
PRO/Tool Kit
Command Language
and Utilities Manual

Order No. AA-X912B-TH

November 1985

This manual describes the Command Language and utilities
provided with the PRO/Tool Kit. It is a detailed
reference manual for programmers.

REQUIRED SOFTWARE: Host Tool Kit V3.0,
or PRO/Tool Kit V3.0

OPERATING SYSTEM: P/OS V3.0

DIGITAL EQUIPMENT CORPORATION
Maynard. Massachusetts 01754-2571

First Printing, September 1983
Revised November 1985

The information in this document is subject to change without
notice and should not be construed as a commitment by Digital
Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a
license and may only be used or copied in accordance with the
terms of such license.

No responsibility is assumed
software on equipment that
affiliated companies.

for the use or reliability of
is not supplied by DIGITAL or its

The specifications and drawings, herein, are the property
Digital Equipment Corporation and shall not be reproduced
copied or used in whole or in part as the basis for
manufacture or sale of items without written permission.

Copyright © 1985 by Digital Equipment Corporation
All Rights Reserved

The following are trademarks of Digital Equipment Corporation:

CTI BUS MASSBUS Rainbow
DEC PDP RSTS
DECmate P/OS RSX
DECsystem-10 PRO/BASIC Tool Kit
DECSYSTEM-20 PRO/Communications UNIBUS
DECUS Professional VAX
DECwriter PRO/FMS VMS
DIBOL PRO/RMS VT

~DmDD~D™ PROSE Work Processor
PROSE PLUS

of
or

the

CHAPTER 1

1.1
1.1.1
1.1.2
1.1. 3
1.1. 4
1.1. 5
1. 2
1. 2 .1

1. 2. 2
1. 2. 3

CHAPTER 2

2.1
2 .1.1
2 .1. 2
2 .1. 3
2 .1. 4
2 .1. 5
2 .1. 6
2 .1. 7
2 .1. 8
2 .1. 9

2.2

2. 3
2.3.1
2.3.2
2.4
2.4.1
2.4.2

CHAPTER 3

3.1
3.2
3.3
3.4
3.5

CONTENTS

PREFACE xiii

INTRODUCTION

PRO/TOOL KIT DCL 1-1
File/Device/Volume Manipulation Commands 1-2
Program Development Commands 1-2
Task Manipulation Commands 1-2
Set and Show Commands 1-3
Miscellaneous Commands . . 1-3

PRO/TOOL KIT UTILITIES 1-3
Program Development, Frame, and Form
Utilities 1-4
RMS Utilities 1-6
Other Utilities 1-7

USING PRO/TOOL KIT DCL

THE DCL COMMAND LINE
Prompting
Qualifiers ..
HELP
Abbreviations
Colon and Equal Sign .
Command Line Continuation
Comments in Command Lines
Errors
PRO/Tool Kit DCL Initialization and
Termination Files

2-1
2-2
2-3
2-5
2-7
2-7
2-8
2-8
2-9

2-10
CORRECTING MISTAKES WITH THE DCL SINGLE LINE
EDITOR . . . ·
P/OS FILE SPECIFICATIONS IN DCL

Wildcard Features in DCL . . .
Logical Name

FOREGROUND AND
<CTRL/C> .
ABORT

DCL COMMANDS

ABORT
APPEND
ASSIGN
ASSIGN/TASK
BASIC

Translation
BACKGROUND PROCESSING

iii

2-11
. 2-13
. 2-13

2-15
. 2-15

2-15
2-16

3-2
3-4
3-8

3-12
. 3-13

3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34
3.35
3.36
3.37
3.38
3.39
3.40
3.41
3.42
3.43
3.44
3.45
3.46
3.47
3.48
3.49
3.50
3.51
3.52
3.53
3.54
3.55
3.56

CANCEL
CLEAR
COBOL
CONTINUE
CONVERT
COPY . .
CREATE .
CREATE/DIRECTORY .
DEASSIGN
DEBUG
DEFINE .
DELETE .
DELETE/DIRECTORY
DIBOL
DIFFERENCES
DIRECTORY
DISMOUNT . .
DUMP . . .
EDIT OR EDIT/EDT
EDIT/PROSE
EDIT/SLP
EXIT
FIX
FORMAT .
FORTRAN
HELP ..
INITIALIZE
INSTALL
LIBRARY
LIBRARY/COMPRESS
LIBRARY/CREATE .
LIBRARY/DELETE .
LIBRARY/EXTRACT
LIBRARY/INSERT
LIBRARY/LIST ..
LIBRARY/REMOVE .
LIBRARY/REPLACE
LINK ..
LINK/C81
LOAD
MACRO
MAIL
MOUNT
PASCAL .
PHONE
PRINT
PRINT/REMOTE
PURGE
REMOVE ...
RENAME
RUN uninstalled task

iv

3-14
3-15
3-16

. 3-23
.. 3-24

3-30
3-37
3-40
3-42
3-44
3-45
3-49
3-52
3-53
3-57
3-61
3-65
3-66
3-71

. 3-74
3-75
3-78
3-79
3-81
3-82

. 3-88
3-89
3-91
3-93
3-94
3-96
3-99

3-100
3-101
3-103
3-105
3-106
3-108
3-123
3-126
3-127
3-135
3-136
3-137
3-140
3-141
3-142
3-143
3-146
3-147
3-150

3.57
3.58
3.59
3.60
3.61
3.62
3.63
3.64
3.65
3.66
3.67
3.68
3.69
3.70
3.71
3.72
3.73
3.74
3.75
3.76
3.77
3.78
3.79
3.80
3.81
3.82
3.83
3.84
3.85
3.86
3.87
3.88
3.89

CHAPTER 4

4.1
4.2
4.3
4.4
4. 4 .1
4.4.1.1
4.4.1.2
4.4.1.3
4. 4. 2
4.4.3

4. 4. 4
4.4.5
4.4.5.1

RUN installed task
SET [DAY]TIME
SET DEFAULT
SET DEVICE .
SET HOST . .
SET PRIORITY
SET PROTECTION
SET PROTECTION/DEFAULT
SET PROTECTION/NODEFAULT
SET TERMINAL . .
SHOW ASSIGNMENTS
SHOW CLOCK_QUEUE
SHOW COMMON
SHOW DAYTIME or SHOW TIME
SHOW DEFAULT
SHOW DEVICES .
SHOW LOGICALS
SHOW MEMORY
SHOW PROTECTION
SHOW TASKS/ACTIVE
SHOW TASKS/INSTALLED .
SHOW TASK:taskname/DYNAMIC
SHOW TASKS/ACTIVE/DYNAMIC
SHOW TASK/LOGICAL_UNITS
SHOW TERMINAL
SPAWN
START
START/UNBLOCK
STOP/BLOCK ..
SUBMIT/REMOTE
TYPE
UNLOAD
UNLOCK

THE INDIRECT COMMAND PROCESSOR

INDIRECT COMMAND FILES
INDIRECT COMMAND PROCESSOR . .
SUMMARY OF INDIRECT DIRECTIVES
SYMBOLS

Special Symbols
Special Logical Symbols
Special Numeric Symbols
Special String Symbols .

Numeric Symbols and Expressions
String Symbols, Substrings, and
Expressions
Reserved Symbols
Symbol Value Substitution

Substitution Format Control

v

3-152
3-155
3-156
3-157
3-159
3-160
3-161
3-164
3-166
3-167
3-172
3-173
3-174
3-176
3-177
3-178
3-179
3-180
3-181
3-182
3-187
3-189
3-191
3-192
3-193
3-194
3-195
3-196
3-197
3-198
3-199
3-202
3-203

4-1
4-2
4-4
4-8
4-9
4-9

4-11
4-14
4-16

4-18
4-19
4-19
4-20

4.5
4.6
4.6.1
4.7
4.8
4.9

SWITCHES
Using Indirect Directives

Logical Tests
/ - DEFINE LOGICAL END-OF-FILE
.ASK - ASK A QUESTION AND WAIT FOR A REPLY
.ASKN - ASK FOR DEFINITION OF A NUMERIC
SYMBOL

4-21
4-24
4-25
4-27
4-28

4-30
4.10 .ASKS - ASK FOR DEFINITION OF A STRING

4.11
4.12

4.13
4.14
4.15
4.16

4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25

4.26

4.27

4.28

4.29

4.30

4.31
4.32
4.33
4.34

4.35
4.36
4.37
4.38
4.39
4.40
4.41
4.42

SYMBOL
.BEGIN - BEGIN BLOCK ...
.CHAIN - CONTINUE PROCESSING USING ANOTHER
FILE
.CLOSE - CLOSE SECONDARY FILE
.DATA - OUTPUT DATA TO SECONDARY FILE
.DEC - DECREMENT NUMERIC SYMBOL
.DELAY - DELAY EXECUTION FOR A SPECIFIED
PERIOD OF TIME
.DISABLE - DISABLE OPTION
.ENABLE - ENABLE OPTION
.END - END BLOCK
.ERASE - DELETE SYMBOLS
.EXIT - EXIT CURRENT COMMAND FILE
.FORM - ACCESS FORM DRIVER
.GOSUB - CALL A SUBROUTINE .
.GOTO - BRANCH TO A LABEL
.IF - TEST IF SYMBOL SATISFIES SPECIFIED
CONDITION
.IFACT/.IFNACT - TEST IF TASK IS ACTIVE OR
DORMANT

4-33
4-35

4-36
4-37
4-38
4-39

4-40
4-41
4-42
4-46
4-47
4-49

. 4-50
4-56
4-57

4-58

4-60
.IFDF/.IFNDF -
DEFINED
.IFINS/.IFNINS
NOT INSTALLED

TEST IF SYMBOL DEFINED OR NOT
. 4-61

- TEST IF TASK INSTALLED OR
.. 4-62

.IFENABLED/.IFDISABLED - TEST IF MODE
ENABLED OR DISABLED 4-63
.IFLOA/.IFNLO - TEST IF DRIVER LOADED OR NOT
LOADED
.IFT/.IFF - TEST IF SYMBOL TRUE OR FALSE .
.INC - INCREMENT NUMERIC SYMBOL

4-64
4-65
4-66
4-67 .label: - DEFINE A LABEL

.ONERR - BRANCH TO LABEL ON DETECTING AN
ERROR
.OPEN - OPEN SECONDARY FILE
.OPENA - OPEN SECONDARY FILE FOR APPEND
.OPENR - OPEN FILE FOR READING .
.PARSE - PARSE STRINGS INTO SUBSTRINGS
.PAUSE - PAUSE FOR OPERATOR ACTION
.READ - READ NEXT RECORD

4-68
. 4-69

.. 4-70
4-71
4-72
4-73
4-74

.RETURN - RETURN FROM A SUBROUTINE

.SETT/.SETF/.SETL - SET SYMBOL TO TRUE OR
4-76

FALSE 4-77

vi

4.43 .SETN - SET SYMBOL TO NUMERIC VALUE 4-78
4.44 .SETO/.SETD - SET SYMBOL TO OCTAL OR DECIMAL 4-79
4.45 .SETS - SET SYMBOL TO STRING VALUE . 4-80
4.46 .STOP - TERMINATE COMMAND FILE PROCESSING 4-82
4.47 .TEST - TEST SYMBOL . 4-83
4.48 .TESTDEVICE - TEST DEVICE . 4-85
4.49 .TESTFILE - TEST A FILE . 4-86
4.50 .TESTPARTITION - TEST A PARTITION . . 4-87
4.51 .TESTSYSTEM - TEST SYSTEM 4-88
4.52 .TRANSLATE - TRANSLATE A LOGICAL NAME 4-90
4.53 .WAIT - WAIT FOR A TASK TO FINISH EXECUTION 4-91
4.54 .XQT - INITIATE PARALLEL TASK EXECUTION 4-92
4.55 COMPATIBILITY WITH COMMAND FILES FROM RSX

4.56
4.56.1
4.56.2

SYSTEMS
INDIRECT MESSAGES

Information-Only Messages
Error Messages

4-93
4-94
4-94
4-95

CHAPTER 5 FILE COMPARE UTILITY (CMP)

CHAPTER

5.1
5.2
5.3
5.4
5. 4 .1
5.4.2
5.4.3
5.5

6

6.1
6.2
6.3
6.4
6.4.1
6.4.2
6.4.3
6.5

CHAPTER 7

7.1
7 .1.1
7 .1. 2
7.1.2.1
7.1.2.2
7.2

INVOKING CMP
CMP COMMAND FORMAT
CMP SWITCHES
FORMATS OF CMP OUTPUT FILES

Differences Format
Change Bar Format
SLP Command Input Format

CMP MESSAGES

FILE DUMP UTILITY (DMP)

INVOKING DMP . . .
DMP COMMAND FORMAT . .
DMP SWITCHES
DMP EXAMPLES . . .

A Multiple Format Dump
A Record Dump
A Header Dump

DMP ERROR MESSAGES

.

LIBRARIAN UTILITY PROGRAM (LBR)

FORMAT OF LIBRARY FILES
Library Header ...
Entry Point Table

Module Name Table
Module Header

LBR RESTRICTIONS . . .

vii

.

5-2
5-2
5-3
5-6
5-7
5-8
5-8
5-9

6-2
6-2
6-3
6-8
6-8
6-9

6-10
6-11

7-2
7-2
7-3
7-3
7-3

7-10

7.3
7.4
7. 5
7.5.1
7.5.2
7. 5. 3
7.5.4
7.5.5
7.5.6
7.5.7
7.5.8

7.5.9

7.5.10
7.5.11
7.5.12

7.5.13

7.5.14
7.5.15
7.6
7.7
7. 7 .1
7.7.2

CHAPTER 8

8.1
8 .1.1
8 .1. 2
8.2
8.2.1
8.3
8.4
8.4.1

8.4.1.1
8.4.1.2
8. 5
8. 5 .1

8.5.1.1
8.5.1.2
8.5.1.3
8.5.1.4
8.6
8.6.1

INVOKING LBR
DEFAULTS FOR LBR FILE SPECIFIERS
LBR SWITCHES

Compress Switch (/CO)
Create Switch (/CR)
Delete Switch (/DE)
Default Switch (/DF)
Delete Global Switch (/DG)
Entry Point Switch (/EP) ..
Extract Switch (/EX) ...
Insert Switch (/IN) for Object and Macro
Libraries
Insert Switch (/IN) for Universal

7-11
7-11
7-13
7-15
7-16
7-18
7-19
7-21

. 7-23
7-25

7-26

Libraries
List Switches (/LI, /LE, /FU)
Modify Header Switch (/MH) ..

• • • 7 -2 7
7-29
7-30

Replace Switch (/RP) For Macro and Object
Libraries
Replace Switch (/RP) for Universal
Libraries
Selective Search Switch (/SS)
Squeeze Switch (/SZ) ...

COMBINING LIBRARY FUNCTIONS
LBR ERROR MESSAGES . . .

Effect of Fatal Errors on Library Files
LBR Error Messages . .

RESOURCE MONITORING DISPLAY (RMD)

INTRODUCTION . .
Display Pages
Setup Pages

INVOKING RMD . .
Running RMD on a Second Terminal

THE HELP DISPLAY
THE MEMORY DISPLAY

Altering the Memory Display from the Setup
Page

The FREE Command . .
The RATE Command . .

THE ACTIVE TASK DISPLAY
Altering the Active Task
Setup Page

The OWNER Command
The PRIORITY Command
The RATE Command . . .
The TASK Command . .

THE TASK HEADER DISPLAY
Altering the Task Header
Setup Page

viii

Display

Display
. . . .

from the

from the
.

7-31

7-37
7-39
7-40
7-42
7-43
7-44
7-44

8-1
8-1
8-1
8-2
8-3
8-3
8-4

8-7
8-7
8-7
8-8

8-8
8-9
8-9
8-9
8-9
8-9

8-10

8.6.1.1
8.6.1.2
8.7

CHAPTER 9

9.1
9 .1.1
9.1.1.1

9.1.1.2

9.1.1.3
9.1.1.4
9.2
9.2.1
9.2.2
9. 2. 2 .1
9.2.2.2
9.3
9.3.1
9.4

9.4.1
9.4.1.1
9.4.1.2
9.4.1.3
9.4.2
9.4.3
9.4.4
9.4.5

9. 4. 5 .1
9.4.5.2
9.4.5.3
9.4.5.4
9.5
9.5.1
9.5.2
9.5.3
9.5.3.1

9.5.3.2

9. 5. 3. 3

9.5.3.4

9.5.3.5

The RATE Command
The TASK Command

ERROR MESSAGES . . .

TASK/FILE PATCH PROGRAM (ZAP)

ZAP OPERATING MODES AND SWITCHES
The List Switch (/LI)

The /LI Switch and Regular Task Image
Files
The /LI Switch and Multiuser Task Image

. 8-11
8-11
8-11

9-2
9-3

9-3

Files 9-4
9-4
9-5
9-5
9-5
9-5
9-7
9-7
9-7
9-8

The /LI Switch and Resident Libraries
The /LI Switch and I- and D-Space Tasks

ADDRESSING LOCATIONS IN FILES
Relocation Biases
ZAP Addressing Modes

Using the Task Image Addressing Mode .
Using the Absolute Addressing Mode .

INVOKING AND TERMINATING ZAP
Using Indirect Command Files with ZAP

THE ZAP COMMAND LINE AND COMMAND LINE
ELEMENTS

ZAP Commands
Open/Close Location Commands
General Purpose Commands
<RETURN> Key

ZAP Internal Registers
ZAP Arithmetic Operators
ZAP Command Line Element Separators
ZAP Command Line Location-Specifier
Formats

The Current Location Symbol
Byte Offset Format
Block Number: Byte Offset Format
Relocation Register, Byte Offset

USING ZAP OPEN AND CLOSE COMMANDS
Opening Locations in a File

Format

Changing the Contents of a Location
Closing Locations in a File

Closing a Location and Opening the
Preceding Location
Closing a Location and Opening an
Offset Location
Closing a Location and Opening an
Absolute Location
Closing a Location and Opening a
Branch Target Location
Closing a Location and Opening a
Previous Location

ix

9-8
9-9
9-9

9-10
9-10
9-10
9-11
9-12

9-12
9-13

. 9-13
9-13
9-14
9-14
9-16
9-16
9-17

9-17

9-18

9-18

9-19

9-19

9.6
9.6.1
9.6.2
9.6.3
9.6.4
9.6.5
9.6.6
9.7
9.8

CHAPTER 10

10.1
10 .1.1
10.1.2
10 .1. 3
10 .1. 4
10.2
10.3
10.3.1
10.3.2
10.3.2.1
10.3.2.2

10.3.2.3
10.3.3
10.3.3.1
10.3.3.2
10.3.3.3
10.3.3.4
10.3.4
10.4
10.4.1
10.4.2
10.4.3

10.4.4
10.4.5
10.4.6
10.5
10.5.1
10.5.2

CHAPTER 11

USING ZAP GENERAL PURPOSE COMMANDS
The X Command
The K Command
The 0 Command
The Equal Sign (=) Command
The v Command
The R Command

EXAMPLES
ZAP ERROR MESSAGES

SOURCE LANGUAGE INPUT PROGRAM (SLP)

SLP INPUT AND OUTPUT FILES
The Input File . .
Command Input
The SLP Listing File
The SLP Output File

HOW SLP PROCESSES FILES
USING SLP

Specifying SLP Edit Commands
Entering SLP Edit Commands .

Entering SLP Commands Interactively
Entering SLP Commands Using Indirect

Command Files
Using SLP Operators

Updating Source Files With SLP
Generating a Numbered Listing
Adding Lines to a File . .
Deleting Lines from a File . .
Replacing Lines in a File

Creating Source Files Using SLP
CONTROLLING SLP

SLP Switches
Controlling the Audit Trail
Setting the Position and Length of the
Audit Trail
Changing the Value of the Audit Trail
Temporarily Suppressing the Audit Trail
Deleting the Audit Trail

SLP MESSAGES
SLP Information Message
SLP Error Messages . . .

CONVERT UTILITY (CVT)

x

9-20
9-20
9-21
9-22
9-22
9-23

. 9-23
9-24
9-31

. 10-2
10-2
10-3
10-4
10-4
10-5
10-6
10-6
10-8
10-9

10-10
10-10
10-11
10-11
10-12
10-14
10-16
10-17
10-18
10-18
10-19

10-20
10-21
10-22
10-23
10-24
10-24
10-24

CHAPTER 12

12.1
12.2
12.3
12.4
12.4.1
12.4.2
12.5
12.5.1
12.5.2
12.6
12.7

CHAPTER 13

13.1
13.2
13.3
13.3.1
13.3.2
13. 3. 3

13.3.3.1
13.3.3.2
13. 3. 4

13.4
13.4.1
13.4.2
13.4.3
13. 4. 4
13.4.5
13.4.6
13.4.7

CHAPTER 14

14.1
14.2
14.3
14.4
14.5
14.5.1
14.5.2
14.5.3
14.5.4
14.5.5
14.6

PERIPHERAL INTERCHANGE PROGRAM (PIP)

INVOKING PIP
FORMAT OF PIP COMMANDS
PIP DEFAULTS FOR FILE SPECIFICATION FIELDS

12-1
12-2
12-3
12-5
12-8
12-9

PIP SWITCHES AND SUBSWITCHES
Switches ...
Subswitches

SPECIFYING WILDCARDS .. .
Wildcards in Output File Specifications
Wildcards in Input Specifications

PIP ERROR MESSAGES
PIP ERROR CODES

OBJECT MODULE PATCH UTILITY (PAT)

INVOKING PAT
PAT COMMAND LINE FORMAT
HOW PAT APPLIES UPDATES

The Input File ...
The Correction File

12-10
12-10
12-11
12-13
12-23

13-2
13-2
13-3

. 13-4

. 13-4
How PAT and the Task Builder Update Object
Modules 13-5

Overlaying Lines in a Module 13-5
Adding a Subroutine to a Module .. 13-7

Determining and Validating the Contents of
a File 13-8

PAT MESSAGES 13-9
Information Messages 13-10
Command Line Errors 13-10
File Specification Errors 13-11
Input/Output Errors 13-13
Errors in File Contents or Format 13-15
Internal Software Error 13-16
Storage Allocation Error 13-17

FILE STRUCTURE VERIFICATION UTILITY (VFY)

INVOKING VFY .
VFY COMMAND FORMAT . .
VFY MODE OF OPERATION
VFY VALIDITY CHECK . .
VFY SWITCHES

Directory Validation Switch (/DV)
Free Switch (/FR)
List Switch (/LI)
Lost Switch (/LO)
Read Check Switch (/RC)

FILE ERROR REPORTING . . .

xi

14-1
. . 14-2

14-3
14-3
14-4
14-4
14-5
14-6
14-6
14-6

. 14-7

14.6.1
14.6.1.1
14.6.2
14.6.3
14.7

Files Marked for Delete
Deleting a File Marked

Deletion of Multiple-Allocated
Recovering Lost Blocks

. 14 - 9
for Delete 14-10
Blocks 14-10

APPENDIX A

APPENDIX B

B.1
B.2

APPENDIX C

FIGURES

7-1

7-2
7-3
7-4
7-5
7-6

7-7
7-8
7-9

7-10

7-11

7-12

7-13
7-14

8-1
11-1
13-1

VFY ERROR MESSAGES

FUNCTIONS INITIATED BY DCL COMMANDS

ERROR MESSAGES

GENERAL ERROR MESSAGES
I/O ERROR MESSAGES . .

SAMPLE EDT INITIALIZATION FILE

General Format for Object and Macro Library
Files
Universal Library File Format
Contents of Library Header ..
Format of Entry Point Table Element
Format of Module Name Table Element
Module Header Format for Object and Macro
Libraries
Module Header Format for Universal Libraries
Sample Files Used in LBR Examples 1-4
Output Library File After Execution of
Example 1
Output Library File After Execution of
Example 2 . . . • . . • . . . • .
Output Library File After Execution of
Example 3
Sample Files for Universal Library Replace
Example
Output Library File After Library Replace
MACRO Listing Before and After Running LBR
with /SZ
Memory Display for P/OS
Output of the CVT Utility
Using PAT

xii

14-10
14-11

B-1
B-19

7-4
7-5
7-6
7-7
7-7

7-8
7-9

7-35

7-35

7-36

7-36

7-38
7-38

7-42
8-4

11-1
13-3

TABLES

3-1
3-2
3-3
3-4
3-5
3-6
5-1
7-1
7-2
9-1
9-2
9-3
9-4
10-1
10-2
11-1
12-1
12-2
12-3
14-1
A-1
B-1

Argument Values for /SHOW Qualifier
The Enable and Disable Qualifiers
The /SHOW and /NOSHOW Qualifiers
Status Bits . . .
Display for SHOW TASKS/ACTIVE
Task Status Flags
Summary of CMP Default Switch Settings
LBR File Specifiers Defaults
LBR Switches
ZAP Arithmetic Operators
ZAP Command Line Element Separators
ZAP Open and Close Commands
ZAP General Purpose Commands
SLP Operators .
SLP Switches
Punctuation to Specify Radix
PIP Default File Specifications
PIP Switches and Subswitches
PIP Error Codes and Messages . .
VFY Switches and Functions
Functions Initiated by DCL Commands
I/O Error Messages

xiii

. 3-55
3-130
3-132
3-175
3-183
3-184

5-5
7-12
7-14
9-11
9-12
9-14
9-20

10-11
10-18

11-2
12-4

. 12-6
12-24

14-4
A-1

B-20

PREFACE

Manual Objectives

After reading this manual, you will be able to use the command
language and utilities included in the PRO/Tool Kit.

This book does not describe how to use the Professional computer,
nor does it describe how to write applications. For information
on using the Professional, including installing your application,
see the Professional 300 Series User's Guide for Hard Disk
System. For information on writing applications, see the Tool
Kit User's Guide.

Intended Audience

Readers who already know a command language will benefit most
from this manual. You should have a working knowledge of the
application development cycle as described in the Tool Kit User's
Guide.

Structure of This Document

This manual consists of the following chapters:

• Chapter 1 provides an introduction
Digital Command Language (DCL) and
command line format.

to the PRO/Tool Kit
an explanation of DCL

• Chapter 2 describes the structure of the DCL command line,
operation of the DCL Single Line Editor (SLE), how to use
P/OS file specifications, and the foreground and background
processing feature of P/OS.

• Chapter 3 lists alphabetically the PRO/Tool Kit DCL commands,
and includes a description and syntax for invocation of each
command.

• Chapter 4 details the Indirect Command Processor, which
processes command files.

• Chapter 5 describes the File Compare (CMP) utility, which
compares the contents of two ASCII files.

xv

• Chapter 6 explains the File Dump (DMP) utility, which allows
you to examine the contents of a file or volume of files.

• Chapter 7 describes the Librarian (LBR) utility, which allows
you to create, update, modify, list, and maintain library
files.

• Chapter 8 describes the Resource Monitoring Display (RMD),
which allows you to display information about the resources
in your system.

• Chapter 9 describes the Task/File Patch Program (ZAP), which
allows you to directly examine and modify task image and data
files.

o Chapter 10 describes the Source Language Input Program (SLP),
a utility that you can use to maintain and audit source
files.

• Chapter 11 shows you how to convert numbers among different
radixes using the Convert Utility (CVT).

• Chapter 12 tells you how to perform file control operations
using the Peripheral Interchange Program (PIP).

• Chapter 13 describes how to
relocatable binary object
Patch Utility (PAT).

update,
module

or patch, code in a
using the Object Module

• Chapter 14 tells you how to use the File Structure
Verification Utility (VFY), which allows you to check the
readability and validity in files, directories, and volumes.

• Appendix A contains functions initiated by DCL commands.

o Appendix B lists the common error messages for PRO/Tool Kit
DCL and the utilities.

• Appendix C contains an EDT command file example.

Associated Documents

• PRO/Tool Kit Installation Guide and Release Notes

For directions on installing the PRO/Tool Kit, as well as
information specific to the current version of the PRO/Tool
Kit, read this document.

xvi

• Professional 300 Series User's Guide for Hard Disk System

You should read this manual if you are not familiar with the
Professional.

• Tool Kit User's Guide

This manual details the program development cycle, and
provides primary information on devices, volumes, and file
specifications.

Conventions Used in This Document

Convention/Term

[optional]

UPPERCASE

lowercase

[s] or [,s]

Meaning

In a command line, square brackets indicate that
the enclosed item is optional. In a file
specification, however, square brackets are part
of the required syntax.

Uppercase words and letters, used in examples,
indicate that you should type the word or letter
exactly as shown.

Lowercase words and letters, used in format
examples, indicate that you should substitute a
word or value of your own. Usually the lowercase
word identifies the type of substitution
required.

If you can repeat an item in a command line,
then an [s] appears after the item to show its
plural form. A comma or other punctuation
preceding the letter "s" indicates that you must
separate repeated items with that punctuation.

A vertical ellipsis in a figure or example means
that not all of the statements are shown.

xvii

Convention/Term Meaning

<CR> This manual occasionally shows carriage returns,
represented by <CR>, to delineate an example
clearly.

<CTRL/x> This notation indicates that you are to press
the key marked "Ctrl" while simultaneously
pressing another key on the keyboard.

red

BOLD

Tool Kit

Host Tool Kit

PRO/Tool Kit

Interactive user input appears in red.

In command syntax, the bold portion indicates
the minimally-acceptable abbreviation for the
command.

This general term refers to the software you use
to develop applications to run on a Professional
computer.

The Host Tool Kit is Tool Kit software that runs
on a host computer, rather than on the
Professional itself.

The PRO/Tool Kit is the Tool Kit software that
runs on the Professional computer.

xviii

CHAPTER 1

INTRODUCTION

The PRO/Tool Kit is an application that allows you to perform
program development on the Professional. It includes PRO/Tool
Kit DCL, a command language, as well as several utility programs
that aid you in the development process. This chapter introduces
PRO/Tool Kit DCL and the PRO/Tool Kit utilities.

For information on hardware and software requirements for
installing the PRO/Tool Kit, as well as installation
instructions, see the PRO/Tool Kit Installation Guide and Release
Notes.

1.1 PRO/TOOL KIT DCL

The PRO/Tool Kit DCL is a subset of Digital Command Language
implementations found on the VAX/VMS and RSX-11M-PLUS operating
systems. Although some commands are unique to the PRO/Tool Kit,
many of the commands derive from both of these operating systems.

PRO/Tool Kit DCL provides you with an extensive set of commands
to perform various functions. You can divide the PRO/Tool Kit
DCL commands into five groups:

File Manipulation
Program Development
Task Manipulation
Set and Show
Miscellaneous

The following sections describe
functional group. Chapter 3
alphabetical order.

1-1

the commands within each
presents the commands in

PRO/TOOL KIT DCL

1.1.1 File/Device/Volume Manipulation Commands

The file manipulation commands are:

APPEND DISMOUNT
ASSIGN DUMP
BAD EDIT
CONVERT EDIT/PROSE
COPY EDIT/SLP
CREATE FORMAT
DIRECTORY INITIALIZE
DEASSIGN MOUNT
DEFINE PRINT
DELETE PURGE
DELETE/DIRECTORY RENAME
DIFFERENCES TYPE
DIRECTORY UNLOCK

1.1.2 Program Development Commands

The program development commands are:

BASIC
COBOL
DEBUG
DIBOL
FORTRAN
LIBRARY
LIBRARY/COMPRESS
LIBRARY/CREATE
LIBRARY/DELETE
LIBRARY/EXTRACT

1.1.3 Task Manipulation Commands

The task-related commands are:

ABORT
ASSIGN/TASK
CANCEL
CONTINUE
FIX
INSTALL

1-2

LIBRARY/INSERT
LIBRARY/LIST
LIBRARY/REMOVE
LIBRARY/REPLACE
LINK
LINK/C81
LOAD
MACRO
PASCAL
UNLOAD

REMOVE
RUN uninstalled task
RUN installed task
SPAWN
START
START/UNBLOCK
STOP/BLOCK

PRO/TOOL KIT DCL

1.1.4 Set and Show Commands

The set and show commands are:

SET [DAY]TIME
SET DEFAULT
SET DEVICE
SET HOST
SET PRIORITY
SET PROTECTION
SET TERMINAL
SHOW ASSIGNMENTS
SHOW CLOCK_QUEUE
SHOW COMMON
SHOW [DAY]TIME

1.1.5 Miscellaneous Commands

The miscellaneous commands are:

CLEAR
EXIT
HELP
MAIL
PHONE

1.2 PRO/TOOL KIT UTILITIES

SHOW DEFAULT
SHOW DEVICES
SHOW LOGICALS
SHOW MEMORY
SHOW TASKS
SHOW TASKS/ACTIVE
SHOW TASKS/INSTALLED
SHOW TASKS/DYNAMIC
SHOW TASK:taskname/DYNAMIC
SHOW TASKS/ACTIVE/DYNAMIC
SHOW TASK/LOGICAL_UNITS
SHOW TERMINAL

The PRO/Tool Kit utilities comprise the following:

o The Compare Utility (CMP)

• The EDT, PROSE, and SLP editors

o Frame Development Tool (FDT)

• The PRO/FMS-11 Forms Editor (PROFED)

• The PRO/FMS-11 Forms Utility (PROFUT)

o The Librarian Utility (LBR)

o The Resource Monitoring Display (RMD)

1-3

PRO/TOOL KIT UTILITIES

• Various RMS utilities

• The Task/File Patch Program (ZAP)

ti The Convert Utility (CVT)

• The Peripheral Interchange Processor (PIP)

• The Object Module Patch Utility (PAT)

• The Verify Utility (VFY)

You can invoke most of these utilities through a corresponding
DCL command. Those utilities that you cannot call through DCL
must be invoked directly. Refer to the specific utility below
for instructions.

1.2.1 Program Development, Frame, and Form Utilities

These utilities allow users to perform the following functions:

• Edit text files using a text editor (such as EDT)

• Develop menus with the Frame Development Tool (FDT)

o Assemble MACR0-11 source files with the Professional MACR0-11
Assembler (PMA)

o Build applications with the Professional Application Builder
(PAB)

• Invoke the Record Management Services

You should refer to the corresponding Tool Kit Documentation for
a complete description and operating instructions for these
utilities.

o Text Editors To invoke EDT, the DIGITAL standard text editor,
use the commands EDIT, EDIT/EDT, or the following command:

$ RUN $EDT

If you prefer, you can use the PROSE editor instead of EDT.
To invoke PROSE, use the command EDIT/PROSE. In addition,
the SLP editor is available; to invoke SLP, use the command
EDIT/SLP or the command RUN $SLP.

1-4

PRO/TOOL KIT UTILITIES

• FDT (Frame Development Tool)

fDT creates interactive menus for P/OS applications. The
following command invokes this utility:

$ RUN $FDT

For complete details on FDT, see the Tool Kit Reference
Manual.

• PROFED (PRO/FMS-11 Forms Editor)

PROFED is an editor that lets you create and modify video
forms on the screen. The use of the PRO/FMS-11 Forms utility
(PROFUT) translates these forms into files for use by an
application program. The following command invokes this
utility:

$ RUN $PROFED

See the FMS-11/RSX Software Reference Manual for details on
using PROFED.

• PROFUT (PRO/FMS-11 Forms Utility)

PROFUT creates form description files
from the PRO/FMS-11 forms editor. An
display these files. The following
utility:

$ RUN $PROFUT

that are the output
application program can

command invokes this

See the FMS-11/RSX Software Reference Manual for details on
using PROFUT.

• PAB (Professional Application Builder)

The Professional Application Builder links one or more object
modules into an executable task image, which is the final
form of any application or system program. PAB resolves
addressing and overlay considerations. To invoke PAB in DCL,
use the LINK command or the command RUN $PAB.

PAB is based on the RSX-llM/M-PLUS Task .Builder. Refer to
the RSX-11M/M-PLUS and Micro/RSX Task Builder Manual for
additional information on PAB.

