

PRO/VENIXTM

for the Professional

Programming Guide

Developed by:

VenturCom, Inc.
215 First Street

Cambridge, MA 02142

Digital Equipment Corporation
Maynard, MA 01754

First Printing

The software described in this manual is distributed as part of Digital
Equipment Corporation's Digital Classified Software (DCS) Program.
This program enables software developers to submit their software prod­
ucts to Digital for testing according to Digital quality standards for third
party software. This software product has met the DCS standard speci­
fied in the software product description (SPD) for this product. You
should refer to the SPD for information about these standards, the hard­
ware and software required to run this product, and warranties (if any
warranty is available).
The software described in this manual is furnished under a license and
may only be used or copied in accordance with the terms of that license.
This manual is reproduc~d with the permission of VenturCom, Inc.

Copyright © 1983, by Western Electric. All Rights Reserved.

Portions Copyright © 1984 VenturCom, Inc. All Rights Reserved.

Except as may be stated in the SPD for this product, no responsibility is
assumed by Digital or its affiliated companies for use or reliability of this
software, or for errors in this manual or in the software. Additional sup­
port and/or warranty services may be available from the developer of
this software product. Digital has no connection with, and assumes no
responsibility or liabilities in connection with these services.
This manual is subject to change without notice and does not constitute a
commitment by Digital.

VENIX is a trademark of VenturCom, Inc.
UNIX is a trademark of AT&T Technology, Inc.

The following are trademarks of Digital Equipment Corporation:

DEC DECwriter Professional VAX
DECmate DIBOL Rainbow VMS
DECnet MASSBUS RSTS VT
DECsystem-lO PDP RSX Work Processor
DECSYSTEM-20 P lOS UNIBUS lI.ama
DECUS

The PRO/VENIXt Documentation Set

The PRO/VENIX documentation set consists of the following manuals:

PRO/VENIX Installation and System Manager's Guide

The set up and maintenance of PRO/VENIX are described in the
installation sections. Other articles explain the UNIX-to-UNIX*
communications systems. The "System Maintenance Reference
Manual" contains reference pages for devices and system maintenance
procedures (sections (7) and (8».

PRO/VENIX User Guide

The User Guide contains tutorials for newcomers to PRO/VENIX,
covering basic use of the system, the editor vi and use of the
command language interpreters.

PRO/VENIX Document Processing Guide

The line and screen editors and nroff-related text formatting utilities
are described in the Document Processing Guide. Topics include: line
editor ed, and stream editor sed; the text formatter nroff; the nroff­
preprocessors tbl and neqn.

PRO/VENIX Programming Guide

The chapters in the Programming Guide explicate the different
programming languages for VENIX.

t VENIX is a trademark of VenturCom, Inc.

t UNIX is a trademark of Bell Laboratories.

PRO/VENIX Support Tools Guide

This guide includes tools for programming, such as the compiler­
writing languages Yacc and Lex, the M4 Macro processor, the
program development utility Make, and the desk calculator programs
DC and BC.

PRO/VENIX User Reference Manual

This is a complete and concise reference for the PRO/VENIX system.
This volume contains write-ups on all PRO/VENIX commands.

PRO/VENIX Progammer Reference Manual

The reference pages in this volume include system calls, library
functions, file formats, miscellaneous functions and games.

Contents

INTRODUCTION

Chapter 1. USING THE C COMPILER

Chapter 2. VENIXt PROGRAMMING

Chapter 3. C LANGUAGE

Chapter 4. CODE-MAPPING UNDER VENIX

Chapter 5. A C PROGRAM CHECKER - "lint"

Chapter 6. A TUTORIAL INTRODUCTION TO ADB

Chapter 7. FORTRAN 77

Chapter 8. RATFOR

Chapter 9. USING VU-PASCAL

Chapter 10. VU-PASCAL REFERENCE MANUAL

Chapter 11. SCREEN PACKAGE

Chapter 12. VENIX ASSEMBLER REFERENCE MANUAL

INTRODUCTION

The Programming Guide describes the programming languages, libraries and
support tools available on the VENIX system. The languages include C, For­
tran, Pascal and PDP-II assembler. The following paragraphs contain a brief
description of each chapter.

Chapter I, USING THE C COMPILER, is a short guide to using the cc com­
mand and provides some tips on programming in the C language.

Chapter 2, VENIX PROGRAMMING, describes the programming interface to
the operating system and the standard I/O library.

Chapter 3, C LANGUAGE, provides a summary of the grammar and rules of
the C programming language.

Chapter 4, CODE MAPPING UNDER VENIX, describes an overlaying scheme
for large programs.

Chapter 5, PROGRAM CHECKER - "lint", describes a program which
checks for syntax errors, type violations, and portability problems in C pro­
grams.

Chapter 6, A TUTORIAL INTRODUCTION TO ADB, describes a symbolic
debugging program that is used to debug compiled C language programs.

Chapter 7, FORTRAN 77, describes the implementation of Fortran 77 on the
VENIX system in terms of the variations from the American National Standard.

INTRODUCTION

Chapter 8, RATFOR, is a description of the Ratfor preprocessor. This prepro­
cessor provides a means for writing Fortran in a fashion similar to the C lan­
guage.

Chapter 9, USING VU-PASCAL, is an introduction to the Pascal compiler/
interpreter on the VENIX system.

Chapter 10, VU-PASCAL REFERENCE MANUAL, is a detailed description of
Vu-Pascal as it compares to the 1980 ISO Pascal standard.

Chapter 11, SCREEN UPDATING AND CURSOR MOVEMENT
OPTIMIZATION, describes the curses package that provides the programmer
with screen-oriented programming capabilities.

Chapter 12, VENIX ASSEMBLER REFERENCE MANUAL, is a brief descrip­
tion of the PDP-ll assembler provided with the VENIX system.

Throughout this document, each reference of the form name(7), or name(8)
refers to entries in the Installation and System Manager's Guide. Each refer­
ence of the form name(l) refers to entries in the User Reference Manual. All
other references to entries with sections (2) through (6) are contained in the Pro­
grammer Reference Manual.

Contents

1.1 INTRODUCTION .. 1-1

1.2 USING THE C COMPILER .. 1-1

1.3 ERROR DIAGNOSTICS ... 1-5

1.4 WHAT cc DOES ... 1-5

1.5 TIPS ON C PROGRAMMING 1-6

Chapter 1

USING THE C COMPILER

1.1 INTRODUCTION
"c" is the major programming language used with VENIX and other UNIX­
derived operating systems. Most UNIX software - from high level applications
to the kernel itself - is written in C, and most users find the language powerful
and convenient.

The language standard is set by Kernighan and Ritchie's The C Programming
Language; every VENIX installation should have at least one copy. The fol­
lowing briefly describes how to compile C programs with the cc command. Fol­
lowing the introduction there are a few tips on using C. This chapter tries to
cover problems that commonly trip new C programmers.

For anything more than minimal C programming, read the VENIX PROGRAM­
MING chapter in this manual, which describes the use of VENIX through C.
While The C Programming Language is an accurate and (mostly) complete
description of C itself, it should be used cautiously as a reference to I/O, com­
mand usage, or VENIX interfacing. This chapter and those in the other
VENIX manuals cover these areas more accurately.

1.2 USING THE C COMPILER
The simplest way to compile the program prog1.c is with the command:

cc prog1.c

All C source file names must end with a ".c". If no errors are found, this pro­
duces an executable file called a.out, which can be executed by typing simply:

1-1

C COMPILER

a.out

For example, if prog1.c is the program:

mainO{
printf("hello, world\n ");

then the sequence of commands:

cc prog1.c
a.out

produces the output:

hello, world

If any errors are found in your program, you will receive messages giving the
line number at fault, and type of error encountered. In this case, no a.out file
is produced. Edit your program and try again.

Calling your executable file a.out is dangerous, because subsequent compilations
of other programs could overwrite it. To prevent this from happening, rename
your a.out to a unique name which will prevent it from being overwritten, with
the mv command:

mv a.out prog1

Alternatively, you can use the -0 ("rename output") flag with the cc command
to initially name the executable file something other than a.out.

cc - 0 prog1 prog1.c

1-2

C COMPILER

This gives the same net result as the commands:

cc progl.c
mv a.out progl

but is more succinct. *

If you have a medium-to-Iarge sized program, you will probably wish to divide
it into several different files. Each of these files may be separately compiled to
object-code level, and then linked to executable form later. The advantage to
this approach is that you can correct errors and make modifications to your
files one by one, without having to recompile the total source after each change.
The - c ("compile only") flag instructs the cc command to compile the source
to object form, and not produce an executable file. The object file correspond­
ing to each source file will be given the same name but with a ".0" suffix
instead of a ".c". (This is always the case; the - 0 flag can not be used with
-c to rename object files as it can for executable files.) For example, if a pro­
gram is divided into the source files pl.c, p2.c, and p3.c, then the command:

cc - c p1.c p2.c p3.c

will produce three object files pl.o, p2.o, and p3.o. If you now wish to pro­
duce an executable file, you can simply enter:

cc - 0 newprog pl.o p2.o p3.o

to produce an executable file newprog. The cc command recognizes that the
".0" files are object code, not source, and acts appropriately. Now if a change
needs to be made to p2.c, you can recompile it as above with:

cc -c p2.c

and then run cc again with all three object files as before.

1. * One subtle difference between renaming the output with ~ 0 and

with mv is that in the latter case any previous a.out is overwritten, while in

the former it is not touched.

1-3

C COMPILER

There are several other flags that may be useful:

-0

-Ixxx

This flag causes the compiler to produce optimized output. Since
compiling takes slightly longer with this flag, it is usually used only
after a program is debugged and in finished form.

This flag causes the VENIX library xxx (such as the math or other
standard library) to be used when linking. Unlike other flags, the
-I always comes at the end of the command line. For example, if
math library routines need be used, then a command line might be
something like:

cc p1.c p2.c -1m

- f This flag must be used if your program uses floating point arithme­
tic, and there is no hardware floating point support on your
machine.

-p This causes your program to produce profiling information, indicat­
ing the number of times each routine is called. This can be useful
for optimizing the program speed. Each time your program is run, a
file mon.out is produced which contains this information. It can be
examined with the prof(I) program.

- P Runs only the macro preprocessor on your program, producing for
each '.c' source a '.i' file containing the preprocessed file. All
, # define's and other '#' lines will have been evaluated and the sub­
stitutions done; no '#' lines or comments will be left in the file. To
maintain constant line numbering, '#' or comment lines removed
will be left blank, but not removed.

-n This option is passed on to the loader, and causes the program's
data area to be moved upwards to the first possible 4k word bound­
ary following the end of text. This type of program, known as
"pure", can have its text area shared by multiple users running it at
one time. This saves on memory when two or more users are run­
ning the program; it does, however, reduce the available data space
since the data area is moved to the 4k word boundary.

1-4

C COMPILER

- i This option is passed to the loader, and causes the program text and
data space to be placed in separate address spaces. This can only be
used on split liD space computers. This program is "pure" and will
have its text shared as described above.

- m Uses code-mapping. This is an advanced option to allow unusually
large programs to run. See code-mapping documentation.

1.3 ERROR DIAGNOSTICS
Compiling errors may well be redundant. If a parenthesis or brace is mlssmg
on a particular line, for example, a number of different errors may be produced
on subsequent lines. Check the User Reference Manual pages on cc and ld for
a complete list of messages and what they mean.

The C compiler, unlike Pascal or many other compilers, is not very strict about
use of variable types or arguments passing to functions. Generally, it will not
complain if pointers of different types are mixed, nor will it protest if a func­
tion is called with the wrong number or types of arguments.

This freedom can be convenient, but it can also lead to errors, especially with
beginning programmers. For stricter enforcement of the rules, use the lint pro­
gram, described briefly in the User Reference Manual and, in more detail, in
Chapter 5 of the Programming Guide.

1.4 WHAT cc DOES
The cc program does not handle compiling or linking itself, but acts as a master
control program to call the appropriate compile/link passes. The following
passes are run to produce an executable file from a source file:

1. C preprocessor (/Jih/cpp) runs handle" # include"s and" # define"s.

2. First phase of C-compiler proper (/lih/cO) produces intermediate code.

3. Second phase of C-compiler proper (/lih/c1) produces assembly code.

1-5

C COMPILER

4. Optional optimizing phase of C-compiler (/lib/c2) produces better assembly
code.

5. Assembler (/bin/as and /lib/as2) produces binary object code.

6. Linker/loader (lbin/Jd) links object modules and libraries, and produces
an executable file.

1.5 TIPS ON C PROGRAMMING
The following brief hints may help in C programming:

1. Medium or large programs should be divided into separate files for partial
compilation, as described earlier. The archive program ar(l) can be used
to conveniently store object files.

2. When using routines mentioned in sections two and three of the Program­
mer Reference Manual be sure to use any" #include"s given on the page,
and to use variable types consistent with those described in the synopsis.
For example, the synopsis of the routine fopen(3) is:

include < stdio.h >

FILE *fopen(fiIename, type)
char *fiIename, *type;

This means that fopen returns a pointer of type "FILE" (defined in
<stdio.h», and that both of its arguments are pointers to chars (i.e.,
strings). The statement:

include < stdio.h >

should occur at the beginning of any file containing a call to fopenO.

Functions that return values other than integers should be declared explic­
itly in the files that use them. With fopenO, for example, you should put
a statement:

FILE *fopenO;

1-6

C COMPILER

before fopenO. (Actually, this is done automatically in < stdio.h >, but
it's not a bad idea to declare it yourself. Other functions may not have
" # include" files to automatically declare them.)

3. Be aware of how you are allocating variable space. For example, the
statement:

struct x ndata;

declares one structure called "ndata" of type "x". This allocates storage
space for a structure the size of "x". Suppose you have a routine called
"fillinO" which takes a pointer to a structure of type "x", and fills the
structure with information. FillinO could then be called as:

fillin(&ndata);

and you can be confident that "&ndata" is a valid place to store data.

BUT, if you declared something as:

struct x *pdata;

you are merely declaring a pointer to type "x", and NOT allocating any
space for x. If you don't explicitly assign "pdata" to point to free space
(for example, by setting it equal to the address of "ndata", or using a
malloc(3) to allocate space), then passing it to "fillinO" as in:

fillin(pdata)

won't work. Although you are correctly calling fillinO with a pointer to
type "x", you haven't set the pointer to an allocated memory. The rou­
tine fillinO, then will blindly place its structure wherever "pdata" hap­
pened to address, perhaps right in the middle of your program.

There are various ways to declare strings and pointers:

char a[10];

Allocates 10 bytes for an empty array called "a". The name "a" is a con­
stant; it uses no data space itself, and can not be changed.

1-7

C COMPILER

char *a;

Allocates space for pointer "a" only. The name "a" refers to a variable,
which can be set to any pointer value.

char a[10] ::::: "hello";

Allocates 10 bytes for an array called "a", and fills in the first six bytes
with the string "hello" followed by a null. The name "a" is a constant.

char *a "hello ";

Allocates space for pointer "a", and sets it to point to six bytes some­
where filled with the string "hello" followed by a null.

char a[] ::::: "hello";

Allocates an array "a" just big enough to hold the six bytes for "hello"
and a null. The difference between this and the previous declaration is
that in this case "a" is a constant and can not be changed; in the declara­
tion above, "a" is a pointer variable which can later be set to point some­
where else.

4. For faster code, use pointers instead of indexes when moving through an
array. For example, the code:

char a[100];
int i;

for (i ::::: 0; i < 100; + + i)
ali] ::::: ...

causes two additions on each loop: one to increment "i", and one to add
"i" to index "a[]". This could be rewritten:

1-8

char a[100];
char *ptr;

for (ptr = a; ptr < a + 100;)
*ptr+ + = ...

Here only one addition need be done (to increment "ptr").

C COMPILER

Note that in the "for" loop above, the expression "a + 100" is the sum
of two constants. It is therefore evaluated at compile time, not during
each execution of the loop. If a variable were used in its place, the expres­
sion would have to be evaluated on each loop. If this were the case, the
programmer would clearly do better to evaluate the expression once before
the loop, and use the result in the "for" statement.

Using pointers instead of arrays does make C code harder to understand
for beginners. It is of course your own preference as to which is most
important: code efficiency or readability.

5. Register variables can also be used to speed program execution. Up to
three registers are available, and they are best used for the most frequently
accessed variables. A register can hold an int, char, or pointer.

6. It is better not to declare arrays, particularly large ones, inside a function.
Since these kinds of variables are handled on the stack, placing arrays
there will cause the stack to expand. This expansion can take a little exe­
cution time; it can also (in rare cases) lead to execution errors. (This
warning does not apply to variables declared "static" inside a function,
since they are not placed on the stack.)

1-9

Contents

2.1 INTRODUCTION .. 2-1

2.2 BASICS ... 2-2

2.3 THE STANDARD 110 LIBRARy 2-5

2.4 LOW-LEVEL 1/0 .. 2-10

2.5 PROCESSES ... 2-24

2.6 SIGNALS - INTERRUPTS .. 2-33

2.7 FILES AND DIRECTORIES .. 2-38

2.8 SHARED DATA SEGMENTS AND SEMAPHORES 2-47

2.9 REAL-TIME PROGRAMMING 2-54

Chapter 2

VENIxt PROGRAMMING

This chapter is an introduction to programming on the VENIX system. The
emphasis is on how to write programs that interface to the operating system,
either directly or through the standard I/O library. The topics discussed include

*

*

*

*

*

*

handling command arguments

rudimentary I/O; the standard input and output

the standard I/O library; file system access

low-level 1/0: open, read, write, close, seek

processes: exec, fork, pipes

signals - interrupts, etc.

There is also an appendix which describes the standard I/O library in detail.

2.1 INTRODUCTION
This chapter describes how to write programs that interface with the VENIX
operating system. This includes programs that use files by name, that use pipes,
that invoke other commands as they run, or that attempt to catch interrupts and
other signals during execution.

t VENIX is a trademark of VenturCom, Inc.

2-1

VENIX PROGRAMMING

All of the system calls and interface routines mentioned in the following pages
can also be found in sections two and three of the Programmer Reference Man­
ual. If you will be programming in C, you must be able to read the language
roughly up to the level described in the chapter C LANGUAGE. Some of the
material in the following sections is based on topics covered more carefully
there.

2.2 BASICS

2.2.1 Program Arguments

When a C program is run as a command, the arguments on the command line
are made available to the function main as an argument count argc and an
array argv of pointers to character strings that contain the arguments. By con­
vention, argv[O] is the command name itself, so argc is always greater than O.

The following program illustrates the mechanism: it simply echoes its arguments
back to the terminal. (This is essentially the echo command.)

main(argc, argv)
int argc;
char *argv[];

int i;

/* echo arguments * /

for (i = 1; i < argc; i + +)
printf("%s%c", argv[i], (i<argc-l) ?

, ,
'\n');

argv is a pointer to an array whose individual elements are pointers to arrays of
characters; each is terminated by \0, (null) so they can be treated as strings.
The program starts by printing argv[1] and loops until it has printed them all.
Specifically, the arguments are argv[1] to argv[argc -1].

The argument count and the arguments are parameters to main. If you want to
keep them around so other routines can get at them, you must copy them to
external variables.

2-2

VENIX PROGRAMMING

Note carefully the declaration char *argv(]. The argv[) indicates that it is an
array; the char * says that each element of the array is a pointer to type char,
i.e., a character string. It is important to understand that in C, character
strings and pointers to type char are exactly the same.

2.2.2 The Standard Inpnt and Standard Output

The simplest input mechanism is to read the "standard input," which is gener­
ally the user's terminal. The function getchar returns the next input character
each time it is called. A file may be substituted for the terminal by using the <
convention: if prog uses getchar, then the command line

prog <file

causes prog to read file instead of the terminal. prog itself need know nothing
about where its input is coming from. This is also true if the input comes from
another program via the pipe mechanism.

otherprog I prog

provides the standard input for prog from the standard output of otherprog.

getchar returns the value EOF when it encounters the end of file (or an error)
on whatever you are reading. The value of EOF is normally defined to be - 1 ,
but it is unwise to take any advantage of that knowledge. As will become clear
shortly, this value is automatically defined for you when you compile a pro­
gram, and need not be of any concern.

Similarly, putchar(c) puts the character c on the "standard output," which is
also by default the terminal. The output can be captured on a file by using > ;
if prog uses putchar,

prog > outfile

writes the standard output on outfile instead of the terminal. outfile is created
if it doesn't exist; if it already exists, its previous contents are overwritten. And
a pipe can be used:

prog I otherprog

puts the standard output of prog into the standard input of otherprog.

2-3

VENIX PROGRAMMING

The function printf, which formats output in various ways, uses the same mech­
anism as putchar, so calls to printf and putchar may be intermixed in any order;
the output will appear in the order of the calls.

Similarly, the function scanf provides for formatted input conversion; it will
read the standard input and break it up into strings, numbers, etc., as desired.
scanf uses the same mechanism as getchar, so calls to them may also be
intermixed.

Many programs read only one input and write one output; for such programs
I/O with getchar, putchar, scanf, and printf may be entirely adequate, and it is
almost always enough to get started. This is particularly true if the VENIX
pipe facility is used to connect the output of one program to the input of the
next. For example, the following program strips out all ASCII control charac­
ters from its input (except for newline and tab).

include < stdio.h >

mainO
{

1* ccstrip: strip non-graphic characters *1

The line

int c;
while «c = getchar()) ! = EOF)

if «c > = ' , && c < 0177) II c
putchar(c);

exit(O);

include < stdio.h >

'\t' II c = = '\n')

should appear at the beginning of each source file. It causes the C compiler to
read a file (/usr/include/stdio.h) of standard routines and symbols that includes
the definition of EOF.

If it is necessary to treat multiple files, you can use cat to collect the files for
you:

2-4

VENIX PROGRAMMING

cat file1 file2 •.. I ccstrip > output

and thus avoid learning how to access files from a program. By the way, the
call to exit at the end is not necessary to make the program work properly, but
it assures that any caller of the program will see a normal termination status
(conventionally 0) from the program when it completes. The section "Signals"
discusses status returns in more detail.

2.3 THE STANDARD 110 LIBRARY
The "Standard 110 Library" is a collection of routines intended to provide effi­
cient and portable 110 services for most C programs. The standard 110 library
is available on most systems that support C, so programs that confine their sys­
tem interactions to its facilities can be transported from one system to another
essentially without change.

This section discusses the basics of the standard 110 library. The appendix con­
tains a more complete description of its capabilities.

2.3.1 File Access

The programs written so far have all read the standard input and written the
standard output, which are assumed to be predefined. The next step is to write
a program that accesses a file that is NOT already connected to the program.
One simple example is wc, which counts the lines, words and characters in a set
of files. For instance, the command

wc x.C y.c

prints the number of lines, words and characters in x.c and y.c and the totals.

The question is how to arrange for the named files to be read - that is, how to
connect the file system names to the 110 statements which actually read the
data.

The rules are simple. Before it can be read or written a file has to be
"opened" by the standard library function fopen. fopen takes an external name
(like X.C or y.c), does some housekeeping and negotiation with the operating sys­
tem, and returns an internal name which must be used in subsequent reads or
writes of the file.

2-5

VENIX PROGRAMMING

This internal name is actually a pointer, called a file pointer, to a structure
which contains information about the file, such as the location of a buffer, the
current character position in the buffer, whether the file is being read or writ­
ten, and the like. Users don't need to know the details, because part of the
standard 110 definitions obtained by including stdio.h is a structure definition
called FILE. The only declaration needed for a file pointer is exemplified by

FILE *fp, *fopenO;

This says that fp is a pointer to a FILE, and fopen returns a pointer to a FILE.
FILE is a type name, like int, not a structure tag. In actual programs, the dec­
laration for fopen is done for you in stdio.h; however, you must declare your
own file pointers as type FILE.

The actual call to fopen in a program is

fp = fopen(name, mode);

The first argument of fopen is the name of the file, as a character string. The
second argument is the mode, also as a character string, which indicates how
you intend to use the file. The only allowable modes are read ("r"), write
("w"), or append ("a").

If a file that you open for writing or appending does not exist, it is created (if
possible). Opening an existing file for writing causes the old contents to be dis­
carded. Trying to read a file that does not exist is an error, and there may be
other causes of error as well (like trying to read a file when you don't have per­
mission). If there is any error, fopen will return the null pointer value NULL
(which is defined as zero in stdio.h).

The next thing needed is a way to read or write the file once it is open. There
are several possibilities, of which gete and pute are the simplest. gete returns
the next character from a file; it needs the file pointer to tell it which file. Thus

e = gete(fp)

places in e the next character from the file referred to by fp; it returns EOF
when it reaches end of file. pute is the inverse of gete:

2-6

VENIX PROGRAMMING

putc(c, fp)

puts the character c on the file fp and returns c. getc and putc return EOF on
error.

When a program is started, three files are opened automatically, and file point­
ers are provided for them. These files are the standard input, the standard out­
put, and the standard error output; the corresponding file pointers are called
stdin, stdout, and stderr. Normally these are all connected to the terminal, but
may be redirected at runtime to files or pipes as described in AN INTRODUC­
TION TO THE SHELL in the User Guide (which describes in more detail how
to redirect different 110 channels). stdin, stdout and stderr are predefined in
the 110 library as the standard input, output and error files; they may be used
anywhere an object of type FILE * can be. They are constants, however, NOT
variables, so don't try to assign to them.

With some of the preliminaries out of the way, we can now write wc. The
basic design is one that has been found convenient for many programs: if there
are command-line arguments, they are processed in order. If there are no argu­
ments, the standard input is processed. This way the program can be used
stand-alone or as part of a larger process.

include < stdio.h >

main(argc, argv)
int argc;

/* wc: count lines, words, chars * /

char *argv[];
{

int c, i, inword;
FILE *fp, *fopenO;
long linect, wordct, charct;
long tUnect = 0, twordct = 0, tcharct 0;

2-7

VENIX PROGRAMMING

i = 1;
fp = stdin;
do {

if (argc > 1 && (fp = fopen(argv[i], "r''» = = NULL)
fprintf(stderr, "wc: can't open %s\n", argv[i]);
continue;

linect = wordct = charct = inword = 0;
while «c = getc(fp» ! = EOF) {

1

charct+ +;
if (c = = '\n')

linect+ +;
if (c = = ' , II c - - '\t' II c

inword = 0;
else if (inword = = 0) {

inword = 1;
wordct+ +;

'\n')

printf("%7Id %71d %7Id", linect, wordct, charct);
printf(argc > 1 ? " %s\n" : "\n", argv[i]);
fclose(fp);
tUnect + = linect;
twordct + = wordct;
tcharct + = charct;

1 while (+ + i < argc);
if (argc > 2)

printf("% 7ld % 7ld % 7ld total\n", tUnect, twordct, tcharct);
exit(O);

The function fprintf is identical to printf, except that the first argument is a file
pointer that specifies the file to be written.

The function fclose is the inverse of fopen; it breaks the connection between the
file pointer and the external name that was established by fopen, freeing the file
pointer for another file. Since there is a limit on the number of files that a pro­
gram may have open simultaneously, it's a good idea to free things when they
are no longer needed. There is also another reason to call fclose on an output

2-8

VENIX PROGRAMMING

file - it flushes the buffer in which putc is collecting output. fclose is called
automatically for each open file when a program terminates normally.

2.3.2 Error Handling - Stderr and Exit

stderr is assigned to a program in the same way that stdin and stdout are. Out­
put written on stderr appears on the user's terminal even if the standard output
is redirected. wc writes its diagnostics on stderr instead of stdout so that if one
of the files can't be accessed for some reason, the message finds its way to the
user's terminal instead of disappearing down a pipeline or into an output file.

The program actually signals errors in another way, using the function exit to
terminate program execution. The argument of exit is available to whatever
process called it (see section 6), so the success or failure of the program can be
tested by another program that uses this one as a sub-process. By convention, a
return value of 0 signals that all is well; non-zero values signal abnormal situa­
tions.

exit itself calls fclose for each open output file, to flush out any buffered out­
put, then calls a routine named _exit. The function _exit causes immediate
termination without any buffer flushing; it may be called directly if desired.

2.3.3 Miscellaneous I/O Functions

The standard I/O library provides several other I/O functions besides those we
have illustrated above.

Normally output with putc, etc., is buffered (except to stderr); to force it out
immediately, use fflusb(fp).

fscanf is identical to scanf, except that its first argument is a file pointer (as
with fprintf) that specifies the file from which the input comes; it returns EOF
at end of file.

The functions sscanf and sprintf are identical to fscanf and fprintf, except that
the first argument names a character string instead of a file pointer. The con­
version is done from the string for sscanf and into it for sprintf.

2-9

VENIX PROGRAMMING

fgets(buf, size, fp) copies the next line from fp, up to and including a newline,
into buf; at most size -1 characters are copied; it returns NULL at end of file.
fputs(buf, fp) writes the string in buf onto file fp.

The function ungetc(c, fp) "pushes back" the character c onto the input stream
fp; a subsequent call to getc, fscanf, etc., will encounter c. Only one character
of pushback per file is permitted.

setbuf(fp, buO causes the given buffer to be used instead of an automatically
allocated one. When used with terminal I/O, output will be buffered in 512
byte units. This may be desirable for non-interactive programs as it greatly
improves the efficiency of output.

2.4 LOW-LEVEL 110
This section describes the bottom level of I/O on the VENIX system. The low­
est level of I/O in VENIX provides no buffering or any other services; it is in
fact a direct entry into the operating system'. You are entirely on your own, but
on the other hand, you have the most control over what happens. And since
the calls and usage are quite simple, this isn't as bad as it sounds.

It is important not to confuse this low-level I/O with standard I/O. As
described in the next section, the low-level I/O routines connect files to file
descriptors, which are analogous to, but quite different from, file pointers. If
you try to mix the two, all sorts of problems will occur (this is a common diffi­
culty among new VENIX programmers). All the low-level routines are described
in section two of the Programmer Reference Manual; the standard I/O routines
are found in section three. (Another easy way to distinguish the two routines is
to remember that many of the standard I/O routines have the letter "f" in
them (like fopen, printf, fget, ...) whereas the low-level I/O routines generally
don't. This is not a hard rule, though; the routine getc, for example, is stan­
dard I/O.)

2.4.1 File Descriptors

In the VENIX operating system, all input and output is done by reading or writ­
ing files, because all peripheral devices, even the user's terminal, are files in the
file system. This means that a single, homogeneous interface handles all com­
munication between a program and peripheral devices.

2-10

VENIX PROGRAMMING

In the most general case, before reading or writing a file, it is necessary to
inform the system of your intent to do so, a process called "opening" the file.
If you are going to write on a file, it may also be necessary to create it. The
system checks your right to do so (Does the file exist? Do you have permission
to access it?), and if all is well, returns a small positive integer called a file
descriptor. Whenever 110 is to be done on the file, the file descriptor is used
instead of the name to identify the file. (This is roughly analogous to the use
of READ(5, ...) and WRITE(6, ...) in Fortran.) All information about an open
file is maintained by the system; the user program refers to the file only by the
file descriptor.

The file pointers discussed in section 3 are similar in spirit to file descriptors,
but file descriptors are more fundamental. A file pointer is a pointer to a struc­
ture that contains, among other things, the file descriptor for the file in ques­
tion.

Since input and output involving the user's terminal are so common, special
arrangements exist to make this convenient. When the command interpreter
(the "shell") runs a program, it opens three files, with file descriptors 0, 1, and
2, called the standard input, the standard output, and the standard error output.
All of these are normally connected to the terminal, so if a program reads file
descriptor 0 and writes file descriptors 1 and 2, it can do terminal 110 without
worrying about opening the files.

If 1/0 is redirected to and from files with < and>, as in

prog < infile > outfile

the shell changes the default assignments for file descriptors 0 and 1 from the
terminal to the named files. Similar observations hold if the input or output is
associated with a pipe. Normally file descriptor 2 remains attached to the ter­
minal, so error messages can go there. In all cases, the file assignments are
changed by the shell, not by the program. The program does not need to know
where its input comes from nor where its output goes, so long as it uses file 0
for input and 1 and 2 for output.

2-11

VENIX PROGRAMMING

2.4.2 Read and Write

All input and output is done by two functions called read and write. For both,
the first argument is a file descriptor. The second argument is a buffer in your
program where the data is to come from or go to. The third argument is the
number of bytes to be transferred. The calls are

"-read = read(fd, buf, n);

"-written = write(fd, buf, n);

Each call returns a byte count which is the number of bytes actually transferred.
On reading, the number of bytes returned may be less than the number asked
for, because fewer than n bytes remained to be read. (When the file is a termi­
nal, read normally reads only up to the next newline, which is generally less
than what was requested.) A return value of zero bytes implies end of file, and
-1 indicates an error of some sort. For writing, the returned value is the num­
ber of bytes actually written; it is generally an error if this isn't equal to the
number supposed to be written.

The number of bytes to be read or written is quite arbitrary. The two most
common values are 1, which means one character at a time ("unbuffered"), and
512, which corresponds to a physical blocksize on many peripheral devices.
This latter size will be most efficient, but even character at a time 110 is not
inordinately expensive.

Putting these facts together, you can write a simple program to copy its input to
its output. This program will copy anything to anything, since the input and
output can be redirected to any file or device.

2-12

VENIX PROGRAMMING

define BUFSIZE 512 /* best size for PDP-ll VENIX */

mainO /* copy input to output * /
[

char buf[BUFSIZE] ;
int n· ,

while «n = read(O, buf, BUFSIZE» > 0)
write(1, buf, n);

exit(O);

If the file size IS not a multiple of BUFSIZE, some read will return a smaller
number of bytes to be written by write; the next call to read after that will
return zero.

It is instructive to see how read and write can be used to construct higher level
routines like getchar, putchar, etc. For example, here is a version of getchar
which does unbuffered input.

define CMASK 0377 /* for making char's > 0 * /

getcharO
[

char c;

/* unbuffered single character input * /

return«read(O, &c, 1) > 0) ? c & CMASK EOF);

c must be declared char, because read accepts a character pointer. However,
getchar itself returns an integer value, so that the integer constant EOF (-1)
can be differentiated from any character. For this reason, the character being
returned must be masked with 0377 to ensure that it is positive; otherwise sign
extension may make it negative when it is passed as an integer. (The constant
0377 is appropriate for the PDP-II but not necessarily for other machines.)

The second version of getchar does input in big chunks, and hands out the char­
acters one at a time.

2-13

VENIX PROGRAMMING

define
define

CMASK
BUFSIZE

0377
512

/* for making char's > 0 * /

getcharO
(

static
static
static

if (n

char
char
int

- -

/* buffered version */

buf[BUFSIZE);
*bufp = buf;
n = 0;

0) { /* buffer is
n = read(O, buf, BUFSIZE);
bufp = buf;

return« - - n > = 0) ? *bufp + + & CMASK

2.4.3 Open, Creat, Close, Unlink

empty */

EOF);

Other than the default standard input, output and error files, you must explic­
itly open files in order to read or write them. There are two system entry
points for this, open and creat [sic].

open is rather like the fopen discussed in the previous section, except that
instead of returning a file pointer, it returns a file descriptor which is just an
into

int fd;

fd = open(name, rwmode);

As with fopen, the name argument is a character string corresponding to the
external file name. The access mode argument is different, however: rwmode is
o for read, 1 for write, and 2 for read and write access. open returns -1 if
any error occurs; otherwise it returns a valid file descriptor.

It is an error to try to open a file that does not exist. The entry point creat is
provided to create new files, or to re-write old ones.

2-14

VENIX PROGRAMMING

fd = creat(name, pmode);

returns a file descriptor if it was able to create the file called name, and -1 if
not. If the file already exists, creat will truncate it to zero length; it is not an
error to creat a file that already exists.

If the file is brand new, creat creates it with the protection mode specified by
the pmode argument. In the VENIX file system, there are nine bits of protec­
tion information associated with a file, controlling read, write and execute per­
mission for the owner of the file, for the owner's group, and for all others.
Thus a three-digit octal number is most convenient for specifying the permis­
sions. For example, 0755 specifies read, write and execute permission for the
owner, and read and execute permission for the group and everyone else.

To illustrate, here is a simplified version of the VENIX utility cp , a program
which copies one file to another. (The main simplification is that our version
copies only one file, and does not permit the second argument to be a direc­
tory.)

define NULL 0
define BUFSIZE 512
define PMODE 0644 /* RW for owner, R for group, others * /

main(argc, argv) /* cp: copy fl to f2 * /
int argc;
char *argv[];
{

int fl, f2, n;
char buf[BUFSIZE];

2-15

VENIX PROGRAMMING

if (argc ! = 3)
error("Usage: cp from to", NULL);

if «fl open(argv[1], 0» = = -1)

if «f2
error("cp: can't open O,1os", argv[1]);
creat(argv[2], PM ODE» = = -1)
error("cp: can't create %s", argv[2]);

while «n = read(fl, buf, BUFSIZE» > 0)
if (write(f2, buf, n) ! = n)

exit(O);

error(sl, s2)
char *sl, *s2;

printf(sl, s2);
printf("\n ");
exit(l);

error("cp: write error", NULL);

/* print error message and die * /

As stated earlier, there is a limit (currently 15) on the number of files which a
program may have open simultaneously. Accordingly, any program which
intends to process many files must be prepared to re-use file descriptors. The
routine close breaks the connection between a file descriptor and an open file,
and frees the file descriptor for use with some other file. Termination of a pro­
gram via exit or return from the main program closes all open files.

The function unlink(filename) removes the file filename from the file system,
analogous to the rm command. In fact, the rm command calls unlink itself.

2.4.4 Random Access - Seek and Lseek

File I/O is normally sequential: each read or write takes place at a position in
the file right after the previous one. When necessary, however, a file can be
read or written in any arbitrary order. The system call Iseek provides a way to
move around in a file without actually reading or writing:

2-16

VENIX PROGRAMMING

lseek(fd, offset, origin);

forces the current position in the file whose descriptor is fd to move to position
offset, which is taken relative to the location specified by origin. Subsequent
reading or writing will begin at that position. offset is a long; fd and origin are
int's. origin can be 0, 1, or 2 to specify that offset is to be measured from the
beginning, from the current position, or from the end of the file respectively.
For example, to append to a file, seek to the end before writing:

lseek(fd, OL, 2);

To get back to the beginning ("rewind"),

lseek(fd, OL, 0);

Notice the OL argument; it could also be written as Oong) O.

With lseek, it is possible to treat files more or less like large arrays, at the price
of slower access. For example, the following simple function reads any number
of bytes from any arbitrary place in a file.

get(fd, pos, buf, n) 1* read n bytes from position pos *1
int fd, n;
long pos;
fchar *buf;
(

lseek(fd, pos, 0); 1* get to pos *1
retum(read(fd, buf, n»;

2.4.5 1/0 Control

VENIX allows the user to change terminal and other device driver characteris­
tics, such as line speeds or data collection rates, through the system call

ioctl(fildes, request, argp)
struct sgttyb *argp;

where fildes is the file descriptor for the device being set (which must previously
have been opened); request is one of a number of requests defined in the

2-17

VENIX PROGRAMMING

include file < sgtty.h > , such as "return current values", "set new values",
"return 110 queue character count", etc.; and argp is a pointer to a structure
defined for terminals as

struct sgttyb {
char sWspeed; 1* input speed *1
char s~ospeed; 1* output speed *1
char s~erase; 1* erase character *1
char sgJiII; 1* kill character *1
int sg..JIags; 1* mode flags *1

};

While the remainder of this discussion on 110 control concerns only terminal
modes (which have the most extensive control possibilities), other devices such
as AID's, DI A's, or real-time clocks have their own particular modes and flags,
and will in general use different structures. Definitions of these structures can
be found in the device driver description in DEVICES, of the Installation and
System Manager's Guide.

One frequent use of 1/0 control is in setting characteristics of a user's terminal,
such as line speeds, simulation of tabs, etc.; these can all be specified through
different bits in sg..JIags.

Two request values in the ioctl call are often used for manipulating the modes:
TIOCGETP and TIOCSETP. The first is used to find out (GET) the current
modes, and return them in the buffer pointed to by argp. The second SETs the
modes to that specified in the pointed-to buffer.

A typical application for this might be to temporarily turn off echoing on the
user's terminal while a confidential piece of information is typed. A simple
routine to do this follows:

2-18

VENIX PROGRAMMING

include < sgtty.h >

getcodeO{ /* get confidential code * /
struct sgttyb ttybuf;
int flags, num;

ioctl(O, TIOCGETP, &ttybuf);
flags = ttybuf .s~flags;
ttybuf.s~flags & = "ECHO;
ioctl(1, TIOCSETP, &ttybuf);
printf("enter code: '');
scanf("O,1od", &num);

/* get old values * /
/* save old state of flags * /

/* turn off echoing * /
/* reset */

ttybuf.sg_flags = flags; /* reset old values * /
ioctl(O, TIOCSETP, &ttybuf);

return(num); /* return information * /

A TIOCGETP is done to find the previous state of the file with descriptor 0
(the standard input) which is saved; a TIOCSETP is then done to turn off echo­
ing. After the information has been read, the original modes are set with
another TIOCSETP. Note that echoing does not prevent messages being written
by the program from appearing on the terminal; it only keeps information the
user types from being typed back.

The flags that can be set or read in are as follows:

CRT
SCROLL
XTABS
RAW

EVENP
ODDP
CRMOD
ECHO
LCASE

0100000
0040000
0006000
0000040

0000200
0000100
0000020
0000010
0000004

Terminal is a CRT
Output stops automatically every 20 lines
Expand tabs to spaces on output
Raw mode: 8 bit interface (turns off
SCROLL,CRT,XTABS,CRMOD,
LCASE and CBREAK)
Enable even parity
Enable odd parity
Map CR into LF; echo LF as CR-LF
Echo (full duplex)
Map upper to lower case (Escapes work)

2-19

VENIX PROGRAMMING

CBREAK
TANDEM

0000002
0000001

Return each character as soon as typed
Automatic flow control

CRT mode indicates that a 'delete' is echoed as a backspace-space-backspace to
erase the character from the CRT screen.

SCROLL mode causes output to stop every 20 lines until the user types any
character, exactly as if a "S had been typed by the user. This is useful in pre­
venting information from scrolling off a CRT screen before it can be examined.

XTABS mode causes tab characters to be expanded to the appropriate number
of spaces on output, and is used for terminals that do not handle tabs them­
selves. Tabs are set at every eight character positions.

In RAW mode, the requested number of characters are buffered and then
passed to the reading program. (Note that this differs from some other versions
of UNIX in which only a single character is returned, regardless of how many
are asked for.) No erase or kill processing is done. There is no special treat­
ment of any character; characters are a full 8-bits for both input and output.
This is the only mode in which XON/XOFF handling (SFQ) can not be done
to control output, although by setting the TANDEM mode XON/XOFF can be
used to control input. In RAW mode, the modes CRT, SCROLL, XTABS,
CRMOD, LCASE and CBREAK are all ignored.

EVENP and ODDP set even and odd parities, respectively, causing parity bits
to be sent on output and checked on input. This parity sending and checking is
hardware dependent, and not supported by all interfaces (check the device
driver). The action if both EVENP and ODDP are set is also hardware depen­
dent.

Mode CRMOD causes input carriage returns to be turned to new-lines; input of
either CR or LF causes LF-CR both to be echoed.

ECHO mode causes characters to be re-echoed to the terminal as typed.

CBREAK is a sort of half-cooked (rare?) mode. Programs can read each char­
acter as soon as typed, instead of waiting for a full line, but quit and interrupt,

2-20

VENIX PROGRAMMING

case translation, CRMOD, XTABS, and ECHO work normally. There is no
erase or kill.

TANDEM mode causes the system to produce a stop character CS) whenever the
input queue is in danger of overflowing, and a start character CQ) when the
input queue has drained sufficiently. It is useful for flow control when the 'ter­
minal' is actually another machine that obeys the conventions. Note that start!
stop csrQ) is handled on the output queue anyway, except in RAW mode.

The C language expressions used to turn on (OR in) these bit-encoded modes
are usually something like

mode \= CRT;

to turn on CRT mode, or

mode \ = (CRT \ XTABS);

to turn on CRT and XTABS. The expressions used to mask off these modes
are, to parallel the above examples:

mode &= -CRT;

or

mode &= -(CRT \ XTABS);

The previous getcode example has at least one deficiency; if the user types a
CTRL-C (interrupt) while the terminal is in no-echo mode, the program will exit
with the terminal left this way. Since this behavior is often undesirable, pro­
grams which change terminal modes usually arrange to catch interrupts and
other signals in a routine which resets the terminal mode before exiting. See the
section on signals later in this document for directions on how to do this.

The flags byte is reset when a line is first opened by a process; the reset value is
driver-dependent (see the driver source for details). The initial setting for active
login lines may be further modified by the login process, depending on the ter­
minal type indicated in letc/ttys. Since active login lines are held open by the
login process or shell, changes made to the flags by a program doing 110

2-21

VENIX PROGRAMMING

control calls will remain in effect after the program exits. In this case, the pro­
gram should probably save the original mode and reset it before exiting, as the
previous getcode example does.

However, if the program uses 1/0 control calls and changes the setting on lines
which are not held open by a login or other process, for example a line to a
printer, then the changes made will only last for the duration of the program.
In this case, the mode will be reset whenever the next program opens that line.

All the flag modes may be used in conjunction with standard 110 routines like
printf, scanf, getchar and so on. RAW mode, however, causes input to be
buffered in large chunks, so it should not be used for interactive programs.

Other possible commands for terminals, in addition to the previously mentioned
TIOCSETP and TIOCGETP, are described below. The definitions for all these
constants may be found in the include file <sgtty.h> (i.e., lusr/includel
sgtty.h).

TIOCSETN

TIOCEXCL

Set the parameters but do not delay or flush input.
When the usual TIOCSETP is used, the interface delays
until output is quiescent, then throws any unread charac­
ters away before parameters are changed. TIOCSENT
avoids this delaying and flushing of characters.

Set "exclusive-use" mode: no other process can open the
file until it is closed by the invoking process, or until
exclusive mode is turned off (see below). (This is used,
for example, by the line-printer spooler lpr(l) to prevent
people from interfering with output it is sending to the
printer.)

A process "A" can set a terminal to exclusive mode even
if the line was previously opened by some other process
"B" (non-exclusively). Either process can read or write
to the terminal. In this case, if process "A" exits with­
out explicitly turning off "exclusive-use", process "B"
inherits the exclusivity, and no further opening of the line
is possible until process "B" exits or turns off exclusivity
itself. Since this behavior is not usually desirable, it is

2-22

TIOCNXCL

TIOCHPCL

TIOCFLUSH

TIOCQCNT

VENIX PROGRAMMING

usually a good idea for any process which does a
TIOCEXCL to do a TIOCNXCL on the line before exit­
ing.

Turn off "exclusive-use" mode.

When the file is closed for the last time, hang up the ter­
minal. This is useful when the line is associated with an
ACU used to place outgoing calls.

All characters waiting on input or output are flushed.

Returns the count of characters currently typed in but not
yet read in sg~speed (0 to 255) and the count of charac­
ters on the output queue, which is probably rapidly
changing, in s~ospeed (0 to about 100). This mode is
used, for example, by some screen editors, which can
check to see if further commands have been typed while
they process an earlier one.

2.4.6 Error Processing

The routines discussed in this section, and in fact all the routines which are
direct entries into the system can incur errors. Usually they indicate an error by
returning a value of -1. Sometimes it is nice to know what sort of error
occurred; for this purpose all these routines, when appropriate, leave an error
number in the external cell errno. The meanings of the various error numbers
are listed in the introduction to Section 2 of the Programmer Reference Man­
ual. Your program can, for example, determine if an attempt to open a file
failed because it did not exist or because the user lacked permission to read it.
Perhaps more commonly, you may want to print out the reason for failure.
The routine perror will print a message associated with the value of errno; more
generally, SYLerrno is an array of character strings which can be indexed by
errno and printed by your program.

Severe programming errors, such as attempts to access unallocated memory or
execution of illegal instructions, result in a "signal" being generated. This will
normally cause your program to terminate and a file called "core" to be created

2-23

VENIX PROGRAMMING

containing the memory image of the program at the time the error occurred.
The shell detects that the program died in such a way, and will supply an error
message such as "memory fault - core dumped."

