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The PRO/VENIXt Documentation Set 

The PRO/VENIX documentation set consists of the following manuals: 

PRO/VENIX Installation and System Manager's Guide 

The set up and maintenance of PRO/VENIX are described in the 
installation sections. Other articles explain the UNIX-to-UNIX:\: 
communications systems. The "System Maintenance Reference 
Manual" contains reference pages for devices and system maintenance 
procedures (sections (7) and (8». 

PRO/VENIX User Guide 

The User Guide contains tutorials for newcomers to PRO/VENIX, 
covering basic use of the system, the editor vi and use of the 
command language interpreters. 

PRO/VENIX Document Processing Guide 

The line and screen editors and nroff-related text formatting utilities 
are described in the Document Processing Guide. Topics include: line 
editor ed, and stream editor sed; the text formatter nroff; the nroff­
preprocessors tbl and neqn. 

PRO/VENIX Programming Guide 

The chapters in the Programming Guide explicate the different 
programming languages for VENIX. 

t VENIX is a trademark of VenturCom, Inc. 

:I: UNIX is a trademark of Bell Laboratories. 



PRO/VENIX Support Tools Guide 

This guide includes tools for programming, such as the compiler­
writing languages Yacc and Lex, the M4 Macro processor, the 
program development utility Make, and the desk calculator programs 
DC and Be. 

PRO/VENIX User Reference Manual 

This is a complete and concise reference for the PRO/VENIX system. 
This volume contains write-ups on all PRO/VENIX commands. 

PRO/VENIX Progammer Reference Manual 

The reference pages in this volume include system calls, library 
functions, file formats, miscellaneous functions and games. 
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Introduction 

The Support Tools Guide is a description of the various software "tools" that aid 
the VENIX operating system user. The following paragraphs contain a brief 
description of each chapter. 

The first chapter, A PROGRAM FOR MAl NT AINING COMPUTER 
PROGRAMS (make), describes a software tool for maintaining, updating, and 
regenerating groups of computer programs. The many activities of program 
development and maintenance are made simpler by the make program. 

Chapter 2, THE M4 MACRO PROCESSOR, describes a general purpose macro 
processor that may be used as a front end for rational Fortran, C, and other 
programming languages. 

Chapter 3, THE awk PROGRAMMING LANGUAGE, describes a software tool 
designed to make many common information retrieval and text manipulation 
tasks easy to state and to perform. 

Chapter 4, ARBITRARY PRECISION DESK CALCULATOR LANGUAGE 
(bc), describes a compiler for doing arbitrary precision arithmetic on the VENIX 
operating system. 

Chapter 5, INTERACTIVE DESK CALCULATOR (dc), describes a program 
implemented on the VENIX operating system to do arbitrary-precision integer 
arithmetic. 

Chapter 6, LEXICAL ANALYZER GENERATOR (lex), describes a software 
tool that lexically processes character input streams. 

Chapter 7, YET ANOTHER COMPILER-COMPILER (yacc), describes the yaee 
program. The yaee program provides a general tool for imposing structure on the 
input to a computer program. 

The support tools provide an added dimension to the basic VENIX software 
commands. The "tools" described enable the user to fully utilize the VENIX 
operating system. 



Introduction to the Programmer Reference Manual 

This volume describes features of the VENIXt system, a licensed UNIX~, time­
sharing operating system. It does not provide an overview or tutorial information 
on the VENIX operating system, its facilities, or implementation. Various 
documents on these topics are contained in other VENIX manuals. For a general 
tutorial see 'VENIX for Beginners' in the User Guide. Those with previous 
UNIX experience will find VENIX is quite similar to other versions of UNIX. 

The Programmer Reference Manual attempts to be timely, complete and concise. 
A lot of information is packed into these pages in a concentrated form. 
Examples have been included to assist the reader to understand some of the more 
terse descriptions. We hope that the user will be able to flip open the manual, 
refer to the appropriate section and find the needed information. 

The Programmer Reference Manual contains sections 2 through 6. Commands 
(section 1) are contained in the User Reference Manual. The user should be 
familiar with the basic layout: 

User Reference Manual 

1. Commands 

Programmer Reference Manual 

2. System calls 
3. Subroutines 
4. File Formats and Conventions 
5. Miscellaneous Facilities 
6. Games 

When referring to a particular item in the manual, it is common practice to 
append the section number in parentheses: for instance, open(2) refers to the open 
system call in section 2. 

tVENIX is a trademark of VenturCom, Inc. 
~UNIX is a trademark of Bell Laboratories 



Introduction to the Programmer Reference Manual 

At the beginning of this volume is a table of contents, organized by section and 
alphabetically within each section. 

Following is a short overview of the sections in both the Programmer Reference 
Manual and the User Reference Manual: 

Commands are programs intended to be invoked directly by the user. Commands 
generally reside in directory /bin (for bin ary programs). Some programs also 
reside in / usr/ bin, to save space in /bin. These directories are searched 
automatically by the command interpreter. 

System calls are entries into the VENIX supervisor. Every system call has one or 
more C language interfaces described in section 2. 

An assortment of subroutines is available; they are described in section 3. The 
primary libraries in which they are kept are described in intro(3). The functions 
are described in terms of C, but most will work with Fortran as well. 

Section 4 file formats and conventions documents the structure of a particular 
kind of files, for example, the form of the output of the loader and assembler. 

Miscellaneous facilities in section 5 include user environment, graphics interface 
and terminal capability database. 

If you find that the Programmer Reference Manual is rather prosaic reading, see 
section 6 for games. 

Each section consists of a number of independent entries. The name of the entry 
is in the upper corner of the page, together with the section number, and 
sometimes a letter characteristic of a subcategory, e.g. graphics is 30, and the 
math library is 3M. Entries within each section are alphabetized and the page 
numbers of each entry start at 1. The introductions to sections 2 and 3 should be 
perused before reading further in the section. These introductions also include a 
summary by subject of the relevant routines and cross references. 

All entries are based on a common format, though not all subsections will always 
appear: 

The name subsection lists the exact names of the commands and subroutines 
covered under the entry and gives a very short description of their purpose. 

The synopsis summarizes the use of the program being described. A few 
conventions are used, particularly in the Commands subsection: 



Introduction to the Programmer Reference Manual 

Boldface is reserved for literals, typed just as they appear, e.g. 
termcap(5). Italics are used for generic arguments which are to be 
replaced by real parameters. 

Square brackets [ ] around an argument indicate that the argument is 
optional. When an argument is given as 'name', it always refers to a 
file name. 

Ellipses ' ... ' are used to show that the previous argument-prototype 
may be repeated. 

A final convention is used by the commands themselves. An argument 
beginning with a minus sign '-' is often taken to mean some sort of 
option-specifying argument even if it appears in a position where a file 
name could appear. Therefore, it is unwise to have files whose names 
begin with '- '. 

The description subsection discusses in detail the subject at hand. 

The files subsection gives the names of files which are built into the 
program. 

A see also subsection gives pointers to related information, such as other 
commands or tutorials. 

A diagnostics subsection discusses the diagnostic indications which may be 
produced. Messages which are intended to be self-explanatory are not 
listed. 

The bugs subsection gives known bugs and sometimes deficiencies. 
Occasionally the suggested fix is also described. 
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Chapter 1 
A PROGRAM FOR MAINTAINING 

COMPUTER PROGRAMS (make) 

1.1 GENERAL 

In a programming project, a common practice is to divide large programs into 
smaller pieces that are more manageable. The pieces may require several different 
treatments such as being processed by a macro processor or sophisticated program 
generators (e.g., yacc or lex). The project continues to become more complex as 
the output of these generators are compiled with special options and with certain 
definitions and declarations. A sequence of code transformations develops which 
is difficult to remember. The resulting code may need further transformation by 
loading the code with certain libraries under control of special options. Related 
maintenance activities also complicate the process further by running test scripts 
and installing validated modules. Another activity that complicates program 
development is a long editing session. A programmer may lose track of the files 
changed and the object modules still valid especially when a change to a 
declaration can make a dozen other files obsolete. The programmer must also 
remember to compile a routine that has been changed or that uses changed 
declarations. 

The "make" is a software tool that maintains, updates, and regenerates groups of 
computer programs. 

A programmer can easily forget 

• Files that are dependent upon other files. 

• Files that were modified recently. 

• Files that need to be reprocessed or recompiled after a change in the source. 

• The exact sequence of operations needed to make and exercise a new version 
of the program. 

The many activities of program development and maintenance are made simpler 
by the make program. 
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MAKE 

The make program provides a method for maintammg up-to-date versions of 
programs that result from many operations on a number of files. The make 
program can keep track of the sequence of commands that create certain files and 
the list of files that require other files to be current before the operations can be 
done. Whenever a change is made in any part of a program, the make command 
creates the proper files simply, correctly, and with a minimum amount of effort. 
The make program also provides a simple macro substitution facility and the 
ability to encapsulate commands in a single file for convenient administration. 

The basic operation of make is to 

• Find the name of the needed target file in the description. 

• Ensure that all of the files on which it depends exist and are up to date. 

• Create the target file if it has not been modified since its generators were 
modified. 

The descriptor file really defines the graph of dependencies. The make program 
determines the necessary work by performing a depth-first search of the graph of 
dependencies. 

If the information on interfile dependencies and command sequences is stored in a 
file, the simple command 

make 

is frequently sufficient to update the interesting files regardless of the number 
edited since the last make. In most cases, the description file is easy to write and 
changes infrequently. It is usually easier to type the make command than to issue 
even one of the needed operations, so the typical cycle of program development 
operations becomes 

think - edit - make - test ... 

The make program is most useful for medium-sized programming projects. The 
make program does not solve the problems of maintaining multiple source 
versions or of describing huge programs. 

As an example of the use of make, the description file used to maintain the make 
command is given. The code for make is spread over a number of C language 
source files and a Yacc grammar. The description file contains: 
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# Description file for the Make command 

p = lp 
FILES = Makefile version.c defs main.c doname.c misc.c 

files.c dosys.c gram.y lex.c gcos.c 
OBJECTS = version.o main.o doname.o misc.o files.o 

dosys.o gram.o 
LIBES= -IS 
LINT = lint - p 
CFLAGS = -0 

make: $(OBJECTS) 
cc $(CFLAGS) $(OBJECTS) $(LIBES) - 0 make 
size make 

$(OBJECTS): defs 
gram.o: lex.c 

cleanup: 
-rm *.0 gram.c 
-du 

install: 
@size make lusr/bin/make 
cp make lusr/bin/make ; rm make 

print: $(FILES) 
pr $? I $P 
touch print 

# print recently changed files 

test: 
make - dp I grep - v TIME > 1zap 
lusr/bin/make -dp I grep -v TIME >2zap 
diff 1zap 2zap 
rm 1zap 2zap 

lint: dosys.c doname.c files.c main.c misc.c version.c 
gram.c 

arch: 

$(LINT) dosys.c doname.c files.c main.c misc.c 
version.c gram.c 

ar uv Isys/source/s2lmake.a $(FILES) 
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MAKE 

The make program usually prints out each command before issuing it. 

The following output results from typing the simple command make in a 
directory containing only the source and description files: 

cc -0 - c version.c 
cc -0 -c main.c 
cc -0 -c doname.c 
cc -0 -c misc.c 
cc - 0 - c files.c 
cc - 0 - c dosys.c 
yacc gram.y 
mv y.tab.c gram.c 
cc -0 -c gram.c 
cc version.o main.o doname.o misc.o files.o dosys.o 

gram.o -IS - 0 make 
13188+3348+3044 = 19580b = 046174b 

Although none of the source files or grammars were mentioned by name in the 
description file, make found them using its suffix rules and issued the needed 
commands. The string of digits results from the size make command. The 
printing of the command line itself was suppressed by an @ sign. The @ sign on 
the size command in the description file suppressed the printing of the command, 
so only the sizes are written. 

The last few entries in the description file are useful maintenance sequences. The 
"print" entry prints only the files changed since the last make print command. A 
zero-length file print is maintained to keep track of the time of the printing. The 
$? macro in the command line then picks up only the names of the files changed 
since print was touched. The printed output can be sent to a different printer or 
to a file by changing the definition of the P macro as follows: 

make print "p= cat > zap" 

1.2 BASIC FEATURES 

The basic operation of make is to update a target file by ensuring that all of the 
files on which the target file depends exist and are up to date. The target file is 
created if it has not been modified since the dependents were modified. The make 
program does a depth-first search of the graph of dependencies. The operation of 
the command depends on the ability to find the date and time that a file was last 
modified. 
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MAKE 

To illustrate, consider a simple example in which a program named prog is made 
by compiling and loading three C language files x.c, y.c, and z.c with the IS 
library. By convention, the output of the C language compilations will be found 
in files named x.o, y.o, and z.o. Assume that the files x.c and y.c share some 
declarations in a file named dejs, but that z.c does not. That is, x.c and y.c have 
the line 

#include "defs" 

The following text describes the relationships and operations: 

prog: x.o y.o z.o 
cc x.o y.o z.o -IS - 0 prog 

x.o y.o: defs 

If this information were stored in a file named makejile, the command 

make 

would perform the operations needed to recreate prog after any changes had been 
made to any of the four source files x.c, y.c, z.c, or dejs. 

The make program operates using the following three sources of information: 

• A user-supplied description file 

• File names and "last-modified" times from the file system 

• Built-in rules to bridge some of the gaps. 

In the example, the first line states that prog depends on three ".0" files. Once 
these object files are current, the second line describes how to load them to create 
prog. The third line states that x.o and y.o depend on the file dejs. From the file 
system, make discovers that there are three ". c" files corresponding to the needed 
".0" files and uses built-in information on how to generate an object from a 
source file (i.e., issue a "cc -c" command). 

By not taking advantage of make's innate knowledge, the following longer 
descriptive file results. 
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MAKE 

prog: x.o y.o z.o 
cc x.o y.o z.o -IS - 0 prog 

x.o: x.c defs 
cc -c x.c 

y.o: y.c defs 
cc -c y.c 

z.o: z.c 
cc -c z.c 

If none of the source or object files have changed since the last time prog was 
made, all of the files are current, and the command 

make 

announces this fact and stops. If, however, the dejs file has been edited, x.c and 
y.c (but not z.c) is recompiled; and then prog is created from the new ".0" files. 
If only the file y.c had changed, only it is recompiled; but it is still necessary to 
reload prog. If no target name is given on the make command line, the first 
target mentioned in the description is created; otherwise, the specified targets are 
made. Thecommand 

make x.o 

would recompile x.o if x.c or dejs had changed. 

If the file exists after the commands are executed, the file's time of last 
modification is used in further decisions. If the file does not exist after the 
commands are executed, the current time is used in making further decisions. A 
method, often useful to programmers, is to include rules with mnemonic names 
and commands that do not actually produce a file with that name. These entries 
can take advantage of make's ability to generate files and substitute macros. 
Thus, an entry "save" might be included to copy a certain set of files, or an entry 
"cleanup" might be used to throwaway unneeded intermediate files. In other 
cases, one may maintain a zero-length file purely to keep track of the time at 
which certain actions were performed. This technique is useful for maintaining 
remote archives and listings. 

The make program has a simple macro mechanism for substituting in dependency 
lines and command strings. Macros are defined by command arguments or 
description file lines with embedded equal signs. A macro is invoked by 
preceding the name by a dollar sign. Macro names longer than one character 
must be parenthesized. The name of the macro is either the single character after 
the dollar sign or a name inside parentheses. The following are valid macro 
invocations: 
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$(CFLAGS) 
$2 
$(xy) 
$Z 
$(Z) 

The last two invocations are identical. A $$ is a dollar sign. 

MAKE 

The $*, $@, $?, and $ < are four special macros which change values during the 
execution of the command. (These four macros are described in the part 
"DESCRIPTION FILES AND SUBSTITUTIONS".) The following fragment 
shows assignment and use of some macros: 

OBJECTS = x.O y.o z.o 
UBES = -IS 
prog: $(OBJECTS) 

cc $(OBJECTS) $(UBES) - 0 prog 

The make command loads the three object files with the IS library. The 
command 

make /lUBES = -II -IS" 

loads them with both the Lex (-II) and the standard ( -IS) libraries since macro 
definitions on the command line override definitions in the description. 
Remember to quote arguments with embedded blanks in VENIX software 
commands. 

1.3 DESCRIPTION FILES AND SUBSTITUTIONS 

A description file contains the following information: 

• macro definitions 

• dependency information 

• executable commands. 

The comment convention is that a sharp (#) and all characters on the same line 
after a sharp are ignored. Blank lines and lines beginning with a sharp (#) are 
totally ignored. If a noncomment line is too long, the line can be continued by 
using a backslash. If the last character of a line is a backslash, then the 
backslash, the new line, and all following blanks and tabs are replaced by a single 
blank. 
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MAKE 

A macro definition is a line containing an equal sign not preceded by a colon or a 
tab. The name (string of letters and digits) to the left of the equal sign (trailing 
blanks and tabs are stripped) is assigned the string of characters following the 
equal sign (leading blanks and tabs are stripped). The following are valid macro 
definitions: 

2 = xyz 
abc = - 11 - ly -IS 
LIBES = 

The last definition assigns LIBES the null string. A macro that is never explicitly 
defined has the null string as the macro's value. 

Macro definitions may also appear on the make command line while other lines 
give information about target files. The general form of an entry is 

target 1 [target2 .. ] :[:] [dependent! .. ] [; commands] [# .. ] 
[(tab) commands] [# ... ] 

Items inside brackets may be omitted. Targets and dependents are strings of 
letters, digits, periods, and slashes. Shell metacharacters such as "*,, and "?" 
are expanded. Commands may appear either after a semicolon on a dependency 
line or on lines beginning with a tab immediately following a dependency line. A 
command is any string of characters not including a sharp (#) except when the 
sharp is in quotes or not including a new line. 

A dependency line may have either a single or a double colon. A target name 
may appear on more than one dependency line, but all of those lines must be of 
the same (single or double colon) type. For the usual single-colon case, a 
command sequence may be associated with at most one dependency line. If the 
target is out of date with any of the dependents on any of the lines and a 
command sequence is specified (even a null one following a semicolon or tab), it 
is executed; otherwise, a default creation rule may be invoked. In the double­
colon case, a command sequence may be associated with each dependency line; if 
the target is out of date with any of the files on a particular line, the associated 
commands are executed. A built-in rule may also be executed. This detailed form 
is of particular value in updating archive-type files. 

If a target must be created, the sequence of commands is executed. Normally, 
each command line is printed and then passed to a separate invocation of the 
shell after substituting for macros. The printing is suppressed in the silent mode 
or if the command line begins with an @ sign. Make normally stops if any 
command signals an error by returning a nonzero error code. Errors are ignored 
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if the - i flags have been specified on the make command line, if the fake target 
name" .IGNORE" appears in the description file, or if the command string in the 
description file begins with a hyphen. Some VENIX software commands return 
meaningless status. Because each command line is passed to a separate 
invocation of the shell, care must be taken with certain commands (e.g., cd and 
shell control commands) that have meaning only within a single shell process. 
These results are forgotten before the next line is executed. 

Before issuing any command, certain internally maintained macros are set. The 
$@ macro is set to the full target name of the current target. The $@ macro is 
evaluated only for explicitly named dependencies. The $? macro is set to the 
string of names that were found to be younger than the target. The $? macro is 
evaluated when explicit rules from the makefile are evaluated. If the command 
was generated by an implicit rule, the $ < macro is the name of the related file 
that caused the action; and the $* macro is the prefix shared by the current and 
the dependent file names. If a file must be made but there are no explicit 
commands or relevant built-in rules, the commands associated with the name 
".DEF AUL T" are used. If there is no such name, make prints a message and 
stops. 

1.4 COMMAND USAGE 

The make command takes macro definitions, flags, description file names, and 
target file names as arguments in the form: 

make [ flags 1 [macro definitions] [targets] 

The following summary of command operations explains how these arguments are 
interpreted. 

First, all macro definition arguments (arguments with embedded equal signs) are 
analyzed and the assignments made. Command-line macros override 
corresponding definitions found in the description files. Next, the flag arguments 
are examined. The permissible flags are as follows: 

- i Ignore error codes returned by invoked commands. This mode is 
entered if the fake target name ".IGNORE" appears in the 
description file. 

- s Silent mode. Do not print command lines before executing. This 
mode is also entered if the fake target name" .SILENT" appears in 
the description file. 

- r Do not use the built-in rules. 
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- n No execute mode. Print commands, but do not execute them. Even 
lines beginning with an "@" sign are printed. 

- t Touch the target files (causing them to be up to date) rather than 
issue the usual commands. 

- q Question. The make command returns a zero or nonzero status code 
depending on whether the target file is or is not up to date. 

- p Print out the complete set of macro definitions and target 
descriptions. 

- d Debug mode. Print out detailed information on files and times 
examined. 

- f Description file name. The next argument is assumed to be the name 
of a description file. A file name of "-" denotes the standard 
input. If there are no "-f" arguments, the file named makefile or 
Makefile in the current directory is read. The contents of the 
description files override the built-in rules if they are present. 

Finally, the remaining arguments are assumed to be the names of targets to be 
made, and the arguments are done in left-to-right order. If there are no such 
arguments, the first name in the description files that does not begin with a period 
is "made". 

1.5 SUFFIXES AND TRANSFORMATION RULES 

The make program does not know what file name suffixes are interesting or how 
to transform a file with one suffix into a file with another suffix. This information 
is stored in an internal table that has the form of a description file. If the - r flag 
is used, the internal table is not used. 

The list of suffixes is actually the dependency list for the name" .SUFFIXES". 
The make program searches for a file with any of the suffixes on the list. If such 
a file exists and if there is a transformation rule for that combination, make 
transforms a file with one suffix into a file with another suffix. The 
transformation rule names are the concatenation of the two suffixes. The name 
of the rule to transform a .r file to a .0 file is thus .r.o. If the rule is present and 
no explicit command sequence has been given in the user's description files, the 
command sequence for the rule .r.o is used. If a command is generated by using 
one of these suffixing rules, the macro $* is given the value of the stem 
(everything but the suffix) of the name of the file to be made; and the macro $ < 
is the name of the dependent that caused the action. 
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The order of the suffix list is significant since the list is scanned from left to right. 
The first name formed that has both a file and a rule associated with it is used. If 
new names are to be appended, the user can add an entry for" .SUFFIXES" in 
his own description file. The dependents are added to the usual list. A 
" . SUFFIXES" line without any dependents deletes the current list. It is 
necessary to clear the current list if the order of names is to be changed. The 
following is an excerpt from the default rules file: 

.SUFFIXES : .0 .c .e .r .f .y .yr .ye .1 .s 
YACC = yacc 
YACCR = yacc -r 
YACCE = yacc -e 
YFLAGS = 

LEX = lex 
LFLAGS = 
CC = cc 
AS = as -
CFLAGS 
RC = ec 
RFLAGS 
EC = ec 
EFLAGS 
FFlags = 
.c.o : 

$(CC) $(CFLAGS) - c $ < 
.e.o .LO .f.o : 

$(EC) $(RFLAGS) $(EFLAGS) $(FFLAGS) - c $ < 
.s.o : 

.y.o : 

.y.c: 

$(AS) -0 $@ $< 

$(Y ACC) $(YFLAGS) $ < 
$(CC) $(CFLAGS) - c y.tab.c 
rm y.tab.c 
mv y.tab.o $@ 

$(Y ACC) $(YFLAGS) $ < 
mv y.tab.c $@ 

1.6 IMPLICIT RULES 

The make program uses a table of interesting suffixes and a set of transformation 
rules to supply default dependency information and implied commands. The 
default suffix list is as follows: 

1-11 



MAKE 

.0 Object file 

.c C source file 

.e Efl source file 

.r Ratfor source file 

.f Fortran source file 

.s Assembler source file 

.y Yacc-C source grammar 

.yr Yacc-Ratfor source grammar 

.ye Yacc-Efl source grammar 

.1 Lex source grammar. 

If there are two paths connecting a pair of suffixes, the longer one is used only if 
the intermediate file exists or is named in the description. 

If the file x.o were needed and there were an x.c in the description or directory, 
the x.o file would be compiled. If there were also an x.l, that grammar would be 
run through Lex before compiling the result. However, if there were no x.c but 
there were an x.l, make would discard the intermediate C language file and use 
the direct link. 

It is possible to change the names of some of the compilers used in the default or 
the flag arguments with which they are invoked by knowing the macro names 
used. The compiler names are the macros AS, CC, RC, EC, YACC, YACCR, 
YACCE, and LEX. The command 

make CC = newcc 

will cause the newcc command to be used instead of the usual C language 
compiler. The macros CFLAGS, RFLAGS, EFLAGS, YFLAGS, and LFLAGS 
may be set to cause these commands to be issued with optional flags. Thus 

make "CFLAGS= -0" 

causes the optimizing C language compiler to be used. 

1.7 SUGGESTIONS AND WARNINGS 

The most common difficulties arise from make's specific meaning of dependency. 
If file x.c has a "#include "defs"" line, then the object file x.o depends on defs; 
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the source file x.c does not. If defs is changed, nothing is done to the file x.c 
while file x.o must be recreated. 

To discover what make would do, the - n option is very useful. The command 

make -n 

orders make to print out the commands which make would issue without actually 
taking the time to execute them. If a change to a file is absolutely certain to be 
mild in character (e.g., adding a new definition to an include file), the - t (touch) 
option can save a lot of time. Instead of issuing a large number of superfluous 
recompilations, make updates the modification times on the affected file. Thus, 
the command 

make -ts 

("touch silently") causes the relevant files to appear up to date. Obvious care is 
necessary since this mode of operation subverts the intention of make and 
destroys all memory of the previous relationships. 

The debugging flag (- d) causes make to print out a very detailed description of 
what it is doing including the file times. The output is verbose and recommended 
only as a last resort. 
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Chapter 2 
THE M4 MACRO PROCESSOR 

2.1 GENERAL 

The M4 macro processor is a front end for rational Fortran (Ratfor) and the C 
programming languages. The "#define" statement in C language and the 
analogous "define" in Ratfor are examples of the basic facility provided by any 
macro processor. At the beginning of a program, a symbolic name or symbolic 
constant can be defined as a particular string of characters. The compiler will 
then replace later unquoted occurrences of the symbolic name with the 
corresponding string. Besides the straightforward replacement of one string of 
text by another, the M4 macro processor provides the following features: 

• arguments 

• arithmetic capabilities 

• file manipulation 

• conditional macro expansion 

• string and substring functions. 
The basic operation of M4 is to read every alphanumeric token (string of letters 
and digits) input and determine if the token is the name of a macro. The name of 
the macro is replaced by its defining text, and the resulting string is pushed back 
onto the input to be rescanned. Macros may be called with arguments. The 
arguments are collected and substituted into the right places in the defining text 
before the defining text is rescanned. The user also has the capability to define 
new macros. Built-ins and user-defined macros work exactly the same way except 
that some of the built-in macros have side effects on the state of the process. A 
list of 21 built-in macros provided by the M4 macro processor can be found in 
Figure 2-1. 
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Macro Function 
Name 

changequote Restores original 
characters or 
makes new quote 
characters the 
left and right 
brackets. 

changes com Changes left and right 
comment markers from 
the default # and new 
line. 

deer Returns the value of 
its argument decremented 
by l. 

define Defines new macros. 
defn Returns the quoted 

definition of its 
argument(s). 

divert Diverts output to 
l-out-of-lO 
diversions. 

Figure 2-1. BUIlt-m Macros (Sheet 1 of 4) 
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Macro Function 
Name 

divnum Returns the number 
of the currently 
active diversion. 

dnl Reads and discards 
characters up to 
and including the 
next new line. 

dumpdef Dumps the current 
names and definitions 
of items named as 
arguments. 

errprint Prints its arguments 
on the standard 
error file. 

eval Prints arbitrary 
arithmetic on 
integers. 

ifdef Determines if a 
macro is currently 
defined. 

ifelse Performs arbitrary 
conditional testing. 

include Returns the contents 
of the file named 
in the argument. A 
fatal error occurs 
if the file name 
cannot be accessed. 

Figure 2-2. Bmlt-m Macros (Sheet 2 of 4) 
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Macro Function 
Name 

iner Returns the value of 
its argument 
incremented by 1. 

index Returns the position 
where the second 
argument begins in 
the first argument 
of index. 

len Returns the number of 
characters that makes 
its argument. 

m4exit Causes immediate 
exit from M4. 

m4wrap Pushes the exit code 
back at final EOF. 

maketemp Facilitates making 
unique file names. 

popdef Removes current 
definition of its 
argument(s) 
exposing any previous 
definitions. 

pushdef Defines new macros 
but saves any 
previous definition. 

