RSTS/E
System User’s Guide

Order No. DEC-11-ORSUB-A-D

RSTS/E
System User’s Guide
Order No. DEC-11-ORSUB-A-D

digital equipment corporation - maynard. massachusetts

First Printing, December 1976

The information in this document is subject to change without notice and should not be construed as a commit-
ment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors

that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance

with the terms of such license.

Digital Equipment Corporation assumes no responsibility for the use or reliability of its software on eqhipment

that is not supplied by DIGITAL.

Copyright (C) 1976 by Digital Equipment Corporation

The postage prepaid READER’S COMMENTS form on the last page of this document requests the user’s critical

evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10
DEC DECtape

PDP DIBOL
DECUS EDUSYSTEM
UNIBUS FLIP CHIP
COMPUTER LABS FOCAL
COMTEX INDAC

DDT LAB-8
DECCOMM DECsystem-20

5/77-14

MASSBUS
OMNIBUS
0s/8

PHA

RSTS

RSX
TYPESET-8
TYPESET-10

. TYPESET-11

PREFACE
PART 1

CHAPTER

CHAPTER

CHAPTER

PART 11
CHAPTER

CHAPTER

1.1
1.2
1.3

2.2
2.3
24
24.1
242
243

3.1
3.2
33
34
3.5
3.6
3.6.1
3.6.2

5.1
5.2
53
54

5.4.1
542
543
5.5

5.6
5.6.1
5.6.1.1
5.6.2
5.7

CONTENTS

USING THIS DOCUMENT B
SYSTEM FUNDAMENTALS AND RESOURCES

TIMESHARING ANDRSTS/Eot i e e
INTERACTIVE TIMESHARING IN COMPUTER EVOLUTION
HOW TIMESHARING WORKS e

THE SYSTEM FUNDAMENTALS e it i e ieenen

BECOMING A RSTS/E USER: PROJECT-PROGRAMMER NUMBER

AND PASSWORD i e e e e

LOGGING IN: THE HELLO COMMAND e i

LOGGING OUT: THE BYE COMMAND. i i

THE DIRECTORY AND FILES. e e
Filenames and Extensions ittt e
Protection Codes e
Account and File Statistics

THE SYSTEM RESOURCES. e e i inens
INTRODUCTION TO THE RSTS/EDEVICES.
THE PUBLIC DISK STRUCTURE i,
PRIVATE DISKS e
ASSIGNABLE DEVICES e e e
ALISTOF RSTS/EDEVICESttt e
DEVICE NAMES: PHYSICAL AND LOGICAL

Physical Device Names i

Logical Device Namest .

ADAPTING SYSTEM RESOURCES: DEVICES AND DEFAULTS
FUNCTIONS OF THE RESOURCE COMMANDS. e

CONTROLLING DEVICES AND ACCOUNTS.civernnn...
RESERVING A DEVICE: THE ASSIGN COMMAND
RELEASING A DEVICE: THE DEASSIGN COMMAND
TRANSFERRING A DEVICE: THE REASSIGN COMMAND.
ASSIGNING AND USING LOGICAL NAMES: THE ASSIGN AND
DEASSIGN COMMANDS i e
Associating Multiple Logical Names with One Device.
Associating a Valid Physical Name with a Device
Reserving and Releasing a Logically Named Device
SYSTEM-WIDE LOGICAL NAMES i
DISK ACCESS BY PACK IDENTIFICATION LABEL OR LOGICAL NAME
Disk Access by Pack Identification Label.
Logically Mounting a Disk by System Command: MOUNT.
Disk Access by Logical Name: The ASSIGN Command
LOGICAL ASSIGNMENT OF A USER ACCOUNTcuvvnun..

iii

Page

CHAPTER

PART Il

CHAPTER

CHAPTER

5.8

5.8.1
58.2
59

59.1
59.2
593
594
59.5
596

7.1
7.1.1
7.1.2
7.2

8.1
8.1.1
8.1.1.1
8.1.2
8.2
8.2.1
822
8.23
8.3

8.4

84.1
84.2

843
84.3.1
84322
8433
8.5

8.6

8.7

8.7.1
8.7.2

CONTENTS (Cont.)

Page
TERMINAL ECHO SETTINGS e 57
Disabling the Terminal Echo: The TAPE Command 5-7
Enabling the Terminal Echo: The KEY Command 5-8
INPUT AND OUTPUT CONTROL CHARACTERS, 5-8
CTRL/C . . . e e e et e 5-8
CTRL/O .ottt e e e e e 59
CTRL/Sand CTRL/Q e 59
CTRL/Z. i, S 59
RETURN Key. . .ottt e et ettt e e i 59
ESCAPE or ALT MODE Key.ot ittt e i e 59
CHANGING DEFAULTS ittt e i iea e 6-1
CHANGING THE DEFAULT PROTECTION CODE: THE ASSIGN < >
COMMAND e e e e e e 6-1
CHANGING THE MAGTAPE LABELING DEFAULT 6-1
THE BASIC-PLUS SYSTEM COMMANDS
FUNCTIONS OF THE BASIC-PLUS SYSTEM COMMANDS 7-1
SOME DEFINITIONS FOR THE NEW BASICPLUS USER. 7-1
Source and Compiled Programs 7-1
The Program Currently in Memory 7-1
A GUIDE TO THE BASIC-PLUS SYSTEM COMMANDS. 7-1
CREATING AND RUNNING A BASIC-PLUS PROGRAM. 81
WRITING THE PROGRAM i i i 8-1
The NEW Command. e e e e e 8-1
Creatinga NONAME Fileottt 82
Input of the New Program 8-2
SAVING THE PROGRAM: THE SAVE COMMAND. 82
Saving the Current Program under a Different Name................. 83
Using SAVE to Specify a Storage Device. 83
Using SAVE to Obtain Line Printer and Paper Tape Output. 84
CALLING AN EXISTING PROGRAM: THE OLD COMMAND e 84
RUNNING AND COMPILING PROGRAMS: THE RUN AND COMPILE
COMMANDS . .. e et e e e e 8-5
Running a Program from the Public Structure: The RUN Command 8-5
Running Programs from Private or Specific Devices: The RUN dev:
Command. e e e e e 8-6
The COMPILE Commandttt ittt 8-7
The Purpose of COMPILE. i, 8-7
Using COMPILE ittt it et 8-7
Compiling a Program on a Specific Disk Pack. 8-8
RENAMING THE CURRENT PROGRAM: THE RENAME COMMAND 8-8
REPLACING A SAVED PROGRAM: THE REPLACE COMMAND. 89
CHANGING A PROGRAM’S FILE SPECIFICATION: THE NAME AS
STATEMENT it e 89
Using NAME AS to Rename a Program. 89
Using NAME AS to Change a ProtectionCode. 8-10

iv

CHAPTER

CHAPTER

PART IV
CHAPTER

CHAPTER

8.8

89
8.10

9.1
9.1.1
9.1.2
9.1.2.1
9.13
9.1.3.1
9.13.2
9.14

9.14.1
9.14.2
9.1.5
9.1.6
9.2
9.2.1

9.2.1.1
9.2.1.2
9.2.2

9.2.2.1
9.2.2.2
9223

10
10.1
10.1.1
10.2
10.2.1
10.2.2
10.2.3
10.2.4
10.3
10.3.1
10.3.2
103.3
104

11

12
12.1
12.1.1

CONTENTS (Cont.)

FINDING A PROGRAM’S CURRENT AND MAXIMUM LENGTH:

THE LENGTH COMMAND. it
LISTING DEVICE DIRECTORIES: THE CATALOG COMMAND.
USING SCALED ARITHMETIC: THE SCALE COMMAND

EDITING AND MODIFYING APROGRAM
EDITING AND MODIFYING THEPROGRAM
Printing the Program: The LIST Command
Deleting Lines: The DELETE Command
Cautionary Notes About DELETEt .
Simple Erasures: The RUBOUT Key and CTRL/U
Erasing One Character at a Time: RUBOUT.
Erasing One Line at a Time: CTRL/U.
Removing a Program from a Storage Device: The UNSAVE Command
and the KILL Statement.ttt tnn et
The UNSAVE Commandt iiinnnnen.n.
-The KILL Statement e e e
Merging Programs: The APPEND Command.
Transferring Control Between Programs: The CHAIN Statement
FORMATTING THEPROGRAM. i
Changing Statement Format Rules: The EXTEND/NO EXTEND
Commandsottt e e
Description of EXTEND Formato i,
Issuing the EXTEND/NO EXTEND Commands. ovovernnn....
Standard (NO EXTEND) Statement Formatting
Multiple Statements on a Single Line
A Single Statement on Multiple Lines.
Spaces and Tabs for Readability.

The Limitations of Immediate Mode e
USING IMMEDIATE MODE WITH STOP, CONT, CCONT, AND GOTO
The STOP Statement v, e

The GOTO Statement. oo vttt it ittt e et e e eee e
DEBUGGING WITH CTRL/C, PRINT LINE, ANDCTRL/O
Halting and Checking Execution with CTRL/C and PRINT LINE
Suppressing Output with CTRL/O iiiie ...
Suppressing Output with CTRL/S and CTRL/Q
AN EXAMPLE OF PROGRAM DEBUGGINGot

SYSTEM LIBRARY PROGRAMS
INTRODUCTION TO PART IV. . - o o v e e e e e e e et e e
FILE INFORMATION AND STANDARDSo et ee e

device: THE DEVICE DESIGNATORttt ittt i
Logical Device Names.t iiin ittt ettt e et e i i

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CONTENTS (Cont.)

12.2 [proj;prog] THE PROJECT-PROGRAMMER OR ACCOUNT NUMBER.
12.2.1 Special Account Characterso vttt it
12.3 filename.extension THE FILENAME AND EXTENSION
12.3.1 Wild Card Specificationso i e
12.3.1.1 The *WildCard e e e e e e
12.3.1.2 The 2WIld €Card . & o oo et e e e e e e e e e e e
12.3.1.3 The * and ? Wild Cards Combined
124 <protection>PROTECTION CODEcciiiiiniinnnn...
12.5 foption FILE SPECIFICATION OPTION. ittt
12.5.1 JFILESIZE Option vttt e et e e et et e et e
12.5.2 JCLUSTERSIZE Option e e e e
12.53 /MODE and /[RONLY Options. covv vt
13 PROGRAM INFORMATION AND CHARACTERISTICS
13.1 THE CONCISE COMMAND LANGUAGE (CCL),
13.1.1 Cautionary Notes on Typing CCL Commands
13.1.1.1 Embedded Spaces in CCL Commands vve e v teeenennenn..

13.1.1.2 Mistyping a BASIC-PLUS Command as a CCL Command.
13.2 OBTAINING HELP FILES FOR SYSTEM PROGRAMS

13.3 VERSION IDENTIFICATION it i e
134 INDIRECT COMMAND FILES R
14 JOBCONTROLPROGRAMS i
14.1 ENTERING THE SYSTEM: THE LOGIN PROGRAM
14.1.1 Running LOGIN from a Logged Out Terminal
14.1.2 Running LOGIN at a Logged In Terminal
14.13 Running Other Programs from a Logged Out Terminal
142 LEAVING THE SYSTEM: THE LOGOUT PROGRAM
15 SYSTEM COMMUNICATION PROGRAMS i
15.1 PRINTING A SYSTEM STATUS REPORT: THE SYSTAT PROGRAM........
- 15.1.1 Contents of the Status Report.,
15.1.2 SYSTATasaCCLCommand uiiiunnnennn.

15.2 OBTAINING A DISK QUOTA REPORT: THE QUOLST PROGRAM
15.3 OBTAINING ACCOUNT DATA: THE MONEY PROGRAM
154 SENDING A MESSAGE TO THE SYSTEM MANAGER: THE GRIPE

PROGRAM ... e e e e e e
15.5 DECLARING A TERMINAL IN USE: THE INUSE PROGRAM
16 FILE UTILITY PROGRAMS: LISTING, EDITING, AND READING FILES
16.1 LISTING DIRECTORY OF FILES: THE DIRECT PROGRAM.
16.1.1 DIRECTORY as a CCL Commandc.ciuueuneensnan.
16.2 EDITING FILES: THE EDITPROGRAM e
16.2.1 EDITasa CCL Command.ottt i ittt et et e et e ieannn

16.3 COMPARING FILES: THE FILCOM PROGRAM.

17 DEVICE UTILITY PROGRAMS: TRANSFERRING FILES BETWEEN

DEVICES. i e e i e e
17.1 DEVICE TRANSFER: THEPIPPROGRAM
17.1.1 PIP Command Line Specifications e

vi

CHAPTER

CHAPTER

17.1.2
17.1.3
17.14
17.1.5
17.1.6
17.1.7
17.1.8
17.2

17.2.1
17.2.2
17.2.3
17.2.4
17.2.5
17.2.6
17.2.7
17.2.8
17.3

18

18.1
18.1.1
18.2
18.2.1
18.2.2
18.2.3
183
18.3.1
183.2
184
18.5
18.6
18.7
18.8
18.8.1
18.8.2
18.8.3
18.8.4
18.8.4.1
18.84.2
18.8.4.3

19
19.1
19.2
19.2.1
19.3
193.1
19.3.2
194
19.5

CONTENTS (Cont.)

Page
File Transfers Including Merge Operations 17-2
Changing Filename or Protection Code 17-4
Deleting Files e e e e e e 17-4
Zeroing a Device Directoryottt 17-5
Listing a Device Directory. e 17-5
Guidelines for Transfer Operations and DECtape Usage 17-6
PIP asa CCL Command e e e e i 17-8
THE EXTENDED PIPPROGRAM i . 17-8
Wild Card Specifications e 179
Extended PIP Defaults and Additional Options. 179
Wild Card Specifications in Transfer and Directory Listing Commands. 17-12
Wild Card Specifications in Rename Commands 17-13
Wild Card Specifications in Delete Commands 17-14
Processing ANSI Magtape Files, 17-15
Indirect Command Files in Extended PIP. 17-17
Extending the Physical Command Line — /MORE 17-18
COPYING BETWEEN DEVICES: THE COPY PROGRAM. 17-19
STORING FILES OFF-LINE: THE BACKUP PROGRAM 18-1
PRESERVING FILES: THE BACKUPPROGRAM 18-1
The RESTORE Mode of BACKUP 18-1
RUNNING BACKUP e e e 18-2
File Specifications as Dialogue Answers. 182
Typographical Considerationso.... 18-3
Rules of the Dialogue 184
THE DIALOGUE e e et 184
The BAC Dialogue. oot e e e e e e 18-6
The RES Dialoguet e i et 189
INTERRUPTION COMMANDSt e 18-10
RUNNING BACKUP FROM AN INDIRECT COMMAND FILE 18-10
TWO DIALOGUE EXAMPLES: BACANDRES P 18-11
MOUNTING AND DISMOUNTING VOLUMES 18-13
BACKUP ERROR HANDLINGttt i e e e i e e 18-13
Dialogue Command Errors 18-14
Interruption Command Errorso 18-15
Volume Mount Errors 18-15
BACKUP Processing Errors 18-16
Selection Errors e 18-16
Transfer, Deletion, and Listing Errors 18-17
Informational Messages. i e 18-17
FLOPPY DISK TRANSFER: THE FLINT PROGRAM 19-1
RUNNING FLINT: THE INITIATION COMMANDS. 19-1
LISTING THE DIRECTORY OF AN IBM FLOPPY DISK. 19-1
The Form of the Directory 19-2
TRANSFERRING IBM FLOPPY DISK DATATORSTS/E 19-3
Specifying the Known Floppy Disks of aDataSet 194
Format of the RSTS/EDisko oot i 19-5
TRANSFERRING RSTS/E FILES TO IBM FLOPPY DISKS 19-5
'DIALOGUE EXAMPLES: /DIRECTORY, /TORSTS, AND /TOIBM 197

vii

CHAPTER

CHAPTER

CHAPTER

19.6
19.7

20
20.1
20.1.1
20.1.2
20.1.3
20.14
20.1.5
20.1.6
20.1.6.1
20.1.7
20.2

20.2.1
20.2.2
2023
2024

21

21.1
21.2
21.3
214
21.5
21.6
21.7
21.8
219

22
22.1
22.1.1
22.1.2
22.1.3
22.14
22.1.5
22.2
22.2.1
2222
2223
2224
22.3

- 2231

22.3.2
2233
2234
22.34.1

CONTENTS (Cont.)

Page
FLINT ERRORMESSAGES i 19-8
FLINT ASACCLCOMMANDttt ittt 199
DEVICE CONTROLPROGRAMS ittt 20-1
SETTING TERMINAL CHARACTERISTICS: THE TTYSET PROGRAM. 20-1
ESCAPE, ALTMODE, and PREFIX Characters. 204
Lower and Upper Case Charactersc.ciiiinnnn..n 204
Generalized Fill Characters 20-6
XON/XOFF Remote Reader Control e 20-7
Output Parity Bit i i i 20-7
Private Delimiters i 20-7
Limitations of Private Delimiters 20-8
SETasaCCL Command uiuieimneunnenivennn 20-8
MOUNTING AND DISMOUNTING PRIVATE DISKS: THE UMOUNT
PROGRAM it S 20-9
Logically Mounting a Disk Pack or Cartridge 209
MOUNT Options: Disk Pack or Cartridge 20-10
Assigning a Magtape Unit, and Using Options.c..... 20-11
Logically Dismounting Disk Packs, Cartridges, and Magtapes. 20-11
USING SYSTEM SPOOLING SERVICES: THE QUE PROGRAM. 211
RUNNING QUE AT ATERMINAL i it i i 21-1
USING THE QUE COMMAND e e e 21-2
USING THELCOMMAND e e 21-6
USING THE K COMMAND ittt ieeee e 21-8
USING THEM COMMANDttt et iee e 21-8
CHAINING TO QUE FROM A USERPROGRAM 21-9
ERROR MESSAGES AND CODES 0t 219
RUNNING QUE BY CCLCOMMANDSottt 219
RUNNING QUE AT A LOGGED-OUT TERMINAL 21-11
THE BATCH PROCESSING PROGRAM: BATCH 22-1
CONTROL STATEMENTS e e et e i 22-1
Command Field i i e e e e 222
Specification Fields i 222
CommenNtsttt e it it et e e e e e e e, 222
Syntactical Rules. i i i e e 22-2
Syntax Example e e 22-3
FILE SPECIFICATIONSttt i e 22-3
Filename Specification i e e 22-3
File Type Specification. i i . 22-3
File Specification Defaults. 22-5
Switch Specification.ttt 225 -
BATCH COMMANDS it ettt e et ee e 22-6
SIOB .. e e 227
BBOT . e e e e e 22-8
SBASIC e e 22-8
Utility BATCH Commands00titmiilnemenneennn. 22-11
$DELETE e e i e e 22-11

viii

PART V

CHAPTER

22.34.2
22343
22344
22345
2235
22.3.6
22.3.7
22.3.8
22.39
22.3.10
22.3.11
22.3.12
22.3.13
224
224.1
2242
2243

23
231
23.1.1
23.1.2
23.1.3
23.14
23.1.5
23.2
23.21
23.2.2
23.3
23.4
234.1
2342
23.5
23.6
23.6.1
23.6.2
23.7
23.7.1
23.8
23.8.1
238.2
23.8.3
23.8:4
23.8.5
239
23.10

CONTENTS (Cont.)

Page
BCOPY .. e 22-11
P RINT e 22-11
SDIRECTORY . ..ottt et e e e 22-12
SCREATEttt e e 22-12
SRUN | 22-13
D AT A .. e 22-13
SEOD .. e e 22-13
SMESSAGE 22-13
EMOUNT . . . e e 22-14
SDISMOUNT ettt eee e 22-15
SCOBOL e e e 22-15
SSORT .. e 22-17
SFORTRAN e e 22-18
BATCH OPERATING PROCEDURES 22-19
Requestinga Batch Job Run......... 22-19
Batch Processing L ... e 22-20
Error Procedures e 2221
RSTS/E PERIPHERAL DEVICES
RSTS/E PERIPHERAL DEVICES0 0ttt 23-1 .
ASR-33 TELETYPE. 23-2
Control Knob e 23-2
Keyboard i e e e 232
Printer 233
Low-Speed Paper Tape Reader. oiv v eeennneen.. 23-3
Low-Speed Paper Tape Punch 23-3
HIGH-SPEED PAPER TAPE READER AND PUNCH UNITS............... 234
High-Speed Reader Unit 234
High-Speed Punch Unit. 23-5
CR11 CARD READER e e e 23-5
LPI1 LINE PRINTER i 23.5
Line Printer Character Set., 23-7
Line Printer Operation e 23-7
TC11/TU56 DECTAPE CONTROL AND TRANSPORT. 239
TM11/TU10 AND TJU16 MAGTAPE CONTROL AND TRANSPORT. 23.12
Magtape Control Panel 23-13
Magtape Operating Procedures L. 23-13
VT05 ALPHANUMERIC DISPLAY TERMINAL e e 23-16
Controls and Operating Procedures. 23-18
2741 COMMUNICATIONS TERMINALS 23-19
The ATTIN Key . . . oo vttt it e e e et 23-20
The RETURN Key it 23-21
The BKSP Key e e e 23-21
Bracket Charactersc.cuuueniinnn... e 2321
Changing Codes i, 23-21
LA36 DECWRITER II OPERATOR CONTROLS 23-26

RX11 FLOPPY DISK. . .. e e 23-26

APPENDIX A

Al
A2
A3
A4

APPENDIX B

APPENDIX C

C.1
Ccz2

APPENDIX D

FIGURE

TABLE

D.1
D.2
D3
D4

.........

1-1
1-2
3-1
23-1
23-2
23-3
234
23-5
23-6
23-7
23-8
239
23-10
23-11
23-12
23-13
23-14
23-15
23-16

21
4.1
5-1

CONTENTS (Cont.)

Page
BASIC-PLUS LANGUAGE SUMMARY0ttt i it it ieiieeeenns A-1
SUMMARY OF VARIABLE TYPES A-1
SUMMARY OF OPERATORSttt e e A-1
SUMMARY OF FUNCTIONSottt ittt e e e i e ene e A2
SUMMARY OF BASIC-PLUS STATEMENTS. v, A-5
BASIC-PLUS COMMAND SUMMARYuuunneiinnnnennnnnn. B-1
ERROR MESSAGES e e e e e e e C1
USER RECOVERABLE e e C-3
NON-RECOVERABLE et e e e e C-8
BASIC-PLUS CHARACTER SETt i iiiiianenn D-1
BASIC-PLUS CHARACTER SET ittt ittt ee et e D-1
ASCII CHARACTER CODES it D-3
CARD CODES . . .o e e e e e e e D4
RADIX-50 CHARACTER SET i, D4
.. Index-1
FIGURES
Users Sharing Time on the RSTS/E System e 12
The Timesharing Process. ittt i et e e 1-2
A Configuration of Devices it 32
ASR-33 Teletype Console oo ot i i et it 232
Teletype Keyboard e 23-3
High-Speed Paper Tape Reader/Punch. 234
CR11 Punched Card Reader inennen.. 23-6
LP11 Line Printer System (80-column model) 23-7
Line Printer Control Panel PR 239
TUS6 DECtape Transport oottt ottt et et e et ettt eeae e 23-10
DEC Magnetic Tape Systemttt 23-12
Control Panels. e 23-13
Magtape Transport Threading Diagram e e e e 23-16
VTOS5 Keyboard ittt it et e e e e e e e e et 23-17
VTOS5 Alphanumeric Display Terminal.t ienen.. 23-18
Correspondence Code Keyboard. 23-23
EBCD Keyboardottt et e e e e et e e e e 23-24
BCD Keyboard vvuuns ettt ettt e 23-25
CALL/360 BASICttt et e i e e e e e ... 23226
TABLES
Protection Codes 1. oo it i et e 2-7
A Guide to the Resource Commands0............. 4-1
Device Specifications e e 52

7-1
111
112
121
122
123
124
14-1
151
152
153
154
16-1
16-2
16-3
171
17-2
17-3
174
17-5
17-6
177
17-8
179
17-10
17-11
18-1
18-2
18-3
184
18-5
18-6
19-1
20-1
20-2
20-3
204
20-5
21-1
21-2
21-3
214
22-1
222
223
224
23-1
232

© 233

CONTENTS (Cont.)

Page
A Guide to the BASIC-PLUS System Commands 72
Overview of Programs and File Information. 11-1
CCL Commands that Run System Programs. 11-2
File Specification Elements and System Defaults 12-1
RSTS/E Device Designators ovv it imeteeneeeeeenennanas 122
RSTS/E Filename Extensionsuuiteemeenennnennens 124
File Protection Codes e e e e 12-6
LOGOUT CONFIRM: ReSpOnSes oo v vt e e iie et ieeeeneen e 147
SYSTAT Options.ot e et et e e i e s 15-2
SYSTAT Abbreviations.ttt e e ettt 15-6
QUOLST Column Headings, 15-8
The MONEY Reportiiiin i, e e 159
DIRECT OptONS . . . oot vttt et e et e e e e et e e e as 16-2
DIRECT Program Error Messagesccoi ittt iinnnon. 164
Summary of EDIT Program Commands. 16-6
Output File Specification Elements., 17-2
Input File Specification Elements 17-2
File Transfer and Merge Optionsttt uennn.. 17-3
PIP Directory Listing Optionsottt tiiiian. 17-6
Input File Specifications. 17-6
General Input Defaults. e 17-9
Output Defaults for Transfer and Directory Commands. 17-10
Input Defaults for Transfer and Directory Operations 17-10
Additional Extended PIP Optionst enennn-s 17-11
Possible ANSI Magtape Transfersooueiiennennenannnnn. .. 17-15
Effect of Labeling Default Assignments 17-16
Backup Dialogue SUMMATY . . o v v v oot it eeeee e ee e e V... 185
Restore Dialogue Summary it e e . 18-8
Interruption Commands e 18-11
BACKUP Dialogue Error Messagesovviiiiin .. 18-14
Interruption Command Error Messages, 18-15
BACKUP Volume Mount Error Messages. oo vineeennnn... 18-16
FLINT Error Messages oot vv e ittt i ittt et et e ee e eae e 19-8
RSTS/E TTYSET Commands. . . . o v vttt e e e et e et e e ee e e e ee e e 20-1
Default Single Characteristic Settings 0. .. 20-5
TTYSET Error Messages . . .« v v oo v v oo et e et et e e et e et ae e e e e 20-6
Generalized Fill Characters0ttt 20-6
The UMOUNT Options.o ovve v i e iiiie e e 20-12
QUE Program Commands e e e e e 21-2
QUE Job Output Optionsttt i iiee e e n 214
Q Command Options v vttt it et ettt e et it e e e 21-5
QUE Error Messages and Codes e e e e e e e e e e 21-10
BATCH Special Charactersttt vttt eeinnannn 224
Batch Commands — Related Default File Types........................ 22-5
File Specification Defaults, 22-6
Summary of BATCH Error Messagesoueiiruneennnnnn. 22-21
A Guide to the RSTS/E Peripheral Devicesovviuueenen ... 23-1
Card Reader Controlst e 23-6
Line Printer Controlsottt i e e 23-8

234
23-5
23-6
23-7
23-8
239
23-10
C-1
C-2
C3

CONTENTS (Cont.)

Page
DECtape Controls« oottt ettt e ... 2311
Magtape Transport Controlst innnnnn 23-14
Magtape Transport Indicators it nn.. 23-15
FILL Characters Required for VT05. i e, 23-18
VTOS Controls and Switches 23-20
2741 Transmission Code Identifiers S 23-22
DECwriter IT Operator Controls.ttt it iii e, 23-26
Severity Standard in Error Messages i i, C-2
Special Abbreviations for Error Descriptionsttt ., C-2
Non-Trappable Errors in Recoverable Class C-3

PREFACE
USING THIS DOCUMENT

This document describes the RSTS/E system and its resources; it is divided into five parts, and organized as follows:

PART 1, “SYSTEM FUNDAMENTALS AND RESOURCES,” introduces the new user to the RSTS/E system.
Part I explains fundamentals such as timesharing theory, entering and leaving the system, how data is organized
and located, and what Input/OQutput devices are available.

PART II, “ADAPTING SYSTEM RESOURCES,” explains the use of system resource commands, which allocate
and manipulate devices and adapt certain system characteristics to the needs of the individual user.

PART I, “BASIC-PLUS SYSTEM COMMANDS, ” explains the use of BASIC-PLUS system commands, which
enable the user to write, edit, modify, debug, and manipulate BASIC-PLUS programs.

PART IV, “SYSTEM LIBRARY PROGRAMS,” describes and explains the use of the RSTS/E system library programs,
which perform various functions of general utility. Among these functions are editing text, transferring data,

saving data off-line, printing timesharing statistics, setting terminal characteristics, and batch processing. The over-
view (“Programs at a Glance™) at the beginning of Part IV lists these system library programs by function.

PART V, “RSTS/E PERIPHERAL DEVICES,” describes some Input/Output devices available to the RSTS/E
user, and explains their hardware settings and operations.

The reader’s approach to the User’s Guide will depend upon his or her experience with computer systems and
languages in general, and with RSTS/E and BASIC-PLUS in particular.

The beginning user, who may have little or no computer experience, should first read Parts I and II, in order to
gain an overall understanding of the RSTS/E system and its resources. Anyone programming in the BASIC-PLUS
language must use the BASIC-PLUS system commands in order to write and modify programs. The newcomer to
BASIC-PLUS, therefore, may expect to use Part IIl concurrently with the BASIC-PLUS Language Manual,
which describes the BASIC-PLUS language itself.

The intermediate user, who typically may have some BASIC-PLUS programming experience, and may be still
learning about the RSTS/E system, would probably employ Parts III and IV largely as references.

The experienced user, who is familiar with both BASIC-PLUS and RSTS/E, would probably refer most often to
Part IV, since some of the system programs it describes are new or modified since the previous version of RSTS/E.

All users should find Part IV particularly useful as a reference to the system programs. Also intended for general
reference are Parts II, III, and V.

For information on other RSTS/E manuals, see the RSTS/E Documentation Directory.

xtii

PART 1
SYSTEM FUNDAMENTALS AND RESOURCES

CHAPTER 1
TIMESHARING AND RSTS/E

1.1 INTERACTIVE TIMESHARING IN COMPUTER EVOLUTION

The development of interactive timesharing represented a major step in the evolution of modern computers. To
understand this concept, one must consider the two terms, “interactive” and “timesharing,” and what they mean
in the context of computing history. Early computers were designed to run without any human intervention; an
operator would “feed” stacks of punched cards into the computer system, then wait — patiently or impatiently —
while the job was processed. If there were errors, typographical or otherwise, lurking unseen among the thousands
of stacked cards, the programmer would not discover them until the system had-completed the entire job. Further-
more, correcting these errors involved first hunting them down through reams of computer listings, then repeating
the laborious, time-consuming process of punching the cards. And, since the cards were prepared by human key-
punch operators, there usually were some errors on the first “pass’ or submission of cards to the system.

Thus, a critic®l drawback of early computers was that they were not interactive. While they were processing jobs,
they did not allow users to communicate with them in order to discover errors, check results, or modify programs.

Another disadvantage of many early computers was their inability to process more than one job at a time. This
limitation, combined with an inability to interact with the user, made the early computer unattractively slow and
expensive for many widely desired applications. Thus, the computer was used mainly for highly repetitive prob-
lems that did not require rapid “‘turn-around” — that is, fast return of processed results.

Timesharing, however, made the computer more widely available. The image of the electronic oracle whose slow
and mysterious ponderings were presided over by a privileged cult of programmers and mathematicians had begun
to fade. '

Interactive timesharing systems are changing this rather restrictive image to a “friendlier” one. For not only can
users communicate with such a system while it processes their data, but they can share its resources concurrently.
A timesharing system assigns each user a quantum or “slice” of its processing time, and allocates service among
programs until each program has been completed. The rapidity of this scheduling has an important — and generally
gratifying — psychological effect: each user enjoys the pleasant illusion that the system “belongs” to him or to

her alone.

1.2 HOW TIMESHARING WORKS

To understand how a timesharing system works, one may imagine a typical RSTS/E system in operation, and
currently serving 10 users, each seated at a terminal and communicating with the system. Of these 10 users, 6
are running their own programs: 4 in the BASIC-PLUS language, 1 in the COBOL language, and 1 in the
FORTRAN language. Of the remaining 4 users, none is working directly with a computer'language; instead, these
"4 are running system programs that perform special tasks. One user is running EDIT, a program that enables him
to write, modify, and correct text. Another is running the DIRECT program, which prints at the terminal a list
or directory of information she has previously stored in the system. The remaining two users are running PIP,
the Peripheral Interchange Program, which transfers information from one Input/OQutput device 1o another: for
example, from a disk to a line printer, which outputs text a line at a time. Figure 1-1 illustrates the system’s
current usage.

Not only must the RSTS/E system perform different functions for each of these 10 users, but it must also keep

these functions in separate sets (one to a user), allocate a “slice” of time to each set, and schedule these “slices”
so that each user receives one at short intervals.

11

Timesharing and RSTS/E

Running
DIRECT

Running EDIT
Program

Running FORTRAN
N/

Running COBOL

Figure 1-1 Users Sharing Time on the RSTS/E System

How does RSTS/E arrange to schedule and process each user’s information efficiently and without confusion?
First of all, RSTS/E “sees” each user’s set of operations — commands, input of data, etc. — as a separate job, which
exists for as long as that user is “on” the system. To RSTS/E, therefore, a job is a sequential string of associated
operations: the unit of identification by which it “knows” one user from the others. These jobs all exist on a
computer disk in an area known as the swapping space. When a job in memory — that is, a user — asks the system
to run one of its own system programs, such as PIP, the request goes to two areas in the computer’s memory:

first to the BASIC-PLUS run-time system, then to the executive. Figure 1-2 shows several concurrently running
jobs sending requests along this route. Job number 1 happens to be sending the request that the system run the
program called PIP.

JoB 1

BASIC-PLUS % Executive
run-time
system
JOB 2
Running W :
BASIC-PLUS
JOB 3

Running Dark arrow indicates processing in the
EDIT current “time slice”

Parallel lines indicate that processing is
/ interrupted when the job’s “time slice’

is not current

Figure 1-2 The Timesharing Process

12

Timesharing and RSTS/E

When a job makes a request, that request is first interpreted by the BASIC-PLUS run-time system, hereafter referred
to as the BASIC-PLUS system. Depending on the nature of the request, the BASIC-PLUS system fulfills it, or

passes it on to the executive. The executive, as its name denotes, executes or carries out the request. It then re-

turns control to the BASIC-PLUS system.

When job number 1, for example, asks for PIP, the BASIC-PLUS system “fields” the request: interprets it and
passes it to the executive. The executive, in turn, acts on the request by attempting to “open” the prescribed
set of stored data — or the file — that is known as the PIP program. If all goes well and the executive succeeds in
opening that file, it then gives the BASIC-PLUS system access to PIP, and also returns control to that system.
Now, the BASIC-PLUS system acts as interpreter of program statements that are taken from the PIP program.

The situation just described, in which a user runs a system program like PIP, affords a further example of the
typically busy interaction between the BASIC-PLUS system and the executive. For there are many commands
that the user may give to the PIP program — commands that cause data to be printed out, summarized, merged,
transferred from one storage device to another, even completely erased from the system. In the course of a
single job, the user may issue all of these commands to PIP. Each command would follow the route described:
to the BASIC-PLUS system for interpretation, then to the executive for carrying out. The executive, moreover,
in addition to carrying out the commands of other current users, would be performing its other vital “house-
keeping” functions: allocating and scheduling the jobs, thereby making sure that each user, at regular intervals,
receives a rightful “slice” of the timesharing pie.

Essential to the executive’s efficiency is not only its speed, but also its ability to keep each job separate and dis-
tinct, isolated from all other current jobs. Thus, it is able to “‘swap” jobs in and out of the computer’s memory

as their time slices begin and end. These two facilities — speed and job separation — preserve each user’s illusion of
“owning” the system exclusively. For the user receives responses that are not only fast, but uncluttered by
irrelevant information pertaining to other jobs. A brief example shows how confusing a system’s response would
be were it not for job separation and swapping. What would happen, for instance, if two user jobs were printing,

at the line printer, two very different texts: a work of fiction and a recipe? Were it not for job separation, the

line printer output might look like this:

MURRAY THE RABBIT LIVED IN A NICE (USER 1)
RABBIT STEW: BEGIN WITH A PLUMP, (USER 2)
LITTLE TOWN WHERE EVERYONE LOVED (USER 1)
FRESHLY KILLED RABBIT. FIRST, SKIN IT BY (USER 2)
DANCING AND FROLICKING ON THE GREEN. (USER 1)

Cleatly, these two users have different things in mind, and both would be confused, possibly upset, by the mixed
output. But the executive, by separation, assures that no two jobs can use the line printer at the same timé.

Thus, the timesharing process, seen from inside the system, can be quite complex, particularly when one realizes
that a RSTS/E system, with enough hardware, can support up to 63 concurrent users. The reader of this manual,
however, will probably not be immediately concerned with the internal complexities of job swapping and
scheduling. Knowledge of such intricacies, while interesting and of increasing value as one becomes more
experienced with computers, is not necessary in order to use any of the RSTS/E resources described here in the
User’s Guide, or to use the BASIC-PLUS language.

1.3 THE USER’S VIEW OF TIMESHARING

Of immediate interest to the reader is an orientation to RSTS/E timesharing: a general concept of how time-
sharing appears to the user who is “on” the system and working at a terminal. Assume that this user, in the course
of his job, performs a typical sequence of operations: writing his own program, running it, requesting one of

the system’s programs, giving that program a command, and finally asking the system to reprint — at his terminal
the program he wrote in the first operation. These steps are listed below, along with brief descriptions of how the
user perceives the timesharing system during each step.

1-3

READY:
BASIC-PLUS
command level

prompt:
program level

READY again:
back to
BASIC-PLUS
command level

Timesharing and RSTS/E

1. The user is writing his own program in the BASIC-PLUS

language.

The user sees himself in communication with the BASIC-
PLUS language; he types a line number, a statement, and
the RETURN key, repeating this procedure until the
program is complete. If he makes a syntactical error,
BASIC-PLUS communicates in turn with him, printing an
error message — a brief description of the mistake.

. The user, having written the BASIC-PLUS program,

asks that it be run by typing the RUN command.

After thus running the program, the user sees himself in
communication with the BASIC-PLUS (run-time) sys-
tem, because the word READY appears at the terminal.
READY is the BASIC-PLUS system’s unique prompt:
its way of telling the user it is READY to accept com-
mands. This prompt, of course, also lets the user know he
is currently in communication with the BASIC-PLUS
system. As long as the user keeps encountering this
prompt after execution of commands, he is said to be
at BASIC-PLUS command level.

. The user responds to the READY prompt by typing

SAVE to store his newly created program on the disk.
After the program has thus been saved, the READY
prompt appears once more. The user again sees himself
in communication with the BASIC-PLUS system — that
is, at BASIC-PLUS command level.

. The user, responding again to the READY prompt, types

the command RUN $PIP, thus gaining access to the sys-
tem’s program PIP, whose functions are data transfer,
input, and output.

Now, the user sees himself in direct communication with
the PIP program — in other words, at program level.

The user perceives himself at this level because PIP
immediately identifies itself by printing its name (and
other information) at the terminal, because the prompt
changes from the word READY to a number sign

(#). This number sign is PIP’s own prompt. Like READY,
it tells the user that a command will be accepted. It also
tells the user, of course, that he is no longer at BASIC-
PLUS command level, but is now at PIP program level.

. To PIP’s # prompt, the user responds by typing a PIP

command that causes a set of his stored data (a file)
to be printed out at the line printer. :
To the user, it appears that PIP fulfills this request and
awaits another command, because once again the #
prompt appears at the terminal.

. Since the user has no additional commands for the PIP

program, he dismisses it by pressing a special combina-
tion of keys (“CONTROL” and “Z”"), and once again
sees the READY prompt. Thus, he is back at BASIC-
PLUS command level, and is in communication with the
BASIC-PLUS system.

. Responding to the READY prompt, the user types a

series of commands that access his BASIC-PLUS pro-
gram and print it at the terminal.

14

Timesharing and RSTS/E

The reader will note, from this typical sequence, that the RSTS/E user is unaware of the executive’s role in timeshar-
ing operations. To be sure, it has been quite busily involved in this sequence — receiving and acting upon information
from the BASIC-PLUS system, providing this user and others with their “‘time slices” at regular intervals, and so
forth. But as far as the user is concerned, the dominant, supervisory “intelligence’ on which he has depended for
allocation of resources (such as the BASIC-PLUS language and system programs) is the BASIC-PLUS system. Al-
though the executive may be the power “behind the scenes,” so to speak, the BASIC-PLUS system is the computer’s
“front office”, or the user representative which entertains requests or commands and ensures that they are carried
out. Indeed, to most users, RSTS/E is BASIC-PLUS: the system and the language.

Certainly, other languages — COBOL and FORTRAN — are available on many RSTS/E systems, and users of these
languages will be communicating with other run-time systems, described in the manuals dealing with those languages.
Users concerned with COBOL and FORTRAN should refer to the appropriate manuals for such information, which
is beyond the scope of the RSTS/E User’s Guide.

CHAPTER 2
THE SYSTEM FUNDAMENTALS

2.1 BECOMING A RSTS/E USER: PROJECT-PROGRAMMER NUMBER AND PASSWORD

In order to become a user, or timesharer on the RSTS/E system, one must be assigned two codes by the system
manager: a unique project-programmer number and a password. These enable the user to “log in”” — to gain access
to the RSTS/E system and its resources, which include I/O (Input and Output) devices, programs of various func-
tions, information stored by the user himself, the BASIC-PLUS language, and optional resources such as COBOL
and FORTRAN-1V. Together, the project-programmer number and the password constitute the user’s identifica-
tion to the RSTS/E system, the means by which it recognizes him as an authorized sharer of its time and resources.
Each time that a user attempts to log into the system, the system will ask for both these codes. If the user correctly
types his assigned number and password, RSTS/E will log him into the system; but if his response is incorrect, it
will not — that is, it will deny him access.

A project-programmer number, as typed by the user, looks like this:
100,101

When printed by the system or in the text of this manual, the project-programmer number is enclosed in square
brackets or in parentheses: [100,101] or (100,101). In this code, 100 is the project number, possibly shared

by a group of users with a common activity or interest; 101 is the programmer number, held by only one user
within the project group. Thus, each user at-a RSTS/E site has a unique project-programmer number. These unique
numbers are used to identify sets of data (files) according to the users who “own” them, and to provide the basis
by which these files are protected from access by certain groups of users. (File protection is discussed later, in
Section 2.4.2.) The project-programmer number is alsc called the account number, because it identifies the user’s
own reserved area for data storage, or his account.

The user’s password is an alphanumeric code assigned him; when he types it in during the login procedure, it is
not printed on the paper or displayed on the screen. This secrecy is intended to prevent unauthorized persons
from reading a user’s password and thus gaining illegal access to the systemror to that user’s data.

NOTE
To preserve the security of the system, a user should
memorize his password as soon as it is assigned, rather
than write it out.

2.2 LOGGING IN: THE HELLO COMMAND

Once the user has been assigned a project-programmer number and password, he may log in at a terminal. First
he should make sure that the terminal’s LINE-OFF-LOCAL knob (or switch)! is set to LINE. This setting estab-
lishes a line of communication from terminal to computer; when this communication exists, the terminal is said
to be on-line.

Once the terminal is on-line, the user begins the login procedure by typing the command
HELLO

and then pressing the RETURN key. Thus the user tells RSTS/E that he wishes to join the system. RSTS/E
responds to the user’s HELLO by printing a system identification line and then a number sign (#), which appears

! Alternate types of user terminals may have a different knob or switch designed to put them on-line. See Part V or the appropriate
hardware terminal manual. ’

2-1

The System Fundamentals

at the left margin of the paper or screen. This number sign is the system’s prompt to the user; it tells him that the
system is waiting for him to type his project-programmer number and to press RETURN. Once these actions have
been performed, the system responds by again prompting the user, this time by printing: ‘

PASSWORD:

The system then waits for the user to type his password and to press RETURN. Note that as the user types his
password, it is not printed at the terminal.

If the codes are acceptable to the system, the user is logged in, and the system prints the daily message at his
terminal. This message, written by the system manager, contains information on any changes or additions to the
. system. Once the user is logged into the system, the terminal becomes the user’s console terminal — the terminal
that initiated his access to the system.

If the codes entered are incorrect, the system prints
INVALID ENTRY — TRY AGAIN
and the user may attempt once more to log in.

After five unsuccessful attempts to log in, the system prints the message ACCESS DENIED and ends the login
procedure.

The entire process of entering the system is shown in the example that follows. Note that although the RETURN
key is pressed to enter each line to the system, it does not echo (appear in print) on the terminal paper or screen.

It does, however, have a visible effect, which is to perform a carriage return/line feed operation. In this example,

as in all others in this manual, the user is employing an LA36 (DECwriter IT) terminal. Characters typed by the user
are underlined to differentiate them from characters printed by the system.

HELL O

RETS VOLR-02 Timesharing Jobh 29 KRI 28-0ct-76 QL1557 FM
#2201
Fassword?

17-00t-75
TO ALl USERS—-
RETS/E TIMESHARING HOURS WILL RE FROM
@330 AM TO 7130 FM TODAY. FOUR NEW
TERMINALS ARE AUVATLARBLE IN THE SYSTEM
ROOM FOR GENERAL USE.

Reariy

The READY prompt following the daily message is first printed when the user is successfully logged into the
system. READY is preceded by a carriage return/line feed operation and followed by a carriage return and 2 line
feeds. It thereafter indicates to the user that he is at command level, a condition of operation in which he may
issue any valid RSTS/E command. At command level, for example, the user may type NEW to create a BASIC-
PLUS program, or OLD to retrieve one already saved. Or, the user may type any of the other BASIC-PLUS sys-
tem commands, any of the resource commands, or any of the commands that run RSTS/E system library pro-
grams. (These types of commands are described in Parts IL, III, and IV of this manual.)

22

The System Fundamentals

3

Another way to log into the system is to enter the project-programmer number on the same line with the HELLO
command, as shown in the following example. This action causes the system to print the PASSWORD: prompt
only. The user’s input is underlined.

HELLO 200/%57

Fasswarad?

Feau

Note that in the preceding example, the user types a slash (/) rather than a comma to separate the project and
programmer numbers. The slash causes no daily message to be printed.

2.3 LOGGING OUT: THE BYE COMMAND
When the user wishes to end his timesharing and leave the terminal, he may type the command

BYE

and then press the RETURN key. Thus the user tells RSTS/E that he wishes to leave the system. RSTS/E responds
to the BYE command by printing the prompt

CONFIRM:

As the CONFIRM: prompt indicates, RSTS/E is waiting at this point for the user to confirm his intention to leave

the system. The simplest and most obvious reply is to say “yes”; this the user does by typing Y, then pressing

RETURN. In response, RSTS/E will dismiss him from the system — i.e., log him out — printing a statistical report

on his storage area and his timesharing session as it does so. This report tells the user how much of his allotted

space he has used, and confirms his identity and that of the system. It also informs him about time: how much
has elapsed since he logged in, and how much of that time was spent processing his input, and the approximate

~ time of his logout.

On the other hand, the user, since typing BYE, may have changed his mind about leaving the system. Perhaps he
has remembered that he intended to modify a BASIC-PLUS program, or proofread a passage of text; for what-
ever reason, he wishes to stop the logout sequence, and remain at RSTS/E command level. Obviously, he needs
to say “No” to the CONFIRM: prompt. This he does by typing N, then pressing RETURN. RSTS/E responds
by returning him to command level and printing the READY prompt.

Y and N are two of the five possible replies a user may give to the CONFIRM: prompt. The other replies are:
I, which allows individual examination and deletion of files; 7, which requests a printing of CONFIRM: replies;
and F, which results in a Fast logout. All five replies are described in the following list:

The CONFIRM: reply Means
N No logout is performed, and the system replies READY.
I Individual file descriptions are printed, each followed by

a 7. To delete a file, the user types K and the RETURN
key;to retain it, just the RETURN key.

? A listing of CONFIRM: replies is printed.

2-3

The System Fundamentals

The CONFIRM: reply ‘ ' Means

Y Yes. Logout is performed, if the user has not exceeded his
disk quota; if he has, RSTS/E will ask that he delete some
file(s). To log out, he must be within quota.

F Fast logout is performed (same effect as Y except that the
report is not printed and 3 form feeds are generated).

NOTE
Users unfamiliar with RSTS/E files, mentioned in the de-
scriptions of I and Y, should read Section 2.4, “THE
DIRECTORY AND FILES.”

For a full description of the logout procedure, including an
example of the I response, see the LOGOUT program in
Chapter 14.

In the following example, the user logs out by typing Y.

BYE

Confirm: Y

Saved a8ll disk filess 204 bhlocks in use

Jotr 29 User 25201 lodgdged off KBI at 28-0ct-76 01:58 PM
Sustem RETS V04B-02 Timesharing

Fur time was 3 seconds

Elarsed time was 26 seconds

Good aftermnoon

Before leaving the terminal, the user should turn the LINE-OFF-LOCAL knob or switch to OFF. (The LOCAL
setting leaves the terminal with power, but disconnected from the system; it then operates as a typewriter.)

2.4 THE DIRECTORY AND FILES

Once a user has written information into his account, he is said to have a directory: a list of the files he has created
and stored, along with information about them — individually and as a group. Files, on the RSTS/E system, are
separate and distinct programs, bodies of data, or empty areas designated for future input.

Perhaps the best way to describe the user’s directory is to look at an example. To print the directory at his
terminal, the user types the command DIR in response to the system’s READY prompt. Many users customarily
request their directories immediately after logging in; thus, they see at a glance the current status of their work
on the system, and are reminded of the names they have chosen for their files.

In the following example, a user, logged in from an LA36 (DECwriter) terminal, requests his directory, which is
then printed out by the system:

IR
Name Ext Size Frot Nate
AVERAG . BAS 2 % 60 28-0ct~-76 8SYIL200,571
FERCNT . BAS 2 < &0 28-Det~76
TERM .00OC 11 < 60 28-0ct~76
REFDLO.TXT 43 K0 28-00t-76

24

L2

The System Fundamentals

FHONE DIR 43 < b0 28-0Dct~76
EXFENS . RAS 29 < AQx 28-0Dct-76

CHOICE . RAS 2 60 28-0ct-74
SOURCE . AT 20 < 16k 28-0ct-76
BACKUF . CMD 1< 60k 28-0ct~74
XX s TET L 60k 28-0ct~76
VISITS.LST 14 < 40> 28-0ct-76

Total of 168 blocks in 11 files i SYIL200+571

Ready

The elements of the directory are described in the remaining sections of this chapter, “Filenames and. Extensions,”
“Protection Codes,” and “Account and File Statistics.”

24.1 Filenames and Extensions

Reading the directory from left to right, one notices first each.file’s filename and extension, which are separated
by a period (.), and appear under the headings “Name” and “.Ext”. The filename and extension may be compared,
with some justification, to the two parts of a person’s name. The filename, or “first name,” is unique in that it
distinguishes the individual, or file, from others having the same extension or “family name.” Thus, one knows
that the first two files in the directory, AVERAG and PERCNT, are separate and distinct members of a family
or class of files identified by the extension .BAS. This extension, as the reader may have supposed, in turn identi-
fies the files’ class as comprising only files written in the BASIC-PLUS language. Thus, AVERAG.BAS and
PERCNT.BAS are the names of two BASIC-PLUS programs. Moreover, considering their filenames, one might
infer that the user has named the first to indicate that its function is to calculate an average, and the second to
indicate that its function is to calculate a percentage.

The user has thus abbreviated the identifying words because RSTS/E ailows a maximum of six alphanumeric
characters in a filename. The maximum allowed for an extension is three alphanumeric characters.

The user, as mentioned previously, has provided the filenames AVERAG and PERCNT. Probably, however, he
did not provide their common extension .BAS. Rather, he allowed the system to supply this extension auto-
matically, as it often does when the user creates a file on the RSTS/E BASIC-PLUS system (described fully in
Part IIT) and does not supply an extension. Thus, the RSTS/E system, as well as the user, recognizes the sig-
nificance of the default extension .BAS — i.e., that it labels a file as a BASIC-PLUS source program. There are
other extensions whose meaning the system recognizes; one of these, CMD, appears in the directory example.
It tells the system that this file contains commands, and can automatically control a program — in this case, the
program called BACKUP.

After the first two .BAS files, the reader encounters some files whose extensions announce that they are not
members of the “family”” of BASIC-PLUS programs, but belong to other identifiable classes or types of files.
TERM.DOC, for example, may be a document of some kind — perhaps, as the filename suggests, a set of instruc-
tions on operating a terminal. PHONE.DIR is almost certainly a telephone directory — perhaps of people in the
user’s department. SOURCE.DAT has a commonly used extension, which indicates that this file contains data
of some kind. The last file, VISITS.LST, may be a listing of visitors to the RSTS/E site. Thus, a filename and
extension, which together are often called the file specification, can indicate generally the nature and function
of the file to which they are applied.

Because a user may eventually accumulate quite a number of files, of several types, in his directory, it is suggested

that he devise a system of descriptive nomenclature, and use it consistently in order to prevent confusion. The
names that appear in this sample directory are typical of those used at many RSTS/E sites.

2-5

The System Fundamentals

The reader should note the following rules for creating RSTS/E file specifications:

1. Only alphabetic and numeric characters (alphanumerics) are allowed in the filename and
extension. Embedded spaces or tabs are not allowed. '

2. A filename must contain from one to six characters.

3. Any extension specified must begin with a dot, and must contain from one to three
characters. '

4. A null or blank extension is permitted, in which case the dot is included in the file
specification, but the extension itself is omitted.

2.4.2 Protection Codes

The reader will notice, in each entry of the directory and under the heading “Prot,” a number in angle brackets

< >. This number is called the protection code, or sometimes just the protection for brevity. Every file is

assigned its own protection code, either by the system (as a default) or by the user. The function of the pro-
tection code is to prevent other users from renaming, deleting, changing, or even reading the file. As is evident in
the following detail from the sample directory, files may have different protection codes. The differences deter-
mine degrees or levels of protection.

CHOICE .RAS 2 % 60k 28~0ct-76
SOURCE . DIAT 20 < 16+ 28-0ct-76
BRACKUF , CMD 1 = 60 28-0ct-76
XX +TST 1 < 60> 28-0ct~-76
VISITS.LST 14 40 28-0ct~76

t ®
Verbally, one can express a file’s level of protection in terms of two variables: the types of users from whom the

file is protected, and the actions — reading and writing — from which it is protected. For purposes of file pro-
tection, the system recognizes three classes of users, identified by their project-programmer numbers:

1. The owner (the creator of the file)
2. The owner’s group, composed of all users having the same project number as the owner
3. All other users not in the owner’s group

Since these two variables — read/write privileges and class of user — determine protection, files are protected by a
number of combinations. One file, for example, might be “‘write protected” against the owner’s project group; that
is, other users with his project number could read the file, but could not rename it, write anything into it, change
any information presently there, or delete the entire file. Another file might be “read protected” as well as

“write protected” against this same group, whose members would then be unable even to view the file’s con-

tents at their terminals. Still another file might be “write protected” only against users who do not share the

owner’s project number; this file could be read by any user at the RSTS/E site, but could be modified only by

the owner and members of his project group.

These two combined criteria for file protection — read/write access and user class — are designated and recognized

numerically by the system, in the form of the protection code. Table 2-1 lists and describes the numerical pro-
tections and their equivalents: ' ‘

2-6

The System Fundamentals

Table 2-1 Protection Codes

If the code is: Then the file is:

1 read protected against owner

2 write protected against owner

4 read protected against all others in owner’s project
group

8 write protected against all others in owner’s project
group

16 read protected against all others who do not have

owner’s project number

32 write protected against all others who do not have
owner’s project number

64 an executable program; if the file has protection <64>,
the other codes (1 to 32 above) have different meanings
(see Chapter 12, Table 12-4)

128 an executable program with temporary privileges

Typically, a file’s protection code is a decimal number that is the sum of the desired combination of the values
in Table 2-1. In the sample directory, for instance, the most common protection code is <60>, or the sum of
the following codes as listed in the table:

32 = write protection against users without the owner’s
project number

+ 16 = read protection against the group above

+ 8 = write protection against the owner’s project group
+ 4 = read protection against the group above

= <60>

Thus, the file AVERAG.BAS, whose protection code is <60>>, can be neither read nor written into by anyone
except its owner; that is, the user who created it. It may be of some interest to the reader that <60>>, on this
particular system, happens to be the default — the protection that the system automatically gives a file when the
user creates one without specifying a protection of his own choice. Thus, the system may be said to respect

the individual user’s privacy to a high degree, automatically protecting the mysteries of his files against all others,
including members of his own project.

Looking at the item labelled a on the detail of the sample directory, the reader notes that the file VISITS.LST

has a protection code of <40>, or the sum of the values 32 (write protection against non-members of the owner’s
project group) and 8 (write protection against the owner’s project group). VISITS.LST, therefore, cannot be written
into or modified by anyone except its owner, although any user at the site may read its information. If this file con-
tains — as has been suggested — a listing of visitors to the RSTS/E site, then one might speculate further on its

2-7

. The System Fundamentals

owner’s reasons for thus liberating its access beyond that of the default. If the approximate number and the identities
of visitors are common knowledge at the site, there would seem to be little reason to protect the listing from anyone’s
eyes.But if the creator of VISITS.LST has sole authority in determining who shall be considered a “visitor” (as
opposed, perhaps, to a client, candidate for employment, or intruder), he would have quite a good reason to pro-

" tect his file, VISITS.LST, from being capriciously edited or amended by other users. Thus, one appreciates some of
the reasons for the variety of protection codes that may be assigned. The following are some typical protection

codes and their meanings:

<60> 32+16+8+4 read and write protection against everyone but owner

<48> 32+16 . read and write protection against all who do not have
owner’s project number

<40> 3248 write protection against all but owner
<42> 324842 write protection against all including owner
<0> ’ no protection at all (any user may read and write)

For executable programs, 64 is added to the above codes.

2.4.3 Account and File Statistics

The user’s directory, in addition to listing the names of his files and their protection codes, also lists information
about the individual and collective status of files under the user’s account. This information tells both the user
and the system who “owns” the files, when they were created, how many there are, and how much storage
space they occupy.

Name .Ext Size Frot late
AVERAG . RAS 2w 60 28-Dct~76 SY:E200957J¢———-—C)
FERCNT . BAS 2w 60 28-0ct-76
TERM .DOC lle— = 60= 28-0ct~76 < ‘GD

REFDLOTXT 43 |« 60> 28-0ct~76
PHONE .DIR 43 |4 60 28-0ct~76
EXPENS . RAS 29 14 60k 28~0ct~-76

©
First, the item labeled b at the right of the directory, SY:[200,57], indicates that all the files listed are on the
public structure (identified by SY:) and “belong” to the user who holds account (or project-programmer)
number [200,57]. .

Within the individual file listings, the number appearing under the heading “Size” refers to the number of blocks
that each file occupies on the disk. On the RSTS/E system, a block is equal to 512 bytes of 8 bits each. The file
TERM.DOC for instance, as the item labeled ¢ indicates, occupies 11 blocks of disk space. PHONE.DIR occupies
43 blocks, EXPENS.BAS 29 blocks, and so on.

A summary line at the end or bottom of the directory tells the user how many blocks are occupied by all the
files together, how many files there are, and — once again — to what account number they “belong.” In this

sample directory, the summary line looks like this:

Total of 169 blocks in 11 files in SY:[200,57]

Finally, note the date that appears at the end of each file listing. This date indicates when the file was created.
As the date d indicates, TERM.DOC was created on October 26, 1976. The same is true of the other files.

2-8

CHAPTER 3
THE SYSTEM RESOURCES

3.1 INTRODUCTION TO THE RSTS/E DEVICES

Without a set of devices at their disposal, users would be unable to print directories, obtain access to files, write
programs, or even log into the system. In short, they would be unable to accomplish any work with the computer,
because they would have no way to input their data, or to cause it to be output once it has been processed. The
RSTS/E devices, therefore, are the vital media by which user and computer write and read information, and com-
municate it to one another.

The terminal is a familiar example of a device. By typing at the terminal, the user transmits information to the
computer, If, for instance, this information consists of a project-programmer number and password, the computer
acts on it by logging in a new job. A program can also make use of a terminal by causing it to print text and by
accepting input data from its keyboard.

Thus, these media of communication between human being and computer, because of the kinds of data transfer
they help to perform, are often called I/O (for Input and/or Output) devices. And, as that abbreviation suggests,
some are used for input and output, some for input only, and some for output only. In the procedure just described,
for example, the terminal functions as an input-and-output device: input, because the user employs it to write
information into the system; and output, because the system employs it to write out an appropriate response to

the user.

Another previously described procedure, asking for a directory, illustrates the I/O function of the disk as well as
that of the terminal. The user types DIR at his terminal. The system, recognizing this command, reacts to it by
scanning the disk for the user’s directory. Once the system finds the directory, it inputs it from the disk into
memory. Finally, it outputs the directory to the user’s terminal.

While the terminal and disk can both be used for input and for output, some devices can be used for only one of
these functions. The paper tape reader and the card reader are input-only devices. The computer can use them to
“read in” a user’s input from punched tape or cards, but not to “write out” its own processed output. The line
printer, however, is an output only device; the computer can use it to “write out” (print) its processed output, but
not to “read in” the user’s input. :

Because the RSTS/E system affords its users some degree of choice in I/O devices, one should be aware of the
functional differences among them, and of the limitations and advantages of each. A user who knows the devices
can easily decide which one best suits his current informational needs. For example, a user may wish to produce a
printed copy of LOTS.TXT, a file that contains 100 blocks of text: clearly, a voluminous body of data. This user
can, of course, request that the system use the terminal for output. But if he does, he is in for a long and probably
a frustrating wait while the terminal labors to print all 50,000 characters a character at a time. This user would be
far better advised to choose the line printer for output, since this device is specifically designed for fast printing.

- Moreover, while the line printer is printing his file, the user is able to employ his terminal for input of other
information.

Experienced users of the RSTS/E timesharing system often make such I/O choices, preferring one device over
another because of its greater efficiency or convenience. At a typical site, for example, one might find a user who
has written (input) the BASIC-PLUS program MYFIL.BAS onto the public disk structure, the set of disks that is
timeshared by all the other current users. Now assume that this user wishes literally to take the program away with
him, in order to run it on another RSTS/E system three hundred miles away. Obviously, he may not remove a disk
from the public structure and carry it off; it contains the programs and data of many other users. Even if he could

3-1

The System Resources

somehow procure a private disk pack, one intended for his use alone, he would find it a heavy and awkward
traveling companion: it can hardly be carried in a backpack or mounted on a bicycle, to say nothing of the
suspicion it would arouse among airline personnel and passengers. What, then, is this itinerant user to do? One
answer is to have the system copy (output) MYFIL.BAS onto a DECtape, a small I/O device consisting of a
260-foot magnetic tape wound on a plastic spool. Clearly, this device, measuring about .75 by 3.75 inches in
diameter, would solve the problem of portability. Once this user arrives at the distant RSTS/E site, he may have
the computer first copy (output) MYFIL onto its own public structure, from which the user may then run the
program.

Meanwhile, back at the home site, another user may need to air-mail her FORTRAN program IFILE.FOR to an
overseas RSTS/E site; to save postal costs and prevent damage, she copies (outputs) the program from the public
structure — where it currently resides — to another device, the paper tape punch. This device “writes” the program,
in the form of coded perforations, on a paper tape, a long, accordion-folded strip of paper that, obviously, is
lighter in weight and less fragile than a spooled tape. Once the paper tape arrives at its destination, programmers
there may first input IFILE by using the paper tape reader (an input-only device), then have their system output
the program to the public disk structure.

Thus, a number of specialized Input/Output operations — féadi_ng, writing, copying — are carried on by user and
computer with the help of devices, each with its own unique capabilities and limitations.

Figure 3-1 illustrates these devices as they might be configured — put together and linked to the computer to form
a system — at a typical RSTS/E site. Note that the machine labeled “computer” is also called the “processor,”
since it computes or processes the data. When many users speak of the “computer,” they actually mean the
processor. Sometimes, it is called the CPU (Central Processing Unit).

OUTPUT

PROCESSOR
(Computer)

MEMORY

LINE PRINTER

\H/‘EE(’)
(Secondary
memory)

TERMINALS

Figure 3-1 A Configuration of Devices

32

The System Resources

3.2 THE PUBLIC DISK STRUCTURE

As discussed in Chapter 1, “Timesharing and RSTS/E,” users share computing time on the RSTS/E system, each
being allotted a “slice” of the processor’s time. The users may share another system resource as well: the array of
devices. In the foregoing section, it was noted that one set of devices (disks) is shared by a number of users
simultaneously. This shared set of devices is called the public disk structure, because it is always accessible to all
users and because the system treats it as a unit. On some systems, it may include many separate disk packs. One
of these, the system disk, contains the system code, language processors, and, possibly, the library of system
programs, some of which are described in Part IV of this manual. The other disk packs (the public disks) contain
the directories and files of the users. (The system disk too may contain some user directories and files in addition
to its system information.)

The user who is logged into the system and working with a disk file is usually unconcerned about which disk in
the public structure happens to contain that file. The particular disk has been chosen by the system according to
current timesharing needs. Each of the disks contains a master list of users’ accounts, and, for each account, a list
of all files stored under that account. The system, therefore, by using these lists, is able to locate a user’s file when
he requests it from his terminal.

This location process can be simply explained by returning to an example of system operation discussed in the
preceding section: requesting a directory. A logged-in user types DIR, and thereby asks the system to print his
file directory at his terminal. Once the system recognizes this command, it responds by running the DIRECT
program, which scans the master list of accounts on each disk. The master list discloses the location of the user’s
files — his directory. Having found the directory, the DIRECT program prints it at the user’s terminal.

Another frequent user action — listing a stored program at the terminal — further illustrates the operation of the
public structure. In this case, the user is logged in under account [100,105] and has been working on one file for
some time — perhaps modifying a BASIC-PLUS program. This user now completes her modifications, checks the
revised file, and saves it. Before logging out, however, she wishes to edit another one of her BASIC-PLUS programs:
MYFILE.BAS, a file containing 30 or so lines: brief enough to be quickly and conveniently printed at the terminal.
Before she can edit the program, she must take several steps: she must tell the system that she wishes to access an
“old” (previously stored) program, she must tell it the program’s filename, and finally she must tell it to list the
program at her terminal. ’

She begins by typing the command OLD; when the system prompts her with OLD FILE NAME--, she types
MYFILE (the system assumes the extension .BAS). Once the system receives the filename, it locates the file,
scanning each public disk’s master list of accounts in an effort to locate the user’s file directory on that disk. Thus,
the system is guided through the public disk structure to the user file directory [100,105], and ultimately to the
location of MYFILE.BAS. Now the user, seeing the READY prompt at her terminal, actually causes the file to be
listed at the terminal. She does so by typing LIST, whereupon the system, understanding this as a request that it
list the current program, MYFILE.BAS, prints (outputs) the file at the user’s terminal. Now the user may read the
file and modify it as she wishes.

3.3 PRIVATE DISKS

A good deal of system file activity — such as creation, access, editing, and deletion — takes place on the public disk
structure. Since it is the largest constantly available medium of file storage, it is generally the busiest. But not all
the disks used on a system need be in the public structure. Some of them may be private disks, disk packs or
cartridges that “belong” to a single user account or perhaps to a few user accounts, in the sense that these accounts
alone are on the disk(s). Only if a private disk already contains an account can files be created under that account
on the disk. Users without one of these private disk accounts can read or edit a private disk file, but only if its
protection code permits.

For example, assume that a private disk mounted on drive DK3: belongs only to the members of a specific project
group, to those users with project number 200. In such a case, the users who hold account numbers [200,30],
[200,31], [200,32], [200,33], etc. may all create files on private disk DK3:. A user with account [210,33], how-
ever, may not create files on DK3:, although, protection codes permitting, he may read or edit files already created
on that disk.

33

The System Resources

From the user’s point of view, then, one important difference between a private disk and one on the public structure
is that he may always create a file on the public disk, whereas he may do so on a private disk only if he has an
account number there. On both types of disk, file protection codes govern his read and write access to existing

files. Another difference, which might concern him less, is that a private disk can be mounted or dismounted while
the system is running, whereas a public disk must always be mounted during timesharing. This difference, obviously,
is of special concern to the owner(s) of the private disk and to the system manager, who, it should be noted,
determines which disks on the system are public and which are private.

3.4 ASSIGNABLE DEVICES

Disks, public and private, are generally not assignable: that is, a user may not, except in rare and special cases,
request one for his exclusive, temporary use; even a private disk is usually shared by a number of users. To satisfy
the individual user’s frequent need for input and output media devoted to his work alone, RSTS/E provides an
assortment of assignable dévices. DECtapes and magtapes, for example, are assignable by the individual user for his
own input or output; card punches and paper tape punches are assignable for his output. Their assignability depends,
of course, on their physical availability: obviously, if a DECtape or a card punch is being used by one person,
another cannot immediately assign it to himself; should he try, the system will print an appropriate message at his
terminal (DEVICE NOT AVAILABLE, for example). ‘

Within this class of assignable devices, there are degrees of accessibility. A DECtape, for example, with a single
directory and no accounts, permits a user access to all the files it contains. A magtape, on the other hand, which
contains account numbers associated with its files, permits a user access to any files if he knows their account num-
bers. Paper tape punches and card punches, being unit record devices, contain no files and therefore impose no such
restrictions on access; nor do line printers, which are also unit record devices. If nobody else is using a punch or
printer, and if the system manager has not restricted its availability, a user is free to assign it. And anyone may use
an unoccupied terminal — possibly even a person who lacks an account number and password and is therefore not a
recognized user, since there are commands he can successfully give without first logging in.

3.5 A LIST OF RSTS/E DEVICES

The following list contains brief descriptions of devices available on RSTS/E systems, including their general
functions, advantages, and disadvantages. Following the full name of each device are two items; the abbreviated
name, or the specification, by which it is known to the system, and its I/O function (input and output, input only,
or output only). .
Devices are also classified as file structured or non-file structured; a file structured device can store files, while a
non-file structured device cannot. However, a file structured device can be treated by the system as non-file
structured. This capability allows an experienced user to bypass some of the limitations of file structured devices.

The devices are listed according to degree of legibility: those specifically intended for human reading appear first;
next come those which, with some effort, are humanly decipherable; finally come those which only the computer
can “read.”

TERMINAL KB: or TT: or TI:
(input and output)

The terminal is a non-file structured device. In addition to human readability, its most significant advantage is that
it is interactive; that is, it allows the user to communicate with the system and thus to control his job while it is
running. Another obvious advantage of the terminal is its operational similarity to a common off-line, non-file
structured, input-only device: the typewriter. A user who can type will have no trouble in mastering the mechanics
of operating the terminal.

34

The System Resources

A disadvantage of the terminal is its inconvenience for output of large amounts of data. Compared with a line
printer, a hard-copy terminal prints quite slowly. And though a video terminal may print rapidly, it may not
produce a paper copy that the user may remove and read at his own pace. (Some video terminals are equipped
with hard-copy devices, but these print slowly.)

LINE PRINTER LP:
(output)

D

=

The line printer is a non-file structured device. Like the terminal, it produces human-readable output, but at much
greater speed. This speed is its most important advantage over the terminal; the line printer is the fastest available
device for producing hard copies of information.

The line printer’s relative disadvantages arise from its singular purpose: simply to output information, and that only
in the form of a human-readable hard copy (a listing). Its output therefore, unlike that of tapes, cards, and disks,
cannot be “read” by the computer: there is no way to recycle one of its file listings through the system. Therefore,
if the printed file has been deleted from the machine-readable device (disk, DECtape, etc.) on which it resided, the
user has no way to edit it by computer. He must resort to manual editing: handwriting, “mark-up,” cutting, pasting,
typing, etc. And, if that deleted file was 2 program, he cbvicusly cannot run it Another disadvantage of the line
printer is its inability to output more than one user’s data concurrently, in the manner of the disk. Before assigning
a busy line printer, a user must wait for it to finish its current job.

PAPER TAPE PR: and PP:
(input and output)

Paper tape is a non-file structured device. It has three significant advantages over other machine-readable media: it
is inexpensive, easily shipped or mailed, and can be deciphered by a person who knows its punched code.

Most of paper tape’s disadvantages are inherent in its physical makeup. Holes punched in paper cannot be “erased”
or satisfactorily repaired: thus, a paper tape must always contain the same data; changing or editing requires a new
tape. Also, paper is a low-density storage medium: a good deal of it is required to hold information in any form —
even as tiny perforations. And paper, of course, is easily torn or creased.

In addition to its intrinsic disadvantages, paper tape, for full usability, requires two additional devices, one for input
and one for output: namely, the reader and the punch. These are described betow:

PAPER TAPE READER PR: (input)
The paper tape reader is a non-file structured device. Its advantages are that it is compact and performs
automatic input that is faster than user input from a terminal. Its input speed, however, is much slower
than that of DECtape, magtape, and disk. And it requires a good deal more intervention by the user.

PAPER TAPE PUNCH PP: (output)
The paper tape punch is a non-file structured device. Its important advantages and disadvantages for
output are the same as those of the paper tape reader for input.

3-5

The System Resources

. CARDS CR: and CD:
(input and output)

Cards are non-file structured. Like paper tape, they are machine readable but humanly decipherable. Because they
are inexpensive, easy to mail individually or in small quantities, and can be coded or annotated with a pencil, they
are widely used to gather data for public and commercial operations: school registrations, consumer billings and
surveys, and so on. Cards can be prepared off-line (by keypunch), thus conserving system time and resources.

“Do not bend, fold, spindle, or mutilate.” This admonition, part of contemporary folklore, succinctly expresses

a major disadvantage of cards: their susceptibility to damage. Composed of card paper, they also share all the dis-
advantages of paper tape. For full usability, cards require two additional devices: the CARD READER (CR: and

CD:) and CARD PUNCH.

DECtape DT:
(input and output)

S

The DECtape is a file structured device. Its significant advantages over paper storage devices are its far greater I/O
speed, its higher density of data storage, and its reusability. Unlike paper tape or cards, it can be erased, edited, and
rewritten. And compared with the paper media, it involves less handling by the user, because it requires only one
additional device to fulfill its I/O capability: the DECtape DRIVE, which performs both input and output. The
DECtape, because it has a directory structure, also allows a user to change files in place, and therefore requires less
manipulation by the system than does a magtape. Because of its small size, the DECtape is easily handled, carried,
and stored. It is physically stronger and less sensitive to climate than cards, paper tape, and magtape.

The DECtape’s small size presents one disadvantage: it cannot store as much data as a magtape or disk. Also, its
storage density is less than that of a disk. And since the DECtape is a magnetic storage device, it cannot be humanly
decoded.

MAGTAPE MT: or MM:
(input and output)

(D)

The magtape is a file structured device. Unlike DECtape, it has no directory; it does, however, contain an individual
account associated with each file on the tape. It shares with DECtape the following advantages over paper storage
devices: greater speed, higher density, reusability, and less handling by the user. Also, it requires only one other
device for both input and output: the MAGTAPE DRIVE. The magtape’s size and shape make it convenient for
storing system files off-line.

The magtape shares two relative disadvantages with the DECtape: its speed and density are not as great as those of
the disk. And, as noted, it is somewhat more susceptible to damage than DECtape, and requires more system
manipulation. Also, the magtape is a sequential medium: in order to reach a specific file on the tape, the system
must first read all the files preceding it. And a specific magtape file cannot be deleted without also deleting all the
files that follow it.

3-6

The System Resources

DISK SY:, DF:, DK:, DP:, DB:, DM:, or DS:
(input and output)

(©

The disk is a file structured device. By now, the reader is probably aware of its advantages: of all devices, it is
fastest, highest in density, largest, most reliable, and most durable. Like DECtape and magtape, it is reusable. And

it far surpasses those devices in the number of accounts and files it can hold. For input and output, the disk requires
one additional device: the DISK DRIVE., The disk involves less human handling than any other device. For all these
reasons, it is chosen for the RSTS/E public structure.

The disk’s obvious disadvantages are its large size, heaviness, and high cost. These make it less practical for off-line
storage, for travel, and for ownership by a single user. And since the disk — like DECtape and magtape — is a
magnetic device, it is not humanly decodable.