The debugger adb may be employed at this point to examine the "core" file
and determine the routine and instruction which caused the error. This is
known as "post-mortem" debugging. (See adb(1) and A TUTORIAL INTRO­
DUCTION TO ADB.) The most frequent cause of such a problem is a pointer
error, leading to illegal memory access errors.

As discussed in section 6 of this chapter, signals may be "trapped" (intercepted)
by a program before they cause program termination. However, there is usually
nothing very useful one can do with illegal instruction or memory access errors
except to let them cause termination and a core dump, so that the problem may
be found.

2.5 PROCESSES

Using a program written by someone else is often easier than inventing one's
own. This section describes how to execute a program from within another.

2.5.1 The System Function

The easiest way to execute a program from another is to use the standard
library routine system. system takes one argument, a command string exactly as
typed at the terminal (except for the newline at the end), and executes it. For
instance, to time-stamp the output of a program,

mainO
[

system("date ");
/* rest of processing * /

If the command string has to be built from pieces, the in-memory formatting
capabilities of sprintf may be useful.

2-24

VENIX PROGRAMMING

2.5.2 Low-Level Process Creation - Execl and Execv

If you're not using the standard library, or if you need finer control over what
happens, you will have to construct calls to other programs using the more
primitive routines that the standard library's system routine is based on.

The most basic operation is to execute another program without returning, by
using the routine execl. To print the date as the last action of a running pro­
gram, use

execl(" Ibinl date", "date", NULL);

The first argument to execl is the file name of the command; so you have to
know where it is found in the file system. The second argument is convention­
ally the program name (that is, the last component of the file name), but this is
seldom used except as a place-holder. If the command takes arguments, they
are strung out after this. The end of the list is marked by a NULL argument.

The execl call overlays the existing program with the new one, runs that, then
exits. There is no return to the original program.

More realistically, a program might fall into two or more phases that communi­
cate only through temporary files. Here it is natural to make the second pass
simply an execl call from the first.

The one exception to the rule that the original program never gets control back
occurs when there is an error, for example if the file can't be found or is not
executable. If you don't know where date is located, say

execl("/bin/date", "date", NULL);
execl("/usr/bin/date", "date", NULL);
fprintf(stderr, "Someone stole 'date'\n '');

A variant of execl called execv is useful when you don't know in advance how
many arguments there are going to be. The call is

execv(filename, argp);

2-25

VENIX PROGRAMMING

where argp is an array of pointers to the arguments; the last pointer in the array
must be NULL so execv can tell where the list ends. As with execl, filename is
the file in which the program is found, and argp[O] is the name of the program.
(This arrangement is identical to the argv array for program arguments.)

Neither of these routines provides the niceties of normal command execution.
There is no automatic search of multiple directories - you have to know pre­
cisely where the command is located. Nor do you get the expansion of
metacharacters like <, >, *, ?, and [] in the argument list. If you want these,
use execl to invoke the shell sh, which then does all the work. Construct a
string "commandline" that contains the complete command as it would have
been typed at the terminal, then type

execl("/bin/sh", "sh", "-c", commandline, NULL);

The shell is assumed to be at a fixed place, /bin/sh. Its argument -c says to
treat the next argument as a whole command line, so it does just what you
want. The only problem is in constructing the right information in
commandline.

2.5.3 The Environment

As seen in the last section, when a program is exec'ed, a set of commandline
arguments (the program name and appropriate flags and arguments) is passed to
it. In addition to these arguments, however, a collection of strings known as
the "environment" is automatically passed as well. These can contain any
information desired; by convention, they are often of the form

"NAME=val"

where "NAME" is an arbitrarily-named environment variable and "val" is its
value.

The shell allows users to set up their environment. For example, some full­
screep. editor programs need to know what kind of terminal is being used (so
that they can decide which codes to send to position the cursor and manipulate
the screen). Often the variable "TERM" is used for this purpose. The shell
commands

2-26

TERM = VT52
export TERM

VENIX PROGRAMMING

(often placed in a user's" .profile" file) cause the string "TERM = VT52" to be
placed in the user's environment, and passed as part of the environment to all
commands the user runs.

A program can find its environment through the external variable "environ",
which should be declared as

extern char **environ;

Like argv, environ is a pointer to an array of strings. The array is null­
terminated. The following program prints out its environment values:

define NULL «char *) 0)

extern char **environ;
~ain(argc,argv)

int argc;
char *argv;

int i;

for (i 0; environ[i] ! = NULL; + + i)
printf("OJos\n" ,environ[i));

The routine getenv(3) may be used to find the value-part of a particular envi­
ronment string of the form "NAME = val" .

The execl and execv calls cause the standard environ to be passed to the exe­
cuted program. If a program needs to change the environment before calling
another program, a new array of strings should be allocated. The execle and
execve calls are exactly the same as execl and execv, respectively, except that
they allow the program to specify an environment pointer other than environ.

2-27

VENIX PROGRAMMING

2.5.4 Control of Processes - Fork and Wait

The information covered so far isn't really all that useful by itself. So now you
will learn how to regain control after running a program with execl or execv.
Since these routines simply overlay the new program on the old one, saving the
old one requires that it first be split into two copies; one of these can be over­
laid, while the other waits for the new, overlaying program to finish. The split­
ting is done by a routine called .fork;

proc~d = forkO;

splits the program into two copies, both of which continue to run. The only
difference between the two is the value of proc~d, the "process id." In one of
these processes (the "child"), proc~d is zero. In the other (the "parent"),
proc~d is non-zero; it is the process number of the child. Thus the basic way
to call, and return from, another program is

if (forkO = = 0)
execl("/bin/sh", "sh", "-c", cmd, NULL); /* in child */

And in fact, except for handling errors, this is sufficient. The fork makes two
copies of the program. In the child, the value returned by fork is zero, so it
calls execl which does the command and then dies. In the parent, fork returns
non-zero so it skips the execl. (If there is any error, fork returns -1).

More often, the parent wants to wait for the child to terminate before continu­
ing itself. This can be done with the function wait:

int status;

if (forkO = = 0)
execl(...);

wait<.&status);

This still doesn't handle any abnormal conditions, such as a failure of the execl
or fork, or the possibility that there might be more than one child running
simultaneously. (The wait returns the process id of the terminated child, if you
want to check it against the value returned by fork.) Finally, this fragment
doesn't deal with any funny behavior on the part of the child (which is reported
in status). Still, these three lines are the heart of the standard library'S system
routine, which we'll show in a moment.

2-28

VENIX PROGRAMMING

The status returned by wait encodes in its low-order eight bits the system's idea
of the child's termination status; it is 0 for normal termination and non-zero to
indicate various kinds of problems. The next higher eight bits are taken from
the argument of the call to exit which caused a normal termination of the child
process. It is good coding practice for all programs to return meaningful status.

When a program is called by the shell, the three file descriptors 0, 1, and 2 are
set up pointing at the right files, and all other possible file descriptors are avail­
able for use. When this program calls another one, correct etiquette suggests
making sure the same conditions hold. Neither the fork nor the exec call affects
open files in any way. If the parent is buffering output that must come out
before output from the child, the parent must flush its buffers before the execl.
Conversely, if a caller buffers an input stream, the called program will lose any
information that has been read by the caller.

2.5.5 Pipes

A pipe is an 110 channel intended for use between two cooperating processes:
one process writes into the pipe, while the other reads. The system looks after
buffering the data and synchronizing the two processes. Most pipes are created
by the shell, as in:

Is I pr

which connects the standard output of Is to the standard input of pro Some­
times, however, it is more convenient for a process to set up its own plumbing;
in this section, we will illustrate how the pipe connection is established and
used.

The system call pipe creates a pipe. Since a pipe is used for both reading and
writing, two file descriptors are returned; the actual usage is like this:

int

stat
if (stat

fd[2];

pipe(fd);
- - -1)

/* there was an error ... * /

fd is an array of two file descriptors, where fd[O] is the read side of the pipe

2-29

VENIX PROGRAMMING

and fd[1] is for writing. These may be used in read, write and close calls just
like any other file descriptors.

If a process reads a pipe which is empty, it will wait until data arrives; if a
process writes into a pipe which is too full, it will wait until the pipe empties
some. If the write side of the pipe is closed, a subsequent read will encounter
end of file.

To illustrate the use of pipes in a realistic setting, let us write a function called
popen(cmd, mode), which creates a process cmd (just as system does), and
returns a file descriptor that will either read or write that process, according to
mode. That is, the call

fout = popen("pr", WRITE);

creates a process that executes the pr command; subsequent write calls using the
file descriptor fout will send their data to that process through the pipe.

popen first creates the the pipe with a pipe system call; it then forks to create
two copies of itself. The child decides whether it is supposed to read or write,
closes the other side of the pipe, then calls the shell (via execl) to run the
desired process. The parent likewise closes the end of the pipe it does not use.
These closes are necessary to make end-of-file tests work properly. For exam­
ple, if a child that intends to read fails to close the write end of the pipe, it will
never see the end of the pipe file, just because there is one writer potentially
active.

include < stdio.h >

define
define
define
static

READ
WRITE
tst(a, b)

o
1

(mode = = READ ? (b)
int popen_pid;

2-30

(a»

popen(cmd, mode)
char *cmd;
int mode;
(

int p[21;

if (pipe(p) < 0)
return(NULL);

if «popen_pid = fork()) = = 0) (
c1ose(tst(p[WRITEI, p[READ)));
c1ose(tst(O, 1»;

VENIX PROGRAMMING

dup(tst(p[READI, p[WRITE)));
c1ose(tst(p[READI, p[WRITE)));
execl("/bin/sh", "sh", "-c", cmd, 0);
_exit(1); /* disaster has occurred if we get here * /

if (popen_pid = = -1)
return(NULL);

c1ose(tst(p[READI, p[WRITE)));
return(tst(p[WRITEI, p[READ)));

The sequence of closes is a bit tricky. Suppose that the task is to create a child
process that will read data from the parent. Then the first close closes the write
side of the pipe, leaving the read side open. The lines

c1ose(tst(O, 1»;
dup(tst(p[READI, p[WRITE)));

are the conventional way to associate the pipe descriptor with the standard input
of the child. The close closes file descriptor 0, that is, the standard input. dup
is a system call that returns a duplicate of an already open file descriptor. File
descriptors are assigned in increasing order and the first available one is
returned, so the effect of the dup is to copy the file descriptor for the pipe
(read side) to file descriptor 0; thus the read side of the pipe becomes the stan­
dard input. (Yes, this is a bit tricky, but it's a standard idiom.) Finally, the old
read side of the pipe is closed.

2-31

VENIX PROGRAMMING

A similar sequence of operations takes place when the child process is supposed
to write from the parent instead of reading. You may find it a useful exercise
to step through that case.

The job is not quite done, because you still need a function pclose to close the
pipe created by popen. The main reason for using a separate function rather
than close is that it is desirable to wait for the termination of the child process.
First, the return value from pclose indicates whether the process succeeded.
Equally important when a process creates several children is that only a
bounded number of unwaited-for children can exist, even if some of them have
terminated; performing the wait lays the child to rest. Thus:

include < signal.h >

pclose(fd)
int fd;
{

/* close pipe fd * /

register r. (*hstat)O. (*istat)O. (*qstat)O;
int status;
extern int popen_pid;
close(fd);
istat signal(SIGINT. SIG--'GN);
qstat = signal(SIGQUIT. SIG--'GN);
hstat = signal(SIGHUP. SIG--'GN);
while «r = wait(&status» ! = popeIL-pid && r ! = -1);
if (r = = -1)

status = -1;
signal(SIGINT. istat);
signal(SIGQUIT. qstat);
signal(SIGHUP, hstat);
return(status);

The calls to signal make sure that no interrupts, etc., interfere with the waiting
process; this is the topic of the next section.

The routine as written has the limitation that only one pipe may be open at
once, because of the single shared variable popen_pid; it really should be an
array indexed by file descriptor. A popen function, with slightly different

2-32

VENIX PROGRAMMING

arguments and return value is available as part of the standard I/O library dis­
cussed below. As currently written, it shares the same limitation.

2.6 SIGNALS - INTERRUPTS

This section is concerned with how to deal with signals from the outside world
(like interrupts), and with program faults. Since there's nothing very useful that
can be done from within C about program faults, which arise mainly from ille­
gal memory references or from execution of peculiar instructions, the following
discussion deals only with the outside-world signals: interrupt, which is sent
when '~C' is typed; quit, generated by '~Z'; hangup, caused by hanging up the
phone; and terminate, generated by the kill command. When one of these
events occurs, the signal is sent to all processes which were started from the cor­
responding terminal; unless other arrangements have been made, the signal ter­
minates the process. In the quit case, a core image file is written for debugging
purposes. See signal(2) for a complete list of signals.

The routine which alters the default action is called signal. It has two argu­
ments: the first specifies the signal, and the second specifies how to treat it.
The first argument is just a number code, but the second is the address and is
either a function or a somewhat strange code that requests that the signal either
be ignored or be given the default action. The include file signal.h gives names
for the various arguments, and should always be included when signals are used.
Thus:

include < signal.h >

signal(SIGINT, SIGjGN);

causes interrupts to be ignored, while:

signal(SIGINT, SIG~FL);

restores the default action of process termination. In all cases, signal returns
the previous value of the signal. The second argument to signal may instead be
the name of a function (which has to be declared explicitly if the compiler
hasn't seen it already). In this case, the named routine will be called when the
signal occurs. Most commonly this facility is used to allow the program to
clean up unfinished business before terminating, for example to delete a

2-33

VENIX PROGRAMMING

temporary file:

include < signal.h >

MainO
{

int onintrO;

if (signal(SIGINT, SIG~GN) ! = SIG~GN)
signal(SIGINT, onintr);

}
onintrO
(

1* Process ... *1

exit(O);

unlink(tempfile);
exit(1);

Why the test and the double call to signal? Recall that signals like interrupt are
sent to all processes started from a particular terminal. Accordingly, when a
program is to be run non-interactively (started by &), the shell turns off inter­
rupts for it so it won't be stopped by interrupts intended for foreground pro­
cesses. If this program began by announcing that all interrupts were to be sent
to the onintr routine regardless, that would undo the shell's effort to protect it
when run in the background.

The solution, shown above, is to test the state of interrupt handling, and to
continue to ignore interrupts if they are already being ignored. The code as
written depends on the fact that signal returns the previous state of a particular
signal. If signals were already being ignored, the process should continue to
ignore them; otherwise, they should be caught.

A more sophisticated program may wish to intercept an interrupt and interpret
it as a request to stop what it is doing and return to its own command­
processing loop. Think of a text editor: interrupting a long printout should not

2-34

VENIX PROGRAMMING

cause it to terminate and lose the work already done. The outline of the code
for this case is probably best written like this:

include
include
jmp_buf

mainO
{

< signal.h >
< setjmp.h >

sjbuf;

int (*istat)O, onintrO;

istat = signal(SIGINT, SIG~GN); /* save original status * /
setjmp(sjbuf); /* save current stack position * /
if (istat ! = SIG~GN)

signal(SIGINT, onintr);

/* main processing loop * /

onintrO
{

printf("\ \nInterrupt\ \n ");
longjmp(sjbuf); /* return to saved state * /

The include file setjmp.h declares the type jmp_buf an object in which the
state can be saved. sjbuf is such an object; it is an array of some sort. The
setjmp routine then saves the state of things. When an interrupt occurs, a call
is forced to the onintr routine, which can print a message, set flags, or what­
ever. longjmp takes as argument an object stored into by setjmp, and restores
control to the location after the call to setjmp, so control (and the stack level)
will pop back to the place in the main routine where the signal is set up and the
main loop entered. Notice, by the way, that the signal gets set again after an
interrupt occurs. This is necessary; most signals are automatically reset to their
default action when they occur.

Some programs that want to detect signals simply can't be stopped at an arbi­
trary point, for example in the middle of updating a linked list. If the routine

2-35

VENIX PROGRAMMING

called on occurrence of a signal sets a flag and then returns instead of calling
exit or longjmp, execution will continue at the exact point it was interrupted.
The interrupt flag can then be tested later.

There is one difficulty associated with this approach. Suppose the program is
reading the terminal when the interrupt is sent. The specified routine is duly
called; it sets its flag and returns. If it were really true, as we said above, that
"execution resumes at the exact point it was interrupted," the program would
continue reading the terminal until the user typed another line. This behavior
might well be confusing, since the user might not know that the program is
reading; the user presumably would prefer to have the signal take effect
instantly. The method chosen to resolve this difficulty is to terminate the termi­
nal read when execution resumes after the signal, returning an error code which
indicates what happened.

Thus programs which catch and resume execution after signals, should be pre­
pared for "errors" which are caused by interrupted system calls. (The ones to
watch out for are reads from a terminal, wait, and pause.) A program whose
onintr program just sets intflag, resets the interrupt signal, and returns, should
usually include code like the following when it reads the standard input:

if (getcharO = = EOF)
if (intflag)

/* EOF caused by interrupt * /
else

/* true end-of-file * /

A final subtlety to keep in mind becomes important when signal-catching is
combined with execution of other programs. Suppose a program catches inter­
rupts, and also includes a method (like "!" in the editor) whereby other pro­
grams can be executed. Then the code should look something like this:

if (forkO = = 0)
execl(...);

signal(SIGINT, SIG~GN); /* ignore interrupts */
wait(&status); /* until the child is done * /
signal(SIGINT, onintr); /* restore interrupts * /

2-36

VENIX PROGRAMMING

Why is this? Again, it's not obvious but not really difficult. Suppose the pro­
gram you call catches its own interrupts. If you interrupt the subprogram, it
will get the signal and return to its main loop, and probably read your terminal.
But the calling program will also pop out of its wait for the subprogram and
read your terminal. Having two processes reading your terminal is very unfor­
tunate, since the system figuratively flips a coin to decide who should get each
line of input. A simple way out is to have the parent program ignore interrupts
until the child is done. This reasoning is reflected in the standard 110 library
function system :

include < signal.h >

system(s)
char *s;

/* run command string s * /

int status, pid, w;
register int (*istat)O, (*qstat)O;

if «pid = fork()) = = 0) {
execl(" /bin/sh ", "sh", "- c ", s, 0);
_exit(127);

istat = signal(SIGINT, SIG~GN);
qstat = signal(SIGQUIT, SIG~GN);
while «w = wait(&status» ! = pid && w ! = -1)

if (w = = -1)
status = -1;

signal(SIGINT, istat);
signal(SIGQUIT, qstat);
return(status);

As an aside on declarations, the function signal obviously has a rather strange
second argument. It is in fact a pointer to a function delivering an integer, and
this is also the type of the signal routine itself. The two values SIG~GN and
SIG~FL have the right type, but are chosen so they coincide with no possible
actual functions. For the enthusiast, here is how they are defined for the PDP-

2-37

VENIX PROGRAMMING

11; the definitions should be sufficiently ugly and nonportable to encourage use
of the include file.

define
define

SIG~FL

SIGjGN
(int (*)())O
(int (*)())1

2.7 FILES AND DIRECTORIES

2.7.1 File Attributes - Stat Call

VENIX maintains for each file a header block known as an "inode", holding
various pieces of information about the file, such as its length and read/write/
execute permissions. Using the stat system call, the contents of an i-node can
be examined at any time. stat returns a buffer with the following structure:

struct stat

dev_t st_dev;
ino_t st~no;

unsigned short st-"1ode;
short st_nlink;
short st_uid;
short st_gid;
dev_t st_rdev;
off_t st_size;
time_t st_atime;
time_t st_mtime;
time_t st_ctime;

1 ;

This structure is defined in the include file < sys/ stat.h >. The type definitions
"dev_t", "off_t" and "time_t" are all given in < sys/types.h>. (Since
these types may vary with different implementations of UNIX, they are given
special definitions in order to make the code using them more portable.)

2-38

VENIX PROGRAMMING

Here is a brief description of each element:

contains the major and minor numbers of the device on which the
file resides. The macro functions majorO and minorO (given in the
include file < sys/types.h », take an st_dev as argument and
extract one or the other of the two numbers. Together, these two
numbers uniquely identify each disk partition; their actual meaning is
described in SETTING UP VENIX in the Installation and System
Manager's Guide.

st~no holds the i-node number (or "i-number") of this file. Each file has
an i-node number unique to its file system. Since each file system
corresponds with exactly one disk partition, st~no in combination
with st_dev uniquely identifies the file for the entire system.

st-"lode holds (bit-encoded) information on the read/write/execute permission
of the file, and a few other items. The encoding is outlined in the
define statements in the include file < sys/stat.h >. Each condition
is given as an octal value.

define SjFMT

define SjFDIR

define SjFCHR

define SjFBLK

define SjFREG

define SjLRG

define SjSUID

define SjSGID

define SjSVTX

define SjREAD

define SjWRITE

define SjEXEC

0160000
0140000
0120000
0160000
0100000
010000
004000
002000
001000
000400
000200
000100

/* type of file * /

/* directory * /

/* character special * /

/* block special * /

/* regular file * /

/* large file * /

/* set user id on execution * /
/* set group id on execution * /

/* save shared segment after use * /

/* read permission, owner * /

/* write permission, owner * /

/* execute permission, owner * /

The read/write/execute permissions are given in the low nine bits of
the file. The file owner's own permissions are encoded in
SjREAD, SjWRITE and SjEXEC (i.e., those bits masked by
0700). For example, to test if the owner has execute permission, the
expression

2-39

VENIX PROGRAMMING

«mode & S~XEC) ! = 0)

is used. The high-order bits masked by S~FMT indicate the type
of file: directory, character device, block device or regular file. For
example, the expression:

«mode & S~FMT) S~FDIR)

is true if the file is a directory.

The permissions for the owner's group are given in the bits masked
by 070; those for "others" are given in 07. Other bits indicate that
the file is "set-UID", "set-GID", and "sticky". The meaning of
these conditions is described elsewhere.

st_nlink is the number of links to the file, that is, the number of names by
which the file is known. When a file is first created, the link count
is one. It is possible to create further links to the file with the link
system call or the In command. Having multiple links to a file is
convenient if different users or programs prefer to call one file by
different names.

When a file is removed, its name is said to be "unlinked" (the sys­
tem call used is unUnkO). Unlinking a file name breaks the connec­
tion between that name and the file; only the name is removed from
the file system. The file's link count is decremented by one. The
file itself, however, remains around, accessible by all remaining links,
until the last link is undone. At that point, the file disappears and
its disk space deallocated.

holds the owner's user ID number, corresponding to the user's name
in the /ete/passwd file.

holds the owner's group ID number, corresponding to the user's
group name in the jete/group file. Although the user and group ID
are given here as type short integer, they are internally stored as
char's, and thus are limited to values 0-255.

2-40

VENIX PROGRAMMING

st_rdev holds major and minor device numbers for files that are block or
character devices. These numbers are of the same type that st_dev
is, but indicate the device these special files "point" to, not the
device they reside on.

sL---.Size is the size of the file, measured in bytes.

st_atime is the time the file was last accessed.

st_mtime is the time the file was last modified. Time is measured in seconds
since 0:00 January 1, 1970.

st_ctime is identical to st_atime (In some UNIX implementations, it holds
the time the file was created, but this is not currently done in
VENIX.)

With all this in mind, you can write a crude version of the Is command. This
program, which may be called "list", gives a status report on all files passed it
on the command line. The program is written with a main routine which pro­
cesses each command argument, does a stat of it, and passes the information to
a routine called list which prints out the information in readable form. list uses
the standard library routines ctime(3) to convert the time into English, and
getpwuid(3) to map the owner's user ID number to his name in the /etc/passwd
file.

/* list - list status information on files * /

include < stdio.h >
include < pwd.h >
include < sys/types.h >
include < sys/ stat.h >

/* standard 110 * /
/* password header * /

/* system type defs * /
/* stat structure * /

char def_perm£] = "rwxrwxrwx"; /* full permission setting */
char perm[9]; /* permission for each file * /
struct stat sbuf; /* stat buf * /

2-41

VENIX PROGRAMMING

ERain(argc,argv)
int argc;
char *argv[];
{

if (argc = = l){ /* no arguERents given * /
fprintf(stderr, ''Usage: list file .•• \n If);
exit(l);

while (- - argc){
+ +argv;

exit(O);

if (stat(*argv,&sbuf) < O){
fprintf(stderr, "can't stat OJos\n", *argv);
continue;

Iist(*argv,&sbuf);

/* list routine - print info on pointed-to structure * /

/* file naERe */
Iist(naERe,psb)
char *naERe;
struct stat *psb; /* pointer to stat buffer */
{

int i;
int bit
int Icount;
long size;
char type;

0400;

char *tiERe, *ctiEReO;
char *unaERe;
struct passwd *ppwd,

/* high ERode bit */
/* link count */
/* file size */
/* type of file */

/* file tiERe */
/* user naERe */

*getpwuidO;

2-42

VENIX PROGRAMMING

for (i = 0; i < 9; + + i){
if «psb - > st~ode & bit) = = 0)

perm[i] = ' ';
else perm[i] def_perm[i];
bit > > = 1; /* rotate bit to the right * /

switch(psb - > st~ode & SJFMT){
case SJFDIR:

type = 'd';
break;

case SJFCHR:
type = 'c';
break;

case SJFBLK:
type = 'b';
break;

case SJFREG:
type = ' ';
break;

/* directory * /

/* character device * /

/* block device * /

/* plain file * /

time ctime(&(psb- >st~time»;
ppwd = getpwuid(psb - > st_uid);
uname ppwd- >pw-'lame;

Icount psb - > st-'llink;
size = psb - > sLJize;

printf("OJocOJos 0J0 -3dOJo -7s% -7D%.24s % -14s\n",
type,perm,lcount,uname,size,time,name);

2.7.2 Directory Structure

A directory is a special type of file which contains a list of file names and cor­
responding inode-numbers. Directories may only be written into by VENIX
itself; this is done of course whenever a new file is created or removed from the
directory. However, it is entirely possible for a user program to read a direc­
tory, and the contents can be easily interpreted.

2-43

VENIX PROGRAMMING

The format of a directory entry is very simple and is defined in the include file
< sys/dir.h > :

#define DIRSIZ 14

struct direct /* structure of directory entry * /
ino_t d-.-ino; /* inode number * /
char d-"ame[DIRSIZ); /* file name * /

}j

The type definition "ino_t" is defined in <sys/types.h>; on PDP-II's, it is
an integer. d-.-ino is the inode number, and d_name is the file name. The
size of each file entry then is 2 bytes (inode number) + 14 bytes (name) = 16
bytes total. However, to keep your programs portable, it is always best to refer
to the length of each entry as

sizeof(struct direct)

which evaluates to the right number.

When a file is created, it is assigned a new entry in its directory. When it is
removed, the i-node number is zeroed, though the file name itself may remain.
Therefore when reading a directory a program must always check that a file has
a non-zero i-number and thus really exists. Future entries will overwrite
removed ones, but no attempt is ever made to condense a directory to recover
removed entries; directories grow as needed, but never shrink.

With this in mind, you can improve the listing program given earlier. In the
earlier version, the specifications of each file argument were listed; if a directory
name was given as argument, the directory itself was listed, not the files it con­
tained. Since it is frequently convenient to have the contents of each directory
argument listed, you can modify the list program to check if each argument is a
directory, and if so, to extract and list all its entries, that is, all the files the
directory contains.

Since the program was written in a modular fashion, only the main need be
modified. The list routine remains the same, and is not duplicated here.

2-44

VENIX PROGRAMMING

/* list program # 2 examines contents of directory * /
include < stdio.h > /* standard 110 * /
include < pwd.h > /* password header * /
include < sys/types.h > /* system type defs * /
include < sys/ dir.h > /* directory structure * /
include < sys/stat.h > /* stat structure * /
char def_perm[] "rwxrwxrwx If; /* full permission setting * /
char perm(9); /* permission for each file * /
char name(200);
struct direct dbuf;
struct stat sbuf; /* stat buf * /

main(argc,argv)
int argc;
char *argv[];

register char *pl, *p2, *ql;
int i, fd;

if (argc = = l){
fprintf(stderr, ''Usage: list file ..• \n '');
exit(l);

while (- - argc) {
+ +argv;
if (stat(*argv,&sbuf) < O){

fprintf(stderr, "can't stat OJos\n", *argv);
continue;

2-45

VENIX PROGRAMMING

I
exit(O);

if «sbuf.st~ode & SjFMT) ! = SjFDIR)
list(*argv,&sbuf); /* normal file * /

else /* list directory * /
printf("\ndirectory OJos: \n", *argv);
pI = name;
ql = *argv;
while (*pl + + *ql + +) /* pocket dir name * /

(pl-l) = ' I'; / cover null with / * /
if «fd = open(*argv,O» < O){

I

fprintf(stderr, "can't open directory OJos\n", *argv);
exit(l);

while «i read(fd,&dbuf,sizeof(struct direct») ! = O){
if (i < O){

fprintf(stderr, "error reading OJos\n", *argv);
exit(1);

if (dbuf.d-.ino ! = O){ /* is a real entry? * /
p2 = pI; /* dirname * /
ql = dbuf.d-"ame;
while (*p2+ + *ql+ +) /*fullname*/

if (stat(name,&sbuf) < O){
fprintf(stderr, "can't stat OJos\n" ,name);
exit(l);

list(dbuf .d_name,&sbuf);

I

close(fd);
printf("\n ");

/* close directory * /

I

If an argument is determined to be a directory, it is opened and read. Each
entry with a non-zero inode number is extracted, and appended to the directory

2-46

VENIX PROGRAMMING

name itself so that a stat can be done on it. The list routine is then called to
print out the inode information.

To repeat, this is quite a simple list program. It doesn't attempt to sort its
entries, and when listing a directory's contents it doesn't suppress listing of the
mandatory"." and" .. " entries (referring to the directory itself and its parent).

2.8 SHARED DATA SEGMENTS AND SEMAPHORES

2.8.1 Shared Data Segments

VENIX provides a facility for one or more processes to hook up to a common
data segment. This is done through the sdata system call, which windows an 8k
byte segment of the process' memory into the segment. The sdata call is of the
form

sdata(arg, reg, offset)
char *arg;
int reg, offset;

There are two types of shared data segments: "named" segments, which are
used when several processes need to hook into the same segment, and
"unnamed" segments, for a single process which uses the segment as an extra
memory buffer only.

Named segments are opened by calling sdata with a file name as argo When the
first process hooks up to a named segment, that file is brought in from disk and
placed in memory. Subsequent sdata calls by other processes will hook up to
that file in memory. When a named segment is opened, the offset argument
indicates the offset in 64 byte units that the file should be windowed into mem­
ory. Further sdata calls can change this offset.

Unnamed segments are opened by calling sdata with arg= 1 (more properly, the
1 should be coerced into a character pointer as in (char *) 1). Unnamed seg­
ments are useful for accessing extra memory, but are unique to each process
that opens them; there is no sharing involved (the name "shared data segment"
is in this case a misnomer). When an unnamed segment is opened, offset speci­
fies the length, in 64 byte units.

2-47

VENIX PROGRAMMING

The following rules apply to both named and unnamed segments: On opening,
reg is the number of the Active Page Register (APR) to be used for the window.
Each process has 8 APR's (numbered 0 - 7), each of which maps an 8kb sec­
tion of the process' logical address space into physical memory. The top page
of logical memory (APR 7) is reserved for the stack, and the lower pages of
memory (APR 0, 1, ...) are taken up by the code and data portions of the pro­
gram;t the number of registers actually used depends on the size of the pro­
gram. APR 6, however, is usually free for normal-sized programs, and can be
used for the shared data segment. This corresponds to virtual address 6 x 8k
6 x 020000 (octal) = address 0140000 (octal).

The offset, into the shared segment where the window is placed, is set when
named segments are opened. The offset may be changed, for both kinds of seg­
ments, by additional sdata calls with arg = 0 and offset = the offset that the
window is placed into the file, in multiples of 64 bytes. So while only 8kb of
the segment is viewable at any time, the particular 8kb piece chosen may begin
at any 64 byte boundary in the segment. It is forbidden to move the window
base beyond the end of the segment, although it is possible to move the window
base up to the end. (If the base is less than 8kb from the end, attempts to
address memory logically beyond the segment will cause memory violation errors
leading to a core dump unless otherwise trapped.)

The maximum size of named or unnamed segments is installation-dependent,
and can be changed by the system administrator. For more information on this
refer to the chapter, SETTING UP VENIX, in the Installation and System
Manager's Guide.

2.8.2 Semaphores

Frequently, when one process is reading or writing to a shared segment it has to
be careful that another process, looking at the same segment, is not tampering
with it; a jumbled, corrupted record might otherwise result. To prevent this,
VENIX allows the use of binary semaphores as a means of communicating

t On separate I&D machines, programs linked for separate I&D use one

set of APR registers dedicated to data space only, with code space controlled

by a different set of registers.

2-48

VENIX PROGRAMMING

between cooperating processes, and this mechanism is especially useful for the
problems of managing shared data segments. While reading or writing a partic­
ular shared segment, a process first checks an agreed upon semaphore to see if
somebody else is playing with it. If nobody is, the process can set the sema­
phore itself and begin writing. Now, other processes that plan to read or write
there will see that the semaphore is set, and will wait. When the first process is
finished writing, it clears the semaphore, and another process waiting for it can
use it.

The main system calls to set and clear semaphores are:

semset(semnum, priority)

and,

semclear(semnum)

semset sets semaphore number semnum if it was clear; otherwise, it causes the
calling process to go to sleep. When the semaphore finally clears, the process
waiting for this semaphore with the highest priority (lowest number) wakes up;
the others remain sleeping. semclear clears semaphore semnum, and causes the
highest priority process waiting for it to wake up. Other calls allow various
testing of semaphores; see semset(2).

There are 32 possible semaphores, with values -16 to 15. Semaphores with
values -16 to -1 are "global" and maintained across the entire system; those
with values 0 to 15 are "local" maintained by each process group (that is, the
group of processes sharing the same control terminal). Semaphores are not
reset when a program starts or exits; local semaphores will be cleared for a new
process group, that is, when a user logs in.

The following program sets up a simple shared-data mailing list. The header
file is as follows:

2-49

VENIX PROGRAMMING

/* mail.h - - structure definition * /

define NCHAR 30 /* Number of characters per line * /
define NNAMES 400 /* Number of slots for names * /
define MLIST "mailing.list" /* Name of mailing list file * /

struct mail
int
char
char
char

flags; /* Place for flags, etc. * /
/* Address ... * /

l;

/*

* Flag bits
*/

Iinel[NCHAR];
line2[NCHAR];
Iine3[NCHAR];

define F -.-ALLOC
define F _NUSA

01 /* Slot is allocated * /
02 /* Address is not in USA * /

/*

* Some implementation dependent parameters
*/

define
define
define
/*

SEM
REG
SIZE

-1 /* Use global semaphore no. I * /
6 /* Use PDP-ll mapping register 6 */
020000 /* Addressing size of a register * /

* Following are needed because PDP-It's memory management
* allows relocation only in increments of 64 bytes.
*/

define
define

GRAN
SHIFT

077
6

/* Addressing granularity * /
/* Shift for granularity * /

The first program creates a prototype data file, NNAMES records long, with
one dummy address at the beginning.

2-50

VENIX PROGRAMMING

include "mail.h"

struct

mainO(

mail data[NNAMES];

int
/* set up the mailing list data prototype file * /

fd;

if((fd = creat(MLIST ,0666» < 0)(
perror(MLIST);
exit(1);

/*

* Fill in one name
*/

data[O].f1ags = F ~LLOC;
strncpy(&data[0].line1, "John Q. Public", NCHAR);
strncpy(&data[O].line2, "100 Main Street", NCHAR);
strncpy(&data[0].line3, "Any town MA 02000", NCHAR);
if(write(fd, &data, size of data) ! = sizeof data)(

perror(MLIST);
exit(2);

semclear(SEM); /* initialize semaphore * /

The strncpy function copies the address lines into the data structure, and pads
the end of it with nulls (see string(3».

Next you have the routine getmslot which reads this file in and finds a empty
entry in it.

include "mail.h"

struct mail *getmslotO{ /* find empty slot in mailing list * /
register struct mail *mp;
register int cnt;
static int sd_set = 0; /* flag set when shared data mapped * /

2-51

VENIX PROGRAMMING

if(sd~et = = 0)(
sd_set+ +;

/*

. if(.sdata(MLIST ,REG,O) < 0){
perror(MLIST);

-geturn(-l);

* Simple minded;linear search algorithm.
*/

cnt = 0;
for(;;){

/*
* Map the desired . portion.
*/
sdata(0, REG, (cnt*sizeof(struct mail) > > SHIFT);
/*

* Check for,.empty slots here.
*/
mp = REG*SIZE + «cnt*sizeof(struct mail)&GRAN);
for(imp < «REG + l)*SIZE) - sizeof(struct mail); + + mp){

if((mp - > f1ags&F ~LLOC) = = 0)
/*
* Found one. Give caller its address.
*/
return(mp);

if(+ + cnt > = NNAMES)
/*
*. No empty slots, return NULL.
*/
return(O);

The flag sd_set indicates whether the sdata segment has been read in yet by the
process. If it hasn't, an initial sdata call is made to hook up to it. Note that
after an sdata call has been made to a given file, future sdata calls passing a

2-52

VENIX PROGRAMMING

null pointer as a file name will automatically hook up to this file, and will be
more efficient than explicitly specifying the file name each time.

getmslot then proceeds to run through the record structure in the file, looking
for an empty one (i.e. with F -.ALLOC flag clear). It scans through the length
of the window, address REG * SIZE to (REG + 1) * SIZE, looking for a free
record.

When mp points to a structure which crosses the boundary from one window to
another, the innermost for loop breaks and another sdata call is made to bring
the window up to a boundary as close as possible below the next structure. The
program is unfortunately complicated by the fact that the window must be
placed on a 64 byte boundary. The sdata in the outer for loop moves the win­
dow onto the correct boundary; before the inner for loop begins, the pointer is
set to the bottom of the window (REG * SIZE) plus the offset (0 - 63 bytes)
necessary to address the beginning of the next structure.

Finally, there is the program addname which adds a name to the list.

include "mail.h"

mainO! /* add a name to the mailing list * /
register struct mail *mp;
char bufl[NCHAR];
char buf2[NCHAR);
char buf3[NCHAR);
printf("Input name: '');
scanf("OJ030s" ,bufl);
printf(,1nput street address: If);
scanf("%30s",buf2);
printf('1nput city, state and ZIP: '');
scanf("%30s ",buB);

semset(SEM, 0); /* lock out other users * /

2-53

VENIX PROGRAMMING

if((mp = getmslotO) = = 0)(
printf(liN 0 empty slots. \n ");
semclear(SEM); 1* clear the semaphore *1
exit(l);

mp - > flags = F ~LLOC;

strncpy(&mp- >line1, &bufl, NCHAR); l*copyinaddress*1
strncpy(&mp - > Iine2, &buf2, NCHAR);
strncpy(&mp - > Iine3, &buf3, NCHAR);

semclear(SEM); 1* clear the semaphore *1

exit(O);

The program asks the user for the name and address. It then makes a semset
call to either guarantee that nobody else is playing with the file, or to wait until
the file is free. The wake-up priority is arbitrarily set to zero. getmslot is
called to find a free slot, and the data is copied in there. Finally, the sema­
phore is cleared and the program finishes.

The beauty of this arrangement is that any number of people can run addname
simultaneously without interfering with each other. The semaphores guarantee
that only one version of the program will update the mailing list at a time.

2.9 REAL-TIME PROGRAMMING
VENIX contains a number of features which are useful for applications requir­
ing high data throughput, or quick response to "real-time" events. Some of
these features, such as "exclusive priority" execution, require privileged use of
the computer. These features are accessible by the super-user ("root" login,
user-ID = zero). To allow access to these features without the more general
super-user privileges (such as unrestricted file manipulation), users may be
placed in the "super-group", (group-ID = zero). Members of the super-group
have only the privileged abilities to run at exclusive priority, lock their processes
in memory, and directly access the I/O page. (It must be realized that unre­
stricted access to the 1/0 page can lead to total control of the computer; mem­
bers of the super-group are restricted only at the file-system level.)

2-54

VENIX PROGRAMMING

No attempt is made here to discuss the use of specific data acquisition devices,
such as AID's or DI A's. These devices can usually be manipulated by ioctl (II
o control) calls to control the clock speed, set the acquisition mode, or do any­
thing else under driver control. The use of ioctl calls for terminals is described
in a previous section; similar calls may be used for many data acquisition
devices, although the data structures passed are different for each device. See
the device driver write-up in DEVICES, section (7) of the Installation and Sys­
tem Manager's Guide for particulars.

After an ioctl call is done to set these parameters, standard read and write calls
can be made. Devices which use direct memory accessing (DMA) can take
advantage of VENIX's asynchronous 110 capabilities described below.

2.9.1 Raw Disk and Tape I/O

Raw 110 can be used when a user wishes to transfer data directly and quickly
between his buffer and any mass storage device (disk or tape) which can do
direct memory access (DMA). This is possible for most disk and tape devices.
Raw 110 is different from ordinary (buffered) 110, in which the system inter­
nally buffers everything between the user and the device. The main advantage
of raw 110 is its speed; its disadvantage is that the user must transfer data in
the same size blocks that the device physically uses, which is normally 512 bytes
at a time. All read, write, and lseek calls must be made in multiples of this
block size for raw 110; in all other ways, they can be used exactly as previously
described.

On disks, raw 110 bypasses the file system hierarchy. For this reason, it can
not be used with an ordinary file, but instead with an entire disk partition.
This disk partition can not have a file system on it; it must be dedicated to raw
data. (On tape devices this is irrelevant, since file systems are not used.)

A raw device is opened for 110 just as any ordinary file is, although in this case
the "file" is an entire area of the disk or a tape unit. Raw device names are
generally the ordinary device names prefixed by an "r"; that is, the buffered
device "/dev/rlO.usr" becomes the raw device "/dev/rrlO.usr," "/dev/mtO"
becomes "I dev IrmtO," and so on. The devices "rIO. usr" and "rrlO. usr" cover
exactly the same disk partition: the only difference is that the first implies
buffered 110, and the second, raw 110.

2-55

VENIX PROGRAMMING

Once a raw device is opened, all I/O to it is automatically handled as raw. No
special requirements are made, beyond the 512 byte block transfer rules given
above.

If a disk partition is too large to be dedicated entirely to raw I/O, or too small
to hold the needed data, the system administrator can adjust its size. This is
described in SETTING UP VENIX in the Installation and System Manager's
Guide.

2.9.2 Asynchronous I/O

Input and output (raw or ordinary) is normally synchronous; that is, after a call
to read or write returns, the user is guaranteed that the buffer transfer has been
completed. If VENIX is unable to complete the transfer immediately, then it
waits until resources are available, e.g. the system gets the desired disk block
into memory. This is very convenient from the programmer's point of view,
and generally only a small and quite acceptable delay is produced.

However, occasionally the I/O may take a significant time to complete, as with
an AID, DI A, or some remote device such as an array processor. Other times,
overlapping transfers may be needed to maintain a high throughput, as when
taking data from an AID to the user's buffer, and then to a disk. In these
cases, "asynchronous I/O" is required.

The asynchronous I/O in VENIX allows a user process to overlap CPU process­
ing and any I/O which uses DMA to transfer data between the device and the
user's buffer. Disk, tape and many AID and DI A devices are in this class.
The penalty for this added flexibility is extra responsibility on the part of the
user for multiple buffering and checking to see that an asynchronous transfer is
completed. The reward is higher throughput.

Asynchronous I/O is always raw; in fact, it is more accurately referred to as
"asynchronous raw I/O". Since it is raw, its use is restricted to entire disk par­
titions. Again, reading and writing must be in block multiples (usually 512
bytes).

2-56

VENIX PROGRAMMING

The fact that 1/0 is to be handled asynchronously is again given in the open
call, where the asynchronous version of the device is given. Asynchronous
device names have an "a" prefixed to them, so the asynchronous version of
"/dev/rlO.usr" is "/dev/arlO.usr", and the asynchronous version of "/dev/ad"
is "I dev I aad" .

Checking of multiple buffers is handled by the special system call aiowait(2),
which is of the form:

aiowait(fd,level)

where fd is the file descriptor returned by the open call of the device, and level
is the number of outstanding 110 requests (Le., unfilled buffers). aiowait
causes the calling process to sleep until the number of outstanding 110 requests
falls less than or equal to level. aiowait returns with the number of outstanding
requests left. If level is negative, aiowait just returns with the number of out­
standing requests, without any sleeping.

The following is an example of a simple program to read from an AID (with
DMA) and write to an area on disk which has been reserved for raw 110 (Le.
no file system is on the partition). Note that ordinary read and write calls are
used; the fact that the 1/0 will be handled asynchronously is specified only
when the open call is made, at which time the asynchronous device name is
used. (Here the disk partition used has been given the name "arlO.data"; the
".data" extension is a reminder that this partition is used for data-taking only.)

int bufl[256], buf2[256];

mainO[1* simple double buffer program *1
int afd, dfd, i;

afd open("/dev/aad",O); 1* async AID *1
dfd open("/dev/arIO.data",l); 1* async disk partition *1

read(afd, bufl, sizeof(bufl»; 1* start the first read *1

2-57

VENIX PROGRAMMING

for (i = 0; i < 1500; i+ =2)[
read(afd, bun, sizeof(buf2»;
aiowait(afd,1);
write(dfd, bufl, sizeof(bufl»;
read(afd,bufl, sizeof(bufl»;
aiowait(afd,1);
write(dfd, buf2, sizeof(buf2»;

1* read 1500 blocks *1

The aiowait(afd, 1) after the second buffer transfer has been started causes the
user's process to wait until no more than one AID request remains, thus indi­
cating that the first buffer has been filled. The program continuously fills one
of the two buffers asynchronously, while it writes out the other (filled) buffer to
the disk.

This program assumes that the disk will always finish the write before the AID
is ready to start the next read. An aiowait(dfd, 0) could be done to guarantee
the write is really finished (in which case it is a synchronous write, and the disk
could just as well have been opened for regular 110), or a triple buffer scheme
could be introduced: one buffer for the read, one for the write, and one for the
slop when switching back and forth. Triple or sometimes greater buffering is
needed when the AID transfer rate gets close to the average transfer rate of the
disk, especially since there is variation in the disk seek times.

The program also assumes that the AID is always being read by a least one
queued request. If the computer is too slow in initiating write requests to the
disk, or is caught up in activity for other users, then all requests may be
satisfied before a new one is initiated. The AID will stop being read during
that interval, resulting in a loss of data. This condition can be checked by
doing an aiowait(afd, -1) (which returns the number of queued buffers) and
making sure that there is at least one queued at all times. If this is a problem,
then your program may need to use more buffers or run at high priority (see
below).

2-58

VENIX PROGRAMMING

It must also be noted that even when buffers are continuously queued, there is a
possibility of data loss between buffers. This occurs at data rates above several
kilohertz when VENIX itself can not set up the next queued transfer in time to
catch new data. The more sophisticated AID converters have hardware FIFO's
or support for double-buffering, which prevent this problem from occurring.

2.9.3 High Priority Execution

VENIX normally apportions equal shares of processor time to each process run­
ning. This can be adjusted, however, with the system call

nice(incr)

nice can be called by any process with a positive incr to lower the process's exe­
cution priority; super-user processes, and those in the super-group, can call nice
with a negative incr to raise their execution priority. Normal priorities range
from - 20 (highest priority) to 20 (lowest priority), but even at - 20 a process
still won't get exclusive use of the machine.

For processes which do require exclusive use of CPU time, for example to han­
dle large amounts of data, the special "exclusive" priority can be set by calling
nice with an increment of - 100. Once a process has set itself to this priority, it
has total use of CPU time. All normal-priority processes are frozen until the
exclusive process exits, lowers its priority, or goes to sleep. Two or more
"exclusive" priority processes will compete evenly for CPU time.