Figure 2-3. BUIlt-Ill Macros (Sheet 3 of 4) 
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Macro Function 
Name 

shift Returns all arguments 
of shift except the 
first argument. 

sinclude Returns the contents 
of the file named 
in the arguments. 
The macro remains 
silent and continues 
if the file is 
inaccessible. 

substr Produces substrings 
of strings. 

syscmd Executes the VENIX System 
command given in 
the first argument. 

traceoff Turns macro trace off. 

traceon Turns the macro trace on. 
trans lit Performs character 

transliteration. 

undefine Removes user-defined 
or built-in macro 
definitions. 

undivert Discards the diverted 
text. 

Figure 2-4. Bmlt-m Macros (Sheet 4 of 4) 

To use the M4 macro processor, input the following command: 

m4 [optional files] 

MACROS 

Each argument file is processed in order. If there are no arguments or if an 
argument is "-", the standard input is read at that point. The processed text is 
written on the standard output which may be captured for subsequent processing 
with the following input: 

m4 [files] > outputfile 
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2.2 DEFINING MACROS 

The primary built-in function of M4 is define. Define is used to define new 
macros. The following input: 

define(name, stuff) 

causes the string name to be defined as stuff. All subsequent occurrences of 
name will be replaced by stuff. Name must be alphanumeric and must begin with 
a letter (the underscore counts as a letter). Stuff is any text that contains 
balanced parentheses. Use of a slash may stretch stuff over multiple lines. Thus, 
as a typical example, 

define(N, 100) 

if (i > N) 

defines N to be 100 and uses the symbolic constant N in a later if statement. The 
left parenthesis must immediately follow the word define to signal that define has 
arguments. If a user-defined macro or built-in name is not followed immediately 
by "(", it is assumed to have no arguments. Macro calls have the following 
general form: 

name(argl ,arg2, ... argn) 

A macro name is only recognized as such if it appears surrounded by 
nonalphanumerics. Using the following example: 

define(N, 100) 

if (NNN > 100) 

the variable NNN is absolutely unrelated to the defined macro N even though the 
variable contains a lot of Ns. Macros may be defined in terms of other names. 
For example, 

define(N, 100) 
define(M, N) 

defines both M and N to be 100. If N is redefined and subsequently changes, M 
retains the value of 100 not N. The M4 macro processor expands macro names 
into their defining text as soon as possible. The string N is immediately replaced 
by 100. Then the string M is also immediately replaced by 100. The overall 
result is the same as using the following input in the first place: 

define(M, 100) 

The order of the definitions can be interchanged as follows: 
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define(M, N) 
define(N, 100) 

MACROS 

Now M is defined to be the string N, so when the value of M is requested later, 
the result is the value of N at that time (because the M will be replaced by N 
which will be replaced by 100). The more general solution is to delay the 
expansion of the arguments of define by quoting them. Any text surrounded by 
left and right single quotes is not expanded immediately but has the quotes 
stripped off. The value of a quoted string is the string stripped of the quotes. If 
the input is 

define(N, 100) 
define(M, 'N') 

the quotes around the N are stripped off as the argument is being collected. The 
results of using quotes is to define M as the string N, not 100. The general rule is 
that M4 always strips off one level of single quotes whenever it evaluates 
something. This is true even outside of macros. If the word define is to appear 
in the output, the word must be quoted in the input as follows: 

'define' = 1; 

Another example of using quotes is redefining N. To redefine N, the evaluation 
must be delayed by quoting 

define(N, 100) 

define('N', 200) 

In M4, it is often wise to quote the first argument of a macro. The following 
example will not redefine N: 

define(N, 100) 

define(N, 200) 

The N in the second definition is replaced by 100. The result is equivalent to the 
following statement: 

define(100, 200) 

This statement is ignored by M4 since only things that look like names can be 
defined. If left and right single quotes are not convenient for some reason, the 
quote characters can be changed with the following built-in macro: 

changequote( [, ]) 
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The built-in changequote makes the new quote characters the left and right 
brackets. The original characters can be restored by using changequote without 
arguments as follows: 

change quote 

There are two additional built-ins related to define. The undefine macro removes 
the definition of some macro or built-in as follows: 

undefine('N') 

The macro removes the definition of N. Built-ins can be removed with undefine, 
as follows: 

undefine('define') 

But once removed, the definition cannot be reused. The built-in ifdef provides a 
way to determine if a macro is currently defined. Depending on the system, a 
definition appropriate for the particular machine can be made as follows: 

ifdef('pdpll', 'define(wordsize, 16)') 
ifdef('u3b', 'define(wordsize,32),) 

Remember to use the quotes. The ifdef macro actually permits three arguments. 
If the first argument is defined, the value of ifdef is the second argument. If the 
first argument is not defined, the value of ifdef is the third argument. If there is 
no third argument, the value of ifdef is null. If the name is undefined, the value 
of ifdef is then the third argument, as in 

ifdef('venix', on VENIX, not on VENIX) 

2.3 ARGUMENTS 

So far the simplest form of macro processing has been discussed which is 
replacing one string by another (fixed) string. User-defined macros may also have 
arguments, so different invocations can have different results. Within the 
replacement text for a macro (the second argument of its define), any occurrence 
of $n is replaced by the nth argument when the macro is actually used. Thus, the 
macro bump defined as 

define(bump, $1 = $1 + 1) 

generates code to increment its argument by 1. The 'bump(x), statement is 
equivalent to 'x = x + 1.' A macro can have as many arguments as needed, but 
only the first nine are accessible ($1 through $9). The macro name is $0 although 
that is less commonly used. Arguments that are not supplied are replaced by null 
strings, so a macro can be defined which simply concatenates its arguments like 
this: 

2-8 



MACROS 

define(cat, $1 $2$3$4$5$6$7$8$9) 

Thus, 'cat(x, y, z)' is equivalent to 'xyz'. Arguments $4 through $9 are null since 
no corresponding arguments were provided. Leading unquoted blanks, tabs, or 
newlines that occur during argument collection are discarded. All other white 
space is retained. Thus: 

define(a, b c) 

defines 'a' to be 'b c'. Arguments are separated by commas; however, when 
commas are within parentheses, the argument is not terminated nor separated. 
For example, 

define(a, (b,c)) 

has only two arguments. The first argument is a. The second is literally (b,e). A 
bare comma or parenthesis can be inserted by quoting it. 

2.4 ARITHMETIC BUILT -INS 

The M4 provides three built-in functions for doing arithmetic on integers (only). 
The simplest is iner which increments its numeric argument by 1. The built-in 
deer decrements by 1. Thus to handle the common programming situation where 
a variable is to be defined as "one more than N', use the following: 

define(N, 100) 
define(N 1, 'incr(N)') 

Then NI is defined as one more than the current value of N. The more general 
mechanism for arithmetic is a built-in called eval which is capable of arbitrary 
arithmetic on integers. The operators in decreasing order of precedence are 

unary + and -
** or ~ (exponentiation) 
* / 070 (modulus) 
+ -
== != < <= > >= 

(not) 
& or && (logical and) 
I or II (logical or). 

Parentheses may be used to group operations where needed. All the operands of 
an expression given to eval must ultimately be numeric. The numeric value of a 
true relation (like 1> 0) is 1 and false is O. The precision in eval is 32 bits under 
the VENIX operating system. As a simple example, define M to be 
"2 = = N + 1" using eval as follows: 
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define(N, 3) 
define(M, 'eval(2 = = N + 1)') 

The defining text for a macro should be quoted unless the text is very simple. 
Quoting the defining text usually gives the desired result and is a good habit to 
get into. 

2.5 FILE MANIPULATION 

A new file can be included in the input at any time by the built-in function 
include. For example, 

include(filename) 

inserts the contents of filename in place of the include command. The contents 
of the file is often a set of definitions. The value of include (include's 
replacement text) is the contents of the file. If needed, the contents can be 
captured in definitions, etc. A fatal error occurs if the file named in include 
cannot be accessed. To get some control over this situation, the alternate form 
sinclude can be used. The built-in sinclude (silent include) says nothing and 
continues if the file named cannot be accessed. The output of M4 can be diverted 
to temporary files during processing, and the collected material can be output 
upon command. The M4 maintains nine of these diversions, numbered 1 through 
9. If the built-in macro 

divert(n) 

is used, all subsequent output is put onto the end of a temporary file referred to 
as n. Diverting to this file is stopped by the divert or divert(O) command which 
resumes the normal output process. Diverted text is normally output all at once 
at the end of processing with the diversions output in numerical order. 
Diversions can be brought back at any time by appending the new diversion to 
the current diversion. Output diverted to a stream other than 0 through 9 is 
discarded. The built-in un divert brings back all diversions in numerical order. 
The built-in undivert with arguments brings back the selected diversions in the 
order given. The act of undiverting discards the diverted text (as does diverting) 
into a diversion whose number is not between 0 and 9, inclusive. The value of 
undivert is not the diverted text. Furthermore, the diverted material is not 
res canned for macros. The built-in divnum returns the number of the currently 
active diversion. The current output stream is zero during normal processing. 

2.6 SYSTEM COMMAND 

Any program in the local operating system can be run by using the syscmd built­
in. For example, 
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syscmd( date) 

on the VENIX system runs the date command. Normally, syscmd would be used 
to create a file for a subsequent include. To facilitate making unique file names, 
the built-in maketemp is provided with specifications identical to the system 
function mktemp. The maketemp macro fills in a string of XXXXX in the 
argument with the process id of the current process. 

2.7 CONDITIONALS 

Arbitrary conditional testing is performed via built-in ifelse. In the simplest form 

ifelse(a, b, c, d) 

compares the two strings a and b. If a and b are identical, ifelse returns the 
string c. Otherwise, string d is returned. Thus, a macro called compare can be 
defined as one which compares tw.o strings and returns "yes" or "no" if they are 
the same or different as follows: 

define(compare, 'ifelse($I, $2, yes, no)') 

Note the quotes which prevents evaluation of ifelse occurring too early. If the 
fourth argument is missing, it is treated as empty. The built-in ifelse can actually 
have any number of arguments and provides a limited form of multiway decision 
capability. In the input 

ifelse(a, b, c, d, e, f, g) 

if the string a matches the string b, the result is c. Otherwise, if d is the same as 
e, the result is f. Otherwise, the result is g. If the final argument is omitted, the 
result is null, so 

ifelse(a, b, c) 

is c if a matches b, and null otherwise. 

2.8 STRING MANIPULATION 

The built-in len returns the length of the string (number of characters) that makes 
up its argument. Thus: 

len(abcdef) 
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is 6, and len«a,b» is 5. The built-in substr can be used to produce substrings of 
strings. Using input, substr(s, i, n) returns the substring of s that starts at the ith 
position (origin zero) and is n characters long. If n is omitted, the rest of the 
string is returned. Inputting 

substr('now is the time', 1) 

returns the following string: 

ow is the time. 

If i or n are out of range, various actions occur. The built-in index(sl, s2) 
returns the index (position) in sl where the string s2 occurs or -1 if it does not 
occur. As with substr, the origin for strings is o. The built-in translit performs 
character transliteration and has the general form 

translit(s, f, 1) 

which modifies s by replacing any character found in j by the corresponding 
character of t. Using input 

translit(s, aeiou, 12345) 

replaces the vowels by the corresponding digits. If t is shorter than j, characters 
that do not have an entry in t are deleted. As a limiting case, if t is not present at 
all, characters from j are deleted from s. So 

translit(s, aeiou) 

would delete vowels from s. There is also a built-in called dnl that deletes all 
characters that follow it up to and including the next new line. The dnl macro is 
useful mainly for throwing away empty lines that otherwise tend to clutter up M4 
output. Using input 

define(N, 100) 
define(M, 200) 
define(L, 300) 

results in a new line at the end of each line that is not part of the definition. So 
the new line is copied into the output where it may not be wanted. If the built-in 
dnl is added to each of these lines, the newlines will disappear. Another method 
of achieving the same results is to input 
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divert(-l) 
define( ... ) 

divert. 

2.9 PRINTING 

MACROS 

The built-in errprint writes its arguments out on the standard error file. An 
example would be 

errprint('fatal error') 

The built-in dumpdef is a debugging aid that dumps the current names and 
definitions of items named as arguments. If no arguments are given, then all 
current names and definitions are printed. Do not forget to quote the names. 
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Chapter 3 
THE awk PROGRAMMING LANGUAGE 

3.1 GENERAL 

The awk is a file-processing programming language designed to make many 
common information and retrieval text manipulation tasks easy to state and 
perform. The awk: 

• Generates reports 

• Matches patterns 

• Validates data 

• Filters data for transmission. 

3.2 PROGRAM STRUCTURE 

The awk program is a sequence of statements of the form 

pattern {action} 
pattern {action} 

The awk program is run on a set of input files. The basic operation of awk is to 
scan a set of input lines, in order, one at a time. In each line, awk searches for 
the pattern described in the awk program, then if that pattern is found in the 
input line, a corresponding action is performed. In this way, each statement of 
the awk program is executed for a given input line. When all the patterns are 
tested, the next input line is fetched; and the awk program is once again executed 
from the beginning. 

In the awk command, either the pattern or the action is omitted, but not both. If 
there is no action for a pattern, the matching line is simply printed. If there is no 
pattern for an action, then the action is performed for every input line. The null 
awk program does nothing. Since patterns and actions are both optional, actions 
are enclosed in braces to distinguish them from patterns. 
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For example, this awk program 

Ixl {print} 

prints every input line that has an "x" in it. 

An awk program has the following structure: 

- a < BEGIN> section 
- a < record> or main section 
- an < END> section. 

The < BEGIN> section is run before any input lines are read, and the < END> 
section is run after all the data files are processed. The < record> section is data 
driven. That is, it is the section that is run over and over for each separate line of 
input. 

Values are assigned to variables from the awk command line. The < BEGIN> 
section is run before these assignments are made. 

The words "BEGIN" and "END" are actually patterns recognized by awk. 
These are discussed further in the pattern section of this guide. 

3.3 LEXICAL CONVENTION 

All awk programs are made up of lexical units called tokens. In awk there are 
eight token types: 

1. numeric constants 

2. string constants 

3. keywords 

4. identifiers 

5. operators 

6. record and file tokens 

7. comments 

8. separators. 
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3.3.1 Numeric Constants 

A numeric constant is either a decimal constant or a floating constant. A decimal 
constant is a nonnull sequence of digits containing at most one decimal point as 
in 12, 12., 1.2, and .12. A floating constant is a decimal constant followed by e 
or E followed by an optional + or - sign followed by a nonnull sequence of 
digits as in 12e3, 1.2e3, 1.2e-3, and 1.2E + 3. The maximum size and precision of 
a numeric constant are machine dependent. 

3.3.2 String Constants 

A string constant is a sequence of zero or more characters surrounded by double 
quotes as in "," "a", "ab", and "12". A double quote is put in a string by 
preceeding it with \ as in "He said, \ "Sit! \"". A newline is put in a string by 
using \n in its place. No other characters need to be escaped. Strings can be 
(almost) any length. 

3.3.3 Keywords 

Strings used as keywords are shown in Figure 3-1. 

Keywords 

begin break length 
end close log 
FILENAME continue next 
FS close number 
NF exit print 
NR exp printf 
OFS for split 
ORS getline sprintf 
OFMT if sqrt 
RS in string 

index substr 
int while 

Figure 3-1. Stnngs Used as Keywords 

3.3.4 Identifiers 

Identifiers in awk serve to denote variables and arrays. An identifier is a sequence 
of letters, digits, and underscores, beginning with a letter or an underscore. 
Uppercase and lowercase letters are different. 
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3.3.5 Operators 

The awk has assignment, arithmetic, relational, and logical operators similar to 
those in the C programming language and regular expression pattern matching 
operators similar to those in the VENIX operating system program egrep and lex. 

Assignment operators are shown in Figure 3-2. 

Assignment Operators 
Symbol Usage Description 

= assignment 
+= plus-equals X += Y is similar 

to X = X+Y 

- = minus-equals X - = y'is similar 
to X = X-V 

*= times-equals X * = Y is similar 
to X = X*Y 

/= divide-equals X = Y is similar 
to X = X/V 

070 = mod-equals X%=Y is similar 
to X = X%Y 

++ prefix and + +X and FBX+ + are similar 
postfix to X=X+l 
increments 

- prefix and - and X similar 
postfix to X = X-I 
decrements 

Figure 3-2. Symbols and Descriptions for Assignment Operators 
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Arithmetic operators are shown in Figure 3-3. 

Arithmetic Operators 

Symbol Description 
.R 

+ unary binary plus 
- unary and binary minus 

* multiplication 
/ division 
0,10 modulus 
( ... ) grouping 

Figure ~-3. Symbols and DescrIptlOns for ArIthmetic Operators 

Relational operators are shown in Figure 3-4. 

Relational Operators 

Symbol Description 

< less than 
<= less than or equal to 
- - equal to 
!= not equal to 
>= greater than or equal to 
> greater than 

Figure 3-4. Symbols and Descriptions for Relational Operators 
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Logical operators are shown in Figure 3-5. 

Logical Operators 

Symbol Description 

&& and 
! ! or 
! not 

Figure 3-5. Symbols and DescnptIOns for Logical Operators 

Regular expression matching operators are shown in the Figure 3-6. 

Regular Expression Pattern Matching Operators 

Symbol Description 

- matches 
!- does not match 

Figure 3-6. Symbols and Descriptions for Regular Expression Pattern 

3.3.6 Record and Field Tokens 

The $0 is a special variable whose value is that of the current input record. The 
$1, $2 ... are special variables whose values are those of the first field, the second 
field, ... , respectively, of the current input record. The keyword NF (Number 
of Fields) is a special variable whose value is the number of fields in the current 
input records. Thus $NF has, as its value, the value of the last field of the 
current input records. Notice that the field of each record is numbered 1 and that 
the number of fields can vary from record to record. None of these variables is 
defined in the action associated with a BEGIN or END pattern, where there is no 
current input record. 
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The keyword NR (Number of Records) is a variable whose value is the number of 
input records read so far. The first input record read is 1. 

3.3.7 Record Separators 

The keyword RS (Record Separators) is a variable whose value is the current 
record separator. The value of RS is initially set to newline, indicating that 
adjacent input records are separated by a newline. Keyword RS is changed to any 
character c by including the assignment statement RS = "c" in an action. 

3.3.8 Field Separator 

The keyword FS (Field Separator) is a variable indicating the current field 
separator. Initially, the value of FS is a blank, indicating that fields are separated 
by white space, i.e., any nonnull sequence of blanks and tabs. Keyword FS is 
changed to any single character c by including the assignment statement 
Fe = "c" in an action or by using the optional command line argument -Fc. 
Two values of c have special meaning, space and t. The assignment statement 
FS = " " makes white space the field separator; and on the command line, -Ft 
makes tab the field separator. 

If the field operator is not a blank, then there is a field in the record on each side 
of the separator. For instance, if the field separator is 1, the record 1XXX1 has 
three fields. The first and last are null. If the field separator is blank, then fields 
are separated by white space, and none of the NF fields are null. 

3.3.9 Multiline Records 

The assignment RS = " " makes an empty line the record separator and makes a 
nonnull sequence (consisting of blanks, tabs, and possibly a newline) the field 
separator. With this setting, none of the first NF fields of any record are null. 

3.3.10 Output Record and Field Separators 

The value of OFS (Output Field Separator) is the output field separator. It is put 
between fields by print. The value of ORS (Output Record Separators) is put after 
each record by print. Initially , ORS is set to a newline and OFS to a space. 
These values may change to any string by assignments such as ORS = "abc" and 
OFS = "xyz". 
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3.3.11 Comments 

A comment is introduced by a # and terminated by a newline. For example: 
# part of the line is a comment 

A comment can be appended to the end of any line of an awk program. 

3.3.12 Separators and Brackets 

Tokens in awk are usually separated by nonnull sequences of blank, tabs, and 
newlines, or by other punctuation symbols such as commas and semicolons. 
Braces { ... } surround actions, slashes / .. .1 surround regular expression patterns, 
and double quotes" ... " surround strings. 

3.4 PRIMARY EXPRESSIONS 

In awk, patterns and actions are made up of expressions. The basic building 
blocks of expressions are the primary expressions: 

numeric constants 
string constant 
var 
junction 

Each expression has both a numeric and a string value, one of which is usually 
preferred. The rules for determining the preferred value of an expression are 
explained below. 

3.4.1 Numeric Constants 

The format of a numeric constant was defined previously in LEXICAL 
CONVENTIONS. Numeric values are stored as floating point numbers. Both the 
numeric and string value of a numeric constant is the decimal number represented 
by the constant. The preferred value is the numeric value. 
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Numeric values for string constants are in Figure 3-7. 

Numeric Constants 

Numeric Numeric String 
Constant Value Value 

0 0 0 
1 1 1 

.5 0.5 .5 

.5e2 50 50 

Figure 3-7. Numeric Values for String Constants 

3.4.2 String Constants 

The format of a string constant was defined previously in LEXICAL 
CONVENTIONS. The numeric value of a string constant is 0 unless the string is 
a numeric constant enclosed in double quotes. In this case, the numeric value is 
the number represented. The preferred value of a string constant is its string 
value. The string value of a string constant is always the string itself. 
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String values for string constants are in Figure 3-8. 

String Constants 

String Numeric String 
Constant Value Value 

" " 0 empty space 
"a" 0 a 
"XYZ" 0 xyz 
"0" 0 0 
"1" 1 1 
".5" 0.5 .5 
" .5e2" 0.5 .5e2a 

Figure 3-8. Stnng Values for Stnng Constants 

3.4.3 Vars 

A var is one of the following: 

identifier 
identifier { expression} 
$term 

The numeric value of any uninitialized var is 0, and the string value is the empty 
string. 

An identifier by itself is a simple variable. A var of the form identifier 
{expression} represents an element of an associative array named by identifier. 
The string value of expression is used as the index into the array. The preferred 
value of identifier or identifier {expression} is determined by context. 

The var $0 refers to the current input record. Its string and numeric values are 
those of the current input record. If the current input record represents a number, 
then the numeric value of $0 is the number and the string value is the literal 
string. The preferred value of $0 is string unless the current input record is a 
number. The $0 cannot be changed by assignment. 

The var $1, $2, ..• refer to fields 1, 2, ... of the current input record. The 
string and numeric value of $i for 1 < = i < = NF are those of the ith field of the 
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current input record. As with $0, if the ith field represents a number, then the 
numeric value of $i is the number and the string value is the literal string. The 
preferred value of $i is string unless the ith field is a number. The $i is changed 
by assignment. The $0 is then changed accordingly. 

In general, $term refers to the input record if term has the numeric value ° and to 
field i if the greatest integer in the numeric value of term is i. If i < ° or if 
i> = 100, then accessing $i causes awk to produce an error diagnostic. If 
NF < i < = 100, then $i behaves like an uninitialized var. Accessing $i for i > NF 
does not change the value of NF. 

3.4.4 Function 

The awk has a number of built-in functions that perform common arithmetic and 
string operations. 

The arithmetic functions are in Figure 3-9. 

Functions 

exp (expression) 
int (expression) 
log (expression) 
sqrt (expression) 

Figure 3-9. Built-in FunctIOns for AnthmetIc and String Operations 

These functions (exp, int, log, and sqrt) compute the exponential, integer part, 
natural logarithm, and square root, respectively, of the numeric value of 
expression. The (expression) may be omitted; then the function is applied to $0. 
The preferred value of an arithmetic function is numeric. 
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String functions are shown in Figure 3-10. 

String Functions 

getline 
index (expression l, expression2) 
length (expression) 
split (expression, identifier, expression2) 
split (expression, identifier) 
sprintf (format, expressionl, expression2 ... ) 
substr (expression 1, expression2) 
substr (expression 1, expression2, expression3) 

Figure 3-10. Expressions for Strmg FunctIOns 

The function getline causes the next input record to replace the current record. It 
returns 1 if there is a next input record or a 0 if there is no next input record. 
The value of NR is updated. 

The function index (el,e2) takes the string value of expressions el and e2 and 
returns the first position of where e2 occurs as a substring in el. If e2 does not 
occur in el, index returns O. For example, index ("abc", "bc")=2 and index 
("abc", "ac")=O. 

The function length without an argument returns the number of characters in the 
current input record. With an expression argument, length (e) returns the number 
of characters in the string value of e. For example, length (" abc") = 3 and length 
(17)=2. 

The function split (e array, sep) splits the string value of expression e into fields 
that are then stored in array [1J, array [2J, ... , array [nJ using the string value of 
sep as the field separator. Split returns the number of fields found in e. The 
function split (e, array) uses the current value of FS to indicate the field 
separator. For example, after invoking n = split ($0), all], a[2], ... , a[n] is the 
same sequence of values as $1, $2 ... , $NF. 

The function splitf (f, e1, e2 •.• ) produces the value of expressions e1, e2 ... in the 
format specified by the string value of the expression f. The format control 
conventions are those of the printf statement in the C programming language 
[KR]. 
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The function substr (string, pos) returns the suffix of string starting at position 
pos. The function substr (string, pos, length) returns the substring of string that 
begins at position pos and is length characters long. If pos + length is greater 
than the length of string then substr (string, pos, length) is equivalent to substr 
(string, pos). For example, substr ("abc", 2, 1) = "b", substr ("abc", 2, 2) 
"be", and substr ("abe", 2, 3) = "be". Positions less than 1 are taken as 1. A 
negative or zero length produces a null result. 

The preferred value of sprintf and substr is string. The preferred value of the 
remaining string functions is numeric. 

3.5 TERMS 

Various arithmetic operators are applied to primary expressions to produce larger 
syntactic units called terms. All arithmetic is done in floating point. A term has 
one of the following forms: 

primary expression 
term binop term 
unop term 
incremented var 
(term) 

3.5.1 Binary Terms 

In a term of the form 

term I 
binop 
term2 

binop can be one of the five binary arithmetic operators +, -, * (multiplication), 
I(division), 0J0 (modulus). The binary operator is applied to the numeric value of 
the operand termI and term2, and the result is the usual numeric value. This 
numeric value is the preferred value, but it can be interpreted as a string value 
(see Numeric Constants). The operators * , I, and % have higher precedence 
than + and -. All operators are left associative. 

3.5.2 Unary Term 

In a term of the form 

unop term 
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unop can be unary + or -. The unary operator is applied to the numeric value 
of term, and the result is the usual numeric value which is preferred. However, it 
can be interpreted as a string value. Unary + and - have higher precedence than 
*, /, and 0,10 • 

3.5.3 Incremented Vars 

An incremented var has one of the forms 

+ + var 
- - var 
var + + 
var - -

The + + var has the value var + 1 and has the effect of var = var + 1. 
Similarly, - - var has the value var - 1 and has the effect of var = var - 1. 
Therefore, var + + has the same value as var and has the effect of var = var + 
1. Similarly, var - - has the same value as var and has the effect of var = var 
- 1. The preferred value of an incremented var is numeric. 

3.5.4 Parenthesized Terms 

Parentheses are used to group terms in the usual manner. 

3.6 EXPRESSIONS 

An awk expression is one of the following: 

term 
term term ... 
var asgnop expression 

3.6.1 Concatenation of Terms 

In an expression of the form termi term2 ... , the string value of the terms are 
concatenated. The preferred value of the resulting expression is a string value 
that can be interpreted as a numeric value. Concatenation of terms has lower 
precedence than binary + and -. For example, 1 +2 3 +4 has the string (and 
numeric) value 37. 

3.6.2 Assignment Expressions 

An assignment expression is one of the forms 
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var asgnop expression 

where asgnop is one of the six assignment operators: 

= 
+= 

*= 
1= 
0/0 = 

The preferred value of var is the same as that of expression. 

In an expression of the form 

var = expression 

the numeric and string value of var becomes those of expression. 

var op = expression 

is equivalent to 

var = var op expression 

AWK 

where op is one of; +, -, *, I, 0/0. The asgnops are right associative and have 
the lowest precedence of any operator. Thus, a + = b * = c-2 is equivalent to 
the sequence of assignments 

b = b * (c-2) 
a = a + b 

3.7 USING awk 

There are two ways in which to present your awk program of pattern-action 
statements to awk for processing: 

1. If the program is short (a line or two), it is often easiest to make the 
program the first argument on the command line: 

awk ' program ' files 

where "files" is an optional list of input files and "program" is your awk 
program. Note that there are single quotes around the program in order for 
the shell to accept the entire string (program) as the first argument to awk. 
For example, write to the shell 

awk ' Ixl {print } , files 

to run the awk script Ixl {print} on the input file "files". If no input files 
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are specified, awk takes input from the standard input stdin. You can also 
specify that input comes from stdin by using "-" (the hyphen) as one of the 
files. The pattern-action statement 

awk 'program' files -

looks for input from "files" and from stdin and processes first from "files" 
and then from stdin. 

