 label (HDR2) when it opens the file. The system creates the
buffer at the size given by the block length. However, if the block
length is odd, the system rounds the value down to make the buffer
size an even number of bytes. (To avoid loss of data when a magnetic
tape file is read, make sure the block length is an even value when
you write the file.)

Under DOS file-structured operations, a GET statement reads magnetic
tape records into a 512-byte buffer. However, in certain cases you
may need to process records larger than 512 bytes. Use the RECORDSIZE
option to allocate more buffer space than the default provides. The
form of the statement is:

100 OPEN "MTO:FIDO" FOR INPUT AS FILE N%, MODE M%, RECORDSIZE R%
where:

N% is the internal I/0 channel on which the file is open,

M% is the MODE value

R% 1is the desired record length. The system rounds R% down to an
even number if R% is odd.

This statement opens the file FIDO under the current account on tape
unit 0 for input and allocates R% bytes of buffer space for data
transfer operations.

Magnetic Tape

To open a file stored on a DOS file-structured magnetic tape under an
account other than the current account, supply the project-programmer
number in the OPEN statement. For example:

100 OPEN "[3,214]MTO:ABC" FOR INPUT AS FILE N%, MODE M%

In this example, the system associates tape unit 0 with the channel
designated by N% and searches for file ABC under account [3,214)
according to the value of M% in the MODE specification.

Searching for a Label on INPUT

Omitting the MODE specification or using a MODE 0% specification reads
the record at the current position of the tape. The system expects
the label format to be the system-wide default unless you changed the
format when the unit was allocated to the job with the MOUNT command.
If the label format differs or the tape is not properly positioned,
the system generates the error ?Bad directory for device (ERR=1). No
match causes the system to rewind the tape and check successive label
records until the label record for the desired file is found or the
logical end-of-tape is detected. The system does not rewind the tape
when the program executes a CLOSE statement on channel N%.

Rewinding the Tape: MODES 2%, 32%, 64%

As mentioned before, MODE 0% reads the tape from its current position.
If the file name specified in the OPEN statement does not match the
label record, the system automatically rewinds the tape to the first
file label record and begins reading labels file by file.

To override this automatic rewind feature, include MODE 2% in the OPEN
statement. In this case, the system reads the tape from its current
position and, if no match occurs, continues reading file label records
from that position forward until it either finds the file or detects
the logical end-of-tape. The system does not rewind the tape when it
performs a CLOSE operation.

MODE 32% rewinds the tape to the first label record before reading any
label. Once again, no match causes the system to check successive
label records until it finds the file or detects the logical
end-of-tape. The system does not rewind the tape when it performs the
CLOSE operation on channel N%.

Including MODE value 64% with any of the above modes rewinds the tape
when you issue a CLOSE statement on channel N%.

Magnetic Tape

Example of OPEN FOR INPUT Statement

You can use the MODE values in any combination as long as they do not
represent conflicting operations. (For example, MODE 16384%+24576%
causes illogical results because DOS and ANSI formats are mutually
exclusive.)

Consider the following:
10 OPEN "MT1:NATHAN" FOR INPUT AS FILE 3%, MODE (32%+64%+24576%)

This statement opens the file MARKIE on tape unit 1 and associates it
with channel 3%. You can also specify MODE 24772%, the sum of the
three modes.

When the system executes this statement, it rewinds the tape to the
first label record (MODE 32%) and begins to read successive file label
records until it either finds the file or detects the logical
end-of-tape. reached. The search is successful only if the system
finds the file label MARKIE, written in ANSI format (MODE 24576%).

When the search is successful, the file MARKIE is available for input
by means of GET, INPUT, or INPUT LINE statements. Remember, since the
file is open for input only, attempting to execute PUT or PRINT
statements results in the error ?Protection violation (ERR=10).

The next CLOSE statement rewinds the tape (MODE 64%).

Reading Data

Three types of statements read magnetic tape data: INPUT, INPUT LINE,
and GET statements.

If a tape contains stream ASCII data, you can read it with INPUT or
INPUT LINE statements. These statements work the same way they do for
disks.

To read other types of data, use the GET statement. GET reads a
single block of data into the I/O0 buffer from a magnetic tape file
that is open for input. Do not use both GET and INPUT statements to
read the same file.

The GET statement for magnetic tape has the form:

100 GET #N%
where N% is the channel on which the device is open. This statement
reads the next sequential block in the file. For DOS format tapes,

the buffer is 512 bytes long unless you specify a larger buffer with
the RECORDSIZE option when you open the file. For ANSI-labeled tapes,

2-9

Magnetic Tape

the buffer size is the block length read from the header 2 label
(HDR2).

Magnetic tape hardware allows only sequential access. Therefore, you
cannot use the RECORD option in the GET statement. After the GET, the
number of bytes read is available in the RECOUNT variable. To
associate string variables with all or part of the data in the I/0
buffer, use a FIELD statement, (see the BASIC-PLUS Language Manual).
Attempting to read beyond the end of the file results in the error
2End of file on device (ERR=1l1l).

If the system reads a block that is larger than the buffer, it
transfers the amount of data that fits, skips the excess data, and
returns the error ?Magtape record length error (ERR=40). The next GET
statement then reads the next block.

The GET statement does not perform any data conversions or record
blocking and deblocking. Your program must interpret the data
retrieved.

The File-Structured Magnetic Tape OPEN FOR OUTPUT

The OPEN FOR OUTPUT statement searches for a specified file on a
designated tape unit. Use OPEN FOR OUTPUT when you want to write a
magnetic tape. (Unlike disk operations, OPEN FOR OUTPUT on magnetic
tape allows write access only.) For example:

10 OPEN "MTO:ABC" FOR OUTPUT AS FILE N%, MODE M%

The system associates tape unit 0 with the internal channel designated
by N% and searches for the file ABC in the current account according
to the value M% in the MODE specification. Note that the system
ignores account numbers on ANSI-labeled tapes.

If it does not find the file, the system writes a magnetic tape label
record for the file at the logical end-of-tape and leaves the unit
open with write access only. A PUT or PRINT statement subsequently
executed on channel N% writes the channel’s buffer to the tape. Since
the file is open solely for output, a GET, INPUT, or INPUT LINE
statement executed on channel N% generates the error ?Protection
violation (ERR=10).

The search is successful when the system locates the specified file.
The value of M% in the MODE specification determines how the system
searches for and acts on the file when it is found.

Table 2-4 shows the MODE values that can be used in an OPEN FOR OUTPUT
statement. The MODE value can be the sum of any combination of these
single values, as long as they do not represent conflicting
operations.

Magnetic Tape

Table 2-4: Magnetic Tape OPEN FOR OUTPUT MODE Values

Read file label record at current tape position.

Do not rewind tape when system searches for the file.

| | |
| | l
| | |
| | |
| | I
| 16% | Write over existing file. (Destroy any subsequent files |
| | currently on the tape.) |
I | |
| 32% | Rewind tape before searching for the file. |
| 1 |
64%	Rewind tape upon executing the CLOSE statement.
128%	Open for append.
1	
512%	Write new file label record without searching.
l	
16384%	Search for a DOS-formatted file label.
	I
24576%	Search for an ANSI-formatted file label.
R I I L I I I +

Searching for a Label on OUTPUT

Omitting the MODE specification or using a MODE 0% specification reads
the tape at its current position. The system expects the label format
to be the system default unless you changed the format when the unit
was allocated to the job using the MOUNT command.

If the label format differs or the tape is not correctly positioned,
the system generates the error ?Bad directory for device (ERR=1l).

If the system finds a file label record, and its file name (and
account for DOS tapes) matches that of the file specified in the OPEN
statement, the system generates the error ?Name or account now exists
(ERR=16) .

No match causes the system to rewind the tape and to check successive
file label records until it either finds a match or detects the
logical end-of-tape. If the system detects the logical end-of-tape,
the search is unsuccessful. As a result, the system backspaces over
the logical end-of-tape, writes a file label record for the file, and
allows write access to the file. The system does not rewind the tape
when the program executes a CLOSE statement on channel N%.

Magnetic Tape

Writing a Label: MODES 16%, 512%

As mentioned before, a search is successful when the system finds the
specified file on the magnetic’ tape. The error ?Name or account now
exists occurs when this happens. This is a precaution to prevent you
from unintentionally writing a file at this point. (Doing so will
write over the current file and destroy all later files on the tape.)
Include a value of 16% in the MODE specification to suppress this
error message and cause the system to write over an existing file on
magnetic tape.

Note

Writing over a file causes any files after the
overwritten file to be lost.

When 16% appears alone in the MODE specification, the system first
reads the tape at its current position. If the system finds a file
label record and the file specification in the label record matches
the file specification in the OPEN FOR OUTPUT statement, it backspaces
over the file label record, writes a new label record over the
existing label, and allows the program write access to the file. If
the logical end-of-tape is at the current position, the system
backspaces one record, writes a new file label record, and allows
write access to the file. No match causes the system to rewind the
tape and to check label records until it either locates the file or
detects the logical end-of-tape. Detecting the logical end-of-tape
before locating the file causes the system to backspace one record,
write a tape label for the file, and allow write access to the file.

When you include 512% in the value for the MODE option, the system
writes a file label record at the current tape position. No label
record reading occurs. The system simply writes a new file label
record, destroying all subsequent files on the tape. Only the value
32%, which causes the tape to rewind (see the section "Rewinding the
Tape"), takes precedence over 512%. Therefore, when you use 512% with
any combination of values, not including 32%, the system writes a file
record label at the current tape position.

Note

Any MODE value that includes 512% causes the files
after an overwritten file to be lost. The overwritten
file is always the one at which the tape is currently
positioned, except when you also include 32% in the
MODE value.

Magnetic Tape

Extending a File: MODE 128%

When you include 128% in the value for the MODE option, the system
attempts to open an existing file and position the tape so you can
append information to it. The file must already exist; if it does not
exist, the error ?Can’t find file or account (ERR=5) occurs. The file
must also be the last file on the tape before the logical end-of-tape.
If it is not the last file on the tape, the system cannot locate the
trailing EOF tape marks and the error ?Protection violation (ERR=10)
occurs. As for all other MODE values, you can use 128% alone or with
any combination of values.

DOS and ANSI Format Labels: MODES 16384%, 24576%

By default, the system assumes that label records on a tape (either
DOS or ANSI) are in the system default format or the format you select
for your job with the MOUNT command. The MODE values 16384% and
24576% override any current defaults for labeling.

MODE 16384% in the OPEN FOR OUTPUT statement causes the system to
search for a specified magnetic tape file. The search succeeds only
if the file is written in DOS format (that is, preceded by a DOS
label).

MODE 24576% in the OPEN FOR OQUTPUT statement causes the system to
search for a specified magnetic tape file. 1In this case, the search
succeeds only if the file label is written in ANSI format.

If the tape format (either ANSI or DOS) differs from that used in the
search, the system generates the error ?Bad directory for device (ERR=
1). 1If the system finds the file, it returns the error ?Name or
account now exists (ERR=16).

The system reads the tape from its current position. 1If it does not
find the file, the system rewinds the tape and reads file labels one
by one until it finds the correct file. 1If the system detects the
logical end-of-tape, it automatically backspaces over the logical
end-of-tape, writes a DOS or ANSI label record for the file, and
allows write access to the file.

Processing DOS Magnetic Tape Files

If the tape being processed is in DOS format, use the RECORDSIZE
option in the OPEN FOR OUTPUT statement to designate the block length.
Omitting the RECORDSIZE option from the OPEN FOR OUTPUT statement is
the same as specifying RECORDSIZE 0. BASIC-PLUS creates a 512-byte
buffer, the default for DOS magnetic tape processing. PUT statements
write blocks on tape equal to the buffer size (512 bytes).

2-13

Magnetic Tape

To write blocks larger than 512 bytes, specify an even value equal to
or greater than 512 in the RECORDSIZE option. 1If the value is odd,
BASIC-PLUS rounds the buffer size down to make it even.