1-5

PRO/TOOL KIT UTILITIES

@ PMA (Professional MACR0-11 Assembler)

PMA assembles and lists MACR0-11 source files. The MACRO
command, or the command RUN $PMA, invokes this utility.
Refer to Chapter 3 and the PDP-11 MACR0-11 Language Reference
Manual for further details on the MACR0-11 assembler).

1.2.2 RMS Utilities

The PRO/Tool Kit contains the utilities listed in this section.

NOTE

the RSX-11M/M-PLUS RMS-11 Utilities
Manual for a description of the RMS utilities.
Only those RMS utilities listed below are
supported on the PRO/Tool Kit.

Refer to

o RMSCNV

RMSCNV is the RMS-11
records between two
record format. You
following:

$

file conversion utility that moves
RMS-11 files of any organization or
can invoke RMSCNV by typing the

You can also use the DCL command CONVERT.

o RMSDES

RMSDES allows you to design and create indexed, sequential,
and relative files. You can specify the file attributes
interactively or read in the attributes of an existing,
external data file that you want to re-create with little or
no modification. You can invoke RMSDES by typing the
following:

$ DE

There is no other DCL command to invoke RSMDES.

1-6

PRO/TOOL KIT UTILITIES

e RMSDSP

RMSDSP lists RMS-11 file attributes and structural data. You
invoke this utility by typing the following:

$ HUN $RMSDSP

You can also use the DCL command DIRECTORY/ATTRIBUTES.

o RMSIFL

RMSIFL indexed file load utility builds an indexed file using
records from another RMS-11 file of any organization type.
This utility uses techniques that are derived from the basic
structure of indexed files, rather than from the standard
RMS-11 file structure. You invoke this utility by typing the
following:

There is no other DCL command to invoke RMSIFL.

1.2.3 Other Utilities

Chapters 5 through 14 fully describe the CMP, DMP, LBR, RMD, ZAP,
SLP, CVT, PIP, PAT, and VFY utilities, respectively. The syntax
you use to invoke these is:

$ RUN ili -name

The utility then displays its prompt.

1-7

CHAPTER 2

USING PRO/TOOL KIT DCL

interactively by typing a command at
invoke a DCL command file using the

(refer to Chapter 4). Whichever
of the command is the same.

You can use PRO/Tool Kit DCL
the keyboard, or you can
Indirect Command Processor
method you use, the format

You enter your commands at the DCL command level (indicated by
the $ prompt), and press either the <RETURN> or <DO> key to
execute the command. Because P/OS waits for a carriage return
before processing the DCL command, you can edit the command line
before pressing <RETURN>. (See Section 2.2.)

You are only required to type as many letters of the DCL command
as needed to form a unique command. For example, the
abbreviation SET TE/UP is a valid, unique command, because there
are no duplications of this within the SET TERMINAL command or
within the PRO/Tool Kit Command Language (refer to SET TERMINAL
in Chapter 3). However, SET TE/IN would not be a unique command,
because this abbreviation could stand for either SET
TERMINAL/INQUIRE or SET TERMINAL/INTERACTIVE. (Refer to Section
2.1.4 for additional information on abbreviating DCL commands.)

2.1 THE DCL COMMAND LINE

This section introduces the rules governing the use of DCL. The
examples in this section are intended to illustrate these rules,
not to document the full capabilities of the commands. For more
detail, see the individual command descriptions in Chapter 3.

A command consists of a command name, or verb, describing the
action the system is to take. Most commands also include one or
more parameters and qualifiers to further define the action of
the command. Qualifiers are preceded by a slash (/) and
parameters are preceded by a space. Both qualifiers and
parameters can take arguments. Arguments are preceded by a colon
(:). The format of a PRO/Tool Kit DCL command is:

2-1

THE DCL COMMAND LINE

$ Command/cmd-qual[s] paraml[/param-qual] param2[/param-qual]

where:

$

Command

/cmd-qual

paraml

param-qual

param2

indicates the DCL command level prompt.

is the name of the DCL command.

is an optional command qualifier that directs
the command either to perform or omit auxiliary
functions.

is a parameter that you pass to the command for
processing (not required by all commands).

is an optional parameter qualifier that causes
the DCL command to perform or omit auxiliary
functions on the parameter.

is a second parameter that you pass to the DCL
command for processing (not required by all
commands).

Either the <RETURN> or <DO> key is the terminator that passes DCL
commands to the operating system. Unless the action of the
<RETURN> key differs greatly from what is expected, the command
examples and formats in this manual do not include an indication
that each command line is terminated by a carriage return. (See
Section 2.1.6 for a discussion of command lines that are too long
to fit on one line of your terminal.)

Some commands require parameters or arguments as part of the
command line. If you fail to supply a required command element,
DCL prompts you with one or two words indicating the general
nature of the required element. If you do not understand the
prompt, type a question mark (?) for help. (In some cases, an
omission causes an error rather than a prompt.)

2.1. 1 Prompting

The prompts help you learn the form of a command by requesting
that you supply required command elements.

For example, the RENAME command works as follows:

$ RENAME
From? FILEl.LIS
To? FILE2.MAC

2-2

THE DCL COMMAND LINE

The one-line format for RENAME is:

$ RENAME FILE1.LIS FILE2.MAC

The formats can be mixed. DCL prompts for whatever you leave
out. For example:

$ RENAME FILEl.LIS
To? FILE2.MAC

There are no defaults for prompts. You must supply a response to
any prompt. If you do not want to continue with the command,
type a CTRL/Z.

2.1.2 Qualifiers

Qualifiers modify the action of the command. Qualifiers always
start with a slash (/) and are generally optional.

Qualifiers are either command qualifiers
Most qualifiers are command qualifiers.
qualifiers are always shown immediately
verb, as in this example!

or parameter qualifiers.
In this manual, command
following the command

$ TYPE/TODAY *.HLP

However, most command qualifiers can appear anywhere
command line. Another name for these qualifiers is
qualifiers. The following examples illustrate how
qualifiers can float:

or

or

$ TYPE *.HLP/TODAY

$ TYPE
File(s)? *.HLP/TODAY

$ TYPE
File(s)? /TODAY
File(s)? *.HLP

You can mix formats, as in the following example:

$ TYPE/TODAY
File(s)? *.HLP/EXCLUDE:HELPF.HLP;*

2-3

in the
floating

command

or

or

$ TYPE/TODAY
File(s)? *.HLP/

THE DCL COMMAND LINE

Qualifier? EXCLUDE:HELPF.HLP;*

$ TYPE/TODAY
File(s)? /
Qualifier? EXCLUDE:HELPF.HLP;*
File(s)? *.HLP

Note that you are prompted for a qualifier when a slash with no
qualifier attached appears on the command line. When you supply
the qualifier, do not type the slash again.

Regardless of where the qualifier appears, it has the same
effect.

Qualifiers described as parameter qualifiers,
qualifiers, cannot float.

or file spec

Parameter qualifiers do not modify the action of the command;
they modify the action of the command as it concerns that
particular parameter, or supply additional information needed for
the command to execute properly. For instance, in the following
example:

$ MACRO HIYA, TESTBLD/LIBRARY, PIGEON

the qualifier /LIBRARY identifies a particular file as being a
library, and the /LIBRARY qualifier cannot float.

Many qualifiers can be negated by prefixing NO or
the qualifier name. Thus, the command:

$ MACRO/OBJECT SIMPLE.MAC

(minus) to

directs the MACR0-11 Assembler to make an object file, while the
command:

$ MACRO/NOOBJECT SIMPLE.MAC

or

$ MACRO/-OBJECT SIMPLE.MAC

2-4

THE DCL COMMAND LINE

directs the MACR0-11 Assembler to omit the object file. In the
first example, /OBJECT is the default qualifier and need not be
explicitly included. In other words, unless your MACRO command
includes the /NOOBJECT qualifier, an object file is produced.

2.1.3 HELP

HELP is available for all DCL commands by entering the HELP
command or by typing a question mark (?) in response to any DCL
prompt. For instance, if you want help on the TYPE command,
enter the following:

$ HELP TYPE

The following HELP text is displayed:

TYPE[/qualifier[s]] filespec[s]
/DATE:dd-mmm-yy
/SINCE:dd-mmm-yy
/THROUGH:dd-mmm-yy
/SINCE:dd-mmm-yy/THROUGH:dd-mmm-yy
/TODAY
/EXCLUDE:filespec

The TYPE command displays the contents of text files on your
terminal.

If you wish help on one of the qualifiers for TYPE, enter the
following:

$ HELP TYPE TODAY

TYPE/TODAY filespec[s]

The /TODAY qualifier specifies that you wish the TYPE
command to type only files created today.

The HELP text consists of a brief explanation of the command
followed by an illustration of the syntax, showing that TYPE
accepts one or more filespecs, and one or more qualifiers.

If you wish help while being prompted by the TYPE command, use
the following procedure:

$ TYPE
File(s)? ?
TYPE[/qualifier[s]] filespec[s]

/DATE:dd-mmm-yy
/SINCE:dd-mrnrn-yy

2-5

THE DCL COMMAND LINE

/THROUGH:dd-mmm-yy
/SINCE:dd-mmm-yy/THROUGH:dd-mmm-yy
/TODAY
/EXCLUDE:filespec

The TYPE command displays the contents of text files on your
terminal.

File(s)?

The same help text is printed on your terminal, but the prompt
returns, meaning the TYPE command is still waiting for you to
list the file(s) you wish typed.

You can also get help on a specific subtopic while being prompted
by a command, by responding to the prompt with a question mark.
For example:

$ ET
Function?

SET thing

The SET command can be used to set something. The
following things can be set with this command:

[DAY]TIME
TERMINAL

DEFAULT DEVICE PRIORITY PROTECTION

To get help on a specific subtopic of the SET command, enter a
question mark followed by the subtopic:

Function? ? DEFAULT

SET DEFAULT [ddnn:][directory]

The SET DEFAULT command sets your default directory or
device, or both.

Function?

You can also get help by typing a question mark in response to
the DCL prompt ($).

that you
response to

(A <CTRL/Z>
of the current

If you should decide after reading the help text
chosen the wrong command, enter a <CTRL/Z> in
prompt to end the execution of the command.
response to a prompt always cancels execution
command.)

2-6

have
the
in

DCL

THE DCL COMMAND LINE

2.1.4 Abbreviations

It is rarely necessary for you to type either the complete
command name or the complete qualifier name. You only need to
type the characters required to distinguish the command or
qualifier from all others.

For example:

• TYPE can be abbreviated as T because it is the only command
beginning with that character.

o DELETE can be abbreviated as DEL, but not DE.

o DEASSIGN can be abbreviated as DEA, but not DE.

Three letters is usually enough. Five letters is always enough.
You can often omit other parts of commands as well.

The underscore character (_) is used to make DCL commands more
readable where two words are needed to name a single command
element, such as EDIT/READ_ONLY. However, you need not type the
underscore to enter the command. EDIT/READ_ONLY is the same as
EDIT/READONLY.

Here are the brief forms for some frequently used commands.

A for ABORT c for COPY D for DIRECTORY
DEA for DEASSIGN E for EDIT F for FORTRAN
H for HELP L for LINK M for MACRO
R for RUN s for SHOW T for TYPE

The command descriptions in Chapter 3 indicate the minimum
acceptable abbreviation for each command.

2.1.5 Colon and Equal Sign

The command descriptions in this manual show arguments set off by
a colon (:). You can always replace such colons with an equal
sign(=), as in this example:

$ DIFFERENCES/LINES=2 testfile.tmp

Refer to Section 3.20 for a description of the DIFFERENCES
command. Colons in device names, such as DW1:, and so forth,
cannot be replaced by equal signs.

2-7

THE DCL COMMAND LINE

2.1.6 Command Line Continuation

The hyphen (-) is used to indicate line continuation. When you
end a command line with a hyphen and a carriage return, the DCL
continuation prompt ($-) indicates that you can continue entering
the command line. If you are continuing a line from a prompt,
such as:

Task?

that prompt is the indication that the line is being continued.
This feature permits you to enter command lines including more
characters than your terminal has room for on one line. No DCL
command line can be longer than 250 characters. Here is an
example of line continuation:

$ COPY PROCOM1.PAS,PROCOM2.PAS,PROCOM3.PAS,-<CR>
$- BIGFILE.PAS [WORK]

The command is not entered until DCL encounters a line ending
with a carriage return not preceded by a hyphen. In the example,
the first carriage return does not enter the command because it
is preceded by a hyphen. The command is entered following the
second carriage return. The carriage return can be on a line by
itself.

2.1.7 Comments in Command Lines

You can include comments in a DCL command line using the
exclamation point(!).

If the comment ends the command line, only a single exclamation
point is needed, as in this example:

$ COPY PROCOM1.PAS PROCOM1.TMP ! Temporary file

If the comment is within the command line, two exclamation points
are needed, as in this example:

$ COPY !Temporary File! PROCOM1.PAS PROCOM1.TMP

These comments are ignored and not interpreted in any way by DCL.

Comments can be placed at any natural break in the command
between qualifiers, between parameters, even as part
response to a prompt.

2-8

line:
of a

THE DCL COMMAND LINE

2.1.8 Errors

You can correct typing errors or delete the line completely by
using the <DELETE> key, or <CTRL/U> {provided you have not
terminated the line).

You can cancel the execution of any DCL command by typing a
<CTRL/Z>.

If the system detects an error in the command line input, it
returns the appropriate error message.

Here are some examples of incorrect commands and the error
messages they produce:

$ KOPY PR0300.LIS PRINT.LIS
DCL -- Illegal command

$ RENAME/COPY TEST.PAS PROCOMl.PAS
RENAME -- Illegal or contradictory qualifier
RENAME/COPY TEST.PAS PROCOMl.PAS

$ DIFFERENCES/LINES=TWO TEST.PAS PROCOMl.PAS
DIFFERENCES -- Numeral expected
DIFFERENCES/LINES=TWO TEST.PAS PROCOMl.PAS

In the first case, the error was detected by DCL, as indicated by
the first part of the error message. There is no DCL KOPY
command. The entire command was rejected.

In the second case, the command was entered correctly, but the
qualifier was incorrect. The first part of the message shows
that the error was detected within the RENAME command itself.
The command is reprinted and a circumflex {~) points to the
error.

In the third case, the command and qualifier were correct, but
the argument was in error. The message explains the error and
the circumflex points to the error.

Sometimes the circumflex does not point directly at the error,
but at the point at which the command started to go wrong, which
may be several characters before the actual error.

Typing mistakes are by far the most common cause of errors.
Retyping the command or using the <UP ARROW> and the Single Line
Editor {SLE} often eliminates the error. {See the discussion of
the Single Line Editor, below.) Other common causes of errors are
omitting a space or other delimiter in a command line, specifying

2-9

THE DCL COMMAND LINE

invalid devices or nonexistent
sufficient number of characters to
command element.

files, and
distinguish

failing to type a
the command or

All the DCL error messages are listed and explained in Appendix B
of this manual. In some cases, such as assembly errors, you may
need to go to another manual for explanation of the error.

2.1.9 PRO/Tool Kit DCL Initialization and Termination Files

When you enter the PRO/Tool Kit, two indirect command files
automatically execute. Similarly, two indirect command files
automatically execute when you leave the PRO/Tool Kit. These
initialization and termination files install and remove tasks
that you need for developing applications on the Professional.

The initalization files execute in the following order when you
enter the PRO/Tool Kit:

1. LB:[ZZPRODCL]START.CMD

This is the first command file to execute. It executes
automatically for all users of the PRO/Tool Kit. Commands
that should always be executed during PRO/Tool Kit
initialization are located in this file. Only a system
manager should modify this file. For exam~le, if all
PRO/Tool Kit users on a system require a particular library,
the system manager could modify LB:[ZZPRODCL]START.CMD to
install that library.

2. DCLAPPL$DIR:START.CMD

This command file is located in a user-specific area,
DCLAPPL$DIR, and so it can be different for each user. For
instance, if you are the only user who needs a certain
library installed, you can modify DCLAPPL$DIR:START.CMD to
perform the installation during your PRO/Tool Kit session.
Alternatively, you might place the comment character before
lines that install tasks you do not use.

The termination command files execute in the following order when
you leave the PRO/Tool Kit:

2-10

THE DCL COMMAND LINE

1. LB:[ZZPRODCL]EXIT.CMD

This command file is provided so that you can specify
commands to be executed on a system-wide basis during DCL
termination. The termination file corresponds to the
initialization file LB:[ZZPRODCL]START.CMD.

2. DCLAPPL$DIR:EXIT.CMD

This command file is provided so that you can specify
commands to be executed on a user-specific basis during DCL
termination. The termination file corresponds to the
initialization file DCLAPPL$DIR:START.CMD.

See Chapter 4 for information on indirect command files.

2.2 CORRECTING MISTAKES WITH THE DCL SINGLE LINE EDITOR

This is a brief description of how the Single Line Editor works.

The Single Line Editor can be used in two ways:

• If you make a mistake before you press either <RETURN> or
<DO>, you can correct it without retyping the entire command.
To correct the command, press the <LEFT ARROW> key until the
cursor is just to the right of any character(s) you want to
change. Delete the part you do not want with the <XJ key and
retype. To add a part you left out, move the cursor to the
place and type in the omitted part. The rest of the command
will move to the right to make room.

o If you make a mistake after you have pressed either <RETURN>
or <DO>, press the <UP ARROW> key. The command will be
redisplayed for changing. You can display up to nine
previous commands this way. You can then use the <DOWN
ARROW> key to display the next command.

While entering DCL commands, the <CANCEL> key erases the
current command so you can start over. The <F13> function
key erases from where the cursor is to the end of the line.

Normal text characters simply get entered into
at the position of the cursor. If there are
or to the right of the cursor, they will move
make room for the new character.

2-11

the command line
any characters on,
to the right to

CORRECTING MISTAKES WITH THE DCL SINGLE LINE EDITOR

The following list describes what keys on the keyboard perform
what functions in the single line editor.

<X]

<REMOVE>

<RETURN>
<DO>

<LEFT ARROW> +
<RIGHT ARROW> -+

<UP ARROW> t

<DOWN ARROW> l

<F13>

<EXIT>

<HELP>

<CANCEL>
<CTRL/U>
<CTRL/C>

<CTRL/R>
<CTRL/W>

Erases the character to the left of the cursor.
If there are any characters on, or to the right
of the cursor, they will move to the left to
close the space for the erased character.

Erases the character on the cursor. If there
are any characters to the right of the cursor,
they will move to the left to close the space
for the erased character.

Enters the current command, giving it to the
DCL command interpreter for execution. After
the command has executed, the line following
the one that was just entered (if there is one)
will be displayed, with the cursor at the end
of the line. To execute it, press <RETURN> or
<DO>. To skip over it, press the down arrow.

Moves the cursor one column to the left or to
the right.

Stores the current command, and displays the
previous command, leaving the cursor at the
end. If there is no previous command, no action
is taken.

Stores the current command, and displays the
next command. If there are no more commands,
then just start an empty line.

Erases the command from the cursor position to
the end of the line.

Leaves the PRO/Tool Kit and returns to the P/OS
Main Menu.

Appends "HELP" to the beginning of the current
command, and enters it.

Erases the entire current command, and starts
with a blank command.

Redisplays the current command.

2-12

P/OS FILE SPECIFICATIONS IN DCL

2.3 P/OS FILE SPECIFICATIONS IN DCL

File specifications, often called
many DCL commands. The format
follows:

filespecs, are required for
of a file specification is as

nodespec::device:[directory]filename.type;version

Note that the nodespec portion of a file specification is valid
only on those commands supported by PRO/DECnet, as indicated in
the command descriptions in Chapter 3. Your Professional must
have PRO/DECnet installed in order to use the nodespec to operate
on files at other nodes on the network.

See the Tool Kit User's Guide for a complete description of file
specifications.

2.3.1 Wildcard Features in DCL

PRO/Tool Kit DCL offers wildcard features that are in addition to
the simple wildcard capability available throughout P/OS (see the
Tool Kit User's Guide). In the simple form of wildcarding, you
use the * to replace an entire field in a filespec.

Many commands described in this manual work through PIP, the
Peripheral Interchange Program. For the PIP-related
commands--DIRECTORY, DELETE, PURGE, COPY, RENAME, TYPE, APPEND,
UNLOCK, and SET PROTECTION--a more elaborate form of wildcarding
is available. In these commands, within filenames and file
types, the * can be used in a more complex manner. The *
actually means "match zero or all characters in this position."

Therefore, the command:

$ DIRECTORY L*.TXT

lists the most recent versions of all files with the type .TXT
whose names start with L on the default volume and in the default
directory.

And the command:

$ DIRECTORY *L*.TXT

lists the most recent versions of all files with the type .TXT
whose names include an L on the default volume and in the default
directory.

2-13

P/OS FILE SPECIFICATIONS IN DCL

The same substitutions can also be used in file types, so that
the command:

$ DIRECTORY SNOBLO.L*

lists the most recent versions of all files with the name SNOBLO
and the type beginning with an L on the default volume and in the
default directory.

You can use more than one wildcard in filenames and file types.

The command:

$ DIRECTORY *F*D*.TXT

lists the most recent versions of all files with the type .TXT
whose names include an F and a D in that order.

In addition,
to be used
types. The
position."

the PIP-related commands permit the percent sign (%)
as a wildcard, but only within filenames and file
% means "match exactly one character in this

For instance, the following command:

$ DIRECTORY %.TXT

lists all files with the type .TXT and a single-character
filename on the default volume in the default directory.

The command:

$ DIRECTORY NOV%%81.TXT

lists all files with the type .TXT and a filename consisting of
NOV and 81 separated by two characters on the default volume in
the default directory.

The wildcards can be combined in a single filespec.

The command

$ DIRECTORY %L*T.TM%

lists all files whose names begin with a
followed by an L and end with a T, and
consisting of .TM and another single character
volume in the default directory.

2-14

single character
with a file type
on the default

P/OS FILE SPECIFICATIONS IN DCL

Wildcarding, combined with systematic usage of directory
structure, filenames, and file types, can add considerable
flexibility and convenience to your use of the system.

2.3.2 Logical Name Translation

You can specify a logical name to stand for either a part or
whole file specification. For example, you can define the
logical name INPUT to have an equivalence consisting of the file
specification BIGVOLUME:[USERFILES]NAMES.TXT. Subsequently, you
can use INPUT wherever you would normally use the file
specification. See the Tool Kit User's Guide for more
information on logical names.

Note that PRO/Tool Kit commands translate logical names only when
a device, directory, or file specification is expected.

2.4 FOREGROUND AND BACKGROUND PROCESSING

Once you initiate a command, you cannot type another command
until the first command has completed execution. In this case,
you initiated the command in foreground mode. Typing <CTRL/C> or
<INTERRUPT/DO> halts the execution of a command or program in
foreground mode.

You can initiate commands or programs in background mode through
the use of the SPAWN command. Once you have initiated such a
command or program, you can issue other commands or run programs
at your terminal; you need not wait for the background command or
program to complete execution. In order to halt the execution of
a command or program running in background mode, you must use the
ABORT commmand.

2.4.1 < CTRL/C >

<CTRL/C> or the <INTERRUPT/DO> key sequence aborts the command
you just typed at the terminal. <CTRL/C> cancels command entry
or processing, and interrupts command or program execution,
returning control to DCL. However, <CTRL/C> will not abort a
commmand or program that you initiated with the SPAWN command.
You must use ABORT to halt the execution of such a command or
program.

2-15

FOREGROUND AND BACKGROUND PROCESSING

For example, if you just typed DIRECTORY and realized you did not
want to execute the DIRECTORY command, use of <CTRL/C> will abort
the action of the DIRECTORY command.

2.4.2 ABORT

This command halts execution of commands and programs running in
background mode.

NOTE

You must abort the task name, not the name of the
command that invoked its execution. If you use
SPAWN to initiate a DCL command in background
mode, that DCL command runs as a task with a task
name of the form xxxTn, where xxx are the first
three characters of the DCL command, and Tn is
the name of the terminal from which the command
was issued.

To determine the name of the task running in background mode, use
the SHOW TASKS command.

NOTE

You should never initiate a
that attaches the monitor
because you cannot abort it.

2-16

command or program
in background mode,

CHAPTER 3

DCL COMMANDS

This chapter lists the PRO/Tool Kit DCL commands alphabetically
and provides description, syntax, options, and command prompts
for each command. Note that in the syntax description of each
command, the portion of the command shown in bold indicates the
minimally acceptable abbreviation.

Some of the PRO/Tool Kit DCL commands can be used for network
operations, or have qualifiers that enable network operations.
In order to use these commands and qualifiers for network
operations, you must first install the PRO/DECnet Tool Kit. When
you install the PRO/DECnet Tool Kit, the DCL extensions are also
automatically installed. See the PRO/DECnet Installation Guide
for details.

3-1

ABORT

3.1 ABORT

ABORT forces an orderly end to a running task or to the action of
a specfic command. Nonprivileged users can abort any task
running on TI:. Privileged users can abort any task.

Syntax

ABORT [/COMMAND] [/qualifier] commandname

ABORT/TASK [/qualifier] taskname

qualifier

/COMMAND
/TASK
/TERMINAL:ttnnn:

commandname

Specifies
parameter
present.
characters

the command whose effect you want to cancel. This
can be used only when the /TASK qualifier is not
You must specify at least the first three
of the command verb.

taskname

Specifies the name of the task you want to abort. This
parameter requires the presence of the /TASK qualifier. If
you use the /TASK qualifier and do not specify a task name,
you will get the error message "Illegal task name."

Prompts

Taskname? taskname

Command Qualifiers

/COMMAND

Specifies that you want to abort a command.
default qualifier and need not be specified.

3-2

This is the

ABORT

/TASK

Specifies that you want to abort a task by name.

/TERMINAL:ttnnn:

Specifies that a task from some terminal other than your own
be aborted. This is a privileged qualifier.

Example

$ SPAWN LINK filespec
$ ABORT LINK

In this example, the user issued a LINK command in the background
by using the SPAWN command. Rather than waiting for the command
to complete, the user entered the ABORT command to terminate the
command.

$SPAWN LINK f ilespec $ABORT /TASK LINT1

In this example, the user issued a LINK command in the background
by using the SPAWN command. Rather than waiting for the command
to complete, the user entered the ABORT command to terminate the
task build by specifying the task name that the SPAWN LINK
command executed.

3-3

APPEND

3.2 APPEND

APPEND attaches records from one or more sequential files to the
end of an existing sequential file. For details regarding
sequential files, see the manual PRO/RMS-11: An Introduction, in
the Tool Kit documentation set.

Syntax

APPEND[/qualifier[s]] infile[,s] outfile

qualifier

Can be one or more of the following:

/DATE:dd-mmm-yy
/SINCE:dd-mmm-yy
/THROUGH:dd-mmm-yy
/SINCE:dd-mmm-yy/THROUGH:dd-mmm-yy
/TODAY
/EXCLUDE:filespec
/NOWARNINGS
/SHARED

With PRO/DECnet DCL extensions, the following qualifiers are also
available:

/DATA_ TYPE
/LOG
/MACY11
/PRINT
/TRANSFER_MODE
/SUBMIT
/PROTECTION
/OWNER

infile

Specifies the file or files to be appended to the output
file.

outfile

Specifies the file to which the input files are appended.

The output file must be an existing sequential file. The
output file has the same version number after the APPEND
command is executed as it had before the command was issued.
The input files appear at the end of the output file in the
order they were specified.

3-4

APPEND

No wildcards are permitted in output file specifications.

There are no qualifiers for the output filespec.

Although the output file must exist, it may be an empty
file.

Prompts

File(s)? infile[,s]
To: outfile

Qualifiers

/DATE:dd-mmm-yy

The /DATE qualifier specifies that you want the APPEND
command to affect only files created by the value specified
for /DATE.

/SINCE:dd-mmm-yy

The /SINCE qualifier specifies that you want the APPEND
command to affect only files created on or since the value
specified by /SINCE.

/THROUGH:dd-mmm-yy

The /THROUGH qualifier specifies that you want the APPEND
command to affect only files created on or before the value
specified by /THROUGH.

/SINCE:dd-mmm-yy/THROUGH:dd-mmm-yy

The /SINCE and /THROUGH qualifiers can be combined to
specify that you want the APPEND command to affect only
files created within that range.

/TODAY

The /TODAY qualifier specifies that you want the APPEND
command to affect only files created on the same day as the
command is issued.

/EXCLUDE:filespec

The /EXCLUDE qualifier specifies that you want the APPEND
command not to affect certain files. The filespec argument
to /EXCLUDE can contain wildcards, but the filespec must
contain a version number, either explicitly or as the "*"
wildcard.

3-5

APPEND

/[NO]WARNINGS

The /NOWARNINGS qualifier specifies that the "No such file"
error messages should not be displayed when the input files
specified do not exist.

/SHARED

The /SHARED qualifier specifies that you want other users to
be able to access the file while you are performing the
operation.

Additional Qualifiers Available with PRO/DECnet

Command Qualifiers

/LOG

The /LOG qualifier specifies that the names of files
appended and their sizes in blocks are to be displayed as
the operation is performed.

/PRINT

The /PRINT qualifier specifies that the file will be queued
to the line printer on the remote node for printing. The
file will not be deleted by this operaLion. The file's
format must be compatible with the remote system.

/SUBMIT

The /SUBMIT qualifier specifies that the output
temporary file and will be submitted to the
processor facility when copied. The file will
after it is processed at the remote node.

File Qualifiers

/DATA_TYPE

ifle is a
remote batch
be deleted

The /DATA_TYPE qualifier specifies how the data in the file
is interpreted. /DATA_TYPE with APPEND requires either the
ASCII or IMAGE argument. The default is IMAGE. /DATA_TYPE
must be entered after the file specification in the command
line.

The ASCII argument transfers files in ASCII record mode and
translates the records into an appropriate format for the
remote system. You only need to use this argument when
transferring text files to remote systems with file systems
other than FILES-11 or RMS. File transfers to VAX/VMS and

3-6

APPEND

PDP-11/RSX systems are more efficiently performed using the
default, IMAGE.

The IMAGE argument transfers files with their current format
and attributes. If a remote system cannot interpret the
file format, an error message will be displayed. If the
file is an ASCII text file, you can recover by retrying with
the ASCII argument.

/MACY11

The /MACY11 qualifier specifies that the input or output
file on the remote TOPS-10 or TOPS-20 system is in MACYll
format. This informs the remote DECsystem to handle the
file appropriately when copying to or from the P/OS system.
/MACYll must be entered after the file specification in the
command line.

/TRANSFER_MODE

The /TRANSFER_MODE qualifier specifies the method of
packaging file data during a file transfer. This qualifier
requires either the BLOCK or RECORD argument with the APPEND
command. RECORD is the default. /TRANSFER_MODE must be
entered after the file specification in the command line.

The BLOCK argument transfers files in block mode, using
blocks of 512-byte sizes. This is more efficient than using
record mode, but should only be used with systems that
support FILES-11 or RMS-11, such as VAX/VMS, PDP-11/RSX, or
PDP-11/RSTS/E RMS FAL.

The RECORD argument transfers a file one record at a time.
A record is a logical unit of data in a file.

/OWNER

This qualifier specifies the UIC
establishes the owner of a file.
Guide for a description of UIC.

/PROTECTION:code

of the file. A UIC
See the Tool Kit User's

This qualifier specifies the protection code applied to the
output file. See the description of the SET PROTECTION
command for details on the code.

3-7

ASSIGN

3.3 ASSIGN

This command creates a logical name and assigns an equivalence
string to the specified logical name. An equivalence name can be
a device name, another logical name, a file specification, or any
other string.

To specify the logical name table where you want to enter a
logical name, use /USER, /SESSION, or /SYSTEM. If you do not
explicitly specify a logical name table, the default is /SESSION.

Syntax

ASSIGN[/qualifier[s]] equiv_name logical_name

qualifier

Can be one or more of the following:

/USER
/SESSION
/SYSTEM
/FINAL
/TRANSLATION_ATTRIBUTES

equiv_name

Defines the equivalence name to be associated with the
logical name in the specified logical name table. The
equivalence name string can contain from 1 to 255
characters. If the equivalence name contains quotation
marks, enclose the string in quotation marks and use two
set~ of quotation marks ("") in the places where you want a
quotation mark to appear.

Note that if you
quotation marks
preserved.

logical_name

enclose an
the case

equivalence name string
of alphabetic characters

in
is

Specifies the logical name string. The logical name string
can contain from 1 to 255 characters. If the logical name
contains quotation marks, enclose the string in quotation
marks and use two sets of quotation marks ("") in the places
where you want a quotation mark to appear.

Note that if you enclose a logical name string in quotation
marks the case of alphabetic characters is preserved.

3-8

ASSIGN

Prompts

Equivalence Name? equiv_name
Logical Name? logical_name

Qualifiers

/USER

Places the logical name in the user logical name table.
Logicals created in the user logical name table are deleted
when you exit any application (including DCL).

/SESSION

Places the logical name in the session logical name table.
Session logical names are deleted when you logout of the
system. If you do not explicitly specify a logical name
table, the default is /SESSION.

/SYSTEM

Places the logical name in the system logical name table.
All system users can access the logical name.

System logical names are never deleted unless an explicit
deassign logical operation is performed.

/FINAL

Indicates that the equivalence name string should
translated iteratively; logical name translation
terminate with the current equivalence string. The
qualifier is synonymous with:

/TRANSLATION_ATTRIBUTES:TERMINAL

/TRANSLATION_ATTRIBUTES:[(keyword[, ...])]

not be
should
/FINAL

Specifies one or more attributes to modify a logical name
string. The /TRANSLATION_ATTRIBUTES qualifer is positional
and must be specified before the equivalence name.

You can specify the following keywords for translation
attributes:

3-9

ASSIGN

CONCEALED Indicates that the logical name is a concealed
device name. If you specified the CONCEALED
attribute, the logical name must be a device
name of the form ddnnn: and the equivalence
name must be of the form _ddnnn:[directory.].
The device name in the equivalence name must be
present. The [directory.) portion of the
equivalence name is optional.

TERMINAL Indicates that the equivalence name string
should not be translated iteratively; logical
name translation should terminate with the
current equivalence string.

If you specify only one keyword, you may omit the
parentheses. Only the attributes you specify are set.

Examples

$ASSIGN DW001:[CHARLES] CHARLIE:
$ PRINT CHARLIE:TEST.DAT

The ASSIGN command associates the logical name CHARLIE with the
device and directory DW001:[CHARLESJ. Susequent references to
the logical name CHARLIE: result in the correspondence between
the logical name CHARLIE: and the disk and directory specified.
The PRINT command queues a copy of the file
DW001:[CHARLES]TEST.DAT to the default print queue.

$ASSIGN DW001:[CHARLES] CHARLIE: /USER

The ASSIGN command associates the logical name CHARLIE: with the
directory name [CHARLES] on the device DW001: and makes the
assignment in the user logical name table.

$ AS/TRANSLATION_ATTRIBUTES:CONCEALED _DW002:[CHARLES.] -
$-PD001:
$ DIRECTORY PD001:[USERFILES]

Directory PDl:[USERFILES]
28-JUN-8 5 11: 20

TEST.DAT 4. 27-JUN-85 17:21

Total of 4./4. blocks in 1. files

The ASSIGN command associates the logical name PD001:
directory name [CHARLES] on the device DW002.
references to the device PD001: result in the
directory specified as being used as the MFD
operations.

3-10

with the
Subsequent

device and
for all file

ASSIGN

$ ASSI LATI BUTES:TERMINAL XX001: TEMP:

The ASSIGN command associates the logical name TEMP:
device XX001. Subsequent references to the logical
result in the device XX001: being used without
translation attempts on the equivalence name XX001:.

3-11

with the
TEMP: will
any futher

ASSIGN/TASK

3.4 ASSIGN/TASK

ASSIGN/TASK reassigns the logical unit numbers (LUNs)
installed task from one physical device to another.
reassignment overrides the static LUN assignments in the
disk image file. ASSIGN/TASK cannot change the LUNs of an
task.