2. Alternately, if your awk program is long, it is more convenient to put the 
program in a separate file, awkprog, and tell awk to fetch it from there. 
This is done by using the "-f" option after the awk command as follows: 

awk -f awkprog files 

where "files" is an optional list of input files that may include stdin as is 
indicated by a hyphen (-). 

For example: 

awk' BEGIN { 

} 

prints 

hello, world 

print "hello, world" 
exit 

on the standard output when given to the shell. Recall that the word "BEGIN" 
is a special pattern indicating that the action following in braces is run before any 
data is read. Words "print" and "exit" are both discussed in later sections. 

This awk program could be run by putting 

BEGIN { 
print "hello, world" 
exit 
} 

in a file named awkprog , and then the command 

awk - f awkprog 

given to the shell. This would have the same effect as the first procedure. 
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3.8 INPUT: RECORDS AND FIELDS 

The awk reads its input one record at a time unless changed by you. A record is a 
sequence of characters from the input ending with a newline character or with an 
end of file. Thus, a record is a line of input. The awk program reads in characters 
until it encounters a newline or end of file. The string of characters, thus read, is 
assigned to the variable $0. You can change the character that indicates the end 
of a record by assigning a new character to the special variable RS (the record 
separator). Assignment of values to variables and these special variables such as 
RS are discussed later. 

Once awk has read in a record, it then splits the record into "fields". A field is a 
string of characters separated by blanks or tabs, unless you specify otherwise. You 
may change field separators from blanks or tabs to whatever characters you 
choose in the same way that record separators are changed. That is, the special 
variable FS is assigned a different value. 

As an example, let us suppose that the file "countries" contains the area in 
thousands of square miles, the population in millions, and the continent for the 
ten largest countries in the world. (Figures are from 1978; Russia is placed in 
Asia.) 

Sample Input File "countries": 

Russia 8650 262 Asia 
Canada 3852 24 North America 
China 3692 .866 Asia 
USA 3615 219 North America 
Brazil 3286 116 South America 
Australia 68 14 Australia 
India 1269 637 Asia 
Argentina 72 26 South America 
Sudan 968 19 Africa 
Algeria 920 18 Africa 

The wide spaces are tabs in the original input and a single blank separates North 
and South from America. We use this data as the input for many of the awk 
programs in this guide since it is typical of the type of material that awk is best at 
processing (a mixture of words and numbers separated into fields or columns 
separated by blanks and tabs). 

Each of these lines has either four or five fields if blanks and/or tabs separate the 
fields. This is what awk assumes unless told otherwise. In the above example, the 
first record is 
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Russia 8650 262 Asia 

When this record is read by awk, it is assigned to the variable $0. If you want to 
refer to this entire record, it is done through the variable, $0. 

For example, the following input: 

{print $O} 

prints the entire record. Fields within a record are assigned to the variables $1, 
$2, $3, and so forth; that is, the first field of the present record is referred to as 
$1 by the awk program. The second field of the present record is referred to as $2 
by the awk program. The ith field of the present record is referred to as $i by the 
awk program. Thus, in the above example of the file countries, in the first 
record; 

$1 is equal to the string "Russia" 
$2 is equal to the integer 8650 
$3 is equal to the integer 262 
$4 is equal to the string "Asia" 
$5 is equal to the null string 

... and so forth. 

To print the continent, followed by the name of the country, followed by its 
population, use the following awk script: 

{print $4, $1, $3} 

Note that awk does not require type declarations. 

3.9 INPUT: FROM THE COMMAND LINE 

It is possible to assign values to variables from within an awk program. Because 
you do not declare types of variables, a variable is created simply by referring to 
it. An example of assigning a value to a variable is: 

x=5 
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This statement in an awk program assigns the value 5 to the variable x. It is also 
possible to assign values to variables from the command line. This provides 
another way to supply input values to awk programs. 

For example 

awk' {print x}' x=5 -

will print the value 5 on the standard output. The minus sign at the end of this 
command is necessary to indicate that input is coming from stdin instead of a file 
called "x = 5". Similarly if the input comes from a file named "file", the 
command is 

awk '{print x}' file 

It is not possible to assign values to variables used in the BEGIN section in this 
way. 

If it is necessary· to change the record separator and the field separator, it is useful 
to do so from the command line as in the following example: 

awk -f awk.program RS= ":" file 

Here, the record separator is changed to the character "." This causes your 
program in the file "awk.program" to run with records separated by the colon 
instead of the newline character and with input coming from the file, "file". It is 
similarly useful to change the field separator from the command line. 

This operation is so common that there is yet another way to change the field 
separator from the command line. There is a separate option "-Fx" that is 
placed directly after the command awk. This changes the field separator from 
blank or tab to the character "x". 

For example 

awk - F: - f awk.program file 

changes the field separator FS to the character ":". Note that if the field 
separator is specifically set to a tab, (that is, with the - F option or by making a 
direct assignment to FS) then blanks are recognized by awk as separating fields. 
However, even if the field separator is specifically set to a blank, tabs are STILL 
recognized by awk as separating fields. 
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An exercise: 

Using the input file ("countries" described earlier) write an awk script that prints 
the name of a country followed by the continent that it is on. Do this in such a 
way that continents composed of two words (e. g., North America) are processed 
as only one field and not two. 

3.10 OUTPUT: PRINTING 

An action may have no pattern; in this case, the action is executed for all lines as 
in the simple printing program 

{print} 

This is one of the simplest actions performed by awk. It prints each line of the 
input to the output. More useful is to print one or more fields from each line. 
For instance, using the file "countries", that was used earlier, 

awk '{ print $1, $3 }' countries 

prints the name of the country and the population: 

Russia 262 
Canada 24 
China 866 
USA 219 
Brazil 116 
Australia 14 
India 637 
Argentina 14 
Sudan 19 
Algeria 18 

Note that the use of a semicolon at the end of statements in awk programs is 
optional. A wk accepts 

{print $1 } 

and 

{print $1; } 
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equally and takes them to mean the same thing. If you want to put two awk 
statements on the same line of an awk script, the semicolon is necessary. For 
example, the following semicolon is necessary if you want the number 5 printed: 

{x = 5; print x } 

Parentheses are also optional with the print statement. 

print $3, $2 

is the same as 

print ($3, $2 ) 

Items separated by a comma in a print statement are separated by the current 
output field separators (normally spaces, even though the input is separated by 
tabs) when printed. The OFS is another special variable that can be changed by 
you. These special variables are summarized in a later section. 

An exercise: 

Using the input file, "countries", print the continent followed by the country 
followed by the population for each input record. Then pipe the output to the 
VENIX operating system command "sort" so that all countries from a given 
continent are printed together. 

Print also prints strings directly from your programs with the awk script 

{print "hello, world" } 

from an earlier section. 

An exercise: 

Print a header to the output of the previous exercise that says "Population of 
Largest Countries" followed by headers to the columns that follow describing 
what is in that column, for example, Country or Population. 

As we have already seen, awk makes available a number of special variables with 
useful values, for example, FS and RS. We now introduce another special 
variable in the next example. NR and NF are both integers that contain the 
number of the present record and the number of fields in the present record, 
respectively. Thus, 

{print NR, NF, $O} 
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prints each record number and the number of fields in each record followed by 
the record itself. Using this program on the file, "countries" yields: 

1 4 Russia 
25 Canada 
34 China 
45 USA 
5 5 Brazil 
6 4 Australia 
74 India 
8 5 Argentina 
94 Sudan 
10 4 Algeria 

and the program 

prints 

1 Russia 
2 Canada 
3 China 
4 USA 
5 Brazil 
6 Australia 
7 India 
8 Argentina 
9 Sudan 
10 Algeria 

8650 262 Asia 
3852 24 North America 
3692 866 Asia 
3615 219 North America 
3286 116 South America 
2968 14 Australia 
1269 637 Asia 
1072 26 South America 
968 19 Africa 
920 18 Africa 

{print NR, $1 } 

This is an easy way to supply sequence numbers to a list. Print, by itself, prints 
the input record. Use 

print 1/1/ 

to print the empty line. 

A wk also provides the statement printf so that you can format output as desired. 
Print uses the default format "OJo.6g" for each variable printed. 

printf format, expr, expr, ... 

formats the expressions in the list according to the specification in the string, 
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format, and prints them. The format statement is exactly that of the printf in the 
C library. For example, 

{ printf "OJo1Os OJ06d\n", $1, $2, $3 } 

prints $1 as a string of 10 characters (right justified). The second and third fields 
(6-digit numbers) make a neatly columned table. 

Russia 8650 262 
Canada 3852 244 
China 3692 866 
USA 3615 219 
Brazil 3286 116 
Australia 2968 14 
India 1269 637 
Argentina 1072 26 
Sudan 968 19 
Algeria 920 18 

With printf, no output separators or newlines are produced automatically. You 
must add them as in this example. In the C library version of printf, the various 
escape characters '\n', '\t', '\b' (backspace) and '\r' (carriage return) are valid 
with the awk printf. 

There is a third way that printing can occur on standard output when a pattern is 
specified but there is no action to go with it. In this case, the entire record $0 is 
printed. For example, the program 

Ixl 

prints any record that contains the character 'x'. 

There are two special variables that go with printing, OFS and ORS. These are 
by default set to blank and the newline character, respectively. The variable OFS 
is printed on the standard output when a comma occurs in a print statement such 
as 

{ x = "hello"; y = "world" 
print x,y 
} 
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which prints 

hello world 

However, without the comma in the print statement as 

{ x= "hello"; y= "world" 
print x y 
} 

you get 

helloworld 

To get a comma on the output, you can either insert it in the print statement as in 
this case 

{ x = "hello"; y = "world" 
print x" ," y 
} 

or you can change OFS in a BEGIN section as in 

BEGIN {OFS=", "} 
{ x= "hello"; y= "world" 
print x, y 
} 

both of these last two scripts yields 

hello, world 

Note that the output field separator is not used when $0 is printed. 

3.11 OUTPUT: TO DIFFERENT FILES 

The VENIX operating system shell allows you to redirect standard output to a 
file. The awk program also lets you direct output to many different files from 
within your awk program. For example, with our input file "countries", we want 
to print all the data from countries of Asia in a file called "ASIA", all the data 
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from countries in Africa in a file called "AFRICA", and so forth. This is done 
with the following awk program: 

{ if ($4 = = "Asia") print > "ASIA" 

} 

if ($4 
if ($4 
if ($4 
if ($4 
if ($4 

"Europe") print > "EUROPE" 
"North") print> "NORTH_AMERICA" 
"South") print > "SOUTH _AMERICA" 
"Australia") print > "AUSTRALIA" 
"Africa") print> "AFRICA" 

The flow of control statements (for example, "if") are discussed later. 

In general, you may direct output into a file after a print or a printf statement by 
using a statement of the form 

print > "FILE" 

where FILE is the name of the file receiving the data, and the print statement 
may have any legal arguments to it. 

Notice that the file names are quoted. Without quotes, the file names are treated 
as uninitialized variables and all output then goes to the same file. 

If > is replaced by > >, output is appended to the file rather than overwriting it. 

Users should also note that there is an upper limit to the number of files that are 
written in this way. At present it is ten. 

3.12 OUTPUT: TO PIPES 

It is also possible to direct printing into a pipe instead of a file. For example, 

{ 
if ($2 "XX") print I "mail mary" 

} 

where "mary" is someone's login name, any record is sent (with the second field 
equal to "XX") to the user, mary, as mail. Awk waits until the entire program is 
run before it executes the command that was piped to, in this case the "mail" 
command. 
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For example: 
{ 
print $1 I "sort" 
} 

takes the first field of each input record, sorts these fields, and then prints them. 
The command in parentheses is any VENIX operating system command. 

An exercIse: 

Write an awk script that uses the input file to 

• List countries that were used previously 

• Print the name of the countries 

• Print the population of each country 

• Sort the data so that countries with the largest population appear first 

• Mail the resulting list to yourself. 

Another example of using a pipe for output is the following idiom which 
guarantees that its output always goes to your terminal: 

print ... I "cat - u > I dev Itty" 

Only one output statement to a pipe is permitted in an awk program. In all 
output statements involving redirection of output, the files or pipes are identified 
by their names but they are created and opened only once in the entire run. 

3.13 COMMENTS 

Comments are placed in awk programs; they begin with the character # and end 
with the end of the line as in 

print x, Y # this is a comment 

3.14 PATTERNS 

A pattern in front of an action acts as a selector that determines if the action is 
to be executed. A variety of expressions are used as patterns: 
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• Regular expressions 

• Arithmetic relational expressions 

• String valued expressions 

• Combinations of these. 

3.14.1 BEGIN and END 

The special pattern, BEGIN, matches the beginning of the input before the first 
record is read. The pattern, END, matches the end of the input after the last line 
is processed. BEGIN and END thus provide a way to gain control before and 
after processing for initialization and wrapping up. 

An example: 

As you have seen, you can use BEGIN to put column headings on the output 

BEGIN {print "Country", "Area", "Population", "Continent"} 
{print} 

which produces 

Country Area Population Continent 

Russia 8650 262 Asia 
Canada 3852 24 North America 
China 3692 866 Asia 
USA 3615 219 North America 
Brazil 3286 116 South America 
Australia 2968 14 Australia 
India 1269 637 Asia 
Argentina 1072 26South America 
Sudan 968 19 Africa 
Algeria 920 18 Africa 

Formatting is not very good here; printf would do a better job and is usually 
mandatory if you really care about appearance. 

Recall also, that the BEGIN section is a good place to change special variables 
such as FS or RS. 
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Example: 

BEGIN {FS= " " 
print "Countries", "Area", " Population" , "Continent" 
} 
{print} 

END {print "The number of records is", NR} 

In this program, FS is set to a tab in the BEGIN section and as a result all 
records (in the file countries) have exactly four fields. 

Note that if BEGIN~s present it is the first pattern; END is the last if it is used. 

3.14.2 Relational Expressions 

An awk pattern is any expression involving comparisons between strings of 
characters or numbers. For example, if you want to print only countries with 
more than 100 million population, use 

$3 > 100 

This tiny awk program is a pattern without an action so it prints each line whose 
third field is greater than 100 as follows: 

Russia 8650 262 Asia 
China 3692 866 Asia 
USA 3615 219 North America 
Brazil 3286 116 South America 
India 1269 637 Asia 

To print the names of the countries that are in Asia, type 

$4 = = "Asia" {print $1} 

which produces 
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The conditions tested are <, < =, = =, ! =, > =, and >. In such relational 
tests if both operands are numeric, a numerical comparison is made. Otherwise, 
the operands are compared as strings. Thus, 

$1 > = "S" 

selects lines that begin with S, T, U, and so forth which in this case is 

USA 3615 
Sudan 968 

219 
19 

North America 
Africa 

In the absence of other information, fields are treated as strings, so the program 

$1 = = $4 

compares the first and fourth fields as strings of characters and prints the single 
line 

Australia 2968 14 Australia 

If fields appear as numbers, the comparisons are done numerically. 

3.14.3 Regular Expressions 

Awk provides more powerful capabilities for searching for strings of characters 
than were illustrated in the previous section. These are regular expressions. The 
simplest regular expression is a literal string of characters enclosed in slashes. 

/ Asia/ 

This is a complete awk program that prints all lines which contain any occurrence 
of the name "Asia". If a line contains "Asia" as part of a larger word like 
"Asiatic", it is also printed (but there are no such words in the countries file.) 
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Awk regular expressions include 

• Regular expression forms found in the text editor 

• ed and the pattern finder 

• grep in which certain characters have special meanings. 

For example, we could print all lines that begin with A with 

FA/ 

or all lines that begin with A, B, or C with 

F[ABC]/ 

or all lines that end with "ia" with 

/ia$/ 

In general, the circumflex 0 indicates the beginning of a line. The dollar sign ($) 
indicates the end of the line and characters enclosed in brackets ,{}, match any 
one of the characters enclosed. In addition, awk allows parentheses for grouping, 
the pipe (i) for alternatives, + for "one or more" occurrences, and? for "zero 
or one" occurrences. For example, 

/xIY/ {print} 

prints all records that contain either an "x" or a "y". 

/ax+ b/ {print} 

prints all records that contain an "a" followed by one or more "x's" followed by 
a "b". For example, axb, Paxxxxxxxb, QaxxbR. 

/ax?b/ {print} 

prints all records that contain an "a" followed by zero or one "x" followed by a 
"b". For example: ab, axb, yaxbPPP, CabD. 
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The two characters "." and "*" have the same meaning as they have in ed: 
namely, "." can stand for any character and "*" means zero or more 
occurrences of the character preceding it. For example, 

la.bl 

matches any record that contains an "a" followed by any character followed by a 
"b". That is, the record must contain an "a" and a "b" separated by exactly 
one character. For example, la.bl matches axb, aPb and xxxxaXbxx, but NOT 
ab, axxb. 

lab*cl 

matches a record that contains an "a" followed by zero or more "b" 's followed 
by a "c". For example, it matches 

ac 
abc 
pqrabbbbbbbbbbc901 

Just as in ed, it is possible to turn off the special meaning of these metacharacters 
such as "~,, and "*" by preceding these characters with a backslash. An 
example of this is the pattern 

1\1.*\11 

which matches any string of characters enclosed in slashes. 

One can also specify that any field or variable matches a regular expression (or 
does not match it) by using the operators - or !-. For example, with the input file 
countries as before, the program 

$1 - lia$1 {print $1} 

prints all countries whose name ends in "ia": 
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Russia 
Australia 
India 
Algeria 

that is indeed different from lines which end in "ia". 

3.14.4 Combinations of Patterns 

A pattern is made up of similar patterns combined with the operators II (OR), && 
(AND), ! (NOT), and parentheses. For example, 

$2 > = 3000 && $3 > = 100 

selects lines where both area AND population are large. For example, 

262 Asia 
866 Asia 

Russia 
China 
USA 
Brazil 

8650 
3692 
3615 
3286 

219 North America 
116 South America 

while 

$4 = = "Asia" II $4 "Africa" 

selects lines with Asia or Africa as the fourth field. An alternate way to write this 
last expression is with a regular expression: 

$1 - /~(AsiaIAfrica»$/ 

&& and II guarantee that their operands are evaluated from left to right; 
evaluationstops as soon as truth or falsehood is determined. 

3.14.5 Pattern Ranges 

The "pattern" that selects an action may also consist of two patterns separated 
by a comma as in 
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pattern 1 , pattern2 { ... } 

In this case, the action is performed for each line between an occurrence of 
pattern1 and the next occurrence of pattern2 (inclusive). As an example with no 
action 

/Canada/ ,/Brazil/ 

prints all lines between the one containing "Canada" and the line containing 
"Brazil". For example, 

Canada 
China 
USA 
Brazil 

while 

3852 24 
3692 866 
3615 219 
3286 116 

North America 
Asia 
North America 
South America 

NR = = 2, NR = = 5 { ... } 

does the action for lines 2 through 5 of the input. Different types of patterns are 
mixed as in 

/Canada/, $4 = = "Africa" 

and prints all lines from the first line containing "Canada" up to and including 
the next record whose fourth field is "Africa". 

Users should note that patterns in this form occur OUTSIDE of the action parts 
of the awk programs (outside of the braces that define awk actions). If you need 
to check patterns inside an awk action (inside the braces), use a flow of control 
statement such as an "if" statement or a "while" statement. Flow of control 
statements are discussed in the part "BUILT-IN FUNCTIONS". 
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3.15 ACTIONS 

An awk action is a sequence of action statements separated by new lines or 
semicolons. These action statements do a variety of bookkeeping and string 
manipulating tasks. 

3.15.1 Variables, Expressions, and Assignments 

The awk provides the ability to do arithmetic and to store the results in variables 
for later use in the program. However, variables can also store strings of 
characters. You cannot do arithmetic on character strings, but you can stick them 
together and pull them apart as shown. As an example, consider printing the 
population density for each country in the file countries. 

{print $1, (1000000 * $3)/($2 * 1000) } 

(Recall that in this file the population is in millions and the area in thousands.) 
The result is population density in people per square mile. 

Russia 30.289 
Canada 6.23053 
China 234.561 
USA 60.5809 
Brazil 35.3013 
Australia 4.71698 
India 501.97 
Argentina 24.2537 
Sudan 19.6281 
Algeria 19.5652 

The formatting is bad; so using printf instead gives the program 

{printf "01o1Os %6.1f0, $1, (1000000 * $3)/($2 * 1000) } 

and the output 
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Russia 30.3 
Canada 6.2 

China 234.6 
USA 60.6 

Brazil 35.3 
Australia 4.7 

India 502.0 
Argentina 24.3 

Sudan 19.6 
Algeria 19.6 

Arithmetic is done internally in floating point. The arithmetic operators are +. 
-, *, / and % (mod or remainder). 

To compute the total population and number of countries from Asia, we could 
write 

/ Asia/ 
END 

{ pop = pop + $3; n = n + 1 } 
{print "total population of", n, "Asian countries is", pop} 

which produces total population of three Asian countries is 1765. 

Actually, no experienced programmer would write 

{pop = pop + $3; n = n + 1 } 

since both assignments are written more clearly and concisely. The better way is 

{pop + = $3; + +n } 

Indeed, these operators, + +, --, - =, / =, * =, + =, and % = are available 
in awk as they are in C. Operator x + = Y has the same effect as x = x + y but 
+ = is shorter and runs faster. The same is true of the + + operator; it adds 
one to the value of a variable. The increment operators + + and -- (as in C) 
are used as prefix or as postfix operators. These operators are also used in 
expressions. 
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3.15.2 Initialization of Variables 

In the previous example, we did not initialize pop nor n; yet, everything worked 
properly. This is because (by default) variables are initialized to the null string 
which has a numerical value of O. This eliminates the need for most initialization 
of variables in BEGIN sections. We can use default initialization to advantage in 
this program which finds the country with the largest population. 

maxpop < $3 { 
maxpop = $3 
country = $1 
} 

END {print country, maxpop} 

which produces 

China 866 

3.15.3 Field Variables 

Fields in awk share essentially all of the properties of variables. They are used in 
arithmetic and string operations and may be assigned to and initialized to the null 
string. Thus, divide the second field by 1000 to convert the area to millions of 
square miles by 

{ $2 I = 1000; print } 

or process two fields into a third with 

BEGIN {FS = " "} 
{ $4 = 1000 * $3 I $2; print} 

or assign strings to a field as in 

IUSAI {$1 = "United States" ; print} 

which replaces USA by United States and prints the effected line 
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United States 3615 219 North America 

Fields are accessed by expressions; thus, $NF is the last field and $(NF-l) is the 
second to the last. Note that the parentheses are needed since $NF -1 is 1 less 
than the values in the last field. 

3.15.4 String Concatenation 

Strings are concatenated by writing them one after the other as in the following 
example: 

{ x = "hello" 

} 

x = x ", world" 
print x 

prints the usual 

hello, world 

With input from the file "countries", the following program: 

I AI { s = s " 11 $1 } 
END { print s } 

prints 

Australia Argentina Algeria 

Variables, string expressions, and numeric expressions may appear in 
concatenations; the numeric expressions are treated as strings in this case. 

3.15.5 Special Variables 

Some variables in awk have special meanings. These are detailed here and the 
complete list given. 

NR Number of the current record. 
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NF 

FS 

RS 

$i 

$0 

OFS 

ORS 

OFMT 

Number of fields in the current record. 

Input field separator, by default it is set to a blank or tab. 

Input record separator, by default it is set to the newline 
character. 

The ith input field of the current record. 

The entire current input record. 

Output field separator, by default it is set to a blank. 

Output record separator, by default it is set to the newline 
character. 

The format for printing numbers, with the print statement, by 
default is "070 .6g" . 

FILENAME The name of the input file currently being read. This is useful 
because awk commands are typically of the form 

awk - f program filel file2 file3 ... 

3.15.6 1Ype 

Variables (and fields) take on numeric or string values according to context. For 
example, in 

pop + = $3 

pop is presumably a number, while in 

country = $1 

country is a string. In 

maxpop < $3 

the type of maxpop depends on the data found in $3. It is determined when the 
program is run. 
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In general, each variable and field is potentially a string or a number or both at 
any time. When a variable is set by the assignment 

v = expr 

its type is set to that of expr. (Assignment also includes + =, + +, - =, and so 
forth.) An arithmetic expression is of the type, "number"; a concatenation of 
strings is of type "string". If the assignment is a simple copy as in 

vI = v2 

then the type of vI becomes that of v2. 

In comparisons, if both operands are numeric, the comparison is made 
numerically. Otherwise, operands are coerced to strings if necessary and the 
comparison is made on strings. 

The type of any expression is coerced to numeric by subterfuges such as 

expr + 0 

and to string by 

expr 1/1/ 

This last expression is string concatenated with the null string. 

3.15.7 Arrays 

As well as ordinary variables, awk provides I-dimensional arrays. Array elements 
are not declared; they spring into existence by being mentioned. Subscripts may 
have any non-null value including non-numeric strings. 

As an example of a conventional numeric subscript, the statement 

x[NR] = $0 
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assigns the current input line to the NRth element of the array x. In fact, it is 
possible in principle (though perhaps slow) to process the entire input in a 
random order with the following awk program: 

{ x[NR] = $0 } 
END { ... program ... } 

The first line of this program records each input line into the array x. In 
particular, the following program 

{ x[NR] = $l} 

(when run on the file countries) produces an array of elements with 

x[l] "Russia" 
x[2] "Canada" 
x[3] "China" 

... and so forth. 

Arrays are also indexed by non-numeric values that give awk a capability rather 
like the associative memory of Snobol tables. For example, we can write 

/ Asia/ {pop[" Asia"] + = $3 } 
/ Africa/ {pop[Africa] + = $3 } 
END print" Asia = " pop[" Asia"], "Africa = "pop[" Africa"] } 

which produces 

Asia = 1765 Africa = 37 

Notice the concatenation. Also, any expression can be used as a subscript in an 
array reference. Thus, 

area[$l] = $2 

uses the first field of a line (as a string) to index the array area. 
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3.16 BUILT IN FUNCTIONS 

The function 

length 

is provided by awk to compute the length of a string of characters. The 
following program prints each record preceded by its length: 

{print length, $0 } 

In this case (the variable) length means length($O), the length of the present 
record. In general, length(x) will return the length of x as a string. 

Example: 

With input from the file countries, the following awk program will print the 
longest country name: 

length($1) > max {max = length($1); name $1} 
END {print name} 

The function 

split 

split (s, array) assigns the fields of the string "s" to successive elements of the 
array, "array". 

For example; 

split("Now is the time", w) 

assigns the value "Now" to w[1], "is" to w[2], "the" to w[3] and "time" to 
w[4]. All other elements of the array w[], if any, are set to the null string. It is 
possible to have a character other than a blank as the separator for the elements 
of w. For this, use split with three elements. 

n split(s, array, sep) 
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This splits the string s into array[l], ... , array[n]. The number of elements found 
is returned as the value of split. If the sep argument is present, its first character 
is used as the field separator; otherwise, FS is used. This is useful if in the middle 
of an awk script, it is necessary to change the record separator for one record. 

Also provided by the awk are the 

Math Functions 

sqrt, 
log, 
exp 
int, 

They provide the square root function, the base e logarithm function, exponential 
and integral part functions. This last function returns the greatest integer less 
than or equal to its argument. These functions are the same as those of the C 
library (in! corresponds to the libc floor function) and so they have the same 
return on error as those in libc. (See the Programmer Reference Manual.) The 
substring function 

substr 

substr(s,m,n) produces the substring of s that begins at position m and is at most 
n characters long. If the third argument (n in this case) is omitted, the substring 
goes to the end of s. For example, we could abbreviate the country names in the 
file countries by 

{ $1 = substr($I, I, 3); print} 

which produces 
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Rus 8650 262 Asia 
Can 3852 24 North America 
Chi 3692 866 Asia 
USA 3615 219 North America 
Bra 3286 116 South America 
Aus 2968 14 Australia 
Ind 1269 637 Asia 
Arg 1072 26 South America 
Sud 968 19 Africa 
Alg 920 18 Africa 

If s is a number, substr uses its printed image; substr(123456789,3,4} = 3456. 