2.9.4 Sleeping

Processes will implicitly sleep (that is, suspend execution for an interval) for
several reasons: normal (synchronous) readlwrite calls will cause a process to
sleep until the block of data is transferred; aiowait calls with a positive level will
cause the process to sleep until the number of outstanding asynchronous
requests reach that level or below; the semset call (set semaphore) will cause the
process to sleep until the given semaphore is clear. These sleeps are automati­
cally induced by these calls, but it is also possible for a process to explicitly
cause a sleep though the sleep routine, of the form

sleep(+ seconds)

or

2-59

VENIX PROGRAMMING

sJeep(-clockticks)

Sleep takes one argument to indicate the amount of time to suspend execution.
If it is positive, the sleep is measured in seconds; if it is negative, it is measured
in clock-ticks (60ths of seconds). Sleeping can be very useful for exclusive pro­
cesses which wish to allow other system activity to take place during non-critical
intervals. Sleep, incidentally, is composed of two system calls: an alarm to
schedule an alarm signal in whatever amount of time, and then a pause to sus­
pend execution until the alarm. It is possible to schedule alarms without sleep­
ing; see the discussion of signals earlier in this document, and alarm(2).

A running process set to exclusive-priority will give up control of the CPU when
it sleeps, and regain it when the sleep finishes. There may, however, be some
delay - usually small- involved in waking up. If there is much other activity
on the system, the process could get swapped out onto disk during its sleep; in
this case there will· be a delay after the sleep is over while the process is brought
into memory. This behavior can be prevented by locking the process in memory
with the lock call. lock takes one argument: if it is non-zero, the process will
be locked into memory; if it is zero, it will be unlocked and subject to swap­
ping. Locking is restricted to super-users or users in the super-group.

Even if a process is not swapped, some delay may be suffered when a process
finishes sleeping. If experience shows that this delay is too great, the process
should sleep for fewer clock-ticks and then simply loop for the remaining time.
In an extreme case, the process should avoid sleeping altogether and just loop.

Programs doing asynchronous 110 can avoid sleeping by calling aiowait with an
argument of -1 to check the number of queued buffers without initiating a
sleep. For example, in the previous example, the line:

aiowait(afd,1);

2-60

VENIX PROGRAMMING

causes a sleep to occur until one or fewer requests remain outstanding. To
avoid sleeping, this can be rewritten as:

wbile(aiowait(afd,-1) > 1)

which will continuously check the number of requests, without any sleeping.

2.9.5 Addressing the 1/0 Page

Device drivers are usually responsible for controlling the device registers. There
is, however, some overhead involved in accessing the driver from the user-level
(through the system calls read, write, or ioctl), and real-time applications may
sometimes need to map the 110 page into their own memory and toggle the bits
directly. This is done through the pbys ("physical address") call.

Since the ability to remap memory can completely defeat system security and
corrupt 110, the phys can be used only by the super-user, or, in the special case
of mapping the 110 page, by users in the super-group. The call is of the form:

pbys(segreg, size, pbysaddr)

Segreg is the number of the segmentation register used; each segment is 8kb or
octal 020000 bytes long, so the virtual starting address of the segment is 020000
* (multiplied by) segreg. Size indicates the length of the mapped area, in units
of 64 (octal 0100) bytes. Physaddr is the physical address to be mapped, also in
units of 64 (octal 0100) bytes.

It is only permissible to map an area of virtual memory not already in use by
the program. High memory (segreg = 7) is always used by the stack, and lower
memory (segreg = 0, 1. ..) is used by the code and data portions of the program
itself, but the page at location 0140000 (segreg = 6) is usually available, except
when used by maximal size processes.

For example, to map the PDP-ll console, the call:

pbys(6, 1, 0177775);

can be used. This will map virtual memory at location 6 * 020000 = 0140000
for 1 * 0100 = 0100 bytes, to the physical address of the 110 page: 0177775 *

2-61

VENIX PROGRAMMING

0100 = 017777500. The 110 page at addresses 017777500 - 017777600 now
resides at location 0140000 - 0140100 in virtual memory, and the console in
particular can be found at 0140060. A pointer can be set to this address, and
the register manipulated as needed.

Typical code to manipulate some device looks something like this:

define SEGREG 6 /* virtual segmentation register to use * /
define PAGLEN 020000 /* length of a page of memory * /

#define MAPADDR 0177600 /* address to pass to physO */
define VIRTADDR «SEGREG * PAGLEN) + 020)

define READY 0000200
define ERR 0100000

/* set when device is ready * /
/* error */

struct device
int csr;
int data;

};

devcom(info)
int info;
{

/* structure of device register * /
/* command/status register * /

/* data register * /

/* write out data to device * /

if (phys(SEGREG, 1, MAPADDR) < O){
fprintf(stderr, "bad phys call\n If);
return(l);

nice (-100); /* set real-time priority * /

2-62

VENIX PROGRAMMING

while ((VIRTADDR - > csr & READY) = = 0)
1* wait for device to be free * I

sleep(-I);

VIRTADDR- > data = info; 1* write data *1

while ((VIRTADDR - > csr & READY) = = 0)
1* wait for command to complete *1

sleep(-1);

if (VIRTADDR - > csr & ERR) [
fprintf(stderr,"device error\n ");
return(1);

nice(+ 100);
return(O);

1* relinquish real-time priority *1

The physical address of the device register is 017760020 (the high four bits are
set on to work properly for 22-bit addressing), which comes to 0177600 when
divided by 64 (0100). The virtual device address is calculated as the beginning
of page 6 plus the offset (in this case 020) of the register address from the 64
(0100) byte boundary on which the physO call maps memory.

Devices such as AID's can be similarly controlled, although interrupts from
these devices must be handled by kernel device drivers which users write and
install. (Sources for many typical devices drivers are supplied with VENIX.)
Alternatively, a user program can avoid using interrupts and poll a real-time
device directly through the hardware, as is done in the above example. After
execution of the pbys system call and a nice(-100) call, the "ready" bit can be
polled in between sleep calls of appropriate lengths. This will guarantee instant
response to a device, at the expense of processor time for other tasks. If no
sleep calls are made, the system becomes de facto single-user and single-tasking.
This facility can be used only by members of the super-group and the super­
user.

2-63

VENIX PROGRAMMING

2.10 Appendix

2.10.1 THE STANDARD 1/0 LIBRARY

The standard 1/0 library was designed with the following goals in mind.

1. It must be as efficient as possible, both in time and in space, so that there
will be no hesitation in using it no matter how critical the application.

2. It must be simple to use, and also free of the magic numbers and mysteri­
ous calls whose use mars the understandability and portability of many
programs using older packages.

3. The interface provided should be applicable on all machines, whether or
not the programs which implement it are directly portable to other systems,
or to other machines running a version of UNIX.

2.10.2- GENERAL USAGE

Each program using the library must have the line

#include <stdio.h>

which defines certain macros and variables. The routines. are in the normal C
library, so no special library argument is needed for loading. All names in the
include file intended only for internal use begin with an underscore _ to reduce
the possibility of collision with a user name. The names intended to be visible
outside the package are

stdin
The name of the standard input file

stdout
The name of the standard output file

stderr
The name of the standard error file

2-64

VENIX PROGRAMMING

EOF
is actually -1, and is the value returned by the read routines on end-of-file or
error.

NULL
is a notation for the null pointer, returned by pointer-valued functions to indi­
cate an error

FILE
expands to struct ~ob and is a useful shorthand when declaring pointers to
streams.

BUFSIZ
is a number (viz. 512) of the size suitable for an I/O buffer supplied by the
user. See setbuf, below.

getc, getchar, putc, putchar, feof, ferror, fileno
are defined as macros. Their actions are described below; they are mentioned
here to point out that it is not possible to redeclare them and· that they are not
actually functions; thus, for example, they may not have breakpoints set on
them.

The routines in this package offer the convenience of automatic bufferalloca­
tion and output flushing where appropriate. The names stdin, stdout, and
stderr are in effect constants and may not be assigned to.

2.10.3 CALLS

FILE *fopen(filename, type) char *filename, *type;
opens the file and, if needed, allocates a buffer for it. filename
is a character string specifying the name. type is a character
string (not a single character). It may be "r", "w", or "a" to
indicate intent to read, write, or append. The value returned is
a file pointer. If it is NULL the attempt to open failed.

FILE *freopen(filename, type, ioptr) char *filename, *type; FILE *ioptr;
The stream named by ioptr is closed, if necessary, and then
reopened as if by fopen. If the attempt to open fails, NULL is
returned, otherwise ioptr, which will now refer to the new file.
Often the reopened stream is stdin or stdout.

2-65

VENIX PROGRAMMING

int getc(ioptr) FILE *ioptr;
returns the next character from the stream named by ioptr,
which is a pointer to a file such as returned by fopen, or the
name stdin. The integer EOF is returned on end-of-file or when
an error occurs. The null character \0 is a legal character.

int fgetc(ioptr) FILE *ioptr;
acts like getc but is a genuine function, not a macro, so it can
be pointed to, passed as an argument, etc.

putc(c, ioptr) FILE *ioptr;
putc writes the character c on the output stream named by ioptr,
which is a value returned from fopen or perhaps stdout or
stderr. The character is returned as value, but EOF is returned
on error.

fputc(c, ioptr) FILE *ioptr;
acts like putc but is a genuine function, not a macro.

fclose(ioptr) FILE *ioptr;
The file corresponding to ioptr is closed after any buffers are
emptied. A buffer allocated by the I/O system is freed. fclose
is automatic on normal termination of the program.

fflush(ioptr) FILE *ioptr;
Any buffered information on the (output) stream named by
ioptr is written out. Output files are normally buffered if and
only if they are not directed to the terminal; however, stderr
always starts off unbuffered and remains so unless setbuf is
used, or unless it is reopened.

exit(errcode); terminates the process and returns its argument as status to the
parent. This is a special version of the routine which calls
fflush for each output file. To terminate without flushing, use
_exit.

feof(ioptr) FILE *ioptr;
returns non-zero when end-of-file has occurred on the specified
input stream.

2-66

VENIX PROGRAMMING

ferror(ioptr) FILE *ioptr;
returns non-zero when an error has occurred while reading or
writing the named stream. The error indication lasts until the
file has been closed.

getcharO; is identical to getc(stdin).

putchar(c); is identical to putc(c, stdout).

char *fgets(s, n, ioptr) char *s; FILE *ioptr;
reads up to n -t characters from the stream ioptr into the char­
acter pointer s. The read terminates with a newline character.
The newline character is placed in the buffer followed by a null
character. fgets returns the first argument, or NULL if error or
end-of-file occurred.

fputs(s, ioptr) char *s; FILE *ioptr;
writes the null-terminated string (character array) s on the
stream ioptr. No newline is appended. No value is returned.

ungetc(c, ioptr) FILE *ioptr;
The argument character c is pushed back on the input stream
named by ioptr. Only one character may be pushed back.

printf(format, at, ...) char *format;

fprintf(ioptr, format, at, ...) FILE *ioptr;

char *format; sprintf(s, format, at, ...)char *s, *format;
printf writes on the standard output. fprintf writes on the
named output stream. sprintf puts characters in the character
array (string) named by s. The specifications are as described in
section printf(3) of the Programmer Reference Manual.

scanf(format, at, ...) char *format;

fscanf(ioptr, format, at, ...) FILE *ioptr;

char *format; sscanf(s, format, at, ...) char *s, *format;
scanf reads from the standard input. fscanf reads from the
named input stream. sscanf reads from the character string sup­
plied as s. scanf reads characters, interprets them according to a
format, and stores the results in its arguments. Each routine
expects as arguments a control string format, and a set of

2-67

VENIX PROGRAMMING

arguments, each of which must be a pointer, indicating where
the converted input should be stored.

scanf returns as its value the number of successfully matched
and assigned input items. This can be used to decide how many
input items were found. On end of file, EOF is returned; note
that this is different from 0, which means that the next input
character does not match what was called for in the control
string.

fread(ptr, sizeof(*ptr), nitems, ioptr) FILE *ioptr;
reads nitems of data beginning at ptr from file ioptr. No
advance notification that binary 110 is being done is required;
when, for portability reasons, it becomes required, it will be
done by adding an additional character to the mode-string on
the fopen call.

fwrite(ptr, sizeof(*ptr), nitems, ioptr) FILE *ioptr;
Like fread, but in the other direction.

rewind(ioptr) FILE *ioptr;
rewinds the stream named by ioptr. It is not very useful except
on input, since a rewound output file is still open only for out­
put.

system(string) char * string;
The string is executed by the shell as if typed at the terminal.

getw(ioptr) FILE *ioptr;
returns the next word from the input stream named by ioptr.
EOF is returned on end-of-file or error, but since this a perfectly
good integer feof and ferror should be used. A "word" is 16
bits on the PDP-ll.

putw(w, ioptr) FILE *ioptr;
writes the integer w on the named output stream.

setbuf(ioptr, buf) FILE *ioptr; char *buf;
setbuf may be used after a stream has been opened but before
110 has started. If buf is NULL, the stream will be unbuffered.
Otherwise the buffer supplied will be used. It must be a charac­
ter array of sufficient size:

2-68

VENIX PROGRAMMING

char buf[BUFSIZ];

fileno(ioptr) FILE *ioptr;
returns the integer file descriptor associated with the file.

fseek(ioptr, offset, ptrname) FILE *ioptr; long offset;
The location of the next byte in the stream named by ioptr is
adjusted. offset is a long integer. If ptrname is 0, the offset is
measured from the beginning of the file; if ptrname is 1, the
offset is measured from the current read or write pointer; if
ptrname is 2, the offset is measured from the end of the file.
The routine accounts properly for any buffering. (When this
routine is used on non-UNIX systems, the offset must be a value
returned from ftell and the ptrname must be 0).

long ftell(ioptr) FILE *ioptr;
The byte offset, measured from the beginning of the file, associ­
ated with the named stream is returned. Any buffering is prop­
erly accounted for. (On non-UNIX systems the value of this
call is useful only for handing to fseek, so as to position the file
to the same place it was when ftell was called.)

getpw(uid, buf) char *buf;
The password file is searched for the given integer user ID. If
an appropriate line is found, it is copied into the character array
buf, and 0 is returned. If no line is found corresponding to the
user ID then 1 is returned.

char *malloc(num);
allocates num bytes. The pointer returned is sufficiently well
aligned to be usable for any purpose. NULL is returned if no
space is available.

char *calloc(num, size);
allocates space for num items each of size size. The space is
guaranteed to be set to 0 and the pointer is sufficiently well
aligned to be usable for any purpose. NULL is returned if no
space is available .

2-69

VENIX PROGRAMMING

cfree(ptr) char *ptr;
Space is returned to the pool used by calloc. Disorder can be
expected if the pointer was not obtained from calloc.

The following are macros whose definitions may be obtained by including
<ctype.h> .

isalpha(c)

isupper(c)

islower(c)

isdigit(c)

isspace(c)

ispunct(c)

isalnum(c)

isprint(c)

iscntrl(c)

isascii(c)

toupper(c)

tolower(c)

returns non-zero if the argument is alphabetic.

returns non-zero if the argument is upper-case alphabetic.

returns non-zero if the argument is lower-case alphabetic.

returns non-zero if the argument is a digit.

returns non-zero if the argument is a spacing character: tab,
newline, carriage return, vertical tab, form feed, space.

returns non-zero if the argument is any punctuation character,
i.e., not a space, letter, digit or control character.

returns non-zero if the argument is a letter or a digit.

returns non-zero if the argument is printable - a letter, digit, or
punctuation character.

returns non-zero if the argument is a control character.

returns non-zero if the argument is an ASCII character, i.e., less
than octal 0200.

returns the upper-case character corresponding to the lower-case
letter c.

returns the lower-case character corresponding to the upper-case
letter c.

2-70

Contents

3.1 LEXICAL CONVENTIONS .. 3-1

3.2 SYNTAX NOTATION .. 3-6

3.3 NAMES ... 3-6

3.4 OBJECTS AND LV ALUES ... 3-8

3.5 CONVERSIONS .. 3-8

3.6 EXPRESSIONS ... 3-11

3.7 DECLARATIONS .. 3-22

3.8 STATEMENTS .. 3-38

3.9 EXTERNAL DEFINITIONS .. 3-43

3.10 SCOPE RULES .. 3-45

3.11 COMPILER CONTROL LINES 3-47

3.12 IMPLICIT DECLARATIONS 3-50

3.13 TYPES REVISITED .. 3-51

3.14 CONSTANT EXPRESSIONS 3-55

3.15 PORTABILITY CONSIDERATIONS 3-56

3.16 SYNTAX SUMMARY ... 3-57

Chapter 3

C LANGUAGE

3.1 LEXICAL CONVENTIONS
There are six classes of tokens - identifiers, keywords, constants, strings, oper­
ators, and other separators. Blanks, tabs, new-lines, and comments (collec­
tively, "white space") as described below are ignored except as they serve to
separate tokens. Some white space is required to separate otherwise adjacent
identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given character, the next
token is taken to include the longest string of characters which could possibly
constitute a token.

3.1.1 Comments

The characters 1* introduce a comment which terminates with the characters
* I . Comments do not nest.

3.1.2 Identifiers (Names)

An identifier is a sequence of letters and digits. The first character must be a
letter. The underscore (_) counts as a letter. Uppercase and lowercase letters
are different. Although there is no limit on the length of a name, only initial
characters are significant: at least eight characters of a non-external name, and

3-1

CLANGUAGE

perhaps fewer for external names. Moreover, some implementations may col­
lapse case distinctions for external names. The external name sizes include:

7 characters, 2 cases PDP-ll
VAX-ll
WECo 3B 20

> 100 characters, 2 cases
> 100 characters, 2 cases

3.1.3 Keywords

The following identifiers are reserved for use as keywords and may not be used
otherwise:

auto do for return typedef
break double goto short union
case else if sizeof unsigned
char enum int static void
continue external long struct while
default float register switch

Some implementations also reserve the words fortran and asm.

3.1.4 Constants

There are several kinds of constants. Each has a type; an introduction to types
is given in "NAMES." Hardware characteristics that affect sizes are summa­
rized in "Hardware Characteristics" under "LEXICAL CONVENTIONS."

3.1.4.1 Integer Constants

An integer constant consisting of a sequence of digits is taken to be octal if it
begins with 0 (digit zero). An octal constant consists of the digits 0 through 7
only. A sequence of digits preceded by Ox or OX (digit zero) is taken to be a
hexadecimal integer. The hexadecimal digits include a or A through f or F with
values lO through 15. Otherwise, the integer constant is taken to be decimal.
A decimal constant whose value exceeds the largest signed machine integer is
taken to be long; an octal or hex constant which exceeds the largest unsigned
machine integer is likewise taken to be long. Otherwise, integer constants are
into

3-2

C LANGUAGE

3.1.4.2 Explicit Long Constants

A decimal, octal, or hexadecimal integer constant immediately followed by I (let­
ter ell) or L is a long constant. As discussed below, on some machines integer
and long values may be considered identical.

3.1.4.3 Character Constants

A character constant is a character enclosed in single quotes, as in 'x'. The
value of a character constant is the numerical value of the character in the
machine's character set.

Certain nongraphic characters, the single quote (') and the backslash (\), may
be represented according to the following table of escape sequences:

new-line NL (LF) \n

horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
backslash \ \\
single quote \'
bit pattern ddd \ddd

The escape \ddd consists of the backslash followed by 1, 2, or 3 octal digits
which are taken to specify the value of the desired character. A special case of
this construction is \0 (not followed by a digit), which indicates the character
NUL. If the character following a backs lash is not one of those specified, the
behavior is undefined. A new-line character is illegal in a character constant.
The type of a character constant is into

3.1.4.4 Floating Constants

A floating constant consists of an integer part, a decimal point, a fraction part,
an e or E, and an optionally signed integer exponent. The integer and fraction
parts both consist of a sequence of digits. Either the integer part or the frac­

,tion part (not both) may be missing. Either the decimal point or the e and the
exponent (not both) may be missing. Every floating constant has type double.

3-3

CLANGUAGE

3.1.4.5 Enumeration Constants

Names declared as enumerators (see "Structure, Union, and Enumeration Decla­
rations" under "DECLARATIONS") have type int.

3.L5 Strings

A string is a sequence of characters surrounded by double quotes, as in" "
A string has type "array of char" and storage class static (see "NAMES") and
is initialized with the given characters. The compiler places a null byte (\0) at
the end of each string so that programs which scan the string can find its end.
In a string, the double quote character (") must be preceded by a \; in addition,
the same escapes as described for character constants may be used.

A \ and the immediately following new-line are ignored. All strings, even when
written identically, are distinct.

3.1.6 Hardware Characteristics

The following figures summarize certain hardware properties that vary from
machine to machine.

DEC PDP-II
(ASCII)

char 8 bits
int 16
short 16
long 32
float 32
double 64
float range ± 1O±38

double range ± 1O±38

DEC PDP-ll HARDWARE CHARACTERISTICS

3-4

C LANGUAGE

DEC VAX-ll
(ASCII)

char 8 bits
int 32
short 16
long 32
float 32
double 64
float range ± 1O±38

double range ± 10±38

DEC VAX-ll HARDWARE CHARACTERISTICS

WECO 3B
(ASCII)

char 8 bits
int 32
short 16
long 32
float 32
double 64
float range ± 1O±38

double range ± lO±38

WECO 3B HARDWARE CHARACTERISTICS

3-5

CLANGUAGE

3.2 SYNTAX NOTATION

Syntactic categories are indicated by italic type and literal words and characters
in bold type. Alternative categories are listed on separate lines. An optional
terminal or nonterminal symbol is indicated by the subscript "opt," so that

{ expressionopt J

indicates an optional expression enclosed in braces. The syntax is summarized
in "SYNTAX SUMMARY".

3.3 NAMES

The C language bases the interpretation of an identifier upon two attributes of
the identifier - its storage class and its type. The storage class determines the
location and lifetime of the storage associated with an identifier; the type deter­
mines the meaning of the values found in the identifier's storage.

3.3.1 Storage Class

There are four declarable storage classes:

• Automatic

• Static

• External

• Register.

Automatic variables are local to each invocation of a block (see "Compound
Statement or Block" in "STATEMENTS") and are discarded upon exit from
the block. Static variables are local to a block but retain their values upon
reentry to a block even after control has left the block. External variables exist
and retain their values throughout the execution of the entire program and may
be used for communication between functions, even separately compiled func­
tions. Register variables are (if possible) stored in the fast registers of the
machine; like automatic variables, they are local to each block and disappear on
exit from the block.

3-6

CLANGUAGE

3.3.2 Type

The C language supports several fundamental types of objects. Objects declared
as characters (char) are large enough to store any member of the
implementation's character set. If a genuine character from that character set is
stored in a char variable, its value is equivalent to the integer code for that
character. Other quantities may be stored into character variables, but the
implementation is machine dependent. In particular, char may be signed or
unsigned by default.

Up to three sizes of integer, declared short int, int, and long int, are available.
Longer integers provide no less storage than shorter ones, but the implementa­
tion may make either short integers or long integers, or both, equivalent to
plain integers. "Plain" integers have the natural size suggested by the host
machine architecture. The other sizes are provided to meet special needs.

The properties of enum types (see "Structure, Union, and Enumeration Declara­
tions" under "DECLARATIONS") are identical to those of some integer types.
The implementation may use the range of values to determine how to allot stor­
age.

Unsigned integers, declared unsigned, obey the laws of arithmetic modulo 2n

where n is the number of bits in the representation. (On the PDP-11, unsigned
long quantities are not supported.)

Single-precision floating point (float) and double precision floating point (dou­
ble) may be synonymous in some implementations.

Because objects of the foregoing types can usefully be interpreted as numbers,
they will be referred to as arithmetic types. Char, int of all sizes whether
unsigned or not, and enum will collectively be called integral types. The float
and double types will collectively be called floating types.

Besides the fundamental arithmetic types, there is a conceptually infinite class of
derived types constructed from the fundamental types in the following ways:

3-7

CLANGUAGE

• Arrays of objects of most types

• Functions which return objects of a given type

• Pointers to objects of a given type

• Structures containing a sequence of objects of various types

• Unions capable of containing anyone of several objects of various types.

In general these methods of constructing objects can be applied recursively.

3.4 OBJECTS AND LVALUES

An object is a manipulatable region of storage. An lvalue is an expression
referring to an object. An obvious example of an lvalue expression is an identi­
fier. There are operators which yield Ivalues: for example, if E is an expression
of pointer type, then *E is an lvalue expression referring to the object to which
E points. The name "lvalue" comes from the assignment expression El = E2
in which the left operand El must be an lvalue expression. The discussion of
each operator below indicates whether it expects lvalue operands and whether it
yields an lvalue.

3.5 CONVERSIONS
A number of operators may, depending on their operands, cause conversion of
the value of an operand from one type to another. This part explains the result
to be expected from such conversions. The conversions demanded by most
ordinary operators are summarized under "Arithmetic Conversions." The sum­
mary will be supplemented as required by the discussion of each operator.

3.5.1 Characters and Integers

A character or a short integer may be used wherever an integer may be used.
In all cases the value is converted to an integer. Conversion of a shorter integer
to a longer preserves sign. Whether or not sign-extension occurs for characters
is machine dependent, but it is guaranteed that a member of the standard

3-8

CLANGUAGE

VAX-ll sign-extend. On these machines, char variables range in value from
-128 to 127.

On machines that treat characters as signed, the characters of the ASCII set are
all non-negative. However, a character constant specified with an octal escape
suffers sign extension and may appear negative; for example, '\377' has the
value -1.

When a longer integer is converted to a shorter integer or to a char, it is trun­
cated on the left. Excess bits are simply discarded.

3.5.2 Float and Donble

All floating arithmetic in C is carried out in double precision. Whenever a float
appears in an expression it is lengthened to double by zero padding its fraction.
When a double must be converted to float, for example by an assignment, the
double is rounded before truncation to float length. This result is undefined if
it cannot be represented as a float.

3.5.3 Floating and Integral

Conversions of floating values to integral type are rather machine dependent.
In particular, the direction of truncation of negative numbers varies. The result
is undefined if it will not fit in the space provided.

Conversions of integral values to floating type are well behaved. Some loss of
accuracy occurs if the destination lacks sufficient bits.

3.5.4 Pointers and Integers

An expression of integral type may be added to or subtracted from a pointer; in
such a case, the first is converted as specified in the discussion of the addition
operator. Two pointers to objects of the same type may be subtracted; in this
case, the result is converted to an integer as specified in the discussion of the
subtraction operator.

3-9

CLANGUAGE

3.5.5 Unsigned

Whenever an unsigned integer and a plain integer are combined, the plain inte­
ger is converted to unsigned and the result is unsigned. The value is the least
unsigned integer congruent to the signed integer (modulo 2wordsize). In a 2's
complement representation, this conversion is conceptual; and there is no actual
change in the bit pattern.

When an unsigned short integer is converted to long, the value of the result is
the same numerically as that of the unsigned integer. Thus the conversion
amounts to padding with zeros on the left.

3.5.6 Arithmetic Conversions

A great many operators cause conversions and yield result types in a similar
way. This pattern will be called the "usual arithmetic conversions".

a. First, any operands of type char or short are converted to int, and any
operands of type unsigned short are converted to unsigned into

b. Then, if either operand is double, the other is converted to double and
that is the type of the result.

c. Otherwise, if either operand is unsigned long, the other is converted to
unsigned long and that is the type of the result.

d. Otherwise, if either operand is long, the other is converted to long and
that is the type of the result.

e. Otherwise, if one operand is long, and the other is unsigned int, they are
both converted to unsigned long and that is the type of the result.

f. Otherwise, if either operand is unsigned, the other is converted to unsigned
and that is the type of the result.

g. Otherwise, both operands must be int, and that is the type of the result.

3-10

C LANGUAGE

3.6 EXPRESSIONS
The precedence of expression operators is the same as the order of the major
subsections of this section, highest precedence first. Thus, for example, the
expressions referred to as the operands of + (see "Additive Operators") are
those expressions defined under "Primary Expressions", "Unary Operators",
and "Multiplicative Operators". Within each subpart, the operators have the
same precedence. Left- or right-associativity is specified in each subsection for
the operators discussed therein. The precedence and associativity of all the
expression operators are summarized in the grammar of "SYNTAX SUM­
MARY".

Otherwise, the order of evaluation of expressions is undefined. In particular,
the compiler considers itself free to compute sUbexpressions in the order it
believes most efficient even if the subexpressions involve side effects. The order
in which sUbexpression evaluation takes place is unspecified. Expressions
involving a commutative and associative operator (*, +, &, I, A) may be rear­
ranged arbitrarily even in the presence of parentheses; to force a particular
order of evaluation, an explicit temporary must be used.

The handling of overflow and divide check in expression evaluation is unde­
fined. Most existing implementations of C ignore integer overflows; treatment
of division by 0 and all floating-point exceptions varies between machines and is
usually adjustable by a library function.

3.6.1 Primary Expressions

Primary expressions involving ., - >, subscripting, and function calls group left
to right.

3-11

CLANGUAGE

primary-expression:
identifier
constant
string
(expression)
primary-expression [expression]
primary-expression (expression-list opt)
primary-expression . identifier
primary-expression - > identifier

expression-list:
expression
expression-list , expression

An identifier is a primary expression provided it has been suitably declared as
discussed below. Its type is specified by its declaration. If the type of the iden­
tifier is "array of ... ", then the value of the identifier expression is a pointer to
the first object in the array; and the type of the expression is "pointer to ... ".
Moreover, an array identifier is not an Ivalue expression. Likewise, an identifier
which is declared "function returning ... ", when used except in the function­
name position of a call, is converted to "pointer to function returning ... ".

A constant is a primary expression. Its type may be int, long, or double
depending on its form. Character constants have type int and floating constants
have type double .

A string is a primary expression. Its type is originally "array of char", but fol­
lowing the same rule given above for identifiers, this is modified to "pointer to
char" and the result is a pointer to the first character in the string. (There is an
exception in certain initializers; see "Initialization" under "DECLARA­
TIONS.")

A parenthesized expression is a primary expression whose type and value are
identical to those of the unadorned expression. The presence of parentheses
does not affect whether the expression is an Ivalue.

3-12

CLANGUAGE

A primary expression followed by an expression in square brackets is a primary
expression. The intuitive meaning is that of a subscript. Usually, the primary
expression has type "pointer to ... ", the subscript expression is int, and the
type of the result is " ... ". The expression El[E2] is identical (by definition) to
*«E1) + (E2)). All the clues needed to understand this notation are contained in
this subpart together with the discussions in "Unary Operators" and "Additive
Operators" on identifiers, * and +, respectively. The implications are summa­
rized under "Arrays, Pointers, and Subscripting" under "TYPES REVIS­
ITED" .

A function call is a primary expression followed by parentheses containing a
possibly empty, comma-separated list of expressions which constitute the actual
arguments to the function. The primary expression must be of type "function
returning ... ", and the result of the function call is of type " ... ". As indi­
cated below, a hitherto unseen identifier followed immediately by a left paren­
thesis is contextually declared to represent a function returning an integer; thus
in the most common case, integer-valued functions need not be declared.

Any actual arguments of type float are converted to double before the call.
Any of type char or short are converted to into Array names are converted to
pointers. No other conversions are performed automatically; in particular, the
compiler does not compare the types of actual arguments with those of formal
arguments. If conversion is needed, use a cast; see "Unary Operators" and
"Type Names" under "DECLARATIONS".

In preparing for the call to a function, a copy is made of each actual parame­
ter. Thus, all argument passing in C is strictly by value. A function may
change the values of its formal parameters, but these changes cannot affect the
values of the actual parameters. It is possible to pass a pointer on the under­
standing that the function may change the value of the object to which the
pointer points. An array name is a pointer expression. The order of evaluation
of arguments is undefined by the language; take note that the various compilers
differ. Recursive calls to any function are permitted.

A primary expression followed by a dot followed by an identifier is an expres­
sion. The first expression must be a structure or a union, and the identifier
must name a member of the structure or union. The value is the named mem­
ber of the structure or union, and it is an Ivalue if the first expression is an
lvalue.

3-13

CLANGUAGE

A primary expression followed by an arrow (built from - and » followed by
an identifier is an expression. The first expression must be a pointer to a struc­
ture or a union and the identifier must name a member of that structure or
union. The result is an lvalue referring to the named member of the structure
or union to which the pointer expression points. Thus the expression
E1- > MOS is the same as (*El).MOS. Structures and unions are discussed in
"Structure, Union, and Enumeration Declarations" under "DECLARATIONS."

3.6.2 Unary Operators

Expressions with unary operators group right to left.

unary-expression:
* expression
& lvalue
- expression
! expression
- expression
+ + lvalue
- -lvalue
lvalue + +
lvalue --
(type-name) expression
sizeof expression
sizeof (type-name)

The unary * operator means indirection; the expression must be a pointer, and
the result is an lvalue referring to the object to which the expression points. If
the type of the expression is "pointer to ... ," the type of the result is " ... ".

The result of the unary & operator is a pointer to the object referred to by the
lvalue. If the type of the lvalue is " ... ", the type of the result is "pointer to

"

The result of the unary - operator is the negative of its operand. The usual
arithmetic conversions are performed. The negative of an unsigned quantity is
computed by subtracting its value from 2n where n is the number of bits in the
corresponding signed type.

3-14

CLANGUAGE

There is no unary + operator.

The result of the logical negation operator! is one if the value of its operand is
zero, zero if the value of its operand is nonzero. The type of the result is into
It is applicable to any arithmetic type or to pointers.

The - operator yields the one's complement of its operand. The usual arithme­
tic conversions are performed. The type of the operand must be integral.

The object referred to by the lvalue operand of prefix + + is incremented. The
value is the new value of the operand but is not an lvalue. The expression
+ +x is equivalent to x=x+l. See the discussions "Additive Operators" and
"Assignment Operators" for information on conversions.

The lvalue operand of prefix - - is decremented analogously to the prefix + +
operator.

When postfix + + is applied to an lvalue, the result is the value of the object
referred to by the lvalue. After the result is noted, the object is incremented in
the same manner as for the prefix + + operator. The type of the result is the
same as the type of the lvalue expression.

When postfix - - is applied to an lvalue, the result is the value of the object
referred to by the lvalue. After the result is noted, the object is decremented in
the manner as for the prefix - - operator. The type of the result is the same
as the type of the lvalue expression.

An expression preceded by the parenthesized name of a data type causes conver­
sion of the value of the expression to the named type. This construction is
called a cast. Type names are described in "Type Names" under "Declara­
tions."

The sizeof operator yields the size in bytes of its operand. (A byte is undefined
by the language except in terms of the value of sizeof. However, in all existing
implementations, a byte is the space required to hold a char.) When applied to
an array, the result is the total number of bytes in the array. The size is deter­
mined from the declarations of the objects in the expression. This expression is
semantically an unsigned constant and may be used anywhere a constant is

3-15

CLANGUAGE

required. Its major use is in communication with routines like storage alloca­
tors and II 0 systems.

The sizeof operator may also be applied to a parenthesized type name. In that
case it yields the size in bytes of an object of the indicated type.

The construction sizeof(type) is taken to be a unit, so the expression
sizeof(type) - 2 is the same as (sizeof(type» - 2.

3.6.3 Multiplicative Operators

The multiplicative operators *, I, and 070 group left to right. The usual arith­
metic conversions are performed.

multiplicative expression:
expression * expression
expression I expression
expression % expression

The binary * operator indicates multiplication. The * operator is aSSocIatIve,
and expressions with several multiplications at the same level may be rearranged
by the compiler. The binary I operator indicates division.

The binary % operator yields the remainder from the division of the first
expression by the second. The operands must be integral.

When positive integers are divided, truncation is toward 0; but the form of
truncation is machine-dependent if either operand is negative. On all machines
covered by this manual, the remainder has the same sign as the dividend. It is
always true that (a/b)*b + a%b is equal to a (if b is not 0).

3.6.4 Additive Operators

The additive operators + and - group left to right. The usual arithmetic con­
versions are performed. There are some additional type possibilities for each
operator.

3-16

additive-expression:
expression + expression
expression - expression

CLANGUAGE

The result of the + operator is the sum of the operands. A pointer to an
object in an array and a value of any integral type may be added. The latter is
in all cases converted to an address offset by multiplying it by the length of the
object to which the pointer points. The result is a pointer of the same type as
the original pointer which points to another object in the same array, appropri­
ately offset from the original object. Thus if P is a pointer to an object in an
array, the expression P + 1 is a pointer to the next object in the array. No fur­
ther type combinations are allowed for pointers.

The + operator is associative, and expressions with several additions at the
same level may be rearranged by the compiler.

The result of the - operator is the difference of the operands. The usual arith­
metic conversions are performed. Additionally, a value of any integral type
may be subtracted from a pointer, and then the same conversions for addition
apply.

If two pointers to objects of the same type are subtracted, the result is con­
verted (by division by the length of the object) to an iut representing the num­
ber of objects separating the pointed-to objects. This conversion will in general
give unexpected results unless the pointers point to objects in the same array,
since pointers, even to objects of the same type, do not necessarily differ by a
multiple of the object length.

3.6.5 Shift Operators

The shift operators < < and > > group left to right. Both perform the usual
arithmetic conversions on their operands, each of which must be integral. Then
the right operand is converted to iut; the type of the result is that of the left
operand. The result is undefined if the right operand is negative or greater than
or equal to the length of the object in bits.

3-17

CLANGUAGE

shift-expression:
expression < < expression
expression > > expression

The value of E1 < < E2 is E1 (interpreted as a bit pattern) left-shifted E2 bits.
Vacated bits are 0 filled. The value of E1> > E2 is E1 right-shifted E2 bit posi­
tions. The right shift is guaranteed to be logical (0 fill) if E1 is unsigned; other­
wise, it may be arithmetic.

3.6.6 Relational Operators

The relational operators group left to right.

relational-expression:
expression < expression
expression > expression
expression < = expression
expression > = expression

The operators < (less than), > (greater than), < = (less than or equal to), and
> = (greater than or equal to) all yield 0 if the specified relation is false and 1
if it is true. The type of the result is int. The usual arithmetic conversions are
performed. Two pointers may be compared; the result depends on the relative
locations in the address space of the pointed-to objects. Pointer comparison is
portable only when the pointers point to objects in the same array.

3.6.7 Equality Operators

equality-expression:
expression = = expression
expression ! = expression

The = = (equal to) and the! = (not equal to) operators are exactly analogous
to the relational operators except for their lower precedence. (Thus
a<b = = c<d is 1 whenever a<b and c<d have the same truth value).

3-18

CLANGUAGE

A pointer may be compared to an integer only if the integer is the constant O.
A pointer to which 0 has been assigned is guaranteed not to point to any object
and will appear to be equal to O. In conventional usage, such a pointer is con­
sidered to be null.

3.6.8 Bitwise AND Operator

and-expression:
expression & expression

The & operator is associative, and expressions involving & may be rearranged.
The usual arithmetic conversions are performed. The result is the bitwise AND
function of the operands. The operator applies only to integral operands.

3.6.9 Bitwise Exclusive OR Operator

exclusive-or-expression:
expression ~ expression

The " operator is associative, and expressions involving " may be rearranged.
The usual arithmetic conversions are performed; the result is the bitwise exclu­
sive OR function of the operands. The operator applies only to integral oper­
ands.

3.6.10 Bitwise Inclusive OR Operator

inclusive-or-expression:
expression I expression

The I operator is associative, and expressions involving I may be rearranged.
The usual arithmetic conversions are performed; the result is the bitwise inclu­
sive OR function of its operands. The operator applies only to integral oper­
ands.

3-19

CLANGUAGE

3.6.11 Logical AND Operator

logical-and-expression:
expression && expression

The && operator groups left to right. It returns 1 if both its operands evaluate
to nonzero, 0 otherwise. Unlike &, && guarantees left to right evaluation;
moreover, the second operand is not evaluated if the first operand is o.

The operands need not have the same type, but each must have one of the fun­
damental types or be a pointer. The result is always into

3.6.12 Logical OR Operator

logical-or-expression:
expression II expression

The II operator groups left to right. It returns 1 if either of its operands evalu­
ates to nonzero, 0 otherwise. Unlike I, II guarantees left to right evaluation;
moreover, the second operand is not evaluated if the value of the first operand
is nonzero.

The operands need not have the same type, but each must have one of the fun­
damental types or be a pointer. The result is always into

3.6.13 Conditional Operator

conditional-expression:
expression ? expression : expression

Conditional expressions group right to left. The first expression is evaluated;
and if it is nonzero, the result is the value of the second expression, otherwise
that of third expression. If possible, the usual arithmetic conversions are per­
formed to bring the second and third expressions to a common type. If both
are structures or unions of the same type, the result has the type of the struc­
ture or union. If both pointers are of the same type, the result has the common

3-20

C LANGUAGE

type. Otherwise, one must be a pointer and the other the constant 0, and the
result has the type of the pointer. Only one of the second and third expressions
is evaluated.

3.6.14 Assignment Operators

There are a number of assignment operators, all of which group right to left.
All require an lvalue as their left operand, and the type of an assignment
expression is that of its left operand. The value is the value stored in the left
operand after the assignment has taken place. The two parts of a compound
assignment operator are separate tokens.

assignment-expression:
lvalue = expression
lvalue + = expression
lvalue - = expression
lvalue * = expression
lvalue / = expression
lvalue % = expression
lvalue > > = expression
lvalue < < = expression
lvalue & = expression
lvalue ~ = expression
lvalue I = expression

In the simple assignment with =, the value of the expression replaces that of
the object referred to by the lvalue. If both operands have arithmetic type, the
right operand is converted to the type of the left preparatory to the assignment.
Second, both operands may be structures or unions of the same type. Finally,
if the left operand is a pointer, the right operand must in general be a pointer
of the same type. However, the constant ° may be assigned to a pointer; it is
guaranteed that this value will produce a null pointer distinguishable from a
pointer to any object.

The behavior of an expression of the form E1 op = E2 may be inferred by
taking it as equivalent to E1 = E1 op (E2); however, E1 is evaluated only
once. In + = and - =, the left operand may be a pointer; in which case, the
(integral) right operand is converted as explained in "Additive Operators". All
right operands and all nonpointer left operands must have arithmetic type.

3-21

CLANGUAGE

3.6.15 Comma Operator

comma-expression:
expression, expression

A pair of expressions separated by a comma is evaluated left to right, and the
value of the left expression is discarded. The type and value of the result are
the type and value of the right operand. This operator groups left to right. In
contexts where comma is given a special meaning, e.g., in lists of actual argu­
ments to functions (see "Primary Expressions") and lists of initializers (see "Ini­
tialization" under "DECLARATIONS"), the comma operator as described in
this subpart can only appear in parentheses. For example,

f(a, (t=3, t+2), c)

has three arguments, the second of which has the value 5.

3.7 DECLARATIONS
Declarations are used to specify the interpretation which C gives to each identi­
fier; they do not necessarily reserve storage associated with the identifier. Dec­
larations have the form

declaration:
decl-specifiers declarator-listopt ,.

The declarators in the declarator-list contain the identifiers being declared. The
decl-specifiers consist of a sequence of type and storage class specifiers.

decl-specifiers:
type-specifier decl-specifiers opt

sc-specifier decl-specifiers opt

3-22

The list must be self-consistent in a way described below.

3.7.1 Storage Class Specifiers

The sc-specifiers are:

sc-speciJier:
auto
static
extern
register
typedef

CLANGUAGE

The typedef specifier does not reserve storage and is called a "storage class
specifier" only for syntactic convenience. See "Typedef" for more information.
The meanings of the various storage classes were discussed in "Names."

The auto, static, and register declarations also serve as definitions in that they
cause an appropriate amount of storage to be reserved. In the extern case,
there must be an external definition (see "External Definitions") for the given
identifiers somewhere outside the function in which they are declared.

A register declaration is best thought of as an auto declaration, together with a
hint to the compiler that the variables declared will be heavily used. Only the
first few such declarations in each function are effective. Moreover, only varia­
bles of certain types will be stored in registers; on the PDP-ll, they are iot or
pointer. One other restriction applies to register variables: the address-of opera­
tor & cannot be applied to them. Smaller, faster programs can be expected if
register declarations are used appropriately, but future improvements in code
generation may render them unnecessary.

At most, one sc-specifier may be given in a declaration. If the sc-specifier is
missing from a declaration, it is taken to be auto inside a function, extern out­
side. Exception: functions are never automatic.

3-23

CLANGUAGE

3.7.2 Type Specifiers

The type-specifiers are

type-specifier:
struct-or-union-specifier
typedef-name
enum-specijier

basic-type-specijier:
basic-type
basic-type basic-type-specijiers

basic-type:
char
short
int
long
unsigned
float
double
void

At most one of the words long or short may be specified in conjunction with
int; the meaning is the same as if int were not mentioned. The word long may
be specified in conjunction with float; the meaning is the same as double. The
word unsigned may be specified alone, or in conjunction with int or any of its
short or long varieties, or with char.

Otherwise, at most on type-specifier may be given in a declaration. In particu­
lar, adjectival use of long, short, or unsigned is not permitted with typedef
names. If the type-specifier is missing from a declaration, it is taken to be into

Specifiers for structures, unions, and enumerations are discussed in "Structure,
Union, and Enumeration Declarations". Declarations with typedef names are
discussed in "Typedef".

3-24

CLANGUAGE

3.7.3 Declarators

The declarator-list appearing in a declaration is a comma-separated sequence of
declarators, each of which may have an initializer.

declarator-list:
in it-declarator
in it-declarator , declarator-list

in it-declarator:
declarator initializer opt

Initializers are discussed in "Initialization". The specifiers in the declaration
indicate the type and storage class of the objects to which the declarators refer.
Declarators have the syntax:

declarator:
identifier
(declarator)
* declarator
declarator ()
declarator [constant-expressionopt J

The grouping is the same as in expressions.

3.7.4 Meaning of Declarators

Each declarator is taken to be an assertion that when a construction of the same
form as the declarator appears in an expression, it yields an object of the indi­
cated type and storage class.

Each declarator contains exactly one identifier; it is this identifier that is
declared. If an unadorned identifier appears as a declarator, then it has the
type indicated by the specifier heading the declaration.

A declarator in parentheses is identical to the unadorned declarator, but the
binding of complex declarators may be altered by parentheses. See the examples
below.

3-25

CLANGUAGE

Now imagine a declaration

T Dl

where T is a type-specifier (like int, etc.) and Dl is a declarator. Suppose this
declaration makes the identifier have type "... T," where the " ... " is empty if
Dl is just a plain identifier (so that the type of x in "int x" is just int). Then
if Dl has the form

*D

the type of the contained identifier is ". .. pointer to T."

If Dl has the form

DO

then the contained identifier has the type ". .. function returning T".

3-26

CLANGUAGE

If Dl has the form

D[consfanf-expression]

or

D[]

then the contained identifier has type " array of T". In the first case, the
constant expression is an expression whose value is determinable at compile
time, whose type is iot, and whose value is positive. (Constant expressions are
defined precisely in "Constant Expressions".) When several "array of" specifi­
cations are adjacent, a multidimensional array is created; the constant expres­
sions which specify the bounds of the arrays may be missing only for the first
member of the sequence. This elision is useful when the array is external and
the actual definition, which allocates storage, is given elsewhere. The first con­
stant expression may also be omitted when the declarator is followed by initial­
ization. In this case the size is calculated from the number of initial elements
supplied.

An array may be constructed from one of the basic types, from a pointer, from
a structure or union, or from another array (to generate a multidimensional
array).

Not all the possibilities allowed by the syntax above are actually permitted. The
restrictions are as follows: functions may not return arrays or functions
although they may return pointers; there are no arrays of functions although
there may be arrays of pointers to functions. Likewise, a structure or union
may not contain a function; but it may contain a pointer to a function.

As an example, the declaration

iot i, *ip, fO, *fipO, (*pfi)O;

declares an integer i, a pointer ip to an integer, a function f returning an inte­
ger, a function fip returning a pointer to an integer, and a pointer pfi to a func­
tion which returns an integer. It is especially useful to compare the last two.

3-27

CLANGUAGE

The binding of *fipO is * (fipO). The declaration suggests, and the same con­
struction in an expression requires, the calling of a function fip. Using indirec­
tion through the (pointer) result to yield an integer. In the declarator (*pfi)O,
the extra parentheses are necessary, as they are also in an expression, to indicate
that indirection through a pointer to a function yields a function, which is then
called; it returns an integer.