3.6 DEVICE NAMES: PHYSICAL AND LOGICAL

3.6.1 Physical Device Names

In the foregoing list of RSTS/E devices, each device’s specification, the name by which it is known to the system,
appears beside the device’s full name. For DECiape, for example, the system’s name is DT:. Such a specification,
also called a physical name, is generally followed by a decimal unit number, which, in the case of a storage medium,
is the number of the drive on which the medium is mounted. This number, therefore, serves to distinguish devices of
the same kind according to their physical locations on the system.

For example, three users may be simultaneously creating files on three DECtapes, physically named DTO:, DT1:,
and DT2:. These physical device names separate the three DECtapes — from the point of view of each user and of
the system.

To elaborate on this example, one of these three users, the current “owner” of DTO:, is creating on that device a
text file named NANCY.TXT. From the system’s point of view, that file’s more specific name, or file specification,
is DTO:NANCY.TXT — the filename and extension, preceded by the physical name of the device on which the file
resides. The standard colon (:), about which the reader may have been wondering, thus serves not only to identify
the device name, but also to separate and to distinguish it from the filename.

A device name, in a file specification, performs the important function of identifying a file unequivocally. For
example, assume that a DECtape “owner” is working on a file whose specification is DT1:FIRST.BAS and that

this user has ASSIGNed the device DT1:. This user, furthermore, already has on his account an “old” or existing

file of the same name — not on DECtape but on the public disk structure, a resource he has not been using because
he has been working on the DECtape instead. But now he closes his DECtape file and returns to the public structure,
without first relinquishing his “ownership” of the DECtape DT1: via the DEASSIGN command. Thus, although he
is sharing the public disk structure with a number of current users, he still “owns” the DECtape DT1:, because he
has not revoked his original device assignment command, ASSIGN DT1:. (The ASSIGN and DEASSIGN commands
are explained in Part II.)

Sometime later, this user wishes to reopen and edit the file DT1:FIRST.BAS — that is, the FIRST.BAS that resides
on “his” DECtape, not the FIRST.BAS that resides on the public structure. If he were to forget the physical device
name DT1: in specifying the file, and simply type FIRST.BAS, he would summon not the DECtape but the disk
file, and with it ample possibility for confusion. The system will retrieve the disk file FIRST.BAS because the
system always assumes the public disk structure as the default device.

37

The System Resources

A RSTS/E user should, of course, protect himself against this sort of confusion by being careful when specifying
duplicate filenames. The system, fortunately, cannot be so confused: it always “‘remembers” files not only by their
names and extensions, but by their host devices as well. Thus, an individual user may have created, at various times,

a number of files on devices other than public disks. Depending on the drives running these devices, the RSTS/E
system would “know”” and recognize these files by the following specifications: DT2:DATA3.REP, DT3:INDEX.001,
MT1:ARTHUR.NAA (a magtape file), and DK5:PRIVAT.GRP (a private disk file).

3.6.2 Logical Device Names

Any RSTS/E device can have, in addition to its physical name, a user-assigned logical name. In other words, a user,
if he so desires, may give to a device a name of his own choosing. This name, like a filename, can contain from one
to six alphanumeric characters, without embedded nulls, tabs or spaces, and including the standard colon separator
(:). By issuing a variation of the ASSIGN command, a user may, for example, assign to the logical name INDEX: to
DECtape DT3:. This logical name will be recognized by the system until the logical name is DEASSIGNed by the
user.

The reader may wonder at this point why a logical name would be used. There are several good reasons for logical
naming. An obvious one is implied in the hypothetical name INDEX:; it seems to describe the nature of the informa-
tion residing on DT3:, and therefore may be easier for the user to remember than the physical name with its unit
number 3.

But there are more specific reasons for logical names. The fundamental advantage of a logical name is that, unlike a
physical name, it does not depend upon where — i.e., on what drive — the medium is mounted. Therefore, a user may
choose a logical name without regard to what device drives may be available at some future time. For example, a
user writes a BASIC-PLUS program that, at several points, accesses a specific magtape for statistics. In her program,
the user refers to this magtape by the logical name STATS. The advantage of STATS over a physical name is this: if
the user were to specify a physical name such as MT1: for the magtape, the success of her program, as written, would
depend on the availability of magtape drive #1 at the time she wishes to run the program. What if the drive were in
use or inoperative — “down” — at the time? If another drive, say #2, were available, she could use it, but would

first have to edit her program accordingly, changing each occurrence of “MT1:” to “MT2:” — a tedious procedure.
So by assigning “her” magtape the logical name STATS before running her program, she ensures the system’s
recognition and access of that magtape whether it is mounted on drive #1, #2, #3, etc.

A similar use of logical names is to enhance the efficiency of a batch job, an operation which does not require
terminal interaction. Typically, such a job is “programmed” by one user for later execution by another. For
instance, a programmer creates a large batch job in the morning to be run by an operator at night, when there are
fewer users on the system. The batch “program” or control file, like the BASIC-PLUS program in the preceding
example, accesses a magtape. If the programmer refers to the tape by a logical name in his batch control file, and
informs the operator of this name, he need not be concerned about the availability of a specific magtape drive. Any
one will do, since the system will recognize the logical name once the operator assigns it.

About device names in general, it should be noted that the system always recognizes and accepts a device’s physical
name, whether or not a logical name has been assigned to that device. Thus, a DECtape running on drive #2 and
assigned the logical name STAR can be specified by the user as DT2: or as STAR. Also, some logical names, at the
system manager’s discretion, can be made system-wide: known to, and usable by, all other users. One such system-
wide logical name is SY:, which designates the public disk structure. Since SY: is a logical name for a set of devices,
it need not have a unit number, and would probably be confusing if it did. SYO:, however, is always the system
disk.

PART 11
ADAPTING SYSTEM RESOURCES: DEVICES AND DEFAULTS

CHAPTER 4
FUNCTIONS OF THE RESOURCE COMMANDS

This part of the User’s Guide contains a set of commands which apply and adapt system resources such as devices
and accounts to the needs of the individual user. Among the functions performed by these commands are device
assignment and deassignment, logical naming of devices and accounts, and changing protection of files. Thus, the
resource commands enable the user to make full use of available hardware and of services.!

The resource adaptation commands have a format that resembles English grammar. The reader will note that most
of these commands are English verbs: ASSIGN, DEASSIGN, and REASSIGN. And as verbs, they often specify
objects of their actions. These objects can be device specifications, protection codes, accounts, etc. Therefore, the
command string

ASSIGN DTO:

which consists of the command ASSIGN followed by the device specification DTO:, tells the system to reserve
DECtape unit O for the user who has given the command.

Sometimes, a resource command need not specify an object of its action, either because the object is understood
by the system, or because an object is not needed to complete the command’s meaning. DEASSIGN used alone,
for instance, tells the system to release all devices from the user’s control. And TAPE, which never needs an object,
tells the system to disable the terminal echo feature.

Table 4-1 is an overview of the resource commands — a guide to their functions and their locations within Part II:

Table 4-1 A Guide to the Resource Commands

Command & Format Section
PHYSICAL DEVICES
Reserving ASSIGN dev: 5.1
Releasing DEASSIGN
DEASSIGN dev: 5.2
Transferring control REASSIGN dev:job-number 53
Disabling terminal echo TAPE 5.8.1
Enabling terminal echo KEY 5.8.2
LOGICAL NAMES
Associating with device ASSIGN dev:logical-name 54
54.1
542

! Before attempting to issue commands, the user should check to see if his terminal has been set in BASIC-PLUS EXTEND mode, in
which spaces and tabs are significant (see Section 9.2.1).

4-1

Functions of the Resource Commands

Table 4-1 (Cont.) A Guide to the Resource Commands

Command & Format Section
LOGICAL NAMES (Cont.)
Associating with account ASSIGN [proj,prog] 5.7
Cancelling logical association DEASSIGN logical-name 544
‘ DEASSIGN@
DEASSIGN [proj,prog] 5.7
System-wide logical names 5.5
Pack identification label 5.6.1
LOGICALLY NAMED DEVICES
Reserving ASSIGN logical-name: 543
Releasing DEASSIGN logical-name:. 543
Logically named disk pack or DECpack cartridge 5.6.2
Logically mounting disk pack or DECpack cartridge 5.6.1.1
CHANGING DEFAULTS
Changing protection default ASSIGN <prot> 6.1
Changing magtape labeling default ASSIGN MTn:.label 6.2

CHAPTER 5
CONTROLLING DEVICES AND ACCOUNTS

5.1 RESERVING A DEVICE: THE ASSIGN COMMAND)
The ASSIGN command reserves an I/O device for the use of one programmer (i.e., one job number).

To reserve a device for his exclusive use, the user types the command ASSIGN and an object, in this form:
ASSIGN dev:

The object dev: is a device specification. (For a list of possible specifications, see Table 5-1.) If the device is available
for use, the system responds by printing the prompt

"READY
The user, seeing the READY prompt, may then perform I/O with the assigned device.
If the device is not available for use, the system responds with the message
?DEVICE NOT AVAILABLE

There are several reasons for a device’s unavailability; it may be 1) opened or assigned by another user, 2) reserved
for a specific operation (a terminal may be in use as a pseudo keyboard), 3) restricted by the system manager for
privileged use or hardware maintenance.

If the device is not even configured on the system, the user receives the error message INOT A VALID DEVICE.

In the following example, a user successfully assigns line printer 0, but tries unsuccessfully to assign the high-speed
paper tape reader, because that device is unavailable. (The user’s input is underlined.)

ASSIGN 1P:
READY

ASSIGN PR: :
DEVICE NOT AVAILABLE

If more than one job is logged into the system under a single account number, only the job (i.e., user) performing
an ASSIGN (or DEASSIGN) is affected by that command. Devices reserved by a job remain in that job’s control
until the user who created the job releases the devices or logs off the system. Because devices are controlled by a
job, the device assighments remain in effect even if the user changes accounts.

5.2 RELEASING A DEVICE: THE DEASSIGN COMMAND

The DEASSIGN command releases an assigned device from the user’s control back to the system’s supply of available
devices. Thus, DEASSIGN makes the device available for use by other jobs.

Issued with no device specification, DEASSIGN releases all the user’s (job number’s) assigned devices. For example

DEASSIGN

releases all devices that the user has assigned under the current job number. If a user does not issue this command
" before logging out, the system itself performs a DEASSIGN when the user does log out.

5-1

Controlling Devices and Accounts

Table 5-1 Device Specifications

Specification

Device

DF: DK:,DP: DB: DM: DS:, or SY:

RSTS/E public disk structure as a whole

SYO0: System disk (the unit which was bootstrapped)
DFO: RF11 disk
DKO: to DK7: RK11/RKOS5 disk cartridge units O through 7
DPO: to DP7: RP11/RP02/RPO3 disk pack units 0 through 7
DBO: to DB7: RPO4 disk pack units 0 through 7
DMO: to DM7: RK611/RKO06 disk cartridge
DSO0: to DS7: RH11/RS03/RS04 fixed head disk units O through 7
PR: High-speed paper tape reader
PP: High-speed paper tape punch
CR: CR11 punched or CM11 mark sense card reader
CD: CD11 punched card reader
MTO: to MT7: TM11/TU10 or TS03 magtape units.0 through 7
MMOQ: to MM7: TMO02/TU16 or TU45 magtape units O through 7
LPO: to LP7: Line printer units 0 through 7
DTO: to DT7: TC11/TUS56 DECtape units O through 7
KB: Current user terminal
KBn: Terminal n in the system
TTn: Terminal n in the system (synonym for KBn:)
TI: Current terminal (synonym for KB:, the terminal that initiated
the job)
DXO0: to DX7: Floppy disk units 0 to 7
NOTE

The user can reference LPn:, DTn:, DXn:, KBn:, MMn:
and MTn: where n is between O and the maximum num-
ber of such units on the system. LP:, DT:, DX:, MM:
and MT: are each the same as specifying unit O of the

related device.

To release a specific device, the user may give the DEASSIGN command followed by a device specification. For

example
DEASSIGN LP:

releases line printer unit 0.

5-2

Controlling Devices and Accounts

The DEASSIGN command, when used to release a magtape, automatically causes the magtape to return to the
system’s labelling default. :

5.3 TRANSFERRING A DEVICE: THE REASSIGN COMMAND
The REASSIGN command transfers control of a device to another job. For example, if DECtape unit 1 is under
control of the current job, the command

REASSIGN DT1:8
transfers control of the DECtape to job number 8.

In performing this transfer between two jobs, the REASSIGN command also prevents a third job from gaining
control of the device. In the foregoing example, job number 8 might be busy with an operation that prevents it
from using DT1: immediately after reassignment. If job number 20, for instance, attempts to assign this DECtape
before job number 8 is ready to use it, the attempt will be unsuccessful.

An attempt to reassign control of a device to a nonexistent job causes the system to print the ZILLEGAL NUMBER
error. If the device is open or has an open file, the system generates the error JACCOUNT OR DEVICE IN USE.
Before transferring control, the user must close the device, or close any files open on the device.

Magtape users should note that the labelling format, density, and parity characteristics assigned to a magtape unit
are preserved in the REASSIGN command’s transfer.

54 ASSIGNING AND USING LOGICAL NAMES: THE ASSIGN AND DEASSIGN COMMANDS

Logical names for devices, discussed in Section 3.6.2, are assigned by the user and do not depend on the physical
device specifications. Thus, a user who writes a program referencing physical devices can give these devices logical
names of his own choosing in the program. Before running the program, he can issue the ASSIGN command to
associate his chosen names with the devices. This action makes the program independent of the devices’ physical
locations on the system.

To associate a logical name with an assignable physical device, the user types the following form of the ASSIGN
command:

ASSIGN dev:logical name

where dev: is the specification of the physical device. The logical name can be from one to six alphanumeric
characters. A job can have a maximum of four logical name assignments at a time. If the user attempts to make
a fifth logical assignment, the system prints the error message JACCOUNT OR DEVICE IN USE. A logical
association is unique to the job and is preserved during CHAIN operations. And because the logical assignment is
job-related, it is also preserved when a user changes accounts. The command does not reserve the device but
-merely associates the logical and physical names.

5.4.1 Associating Multiple Logical Names with One Device
If the user makes two logical name assignments for the same device, the system recognizes both logical names as

belonging to that device. For example:

ASSIGN DT1:A
READY

ASSIGN DT1:B
READY

As a result of these commands, the system associates both logical names A: and B: with DECtape unit 1.

5-3

Controlling Devices and Accounts

If the user associates two different devices with the same logical name, the system replaces the former logical
assignment with the latter assignment. For example:

ASSIGN DT1:A
READY

ASSIGN DT2:A
READY

After execution of these commands, the system associates logical name A: with DECtape unit 2.

5.4.2 Associating a Valid Physical Name with a Device
If the user associates a device with a valid physical device name, the system recognizes the logical, and not the
physical, assignment. For example:

ASSIGN DT0:DT4
READY

The system subsequently associates the physical device designator DT4: with DECtape unit 0. The system makes
this association only for the job that has assigned this logical name. When another job requests DT4:, the system
will in fact attempt to access the physical device DT4:.

5.4.3 Reserving and Releasing a Logically Named Device
To reserve a device for which a logical name exists, the user may type the ASSIGN command, followed by the
logical name and a colon. The command takes the following form:
ASSIGN logical name:
The system then reserves the associated physical device if it is available. Note that the colon is required.

The following commands reserve DECtape unit 1 and associate a logical name with that device:

ASSIGN DT1:
READY

ASSIGN DT1:ABC

As a result of these commands, a BASIC-PLUS statement of the form OPEN “ABC:FILE.EXT” AS FILE 1in a
subsequently executed BASIC-PLUS program attempts to open FILE.EXT on DECtape unit 1. Also, the subsequent
use of ABC: in any system command refers to DECtape unit 1. An attempt to refer to a device by an unassigned
logical name generates the error ’NOT A VALID DEVICE.

To release control of the physical device if a logical name is still in effect, the user may type the following form of
the DEASSIGN command:

DEASSIGN logical name:
Note that the colon is required. This command releases control of the physical device associated with the logical

name. And any device, of course, can be released by issuing DEASSIGN with a physical name. Neither of these forms
of the DEASSIGN command, however, cancels the association between physical device and logical name.

Controlling Devices and Accounts

5.5 SYSTEM-WIDE LOGICAL NAMES

At the system manager’s discretion, a system-wide logical name may be associated with a device or a device and an
account on the device. This name, once assigned, may be used by all jobs on the system. For example, a manager
associates the logical name CUP: (for Commonly Used Programs) with account [3,4] on the disk cartridge DK3:.
Subsequently, a user may run a program FOO that is under account [3,4] on DK3: by typing the command

RUN CUP:FOO
As a result of this command, the system searches for the file FOO.BAC under account [3,4] on RKO5 disk unit 3.

On the other hand, the manager may associate a system-wide logical name with a physical device name only, without
specifying an account on that device. In this case, the default account is that of the job accessing the device. If, for
example, the disk pack DP1: has been assigned the system-wide logical name SCRACH:, a user who types the
command

RUN SCRACH:MYFILE
will cause the system to look only under his account on DP1: for the program MYFILE.

The default account associated with a system-wide logical name may be overridden by specifying another account
after the logical name. For example, a user whose account is [200,210] wishes to run the program OTHER from
account [200,240] on disk pack SCRACH:. To do so, this user types

RUN SCRACH:[200,240] OTHER

As a result, the system searches the disk pack for the file OTHER.BAC under account [200,240] rather than under
any account associated with the logical name or under the user’s own account [200,210] . Thus, the account
appearing after the logical name overrides the default account.

NOTE
If the system manager has associated an account with
the system-wide logical name, the order in which device
name and account are specified is significant. If the user
in the preceding example were to type

RUN [200,240] SCRACH:OTHER

The system would search for the file OTHER under the
account associated with the logical name. If no account
were associated with the logical name, the system would
in fact search for the file under the user’s own account
[200,240] .

5.6 DISK ACCESS BY PACK IDENTIFICATION LABEL OR LOGICAL NAME
This section illustrates how a disk may be accessed by one of three types of names: a physical name, a system-wide
logical name (e.g., a pack identification label), or a user-assigned logical name.

5.6.1 Disk Access by Pack Identification Label

Each disk pack or DECpack cartridge on the system has written on it a pack identification label: for example,
MYPACK. This label is not a physical name, because it is independent of which drive unit currently holds the pack.
But, as this section explains, the user may turn a pack identification label into a temporary system-wide logical name.

In order to access files on the disk, the user must first logically mount the disk pack — that is, establish, on the
system, the association between the pack and its identification label, MYPACK. Since this association is established

5-5

Controlling Devices and Accounts

within the executive’s tables, the label becomes a system-wide logical name for the disk pack. Logical mounting is
performed when the user specifies the pack identification labet in the CCL command MOUNT (see Section 20.2.1).

After logically mounting a disk pack or DECpack cartridge, the user may refer to it by its pack identification label.
For example, to print a directory of the current account on MYPACK, which is logically mounted on drive unit 1,
the user types the command

CAT MYPACK:

The label, because it is a system-wide logical name, allows all current jobs to refer to a disk pack or DECpack with-
out concern about its current drive unit number. The name MYPACK is of course temporary, because the user can
later logically dismount the disk pack or DECpack. '

5.6.1.1 Logically Mounting a Disk by System Command: MOUNT — The user can logically mount a disk pack
during timesharing by the MOUNT command. This command’s function is similar to that of the UMOUNT library
program. MOUNT, however, is not a CCL command; thus, the UMOUNT program need not be present in the system
library in order for the MOUNT command to work. But if the CCL command MOUNT is installed on the system, it
takes precedence over the system command MOUNT. (See Section 13.1.) There is no system command to logically
dismount the disk. :

To logically mount a disk pack, the user types the system command MOUNT in the following format:
MOUNT dev:pack id[/RO[NLY]]

In this format, dev: represents the device designator of the specified disk drive (DK1:, for example). The term pack
id represents the pack identification label of the disk pack (MYPACK, for example). If desired, the file specification
option /RONLY (Read ONLY) may be included (see Section 12.5.3).

5.6.2 Disk Access by Logical Name: The ASSIGN Command

The ASSIGN command, followed by 1) the pack identification label of a logically mounted disk pack or DECpack,
and 2) any alphanumeric string from one to six characters long, logically associates the alphanumeric string with
the pack. In other words, the string becomes a logical name for the pack. In the following example, the user first
logically mounts a disk pack, then uses ASSIGN to make the logical association:

MOUNT DP1:MYPACK
READY

ASSIGN MYPACK:ZOOMAR
READY

Afterward, the user may type the logical name ZOOMAR: anytime he wishes to refer to the pack logically mounted
on RP disk drive unit 1. Note that ZOOMAR: is a job-local logical name and applies only to one current job, whereas
the label MYPACK is a system-wide logical name, and applies to all current jobs.

After he assigns this job-local logical name,<h€ user can refer to a file FILE.EXT on the pack MYPACK (logically
mounted on RP drive unit 1) in any of the following four ways:

by physical device name, DP1:FILE.EXT

by pack identification label, MYPACK:FILE.EXT
by logical device name, ZOOMAR:FILE.EXT
or by system-wide logical name. SCRACH:FILE.EXT

The association between the pack identification label and the physical device remains in effect until the pack is
logically dismounted by the DISMOUNT command (see Section 20.2.4). The association between the logical name

5-6

Controlling Devices and Accounts

’

and the physical device remains in effect until the DEASSIGN logical name command is issued, or until the job is
logged off the system.

In searching for a specified device, the system follows this procedure: first, it determines if the device name is a
job-local (user-assigned) logical name; if it is not, the system determines if it is a sysiem-wide logical name; finally,
if the device name is neither of these, the system assumes that it is a physical device designator.

5.7 LOGICAL ASSIGNMENT OF A USER ACCOUNT
The ASSIGN command, followed by a user account number, establishes a logical association between that account
and the commercial at sign (@) character. For example, the command

ASSIGN [100,101]

associates the @ character with the account [100,101]. The @ character, therefore, when used in subsequent com-
mands and program statements, refers to account [100,101]. For example, the command CAT@ prints a directory
of account [100,101]. Moreover, BASIC-PLUS statements such as

OPEN “[100,101]FILE.EXT” AS FILE 1
can be shortened in the following manner:
OPEN “@FILE.EXT” AS FILE 1

If an account has not been logically assigned, an attempt to refer to it by the @ character generates the error
ILLEGAL FILE NAME.

To cancel the association between the @ character and the account, the user may type the DEASSIGN command in
one of two forms:

DEASSIGN [100,101]
or
DEASSIGN @

The logical assignment remains in effect until the user issues the DEASSIGN @ command or until he logs off the
system, or until he makes another assignment. Because the logical assignment of an account is job-related, it remains
in effect even when the user changes accounts.

5.8 TERMINAL ECHO SETTINGS

5.8.1 Disabling the Terminal Echo: The TAPE Command

The TAPE command, followed by a carriage return, disables the terminal echo feature while the low-speed reader
(located on some terminals) is reading a paper tape into the system. This command, in other words, stops the
terminal from printing what is on the paper tape, and thus avoids meaningless output by the terminal. The user
first types

TAPE

then the RETURN key. The user then inserts the tape in the low-speed reader and sets the reader’s control switch
to START.

Before giving the TAPE command, the user must cause the system to expect the tape input. For example, the
sequence

57

Controlling Devices and Accounts

NEW PROG
READY
TAPE

causes the system to await entry of a source program file from the terminal tape reader. Note that the system does
not print READY after the TAPE command, because TAPE disables the terminal echo. The terminal echo feature
is disabled so that the program is not listed on the terminal as it is read. This suppression of printing allows faster
input than typing

NEW PROG

and then making the system read the tape through the low-speed reader. A program listing can be obtained on a
line printer or on the terminal at a later time, if necessary.

In TAPE mode, RUBOUT key characters are ignored. RETURN and LINE FEED key characters are transmitted as
is, but the LINE FEED or RETURN key characters are not appended since the next character on the input tape is
the proper second character.

The TAPE command does not cause suppression of error messages.

5.8.2 Enabling the Terminal Echo: The KEY Command

Since no characters input from the terminal keyboard or reader are echoed following the TAPE command, the KEY
command is provided to again enable the terminal echo feature. The user is advised to type the LINE FEED key
before issuing the KEY command in case the last line input was not terminated with a carriage return/line feed pair.
The command is typed as

KEY

and entered to the system with the LINE FEED or ESCAPE key.! (Carriage return characters are not treated as
delimiters when the terminal is in TAPE mode.) Note, however, that the KEY command is not echoed at the
terminal, because echoing has been disabled. The READY prompt, on the other hand, is echoed and indicates to
the user that the terminal echo is once again in operation. Following successful entry of the KEY command,
characters are again echo-printed at the terminal.

5.9 INPUT AND OUTPUT CONTROL CHARACTERS

The control characters described in this section are to aid the user in performing input/output operations at the
terminal. A character preceded by the word “control” (abbreviated as CTRL) is typed by holding down the CTRL
key, typing the character (C, for example), and releasing both keys.

59.1 CTRL/C

Typing a CTRL/C causes RSTS/E to print READY and return to command mode where commands can be given or
editing done. CTRL/C stops whatever RSTS/E was doing at the time (execution or output) and returns control of
the system to the user.

Note that CTRL/C interrupts processing, For example, if CTRL/C is used after the REPLACE command is given

and before the READY reply is received, the file is not replaced in its entirety and is not closed. Since the REPLACE
is not completed, parts of the program will be lost. Similarly, if the OLD command is issued and a list of error
messages is being printed, the CTRL/C key should not be used since the current program is only half compiled at
that point.

U ESCAPE is shown as ALT MODE on some terminals.

5-8

Controlling Devices and Accounts

In most cases, typing CONT causes the program to continue execution. Some keyboard output, however, may be
lost.

59.2 CTRL/O

The CTRL/O combination suppresses output to the terminal until the next time CTRL/O is typed. When a program
produces a large amount of output (usually tabular form), the user may not wish to wait for the printing of the
complete information. CTRL/O enables the user to monitor the output while not stopping it completely. Typing
CTRL/O while output is occurring does not stop the computer’s output; the terminal, however, does not print it.
The second time CTRL/O is typed, the output is again printed at the terminal. Printing, however, does not resume
at the point of the first CTRL/O, but at the point of the second CTRL/O; thus, some output may be skipped in

the printing.

Unlike CTRL/O, CTRL/C completely terminates program output. It is useful to think of CTRL/O as a switch,
whose first setting creates a condition and whose second setting releases the condition.

5.9.3 CTRL/S and CTRL/Q

These two control characters work together on display (CRT) terminals. CTRL/S temporarily suspends output to
the display terminal. It is used to examine the lines currently displayed before they are replaced on the screen by
additional lines. Output can be resumed at the next character by typing the CTRL/Q combination. The CTRL/S
and /Q feature is usable only if the terminal has been initially defined with the STALL characteristic (see Section
20.1, Table 20-1; TTYSET program).

594 CTRL/Z

The CTRL/Z combination is used to mark the end of a data file. When data is input from a file, the CTRL/Z
character marks the end of recorded data. The message 7END OF FILE ON DEVICE is printed by the system when
a CTRL/Z is detected, unless an ON ERROR GOTO statement is used to enable a BASIC-PLUS routine to handle
the error.

5.9.5 RETURN Key

The RETURN key, when typed, echoes as a carriage return/line feed operation on the terminal, as long as the
terminal is not in tape mode. The RETURN key is normally used to terminate a line and enter that line to the
system. In tape mode (following a TAPE command; see Section 5.8.1), all carriage returns are ignored.

5.9.6 ESCAPE or ALT MODE Key

The ESCAPE key, like the RETURN key, is used to terminate the current line and causes the line to be entered to
the system. The ESCAPE key, however, echoes on the terminal as a $ character and does not perform a carriage
return/line feed. ESCAPE is used to enter the KEY command to the system (see Section 5.8.2).

On some terminals the ESCAPE key is replaced by the ALT MODE key, which performs the same functions.

59

CHAPTER 6
CHANGING DEFAULTS

6.1 CHANGING THE DEFAULT PROTECTION CODE: THE ASSIGN <> COMMAND

The ASSIGN command, followed by a protection code in angle brackets <>, changes the default protection code
which the system assigns to files created by the current job during timesharing. Usually, this default is <60> when
the user logs into the system. To change it, the user types ASSIGN followed by the new code enclosed in angle
brackets.

The following command, for example, changes the default protection to <40> and assigns that value to all files
subsequently created under the job’s control.

ASSIGN <40>

The default protection remains in effect until the user assigns another default protection or until he logs off the
system. Because the default protection is job-related, its assignment remains in effect when the user changes accounts.

6.2 CHANGING THE MAGTAPE LABELING DEFAULT
The magtape labeling default is set by the system manager, and is system-wide. Though it normally remains in effect

during the timesharing session, it can be changed for an individual job.

To change this default, the user types the ASSIGN command followed by 1) the magtape’s physical name, and 2)
either .DOS or .ANSI. An example follows:

ASSIGN MTO0:.DOS

READY

As a result of this command, the system reserves unit O for the current job and treats files on unit O as having DOS
labels. Similarly, to change the default to ANSI labeling, the user types ASSIGN, the physical device name, and the
new default:

ASSIGN MT0:.ANSI

READY

The user should note the importance of the dot (.) character in each example. If it is omitted, the system assigns
the logical name DOS or ANSI to the magtape unit. The labeling default remains in effect when the device is
reassigned to another job and when the user changes accounts.

The user should also note the following caution about magtape labeling defaults. If the user intends to use a tape for
ANSI files, and that tape has previously been used for DOS files, he must assign the magtape unit as .ANSI before
using PIP to zero the tape. Similarly, if a tape has previously been used for ANSI files, the user must assign the unit
as .DOS before zeroing it. Should the user fail in either case to assign the appropriate label — .ANSI or .DOS — he
will receive the error message ’BAD DIRECTORY ON DEVICE when he attempts to zero the tape.

The DEASSIGN command automatically makes the magtape unit return to the system’s labeling default.

6-1

PART III
THE BASIC-PLUS SYSTEM COMMANDS

CHAPTER 7
FUNCTIONS OF THE BASIC-PLUS SYSTEM COMMANDS

This part of the User’s Guide describes the BASIC-PLUS system commands, special characters, and system features
such as EXTEND format and immediate mode. Most of the commands described in this part do not belong to the
BASIC-PLUS language itself, but are nonetheless needed by the BASIC-PLUS user. They enable the user to write,
run, edit, save, and debug — that is, test and correct — programs. They comprise, in short, the support system for
the BASIC-PLUS language. It is therefore assumed that the reader of Part Il knows something of the BASIC-PLUS
language — enough, at least, to write some short programs. Readers who need to learn more of the language are re-
ferred to the BASIC-PLUS Language Manual.

7.1 SOME DEFINITIONS FOR THE NEW BASIC-PLUS USER
For the user who may be newly acquainted with BASIC-PLUS and with its supporting system commands, some
explanations of terms used in Part III are offered here.

7.1.1 Source and Compiled Programs

Most of the commands and operations described in Part III are designed to affect and manipulate a source program.
Briefly, a source program is any program which can be translated by BASIC-PLUS, is stored on disk in ASCII (or
human readable) format, and is available to a user for listing (printing at the terminal) and for modification (editing
and debugging). Source programs are stored with .BAS file extensions, and are sometimes called BAS programs.

A source program is distinguished from a compiled program, which has already been translated by BASIC-PLUS, and
has been stored in its translated form. The translated BASIC-PLUS code is called intermediate code. It is not human
readable and must be executed by the BASIC-PLUS run-time system. This type of program is not available to the
user for listing and modification, but only for execution. For this reason, compiled programs are sometimes called
run-only programs. Compiled programs are stored with .BAC file extensions, and are sometimes called BAC programs
as well.

7.1.2 The Program Currently in Memory

Often in Part III, a BASIC-PLUS program is described as “currently in memory” or as “the current program.” These
phrases both refer to a program that is presently available to the user — the program that he is writing, editing, listing,
running, or debugging. This “current program” may be a new one that the user has just created during the present
timesharing session, or it may be an “old” program that he has retrieved from his storage area. Similarly, it may be

a source program or a compiled program. The important point to remember is that it is the program with which the
user is now working.

Unless otherwise noted in an individual command description, the BASIC-PLUS system commands do not alter the
current program.

72 A GUIDE TO THE BASIC-PLUS SYSTEM COMMANDS

Table 7-1 is an overview of the BASIC-PLUS system commands, features, and special characters, and to their loca-
tions within Part I1I.

7-1

Functions of the BASIC-PLUS System Commands

Table 7-1 A Guide to the BASIC-PLUS System Commands

Effect on Program Command/Feature Section
Calling old program
Calling NONAME OLD 8.3
Compiling,
description of COMPILE 84.3.1
Creating and NEW 8.1.1,8.22
Naming NEW filename 8.1.1
Creating NONAME NEW 8.1.1.1
Debugging
halting execution STOP 10.2.1
CTRL/C 10.3.1
PRINT LINE 10.3.1
continuing execution CONT 10.2.2
CCONT (privileged) 10.2.3
suppressing/continuing
output CTRL/O 103.2
CTRL/S, CTRL/Q 1033
Deleting
entire contents
specific lines
segments DELETE 9.1.2
program from disk
program from private dev: UNSAVE 9.14.1
KILL 9.142
Device for storage
specifying SAVE dev: 8.2.2
running from private RUN dev: 84.2
removing from UNSAVE 9.14
Directory (catalog) ‘
printing at terminal CATALOG 8.9
EXTEND/NO EXTEND
descriptions ;
changing formats EXTEND/NO EXTEND 9.2.1
Formatting lines
(see also EXTEND above)
multiple statements, 1 line ror)\ 9.2.2.1
1 statement, multiple lines LINE FEED 9.2.2.2
spacing space/TAB 9.2.23

72

(continuéd on next page)

Functions of the BASIC-PLUS System Commands

Table 7-1 (Cont.) A Guide to the BASIC-PLUS System Commands

Effect on Program Command/Feature Section
Immediate mode execution Immed. mode 10.1
Length of program

finding current

finding maximum LENGTH 8.7.2
Line printer

obtaining output SAVE LP: 8:2.3
Listing at terminal

whole program

specific lines

segments LIST 9.1.1

without header LISTNH 9.1.1

(summary of LIST[NH] commands)| 9.1.1
Listing at line printer SAVE LP: 8.2.3
Merging programs APPEND 9.1.5
Paper tape output SAVE PP: 8.2.3
Protection code

changing NAME AS 8.7.2

adding to compiled COMPILE < prot > 8432
Renaming

current program SAVE filename 8.2.1

disk/DECtape file RENAME 8.5

NAME AS 8.7.1

Replacing saved program REPLACE 8.6
Running

current program

old program RUN 84.1

omitting header RUNNH 84.1

from private dev: RUN dev: 84.2
Saving SAVE 8.2

compiled version

compiled version, renamed COMPILE 8432
Scaled arithmetic SCALE 8.10

(continued on next page)

Functions of the BASIC-PLUS System Commands

Table 7-1 (Cont.) A Guide to the BASIC-PLUS System Commands

Effect on Program " Command/Feature Section

Stopping execution (see Debugging)

Transferring control ‘ CHAIN 9.1.6
Writing :
new program NEW 8.1.1,8.1.2

74

| CHAPTER 8
CREATING AND RUNNING A BASIC-PLUS PROGRAM

8.1 WRITING THE PROGRAM

8.1.1 The NEW Command
The NEW command allows the user to name and to create a new program, To issue this command, the user types

NEW
and presses the RETURN key. The system responds by printing the following request for the new program’s name:
NEW FILE NAME --

The user then types the new program’s filename, without an extension. (The system does not require an extension
at this point because the SAVE and COMPILE commands, described later in this chapter, automatically append
one.)

Another way to issue the NEW command is to type NEW, then the new program’s name, then the RETURN key.
Thus, the user avoids the NEW FILE NAME-- prompt. For example, the command

NEW CASHO1
is equivalent to the following sequence:

NEW
NEW FILE NAME-- CASHO1

When the NEW command is issued, it has the following effects in the user’s memory area:

1. It deletes any program currently in memory.
2. It causes RSTS/E to remember the new program’s name.

NOTE
A command of the following form is meaningless:

NEW DTO:STAT

This command is meaningless because new programs can
be input from only one device: the user terminal. To in-
put programs from other devices, the OLD command
must be used.

When the user names a file in the NEW command, the
system does not check for a file of the same name. This

checking occurs when the user gives the SAVE command.

Whenever the user creates a program (with the NEW command) or calls an existing program (with the OLD com-
mand), the system creates the file TEMPnn.TMP in his area on the public structure; the nn represents the current

8-1

Creating and Running a BASIC-PLUS Program

job number. TEMPnn.TMP contains the ASCII text of the source program, and any revisions the user makes to that
text. As its name indicates, this file is temporary and is destroyed when the user logs off the system. TEMPnn.TMP
is used only by the BASIC-PLUS system, as a “‘scratch” file; the user is normally unaware of this file, except insofar
as it occupies space in his area, and reflects the size of the current program.

8.1.1.1 Creating a NONAME File — Instead of specifying a filename in response to the prompt NEW FILE

NAME --, the user may merely press the RETURN key. This action creates a file called NONAME. Later NONAME
can be saved or compiled, and referenced as NONAME.BAS or NONAME.BAC. The user may change this name at
any time (see Section 8.5 and 8.7.1). The following example shows the creation of the file NONAME (the RETURN
key, although typed, does not echo):

NEW
NEW FILE NAME -~

READY
If the user issues a SAVE at this point, the file NONAME.BAS will be created.

NOTE
NONAME, although a legal filename, should not be used
for a program that the user wishes to save. Any user .
logged into the same account may create a NONAME
file. Only the latest version of the file will be saved.
Therefore, NONAME should be used only for programs
which the user intends to run once.

8.1.2 Input of the New Program

Once the user has created a new file in memory with the NEW command, he may type the program into the system.
Or, if his terminal has a low-speed reader, he may use the reader to input a program from a pre-punched paper tape.
Information on using the low-speed terminal reader is found in Section 23.1.4.

If the user is typing his program into the system, he will likely use the RSTS/E editing features, described in the
following chapter (Chapter 9). At this point, however, it is useful to describe two simple editing tools: RUBOUT
and CTRL/U.

Should the user make a typographical error, he may erase the incorrect characters by typing the RUBOUT key (on
some terminals, the DELETE key) once for each character to be erased. As each character is erased in this manner
on a hard-copy terminal, it is echoed between backslashes \ \. After erasure, the user may type the correct characters
on the same line. '

On a video (CRT) terminal, typing the RUBOUT/DELETE key moves the cursor back one space, thus deleting the
erroneous character. Neither the character nor any backslashes appear.

The user may at times wish to delete the current line entirely; it may, for instance, contain a large number of errors.
To delete the current line, the user types the CTRL/U combination: that is, he holds down the CONTROL key
while typing U. As a result of this action, the system deletes the entire current line, and performs a carriage return/
line feed. The user may then retype the line.

8.2 SAVING THE PROGRAM: THE SAVE COMMAND

The primary function of the SAVE command is to store a current BASIC-PLUS source program on the public disk
structure. To be SAVEQ, the source program must be currently in memory. And after the program has been SAVEd,
it remains in memory and therefore can be run, changed, or deleted.

Creating and Running a BASIC-PLUS Program

To store the current program under his own account on the public structure, the user types
SAVE

then presses the RETURN key. As a result, the program currently in memory is saved on the public structure under
the current account, with its current filename and the extension .BAS. If a file of the same name exists, the system
prints the error message :

FILE EXISTS — RENAME/REPLACE

This message, in telling the user that an identically named file exists in his area, warns him against unintentionally
destroying that file. Should he in fact wish to destroy it by replacing it with the current program, he may — as the
message suggests — issue a REPLACE command (described in Section 8.6). But if the user has no desire to destroy
the identically named program, he may use the SAVE command to save the current program under a different file-
name, a procedure described in the following section.

8.2.1 Saving the Current Program under a Different Name
If for any reason the filename of the current program is not the one the user desires, he may save the program under
a different name by issuing the SAVE command in the following form:

SAVE NEWNAM

This command saves the program currently in memory on the public structure under the name NEWNAM.BAS.
When writing the file to any storage device, the SAVE command appends the .BAS extension by default.

The user may specify an extension other than the default .BAS by including a filename and his chosen extension in
the SAVE command. The following example illustrates:

SAVE NEWNAM .E66
As a result of this command, the current program is saved on the public structure as NEWNAM.E66.
The SAVE command may be used with a complete file specification of the form
dev: [acct] filename.ext <prot>/option(s)
See Chapter 12 for a description of the complete file specification.
8.2.2 Using SAVE to Specify a Storage Device
The user may wish to save the current program, renamed or not, on a storage device other than the public structure.
To store the program, under its current filename or a new filename, the user types a SAVE command in one of the
following forms:
SAVE dev: which stores the program on the device specified as dev:, or

SAVE dev:NEWNAM which stores the program as NEWNAM.BAS on the device specified as dev:.

The following command, for example, saves, on DECtape unit 0, a copy of the program currently in memory. The
program is saved under the filename ARCH.BAS.

SAVE DT0:ARCH

Creating and Running a BASIC-PLUS Program

8.2.3 Using SAVE to Obtain Line Printer and Paper Tape Output
To obtain a line printer listing of the current program, the user types

SAVE LP:
To punch a paper tap;a of the current program on the high-speed punch, the user types
SAVE PP:
Because both devices are output-only and non-file structured, the user need not specify a filename.

NOTE
To punch a tape on the low-speed punch (on the ASR 33
terminal) the user may issue a LISTNH command, and, be-
fore pressing RETURN, turn the punch on line. This pro-
cedure is not recommended, however, because the word
READY is punched at the end of the tape. .

Tapes punched on the low-speed punch should be read
only through the low-speed reader.

8.3 CALLING AN EXISTING PROGRAM: THE OLD COMMAND
The OLD command allows the user to retrieve the source file of a previously saved BASIC-PLUS program; OLD
causes any program currently in memory to be overwritten. This command is used to retrieve source programs only
(-BAS files by default), since compiled programs (.BAC files) can be run but not changed. Thus, any program called
with the OLD command can be edited by the user at the terminal.
BASIC-PLUS source programs can be given extensions other than the default .BAS.
To issue the OLD command, the user types
OLD
and presses the RETURN key. The system responds by printing the following request for the program’s filename:
OLD FILE NAME --

The user then types the filename of the saved program. Or, the user may avoid the prompt OLD FILE NAME-- by
typing the old filename on the same line as the command, as follows:

OLD TAXES

This command calls the saved file TAXES.BAS from the public structure. If the file is unavailable or protected against
the user, an appropriate message is printed.

If the file has an extension other than .BAS, the user must specify that extension, as in the following example:
OLD TAXES.TL1
If the user does not respond to the OLD FILE NAME-- prompt with a filename, but presses RETURN instead,

RSTS/E looks for the file NONAME (which the user or the system may have created; see Section 8.1.1.1). In the
following example, the user retrieves the file NONAME: '

84

Creating and Running a BASIC-PLUS Program

OLD
OLD FILE NAME --

READY

As a result of this procedure, whatever was stored in the file NONAME.BAS on the public structure under the user’s
account is now in memory and available to the user.

The OLD command may be used with a complete file speciﬁcatio;l of the form
dev: [acct] filename.ext/option(s)
See Chapter 12 for a description of the complete file specification.
8.4 RUNNING AND COMPILING PROGRAMS: THE RUN AND COMPILE COMMANDS |

8.4.1 Running a Program from the Public Structure: The RUN Command
The RUN command is used to execute any BASIC-PLUS source or compiled program. (Source programs are stored
as typed by the user; compiled programs are described in Section 8.4.3.)

In order to identify and run the program that is currently in memory, the user types

RUN

This command not only runs (executes) the current program, but also prints, before execution, a program header
consisting of the program’s name and the current (system) date and time. If the user does not require this informa-
tion, he should type the RUN No Header command:

RUNNH

which executes the current program, but does not print the header material. The RUNNH command runs only the
program currently in memory; and filename or characters specified with this command are ignored.

To execute an “old” program — one not currently in memory — the user types the RUN command and the “old”
program’s filename, in the following form:

RUN PROG35

* This command causes RSTS/E to search the public structure for the file PROG35.BAC or PROG35.BAS, and then
to load it, to compile it if necessary, and to run it. Any current program is overwritten. This procedure, of course,
assumes that the file can be found.

NOTE
Because blanks are not significant in BASIC-PLUS com-
mands, the RUN filename command does not execute
properly if the filename begins with NH. RUN NHTAX,
for example, is the same as a RUNNH command. It will
therefore run the program currently in memory. In the
EXTEND mode of BASIC-PLUS, however, which does
treat blanks as significant, RUN NHTAX is an invalid
command. (See Section 9.2.1 for a description of EX-
TEND mode.)

8-5

Creating and Running a BASIC-PLUS Program

If the source file PROG35.BAS and the compiled file PROG35.BAC both exist, RSTS/E loads and executes
PROG35.BAC — because it is already compiled and uses less time. Note that because the program loaded is the com-
piled version, it can only be run — not edited or modified. If, however, the user wishes to execute PROG35.BAS, he
may first retrieve it by issuing the OLD command, then execute it by issuing the RUN command; or, he may type
the command RUN PROG35.BAS. After the program has been retrieved by OLD, it is currently in memory and
may be edited or modified. '

To continue with this example, assume that the compiled program PROG35.BAC does not exist. Only the source
program PROG35.BAS exists. In this case, the command

RUN PROG35
loads, compiles, and executes PROG35.BAS, the source program.
The RUN command may be used with a complete file specification of the form
dev: [acct] filename.ext/option(s)
See Chapter 12 for a description of the complete file specification.
8.4.2 Running Programs from Private or Specific Devices: The RUN dev: Command
To run a program stored on a device other than the public structure, or stored on a particular device in the public
structure, the user types RUN, the device specification, and the program’s filename. The form is as follows:

RUN dev:FILNAM

The following command, for example, runs the file TRANS.BAC or TRANS.BAS, which resides on DECpack unit
1:

RUN DK1:TRANS

To read a source program from the high-speed paper tape reader and run that program, the user types the command
RUN PR: |

Since the reader PR: is an input-only, non-file structured device, the user need not specify a filename.

If, on the other hand, the user does specify a filename with a non-file structured device in the RUN command, that
filename is used as the current program name when the program is read into memory. In the following sequence, for
example, a user issues a command to run a program from the high-speed reader, names the program SALE, and re-
ceives its output:

RUN PR:SALE
AVERAGE SALE FOR JULY: 77.26

READY

If, however, the user does not specify a filename, the program in memory will have no name. It is important to re-
member, in this case, that a simple SAVE — or any other command without a filename — cannot be applied to the
program in memory unless that file has a name (see the RENAME command, Section 8.5). In the following sequence,
a user runs a program from the high speed reader, but — unlike the user in the previous example — does not name

the program in the RUN command. Thus, when this user attempts to save the program, he receives an error message:

8-6

Creating and Running a BASIC-PLUS Program

RUN PR:
66 ELECTORAL VOTES STILL NEEDED TO NOMINATE

READY

SAVE
ALLEGAL FILE NAME

READY

In order to save this program, the user must give it a filename in the SAVE command or name it by another method
— the RENAME command, for example (see Section 8.5).

8.4.3 The COMPILE Command

8.4.3.1 The Purpose of COMPILE — Normally, RSTS/E accepts each line of a program as the user enters it; if a line
is syntactically correct, RSTS/E then translates it into a form that is understood by the BASIC-PLUS system. This
translation is called compiling of the program.

When the user edits the program, only the changed lines are compiled — that is, translated. And when the user gives
the SAVE command, only the source version of the program (i.e., text that is typed in response to the LIST com-
mand) is stored in the .BAS file created. Thus, when the user gives the OLD command, the BASIC-PLUS system, in
response, must first read the text of the saved program, and then inust compile it — translatc it — line by line again,
just as it did when the user originally entered the program from the keyboard.

This process of compiling a saved program every time it is brought into memory may consume considerable system
time. To avoid such repeated compilation, the user may issue the COMPILE command. COMPILE permits the user
to save an image of his compiled program, rather than (or in addition to) the source text of the program. This com-
piled version, stored with the default extension .BAC, can be read from the disk with a minimum of system time.

NOTE
Compiled files have a minimum size requirement of 7
blocks. This size may be greater than necessary to actually
store the compiled (or even the source) version of a short
program. In such cases, the user should be aware that he
is trading disk space for execution speed.

Because of the transformation that occurs when a program is compiled, a .BAC file can only be executed; it cannot
be edited or modified. Therefore, a compiled program cannot be retrieved by the OLD command, whose function
is to make a program available for editing. A compiled program must be called by the RUN command, which
merely executes it.

8.4.3.2 Using COMPILE — If the program’s current filename (i.e., the name printed in the header) is ACTO01, then
the command

COMPILE

saves the corhpiled program under filename ACT01.BAC on the public structure under the user’s account. This com-
mand does not alter or replace ACT01.BAS.

If the user desires another name for the compiled program, he may specify it in a command of the following form:

COMPILE SCENE2

Creating and Running a BASIC-PLUS Program

The preceding command creates, on the pubﬁc structure, a compiled program named SCENE2.BAC.
The COMPILE command:
1. outputs compiled programs only to the disk structure,
2. appends the extension .BAC (unless otherwise specitied) to the current or specified filename for storage
in the user’s public disk area, and
3. stores compiled programs with a default file protection of <124>; this default consists of the compiled

file protection code <64>> plus the system-assigned default code <60>. (Specifying another protection
is discussed in the following paragraph.)

If the user wishes to add, to the compiled code <64>>, a code other than the system default <60>, he must specify
his choice of code in a COMPILE command of the following form:

COMPILE <40>

This command creates, on the public structure, a file with the current filename, the extension .BAC and the assigned
protection <104>. This protection consists of the compiled code <64>> and the user-specified code <40>.

At any time, a protection code can be altered by the BASIC-PLUS system command NAME AS (see Section 8.7),
or by the renaming facility of the PIP system library program (see Chapter 17).

The COMPILE command may be used with a complete file specification of the form
dev: [acci] filename.ext <prot >{option(s)
See Chapter 12 for a description of the complete file specification.
8.4.3.3 Compiling a Program on a Specific Disk Pack — To compile the current program — under its current file-
name or a new filename — on a specific disk pack, the user types a COMPILE command in one of the following

forms:

COMPILE dev: which compiles the program, under its current filename, on the disk
specified as dev:, or

COMPILE dev:NEWNAM which compiles the program as NEWNAM.BAC on the disk pack
specified as dev:. '

Note that in either case the specified device must be a disk pack.

The following command, for example, compiles the program currently in memory on disk pack DK2:. The program
is compiled as TELL.BAC.

COMPILE DK2:TELL.BAC
8.5 RENAMING THE CURRENT PROGRAM: THE RENAME COMMAND
The RENAME command allows the user to change the name of the program currently in memory. To issue this
command, the user types RENAME, the new name for the program, and the RETURN key in the following form:
RENAME NEWNAM
As a result of this command, the “old” name of the program currently in memory is discarded; the current program

is now known by the name NEWNAM. If the user now issues a SAVE command, NEWNAM.BAS is stored on the
public structure.

8-8

Creating and Running a BASIC-PLUS Program

8.6 REPLACING A SAVED PROGRAM: THE REPLACE COMMAND

The REPLACE command outputs the program currently in memory to the public structure or anywhere else, where
it replaces a program with the same filename. REPLACE performs the same function as SAVE, but destroys the

old program of the same name — if it exists — without notifying the user. The user may issue REPLACE alone or
with a filename, in one of the following forms:

REPLACE
or

REPLACE FILNAM
REPLACE appends the extension .BAS to the filename already associated with the program or specified in the com-
mand. If the user specifies a filename, REPLACE assigns that name to the new — or replacement — version of the
program. In such a case, the current name of the program in memory is ignored.
The REPLACE command may be used with a complete file specification of the form

dev: [acct] filename.ext <prot>>/option(s)
See Chapter 12 for a description of the complete file specification.
8.7 CHANGING A PROGRAM’S FILE SPECIFICATION: THE NAME AS STATEMENT
8.7.1 Using NAME AS to Rename a Program
NAME AS is a BASIC-PLUS statement that can be used in immediate mode to rename and/or assign a new protec-
tion code to a disk or DECtape file. The user types this statement in the following format:

NAME <string>AS <string>
The specified file, the first <string> indicated, is renamed as the second <string>> indicated.
Should the file reside on a device other than the public disk structure, that device must be specified in the first
string; it may also — at the user’s option — be specified in the second string. The NAME AS command, however,
does not copy a file from one device to another. Therefore, if a device name is used in the second <string>, it
must be the same as that specified in the first <string>. NAME AS assumes no default filename extensions; if the
file to be renamed has an extension, each of the two strings must include an extension.
The following two statements, for example, are equivalent:

NAME “DT0:0LD.BAS” AS “NEW.BAS”

and

NAME “DT0:0LD.BAS” AS “DT0:NEW.BAS”
The reader should note, however, that since the NAME AS statement cannot perform device transfers, there is no
need to mention DTO: twice; that is, the device of the new filename need not be specified. (For information on

device transfers, see PIP, Chapter 17.)

To change or create only the extension of a disk file on the public structure, the user types a statement of the
tollowing form:

NAME “ARC” AS “ARC.01”

89

Creating and Running a BASIC-PLUS Program

This statement changes only the extension of the disk file ARC (with no extension) to .01.

The following statement, however, is not advised because of the absence of an extension in the second string:
NAME “FILE1.BAS” AS “FILE2”

As a result of this statement, the renamed file will have a null extension: FILE2.

8.7.2 Using NAME AS to Change a Protection Code

The user may change a program’s file protection code by specifying the new code, within angle brackets <>, as

part of the second string. If specified, this protection code becomes that of the renamed file. If the user does not

specify a protection code, the old protection code is retained.

If the user wishes to keep the program’s present filename, and change only its protection code, he may type a
NAME AS statement in the following form:

NAME “YORK.BAS” AS “YORK.BAS <40>”
This statement changes only the protection code of the program YORK.BAS stored on the public structure.
Note that only privileged users can use NAME AS to assign a protection code higher than <63>.
8.8 FINDING A PROGRAM’S CURRENT AND MAXIMUM LENGTH: THE LENGTH COMMAND
The LENGTH command prints, at the user terminal, a message containing the current program’s length, and, in
parentheses, the maximum length that the system allows for the program. To issue this command, the user types
LENGTH

and presses the RETURN key. An example follows:

LENGTH
5 (8) K OF MEMORY USED

In this example, the user is informed that the current program is 5K words long, and that its maximum is 8K words.
The present length of the program is reported to the next highest 1K increment. (“K” is a common abbreviation
for 1024.)

8.9 LISTING DEVICE DIRECTORIES: THE CATALOG COMMAND
The CATALOG or CAT command allows the user to list all the files in a device directory, under his own account
or that of another user, or in the system library.

To list his own public disk structure directory, the user types a simple CATALOG or CAT command, followed by
a carriage return. In response, the system prints the directory at the user terminal. An example follows:

CAT

AVERAG . BAS 2 60 28~-0ct~-76 28-0ct-76 02337 FM
PERCNT + BAS 2 60 28-0ct~76 28~-0ct-76 02137 PM
TERM .DOC 11 60 28-0ct~726 28-0ct-76 02337 FM
REFPDLO.TXT 43 60 28-0ct-76 28-0ct-76 02838 PM
PHONE +DIR 43 60 28-0ct—~76 28-0ct-76 02139 FM
EXFENS . BAS 29 60 28-0ct~76 28-0ct-76 02:39 PM
CHOICE .BAS 2 60 28-0ct-76 28-0ct-76 02140 FPM

Creating and Running a BASIC-PLUS Program

SOURCE .DAT 20 16 28-0ct—-76 28~-0ct—~76 02141 FM
BACKUF . CMIY 1 60 28-0ct-76 28-00t—-76 02142 FM
XX +TST 1 60 28-0Dct-76 28-0ct—-76 02142 FM
VISITS.LST 14 40 28-0ct-76 28-0ct—-76 02145 FM
TEMP24 ., TMF O 60 28-0ct-76 28-0ct~76 03101 FM
Readw

To obtain a catalog of files stored under another user’s account number on the public structure, the user issues a
command in this form:

CATALOG [100,102]
This command lists the public structure files owned by user account [100,102] .
To obtain a listing of all files in the system library account, the user types
CATALOG $
or
CAT $
In either command, $ indicates account [1,2], the system library.
To obtain a catalog of files on a device other than the public structure the user issues the command:
CATALOG dev:
where dev: is a device specification (a user account specification may be included in such a command). For example,
CAT DT1:
lists all files on DECtape unit 1 (no account numbers are associated with DECtape files).
To lists all files stored under a specific account on a non-disk device, the user types a command in this form:
CATALOG MT1: [200,220]
This command lists all files stored under account [200,220] on magtape unit 1.
8.10 USING SCALED ARITHMETIC: THE SCALE COMMAND
The SCALE command implements and controls the scaled arithmetic features of BASIC-PLUS. This feature is used
to overcome accumulated round-off and truncation errors in fractional computations performed on systems using
the floating point format. The feature enables the system to maintain decimal accuracy of fractional computations
to a given number of places determined by a scale factor. Scaled arithmetic is described in Section 6.8 of the BASIC
PLUS Language Manual. :
Users on a system with the double-precision, four word floating-point format may issue the SCALE command to
control the scale factor. An attempt to use the SCALE command on systems with the single precision floating-

point format produces the YMISSING SPECIAL FEATURE error message.

To specify the scale factor to be used, the user types the SCALE command with a decimal integer between 0 and 6.

8-11

Creating and Running a BASIC-PLUS Program

For example,
SCALE 2
READY
The SCALE 2 command sets the current scale factor to 2. Subsequently, all programs compiled for that job have a
scale factor of 2. If an invalid scale factor is typed with the command, the system prints the ?SYNTAX ERROR
message.
NOTE ,
SCALE is solely a system command and cannot be executed
as a BASIC-PLUS statement. Also, a program cannot refer
to or modify the scale factor.
Typing a value of 0 with the SCALE command disables the scaled arithmetic feature. For example,
SCALE 0
READY

The SCALE 0 command sets the scale factor to 0. Programs compiled for that job subsequently treat all floating-
point calculations in the standard fashion. When a user logs a job onto the system, the initial scale factoris 0.

To determine the current scale value, the user types the SCALE command without a value. For example,
‘SCALE
6
READY

The system prints the current value (6) and the READY message. If the program in memory has a value set other
than the current value, the system prints two values. For example,

SCALE
6,2
READY

The first value (6) indicates the current value for the job, and the second value (2) is the one set for the program
currently in memory. If the scaled arithmetic option is currently disabled, the system prints a zero as the first value.

When a user loads source statements into memory, whether by an OLD command, a RUN command to a .BAS file,
or by entering statements after a NEW command, the system sets the scale factor for the program in memory to the
current scale factor.

SCALE 4

READY

OLD TEST

8-12

Creating and Running a BASIC-PLUS Program

READY
LISTNH

10 AS=“H## HHEH#HH

20 X = .12345

30 PRINT USING A$,X

40 END

READY o

RUNNH
0.12340

READY
If the user executes a RUN command for the program in memory, the system performs floating-point calculations
using the scale factor of the program currently in memory. Similarly, the system uses the scale factor of the program
in memory when executing immediate mode statements.
After loading source statements into memory, the user cannot change the scale factor for the program in memory.
This action prevents the user from possibly executing floating-point calculations for a program, parts of which the

system assigned a different scale value.

An attempt to execute such a program or source statement causes the %#SCALE FACTOR INTERLOCK warning
message. For example,

SCALE
4

READY
OLD TEST
READY
SCALE 6
READY
RUNNH

%SCALE FACTOR INTERLOCK
0.12340

READY

NOTE :
The %SCALE FACTOR INTERLOCK message may not
appear, since the system manager may have suppressed
its printing. On such systems, the message does not
appear but the operation of the scale factor remains
unchanged.

The program executes using the scale factor of the program in memory (4) rather than the current scale factor (6).

813

Creating and Running a BASIC-PLUS Program

To execute such a program with a changed scale value, the user may type a SAVE or REPLACE command followed
by an OLD or RUN command for the related file. For example,

REPLACE TEST
READY

OLD TEST
READY

RUNNH
0.12345

READY

SCALE
6

READY
The system consequently executes the program with the changed scale factor 6.

The following example illustrates the effect of different scale values for the sample program TEST.BAS, listed
earlier in this section.

SCALE 2
READY
OLD TEST
READY

RUNNH
0.12000

READY
SCALE 4
READY
OLD TEST
READY

RUNNH
0.12340

READY

8-14

Creating and Running a BASIC-PLUS Program

The system loads the source file using the current scale factor 2. When executed, the program generates results to 2
decimal places, and truncates the remaining places. If the user changes the current scale factor and loads the same
program, the system executes the program with changed scale factor and truncates the remaining places.

If the user stores the compiled file and later runs it with a different scale value in effect, the following sequence
takes place:

SCALE 6

READY

OLD TEST

READY

COMPILE TEST
READY

SCALE 4

READY

RUN TEST
0.12345

READY

SCALE
4.6

READY
The system loads the program TEST and executes it with the scale value (6) set when the user compiled it. The sys-
tem does not use the current value (4) but rather the value of the compiled program (6). This action occurs whether
the program runs by a RUN command or by a CHAIN command.
If a compiled program is currently in memory, the user cannot change its scale factor and run that program. Since
it is'impossible to alter the scale factor of a compiled program except by compiling the program again, the system

generates the ZSCALE FACTOR INTERLOCK warning message (see NOTE earlier in this section). For example,

SCALE
4,6

READY

RUNNH

%SCALE FACTOR INTERLOCK
0.12345

READY

The program executes with the scale factor of the compiled program (6).

815

CHAPTER 9
EDITING AND MODIFYING A PROGRAM

9.1 EDITING AND MODIFYING THE PROGRAM

9.1.1 Printing the Program: The LIST Command

The LIST command prints, at the user’s terminal, a clean copy of all or part of the current program. In order to be
printed by a LIST command, the program must be in memory. If the user wishes to print a source program that is
not in memory, he must first issue an OLD command, then a LIST command as described in this section. LIST is
especially useful during and after an editing session in which the user changes the current program.

To print a complete copy of the current program as it exists in memory, the user types
LIST

When the system prints the whole program, it lists source lines in line number sequence — regardless of the order in
which the user entered them.

To print a single line, the user types LIST followed by the line number as follows:
LIST 100
This command prints a copy of line 100.

To print a specified section of the program, the user types LIST followed by the number of that section’s first line,
a hyphen, and the number of that section’s last line:

LIST 100-200

This command lists all program lines from 100 to 200, inclusive. If 100 and 200 do not exist in the program, any
lines within the range 100 to 200 are listed. This form of the command is especially useful with a video terminal,
because it prevents long programs from scrolling off the screen.

One or more single lines or program sections may be specified in a single LIST command by separating the individual
elements with commas. For example, the command

LIST 25,34,60-85,95,200-220

prints lines 25, 34, and 95 along with the program lines between (and including) 60 and 85 and between (and in-
cluding) 200 and 220. Lines or program sections need not be indicated in sequential order in the LIST command;
they are printed out in the order that the user requests.

The system, in résponse to a LIST command, prints a program header containing the program name and the current
system date and time. If the user does not desire this information (and during a normal editing session, he may not),

he may issue the LISTNH command to avoid printing of the header.

In executing any form of the LIST or LISTNH command, RSTS/E prints the ? character at the left of a line it con-
siders to be in error; for example:

9-1

Editing and Modifying a Program

'LISTNH |
10 LET A,B=25
720 PRINT A+B

READY

The following is a summary of the forms of LIST and LISTNH:

LIST Command Meaning

LIST List the entire user program as it currently exists.
LISTNH Same as LIST, but omit program header.

LISTn List line n.

LISTNH n * List line n without the program header.

LIST m,n,0 List lines m, n, and o.

LISTNH m,n,0 List lines m, n, and o without the program header.

LIST ni-n2 List lines n1 to n2, inclusive.

LISTNH n1-n2 List lines n1 to n2, inclusive, without the program header.

Extensive examples of program listings appear in the BASIC-PLUS Language Manual.

NOTE
LIST sends output to the user terminal only. If a line
printer is available, the command SAVE LP: is the fastest
way to obtain a printed copy of the program (see Section
8.2.3).

9.1.2 Deleting Lines: The DELETE Command

The DELETE command deletes one or more lines from the current program; the line or lines to be deleted are

specified in the command. The user should note, however, that typing a simple DELETE, without line numbers,

deletes all lines from the program.

To delete one line from the program, the user types DELETE followed by that line’s number in the following form:
DELETE 100

This command deletes line 100. For comvlenience,however, the user may type only the number of the line to be
deleted and the RETURN key; for example,

15

is equivalent to DELETE 15 and deletes line 15.

To delete a section of the program, the user types a command of the following form:
DELETE 100-200

This command deletes all lines between and including lines 100 and 200. If 100 and/or 200 do not exist in the pro-
gram, any lines within the range 100 to 200 are deleted.

If the user wishes to delete several lines or groups of lines, he may specify them in one DELETE command, separating
the elements with commas as follows:

92

Editing and Modifying a Program

DELETE 100-200, 255, 300400, 470, 1000-1100, 475

This command deletes all lines from 100 to 200, line 2535, all lines from 300 to 400, lines 470 and 475, and all lines
from 1000 to 1100. Note that lines or sections need not be listed in sequential order in the DELETE command.

9.1.2.1 Cautionary Notes About DELETE — The user should remember that typing DELETE without a line num-
ber deletes all lines from the program.

Before deleting any line, the user should check for other lines containing references to the line he intends to delete
— GOTO statements, for example. Obviously, such lines must be replaced or modified to reflect deletions of the
lines that they reference. When the program is run, a reference to a missing line number will generate the error mes-
sage 7STATEMENT NOT FOUND and halt the program’s execution.

9.1.3 Simple Erasures: The RUBOUT Key and CTRL/U

9.1.3.1 Erasing One Character at a Time: RUBOUT — Typing the RUBOUT key (the DELETE key on some
terminals) causes the last character typed to be erased. If typed in tape mode (see Section 5.8.1), the RUBOUT key
is ignored.

If typed at a display (CRT) terminal, the RUBOUT key moves the cursor back one space and deletes the last char-
acter typed. No characters are echoed, as in the case of a hard-copy terminal.

If typed at a hard-copy terminal, the RUBOUT key causes the erased character or characters (if RUBOUT is re-
peatedly typed) to be echoed between backslashes n the following example, the user has mistakenly typed LEF
for LET:

10 LEF X=X#*X

The user can correct this error by typing the RUBOUT key 7 times (to remove the F) and typing the remainder of
the line correctly. If the user were to follow this procedure, the line would look like this on the terminal paper:

10 LEF X=X+X\X#X=X F\I X=X*X
To the system the line would appear as
10 LET X=X*X

In cases where the mistake is toward the beginning of a line, it may be easier to simply retype the entire line, as
shown in the following example:

10 LEF X=X*X
LLEGAL VERB AT LINE 10

READY

10 LET X=X#X
Once the second line (the corrected one) is entered to the system, the first line number 10 is deleted.
RUBOUT may be typed repeatedly on a display terminal, just as it may on a hard-copy terminal. The only differ-

ences in its effect are that characters are not echoed but are in fact erased, no backslashes appear, and the cursor
is moved back one space for each character erased.

9-3

Editing and Modifying a Program

9.1.3.2 Erasing One Line at a Time: CTRL/U — The CTRL/U combination deletes the current input line. This
combination is typed by holding down the CTRL key, typing U, and releasing both keys. CTRL/U is particularly
useful when the user has typed a long line which he notices is incorrect. Rather than type RUBOUT repeatedly,
the user may type CTRL/U to delete the entire line. This feature may be used when typing either commands or
statements. CTRL/U deletes the entire physical line, as in the following example:

10 PPRINT “AIPHABET” 41U
LISTNH

READY

In typing line 10, the user made a mistake (PPRINT for PRINT) and deleted the line with CTRL/U. Note that the
line does not appear in the program listing caused by the LISTNH command.

In the next example, the user has typed the LINE FEED key to continue line 20 onto a second line. Thus, a physi-
cal line has been terminated.

20 LETM=
278. 124U

SYNTAX ERROR AT LINE 20
READY

The logical statement at line 20, however, is continued onto the following line and its deletion with a CTRL/U
causes the statement at line 20 to be entered as

LISTNH
720 LETM =

READY

which is syntactically incorrect. Had the last line been terminated with the RETURN key it would be entered to
the system as :

PO

20 LETM =
278.12

READY
which would be accepted as equivalent to
20 LETM =278.12
9.1.4 RemoVing a Prdgram from a Storage Device: The UNSAVE Command and the KILL Statement

9.1.4.1 The UNSAVE Command — The UNSAVE command removes a .BAS or .BAC file from a storage device.
To remove a file from the public disk structure (the default device), the user types a command in this form:

UNSAVE VOR45.BAC

This command removes the file VOR45.BAC from the public structure.

94

Editing and Modifying a Program

Unless a filename extension is specified in the UNSAVE command, the extension BAS is assumed. Thus, if the
user issues the command

UNSAVE VOR45

Thé system attempts to remove the file VOR45.BAS.

To remove a file from a storage device Other than the public disk structure, the user issues an UNSAVE in this form:
UNSAVE dev:filename.extension

where dev: is the device designation. For example, the command
UNSAVE DT1:FLIX

removes the file FLIX.BAS from DECtape unit 1, if the file can be found.

To remove a file with an extension other than .BAS, the user must specify the extension in a command of the
following form:

UNSAVE FILE.001
The null extension cannot be used.

9.1.4.2 The KILL Statement — The KILL statement, placed within a program, deletes a specified file from a user’s
directory. This statement takes the following form:

<line number > KILL <string>
The string can be a full file specification of the form
dev: [acct] filename.ext

If the specified file does not exist, the system prints the error message 7CAN’T FIND FILE OR ACCOUNT. If the
specified device does not exist, the system prints the error message ?NOT A VALID DEVICE.

In order to delete a file with the KILL statement, the user must have write access to the file.

The KILL statement may also be used in immediate mode. Note that in the file specification no defaults are applied
for filename or extension. The <string>> may be either a string variable or a literal string enclosed in quotes.

9.1.5 Merging Programs: The APPEND Command
The APPEND command merges the contents of a previously saved BASIC-PLUS program into a BASIC-PLUS program
currently in memory. To issue this command, the user types
APPEND
The system responds by printing the request

OLD FILE NAME --

The user then types the name of the saved program to be appended. This program is read into memory, and, de-
pending upon the ordering of its source statement line numbers and those of the current program, the saved program’s

9-5

Editing and Modifying a Program

contents are merged into or appended to the current program. If both programs contain an identical line number,
the line in memory is replaced by the appended program line.

The user may issue an APPEND without receiving the system’s prompt by typing a command of this form:
APPEND RUTINE

This command merges the contents of the saved program RUTINE.BAS from the public structure into the program
currently in memory. If the specified program is not available on the public structure or is protected against the
user, an appropriate message is printed.

If the user does not specify a filename in response to the prompt OLD FILE NAME -~ , RSTS/E looks for the file
NONAME.BAS, which could have been created by the user or by the system. (See Section 8.1.1.1 for a description
of NONAME.BAS.) In the following example, the user, in response to the prompt, does not specify a filename, but
merely presses the RETURN key after receiving the prompt:

APPEND
OLD FILE NAME --

READY
As a result of this procedure, the contents of the program NONAME.BAS on the public structure for the current
user are merged into or appended to the current program. Thus, the contents of NONAME.BAS become available to

the user as part of the current program.

In order to retain, under his account, the merged program that results from an APPEND, the user must issue a SAVE
or a REPLACE command. If he uses SAVE, each of the component programs still exists separately under his account.

The APPEND command can retrieve only BASIC-PLUS source programs (.BAS files), because compiled programs
(-BAC files) can be run but not changed. Any file called with APPEND is available to the user at the terminal.

The APPEND command may be used with a complete file specification of the form
dev: [acct] filename.ext <prot>/option(s)
See Chapter 12 for a description of the complete file specification.
9.1.6 Transferring Control Between Programs: The CHAIN Statement
CHAIN is a BASIC-PLUS statement that transfers control from one program to another. CHAIN may be used in
immediate mode or as part of a program.
If a user program is too large to be loaded into memory and run in one operation, the user may segment it into two
or more separate programs. In doing so, the user assigns each of these programs a unique name. To transfer control
from one of these programs to another, the user issues the CHAIN statement.
In immediate mode, the form of the CHAIN statement is
CHAIN <string> <line number>
in which <string>> is the file specification of the next program segment and <line number > is the line number in

that program at which execution is to begin. If no line number is specified, execution begins with the lowest num-
bered line.

9-6

Editing and Modifying a Program

The following example is a CHAIN statement given in immediate mode:
CHAIN “PHASE2” 20

This statement executes the segmented program PHASE2, beginning with line 20. In its execution, CHAIN proceeds
as follows: it first searches for the file PHASE2.BAC; if that search fails, it then searches for PHASE2.BAS. A de-
vice specification, project-programmer number, extension, and filename can be included in the file specification
string.

Communication between various program elements can be achieved by means of a user’s file or core common (see
the discussion of system function calls in the RSTS/E Programming Manual).

When the CHAIN statement is executed, all currently open files are closed, the new program is loaded, and execution
continues. CHAIN loads the designated program into memory and overwrites the current program. The CHAIN state-
ment is similar to the RUN command, but has the additional capability of specifying the number of the line at which
execution is to start.

Since each CHAIN statement closes all files, and causes a program load, the programmer should be careful to mini- |
mize the number of CHAIN statements that must be executed in the run of a program.

NOTE
It is recommended that the user explicitly close all open file
channels by piacing CLOSE statements in the program. The
reason for this precaution is that the implicit closing feature
of CHAIN may not allow the last write to be performed for
virtual core and sequential files.

The <string> in the CHAIN command may be a file specification of the form
dev: [acct] filename.ext
See Chapter 12 for a description of the complete file specification.
9.2 FORMATTING THE PROGRAM
9.2.1 Changing Statement Format Rules: The EXTEND/NO EXTEND Commands
9.2.1.1 Description of EXTEND Format — BASIC-PLUS offers two formats, EXTEND and NO EXTEND. EX-
TEND, when chosen by the user or when installed as a system default, allows expansion of statements and commands
beyond the NO EXTEND format.
The following examples illustrate the differences between NO EXTEND and 'EXTEND format. The first example
is a line from the BASIC-PLUS program OCTDEC.BAS, which appears in its entirety in Section 10.4, “An Example

of Program Debugging.” The second example shows this same line, 300, written in EXTEND mode. Points of differ-
ence in format are labeled in both examples and are described in the paragraphs that follow.

Editing and Modifying a Program

| ' 2
300 0% = -1% \ DX = 0% 8

FOR Z%Z = L% TO 1% STEPF -1X%

0% = 0X + 1%

VZ = ASCII (RIGHT(S$,ZX))

IF VX < 48X OR VZ > S55%Z THEN
FPRINT "INVALID INFUT*"
GOTO200

19 INITIALIZE THE DIGIT POINTER ANDN ACCUMULATOR.

{{FROM THE LAST DIGIT TO THE FIRST,

'{UPDATE THE DIGIT FPOINTER,

] GET THE ASCII VALUE OF THE DIGIT»

| AND SEE IF IT’S VALID.

®

\
\
\
\
\

@

IF VALUEX < 48X OR VALUEX > 5S% THEN IF THE DIGIT IS INVALID
PRINT "INVALID INFUT® ! THEN FRINT ERROR MESSAGE

gGDTD 200 ! TRY FOR ANOTHER NUMEER.

@

a. In EXTEND format, variable/function names can have up to 29 alphanumeric (and dot) characters in addi-
tion to the leading alphanumeric character, any FN prefix and/or $ or % suffix.

©-
—— ~t—

300 DIGITPOSX = —-1X \ ACCUMULATOR = 0. !t INITIALIZE VARIABLES -3

\ FOR ZXZ=LNGTHX TO 1% STEP -1X% ! FOR EACH DIGIT &

DIGITPOSX = DIGITFOSXZ + 1% r‘! INCREMENT DIGIT FOINTER &

! GET THE ASCII VALUE &

! &

&

\
\ VALUEX = ASCII(RIGHT(NUMBER$:ZX))
\
\

In creating such names, the user should avoid mimicking existing BASIC-PLUS keywords such as statements
and built-in function names (for example, IF, GOTO, LEN, etc.).