Syntax

ASSIGN/TASK:taskname ddnnn: lun

taskname

of an
This

task's
active

Identifies the installed task whose LUN you want to
reassign.

ddnnn:

lun

Specifies the device to which you want the LUN reassigned.
This can be a physical device or logical device name.

Specifies which LUN you want to reassign to the new device.

Prompts

Taskname? taskname
Device? ddnnn:
Logical unit? lun

3-12

BASIC

3.5 BASIC

BASIC invokes the PRO/Tool Kit BASIC-PLUS-2 compiler to begin a
BASIC session. (Refer to the BASIC on RSX-llM/M-PLUS Systems
manual and the BASIC Reference Manual for additional
information.)

Syntax

BASIC

Prompts

None

3-13

CANCEL

3.6 CANCEL

CANCEL eliminates entries from the clock queue. Either the RUN$
directive or the time-based forms of the RUN command place
entries in the clock queue. CANCEL only affects pending entries
in the clock queue and does not affect a task that is currently
executing.

Syntax

CANCEL taskname

taskname

Is the name of the inactive, installed task entry that is to
be deleted from the clock queue.

Prompts

Taskname? taskname

3-14

CLEAR

3.7 CLEAR

This command clears the screen and optionally resets the terminal
subsystem to an initial state.

Syntax

CLEAR [/qualifier]

qualifier

/RESET

Prompts

None

Qualifier

/RESET

Emits a reset-to-initial-state (RIS) sequence, which
initializes the Terminal Subsystem to default states and
clears the screen. The RIS sequence is normally invoked
whenever you power-up (boot) the Professional or reset the
PRO/Communications terminal emulator. For further
information, see the description of the RIS sequence in the
Terminal Subsystem Manual.

3-15

COBOL

3.8 COBOL

COBOL invokes the PRO/Tool Kit COBOL-81 compiler to compile COBOL
language source files.

NOTE

Please refer to the language documentation for
additional information.

Syntax

COBOL[/qualifier[s]] filespec

qualifier

Can be one or more of the following:

/[NO]ANSI_FORMAT
/[NO]CHECK[:arg]

[NO]BOUNDS
[NO]PERFORM
ALL
NONE

/CODE:[NO]CIS
/[NO]CROSS_REFERENCE
/[NO]DEBUG
/[NO]DIAGNOSTICS[:filespec)
/[NO]LIST[:filespec]
/NAMES:xx
/[NO]OBJECT[:filespec]
/[NO]OVERLAY_DESCRIPTION
/[NO]SHOW:[NO]MAP
/[NO]SKELETON
/[NO]SUBPROGRAM
/TEMPORARY:device
/[NO]TRUNCATE
/[NO]WARNINGS:[NO]INFORMATIONAL

file spec

Specifies the source file to be input to the COBOL-81
compiler.

File input to the COBOL-81 compiler must contain COBOL
source code. File specifications must have filenames. The
default file type is .CBL.

3-16

COBOL

Prompts

File? filespec

Qualifiers

/[NO]ANSI_FORMAT

The /ANSI_FORMAT qualifier specifies that the source file is
in conventional (or ANSI) format. Conventional format has
SO-character lines with Area A beginning in character
position 8.

The /NOANSI_FORMAT qualifier specifies that the source file
is in terminal format, a DIGITAL-specified format that
permits variable length lines with Area A beginning in
character position 1.

The default is /NOANSI_FORMAT.

/[NO]CHECK[:arg]
[NO]BOUNDS
[NO]PERFORM
ALL
NONE

The /CHECK and /CHECK:ALL qualifiers are equivalent--both to
each other, and also to /CHECK:BOUNDS and /CHECK:PERFORM in
combination. They add object code that checks the ranges of
subscripts, indexes, and nested PERFORM statements at run
time.

The /CHECK:BOUNDS qualifier compares subscript and index
ranges at run time against the ranges defined by
corresponding OCCURS clauses. If any range is exceeded
during program execution, COBOL-81 issues an error message.

The /CHECK:PERFORM qualifier determines whether or not your
program's PERFORM statements are nested properly (if nested
at all). If COBOL-81 detects improper nesting during
program execution, it issues an error message.

The /NOCHECK and /CHECK:NONE qualifiers are equivalent--both
to each other, and also to /CHECK:NOBOUNDS and
/CHECK:NOPERFORM in combination. They suppress all range
checking.

The /CHECK:NOBOUNDS qualifier suppresses range checking only
for subscripts and indexes.

3-17

COBOL

The /CHECK:NOPERFORM qualifier suppresses range checking
only for nested PERFORM statements.

The qualifiers that suppress range checking reduce task size
and improve program performance.

The default is /CHECK (/CHECK:ALL).

/CODE:[NO]CIS

The /CODE:CIS qualifier tells the compiler to use CIS
(Commercial Instruction Set) in the object code it produces.

NOTE

The Professional 300 Series computers do not have
the Commercial Instruction Set.

The /CODE:NOCIS qualifier tells the compiler not to use CIS.

These qualifiers override the default for your system. They
are used to develop programs that will execute on a
different system than the one used for program development.
For example, if your system has CIS, you use /CODE:NOCIS to
compile a program that will run on a system without CIS.

/[NO]CROSS_REFERENCE

The /CROSS_REFERENCE qualifier causes the compiler to
produce a list file and to add two cross-reference tables to
the end of the list file: one for data-names and one for
procedure-names. In each table, the names you use in your
COBOL program are listed alphabetically. Opposite each name
is a list of every line number in which that name occurs. A
"D'' after a number indicates the line in which you define
the name. An asterisk (*) after a line number indicates a
destructive reference, such as a value assignment to a
data-name.

The /NOCROSS_REFERENCE qualifier suppresses production of
the cross-reference tables.

The default is /NOCROSS_REFERENCE.

/[NO]DEBUG

The /DEBUG qualifier indicates that you plan to include the
COBOL-81 Symbolic Debugger in your task image. To support
the Symbolic Debugger, the compiler generates symbol
information in the object module for all data-names and
procedure-names in your program.

3-18

COBOL

If you include the Symbolic Debugger in your program, you
must also use the /DEBUG qualifier to the LINK command.

The /NODEBUG qualifier suppresses generation of symbol
information in the object module.

The default is /NODEBUG.

/[NO]DIAGNOSTICS[:filespec]

The /DIAGNOSTICS qualifier creates a diagnostics file that
contains the compiler diagnostic summary. If you do not
append a file specification, the diagnostics file has the
same filename as your source file, and the file type .DIA.

The /NODIAGNOSTICS qualifier suppresses the creation of a
diagnostics file.

The default is /NODIAGNOSTICS.

/[NO]LIST[:filespec]

The /LIST qualifier produces a list file which contains both
the complete source code and any diagnostic messages. If
you do not append a file specification, the list file has
the same filename as the source file and has file type .LST.

The /NOLIST qualifier suppresses production of a list file.

The default is /NOLIST.

/NAMES:xx

The /NAMES:xx qualifier tells the compiler to use the two
alphanumeric characters you specify as the PSECT kernel for
your program. You use this qualifier to ensure unique
identification for PSECT kernels when your task image uses
both subprograms and segmentation.

/[NO]OBJECT[:filespec]

The /OBJECT qualifier produces an object module.
not append :filespec, the object module has
filename as the source and the file type .OBJ.

If you do
the same

The /NOOBJECT qualifier suppresses production of an object
module and its associated skeleton ODL file. (See the
description of /[NO] SKELETON.)

3-19

COBOL

The default is /OBJECT.

/[NO]OVERLAY_DESCRIPTION

The /OVERLAY_DESCRIPTION qualifier produces two files--an
indirect command file and an Overlay Descriptor Language
file.

The indirect command file has the same filename as the
source and the file type .CMD. It can be input to the Task
Builder to create the task image.

The Overlay Descriptor Language file has the same filename
as the source and the file type .ODL. It contains pointers
to certain support routines that must be included in your
task image (for example, system support for file
input/output).

If you plan to use the LINK/C81 command to task-build your
program, do not use the /OVERLAY_DESCRIPTION qualifier
(refer to Section 3.35 for a description of the LINK/C81
command). LINK/C81 also creates a .CMD and an .ODL file,
and cannot reference the .CMD and .ODL files created during
program compilation.

The /NOOVERLAY_DESCRIPTION qualifier suppresses production
of .CMD and .ODL files during program compilation.

The default is /NOOVERLAY_DESCRIPTION.

/[NO]SHOW:[NO]MAP

The /SHOW and /SHOW:MAP qualifiers are equivalent. They
cause the compiler to produce a list file and to append two
offset maps to the list file. One offset map refers to the
Data Division and one to the Procedure Division. The
compiler provides these maps for use with ODT (the On-Line
Debugging Tool). Consult the IAS/RSX-11 ODT Reference
Manual for more information.

The /NOSHOW and /SHOW:NOMAP qualifiers are equivalent. They
suppress production of the offset maps.

The default is /NOSHOW (/SHOW:NOMAP).

/[NO]SKELETON

The /SKELETON qualifier produces a skeleton ODL file,
specifies the overlay structure for the object module.
file has the same filename as the source and the file
.SKL.

3-20

which
This
type

COBOL

You cannot use the /SKELETON qualifier to override the
/NOOBJECT qualifier. That is, an .SKL file cannot be
produced when the .OBJ file is suppressed. The /NOSKELETON
qualifier suppresses production of the .SKL file.

You cannot use the /NOSKELETON qualifier if you plan to
task-build your program with the LINK/C81 command. LINK/C81
assumes the presence of the .SKL file. Although the .SKL
file is not strictly necessary for all programs, DIGITAL
does not recommend that you suppress its production unless
you are familiar with task-building alternatives to
LINK/C81.

The default is KELETON.

/[NO]SUBPROGRAM

The /SUBPROGRAM qualifier tells the compiler to treat the
source file as a subprogram. You should use this qualifier
only if the subprogram does not use parameters from the main
program; that is, if it does not contain the Procedure
Division USING header.

The /NOSUBPROGRAM qualifier tells the compiler to treat the
source as a main program.

The default lS /NOSUBPROGRAM.

/TEMPORARY:device

The /TEMPORARY qualifier tells the compiler to store the
temporary work files it uses during program compilation on
the device you specify. Since the default device is the
system disk (SY:), this qualifier is useful if there is
little system disk space available.

/[NO]TRUNCATE

The /TRUNCATE qualifier tells the compiler to perform
decimal truncation on the values of COMP data items. With
decimal truncation, the maximum value the data item can
contain depends on the item's PICTURE character-string.

The /NOTRUNCATE qualifier tells the compiler to perform
binary truncation on the values of COMP data items. With
binary truncation, the maximum value a COMP item can contain
depends on its storage allocation.

The default is /NOTRUNCATE.

3-21

COBOL

/[NO]WARNINGS:[NO]INFORMATIONAL

The /WARNINGS and /WARNINGS:INFORMATIONAL qualifiers are
equivalent. They cause the compiler to issue informational,
warning, and fatal diagnostics.

The /NOWARNINGS and /WARNINGS:NOINFORMATIONAL qualifiers are
equivalent. They suppress production of informational,
warning, and fatal diagnostics.

The default is /WARNINGS (/WARNINGS:INFORMATIONAL).

3-22

CONTINUE

3.9 CONTINUE

CONTINUE resumes execution of a previously-suspended task.
Nonprivileged users can continue tasks initiated from their own
terminals. Privileged users can continue any suspended task.

Syntax

CONTINUE taskname

taskname

Is the name of the task to be restarted.

Prompts

Taskname? taskname

3-23

CONVERT

3.10 CONVERT

CONVERT invokes the RMSCNV utility, which moves records from one
file to another. CONVERT reads records from an input file and
writes them to an output file. This conversion depends on both
the organization (sequential, relative, or indexed) of the files,
and qualifiers included with the CONVERT command. Refer to the
RSX-11M/M-PLUS RMS-11 Utilities Manual for further information on
the RMSCNV utility.

Syntax

CONVERT[/qualifier[s]] input_file output_file

qualifier

Can be one or more of the following:

/[NO]APPEND
/[NO]FIXED_CONTROL
/[NO] IDENTIFICATION
/INDEXED
/KEY[:n]
/[NO]LOG_FILE[:filespec]
/[NO]MASS_INSERT
/MERGE
/[NO]PAD[:[#]arg]
/RELATIVE
/[NO]REPLACE
/SEQUENTIAL
/[NO]TRUNCATE

input_f ile

Specifies the name of the file that is the source of records
to the output file. CONVERT reads records sequentially,
regardless of the organization of the input file. CONVERT
accepts no wildcards.

output_file

Specifies the name of the file to receive records from the
input file. The default file organization for the output
file is sequential. If the output file is not sequential,
use the /RELATIVE or /INDEXED qualifier to indicate the
organization. If the output file is to be sequential,
CONVERT can create the file; it need not exist prior to your
entering the CONVERT command. CONVERT cannot create indexed
or relative files; these must have been created prior to
your entering the CONVERT command. Refer to the

3-24

CONVERT

RSX-llM/M-PLUS RMS-11 User's Guide for additional
information. The CONVERT command does not accept wildcards.

Prompts

Input file ? input_file
Output file? output_file

Qualifiers

/[NO]APPEND

Specifies that you want RMSCNV to append records to the end
of an existing sequential file. If the output file is not
sequential, RMSCNV ignores the qualifier. You cannot use
both /APPEND and /REPLACE in the same command line.

The default is /NOAPPEND, but the action taken depends on
the presence of the /REPLACE qualifier in the command line.
If you specified /REPLACE, RMSCNV performs the replace
operation. If you did not specify /REPLACE, RMSCNV creates
the next higher version of the file.

This qualifier is the equivalent of the /AP switch in an
RMSCNV command line.

/[NO]FIXED_CONTROL

The /FIXED_CONTROL qualifier directs RMSCNV to handle
variable-with-fixed-control (VFC) format records in either
the input file or the output file. If the fixed-control
area of the input file and the output file are the same
size, RMSCNV performs a straightforward copy. See the
RMS-11 documentation supplied with your system for
information on how RMSCNV handles other combinations. If
you include this qualifier and neither file specifies VFC
records, RMSCNV terminates.

This qualifier is the equivalent of the /WF switch in an
RMSCNV command line.

The default is /NOFIXED_CONTROL. This means that if one of
the named files contains VFC records, the fixed-control area
of each record is ignored. That is, if the input file
includes VFC records and the output file does not, only the
variable portion of each record is written to the output
file. If the output file includes VFC records and the input
file does not, data is written only into the variable
portion of each output record.

3-25

CONVERT

/[NO]IDENTIFICATION

Requests that RMSCNV print its current version number and
patch level on your terminal. See the RMSCNV documentation
for more information.

This qualifier is the equivalent of the /ID switch in an
RMSCNV command line.

The default is /NOIDENTIFICATION.

/INDEXED

The /INDEXED qualifier informs RMSCNV that the output is of
indexed organization. Regardless of their organization, all
input files are read sequentially.

RMSCNV reads each record from the input file, then applies
the output file's record format, that is, key placement
within the record, to the data. If you do not specify the
/KEY qualifier with a value, the key of reference is the
primary key; otherwise, it is the key you specify.

This qualifier is the equivalent of the /FO:IDX switch in an
RMSCNV command line.

/KEY[:n]

Indicates the key that establishes the order in which
records are read sequentially from an indexed input file and
written to the output file. n can be from 0 through 9. The
default is n=O and indicates the primary key; n=l is the
first alternate key; n=9 is the ninth alternate key.

This qualifier is the equivalent of the /KR qualifier in an
RMSCNV command line.

/[NO]LOG_FILE[:filespec]

Directs RMSCNV to summarize processing in a log. If you do
not include a filespec, the log appears on your terminal.
If you name a file, that file will be created and written to
by RMSCNV. The log includes the following elements:

• The command string in RMSCNV format. This will not be
the same as DCL format.

• Copies of all error messages produced during execution.

3-26

CONVERT

• An indication of any duplicate-key problems. If the log
is appearing on the terminal, the indication consists
only of the following message:

SOME DUPLICATE RECORDS NOT WRITTEN

If the log is being written to a file, RMSCNV supplies
the indicator DUP RCD= followed by the first 72
characters of the record that could not be written.

This qualifier is the equivalent of the /SL qualifier in an
RMSCNV command line.

The default is /NOLOG_FILE, meaning that only normal error
messages appear on your terminal.

/[NO]MASS_INSERT

Directs RMSCNV to activate the RMS-11 mass insert I/O
technique and then use sequential put operations to insert
records into the output file.

This is the equivalent of the /MA qualifier in an RMSCNV
command line.

The default for
/NOMASS_INSERT.

/MERGE

nonsequential file organization is

Directs RMSCNV to copy records from the input file into the
output file. Both files must be of the same organization.

/[NO]PAD[:[#]arg]

Directs RMSCNV to pad records read from the input file to
the output file's record length before writing them to the
file. If you specify the qualifier without an argument, the
pad character is null. If you do not include the number
sign(#), the argument can be any printing ASCII character
except: the number sign, question mark (?), or
commercial-at sign (@). If you include the number sign, n
can be an octal number from 0 through 377, representing the
full ASCII character set. This enables you to use the three
excluded characters as pad characters by specifying 43 for
#, 77 for ?, and 100 for @.

3-27

CONVERT

Use this qualifier only when the output file specifies
fixed-length records.

This qualifier is the equivalent of the /PD qualifier in an
RMSCNV command line.

/RELATIVE

The /RELATIVE qualifier informs RMSCNV that the output file
is of relative organization. Regardless of their
organization, all input files are read sequentially.

The /RELATIVE qualifier is the equivalent of the /FO:REL
qualifier in an RMSCNV command line.

RMSCNV reads records from the input file and writes them
into successive record cells of the output file, beginning
with cell 1. If RMSCNV encounters a cell containing a
record, it terminates with an error message. All records
written to that point are in the output file. You should
examine the two files to determine how far the processing
went.

/[NO]REPLACE

The /REPLACE qualifier directs RMSCNV to supersede an
exlsL1ng sequential file. RMSCNV replaces a file in the
output account with the same filename, type, and version
number. You cannot use /REPLACE and /APPEND in the same
command line.

The /REPLACE qualifier is the equivalent of /SU in an RMSCNV
command line.

The default is /NOREPLACE, but the default action depends on
whether
specify
you do
version

/SEQUENTIAL

the command line includes an
/APPEND, RMSCNV performs the

not specify /APPEND, RMSCNV
of the file.

/APPEND or not. If you
append operation. If
creates the next higher

The /SEQUENTIAL qualifier informs RMSCNV that the output
file is of sequential organization. Regardless of their
organization, all input files are read sequentially. The
default output file organization for RMSCNV is sequential.

This qualifier is the equivalent of the /FO:SEQ qualifier in
an RMSCNV command line.

3-28

CONVERT

If you do not specify either the /APPEND or /REPLACE
qualifier, and the output file is sequential, the output
file need not exist before you issue the CONVERT command.

If the output file does not exist, RMSCNV creates an
file with the record attributes of the input file.
then reads records from the input file and writes
sequentially into the new output file.

output
RMSCNV

them

If the output file already exists, and the command does not
include the /APPEND qualifier, RMSCNV creates the next
higher version of the file. RMSCNV then reads records from
the input file and writes them sequentially into the new
version of the output file.

If the output file exists and you specify the PLACE
qualifier, RMSCNV reads records from the input file and
writes them sequentially into the output file, starting with
the beginning of the file.

If the output file exists and you specify the PEND
qualifier, RMSCNV reads records from the input file and
writes them into the output file, starting with the record
position following the last record already in the file.

/[NO]TRUNCATE

Directs RMSCNV to truncate records read from the input file
to the output file's record length before writing them into
the output file. The trailing bytes of the record are
truncated.

The default is /NOTRUNCATE. If you do not specify /TRUNCATE
and the input records are too long, RMSCNV terminates.

3-29

COPY

3.11 COPY

This command creates a sequential file copy of one or more
sequential files, or of records with either indexed or relative
file organization.

Syntax

COPY[/qualifier[s]] input_filespec[,s] output_filespec

qualifier

Can be one or more of the following:

/[NO]CONTIGUOUS
/REPLACE
/DATE:dd-mmm-yy
/SINCE:dd-mmm-yy
/THROUGH:dd-mmm-yy
/SINCE:dd-mmm-yy/THROUGH:dd-mmm-yy
/TODAY
/EXCLUDE:filespec
/[NO]WARNINGS
/PRESERVE_DATE
/ALLOCATION:n[.]
/NONEW_VERSION
/OVERLAY
/SHARED
/OWN

With PRO/DECnet DCL extensions, the following qualifiers are
also available:

/CONCATENATE
/DATA_TYPE
/LOG
/MACY11
/NEW_VERSION
/NO SPAN
/PRINT
/SUBMIT
/TRANSFER_MODE
/OWNER
/PROTECTION

3-30

COPY

input_f ilespec

Specifies the input file or files to be copied.

You must have READ access to a file to copy it.

Multiple filespecs, separated by commas, are accepted. If
you specify multiple input files, they will be concatenated
in a single output file in the order that you specify them.

output_filespec

Specifies a single output file to which the input file or
files is copied.

You can change the name, type, and version number of the
file when you enter this parameter. Wildcards in the place
of the name and the type leave the name and type unchanged.
If you use a wildcard in either of these fields, you must
use a wildcard in both.

COPY always creates the output file. For example,
type:

COPY FILE1.LIS FILE2.LIS

if you

and FILE2 already exists, COPY will create a new version of
the file one higher than the existing version. If FILE2
does not already exist, COPY will create a file with the
name FILE2 and extension .LIS. If you specify a version
number for the output file field, then a file of that
version number is created. If such a file already exists,
the operation fails.

Wildcards are acceptable for output files if the destination
is another directory. If you have multiple input files and
use wildcards for the output file, you create multiple
output files, each with the name and type of the
corresponding input file.

You can send copies to devices as well as to directories.

You can also use the COPY command to create multiple copies
of the same file with the same or different names.

Prompts

From? input_filespec[,s]
To? output_filespec

3-31

COPY

Qualifiers

/[NO]CONTIGUOUS

Specifies that the output file must be contiguous. If this
qualifier is not used, then only files that are already
contiguous remain contiguous when copied.

The default is /NOCONTIGUOUS.

/REPLACE

If the output file has the same name, type, and version
number as an already existing file at the destination, the
first file is deleted and the file you have sent replaces
it. The name, type and version number stay as they were.

/DATE:dd-mmm-yy

The /DATE qualifier specifies that you want the COPY command
to affect only files created by the value specified for
/DATE.

/SINCE:dd-mmm-yy

The /SINCE qualifier specifies that you want the COPY
command to affect only files created on or since the value
specified by /SINCE.

/THROUGH:dd-mmm-yy

The /THROUGH qualifier specifies that you want the COPY
command to affect only files created on or before the value
specified by /THROUGH.

/SINCE:dd-mmm-yy/THROUGH:dd-mmm-yy

The /SINCE and /THROUGH qualifiers can be combined to
specify that you want the COPY command to affect only files
created within that range.

/TODAY

The /TODAY qualifier specifies that you want the COPY
command to affect only files created on the same day as the
command is issued.

3-32

COPY

/EXCLUDE:filespec

The /EXCLUDE qualifier specifies that you don't want COPY to
affect certain files. The filespec argument to /EXCLUDE can
contain wildcards, but the filespec must contain a version
number, either explicitly or as the ''*" wildcard.

/[NO]WARNINGS

The /[NO]WARNINGS qualifier specifies that the "No such
file" error messages should not be displayed when the input
files specified do not exist.

/ALLOCATION:n[.]

The /ALLOCATION:n[.] qualifier specifies that n blocks of
contiguous space be allocated for the new copy of the file.
Unless you append the optional decimal point, the value n is
interpreted as an octal value.

/NONEW_VERSION

The /NONEW_VERSION qualifier prevents the version number
from being automatically incremented when a file is copied.
You must specify this qualifier when you copy all versions
of a particular filename and type.

/OVERLAY

The /OVERLAY qualifier causes the contents of the input file
or files to be copied into the output file. Whatever is
currently in the output file is destroyed, although the file
ID remains unchanged. The output file must exist before you
issue the command.

/PRESERVE_DATE

The /PRESERVE_DATE qualifier specifies that you want the
output file to have the same creation date as the input
file. By default, today's date is the creation date of the
output file.

/SHARED

The /SHARED qualifier specifies that you want other users to
be able to access the file while you are copying it.

3-33

/OWN

COPY

The /OWN qualifier changes the ownership of the file being
copied to the destination directory. After execution, both
directories own their respective copies of the file. If you
do not specify /OWN, the original UIC owns both copies of
the file.

Additional Qualifiers Available with PRO/DECnet

Command Qualifiers

/CONCATENATE

/LOG

The /CONCATENATE qualifier specifies that the output file
should be a single file that contains all of the input files
in the order specified. If wildcards are used in the input
file specification, the files will be concatenated in random
order.

The /LOG qualifier specifies that the names of files copied
and their sizes in blocks are to be displayed as the
operation is performed.

/PRINT

The /PRINT qualifier specifies that the file will be queued
to the line printer on the remote node for printing. The
file will not be deleted by this operation. The file's
format must be compatible with the remote system.

/SUBMIT

The /SUBMIT qualifier specifies that the output
temporary file and will be submitted to the
processor facility when copied. The file will
after it is processed at the remote node.

File Qualifiers

/DATA_TYPE

file is a
remote batch
be deleted

The /DATA_TYPE qualifier specifies how the data in the file
is interpreted. With the COPY command, the DATA_TYPE
qualifier takes either the ASCII or IMAGE argument. The
default is IMAGE. /DATA_TYPE must appear after the file
specification in the command line.

3-34

COPY

The ASCII argument transfers files in ASCII record mode and
translates the records into an appropriate format for the
remote system. You only need to use this argument when
transferring text files to remote systems with file systems
other than RMS. File transfers to VAX/VMS and PDP-11/RSX
systems, which use RMS, are more efficiently performed using
the default, IMAGE.

The IMAGE argument transfers files with their current format
and attributes. If a remote system cannot interpret that
format, an error message will be displayed. If the file is
an ASCII text file, you can recover by retrying with the
ASCII argument.

/MACY11

The /MACY11 qualifier specifies that the input or output
file on the remote TOPS-10 or TOPS-20 system is in MACY11
format. This informs the remote DECsystem to handle the
file appropriately when copying to or from the P/OS system.
/MACY11 must appear after the file specification in the
command line.

/NEW_ VERSION

The /NEW_VERSION qualifier specifies that the output files
be created with a version number higher than any existing
files of the same name in the directory. /NEW_VERSION must
appear after the file specification in the command line.

/NO SPAN

The /NOSPAN qualifier specifies that the output file be
created with records that do not span block boundaries.
Normally, only files that already have records that do not
span block boundaries remain as such when copied. /NOSPAN
must appear after the file specification in the command
line.

/TRANSFER_MODE

The /TRANSFER_MODE qualifier specifies the method of
packaging file data during a file transfer. For the COPY
command, the TRANSFER MODE qualifer takes the argument
AUTOMATIC, BLOCK, or RECORD. AUTOMATIC is the default.
/TRANSFER_MODE must appear after the file specification in
the command line.

3-35

COPY

The AUTOMATIC argument causes DCL to select either BLOCK or
RECORD after checking the file capabilities at the remote
node. If you have problems transferring files with the
AUTOMATIC argument, try specifying either BLOCK or RECORD.
The BLOCK argument trans£ers files in block mode, using
blocks of 512-byte sizes. This is more efficient than using
record mode, but should only be used with systems that
support RMS-11, such as VAX/VMS, PDP-11/RSX, or
PDP-11/RSTS/E RMS FAL.

The RECORD argument transfers a file one record at a time.
A record is a logical unit of data in a file.

/OWNER:[UIC]

The /OWNER qualifier specifies the UIC of the output file.
A UIC establishes the owner of a file. See the Tool Kit
User's Guide for a description of UIC.

/PROTECTION:code

This qualifier specifies the protection code applied to the
output file. See the description of the SET PROTECTION
command for details on the code.

3-36

CREATE

3.12 CREATE

CREATE creates a sequential file and enables you to type text
directly into the file from your terminal without using an
editor.

Syntax

CREATE filespec

filespec

Specifies the name of the file to be created.

As soon as the command is entered, the cursor moves down a
line. The file is open for input. Any text you type goes
into the file. When you have finished entering text, type a
CTRL/Z to close the file.

If you want to create an empty sequential file, simply enter
the CTRL/Z first.

If you use CTRL/U when creating a sequential file, the text
on the line is eliminated, but not the line itself. In
other words, CTRL/U leaves a blank line behind when it
deletes a line. CTRL/U, CTRL/R, and the DELETE key are the
only editing facilities available to you when creating
sequential files at the terminal.

Prompts

File? filespec

With PRO/DECnet DCL extensions, the following qualifiers are
available:

/CONTIGUOUS
/LOG
/MACY11
/NEW_ VERSION
/NO SPAN
/[NO]WARNINGS
/PRINT
/REPLACE
/PROTECTION
/OWNER
/SUBMIT

3-37

CREATE

With PRO/DECnet, the CREATE command creates a file from records
you type. In other words, when you press <DO> after entering the
CREATE command, all subsequent keystrokes are entered into a file
that you named with the CREATE command. To close and store the
file, press <CTRL/Z>.

Command Qualifiers

/LOG

The /LOG qualifier specifies that the names of files created
and their sizes in blocks are to be displayed as the
operation is performed.

/NOWARNINGS

The /NOWARNINGS qualifier specifies that the "No such file"
error messages should not be displayed when the input files
specified do not exist.

/PRINT

The /PRINT qualifier specifies that the file will be queued
to the line printer on the remote node for printing. The
file will not be deleted by this operation. The file's
format must be compatible with the remote system.

/SUBMIT

The /SUBMIT qualifier specifies that the output
temporary file and will be submitted to the
processor facility when copied. The file will
after it is processed at the remote node.

File Qualifiers

/CONTIGUOUS

file is a
remote batch

be deleted

The CONTIGUOUS qualifier specifies that the output file must
be contiguous. /CONTIGUOUS must appear after the file
specification in the command line.

/MACY11

The /MACY11 qualifier specifies that the input or output
file on the remote TOPS-10 or TOPS-20 system is in MACY11
format. This informs the remote DECsystem to handle the
file appropriately when copying to or from the P/OS system.

3-38

CREATE

/MACY11 must appear after the file specification in the
command line.

/NEW_VERSION

The /NEW_VERSION qualifier specifies that the output files
will be created with a version number higher than any
existing files of the same name in the directory.
/NEW_VERSION must appear after the file specification in the
command line.

/NOS PAN

The /NOSPAN qualifier specifies that the output file will be
created with records that do not span block boundaries.
Normally, only files that already have records that do not
span block boundaries remain as such when copied. /NOSPAN
must appear after the file specification in the command
line.

/REPLACE

With the /REPLACE qualifier, if the output file has the same
name, type, and version number as an already existing file
at the destination, the first file is deleted and the file
you have sent replaces it. The name, type, and version
number stay as they were. /REPLACE must appear after the
file specification in the command line.

/OWNER:[UIC]

This qualifier specifies the UIC
establishes the owner of a file.
Guide for a description of UIC.

/PROTECTION:code

of the file. A UIC
See the Tool Kit User's

This qualifier specifies the protection code applied to the
output file. See the description of the SET PROTECTION
command for details on the code.

3-39

CREATE/DIRECTORY

3.13 CREATE/DIRECTORY

CREATE/DIRECTORY creates a User File Directory (UFD) on a
FILES-11 volume and enters the UFD into the volume's Master File
Directory (MFD).

Syntax

CREATE/DIRECTORY [device:) [dirspec] [qua 1 if i er [s])

device:

Specifies the name of the device on which you want the
directory created. The default is SYO:. If you do not
specify a device or volume name, a directory is created on
the default volume, SYO:.

dirspec

Is the name of the directory, enclosed in square brackets,
that you want to create. You must specify at least the
dirspec parameter.

qualifier

Can be one or more of the following:

/NOWARNINGS
/OWNER_UIC:[UIC]

Prompts

Directory?

Qualifiers

/NOWARNINGS

l p 0 pe

Supresses error messages that can result from the command.

/OWNER_UIC:[UIC]

Specifies the User Identification Code (UIC) of the
directory's owner. A UIC establishes the protection status
of the directory. See the Tool Kit User's Guide for details
on UICs and file protection.

3-40

CREATE/DIRECTORY

By default, the directory is owned by the issuer of this
command. You can specify any UIC as the owner by using the
/OWNER_UIC qualifier. However, a non-privileged user cannot
always create files in a directory that is owned by another
urc.

3-41

DEASSIGN

3.14 DEASSIGN

This command deletes a logical name assignment created through
the use of the ASSIGN command or DEFINE command.

Syntax

DEASSIGN[/qualifier[s]] [logical_name]

qualifier

Can be any combination of the following:

/USER
/SESSION
/SYSTEM
/ALL

logical_name

Is the name of a unique logical name. If you created the
logical name using quote characters, you must use quote
characters in the logical name to perform the DEASSIGN.

Prompt

Logical name? logical_name

Qualifiers

By default, if you do not specify any of the qualifiers /USER,
/SESSION, or /SYSTEM, P/OS performs the operation in the session
logical name table.

/ALL

Indicates that all logical names in the specified logical
name table be deassigned.

/SESSION

Limits the search for the logical to the session logical
name table. This is the default.

3-42

DEASSIGN

/SYSTEM

/USER

Limits the search for the logical
table. You should not delete
names defined in this table. See
for a list of these logical names.

to the system logical name
any P/OS standard logical

the Tool Kit User's Guide

Limits the search for the logical to the user logical name
table.

3-43

DEBUG

3.15 DEBUG

This command executes a debugger that you have built into your
task. The command sets the T-bit in the task's Processor Status
Word (PSW). To build a debugger into your task, you must specify
the /DA qualifier on the PAB command line you use to build your
task.

Syntax

DEBUG taskname

taskname

Is the name of the task that you want to debug.

Prompt

None

3-44

DEFINE

3.16 DEFINE

This command creates a logical name and assigns an equivalence
string to the specified logical name. An equivalence name can be
a device name, another logical name, or a file specification.

To specify the logical name table where you want to enter a
logical name, use /USER, /SESSION, or /SYSTEM. If you do not
explicitly specify a logical name table, the default is /SESSION.

Syntax

DEFINE[/qualifiers] logical_name equiv_name

qualifiers

Can be one or more of the following:

/USER
/SESSION
/SYSTEM
/FINAL
/TRANSLATION_ATTRIBUTES:[(keyword[, ...])]

logical_name

Specifies the logical name string. The logical name string
can contain from 1 to 255 characters. If the logical name
contains quotation marks, enclose the string in quotation
marks and use two sets of quotation marks ("") in the places
where you want a quotation mark to appear.

Note that if you enclose a logical name string in quotation
marks the case of alphabetic characters is preserved.

equiv_name

Defines the equivalence name to be associated with the
logical name in the specified logical name table. The
equivalence name string can contain from 1 to 255
characters. If the equivalence name contains quotation
marks, enclose the string in quotation marks and use two
sets of quotation marks ("") in the places where you want a
quotation mark to appear.

Note that if you
quotation marks,
preserved.

enclose an
the case

3-45

equivalence name string
of alphabetic characters

in
is

DEFINE

Prompts

Logical Name? logical_name
Equivalence Name? equiv_name

Qualifiers

/USER

Places the logical name in the user logical name table.
Logicals created in the user logical name table are deleted
when you exit any application (including DCL).

/SESSION

Places the logical name in the session logical name table.
Session logical names are deleted when you logout of the
system. If you do not explicitly specify a logical name
table, the default is /SESSION.

/SYSTEM

Places the logical name in the system logical name table.
All system users can access the logical name.