As another example,

float fa[17], *afp[17];

declares an array of float numbers and an array of pointers to float numbers.
Finally,

static int.x3d[3][S][7];

declares a static 3-dimensional array of integers, with rank 3 X 5 X 7. In com­
plete detail, x3d is an array of three items; each item is an array of five arrays;
each of the latter arrays is an array of seven integers. Any of the expressions
x3d, x3d[i], x3d[iJUJ, x3d[i][j](k] may reasonably appear in an expression. The
first three have type "array" and the last has type into

3.7.S Structure and Union Declarations

A structure is an object consisting of a sequence of named members. Each
member may have any type. A union is an object which may, at a given time,
contain anyone of several members. Structure and union specifiers have the
same form.

struct-or"union"specifier:
struct-or-union { struct-decl-list J
struct-or-union identifier { struct-decl-list J
struct~or-union identifier

3-28

struct-or-union:
struct
union

CLANGUAGE

The struct-decl-list is a sequence of declarations for the members of the struc­
ture or union:

struct-decl-list:
struct-declaration
struct-declaration struct-decl-/ist

struct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator
struct-declarator , struct-declarator-list

In the usual case, a struct-declarator is just a declarator for a member of a
structure or union. A structure member may also consist of a specified number
of bits. Such a member is also called a field; its length, a non-negative con­
stant expression, is set off from the field name by a colon.

struct-declarator:
declarator
declarator: constant-expression
: constant-expression

Within a structure, the objects declared have addresses which increase as the
declarations are read left to right. Each nonfield member of a structure begins
on an addressing boundary appropriate to its type; therefore, there may be
unnamed holes in a structure. Field members are packed into machine integers;
they do not straddle words. A field which does not fit into the space remaining
in a word is put into the next word. No field may be wider than a word.

3-29

CLANGUAGE

Fields are assigned right to left on the PDP-ll and VAX-ll, left to right on the
3B 20.

A struct-declarator with no declarator, only a colon and a width, indicates an
unnamed field useful for padding to conform to externally-imposed layouts. As
a special case, a field with a width of 0 specifies alignment of the next field at
an implementation dependant boundary.

The language does not restrict the types of things that are declared as fields, but
implementations are not required to support any but integer fields. Moreover,
even int fields may be considered to be unsigned. On the PDP-II, fields are
not signed and have only integer values; on the VAX-II, fields declared with int
are treated as containing a sign. For these reasons, it is strongly recommended
that fields be declared as unsigned. In all implementations, there are no arrays
of fields, and the address-of operator & may not be applied to them, so that
there are no pointers to fields.

A union may be thought of as a structure all of whose members begin at offset
o and whose size is sufficient to contain any of its members. At most, one of
the members can be stored in a union at any time.

A structure or union specifier of the second form, that is, one of

struct identifier { struct-decl-list }
union identifier { struct-decl-list }

declares the identifier to be the structure tag (or union tag) of the structure spec­
ified by the list. A subsequent declaration may then use the third form of spec­
ifier, one of

struct identifier
union identifier

Structure tags allow definition of self-referential structures. Structure tags also
permit the long part of the declaration to be given once and used several times.
It is illegal to declare a structure or union which contains an instance of itself,
but a structure or union may contain a pointer to an instance of itself.

3-30

CLANGUAGE

The third form of a structure or union specifier may be used prior to a declara­
tion which gives the complete specification of the structure or union in situa­
tions in which the size of the structure or union is unnecessary. The size is
unnecessary in two situations: when a pointer to a structure or union is being
declared and when a typedef name is declared to be a synonym for a structure
or union. This, for example, allows the declaration of a pair of structures
which contain pointers to each other.

The names of members and tags do not conflict with each other or with ordi­
nary variables. A particular name may not be used twice in the same structure,
but the same name may be used in several different structures in the same
scope.

A simple but important example of a structure declaration is the following
binary tree structure:

struct tnode

];

char tword[20];
int count;
struct tnode *left;
struct tnode *right;

which contains an array of 20 characters, an integer, and two pointers to similar
structures. Once this declaration has been given, the declaration

struct tnode s, *sp;

declares s to be a structure of the given sort and sp to be a pointer to a struc­
ture of the given sort. With these declarations, the expression

sp- > count

3-31

CLANGUAGE

refers to the count field of the structure to which sp points;

s.Ieft

refers to the left subtree pointer of the structure s; and

s.right - > tword[O]

refers to the first character of the tword member of the right subtree of s.

3.7.6 Enumeration Declarations

Enumeration variables and constants have integral type.

enum-specifier:
enum f enum-list J
enum identifier { enum-list 1
enum identifier

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier constant-expression

The identifiers in an enum-list are declared as constants and may appear wher­
ever constants are required. If no enumerators with = appear, then the values
of the corresponding constants begin at 0 and increase by 1 as the declaration is
read from left to right. An enumerator with = gives the associated identifier
the value indicated; subsequent identifiers continue the progression from the
assigned value.

The names of enumerators in the same scope must all be distinct from each
other and from those of ordinary variables.

3-32

CLANGUAGE

The role of the identifier in the enum-specifier is entirely analogous to that of
the structure tag in a struct-specifier; it names a particular enumeration. For
example,

enum color { chartreuse, burgundy, claret = 20, winedark };

enum color *cp, col;

col = claret;
cp = &col;

if (*cp = = burgundy) ...

makes color the enumeration-tag of a type describing various colors, and then
declares cp as a pointer to an object of that type, and col as an object of that
type. The possible values are drawn from the set {O,1,20,21}.

3.7.7 Initialization

A declarator may specify an initial value for the identifier being declared. The
initializer is preceded by = and consists of an expression or a list of values
nested in braces.

initializer:
expression
{ initializer-list }
{ initializer-list , }

initializer-list:
expression
initializer-list , initializer-list
{ initializer-list }
{ initializer-list , 1

All the expressions in an initializer for a static or external variable must be con­
stant expressions, which are described in "CONSTANT EXPRESSIONS", or
expressions which reduce to the address of a previously declared variable,

3-33

CLANGUAGE

possibly offset by a constant expression. Automatic or register variables may be
initialized by arbitrary expressions involving constants and previously declared
variables and functions.

Static and external variables that are not initialized are guaranteed to start off
as zero. Automatic and register variables that are not initialized are guaranteed
to start off as garbage.

When an initializer applies to a scalar (a pointer or an object of arithmetic
type), it consists of a single expression, perhaps in braces. The initial value of
the object is taken from the expression; the same conversions as for assignment
are performed.

When the declared variable is an aggregate (a structure or array), the initializer
consists of a brace-enclosed, comma-separated list of initializers for the members
of the aggregate written in increasing subscript or member order. If the aggre­
gate contains subaggregates, this rule applies recursively to the members of the
aggregate. If there are fewer initializers in the list than there are members of
the aggregate, then the aggregate is padded with zeros. It is not permitted to
initialize unions or automatic aggregates.

Braces may in some cases be omitted. If the initializer begins with a left brace,
then the succeeding comma-separated list of initializers initializes the members
of the aggregate; it is erroneous for there to be more initializers than members.
If, however, the initializer does not begin with a left brace, then only enough
elements from the list are taken to account for the members of the aggregate;
any remaining members are left to initialize the next member of the aggregate of
which the current aggregate is a part.

A final abbreviation allows a char array to be initialized by a string. In this
case successive characters of the string initialize the members of the array.

For example,

int x[] = [1, 3, 5 };

3-34

CLANGUAGE

declares and initializes x as a one-dimensional array which has three members,
since no size was specified and there are three initializers.

float y[4)[3) =
[

};

[1,3,5 },
[2, 4, 6 },
{ 3, 5, 7 },

is a completely-bracketed initialization: 1, 3, and 5 initialize the first row of the
array y[O), namely y[O)[O], y[O][I), and y[O)[2). Likewise, the next two lines ini­
tialize y[1) and y[2). The initializer ends early and therefore y[3) is initialized
with O. Precisely, the same effect could have been achieved by

float y[4)[3) =
[

1, 3, 5, 2, 4, 6, 3, 5, 7
};

The initializer for y begins with a left brace but that for y[O) does not; there­
fore, three elements from the list are used. Likewise, the next three are taken
successively for y[l) and y[2). Also,

float y[4)[3) =
{

[1 }, [2 }, [3 }, [4 }
};

initializes the first column of y (regarded as a two-dimensional array) and leaves
the rest O.

3-35

CLANGUAGE

Finally,

char msg[] = "Syntax error on line OJos\n";

shows a character array whose members are initialized with a string.

3.7.8 Type Names

In two contexts (to specify type conversions explicitly by means of a cast and as
an . .argument of sizeof), it is desired to supply the name of a data type. This is
accomplished using a "type name", which in essence is a declaration for an
object of that type which omits the name of the object.

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
* abstract-declarator
abstract-declarator ()
abstract-declarator [constant-expressionopt]

To avoid ambiguity, in the construction

(abstract-declarator)

the absLJ .lct-declarator is required to be nonempty. Under this restriction, it is
possible to id ntify uniquely the location in the abstract-declarator where the
identifier would appear if the construction were a declarator in a declaration.
The named type is then the same as the type of the hypothetical identifier. For
example,

3-36

int
int *
int *[3]
int (*)[3]
int *0
int (*)0
int (*[3])0

CLANGUAGE

name respectively the types "integer", "pointer to integer", "array of three
pointers to integers", "pointer to an array of three integers", "function return­
ing pointer to integer", "pointer to function returning an integer", and "array
of three pointers to functions returning an integer".

3.7.9 Typedef

Declarations whose "storage class" is typedef do not define storage but instead
define identifiers which can be used later as if they were type keywords naming
fundamental or derived types.

typedef-name:
identifier

Within the scope of a declaration involving typedef, each identifier appearing as
part of any declarator therein becomes syntactically equivalent to the type key­
word naming the type associated with the identifier in the way described in
"Meaning of Declarators". For example, after

typedef int MILES, *KLICKSP;
typedef strnct { double re, im; l complex;

the constructions

MILES distance;
extern KLICKSP metricp;
complex z, *zp;

3-37

CLANGUAGE

are all legal declarations; the type of distance is int, that of metricp is "pointer
to int", and that of z is the specified structure. The zp is a pointer to such a
structure.

The typedef does not introduce brand-new types, only synonyms for types which
could be specified in another way. Thus in the example above distance is con­
sidered to have exactly the same type as any other int object.

3.8 STATEMENTS

Except as indicated, statements are executed in sequence.

3.8.1 Expression Statement

Most statements are expression statements, which have the form

expression ;

Usually expression statements are assignments or function calls.

3.8.2 Compound Statement or Block

So that several statements can be used where one is expected, the compound
statement (also, and equivalently, called "block") is provided:

compound-statement:
[declaration-listopt statement-listopt }

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

3-38

CLANGUAGE

If any of the identifiers in the declaration-list were previously declared, the
outer declaration is pushed down for the duration of the block, after which it
resumes its force.

Any initializations of auto or register variables are performed each time the
block is entered at the top. It is currently possible (but a bad practice) to trans­
fer into a block; in that case the initializations are not performed. Initializa­
tions of static variables are performed only once when the program begins exe­
cution. Inside a block, extern declarations do not reserve storage so initializa­
tion is not permitted.

3.8.3 Conditional Statement

The two forms of the conditional statement are

if (expression) statement
if (expression) statement else statement

In both cases, the expression is evaluated; and if it is nonzero, the first
substatement is executed. In the second case, the second sub statement is exe­
cuted if the expression is o. The "else" ambiguity is resolved by connecting an
else with the last encountered else -less if.

3.8.4 While Statement

The while statement has the form

while (expression) statement

The sub statement is executed repeatedly so long as the value of the expression
remains nonzero. The test takes place before each execution of the statement.

3.8.5 Do Statement

The do statement has the form

do statement while (expression) ;

3-39

C LANGUAGE

The sub statement is executed repeatedly until the value of the expression
becomes o. The test takes place after each execution of the statement.

3.8.6 For Statement

The for statement has the form:

for (exp -1 opt; exp - 2 opt" exp - 3 opt) statement

Except for the behavior of continue, this statement is equivalent to

exp-1 ;
while (exp-2)
{

statement
exp-3 ..

Thus the first expression specifies initialization for the loop; the second specifies
a test, made before each iteration, such that the loop is exited when the expres­
sion becomes o. The third expression often specifies an incrementing that is
performed after each iteration.

Any or all of the expressions may be dropped. A mIssmg exp-2 makes the
implied while clause equivalent to while(1); other missing expressions are simply
dropped from the expansion above.

3.8.7 Switch Statement

The switch statement causes control to be transferred to one of several state­
ments depending on the value of an expression. It has the form

switch (expression) statement

The usual arithmetic conversion is performed on the expression, but the result
must be into The statement is typically compound. Any statement within the
statement may be labeled with one or more case prefixes as follows:

3-40

CLANGUAGE

case constant-expression :

where the constant expression must be int. No two of the case constants in the
same switch may have the same value. Constant expressions are precisely
defined in "CONSTANT EXPRESSIONS."

There may also be at most one statement prefix of the form

default :

When the switch statement is executed, its expression is evaluated and compared
with each case constant. If one of the case constants is equal to the value of
the expression, control is passed to the statement following the matched case
prefix. If no case constant matches the expression and if there is a default, pre­
fix, control passes to the prefixed statement. If no case matches and if there is
no default, then none of the statements in the switch is executed.

The prefixes case and default do not alter the flow of control, which continues
unimpeded across such prefixes. To exit from a switch, see "Break Statement".

Usually, the statement that is the subject of a switch is compound. Declarations
may appear at the head of this statement, but initializations of automatic or
register variables are ineffective.

3.8.8 Break Statement

The statement

break;

causes termination of the smallest enclosing while, do, for, or switch statement;
control passes to the statement following the terminated statement.

3.8.9 Continue Statement

The statement

continue;

causes control to pass to the loop-continuation portion of the smallest enclosing

3-41

CLANGUAGE

while, do, or for statement; that is to the end of the loop. More precisely, in
each of the statements

while (...) do for (...)
{ { {

contin: ; contin: ; contin: ;
J J while (...);

a continue is equivalent to goto contino (Following the contin: is a null state­
ment, see "Null Statement".)

3.8.10 Return Statement

A function returns to its caller by means of the return statement which has one
of the forms

return ;
return expression ;

In the first case, the returned value is undefined. In the second case, the value
of the expression is returned to the caller of the function. If required, the
expression is converted, as if by assignment, to the type of function in which it
appears. Flowing off the end of a function is equivalent to a return with no
returned value. The expression may be parenthesized.

3.8.11 Goto Statement

Control may be transferred unconditionally by means of the statement

goto identifier ;

The identifier must be a label (see "Labeled Statement") located in the current
function.

3.8.12 Labeled Statement

Any statement may be preceded by label prefixes of the form

identifier:

which serve to declare the identifier as a label. The only use of a label is as a

3-42

CLANGUAGE

target of a goto. The scope of a label is the current function, excluding any
sub blocks in which the same identifier has been redeclared. See "SCOPE
RULES."

3.8.13 Null Statement

The null statement has the form

A null statement is useful to carry a label just before the} of a compound state­
ment or to supply a null body to a looping statement such as while.

3.9 EXTERNAL DEFINITIONS

A C program consists of a sequence of external definitions. An external defini­
tion declares an identifier to have storage class extern (by default) or perhaps
static, and a specified type. The type-specifier (see "Type Specifiers" in
"DECLARATIONS") may also be empty, in which case the type is taken to be
into The scope of external definitions persists to the end of the file in which
they are declared just as the effect of declarations persists to the end of a block.
The syntax of external definitions is the same as that of all declarations except
that only at this level may the code for functions be given.

3.9.1 External Function Definitions

Function definitions have the form

function-definition:
decl-specifiers opt function-declarator function-body

The only sc-specifiers allowed among the decl-specifiers are extern or static; see
"Scope of Externals" in "SCOPE RULES" for the distinction between them.
A function declarator is similar to a declarator for a "function returning "
except that it lists the formal parameters of the function being defined.

function-declarator:
decl-specifiers opt function-declarator function-body

3-43

CLANGUAGE

parameter-list:
identifier
identifier , parameter-list

The function-body has the form

function-body:
declaration-list opt compound-statement

The identifiers in the parameter list, and only those identifiers, may be declared
in the declaration list. Any identifiers whose type is not given are taken to be
into The only storage class which may be specified is register; if it is specified,
the corresponding actual parameter will be copied, if possible, into a register at
the outset of the function.

A simple example of a complete function definition is

int max(a, b, c)
int a, b, c;

int m;

m = (a > b) ? a : b;
return«m > c) ? m : c);

Here int is the type-specifier; max(a, b, c) is the function-declarator; int a, b, c;
is the declaration-list for the formal parameters; { ... J is the block giving the
code for the statement.

The C program converts all float actual parameters to double, so formal para­
meters declared float have their declaration adjusted to read double. All char
and short formal parameter declarations are similarly adjusted to read into
Also, since a reference to an array in any context (in particular as an actual
parameter) is taken to mean a pointer to the first element of the array, declara­
tions of formal parameters declared "array of ... " are adjusted to read
"pointer to "

3-44

3.9.2 External Data Definitions

An external data definition has the form

data-definition:
declaration

CLANGUAGE

The storage class of such data may be extern (which is the default) or static but
not auto or register.

3.10 SCOPE RULES
A C program need not all be compiled at the same time. The source text of the
program may be kept in several files, and precompiled routines may be loaded
from libraries. Communication among the functions of a program may be car­
ried out both through explicit calls and through manipulation of external data.

Therefore, there are two kinds of scopes to consider: first, what may be called
the lexical scope of an identifier, which is essentially the region of a program
during which it may be used without drawing "undefined identifier" diagnos­
tics; and second, the scope associated with external identifiers, which is charac­
terized by the rule 'that references to the same external identifier are references
to the same object.

3.10.1 Lexical Scope

The lexical scope of identifiers declared in external definitions persists from the
definition through the end of the source file in which they appear. The lexical
scope of identifiers which are formal parameters persists through the function
with which they are associated. The lexical scope of identifiers declared at the
head of a block persists until the end of the block. The lexical scope of labels
is the whole of the function in which they appear.

In all cases, however, if an identifier is explicitly declared at the head of a
block, including the block constituting a function, any declaration of that identi­
fier outside the block is suspended until the end of the block.

Remember also (see "Structure, Union, and Enumeration Declarations" in
"DECLARATIONS") that tags, identifiers associated with ordinary variables,
and identities associated with structure and union members form three disjoint

3-45

CLANGUAGE

classes which do not conflict. Members and tags follow the same scope rules as
other identifiers. The enum constants are in the same class as ordinary varia­
bles and follow the same scope rules. The typedef names are in the same class
as ordinary identifiers. They may be redeclared in inner blocks, but an explicit
type must be given in the inner declaration:

typedef float distance;

auto int distance;

The int must be present in the second declaration, or it would be taken to be a
declaration with no declarators and type distance.

3.10.2 Scope of Externals

If a function refers to an identifier declared to be extern, then somewhere
among the files or libraries constituting the complete program there must be at
least one external definition for the identifier. All functions in a given program
which refer to the same external identifier refer to the same object, so care must
be taken that the type and size specified in the definition are compatible with
those specified by each function which references the data.

It is illegal to explicitly initialize any external identifier more than once in the
set of files and libraries comprising a multi-file program. It is legal to have
more than one data definition for any external non-function identifier; explicit
use of extern does not change the meaning of an external declaration.

In restricted environments, the use of the extern storage class takes on an addi­
tional meaning. In these environments, the explicit appearance of the extern
keyword in external data declarations of identities without initialization indicates
that the storage for the identifiers is allocated elsewhere, either in this file or
another file. It is required that there be exactly one definition of each external
identifier (without extern) in the set of files and libraries comprising a muit-file
program.

3-46

C LANGUAGE

Identifiers declared static at the top level in external definitions are not visible in
other files. Functions may be declared static.

3.11 COMPILER CONTROL LINES
The C compiler contains a preprocessor capable of macro substitution, condi­
tional compilation, and inclusion of named files. Lines beginning with # com­
municate with this preprocessor. There may be any number of blanks and hori­
zontal tabs between the # and the directive. These lines have syntax indepen­
dent of the rest of the language; they may appear anywhere and have effect
which lasts (independent of scope) until the end of the source program file.

3.11.1 Token Replacement

A compiler-control line of the form

define identifier token-stringopt

causes the preprocessor to replace subsequent instances of the identifier with the
given string of tokens. Semicolons in or at the end of the token-string are part
of that string. A line of the form

define identifier(identifier, ...)token-stringopt

where there is no space between the first identifier and the (, is a macro defini­
tion with arguments. There may be zero or more formal parameters. Subse­
quent instances of the first identifier followed by a (, a sequence of tokens
delimited by commas, and a) are replaced by the token string in the definition.
Each occurrence of an identifier mentioned in the formal parameter list of the
definition is replaced by the corresponding token string from the call. The
actual arguments in the call are token strings separated by commas; however,
commas in quoted strings or protected by parentheses do not separate argu­
ments. The number of formal and actual parameters must be the same. Strings
and character constants in the token-string are scanned for formal parameters,
but strings and character constants in the rest of the program are not scanned
for defined identifiers to replacement.

In both forms the replacement string is rescanned for more defined identifiers.
In both forms a long definition may be continued on another line by writing \
at the end of the line to be continued.

3-47

CLANGUAGE

This facility is most valuable for definition of "manifest constants", as in

#define TABSIZE 100

int table[TABSIZE];

A control line of the form

undef identifier

causes the identifier's preprocessor definition (if any) to be forgotten.

If a # defined identifier is the subject of a subsequent # define with no interven­
ing #undef, then the two token-strings are compared textually. If the two
token-strings are not identical (all white space is considered as equivalent), then
the identifier is considered to be redefined.

3.11.2 File Inclusion

A compiler control line of the form

include ''filename''

causes the replacement of that line by the entire contents of the file filename.
The named file is searched for first in the directory of the file containing the
#include, and then in a sequence of specified or standard places. Alternatively,
a control line of the form

include <filename>

searches only the specified or standard places and not the directory of the
include. (How the places are specified is not part of the language.)

includes may be nested.

3-48

CLANGUAGE

3.11.3 Conditional Compilation

A compiler control line of the form

if restricted-constant-expression

checks whether the restricted-constant expression evaluates to nonzero. (Con­
stant expressions are discussed in "CONSTANT EXPRESSIONS"; the following
additional restrictions apply here: the constant expression may not contain sizeof
casts, or an enumeration constant.)

A restricted constant expression may also contain the additional unary expres­
sion

defined identifier
or
defined(identifier

which evaluates to one if the identifier is currently defined in the preprocessor
and zero if it is not.

All currently defined identifiers in restricted-constant-expressions are replaced by
their token-strings (except those identifiers modified by defined) just as in nor­
mal text. The restricted constant expression will be evaluated only after all
expressions have finished. During this evaluation, all undefined (to the proce­
dure) identifiers evaluate to zero.

A control line of the form

ifdef identifier

checks whether the identifier is currently defined in the preprocessor; i.e.,
whether it has been the subject of a # define control line. It is equivalent to
ifdef(identifier). A control line of the form

ifndef identifier

checks whether the identifier is currently undefined in the preprocessor. It is
equivalent to #if!defined(identifier).

3-49

CLANGUAGE

All three forms are followed by an arbitrary number of lines, possibly contain­
ing a control line

else

and then by a control line

#endif

If the checked condition is true, then any lines between # else and # endif are
ignored. If the checked condition is false, then any lines between the test and a
#else or, lacking a #else, the #endif are ignored.

These constructions may be nested.

3.11.4 Line Control

For the benefit of other preprocessors which generate C programs, a line of the
form

line constant ''filename''

causes the compiler to believe, for purposes of error diagnostics, that the line
number of the next source line is given by the constant and the current input
file is named by "filename". If "filename" is absent, the remembered file
name does not change.

3.12 IMPLICIT DECLARATIONS

It is not always necessary to specify both the storage class and the type of iden­
tifiers in a declaration. The storage class is supplied by the context in external
definitions and in declarations of formal parameters and structure members. In
a declaration inside a function, if a storage class but no type is given, the identi­
fier is assumed to be int; if a type but no storage class is indicated, the identi­
fier is assumed to be auto. An exception to the latter rule is made for functions
because auto functions do not exist. If the type of an identifier is "function
returning ... ", it is implicitly declared to be extern.

3-50

CLANGUAGE

In an expression, an identifier followed by (and not already declared is contex­
tually declared to be "function returning int."

3.13 TYPES REVISITED
This part summarizes the operations which can be performed on objects of cer­
tain types.

3.13.1 Structures and Unions

Structures and unions may be assigned, passed as arguments to functions, and
returned by functions. Other plausible operators, such as equality comparison
and structure casts, are not implemented.

In a reference to a structure or union member, the name on the right of the
- > or the. must specify a member of the aggregate named or pointed to by
the expression on the left. In general, a member of a union may not be
inspected unless the value of the union has been assigned using that same mem­
ber. However, one special guarantee is made by the language in order to sim­
plify the use of unions: if a union contains several structures that share a com­
mon initial sequence and if the union currently contains one of these structures,
it is permitted to inspect the common initial part of any of the contained struc­
tures. For example, the following is a legal fragment:

union

struct
{

} n;
struct
{

1 ni;

int

int
int

type;

type;
intnode;

3-51

CLANGUAGE

struct
{

int type;
float f1oatnode;

} nf;
} U;

u.nf.type = FLOAT;
u.nf.f1oatnode= 3;14;

if (u.n.type = = FLOAT)
... sin(u.nf.f1oatnode) ...

3.13.2 Functions

There are only two things that can be done with a function - call it or take its
address. If the name of a function appears in an expression not ,in the
function-name position of a call, a pointer to the function is generated. Thus,
to pass one function to another, one might say

int f();

g(f);

Then the definition of g might read

g(funcp)
int (*funcp)O;

(*funcp)();

Notice that f must be declared explicitly in the calling routine since its appear­
ance in g(f) was not followed by (.

3-52

C LANGUAGE

3.13.3 Arrays, Pointers, and Subscripting

Every time an identifier of array type appears in an expression, it is converted
into a pointer to the first member of the array. Because of this conversion,
arrays are not lvalues. By definition, the subscript operator [) is interpreted in
such a way that El[E2) is identical to *«El) + (E2». Because of the conversion
rules which apply to +, if El is an array and E2 an integer, then El[E2) refers
to the E2 - th member of El. Therefore, despite its asymmetric appearance,
subscripting is a commutative operation.

A consistent rule is followed in the case of multidimensional arrays. If E is an
n-dimensional array of rank i X j X ... x k, then E appearing in an expression is
converted to a pointer to an (n - I)-dimensional array with rank j X •.. X k. If
the * operator, either explicitly or implicitly as a result of subscripting, is
applied to this pointer, the result is the pointed-to (n -I)-dimensional array,
which itself is immediately converted into a pointer.

For example, consider

int x(3)[5];

Here x is a 3 X 5 array of integers. When x appears in an expression, it is con­
verted to a pointer to (the first of three) 5-membered arrays of integers. In the
expression xli], which is equivalent to *(x + i), x is first converted to a pointer
as described; then i is converted to the type of x, which involves multiplying i
by the length the object to which the pointer points, namely 5-integer objects.
The results are added and indirection applied to yield an array (of five integers)
which in turn is converted to a pointer to the first of the integers. If there is
another subscript, the same argument applies again; this time the result is an
integer.

Arrays in C are stored row-wise (last subscript varies fastest) and the first sub­
script in the declaration helps determine the amount of storage consumed by an
array. Arrays play no other part in subscript calculations.

3-53

CLANGUAGE

3.13.4 Explicit Pointer Conversions

Certain conversions involving pointers are permitted but have implementation­
dependent aspects. They are all specified by means of an explicit type­
conversion operator, see "Unary Operators" under "EXPRESSIONS" and
"Type Names" under "DECLARATIONS".

A pointer may be converted to any of the integral types large enough to hold it.
Whether an int or long is required is machine dependent. The mapping func­
tion is also machine dependent but is intended to be unsurprising to those who
know the addressing structure of the machine. Details for some particular
machines are given below.

An object of integral type may be explicitly converted to a pointer. The map­
ping always carries an integer converted from a pointer back to the same
pointer but is otherwise machine dependent.

A pointer to one type may be converted to a pointer to another type. The
resulting pointer may cause addressing exceptions upon use if the subject pointer
does not refer to an object suitably aligned in storage. It is guaranteed that a
pointer to an object of a given size may be converted to a pointer to an object
of a smaller size and back again without change.

For example, a storage-allocation routine might accept a size (in bytes) of an
object to allocate, and return a char pointer; it might be used in this way.

extern char *allocO;
double *dp;

dp = (double *) alloc(sizeof(double));
*dp = 22.0/7.0;

The alloc must ensure (in a machine-dependent way) that its return value is suit­
able for conversion to a pointer to double; then the use of the function is por­
table.

The pointer representation on the PDP-ll corresponds to a 16-bit integer and
measures bytes. The char's have no alignment requirements; everything else
must have an even address.

3-54

CLANGUAGE

On the VAX-II, pointers are 32 bits long and measure bytes. Elementary
objects are aligned on a boundary equal to their length, except that double
quantities need be aligned only on even 4-byte boundaries. Aggregates are
aligned on the strictest boundary required by any of their constituents.

The 3B 20 computer has 24-bit pointers placed into 32-bit quantities. Most
objects are aligned on 4-byte boundaries. Shorts are aligned in all cases on 2-
byte boundaries. Arrays of characters, all structures, int s, long s, float s, and
double s are aligned on 4-byte boundries; but structure members may be packed
tighter.

3.14 CONSTANT EXPRESSIONS

In several places C requires expressions that evaluate to a constant: after case,
as array bounds, and in initializers. In the first two cases, the expression can
involve only integer constants, character constants, casts to integral types, enu­
meration constants, and sizeof expressions, possibly connected by the binary
operators

+ - * / 070 & 1 A < < > > != < > <= >=&&11

or by the unary operators

or by the ternary operator

?:

Parentheses can be used for grouping but not for function calls.

More latitude is permitted for initializers; besides constant expressions as dis­
cussed above, one can also use floating constants and arbitrary casts and can
also apply the unary & operator to external or static objects and to external or
static arrays subscripted with a constant expression. The unary & can also be
applied implicitly by appearance of unsubscripted arrays and functions. The
basic rule is that initializers must evaluate either to a constant or to the address
of a previously declared external or static object plus or minus a constant.

3-55

CLANGUAGE

3.15 PORTABILITY CONSIDERATIONS

Certain parts of C are inherently machine dependent. The following list of
potential trouble spots is not meant to be all-inclusive but to point out the main
ones.

Purely hardware issues like word size and the properties of floating point arith­
metic and integer division have proven in practice to be not much of a problem.
Other facets of the hardware are reflected in differing implementations. Some
of these, particularly sign extension (converting a negative character into a nega­
tive integer) and the order in which bytes are placed in a word, are nuisances
that must be carefully watched. Most of the others are only minor problems.

The number of register variables that can actually be placed in registers varies
from machine to machine as does the set of valid types. Nonetheless, the com­
pilers all do things properly for their own machine; excess or invalid register
declarations are ignored.

Some difficulties arise only when dubious coding practices are used. It is
exceedingly unwise to write programs that depend on any of these properties.

The order of evaluation of function arguments is not specified by the language.
The order in which side effects take place is also unspecified.

Since character constants are really objects of type int, multicharacter character
constants may be permitted. The specific implementation is very machine
dependent because the order in which characters are assigned to a word varies
from one machine to another.

Fields are assigned to words and characters to integers right to left on some
machines and left to right on other machines. These differences are invisible to
isolated programs that do not indulge in type punning (e.g., by converting an
int pointer to a char pointer and inspecting the pointed-to storage) but must be
accounted for when conforming to externally-imposed storage layouts.

3-56

CLANGUAGE

3.16 SYNTAX SUMMARY
This summary of C syntax is intended more for aiding comprehension than as
an exact statement of the language.

3.16.1 Expressions

The basic expressions are:

expression:
primary
* expression
&lvalue
- expression
! expression
- expression
+ + lvalue
- -lvalue
lvalue + +
lvalue -­
sizeof]*R expression
sizeof (type-name)
(type-name) expression
expression binop expression
expression ? expression : expression
lvalue asgnop expression
expression , expression

primary:
identifier
constant
string
(expression)
primary (expression-list opt)
primary [expression]
primary . identifier
primary - > identifier

3-57

CLANGUAGE

lvalue:
identifier
primary [expression J
lvalue . identifier
primary - > identifier
* expression
(lvalue)

The primary-expression operators

o [] . - >

have highest priority and group left to right. The unary operators

* & - ! - + + - - sizeof (type-name)

have priority below the primary operators but higher than any binary operator
and group right to left. Binary operators group left to right; they have priority
decreasing as indicated below.

binop:

*
+
»
<

&

I
&&
II

/ 0/0

«
> <= >=
!=

The conditional operator groups right to left.

Assignment operators all have the same priority and all group right to left.

asgnop:
+ = - = * = / = % = > > = < < = & = ~ = I =

The comma operator has the lowest priority and groups left to right.

3-58

3.16.2 Declarations

declaration:
decl-specifiers init-declarator-list opt;

decl-specifiers:
type-specifier decl-specifiers opt

sc-specifier decl-specifiers opt

sc-specifier:
auto
static
extern
register
typedef

type-specifier:
struct-or-union-specifier
typedef-name
enum-specifier

basic-type-specifier:
basic-type
basic-type basic-type-specifiers

basic-type:
char
short
int
long
unsigned
float
double
void

enum-specifier:
enum { enum-list }
enum identifier { enum-list }
enum identifier

3-59

CLANGUAGE

CLANGUAGE

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-expression

init-declarator~list;·

init-declarator
init-declarator , init-declarator-list

init-declarator:
declarator initializer opt

declarator:
identifier
(declarator)
* declarator
declarator ()
declarator f constant-expression opt J

struct-or-union-specifier:
struct { struct-decl-list J
struct identifier { struct-decl-list J
struct identifier
union { struct-decl-list J
union identifier { struct-decl-list }
union identifier

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

3-60

struct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator
struct-declarator , struct-declarator-list

struct-declarator:
declarator
declarator: constant-expression
: constant-expression

initializer:
expression
[initializer-list 1
[initializer-list ,)

initializer-list:
expression
initializer-list , initializer-list
{ initializer-list)
[initializer-list ,)

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
* abstract-declarator
abstract-declarator ()
abstract-declarator [constant-expressionopt J

typedef-name:
identifier

3-61

CLANGUAGE

CLANGUAGE

3.16.3 Statements

compound-statement:
{ declaration-list opt statement-list opt}

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

statement:
compound-statement
expression ;
if (expression) statement
if (expression) statement else statement
while (expression) statement
do statement while (expression) ;
for (exp opt;exp opt;exp opt) statement

switch (expression) statement
case constant-expression: statement
default : statement
break;
continue;
return ;
return expression ;
goto identifier;
identifier : statement

3-62

3.16.4 External definitions

program:
external-definition
external-definition program

external-definition:
function-definition
data-definition

function-definition:
decl-specifier opt function-declarator function-body

function-declarator:
declarator (parameter-listopt) parameter-list:
identifier
identifier , parameter-list

function-body:
declaration-list opt compound-statement

data-definition:
extern declaration ;
static declaration ;

3-63

CLANGUAGE

CLANGUAGE

3.16.5 Preprocessor

define identifier token-string opt
define identifier(identifier, ..•)token-stringopt

undef identifier
include ''filename''
include <filename>
if restricted-constant-expression
ifdef identifier
ifndef identifier
else
#endif
line constant ''filename''

3-64

Contents

4.1 INTRODUCTION .. 4-1

4.2 DESCRIPTION ... 4-1

4.3 WHEN TO USE CODE-MAPPING 4-2

4.4 USAGE .. 4-3

4.5 SPECIAL CASE ROUTINES ... 4-4

4.6 LIMITATIONS AND NOTES .. 4-5

4.7 PROBLEMS ... ~6

4.8 OPTIMIZATION ... 4-7

4.9 OPTIONS .. 4-9

Chapter 4

CODE-MAPPING UNDER VENIX

4.1 INTRODUCTION
Code-mapping is a memory overlaying scheme for expanding the address space
available to programs. It requires no source-code modification, and thus is
entirely transparent to the programmer. However, since code-mapping does
slow program execution somewhat, it is recommended only for programs whose
size absolutely requires it.

4.2 DESCRIPTION
Program address space is divided into two parts: the code (or text) space, con­
taining the program instructions, and the data space, containing the values on
which the instructions operate. While PDP-ll computers may be configured
with large amounts of memory (often 512kb or more), the address space allowed
any individual program is ordinarily much less. Code-mapping allows a pro­
gram easy access to the memory which would otherwise be out of bounds.

Code-mapping is currently implemented only for non-split liD, machines such
as the DEC Professional and other LSI-11123 computers, the PDP-11124, 111
34, and 11160. On these machines, the maximum program size is ordinarily at
most 64 kilobytes (kb). (As discussed later, the 8kb always reserved for the
stack brings the effective program size down to 56kb). If code-mapping is used,
however, the code portion of the program can become very large, and is limited
only by the amount of memory physically on the computer. The data space
remains restricted to 48kb.

4-1

CODE-MAPPING UNDER VENIX

Code-mapping works by dynamically mapping 8kb segments of the program's
code in and out of the standard 64kb address space. At any given time, a sin­
gle 8kb segment of the program code will be mapped in and available for execu­
tion, while all the other 8kb segments of code are mapped out of the 64kb
address space. In addition to the mapped segments, there is a single "resident"
8kb segment which is not mapped but instead maintained permanently inside the
64kb space.

The mapping is done entirely with PDP-ll memory management hardware.
Unlike some other overlaying schemes, code-mapping does not copy program
segments to disk.

4.3 WHEN TO USE CODE-MAPPING

There are two circumstances in which a user may require code-mapping. First,
a given program may simply be too large to load into memory. When the user
tries to execute it, the shell immediately responds with:

a.out: too big

or

a.out: Not enough core

depending upon which shell is being used. At this point, the size(1) command
can be run on the user's program. The result might look like this:

size a.out
44278 + 14466 + 12244 = 70988b = 0212514b

The first number given (44278) is the code space in bytes; the second two num­
bers (14466 + 12244) make up the data space. The total program size is given in
decimal (70988b) and then in octal (0212514).

For a program to run without code-mapping, the total size, as reported by size,
must be less than or equal to 56kb: (57344 bytes decimal, or 0160000 octal).
The reason that this limit is not the full 64kb, is that size does not report the
8kb segment at the top of the address space which is always reserved for the
stack. The size of the above program was greater than 56kb, thus code­
mapping is required.

4-2

CODE-MAPPING UNDER VENIX

A second circumstance requmng code-mapping occurs when a program meets
the 56kb limit described above, but runs out of memory while executing. This
occurs when a program dynamically requests more memory, (such as through a
malloc(3) call), and then reaches the 56kb limit. If the program is written to
catch such errors, it will report the condition, typically saying something like
"out of memory" and then exit. (Programs which do not check for this type of
error when allocating memory may crash mysteriously, often with a core dump.)
Code-mapping of tens alleviates this problem. The reason is that a code-mapped
program uses exactly 16kb worth of code space, leaving exactly 40kb available
for data space. The following tables illustrate this.

Memory usage of sample program before mapping:

00-43kb
44-56kb
57-64kb

code space
data space
stack space

Memory usage of program after code-mapping:

00-08kb
08-16kb
17 -56kb
57-64kb

resident code space
mapped space (mapped in and out of remaining 35kb code)
data space
stack space

After code-mapping, the program data space available was 40kb instead of the
initial 13kb. The code portion of a code-mapped program will use exactly 16kb
out of the 64kb available.

4.4 USAGE
Programs which are to be code-mapped are compiled and linked with the - m
flag. A typical compilation and linking might look like this:

cc -m -0 prog file1.c file2.c file3.c

or, if the user wishes to compile and link separately:

4-3

CODE-MAPPING UNDER VENIX

cc -c -m file1.c file2.c file3.c
cc -m -0 prog

Note that in the latter case the -m flag was used both times that cc was exe­
cuted.

In the example above, the cc command automatically passed the - m flag on to
the loader (ld(l» to indicate that code-mapping was desired.

4.5 SPECIAL CASE ROUTINES
There are certain cases in which the loader must be called directly. These occur
if the program uses

1. printfO routines called with double or float type data

2. signalO calls

3. floating point simulation (machine has no floating-point hardware)

Each of these cases requires that the loader be called directly, in order to force
certain routines to be placed in the "resident" portion of code space. This is
done by passing a -u flag to the loader, to force certain routines to be immedi­
ately considered "unresolved", and thus loaded in first.

The loader command line should be of the following form:

Id - X - u f1 - u f2 ... - m llibl crtO.o filel.o file2.0 file3.0-1e

where 11, 12, etc., are the names of critical symbols which must be loaded first
and kept resident. In the case of printfO calls using double or floating types,
the symbols to use are _doprnt and fltused, as in

Id -X -u _doprnt -u fUused [-u ... J -m llib/crtO.o

If signalO is used, the symbol to pass is ~ignal, as in

Id -X -u ~ignal [-u ... J -m llib/crtO.o ...

4-4

CODE-MAPPING UNDER VENIX

Finally, if floating point simulation is used, the following command should be
used:

ld - X - u fptrap [- u ..• J - m -Ifpsim llib/fcrtO.o

Note that the floating-point simulator start-off llib/fcrtO.o was used above
instead of llib/crtO.o. The -u options can be combined if the program falls
under more than one of the above categories.

4.5.1 Code-Mapping Fortran Programs

The loader must also be called directly when linking Fortran programs. Fortran
modules may be compiled to object form with the command:

f77 - c file 1. 0 file2.o

and the linked form with code-mapping using the command:

ld -X -m Ilib/crtO.o file1.o file2.o -IF77 -1177 -1m -Ie

4.6 LIMITATIONS AND NOTES

The following is a summary of code-mapping limitations:

• The maximum size of a single object module (.0) is 8kb.

• The maximum available data space is 48kb.

• The maximum available code space is determined by the amount of physi­
cal memory minus kernel size (48kb) minus the program's data size.

• The maximum number of functions in code-mapped space is -1500.

• The code of a code-mapped program is automatically shared if the pro­
gram is run by more than one user. This saves on the amount of physical
memory being used.

4-5

CODE·MAPPING UNDER VENIX

4.7 PROBLEMS
Errors will arise at load-time if the number of routines which need to be
mapped exceed the amount pre-allocated by the loader. The user can cause the
loader to pre-allocate more room by specifying a number immediately after the
-m flag. See "Options" below.

The most common problem found when executing a code-mapped program is a
memory fault and core dump, caused by illegal memory references. This is
often due to a pointer bug - specifically, an attempt to write data in code
space. Type 407 programs (non-code-mapped, non-pure) will not automatically
give core dumps with such a bug (because code space is not protected) and may
even run successfully; however, code-mapped programs are pure, and will
respond to this kind of memory violation with a core dump. In this case,
code-mapping is only revealing an existing bug, not introducing a new one.

If the routines mentioned under "Special Case Routines" are not loaded as
described, programs will crash with core dumps. The user should be very care­
ful that the specified routines are indeed forced into the resident segment. A
symbol table listing that uses the nm utility can verify that the routines are
indeed in this segment. See "Optimization" for more details.

The code-mapping routine assumes that the standard C (or Fortran) calling
sequence is used by the program, and that registers RO and Rl are therefore free
for mapping purposes whenever a function is called. In the rare cases when a
routine is coded in assembly language, the user must either avoid using these
registers on function calls, or force the assembly language routines in the resi­
dent code space. (This is the reason that users are told to use the -u flag with
the signal and other routines, as described earlier.)

Certain C constructions (specifically, the passing of function-pointers) may cause
code-mapping to fail if the program was assembled on a non-VENIX PDP-ll
assembler. It is strongly recommended that code-mapping only be used with
programs compiled under VENIX, as the VENIX assembler avoids creating
these problems.

4-6

CODE-MAPPING UNDER VENIX

Currently, adb will not provide correct addresses for code-mapped program rou­
tines. This makes it useless for analysis of core dumps or break-point debug­
ging. adb will not locate any symbol correctly on programs whose code seg­
ment is larger than 64kb.

4.8 OPTIMIZATION
Once a code-mapped program is working, the user may wish to delve deeper
into the mapping process in order to improve the program performance. The
overhead of code-mapping comes when remapping is required to reach a func­
tion. The user may speed program execution by understanding the rules which
the loader uses to map the program, and adjusting the location of object mod­
ules so that as little remapping as possible is needed.

The 8kb resident code segment holds special code to aid in the mapping itself,
as well as any of the "special case" routines described above which were specif­
ically mentioned as "unresolved" with - u flags. There frequently remains
room in the resident segment for other routines as well. Since there is no map­
ping required to access the resident segment, routines stored there can be
reached with no overhead. In the interest of efficiency, therefore, the most
commonly called routines from the C library (llib/libc.a) should be forced into
the resident segment, by using the -u flag to force them "unresolved." (Note
that C-language routines are always preceded with an underscore '_'). The
- m flag causes an automatic scan of the C library to search for any such rou­
tines. Frequently, these will be ones in the Standard 110 package, such as
printfO or mallocO. In addition to those specified by the user, a number of
small but very common routines are automatically loaded into the resident seg­
ment.

After scanning the C library to bring in any "unresolved" routines, the loader
begins loading in the modules specified after the - m flag, in the order given on
the command line. It fills the remaining space in the 8kb resident area with as
many modules as will fit (modules are never split up). Therefore, the modules
containing the most commonly used code should be specified first on the com­
mand line, so that they have a better chance of fitting into the resident segment.

After filling the resident segment, the loader assigns the remaining modules to
8kb mapped segments. Continuing to read the modules in the order given on
the command line, the loader fits as many as possible into each segment before

4-7

CODE-MAPPING UNDER VENIX

starting a new one. No single module can exceed 8kb in code size. Since no
remapping is required for function calls from routines in the same mapped seg­
ment, it makes sense to try and order the object modules so that modules con­
taining routines which frequently call each other, wind up in the same segment.
If this is not possible, the user may wish to juggle the placement of routines in
source files to create object modules which fit better for code-mapping.

The important numbers to be aware of, then, are the sizes of each module's
code areas. These can be determined by the size(l) command, for example:

size file.o

which will produce an output like:

7604 + 830 + 3852 = 12286b = 027776b

The first number (7604) indicates the module's code size. Since size must be
done on object modules, you will have to compile your C files before running
it.

The om utility can be used on your linked program to determine where routines
end up; it produces a list of symbols (function and variable names) and their
addresses. om is particularly useful in determining which routines are placed in
the resident segment, and which are mapped.

om -og prog

will produce a list of global symbols in prog ordered by address. These include
both mapped and resident functions.

In a listing produced by om, the address of all functions will lie between 000000
and 020000 (octal). Routines which are mapped can be distinguished because
their addresses all lie in the jump table, which is used to "jump" from one
code-mapped routine to another. All the addresses in the jump table are 6 bytes
apart, making them easy to spot. Resident functions, on the other hand, are
directly addressed above the jump table. Their address will be greater than 6
bytes apart, since their addresses correspond to their actual position in the code.
There will be no function addresses above 020000.

4-8

CODE-MAPPING UNDER VENIX

The jump table is normally positioned in the resident segment, as described
above. However, if there are many functions which the user wishes to place in
the resident segment, and there is free space in the data area, then the table can
be located there. This is indicated by a -md flag instead of a -m (see below).
If this is done, the addresses of code-mapped routines will appear above address
040000.

4.9 OPTIONS

There are several variations to the loader -m flag. The -m by itself causes
the loading of the llib/libcmap.a which handles the mapping system call and
sets up a jump table. As described above, this table is normally placed in the
resident code segment. However, the - md flag can be used to place the table
in the data segment.

The table normally has room for roughly 500 entries, where each entry corre­
sponds to a single function. This size can be changed by specifying the number
of entries to be used, as in -m7S0 or -md200. If the table is too small, an
error message will be given. (Be aware that a small number of entries will be
used in overhead, so don't try to cut the size too finely.) Currently, the maxi­
mum number of entries allowed is 1500.

4-9

Contents

5.1 GENERAL ... 5-1

5.2 TYPES OF MESSAGES .. 5-3

Chapter 5

A C PROGRAM CHECKER- lint

5.1 GENERAL

The lint program examines C language source programs detecting a number of
bugs and obscurities. It enforces the type rules of C language more strictly than
the C compiler. It may also be used to enforce a number of portability restric­
tions involved in moving programs between different machines and/or operating
systems. Another option detects a number of wasteful or error prone construc­
tions which nevertheless are legal. The lint program accepts multiple input files
and library specifications and checks them for consistency.