NO EXTEND format allows only 1 alphabetic character or 1 alphabetic and 1 numeric character where
EXTEND allows the 29 alphanumeric and dot characters.

b. In EXTEND format, spaces and tabs are significant; thus, the statement GOT0200 and the command
ASSIGNDT]1: are illegal, but GOTO 200 and ASSIGN DT1: are legal.

NO EXTEND format ignores spaces and tabs; thus, GOT0200, GOTO 200, ASSIGNDT1:, and ASSIGN
DT1: are all legal. :

¢. In EXTEND format, a BASIC-PLUS program line ending with
&[<space/tab>sequence] <CR>
or
<LF>
signals continuation of the logical line on the next physical line.
NO EXTEND format uses a LINE FEED to signal continuation of the logical line on the next physical line.
d. In EXTEND format, a BASIC-PLUS program line ending with

!<random text>& [<space/tab>sequence] <CR>

9-8

Editing and Modifying a Program

signals a comment on the same physical line, and continuation of the logical line on the next physical
line.

NO EXTEND format requires the user to finish typing the logical line, then place the comment on the
next physical line.

9.2.1.2 Issuing the EXTEND/NO EXTEND Commands - Issued in immediate mode, the EXTEND or NO EXTEND
command changes both the user’s current format and his default format to EXTEND or NO EXTEND, respectively.
The default format is the one applied when the user issues the NEW or OLD command.
To issue one of the format commands, the user types

EXTEND
or

NO EXTEND

and follows either command by pressing the RETURN key.

Issued as a program statement, EXTEND or NO EXTEND changes only the user’s current format to EXTEND or
NO EXTEND respectively. The statement has the form

<line number>EXTEND
or
<line number>NO EXTEND
where line number is the number of the current line.

9.2.2 Standard (NO EXTEND) Statement Formatting
" This section describes formatting features as used in NO EXTEND format, which is generally a system standard.

9.2.2.1 Multiple Statements on a Single Line — More than one statement can be written on a single line as long as
each statement (except the last) is terminated with a colon or a backslash. (The backslash is preferred.) Thus only
the first statement on a line can (and must) have a line number. For example,

10 INPUT A,B,C
is a single statement line, while

20 LET X=X+1.\ PRINT X,Y,Z\ IF Y=2. THEN GOTO 10

is a multiple-statement line containing three statements: a LET, a PRINT, and an IF-GOTO statement.

Any statement can be anywhere in a multiple-statement line except as noted in the discussion of the individual
statements.

9.2.2.2 A Single Statement on Multiple Lines — A single statement can be continued on successive lines of the
program. To indicate that a statement is to be continued, the user terminates the line with the LINE FEED key
instead of the RETURN key. The LINE FEED performs a carriage return/line feed operation on the terminal, and
the line to be continued does not contain a line number. For example,

99

- Editing and Modifying a Program

10 LET W7=(W - X4%3.)%(Z - A/
(A-B)-17.)

where the first line was terminated with the LINE FEED key is equivalent to
10 LET W7=(W -X4+3.)%(Z~A/(A-B)-17.)
Note that the LINE FEED key does not cause a printed character to appear on the page.
The length of a multiple-line statement is limited to 255 continuation lines.
Where the LINE FEED key is used, it must occur between the elements of a BASIC statement. That is, a BASIC
verb or the designation of a _subscripted array element, for example, cannot be broken with a LINE FEED.
10 IF A1=0.
THEN GOTO 100
is acceptable where a LINE FEED follows 0., but:
10IFA

1=0 THEN GOTO 100
?ILLEGAL CONDITIONAL CLAUSE

is not acceptable nor is:

10IF A1=0. THEN GOTO 1

00

?MODIFIER ERROR AT LINE 10
and each illegal form generates an error message. A number of multi-word elements are processed as one word and
cannot be broken by a LINE FEED. For example, AS FILE, FOR INPUT AS FILE, FOR OUTPUT AS FILE, GO
TO, INPUT LINE, and ON ERROR GO TO are each treated by the system as one word.

9.2.2.3 Spaces and Tabs for Readability — Spaces should be used freely throughout the program to make statements
easier to read. For example:

I0LETB=D#2.+1.
instead of:
10LETB=D#2.+1.
or
10 LETB =D * 2. + 1.
The above statements are identical in effect.

TABS,yljke spaces, are used to make a program easy to read. An example follows:

9-10

Editing and Modifying a Program

20 IF AXR THEN
IF B:>C THEN
FRINT "Ax>p>C*
ELSE IF CxA THEN
PRINT *"CxAx>R"
ELSE FRINT “AxCH>R"
ELSE IF AXC THEN
FRINT *R>AXC*
ELSE IF B>C THEN
FRINT *“R:C:>A"
ELSE FRINT *C:B>:A"

9-11

CHAPTER 10
DEBUGGING A PROGRAM

The phase of program development during which the user is testing the program is called the debugging phase.
BASIC-PLUS provides users with ways to debug their programs without having to run them over and over. These
methods, described in this chapter, are immediate mode, the STOP statement, and the commands PRINT LINE,
CONT, and CCONT (a privileged command).

10.1 EXECUTING STATEMENTS IN IMMEDIATE MODE

The immediate mode of BASIC-PLUS is so called because it enables one to enter a statement and to cause its imme-
diate execution, without having to include that statement in a complete program. Immediate mode thus treats a
BASIC-PLUS statement in much the same way as a command. In fact, as the reader may recall, some of the opera-
tions included in Chapters 8 and 9 as system commands — NAME AS and CHAIN, for instance — are actually BASIC-
PLUS statements issued in immediate mode.

Immediate mode is especially useful for two general purposes: performing simple calculations which occur too in-
frequently to be programmed, and debugging programs — the subject of this chapter.

To execute a BASIC-PLUS statement in immediate mode, the user simply types that statement without a line num-
ber. BASIC-PLUS distinguishes between a programmed and an immediate statement solely by the presence or absence
of a line number: numbered statements are stored; non-numbered statements are executed 1mmed1ate1y on being
entered. Thus, the statement

10 PRINT “STORE IT AWAY”

produces no effect at the user terminal upon entry. But a similar statement, entered without a line number, causes
immediate output, as shown in the following example:

PRINT “DO IT NOW”
DO IT NOW

READY
The system prints the READY prompt to indicate its readiness for more input.

10.1.1 The Limitations of Immediate Mode

Before discussing the role of immediate mode in program debugging, it is useful to consider some of its limitations.
Obviously, some BASIC-PLUS statements are too gregarious to “go it alone” in immediate mode. They need com-
pany: they must belong to a program and interact with its other statements in order to produce resuits. The follow-
ing statements would be logically “stranded” in immediate mode, and would make nc sense:

DEF
FNEND
DIM
DATA
FOR
NEXT

(Note, however, that FOR as a modifier will work in immediate mode.)

10-1

- Debugging a Program

When the user gives any of these statements in immediate mode, the system prints the message 2ILLEGAL IN
IMMEDIATE MODE.

Immediate mode does not permit multiple statements on a single line. Here, for example, the user attempts to enter
two statements on one line, and receives an error message:

A=1\ PRINT A
NLLEGAL IN IMMEDIATE MODE

READY
10.2 USING IMMEDIATE MODE WITH STOP, CONT, CCONT, AND GOTO

10.2.1 The STOP Statement

Rather than repeatedly executing and altering a program, the user can facilitate debugging by strategically placing
STOP statements throughout the program. Upon execution, each STOP statement causes a program halt, and a
message of the form

STOP AT LINE 50

is printed. In this case, the STOP statement was located at line 50. After the STOP AT LINE message is printed, the
user may give statements in immediate mode to examine and/or change data values. He may also add, delete, or
modify lines. In addition, he may resume execution at another location by issuing a GOTO statement. When the
user is ready to resume execution, he types CONT.

10.2.2 The CONT Command
After the user has performed debugging operations during a program halt caused by a STOP, he may continue pro-
gram execution by issuing the CONT command as follows:

CONT
Execution then continues from the next statement after the STOP.

The user should note, however, that a syntax error or an illegal statement in immediate mode can prevent the CONT
command from continuing program execution. When execution cannot be continued, the system prints the message

7CAN’T CONTINUE
READY

10.2.3 The CCONT Command
The CCONT command, available only to privileged users, performs the same actions as the CONT command but also
detaches the job. Its special use lies in continuing a lengthy job that needs no further terminal interaction.

NOTE
Issued by a non-privileged user, CCONT produces the
message 2ILLEGAL SYS() USAGE. To continue, the
non-privileged user must issue the CONT command.

10.2.4 The GOTO Statement

The user can resume execution at a particular line by issuing the GOTO statement in immediate mode. Note that any
such GOTO which causes transfer of control into or out of a FOR loop, function, or subroutine may cause unex-
pected results.

10-2

Debugging a Program

10.3 DEBUGGING WITH CTRL/C, PRINT LINE, AND CTRL/O

10.3.1 Halting and Checking Execution with CTRL/C and PRINT LINE
Another way to halt program execution is to type the CTRL/C combination (see Section 9.2.1.2). CTRL/C, how-
ever, gives the user less control over where the program halts than does the STOP statement.

When the program is halted by CTRL/C, the integer variable LINE contains the line number of the statement being
executed at the time of the halt. Therefore, if the user types CTRL/C followed by PRINT LINE in immediate mode,
the contents of LINE — i.e., the current line number — will be displayed at the terminal. The following example
illustrates this procedure:

1
READY

PRINT LINE
300

READY

As when the program is halted by a STOP statement, the CONT command, CCONT command, or GOTO statement
may be used to continue execution.

If a multi-statement line is being executed, the user has no way of knowing where in the line the program stopped.
Some system programs are designed to trap CTRL/C to prevent their being interrupted within critical sequences.

10.3.2 Suppressing Output with CTRL/O

The CTRL/O combination suppresses output to the terminal without halting execution of the program; to continue
output to the terminal, the user types another CTRL/O combination. Note that after a CTRL/O is issued, the pro-
gram’s output continues but is not printed at the terminal.

A program has no way of 'determim'ng whether a CTRL/O has been typed at the terminal. There is, however, a sys-
tem function call that overrides the ability of CTRL/O to suppress output.

10.3.3 Suppressing Output with CTRL/S and CTRL/Q

Also useful for temporary suppressing output on display (CRT) terminals only is the CTRL/S combination (the user
holds down the CONTROL key and types S). To continue output to the terminal, the user types the CTRL/Q com-
bination. These two features are usable only if the STALL characteristic is set on the terminal (see Section 20.1,
TTYSET program).

10.4 AN EXAMPLE OF PROGRAM DEBUGGING

In the following example, the user has found that the program OCTDEC, written to convert octal numbers to deci-
mal, returns incorrect results. (The octal number 23, for example, is converted to decimal number 56.) Employing
STOP statements, CONT statements, and immediate mode, the user debugs the program. The step—by-step proce-
dure appears after the listing of OCTDEC.

10 ! THIS IS AN OCTAL TO DECIMAL CONVERSION FROGRAM.
100 ON ERROR GOTO 900
N\ FRINT

\ FRINT "OCTAL TO RECIMAL CONVERTER®
N\ FRINT *"CONVERTS NUMBERS RETWEEN O AND 177777 (OCTAL) TQ THEIR®
\ PRINT * DECIMAL EQUIVALENTS"-

I FRINT OUT THE INSTRUCTIONS AND HEADER.

10-3

Debugging a Program

200 INFUT "OCTAL NUMEBER"3;S5¢
\ LA = LEN(S$)
\ GOTO 600 IF L% = 0X
I INPUT A CHARACTER STRING»
! GET ITS LENGTHy
! AND CLOSE OUT IF ITS LENGTH IS 0.

250 STOP
300 0% = ~1% \ D% = O%
\ FOR 2% = L% TO 1% STEF -1%
\ 0% = O% + 1%
\ UZ = ASCII (RIGHT(S$sZ%))
\ IF VZ < 48% OR V% > SS% THEN
PRINT *INVALID INFUT®
\ 6OTO200 ,
! INITIALIZE THE DIGIT FOINTER AND ACCUMULATOR.
! FROM THE LAST DIGIT TO THE FIRST,
| UPDATE THE DIGIT FOINTER,
! GET THE ASCII VALUE OF THE DIGIT,
! AND' SEE IF ITS VALID.
350 STOF
. 400 V% = UZ AND 7%
\ D% = DZ + (VZ % INT(BZ = 0%))
\ NEXT Z%
! CHANGE THE ASCII REPRESENTATION TO A NUMERIC
! REFRESENTATION. .
! AND THE VALUE WILL ACCUMULATE IN D%,
! GO BACK AND D0 NEXT DIGIT IF THERE IS ONE.
500 . PRINT *DECIMAL VALUE IS *$NUM1$(DX)
\ GOTO 200
; | FRINT OUT THE RESULT AND TRY ANOTHER,
600 GOTOD 32767
900 IF ERL = 400 THEN
PRINT *NUMEER *S3* TOD BIG FOR CONVERSION®
\ RESUME 200
910 PRINT ERR»ERL
\ RESUME 32767
32767 END

1. The user suspects that the bug is in line 300 or 400; he therefore inserts a STOP statement before each of
these lines, at lines 250 and 350. These STOP statements are underlined in the listing.

2. The user runs the program and inputs the octal number 23. The program stops at line 250 and so informs
the user:

RUNNH

OCTAL TO DECIMAL CONVERTER
NUMBERS BETWEEN 0 AND 3641077
OCTAL NUMBER? 23

Stop at line 250

Ready

104

Debugging a Program

3. To check the value of variable L%, the user issues a PRINT statement in immediate mode:

PRINT L%
2

Ready

4. Finding the value of L% correct (23 being 2 digits), the user issues a CONT statement to continue execu-
tion. The program stops on encountering the next STOP statement, and so informs the user:

CONT
Stop at line 350

Ready

5. ‘To check the values of variables D, 0%, V%, and Z%, the user issues another PRINT statement in imme-
diate mode:

PRINT D, 0%, V%, Z%
0 1 51 2

Ready

111

The user recognizes that the value of 0%, printed as 1, should be O at this point in execution. {The program
is dealing with the digit in position 0, and O% was initialized - 1.) The user finds the source of the error in
the third physical line at 300, where O% (the letter variable) was mistyped as 0% (zero).

The user can now edit the program to correct the typographical error.

10-5

PART IV
SYSTEM LIBRARY PROGRAMS

CHAPTER 11
INTRODUCTION TO PART 1V

Part IV of the User’s Guide is largely devoted to the library of RSTS/E system programs. These programs perform
diverse services for the RSTS/E user: simple functions such as printing a “sign” at the terminal that tells others it is
in use, and more complex functions such as comparing and editing files, transferring data, and running batch jobs.

In Part IV, these programs are organized by general purpose, as the chapter titles indicate. In this chapter, Table 11-1
is meant to provide the user with a guide to the library programs and the functions they perform.

Also contained in Part IV are two more introductory chapters — 12 and 13. Chapter 12, “FILE INFORMATION
AND STANDARDS,” sets forth an “anatomy” of the RSTS/E file specification — its parts, their meanings, their
system-assigned defaults and the user’s alternatives to those defaults. Since nearly all the programs in Part IV deal
with files — the basic units of data in RSTS/E — the user should understand file specifications before reading about,
and attempting to work with, most programs in the RSTS/E system library.

The next introductory chapter, 13, introduces the system library programs as a group by discussing their shared
characteristics and features: for example, how some of them can be run by short CCL commands, and the ways in
which they identify themselves and provide helpful information at the user’s request.

Table 11-1 serves as a guide to the library programs, and to the RSTS/E file information found in Chapter 12. Table
11-2 lists the CCL (Concise Command Language) commands, which are brief ways to run some system programs
For more information on CCL commands, see Section 13.1.

Table 11-1 Overview of Programs and File Information

Function Program Location
Account reporting MONEY 153
Batch processing BATCH Chapter 22
Comparing files FILCOM 16.3
Creating, editing files EDIT 16.2
Device, copying COPY 17.3
Device, requesting QUE Chapter 21
Device transfers PIP, extended PIP Chapter 17
Directory, listing DIRECT 16.1
Disk, floppy transfer FLINT Chapter 19
Disk, mounting private UMOUNT 20.2
Editing, creating files EDIT 162
Floppy disk transfer FLINT Chapter 19
Logging in LOGIN 14.1
Logging out LOGOUT 142
Message to manager GRIPE 152
Message: “terminal in use” INUSE 153
Preserving data off-line BACKUP Chapter 18
Private disk mounting UMOUNT 20.2
Quota report QUOLST 152
- Status report on system SYSTAT 151
Terminal settings TTYSET 20.1
“Terminal in use” sign INUSE 153

11-1

(continued on next page)

Introduction to Part IV

Table 11-1 (Cont.) Overview of Programs and File Information

Elements of the file specification:

Element Location
device: 12.1
account (proj,prog) number 122
filename, extension 12.3
protection code 124
filespec options 12.5

In Table 11-2, the shortest forms of the CCL commands appear outside square brackets. Any number of characters
within square brackets may also be typed, in sequence. For example, the SYSTAT program may be run by typing
any one of the following commands: SY, SYS, SYST, SYSTA, SYSTAT.!

-
Table 11-2 CCL Commands that Run System Programs

Program Command Function of Command

DIRECT DIR [ECTORY] Lists standard directory.

DIR[ECTORY] /option(s) Lists directory according to option(s) specified.

EDIT ED[IT] Run EDIT program.

ED[IT] OUT1,0UT2=IN1,IN2 Sets up input and output files.

EDJIT] filename Sets up output file and .BAK (backup) file.

CRE[ATE] filename Sets up output file.

FLINT FLI[NT] Runs the FLINT dialogue.

UMOUNT | MOU|NT] device:pack id label/option(s) Logically associates the specified disk pack
with the specified identification label, and
applies the specified option(s).

DIS[MOUNT] device:pack id label Logically dismounts the disk pack on the speci-
fied drive, and removes the specified pack identi-
fication label from system’s table of logical
names.

PIP PIP Runs the PIP program.

PIP <command line> Executes <command line>> as a standard PIP
command.

TTYSET SET <command line> Executes <command line>> as a standard
TTYSET command.

QUE QU[EUE] <command line > Executes <command line>> as a standard QUE
command.

SYSTAT SY[STAT] Prints standard system status report.

SY [STAT] /option(s) Prints system report according to option(s)
specified.

! Note that the CCL abbreviations in the table are those supplied by DIGITAL. A system manager can install additional CCL
commands, and can alter any existing CCL commands or their abbreviations.

11-2

CHAPTER 12
FILE INFORMATION AND STANDARDS

A RSTS/E file specification contains some or all of the following information:
device: [proj,prog] filename .extension <protection > /option(s)

The elements of the file specification are discussed in the following sections. Here, Table 12-1 presents the default
supplied by the system when the user does not specify an element of the file specification.

Table 12-1 File Specification Elements and System Defaults

Element Meaning Default
device: device designator public disk structure (DF:,DK:,DP:,DB: ,DM:? or SY?)
[proj,prog] or projeét-programmer the current user’s account number
jaccount] or account number
ﬁléname.extension title of file.type of file defaults depend upon current program and procedure.

A file created at BASIC-PLUS command level, however,
has the default name NONAME.BAS.

<protection> protection code on most systems, <60>
Joption ' cluster size, data mode, defaults for options, of which there are 4, depend on
and/or total size of file the system

12.1 device: THE DEVICE DESIGNATOR

If the user does not specify a device designator, the system supplies the public structure by default. For non-file
structured devices, (paper tape, line printer, etc.), only the device designator need be specified; the system ignores
any filename, extension, account number, or protection code that the user speciﬁes.

A device designator, or device specification, consists of 2 alphabetic characters optionally followed by a decimal
unit number, and always terminated by a colon (:). The alphabetic characters are generally an abbreviation of the
device’s generic name (DT for DECtape, DK for disk, MT for magtape, etc.), and the unit number uniquely identi-
fies the device itself or the drive on which it is currently mounted.

Table 12-2 lists and explains the RSTS/E device designators.

If a user attempts to specify a device or type of device not available on the system, the error message INOT A
VALID DEVICE is printed.

12.1.1 Logical Device Names ' .

A device may be identified either by a physical device name — i.e., a device designator — or by a logical device name;
logical device names are associated with devices by the ASSIGN command (see Section 5.4) or by the system man-
ager. A logical device name consists of 1 to 6 characters terminated by a colon. Examples of logical device names

12-1

File Information and Standards

Table 12-2 RSTS/E Device Designators

Designator

Device

DF:, DK:, DP:, DB:, DM:, DS:, or SY:

RSTS/E public disk structure as a whole

SYO0: System disk (the unit which was bootstrapped)
DFO: RF11 disk (all platters)
DKO: to DK7: RK11/RKOS aisk cartridge units O through 7
DPO: to DP7: RP11/RP02/RP03 disk pack units O through 7
DBO: to DB7: RH11/RP04/RP0O5/RPO6 disk pack units O
through 7 '
DMO: to DM7: RK611/RKO06 disk cartridge
DSO: to DS7: RH11/RS03/RS04 fixed head disk units 0
‘through 7
PR: High-speed paper tape reader
PP: High-speed paper tape punch “
CR: CR11 punched or CM11 mark sense card reader
CD: CD11 punched card reader
MTO: to MT7: TM11/TU10 or TSO3 magtape units O through 7
MMO: to MM7: TMO02/TU16 or TU45 magtape units O through 7
LPO: to LP7: Line printer units O through 7
DTO: to DT7: TC11/TU56 DECtape units O through 7
KB: Current user terminal
KBn: Terminal n in the system
TTn: Terminal n in the system (synonym for KBn:)
TI: Current terminal (synonym for KB:, the terminal
that initiated the job)
DXO0: to DX7: Floppy disk units 0 to 7
NOTE

The user can reference LPn:, DTn:, DXn:, KBn:, MMn:
and MTn: where n is between 0 and the maximum number
of such units on the system. LP:, DT:, DX:, MM: and MT:
are each the same as specifying unit 0 of the related device.

On systems which do not have TU10 or TSO3 magtape units,
the designator MT: is a synonym for MM:. On systems
which have the CD11 card reader, the designator CR: is a

synonym for CD:.

122

File Information and Standards

are DTA:, DTFACT:, MTMINE:, MYPACK:, DK5:. A project-programmer (account) number may be associated
with a system-wide logical name.

NOTE
When a user specifies a device name, physical or logical,
the system seeks the device by the following procedure:
1) the system determines if the device name is specific
to one job; 2) if it is not, the system determines if it is
a system-wide logical name; 3) if the device name is
neither job-local nor system-wide, the system determines
if it is a physical device designator.

12.2 [proj,prog] THE PROJECT-PROGRAMMER OR ACCOUNT NUMBER

If the user does not specify a project-programmer code, the system assumes his own number by default; that is, the

owner of the file is assumed to be the current user. This code is meaningful only for disk and magtape files; it has no
- significance for files on DECtape or on non-file structured devices. The [proj,prog] code consists of two decimal

numbers between 0 and 254, separated by a comma, and enclosed within square brackets [] or parentheses ().

These numbers have the following meanings:

proj represents a project group consisting of users with a common task or interest.
prog represents an individual user in that project group.

RSTS/E uses project-programmer codes for two genefal purposes: 1) to identify files according to their owners, and
2) to apply the files’ protection codes to individual users and to groups of users (see Section 12.4, “PROTECTION
CODE™).

12.2.1 Special Account Characters

In any location where a project-programmer code is valid, the user may specify one of the special non-alphanumeric
characters listed below. Each of these characters designates an account. The $, for example, designates the system
library account [1,2]. Thus, a file specification containing a § denotes a file stored in that account. The usual appli-
cation of § is in calling a system library program — the command RUN $PIP, for example.

The special account characters and the accounts they designate are as follows:

Character Account

$ (CHR$(36)) [1,2], system library account
! (CHR$(33)) [1,3], determined by manager
% (CHR$(37)) [1,4], determined by manager
& (CHRS$(38)) [1,5], determined by manager
(CHR$(35)) {proj,0]

@ (CHRS$(64)) assignable account

The # character allows each project on the system to have its own library of files common to all members of that
project.

Assignment and use of the @ character are explained in Section 5.7. If the user specifies the @ character without
having previously assigned it to an account, 2ILLEGAL FILE NAME error is printed.

12-3

File Information and Standards

12.3 filerame.extension THE FILENAME AND EXTENSION
For file structured devices, each file is assigned a filename and extension.

- The filename is a string of one to six alphanumeric characters, without embedded nulls, tabs, or spaces. It is the
only element of a file specification without a delimiting mark of punctuation. The filename may also include — or
consist of — the “wild card” character ?. Or, it may consist of only the “wild card” character * (see the following
section, “Wild Card Specifications™).

The filename extension is a string of one to three alphanumeric characters without embedded nulls, tabs,or spaces
preceded by a dot (.). Usually, the extension denotes the file’s type: .BAS, for example, indicates a BASIC-PLUS
source file; .CTL, a program control file; .TMP, a temporary BASIC-PLUS file (see Table 12-3 for common RSTS/E
extensions and their meanings). An extension may include, or consist of, the ‘“‘wild card” character ?. Or, it may
consist of only the “wild card” character * (see the following section, “Wild Card Specifications™).

A null or blank extension is permitted, in which case the dot and filename extension field are omitted from the file
- designation.

Table 12-3 RSTS/E Filename Extensions

Extension Meaning
.B2S BASIC-PLUS II source file
BAC executable BASIC-PLUS program
.BAS BASIC-PLUS source file
.BAK BAcKup file created by EDIT program
.CBL COBOL source file
.CMD indirect CoMmanD file for running a system program
.CTL BATCH ConTroL file
.DOC _ RUNOFF output file
.FOR FORTRAN source file
.LOG BATCH output LOG file
.LST LiSTing file created by a system program
.OBJ compiled COBOL, FORTRAN, or BASIC-PLUS II program
.ODL Overlay Description Language input file
RNO RUNOFF source file
SAV compiled and linked FORTRAN program
.TMP TeMPorary file created by a system program
TSK Executable COBOL or BASIC-PLUS II program
TXT ‘ ASCII TeXT file

12.3.1 Wild Card Specifications
Many of the RSTS/E system library programs, ‘when requiring a file specification, allow the user to specify the wild
card characters * (asterisk) and ? (question mark). The * character replaces an entire field, while the ? character re-
places a character within a field. -

12.3.1.1 The * Wild Card — The * (asterisk), replacing a filename, extension, or both (i.e., one * for each), denotes
all filenames, all extensions, or all filenames with any extensions. The following examples illustrate:

FILE.* denotes all files with filename FILE and any extension; for example, FILE.DAT, FILE TXT
FILE.8, FILE 9B.

* EXT denotes all files with EXT extensions; for example, DATA.EXT, MYFILE.EXT, FB10.EXT,
DD.EXT.

* % denotes all files; for example, all the files listed as examples above.

124

. File Information and Standards

12.3.1.2 The ? Wild Card — The ? (question mark), in any position of either the filename or extension, denotes
any alphanumeric character appearing in that position. The following examples illustrate:

FILE.EX? denotes all files with filename FILE and an extension consisting of EX, or of EX and any
other alphanumeric character; for example, FILE.EX1, FILE.EX2, FILE.EXF, FILE.EXE,
FILE.EX.

FILE??.EXT denotes all files with extension .EXT and a filename consisting of FILE and any other two
alphanumerics, including trailing blanks; for example, FILEO1 .EXT, FILES4 EXT,
FILE3B.EXT, FILE3.EXT.

FILE??.E”? denotes all files with a filename consisting of FILE and any other two alphanumerics, and
an extension consisting of E and any other two alphanumerics, (trailing blanks are included);
for example, FILE54.EXT, FILEO1.ERA, FILEJQ.E91, FILE91.EJQ.

FI?.EXT denotes all files with extension .EXT and a filename consisting of FI and any other alpha-
numeric:(trailing blanks are inclpded); for example, FI1.EXT, FIL.EXT, FI7 EXT, FIG.EXT.

12.3.1.3 The * and ? Wild Cards Combined — The * and ? wild cards may be intermixed in a file specification. The
following examples show such mixtures and their meanings:

FILE??.* denotes all files with any extension and a filename consisting of FILE and any two alpha-
numerics; for exampie, FILE60.DAT, FILE75.DAT, FILEZX. TXT, FILESS.B, FILEB6.AM.

* EX? denotes all files with an extension consisting of EX and any other alphanumeric; for example,
MYFILE.EXT, YRFILE.EXT, MCR.EXE.

12.4 <protection>PROTECTION CODE

The protection code is a string of one to three decimal digits enclosed by angle brackets <>>. This string determines
the file’s degree of protection on two levels: the actions — reading, writing, and deleting — against which it is pro-
tected, and the user or class of users against whom it is protected. There are three such user classes, which the sys-
tem recognizes by project-programmer numbers as follows: '

1. The individual user (owner)
who is recognized by his programmer number: [200,25].
2. The user’s project group
which is recognized by the user’s project number: [200,25],[200,57],[200,70] .
3. All other users on the system
who are recognized by the existence of valid project-programmer numbers: [225,60],
[250,35],[254,10] . :

Thus, two variables — read/write privileges and class of user — determine protection. Degrees of protection for data
files are enforced by the following individual codes; typically, a file’s total protection code is the sum of the desired
combination of individual codes. These individual codes and their meanings are listed in Table 12-4.

In accordance with the codes in Table 12-4, therefore, a data file with protection <60> — the usual system default
— is protected against reading, writing, and deleting by all users except its owner: <60>= 4+8+16+32.

12.5 /option FILE SPECIFICATION OPTION

A file specification option may be included as the final element of the specification string. Three such options are
possible: /[FILESIZE, [CLUSTERSIZE, /MODE, and /RONLY. These options specify, respectively, the disk

size — in blocks — to which the file is pre-extended, the minimum number of contiguous disk blocks forming

a cluster, and the read/write mode in which the file’s data is passed to the device driver. Note that /FILESIZE
and /CLUSTERSIZE are primarily used for disk files.

12-5

File Information and Standards .

Table 124 File Protection Codes

Code Meaning
1 read protection against owner
2 write protgction against owner
4 read protection against owner’s project group
8 write protection against owner’s project group
16 read protection against all others who do not have owner’s project number
32 write protection against all others who do not' have owner’s project number
64 executable program: can be run only

Individual codes added to the compiled protection <64>> have meanings different
from those of the data file protection codes above. These compiled codes follow:

1 execute protection against owner

2 read and write protection against owner

4 execute protection against owner’s project group

8 -read and write protection against owner’s project group

16 execute protection against all others who do not have owner’s project number

32 read and write protection against all others who do not have owner’s project number

128 program with femporary privileges (normally occurs only when file’s protection
includes <64>).

If a file specification option is in a position other than the final one, is missing a colon, or is not a valid form, the

system prints the error message 2ILLEGAL SWITCH USAGE. For example, either of the following specifications

will produce the switch usage error:
ABC/SI:100 [1,2]

or

ABC/SIQ

If an argument is missing, contains an illegal character, or is greater than 65535, the system generates the 2ILLEGAL
NUMBER error.

12-6

File Information and Standards

12.5.1 /FILESIZE Option
“The /FILESIZE option allows the creation of a disk file of the specified size, in blocks, before any read/write opera-
tions are performed. Thus, /[FILESIZE reserves space on the disk for data to be placed in the file. This option con-
sists of 1) a slash (/), 2) any one of the unique abbreviations shown in the list that follows, 3) a colon (:), 4) an
optional pound sign (#) for octal conversion of the argument n, 5) the argument n, a decimal number between O
and 32767 inclusive, which indicates the number of blocks in the pre-extended file, and 6) an optional trallmg deci-
mal point (.) to ensure that n is interpreted as a decimal number.

The /FILESIZE option may be minimally abbreviated to /FI or to /SI. The following list shows its valid forms:

JFI: [#] n[.]
JFIL:[#]n[.]
JFILE: [#]n[.]

/ FILF:SIZE: [#]n].]
or

[SI: [#]n[.]

[SIZE: [#]n{.]
12.5.2 /CLUSTERSIZE Option
The /CLUSTERSIZE option establishes the minimum cluster size for a disk file; a cluster is a number of contiguous
blocks taken together as a unit. The /CLUSTERSIZE option is especially useful for large files; specifying a large
cluster size speeds up random access to the data and prevents such files from crowding or filling the user’s directory,
whose own size is limited. RSTS/E permits cluster sizes of 1, 2, 4, 8, 16, 32, 64, 128, or 256 blocks.

The /CLUSTERSIZE option consists of 1) a slash (/), 2) CLUSTERSIZE or a minimum abbreviation of CL, 3) a
colon (:), 4) an optional minus sign (-) to specify a negative cluster size (explained in the next paragraph, 5) an
optional pound sign (#) for octal interpretation of the argument n, 6) the argument n specifying the cluster size in
blocks, and 7) a decimal point (.) to ensure decimal interpretation of n. The following list shows the valid forms of
the option:

JCL:[-][#]n[.]
/CLU:[-] [#]n[.]
[CLUS:[-]1[#n[.]

JCLUSTERSIZE: [-] [#] n[.]

Specifying a negative cluster size is a way to avoid certain errors associated with disk devices. A negative cluster

size tells the system to use the absolute value of the cluster size, if the device on which the file is created allows that
value. If the 2ILLEGAL CLUSTER SIZE error is encountered because the absolute value is less than the cluster size
at which the file is to be created, the system will use the device cluster size rather than return the error. For example,
a user is accustomed to creating a file with a cluster size of 2 on an RKOS5 disk cartridge, which is a system scratch
disk. The scratch disk, however, temporarily changes to an RP06 disk pack, which has a device cluster size of 8. The
user’s customary cluster size of 2, therefore, would be illegal on the RP06. But by specifying the negative cluster

size of -2, the user guarantees that the file creation will not fail because of the RP06 disk’s cluster size restriction.

127

File Information and Standards

12.5.3 /MODE and /RONLY Options

The /MODE option enables the passing of up to 15 (decimal) bits of information to the device driver at file open
time. The meaning of these bits (if any) is device dependent, and determines the read/write mode for data transfer.
For explanations of the bits, see the RSTS/E Programming Manual.

The /MODE option consists of 1) a slash (/), 2) MODE or a minimum abbreviation of MO, 3) a colon (:), 4) an
optional pound sign (#) for octal interpretation of the argument n, 5) the argument n specifying a mode setting be-
tween 0 and 32767 (decimal) inclusive, and 6) an optional decimal point (.) to ensure decimal interpretation of n.
The following list shows the valid forms of the option:

- IMO:[#]n].]
/MOD:[#]n[.]
/MODE: [#]n].]

The /RONLY option enables setting of the read only MODE value for a disk file. The /RONLY option consists of
1) a slash (/), and 2) RONLY or a minimum abbreviation of RO. The following list shows the valid forms of the
option: , .

/RO
/RON
/RONL
/RONLY

12-8

CHAPTER 13
PROGRAM INFORMATION AND CHARACTERISTICS

13.1 THE CONCISE COMMAND LANGUAGE (CCL)

A RSTS/E user is able to run some of the system library programs by typing a unique system command called a
Concise Command Language (CCL) command. The number of programs that can be run by CCL commands is gen-
erally decided by the system manager, although Digital supplies CCL commands with some of the library programs.
These standard CCL commands are listed in Chapter 11, the introduction to Part IV. Specific descriptions of Digital-
supplied CCL commands are found in the chapters describing their associated programs.

The chief advantage of CCL commands is that they allow the user to call a system program with one brief command
(by typing PIP, for example, instead of RUN $PIP), and to give that program a specific command to execute: QUE
MYFILE.DAT, for example, calls the QUE program and also tells it to print MYFILE.DAT at the line-printer.

13.1.1 Cautionary Notes on Typing CCL Commands

13.1.1.1 Embedded Spaces in CCL Commands — The user should note that the CCL translator, unlike the BASIC-
PLUS translator, interprets spaces embedded in strings as significant. Thus, if a user attempting to run the EDIT
program types E DIT, he will not succeed in running the program and instead will receive an error message.

13.1.1.2 Mistyping a BASIC-PLUS Command as a CCL Command — When the user enters a line at BASIC-PLUS
command level, RSTS/E first checks for a BASIC-PLUS line number. If RSTS/E finds a line number, it compiles the
line as a program statement. But if it finds no line number, it sends the line to the CCL translator; if the CCL trans-
lator recognizes the line as a valid CCL command, it causes the appropriate program to be run, thus destroying the
current contents of the user’s area in memory. If, on the other hand, the CCL translator does not recognize the line
as a valid CCL command, it sends the line back to the BASIC-PLUS system, which then attempts to execute the line
as a BASIC-PLUS system command or immediate mode statement.

Thus, the user, in issuing a BASIC-PLUS system command or immediate mode statement, should be careful not to
mistype that command or statement so that it mimics a valid CCL command: if it does, the user’s area in memory —
i.e., the current program — will be destroyed and replaced by a system library program.

1t is unlikely that a BASIC-PLUS statement or command would be mistyped as any of the DIGITAL-supplied CCL
commands. Some systems, however, may have CCL commands of their own that do resemble BASIC-PLUS state-
ments or commands. Therefore, the user is strongly advised to become familiar with the Concise Command Language
as it exists on his system.

13.2 OBTAINING HELP FILES FOR SYSTEM PROGRAMS

Many of the library programs offer the user assistance in the form of help files; these files contain information on
running the program and using its commands and/or options, and may be printed at the user’s terminal. Generally,
the simple, one-command programs such as INUSE, GRIPE, MONEY, and QUOLST do not provide help files.

The method of requesting a help file depends upon the program. Some programs, for example, allow the user to
print their help files without first running the program; for these programs, the user may type HELP followed by the
program’s name. Other programs must first be run before the user may request their help files — generally by typing
the /HE option. And some programs allow both forms of request. The user should refer to individual program de-

- scriptions in Part IV,

13-1

Program Information and Characteristics

13.3 VERSION IDENTIFICATION

Most system library programs, on being called by the RUN $§ command or by a CCL command that merely calls the
program, print a program header before the prompt. This header contains the program name and the RSTS/E version
number, along with other information such as the system number and the current job number.

The following output, for example, is PIP’s response to either the RUN $PIP command or the CCL command PIP:

PIP V06B -03 RSTS V06B-02 TIMESHARING
#.

For other examples of program headers, see the individual descriptions in Part IV.

13.4 INDIRECT COMMAND FILES

Two system programs, BACKUP and extended PIP, may be run by indirect command files. An indirect command
file is created by the user and contains commands which the program executes as it reads the file. Indirect command
files are useful when a sequence of operations is to be performed repeatedly; once the user has placed the commands
for these operations in a file, he need not issue them one by one when he wishes to perform the operations.

Methods of creating and running indirect command files vary according to program. BACKUP, which runs by an

ordered dialogue, involves methods different from those of PIP, which does not. See the individual program de-
scriptions in Part IV. :

132

CHAPTER 14
JOB CONTROL PROGRAMS

14.1 ENTERING THE SYSTEM: THE LOGIN PROGRAM
The LOGIN system program runs from either a logged in or a logged out terminal. It activates a job at a terminal,
attaches a detached job' to a terminal, or runs designated system programs from a logged out terminal.

14.1.1 Running LOGIN from a Logged Out Terminal

As described in Chapter 2, the LOGIN system program runs when either HELLO, LOG, LOGIN, ATTACH. ATT or
Iis typed at a terminal connected to the RSTS/E system. This section describes more fully the actions which occur
when LOGIN runs at a logged out terminal.

When a terminal is connected to the RSTS/E system by a dial up connection, the automatic answering signal causes
the system monitor to insert an I in the input buffer for that terminal. This action simulates an I being typed at a
terminal directly connected to the system. The description of the resultant actions in this section applies to the cases
of a terminal directly connected to the system and of a terminal connected by a dial up line.

When a user enters typed characters to the sysiem from a terminal directiy connected to but niot logged intc the
system, the monitor runs the LOGIN system program which checks the characters for a valid command. If only the
RETURN key is typed, the system takes no action. A user entering either SYS or SET commands causes LOGIN to
chain to the SYSTAT or TTYSET system programs, respectively. The system manager can alter the LOGIN program
to run other programs in the same manner.

If the user types HELLO, LOGIN, LOG, ATTACH, ATT, or I, LOGIN prints the system identification line as in the
following sample printout. .

HELL.O

RETS VO4B-02 Timesharing Job 16 KR2 02-Nov-76 112107 AM

#1210

The line contains the system name and version number, the local installation name, the job number activated, the
keyboard number of the terminal, and the current system date and time. The pound sign (#) character printed by
LOGIN on the following line requests the user to type his account number.

The user types the project and programmer numbers separated by either a comma or a slash and terminated with the
RETURN key. (Typing the slash as a separator inhibits printing of any system notice messages.) The user can specify
the project and programmer numbers on the same line as the HELLO, LOGIN, LOG or I commands as shown in the
following sample dialogue.

HELLO 1,210
Password?

When an account number is included in the command, LOGIN does not print the # charactér but immediately
prompts the user to enter the password. LOGIN disables echo printing at the terminal when the password is typed.

'a job becomes detached because the connection of a dial up line is broken or a privileged job executed the SYS system function
to detach the job from the terminal.

14-1

Job Control Programs

If either the account does not exist or the password does not match, LOGIN prints the INVALID ENTRY — TRY
AGAIN message and the # prompting character. The user can try the sequence to a maximum of five times. LOGIN
allows the user 30 seconds in which to type an entry. After the fifth invalid entry, LOGIN prints the ACCESS
DENIED message and frees the job for other usage.

A valid entry causes LOGIN to check for any other jobs which may be running on the system under the same account
number. If other jobs are running and none are detached, LOGIN reports how many such jobs by printing a message
similar to the following sample and prints the system notice messages.

1 other user is lodgded in under this account

If any jobs are running detached under the current account, LOGIN instead reports the number of each such job and
requests the user to type the number of the job to be attached to the terminal. The following sample printout shows
the procedure.

Jobh 16 is detached under this account
Job number to attach to? 16
Attaching to .Job 16

Ready

To attach a job to the terminal, simply type its number in response to the query. LOGIN prints the ATTACHING
TO message and attempts to attach tne specitied 100 to the current terminal. When the job is attached, the current
job is freed for other usage and the attachea job runs at the terminal.

To continue running the current job, the user simply types the RETURN key in response to the query: LOGIN
subsequently prints the message concerning other jobs running under the same account and prints the system notice
messages, if any.

Job 16 is detached under this account
Job number to attach to? '
2 other users are losged in under this account

Ready

System notices convey to the user information which the system manager places in the file NOTICE.TXT in the
system library. If the file does not exist, LOGIN proceeds. LOGIN prints the READY message and exits to the sys-
tem monitor which clears the LOGIN program from memory.

The complete sequence to log a job into the system when other jobs are running detached is shown below.

HELLDO 1/210

Fassword?

Job 16 is detached under this account

Job number to attach to?

2 other users are lodgded in under this account

Ready

- The complete sequence to attach another job to the terminal when logging into the system is shown in the following
sample printout.

14-2

Job Control Programs

HEL.L.O

RETS VO4R-02 Timesharing Job 11 KB2 O02-Nov-76 11331 AM
*#1/210

Fassword?

Job 16 is detached under this account

Job number to attach to? 16

Attaching to .Job 16

Ready

To attach a job to a terminal when the job number is known, the user can type the ATTACH or ATT command as
follows:

ATTACH

RSTS VO&R-02 Timesharing Job 13 KE2 02-Nov-76 12101 FM
Job number to attach to? 34
Job riot detached - access denied

Bue

LOGIN runs and prints the system identification line and, on the next line, the JOB NUMBER TO ATTACH TO
query. The user must type the number of the detached job. If the job is not detached or does not exist, LOGIN
prints an appropriate message followed by ACCESS DENIED. The user must type another command to log into the
system.

If the job is detached, LOGIN prompts the user for the password of the account under which the detached job is
running. After the user enters the password; LOGIN prints the ATTACHING TO JOB x message and attempts to
attach the specified job to the terminal. An incorrect password causes LOGIN to print the FAILURE TO ATTACH
TO JOB x message and to terminate as shown in the following sample printout. ;

ATTACH

RETS VOAR~-02 Timesharing Job 13 KR2 02-Nov-76 12103 FPM
Job number to attsch to? 21

Fassword?

Attaching to Job 21

Failure to attach to Jdob 21

The user must try again. If the system successfully attaches the job to the terminal, the terminal becomes the con-
sole terminal of the job. Further terminal output is under programmed rather than system control.

To omit tue printing of the identification and the query lines, simply type the job number on the same line as the
ATTACH or ATT command as follows.

ATT 27
Fassword?
Attaching to Job 27

Ready

The READY message indicates that the attached job is at the system monitor level.

143

Job Control Programs

14.1.2 Running LOGIN at a Logged In Terminal

If the user types the HELLO or the ATTACH command at a terminal already logged into the system, the LOGIN
system program is loaded into the user’s job area and is started. The previous contents of the user’s area are destroyed.
LOGIN prints the system identification line with one additional item inserted. Between the job number and the key-
board number printed on the line, LOGIN inserts the project-programmer numbers of the account under which the
current job is running. Typing the LOGIN, LOG, ATT or I command at a terminal already logged into the system
causes the system monitor to print the YWHAT? error message and the READY message, unless these have been
installed as valid CCL commands.

LOGIN determines if any other jobs are running under the same account and prints the message informing the user
of the number of those jobs. The following sample dialogue shows the procedure.

Readw
HELLO

RSETS VO4B-02 Timesharing Job 15 [1,2101 KB3 02-Nov-76 02153 FM
1 other user is loddged in under this account

Ready

“If any such jobs are runnixig detached, LOGIN also prints the message informing the user of the number of each such
job and, on the following line, prints the ATTACH TO query as follows.

Readu
HELLO

RSTS VO4E~-02 Timesharing Job 27 KBR2 02-Nov~76 01102 FM
Job 15 is detached under this account

Job number to attach to? 40

No Job bw that number - tru adain

Job number to attach to?

To attach one of the jobs to the terminal, the user types one of the job numbers reported in the message. LOGIN
determines whether the job is nonexistent or whether it is already attached to another terminal. In either case, the
program prints an appropriate error message saying try again and subsequently reprints the ATTACH TO query.

To continue running the current job, the user types the RETURN key in response to the ATTACH TO query. As a
result, LOGIN prints the information message telling how many other jobs are running under the same account and
prints the READY message. The system clears the LOGIN program out of memory.

Job mumber to attach to?
2 other users are lodgged in under this account

Ready

When the user responds to the ATTACH TO query by typing one of the job numbers reported in the message, the
program proceeds as shown in the following sample printout.

144

Job Control Programs

HEL.L.O

RSTS VO4E~-02 Timesharing Job 36 L[1,2101 KR3 02-Nov~76 02155 FM
Job 195 is detached under this account

Job number to attach to? 15

Attaching to Job 15

Readw

The READY message indicates that the new job is at system command level.

To attach to a job known to be running detached under the same account, the user can type the job number on the
same line as the ATTACH command. The LOGIN program determines if the job specified exists and is detached. If
not, it prints an appropriate error message and the ATTACH TO query. The user can type another job number or
the RETURN key. If the job exists and is detached, LOGIN compares the account numbers under which both the
current job and the detached job are running. If the accounts are different, the program prompts the user for the
password of the account under which the detached job is running. The following sample printout shows the pro-
cedure.

ATTACH 51

No Job by that number - trg again
Job number to attach to? 10
Fasswordsd

Attaching to Jdob 15

Failure to attach to Job 1S

Readyu

After the user enters the password, the program prints the ATTACHING TO message and attempts to attach the
detached job to the terminal. If the password is not valid, the program prints the FAILURE TO ATTACH and the
READY messages and exits to the monitor, which clears the LOGIN program from the user’s job area.

When the account numbers of the two jobs are the same, LOGIN omits the PASSWORD prompt message and
attaches the job as shown below.

ATTACH 24
Attaching to Job 24

Ready

The READY message indicates that the job is at the system monitor level.

To change accounts without logging off the system, the user types the HELLO command followed by the account
number. For example:

Readw
HELLD
RETS VO&4B-02 Timesharing Job 20 [2,2271 KBR2 02-Nov-76 035116 FM

Ready

14-5

Job Control Programs

HELLO 1/210
Fassword?

Ready
HELLO
RETS VO4EB-02 Timesharing Job 20 [1,2107 KE2 02-Nov-76 05317 PM

Readw

To have the system print the system notice message, the user replaces the / character in the account number with a
comma.

14.1.3 Running Other Programs from a Logged Out Terminal

Certain commands typed at a logged out terminal cause LOGIN to chain to another program in the system library.
The system manager can modify the LOGIN program to recognize other commands and to chain to a program stored
in the system library. '

For example, it is convenient to determine job status without logging a job into the system. The following printout
shows the procedure. '

5YS/4
4 C1+2101 KR25 NONAME 16K Sk 0.1 BASAF
‘Bue
"LOGIN runs and recognizes the SYS command of the SYSTAT system program. LOGIN writes the option given in
the command in the core common area and chains to the SYSTAT program at line 32000. SYSTAT reads the option

from the core common area and prints the appropriate report. It then exits to the monitor, which prints the BYE
message and clears the contents of memory.

14-6

Job Control Programs

14.2 LEAVING THE SYSTEM: THE LOGOUT PROGRAM

LOGOUT is called when the user has completed all processing and is ready to leave the terminal. The LOGOUT pro-
gram is started when the BYE command is typed at a user terminal logged into the RSTS/E system. LOGOUT checks
the current user’s disk quota to ensure that the user does not log out of the system with more than the acceptable
amount of disk storage being used for his files. If the user’s disk files are within the acceptable disk quota size,
LOGOUT disconnects the terminal from the system, removes the current job number from the list of active jobs

and prints some information on the duration of the current job.

In response to the BYE command, LOGOUT prints:
CONFIRM:
The user can type any of the responses shown in Table 14-1.

Table 14-1 LOGOUT CONFIRM: Responses

CONFIRM: Response Meaning

Y The system performs the checks described above. If successful, the
LOGOUT messages are printed. If not successful, an error message
is printed and the user must delete some files.

N These responses indicate that the user does not want to iog out of
CTRL/C the system. The LOGOUT procedure is terminated without logging
the user off the system and the system prints the READY message.
? ' " Causes LOGOUT to print an explanation of the acceptable responses
to CONFIRM: ,
RETURN key Causes LOGOUT to print a message instructing the user to type ? |
to obtain a description of logout procedures.
I Causes LOGOUT to enter individual file deletion mode.
Other Same as RETURN key.
F Causes a fast logout procedure if user’s disk storage space is within
acceptable limits.

In individual deletion mode, LOGOUT prints the name, size, protection code, and creation date of each file stored
under the current user account number on the system disk. This information is followed by a ? after which the sys-
tem awaits a response from the user which can be:

File Deletion
MODE Response Meaning
RETURN key Save the file just listed.
K Delete (kill) the file just listed.

147

Job Control Programs

An example of a LOGOUT sequence is shown below:

BYE Y

Disk auota of 400 exceeded by 52 blocks

Some file(s) must be deleted before lodgding out
Ture ‘7?7’ for hels

Confirm? I

DATA .001 200 60 03-Nov-76 7P
DATA . 002 150 50 03~Nov-76 7P
DATA .003 100 60 03-Nov-76 7 K

Confirm: Y

Baved 3ll disk files$ 352 blocks in user 48 free

Job 24 User 100,101 lodgsged off KB3 at 03~Nov-76 03109 FM
Sustem RSTS VO6B-02 Timesharing

Rur time was 1.4 seconds

Elarsed time was 3 minutess a? seconds

Good afternoon

The user can omit the CONFIRM: message by typing the BYE command and the response to the CONFIRM:
messagé. For example, to perform a fast logout, the user types

BYEF

The LOGOUT program runs and performs the fast logout procedure by printing a series of LINE FEED characters
instead of printing the final accounting information. If the user job exceeds the acceptable limit for disk storage,
LOGOUT prints the QUOTA EXCEEDED message and the CONFIRM: message to allow the user to delete some
files before logging out.

14-8

CHAPTER 15
SYSTEM COMMUNICATION PROGRAMS

15.1 PRINTING A SYSTEM STATUS REPORT: THE SYSTAT PROGRAM '
The SYSTAT program provides current system information in the areas of job, device, disk, and buffer status.
SYSTAT can be called by a user logged into the system or from a terminal which is on-line but not logged into the
system.
To start SYSTAT while logged into the system, the user types
RUN $SYSTAT
If the user is not logged into the system, he types "
SYSTAT
which can be abbreviated to SYS.
If the user is already logged in, the system responds by printing:

OUTPUT STATUS TO?

at which point the user can indicate any RSTS/E device or a filename specification for the status report output.
Possible replies by a user logged into the system are described below:

SYSTAT Output Response Meaning
LP: send status report to the line printer if only one line printer is on the
system or to line printer unit O if multiple line printers are on the
system.
LPn: send status report to line printer unit n if that printer is not currently
in use.
KB: ' send status report to the user terminal. (The RETURN key is equiva-

lent to responding KB:)

KBn: send status report to user terminal n in the system if that terminal
is on-line and not currently in use.

PP: send status report to the high-speed paper tape punch.

dev:filename.ext send the status report to the file specified. The default device is the
systemn device. No extension is appended unless specified by the user.

? send status report to a file on the public structure, and print the
file’s name. The file is named according to the current date and time
of day; its extension is RPT. (The filename is explained in the following
paragraph.)

151

System Communication Programs

An example of an output file created by the ? response to the OUTPUT TO query is FO4N59.RPT. The filename
has 4 parts. The first is a letter from A to L, and denotes the month according to its alphabetical position; here, F,
the sixth letter of the alphabet, denotes June. The second part is two digits from 01 to 31 denoting the day of the
month; here, the fourth, The third part is a letter from A to X denoting the hour from 00 to 23; here, N denotes
the 14th hour (2:00 p.m.). The fourth part is two numbers denoting the minute of the hour.

If SYSTAT is run by a user not logged into the system, the report is always sent to the user terminal requesting the
report.

Following the device or filename specification, the user can specify one of the options in Table 15-1 to obtain a
partial system status report. The option specifications are preceded by a slash if the user is logged into the system.
The options can be typed following the SYS command if the user is not logged into the system.

Table 15-1 SYSTAT Options

SYSTAT Option
Specification Meaning

/A Report only status of attached jobs.

/B Report only busy device status.

/D Report only disk status.

/F | Report only free buffer status.

/Kn Report only job status of terminal n in the system.

M Report only message receiver status.

/N Report only status of non-privileged accounts.

/n Report status of job n only.

/n,m Report status of account [n,m] only.

n,x Report status of jobs with project number n only.

null Report complete system stafus to include job, run-time
system, busy device, disk structure, free buffer status,
and message receiver statistics.

/P Report only status of privileged accounts.

/R Report only run-time system statistics.’

/S Report only job sﬁtus.

/U - Report only status of unatté'ched (ie., detached) jobs.

/0,0 Report only status of jobs not logged into the system.

A minus sign (-) may be included with any option, in any position following
the slash, to cause printing of an account number instead of [OPR] and [SELF]. .

15-2

System Communication Programs

The options S,A,B,D,F.N,P and U can be specified as separate options or in any combination. If multiple options
are specified, only one slash is required.

The following examples are performed on a terminal logged into the system:

RUN $SYSTAT

OUTPUT STATUS TO? STAT creates complete system status report in the file STAT under the
current account in the public structure.

RUN $SYSTAT

OUTPUT STATUS TO? LP: /3 causes output of a status report for job 3 to the line printer.

RUN $SYSTAT

OUTPUT STATUS TO? /D causes output of disk status report to the user terminal.

RUN $SYSTAT

OUTPUT STATUS TO? /SF causes output of job and free buffer status to the user terminal.

The following examples are performed on a terminal not logged into the system:

SYS , causes output of complete system status report to the terminal.
SYS/D causes output of the disk status report to the terminal.
SYS/BF causes output of the busy device and free buffer status reports

to the terminal.

SYS/5 , causes output of a status report for job 5 to the terminal.

SYS A/B causes the ILLEGAL OPTION error since SYSTAT cannot create
a file for a logged 6ut job.

SYS /AP causes output of a report of all attached, privileged jobs.

15.1.1 Contents of the Status Report
A complete system status report is shown below:

RUN $SYSTAT
OUTPUT STATUS TO?

15-3

System Communication Programs

RSTS VO6B-02 Timesharing status at 28-0ct~76»

Job Who Where What Size State

1 COPR1 Det ERRCPY SR SR

2 COFR] Det OFSRUN 16K St

3 LOPRI Det QUMRUN 16K Si.

4 COFR1] Det SFLIDL 16K RN

S - CLOPR1 Det SPLIDL. 16K SL 108

6. COPRI KEB44 NONAME. 2K ~C

7 COPRZD Det BATIDL 13K Sl

8 COPR1 Det BRATIDL 13K 8L Ilé

9 COFR] KRS0 NONAME 2K ~C

11 1,208 KER36 PIF 14K ~C Al0

13 23217 KE49 NONAME 2K “C

14 1,239 KRSS UTILTY 10K ~C AO6

15 120,71 KB33 C3F351 3K TT

17 100,100 Det VTSIDFY 16K Sl

18 1,240 Det VTSIIFY 16K Sl

19 LOFPRI] KRBSé6 NONAME 2K ~C A12

20 1,201 KB25 TRNSCE 7K RN

21 1,204 KES2 BINCOM 4K ~C

22 COPR2 KES1 NONAME 2K ~“C Al13

23 1,227 KB24 NONAME 3K ~C

24 CSELF1 POJ20 SYSTAT 8K RN Lck

26 232,21 KE43 NONAME 2K ~C

27 1,202 Det DERUG 3K - St

28 1,201 Det SPLIDL 16K SL.

30 COPRI KR31 MODAS1 3K ~C AO9
Busy Devices?
levice Job Whw
PKO 20 INIT
I-PO 4 AS+INIT
MMO 25 AS
Disk Structure?

Dishk Oreéen Free Cluster Errors Name
nso 3 75 i 0 SWAFO
0nsi 1 1 0

DKO 8 0 1 0 5002
DBl - 17 14272 4 0 8YS881
nB2 13 14272 4 0 5YS882
Small Larde Jobs ‘Hung TTY’S Errors
270 1 25/63 0. 481
Run—~Time Sustems!?

Name Ext Size Users Comments ~
BASAF BAC 15K 23 Fermy Addri79y
BASIC RAC 14K 2 Temry AddriP4y
RT11 SAV AK 0 Non-Resy KEMy
RTSLIB TSK 4K 0 Non—-Res
COBOL TSK 4K 0 Non~Res
Message Receivers?

Name Job Masds Max Senders
ERRLOG 1 (] 30 Priv
OFSER 2 (o] 30 Local
QUEMAN 3 0 60 Local
LPOSPL 4 0] Priv
LFLSPL L] 0 S Priv
BAOSFL 7 0 S Priv
BA1SPL 8 o S Priv
.P2SFL. 28 0 S Priv

154

032147 FM Uei 22350146

RTS
BASAF
BASAF
BASAF
BASAF
BASAF
BASAF
BASAF
BASAF

. BASBAF
BASAF
RASAF
BASAF
BASAF
BASAF
RASAF
RASA4F
BASAF
BASIC
BASAF
BASA4F
RAS4F
BASAF
RASAF
RASAF
RASIC

Run-Time
43110.4
8:28.8

40:58.6

]

.

-t
CPLHUNOSOOVO O

* & & ¢ P+ o+ e e o+ o

OO N R D

3:5

16201,
11323.7

13342,2

Comments
Fri
NFS
Fub
Fub
Pub

KeMs CSZ
KEMy CSZ
CSZy EMT 255

System Communication Programs

The job status information includes a list of all active jobs by job number, the account number under which each job
runs, the keyboard involved, the program name and size. the job state, the total amount of central processor run time
exhausted, and the job priority. In the WHO column, SYSTAT substitutes OPR for the project-programmer number
to denote an operator account. An operator job has a project number of 1 and a programmer number between 1

and 200. In the WHERE column, DET appears in place of the keyboard number for jobs which run detached from

a keyboard. Also, the abbreviation PxJy appears for a job running on a pseudo keyboard. The value Px identifies
pseudo keyboard unit x; and the value Jy denotes job number y, under which the controlling job is running. The
SIZE column shows two numbers separated by a slash character. The first number is the current size in K words;

the second number is the size to which the job can expand. The STATE column contains an abbreviation (see Table
15-3) telling the condition the job is currently in. The RUN-TIME column gives hours, minutes, seconds, and tenths
of seconds of central processor time the job has consumed. The PRIORITY column (printed only if job is privileged),
gives the number which the system assigns to determine the order in which to run jobs. Most jobs run at -8 priority;
system jobs may run at special priorities of 0 or higher. The RTS column gives the name of the run time system
under which the job is running.

The busy device status information reports devices which are assigned or opened by a specific user. Items reported
are the device specification, the job owning that device, and the condition of the device (in the WHY column).

The disk status information describes each disk in use on the system. Items reported are: disk name (device specifi-
cation), number of open files, number of free 512-byte blocks, pack cluster size, disk hardware error count, the pack
identification or system logical name (if any) assigned for the device, and comments on its status. See Table 15-3

for abbreviations in the COMMENTS column.

The buffer status provides the following information: 1) the number of small (16-word) and large (256-word)
buffers not currently running in use, 2) the number of jobs currently running and the maximum number allowed to
run (two numbers separated by a slash), 3) the total number of errors logged on the system, and 4) a count of the
number of times a hung terminal was found. A hung terminal is one that fails to respond to character transmission
within a given time period.

The run-time system information gives the name of each run-time system, the default extension for (executable)
files created by that run-time system, the size of the run-time system in K words, the number of user jobs currently
executing under its control, and comments regarding its status. See Table 15-2 for abbreviations in the Comments
column.

The message receiver report gives the receiving job’s name and number, the number of messages queued for the job,
and the declared maximum number of messages the job can have queued. It also tells whether local and network
senders are allowed, and whether local senders must be privileged.

The abbreviations used in the SYSTAT report are defined in Table 15-2.

The message receiver report gives the receiving job’s name and number, the number of messages queued for the job,
and the declared maximum number of messages the job can have queued. It also tells whether local and network
senders are allowed, and whether local senders must be privileged.

15.1.2 SYSTAT as a CCL Command

SYSTAT as a CCL command works similarly to SYSTAT typed at a logged out terrmnal The CCL command how-
ever, can contain a file specification. The following commands show the proper procedure.

SYS B

READY

15-5

System Communication Programs

Table 15-2 SYSTAT Abbreviations

Abbreviation

Meaning

job status (states)

DET job is detached from all terminals
ok Hk job is not logged into the system
OPR job runs under a system operator account
SELF job runs under current user account
RN job is running or waiting to run
RS job is waiting for residency
BF job is waiting for buffers (no space is available for I/O buffers)
SL job is sleeping (SLEEP statement)
SR job is in a receiver sleep
FP job is waiting for file processing action by the system
T job is waiting to perform output to a terminal
HB job is detached and waiting to perform I/O to a terminal
KB job is waiting for input from a terminal
+C job is in CTRL/C state, awaiting input to the monitor
CR job is waiting for card reader input
MT or MM job is waiting for magtape I/O .
LP job is waiting to perform line printer output
DT job is waiting for DECtape I/O
PP job is waiting to perform output on the high-speed paper tape punch
PR job is waiting for input from the high-speed paper tape reader
DK.,DM,DB,DS,
DP,DC,DF job is waiting to perform disk I/O
DX job is waiting for floppy disk I/O
RJ job is waiting for RJ27801/0
7 job’s state cannot be determined
The following status descriptions may appear after one or
more of the other job state abbreviations: '
k]
Lck job is locked in memory for the current operation
Swi job is currently being swapped into memory
Swo job is currently being swapped out of memory
Xnn job is swapped out and occupies slot nn in swapping file X; file is
denoted by A,B,C, or D to represent files O through 3 of the swapping
structure
busy device status
AS device is explicitly assigned to a job
INIT device is open on a channel
DOS magtape is assigned with DOS labeling format
ANSI magtape is assigned with ANSI standard labeling format
disk status
PUB cartridge or pack is public
PRI cartridge or pack is private

(continued on next page)

15-6

System Communication Programs

Table 15-2 (Cont.) SYSTAT Abbreviations

Abbreviation : Meaning
NFS disk is open as non-file structured device
R-O disk unit is read-only (write-locked)
DLW date of last write (modify), rather than date of last access, is stored
in file accounting entries
Lck disk is in a locked state

run-time system status

Non-Res run-time system is non-resident

Loading run-time system is being loaded into memory

Temp run-time system will be removed from memory when not being used

Perm run-time system will stay in memory when not being used

Addr:xxx denotes the run-time system’s starting address

KBM run-time system can serve as keyboard monitor

1US run-time system can serve only 1 user

R/W run-time system allows read/write access

NER errors occurring within run-time system will not be sent to system
error log

Rem run-time system will be removed from memory as soon as all its jobs
switch to another run-time system

CSZ proper job image size (in K words) to run a program can be computed
as K-size=(filesize+3)/4

EMT:yyy denotes the EMT code for special EMT prefix

message receiver status

Local local senders are allowed for this receiver ID
Priv. local senders must be privileged to send to this receiver ID

Network " network senders are allowed for this receiver ID

SYSTAT creates file B and writes to it a complete system status report. The file resides under the current user
account in the public structure.

SYS /B

SYSTAT prints a busy device status report at the terminal. To create a status report in a file, the user types the file
specification with an option as follows.

SYS B/B

READY

SYSTAT creates a busy device status report in file B.

15-7

System Communication Programs

15.2 OBTAINING A DISK QUOTA REPORT: THE QUOLST PROGRAM
Thé QUOLST system program allows the user to determine what portion of his disk quota is currently occupied and
the number of free blocks remaining on the system disk. QUOLST is called as follows:

RUN $QUOLST
Output from QUOLST includes the user account number and information printed under the following headings:

Table 15-3 QUOLST Column Headings

Column Heading Meaning
STR STRucture, device being reported. |
USED number of used 256-word blocks under the user account.
FREE number of free blocks remaining in the user account disk quota.
SYSTEM number of free blocks remaining to the system on the structure
indicated.

Output from QUOLST looks like this:

RUN $RUOLST
QUOLST VO&E-03 RSTS VO4E-02 Timesharing

USER? L200+571

STR USED : FREE SYSTEM
8Y3 60 4940 5459
Ready

In this example, the user is logged into the system under account [200,57] and has used 60 blocks on the public
disk structure with a quota-of 5000 blocks (5000 - 60=4940 free blocks). There are 5452 free blocks on the pub-

lic disk structure.

15-8

System Communication Programs

15.3 OBTAINING ACCOUNT DATA: THE MONEY PROGRAM ‘
MONEY is the RSTS/E system accounting program which allows a user to obtain printed data on his own account
status. The program is called as follows (only by a user logged into the system):

RUN $MONEY

In the following example, the user is logged into the system under account [100,100], and runs the MONEY pro-
gram:

RUN $MONEY
MONEY VO6ER-03 RSTS VO6R-02 Timesharing
SYSTEM ACCOUNTING FROGRAM

ACCT FASSWORD CFU-TINME KCT’S CONNECT DEVICE - DISK QUOTA UFD
100,100 26.8 2436 23 2 316 5000 16

Ready
The headings and information contained in the MONEY report are described in Table 154.

Table 154 The MONEY Report

Heading Information
ACCT The user account number
PASSWORD Not printed for non-privileged users
CPU-TIME The total number of seconds of central processor time used by the
account
KCT’s The total number of “kilo-core ticks™ used by the account. This is a

measure of total central processor usage, along with central processor
time and memory usage. Whenever a program uses one-tenth of a
second of CPU time, this value is incremented by the size of the
program in K words.

CONNECT The total number of minutes the account is .logged into the system.
DEVICE The total number of minutes devices are assigned by this account.
DISK The number of blocks used on the public structure.
QUOTA The disk quota in blocks.

| UFD The cluster size of the user file directory.

These values do not reflect the current timesharing session, because the
accounting information is updated when the job is logged off.

159

- System Communication Programs

15.4 SENDING A MESSAGE TO THE SYSTEM MANAGER: THE GRIPE PROGRAM

The GRIPE system program allows a user to communicate comments to the system manager. Comments which the
user types while running GRIPE are written to a common file where they are retained for inspection by the system
manager.

The user runs GRIPE by typing the following command:

RUN $GRIPE
GRIPE indicates that it is ready to accept user comments by printing a query line as follows:

YES? (END WITH ESCAPE)
The user is then allowed to type the text of his comment which is entered into the common file. The user terminates
the text of his comment by typing the ESCAPE or ALTMODE key. (Typing the ESCAPE or ALTMODE key is
echoed at the terminal by a dollar sign (3$) being printed. No carriage return-line feed operation is performed. The
program indicates its acceptance of the text and its termination by printing the following lines.

THANK YOU

READY

15-10

System Communication Programs

15.5 DECLARING A TERMINAL IN USE: THE INUSE PROGRAM
The INUSE system program prints or displays the words IN USE in block letters on the terminal to warn others not
to use it. This message is followed by the user’s job number and account number..
INUSE is called as follows:
RUN $INUSE

The printout from this program is shown below.

RUN_$INUSE
. IIIIXI NN NN uu uu - 8858888 EEEEEEEEEE
ITIIIX NN NN Uy Uy 8886688 EEEEEEEEEE
II NNNN NN : Uu uu 8§ S8 EE :
II NNNN NN - uuy uy 8s 88 EE
II NNNN NN uu Uy 88 EE
IT NNNN NN uu W) 88 EE
II NN NN NN Uy Uy 888888 EEEEEE
II NN NN NN Uy Uy 588888 EEEEEE
II NN NNNN uu uu 88 EE
II NN NNNN Uu uu S8 EE
11 NN NNNN Uu uu 8§ 88 EE
II NN NNNN Uy uu Ss 88 EE
IITIIII NN : NN ~Uuuuuy 8588868 EEEEEEEEEE
IITIIX NN NN uuuluy 88586588 EEEEEEEEEE

RY JOE 24 USER [2,201]

To regain control of the terminal, the user types the CTRL/Z or CTRL/C combination, or any valid command.

15-11

CHAPTER 16

FILE UTILITY PROGRAMS:
LISTING, EDITING, AND READING FILES

16.1 LISTING DIRECTORY OF FILES: THE DIRECT PROGRAM

The DIRECT program lists file related information from a disk directory. The benefits of DIRECT are increased
speed and more options compared with other methods of listing directories. DIRECT opens a user’s directory as

a file and reads information by immediately accessing the blocks in the directory. This action is faster than the con-
ventional method of passing the request for such information to internal system functions. Since the program
follows pointers through a disk directory, incorrect information may be printed if the pointers are changed during
program execution. For example, if a file is opened on the current account by another user, then the information
printed may be incorrect. '

The user runs DIRECT by typing the RUN $DIRECT command or by using the CCL command explained later in
this section. When DIRECT runs as a result of the RUN command, it prints a header line and the # character,
which acts as a prompt. The user can then type a command to DIRECT. If the user runs DIRECT by the CCL
command, he includes the command to DIRECT in the CCL command.

The general format of the command is as follows:
output=input/option(s), input/option(s), . . .

Output is optional and can be a device specification or a disk file specification. If output is not given, the =
character is optional and DIRECT prints output at the user’s terminal. If an extension does not appear with an
output filename, DIRECT appends .DIR unless the user forces a null extension by specifying the . character with
the filename. Input can be any number of full disk file specifications. The full disk file specification on input can -
include a device, filename, extension and project-programmer number. If a device is not given, DIRECT uses the
public structure and denotes it by the SY: specification.

The filename, extension, and project-programmer fields can contain * and ? characters to denote wild card

" specifications. If no file specification is given or if an * character is given as the file specification, DIRECT
processes all files in the directory. DIRECT applies the default interpretations shown for the following specifica-
tions for a given directory.

User Types: Program Interprets as: Meaning:
null * ¥ All files
- * * ¥ All files
., * All files with null extensions

*, All files with null extensions
EXT * EXT All files with extension EXT
-FILE FILE.* All files with filename FILE

With a file specification, the user can specify one or more options. If no options appear, DIRECT proceeds as
if the user had specified /DI. Table 16-1 lists and describes the options.

16-1

File Utility Programs: Listing, Editing, and Reading Files

Table 16-1 DIRECT Options
Type Format Meaning
Individual /NA List filenames only.
[EX List filenames and extensions of each ﬁle..
/SI List filename, extension and list size of each
file as number of 512-byte blocks occupied.
/PR List filename, extension and file protection
code.
/LA List filename, extension and date of last access
for each file.
/DA List filename, extension and date of creation
for the file.
/TI List filename, extension, date and time of
: day when file was created.
/CL List filename, extension, and file cluster size.
/SU List only summary data to include number of
designated files and total number of blocks
occupied by designated files.
Aggregate /BR List filenames and extensions with a brief
|F summary message.
/DL:S List all relevant data to include headings,
/S filenames, extensions, size, protection
code, date of last access, date of creation,
time of creation, clustersize, associated run-time
system, file attributes if any, and summary.
(Called slow directory.)
/DI List most important data to include heading,
null filename, extension, size protection code,
date of last access and summary.
General [HD Print heading at top of columns on the listing.
W List data across the width of a line rather than
‘ one item per line, Useful with large directory
listings and individual options.
/HE Print the file DIRECT.HLP which describes
the DIRECT program.
/BK List the directory for the specified device in

reverse chronological order. As a result,

the most recently created files appear at the
beginning of the listing. If /BK is used to list
files in the public structure and multiple
disks are in the public structure, the listing
reflects reverse order for each disk.

16-2

File Utility Programs: Listing, Editing, and Reading Files

To list a directory at the line printer, the user specifies the device designator and options in the command. For
example,

#LP0:=*.BA?/EF/W
#

The command lists filenames and extensions of all files with BA as the first 2 characters of the extension. DIRECT
formats the data across the width of the line printer paper.

To list directories of several accounts and place them in a disk file, the user specifies the project-programmer field
and the disk file specification in the command. For example,

#PROJ=[120,*] /DI
#

DIRECT creates the file PROJ.DIR in the current account and writes, to the file, directory listings of all accounts
with project number 120.

An error enrcountered in a command causes DIRECT to print a message followed by the # character. The user
must retype the entire command correctly. The messages are described in Table 16-2.

16.1.1 DIRECTORY as a CCL Command

The following commands show some useful methods of requesting listings with the standard CCL command
DIRECTORY or its abbreviation DIR. To list the filenames and extensions of all files in the current account, the
user types the following command.

DIR /BR/W

DIRECT prints the listing at the user’s terminal and lists the information across the width of the page. To list at
another device the filenames, extensions, sizes, protection codes and creation dates for certain files in the current
account, the user types the following command.

DIR LP1:=*.BAS
READY

DIRECT prints the listing of all BASIC-PLUS source files on line printer unit 1. The READY message indicates
DIRECT has completed printing. To obtain a reverse listing, the user types the following command.

DIR /DI/BK

DIRECT oprints, at the current terminal, directory and summary information in reverse chronological order. To
print the file DIRECT.HLP on the line printer, the user types the following command.

DIR LP1:=/HE
READY

16-3

File Utility Programs: Listing, Editing, and Reading Files

Table 16-2 DIRECT Program Error Messages

?DEVICE NOT DIRECTORY STRUCTURED
?DIRECTORY OF dev:[n,m] IS EMPTY
DISK PACK IS NOT ON-LINE ¢

ILLEGAL FILE NAME <filename>

PILLEGAL INPUT FILE SPEC <file spec>
NLLEGAL SWITCH text
?INVALID DEVICE SPECIFICATION

INO DIRECTORY FOR [n,m] ON dev:

INO HELP AVAILABLE
INO SUCH FILE AS <file spec>ON [n,m]

?0UTPUT FILE MUST BE IN THE USER’S
AREA

?TOO MANY FILES FOR INVERTED
DIRECTORY LISTING

Device specified does not use a directory for file
access.

DIRECT finds the account [n,m] on device dev:
contains no entries.

The pack or cartridge referred to is either not mounted
or is off-line.

The file specified by <filename>> contains a logical
device name which the user has not reserved by the
ASSIGN command.

The file specification indicated by file spec generates
the error 7ILLEGAL FILE NAME.