System logical names are never deleted unless an explicit
deassign logical operation is performed.

/FINAL

Indicates that the equivalence name string should
translated iteratively; logical name translation
terminate with the current equivalence string. The
qualifier is synonymous with:

/TRANSLATION_ATTRIBUTES:TERMINAL

/TRANSLATION_ATTRIBUTES:[(keyword[, ...]))

not be
should
/FINAL

Specifies one or more attributes that modify a logical name
string. The /TRANSLATION_ATTRIBUTES qualifer is positional
and must be specified before the logical name is specified.

You can specify the following keywords for translation
attributes:

3-46

DEFINE

CONCEALED Indicates that the logical name is a concealed
device name. If you specified the CONCEALED
attribute, the logical name must be a device
name of the form ddnnn: and the equivalence
name must be of the form _ddnnn:[directory.].
The device name in the equivalence name must be
present. The [directory.] portion of the
equivalence name is optional.

TERMINAL Indicates that the equivalence name string
should not be translated iteratively; logical
name translation should terminate with the
current equivalence string.

If you specify only one keyword, you may omit the
parentheses. Only the attributes you specify are set.

Examples

$DEFINE CHARLIE: DW001:[CHARLES]

$ PRINT CHARLIE:TEST.DAT

The DEFINE command associates the logical name CHARLIE:
with the directory name [CHARLES] on the device DWOOl.
Subsequent references to the logical name CHARLIE: result
in the correspondence between the logical name CHARLIE: and
the disk and directory specified. The PRINT command queues
a copy of the file DWOOl:[CHARLES]TEST.DAT to the default
print queue.

$DEFINE CHARLIE: DW001:[CHARLES] /USER

The DEFINE command associates the logical name CHARLIE:
with the directory name [CHARLES] on the device DW001: and
makes the assignment in the user logical name table.

$ DEFINE/TRANSLATION_ATTRIBUTES:CONCEALED PD001: -
$-_DW002:[CHARLES.]

$DIRECTORY PD001:[USERFILES]

Directory PDl:[USERFILES]
28-JUN-85 11: 20

TEST.DAT 4 27-JUN-85 17:21

Total of 4./4. blocks in 1. files

The DEFINE command associates the logical name PD001:
the directory name [CHARLES] on the device

3-47

with
DW002.

DEFINE

Subsequent references to the device PD001: result in the
device and directory specified as being used as the MFD for
all file operations.

$ DEFINE/TRANSLATION_ATTRIBUTES:TERMINAL TEMP: XX001:

The DEFINE command associates the logical name TEMP: with
the device XX001. Subsequent references to the logical
TEMP: will result in the device XX001: being used without
any further translation attempts on the equivalence name
XX001:.

3-48

DELETE

3.17 DELETE

DELETE removes a file specification entry from a directory,
releases the corresponding storage space occupied by those files,
and causes any data in the corresponding file or files to be
inaccessible.

Syntax

DELETE[/qualifier[s]] filespec[,s]

qualifier

Can be one or more of the following:

/LOG
/QUERY or /CONFIRM
/DATE:dd-mmm-yy
/SINCE:dd-mmm-yy
/THROUGH:dd-mmm-yy
/SINCE:dd-mmm-yy/THROUGH:dd-mmm-yyy
/TODAY
/EXCLUDE:filespec
/[NO]WARNINGS

file spec

Specifies the file or files to be deleted. You must specify
the name, file type, and version number fields of the
filespecs you want to delete. Device and directory fields
default to your current device and directory. DELETE
accepts wildcards in any field except the device field. You
need not supply a file type to delete a file with a null
file type.

Prompts

Files(s)? filespec[,s]

Qualifiers

/LOG

Specifies that a list of the files deleted be displayed on
your terminal.

3-49

DELETE

/QUERY or /CONFIRM

Specifies that you want to decide which files should be
deleted on an individual basis. Each file that is specified
in the command is named. You may enter one of four
characters:

Y - Deletes file named and goes on to next file.
N - Does not delete file named and goes on to next

file.
G - (Go) Deletes the file and goes on to delete all

other files specified.
Q - (Quit) Does not delete the file and exits the

DELETE command. No more files are deleted.

Remember that you can specify files by default or wildcard.
If you do not specify a version number, /QUERY is the
default.

/DATE:dd-mmm-yy

The /DATE qualifier specifies that you want the DELETE
command to affect only files created by the value specified
for /DATE.

/SINCE:dd-mmm-yy

The /SINCE qualifier specifies that you want the DELETE
command to affect only files created on or since the value
specified by /SINCE.

/THROUGH:dd-mmm-yy

The /THROUGH qualifier specifies that you want the DELETE
command to affect only files created on or before the value
specified by /THROUGH.

/SINCE:dd-mmm-yy/THROUGH:dd-mmm-yy

The /SINCE and /THROUGH qualifiers can be combined to
specify that you want the DELETE command to affect only
files created within that range.

/TODAY

The /TODAY qualifier specifies that you want the DELETE
command to affect only files created on the same day as the
command is issued.

3-50

/EXCLUDE:filespec

The /EXCLUDE
command not
to /EXCLUDE
contain a
wildcard.

/[NO]WARNINGS

DELETE

qualifier specifies that you want the DELETE
to affect certain files. The filespec argument

can contain wildcards, but the filespec must
version number, either explicitly or as the "*"

The /NOWARNINGS qualifier specifies that the "No such file"
error messages should not be displayed when the input files
specified do not exist.

3-51

DELETE/DIRECTORY

3.18 DELETE/DIRECTORY

This command deletes an empty directory. An error message
appears if you attempt to delete a directory that is not empty.

Syntax

DELETE/DIRECTORY [device: J[dirspec]

device:

Is an optional device name, such as DWl: or SY:. If you do
not specify a device name, the system searches the current
default device for the directory to delete. See the Tool
Kit User's Guide for further details on device names.

dirspec

Is a directory name enclosed in square brackets. An example
is [USERFILES].

Prompts

Directory? [device:][dirspec]

3-52

DIBOL

3.19 DIBOL

This command invokes the PRO/Tool Kit DIBOL compiler to compile
DIBOL source code files.

NOTE

Please refer to the language documentation for
additional information.

Syntax

DIBOL[/qualifier[s)] filespec[,s][/qualifier[s]]

qualifier

Can be one or more of the following:

/[NO]BUILD
/[NO]CROSS_REFERENCE
/[NO]DEBUG
/[NO]LIST[:filespec]
/[NO]OBJECT[:filespec]
/[NO]OPTIMIZE
/PAGE_SIZE:number (D:system default)
/[NO]STANDARD
/[NO]SHOW
/[NO]WARNINGS

file spec

Is the name of a DIBOL source code file.

NOTE

If you want to reference a universal library
containing source code modules, use the following
format:

DIBOL[/qualifiers[s] filespec[,s][/qualifier(s] libr_spec/LIBR

libr_spec

Is the name of the universal (default) library.

3-53

DIBOL

/LIBR

Signals the DIBOL compiler that libr_spec is a universal
(default) library. You may include only one such library in
each compilation.

Prompts

File(s)? filespec[,s]

Qualifiers

/[NO]BUILD

/BUILD causes the build option to be
after the compilation phase. This
and .ODL files for direct input
Application Builder (PAB).

/[NO]CROSS_REFERENCE

invoked automatically
qualifier creates .CMD
to the Professional

The /CROSS_REFERENCE qualifier causes the compiler to
produce a list file and to add a cross reference table to
the end of the listing file.

/[NO)DEBUG

/DEBUG includes extra information for the DIBOL debugger.
The default is /NODEBUG which prevents the inclusion of this
information.

/[NO)LIST[:filespec]

/LIST causes the DIBOL to output a file with the same name
as the source listing. /LIST creates this output. You may
change the name of this output file by typing:

/LIST:new_filespec

Refer to NOTE in /[NO]OBJECT.

/[NOJOBJECT[:filespec]

/OBJECT creates an object module with the same name as the
source listing and is the default value. /OBJECT:
new_filespec creates an object file with a filename
different than the source filename. /NOOBJECT suspends the
creation of an object file. (When you list more than one
source file on the command line and you specify /OBJECT,
DIBOL creates an object file with the name of the first
source file listed.)

3-54

DEBUG

NOTE

Use of the qualifiers /NOOBJECT and /NOLIST allows
the DIBOL command to check for errors.

/PAGE_SIZE:n

The /PAGE_SIZE qualifier specifies the number of lines per
page in the listing file.

/OPTIMIZE

/OPTIMIZE causes DIBOL to optimize the object file. The
default is /NOOPTIMIZE which does not produce an optimized
object file.

/[NO]STANDARD

/STANDARD flags all occurrences of P/OS (RSX-11M-PLUS)
extensions to DIBOL-83. This is the default.

/SHOW:(arg[, ...])

Table 3-1 shows the value of arg. In the table, the letter
"D" indicates the default argument for this qualifier.

Table 3-1: Argument Values for /SHOW Qualifier

Argument

ALL
NONE

COND
NOCOND

INCLude
NO INCL

TABLes
NOTABL

SOURce
NO SOUR

Default

D

D

D

D

Description

Shows everything.
Shows only source (nothing else).

Shows non-compiled conditionals.
Does not show non-compiled conditionals.

Shows included files.
Does not show included files.

Shows symbol and label tables.
Does not show symbol and label tables.

Shows DIBOL source.
Does not show DIBOL source.

3-55

DIBOL

/[NO]WARNINGS

/WARNINGS displays (or prints if accompanied by /LIST)
warning messages produced by the DIBOL compiler; /WARNINGS
is the default value. /NOWARNINGS suppresses the display
(listing) of warning messages.

3-56

DIFFERENCES

3.20 DIFFERENCES

This command invokes the Compare (CMP) utility (refer to Chapter
5), which compares two ASCII (text) files, line by line, to
determine if parallel records (lines) are identical. After this
comparison, DIFFERENCES produces a listing of any differences
between the two files.

Syntax

DIFFERENCES(/qualifier[s]] input_filel input_file2

qualifier

Can be one or more of the following:

/CHANGE_BAR [: n]
/IGNORE:(arg[,s])

BLANK_LINES
COMMENTS
FORM FEEDS
SPACING
TRAILING_BLANKS

/LINES:n
/NONUMBERS
/OUTPUT:filespec
/SLP[:au]

input_filel

Specifies the first of two
filename must be included,
.MAC.

input_file2

Specifies the second of two
filename must be included,
.MAC.

Prompts

Filespecl?
Filespec2?

3-57

files
and

to be compared. The
the default file type is

files to be compared. The
and the default file type is

DIFFERENCES

Qualifiers

/CHANGE_BAR[:nnn]

Specifies that the output consists of a listing of infile2
with change bars applied to each line in infile2 that does
not have a corr~sponding line in infilel. The nnn argument
is the number of the ASCII character to be used for the
change bar. The default is 041, the exclamation point (!).
The following are codes for some commonly used ASCII
characters:

$

*
+

<
>
?

/IGNORE:(arg[,s])

BLANK_LINES
COMMENTS
FORM FEEDS
SPACING
TRAILING_BLANKS

041
043
044
052
053
074
076
077
074

Specifies that you want certain defaults to be ignored in
making the comparison. Without the /IGNORE qualifier, the
comparison is strictly line-by-line. If you specify only
one argument, you do not need the parentheses. If you
specify more than one argument, enclose them in parentheses
and separate them with commas (,).

The default is to include all these factors in the
comparison.

The BLANK_LINES argument specifies that blank lines are to
be excluded from comparison. The default is to include
blank lines in the comparison.

The COMMENTS argument specifies that comments, that is, text
preceded by a semicolon (;) not be included in the
comparison. Otherwise, comments are compared like all other
text.

3-58

DIFFERENCES

The FORM_FEEDS argument specifies that lines beginning with
a single form feed character (CTRL/L) are to be excluded
from the comparison. The default is to include such lines
in the comparison.

The SPACING argument specifies that any sequence of blank
and tab characters is to be interpreted as a single blank
for the comparison. This argument is useful when comparing
source files that differ only in their spacing. The output
listing includes blanks and tabs as they are found in the
input files, but the blanks and tabs are ignored. The
default is to compare sequences of blanks and tabs like any
other characters.

The TRAILING_BLANKS argument specifies that all blanks
following the last nonblank character in the line be ignored
in the comparison. The default is to compare trailing
blanks like all other characters. If you specify both
TRAILING_BLANKS and COMMENTS in your /IGNORE qualifier, any
blanks preceding a semicolon (;) are also ignored.

The DCL DIFFERENCES command does not have quite the same
defaults as CMP, the File Compare Utility, which DIFFERENCES
invokes. Specify /IGNORE:(BLANK_LINES,FORM_FEEDS) to
duplicate the CMP defaults for blank lines and form feeds.
Other CMP defaults need not be specified.

/LINES:n

Specifies that n lines must be identical before a match is
recognized. The default value for n is three identical
lines.

/[NO]NUMBERS

/NONUMBERS specifies that lines in the output file not be
preceded by line numbers. The standard output listing
automatically includes line numbers. Line numbers start
with 1 in increments of one. All lines are numbered,
including blanks.

/OUTPUT:filespec

Specifies that the output listing be written to the file
named in the qualifier. Normally, this output appears on
your terminal.

3-59

DIFFERENCES

/SLP[:au]

Specifies that the output listing take the form of an SLP
indirect command file. When you include this qualifier, the
output listing is an SLP indirect command file that makes
infilel identical to infile2. The optional au argument,
preceded by a colon, is a 1- through 8-character
alphanumeric audit trail symbol. For more information on
the Source Language Input Program (SLP), see Chapter 10.

3-60

DIRECTORY

3.21 DIRECTORY

DIRECTORY displays information for an individual file or a group
of files.

Syntax

DIRECTORY[/format-qual][/other-qual[s]] [filespec[,s]]

format-qual

Controls the appearance of the directory list and can be one
of the following:

/FULL
/BRIEF
/FREE[ddnnn:]
/SUMMARY
/ATTRIBUTES

other-qual

Modifies the list of files by creation date or exclusion and
may be one or more of the following:

/DATE:dd-mmm-yy
/SINCE:dd-mmm-yy
/THROUGH:dd-mmm-yy
/SINCE:dd-mmm-yy/THROUGH:dd-mmm-yy
/TODAY
/EXCLUDE:filespec
/OUTPUT:
/NOWARNINGS

With PRO/DECnet DCL extensions, the following qualifier is also
available:

/WIDTH:n

filespec[,s]

Specifies the file or files for which information should be
displayed. If you do not supply a filespec, the complete
default directory is displayed.

You can supply one or more filespecs, separated by commas,
to display directory information on the files you name.

3-61

DIRECTORY

You can use wildcards in place of any filespec field except
the device field.
only information on
However, if you do
is assumed. If you
wildcard.

If you do not supply a version number,
the most recent versions is displayed.
not supply a file type, a null file type

do not know the file type, use a

You can display another directory by supplying the directory
name in this field. You can also specify device names in
the form ddnnn: in this field.

If you name files in two directories, you should name files
for the default directory first. If you name files from
another device or directory first, the defaults are
canceled.

Prompts

None

Qualifiers

Qualifiers are in two groups:

1. Format qualifiers control the
directory.

appearance of the

2. Other qualifiers modify the list of files by creation
date or exclusion.

If you do not supply a qualifier from the format-qual list,
the display is in standard format, which shows: the
filename, type, and version number; the number of blocks the
file occupies; and the date and time of creation.

If you do not include any qualifier from the other-qual
list, the display includes all files that otherwise qualify.

Format Qualifiers

/BRIEF

/FULL

Specifies that the display give filenames, types, and
version numbers only.

Specifies that the complete directory entry
including file ID number, blocks used and
owning UIC, protection status of the file, in
all the information in the standard display.

3-62

be displayed,
allocated, the

addition to

DIRECTORY

/SUMMARY

Specifies that the display give only the total number of
blocks allocated and used for the specified files. If you
give no filespecs in the command, the display shows the
total blocks allocated and used for the default directory.

/FREE [ddnnn:]

Specifies that the display give the free space and number of
free file headers on the default device or a specified
device.

/ATTRIBUTES

Displays the Record Management Services (RMS-11) attributes
of a file or files. This display includes filename and
type, creation date and time, file organization, protection
status, allocation information, last access date and time,
record format, record size, primary and alternate key
definitions for indexed files, and bucket size for indexed
and relative files. This qualifier invokes the RMS-11 DSP
utility.

NOTE

This display is produced for any file you specify in
a DIRECTORY command, whether or not the file is an
RMS-11 file.

Some display information may not be meaningful for non-RMS
files.

Other Qualifiers

/DATE:dd-mmm-yy

The /DATE qualifier specifies that you want the DIRECTORY
command to affect only files created by the value specified
for /DATE.

/SINCE:dd-mmm-yy

The /SINCE qualifier specifies that you want the DIRECTORY
command to affect only files created on or since the value
specified by /SINCE.

3-63

DIRECTORY

/THROUGH:dd-mmm-yy

The /THROUGH qualifier specifies that you want the DIRECTORY
command to affect only files created on or before the value
specified by /THROUGH.

/SINCE:dd-mmm-yy/THROUGH:dd-mmm-yy

The /SINCE and /THROUGH qualifiers can be combined to
specify that you want the DIRECTORY command to affect only
files created within that range.

/TODAY

The /TODAY qualifier specifies that you want the DIRECTORY
command to affect only files created on the same day as the
command is issued.

/EXCLUDE:filespec

The /EXCLUDE
command not
to /EXCLUDE
contain a
wildcard.

qualifier specifies that you want the DIRECTORY
to affect certain files. The filespec argument

can contain wildcards, but the filespec must
version number, either explicitly or as the "*"

/OUTPUT:filespec

The OUTPUT qualifier specifies that the
DIRECTORY command be placed in a file
specification you supply.

/[NO]WARNINGS

output of the
having the file

The /NOWARNINGS qualifier specifies that the "No such file"
error messages should not be displayed when the input files
specified do not exist.

Additional Qualifiers Available with PRO/DECnet

Command Qualifiers

/WIDTH:n

The /WIDTH qualifier specifies the width of the display for
the default and /FULL format displays only. The default
value is 72. At least one field is always displayed per
line, even if that field exceeds the maximum width
specified.

3-64

DISMOUNT

3.22 DISMOUNT

This command marks the volume mounted on the specified device to
be logically off-line and disconnected from the file system.

Syntax

DISMOUNT device: [volumelabel]

device:

Is the name of the device
containing the volume is
can be in the form ddnnn:,
previously assigned to the

volume label

on which the magnetic medium
currently mounted. This argument
or it can be a logical name
device by the MOUNT command.

Is the name of the volume. If the volume currently mounted
in devname does not match the volume label you specify, the
system does not dismount the device.

Prompt

Device? device: [volumelabel]

3-65

DUMP

3.23 DUMP

DUMP displays or prints the contents of a file or volume in
ASCII, hexadecimal, octal, or decimal format. This command
invokes the File Dump (DMP) Utility. (Refer to Chapter 6.)

Syntax

DUMP[/qualifier[s]] filespec

qualifier

Can be one or more of the following:

/ASCII
/BASE_ADDRESS:n:m
/BLOCKS:n:m
/BYTE
/DECIMAL
/FILE:file-number:sequence-number
/FILE_HEADER[:[NO]FORMATTED]
/HEADER
/HEXADECIMAL
/IDENTIFICATION
/LOGICAL_BLOCK
/LONGWORD
/LOWERCASE
/NUMBER [: n]
/OCTAL
/OUTPUT:file-name
/RADIX_50
/RECORD
/WORD

filespec

Is the file specification to be displayed (dumped).

Prompts

File? filespec

Qualifiers

/ASCII

/ASCII specifies that the data should be dumped one byte at
a time in ASCII mode. This qualifier displays the full DEC
Multinational Character Set. The control characters (0-37)
are printed as a circumflex (~), followed by the alphabetic

3-66

DUMP

character corresponding to the character code plus 100. For
example, bell (code 7) is printed as AG (code 107). The
control characters from 200 (octal) through 240 (octal) are
displayed as Chr, where Chr is the control character + 100
(octal).

Lowercase characters (140-177) are printed as a percent sign
(%), followed by the corresponding uppercase character
(character code minus 40), unless the /LOWERCASE qualifier
is specified. The /ASCII and /OCTAL qualifiers are mutually
exclusive when dumping bytes.

/BASE_ADDRESS:n:m

This qualifier specifies a two-word base block address (the
initial base address is 0,0), where n is the high-order base
block address (octal), and mis the low-order base block
address (octal). The address may also be specified in
decimal by using a period after the number. All future
block numbers specified by the /BLOCKS qualifier will be
added to this value to obtain an effective block number.
This qualifier is useful for specifying block numbers that
exceed 16 bits. For example:

/BASE_ADDRESS:l:O

specifies that all future block numbers will be relative to
65536 (decimal) (200000 octal). Also, the following clears
the base address:

/BASE_ADDRESS:O:O

When the /BASE_ADDRESS appears in a command line, no blocks
are dumped. The only result of the command line is to set
the base address.

NOTE

The following pertains if you run DUMP directly as a
utility.

Once this qualifier is specified, it remains in effect until
it is used again to set a new base address. The
/BASE_ADDRESS qualifier would be the /BA:n:m qualifier
(refer to Chapter 6 for further information).

3-67

DUMP

/BLOCKS:n:m

/BYTE

Specifies the range of blocks to be dumped, where n is the
first block and m is the last block. The values of n and m
must not exceed 16 bits. In file mode only, the /BLOCKS:n:m
qualifier is not required. If the /BLOCKS:n:m qualifier is
not specified, DMP will dump all blocks of the specified
file, relative to the current base address.

If /BLOCKS:n:m is specified in file mode, it specifies the
range of virtual blocks to be dumped. If /BLOCKS:n:m is
specified as /BLOCKS:O file mode, no virtual blocks are
dumped. This is useful for dumping only the header portion
of the file (see /HEADER). The /BLOCKS:n:m qualifier and
the /RECORD qualifier are mutually exclusive.

The /BLOCKS:n:m qualifier is a required parameter in device
mode. When used in device mode, it specifies the range of
logical blocks to be dumped.

The value n represents the block number of the first block
dumped. Successive blocks are labeled with a block number
one higher than the preceding block number. The dump will
continue until the block labeled m is dumped.

Specifies that the data be dumped in octal byte format.

/DECIMAL

Specifies that the data be dumped in decimal word format.

/FILE: file-number: sequence-number

In file mode, the file number can be used instead of a
filename as a file specification for input.

/FILE_HEADER[:[NO]FORMATTED]

This qualifier is an optional parameter used in file mode.
In addition, this qualifier has two options. FORMATTED, the
default, causes a FILES-11 formatted dump of the header.
NOFORMATTED specifies an unformatted octal dump. An octal
dump occurs when DUMP is used on non-FILES-11 headers. If
specified, the /HEADER[:[NO]FORMATTED] qualifier causes the
file header as well as the specified or implied portion of
the file to be dumped.

3-68

DUMP

/HEADER

Specifies the format for data blocks that have the FILES-11
header structure. Other blocks are output as an unformatted
octal dump.

/HEXADECIMAL

Specifies that the data be dumped in hexadecimal byte
format. Note that a hexadecimal dump reads from right to
left. (See also the /LONGWORD and /WORD qualifiers.)

/IDENTIFICATION

Causes DMP's version to be identified. This qualifier may
be specified on a command line by itself at any time.

/LOGICAL_BLOCK

Requests logical block information for a file. The starting
block number and a contiguous or noncontiguous indication
for the file are displayed.

/LONGWORD

Specifies that the data be dumped in hexadecimal double-word
format.

/LOWERCASE

Specifies that the data should be dumped in lowercase
characters.

/NUMBER[:n]

Specifies a memory dump and allows control of line numbers.
Line numbers are normally reset to zero whenever a block
boundary is crossed. The /NUMBER[:n] qualifier allows lines
to be numbered sequentially for the full extent of the file,
that is, the line numbers are not reset when block
boundaries are crossed. The optional value (:n) specifies
the value of the first line number. The default is 0. The
/NUMBER[:n] qualifier is used with the output file
specification.

3-69

DUMP

/OCTAL

Specifies that the data should be dumped in octal format in
addition to other formats specified. If no format
qualifiers are specified, the default is octal. The /ASCII
qualifier and the /OCTAL qualifier are mutually exclusive
when dumping bytes.

/RADIX_50

Specifies that data be dumped in Radix-50 format words.

/RECORD

/WORD

Specifies that data be dumped a record at a time (rather
than a block at a time). The data format is determined by
setting any of these format qualifiers: /ASCII, /DECIMAL,
/HEXADECIMAL, /LONGWORD, /RADIX50, or /WORD.

The largest record that DUMP can process is 512 (decimal)
bytes.

The /RECORD qualifier and the /BLOCK qualifier are mutually
exclusive.

Specifies that the data be dumped in hexadecimal word
format.

3-70

EDIT OR EDIT/EDT

3.24 EDIT OR EDIT/EDT

EDIT starts an interactive editing session with the EDT editor to
create or modify a file.

Syntax

EDIT[/qualifier[s] J filespec

qualifier

Can be one or more of the following:

/[NO]COMMAND[:filespec]
/[NO]JOURNAL[:filespec]
/[NO]OUTPUT[:filespec]
/[NO]RECOVER
/[NO]READ_ONLY

filespec

Is the name of an existing file or the name of a file to be
created. You must specify a filename, but the file type may
be null. For example, the command:

EDIT filename

causes EDT to edit filename.;

Prompts

File? filespe

Qualifiers

/[NO]COMMAND[:filespec]

Controls whether an EDT initialization file is read by EDT
before editing begins. These files contain commands that
alter the default setup for EDT, such as custom line-mode
commands and change-mode key definitions.

The default is /COMMAND:LB:[1,2]EDTSYS.EDT. If you use this
qualifier and EDTINI.EDT or some other file you name does
not exist, EDT issues no error message and continues with
the editing session.

3-71

EDIT OR EDIT/EDT

If you do not want to use LB:[1,2JEDTSYS.EDT, use the
/NOCOMMAND qualifier.

/[NO]JOURNAL[:filespec]

Controls whether EDT creates a journal file for the editing
session. The default is to create a journal file with a
filename the same as that of the input file with the type
.JOU. You can specify a different name by including a
filespec.

The journal file consists of all editing commands and text
entered during the session. If the editing session ends
abnormally, such as through a system crash, or your
inadvertently typing three CTRL/Zs in succession, the
journal file is saved. In such a case, you invoke EDT
again, with the same command line as before plus the
/RECOVER qualifier. Your editing session is repeated and
all your editing is restored. If the editing session ends
normally, the journal file is deleted.

If you specify /NOJOURNAL, no journal file is created and no
recovery is possible.

/[NO]OUTPUT[:filespec]

If you do not specify this qualifier, the default is to
create a file of the same name and type as the input file
with a version number one higher than the input file. If
the file is new, EDT creates version number 1. You can
alter the name of the output file by including a filespec
with the /OUTPUT qualifier. Otherwise, the qualifier need
not be included.

If you specify /NOOUTPUT, you cannot exit EDT without
including a filespec in your EDT EXIT command.

/[NO]READ_ONLY

Specifies whether you want simply to read the file or to
edit it. If your command line includes /READ_ONLY, you can
use the full facilities of EDT, but you cannot exit without
including a filespec in your EDT EXIT command. Normally,
you would use the EDT QUIT command if you had specified
/READ_ONLY. The /READ_ONLY qualifier is equivalent to a
combination of /NOOUTPUT and /NOJOURNAL. You can use
/READ_ONLY to look at files to which you have no write
access.

3-72

EDIT OR EDIT/EDT

The default is /NOREAD_ONLY, which need never be specified.

/[NO]RECOVER

Specifies whether EDT reads commands from a journal file
prior to starting the editing session. With a journal file,
your editing session can be restored if interrupted by a
system crash or other problem.

The default is /NORECOVER, which need never be specified.

The /RECOVER qualifier requests EDT to open the input file
and then read EDT commands and text from the file with the
same filename as the input file and the file type .JOU. The
command line with /RECOVER added to it must be identical to
the command line that initiated the original failed editing
session. This means that if you specified an EDT
initialization file, you must specify the same file in the
/RECOVER command line. If you specified a name for the
journal file other than infile.JOU, you must include the
/JOURNAL qualifier with the appropriate filespec.

If journaling was not enabled on the original command line,
you cannot recover the editing session.

3-73

EDIT/PROSE

3.25 EDIT/PROSE

EDIT/PROSE invokes the PROSE editor from DCL.

Syntax

NOTE

This section only describes the DCL command that
accesses the PROSE editor. For further
information on PROSE you should turn to the Prose
User's Guide.

EDIT/PROSE/qualifier filespec

qualifier

/OUTPUT:filespec

filespec

Is the name of an existing input file that PROSE will edit
or a new file spec that PROSE will first create and then
edit.

Prompts

NOTE

Whenever you leave a PROSE editing session, you
cannot discard your edits from that session. If
you do not want the output file, you have to
delete it after exiting the editing session.

File? filespec

Qualifier

/OUTPUT:filespec

Causes EDIT/PROSE to name the output file with a different
filename than the input filename.

3-74

EDIT/SLP

3.26 EDIT/SLP

This command invokes the Source Language Input Program (SLP),
which is an editor designed for maintaining and updating source
files. (Refer to Chapter 10.)

Syntax

EDIT/SLP[/qualifier[s]] filespec

qualifier

Can be one or more of the following:

/[NO]AUDIT[:arg]
POSITION:n
SIZE:n

/[NO]CHECKSUM[:arg]
/[NO]LIST[:filespec]
/[NO]OUTPUT[:filespec]
/[NO]REPORT
/[NO]TAB
/[NO]TRUNCATE[:n]

file spec

Is the name of the source program to be updated by SLP.

Prompts

File? filespec

Qualifiers

/[NO]AUDIT[:(arg[s])]
POSITION:n
SIZE:n

Controls whether the output file includes an audit trail,
and optionally allows you to specify the location and size
of the audit trail. You can specify one or both of these
values. If you specify only one, you can omit the
parentheses, but the parentheses are required syntax if you
specify both POSITION and SIZE. Separate the two arguments
within the parentheses by a comma(,).

The POSITION: argument sets the starting position of the
audit trail. The value of n can be from 0 through 132,
representing the column at which the first character in the
audit trail is to appear. This value is rounded up to the

3-75

EDIT/SLP

next highest tab stop. The default is to start the audit
trail at column 80. Note that this default causes audit
trails of more than a single character to wrap around when
displayed on standard video terminals.

The SIZE: argument sets the length of the
value of n can be from 0 through 14.
audit trail of 8 characters. The audit
defined from within SLP. See Chapter 10.

/[NO]CHECKSUM[:arg]

audit trail. The
The default is an
trail itself is

Controls whether a checksum is calculated for the SLP
commands. If you specify checksum without an argument, SLP
calculates the checksum value and prints it on your
terminal. If you specify an argument, SLP calculates the
checksum and compares it to what you have specified. If the
numbers differ, a warning message is displayed, but the
execution of SLP is not interrupted.

The default is /NOCHECKSUM.

/[NO]LIST[:filespec]

The /LIST qualifier creates a listing of a file
numbers. If you do not give a filespec,
filespec is filename.LST.

with line
the default

The default is /LIST. /NOLIST suppresses creation of the
listing file.

/[NO]OUTPUT[:filespec]

Use this qualifier to change the name of the output file.
The default output filespec is the same name and type as the
input file and a version number one higher than the highest
existing version of the file. If you do not want to
override this default, you do not need this qualifier.

The /NOOUTPUT qualifier suppresses creation of an output
file.

/[NO]REPORT

Controls whether line truncations that result from audit
trails are reported. If you specify /REPORT, you receive
warning messages on your terminal and the affected lines are
marked with a question mark (?) in place of the period(.)
in the line number in the listing file.

3-76

EDIT/SLP

The default is /NOREPORT.

/[NO]TAB

Controls whether SLP replaces tabs or spaces at the end of
each record containing an audit trail. If you specify /TAB,
tabs are inserted. If you specify /NOTAB, spaces are
inserted. The default is /NOTAB.

/[NO]TRUNCATE[:arg]

The TRUNCATE qualifier requests SLP to truncate each record
in the input file when it creates the output file. This
qualifier allows you to delete an audit trail from a file
previously updated with SLP. If you specify /TRUNCATE
without a number, SLP truncates input records at the
beginning position of the audit trail. If you specify a
number, SLP truncates the records beginning at the column.
The value of n can be from 0 through 132.

The default is /NOTRUNCATE.

3-77

EXIT

3.27 EXIT

Invoking this command, or pressing the EXIT key, causes you to
exit PRO/Tool Kit.

You should not exit PRO/Tool Kit if any tasks are still active.
This includes active tasks submitted to background mode by the
SPAWN command. (Refer to Section 2.4.) You should either allow
all tasks to finish, or you should abort them.

Syntax

EXIT

Prompts

None

3-78

FIX

3.28 FIX

This command loads and locks a task into its partition.
Subsequent requests for running the task are serviced more
quickly because the task is memory-resident and does not have to
be loaded from the disk before it can run.

Fixed tasks remain physically in memory even after they exit.
Therefore, they do not have to be reloaded when a request is made
to run them. (Note that reexecuting fixed tasks is not always
practical; to reexecute, the task must initialize all impure data
and LUN assignments at run time.) Only a REMOVE command can free
the occupied memory partition.

Note the following requirements:

o You must install a task before you fix it.

o You cannot fix a task whose name is in the form ... xxx or
xxx$$$. This is because the copy of the task with that form
of name is a nonexecutable, prototype task.

o You cannot fix an active task.

o You should not fix a checkpointable task because doing so
makes the task noncheckpointable.

See also the INSTALL command with the /FIX qualifier.

Syntax

FIX taskname [/qualifier]

taskname

Is the task or region to fix in memory.

qualifier

/REGION
/READONLY_SEGMENT

Prompt

Taskname? taskname

3-79

FIX

Qualifier

/REGION

Indicates that the task to be fixed is a region, such as a
read-write common.

/READONLY_SEGMENT

Fixes only the read-only segment of a multiuser task.

3-80

FORMAT

3.29 FORMAT

This command sets up a hard disk so that that it is recognizable
as a FILES-11 volume by its controller. Once you have formatted
a disk, you can then use the INITIALIZE command to initialize it.

Normally, the P/OS installation
disk. However, to connect
Professional you must format each
command.

Syntax

FORMAT[/qualifier] device:

qualifier

/[NO]CONFIRM

device:

procedure formats
additional hard
one by invoking

the
disks

the

system
to a

FORMAT

Is the name of the device on which the magnetic medium
containing the volume is currently mounted. This argument
can be in the form ddnnn[:], or it can be a logical name
created with the ASSIGN or DEFINE command.

Prompt

Device? ice:

Qualifier

/[NO] CONFIRM

The /NOCONFIRM qualifier specifies that P/OS should not
verify that the volume is already in FILES-11 format. The
/CONFIRM qualifier asks you to verify the format request if
the volume is already in FILES-11 format. The /CONFIRM
qualifier is the default.

3-81

FORTRAN

3.30 FORTRAN

FORTRAN invokes the PRO/Tool Kit FORTRAN-77 compiler to compile
FORTRAN language source files.

NOTE

Please refer to the language documentation for
additional information.

Syntax

FORTRAN[/qualifier[s]] filespec[,s]

qualifier

Can be one or more of the following:

/[NO]CHECK
/CONTINUATIONS:n
/[NO]DEBUG
/[NO]DLINES
/IDENTIFICATION
/[NO]I4
/[NO]LIST[:filespec]
/[NO)MACHINE_CODE
/[NO]MAP
/[NO]OBJECT[:filespec]
/[NO]OPTIMIZE
/[NO]SHAREABLE
/SOURCE
/[NO]STANDARD:arg

ALL
NONE
SOURCE
SYNTAX

/[NO]TRACEBACK:arg
ALL
BLOCKS
LINES
NAMES
NONE

/WORK_FILES:n

3-82

FORTRAN

filespec

Is the name of the FORTRAN source file.