To write blocks smaller than 512 bytes, create a buffer smaller than
512 bytes. Specify 32767%+1% plus an even value equal to or greater
than 14 in the RECORDSIZE option. The minimum block for DOS format

tapes is 14 bytes. For example:

100 OPEN 'MT1.ABC’ FOR OUTPUT AS FILE 1%, RECORDSIZE 32767%+1%+130%

In this example, the 32767%+1% value sets the sign bit and tells
BASIC-PLUS to use the value specified (130 in this case) instead of
the default value of 512. 1If the sign bit is not set, the system
creates a 512-byte buffer. If the value given is odd (and the sign
bit is set), BASIC-PLUS rounds the buffer size down to make it even.

PUT statements write blocks on tape equal to the buffer size. You can
use the COUNT option to write tape blocks smaller than the buffer size
but not less than the minimum of 14 bytes.

Processing ANSI Magnetic Tape Files

If the system is processing a tape with ANSI labels, use the
CLUSTERSIZE and FILESIZE options in the OPEN FOR OUTPUT statement to
designate the record format and length, file characteristics, and
block length. Use the /POSITION switch to specify a section number of
a multivolume file.

The system uses these values to create the corresponding fields in the
file label and to set the I/0O buffer size. The FILESIZE and
CLUSTERSIZE options and the /POSITION switch have effect only when the
tape being processed has ANSI labels. The general form of the
statement with options is:

10 OPEN 'MTO0:ABC/PO[SITION]:n’ FOR OUTPUT AS FILE N%,
CLUSTERSIZE Q%, FILESIZE P%, MODE 24576% + M%

You must specify the options in the exact order shown; otherwise, the
system generates the error ?Modifier error. To apply the system
default for ‘any option, omit that specification from its place in the
statement.

In the previous example, the system associates tape unit 0 with the
channel designated by N%. The system searches for file ABC according
to the value specified by M% in the MCDE option. The value 24576% in
the MODE option ensures that ANSI label processing is done because any
system or device defaults are overridden by the value in the MODE
option. For the search to succeed, the file name ABC must match the
file identifier in the file label on the tape.

2-14

Magnetic Tape

The value n in the /POSITION switch designates the section number of a
multivolume file. If you do not specify the /POSITION switch, the
default section number is 1. See the following section "Processing
Multivolume ANSI Magnetic Tape Files."

The value Q% in the CLUSTERSIZE option designates the record length,
record format, and characteristics of the file created. The value
given causes the system to write the appropriate data in the label
fields of the header and end-of-file records on tape.

Table 2-5 shows the label data for values of Q%. The value specified
with CLUSTERSIZE is the sum of values chosen from Table 2-5.

Table 2-5: ANSI Magnetic Tape CLUSTERSIZE Values

R R R R LR +
1 | CLUSTERSIZE | |
| Label Field Name | value | Label Result |
R R R I IR +
Record Format 0% U = Undefined*

16384% F = Fixed length

32767%+1% D = Variable length

-16384% S = Spanned**

Between 0%
and 4095%

Record Length
(in bytes)

1 |

| I

I |

| |

| |

| I

| For U, always 0% |

| For F, value gives fixed record |

| length. |

| For D, value gives maximum record |

[length. |

| For S, value is unused.** |

| |

0% | |
| I
l |
1 |
| |
| l
I

4096%
8192%

System Dependent
(File
Characteristics)

M = carriage control embedded

A = FORTRAN carriage control.
(space) = Implied carriage
control (when printed, line feed
precedes and carriage return
follows each record).

| * RSTS/E undefined record format tapes cannot be processed |
| directly by most other operating systems. |
| ** RSTS/E does not support ANSI format S records. |

If you omit the CLUSTERSIZE option from the OPEN FOR OUTPUT statement,
the system applies CLUSTERSIZE 0%. The system creates a file with
undefined (U) record format and embedded carriage control with record
length 0%. (Use the default CLUSTERSIZE if you plan to use PRINT to
write a stream ASCII tape.)

Magnetic Tape

Note

U format records do not conform to ANSI standard
X3.27-1978. Non-RSTS/E operating systems may not be
able to read tapes with undefined format.

The record length that the CLUSTERSIZE option specifies is the value
that the system writes in character positions 11 through 15 of the
header 2 (HDR2) label record. For fixed-length records, this value
should equal the number of bytes you use in the FIELD statement to
subdivide the I,/0 buffer. The subdivisions created to load records
into the I/O buffer then equal the record length on the tape label.
For variable-length records, this value should be the maximum length
of a record.

The value P% in the FILESIZE option designates the block length for
the file. The system writes this value in character positions 6
through 10 of the header 2 (HDR2) label when it opens the file. 1If
you omit the FILESIZE option (the same as specifying FILESIZE 0%) from
the OPEN FOR OUTPUT statement, the system sets the block length to 512
bytes. 1In the FILESIZE option, you must specify a value between 18
(the minimum allowed on ANSI-labeled tape) and 4095. Because a record
cannot span blocks, the FILESIZE value for fixed-length records must
be a multiple of the CLUSTERSIZE value, and greater than the
CLUSTERSIZE value for variable-length records.

In ANSI label processing, the system uses the block length from the
HDR2 label to create the magnetic tape I/O buffer. This action allows
the program to write blocks of data on tape equal in size to the I/0
buffer. The block length in the FILESIZE option should correspond to
the total size of the 1,0 buffer defined by the FIELD statement.

You can use the FILESIZE option in ANSI label processing to create an
1/0 buffer other than 512 bytes. The specified block length is
written in the HDR2 label. The block length on the tape should be an
even number. If the block length is odd, the system rounds it down
one byte to make the I/0 buffer an even number of bytes.

Note that the action of the FILESIZE option in ANSI label processing
is similar to the action of the RECORDSIZE option in DOS label
processing. However, if you use the RECORDSIZE option in ANSI label
processing, and the value you specify is larger than the block length
in the HDR2 label, the system establishes the I/0 buffer at the size
given in the RECORDSIZE option. No advantage is gained from using a
buffer size larger than the block length. Thus, DIGITAL recommends
that you do not use the RECORDSIZE option in ANSI label processing.

Data to be written to ANSI-labeled tape is not automatically converted
by RSTS/E to the appropriate ANSI record format. Your program must
format the data in the I/O buffer before writing the buffer to the
tape. In addition, data read from an ANSI-labeled tape must be

2-16

Magnetic Tape

interpreted in the appropriate ANSI record format by the program. It
is not in the scope of this manual to fully describe ANSI record
format; refer to ANSI standard X3.27 - 1978. However, the PIP utility
can create and read ANSI format records (see the RSTS/E Utilities
Reference Manual).

Processing Multivolume ANSI Magnetic Tape Files

If you are processing large ANSI magnetic tape files, you can use the
/POSITION switch in the file specification to label files that reside
on more than one volume. The general form of the statement is:

10 OPEN "MTO:ABC/POSITION:n" [FOR OUTPUT/INPUT] AS FILE N%, MODE M%

where n indicates the volume number of the file. Legal values for n
are:

OPEN FOR OUTPUT
0 Writes volume number 1 mark on the file
1-9999 Writes the volume number specified on the file.

If you specify a value other than 0 or 1, the file must be
the first data on the tape to ensure sequential processing.

OPEN FOR INPUT
0 Searches for the first file that matches the filename.ext

1-9999 sSearches for the first file that matches both the file name,
file type, and the volume number specified. 1If the file is
found but the volume numbers do not match, the error ?Pack
IDs don’'t match (ERR=20) is returned.

When you are at the the end of a tape and you know that there is more
data for another tape, issue MAGTAPE function 10 (End-of-Volume Mark
on CLOSE) before the CLOSE statement. When you issue the CLOSE
statement, this MAGTAPE function writes an ANSI EOV label on the tape
instead of the EOF label. ©See the section "The MAGTAPE Function" for
more information on writing an EOV mark.

Multivolume magnetic tape processing works only on ANSI-labeled files.

Magnetic Tape

Example of OPEN FOR OUTPUT Statement

You can use the MODE values available with OPEN FOR OUTPUT in any
combination as long as they do not specify conflicting operations.
For example:

10 OPEN "MTO:LLL317" FOR OUTPUT AS FILE 2%, MODE 16466%

This statement opens the file LLL317 on tape unit 0 and associates it
with channel 2%. MODE 16466% is the sum of MODE 2% + 16% + 64% +
16384%.

When the system executes line 10, it determines whether the current
label record is in DOS format (MODE 16384%). 1If the file is not
found, the system does not rewind the tape (MODE 2%); instead it
continues to search for labels in DOS format from the next record on.
If the correct label record is found (that is, LLL317 exists), the
system backspaces one record and writes the new label over the
existing label (MODE 16%). 1If the logical end-of-tape is found first,
the system backspaces one EOF record and writes the new label,
allowing write access to the new file.

Once the new label record is written, the file LLL317 is available for
output. Since the file is open for output only, attempting to execute
GET or INPUT statements results in the error ?Protection violation
(ERR=10). _ ,

The next CLOSE statement rewinds the tape (MODE 64%).

Writing Data and Processing End-of-Tape

You can write data to a magnetic tape file with either PUT or PRINT
statements. Do not use both statements to write the same file.

The PUT statement writes the contents of the I,/0 buffer for the
specified I/0 channel to the next sequential record of the file. The
general form of the statement is:

100 PUT #N%

where N% specifies the internal channel on which the file is open.
PUT writes a single record to a magnetic tape file. .

The PRINT statement writes stream ASCII data to a magnetic tape file.
Use PRINT only if you plan to use the tape on a RSTS/E system. Other
operating systems may not be able to read BASIC-PLUS stream ASCII
data. '

Magnetic Tape

If RSTS/E finds the physical end-of-tape marker while writing to tape
using a PUT statement, the system writes the entire record and returns
the error ?No room for user on device (ERR=4).

However, if RSTS/E finds the physical end-of-tape marker while writing
to tape using a PRINT statement, the system may not write the last
item printed. The system returns the error ?No room for user on
device (ERR=4).

The error condition does not harm the data. GET statements (when the
file is later opened for input) access data at and beyond the marker
without error. 1If you see this error, use one of these recovery
procedures:

0 Close the file as soon as the error occurs, and then create
another file on another tape for the remainder of the data.

o If the tape is ANSI format and you want to use multivolume
processing, follow these steps:

1. 1Issue the SPEC% or MAGTAPE function to write an
end-of-volume mark on the tape.

2. Close the tape.

3. Open the next volume of the file as the first file on
another tape. Use the same name, but include the
/POSITION switch to specify the next higher section
number of the file.

4. Continue writing the file on the next volume. If the
error ?No room for user on device (ERR=4) occurs again,
go to step 1.

o If the file is DOS format or if the file is ANSI format and
you do not want to use multivolume ANSI processing, include a
subroutine that writes a logical end-of-tape mark at the end
of the previous file in the program. You can then write the
file that generated the error condition to another tape.
Follow these steps:

1. Backspace with the MAGTAPE function using the maximum
parameter 32767% (see the section "Backspace Function").
Repeat this procedure until the status function (see the
section "Tape Status Function") indicates the tape is at
beginning-of-tape (BOT) or that it detects a tape mark
(end-o0f-file [EOF]).

Magnetic Tape

2. If no error occurs during the backspace, check the tape
status function (see the section "Tape! Status Function")
to see whether the tape is at BOT or EOF. If any error
occurs, the data may be corrupt.

3. 1If the tape is at BOT, the file will not fit on the tape.
Write three tape marks (see the section "Write Tape Mark
Function") to zero the tape, then try a longer tape.
Finding BOT should occur only on DOS tapes. ANSI tape
files contain a tape mark between the label records;
thus, the system should find a tape mark before finding
BOT. '

4. If the tape is at a tape mark and is in DOS format, write
three tape marks. On an ANSI-labeled tape, backspace to
the next tape mark, and then write three tape marks.