File specification contains an undefined option indi-
cated by text. _ ‘

The device specification is invalid or the device
referred to does not exist on the system.

DIRECT cannot find an account for user account
[n,m] on the device dev: or else DIRECT encounters
a protection violation.

The file DIRECT .HLP is not on the system library
account.

DIRECT cannot find the requested file indicated
by <file spec> in the account [n,m].

DIRECT does not create an output disk file in another
account if user is not privileged. '

DIRECT limits use of the /BK option to accounts
with less than 200 files. -

164"

File Utility Programs: Listing, Editing, and Reading Files

16.2 EDITING FILES: THE EDIT PROGRAM
The EDIT system program is used to prepare and modify text or program files. It can be run by any user. To run
EDIT, the user types:

RUN $EDIT
EDIT V06B-03 RSTSV06B-02 TIMESHARING

#

In response to the number sign (#), the user must specify the input files he wishes to mod1fy and the files to be
created as output. The form of this specification is:

#0UT1,0UT2=IN1,IN2/B

where IN1 and OUT!1 are the primary input and output files, respectively, and IN2 and OUT?2 are the secondary

input and output files. These file names may be any valid RSTS/E file specifications, including a device, name,

extension, project-programmer number, and protection code. The /B is included if the user desires to edit a

BASIC-PLUS program file containing LINE FEED continuation of lines. (See the BASIC-PLUS Language

Manual, Section 2.3.2.) Only one of these file specifications — the primary output file OUT1 — must be specified;
if specified alone, it indicates the creation of a new file.

If IN1 and OUT1, the primary input and output, are specified as the same file, the primary input file will be re-
named after the editing is compiete to have an extension of .BAK, designating it as the “backup” file. In this
case EDIT will use a temnporary name of EDITnn.TMP for the primary output file during editing operations
(where “nn” is the job number under which EDIT is being executed). If the secondary output file is a line
printer (LPn:), the printer will be assigned only when needed for output. (If the printer is unavailable when
needed, the user is given the option of waiting for some time of his choosing or of aborting the output request.)

Once EDIT has been given the file specifications, it will open the necessary files and respond with an asterisk (*),
indicating it is ready to accept editing commands from the user. The valid commands are as described in the
RSTS/E Text Editor Manual, and are summarized in Table 16-3.

The EDIT-11 command T (trailer) has no meaning to the RSTS/E EDIT program. All other descriptions of EDIT-11
commands and how they operate are valid for RSTS/E EDIT as well. If an error occurs in executing a command

as typed by the user, the command already executed will be printed, terminated with a question mark (?) at the
point at which the error was noted. When editing is complete, EDIT returns to the request for file specifications
#. -

16.2.1 EDIT as a CCL Command
EDIT may be run as a CCL command by typing one of the following:

1. EDIT

2. EDIT OUT1,0UT2=IN1,IN2
3. EDIT FILENAME

4. CREATE FILENAME

(EDIT may be minimally abbreviated to ED, and CREATE to CRE.)
The first of these is equivalent to RUN $EDIT. The header line is printed, and a # character prompts the user to

specify his files. The second CCL command, shown above, runs EDIT and also automatically sets up the input
and output files as specified. No header line is printed.

16-5

File Utility Programs: Listing, Editing, and Reading Files

The third CCL command is equivalent to the set of commands:

RUN $EDIT
FILENAME =FILENAME/B
R

except that the header line of EDIT is not printed. EDIT runs, sets up a .BAK file, reads the first buffer, and waits
for the user to type editing commands.

The last CCL command shown above sets up the file named FILENAME as an output file. No .BAK file is set up;
. there is no input file; and no header is printed. If the file existed previously, it is reduced to zero length As a first
command, the user types I (insert).

The CREATE command is equivalent to the instructions:

RUN $EDIT
FILENAME
Table 16-3 Summary of EDIT Program Commands
Command Format' Result

Read R Read from primary input file until form feed is encountered or all
internal buffer space is filled.

Edit Read ER Read from secondary input file until form feed is encountered or all
internal buffer space is filled.

Write oW Write n lines into primary output file, starting from the current posi-
tion of Dot.

Edit Write nEW Write n lines into secondary output file, starting from the current

: position of Dot.

Next nN Write the contents of the Page Buffer into the primary output file,
kill the buffer, and read a page of text from the primary input file.
Repeat n times. Equivalent to B/W/DR.

Form feed nF Insert n form feed characters at Dot.

Beginning B Move Dot to the beginning of the Page Buffer.

Advance nA Advance Dot n lines. Leaves Dot at beginning of line.

Jump | nJ Move Dot over n characters.

Delete nD Delete n characters from text, starting at Dot.

Kill nK Kill n lines of text, starting at Dot.

Mark M Mark the current location of Dot.

Save nS Save the next n lines in the Save Buffer, starting at Dot.

Un the table, # represents any ASCII character, <CR> represents a return character, and <LF> represents a line

feed character. »

16-6 (continued on next page)

File Utility Programs: Listing, Editing, and Reading Files

Table 16-3 (Cont.) Summary of EDIT Program Commands

Command Format' Result
Unsave 8] Copy the contents of the Save Buffer into Page Buffer at Dot.
List nL List n lines on teleprinter, starting at Dot.
Verify v Verify the present line via teleprinter.
Get nGHEXXXXX# Search the current buffer for the nth occurrence of XXXXX. Return
or with Dot following XXXXX.
nG<CR>
XXXX<CR>
<LF>
wHole nH#XXXXX# Search the remainder of the input file for nth occurrence of XXXXX.
or If found on this page, return with Dot following XXXXX. If not found,
nH<CR> execute an N command and continue search.
XXXX<CR>
<LF>
Edit wHole nEHAXXXXX# Perform a wHole search for the nth occurrence of XXXXX, using the
or secondary input and primary output files.
nEH<CR>
XXXX<LZCR>
<LF>
Position nPHXXXXX# Perform a Next command, then search for the nth occurrence of
or XXXXX. If found, return with Dot following XXXXX. If not found,
nP<CR> clear the buffer, read another page, and continue search.
XXXX<LCR> R
<LF>
Edit Position nEP#XXXXX#. Perform a Position search using secondary input rather than primary
or input file. :
nEP<CR>
XXXX<ZCR>
<LF>
Insert I#XXXXX # Insert the text XXXXX at Dot. Move Dot to follow XXXXX.
or
I<CR>
XXXX<CR>
<LF>
Change nCHXXXXX# Change n characters starting at Dot to XXXXX. Equ1valent to Insert
: . or followed by n Delete.
nC<CR>
XXXX<CR>
<LF>

'In the table, # represents any ASCII character. <CR> represents a return character, and <LF> represents a line

feed character.

"(continued on next page)

16-7

File Utility Programs: Listing, Editing, and Reading Files

Table 16-3 (Cont.). Summary of EDIT Program Commands

Command Format! Result
eXchange nX#XXXXX# eXchange n lines starting at Dot for XXXXX. Equivalent to Insert
or followed by n Kiil.
nX<CR> ‘
XXXX<CR>
<LF>
Execute Macro nEM Execute the first line of the Save Buffer as a command string n times.
Exit EX Perform consecutive Next commands until end of primary input file
' is reached.
Close all files, and return to file specification request.
Edit Open EO Move to beginning of the secondary input file.
End File EF

Close the primary output file to any further output and close the
primary input file. '

Uin the table, # represents any ASCII character. <CR> represents a return character, and <LF> represents a line

feed character.

16-8

File Utility Programs: Listing, Editing, and Reading Files

16.3 COMPARING FILES: THE FILCOM PROGRAM

The FILCOM (file compare) system program compares two ASCII files, line by line, and prints the differences found
The user must specify which two files are to be compared as well as how many successive lines must be compared at
a time. This second consideration is especially important for isolating differences in program subroutines.

FILCOM is called as follows:
RUN $FILCOM

The first query line printed is:
OUTPUT TO?

The user types the device designator of the peripheral device on which the comparison information is to be printed.
Typing the CR key alone specifies the keyboard on which the user is working.

If the user includes /P with a file name in response to the OUTPUT TO query, FILCOM creates the output file as a
patch file. With the APPEND command, such a patch file can later be included in the file specified as INPUT FILE#1.
This action makes the resultant file equivalent to the BASIC-PLUS program specified as INPUT FILE#2. To create
the patch file, the user must also answer both the BASIC+ LINES and BLANK LINES query with YES.

The next two printed query lines request the names of the files to be compared. The user should be sure to use the
full name of each file, including its extension. For example:

INPUT FILE#1? SORT1.BAS
INPUT FILE#2? SORT2.BAS

Any number of lines can be compared at a time. The number of successive lines that determines a match is specified
by the user response to the following FILCOM query:

HOW MANY TO MATCH?

Responses to this query are discussed in detail later in this section. If the CR key is typed alone, the number of suc-
cessive lines to match is automatically assumed to be three.

The next query line is:
BASIC+ LINES?

The user types the letter Y in response to this query to instruct the program to consider BASIC-PLUS continuation
lines as part of the numbered line. In this way, multiple line statements can be compared. For example, consider the
line shown below.

100 FOR J=10. TO 15.
\" PRINT 3.14%J/2,
\ NEXTJ

If the user types Y in response to the BASIC+ LINES query, FILCOM will compare all three statements (FOR, PRINT
and NEXT) as a single line.

If the user responds with any other character (or no character), FILCOM will compa're only the statement printed on

the first line (i.e., FOR J=10. TO 15) to a single line in the other file. Typing Y ensures that FILCOM prints the line
numbers of any BASIC-PLUS lines found to be different.

169

File Utility Programs: Listing, Editing, and Reading Files

The next query line is
BLANK LINES?

Typing the letter Y in response to this question instructs the program to compare blank lines. If the Y is not speci-
fied, FILCOM skips all blank lines.

Assume the following two files are on the user’s disk:

TESTI TEST2

10 REM A 10 REM A
20 REMB . 20 REM B
30 REMC : 30 REMC
40 REMD - 70 REMG
50 REME 80 REMH
60 REMF 90 REMI
70 REMG 100 REMJ
80 REMH 110 REM 1
90 REMI 120 REM2
100 REMJ , 130 REM 3
110 REMK . 140 REMN
120 REML 150 REM O
130 REMM 160 REMP
140 REMN 170 REM Q
150 REM O 180 REMR
160 REMP 190 REMS
170 REMQ 200 REMT
180 REM R 210 REMU
190 REM S 220 REMV
200 REMT 222 REM 4
210 REMU ; 224 REMS5
220 REMV 230 REMW
230 REMW ' 240 REM X
240 REM X 250 REMY
250 REMY 260 REMZ
260 REM Z

EXAMPLE 1
To compare these two files, TEST1 and TEST2, FILCOM is run as follows:

RUN $FIL.COM :

FILCOM VO&6E~03 RSETS VOLR-02 Timesharing
FILE COMPARISON FROGRAM
Qutrut to?

InFut File #17 TEST1.RAS
Inrput File #27 TEST2.BAS
How Marny to Match?
BASICH Lineg?

RBlank Lines?

RRKKK KRR KKK KKK KK KKK K

1) TEST1.RAS

40 REM I

16-10

File Utility Programs: Listing, Editing, and Reading Files

50 REM E

60 REM F

70 REM
KKK

2) TEST2.BAS
70 REM G
KARKKKKKKK KK AAAKK KKK
1) TEST1.BAS
110 REM K
120 REM L
130 REM M
140 REM N
EKKKK

2) TEST2.BAS
110 REM 1
120 REM 2
130 REM 3
140 REM N °
RRKKK KKK KKAAKKKKKAK
1) TEST1.EAS
230 REM W
KKKKK

2) TESTZ.BAS
222 REM 4
224 REM 5
230 REM W

3 Differences Found

Ready

Notice that FILCOM prints the lines, from both files, that do not compare, followed by the first line that does com-
pare. The first line in each group is the first line that does not compare and the last line in each group is the first line
that does compare. In general, the program does not print.groups of lines that are identical. FILCOM first prints line
40 of TEST1, since it is the first line that does not appear in TEST2. This line is considered the first difference.
FILCOM continues to print TEST1 lines until it locates 3 lines that can be matched against 3 lines in TEST?2. In this
case, lines 70, 80, and 90 of both TEST1 and TEST?2 are identical, so the printout for this difference is ended.

Since lines 80 through 100 are identical in both files, FILCOM does not print'them. The next lines that do not com-
pare are lines 110 through 130. These lines are printed under both files. This is considered the second difference.
FILCOM continues to print lines until it locates 3 matching lines. Lines 140 through 160 are identical for both files.

Since lines 150 through 220 are identical in both files, FILCOM does not print them. The next lines that do not
compare are 222 and 224 of TEST2. Consequently, they are printed under the TEST2 heading. This is considered
the third difference. FILCOM continues to print TEST2’s lines until it locates 3 lines that can be matched against 3
lines in TEST1. Lines 230 through 250 are identical for both files.

Finally, FILCOM prints the number of differences found. If one of the two files compared was empty (e.g., an empty
data file), FILCOM would have printed A NULL FILE??

le-11

File Utility Programs: Listing, Editing, and Reading Files

EXAMPLE 2

Files TEST1 and TEST2 can be compared in another way. To compare these files for eight consecutive identical
lines instead of three, FILCOM is run as follows:)

RUN $FILCOM '

FILCOM VO06B-03 RSETS VO4B-02 Timesharing
FILE COMFARISON FROGRAM

Outrut to?

Inrut File #17 TEST1.RBAS

InrFut File #27 TEST2.BAS

How Many to Match? 8

BASICY Lines?

Rlank Lines?

KRR KKK ok kK koK K Aok ok K ok kK

1) TEST1.RBAS

40 REM
50 REM
60 REM
70 REM
80 REM
90 REM
100 REM J

110 REM K

120 REM L

130 REM M

140 REM N

*kxkkk

2) TEST2.BAS

70 REM G

80 REM H

90 REM T

100 REM J

110 REM 1

120 REM 2

130 REM 3

140 REM N

KRR KKK KKK KKK Kk koK k
1) TEST1.BAS

230 REM W

kkkkk

2) TEST2.BAS

222 REM 4

224 REM S

230 REM W

=IGQGTmmo

?2 Differences Found

Ready

" In this case, the first difference found, again, is line 40 in TEST1. Instead of matching lines 70 of both files, FILCOM
begins to match line 140, since 140 to 220 is the next group of at least eight successive identical lines. Although
lines 70 through 100 are identical in both files, they form less than eight successive lines.

16-12

File Utility Programs: Listing, Editing, and Reading Files

Now assume the following two files are on the user’s disk:

FILE 1 FILE 2
THIS IS LINE 1 | THIS IS LINE 1
THIS IS LINE 2 THIS IS LINE 2
THIS IS THE LINE AFTER THE BLANK LINE
THIS IS THE NEXT LINE THIS IS THE LINE AFTER THE BLANK
THIS IS THE NEXT LINE

Notice that file 2 has an extra blank line.

EXAMPLE 3

To compare these two files, FILCOM is run as follows:

RUN $FILCOM
FILCOM VO0AB-03 RSTS V04E-02 Timesharins

FILE COMFARISON FROGRAM
Qutrut to?

Inrut File #17 FILEL
Input File #27 FILER2
How Manw to Match?
BASIC+ Lines? NO

Blank Lirmes? NO

0 Differences Found

Since NO was typed after the query BLANK LINES?, FILCOM did not compare blank lines. Typing the letter Y in
response to the BLANK LINES query, however, results in the printout shown below.

RUN $FILCOM
FILCOM VO04B-03 RSTS VO4EB-02 Timesharing

FILE COMFARISON FROGRAM
Qutreut to?

Inrut File #17 FILEI]
Input File #27 FILEZ
How Manw to Match?
BASIC+ Lines® NO

Blank Lines? YES

HRE KKK K KKK KKK KKK

1) FILE1

THIS IS THE LINE AFTER. THE RBLANK LINE
KRKKK

2) FILEZ2

THIS IS THE LINE AFTER THE ELANK LINE

7?1 Difference Found

Readw

16-13

File Utility Programs: Listing, Editing, and Reading Files

NOTE
If too many differences are found, the program will abort

and print the error message TMAXIMUM MEMORY
EXCEEDED.

16-14

CHAPTER 17

DEVICE UTILITY PROGRAMS:
TRANSFERRING FILES BETWEEN DEVICES

17.1 DEVICE TRANSFER: THE PIP PROGRAM

The PIP (Peripheral Interchange Program) system program performs disk and peripheral device transfers as well as
several other file utility functions. Two forms of the PIP program are available; their only difference is that one runs
in less than 8K words of memory and is generally less powerful than the larger version, which requires 16K words
to run. Refer to Section 17-2 for a description of the larger version of PIP. (RSTS/E PIP commands, wherever possi-
ble, have been made compatible with DOS/BATCH-11 PIP commands.) ‘

PIP can be called by users logged into the system as follows:
RUN $PIP
PIP responds by identifying itself and printing a pound sign (#) to indicate that it is able to accept input commands:

PIP VO6B-03 RSTS V06B-02 TIMESHARING

17

In order to return to BASIC-PLUS command level, the user types CTRL/C or CTRL/Z. The system responds by
printing READY. For example:

#4+Z

READY

A CTRL/Z is equivalent to an end-of-file on the user terminal and causes an orderly exit from PIP when the current
operation is complete. Typing CTRL/C causes an immediate exit from PIP; it does not complete the operation in
progress, although it leaves the directories in an orderly state.

17.1.1 PIP Command Line Specifications
Spaces and tabs within a PIP command line are ignored. PIP commands must be typed on a single line and be no
more than 80 characters long.

Output file specifications are of the form:

dev: [proj,prog] name.ext<prot>
The elements of the 6utput file specification are described in Table 17-1. Input file specifications are of the form:
dev: [proj,prog] name.ext
Elements of the input file specification are described in Table 17-2.
With PIP there is at most one output file, but there may be any number of input files. Where more than one input
file is specified, all filenames which are not preceded by a device sperification are assumed to be on the system disk.
A null file specification duplicates the immediately preceding file specification in all details.

PIP options are specified in the form:

[option:argument

17-1

Device Utility Programs: Transferring Files Between Devices

Table 17-1 Output File Specification Elements

no specification

Element Description Default
dev: device specification SY:
[proj,prog] account specification, project-programmer current user account
number number
name filename specification® none
£xt - filename extension' none
<prot> protection code <60>, equivalent fo read and

write protect against everyone
but the owner

KB:PIP.OUT

! Output-only devices (non-file-structured devices) such as KB:, LP: and PP: ignore the filename and extension

no specification

specifications.
Table 17-2 Input File Specification Elements
Element Description Default

dev: device specification system disk (DF:,DK:,DP:, or
DB:)

[proj,prog] account specification, project-programmer current user account number

number

name filename specification’ none

ext filename extension’ .BAS (BASIC-PLUS source
program)

last file specification is used again.
Initial default is SY:

specifications.

1 Input-only devices (non-file-structured devices) such as KB:, PR:, and CR: ignore the filename and extension

Options are always begun with a slash and terminated with a comma (,), left angle bracket (<), another slash (/),
or a line terminating character (RETURN or ESCAPE). The option argument is a function of the individual opera-
tion to be performed. The default option is a formatted ASCII file transfer. :

17.1.2 File Transfers Including Merge Operations

File transfer and/or file merge operations take the following command forrhat:

#output file=inputfile(s)/option

172

Device Utility Programs: Transferring Files Between Devices

Only one output file can be specified. If one input file is specified, a copy of that file is transferred to the output
file specification (the original input file remains unchanged). If more than one input file is specified, copies of the
file are merged into a single output file (the original input files remaining unchanged). The: options available on a
file transfer and/or merge operation are described in Table 17-3.

Table 17-3 File Transfer and Merge Options

Option Function
no option ASCII ﬁ!e transfer is performed.
[FA Formatted ASCII transfer is performed (Nulls, parity bits,' and
RUBOUT’s are ignored).
/BL Block mode transfer is performed using the default block sizes.
/BL:n Block mode transfer is performed using a block which is n bytes long.
/CO Contiguous mode transfer is performed with null fill characters in-

serted into any partial buffer remaining. Must be used when trans-
ferring a .BAC file, a virtual core array, or a file created by Record
1/0, from disk to DECtape.

(CO:T Contiguous mode transfer is performed with any partial buffer remaining
being truncated. Must be used when transferring a .BAC file, a virtual
core array, or a file created by RECORD I/0O from DECtape to disk.

/CL:n Set output cluster size to n.

/GO Ignore 7USER DATA ERROR ON DEVICE errors.

[HE Appends “$PIP.TXT” to command line to have PIP output the helping
text explaining PIP commands and options.

/UP Update file transfer (equivalent to OPEN AS FILE used for output files).

/RW:NO Disable rewinding of magtape before and after a file transfer.

! Parity bits are associated with some ASCII codes, making each ASCII character 8 bits long rather than 7 bits.
Even parity implies that the number of bits set within the 8 bit field is an even number.

The following is an example of multiple file transfer:

#DT1:FILET.BAS=FILE1,FILE2 PR: DTO:FILE3

This command transfers, to the file FILET.BAS on DECtape unit 1, the following files: FILE1.BAS, FILE2.BAS,
1 file from the high speed paper tape reader, and FILE3.BAS from DECtape unit 0.

Since a PIP command must be typed on a single line, the number of files which can be merged into a single file is
limited only by a command string length of 80 characters.

17-3

Device Utility Programs: Transferring Files Between Devices

17.1.3 Changing Filename or Protection Code ,
PIP can be used to change a filename specification without transferring any data. The general format for such a
command is as follows:

#new file specification=old file specification/RE
To change the filename, extension, and/or protection code of a stored file, the user types the new file specification
(including the device specification and, optionally, the protection code), an-equal sign (=), the current file specifica-

tion, and the option /RE. The user need not indicate the current protection code. In the following example, the
user changes the filename, extension, and protection code.

#FILE.EXT<40>=ABC.DAT/RE

In the following example, only the filename is changed. The protection code for the file MAT.BAC remains the
same as it was for ORIG.BAC.

#DM1:MAT.BAC=DT1:ORIG.BAC/RE

In the case where only the protection code is to be changed, a new filename specification need not be typed. A
shorter form is:

#=old file specification<prot>/RE
This command string format indicates that the file protection is to be updated. For example:

#=MAG.BAS<48>/RE

Notice that the device specification on both sides of the equal sign must be the same. If the aim is to move the file
from one device to another, the file copy technique (see Section 17.1.2) is used. Note also that PIP assumes a de-
fault filename extension of .BAS on input files, but an extension must be specified on output files or none is
appended. :

17.1.4 Deleting Files
To remove a file from the system, the user types the file specification followed by the /DE (delete) option. For
example:

#TRY2.BAC/DE
. This command string causes the file TRY2.BAC to be removed from the system disk if found under the current
user’s account number. No default assumptions are made as to the filename extension. An extension must be speci-

fied if the file was stored with an extension.

The user cannot delete a file under another account or a file which is write-protected against him. If an attempt is
made to delete a non-existent file from a device, the error message 2CAN’T FIND FILE OR ACCOUNT is given.

More than one file can be deleted by specifying several file specifications, separated by commas. For example:

#FILE1.BAC,FILE2.BAC,DT1:FILE1.BAC/DE

deletes FILE1.BAC from both the public structure and DECtape unit 1 and deletes FILE2.BAC from the public
structure. The number of files which can be deleted by one PIP command string is limited only by the maximum
length of the command line. ‘

174

Device Utility Programs: Transferring Files Between Devices

17.1.5 Zeroing a Device Directory)

Zeroing a device directory removes all files stored under one account number on the given device. In order to per-
form this operation, the user logs into the system under that account number (with the correct password) and runs
PIP, giving the device specification followed by the /ZE (zero) option:

#/28
REALLY ZERO [120,80] SY:?

If the user does not type a device specification, PIP assumes the public structure and prints the REALLY ZERO
account question.To cancel the operation, the user types the RETURN key. To remove all files from the current
account on the system disk, he types Y or any string beginning with Y. Note that only the current account can be
zeroed. The user must not specify an account number. The following example shows the command to zero a DEC-
tape.

#DT1:/ZE
REALLY ZERO DT1:?

PIP prints the REALLY ZERO device question since no separation of files by account exists for DECtape. Hence,
any user can remove all files from a DECtape reel by the zero action.

The extended version of PIP (described in Section 17.2) must be used to zero .ANSI formatted magtape.

17.1.6 Listing a Device Directory

The user can request a listing of all files under his account number, all files with a given name or extension under
his account number, or a particular file under his account number on the public structure or any one or more
devices. The format of the directory listing command is as follows:

#output=input file(s)/option

An output file specification can be siipplied where an output device other than the user terminal is desired. The
more usual form of the command is:

#input file(s)/option

in which case the directory listing is sent to the terminal issuing the command. Unless another device is specified,
only a directory of the public structure is printed. For example, the sequence

RUN $PIP
PIP V06B-03 RSTSV06B-02 TIMESHARING
#,DT0:,DT1:/DI

causes a full directory listing of files for the current user on the public structure (the blank device specification,
indicated by the comma with no preceding characters indicates the public structure, and on DECtape units 0 and 1.

The options available with device listings are described in Table 17-4. The input file specifications are described in
Table 17-5.

17-5

Device Utility Programs: Transferring Files Between Devices

Table 17-4 PIP Directory Listing Options

Option A Function

{BR BRief directory listing is printed; includes only filenames and extension with four file
specifications on each printed line.

/DI Normal Dlrectory listing is printed; includes filename, extension, length, protection code,
and creation date. -

/DIL:S Full (Slow) directory listing is printed;includes:

1. for disk devices: filename, extension, length, protection code, creation date and time.
2. for magtape or DECtape: filename, extension, length, protection code, creation date.

Table 17-5 Input File Specifications

Input File Directory Printed Includes
none all files on the public structure under the current user account‘ number
dev: all files under the current user accbunt number on the device specified.
dev:s.* same as the above.

dev:filename.* | all files having the filename specified, under the current user account number, on
the device specified.

dev:name.ext only the file specified, under the current user account number, on the devme
specified.

Where no device is specified, the default device is the public structure; no message is printed if the particular input
file specification(s) cannot be found; where several input file specifications are given, they are separated by commas.
Account numbers are only significant for disk files and magtape files.

17.1.7 Guidelines for Transfer Operations and DECtape Usage
The PIP system program performs transfer operations in any one of several ways depending upon options the user
specifies. The options are listed in Table 17-3.

If the user specifies no option in a transfer request, the system checks each byté of data for a CTRL/Z combination
CHR$(26). PIP transfers the data block by block. The last block transferred by PIP is either the last block in the
file or the block containing a CTRL/Z combination.

The ASCII type of transfer is convenient for moving BASIC-PLUS source files from one device to another. For
example,

#DT1:FILNAM.BAS=FILNAM.BAS
#

- PIP transfers the source code from the public structure to DECtape and terminates the transfer when the last block
in the file is encountered. Any extraneous data following the END statement in the last block of the file causes no
harm since the Run Time System recognizes the END statement as the end of file.

17-6

Device Utility Programs: Transferring Files Between Devices

Under certain circumstances, PIP can be forced to discard unwanted NUL and RUBOUT characters. The user can
specify the /FA option in the transfer request when he creates an ASCII text file from the keyboard or prints an »
ASCII text file at the keyboard. For example,

#KB:=FILNAM.TXT/FA

(PIP prints the text.)
#

PIP terminates the transfer of the disk file upon encountering the CTRL/Z character. Any NUL or non-printing
characters are discarded.

The ASCII transfer is not suitable for files containing 8-bit binary data. The bytes in a virtual core array or record
1/0 file can take any pattern of 8 bits, one of which can be that of the CTRL/Z character. If the user transfers such
a binary file with the ASCII type of transfer request, the unpredictable occurrence of the CTRL/Z character pattern
causes PIP to terminate the transfer and possibly loses data. To transfer such binary files between like devices, use
the /BL option. For example,

#DT1:FILNAM.DAT=DTO: FILNAM.DAT/BL
#DKO:FILNAM DAT=DK1:FILNAM DAT/BL
#

PIP transfers the data between the devices strictly block by block and does not check any characters. The default
block size of the device is used.

Since both magtape and disk have the same default block size (512 bytes), the user can also specify the /BL option
in transfers between magtape and disk. For example, '

#MTO:FILNAM.DAT=DK1:FILNAM.DAT/BL
,

PIP terminates the transfer when the system signals the end of file on the disk. The file on magtape contains 512
bytes per block.

Because the block sizes of DECtape (510 bytes) and disk (512 bytes) are different, PIP cannot properly handle
block by block transfers of binary files between these two devices. If a DECtape block is transferred to disk, two
extra bytes are generated on the disk; if a disk block is transferred to DECtape, two bytes are lost. Thus, to transfer
binary files from disk to DECtape, the user must specify a special option — the /CO option. For example,

#DTO:FILNAM.DAT=DKO:FILNAM.DAT/CO
-

As a result of the user’s specifying the /CO option, PIP transfers the file as a stream of contiguous bytes in 510 byte
portions. In the last block on DECtape, the system fills any unused locations with NUL characters. In this manner
PIP preserves the two extra bytes in the disk block. To transfer a binary file on DECtape to the disk, the user must
specify the /CO:T option. For example,

#FILNAM.DAT=DT0:FILNAM.DAT/CO:T
#

As a result of the user’s specifying the /CO:T option PIP transfers the file as a stream of contiguous bytes in 512
byte portions and truncates the last buffer. This action prevents the length of the file on disk from increasing when
no new data is added. (A 10 block file on disk, for example, requires 10 blocks plus 20 bytes — a total of 11
blocks — on DECtape.)

17-7

Device Utility Programs: Transferring Files Between Devices

Transferring a compiled file requires a special type of transfer. A compiled file is a unique form of a binary file.
(Note that PIP allows only privileged users to transfer compiled files.) When transferring a compiled file, the user
must specify one of the options described above and required for binary files. Moreover, if the output device'is disk,
the user can specify the /CL:4 option. This procedure forces PIP to create the output file in clusters of four con-
tiguous blocks and is helpful since compiled files are always in 1K word clusters on the disk.

The user can transfer a file from a device whose block size is other than 512 bytes by specifying the /BL:n option.
For example, to recall a file on magtape created with a block size of 2048 bytes, the user types a command similar
to the following.

#FILNAM.DAT=MT1:FILNAM.DAT/BL:2048
< #

PIP reads 2048 byte blocks from the magtape file and creates a disk file using a RECORD SIZE value of 2048.

The /BL:n option can also optimize transfers of large files from disk to disk or from disk to magtape. The advantage
is gained by specifying a block size larger than 512. For example, if a large data file resides on a disk, the user can
specify the /BL:2048 option in the transfer request. PIP subsequently reads four blocks at a time from the input
file rather than executing four separate read operations and writes the output file using a RECORD SIZE value of
2048.

17.1.8 PIP as a CCL Command
The standard CCL definitions supplied by Digital include PIP as a CCL command. If PIP is included in the CCL for
the system, the user may invoke the PIP program by typing:

PIP

This command produces the same response as
RUN $PIP

Also, typing
PIP<string>

causes PIP to run, pfocess <string> as a standard PIP command, and return to the READY state. For example, if
the following is typed in response to the READY message:

PIP LP:=FILE

a copy of FILE is printed on LPO:. Note that whatever was previously in memory before the PIP command was
executed is now destroyed. :

17.2 THE EXTENDED PIP PROGRAM
The extended PIP system program provides the following features:

. accepting wild card characters in file name and extension specifications,

. inspecting eligible files for transfer, rename, and delete operations,

. pre-extending or extending an output file,

. writing zeroes over data before a file is deleted,

. reading DOS format disks for copy and directory listing operations,

. handling ANSI format magtapes on transfer and directory listing operations,
. processing indirect commands, and

. continuing the command on the next physical line.

WU DD WN =

17-8

Device Utility Programs: Transferring Files Between Devices

Extended PIP has all the features of the 8K version and includes additional features described in the following sec-
tion. It requires a 16K word job area. To learn which version of PIP is available, the user types /HE while at PIP
command level.

NOTE
For wild card processing in delete and rename commands,
extended PIP uses a temporary file under the user’s account
to store directory information. If the user’s account is full,
PIP encounters the ?NO ROOM FOR USER ON DEVICE
error when it attempts to open the temporary file. To over-
come the error, the user issues the KILL system command
to delete one file and then rerun PIP.

17.2.1 Wild Card Specifications
Extended PIP allows * and ? characters in file names and extensions to denote wild card elements and to thereby
designate multiple files in a single file specification. For a description of wild cards, see Section 12.3.1.

In the absence of an element or elements of the full file specification, extended PIP substitutes defaults for file
names or extensions or both. The following default interpretations are applied to the incomplete specifications
shown.

Specification Default Meaning
null * % All files
® % All files -
*, All files with null extensions
. *, All files with null extensions
.EXT = EXT All files with extension EXT
FILE FILE.* All files with name FILE

17.2.2 Extended PIP Defaults and Additional Options

Wild card characters allow multiple files to be designated in the input and output of a PIP command. Multiple file
specifications can be given on input: each must be separated by a comma. Where multiple file specifications appear
as input in a PIP command, the default interpretations shown in Table 17-6 apply for missing elements in each
specification.

Table 17-6 General Input Defaults

Missing Element ‘ Default Interpretation

Account The previously specified account. If missing from the first file
specification given, the current user’s account is ¢he default.

Device The previously specified device. If missing from the first file
specification given, the public structure (SY:) is the default.

File name The asterisk (*) specification

Dot and extension’ | The asterisk (*) specification

Lif the dot is present, the extension is assumed to be present but can be null. When the dot is not present
(and only then), the default extension is used.

179

Device Utility Programs: Transferring Files Between Devices -

On output, however, only one file specification is permitted although that file specification can designate multiple
files. Only the asterisk (#) is permitted as a wild card character in an output specification. An attempt to use the
question mark (?) in the output generates the 2ZINVALID DEVICE error. When the output is a wild card specifica-
tion, the input specification is repeated for each file created as output.

Extended PIP applies specific default values for all elements in a transfer or directory listing command. The input
and output defaults are summarized in Tables 17-7 and 17-8. The defaults for rename and delete commands differ

from those applied to transfer commands. (Sections 17.2.4 and 17.2.5 describe the individual differences.)

“Table 17-7 Output Defaults for Transfer and Directory Commands

Element Description Default
dev: device specification The public structure (SY:)
[proj,prog] project and prograrhmer Current user account number

(account) number

name file name specification Input file name is used
ext file name extension The input extension is used
<prot> protection code The system wide default (<60>>), the default

set by the ASSIGN command, or the value
specified in the command.

null no specification The current keyboard (KB:PIPEXT.OUT)

Table 17-8 Input Defaults for Transfer and Directory Operations

Element Description | Default
dev: device specification Immediately previous device specification.

If none, then SY: is substituted.

[proj,prog] : project and programmer Immediately previous account number. If none,
(account) number then current user account number is substituted.
name file name specification All files (Extended PIP substitutes the *
character)
dot All files with null extensions
ext file name extension All extensions (Extended PIP substitutes the
* character) ‘
<prot> . protection code The system wide default or the default set by
. the ASSIGN command.
null no specification All files on the immediately previous device and
account. If none, SY: and current user account
are used.

17-10

Device Utility Programs: Transferring Files Between Devices

The new options available in extended PIP are described in Table 17-9. Either the < or = character can separate the
~ input and output sides of the PIP command.

Table 179 Additional Extended PIP Options

Option Function

/IN Used in transfer, delete, and rename operations to inspect each file eligible
for the operation. PIP prints the full specification of an eligible file and the
? character. To execute the operation for that file, YES (or any string
beginning with Y) must be typed. To omit the operation for that file, NO
(or any string not beginning with Y) can be typed.

The /IN option affects the individual file specification and not the entire
command. For example,

#A.% B.#/IN,C.»/DE

PIP deletes the files with names A and performs the inspect action for files
with name B. It then deletes files with name C.

[PRX:n Used on transfer operations to pre-extend a disk file to n blocks. If :n is
omitted and the first input file is from disk or DECtape, this option pre-
extends the output file to the length of the first input file.

Cannot be used with the /UP option.

[EX Used on transfer operations to open the disk output file with MODE 2
(for appending data). (See Section 10.5.2 of the BASIC-PLUS Language
Manual.) The output file is extended by appending the input file(s) to it.

Cannot be used with the /PRX, /CL, and /UP options.

/WO Used on individual disk file specifications in delete commands. PIP writes
zeroes in the file before it is deleted. The /WO option must appear with
each file specification to which it applies, whereas the /DE option need
appear only once in the command string. For example,

#A.BAK/WO,B.BAK/DE

The /DE option applies to both files but the /WO option applies only to the
file A.BAK.

/VID:label Required when using the /ZE option on ANSI standard magtape. The label
is an alphanumeric volume label of the magtape to be zeroed. The following

example shows the format of the command.

#MT1:/VID:ABC/ZE

[HE Prints the help file PIP.TXT. /HE must be the only element in the input
' specification.

(continued on next page)

17-11

Device Utility Programs: Transferring Files Between Devices

Table 179 (Cont.) Additional Extended PIP Options

Option Function

/LI Creates a directory listing.

For RSTS/E disk, DECtape, and DOS format disk, the following data is
printed: name, extension, length (C denotes contiguous for DOS disk files),
RSTS/E protection code, and creation date.

For DOS label magtape, the DOS protection code replaces the RSTS/E

protection code and both the RSTS/E project-programmer number and
the DOS user identification code are added to the listing.

For ANSI label magtape, the protection code is not applicable and is omitted.
/LI:S Creates a full (slow) directory listing.

For RSTS/E disks only. Adds time of creation, data of last access, and file
cluster size information to the standard directory listing.

For other devices, prints the standard directory listing.

/DOS Indicates that the input disk is in DOS format. PIP can read the disk but can-
not write on the disk. Thus, only transfer and directory operations are
possible. '

/BLOCK Forces an ANSI magtape input file to be read as if it were written in ANSI:U
format. , :

/FORMAT:U Forces an ANSI magtape output file to have an undefined format (contiguous

mode transfer required). If /BL:n is on the input file specification, the output
file block length is n bytes. '

[EORMAT:V Forces an ANSI magtape output file to have a variable length record format.
If /BL:n is on the input file specification, the output file block length is n
bytes.

/MORE Continues a command on the next physical line.

17.2.3 Wild Card Specifications in Transfer and Directory Listing Commands

For transfer and directory listing requests in extended PIP, the standard defaults described in Tables 17-7 and 17-8
are applied. The sample commands and accompanying text in this section demonstrate the defaults applied to
transfer requests. The same defaults also apply to directory listing requests. The following example illustrates the
defaults applied to-a multiple file transfer request.

#DK1:+* BAK=+BAS

PIP transfers all files with .BAS extensions from the current account in the public structure. Each eligible file is
created as a unique file on RK unit 1 under the current account. Each file has the same file name as the input file
but is given an extension of .BAK and the default protection code.

17-12

Device Uti'lity Programs: Transferring Files Between Devices

The following command shows the device and account defaults used when elements are missing from the input.

#DK1:<60>=MTO0: [2,2] * MAC,*.BAK

PIP first transfers all files with MAC extensions from account [2,2] on magtape unit 0 to the current user account
on RK unit 1. In the absence of a device and account designation in the second input specification, PIP uses the
immediately previous device and account as default. All files with .BAK extensions from account {2,2] on magtape
unit O are transferred to the current user account on RK unit 1. The files are created with a protection code of
<60>. (The magtape on unit O is rewound before the search for the .BAK files begins.)

The following command shows the default for a null input specification.

#MTO: [5,5]=DKO:/BL:1024

PIP transfers all files from the current user account in the public structure and all files from the current user account
on RK unit 0. Each input file is created on magtape unit O with a project-programmer number of [5,5] and with

the default protection code. The output records are written in 1024-byte.blocks.

The following command shows the use of the /DOS option.

#DK1:=DT0:,DKO: [128,128] * MAC/DOS SY:*.BAS/FA

All files from DECtape unit 0, all files with .MAC extensions under UIC 200,200 (octai) on the DOS disk from RK
unit 0, and all files with .BAS extensions under account [128,128] in the public structure are transferred to the
RSTS/E disk on RK unit 1 with the default protection code. The /DOS switch applies only to RK uit 0; the UIC
must be specified in decimal. Since no account specification appeared in the last file specification, the previous
account specification is used. Files from DECtape unit 0 and from the public structure are transferred in formatted
ASCII mode. Files from RK unit 0 are transferred in /CO mode because they come from a DOS disk.

The /IN option with a file specification causes PIP to list, one at a time as a query, the files eligible for transfer.
This feature allows the user to inspect each eligible file and to selectively transfer each file according to the response
given to the query.

The /IN option must appear with each specification for which the inspect feature is to apply. For example,

#».+=DKO: [5,5] *.BAS/IN *.SRT,*.CBL/IN/FA

In the command above, files with .BAS, .SRT, and .CBL extensions on RK unit O under account [5,5] are to be
transferred to the public structure under the current user account. The inspect feature applies to files with .BAS
and .CBL extensions because of the accompanying /IN option. To transfer an eligible file, type YES (or any string
beginning with Y) in response to the inspect query. To omit an eligible file from the transfer, type NO (or any
string not beginning with Y). Files with .SRT extensions are transferred withouf the inspect feature being applied.

17.2.4 Wild Card Specifications in Rename Commands

For rename commands, extended PIP does not apply the standard defaults in all cases. In the output, device and
account defaults are taken from those applied in the input and the protection code is that of the input file The
device and account, therefore, need not be repeated in the output specification. For example,

TMP=DKO: [5,5] * BAS/RE

PIP renames all files with .BAS extensions in account [5,5] on RK unit 0. Each output file has the same name and
protection code as the input ﬁle but is given the extension .TMP. No transfer occurs and only ﬁles on RK unit O are
affected.

17-13

Device Utility Programs: Transferring Files Between Devices

Except for protection code, the defaults in the input of a rename command are the same as those described in Table
17-8. The protection code of input files is preserved unless otherwise explicitly specified. The following example
shows the device and account defaults applied on input.

#» TMP=+SRT,DKQ: [5,5] *.SRT,DK1:+.SRT/RE

Extended PIP renames all files with .SRT extensions under the current account in the public structure; all files under
account [5,5] on RK unit 0; and all files with .SRT extensions under account [5,5] on RK unit 1. The device and
account defaults are applied whenever an explicit element is not given.

If the null specification is given as input, all files in the current account on the public structure are used. For example,

#.TMP=/RE

PIP renames all files and uses the name of the input file but gives the extension .TMP. If a file of the same name
exists currently, PIP prints an error message but continues the rename operation.

The following command shows the defaults used when the: protection code of files is changed.

#DK1:+.BAS<40>/RE

The protection code of all files with .BAS extensions under the current user account on RK unit 1 is changed to
<40>. The original name and extensions are preserved because no name and extension is given in the output.

The /IN option in a rename command applies only to the file specification with which it appears. For example,

#» BAK=DK1:+.BAS/IN,SY:*.BAS/RE

Only the eligible files under the current account on RK unit 1 are listed for inspection. The eligible file is renamed
only if YES (or any string beginning with Y) is typed in response to the inspect query. If NO (or any string not
beginning with Y) is typed, the file is not renamed. After all eligible files on RK unit 1 are processed, the eligible
files under the current account on the public structure are renamed without the inspect action. If the inspect action
is desired for the second specification also, the /IN option msut appear twice as shown below.

#DK1:+.BAS/IN,SY:*.BAS/IN/RE

As a result, the inspect action is applied to both specifications.

17.2.5 Wild Card Specifications in Delete Commands)

For delete commands in extended PIP, device and account defaults are taken from the immediately previous device
and account specified. If a device or an account is not explicitly specified, PIP applies the device and account de- -
faults described in Table 17-8. The file name and extension must be explicit; extended PIP applies no defaults for
either. The following commands show the proper procedure.

#DK1:[5,5] A.DAT,B.BAS/DE
The files A.DAT and B.BAS in account [5,5] on RK unit 1 are deleted. The device and account defaults are applied
for the specification B.BAS. The following command shows the defaults applied in absence of an explicit device

and account.

#A DAT B.BAS/DE

The files A.DAT and B.BAS are deleted from the current user account in the public structure. The following com-
mand shows the usage of the immediately previous device specification.

17-14

Device Utility Programs: Transferring Files Between Devices

#ABC.»,DT1:ABC.*,* ABC/DE

All files with name ABC are deleted from the public structure and from DECtape unit 1. For the third specification, |
PIP applies the immediately previous device default and deletes all files with extersion .ABC on DECtape unit 1.

If the file name and extension are not explicit in a delete command, PIP prints an error message and terminates the
operation. For example, the following commands generate errors.

/DE (file name and extension is missing)
x/DE (file name is missing)
*/DE : (extension is missing)

The /IN option in delete commands applies only to the file specification with which it appears. For example,

#DK1:+ BAS/IN,SY:* BAS/DE

Only the eligible files under the current account on RK unit 1 are listed for inspection. The eligible file is deleted
.only if YES (or any string beginning with Y) is typed in response to the inspect query. If NO (or any string not be-
ginning with Y) is typed, the file is not deleted. After all eligible files on RK unit 1 are processed, the eligible files
under the current account on the public structure are deleted without the inspect action. If the inspect action is

desired for the second specification also, the /IN option must appear twice as shown below.

#DK1:+.BAS/IN,SY:*.BAS/IN/DE

As a result, the inspect action is applied to both specifications.

17.2.6 Processing ANSI Magtape Files

Extended PIP handles ANSI D, ANSI U, and ANSI F formats on input and ANSI D and ANSI U formats on output.
Table 17-10 shows the transfers possible.

Table 17-10 Possible ANSI Magtape Transfers

Output Input
ANSID . :
ANSID -
ANSIU
ANSID
. ANSI U
ANSIU
ANSI D
ANSIU ANSI F
ANSI F

Unless otherwise specified, Extended PIP transfers a magtape file in the format in which it was written. For ex-
ample, ‘

#MT1:ABC.DAT=MTO0:ABC.DAT

The input file from unit O is created on the output unit 1 in the same format in which it was written.

17-15

Device Utility Programs: Transferring Files Between Devices

The format of the output file is altered if an option appears with the file specification. Again, the:anly changes in
format allowed are those shown in Table 17-10. To force Extended PIP to read the input file as ANSI U, the
/BLOCK option is used. The /BLOCK option forces the input file to be read as if it were written in ANSI U format.
The option must appear with the file specification to which it applies. For example,

- #SY:0UT=DKO:INP1.,MTO:INP2./BLOCK MT1:INP3./BL:1024

The output file SY:OUT is written with a block size of 1024. The disk file INP1 is read with a block size of 1024.
Because of the /BLOCK option, the magtape file INP2 is read as if it were written in ANSI U format with a maximum
block size or 1024; that is, INP2 is read using GET statements without deblocking. The magtape file INP3, however,
is read using the block size and record size with which it was written. If INP3 is in ANSI D format (variable record
length), each record is deblocked to occupy one 1024-byte block on the disk. If INP3 is in ANSI U format (fixed
record length), each block of input occupies one 1024-byte block on the disk. The /BLOCK option, therefore causes
files to be transferred more quickly since deblocking is not performed.

The /BLOCK applies only to the file with which it appears. For example,

#SY:0UT=DKO:INP1.MTO:INP2./BLOCK/FA

The output file SY:OUT is.written in formatted ASCII mode. The input file INP1 is read as a formatted ASCII file
and INP2 is read as an ANSI U format file.

The /[FORMAT:U and /[FORMAT:V force the magtape output characteristics to the undefined format and the
variable length record format, respectively. If neither switch appears, the files are processed according to their char-
acteristics. For example,

#MTO0:=MT1:

If the input unit is not assigned as ANSI, the output files are written in ANSI U format. If the input drive is assigned
as ANSI, each output file is written in the same format as the corresponding input file. Specifying an output file
name causes the input files to be merged into one output file having the characteristics of the first selected input file.
Table 17-11 summarizes the effect of drive assignments in the above command.

Table 17-11 Effect of Labeling Default Assignments

Input Output Effect

ANSI ANSI Output files are copied exactly from the inputvolume.
All file header information is copied.

ANSI DOS Output files are created as if in a contiguous mode trans-
fer. No file attributes are copied because DOS does not
support file attributes. Input files are read in the format
in which they were written. (For example, an ANSI D
file is read as a variable length record file.)

DOS ANSI ‘QOutput files are written in ANSI U format.

DOS DOS A [CO transfer is performed.

(For information on assigning a labeling format to a magtape drive, see Section 20.2.3)

To force an output file to have either undefined or variable length record format, the user specifies either the
/FORMAT:U or the [FORMAT:V switch in the output.

17-16

Device Uﬁlity Programs: Transferring Files Between Devices

17.2.7 Indirect Command Files in Extended PIP

Extended PIP can execute commands from a file. Such a file is termed an indirect command file and is indicated by
the commercial at (@) character. The commands in the file are executed when an indirect command is given. An in-
direct command has the @ character as the first character on the command line followed by the file specification.
The following is the correct format for an indirect command.

@dev: [proj,prog] file.ext

The defaults are the current account in the public structure and the extension .CMD. A file name must be specified
in the command. The device can be either disk or DECtape.

The indirect command file is an ASCII file containing extended PIP commands. If a line of the file begins with a
semi-colon (;) character, PIP treats it as a comment line and skips to the next line of the file. The REALLY ZERO
and inspect questions of the /ZE and /IN options are not printed when executed from an indirect command file.

An indirect command can appear in the indirect command file. Ten levels of nesting are allowed. If more than 10
levels are attempted, the program prints the message INDIRECT COMMAND ERROR — COMMAND STACK
OVERFLOW.

Most errors cause PIP to return to the base level — the level at which the first indirect command file was initiated.
On the following errors, however, PIP simply prints the error message and continues processing.

NO FILES MATCHING <specification™ for /DE operations
NO FILES MATCHING <specification> for /LI operations

where specification is the full file specification

?FILE OR ACCOUNT ALREADY EXISTS for /RE operations
The following command shows the procedure to execute an indirect command file.

#@ABC
PIP reads the file named ABC.CMD in the current user account in the public structure. If only the designator KBn:
appears in the indirect command, PIP reads the specified keyboard for commands. Execution of indirect commands
from the keyboard is terminated when the CTRL/Z combination is typed.
Since the logically assigned account (see Section 5.7) and the PIP indirect command are denoted in the same
manner, the placement of the @ character on the PIP command line is important. For example, to obtain a directory
listing of the logically assigned account, the @ character must be used with the /LI option. Because the @ character
must be followed by a file name, the command @/LI generates an error. The following command, however, exe-
cutes properly.

#SY:@[LI

The directory of the logically assigned account in the public structure is generated.

17-17

Device Utility Programs: Transferring Files Between Devices

17.2.8 Extending the Physxcal Command Line — /MORE
The option /MORE at the end of a command line causes PIP to print the text MORE > and space to the next tab

position. The command line can thereby be continued on the next physical line. The entire command is not executed
until /MORE does not appear in the command line. For example,

#LP0:=A.DAT,B.BAS,C.BAT,/MORE

MORE > D.BAK/LI
PIP executes the /LI option for the files A.DAT, B.BAS, C.BAT, and D.BAK.

17-18

Device Utility Programs: Transferring Files Between Devices

17.3 COPYING BETWEEN DEVICES: THE COPY PROGRAM
" All of the information on a DECtape, magtape or disk can be copied by using the COPY system program and the
/FC (fast copy) option. COPY is called as follows:

RUN $COPY

COPY prints a pound sign (#) when it is ready to receive instructions. To print a help message, the user types /HE.
To copy a device, the user must respond in the format shown below.

#new device=old device/FC
For example:
#DT1:=DT2:/FC

In this example, all of the data, programs and directories are copied, block by block, from the DECtape on unit 2
to the DECtape on unit 1. The original information on unit 2 is, of course, still intact.

Notice that all of the information on a device is copied; individual files cannot be specified.

Magtapes, DECtapes, disk cartridges and disk packs can be copied. In addition, information can be copied only to
different units of the same device. That is, COPY can be used to copy a DECtape to another DECtape or a magtape
to another magtape, but not to copy, say, a DECtape to magtape or vice versa. If an attempt is made to copy the
information on one type of device onto another type of device, the error message MUST HAVE SAME TYPE
DEVICES is given.

Finally, if the same unit number of a dev1ce is specified twice, the error message MUST HAVE DIFFERENT UNIT
NUMBERS is given.

When the information is sucoessfully copied from one device to another, the program termmates and the system
prints READY.

To verify that the information on a device unit has been copied properly, the user issues the /VE (verify) option
to the COPY program in either of the following ways: '

#DT1:=DT2:/FC/VE

or

#DT1:=DT2:/NC/VE

Since verification is performed block by block, it requires as much time as the copy operation. Therefore, it is

- important to understand the difference between the above commands. The first command shown above, which
includes the /FC option, copies information from DT2 to DT1 and then verifies that the information was copied
correctly. The second command, which must include the /NC (no copy) option, does not copy information; it

- only verifies that the information on both DECtapes is identical.

The two sample commands shown above are the only allowable forms for verifying. If the user types a command
string omitting the /FC or /NC option, the error message /FC OR /NC MUST BE SPECIFIED is returned.

If the user specifies both the /FC and /NC options in the same command line, the error message CANNOT
SPECIFY BOTH /FC AND /NC is returned.

As with the /FC option, individual files cannot be specified with the /VE option; all of the information on a device
is verified.

17-19

Device Utility Programs: Transferring Files Between Devices

As the verification is performed, the first message COPY prints is:
BEGINNING VERIFICATION PASS |

If all of the information has been copied correctly from one device to another, the next message COPY prints is:
VERIFICATION COMPLETE 0 BAD BLOCKS
READY

If, however, the information has not been copied correctly, COPY prints the decimal number of blocks in which
inconsistencies appear. For example,

#DT1:=DT2:/FC/VE

BEGINNING VERIFICATION PASS
THE FOLLOWING BLOCKS ARE BAD:
17

31

89

VERIFICATION COMPLETE 3 BAD BLOCKS
READY

The /BL option, which specifies blocksize, speeds up copying or copies magtapes written with non-standard record
sizes. To speed up copying, the user should specify a larger blocksize. For example,

#DKO0:=DK1:/BL:2048/FC

causes the disk on drive DK1: to be copied to the disk on drive DKO: in 2048-byte blocks, rather than the default
512-byte blocks. If the user specifies an illegal block size, the error message ILLEGAL BLOCK SIZE is returned.

To specify other than standard density and parity settings when copying magtape, the user issues the /DENSITY:d
and /PARITY :p options. These may be minimally abbreviated to /DE:d and /PA:p. In these options,

d can be: p can be
200 ODD
556 - EVEN
800
DUMP
1600 (phase-encoded)

If the user specifies a density or a parity that does not appear in this list, the error message ERROR IN SPECIFYING
DENSITY (or PARITY) is returned.

The following example illustrates /DENSITY and /PARITY:

#MTO:/DENSITY:556/PARITY:EVEN <MT1:/DENSITY:DUMP/FC

COPY reads magtape unit 1 at 800 bits per inch dump mode and writes unit 0 in even parity at 556 bpi.

17-20

Device Utility Programs: Transferring Files Between Devices

Several’error messages are returned for general command errors. If the user misplaces or mistypes an option, the pro-
gram prints ERROR IN SPECIFYING SWITCHES. If the user specifies an illegal or nonexistent device, the program
prints ILLEGAL DEVICE. If he includes anything besides a device in the input or output specification, the pro-
gram prints ILLEGAL INPUT (or OUTPUT) SPECIFICATION. Finally, if he types a format that the program cannot
decode, it prints SYNTAX ERROR IN COMMAND STRING.

17-21

CHAPTER 18
STORING FILES OFF-LINE: THE BACKUP PROGRAM

- 18.1 PRESERVING FILES: THE BACKUP PROGRAM _

~ The BACKUP system program allows the user to preserve off-line file copies on disk or on magtape. BACKUP, in its
RESTORE mode; can also return those off-line copies to the on-line disk structure. BACKUP communicates with
the user by dialogue: the program asks the user a sequence of questions which the user answers one at a time. His
answers determine the program’s mode, the device to which files will be copied, which files will be copied, and
where BACKUP will print its directory and command listings: the record and results of its work.

~ The group of disks or magtapes on which the files are preserved is called the backup set; a single member of this set,
whether a disk or a magtape, is called a volume.

Once BACKUP has accepted the user’s responses in the dialogue, it selects the files to be processed, recording the
accounts to be transferred and sorting them in ascending numerical order. Information about accounts, files, and
errors is written into the work-file, which BACKUP uses for communication between modules and for writing its
primary index file. Mainly a directory of the backup set, this file is written in duplicate on the set’s last volume,
called the index volume. Though the primary index file contains a complete directory, it is not in RSTS/E format.
To create a permanent index file in RSTS/E format, the user specifies an extension other than the default .TMP.
The resulting final index is called the auxiliary index file.

In transferring the files, BACKUP copies them to the backup medium. After it transfers all files, it updates the
listing file with an entry for each account and file it transfers and for each error it encounters. Also, in a summary
line for each account, BACKUP reports the number of files and blocks it has transferred and the number of errors
it has encountered. When a backup volume is filled, BACKUP requests a new volume by printing a prompt on the
job’s keyboard. When the files have been transferred, BACKUP prints a message of completion and returns to the
user’s default run-time system.

NOTE
In order to back up files to a disk, a non-privileged user
must have a disk in BACKUP format. This format is not
the format of RSTS/E. To change a RSTS/E disk to
BACKUP format, the non-privileged user must ask the
system manager or a privileged user to run the program
BACDSK..

-18.1.1 The RESTORE Mode of BACKUP

In RESTORE mode, BACKUP performs a transfer the opposite of that just described: it transfers files from the
backup set to a RSTS/E format disk. Like the primary BACKUP mode, RESTORE uses a dialogue to obtain
information from the user.

In this dialogue, the user specifies the files for transfer — the entire backup set or a subset of it. He may also enter
files by account, and exclude files from the transfer if they already exist on the destination disk. ‘

RESTORE mode, in selecting the files for transfer, copies account and file information from the user-specified index

file to a temporary disk file. On completing this-process, the program, as it does in BACKUP mode, records in the
listing file the number of accounts, files, and biocks to be transferred, along with accounting statistics.

18-1

Storing Files Off-Line: The BACKUP Program

Once this selection and listing of files is complete, the program, in RESTORE mode, copies the files from the backup
set to the destination disk. Files and accounts are processed in their order of appearance on the backup volume. For
each account entered and transferred, and for each file transferred, the program generates an entry in the listing

file. Also logged in the listing file is any error that may destroy data. Such an error is printed on the job’s keyboard
as well. When all files and accounts have been transferred and all pertinent information logged, the program prints a
completion message and returns to the user’s default run-time system.

NOTE
RESTORE mode does not supersede files that are open
for update. If an open file is encountered during transfer,
the program generates an error message.

18.2. RUNNING BACKUP
To run the BACKUP program, the user types

RUN $BACKUP
This command starts the dialogue. BACKUP’s first query is
BACKUP OR RESTORE?

To this query, the user may type, minimally, BAC or RES. BAC (or BACK, BACKU, etc.) starts the dialogue for a
BACKUP operation, while RES (or REST, etc.) starts the dialogue for a RESTORE operation.

NOTE :
BACKUP cannot be run under the control of the Batch
Processor.

18.2.1 File Specifications as Dialogue Answers

Several questions in the dialogue call for file specifications as answers. The user must include in these specifications
certain characteristics of the files before BACKUP will process them. The characteristics may include filename,
account, and dates of creation and last access. The user may also use this information to specify files as exceptions
from a process.

The BACKUP file specification takes the following form:
ﬁlenarﬁe/keyword:comparison; date

The filename is in RSTS/E format and may contain the wild-cards * and ?. The keyword is CREATION or ACCESS.
(Both may be abbreviated to their first two letters.) The comparison is BEFORE or AFTER. (Both may be mini-
mally abbreviated to their first three letters.) The date is in dd-mmm-yy format; if the user omits yy, BACKUP
assumes the current year. A file specification entered in the BACKUP dialogue, therefore, might look like this:

* TEC/AC:BEF:06-JUN-76
In this example, the filename *.TEC designates all filés on the default account with the extension .TEC. The rest of
the specification — the keyword AC[CESS] followed by the comparison BEF[ORE] and the date — narrows the
category to only those .TEC files accessed before 06-JUN-76 (i.e.; 05-JUN-76 or eatlier).
A user may also specify the time of day in the creation field:

PHONE.*/CR:AF T:07-MAR-76:21:13

This specification designates a]l ﬁles with name PHONE that have been created since 21:13 (9:13 p.m.) on
07-MAR-76.

182

Storing Files Off-Line: The BACKUP Program

Only one creation phrase and one access phrase are allowed in each file specification. These phrases must be separated
from each other and from the filename (even if it is null) by a slash (/). A specification applied to the default file-
name, therefore, might look like this:

/CR:BEF:01-APR-76:17:30/AC:AFT:01-SEP-76

The specification designates all files with the default filename that were created before 17:30 (5:30 p.m.) on
01-APR-76 and accessed after 01-SEP-76. Note that the components of each phrase are separated by a colon (:).

The user may exempt one or more files from an operation by including an EXCEPT phrase in the file specification.
EXCEPT (which may be minimally abbreviated to EXC) is separated by a slash from other phrases and has two
forms:

1. EXCEPT file specification
2. EXCEPT:(list of file specifications)

The user specifies the first form if he wishes to éxempt only one file specification and if this specification does not
include a creation or access phrase. For example, the specification

[100,250] EDIT.*/CR:AFT:01-JAN-76/EXC:EDIT.TMP
designates all files on account [100,250] with name EDIT — except EDIT.TMP — that were created after 01-JAN-76.

Should the user wish to exempt more than one file specification or to include a CREATION or ACCESS phrase in
the exception, he employs the second form. The entire specification might look like this:

* */CR:BEF:29-FEB-76/EXC:(*.RNO/CR:AFT:01-FEB-76 MT?.*/AC:AFT:3 I-DEC-75)

This specification iniﬁally designates all files on the default account that were created before 29-FEB-76. The
exceptions, however, are:

1. All files with extension .RNO that were created after 01-FEB-76, and
2. Any file whose name begins with MT and is three characters long that has been accessed since 31-DEC-75.

An EXCEPT phrase, unless it has its own CREATION or ACCESS phrase, will be affected by the CREATION or
ACCESS phrase already in the specification. A specification may include only one EXCEPT phrase.

For a summary of the BACKUP file specification, see the RSTS/E Pocket Guide.

18.2.2 Typographical Considerations

1. Continuing a line: A list of file specifications may be long enough to require several lines. BACKUP,
_therefore, accepts a hyphen (-) as the last character before a line terminator to indicate that the next
line is a continuation of the current line. After the user types the hyphen and line terminator, BACKUP
prompts with CONT>. BACKUP does not process any responses until the user has entered all continua-
tion lines.

2. Spacing (blanks): In specification lines, BACKUP ignores blanks as separators, but reads them as
terminators. The specification EXC EPT:BEE.BAS is illegal because the scan ends after EXC.

EXCEPT : BEE.BAS, however, will be processed.

3. Making a comment: To place a comment in a command line, the user types an exclamation point
(following any continuation hyphen), then the comment. Since ambiguity may result if the user also
specifies account [1,3] as !, he must enclose that account specifier in quotes (“!”” or ‘1°). These quotes

- will be stripped from the command line when it is processed.

18-3

Storing Files Off-Line: The BACKUP Program

18.2.3 Rules of the Dialogue
If there is a default answer to one of BACKUP’s prompting questions, it will appear in angle brackets and before
the question mark. In this example, the default is the user’s keyboard: v

LISTING FILE <KB:>?

By making a null response (i.e., simply pressing the RETURN key), the user receives the default. If he makes a.null
response to a question that has no default, BACKUP prints the message NO DEFAULT and reprints the question.

The user may request BACKUP’s assistance with any question by typing /HELP.

Should BACKUP encounter a syntax error, it prints the appropriate error message and repeats the prompting
question, preceding it with a question mark. The user, by responding with a question mark and pressing RETURN,
can cause BACKUP to reprint the erroneous line up to the point of the error, and then to repeat the prompting

question.

18.3 THE DIALOGUE
BACKURP starts the dialogue with the question

BAC[KUP] OR RES[TORE] ?

The user responds with BAC or RES (minimally) to specify his chosen mode. If, on the other hand, he wishes to see
the help text for the whole program, he may type /HELP instead.

If the user wishes to create an indirect command file cbntaining his responses to the dialogue, he may so specify by
typing the option /SAVE (or, minimally, /SA) after his choice of mode, in the format:

BAC/SA
or
RES/SA
To the /SAVE option, BACKUP will respond with the question
INDIRECT FILE NAME<SY: [CUR ACT] BACKUP.CMD>?
or
INDIRECT FILE NAME<SY: [CUR ACT] RESTOR.CMD>?

-depending on whether the user has chosen BACKUP or RESTORE mode. As the defaults — in angle brackets —
indicate, a null response will specify the command file as BACKUP.CMD or RESTOR.CMD, on the system disk and
under the current account. In specifying an indirect command file other than the default, the user may designate
a disk or DECtape. The device must be accessible to the user. Into this file, BACKUP will print the rest of the

responses.

The rest of the dialogue depends, of course, on the mode chosen in response to the first question. Descnbed first
is the dialogue for a BACKUP operatlon run when the user responds with BAC.

184

Storing Files Off-Line: The BACKUP Program

Table 18-1 Backup Dialogue Summary

Question

Response

Meaning

. BAC[KUP] OR RES[TORE]?

BAC[KUP] (/SA[VE])

Perform a Backup.

la. INDIRECT FILE NAME <SY: [CUR ACT] BACKUP.CMD>?

. WORK-FILE NAME <SY: [CUR ACT] BACKnn.TMP>?

. LISTING FILE <KB:>?

. FROM DISK <SY:>?

. FROM FILE(S) < [CUR ACT] *.

. TO DEVICE <MT:>?

. BEGIN AT <[#,*] *%>7

. DELETE FILE(S)<NONE>?

. COMPARE FILE(S) <NONE>?

File spec

File spec

KBn:, LPn:

Fiie spec

Disk name

*>7

File spec(s)

MT:, disk name

File spec

File spec(s)

File spec(s)

Create an indirect command file with the
specified name. Valid output devices are
disk, and DECtape. Asked only if the /[SAVE
option is appended in Question 1.

Use the specified file as the work-file. If the
default is used, nn is the job number. Any
disk may be substituted for SY:. (This file
can be used as the auxiliary index file.)

Write the listing file to the device specified.

Write the listing file to the specified file on
disk or DECtape. The default file name is
[CUR ACT] BACKUP.LST.

‘Back up from the specified disk. This disk
must remain mounted throughout the
entire Backup process.

Back up the specified files.

Back up to the specified medium.

Back up starting with the file specified. The
default starts with the first file matching
the file specification in Question 5. Answer
with a single file specification only. No
EXCEPT phrases are allowed. -

Delete the specified files after backing
them up.

Compare the specified files to the originals
after backing them up.

18-5

Storing Files Off-Line: The BACKUP Program

18.3.1 The BAC Dialogue
In the following description of the dialogue, BACKUP’s questions are underlined and followed by explanations.

WORK-FILE NAME <SY:[CUR ACT] BACKnn . TMP>?

This question asks the user to specify the work-file, a record of accounts, files, and errors that BACKUP uses to
create its primary index file. The user may later copy the work-file with PIP to create the auxiliary index file. As

the default indicates, a null response will specify the work-file as BACKnn.TMP (where nn is the current job number),
under the current account and on the system disk. In place of the default, the user may choose any file specification,
provided that the file is on disk. If the user is creating a large backup set, it is recommended that he specify a

private disk for the work-file in order to accommodate its length.! It is also recommended, for the security of the
work-file, that he copy and rename it with PIP after completing the backup and before logging out, since on some
systems a .TMP file is deleted on logout.

NOTE
An easy way to safeguard the work-file is to specify an
extension other than TMP in response to the WORK-FILE
NAME question. If the user performs this action, he need
not copy the work-file with PIP. :

In order to save space, the user may wish to prevent the work-file from being transferred to the backup volume.
The way to prevent this transfer is to specify the work-file in an /EXCEPT phrase as part of the response to the
FROM FILE(S) question.

LISTING FILE<KB:>?

This question asks where the user wishes BACKUP to print the listing file BACKUP.LST, a record of files and
blocks transferred and errors encountered. As the default <KB:>> indicates, a null response will cause BACKUP.LST
to be printed at the user’s keyboard. To request printing at any other valid, available keyboard or other non-file
structured device, the user may specify a device designator. Thus, if he responds with KBO: the listing file will have
the specification

KBO: [cur act] BACKUP.LST

Instead of a non-file structured device, the user may give any file specification. The default specification string
applied to the response is

SY:[CUR ACT] BACKUP.LST

The listing file will be opened for output and accessed immediately, in order to verify that the file/device is available.
Furthermore, the device will be ASSIGNed immediately, and will remain ASSIGNed for the duration of the run.

FROM DISK<SY:>?

This question asks the user to specify the input device, from which the files will be transferred; the default is SY:.
Only one device, which must be a disk, may be specified. Filenames, extensions, and accounts are to be specified
in response to the next question.

FROM FILE(S)<[CUR ACT] #.*>?

! As a rule of thumb, the following formula may be used to calculate the size of the work file in blocks:
.15 * (ACC + FIL + ATT)
where ACC is the number of accounts, FIL the number of files, and ATT the number of files with attributes.

18-6

Storing Files Off-Line: The BACKUP Program

This question asks the user to specify the file(s) he has chosen to back up from the input disk(s). The default is all

- files from the current account. In entering specifications other than the default, the user follows the format
described in Section 18.2.1. Multiple specifications must be separated by commas. The default for each specification
is all files on the current account. BACKUP transfers the files in the response according to the following rules:

1. Any file to which the user has read access (except O length files) will be transferred.

2. Files are transferred in the order in which they exist in the directory, not in the order in which they
are specified. :

3. Accounts are transferred in numerically increasing order, regardless of their order in the MFD.

4. If SY: is the input device, and the public structure contains two or more disk devices, files from the
same account on all public disks are transferred together before the next account is processed.
Furthermore, only accounts which exist in the MFD of the system disk are processed.

TO DEVICE<MT: >?

This question asks the user to specify the type of device to which the files specified in the previous response will be
transferred, or “backed up.” The default device is magtape; the alternative is disk (DK:, DP:, DB:). Only one device
specification may be given, and no unit number may be specified.

BEGIN AT <[##] % .#>?

This question asks the user to specify the first file to be transferred. The default is the first file matching the user’s
response to the FROM FILE(S) question. The user should note that he can respond only with a specification for a
single file. The default for any specification entered is the first matching filename in the FROM FILE(S) response
and on the current account. All files and accounts occurring before the file specified will be skipped —i.e., will not
be transferred. Because of this fact, the user may give a general response to the FROM FILES question, or may
accept the default (all files from the current account), rather than specifying multiple files. Thus, the user saves
some typing time. Note that no /EXCEPT phrase is permitted in a BEGIN AT specification.

DELETE FILE(S) <NONE>?

This question asks the user to specify any file(s) he wishes to be deleted from the input disk after they have been
backed up. As the default NONE indicates, a null response will preserve all input disk files. But if the user wishes a
file or set of files to be deleted from the input disk, he indicates them by a specification or set of specifications
(separated by commas) in the format described in Section 18.2.1. There is no default specification string; all fields,
including account number, must be specified.

Not all input disk files matching the DELETE specifications will be deleted — only those which are selected and
transferred. Moreover, BACKUP will not delete a file to which the user lacks write access, or a file which caused an
error during transfer or verification.

COMPARE FILE(S)<NONE>?

This question asks the user to specify any backed-up files he wishes to be checked against their originals on the
input disk. As the default <NONE>> indicates, a null response means that no comparison will be performed. But
if the user wishes BACKUP to compare a file or set of files. he enters a specification or set of specifications
(separated by commas) in the format described in Section 18.2.1. Note that in the actual transfer, this comparison
occurs before any deletions.

18-7

Storing Files Off-Line: The BACKUP Program

Table 18-2 Restore Dialogue Summary

Question Response Meani;lg

1. BAC[KUP] OR RES[TORE]? ,
RES[TORE] (/SA[VE]) Perform a Restore.

la. INDIRECT FILE NAME <SY: [CUR ACT]RESTOR.CMD>?
File spec Create an indirect command file with the
- specified name. Valid output devices are
disk, DECtape, and terminal. Asked only
if the /SAVE option is appended in
Question 1.

2. WORK-FILE NAME <SY:[CUR ACT]RESTnn.TMP>?
v File spec Use the specified file as the work-file. If the
default is used, nn is the job number. Any
disk may be substituted for SY:.

3. LISTING FILE <KB:>?

KBn:, LPn: Output the listing file to the specified device.
File spec Write the listing file to the specified file on
disk or DECtape. The default file name is
[CUR ACT]RESTOR.LST.
- 4. FROM DEVICE <MT:>?
MT:, disk name Restore backed up files from the specified
medium.

5. INDEX FILE <PRIMARY>?
File spec Use the specified file as the index file. If the
user accepts the default, Restore uses the
Primary index file, which is on the final
volume of the backup set.

6. FROM FILE(S) < [CUR ACT] #.%>?

File spec(s) Restore the specified files.
7. TO DISK <SY: [*.%] >? -
: Disk name Restore the specified files to the designated
disk.
8. BEGIN AT <[* %] *.%>7
File spec Restore starting with the file specified here.

The default starts with the first file matching
the file specification in Question 6. The
answer must be a single file specification. No
EXCEPT phrases are allowed.

9. SUPERSEDE <NONE>?
‘ File spec(s) Overwrite the specified files on the destina-
tion disk with the backup versions.

10. COMPARE FILE(S) <NONE>?
File spec(s) Compare the restored files to the backup
versions.

18-8

Storing Files Off-Line: The BACKUP Program

18.3.2 The RES Dialogue
In the following description of the dialogue, BACKUP’s RESTORE mode questions are underlined and followed by
explanations.

WORK-FILE NAME <SY:[CUR ACT] RESTnn.TMP>?

This question asks the user to specify the work-file. The default, specified by a null response, is RESTnn. TMP
(where nn=current job number), under the current account and on the system disk. The user may choose any disk
file specification in place of the default, ‘

LISTING FILE <KB:>?

This question asks where the user wishes BACKUP to print RESTOR.LST. The default, specified by a null response,
is the user’s keyboard. To request printing at any other valid, available keyboard or other non-file structured device,
the user may specify a device designator. Thus, the response LPO: will specify the following listing file:

LPO: [CUR ACT]RESTOR.LST

Instead of a keyboard or other non-file structured device, the user may give any accessible file specification. The
default specification string applied to the response is

SY:[CUR ACT] RESTOR.LST

FROM DEVICE <MT:>?

This question asks the user from what type of device the backed-up files will be restored. The default, specified by
a null response, is a magtape; the alternate response is a disk.

INDEX FILE <PRIMARY>?

This question asks the user to specify the index file. In RESTORE mode, BACKUP uses this file as a source for
information about the accounts and files selected for restoration. From this information, BACKUP writes the
work-file. When BACKUP has completed the restoration, it will copy this information into the listing file
RESTOR.LST. -

As the default indicates, a null response will cause BACKUP to use the primary index file as a source.

If the user specifies an index file other than the default, BACKUP will load its work-file from user-specified infor-
mation in that index file. The user may specify a disk or DECtape; for example,

DT1:MYRES.IND

FROM FILE(S)<[CUR ACT] *.%>?

This question asks the user to specify the backed-up file(s) to be restored to the destination disk. The default is all
backed-up files from the current account. In entering specifications, the user follows the format in Section 18.2.1.
The account for each specification is the one last given in the response, including the default account specified by a
null. For rules and restrictions governing the transfer, see the description of this question in BAC mode (Section
18.3.1).

TO DISK <SY: [#,+] >?

This question asks the user to specify the destination disk and account to which the backed-up files should be
transferred. A null response will cause BACKUP to transfer all files to the system disk on the accounts from which

189

Storing Files Off-Line: The BACKUP Program

they were backed up. This default action applies also to any specification entered by the user. Note that a user can-
not restore a file to an account to which he does not have access. This restriction holds true even if that file was
created on the inaccessible account.