The function 

index: 

index (s 1 ,s2) returns the leftmost position where the string s2 occurs in s 1 or zero 
if s2 does not occur in s 1. 

The function 

sprintf 

formats expressions as the printf statement does but will assign the resulting 
expression to a variable instead of sending the results to stdout. For example, 

x = sprintf( /I 0J0 lOs OJo6d 1/, $1, $2 ) 

sets x to the string produced by formatting the values of $1 and $2. The x is then 
used in subsequent computations. 

The function 

getline 

immediately reads the next input record. Fields NR and $0 are all set but control 
is left at exactly the same spot in the awk program. Getline returns 0 for the end 
of file and a 1 for a normal record. 
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3.17 FLOW OF CONTROL 

The awk provides the basic flow of control statements 

• if-else 

• while 

• for 

with statement grouping as in C language. 

The if statement is used as follows: 

if ( condition) statement1 else statement2 

The condition is evaluated; and if it is true, statement! is executed; otherwise, 
statement2 is executed. The else part is optional. Several statements enclosed in 
braces ({,}) are treated as a single statement. Rewriting the maximum population 
computation from the pattern section with an if statement results in 

{ if (maxpop < $3) { 
maxpop= $3 
country= $1 
} } 

END { print country, maxpop } 

There is also a while statement in awk. 

while ( condition) statement 

The condition is evaluated; if it is true, the statement is executed. The condition 
is evaluated again, and if true, the statement is executed. The cycle repeats as 
long as the condition is true. For example, the following prints all input fields one 
per line: 
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while (i < = NF) { 

pint $i 
+ +i 
} 

} 

AWK 

Another example is the Euclidean algorithm for finding the greatest common 
divisor of $1 and $2: 

{printf "the greatest common divisor of " $1 "and", $2, "is" 
while ($1 ! = $2) { 

if ($1 > $2) $1 = $1 - $2 
e~e $2 = $2 - $1 
} 

printf $1 "\n" 
} 

The for statement is like that of C. 

for ( expression 1 ; condition; expression2 ) statement 

has the same effect as 

so 

expression I 
while (condition) { 

statement 
expression2 

{ 

} 

} 

for (i = 1 ; i < = NF; i + + ) 
print $i 

is another awk program that prints all input fields one per line. 
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This is an alternate form of the or statement that is suited for accessing the 
elements of an associative array as is in awk. 

for (i in array) statement 

executes statement with the variable i set in turn to each subscript of array. The 
subscripts are each accessed once but in random order. Chaos will ensue if the 
variable i is altered or if any new elements are created within the loop. For 
example, you could use the "for" statement to print the record number followed 
by the record of all input records after the main program is executed. 

{ x[NR] = $0 } 
END { for(i in x) { print i, x[i] } 

A more practical example is the following use of strings to index arrays to add 
the populations of countries by continents: 

BEGIN {FS=""} 
{population[$4] = + $3} 

END {for(i in population) 
print i, population[i] 

} 

In this program, the body of the for loop is executed for i equal to the string 
"Asia", then for i equal to the string "North America", and so forth until all 
the possible values of i are exhausted; that is, until all the strings of names of 
countries are used. Note, however, the order the loops are executed is not 
specified. If the loop associated with "Canada" is executed before the loop 
associated with the string "Russia", such a program produces 

South America 26 
Africa 16 
Asia 637 
Australia 14 
North America 219 

Note that the expression in the condition part of an if, while, or, for statement 
can include relational operators like <, < =, >, > =, = =, and ! =; it can 
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include regular expressions that are used with the "matching" operators - and !-; 
it can include the logical operators II, &&, and !; and it also include parentheses 
for grouping. 

The break statement (when it occurs within a while or for loop) causes an 
immediate exit from the while or for loop. 

The continue statement (when it occurs within a while or for loop) causes the next 
iteration of the loop to begin. 

The next statement in an awk program causes awk to skip immediately to the 
next record and begin scanning patterns from the top of the program. (Note the 
difference between getline and next. Getline does not skip to the top of the awk 
program.) 

If an exit statement occurs in the BEGIN section of an awk program, the 
program stops executing and the END section is not executed (if there is one). 

An exit that occurs in the main body of the awk program causes execution of the 
main body of the awk program to stop. No more records are read, and the END 
section is executed. 

An exit in the END section causes execution to terminate at that point. 

3.18 REPORT GENERATION 

The flow of control statements in the last section are especially useful when awk 
is used as a report generator. A wk is useful for tabulating, summarizing, and 
formatting information. We have seen an example of awk tabulating in the last 
section with the tabulation of populations. Here is another example of this. 
Suppose you have a file "prog.usage" that contains lines of three fields; name, 
program, and usage: 

Smith draw 3 
Brown eqn 
Jones nroff 4 
Smith nroff 1 
Jones spell 5 
Brown spell 9 
Smith draw 6 

The first line indicates that Smith used the draw program three times. If you 
want to create a program that has the total usage of each program along with the 
names in alphabetical order and the total usage, use the following program, called 
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list. a: 

{ use[$l "" $2] + = $3} 
END {for (np in use) 

print np " "use[np] I "sort + 0 + 2nr" } 

This program produces the following output when used on the input file, 
prog.usage. 

Brown eqn 1 
Brown spell 9 
Jones nroff 4 
Jones spell 5 
Smith draw 9 
Smith nroff 

If you would like to format the previous output so that each name is printed only 
once, pipe the output of the previous awk program into the following program, 
called "format.a: 

{ if ($1 ! = prev) { 
print $1 II:" 
rev = $1 
} 

print " " $2 " " $3 
} 

The variable prev prints the unique values of the first field. The command 

awk - f list.a prog.usage I awk - f format.a 

gives the output 
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Brown: 
eqn 1 
spell 9 

Jones: 
moff 4 
spell 5 

Smith: 
draw 9 
moff 

It is often useful to combine different awk scripts and other shell commands such 
as sort as was done in the last script. 

3.19 COOPERATION WITH THE SHELL 

Normally, an awk program is either contained in a file or enclosed within single 
quotes as in 

awk '{print $1}' ... 

A wk uses many of the same characters that the shell does, such as $ and the 
double quote. Surrounding the program by , ... ' ensures that the shell passes the 
awk program to awk intact. 

Consider writing an awk program to print the nth field, where n is a parameter 
determined when the program is run. That is, we want a program called field such 
that 

field n 

runs the awk program 

awk '{print $n}' 

How does the value of n get into the awk program? 

There are several ways to do this. One is to define field as follows: 
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awk '{print $'$1'}' 

Spaces are critical here: as written there is only one argument, even though there 
are two sets of quotes. The $1 is outside the quotes, visible to the shell, and 
therefore substituted properly when field is invoked. 

Another way to do this job relies on the fact that the shell substitutes for $ 
parameters within double quotes. 

awk "{print $1}" 

Here the trick is to protect the first $ with a \ \; the $1 is again replaced by the 
number when field is invoked. 

This kind of trickery is extended in remarkable ways, but it is hard to understand 
quickly. 

3.20 MISCELLANEOUS HINTS 

You can simulate the effect of multidimensional arrays by creating your own 
subscripts. For example, 

for (i = 1; i < = 10; i + + ) 
for (j = 1; j < = 10; j + +) 

mult[i "," j] = ... 

creates an array whose subscripts have the form i,j; that is, 1,1; 1,2; and so forth 
and thus simulate a 2-dimensional array. 
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Chapter 4 
ARBITRARY PRECISION DESK 
CALCULATOR LANGUAGE (be) 

4.1 GENERAL 

The arbitrary precision desk calculator language (be) is a language and compiler 
for doing arbitrary precision arithmetic under the VENIX operating system. The 
output of the compiler is interpreted and executed by a collection of routines that 
can input, output, and do arithmetic on infinitely large integers and on scaled 
fixed-point numbers. These routines are based on a dynamic storage allocator. 
Overflow does not occur until all available core storage is exhausted. 

The be language has a complete control structure as well as immediate-mode 
operation. Functions can be defined and saved for later execution. A small 
collection of library functions is also available, including sin, cos, arctan, log, 
exponential, and Bessel functions of integer order. 

The be compiler was written to make conveniently available a collection of 
routines (called de) that are capable of doing arithmetic on integers of arbitrary 
size. The compiler is not intended to provide a complete programming language. 
It is a minimal language facility. 

Some of the uses of this compiler are: 

• Compile large integers 

• Compute accurately to many decimal places 

• Convert numbers from one base to another base. 

There is a scaling provision that permits the use of decimal point notation. 
Provision is also made for input and output in bases other than decimal. 
Numbers can be converted from decimal to octal by simply setting the output 
base to equal eight. 
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The actual limit on the number of digits that can be handled depends on the 
amount of core storage available. This is possible even on the smallest versions 
of the VENIX operating system. 

The syntax of be is very similar to that of the C language. This enables users 
who are familiar with C language to easily work with be. 

The simplest kind of statement is an arithmetic expression on a line by itself. For 
instance, if you type in the addition of two numbers (with the + operator) such 
as 

142857 + 285714 

the program responds immediately with the sum 

428571. 

The operators -, *, I, 0/0, and ~ can also be used. They indicate subtraction, 
multiplication, division, remaindering, and integer result truncated toward zero. 
Division by zero produces an error comment. 

Any term in an expression may be prefixed by a minus sign to indicate that it is 
to be negated (the unary minus sign). The expression 

7+-3 

is interpreted to mean that - 3 is to be added to 7. 

More complex expressions with several operators and with parentheses are 
interpreted just as in power, then *, %, and I, and finally, + and -. Contents 
of parentheses are evaluated before material outside the parentheses. 
Exponentiations are performed from right to left and the other operators from 
left to right. 

a~b~c and a~(b~c) 

are equivalent as are the two expressions 

a*b*c and (a*b)*c. 

However, be shares with Fortran and C language the undesirable convention that 

a/b*c is equivalent to (a/b)*c. 
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Internal storage registers to hold numbers have single lowercase letter names. 
The value of an expression can be assigned to a register in the usual way. The 
statement 

x = x + 3 

has the effect of increasing by three the value of the contents of the register 
named x. When, as in this case, the outermost operator is an "=", the 
assignment is performed; but the result is not printed. Only 26 of these named 
storage registers are available. 

There is a built-in square root function whose result is truncated to an integer (see 
the part on "SCALING"). Entering the lines 

x = sqrt{l91) 
x 

produces the printed result 

13 

4.2 BASES 

There are two special internal quantities; ibase (input base) and obase (output 
base). The contents of ibase, initially set to 10 (decimal), determines the base 
used for interpreting numbers read in. For example, the input lines 

ibase = 8 
11 

produces the output line 

9 

and the system is ready to do octal to decimal conversions. Beware, however, of 
trying to change the input base back to decimal by typing 

ibase = 10 

Because the number 10 is interpreted as octal, this statement has no effect. For 
dealing in hexadecimal notation, the characters A through F are permitted in 
numbers (regardless of what base is in effect) and are interpreted as digits having 
values 10 through 15, respectively. The statement 

ibase = A 
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changes the base to decimal regardless of what the current input base is. 
Negative and large positive input bases are permitted but are useless. No 
mechanism has been provided for the input of arbitrary numbers in bases less 
than 1 and greater than 16. 

The content of obase, initially 10 (decimal), is used as the base for output 
numbers. The input lines 

obase = 16 
1000 

produces the output line 

3E8 

which is to be interpreted as a 3-digit hexadecimal number. Very large output 
bases are permitted and are sometimes useful. For example, large numbers can 
be output in groups of five digits by setting obase to 100000. Strange output 
bases (i.e., 1,0, or negative) are handled appropriately. 

Very large numbers are split across lines with 70 characters per line. Lines which 
are continued end with a backslash (\). Decimal output conversion is practically 
instantaneous, but output of very large numbers (i.e., more than 100 digits) with 
other bases is rather slow. Nondecimal output conversion of a 100-digit number 
takes about 3 seconds. 

The ibase and obase have no effect on the course of internal computation or on 
the evaluation of expressions. They only affect input and output conversions, 
respectively. 

4.3 SCALING 

A third special internal quantity called scale is used to determine the scale of 
calculated quantities. The number of digits after the decimal point of a number 
is referred to as its scale. Numbers may have up to 99 decimal digits after the 
decimal point. This fractional part is retained in further computations. 

The contents of scale must be no greater than 99 and no less than O. It is initially 
set to O. However, appropriate scaling can be arranged when more than 99 
fraction digits are required. 

When two scaled numbers are combined by means of one of the arithmetic 
operations, the result has a scale determined by the following rules: 
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• Addition and subtraction-The scale of the result is the larger of the scales 
of the two operands. In this case, there is never any truncation of the result. 

• Multiplication-The scale of the result is never less than the maximum of the 
two scales of the operands and never more than the sum of the scales of the 
operands. Subject to those two restrictions, the scale of the result is set 
equal to the contents of the internal quantity scale. 

• Division-The scale of a quotient is the contents of the internal quantity 
scale. The scale of a remainder is the sum of the scales of the quotient and 
the divisor. 

• Exponentiation-The result of an exponentiation is scaled as if the implied 
multiplications were performed. An exponent must be an integer. 

• Square root-The scale of a square root is set to the maximum of the scale 
of the argument and the contents of scale. 

All of the internal operations are actually carried out in terms of integers with 
digits being discarded when necessary. In every case where digits are discarded, 
truncation and not rounding is performed. 

The internal quantities scale, ibase, and obase can be used in expressions just like 
other variables. The input line 

scale = scale + 1 

increases the value of scale by one, and the input line 

scale 

causes the current value of scale to be printed. 

The value of scale retains its meaning as a number of decimal digits to be 
retained in internal computation even when ibase or obase are not equal to 10. 
The internal computations (which are still conducted in decimal regardless of the 
bases) are performed to the specified number of decimal digits, never 
hexadecimal, octal, or any other kind of digits. 

4.4 FUNCTIONS 

The name of a function is a single lowercase letter. Function names are 
permitted to coincide with simple variable names. Twenty-six different defined 
functions are permitted in addition to the 26 variable names. The input line 

define a(x){ 
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begins the definition of a function with one argument. This line must be followed 
by one or more statements which make up the body of the function ending with a 
right brace ( }). The general form of a function is 

define a(x) { 

return 
} 

Return of control from a function occurs when a return statement is executed or 
when the end of the function is reached. The return statement can take either of 
the two forms: 

return 
return(x) 

In the first case, the value of the function is 0; and in the second, the value of the 
function is the expression in parentheses. 

Variables used in the function can be declared as automatic by a statement of the 
form 

auto x,y,Z 

There can be only one auto statement in a function, and it must be the first 
statement in the definition. These automatic variables are allocated space and 
initialized to zero on entry to the function and thrown away on return (exit). The 
values of any variables with the same names outside the function are not 
disturbed. Functions may be called recursively and the automatic variables at 
each level of call are protected. The parameters named in a function definition 
are treated in the same way as the automatic variables of that function with the 
single exception that they are given a value on entry to the function. An example 
of a function definition is 

define a(x,y){ 
auto z 

} 

z = x*y 
return(z) 

The value of this function a, when called, is the product of its two arguments, 
"x" and "y". 
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A function is called by the appearance of its name followed by a string of 
arguments enclosed in parentheses and separated by commas. The result is 
unpredictable if the wrong number of arguments is used. 

Functions with no arguments are defined and called using parentheses with 
nothing between them: (). 

If the function a above has been defined, then the line 

a(7,3.14) 

causes the result 21.98 to be printed, and the line 

z = a(a(3,4),5) 

causes the result 60 to be printed. 

4.5 SUBSCRIPTED VARIABLES 

A single lowercase letter variable name followed by an expression in brackets is 
called a subscripted variable (an array element). The variable name is called the 
array name, and the expression in brackets is called the subscript. Only 1-
dimensional arrays are permitted. The names of arrays are permitted to coincide 
with the names of simple variables and function names. Any fractional part of a 
subscript is discarded before use. Subscripts must be greater than or equal to 0 
and less than or equal to 2047. 

Subscripted variables may be used in expressions, in function calls, and in return 
statements. 

An array name may be used as an argument to a function or may be declared as 
automatic in a function definition by the use of empty brackets: 

f(a[ ]) 
define f(a[]) 
auto all 

When an array name is so used, the whole contents of the array are copied for 
the use of the function and thrown away on exit from the function. Array names 
that refer to whole arrays cannot be used in any other contexts. 

4.6 CONTROL STATEMENTS 

The if, while, and for statements may be used to alter the flow within programs 
or to cause iteration. The range of each of them is a statement or a compound 
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statement consisting of a collection of statements enclosed in braces. They are 
written in the following way: 

or 

if(relation) statement 
while(relation) statement 
for(expressionl; relation; expression2) statement 

if(relation) {statements} 
while(relation) {statements} 
for(expressionl; relation; expression2) {statements} 

A relation in one of the control statements is an expression of the form 

x>y 

where two expressions are related by one of the following six relational operators: 

< 
> 
<= 
>= 

!= 

less than 
greater than 
less than or equal to 
greater than or equal to 
equal to 
not equal to 

Beware of using" =" instead of "= =" as a relational operator. Unfortunately, 
both of these are legal, so there will be no diagnostic message, but "=" will not 
do a comparison. 

The if statement causes execution of its range if and only if the relation is true. 
Then control passes to the next statement in sequence. 

The while statement causes execution of its range repeatedly as long as the 
relation is true. The relation is tested before each execution of its range; and if 
the relation is false, control passes to the next statement beyond the range of the 
while statement. 

The for statement begins by executing expressionl. Then the relation is tested; 
and if true, the statements in the range of the for are executed. Then expression2 
is executed. The relation is then tested, etc. The typical use of the for statement 
is for a controlled iteration, as in the statement 

for(i= 1; i< = 10; i=i+ 1) i 
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which prints the integers from one to ten. The following are some examples of 
the use of the control statements: 

define f(n){ 
auto i, x 
x=l 
for(i = 1; i< = n; i = i + 1) x = x*i 
return(x) 
} 

The input line 

f(a) 

prints "a" factorial if "a" is a positive integer. The following is the definition of 
a function that computes values of the binomial coefficient (m and n are assumed 
to be positive integers): 

define b(n,m){ 
auto x, j 
x=l 
for(j = 1; j < =m; j =j + 1) x=x*(n-j + l)/j 
return(x) 
} 

The following function computes values of the exponential function by summing 
the appropriate series without regard for possible truncation errors: 
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scale = 20 
define e(x){ 

} 

auto a, b, c, d, n 
a = 1 
b = 1 
c = 1 
d = 0 
n = 1 
while(1 = = 1){ 

} 

a = a*x 
b = b*n 
c = c + alb 
n = n + 1 
if(c = = d) return(c) 
d = c 

4.7 ADDITIONAL FEATURES 

There are some additional language features that every user should know. 

Normally, statements are typed one to a line. It is also permissible, however, to 
type several statements on a line by separating the statements by semicolons. 

If an assignment statement is parenthesized, it then has a value; and it can be 
used anywhere that an expression can. For example, the input line 

(x=y+ 17) 

not only makes the indicated assignment, but also prints the resulting value. 

The following is an example of a use of the value of an assignment statement 
even when it is not parenthesized. The input line 

x = a[i=i+ 1] 

causes a value to be assigned to x and also increments before it is used as a 
subscript. 

The following constructs work in be in exactly the same manner as they do in the 
C language. Refer to the C language programming documents for more details. 
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x=y=z is the same as x=(y=z) 
x =+ y " x = x+y 
x =- y " x = x-y 
x =*y " x = x*y 
x =/ y " x = x/y 
x = 070 y " x = x%y 
x = 

~ y " x = x~y 
x+ + " (x=x+ 1)-1 
x-- " (x=x-l)+ 1 
+ +x " x = x+l 
--x " x = x-I 

. In some of these constructions, spaces are 
significant. There is a real difference between 
x = - y and x = - y. The first replaces x by 
x-y and the second by -yo 

BC 

The following are three important things to remember when using be programs: 

• To exit a be program, type quit. 

• There is a comment convention identical to that of the C language. 
Comments begin with /* and end with */. 

• There is a library of math functions that may be obtained by typing at 
command level: 

be -1 

This command loads a set of library functions that includes sine (s), cosine (e), 
arctangent (a), natural logarithm (I), exponential (e), and Bessel functions of 
integer order [j(n,x)]. The library sets the scale to 20, but it can be reset to 
another value. 

If you type 

bc file ... 

the be program reads and executes the named file or files before accepting 
commands from the keyboard. In this way, programs and function definitions 
are loaded. 

4.8 NOTATIONS 

In the following pages, syntactic categories are in italics and literals are in bold. 
Material in brackets "[]" is optional. 

4-11 



BC 

4.9 TOKENS 

Tokens consist of keywords, identifiers, constants, operators, and separators. 
Token separators may be blanks, tabs, or comments. Newline characters or 
semicolons separate statements. 

Comments are introduced by the characters 1* and terminated by *1. 

There are three kinds of identifiers-ordinary, array, and function. All three types 
consist of single lowercase letters. Array identifiers are followed by square 
brackets, possibly enclosing an expression describing a subscript. Arrays are 
singly dimensioned and may contain up to 2048 elements. Indexing begins at zero 
so an array may be indexed from 0 to 2047. Subscripts are truncated to integers. 
Function identifiers are followed by parentheses, possibly enclosing arguments. 
The three types of identifiers do not conflict. A program can have a variable 
named x, an array named x, and a function named x; all of which are separate 
and distinct. 

The following are reserved keywords: 

ibase if 
obase break 
scale define 
sqrt auto 
length return 
while quit 
for 

Constants consist of arbitrarily long numbers with an optional decimal point. 
The hexadecimal digits A through F are also recognized as digits with values 10 
through 15, respectively. 

4.10 EXPRESSIONS 

The value of an expression is printed unless the main operator is an assignment. 
Precedence is the same as the order of presentation here with highest appearing 
first. Left or right associativity, where applicable, is discussed with each 
operator. 
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4.10.1 Named Expressions 

Named expressions are places where values are stored. Simply stated, named 
expressions are legal on the left side of an assignment. The value of a named 
expression is the value stored in the place named. 

4.10.2 Identifiers 

Simple identifiers are named expressions. They have an initial value of zero. 

4.10.3 array-name[expression] 

Array elements are named expressions. They have an initial value of zero. 

4.10.4 scale, ibase, and obase 

The internal registers scale, ibase, and obase are all named expressions. The 
scale register is the number of digits after the decimal point to be retained in 
arithmetic operations. It has an initial value of zero. The ibase and obase 
registers are the input and output number radix, respectively. Both ibase and 
obase have initial values of ten. 

4.11 FUNCTION CALLS 

4.11.1 function name ([expression[,expression .. ]]) 

A function call consists of a function name followed by parentheses containing a 
comma-separated list of expressions, which are the function arguments. A whole 
array passed as an argument is specified by the array name followed by empty 
square brackets. All function arguments are passed by value. As a result, 
changes made to the formal parameters have no effect on the actual arguments. 
If the function terminates by executing a return statement, the value of the 
function is the value of the expression in the parentheses of the return statement 
or is zero if no expression is provided or if there is no return statement. 

4.11.2 sqrt(expression) 

The result is the square root of the expression. The result is truncated in the least 
significant decimal place. The scale of the result is the scale of the expression or 
the value of scale, whichever is larger. 
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4.11.3 lengtb(expression) 

The result is the total number of significant decimal digits in the expression. The 
scale of the result is zero. 

4.11.4 scale(expression) 

The result is the scale of the expression. The scale of the result is zero. 

4.11.5 Constants 

Constants are primitive expressions. 

4.11.6 Parentbeses 

An expression surrounded by parentheses is a primitive expression. The 
parentheses are used to alter the normal precedence. 

The unary operators bind right to left. 

4.11.7 -expression 

The result is the negative of the expression. 

4.11.8 + + named-expression 

The named expression is incremented by one. The result is the value of the 
named expression after incrementing. 

4.11.9 --named-expression 

The named expression is decremented by one. The result is the value of the 
named expression after decrementing. 

4.11.10 named-expression + + 

The named expression is incremented by one. The result is the value of the 
named expression before incrementing. 

4.11.11 named-expression--

The named expression is decremented by one. The result is the value of the 
named expression before decrementing. 
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The exponentiation operator binds right to left. 

4.11.12 expression ~ expression 

The result is the first expression raised to the power of the second expression. 
The second expression must be an integer. If a is the scale of the left expression 
and b is the absolute value of the right expression, then the scale of the result is 

min(axb,max(scale,a)) 

The operators *, I, and 070 bind left to right. 

4.11.13 expression * expression 

The result is the product of the two expressions. If a and b are the scales of the 
two expressions, then the scale of the result is 

min(a+ b,max(scale,a,b)) 

4.11.14 expression I expression 

The result is the quotient of the two expressions. The scale of the result is the 
value of scale. 

4.11.15 expression Olo expression 

The Olo operator produces the remainder of the division of the two expressions. 
More precisely, aOlob is a-alb*b. 

The scale of the result is the sum of the scale of the divisor and the value of 
scale. 

The additive operators bind left to right. 

4.11.16 expression + expression 

The result is the sum of the two expressions. The scale of the result is the 
maximum of the scales of the expressions. 

4.11.17 expression - expression 

The result is the difference of the two expressions. The scale of the result is the 
maximum of the scales of the expressions. 
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The assignment operators bind right to left. 

4.11.18 named-expression = expression 

This expression results in assigning the value of the expression on the right to the 
named expression on the left. 

named-expression = + expression 
named-expression = - expression 
named-expression = * expression 
named-expression = / expression 
named-expression = 070 expression 
named-expression =A expression 

The result of the above expressions is equivalent to "named expression 
expression OP expression", where OP is the operator after the = sign. 

4.12 RELATIONAL OPERATORS 

named 

Unlike all other operators, the relational operators are only valid as the object of 
an if or while statement or inside a for statement. 

expression < expression 
expression > expression 
expression < = expression 
expression > = expression 
expression = = expression 
expression ! = expression 

4.13 STORAGE CLASSES 

There are only two storage classes in be-global and automatic (local). Only 
identifiers that are to be local to a function need be declared with the auto 
command. The arguments to a function are local to the function. All other 
identifiers are assumed to be global and available to all functions. All identifiers, 
global and local, have initial values of zero. Identifiers declared as auto are 
allocated on entry to the function and released on returning from the function. 
They therefore do not retain values between function calls. The auto arrays are 
specified by the array name followed by empty square brackets. 

Automatic variables in be do not work in exactly the same way as in C language. 
On entry to a function, the old values of the names that appear as parameters 
and as automatic variables are pushed onto a stack. Until return is made from 
the function, reference to these names refers only to the new values. 
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4.14 STATEMENTS 

Statements must be separated by a semicolon or newline. Except where altered 
by control statements, execution is sequential. 

When a statement is an expression unless the main operator is an assignment, the 
value of the expression is printed followed by a newline character. 

Statements may be grouped together and used when one statement is expected by 
surrounding them with braces { }. 

The following statement prints the string inside the quotes. 

/I any string /I 

if (relation )statement 

The sub statement is executed if the relation is true. 

while (relation )statement 

The while statement is executed while the relation is true. The test occurs before 
each execution of the statement. 

for (expression ; relation; expression )statement 

The for statement is the same as 

first-expression 
while (relation) { 

statement 
last-expression 

} 

All three expressions must be present. 

break 

The break statement causes termination of a for or while statement. 

auto identifier [,identifier 1 

The auto statement causes the values of the identifiers to be pushed down. The 
identifiers can be ordinary identifiers or array identifiers. Array identifiers are 
specified by following the array name with empty square brackets. The auto 
statement must be the first statement in a function definition. 
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define ([parameter [,parameter ... ] ]) { 
statements} 

The define statement defines a function. The parameters may be ordinary 
identifiers or array names. Array names must be followed by empty square 
brackets. 

return 
return (expression) 

The return statement causes the following: 

• Termination of a function 

• Popping of the auto variables on the stack 

• Specifies the results of the function. 

The first form is equivalent to return(O). The result of the function is the result 
of the expression in parentheses. 

The Quit statement stops execution of a be program and returns control to the 
VENIX system software when it is first encountered. Because it is not treated as 
an executable statement, it cannot be used in a function definition or in an if, 
for, or while statement. 
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Chapter 5 
INTERACTIVE DESK CALCULATOR (de) 

5.1 GENERAL 

The de program is an interactive desk calculator program implemented on the 
VENIX operating system to do arbitrary-precision integer arithmetic. It has 
provisions for manipulating scaled fixed-point numbers and for input and output 
in bases other than decimal. 