The File-Structured Magnetic Tape OPEN

The OPEN statement performs an OPEN FOR INPUT operation for a
designated file on a specific tape unit. For example:

10 OPEN "MTO:ABC" AS FILE N%, MODE M%

The system associates tape unit 0 with the internal ichannel designated
by N% and searches for the file ABC as if you specify an OPEN FOR
INPUT statement with M% in the MODE specification. An OPEN statement
without a MODE specification is treated the same as MODE 0%. If the
OPEN FOR INPUT operation succeeds, the program has read access to the
file on the channel’s buffer. If the system cannot open the file for
input, it performs an OPEN FOR OUTPUT operation using the MODE M%
specification. '

Use OPEN FOR INPUT or OPEN FOR OUTPUT instead of OPEN with magnetic
tape. OPEN FOR INPUT and OPEN FOR OUTPUT allow the system to
immediately determine which operation is needed.

The File-Structured Magnetic Tape CLOSE

The CLOSE statement terminates processing of a magnetic tape file. If
the file is open for input, the system skips to EOF or EOV (if it is
not already there) and frees.the buffer space for other use within the
program. If the file is open for output and the file label is in ANSI
format, the system writes a trailer label group (see Appendix A). The
system writes three EOF records to mark the logical iend-of-tape,
regardless of the file label format. It then backspaces the tape over

2-20

Magnetic Tape

two of the EOF records to position the tape for later output and frees
the buffer space for other use within the program.

If you issue the Write EOV Mark on CLOSE MAGTAPE function (code 10)
prior to the CLOSE, the system writes EOV labels instead of EOF
labels.

In addition, the system rewinds the tape if you include the value 64%
in the MODE specification when you open the tape. Otherwise, the
system does not rewind the tape.

The Non-File-Structured Magnetic Tape OPEN

In non-file-structured processing, the system does no label
processing. Essentially, the system passes all data directly between
the magnetic tape and the user program. You can read or write tapes
of any format with non-file-structured magnetic tape operations, as
long as the program is set up to handle the actual tape format
correctly. You can only write records of 14 bytes or longer.

However, other operating systems may not be able to process records of
less than 18 bytes, which is the minimum record length allowed by ANSI
standard X3.27-1978. Attempting to write a shorter record results in
the error ?Illegal byte count for I/O (ERR=31).

To indicate non-file-structured processing, specify only the tape unit
in the OPEN statement. Do not include a file name. There are three
types of OPEN statements. The first two are:

100 OPEN "MTO:" FOR INPUT AS FILE 1%

100 OPEN "MTO:" AS FILE 1%
The OPEN FOR INPUT and simple OPEN statements are equivalent. No tape
movement occurs; the system permits both reading and writing of
records.
The third form of the OPEN statement is slightly different:

100 OPEN "MTO:" FOR OUTPUT AS FILE 1%
In this example, the OPEN FOR OUTPUT statement permits writing only.

The next section discusses this method of opening a tape for writing
and the actions that occur on CLOSE.

Magnetic Tape

The Non-File-Structured Magnetic Tape CLOSE

CLOSE has no special action on non-file-structured tapes unless you
used an OPEN FOR OUTPUT statement. On a magnetic tape that is open
for output, the CLOSE statement causes three trailing tape marks to be
written, followed by backspacing over two of these tape marks, which
positions the tape correctly for later output operations.

In any case, if the tape is open for non-file- structured processing,
it is not rewound on CLOSE.

The MODE Specification in Non-File-Structured Processing

The MODE specification in non-file-structured magnetic tape processing.
can be used with some 9-track devices to indicate parity. For 800 bpi
tape density, the standard parity is odd. DIGITAL does not recommend
using the MODE specification to specify even parity. DIGITAL
recommends the use of odd parity. Even parity, although available,
cannot be used to write binary data. 1In addition, few other operating
systems (or tape drives) support the use of even parity.

For 1600 bpi tape densities, parity is odd and nons%lectable. The
system ignores any attempt to specify even parity in the MODE
specification.

See Table 2-2 for information on the density of 9-track devices.

MODE in the OPEN statement is evaluated by the following algorithm:
D+P+8

where:
D (density) is:

12 = 800 BPI
256 = 1600 BPI

P (parity) is:

odd parity

0
1 even parity

S (stay) is:

o
I

MODE value does not stay after CLOSE

8192 MODE value stays after CLOSE

Magnetic Tape

If you do not specify a MODE value in the OPEN statement, the system
processes the tape using the system density default and odd parity.

If you add 8192% to the MODE value, the associated parity and density
settings remain in effect for the job if the tape unit was allocated
to the job, even after the channel has been closed.

To allow read and write access to a tape, use the OPEN or OPEN FOR
INPUT statement. For example:

100 OPEN "MTO:" AS FILE 1%, MODE 12%
100 OPEN "MTO:" FOR INPUT AS FILE 1%, MODE 12%

Either statement makes the tape on the 9-track drive unit 0 available
for execution of GET and PUT statements on channel 1%. The system
accesses tape with a density of 800 bpi and odd parity. The system
does not perform tape positioning or status checking. You must
perform such operations using the MAGTAPE function described in the
next section.

To allow only write access to a tape, use the OPEN FOR OUTPUT
statement. For example:

OPEN "MTl1l:" FOR OUTPUT AS FILE 1%, MODE 12%

If the unit is write-locked (that is, the write-enable ring on the
reel is removed), the system generates the error ?Device hung or write
locked (ERR=14) and does not open the device. Otherwise, the
statement makes the tape on unit 1 available for execution of PUT
statements on channel 1%. Since the device is open solely for write
access, an attempt to execute a GET statement on the channel causes
the error ?Protection violation (ERR=10). The system writes records
in odd parity at a density of 800 bpi. Your program must check the
status of the device and control the device by use of the MAGTAPE
function described in the next section.

To read and write records larger than 512 bytes, include the
RECORDSIZE option in the OPEN statement. For example:

100 OPEN "MTO:" AS FILE 1%, RECORDSIZE 1000%, MODE 12%

This statement associates the tape on unit 0 with channel 1%. The
RECORDSIZE option creates a buffer of 1000 bytes. If insufficient
memory is available, you see the error ?Maximum memory exceeded. You
must then either reduce the size of the program or increase the
maximum size to which the job can grow. The buffer length must be an
even number greater than 512. If the number given is odd, the system
rounds it down one byte to make it even. If the number is less than
512, the system uses the default buffer length of 512.

Magnetic Tape

Subsequent GET and PUT operations on channel 1% read and write records
1000 bytes long. Attempting to read a record longer than the buffer
generates the error ?Magtape record length (ERR=40). The RECOUNT
variable contains the number of bytes read.

To write records smaller than the buffer size, open the device
normally and specify the COUNT option in the PUT statement. For
example: ' ,

205 PUT #1%, COUNT 76%

This statement writes a 76-byte record. If you do not use COUNT, PUT
writes an entire buffer, regardless of whether the buffer contains
meaningful data. A record must be at least 14 bytes (18 bytes to
conform to the ANSI standard), and no larger than the I/O buffer.

If a record smaller than the buffer size is read, the BASIC-PLUS
RECOUNT variable contains the number of bytes read. Every input

operation on any channel (including channel 0) sets RECOUNT. Thus,
you should test or save RECOUNT immediately after each GET statement.

The MAGTAPE Function
The MAGTAPE function gives a program control over all magnetic tape
operations. You can use MAGTAPE in either file-structured or
non-file-structured processing, although it is mainly used in
non-file-structured processing.
The general form of the MAGTAPE function is:

I% = MAGTAPE (F%,P%,U%)

where:

F

oe

is the function code (1 to 12).

g
o

is an integer parameter.

is the internal channel number on which the selected tape is
open.

c
oe

—
o°

is the value returned by the function.

F% determines the effect of the MAGTAPE function. The following
sections describe these functions, beginning with function code 1. In
all examples in these sections, assume that tape unit 1 is open on
channel 2.

2-24 October 1985

Magnetic Tape

Table 2-6 summarizes the MAGTAPE function codes and includes the
designations IMMEDIATE and WAIT. IMMEDIATE means that the monitor
starts the action and returns control to your program immediately;
WAIT means that the monitor returns control to your program only after
the operation is complete.

Table 2-6: MAGTAPE Function Summary

I I Lk I Fom e I I I +
| | | | Value | Wait or |
! Action |Code| Parameter | Returned | Immediate |
R R E TSI I I T I +
I I | | | |
| Rewind and offline | 1 |Unused | 0 | Immediate |
I I | | I |
Write tape mark	2	Unused	0 [Wait	
			I	
Rewind	3	Unused	0	Immediate
		I		
Skip record	4	Records to	Records not	[Wait
		skip	skipped	
		I	I	
Backspace over record	5	Records to	Records not	Wait
I		backspace	backspaced	
I				
Set density and parity	6	D+P+S	0	Immediate
I I	I I			
Tape status function	7	Unused	Status [Immediate	
I	I	I		
File characteristics	8	Unused [File	Immediate	
			characteristics	I
			I	
Rewind on CLOSE	9	Unused	0 [Immediate	
I		!	I	
End-of-volume (EOV)	10	Unused	0	Immediate
labels on CLOSE				
I			I	
Error condition	11	Unused	0	Wait I
acknowledged	I i			
(only meaningful for				
asynchronous I/0)	[
I	I I			
Extended	12	Density to	Actual Density	Immediate
set density I	set/check	set/checked		
I Lk IR R I I R I +

October 1985 2-25

Magnetic Tape

Off-line (Rewind and Off-line) Function

Function code =1
Parameter = unused
Value returned = 0

The OFF-LINE function causes the specified magnetic tape to be rewound
and set to OFF-LINE. For example:

200 I% = MAGTAPE(1%,0%,2%)

This statement rewinds and sets the magnetic tape open on internal
channel 2 to OFF-LINE. '

Write Tape Mark Function

Function code = 2
Parameter unused
Value returned 0

The Write Tape Mark function writes one tape mark record at the
current position of the magnetic tape. For example:

200 1% = MAGTAPE(2%,0%,2%)

This statement writes a tape mark on the magnetic tape that is open on
internal channel 2.

Rewind Function

Function code = 3
Parameter = unused
Value returned = 0

The Rewind function rewinds the selected magnetic tape. For example:
200 1% = MAGTAPE(3%,0%,2%)

This statement rewinds the magnetic tape open on internal channel 2.
(This function does not cause the tape to be set to OFF-LINE.)

Magnetic Tape

Skip Record Function

4

number of records to skip (1 to 32767)

number of records not skipped (0 unless the system
finds a tape mark)

Function code
Parameter
Value returned

The Skip Record function advances the tape. The tape continues to
advance until either the specified number of records is skipped, in
which case the value returned by the function is 0, or a tape mark is
encountered, in which case the value returned is the specified number
of records to skip minus the number actually skipped. (The system
counts the tape mark as a record skipped.) For example, to skip from
the current tape position to just past the next tape mark, use the
function:

200 1% = MAGTAPE(4%,32767%,2%)

This statement assumes there are fewer than 32767 records before the
next tape mark. 1In the section, "Tape Status Function," a more
complex example using the MAGTAPE function shows how to skip an entire
file regardless of the number of records.

Backspace Function

Function code =5

Parameter number of records to backspace (1 to 32767)

Value returned numnber of records not backspaced (0 unless the
system finds a tape mark or BOT)

The Backspace function is similar to the Skip function, except that
tape motion is in the opposite direction. The beginning-of-tape (BOT
or Load Point) as well as tape marks can cause premature termination
of the Backspace operation, in which case the value returned is the
specified number of records to backspace minus the number actually
backspaced. (The system counts the tape mark as a record actually
backspaced.) The BOT is neither skipped nor counted as a skipped
record. For example:

200 I% = MAGTAPE(5%,1%,2%)

This statement backspaces one record on the magnetic tape opened on
internal channel 2, unless the tape was already at BOT.