BEGIN AT < [#,%] %.#>7

This question asks the user to specify the first file-to be transferred. The default is the first file matching the user’s
response to the FROM FILE(S) question. The user should note that he can respond only with a specification for a
single file. The default for any specification entered is the first matching filename in the FROM FILE(S) response
and on the current account. No /EXCEPT phrases are allowed.

SUPERSEDE <NONE>?

This question asks the user to specify a file or set of files that he wishes BACKUP to overwrite. The RESTORE
mode, in transferring the backed-up files he specifies; will cause them to replace their originals on the destination
disk. If the user makes a null response, no files will be overwritten; i.e., if they already exist on the destination disk
their copies on the backup device will not be transferred.

The user, in responding with a specification or set of specifications, follows the format in Section 18.2.1. BACKUP
matches these specifications against file information stored on the backup device, not in the directory of the
destination disk.

CAUTION
A user responding to SUPERSEDE should take care that
the response does not unintentionally replace a recently
created disk file with an older one from the backup set.

COMPARE FILE(S) <NONE>?

This question asks the user to specify any file(s) transferred to the destination disk that he wishes to be checked
against their copies on the backup device. A null response causes no such comparison. But if the user wishes
BACKUP to compare a file or set of files, he specifies the file(s) according to the format in Section 18.2.1.

18.4 INTERRUPTION COMMANDS

BACKUP provides the non-privileged user with six commands that he may issue during transfer phase, while the
program is processing files. Two of these commands may also be issued during the earlier select phase, while the
program is identifying the files it will process. These six interruption commands can terminate, suspend, continue,
and report-on BACKUP’s processing. To show its readiness to accept an interruption command, BACKUP prints an
asterisk (*) on the job’s keyboard. The user may issue a command any time after this asterisk appears. Table 18-3
presents the interruption commands, the phases in which they will work, and their functions.

18.5 RUNNING BACKUP FROM AN INDIRECT COMMAND FILE

The user may run BACKUP from an indirect.command file created by specifying the /SAVE option described in
Section 18.3. When BACKUP runs from such a file, it does not print dialogue questions; they are unnecessary
because the program reads the user’s responses directly from the file. BACKUP does, however, print an asterisk (*)
to show its readiness to accept interruption commands. And, when the transfer is complete, BACKUP prints a
completion message. :

To run the program, in BACKUP or RESTORE mode, from an indirect command file, the user responds to the
first question — BAC[KUP] OR RES[TORE]? — by typing a commercial ‘at’ sign (@) followed by the filename.
For example, assume that the user, in exercising the /[SAVE option during a previous run, accepted the default
filename for the indirect command file. His response would then be

BACK @BACKUP.CMD

18-10

Storing Files Off-Line: The BACKUP Program

Table 18-3 Interruption Commands

Command Phase Function
ABORT, ABO Both Terminates processing immediately and returns to user’s
(Select, Transfer) default run-time system.
CONTINUE, CON Both Continues processing after a PAUSE..
END Transfer Terminates processing after the current file has been
transferred.
PAUSE, PAU Both Suspends execution until user types CONTINUE. During a

PAUSE, any other legal command works. But note that
ABORT will supersede the pause and will cause an exit
from BACKUP.

STATUS, STA Both Prints, on KB:, a backup status report containing processed
accounts, files, and blocks, and the current account and
file; the information depends on the phase.

TERMINATE, TER | Transfer Closes the current volume at the end of the current file or
of the current output volume, whichever comes first (not
valid during a RESTORE operation).

or
RES @RESTOR.CMD

But if the user specified an indirect filename of his own choice, MYBAC .CMD for example, his response would be
BAC @MYBAC.CMD

Note also that if the assignable account specifier is used, two commercial ‘at’ signs are necessary, as in the following
example:

BACKU @@MYBAC.CMD
18.6 TWO DIALOGUE EXAMPLES: BAC AND RES :
The first example is of 2 BACKUP mode dialogue in which the user chooses all allowable defaults. The user’s input
is underlined.

BAC[KUP] OR RES[TORE] ? BAC

WORK-FILE NAME <SY:[10,25] BACK15.TMP>?

LISTING FILE <KB:>?

18-11

Storing Files Off-Line: The BACKUP Program

FROM DISK <SY:>?

FROM FILE(S) <[10,25] #.%>?

TO DEVICE? <MT:>?

BEGIN AT < [#,%] %.%>?

DELETE FILE(S) <NONE>?

COMPARE FILE(S) <NONE>?
The user is logged in under account [10,25] ; the job number is 15. By default, the work-file will be named
BACK15.TMP, and the listing file will appear on the user’s keyboard. Also by default, the files to be backed up
are from his account on the public structure. By default, BACKUP will begin the transfer with the first file on his
account, and will not delete any files; nor will it compare the backed-up files with their originals on the public

structure.

The second example is of a RES mode dialogue in which the user does not accept all the defaults, but enters some
responses. The user’s input is underlined.

'BAC[KUP] OR RES[TORE]? RESTOR
WORK-FILE NAME <SY:[10,25] REST22.TMP>?
LISTING FILE <kB:>? TODAY.LST
FROM DEVICE <MT:>?

INDEX FILE <PRIMARY>? DT1:MYRES.IND

FROM FILE(S) <[10,25] #.*>? [10,%] # LST
TO DISK %SY: [10,25]>? DKO:

BEGIN AT <[*,%] %.%>

SUPERSEDE <NONE>?

COMPARE FILE(S) <NONE>?

The user is logged in under account [10,25] ; the job number is 22. By default, the work-file will be named
REST22.TMP. The listing file, named TODAY.LST by the user’s choice, will appear on his keyboard by default. The
backed-up files to be transferred are on magtape. The user specifies the index file as MYRES.IND, on DT1:. The
backed-up files to be restored all have extension .LST, are under accounts [10,%], and are read-accessible to the
user. These files will be restored onto the disk on DKO: (by the user’s choice). By default, transfer will begin with
the first file matching the user’s response to the FROM FILE(S) question — i.e., the first .LST file found in account
[10,%].

If a file of the same name already exists on the DKO: disk, it will not be restored to that disk, because the user
accepts the default response <NONE>> to the question SUPERSEDE., Finally, he accepts this default response to
the question COMPARE as well, so that BACKUP will not check the restored files against their backed-up copies
on MTO:.

18-12

Storing Files Off-Line: The BACKUP Program

18.7 MOUNTING AND DISMOUNTING VOLUMES
After BACKUP selects all files and accounts for transfer, it prints on the job’s console terminal requests for labeling
information and the device unit number for the first backup volume. It also prints a volume identification summary.

The labeling information BACKUP requests is the name and expiration date for the backup set. BACKUP uses the
name as an identifier for the backup set. It interprets the expiration date as the date after which it can automatically
write over the data on the volume. If the user mounts a volume for backup before its expiration date, and if that
volume bears his account number, then BACKUP asks for confirmation before writing on the volume. If the volume
does not bear the user’s account number, BACKUP will not allow him to write on that volume. For magtapes,
BACKUP also requests density (800 or 1600 bpi) and, for 7-track tapes, parity.

After answering the labeling questions, the user ensures that the volume is mounted. He write-enables the volume
for a Backup operation. For a Restore operation, magtape volumes may be mounted write-locked; however, disk
volumes must always be mounted write-enabled in order to allow updating of the bad block file. In response to the
DEVICE? query, he types the device unit number on which the volume is mounted.

The following shows_the mount procedure print-out:

PLEASE ENTER BACKUP SET NAME<BACK?28 > -
PLEASE ENTER EXPIRATION DATE<08-Jul-77> -
PLEASE ENTER DENSITY IN BPI<800> - 800
PLEASE ENTER THE PARITY <ODD> -

MOUNT DEVICE: MT :
ID: BACK?28
SEQ#: 1
DENSITY: 800 BPI
PARITY: ODD
IDENTIFICATION WILL BE FINAL UPON SUCCESSFUL MOUNT
DEVICE? MM1:
THIS VOLUME HAS NO BACKUP LABEL!
MOUNT IT ANYWAY <NO>? Y

When BACKUP has finished using a volume, it prints a dismount message like the following:

DISMOUNT DEVICE: MMI1:
ID: BACK?28
SEQ#: 1
DENSITY: 800 BPI
PARITY: ODD
"PLEASE LABEL THIS VOLUME!

When the dismount message appears, the user physically dismounts the volume (if necessary) and readies the next
volume for processing. BACKUP requests name, expiration date, parity, and density for only the first volume in
each backup set. For subsequent volumes, the user specifies only the device unit number.

18.8 BACKUP ERROR HANDLING

The BACKUP package may encounter four types of errors: dialogue command errors, interruption command errors,
volume mount errors, and BACKUP processing errors.

Dialogue command errors occur during the Backup or Restore dialogue. The BACKUP package diagnoses these
errors immediately. Usually, the user responds to such an error by typing the correct dialogue answer.

Interruption command errors can occur when the user types an interruption command. BACKUP responds immedi-
ately to these errors, too. The user simply types a valid command to correct the error situation.

18-13

Storing Files Off-Line: The BACKUP Program

Volume mount errors can occur when the BACKUP package mounts tape and disk backup volumes. Some volume
mount errors are user errors (for example, specifying an illegal density setting for tape); others are related to the
hardware (for example, tape errors that prevent labelling).

BACKUP processing errors can occur any time during the BACKUP run except during the dialogue. Processing
errors can be related to the hardware on which the BACKUP is running or they can indicate logic errors.

The following four sections describe each type of error.

18.8.1 Dialogue Command Errors

When BACKUP encounters a dialogue command error (usually a syntax error), it prints an error message on the
user’s terminal. The error message is ?7COMMAND ERROR followed by either a BACKUP-specific error message
or a RSTS/E error message generated during the syntax processing of the command. After printing the error
message, BACKUP prints a question mark and repeats its prompt. If the user responds with “? <CR>”, BACKUP
prints the command line up to the position of the error, then reprints the prompt. Table 184 descnbes the
BACKUP dialogue error messages.

Table 184 BACKUP Dialogue Error Messages

Message - Meaning
7BAD DIRECTORY FOR DEVICE _ The directory structure on the device the user specified is
: corrupt. The user should try to place the file on a different
device.
?7CAN’T FIND FILE OR ACCOUNT BACKUP cannot find the file or account the user specified.

The user should ensure that he typed the filename and account
correctly, and that they exist.

IDEVICE HUNG OR WRITE-LOCKED The device the user specified is writedocked or generated a
read or write error. The user should write-enable the device
(if necessary) or specify a different device.

DEVICE NOT AVAILABLE The device the user specified is disabled or assigned to another
user. The user should specify a different device.

?DUPLICATE SWITCH The file specification contains multiple ACCESS or CREATION
comparisons. BACKUP accepts only one of each comparison in
a file specification.

ILLEGAL EXCEPT NESTING The file specification includes more than one EXCEPT com-
- | parison. BACKUP accepts only one EXCEPT in a file specifica-
tion.

ILLEGAL FIELD The response contains a field that is not permitted. For example,
the user cannot specify a device name in the response to
FROM FILES?

NLLEGAL FILENAME The filename the user specified contains invalid characters or
is in incorrect format.

?ILLEGAL KEYWORD The response contains a misspelled or incorrectly abbreviated
keyword, or has incorrect punctuation marks.

(continued on next page)

18-14

Storing Files Off-Line: The BACKUP Program

Table 184 (Cont.) BACKUP Dialogue Error Messages

Message Meaning

NLLEGAL OPERAND The EXCEPT comparison in the file specification contains an
unmatched parenthesis, or the day or year number in a date
is out of range. ‘

?2INCOMPLETE COMMAND FILE The user typed CTRL/Z or the indirect command file ended
before the expected end-of-file. BACKUP returns to the
BACKUP OR RESTORE? query. ‘

INO DEFAULT The current dialogue question does not have a default answer.
The user must type an explicit response.

INOT A VALID DEVICE The device the user specified is not on this system.

INOT A VALID DEVICE (PROHIBITED) The device the user specified is illegal in response to this
question.

?PROTECTION VIOLATION The file or account the user specified is protected against him.

?TOO MANY FILES OPEN ON UNIT Only one file at a time can be open on a magtape unit. The
user must specify the second file on another device.

?TOO MUCH DATA The response contains more data than BACKUP accepts for
this question.

?UNIT NUMBER NOT VALID | BACKUP does not accept a device unit number in the response
to this question. °

18.8.2 Interruption Command Errors
An invalid interruption command may generate one of three error messages. Table 18-5 summarizes these messages
and their meanings.

Table 18-5 Interruption Command Error Messages

Text Meaning
?CAN’T DETACH DETACH command is invalid because listing file is KB:.
7UNRECOGNIZED COMMAND The user typed a string that is not an interruption command.
ALLEGAL COMMAND The user typed an interruption command that is illegal (for
example, typing CONT when no PAUSE is in effect). The
user can type LEGAL for a list of interruption commands
that are currently legal.

18.8.3 Volume Mount Errors _
Several errors can occur during the volume mount process. BACKUP prints an error message, then repeats the
current prompt. Table 18-6 summarizes these error messages.

18-15

Storing Files Off-Line: The BACKUP Program

Table 18-6 BACKUP Volume Mount Error Messages

Messége Meaning
?INVALID DATE Expiration date must be in DD-MMM-YY format and. cannot
have already occurred.
?7INVALID DENSITY SETTING Valid density settings are 800 and 1600 bpi.
?INVALID PARITY SETTING | Valid parity settings are ODD and EVEN.
7CAN’T WRITE ON THiS TAPE BACKUP cannot write a label on the magtape because of tape

errors. The user should try another magtape.

"MAGTAPE SELECT ERROR The magtape unit the user specified is not READY or is OFF-
LINE. The user should ready the unit or specify another unit.

18.8.4 BACKUP Processing Errors

BACKUP processing errors can occur as the package selects, transfers, compares and deletes files and generates the
listing file. A processing error can be a hardware error, which indicates a hardware problem (for example, ?DEVICE
HUNG OR WRITE-LOCKED), or a logic error, which indicates an attempt at an illogical or prohibited action (for
example, 7PROTECTION VIOLATION). The BACKUP package contains error handlmg routines for common hard-
ware and logic errors.

18.8.4.1 Selection Errors — If a logic error occurs during the selection process, BACKUP autoinatically skips over
the file or account causing the error. BACKUP prints an error message, then proceeds to select the next file or account,
according to the following rules:

1. If an error occurs while BACKUP is looking up a file, BACKUP skips that file and looks for the next
sequential file.»

2. If an error occurs during the search for an account, BACKUP terminates the search on that input volume
and continues the search for that account on the next input volume.

3. If an error occurs during the search for an account on the final input volume, BACKUP returns to the
first input volume and searches for the next sequential account.

4. If an error occurs in the final account on the final input volume, the selection process ends and BACKUP
begins to transfer the selected files and accounts.

BACKUP contains error handling routines for the ?DEVICE HUNG OR WRITE-LOCKED hardware error. These
routines allow the user to request that BACKUP retry the procedure that encountered the error. The user can some-
times recover from the error without missing any files or accounts because 7DEVICE HUNG OR WRITE-LOCKED
errors occasionally indicate transient hardware problems. The user can alsa request that BACKUP skip over the error.
If the user requests a skip over a ’DEVICE HUNG OR WRITE-LOCKED error, BACKUP ends the search for the
current file or account and proceeds to look for the next file or account, as it does for a logic error.

If a bad block error (?USER DATA ERROR ON DEVICE) occurs during the selection phase of a Backup operation,
Backup prints an error message, stops searching for the current file or account, and proceeds to look for the next
file or account as for a logic error.

During a Restore operation, a bad block error at Index 1oad time usually means that the index file is corrupt. Restore
asks the user to mount a different volume (if necessary) so that the Restore operation can read from another index
file. If an error occurs in the secondary index file, the BACKUP run is aborted. The user must then run BACKUP
again and use the auxiliary index file. After errors occur in both the primary and secondary index files, BACKUP
cannot recover from an error in the auxiliary index file.

18-16

Storing Files Off-Line: The BACKUP Program

A bad block error (USER DATA ERROR ON DEVICE) that occurs in the Backup or Restore work-file is fatal.
BACKUP prints ?7UNEXPECTED ERROR — ?USER DATA ERROR ON DEVICE and the run is aborted.

18.8.4.2 Transfer, Deletion, and Listing Errors — Logic errors during the transfer, deletion, and listing processes
are usually the result of failure to open a file that BACKUP must transfer or delete. For example, the logic error
7PROTECTION VIOLATION means that the protection code of a certain file prohibited its transfer or deletion by
this user. Another logic error, ?SUPERSEDE FAILURE, indicates a failure to find or replace a file for which the user
requested a supersede operation. The BACKUP package automatically skips over the file or account causing a logic
error during transfer, deletion, or listing processes.

BACKUP error handling routines allow the user to retry or skip over a 7DEVICE HUNG OR WRITE-LOCKED error
that occurs during the transfer, delete, or listing process. Retry and skip work in the same way here as they do during
the selection process.

The ?SEQUENCING PROBLEM ON MAGTAPE error can occur during a Restore from magtape. This error means
that Restore could not read the record numbers on the tape. When the sequencing error occurs, Restore usually
prints several bad block error messages (as it tries and fails to read magtape records), then recovers automatically.
The user cannot restore the file in which the sequencing error occurred, but he can restore the remainder of the
files on the magtape.

If BACKUP encounters a bad block during a transfer operation that involves a RSTS/E disk, BACKUP prints an
error message. It copies the rest of the current file although the file is corrupt. If the bad block is in the work-file,
the BACKUP run is aboried.

The BACKUP package specially formats each backup disk when the user mounts it for a Backup operation. BACKUP
creates a bad block file on the disk and allocates to this file all bad blocks it finds during formatting. The BACKUP
package does not permit any disk that has an excessive number of bad blocks to be used as a backup disk. When a
Backup or Restore operation discovers a bad block on a backup disk, it allocates the bad block to the bad block

file. This procedure prevents future use of the block for backup data. (The system manager should be aware that
BACKUP bad block files are not equivalent to the RSTS/E file BADB.SYS. The system manager must initialize a
backup disk as a RSTS/E file structured disk before using it for Backup. The System Manager s Guide describes

disk initialization procedures.)

18.8.4.3 Informational Messages — During the transfer process, BACKUP often prints informational messages.
These messages usually do not indicate errors, but inform the user about files that are open (and subject to change)
and files that have changed in length since selection. BACKUP transfers these files, but the copies may not be
accurate. Other messages list files that BACKUP cannot transfer: those deleted since selection and those whose
length is zero.

18-17

CHAPTER 19
FLOPPY DISK TRANSFER: THE FLINT PROGRAM

The system program FLINT (FLoppy disk INTerchange) allows the user to transfer information from IBM! floppy
disks to a standard disk that RSTS/E can read (for example, DK:, DP:, SY:). Conversely, FLINT also allows the
transfer of information from RSTS/E-readable disks to the floppy disks that an IBM system can read. Either of
these two transfers may involve multiple floppy disks, referred to as volumes in the dlalogue and in its description
here. FLINT can transfer IBM floppy disk information to a RSTS/E disk only.

FLINT also allows the user to obtain a directory of an IBM floppy disk; this directory contains information related
fo the unique data format of an IBM floppy disk.

To perform these transfers and to print the directory of an IBM floppy disk, FLINT communicates with the user by
dialogue. The program asks the user a series of questions which he answers one at a time. There are two different
dialogues for the transfer operations, IBM-to-RSTS/E and RSTS/E-to-IBM. There is another dialogue, consisting of
only two questions, for the printing of an IBM directory.

19.1 RUNNING FLINT: THE INITIATION COMMANDS
To run the FLINT program, the user types

RUN $FLINT

FLINT then responds by identifying itself and printing a number sign (#) to show its readiness to accept one of
three initiation commands. Each of these initiates a different dialogue, as follows:

Command initiates the dialogue for:
/DIRECTORY listing an IBM floppy disk directory
/TORSTS transferring from an IBM floppy disk to a RSTS/E disk
/TOIBM transferring from a RSTS/E disk to an IBM floppy disk

Each command may be abbreviated, at the minimum, to its first three letters: /DIR, /TOR, /TOL. The user may also
run FLINT by the CCL command FLI[NT] if the FLINT command was installed on his system at startup; see
Section 19.7.

19.2 LISTING THE DIRECTORY OF AN IBM FLOPPY DISK
Typing /DIR in response to FLINT’s number sign (#) prompt will cause FLINT to print a dialogue of two questions.
In the following description of the dialogue, FLINT’s questions are underlined and followed by explanations.

OUTPUT TO?
This question asks the user where he wishes FLINT to print the directory of the floppy disk(s). If he wishes it
printed at his terminal, he may give a null response (i.e., press RETURN). If, however, he wishes to save the directory

in a file, he must respond with an output file specification of the form

dev: [proj,prog] name.ext<prot>

LIBM is a trademark of International Business Machines Inc.

19-1

Floppy Disk Transfer: The FLINT Program

The user must specify at least the device and filename. By default, [proj,prog] is the current account and <prot>
is <60>. :

- DIRECTORY OF?

This question asks the user to specify the floppy disk(s) for which the directory will be printed. A null response
specifies the disk DXO0:. Other disk specifications must be typed in the form

DXn:
or
n

wheren=0to 7
Multiple floppy disk specifications must be separated by commas.

19.2.1 The Form of the Directory
This is a listing of an IBM floppy disk directory obtained by FLINT:

DIRECTORY OF DX1:
DSN BRL BOE EOQOE EOD BI MVI VSN
DATA 080 01001 73026 01001

TOTAL OF 1 DATA SET ON DX1:
The abbreviated headings on the second line are listed and defined here, reading from left to right:

Y

1. DSN Data Set Name: the 1-8 character name a user has given the data set (corresponds to “filename’
in RSTS/E) '

2. BRL Block/Record Length: in each 128-position sector, the number of positions containing data

3. BOE Beginning Of Extent: the address of the first sector in the data set; output in the form TTOSS,
where TT is track number and SS is sector number

4. EOE End Of Extent: the address of the last sector reserved for this data set (in the format as
BOE abovwe)

5. EOD End Of Data: the address of the next unused sector within the data set extent

6. BI Bypass Indicator: A blank in this field means the data set is intended for processing; a B means
it is not.

7. MVI Multi-volume Indicator: A blank in this field means a data set is wholly contained on this
floppy disk; a C means that a data set is Continued on another floppy disk; and L means that
this floppy disk is the Last on which a continued data set resides.

8. VSN Volume Sequence Number: the sequence of volumes in a multi-volume data set. Blanks indicate
that volume sequence checking is not to be performed.

192

Floppy Disk Transfer: The FLINT Program

19.3 TRANSFERRING IBM FLOPPY DISK DATA TO RSTS/E

Typing /TOR in response to FLINT’s number sign (#) prompt will cause FLINT to print the dialogue for transfer-
ring floppy disk data to a standard RSTS/E disk (DKO:, for example). In the following description of that dialogue,
FLINT’s questions are underlined and followed by explanations.

OUTPUT TO?

This question asks the user to specify the RSTS/E file that is to receive data from the floppy disk(s). The user must
respond with an output file specification of the form

dev:[proj,prog] name.ext<prot>

By default, dev: is the system disk, [proj,prog] is the current account, and <prot> is <60>>. The user is reminded
that the device must be a disk (DP1:, for example).

- TRANSLATE FROM EBCDIC TO ASCII <YES>?

This question asks the user if he wishes the floppy disk data to be translated from its current EBCDIC mode,
unreadable to RSTS/E, into ASCII mode, readable to RSTS/E. As the default — enclosed in angle brackets —
indicates, a null response (i.e., pressing RETURN) will cause the data to be transferred “in translation.” If, how-
ever, the user types NO, FLINT will perform an “image mode” (byte-for-byte) transferral.

INPUT FROM?

This question asks the user to specify the floppy disk(s) from which data will be transferred to the output file '
specified in answer to the OUTPUT TO question. He may specify such an input floppy disk by typing a response
of the form DXn: or simply n, where n is a device number from O to 7. Such a response will cause FLINT to
transfer the first data set on the specified floppy disk. If however, the user gives a null response (i.e., presses
RETURN), FLINT will transfer the first data set from DXO:.

If the user wishes FLINT to transfer a specific data set, he may give a response of the form DXn:DSN where DSN

is the data set name, composed of one to eight ASCII characters, including blanks — spaces and tabs. Since these

blanks are recognized as part of the IBM data set name, care should be taken in their use. If FLINT cannot find the
specified data set, it will print the message FILE NOT FOUND and will repeat the INPUT FROM question.

If the user does not specify a data set name, FLINT will print a message of the form
dsn IS THE DATA SET BEING TRANSFERRED
where dsn is the name of the first data set on the first floppy disk specified.
FLINT examines the data set label — ;1 header with statistical information — to determine if the data set resides on
more than one floppy disk. If it does, and if the user has specified only one floppy disk, FLINT prints the message/

question

dsn RESIDES ON MORE THAN ONE FLOPPY —
DO YOU WISH TO CONTINUE <NO>?

If the user responds by typing YES, FLINT will proceed to its next question. As the default <NO>> indicates,
however, a null response causes no transfer, and instead causes FLINT to print its # prompt.

FLINT next computes the blocking factor to be used in the transfer of the current data set, and prints a message
expressing that factor as the ratio of IBM to RSTS/E records. This message has the form

19-3

Floppy Disk Transfer: The FLINT Program

N XXX CHARACTER IBM RECORDS =1 RSTS RECORD
FLINT, after printing this message, proceeds with the transfer, extracting data from each specified input device.

(FLINT computes this blocking factor by determining how many of the 128 positions in each floppy disk sector
contain data in the form of characters. This count is the IBM record size, and is used to divide the RSTS record
size (512). The product of this division is printed as N in the above message. For example, if each IBM record
contains 80 data characters, FLINT will find that 6 full IBM records can be placed in a 512-byte “RSTS record”
[512/80 = 6.4] . Thus, “6 80 CHARACTER IBM RECORDS =1 RSTS RECORD.”)

NOTE
The first logical record on the RSTS/E output file is
always reserved for a statistical header of the form
described in Section 19.3.2. This header is 6 bytes long.
Thus, if the logical record length of the dataset to be
transferred is less than 6 bytes, FLINT will use as many
logical records as are necessary to contain the header. If,
for example, the data set’s logical records are only 4 bytes
long, FLINT will have to allocate 2 of those records to
hold the header.

If the entire data set is not contained on the input device(s) specified, FLINT prints the question

NEXT INPUT DEVICE?

The user should respond with the number of the drive (m) on which the next portion of the data set resides. FLINT
will continue to perform transfers and to print NEXT INPUT DEVICE requests until it determines that the current
floppy disk contains the end of the specified data set. .

Note that on multi-volume input FLINT continually checks data set names against the one specified by the user,
and, if possible, also checks volume numbers for correct sequence. If, for example, data set IDAT is being trans-
ferred and the third input volume specified contains no IDAT, FLINT will print the message

FILE NOT FOUND — DXn:IDAT
and will repeat the message NEXT INPUT DEVICE.

Moreover, if the volumes contain sequence numbers, and the number on a particular floppy disk is not 1 greater
than that on the previous floppy disk, FLINT will print the message

VOLUME #m CANNOT FOLLOW VOLUME #n
and will repeat the message NEXT INPUT DEVICE.
If no fatal errors occur, FLINT, on completing the IBM-to-RSTS/E transfer, will print the message

EXCHANGE COMPLETED
at the user’s terminal, and will list both the number of IBM records read and the number of RSTS records written.
19.3.1 Specifying the Known Floppy Disks of a Data Set
Before he initiates the transfer of a multiple-volume data set, the user may know on which floppy disks the data set
~ resides. In that case, he may respond to the INPUT FROM question by specifying the floppy disk on which the data
set begins, then the data set’s name, and then the other floppy disk(s) onto which the data set is continued. Here is

an example of such a multiple-device response:

194

N Floppy Disk Transfer: The FLINT Program

DX1:DATASETA,DX2:,DX3: 4

Note that this user, in accordance with good data procedure, has mounted the floppy disks containing DATASETA
on consecutively numbered drives, and has specified them in order. A user may, on the other hand, mount and
specify his floppy disks out of sequence, but risks confusion if he does. Note also that the unsequenced order of
specifications must match exactly the unsequenced order of mounting. If it does not, FLINT will print the message
VOLUME #[m] CANNOT FOLLOW VOLUME #|[n], which is described earlier.

19.3.2 Format of the RSTS/E Disk
FLINT writes, on the RSTS/E output file, a header record. This header contains the following information (all
fields are 2-byte integer fields in standard CVT%$ format; see the BASIC-PLUS Language Manual, Section 11.5):

Byte Contents
1-2 Physical block number of the last logical block in the file
34 Number of logical records in the last physical block
5-6 Logical record length in bytes
7- Remainder of the logical record contains no data (the entire logical record is

reserved for the header)

If the logical record length of the data set is less than 6 bytes, this header will occupy more than one RSTS/E
logical record.

19.4 TRANSFERRING RSTS/E FILES TO IBM FLOPPY DISKS

Typing /TOI in response to FLINT’s number sign (#) prompt causes FLINT to print the dialogue for transferring a
RSTS/E file to IBM floppy disk(s). In the following description of that dialogue, FLINT’s questions are underlined
and followed by explanations.

OUTPUT TO?

This question asks the user to specify the IBM data set to which FLINT will output the RSTS/E data. The user must
respond with a data set name in the form

DXn:DSN
DXn: specifies a floppy disk on which the data set is written; n is a device number from 0 to 7. DSN is the output
data set name, composed of 1 to 8 characters, including blanks. If the user omits the DSN, FLINT assumes the name
RSTS.
Multiple volumes must be separated by commas; for example:

DXO0:DATSETC,DX?2:

TRANSLATE FROM ASCII TO EBCDIC <YES>? |

This question asks the user if he wishes the RSTS input data to be translated from its current ASCII mode into
EBCDIC mode. As the default <YES>> indicates, a null response will cause FLINT to transfer the data “in
translation.” If, however, the user types NO, FLINT will perform an “image mode” (byte-for-byte) transfer.

19-5

Floppy Disk Transfer: The FLINT Program

INPUT FROM?

This question asks the user to specify the RSTS/E file from which data will be transferred to the data set specified
in answer to the OUTPUT TO question. The user must specify an input filename in RSTS/E format:

dev: [proj,prog] name .ext<prot>

By default, dev: is the system disk, [proj,prog] is the current account, and <prot> is <60>. Note that the device
must be a RSTS/E disk. v

RECORD LENGTH <128>?

This question asks the user to specify the number of characters to be included in each IBM output record. As the
default indicates, a null response will cause the output records to contain 128 characters each. (IBM records contain
1to 128 characters and are fixed length.) To specify a shorter record length, the user may respond by typing any
number smaller than 128 and greater than 0.

On receiving this response, FLINT computes the blocking factor to be used in the transfer of RSTS/E data, and
prints a message expressing that factor as the ratio of IBM to RSTS/E records. This message has the form:

1 RSTS RECORD = N IBM RECORDS

For an explanation of how FLINT computes the blocking factor, see “INPUT FROM?”” in the IBM-to-RSTS/E
dialogue (Section 19.3).

After computing the blocking factor, FLINT proceeds with the transfer. If FLINT determines that the RSTS/E file
cannot fit on the number of floppy disks specified in answer to the OUTPUT TO question, it will print the question

VOLUME #(N + 1)?

This question asks the user to specify an additional floppy disk for output; he may respond with DXn: or with n,
whereé n in either case is a device number from 0 to 7. Or, he may give a null response, which is equivalent to DXO0:.
Until FLINT can complete the transfer, it will continue to ask the VOLUME # question and to accept one of these
responses. All floppy disks used in the transfer will be labelled with volume sequence numbers, and, where necessary,
with continuation markers.

NOTE
No more than 99 floppy disks can be used for one data
set. If the user attempts to use more, FLINT will print
the message

MAXIMUM NUMBER OF VOLUMES EXCEEDED
and will issue its # prompt.

If no fatal errors occur, FLINT, on completing the RSTS/E-to-IBM transfer, will print at the user’s terminal a
message of the form

EXCHANGE COMPLETE ,
data set name RESIDES ON x FLOPPIES

where x is the number of floppy disks on which the named data set resides.

19-6

Floppy Disk Transfer: The FLINT Program

19.5 DIALOGUE EXAMPLES: /DIRECTORY, /TORSTS, AND /TOIBM
In the first example the user requests the directory of a floppy disk, then transfers data from that disk to a RSTS/E
file. The user’s input is underlined. :

FLINT V06B-03 RSTS VO06B-02 TIMESHARING
#/DIREC

OUTPUT TO?

DIRECTORY OF? DXO:

DIRECTORY OF DXO0:
DSN BRL BOE EOE EOD BI MVI VSN

XFILEXMA 128 01001 30011 30012
WUMPUSDB 080 30012 43019 43020
PHONE DB 128 43020 47003 47004

TOTAL OF 3 DATA SETS ON DXO0:

#/TORS

OUTPUT TO? PHONE.DAT

TRANSLATE FROM EBCDIC TC ASCII <YES>?
INPUT FROM? DX0:PHONE DB

DXO0:
4 128 CHARACTER IBM RECORDS = 1 RSTS RECORD

EXCHANGE COMPLETED
88 IBM RECORDS READ
89 LOGICAL (23 PHYSICAL) RSTS RECORDS WRITTEN

In the /DIRECTORY dialogue, the directory of DXO: is printed at the user’s terminal.

In the /TORSTS dialogue, data set PHONE DB is transferred from floppy disk DXO: to the RSTS/E output file
PHONE.DAT; by default, the data is translated into ASCII on being transferred. FLINT computes and prints the
blocking factor (4 IBM records to 1 RSTS/E record).

*

In the next example, the user transfers a RSTS/E file to an IBM floppy disk. The user’s input is underlined.

FLINT V06B-03 RSTS VO06B-02 TIMESHARING
#/TOIBM

OUTPUT TO? DX1:MYDATA

TRANSLATE FROM ASCII TO EBCDIC <YES>?

INPUT FROM? MYDATA.DAT

RECORD LENGTH <128>7

1 RSTS RECORD = 4 IBM RECORDS

EXCHANGE COMPLETED
MYDATA RESIDES ON 1 FLOPPY

In this /TOIBM dialogue, the RSTS/E file MYDATA.DAT is transferred to the IBM data set MYDATA on floppy disk
DX1:. By default, the data is translated to EBCDIC on being transferred. FLINT computes and prints the blocking
factor (1 RSTS/E record to 4 IBM records).

19-7

Floppy Disk Transfer: The FLINT Program

19.6 FLINT ERROR MESSAGES

FLINT, on encountering an error, prints the appropriate error message. If the error is non-fatal, FLINT repeats the
prompting question; if the error is fatal, FLINT aborts the transfer. Table 19-1 lists and describes the error messages
specific to FLINT. Error messages specific to RSTS/E are in Appendix C.

Table 19-1 FLINT Error Messages

Message : Meaning

IDATA SET NAME TOO LONG The IBM data set namé specified has more than
the allowed maximum of eight characters, including
spaces and tabs.

?7DATA SET NOT FOUND FLINT cannot find the specified data set on the
current floppy disk.

7ILLEGAL DATA SET NAME A data set name has been specified where none is
permissible.

NLLEGAL EXTENSION The extension specified contains unacceptable

characters or violates the specification format.

?ILLEGAL FILE NAME The filename specified contains unacceptable
characters or violates the specification format.

ILLEGAL PPN The specified account number contains wildcards,
which are not allowed.

?LOGICAL DEVICE NAME NOT ASSIGNED The logical device name specified has not been
previously assigned.

?20UTPUT DEVICE MUST BE DISK * - Ina /TORSTS transfer, an output device other
than the only permissible type — a RSTS/E disk —
has been specified.

?VOLUME #[m] CANNOT FOLLOW VOLUME #/n] In a multi-volume /TORSTS transfer, the specified
input volume number [m] is not 1 greater than the
previously specified volume number [n].

The following errors are fatal and cause the transfer to be aborted:

?BOE = EOD — TRANSFER ABORTED In the data set specified, the Beginning Of Extent
address is the same as the End Of Data address;
i.e., the data set has no length.

?DATA SET LABEL MUST BE HDR1 — TRANSFER ABORTED
The label ID of a data set specified for transfer is
not HDR1, which it must be according to IBM
format.

?TRACK 00 DOES NOT CONTAIN ERMAP FIELD — TRANSFER ABORTED
There is no ERMAP field in track 00 of the specified
floppy disk; according to IBM format, this field must
be present.

19-8

Floppy Disk Transfer: The FLINT Program

197 FLINT AS A CCL COMMAND .
The user may run FLINT (if the CCL command has been installed) by first typing the CCL command FLI[NT], then

typing one of the dialogue initiation commands — /DIR[ECTORY], /TOR[STS], or /TOI[BM] — depending on
which dialogue he wishes to run. Note that all these commands, including the CCL, may be minimally abbreviated
to their first three letters. Here are three examples of CCL command strings:

FLI/DIRECT

FLIN/TOR

FLINT/TOIB

/DIRECT initiates the dialogue for listing a floppy disk directory, /TOR the dialogue for IBM-to-RSTS/E transfer,
and /TOIBM the dialogue for RSTS/E-to-IBM transfer.

199

CHAPTER 20
DEVICE CONTROL PROGRAMS

20.1 SETTING TERMINAL CHARACTERISTICS: THE TTYSET PROGRAM

The TTYSET system program is used to establish terminal characteristics for the user terminal. TTYSET can be
run by any user before or after he is logged into the system. If the terminal is not logged into the system, only
one command can be entered to the TTYSET program at a time in the following format:

SET xxxx

where xxxx represents one of the TTYSET commands shown in Table 20-1 and is entered with the RETURN or
ESCAPE key. If the user is logged into the system, he can run TTYSET as follows:

RUN $TTYSET

TTYSET VO06B-03 RSTS V06B-02 TIMESHARING
TERMINAL CHARACTERISTICS PROGRAM

7 XXXX -

where xxxx is again one of the TTYSET commands shown in Table 20-1. When xxxx has been entered to the
system with the RETURN or ESCAPE key, TTYSET again prints ? to accept additional commands. To return
control to BASIC-PLUS command level, the user types EXIT, CTRL/C, or CTRL/Z.

Table 20-1 RSTS/E TTYSET Commands

Command Function

WIDTH n Set the width of the print line for this terminal to n which can be between 1 and
254, As a result, the system automatically generates a CR and LF sequence if n
printing characters have been printed and another printing character is to be trans-

* mitted.
TAB Enable hardware tab control. System transmits HT characters without translation.
NO TAB Disable hardware tab control. To move to the next tab stop, the system transmits

the correct number of space characters instead of transmitting an HT character.

FORM Enable hardware form feed and vertical tab control. System transmits FF and VT
characters without translation.

NO FORM Disable hardware form feed and vertical tab control. System transmits 4 line feed .
characters in place of a FF or VT character.

LC OUTPUT System transmits the lower case characters CHR$(96) through CHR$(126) inclu-
sive to the terminal without modification.

NO LC OUTPUT System translates any lower case character to its upper case equivalent before
transmitting it to the terminal.

XON Special terminal hardware allows the computer to interrupt transmission of char-
acters from the terminal by sending the terminal an XOFF character CHR$(19).
Similarly, the computer instructs the terminal to resume transmission of characters
by sending the terminal an XON character CHR$(17). The terminal hardware must

(continued on next page)
20-1

Device Control Programs

Table 20-1 (Cont) RSTS/E TTYSET Commands

Command

Function

XON (Cont.)

NO XON

LOCAL ECHO

FULL DUPLEX

SCOPE

NO SCOPE

LCINPUT

NO LC INPUT

NO FILL

FILL LA30S

FILL n

SPEED n

respond to XOFF and XON characters by ceasing and resuming transmission,
respectively.

Terminal does not have hardware required for XON feature.

Terminal, or its acoustic coupler, echo prints characters as they are generated
locally. System does not echo characters received from such a terminal.

Characters generated are sent only to the computer. System therefore echoes
each character received so that it will be printed locally and translates certain
characters to perform the proper action. For example, a CR character received
is echoed as a CR and LF character sequence.

Terminal uses a CRT display and the following characteristics:

1. Conforms to synchronization as described under the STALL
command,

2. System echoes a DEL character (RUBOUT) as backspace,
space, and backspace sequence.

3. System generates NUL characters as fill for timing the fol- -
lowing operations: home, erase to end of screen, erase to
end of line, direct cursor addressing, and line feed.

Terminal is not a CRT display device. The system echoes a DEL character
(RUBOUT) by printing a \ character and the last character typed and removes
the last character typed from the terminal input buffer. Subsequent DEL char-
acters cause the next to last characters to be sequentially printed and removed
from the terminal input buffer until a character other than DEL is received. As
a result, the system echoes another \ character to delimit the erased characters
and echoes the correct character.

Terminal transmits the full ASCII character set and system does the following:

1. Recognizes only the ESC character CHR$(27) as an escape
character,

2. Echoes and uses the CHR$(125) and CHR$(126) characters
without translation, and '

3. Echoes and uses lower case alphabetic characters without trans-
lation.

System treats ESC, }, and ~ characters (CHR$(27), CHR$(125), and CHR$(126)
respectively) as escape characters and translates lower case characters received to
their upper case equivalents.

System does not generate fill characters for any characters transmitted.
Set the fill characteristics for a serial DECwriter (LA30S).

Set the fill factor to n for this terminal where n is between O and 6. As a result,
the system generates a multiple of fill characters for each hardware control charac-
ter it transmits. See Section 20.1.3 for a discussion of generalized fill characters.

Set to n the rate at which the terminal’s interface can accept or pass characters.
The value for n can be any number defined for the keyboard number in the system
file TTYSET.SPD. This command can be used only on lines whose interfaces can
be programmed to handle more than one speed (e.g., DH11, DZ11).

20-2 ' (continued on next page)

Device Control Programs

.

Table 20-1 (Cont.) RSTS/E TTYSET Commands

Command

Function:

SPLIT SPEED i/o

NO PARITY
EVEN PARITY
ODD PARITY

STALL

NO STALL

UP ARROW

NO UP ARROW

PRINT filename

ESC SEQ

NO ESC SEQ

DELIMITER x

DELIMITER “x” °

DELIMITER

it as a $ character.

Set to i the rate at which the terminal’s interface passes input to the computer
and set to o the rate at which the terminal’s interface accepts output from the
computer. The values i and o must be defined for the keyboard number in the sys-
tem library file TTYSET.SPD. This command can be used only on lines whose
interfaces can be programmed to handle more than one speed (e.g., DH11, DZ11).

System ignores the parity bit on characters it receives and treats the parity bit
on characters it transmits to the terminal as if it were a data bit.

System sends characters to the terminal with the parity bit properly set for even
parity but ignores the parity bit on characters received.

System sends characters to the terminal with the parity bit properly set for odd
parity but ignores the parity bit on characters received.

Terminal obeys the following synchronization standard: if the terminal sends an
XOFF character (equivalent to the CTRL/S combination), the computer inter-
rupts transmission until the terminal sends either an XON character (equivalent to
the CTRL/Q combination) or any other character. If the system receives an XON
character, it does not keep that XON character as data. If the system receives an-
other character, it resumes transmission and keeps that character as data. No char-
acters are lost.

XON and XOFF characters sent by the terminal have no special meaning.

System echoes a control and graphic character combination as the ™ or 4 char-
acter (CHRS$(94)) followed by the proper graphic. For example, CTRL/E prints
a ™ Eor tE.

System echoes control and graphic character combination as is.

Sends the specified file to the terminal, in binary mode. This command’s special use
is in initializing a terminal for which special software settings must be made: setting
8 spaces to a TAB, for example. In such a case, 8 escape sequences would be placed
in the file to be specified with PRINT.

System treats an ESC character CHR$(27) as an indication of the start of an in-
coming escape sequence. The character is not echoed, nor are the characters in the
sequence. The processing of input escape sequences is described in the RSTS/E
Programming Manual, section 4.4.2.

System treats an ESC character CHR$(27) as a line terminating character and echoes
Makes the printable character x a private delimiter for use with GET statements.
Character will not be echoed. '
Makes the nonprintable character x (TAB, for example) a private delimiter for use
with GET statements. This format also works for printable characters. Character

will not be echoed.

Disables the private delimiter. Private delimiter is also disabled by any macro (mul-
tiple characteristic) command.

~ (continued on next page)

20-3

Device Control Programs

Table 20-1 (Cont.) Device Control Programs

Command N Function
ESC System treats only ASCII 027 (decimal) code as ESCAPE (ESCAPE or ALTMODE
key). :
NO ESC iyst)em treats ASCII 027, 125, k126 (decimal) as ESCAPE (ESCAPE or ALTMODE
ey).
EXIT Terminate a program and return control to the monitor.
HELP Print a listing of single and macro commands.

In addition to the commands described in Table 20-1, TTYSET allows the user to set all the individual characteris-
tics for a certain type device by executing one command called a macro command. Each macro command assigns
predefined characteristics, any of which can be altered in turn by proper use of an individual characteristic com-
mand. Table 20-2 describes the default values for each macro command.

The TTYSET program checks commands before and during execution and reports errors by printing the messages
described in Table 20-3, If any errors involve the terminal speed file, the user should immediately notify the system
manager or responsible system programmer.

20.1.1 ESCAPE, ALTMODE, and PREFIX Characters -

The RSTS/E system translates certain ASCII characters in a special manner. Some terminals have the outmoded
ASCII character keys ALTMODE (125 decimal) and PREFIX (126 decimal). More recently designed terminals
incorporate the 1968 ASCII character set and include the following control characters:

ESCAPE = 27 (decimal)
} =125 (decimal)
~ =126 (decimal)

The RSTS/E system interprets CHR$(27) as a line terminating character and automatically translates any CHR$(125)
and CHR$(126) characters input from a terminal into 27 (decimal). The system thus treats 125 (decimal) and 126
(decimal) as line terminators.

A user having a terminal with the 1968 ASCII character set can make the system treat 125 (decimal) and 126 (deci-
mal) characters as they are printed rather than as control characters. The TTYSET commands LC INPUT and NO LC
INPUTESC alter internal parameters for a given terminal so that the system treats 125 (decimal) and 126 (decimal)
as they are printed or translates them automatically to their upper-case equivalents.

20.1.2 Lower and Upper Case Characters
Some terminals can send and print both lower case and upper case characters. Such terminals can therefore print the
echo returned by the system to give the user an accurate visual representation of the character transmitted.

Terminals such as the VT0S alphanumeric display can send either lower case or upper case characters but can print
only upper case characters. Consequently, the echo response of such a terminal to a lower case character is the upper

case counterpart. The terminal gives the user no visual indication that the character transmitted was a lower case char-
acter,

Terminals such as the ASR-33 and KSR-33 type devices neither send nor receive lower case characters. If such a ter-
minal receives a lower case character, it prints the corresponding upper case character.

Normally, RSTS/E software translates all lower case characters to their upper case counterparts before processing
them. To take advantage of different features of terminal hardware, a RSTS/E user chooses or omits lower case
translation depending upon whether the terminal produces lower case output, lower case input, or both. The LC
OUTPUT and LC INPUT commands, respectively, omit translation of lower case characters generated as output on
and input from a terminal. NO LC OUTPUT causes lower to upper case translation on output to the terminal;

NO LC INPUT causes lower to upper case translation on input from the terminal.

204

§-0T

Table 20-2 Default Single Characteristic Settings

Macro Command

Individual
Characteristic ASR33 KSR33 ASR35 KSR35 VTO0S VTO5B LA30 LA30S 2741 VTS50 VTS50H VT52 VTSS RTO2 LA36
WIDTH n 72 72 72 72 7 7 80 80 130 80 80 80 80 32 132
TAB/NOTAB | NOTAB | NOTAB TAB TAB TAB TAB | NOTAB | NOTAB TAB TAB TAB TAB TAB NOTAB | NOTAB
FORM/NO FORM| NOFORM| NOFORM| FORM FORM | NoFORM | NoFORM| NOFORM| NoFORM | NOFORM | NOoFORM | NOFORM| NOFORM | NOFORM | NOFORM | NOFORM
LC OUTPUT/ Lc LC LC LC LC LC LC LC Lc LC LC LC LC LC LC
NOLCOUTPUT | OUTPUT | OUTPUT | OUTPUT | OUTPUT | OUTPUT | OUTPUT | OUTPUT | OUTPUT | OUTPUT | OUTPUT | OUTPUT | OUTPUT | OUTPUT | OUTPUT | OUTPUT
XON/NO XON XON | NOXON XON NOXON [NOXON | NOXON | NoXON | NOXON | NOoXoN | NoxoN | NOXON | NOXON | NOXON | NoXoN | NoXoN
LOCALECHO | FULL FULL FULL FULL FULL FULL - | FULL FULL FULL FULL FULL FULL FULL FULL FULL
FULL DUPLEX | DUPLEX | DUPLEX | DUPLEX | DUPLEX | DUPLEX | DUPLEX | DUPLEX | DUPLEX | DUPLEX | DUPLEX | DUPLEX | DUPLEX | DUPLEX | DUPLEX | DUPLEX
SCOPE/ NO NO NO NO 1 w~o NO NO NO NO
NO SCOPE SCOPE | SCOPE | SCOPE scopg | SCOPE SCOPE | scope | scope scorg | SCOPE SCOPE | SCOPE | SCOPE scorE | scope
LC INPUT/ NOLC | wNoLC NO LC NG LC NO LC NOLC | NoLC NO LC LC NO LC NO LC LC LC NO LC Lc
NOLCINPUT | INPUT | INPUT INPUT INPUT INPUT INPUT | INPUT INPUT INPUT INPUT INPUT | INPUT INPUT INPUT INPUT
FILL n FILL
FILL LA30S 0 0 ! ! 0 3 0 LA30S 2 0 0 0 0 ! 0
SPEED n ‘
SPLITSPEEDi/o | 110 110 110 110 300 150/2400 | 300 300 2741 300/1200 | 300/1200 | 300/1200 | 300/1200 110 300
2741
E{",(E’; f)i{lg‘y NO NO NO NO NO NO NO NO oDD NO NO NO NO EVEN NO
oDpPARITY | PARITY | PARITY | PARITY | PARITY | PARITY | PARITY | PARITY | PARITY | PARITY | PARITY PARITY | PARITY | PARITY | PARITY | PARITY
N%Tg‘;:ﬁ STALL STALL | STALL STALL STALL STALL | STALL STALL | NOSTALL | sTaLL STALL | STALL STALL NOSTALL| STALL
UP ARROW up up up up up up up up NO UP uP uP up up NO UP up
NOUP ARROW | ARROW | ARROW | ARROW | ARROW | ARROW | ARROW | ARROW | ARROW ARROW | ARROW | ARROW | ARROW | ARROW | ARROW | ARROW
ESC SEQ/ NOESC | NOESC | NOESC NOESC | NOESC NOESC | NOEsC | NoEsc NOESC | NOESC NOESC | NOESC | NOESC NOESC | NOESC
NO ESC SEQ SEQ SEQ SEQ SEQ SEQ SEQ SEQ SEQ SEQ SEQ SEQ SEQ SEQ SEQ SEQ
ESC/NOESC | NOESC | NOESC | NOESC NO ESC ESC ESC ESC ESC NO ESC ESC ESC ESC ESC ESC ESC
DELIMITER 0 |DELIMITER [DELIMITER | DELIMITER | DELIMITER | DELIMITER | DELIMITER {DELIMITER | DELIMITER | DELIMITER | DELIMITER | DELIMITER|DELIMITER | DELIMITER | DELIMITER | DELIMITER
NOTE

None of the macro commands in Table 20-2 performs an automatic PRINT.

SUUDLZOAJ 1043UO) 29149

Device Control Programs

Table 20-3 TTYSET Error Messages

Message Meaning

?<string> IS AN ILLEGAL KB The keyboard number denoted by <string> is not between 0 and 63

SPECIFICATION or is not a valid number.
NLLEGAL FILL FACTOR Fill factor specified is not between 0 and 6.
NLLEGAL WIDTH Width specified is not between 1 and 254,

?7COMMAND < ring>ILLEGAL | Command indicated by <string>> is undefined.
NLLEGAL SPEED Speed given is not one defined for the device in the $TTYSET.SPD file.

%WARNING — ERROR READING | Program warns user of possible corruption in the terminal speed file and
$TTYSET.SPD FILE denotes the exact error by printing the COMMAND ERROR message.

?COMMAND ERROR — <text> The RSTS error denoted by <text>> was encountered when executing
the command.

?ERROR — <text> The RSTS error denoted by <text> was encountered when executing
the system function to change terminal status,

%WARNING — CANNOT OPEN Program could not access the terminal speed file and denotes the
$TTYSET.SPD FILE exact error by printing the COMMAND ERROR message.

20.1.3 Generalized Fill Characters

The RSTS/E system automatically generates a variable number of NUL characters (CHR$(0%)) as fill characters after
outputting certain control characters. The generation of these meaningless NUL characters allows the terminal suf-
ficient time to complete the physical action initiated by the control character, thus permitting the terminal to syn-
chronize itself properly for printing the next meaningful character. The values in Table 20-4 interrelate the numbers
of NUL characters generated for control characters at certain TTYSET characteristic settings.

Table 20-4 Generalized Fill Characters

Control Character Decimal Value Scope No Scope Form No Form Tab No Tab

CR 13 0 2741: NOT2741: N/A N/A N/A |N/A
POS/I0+1 |y, Fill-1

Fill LA30s*
LF 10 1x2 Al 0 N/A N/A N/A | N/A
HT({ab) 9 N/A N/A N/A N/A | 1% 2P Spaces are
sent.
VT(Vert. Tab) 11 1 x 2 Al See FORM/NOFORM | sx2 Pl | poarks| NA |N/A
FF 12 N/A N/A ox2Fl-l fpoarrs| NA |NA
CTRL/N (direct 14 1 x2 Fill-l 0 N/A N/A N/A | N/A
cursor addressing
VTO5

* Function of type head’s position at time of CR; this function is non-linear.

20-6

Device Control Programs

. NOTE

If the fill factor is 0, no fill characters are ever gener-
ated. The expressions in Table 20-4 do not apply for
FILL 0.

The TTYSET command FILL n sets the fill factor to be used in the above table; the command NO FILL or FILL 0
disables the automatic generation of fill characters.

In Table 20-4, the fill factor is used as an exponent of 2. When the fill factor is increased by 1, therefore, the number
of fill characters generated is doubled. Most terminals require no fill characters at low baud rate settings, But at some
baud rate (for example, 600 baud for VT05s), a terminal starts to require fill characters. As the baud rate increases,
the number of fill characters required also increases.

Since the common baud rates increase by doilbling, one would increase the fill factor by 1 each time the baud rate
doubled. (For example, the appropriate fill factor for a VTOS at baud 600 is 1; at 1200, 2; at 2400, 3;etc.)

20.1.4 XON/XOFF Remote Reader Control
To operate a low speed paper tape reader connected to the RSTS/E system by either a data set (dial up) or a commu-
nications line, two requirements must be fulfilled as follows.

1. The terminal must be equipped with the requisite hardware option for XON/XOFF remote reader control.
2. The XON/XOFF feature must be enabled for the given terminal.

The user can selectively enable and disable remote reader control for a remote terminal by the TTYSET commands

For low speed readers connected to the system by a local line interface, none of these requirements is necessary.

20.1.5 Output Parity Bit .

The RSTS/E software always ignores the parity bit on characters received from a terminal and omits the parity bit
on characters it transmits. Since some terminals not supplied by DEC can receive even or odd parity characters, the
software must be conditioned to send parity characters. The TTYSET commands EVEN PARITY, ODD PARITY,
or NO PARITY condition the software to send the correct parity. The software ignores parity bits on characters in-
put to the system.

20.1.6 Private Delimiters

TTYSET enables the user to establish, on his keyboard, a special delimiter for use in BASIC-PLUS GET statements.
Creating such a private delimiter is especially useful on a data entry terminal with a specialized keyboard: the user
can designate a large or conveniently located key as the delimiter key. The user should note, however, that a charac-
ter designated as a private delimiter will not echo at the terminal. This rule applies to nonprintable as well as print-
able characters; TAB, for instance, will have no visible effect.

To make a private delimiter of a printable character, the user types the SET DELIMITER command followed by the
character, either with or without enclosing quotation marks. The following examples illustrate the format:

SET DELIMITER A
or
SET DELIMITER “A”
Either of these commands makes the character A into a private delimiter.
To make a private delimiter of a nonprintable character, the user types the SET DELIMITER command followed by
the nonprintable character enclosed in quotation marks. In the following example, the user makes the TAB character

into a private delimiter:

SET DELIMITER “ ?

20-7

Device Control Programs

To disable the private delimiter, the user simply types the SET DELIMITER command:
SET DELIMITER

The private delimiter is also disabled by any macro (multiple characteristic) command: for example, SET VTO05,
SET LA36, etc.

20.1.6.1 Limitations of Private Delimiters — As previously mentioned, a character designated as a private delimiter
will not echo at the terminal. Thus, making a private delimiter of a common formatting character such as TAB may
cause confusion in editing a program,

The SET DELIMITER command causes the existing ASCII code for the specified character to be overridden. There-
fore, if the character normally has expanded or alternate functionality, that functionality will be eliminated by the
command. RUBOUT, for example, will neither backspace (on a display terminal) nor print backslashes (on a hard-
copy terminal). ‘

Private delimiters work only in the GET statement — not in the INPUT or INPUT LINE statement.

20.1.7 SET as a CCL Command

Under a standard RSTS/E system, the user can execute TTYSET by the correct concise command language (CCL)
command. To execute a CCL command, the user issues the proper CCL command followed by the desired TTYSET
command(s). Multiple TTYSET commands on the same line are separated by semicolons (;). For example,

SET LA36;WIDTH 80

For more information on CCL commands, see the introductory material in Chapter 13.

20-8

Device Control Programs

20.2 MOUNTING AND DISMOUNTING PRIVATE DISKS: THE UMOUNT PROGRAM

A non-privileged or privileged user can execute the MOUNT or DISMOUNT commands of the UMOUNT system
program to logically mount and dismount private disk packs and cartridges. The commands are executed only if
the standard CCL feature is available on the system. Otherwise, the system prints the YWHAT? error message. An
attempt to run the UMOUNT program by any other means generates the message PLEASE USE THE ‘MOUNT’
OR ‘DISMOUNT’ COMMAND.

A non-privileged or privileged user executes the MOUNT or DISMOUNT CCL command to logically mount or dis-
mount private disk packs and magtapes. To logically mount a disk pack, the user types the MOUNT command in the
following format:

MOUNT dev:pack id label/option(s)

This command logically associates the disk pack on the specified drive with the specified identification label, and
applies the specified option(s).

To logically dismount a disk pack the user types the DISMOUNT command in the following format:
DISMOUNT dev:pack id label

This command logically dismounts the disk pack on the specified drive, and removes the specified pack identification
label from the system’s table of logical names. The following sections explain both procedures in detail.

20.2.1 Logically Mounting a Disk Pack or Cartridge
-The following steps are taken to logically mount a private pack or cartridge on the system:

YD

1. The user loads the pack or cartridge in the available drive, and ensures that the device is available by running
the SYSTAT program.

2. The user then ensures that the drive is write enabled.

3. The user then types the MOUNT command followed by the device designator, the appropriate identification
label, and any option(s) desired.

The following example illustrates the format of the MOUNT command:

MOUNT DK1:MYPACK/LOGICAL:STAT

READY
As a result of this command, the UMOUNT program runs and logically associates RK drive unit 1 with the identifi-
cation label MYPACK, and, as the option specifies, with the logical name STAT. (Disk options are described in the
following section.) The READY message indicates that the disk is available for read and write access and in the
UNLOCK state. :
An attempt to write a file on the disk when the current account is nonexistent generates the 7DISK PACK IS PRIVATE
error. The user must ask the system manager or responsible system programmer to create the current account on the
disk.

If any error occurs in the device designator or in the identification label, the program prints the following error mes-
sage:

ERROR IN MOUNT — <text>

The notation <text>> represents the related RSTS/E error encountered. On printing this message, the program ter-
minates. ‘

If any error occurs in mounting the disk on the system, the program prints the following error message:

7PROCESS ERROR IN MOUNT — <text>

209

Device Control Programs

The notation <text> represents the related RSTS/E error encountered. Typical errors include having the device pro-
tected against writing ("DEVICE HUNG OR WRITE LOCKED), specifying an incorrect identification label (?PACK
IDS DON’T MATCH), and trying to mount a disk which is already mounted (?DISK IS ALREADY MOUNTED.)

If the program encounters an error when attempting to unlock the disk to enable write access, it prints the following
message: ’

?PROCESS ERROR IN UNLOCK

The notation <text>> represents the related RSTS/E error encountered. The pack, however, is mounted and available
for read access only. The user should report any error of this kind to the system manager or responsible system pro-
grammer,

20.2.2 MOUNT Options: Disk Pack or Cartridge
The options described in this section may be used with the MOUNT command when mounting a private disk. Options
are summarized in Table 20-5.

If the disk to be mounted must be kept locked;-the user appends the /LOCK option to the MOUNT command, as in
the following example:

MOUNT DB1:DATA1/LOCK

READY
As a result of this command, UMOUNT runs and logically associates the identification label DATA! with RB unit 1. .
The READY message indicates that the disk pack is in the LOCK state. Only privileged users have read and write
access to the disk pack.

If the disk to be mounted is to be read only, the user appends the /READ ONLY option to the MOUNT command,
as in the following example:

MOUNT DK1:MYPACK/RONLY
As a result of this command, the disk may be referred to as DK1: and MYPACK, and can be read but not written.

If a logical name other than the pack identification label is desired for the disk, the user appends the option.
/LOGICAL_:, followed by a logical device name, to the MOUNT command. The following example illustrates:

MOUNT DK1:MYPACK/LOGICAL:PACK3
As a result of this command, the disk may be referred to either as DK1: or PACK3.

If only the physical device specification is to be allowed for the mounted disk, the user appends the option
/NOLOGICAL to the MOUNT command, as in the following example:

MOUNT DK1:MYPACK/NOLOGICAL

As a result of this command, the disk may be referred to only by its physical specnﬁcatlon DK1:. No logical names
are allowed.

If a public disk is to be mounted as private, the user appends the option /PRIVATE to the MOUNT command, as
follows:

MOUNT DK1:PUB001/PRIVATE

As a result of this command, the disk is mounted as a private disk, and is not used as part of the public structure.
The disk may be referenced as PUBQO1 and as DK1:.

20-10

Device Control Programs

20.2.3 Assigning a Magtape Unit, and Using Options
The MOUNT command can be used with a magtape designator to assign a unit to the current job and to set default
labeling format. The options described in this section are summarized in Table 20-5.

To set the magtape labeling format, the user appends the option /DOS or /ANSI to the MOUNT command. The fol-
lowing example shows the procedure:

MOUNT MT1:/DOS

READY

As a result of this command, magtape unit 1 is assigned to the current job with DOS/BATCH labeling default. The
/ANSI option sets the labeling default to ANSI standard format.

If the current job is privileged, the /JOB:n option can be used with the MOUNT command to reassign the unitto
job number n. The following example shows the procedure:

MOUNT MT1:/JOB:5

READY

As a result of this command, magtape unit 1 is reserved to job 5 with the currently assigned default labeling format.
If job 5 is not active, an error message is printed. If an unassigned logical name is given for the magtape unit in the
MOUNT command, UMOUNT prints the error text ’ERROR IN MOUNT — ?ILLEGAL DEVICE and returns to
BASIC.PLUS command level. If 2 name is given with the magtape designator in the MOUNT command, UMOUNT
prints the message 7ZERROR IN MOUNT — ?SYNTAX ERROR and returns to BASIC-PLUS command level.

20.2.4 Logically Dismounting Disk Packs, Cartridges, and Magtapes
- The following steps are taken to logically dismount a private pack or cartridge:

1. The user determines the number of OPEN files on the device by running SYSTAT. If non-zero, he waits
until all files are closed before proceeding. If zero, he proceeds.
2. The user then types the DISMOUNT command followed by the device designator of the drive and the pack
identification label.
The following example illustrates the format of the DISMOUNT command:

DISMOUNT DK1:PACKID

READY
As a result of this command, the UMOUNT program runs and logically dismounts the pack on RK drive 1; the pack
identification is removed from the system’s table of logical names. The READY message indicates that the drive is
free for other usage and that the user can safely remove the pack or cartridge from the drive.
If the program encounters an error when it attempts the dismount action, it prints a message in the following format:

?PROCESS ERROR IN DISMOUNT — <text>

The notation <text>> represents the related RSTS/E error encountered. A typical error is attempting to dismount a
disk which has open files (2ACCOUNT OR DEVICE IN USE).

To rewind a magtape and take it off line, the user appends the /UNLOAD option to the DISMOUNT command, as in
the following example:

DISMOUNT MTO:/UNLOAD

As a result of this command, fhe magtape on unit O is rewound and placed off line.

20-11

Device Control Programs

Table 20-5 The UMOUNT. Options

Device Option Function .
disk pack J/LOCK keeps the mounted disk locked.
disk pack | /LOGICAL allows a logical name other than the pack ID for the mounted disk.
disk pack /NOLOGICAL disallows logical name references to the mounted disk; allows only physical
specification.
disk pack [PRIVATE allows a public disk to be mounted as private,
disk pack /RONLY allows the mounted disk to be read only; prevents all write access.
magtape /ANSI sets magtape labeling default to ANSI format.
magtape /DOS sets magtape labeling default to DOS format.
magtape /JOB:n reassigns magtape unit to job number n (current job must be privileged).
magtape /UNLOAD (with DISMOUNT command) rewinds a magtape and takes it off line.

20-12

CHAPTER 21
USING SYSTEM SPOOLING SERVICES: THE QUE PROGRAM

The QUE system program creates requests, or jobs, which are to be executed by spooling programs. QUE also exe-
cutes auxiliary operations such as listing pending requests, killing pending requests, and modifying pending requests.
The QUE program checks the syntax and validity of each request and passes it to another program for further
processing if the request is valid. If any part of a requast is invalid, the program rejects the entire request, prints an
appropriate error message, and allows the user to try again.

For the system to execute a request created by QUE, the system must contain three other programs: a queue manager
program (QUEMAN), an operator services program (OPSER), and a spooling program. QUEMAN processes a request
created by QUE and places it in the system queue file QUEUE.SYS. OPSER communicates between the operator and
the spooling programs. The particular spooling program executes requests on its related device when the QUEMAN
program passes it a pending request. Spooling programs on standard RSTS/E systems can be SPOOL, BATCH, or
RJ2780. If no requests are pending in the queue file, the spooling program executes a sleep operation until activated
by QUEMAN.

The file QUEUE.SYS is stored under the system library account on the public structure. The file can accommodate a
total of 250 job requests.

21.1 RUNNING QUE AT A TERMINAL
A privileged or non-pnvﬂeged user runs QUE at a terminal logged into the RSTS/E system by typing the RUN com-
mand as follows:

RUN $QUE
QUE V06B-03 RSTSVO06B-02 TIMESHARING

When QUE runs, it prints a header containing the program name, its version and revision numbers, and the system
name and version and revision numbers. The program ensures that the system queue file exists, and is accessible on
the system library account. If no errors occur, QUE prints a pound sign (#) prompt to signal the user that he can
type a command. QUE prints this pound sign after processing each command.

If QUE runs and encounters an error when accessing the queue file QUEUE.SYS, it prints the following message and
terminates.

?QUEUE NOT INITIALIZED
READY

The READY prompt is printed by the sysfem after QUE has terminated. To run QUE without an error, the user
must have the system manager run the QUEMAN program and initialize the queue file.

The user may terminate QUE by typing E or the CTRL/Z combination in response to the pound sign character, as
shown below:

#E
READY

21-1

Using System Spooling Services: The QUE Program

Control is returned to the BASIC-PLUS command level, as indicated by the READY prompt. Commands to queue,
list, kill, and modify jobs and the related error messages are explained in the following sections. A summary of the
commands appears in Table 21-1.

Table 21-1 QUE Program Commands

Command Format : Description

Q Q device:jobname=file spec(s) Allows user to give file specification(s) of a file to be

processed. A comma is used to separate file specifica-
tions if more than one is given. See Table 21-2 for op-
tions which may be given with a file specification.

L L device:=jobname(s) Prints at the terminal a list of the currently pending
requests for the spooling program. If device: is not
given, LPO: is assumed. If device: is not given and
jobname(s) is given, the = character is required. Valid
devices are LP:, LPO:-LP7:, BA:, BAO:-BA7:, and RJ:.
Specifying LP: or BA: indicates all units of that de-
vice. If no jobname appears, QUE prints all jobs.

K K device:=jobname(s) Removes from the queue the job(s) indicated by de-
vice specification and jobname. If device: is not given,
QUE assumes LPO:. If device: is not given and
jobname(s) is given, the = character is required.

M M device:jobname/options Modifies the parameters of a job already in the queue.
The following parameters can be modified by the M
command: priority, forms name, AFTER date or time,
type of forms control, number of job copies, job

status, and MODE.
H H Causes an information message to be printed at the
terminal.
E E ' Causes QUE to terminate and to return control to
BASIC-PLUS command level.
CTRL/Z The user types the CTRL/Z Causes QUE to terminate (same as E).

combination

21.2 USING THE QUE COMMAND
The Q command typed in response to the pound sign creates a request for a spooling program. The Q command has
the following general format. ’

Q device:jobname=file spec file spec, . . . ,file spec
where:
device: is the device designator LP:, LPO:-LP7:, BA:, BAO:-BA7:, and RJ: and unit number of the
device which the spooling program services. If a designator is not given, LPQ: is assumed. If

a device is specified, the = sign is required. The designators LP: and BA: cause the request
to be queued for any available spooling program for that device type.

212

Using System Spooling Services: The QUE Program

If a unit number is specified, the request is queued for that unit and is executed only if a
spooling program is running on that unit. Additionally, the general batch processor BA:
processes only those jobs queued for BA: and not jobs queued for BAO: through BA7:.
BATCH processors BAO: through BA7: however, process requests queued for their respec-
tive units and requests queued for BA:.

jobname is a maximum of six alphanumeric characters to identify a user’s request in the queue. If
device: and jobname are not specified, the = sign is optional and the filename of the first
file specified in the request is the job name. Several options described in Table 21-2 may
accompany the jobname.

file spec is the external file specification of the file to be processed from the queue and any com-
bination of Q command options. Up to 11 files can be included in a request. File specifica-
tions are separated by a comma. (See Table 21-3 for the options.)

The jobname (or the left hand side of the = character) can have several output options which apply to the entire
request. Each option must be preceded by a slash character (/). Options may be minimally abbreviated to their first
two letters; for example, /MO, /AF, /PR, etc. Table 21-2 lists and describes the output options.

NOTE
The filename options /CO:nn, /[NH, /DE, and /BI may also
be specified as job options. (These are described in Table
21-3) Any filename option so specified is applied to each
file in the job. :

The external file specification of a file to be included in the job can have the following form:
device: filename.extension [proj,prog] /option/option . . .

A valid device is either a valid disk designator or null (which indicates the system device in the public structure).
QUE interprets logical names if the user makes the assignment before QUE runs. Otherwise, an unassigned logical
device name generates the ILLEGAL INPUT FILE error. See Section 5.4 for a description of logical names.

The filename and extension may consist of ? and * characters described in Section 12.3.1 of this guide. A file
“specified with no extension is given the default extension .LST if it is in a line printer queue, or the default extension

.CTL if it is in a BATCH queue. The [proj,prog] designation is the project-programmer number (account) under

which the file to be printed is stored. The designation can be omitted if the file is stored under the current user’s

account. The Joption designation is a slash character (/) followed by one of the Q command options. The options

are described in Table 21-3.

The following command typed to QUE,

#Q ABC.DAT
#

causes the file ABC.DAT stored under the current user’s account on the public structure to be sent to the queue
manager for printing on the spooled line printer, unit 0. SPOOL generates one copy of the file under the user job
header ABC. If printing of the file is interrupted for any reason, the program continues printing after the last char-
acter printed before the interruption.

21-3

Using System Spooling Services: The QUE Program

Table 212 QUE Job Output Options

Option Format Description
/MODE:n The value n specifies the MODE which the spooling program will use in its
-1 OPEN statement for the output device. The following specific MODE options
may be used instead of /MODE:n (see the RSTS/E Pocket Guide).
J/LENGTH:nnn The value nnn (1 to 127) sets form length in iineé per page.
[CNVERT Change character 0 to character O.
/TRUNCATE Truncate lines longer than unit’s configured length,
J/LPFORM Enable software formatting.
[/UPPERCASE Translate lower- to upper-case characters.
| /SKIP Skip 6 lines at bottom of eéch form.

/AFTER:dd-mmm-yy:hh:mm

/PRIORITY:n

/TYPE:xxx

/FORMS:<form name>

J/JCOPIES :n

The value dd-mmm-yy specifies the date, month, (abbreviated to 3 letters,

as in JAN), and, optionally, the year (77 for example) after which the queue
manager will initiate the current request. For yy, the default is the current
year. The value hh:mm specifies, in hours and minutes, the 24-hour (military)
time after which the queue manager will initiate the current request. For ex-
ample, /AFTER:10-JAN-77:13:30 causes the job to be initiated after 1:30
p.m. on January 10, 1977.

If the time is specified without the date, the current date is assumed.

QUE sets the priority to the value n which can be between 0 and 255. If
/PRIORITY :n is not specified, QUE assigns the value 128. A privileged user
can specify a priority between 0 and 255. A non-privileged user can specify a
priority between 0 and 127. The priority setting determines the job’s place in
the queue; the higher the number, the higher the priority. If two or more jobs

have the same priority, they go to the spooler in order of job requests.

Use the format specified by xxx for printing the file. Value may be:

FIN FORTRAN forms control

CBL COBOL forms control

EMB Embedded forms control (equivalent to paper tape)

IMP Implied forms control (LF and CR printed before each record)

The string <form name > specifies the name of the form on which the job is
printed;; <form name>>is up to 6 characters, of which the first character
should not be a digit. The default form name is NORMAL.

The value n is the number of job copies to be printed. If /JJCOPIES:n is not
specified, one copy of the job is printed.

21-4

Using System Spooling Services: The QUE Program

Table 21-3 Q Command Options

Option Format Description

Copies /CO:nn Tells SPOOL to print the number of copies indicated by the decimal integer
n. If /CO:n is not given, one copy is printed.

Noheader /NH Tells SPOOL to suppress printing of the file header.

Delete /DE Tells SPOOL to delete the file after it is printed if the protection code of the file
permits. If /DE is not specified, the file is left intact. The QUEMAN program
checks the protection code of the file.

More /MORE Used only at the end of a command line to indicate to QUE that the user has
more text to type on the next physical line.

Binary {BI Used to indicate a binary file to the RJ2780 program, which must be in
: TRANSPARENT mode.

To queue a file from a device other than the public disk, the user specifies the device designator in the command.
For example,

#Q DK1:A,BAS/CO:2
#

The indicated file on DK1: is queued for printing on line printer unit 0. SPOOL generates two copies of the file
under the job header A.

To specify a job name for the request, the user types the name and the = character in the command. For example,

#Q SORT=DK1:FILEA,FILEB/CO:2
#

As a result, SPOOL prints SORT in the job header and generates one copy of DK1:FILEA.LST and two copies of
DK1:FILEB.LST.

To specify a spooling program other than the one for line printer unit 0, the user types the appropriate designator
and the = character in the command. For example:

#Q LP1:=DK1:FILOUT.001
#

As a result, QUE creates a request for FILOUT.001 on line printer unit 1, with job name FILOUT.

To specify a request longer than one physical line, the user types the /MORE option as the last item on the line. For
example,

#Q LP1:PRINT1=FILE1.001,ABCDEF.001,/MORE
MORE > HELP.TXT,ACCT.SYS
#

As a result, QUE prints, as a promptirig indicator, the text MORE>>, after which the user may continue typing the
request. QUE allows up to eleven files in one request. The user may type /MORE as many times as necessary. Note

21-5

Using System Spooling Services: The QUE Program

that /MORE is invisible to the parser; the completed command is interpreted as if it were typed as one line. Therefore,
all punctuation (commas, colons, etc.) must appear in the appropriate places.

When a device designator is specified in the command, QUE uses that device (and not the system device) as a default
for subsequent input file names on the physical line. For example, when this command is executed:

#Q LP1:SORT=DK2:FILEA,FILEB

QUE sets the device to DK2: for both FILEA.LST and FILEB.LST. Because no device designator is specified for
FILEB, DK2: becomes the default device.