The size of numbers that can be manipulated by de is limited only by available 
core storage. On typical implementations of the VENIX system, the size of 
numbers that can be handled varies from several hundred on the smallest systems 
to several thousand on the largest. 

The de program works like a stacking calculator using reverse Polish notation. 
Ordinarily, de operates on decimal integers; but an input base, output base, and a 
number of fractional digits to be maintained can be specified. 

A language called be has been developed which accepts programs written in the 
familiar style of higher-level programming languages and compiles the output 
which is interpreted by de. Some of the commands described below were 
designed for the compiler interface and are not easy for a human user to 
manipulate. 

Numbers that are typed into de are put on a pushdown stack. The de commands 
work by taking the top number or two off the stack, performing the desired 
operation, and pushing the result on the stack. If an argument is given, input is 
taken from that file until its end, then it is taken from the standard input. 

5.2 de COMMANDS 

Any number of commands are permitted on a line. Blanks and new-line 
characters are ignored except within numbers and in places where a register name 
is expected. 
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The following constructions are recognized: 

number (e.g. 244) 

The value of a number is pushed onto the stack. A number is an unbroken string 
of digits 0 through 9 and uppercase letters A through F (treated as digits with 
values 10 through 15, respectively). The number may be preceded by an 
underscore C) to input a negative number and numbers may contain decimal 
points. 

The top two values on the stack are added (+), subtracted (-), multiplied (*), 
divided (I), remaindered (0/0), or exponentiated 0 by using 

+ - * / % ~ 

The two entries are popped off the stack, and the result is pushed on the stack in 
their place. The result of a division is an integer truncated toward zero. An 
exponent must not have any digits after the decimal point. 

sx 

The top of the main stack is popped and stored in a register named x (where x 
may be any character). If s is uppercase, x is treated as a stack; and the value is 
pushed onto it. Any character, even blank or newline, is a valid register name. 

The value of register x is pushed onto the stack. Register x is not altered. If the I 
in 

Ix 

is uppercase, register x is treated as a stack, and its top value is popped onto the 
main stack. All registers start with empty value which is treated as a zero by the 
command I and is treated as an error by the command L. 

The following characters perform the stated tasks: 

d 

The top value on the stack is duplicated. 

p 

The top value on the stack is printed. The top value remains unchanged. 

f 

All values on the stack and in registers are printed. 
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x 

Treats the top element of the stack as a character string, removes it from the 
stack, and executes it as a string of de commands. 

[ ... 1 

Puts the bracketed character string onto the top of the stack. 

q 

Exits the program. If executing a string, the recursion level is popped by two. If 
q is uppercase, the top value on the stack is popped; and the string execution 
level is popped by that value. 

<x >x =x ! <x ! >x ! =x 

The top two elements of the stack are popped and compared. Register x is 
executed if they obey the stated relation. Exclamation point is negation. 

v 

Replaces the top element on the stack by its square root. The square root of an 
integer is truncated to an integer. 

Interprets the rest of the line as a VENIX software command. Control returns to 
de when the command terminates. 

c 

All values on the stack are popped; the stack becomes empty. 

The top value on the stack is popped and used as the number radix for further 
input. If i is uppercase, the value of the input base is pushed onto the stack. No 
mechanism has been provided for the input of arbitrary numbers in bases less 
than 1 or greater than 16. 

o 

The top value on the stack is popped and used as the number radix for further 
output. If 0 is uppercase, the value of the output base is pushed onto the stack. 
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k 

The top of the stack is popped, and that value is used as a scale factor that 
influences the number of decimal places that are maintained during 
multiplication, division, and exponentiation. The scale factor must be greater 
than or equal to zero and less than 100. If k is uppercase, the value of the scale 
factor is pushed onto the stack. 

z 

The value of the stack level is pushed onto the stack. 

? 

A line of input is taken from the input source (usually the console) and executed. 

5.3 INTERNAL REPRESENTATION OF NUMBERS 

Numbers are stored internally using a dynamic storage allocator. Numbers are 
kept in the form of a string of digits to the base 100 stored one digit per byte 
(centennial digits). The string is stored with the low-order digit at the beginning 
of the string. For example, the representation of 157 is 57,1. After any 
arithmetic operation on a number, care is taken that all digits are in the range 0 
to 99 and that the number has no leading zeros. The number zero is represented 
by the empty string. 

Negative numbers are represented in the 100s complement notation, which is 
analogous to twos complement notation for binary numbers. The high-order digit 
of a negative number is always - 1 and all other digits are in the range 0 to 99. 
The digit preceding the high-order - 1 digit is never a 99. The representation of 
- 157 is 43,98, - 1. This is called the canonical form of a number. The 
advantage of this kind of representation of negative numbers is ease of addition. 
When addition is performed digit by digit, the result is formally correct. The 
result need only be modified, if necessary, to put it into canonical form. 

Because the largest valid digit is 99 and the byte can hold numbers twice that 
large, addition can be carried out and the handling of carries done later when it is 
convenient. 

An additional byte is stored with each number beyond the high-order digit to 
indicate the number of assumed decimal digits after the decimal point. The 
representation of .00l is 1,3 where the scale has been italicized to emphasize the 
fact that it is not the high-order digit. The value of this extra byte is called the 
scale factor of the number. 
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5.4 THE ALLOCATOR 

The de program uses a dynamic string storage allocator for all of its internal 
storage. All reading and writing of numbers internally is through the allocator. 
Associated with each string in the allocator is a 4-word header containing pointers 
to the beginning of the string, the end of the string, the next place to write, and 
the next place to read. Communication between the allocator and de is via 
pointers to these headers. 

The allocator initially has one large string on a list of free strings. All headers 
except the one pointing to this string are on a list of free headers. Requests for 
strings are made by size. The size of the string actually supplied is the next 
higher power of two. When a request for a string is made, the allocator first 
checks the free list to see if there is a string of the desired size. If none is found, 
the allocator finds the next larger free string and splits it repeatedly until it has a 
string of the right size. Leftover strings are put on the free list. If there are no 
larger strings, the allocator tries to combine smaller free strings into larger ones. 
Since all strings are the result of splitting large strings, each string has a neighbor 
that is next to it in core and, if free, can be combined with it to make a string 
twice as long. 

If a string of the proper length cannot be found, the allocator asks the system for 
more space. The amount of space on the system is the only limitation on the size 
and number of strings in de. If the allocator runs out of headers at any time in 
the process of trying to allocate a string, it also asks the system for more space. 

There are routines in the allocator for reading, writing, copying, rewinding, 
forward spacing, and backspacing strings. All string manipulation is done using 
these routines. 

The reading and writing routines increment the read pointer or write pointer so 
that the characters of a string are read or written in succession by a series of read 
or write calls. The write pointer is interpreted as the end of the information­
containing portion of a string and a call to read beyond that point returns an end 
of string indication. An attempt to write beyond the end of a string causes the 
allocator to allocate a larger space and then copy the old string into the larger 
block. 

5.5 INTERNAL ARITHMETIC 

All arithmetic operations are done on integers. The operands (or operand) 
needed for the operation are popped from the main stack and their scale factors 
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stripped off. Zeros are added or digits removed as necessary to get a properly 
scaled result from the internal arithmetic routine. For example, if the scale of the 
operands is different and decimal alignment is required, as it is for addition, zeros 
are appended to the operand with the smaller scale. After performing the 
required arithmetic operation, the proper scale factor is appended to the end of 
the number before it is pushed on the stack. 

A register called scale plays a part in the results of most arithmetic operations. 
The scale register limits the number of decimal places retained in arithmetic 
computations. The scale register may be set to the number on the top of the 
stack truncated to an integer with the k command. The K command may be used 
to push the value of scale on the stack. The value of scale must be greater than 
or equal to 0 and less than 100. The descriptions of the individual arithmetic 
operations includes the exact effect of scale on the computations. 

5.6 ADDITION AND SUBTRACTION 

The scales of the two numbers are compared and trailing zeros are supplied to the 
number with the lower scale to give both numbers the same scale. The number 
with the smaller scale is multiplied by 10 if the difference of the scales is odd. 
The scale of the result is then set to the larger of the scales of the two operands. 

Subtraction is performed by negating the number to be subtracted and proceeding 
as in addition. 

The addition is performed digit by digit from the low-order end of the number. 
The carries are propagated in the usual way. The resulting number is brought 
into canonical form, which may require stripping of leading zeros, or for negative 
numbers, replacing the high-order configuration 99, - 1 by the digit - 1. In any 
case, digits that are not in the range 0 through 99 must be brought into that 
range, propagating any carries or borrows that result. 

5.7 MULTIPLICATION 

The scales are removed from the two operands and saved. The operands are both 
made positive. Then multiplication is performed in a digit by digit manner that 
exactly follows the hand method of multiplying. The first number is multiplied 
by each digit of the second number, beginning with its low-order digit. The 
intermediate products are accumulated into a partial sum which becomes the final 
product. The product is put into the canonical form and its sign is computed 
from the signs of the original operands. 
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The scale of the result is set equal to the sum of the scales of the two operands. 
If that scale is larger than the internal register scale and also larger than both of 
the scales of the two operands, then the scale of the result is set equal to the 
largest of these three last quantities. 

5.8 DIVISION 

The scales are removed from the two operands. Zeros are appended, or digits are 
removed from the dividend to make the scale of the result of the integer division 
equal to the internal quantity scale. The signs are removed and saved. 

Division is performed much as it would be done by hand. The difference of the 
lengths of the two numbers is computed. If the divisor is longer than the 
dividend, zero is returned. Otherwise, the top digit of the divisor is divided into 
the top two digits of the dividend. The result is used as the first (high-order) digit 
of the quotient. If it turns out to be one unit too low, the next trial quotient is 
larger than 99; and this is adjusted at the end of the process. The trial digit is 
multiplied by the divisor, the result subtracted from the dividend, and the process 
is repeated to get additional quotient digits until the remaining dividend is smaller 
than the divisor. At the end, the digits of the quotient are put into the canonical 
form with propagation of carry as needed. The sign is set from the sign of the 
operands. 

5.9 REMAINDER 

The division routine is called, and division is performed exactly as described. The 
quantity returned is the remains of the dividend at the end of the divide process. 
Since division truncates toward zero, remainders have the same sign as the 
dividend. The scale of the remainder is set to the maximum of the scale of the 
dividend and the scale of the quotient plus the scale of the divisor. 

5.10 SQUARE ROOT 

The scale is removed from the operand. Zeros are added if necessary to make the 
integer result have a scale that is the larger of the internal quantity scale and the 
scale of the operand. The method used to compute the square root is Newton's 
method with successive approximations by the rule. 

Xn+1=(Xn + Y /Xn) 

The initial guess is found by taking the integer square root of the top two digits. 
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5.11 EXPONENTIATION 

Only exponents with ° scale factor are handled. If the exponent is 0, then the 
result is 1. If the exponent is negative, then it is made positive; and the base is 
divided into 1. The scale of the base is removed. 

The integer exponent is viewed as a binary number. The base is repeatedly 
squared, and the result is obtained as a product of those powers of the base that 
correspond to the positions of the one-bits in the binary representation of the 
exponent. Enough digits of the result are removed to make the scale of the result 
the same as if the indicated multiplication had been performed. 

5.12 INPUT CONVERSION AND BASE 

Numbers are converted to the internal representation as they are read in. The 
scale stored with a number is simply the number of fractional digits input. 
Negative numbers are indicated by preceding the number with an underscore C). 
The hexadecimal digits A through F correspond to the numbers 10 through 15 
regardless of input base. The i command can be used to change the base of the 
input numbers. This command pops the stack, truncates the resulting number to 
an integer, and uses it as the input base for all further input. The input base 
(ibase) is initialized to 10 (decimal) but may, for example, be changed to 8 or 16 
for octal or hexadecimal to decimal conversions. The command I pushes the 
value of the input base on the stack. 

5.13 OUTPUT COMMANDS 

The command p causes the top of the stack to be printed. It does not remove the 
top of the stack. All of the stack and internal registers are output by typing the 
command f. The 0 command is used to change the output base (obase). This 
command uses the top of the stack truncated to an integer as the base for all 
further output. The output base in initialized to 10 (decimal). It works correctly 
for any base. The command 0 pushes the value of the output base on the stack. 

5.14 OUTPUT FORMAT AND BASE 

The input and output bases only affect the interpretation of numbers on input and 
output; they have no effect on arithmetic computations. Large numbers are 
output with 70 characters per line; a backslash (\) indicates a continued line. All 
choices of input and output bases work correctly, although not all are useful. A 
particularly useful output base is 100000, which has the effect of grouping digits 
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in fives. Bases of 8 and 16 are used for decimal-octal or decimal-hexadecimal 
conversions. 

5.15 INTERNAL REGISTERS 

Numbers or strings may be stored in internal registers or loaded on the stack 
from registers with the commands s and I. The command sx pops the top of the 
stack and stores the result in register x. The x can be any character. The 
command Ix puts the contents of register x on the top of the stack. The 1 
command has no effect on the contents of register x. The s command, however, 
is destructive. 

5.16 STACK COMMANDS 

The command e clears the stack. The command d pushes a duplicate of the 
number on the top of the stack onto the stack. The command z pushes the stack 
size on the stack. The command X replaces the number on the top of the stack 
with its scale factor. The command Z replaces the top of the stack with its 
length. 

5.17 SUBROUTINE DEFINITIONS AND CALLS 

Enclosing a string in brackets "[]" pushes the ASCII string on the stack. The q 
command quits or (in executing a string) pops the recursion levels by two. 

5.18 INTERNAL REGISTERS-PROGRAMMING DC 

The load and store commands, together with "[]" to store strings, the x 
command to execute, and the testing commands «, >, =, ! <, ! >, ! =), can 
be used to program de. The x command assumes the top of the stack is a string 
of de commands and executes it. The testing commands compare the top two 
elements on the stack and, if the relation holds, execute the register that follows 
the relation. For example, to print the numbers 0 through 9, 

[Jipl+ si lilO>a]sa 
Osi lax 

5.19 PUSHDOWN REGISTERS AND ARRAYS 

These commands are designed for use by a compiler, not directly by 
programmers. They involve pushdown registers and arrays. In addition to the 
stack that commands work on, de can be thought of as having individual stacks 
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for each register. These registers are operated on by the commands Sand L. Sx 
pushes the top value of the main stack onto the stack for the register x. Lx pops 
the stack for register x and puts the result on the main stack. The commands s 
and I also work on registers but not as pushdown stacks. The command I does 
not affect the top of the register stack, but s destroys what was there before. 

The commands to work on arrays are : and ;. The command :x pops the stack 
and uses this value as an index into the array x. The next element on the stack is 
stored at this index in x. An index must be greater than or equal to 0 and less 
than 2048. The command ;x loads the main stack from the array x. The value 
on the top of the stack is the index into the array x of the value to be loaded. 

5.20 MISCELLANEOUS COMMANDS 

The command ! interprets the rest of the line as a VENIX software command and 
passes it to the VENIX operating system to execute. One other compiler 
command is Q. This command uses the top of the stack as the number of levels 
of recursion to skip. 

5.21 DESIGN CHOICES 

The real reason for the use of a dynamic storage allocator is that a general 
purpose program can be used for a variety of other tasks. The allocator has some 
value for input and for compiling (i.e., the bracket [ ... J commands) where it 
cannot be known in advance how long a string will be. The result is that at a 
modest cost in execution time: 

• All considerations of string allocation and sizes of strings are removed from 
the remainder of the program. 

• Debugging is made easier. 

• The allocation method used wastes approximately 25 percent of available 
space. 

The choice of 100 as a base for internal arithmetic seemingly has no compelling 
advantage. Yet the base cannot exceed 127 because of hardware limitations and at 
the cost of 5 percent in space debugging was made a great deal easier, and 
decimal output was made much faster. 

The reason for a stack-type arithmetic design was to permit all de commands 
from addition to subroutine execution to be implemented in essentially the same 
way. The result was a considerable degree of logical separation of the final 
program into modules with very little communication between modules. 
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The rationale for the lack of interaction between the scale and the bases is to 
provide an understandable means of proceeding after a change of base or scale 
(when numbers had already been entered). An earlier implementation which had 
global notions of scale and base did not work out well. If the value of scale is 
interpreted in the current input or output base, then a change of base or scale in 
the midst of a computation causes great confusion in the interpretation of the 
results. The current scheme has the advantage that the value of the input and 
output bases are only used for input and output, respectively, and they are 
ignored in all other operations. The value of scale is not used for any essential 
purpose by any part of the program. It is used only to prevent the number of 
decimal places resulting from the arithmetic operations from growing beyond all 
bounds. 

The rationale for the choices for the scales of the results of arithmetic is that in 
no case should any significant digits be thrown away if, on appearances, the user 
actually wanted them. Thus, if the user wants to add the numbers 1.5 and 3.517, 
it seemed reasonable to give them the result 5.017 without requiring to 
unnecessarily specify rather obvious requirements for precision. 

On the other hand, multiplication and exponentiation produce results with many 
more digits than their operands. It seemed reasonable to give as a minimum the 
number of decimal places in the operands but not to give more than that number 
of digits unless the user asked for them by specifying a value for scale. Square 
root can be handled in just the same way as multiplication. The operation of 
division gives arbitrarily many decimal places, and there is simply no way to guess 
how many places the user wants. In this case only, the user must specify a scale 
to get any decimal places at all. 

The scale of remainder was chosen to make it possible to recreate the dividend 
from the quotient and remainder. This is easy to implement; no digits are thrown 
away. 
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Chapter 6 
LEXICAL ANALYZER GENERATOR (lex) 

6.1 GENERAL 

The Lex is a program generator that produces a program in a general purpose 
language that recognizes regular expressions. It is designed for lexical processing 
of character input streams. It accepts a high-level, problem oriented specification 
for character string matching. The regular expressions are specified by you (the 
user) in the source specifications given to Lex. The Lex program generator source 
is a table of regular expressions and corresponding program fragments. The table 
is translated to a program that reads an input stream, copies the input stream to 
an output stream, and partitions the input into strings that match the given 
expressions. As each such string is recognized, the corresponding program 
fragment is executed. The recognition of the expressions is performed by a 
deterministic finite automaton generated by Lex. The program fragments written 
by you are executed in the order in which the corresponding regular expressions 
occur in the input stream. 

The user supplies the additional code beyond expression matching needed to 
complete the tasks, possibly including codes written by other generators. The 
program that recognizes the expressions is generated in the general purpose 
programming language employed for your program fragments. Thus, a high-level 
expression language is provided to write the string expressions to be matched 
while your freedom to write actions is unimpaired. 

The Lex written code is not a complete language, but rather a generator 
representing a new language feature which can be added to different programming 
languages, called "host languages". Just as general purpose languages can 
produce code to run on different computer hardware, Lex can write code in 
different host languages. The host language is used for the output code generated 
by Lex and also for the program fragments added by the user. Compatible run­
time libraries for the different host languages are also provided. This makes Lex 
adaptable to different environments and different users. Each application may be 
directed to the combination of hardware and host language appropriate to the 
task, the user's background, and the properties of local implementations. At 
present, the only supported host language is the C language, although Fortran (in 
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the form of Ratfor) has been available in the past. The Lex generator exists on 
the VENIX operating system, but the codes generated by Lex may be taken 
anywhere the appropriate compilers exist. 

The Lex program generator turns the user's expressions and actions (called 
source) into the host general purpose language; the generated program is named 
yylex. The yylex program recognizes expressions in a stream (called input) and 
performs the specified actions for each expression as it is detected. 

For example, consider a program to delete from the input all blanks or tabs at 
the ends of lines. 

0,10% 
[ \ t] + $ 

is all that is required. The program contains a % % delimiter to mark the 
beginning of the rules. This rule contains a regular expression that matches one or 
more instances of the characters blank or tab (written for visibility, in 
accordance with the C language convention) and occurs prior to the end of a line. 
The brackets indicate the character class made of blank and tab; the + indicates 
"one or more ... "; and the $ indicates "end of line," as in QED. No action is 
specified, so the program generated by Lex yylex() ignores these characters. 
Everything else is copied. To change any remaining string of blanks or tabs to a 
single blank, add another rule. 

%% 
[ \ t] + $ 
[ \t] + printf(" "); 

The coded instructions (generated for this source) scans for both rules at once, 
observes (at the termination of the string of blanks or tabs) whether or not there 
is a newline character, and then executes the desired rule action. The first rule 
matches all strings of blanks or tabs at the end of lines, and the second rule 
matches all remaining strings of blanks or tabs. 

The Lex program generator can be used alone for simple transformations or for 
analysis and statistics gathering on a lexical level. The Lex generator can also be 
used with a parser generator to perform the lexical analysis phase; it is 
particularly easy to interface Lex and yacc. The Lex program recognizes only 
regular expressions; yacc writes parsers that accept a large class of context free 
grammars but requires a lower level analyzer to recognize input tokens. Thus, a 
combination of Lex and yace is often appropriate. When used as a preprocessor 
for a later parser generator, Lex is used to partition the input stream; and the 
parser generator assigns s~ructure to the resulting pieces. Additional programs, 
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written by other generators or by hand, can be added easily to programs written 
by Lex. You will realize that the name yyJex is what yacc expects its lexical 
analyzer to be named, so that the use of this name by Lex simplifies interfacing. 

In the program written by Lex, the user's fragments (representing the actions to 
be performed as each regular expression is found) are gathered as cases of a 
switch. The automaton interpreter directs the control flow. Opportunity is 
provided for the user to insert either declarations or additional statements in the 
routine containing the actions or to add subroutines outside this action routine. 

The Lex program generator is not limited to a source that can be interpreted on 
the basis of one character look-ahead. For example, if there are two rules, one 
looking for "ab" and another for "abcdefg" and the input stream is "abcdefh", 
Lex recognizes "ab" and leaves the input pointer just before "cd ... ". Such 
backup is more costly than the processing of simpler languages. 

6.2 LEX SOURCE 

The general format of Lex source is 

{ definitions} 
070070 
{rules} 
%% 
{user subroutines} 

where the definitions and the user subroutines are often omitted. The first % % is 
required to mark the beginning of the rules, but the second %% is optional. The 
absolute minimum Lex program is 

%% 

(no definitions, no rules) which translates into a program that copies the input to 
the output unchanged. 

In the outline of Lex programs shown above, the rules represent your control 
decisions. They are in a table containing 

• A left column with regular expressions 

• A right column with actions and program fragments to be executed when the 
expressions are recognized. 

Thus an individual rule might be 
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integer printf("found keyword INT"); 

to look for the string integer in the input stream and print the message "found 
keyword INT" whenever it appears. In this example, the host procedural 
language is C, and the C language library function printf is used to print the 
string. The end of the expression is indicated by the first blank or tab character. 
If the action is merely a single C language expression, it can just be given on the 
right side of the line; if it is compound or takes more than a line, it should be 
enclosed in braces. As a more useful example, suppose you desire to change a 
number of words from British to American spelling. The Lex rules such as: 

colour 
mechanise 
petrol 

printf(" color "); 
printf( II mechanize "); 
printf("gas"); 

would be a start. These rules are not sufficient since the word "petroleum" 
would become "gaseum". 

6.3 LEX REGULAR EXPRESSIONS 

The definitions of regular expressions are very similar to those in QED. A 
regular expression specifies a set of strings to be matched. It contains text 
characters (which match the corresponding characters in the strings being 
compared) and operator characters (which specify repetitions, choices, and other 
features). The letters of the alphabet and the digits are always text characters; 
the regular expression 

integer 

matches the string "integer" wherever it appears, and the expression 

a57D 

looks for the string "a57D". 

6.3.1 Operators 

The operator characters are 

II \ [] ~ _ ? . * + I ( ) $ / { } 070 < > 

and if they are to be used as text characters, an escape should be used. The 
quotation mark operator II indicates that whatever is contained between a pair of 
quotes is to be taken as text characters. Thus: 
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xyz" + +" 

matches the string xyz + + when it appears. Note that a part of a string may be 
quoted. It is harmless, but unnecessary, to quote an ordinary text character; the 
expression 

"xyz+ +" 

is equivalent to the one above. Thus, by quoting every nonalphanumeric 
character being used as a text character, the user can avoid remembering the list 
above of current operator characters and is safe should further extensions to Lex 
lengthen the list. 

An operator character may also be turned into a text character by preceding it 
with a backslash (\) as in 

xyz\ + \ + 

which is another, less readable, equivalent of the above expressions. Another use 
of the quoting mechanism is to get a blank into an expression; normally, as 
explained above, blanks or tabs end a rule. Any blank character not contained 
within [] (see below) must be quoted. Several normal C language escapes with \ 
are recognized: \ 0 is newline, \ t is tab, and \ b is backspace. To enter \ itself, 

use \ \. Since newline is illegal in an expression, \0 must be used; it is not 
required to escape tab and backspace. Every character except blank, tab, 
newline, and the list of operator characters above is always a text character. 

6.3.2 Character Classes 

Classes of characters can be specified using the operator pair []. The construction 
[abc] matches a single character which may be "a", "b", or "c". Within square 
brackets, most operator meanings are ignored. Only three characters are special; 
these are \, -, and ~. The - character indicates ranges. For example, 

[a-zO-9< > J 

indicates the character class containing all the lowercase letters, the digits, the 
angle brackets, and underline. Ranges may be given in either order. Using­
between any pair of characters which are not both uppercase letters, both 
lowercase letters, or both digits is implementation dependent and gets a warning 
message (e.g., [O-z] in ASCII is many more characters than is in EBCDIC). If it 
is desired to include the character - in a character class, it should be first or last; 
thus: 
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[- +0-9] 

matches all the digits and the two signs. 

In character classes, the ~ operator must appear as the first character after the left 
bracket to indicate that the resulting string is complemented with respect to the 
computer character set. Thus: 

rabc] 

matches all characters except "a", "b", or "c", including all special or control 
characters; or 

is any character that is not a letter. The \ character provides the usual escapes 
within character class brackets. 

6.3.3 Arbitrary Character 

To match almost any character, the operator character (dot) 

is the class of all characters except newline. Escaping into octal is possible 
although nonportable. 

[\40- \176] 

matches all printable ASCII characters from octal 40 (blank) to octal 176 (tilde). 

6.3.4 Optional Expressions 

The operator? indicates an optional element of an expression. Thus: 

ab?c 

matches either "ac" or "abc". 

6.3.5 Repeated Expressions 

Repetitions of classes are indicated by the operators * and +. For example, 

a* 
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is any number of consecutive "a" characters, including zero; while 

a+ 

is one or more instances of "a". For example, 

[a-zl + 

is all strings of lowercase letters. And 

[A-Za-z][A-Za-zO-91* 

indicates all alphanumeric strings with a leading alphabetic character. This is a 
typical expression for recognizing identifiers in computer languages. 

6.3.6 Alternation and Grouping 

The operator I indicates alternation 

(ablcd) 

matches either "ab" or "cd". Note that parentheses are used for grouping; 
although they are not necessary on the outside level, 

ablcd 

would have sufficed. Parentheses can be used for more complex expressions. 

(ablcd + )?(ef)* 

matches such strings as "abefef", "efefef", "cdef", or "cddd"; but not "abc", 
"abcd", or "abcdef". 

6.3.7 Context Sensitivity 

The Lex program recognizes a small amount of surrounding context. The two 
simplest operators for this are ~ and $. If the first character of an expression is ~, 

the expression is only matched at the beginning of a line (after a newline 
character or at the beginning of the input stream). This never conflicts with the 
other meaning of ~ (complementation of character classes) since that only applies 
within the [] operators. If the very last character is $, the expression is only 
matched at the end of a line (when immediately followed by newline). The latter 
operator is a special case of the / operator character which indicates trailing 
context. The expression 
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ab/cd 

matches the string "ab" but only if followed by "cd". Thus: 

ab$ 

is the same as 

ab/\n 

Left context is handled in Lex by "start conditions" as explained later. If a rule 
is only to be executed when the Lex automaton interpreter is in start condition x, 
the rule should be prefixed by 

<x> 

using the angle bracket operator characters. If we considered "being at the 
beginning of a line" to be start condition ONE, then the ~ operator would be 
equivalent to 

<ONE> 

Start conditions are explained more fully later. 

6.3.8 Repetitions and Definitions 

The operators { } specify either repetitions (if they enclose numbers) or definition 
expansion (if they enclose a name). For example, 

{digit} 

looks for a predefined string named "digit" and inserts it at that point in the 
expression. The definitions are given in the first part of the Lex input before the 
rules. In contrast, 

a{1,5} 

looks for 1 to 5 occurrences of "a". 