Magnetic Tape
Set Density and Parity Function

Note

This function does not support the TK25, or TK50
magnetic tape drives. It is provided only for
compatibility with existing software. DIGITAL
recommends that the Extended Set Density Function
(code 12) be used in future program development.

Function code = 6
Parameter = D+P+S
Value returned = 0
where:
D (density) is:
12 = 800 bpi
256 = 1600 bpi

P (parity) is:

0 = odd parity
1l = even parity (not recommended; see the section "The
MODE Specification in Non-File-Structured Processing")

S (stay) is:

0 = MODE value does not stay after CLOSE
8192 = MODE value stays after CLOSE

A tape drive is set to the system default for density and odd parity
unless you change the default when you allocate the unit (with a MOUNT
command) or when you open the unit. If the tape drive has more than
one density and/or parity option available, this function changes the
density and/or parity according to the value given as the parameter.

See Table 2-2 for information about 9-track tape drive densities, and
the section "The MODE Specification in Non-File-Structured Processing"
for information on parity settings.

The system interprets the parameter exactly as it dées the MODE value
in a non-file-structured OPEN statement. For example:

10 OPEN "MMO:" AS FILE 2%
20 I% = MAGTAPE(6%, 256%, 2%)
These statements set the density and parity of the 9-track tape drive

open on channel 2 to 1600 bpi, odd parity. The density and parity

2-28 October 1985

Magnetic Tape

that you specify in the parameter are in effect until channel 2 is
closed. The system sets I% to 0 to indicate successful completion.
If you execute this function on a tape open in file-structured mode,
the system ignores the request and returns the same value as the one
passed. '

If the unit is allocated, adding 8192% to the parameter value (making
it 8192%+256%) keeps the new density/parity setting in effect even
after the associated channel is closed. The next OPEN statement
without a MODE option, associating any channel number with tape unit
0, automatically opens it with that new density/parity setting. A
DISMOUNT command for a previously allocated unit returns the
density/parity setting for the tape unit to the system default value.
Specifying another parameter value also changes the density and parity
setting. The setting remains if ownership of the unit is passed to
another job.

The following immediate mode routine sets tape unit 2 to 800 bpi, odd
parity, using DOS labels. 1In this example, once channel 3 is closed,
the new density/parity setting is now in effect and remains in effect
until a DISMOUNT operation-is executed on tape unit 2.

ASSIGN MM2:.DOS

OPEN "MM2:" AS FILE 3%

I% = MAGTAPE(6%, 8192%+12%, 3%)
CLOSE 3%

Tape Status Function

Function code = 7
Parameter = unused
Value returned = status

The Tape Status function returns the status of the specified magnetic
tape as a 16-bit integer, with certain bits set, depending on the
current status.

Table 2-7 shows the status word format.

Magnetic Tape

Table 2-7: Magnetic Tape Status Word

+-=----- L I A i R T B B A A A
| Bit | Test | Meaning

+------- I i LI I IR I i T R I N NI
| | |

; 15 |JI% < 0% iLast command caused an error,.

| l | :

| 14-13 |[(I% AND 24576%),/8192% |If bit 3 = 0, density: 0 = reserved
| | | 1l = reserved
| | | 2 = reserved
| | | 3 = 800 bpi

| | l .

| | |If bit 3 = 1, density: 0 = 1600 bpi
| | | 3 1l = reserved
| | | 2 = reserved
| | | 3 = reserved
l l }

| 12 | (I% AND 4096%) = 0% [9-track tape.

| [(I% AND 4096%) <> 0% |Reserved.

I | |

| 11 | (I% AND 2048%) = 0% |0dd parity.

| | (I% AND 2048%) <> 0% |Even parity. :

l ! | '

| 10 |(I% AND 1024%) <> 0% |Tape is physically write-locked.

| ! I

| 9 [(I% AND 512%) <> 0% | Tape is beyond physical EOT marker.
| l | !

] 8 | (I% AND 256%) <> 0% | Tape is at BOT (load point).

I | l E

| 7 | (I% AND 128%) <> 0% [Last command detected a tape mark

| | | (EOF marker).

I | |

| 6 | (I% AND 64%) <> 0% | The last command was READ and the

| | |record read was longer than the I/O
| | |buffer size (that is, part of the

| | |record was lost).

| | I

| 5 | (I% AND 32%) <> 0% |Unit is nonselectable (OFF-LINE).

| | |

| 4 | (I% AND 16%) = 0% |Unit does not accept 1600 bpi.

| |(I% AND 16%) = 1% |Unit accepts 1600 bpi.

1 | |

| 3 | (I% AND 8%) = 0% | See values for bits 14-13.

| |(I% AND 8%) = 1% |See values for bits 14-13.

Magnetic Tape

Table 2-7 (cont.)

ST R e I P I I LI I +
| Bit | Test | Meaning |
tmmm - LI I I I I I A +
| | | |
| 2-0 |(I% AND 7%) |Indicates last command issued: |
I | | 0 = OFF-LINE |
| | | 1 = READ 1
1 | | 2 = WRITE |
1 | | 3 = WRITE TAPE MARK |
| | | 4 = REWIND |
| | | 5 = SKIP RECORD]
| | | 6 = BACKSPACE RECORD |
I ik I I i I I I I IR +
Note

Bits 3, 4, and 11 to 14 are maintained only for
backwards compatibilty. DIGITAL recommends that you
use the Extended Set Density Function (code 12) for
all future software development.

The following example obtains the status of the magnetic tape opened
on internal channel number 2:

200 I% = MAGTAPE(7%,0%,2%)
When the value of 1% returned is 24,848 decimal (or 60420 octal), the
magnetic tape is 800 bpi, 9-track, odd parity, and the last command
issued was OFF-LINE. You can determine this information by testing
the value of I%, bit by bit, against Table 2-7. For example:

I

o°
L]

24,848 (decimal)

6 0 4 2 0 (octal)

110 000 100 010 000 (binary)

The test for density uses bits 14 and 13:
(I% AND 24576%),/8192%

The following diagram shows the result:

I% 110 000 100 010 00O

ov

AND 24576% 110 000 000 000 000

Result 110 000 000 000 000

October 1985 2-31

Magnetic Tape

If you divide the result of (I% AND 24576%), which in this example is
24576%, by 8192%, the gquotient can egual 0, 1, 2, or 3. 1In this case,
24576,/8192 = 3, indicating that the tape density is 800 bpi.

The results of bit 12 (I% AND 4096%) and bit 11 (I% AND 2048%) are
both zero, indicating a 9-track tape with odd parity.

Bit 8 (I$ AND 256%) and bit 4 (I% AND 16%) both return a value of 1,
indicating that the tape is at the load point and that the unit
accepts 1600 bpi.

Bit 2-0 (I% AND 7%) returns a value of 0, indicating the last command
issued was OFF-LINE.

Use the Skip Record function to advance to the next tape mark (that
is, skip over the current file). You can use one Skip Record function
unless the file is longer than 32,767 records (in which case the
system must execute several skip record functions) or the system
detects a physical EOT within a file. The following statements
execute a Skip Record function until the next tape mark is found:

20 I% = MAGTAPE(4%,32767%,2%) ‘ !Do some skips &
\GOTO 20 UNLESS (MAGTAPE(7%,0%,2%) AND 128%)!Do more unless &
{tape mark found

Return File Characteristics Function

8
unused
file characteristics

Function code
Parameter
Value returned

This function returns the status of the specified file-structured
magnetic tape file as a 16-bit integer, with certain bits set
depending on the current file characteristics. Nonzero integers are
returned for ANSI files; zero is always returned for DOS files.

Table 2-8 shows file characteristics word for ANSI format.

Magnetic Tape

Table 2-8: Magnetic Tape File Characteristics Word for ANSI Format

format:

U (undefined)*

F (fixed-length)

D (variable-length)
S

WK OH

(spanned) **
(I% AND 12288%),/4096% Format U operation:
0 (default)

| |
| i
| |
I l
| l
I |
i I
I |
| |
| |
|Format D, S and F operation: |
| 0 (embedded carriage control) |
| 1 (FORTRAN carriage control) |
| 2 (implied LF/CR) |
| |
I% AND 4095% | Format U operation: |
| 0 = (default) |
| |
|Format F operation: |
Record length |

|

|

|

|

|

|
i
| Format D operation:

| Maximum record length
|

|

|

Format S operation:
unused**

| * ANSI format U does not conform to ANSI standard X3.27-1978 |
| ** RSTS/E does not support ANSI format $ |

The following example obtains the characteristics of a file on a
magnetic tape opened on channel 2:

400 I% = MAGTAPE(8%,0%,2%)

When the value of I% returned is 16464 (16384% + 64% + 16%) decimal
(40120 octal), the magnetic tape file is in ANSI format F, carriage
control is embedded "M", and the record length is 80 bytes. You can
determine this information by testing the value of I%, bit by bit,
against Table 2-8. For example:

I

o0

16464 (decimal)
0401 2 0 (octal)
0 100 000 001 010 000 (binary)

Magnetic Tape
The test for ANSI format type is (SWAP%(I%) AND 192%)/64%, where 192%
= 128% + 64%.

SWAP%(I%) 0 101 000 001 000 000

AND 192% 11 000 000

Result 1 000 000
Dividing the result of SWAP%(I%) AND 192% (which in this case is 64%)
by 64%, the quotient equals 64%/64% = 1, indicating that the tape file

is in ANSI format F.

The result of (I% AND 12288%)/4096% is 0 in this example, indicating
that the carriage control is embedded "M".

Finally, the result of (I% AND 4095%) yields 80 in this case, so the
record length is 80 bytes.

Rewind on CLOSE Function

Function code = 9
Parameter = unused
Value returned = 0

The Rewind on CLOSE function causes the selected magnetic tape to be
rewound when the CLOSE statement is executed. For example:

I% = MAGTAPE(9%,0%,2

o

)

This statement rewinds the tape open con internal channel 2 when you
issue CLOSE from a program or in immediate mode.

You must use the Rewind on CLOSE function after the OPEN statement and
before the CLOSE statement. This function overrideg all MODE
specifications that, in the OPEN statement, instruct the system not to
rewind on closing the file. Once the system executes the Rewind on
CLOSE function, it cannot be cancelled. i

Magnetic Tape

Write End-of-Volume Labels on CLOSE Function

Function code = 10
Parameter = unused
Value returned = 0

This function writes end-of-volume (EOV) labels on the selected ANSI
magnetic tape when the close statement is executed. This function is
mainly for multivolume ANSI processing. For example:

I% = MAGTAPE(10%,0%,2%)

This statement causes EOV labels to be written to the file on
execution of the CLOSE statement. Normally, end-of-file (EOF) labels
are written. You must use the Write End-of-vVolume Labels function
after the OPEN statement and before the CLOSE statement.

This function works only on ANSI labeled magnetic tapes. An attempt

to write end-of-volume labels on DOS-labeled or non-file-structured
tapes results in the error ?Illegal MAGTAPE () usage (ERR=65).

Error Condition Acknowledged

Function code = 11
Parameter = unused
Value returned = 0

This function acknowledges an error condition that has occurred during
an asynchronous I/0 operation. When an error occurs while performing
asynchronous I/0, the tape driver does not execute any more requests
until this function has been issued. This is because asynchronous I/0
allows multiple requests to be outstanding, but they may be invalid if
the user knows of the error condition that occurred. All requests
between the original errored request and the error condition
acknowledged function call return the error ?Device hung or write
locked (ERR=4). Once the error condition acknowledged function has
been issued, the driver resumes normal processing, on the assumption
that the user is aware of the error and is taking whatever steps are
appropriate to correct it. For example:

I% = MAGTAPE(11%,0%,2%)

This statement acknowledges the error condition that occurred from the
asynchronous I/0 operation on the magnetic tape open on internal
channel 2.

The Error Condition Acknowledged function returns no errors and will
never fail when issued. If not required, it is simply ignored.