To set a priority to a job when queuing a file, the user specifies the /PR:n option with a value between 0 and 255.
Without the /PR option, QUE assigns a priority of 128 to the job. The queue management program processes jobs
with a priority of 128 or greater before processing jobs less than 128. Only privileged users can specify a priority
greater than 128. With such a priority scheme, the queue manager can process important jobs before routine jobs
and can delay processing less important jobs until routine jobs are completed.

21.3 USING THE L COMMAND
The L command lists, at the user’s terminal, information about pending requests for a specified device. The following
example illustrates the command and its results:

#l. LFO2
LFO QUEUE LISTING 28-0ct~76 04012 FM
UNIT JOR S/ F FILES
0 NOTICEL2y2011/SE21038/F0NORMAL.
SK/128/TYIEMR
SY (L12INOTICE.TXT
0 BNFTRNL2y2011/8E11039/F0NORMAL.
0 /128/TYIEMR
8Y L2201 IBNFTRN.SIF
SY L2y2011BNFRLDL.SIF
8Y L292011FERCNT .BAS
0 VISITSLR2y2011/8E21040/F0 ¢ NORMAL
O /128/TYIEMRE
SY 029201 0VISITS.LST
¥

NOTE
Because both QUE and QUEMAN can access a queue list
simultaneously, QUE tests the linkage of the queue list to
verify that the queue list has not been changed by QUEMAN
during QUE’s search. If QUE detects that the linkage has
changed, QUE will display the following message and will
restart the listing from the beginning of the queue list.

#xxx QUEUE CHANGING — WILL RESTART LISTING *#***

The L command causes QUE to print two header lines for the specified spooled device. The first header line contains
the device and unit designator of the specified device (LPO: by default), the current system date, and the time of day.

21-6

Using System Spooling Services: The QUE Program

The second header line contains headings that denote the unit queued to, the job name and account number of the

requester, and the status, priority, and full file specifications associated with each job. If no jobs are queued, QUE
prints the header lines followed by the # character.

Jobs are listed in the order in which QUEMAN accesses them. In the first line of each job description, the jobname
is followed by its account number and the sequence number (/SE:n) assigned the job by QUEMAN, Following the

sequence number is the /[FO[RMS] option and its argument, the forms name: the default NORMAL or the name
specified by the user.

In the second line of each job description, the status appears under the heading S, and is indicated by one of the fol-
lowing: ’

Job is in queue waiting to be processed.

Job has been sent to spooler.

Job is waiting for an /AFTER date/time to expire.

Job is in hold status: it has been modified (by the M command) to be put into hold, or it was put into

hold if upon restarting QUEMAN found that the job was previously sent to the spoolér.
K Jobisin kill status.

T > wno

Some status indicators may appear together; for example, SK means that the job was sent to the spooler, and that a
K command was later issued for it.

Next on the second line appears the priority (0 to 255), under the heading P; 128 is the default. Following the prior-
ity are any job options specified by the user. Appearing under the lines describing a job are the descriptions of individ-
ual files in that job — the full file specifications followed by any file options specified by the user.

To list jobs on all line printers, the user types the L LP: command. QUE prints the related unit number in the UNIT
column for each queued job. Jobs queued for the BATCH processor are listed by typing the L BA: command; jobs
queued for the RJ2780 program are listed by typing the L RJ: command.

To list only information about one request or several requests, the user includes the = character followed by the
jobname(s) in the L command. The following example illustrates:

#L. LFOI=REWE200,571

PO QUEUE LISTING " 09-Nov-76 03822 FM
UNIT JOR S/ F FILES
0 REW L200y571/8E2775/F0NORMAL.
S /128/TYIEMR
8Y L2009yS7IEXFENS.RAS
SY (L200,57IVISITS.LET/C3

QUE prints the header lines and the data for the jobname specified. If the user specifies more than one jobname, he
must separate them by commas, as in the following example:

#L_LFO=REWL200y571sREFL200+,571

I.LFO QUEUE LISTING 09-Nov-76 03:22 FM
UNIT JOE s/ F FILES
0 REW L200,571/SEL2775/F0INORMAL

A /128/TYIEMR
‘ 8Y L200+S7IEXFENS.BAS
8Y (L200,37IVISITS.LET/C3

0 REF L200,571/SE22776/F0 NORMAL
S /128/TYIEMR

8Y L200,371CHOICE.RAS/CI3/N
8Y (C200,571CURZ LST/CI7/0

21-7

Using System Spooling Services: The QUE'Program

21.4 USING THE K COMMAND

The K command removes a job or jobs from the queue file QUEUE.SYS for a specified device. To remove a job, the
user specifies the device designator and the = character followed by the job name or job names separated by commas.
For example,

#K LP1:=PRINT1,BATCHI
I :

As a result, each job for the user’s account in the LP1: part of the queue with the name PRINT1 or BATCH1 is de-
leted if it is not currently being processed by the LP1: spooling program. In the case of matching jobnames, the user
may specify the job to be removed from the queue by including the /SE: nnnnn option in the K command. The argu-
ment nnnnn represents the job’s sequence number, assigned to it by QUEMAN (see Section 21.3).

21.5 USING THE M COMMAND

The M command allows a user to modify the parameters of a job that is already in the queue. By issuing M with
appropriate options, the user can modify the job parameters originally set in the Q command: priority, MODE,
date/time, number of job copies, FORM, and TYPE. If, however, the job has already been sent to a spooling program,
QUEMAN will not allow any modifications.

To specify modifications to the job, the user types the device designator followed by the jobname and the desired
modification option(s) in the following format:

M device:jobname/option(s)
Each option must be preceded by a slash (/). The following list contains job modification options that may be speci-
fied with the M command. Except where otherwise indicated (for example, with /HOLD and /UNHOLD), these op-
tions correspond in name, function, and format with those of the Q command. Their full descriptions are in Table

21-2.

/HOLD Halt the job’s advancement in the queue, and do not send it to a spooling program
until the /UNHOLD option is specified.

{UNHOLD Continue the job’s advancement in the queue.

/SE:nnnnn Modify only the job with sequence number nnnnn (assigned by QUEMAN;; see Sec-
' tion 21.3). Used in case of matching jobnames.

[PRIORITY :nnn (See Table 21-2 for explanations of this and the remaining options listed here.) -
/MODE:nnnn or -
/LENGTH:nnn J/UPPERCASE
J/CONVERT /SKIP
/TRUNCATE
[LPFORM
/AFTER:dd-mmm-yy:hh:mm
JTYPE:xxx
/FORMS:form name

JICOPIES:n

21-8

' Using System Spooling Services: The QUE Program

21.6 CHAINING TO QUE FROM A USER PROGRAM
To run the QUE program by a CHAIN operation, the user program must first put in core common a string in the
following format.

Program name The filename specification of the program to which QUE passes control. The specification
can include a project-programmer field but not an extension. This program need not be
the calling program.

Delimiter The delimiter must be CHR$(13), the CR character.

Line number An integer number in CVT%$ format indicating the line number of the program to which
QUE passes control. For example, CVT%$ (28000%).

Command The string QUE executes. It must have the same syntax as if it were typed at the terminal
in response to the # character but must not include CR and LF characters. The option
/MORE must not be used.

Delimiter The delimiter must be CHR$(13).

Text Optional string which QUE places in core common when it completes processing and passes

control. Its length is restricted by the number of bytes remaining in core common.

Secondly the user program must execute a CHAIN “$QUE” 31000 statement, to actually pass control to QUE
stored in the system library account.

Upon completing the request passed to it through core common, QUE places a string in core common and executes
a CHAIN “program name” line number statement. The program name and line number are taken from the values
passed to QUE in core common. The core common string QUE passes has the following format.

Error number The QUE error code in CHRS format. For example, CHR$(E%). See
Section 21.6 for a description of the error codes generated by QUE.
CHRS (0%) indicates no error code was generated.

Error message text CHR$(13%) 1f an error occurred, this string will be returned.

Text The optional string which the user program passes to QUE.

21.7 ERROR MESSAGES AND CODES

QUE reports an error condition by printing a message or by returning an error code. When running at a terminal,
QUE prints a unique message which describes the error condition. No part of the command typed is executed. The
user must retype the entire command in the correct format. Any RSTS/E system errors encountered are reported in
the ?7ILLEGAL INPUT FILE message. When running by means of a CHAIN operation from a user program, QUE

reports an error by an error code when it passes control. Table 21-4 gives both the messages and codes and describes
the related error conditions.

21.8 RUNNING QUE BY CCL COMMANDS

A user can run QUE by means of the concise command language (CCL) command QUEUE, which may be minimally
abbreviated to QU. The correct format is QUEUE/<command line> where <command line> is any valid QUE pro-
gram command. If the QUE program does not find a / character immediately following the characters QUEUE it
defaults the command to a Q command. For example, the command

QUE/Q JOB1 = ABC.DAT

219

- Using System Spooling Services: The QUE Program

Table 21-4 QUE Error Messages and Codes

Error

Code Message Meaning

0 * None QUE processed command without error.

1 ?INVALID COMMAND - <text> | The <text> indicated is an undefined command.

2 7SW ON WRONG SIDE OF The option switch specified in the command line to QUE

COMMAND is reserved for the input side and was found on the output
side, or vice versa.

3 ?INVALID SWITCH FORMAT The option contains an invalid request.

4 ?PUNDEFINED SWITCH The command line contains an undefined option switch,

5 ?TOO MANY FILES No more than eleven files can be given in the Q or K
command.

6 ?NULL FILE SPEC At least one file specification must be given in a Q or K
command and none was found; or two commas occurred
with no file specification between them.

7 Not used.

8 ILLEGAL INPUT FILE — The request is invalid because the file indicated by the file

<text — filespec> specification caused the RSTS error described in the text.
The user must retype request.
9 WILDCARDS NOT ALLOWED An asterisk is not allowed in the project-programmer field.
IN PPN

10 ?7QUEUE FULL The queue file is temporarily full. The user should try again
when the spooling programhas processed some pending requests.

11 ?7BAD SWITCH VALUE — <text> | There is an invalid or improper number in the option indi-
cated by <text>>. For example, user specifies /MODE:A or
a'non-privileged user specifies /PR:129 or greater.

12 ?7MORE’ REQUESTED ON A The /MORE option is not allowed when a program runs

CHAIN QUE by a CHAIN operation.

13 INOT A QUEUABLE DEVICE The user attempted to queue a request to a device which
cannot handle queued requests, For example, Q LG:=JOB.

14 Not used.

15 ?QUEUE NOT INITIALIZED _ The queue file QUEUE.SYS does not exist in the system
library account. A privileged user must run QUEMAN to
initialize the queue.

16 7QUEMAN NOT RUNNING — The user has attempted to queue or kill a job and, because

CAN'T QUE ORKILL - the queue manager is not running on the system, QUE gener-
ates an error. The user can, however, list jobs when QUEMAN
is not running.

17 IQUEUEING DISABLED QUEMAN is in the shutdown process.

18 NALLEGAL SWITCHES FOR CMD | Specified options are iliegal for commands used; e.g., /HOLD

and /UNHOLD are illegal for Q.

21-10

Using System Spooling Services: The QUE Program

has the same effect as the command
QUE JOB1 = ABC.DAT

These commands are equivalent since both enter JOB1 in the queue for line printer 0. In either case, the QUE pro-
gram runs and executes the command. If no error is detected, the system prints the READY message. An error in
the command causes QUE to print the related error messages on a subsequent line, after which the system prints
READY. .

To include an output option when queuing a job, the user must begin the QUE command with /Q or else must give
an explicit job name in the QUE command. For example,

QUE/Q/MODE:2048=DK 1 : DISK.BAS
READY

The / character preceding the Q character differentiates the Q command from the job name Q.

To list or kill jobs, the user must type QUE, followed by a‘slash (/) character and the appropriate command. For
example,

QUE/L. DISFLYL1»2531

LFO QUEUE LISTING 09-Nov-76 03:22 FM
UNIT JOR 8 7/ F FILES
0 DISFLYL1,2531/8E:558/F03NORMAL

0 /128/TYIEME
8Y (01253 1DISFLY VAR

Readw

QUE runs and executes the command indicated following the / character, after which control is returned to BASIC-
PLUS command levgl.

21.9 RUNNING QUE AT A LOGGED-OUT TERMINAL

The currently pending requests for a spooling program can be printed by typing the QUE/L dev: command. For
example, to print the line printer unit 1 queue, the user types the following command.

QUE/L LP1:

QUE executes the L (LIST) command for the LP1: queue. After printing the pending requests, QUE exits to RSTS/E
and prints BYE.

21-11

CHAPTER 22
THE BATCH PROCESSING PROGRAM: BATCH

The ability to execute a stream of commands allows the user to submit jobs to be run without terminal dialogue.
Batch processing is particularly useful in data processing operations that do not require interaction.

Batch input can be submitted from standard files on a random access device. For purposes of this description, input
is dealt with as though it were on cards, where each card represents one record. Such input consists of elements of
the batch control language and is collectively referred to as a batch stream. It is possible to execute multiple streams
simultaneously by running multiple copies of the BATCH program. The capability to run more than a single batch
stream is controlled by the system manager.

Sections 22.1 through 22.3 discuss the elements of the batch control language. Operating procedures are described
in Section 22.4.

22.1 CONTROL STATEMENTS
Batch control language statements consist of a command field, specification field(s) and a comment field, in the fol-
lowing format:

$ <command-field> [specification-field(s)] [!comment]
Fields must be separated by one or more spaces and/or tabs.

A command field must always be present and may contain switch modifiers to control or limit the command. When
appropriate, the command field is followed by one or more specification fields. The ! character is a comment pre-
fix signifying that the information between the ! character and the line terminating character is a comment. The
system takes no action on comment information.

The hyphen (-) character can indicate a continuation of a command. If a hyphen is the last character in a command,
the next line is treated as a continuation of the previous line and must begin with a $ followed by a blank. The hyphen
must appear before any comment.

A physical command line can have a maximum of 120 characters.

Double quote characters may be used in control statements to reproduce some text identically and override any
special interpretation of characters by BATCH. For example, the exclamation point (1) in RSTS/E is the designator
for the auxiliary library account [1,3] or for an installation defined account. In BATCH, the exclamation point sig-
nifies a comment. To prevent BATCH from misinterpreting the ! character given as an account designator, the user
should include quotation marks as shown in the following sample control statement.

$RUN “!UPDAT”
As a result, BATCH executes the program UPDAT from the auxiliary library account. Without the quotes in the pre-

ceding example, the current program is executed and the characters following the ! character are treated as comment
characters.

22-1

The Batch Processing Program: BATCH

22.1.1 Command Field
The command field consists of the following elements:

1. A $ (dollar sign) character is'in the first character position. The § character is the control statement recogni-
tion character.

2. The command name begins in the second character posmon and immediately follows the $ character. For
example, $JOB. No blanks are allowed in the command field because a blank (or horlzontal tab) delimits
the command field.

3. Valid switches follow the command name. No blank can appear between the command name and a switch,
Switches are denoted by a slash (/). For example, INAME=COMPL.

NOTE
Command names and switch names can be shortened to
their first three characters. For example, the system inter-
prets the command BAS as well as BASIC. Any other
form, such as BASI, is invalid.

Multiple, adjacent blank characters are equivalent to one
blank character. A horizontal tab is equivalent to one
blank character. A blank character delimits a field; other-
wise the blank character is ignored.

22.1.2 Specification Fields
A list of specification fields immediately follows the command field delimiter. The following rules apply:

1. Specification fields are separated by blanks.

2. Specification fields are terminated by a ! character if followed by a comment, or are otherwise terminated by
a line terminating character.

3. Depending on the command, a specification field consists of a device specification, a file specification, or an
arbitrary ASCII string, any of which can be followed by appropriate switches. The / character signals the
start of a switch. For example, XYZ.BAS/SOURCE. The switch indicates that the file is a source file.

22.1.3 Comments \
The following rules govern comment fields.

1. The start of a comment is defined by an ! character in the control statement.

2. Any character following an ! character and preceding the end-of-line terminator is treated as a comment and
is otherwise ignored by the batch processor. Comment lines with no text may force line spacing on the job
log and thereby make the log more readable. To force line spacing, the user includes lines consisting solely
of $! followed immediately by a carriage return/line feed.

22.1.4 Syntactical Rules
The following are syntax rules for control language statements.

1. A control statement must have a command name (except in the case of the comment line ““$!”). If the com-
mand name is omitted, the command is ignored. An unrecognizable command name is illegal, and causes the
batch processor to print an error message. Only two forms of the command are recognized: the full name

- and the 3-character abbreviation of the name, For example, these are the legal BASIC-PLUS commands:
$BASIC $BAS

Switches in the command field apply to the entire command. If a switch in the specification field contra-
dicts a command field switch, an error results.

222

The Batch Processing Program: BATCH

2. An asterisk is allowed in the filename or the file type field of a file specification, subject to restrictions on
individual commands. See Section 22.2 for the description of file specifications. An asterisk can refer only
to files already created. An asterisk appearing in a specification of a file not yet created constitutes an in-
valid file specification.

The batch processor uses the leftmost 6 characters from file name fields longer than 6 characters and uses
the leftmost 3 characters from the file type fields longer than 3 characters.

3. Switches can be used in the command field and specification fields of a control statement. Switches appéar-
- ing in the command field are command qualifiers, and their function applies to the entire command. Switches
appearing in specification fields apply only to the field in which they appear.

Unrecognizable switches invalidate the control statements in which they appear.

22.1.5 Syntax Example
The following are sample control statements which illustrate the syntax of Batch statements.

$JOB/NAME=SMYTHE !FIRST JOB

$!

$!COMPILATION OF NEW SOURCE FILES

$!

$MESSAGE STARTING COMPILATIONS

$BASIC XYZ/SOURCE XYZ.LIS/LIST XYZ/EXECUTE
$BASIC ABC/SOURCE ABC.LIS/LIST ABC/EXECUTE
$!

$MESSAGE STARTING LISTING OUTPUT

$!

$PRINT *.LIS! ALL LIST FILES

$!

$EOJ

22.2 FILE SPECIFICATIONS
A file specification appears in the specification field and is an alphanumeric string containing the following elements:

filename.type
The batch procéssor assigns default values if part or all of the file specification is optionally omitted.

22.2.1 Filename Specification

A filename specification is a string of alphanumeric characters of which the first six characters must be unique. An
asterisk in place of a filename denotes all files of the specified type in the account designated. If necessary, the batch
processor generates a default filename related to the time of day as described ir: Section 22.2.3.

22.2.2 File Type Specification
A file type specification consists of a period, immediately followed by a string containing three or more alphanumeric
characters, the first three of which must be unique.

The file type reflects the nature of the file. For example, a BASIC source file has .BAS as its file type. An asterisk
in place of a file type denotes all file types including files with no type specified.

. Some standard file types are listed below.
.CTL Batch control file

.DAT Data file
.DIR Directory file

22-3

The Batch Processing Program: BATCH

Table 22-1 BATCH Special Characters

Character Meaning

space Separates fields in a control statement. Otherwise ignored unless embedded in
string delimited by quotation marks.

horizontal tab Separates fields in a control statement. (Equivalent to one space (blank) character;
otherwise ignored.)

hyphen () As last nonblank character in a control statement, indicates a continuation line
follows. If the statement contains a comment, the hyphen must be last nonblank
character before exclamation point.

exclamation point (!) Indicates a comment unless embedded in a string delimited by quotation marks.

dollar sign ($) Used as first character in first position of a control statement; causes control
statement recognition.

slash (/) Denotes a switch (separates specification field from switch name).
asterisk (*) | Indicates wild card in filename or file type.
colon (3) . .
Separate switch name from argument.
equals (=)
quotation marks () Used to open and close a string to preserve embedded spaces or to pass a special

single quotation mark (*)] character (such as !) without interpretation by BATCH.
plus (+) Indicates file concatenation in $COPY statement.

comma () Separates file, device, and/or account specifications within a specification field
which allows multiple elements.

.BAS BASIC-PLUS source file

.LIS List file :

.BAC BASIC-PLUS compiled output file

.CBL COBOL source file

.OBJ COBOL or FORTRAN compiled output file

SRT PDP-11 SORT11 input, output or listing file

MAP Map file

.TMP Temporary file

.B2S BASIC-PLUS II source file

.TSK BASIC-PLUS II executable file
BASIC-PLUS II task built executable file

.FOR - FORTRAN source file

.SAV FORTRAN linked executable file

These file types are the defaults when no file type is specified. The default chosen is determined by the current opera-

tion and by the type of file expected. Table 22-2 summarizes the default file types that apply to particular batch
commands.

224

The Batch Processing Program: BATCH

Table 22-2 Batch Commands — Related Default File Types

Command/ Default
Section Type Meaning
$BASIC .BAS Input source file default type.
22.3.3
.BAC Output executable file default type.
.LIS Listing file default type.
$CREATE .DAT The file generated as output by CREATE has a file type of .DAT.
22.34.5 '
$DIRECTORY .DIR The file in which the directory is to be recorded has a file type of
22344 .DIR. '
$FORTRAN .FOR Input source file default type.
.OBJ Output object file default type.
LST Listing file default type.
SAV Executable linked file.
$JOB .CTL Batch control file default type; assumed when the Batch job is on
22.3.1 a file-structured device.
.LOG Batch output log file default type.
$PRINT .LIS Default type of file to be printed.
22.34.3
$RUN .BAC Default type of file to be run.
22.3.5 .
$COBOL .CBL Input source file default type.
22.3.11
.OBJ Output object file default type.
LIS Listing file default type.
$SORT SRT Input, output or listing files default type.
22.3.12

22.2.3 File Specification Defaults
Defaults are assigned to omitted filename and file type elements as shown in Table 22-3.

22.2.4 Switch Specification

Switches consist of a / character followed immediftely by a name. If the switch takes an argument, the argument is

separated from the switch name by a colon (:) or equal sign (=). If the switch takes an argument and subarguments

B

each subargument is separated from the argument and from other subarguments by a colon. For example,

/NAME=JOB3
/VID=“MY TAPE”

Switches accept arguments of standard types, such as decimal constant, alphanumeric string, and date-time.

22-5

The Batch Processing Program: BATCH

Table 22-3 File Specification Defaults

Condition Default Example

Name specified but no file type | Default assigned as appropriate to the cur- ABC=ABC.type
rent operation. For example, with the
BATCH command BASIC, the default is

.BAS.
Name, followed by dot, but no Default file type is null. No file type is ABC.=ABC
file type assigned,
File type, but no name ' Default filename is related to time of day. .LIS=B2347P.LIS (created .
at 01:23:47 PM)
No file specification Default filename (related to time of day) Null=B2347P.type

with default type as appropriate to cur-
rent operation.

)

Switch values can be negated by putting the characters NO between the / character and the switch name. For example,

/NOOBJ

This switch indicates that no object file is to be produced. Its most frequent use is in conjunction with the $BASIC
and $COBOL commands.

NOTE
The negation characters NO are not considered part of the
switch name. Thus, a negated switch must contain at least
five characters. For example:

/NOOBJ or /NOOBJECT
is valid, but

/NOO
is invalid.

22.3 BATCH COMMANDS
The BATCH command set consists of

$JOB ' which begins a job
$EOT which ends a job
$BASIC which executes BASIC-PLUS or]iASIC-PLUS II compiler

<system command> which executes a syétem utility function
$RUN which executes a program

$DATA which begins data images

22-6

The Batch Processing Program: BATCH

$EOD which ends data images

SMESSAGE which logs message on operator services console

$MOUNT which assigns a device

$DISMOUNT which deassigns a device

$COBOL which executes the COBOL compiler

$SORT which executes the PDP-11 Sort program. SORT11

$FORTRAN which executes the FORTRAN compiler

$DELETE which deletes files

$COPY which copies files

S$PRINT which queues a file for the default line printer

$DIRECTORY which lists a file directory

$CREATE which creates a file from data in the input stream
22.3.1 $JOB

This command marks the beginning of a job. The following command switches are allowed.
/NAME=jobname This switch assigns a name to the job. Job names can be up to 6 characters long.
‘ This name overrides the control file name as the identifier of the job.

/NONAME This switch indicates that no job name is defined. A default job name is assigned.
The default job name is the name of the control file. The name appears in all
messages to the system operator.

{/LIMIT :nnn This switch is used to assign an elapsed time limit to the job. The value of nnn, a

decimal number, is interpreted as minutes. Note that the elapsed time taken to

execute a job is heavily dependent on overall system loading.

ives the job an unlimited amount of elapsed time to complete. If neither

/NOLIMIT Gi he job limited f elapsed lete. If neith
{LIMIT:;nn nor /NOLIMIT appear, the job is given 10 minutes elapsed time to
complete execution before BATCH terminates it.

/CPU:nnn This switch is used to assign a CPU time limit to the job. The value of nnn, a deci-
mal number, is interpreted as seconds. If /CPU is specified, and /LIMIT is not
specified, no elapsed time limit is enforced, and the only time limit is on CPU
time. If both switches are specified, both limits are enforced. If no CPU time limit is
specified, the allowable CPU time is infinite.

/NOCPU Gives the job an unlimited amount of CPU time to complete.

Sets the RSTS/E job priority to n (or the next lowest multiple of 8) for the BATCH
stream. For privileged users, n can be between - i20 and +127; for non-privileged
users, n is limited to a value betwen - 120 and -8. Unless otherwise altered by the
/PRIORITY :n switch, all jobs run at -8 priority.

/PRIORITY:n

22-7

The Batch Processing Program: BATCH

/CCL This switch allows the use of the system’s interactive Concise Command Lan-
guage. When this switch is specified, any of the system commands which do not
conflict with existing Batch commands may follow the § character. The batch
processor ensures that the job is in the READY state before executing the com-
mand.

/ERROR:<operand> This switch specifies the level of error which the BATCH processor should toler-
ate without terminating the job. The level is indicated by <operand>>, which
may be FAT[AL], WAR[NING], or NON[E] . If FATAL, all errors are tolerated
until completion. If WARNING, a fatal error terminates the job, but warning
errors are tolerated. If NONE, any error terminates the job. If a job is to be ter-
minated because the error level has been exceeded, termination occurs when the
job next asks for input. A message is entered in the log file giving the reason for
termination. The default error level for the BATCH stream is determined at start-
up time.

The following specification field may be included:

[n,m] To have the job executed on an account other than that under which it was
queued, a specification field may indicate the account number desired. This fea-
ture can be used only by a privileged user.

The following error conditions are possible:

Unrecognized switch

Illegal switch value

Multiple conflicting specifications (switches)
Different account specified by non-privileged user
Higher priority desired by non-privileged user

22.32 $EOJ

This command marks the end of a job. The $EOJ command automatically dismounts all devices mounted by the job.
$EOQ! prints an appropriate message to the operator that the logical device should be dismounted. A logical deassign-
ment is performed.

NOTES
1. The $EOJ command is implied when BATCH encoun-
ters a physical end-of-file condition or another $JOB
control statement while processing a control file.
2. No switches are legal in the $SEOJ command.

22.3.3 S$BASIC
The $BASIC command calls a BASIC compiler, which compiles a source program. The format of the $BASIC com-
mand is:
$BASIC [switches] [specification fields [switches]] [specification fields]
The following switches are valid in the command field:

/BP1 . Use the BASIC-PLUS compiler. If neither /BP1 nor /BP2 appears, /BP1 is used.

/BP2 Use the BASIC-PLUS II compiler. If neither /BP2 nor /BP1 appears, /BP1 is used.

22-8

The Batch Processing Program: BATCH

/RUN Execute (only) a previously compiled/task built program. If this switch is used,
the entire command line must have one and only one file specification, and can
have only one other switch: /EXECUTE.

/NORUN Perform the compile/task build procedure, but do not execute the final file.

J/OBJECT Create the object file filename OBJ, where the filename is that of the source
(legal only for file. This switch implies /BP2, and therefore causes BASIC-PLUS II to be run;
BASIC-PLUS 11 it also causes a task build operation.
runs; see [EXECUTE)

/NOOBJECT Create the object file filename. TMP, where the filename is that of the source

file. Delete this .TMP (temporary) file upon completing the command. This
switch implies /BP2, and therefore causes BASIC-PLUS II to be run. Thus, like
/OBJECT, it is legal only in a BASIC-PLUS II run.

[LIST Produce the listing file filename.LST, where the filename is that of the source
file. If neither /LIST nor /NOLIST appears, /LIST is used.

/NOLIST " Do not produce a listing file. If neither /NOLIST nor /LIST appears, /LIST is
used.

/MAP Create the task builder map file filename MAP, where the filename is that of the

source file. This switch implies /BP2, and therefore causes BASIC-PLUS II to be
run; it also causes a task build operation. Thus, it is legal only in a BASIC-PLUS

II run.
/NOMAP Do not create a map file. This switch implies /BP2, and therefore causes BASIC-
PLUS II to be run. Thus, it is legal only in a BASIC-PLUS II run.
J/EXECUTE - Create an executable file, whose filename is that of the source file. Choose its
(replaces /OBJECT type according to the following rules:
for BASIC-PLUS
runs) If the language is BASIC-PLUS, give the file a .BAC type (filename.BAC).

If the language is BASIC-PLUS II, give the file a .TSK type (filename.TSK).

/NOEXECUTE If an executable file is not needed (as when /NORUN appears in the command),
do not create one. :

If an executable file is needed, create a temporary one (.TMP), and delete it upon
completion of $BASIC processing. '

" One of the following switches may appear in the first specification field, described in the format guide at the start
of this section. ' -

/SOURCE Both switches have the same meaning: i.e., that this is the BASIC-PLUS or BASIC-

/BASIC PLUS 11 source file on which to operate.
J/EXECUTE This switch is legal only if /RUN appears in the command field, and means that

this is an executable file.

In this field, any specification lacking a switch is assumed to be the input file for the command. Thus, only one file
specification may appear without switches. This specification may not contain wild cards (neither asterisks nor

229

The Batch Processing Program: BATCH

question marks). If /NORUN appears in the command field, the lack of a switch here implies /BASIC. If /RUN
appears in the command field, the lack of a switch here implies /EXECUTE. And if neither /RUN nor /NORUN
appears in the command field, the lack of a switch implies /BASIC.

The optional specifications ending the format description (at the beginning of this section) define other files which
may be needed in the operation. Any of the following switches may be used in the formats indicated. Each switch,
however, may be used only once in the entire $BASIC command line. Moreover, its negation cannot be used any-
where in the command line (/NOLIST and /LIST, for example, cannot appear together in a command line).

file Speciﬁcation/LIST Define the listing file as specified.

file specification/OBJECT Define the object file as specified (switch implies /BP2 and causes BASIC-
PLUS II to be run, with task build; switch is legal only with BASIC-PLUS
II).

file specification/MAP Define the map file as specified (switch implies /BP2 and causes BASIC-
PLUS II to be run, with task build; switch is legal only with BASIC-PLUS
ID).

file specification/EXECUTE Define the executable file as specified.

If BASIC-PLUS 1II is used and task build features are specified, multiple specifications of the following form may
appear anywhere in the command line, delimited by spaces.

file specification/LIBRARY
Each such specificatibn is a library file that will be linked with the BASIC-PLUS II program,

If a source file is not specified, the $BASIC command must be followed by a set of BASIC source statements, ter-
minated by either SEOD (see Section 22.3.7) or some other recognized batch control statement. For example,

$BAS LISTING/LIS

BASIC
Source
Deck

$EOD
If a source file is explicitly specified, any source statements following this command are appended to the source
program. Source statements following this command and having line numbers equal to those in the source program

replace those in the source program. Source input must be provided, either through a file specification, or through
. source statements, or both.

If no listing file is specified, but the /LIST switch is present, the Batch processor creates, prints, and subsequently
deletes the default listing file. If a file specification appears with the /LIST switch, the batch processor does not
automatically queue the file for printing. To print the file specified as part of the batch job, the user must supply a
$PRINT control statement described in Section 22.3.4.

If no executabile file is specified with the /[EXECUTE switch, a default executable file is created and is deleted after
job completion. If an executable file is explicitly specified, it is preserved after job execution. Errors result from

conflicting switch specifications such as both /BASIC and /SOURCE on different specification fields.

The default applied when a file is specified without a switch is [SOURCE.

22-10

The Batch Processing Program: BATCH

The following error conditions are possible:

Unrecognized switch
Multiple conflicting specifications (switches)
File specification syntax error

22.3.4 Utility BATCH Commands
The following utility functions are provided by the RSTS/E batch processor.

SDELETE which deletes files

$COPY which copies files

$PRINT which prints a file on the system line printer by means of the line printer spooling program
SPOOL

$DIRECTORY which lists a file directory

$CREATE which creates a file from data in the input stream

22.3.4.1 $SDELETE — The $DELETE command is used to delete specified files. It is issued in the following format.
$DELETE filel [file2 ... filen]

The filename and file type must be included. An asterisk is not valid in either the filename or the file type field.

No switches are used with $DELETE.

The following error conditions are possible:

No file specification
Syntax error in file specification

22.3.4.2 $COPY — $COPY is used to copy files. Use of the asterisk character in the file specification is invalid.
The following are the valid switches.

/OUTPUT for new files to be created
/INPUT for files to be copied

The following is an example of the $COPY command.
$COPY TER.LIS/OUTPUT TERRY.LIS/INPUT

The $COPY command supports the use of + (plus sign) to indicate file concatenation. When used with $COPY.

file concatenation results in the creation of a single file, consisting of files connected together. The + character °
appears in the file specification field, between the specifications of files to be concatenated. If no switch is specified,
J/INPUT is assumed.

The following error conditions are possible:

No output specification

No input specification

Multiple conflicting specifications
Syntax error in file description

22.3.4.3 S$PRINT — The $PRINT command prints the contents of files on the system line printer by means of
the spooling program SPOOL. File specifications accept all switches available in the QUE command (see Section
21.2). Asterisks can be used in file specifications. The $PRINT command is issued in the following format:

22-11

The Batch Processing Program: BATCH

$PRINT filel /switches [file2 . . . filen]
The specification field contains the file or files to be printed.
The following error conditions are possible:

No file specification
Syntax error in file specification

22.3.4.4 S$DIRECTORY — $DIRECTORY produces a directory listing of the file(s) in the specified account and
is issued in the following format:

$DIRECTORY [specification field]
The specification field can contain file specifications. If no file specification appears, the $DIR command lists the
contents of the current account on the batch log device. A file specification indicates the directory of a file or set
of files and can contain an asterisk in either the filename field or file type field. For example,

$DIR *.BAS

This command creates a directory listing of all files in the current account with the .BAS type.

To create a directory in a disk file rather than on the batch log device, the user can specify a file and the /DIRECTORY
switch. For example,

$DIR BAJOB.DIR/DIR
creates the directory listing in a file BAJOB.DIR on the system disk under the current account.

To create a directory in a disk file and to designate which files are to be listed, the user must specify both the
/DIRECTORY and /INPUT switches with the related file specification. For example,

$DIR BA.DIR/DIR * . BAC/INPUT

The $DIR command shown subsequently creates a directory listing of all compiled BASIC-PLUS files and stores the
listing in the file BA.DIR on the system disk under the current account.

The following error conditions are possible:

Syntax error in file specification
Multiple conflicting specifications

22.3.4.5 $CREATE — The $CREATE command creates a file as indicated in the specification field. The file con-
sists of the data images following the SCREATE command in the input stream. Data images must follow $CREATE
and must be terminated by $SEOD, or an error occurs. The data images must not be preceded by any other command
because the SCREATE function terminates on encountering a $ in the first column of a data image.

Any previously existing file of the name specified is deleted at batch execution time, énd replaced by the file created
by the $CREATE command.

The $CREATE command has the following format.

$CREATE file

22-12

The Batch Processing Program: BATCH

The following error conditions are possible:
Syntax error in file specification
No file name specified

Non-comment characters following file specification

22.3.5 $RUN
The $RUN command causes execution of system programs. For example, to run PIP, the user types

$RUN $PIP

followed by appropriate PIP commands. The PIP program reads the commands as data images in the input stream.
Execution of PIP is terminated when the next batch control statement is read.

No switches can be specified. The general format of $RUN is:

$RUN ({file]
-where file specifies the executable program. If file is omitted, the default current program is used.
The following error conditions are possible:

Syntax error in file specification
Non-comment characters following file specification

22.3.6 $DATA

The $DATA command provides a means of entering data to a program compiled and run by one of the language
commands (e.g., SBASIC, SFORTRAN, $COBOL). $DATA ensures that the program will be run, unless the
/NORUN switch was specified. It also ensures that if the program does not use all of its data, the remaining data
will be flushed from the stream.

The $DATA command is issued without specification fields or switches, in the following format:
$DATA
22.3.7 $EOD
$EOD marks the end of data records included in the input stream following commands such as $BASIC, $CREATE,
$DATA, and $RUN. For example,

$DATA

data

$EOD
22.3.8 SMESSAGE ‘
The SMESSAGE command logs a message on the operator services console. It provides a way for the job to commu-

nicate with the operator. The command is issued in the following format:

SMESSAGE[/WAIT] message-string

22-13

The Batch Processing Program: BATCH

The /WAIT switch can be used in the command field to indicate a pause to wait for operator action. The system
pauses until the operator gives the appropriate command. For example, the following command halts the program
until the operator takes action:

$MESSAGE/WAIT MOUNT SCRATCH TAPE ON DTO:
The WAIT condition remains in effect until the operator résponds to the message on the operator services console.

22.3.9 SMOUNT

The SMOUNT command causes a mount message to be printed on the conirol console, and effects a logical to physi-
cal device assignment. The physical device refers to a physical device type. The operator responds with the device
and unit number in the standard format (e.g., MT1:). An automatic /WAIT occurs. Logical device names of up to
six characters are used to specify logical devices.

The SMOUNT command is issued in the following format:
$MOUNT devn: [/switch] devm: [/switch]

Both the logical device and the physical device must be specified. The colon is required as the terminator for each
device specification. The following switches can be used for the physical device.

{PHYSICAL identifies the device specification to be the physical device (default)

/WRITE tells the operator to write-enable the device (or volume)

/NOWRITE tells the operator to write-protect the volume

[VID:<string> <string> is a visual identification which identifies the volume for the operator
/DEN]SITY] :nnn ‘specifies density for magtape |

[PAR[ITY]:[ODD] [EVEN] specifies odd or even parity for magtape
The following switch is used with the logical device:

/LOGICAL identifies the device specification to be the logical device name; this specifica-
tion must correspond to the PACK ID for RSTS/E disks.

The /VID switch on the physical device field is used to specify the volume identification. The value associated with
/VID is the name physically attached to the volume. It is included to help the operator locate the volume.

If the name spe'ciﬁed with /VID must contain blanks, it can be delimited by quotes. The following example illustrates:
JVID=“FIM JT" |

No blanks are allowed in a string not delimited by quotes. For example,
$MOU M7:/PHY/VID=“MY TAPE” TAPE:/LOG

In this example, logical device name TAPE is assigned to a 7-track magnetic tape unit. The operator is told that the
reel of tape to be physically mounted is labeled MY TAPE. He then responds with the device and unit number on
which the tape is mounted. Thereafter, in the batch command file, reference to the device TAPE: accesses the
physical device on which the operator mounted the reel MY TAPE. If the physical device is a removable disk pack or
cartridge, the logical device name must be the pack identification. The batch processor logically mounts and unlocks
private disks which the operator mounts as a result of SMOUNT., '

22-14

The Batch Processing Program: BATCH

The valid physical devices that can be requested for mounting are:

CR: Card Reader

DK: Disk Cartridge

DP: RP11-C/RPO3 or RP02 disk pack
DB: RH11/RP04 disk pack

DM: RKO6 disk pack

DX: RXO01 floppy disk

DT: DECtape

LL: Line printer with lower case

LP: Line printer

LU: Line printer with Upper case only
M7: 7-track Magtape .
M9: 9-track Magtape .

MT: TM11/TU10 or TSO3 magtape
MM: TMO02/TU16 or TU45 magtape
PP: Paper tape punch

PR: Paper tape reader

PS: Public Storage (equivalent to SY:)
SY: System device

TT: Teletype (or terminal)

The following error conditions are possible:

Syntax error in device specification fields

Invalid device name/unit

Invalid logical device name specifications

Unit number already assigned

Both physical and logical names have not been specified

22.3.10 $DISMOUNT

The $DISMOUNT command causes the logical to physical device assignment effected by the SMOUNT command to
be nullified. It also prints an operator message, requesting that the volume be dismounted. If a /WAIT switch is in-
cluded in the command field, the job will not resume until a response, as with the SMESSAGE command, is received
from the operator. For example,

$DIS/WAI TAPE:

sends a message to the operator to dismount the magtape that was mounted by the example in Section 22.3.9. Asa
result of the switch /WAI, BATCH pauses until the operator responds.

All devices are automatically dismounted at end-of-job (EOJ).
The following error conditions are possible:
Syntax error in specification field
Illegal switches
Logical device not assigned
22.3.11 $COBOL
The $COBOL command calls the COBOL compiler which compiles the source program and generates an object pro-

gram. The format of the command is as follows.

$COBOL [switches] [specification fields [switches]]

22-15

/RUN Execute the previously compiled object file. Only an object file can be specified.
/NORUN Compile the source program but do not execute the object. If /NORUN is omitted,
the source program is compiled and executed.
JOBJECT Produce a compiled file. If neither /OBJECT nor /NOOBJECT appears, /OBJECT is
used.
/NOO'BJECT Do not produce an object file. If neither /OBJECT nor /NOOBJECT appears, /OBJECT
is used.
JLIST Produce a listing file. If neither /LIST nor /NOLIST appears, [LIST is used.
/NOLIST Do not produce a listing file. If neither /LIST nor /NOLIST appears, [LIST is used.
/MAP Include the DATA division map in the listing file.
/LOD Create the file nnnnnn.MAP (where nnnnnn is the source file name) to contain the
program load map.
J/CVF Source code is in conventional format.
/ACC:n Accept errors in the source code of severity n or less.
J/ERR:n Suppress the printing of diagnostic messages if error severity is less than n.
/USW:n:n ... Set run time user switches for the compiler. Switch values must be separated by colons.
: The range of values is 1 through 16.
/HELP Print a help message in the log. No other switches and no file specifications are permitted
with the /HELP switch.
If neither /RUN nor /NORUN appears in the command field, COBOL automatically com-
piles the source program and executes the object program. If either a source file or a list-
ing file or both are specified with /RUN, a conflict occurs. The /RUN switch indicates that
an object file is to be executed. Source and listing files are specified only when a compila-
tion is performed. BATCH does not report the file specification(s) as errors but does
not pass them to the COBOL compiler for processing.
A maximum of 3 file specifications can appear in the specification field. Each specifica-
tion can be differentiated by one of the following switches.
/COBOL or Indicates input source file. If specification has no switch, /COBOL is used for that file.
/SOURCE _
JOBJECT Indicates output (compiled) file.
JLIST Indicates output listing file.

The Batch Processing Program: BATCH

The following command field switches are valid.

If /OBJECT does not appear in the specification field, BATCH creates a default object file and deletes it after the
program run is completed. If a listing file does not appear in the specification field, but the /LIST switch is included,
a default listing file is created, printed, and deleted. Explicitly specified output files (both object and listing) survive

22-16

The Batch Processing Program: BATCH

the execution of the batch job that created them. If a listing file appears in the specification field, BATCH creates
the listing file but does not automatically queue it for printing. To print the listing file as part of the BATCH run,
a $PRINT control statement must be supplied. (Section 22.3.4 describes $PRINT.)

If a file specification appears without a switch, BATCH uses the /COBOL switch for that file.
If a source input file specification does not appear in the SCOBOL control statement, source statements must imme-
diately follow and must be terminated by either an $EOD statement or some other BATCH control statement. For
example,
$COBOL/MAP/LOD COB.LST/LIS
COBOL
Source
Deck
$EOD

Because the command field contains neither /RUN nor /NORUN, BATCH assumes a compilation and execution is
to be done. A source file is not specified and the data following the $COBOL command is compiled.

The following command and text describe the defaults used in the SCOBOL command.

$COBOL FILE
A compilation and execution is done. Because the specification FILE contains no switch, /COBOL is used. The de-
fault type .CBL is used. The source program FILE.CBL is compiled and a default object file is created and executed.
The object file is automatically deleted before the next command is executed with one exception. If the next com-
mand is SDATA, the object file is deleted after the end of data and before the command following the data. A
default listing file is created and automatically queued for printing. The listing file is deleted after it is printed.
The following error conditions are possible:

Unrecognized switch

Multiple conflicting switches

File specification syntax error
No source input (neither file nor source statements)

22.3.12 $SORT
The $SORT control statement runs the PDP-11 Sort program SORT11 (not the RSTS/E program SORT.BAC). The
SORT11 program is on RSTS/E systems with the COBOL compiler. For more information on the PDP-11 program
SORT11, refer to the PDP-11 SORT Reference Manual.
The format of the $SORT control statement is as follows.

$SORT [switches] [file specification [switches]]
The following‘are the valid switches for the command field.

[SIZE:n Use n as maximum record size in bytes. Size can be between 1 and 16383.

[FILES:n Use n scratch files; n can be between 3 and 10.

22-17

The Batch Processing Program: BATCH

/PROCESS:x Use the sort process given by x. Values can be R (record sort), T (tag sort), A
’ (ADDROUT sort), or I (index sort). If /PROCESS:x does not appear or if :x is
omitted from the /PROCESS:x switch, a record sort is performed.

/KEYS:abm.n Use the sorting key field defined by entries for é, b, m and n. Maximum of 10
keys can be specified if each is separated by a colon as follows.

/KEYS:abm.n:abm.n: . .. abm.n:abm.n

/RIN Specifies the input file as a COBOL relative file. Without /RIN, input file is assumed
to be a sequential ASCII file.

J/ROUT Specifies the output file as a COBOL relative file. Without /ROUT, the output file
is created as a sequential ASCII file.

The command field of the $SORT control statement must have the /SIZE:n switch to define the record size. The
requirements for other command field switches depend on file specifications present and the type of sort requested.

A maximum of three file specifications can appear in the $SORT control statement: an input file, an output file,
and a specification file. To distinguish these files, the following switches are used.

J/INPUT the file to be sorted
/OUTPUT the file to contain the sorted data
/SPECIFICATION the file which contains the control information for the sorting process.

A file specification without a switch is used as the file to be sorted. If the /[SPECIFICATION switch is used, the
/KEYS and /PROCESS switches must not appear in the command field. If a specification file is not given in the
control statement, the /KEYS switch must be included in the command field to control the sorting process.

Missing elements in a file specification are replaced by BATCH default elements. If type is omitted from the file
specification, BATCH uses .SRT as the type.

The following is a sample batch stream using $SORT commands.

$JOB/NAME=SRT002/LIMIT=30
$SORT/PRO:T/SIZ:100/KEY:04.1:01.1 F100.100 A/OUT
$SORT/PRO:T/RIN/KEY:1.4/SI1Z:100 R200.100/INP B/OUT
$SORT/SIZ:100/ROU/KEY:1.4/PRO:T F100.100/INP X/OUT
$SORT/SIZ:60/KEY:3.5/FIL:3 V100.060/INP C/QUT
$SORT/SIZ:100/RIN R200.100/INP D/OUT SPEC.001/SPE

The /SIZE switch appears in each command to define the record size in the file to be sorted. In the first SSORT
control statement, file F100.100 is used as the input file. In the second statement, the /RIN switch in the command
field denotes the input file R200.100 as a COBOL relative file. In the third statement, the /ROUT switch causes the
output file X.SRT to be a COBOL relative file. For the fourth $SORT control statement, a record sort is performed
on file V100.060 because the /PROCESS:x switch is absent, For the fifth $SORT statement, the sorting process is
controlled by data in the specification file SPEC.001. The /PROCESS:x and /KEYS switches are not permitted. For
all files without a type in the specification, BATCH uses the default .SRT.

22.3.13 $FORTRAN »

The SFORTRAN command calls the FORTRAN compiler, which compiles the source program and generates an
object program. The format of the command is

22-18

The Batch Processing Program: BATCH

$FOR[TRAN] [switches] [specification field [switch]] [spec fields[switch]]

The following switches are valid in the command field:

/RUN Execute the previously compiled file. Only an object file can be specified.

/NORUN Compile the source program but do not execute the object file.

J/OBJECT Create the compiled file filename.OBJ, where the filename is that of the source file.
If neither /OBJECT nor /NOOBJECT appears, /OBJECT is used.

/NOOBJECT Do not create an object file. If neither /NOOBJECT nor /OBJECT appears, /OBJECT
is used. .

JLIST Produce the listing file filename.LST, where the filename is that of the source file.
If neither /LIST nor /NOLIST appears, /LIST is used.

/NOLIST Do not produce a listing file. If neither /NOLIST nor /LIST appears, /LIST is used.

/MAP Create the map file filename MAP, where the filename is that of the source file.

/NOMAP Do not create a map file.

One of the following switches may appear in the first specification field described in the format guide at the start of
this section.

/FORTRAN Both switches have the same meaning: i.e., that this is the source file on which to
/SOURCE operate. If a file specification lacks a switch, this meaning is applied to it.

The optional specifications ending the format description define other files which may be needed in the operation.
Any of the following switches may be used in the formats indicated. Each switch, however, may be used only once
in the entire SFORTRAN command line. Moreover, its negation cannot be used anywhere in the command line
(/NOLIST and /LIST, for example, cannot appear together in a command line).

file specification/LIST Define the listing file as specified.

file specification/OBJECT Define the object file as specified.

file specification/MAP Define the map file as specified.
Multiple specifications of the following form may appear anywhere in the command line, delimited by spaces:

file specification/LIBRARY
Each such specification is a library file that will be linked with the FORTRAN program.
22.4 BATCH OPERATING PROCEDURES
This section describes how the RSTS/E system user requests batch processing and how the batch processor generates
output.
22.4.1 Requesting a Batch Job Run

To request the running of a batch job, the user runs the library program QUE and specifies the batch control file or
files as follows.

22-19

The Batch Processing Program: BATCH

RUN $QUE

QUE VO6E~03 RETS VOLE-02 Timesharing
#Q_BAEBATJOB=FILEL1yFILE2,FILE3.DAT

#

The user normally queues a batch job to device BA:. The job and log files in this example will be named BATJOB,
and the files FILE1.CTL, FILE2.CTL, and FILE3.DAT will be concatenated to form the batch control file. The log
file BATJOB.LOG will be printed after the job is complete.

The CCL command QUEUE, if available on the system, inay also be used to submit a job for batch processing.

22.4.2 Batch Processing

As the batch control file is read, it is checked for command sequence and syntactical validity. If an error is detected,
an error message is printed in the log file. The job will not be run, but syntax checking will continue through the
remainder of the file(s).

A $SMESSAGE/WAIT, a SMOUNT, or 2 $DISMOUNT/WAIT will cause the job to pause for an operator response.
Until the operator takes action, no further commands will be sent to the pseudo keyboard.

If no errors are detected, the job is processed. A log is created, showing the sequence of Batch commands processed
during the course of the job. If program output is directed to KB:, this output appears following the command that
caused the program to execute. In the example that follows, a BATCH job named JOB1 has been run. The Batch
control file contained the following sequence of commands:

$JOB/NAME=JOB1/LIMIT=4
$CREATE SUB1.BAS

source statements

$EOD
$BASIC/BP2 LISTING/LIS MAIN/OBJ

source statements
$DATA
data

$PRINT SUB1.BAS
$EOJ

These commands have the following effect:
$JOB/NAME=JOB1/LIMIT=4
A job name of JOBI is assigned to the job. This name appears on the job log along with the time and date of the job’s
execution. A time limit of four minutes is set. If the job is not finished in four minutes from its start (actual elapsed
time), the job is terminated, and the appropriate error message is printed in the log. ’
$CREATE SUB1.BAS ,
A BASIC source file named SUBI is created, from data records which must follow the $CREATE command.

$EOD

22-20

The Batch Processing Program: BATCH

The $EOD command signals the end of SUB1.BAS.
$BASIC/BP2 LISTING/LIS MAIN/OBJ
The source statements following this command are compiled by the BASIC-PLUS II compiler. A listing of the source
statements is created in the file LISTIN.B2S, and the object data is placed in the file MAIN.OBJ. The temporary task
built file has the extension .EXE, This file is executed.
$DATA
. The data to be read during execution of MAIN.BAC follows this command.

$PRINT SUB1.BAS

The source file created by SCREATE SUB1.BAS is printed. This command also has the effect of termmatmg data
input to MAIN.BAC.

$EQJ
This command signals the end of job JOBI.

22.4.3 Error Procedures

When a syntax error is detected in a batch command, the job is not executed. Instead, an error log is printed listing
all commands and data scanned along with the appropriate error message(s). The batch log file always indicates all
command lines scanned. If an error is found on a command line, the error message follows the command, marked
with question marks (??77?72777727). Scanning of the control file continues, but the job will not be executed.

If no syntax errors occur, the time of output of lines will be indicated in the ieft margin of the log. All normal ter-
minal interaction corresponding to the BATCH commands will appear in the log. Table 22-4 lists the BATCH error
messages and their meanings.

Table 22-4 Summary of BATCH Error Messages

Message Meaning
BATCH Being Shut Down The BATCH processor is going off-line and the user job must be
terminated.
Cannot Use That Account An account specification appeared in the $JOB command but the

user who queued the request was not privileged.

Cannot Increase Priority A /PRIORITY :n switch appeared in the $JOB command. The user
’ was privileged but specified a value for n greater than 127. Or, the
user was nonprivileged and specified a value greater than -8.

Continuation Missing The dash (-) character was the last non-blank character in a con-
trol statement to continue the statement on the next line, but
the following line did not begin with a dollar sign ($) and a blank.

Device not MOUNTed_ A $DISMOUNT command was S present but the device indicated
had not been mounted.

Disk Mount Failure The volume to be mounted was not correct (pack IDs did not
match) or the device was in use by another job.

(continued on next page)
2221

The Batch Processing Program: BATCH

Table 22-4 (Cont.) Summary of BATCH Error Messages

Message

Meaning

Invalid Command

Invalid Specification Field

Invalid Switch

No BATCH Jobs Possible At This Time

No Such Account

SEQUENCE Not Supported Yet

Time Limit Exceeded

Too Many Mounted Devices

Unable To Log In BATCH Job

Unmatched Parentheses

Unmatched Quotation Marks

An undefined command name followed the $ characterin a
statement but the /CCL command switch had not been speci-
fied in the $JOB command.

The specification given in a control statement is in the wrong
format.

The switch used in the command field or in the specification
field is undefined, in the wrong format, or is privileged.

The BATCH processor requires a pseudo keyboard to execute
a job but one is not available. The user must requeue his re-
quest.

The account specified in the $JOB command or in a specifica-
tion field could not be found on the device.

The $SEQUENCE command is not available with this version
of BATCH.

Time specified in $JOB command is insufficient to execute the
job. The user should specify a larger limit by using /LIMIT=nnn
or [NOLIMIT switch.

The job has requested mounting of more devices than the maxi-
mum (12) allowed by BATCH.

To execute a user request, the BATCH processor logs a job into
the system using the account under which the job was queued

or the account specified in the $JOB command. For some reason,
the login procedure failed. For example, logins had been disabled.
The job will be requeued for later execution.

An opening left parenthesis appears in a specification field but
an accompanying closing parenthesis is not found.

Quotation marks (and single quotation marks) must be paired

in a control statement.

22-22

PART V
RSTS/E PERIPHERAL DEVICES

CHAPTER 23
RSTS/E PERIPHERAL DEVICES

RSTS/E has several peripherals which are available to the user. These devices include:
user terminal (ASR-33, ASR-35, LA30 & LA36 DECwriters, VT05 & VTS50 displays)
high-speed paper tape reader/punch
card reader
line printer
DECtape
magtape
floppy disk

While normal operation of a computer system is by programmed control, manual operation is necessary for some
tasks. This chapter describes the manual control and operation of the common RSTS/E user peripherals.

Table 23-1 lists the RSTS/E peripherals according to their locations in Chapter 23.

Table 23-1 A Guide to the RSTS/E Peripheral Devices

Device. Location

Card Reader (CR11) 23.3
DECtape Control & Transport 235
Floppy Disk (RX11) 23.10
Line Printer (LP11) 234
Magtape Control & Transport

(TM11/TU10 and TIU16) 23.6
Paper Tape Punch

Low-Speed (ASR-33 Teletype)' 23.1.5

High-Speed ‘ 2322
Paper Tape Reader

Low-Speed (ASR-33 Teletype) 23.14

High-Speed 2322

I (continued on next page)
Teletype is a trademark of Teletype Corporation.

23-1

RSTS/E Peripheral Devices

Table 23-1 (Cont.) A Guide to the RSTS/E Peripheral Devices

Device Location
Terminals
DECwriter II (LA36) 239
Teletype (ASR-33) 23.1
VTOS5 Display Terminal 23.7
2741 Communications Terminal 23.8

23.1 ASR-33 TELETYPE
The ASR-33 Teletype is an inexpensive, commonly employed user terminal. Major features are noted in Figure 23-1.

OFF

REL.,

B. SP.

ON

OFF
LINE O LOCAL

STOP —
FREE —

Figure 23-1 ASR-33 Teletype Console
The components of the Teletype unit and their functions are described below.

23.1.1 Control Knob
The control knob of the ASR-33 Teletype console has three positions:

LINE The console has power and is connected to the system as an I/O device under RSTS/E
control.

OFF The console does not have power.

LOCAL The console has power for off-line operation under control of the keyboard and switches
only. :

23.1.2 Keyboard

The Teletype keyboard shown in Figure 23-2 is similar to a typewriter keyboard, except that some nonprinting
characters are included as upper case elements. For typing characters or symbols such as $, %, or # which appear
on the upper portion of numeric keys and some alphabetic keys, the SHIFT key is depressed while the desired key
is typed.

23-2

RSTS/E Peripheral Devices

Nonprinting operational functions are shown on the upper part of some alphabetic keys. By depressing the CTRL
(control) key and typing the desired key, these functions are activated.!

OOOOOOLOOLOWOO®
@OLEO®OALLOOO®®
HOOOOOLLOOOO®®®
HOOOOOOOOOOE®

|)

SPACE.

Figure 23-2 Teletype Keyboard

23.1.3 Printer

The Teletype printer provides a printed copy of input and output at ten characters per second, maximum rate. When
the Teletype unit is on-line to the system (control knob turned to LINE), the copy is generated by the computer
(even the echoing of the characters typed by the user); when the Teletype unit is off-line (control knob turned to
LOCAL), the copy is generated directly from the keyboard onto the printer as a key is struck.

23.14 Low-Specd Paper Tape Reader
The paper tape reader is used to read data punched on eight-channel perforated paper tape at a rate of 10 characters
per second, maximum. The reader controls are shown in Figure 23-1 and described below.

START The reader is activated; reader sprocket wheel is engaged and operative.
STOP The reader is deactivated; reader sprocket wheel is engaged but not operative.
FREE The reader is deactivated; reader sprocket wheel is disengaged.

The following procedure describes how to properly position paper tape in the low-speed reader.

1. Raise the tape retainer cover.

2. Set reader control to FREE.

3. Position the leader portion of the tape over the read pins with the sprocket (feed) holes over the
sprocket (feed) wheel and with the arrow on the tape (printed or cut) pointing outward (forward).

4. Close the tape retainer cover.

5. Make sure that the tape moves freely (if the tape does not move back and forth freely, the paper feed
holes are not properly positioned).

6. Set reader control to START, and the tape is ready.

23.1.5 Low-Speed Paper Tape Punch
The paper tape punch is used to perforate eight-channel rolled oiled paper tape at a maximum rate of 10 characters
per second. The punch controls are shown in Figure 23-1 and described below.

RELease Disengages the tape to allow tape removal or loading.

B.SP Backspaces the tape one space for each firm depression of the B.SP button.

! Although not shown on most keyboards, SHIFT/L produces the backslash character (\) and SHIFT/K and SHIFT/M produce
the square brackets, [and], respectively.

233

RSTS/E Peripheral Devices

ON (LOCK ON) Activates the punch.
OFF (UNLOCK) Deactivates the punch.
Blank leader/trailer tape is generated by:

. Turning the control knob to LOCAL.
. Turning the punch control to ON.

. Typing the HERE IS key.

. Turning the punch control to OFF.

. Turning the control knob to LINE.

AW =

23.2 HIGH-SPEED PAPER TAPE READER AND PUNCH UNITS

One high-speed paper tape unit can be provided with each RSTS/E system. This unit is mounted on the central
computer console. A high-speed paper tape unit is pictured in Figure 23-3 and descriptions of the reader and
punch units follow.

\
PUNCH
3 FEED
READER

ON LINE

T3 Feeo

_ J

7 i
PAPER TAPE OFF LINE

Figure 23-3 High-Speed Paper Tape Reader/Punch

23.2.1 High-Speed Reader Unit
The high-speed paper tape reader is used to read data from eight-channel, fan-folded (non-oiled), perforated paper
tape photoelectrically at a rate of 300 characters per second, maximum.

NOTE
Tape from the Teletype punch should not be used with
the high-speed reader as the oil on the tape causes lint
and dust to collect on the photoelectric cells.

Primary power is applied to the reader when the computer power is on.

In order to use the high-speed reader as an input device, turn the reader ON LINE/OFF LINE rocker switch to ON
LINE. Load tape into the reader as explained below: ‘

1. Raise the tape retainer cover.

2. Place tape in right-hand bin with printed arrows pointing toward left-hand bin. (Channel one of the tape
is toward the rear of the bin.) '

234

RSTS/E Peripheral Devices

3. Place several folds of blank tape past the reader and into the left-hand bin.

4. Place the tape over the reader head with feed holes engaged in the teeth of the sprocket wheel.
5. Close the tape retainer cover.

6. Depress the FEED rocker switch until leader tape is over the reader head.

The reader is capable of sensing whether a tape is in the reader. If an attempt is made to read a tape when the reader
is either empty or OFF LINE, an error is generated.

23.2.2 High-Speed Punch Unit

The high-speed paper tape punch is used to record computer output on eight-channel, fan-folded, non-oiled paper
tape at a rate of 50 characters per second maximum. All characters are punched under program control from the
computer. Blank tape (feed holes only, no data), is produced by pressing the punch FEED rocker switch. The

punch unit has power turned on whenever the computer has power; it does not require any additional on/off switch.

Fan-folded paper tape is generally grey in color. When a box of tape is nearly empty, purple tape is produced.
Rather than risk running out of tape while punching, replace the box of paper tape at this point or notify the
systern manager who will replace the tape.

23.3 CR11 CARD READER
The CR11 card reader allows the RSTS/E system to accept information from punched 80 column data cards. Cards
can be read under program control at rates of up to 200 or 300 cards per minute.

Power to the reader, shown in Figure 234, is controlled by the ON/OFF switch on the upper left hand corner of
the back panel. Two toggle switches are present on the back panel and should be set to AUTO and REMOTE for
proper operation. The LAMP TEST button on the reader back panel can be depressed to check the operation of

the various reader lights on the front panel.

In order to use the card reader:

1. Remove card weight from input hopper. Place cards loosely in input hopper. The first card to be read is
placed at the front of the deck, “9” edge down, column 1 to the left. Replace card weight on top of
cards in input hopper. Cards should not be packed tightly.

2. Press green RESET button. Wait 4 seconds for RESET light to come on. The card deck is now able to be
read under program control.

3. Cards may be loaded while the reader is operating provided tension is maintained on the front of the
deck as cards are added to the rear. Additional cards should not be loaded until the hopper is 1/2 to
2/3 empty.

4. The output stacker bin can be unloaded while cards are being read. Care should be taken to maintain
the order of the deck. "

The various lights and switches (buttons) on the reader front panel and their significance are described in Table 23-2.

234 LP11 LINE PRINTER

The LP11 line printer, pictured in Figure 23-5, has an 80 column capacity, prints at a rate of 356 lines per minute
at a full 80 columns, and can print 1100 lines per minute at 20 columns. These rates are based on a 64-character
set. A 96-character set and 132-column version are algo available. The print rate is dependent upon the data and
number of columns to be printed.

Characters are loaded into a 20-character printer memory via a Line Printer Buffer. When this buffer is full, the

characters are automatically printed. This process continues until the 80 columns (four print zones) have been
printed or a carriage return, line feed, or form feed character is recognized. The printer responds only to codes

representing the character set and three control characters. All other codes are ignored.

23-5

RSTS/E Peripheral Devices

Table 23-2 Card Reader Controls

Light/Switch Function

POWER light indicates that there is power to the reader.

READ CHECK light indicates a reading error, torn card, or card too long for reader. Reader
stops and RESET light is out.

PICK CHECK light indicates inability to remove card from input hopper. Reader stops and
RESET light is out.

STACK CHECK light indicates inability to remove card from input hopper. Reader stops and
RESET light is out.

HOPPER CHECK light indicates that there are no cards in input hopper or the output stacker is
full. Condition must be manually corrected to allow further operation.

STOP button, when depressed, causes red light to go on momentarily. RESET light
goes out and reader operation stops as soon as the card currently in the read
station has been read.

RESET button, when depressed, causes green RESET light to go on and initializes card

reader logic.

Figure 234 CR11 Punched Card Reader

23-6

RSTS/E Peripheral Devices

=)

Figure 23-5 LP11 Line Printer System (80-column model)
23.4.1 Line Printer Character Set
The 64-character set consists of the 26 upper case letters (A-Z), ten numerals (0-9), 27 special characters and the
space character. The 96-character set contains all of the above plus 26 lower case letters and 6 additional symbols.
The character codes are 7-bit ASCII.

Characters are printed 10 characters per inch and 6 lines per inch.

Line printers can use paper varying in width from 4 inches to 9-7/8 inches for the 80-column printer. Forms making
up to six copies can be used when multiple copy printing is desired.

The special symbols available are as follows:

64-character set 96-character set

' #S & () all of the 64-character
* 4+, - . /5 < set symbols
>=2@\ [] 4 DEL

ASCII numeric equivalents for the various characters are contained in Appendix D.

23.4.2 Line Printer Operation

Figure 23-6 illustrates the line printer control panel on which are mounted three indicator lights and three toggle
switches. Operation of these switches and the power switch, and the meaning of the lights is explained in Table
23-3.

237

RSTS/E Peripheral Devices

Table 23-3 - Line Printer Controls

Light/Switch Function

POWER light Glows red to indicate main power switch (located inside cabinet) is at
o ON position and power is available to the printer.

READY light Glows white, shortly after the POWER light goes on to indicate that
internal components have reached synchronous state, paper is loaded,
and the printer is ready to operate.

ON LINE light Glows white to indicate that ON LINE/OFF LINE toggle switch is in
ON LINE position.
ON LINE/OFF LINE switch This three-position toggle switch is spring-returned to center. When

momentarily positioned at ON LINE it logically connects the printer
to the computer and causes the ON LINE light to glow. Positioned
momentarily at OFF LINE, the logical connection to the computer

is broken, the ON LINE light goes off, and the TOP OF FORM and
PAPER STEP switches are enabled. If printer is switched to OFF
LINE, the ON LINE light remains on until either PAPER STEP or
TOP OF FORM switch is activated. The printer should again be turned
ON LINE.

TOP OF FORM switch This two-position toggle switch is tipped toward the rear of the cabinet
to roll the form to the top of the succeeding page. It is spring-returned
to center position, and produces a single top-of-form operation each
time it is actuated. The switch is effective when the printer is off line.

PAPER STEP switch This two-position toggle switch operates similarly to TOP OF FORM
but produces a single line step each time it is actuated. It is only
effective when the printer is off line.

ON/OFF (main power) switch This switch controls line current to the printer. To gain access to it, the
printer front panel is unlatched, by pushing the circular button on the
right hand edge, and opened to the left on its hinges. The switch is
located to the left of center approximately fourteen inches below the
top. If power is available, the red POWER light on the control panel
will glow when the switch is positioned at ON.

The switch is on when in the up position. The ON and OFF labels are
printed on the stem of the switch. A group of two switches and three
indicator lights, above the main power switch, are for the use of
technicians in making initial adjustments to the printer.

The following procedure is used when loading paper in the line printer.:

. Open front door of cabinet. POWER light should be on. Printer should be off line.

. Lift control panel TOP OF FORM switch and release to move tractors to correct loading position.

. Open drum gate by moving drum gate latch knob to left and up. Swing drum gate open.

- Adjust right hand tractor paper width adjustment for proper paper width if necessary. (Loosen set screw
on 80 column printer; user release mechanism on 132 column printer.) Tighten tractor after adjustment.

5. Open spring loaded pressure plates on both tractors.

WA -

23-8

RSTS/E Peripheral Devices

6. Load paper so that the two red arrows point to a perforation. Paper should lie smoothly between tractors
without wrinkling or tearing the feed holes.
. Close spring-loaded pressure plates on both tractors.
. Adjust COPIES CONTROL lever to proper number of copies to be made, if necessary. Set to 1 or 2 for
single forms, set to 5 or 6 for six-part forms.
9. Close drum gate and lock in position with drum gate latch. After 10 seconds the READY indicator
should light.
10. Lift TOP OF FORM switch several times to ensure paper is feeding properly.
11. Set printer to on line. ON LINE indicator should light. At this point printed matter can be aligned with
the paper lines, if desired, by rotating the paper vertical adjustment knob.

00

ON LINE
TOP PAPER OFF LINE
Of STEP
FORM

Figure 23-6 Line Printer Control Panel

23.5 TC11/TU56 DECTAPE CONTROL AND TRANSPORT
DECtape units are available on most RSTS/E systems. DECtape serves as an auxiliary magnetic tape storage facility
to the system disk(s).

A DECtape peripheral unit consists of three components:

1. TUS56 DECtape transport, pictured in Figure 23-7, which reads and/or writes information on magnetic
tape. ‘

2. TC11 Controller, the interface which controls information transfer. One controller serves up to four
transports (up to 8 tape drives). The Controller is transparent to the RSTS/E user.

3. DECtape, the recording medium used for data storage, consists or reel mounted magnetic tape
formatted to permit read/write operations in either direction, error checking, block identification,
and timing control.

239

RSTS|/E Peripheral Devices

Figure 23-7 TUS6 DECtape Transport

DECtape stores and retrieves information at fixed positions on magnetic tape. The advantage of DECtape over
conventional magnetic tape is that information at fixed positions can be addressed. Conventional magnetic tape
stores information in sequential (not addressable directly), variable-length positions. DECtape incorporates timing
and mark information to reference the fixed positions. The ten-channel DECtape records five channels of informa-
tion; a timing channel, a mark channel, and three information channels. These five channels are duplicated on the
five channels remaining to minimize any possibility of information loss from the other channels.

Each formatted (certified) DECtape contains 578 blocks of data consisting of 256 (16-bit) PDP-11 words per block.
562 blocks are available to the user on each DECtape (several blocks are used for file directories).

Tape movement can be controlled by programmed instructions from the computer (i.e., through PIP) or by manual
operation of switches located on the front panel of the transport. Data is transferred only under program control.
The transport controls and lights are described in Table 234.

Operating procedures associated with DECtape units are described below. In order to mount a tape on a DECtape
drive:

1. Set the REMOTE/OFF/LOCAL switch to OFF.

2. Place full DECtape reel on left spindle with label facing out. Press reel tightly onto spindle.

3. Pull tape leader over the two tape guides and the magnetic head until it reaches the take-up reel on the
right hand side of the tape unit. .

4. Wind loose tape end four turns around the empty right-hand reel by rotating right reel clockwise.

5. Set REMOTE/OFF/LOCAL switch to LOCAL. Verify that power is available to the tape unit.

6. Depress FORWARD/REVERSE switch in the FORWARD direction to wind about 15 turns onto the
right-hand reel. This ensures that the tape is securely mounted.

23-10

RSTS/E Peripheral Devices

Table 234 DECtape Controls

Light/Switch Function

REMOTE/OFF/LOCAL This three-position rocker switch determines control of the DECtape
unit.

REMOTE enables computer control of the transport unit.
OFF disables the transport unit..

LOCAL places the transport unit under operator control from
the external transport switches.

FORWARD/REVERSE This two-position rocker switch enables manual winding of tape when
transport unit is under LOCAL control.

FORWARD causes tape to feed onto right-hand spool.
REVERSE causes tape to feed onto left-hand spool.

Unit selector The value specified by this eight-position rotary switch identifies the
transport to the computer. A unit selector value of 1 allows the tape
on that unit to be accessed as device DT1:

WRITE ENABLE/WRITE LOCK This two-position rocker switch determines whether or not a tape can
be written. Any tape can be searched and read; however when the
WRITE LOCK switch is on, the tape is protected from accidental
writing or program deletion.

REMOTE light When lit, the tape unit is on-line. The tape unit is on-line when: -

1. REMOTE/OFF/LOCAL switch is in REMOTE position, and
2. unit selector switch setting agrees with the DECtape unit currently
being accessed.

WRITE ENABLE light When lit, indicates that the WRITE ENABLE/WRITE LOCK switch is
set to WRITE ENABLE, regardless of whether the REMOTE light is on
or not. '

In order to operate the DECtape unit on-line:

1. Set the REMOTE/OFF/LOCAL switch to either LOCAL or OFF and be sure power is available to the
system.

2. Load the appropriate DECtape following the instructions above.

3. If the DECtape write operation is to be inhibited (to protect tape from accidental damage), set WRITE
ENABLE/WRITE LOCK switch to WRITE LOCK. If the write operation is desired on this tape, set
switch to WRITE ENABLE.

4. Dial the correct unit number on the unit selector. (No two active DECtape units should have the same
unit number.) .

5. Set REMOTE/OFF/LOCAL switch to REMOTE. Use of this DECtape unit is now under program control.

23-11

6. When on-line operation of this unit is to cease, set REMOTE/OFF/LOCAL switch to OFF or LOCAL. A
moving tape can be stopped by quickly switching the REMOTE/OFF/LOCAL switch from REMOTE to

RSTS/E Peripheral Devices

LOCAL. The switch can be set to OFF when tape motion has stopped.

To remove a DECtape from the tape unit:

1. Set REMOTE/OFF/LOCAL switch to LOCAL.
2. Depress and hold REVERSE switch until all tape is wound onto the left-hand tape reel.
3. Set REMOTE/OFF/LOCAL switch to OFF.
4. Remove full reel from left-hand spindle.

23.6 TM11/TU10 AND TJU16 MAGTAPE CONTROL AND TRANSPORT

Magtape is an optional addition to RSTS/E system. Magtape is used to provide storage for large volumes of data
and programs. Writing, reading, and search operations are performed in a serial manner. Transfer of information can
be made between RSTS/E and other computer systems because TJU16 and TM11 Controllers read and write infor-

mation in industry-compatible format.

The basic DECmagtape system consists of:

1. The TU10 Transport, pictured in Figure 23-8, can read or write information on magnetic tape in seven or
nine channels (tracks). The TJU16 Tape Transport reads and writes information on nine channels only.
The TU10 reads and writes data at 800 bits per inch (BPI), and the TJU16 Tape Transport can be used

to read and write magtape either at 800 BPI or at 800 BPI and 1600 BPI.

2. The TM11 Controller is an interface between the TU10 Tape Transport and the PDP-11 system. The
RM11 or RH70 is an interface between the PDP-11 and the TM02 Formatter/TU16 Transport. One
controller, transparent to the RSTS/E user, serves up to eight transport units.

gan
dof

©©
©©

TU10 Transport

Figure 23-8 DEC Magnetic Tape System

23-12

B 0
dod

TJU16 Transport

RSTS/E Peripheral Devices

Transfer rate is up to 36,000 characters per second for the TU10 and up to 72,000 characters per second for the
TJU16. Ten and one half inch magtape reels permit up to 2400 feet of tape per reel. Rewind time for a reel of
2400 feet is approximately 3 minutes, end to end.

23.6.1 Magtape Control Panel

The magtape transport control panel is shown in Figure 23-9. This panel is located at the lower left of the TU10
and TJU16 front panel shown in Figure 23-8. Table 23-5 describes the tape transport controls and Table 23-6
describes the various tape transport indicators. -

L0 ENO [|FILE! . LD END [{FILE

12 2 2 e R
OFF OFF

EnEEEE e e
e

PWR_ON ON-LINE START ON-LINE START

i — | I
WR OFF OFF-LINE STOP FF-LINE STOP
LOAD FWD LOAD FWOD
REW REW
UNIT UNIT
BR REL SELECT REV BR REL SELECT REV
TU10 Control Panel TJU16 Control Panel

Figure 239 Control Panels

23.6.2 Magtape Operating Procedures
Whenever handling magnetic tapes and reels, it is important to observe the following precautions to prevent loss of
data and/or damage to tape handling equipment:

1. Handle a tape reel by the hub hole only. Squeezing reel flanges can damage tape edges when winding or
unwinding tape.

. Never touch tape between BOT and EOT markers. Do not allow end of tape to drag on floor.