Prompts

File(s)? filespec[,s]

Qualifiers

/[NO]CHECK

The /CHECK qualifier specifies that you want the compiler to
check that all array references are within bounds.

The default is /NOCHECK.

/CONTINUATIONS:n

The /CONTINUATIONS qualifier specifies the maximum number of
continuation lines permitted in the code. The value of n
can be from 0 through 99. The default is 5.

/[NO]DEBUG

Specifies that the compiler is to provide symbol table
information for use by the PRO/TOOL KIT FORTRAN-77 symbolic
debugger. When you use the /DEBUG command qualifier, you
should also use the /NOOPTIMIZE command qualifier. /NODEBUG
is the default.

/[NO]DLINES

The /CLINES qualifier specifies that lines with a "D"
character in column 1 are to be compiled. The default is
/NODLINES, meaning these lines are treated as comment lines.
Use this feature for debugging.

/IDENTIFICATION

The /IDENTIFICATION qualifier causes the compiler to print
its identification and version number on your terminal.

/[NO]I4

The /I4 qualifier causes a two-word default allocation for
integer variables. The default is /NOI4, meaning the
compiler causes a single-word allocation for any integer
variables not given an explicit length specification.

3-83

FORTRAN

/[NO]LIST[:filespec]

Specifies whether a compiler listing
The default is /NOLIST, meaning
generated.

should be generated.
no compiler listing is

If you do not supply a file specification for this
qualifier, the listing has a filename derived from the name
of the first source file in the FORTRAN command with the
file type .LST. If you want the listing to have a different
name, supply the name as an argument to the /LIST qualifier.
If you do supply a name, the listing file appears in your
directory but is not printed on the printer.

The /LIST qualifier behaves in a different manner depending
on whether it is given as a command qualifier or a filespec
qualifier. If /LIST:LP: is used as a command qualifier,
the listing file is placed in your directory and printed on
the printer. If /LIST is used as a filespec qualifier, the
listing file appears in your directory but is not printed on
the printer. If /LIST is used as a filespec qualifier, the
listing file takes the name of that file.

NOTE

The /MACHINE_CODE, /MAP, and /SOURCE, qualifiers
all affect the contents of the compiler listing
file.

/[NO]MACHINE_CODE

The /MACHINE_CODE qualifier specifies that you
compiler listing to include binary machine
diagnostics. The default is /NOMACHINE_CODE.

want
code

the
and

/MACHINE_CODE implies /LIST. You do not need to include the
/LIST qualifier unless you want to use it to establish a
name for the listing file different from any of the
filenames included in the compilation.

The /MACHINE_CODE qualifier behaves in a different manner
depending on whether it is given as a command qualifier or a
filespec qualifier. If /MACHINE_CODE is used as a command
qualifier, the listing file is placed in your directory and
printed on the printer. If /MACHINE_CODE is used as a
filespec qualifier, the listing file appears in your
directory but is not printed on the printer. If
/MACHINE_CODE is used as a filespec qualifier, the listing
file takes the name of that file.

3-84

FORTRAN

/[NO]MAP

The /MAP qualifier specifies that you want the compiler
listing to include a storage map and diagnostics.

/MAP implies /LIST. You do not need to include the /LIST
qualifier unless you want to use it to establish a name for
the listing file different from any of the filenames
included in the compilation.

The /MAP qualifier behaves in a different manner depending
on whether it is given as a command qualifier or a filespec
qualifier. If /MAP is used as a command qualifier, the
listing file is placed in your directory and printed on the
printer. If /MAP is used as a filespec qualifier, the
listing file appears in your directory but is not printed on
the printer. If /MAP is used as a filespec qualifier, the
listing file takes the name of that file.

/[NO]OBJECT[:filespec]

Determines whether or not an object module is generated by
the compiler. The default is /OBJECT, which does create a
module. The default name of the object file created by
FORTRAN is the last-named source file with the file type
.OBJ. If you want the object file to have a different name,
supply the name as an argument to the /OBJECT qualifier.

/NOOBJECT specifies that no object module is created. You
can use the /NOOBJECT qualifier to get a compiler listing
file to check for errors without generating object code.

/[NO]OPTIMIZE

Controls whether the compiler optimizes the compiled program
to generate more efficient code.

Use /NOOPTIMIZE in conjunction with the /DEBUG qualifier to
link a P/OS FORTRAN-77 program with the debugger so that
variables always contain their updated values.

/[NO]SHAREABLE

The /SHAREABLE qualifier states that you want the compiler
to generate pure code and pure data sections as read-only.
This takes advantage of code sharing in multiuser tasks on
P/OS.

3-85

FORTRAN

/SOURCE

The /SOURCE qualifier specifies that you want the compiler
listing to include the source code.

/SOURCE implies /LIST. You do not need to include the /LIST
qualifier unless you want to use it to establish a name for
the listing file different from any of the filenames
included in the compilation.

The /SOURCE qualifier behaves in a different manner
depending on whether it is given as a command qualifier or a
filespec qualifier. If /SOURCE is used as a command
qualifier, the listing file is placed in your directory and
printed on the printer. If /SOURCE is used as a filespec
qualifier, the listing file appears in your directory but is
not printed on the printer. If /SOURCE is used as a
filespec qualifier, the listing file takes the name of that
file.

/[NO]STANDARD:arg
ALL
NONE
SOURCE
SYNTAX

The /STANDARD qualifier directs the compiler to look in your
source code for extensions to ANSI standard (X3.9-1978)
FORTRAN at the full-language level. If the compiler finds
extensions, it flags them and produces informational
diagnostics.

The ALL argument produces informational diagnostics for all
detected extensions.

The NONE argument produces no informational diagnostics.

The SOURCE argument produces informational diagnostics for
lowercase letters and tab characters in the source code.

The SYNTAX argument is the same as /STANDARD with no
argument.

The default is /NOSTANDARD.

/[NO]TRACEBACK:arg
ALL
BLOCKS
LINES
NAMES
NONE

3-86

FORTRAN

/TRACEBACK controls the amount of extra code included in the
compiled output for use by the OTS during error traceback.
This code is used in producing diagnostic information and in
identifying which statement in the FORTRAN source program
caused an error condition to be detected during execution.

The ALL argument states that error traceback information is
to be compiled for all source statements, and function and
subroutine entries.

The LINES argument is the same as ALL.

The BLOCKS argument states that traceback information is to
be compiled for subroutine and function entries and initial
statements in sequences called blocks. This is the default.

The NAMES argument states that traceback information is to
be compiled only for subroutine and function entries.

The NONE argument states that no traceback information is to
be produced.

/WORK_FILES:n

The /WORK_FILES qualifier specifies the number of temporary
on-disk files you want used during the compilation. The
argument n can range from 0 through 3; the default is 2.
Increasing the number of work files increases the maximum
possible size of your program but decreases the speed of
compilation.

3-87

HELP

3.31 HELP

HELP displays information about the commands and utilities.

Syntax

HELP[/qualifier] [topic] ...

qualifier

Can be one or more of the following:

/OUTPUT:filespec
/FILE: filespec
/filename
/LOCAL

topic ...

Are up to four optional topics, separated by spaces, for
which you want help.

Prompts

None

Qualifiers

/OUTPUT:filespec

Permits you to name an output file where the requested help
text is to be saved. The default is /OUTPUT:TI:.

/FILE:filespec

Specifies any file where help text is located. If you do
not give a complete file specification, the defaults are
LB:[1,2]filename.HLP.

/filename

Specifies that the help text begins with
LB:[1,2]filename.HLP.

/LOCAL

Specifies that the help text is in the file HELP.HLP in the
default directory on the default device.

3-88

INITIALIZE

3.32 INITIALIZE

This command deletes all existing files on a volume and imparts
the standard FILES-11 file structure. INITIALIZE can also
optionally check for bad blocks. Note that the volume must be
formatted (see the FORMAT command) prior to being initialized.

Syntax

INITIALIZE[/qualifier(s]J device: volumelabel

qualifiers

/[NO)BAD_BLOCKS
/CHECKPOINT SPACE:n
/[NO]CONFIRM

device

Is the name of the device on which the magnetic medium
containing the volume is currently mounted. This argument
can be in the form ddnnn[:], or it can be a logical name
previously assigned to the device.

volume label

is the label that names the volume after initialization. It
can be from 1 to 12 characters long.

Prompts

Device? device
Volume name? volumelabel

Qualifiers

/[NO]BAD_BLOCKS

/BAD_BLOCKS, the default, performs a check for bad blocks on
the volume you are initializing. If any bad blocks are
found, P/OS will not use them for storing information. If
you specify /NOBAD_BLOCKS, P/OS does not search for bad
blocks on the volume.

/CHECKPOINT_SPACE:n

Allows you to control the size of a system checkpoint file
on the volume being initialized.

3-89

INITIALIZE

/[NO]CONFIRM

The /NOCONFIRM qualifier specifies that P/OS should not
verify that the volume is already in FILES-11 format. The
/CONFIRM qualifier asks you to verify the initialization
request if the volume is already in FILES-11 format. The
/CONFIRM qualifier is the default.

3-90

INSTALL

3.33 INSTALL

INSTALL includes a specific task in the System Task Directory,
thus making it known to the system.

An installed task is dormant until it is requested to run by the
Executive. You can request an installed task to run through the
RUN command or through a variety of Executive directives under
program control. Examples of such directives are: RQST$
(Request), RUN$ (Run), and SPWN$ (Spawn). See the P/OS System
Reference Manual for details on the directives.

Syntax

INSTALL[/qualifier(s]] [$]filespec

qualifier

Can be one or more of the following:

/FIX
/NOREMOVE
/READONLY_COMMON
/TASK_NAME:taskname
/[NO]WRITEBACK

[$]filespec

Specifies the name of the task image file containing the
task you want to install. The default file type is .TSK.
The dollar sign ($), if present, directs the system to
search for the file in APPL$DIR. If you do not include the
/TASK_NAME qualifier, the system installs the task under a
name based on the first six characters of the filename
unless another name was assigned through the TASK= option of
the Task Builder.

Prompts

File? filespec

Qualifiers

/FIX
Loads and locks a task into memory after installing it.
P/OS can service requests for a fixed task much more quickly
because it is memory-resident and does not have to be loaded
from disk.

3-91

INSTALL

You can use the FIX command to fix a task that is already
installed. See Section 3.28.

/NOREMOVE

When the DCL application exits, P/OS will not remove tasks
or regions that have been installed with the /NOREMOVE
qualifier.

/READONLY_COMMON

Specifies that a common or region is to be installed as
read-only.

/TASK_NAME:taskname

Specifies the name by which the task is to be referenced.
The default is set at link time. This qualifier overrides
the link-time specification.

/[NO]WRITEBACK

Applies only when you install a read-write common.
qualifier controls whether or not the system writes
common back to its task image either when you remove
common from memory or when the system checkpoints
common.

This
the
the
the

If you use /WRITEBACK, then any changes made to the common
while installed are copied to the common's task image when
the common is checkpointed or you remove it.

If you specify /NOWRITEBACK, then changes made to the common
are not copied back to the image. The default (that is, if
you do not specify either), is /NOWRITEBACK.

3-92

LIBRARY

3.34 LIBRARY

LIBRARY creates and maintains user-written library files, or
libraries. Libraries can contain macro definitions, object
modules, or, in the case of universal libraries, anything.
LIBRARY invokes the Librarian Utility program (LBR). (Refer to
Chapter 7.)

Syntax

LIBRARY[/operation][/qualifier[s]] libr_spec input_file

operation

Represents a specific subcommand form of LIBRARY (refer to
each separately listed LIBRARY command).

qualifier

Refer to each separately listed LIBRARY command.

libr_spec

Specifies the name of the library. The default type is
.OLB, specifying an object module library.

input_file
Specifies input files used as input for a new library file
created with the /CREATE qualifier.

Prompts

Operation? operation

3-93

LIBRARY/COMPRESS

3.35 LIBRARY/COMPRESS

This command physically deletes modules that have been logically
deleted through the LIBRARY/DELETE command. You can rename the
resulting compressed library with this command.

Syntax

arg

LIBRARY/COMPRESS[:(arg[,s])] libr_spec [new_libr_spec]

Can be one or more of the following:

GLOBAL:n
MODULES:n
BLOCKS:n

libr_spec

Is the name of the library to be compressed.

new_libr_spec

This optional parameter specifies a name for the newly
compressed library. If you do not specify a name, the new,
compressed file has the same name as the old one. The old
file is not deleted after you create (compress) a new one.

Prompts

Library? libr_spec [new_libr_spec]

Arguments

If you are specifying more than one argument, the arguments
must be enclosed in parentheses and separated by commas. If
you are specifying only one argument, the parentheses are
not necessary.

GLOBALS:n

The GLOBALS argument specifies the number of global symbols
(entry point table entries) to allocate. The default n is
the number of global symbols allocated in the old library.
The maximum n is 4096. The value of n is always forced to
zero for macro and universal libraries.

3-94

LIBRARY/COMPRESS

MODULES:n

The MODULES argument specifies the number of entries to
allocate in the module name table. The default value is the
number of entries in the old library. The maximum number of
module names is 4096.

BLOCKS:n

The BLOCKS argument specifies the size of the library in
256-word blocks. The default size is the size of the old
library.

3-95

LIBRARY/CREATE

3.36 LIBRARY/CREATE

LIBRARY/CREATE creates a library. This command can optionally
insert one or more modules into the newly created library.

Syntax

arg

LIBRARY/CREATE[:(arg[,S])][/qualifier[s]] libr_spec
[input_file [, s]]

Can be one or more of the following:

GLOBALS:n
MODULES:n
BLOCKS:n

qualifier

Can be one or more of the following:

/[NO]GLOBALS
/MACRO
/OBJECT
/SQUEEZE
/UNIVERSAL

libr_spec

Is the name of the library to be created.

input_file

Specifies the file or files to be used as input to the new
library file. If no input files are specified, an empty
library file is created. The default file types are .OBJ
when creating object module libraries, .MAC when creating
macro libraries, and .UNI when creating universal libraries.

Prompts

Library? l b soec
Module(s)? inpu ile

3-96

LIBRARY/CREATE

Arguments

If you are specifying more than one argument, the arguments
must be enclosed in parentheses and separated by commas. If
you are specifying only a single argument, the parentheses
are not necessary.

GLOBALS:n

The GLOBALS argument specifies the number of global symbols
(entry point table entries) to allocate. The default is 512
for object libraries. The value n is always forced to 0 for
macro and universal libraries; it can range from 0 through
4096.

MODULES:n

The MODULES argument specifies the number of entries to
allocate in the module name table. The default value is
256. n can be from 0 through 4096.

BLOCKS:n

The BLOCKS argument specifies the size of the library in
256-word blocks. The default size is 100 blocks.

Qualifiers

/[NO]GLOBALS

/NOGLOBALS specifies that global symbols are not to be
included in the entry point table.

Use this qualifier if you want to
symbols in more than one module.
but is a no-op.

use the same global
/GLOBALS is the default

/SQUEEZE

The /SQUEEZE qualifier reduces
by eliminating all trailing
and comments from macro text.
file or files.

the size of macro definitions
blanks and tabs, blank lines,
You must specify an input

This qualifier has meaning for macro libraries only.

Macros that have been squeezed not only take up less room in
the macro library file, but also take up less memory.

3-97

LIBRARY/CREATE

This /SQUEEZE qualifier is the equivalent of the LBR /SZ
qualifier applied to the output library file when using the
/CR qualifier.

/MACRO

The /MACRO qualifier specifies that the library being
created is a macro library.

/OBJECT

The /OBJECT qualifier specifies that
created is an object module library.
and need not be specified.

/UNIVERSAL

the library being
This is the default

The /UNIVERSAL qualifier specifies that the library being
created is a universal library.

3-98

LIBRARY/DELETE

3.37 LIBRARY/DELETE

LIBRARY/DELETE
LIBRARY/REMOVE
library.)

deletes modules from a library. (Refer to
to remove global symbols {entry points) from a

Syntax

LIBRARY/DELETE libr_spec module[,s]

libr_spec

Is the name of the library that contains modules for
deletion.

module

Is the name of the module for deletion. (The LIBRARY/DELETE
command will delete up to 15 modules.)

Prompts

Library? lib _spec
Module(s)? module

3-99

LIBRARY/EXTRACT

3.38 LIBRARY/EXTRACT

LIBRARY/EXTRACT reads one or more modules from a library and
writes them to a specified output file. This command can extract
as many as eight modules with each execution. If you specify
more than one module to be extracted, LIBRARY/EXTRACT
concatenates those modules in the output file.

Syntax

LIBRARY/EXTRACT[/qualifier] libr_spec modules[,s]

qualifier

/OUTPUT[:filespec]

libr_spec

Is the name of the library for the extract (read) operation.

module

Specifies the modules that are to be extracted. If you do
not include a list, all modules in the library are extracted
and concatenated in the output file in alphabetical order.
You can specify up to eight modules, separated by commas.

Prompts

Library? libr_spec
Module(s)? module
To? file spec

Qualifier

/OUTPUT[:filespec]

The /OUTPUT qualifier specifies the file to which the
extracted modules or macros are to be written. If you
specify /OUTPUT without a filespec, the default is to write
the modules to your terminal. This makes sense only for
macro libraries or universal libraries containing text
modules.

If you do not include the qualifier, you will be prompted
To?, to which you are to reply with a filespec. You can
reply TI: to have the output printed on your terminal.

3-100

LIBRARY/INSERT

3.39 LIBRARY/INSERT

This command inserts modules from one or more files into a
library.

Syntax

LIBRARY/INSERT[/qualifier[s]] libr_spec input_filespec[,s]

qualifier

Can be one or more of the following:

/[NO]GLOBALS
/SELECTIVE_SEARCH
/SQUEEZE

libr_spec

Is the name of the library in which modules will be
inserted. Any number of files can be specified and each
file can contain any number of concatenated modules.

input_filespec

Is the name of the file that contains the module or modules
for insertion.

Prompts

Library?
Module(s)?

Qualifiers

/[NO]GLOBALS

libr_spec
module

/NOGLOBALS specifies that entry points for the specified
modules are not to be included in the entry point table.

Use this qualifier if you want to insert global symbols
having the same name as symbols already in the library file.
The default, /GLOBALS, does not permit this operation.

/SELECTIVE_SEARCH

Sets the selective search attribute bit in the module header
of object modules as they are inserted into an object
library. You must specify an input file or files.

3-101

LIBRARY/INSERT

Object modules with this attribute are given special
treatment by the Task Builder. Global symbols defined in
modules with the selective search attribute are not included
in the Task Builder's symbol table unless they were
previously referenced by other modules.

/SQUEEZE

Reduces the size of macro definitions by eliminating all
trailing blanks and tabs, blank lines, and comments from
macro text. You must specify an input file or files.

Macros that have been squeezed not only take up less room in
the macro library file, but also take up less memory.

This qualifier is the equivalent of the LBR /SZ qualifier
applied to the output file.

3-102

LIBRARY/LIST

3.40 LIBRARY/LIST

This command lists the name of all modules which reside in a
library. LIBRARY/LIST either displays these names on your
terminal or writes them in an output file, depending on whether
you supply a filespec or not.

Syntax

LIBRARY/LIST [:filespec][/qualifier] libr_spec

qualifier

Can be one or more of the following:

/BRIEF
/FULL
/[NO]NAMES

filespec

Is the name of the optional output file. If you do not
include a filespec as an argument to /LIST, the library is
listed on your terminal.

libr_spec

Is the name of the library that contains the modules to be
listed.

Prompts

Library? libr_spec

Qualifiers

/BRIEF

/FULL

The /BRIEF qualifier specifies that you want the list to
include only the module names. This is the default.

The /FULL qualifier requests a listing of all module names,
along with a module description including size, date of
insertion, and module-dependent information.

3-103

LIBRARY/LIST

/[NO]NAMES

The /NAMES qualifier requests
library, along with their
/NONAMES.

3-104

a list of
entry points.

modules in the
The default is

LIBRARY/REMOVE

3.41 LIBRARY/REMOVE

This command removes global symbols (entry points) from a
library. (Refer to LIBRARY/DELETE to delete object modules from
a library.)

Syntax

LIBRARY/REMOVE libr_spec global[,global[,s]]

libr_spec

Is the name of the library that contains global symbols to
be deleted.

global

Is the name of a global symbol for deletion.
specify as many as 15 global symbols.

Prompts

Library?
Symbol?

libr_spec
globals

3-105

You can

LIBRARY/REPLACE

3.42 LIBRARY/REPLACE

This command replaces a module in a library with a new module of
the same name and deletes the old module. When a match occurs on
a module name, the existing module is logically deleted and all
its entries are removed from the global symbol table.

Syntax

LIBRARY/REPLACE[/qualifier[s]] libr_spec filespec[,s]

qualifier

Can be one or more of the following:

/[NO]GLOBALS
/SELECTIVE_SEARCH
/SQUEEZE

libr_spec

Is the name of the library that contains the module for
replacement.

filespec

Is the name of the file or files that contain the new
modules. If the module to be replaced does not exist in the
library, LIBRARY performs an insert operation.

Prompts

Library?
Module(s)?

Qualifiers

/[NO)GLOBALS

libr_spec
module

/NOGLOBALS specifies that entry points for the specified
modules are not to be included in the entry point table.
The default is /GLOBALS.

/SELECTIVE_SEARCH

Sets the selective search attribute bit in the module header
of object modules as they are inserted into an object
library.

3-106

LIBRARY/REPLACE

Object modules with the selective search attribute are given
special treatment by the Task Builder. Global symbols
defined in modules with the selective search attribute are
only included in the Task Builder's symbol table if they
were previously referenced by other modules.

/SQUEEZE

Reduces the size of macro definitions by eliminating all
trailing blanks and tabs, blank lines, and comments from
macro text.

Macros that have been squeezed not only take up less room in
the macro library file, but also take up less memory in the
assembler when they are invoked.

This is the equivalent of the LBR /SZ qualifier applied to
the input file.

3-107

LINK

3.43 LINK

LINK invokes the Professional Application Builder (PAB), which
links object modules and routines from user and system libraries
to form an executable task.

Syntax

LINK[/qualifier[s]]
filespec[/file-qualifier[s))[,filespec[,s]]

qualifier

Can be one or more of the following:

/ANCILLARY_PROCESSOR[:n]
/[NO]CHECKPOINT:arg

SYSTEM
TASK

/CODE: (a rg [, s J)
EAE
FPP
PIC
POSITION INDEPENDENT

/COMPATIBLE
/[NO]CROSS_REFERENCE
/[NO]DEBUG[:filespec]
/ERROR_LIMIT:n
/[NO] EXECUTABLE[:filespec]
/FAST_MAP
/FULL_SEARCH
/[NO]HEADER
/[NO)IO_PAGE
/LONG
/MAP[:options-spec]
/[NO]MEMORY_MANAGEMENT[:n]
/OPTIONS[:options-spec]
/[NO]PRIVILEGED[:n]
/[NO]RECEIVE
/[NO]RESIDENT_OVERLAYS
/SAVE
/[NO]SEGREGATE
/SEQUENTIAL
/SHAREABLE[:arg]

COMMON
LIBRARY
TASK

3-108

LINK

/SLAVE
/SYMBOL_TABLE[:filespec]
/[NO]SYSTEM_LIBRARY_DISPLAY
/[NO]TASK[:filespec]
/TKB
/TRACE
/[NO]WARNINGS
/WIDE

filespec

Is the name of the file containing the object module.

file-qualifier

/[NO]CONCATENATE
/DEFAULT_LIBRARY
/[NO]GLOBALS
/LIBRARY
/INCLUDE:(modulel[: ... :modulen])
/SELECTIVE SEARCH
/OVERLAY DESCRIPTION

Prompts

File(s)? filespec[,s]

Qualifiers

/ANCILLARY_PROCESSOR[:n]

Identifies the task as an Ancillary Control Processor (ACP).
The parameter n specifies the base relocation register.
Acceptable values are 0, 4, or 5. The default is 5.

In TKB format, apply the /AC qualifier to the .TSK filespec.

/[NO]CHECKPOINT:arg
SYSTEM
TASK

Specifies that the task is to be (or is not to be)
checkpointable. Checkpointability of tasks is an important
part of the operating system's ability to share resources.
When a higher priority task seeks access to system memory, a
checkpointable task of lower priority is checkpointed, or
rolled out to the disk to be stored in its current state
until the higher priority task exits, whereupon the lower
priority task returns and takes up where it left off.

3-109

LINK

If you do not use the /CHECKPOINT qualifier, your task is
built noncheckpointable. The default is /NOCHECKPOINT. A
noncheckpointable task cannot be dislodged by a task of
higher priority. Therefore, you should always build your
tasks checkpointable unless you have some important reason
for not doing so.

You can specify how the checkpointing of the task is handled
through the arguments to the /CHECKPOINT qualifier. Your
task can be checkpointable to the system checkpoint file
with the SYSTEM option. This is the default.
LINK/CHECKPOINT and LINK/CHECKPOINT:SYSTEM are equivalent
commands.

Tasks built with system checkpointing cannot be checkpointed
if the system checkpoint file is full.

You can also reserve checkpoint space for the task as part
of its own task image file by using LINK/CHECKPOINT:TASK.
Such tasks are always checkpointable. (If there is no
system checkpoint file, you can only run one copy of such
tasks.)

It should be apparent that the checkpointability of a task
has an impact on the efficient operation of the entire
system as well as on the task itself. If the task is built
noncheckpointable, it can block more important tasks from
running. If it is built with task checkpointability,
mass-storage space is reserved that may never be used. If
it is built with system checkpointability, there may be no
room for it in the system checkpoint file.

In TKB format, for /CHECKPOINT:SYSTEM, apply the /CP
qualifier to the task image file. For /CHECKPOINT:TASK,
apply the /AL qualifier to the task image file. For
/NOCHECKPOINT, apply the /-CP qualifier to the task image
file.

/CODE:(arg[,s])
EAE
FPP
PIC
POSITION_INDEPENDENT

The /CODE qualifier specifies that the
relies on certain hardware elements
techniques. See the RSX-llM/M-PLUS
Builder Manual for more information.

3-110

code for the task
or employs certain

and Micro/RSX Task

LINK

The EAE argument specifies that the task uses the Extended
Arithmetic Element. In TKB format, apply the /EA qualifier
to the .TSK filespec.

The FPP argument specifies that the task uses the Floating
Point Processor. This hardware is optional and may not be
part of your system. In TKB format, apply the /FP qualifier
to the .TSK filespec.

The PIC and POSITION INDEPENDENT arguments are identical and
specify that the resident common or library being built is
position-independent. In TKB format, apply the /PI
qualifier to the .TSK or .STB filespec.

If you want to use more than one argument, enclose them in
parentheses, separated by commas.

/COMPATIBLE

Specifies that the task be built in compatibility mode.
This means that memory-resident overlay segments are aligned
on 256-word boundaries for compatibility with other
implementations of the mapping directives. Without this
qualifier, overlay segments are aligned on 32-word
boundaries.

In TKB format, apply the /CM qualifier to the .TSK filespec.

/[NO]CROSS_REFERENCE

Specifies that a listing of symbol cross-references is to be
appended to the Task Builder map file.

If you include this qualifier, you automatically include the
/MAP qualifier as well. You do not need the /MAP qualifier
unless you want to supply a name for the map file. If you
supply a name, the map file appears in your current
directory.

In TKB format, apply the /CR qualifier to the .MAP filespec.

/[NO]DEBUG[:filespec]

Specifies the inclusion of a debugging aid in the task
image. A debugging aid permits you to interrupt the running
of a task and inspect registers and other memory locations
at various stages. If you give no filespec, the default is
LB0:[1,5]0DT.OBJ, which is ODT, the On-line Debugging Tool,
a DIGITAL-supplied utility. ODT is incorporated in the task
you are building. ODT can be used only on tasks written in
the MACR0-11 Assembly Language.

3-111

LINK

See the IAS/RSX-11 ODT Reference Manual
information.

for further

If you have a user-written debugger, name the file it is in
when you use this qualifier. This file should be an object
module.

In TKB format, apply the /DA qualifier to the .TSK filespec
if you want to use ODT. If you want to use a user-written
debugger, apply the /DA qualifier to the input filespec
naming the debugger.

/ERROR_LIMIT:n

Directs the Task Builder to abort LINK after n diagnostics
errors have been produced.

In TKB format, apply the /XT:n qualifier to the .TSK
filespec.

/[NO]EXECUTABLE[:filespec]

See /[NO]TASK.

/FAST_MAP

Use this qualifier if you want P/OS to interpret IOT
instructions in your task as requests to perform fast remap
operations. When you use the /FAST_MAP qualifier to link
your task, P/OS interprets all IOT instructions as fast
remap requests. See the P/OS System Reference Manual for
details on fast remap operations.

In TKB format, apply the /FM qualifier to the .TSK filespec.

/FULL_SEARCH

Specifies that when processing modules from the default
object module library, the Task Builder should search all
co-tree overlay segments for matching definitions or
references.

Without this qualifier, unintended global references between
co-tree overlay segments are eliminated. Definitions of
global symbols from the default library are restricted in
scope to references in the main root and the current tree.

In TKB format, apply the /FU qualifier to the .TSK filespec.

3-112

/LONG

LINK

Specifies that the map file produced by the Task Builder
include additional file information on modules used in the
task build. The long map does not include file information
on modules from the system library.

If you include this qualifier, you automatically include the
/MAP qualifier as well. You do not need the /MAP qualifier
unless you want to supply a name for the map file. If you
supply a name, the map file appears in your current
directory.

In TKB format, apply the /-SH qualifier to the .MAP
filespec.

/MAP[:options-spec]

Specifies that you want to produce a memory allocation, or
map file. If you use /MAP as a command qualifier, without a
options-spec argument, the map appears in your directory;
its filename is derived from the name of the first input
file named in the command line. Its file type is .MAP.

If you use /MAP with a options-spec argument, either as a
command qualifier or a filespec qualifier, the map appears
in your directory with a filename you have given.

The following qualifiers automatically direct the Task
Builder to produce a map with special characteristics:

/CROSS_REFERENCE
/LONG
/SYSTEM_LIBRARY_DISPLAY
/WIDE

You do not need the /MAP qualifier with these qualifiers
unless you want to add a filespec argument to /MAP. These
other map-related qualifiers can be used as either command
or filespec qualifiers, but they have no affect on
filenames.

In TKB format, the /MAP qualifier corresponds to the second
position in the list of TKB output files and has the default
file type .MAP.

3-113

LINK

/[NO]HEADER

/NOHEADER sets the Task Builder STACK option to 0.
are building a shared region or a driver, you should
this qualifier. If you specify this qualifier, you
use the STACK option. The default is /HEADER.

If you
specify
cannot

In TKB format, apply the /-HD qualifier to either the .TSK
or .STB filespec and specify the STACK=O option. See
/SHAREABLE.

/[NO]IO_PAGE

/NOIO_PAGE
over 12K
qualifier
default is

indicates to the Task Builder
and purposely does not map to
is for building privileged
/IO_PAGE.

/[NO]MEMORY_MANAGEMENT[:n]

that the task is
the I/O page. This
tasks only. The

Specifies that the task is being built for a system with (or
without) memory management hardware. Use the /NOMEMORY_
MANAGEMENT qualifier when you are building a task on a
system with memory management to be run on an RSX-11M (or
RSX-11S) system without the memory management hardware. The
value n specifies the highest physical address of a task on
the target system; it can be 28 (the default) or 30. The
default is /MEMORY_MANAGEMENT.

In TKB format, apply the /-MM qualifier to the .TSK
filespec.

/SHAREABLE[:arg]
COMMON
LIBRARY
TASK

/SHAREABLE:TASK is the default value and identifies the task
as a multiuser task. Such tasks permit more than one user
to share the read-only partition of a single task. When you
specify /SHAREABLE:TASK, the Task Builder divides the task
into two regions: region 0 contains the read-write portion
of the task and region 1 contains the read-only portion of
the task. When multiuser tasks are installed, multiple
requests for the task to run cause the system to duplicate
only the read-write portion of the task for each request
after the first. The ROPAR option permits you to name the
portion in which region 1 is to reside. In TKB format,
apply the /MU qualifier to the .TSK filespec.

3-114

LINK

/SHAREABLE:COMMON informs the Task Builder that a shareable
common is being built. You should always use the /NOHEADER
qualifier with /SHAREABLE:COMMON. If you do not specify
CODE:PIC or CODE:POSITION_INDEPENDENT, TKB builds an
absolute shared common. All program sections in the common
are marked absolute. If you specify CODE:PIC or
CODE:POSITION_INDEPENDENT, all program sections in the
common are marked relocatable. In either case, the .STB
file contains all the program section names, attributes,
lengths, and symbols. The .STB file of a common built
/SHAREABLE contains all defined program sections. In TKB
format, apply the /CO qualifier to the .TSK or .STB
filespec. /SHAREABLE:TASK defaults to /SEGREGATE.

/SHAREABLE:LIBRARY informs the Task Builder that a shareable
library is being built. You should always use /NOHEADER
with /SHAREABLE:LIBRARY. TKB includes only one program
section in the .STB file. If you do not specify CODE:PIC or
CODE:POSITION_INDEPENDENT, TKB names the program section
.ABS, makes the library position-dependent, and defines all
symbols as absolute. If you specify CODE:PIC or
CODE:POSITION_INDEPENDENT, TKB gives the program section the
same name as the root segment of the library. TKB forces
this name to be the first and only declared program section
in the library. TKB declares all global symbols in the .STB
file relative to that program section. In TKB format, apply
the /LI qualifier to the .TSK or .STB filespec.

/OPTIONS[:options-spec]

Specifies one
qualifier if
options. For
RSX-11M/M-PLUS

or more Task Builder options. Use this
you need to use any of the Task Builder
full information, on options, see the

and Micro/RSX Task Builder Manual.

You can supply options for this qualifier in two ways:
supply the filespec of a file containing the options, or
specify the options themselves. If you do not include a
filespec with this qualifier, you are prompted for options.
If you want to enter multiple options, you use a comma after
each option listed. To list multiple options on individual
lines, end each line with a comma.

If you include a filespec with this qualifier, this file
should contain only the option names, comments, and the
arguments associated with the options, as shown:

UNITS=8
ASG=TT0:7:8
; COMMENTS, PRECEDED BY SEMICOLON, ALLOWED
PAR=KROBAR:50000:40000

3-115

LINK

This file should only the option statements and comments
preceded by the semicolon (;). Comments preceded by the
exclamation point(!) are not accepted in this instance. Do
not put any slashes in the file.

Note that the ABORT option is the only means of preventing a
task build once you have begun issuing commands to the Task
Builder. A CTRL/Z simply directs the Task Builder to begin
the task build based on whatever instructions you have
issued up to that point. Thus, if you want to be sure of
being able to stop a task build in this way, you must
include the /OPTIONS qualifier in the LINK command line.
This assures the availability of the ABORT option. If you
are typing the command line and make a mistake, specify the
/OPTIONS qualifier, press RETURN, and enter the ABORT=O
option. Then press RETURN and the task build aborts.

/PRIVILEGED[:n]

Indicates that task is privileged. The argument n specifies
the base relocation register. Acceptable values are 0, 4,
or 5. The default is 5.

In TKB format, apply the /PR qualifier to the .TSK filespec.

/[NO]RECEIVE

Indicates that the task may (or may not) receive messages by
means of the Executive directive SEND. /RECEIVE is the
default.

In TKB format, apply the /SE qualifier to the .TSK filespec.

/[NO]RESIDENT_OVERLAY

/SAVE

Enables (or disables) recognition of the memory-resident
overlay operator (!) in an overlay description file. The
qualifier is used with the /OVERLAY_DESCRIPTION qualifier
when the task has memory-resident overlays. The default is
/RESIDENT_OVERLAY.