5.1.1 Usage

The lint command has the form:

lint [options] files ... library-descriptors .•.

where options are optional flags to control lint checking and messages; files are
the files to be checked which end with .c or .In; and library-descriptors are the
names of libraries to be used in checking the program.

The options that are currently supported by the lint command are:

-a Suppress messages about assignments of long values
to variables that are not long.

5-1

LINT

-b

-c

-h

-n

-0 name

-p

-u

-v

-x

Suppress messages about break statements that can­
not be reached.

Only check for intra-file bugs; leave external infor­
mation in files suffixed with .In.

Do not apply heuristics (which attempt to detect
bugs, improve style, and reduce waste).

Do not check for compatibility with either the stan­
dard or the portable lint library.

Create a lint library from input files named
llib -Iname.ln.

Attempt to check portability to other dialects of C
language.

Suppress messages about function and external varia­
bles used and not defined or defined and not used.

Suppress messages about unused arguments in func­
tions.

Do not report variables referred to by external decla­
rations but never used.

When more than one option is used, they should be combined into a single
argument, such as, -ab or -xha.

The names of files that contain C language programs should end with the suffix
.c which is mandatory for lint and the C compiler.

The lint program accepts certain arguments, such as:

-ly

These arguments specify libraries that contain functions used in the C language
program. The source code is tested for compatibility with these libraries. This

5-2

LINT

is done by accessing library description files whose names are constructed from
the library arguments. These files all begin with the comment:

/* LINTLIBRARY * /

which is followed by a series of dummy function definitions. The critical parts
of these definitions are the declaration of the function return type, whether the
dummy function returns a value, and the number and types of arguments to the
function. The V ARARGS and ARGSUSED comments can be used to specify
features of the library functions.

The lint library files are processed almost exactly like ordinary source files. The
only difference is that functions which are defined on a library file but are not
used on a source file do not result in messages. The lint program does not
simulate a full library search algorithm and will print messages if the source
files contain a redefinition of a library routine.

By default, lint checks the programs it is given against a standard library file
which contains descriptions of the programs which are normally loaded when a
C language program is run. When the - p option is used, another file is
checked containing descriptions of the standard library routines which are
expected to be portable across various machines. The - n option can be used to
suppress all library checking.

5.2 TYPES OF MESSAGES
The following paragraphs describe the major categories of messages printed by
lint.

5.2.1 Unused Variables and Functions

As sets of programs evolve and develop, previously used variables and argu­
ments to functions may become unused. It is not uncommon for external varia­
bles or even entire functions to become unnecessary and yet not be removed
from the source. These types of errors rarely cause working programs to fail,
but are a source of inefficiency and make programs harder to understand and
change. Also, information about such unused variables and functions can occa­
sionally serve to discover bugs.

5-3

LINT

The lint program prints messages about variables and functions which are
defined but not otherwise mentioned. An exception is variables which are
declared through explicit extern statements but are never referenced; thus the
statement

extern double sinO;

will evoke no comment if sin is never used. Note that this agrees with the
semantics of the C compiler. In some cases, these unused external declarations
might be of some interest and can be discovered by using the - x option with
the lint command.

Certain styles of programming require many functions to be written with similar
interfaces; frequently, some of the arguments may be unused in many of the
calls. The -v option is available to suppress the printing of messages about
unused arguments. When -v is in effect, no messages are produced about
unused arguments except for those arguments which are unused and also
declared as register arguments. This can be considered an active (and preventa­
ble) waste of the register resources of the machine.

Messages about unused arguments can be suppressed for one function by adding
the comment:

/* ARGSUSED * /

to the program before the function. This has the effect of the - v option for
only one function. Also, the comment:

/* V ARARGS * /

can be used to suppress messages about variable number of arguments in calls
to a function. The comment should be added before the function definition.
In some cases, it is desirable to check the first several arguments and leave the
later arguments unchecked. This can be done with a digit giving the number of
arguments which should be checked. For example:

/* V ARARGS2 * /

will cause only the first two arguments to be checked.

5-4

LINT

There is one case where information about unused or undefined variables is
more distracting than helpful. This is when lint is applied to some but not all
files out of a collection which are to be loaded together. In this case, many of
the functions and variables defined may not be used. Conversely, many func­
tions and variables defined elsewhere may be used. The - u option may be
used to suppress the spurious messages which might otherwise appear.

5.2.2 Set/Used Information

The lint program attempts to detect cases where a variable is used before it is
set. The lint program detects local variables (automatic and register storage
classes) whose first use appears physically earlier in the input file than the first
assignment to the variable. It assumes that taking the address of a variable con­
stitutes a "use", since the actual use may occur at any later time, in a data
dependent fashion.

The restriction to the physical appearance of variables in the file makes the
algorithm very simple and quick to implement since the true flow of control
need not be discovered. It does mean that lint can print messages about some
programs which are legal, but these programs would probably be considered bad
on stylistic grounds. Because static and external variables are initialized to zero,
no meaningful information can be discovered about their uses. The lint pro­
gram does deal with initialized automatic variables.

The set/used information also permits recognition of those local variables which
are set and never used. These form a frequent source of inefficiencies and may
also be symptomatic of bugs.

5.2.3 Flow of Control

The lint program attempts to detect unreachable portions of the programs which
it processes. It will print messages about unlabeled statements immediately fol­
lowing goto, break, continue, or return statements. An attempt is made to
detect loops which can never be left at the bottom and to recognize the special
cases while(1) and for(;;) as infinite loops. The lint program also prints mes­
sages about loops which cannot be entered at the top. Some valid programs
may have such loops which are considered to be bad style at best and bugs at
worst.

5-5

LINT

The lint program has no way of detecting functions which are called and never
returned. Thus, a call to exit may cause an unreachable code which lint does
not detect. The most serious effects of this are in the determination of returned
function values (see "Function Values"). If a particular place in the program
cannot be reached but it is not apparent to lint, the comment

/* NOTREACHED * /

can be added at the appropriate place. This comment will inform lint that a
portion of the program cannot be reached.

The lint program will not print a message about unreachable break statements.
Programs generated by yacc and especially lex may have hundreds of unreach­
able break statements. The - 0 option in the C compiler will often eliminate
the resulting object code inefficiency. Thus, these unreached statements are of
little importance. There is typically nothing the user can do about them, and
the resulting messages would clutter up the lint output. If these messages are
desired, lint can be invoked with the - b option.

5.2.4 Function Values

Sometimes functions return values that are never used. Sometimes programs
incorrectly use function "values" that have never been returned. The lint pro­
gram addresses this problem in a number of ways.

Locally, within a function definition, the appearance of both

return(expr);

and

return ;

statements is cause for alarm; the lint program will give the message

function name contains return(e) and return

The most serious difficulty with this is detecting when a function return is
implied by flow of control reaching the end of the function. This can be seen
with a simple example:

5-6

f (a)[
if (a) return (3);
gO;
1

LINT

Notice that, if a tests false, f will call g and then return with no defined return
value; this will trigger a message from lint. If g, like exit, never returns, the
message will still be produced when in fact nothing is wrong.

In practice, some potentially serious bugs have been discovered by this feature.

On a global scale, lint detects cases where a function returns a value that is
sometimes or never used. When the value is never used, it may constitute an
inefficiency in the function definition. When the value is sometimes unused, it
may represent bad style (e.g., not testing for error conditions).

The dual problem, using a function value when the function does not return
one, is also detected. This is a serious problem.

5.2.5 Type Checking

The lint program enforces the type checking rules of C language more strictly
than the compilers do. The additional checking is in four major areas:

• Across certain binary operators and implied assignments

• At the structure selection operators

• Between the definition and uses of functions

• In the use of enumerations.

There are a number of operators which have an implied balancing between types
of the operands. The assignment, conditional (?:), and relational operators
have this property. The argument of a return statement and expressions used in
initialization suffer similar conversions. In these operations, char, short, int,
long, unsigned, float, and double types may be freely intermixed. The types of
pointers must agree exactly except that arrays of x's can, of course, be
intermixed with pointers to x's.

5-7

LINT

The type checking rules also require that, in structure references, the left oper­
and of the - > be a pointer to structure, the left operand of the • be a struc­
ture, and the right operand of these operators be a member of the structure
implied by the left operand. Similar checking is done for references to unions.

Strict rules apply to function argument and return value matching. The types
float and double may be freely matched, as may the types char, short, int, and
unsigned. Also, pointers can be matched with the associated arrays. Aside
from this, all actual arguments must agree in type with their declared counter­
parts.

With enumerations, checks are made that enumeration variables or members are
not mixed with other types or other enumerations and that the only operations
applied are =, initialization, = =, ! =, and function arguments and return
values.

If it is desired to turn off strict type checking for an expression, the comment

/* NOSTRICT */

should be added to the program immediately before the expression. This com­
ment will prevent strict type checking for only the next line in the program.

5.2.6 Type Casts

The type cast feature in C language was introduced largely as an aid to produc­
ing more portable programs. Consider the assignment

p = 1 ;

where p is a character pointer. The lint program will print a message as a
result of detecting this. Consider the assignment

p = (char *)1 ;

in which a cast has been used to convert the integer to a character pointer. The
programmer obviously had a strong motivation for doing this and has clearly
signaled his or her intentions. It seems harsh for lint to continue to print mes­
sages about this. On the other hand, if this code is moved to another machine,
such code should be looked at carefully. The -c flag controls the printing of

5-8

LINT

comments about casts. When -c is in effect, casts are treated as though they
were assignments subject to messages; otherwise, all legal casts are passed with­
out comment, no matter how strange the type mixing seems to be.

5.2.7 Nonportable Character Use

On some systems, characters are signed quantities with a range from -128 to
127. On other C language implementations, characters take on only positive
values. Thus, lint will print messages about certain comparisons and assign­
ments as being illegal or nonportable. For example, the fragment

char c;

if((c = getchar()) < 0) ...

will work on one machine but will fail on machines where characters always
take on positive values. The real solution is to declare c as an integer since
getchar is actually returning integer values. In any case, lint will print the mes­
sage "nonportable character comparison".

A similar issue arises with bit fields. When assignments of constant values are
made to bit fields, the field may be too small to hold the value. This is espe­
cially true because on some machines bit fields are considered as signed quanti­
ties. While it may seem logical to consider that a two-bit field declared of type
int cannot hold the value 3, the problem disappears if the bit field is declared to
have type unsigned

5.2.8 Assignments of "longs" to "ints"

Bugs may arise from the assignment of long to an int, which will truncate the
contents. This may happen in programs which have been incompletely con­
verted to use typedefs. When a typedef variable is changed from int to long,
the program can stop working because some intermediate results may be
assigned to ints, which are truncated. Since there are a number of legitimate
reasons for assigning longs to ints, the detection of these assignments is enabled
by the - a option.

5-9

LINT

5.2.9 Strange Constructions

Several perfectly legal, but somewhat strange, constructions are detected by lint.
The messages hopefully encourage better code quality, clearer style, and may
even point out bugs. The - h option is used to supress these checks. For
example, in the statement

*p+ + ;

the * does nothing. This provokes the message "null effect" from lint. The
following program fragment:

unsigned x ;
if(x < 0) ...

results in a test that will never succeed. Similarly, the test

if(x > 0) ...

is equivalent to

if(x ! = 0)

which may not be the intended action. The lint program will print the message
"degenerate unsigned comparison" in these cases. If a program contains some­
thing similar to

if(1 ! = 0) ...

lint will print the message "constant in conditional context" since the compari­
son of 1 with 0 gives a constant result.

Another construction detected by lint involves operator precedence. Bugs which
arise from misunderstandings about the precedence of operators can be accentu­
ated by spacing and formatting, making such bugs extremely hard to find. For
example, the statement

if(x&077 = = 0) ...

or

5-10

LINT

x<\b'-.3m'<2 + 40

probably do not do what was intended. The best solution is to parenthesize
such expressions, and lint encourages this by an appropriate message.

Finally, when the - b option has not been used, lint prints messages about vari­
ables which are redeclared in inner blocks in a way that conflicts with their use
in outer blocks. This is legal but is considered to be bad style, usually unnec­
essary, and frequently a bug.

5.2.10 Old Syntax

Several forms of older syntax are now illegal. These fall into two classes -
assignment operators and initialization.

The older forms of assignment operators (e.g., = +,
ambiguous expressions, such as:

a = -1;

which could be taken as either

a = - 1 ;

or

a = -1;

. ..) could cause

The situation is especially perplexing if this kind of ambiguity arises as the
result of a macro substitution. The newer and preferred operators (e.g., + =,
- =, ...) have no such ambiguities. To encourage the abandonment of the
older forms, lint prints messages about these old-fashioned operators.

A similar issue arises with initialization. The older language allowed

int x 1 ;

to initialize x to 1. This also caused syntactic difficulties. For example, the ini­
tialization

5-11

LINT

int x (-1) ;

looks somewhat like the beginning of a function definition:

int x (y) [•.•

and the compiler must read past x in order to determine the correct meaning.
Again, the problem is even more perplexing when the initializer involves a
macro. The current syntax places an equals sign between the variable and the
initializer:

int x = -1;

This is free of any possible syntactic ambiguity.

5.2.11 Pointer Alignment

Certain pointer assignments may be reasonable on some machines and illegal on
others due entirely to alignment restrictions. The lint program tries to detect
cases where pointers are assigned to other pointers and such alignment problems
might arise. The message "possible pointer alignment problem" results from
this situation.

5.2.12 Multiple Uses and Side Effects

In complicated expressions, the best order in which to evaluate sUbexpressions
may be highly machine dependent. For example, on machines (like the
PDP -11) in which the stack runs backwards, function arguments will probably
be best evaluated from right to left. On machines with a stack running forward,
left to right seems most attractive. Function calls embedded as arguments of
other functions mayor may not be treated similarly to ordinary arguments.
Similar issues arise with other operators which have side effects, such as the
assignment operators and the increment and decrement operators.

In order that the efficiency of C language on a particular machine not be
unduly compromised, the C language leaves the order of evaluation of compli­
cated expressions up to the local compiler. In fact, the various C compilers have
considerable differences in the order in which they will evaluate complicated
expressions. In particular, if any variable is changed by a side effect and also
'used elsewhere in the same expression, the result is explicitly undefined.

5-12

LINT

The lint program checks for the important special case where a simple scalar
variable is affected. For example, the statement

ali] = b[i + +];

will cause lint to print the message

warning: i evaluation order undefined

in order to call attention to this condition.

5-13

Contents

6.1 INTRODUCTION .. 6-1

6.2 OVERVIEW ... 6-1

6.3 DEBUGGING C PROGRAMS 6-4

6.4 MAPS .. 6-14

6.5 ADVANCED USAGE ... 6-16

6.6 PATCHING .. 6-20

6.7 ANOMALIES .. 6-21

Chapter 6

A TUTORIAL INTRODUCTION TO ADD

6.1 INTRODUCTION
adb is a debugging program that is available on VENIX. It enables you to look
at "core" files resulting from aborted programs, print output in a variety of
formats, patch files, and run programs with embedded breakpoints. This chap­
ter covers some of the most useful features of adb. Many of these features are
explained with the aid of figures which are located at the end of this chapter.
Also at the end, there is a summary of adb commands, formats and expres­
sions.

6.2 OVERVIEW

6.2.1 Invocation

adb is invoked as:

adb objfile corefile

where objfile is an executable VENIX file and corefile is a core image file.
Many times this will look like:

adb a.out core

or more simply:

adb

where the defaults are a.out and core respectively. The filename minus (-)

6-1

ADB

means ignore this argument as in:

adb - core

adb has requests for examining locations in either file. The? request examines
the contents of objjile, the I request examines the corejile. The general form of
these requests is:

address ? format

OR

address I format

6.2.2 Current Address

maintains a current address, called dot, similar in function to the current
pointer in the VENIX editor. When an address is entered, the current address
is set to that location, so that:

Ol26?i

sets dot to octal 126 and prints the instruction at that address. The request:

.,lO/d

prints 10 decimal numbers starting at dot. Dot ends up referring to the address
of the last item printed. When used with the ? or I requests, the current
address can be advanced by typing newline; it can be decremented by typing ~.

Addresses are represented by expressions. Expressions are made up from deci­
mal, octal, and hexadecimal integers, and symbols from the program under test.
These may be combined with the operators +, -, *, 0,10 (integer division), &
(bitwise and), I (bitwise inclusive or), # (round up to the next multiple), and -
(not). (All arithmetic within adb is 32 bits.) When typing a symbolic address
for a C program, the user can type name or _name; adb will recognize both
forms.

6-2

ADB

6.2.3 Formats

To print data, a user specifies a collection of letters and characters that describe
the format of the printout. Formats are "remembered" in the sense that typing
a request without one will cause the new printout to appear in the previous for­
mat. The following are the most commonly used format letters.

b
c
o
d
f
i
s
a
u
n
r

one byte in octal
one byte as a character
one word in octal
one word in decimal
two words in floating point
PDP-ll instruction
a null terminated character string
the value of dot
one word as unsigned integer
print a newline
print a blank space
backup dot

(Format letters are also available for "long" values, for example, D for long
decimal, and F for double floating point.) For other formats see adb(l) in the
User Reference Manual.

6.2.4 General Request Meanings

The general form of a request is:

address,count command modifier

which sets 'dot' to address and executes the command count times.

The following table illustrates some general adb command meanings:

6-3

ADB

Command Meaning
? Print contents from a.out file
/ Print contents from core file

Print value of "dot"
Breakpoint control

$ Miscellaneous requests
Request separator
Escape to shell

adb catches signals, so a user cannot use a quit signal to exit from adb. The
request $q or $Q (or CTRL-D) must be used to exit from adb.

6.3 DEBUGGING C PROGRAMS

6.3.1 Debugging A Core Image

Consider the C program in Figure 1 (located at the end of this chapter). The
program is used to illustrate a common error made by C programmers. The
object of the program is to change the lower case 't' to upper case in the string
pointed to by charp and then write the character string to the file indicated by
argument 1. The bug shown is that the character 'T' is stored in the pointer
charp instead of the string pointed to by charp. Bugs of this kind will fre­
quently produce a core file automatically because of an out of bounds memory
reference; in this case, an abortO call [see abort(3)] was inserted to force a core
dump.

adb is invoked by:

adb a.out core

The first debugging request:

$c

is used to give a C backtrace through the subroutines called. As shown in Fig­
ure 2, only one function (main) was called and the arguments argc and argv
have octal values 02 and 0177654 respectively. Both of these values look rea­
sonable;

6-4

ADB

02 = two arguments, 0177654 = address on stack of parameter vector. The next
request:

$C

is used to give a C backtrace plus an interpretation of all the local variables in
each function and their values in octal. The backtrace shows that the last func­
tion to be called was, as expected, abortO.

The next request:

$r

prints out the registers including the program counter and an interpretation of
the instruction at that location.

The request:

$e

prints out the values of all external variables. The symbols with two under­
scores (__) in front of them are used internally by standard 110 routines.
Symbols preceded by single underscores are either externals like environ and
errno which are always present, or programs variables like charp. (The C com­
piler always inserts an underscore in front of symbols.)

A map exists for each file handled by adb. The map for the a.out file is refer­
enced by ? whereas the map for the core file is referenced by /. Furthermore, a
good rule of thumb is to use ? for instructions and / for data when looking at
programs. To print out information about the maps type:

$m

This produces a report of the contents of the maps. More about these maps
later.

In the example, it is useful to see the contents of the string pointed to by charp.
This is done by:

6-5

ADB

*charp/s

which says use charp as a pointer in the core file and print the information as a
character string. This printout clearly shows that the character buffer was
incorrectly overwritten (there doesn't appear to be anything there) and helps
identify the error. Printing the locations around charp shows that the buffer is
unchanged but that the pointer is destroyed. It is highly suspicious that the
value of charp is 0124; it should be pointing to a string (usually in higher mem­
ory). This indicates the bug: charp, rather than *char was set to 'T' (ASCII
0124).

Using adb similarly, we could print information about the arguments to a func­
tion. The request:

main.argc/d

prints the decimal core image value of the argument argc in the function main.
The request:

*main.argv,3/0

prints the octal values of the three consecutive cells pointed to by argv in the
function main. Note that these values are the addresses of the arguments to
main. Therefore:

0177672/s

prints the ASCII value of the first argument. Another way to print this value
would have been:

*"/s

The means ditto which remembers the last address typed, in this case main.argc;
the * instructs adb to use the address field of the core file as a pointer.

The request:

.=0

prints the current address (not its contents) in octal which has been set to the

6-6

ADB

address of the first argument. The current address, dot, is used by adb to
"remember" its current location. It allows the user to reference locations rela­
tive to the current address, for example:

. -tOld

6.3.2 Multiple Functions

Consider the C program illustrated in Figure 3. This program calls functions f,
g, and h until the stack is exhausted and a core image is produced.

Again you can enter the debugger via:

adb

which assumes the names a.out and core for the executable file and core image
file respectively. The request:

$c

will fill a page of backtrace references to f, g, and h. Figure 4 shows an abbre­
viated list (typing CTRL-C will terminate the output and bring you back to adb
request level).

The request:

,5$C

prints the five most recent activations.

Notice that each function (f,g,h) has a counter of the number of times it was
called.

The request:

fcnt/d

prints the decimal value of the counter for the function f. Similarly gcnt and
hcnt could be printed. To print the value of an automatic variable, for example

6-7

ADB

the decimal value of x in the last call of the function h, type:

h.x/d

It is currently not possible in the exported version to print stack frames other
than the most recent activation of a function. Therefore, a user can print
everything with $C or the occurrence of a variable in the most recent call of a
function. It is possible with the $C request, however, to print the stack frame
starting at some address as address$C.

6.3.3 Setting Breakpoints

Consider the C program in Figure 5. This program changes tabs into blanks.
We will run this program under the control of adb (see Figure 6a) by:

adb a.out -

Breakpoints are set in the program as:

address:b [request]

The requests:

settab +4:b
fopen+4:b
getc+4:b
tabpos+4:b

set breakpoints at the start of these functions. C does not generate statement
labels. Therefore it is currently not possible to plant breakpoints at locations
other than function entry points without a knowledge of the code generated by
the C compiler. The above addresses are entered as symbol + 4 so that they will
appear in any C backtrace since the first instruction of each function is a call to
the C save routine (csv). Note that some of the functions are from the C
library.

To print the location of breakpoints one types:

$b

The display indicates a count field. A breakpoint is bypassed count - 1 times

6-8

ADB

before causing a stop. The command field indicates the adb requests to be exe­
cuted each time the breakpoint is encountered. In our example no command
fields are present.

By displaying the original instructions at the function settab we see that the
breakpoint is set after the jsr to the C save routine. We can display the instruc­
tions using the adb request:

settab,S?ia

This request displays five instructions starting at settab with the addresses of
each location displayed. Another variation is:

settab,S?i

which displays the instructions with only the starting address.

Notice that we accessed the addresses from the a.out file with the? command.
In general when asking for a printout of multiple items, adb will advance the
current address the number of bytes necessary to satisfy the request; in the
above example five instructions were displayed and the current address was
advanced 18 (decimal) bytes.

To run the program, one simply types:

:r

To delete a breakpoint, for instance the entry to the function settab, one types:

settab +4:d

To continue execution of the program from the breakpoint, type:

:c

Once the program has stopped (in this case at the breakpoint for fopen), adb
requests can be used to display the contents of memory. For example:

$C

to display a stack trace, or:

6-9

ADB

tabs,3/80

to print three lines of 8 locations each from the array called tabs. By this time
(at location fop en) in the C program, settab has been called and should have set
a one in every eighth location of tabs.

6.3.4 Advanced Breakpoint Usage

We continue execution of the program with:

:c

See Figure 6b. getc is called three times and the contents of the variable c in
the function main are displayed each time. The single character on the left
hand edge is the output from the C program. On the third occurrence of getc
the program stops. We can look at the full buffer of characters by typing:

ibuf+6/20c

When we continue the program with:

:c

we hit our first breakpoint at tabpos since there is a tab following the "This"
word of the data.

Several breakpoints of tabpos will occur until the program has changed the tab
into equivalent blanks. Since we feel that tabpos is working, we can remove the
breakpoint at that location by:

tabpos+4:d

If the program is continued with:

:c

it resumes normal execution after adb prints the message

a.out:running

6-10

ADB

The VENIX quit and interrupt signals act on adb itself rather than on the pro­
gram being debugged. If such a signal occurs, then the program being
debugged is stopped and control is returned to adb. The signal is saved by adb
and is passed on to the test program if:

:c

is typed. This can be useful when testing interrupt handling routines. The sig­
nal is not passed on to the test program if

:c 0

is typed.

Now let us reset the breakpoint at settab and display the instructions located
there when we reach the breakpoint. This is accomplished by:

settab + 4:b settab,5?ia

It is also possible to execute the adb requests for each occurrence of the
breakpoint but only stop after the third occurrence by typing:

getc + 4,3:b main.c?C *
This request will print the local variable c in the function main at each occur­
rence of the breakpoint. The semicolon is used to separate multiple adb
requests on a single line.

Warning: setting a breakpoint causes the value of dot to be changed; executing
the program under adb does not change dot. Therefore:

settab + 4: b . ,5?ia
fopen+4:b

will print the last thing dot was set to (in the example fopen + 4) not the current
location (settab + 4) at which the program is executing.

6-11

ADB

A breakpoint can be overwritten without first deleting the old breakpoint. For
example:

settab + 4:b settab,S?ia; ptab/o *

could be entered after typing the above requests.

Now the display of breakpoints:

$b

shows the above request for the settab breakpoint. When the breakpoint at
settab is encountered the adb requests are executed. Note that the location at
settab + 4 has been changed to plant the breakpoint; all the other locations
match their original value.

Using the functions, f, g and h shown in Figure 3, we can follow the execution
of each function by planting non-stopping breakpoints. We call adb with the
executable program of Figure 3 as follows:

adb ex3 -

Suppose we enter the following breakpoints:

h+4:b hcnt/d;
g+4:b gcnt/d;
f+4:b fcnt/d;
:r

h.hi/;
g.gi/;
f.fi/;

h.hrl
g.grl
f.frl

Each request line indicates that the variables are printed in decimal (by the spec­
ification d). Since the format is not changed, the d can be left off all but the
first request.

The output in Figure 7 illustrates two points. First, the adb requests in the
breakpoint line are not examined until the program under test is run. That
means any errors in those adb requests is not detected until run time. At the
location of the error, adb stops running the program.

6-12

ADB

The second point is the way adb handles register variables. adb uses the symbol
table to address variables. Register variables, like f.fr above, have pointers to
uninitialized places on the stack. Therefore the message "symbol not found"
appears.

Another way of getting at the data in this example is to print the variables used
in the call as:

f+4:b
g+4:b
:c

fcnt/d;
gcntld;

f.a/;
g.p/;

f.b/;
g.q/;

f.fil
g.gil

The operator I was used instead of? to read values from the core file. The
output for each function, as shown in Figure 7, has the same format. For the
function f, for example, it shows the name and value of the external variable
fcnt. It also shows the address on the stack and value of the variables a, band
fi.

Notice that the addresses on the stack will continue to decrease until no address
space is left for program execution at which time (after many pages of output)
the program under test aborts. A display with names would be produced by
requests like the following:

f+4:b fcnt/d; f.a/"a= "d; f.b/"b= "d; f.fi/"fi= "d

In this format, the quoted string is printed literally and the d produces a deci­
mal display of the variables. The results are shown in Figure 7.

6.3.5 Other Breakpoint Facilities

• Arguments and change of standard input and output are passed to a pro­
gram as:

:r argl arg2... < infile > outfile

This request kills any existing program under test and starts the a.out
afresh.

6-13

ADB

• The program being debugged can be single stepped by:

:s

If necessary, this request will start up the program being debugged and
stop after executing the first instruction.

• adb allows a program to be entered at a specific address by typing:

address:r

• The count field can be used to skip the first n breakpoints as:

,n:r

The request:

,n:c

may also be used for skipping the first n breakpoints when continuing a
program.

• A program can be continued at an address different from the breakpoint
by:

address:c

• The program being debugged runs as a separate process and can be killed
by:

:k

6.4 MAPS

VENIX supports several executable file formats. These are used to tell the
loader how to load the program file. File type 407 is the most common and is
generated by a C compiler invocation such as cc pgm.c. A 410 file is produced
by a C compiler command of the form cc - n pgm.c, whereas a 411 file is pro­
duced by cc - i pgm.c. adb interprets these different file formats and provides
access to the different segments through a set of maps (see Figure 8). To print

6-14

ADB

the maps type:

$m

In 407 files, both text (instructions) and data are intermixed. This makes it
impossible for adb to differentiate data from instructions and some of the
printed symbolic addresses look incorrect; for example, printing data addresses
as offsets from routines.

In 410 files (shared text), the instructions are separated from data and ?*
accesses the data part of the a.out file. The?* request tells adb to use the sec­
ond part of the map in the a.out file. Accessing data in the core file shows the
data after it was modified by the execution of the program. Notice also that
the data segment may have grown during program execution.

In 411 files (separated I & D space), the instructions and data are also sepa­
rated. However, in this case, since data is mapped through a separate set of
segmentation registers, the base of the data segment is also relative to address
zero. In this case since the addresses overlap it is necessary to use the ?* opera­
tor to access the data space of the a.out file. In both 410 and 411 files the cor­
responding core file does not contain the program text.

Figure 9 shows the display of three maps for the same program linked as a 407,
410, 411 respectively. The b, e, and f fields are used by adb to map addresses
into file addresses. The "fl" field is the length of the header at the beginning
of the file (020 bytes for an a.out file and 02000 bytes for a core file). The
"f2" field is the displacement from the beginning of the file to the data. For a
407 file with mixed text and data this is the same as the length of the header;
for 410 and 411 files this is the length of the header plus the size of the text
portion.

The "b" and "e' fields are the starting and ending locations for a segment.
Given an address, A, the location in the file (either a.out or core) is calculated
as:

b1:::;A:::;e1 => file address = (A-bl)+f1
b2 :::; A:::; e2 => file address (A - b2) + f2

A user can access locations by using the adb defined variables. The $v request

6-15

ADB

prints the variables initialized by adb:

b
d
s
t

base address of data segment
length of the data segment
length of the stack
length of the text

m execution type (407,410,411)

In Figure 9 those variables not present are zero. Use can be made of these vari­
ables by expressions such as

<b

in the address field. Similarly the value of the variable can be changed by an
assignment request such as

02000>b

that sets b to octal 2000. These variables are useful to know if the file under
examination is an executable or core image file.

adb reads the header of the core image file to find the values for these varia­
bles. If the second file specified does not seem to be a core file, or if it is mis­
sing then the header of the executable file is used instead.

6.5 ADVANCED USAGE
It is possible with adb to combine formatting requests to provide elaborate dis­
plays. Below are several examples.

6.5.1 Formatted Dump

The line:

< b, -1/ 404''8Cn

prints 4 octal words followed by their ASCII interpretation from the data space
of the core image file. Broken down, the various request pieces mean:

6-16

ADB

<b
The base address of the data segment.

<b,-1
Print from the base address to the end of file. A negative count is used here
and elsewhere to loop indefinitely or until some error condition (like End Of
File) is detected.

The format 404"8Cn is broken down as follows:

40 Print 4 octal locations.

4" Backup the current address 4 locations (to the original start of the field).

8C Print 8 consecutive characters using an escape convention; each character
in the range 0 to 037 is printed as @ followed by the corresponding char­
acter in the range 0140 to 0177. An @ is printed as @@.

n Print a newline.

The request:

< b, < d/404''8Cn

could have been used instead to allow the printing to stop at the end of the data
segment « d provides the data segment size in bytes).

The formatting requests can be combined with adb's ability to read in a script
to produce a core image dump script. adb is invoked as:

adb a.ont core < dump

to read in a script file, dump, of requests. An example of such a script is:

6-17

ADB

120$w
4095$s
$v
=3n
$m
= 3n "C Stack Backtrace"
$C
= 3n "C External Variables"
$e
= 3n "Registers"
$r
O$s
= 3n "Data Segment"
<b,-1/8ona

The request 120$w sets the width of the output to 120 characters (normally, the
width is 80 characters). adb attempts to print addresses as:

symbol + offset

The request 4095$s increases the maximum permissible offset to the nearest sym­
bolic address from 255 (default) to 4095. The request = can be used to print
literal strings. Thus, headings are provided in this dump program with requests
of the form:

= 3n "C Stack Backtrace"

that spaces three lines and prints the literal string. The request $v prints all
non-zero adb variables (see Figure 8). The request O$s sets the maximum offset
for symbol matches to zero thus suppressing the printing of symbolic labels in
favor of octal values. Note that this is only done for the printing of the data
segment. The request:

<b,-1I8ona

prints a dump from the base of the data segment to the end of file with an
octal address field and eight octal numbers per line.

6-18

ADB

Figure 11 shows the results of some formatting requests on the C program of
Figure 10.

6.5.2 Directory Dump

As another illustration (Figure 12) consider a set of requests to dump the con­
tents of a directory (which is made up of an integer inumber followed by a 14
character name):

adb dir -
= n8t 'lnum "8t "Name"
0, -I? u8t14cn

In this example, the u prints the inumber as an unsigned decimal integer, the 8t
means that adb will space to the next multiple of 8 on the output line, and the
14c prints the 14 character file name.

6.5.3 Ilist Dump

Similarly the contents of the ilist of a file system, (e.g. /dev/src) could be
dumped with the following set of requests:

adb /dev/src
02000>b
?m <b
< b, -I? "f1ags "8ton '1inks, uid,gid "8t3bn ",size "8tbrdn "addr "8t8un "times "8t2Y2na

In this example the value of the base for the map was changed to 02000 (by
saying ?m<b) since that is the start of an ilist within a file system. An artifice
(brd above) was used to print the 24 bit size field as a byte, a space, and a deci­
mal integer. The last access time and last modify time are printed with the 2Y
operator. Figure 12 shows portions of these requests as applied to a directory
and file system.

6.5.4 Converting Values

adb may be used to convert values from one representation to another. For
example:

072 odx

will print

6-19

ADD

072 58 #3a

which is the octal, decimal and hexadecimal representations of 072 (octal). The
format is remembered so that typing subsequent numbers will print them in the
given formats. Character values may be converted similarly, for example:

'a' = co

prints

a 0141

It may also be used to evaluate expressions but be warned that all binary opera­
tors have the same precedence which is lower than that for unary operators.

6.6 PATCHING

Patching files with adb is accomplished with the write, w or W, request (which
is not like the ed editor write command). This is often used in conjunction with
the locate, I or L request. In general, the request syntax for I and ware similar
as follows:

?I value

The request I is used to match on two bytes, L is used for four bytes. The
request w is used to write two bytes, whereas W writes four bytes. The value
field in either locate or write requests is an expression. Therefore, decimal and
octal numbers, or character strings are supported.

In order to modify a file, adb must be called as:

adb - w filel file2

When called with this option, filel and file2 are created if necessary and opened
for both reading and writing.

For example, consider the C program shown in Figure 10. We can change the
word "This" to "The" in the executable file for this program, ex7, by using
the following requests:

6-20

adb -w ex7
?I 'Th'
?W 'The'

ADB

The request ?I starts at dot and stops at the first match of "Th" having set dot
to the address of the location found. Note the use of ? to write to the a.out
file. The form ?* would have been used for a 411 file.

More frequently the request will be typed as:

?I 'Th'; ?s

and locates the first occurrence of "Th" and print the entire string. Execution
of this adb request will set dot to the address of the "Th" characters.

As another example of the utility of the patching facility, consider a C program
that has an internal logic flag. The flag could be set by the user through adb
and the program run. For example:

adb a.out -
:s arg1 arg2
fJag/w 1
:c

The :s request is normally used to single step through a process or start a proc­
ess in single step mode. In this case it starts a.out as a subprocess with argu­
ments arg1 and arg2. If there is a subprocess running adb writes to it rather
than to the file so the w request causes flag to be changed in the memory of the
subprocess.

6.7 ANOMALIES
Users should be aware of the following adb anomalies:

1. Function calls and arguments are put on the stack by the C save routine.
Putting breakpoints at the entry point to routines means that the function
appears not to have been called when the breakpoint occurs.

6-21

ADD

2. When printing addresses, adb uses either text or data symbols from the
a.out file. This sometimes causes unexpected symbol names to be printed
with data (e.g. savr5 + 022). This does not happen if ? is used for text
(instructions) and / for data.

3. adb cannot handle C register variables in the most recently activated func­
tion.

6-22

Figure 1: C program with pointer bug

include < stdio.h >
char *charp "this is a sentence. ";

main(argc,argv)
int argc;
char **argv;
[

FILE *fp;
char cc;

if(argc < 2) [

J

printf("Input file missing\n ");
exit(8);

if«fp = fopen(argv(1], "w"» = = 0)[
printf("OJos : can't open for writing\n", argv(1]);
exit(8);

J
charp = 'T';
abortO;
while(cc = *charp + +)

fputc(cc,fp);

6-23

ADB

ADB

Figure 2: ADB output for C program of Figure 1

adb a.out core
$c
_abortO
-main(02,OI77654)
$C
_abortO
-main(02,OI77654)

argc: 02
argv: 0177654
fp: 05634
cc: 0

$r
ps 0170004
pc 03520 _abort +06
sp 0177612
r5 0177622
r4 0
r3 0
r2 0
rl 0
rO 03516
_abort + 06: e1r rO
$e
_environ: 0177662
_charp: 0124
~ob: 07120
~obuf:O
---1astbu:06044
_errno: 0
~ibuf: 0
_end: 0
$m
? map
bl = 0
b2 = 0

'a.out'
el = 06116 fl = 020
e2 = 06116 f2 = 020

/ map 'core'
bl = 0 el = 010200fl = 02000
b2 = 0175400 e2=0200000 f2 = 012200
*charp/s
0124:
charp/s
_charp: T

_charp + 02: this is a sentence.

_charp + 026: Input file missing
main.argc/d
0177646: 2

6-24

*main.argv 130
0177654: 0177672 0177700 0
0177672/s
01776721s: a.out
*main.argv 130
0177654: 0177672 0177700 0
* "Is
0177672: a.out
.=0

0177672
.-10/d
0177756: 2
$q

ADB

6-25

ADB

Figure 3: Multiple function C program for stack trace iIIustration

int fent,gent,hent;
h(x,y)
(

g(p,q)
(

f(a,b)
{

MainO
(

int hi; register int hr;
hi = x+I;
hr = x-y+I;
hent+ +
hj:
f(hr,hi);

int gi; register int gr;
gi = q-p;
gr = q-p+I;
gent + +
gj:
h(gr,gi);

int fi; register int fr;
fi = a+2*b;
fr = a+b;
fent+ +
fj:
g(fr,fi);

f(I,I);

6-26

ADB

Figure 4: ADB output for C program of Figure 3

adb
$e
11(04452,04451)
-g(04453,011124)
-f(02,04451)
11(04450,04447)
-g(04451,011120)
1'(02,04447)
11(04446,04445)
-g(04447,011114)
-f(02,04445)
11(04444,04443)
HIT DEL KEY
adb
,5$e
11(04452,04451)

x: 04452
y: 04451
hi: ?

-g(04453,011124)
p: 04453
q: 011124
gi: 04451
gr: ?

-f(02,04451)
a: 02
b: 04451
fi: 011124
fr: 04453

11(04450,04447)
x: 04450
y: 04447
hi: 04451
hr: 02

-g(04451,011120)
p: 04451
q: 011120
gi: 04447
gr: 04450

fent/d
~ent: 1173
gent/d
_gent: 1173
hentld
~ent: 1172
h.x/d
022004: 2346
$q_end

6-27

ADD

Figure 5: C program to decode tabs

define MAXLINE 80
define YES 1
#define NO 0
define TABSP 8

char input[] "data ";
char ibuf[518);
int tabs[MAXLINE);

mainO
{

int col, *ptab;
char c;

ptab = tabs;
settab(ptab); /*Set initial tab stops * /
col = 1;
if(fopen(input,ibuf) < 0) {

J

printf("OJos : not found\n" ,input);
exit(8);

while«c = getc(ibuf)) ! = -1) {
switch(c) {

case '\t': /* TAB */
while(tabpos(col) ! = YES) {

putchar(' '); /* put BLANK * /
col + +

break;
case ' \n': /*NEWLINE * /

putchar(' \n');
col = 1;
break;

default:
putchar(c);
col + + ;

/* Tabpos return YES if col is a tab stop * /
tabpos(col)
int col;
{

if(col > MAXLINE)
return(YES);

else
return(tabs[col]);

6-28

1* Settab - Set initial tab stops *1
settab(tabp)
int *tabp;
[

int i;

for(i = 0; i < = MAXLINE; i + +)
(i07oTABSP) ? (tabs[i] = NO) : (tabs[i] = YES);

6-29

ADB

ADB

Figure 6a: ADB output for C program of Figure 5

adb a.out -
settab +4:b
fopen+4:b
getc+4:b
tabpos+4:b
$b
breakpoints
count bkpt command
1 -tabpos + 04
1 _getc+04
1 ~open+04
1 -settab + 04
settab ,5?ia
-settab: jsr
-settab + 04:
-settab + 06:
-settab + 012:
-settab +020:
-settab + 022:
settab,5?i

r5,csv
tst
e1r
cmp
bit

-settab: jsr r5,csv

:r

tst - (sp)
e1r 0177770(r5)
cmp $0120,0177770(r5)
bit -settab + 076

a.out: running
breakpoint -settab + 04:
settab+4:d
:c
a.out: running
breakpoint _fopen + 04:
$C
~open(02302,02472)

-main(01,0177770)
col: 01
c: 0
ptab: 03'500

tabs,3/80
03500: 01 0

01 0
01 0

-(sp)
0177770(r5)
$0120,0177770(r5)
-settab + 076

tst

mov

o
o
o

6-30

-(sp)

04(r5),nulstr + 012

o 0
o 0
o 0

o
o
o

o
o
o

o
o
o

Figure 6b: ADB output for C program of Figure 5

:c
a.out: running
breakpoint _getc + 04: mov 04(r5),rl
ibuf+6/20c
__ cleanu + 0202: This is a test of
:c
a.out: running
breakpoint -tabpos + 04: cmp
tabpos + 4:db + 4:b settab,5?ia
settab + 4:bsettab,5?ia; 0
getc + 4,3:bmain.c?C; 0
settab + 4:bsettab,5?ia; ptab/o; 0
$b
breakpoints
count bkpt command
1 -tabpos + 04
3 _getc + 04 main.c?C;O
1 ---.topen + 04
1 -settab + 04 settab,5?ia;ptab?0;0
-settab: jsr r5,csv
-settab + 04: bpt

$0120,04(r5)

-settab + 06: clr
-settab + 012: cmp
-settab + 020: bIt

0177770(r5)
$0120,0177770(r5)
-settab + 076

-settab + 022:
0177766: 0177770
0177744: @'
T0177744: T
h0177744: h
i0177744:
s0177744:

6-31

ADB

ADB

Figure 7: ADB output for C program with breakpoints

adb ex3 -
b + 4:b hent/d; h.hi/; h.hrl
g + 4:b gent/d; g.gi/; g.grl
f + 4:b fent/d; f.fi/; Uri
:r
ex3: running
--Ient: 0
0177732: 214
symbol not found
f + 4:b fent/d; f.a/; f.b/; f.fil
g+4:b gent/d; g.p/; g.q/; g.gil
h+4:b hent/d; h.x/; h.y/; h.hi!
:e
ex3: running
--Ient: 0
0177746: 1
0177750: 1
0177732: 214
-.gent: 0
0177726: 2
0177730: 3
0177712: 214
Jent: 0
0177706: 2
0177710: 1
0177672: 214
--Ient: 1
0177666: 2
0177670: 3
0177652: 214
_gent: 1
0177646: 5
0177650: 8
0177632: 214
HIT DEL
f+4:b fenUd; f.al"a = "d; f.bl"b = "d; f.fi/"fi = "d
g + 4:b gent/d; g.pl"p = "d; g.ql"q = "d; g.gil"gi = "d
h + 4:b hent/d; h.xl"x = "d; h.yl "h = "d; h.hil"hi = "d
:r
ex3: running
--Ient: 0
0177746: a = 1
0177750: b = 1
0177732: fi = 214
-.gent: 0
0177726: p = 2
0177730: q = 3
0177712: gi = 214

6-32

_hent: 0
0177706: x = 2
0177710: y = 1
0177672: hi = 214
_fent: 1
0177666: a = 2
0177670: b = 3
0177652: fi = 214
HIT DEL
$q

ADB

6-33

ADB

Figure 8: ADB address maps

407 files

a.out hdr text + data
1 --I
0 D

core hdr text + data stack
1 --I ······1-1
0 D S E

410 files (shared text)

a.out hdr text data
1 1 1 1
0 T B D

core hdr data stack
1 1 ······1-1
B D S E

411 files (separated I and D space)

a.out hdr text data
1 1 1 1
0 T 0 D

core hdr data stack
1 1 ······1-1
0 D S E

The following adb variables are set.