. Never use a contaminated reel of tape; this spreads dirt to clean tape reels and can affect transport operation.

. Always store tape reels inside containers. Keep empty containers closed so dust and dirt cannot collect.

. Inspect tapes, reels, and containers for dust and dirt. Replace old or damaged take-up reels.

. Do not smoke near transport or tape storage area. Smoke and ash are especially damaging to tape.

. Do not place transport near a line printer or other device that produces paper dust.

. Clean tape path frequently.

00~ ONWn A~ WN

To mount a tape reel on the magtape transport.

1. Apply power to the transport. (Depress the PWR ON switch on the TU10 transport.) Ensure that the
LOAD/BR REL switch is in the center position and that the ON-LINE/OFF-LINE switch is in its
OFF-LINE position.

2. Place a write-enable ring in the groove on the file reel if data is to be written on the tape. If writing is not
required, be sure there is no ring in the groove.

3. Mount file reel onto lower hub with groove facing toward the back. Press reel tightly onto spindle; tighten
center nut.)

(continued on next page)

23-13

RSTS/E Peripheral Devices

Table 23-5 Magtape Transport Controls

Switch Function

PWR ON/PWR OFF This two-position switch applies power to the TU10 Transport. (This switch
does not exist on the TJU16 Transport.)

ON-LINE/OFF-LINE This two-position switch controls operation of the transport unit. ON-LINE
allows system operation under program control; OFF-LINE allows manual
operation. Tape unit cannot be remotely selected when switch is in OFF-
LINE position.

START/STOP This two-position switch controls starting and stopping of tape motion.
STOP does not stop transport during a rewind operation.

LOAD/BR REL This three-position switch energizes the vacuum system in the LOAD position
(necessary for any operation). The BR REL position releases vacuum tension
and allows reels to be manually rotated..Center position locks reel brakes.

UNIT SELECT This eight-position rotary switch identifies the transport to the computer.

A unit select value of 1 allows the tape on that unit to be accessed as
device MT1:. No two transports should be set to the same number.
FWD/REW/REV This three-position switch moves the tape in the selected direction, depending

on activation of the START/STOP switch. FWD moves tape forward until
BOT or EOT marker is sensed. REW rewinds tape onto the feed reel until
BOT marker is sensed. REV rewinds tape until BOT marker is sensed;
toggling the START/STOP switch again causes the tape to rewind off the
reel.

4. Install take-up reel (top reel), if necessary, as described in (3) above. The top reel is generally permanent
and should not require installation by the user.

5. Place LOAD/BR REL switch to the BR REL position.

6. Unwind tape from the file reel and thread tape over tape guides and head assembly as shown in Figure
23-10. Wind about five turns of tape onto take-up reel. ;

7. Set LOAD/BR REL switch to LOAD position to draw tape into vacuum columns. As a result, the LOAD

light comes on.

8. Select FWD and depress the START switch to advance the tape to the load point. When BOT marker is
sensed, tape motion stops, the FWD indicator goes out and the LOAD PT indicator comes on.

If tape motion continues for more than 10 seconds, depress STOP, select REV, and then depress START.
The tape will advance to the BOT marker before stopping. (This may be necessary if, in winding the tape
manually, the BOT marker has already been passed.)

Setting the ON-LINE/OFF-LINE switch to ON-LINE allows the transport to accept commands from the controller
under program control. The transport is not fully on-line until the RDY and SEL indicators are lit.

To remove a tape from the transport unit:

1. Set ON-LINE/OFF-LINE switch to OFF/LINE position.
2. Set START/STOP switch to STOP position.
3. Set FWD/REW/REYV switch to REW position.

23-14

RSTS/E Peripheral Devices

Table 23-6 Magtape Transport Indicators

Light Function

PWR light (power) When lit, indicates that power is available to the transport unit.

LOAD light When lit, indicates that vacuum system has been enabled, allowing either
on-line or offdine commands.

RDY light (ready) When lit, indicates that all I/O lines are enabled. Transport can accept
processor commands provided SEL light is also lit.

LD PT light (load point) When lit, indicates that BOT marker has been sensed; transport ready for
operation.

END PT light (end point) When lit, indicates that EOT marker has been sensed; all tape motion
stops to prevent tape from winding off reel.

FILE PROT light When lit, indicates that writing on the tape is inhibited. This is true if no

(file protection) file reel is mounted on feed reel hub or if a file reel is mounted without a
write enable ring.

OFF-LINE light When lit, indicates that transport can be operated manually and cannot be
operated under program control.

SEL light (select) When lit, indicates that transport has been selected and is completely on-line.
Transport can read or write data.

WRT light (write) When lit, indicates that write-enable ring has been installed on feed reel and
transport can write on tape.

FWD light (forward) When lit, indicates tape is moving in forward direction.

REYV light (reverse) When lit, indicates that tape is moving in reverse direction.

REW light (rewind) When lit, indicates that tape is being rewound; Tape continues until BOT

marker is sensed.

4. Set START/STOP switch to START position. Tape rewinds until BOT marker is reached.

w

. Set LOAD/BR REL switch to BR REL position to release brakes.

6. Gently hand wind the file reel in a counter clockwise direction until all of the tape is wound onto the
reel. Do not jerk the reel. This may stretch or compress the tape which can damage data.
7. Remove the file reel from the hub assembly. "

23-15

RSTS/E Peripheral Devices

TAPE GUIDE

>
(POSITIVE
TAPE TEN

SION
HOLDS TAPE AGAINST
CAPSTAN

TRANSPORT WiILL
AUTOMATICALLY

SHUT -DOWN HEAD TAPE GUIDES (2)
(FAIL- SAFE CONDITION) \b / g
N ’,' j

R/W ERASE HEAD ASSEMBLY

TAPE MLl?:OBE SUPPLIED TO

LUMN (TAKE-UP .
REEL TURNED OFF) \ F NOTE: TAPE IS AUTOMATICALLY

DRAWN INTO VACUUM. COLUMNS
WHEN LOAD/BR REL SWITCH
IS SET TO LOAD POSITION

TAPE GUIDE

Z
s
)
LEFT VACUUM COLUMN —}
N FILE REEL

\’) TURNED ON
A
TAPE WILL BE EXTRACTED 'v < /

|
FROM _COLUMN ———— |
(TAKE-UP REEL TURNED ON) \ .
TRANSPORT WILL N N
AUTOMATICALLY S~
T DOW . !
I\ h

N

\~

RIGHT VACUUM

/\'—‘ COLUMN
/

SHUT DOWN —
(FAIL-SAFE CONDITION)

(? __/
~ Mﬁ FILE REEL

\ TURNED OFF

VACUUM CHAMBER PORT

(TO VACUUM MOTOR)
\ N \@ _ L

CP-0107
Figure 23-10 Magtape Transport Threading Diagram

23.7 VT05 ALPHANUMERIC DISPLAY TERMINAL

The VTO5 alphanumeric display terminal consists of a cathode ray tube (CRT) display and a self-contained keyboard.
The VTOS keyboard operates as a typewriter keyboard except that no hard copy is produced. Each graphic character
generated by typing at the keyboard is converted to a 5 by 7 dot matrix and displayed on a television-like screen.
The full capacity of the screen is 20 lines, each containing 72 character positions for a total of 1440 characters.

When power is applied to the terminal and the CRT filament is warmed up, a blinking indicator called the cursor
appears at the leftmost position of the top line (line number 1) of the screen. The blinking cursor indicates the
position which the next generated character will occupy on the screen. The cursor can be moved up, down, left, or
right by the use of various control characters generated by keys located to the right of the keyboard. When a dis-
playable character is generated, its representation is displayed and the cursor automatically moves right to the next
character location until the cursor reaches character position 72.

A speaker in the VT0S emits an audible tone or beep when the cursor reaches character position 65. This action
warns the user that the cursor is within 8 spaces of the end of the line. (The speaker also beeps when the terminal

23-16

RSTS/E Peripheral Devices

or the computer generates the BEL character.) When the cursor reaches position 72 on a line, characters subsequently
generated replace the character previously in position 72. Automatic carriage return or line feed is a hardware modi-
fication and terminals without the modification must be programmed to include these automatic operations.

The VTOS keyboard, shown in Figure 23-11, is similar to a typewriter keyboard except for the following operations
keys:

ALT * Generates the ESC character CHR$(27).

CTRL Control key is used to generate various control character combinations. See Chapter 3
for a description of control characters.

LF) Generates the LINE FEED character CHR$(10).

CR Generates the RETURN character CHR$(13).

RUBOUT Generates the DEL character CHR$(127).

TAB Generates the HT character CHR$(9) and causes the cursor to move to the right

to the next tab stop. Tab stops are preset eight character spaces apart and are at
locations 1,9, 17, 25, 33, 41,49, 57 and 65. Once the cursor reaches character
position 65, the HT character moves the cursor right one position. Another HT
character causes a RETURN and LINE FEED, leaving the cursor at position 1.

A line feed typed with the cursor in the bottom line (line 20) causes all displayed data on the screen to move up one
line and any data in the top line to disappear. This action is termed automatic scrolling and is useful when a large
. amount of data is transmitted from the computer to the VT0S5 and is to be received and displayed. The user can

employ the CTRL/S combination described in Chapter 5 to temporarily suspend transmission of such output to the
screen and enable examination of data currently displayed on the screen, The CTRL/Q combination resumes output.

DOOOOOODOLOOOE
HEHOEEHHEOCHEOOEEEEE)
HEHOEHOUEHMEEOHOEE

= EHOEHOEEMEEEER]

(SPACE)

Figure 23-11 VTO05 Keyboard

Four actions erase characters from the screen. A character is erased when the cursor is placed under it and a space
character is generated. A character is replaced on the screen if the cursor is positioned under an existing character
and another character is generated. The EOL and EOS special functions also erase characters from the screen.

The DEL code, CHR$(127), generated by typing the RUBOUT key, is ignored and no visual indication occurs on

the display. When the RUBOUT key is typed on a VT05 terminal directly connected to a RSTS/E system, the system
backspaces the cursor one character position, generates a space character in that position on the screen and in memory
and backspaces one character position again. A RUBOUT key typed on a VTOS5 terminal connected to a RSTS/E

23-17

RSTS/E Peripheral Devices

system by a dial up line is treated as the RUBOUT key typed at a teleprinter unless the TTYSET SCOPE command
is in effect for that line. Executing the SCOPE command causes the RUBOUT key to be treated as described above.

The ALT key typed at a VTOS5 generates the ESC character. When received by the VTO0S5, the ESC character has no
effect on the display. RSTS/E system programs such as GRIPE treat the ESC character as a line terminating character;
the system echoes the $ character on the display when the ESC character is received.

Controls to adjust the quality of the display are located on the right hand side of the terminal shown in Figure 23-12.
Means to select a baud rate and mode of operation are on the rear panel of the device. At speeds above 300 baud,
FILL characters for time delay as shown in Table 23-7 are required after some control characters are generated.

The number of FILL characters required depends upon the baud rate at which the terminal operates.

Table 23-7 FILL Characters Required for VTO05

Baud Rate Number of FILL
Characters
300 none
600 1
1200 2
2400 4

To effect the proper number of FILL characters on a VT05 terminal which operates above 300 baud and whose
characteristics are not permanently set, use the FILL command of the TTYSET system program.

Figure 23-12 VTOS5 Alphanumeric Display Terminal

23.7.1 Controls and Operating Procedures
The controls and switches for a VT05 terminal are listed and described in Table 23-8. To start the terminal connected
by a direct line to the RSTS/E system, do the following.

23-18

RSTS/E Peripheral Devices

1. Set the LOC/REM switch to the REM position.

2. Set the ON/OFF switch to the ON position. Allow approximately one minute for the filament to warm up,
for the blinking cursor to appear in the home position (upper left corner of the display), and for the
speaker to emit one beep.

3. If the cursor fails to appear as specified, press the HOME key. Ensure that the BRIGHTNESS control is
not turned fully counterclockwise. If the cursor still fails to appear, place the ON/OFF switch in-its OFF
position and report the malfunction to the proper person.

4. To properly adjust the clarity of the display, turn the CONTRAST control counterclockwise to its minimum
setting. Turn the BRIGHTNESS control counterclockwise until the characters are barely visible. Adjust the
CONTRAST control to the optimum level.

5. When the operating session is completed, set the ON/OFF switch to its OFF position.

To operate the VTO5 terminal which is connected to the computer by a dial up line, perform the following steps.

1. Follow the procedures to start the VT05 terminal as if it were connected by a direct line to the RSTS/E
system and set the BAUD RATE selector switch on the rear panel to its 110 position or to the position
required by the permanent default characteristics established by the system manager for that line.

2. Dial the RSTS/E system and perform the log in procedures. If the line does not have permanent default
characteristics for a VT05, continue with step 3. Otherwise, go to step 5.

3. Run the TTYSET system program and type the VT05 macro command or the SPEED command with the
proper baud rate value. (The maximum baud rate allowed on a voice grade telephone line is 300.)

4. Set the BAUD RATE selector switch on the rear panel to the proper value, after which the VTOS operates
at the proper baud rate.)

5. When the operating session is completed, set the BAUD RATE selector switch to the 110 position and set
the ON/OFF switch to its OFF position.

23.8 2741 COMMUNICATIONS TERMINALS

RSTS/E systems allow the use of 2741 compatible' terminals for time sharing operations. 2741 terminals employ
a Selectric typing mechanism which provides high quality copy in upper and lower case format. Such copy is
expecially suitable for documentation preparation and for output of the RUNOFF system program.

The 2741 terminal operates in half duplex mode and transmits and receives non-ASCII characters. The terminal
echoes locally; the computer does not echo the characters. This action differs greatly from ASCII terminals which
operate under RSTS/E in full duplex mode.

Half duplex operation of the 2741 terminal involves stricter intercommunication between the device and the com-
puter. For example, when the user types the RETURN key to enter a line, the keyboard locks until the computer
accepts the line and sends an EOT character to unlock the keyboard. This locking and unlocking action is noticeable
and may be annoying to the fast typist.

Many graphic code and keyboard arrangements are available for 2741 compatible terminals. RSTS/E supports the
four most common codes: Correspondence, Extended Binary Coded Decimal, Binary Coded Decimal and CALL 360
BASIC. Since the system can be configured for any combination of the four codes, it is advisable to consult the
system manager for information concerning which codes are available at the local installation.

2741 terminals do not generate all the characters normally used for time sharing operations under RSTS/E. The
system interprets certain keys in special ways described in the following subsections. The four supported keyboard
arrangements are shown in Figures 23-13 through 23-16 at the end of the section. '

The RSTS/E 2741 code has been tested with IBM, DATEL, and TREND DATA terminals. Digital Equipment Corporation makes
no commitment to support 2741-type terminals made by other manufacturers,

23-19 .

RSTS/E Peripheral Devices

Table 23-8 VTO0S5 Controls and Switches

Location

Label

Operation

Keyboard

Rear Panel

Right Side

ON/OFF

LOC/REM

BRIGHTNESS

CONTRAST

VERTICAL

HORIZONTAL

BAUD RATE

FULL/HALF DUPLEX

When placed in its ON position, power is applied to the VT05
display and the refresh memory is cleared. When placed in its
OFF position, the VTOS is inoperative and the screen is
darkened.

When placed in its LOC position, it breaks the electrical
connection between the device and the computer. Local
operation for maintenance and training is still allowed. In
its REM position, it connects the terminal to the remote
computer system. Data is simultaneously transmitted to and
received from the computer.

Turning this control in the clockwise direction increases the
brightness of the screen. Turning the control counterclockwise
decreases brightness. If turned fully counterclockwise, the
display is completely darkened.

This control increases and decreases the clarity of the characters
displayed on the screen.

This control synchronizes the display in the vertical position
such that all 20 lines are visible on the screen.

This control moves the display in the horizontal direction such
that all 72 character positions are visible on the screen.

This 10-position selection switch determines the rates at which
the terminal transmits and receives data.

When at FULL, it allows the keyboard to transmit data to the
computer and allows the display to simultaneously receive data
from the computer. When at HALF, data is transmitted to the
VTOS5 receiver logic as well as to the computer.

23.8.1 The ATTN Key
The 2741 terminal has an ATTN (Attention) key usually on the upper right hand portion of the keyboard. (Some
terminals have an equivalent key called the BREAK key.) The key has several uses under RSTS/E depending upon
whether the terminal is transmitting data to or receiving data from the computer.

The terminal is considered transmitting data to the computer when it is at BASIC-PLUS command level or in the
program input state. The terminal is receiving characters whenever the system performs output to the device.

When the terminal is transmitting data, the ATTN key can have two effects. If pressed while the SHIFT key is in its
upper case position, the key generates the effect of a CTRL/C combination as described in Chapter 5. The system
echoes the transmission as either “C or 4C. If pressed while the SHIFT key is in its lower case position, the key
generates the effect of a CTRL/U combination (erase line) as described in Chapter 5. The system echoes the lower
case ATTN Key as either “Uor +U.

2320

RSTS/E Peripheral Devices

When the terminal is receiving data, pressing the ATTN key with the SHIFT key in its upper case or lower case
position generates the effect of a CTRL/C combination as described in Chapter 5. This action allows the user to
interrupt computer printout and return control to BASIC-PLUS command level.

NOTE
The system reacts to the CTRL/C combination on a 2741
type terminal as if the user typed two such combinations
in rapid succession. Programs executing the CTRL/C trap
enable system function cannot trap a CTRL/C combina-
tion from a 2741 type terminal.

23.8.2 The RETURN Key .

The RETURN key generates one of two characters depending upon whether the SHIFT key is in its upper or lower
case position. If typed as a lower case character, the key generates a CR character (CHR$(13)). If typed as an
upper case character, the key generates a LF character (CHR$(10)). The system thus allows the user to continue
BASIC-PLUS statement lines when he enters source code from a 2741 terminal.

23.8.3 The BKSP Key

The BKSP key generates one of two characters depending upon whether the SHIFT key is in its upper or lower
case position. If typed as an upper case character, the key backspaces the typing element one character position
and generates the BACKSPACE character (CHR$(8)). If typed as a lower case character, the key backspaces the
typing element one character position and generates the DEL (RUBOUT) character (CHR$(127)). In the latter
case, the system deletes from memory the last character typed. This action is similar to the RUBQUT key typed
at an ASCII terminal except that any replacement character typed is printed over the deleted character.

23.8.4 Bracket Characters

Since most 2741 terminals have no bracket characters, the system accepts (and) characters typed in place of
{and] characters. This feature allows users to delimit a project-programmer number with open and close
parenthesis characters rather than with bracket characters. For example, (100,100) is equivalent to [100,100] .
System programs translate [and] characters to (and) characters before processing commands.

23.8.5 Changing Codes

If the system is configured to handle more than one transmission code, the user can change the code recognized
by the system. This feature is available because the system initializes each device to a default code when time
sharing operations begin. Therefore, if an individual terminal does not employ the default code, the user must
change the code to operate on the system.

To enable the system to recognize codes generated by one of the keyboards shown in Figure 23-13 through 23-16,
the user must type the numeral 1 followed by the upper case ATTN key. (See the description of the ATTN key in
Section 23.8.1,) For example,

14C

E963

Ready
As a result, the system changes the code conversion table for the device. It prints an identifier which associates

both the code and its required typing sphere and prints the Ready message. Table 23-9 shows the identifiers and
related reference information.

23-21

RSTS/E Peripheral Devices

Table 23-9 2741 Transmission Code Identifiers

Identifier Keyboard Code Figure Typing Sphere
C029 Correspondence 23-13 1167-029
E963 EBCD 23-14 1167-963
B938 BCD 23-15 1167938
C087 CALL/360 BASIC| 23-16 1167-087

The code table the system uses and the typing sphere the device uses must match the particular keyboard. If either
the typing sphere or the code table is incorrect, the terminal produces garbled output. For example,

1’g
X92#
Nupvi

To verify the typing sphere, the user can compare the typing sphere number shown in Table 23-9 with that
stamped on the top edge of the type ball under the retaining clamp lever. To verify the keyboard, compare it with
the one shown in the figure referred to in Table 23-9. If the typing sphere does not match the keyboard, install
the correct type ball. Otherwise, continue changing codes until the system prints a recognizable identifier and
Ready message. If the user changes codes four times and the system does not print a recognizable message, the
terminal cannot be used unless the system is regenerated to support that code and keyboard arrangement.

The graphics of the typing spheres for each keyboard are compatible with conventional system graphics except for
certain special characters. Where differences exist, the conventional character is shown in the related keyboard
layout above the graphic printed by the sphere. All system programs accept lower case characters by performing a
conversion to upper case with the CVT$$ function described in Section 12.5 of the BASIC-PLUS Language Manual.

L

Correspondence Code Keyboard

The following special characters and system actions are produced on this keyboard.

Character or Action 2741 Method

LF (LINE FEED) RETURN key in upper case

CR (RETURN) RETURN key in lower case

DEL (RUBOUT) BKSP key in lower case

BKSP (BACKSPACE) BKSP key in upper case

CTRL/C combination ATTN Key in upper case

CTRL/U combination ATTN key in lower case

CTRL/O combination None

CTRL/Z combination None

Change Code 1 followed by the upper case ATTN key

23-22

RSTS/E Peripheral Devices

Figure 23-13 shows the correspondence keyboard layout and specifies the required typing sphere. Special system
characters such as ™, and \, which do not have a graphic equivalent are shown in the area above the key that is

used as a replacement. For example, the terminal prints the 4 character to designate the * character. Abbreviations
above or below keys are defined in the legend.

SEE
UC:=BKSP NOTES
E . BKSP i [i
LC=RUBOUT

< 0
H H
ReaDy proceepcreck| (REL 10 3 5
P UC=LF
X7}
o EE’@E]W
nel o][]] [[+]
SET

Tmmmw
[SPACE J

RETURN | {ON

LC=CR

CORRESPONDENCE CODE - STANDARD SELECTRIC KEYBOARD LEGEND:
1167- 029 TYPE BALL

UC = UPPER CASE
UPPER AND LOWER CASE LETTERS LC = LOWER CASE

BKSP = BACKSPACE
LF = LINE FEED
CR = CARRIAGE RETURN

Figure 23-13 Correspondence Code Keyboard
EBCD Keyboard

The following special characters and system actions are produced on this keyboard.

Character or Action ' 2741 Method

LF (LINE FEED) RETURN key in upper case

CR (RETURN) RETURN key in lower case

DEL (RUBOUT) BKSP key in lower case

BKSP (BACKSPACE) BKSP key in upper case

CTRL/C combination ATTN key in upper case

CTRL/U combination ATTN key in lower case

CTRL/O combination None

CTRL/Z combination None

Change Code 1 followed by the upper case ATTN key

Figure 23 14 shows the EBCD keyboard layout and specifies the required typing sphere. Special system characters
such as **, and \ which do not have a graphic equivalent are shown in the area above the key that is used as a
replacement. For example, the terminal prints a 4 character in place of the * character. Abbreviations above or below:
keys are defined in the legend.

23-23

RSTS/E Peripheral Devices

‘) . UCEBKSP N(s:frses
HEEnEnEHEnEEERE RN ERRICEIElE
LC =RUBOUT
UC = LF
A EE G BRcEG
ICLR
TABEEEB]E
SET LC=CR

JoO DN NODD]
I— SPACE I

EXTENDED BINARY CODED DECIMAL (EBCD) LEGEND:
1167 - 963 TYPE BALL UC = UPPER CASE
UPPER AND LOWER CASE LETTERS LC = LOWER CASE

: BKSP = BACKSPACE

RETURN

LF = LINE FEED
CR = CARRIAGE RETURN

Figure 23-14 EBCD Keyboard
BCD Keyboard

The following special characters and system actions are produced on this keyboard.

Character Action 2741 Method

LF (LINE FEED) RETURN key in upper case

CR (RETURN) RETURN key in lower case

DEL (RUBOUT) BKSP key in lower case

BKSP (BACKSPACE) BKSP key in upper case

CTRL/C combination ATTN key in upper case

CTRL/U combination ATTN key in lower case

CTRL/O combination None

CTRL/Z combination None

Change Code 1 followed by the upper case ATTN key

Figure 23-15 shows the BCD keyboard layout, and specifies the required typing sphere. Special system characters
such as ~, and \, which do not have a graphic equivalent are shown in the area above the key that is used as a
replacement. For example, the terminal prints the 4 character to designate the ™ character. Abbreviations above or
below keys are defined in the legend.

23-24

RSTS/E Peripheral Devices

A\
<
n
=
x
k3
©
r4
e
m
©»

E]
mm
LR

wmmmm []

SET LC=CR
m.mm 0l 0O]

SPACE ‘ |

RETURN

BINARY CODED DECIMAL (BCD) LEGEND:
1167 - 938 TYPE BEARLL . UC = UPPER CASE
UPPER AND LOWER CASE LETTERS LC = LOWER CASE

BKSP = BACKSPACE
LF = LINE FEED
CR = CARRIAGE RETURN

Figure 23-15 BCD Keyboard
CALL/360 BASIC Keyboard

The following special characters and system action are produced on this keyboard.

Character or Action 2741 Method
LF (LINE FEED) RETURN key in upper case
» CR (RETURN) RETURN key in lower case
DEL (RUBOUT) BKSP key in lower case
BKSP (BACKSPACE) BKSP key in upper case
CTRL/C combinatjon ATTN key in upper case
CTRL/U combination ATTN key in lower case
CTRL/O combination None
CTRL/Z combination None
Change Code 1 followed by the upper case ATTN key

Figure 23-16 shows the CALL/360 BASIC keyboard layout and specifies the required typing sphere. Special system
characters such as *,\, [, ?, and] which do not have a graphic equivalent are shown in the area above the key that
is used as a replacement. For example, the terminal prints a 4 character to designate the ” character. Abbrev1at10ns
above or below keys are defined in the legend. This keyboard does not produce lower case letters.

23-25

RSTS/E Peripheral Devices

-

RO D DEIEN
El Q
00000
L OO

C
O & GG E
aleelle] L] [[L]
gg?W@IEEJEI
JEENDOEDO L

[SPACE

UC:LF

. ﬂu

ReTurn | [ON

N >
JD..

CALL 360 BASIC CODE LEGEND:
1167087 TYPE BALL

UC = UPPER CASE
ALL LETTERS ARE UPPER CASE LC - LOWER CASE

BKSP = BACKSPACE
LF = LINE FEED
CR = CARRIAGE RETURN

Figure 23-16 CALL/360 BASIC

23.9 LA36 DECWRITER Il OPERATOR CONTROLS

DECwriter II offers fast, reliable operation and can be easily interfaced as a remote terminal or local computer 1/O
device. This terminal prints 30 characters per second and up to 132 characters per line. Characters are formed from
a 7 x 7 dot matrix. Character spacing is 10 characters per inch, horizontal and 6 lines per inch, vertical. An original
and up to five copies can be printed, and forms can be any width from 3 inches to 15 inches wide.

Table 23-10 describes the purpose of each operator control on the DECwriter II.

Table 23-10 DECwriter I Operator Controls

Control Meaning
Power On-Off Applies and removes AC power to entire machine.
Line/Local Selects on-line or local operation.
Baud-rate — 110, 150, 300 3-position switch selects the baud rate clock frequency for communica-

tions line operation.

Forms thickness adjustment Located on right side of print head carriage. Selects proper gap for 1-
through 6-part form. Approximately 1 click for each part.

Right Tractor Adjustment Thumb screw may be loosened to allow movement of right tractor for
various forms widths.

Fine Vertical Tractor Release Line feed knob may be depressed inward and rotated in the approximate
direction for precise location of printing with respect to vertical zones.

23.10 RX11 FLOPPY DISK

The RX11 floppy disk system provides a low cost, random access, mass memory device capable of storing up to
256,256 8-bit bytes of data in a non-file structured format. The floppy disk itself is a thin flexible, oxide-coated
disk, similar in size to a 45 RPM phonograph record. The disk is recorded on one side and is housed in an 8 inch
square flexible envelope. The envelope has a large center hole for the drive spindle, a small hole for track index
sensing, and a larger slit for the read/write head.

23-26

RSTS/E Peripheral Devices

Each RX11 floppy disk controller handles one or two drives, mounted side-by-side horizontally. The lower num-
bered unit is on the left; the higher numbered unit on the right. RSTS/E systems support up to four controllers
(and eight drives).

Once power is applied to the floppy disk system, raise the door of the desired disk drive by pulling up on the
centrally located latch. Then simply insert the floppy disk (still housed in its square envelope) into the drive, label-
side up, and read/write head slit first. Close the door firmly. The floppy disk is now ready to use; the disk rotates
at its operating speed immediately.

To remove the disk, simply open the door and pull the disk envelope out. Once again, the disk stops rotating as
soon as the door is opened.

23-27

APPENDIX A

BASIC-PLUS LANGUAGE SUMMARY

All manual section numbers given in this Appendix refer to sections in the BASIC-PLUS Language Manual,

A.1 SUMMARY OF VARIABLE TYPES

Type
Floating Point
Integer
Character String
Floating Point Matrix
Integer Matrix

Character String Matrix

Variable Name

single letter
optionally followed by a
single digit

any floating point variable name
followed by a % character

any floating point variable name
followed by a $ character

any floating point variable name followed by
one or two dimension elements in parentheses

any integer variable name followed by one or
two dimension elements in parentheses

any character string variable name followed by
one or two dimension elements in parentheses

A2 SUMMARY OF OPERATORS

Type

Arithmetic

Relational

Logical

Operator
- unary minus
4 exponentiation
* multiplication, division

;- addition, subtraction

= equals
< less than
<= less than or equal to
> greater than
= greater than or equal to
<> not equal to
== approximately equal to
== exactly equal to
NOT logical negation
AND logical product
OR logical sum

A-1

Examples

A
I
X3

B%
D7%

M$
R1$

S@4) E(50)
N2(8) V8(3,3)

A%M2) 1%(3.5)
E3%(4) R2%(2,1)

C$(1) S$(@8,5)
A28(8) V13(4,2)

Operates Upon

numeric variables
and constants

string or numeric
variables and
constants

numeric variables
string variables
integer variables
and integer-valued
expressions

BASIC-PLUS Language Summary

Type Operator Operates Upon
Logical (Cont.) XOR logical exclusive or
IMP logical implication
EQV equivalence
String + concatenation string constants
and variables
. Matrix +,- addition and subtraction of matrices dimensioned vari-
or equal dimensions, one operator per ables. See Section
statement 7.6.1 for further
* multiplication of conformable matrices details.

scalar multiplication of a matrix, see
Section 7.5.1.

A.3 SUMMARY OF FUNCTIONS
Under the Function column, the function is shown as:

Y=function
where the characters % and $ are appended to Y if the value returned is an integer or character string.
A floating value (X), where specified, can always be replaced by an integer value. An integer value (N%) can always
be replaced by a floating value (an implied FIX is done) except in the CVT%$ and MAGTAPE functions (the sym-

bol 1% is used to indicate the necessity for an integer value).

Section numbers found in the Explanation column refer to sections in the BASIC-PLUS Language Manual.

Type Function Explanation
Mathematical Y=ABS(X) returns the absolute value of X.
Y+ATN(X) returns the arctangent of X, where X is in radians.
Y=COS(X) returns the cosine of X, where X is in radians.
Y=EXP(X) - returns the value of e4X, where e=2.71828.
Y=FIX(X) returns the truncated value of X, SGN(X)*INT(ABS(X))
Y=INT(X) returns the greatest integer in X which is less than or equal
to X.
"Y=LOG(X) returns the natural logarithm of X, log X.
Y=LOG10(X) returns the common logarithm of X, long.
Y=PI has a constant value of 3.14159.
Y=RND returns a random number between 0 and 1.
Y=RND(X) returns a random number between 0 and 1.
Y=SGN(X) returns the sign function of X, a value of 1 preceded by the
sign of X.
Y=SIN(X) returns the sine of X, where X is in radians.
Y=SQR(X) returns the square root of X.
Y=TAN(X) returns the tangent of X, where X is in radians.
Print Y%=POS(X%) returns the current position of the print head for I/O channel

| Y$=TAB(X%)

X, 0 is the user’s Teletype. (This value is imaginary for disk
files.)

moves print head to position X in the current print record,
or is disregarded if the current position is beyond X. The
first position is counted as 0.

A2

Type

String

System

BASIC-PLUS Language Summary

Function

Y%=ASCII(AS)
Y$=CHR$(X%)

Y$=CVT%$(1%)
Y$=CVTF$(X)

Y%=CVT$%(AS)
Y=CVTS$F(AS)
Y$=CVT$$(AS$,1%)"
Y$=STRINGS$(N1%,N2%)"
Y$=LEFT(A$,N%)

Y$=RIGHT(A$,N%)

Y$=MID(A$ N1%N2%)

Y%=LEN(AS$)

Y%=INSTR(N1%,A$,B$)

Y$=SPACE$(N%)

Y$=NUMS$(N%)

Y=VAL(AS)

Y$=XLATE(AS$,BS)

Y$=DATES(0%)

Explanation

returns the ASCII value of the first character in the string AS.
returns a character string having the ASCII value of X. Only
one character is generated.

maps integer into 2-character string, see Section 12.5.

maps floating-point number into 4- or 8-character string, see
Section 12.5.

maps first 2 characters of string A$ into an integer, see Sec-
tion 12.5.

maps first 4 or 8 characters of string A$ into a floating-point
number. See Section 12.5.

converts string A$ to string Y$ according to value of 1%. See
Section 12.5.

creates string Y$ of length N1 and characters whose ASCII
decimal value is N2. See Section 5.5.

returns a substring of the string A$ from the first character
to the Nth character (the leftmost N characters).

" returns a substring of the string A$ from the Nth to the last

character; the rightmost characters of the string starting with
the Nth character.

" returns a substring of the string A$ starting with the N1 and

being N2 characters long (the characters between and includ-
ing the N1 to N1+N2- 1 characters). '
returns the number of characters in the string A$, including
trailing blanks,

indicates a search for the substring B$ within the string A$
beginning at character position N1. Returns a value O if B§

is not in A$, and the character position of B$ if BS is found
to be in A$ (character position is measured from the start of
the string).

indicates a string of N spaces, used to insert spaces within a
character string.

indicates a string of numeric characters representing the value
of N as it would be output by a PRINT statement. For ex-
ample: NUM$(1.0000) = (space)1(space) and NUM$(- 1.0000)
=-1(space).

computes the numeric value of the string of numeric charac-
ters A$. If A$ contains any character not acceptable as nu-
meric input with the INPUT statement, an error results. For
example:

VAL(*15”)=15

translate A$ to the new string Y$ by means of the table string
B$, see Section 12.7.

returns the current date in the following format:

02-Mar-71

! These functions are not available prior to Version SB(RSTS/E) systems.

A-3

BASIC-PLUS Language Summary

Type Function C Explanation

System (Cont.) Y$=DATE$(N%) returns a character string corresponding to a calendar date as
follows:
'N=(day of year)+[(number of years since 1970)*1000]

DATE$(1) = “01-Jan-70"
DATES$(125) = “05-May-70"
DATES$(4125) = “05-May-74”
Y$=TIME$(0%) returns the current time of day as a character string as follows:

TIMES$(0) = “05:30 PM” or “17:30 ”

Y$=TIME$(N%) returns a string corresponding to the time at N minutes before
midnight, for example:

TIMES$(1) = “11:59 PM” or “23:59
TIMES$(1440) = ““12:00 AM” or “00:00 »
TIMES$(721) = “11:59 AM” or “11:59 ”

Y=TIME(0%) returns the clock time in seconds since midnight, as a floating
point number, .

Y=TIME(1%) returns the central processor time used by the current job in

v tenths of seconds.
Y=TIME(2%) returns the connect time (during which the user is logged into
, the system) for the current job in minutes.

Y=TIME(3%)" returns to Y the decimal number of kilo-core ticks (kct’s) used
by this job. See Section 8.8.

Y=TIME(4%)" returns to Y the decimal number of minutes of device time used
by this job. See Section 8.8. ’

Y%=STATUS' returns to Y% the status of a channel as of the most recent
OPEN statement executed in the program. See Section 12.3.5.

Y%=BUFSIZ(N)l returns to Y% the buffer size of the device or file open on Chan-
nel N. See Section 12.3.4.

Y%=LINE returns to Y% the line number of the statement being executed
at the time of an interrupt. See Section 4.5.

Y%=ERR returns value associated with the last encountered error if an
ON ERROR GOTO statement appears in the program. See
Section 8.4.

Y%=ERL returns the line number at which the last error occurred if an
ON ERROR GOTO statement appears in the program. See
Section 8.4.3.

Y%~SWAPI%(N%) causes a byte swap operation on the two bytes in the integer
variable N%.

Y$=RADS$(N%) - converts an integer value to a 3-character string and is used to
convert from Radix-50 format back to ASCII. See Appendix
D.

Matrix MAT Y=TRN(X) returns the transpose of the matrix X, see Section 7.6.2.
MAT Y=INV(X) returns the inverse of the matrix X, see Section 7.6.2.
Y=DET following an INV(X) function evaluation, the variable DET is

equivalent to the determinant of X.

! These functions are not available prior to Version SB(RSTS/E) systems.

~

A4

BASIC-PLUS Language Summary

Type Function Explanation

Matrix (Cont.) Y%=NUM ' following input of a matrix, NUM contains the number of
rows input, or, in the case of a dimensional matrix, the num-
ber of elements entered.

Y%=NUM2 following input of a matrix, NUM2 contains the number of
elements entered in that row.

Input/Output Y%=RECOUNT returns the number of characters read following every input
operation. Used primarily with non-file structured devices.
See Section 12.3.1.
A4 SUMMARY OF BASIC-PLUS STATEMENTS
The following summary of statements available in the BASIC-PLUS language defines the general format for the
statement as a line in a BASIC program. If more detailed information is needed, the reader is referred to the sec-
tion(s) in the BASIC-PLUS Language Manual dealing with that particular statement.
NOTE
All section numbers refer to the BASIC-PLUS Language
Manual,
In these definitions, elements in angle brackets are necessary elements of the statement. Elements in squaie brackets
are necessary elements of which the statement may contain one. Elements in braces are optional elements of the
statement.
Where the term line number ({line number }) is shown in braces, this statement can be used in immediate mode.
The various elements and their abbreviations are described below:
variable or var Any legal BASIC variable as described in A.1 or Section 2.5.2.
line number Any legal BASIC line number described in Section 2.2. -

expression or exp Any legal BASIC expression as described in Section 2.5.

message Any combination of characters.

condition or cond Any logical condition as described in Section 3.5.

constant Any acceptable integer constant (need not contain a % character).

argument(s) orarg Dummy variable names.

statement Any legal BASIC-PLUS statement.

string Any legal string constant or variable as described in Section 5.1.

protection Any legal protection éode as described in Section 9.1.

value(s) Any floating point, integer, or character string constant.

list The legal list for that particular statement.

dimension(s) One or two dimensions of a matrix, the maximum dimension(s) for that particular
statement.

2 A' 5

BASIC-PLUS Language Summary

Statement Formats and Examples

REM
{line number } REM <message>

BASIC-PLUS Language
Manual Section

31

{line number } {<statement>} | <message>

10 REM THIS IS A COMMENT
15 PRINT 'PERFORM A CR/LF
LET
{tine number } {LET Y<var>{, <var>,<var>...}= <exp>
55 LET A=40: B=22
60 B,C,A=42 'MULTIPLE ASSIGNMENT
DIM
line number DIM<var(dimension(s)]>
10 DIM A(20), B$(5,10), C%(45)

line number

DIM #<constant> ,<var({dimension(s)>=<constant>

75 DIM #4, A$(100)=32,B(50,50)
RANDOMIZE
line number RANDOM {IZE }
55 RANDOMIZE
70 RANDOM

IF-THEN, IF-GOTO

line numher

55 IF A>B OR B>C THEN PRINT “NO”
60 IF FNA(R) = B THEN 250
95 IF L<X 42 AND L> 0 GOTO 345
IF-THEN-ELSE
THEN <statement>
line number IF <cond> |: THEN<line number>] {ELSE<statement>
GOTO<line number> ELSE<line number>
30 IF B=A THEN PRINT “EQUAL” ELSE PRINT “NOT EQUAL”
50 IF A>N THEN 200 ELSE PRINT A
75 IF B == R THEN STOP ELSE 80
FOR
line number FOR <var> = <exp> TO <exp> { STEP<exp>}
20 FOR I=2 TO 40 STEP2
55 FOR N=A TO A+R
FOR-WHILE, FOR-UNTIL WHILE
line number FOR <var> = <exp> {STEP<exp>} UNTIL] <cond>
84 FOR 1=1 STEP 3 WHILE I<X
74 FOR N =2 STEP 4 UNTIL N>A OR N=B
05

THEN <statement>
IF <cond>| THEN<line number>
GOTOline number>

FOR B=1 UNTIL B>10

32

3.62
7.1

11.1
111

3.7.2

35

8.5

3.6.1

8.6

BASIC-PLUS Language Summary

{,RECORDSIZE <exp> } { CLUSTERSIZE <exp> } { MODE <exp>}

10
20
30

OPEN “PP:” FOR OUTPUT AS FILE B1

. OPEN “FOO” AS FILE 3
OPEN “DT4:DATA.TR” FOR INPUT AS FILE 10

A-7

‘ BASIC-PLUS Language
Statement Formats and Examples Manual Section
NEXT 3.6.1
line number NEXT<var>
25 NEXT I
60 NEXT N
DEF, single line 3.7.3
line number DEF FN<var>{(arg) = <exp(arg)> 5.5.1
20 DEF FNA(X,Y,Z)=SQR(X42+Y42+Z42) 6.4
DEF, multiple line 8.1
line number DEF FN<var>(arg)
<statements>
line number FN<var> =<exp>
line number FNEND
10 DEF FNF(M) !FACTORIAL FUNCTION
20 IF M=1 THEN FNF=1 ELSE FNF=M*FNF(M~-1)
30 FNEND
GOTO 34
line number GOTO <line number>
100 GOTO 50
ON-GOTO
line number ON <exp> GOTO <lIist of line numbers> 8.2
75 ON X GOTO 95, 150, 45, 200
GOSUB
line number GOSUB <line number> 3.8.1
90 GOSUB 200
ON-GOSUB
line number ON <exp> GOSUB <list of line numbers> 8.3
85 ON FNA(M) GOSUB 200, 250, 400, 375
RETURN
line number RETURN 38.2
375 RETURN
CHANGE 5.2
. <array name> <string var>
{line number} CHANGE [DA TO [S v
25 CHANGE A$ TO X
70 CHANGE M TO.R$
75 CHANGE B TO B$
OPEN INPUT 9.2
{line number} OPEN<string>{FOR] } ASFILE <exp> 9.2.1
OUTPUT 922

BASIC-PLUS Language Summary

Statement Formats and ‘Examples

CLOSE
{line number}
100
255

READ
line number
25

DATA
line number
300

RESTORE
line number
125

PRINT

{line number }
25
75
45

PRINT USING
- {line number}

54

55

56

INPUT
{line number}
25
55

INPUT LINE
{line number}
40
75

NAME-AS
{line number}
455
270

KILL
{line number}
45

CLOSE <list of exp>
CLOSE 2
CLOSE 10,4, N1

READ <list of variables>
READ A, B$, C%, F1, R2, B(25)

DATA <list of values> -
DATA 4.3, “STRING”,85,49,75.04,10

RESTORE
RESTORE

PRINT {{#<exp>, }<list>}

PRINT !GENERATES CR/LF

PRINT “BEGINNING OF OUTPUT”’,A*1

PRINT #4, “OUTPUT TO DEVICE”FNM(A)+2;B;A

PRINT {#<exp>, YUSING <string> <list>

PRINT USING “##.##”,A

PRINT #3, USING ‘\\###.## \\##+ 4+ 4 47,“A=",A,“B="B
PRINT #7, USING B$,A.BC

INPUT {#<exp>, }<list>
INPUT “TYPE YOUR NAME >’ A$
INPUT #8, A, N, B$

INPUT LINE {#<exp>,}<string>
INPUT LINE R$
INPUT LINE #1, E$

NAME <string> AS <string>

NAME “NONAME” AS “FILE1<48>”

NAME “DT4:MATRIX” AS “MATA1<48>"

KILL<string>
KILL “NONAME”

A-8

BASIC-PLUS Language
Manual Section

9.3

3.341
5.3
6.3

10.1

3.3.1
5.3
6.3

3.3.1
10.2

3.3.2
5.4
6.3

10.3

10.3.1
10.3.2

1033
333
5.3

104
104.1

53

9.4

9.5

BASIC-PLUS Language Summary

Statement Formats and Examples

ON ERROR GOTO

line number
' 10
525

526

RESUME
line number
1000
655

CHAIN
line number
375
500
600

STOP
line number
75

END
line number
-~ 545

Matrix Statements

MAT READ
line number
55
90

MAT PRINT
{line number }
10
90
95

97

MAT INPUT
{line number}
10
20
30

ON ERROR GOTO {<line number>}

ON ERROR GOTO 500

ON ERROR GOTO !DISABLES ERROR ROUTINE
ON ERROR GOTO 0 !'DISABLES ERROR ROUTINE

RESUME {<line number>}
RESUME '0OR RESUME 0 ARE EQUIVALENT
RESUME 200

CHAIN <string> {<exp>}
CHAIN “PROG2”

CHAIN “PROG3” 75
CHAIN “PROG3” A

STOP
STOP

END

END

MAT READ <list of matrices>
DIM A(20), B$(32), C%(15,10)
MAT READ A, B$(25),C%

MAT PRINT {#<exp>, }<matrix name>

- DIM A(20), B(15,20)

MAT PRINT A; !PRINT 10*10 MATRIX, PACKED

MAT PRINT B(10,5), 'PRINT 10*5 MATRIX, FIVE
'ELEMENTS PER LINE

MAT PRINT #2,A; !'PRINT ON OUTPUT CHANNEL 2

MAT INPUT {#<exp>, }<list of matrices>
DIM B$(40), F1%(35)

~ OPEN “DT3:FOO” FOR INPUT AS FILE 3

MAT INPUT #3, B4, F1%

A9

BASIC-PLUS Language

Manual Section

8.4

8.4.1

9.6

3.9

39

7.2

7.3

7.4

BASIC-PLUS Language Summary

BASIC-PLUS Language
Statement Formats and Examples Manual Section
Matrix Statements (Cont.)
MAT Initialization ZER 7.5
{tine number} MAT <matrix name>=| CON | {dimension(s)}
IDN
10 DIM B(15,10), A(10), C%(5)
15 MAT C% = CON v 'ALL ELEMENTS OF C7(I)=1
20 MAT B =IDN(10,10) 'IDENTITY MATRIX 10*10
95 MAT B = ZER(N M) ICLEARS AN N BY M MATRIX
Statement Modifiers (can be used in immediate mode)
IF 8.7.1
<statement> IF <condition>
10 PRINT X IF X<>0
<statement> UNLESS <condition>
45 PRINT A UNLESS A=0
~ FOR | 8.7.3
<statement> FOR <var> = <exp> TO <exp> {STEP<exp>
75 . LET B$(I) = “PDP-11” FOR I1=1 TO 25
80 READ A(T) FOR I=2 TO 8 STEP 2
WHILE 8.74
<statement> WHILE <cordition> :
10 LET A(I) = FNX(I) WHILE 1<45.5
UNTIL 8.75
<statement> UNTIL <cowndition>
115 IF B 0 THEN A(I)=B UNTIL I > 5
System Statements
<line number> SLEEP <expression> k 8.8
100 SLEEP(20) !'DISMISS JOB FOR 20 SEC.
<line number> WAIT <expression> o » 8.8
525 WAIT(A%+5) 'WAIT A%+5 SEC. FOR INPUT
Record I/O Statements
<line number> LSET<string var>{,<string var>}= <string> 1243
90 LSET B$=“XYZ”
<line number> RSET <string var> { ,<string var>=<string> 1243

250 RSET C$=67890"

<line number> FIELD #<expr> ,<expr>AS<string var>{ ,<expr>AS<string var>} = 12.4.2
75 FIELD #2%, 10% AS AS$, 20% AS BS$

A-10

BASIC-PLUS Language Summary

Statement Formats and Examples
Record I/O Statements (Cont.)

<line number> GET #<expr>{ RECORD<expr>}
100 GET #1%,RECORD 99%

<line number> PUT #<expr>>{ RECORD<expr> H,COUNT <expr>}
500 PUT # 1%, COUNT 80%

<line number> UNLOCK #<expr>
700 UNLOCK #3%

BASIC-PLUS Language
Manual Section

123

12.3

10.5.1

Command

APPEND

ASSIGN

ATTACH

BYE

CAT

CATALOG

CCONT

COMPILE

CONT

DEASSIGN

APPENDIX B

BASIC-PLUS COMMAND SUMMARY

Explanation

Used to include contents of a previously saved
source program in current program.

Used to reserve an I/O device for the use of the
individual issuing the command. The specified
device can then be given commands only from
the terminal which issued the ASSIGN. Also
establishes a logical name for a device, estab-
lishes an account for the @ character, and as-
signs a default protection code.

Attaches a detached job to the current termi-
nal,

Indicates to RSTS that a user wishes to leave
the terminal. Closes and saves any files remain-
ing open for that user.

Returns the user’s file directory. Unless another
device is specified following the term CAT or
CATALOG, the disk is the assumed device.

For privileged users. Same as CONT command
but detaches job from terminal.

Allows the user to store a compiled version of
his BASIC program. The file is stored on disk
with the current name and the extension .BAC.
Or, a new file name can be indicated and the
extension .BAC will still be appended.

Allows the user to continue execution of the
program currently in core following the exe-
cution of a STOP statement.

Used to release the specified device-for use by
others. If no particular device is specified, all
devices assigned to that terminal are released.
An automatic DEASSIGN is performed when
the BYTE command is given. Also releases any
logical name for a device.

B-1

Section in RSTS/E

" System User’s Guide

9.1.5

5.1

Chapter 14

Chapter 14

89

1023

843

10.2.2

52,55,5.7

<

Command

DELETE

HELLO

LENGTH

LIST

LISTNH

LOGIN

NEW

OLD

BASIC-PLUS Command Summary

Section in RSTS/E
Explanation System User’s Guide

Allows the user to remove one or more lines from 9.1.2
the program currently in core. Following the

word DELETE the user types the line number

of the single line to be deleted or two line

numbers separated by a dash (-) indicating

the first and last line of the section of code to -

be removed. Several single lines or line sections

can be indicated by separating the line numbers,

or line number pairs, with a comma.

Indicates to RSTS that a user wishes to log onto Chapter 14
the system. Allows the user to input project-

programmer number and password. Also at-

taches a detached job to the current terminal

or changes accounts without having to log off

the system.

Used to re-enable the echo feature on the user 582
terminal following the issue of a TAPE command.
Enter with LINE FEED or ESCAPE key.

Returns the length of the user’s current pro- ' 8.7.2
gram in core, in 1K increments.

Allows the user to obtain printed listing at the 9.1.1
user terminal of the program currently in core,
or one or more lines of that program. The word
LIST by itself will cause the listing of the entire
user program. LIST followed by one line number
will list that line; and LIST followed by two line
numbers separated by a dash (-) will list the lines
between and including the lines indicated. Several
single lines or line sections can be indicated by
separating the line numbers, or line number pairs,
with a comma.

Same as LIST, but does not print header contain- » 9.1.1
ing the program name and current date.

Same as HELLO. Chapter 14

Clears the user’s area in core and allows the user , 8.1.1
to input a new program from the terminal. A pro-

" gram name can be indicated following the word

NEW or when the system requests it.

Clears the user’s area in core and allows the user 8.3
to recall a saved program from a storage device.

The user can indicate a program name following

the word OLD or when the system requests it.

If no device name is given, the file is assumed to

B-2

BASIC-PLUS Command Summary

Section in RSTS/E
Command Explanation System User’s Guide

OLD (Cont.) be on the system disk. A device specification 8.3
without a filename will cause a program to be
read from an input-only device (such as high-
speed reader, card reader). '

REASSIGN Transfers control of a device to another job. 5.3
RENAME Causes the name of the program currently in ‘ 8.5
core to be changed to the name specified after
the word RENAME.
REPLACE Same as SAVE, but allows the user to substi- 8.6

" tute a new program with the same name for an
old program, erasing the old program,

RUN Allows the user to begin execution of the pro- 84.1

gram currently in core. The word RUN can be

followed by a file name in which case the file

is loaded from the system disk, compiled, and

run alternatively, the device and file name can

be indicated if the file is not on the system disk.

A device specification without a file name will

cause a program to be read from an input only

device (such as high-speed reader, card reader).

RUNNH Causes execution of the program currently in 8.4.1
memory but header information containing
the program name and current date is not
printed. If a filename is used, the command is
executed as if no filename were given.

SAVE Causes the program currently in core to be : 8.2
' saved on the system disk under its current
file name with the extension .BAS. Where the
word SAVE is followed by a file name or a
device and a file name, the program in core is
saved under the name given and on the device
specified. A device specification without a
file name will cause the program to be out-
put to any output only device (line printer,
high-speed punch).

SCALE Sets the scale factor to a designated value or 8.10
prints the value(s) currently in effect if no
value is designated.

TAPE Used to disable the echo feature on the user 58.1

terminal while reading paper tape via the low-
speed reader.

B-3

BASIC-PLUS Command Summary

Section in RSTS/E
Command Explanation System User’s Guide

UNSAVE . The word UNSAVE is followed by the file name 9.14
and, optionally, the extension of the file to be
removed. The UNSAVE command cannot remove
files without an extension. If no extension is
specified, the source (.BAS) file is deleted. If
no device is specified, the disk is assumed.

Special Control Character Summary

CTRL/C Causes the system to return to BASIC command 59.1
mode to allow for issuing of further commands
or editing. Echoes on terminal as 4C.

CTRL/O Used as a switch to suppress/enable output of a 59.2
program on the user terminal. Echoes as 10.

CTRL/Q When generated by a device on which a CTRL/S 593
* has interrupted output, causes computer to re-
sume output at the next character.

CTRL/S When generated by a device for which SCOPE 593
characteristics are set, interrupts computer out-
put on the device until either CTRL/Q or an-
other character is generated.

CTRL/U Deletes the current typed line, echoes as U 9.13

and performs a carriage return/line feed.
CTRL/Z Used as an end-of-file character. 594
ESCape or ‘ Enters a typed line to the system, echoes on 596
ALT MODE the user terminal as a $ character and does not
Key cause a carriage return/line feed.
LINE FEED Used to continue the current logical line on an 9.2.2.2‘
Key additional physical line. Performs a carriage

return/line feed operation.

RETURN Key Enters a typed line to the system, results in a 595
carriage return/line feed operation at the user
terminal.

RUBOUT Key ~ Deletes the last character typed on that physi- 9.13

cal line. Erased characters are shown on the
teleprinter between back slashes.

TABor CTRL/I Performs a tabulation to the next of nine tab 9223
stops (eight spaces apart) which form the
terminal printing line.

CTRL/L ‘Generates FORM FEED character and results in 922

four line feed operations at the user terminal.

B4

APPENDIX C
ERROR MESSAGES

Messages in RSTS/E are generated for BASIC-PLUS errors! and RSTS/E errors. To avoid confusion, both types of
messages are called RSTS/E error messages and are described as one set. The BASIC-PLUS errors cover compiler and
run time conditions such as a violation of the syntax rules (SYNTAX ERROR) and referencing an element of an
array beyond the defined limits (SUBSCRIPT OUT OF RANGE). The RSTS/E errors involve operating system con-
ditions such as failing to locate the file or account specified (CAN’T FIND FILE OR ACCOUNT) and requesting the
hardware to perform a function for which it is not ready (DEVICE HUNG OR WRITE LOCKED).

In most cases, if no error trapping is beirig done (that is,an ON ERROR GOTO statement is not in effect), BASIC-
PLUS stops running the program. It prints the error message and the line number of the BASIC-PLUS statement that
was being executed when the error occurred. The following sample printout shows the procedure.

10 OFEN “Z‘ FOR INFUT AS FILE 1%
RUNNH . .
PCAN’T FIND FILE OR ACCOUNT AT LINE 10

READY
As the READY message indicates, control returns to the system.

An exception to this procedure occurs when an INPUT statement is being executed at the job’s console terminal
and error trapping is not in effect. The system generates the error message and executes the statement again as shown
in the sample printout below. :

10 ON ERROR GOTO O \ INFUT ‘INTEGER VALUE’jAZ
RUNNH

INTEGER VALUE? C

ZDATA FORMAT ERROR AT LINE 10

INTEGER VALUE?

With error trapping disabled at line 10, an invalid response to the INPUT statement causes the system to print the -
error message, clear the error condition, and execute the statement again.

Associated with each message is an error variable called ERR. Whenever an error occurs with trapping in effect, the
system checks the error variable which is a decimal number in the range 0 to 127. An error with a number between

1 and 70 causes the system to transfer control to the line number indicated in the ON ERROR GOTO statement.
The system does not print the error message. The user program is able to check the ERR variable and perform a
recovery procedure. If the error number is between 71 and 127, the system does not transfer control to the recovery
routine but prints the message and returns control to the system. (Error number 0 is reserved to identify the system
installation name.)

Because a BASIC-PLUS program can recover from certain errors, this appendix lists errors in two categories — re-
coverable and non-recoverable. The recoverable error messages are listed in ascending order of their related error
numbers. A program can use these error numbers to differentiate errors. Non-recoverable errors are in alphabetical -
order without error numbers because a program can not use these numbers in an error handling routine.

1Different messages are generated while a job is operating under run-time systems other than BASIC-PLUS. Such run-time systems
are those for COBOL and FORTRAN-IV. For these error messages, consult the appropriate User’s Guides.

C1

Error Messages

The first character position of each.message indicates the severity of the error. Table C-1 describes this standard.

Table C-1 Severity Standard in Error Messages

Character Severity Meaning

% Warning Execution of the program can continue but
may not generate the expected results.

? Fatal Execution cannot continue unless the user
removes the cause of the error.

Information A message beginning with neither a question
mark nor a percent is for information only.

The severity indication is useful for utility programs such as BATCH which examines system output.

In the descriptions of error messages, certain abbreviations, as shown in Table C-2, denote special characteristics of
the error. ‘

Table C-2 Special Abbreviations for Error Descriptions

Abbreviation Meaning

© Continue. If an ON ERROR GOTO statement is not in effect,
execution continues but with the conditions described.

(SPR) Software Performance Report. This error should occur only under
the conditions described. If it occurs under any other conditions,
the user should file an SPR with DIGITAL and document the con-
ditions under which the error occurred.

An error whose description is accompanied by the abbreviation (C) indicates an exception to the error trapping pro-
cedure. If suchan error occurs in a program with o error trapping in effect, BASIC-PLUS prints the error message -
and line number but continues running the program. The following sample printout shows the procedure.

100 ON ERROR GOTO O \ AZ = 32768,
200 FRINT AZ

RUNNH

ZINTEGER ERROR AT LINE 100

0

READRY

The INTEGER ERROR is generated at line 100 by the attempt to compute a value outside the range for integers.
After the error message is printed, processing continues but with the conditions described in the error meaning. 0 is
substituted for the erroneously computed value. '

The number of RSTS/E error messages is restricted to 127. Because of this restriction, certain error messages have
multiple meanings. The specific meaning of an error message depends on the operation being performed when the
error condition occurs. For example, if the system attempts a file access and the designated file can not be located,
RSTS/E generates the CAN’T FIND FILE OR ACCOUNT error (ERR=5). That same error condition, however,

2

Error Messages

applies to other, generically similar access operations. Thus, if a program attempts to send a message to another
program and the proper entry is not found in the system table of eligible receivers, RSTS/E returns error number
5. Though the second failure does not involve a file access error, it too is classified as an access failure.

Certain RSTS/E errors, although classified as user recoverable, are not capable of being trapped by a program.
Table C-3 lists such errors.

Table C-3 Non-Trappable Errors in Recoverable Class

ERR Message Printed
34 RESERVED INSTRUCTION TRAP
36 SP (R6) STACK OVERFLOW
37 DISK ERROR DURING SWAP
38 MEMORY PARITY FAILURE

These errors involve special conditions which a user program cannot control and which ought not to occur on a
normal system. For example, the DISK ERROR DURING SWAP error indicates a hardware problem. The system
does not return control to the program. The error condition itself, however, can be either transient or recurring.
Such errors should be brought to the attention of the system manager for further investigation. These errors are
recoverable in the strict sense that the monitor can take corrective action but the BASIC-PLUS run-time system
does not return control to the user program. -

C.1 USER RECOVERABLE
ERR Message Printed Meaning

0 (system installation name) The error code O is associated with the system installation name and
is used by system programs to print identification lines.

1 7Bad directory for device The directory of the device referenced is in an unreadable format. The
magtape label format on tape differs from the system-wide default
format, the current job default format, or the format specified in the
OPEN statement. Use the ASSIGN command to set the correct format
default or change the format specification in the MODE option of the
OPEN statement. '

2 Mlegal file name The filename specified is not acceptable. It contains unacceptable char-
: acters or the filename specification format has been violated. The CCL
command to be added begins with a number or contains a character
other than A through Z, 0 through 9 and commercial at (@).

3 ?Account or device in use Reassigning or dismounting of the device cannot be done because the
device is open or has one or more open files. The account to be de-
leted has one or more files and must be zeroed before being deleted.
The run time system to be deleted is currently loaded in memory and
in use. Output to a pseudo keyboard cannot be done unless the device
is in KB wait state. An echo control field cannot be declared while
another field is currently active. The CCL command to be added al-
ready exists.

ERR

10

11

12

13

14

15

16

Message Printed

?No room for user on device
?Can’t find file or account

?Not a valid device

21/0 channel already open

?Device not available

21/0 channel not open

?Protection violation
?End of file on device
?Fatal system I/O failure
?User data error on device

?Device hung or write locked

?7Keyboard WAIT exhausted

9Name ‘or account now exists

Error Messages

Meaning

Storage space allowed for the current user on the device specified has
been used or the device as a whole is too full to accept further data.

The file or account number specified was not found on the device
specified. The CCL command to be deleted does not exist.

The device specification supplied is not valid for one of the following
reasons. The unit number or its type is not configured on the system.
The specification is logical and untranslatable because a physical device
is not associated with it.

An attempt was made to open one of the twelve I/O channels which
had already been opened by the program. (SPR)

The specified device exists on the system but a user’s attempt to
ASSIGN or OPEN it is prohibited for one of the following reasons.

The device is currently reserved by another job. The device requires
privileges for ownership and the user does not have privilege. The device
or its controller has been disabled by the system manager. The device

is a keyboard line for pseudo keyboard use only.

Attempt to perform I/O on one of the twelve channels which has not
been previously opened in the program.

The user was prohibited from performing the requested operation be-
cause the kind of operation was illegal (such as input from a line print-
er) or because the user did not have the privileges necessary (such as
deleting a protected file).

Attempt to perform input beyond the end of a data file; or a BASIC
source file is called into memory and is found to contain no END
statement.

An I/O error has occurred on the system level. The user has no guaran-
tee that the last operation has been performed. This error is caused by
hardware condition. Report such occurrences to the system manager.
(See the discussion at beginning of appendix.)

- One or more characters may have been transmitted incorrectly due to

a parity error, bad punch combination on a card, or similar error.

* User should check hardware condition of device requested. Possible

causes of this error include a line printer out of paper or high-speed
reader being off-line.

Time requested by WAIT statement has been exhausted with no input
received from the specified keyboard.

An attempt was made to rename a file with the name of a file which

already exists, or an attempt was made by the system manager to in-
sert an account number which is already within the system.

- C4

ERR

17

18-

19

20

21
22

23

24
25
26

27

28

29

30

31

32

Message Printed

7Too many open files on unit

llegal SYS() usage

7Disk block is interlocked

7Pack IDs don’t match

Disk pack is not mounted
Disk pack is locked out

Mllegal cluster size

Disk pack is private
Disk pack needs ‘CLEANing’
?Fatal disk pack mount error

71/0 to detached keyboard

?Programmable 4C trap

?Corrupted file structure

?Device not file structured

Mllegal byte count for I/O

7No buffer space available

Error Messages

Meaning

Only one open DECtape output file is permitted per DECtape drive.
Only one open file per magtape drive is permitted.

Illegal use of the SYS system function.

The requested disk block segment is already in use (locked) by some
other user.

The identification code for the specified disk pack does not match the
identification code already on the pack.

No disk pack is mounted on the specified disk drive.
The disk pack specified is mounted but temporarily disabled.

The specified cluster size is unacceptable. The cluster size must be a
power of 2. For a file cluster, the size must be equal to or greater than
the pack cluster size and must not be greater than 256. For a pack
cluster, the size must be equal to or greater than the device cluster size
and must not be greater than 16. The device cluster size is fixed by type.

The current user does not have access to the specified private disk pack.
Non-fatal disk mounting error; use the CLEAN operation in UTILTY.
Fatal disk mounting error. Disk cannot be successfully mounted.

I/0 was attempted to a hung up dataset or to the previous, but now
detached, console keyboard for the job.

A CTRL/C combination was typed while an ON ERROR GOTO state-
ment was in effect and programmable CTRL/C trapping was enabled.

Fatal error in CLEAN operation.

An attempt is made to access a device, other than a disk, DECtape, or
magtape device, as a file-structured device. This error occurs, for ex-
ample, when the user attempts to gain a directory listing of a non-
directory device.

The buffer size specified in the RECORDSIZE option of the OPEN
statement or in the COUNT option of the PUT statement is not a multi-
ple of the block size of the device being used for 1/O, or is illegal for the
device. An attempt is made to run a compiled file which has improper
size due to incorrect transfer procedure.

The user accesses a file and the monitor requires one small buffer to
complete the request but one is not currently available. If the program
is sending messages, two conditions are possible. The first occurs when
a program sends a message and the receiving program has exceeded the
pending message limit. The second occurs when a sending program
attempts to send a message and a small buffer is not available for the

*operation.

C-5

ERR

33

34

35

36

37

38

39

40

41

42

43

45

46

47

48

Message Printed

?2UNIBUS timeout fatal trap
?Reserved instruction trap
?Memory management violation

7SP (R6) stack overflow

?Disk error during swap

?Memory parity failure
?Magtape select error
?Magtape record length error
INon-res run-time system

?Virtual buffer too large

?Virtual array not on disk

?Matrix or array too big

?Virtual array not yet open
Milegat 1I/O channel
?Line too long

%PFloating point error

Error Messages

Meaning

This hardware error occurs when an attempt is made to address non-
existent memory or an odd address using the PEEK function. An
occurrence of this error message in any other case is cause for an SPR.

An attempt is made to execute an illegal or reserved instruction or an
FPP instruction when floating point hardware is not available. (See
discussion at beginning of appendix.)

This hardware error occurs when an illegal Monitor address is specified
using the PEEK function. Generation of the error message in situations
other than using PEEK is cause for an SPR.

An attempt to extend the hardware stack beyond its legal size is en-
countered. (See discussion at beginning of appendix.) (SPR)

A hardware error occurs when a user’s job is swapped into or out of
memory. The contents of the user’s job area are lost but the job re-
mains logged into the system and is reinitialized to run the NONAME
program. Report such occurrences to the system manager. (See dis-
cussion at beginning of appendix.)

A parity error was detected in the memory occupied by this job. (See
discussion at beginning of appendix.)

When access to a magtape drive was attempted, the selected unit was
found to be off line.

When performing input from magtape, the record on magtape was
found to be longer than the buffer designated to handle the record.

The run time system referenced has not been loaded into memory and
is therefore non-resident.

Virtual core buffers must be 512 bytes long.

A non-disk device is open on the channel upon which the virtual array
is referenced.

In-core aggay size is too large.

An attempt was made to use a virtual array before opening the corre-
sponding disk file.

Attempt was made to open a file on an 1/O channel outside the range
of the integer numbers 1 to 12.

Attempt to input a line longer than 255 characters (which includes
any line terminator). Buffer overflows.

Attempt to use a computed floating point number outside the range

1E-38 <n <1E38 excluding zero. If no transfer to an error handling
routine is made, zero is returned as the floating point value. (C)

C-6

ERR

49

50

51

52

53

54

55

56 -

57

58

59

60

61

62

63

Message Printed

%Argument too large in EXP

%Data format error

%lInteger error

Mllegal number

%lllegal argument in LOG
%Imaginary square roots
?Subscript out of range

?Can’t invert matrix
?0ut of data

70N statement out of range
Not enough data in record
?1nteger overflow, FOR loop

%Division by 0

?No run-time system
?FIELD overflows buffer

?Not a random access device

Error Messages

Meaning

Acceptable arguments are within the approximate range - 89<arg<+88.
The value returned is zero. (C)

A READ or INPUT statement detected data in an illegal format. For
example, 1..2 is an improperly formed number, and 1.3 is an improp-
erly formed integer, and X” is an illegal string. (C)

Attempt to use a computed integer outside the range -32768<n<32767.
For example, an attempt is made to assign to an integer variable a
floating point number outside the integer range. If no transfer to an
error handling routine is made, zero is returned as the integer value. (C)

Integer overflow or underflow or floating point overflow. The range

for integers is - 32768 to +32767; for floating point numbers, the upper
limit is 1E38. (For floating point underflow, the FLOATING POINT
ERROR (ERR=48) is generated.)

Negative or zero argument to LOG function. Value returned is the
argument as passed to the function. (C)

Attempt to take square root of a number less than zero, The value re-
turned is the square root of the absolute value of the argument. (C)

Attempt to reference an array element beyond the number of elements
created for the array when it was dimensioned.

Attempt to invert a singular or nearly singular matrix.
The DATA list was exhausted and a READ requested additional data.

The index value in an ON-GOTO or ON-GOSUB statement is less
than one or greater than the number of line numbers in the list.

An INPUT statement did not find enough data in one line to satisfy
all the specified variables.

The integer index in a FOR loop attempted to go beyond 32766 or
below -32767.

Attempt by the user program to divide some quantity by zero. If no
transfer is made to an error handler routine, a 0 is returned as the re-

sult. (C)

The run-time system referenced has not been added to the system list
of run time systems.

Attempt to use FIELD to allocate more space than exists in the speci-
fied buffer.

Attempt to perform random access I/O to a non-random access-device.

ERR Message Printed
65 ?Mllegal MAGTAPE () usage

66 ?Missing special feature

67 Mllegal switch usage

C.2 'NON-RECOVERABLE
Message Printed

?Arguments don’t match
7Bad line number pair
?Bad number in PRINT-USING

2Can’t compile statement

?Can’t CONTinue
?Data type error

?DEF without FNEND

?End of statement not seen

?Execute only file
?Expression too complicated

?File exists-RENAME/REPLACE

?FNEND without DEF

Error Messages

-Meaning
Improper use of the MAGTAPE function.

User program employs a BASIC-PLUS feature not present on the
given installation.

A CCL command contains an error in an otherwise valid CCL switch.
(For example, the /SI:n switch was used without a value for n or a
colon; or more than one of the same type of CCL switch was speci-
fied.) A file specification switch is not the last element in a file speci-
fication or is missing a colon or an argument.

Meaning

Arguments in a function call do not match, in number or in type, the argu-
ments defined for the function.

Line numbers specified in a LIST or DELETE command were formatted
incorrectly. :

Format specified in the PRINT-USING string cannot be used to print one or
more values.

Program was stopped or ended at a spot from which execution cannot be
resumed.

Incorrect usage of floating-point, integer, or character string format variable
or constant where some other data type was necessary.

A second DEF statement was encountered in the processing of a user func-
tion without an FNEND statement terminating the first user function def-
inition.

Statement contains too many elements to be processed correctly.

Attempt was made to add, delete or list a statement in a compiled ((BAC)
format file.

This error usually occurs when parentheses have been nested too déeply. The
depth allowable is dependent on the individual expression.

A file of the name specified in a SAVE command already exists. In order to

save the current program under the name specified, use REPLACE, or use
RENAME followed by SAVE.

An FNEND statement was encountered in the user program without a pre-
vious function call having been executed.

Message Printed

7FNEND without function call

?FOR without NEXT

Milegal conditional clause

Mlegal DEF nesting
Milegal dummy variable
Milegal expression

Nilegal FIELD variable
Mllegal FN redefinition

Mllegal function name

Mllegal IF statement

Mlegal in immediate mode

Mllegal line number(s)
Mllegal mode mixing

llegal statement
Milegal symbol

Milegal verb

%Inconsistent function usage

Z%Inconsistent subscript use

x(y)K of memory used

Error Messages

Meaning

A FNEND statement was encountered in the user program without a pre-
vious DEF statement being seen.

A FOR statement was encountered in the user program without a correspond-
ing NEXT statement to terminate the loop.

Incorrectly formatted conditional expression.

The range of one function definition crosses the range of another function
definition.

One of the variables in the dummiy variable list of user-defined function is
not a legal variable name.

Double operators, missing operators, mismatched parentheses, or some sim-

- ilar error has been found in an expression.

The FIELD variable specified is unacceptable.
Attempt was made to redefine a user function.

Attempt was made to define a function with a function name not sub-
scribing to the established format.

Incorrectly formatted IF statement.

User issued a statement for execution in immediate mode which can only be
performed as part of a program.

Line number reference outside the range 1<n<32767.
String and numeric operations cannot be mixed.

Attempt was made to execute a statement that did not compile without
errors.

An unrecognizable character was encountered. For example, a line consisting
of a #character.

The BASIC verb portion of the statement cannot be recognized.

A function is defined with a certain number of arguments but is elsewhere
referenced with a different numbér of arguments. Fix the reference to match
the definition and reload the program to reset the function definition.

A subscripted variable is being used with a different number of dimensions
from the number with which it was originally defined.

Message printed by the LENGTH command, The value for x is the current
size, to the nearest 1K-word increment, of the program in memory. The val-
ue for y is the size to which the program can expand, given the run time
system being used and the job’s private memory size maximum set by the
system manager.

C9

‘Message Printed
?Literal string needed

IMatrix dimension error
?Matrix or array without DIM

?Maximum memory exceeded

IModifier error

?NEXT without FOR
?No logins

?Not enough available memory

?Number is needed
71 or 2 dimensions only
70N statement needs GOTO

Please say HELLO

?Please use the RUN command

IPRINT-USING buffer overflow -

?7PRINT-USING format error

?Program lost-Sorry

Efror Messages

Meaning
A variable name was used where a numeric or character string was necessary.

Attempt was made to dimension a matrix to more than two dimensions, or
an error was made in the syntax of a DIM statement.

A matrix or array element was referenced beyond the range of an implicitly -
dimensioned matrix. '

During an OLD operation, the job’s private memory size maximum was
reached. While running a program, the system required more memory for
string or I/O buffer space and the job’s private memory size maximum or
the system maximum (16K words for BASIC-PLUS) was reached.

Attempt to use one of the statement modifiers (FOR, WHILE, UNTIL, IF,
or UNLESS) incorrectly. An OPEN statement modifier, such as a RECORD-
SIZE, CLUSTERSIZE, FILESIZE, or MODE option, is not in the correct
order.

A NEXT statement was encountered in the user program without a previous
FOR statement having been seen.

Message printed if the system is full and cannot accept additional users or if
further logins are disabled by the system manager.

An attempt is made to load a non-privileged compiled program which is too
large to run, given the job’s private memory size maximum. The program
must be made privileged to allow it to expand above a private memory size
maximum; or the system manager must increase the job’s private memory
size maximum to accommodate the program.

A character string or variable name was used where a number was necessary.
Attempt was made to dimension a matrix to more than two dimensions.
A statement beginning with ON does not contain a GOTO or GOSUB clause.

Message printed by the LOGIN system program. User not logged into the
system has typed something other than a legal, logged-out command to the
system.

A transfer of control (as ina GOTO, GOSUB or IF-GOTO §tatement) cannot
be performed from immediate mode.

Format specified contains a field too large to be manipulated by the PRINT-
USING statement.

An error was made in the construction of the string used to supply the out-
put format in a PRINT-USING statement.