Magnetic Tape

Extended Set Density Function

12
Density to set/check
Actual density

Function code
Parameter
Value returned

You can use this function to set the density of a tape drive, or get
density information about a drive. The action that.RSTS/E takes
depends on the value of the parameter. :

If the parameter value is zero, RSTS/E returns the current density of
the tape drive. 1If bit 15 is set, RSTS/E attempts to set the density
of the tape drive to the value in bits 14-0 as follows:

Value Meaning

32767 Sets the density to the highest legal density allowed
for that tape drive. The value returned is the
density set. No error is returned.

1 Sets the density to the lowest legal density allowed
for that tape drive. The value returned is the
density set. No error is returned.

n Attempts to set the density to the value specified.
If the value is not legal for that tape drive, RSTS/E
returns an ?Illegal number error message (ERR=52) and
leaves the density of the drive unchanged.

If bit 15 is clear, RSTS/E does not change the drive’s density but
only tests the value passed in bits 14-0 as follows:

Value Meaning
32767 Returns the highest legal density fér this drive
1 Returns the lowest legal density fot this drive
n Returns the nearest legal density for this drive that

is not greater than the parameter value. If the
parameter value is less than the drive’'s lowest legal
density, RSTS/E returns the lowest possible density.

Any density changes made by this call, remain in effect until either a
new density is set or a magnetic tape is read that has a density
different than the one formerly set. This action is equivalent to the
STAY value 8192% in the Set Density and Parity Function (function code
6). :

2-36 f October 1985

Magnetic Tape

Note

For MT, MM, and MU tape drives, a tape must be
mounted and be at beginning-of-tape (BOT) to set the
drive density. 1If this condition is not met and an
attempt is made to change the drive’s density, RSTS/E
returns an ?Illegal MAGTAPE() usage error message
(ERR=65). A tape does not have to be mounted on the
drive to check legal densities or return the current
density of a drive. '

Asynchronous I/0 Requests

An asynchronous read or write request performs the same basic function
as the traditional synchronous read or write request: it moves data
between a device and a program. The difference lies in the completion
of the request. While a synchronous request stalls the job's
execution until the request is complete, an asynchronous request does
not stall the program. The program continues to run while the I/O
request completes in the background.

When the asynchronous I/O request completes, the system informs the
program that issued the request of the completion and status of the
request. The system notifies the program by forcing it to run an
asynchronous completion routine to notify the user job of the 1I/0
completion. The asynchronous completion routine is a section of code
within the user job that executes when an I/0 request completes. When
the asynchronous completion routine is entered, it can check for any
device dependent errors.

Asynchronous I/0 is only meaningful on MS: tapes (TS11l, TK25, TSVO05,
TU80). Other tape drives accept asynchronous I/0O requests and emulate
asynchronous behavior, but the job stalls and few advantages are
gained from its use.

BASIC-PLUS programmers cannot use asynchronous I/O. BASIC-PLUS-2
programmers can use this feature, but must do so using a MACRO
subroutine. See the RSTS/E System Directives Manual for details.

Magnetic Tape Special Function: SPEC%

The SPEC% function performs special operations on magnetic tape, disks
(see Chapter 1), flexible diskettes (see Chapter 1), line printers
(see Chapter 3), terminals (see Chapter 4), and pseudo keyboards (see
Chapter 4). '

October 1985 2-37

Magnetic Tape

The SPEC% function for magnetic tape performs the same operations as
the MAGTAPE function. It allows you to rewind the tape, skip records
on the tape, and set tape density and parity. See the section "The
MAGTAPE Function" for details.
The SPEC% function for magnetic tape has the format:
VALUE$=SPEC% (FUNCTIONS,PARAMETER, CHANNEL%,14%)
where:
VALUE% depends on the function code specified in FUNCTION%.
FUNCTION% is the function code.

PARAMETER depends on the function code specified in FUNCTION%.

CHANNEL% is the I/0 channel on which the operation is to be
performed.

14% is the handler index for magnetic tape.
The code you specify in FUNCTION% determines the op?ration performed.
These operations duplicate those performed by the MAGTAPE function
codes (see Table 2-6). The following MAGTAPE and SPEC% functions are
equivalent:

I

oe
]

MAGTAPE(F%,P%,U%)

I%

SPEC% (FUNCTION%-1%,PARAMETER,CHANNEL%,14%)

Magnetic Tape Error Handling
RSTS/E recognizes the following magnetic tape error;conditions:
0 Parity error
o Record length error
o Offline (not ready) error
o Write lock error
o Write beyond EOT error

For other error conditions that can occur with magnetic tape (Illegal
byte count, File exists, Protection violation), see Appendix C.

Magnetic Tape

Parity (Bad Tape) Error

If the system detects a parity error on a read attempt, it tries to
reread the record up to 15 times. 1If the error condition persists,
the error ?Data error on device (ERR=13) occurs. In this case, the
read has been completed, but the data in the I/0 buffer cannot be
considered correct.

On an output operation, if the first attempt to write a record fails,
the system tries to rewrite the record up to 15 times using write with
Extended Interrecord Gap to space past a possible bad spot on the
tape. If the error condition persists, the error ?Data error on
device (ERR=13) occurs. In both cases, the tape is positioned just
past the record on which the error occurred.

If you have error logging on your system, a magnetic tape error is
logged for each parity error that occurs. Consult the ERRDIS full
error report to see if the problem is due to a malfunctioning or
poorly aligned magnetic tape drive.

Record Length Error

The record length error can occur only during a read operation when
the record on the tape is longer than the I/O buffer size, as
determined by the OPEN statement. The extra bytes in the record are
not read into memory but are checked for possible parity errors. If a
parity error occurs, the error ?Data error on device (ERR=13) is
returned to your program, and bit 6 of the tape status word is set.
Therefore, if you are reading records of unknown length from magnetic
tape, you must check for possible record length errors after every
read operation. Use a statement of this form:

200 PRINT "RECORD TOO LONG" IF MAGTAPE (7%,0%,2%) AND 64%

Note that if bit 6 is set in the tape status word, the IF condition in
this example tests as TRUE. The error ?Magtape record length error
(ERR=40) occurs when the tape block is too long, in either
file-structured or non-file-structured magnetic tape.

Offline Error

The system determines the status of the tape unit by testing bit 5 of
the returned value of the tape status function shown in Table 2-7. If
bit 5 is set, the tape unit is offline. The error ?Magtape select
error (ERR=39) occurs if you attempt to access an offline drive.

Magnetic Tape

Write Lock Error

Attempting any write operation on a magnetic tape that is physically
write-locked (that is, a tape that does not have the write-enable ring
inserted) results in the error ?Device hung or write locked (ERR=14).

Writing Beyond EOT Error

Attempting to write a record beyond the end-of-tape reflective marker
writes the entire record but returns the error ?No room for user on
device (ERR=4). This error condition is a warning to the user
program; it does not harm the data. The program can recover in one of
two ways; see the section "Writing Data and Processing End-of-Tape."

Magnetic Tape Programming Examples

The following examples show how to read and write a magnetic tape
file.

Writing a Magnetic Tape File

The following BASIC-PLUS program opens an existing magnetic tape file
for output and appends data to the file:

100 $=16384%+128%+64%+32% :

\OPEN "MMO:RECORD.FIL" FOR OUTPUT AS FILE 1%, MODE M%
\FIELD #1%, 2% AS S$, 8% AS MS, 2% AS ¥Y$, 8% AS C$, 2% AS D$
\INPUT "HOW MANY RECORDS TO ENTER" ;A%

400 FOR I%=1% TO A%

\INPUT "RECORD";S%

\INPUT KS$S
\INPUT Y%
\INPUT LS
\INPUT D%

500 LSET S$=CVT%$(S%)
\LSET YS$S=CVT%S$S(Y%)
\LSET DS$=CVT%$(D%)
\LSET M$=KS$
\LSET C$=LS$
\PUT %, COUNT 22%

\NEXT I%
\CLOSE 1%
3000 END

The program opens the file RECORD.FIL, which is on a DOS tape (MODE
16384%), for append (MODE 128%). The system rewinds the tape before

2-40

Magnetic Tape

it searches for the file (MODE 32%) and when it executes a CLOSE
statement on the file (MODE 64%). After the user types in each
record, the program converts the data, builds a record, and writes the
record to the file. Finally, after all records have been written, the
program closes the file and ends.

Reading a Magnetic Tape File

The following BASIC-PLUS program opens a magnetic tape file for input
and reads records from the file. It assumes a file in which records
are identifiable by an integer key. For example:

150 M%=16384%+64%+32%
\OPEN "MMO:RECORD.FIL" FOR INPUT AS FILE 1%, MODE M%
200 INPUT "HOW MANY RECORDS"; F%
210 FOR I%=1% TO F%
\N%=0%
\INPUT "RECORD TO FIND";J%
300 GET #1%
\FIELD #1%, 2% AS S$, 8% AS M$, 2% AS Y$, 8% AS CS, 2% AS DS
500 N%=N%+1%
\S%=CVTS$%(S$)
\GOTO 300 IF J%<>S%
625 Y%=CVTS$%(YS$S)
\D%=CVTS$%(D$)
750 PRINT S%
\PRINT M$
\PRINT Y%
\PRINT C$
\PRINT D%
\T%=MAGTAPE(5%,N%,1%)

\NEXT I%
\CLOSE 1%
2000 END

The program opens the magnetic tape file RECORD.FIL on I/O channel 1
with read access only. The tape is in DOS format and is rewound both
before the system searches for the file and when the system closes the
file (MODE 16384% + 32% +64%). The program searches for the record
the user specifies and converts the data in the record to a
recognizable form before printing it.

Because magnetic tape is a sequential access device, the program uses
the MAGTAPE function to backspace the tape to the beginning of the
file following each record retrieval. This allows the user to request
records in any order. Finally, the program closes the file and ends.

Magnetic Tape

Reading a Magnetic Tape Non-File-Structured

The following program reads a DOS magnetic tape label record. See
Appendix A for a description of the DOS label formalt.

100 DEF FNZS$(2$)=RADS(SWAP%(CVTS%(Z2S)))

110 INPUT "WHICH DRIVE";MS$
\OPEN M$ AS FILE 1%

200 FIELD #1%, 2% AS FS$, 2% AS NS, 2% AS X$, 1% AS PS$, 1% AS JS,
1% AS CS$, 1% AS US$, 2% AS D$, 2% AS ULS '
\GET #1%

250 F1$=FNZS$S(F$)+FNZ$S(NS)+"."+FNZS$S(XS$)

300 %=ASCII(PS)
\J%=ASCII(JS)
\C%=ASCII(CS)

400 D%=SWAP%(CVTS%(DS))
\YS$=DATES (D%)

500 PRINT F1$,P%,J%,C%,YS

600 CLOSE 1%

32767 END

The program opens the tape for non-file-structured processing on I/0
channel 1. No MODE specification is necessary because the tape is
9-track, 800 bpi, odd parity. After reading the 14-byte label record,
the program converts the file name (bytes 0-5) from Radix-50 notation
to the ASCII character string F1$3. The program then converts the
project-programmer number (PPN) and protection code (P$, J$, and C$)
to integer format. It next changes the creation date of the file (DS$)
to PDP-11 internal form and uses the DATES function to obtain the
creation date in DD-MMM-YY format. Finally, the program prints all
the .label information and ends.

Chapter 3

Line Printer

RSTS/E provides several MODE and RECORD options as well as one SPEC%
function for controlling line printer output. It also provides a
FILESIZE modifier to enable extended software formatting. This
chapter describes these options. 1In addition, it describes special
character handling for line printers.

Special Character Handling

Certain nonprinting characters have special significance on line
printer output. Table 3-1 summarizes LPll operation under RSTS/E for
each of these special characters.