407 410 411

b base of data 0 B 0
d length of data D D-B D
s length of stack S S S
t length of text 0 T T

6-34

ADB

Figure 9: ADB output for maps

adb map407 core407
$m
text map 'map40T
bl = 0 el= 0256 f1 = 020
b2 = 0 e2= 0256 f2 = 020
data map core407'
bl = 0 el= 0300 f1 = 02000
b2 = 0175400 e2= 0200000 f2 = 02300
$v
variables
d = 0300
m = 0407
s = 02400
$q

adb map410 core410
$m
text map 'map410'
bl = 0 el= 0200 f1 = 020
b2 = 020000 e2= 020116 f2 = 0220
data map 'core410'
bl = 020000 e1= 020200 f1 = 02000
b2 = 0175400 e2= 0200000 f2 = 02200
$v
variables
b = 020000
d = 0200
m = 0410
s = 02400
t = 0200
$q

adb map411 core411
$m
text map 'map411,
bl = 0 el= 0200 f1 = 020
b2 = 0 e2= 0116 f2 = 0220
data map core411,
bI = 0 el= 0200 f1 = 02000
b2 = 0175400 e2= 0200000 f2 = 02200

6-35

ADB

$v
variables
d = 0200
m = 0411
s = 02400
t = 0200
$q

6-36

Figure 10: Simple C program for illustrating formatting and patching

char str1[]
int one
int number
long Inurn
float fpt
char str2[]
mainO
[

one 2-,

"This is a character string ";
1;
456;
1234;
1.25;
"This is the second character string ";

6-37

ADB

ADB

Figure 11: ADB output illustrating fancy formats

adb map410 core410
<b,-1I8ona
020000: 0 064124 071551 064440020163020141064143071141

~trl+016: 061541 062564 020162 072163064562063556002

~umber:

_number: 0710 0 02322 0402400064124071551064440

~tr2+06: 020163 064164 020145 062563067543062156061440060550

~tr2+026: 060562 072143 071145 07144007116406715101470

savr5+02: 0 0 0 00000

< b,2014041!Cn
020000: 0 064124 071551064440@'@'This i

020163 020141 064143 071141s a char
061541 062564 020162 072163acter st
064562 063556 0 02ring@'@'@b@'

~umber: 0710 0 02322 040240H@a@'@'R@d @@
0 064124 071551 064440@'@'This i
020163 064164 020145 062563s the se
067543 062156 061440 060550cond cha
060562 072143 071145 071440racter s
071164 067151 0147 Otring@'@'@'
0 0 0 O@'@'@'@'@'@'@'@'
0 0 0 O@'@'@'@'@'@'@'@'

data address not found
< b,2014041!t8cna
020000: 0 064124 071551064440This i
~trl+06: 020163 020141 064143 071141s a char
~trl+016: 061541 062564 020162 072163acter st
~trl+026: 064562 063556 0 02ring
~umber:

~umber: 0710 0 02322 040240HR
~pt+02: 0 064124 071551 064440This i
~tr2+06: 020163 064164 020145 062563s the se
~tr2+016: 067543 062156 061440 060550cond cha
~tr2+026: 060562 072143 071145 071440racters
~tr2+036: 071164 067151 0147 Otring
savr5+02: 0 0 0 0
savr5 +012: 0 0 0 0
data address not found
< b,10/2b8f2cn
020000: 0 0

6-38

ADB

-----.Strl: 0124 0150 Tb
0151 0163 is
040 0151
0163 040
0141 040 a
0143 0150 eb
0141 0162 ar
0141 0143 ae
0164 0145 te

$Q

6-39

ADB

Figure 12: Directory and inode dumps

adb dir -
=nt'1node"t"Name"
0, -1 ?ut14cn

0:

adb Idev/src -
02000>b
?m<b
new map
bl = 02000
b2 = 0
$v
variables
b = 02000

Inode Name
652
82
5971 cap.c
5323 cap
0 pp

'/dev/src'
el = 0100000000

e2 = 0
f1 = 0
f2 = 0

< b, -I? "flags "8ton '1inks,uid,gid "8t3bn "size "8tbrdn "addr "8t8un "times "8t2Y2na
02000: flags 073145

Iinks,uid,gid 0163 0164 0141
size 0162 10356
addr 28770 8236 25956 277662545582362595625206
times 1976 Feb 5 08:34:56 1975 Dec 28 10:55:15

02040: flags 024555
Iinks,uid,gid 012 0163 0164
size 0162 25461
addr 8308 30050 8294 2513015216268902980610784
times 1976 Aug 17 12:16:51 1976 Aug 17 12:16:51

02100: flags 05173
Iinks,uid,gid 011 0162 0145
size 0147 29545
addr 25972 8306 28265 83082564215216231425970
times 1977 Apr 2 08:58:01 1977 Feb 5 10:21:44

6-40

6.7.1 ADB Summary

6.7.1.1 Command Summary

a) formatted printing

? format

/ format

= format

?w expr

/w expr

print from a.out file according to format

print from core file according to format

print the value of dot

write expression into a.out file

write expression into core file

?I expr locate expression in a.out file

b) breakpoint and program control

:b set breakpoint at dot

:c

:d

:k

:r

continue running program

delete breakpoint

kill the program being debugged

run a.out file under ADB control

:s single step

c) miscellaneous printing

$b

$c

$e

$f

print current breakpoints

C stack trace

external variables

floating registers

6-41

ADB

ADB

$m print ADB segment maps

$q exit from ADB

$r general registers

$s set offset for symbol match

$v print ADB variables

$w set output line width

d) calling the shell

call shell to read rest of line

e) assignment to variables

> name assign dot to variable or register name

6-42

6.7.1.2 Format Summary

a the value of dot

b one byte in octal

c one byte as a character

d one word in decimal

f two words in floating point

PDP 11 instruction

o one word in octal

n print a newline

r print a blank space

s a null terminated character string

nt move to next n space tab

u one word as unsigned integer

x hexadecimal

Y date

backup dot

print string

6.7.1.3 Expression Summary

a) expression components

decimal integer e.g. 256

octal integer e.g. 0277

hexadecimal e.g. #ff

6-43

ADB

ADD

b)

c)

symbols e.g. flag ~ain main.argc

variables e.g. <b

registers e.g. <pc <rO

(expression) expression grouping

dyadic operators

+ add

subtract

* multiply

% integer division

& bitwise and

bitwise or

round up to the next multiple

monadic operators

1
*

not

contents of location

integer negate

6-44

Contents

7.1 USAGE .. 7-1

7.2 LANGUAGE EXTENSIONS ... 7-2

7.3 VIOLATIONS OF THE STANDARD 7-7

7.4 INTERPROCEDURE INTERFACE 7-8

7.5 FILE FORMATS .. 7-11

Chapter 7

FORTRAN 77

This chapter describes the compiler and run-time system for Fortran 77 as
implemented on the VENIX system. This chapter also describes the interfaces
between procedures and the file formats assumed oy the I/O system.

7.1 USAGE
The command to run the compiler is

f77 options file

The f77(I) command is a general purpose command for compiling and loading
Fortran and Fortran-related files into an executable module. Ratfor (preproces­
sor) source files will be translated into Fortran before being presented to the
Fortran compiler. The f77 command invokes the C compiler to translate C
source files and invokes the assembler to translate assembler source files.
Object files will be link edited. [The f77(I) and cc(l) commands have slightly
different link editing sequences. Fortran programs need two extra libraries
(libI77.a, libF77.a) and an additional startup routine.] The following file name
suffixes are understood:

.f Fortran source file

.r Ratfor source file

.c C language source file

7-1

FORTRAN 77

.s Assembler source file

.0 Object file

7.2 LANGUAGE EXTENSIONS
Fortran 77 includes almost all of Fortran 66 as a subset. The most important
additions are a character string data type, file-oriented input/output statements,
and random access I/O. Also, the language has been cleaned up considerably.

In addition to implementing the language specified in the Fortran 77 American
National Standard, this compiler implements a few extensions. Most are useful
additions to the language. The remainder are extensions to make it easier to
communicate with C language procedures or to permit compilation of old (1966
Standard Fortran) programs.

7.2.1 Double Complex Data Type

The data type double complex is added. Each datum is represented by a pair
of double-precision real variables. A double complex version of every complex
built-in function is provided.

7.2.2 Internal Files

The Fortran 77 American National Standard introduces internal files (memory
arrays) but restricts their use to formatted sequential I/O statements. This I/O
system also permits internal files to be used in direct and unformatted reads and
writes.

7.2.3 Implicit Undefined Statement

Fortran has a rule that the type of a variable that does not appear in a type
statement is integer if its first letter is i, j, k, I, m or n. Otherwise, it is real.
Fortran 77 has an implicit statement for overriding this rule. An additional
type statement, undefined, is permitted. The statement

implicit undefined(a-z)

turns off the automatic data typing mechanism, and the compiler will issue a
diagnostic for each variable that is used but does not appear in a type

7-2

FORTRAN 77

statement. Specifying the - u compiler option is equivalent to beginning each
procedure with this statement.

7.2.4 Recursion

Procedures may call themselves directly or through a chain of other procedures.

7.2.5 Automatic Storage

Two new keywords recognized are static and automatic. These keywords may
appear as "types" in type statements and in implicit statements. Local variables
are static by default; there is exactly one copy of the datum, and its value is
retained between calls. There is one copy of each variable declared automatic
for each invocation of the procedure. Automatic variables may not appear in
equivalence, data, or save statements.

7.2.6 Variable Length Input Lines

The Fortran 77 American National Standard expects input to the compiler to be
in a 72-column format: except in comment lines, the first five characters are the
statement number, the next is the continuation character, and the next 66 are
the body of the line. (If there are fewer than 72 characters on a line, the com­
piler pads it with blanks; characters after the first 72 are ignored.) In order to
make it easier to type Fortran programs, this compiler also accepts input in
variable length lines. An ampersand (&) in the first position of a line indicates
a continuation line; the remaining characters form the body of the line. A tab
character in one of the first six positions of a line signals the end of the state­
ment number and continuation part of the line; the remaining characters form
the body of the line. A tab elsewhere on the line is treated as another kind of
blank by the compiler.

In the Fortran 77 Standard, there are only 26 letters - Fortran is a one-case
language. Consistent with ordinary system usage, the new compiler expects low­
ercase input. By default, the compiler converts all uppercase characters to low­
ercase except those inside character constants. However, if the - U compiler
option is specified, uppercase letters are not transformed. In this mode, it is
possible to specify external names with uppercase letters in them and to have
distinct variables differing only in case. Regardless of the setting of the option,
keywords will only be recognized in lowercase.

7-3

FORTRAN 77

7.2.7 Include Statement

The statement

include "stuff"

is replaced by the contents of the file stuff. Includes may be nested to a rea­
sonable depth, currently ten.

7.2.8 Binary Initialization Constants

A logical, real, or integer variable may be initialized in a data statement by a
binary constant, denoted by a letter followed by a quoted string. If the letter is
b, the string is binary, and only zeroes and ones are permitted. If the letter is
0, the string is octal with digits zero through seven. If the letter is z or x, the
string is hexadecimal with digits zero through nine, a through f. Thus, the
statements

integer a(3)
data a/b'tOtO' ,0't2' ,z'a' I

initialize all three elements of a to ten.

7.2.9 Character Strings

For compatibility with C language usage, the following backslash escapes are
recognized:

\n

\t

\b

\f

\0

\'

\

New-line

Tab

Backspace

Form feed

Null

Apostrophe (does not terminate a string)

Quotation mark (does not terminate a string)

7-4

FORTRAN 77

\\ \&

\x Where x is any other character.

Fortran 77 only has one quoting character - the apostrophe ('). This compiler
and 110 system recognize both the apostrophe and the double quote ("). If a
string begins with one variety of quote mark, the other may be embedded within
it without using the repeated quote or backslash escapes.

Every unequivalenced scalar local character variable and every character string
constant is aligned on an integer word boundary. Each character string con­
stant appearing outside a data statement is followed by a null character to ease
communication with C language routines.

7.2.10 Hollerith

Fortran 77 does not have the old Hollerith (nh) notation though the new Stan­
dard recommends implementing the old Hollerith feature in order to improve
compatibility with old programs. In this compiler, Hollerith data may be used
in place of character string constants and may also be used to initialize non
character variables in data statements.

7.2.11 Equivalence Statements

This compiler permits single subscripts in equivalence statements under the inter­
pretation that all missing subscripts are equal to 1. A warning message is
printed for each such incomplete subscript.

7.2.12 One-Trip DO Loops

The Fortran 77 American National Standard requires that the range of a do
loop not be performed if the initial value is already past the limit value, as in

do 10 i = 2, 1

The 1966 Standard stated that the effect of such a statement was undefined, but
it was common practice that the range of a do loop would be performed at least
once. In order to accommodate old programs though they were in violation of
the 1966 Standard, the - onetrip compiler option causes nonstandard loops to
be generated.

7-5

FORTRAN 77

7.2.13 Commas in Formatted Input

The I/O system attempts to be more lenient than the Fortran 77 American
National Standard when it seems worthwhile. When doing a formatted read of
non-character variables, commas may be used as value separators in the input
record overriding the field lengths given in the format statement. Thus, the for­
mat

(itO, f20.10, i4)

will read the record

- 345,.05e-3,12

correctly.

7.2.14 Short Integers

On machines that support half word integers, the compiler accepts declarations
of type integer*2. (Ordinary integers follow the Fortran rules about occupying
the same space as a REAL variable; they are assumed to be of C language type
long int; half word integers are of C language type short int.) An expression
involving only objects of type integer*2 is of that type. Generic functions
return short or long integers depending on the actual types of their arguments.
If a procedure is compiled using the - 12 flag, all small integer constants will be
of type integer*2. If the precision of an integer-valued intrinsic function is not
determined by the generic function rules, one will be chosen that returns the
prevailing length (integer*2 when the -I2 command flag is in effect). When
the - 12 option is in effect, all quantities of type logical will be short. Note
that these short integer and logical quantities do not obey the standard rules for
storage association.

7.2.15 Additional Intrinsic Functions

This compiler supports all of the intrinsic functions specified in the Fortran 77
Standard. In addition, there are functions for performing bitwise Boolean oper­
ations (or, and, xor, and not) and for accessing the command arguments (getarg
and iargc).

7-6

FORTRAN 77

For more information on the Fortran intrinsic function commands, see the User
Reference Manual.

7.3 VIOLATIONS OF THE STANDARD
The following paragraphs describe only three known ways in which the VENIX
system implementation of Fortran 77 violates the new American National Stan­
dard.

7.3.1 Double Precision Alignment

The Fortran 77 American National Standard permits common or equivalence
statements to force a double precision quantity onto an odd word boundary, as
in the following example:

real a(4)
double precision b,c
equivalence (a(I),b), (a(4),c)

Some machines require that double preClSlon quantities be on double word
boundaries; other machines run inefficiently if this alignment rule is not
observed. It is possible to tell which equivalenced and common variables suffer
from a forced odd alignment, but every double-precision argument would have
to be assumed on a bad boundary. To load such a quantity on some machines,
it would be necessary to use two separate operations. The first operation would
be to move the upper and lower halves into the halves of an aligned temporary.
The second would be to load that double-precision temporary. The reverse
would be needed to store a result. All double-precision real and complex quan­
tities are required to fall on even word boundaries on machines with corre­
sponding hardware requirements and to issue a diagnostic if the source code
demands a violation of the rule.

7.3.2 Dummy Procedure Arguments

If any argument of a procedure is of type character, all dummy procedure argu­
ments of that procedure must be declared in an external statement. This
requirement arises as a subtle corollary of the way we represent character string
arguments. A warning is printed if a dummy procedure is not declared exter­
nal. Code is correct if there are no character arguments.

7-7

FORTRAN 77

7.3.3 T and TL Formats

The implementation of the t (absolute tab) and tl (leftward tab) format codes is
defective. These codes allow rereading or rewriting part of the record which has
already been processed. The implementation uses "seeks"; so if the unit is not
one which allows seeks (such as a terminal) the program is in error. A benefit
of the implementation chosen is that there is no upper limit on the length of a
record nor is it necessary to predeclare any record lengths except where specifi­
cally required by Fortran or the operating system.

7.4 INTERPROCEDURE INTERFACE

To be able to write C language procedures that call or are called by Fortran
procedures, it is necessary to know the conventions for procedure names, data
representation, return values, and argument lists that the compiled code obeys.

7.4.1 Procedure Names

On VENIX systems, the name of a common block or a Fortran procedure has
an underscore appended to it by the compiler to distinguish it from a C lan­
guage procedure or external variable with the same user-assigned name. Fortran
library procedure names have embedded underscores to avoid clashes with user­
assigned subroutine names.

7.4.2 Data Representations

The following is a table of corresponding Fortran and C language declarations:

Fortran C Language

integer*2 x short int x;

integer x long int x;

logical x long int x;

real x float x;

double precision x double x;

7-8

FORTRAN 77

complex x struct { float r, i; 1 x;

double complex x struct { double dr, di; 1 x;

character*6 x char x[6];

By the rules of Fortran, integer, logical, and real data occupy the same amount
of memory.

7.4.3 Return Values

A function of type integer, logical, real, or double precision declared as a C lan­
guage function returns the corresponding type. A complex or double complex
function is equivalent to a C language routine with an additional initial argu­
ment that points to the place where the return value is to be stored. Thus, the
following:

complex function f(. . .)

is equivalent to

struct { float r, i; 1 temp;
f_(&temp, .. .)

A character-valued function is equivalent to a C language routine with two extra
initial arguments - a data address and a length. Thus,

character*15 function g(.. .)

7-9

FORTRAN 77

is equivalent to

char result[];
long int length;
~(result, length, ...)

and could be invoked in C language by

char chars[15];

~(chars, 15L, ...);

Subroutines are invoked as if they were integer-valued functions whose value
specifies which alternate return to use. Alternate return arguments (statement
labels) are not passed to the function but are used to do an indexed branch in
the calling procedure. (If the subroutine has no entry points with alternate
return arguments, the returned value is undefined.) The statement

call nret(*1, *2, *3)

is treated exactly as if it were the computed goto

goto (1, 2, 3), nret()

7.4.4 Argument Lists

All Fortran arguments are passed by address. In addition, for every argument
that is of type character or that is a dummy procedure, an argument giving the
length of the value is passed. (The string lengths are long int quantities passed
by value.) The order of arguments is then:

Extra arguments for complex and character functions
Address for each datum or function
A long int for each character or procedure argument

7-10

Thus, the call in

external f
character*7 s
integer b(3)

call sam(f, b(2), s)

is equivalent to that in

int fO;
char s[7];
long int b[3];

sam_(f, &b[1], s, OL, 7L);

FORTRAN 77

Note that the first element of a C language array always has subscript 0, but
Fortran arrays begin at 1 by default. Fortran arrays are stored in column-major
order; C language arrays are stored in row-major order.

7.5 FILE FORMATS

7.5.1 Structure of Fortran Files

Fortran requires four kinds of external files: sequential formatted and unformat­
ted, and direct formatted and unformatted. On VENIX systems, these are all
implemented as ordinary files which are assumed to have the proper internal
structure.

Fortran I/O is based on "records." When a direct file is opened in a Fortran
program, the record length of the records must be given; and this is used by the
Fortran I/O system to make the file look as if it is made up of records of the
given length. In the special case that the record length is given as 1, the files
are not considered to be divided into records but are treated as byte-addressable
byte strings; i.e., as ordinary files on the VENIX system. (A read or write
request on such a file keeps consuming bytes until satisfied rather than being
restricted to a single record.)

7-11

FORTRAN 77

The peculiar requirements on sequential unformatted files make it unlikely that
they will ever be read or written by any means except Fortran I/O statements.
Each record is preceded and followed by an integer containing the record's
length in bytes.

The Fortran I/O system breaks sequential formatted files into records while
reading by using each new-line as a record separator. The result of reading off
the end of a record is undefined according to the Fortran 77 American National
Standard. The I/O system is permissive and treats the record as being extended
by blanks. On output, the I/O system will write a new-line at the end of each
record. It is also possible for programs to write new-lines for themselves. This
is an error, but the only effect will be that the single record the user thought
was written will be treated as more than one record when being read or back­
spaced over.

7.5.2 Preconnected Files and File Positions

Units 5, 6, and ° are preconnected when the program starts. Unit 5 is con­
nected to the standard input, unit 6 is connected to the standard output, and
unit ° is connected to the standard error unit. All are connected for sequential
formatted I/O.

All the other units are also pre connected when execution begins. Unit n is con­
nected to a file named fort.n. These files need not exist nor will they be created
unless their units are used without first executing an open. The default connec­
tion is for sequential formatted I/O.

The Fortran 77 Standard does not specify where a file which has been explicitly
opened for sequential I/O is initially positioned. In fact, the I/O system
attempts to position the file at the end. A write will append to the file and a
read will result in an "end of file" indication. To position a file to its begin­
ning, use a rewind statement. The preconnected units 0, 5, and 6 are positioned
as they come from the parent process.

7-12

Contents

8.1 GENERAL ... 8-1

8.2 USAGE .. 8-2

8.3 STATEMENT GROUPING ... 8-2

8.4 THE "if-else" CONSTRUCTION 8-3

8.5 THE "switch" STATEMENT .. 8-5

8.6 THE "do" STATEMENT ... 8-6

8.7 THE "break" AND "next" STATEMENTS 8-7

8.8 THE "while" STATEMENT .. 8-8

8.9 THE "for" STATEMENT ... 8-8

8.10 THE "repeat-until" STATEMENT 8-10

8.11 THE "return" STATEMENT 8-10

8.12 THE "define" STATEMENT 8-11

8.13 THE "include" STATEMENT 8-12

8.14 FREE-FORM INPUT .. 8-12

8.15 TRANSLATIONS ... 8-13

8.16 WARNINGS .. 8-14

8.17 EXAMPLE OF RATFOR CONVERSION 8-15

Chapter 8

RATFOR

8.1 GENERAL
This chapter describes the Ratfor(1) preprocessor. It is assumed that the user is
familiar with the current implementation of Fortran 77 on the VENIX system.

The Ratfor language allows users to write Fortran programs in a fashion similar
to C language. The Ratfor program is implemented as a preprocessor that
translates this "simplified" language into Fortran. The facilities provided by
Ratfor are:

• Statement grouping

• if-else and switch for decision making

• while, for, do, and repeat-until for looping

• break and next for controlling loop exits

• Free form input such as multiple statements/lines and automatic continua­
tion

• Simple comment convention

8-1

RATFOR

• Translation of >, > =, etc., into .gt., .ge., etc.

• return statement for functions

• define statement for symbolic parameters

• include statement for including source files.

8.2 USAGE
The Ratfor program takes either a list of file names or the standard input and
writes Fortran on the standard output. Options include - 6x, which uses x as a
continuation character in column 6 (the VENIX system uses & in column 1),
- h, which causes quoted strings to be turned into nH constructs and - C,
which causes Ratfor comments to be copied into the generated Fortran.

8.3 STATEMENT GROUPING
The Ratfor language provides a statement grouping facility. A group of state­
ments can be treated as a unit by enclosing them in the braces (and). For
example, the Ratfor code

if (x > 100)
(call error("x > 100 "); err = 1; return)

will be translated by the Ratfor preprocessor into Fortran equivalent to

10

if (x .Ie. 100) go to 10
call error(5hx> 100)
err = 1
return

which should simplify programming effort. By using (and), a group of state­
ments can be used instead of a single statement.

Also note in the previous Ratfor example that the character > was used instead
of .GT. in the if statement. The Ratfor preprocessor translates this C language

8-2

RATFOR

type operator to the appropriate Fortran operator. More on relationship opera­
tors later.

In addition, many Fortran compilers permit character strings in quotes (like
"x> lOa"). But others, like ANSI Fortran 66, do not. Ratfor converts it into
the right number of H s.

The Ratfor language is free form. Statements may appear anywhere on a line,
and several may appear on one line if they are separated by semicolons. The
previous example could also be written as

if (x > 100) (
call error(/Ix > 100/1)
err = 1
return

which shows grouped statements spread over several lines. In this case, no
semicolon is needed at the end of each line because Ratfor assumes there is one
statement per line unless told otherwise.

Of course, if the statement that follows the if is a single statement, no braces
are needed.

8.4 THE "if-else" CONSTRUCTION
The Ratfor language provides an else statement. The syntax of the if-else con­
struction is:

if (legal Fortran condition)
ratfor statement

else
ratfor statement

where the else part is optional. The legal Fortran condition is anything that
can legally go into a Fortran Logical IF statement. The Ratfor preprocessor
does not check this clause since it does not know enough Fortran to know what
is permitted. The "ratfor" statement is any Ratfor or Fortran statement or any
collection of them in braces. For example:

8-3

RATFOR

if (a < = b)
(sw 0; write(6, 1) a, b }

else
(sw 1; write(6, 1) b, a }

is a valid Ratfor if-else construction. This writes out the smaller of a and b,
then the larger, and sets sw appropriately.

As before, if the statement following an if or an else is a single statement, no
braces are needed.

8.4.1 Nested "if" Statements

The statement that follows an if or an else can be any Ratfor statement includ­
ing another if or else statement. In general, the structure

if (condition) action
else if (condition) action
else action

provides a way to write a multibranch in Ratfor. (The Ratfor language also
provides a switch statement which could be used instead, under certain condi­
tions.) The last else handles the "default" condition. If there is no default
action, this final else can be omitted. Thus, only the actions associated with the
valid condition are performed. For example:

if (x < 0)
x = 0

else if (x > 100)
x = 100

will ensure that x is not less than 0 and not greater than 100.

Nested if and else statements could result in ambiguous code. In Ratfor when
there are more if statements than else statements, else statements are associated
with the closest previous if statement that currently does not have an associated
else statement. For example:

8-4

if (x > 0)
if (y > 0)
write(6,1) x, y
else
write(6,2) y

is interpreted by the Ratfor preprocessor as

if (x > 0) {
if (y > 0)

write(6, 1) x, y
else

write(6, 2) y

RATFOF

in which the braces are assumed. If the other association is desired it must be
written as

if (x > 0) {
if (y > 0)

write(6, 1) x, y

else
write(6, 2) y

with the braces specified.

8.S THE "switch" STATEMENT
The switch statement provides a way to express multi way branches which branch
on the value of some integer-valued expression. The syntax is

8-5

RATFOR

switch (expression) {
case exprl :
statements
case expr2, expr3 :
statements

default:
statements

where each case is followed by an integer expression (or several integer expres­
sions separated by commas). The switch expression is compared to each case
expr until a match is found. Then the statements following that case are exe­
cuted. If no cases match expression, then the statements following default are
executed. The default section of a switch is optional.

When the statements associated with a case are executed, the entire switch is
exited immediately. This is different from C language.

8.6 THE "do" STATEMENT

The do statement in Ratfor is quite similar to the DO statement in Fortran
except that it uses no statement number (braces are used to mark the end of the
do instead of a statement number). The syntax of the ratfor do statement is

do legal-Fortran-DO-text {
rat/or statements

The legal-Fortran-DO-text must be something that can legally be used in a For­
tran DO statement. Thus if a local version of Fortran allows DO limits to be
expressions (which is not currently permitted in ANSI Fortran 66), they can be
used in a ratfor do statement. The rat/or statements are enclosed in braces; but
as with the if, a single statement need not have braces around it. For example,
the following code sets an array to zero:

do i = 1, n
x(i) = 0.0

8-6

and the code

do i = 1, n
do j = 1, n

m(i, j) = 0

sets the entire array m to zero.

8.7 THE "break" AND "next" STATEMENTS

RATFOR

The Ratfor break and next statements provide a means for leaving a loop early
and one for beginning the next iteration. The break causes an immediate exit
from the do; in effect, it is a branch to the statement after the do. The next is
a branch to the bottom of the loop, so it causes the next iteration to be done.
For example, this code skips over negative values in an array

do i = 1, n (
if (x(i) < 0.0)

next
process positive element

The break and next statements will also work in the other Ratfor looping con­
structions and will be discussed with each looping construction.

The break and next can be followed by an integer to indicate breaking or iterat­
ing that level of enclosing loop. For example:

break 2

exits from two levels of enclosing loops, and

break 1

is equivalent to break. The

next 2

iterates the second enclosing loop.

8-7

RATFOR

8.8 THE "while" STATEMENT
The Ratfor language provides a while statement. The syntax of the while state­
ment is

while (legal-Fortran-condition)
ratfor statement

As with the if, legal-Fortran-condition is something that can go into a Fortran
Logical IF, and ratfor statement is a single statement which may be multiple
statements enclosed in braces.

For example, suppose nextch is a function which returns the next input charac­
ter both as a function value and in its argument. Then a while loop to find the
first nonblank character could be

while (nextch(ich) = = iblank)

where a semicolon by itself is a null statement (which is necessary here to mark
the end of the while). If the semicolon were not present, the while would con­
trol the next statement. When the loop is exited, ich contains the first
nonblank.

8.9 THE "for" STATEMENT
The for statement is another Ratfor loop. A for statement allows explicit ini­
tialization and increment steps as part of the statement.

The syntax of the for statement is

for (init ; condition ; increment)
ratfor statement

where init is any single Fortran statement which is executed once before the
loop begins. The increment is any single Fortran statement that is executed at
the end of each pass through the loop before the test. The condition is again
anything that is legal in a Fortran Logical IF. Any of init, condition, and

8-8

RATFOR

increment may be omitted although the semicolons must always be present. A
nonexistent condition is treated as always true, so

for (;;)

is an infinite loop.

For example, a Fortran DO loop could be written as

for (i = 1; i < = n; i = i + 1) ...

which is equivalent to

i = 1
while (i < = n) [

i = i + 1

The initialization and increment of i have been moved into the for statement.

The for, do, and while versions have the advantage that they will be done zero
times if n is less than 1. In addition, the break and next statements work in a
for loop.

The increment in a for need not be an arithmetic progression. The program

sum = 0.0
for (i = first; i > 0; i = ptr(i»

sum = sum + value(i)

steps through a list (stored in an integer array ptr) until a zero pointer is found
while adding up elements from a parallel array of values. Notice that the code
also works correctly if the list is empty.

8-9

RATFOR

8.10 THE "repeat-until" STATEMENT
There are times when a test needs to be performed at the bottom of a loop after
one pass through. This facility is provided by the repeat-until statement. The
syntax for the repeat-until statement is

repeat
ratjor statement

until (legal-Fortran-condition)

where ratjor-statement is done once, then the condition is evaluated. If it is
true, the loop is exited; if it is false, another pass is made.

The until part is optional, so a repeat by itself is an infinite loop. A repeat­
until loop can be exited by the use of a stop, return, or break statement or an
implicit stop such as running out of input with a READ statement.

As stated before, a break statement causes an immediate exit from the enclosing
repeat-until loop. A next statement will cause a skip to the bottom of a repeat­
until loop (i.e., to the until part).

8.11 THE "return" STATEMENT
The standard Fortran mechanism for returning a value from a routine uses the
name of the routine as a variable. This variable can be assigned a value. The
last value stored in it is the value returned by the function. For example, in a
Fortran routine named equal, the statements

equal = 0
return

cause equal to return zero.

The Ratfor language provides a return statement similar to the C language
return statement. In order to return a value from any routine, the return state­
ment has the syntax

return (expression)

8-10

RATFOR

where expression is the value to be returned.

If there is no parenthesized expression after return, no value is returned.

8.12 THE "define" STATEMENT
The Ratfor language provides a define statement similar to the C language ver­
sion. Any string of alphanumeric characters can be defined as a name. When­
ever that name occurs in the input (delimited by nonalphanumerics), it is
replaced by the rest of the definition line. (Comments and trailing white spaces
are stripped off.) A defined name can be arbitrarily long and must begin with a
letter.

Usually the define statement is used for symbolic parameters. The syntax of the
define statement is

define name value

where name is a symbolic name that represents the quantity of value. For
example:

define ROWS 100
define CLOS 50
dimension a(ROWS), b(ROWS, COLS)

if (i > ROWS I j > COLS) ...

causes the preprocessor to replace the name ROWS with the value 100 and the
name COLS with the value 50. Alternately, definitions may be written as

define(ROWS, 100)

in which case the defining text is everything after the comma up to the right
parenthesis. This allows multiple-line definitions.

8-11

RATFOR

8.13 THE "include" STATEMENT
The Ratfor language provides an include statement similar to the # include
< ... > statement in C language. The syntax for this statement is

include file

which inserts the contents of the named file into the Ratfor input file in place
of the include statement. The standard usage is to place COMMON blocks on
a file and use the include statement to include the common code whenever
needed.

8.14 FREE-FORM INPUT
In Ratfor, statements can be placed anywhere on a line. Long statements are
continued automatically as are long conditions in if, for, and until statements.
Blank lines are ignored. Multiple statements may appear on one line if they are
separated by semicolons. No semicolon is needed at the end of a line if Ratfor
can make some reasonable guess about whether the statement ends there. Lines
ending with any of the characters

= +-*,1&(-

are assumed to be continued on the next line. Underscores are discarded wher­
ever they occur. All other characters remain as part of the statement.

Any statement that begins with an all-numeric field is assumed to be a Fortran
label and placed in columns 1 through 5 upon output. Thus:

write(6, 100); 100 format("hello")

is converted into

write(6, 100)
100 format(5hhello)

8-12

RATFOR

8.15 TRANSLATIONS
When the - h option is chosen, text enclosed in matching single or double
quotes is converted to nH... but is otherwise unaltered (except for formatting
- it may get split across card boundaries during the reformatting process).
Within quoted strings, the backslash (\) serves as an escape character; i.e., the
next character is taken literally. This provides a way to get quotes and the
backslash itself into quoted strings. For example:

"\'"

is a string containing a backslash and an apostrophe. (This is not the standard
convention of doubled quotes, but it is easier to use and more general.)

Any line that begins with the character 070 is left absolutely unaltered except for
stripping off the 070 and moving the line one position to the left. This is useful
for inserting control cards and other things that should not be preprocessed (like
an existing Fortran program). Use 070 only for ordinary statements not for the
condition parts of if, while, etc., or the output may come out in an unexpected
place.

The following character translations are made (except within single or double
quotes or on a line beginning with a 070):

.eq.

!= .ne .

> . gt.

>= .ge .

< .It.

<= .Ie.

& .and.

8-13

RATFOR

.Of •

. not.

In addition, the following translations are provided for input devices with
restricted character sets:

$(

$)

8.16 WARNINGS
The Ratfor preprocessor catches certain syntax errors (such as missing braces),
else statements without if statements, and most errors involving missing paren­
theses in statements.

All other errors are reported by the Fortran compiler. Unfortunately, the For­
tran compiler prints messages in terms of generated Fortran code and not in
terms of the Ratfor code. This makes it difficult to locate Ratfor statements
that contain errors.

The keywords are reserved. Using if, else, while, etc., as variable names will
cause considerable problems. Likewise, spaces within keywords and use of the
Arithmetic IF will cause problems.

The Fortran n H convention is not recognized by Ratfor. Use quotes instead.

8-14

RATFOR

8.17 EXAMPLE OF RATFOR CONVERSION

As an example of how to use the Ratfor program, the following program prog.r
(where the .r indicates a Ratfor source program), is written in the Ratfor lan­
guage:

ICNT=O
10 WRITE(6,31)
31 FORMAT("INPUT FIRST NUMBER")

READ(5,32) A
32 FORMAT(F10.2)

WRITE(6,33)
33 FORMAT("INPUT SECOND NUMBER")

READ(5,34) B
34 FORMAT(F10.2)

IF(A<B)
WRITE(6,36) A,B

ELSE WRITE(6,37)A,B
36 FORMAT(F10.2," < ",FlO.2)
37 FORMAT(F10.2," > = ",FlO.2)

ICNT = ICNT + 1
IF(ICNT.EQ.5)

GOTO 100
GOTO 10

00 END

The command

ratfor prog.r > prog.f

causes the Fortran translation program prog.f to be produced. (The Ratfor pro­
gram prog.r remains intact.) The Fortran program prog.f follows:

8-15

RATFOR

icnt =0
10 write(6,31)
31 format("INPUT FIRST NUMBER")

read(S,32) a
32 format(flO.2)

write(6,33)
33 format("INPUT SECOND NUMBER")

read(S,34) b
34 format(flO.2)

if(.not.(a.lt.b»goto 23000
write(6,36) a,b
goto 23001

23000 continue
write(6,37)a,b

23001 continue
36 format(flO.2," < ",flO.2)
37 format(flO.2," > = ",flO.2)

icnt = icnt + 1
if(.not.(icnt.eq .S»goto 23002
go to 100

23002 continue
go to 10

100 end]

The Fortran program prog.f is compiled using the command

f77 prog.f

An object program file prog.o and a final output file a.out are produced. Since
the output file a.out is an executable file, the command

a.out

causes the program to run.

8-16

RATFOR

The Ratfor program prog.r can also be translated and compiled with the single
command

f77 prog.r

where the .r indicates a Ratfor source program. An object file prog.o and a
final output file a.out are produced.

8-17

Contents

9.1 THE PASCAL COMPILER ... 9-1

9.2 EXTENSIONS TO ISO PASCAL 9-5

9.3 EXTERNAL ROUTINES .. 9-6

Chapter 9

USING VU-PASCAL

9.1 THE PASCAL COMPILER
The Pascal compiler offers two alternatives for producing programs: "EM-I"
code, executed interpretively, and true PDP-ll code which is executed directly.
For simplicity's sake, these modes will be called "interpreted" and "compiled,"
respectively, even though both modes involve some compilation.

The interpreted mode is good for developing software, since it offers quick com­
pilation and several useful debugging features. Once a program is fully
debugged, it can be compiled to PDP-ll code for fast execution. Compiled
code runs about seven times faster than interpreted code, but producing it takes
somewhat longer.

The simplest way to compile a Pascal program is to type:

pc prog.p

The source file name must end with .p. This produces an EM-l code module
called e.out which can be interpreted by typing:

em1

To prevent this module from being overwritten by your next compile, you
should rename it with mv(1) to a different name. Or you could have used the
- 0 flag to call it something different right from the start, as in

pc -0 prog.em1 prog.p

9-1

USING VU-PASCAL

and then run it with

em1 prog.em1

Since the object module is not called e.out, you have to specify its name. The
extension ".eml" is not mandatory, but it may be useful to remind you that
this file is EM-l code, or to distinguish it from a compiled version (described
below).

To produce a compiled version, you use the - C flag, as in

pc -C prog.p

(Note that the C is capitalized.) This produces an executable module called
a.out. Since this module is directly executable, it can be run by simply typing

a.out

The - 0 flag can again be used to give this module a safer name.

When interpreting, debugging information can be collected during run-time.
For example, the following program square produces a table of squares.

program square(output);
const start = 1; stop = 16;
var num : start .. stop;
begin

end.

The command

for num : = start to stop do
begin write(num,num*num);

end;

if num mod 4 = 0 then
writeln

else write(' ');

pc square.p

is done to produce the interpreted e.out module. It can be run by typing

9-2

USING VU-PASCAL

eml

to produce

1 2 4 3 9 4 16
5 25 6 36 7 49 8 64
9 81 10 100 11 121 12 144

13 169 14 196 15 225 16 256

To check the number of types each line was executed, we can turn on debugging
by typing

eml -d

This will give us the same output as before, but collect certain information in
various files that we can examine later with edebug. For example, typing

edebug -c square.p

gives the output

1 0 program square(output);
2 0 const start = 1; stop = 16;
3 0 var num : start .. stop;
4 0 begin
5 1 for num : = start to stop do
6 16 begin write(num,num*num);
7 16 if num mod 4 = 0 then
8 4 writeln
9 12 else write(' ');
10 0 end;
11 0 end.

Each line is number, and a count of the number of times the line was executed
is given. The main loop beginning at line 6, for example, was executed 16
times; the if statement on line 7 evaluated true four times (line 8) and false 12
times (line 9).

9-3

USING VU-PASCAL

Other debugging flags are possible: see edebug(l).

It is possible to divide Pascal sources into several modules and compile them
separately, and link them together at a later time. If a program is spread into
two files progJ and prog2, the command

pc -c progJ.p prog2.p

will produce intermediate object files progJ.k and prog2.k. These files may be
linked to produce an e.out with

pc progJ.k prog2.k

or to produce an a.out with

pc -C progJ.k prog2.k

Compiling with the -c and -0 flag produces an optimized intermediate mod­
ule with a .m instead of .k extension. These optimized modules may b.e com­
bined just as the .k modules were.

The -Ixxx flag should be used to include external library xxx found in llib or
lusr/lib. The two standard libraries are "libmon," for making VENIX system
calls, and "libpc," for other external routines. (See the discussion of these later
in this tutorial.) This flag must be placed at the end of the command line, as in

pc prog.p -Ipc

The -L (capitall) flag can be used to create library modules with .1 extensions.
These are similar to optimized modules, but in a slightly different format allow­
ing for faster linking. Unlike.k or .m modul«s, these may be archived with the
VENIX archiver ar(1). Archives may be given' on the command line to pc as
well. Only files containing Pascal procedures should be made in library mod­
ules; the main program should not.

9-4

USING VU-PASCAL

9.2 EXTENSIONS TO ISO PASCAL

VU-Pascal contains several extensions to standard ISO Pascal.

The compiler is able to (separately) compile a collection of declarations, proce­
dures and functions to form a library. The library may be linked with the main
program, compiled later. The syntax of these modules is

module = [constant-definition-partJ
[type-definition-partJ
[var-declaration-partJ
[procedure-and-function-declaration-partJ

The compiler accepts a program or a module:

unit = program I module

All variables declared outside a module must be imported by parameters, even
the files input and output. Access to a variable declared in a module is only
possible using the procedures and functions declared in that same module. By
giving the correct procedure/function heading followed by the directive extern
you may use procedures and functions declared in other units.

9.2.1 Compiler Options

The compiler accepts a number of different options which are turned on or off
with a statement of the form

{$opt •.. J

where opt is the option letter followed by a + to turn it on, or a - to turn it
off. These options are described in the next chapter, VU-PASCAL REFER­
ENCE MANUAL. Two useful options are:

c + Allows the use of null terminated strings surrounded by double quotes.
A new type identifier string is predefined for this purpose. This is use­
ful when using VENIX system calls which require null-terminated
strings for file names.

9-5

USING VU-PASCAL

d + Allows the use of variables of type "long."

These options must appear before the program symbol to be effective.

9.3 EXTERNAL ROUTINES

9.3.1 External Routine Library

A library of external routines exists called "libpc." When you use these, you
must include the flag -Ipc at the end of the pc command line. A complete
description may be found in Iibpc(3). Among the routines there are those
allowing the manipulation of command line arguments and character strings:

argc

argv

function
function
function
procedure
function
function
function
function
procedure

environ

argshift

argc:integer
argv(i: integer):string;
environ(i:integer):string;
argshift;
strbuf(var b:buf):string;
strtobuf(s:string; var b:buj; /en:brl):br2;
strlen(s:string): integer;
strfetch(s:string; i:integer):char;
strstore(s:string; i:integer; c:char);

Gives the number of arguments provided when the program is
called.

Selects the specified argument from the argument list and
returns a pointer to it. This pointer is nil if the index is out
of bounds « 0 or > = argc).

Returns a pointer to the i-th environment string (i> = 0).
Returns null if i is beyond the end of the environment list.

Effectively deletes the first argument from the argument list.
Its function is equivalent to 'shift' in the VENIX shell: argv[2]
becomes argv[!], argv[3] becomes argv[2] , etc. It is a useful
procedure to skip optional flag arguments. Note that the
matching of arguments and files is done at the time a file is
opened by a call to reset or rewrite.

9-6

USING VU-PASCAL

strbuf Type conversion from character array to string. It is your
own responsibility that the string is zero terminated.

strtobuf Copy string into buffer until the string terminating zero byte
is found or until the buffer if full, whatever comes first. The
zero byte is also copied. The number of copied characters,
excluding the zero byte, is returned. So if the result is equal
to the buffer length, then the end of buffer is reached before
the end of string.

strlen

strfetch

Returns the string length excluding the terminating zero byte.

Fetches the i-th character from a string. There is no check
against the string length.

strstore Stores a character in a string. There is no check against string
length, so this is a dangerous procedure.

The following program shows how these may be used. It is equivalent to the
VENIX command cat(l). Notice that the "string" option is enabled with the
{$c + J statement at the beginning. The functions and procedures from libpc are
all followed with the extern directive, to indicate that they are in a different
module.

{$c+ }
program cat(input,inp,output);
var inp:text;

s:string;

function argc:integer; extern;
function argv(i:integer):string; extern;
procedure argshift; extern;
function strlen(s:string):integer; extern;
function strfetch(s:string; i:integer):char; extern;

9-7

USING VU-PASCAL

procedure copy(var fi:text);
var c:char;
begin reset(fi);

while not eof(fi) do
begin

while not eoln(fi) do
begin

end
end;

end;
readln(fi);
writeln

begin {main}
if argc = 1 then

copy(input)
else

repeat
s : = argv(l);

read(fi,c);
write(c)

if (strlen(s) = 1) and (strfetch(s,l) '- ')
then copy(input)

else copy(inp);
argshift;
until argc < = 1;

end.

9.3.2 Trap Handling

For trap handling, the following procedures exist. These routines allows you to
handle all the possible error situations. You may define your own trap handler,
written in Pascal, instead of the default handler that produces an error message
and quits. You may also generate traps yourself.

procedure
procedure

trap(err:integer);
encaps(procedure p; procedure q(n:integer));

9-8

trap

USING VU-PASCAL

Trap generates the trap passed as argument (0 .. 255). The trap
numbers 128 .. 255 may be used freely. The others are reserved.

encaps Encapsulate the execution of 'p' with the trap handler 'q'.
Encaps replaces the previous trap handler by 'q', calls 'p' and
restores the previous handler when 'p' returns. If, during the
execution of 'p', a trap occurs, then 'q' is called with the trap
number as parameter. For the duration of 'q' the previous
trap handler is restored, so that you may handle only some of
the errors in 'q'. All the other errors must then be raised
again by a call to 'trap'.

The following program is an example of how trap handling can be used:

program bigreal(output);
const EFOVFL = 10;
var trapped:boolean;

procedure encaps(procedure p;
procedure q(n:integer»; extern;

procedure trap(n:integer); extern;

procedure traphandler(n:integer);
begin if n = EFOVFL then trapped: = true else trap(n) end;

procedure work;
var i,j :real;
begin trapped: = false; i: = 1;

while not trapped do
begin j: = i; i: = i*2 end;

writeln('bigreal = ',j);
end;

begin
encaps(work,traphandler);

end.

9-9

USING VU-PASCAL

9.3.3 Using VENIX System Calls

The "libmon" library contains interface routines for VENIX system calls.
When using this library, the flag -Imon must be given at the end of the pc
command line.

The interface to these calls is quite similar to the standard "e" language inter­
face. See Jihmon(3) for a description of the differences. The calling sequence
for some of these calls can be a bit tricky for Pascal programs. Some hints
may be useful:

The c-option ($c + 1 allows you to declare null-terminated string constants in
Pascal like /etc/passwd. Moreover, the identifier string is then defined as
type identifier for a pointer to these zero-terminated strings.

The d-option ($d + 1 allows you to use double precision integers (longs).
The Iseek system call, for instance, needs a long argument and returns a
long result.

If the system call requires a pointer as argument use a 'var' parameter. For
instance declare times as:

procedure times(var t:timesbuf); extern;

Note that a 'string' is already a pointer.

When defining types, use packed records if two bytes must be allocated in a
single word, as in

device packed record
minor ,major:O .. 255;
end;

If a collection of bits is needed, then define an enumerated type and a set
of this enumerated type. The create mode of a file, for example, can be
declared as:

9-10

modebits = (XHIM,WHIM,RHIM,
XYOU,WYOU,RYOU,
XME, WME, RME,
TEXT,SGID,SUID, ...);

creatmode = set of XHIM .. SUID;

USING VU-PASCAL

Always declare a routine as function if it returns a value, like for

function c1ose(fd:integer):integer; extern;

There are special system call routines uread and uwrite in libpc(3), because
the names 'read' and 'write' are blocked by similar functions in Pascal.

9-11

Contents

10.1 INTRODUCTION ... 10-1

10.2 IMPLEMENTATION-DEFINED FEATURES 10-2

10.3 IMPLEMENTATION-DEPENDENT FEATURES 10-6

10.4 ERROR HANDLING .. 10-9

10.5 EXTENSIONS TO THE STANDARD 10-24

10.6 DEVIATIONS FROM THE STANDARD 10-27

10.7 COMPILER OPTIONS .. 10-28

10.8 REFERENCES ... 10-30

Chapter 10

VU-PASCAL REFERENCE MANUAL

10.1 INTRODUCTION
This chapter refers to the (March 1980) ISO standard proposal for Pascal [1].
VU-Pascal complies with the requirements of this proposal almost completely.
The standard requires an accompanying document describing the
implementation-defined and implementation-dependent features, the reaction on
errors and the extensions to standard Pascal. These four items will be
addressed in the rest of this chapter, each in a separate section. The other
chapters describe the deviations from the standard and the list of options recog­
nized by the compiler.

The VU-Pascal compiler produces code for an EM-l virtual machine as defined
in [2]. The following implementations exist under VENIX:

• an interpreter running on a PDP-l1. The interpreter performs some tests
to detect undefined integers, integer overflow, range errors, etc .

• a translator into PDP-II instructions.

These implementations will be referred to as "interpreted" and "compiled",
respectively (although both in fact require some compilation.)

10-1

VU-PASCAL

10.2 IMPLEMENTATION-DEFINED FEATURES
For each implementation-defined feature mentioned in the ISO standard we give
the section number, the quotation from that section and the definition. First we
quote the definition of implementation-defined:

Those parts of the language which may differ between processors, but which
will be defined for any particular processor.

6.1.7 Each string-character shall denote an implementation-defined value
of char-type.

6.4.2.2

All 7-bits ASCII characters except line feed LF (10) are allowed.
Note that an apostrophe ' must be doubled within a string.

The values of type real shall be an implementation-defined subset
of the real numbers denoted as specified by 6.1.5.

The format of reals is not defined in VU-Pascal. It is only
defined that a real number occupies 2 words (32 bits) of storage,
but this might change to 4 words in the future. The compiler can
be instructed, by the f-option, to use a different size for real
values. The following constants must be defined:

epbase: the base for the exponent part
epprec: the precision of the fraction
epemin: the minimum exponent
epemax: the maximum exponent

These constants must be chosen so that zero and all numbers with
exponent e in the range

epemin < = e < = epemax

and fraction-parts of the form

f f b -1 f b - epprec
= ± l' + ... + epprec .•

10-2

6.4.2.2

6.4.2.2

6.4.3.4

VU-PASCAL

where

fi = O, ... ,epbase -1 and fl *- 0

are possible values for reals. All other values of type real are con­
sidered illegal. (See [3] for more information about these con­
stants).
For VU-Pascal these constants are:

epbase 2

epprec 24

epemin = -127

epemax + 127

ditto

The type char shall be the enumeration of a set of
implementation-defined characters, some possibly without graphic
representations.

The 7-bits ASCII character set is used, where LF (10) denotes the
end-of-line marker on text-files.

The ordinal numbers of the character values shall be values of
integer-type, that are implementation-defined, and that are deter­
mined by mapping the character values on to consecutive non­
negative integer values starting at zero.

The normal ASCII ordering is used: ord('O') = 48, ord('A') = 65,
ord('a') = 97, etc.

The largest and smallest values of integer-type permitted as num­
bers of a value of a set-type shall be implementation-defined.