A fatal system error has occurred which caused the user program to be lost.
This error can indicate hardware problems or use of an improperly compiled
program. Consult the system manager or the discussion of such errors in the
RSTS/E System Manager’s Guide.

C-10

Message Printed

?Redimensioned array

7RESUME and no error

IRETURN without GOSUB

%SCALE factor interlock

?Statement not found
Stop

7String is needed
?Syhtax error

7Too few arguments

?Too many arguments

?Undefined function called

7What?

?Wrong math package

Error Messages

Meaning

Usage of an array or matrix within the user program has caused BASIC-PLUS
to redimension the array implicitly.

A RESUME statement was encountered where no error had occurred to
cause a transfer into an error handling routine via the ON ERROR GOTO
statement. ' :

RETURN statement encountered in user program without a previous
GOSUB statement having been executed.

An attempt was made to execute a program or source statement with the
current scale factor. The program runs but the system uses the scale factor
of the program in memory rather than the current scale factor. Use
REPLACE and OLD or recompile the program to run with the current
scale factor. (C)

Reference is made within the program to a line number which is not within
the program.

STOP statement was executed. The user can usually continue program exe-
cution by typing CONT and the RETURN key.

A number or variable name was used where a character string was necessary.
BASIC-PLUS statement was incorrectly formatted.

The function has been called with a number of arguments not equal to the
number defined for the function.

A user-defined function may have up to five arguments.

BASIC-PLUS interpreted some statement component as a function call for
which there is no defined function (system or user).

Command or immediate mode statement entered to BASIC-PLUS could not
be processed. Illegal verb or improper format error most likely.

Program was compiled on a system with either the 2-word or 4-word math
package and an attempt is made to run the program on a system with the
opposite math package. Recompile the program using the math package of
the system on which it will be run.

C-11

APPENDIX D
BASIC-PLUS CHARACTER SET

D.1 BASIC-PLUS CHARACTER SET
User program statements are composed of individual characters. Allowable characters come from the following char-

acter set:

A through Z
0 through 9

Space
Tab

and the following special symbols and keys:

Key

$

%

LINE FEED

O

[l

Use and Section in BASIC-PLUS Language Manual

Used in specifying string variables (Section 5.1), or as the System Library File desig-
nator (RSTS-11 System User’s Guide).

Used in specifying integer variables (Section 6.1). Also denotes account [i,4] (Sec-
tion 9.1.1). /

Used to delimit string constants, i.e., text strings (Section 5.1.).

Begins comment part of a line (Section 3.1). Also denotes account [1,3] (Sec-
tion 9.1.1).

Separates multiple statements on one line (Section 2.3.1).

Separates multiple statements on one line as the colon (:) also does.

Denotes a device or file # name, or is used as an output format effector (Chapter
7 and Section 10.3.4). Also denotes account number using current project number
with a programmer number of 0 (Section 9.1.1).

Output format effector and list terminator (Section 3.3).

Output format effector (Section 3.3).

Denotes account [1,5] (Section 9.1.1).

Denotes the assignable account (Section 9.1.1).

When used at the end of a line, indicates that the current statement is continued on
the next line (Section 2.3.2). "

Used to group arguments in an arithmetic expression (Section 2.5). Also may be
used to group project-programmer number,

Used to group project-programmer number.

D-1

BASIC-PLUS Character Set

Key Use and Section in BASIC-PLUS Language Manual
<> Used to delimit file protection codes.
- %/ Arithmetic operators (Section 2.5.3).

= Replacement operator (Section 3.2).
Logical equivalence operator (Section 2.5.4).

< Logical “less than” operator (Section 2.5.4).
> Logical “greater than” operator (Section 2.5.4).

== Logical “approximately equal to” operator (Section 2.5.4).

D.2 ASCII CHARACTER CODES

BASICPLUS Character Set

Decimal ASCII RSTS Decimal ASCII RSTS Decimal ASCII RSTS
Value Character Usage Value Character Usage Value Character Usage
0 NUL FILL character | 43 + 86 \Y
1 SOH 44 , COMMA 87 w
2 STX 45 - 88 X
3 ETX CTRL/C 46 . 89 Y
4 EOT 47 / 90 Z
5 ENQ 48 0 91 [
6 ACK 49 1. 92 \ Backslash
7 BEL BELL 50 2 93]
8 BS 51 3 94 ~or 4
9 HT HORIZ. TAB 52 4 95 _or <
10 LF LINE FEED 53 5 96 ~ Grave accent
11 VT VERT. TAB 54 6 97 a
12 FF FORM FEED 55 7 98 b
13 CR CAR.RET 56 8 99 c
14 SO 57 9 100 d
15 SI CTRL/Q 58 : 101 e
16 DLE 59 ; 102 f
17 DC1 60 < 103 g
18 DC2 61 = 104 h
19 DC3 62 > 105 i
20 DC4 63 ? 106 j
21 NAK CTRL/U 64 @ 107 k
22 SYN 65 A 108 1
23 ETB 66 B 109 m
24 CAN 67 C 110 n
25 EM 68 D 111 o
26 SUB CTRL/Z 69 E 112 p
27 ESC ESCAPE! 70 F 113 q
28 FS 71 G 114 r
29 GS 72 H 115 s -
30 RS 73 I 116 t
31 Us 74 J 117 u
32 ~SP SPACE 75 K 118 v
33 ! 76 L 119 w
34 ” 77 M 120 X
35 # 78 N 121 y
36 $ 79 0 122 z
37 % 80 P 123 {
38 & 81 Q 124 | Vertical Line
39 ’ APOSTROPHE | 82 R 125 }
40 (83 S 126 ~ Tilde
41) 84 T 127 DEL RUBOUT
42 * 85 U

! ALTMODE (ASCII 125) or PREFIX (ASCII 126) keys which appear on some terminals are translated internally into ESCAPE.

BASIC-PLUS Character Set

D.3 CARD CODES

The-RSTS card driver can be configured for one of three different punched card codes. These are: DEC029 codes,
DEC026 codes and 1401 (EBCDIC) codes. The RSTS-11 DEC029 and DEC026 codes are the same as the DOS-11
card codes. The particular set of codes used on the system is determined by the system manager. In all cases, the
end-of-file (EOF) card must contain a 12-11-0-1 punch or a 12-11-0-1-6-7-8-9 punch in column 0.

D.4 RADIX-50 CHARACTER SET

Character ASCII Octal Equivalent . Radix-50 Equivalent
space . 40 v 0

A-Z 101-132 1-32

$ 44 33

. 56 34

unused 35

09 60-71 36-47

The maximum Radix-50 value is, thus,
47%502 + 47*50 + 47 = 174777

The following table provides a convenient means of translating between the ASCII character set and its Radix-50
equivalents. For example, given the ASCII string X2B, the Radix-50 equivalent is (arithmetic is performed in octal):

X = 113000
2 = 002400
B = 000002
X2B = 115402

!The DEC029 code used by RSTS/E complies with the ANSI standard for punched card codes, IBM uses a card code which differs
in three characters. If the DEC029 card code is configured on the system, a patch can be installed to change the decode table so that
cards punched for use on IBM equipment can be read without misinterpretation. See the RSTS/E Release Notes for information on
the codes affected.)

D4

BASIC-PLUS Character Set

Character Ascr DEC029 DEC026 1401
{ 123 120 120 UNUSED
} 125 110 110 UNUSED

SPACE 32 NONE NONE NONE
! 33 1287 1287 110
» 34 87 085 082
35 83 086 83
$ 36 1183 1183 1183
% 37 084 087 084
& 38 12 1187 12
’ 39 85 86 1284
(40 1285 084 87
) 41 1185 1284 087
* 42 1184 1184 1184
+ 43 1286 12 085
, 44 083 083 083
- 45 11 11 11
) 46 1283 1283 1283
/ 47 01 01 01
0 48 0 0 0
1 49 1 1 1
2 50 2 2 2
3 51 3 3 3
4 52 4 4 4
5 53 5 5 5
6 54 6 6 6
7 55 7 7 7
8 56 8 8 8
9 57 9 9 9
: 58 82 1182 85
; 59 1186 082 1186
< 60 1284 1286 1286
= 61 86 83 1187
> 62 086 1186 86
? 63 087 1282 120

(continued on next page)

EOF is a 12-11-0-1 punch or a 12-11-0-1-6-7-8-9 punch.

D5

BASIC-PLUS Character Set

Ascr,

Character DEC029 DECO026 1401
@ 64 84 84 8 4
A 65 121 121 121
B 66 122 122 122
C 67 123 123 123
D 68 124 124 124
E 69 125 125 125
F 70 126 126 126
G 71 127 127 127
H 72 128 128 128
I 73 129 129 129
J 74 111 111 111
K 75 112 112 112
L 76 113" 113 113
M 77 114 114 114
N 78 115 115 115
o} 79 116 116 116
P 80 117 117 117
Q 81 118 118 118
R 82 119 119 119
S 83 02 02 02
T 84 03 03 03
U 85 04 04 04
\% 86 05 05 05
w 87 06 06 06
X 88 07 07 07
Y 89 08 08 08
z 90 09 09 09
[91 1282 1185 1285
\ 92 082 87 086
1 93 1182 1285 1185
+or® 94 1187 85 UNUSED
<or_ 95 085 82 1287

EOF is a 12-11-0-1 punch or a 12-11-0-1-6-7-8-9 punch.

D-6

BASIC-PLUS Character Set

Radix-50 Character/Position Table

Single Character or Second) Third
First Character Character - _ Character
A 003100 A 000050 A 000001
B 006200 B 000120 B 000002
C 011300 C 000170 C 000003
D 014400 D 000240 D 000004
E 017500 E 000310 E 000005
F 022600 F 000360 F 000006
G 025700 G 000430 G 000007
H 031000 H 000500 H 000010
I 034100 I 000550 I 000011
J 037200 J 000620 J 000012
K 042300 K 000670 K 000013
L 045400 L 000740 L 000014
M 050500 M 001010 M 000015
N 053600 N 001060 N 000016
0 056700 0 001130 0 000017
P 062000 P 001200 P 000020
Q 065100 Q 001250 Q 000021
R 070200 R 001320 R 000022
S 073300 S 001370 S 000023
T 076400 T 001440 T 000024
U 101500 U 001510 U 000025
A% 104600 \Y 001560 v 000026
w 107700 w 001630 w 000027
X 113000 X 001700 X 000030
Y 116100 Y 001750 Y 000031
Z 121200 Z 002020 Z 000032
$ 124300 $ 002070 $ 000033
. 127400 . 002140 . 000034
unused 132500 unused 002210 unused 000035
0 135600 0 002260 0 © 000036
1 140700 1 002330 1 000037
2 144000 2 002400 2 000040
3 147100 3 002450 3 000041
4 152200 4 002520 4 000042
5 155300 5 002570 5 000043
6 160400 6 002640 6 000044
7 163500 7 - 002710 7 000045
8 166600 8 002760 8 000046
9 171700 9 003030 9 000047

D-7

INDEX

? and * wild cards combined, 12-5
2741,
ATTN key on, 23-20
BCD keyboard on, 23-24,23-25
BKSP key on, 23-21
brackets on, 23-21
EBCD keyboard on, 23-23,23-24
RETURN key on, 23-21
special characters on, 23-22
2741 terminal, 23-19
2741 terminal codes, 23-21,23-22
2741 terminal keyboard, 23-19 to 23-23
Access,
denial of device, 34
ACCESS keyword, .
BACKUP, 18-2
Access to devices, 3-4
Account,
assignable, 12-3
free blocks in, 15-8
overriding logical, 5-5
system library, 12-3
used blocks in, 15-8
Account association,
cancel logical, 5-7
Account characters,
special, 12-3
Account name,
logical, 5-7
Account number, 2-1,12-1 to 12-3
Account number,
[slash in, 14-1
Account on device,
logically named, 5-5
ACCOQUNT OR DEVICE IN USE, 5-3
Account statistics, 2-8, 15-9
Account statistics,
SYSTAT, 15-5
Account status report, 159
Accounts,)
logically naming, 5-7
Accounts on disk, 3-3
Accounts on private disks, 3-3
Accounts while logged in,
changing, 14-5
[account], 12-1
AFTER keyword,
BACKUP, 18-2
ALTMODE character in TTYSET, 204

Index-1

ALTMODE key, 59
& ampersand, 12-3
ANSI magtape files in PIP, 17-15,17-16
.ANSI magtape label, 6-1 :
/ANSI option,

UMOUNT, 20-11
APPEND command, 9-5,9-6
Area,

user, 2-1
ASCII character codes, D-3
ASCII files,

comparing two, 16-9
ASCII TO EBCDIC question,

FLINT, 19-5
ASCII transfer with PIP, 17-6, 17-7
ASR-33 keyboard, 23-2, 23-3
ASR-33 manual controls, 23-2
ASR-33 papertape punch, 23-3,234
ASR-33 papertape reader, 23-3
ASR-33 terminal, 20-4,23-2,23-3
ASSIGN <> command, 6-1
ASSIGN [account] command, 5-7
ASSIGN command, 3-7, 3-8, 4-1, 5-6
ASSIGN dev: command, 5-1
ASSIGN logical name, 5-3
ASSIGN logical names, 5-4
Assignable account, 12-3
Assignable devices, 3-4
Assigned devices,

controlling, 5-1
Assigning a device, 3-4, 5-1
Assigning logical device name, 5-3
Assigning multiple logical names, 5-3, 54
Assigning valid physical name, 5-4
@at sign, 12-3 .
@ at sign in BACKUP, 18-10
@ at sign in PIP command file, 17-17
ATTACH command, 14-1, 14.3
Attaching to a job, 142, 14-3, 144, 14-5
ATTN key on 2741, 23-20

BA: device in BATCH, 22-20
.BAC extension, 7-1, 8-7
.BAC extension in BATCH, 22-9
Backed-up files,
restoring, 18-1
BACKUP (see also RESTORE)
@ at sign in, 18-10
comments in, 18-3

BACKUP (cont.),

CONT> prompt in, 18-3

DEVICE? question in, 18-13

! exclamation mark in, 18-3

exempting files in, 18-3

/HELP option in, 18-4

magtape density in, 18-13

magtape parity in, 18-13

RESTOR.LST in, 18-9

RESTORE mode of, 18-1,18-2

/SAVE option in, 18-4

spacing in, 18-3

syntax error in, 184

.TMP extension in, 18-6

wild cards in, 18-2
BACKUP ACCESS keyword, 18-2
BACKUP access phrase, 18-3
BACKUP AFTER keyword, 18-2
.BACKUP answers,

default, 184
BACKUP bad block errors, 18-16,18-17
BACKUP BEFORE keyword, 18-2
BACKUP BEGIN AT question, 18-7
BACKUP COMPARE FILES question, 18-7
BACKUP continuation lines, 18-3
BACKUP CREATION keyword, 18-2
BACKUP creation phrase, 18-3
BACKUP DELETE FILE(S) question, 18-7
Backup device,

specifying, 18-7
BACKUP dialogue, 18-2,184,18-6
BACKUP dialogue example, 18-11,18-12
BACKUP dialogue rules, 184
BACKUP dialogue summary, 18-5
BACKUP disk format, 18-1
BACKUP dismount message, 18-13
BACKUP error handling, 18-13 t0.18-17
BACKUP error messages, 18-14t0 18-16
BACKUP errors,

types of, 18-13 to 18-17
BACKUP EXCEPT phrase, 18-3
Backup file,

specifying first, 18-7
BACKUP file specification format, 18-2
Backup files,

comparing, 18-7
BACKUP files,

dates in, 18-2
Backup files,

deleting, 18-7

specifying, 18-7

INDEX (Cont.)

BACKURP files,

time of day in, 18-2
BACKUP FROM DISK question, 18-6
BACKUP FROM FILE(S) question, 18-6, 18-7
BACKUP index files, 18-1
BACKUP index volume, 18-1
BACKUP indirect command file, 18-4, 18-10, 18-11
BACKUP informational messages, 18-17
BACKUP input disk,

specifying, 18-6
BACKUP interruption commands, 18-10,18-11
BACKUP library program, 18-1 to 18-17
BACKUP listing file,

placing, 18-6
BACKUP LISTING FILE question, 18-6
BACKUP mode,

choosing, 18-4
BACKUP OR RESTORE question, 18-10
BACKUP processing,

continue, 18-11

suspend, 18-11

terminate, 18-11
* BACKUP prompt, 18-10
BACKUP /SAVE option, 18-10
Backup set, 18-1

expiration date of, 18-13

name of, 18-13
BACKUP specification,

[slash in, 18-3
BACKUP status report,

print, 18-11
BACKUP TO DEVICE question, 18-7
BACKUP transfer rules, 18-7
BACKUP typographical rules, 18-3
Backup volume, 18-1
BACKUP volume,

close current, 18-11
BACKUP volumes,

dismounting, 18-13

mounting, 18-13
BACKUP work file, 18-1

- BACKUP work-file,

specifying, 18-6
BACKUP WORK-FILE question, 18-6
BACKUP work-file transfer,

prevent, 18-6
BACKUP work-file,

copy with PIP, 18-6
BACKUP.LST, 18-6
Bad block errors,

BACKUP, 18-16,18-17

Index-2

Bad blocks in COPY report, 17-20
.BAK extension, 16-5
.BAS extension, 2-5,7-1
BASIC-PLUS,

error messages in, C-1

error trapping in, C-1 to C-3
BASIC-PLUS character set, D-1 to D-6
BASIC-PLUS command level, 1-4,2-2
BASIC-PLUS command summary, B-1to B4
BASIC-PLUS commands,

functions of, 7-1

guide to, 7-2 to 7-4
BASIC-PLUS files,

comparing two, 169 to 16-11
BASIC-PLUS format rules,

changing, 9-7
BASIC-PLUS functions,

summary of, A-2to A-5
BASIC-PLUS language summary, A-1to A-11
BASIC-PLUS operators,

summary of, A-1, A-2
BASIC-PLUS program,

compiling a, 8-7

creating a, 8-1

executing a, 8-5, 8-6

renaming a, 8-3, 8-9

running a, 8-5, 8-6

saving a, 8-2

temporary, 8-1, 8-2
BASIC-PLUS run-time system, 1-3
BASIC-PLUS statement modifiers, A-10
BASIC-PLUS statements,

summary of, A-5to A-11
BASIC-PLUS variable summary, A-1
BATCH,

BA: device in, 22-20 _

. .BAC extension in, 229 ¥

cancel logical name in, 22-15

devices available in, 22-15

$ dollar sign in, 22-2

end of data in, 22-13

! exclamation mark in, 22-1

halting, 22-14

library file in, 22-10

listing file in, 22-9,22-10

magtape density in, 22-14

magtape parity in, 22-14

.MAP extension in, 22-9

map file in, 229, 22-10

message to operator in, 22-13,22-14

INDEX (Cont.)

BATCH (cont.),

.OBJ extension in, 22-9

quotation marks in, 22-1

run library program by, 22-13

running SORT11 in, 22-17, 22-18

.TMP extension in, 22-9

.TSK extension in, 22-9

volume identification in, 22-14

wild cards in, 22-3

write-enable in, 22-14

write-protect in, 22-14
BATCH $BASIC command, 22-8
BATCH $BASIC switches, 22-8 to 22-10
BATCH $COBOL command, 22-15 to 22-17
BATCH $COBOL switches, 22-16
BATCH $COPY command, 22-11
BATCH $CREATE command, 22-12
BATCH $DATA command, 22-13
BATCH $DELETE command, 22-11
BATCH $DIRECTORY command, 22-12
BATCH $DISMOUNT command, 22-15
BATCH $EOD command, 22-10,22-13
BATCH $EOJ command, 22-8
BATCH $FORTRAN command, 22-18,22-19
BATCH $JOB and CCL, 22-8
BATCH $JOB switches, 22-7,22-8
BATCH $MESSAGE command, 22-13
BATCH $MOUNT command, 22-14, 22-15
BATCH $PRINT command, 22-11, 22-12
BATCH $RUN command, 22-13
BATCH $SORT command, 22-17
BATCH $SORT examples, 22-18
BATCH $SORT switches, 22-17,22-18
BATCH BASIC-PLUS compiling, 22-8 to 22-10
BATCH BASIC-PLUS I compiling, 22-8 to 22-10
BATCH COBOL compiling, 22-15 to 22-17
BATCH command field, 22-2
BATCH command format, 22-1
BATCH commands,

list of, 22-6, 22-7 .
BATCH comment field, 22-2

" BATCH comments, 22-1

BATCH continuation line, 22-1

'BATCH control file example, 22-20, 22-21

Index-3

Batch control language, 22-1,22-2
BATCH control statement examples, 22-3
BATCH CPU time,

limiting, 22-7
BATCH data entry, 22-13
BATCH default file types, 22-4,22-5

~ INDEX (Cont.)

BATCH device switches, 22-14 Blank file lines,
BATCH directory listing, 22-12 comparing, 16-10, 16-13
BATCH error messages, 22-21,22-22 Biock,
BATCH error procedures, 22-21 bytes in, 2-8
BATCH file concatenation, 22-11 Block size in PIP transfer, 17-7
BATCH file copying, 22-11 . size of file in, 2-8
BATCH file creation, 22-12 Blocks in account,
BATCH file deletion, 22-11 free, 15-8
BATCH file printing, 22-11 used, 15-8
BATCH file type specification, 22-3 Blocks in COPY report,
BATCH filename specification, 22-3 bad, 17-20
BATCH filespec defaults, 22-6 Blocks in PIP,
BATCH FORTRAN compiling, 22-18,22-19 magtape, 17-16
BATCH FORTRAN switches, 22-19 Blocksize in COPY,
BATCH in QUE, 21-3 ‘ specifying, 17-20
BATCH $JOB command, 22-7 Brackets on 2741, 23-21
BATCH jobname, Buffer status,

assigning, 22-7 SYSTAT, 15-5
BATCH language syntax rules, 22-2, 22-3 BYE command, 2-3, 14-7
BATCH library program, 22-1 to 22-22 BYE F command, 14-8
BATCH logical device names, 22-14 Byte,
BATCH operating procedures, 22-19,22-20,22-21 bits in, 2-8
BATCH priority, - Bytes in block, 2-8

assigning, 22-7
Batch processing, 22-1,22.20, 22-21

Batch run, CALL/360 BASIC keyboard, 23-25,23-26
QUE for, 22-19, 22-20 Card codes, D-4
requesting a, 22-19,22-20 Card punch, 3-6
BATCH special characters, 224 Card reader, 3-6
BATCH specification field, 22-2 CR11, 23-5,23-6
Batch stream, 22-1 manual control of, 23-5,23-6
BATCH switch syntax, 22-2, 22-5 Card reader as input device, 3-1
BATCH switches, Cards,
negating, 22-6 advantages of, 3-6
BATCH time, disadvantages of, 3-6
limiting, 22-7 Case,
BATCH utility commands, 22-11 settingterminal, 20-1
BATCH WAIT condition, 22-14,22-15, 22-20 Case at terminal,
Baud rates, lower, 20-4
VTO0S, 23-18 upper, 20-4
BCD keyboard on 2741, 23-24,23-25 Case in QUE, 214
BEFORE keyword, ‘ Case settings,
BACKUP, 18-2 ‘ _ : terminal, 20-2
BEGIN AT question, CATALOG command, 8-10, 8-11
BACKUP, 18-7 _ CCL, v
RESTORE, 18-10 ' - BATCH $JOB and, 22-8
Binary file transfer, CCL command,
PIP, 17-7 CREATE, 16-5,16-6
Bits in byte, 2-8 ' : DIR, 2-4, 3-3,16-3,164
Blank file extension, 124 DISMOUNT, 209

Index-4

CCL command (cont.),
EDIT, 16-5,16-6
FLINT, 199
MOUNT, 5-6,209
PIP, 17-8
QUE, 219, 21-11
SET, 20-8
SYS, 15-5,15-7

CCL commands, 13-1
guide to, 11-2
translation of, 13-1

CCONT command in debugging, 10-2

CD:, 3-6

Central processing unit, 3-2

CHAIN statement, 9-6,9-7

Chaining programs, 9-6,9-7

Chaining to QUE from user program, 21-9

Character codes,
ASCII, D-3
Character positions,
radix-50, D-7
Character set,
BASIC-PLUS, D-1,D-2,D-5,D-6
lineprinter, 23-7
radix-50, D-4
Character settings,
terminal, 20-2
Characters,
special account, 12-3
CLOSE statements in chaining, 9-7
Cluster size,
setting minimum, 12-7
setting negative, 12-7
/CLUSTERSIZE, 12-5,12-7
.CMD extension, 2-5 _
.CMD extension in PIP, 17-17
Colon in device designator, 12-1
: colon in device name, 3-7
. colon in logical device name, 5-4
Command level,
BASIC-PLUS, 1-4,2-2
returning to, 5-8
Command summary,
BASIC-PLUS, B-1 to B4
Commands,
CCL, 13-1
functions of BASIC-PLUS, 7-1
guide to BASIC-PLUS, 7-2 to 7-4
guide to CCL, 11-2
Comments to system manager, 15-10

INDEX (Cont.)

Index-5

COMPARE FILES question,

BACKUP, 18-7

RESTORE, 18-10
Comparing blank file lines, 16-10,16-13
Comparing two ASCII files, 169
Comparing two BASIC-PLUS files, 169 to 16-11
Comparison,

matching lines in file, 16-9, 16-11
COMPILE command, 8-7
COMPILE dev: command, 8-8
Compiled file,

. size of, 8-7

Compiled file transfer,

PIP, 17-8
Compiled program, 7-1
Compiled protection code, 8-8
Compiled protection codes, 12-6
Compiling a BASIC-PLUS program, 8-7°
Compiling program on disk pack, 8-8
Concatenation,

BATCH file, 22-11
Concise command language, 11-2,13-1
Configuration of devices, 3-2
CONFIRM: prompt, 2-3
CONFIRM: replies, 2-3,2-4,14-7
Console terminal, 22
CONT command, 59
CONT command in debugging, 10-2, 10-5
CONT> prompt in BACKUP, 18-3
Contiguous block transfer,

PIp, 17-8
Continuing execution, 5-9
Control,

transferring program, 9-6
Control characters,

input/output, 5-8

summary of, B-4
Control characters at terminal, 20-6
Control language,

batch, 22-1,22-2
Controlling assigned devices, 5-1
Copy,

fast, 17-19

no, 17-19
COPY,

magtape density in, 17-20

magtape parity in, 17-20

magtape settings in, 17-20

specifying blocksize in, 17-20
COPY command format, 17-19

INDEX (Cont.)

COPY error summary, 17-21 v Data set in FLINT,
COPY help message, 17-19 ' specify, 19-5
COPY library program, 17-19 to 17-21 Data set label in FLINT, 19-3
COPY options, 17-19 Date of file,
#COPY prompt, 17-19 creation, 2-8
COPY report, 17-20 DEASSIGN,
bad blocks in, 17-20 magtape label in, 5-3
Copying a device, 17-19 DEASSIGN (account) command, 5-7
Copying between devices, 17-19 DEASSIGN command, 3-7,3-8,4-1,5-1,5-2,
CPU, 32 ' 5.3, 6-1
CPU time, ' DEASSIGN @ command, 5-7
limiting BATCH, 22-7 : DEASSIGN logical name, 5-7
CR11 card reader, 23-5,23-6 DEASSIGN on logout, 5-1
CR;, 3-6 Debugging,
CREATE CCL command, 16-5,16-6 CCONT command in, 10-2
Creating file with EDIT, 16-5,16-6 CONT command in, 10-2,10-5
Creation date of file, 2-8 : CTRL/Cin, 10-3
CREATION keyword, CTRL/O in, 10-3
BACKUP, 18-2 CTRL/Qin, 10-3
CRT output, . CTRL/S in, 10-3
suppressing, 10-3 GOTO statement in, 10-2
CRT terminal output, PRINT statement in, 10-5
suspending, 5-9 STOP statement in, 10-2, 10-5
CRT terminal settings, 20-2 Debugging a BASIC-PLUS program, 10-2, 10-3
.CTL extension in QUE, 21-3 - Debugging a BASIC-PLUS program, 10-1, 10-4.
CTRL key, 5-8 Debugging example, 10-3, 10-4
CTRL/C, 5-8,5-9 : DECpack label, 5-5
CTRL/C, in debugging, 10-3 DECtape, 3-2
CTRL/CinPIP, 17-1 . advantages of, 3-6
CTRL/O, 5-9 disadvantages of, 3-6
CTRL/O in debugging, 10-3 manual control of, 23-10 to 23-12
CTRL/Q, 59 . DECtape description, 23-10
CTRL/Q in debugging, 10- DECtape drive, 3-6
CTRL/S, 59 TUS56, 23-10
CTRL/S in debugging, 10-3 DECtape transfer,
CTRL/U, 8-2,9-3,94 PIP, 17-7
CTRL/Z, 59 DECtape unit,
CTIRL/Zin PIP, 17-1,17-17 ' TC11/TUS6, 239
CTRL/Z in PIP transfer, 17-7 DECtape usage,
CTRL/Z in QUEUE, 21-1 PIP, 17-6
Current program, ' " Defaults,
renaming, 8-8 file specification, 12-1

DELETE command, 9-2,9-3
DELETE FILE(S) question,

Daily message, 2-2 BACKUP, 18-7
inhibiting printing, 2-3, 14-1 DELETE key, 8-2
. Data file, . Delete protection, 12-5
marking end of, 59 Deleting a program, 9-2
Data set, Deleting a program from device, 94, 9-5
floppy disk, 19-2,19-3 : Deleting files at logout, 14-7

Index-6

INDEX (Cont.)

Deleting files with PIP, 174 Device unit number, 3-7,5-2
Deleting program lines, 9-2,9-3 DEVICE? question in BACKUP, 18-13

Deletion, Devices,

file inspection in PIP, 17-15
individual file, 14-7-
wild cards in PIP, 17-14, 17-15

access to, 3-4
assignable, 34
configuration of, 32

DELIMITER command, controlling assigned, 5-2
TTYSET, 20-7, 20-8 copying between, 17-19
Delimiters in TTYSET, guide to peripheral, 23-1,23-2

private, 20-3,20-7, 20-8
Denial of device access, 5-1
Denial of user access, 2-1
Device,

assigning a, 34, 5-1

copying a, 17-19

job transfer of, 5-3

1/0, 3-1

input-only, 3-1

list of available, 3-4

manual control of, 23-1 to 23-27
output-only, 3-1

peripheral, 23-1

transfer files between, 17-1,17-2

logically named account on, 5-5 DF:, 3.7

queue non-public, 21-5 Dialogue,

releasing a, 5-1 to 5-3 BACKUP, 18-2,18-4,18-6
releasing logically named, 5-4 ' FLINT, 19-1 t0 i9-6
reserving a, 5-1 i RESTORE, 189, 18-10
reserving logically named, 5-4 Dialogue rules,

specifying storage, 8-3 BACKUP, 184
transferringa, 5-3 Dialogue summary,

Device access, ' BACKUP, 18-5
denial of, 34, 5-1 RESTORE, 18-8

Device copy, DIR CCL command, 2-4,3-3,16-3, 164
verifying, 17-19 DIRECT,

Device designator, 12-1 wild cards in, 16-1, 16-3
colon in, 12-1 DIRECT command format, 16-1
guide to, 12-2 DIRECT error messages, 16-4

Device directory with PIP, DIRECT input file, 16-1
listing, 17-6 DIRECT library program, 16-1 to 164

Device mode, : DIRECT options, 16-1 to 16-3
setting, 12-8 DIRECT output file, 16-1, 16-3

Device MODE in QUE, 21-4° #DIRECT prompt, 16-1

Device name, Directory, 24, 2-5
assigning logical, 5-3 Directory,

: colon in, 3-7 example of, 2-4,2-5
logical, 3-7,3-8,12-1,12-3 : listing, 8-10, 8-11
physical, 3-7,12-1 listing a, 2-4

Device names,* listing file, 16-1
advantages of logical, 3-8 listing floppy disk, 19-1, 19-2
physical, 5-2 printing floppy disk, 19-7
system-wide logical, 3-8 summary line in, 2-8
use of logical, 3-8 SY:in, 2-8

DEVICE NOT AVAILABLE message, 5-1 Directory at lineprinter,

Device specification, 3-4, 3-7,5-2 listing, 16-3

Device status, Directory defaults,

SYSTAT, 15-5 extended PIP, 17-10

Index-7

Directory example,
floppy disk, 19-2
Directory format,
floppy disk, 19-2
Directory listing options,
PIP, 17-6
Directory with PIP,
listing, 17-5
listing device, 17-6
zeroing, 17-5
Disk,
accounts on, 3-3
advantages of, 3-7
disadvantages of, 3-7
logically dismounting private, 20-9
logically mounting private, 209, 20-10
specifying BACKUP input, 18-6
system, 3-3
Disk as I/O device, 3-1
Disk by logical name,
accessing, 5-6
Disk by pack label,
accessing, 5-5
Disk by physical name,
accessing, 5-6
Disk description,
RX11 floppy, 23-26
Disk drive, 3-7
Disk file, 3-3
Disk format,
BACKUP, 18-1
Disk format for FLINT,
RSTS/E, 19-5
Disk in PIP transfer,
DOS, 17-13
Disk pack, 3-1
compiling program on, 8-8
logically dismounting, 20-11 .
logically mounting, 5-5, 5-6,209, 20-10
Disk pack identification label, 5-5, 5-6
DISK PACK IS PRIVATE error, 20-9
Disk packs, 3-3
Disk quota, 14-7,14-8
Disk quota report, 15-8
Disk space,
reserving, 12-7
Disk space taken by file, 2-8
Disk status,
SYSTAT, 15-5

INDEX (Cont.)

Disk structure,
public, 3-3,34
Disk transfer,
floppy, 19-1, 19-3
floppy to RSTS/E, 19-3, 194, 19-7
PIP, 17-7
RSTS/E to floppy, 19-5 to 19-7
Disks,
accounts on private, 3-3
private, 3-3, 3-4
public, 3-3,34
DISMOUNT CCL command, 20-9
DISMOUNT command, 20-11
Dismounting BACKUP volumes, 18-13
Dismounting disk pack,
- logically, 20-11
Dismounting magtape,
logically, 20-9, 20-11
Dismounting private disk,
logically, 20-9
DK:, 3-7
DM:, 3-7
$ dollar sign, 12-3
$ dollar sign in BATCH, 22-2
DOS disk in PIP transfer, 17-13
.DOS magtape label, 6-1
/DOS option,
UMOUNT, 20-11
DP:, 3-7

.Dirive,

DECtape, 3-6

disk, 3-7

magtape, 3-6
Drive unit number, 3-7
DS:, 3-7
DT:, 3-6

E command,

QUELUE, 21-1
EBCD keyboard on 2741, 23-23,23-24
EBCDIC TO ASCII question,

FLINT, 19-3
EBCDIC to ASCII translation, 19-3
Echo,

disabling terminal, 5-7, 5-8

enabling terminal, 5-8

setting terminal, 20-2

EDIT,

Index-8

creating file with, 16-5,16-6

INDEX (Cont.)

EDIT CCL command, 16-5,16-6
EDIT commands, -
summary of, 16-6 to 16-7
EDIT input file, 16-5
EDIT library program, 16-5 to 16-8
EDIT lineprinter ontput, 16-5
EDIT output file, 16-5
#EDIT prompt, 16-5 -
* EDIT prompt, 16-5
Editing a BASIC-PLUS program, 9-1 to 9-4,16-5
Editing files, 16-5
commands for, 16-6 to 16-8
END OF FILE ON DEVICE, 59
Entering a line to system, 5-9
= equal sign in PIP, 17-4
= equal sign in QUE, 21-3
Erasing a character, 9-3
Erasing a line, 9-4
Erasing mistakes, 8-2,9-3
ERR variable, C-1
ERROR IN DISMOUNT error, 20-11
ERROR IN MOUNT errors, 20-9,20-11
ERROR IN UNLOCK errors, 20-10
Error message,
% percent sign in, C-2
? question mark in, C-2
Error message abbreviations, C-2
Error messages, C-2 to C-11
Error messages in BASIC-PLUS, C-1
Error messages in RSTS/E, C-1
Error trapping in BASIC-PLUS, C-1 to C-3
Error trapping in RSTS/E, C-3
Errors,
non-recoverable, C-1,C-8 to C-11
recoverable, C-1 to C-8
ESC character at terminal, 20-3, 20-4
ESCAPE character in TTYSET, 20-4
ESCAPE key, 59
EXCEPT phrase, -
BACKUP, 18-3
! exclamation mark in BACKUP, 18-3
! exclamation mark in BATCH, 22-1
! exclamation mark, 12-3
Executable file protection, 2-8
Executing a BASIC-PLUS program, 8-5, 8-6
Executing statement in immediate mode, 10-1
Execution,
continuing, 5-9
halting, 5-8, 10-2, 10-3

Executive, 1-3
Existing program,
calling an, 8-4
EXIT command,
TTYSET, 204
EXTEND command, 9-9
EXTEND format, 9-7

-EXTEND format example, 9-8

EXTEND statement, 99
Extended PIP directory defaults, 17-10
Extended PIP features, 17-8
Extended PIP input defaults, 17-9,17-10,17-13
Extended PIP options, 17-11,17-12
Extended PIP output defaults, 17-10
Extended PIP program, 17-8 to 17-17
Extended PIP transfer defaults, 17-10
Extending PIP command line, 17-18
Extension, 2-5

.BAC, 7-1,8-7

BAK, 165

.BAS, 2.5,7-1

blank, 12-4

.CMD, 2-5

file, 12-1,12-4

null file, 12-4

. period in, 2-5

TMP, 16-5

Extension in BACKUP,

.TMP, 18-6
Extension in BATCH,

.BAC, 229

MAP, 229

.OBJ, 229

.TMP, 16-5

.TSK, 229

Extension in QUE,

.CTL, 21-3
LST, 21-3

Extensions,

Index-9

guide to file, 12-4
rules for creating, 2-6

Fast copy, 17-19
Fast logout, 14-8
Fatal error messages, C-2
FILCOM,

patch file in, 16-9
FILCOM input file, 169

FILCOM library program, 169 to 16-10,16-13,

16-14
FILCOM output file, 16-9
File, 1-4
creation date of, 2-8
disk, 3-3
disk space taken by, 2-8
indirect command, 13-2
listing-a, 3-3
pre-extending a, 12-7
system location of, 3-3
File comparison,
matching lines in, 169,16-11
File directory, '
listing, 16-1
File extension, 12-1, 12-4
File extension,
blank, 12-4
null, 124
File extensions,
guide to, 12-4
File in blocks,
size of, 2-8
File in FILCOM,
patch, 16-9
File information,
guide to, 11-2
File protection,
executable, 2-8
File protection code, 2-6 to 2-8,12-1,12-5
File specification, 2-5,12-1
File specification,
elements of, 11-2
File specification defaults, 12-1

File specification option, 12-1,12-5,1 27,128

File specifications,
rules for, 2-6
File statistics, 2-8
File with EDIT,
creating, 16-5,16-6
Filename, 2-5,12-1, 124
Filenames,
rules for creating, 2-6
Filenames with PIP,
changing, 17-4
Files, 2-1,2-4
Files,
commands for editing, 16-6 to 16-8
comparing two ASCII, 169
descriptive names for, 2-5
editing, 16-5

INDEX (Cont.)

Files between devices,
transfer, 17-1,17-2 <

- Files off-line,

storing, 18-1
Files with PIP,
deleting, 17-4
/FILESIZ.E, 12-5,12-7
Fill characters,
terminal, 20-2
Fill characters for VI05, 23-18
Fill characters in TTYSET, 20-6, 20-7
Fill command,
TTYSET, 20-7
FLINT,
blocking factor in, 19-3, 194, 19-6
data set label in, 19-3
initiating, 19-1
record format in, 194, 19-5
record length in, 19-6
RSTS/E disk format for, 19-5
specify data set in, 19-5
specify floppy disk in, 194, 19-5
specify RSTS/E file in, 19-6
FLINT ASCII TO EBCDIC question, 19-5
FLINT CCL command, 19-9
FLINT completion message, 19-6
FLINT dialogue, 19-1,19-3 to 19-6
FLINT dialogue examples, 19-7
FLINT /DIRECTORY command, 19-1
FLINT EBCDIC TO ASCII question, 19-3
FLINT error messages, 19-8
FLINT filename format, 19-6
FLINT floppy disk specification, 19-3
FLINT INPUT FROM question, 19-3, 19-6
FLINT library program, 19-1 to 199

FLINT OUTPUT TO question, 19-1,19-3,19-5

#FLINT prompt, 19-3 ,
FLINT RECORD LENGTH question, 19-6
FLINT /TOIBM command, 19-1
FLINT /TORSTS command, 19-1
Floating-point calculations, 8-13
Floppy disk,
mounting a, 2327
Floppy disk controller,
RX11, 2327 '

" Floppy disk data set, 19-2,19-3

Floppy disk description,
RX11, 23-26

Floppy disk directory,
listing, 19-1,19-2
printing, 19-7

Index-10

INDEX (Cont.)

Floppy disk directory example, 19-7
format, 19-2
Floppy disk drive,
RX11, 23-27
Floppy disk transfer, 19-1,19-3
Floppy disk transfer,
RSTS/E to, 19-5to 19-7
Floppy to RSTS/E disk transfer, 19-3,19-4, 19-7
Form feed,
setting terminal, 20-1
Form length in QUE, 21-4
Form name in QUE, 21-4
Format,
EXTEND, 9-7
LINE FEED key in, 9-8,9-9
NO EXTEND, 9-7,9-9, 9-10
Format example,
EXTEND, 9-8
NO EXTEND, 9-8
Format rules,
changing BASIC-PLUS, 9-7
Formatting a BASIC-PLUS program, 9-7 to 9-10
Forms control in QUE, 21-4
FROM DEVICE question,
RESTORE, 189
FROM DISK question,
BACKUP, 18-6
FROM FILE(S) question,
BACKUP, 18-6,18-7
FROM FILES question,
RESTORE, 189
Functions,
summary of BASIC-PLUS, A-2to A-5

GOTO statement in debugging, 10-2
GRIPE library program, 15-10

Guide to BASIC-PLUS commands, 7-2 to 7-4
Guide to CCL commands, 11-2

Guide to device designators, 12-2
Guide to file extensions, 12-4

Guide to file information, 11-2

Guide to library programs, 11-1

Guide to peripheral devices, 23-1,23-2
Guide to protection codes, 2-7, 12-6
Guide to resource commands, 4-1,4-2

Halting execution, 5-8, 10-2, 10-3
Hard copy terminal settings, 20-2
JHE, 13-1

Header,

library program, 13-2

suppress printing of file, 21-5
HELLO command, 2-1, 14-1
HELLO command at logged-in terminal, 144
HELP command,

TTYSET, 204
Help files for library programs, 13-1
Help message,

COPY, 17-19
[HELP option in BACKUP, 184

I command, 14-1
1/0 device,
disk as, 3-1 -
terminal as, 3-1
I/O devices, 3-1
Identification label,
disk pack, 5-5, 5-6
Identification line,
system, 2-1
ILLEGAL FILE NAME error, 5-7
ILLEGAL NUMBER message, 5-3
Immediate mode,
executing statement in, 10-1
limitations of, 10-1, 10-2
Immediate mode of BASIC-PLUS, 10-1, 10-2
INDEX FILE question,
RESTORE, 189
Index files,
BACKUP, 18-1
Index volume,
BACKUP, 18-1
Indicator lights,
magtape unit, 23-15
Indirect command file, 13-2
BACKUP, 18-4, 18-10, 18-11
PIP, 17-17
Individual file deletion, 14-7
Information message, C-2
Inhibiting daily message, 14-1
INPUT FROM question,
FLINT, 19-3,19-6
Input of a new program, 8-2
Input-only devices, 3-1
Input/output control characters, 5-8
Interactive system, 1-1
Interactive timesharing, 1-1
Intermediate code, 7-1
Interruption commands,
BACKUP, 18-10,18-11

Index-11

INDEX (Cont.)

Introduction to library programs, 11-1 Keyboard,
INUSE library program, 15-11 2741 terminal, 23-19 to 23-23
INVALID ENTRY message, 2-2 ASR-33, 23-2,23-3
CALL/360 BASIC, 23-25,23-26

Job, VTOS, 23-17,23-18

attaching to a, 14-2 to 14-5 ‘ Keyboard on 2741,
$JOB command, : BCD, 23-24,23-25

BATCH, 22-7 EBCD, 23-23,23-24
Job copies, KILL statement, 9-5

number of QUE, 214,21-5 Knob,
Job from queue, LINE-OFF-LOCAL terminal, 2-1, 2-4

removing a, 21-8 KSR-33 terminal, 20-4
Job in queue, .
continuing, 21-8

halting, 21-8 L command,
modifying a, 21-8 ' QUE, 21-6

Job information, L report,
listing batch, 21-7 QUE, 21-6,21-7

/JOB option, LA30S terminal settings, 20-2
UMOUNT, 20-11 LA36 manual controls, 23-26

Job output options, LA36 terminal, 23-26 '
QUE, 21-4 Label,

Job parameters, .ANSI magtape, 6-1
modifying, 21-8 DECpack, 5-5

Job request information, disk pack identification, 5-5, 5-6
listing, 21-6, 21-7 _ .DOS magtape, 6-1

Job requests, Label format,

~ creating, 21-1 to 21-3 setting magtape, 20-11

Job requests in timesharing, 1-2,1-3 ' Label in DEASSIGN,

Job separation, 1-3 ‘ magtape, 5-3

Job specification,) Label in FLINT,
QUE, 21-2,21-3 data set, 19-3

Job status, Labeling default,
QUE, 21-7 _ changing magtape, 6-1
SYSTAT, 15-5 ' ' Leaving the system, 2-3,14-7

Job swapping, 1-3 Length,

Job transfer of device, 5-3 finding maximum program, 8-10

Jobname, finding program, 8-10
assigning BATCH, 22-7 : LENGTH command, 8-10
specifying QUE, 21-5 Library account,

Jobs, system, 12-3
options to modify, 21-8 Library file in BATCH, 22-10
spooling, 21-1 Library program,

BACKUP, 18-1 to 18-17
BATCH, 22-1to022-22

K command, COPY, 17-19 to 17-21
QUE, 21-8 , ' DIRECT, 16-1 to 16-4
K words, 8-10 - EDIT, 16-5to 16-8
KB:, 3-4 FILCOM, 16-9 to 16-14
KEY command, 4-1,5-8 FLINT, 19-1 to 199

Index-12

Library program (cont.),
GRIPE, 15-10
INUSE, 15-11
LOGIN, 14-1to 14-6
LOGOUT, 14-7,14-8
MONEY, 159
PIP, 17-1t0 17-17
QUE, 21-1 to 21-11
QUOLST, 15-8
SYSTAT, 15-1 to 15-7
TTYSET, 20-1 to 20-8
UMOUNT, 209 to 20-11
Library program header, 13-2
Library program information, 13-1
Library programs,
guide to, 11-1
help files for, 13-1
introduction to, 11-1
system, 3-3
Line,
erasing a, 9-4
multiple-statement, 9-9
LINE FEED key in format, 9-8,9-9
LINE-OFF-LOCAL terminal knob, 2-1, 2-4
Lineprinter in QUE,
specifying, 21-5
Lineprinter,
advantages of, 3-5
disadvantages of, 3-5
listing directory at, 16-3
LP11, 23-5,23-7
manual control of, 23-7 to 239
Lineprinter as output device, 3-1
Lineprinter character set, 23-7
Lineprinter output,
EDIT, 16-5
getting, 8-4
Lines, .
comparing blank file, 16-10,16-13 .
deleting program, 9-2,9-3
listing program, 9-1
printing program, 9-1
Lines in file comparison,
matching, 169, 16-11
Lines of files,
comparing, 16-9
LIST,
summary of, 9-2
LIST command, 9-1

INDEX (Cont.)

Index-13

Listing,
getting a, 8-4
Listing a directory, 2-4
Listing a file, 3-3
Listing a program, 3-3,9-1
Listing device directory with PIP, 17-6
Listing directory, 8-10,8-11
Listing directory at lineprinter, 16-3
Listing directory with PIP, 17-5
Listing file directory, 16-1
LISTING FILE question,
BACKUP, 18-6
RESTORE, 189
Listing program lines, 9-1
LISTNH,
summary of, 9.2
LISTNH command, 8-4,9-1
/LOCK option,
UMOUNT, 20-10
Logged-in terminal,
HELLO command at, 144
run LOGIN from, 144
Logged-out terminal,
run LOGIN from, 14-1
run SYSTAT from, 14-6
Logging in, 2-1,14-1,14-2
Logging out, 2-3, 14-7
Logical account,
overriding, 5-5
Logical account association,
cancel, 5-7
Logical account name, 5-7
Logical device name, 3-7,3-8,12-1,12-3
Logical device name,
assigning, 5-3
: colon in, 5-4
Logical device names,
advantages of, 3-8
system-wide, 3-8
use of, 3-8
Logical name,
accessing disk by, 5-6
ASSIGN, 5-3
DEASSIGN, 5-7
system-wide, 5-6
Logical names,
ASSIGN, 5-4
assigning multiple, 5-3,5-4
system-wide, 5-5

INDEX (Cont.)

/LOGICAL option, Magtape files in PIP,
UMOUNT, 20-10 ANSI, 17-15,17-16 .

Logically dismounting disk pack, 20-11 Magtape label,

Logically dismounting magtape, 20-9, 20-11 .ANSI, 6-1

Logically dismounting private disk, 209 .DOS, 6-1

Logically mounting disk pack, 5-5, 5-6, 20-9, 20-10 Magtape label format,

Logically mounting magtape, 20-9, 20-11
Logically mounting private disk, 20-9, 20-10
Logically named account on device, 5-5
Logically named device,

releasing, 5-4

reserving, 5-4
Logically naming accounts, 5-7
LOGIN command, 14-1
LOGIN from logged-in terminal,

setting, 20-11
Magtape label in DEASSIGN, 5-3
Magtape labeling default,

changing, 6-1
Magtape operating procedures, 23-13
Magtape parity in BACKUP, 18-13
Magtape parity in COPY, 17-20
Magtape record format in PIP, 17-16
Magtape settings in COPY, 17-20

run, 144 Magtape transfer,
LOGIN from logged-out terminal, PIP, 17-8
run, 14-1 : Magtape unit,
LOGIN library program, 14-1to 14-6 TJU16, 23-12,23-13
Logout, TM11/TU10, 23-12
DEASSIGN on, 5-1 TU10, 23-13
deleting files at, 14-7 Magtape unit indicator lights, 23-15
fast, 14-8 Magtape with PIP,
LOGOUT library program, 14-7, 14-8 zero, 6-1
Logout report, 2-3 . Manual control of card reader, 23-5, 23-6
Lower case at terminal, 20-4 Manual control of DECtape, 23-10,23-11, 23-12
LP11 lineprinter, 23-5,23-7 . Manual control of devices, 23-1 to 23-27
LP:, 3.5 Manual control of lineprinter, 23-7 to 23-9
.LST extension in QUE, 21-3 Manual control of magtape, 23-13 to 23-15
Manual control of papertape, 234, 23-5
M command, Manual controls,
QUE, 21-8 ASR-33, 23-2
M options, LA36, 23-26
QUE, 21-8 VTO5, 23-18 to 23-20
Macro commands, .MAP extension in BATCH, 229
TTYSET, 20-4, 20-5 Map file in BATCH, 22-9,22-10
Magtape, : Marking end of data file, 5-9
advantages of, 3-6 Matching lines in file comparison, 16-9,16-11
disadvantages of, 3-6 Maximum program length,
logically dismounting, 20-9,20-11 : finding, 8-10
logically mounting, 209, 20-11 Memory, 1-2
manual control of, 23-13 to 23-15 Merge options,
mounting a, 23-13 to 23-16 PIP, 17-3
releasing a, 5-3 Merging programs, 9-5 to 9-7
threading a, 23-16 Message,
Magtape blocks in PIP, 17-16 daily, 2-2
Magtape characteristics in REASSIGN, 5-3 Message receiver report,
Magtape density in BACKUP, 18-13 SYSTAT, 15-5
Magtape density in COPY, 17-20 Message to system manager,
Magtape drive, 3-6 sending, 15-10

Index-14

Minimum cluster size,

setting, 12-7
Mistakes,

erasing, 8-2,9-3
MM:, 3-6
/MODE, 12-5,12-8
Mode,

setting device, 12-8
Modifying a BASIC-PLUS program, 9-5t09-8
MONEY library program, 15-9
MONEY report contents, 159
/MORE option in PIP, 17-18
MORE> prompt in PIP, 17-18 -
MORE> prompt in QUE, 21-5
MOUNT CCL command, 5-6,20-9
MOUNT command, 5-6

/RONLY in, 5-6
MOUNT options, 20-10, 20-11
Mounting a floppy disk, 23-27
Mounting a magtape, 23-13 to 23-16
Mounting BACKUP volumes, 18-13
Mounting disk pack,

logically, 5-5,5-6,20-9,20-10
Mounting magtape,

logically, 209, 20-11
Mounting private disk,

logically, 20-9,20-10
MT:, 3-6
Multiple-line statement, 9-9,9-10
Multiple-statement line, 9-9

NAME AS statement, 8-8 to 8-10
Negative cluster size,
setting, 12-7
NEW command, 8-1
New program,
input of a, 8-2
writing a, 8-1
No copy, 17-19
NO EXTEND command, 9-9
NO EXTEND format, 9-7,9-9,9-10
NO EXTEND format example, 9-8
NO EXTEND statement, 9-9
NO FILL command,
TTYSET, 20-7
No header in QUE, 21-5
/NOLOGICAL option,
UMOUNT, 20-10
NONAME file, 8-2,8-4, 8-5
NOT A VALID DEVICE message, 5-1

INDEX (Cont.)

NOTICE.TXT, 14-2

NUL characters in TTYSET, 20-6
Null file extension, 12-4

Number sign system prompt, 2-1, 2-2

.OBJ extension in BATCH, 229
OLD command, 8-4, 8-5
Old program,
calling an, 8-4
Operators,
summary of BASIC-PLUS, A-1,A-2
Option,
file specification, 12-1,12-5,12-7,12-8
Options,
COPY, 17-19
DIRECT, 16-1 to 16-3
extended PIP, 17-11,17-12
list of UMOUNT, 20-11
MOQOUNT, 20-10, 20-11
PIP, 17-1,17-2
PIP directory listing, 17-6
PIP merge, 17-3
PIP transfer, 17-3
QUE, 21-3t021-5
SYSTAT, 15-2,15-3
UMOUNT, 20-10, 20-11
Options to modify jobs, 21-8
Output,
getting lineprinter, 8-4
getting papertape, 8-4
suppressing, 10-3
suppressing CRT, 10-3
suppressing terminal, 5-9
suspending CRT terminal, 5-9
Output device,
lineprinter as, 3-1
OUTPUT TO question,
FLINT, 19-1,19-3, 19-5
Output-only devices, 3-1

Pack label,
accessing disk by, 5-5
Paper tape punch,
low-speed, 23-3
Papertape, 3-2
advantages of, 3-5
disadvantages of, 3-5
manual control of, 23-4,23-5

Index-15

Papertape at terminal,
reading, 5-7, 5-8
Papertape output,
getting, 8-4
Papertape punch, 3-2, 3-5
Papertape punch,
ASR-33,23-3,23-4
Papertape reader, 3-5
ASR-33, 233
low-speed, 23-3
Papertape reader as input device, 3-1
Papertape reader/punch,
high-speed, 23-4, 23-5
Parity bit,
setting terminal, 20-3, 20-7
Password, 2-1
PASSWORD: prompt, 2-2
Patch file in FILCOM, 169
% percent sign, 12-3
% percent sign in error message, C- 2
. period in extension, 2-5
Peripheral devices, 23-1
guide to, 23-1,23-2
Peripheral transfers, 17-1
Physical device name, 3-7,12-1
Physical device names, 5-2
Physical name,
accessing disk by, 5-6
assigning valid, 5-4
PIP,

ANSI magtape files in, 17-15,17-16

ASCII transfer with, 17-6,17-7
changing filenames with, 174
changing protection with, 174
.CMD extension in, 17-17

copy BACKUP work-file with, 18-6

CTRL/Cin, 17-1
CTRL/Z in, 17-1,17-17
deleting files with, 17-4 .

" =equal sign in, 17-4
listing device directory with, 17-6
listing directory with, 17-5
magtape blocks in, 17-16
magtape record format in, 17-16
/MORE option in, 17-18
MORE> prompt in, 17-18
orderly exit from, 17-1
: semicolon in, 17-17
wild cards in, 17-9,17-10,17-12
zero magtape with, 6-1
zeroing directory with, 17-5

INDEX (Cont.)

PIP binary file transfer, 17-7
PIP CCL command, 17-8
PIP command file,

@ at sign in, 17-17
PIP command format, 17-2
PIP command line,

extending, 17-18
PIP compiled file transfer, 17-8
PIP contiguous block transfer, 17-18
PIP DECtape transfer, 17-7
PIP DECtape usage, 17-6
PIP deletion,

file inspection in, 17-15

wild cards in, 17-14,17-15
PIP directory defaults,

extended, 17-10
PIP directory listing options, 17-6
PIP disk transfer, 17-7
PIP features,

extended, 17-8
PIP indirect command file, 17-17
PIP input defaults,

extended, 17-9,17-10,17-13
PIP input file, 17-1
PIP input file specifications, 17-6
PIP input filespec elements, 17-2
PIP library program, 17-1 to 17-17
PIP magtape transfer, 17-8
PIP merge options, 17-3
PIP options, 17-1,17-2
PIP options,

extended, 17-11,17-12
PIP output defaults,

extended, 17-10
PIP output file, 17-1 '
PIP output filespec elements, 17-2
PIP program,

extended, 17-8 to 17-17
#PIP prompt, 1-4,17-1
PIP rename,

file inspection in, 17-14

wild cards in, 17-13,17-14
PIP transfer,

block size in, 17-7

CTRL/Z in, 17-7

DOS disk in, 17-13

file inspection in, 17-13
PIP transfer defaults,

extended, 17-10
PIP transfer operations, 17-6

Index-16

PIP transfer options, 17-3
PIP version identification, 17-9
PIP wild card defaults, 17-9,17-10,17-12
pound sign, 12-3
PP:, 3-5
PR:, 35
Pre-extending a file, 12-7
PREFIX character in TTYSET, 204
PRINT LINE statement in debugging, 10-3
PRINT statement in debugging, 10-5
Printing a program, 9-1
Printing program lines, 9-1
Priority,

assigning BATCH, 22-7

Private delimiters in TTYSET, 20-3,20-7,20-8

Private disk,

logically dismounting, 20-9

logically mounting, 209, 20-10
Private disks, 3-3, 34
Private disks,

accounts on, 3-3
[PRIVATE option,

UMOUNT, 20-10
Processor, 3-2
Program,

compiled, 7-1

creating a BASIC-PLUS, 8-1

renaming a BASIC-PLUS, 8-3

running a BASIC-PLUS, 8-5

saving a BASIC-PLUS, 8-2

source, 7-1
Program information,

library, 13-1
Programs,

guide to library, 11-1

introduction to library, 11-1

system library, 3-3
[proj,prog], 12-1,12-3
[proj,prog]

[] square brackets in, 2-1
Project-programmer number, 2-1,12-1, 12-3
Project-programmer number,

[slash in, 2-3, 14-1
Prompt,

* BACKUP, 18-10

CONFIRM:, 2-3

#COPY, 17-19

#DIRECT, 16-1

#EDIT, 165

* EDIT, 16-5

#FLINT, 19-3

INDEX (Cont.)

Prompt (cont.),
PASSWORD:, 2-2
#PIP, 14,171
#QUE, 21-1
QUEMORE>, 21-5
READY, 14,22
#system, 2-1,2-2°
? TTYSET, 20-1

Prompt in BACKUP,
CONT>, 18-3

* Prompt in PIP,
MORE>, 17-18

Protection,
changing default, 6-1
executable file, 2-8
read, 2-61to 2-8
write, 2-6 to 2-8

Protection code,
changing, 8-8, 8-10
compiled, 8-8
file, 2-6to 2-8, 12-5

Protection codes,
compiled, 12-6
guide to, 2-7,12-6

Protection with PIP,
changing, 17-4

<protection>, 2-6,12-1,12-5

Public disk structure, 3-3, 3-4

Public disks, 3-3,3-4

Public strdcture, 2-8

Q command,
QUE, 21-2,21-3

QUE,
BATCH in, 21-3
binary file in, 21-5
case in, 21-4
.CTL extension in, 21-3
CTRL/Z in, 21-2
dating requests in, 21-4
device MODE in, 21-4
= equal sign in, 21-3
errors in, 219
formlength in, 21-4
form name in, 21-4
formatting in, 21-4
forms control in, 21-4
lineprinter in, 21-3
.LST extension in, 21-3
no header in, 21-5
priority in, 21-4

Index-17

INDEX (Cont.)

QUE (cont.), Queue non-public device, 21-5
sequence number in, 21-7,21-8 QUEUE.SYS, 21-1
specifying lineprinter in, 21-5 QUOLST library program, 15-8
terminating, 21-1 QUOLST report contents, 15-8
truncating lines in, 21-4 Quota,
wild cards in, 21-3 disk, 14-7,14-8
zero/O in, 21-4 ’ Quota report,
QUE at logged-out terminal, 21-11 disk, 15-8
QUE CCL commands, 21-9,21-11 ; Quotation marks in BATCH, 22-1
QUE command options, 21-5
QUE commands,
summary of, 21-2 Radix-50 character positions, D-7
QUE continuation line, 21-5,21-6 Radix-50 character set, D-4
QUE device default, 21-6 Read only mode,
QUE E command, 21-1 setting, 12-8
QUE error codes, 21-10 Read protection, 2-6 to 2-8, 12-5
QUE error messages, 21-10 Read/write mode,
QU file deletion, 21-5 . setting, 12-8
QUE file specification, 21-2,21-3 READY prompt, 1-4,2-2
QUE for batch run, . 22-19, 22-20 : REALLY ZERO question, 17-5
QUE from user program, REASSIGN command, 5-3
chaining to, 21-9 Receiver report,
QUE job copies, SYSTAT message, 15-5
number of, 21-4,21-5 Record format in PIP,
QUE job output options, 21-4 magtape, 17-16
QUE job specification, 21-2,21-3 RECORD LENGTH question
QUE job status, 21-7 FLINT, 19-6 ,
QUE jobname, Releasing a device, 5-1to 5-3
specifying, 21-5 Releasing a magtape, 5-3
QUE K command, 21-8 Releasing logically named device, 5-4
QUE L command, 21-6 Rename,
QUE L report, 21-6,21-7 file inspection in PIP, 17-14
QUE library program, 21-1 to 21-11 wild cards in PIP, 17-13,17-14
QUE M command, 21-8 RENAME command, 8-8
QUE M options, 21-8 Renaming a BASIC-PLUS program, 8-3, 8-9
QUE MORE> prompt, 21-5 Renaming current program, 8-8
-QUE options, 21-3to 21-5 ‘ REPLACE command, 8-3,89
QUE options, Replacing a saved program, 8-9
abbreviating, 21-3 Reserving a device, 5-1
QUE options in M command, 21-8 , Reserving disk space, 12-7
QUE priority setting, 21-6 . Reserving logically named device, 5-4
QUE prompt, 21-1 : Resource commands, 4-1
QUE Q command, 21-2,21-3 guide to, 4-1,4-2
? question mark in error message, C-2 RESTOR.LST in BACKUP,. 189
Queue, RESTORE,
continuing job in, 21-8 L comparing files in, 18-10
halting job in, 21-8 - overwriting files in, 18-10
modifying a job in, 21-8 RESTORE BEGIN AT question, 18-10
removing a job from, 21-8 RESTORE COMPARE FILES question, 18-10
QUEUE CHANGING message, 21-6 RESTORE dialogue, 18-9,18-10

Index-18

RESTORE dialogue example, 18-12
RESTORE dialogue summary, 18-8
RESTORE disk,

specifying, 18-9,18-10
RESTORE file,

specifying first, 18-10
RESTORE files,

specifying, 189
RESTORE FROM DEVICE question, 189
RESTORE FROM FILES question, 18-9
RESTORE index file,

specifying, 189
RESTORE INDEX FILE question, 18-9
RESTORE input device,

specifying, 189
RESTORE listing file, 18-2

placing, 18-9
RESTORE LISTING FILE question, 189
RESTORE mode ,

choosing, 18-4
RESTORE mode of BACKUP, 18-1,18-2
RESTORE SUPERSEDE question, 18-10
RESTORE TO DISK question, 18-9,18-10
RESTORE work-file,

specifying, 189
RESTORE WORK-FILE question, 189
Restoring backed-up files, 18-1
RETURN key, 59
RETURN key on 2741, 23-21
/RONLY, 12-5,12-8
/RONLY in MOUNT command, 5-6
/RONLY option,

UMOUNT, 20-10
RUBOUT key, 8-2,9-3
RUN command, 8-5, 8-6
RUN dev: command, 8-6
Run-time status,

SYSTAT, 15-5
Run-time system, 1-3

BASIC-PLUS, 1-3
RUNNH command, 8-5
Running a BASIC-PLUS program, 8-5, 8-6
Running a program, 1-3
RX11 floppy disk controller, 23-27
RX11 floppy disk drive, 2327

SAVE command, 8-2, 8-3
SAVE dev: command, 8-3, 8-4
/SAVE option,

BACKUP, 184, 18-10

INDEX (Cont.)

Saved program,

replacing a, 89
Saving a BASIC-PLUS program, 8-2
SCALE command, 8-11 to 8-15
Scale factor,

changing, 8-15

determining, 8-12

setting, 8-12
Scaled arithmetic, 8-11 to 8-13
Scheduling of timesharing, 1-1,1-2
; semicolon in PIP, 17-17
; semicolon in TTYSET, 20-8
Sending message to system manager, 15-10
Sequence number in QUE, 21-7,21-8
SET CCL command, 20-8
SET command, 20-1
Setting terminal characteristics, 20-1 to 20-7
/ slash in account number, 14-1
/ slash in BACKUP specification, 18-3
/ slash in project-programmer number, 2-3, 14-1
“slice” of time, 1-1
SORT11 in BATCH,

running, 22-17,22-18
Source program, 7-1
Special account characters, 12-3
Special characters,

BATCH, 22-4
Special characters in 2741, 23-22
Specification,

elements of file, 11-2

file, 12-1
Specification defaults,

fite, 12-1
Specification option,

file, 12-1
Specifications,

rules for file, 2-6
Speed,

setting terminal, 20-2, 20-3
Spooling jobs, 21-1
Spooling programs,

system, 21-1
STALL terminal characteristic, 5-9,20-3
STALL terminal setting, 10-3
Statement,

multiple-line, 9-9,9-10

NO EXTEND, 99
Statement in immediate mode,

executing, 10-1

Index-19

INDEX (Cont.)

Statement modifiers, SYSTAT output file, 15-2,15-7
BASIC-PLUS, A-10 SYSTAT report abbreviations, 15-6, 15-7
Statements, : SYSTAT run time status, 15-5
summary of BASIC-PLUS, A-5to A-11 System disk, 3-3
Statistics, System identification line, 2-1
account, 2-8 System library account, 12-3
file, 2-8 ' System library programs, 3-3
Status report, ' System manager,
account, 159 sending message to, 15-10
printing system, 15-1,15-2 #system prompt, 2-1,2-2
Status report contents, System status report,
system, 15-4,15-5 4 printing, 15-1,15-2
Status report example, System status report contents, 15-4,15-5
system, 15-4 System status report example, 15-4
STOP statement in debugging, System-wide logical device names, 3-8
10-2, 10-5 System-wide logical name, 5-6
Storage device, System-wide logical names, 5-5

specifying, 8-3
Storing files off-line, 18-1

Summary, Tab,

BASIC-PLUS command, B-1to B-4 setting terminal, 20-1

BASIC-PLUS language, A-1to A-11 TAPE command, 4-1,5-7,5-8
SUPERSEDE question, Tape punch,

RESTORE, 18-10 low-speed paper, 23-3
Suppressing CRT output, 10-3 TC11/TU56 DECtape unit, 23-9
Suppressing output, 10-3 Temporary BASIC-PLUS program, 8-1, 8-2
Suppressing terminal output, 5-9 Terminal,

Suspending CRT terminal output, 5-9 2741,23-19t0 2323
Swapping, advantages of, 3-4

job, 1-3 ASR-33, 204, 23-2,23-3
Swapping space, 1-2 console, 2-2
Switch, control characters at, 20-6

LINE-OFF-LOCAL terminal, 2-1, 2-4 disadvantages of, 3-5
Switch syntax, ESC character at, 20-3, 20-4

BATCH, 22-2,22-5 KSR-33, 204
Switch usage error, 12-6 LA36, 2326
Switches, lower case at, 204

negating BATCH, 22-6 reading papertape at, 5-7, 5-8
SY:, 3-7,3-8 v upper case at, 204
SY: in directory, 2-8 VTO05, 20-4,23-16 to 23-18
SYS CCL command, 15-5,15-7 Terminal as I/O device, 3-1
SYSTAT, ‘ : -~ Terminal binary mode, 20-3

logged-out, 15-1to 15-3 Terminal case,

SYSTAT account statistics, 15-5 setting, 20-1

SYSTAT buffer status, 15-5 Terminal case settings, 20-2
SYSTAT device status, 15-5 Terminal character settings, 20-2
SYSTAT disk status, 15-5 Terminal characteristics,
SYSTAT library program, 15-1to 15-7 STALL, 59, 20-3

SYSTAT message receiver report, 15-5 Terminal characteristics,
SYSTAT options, 15-2,15-3 setting, 20-1 to 20-7

Index-20

Terminal codes,
2741, 23-21,23-22
Terminal echo,
disabling, 5-7, 5-8
enabling, 5-8
setting, 20-2
Terminal fill characters, 20-2
Terminal form feed,
setting, 20-1
Terminal in use,
declaring, 15-11
Terminal keyboard,
2741,23-19 to 2323
Terminal knob,
LINE-OFF-LOCAL, 24, 2-4
Terminal output,
suppressing, 5-9
suspending CRT, 5-9
Terminal parity bit,
setting, 20-3, 20-7
Terminal setting,
STALL, 10-3
UP ARROW, 20-3
XOFF, 20-3,20-7
XON, 20-1 to 20-3,20-7
Terminal settings,
CRT, 20-2
hard copy, 20-2
LA30S, 20-2
Terminal speed,
setting, 20-2,20-3
Terminal switch,
LINE-OFF-LOCAL, 21,24
Terminal tab,
setting, 20-1
Terminal width,
setting, 20-1
Terminating QUE, 21-1
TIL:, 34
Time,
“slice” of, 1-1
Timesharing,
commands in, 1-3
interactive, 1-1
job requests in, 1-2, 1-3
scheduling of, 1-1,1-2
user view of, 1-3
Timesharing operation,
example of, 1-4

Timesharing report on logout, 2-3

INDEX (Cont.)

Timesharing system, 1-1
TJU16 magtape unit, 23-12,23-13
TM11/TU10 magtape unit, 23-12
.TMP extension, 16-5
.TMP extension in BACKUP, 18-6
.TMP extension in BATCH, 22-9
TO DEVICE question,

BACKUP, 18-7
TO DISK question,

RESTORE, 189, 18-10
Transfer,

block size in PIP, 17-7

CTRL/Z in PIP, 17-7

DOS disk in PIP, 17-13

file inspection in PIP, 17-13

floppy disk, 19-1,19-3

floppy to RSTS/E disk, 19-3,194,19-7

multiple file, 17-3

PIP binary file, 17-7

PIP compiled file, 17-8

PIP contiguous block, 17-8

PIP DECtape, 17-7

PIP disk, 17-7

PIP magtape, 17-8

RSTS/E to floppy disk, 19-5 to 19-7
Transfer defaults,

extended PIP, 17-10
Transfer files between devices, 17-1,17-2
Transfer of device,

job, 5-3
Transfer operations,

PIP, 17-6
Transfer options,

PIP, 17-3
Transfer with PIP,

ASCH, 17-6,17-7
Transferring a device, 5-3
Transferring program control, 9-6
Transfers,

peripheral, 17-1 ,
Trapping in BASIC-PLUS error, C-1, C-2
.TSK extension in BATCH, 229
TT:, 34
TTYSET,

ALTMODE character in, 204

ESCAPE character in, 20-4

fill characters in, 20-6, 20-7

NUL characters in, 20-6

PREFIX character in, 20-4

Index-21

TTYSET (cont.),
private delimiters in, 20-3,20-7, 20-8
; semicolon in, 20-8

TTYSET commands, 20-1
listing, 20-4

TTYSET DELIMITER commands, 20-7, 20-8

TTYSET error messages, 20-6
TTYSET EXIT command, 20-4
TTYSET FILL command, 20-7
TTYSET for VI05, 23-19
TTYSET from logged-out terminal, 20-1
TTYSET HELP command, 20-4
TTYSET library program, 20-1 to 20-8
TTYSET macro commands, 204, 20-5
TTYSET NO FILL command, 20-7
TTYSET program,

terminating, 20-4
? TTYSET prompt, 20-1
TU10 magtape unit, 23-13
TU56 DECtape drive, 23-10

UMOUNT /ANSI option, 20-11
UMOUNT /DOS option, 20-11
UMOUNT /JOB option, 20-11
UMOUNT library program, 20-9 to 20-11
UMOUNT /LOCK option, 2-10
UMOUNT /LOGICAL option, 20-10
UMOUNT /NOLOGICAL option, 20-10
UMOUNT options, 20-10, 20-11
UMOUNT options, :

list of, 20-11
UMOUNT /PRIVATE option, 20-10
UMOUNT /RONLY option, 20-10
UMOUNT /UNLOAD option, 20-11
Unit number,

device, 3-7,5-2

.drive, 3-7
JUNLOAD option,

UMOUNT, 20-11
UNSAVE statement, 9-4,9-5
UP ARROW terminal setting, 20-3
Upper case at terminal, 20-4
User,

becoming a, 2-1
User access,

denial of, 2-1
User area, 2-1
User view of timesharing, 1-3

INDEX (Cont.)

Variables summary,
BASIC-PLUS, A-1
Verifying device copy, 17-19
Version identification, 13-2
Volume,
backup, 18-1
BACKUP index, 18-1
VTOS,
fill characters for, 23-18
TTYSET for, 23-19
VTOS baud rates, 23-18
VTOS keyboard, 23-17,23-18
VTO05 manual controls, 23-18 to 23-20
VTOS5 terminal, 20-4,23-16 to 23-18

Warning messages, C-2
* wild card, 12-4
? wild card, 12-4,12-5
Wild card defaults,

PIP, 179,17-10,17-12
Wild cards in BACKUP, 18-2
Wild cards in BATCH, 22-3
Wild cards in DIRECT, 16-1,16-3
Wild cards'in PIP, 179,17-10,17-12
Wild cards in PIP deletion, 17-14,17-15
Wild cards in PIP rename, 17-13,17-14
Wild cards in QUE, 21-3

Words,
K, 8-10
Work file,
BACKUP, 18-1
Work-file,
specifying BACKUP, 18-6
WORK-FILE question,
BACKUP, 18-6
RESTORE, 189

Write protection, 2-6 to 2-8,12-5
Writing a new program, 8-1

XOFF terminal setting, 20-3, 20-7

. XON terminal setting, 20-1 to 20-3, 20-7

*

Zero magtape with PIP, 6-1
Zero/O in QUE, 214
Zeroing directory with PIP, 17-5

Index-22

Please cut along this line.

RSTS/E System User’s Guide
DEC-11-ORSUB-A-D

READER’S COMMENTS

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company’s discretion. Problems with software should be reported on a Software Performance Report
(SPR) form. If you require a written reply and are eligible to receive one under SPR service, submit
your comments on an SPR form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-.organized? Please make suggestions for improvement.

Is there sufficient documentation on associated system programs required for use of the software described in this
manual? If not, what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

O Assembly language programmer
O Higher-level language programmer
O Occasional programmer (experienced)
1 User with little programming experience
O Student programmer
O Non-programmer interested in computer concepts and capabilities
Name ___ Date
Organization
Street
City State Zip Code

or
Country

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL

]
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES ' R
e~]
-]

Postage will be paid by:
]
]
]
dlilglilt]all —_—
]
]
Software Documentation Y ——
146 Main Street ML 5-5/E39 R —

Maynard, Massachusetts 01754