In TKB format, apply the /RO qualifier to the .TSK filespec.

The /SAVE qualifier specifies that you want to retain the
indirect command file created by DCL to pass your LINK
command to TKB. If you include /SAVE in your LINK command
line, a file named ATLNK.TMP appears in your directory after
the task build completes. Since this file always has the
same name, you should give it a name related to the task it

3-116

LINK

builds, such as SHEMPBLD.CMD. Then you can issue a command
in the following form and duplicate the task build that
originally produced the command file:

>LINK @SHEMPBLD

This file is also useful for comparing LINK command syntax
with TKB syntax because it includes the full translation of
the LINK command into TKB format.

/[NO] SEGREGATE

/SEGREGATE causes the Task Builder to order program sections
alphabetically by name within access code (RO followed by
RW). If you also specify /SEQUENTIAL, TKB orders program
sections in their input order by access code.

/NOSEGREGATE is the default. TKB interleaves RO and RW
program sections. When combined with /SEQUENTIAL,
/NOSEGREGATE results in a task with program sections
allocated in input order with its RW and RO sections
interleaved. If you use /NOSEQUENTIAL and /NOSEGREGATE
together, which is the default for both, TKB orders program
sections alphabetically with RW and RO sections interleaved.

In TKB format, use the /[-]SG qualifier on the .TSK
filespec.

/SHAREABLE:TASK defaults to /SEGREGATE.

/SEQUENTIAL

Directs Task Builder to construct a task image from program
sections in the order in which they appear. Normally, the
Task Builder finds all program sections referenced in all
modules in an overlay segment and then builds the task with
those program sections in alphabetical order. Do not use
this qualifier to build tasks that rely on alphabetical
allocation of program sections, such as FORTRAN I/O handling
modules and FCS modules from SYSLIB. See also /SEGREGATE.

In TKB format, apply the /SQ qualifier to the .TSK filespec.

/SLAVE

Specifies that the task is to be slaved to a sending task.
When a slaved task successfully executes the Executive
directive Receive Data, it is given the [UIC] and TI: of
the sending task. This qualifier applies only to systems
with multiuser protection.

3-117

LINK

Slaved tasks cannot be run with a RUN command. They must be
run by the sending task.

In TKB format, apply the /SL qualifier to the .TSK filespec.

/SYMBOL_TABLE[:filespec]

Directs that a symbol table file be produced. The default
name is that of the first input file and the default type is
.STB. The options-spec parameter overrides the defaults.
This qualifier is used when building shared regions.

In TKB format, this qualifier corresponds to the third
position in the list of TKB output files, called the .STB
filespec.

/[NO]SYSTEM_LIBRARY_DISPLAY

Directs the Task Builder to produce a map that includes (or
does not include) global symbols defined or referenced by
the task. These symbols are found in LB0:[1,5]SYSLIB or in
any shared regions linked to using TKB options. This map is
usually considerably longer than the default map. The
information displayed illuminates the contribution that
SYSLIB or the shared regions make to the task.

If you include this qualifier, you include the /MAP
qualifier as well. You do not need the /MAP qualifier
unless you want to supply a name for the map file.

If you supply a name, the map file appears in your current
directory. See the RSX-llM/M-PLUS and Micro/RSX Task
Builder Manual for more information.

In ~KB format, apply the /MA qualifier to the .MAP filespec.

/TASK[:taskspec]
/EXECUTABLE[:taskspec]

Specifies a name for the task image file different from that
of the first input file plus the type .TSK. If used as a
options-spec qualifier, the task name is derived from the
name of the file to which the qualifier is attached.
/EXECUTABLE is a synonym.

In TKB format, this qualifier corresponds to the first
position in the list of TKB output files, called the .TSK
filespec.

3-118

LINK

/NOT ASK
/NOEXECUTABLE

/TKB

Specifies that LINK produce no task image file. This
qualifier is useful when you want to use some facility of
the Task Builder without building a task, to check for
unresolved symbol references or make a map, for instance.
/NOEXECUTABLE is a synonym.

In TKB format, leave the first position in the list of TKB
output filespecs blank, followed by a comma (,).

Specifies that the default Task Builder be used to build the
task. This is the default; the qualifier is included for
completeness.

You can also invoke the default Task Builder from DCL with
the command RUN $PAB. You must follow TKB format if you run
the default Task Builder in this fashion. See the
RSX-11M/M-PLUS and Micro/RSX Task Builder Manual for a
description of the TKB command format.

/TRACE

Specifies that the task is to be traceable. When you use
this qualifier, a trace trap occurs on the completion of
each instruction when the task is run.

In TKB format, apply the /TR qualifier to the .TSK filespec.

/[NO]WARNINGS

/NOWARNINGS suppresses diagnostic messages issued by the the
Task Builder. Two messages are suppressed:

n undefined symbols segment "segname"

and

Module "modulename" multiply defines P-section "psectname"

The default is /WARNINGS.

In TKB format, use the /[-]NM qualifier on the .TSK
filespec.

3-119

LINK

/[NO]WIDE

Specifies that the Task Builder map be printed in 132-column
format. The default is /NOWIDE.

If you include this qualifier, you include the /MAP
qualifier as well. You do not need the /MAP qualifier
unless you want to supply a name for the map file. If you
supply a name, the map file appears in your current
directory.

In TKB format, apply the /WI qualifier to the .MAP filespec.

Parameter Qualifiers

Any input file can have a parameter qualifier applied to it,
identifying the kind of file that it is.

/[NO]CONCATENATE

Identifies the input file as a concatenated object file;
this is the default. All modules in the file are processed
to form the task image. /NOCONCATENATE specifies that only
the first object module encountered is to be processed,
regardless of how many are present.

In TKB format, apply the /CC qualifier to an input file
containing concatenated object modules.

/LIBRARY

Identifies the file as an object module library. This
qualifier is required for any input library file and is
prohibited for any other type of file. The default file
type for object libraries is .OLB.

The Task Builder searches the library file to resolve all
undefined global symbol references from files appearing to
the left of the library file in the LINK command line. The
Task Builder then extracts any and all modules that resolve
undefined references and includes them in the task image.
See also /INCLUDE.

/INCLUDE:modulel[: ... modulen]

You can specify as many as eight module names from a library
using /INCLUDE. You must specify at least one. If you use
the optional module arguments, the Task Builder takes only
those modules from the library. The module names are
defined at assembly time.

3-120

LINK

If you want both to resolve undefined references to global
symbols and to specify modules, you must use this qualifier
twice.

In TKB format, apply the /LB qualifier to an input library
file for both /LIBRARY and /INCLUDE.

/DEFAULT_LIBRARY

Specifies that the file to which it is appended replace the
system object module library, LBO:[l,5]SYSLIB.OLB, as the
default library that is searched (in order to resolve
unresolved global references). This qualifier can be
applied to only one file; that file must be an object module
library having the file type .OLB.

In TKB format, apply the /DL qualifier to an input library
file.

/[NO]GLOBALS

Specifies that global symbols referenced and defined by the
input file are (or are not) to be included in the map output
file. The default is /GLOBALS.

In TKB format, apply the /-MA qualifier to the input file.

/SELECTIVE_SEARCH

Instructs the Task Builder to search the file only for
undefined references to global symbols. This qualifier is
most useful when building an Ancillary Control Processor or
other privileged task that maps into the Executive. If you
do not specify this qualifier, all of the Executive's global
symbol definitions are included in the task build, whether
or not the file contains undefined references to the global
symbol. The Executive contains a myriad of modules. In
these and similar circumstances, this qualifier considerably
shortens the symbol table search and improves system
performance.

If you do not use this qualifier, all global symbols from
the input file are included in the task image.

In TKB format, apply the /-SS qualifier to an input file.

3-121

LINK

/OVERLAY_DESCRIPTION

Specifies that the input file is an overlay description file
(type .ODL) that controls the linking of the task. No other
input file can be specified if you use this qualifier. The
.ODL file specifies input files to LINK.
/OVERLAY_DESCRIPTION can be either a command qualifier or a
filespec qualifier.

In TKB format, use the .ODL file as the only input file to
the right of the equal sign (=) with the /MP qualifier
applied to the .ODL filespec.

3-122

LINK/C81

3.44 LINK/C81

This section explains how you can link COBOL-81 object files to
produce a task image (.TSK file).

Syntax

LINK/C81[/qualifier[s]] filespec[,s]

LINK/COBOL[/qualifier[s]] filespec[,s]

qualifier[s]

Although the format shows them as command qualifiers, you can
append the following qualifiers to either the command or a file
specification. When you use the LINK/C81 command, the two
locations are equivalent.

/[NO]FMS
/FMS:NORESIDENT
/OTS:[NO]RESIDENT
/[NO]RMS:[NO]RESIDENT
/[NO]MAP
/[NO]DEBUG

filespec[,s]

Specifies the file or files to be linked. The default file
type is .SKL.

The LINK/C81 command links object modules indirectly through
their associated .SKL files. Therefore, if you include file
types in any file specifications, you must use .SKL rather
than .OBJ. Each .SKL file corresponds to an object module
(.OBJ file) that is included in the task image. Except for
the file type, the .SKL file and object module have
identical file specifications.

You can list any number of .SKL files as input files in any
order, separated by commas.

Prompts

File(s)? filespec[,s]

3-123

LINK/C81

Qualifiers

/OTS:[NO]RESIDENT

The /OTS:RESIDENT qualifier includes memory-resident OTS in
your task image. When you specify /RMS:RESIDENT as well as
/OTS:RESIDENT, LINK/C81 clusters these two libraries by
default. If you can take advantage of the clustering
feature, the resulting task image is smaller and program
execution speed is improved. You should use /OTS:RESIDENT,
because the Professional 300 Series only supports
memory-resident OTS and RMS.

The /OTS:NORESIDENT qualifier includes the disk-resident OTS
library in your task image.

The default is /OTS:NORESIDENT.

/[NO]RMS:[NO]RESIDENT

The /RMS:RESIDENT qualifier
shared RMS-11 memory-resident
includes input/output support
relative file organizations.

creates a reference to the
library, RMSRES. This library
for sequential, indexed, and

When you specify /OTS:RESIDENT as well as /RMS:RESIDENT,
LINK/C81 clusters these two libraries by default. If you
can take advantage of the clustering feature, the resulting
task image is smaller and program execution speed is
improved.

The /NORMS qualifier is equivalent to /RMS:NORESIDENT.

/[NO]MAP

The /MAP qualifier causes LINK/C81 to produce a Task Builder
map file with the file type .MAP. The /NOMAP qualifier
tells LINK/C81 not to produce a memory map file.

The default is /NOMAP.

/[NO]DEBUG

The /DEBUG qualifier tells LINK/C81 to include the COBOL-81
Symbolic Debugger in your task image. To use this
qualifier, you must also use the /DEBUG qualifier to the
COBOL command. The /NODEBUG qualifier tells LINK/C81 not to
include the COBOL-81 Symbolic Debugger in your task image.

3-124

LINK/C81

The default is /NODEBUG.

/[NO]FMS
/FMS:NORESIDENT

The /FMS qualifier causes LINK/C81 to include Forms
Management Services (FMS) library support in your task
image. You must use this qualifier if you call FMS routines
from your program.

The /NOFMS qualifier tells LINK/C81 not to include FMS
support.

The default is /NOFMS.

The /FMS:NORESIDENT qualifier causes LINK/C81 to include
support for a non-memory-resident FMS library in your task
image. Since no resident FMS libraries are supported under
P/OS, this qualifier is equivalent to /FMS.

For more detailed information about how to create a task
image using LINK/C81, refer to the COBOL-81 RSX-11M/M-PLUS
User's Guide.

3-125

LOAD

3.45 LOAD

The LOAD command loads a device driver in the P/OS Operating
System. Both the driver task image and symbol table file must
reside in LB:[ZZSYS]. The filenames must be xxDRV.TSK and
xxDRV.STB respectively, where "xx" is the logical device name
mnemonic.

Syntax

LOAD device_mnemonic

filespec

Is the logical device name associated with the device
driver.

Prompts

Device mnemonic? device_mnemonic

3-126

MACRO

3.46 MACRO

MACRO invokes the Professional MACR0-11 Assembler (PMA) to
assemble one or more MACR0-11 assembly language programs into a
single relocatable object module suitable for processing by the
Professional Application Builder (PAB).

Syntax

MACRO(/command-qual[s]]
filespec[/file-qual[s]][,filespec[,s]]

command-qual

Can be one or more of the following:

/[NO]CROSS_REFERENCE
/DISABLE:(arg[,S))

ABSOLUTE
BINARY
CARD_FORMAT
GLOBAL
LOCAL
LOWERCASE
REGISTER_DEFINITIONS
TRUNCATION

/ENABLE:(arg[,s])
ABSOLUTE
BINARY
CARD_FORMAT
GLOBAL
LOCAL
LOWERCASE
REGISTER_DEFINITIONS
TRUNCATION

/[NO)LIST[:filespec]
/[NO]OBJECT[:filespec]
/[NO] SHOW[:(arg[,s]))

ALL
BINARY
CALLS
COMMENTS
CONDITIONALS
CONTENTS
COUNTER
DEFINITIONS
EXPANSIONS
EXTENSIONS
LISTING_DIRECTIVES
OBJECT_BINARY
SEQUENCE_NUMBERS

3-127

/[NO]WIDE

file spec

SOURCE
SYMBOLS

MACRO

Specifies one or more input files for the MACR0-11
Assembler. These input files must contain MACR0-11 source
code. Multiple filespecs must be separated by commas.
Filespecs must include a filename. If no file type is
given, the default file type (.MAC) is applied. If the
parameter qualifier /LIBRARY is used, .MLB is the default
file type. No wildcards are accepted by MACRO.

file-qual

Can be one or more of the following:

/LIBRARY
/PASS:n

Prompts

File(s)? fil pe

Command Qualifiers

/[NO]LIST[:filespec]

Specifies whether an assembly listing should be generated.
The default is /NOLIST, meaning no assembly listing is
generated.

If you do not supply a file specification for this
qualifier, the listing has a filename derived from the name
of the last source file in the MACRO command, with the file
type .LST. If you want the listing to have a different
name, supply the name as an argument to the /LIST qualifier.
The listing file appears in your default directory.

If your command line includes the /CROSS_REFERENCE
qualifier, /LIST is implied and need not be specified.

If your command line includes listing-control arguments to
either /SHOW or /NOSHOW, /LIST is implied and need not be
specified.

The only time you need to use /LIST with /CROSS_REFERENCE or
/[NO]SHOW is when you want to give the listing file a
filespec other than the default.

3-128

MACRO

/[NO]OBJECT[:filespec]

Specifies whether an object module should be generated. The
default is /OBJECT, meaning an object module is generated.
If you do not supply a file specification, the object file
has a name derived from the name of the last source file and
the file type .OBJ. If you want the object file to have a
different name, give the name as an argument to the /OBJECT
qualifier.

You can name the object file after any of the source files
listed in the MACRO command by using /OBJECT as a filespec
qualifier. If used as a filespec qualifier, /OBJECT cannot
take a filespec argument.

The qualifier /NOOBJECT specifies that no object module is
generated. You can use this qualifier if you want to use
other facilities of the assembler, to get an assembly
listing, for instance, without creating an object module.

/[NO]CROSS_REFERENCE

Specifies whether a cross-reference listing
generated and appended to the assembly listing.
is /NOCROSS_REFERENCE.

should be
The default

The cross-reference listing locates all user-defined and
MACRO symbols that appear in the source program.

When you specify this qualifier, you are also specifying the
/LIST qualifier by implication. An assembly listing is
generated in your directory. If you want to change the name
of the listing file, you must use /LIST with a file
specification in addition to /CROSS_REFERENCE.

/ENABLE:(arg[,s])
/DISABLE:(arg[,s])

These qualifiers override the .ENABL and .DSABL assembler
directives included in the source program being assembled.
The .ENABL and .DSABL directives invoke or inhibit various
aspects of the assembly. Table 3-2 summarizes the arguments
to /ENABLE and /DISABLE and gives their MACR0-11
equivalents. There is a default setting for each of these
directives, even if you do not specify them in your code or
command line.

These qualifiers affect
example, your MACRO
/ENABLE:LOWER_CASE, the
lowercase source text to

the entire assembly. If, for
command includes the qualifier
assembler does not convert any

uppercase, regardless of any .DSABL

3-129

LC or .ENABL LC directives in the
goes for /DISABLE:LOWER_CASE.
directives are ignored.

source code.
All . ENABL or

The same
.DISABL LC

If you specify only one argument to /ENABLE or /DISABLE, you
need not include the parentheses, but if you have more than
one argument, they must be separated by commas and enclosed
in parentheses.

Table 3-2: The Enable and Disable Qualifiers

Function MACRO
Syntax

Description

Assembly Functions Disabled by Default

ABSOLUTE AMA

BINARY ABS

CARD_FOR.MAT CDR

LOCAL LSB

LOWERCASE LC

Enabling this function causes
relative mode addresses (mode 67)
to be assembled as absolute
addresses (mode 37).

Enabling this function produces
absolute binary output in FILES-11
format.

Enabling this function causes
source columns 73 and greater to
be treated as a comment.

Enabling this function permits the
disabling or enabling of a local
symbol block.

Enabling this function causes
.MACR0-11 to accept lowercase ASCII
input. The default is to convert
it to uppercase.

3-130

Function

TRUNCATION

MACRO
Syntax

FPT

MACRO

Description

Enabling this function causes
floating-point truncation. The
default is floating-point
rounding.

Assembly Functions Enabled by Default

REGISTER_
DEFINITIONS

GLOBAL

REG

GBL

/[NO]SHOW[:(arg[,s])]

Disabling this function inhibits
the normal MACR0-11 default
register definitions. The default
is:

R0=%0, R1=%1 ... SP=%6,PC=%7

Under most circumstances, you
should use these defaults.

Disabling this function causes
MACR0-11 to treat all symbol
references that are undefined at
the end of assembly pass 1 as
undefined symbols. The default is
to treat all such symbols as
global symbols.

These qualifiers override the .LIST and .NLIST assembler
directives included in the source program being assembled.
The .LIST and .NLIST directives control the content and
format of the assembly listing. Table 3-3 summarizes the
arguments to /SHOW and /NOSHOW and gives their MACR0-11
equivalents. There is a default setting for each of these
directives, even if you do not specify them in your code or
command line.

These qualifiers affect the entire assembly. If, for
example, your MACRO command includes the qualifier
/SHOW:COMMENTS, the assembly listing includes all comments,
regardless of any .NLIST COM or .LIST COM directives in the
source code. The same goes for /NOSHOW:COMMENTS. All .LIST
COM or .DISABL COM directives are ignored.

3-131

MACRO

If you specify only one argument to /SHOW or /NOSHOW, you
need not include the parentheses, but if you have more than
one argument, they must be separated by commas and enclosed
in parentheses.

/SHOW implies /LIST, but if you want the listing file to
have a name other than the default, you must still use
/LIST.

Table 3-3: The /SHOW and /NOSHOW Qualifiers

Function MACRO
Syntax

Description

Listing Functions Disabled by Default

EXPANSIONS ME

BINARY MEB

LISTING_DIRECTIVES LD

SEQUENCE_NUMBERS SEQ

COUNTER LOC

OBJECT_BINARY BIN

Enabling this function causes
MACR0-11 to include all macro
expansions in the listing.

Enabling this function causes
MACR0-11 to list only those
macro expansions that generate
binary code. This is a subset
of EXPANSIONS.

Enabling this function causes
MACR0-11 to list all listing
control directives without
arguments (these are the
listing directives that alter
the listing level count).

Disabling this function
suppresses the inclusion of
sequence numbers in the
listing. Seque~ce numbers are
replaced by tabs.

Disabling this function
suppresses the location
counter field and does not
replace it with a tab.

Disabling this function
suppresses the listing of
generated binary code and does
not replace it with a tab.

3-132

Function

EXTENSIONS

SOURCE

COMMENTS

DEFINITIONS

CALLS

CONDITIONALS

CONTENTS

SYMBOLS

MACRO
Syntax

BEX

SRC

COM

MD

MC

CND

TOC

SYM

MACRO

Description

Disabling this function
suppresses the listing of
binary extensions, that is,
all binary code that will not
fit on the first line. This is
a subset of OBJECT~BINARY.

Disabling this function
suppresses the listing of
source lines.

Disabling this function
suppresses the listing of
comments. This is a subset of
SOURCE.

Disabling this function
suppresses the listing of
macro definitions and repeat
range expansions.

Disabling this function
suppresses the listing of
macro calls and repeat range
expansions.

Disabling this function
suppresses the listing of
unsatisfied conditional
coding.

Disabling this function
suppresses the listing of
table of contents during
assembly pass 1. The full
assembly listing is still
prepared during assembly pass
2.

Disabling this function
suppresses the listing of the
symbol table resulting from
the assembly.

3-133

MACRO

/[NO]WIDE

Specifies whether you want the assembly listing in wide or
narrow format. As supplied, the default is /WIDE, also
called line printer format. /NOWIDE is sometimes called
teleprinter format.

This qualifier overrides any .LIST TTM or .NLIST TTM
directives included in your source program.

Parameter Qualifiers

/PASS:n

Specifies that the file thus qualified is only to be
assembled during the pass specified. The assembler makes
two passes; n can be either 1 or 2.

/LIBRARY

Specifies that the file thus qualified is a macro library.
The default file type is .MLB. A user macro library file
must be specified in the command line before any source
files that use the macros defined in the library. A library
may not be the last file named in the command line.
Remember that the system macro library has the type .SML.
If you are referencing this library, you must explicitly
state the type.

3-134

MAIL

3.47 MAIL

With PRO/DECnet only, the MAIL command
Mail Utility. This utility allows you
to or from other users on your system,
connected by PRO/DECnet. For a complete
Utility see the PRO/DECnet User's Guide.

Syntax

MAIL

Prompts

None

Qualifiers

None

3-135

invokes the PRO/DECnet
to send or read messages
or to another system
description of the Mail

3.48 MOUNT

This command declares a volume (and therefore the files or data
it contains) to be logically known to the system, on-line, and
available for use.

Syntax

MOUNT[/qualifier] device: [volumelabel]

qualifer

Can be any combination of the following:

/FOREIGN
/SHOW

device:

Is the device on which you want to mount the volume.

volumelabel

Is the name of the volume. If the volume name does not
match the volumelabel parameter, then DCL displays an error
message and does not mount the device.

Prompts

Device? device: [volumelabel]

Qualifiers

/FOREIGN

/SHOW

Specifies that the volume being mounted is not in standard
P/OS (FILES-11) format.

Displays the volume label after mounting the volume.

3-136

PASCAL

3.49 PASCAL

This command invokes the PRO/Tool Kit PASCAL compiler to compile
one or more PASCAL source programs.

NOTE

Please refer to the language documentation for
additional information.

Syntax

PASCAL[/qualifier[s]] filespec[,s]

qualifier

Can be one or more of the following:

/[NO]CHECK[:arg]
ALL
BOUNDS
SUBRANGE
POINTER
STACK
DIVIDE
CASE

/CODE:arg
FPP
EIS

/[NO]DEBUG:TRACE_BACK
/[NO]LIST[:filespec]
/[NO]MACHINE_CODE[:filespec]
/[NO]OBJECT[:filespec]
/[NO]STANDARD
/[NO]XRAY
/[NO]LOG

filespec

Is the name of a PASCAL source file.

Prompts

Files? filespec[,s]

3-137

PASCAL

Qualifiers

/[NO]CHECK[:arg]

The /CHECK option controls run-time checking.

Arguments:

ALL enables all values (default)
BOUNDS enables array bounds checking
CASE enables CASE statement expression checking
DIVIDE enables divide by zero checking
POINTER enables NIL pointer checking
STACK enables stack overflow checking
SUBRANGE enables subrange checking

/CODE:arg

The /CODE option controls whether the code generated by Tool
Kit PASCAL uses FPP instructions to perform floating point
operations or EIS instructions to simulate floating point
operations with subroutine calls.

Arguments:

FPP generates FPP instructions (default)
EIS generates EIS instructions

/[NO]DEBUG:TRACE_BACK

The /DEBUG option controls whether Tool Kit PASCAL generates
code that tracks the relationship between the lines in the
program source code and the current position in the
executing program. When /DEBUG is enabled, run-time error
messages indicate the line which caused the error and the
currently active procedure and function invocations.

/[NO]LIST[:filespec]

The /LIST[:filespec] option controls whether Tool Kit PASCAL
generates a program listing file. The default is /NOLIST;
thus compiler error messages appear on your terminal. If
you specify /LIST and do not supply a file specification,
the default is file.LST, where file is the name of the first
input file.

3-138

PASCAL

/[NO]MACHINE_CODE[:filespec]

The /MACHINE_CODE option controls whether Tool Kit PASCAL
generates a MACR0-11 source file containing the assembly
language code for the program. The default is
/NOMACHINE_CODE.

The default name of the object file created by PASCAL is the
last-named source file with the file type .MAC. If you want
the object file to have a different name, supply the name as
an argument to the qualifier. You can examine or assemble
this file.

Also, you must not specify the /OBJECT and /MACHINE_CODE
qualifiers together on the same command line.

/[NO]OBJECT[:filespec]

Determines whether or not an object module is generated by
the compiler. The default is /OBJECT, which does create a
module·. The default name of the object file created by
PASCAL is the last-named source file with the file type
.OBJ. If you want the object file to have a different name,
supply the name as an argument to the /OBJECT qualifier.

/NOOBJECT specifies that no object module is created. You
can use the /NOOBJECT qualifier to get a compiler listing
file to check for errors without generating object code.

You must not specify the /OBJECT and /MACHINE_CODE
qualifiers together on the same command line.

/[NO]STANDARD

The /STANDARD option flags any uses of language features not
supported by the ISO PASCAL standard. The default is
/NOSTANDARD.

/[NO]XRAY or /[NO]LOG

The /XRAY or /LOG option causes Tool Kit PASCAL to display
its progress as it compiles a program. The default is
/NOXRAY and /NOLOG.

3-139

3.50 PHONE

With PRO/DECnet only, the PHONE command invokes the PRO/DECnet
Phone Utility, which allows you to communicate with other users
on your system or another system connected to your system by
PRO/DECnet. For a complete description of the Phone Utility,
including information on the PHONE command line, see the
PRO/DECnet User's Guide.

Syntax

PHONE [phone-command]

Prompt

None

3-140

PRINT

3.51 PRINT

This command allows printing to the local printer. The current
default settings will be used to print the file(s).

Syntax

PRINT filespec[,s]

f ilespec

The name of the file(s) to print.

Prompt

File(s)? filespec[,s]

3-141

PRINT/REMOTE

3.52 PRINT/REMOTE

PRINT/REMOTE is available only with PRO/DECnet. PRINT/REMOTE
directs an existing file on a remote node to a line printer for
printing. If the file you want to print is not on that node, you
may want to use the COPY command with a /PRINT qualifier.

Syntax

PRINT/REMOTE[/qualifier[,s]] filespec[,s)

qualifier

Can be one or more of the following:

/LOG
/[NO]WARNINGS

filespec

The file specification (including node specification) for
each file to be queued for printing.

Prompt

File(s)? filespec[,s]

Qualifiers

/LOG

The /LOG qualifier specifies that the names of files printed
are to be displayed as the operation is performed.

/[NO)WARNINGS

The /NOWARNINGS qualifier specifies that the "No such file"
error messages should not be displayed when the input files
do not exist.

Example

$ PRINT/REMOTE/LOG MYFILE.DOC <DO>

3-142

PURGE

3.53 PURGE

PURGE deletes all but the latest versions of files, and releases
the storage space that the deleted files occupied.

Syntax

PURGE[/qualifier[s]] filespec[,s]

qualifier

Can be one or more of the following:

/[NO] LOG
/KEEP:n
/DATE:dd-mmm-yy
/SINCE:dd-mmm-yy
/THROUGH:dd-mmm-yy
/SINCE:dd-mmm-yy/THROUGH:dd-mmm-yy
/TODAY
/EXCLUDE:filespec
/NOWARNINGS

filespec

Is the name of the file, whose old versions are to be
deleted. You must have delete access to the file.

Prompts

File(s)? filespec[,s]

Qualifiers

/[NO]LOG

Specifies that the files deleted by PURGE be listed on your
terminal. The default is /NOLOG.

/KEEP:n

Specifies that the n latest versions of a file be retained.

If you do not use this qualifier, all versions but the most
recent of a given file are deleted. That is, the default
form of the command includes the qualifier /KEEP:l. With
the qualifier explicitly stated, all but the n highest
numbered versions are deleted. PURGE assumes that the
version numbers of files are in sequential order, for
example:

3-143

PURGE

FILE1.LIS;4 FILE1.LIS;3 FILE1.LIS;2 FILE1.LIS;l ...

and that there are no versions missing from the sequence,
for example:

FILE1.LIS;20 FILE1.LIS;15 FILE1.LIS;14

If more than one filespec is given with the /KEEP qualifier,
all but the latest n versions of all files listed are
deleted.

/DATE:dd-mmm-yy

The /DATE qualifier specifies that you want the PURGE
command to affect only files created by the value specified
for /DATE.

/SINCE:dd-mmm-yy

The /SINCE qualifier specifies that you want the PURGE
command to affect only files created on or since the value
specified by /SINCE.

/THROUGH:dd-mmm-yy

The /THROUGH qualifier specifies that you want the PURGE
command to affect only files created on or before the value
specified by /THROUGH.

/SINCE:dd-mmm-yy/THROUGH:dd-mmm-yy

The /SINCE and /THROUGH qualifiers can be combined to
specify that you want the PURGE command to affect only files
created within that range.

/TODAY

The /TODAY qualifier specifies that you want the PURGE
command to affect only files created on the same day as the
command is issued.

/EXCLUDE:filespec

The /EXCLUDE
command not
to /EXCLUDE
contain a
wildcard.

qualifier specifies that you want the PURGE
to affect certain files. The filespec argument

can contain wildcards, but the filespec must
version number, either explicitly or as the "*"

3-144

PURGE

/NOWARNINGS

The /NOWARNINGS qualifier specifies that the "No such file"
error message should not be displayed when the input files
do not exist.

3-145

REMOVE

3.54 REMOVE

This command removes the name of a task from the System Task
Directory. The task is no longer installed. REMOVE/REGION takes
the name of a region out of the Common Block Directory and the
partition list.

Syntax

REMOVE[/qualifier] taskname

qualifier

/REGION

taskname

Is the name of the task to be removed from the System Task
Directory. If you want to remove a region, specify the
/REGION qualifier.

Prompts

Taskname? taskname

Qualifier

/REGION

Specifies that you want to remove a region from the Common
Block Directory.

3-146

RENAME

3.55 RENAME

This command changes the name, type, or version number of an
existing file.

Syntax

RENAME[/qualifier[s)] old_filespec new_filespec

qualifier

Can be one or more of the following:

/DATE:dd-mmm-yy
/SINCE:dd-mmm-yy
/THROUGH:dd-mmm-yy
/SINCE:dd-mmm-yy/THROUGH:dd-mmm-yy
/TODAY
/EXCLUDE:filespec
/NOWARNINGS

With PRO/DECnet DCL extensions, the following qualifiers are also
available:

/LOG
/NEW_ VERSION

old_filespec

is the filename prior to renaming.

new_filespec

Is the desired new name of the file. If you want to specify
a new directory for the file, you can only specify a
directory that exists on the same volume. This is because
the file is not actually copied.

Prompts

Old file name? old_f ilespec
New file name? new_filespec

3-147

RENAME

Qualifiers

/DATE:dd-mmm-yy

The /DATE qualifier specifies that you want the RENAME
command to affect only files created by the value specified
for /DATE.

/SINCE:dd-mmm-yy

The /SINCE qualifier specifies that you want the RENAME
command to affect only files created on or since the value
specified by /SINCE.

/THROUGH:dd-mmm-yy

The /THROUGH qualifier specifies that you want the RENAME
command to affect only files created on or before the value
specified by /THROUGH.

/SINCE:dd-mmm-yy/THROUGH:dd-mmm-yy

The /SINCE and /THROUGH qualifiers can be combined to
specify that you want the RENAME command to affect only
files created within that range.

/TODAY

The /TODAY qualifier specifies that you want the RENAME
command to affect only files created on the same day as the
command is issued.

/EXCLUDE:filespec

The /EXCLUDE
command not
to /EXCLUDE
contain a
wildcard.

/NOWARNINGS

qualifier specifies that you want the RENAME
to affect certain files. The filespec argument

can contain wildcards, but the filespec must
version number, either explicitly or as the "*"

Specifies that the "No such file" error messages should not
be displayed when the old_filespec does not exist.

3-148

RENAME

Additional Qualifiers Available with PRO/DECnet

Command Qualifiers

/LOG

Specifies that the names of files renamed are to be
displayed as the operation is performed.

File Qualifiers

/NEW_VERSION

The NEW_VERSION qualifier specifies that the output files
will be created with a version number higher than any
existing files of the same name in the directory.
/NEW_VERSION must appear after the file specification in the
command line.

3-149

RUN uninstalled task

3.56 RUN uninstalled task

This command checks to see if the task is installed. If the task
is not installed, RUN installs the task image, runs it, and
removes the name of the task from the System Task Directory when
task execution completes. In the case when a task image is not
installed, RUN actually comprises the INSTALL, RUN, and REMOVE
commands.

Syntax

RUN[/qualifier[s]] [$] filespec

qualifier

Can be one or more of the following:

/COMMAND:"taskcommand"
/TASK_NAME:taskname

[$] filespec

Is the name of the uninstalled task image. The dollar sign
($) directs the system to search first for the file in the
PRO/Tool Kit application directory. You can display this
directory by typing SHOW LOGICAL APPL$DIR.

Prompts

Task? [$]filespec

Qualifiers

/COMMAND:"taskcommand"

use the /COMMAND qualifier to pass a command to the task you
are running. The command must be inside the "quotes" and
not more than 40 characters long. For example, the command

RUN/COMMAND:"PIP /LI" $PIP

runs PIP and then passes the /LI qualifier to it.
results in a directory listing.

This

To pass an MCR-format command (if the task will accept it),
you must precede the command with the taskname followed by a
space. For example:

RUN/COMMAND:"CMP TI:=file1.dat,file2.dat" $CMP

3-150

RUN uninstalled task

/TASK_NAME:taskname

Specifies the name under which the task is to be run. The
default is to run the task under a name derived from the
name of the terminal from which the RUN command was issued.

Task names are restricted to six Radix-50 characters. The
Radix-50 character set consists of the 26 uppercase letters,
the 10 numerals, the period (.), and dollar sign ($).

3-151

RUN installed task

3.57 RUN installed task

If the task is installed, RUN initiates its execution. You can
use RUN to initiate the execution of installed tasks on a
schedule by creating entries in the system clock ~ueue.

Syntax

RUN[/qualifier[s]] taskname

qualifier

Can be one or more of the following:

/COMMAND:"taskcommand"
/DELAY:nu
/INTERVAL:nu
/SCHEDULE:hh:mm:ss
/SYNCHRONIZE:u

taskname

Is the name of the task that RUN will execute.

Prompts

Task? taskname

Qualifiers

/COMMAND:"taskcommand"

Use the /COMMAND qualifier to pass a command to the task you
are running. The command must be inside the "quotes" and
not more than 40 characters long. For example, the command

RUN/COMMAND:"PIP /LI" $PIP

runs PIP and then passes the /LI qualifier to it.
results in a directory listing.

This

To pass an MCR-format command (if the task will accept it),
you must precede the command with the taskname followed by a
space. For example:

RUN/COMMAND:"CMP TI:=file1.dat,file2.dat" $CMP

3-152

RUN installed task

The time-oriented qualifiers to RUN create entries in the system
clock queue. The contents of the clock queue can be displayed
with the command SHOW CLOCK_QUEUE.