Finally, initial 070 is special being the separator for Lex source segments. 

6.4 LEX ACTIONS 

When an expression written as above is matched, Lex executes the corresponding 
action. This part describes some features of Lex that aid in writing actions. 
Note that there is a default action that consists of copying the input to the 
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output. This is performed on all strings not otherwise matched. Thus, the Lex 
user who wishes to absorb the entire input, without producing any output, must 
provide rules to match everything. When Lex is being used with yaee, this is the 
normal situation. One may consider that actions are what is done instead of 
copying the input to the output; thus, in general, a rule that merely copies can be 
omitted. Also, a character combination that is omitted from the rules and that 
appears as input is likely to be printed on the output, thus calling attention to the 
gap in the rules. 

One of the simplest things that can be done is to ignore the input. Specifying a C 
language null statement, ; as an action causes this result. A frequent rule is 

[ \ t \ n] 

which causes the three spacing characters (blank, tab, and newline) to be ignored. 

Another easy way to avoid writing actions is the action character I which 
indicates that the action for this rule is the action for the next rule. The previous 
example could also have been written 

" " 
"\ t" I 
"\n" ; 

with the same result although in different style. The quotes around \ nand \ tare 
not required. 

In more complex actions, you may often want to know the actual text that 
matched some expression like "[a-z] +". The Lex program leaves this text in an 
external character array. Thus, to print the name found, a rule like 

[a - z] + printf("OJos", yytext); 

prints the string in yytext{}. The C language function printf accepts a format 
argument and data to be printed; in this case, the format is "print string" (Olo 
indicating data conversion, and s indicating string type), and the data are the 
characters in yytext{}. This places the matched string on the output. This action 
is so common that it may be written as ECHO. 

[a - z] + ECHO; 

is the same as the above. Since the default action is just to print the characters 
found, one might ask why give a rule like this one which merely specifies the 
default action. Such rules are often required to avoid matching some other rule 
that is not desired. For example, if there is a rule that matches read, it normally 
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matches the instances of read contained in bread or readjust. To avoid this, a 
rule of the form "[a-z] +" is needed. This is explained further below. 

Sometimes it is more convenient to know the end of what has been found; hence, 
Lex also provides a count yyleng of the number of characters matched. To count 
both the number of words and the number of characters in words in the input, 
write 

[a-zA-Z]+ {words + +; chars + = yyleng;} 

which accumulates in chars the number of characters in the words recognized. 
The last character in the string matched can be accessed by 

yytext[yyleng - 1] 

Occasionally, a Lex action may decide that a rule has not recognized the correct 
span of characters. Two routines are provided to aid with this situation. First, 
yymore() can be called to indicate that the next input expression recognized is to 
be tacked on to the end of this input. Normally, the next input string would 
overwrite the current entry in yytext. Second, yyless(n) may be called to indicate 
that not all the characters matched by the currently successful expression are 
wanted right now. The argument "n" indicates the number of characters in 
yytext to be retained. Further characters previously matched are returned to the 
input. This provides the same sort of look ahead offered by the / operator but in 
a different form. 

Example: 

Consider a language that defines a string as a set of characters between quotation 
(") marks and provides that to include a (") in a string it must be preceded by a 
\. The regular expression which matches that is somewhat confusing, so that it 
might be preferable to write 

\"r"]* { 
if (yytext[yyleng - 1] 

yymore(); 
else 

, \ \') 

... normal user processing 
} 

will, when faced with a string such as "abc \ "def", first match the five characters 
"abc \; then the call to yymore() will cause the next part of the string "def to be 
tacked on the end. Note that the final quote terminating the string should be 
picked up in the code labeled "normal processing". 
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The function yy/ess() might be used to reprocess text in various circumstances. 
Consider the C language problem of distinguishing the ambiguity of "= -a ". 
Suppose it is desired to treat this as "= - a" but also to print a message: a rule 
might be 

=-[a-zA-Z] { 
printf("Operator (= -) ambiguous \n"); 
yyless(yyleng - 1); 
... action for 
} 

which prints a message, returns the letter after the operator to the input stream, 
and treats the operator as "= - ". Alternatively, it might be desired to treat this 
as "= - a ". To do this, just return the minus sign as well as the letter to the 
input. 

= - [a - zA - Z] { 
printf("Operator (= -) ambiguous \n"); 
yyless(yyleng - 2); 
... action for 
} 

performs the other interpretation. Note that the expressions for the two cases 
might more easily be written 

=-/[A-Za-z] 

in the first case, and 

=/-[A-Za-z] 

in the second; no backup is required in the rule action. It is not necessary to 
recognize the whole identifier to observe the ambiguity. The possibility of 
"= -3", however, makes 

= -/[~ \t\n] 

a still better rule. 

In addition to these routines, Lex also permits access to the I/O routines it uses. 
They are as follows: 

1. input( ) returns the next input character. 

2. output(c) writes the character "c" on the output. 
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3. unput(c) pushes the character "c" back onto the input stream to be read 
later by input(). 

By default, these routines are provided as macro definitions; but the user can 
override them and supply private versions. These routines define the relationship 
between external files and internal characters and must all be retained or modified 
consistently. They may be redefined to cause input or output to be transmitted to 
or from strange places induding other programs or internal memory. The 
character set used must be consistent in all routines and a value of zero returned 
by input must mean end of file. The relationship between unput and input must 
be retained or the Lex look ahead will not work. The Lex program does not look 
ahead at all if it does not have to, but every rule ending in +, *, ?, or $ or 
containing / implies look ahead. Look ahead is also necessary to match an 
expression that is a prefix of another expression. The standard Lex library 
imposes a lOO-character limit on backup. 

Another Lex library routine that you may sometimes want to redefine is yywrap() 
which is called whenever Lex reaches an end of file. If yywrap returns aI, Lex 
continues with the normal wrap up on end of input. Sometimes, however, it is 
convenient to arrange for more input to arrive from a new source. In this case, 
the user should provide a yywrap which arranges for new input and returns O. 
This instructs Lex to continue processing. The default yywrap always returns 1. 

This routine is also a convenient place to print tables, summaries, etc., at the end 
of a program. Note that it is not possible to write a normal rule that recognizes 
end of file; the only access to this condition is through yywrap. In fact, unless a 
private version of input() is supplied, a file containing nulls cannot be handled 
since a value of 0 returned by input is taken to be end of file. 

6.5 AMBIGUOUS SOURCE RULES 

The Lex program can handle ambiguous specifications. When more than one 
expression can match the current input, Lex chooses as follows: 

1. The longest match is preferred. 

2. Among rules that matched the same number of characters, the rule given 
first is preferred. 

Thus, suppose the rules 

integer 
[a - z] + 

keyword action ... ; 
identifier action ... ; 
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are to be given in that order. If the input is "integers", it is taken as an 
identifier because 

"[a-zj + " 

matches eight characters while "integer" matches only seven. If the input is 
"integer", both rules match seven characters; and the keyword rule is selected 
because it was given first. Anything shorter (e.g., "int") does not match the 
expression "integer" and so the identifier interpretation is used. 

The principle of preferring the longest match makes rules containing expressions 
like . * dangerous. For example: 

, *' 

might appear to be a good way of recogmzmg a string in single quotes. 
However, it is an invitation for the program to read far ahead looking for a 
distant single quote. Presented with the input 

'first' quoted string here, 'second' here 

the above expression will match 

'first' quoted string here, 'second' 

which is probably not what was wanted. A better rule is of the form 

, [~' \nj*' 

which, on the above input, stops after ('first'). The consequences of errors like 
this are mitigated by the fact that the dot (.) operator does not match newline. 
Thus expressions like. * stop on the current line. Do not try to defeat this with 
expressions like [. \ oj + or equivalents; the Lex generated program tries to read 
the entire input file causing internal buffer overflows. 

Note that Lex is normally partitioning the input stream not searching for all 
possible matches of each expression. This means that each character is accounted 
for once and only once. For example, suppose it is desired to count occurrences 
of both "she" and "he" in an input text. Some Lex rules to do this might be 

she s + +; 
he h+ +; 
\n I 
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where the last two rules ignore everything besides "he" and "she". Remember 
that dot (.) does not include newline. Since "she" includes "he", Lex normally 
does not recognize the instances of "he" included in "she" since once it has 
passed a "she" those characters are gone. 

Sometimes the user desires to override this choice. The action REJECT means 
"go do the next alternative". It causes whatever rule was second choice after the 
current rule to be executed. The position of the input pointer is adjusted 
accordingly. Suppose you really want to count the included instances of "he". 
Use the following rule to change the previous example to accomplish the task. 

she {s + +; REJECT;} 
he {h + +; REJECT;} 
\n I 

After counting each expression, it is rejected; whenever appropriate, the other 
expression is then counted. In this example, you could note that "she" includes 
"he" but not vice versa and omit the REJECT action on "he". In other cases, it 
is not possible to state which input characters are in both classes. 

Consider the two rules 

a[bc] + 
a[cd] + 

{ 
{ 

; REJECT;} 
; REJECT;} 

If the input is "ab", only the first rule matches, and on "ad" only the second 
matches. The input string "accb" matches the first rule for four characters and 
then the second rule for three characters. In contrast, the input "accd" agrees 
with the second rule for four characters and then the first rule for three. 

In general, REJECT is useful whenever the purpose of Lex is not to partition the 
input stream but to detect all examples of some items in the input, and the 
instances of these items may overlap or include each other. Suppose a digram 
table of the input is desired; normally, the digrams overlap, that is the word 
"the" is considered to contain both "th" and "he". Assuming a 2-dimensional 
array named digram[] to be incremented, the appropriate source is 

0,100,10 

[a - z] [a - z] {digram [yytext [Oll [yytext[l11 + +; REJECT;} 

\n 
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where the REJECT is necessary to pick up a letter pair beginning at every 
character rather than at every other character. 

The action REJECT does not rescan the input; instead it remembers the results of 
the previous scan. This means that if a rule with trailing context is found and 
REJECT executed the user must not have used unput to change the characters 
forthcoming from the input stream. This is the only restriction on the user's 
ability to manipulate the not-yet-processed input. 

6.6 LEX SOURCE DEFINITIONS 

Recalling the format of the Lex source, 

{definitions} 
0,700,70 

{rules} 
0,700,70 

{user routines} 

So far, only the rules have been described. You need additional options to define 
variables for use in the program and for use by Lex. Variables can go either in 
the definitions section or in the rules section. 

Remember Lex is generating the rules into a program. Any source not 
intercepted by Lex is copied into the generated program. There are three classes 
of such things. 

1. Any line not part of a Lex rule or action that begins with a blank or tab is 
copied into the Lex generated program. Such source input prior to the 
first 0,700,70 delimiter is external to any function in the code; if it appears 
immediately after the first 0,700,70, it appears in an appropriate place for 
declarations in the function written by Lex which contains the actions. 
This material must look like program fragments and should precede the 
first Lex rule. 

Lines that begin with a blank or tab and that contain a comment are passed 
through to the generated program. This can be used to include comments in 
either the Lex source or the generated code; the comments should follow the 
host language convention. 

2. Anything included between lines containing only OJo{ and OJo} is copied out 
as above. The delimiters are discarded. This format permits entering text 
like preprocessor statements that must begin in column 1 or copying lines 
that do not look like programs. 
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3. Anything after the third 070070 delimiter, regardless of formats, etc., is 
copied out after the Lex output. 

Definitions intended for Lex are given before the first 070 070 delimiter. Any line in 
this section not contained between 070 { and 0J0} and beginning in column 1 is 
assumed to define Lex substitution strings. The format of such lines is 

name translation 

and it causes the string given as a translation to be associated with the name. 
The name and translation must be separated by at least one blank or tab, and the 
name must begin with a letter. The translation can then be called out by the 
{name} syntax in a rule. Using {D} for the digits and {E} for an exponent field, 
for example, abbreviate rules to recognize numbers 

[0- 9] D 
E [DEde][ - + ]?{D} + 
070070 
{D} + printf("integer"); 
{D} +"." {D}*{{E})?I 
{D}*"."{D} +({E})?I 
{D} + {E} printf("real"); 

Note the first two rules for real numbers; both require a decimal point and 
contain an optional exponent field. The first requires at least one digit before the 
decimal point, and the second requires at least one digit after the decimal point. 
To correctly handle the problem posed by a Fortran expression such as 
"35.EQ.I", which does not contain a real number, a context-sensitive rule such 
as: 

[0-9]+I"."EQ printf(" integer"); 

could be used in addition to the normal rule for integers. 

The definitions section may also contain other commands including the selection 
of a host language, a character set table, a list of start conditions, or adjustments 
to the default size of arrays within Lex itself for larger source programs. These 
possibilities are discussed later. 

6.7 USAGE 

There are two steps in compiling a Lex source program. First, the Lex source 
must be turned into a generated program in the host general purpose language. 
Then this program must be compiled and loaded usually with a library of Lex 
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subroutines. The generated program is on a file named lex.yy.c. The 110 library 
is defined in terms of the C language standard library. 

On the VENIX operating system, the library is accessed by the loader flag -11. 
So an appropriate set of commands is 

lex source 
cc lex.yy.c -11 

The resulting program is placed on the usual file a.out for later execution. To use 
Lex with yacc, see part "LEX AND YACC". Although the default Lex 110 
routines use the C language standard library, the Lex automata themselves do not 
do so; if private versions of input, output, and unput are given, the library is 
avoided. 

6.8 LEX AND YACC 

To use Lex with yacc, observe that Lex writes a program named yylex() (the 
name required by yacc for its analyzer). Normally, the default main program on 
the Lex library calls this routine; but if yacc is loaded and its main program is 
used, yacc calls yylex(). In this case, each Lex rule ends with 

return(token); 

where the appropriate token value is returned. An easy way to get access to 
yacc's names for tokens is to compile the Lex output file as part of the yacc 
output file by placing the line 

# include "lex.yy.c" 

in the last section of yacc input. If the grammer is to be named "good" and the 
lexical rules are to be named "better", the VENIX software command sequence 
could be 

yacc good 
lex better 
cc y.tab.c -ly -11 

The yacc library (-ly) should be loaded before the Lex library to obtain a main 
program that invokes the yacc parser. The generations of Lex and yacc programs 
can be done in either order. 
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6.9 EXAMPLES 

As a problem, consider copying an input file while adding three to every positive 
number divisible by seven. A suitable Lex source program follows: 

0/00/0 
int k; 

[0 - 9] + { 
k = atoi(yytext); 
if (kOJ07 = = 0) 

printf(" O/Od", k + 3); 
else 

printf(" O/Od" ,k); 
} 

The rule "[0-9] +" recognizes strings of digits; atoi() converts the digits to binary 
and stores the result in "k". The operator % (remainder) is used to check 
whether "k" is divisible by seven; if it is, "k" is incremented by three as it is 
written out. It may be objected that this program alters such input items as 
"49.63" or "X7". Furthermore, it increments the absolute value of all negative 
numbers divisible by seven. To avoid this, add a few more rules after the active 
one, as here: 

0/00/0 

-?[0-9] + 
int k; 
{ 
k = atoi(yytext); 
printf(" O/Od", k0/07 
} 

-?[0-9.] + ECHO; 
[A-Za-z][A- Za-zO- 9] + ECHO; 

O? k+3 : k); 

Numerical strings containing a dot (.) or preceded by a letter will be picked up by 
one of the last two rules and not changed. The "if-else" has been replaced by a 
C language conditional expression to save space; the form "a?b:c" means "if a 
then b else c". 

For an example of statistIcs gathering, here is a program that histograms the 
lengths of words, where a word is defined as a string of letters: 
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int lengs [1 00]; 
070070 
[a - z] + lengs[yyleng] + +; 

\n 
%% 
yywrap() 
{ 
int i; 

I 

printf("Length No. words\n"); 
for(i=O; i< 100; i+ +) 

if (lengs[i] > 0) 
printf(" %5d% lOd \n" ,i,lengs[i)); 

return(l); 
} 

LEX 

This program accumulates the histogram while producing no output. At the end 
of the input, it prints the table. The final statement "return(l);" indicates that 
Lex is to perform wrap up. If yywrap returns zero (false), it implies that further 
input is available and the program is to continue reading and processing. 
Providing a yywrap (that never returns true) causes an infinite loop. 

6.10 LEFT CONTEXT SENSITIVITY 

Sometimes it is desirable to have several sets of lexical rules to be applied at 
different times in the input. For example, a compiler preprocessor might 
distinguish preprocessor statements and analyze them differently from ordinary 
statements. This requires sensitivity to prior context, and there are several ways 
of handling such problems. The ~ operator, for example, is a prior context 
operator recognizing immediately preceding left context just as $ recognizes 
immediately following right context. Adjacent left context could be extended to 
produce a facility similar to that for adjacent right context, but it is unlikely to be 
as useful since often the relevant left context appeared some time earlier such as 
at the beginning of a line. 

This part describes three means of dealing with different environments: a simple 
use of flags (when only a few rules change from one environment to another), the 
use of "start conditions" on rules, and the possibility of making multiple lexical 
analyzers all run together. In each case, there are rules that recognize the need to 
change the environment in which the following input text is analyzed and that set 
a parameter to reflect the change. This may be a flag explicitly tested by the 
user's action code; this is the simplest way of dealing with the problem since Lex 
is not involved at all. It may be more convenient, however, to have Lex 
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remember the flags as initial conditions on the rules. Any rule may be associated 
with a start condition. It is only recognized when Lex is in that start condition. 
The current start condition may be changed at any time. Finally, if the sets of 
rules for the different environments are very dissimilar, clarity may be best 
achieved by writing several distinct lexical analyzers and switching from one to 
another as desired. 

Consider the following problem: copy the input to the output, changing the word 
"magic" to "first" on every line which began with the letter "a", changing 
"magic" to "second" on every line which began with the letter "b", and changing 
"magic" to "third" on every line which began with the letter "c". All other words 
and all other lines are left unchanged. 

These rules are so simple that the easiest way to do this job is with a flag. 

int flag. 
%070 
~a {flag = ' a'; ECHO;} 
~b {flag = 'b'; ECHO;} 
~c {flag = 'c'; ECHO;} 
\n {flag = 0; ECHO;} 
magic { 

switch (flag) 
{ 
case 'a': printf("first"); break; 
case 'b': printf("second"); break; 
case 'c': printf("third"); break; 
default: ECHO; break; 
} 

} 

should be adequate. 

To handle the same problem with start conditions, each start condition must be 
introduced to Lex in the definitions section with a line reading 

%Start name! name2 ... 

where the conditions may be named in any order. The word "Start" may be 
abbreviated to "s" or "S". The conditions may be referenced at the head of a 
rule with < > brackets; 

< name 1 > expression 

6-20 



LEX 

is a rule that is only recognized when Lex is in the start condition narnel. To 
enter a start condition, execute the action statement 

BEGIN name!; 

which changes the start condition to narnel. To resume the normal state 

BEGIN 0; 

resets the initial condition of the Lex automaton interpreter. A rule may be 
active in several start conditions. 

< name! ,name2,name3 > 

is a legal prefix. Any rule not beginning with the < > prefix operator is always 
active. 

The same example as before can be written as follows: 

O,1oSTART AA BB CC 
0,100,10 
~a 

~b 

~c 

\n 
<AA> magic 
<BB>magic 
<CC>magic 

{ECHO; BEGIN AA;} 
{ECHO; BEGIN BB;} 
{ECHO; BEGIN CC;} 
{ECHO; BEGIN O;} 
printf(lffirstlf); 
printf(1f second lf ); 
printf(lfthird lf ); 

where the logic is exactly the same as in the previous method of handling the 
problem, but Lex does the work rather than the user's code. 

6.11 CHARACTER SET 

The programs generated by Lex handle character I/O only through the routines 
input(), output(), and unput(). Thus, the character representation provided in 
these routines is accepted by Lex and used to return values in yytext(). For 
internal use, a character is represented as a small integer which, if the standard 
library is used, has a value equal to the integer value of the bit pattern 
representing the character on the host computer. Normally, the letter a is 
represented in the same form as the character constant 'a'. If this interpretation 
is changed by providing I/O routines that translate the characters, Lex must be 
given a translation table that is in the definitions section and must be bracketed 
by lines containing only O,1oT; the translation table contains lines of the form 
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{integer} {character string} 

which indicate the value associated with each character. 

6.12 SUMMARY OF SOURCE FORMAT 

The general form of a Lex source file is 

{definitions} 
070 0J0 
{rules} 
0J00J0 
{user subroutines} 

The definitions section contains a combination of 

1. Definitions in the form "name space translation". 

2. Included code in the form "space code" . 

3. Included code in the form: 

0J0{ 
code 
0J0} 

4. Start conditions given in the form: 

OJoS namel name2 ... 

5. Character set tables in the form: 

OJoT 
number space character-string 

OJoT 

6. Changes to internal array sizes in the form: 

OJox nnn 

where "nnn" is a decimal integer representing an array size and "a" selects the 
parameter as follows: 
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Letter Parameter 
p positions 
n states 
e tree nodes 
a transitions 
k packed character classes 
0 output array size 

Lines in the rules section have the form "expression action" where the action 
may be continued on succeeding lines by using braces to delimit it. 

Regular expressions in Lex use the following operators: 

x 
"x" 
\x 
[xy] 
[x-z] 
[~x] 

~x 

<y>x 
x$ 
x? 
x* 
x+ 
xiy 
(x) 
x/y 
{xx} 

the character "x". 
an "x", even if x is an operator. 
an "x", even if x is an operator. 
the character x or y. 
the characters x, y, or z. 
any character but x. 
any character but newline. 
an x at the beginning of a line. 
an x when Lex is in start condition y. 
an x at the end of a line. 
an optional x. 
0,1,2, ... instances of x. 
1,2,3, ... instances of x. 
an x or a y. 
an x. 
an x but only if followed by y. 
the translation of xx from 

the definitions section. 
x{m,n} m through n occurrences of x. 

6.13 CA VEATS AND BUGS 

There are pathological expressions that produce exponential growth of the tables 
when converted to deterministic machines; fortunately, they are rare. 

REJECT does not rescan the input; instead it remembers the results of the 
previous scan. This means that if a rule with trailing context is found and 
REJECT executed, the user must not have used unput to change the characters 
forthcoming from the input stream. This is the only restriction on the user's 
ability to manipulate the not-yet-processed input. 
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Chapter 7 
YET ANOTHER COMPILER-COMPILER (yacc) 

7.1 GENERAL 

The yacc program provides a general tool for imposing structure on the input to a 
computer program. The yacc user prepares a specification of the input process. 
This includes rules describing the input structure, code to be invoked when these 
rules are recognized, and a low-level routine to do the basic input. The yacc 
program then generates a function to control the input process. This function, 
called a parser, calls the user-supplied low-level input routine (the lexical 
analyzer) to pick up the basic items (called tokens) from the input stream. These 
tokens are organized according to the input structure rules, called grammar rules. 
When one of these rules has been recognized, then user code (supplied for this 
rule, an action) is invoked. Actions have the ability to return values and make use 
of the values of other actions. 

The yacc program is written in a portable dialect of the C language, and the 
actions and output subroutine are in the C language as well. Moreover, many of 
the syntactic conventions of yacc follow the C language. 

The heart of the input specification is a collection of grammar rules. Each rule 
describes an allowable structure and gives it a name. For example, one grammar 
rule might be 

date : month_name day ',' year 

where "date" , "month_name", "day", and "year" represent structures of 
interest in the input process; presumably, "month name", "day", and "year" 
are defined elsewhere. The comma is enclosed in single quotes. This implies that 
the comma is to appear literally in the input. The colon and semicolon merely 
serve as punctuation in the rule and have no significance in controlling the input. 
With proper definitions, the input 

July 4, 1776 

might be matched by the rule. 

7-1 



YACC 

An important part of the input process is carried out by the lexical analyzer. 
This user routine reads the input stream, recognizes the lower-level structures, and 
communicates these tokens to the parser. For historical reasons, a structure 
recognized by the lexical analyzer is called a "terminal symbol", while the 
structure recognized by the parser is called a "nonterminal symbol". To avoid 
confusion, terminal symbols will usually be referred to as "tokens". 

There is considerable leeway in deciding whether to recognize structures using the 
lexical analyzer or grammar rules. For example, the rules 

month name: '1' 'a' 'n' 
month name: 'F' 'e' 'b' ; 

month name: 'D' 'e' 'c' 

might be used in the above example. The lexical analyzer only needs to recognize 
individual letters, and "month name" is a nonterminal symbol. Such low-level 
rules tend to waste time and space and may complicate the specification beyond 
the ability of yacc to deal with it. Usually, the lexical analyzer recognizes the 
month names and returns an indication that a "month name" is seen. In this 
case, "month name" is a "token". 

Literal characters such as a comma must also be passed through the lexical 
analyzer and are also considered tokens. 

Specification files are very flexible. It is relatively easy to add to the above 
example the rule 

date : month' I' day '1' year 

allowing 

7/4/1776 

as a synonym for 

July 4, 1776 

on input. In most cases, this new rule could be "slipped in" to a working system 
with minimal effort and little danger of disrupting existing input. 

The input being read may not conform to the specifications. These input errors 
are detected as early as is theoretically possible with a left-to-right scan. Thus, 
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not only is the chance of reading and computing with bad input data substantially 
reduced, but the bad data can usually be quickly found. Error handling, 
provided as part of the input specifications, permits the reentry of bad data or the 
continuation of the input process after skipping over the bad data. 

In some cases, yacc fails to produce a parser when given a set of specifications. 
For example, the specifications may be self-contradictory, or they may require a 
more powerful recognition mechanism than that available to yacc. The former 
cases represent design errors; the latter cases can often be corrected by making 
the lexical analyzer more powerful or by rewriting some of the grammar rules. 
While yacc cannot handle all possible specifications, its power compares favorably 
with similar systems. Moreover, the constructions which are difficult for yacc to 
handle are also frequently difficult for human beings to handle. Some users have 
reported that the discipline of formulating valid yacc specifications for their input 
revealed errors of conception or design early in the program development. 

The yacc program has been extensively used in numerous practical applications, 
including lint, the Portable C Compiler, and a system for typesetting 
mathematics. 

The remainder of this document describes the following subjects as they relate to 
yacc 

• Basic process of preparing a yacc specification 

• Parser operation 

• Handling ambiguities 

• Handling operator precedences in arithmetic expressions 

• Error detection and recovery 

• The operating environment and special features of the parsers yacc produces 

• Suggestions to improve the style and efficiency of the specifications 

• Advanced topics. 

In addition, there are four appendices. Appendix A is a brief example, and 
Appendix B is a summary of the yacc input syntax. Appendix C gives an 
example using some of the more advanced features of yacc, and Appendix D 
describes mechanisms and syntax no longer actively supported but provided for 
historical continuity with older versions of yacc. 
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7.2 BASIC SPECIFICATIONS 

Names refer to either tokens or nonterminal symbols. The yacc program requires 
token names to be declared as such. In addition, it is often desirable to include 
the lexical analyzer as part of the specification file. It may be useful to include 
other programs as well. Thus, every specification file consists of three sections: 
the declarations, (grammar) rules, and programs. The sections are separated by 
double percent (070070) marks. (The percent symbol is generally used in yacc 
specifications as an escape character.) 

In other words, a full specification file looks like 

declarations 
%% 
rules 
%% 
programs 

when each sectiori is used. 

The declaration section may be empty, and if the programs section is omitted, the 
second %% mark may also be omitted. The smallest legal yacc specification is 

%% 
rules 

since the other two sections may be omitted. 

Blanks, tabs, and newlines are ignored, but they may not appear in names or 
multicharacter reserved symbols. Comments may appear wherever a name is 
legal. They are enclosed in /* ••• * /, as in C language. 

The rules section is made up of one or more grammar rules. A grammar rule has 
the form 

A : BODY; 

where "A" represents a nonterminal name, and "BODY" represents a sequence 
of zero or more names and literals. The colon and the semicolon are yacc 
punctuation. 

Names may be of arbitrary length and may be made up of letters, dots, 
underscores, and noninitial digits. Uppercase and lowercase letters are distinct. 
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The names used in the body of a grammar rule may represent tokens or 
nonterminal symbols. 

A literal consists of a character enclosed in single quotes ('). As in C language, 
the backslash (\) is an escape character within literals, and all the C language 
escapes are recognized. Thus: 

'\n' newline 
, \r' return 
'\ " single quote ( , ) 
'\\' backslash ( \ ) 
'\ t' tab 
, \b' backspace 
, \f' form feed 
'\xxx' "xxx" in octal 

are understood by yacc. For a number of technical reasons, the NUL character 
(' \0' or 0) should never be used in grammar rules. 