Table 3-1: LPll Characters

BS - Backspace. This action depends on the /BACKSPACE
qualifier of the SET PRINTER command.
1. Prints line
2. Returns carriage
3. Spaces to position immediately before previous
position on line

qualifier of the SET PRINTER command.
1. Spaces over to next tab position (columns 1, 9,
17, 25, and so on)
CHRS$(10) LF - Line Feed
1. Prints line
2. Returns carriage
3

I |
| I
I I
I |
I I
I I
!
| CHRS$(9) | Tab - Horizontal Tab. This action depends on the /TAB
I I
I I
| I
I I
| I
I |
I I
| | Advances paper one line

3-1

Line Printer

Table 3-1: LPll Characters (Cont.)

VT - Vertical Tab
1. Advances paper one line and resets line counter

|
I
|
|
| FF - Form Feed
| l. Prints line
| 2. Returns carriage
| 3. Advances paper to the top of the next form (see
| the section, Line Printer Control with the MODE
| Option)
|
CHR$(13) | CR - Carriage Return
| 1. Prints line
| 2. Returns carriage
| 3. No line feed (may be used for overprint)
|
|
l
|

CHRS (96)
to
CHRS(126)

Lowercase printing characters, converted to uppercase
except on an uppercase/lowercase printer.

Line Printer Control with the MODE Option

The MODE specification in the OPEN statement allows you to control
line printer operations. For example:

OPEN "LP:" AS FILE N%, MODE M%
The system associates line printer unit 0 with channel N%. The value
of M% in the MODE specification determines the actions the system

performs at the line printer.

Table 3-2 shows the line printer MODE values.

3-2

Line Printer

Table 3-2: Line Printer OPEN MODE Values

0% to 127%

128%

256%

512%

1024%

2048%

4096%

8192%

Line Printer

Defines form length in number of lines per page. 0%
indicates the default form length. You set the
default form length with the SET PRINTER command.
Also included when specifying nonstandard form length
with software formatting (512%) and/or automatic page
skip (2048%). This feature is maintained for backward
compatibility only. Use the FILESIZE form (see the
next section) in all new program development.

Changes the character 0 (zero) to the letter O
("Oh").

Truncates lines that are longer than the form width.
If MODE 256% is not set, then lines longer than the
form width are wrapped onto the next line.

Enables software formatting. Allows special
characters to position paper at a specific line.

Translates lowercase characters to uppercase
characters.

Skips six lines (that is, skips over perforation) at
the bottom of each form.

Enables hardware form feed.
Suppresses form feed on CLOSE. Normally, two form

feeds are generated whenever the line printer is
closed.

Control with the FILESIZE Statement

The FILESIZE specification in the OPEN statement allows you to use
extended software formatting. This feature handles a line printer
form length specification of up to 255 lines. It also enables two

additional mode values: Change <ESC> to $ - MODE 16%, and Set NOWRAP

- MODE 32%.

You enable extended software formatting with a FILESIZE 32767%+1%
modifier in the OPEN statement. For example:

10 OPEN "LP:" AS FILE 1%, FILESIZE 32767%+1%+N%, MODE M%

3-3

Line Printer

The system associates line printer unit 0 with channel 1. The value
N% specifies the form length and can be any value from 0-255. A value
of 0 indicates the default form length. The FILESIZE value 32767%+1%
sets the FILESIZE sign bit, thereby enabling extended use of the MCDE
values. M% specifies the MODE value.

Table 3-3 lists the MODE values available for use w1th the FILESIZE
32767%+1% modifier.

Table 3-3: Additional OPEN MODES with FILESIZE 3276?%+l%

Changes ESC to $. This mode disables ~escape sequences
in data output to the device.

Sets NOWRAP mode for lines that are longer than the
printer’s form width. Excess characters continue to
be output to the device. Mode 256% overrides this
mode. ‘

The following sections describe the various uses of the MODE option.

Change ESC to $: MODE 16%

You can use MODE value 16% only when you include the FILESIZE
32767%+1% modifier in the OPEN statement. This mode value instructs
the line printer driver to change any ESC character to a dollar sign
($) character. For example:

10 OPEN "LP:" AS FILE 1%, FILESIZE 32767%+l%+60%,%MODE 16%
This statement enables extended software formattingfand sets the page

length to 60 lines per page. MODE 16% disables escape sequences in
all data output to the device. '

Set NOWRAP for Excess Lines: MODE 32%

You can use MODE value 32% only when you include the FILESIZE
32767%+1% modifier in the OPEN statement. This mode value instructs
the line printer driver to continue to output excess characters to the
device. For example:

10 OPEN "LP:" AS FILE 1%, FILESIZE 32767%+1%+60%, MODE 32%

3-4

Line Printer

This statement enables extended software formatting and sets the page
length to 60 lines per page. The driver continues to output excess
characters to the device.

Normally, the driver inserts a line feed character in lines that
exceed the printer’s form width, causing the line to be wrapped onto
the next line. With MODE 32% enabled, the driver passes excess
characters to the device without inserting a line feed character. the
hardware characteristics of the device itself determine the actual
display of excess characters. Note that the driver’s horizontal
position counter remains at the rightmost position of the form width,
even though characters that exceed the line width are being sent to
the device.

Note that MODE 256%, Truncate Long Lines, always takes precedence over
MODE 32%.

Software Formatting: MODE 512%+N%

The MODE value 512% allows you to pass special control characters to
position the paper on a specified line number. Note that if your
system manager specifies 8 bit capabilities for a line printer (which
allows & bit characters to be sent to the printer) you cannot perform
software formatting to that printer. If you attempt to do so, the
system generates the error ?Missing special feature (ERR=66).

For example:
100 OPEN "LPO:" AS FILE 1%, MODE 512%+30%

This statement enables software formatting and sets the form length to
30 lines per page. 1If you do not specify the form length, the system
uses the default defined with the SET PRINTER command. Lines are
numbered from zero to one less than the length specified. Thus, in
the previous example, lines are numbered from 0 to 29.

After enabling software formatting with MODE 512%, you specify the
line number on which to position the printer paper by sending a
special character to the line printer in PUT or PRINT statements. The
system skips to this line by sending the proper number of line feed
characters to the printer.

The special character is of the form CHR$(128%+L%), where L% is the
line number to advance to. For example:

200 PRINT #1%, CHR$(128%+19%);
This statement causes the system to advance the paper to line 19, If

the line value L% is greater than the page length, the system ignores
it. 1If the line value L% is greater than the current line number, the

3-5

Line Printer

printer skips to that line number on the current page. 1If the line
value L% is less than or equal to the number of the current line, the
system moves the paper to the top of the next page and then skips to
the appropriate line.

Note

To enable the program to properly perform software
formatting of print lines using special characters,
load the paper in the line printer with the top of
form aligned properly and with the tractors set at
their top-of-form position.

The system treats characters whose values lie between 0 and 127 as the
standard ASCII equivalents as shown in Appendix D. If you do not
specify MODE 512% in the OPEN statement, and, if you do not specify 8
bit capabilities for the line printer, characters whose values lie in
the range 128% to 255% are treated as (value - 128%).

Enable Hardware Form Feed: MODE 4096%

The form feed (FF) character advances the paper to the top of the next
page. When you use the default form length, the FF character is sent
directly to the device. 1If you use a form length other than the
default, the system translates FF to the proper number of line feed
(LF) characters to advance to the next page.

MODE 4096% causes the system to always send a FF to the device,
regardless of the form length. This mode disables FF-to-LF
translation. MODE 4096% is useful for devices that can be set to
variable page lengths.

Note

If you include both 4096% and 512% values in the MODE
option, a FF character sent to the line printer
remains untranslated. The form feed positions the
paper at the top of hardware form. This action
results in unpredictable output because the line
counting done by the MODE 512% processing does not
take into account the movement of the paper to the top
of hardware form.

3-6

Line Printer

Translate Numeric 0 to Letter O: MODE 128%

A value of 128% in the MODE specification causes the system to print
all 0 (zero) characters as O (uppercase "oh") characters. This
feature is often used in commercial applications where there can be no
possibility for confusion. For example:

10 OPEN "LPO:" AS FILE 1%, MODE 128%+60%

This statement indicates that the line printer should translate 0 to O
(128%) on line printer unit 0 with a form length of 60.

Truncate Long Lines: MODE 256%

To truncate lines greater than the width of the line printer, include
256% in the MODE value. For example:

10 OPEN "LPO:" AS FILE 1%, MODE 256%+128%+22%

The statement sets the MODE value 128% on line printer unit 0; it also
discards excess characters from each line printed (MODE 256%). The
form length is 22 lines. When you do not use 256% in the MODE value,
the system prints excess characters on a second physical line (unless
you use MODE 32%).

Translate Lowercase to Uppercase: MODE 1024%

To translate lowercase characters to uppercase characters, include
1024% in the MODE value. For example:

10 OPEN "LPO:" AS FILE 1%, MODE 1024%+256%+128%

This statement sets the MODE values 128% and 256%. The default form
length is used. 1In addition, it causes the system to translate all
characters with representations between CHR$(96%) and CHR$(122%) to
their equivalents between CHR$(65%) and CHR$(90%). The system also
translates characters with representations between CHR$(224%) and
CHR$(254%) to their equivalents between CHR$(192%) and CHR$(222%).
This feature is always set for an uppercase-only printer.

Line Printer

Skip Lines at Perforation: MODE 2048%

To skip six lines at the bottom of each form, include 2048% in the
MODE value. For example:

10 OPEN "LPO:" AS FILE 1%, MODE 2048%+1024%+256%+128%+60%

The statement sets the MODE values 128%, 256%, and 1024%, and also
skips six lines at the bottom of each to page. Note that form length
is specified by 60%. With MODE 2048% in effect, the system does not
print on the last six lines of each form. This feature is useful when
you are printing continuous listings to be placed in horizontal
binders. 1If you load the line printer so that the top of form is the
third physical line on the page, the system leaves three blank lines
at the bottom and top of each page. When the listings are placed in
binders, printed material is located three lines from the perforations
of the page for easy reading.

Suppress Form Feed on CLOSE: MODE 8192%

For certain applications, it is necessary to malntaln the current
print position on the line printer during a CLOSE operatlon.

Normally, the system automatically generates two form feeds (FF) on
either an implicit CLOSE (for example, a CHAIN operation) or an
explicit CLOSE. By specifying MODE 8192% in the OPEN statement, the
program tells the system not to generate any form feed when it
performs the CLOSE operation on the channel open for the line printer.
For example: -

10 OPEN "LPO:" AS FILE 1%, MODE 8192% + N%

The value N% can be any other combination of MODE values valid for
line printer operation.

Line Printer Control with the RECORD Option

The RECORD option in a PUT or PRINT statement modifies the operation
of the line printer and enables discrete control of 'individual output
steps.

Table 3-4 lists the values allowed in the RECORD option.

3-8

Line Printer

Table 3-4: Line Printer RECORD Values

I B A I I e I I I I TP PR
| value | Meaning

tmemm- - B I Tt I TR,
I |

| 2% | Print over perforation (disables MODE 2048% for this

| | output step).

l |

| 4% | Do not return control to the program until output is

1 | complete or until the system encounters an error.

l |

| 8% | Clear pending output buffers before buffering characters

| | for the request.

1 |

| 32% | Truncate long lines (enables MODE 256% for this output

| | step). :

| |

| 4096% | Enable binary output, pass all characters to the device

| | "as is." '

| |

| 8192% | Return control to the program if an output stall is to

| | occur on the device.

R T T i R I i I S

The general format of the RECORD option for line printer operation is
either ocne of these two forms:

10 PUT #N%, RECORD R%, COUNT C%
10 PRINT #N%, RECORD R%, AS

The following sections describe the RECORD values.

Print Over Perforations: RECORD 2%

By specifying RECORD 2% in the PUT or PRINT statement, you can
temporarily override the effect of MODE 2048% on an output form. For
example, an application program that usually skips six lines at the
bottom of forms might need to print an identification or special page
requiring all lines on the page. RECORD 2% allows the program to
print in the lines normally skipped.