/DELAY:nu

Specifies that the task be run after the stated amount of
time passes. The argument nu specifies the amount of the
delay as a number of units. The value n is the number of
units and the value u is the time unit, as follows:

T - Ticks
S - Seconds
M - Minutes
H - Hours

Your system has a programmable clock. The frequency of this
clock is 64 Hz, which results in a tick length of 1/64th of
a second.

Acceptable values for these units are as follows:

T - Any positive value to a maximum of 15
32767.

s - Any positive value to a maximum of 15
32767.

M - The maximum value is 1440.

H - The maximum value is 24.

The system always waits at least one interval.
specify 0, the system treats it as a 1.

/INTERVAL:nu

bits, or

bits, or

If you

Specifies that the task is to be run at regular intervals.
The argument nu specifies the interval as a number of units
of time. The value n is the number of units and the value u
is the unit, as follows:

T - Ticks
S - Seconds
M - Minutes
H - Hours

See the /DELAY qualifier for a detailed description of these
units.

3-153

RUN installed task

/SCHEDULE:hh:mm:ss

Specifies that the task be run at a particular time of day.

/SYNCHRONIZE:u

Specifies that the execution of the task be synchronized on
the next occurrence of a particular clock unit. The value u
is the time unit, as follows:

T - Ticks
S - Seconds
M - Minutes
H - Hours

3-154

SET [DAY]TIME

3.58 SET [DAY]TIME

This command sets the current date and time.

Syntax

SET [DAY]TIME:[dd-mmm-yy] [hh:mm]

dd-mmm-yy

Specifies the date. You can enter the date in either of two
formats:

dd-mmm-yy

mn/dd/yy

Where dd is the number of the day,
the first three characters of the
the month, and yy is the number
year (relative to 1900).

mmm is
name of
of the

Where mn is the number of the month, dd is
the number of the day, and yy is the
number of the year (relative to 1900).

Regardless of the format you choose, the date is displayed
in the first format.

hh : mm [: s s]

Is the time to which the system will be set (24-hour format)
in the form 14:35.

Prompts

Time?
Date?

hh:mm
dd-mmm-yy

3-155

SET DEFAULT

3.59 SET DEFAULT

The SET DEFAULT command establishes the default directory and/or
device from the current default. You can set the default for the
directory, the device, or both.

It is possible to set default to a nonexistent device or
directory.; no error is reported when the SET DEFAULT command is
executed. However, an error is reported when you try to perform
an operation in the nonexistent directory or on the nonexistent
device.

Syntax

SET DEFAULT [device:][dirspec]

device:

Is the device name.

dirspec

is the directory name enclosed in square brackets, for
example: [MYDIR].

Prompts

Device and/or directory? [device:][dirspec]

3-156

SET DEVICE

3.60 SET DEVICE

SET DEVICE establishes certain attributes for the specified
device.

Syntax

ddnn

SET DEVICE:ddnnn:/device-attribute[s]

Specifies the device for which attributes are to be set.
When the one-line form of the command is used, the parameter
is ddnnn: preceded by a colon(:) at the end of the word
DEVICE.

device-attribute

Can be one or more of the following:

/[NO]LOWERCASE
/WIDTH:n

Prompts

Device? ddnnn:
Device attribute? qualifier

Device Attributes

/[NO]LOWERCASE

The /LOWERCASE attribute sets a terminal or line printer so
that lowercase characters are not converted to uppercase for
printing.

The /NOLOWERCASE attribute sets a terminal or line printer
so that lowercase characters are converted to uppercase for
printing. This is the default.

You can use the SET TERMINAL/LOWERCASE command to set TI:
in this fashion.

/WIDTH:n

Sets the size of a device's I/O buffer. The value of n
(octal) is the length in characters of a line on the device.

3-157

SET DEVICE

For terminals, n must be greater than 2 and not greater than
255. The terminal driver does not discard excess
characters, but puts them in a record of their own. That
is, excess characters appear one line below the line in
which they should appear.

3-158

SET HOST

3.61 SET HOST

With PRO/DECnet only, SET HOST invokes the Remote DECnet Terminal
application (available with PRO/DECnet). This allows your
Professional node to communicate with a remote host, performing
terminal operations as though it were local to the host. The
host must support terminal emulation from remote nodes.

Syntax

SET HOST node_narne

node-name

Is the name of the node to which you want to connect.

Prompts

Host? node name

Qualifiers

None

To disconnect from a VMS or RSX host computer, either log off of
the host, or press the <MAIN SCREEN> or <EXIT> key. The
preferable method is to log off the host computer.

To disconnect from a TOPS-10 or TOPS-20 host computer, log off of
the host, and then press the <MAIN SCREEN> or the <EXIT> key.

Once you have exited from the host computer, press <RESUME> to
return control to your node.

Refer to the PRO/DECnet User's Guide for information about
differences in processing during terminal emulation.

3-159

SET PRIORITY

3.62 SET PRIORITY

This command alters the priority of an active task.

Syntax

n

SET PRIORITY:n taskname

Specifies the new priority you want to assign to the task.
Priority numbers are in the range of from 1 through 250.
The value n is octal or decimal. Append a decimal point to
indicate that it is a decimal number.

taskname

Is the name of the task whose priority is to change.

Prompts

Priority number? n
Taskname? taskname

3-160

SET PROTECTION

3.63 SET PROTECTION

SET PROTECTION establishes the protection status of a file.
Protection status determines which categories of user may access
a file and what each kind of user may do to the file.

Syntax

SET PROTECTION[/qualifier[s]] filespec[,s] (code)

qualifier

Can be one or more of the following:

/DATE:dd-mmm-yy
/SINCE:dd-mmm-yy
/THROUGH:dd-mmm-yy
/SINCE:dd-mmm-yy/THROUGH:dd-mmm-yy
/TODAY
/EXCLUDE:filespec
/[NO]WARNINGS

With PRO/DECnet DCL extensions, the following qualifiers are also
available:

/OWNER[:uic]

filespec

Is the name of the file to be protected

(code)

There are four kinds of users:

SYSTEM

OWNER

GROUP

WORLD

The operating system itself,
privileged users, those with
numbers of 10 or less.

and
group

The user whose UIC the file was created
under.

All users whose group number the file was
created under.

All other users.

There are also four kinds of access to files:

3-161

READ

WRITE

EXTEND

DELETE

SET PROTECTION

The user or user's tasks can read, copy,
print, type or run the file (if it is a
task image) .

The user or user's tasks can write new
data to the file.

The user or user's tasks can increase the
amount of disk space allocated to the
file.

The user or user's tasks can delete the
file.

The system default protection code is expressed as follows:

(SYSTEM:RWED,OWNER:RWED,GROUP:RWED,WORLD:RWED)

Under this code, the system and privileged users have full
access to your files, You, as well as others with your group
number, also have full access to your files. Other
nonprivileged users can only read your files. If no other
protection is specified, all files have this protection.

If you want to protect a particular file differently from
the current system default, name in the protection code only
the user group whose access rights you want to change and
the access form you want to grant to that group. If you
want to deny all access to a group, simply name the group
and omit the colon (:) and the code for the access form.

If any of the parameters (System, Owner, Group, World) is
eliminated from the code, SET PROTECTION does not change the
value of that parameter. If the parameter is listed with no
code (SYSTEM:R,OWNER:RWED,GROUP,WORLD), SET PROTECTION
assigns no access to that parameter.

Prompts

File? filespec[,s]

Qualifiers

/DATE:dd-mmm-yy

The /DATE qualifier specifies that the SET PROTECTION
command affect only files created by the value specified for
/DATE.

3-162

SET PROTECTION

/SINCE:dd-mmm-yy

The /SINCE qualifier
command affect only
specified by /SINCE.

specifies that the SET PROTECTION
files created on or since the value

/THROUGH:dd-mmm-yy

The /THROUGH qualifier specifies that the SET PROTECTION
command affect only files created on or before the value
specified by /THROUGH.

/SINCE:dd-mmm-yy/THROUGH:dd-mmm-yy

The /SINCE and /THROUGH qualifiers combined specifies that
the SET PROTECTION command affect only files created within
the given range.

/TODAY

The /TODAY qualifier specifies that the SET PROTECTION
command affect only files created on the day the command is
issued.

/EXCLUDE:filespec

The /EXCLUDE qualifier specifies that you want the SET
PROTECTION command not to affect certain files. The
filespec argument to /EXCLUDE can contain wildcards, but the
filespec must contain a version number, either explicitly or
as the "*" wildcard.

/NOWARNINGS

This qualifier suppresses display of "No such file" error
messages when the input files specified do not exist.

Additional Qualifiers Available with PRO/DECnet

Command Qualifiers

None

File Qualifiers

/OWNER:uic

Sets the ownership of a file to the specified UIC, in the
form [ggg ,mmm].

3-163

SET PROTECTION/DEFAULT

3.64 SET PROTECTION/DEFAULT

Establishes the default protection for all files created during
the current login session. The protection for a file limits the
type of access available to other system users.

Syntax

SET PROTECTION:protection_code/DEFAULT

protection_code

Is the protection code to be given to the files created
during your current login session.

The code takes the following format:

([SYSTEM [: n l] , [OWNER [: n l] , [GROUP [: n 1] I [WORLD [: n] 1)

where:

SYSTEM Is the system level protection code.

OWNER Is the owner level protection code.

GROUP Is the group level protection code.

WORLD Is the world level protection code.

n Is the type of access that is to be allowed.

The value for n can be any or all of the following values,
order:

R Read allowed. The user may read, copy, print or
type (scroll through) the file, and if it is a
task, run it.

W Write allowed. The user (or the user's
application) can add new information to the file.

E Extend allowed. The user, or the user's tasks, can
change the amount of disk space allocated to
the file.

D Delete allowed. The user (or the u5er's
application) can delete the file.

in any

Only those categories that are specified are allowed; all others
remain protected. If you enter one of the categories, but do not

3-164

SET PROTECTION/DEFAULT

specify a value for n, no access is allowed at that level. In
addition, if a category is not entered, then access is denied for
that category. For example, SET DEFAULT PROTECTION:(OWNER:RWED)
allows only owner access to the files created.

Prompts

NOTE

Your default file protection is set
login process. You may specify a
protection that is restored during
process with Environment Services.

Protection code? protection_code

3-165

during the
default file

the login

SET PROTECTION/NODEFAULT

3.65 SET PROTECTION/NODEFAUL T

Removes, your currently defined default file protection. (See
SET PROTECTION/DEFAULT.) Any file created during the current
login session will have the file protection of:

(SYSTEM:RWED,OWNER:RWED,GROUP:RWED,WORLD:RWED)

Syntax

SET PROTECTION/NODEFAULT

Prompts

None

3-166

SET TERMINAL

3.66 SET TERMINAL

This command sets various attributes of the terminal.

Syntax

SET TERMINAL[:ttnnn:] attribute[/attribute[s]]

ttnnn

Is the number of the terminal.

attribute

Can be one or more of the following:

Group 1: Common Use

/[NO]LOWERCASE
/WIDTH:n

Group 2: Terminal Setup

/VT100
/VT102
/VT125
/VT132
/LASO
/LA210
/PC300
/[NO]TAB
/[NO]SCOPE

Group 3: Task Setup

Prompts

/[NO JECHO
/[NO]TYPEAHEAD[:n]
/[NO]EIGHT_BIT

/[NO]UPPERCASE

/VT101
/VT105
/VT131
/VT2XX
/LA100
/LQP02
/[NOJFORM_FEED
/[NO]HARDCOPY
/PAGE_LENGTH:n

/[NO] ESCAPE
/[NO]WRAP

Terminal Attribute? attribute[/attribute[s]]

You can set several attributes at once. If one of these commands
fails, all others following it in the command line also fail.

3-167

SET TERMINAL

Group 1: Common Use

The following parameters set terminal characteristics that
are regularly needed by the average terminal user.

/[NO]UPPERCASE

/UPPERCASE is the default. All
terminal appear in uppercase.
/UPPERCASE.

/[NO]LOWERCASE

characters typed
/NOLOWERCASE is the

on the
same as

Characters typed on the terminal in lowercase appear in
lowercase. Most system tasks will accept input in
lowercase. Note that some terminal escape sequences use
lowercase characters. If, for instance, the keypad commands
in EDT do not seem to be working, you may have to set the
/LOWERCASE attribute.

/WIDTH:n

The SET TERMINAL/WIDTH command sets the width of your
terminal, that is, the length of a line. The value n can
range from 0 through 132. Note that a line length of zero
means no commands can be entered on the terminal.

Group 2: Terminal Setup

The following qualifiers set hardware characteristics of
terminals. For certain common models, you can set a number
of characteristics automatically simply by identifying the
model. For other terminals, you must set these
characteristics explicitly.

Here are the models for which setup is provided:

VT100
VT102
VT125
VT132
LASO
LA210
PC300

VT101
VT105
VT131
VT2XX
LA100
LQP02

All of these are DIGITAL terminals. Those with "LA"
designations are hard-copy terminals; those with "VT" and
"PC" designations are video models.

3-168

SET TERMINAL

Setting a terminal to a particular model does not mean that
the terminal will behave like that model. It means only
that the operating system will treat the terminal as if it
were that model. This feature is intended primarily to
deceive tasks that expect a certain terminal model or to
identify a terminal as to what it is.

You can set hard-copy terminals as video terminals and you
can set video terminals as hard-copy terminals. For the
terminal user, the most noticeable difference will be in the
way the DELETE key operates. Setting terminals from
hard-copy to video may prove disruptive; setting terminals
from video to hard-copy is less likely to cause trouble.

Setting a terminal to a particular model designation
automatically sets a number of attributes for the terminal.

You can also set these attributes individually.

You can find out how your terminal is known by issuing a
SHOW TERMINAL command.

NOTE

The DCL single line editor does not honor the ECHO,
LOWER, WRAP, or WIDTH terminal attributes.

/NOHARDCOPY
/SCOPE

Sets the terminal as a video terminal.
equivalent of /NOHARDCOPY.

/HARDCOPY
/NOS COPE

/SCOPE is the

Sets the terminal as a hard-copy terminal. /NOSCOPE is the
equivalent of /HARDCOPY.

/[NO]FORMFEED

If the terminal hardware supports form feeds, the terminal
should be set /FORMFEED. If form feeds are handled by the
software providing line feeds, the terminal should be set
/NOFORMFEED.

3-169

SET TERMINAL

/[NO]TAB

If the terminal hardware supports horizontal tabs, the
terminal should be set TAB. If tabs are handled by the
software providing spaces, the terminal should be set NOTAB.

/PAGE_LENGTH:n

Defines the number of lines to a page. By convention, a
page is usually considered the number of lines to a
screenful on video terminals or the number of lines between
perforations on hard-copy terminals. This attribute sets
the length of the page.

Group 3: Task Setup

The following parameters set terminal characteristics that
may be needed by system or user tasks. Most system tasks
that require these attributes in a terminal will set the
attributes when they attach the terminal. User tasks can
also do this. This will be transparent to the user. These
parameters are included for use in cases where the task does
not do this setting.

/[NO]ECHO

Enables (or disables) echoing of characters typed on the
terminal.

/ECHO is the default. Characters typed on the terminal are
echoed on the terminal.

/NOECHO suppresses the echo.

/NOECHO changes nothing but echoing. Commands can still be
passed to the system, but the system passes no echo back.

/[NO]ESCAPE

Enables (or disables) recognition of escape sequences from a
terminal.

/NOESCAPE is the default. When you press the ESC key
(equivalent to CTRL/3 on LK201 keyboards), it is interpreted
as a line terminator (with a line feed but no carriage
return).

ESCAPE enables the recognition of escape sequences from the
terminal. When you press the ESC key, it is interpreted as
the beginning of an escape sequence. The ESC key will no
longer terminate a line.

3-170

SET TERMINAL

This is a rarely used parameter. Most tasks that recognize
escape sequences will attach the terminal so that escape
sequences are passed without the user's knowledge, usually
from the keypad.

/[NO]WRAP

Specifies that the terminal automatically wrap (or not wrap)
lines longer than its line width.

/WRAP is the default. The terminal automatically issues a
carriage return and a line feed when you type to whatever
line width the terminal is set for.

/NOWRAP overrides this feature and permits unlimited line
length.

/[NO]EIGHT_BIT

Enables (or disables) a terminal's /EIGHT_BIT attribute.

/EIGHT_BIT is the default, because the Professional 350 uses
eight bit mode to display the DEC Multinational Character
Set. /EIGHT_BIT allows the terminal to pass all eight bits
of the ASCII character. This attribute is used when your
terminal is communicating with some device that sends 8-bit
ASCII.

3-171

SHOW ASSIGNMENTS

3.67 SHOW ASSIGNMENTS

SHOW ASSIGNMENTS displays all the logical names in the logical
name table(s), or it displays the current equivalence value
assigned to a specific logical name.

Syntax

SHOW ASSIGNMENTS[/qualifier[s)] [logical_name]

qualifier

Can be any combination of the following:

/USER
/SESSION
/SYSTEM
/ALL

logical_name

Is the name of a unique logical assignment.

Prompts

None

Qualifiers

/ALL

/USER

Specifies that all logical names in the specified logical
name table(s) be displayed.

Limits the search to the user logical name table.

/SESSION

Limits the search to the session logical name table. If you
do not explicitly specify a logical name table, P/OS uses
/SESSION by default.

/SYSTEM

Limits the search to the system logical name table.

3-172

SHOW CLOCK_QUEUE

3.68 SHOW CLOCK QUEUE

SHOW CLOCK_QUEUE displays information about tasks that are
currently in the clock queue. The displayed information
comprises task names, the next time the task is scheduled to run,
and each task's reschedule interval, if any.

Syntax

SHOW CLOCK_QUEUE

Prompts

None

3-173

SHOW COMMON

3.69 SHOW COMMON

SHOW COMMON displays the names of resident commons installed in
the system, their PCB addresses, the number of attached tasks,
and the status of the common.

You can also display information about a single common;
optionally, you can include a list of tasks attached to the
common.

If you do not name a common, information about all commons in the
Common Block Directory is displayed.

Syntax

SHOW COMMON[:name][/qualifier]

qualifier

/TASK

name

Is the name of the common.

The display is in the following format:

commonname pcbaddr taskcount statusbits

In the format that SHOW COMMON displays at the terminal,
commonname is the name of the common, pcbaddr is the address of
the Partition Control Block (PCB), taskcount is the number of
tasks mapped to the common, and statusbits is a list of common
region status bits that are set. Usually, the status bits will
indicate that the common region is either fixed in memory (FXD)
or out of memory (OUT).

Table 3-4 lists the status bits and their meanings.

Prompts

None

Qualifier

/TASK

Specifies that you want a list of tasks attached to a
particular common region showing the number of times each
task is mapped to the common (mapping count).

3-174

Table 3-4:

Status Bit

CAF
-CHK
CKP
CKR
COM
DEL
DRV
FXD
LIO
LFR
NSF
OUT
PER
PIC
RON

Status Bits

SHOW COMMON

Meaning

Checkpoint allocation failure
Not checkpointable
Checkpoint in progress
Checkpoint requested
Library or common
Marked for delete on last detach
Driver common
Fixed in memory
Long I/0
Last load failed
Not shuffleable
Out of memory
Parity error
Position independent
Read-only common

3-175

SHOW DAYTIME or SHOW TIME

3. 70 SHOW DAYTIME or SHOW TIME

This command displays the current day and time.

Syntax

SHOW DAYTIME

or

SHOW TIME

Prompts

None

3-176

SHOW DEFAULT

3.71 SHOW DEFAULT

This command displays the current default device and directory
name.

Syntax

SHOW DEFAULT

Prompts

None

3-177

SHOW DEVICES

3.72 SHOW DEVICES

This command displays information concerning the devices that are
included in the system.

Syntax

SHOW DEVICES[/qualifier]

qualifier

Can be one or more of the following:

/dd [nnn]:
/WIDTH:ddnnn:

Prompts

None

If you do not include a qualifier, SHOW DEVICES displays a list
of all the devices on the system, including terminals.

Qualifiers

/dd [nnn] :

Displays information about all devices of a particular type
on the system. The value of dd: is a two-letter device
mnemonic terminated with a colon, which indicates the type
of device controller. The display shows the devices under
that type of controller by model name.

/WIDTH:ddnnn:

Displays the size of the I/O buffer (line length) for a
particular device, including a terminal.

3-178

SHOW LOGICALS

3. 73 SHOW LOGICALS

SHOW LOGICALS displays all the current logical names in the
logical name table(s), or it displays the current equivalence
value of a specific logical name.

Syntax

SHOW LOGICALS[/qualifier[s]] [logical_name]

qualifier

Can be any combination of the following:

/USER
/SESSION
/SYSTEM
/ALL

logical_name

Is the name of a unique logical assignment.

Prompts

None

Qualifiers

/ALL

/USER

Specifies that all logical names in the specified logical
name table(s) be displayed.

Limits the search to the user logical name table.

/SESSION

Limits the search to the session logical name table. If you
do not explicitly specify a logical name table, P/OS uses
/SESSION by default.

/SYSTEM

Limits the search to the system logical name table.

3-179

SHOW MEMORY

3.74 SHOW MEMORY

SHOW MEMORY invokes the Resource Monitoring Display
system utility program. This program displays in
manner the status of much of the system.

(RMD), a
a graphic

The RMD program is useful for monitoring the general activity of
the system. It is also useful for a new user to see how the
operating system operates. However, you should understand that
the graphic display is approximate and cannot be used for
critical measurement. (Refer to Chapter 8 for a description of
RMD.)

Syntax

SHOW MEMORY

Prompts

None

3-180

SHOW PROTECTION

3. 75 SHOW PROTECTION

SHOW PROTECTION displays the current file protection to be
applied to all new files created during the current session. You
can change the default protection at any time using the SET
PROTECTION/DEFAULT command.

Syntax

SHOW PROTECTION

Prompts

None

3-181

SHOW TASKS/ACTIVE

3.76 SHOW TASKS/ACTIVE

SHOW TASKS/ACTIVE displays information about active tasks in
brief and full format.

Syntax (Brief Format)

SHOW TASKS/ACTIVE[:ttnnn:][/qualifier[s]]

ttnnn:

If you name a terminal in the command, the display shows in
brief form the tasks active at that terminal. If you do not
name a terminal, the display shows in brief form the tasks
active at your terminal.

qualifier[s]

Can be one or more of the following:

/BRIEF
/ALL

Qualifiers

/BRIEF

/ALL

Specifies that you want to display information about active
tasks in the brief format. This is the default and need not
be specified.

The brief format includes task names and the originating
terminal in parentheses next to each task name.

Specifies that you want to display information about all
tasks active on the system. The default is to show
information about tasks active at your terminal only.

Syntax (Full Format)

SHOW TASKS/ACTIVE/FULL [taskname]

SHOW TASK[:taskname]/ACTIVE/FULL

3-182

SHOW TASKS/ACTIVE

taskname

If you include a task name, the display shows full
information on that task. If you do not name a task, the
display shows full information on all currently active
tasks.

Qualifiers

/FULL

Requests the full format display for the SHOW TASK/ACTIVE
command. This format includes detailed information on the
state of one or all tasks active on the system. The format
of the display is as follows:

taskname tcbaddr parname pcbaddr taskaddrlimits pri defpri
STATUS: statusflags
TI - ttnnn: IOC - iocount BOC -buffiocount EFLG -eventflags PS -pswv
PC - pcval REGS 0-6 rlval r2val r3val r4val r5val r6val

Table 3-5 describes the items that appear
If the task is not in memory, the
registers are not displayed.

in the display.
PC, PSW, and other

The display shows the state of the task at the time the
command was issued. You can display similar information
dynamically (in real time) for a single task with the
/DYNAMIC qualifier, as explained in Section 3.78.

Table 3-5: Display for SHOW TASKS/ACTIVE

Item Description

tcbaddr

parname

pcbaddr

taskaddrl imi ts

pri

The physical address of the Task Control
Block (TCB) .

The name of the task's partition.

The physical address of
Control Block (PCB).

the Partition

The base and top of the task's dynamic
subpartition as physical addresses.

The priority at which the task is actually
running.

3-183

defpri

STATUS

TI

IOC

BIO

SHOW TASKS/ACTIVE

The default priority at which the task was
built or installed to run.

The task's status flags. These are
identified in Table 3-6.

The initiating terminal.

The decimal I/O count for the task.

The decimal count of I/0 buffered by the
terminal driver and Executive.

EFLG Local event flags.

pswval The Processor Status Word.

pcval The Program Counter.

REGS The contents of the task's other registers.
If the task was spawned by another task, the
name of the parent task is also displayed.

Table 3-6: Task Status Flags

Status TCB
Flag Flag

ABO T2.ABO
ACP T3.ACP
AST T2.AST
BLK TS.STP
CAF T2.CAF
CAL T3.CAP

-CHK TS.CHK
CIP TS.CIP
CKD TS.CKD
CKP TS.CKP
CKR TS.CKR
CLI T3.CLI
DST T2.DST

-EXE TS.EXE
FXD T2.FXD
GFL T3.GFL

Meaning

Being aborted
Ancillary Control Processor
AST state
Blocked externally by CLI command
Dynamic checkpointing allocation failure
Checkpoint space allocated in task image
Not checkpointable
Blocked for checkpoint in progress
Checkpointing disabled
Checkpointed
Checkpoint request pending
Command Line Interpreter
ASTs disabled
Not executing
Fixed in memory
Task has own group global event flags locked

3-184

Status
Flag

-PMD
OUT
PRV
RDN
REM
REX
ROV
RST
SEF
SLV
SPN
SPNA
STP
STPA
sws
WFR
WFRA
DSP
LDD
MUT
PRO
PRV
SNC

TCB
Flag

T3.PMD
TS.OUT
T3.PRV
T3.RDN
T3. REM
T2.REX
T3.ROV
T3.RST
T2.SEF
T3. SLV
T2.SPN
T2.SPN
T2.STP
T2.STP
T3.SWS
T2.WFR
T2.WFR
T4.DSP
T4.LDD
T4.MUT
T4.PRO
T4.PRV
T4.SNC

SHOW TASKS/ACTIVE

Meaning

Suppress PMD on SST abort
Out of memory
Privileged
I/O being run down
Remove on exit
Abort AST effected or in progress
Resident overlays
Restricted - used by layered software
Stopped for event flag
Slaved
Being suspended
Suspended prior to AST
Stopped
Stopped prior to AST
Reserved for software services
In a wait-for state
In a wait-for state prior to AST
Task was built for user-mode I- and D-space
Task's load device has been dismounted
Task is multiuser task
Task is (or should be) a prototype task
Task was privileged but has cleared T3.PRV
Task uses commons for synchronization

NOTE

These status flags are displayed by several forms
of the SHOW TASK command. They give information
on what is happening within the task and between
the task and the system. They also identify
certain kinds of tasks. Names prefixed by a
minus (-) indicate the complement of the
condition. Thus, -CHK means the task is
noncheckpointable. You must understand how the
system runs tasks to understand the meanings of
all these flags. See the RSX-11M/M-PLUS and
Micro/RSX Task Builder Manual and the P/OS System
Reference Manual for more information.

3-185

SHOW TASKS/INSTALLED

3.77 SHOW TASKS/INSTALLED

SHOW TASKS/INSTALLED displays information about installed tasks
in either brief or full format.

Syntax

SHOW TASKS[:taskname)/INSTALLED[/qualifier[s)]

taskname

Specifies the task for which you want information displayed.
If you do not specify a task name, information on all
installed tasks is displayed.

qualifier[s]

Can be one or more of the following:

/BRIEF
/FULL

Qualifiers

/BRIEF

Requests information on installed tasks in a brief format.
This is the default and need not be specified. The format
of the display is as follows:

taskname ident parname priority size ddnnn:-lbn [memstate]

In this display, taskname is the name task, ident is the
task version identification (or the version of the prototype
task), parname is the partition in which the task is
installed, priority is its priority, size is the size of the
task in bytes, ddnnn: is the device from which it is to be
loaded, lbn is the logical block number of its disk address,
and memstate is the task memory state, which can be FIXED,
CHECKPOINTED, or blank.

If the task version identification is missing (with
of the line moved left) or if it is garbage, the
installed from a disk that is no longer present.
task version number is a date, such as 07JUL, the
compiled on that day.

3-186

the rest
task was
If the

task was

/FULL

SHOW TASKS/INSTALLED

Requests the full format of the SHOW TASKS/INSTALLED
command. This format displays a detailed list of the states
of one or all of the installed tasks in the system,
depending on the presence of the taskname parameter. The
format of the display is as follows:

taskname tcbaddr parname pcbaddr taskaddrlimits pri defpri
STATUS: statusflags
TI - ddn: roe - iocount EFLG - eventflags

This display is in
SHOW TASKS/ACTIVE/FULL.
of the display.)

the same format as that of
(See Section 3.76 for a description

taskname

Specifies a task for which full information is to be
displayed. If you do not specify a task name, information
about all installed tasks is displayed.

3-187

SHOW TASK:taskname/DYNAMIC

3.78 SHOW TASK:taskname/DYNAMIC

SHOW TASK:taskname/DYNAMIC displays a moving picture of a task's
activity on the terminal.

Syntax

SHOW TASK:taskname/DYNAMIC[/qualifier]

taskname

Specifies the task you want to inspect.

qualifier[s]

Can be one or more of the following:

/RATE:n
/PRIORITY:n

Qualifiers

/DYNAMIC

Specifies that you want the moving display. This function
is performed by the RMD task. RMD has four display pages:

o Task that displays a task header

~ Active that displays all or part of the Active Task List

• Memory that displays the contents of memory

e Help that provides help on RMD

Once you have invoked any one of these pages, through either
a SHOW TASK/DYNAMIC command or a SHOW MEMORY command, you
can move from one page to the other without leaving RMD.
The first character of each page name is a command to RMD to
go to that page. In addition, a <CTRL/[> entered from a
page permits you to enter setup commands for that page. See
Chapter 8 for more information on the features of RMD.

The setup commands for the Task page permit you to change
the task header being displayed. The task you name remains
the default display for the Task page. This means you can
observe a single task header, then jump to the Memory page
or the Active page, and then back to the Task page and the
named task will still be on display.

3-188

SHOW TASK:taskname/DYNAMIC

/RATE:n

The /RATE qualifier allows you to set the rate at which the
RMD display screen is to be replotted on the first display.
The value n is the number of seconds between replots. The
default n is 1. You can change the rate by pressing ESC and
entering a new rate. The rate setting returns to 1 as soon
as you change pages. If you want a slower rate, you must
reset the rate each time you change the page.

Use this qualifier to slow down the display.

Task headers may change more often than once per second, but
once per second is the most rapid rate available.

/PRIORITY:n

This qualifier specifies the highest priority to be
displayed. The default is 250, the highest priority on the
system. Use this qualifier to shorten the display to one
screen length.

Notes

Tasks built including ODT can be observed using this
command, but if you are single-stepping through the task or
otherwise using breakpoints, the registers displayed will be
those of the ODT task, not those of the named task.

This display is particularly useful
assemblies, as you can tell how far
which files are open. You may
observing the Task Builder at work.

3-189

for observing complex
the assembly has gone by
also be interested in

SHOW TASKS/ACTIVE/DYNAMIC

3.79 SHOW TASKS/ACTIVE/DYNAMIC

SHOW TASKS/ACTIVE/DYNAMIC displays either a moving picture of the
Active Task List on a video terminal, or a snapshot display on a
hard-copy terminal.

Syntax

SHOW TASKS/ACTIVE/DYNAMIC[/qualifier]

qualifier

/RATE:n

Qualifiers

/RATE:n

The /RATE qualifier allows you to set the rate at which the
RMD display screen is to be replotted on the first display.
The value n is the number of seconds between replots. The
default n is 1. You can change the rate once the display
begins by pressing the ESC key and entering a new rate. The
rate setting returns to 1 as soon as you change pages. If
you want a slower rate, you must reset the rate each time
you change the page.

Use this qualifier to slow down the display.

The Active Task List may change more
second, but once per second is
available.

3-190

often than
the most

once
rapid

per
rate

SHOW TASK/LOGICAL_UNITS

3.80 SHOW TASK/LOGICAL UNITS

SHOW TASK:taskname/LOGICAL_UNITS displays the static logical unit
number (LUN) assignments for an installed task.

Syntax

SHOW TASK:taskname/LOGICAL_UNITS

taskname

Specifies the task for
displayed. This must
through INSTALL, and not
of RUN.

which you want LUN assignments
be the name of a task installed
through the install-run-remove form

The display consists of a list of physical devices and
corresponding static LUN assignments. The display does not
show any dynamic LUN assignments, even when the specified
task is running.

Prompts

Taskname? taskname

3-191

SHOW TERMINAL

3.81 SHOW TERMINAL

SHOW TERMINAL displays information about your terminal and
another optional terminal connected to the system. Each SHOW
TERMINAL attribute is directly related to a SET TERMINAL
attribute (refer to Set Terminal for a discussion of these
attributes).

Syntax

SHOW TERMINAL[:ttnnn:] [/attributes[s]]

ttnnn

Is the number of the terminal for display

attribute

Can be one or more of the following:

Group 1: Common Use

/[NO]LOWERCASE
/WIDTH:n

/[NO]UPPERCASE

Group 2: Terminal Setup

/VT100
/VT102
/VT125
/VT132
/LA50
/LA210
/PC300
/[NO]TAB
/[NO]SCOPE

Group 3: Task Setup

/[NO JECHO
/[NO]TYPEAHEAD[:n]
/[NO]EIGHT_BIT

Prompts

None

/VT101
/VT105
/VT131
/VT2XX
/LA100
/LQP02
/[NO]FORM_FEED
/[NO]HARDCOPY
/PAGE_LENGTH:n

/[NO]ESCAPE
/[NO]WRAP

3-192

SPAWN

3.82 SPAWN

The SPAWN command allows tasks to be executed in the background.
These tasks allow you to continue to use the terminal. For
example, SPAWN can initiate a task building session, allowing you
to perform other tasks.

SPAWN should not be used with tasks that attach the terminal.
SPAWN will return an error message, if it was asked to initiate
an uninstalled task.

Syntax

SPAWN cmd

cmd

Is any PRO/Tool Kit Command Language command.

Prompts

None

3-193

START

3.83 START

START resumes the execution of a task that was halted by a STOP$S
directive. Starting a task that has been stopped is different
from continuing a suspended task.

Syntax

START taskname

taskname

Is the name of the task you want to start.

Prompts

Taskname? taskname

3-194

START/UNBLOCK

3.84 START/UNBLOCK

This command continues the execution of a task that was blocked
by the STOP/BLOCK command.

Syntax

START/UNBLOCK taskname

taskname

Is the name of the task to be unblocked.

Prompts

Taskname? tas

3-195

STOP/BLOCK

3.85 STOP/BLOCK

This command blocks an installed, active task. After execution
of this command, the task no longer executes or competes for
memory (refer to START/UNBLOCK).

Syntax

STOP/BLOCK taskname

taskname

Is the name of the task to be blocked.

Prompts

Taskname? taskname

3-196

SUBMIT/REMOTE

3.86 SUBMIT/REMOTE

With PRO/DECnet only, SUBMIT/REMOTE directs an existing command
file on a remote node to be executed. The file is queued to the
remote node's command file or batch file processor. If the
command file is not on the node where it will be executed, you
may want to use a COPY command with a /SUBMIT qualifier.

The success of the command does not guarantee that the batch or
command file was executed successfully, only that the execution
request was given successfully to the remote processor.

Syntax

SUBMIT/REMOTE[/qualifier[,s]] commandfile[,s]

qualifier

Can be one or more of the following:

/LOG
/NOWARNINGS

commandfile

The output file descriptor for each remote node command file
that you want to execute. Command files are not deleted
after execution.

Prompts

File(s)? commandfile[,s]

Qualifiers

/LOG

Specifies that the names of files submitted are to be
displayed as the operation is performed.