If there are several grammar rules with the same left-hand side, the vertical bar (i) 
can be used to avoid rewriting the left-hand side. In addition, the semicolon at 
the end of a rule can be dropped before a vertical bar. Thus the grammar rules 

ABC D 
A E F 
A 0 

can be given to yacc as 

A : BCD 
1 E F 
10 

by using the vertical bar. It is not necessary that all grammar rules with the same 
left side appear together in the grammar rules section although it makes the input 
much more readable and easier to change. 

If a nonterminal symbol matches the empty string, this can be indicated by 

empty: 

which is understood by yacc. 
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Names representing tokens must be declared. This is most simply done by writing 

O,1otoken namel name2 ... 

in the declarations section. Every name not defined in the declarations section is 
assumed to represent a nonterminal symbol. Every nonterminal symbol must 
appear on the left side of at least one rule. 

Of all the nonterminal symbols, the start symbol has particular importance. The 
parser is designed to recognize the start symbol. Thus, this symbol represents the 
largest, most general structure described by the grammar rules. By default, the 
start symbol is taken to be the left-hand side of the first grammar rule in the rules 
section. It is possible and desirable to declare the start symbol explicitly in the 
declarations section using the (l7ostart keyword 

%start symbol 

to define the start symbol. 

The end of the input to the parser is signaled by a special token, called the end­
marker. If the tokens up to but not including the end-marker form a structure 
that matches the start symbol, the parser function returns to its caller after the 
end-marker is seen and accepts the input. If the end-marker is seen in any other 
context, it is an error. 

It is the job of the user-supplied lexical analyzer to return the end-marker when 
appropriate. Usually the end-marker represents some reasonably obvious 110 
status, such as "end of file" or "end of record". 

7.3 ACTIONS 

With each grammar rule, the user may associate actions to be performed each 
time the rule is recognized in the input process. These actions may return values 
and may obtain the values returned by previous actions. Moreover, the lexical 
analyzer can return values for tokens if desired. 

An action is an arbitrary C language statement and as such can do input and 
output, call subprograms, and alter external vectors and variables. An action is 
specified by one or more statements enclosed in curly braces ({) and (}). For 
example: 
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A : '(' B ')' 
{ 

hello( 1, "abc" ); 
} 

and 

XXX : YYY ZZZ 
{ 

} 

printf(" a message \ n"); 
flag = 25; 

are grammar rules with actions. 

YACC 

To facilitate easy communication between the actions and the parser, the action 
statements are altered slightly. The dollar sign symbol ($) is used as a signal to 
yacc in this context. 

To return a value, the action normally sets the pseudo-variable $$ to some value. 
For example, the action 

{ $$ = 1; } 

does nothing but return the value of one. 

To obtain the values returned by previous actions and the lexical analyzer, the 
action may use the pseudo-variables $1, $2, ... , which refer to the values returned 
by the components of the right side of a rule, reading from left to right. If the 
rule is 

A : BCD 

then $2 has the value returned by C, and $3 the value returned by D. 

The rule 

expr '(' expr ')' 

provides a more concrete example. The value returned by this rule is usually the 
value of the "expr" in parentheses. This can be indicated by 
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expr '(' expr ')' 
{ 

$$ = $2 ; 
} 

By default, the value of a rule is the value of the first element in it ($1). Thus, 
grammar rules of the form 

A B 

frequently need not have an explicit action. 

In the examples above, all the actions came at the end of rules. Sometimes, it is 
desirable to get control before a rule is fully parsed. The yaee permits an action 
to be written in the middle of a rule as well as at the end. This rule is assumed to 
return a value accessible through the usual $ mechanism by the actions to the 
right of it. In turn, it may access the values returned by the symbols to its left. 
Thus, in the rule 

A B 
{ 

$$ = 1; 
} 
C 

{ 
x $2; 
y $3; 

} 

the effect is to set x to 1 and y to the value returned by C. 

Actions that do not terminate a rule are actually handled by yaee by 
manufacturing a new nonterminal symbol name and a new rule matching this 
name to the empty string. The interior action is the action triggered off by 
recognizing this added rule. The yaee program actually treats the above example 
as if it had been written 
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$ACT 
{ 

} 

A 
{ 

} 

/* empty */ 

$$ = 1; 

B $ACT C 

x $2; 
y $3; 

where $ACT is an empty action. 

YACC 

In many applications, output is not done directly by the actions. A data 
structure, such as a parse tree, is constructed in memory and transformations are 
applied to it before output is generated. Parse trees are particularly easy to 
construct given routines to build and maintain the tree structure desired. For 
example, suppose there is a C function node written so that the call 

node( L, nl, n2 ) 

creates a node with label L and descendants n1 and n2 and returns the index of 
the newly created node. Then parse tree can be built by supplying actions such as 

expr expr' +' expr 
{ 

$$ = node( '+', $1, $3); 
} 

in the specification. 

The user may define other variables to be used by the actions. Declarations and 
definitions can appear in the declarations section enclosed in the marks 070 { and 
OJo}. These declarations and definitions have global scope, so they are known to 
the action statements and the lexical analyzer. For example: 

070 { int variable = 0; 070 } 

could be placed in the declarations section making "variable" accessible to all of 
the actions. The yacc parser uses only names beginning with yy. The user 
should avoid such names. 

In these examples, all the values are integers. A discussion of values of other 
types is found in the part "ADVANCED TOPICS". 
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7.4 LEXICAL ANALYSIS 

The user must supply a lexical analyzer to read the input stream and 
communicate tokens (with values, if desired) to the parser. The lexical analyzer is 
an integer-valued function called yylex. The function returns an integer, the 
token number, representing the kind of token read. If there is a value associated 
with that token, it should be assigned to the external variable yylval. 

The parser and the lexical analyzer must agree on these token numbers in order 
for communication between them to take place. The numbers may be chosen by 
yacc or the user. In either case, the #define mechanism of C language is used to 
allow the lexical analyzer to return these numbers symbolically. For example, 
suppose that the token name DIGIT has been defined in the declarations section 
of the yacc specification file. The relevant portion of the lexical analyzer might 
look like 

yylexO 
{ 

extern int yylval; 
int c; 

c = getcharO; 

switch( c ) 
{ 

case '0': 
case '1': 

case '9': 

} 

yylval = c- '0'; 
return( DIGIT ); 

to return the appropriate token. 

The intent is to return a token number of DIGIT and a value equal to the 
numerical value of the digit. Provided that the lexical analyzer code is placed in 
the programs section of the specification file, the identifier DIGIT is defined as the 
token number associated with the token DIGIT. 
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This mechanism leads to clear, easily modified lexical analyzers. The only pitfall 
to avoid is using any token names in the grammar that are reserved or significant 
in C language or the parser. For example, the use of token names if or while will 
almost certainly cause severe difficulties when the lexical analyzer is compiled. 
The token name error is reserved for error handling and should not be used 
naively. 

As mentioned above, the token numbers may be chosen by yacc or the user. In 
the default situation, the numbers are chosen by yacc. The default token number 
for a literal character is the numerical value of the character in the local character 
set. Other names are assigned token numbers starting at 257. 

To assign a token number to a token (including literals), the first appearance of 
the token name or literal in the declarations section can be immediately followed 
by a nonnegative integer. This integer is taken to be the token number of the 
name or literal. Names and literals not defined by this mechanism retain their 
default definition. It is important that all token numbers be distinct. 

For historical reasons, the end-marker must have token number 0 or negative. 
This token number cannot be redefined by the user. Thus, all lexical analyzers 
should be prepared to return 0 or a negative number as a token upon reaching the 
end of their input. 

A very useful tool for constructing lexical analyzers is the lex program. These 
lexical analyzers are designed to work in close harmony with yacc parsers. The 
specifications for these lexical analyzers use regular expressions instead of 
grammar rules. Lex can be easily used to produce quite complicated lexical 
analyzers, but there remain some languages (such as FORTRAN) which do not fit 
any theoretical framework and whose lexical analyzers must be crafted by hand. 

7 .5 PARSER OPERATION 

The yacc program turns the specification file into a C language program, which 
parses the input according to the specification given. The algorithm used to go 
from the specification to the parser is complex and will not be discussed here. 
The parser itself, however, is relatively simple and understanding how it works 
will make treatment of error recovery and ambiguities much more 
comprehensible. 

The parser produced by yacc consists of a finite state machine with a stack. The 
parser is also capable of reading and remembering the next input token (called the 
look-ahead token). The current state is always the one on the top of the stack. 
The states of the finite state machine are given small integer labels. Initially, the 
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machine is in state 0 (the stack contains only state 0) and no look-ahead token 
has been read. 

The machine has only four actions available-shift, reduce, accept, and error. A 
step of the parsor is done as follows: 

1. Based on its current state, the parser decides if it needs a look-ahead token 
to choose the action to be taken. If it needs one and does not have one, it 
calls yylex to obtain the next token. 

2. Using the current state and the look-ahead token if needed, the parser 
decides on its next action and carries it out. This may result in states 
being pushed onto the stack or popped off of the stack and in the look­
ahead token being processed or left alone. 

The shift action is the most common action the parser takes. Whenever a shift 
action is taken, there is always a look-ahead token. For example, in state 56 
there may be an action 

IF shift 34 

which says, in state 56, if the look-ahead token is IF, the current state (56) is 
pushed down on the stack, and state 34 becomes the current state (on the top of 
the stack). The look-ahead token is cleared. 

The reduce action keeps the stack from growing without bounds. Reduce actions 
are appropriate when the parser has seen the right-hand side of a grammar rule 
and is prepared to announce that it has seen an instance of the rule replacing the 
right-hand side by the left-hand side. It may be necessary to consult the look­
ahead token to decide whether to reduce or not (usually it is not necessary). In 
fact, the default action (represented by a dot) is often a reduce action. 

Reduce actions are associated with individual grammar rules. Grammar rules are 
also given small integer numbers, and this leads to some confusion. The action 

reduce 18 

refers to grammar rule 18, while the action 

IF shift 34 

refers to state 34. 

Suppose the rule 

A x y z 

is being reduced. The reduce action depends on the left-hand symbol (A in this 
case) and the number of symbols on the right-hand side (three in this case). To 
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reduce, first pop off the top three states from the stack. (In general, the number 
of states popped equals the number of symbols on the right side of the rule.) In 
effect, these states were the ones put on the stack while recognizing x, y, and z 
and no longer serve any useful purpose. After popping these states, a state is 
uncovered which was the state the parser was in before beginning to process the 
rule. Using this uncovered state and the symbol on the left side of the rule, 
perform what is in effect a shift of A. A new state is obtained, pushed onto the 
stack, and parsing continues. There are significant differences between the 
processing of the left-hand symbol and an ordinary shift of a token, however, so 
this action is called a goto action. In particular, the look-ahead token is cleared 
by a shift but is not affected by a goto. In any case, the uncovered state contains 
an entry such as 

A goto 20 

causing state 20 to be pushed onto the stack and become the current state. 

In effect, the reduce action "turns back the clock" in the parse popping the states 
off the stack to go back to the state where the right-hand side of the rule was first 
seen. The parser then behaves as if it had seen the left side at that time. If the 
right-hand side of the rule is empty, no states are popped off of the stacks. The 
uncovered state is in fact the current state. 

The reduce action is also important in the treatment of user-supplied actions and 
values. When a rule is reduced, the code supplied with the rule is executed before 
the stack is adjusted. In addition to the stack holding the states, another stack 
running in parallel with it holds the values returned from the lexical analyzer and 
the actions. When a shift takes place, the external variable "yylval" is copied 
onto the value stack. After the return from the user code, the reduction is 
carried out. When the goto action is done, the external variable "yyval" is 
copied onto the value stack. The pseudo-variables $1, $2, etc., refer to the value 
stack. 

The other two parser actions are conceptually much simpler. The accept action 
indicates that the entire input has been seen and that it matches the specification. 
This action appears only when the look-ahead token is the end-marker and 
indicates that the parser has successfully done its job. The error action, on the 
other hand, represents a place where the parser can no longer continue parsing 
according to the specification. The input tokens it has seen (together with the 
look-ahead token) cannot be followed by anything that would result in a legal 
input. The parser reports an error and attempts to recover the situation and 
resume parsing. The error recovery (as opposed to the detection of error) will be 
discussed later. 
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Consider: 

Olotoken DING DONG DELL 
0/0 Olo 
rhyme sound place 

sound DING DONG 

place DELL 

as a yacc specification. 

When yacc is invoked with the - v option, a file called y. output is produced with 
a human-readable description of the parser. The y.output file corresponding to 
the above grammar (with some statistics stripped off the end) is 

state 0 
$accept: rhyme $end 

DING shift 3 
. error 

rhyme got a 1 
sound goto 2 

state 1 
$accept : rhyme _ $end 

$end accept 
error 

state 2 
rhyme sound _place 

DELL shift 5 
. error 

place goto 4 

state 3 
sound DING DONG 

-

DONG shift 6 

7-14 



YACC 

error 

state 4 
rhyme sound place (1) 

-

reduce 

state 5 
place DELL (3) 

reduce 3 

state 6 
sound DING DONG (2) 

reduce 2 

where the actions for each state are specified and there is a description of the 
parsing rules being processed in each state. The _ character is used to indicate 
what has been seen and what is yet to come in each rule. The following input 

DING DONG DELL 

can be used to track the operations of the parser. Initially, the current state is 
state 0. The parser needs to refer to the input in order to decide between the 
actions available in state 0, so the first token, DING, is read and becomes the 
look-ahead token. The action in state ° on DING is shift 3, state 3 is pushed 
onto the stack, and the look-ahead token is cleared. State 3 becomes the current 
state. The next token, DONG, is read and becomes the look-ahead token. The 
action in state 3 on the token DONG is shift 6, state 6 is pushed onto the stack, 
and the look-ahead is cleared. The stack now contains 0, 3, and 6. In state 6, 
without even consulting the look-ahead, the parser reduces by 

sound : DING DONG 

which is rule 2. Two states, 6 and 3, are popped off of the stack uncovering state 
0. Consulting the description of state ° (looking for a goto on sound), 

sound goto 2 

is obtained. State 2 is pushed onto the stack and becomes the current state. 

In state 2, the next token, DELL, must be read. The action is shift 5, so state 5 
is pushed onto the stack, which now has 0, 2, and 5 on it, and the look-ahead 
token is cleared. In state 5, the only action is to reduce by rule 3. This has one 
symbol on the right-hand side, so one state, 5, is popped off, and state 2 is 
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uncovered. The goto in state 2 on place (the left side of rule 3) is state 4. Now, 
the stack contains 0, 2, and 4. In state 4, the only action is to reduce by rule 1. 
There are two symbols on the right, so the top two states are popped off, 
uncovering state ° again. In state 0, there is a goto on rhyme causing the parser 
to enter state 1. In state 1, the input is read and the end-marker is obtained 
indicated by $end in the y.output file. The action in state 1 (when the end-marker 
is seen) successfully ends the parse. 

The reader is urged to consider how the parser works when confronted with such 
incorrect strings as DING DONG DONG, DING DONG, DING DONG DELL 
DELL, etc. A few minutes spent with this and other simple examples is repaid 
when problems arise in more complicated contexts. 

7.6 AMBIGUITY AND CONFLICTS 

A set of grammar rules is ambiguous if there is some input string that can be 
structured in two or more different ways. For example, the grammar rule 

expr expr' -' expr 

is a natural way of expressing the fact that one way of forming an arithmetic 
expression is to put two other expressions together with a minus sign between 
them. Unfortunately, this grammar rule does not completely specify the way that 
all complex inputs should be structured. For example, if the input is 

expr - expr - expr 

the rule allows this input to be structured as either 

( expr - expr ) - expr 

or as 

expr - ( expr - expr ) 

(The first is called "left association", the second "right association".) 

The yacc program detects such ambiguities when it is attempting to build the 
parser. Given the input 

expr - expr - expr 

consider the problem that confronts the parser. When the parser has read the 
second expr, the input seen 

expr - expr 
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matches the right side of the grammar rule above. The parser could reduce the 
input by applying this rule. After applying the rule, the input is reduced to 
"expr" (the left side of the rule). The parser would then read the final part of 
the input 

- expr 

and again reduce. The effect of this is to take the left associative interpretation. 

Alternatively, if the parser sees 

expr - expr 

it could defer the immediate application of the rule and continue reading the 
input until 

expr expr - expr 

is seen. It could then apply the rule to the rightmost three symbols reducing them 
to "expr" which results in 

expr - expr 

being left. Now the rule can be reduced once more. The effect is to take the right 
associative interpretation. Thus, having read 

expr - expr 

the parser can do one of two legal things, a shift or a reduction. It has no way of 
deciding between them. This is called a "shift/reduce conflict". It may also 
happen that the parser has a choice of two legal reductions. This is called a 
"reduce/reduce conflict". Note that there are never any shift/shift conflicts. 

When there are shift/reduce or reduce/reduce conflicts, yacc still produces a 
parser. It does this by selecting one of the valid steps wherever it has a choice. 
A rule describing the choice to make in a given situation is called a 
"disambiguating rule". 

The yacc program invokes two disambiguating rules by default: 

1. In a shift/reduce conflict, the default is to do the shift. 

2. In a reduce/reduce conflict, the default is to reduce by the earlier grammar 
rule (in the input sequence). 

Rule 1 implies that reductions are deferred in favor of shifts when there is a 
choice. Rule 2 gives the user rather crude control over the behavior of the parser 
in this situation, but reduce/reduce conflicts should be avoided when possible. 

7-17 



YACC 

Conflicts may arise because of mistakes in input or logic or because the grammar 
rules (while consistent) require a more complex parser than yacc can construct. 
The use of actions within rules can also cause conflicts if the action must be done 
before the parser can be sure which rule is being recognized. In these cases, the 
application of disambiguating rules is inappropriate and leads to an incorrect 
parser. For this reason, yacc always reports the number of shift/reduce and 
reduce/reduce conflicts resolved by Rule 1 and Rule 2. 

In general, whenever it is possible to apply disambiguating rules to produce a 
correct parser, it is also possible to rewrite the grammar rules so that the same 
inputs are read but there are no conflicts. For this reason, most previous parser 
generators have considered conflicts to be fatal errors. Our experience has 
suggested that this rewriting is somewhat unnatural and produces slower parsers. 
Thus, yacc will produce parsers even in the presence of conflicts. 

As an example of the power of disambiguating rules, consider 

stat: IF 'C cond ')' stat 
IF '(' cond ')' stat ELSE stat. 

which is a fragment from a programming language involving an "if-then-else" 
statement. In these rules, "IF" and "ELSE" are tokens, "cond" is a 
nonterminal symbol describing conditional (logical) expressions, and "stat" is a 
nonterminal symbol describing statements. The first rule will be called the 
"simple-if" rule and the second the "if-else" rule. 

These two rules form an ambiguous construction since input of the form 

IF ( Cl ) IF ( C2 ) SI ELSE S2 

can be structured according to these rules in two ways 

or 

IF (Cl) 
{ 

IF (C2) 
SI 

} 
ELSE 

S2 

7-18 



YACC 

IF ( CI ) 
{ 

IF (C2) 
Sl 

ELSE 
S2 

} 

where the second interpretation is the one given in most programming languages 
having this construct. Each "ELSE" is associated with the last preceding "un­
ELSE'd" IF. In this example, consider the situation where the parser has seen 

IF ( C 1 ) IF ( C2 ) S 1 

and is looking at the "ELSE". It can immediately reduce by the simple-if rule to 
get 

IF ( CI ) stat 

and then read the remaining input 

ELSE S2 

and reduce 

IF ( CI ) stat ELSE S2 

by the if-else rule. This leads to the first of the above groupings of the input. 

On the other hand, the "ELSE" may be shifted, "S2" read, and then the right­
hand portion of 

IF ( C 1 ) IF ( C2 ) S 1 ELSE S2 

can be reduced by the if-else rule to get 

IF ( Cl ) stat 

which can be reduced by the simple-if rule. This leads to the second of the above 
groupings of the input which is usually desired. 

Once again, the parser can do two valid things-there is a shift/reduce conflict. 
The application of disambiguating rule 1 tells the parser to shift in this case, 
which leads to the desired grouping. 

This shift/reduce conflict arises only when there IS a particular current input 
symbol, "ELSE", and particular inputs, such as 
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IF ( C 1 ) IF ( C2 ) S 1 

have already been seen. In general, there may be many conflicts, and each one 
will be associated with an input symbol and a set of previously read inputs. The 
previously read inputs are characterized by the state of the parser. 

The conflict messages of yacc are best understood by examining the verbose (- v) 
option output file. For example, the output corresponding to the above conflict 
state might be 

23: shift/reduce conflict (shift 45, reduce 18) on ELSE 

state 23 

stat 
stat 

ELSE 

IF 
IF 

cond 
cond 

shift 45 
reduce 18 

stat (18) 
stat ELSE stat 

where the first line describes the conflict-giving the state and the input symbol. 
The ordinary state description gives the grammar rules active in the state and the 
parser actions. Recall that the underline marks the portion of the grammar rules 
which has been seen. Thus in the example, in state 23 the parser has seen input 
corresponding to 

IF ( cond ) stat 

and the two grammar rules shown are active at this time. The parser can do two 
possible things. If the input symbol is "ELSE", it is possible to shift into state 
45. State 45 will have, as part of its description, the line 

stat : IF ( cond ) stat ELSE_stat 

since the "ELSE" will have been shifted in this state. In state 23, the alternative 
action [describing a dot (.)] is to be done if the input symbol is not mentioned 
explicitly in the actions. In this case, if the input symbol is not "ELSE", the 
parser reduces to 

stat : IF 'C cond ')' stat 

by grammar rule 18. 

Once again, notice that the numbers following "shift" commands refer to other 
states, while the numbers following "reduce" commands refer to grammar rule 
numbers. In the y.output file, the rule numbers are printed after those rules 
which can be reduced. In most one states, there is reduce action possible in the 
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state and this is the default command. The user who encounters unexpected 
shift/reduce conflicts will probably want to look at the verbose output to decide 
whether the default actions are appropriate. 

7.7 PRECEDENCE 

There is one common situation where the rules given above for resolving conflicts 
are not sufficient. This is in the parsing of arithmetic expressions. Most of the 
commonly used constructions for arithmetic expressions can be naturally 
described by the notion of precedence levels for operators, together with 
information about left or right associativity. It turns out that ambiguous 
grammars with appropriate disambiguating rules can be used to create parsers 
that are faster and easier to write than parsers constructed from unambiguous 
grammars. The basic notion is to write grammar rules of the form 

expr : expr OP expr 

and 

expr : UNARY expr 

for all binary and unary operators desired. This creates a very ambiguous 
grammar with many parsing conflicts. As disambiguating rules, the user specifies 
the precedence or binding strength of all the operators and the associativity of the 
binary operators. This information is sufficient to allow yacc to resolve the 
parsing conflicts in accordance with these rules and construct a parser that realizes 
the desired precedences and associativities. 

The precedences and associativities are attached to tokens in the declarations 
section. This is done by a series of lines beginning with a yacc keyword: OJo left , 
%right, or %nonassoc, followed by a list of tokens. All of the tokens on the 
same line are assumed to have the same precedence level and associativity; the 
lines are listed in order of increasing precedence or binding strength. Thus: 

%left '+' '-' 
%left '*' '/' 

describes the precedence and associativity of the four arithmetic operators. Plus 
and minus are left associative and have lower precedence than star and slash, 
which are also left associative. The keyword %right is used to describe right 
associative operators, and the keyword %nonassoc is used to describe operators, 
like the operator .LT. in FORTRAN, that may not associate with themselves. 
Thus: 

A .LT. B .LT. C 
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is illegal in FORTRAN and such an operator would be described with the 
keyword %nonassoe in yaee. As an example of the behavior of these 
declarations, the description 

%right '=' 
%left '+' '-' 
%left ,*, 'j' 

%% 

expr: expr '=' expr 
expr '+' expr 
expr '-' expr 
expr '*' expr 
expr 'j' expr 
NAME 

might be used to structure the input 

a = b = c*d - e - f*g 

as follows 

a = (b = «(c*d)-e) - (f*g») 

in order to perform the correct precedence of operators. When this mechanism is 
used, unary operators must, in general, be given a precedence. Sometimes a 
unary operator and a binary operator have the same symbolic representation but 
different precedences. An example is unary and binary "-". Unary minus may 
be given the same strength as multiplication, or even higher, while binary minus 
has a lower strength than multiplication. The keyword, %pree, changes the 
precedence level associated with a particular grammar rule. The keyword %prec 
appears immediately after the body of the grammar rule, before the action or 
closing semicolon, and is followed by a token name or literal. It causes the 
precedence of the grammar rule to become that of the following token name or 
literal. For example, the rules 
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Ololeft ' +' , - ' 
%left ,*, '/' 

%% 

expr: expr ' +' expr 
expr ' -' expr 
expr ,*, expr 
expr '/' expr 
, -' expr Oloprec ,*, 
NAME 

might be used to give unary minus the same precedence as multiplication. 

YACC 

A token declared by %Ieft, %right, and %nonassoc need not be, but may be, 
declared by %token as well. 

The precedences and associativities are used by yacc to resolve parsing conflicts. 
They give rise to disambiguating rules. Formally, the rules work as follows: 

1. The precedences and associativities are recorded for those tokens and 
literals that have them. 

2. A precedence and associativity is associated with each grammar rule. It is 
the precedence and associativity of the last token or literal in the body of 
the rule. If the ll70prec construction is used, it overrides this default. Some 
grammar rules may have no precedence and associativity associated with 
them. 

3. When there is a reduce/reduce conflict or there is a shift/reduce conflict 
and either the input symbol or the grammar rule has no precedence and 
associativity, then the two disambiguating rules given at the beginning of 
the section are used, and the conflicts are reported. 

4. If there is a shift/reduce conflict and both the grammar rule and the input 
character have precedence and associativity associated with them, then the 
conflict is resolved in favor of the action (shift or reduce) associated with 
the higher precedence. If the precedences are the same, then the 
associativity is used; left associative implies reduce, right associative 
implies shift, and nonassociating implies error. 

Conflicts resolved by precedence are not counted in the number of shift/reduce 
and reduce/reduce conflicts reported by yacc. This means that mistakes in the 
specification of precedences may disguise errors in the input grammar. It is a 
good idea to be sparing with precedences and use them in an essentially 
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"cookbook" fashion until some experience has been gained. The y.output file is 
very useful in deciding whether the parser is actually doing what was intended. 

7.8 ERROR HANDLING 

Error handling is an extremely difficult area, and many of the problems are 
semantic ones. When an error is found, for example, it may be necessary to 
reclaim parse tree storage, delete or alter symbol table entries, and, typically, set 
switches to avoid generating any further output. 

It is seldom acceptable to stop all processing when an error is found. It is more 
useful to continue scanning the input to find further syntax errors. This leads to 
the problem of getting the parser "restarted" after an error. A general class of 
algorithms to do this involves discarding a number of tokens from the input 
string and attempting to adjust the parser so that input can continue. 

To allow the user some control over this process, yacc provides a simple, but 
reasonably general feature. The token name "error" is reserved for error 
handling. This name can be used in grammar rules. In effect, it suggests places 
where errors are expected and recovery might take place. The parser pops its 
stack until it enters a state where the token "error" is legal. It then behaves as if 
the token "error" were the current look-ahead token and performs the action 
encountered. The look-ahead token is then reset to the token that caused the 
error. If no special error rules have been specified, the processing halts when an 
error is detected. 

In order to prevent a cascade of error messages, the parser, after detecting an 
error, remains in error state until three tokens have been successfully read and 
shifted. If an error is detected when the parser is already in error state, no 
message is given, and the input token is quietly deleted. 

As an example, a rule of the form 

stat error 

means that on a syntax error the parser attempts to skip over the statement in 
which the error is seen. More precisely, the parser scans ahead, looking for three 
tokens that might legally follow a statement, and start processing at the first of 
these. If the beginnings of statements are not sufficiently distinctive, it may make 
a false start in the middle of a statement and end up reporting a second error 
where there is in fact no error. 