3-9

Line Printer

Delay Return Until Output Complete: RECORD 4%

For line printer output, the system transfers data from program
buffers to the device by using intermediate storage areas called
system buffers. This intermediate buffering allows the faster
computational process to continue unhindered by the slower output
action of the line printer. For each output request, the system
transfers the data to system buffers. At the same time, at its own
speed, the line printer driver extracts the data from the system
buffers and outputs it to the device. ;

Normally, completion of an output request occurs when the data is
buffered. After buffering the data, the system returns control to the
program at the next statement. If the program finishes its output
routine but an error occurs at the device before the data is actually
printed, recovery can be difficult under programmed: control.

The RECORD 4% option in an output request tells the system not to
return control until the data is actually printed. , This mechanism
allows a program greater control over error recovery -- although at
the cost of increased execution time. To use this mechanism, print a
NUL character with the RECORD 4% option. For example:

10 PRINT $1%, RECORD 4%, CHRS$(0%);

The output operation has no effect on the line printer because the
system discards all NUL characters. The program maintains control of
the output operation because the system does not complete the request
until it prints all previously buffered characters., If an error
occurs, the program can take recovery action and resume at this
operation. When control passes to the next statement the output
operation is complete.

Clear Buffers Before Returning Control: RECORD 8%

Sometimes it is advantageous for a program to stop printing characters
already buffered for output. Because characters to be printed on a
line printer are kept in intermediate buffers, interrupting the output
routine only prevents additional characters from being buffered.
Normally, characters already buffered for output by the system
continue printing until the buffers are clear or until an error
occurs.

The RECORD 8% option in an output request tells the system to
terminate the print operation and clear all pending output buffers
before buffering the characters in the request. For example:

10 PRINT #1%, RECORD 8%, CHR$(13%);

The system clears all pending output buffers and then sends the

3-10

Line Printer

carriage return (CR) character to the printer. The CR character
flushes out any characters in the printer hardware buffers by forcing
them to print. After the successful completion of this statement, the
printer and its buffers are clear, the vertical position counter is
reset to top of form, and the horizontal position counter is reset to
the left margin. (Although the driver’s internal vertical form
position counter is reset to top of form, you may need to align the
form itself to its top-of-form position.)

Truncate Long Lines: RECORD 32%

RECORD 32% enables MODE 256% for one output step. RECORD 32% causes
the driver to truncate lines greater than the width of the line
printer.

Binary Output: RECORD 4096%

RECORD 4096% disables all formatting of characters sent to the line
printer for one output step. The driver outputs all characters to the
device "as is." Note that the driver does not update the vertical and
horizontal position counters and the page counter when this modifier
is in effect.

Note that you cannot output null characters to the printer when using
binary output.

No Stall Option: RECORD 8192%

RECORD 8192% provides a "no stall" option for line printer output.
RECORD 8192% causes the monitor to return control to your program if
an output stall is to occur on the device. You can determine the
number of bytes still to be written by checking the contents of the
XRB+XRBC. The XRB is accessible only through MACRO; see the RSTS/E
System Directives Manual.

RECORD 8192% is useful for programs that must perform several
different functions with optimal performance (such as a line printer
spooler that performs message send/receive and prints files at the
same time). When an output stall does occur, the program can perform
other processing before trying to write the remaining bytes to the
line printer or terminal.

When you use the "no stall" option, you can perform a special test to
see if the line printer is busy without causing your program to stall.
To perform the test, print a single null character and specify RECORD
(8192%+4%). When you specify both values, the system returns control

3-11

Line Printer

to your program instead of stalling it. 1If the system returns 0 at
XRB+XRBC, the line printer buffers are empty, whicm means there are no
characters still to print. A nonzero value at XRB+XRBC means that the
line printer buffer still contains one or more characters to print.

In this case, repeat the test until the system returns 0 at XRB+XRBC.
Note that BASIC-PLUS programmers cannot use this RECORD modifier.
BASIC-PLUS-2 programmers can use this modifier, but must use a MACRO

subroutine to check the XRB. See the RSTS/E System Directives Manual
for details. :

Line Printer Special Function: SPEC%
The SPEC% function performs special operations on line printers,
terminals, disks, flexible diskettes, magnetic tapes, and pseudo
keyboards.
For line printers, the SPEC% function lets you:
o Read the current value of the page counterQ
0 Read the current vertical and horizontal line positions.
The SPEC% function for line printers has the format:
VALUE% = SPEC%(FUNCTION%,PARAMETER%,CHANNEL%,6%)
where:
VALUE% depends on the function code specifiedfin FUNCTION%.
FUNCTION% is the function code. The SPEC% function performs
various functions on line printers as determined by the
function code. These codes are:
FUNCTION%=0 returns current value of page counter.
FUNCTION%=1 returns current vertical and horizontal
line positions.
PARAMETER% is unused.
CHANNEL% specifies the I/0 channel for the line printer.
6% is the handler index for line printers.
SPEC% subfunction 0 returns the current value of the page counter as a
16-bit value. SPEC% subfunction 1 returns a 16-bit value with the

current vertical line position in the low byte and the horizontal
position in the high byte.

Line Printer

Error Handling

An error condition at the line printer causes the system to interrupt
the transfer of data from the buffers to the device, but not from the
program to the buffers. Since any number of unpredictable events such
as a ribbon jam or a paper tear can cause an error condition, the
system retains the unprinted data in the buffers until either the
error is cleared (the unit becomes ready again) or the user program
executes a CLOSE operation.

The system checks the status of the line printer every ten seconds
and, upon detecting the ready condition, continues output from the
small buffers without loss of data. If a program closes the line
printer while the error is still pending, the system returns the small
buffers to the pool without printing their contents. The data
transferred from the program, but not yet printed, is lost.

If the program disregards the error condition and continues
processing, the system does not transfer more data to additional small
buffers. No output occurs at the line printer while the error
condition remains in effect.

To prevent loss of data, your program must properly detect a line
printer error condition and perform appropriate error handling. The
system indicates a line printer error by generating the error ?2?Device
hung or write locked (ERR=14). The first time the system returns this
error after an output request (for example, PUT), the data is fully
buffered by the monitor. No data is lost, but the buffered data
cannot be sent to the printer because of the error condition.

Because all of the data is buffered, you should not write
exceptionally large buffers to the line printer. The monitor checks
the printer’s status every 10 seconds. It resumes printing when the
error condition is removed. To prevent filling up monitor buffer
space, subsequent output requests return immediately with the error
?Device hung or write locked (ERR=14). No data is buffered while the
error condition persists. When an output request returns without
error, the printer error is cleared. However, it is good programming
practice to force the monitor to wait until line printer output is
complete before printing any more data.

3-13

Line Printer

The following sample program demonstrates code that:

(o}

(o]

10
20

100
110
120
130

140
150

160

200
210

300
310
32767

Opens the line printer, inputs a line from the disk file, and
performs output to the line printer

Performs efficient error handling as described in this
section

! HOUSEKEEPING
OPEN "DATA.DAT" FOR INPUT AS FILE 1%

\OPEN "LP0:" AS FILE 2%, RECORDSIZE BUFSIZ(1%)
\FIELD 1%, BUFSIZ(1%) AS IS

\FIELD 2%, BUFSIZ(2%) AS 0%

\FIELD 2%, 1% AS 01$

\E% = 0%

\ON ERROR GOTO 200

! COPY LOOP
GET #1%

\C% = RECOUNT
\LSET 0$ = IS

PUT #2%, COUNT C%

\GOTO 100

! LINE PRINTER OUTPUT ERROR - DATA PUT
! AT LINE 120 IS BUFFERED

LSET 0O1$ = CHRS (0%)

PUT 2%, RECORD 4%, COUNT 1%

\E% = 0%

\PRINT IF POS (0%)

\GOTO 100

! PUT A NULL (IGNORED BY MONITOR)

! AND WAIT FOR PRINTER READY

! IF IT MAKES, PRINTER IS OK, SO GO

! BACK TO COPY LOOP

PRINT ’'PRINTER HUNG - PLEASE FIX IT’;
UNLESS E%

\PRINT CHRS$ (7%);

\E% = -1%

\SLEEP 10%

\GOTO 150
! ASK FOR REPAIRS ONCE, DING EACH
! TIME, SLEEP AND RETRY

! ERROR HANDLING

RESUME 300 IF ERR = 11% AND ERL = 110%
\RESUME 130 IF ERR 14% AND ERL = 120%
\RESUME 160 IF ERR 14% AND ERL = 150%
\ON ERROR GOTO 0

! DONE

CLOSE 1%, 2%

END

Chapter 4

Terminals

RSTS/E provides several features for use in interactive terminal
applications. You access most of these features through the MODE
option in the OPEN statement and the RECORD option in GET and PUT (or
PRINT) statements. For example, by using various MODE and RECORD
options you can:

o Display and process screen forms using echo control

o Perform I/0 to several terminals using one I/0 channel

This chapter describes these and other terminal features. It also
describes:

o Escape sequences
o Private delimiters
o Pseudo keyboards

Except for the section on escape sequences, which contains information
about the VT100- and VvT200-family terminals, this chapter describes
only the general-purpose software features that the RSTS/E operating
system provides. See the user’s guide for your terminal for
hardware-specific information.

Conditional Input from a Terminal: RECORD 8192%

Sometimes a program must execute an input request from a terminal
without waiting for data to be available. For example, the terminal
may be opened on a specific I/0 channel or may be one of many
terminals opened on one I/O channel (see the section "Multiterminal
Service on One I/0 Channel"). Normally, the system stalls a program
that is executing an input request until data is available in the
keyboard input buffer (that is, until a user types a line terminator

4-1

Terminals

at the keyboard). To avoid waiting for data, use RECORD 8192% in the
GET statement. For example:

GET #1%, RECORD 8192%

If data is available from the terminal open on channel 1, the system
transfers it to the program’s channel 1 buffer. The number of bytes
read from the terminal input buffer is given by the RECOUNT variable.
If no data is available, the system generates the error ?Data error on
device (ERR=13). 1In both cases, the system reports the results
immediately. :

You can use RECORD 8192% with the SLEEP statement to wait for input.
When you type a delimiter at a terminal or when a receiving job has
received a message, the system cancels the sleep operation. This
feature is useful for determining whether the sleep operation was
canceled by terminal input or the expiration of a receive call’s wait
time (see the section "Receive" in Chapter 8). The following sample
routine shows the procedure for cancellation on terminal input:

100 OPEN "KB:" AS FILE #1%
110 ON ERROR GOTO 200
\GET #1, RECORD 8192%
\GOTO 1000
1GOT DATA, GO PROCESS IT
200 IF ERR=13 AND ERL=110 THEN RESUME 300
ELSE ON ERROR GOTO 0
300 SLEEP 5%
\GOTO 110

I1f data is not available at the terminal, a message is pending. If
data is available, the program can process it.

No Stall Option on Terminal Output: RECORD 8192%

When performing output to a terminal, you can also include the value
8192% in the RECORD option. Note that RECORD 8192% works differently
for terminal input and output. When used on output, RECORD 8192%
causes the monitor to return control to your program if an output
stall occurs on the device. If an output stall does occur, the
program can perform other processing before trying to write the
remaining bytes to the terminal. This modifier performs a similar
function to the "no stall" option for line printer output (see the
section "No Stall Option" in Chapter 3).

4-2

Terminals

Force Interactive Input: RECORD 256%

You can use the RECORD 256% modifier on a GET statement to force the
program to always take input from the terminal, even if a command file
is in effect. Normally, if you read from a terminal and there is a
DCL command file active, then the program takes input from the command
file. See the RSTS/E Guide to Writing Command Procedures for more
information on DCL command files. For example:

GET #1%, RECORD 256%

This modifier is useful in programs that need to ask questions of a
user, even when running under the control of a command file. The DCL
command SINQUIRE uses this modifier.

Multiterminal Service on One I/0 Channel: RECORD 32767%+1%

The multiterminal feature allows one program to interact with several
terminals on one I/O0 channel instead of opening each terminal for
input or output. This feature is useful in applications such as order
entry, inventory control, and query-response where the same function
is performed on several terminals but a separate job for each terminal
is undesirable or inefficient.