The smallest value is o. The largest value is default 15, but can be
changed by using the i-option of the compiler up to a maximum of
32767. The compiler allocates as many bits for set-type variables
as are necessary to store all possible values of the host-type of the
base-type of the set, rounded up to the nearest multiple of 16. If
8 bits are sufficient then only 8 bits are used if part of a packed

10-3

VU-PASCAL

6.7.2.2

structure. Thus, the variable s, declared by

var s: set of '0' .. '9';

will contain 128 bits, not 10 or 16. These 128 bits are stored in 16
bytes, both for packed and unpacked sets. If the host-type of the
base-type is integer, then the number of bits depends on the i­
option. The programmer may specify how many bits to allocate
for these sets. The default is 16, the maximum is 32767. The
effective number of bits is rounded up to the next multiple of 16,
or up to 8 if the number of bits is less than or equal to 8. Note
that the use of set-constructors for sets with more than 256
elements is far less efficient than for smaller sets.

The predefined constant maxint shall be of integer-type and shall
denote an implementation-defined value, that satisfies the follow­
ing conditions:

(a) All integral values in the closed interval from -maxint to
+ maxint shall be values in the integer-type.

(b) Any monadic operation performed on an integer value in
this interval shall be correctly performed according to the
mathematical rules for integer arithmetic.

(c) Any dyadic integer operation on two integer values in this
same interval shall be correctly performed according to the
mathematical rules for integer arithmetic, provided that the
result is also in this interval.

(d) Any relational operation on two integer values in this same
interval shall be correctly performed according to the math­
ematical rules for integer arithmetic.

The representation of integers in VU-Pascal is a 16-bit word using
two's complement arithmetic. Thus always:

maxint = 32767

10-4

6.9.4.2

6.9.4.5.1

6.9.4.5.1

6.9.4.6

VU-PASCAL

Because the number -32768 may be used to indicate 'undefined',
the range of available integers depends on the VU-Pascal imple­
mentation:

1. - 32767 .. + 32767.

2. - 32768 .. + 32767.

The default TotalWidth values for integer, Boolean and real types
shall be implementation-defined. The defaults are:

integer 6
Boolean 5
real 13

ExpDigits, the number of digits written in an exponent part of a
real, shall be implementation-defined.

ExpDigits is defined as

ceil(log10(log10(2 ** epemax»)

For the current implementations this evaluates to 2.

The character written as part of the representation of a real to
indicate the beginning of the exponent part shall be
implementation-defined, either 'E' or 'e'.

The exponent part starts with 'e'.

The case of the characters written as representation of the Boolean
values shall be implementation-defined.

The representations of true and false are 'true' and 'false'.

6.9.6 The effect caused by the standard procedure page on a text file
shall be implementation-defined.

The ASCII character form feed FF (12) is written.

10-5

VU-PASCAL

6.10 The binding of the variables denoted by the program-parameters to
entities external to the program shall be implementation-defined if
the variable is of a file-type.

The program parameters must be files and all, except input and
output, must be declared as such in the program block.

The program parameters input and output, if specified, will corre­
spond with the VENIX streams 'standard input' and 'standard
output' .

The other program parameters will be mapped to the argument
strings provided by the caller of this program. The argument
strings are supposed to be path names of the files to be opened or
created. The order of the program parameters determines the
mapping: the first parameter is mapped onto the first argument
string, etc. Note that input and output are ignored in this map­
ping.

The mapping is recalculated each time a program parameter is
opened for reading or writing by a call to the standard procedures
reset or rewrite. This gives the programmer the opportunity to
manipulate the list of string arguments using the external proce­
dures argc, argv and argshift available in libpc [7].

6.10 The effect of an explicit use of reset or rewrite on the standard
text files input or output shall be implementation-defined.

The procedures reset and rewrite are no-ops if applied to input or
output.

10.3 IMPLEMENTATION-DEPENDENT FEATURES
For each implementation-dependent feature mentioned in the ISO standard
draft, we give the section number, the quotation from that section and the way
this feature is treated by the VU-Pascal system. First we quote the definition of
'implementation-dependent' :

10-6

VU-PASCAL

Those parts of the language which may differ between processors,
and for which there need not be a definition for a particular processor.

5.1.1 The method for reporting errors or warnings shall be implementation­
dependent.

The error handling is treated in a following chapter.

6.1.4 Other implementation-dependent directives may be defined.

Except for the required directive 'forward' the VU-Pascal compiler
recognizes only one directive: 'extern'. This directive tells the compiler
that the procedure block of this procedure will not be present in the
current program. The code for the body of this procedure must be
included at a later stage of the compilation process.

This feature allows one to build libraries containing often used rou­
tines. These routines do not have to be included in all the programs
using them. Maintenance is much simpler if there is only one library
module to be changed instead of many Pascal programs.

The use of external routines, however, is dangerous. The compiler
normally checks for the correct number and type of parameters when a
procedure is called and for the result type of functions. If an external
routine is called these checks are not sufficient, because the compiler
can not check whether the procedure heading of the external routine as
given in the Pascal program matches the actual routine implementation.
It should be the loader's task to check this. However, the current
loaders are not that smart. Another solution is to check at run time,
at least the number of words for parameters. This is not currently
done, except when the debugging option is specified.

6.7.2.1 The order of evaluation of the operands of a dyadic operator shall be
implementation-dependent.

Operands are always evaluated, so the program part

if (p< > nil) and (p~.value< >0) then

is probably incorrect.

10-7

VU-PASCAL

The left-hand operand of a dyadic operator is almost always evaluated
before the right-hand side. Some peculiar evaluations exist for the fol­
lowing cases:

1. the modulo operation is performed by a library routine to check
for negative values of the right operand.

2 •. the expression

setl < = set2

wheresetl and set2 are compatible set types is evaluated III the
following steps:

evaluate set2

evaluate setl

compute set2 + setl

test set2 and set2 + set! for equality

This is the only case where the right-hand side is computed first.

3. the expression

setl > = set2

where set! and set2 are compatible set types is evaluated in the
following steps:

• evaluate set!

• evaluate set2

• compute set! + set2

• test setL and setl + set2 for equality

6.7.3 The order of evaluation and binding of the actual-parameters for func­
tions shall be implementation-dependent.

The order of evaluation and binding is from left to right.

10-8

VU-PASCAL

6.8.2.2 If access to the variable in an assignment-statement involves the index­
ing of an array and/or a reference to a field within a variant of a
record and/or the de-referencing of a pointer-variable and/or a refer­
ence to a buffer-variable, the decision whether these actions precede or
follow the evaluation of the expression shall be implementation­
dependent.

The expression is evaluated first.

6.8.2.3 The order of evaluation and binding of the actual-parameters for pro­
cedures shall be implementation-dependent.

The same as for functions.

6.9.6 The effect of inspecting a text file to which the page procedure was
applied during generation is implementation-dependent.

The formfeed character written by page is treated like a normal charac­
ter, with ordinal value 12.

6.10 The binding of the variables denoted by the program-parameters to
entities external to the program shall be implementation-dependent
unless the variable is of a file-type.

Only variables of a file-type are allowed as program parameters.

10.4 ERROR HANDLING

There are three classes of errors to be distinguished. In the first class are the
error messages generated by the compiler. The second class consists of the
occasional errors generated by the other programs involved in the compilation
process. Errors of the third class are the errors as defined in the standard by:

An error is a violation by a program of the requirements of this standard
such that detection normally requires execution of the program.

10-9

VU-PASCAL

10.4.1 Compiler Errors

The error messages (and the listing) are not generated by the compiler itself.
The compiler only detects errors and writes the errors in condensed form on an
intermediate file. Each error in condensed form contains:

• an optional error message parameter (identifier or number)

• an error number

• a line number

• a column number

Every time the compiler detects an error that does not have influence on the
code produced by the compiler or on the syntax decisions, a warning message is
given. If only warnings are generated, compilation proceeds and probably
results in a correctly compiled program.

The intermediate error file is read by the interface program pc [4], that pro­
duces the error messages. It uses another file, the error message file, indexed by
the error number, to find an error script line. Whenever this error script line
contains the character '070', the error messages parameter is substituted. For
negative error numbers the message constructed is prepended with 'Warning: '.

Sometimes the compiler produces several errors for the same file position (line
number, column number). Only the first of these messages is given, because the
others are probably directly caused by the first one. If the first one is a warn­
ing while one of its successors for that position is a fatal message, then the
warning is promoted to a fatal one. However, parameterized messages are
always given.

The error messages and listing come in three flavors, selected by flags given to
pc [4]:

default: no listing, one line per error gIvmg the file name of the Pascal
source file, the line number and the error messages.

10-10

VU-PASCAL

- e: for each erroneous line a listing of the line and its predecessor.
The next line contains one or more characters ,~, pointing to the
places where an error is detected. For each error on that line a
message follows.

- E: same as for '- e', except that all source lines are listed, even if the
program is perfect.

10.4.2 Other Errors Detected at Compilation Time

Two main categories: file system problems and table overflow. Problems with
the file system may be caused by protection (you may not read or create files)
or by space problems (no space left on device; out of inodes; too many pro­
cesses). Table overflow problems are often caused by peculiar source programs:
very long procedures or functions, a lot of strings. Table overflow problems
can sometimes be cured by giving a flag (- I or - sl) to pc [4].

Extensive treatment of these errors is outside the scope of this manual.

10.4.3 Runtime Errors

Errors detected at run time cause an error message to be generated on the diag­
nostic output stream (VENIX file descriptor 2). The message consists of the
name of the program followed by a message describing the error, possibly fol­
lowed by the source line number. Unless the I-option is turned off, the com­
piler generates code to keep track of which source line causes which instructions
to be generated. It depends on the VU-Pascal implementation whether these
instructions are skipped or executed:

1. These instructions are always executed. The old line number is saved and
restored whenever a procedure or function is called. All error messages
contain this line number, except when the I-option was turned off.

2. same as above, but line numbers are not saved when procedures and func­
tions are called.

For each error mentioned in the standard we give the section number, the quo­
tation from that section and the way it is processed by the VU-Pascal system.

10-11

VU-PASCAL

For detected errors the corresponding message and trap number are given. Trap
numbers are useful for exception-handling routines. Normally, each error
causes the program to terminate. By using exception-handling routines one can
ignore errors or perform alternate actions. Only some of the errors can be
ignored by restarting the failing instruction. These errors are marked as non­
fatal, all others as fatal. A list of errors with trap number between 0 and 63
(VU-Pascal errors) can be found in the Programmer Reference Manual. Errors
with trap number between 64 and 127 (Pascal errors) are also listed in there.

6.4.3.3 It shall be an error if any field-identifier defined within a variant is
used in a field-designator unless the value of the tag-field is associated
with that variant.

This error is not detected. Sometimes this feature is used to achieve
easy type conversion. However, using record variants this way is dan­
gerous, error prone and not portable.

6.4.6 It shall be an error if a value of type T2 must be assignment­
compatible with type Tl, while Tl and T2 are compatible ordinal-types
and the value of type T2 is not in the closed interval specified by Tl.

The compiler distinguishes between array-index expressions and the
other places where assignment-compatibility is required.

Array subscripting is done using array instructions which have three
arguments: the array base address, the index and the address of the
array descriptor. An array descriptor describes one dimension by three
values: the element size, the lower bound on the index and the number
of elements minus one. It depends on the VU-Pascal implementation
whether these bounds are checked:

1. checked (array bound error, trap 6, non-fatal).

2. not checked.

The other places where assignment-compatibility is required are:

10-12

VU-PASCAL

• assignment

• value parameters

• procedures read and readln

• the final value of the for-statement

For these places the compiler generates a range check instruction,
except when the r-option is turned off, or when the range of values of
T2 is enclosed in the range of T 1. If the expression consists of a single
variable and if that variable is of a subrange type, then the subrange
type itself is taken as T2, not its host-type. Therefore, a range instruc­
tion is only generated if Tl is a sub range type and if the expression is
a constant, an expression with two or more operands, or a single vari­
able with a type not enclosed in Tl. If a constant is assigned, then the
VU-Pascal optimizer removes the range check instruction, except when
the value is out of bounds.

It depends on the VU-Pascal implementation whether the range check
instruction is executed or skipped:

1. checked (range bound error, trap 7, non-fatal).

2. skipped

6.4.6 It shall be an error if a value of type T2 must be assignment­
compatible with type Tl, while Tl and T2 are compatible set-types and
any member of the value of type T2 is not in the closed interval speci­
fied by the base-type of the type Tl.

This error is not detected.

6.5.4 It shall be an error if the pointer-variable has a nil-value or is unde­
fined at the time it is de-referenced.

The VU-Pascal definition does not specify the binary representation of
pointer values, so that it is not possible to choose an otherwise illegal

10-13

VU-PASCAL

binary representation for the pointer value NIL. Rather arbitrary the
compiler uses the integer value zero to represent NIL. For all current
implementations this does not cause problems.

The VU-Pascal definition does specify the size of pointer objects: 2
bytes. The compiler can be instructed, by the p-option, to use a differ­
ent size for pointer objects. NIL is represented here by the appropriate
number of zero words.

It depends on the VU-Pascal implementation whether de-referencing of
a pointer with value NIL causes an error:

1. for every de-reference the pointer value is checked to be legal.
The value NIL is always illegal. Objects addressed by a NIL
pointer always cause an error, except when they are part of some
extraordinary sized structure (bad pointer, trap 26, fatal).

2. de-referencing for a fetch operation will not cause an error. A
store operation probably causes an error if the' -n' flag is speci­
fied to pc [4] or ld [5] while loading your program.

VU-Pascal may initialize all memory cells for newly created variables
with a constant that probably causes an error if that variable is not ini­
tialized with a value of its own type before use. For each implementa­
tion, we must specify whether memory cells are initialized, with what
value, and whether this value causes an error if de-referenced.

1. each memory word is initialized with the bit representation
1000000000000000, representing -32768 in 2's complement nota­
tion. For most small and medium sized programs this value will
cause a segmentation violation (memory fault, trap 25, fatal).

2. no initialization. Whenever a pointer is de-referenced, without
being properly initialized, a segmentation violation (memory fault,
trap 25, fatal) or 'bus error' are possible.

10-14

VU-PASCAL

6.5.5 It shall be an error if the value of a file-variable f is altered while the
buffer-variable is an actual variable parameter, or an element of the
record-variable-list of a with-statement, or both.

This error is not detected

6.5.5 It shall be an error if the value of a file-variable f is altered by an
assignment-statement which contains the buffer-variable f~ in its left­
hand side.

This error is not detected.

6.6.5.2 It shall be an error if the stated pre-assertion does not hold immedi­
ately prior to any use of the file handling procedures rewrite, put, reset
and get.

For each of these four operations the pre-assertions can be reformu­
lated as:

rewrite(j): no pre-assertion.
put(j): f is opened for writing and f~ is not undefined.
reset(j): f exists.
get(j): f is opened for reading and eof(j) is false.

The following errors are detected for these operations:

rewrite(f): more args expected, trap 64, fatal:
f is a program-parameter and the corresponding file name
is not supplied by the caller of the program.

rewrite error, trap 101, fatal:
the caller of the program lacks the necessary access rights
to create the file in the file system or operating system
problems like table overflow prevent creation of the file.

10-15

VU-PASCAL

put(f):

reset(f):

get(f):

file not yet open, trap 72, fatal:
reset or rewrite are never applied to the file. The checks
performed by the run time system are not full-proof.

not writable, trap 96, fatal:
f is opened for reading.

write error, trap 104, fatal:
probably caused by file system problems. For instance,
the file storage is exhausted. Because 110 is buffered to
improve performance, it might happen that this error
occurs if the file is closed. Files are closed whenever they
are rewritten or reset, or on program termination.

more args expected, trap 64, fatal:
same as for rewrite(f).

reset error, trap 100, fatal:
f does not exist, or the caller has insufficient access
rights, or operating system tables are exhausted.

file not yet open, trap 72, fatal:
as for put(f).

not readable, trap 97, fatal:
f is opened for writiIlg.

end of file, trap 98, fatal:
eof(f) is true just before the call to get(f).

read error, trap 103, fatal:
unlikely to happen. Probably caused by hardware prob­
lems or by errors elsewhere in your program that
destroyed the file information maintained by the run
time system.

truncated, trap 99, fatal:
the file is not properly formed by an integer number of

10-16

VU-PASCAL

file elements. For instance, the size of a file of integer is
odd.

non-ASCII char read, trap 106, non-fatal:
the character value of the next character-type file element
is out of range (0 .. 127). Only for text files.

6.6.5.3 It shall be an error to change any variant-part of a variable allocated
by the form new(p,cl, ... ,cn) from the variant specified.

This error is not detected.

6.6.5.3 It shall be an error if a variable to be disposed had been allocated
using the form new(p,cl, ... ,cn) with more variants specified than speci­
fied to dispose.

This error is not detected.

6.6.5.3 It shall be an error if the variants of a variable to be disposed are dif­
ferent from those specified by the case-constants to dispose.

This error is not detected.

6.6.5.3 It shall be an error if the value of the pointer parameter of dispose has
nil-value or is undefined.

The same comments apply as for de-referencing NIL or undefined
pointers.

6.6.5.3 It shall be an error if a variable that is identified by the pointer param­
eter of dispose (or a component thereof) is currently either an actual
variable parameter, or an element of the record-variable-list of a with­
statement, or both.

This error is not detected.

10-17

VU-PASCAL

6.6.5.3 It shall be an error if a referenced-variable created using the second
form of new is used in its entirety as an operand in an expression, or
as the variable in an assignment-statement or as an actual-parameter.

This error is not detected.

6.6.6.2 It shall be an error if the mathematical defined result of an arithmetic
function would fall outside the set of values of the indicated result.

Except for the errors for undefined arguments, the following errors
may occur for the arithmetic functions:

abs(x):

sqr(x):

sin(x):

cos(x):

exp(x):

In(x):

sqrt(x):

none.

real underflow, trap 11, non-fatal;
real overflow, trap 10, non-fatal

real underflow, trap 11, non-fatal

real underflow, trap 11, non-fatal

error in exp, trap 65, non-fatal (if x> 10000);
real underflow, trap 11, non-fatal;
real overflow, trap 10, non-fatal

error in In, trap 66, non-fatal (if x < = 0)

error in sqrt, trap 67, non-fatal (if x < 0)

arctan(x): real underflow, trap 11, non-fatal;
real overflow, trap 10, non-fatal

6.6.6.2 It shall be an error if x in In(x) is not greater than zero.

See above.

10-18

VU-PASCAL

6.6.6.2 It shall be an error if x in sqrt(x) is negative.

See above.

6.6.6.2 It shall be an error if the integer value of trunc(x) does not exist.

This error is detected (real->int error, trap 17, non-fatal).

6.6.6.2 It shall be an error if the integer value of round{x) does not exist.

This error is detected (real->int error, trap 17, non-fatal).

6.6.6.2 It shall be an error if the integer value of ord(x) does not exist.

This error can not occur, because the compiler will not allow such
ordinal types.

6.6.6.2 It shall be an error if the character value of chr(x) does not exist.

Except when the r-option is turned off, the compiler generates a range
check instruction. The effect of this instruction depends on the VU­
Pascal implementation as described before.

6.6.6.2 It shall be an error if the value of succ(x) does not exist.

Same comments as for chr(x).

6.6.6.2 It shall be an error if the value of pred(x) does not exist.

Same comments as for chr(x).

6.6.6.5 It shall be an error if f in eof(t) is undefined.

This error is detected (file not yet open, trap 72, fatal).

10-19

VU-PASCAL

6.6.6.5 It shall be an error if f in eoln(f) is undefined, or if eof(f) is true at
that time.

The following errors may occur:

file not yet open, trap 72, fatal;
not readable, trap 97, fatal;
end of file, trap 98, fatal.

6.7.1 It shall be an error if any variable or function used as an operand in
an expression is undefined at the time of its use.

Detection of undefined operands is only possible if there is at least one
bit representation that is not allowed as legal value. The set of legal
values depends on the type of the operand. To detect undefined oper­
ands, all newly created variables must be assigned a value illegal for
the type of the created variable. The compiler itself does not generate
code to initialize newly created variables. Instead, the compiler gener­
ates code to allocate some new memory cells. It is up to the VU­
Pascal implementation to initialize these memory cells. However, the
EM-l virtual machine does not know the types of the variables for
which memory cells are allocated. Therefore, the best VU-Pascal can
do is to initialize with a value that is illegal for the most common types
of operands.

For all current VU-Pascal implementations we will describe whether
memory cells are initialized, which value is used to initialize, for each
operand type whether that value is illegal, and for all operations on all
operand types whether that value is detected as undefined.

1. new memory words are initialized with -32768. Assignment of
this value is always allowed. Errors may occur whenever unde­
fined operands are used in operations.

10-20

integer:

real:

char:

VU-PASCAL

- 32768 is illegal. All arithmetic operations (except
unary +) cause an error (undefined integer, trap 14,
non-fatal). Relational operations do not, except for
IN when the left operand is undefined. Printing of
- 32768 using write is allowed.

the bit representation of a real, caused by initializing
the constituent memory words with - 32768, is illegal.
All arithmetic and relational operations (except unary
+) cause an error (real undefined, trap 16, non-fatal).
Printing causes the same error.

the value - 32768 is illegal. For objects of type
'packed array[] of char' half the characters will have
the value chr(O), which is legal, and the others will
have the value chr(128), outside the valid ASCII range.
The relational operators, however, do not cause an
error.

Boolean: the value - 32768 is illegal. For objects of type
'packed array[] of boolean' half the booleans will have
the value false, while the others have the value v,
where ord(v) = 128, naturally illegal. However, the
Boolean and relational operations do not cause an
error.

set: undefined operands of type set can not be distin­
guished from properly initialized ones. The set and
relational operations, therefore, can never cause an
error. However, if one forgets to initialize a set of
character, then spurious characters like '/', '?', '0',
'_' and '0' appear.

2. Newly created memory cells are not initialized and therefore they
have a random value.

10-21

VU-PASCAL

6.7.1 It shall be an error if the value of any member denoted by any
member-designator of the set-constructor is outside the
implementation -defined limits.

This error is detected (set bound error, trap 5, non-fatal).

6.7.1 It shall be an error if the possible types of a set-constructor do not per­
mit it to assume a suitable type.

The compiler allocates as many bits as are necessary to store all
elements of the host-type of the base-type of the set, not the base-type
itself. Therefore, all possible errors can be detected at compile time.

6.7.2.2 It shall be an error if j is zero in 'i div j'.

It depends on the VU-Pascal implementation whether this error is
detected:

1. detected (divide by 0, trap 12, non-fatal).

2. not detected.

6.7.2.2 It shall be an error if j is zero or negative in i MOD j.

This error is detected (only positive j in 'i mod j', trap 71, non-fatal).

6.7.2.2 It shall be an error if the result of any operation on integer operands is
not performed according to the mathematical rules for integer arithme­
tic.

The reaction depends on the VU-Pascal implementation:

1. error detected if

(result> = 32768) or (result < -32768).

(integer overflow, trap 8, non-fatal). Note that if the result is

10-22

VU-PASCAL

- 32768 the use of this value in further operations may cause an
error.

2. not detected.

6.8.3.5 It shall be an error if none of the case-constants is equal to the value
of the case-index upon entry to the case-statement.

This error is detected (case error, trap 4, fatal).

6.8.3.9 It shall be an error if the final-value of a for-statement is not
assignment-compatible with the control-variable when the initial-value is
assigned to the control-variable.

It is detected if the control variable leaves its allowed range of values
while stepping from initial to final value. This is equivalent with the
requirements if the for-statement is not terminated before the final
value is reached.

6.9.2 It shall be an error if the sequence of characters read looking for an
integer does not form a signed-integer as specified in 6.1.5.

This error is detected (digit expected, trap 105, non-fatal).

6.9.2 It shall be an error if the sequence of characters read looking for a real
does not form a signed-number as specified in 6.1.5.

This error is detected (digit expected, trap 105, non-fatal).

6.9.2 It shall be an error if read is applied to f while f is undefined or not
opened for reading.

This error is detected (see get(f)).

6.9.4 It shall be an error if write is applied to f while f is undefined or not
opened for writing.

This error is detected (see put(f).

10-23

VU-PASCAL

6.9.4 It shall be an error if TotalWidth or FracDigits as specified in write or
writeln procedure calls are less than one.

This error is not detected. Moreover, it is considered an extension to
allow zero or negative values.

6.9.6 It shall be an error if page is applied to f while f is undefined or not
opened for writing.

This error is detected (see put(f).

10.5 EXTENSIONS TO THE STANDARD

1. Separate compilation.

The compiler is able to (separately) compile a collection of declarations,
procedures and functions to form a library. The library may be linked
with the main program, compiled later. The syntax of these modules is

module [constant-definition-part]
[type-definition-part]
var-declaration-part]
rocedure-and-function-deciaration-partJ

The compiler accepts a program or a module:

unit = program I module

All variables declared outside a module must be imported by parameters,
even the files input and output. Access to a variable declared in a module
is only possible using the procedures and functions declared in that same
module. By giving the correct procedure/function heading followed by the
directive 'extern' you may use procedures and functions declared in other
units.

2. Assertions.

The VU-Pascal compiler recognizes an additional statement, the assertion.
Assertions can be used as an aid in debugging and documentation.

10-24

The syntax is:

assertion = 'assert' Boolean-expression

An assertion is a simple-statement, so

simple-statement = [assignment-statement I
procedure-statement I
goto-statement I
assertion

VU-PASCAL

An assertion causes an error if the Boolean-expression is false. That is its
only purpose. It does not change any of the variables, at least it should
not. Therefore, do not use functions with side-effects in the Boolean­
expression. If the a-option is turned off, then assertions are skipped by
the compiler. 'assert' is not a word-symbol (keyword) and may be used as
identifier. However, assignment to a variable and calling of a procedure
with that name will be impossible.

3. Additional procedures.

Three additional standard procedures are available:

halt: a call of this procedure is equivalent to jumping to the end of
your program. It is always the last statement executed. The exit
status of the program may be supplied as optional argument.

release:

mark: for most applications it is sufficient to use the heap as second
stack. Mark and release are suited for this type of use, more
suited than dispose. mark(p), with p of type pointer, stores the
current value of the heap pointer in p. release(p), with p initial­
ized by a call of mark(p), restores the heap pointer to its old
value. All the heap objects, created by calls of new between the
call of mark and the call of release, are removed and the space
they used can be reallocated. Never use mark and release
together with dispose!

10-25

VU-PASCAL

4. VENIX interfacing.

If the c-option is turned on, then some special features are available to
simplify an interface with the VENIX environment. First of all, the com­
piler allows you to use a different type of string constants. These string
constants are delimited by double quotes (' "'). To put a double quote into
these strings, you must repeat the double quote, like the single quote in
normal string constants. These special string constants are terminated by a
zero byte (chr(O». The type of these constants is a pointer to a packed
array of characters, with lower bound 1 and unknown upper bound.
Secondly, the compiler predefines a new type identifier 'string' denoting
this just described string type.

The only thing you can do with these features is declaration of constants
and variables of type 'string'. String objects may not be allocated on the
heap and string pointers may not be de-referenced. Still these strings are
very useful in combination with external routines. The procedure write is
extended to print these zero-terminated strings correctly.

5. Double length (32 bit) integers.

If the d-option is turned on, then the additional type 'long' is known to
the compiler. Long variables have integer values in the range
- 2147483647 .. + 2147483647. Long constants may be declared. It is not
allowed to form subranges of type long. All operations allowed on inte­
gers are also allowed on longs and are indicated by the same operators:
'+', '-', '*', 'j', 'div', 'mod'. The procedures read and write have been
extended to handle long arguments correctly. The default width for longs
is 11. The standard procedures 'abs' and 'sqr' have been extended to
work on long arguments. Conversion from integer to long, long to real,
real to long and long to integer are automatic, like the conversion from
integer to real. Two of these conversions may cause errors to occur:

• real->longint error, trap 18, non-fatal

• longint->int error, trap 19, non-fatal

This last error is only detected in implementation 1, with 'test on'. Note
that all current implementations use target machine floating point instruc­
tions to perform some of the long operations.

10-26

VU-PASCAL

6. Underscore as letter.

The character '_' may be used in forming identifiers, if the u-option is
turned on.

7. Zero field width in write.

Zero or negative TotalWidth arguments to write are allowed. No charac­
ters are written for character, string or Boolean type arguments then. A
zero or negative FracDigits argument for fixed-point representation of reals
causes the fraction and the character '.' to be suppressed.

8. Alternate symbol representation.

The comment delimiters '(*' and '*)' are recognized and treated like '{'
and '}'. The other alternate representations of symbols are not recognized.

10.6 DEVIATIONS FROM THE STANDARD
VU-Pascal deviates from the (March 1980) standard proposal in the following
ways:

1. Only the first 8 characters of identifiers are significant, as requested by all
standard proposals prior to March 1980. In the latest proposal, however,
the sentence

is missing.

"A conforming program should not have its meaning altered
by the truncation of its identifiers to eight characters
or the truncation of its labels to four digits."

2. The character sequences 'procedur', 'procedur8', 'functionXyZ' etc. are all
erroneously classified as the word-symbols 'procedure' and 'function'.

3. Standard procedures and functions are not allowed as parameters in VU­
Pascal, conforming to all previous standard proposals. You can obtain the

10-27

VU-PASCAL

same result with negligible loss of performance by declaring some user rou­
tines like:

function sine(x:real):real;
begin

sine: = sin(x)
end;

4. The scope of identifiers and labels should start at the beginning of the
block in which these identifiers or labels are declared. The VU-Pascal
compiler, as most other one pass compilers, deviates in this respect,
because the scope. of variables and labels starts at their defining-point.

10.7 COMPILER OPTIONS
Some options of the compiler may be controlled by using "{$ }." Each option
consists of a lower case letter followed by +, - or an unsigned number.
Options are separated by commas. The following options exist:

a + / - this option switches assertions on and off. If this option is on,
then code is included to test these assertions at run time. Default
+.

c + / - this option, if on, allows you to use C-type string constants sur­
rounded by double quotes. Moreover, a new type identifier
'string' is predefined. Default -.

d + / - this option, if on, allows you to use variables of type 'long'.
Default -.

f < num > the size of reals can be changed by this option. < num > should
be specified in 16 bit words. The current default is 2, but might
change to 4 in the future.

< num > with this flag the setsize for a set of integers can be manipulated.
The number must be the number of bits per set. The default
value is 16, just fitting in one word on the PDP and many other
minis.

10-28

I +/-

VU-PASCAL

if + then code is inserted to keep track of the source line number.
When this flag is switched on and off, an incorrect line number
may appear if the error occurs in a part of your program for
which this flag is off. These same line numbers are used for the
profile, flow and count options of the EM-l interpreter eml [6].
Default +.

p < num > the size of pointers can be changed by this option. < num >
should be specified in 16 bit words. Default 1.

r +/-

s +/-

t +/-

u +/-

if + then code is inserted to check subrange variables against
lower and upper sub range limits. Default +.

if + then the compiler will hunt for places in your program where
non-standard features are used, and for each place found it will
generate a warning. Default -.

if + then each time a procedure is entered, the routine 'procentry'
is called. The compiler checks this flag just before the first sym­
bol that follows the first 'begin' of the body of the procedure.
Also, when the procedure exits, then the procedure 'procexit' is
called if the t flag is on just before the last 'end' of the procedure
body. Both 'procentry' and 'procexit' have a packed array of 8
characters as a parameter. Default procedures are present in the
run time library. Default -.

if + then the character '_' is treated like a lower case letter, so
that it may be used in identifiers. Procedure and function identi­
fiers starting with an underscore may cause problems, because they
may collide with library routine names. Default -.

Seven of these flags (c, d, f, i, p, sand u) are only effective when they appear
before the 'program' symbol. The others may be switched on and off.

A second method of passing options to the compiler is available. This method
uses the file on which the compact EM-l code will be written. The compiler
starts reading from this file scanning for options in the same format as used
normally, except for the comment delimiters and the dollar sign. All options
found on the file override the options set in your program. Note that the com­
pact code file must always exist before the compiler is called.

10-29

VU-PASCAL

The user interface program pc[4] takes care of creating this file normally and
also writes one of its options onto this file. The user can specify, for instance,
without changing any character in its Pascal program, that the compiler must
include code for procedure/function tracing.

Another very powerful debugging tool is the knowledge that inaccessible state­
ments and useless tests are removed by the VU-Pascal optimizer. For instance,
a statement like:

if debug then
writeln('initialization done');

is completely removed by the optimizer if debug is a constant with value false.
The first line is removed if debug is a constant with value true. Of course, if
debug is a variable nothing can be removed.

A disadvantage of Pascal, the lack of preinitialized data, can be diminished by
making use of the possibilities of the VU-Pascal optimizer. For instance, initial­
izing an array of reserved words is sometimes optimized into 3 EM-l virtual
machine instructions. To maximize this effect you must initialize variables as
much as possible in order of declaration and array entries in order of increasing
index.

10.8 REFERENCES

[1] ISO standard proposal ISO/TC97/SCS-N462, dated February 1979. The
same proposal, in slightly modified form, can be found in: A.M.Addyman
e.a., "A draft description of Pascal," Software, practice and experience,
May 1979. An improved version, received March 1980, is followed as
much as possible for the current VU-Pascal.

[2] A.S.Tanenbaum, l.W.Stevenson, Hans van Staveren, "Description of an
experimental machine architecture for use of block structured languages,"
Informatica rapport IR-S4.

10-30

VU-PASCAL

[3] W.S.Brown, S.I.Feldman, "Environment parameters and basic functions for
floating-point computation," Bell Laboratories CSTR #72.

[4] User Reference Manual pc(1).

[5] User Reference Manualld(1).

[6] User Reference Manual eml(l).

[7] Programmer Reference Manuallibpc(3).

[8] Programmer Reference Manual pc_emlib(3).

10-31

Contents

11.1 OVERVIEW .. 11-1

11.2 VARIABLES ... 11-4

11.3 USAGE ... 11-5

11.4 CURSOR OPTIMIZATION: STANDING ALONE 11-7

11.5 THE FUNCTIONS .. 11-9

11.6 OUTPUT FUNCTIONS .. 11-10

11.7 INPUT FUNCTIONS ... 11-14

11.8 MISCELLANEOUS FUNCTIONS 11-16

11.9 DETAILS .. 11-19

11.10 APPENDIX A - CAPABILITIES FROM TERMCAP 21

11.11 APPENDIX B - THE WINDOW STRUCTURE 24

11.12 APPENDIX C - EXAMPLES 26

Chapter 11

SCREEN PACKAGE

11.1 Overview
In making available the generalized terminal descriptions in /etc/termcap, much
information was made available to the programmer, but little work was taken
out of one's hands. The purpose of this package is to allow the C programmer
to do the most common type of terminal dependent functions, namely move­
ment optimization and optimal screen updating, without doing any of the dirty
work and (hopefully) with as much ease as is possible to simply print or read
things.

The package is split into three parts: (1) Screen updating; (2) Screen updating
with user input; and (3) Cursor motion optimization.

It is possible to use the motion optimization without using either of the other
two, and screen updating and input can be done without any programmer
knowledge of the motion optimization, or indeed the /etc/termcap data base
itself.

11.1.1 Terminology

In this document, the following terminology is used:

window An internal representation containing an image of what a section
of the terminal screen may look like at some point. This subsec­
tion can either encompass the entire terminal screen, or any
smaller portion down to a single character within that screen.

11-1

SCREEN PACKAGE

terminal

screen

Sometimes called terminal screen. The package's idea of what the
terminal's screen currently looks like, i.e., what the user sees now.
This is a special screen.

This is a subset of windows that are as large as the terminal
screen, i.e., they start at the upper left hand corner and encompass
the lower right hand corner. One of these, stdscr, is automatically
provided for the programmer.

11.1.2 Compiling

In order to use the library, it is necessary to have certain types and variables
defined. Therefore, the programmer must have a line:

include < curses.h >

at the top of the program source. The header file < curses.h > includes
< sgtty.h > *. Also, compilations should have the following form:

cc [flags] file ... -Icurses -Itermlib

11.1.3 Screen Updating

In order to update the screen optimally, it is necessary for the routines to know
what the screen currently looks like and what the programmer wants it to look
like next. For this purpose, a data type (structure) named WINDOW is defined
which describes a window image to the routines, including its starting position
on the screen (the (y, x) co-ordinates of the upper left hand corner) and its size.
One of these (called curser for current screen) is a screen image of what the ter­
minal currently looks like. Another screen (called stdscr, for standard screen)
is provided by default for making changes.

• The screen package also uses the Standard I/O library, so <curses.h>

includes < stdio.h >. It is redundant (but harmless) for the programmer to

do it, too.

11-2

SCREEN PACKAGE

A window is a purely internal representation. It is used to build and store a
potential image of a portion of the terminal. It doesn't bear any necessary rela­
tion to what is really on the terminal screen. It is more like an array of charac­
ters on which to make changes.

When one has a window that describes what some part the terminal should look
like, the routine refresh 0 (or wrefresh 0 if the window is not stdscr) is called.
refresh 0 makes the terminal, in the area covered by the window, look like that
window. Note, therefore, that changing something on a window does not
change the terminal. Actual updates to the terminal screen are made only by
calling refresh 0 or wrefresh O. This allows the programmer to maintain several
different ideas of what a portion of the terminal screen should look like. Also,
changes can be made to windows in any order, without regard to motion effi­
ciency. Then, at will, the programmer can effectively say "make it look like
this," and let the package worry about the best way to update the screen.

11.1.4 Naming Conventions

As hinted above, the routines can use several windows, but two are automati­
cally given: curser, which knows what the terminal looks like, and stdscr, which
is what the programmer wants the terminal to look like next. The user should
never really access curser directly. Changes should be made to the appropriate
screen, and then the routine refresh 0 (or wrefresh 0) should be called.

Many functions are set up to deal with stdscr as a default screen. For example,
to add a character to stdscr, one calls addch () with the desired character. If a
different window is to be used, the routine waddch() (for window-specific
addch 0) is provided*. This convention of prepending function names with a
'w' when they are to be applied to specific windows is consistent. The only
routines which do not do this are those to which a window must always be
specified.

* Actually, addch 0 is really a "# define" macro with arguments, as are

most of the "functions" which deal with stdscr as a default.

11-3

SCREEN PACKAGE

In order to move the current (y, x) co-ordinates from one point to another, the
routines moveO and wmoveO are provided. However, it is often desirable to
first move and then perform some I/O operation. In order to avoid clumsiness,
most I/O routines can be preceded by the prefix 'my' and the desired (y, x) co­
ordinates then can be added to the arguments to the function. For example, the
calls

move(y, x);
addch(ch);

can be replaced by

and

mvaddch(y, x, ch);

wmove(win, y, x);
waddch(win, ch);

can be replaced by

mvwaddch(win, y, x, ch);

Note that the window description pointer (win) comes before the added (y, x)
co-ordinates. If such pointers are need, they are always the first parameters
passed.

11.2 Variables

Many variables which are used to describe the terminal environment are avail­
able to the programmer. They are:

Type

WINDOW *
WINDOW *
char *
bool

char *
int

Name

curser
stdscr
Def_term
My_term

ttytype
LINES

Description

current version of the screen (terminal screen).
standard screen. Most updates are usually done here.
default terminal type if type cannot be determined
use the terminal specification in Dei_term
as terminal, irrelevant of real terminal type
full name of the current terminal.
number of lines on the terminal

11-4

int
int
int

eOLS
ERR
OK

SCREEN PACKAGE

number of columns on the terminal
error flag returned by routines on a fail.
error flag returned by routines when things go right.

There are also several "# define" constants and types which are of general use­
fulness:

reg
bool
TRUE
FALSE

11.3 Usage

storage class "register" (e.g., reg int i;)
boolean type, actually a "char" (e.g., bool doneit;)
boolean "true" flag (1).
boolean "false" flag (0).

This is a description of how to actually use the screen package. In it, we
assume all updating, reading, etc. is applied to stdscr. All instructions will
work on any window, with changing the function name and parameters as men­
tioned above.

11.3.1 Starting up

In order to use the screen package, the routines must know about terminal char­
acteristics, and the space for curser and stdscr must be allocated. These func­
tions are performed by initscrO. Since it must allocate space for the windows,
it can overflow core when attempting to do so. On this rather rare occasion,
initscrO returns ERR. initscrO must always be called before any of the rou­
tines which affect windows are used. If it is not, the program will core dump
as soon as either curscr or stdscr are referenced. However, it is usually best to
wait to call it until after you are sure you will need it, like after checking for
startup errors. Terminal status changing routines like nlO and ermode 0 should
be called after initscrO.

Now that the screen windows have been allocated, you can set them up for the
run. If you want to, say, allow the window to scroll, use serollokO. If you
want the cursor to be left after the last change, use leaveokO. If this isn't
done, refresh 0 will move the cursor to the window's current (y, x) co-ordinates
after updating it. New windows of your own can be created, too, by using the

11-5

SCREEN PACKAGE

functions newwin 0 and subwin O. de/win 0 will allow you to get rid of old
windows. If you wish to change the official size of the terminal by hand, just
set the variables LINES and COLS to be what you want, and then call
initscrO. This is best done before, but can be done either before or after, the
first call to initscrO, as it will always delete any existing stdscrO and/or
curscrO before creating new ones.

11.3.2 The Nitty-Gritty

11.3.2.1 Output

Now that we have set things up, we will want to actually update the terminal.
The basic functions used to change what will go on a window are addch () and
moveO. addch 0 adds a character at the current (y, x) co-ordinates, returning
ERR if it would cause the window to illegally scroll, i.e., printing a character in
the lower right-hand corner of a terminal which automatically scrolls if scrolling
is not allowed. moveO changes the current (y, x) co-ordinates to whatever you
want them to be. It returns ERR if you try to move off the window when
scrolling is not allowed. As mentioned above, you can combine the two into
mvaddch 0 to do both things in one fell swoop.

The other output functions, such as addstrO and printwO, all call addch 0 to
add characters to the window.

After you have put on the window what you want there, when you want the
portion of the terminal covered by the window to be made to look like it, you
must call refresh O. In order to optimize finding changes, refresh 0 assumes
that any part of the window not changed since the last refresh () of that window
has not been changed on the terminal, i.e., that you have not refreshed a por­
tion of the terminal with an overlapping window. If this is not the case, the
routine touch win () is provided to make it look like the entire window has been
changed, thus making refresh () check the whole subsection of the terminal for
changes.

If you call wrefresh 0 with curscr, it will make the screen look like curscr
thinks it looks like. This is useful for implementing a command which would
redraw the screen in case it get messed up.

11-6

SCREEN PACKAGE

11.3.2.2 Input

Input is essentially a mirror image of output. The complementary function to
addch 0 is getch 0 which, if echo is set, will call addch 0 to echo the character.
Since the screen package needs to know what is on the terminal at all times, if
characters are to be echoed, the tty must be in raw or cbreak mode. If it is
not, getch () sets it to be cbreak, and then reads in the character.

11.3.2.3 Miscellaneous

All sorts of fun functions exist for maintaining and changing information about
the windows. For the most part, the descriptions in section 11.9 should suffice.

11.3.3 Finishing up

In order to do certain optimizations, and, on some terminals, to work at all,
some things must be done before the screen routines start up. These functions
are performed in gettmodeO and setterm 0. which are called by initscrO. In
order to clean up after the routines, the routine endwin () is provided. It
restores tty modes to what they were when initscrO was first called. Thus, any­
time after the call to initscr, endwin 0 should be called before exiting.

11.4 Cursor Motion Optimization: Standing Alone
It is possible to use the cursor optimization functions of this screen package
without the overhead and additional size of the screen updating functions. The
screen updating functions are designed for uses where parts of the screen are
changed, but the overall image remains the same. This includes such programs
as vi. Certain other programs will find it difficult to use these functions in this
manner without considerable unnecessary program overhead. For such applica­
tions, all that is needed is the motion optimizations. This, therefore, is a
description of what goes on at the lower levels of this screen package. The des­
criptions assume a certain amount of familiarity with programming problems
and some finer points of C. None of it is terribly difficult, but you should be
forewarned.

11-7

SCREEN PACKAGE

11.4.1 Terminal Information

In order to use a terminal's features to the best of a program's abilities, it must
first know what they are. The /etc/termcap data base describes these, but a
certain amount of decoding is necessary, and there are, of course, both efficient
and inefficient ways of reading them in. The algorithm that the screen package
uses is taken from vi and is hideously efficient. It reads them in a tight loop
into a set of variables whose names are two uppercase letters with some mne­
monic value. For example, HO is a string which moves the cursor to the
"home" positiont. As there are two types of variables involving ttys, there are
two routines. The first, gettmodeO, sets some variables based upon the tty
modes accessed by gtty(1) and stty(1). The second, setterm 0, a larger task by
reading in the descriptions from the /etc/termcap data base. This is the way
these routines are used by initscrO:

if (isatty(O» {
gettmodeO;

else

if (sp = getenv("TERM"»
setterm(sp);

setterm(Def_term);
_puts(TI);
_puts(VS);

isatty 0 checks to see if file descriptor 0 is a terminalt If it is, gettmode 0 sets
the terminal description modes from a gtty(l). getenv 0 is then called to get the
name of the terminal, and that value (if there is one) is passed to setterm 0,
which reads in the variables from /etc/termcap associated with that terminal.
(getenv 0 returns a pointer to a string containing the name of the terminal,
which we save in the character pointer spO.) If isattyO returns false, the
default terminal Dei_term 0 is used. The TI and VS sequences initialize the

t These names are identical to those variables used in the /etc/termcap

data base to describe each capability. See Appendix A for a complete list of
those read, and termcap(5) for a full description.

t isatty () is defined in the default C library function routines. It does a

gtty(1) on the descriptor and checks the return value.

11-8

SCREEN PACKAGE

terminal -pulsO is a macro which uses IputsO (see termcap(3» to put out a
string). It is these things which endwin 0 undoes.

11.4.2 Movement Optimizations

Now that we have all this useful information, it would be nice to do something
with it. The most difficult thing to do properly is motion optimization. When
you consider how many different features various terminals have (tabs,
backtabs, non-destructive space, home sequences, absolute tabs, ...) you can see
that deciding how to get from here to there can be a decidedly non-trivial task.
The editor vi uses many of these features, and the routines it uses to do this
take up many pages of code.

After using gettmode 0 and setterm 0 to get the terminal descriptions, the func­
tion mvcurO deals with this task. Its usage is simple: you simply tell it where
you are now and where you want to go. For example

mvcur(O, 0, LlNES/2, COLSI2)

would move the cursor from the home position (0, 0) to the middle of the
screen. If you wish to force absolute addressing, you can use the function
Igolo 0 from the termlib(7) routines, or you can tell mvcurO that you are
impossibly far away. For example, to absolutely address the lower left hand
corner of the screen from anywhere just claim that you are in the upper right
hand corner:

mvcur(O, COLS -1, LINES -1, 0)

11.5 The Functions

In the following definitions, "t" means that the "function" is really a
"# define" macro with arguments. This means that it will not show up in stack
traces in the debugger, or, in the case of such functions as addch 0, it will show
up as it's 'w' counterpart. The arguments are given to show the order and type
of each. Their names are not mandatory, just suggestive.