Actions may be used with these special error rules. These actions might attempt 
to reinitialize tables, reclaim symbol table space, etc. 
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Error rules such as the above are very general but difficult to control. Rules such 
as 

stat error';' 

are somewhat easier. Here, when there is an error, the parser attempts to skip 
over the statement but does so by skipping to the next semicolon. All tokens 
after the error and before the next semicolon cannot be shifted and are discarded. 
When the semicolon is seen, this rule will be reduced and any "cleanup" action 
associated with it performed. 

Another form of error rule arises in interactive applications where it may be 
desirable to permit a line to be reentered after an error. The following example 

input error '\n' 
{ 

printf( "Reenter last line: " ); 
} 
input 

{ 
$$ = $4; 

} 

is one way to do this. There is one potential difficulty with this approach. The 
parser must correctly process three input tokens before it admits that it has 
correctly resynchronized after the error. If the reentered line contains an error in 
the first two tokens, the parser deletes the offending tokens and gives no message. 
This is clearly unacceptable. For this reason, there is a mechanism that can force 
the parser to believe that error recovery has been accomplished. The statement 

yyerrok; 

in an action resets the parser to its normal mode. The last example can be 
rewritten as 
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input error' \ n' 
{ 

yyerrok; 
printf( "Reenter last line: " }; 

} 
input 

{ 
$$ = $4; 

} 

which is somewhat better. 

As previously mentioned, the token seen immediately after the "error" symbol is 
the input token at which the error was discovered. Sometimes, this is 
inappropriate; for example, an error recovery action might take upon itself the 
job of finding the correct place to resume input. In this case, the previous look­
ahead token must be cleared. The statement 

yyclearin ; 

in an action will have this effect. For example, suppose the action after error 
were to call some sophisticated resynchronization routine (supplied by the user) 
that attempted to advance the input to the beginning of the next valid statement. 
After this routine is called, the next token returned by yylex is presumably the 
first token in a legal statement. The old illegal token must be discarded and the 
error state reset. A rule similar to 

stat error 
{ 

resynchO; 
yyerrok , 
yyclearin; 

} 

could perform this. 

These mechanisms are admittedly crude but do allow for a simple, fairly effective 
recovery of the parser from many errors. Moreover, the user can get control to 
deal with the error actions required by other portions of the program. 
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7.9 THE "yacc" ENVIRONMENT 

When the user inputs a specification to yacc, the output is a file of C language 
programs, called y.tab.c on most systems. (Due to local file system conventions, 
the names may differ from installation to installation.) The function produced by 
yacc is called yyparse(); it is an integer valued function. When it is called, it in 
turn repeatedly calls yylex() , the lexical analyzer supplied by the user (see 
"LEXICAL ANALYSIS"), to obtain input tokens. Eventually, an error is 
detected, yyparse() returns the value 1, and no error recovery is possible, or the 
lexical analyzer returns the end-marker token and the parser accepts. In this case, 
yyparse() returns the value O. 

The user must provide a certain amount of environment for this parser in order 
to obtain a working program. For example, as with every C language program, a 
program called main() must be defined that eventually calls yyparse(). In 
addition, a routine called yyerror() prints a message when a syntax error is 
detected. 

These two routines must be supplied in one form or another by the user. To ease 
the initial effort of using yacc, a library has been provided with default versions 
of main() and yyerror() . The name of this library is system dependent; on many 
systems, the library is accessed by a -Iy argument to the loader. The source 
codes 

maine) 
{ 

return ( yyparseO ); 
} 

and 

# include < stdio.h > 

yyerror(s) 
char *s; 

{ 
fprintf( stderr, "OTos \ n", s ); 

} 

show the triviality of these default programs. The argument to yyerror() is a 
string containing an error message, usually the string "syntax error". The 
average application wants to do better than this. Ordinarily, the program should 
keep track of the input line number and print it along with the message when a 
syntax error is detected. The external integer variable yychar contains the look­
ahead token number at the time the error was detected. This may be of some 
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interest in glVlng better diagnostics. Since the main() program is probably 
supplied by the user (to read arguments, etc.), the yacc library is useful only in 
small projects or in the earliest stages of larger ones. 

The external integer variable yydebug is normally set to o. If it is set to a 
nonzero value, the parser will output a verbose description of its actions including 
a discussion of the input symbols read and what the parser actions are. 
Depending on the operating environment, it may be possible to set this variable 
by using a debugging system. 

7.10 HINTS FOR PREPARING SPECIFICATIONS 

This part contains miscellaneous hints on preparing efficient, easy to change, and 
clear specifications. The individual subsections are more or less independent. 

7.10.1 Input Style 

It is difficult to provide rules with substantial actions and still have a readable 
specification file. The following are a few style hints. 

1. Use all uppercase letters for token names and all lowercase letters for 
nonterminal names. This rule comes under the heading of "'knowing who 
to blame when things go wrong". 

2. Put grammar rules and actions on separate lines. This allows either to be 
changed without an automatic need to change the other. 

3. Put all rules with the same left-hand side together. Put the left-hand side 
in only once and let all following rules begin with a vertical bar. 

4. Put a semicolon only after the last rule with a given left-hand side and put 
the semicolon on a separate line. This allows new rules to be easily added. 

5. Indent rule bodies by two tab stops and action bodies by three tab stops. 

The example in Appendix A is written following this style, as are the examples in 
this section (where space permits). The user must make up his own mind about 
these stylistic questions. The central problem, however, is to make the rules 
visible through the morass of action code. 

7.10.2 Left Recursion 

The algorithm used by the yacc parser encourages so called "left recursive" 
grammar rules. Rules of the form 
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match this algorithm. These rules such as 

list: item 
I list" item 

and 

seq: item 
seq item 

YACC 

frequently arise when writing specifications of sequences and lists. In each of 
these cases, the first rule will be • duced for the first item only; and the second 
rule will be reduced for the second and all succeeding items. 

With right recursive rules, such as 

seq: item 
I item seq 

the parser is a bit bigger; and the items are seen and reduced from right to left. 
More seriously, an internal stack in the parser is in danger of overflowing if a 
very long sequence is read. Thus, the user should use left recursion wherever 
reasonable. 

It is worth considering if a sequence with zero elements has any meaning, and if 
so, consider writing the sequence specification as 

seq: /* empty * / 
seq item 

using an empty rule. Once again, the first rule would always be reduced exactly 
once before the first item was read, and then the second rule would be reduced 
once for each item read. Permitting empty sequences often leads to increased 
generality. However, conflicts might arise if yacc is asked to decide which empty 
sequence it has seen when it hasn't seen enough to know! 

7.10.3 Lexical Tie-ins 

Some lexical decisions depend on context. For example, the lexical analyzer 
might want to delete blanks normally but not within quoted strings, or names 
might be entered into a symbol table in declarations but not in expressions. 

7-29 



YACC 

One way of handling this situation is to create a global flag that is examined by 
the lexical analyzer and set by actions. For example, 

OJo{ 
int dflag; 

%} 
... other declarations ... 

%% 

prog decls stats 

decls : /* empty * / 
{ 

dflag = 1; 
} 
I decls declaration 

stats : /* empty * / 
{ 

dflag = 0; 
} 
I stats statement 

... other rules ... 

specifies a program that consists of zero or more declarations followed by zero or 
more statements. The flag "dflag" is now 0 when reading statements and 1 when 
reading declarations, except for the first token in the first statement. This token 
must be seen by the parser before it can tell that the declaration section has ended 
and the statements have begun. In many cases, this single token exception does 
not affect the lexical scan. 

This kind of "back-door" approach can be elaborated to a noxious degree. 
Nevertheless, it represents a way of doing some things that are difficult if not 
impossible to do otherwise. 

7.10.4 Reserved Words 

Some programming languages permit you to use words like "if", which are 
normally reserved as label or variable names, provided that such use does not 
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conflict with the legal use of these names in the programming language. This is 
extremely hard to do in the framework of yacc. It is difficult to pass information 
to the lexical analyzer telling it "this instance of if is a keyword and that instance 
is a variable". The user can make a stab at it using the mechanism described in 
the last subsection, but it is difficult. 

A number of ways of making this easier are under advisement. Until then, it is 
better that the keywords be reserved, i.e., forbidden for use as variable names. 
There are powerful stylistic reasons for preferring this. 

7.11 ADVANCED TOPICS 

This part discusses a number of advanced features of yacc. 

7.11.1 Simulating Error and Accept in Actions 

The parsing actions of error and accept can be simulated in an action by use of 
macros YYACCEPT and YYERROR. The YYACCEPT macro causes yyparse( ) 
to return the value 0; YYERROR causes the parser to behave as if the current 
input symbol had been a syntax error; yyerror() is called, and error recovery 
takes place. These mechanisms can be used to simulate parsers with multiple 
end-markers or context sensitive syntax checking. 

7.11.2 Accessing Values in Enclosing Rules 

An action may refer to values returned by actions to the left of the current rule. 
The mechanism is simply the same as with ordinary actions, a dollar sign 
followed by a digit. 
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sent adj noun verb adj noun 
{ 

look at the sentence ... 
} 

adj THE 
{ 

$$ = THE; 
} 
I YOUNG 
{ 

$$ = YOUNG; 
} 

noun DOG 
{ 

$$ = DOG; 
} 
I CRONE 
{ 

if( $0 = = YOUNG) 
{ 

printf( "what? \ n" ); 
} 
$$ = CRONE; 

} 

In this case, the digit may be 0 or negative. In the action following the word 
CRONE, a check is made that the preceding token shifted was not YOUNG. 
Obviously, this is only possible when a great deal is known about what might 
precede the symbol "noun" in the input. There is also a distinctly unstructured 
flavor about this. Nevertheless, at times this mechanism prevents a great deal of 
trouble especially when a few combinations are to be excluded from an otherwise 
regular structure. 

7.11.3 Support for Arbitrary Value Types 

By default, the values returned by actions and the lexical analyzer are integers. 
The yacc program can also support values of other types including structures. In 
addition, yacc keeps track of the types and inserts appropriate union member 
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names so that the resulting parser is strictly type checked. The yaee value stack is 
declared to be a union of the various types of values desired. The user declares 
the union and associates union member names to each token and nonterminal 
symbol having a value. When the value is referenced through a $$ or $n 
construction, yaee will automatically insert the appropriate union name so that no 
unwanted conversions take place. In addition, type checking commands such as 
lint is far more silent. 

There are three mechanisms used to provide for this typing. First, there is a way 
of defining the union. This must be done by the user since other programs, 
notably the lexical analyzer, must know about the union member names. Second, 
there is a way of associating a union member name with tokens and nonterminals. 
Finally, there is a mechanism for describing the type of those few values where 
yaee cannot easily determine the type. 

To declare the union, the user includes 

070 union 
{ 

body of union '" 
} 

in the declaration section. This declares the yaee value stack and the external 
variables yylval and yyval to have type equal to this union. If yaee was invoked 
with the - d option, the union declaration is copied onto the y.tab.h file. 
Alternatively, the union may be declared in a header file, and a typedef used to 
define the variable YYSTYPE to represent this union. Thus, the header file might 
have said 

typedef union 
{ 

body of union ... 
} 
YYSTYPE; 

instead. The header file must be included in the declarations section by use of 
%{ and %}. 

Once YYSTYPE is defined, the union member names must be associated with the 
various terminal and nonterminal names. The construction 

< name> 

is used to indicate a union member name. If this follows one of the keywords 
%token, %Ieft, %right, and %nonassoe, the union member name is associated 
with the tokens listed. Thus, saying 
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070 left < optype > '+' '-' 

causes any reference to values returned by these two tokens to be tagged with the 
union member name optype. Another keyword, OJotype, is used to associate 
union member names with nonterminals. Thus, one might say 

OJotype < nodetype > expr stat 

to associate the union member nodetype with the nonterminal symbols "expr" 
and "stat". 

There remains a couple of cases where these mechanisms are insufficient. If there 
is an action within a rule, the value returned by this action has no a priori type. 
Similarly, reference to left context values (such as $0) leaves yaee with no easy 
way of knowing the type. In this case, a type can be imposed on the reference by 
inserting a union member name between < and > immediately after the first $. 
The example 

rule aaa 

{ 

{ 
$ < intval> $ :;; 3; 

} 
bbb 

fun( $ < intval > 2, $ < other> 0 ); 
} 

shows this usage. This syntax has little to recommend it, but the situation arises 
rarely. 

A sample specification is given in Appendix C. The facilities in this subsection 
are not triggered until they are used. In particular, the use of OJotype will turn on 
these mechanisms. When they are used, there is a fairly strict level of checking. 
For example, use of $n or $$ to refer to something with no defined type is 
diagnosed. If these facilities are not triggered, the yaee value stack is used to 
hold int's, as was true historically. 

7.12 APPENDIX A 

7.12.1 A Simple Example 

This example gives the complete yaee applications for a small desk calculator; the 
calculator has 26 registers labeled 'a' through 'z' and accepts arithmetic 
expressions made up of the operators +, -, *,1,070 (med operator), & (bitwise 
and), I (bit wise or), and assignments. If an expression at the top level is an 
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assignment, the value is printed; otherwise, the expression is printed. As in C 
language, an integer that begins with 0 (zero) is assumed to be octal; otherwise, it 
is assumed to be decimal. 

As an example of a yacc specification, the desk calculator does a resonable job of 
showing how precedence and ambiguties are used and demonstrates simple 
recovery. The major oversimplications are that the lexical analyzer is much 
simpler for most applications, and the output is produced immediately line by 
line. Note the way that decimal and octal integers are read in by grammar rules. 
This job is probably better done by the lexical analyzer. 

OJo{ 
# includes < stdio.h > 
# includes <ctype.h> 

int regs[26]; 
int base; 

%} 

%start list 

%token DIGIT LETTER 

%left'I' 
%left '&' 
%left '+' '-' 
%left ,*, 'I' '%' 
%left UMINUS /* supplies precedence for unary minus * / 

%% 

list 

{ 

} 

/* beginning of rule section */ 

/* empty */ 
list stat '\ n' 
list error' \n' 

yyerrork; 
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stat : expr 
{ 

printf( "%dn", $1 ); 
} 
I LETTER' =' expr 
{ 

regs[$I] = $3 
} 

expr '(' expr ')' 
{ 

$$ = $2; 
} 
I expr' +' expr 
{ 

$$ = $1 + $3 
} 
I expr' -' expr 
{ 

$$ = $1 - $3 
{ 
I expr '*' expr 
{ 

$$ = $1 * $3; 
} 
I expr' /' expr 
{ 

$$ = $1/$3; 
} 
I exp '%' expr 
{ 

$$ = $1 % $3 
} 
I expr '&' expr 

{ 
$$ = $1 & $3; 

} 
I expr 'I' expr 
{ 

$$ = $1 I $3 
} 
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, 
-' expr O,7oprec UMINUS 

{ 
$$ = - $2; 

} 
I LETTER 
{ 

$$ = reg[$l]; 
} 
I number 

number DIGIT 
{ 

$$ = $1; base = ($1 = = 0) ? 8 ; 10; 
} 
I number DIGIT 
{ 

$$ = bas * $1 + $2 
} 

0,700,70 /* start of program */ 

yylex( ) 
{ 

/* lexical analysis routine * / 
/* return LETTER for lowercase letter, 

yylval = 0 through 25*/ 

/* returns DIGIT for digit, yylval = 0 through 9*/ 
/* all other characters are returned immediately * / 

int c; 
/*skip blanks* / 

while (c = getchar( ) ) = = ") 

/* c is now nonblank * / 

if( islower( c » 
{ 

} 

yylval = c- 'a'; 
return( LETTER ); 

if( isdigit( c » 
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} 

} 

} 

yylval = c - '0'; 
return( DIGIT ); 

return( c ); 

7.13 APPENDIX B 

7.13.1 YACC Input Syntax 

systax as a yacc specification. Contex dependencies, etc. are not considered. 
Ironically, the yacc input specification language is most naturally specified as an 
LR(2) grammar; the sticky part comes when an identifier is seen in a rule 
immediately following an action. If this identifier is followed by a colon, it is the 
start of the next rule; otherwise, it is a continuation of the current rule which just 
happens to have an action embedded in it. As implemented, the lexical analyzer 
looks ahead after see;ng an identifier and decides whether the next token 
(skipping blanks, newlines, and comments, etc.) is a colon. If so, it returns the 
token C _IDENTIFIER. Otherwise, it returns IDENTIFIER. Literals (quoted 
strings) are also returned as IDENTIFIERS but never as part of 
C IDENTIFIERs. 

1* grammar for the input to yacc *1 

1* basic entries *1 
OJotoken IDENTIFIER 1* includes identifiers and literals *1 
OJotoken C _IDENTIFIER 1* identifier (but not literal) 

followed by a colon * I 
OJotoken NUMBER 1* [0-9] + *1 

1* reserved words: OJotype = > TYPE ('70 left = > LEFT ,etc. *1 

('70 token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION 

OJotoken MARK 1* the 070070 mark *1 
OJotoken LCURL 1* the 0J0 { mark *1 
OJotoken RCURL 1* the 0J0 } mark *1 

1* ASCII character literals stand for themselves *1 
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070 token spec 

070070 

spec defs MARK rules tail 

tail MARK 
{ 

In this action, eat up the rest of the file 
} 

1* empty: the second MARK is optional *1 

defs 

defs 

I 
{ 

1* empty *1 
defs def 

START IDENTIFIER 
UNION 

Copy union definition to output 
} 
I LCURL 
{ 

Copy C code to output file 
RCURL 

} 
I ndefs rword tag nlist 

rword : TOKEN 
LEFT 
RIGHT 
NONASSOC 
TYPE 

tag /* empty: union tag is optional * / 
, <' IDENTIFIER' >' 
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nlist nmno 
nlist nmno 
nlist' ,'nmno 

nmno : IDENTIFIER I*Note: literal illegal with % type *1 
IDENTIFIER NUMBER 1* Note: illegal with 070 type *1 

1* rule section * I 

rules : C IDENTIFIER rbody proc 
I rules rule 

rule C _IDENTIFIER rbody prec 
'I' rbody prec 

rbody : 1* empty *1 
I rbody IDENTIFIER 
I rbodyact 

act '{' 
{ 

Copy action translate $$' etc. 
} 

'}' 

prec : 1* empty *1 
PREC IDENTIFIER 
PREC IDENTIFIER act 
prec';' 
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7.14 APPENDIX C 

7.14.1 An Advanced Example 

This appendix gives an example of a grammar using some of the advanced 
features. The desk calculator example in Appendix A is modified to provide a 
desk calculator that does floating point interval arithmetic. The calculator 
understands floating point constants; the arithmetic operations +, - *, /, and 
unary -; "a" through "z". Moreover, it also understands intervals written 

(X,Y) 

where X is less than or equal to Y. There are 26 interval valued variables "A" 
through "Z" that may also be used. The usage is similar to that in Appendix A; 
assignments returns no value and prints nothing while expressions print the 
(floating or interval) value. 

This example explores a number of interesting features of yacc and C language. 
Intervals are represented by a structure consisting of the left and right endpoint 
values stored as doubles. This structure is given a type name, INTERVAL, by 
using typedej. The yacc value stack can also contain floating point scalars and 
integers (used to index into the arrays holding the variable values). Notice that the 
entire strategy depends strongly on being able to assign structures and unions in C 
language. In fact, many of the actions call functions that return structures as 
well. 

It is also worth noting the use of YYERROR to handle error conditions-division 
by an interval containing 0 and an interval presented in the wrong order. The 
error recovery mechanism of yacc is used to throwaway the rest of the offending 
line. 

In addition to the mixing of types on the value stack, this grammar also 
demonstrates an interesting use of syntax to keep track of the type (for example, 
scalar or interval) of intermediate expressions. Note that scalar can be 
automatically promoted to an interval if the context demands an interval value. 
This causes a large number of conflicts when the grammar is run through yacc-
18 Shift/Reduce and 26 Reduce/Reduce. The problem can be seen by looking at 
the two input lines. 

2.5 + (3.5 - 4.) 

and 

2.5 + ( 3.5,4 ) 
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Notice that the 2.5 is to be used in an interval value expression in the second 
example, but this fact is not known until the comma is read. By this time, 2.5 is 
finished, and the parser cannot go back and change its mind. More generally, it 
might be necessary to look ahead an arbitrary number of tokens to decide 
whether to convert a scalar to an interval. This problem is evaded by having two 
rules for each binary interval valued operator-one when the left operand is a 
scalar and one when the left operand is an interval. In the second case, the right 
operand must be an interval, so the conversion will be applied automatically. 
Despite this evasion, there are stilI many cases where the conversion may be 
applied or not, leading to the above conflicts. They are resolved by listing the 
rules that yield scalars first in the specification file; in this way, the conflict will be 
resolved in the direction of keeping scalar valued expressions scalar valued until 
they are forced to become intervals. 

This way of handling multiple types is very instructive but not very general. If 
there were many kinds of expression types instead of just two, the number of 
rules needed would increase dramatically and the conflicts even more 
dramatically. Thus, while this example is instructive, it is better practice in a 
more normal programming language environment to keep the type information as 
part of the value and not as part of the grammar. 

Finally, a word about the lexical analysis. The only unusual feature is the 
treatment of floating point constants. The C language library routine atoff) is 
used to do the actual conversion from a character string to a double precision 
value. If the lexical analyzer detects an error, it responds by returning a token 
that is illegal in the grammar provoking a syntax error in the parser and thence 
error recovery. 

OJo{ 

#include < stdio.h > 
#include < ctype.h > 

typedef struct interval 
{ 

double 10, hi; 
} INTERVAL; 

INTERVAL vmulO, vdiv( ); 

double atof( ); 

double dreg[ 26 ]; 
INTERVAL vreg[ 26 ]; 
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0,10} 

O,1ostart line 

0,10 union 
{ 

} 

int ivaI; 
double dval; 
INTERVAL vval; 

O,1otoken < ivai> DREG VREG /*indices into dreg, vreg arrays * / 

O,1otoken < dval > CONST /* floating point constant * / 

O,1otype < dval > dexp /* expression * / 

O,1otype < vval > vexp /* interval expression * / 

/* precedence information about the operators * / 

O,1oleft '+" -' 
O,1oleft ,*" /' 
O,1oleft UMINUS /* precedence for unary minus * / 

0,10 0,10 

lines : /* empty * / 
I lines line 

line dexp '\ n' 
{ 

printf( "0,10 15.8f\n" .$1 ); 
} 
I vexp '\n' 

{ 
printf( "(O,1015.8f , 0,10 15.8f )O,$1.10,$1.hi ); 

} 
I DREG '=' '\n' 
{ 
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dreg[$l] = $3; 

} 
I VREG '=' vexp '\n' 
{ 

vreg[$l] = $3; 

} 
I error' \n' 
{ 

yyerrork; 

} 

dexp CONST 
I DREG 
{ 

$$ = dreg[$l] 

} 
I dexp' +' dexp 
{ 

$$ = $1 + $3 

} 
I dexp' -' dexp 
{ 

$$ = $1 - $3 
} 
I dexp '*' dexp 
{ 

$$ = $1 * $3 

} 
I dexp 'I' dexp 
{ 
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$$ = $1 / $3 

} 
I '-' dexp OJoprec UMINUS 
{ 

$$ =- $2 

} 
I '(' dexp')' 
{ 

$$ = $2 

} 

vexpp : dexp 
{ 

$$.hi = $$.10 = $1; 

} 
I '(' dexp',' dexp')' 
{ 

$$.10 = $2; 
$$.hi = $4; 
If( $$.10 > $$.hi ) 
{ 

printf( "interval out of order n" ); 
YYERROR; 

} 
I VREG 
{ 

} 

} 

$$ = vreg[$lj 

I vexp' + ' vexp 
{ 

$$.hi = $l.hi + $3.hi; 
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$$.10 = $1.10 + $3.10 

} 
I dexp' +' vexp 
{ 

} 

$$.hi = $1 + $3.hi; 
$$.10 = $1 + $3.10 

I vexp' =' vexp 
{ 

} 

$$.hi = $l.hi - $3.10; 
$$.10 = $1.10 - $3.hi 

I dvep '-' vdep 

{ 

} 

$$.hi = $1 - $3.10; 
$$.10 = $1 - $3.hi 

I vexp ,*, vexp 
{ 

$$ = vrnuI( $1.10,$.hi,$3 ) 

} 
I dexp ,*, vexp 
{ 

$$ = vrnul( $1, $1, $3 ) 

} 
I vexp 'I' vexp 
{ 

} 

if( dcheck( $3 ) ) YYERROR; 
$$ = vdiv( $1.10, $l.hi, $3 ) 
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I dexp' /' vexp 

} 

if( dcheck( $3 ) ) YYERROR; 
$$ = vdiv( $1.l0, $1.hi, $3 ) 

I '-' vexp OJoprec UMINUS 
{ 

$$.hi = -$2.10;$$.10 = -$2.hi 
} 
I '(' vexp ')' 
} 

$$ = $2 
} 

# define BSZ 50 /* buffer size for floating point number * / 

/* lexical analysis * / 

yylex( ) 
{ 

register c; 

/* skip over blanks * / 

if( isupper( c ) ) 
{ 

} 

yylval.ival = c - 'A' 
return( VREG ); 

if( islower( c ) ) 
{ 

} 

yylval.ival = c - 'a', 
return( DREG ); 

/* gobble up digits. points, exponents * / 
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if( idigit( c ) II c = ='.' ) 
{ 

char buf[BSZ+ 1], *cp = buf; 
int dot = 0, exp = 0; 

for( ; (cp-buf)<BSZ ; + +cp,c=getchar() ) 
{ 

} 

} 

*cp = c; 
if( isdigit( c ) ) 

continue; 
if( c = = '.' 
{ 
if( dot + + II exp ) 

return( '.' );/* win cause syntax error * / 
continue; 

} 
if( c = = 'e') 
{ 

} 

if( exp+ + ) 
return( 'e' ); * /will cause syntax error * / 

continue; 

/* end of number * / 
break; 

*cp = '\0'; 
if(cp-bufl) > = BSZ) 

printcf( "constant too long truncated \n" ); 
else 

ungetc( c, stdin ); /* push back last char read * / 
yylval.dval = atof( buf ); 
return( CONST ); 
} 
return( c ); 

INTERVAL 
hilo( a, b, c, d ) 

double a, b, c, d; 
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{ 
1* returns the smallest interval containing a, b, c, and d *1 

} 

1* used by *,1 routine * I 
INTERVAL v; 

if( a> b) 
{ 

} 
else 
{ 

} 

v.hi = a; 
v.lo = b; 

v.hi = b; 
v.lo = a; 

if( c>d ) 
{ 

} 
else 
} 

} 

if( c>v.hi ) 
v.hi = c; 

if( d<v.lo ) 
v.lo = d; 

if( d>v.hi ) 
v.hi = d; 

if( c<v.lo ) 
v.lo = c; 

return( v ); 

INTERVAL vmul( a, b, v ) 
double a, b; 
INTERVAL v; 

{ 
return( hilo( a*v.hi, a*v,lo, b*v.hi, b*v.lo ) ); 

} 
dcheck( v ) 

INTERVAL v; 
{ 

if( v.hi > =0.&& v.lo < =0. ) 
{ 
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{ 

} 

printf( "divisor internal contains O. \ n" ); 
return( 1); 

return( 0 ); 

INTERVAL vdiv( a, b, v) 
double a, b; 
INTERVAL v; 

{ 
return( hilo( a/v.hi, a/v,lo, b/v.hi, b/v.lo ) ); 

} 

7.15 APPENDIX D 

7.15.1 Old Features Supported But Not Encouraged 

This appendix mentions synonyms and features that are supported for historical 
continuity but, for various reasons, are not encouraged. 

1. Literals may also be delimited by double quotes. 

2. Literals may be more that one character long. If all the characters are 
alphabetic, numeric, or _, the type number of the literal is defined just as 
if the literal did not have the quotes around it. Otherwise, it is difficult to 
find the value for such literal. 

The use of multicharacter literals is likely to mislead those unfimiliar with 
yace since it suggests that yace is doing a job which must be actually done 
by the lexical analyzer. 

3. Most places where 0,10 is legal, backslash "\" may be used. In particular, 
\ \ is the same as 0,100,10, \ left the same as 0,10 left, etc. 

4. There are a number of other synonyms: 

0,10 < is the same as OJoleft 
0,10> is the same as OJoright 
OJobinary and 0,102 are the same as OJononassoc 
0,100 and OJoterm are the same as OJotoken 
0,10 = is the same as OJoprec 

5. Action may also have the form 

= { ... } 
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and the curly braces can be dropped if the action is a single C language 
statement. 

6. The C language code between 070 { and %} use to be permitted at the head 
of the rules section as well as in the declaration section. 
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