To control several terminals, you must first establish a master
terminal by opening a keyboard on a nonzero channel. Two forms of the
OPEN statement are possible:

10 OPEN "KB:" AS FILE N%
10 OPEN "KB4:" AS FILE N%

The first form associates channel N% with the job console keyboard and
defines it as the master terminal. The second form associates channel
N% with keyboard number 4 and defines it as the master terminal.

You can then control additional, or slave, terminals through special
forms of the block I/0 GET and PUT statements. The program must
allocate the terminal to the job but must not open it. You can
establish the terminals as slave terminals with the ALLOCATE command
before you run the program. You can also allocate these terminals by
executing the Allocate/Reallocate Device SYS call (SYS 10). Your
program can control any number of terminals up to the maximum number
of terminals on the system.

When a program interacts with several terminals on one I/O channel,
the system services the terminals in round-robin fashion, determined
by the numeric sequence of the terminals.

Terminals

To perform input and output, use GET (or INPUT) and PUT (or PRINT and
PRINT-USING) statements in a special manner, as the following sections
describe. Note that the RECORD option specifies a particular action
and keyboard number.

Multiterminal Service Output

Use a PUT statement of the following form to perform output to a
keyboard, either master or slave:

10 PUT #1%, RECORD 32767%+1%+K%, COUNT N%
where:

K% 1s a variable in the RECORD modifier that speéifies the unit
number of the keyboard to which output is directed.

N% 1is a variable in the COUNT modifier that specifies the number of
characters to transfer from the buffer on channel 1 to the
designated keyboard.

The only special error that can occur is ?Not a valid device (ERR=6),
indicating that the terminal addressed is neither the master keyboard
nor a slave keyboard reserved by the program. Other possible errors,
such as ?2I/0 channel not open (ERR=9), work in the standard way.

You can use the RECORD option with the PRINT or PRINT-USING statement
as well as with the PUT statement. For example, the following
statements output the string Z$ to the unit designated by K%:

20 PRINT #1%, RECORD 32767%+1%+K%, Z$;

20 PRINT #1%, RECORD 32767%+1%+K%, USING "!!tt!", 2%;
When you use PRINT or PRINT-USING, you do not need to use FIELD, LSET,
and RSET statements to move data to an output buffer. It is also

easier to format the data with PRINT or PRINT-USING:than with block
I/0 statements.

You can output binary data using multiterminal service by including
the value 4096% in the RECORD option. For example:

100 PUT #N%, RECORD 32767%+1%+4096%+K%, COUNT M%

This statement outputs the number of bytes of binary data specified by
M% to the keyboard whose unit number is the variable K%.

Note that when you use multiterminal service, the system keeps track

of the current position (using the CPOS() function) of the output line
of the master keyboard but does not keep track of the current position

4-4

Terminals

of the output line of the slave keyboards. Thus, you should keep a
count of characters printed to the slave keyboards if you need to know
exactly what the current position is on the line.

Multiterminal Service Input
In multiterminal service, you can request:
o Input from a specific keyboard
o Input from any of the multiple terminals

You specify each type of input request by including certain values in
the GET statement RECORD option. The rest of this section describes
the two types of input requests in detail.

Use a GET statement of the following form to request input from a
specific keyboard, either master or slave:

10 GET #1%, RECORD 32767%+1%+K%

where the variable K% in the RECORD modifier specifies the keyboard
number of the terminal from which input is requested. The GET
statement transfers the data from the terminal’s input buffer to the
I1/0 buffer for the designated channel. The first character in the
buffer contains the number of the keyboard from which the input came.
The total number of characters transferred, including the keyboard
number, is available in the RECOUNT variable. You can access the data
with a standard FIELD statement. Because the first character of the
I/0 buffer is the keyboard number, the length of the data input is
equal to RECOUNT-1%.

If no input is available from the designated terminal, the error ?Data
error on device (ERR=13) results. Because this error is recoverable,
your program can execute an appropriate ON ERROR GOTO routine. The
system does not allow a stall on input from a specific keyboard in
multiple terminal arrangements.

The following GET statement requests input from any one of the
multiple terminals:

10 GET #1%, RECORD 32767%+1%+16384%+S%

If input is pending from any terminal, the system transfers the
contents of that terminal’s buffer to the buffer for the designated
channel. The first character in the buffer is the keyboard number of
the terminal from which input came. As with input from a specific
keyboard, you can use FIELD to access the sending keyboard number and
the data sent. The variable S§% tells the system how long to stall the
program to wait for input. Table 4-1 lists the values S% can have.

4-5

Terminals

If no input is pending from any terminal, the program stalls as
described for S%=0% in Table 4-1.

Table 4-1: Multiple Terminal RECORD Values for S%

| | ,
| GET statement waits until input is available from any |
| one of the terminals. The system waits indefinitely |
| if no input is pending. When input is available, the |
| system transfers the data and the program accesses |
| the data as described in the previous section. The |
| error ?Data error on device (ERR=13) may occur due to |
| a race condition with CTRL/C. No data is lost; simply |
| reissue the GET statement to continue operation. |
| A race condition can occur when two jobs are

| accessing the same data. That is, one job attempts to |
| access data while another job is in the act of |
| changing that data. The system cannot resolve these |
| two conditions. ' |
| |
| |
| |
| |
| |
| l
| I
| |
| I

GET statement waits up to S% seconds for input from

1%<8%<255%
any terminal. If no input is available from any
terminal in S% seconds, the error ?Data error on
device (ERR=13) occurs.

S% = 8192% If no input is pending from any of the terminals, the
error ?Data error on device (ERR=13)! occurs
immediately.

R +--mm- - I I R LT I +

In multiterminal service, the system handles CTRL/C differently for
slave and master terminals. A CTRL/C entered at any one of the slave
terminals passes a CHR$(3) character to the program but does not
terminate the program. The RECOUNT variable contains the value 2%,
representing the keyboard number and the CTRL/C character. The
program can process the CTRL/C character as a special character. If
CTRL/C is entered at the master terminal, the system terminates the
program in the standard fashion.,

A CTRL/Z entered at either a master or slave terminal produces the
error ?End of file on device (ERR=11). The system returns the unit
number of the keyboard causing the error as the first character in the
channel buffer.

4-6

Terminals

Terminal Control with the MODE Option

You can control a terminal in several ways with the MODE option in the

OPEN statement.

terminals.

Table 4-2:

Summary of MODE Values for Terminals

Enable binary input from a terminal
Reserved for TECO

Suppress automatic carriage return/line feed at right
margin

Enable echo control (turns off other modes and
automatically enables MODE 4%)

Guard program against CTRL/C interruption and dial-up
line hibernation

Enable incoming XON/XOFF processing
Reserved

Enable special scope RUBOUT

Set escape sequence mode

Enable transparent control character output

The following sections describe the various MODE options.

Binary Data Output and Input: RECORD 4096% and MODE 1%

To perform binary data output to a terminal, either opened on its own

Table 4-2 summarizes the MODE values you can use for

I/0 channel or opened as one of many terminals on one I/O channel, use
a statement of the following form:

PUT #N%,

This statement transfers the number of bytes specified by M% to the
output buffer of the terminal open on channel N%.

RECORD 4096%, COUNT M%

4-7

You do not need any

Terminals

special form of the OPEN FOR OUTPUT statement. Specifying RECORD
4096% in the PUT statement disables all output formatting on the
terminal for that output operation.

You can obtain binary input from a keyboard by including MODE 1% in
the OPEN statement. For example:

10 OPEN "KB6:" AS FILE N%, MODE 1%

This statement associates channel N% with keyboard number 6 in binary
input mode. As a result, characters received are not echoed by the
system and are not altered in any way.

A program can read binary data from:
o A terminal paper tape reader
o The terminal itself

o Any device connected to the system through a keyboard
interface.

To start a transfer of data, use the GET statement. For example:
GET #N%

The system transfers some number of characters from the keyboard open
on channel N% to the buffer for that channel. 1If np data is
available, the system stalls the program until data is received from
the keyboard. When data is received, the system makes the program
eligible to run and transfers the data to the program’s I/O buffer.
The program must execute GET statements often enough to avoid losing
data from the transmitting device.

The number of characters received is always at least one and never
more than the channel buffer size. The default buffer size for
keyboards is 128 characters. You can override the default buffer size
by using the RECORDSIZE option in the OPEN statement. However,
because the system must first buffer the characters before they can be
transferred to the program’s buffer, changing the RECORDSIZE may not
help increase the number of characters read by each: read operation.
(The system limit is approximately 180, but will vary depending on
other system activity.) The RECOUNT varlable contalns the actual
number of characters received.

Normally, the system terminates a read after every character typed at
a terminal open for binary input. However, if you set one or more
private delimiters for that terminal, the system terminates a read
only when you type a private delimiter.

Terminals

The system accepts and does not alter any characters received from a
terminal open for binary input. Thus, entering CTRL/C has no effect.
For this reason, the system disables binary input mode under any of
the following conditions:

o The period for a WAIT statement expires. (The error
?Keyboard wait exhausted (ERR=15) occurs.)

o You execute any input or output statement on channel zero
when the user'’s keyboard is open for binary input.

0o You execute an OPEN statement in normal mode on the device
but on a different channel.

0 You execute a CLOSE statement on any channel associated with
a keyboard open for binary input.

Under condition 1, the system disables binary input mode if time for a
WAIT is exhausted. For example:

10 WAIT 10%
20 GET #1%

If the system does not detect data within 10 seconds on channel 1,
which is open for binary input, it disables binary mode in addition to
generating the error ?Keyboard wait exhausted (ERR=15). The keyboard
stays open for normal ASCII data transfers.

Under condition 2, the system disables binary input mode when the
program performs I/C on channel 0 and the user’s keyboard is open for
binary input on a nonzero channel. For example:

10 OPEN "KB:" AS FILE 1%, MODE 1%
20 GET #1%

40 PRINT "MESSAGE";

The statement at line 10 opens the user’s keyboard for binary input on
a nonzero channel (channel 1). The statement at line 20 performs
binary input from the keyboard. However, at line 40 the system
executes a PRINT statement on channel 0, which disables binary input
mode. The user’s terminal remains open on channel 1 for normal ASCII
data transfers. Note that a PRINT or PUT statement on channel 1 does
not turn off binary input mode.

Terminals

Under condition 3, the system disables binary input on a channel if
the program executes a normal OPEN on the same device but on a
different channel. For example:

10 OPEN "KB6:" AS FILE 1%, MODE 1%

100 OPEN "KB6:" AS FILE 2%

When the system executes line 100, it disables binary input on
keyboard 6. 1If line 100 contained MODE 1%, the system would open
keyboard 6 for binary input on channel 2. Therefore, keyboard 6 would
be open for binary input on both channels.

Under condition 4, the system disables binary input if the program
executes a CLOSE statement on any channel associated with a keyboard
open for binary input. For example:

10 OPEN "KB6:" AS FILE 1%, MODE 1%
20 OPEN "KB6:" AS FILE 2%, MODE 1%

100 CLOSE 2%

The CLOSE statement at line 100 disassociates channel 2 from keyboard
6 but also disables binary input on channel 1. Keyboard 6 remains
open in normal mode on channel 1. DIGITAL recommends using binary
input mode by opening a device other than the user’s terminal for
binary input on any nonzero channel. Your program can interact
normally with the user’s terminal by executing standard INPUT and
PRINT statements and can gather data from the binary device on the
nonzero channel by executing GET statements.

Because binary input disables all special character handling, the

system cannot detect an end-of-file on a terminal transmitting binary
data.

Suppress Automatic Carriage Return/Line Feed: MODE 4%
RSTS/E normally performs a carriage return/line feed (CR/LF) operation
when the right margin of a terminal is to be exceeded. (The SET
TERMINAL command sets the right margin by means of the width
characteristic.) You can suppress this automat