11-9

SCREEN PACKAGE

11.6 Output Functions

addcb(cb)t
char chi

waddcb(win, ch)
WINDOW *win;
char chi

Add the character ch on the window at the current (y, x) co-ordinates. If the
character is a newline ('\n') the line will be cleared to the end, and the current
(y, x) co-ordinates will be changed to the beginning off the next line if newline
mapping is on, or to the next line at the same x co-ordinate if it is off. A
return ('\r') will move to the beginning of the line on the window. Tabs ('\t')
will be expanded into spaces in the normal tabstop positions of every eight char­
acters. This returns ERR if it would cause the screen to scroll illegally.

addstr(str)t
char *str;

waddstr(win, str)
WINDOW *win;
char *str;

Add the string pointed to by sfr on the window at the current (y, x) co­
ordinates. This returns ERR if it would cause the screen to scroll illegally. In
this case, it will put on as much as it can.

box(win, vert, hor)
WINDOW *win;
char vert, bor;

Draws a box around the window using vert as the character for drawing the
vertical sides, and hor for drawing the horizontal lines. If scrolling is not
allowed, and the window encompasses the lower right-hand corner of the termi­
nal, the corners are left blank to avoid a scroll.

clear()t

wclear(win)
WINDOW *win;

11-10

SCREEN PACKAGE

Resets the entire window to blanks. If win is a screen, this sets the clear flag,
which will cause a clear-screen sequence to be sent on the next refresh 0 call.
This also moves the current (y, x) co-ordinates to (0, 0).

c1earok(scr, boolf)t
WINDOW *scr;
bool boolf;

Sets the clear flag for the screen scr. If boolf is TRUE, this will force a clear­
screen to be printed on the next refresh (), or stop it from doing so if boo If is
FALSE. This only works on screens, and, unlike clear 0, does not alter the
contents of the screen. If scr is curser, the next refresh () call will cause a
clear-screen, even if the window passed to refresh 0 is not a screen.

c1rtobot()t

wclrtobot(win)
WINDOW *win;

Wipes the window clear from the current (y, x) co-ordinates to the bottom.
This does not force a clear-screen sequence on the next refresh under any cir­
cumstances. This has no associated "mv" command.

c1rtoeol()t

wclrtoeol(win)
WINDOW *win;

Wipes the window clear from the current (y, x) co-ordinates to the end of the
line. This has no associated "mv" command.

delchO

wdelch(win)
WINDOW *win;

Delete the character at the current (y, x) co-ordinates. Each character after it
on the line shifts to the left, and the last character becomes blank.

11-11

SCREEN PACKAGE

deleteln()

wdeleteln(win)
WINDOW *win;

Delete the current line. Every line below the current one will move up, and the
bottom line will become blank. The current (y, x) co-ordinates will remain
unchanged.

erase()t

werase(win)
WINDOW *win;

Erases the window to blanks without setting the clear flag. This is analogous to
c/earO, except that it never causes a clear-screen sequence to be generated on a
refresh O. This has no associated "mv" command.

insch(c)
char c' ,
winsch(win, c)
WINDOW
char c' ,

*win;

Insert c at the current (y, x) co-ordinates Each character after it shifts to the
right, and the last character disappears. This returns ERR if it would cause the
screen to scroll illegally.

11-12

insertln()

winsertln(win)
WINDOW *win;

SCREEN PACKAGE

Insert a line above the current one. Every line below the current line will be
shifted down, and the bottom line will disappear. The current line will become
blank, and the current (y, x) co-ordinates will remain unchanged. This returns
ERR if it would cause the screen to scroll illegally.

move(y, x)t
int y, x;

wmove(win, y, x)
WINDOW *win;
int y, x;

Change the current (y, x) co-ordinates of the window to (y,x). This returns ERR
if it would cause the screen to scroll illegally.

overlay(winl, win2)
WINDOW *winl, *win2;

Overlay win] on win2. The contents of win] , insofar as they fit, are placed on
win2 at their starting (y, x) co-ordinates. This is done non-destructively, i.e.,
blanks on win] leave the contents of the space on win2 untouched.

overwrite(winl, win2)
WINDOW *winl, *win2;

Overwrite win] on win2. The contents of win], insofar as they fit, are placed
on win2 at their starting (y, x) co-ordinates. This is done destructively, i.e.,
blanks on win] become blank on win2 .

printw(fmt, argl, arg2, ...)
char *fmt;

wprintw(win, fmt, argl, arg2, •.•)
WINDOW *win;
char *fmt;

Performs a printfO on the window starting at the current (y, x) co-ordinates.

11-13

SCREEN PACKAGE

It uses addstrO to add the string on the window. It is often advisable to use
the field width options of printfO to avoid leaving things on the window from
earlier calls. This returns ERR if it would cause the screen to scroll illegally.

refresh()t

wrefresh(win)
WINDOW *winj

Synchronize the terminal screen with the desired window. If the window is not
a screen, only that part covered by it is updated. This returns ERR if it would
cause the screen to scroll illegally. In this case, it will update whatever it can
without causing the scroll.

standout()t

wstandout(win)
WINDOW *winj

standend()t

wstandend(win)
WINDOW *winj

Start and stop putting characters onto win in standout mode. standout ()
causes any characters added to the window to be put in standout mode on the
terminal (if it has that capability). standendO stops this. The sequences SO
and SE (or US and UE if they are not defined) are used (see Appendix A).

11.7 Input Functions

crmode()t

nocrmode()t

Set or unset the terminal to/from cbreak mode.

echo()t

noecho()t

Sets the terminal to echo or not echo characters.

11-14

getchOt

wgetch(win)
WINDOW *win;

SCREEN PACKAGE

Gets a character from the terminal and (if necessary) echos it on the window.
This returns ERR if it would cause the screen to scroll illegally. Otherwise, the
character gotten is returned. If noecho has been set, then the window is left
unaltered. In order to retain control of the terminal, it is necessary to have one
of noecho, cbreak, or rawmode set. If you do not set one, whatever routine
you call to read characters will set cbreak for you, and then reset to the original
mode when finished.

getstr(str)t
char *str;

wgetstr(win, str)
WINDOW *win;
char *str;

Get a string through the window and put it in the location pointed to by sfr,
which is assumed to be large enough to handle it. It sets tty modes if neces­
sary, and then calls getch 0 (or wgetch(win)) to get the characters needed to fill
in the string until a newline or EOF is encountered. The newline stripped off
the string. This returns ERR if it would cause the screen to scroll illegally.

rawot

noraw()t

Set or unset the terminal to/from raw mode. On version 7 UNIX* this also turns
of newline mapping (see (nl)).

* UNIX is a trademark of Bell Laboratories.

11-15

SCREEN PACKAGE

scanw(fmt, arg1, arg2, ...)
char *fmt;

wscanw(win, fmt, arg1, arg2, ...)
WINDOW *win;
char *fmt;

Perform a scanjO through the window using jmt. It does this using consecu­
tive getch O's (or wgetch(win)'s) This returns ERR if it would cause the screen
to scroll illegally.

11.8 Miscellaneous Functions

delwin(win)
WINDOW *win;

Deletes the window from existence. All resources are freed for future use by
calloc(3). If a window has a subwin 0 allocated window inside of it, deleting
the outer window the sub window is not affected, even though this does invali­
date it. Therefore, subwindows should be deleted before their outer windows
are.

endwin()

Finish up window routines before exit. This restores the terminal to the state it
was before initscrO (or gettmodeO and settermO) was called. It should always
be called before exiting. It does not exit. This is especially useful for resetting
tty stats when trapping rub outs via signal(2).

getyx(win, y, x)t
WINDOW *win;
int y, x;

Puts the current (y, x) co-ordinates of win in the variables y and x. Since it is
a macro, not a function, you do not pass the address of y and x.

11-16

inchot

winch(win)t
WINDOW *win;

SCREEN PACKAGE

Returns the character at the current (y, x) co-ordinates on the given window.
This does not make any changes to the window. This has no associated "mv"
command.

initscr()

Initialize the screen routines. This must be called before any of the screen rou­
tines are used. It initializes the terminal-type data and such, and without it,
none of the routines can operate. If standard input is not a tty, it sets the spec­
ifications to the terminal whose name is pointed to by Dei_term (initially
"dumb"). If the boolean My_term is true, Dei_term is always used.

leaveok(win, boolf)t
WINDOW *win;
bool boolf;

Sets the boolean flag for leaving the cursor after the last change. If boolf is
TRUE, the cursor will be left after the last update on the terminal, and the cur­
rent (y, x) co-ordinates for win will be changed accordingly. If it is FALSE, it
will be moved to the current (y, x) co-ordinates. This flag (initially FALSE)
retains its value until changed by the user.

longname(termbuf, name)
char *termbuf, *name;

Fills in name with the long (full) name of the terminal described by the termcap
entry in termbui. It is generally of little use, but is nice for telling the user in a
readable format what terminal we think he has. This is available in the global
variable ttytype. Termbui is usually set via the termlib routine tgetentO.

mvwin(win, y, x)
WINDOW *win;
int y, x;

Move the home position of the window win from its current starting coordi­
nates to (y, x). If that would put part or all of the window off the edge of the

11-17

SCREEN PACKAGE

terminal screen, mvwin 0 returns ERR and does not change anything.

WINDOWOt
newwin(lines, cols, begin_-y, begin-.X)
int lines, cols, begi"-y, begiD-.X;

Create a new window with lines lines and cots columns starting at position
(begin-y, begin-x). If either lines or cots is ° (zero), that dimension will be
set to (LINES - begin_y) or (COLS - begin-x) respectively. Thus, to get a
new window of dimensions LINES X COLS, use newwin (0, 0, 0, 0).

nlOt

nonl()t

Set or unset the terminal to/from nl mode, i.e., start/stop the system from
mapping < RETURN> to < LINE-FEED> . If the mapping is not done,
refresh () can do more optimization, so it is recommended, but not required, to
turn it off.

scrollok(win, boolf)t
WINDOW *win;
bool boolf;

Set the scroll flag for the given window. If boo/f is FALSE, scrolling is not
allowed. This is its default setting.

touchwin(win)
WINDOW *win;

Make it appear that the every location on the window has been changed. This
is usually only needed for refreshes with overlapping windows.

WINDOWOt
subwin(win, lines, cOls, begill-Y, begiD-.X)
WINDOW *win;
int lines, cols, begill-Y, begin-.X;

Create a new window with lines lines and cots columns starting at position
(begin-y, begiD-.X) in the middle of the window win. This means that any
change made to either window in the area covered by the subwindow will be
made on both windows. (begin_y, begiD-.X) are specified relative to the overall

11-18

SCREEN PACKAGE

screen, not the relative (0, 0) of win. If either lines or cots is 0 (zero), that
dimension will be set to (LINES - begin_y) or (COLS - begin--x) respec­
tively.

unctrl(ch)t
char ch;

This is actually a debug function for the library, but it is of general usefulness.
It returns a string which is a representation of ch. Control characters become
their upper-case equivalents preceded by a "~". Other letters stay just as they
are. To use unctrtO, you must have #include <unctrl.h> in your file.

11.9 Details

gettmode()

Get the tty stats. This is normally called by initscrO.

mvcur(lasty, lastx, newy, newx:)
int lasty, lastx, newy, newx:;

Moves the terminal's cursor from (tasty, tastx) to newy, newx) in an approxi­
mation of optimal fashion. This routine uses the functions borrowed from ex
version 2.6. It is possible to use this optimization without the benefit of the
screen routines. With the screen routines, this should not be called by the user.
move () and refresh () should be used to move the cursor position, so that the
routines know what's going on.

scroll(win)
WINDOW *win;

Scroll the window upward one line. This is normally not used by the user.

savetty()t

resetty()t

savetty 0 saves the current tty characteristic flags. resetty 0 restores them to
what savettyO stored. These functions are performed automatically by initscrO
and endwin O.

11-19

SCREEN PACKAGE

setterm(name)
char *name;

Set the terminal characteristics to be those of the terminal named name. This is
normally called by initscrO.

tstpO

If the new tty(4) driver is in use, this function will save the current tty state and
then put the process to sleep. When the process gets restarted, it restores the
tty state and then calls wrefresh(curscr) to redraw the screen. initscrO sets the
signal SIGTSTP to trap to this routine.

11-20

SCREEN PACKAGE

Appendix A

11.10 Capabilities from termcap

11.10.1 Disclaimer

The description of terminals is a difficult business, and we only attempt to sum­
marize the capabilities here: for a full description see the paper describing
termcap.

11.10.2 Overview

Capabilities from termcap are of three kinds: string valued options, numeric val­
ued options, and boolean options. The string valued options are the most com­
plicated, since they may include padding information, which we describe now.

Intelligent terminals often require padding on intelligent operations at high (and
sometimes even low) speed. This is specified by a number before the string in
the capability, and has meaning for the capabilities which have a P at the front
of their comment. This normally is a number of milliseconds to pad the opera­
tion. In the current system which has no true programmable delays, we do this
by sending a sequence of pad characters (normally nulls, but can be changed
(specified by PC». In some cases, the pad is better computed as some number
of milliseconds times the number of affected lines (to the bottom of the screen
usually, except when terminals have insert modes which will shift several lines.)
This is specified as, e.g., 12*. before the capability, to say 12 milliseconds per
affected whatever (currently always line). Capabilities where this makes sense
say P*.

11-21

SCREEN PACKAGE

11.10.3 Variables Set By settermO

Variables Set By setterm()

Type Name Pad Description

char * AL p* Add new blank Line
bool AM Automatic Margins
char * BC Back Cursor movement
bool BS BackSpace works
char * BT P Back Tab
bool CA Cursor Addressable
char * CD p* Clear to end of Display
char * CE P Clear to End of line
char * CL p* CLear screen
char * CM P Cursor Motion
char * DC p* Delete Character
char * DL p* Delete Line sequence
char * DM Delete Mode (enter)
char * DO DOwn line sequence
char * ED End Delete mode
bool EO can Erase Overstrikes with ' ,
char * EI End Insert mode
char * HO HOme cursor
bool HZ HaZeltine - braindamage
char * IC P Insert Character
bool IN Insert - Null blessing
char * 1M enter Insert Mode (IC usually set, too)
char * IP p* Pad after char Inserted using 1M + IE
char * LL quick to Last Line, column 0
char * MA ctrl character MAp for cmd mode
bool MI can Move in Insert mode
bool NC No Cr: \r sends \r\n then eats \n
char * ND Non - Destructive space
bool OS OverStrike works
char PC Pad Character
char * SE Standout End (may leave space)
char * SF P Scroll Forwards

11-22

char * SO
char * SR
char * TA
char * TE
char * TI
char * UC
char * UE
bool UL
char * UP
char * US
char * VB
char * VE
char * VS
bool XN

P
P

SCREEN PACKAGE

Stand Out begin (may leave space)
Scroll in Reverse
TAb (not A I or with padding)
Terminal address enable Ending sequence
Terminal address enable Initialization
Underline a single Character
Underline Ending sequence
UnderLining works even though lOS
UPline
Underline Starting sequence*
Visible Bell
Visual End sequence
Visual Start sequence
a Newline gets eaten after wrap

Names starting with X are reserved for severely nauseous glitches

11.10.4 Variables Set By gettmodeO

Type

bool
bool
bool

Variables Set By gettmode()

Name

NONL
GT
UPPERCASE

Description

Term can't hack linefeeds doing a CR
Gtty indicates Tabs
Terminal generates only uppercase letters

* US and UE, if they do not exist in the termcap entry, are copied from

SO and SE in setterm

11-23

SCREEN PACKAGE

Appendix B

11.11 The WINDOW structure
The WINDOW structure is defined as follows:

define WINDOW struct _ wi"-St

struct _wi"-St {
short _cury, _cun:;
short ~axy, _maxx;
short _begy, _begx;
short -'lags;
boo) _clear;
boo) ~eave;

boo) ~croIl;

char **--y;
short *-'irstch;
short *~astch;

} ;
define JUBWIN 01
define ~NDLINE 02
define JULLWIN 04
define JCROLLWIN 010
#define _STANDOUT 0200

_cury* and _curx are the current (y, x) co-ordinates for the window. New
characters added to the screen are added at this point. ---'11axy and ---'11axx are
the maximum values allowed for (_cury, _cur x). _begy and _begx are the
starting (y, x) co-ordinates on the terminal for the window, i.e., the window's
home. _cury, _curx, ---'11axy, and ---'11axx are measured relative to (_begy,
_begx), not the terminal's home.

* All variables not normally accessed directly by the user are named with

an initial "_" to avoid conflicts with the user's variables.

11-24

SCREEN PACKAGE

_clear tells if a clear-screen sequence is to be generated on the next refresh 0
call. This is only meaningful for screens. The initial clear-screen for the first
refresh () call is generated by initially setting clear to be TRUE for curser,
which always generates a clear-screen if set, irrelevant of the dimensions of the
window involved. _leave is TRUE if the current (y, x) co-ordinates and the
cursor are to be left after the last character changed on the terminal, or not
moved if there is no change. ~croll is TRUE if scrolling is allowed.

_y is a pointer to an array of lines which describe the terminal. Thus:

--y[i] is a pointer to the i th line, and

-y[i]ij] is the jth character on the ith line.

-flags can have one or more values or'd into it. _SUBWIN means that the
window is a subwindow, which indicates to delwin 0 that the space for the lines
is not to be freed. ~NDLINE says that the end of the line for this window is
also the end of a screen. -.FULL WIN says that this window is a screen.
_SCROLLWIN indicates that the last character of this screen is at the lower
right-hand corner of the terminal; i.e. , if a character was put there, the terminal
would scroll. _STANDOUT says that all characters added to the screen are in
standout mode.

11-25

SCREEN PACKAGE

Appendix C

11.12 Examples

Here we present a few examples of how to use the package. They attempt to be
representative, though not comprehensive.

11.12.1 Screen Updating

The following examples are intended to demonstrate the basic structure of a
program using the screen updating sections of the package. Several of the pro­
grams require calculational sections which are irrelevant to the example, and are
therefore usually not included. It is hoped that the data structure definitions
give enough of an idea to allow understanding of what the relevant portions do.

11.12.2 Twinkle

This is a moderately simple program which prints pretty patterns on the screen
that might even hold your interest for 30 seconds or more. It switches between
patterns of asterisks, putting them on one by one in random order, and then
taking them off in the same fashion. It is more efficient to write this using
only the motion optimization, as is demonstrated below.

include < curses.h >
include < signal.h >

1*
* the idea for this program was a product of the imagination of
* Kurt Schoens. Not responsible for minds lost or stolen.
*1

11-26

SCREEN PACKAGE

#define NCOLS 80
define NUNES 24
define MAXPATTERNS 4

struct locs {
char y, x;

};

typedef struct locs LOCS;

LOCS Layout[NCOLS * NUNES]; I * current board layout * I

int Pattern, 1* current pattern number *1

Numstars; I * number of stars in pattern * I

mainO (

char *getenvO;
int dieO;

srand(getpidO); 1* initialize random sequence *1

11-27

SCREEN PACKAGE

1
1*

initscrO;
signal(SIGINT, die);
noechoO;
nonlO;
leaveok(stdscr, TRUE);
scrollok(stdscr, FALSE);

for (;;) [
makeboard();
puton(' * ');
puton(' ');

1* make the board setup *1
1* put on '*'s *1
1* cover up with' 's *1

* On program exit, move the cursor to the lower left corner by
* direct addressing, since current location is not guaranteed.
* We lie and say we used to be at the upper right corner to guarantee
* absolute addressing.
*1

dieO [

1
f*

signal(SIGINT, SIG-1GN);
mvcur(O, COLS -1, LINES -1, 0);
endwinO;
exit(O);

* Make the current board setup. It picks a random pattern and
* calls ison() to determine if the character is on that pattern
* or not.
*1

11-28

makeboardO [

J
1*

reg int y, x;
reg LOCS *lp;

Pattern = randO % MAXPATTERNS;
lp = Layout;
for (y = 0; y < NLINES; y + +)
for (x = 0; x < NCOLS; x+ +)
if (ison(y, x» [

lp- >y = y;
lp+ + - >x = x;

Numstars = lp - Layout;

* Return TRUE if (y, x) is on the current pattern.
*1

11-29

SCREEN PACKAGE

SCREEN PACKAGE

ison(y, x)
reg int y, x; {

switch (Pattern) {
case 0: 1* alternating lines *1

return !(y & 01);
case 1: 1* box *1

if (x > = LINES && y > = NCOLS)
return FALSE;

if (y < 3 II y > = NLINES - 3)
return TRUE;

return (x < 3 II x > = NCOLS - 3);
case 2: 1* holy pattern! *1

return «x + y) & 01);
case 3: 1* bar across center *1

return (y > = 9 && y < = 15);
J
1* NOTREACHED *1

puton(ch)
reg char ch; {

reg LOCS *Ip;
reg int r;
reg LOCS *end;
LOCS temp;

11-30

11.12.3 Life

end = &Layout[Numstars];
for (lp = Layout; Ip < end; Ip + +) (

r = randO 1170 Numstars;
temp = *Ip;
*Ip = Layout[r];
Layout[r] = temp;

for (lp = Layout; lp < end; lp + +) (
mvaddch(lp- >y, Ip- >X, ch);
refreshO;

SCREEN PACKAGE

This program plays the famous computer pattern game of life (Scientific Ameri­
can, May, 1974). The calculational routines create a linked list of structures
defining where each piece is. Nothing here claims to be optimal, merely demon­
strative. This program, however, is a very good place to use the screen updat­
ing routines, as it allows them to worry about what the last position looked like,
so you don't have to. It also demonstrates some of the input routines.

include < curses.h >
include < signal.h >

1*
* Run a life game. This is a demonstration program for
* the Screen Updating section of the -lcurses cursor package.
*1

11-31

SCREEN PACKAGE

struct Ist_st { 1* linked list element *1

int y, X; 1* (y, x) position of piece *1

struct Ist~t *next, *Iast; 1* doubly linked *1

};

typedef struct Ist_st LIST;

LIST *Head; 1* head of linked list *1

main(ac, av)
int ac;
char *av[]; (

int dieO;

evalargs(ac, av); 1* evaluate arguments *1

initscrO; 1* initialize screen package *1
signal(SIGINT, die); 1* set to restore tty stats *1

crmodeO; 1* set for char-by-char *1

noecho(); 1* input *1

nonl(); 1* for optimization *1

getstart(); I * get starting position * I

for (;;) { prboardO;
updateO;

1* print out current board *1
1* update board position *1

}

11-32

SCREEN PACKAGE

1*
* This is the routine which is called when rub out is hit.
* It resets the tty stats to their original values. This
* is the normal way of leaving the program.
*1

dieO [

signal(SIGINT, SIG~GN); 1* ignore rubouts *1

mvcur(O, COLS-t, LINES-t, 0); 1* go to bottom of screen *1

endwinO; I * set terminal to initial state * I
exit(O);

1*
* Get the starting position from the user. They keys u, i, 0, j, I,
* m, " and . are used for moving their relative directions from the
* k key. Thus, u moves diagonally up to the left, , moves directly down,
* etc. x places a piece at the current position, " " takes it away.
* The input can also be from a file. The list is built after the
* board setup is ready.
*1

11-33

SCREEN PACKAGE

getstart() (

reg char c;
reg int x, y;

box(stdscr, ' I', ' -');

move(l, 1);

do {
refreshO;

1* box in the screen *1

1* move to upper left corner *1

1* print current position *1

if «c = getchO) = = ' q')
break;
switch (c) (

case 'u':
case 'i':
case' 0':
case 'j':
case '1':
case 'm':
case',' :
case'.' :

adjustyx(c);
break;

case 'f':
mvaddstr(O, 0, "File uame: ");
getstr(buf);
readfile(buf);
break;

case 'x':
addch('X');
break;

case' '.
addch(' ');
break;
J

11-34

SCREEN PACKAGE

if (Head ! = NULL) I * start new list * I
dellist(Head);
Head = malloc(sizeof (LIST»;

1*
* loop through the screen looking for 'x's, and add a list
* element for each one
*1

}
1*

for (y = 1; y < LINES - 1; y + +)
for (x = 1; x < COLS - 1; x + +) (

move(y, x);
if (inchO = = 'x')

addlist(y, x);

* Print out the current board position from the linked list
*1

11-35

SCREEN PACKAGE

prboardO [

reg LIST*hp;

eraseO; 1* clear out last position *1

box(stdscr, ' I', ' -'); I * box in the screen * I

1*
* go through the list adding each piece to the newly
* blank board
*1

for (hp = Head; hp; hp = hp.,-- > next)
mvaddch(hp- >y, hp- >x, 'X');

refreshO;

11.12.4 Motion optimization

The following example shows how motion optimization is written on its own.
Programs which flit from one place to another without regard for what is
already there usually do not need the overhead of both space and time associ­
ated with screen updating. They should instead use motion optimization.

11.12.5 Twinkle

The twinkle program is a good candidate for simple motion optimization. Here
is how it could be written (only the routines that have been changed are shown):

11-36

mainO [

1*

SCREEN PACKAGE

reg char *sp;
char *getenv();
int _putcharO, dieO;

srand(getpidO); 1* initialize random sequence *1

if (isatty(O» [
gettmode();
if (sp = getenv("TERM"))
setterm(sp);

signal(SIGINT, die);
}
else [

printf("Need a terminal on OJod\n", _tty_ch);
exit(l);

}
_puts(TI);
_puts(VS);

noecho();
nonlO;
tputs(CL, NLINES, _putchar);
for (;;) [

makeboardO;
puton(' * ');
puton(' ');

I * make the board setup * I
1* put on '*'s *1

1* cover up with' 's *1

* _putchar defined for tputs() (and _puts(»
*1

11-37

SCREEN PACKAGE

_putchar(c)
reg char c; {

putchar(c);
J
puton(ch)
char ch; {

static intiasty, lastx;
reg LOCS *Ip;
reg int r;
reg LOCS *end;
LOCS temp;

end = &Layout[Numstars);
for (Ip = Layout; Ip < end; Ip + +) {

r = randO 010 Numstars;
temp = *Ip;
*Ip = Layout[r);
Layout[r) = temp;

for (Ip = Layout; Ip < end; Ip + +) 1* prevent scrolling *1

if (!AM II (Ip- >y < NUNES - 1 IIlp- >x < NCOLS - 1» {
mvcur(lasty, lastx, lp- >y, Ip- >x);

else

putchar(ch);
lasty = Ip - >y;
if ((Iastx = Ip - > x + 1) > = NCOLS)
if (AM) {

lastx = 0;
lasty+ +;

lastx = NCOLS - 1;

11-38

Contents

12.1 INTRODUCTION ... 12-1 • 12.2 USAGE ... 12-1

12.3 LEXICAL CONVENTIONS 12-2

12.4 SEGMENTS .. 12-3

12.5 THE LOCATION COUNTER 12-4

12.6 STATEMENTS .. 12-4

12.7 EXPRESSIONS .. 12-7

12.8 PSEUDO-OPERATIONS .. 12-11

12.9 MACHINE INSTRUCTIONS 12-13

12.10 OTHER SYMBOLS .. 12-18

12.11 DIAGNOSTICS ... 12-18

Chapter 12

VENIX ASSEMBLER REFERENCE MANUAL

12.1 INTRODUCTION
This document describes the usage and input syntax of the VENIX PDP-II
assembler as. The details of the PDP-ll are not described.

The input syntax of the VENIX assembler is generally similar to that of the
DEC assembler PAL-llR, although its internal workings and output format are
unrelated. It may be useful to read the publication DEC-II-ASDB-D, which
describes PAL-llR, although naturally one must use care in assuming that its
rules apply to as.

as is a rather ordinary assembler without macro capabilities. It produces an
output file that contains relocation information and a complete symbol table;
thus the output is acceptable to the VENIX link-editor ld, which may be used to
combine the outputs of several assembler runs and to obtain object programs
from libraries. The output format has been designed so that if a program con­
tains no unresolved references to external symbols, it is executable without fur­
ther processing.

12.2 USAGE
as is used as follows:

as [-u] [-0 output] filel •..

If the optional - u argument is given, all undefined symbols in the current
assembly will be made undefined-external. See the .globl directive below.

12-1

VENIX ASSEMBLER

The other arguments name files which are concatenated and assembled. Thus
programs may be written in several pieces and assembled together.

The output of the assembler is by default placed on the file a.out in the current
directory; the - 0 flag causes the output to be placed on the named file. If
there were no unresolved external references, and no errors detected, the output
file is marked executable; otherwise, if it is produced at all, it is made non­
executable.

12.3 LEXICAL CONVENTIONS
Assembler tokens include identifiers (alternatively, "symbols" or "names"),
temporary symbols, constants, and operators.

12.3.1 Identifiers

An identifier consists of a sequence of alphanumeric characters (including period
".", underscore "_", and tilde "-" as alphanumeric) of which the first may
not be numeric. Only the first eight characters are significant. When a name
begins with a tilde, the tilde is discarded and that occurrence of the identifier
generates a unique entry in the symbol table which can match no other occur­
rence of the identifier. This feature is used by the C compiler to place names
of local variables in the output symbol table without having to worry about
making them unique.

12.3.2 Temporary Symbols

A temporary symbol consists of a digit followed by "f" or "b". Temporary
symbols are discussed fully in section 5 .1.

12.3.3 Constants

An octal constant consists of a sequence of digits; "8" and "9" are taken to
have octal value 10 and 11. The constant is truncated to 16 bits and interpreted
in two's complement notation.

A decimal constant consists of a sequence of digits terminated by a decimal
point ".". The magnitude of the constant should be representable in 15 bits;
i.e., be less than 32,768.

12-2

VENIX ASSEMBLER

A single-character constant consists of a single quote' followed by an ASCII!
character not a new-line. Certain dual-character escape sequences are acceptable
in place of the ASCII character to represent new-line and other non-graphics
(see the section "String Statements"). The constant's value has the code for the
given character in the least significant byte of the word and is null-padded on
the left.

A double-character constant consists of a double quote " followed by a pair of
ASCII characters not including new-line. Certain dual-character escape
sequences are acceptable in place of either of the ASCII characters to represent
new-line and other non-graphics (see "String Statements"). The constant's
value has the code for the first given character in the least significant byte and
that for the second character in the most significant byte.

12.3.4 Operators

There are several single- and double-character operators; see section 6.

12.3.5 Blanks

Blank and tab characters may be interspersed freely between tokens, but may
not be used within tokens (except character constants). A blank or tab is
required to separate adjacent identifiers or constants not otherwise separated.

12.3.6 Comments

The character "/" introduces a comment, which extends through the end of the
line on which it appears. Comments are igr.ored by the assembler.

12.4 SEGMENTS

Assembled code and data fall into three segments: the text segment, the data
segment, and the bss segment. The text segment is the one in which the assem­
bler begins, and it is the one into which instructions are typically placed. The
VENIX system will, if desired, enforce the purity of the text segment of pro­
grams by trapping write operations into it. Object programs produced by the
assembler must be processed by the link-editor ld (using its -n flag) if the text
segment is to be write-protected. A single copy of the text segment is shared
among all processes executing such a program.

12-3

VENIX ASSEMBLER

The data segment is available for placing data or instructions which will be
modified during execution. Anything which may go in the text segment may be
put into the data segment. In programs with write-protected, sharable text seg­
ments, data segment contains the initialized but variable parts ofa program. If
the text segment is not pure, the data segment begins immediately after the text
segment; if the text segment is pure, the data segment begins at the lowest 8K
byte boundary after the text segment.

The bss segment may not contain any explicitly initialized code or data. The
length of the bss segment (like that of text or data) is determined by the high­
water mark of the location counter within it. The bss segment is actually an
extension of the data segment and begins immediately after it. At the start of
execution of a program, the bss segment is set to O. Typically the bss segment
is set up by statements exemplified by

lab: . = . + 10

The advantage in using the bss segment for storage that starts off empty is that
the initialization information need not be stored in the output file. See also
"Location Counter" and "Assignment Statements" below.

12.5 THE LOCATION COUNTER

One special symbol, ".", is the location counter. Its value at any time is the
offset within the appropriate segment of the start of the statement in which it
appears. Assignments may be made to the location counter, with the restriction
that the current segment may not change; furthermore, the value of "." may
not decrease. If the effect of the assignment is to increase the value of ".",
the required number of null bytes are generated (but see "Segments" above).

12.6 STATEMENTS

A source program is composed of a sequence of statements. Statements are
separated either by new-lines or by semicolons. There are five kinds of state­
ments: null statements, expression statements, assignment statements, string
statements, and keyword statements.

12-4

VENIX ASSEMBLER

Any kind of statement may be preceded by one or more labels.

12.6.1 Labels

There are two kinds of labels: name labels and numeric labels. A name label
consists of a name followed by a colon (:). The effect of a name label is to
assign the current value and type of the location counter "." to the name. An
error is indicated in pass 1 if the name is already defined; an error is indicated
in pass 2 if the "." value assigned changes the definition of the label.

A numeric label consists of a digit 0 to 9 followed by a colon (:). Such a label
serves to define temporary symbols of the form n band n f, where n is the digit
of the label. As in the case of name labels, a numeric label assigns the current
value and type of "." to the temporary symbol. However, several numeric
labels with the same digit may be used within the same assembly. References of
the form n f refer to the first numeric label n: forward from the reference; n b
symbols refer to the first n : label backward from the reference. This sort of
temporary label was introduced by Knuth [The Art of Computer Programming,
Vol I: Fundamental Algorithms]. Such labels tend to conserve both the symbol
table space of the assembler and the inventive powers of the programmer.

12.6.2 Null Statements

A null statement is an empty statement (which may, however, have labels). A
null statement is ignored by the assembler. Common examples of null state­
ments are empty lines or lines containing only a label.

12.6.3 Expression Statements

An expression statement consists of an arithmetic expression not beginning with
a keyword. The assembler computes its (16-bit) value and places it in the out­
put stream, together with the appropriate relocation bits.

12.6.4 Assignment Statements

An assignment statement consists of an identifier, an equals sign (=), and an
expression. The value and type of the expression are assigned to the identifier.n
It is not required that the type or value be the same in pass 2 as in pass 1, nor
is it an error to redefine any symbol by assignment.

12-5

VENIX ASSEMBLER

Any external attribute of the expression is lost across an assignment. This
means that it is not possible to declare a global symbol by assigning to it, and
that it is impossible to define a symbol to be offset from a non-locally defined
global symbol.

As mentioned, it is permissible to make assignments to the location counter
" .". It is required, however, that the type of the expression assigned be of the
same type as ".", and it is forbidden to decrease the value of ".". In prac­
tice, the most common assignment to "." has the form ". = . + n" for some
number n; this has the effect of generating n null bytes.

12.6.5 String Statements

A string statement generates a sequence of bytes containing ASCII characters.
A string statement consists of a left string quote "<" followed by a sequence
of ASCII characters not including newline, followed by a right string quote
" > " . Any of the ASCII characters may be replaced by a two-character escape
sequence to represent certain non-graphic characters, as follows:

\n NL (012)
\s SP (040)
\t HT (011)
\e EOT (004)
\0 NUL (000)
\r CR (015)
\a ACK (006)
\p PFX (033)
\\ \
\> >

The last two are included so that the escape character and the right string quote
may be represented. The same escape sequences may also be used within single­
and double-character constants (see the section "Constants" above).

12-6

VENIX ASSEMBLER

12.6.6 Keyword Statements

Keyword statements are numerically the most common type, since most machine
instructions are of this sort. A keyword statement begins with one of the many
predefined keywords of the assembler; the syntax of the remainder depends on
the keyword. All the keywords are listed below with the syntax they require.

12.7 EXPRESSIONS
An expression is a sequence of symbols representing a value. Its constituents
are identifiers, constants, temporary symbols, operators, and brackets. Each
expression has a type.

All operators in expressions are fundamentally binary in nature; if an operand is
missing on the left, a 0 of absolute type is assumed. Arithmetic is two's com­
plement and has 16 bits of precision. All operators have equal precedence, and
expressions are evaluated strictly left to right except for the effect of brackets.

12.7.1 Expression Operators

The operators are:

(blank)

+

*
\I

&

\>

\<

when there is no operator between operands, the effect is
exactly the same as if a "+" had appeared.

addition

subtraction

multiplication

division (note that plain" /" starts a comment)

bitwise and

bitwise or

logical right shift

logical left shift

12-7

VENIX ASSEMBLER

070 modulo

a! b is a or (not b); i.e., the or of the first operand and
the one's complement of the second; most common use is
as a unary.

result has the value of first operand and the type of the
second; most often used to define new machine instruc­
tions with syntax identical to existing instructions.

Expressions may be grouped by use of square brackets "[]". (Round paren­
theses are reserved for address modes.)

12.7.2 Types

The assembler deals with a number of types of expressions. Most types are
attached to keywords and used to select the routine which treats that keyword.
The types likely to be met explicitly are:

undefined
Upon first encounter, each symbol is undefined. It may become unde­
fined if it is assigned an undefined expression. It is an error to attempt
to assemble an undefined expression in pass 2; in pass 1, it is not (except
that certain keywords require operands which are not undefined).

undefined external
A symbol which is declared .globl but not defined in the current assembly
is an undefined external. If such a symbol is declared, the link editor ld
must be used to load the assembler's output with another routine that
defines the undefined reference.

absolute
An absolute symbol is defined ultimately from a constant. Its value is
unaffected by any possible future applications of the link-editor to the
output file.

text The value of a text symbol is measured with respect to the beginning of
the text segment of the program. If the assembler output is link-edited,
its text symbols may change in value since the program need not be the
first in the link editor's output. Most text symbols are defined by
appearing as labels. At the start of an assembly, the value of " ." is text
O.

12-8

VENIX ASSEMBLER

data The value of a data symbol is measured with respect to the origin of the
data segment of a program. Like text symbols, the value of a data sym­
bol may change during a subsequent link-editor run since previously
loaded programs may have data segments. After the first .data state­
ment, the value of " . " is data O.

bss The value of a bss symbol is measured from the beginning of the bss seg­
ment of a program. Like text and data symbols, the value of a bss sym­
bol may change during a subsequent link-editor run, since previously
loaded programs may have bss segments. After the first .bss statement,
the value of " ." is bss O.

external absolute, text, data, or bss
symbols declared .globl but defined within an assembly as absolute, text,
data, or bss symbols may be used exactly as if they were not declared
.globl; however, their value and type are available to the link editor so
that the program may be loaded with others that reference these symbols.

register
The symbols

rO ... rS
frO ... frS
sp
pc

are predefined as register symbols. Either they or symbols defined from
them must be used to refer to the six general-purpose, six floating-point,
and the 2 special-purpose machine registers. The behavior of the floating
register names is identical to that of the corresponding general register
names; the former are provided as a mnemonic aid.

other types
Each keyword known to the assembler has a type which is used to select
the routine which processes the associated keyword statement. The
behavior of such symbols when not used as keywords is the same as if
they were absolute.

12-9

VENIX ASSEMBLER

12.7.3 Type Propagation In Expressions

When operands are combined by expression operators, the result has a type
which depends on the types of the operands and on the operator. The rules
involved are complex to state but were intended to be sensible and predictable.
For purposes of expression evaluation the important types are

undefined
absolute
text
data
bss
undefined external
other

The combination rules are then:

If one of the operands is undefined, the result is undefined. If both operands
are absolute, the result is absolute. If an absolute is combined with one of the
"other types" mentioned above, or with a register expression, the result has the
register or other type. As a consequence, one can refer to r3 as "rO + 3". If
two operands of "other type" are combined, the result has the numerically
larger type An "other type" combined with an explicitly discussed type other
than absolute acts like an absolute.

Further rules applying to particular operators are:

+ If one operand is text-, data-, or bss-segment relocatable, or is an
undefined external, the result has the postulated type and the other
operand must be absolute.

If the first operand is a relocatable text-, data-, or bss-segment symbol,
the second operand may be absolute (in which case the result has the
type of the first operand); or the second operand may have the same
type as the first (in which case the result is absolute). If the first oper­
and is external undefined, the second must be absolute. All other com­
binations are illegal.

12-10

VENIX ASSEMBLER

This operator follows no other rule than that the result has the value
of the first operand and the type of the second.

others It is illegal to apply these operators to any but absolute symbols.

12.8 PSEUDO-OPERATIONS
The keywords listed below introduce statements that generate data in unusual
forms or influence the later operations of the assembler. The metanotation

[stuff] ..•

means that 0 or more instances of the given stuff may appear. Also, boldface
tokens are literals, italic words are substitutable.

12.8.1 .byte expression [, expression] .•.

The expressions in the comma-separated list are truncated to 8 bits and assem­
bled in successive bytes. The expressions must be absolute. This statement and
the string statement above are the only ones that assemble data one byte at at
time.

12.8.2 .even

If the location counter "." is odd, it is advanced by one so the next statement
will be assembled at a word boundary.

12.8.3 .if expression

The expression must be absolute and defined in pass 1. If its value is nonzero,
the .if is ignored; if zero, the statements between the .if and the matching .endif
(below) are ignored. .if may be nested. The effect of .if cannot extend beyond
the end of the input file in which it appears. (The statements are not totally
ignored, in the following sense: .ifs and .endifs are scanned for, and moreover
all names are entered in the symbol table. Thus names occurring only inside an
.if will show up as undefined if the symbol table is listed.)

12-11

VENIX ASSEMBLER

12.8.4 .endif

This statement marks the end of a conditionally-assembled section of code. See
.if above.

12.8.5 .globl name [, name] ...

This statement makes the names external. If they are otherwise defined (by
assignment or appearance as a label) they act within the assembly exactly as if
the .globl statement were not given; however, the link editor Id may be used to
combine this routine with other routines that refer these symbols.

Conversely, if the given symbols are not defined within the current assembly,
the link editor can combine the output of this assembly with that of others
which define the symbols. As discussed in section 1, it is possible to force the
assembler to make all otherwise undefined symbols external.

12.8.6 .text, .data, and .bss

These three pseudo-operations cause the assembler to begin assembling into the
text, data, or bss segment respectively. Assembly starts in the text segment. It
is forbidden to assemble any code or data into the bss segment, but symbols
may be defined and "." moved about by assignment.

12.8.7 .comm name , expression

Provided the name is not defined elsewhere, this statement is equivalent to

.globl name
name = expression A name

That is, the type of name is "undefined external", and its value is expression.
In fact the name behaves in the current assembly just like an undefined exter­
nal. However, the link-editor Id has been special-cased so that all external sym­
bols which are not otherwise defined, and which have a non-zero value, are
defined to lie in the bss segment, and enough space is left after the symbol to
hold expression bytes. All symbols which become defined in this way are
located before all the explicitly defined bss-segment locations.

12-12

VENIX ASSEMBLER

12.9 MACHINE INSTRUCTIONS

Because of the rather complicated instruction and addressing structure of the
PDP-II, the syntax of machine instruction statements is varied. Although the
following sections give the syntax in detail, the machine handbooks should be
consulted on the semantics.

12.9.1 Sources and Destinations

The syntax of general source and destination addresses is the same. Each must
have one of the following forms, where reg is a register symbol, and expr is any
sort of expression:

syntax words mode
reg 0 00+ reg
(reg) + 0 20 + reg
- (reg) 0 40 + reg
expr(reg) 1 60 + reg
(reg) 0 10 + reg
* reg 0 10 + reg
* (reg) + 0 30 + reg
* - (reg) 0 50 + reg
* (reg) 1 70 + reg
* expr(reg) 1 70+ reg
expr 1 67
$expr 1 27
*expr 1 77
*$expr 1 37

The words column gives the number of address words generated; the mode col­
umn gives the octal address-mode number. The syntax of the address forms is
identical to that in DEC assemblers, except that "*" has been substituted for
"@" and "$" for "#"; the VENIX typing conventions make "@" and "#"
rather inconvenient.

Notice that mode "*reg" is identical to "(reg)"; that "*(reg)" generates an
index word (namely, 0); and that addresses consisting of an unadorned expres­
sion are assembled as pc-relative references independent of the type of the
expression. To force a non-relative reference, the form "*$expr" can be used,
but notice that further indirection is impossible.

12-13

VENIX ASSEMBLER

12.9.2 Simple Machine Instructions

The following instructions are defined as absolute symbols:

cIc
cIv
cIz
cIn
sec
sev
sez
sen

They therefore require no special syntax. The PDP-ll hardware allows more
than one of the "clear" class, or alternatively more than one of the "set" class
to be or-ed together; this may be expressed as follows:

cIc I cIv

12.9.3 Branch

The following instructions take an expression as operand. The expression must
lie in the same segment as the reference, cannot be undefined-external, and its
value cannot differ from the current location of " ." by more than 254 bytes:

br bios
bne bvc
beq bvs
bge bhis
bIt bee (= bee)
bgt bee
ble blo
bpi bcs
bmi bes (= bcs)
bhi

bes ("branch on error set") and bee ("branch on error clear") are intended to
test the error bit returned by system calls (which is the c-bit).

12-14

VENIX ASSEMBLER

12.9.4 Extended Branch Instructions

The following symbols are followed by an expression representing an address in
the same segment as ".". If the target address is close enough, a branch-type
instruction is generated; if the address is too far away, a jmp will be used.

jbr jlos
jne jvc
jeq jvs
jge jhis
jIt jec
jgt jcc
jle jlo
jpl jcs
jmi jes
jhi

jbr turns into a plain jmp if its target is too remote; the others (whose names
are constructed by replacing the "b" in the branch instruction's name by "j")
turn into the converse branch over a jmp to the target address.

12.9.5 Single Operand Instructions

The following symbols are names of single-operand machine instructions. The
form of address expected is discussed in the section "Sources and Destinations"
above.

elr sbcb
elrb ror
com rorb
comb rol
inc rolb
incb asr
dec asrb
decb asl
neg aslb
negb jmp
adc swab
adcb tst
sbc tstb

12-15

VENIX ASSEMBLER

12.9.6 Double Operaud Iustructions

The following instructions take a general source and destination, separated by a
comma, as operands.

mov
movb
cmp
cmpb
bit
bitb
bic
bicb
bis
bisb
add
sub

12.9.7 Miscellaneous Instructions

The following instructions have more specialized syntax. Here reg is a register
name, src and dst a general source or destination, and expr is an expression:

jsr reg,dst
rts reg
sys expr
ash src, reg (or, als)
ashc src, reg (or, alsc)
mul src, reg (or, mpy)
div src, reg (or, dvd)
xor reg, dst
sxt dst
mark expr
sob reg, expr

sys is another name for the trap instruction. It is used to code system calls. Its
operand is required to be expressible in 6 bits. The expression in mark must be
expressible in six bits, and the expression in sob must be in the same segment as

12-16

VENIX ASSEMBLER

" . ", must not be external-undefined, must be less than ".", and must be
within 510 bytes of " . " .

12.9.8 Floating-point Unit Instructions

The following floating-point operations are defined, with syntax as indicated:

cfcc
setf
setd
seti
setl
clrf fdst
negf fdst
absf fdst
tstf fsrc
movf fsrc,freg (= ldf)
movf freg,fdst (= stf)
movif src,freg (= Idcif)
movfi freg, dst (= stcfi)
movof fsrc,freg (= Idcdf)
movfo freg,fdst (= stcfd)
movie src,freg (= Idexp)
movei freg, dst (= stexp)
addf fsrc,freg
subf fsrc,freg
mulf fsrc,freg
divf fsrc,freg
cmpf fsrc,freg
modf fsrc,freg
ldfps src
stfps dst
stst dst

fsrc, fdst, and freg mean floating-point source, destination, and register respec­
tively. Their syntax is identical to that for their non-floating counterparts, but
note that only floating registers 0-3 can be a freg.

12-17

VENIX ASSEMBLER

The names of several of the operations have been changed to bring out an anal­
ogy with certain fixed-point instructions. The only strange case is movf, which
turns into either stf or Idf depending respectively on whether its first operand is
or is not a register. Warning: Idf sets the floating condition codes, stf does
not.

12.10 Other Symbols

12.10.1 ..

The symbol" .• " is the relocation counter. Just before each assembled word is
placed in the output stream, the current value of this symbol is added to the
word if the word refers to a text, data or bss segment location. If the output
word is a pc-relative address word that refers to an absolute location, the value
of " .• " is subtracted.

Thus the value of " •. " can be taken to mean the starting memory location of
the program. The initial value of " .. " is O.

The value of " .. " may be changed by assignment. Such a course of action is
sometimes necessary, but the consequences should be carefully thought out. It
is particularly ticklish to change " .. " midway in an assembly or to do so in a
program which will be treated by the loader, which has its own notions of
" "

12.10.2 System Calls

System call names are not predefined.
/usr /include/sys.s

12.11 DIAGNOSTICS

They may be found in the file

When an input file cannot be read, its name followed by a question mark is
typed and assembly ceases. When syntactic or semantic errors occur, a single­
character diagnostic is typed out together with the line number and the file
name in which it occurred. Errors in pass 1 cause cancellation of pass 2. The
possible errors are:

12-18

)
]

>
*

A
B
E
F
G
I
M
o
P
R
U
X

parentheses error
parentheses error
string not terminated properly
indirection (*) used illegally
illegal assignment to "."
error in address
branch address is odd or too remote
error in expression
error in local ("f" or "b") type symbol
garbage (unknown) character
end of file in side an .if
multiply defined symbol as label
word quantity assembled at odd address

VENIX ASSEMBLER

phase error - "." different in pass1 and pass2
relocation error
undefined symbol
syntax error

12-19