/NOWARNINGS

Specifies that the ttNo such filett error messages should not
be displayed when the input files specified do not exist.

3-197

TYPE

3.87 TYPE

This command displays the contents of a file or group of files on
the terminal.

Syntax

TYPE[/qualifier[s]] filespec[,s]

qualifier

Can be one or more of the following:

/DATE:dd-mmm-yy
/SINCE:dd-mmm-yy
/THROUGH:dd-mmm-yy
/SINCE:dd-mmm-yy/THROUGH:dd-mmm-yy
/TODAY
/EXCLUDE:filespec
/NOWARNINGS
/SHARED

With PRO/DECnet DCL extensions, the following qualifiers are also
available:

/LOG
/MACY11

filespec

Is the name of the file to be displayed.

Prompts

File(s)? filespec[,s]

Qualifiers

/DATE:dd-mmm-yy

The /DATE qualifier specifies that you want the TYPE command
to affect only files created by the value specified for
/DATE.

3-198

TYPE

/SINCE:dd-mmm-yy

The /SINCE qualifier specifies that you want the TYPE
command to affect only files created on or since the value
specified by /SINCE.

/THROUGH:dd-mmm-yy

The /THROUGH qualifier specifies that you want the TYPE
command to affect only files created on or before the value
specified by /THROUGH.

/SINCE:dd-mmm-yy/THROUGH:dd-mmm-yy

The /SINCE and /THROUGH qualifiers can be combined to
specify that you want the TYPE command to affect only files
created within that range.

/TODAY

The /TODAY qualifier specifies that you want the TYPE
command to affect only files created on the same day as the
command is issued.

/EXCLUDE:filespec

The /EXCLUDE
command not
to /EXCLUDE
contain a
wildcard.

qualifier specifies that you want the TYPE
to affect certain files. The filespec argument

can contain wildcards, but the filespec must
version number, either explicitly or as the "*"

/NOWARNINGS

Specifies that the "No such file'' error messages should not
be displayed when the input files specified do not exist.

/SHARED
Specifies that other users are able to access the file while
you are typing it.

Additional Qualifiers Available with PRO/DECnet

Command Qualifiers

/LOG

Specifies that the names of files typed and their sizes are
to be displayed as the operation is performed.

3-199

TYPE

File Qualifiers

/MACY11

Specifies that the input or output file on the remote
TOPS-10 or TOPS-20 system is in MACY11 format. This
qualifier is used to inform the remote DECsystem to handle
the file appropriately when copying to or from the P/OS
system. /MACY11 must be entered after the file
specification in the command line.

3-200

UNLOAD

3.88 UNLOAD

The UNLOAD command removes a loadable device driver from memory.
Note that the device driver data base will not be removed from
the system. Reboot the system to remove the driver data
structures.

Note the following restrictions:

o If a device is mounted, attached, or has outstanding I/O, its
driver cannot be unloaded.

o The UNLOAD command cannot remove a data base from memory,
even if the data base was loaded by means of the LOAD
command.

Syntax

UNLOAD dd:

dd:
Is a two-character ASCII device name.

Prompt

Device? dd:

3-201

UNLOCK

3.89 UNLOCK

UNLOCK unlocks locked files. Locked files are files
been improperly closed because a task aborted
execution while the file was open. Locked files are
by an L in the directory listing.

Syntax

UNLOCK[/qualifier[s]] filespec[,s]

qualifier

Can be one or more of the following:

/DATE:dd-mmm-yy
/SINCE:dd-mmm-yy
/THROUGH:dd-mmm-yy
/SINCE:dd-mmm-yy/THROUGH:dd-mmm-yy
/TODAY
/EXCLUDE:filespec
/[NO]WARNINGS

file spec

Is the name of the file to be unlocked.

Prompts

File(s)? filespec[,s]

Qualifiers

/DATE:dd-mmm-yy

that have
or stopped
identified

The /DATE qualifier specifies that you want the UNLOCK
command to affect only files created by the value specified
for /DATE.

/SINCE:dd-mmm-yy

The /SINCE qualifier specifies that you want the UNLOCK
command to affect only files created on or since the value
specified by /SINCE.

/THROUGH:dd-mmm-yy

3-202

UNLOCK

The /THROUGH qualifier specifies that you want the UNLOCK
command to affect only files created on or before the value
specified by /THROUGH.

/SINCE:dd-mmm-yy/THROUGH:dd-mmm-yy

The /SINCE and /THROUGH qualifiers can be combined to
specify that you want the UNLOCK command to' affect only
files created within that range.

/TODAY

The /TODAY qualifier specifies that you want the UNLOCK
command to affect only files created on the same day as the
command is issued.

/EXCLUDE:filespec

The /EXCLUDE
command not
to /EXCLUDE
contain a
wildcard.

/[NO]WARNINGS

qualifier specifies that you want the UNLOCK
to affect certain files. The filespec argument

can contain wildcards, but the filespec must
version number, either explicitly or as the "*''

The /[NO]WARNINGS qualifier specifies that the "No such
file" error messages should not be displayed when the input
files specified do not exist.

3-203

CHAPTER 4

THE INDIRECT COMMAND PROCESSOR

This chapter describes the Indirect Command Processor
("Indirect") and indirect command files. Section 4.33 through
4.54 describe the processor directives that control execution of
Indirect. The final two sections in the chapter provide
information on compatibility with RSX systems, as well as errors
that Indirect can return.

4.1 INDIRECT COMMAND FILES

An indirect DCL command file is a text file containing a list of
DCL-specific command lines and special directives that allow you
to control command file processing. The indirect command
processor reads the indirect DCL command file, interprets the
directives, and passes the DCL commands to DCL.

To initiate
specification,
accept input.

an indirect DCL
preceded by an

For example:

command file, enter the file
at sign (@),whenever DCL can

$ @DCLIPT.CMD

The default file type for indirect DCL command files is .CMD.
Thus, the command line in the previous example could also be
input as follows:

$ @DCLIPT

Indirect DCL command files can also be nested. The maximum level
of nesting is four.

Note that the Indirect directives described in this chapter can
only be used in indirect DCL command files.

4-1

INDIRECT COMMAND PROCESSOR

4.2 INDIRECT COMMAND PROCESSOR

When processing an indirect command file, the Indirect task first
reads the command file and interprets each command line either as
a command to be passed directly to DCL or as a request for action
by Indirect. The directives to Indirect are distinguished by a
period (.) as the first character in the line.

The Indirect directives form a procedural language that allows
you to:

0 Define and assign values to logical, numeric, and string
symbols

Q Substitute a symbol's value into any line of the command file

o Perform arithmetic functions

o Manipulate strings

o Display text on the user's terminal screen

• Ask questions of a user

e Control the flow of a command file

o Call subroutines

o Detect error conditions

o Test symbols and conditions

o Create and access data files

o Parse commands and data

o Enable or disable any of several operating modes

e Display forms and control user entry of data

Two directives (.BEGIN and .END) permit you to use block
structure in the command file. Modular, block-structured command
files are easier to debug and maintain. More importantly,
Begin-End blocks isolate local symbol definitions as well as
labels, and thus conserve symbol table space.

When you define a symbol, Indirect creates an entry for the
definition in an internal symbol table. These symbol table
entries retain their definitions throughout execuL1on of the
command file if defined locally, or throughout the execution of

4-2

INDIRECT COMMAND PROCESSOR

all levels of nested command files if defined globally. Local
symbols defined within a block, however, retain their definitions
only throughout the execution of the commands within that block;
they are erased from the symbol table when Indirect encounters an
.END directive.

An Indirect directive (.ENABLE GLOBAL) allows the definition of
some symbols as global to all file levels. Otherwise, each time
Indirect enters a deeper level, it masks all symbols defined by
the previous level out of the symbol table so that only symbols
defined in the current level are available. These symbols are
local only to the level of the file in which they are defined.
When control returns to a previous level, the symbols defined in
that level become available once again and the ones from the
deeper level are lost.

When Indirect reaches the end of the highest level indirect
command file, it displays the following message (unless inhibited
by the .DISABLE DISPLAY directive):

$ @<EOF>

and then exits. DCL then prompts for a command from the
keyboard. Indirect displays on the requesting terminal's screen
every DCL command line as it is executed.

An Indirect file can also include comments, which the processor
prints at the terminal screen. Comments that begin a line
interpreted by DCL have a leading semicolon (;). Comments that
appear after the start of a DCL command line have a leading
exclamation point(!). All lines in an indirect command file
that begin with a period in column 1 followed by a semicolon(.;)
are treated as comments but are not displayed when the file is
processed.

Indirect attaches the terminal while processing contiguous
comment lines that begin with a semicolon. This permits you to
type CTRL/0 and suppress a lengthy comment. Output is resumed by
typing another CTRL/0 or is resumed at the next DCL command line
or Indirect directive statement in the command file.

4-3

INDIRECT COMMAND PROCESSOR

If the specified command file cannot be found in the current
directory, Indirect will attempt to translate the logical name
IND$COMMAND_LIBRARY and look for the command file there. This
permits a user to place commonly used command files in one place.
The following DCL command establishes this behavior.

$ASSIGN DW1:[USERLIBRY] IND$COMMAND_LIBRARY

Subsequently, the user command:

$ @COMPILE

results in Indirect first looking for COMPILE.CMD in the current
default directory and, if not found, looking for:

DW1:[USERLIBRY]COMPILE.CMD

Note that the PRO/Tool Kit uses LB:[l,2] as the initial value of
IND$COMMAND_LIBRARY. You can specify your own initial value in
the file START.CMD.

4.3 SUMMARY OF INDIRECT DIRECTIVES

The Indirect directives described in this chapter are listed here
by category.

Label Definition

.label:

Symbol Definition

.ASK

.ASKN

.ASKS

Assigns a name to a line in the command
file so that the line may be referenced.

Defines or redefines a logical symbol and
assigns the symbol a true or false value.

Defines or redefines a numeric symbol and
assigns the symbol a numeric value.

Defines or redefines a string symbol and
assigns the symbol a character string
value.

4-4

.ERASE

.SETT/.SET

.SETN

. SETD/.SETO

.SETL

.SETS

.TRANSLATE

File Access

.DATA

.CHAIN

. CLOSE

.OPEN

.OPENA

.OPENR

. PARSE

SUMMARY OF INDIRECT DIRECTIVES

Deletes all
definitions
definition.

local
or a

or
single

global
global

symbol
symbol

Defines or redefines a logical symbol and
assigns the symbol a true or false value.

Defines or redefines a numeric symbol and
assigns the symbol a numeric value.

Redefines the radix of a numeric symbol .

Defines or redefines a logical symbol and
assigns the symbol a true or false value.

Defines or redefines a string symbol and
assigns the symbol a character string
value.

Attempts to transl~te a logical name and
return its equivalence value.

Specifies a single line of data to output
to a file.

Closes the current indirect file and uses
commands from another file.

Closes a file .

Creates and opens an output data file (if
the file exists, creates a new version and
opens it).

Opens an existing file and appends
subsequent data (does not create a new
version}. Defaults to .OPEN if the file
does not exist.

Opens a file for reading with the .READ
directive.

Parses strings into substrings .

4-5

.READ

Logical Control

. BEGIN

. END

.EXIT

.GOSUB

.GOTO

I

.ONERR

.RETURN

.STOP

Logical Tests

. IF

.IFACT/.IFNACT

. I FD F /. I FND F

SUMMARY OF INDIRECT DIRECTIVES

Reads a record from a file
specified string variable.

into a

Marks the beginning of a Begin-End block .

Marks the end of a Begin-End block .

Terminates processing of either Indirect
or the current command file, returns
control to the invoking terminal or to the
previous level, and optionally sets
special symbol <EXSTAT> value.

Calls a subroutine within the command
file.

Branches to a label within the command
file.

Defines logical end-of-file. Terminates
file processing and exits. This directive
is equivalent to the .STOP directive.

Branches to a label upon detecting a
specific Indirect error condition.

Effects an exit from a subroutine and
returns to the line immediately following
the subroutine call.

Terminates indirect command file
processing and optionally sets Indirect
exit status. This directive is equivalent
to the logical end-of-file (/) directive.

Determines whether or not a symbol
satisfies a condition.

Determines whether or not a task is
active.

Determines whether or not a symbol is
defined.

4-6

.IFENABLED/

. IFDISABLED

.IFINS/.IFNINS

.IFLOA/.IFNLOA

.IFT/.IFF

.TEST

.TESTDEVICE

.TESTFILE

.TESTPARTITION

.TESTSYSTEM

SUMMARY OF INDIRECT DIRECTIVES

Tests the .ENABLE/.DISABLE options .

Determines whether or not a task
installed in the system.

is

Determines whether or not a device driver
is loaded.

Determines whether a logical symbol is
true or false.

Tests the length of a string symbol or
locates a substring.

Returns information about a device in the
system.

Determines if a specified file exists and
determines the physical device associated
with a logical device name (performs
device translation).

Returns information about a partition in
the system.

Returns information about the presence of
certain operating system features.

Enable or Disable an Operating Mode

.ENABLE/.DISABLE Enables or disables
following modes:

substitution
timeout parameter
lowercase

control

terminal attachment
data
global symbol
symbol radix
command line echo
command display
field display
command passing to DCL
file deletion
truncate error suppression
escape
CTRL/Z exit
overflow

4-7

of the

SUMMARY OF INDIRECT DIRECTIVES

Increment or Decrement Numeric Symbols

. INC

.DEC

Execution Control

.DELAY

.PAUSE

.WAIT

. XQT

Special Purpose

.FORM

4.4 SYMBOLS

Adds one to a numeric symbol's value .

Subtracts one from a numeric symbol's
value.

Delays
command
time.

the execution
file for a

of an indirect
specified period of

Is a no-op under the PRO/Tool Kit. It
does not suspend execution of Indirect.

Is a no-op under the PRO/Tool Kit. It has
no effect.

Is a no-op under the PRO/Tool Kit .
passes the DCL command line to
Indirect does not proceed until
command is complete.

It
DCL.
that

Provides access to the PRO/FMS form
driver, allowing FMS commands to be passed
to FMS.

The Indirect Command Processor enables you to define symbols.
These symbols can then be tested or compared to control flow
through the indirect command file. They may also be substituted
in DCL commands, data records for data files, or comments to be
displayed on the screen.

Symbol names are ASCII strings from one through six characters in
length. They must start with a letter (A through Z) or a dollar
sign($). The remaining characters must be alphanumeric or a
dollar sign.

There are three symbol types:

o Logical

4-8

SYMBOLS

o Numeric

@ String

A logical symbol has either a true or false value.

A numeric symbol can have a numeric value in the range of 0
through 65535 (decimal). The symbol can be defined to have
either a decimal or octal radix. The radix is relevant only when
the symbol is substituted.

A string symbol has as its value a string of ASCII characters,
with a length of 0 through 132 (decimal) characters.

A symbol's type (logical, numeric, or string) is defined by the
first assignment directive that assigns a value to the symbol.
Assignment directives can assign:

o A true or false value to define a logical symbol (defined by
.ASK, .SETL, .SETT, or .SETF).

@ An octal or decimal number to define a numeric symbol
(defined by .ASKN, .SETN, .SETO, or .SETD).

o A character string to define a string symbol (defined by
.ASKS, .READ, or .SETS).

4.4.1 Special Symbols

Indirect automatically defines special symbols dependent upon
specific system characteristics and the replies to queries
presented during command file execution. As with symbols,
special symbols can be compared, tested, or substituted and
consist of three types: logical, numeric, and string. All
special symbols have a common format--angle brackets (<>) enclose
the special symbol name.

4.4.1.1 Special Logical Symbols - The special logical symbols
are assigned a true or false value under the following
circumstances:

4-9

Symbol

<ALPHAN>

<DEFAUL>

<EOF>

<ERSEEN>

<ESCAPE>

<FALSE>

<NUMBER>

SYMBOLS

Value

Set to true if last string entered in response
to an .ASKS directive or tested with a .TEST
directive contains only alphanumeric characters.
An empty string also sets <ALPHAN> to true.

Set to true if answer to last query was
defaulted (the <RETURN> key was pressed once) or
a timeout occurred.

Set to true if the last .READ or .ASKx directive
resulted in readin~ past the end of the file.
Otherwise, <EOF> is set to false.

Set to true if any of the following conditions
are true.

• <FILERR> is less than 0, if a negative error
code was returned

o If an exit status <EXSTAT> value worse than
<WARNING> was returned

o <EOF> is set to true

o If you used the command line .SETT <ERSEEN>

The command line .SETF <ERSEEN> sets the
following conditions:

• <FILERR> is set to 0

• <EXSTAT> is set to 0

• <EOF> is set to false

Set to true if last question was answered with
an ALTmode or ESCape. Otherwise, <ESCAPE> is
set to false.

Logical constant used for comparisons with the
.IF directive or as a default for the .ASK
directive.

Set to true if the last string entered in
response to an .ASKS directive or tested with a
.TEST directive contains only numeric
characters. An empty string also sets <NUMBER>
to true.

4-10

<OCTAL>

<PRIVIL>

<RAD50>

<TIMOUT>

<TRUE>

SYMBOLS

Set to true if the answer to the last .ASKN
directive or the radix of the numeric symbol
tested in the last .TEST directive is octal or
if the last string tested with a .TEST directive
contained all numeric characters in the range 0
through 7.

Set to true if the current user is privileged.
Its value is derived from the flag contained in
the terminal data base. The flag is set when
IND executes.

Set to true if last string entered in response
to an .ASKS directive or tested with a .TEST
directive contains only Radix-50 characters.
Radix-50 characters are the uppercase
alphanumeric characters plus period (.) and
dollar sign ($). A blank is not a Radix-50
character in this context. An empty string also
sets <RAD50> true.

Set to true if timeout mode is enabled and the
last .ASKx directive timed out waiting for a
user response.

Logical constant used for comparisons with the
.IF directive or as a default for the .ASK
directive.

4.4.1.2 Special Numeric Symbols - The special numeric symbols
are assigned the following values:

Symbol

<ERRCTL>

Value

Controls the way in which Indirect processes
errors. The symbol is treated as an 8-bit mask.
For each class of error that a user's .ONERR
target routine processes, the appropriate bit is
set in the mask. If the bit is clear, Indirect
exits after printing the error information. See
Section 4.34 for details on .ONERR.

4-11

<ERRNUM>

<ERRS EV>

<EXSTAT>

<FILERR>

SYMBOLS

If the eighth bit, the sign bit or 200 (octal),
is set, Indirect does not print any information
about the error.

The initial default value for <ERRCTL> is 1,
which implies that only class 1 errors can be
handled with an .ONERR address, and that error
messages will be printed. Note that if you
attempt to trap errors other than default class
1, processing cannot continue in most cases.
The error service routine is limited to a fatal
error message and .EXIT. The internal state of
Indirect is indeterminate in all but class 1
error cases.

See Section 4.56.2 for a list of error messages
and their asigned values.

Assigned the class number of an error that
Indirect has finished processing. This value
can be used for processing specific error types
with an .ONERR routine.

Assigned the error severity mask associated with
the error that Indirect has finished processing.
This bit mask corresponds to the bit mask
<ERRCTL> used to control the processing.

Assigned a numeric value depending upon the
status of the last DCL command executed. User
programs can generate any 16-bit value as an
exit status. Most DIGITAL-supplied programs,
however, exit with one of the following status
values:

Value

0 Warning
1 Success
2 Error
4 Severe Error

Assigned the FCS-11 or I/O driver status code
resulting from a .TESTFILE, .OPENx, or .READ
directive operation. See Appendix B for a
description of the codes.

4-12

<FILER2>

<FORATT>

<MEMSIZ>

<SPACE>

<STRLEN>

<SYMTYP>

<SYSTEM>

<SYUNIT>

<TICLPP>

<TICWID>

<TI SPED>

SYMBOLS

Assigned the second error code word that is
returned by the FMS-related .FORM command.

Assigned the octal value of the file attributes
that were used to open the data files.

Assigned the value of the current system memory
size in K words (K is 1024.).

Assigned the number, in octal, of free bytes in
the internal symbol table for Indirect. The
number does not reflect the amount of space that
could be gained by the automatic extension of
the Indirect task.

Assigned the length of the string entered in
response to the last .ASKS directive or the
string tested by the last .TEST directive.

Assigned the numeric code for the type of symbol
tested with a .TEST directive. The symbol types
have the following code numbers:

String - 4
Numeric - 2
Logical - 0

Assigned an octal number to represent the
operating system on which Indirect is running.
The value 11 is for the P/OS system.

Assigned the unit number of the user's default
device (SY:).

Assigned the current page length setting for the
screen.

Assigned the current page width setting for the
screen.

Assigned the baud rate for transmitting
characters from the host system to the terminal.
Indirect attemtps to determine the baud rate
when you first invoke it. This information is
useful for determining the quality and quantity
of information to be transmitted. The following
list gives the octal value that corresponds to
each baud rate.

4-13

<TI TYPE>

SYMBOLS

Octal Value Baud Octal Value Baud

1 or 0 0 13 1200
2 50 14 1800
3 75 15 2000
4 100 16 2400
5 110 17 3600
6 134 20 4800
7 150 21 7200

10 200 22 9600
11 300 23 EXTA
12 600 24 EXTB

Assigned the terminal type of the terminal from
which Indirect is running. The Professional
terminal type is 35.

4.4.1.3 Special String Symbols - The special string symbols are
assigned the following string values.

Symbol

<ACCOUN>

Value

(RSX-llM-PLUS and P/OS systems only.) Assigned
certain accounting information from a user's
accounting block (UAB). The information is in
the following format (note the trailing comma):

unam,sessid,accnum,cpu,dir,qio,tas,atsks

unam

sessid

accnum

cpu

dir

qio

tas

The first 14 characters
name as it appears
account file.

of the
in the

Session ID, null on P/OS.

Account number, null on P/OS.

user
system

CPU ticks used since login, null on
P/OS.

Number of system directives issued
since login, null on P/OS.

Number of QIO directives issued since
login, null on P/OS.

Number of tasks run since login, null
on P/OS.

4-14

<CLI>

<DATE>

<DIRECT>

<EXSTRI>

<FILATR>

<FILSPC>

<LOGO EV>

<LOGUIC>

<NETNOD>

SYMBOLS

atsks Number of active tasks, null on P/OS

Assigned the acronym (3 through 6 letters) of
the current command line interpreter. This
symbol is fixed at "DCL" under the PRO/Tool Kit.

Assigned the current date. The date format is
dd-mmm-yy.

Assigned the name of the current
directory; the format is [ddddddddd].

default

Contains the string results from a more deeply
nested indirect command file. The results are
sent to the calling command file. Cleared after
each DCL command.

Assigned the seven words
information contained in
Descriptor Block (FOB).

of file attribute
the FCS-11 File

Assigned the fully-qualified specification for
the file referred to with the last .OPEN,
.OPENA, .OPENR, or .TESTFILE directive
operation, or in the last specification for a
nested command file.

Assigned the device name and unit number of the
user's login account on multiuser protection
systems. On other systems, <LOGDEV> is assigned
SYO: at the time IND is invoked.

Assigned the login UIC of the current user on
multiuser protection systems; the format is
[ggg,mmm]. On other systems, <LOGUIC> is
assigned the current default UIC.

Assigned the DECnet node name of the system. If
the asystem is not on the DECnet system,
<NETNOD> is assigned the string PRO.

4-15

SYMBOLS

<SYSDEV> Assigned the physical name for the boot device
for the system. The device name is in the form
ddn.

<SYDISK> Assigned the device mnemonic (two letters) of
the user's default device (SY:); format is dd.

<SYS ID> Assigned the
number.

operating system's baselevel

<TIME> Assigned the current time; format is hh:mm:ss.

<UIC> Assigned to default UIC.

4.4.2 Numeric Symbols and Expressions

A numeric symbol is a string of digits representing a value in
the range of 0 through 177777 (octal) (0 through 65535 decimal if
immediately followed by a period or if decimal mode has been
enabled). If an arithmetic operation yields a result outside of
this range, a fatal error occurs and the following message is
displayed:

IND -- NUMERIC UNDER- OR OVERFLOW

A numeric symbol or constant may be combined with another numeric
symbol or constant by a logical or arithmetic operator to form a
numeric expression. Arithmetic operators are used to add (+),
subtract (-), multiply (*), and divide (/). Logical operators
are the inclusive OR(!), logical AND (&), and NOT (#). No
embedded blanks or tabs are permitted between operators.

Numeric expressions are evaluated from left to right unless
parentheses are used to form subexpressions that are evaluated
first. For example, the directive lines:

.SETN Nl 2

.SETN N2 3

.SETN N3 Nl+N2*4

assign numeric symbol
following directive
(octal):

.SETN Nl 2

.SETN N2 3

N3 the value 24 (octal), whereas the
lines assign numeric symbol N3 the value 16

.SETN N3 Nl+(N2*4)

4-16

SYMBOLS

Numeric expressions are permitted as second operands in numeric
.IF and .SETN directives. They are also permitted as range and
default arguments in .ASKN and .ASKS directives. The directives
.EXIT and .STOP permit numeric expressions to represent exit
status.

With each numeric symbol, Indirect associates a radix either
octal or decimal. The radix of a numeric symbol changes each
time the symbol is assigned a new value. If you use a numeric
expression to assign a new value to a symbol and all operands in
the expression are octal, then the symbol is set to octal. If
any operand in the expression is decimal, the symbol is set to
decimal. For example:

.SETN N2 3. N2 is decimal

.SETN N3 N1+3 N3 is octal

.SETN N3 N1+3. N3 is decimal

.SETN N3 Nl+N2 N3 is decimal

You can also assign a new value to a symbol with the .ASKN
directive.

The .SETO and .SETO directives allow you to change the radix of a
numeric symbol without changing the value of the symbol. For
example:

.SETN Nl 10.

.SETO Nl
Nl
Nl

10 decimal
12 octal

The radix of a numeric symbol does not affect arithmetic
operations or comparisons. The radix is important only when
substituting a numeric symbol into a string. If the radix of the
symbol is octal, the value of the symbol is substituted into the
string as an octal number. If the radix is decimal, the value is
substituted as a decimal number. For example:

.SETN Nl 10.
; Nl = I Nl,
.SETO Nl

Nl = 'Nl'

Nl = 10 decimal
Displayed as ; Nl
Make Nl octal
Displayed as ; Nl

10

12

If you substitute a numeric symbol into a string and the
substituted number is decimal, a period (.) following the symbol
name causes a trailing period to be included in the string
(following the substituted number). For example:

.SETN Nl 10.
; Nl = 'Nl.'
.SETO Nl
; Nl = 'Nl.'

4-17

Nl = 10 decimal
Displayed as ; Nl
Make Nl octal
Displayed as ; Nl

10.

12

SYMBOLS

You can also force a numeric symbol to be substituted as an octal
or decimal number by using a substitution format control string.
For example:

.SETN Nl 10.
Nl 'N1%D'

; Nl = 'N1%0'

Nl = 10 decimal
Displayed as Nl = 10
Displayed as ; Nl 12

4.4.3 String Symbols, Substrings, and Expressions

A string constant is a string of any printable characters
enclosed by quotation marks. Empty strings are also permitted.
The number of characters cannot exceed 132 (decimal). For
example:

"ABCDEF"
fl"

String symbols may have the value of any string constant. The
value is assigned by a .SETS or .ASKS directive. For example,
the directive statements:

.SETS

.SETS
Sl
S2

"ABCDEF"
Sl

assign string symbol S2 the value of string symbol Sl (that is,
ABCDEF).

A substring facilitates the extraction of a segment from the
value of a string symbol. You can use substrings only in second
operands of .SETS and .IF directives. For example, the directive
statements:

.SETS

.SETS
Sl
S2

"ABCDEF"
S1[1:3]

assign string symbol S2 the value of string symbol Sl beginning
at character one and ending at character three (that is, ABC).

You can also use the syntax (n:*] to extract the characters from
position n to the end of the string. For example, the directive
statements:

.SETS Sl

.SETS S2
"ABCDEF"
S1[3:*)

assign string symbol S2 the value "CDEF".

4-18

SYMBOLS

You can combine a string constant, symbol, or substring with
another string constant, symbol, or substring by the string
concatenation operator (+) to form a string expression.

String expressions are permitted as second operands in .SETS and
.IF directives where the first operand is a string symbol. For
example, the directive statements:

.SETS

.SETS

.SETS

Sl
S2
S3

"A"
"CDEF"
S1+"B"+S2[1:3]

assign string symbol S3 the value of the concatenation of string
symbol Sl, string constant "B", and the first three characters of
string symbol S2 (that is, ABCDE).

4.4.4 Reserved Symbols

Parameters for a command file can be passed to Indirect for
processing. The parameters are stored in the following reserved
local symbols:

PO, Pl, P2, P3, P4, PS, P6, P7, P8, P9, COMMAN

The symbol COMMAN contains everything in the issuing
line, including the specification for the command file
The symbols PO through P9 contain individual elements
command line. The elements are delimited by spaces.

command
itself.
of the

With the .GOSUB directive any parameters to the right of the
label and to the left of a comment are transferred to the symbol
COMMAN. The value of COMMAN can then be parsed to obtain formal
call parameters.

4.4.5 Symbol Value Substitution

Substitution can occur in any command line. Indirect can use the
values assigned to logical, numeric, string, or special symbols
by replacing a normal parameter (for example, a device unit) with
the symbol name enclosed in apostrophes (for example, 'DEV').
When a previous directive has enabled substitution mode (.ENABLE
SUBSTITUTION), Indirect replaces the symbol name enclosed in
apostrophes with the value assigned to the symbol.

When Indirect encounters an apostrophe, it treats the subsequent
text, up to a second apostrophe, as a symbol name. Indirect then
searches the table of symbols for the corresponding symbol and

4-19

SYMBOLS

substitutes the value of the symbol in place of the symbol name
and surrounding apostrophes in the command line.

For example, the first three lines
appear in an indirect command file.
these lines, it displays the last
terminal's screen .

. ASKS DEV MOUNT ON DEVICE?

.ENABLE SUBSTITUTION
MOUNT 'DEV'

$*MOUNT ON DEVICE? [SJ: DZ2
$ MOUNT DZ2:

DZ2: was entered in response to the
reply assigned the string value DZ2:
when Indirect read:

MOUNT 'DEV'

in the following example
When the processor executes

two lines at the entering

displayed question.
to string symbol DEV.

This
Then

it substituted for 'DEV' the value assigned to DEV (that is,
DZ2:). If substitution mode was not enabled, Indirect would
simply have passed the line to DCL as it appeared in the command
file (that is, MOUNT 'DEV').

If substitution mode is enabled (it is enabled by default, if you
have not disabled it), an apostrophe signals the beginning of a
string symbol. Thus, to include a single quote as text within a
command line (rather than as the start of a symbol), you must
replace the single quote with two contiguous apostrophes ('').

If substitution mode is enabled, Indirect displays the following
command file line:

DON' 'T SHOOT

as

DON'T SHOOT

4.4.5.1 Substitution Format Control - The conversion of numeric
values to strings and the placement of string and logical values
in a substitution operation can be controlled with a format
control string. The control string is in the following form:

... 'symbol%controlstring' ...

4-20

SYMBOLS

The control string begins with the percent sign (%) and ends with
the second of the two apostrophes that denote the substitution
operation. The control string consists of one or more of the
following characters:

c Compress leading, embedded, and trailing blanks, and
remove embedded nulls.

D Force the conversion of a numeric symbol to decimal.

0 Force the conversion of a numeric symbol to octal.

s Perform signed conversion for a numeric symbol.

M Perform magnitude conversion for a numeric symbol.

Z Return leading zeros for a positive numeric value.

Rn Right-justify the resulting string, truncating to 'n'
decimal characters if necessary.

Ln Left-justify the resulting string, truncating to 'n'
decimal characters if necessary.

X Convert the variable to Radix-50 characters.

v If the symbol being substituted is numeric, convert the
low byte to its equivalent ASCII character and
substitute it.

If the symbol being substituted is a string, convert
the first character to its octal representation and
substitute it.

Indirect does not perform a consistency check on the control
string. If you specify conflicting format characters, Indirect
uses the last one specified.

4.5 SWITCHES

The indirect command processor accepts five switches: /TR, /DE,
/CLI, /LB, and /LO.

Switch

/[NO]TR

Function

Displays a trace of the indirect command
screen. This function is useful for

4-21

file on the
debugging an

/[NO]DE

SWITCHES

indirect command file.
Indirect directive
default is /NOTR.

Each command
statements, is

line, including
displayed. The

Indicates that the indirect command file is to be
deleted when its processing is complete unless a
logical end-of-file (/) or .STOP directive is
encountered before the end of the file. The default is
/NODE.

/[NOJCLI Passes commands not processed by Indirect to DCL. The
default is /CLI.

/LB Indicates that the specified file is a universal
library of command procedures and that the specified
module is the procedure to be executed.

When command procedures, which are indirect command
files, are inserted into a universal library with the
Librarian command, you can subsequently reference them
with /LB:module.

Command libraries are built by creating a universal
library and inserting command files into it. You can
then reference the procedures in the library with the
following command line:

@command-library/LE:module

The default file type for a command library is .CLB.

If you do not specify a module (@command-library/lb),
Indirect attempts to locate a module called .MAIN ..

See the example below.

The command file PARAM.CMD contains
definitions for the .SETN directive and
file SYSPRC.CMD contains system-specific
Use the following command lines to create
library and enter the command files into it:

$ LIER/CREATE/UNIVERSAL SYSTART.CLE
$ LIER/INSERT SYSTART.CLE PARAM.CMD
$ LIER/INSERT SYSTART.CLB PROCED.CMD

parameter
the command
procedures.
the command

You can then use the following command lines to
reference the command library modules:

@SYSTART/LB:PARAM !Define global symbol

4-22

SWITCHES

@S:{ST :PROCED !Run init procedure

DIGITAL supplies a library of command procedures. The
library is LB:[l,2]INDSYS.CLB and it contains the
following procedures:

INDCFG

INDDMP

INDPRF

INDSFN

INDVFY

QIOERR

FMSDEM

Displays the current build parameters for the
running Indirect task.

@LB:[l,2]I : INDCFG

Dumps to the screen the contents of the
Indirect symbol table.

@LB: [1, 2] I : I

A sample procedure to fully parse file-name
strings.

To return a parsed string in <EXSTRI>:

@LB:[l,2]:!.:NDS :INDPRF DWl: [DATA] t.dat 2

Returns system configuration information.

To return in <EXSTRI> whether the Floating
Point unit is present:

@LB: [1, 2] INDS INDSFN F'P

Displays the values of all of the special
symbols.

@LB [l,2]I : INDVFY

Returns a string expansion of the <FILERR>
error codes.

To returns in <EXSTRI> a string expansion for
the code.

@LB: [l,2]INDS :QIOERR -33.

Demonstrates the PRO/FMS interface
incorporated into Indirect.

See the description of the .FORM command.

4-23

/[NO]LO

. MAIN

. INDEX

SWITCHES

Demonstrates how to use the command library .

@LB:[1,2]INDSYS/LB

Displays an index of the procedures in the
library.

@LB:[1,2]INDSYS/LB:.INDEX

The following command line shows the
for invoking a command procedure
library:

@LB:[1,2]INDSYS/LB:procedurename

format
in the

Indicates that when a new command file is executing, it
can have access to the local symbols created by its
calling command file. The default is /NOLO.

4.6 USING INDIRECT DIRECTIVES

Directives must be separated from their arguments and from
DCL-specific commands by at least one space. Only one directive
per command line is allowed.

You can insert any number of blanks and horizontal tabs in three
places of a command line:

• At the start of the command line

• Immediately following the colon(:) of a label

• At the end of the command line

This allows you to format the command files for readability. The
recommended procedure is to begin labels in column one and
everything else in column nine (after one horizontal tab).

4-24

USING INDIRECT DIRECTIVES

An important exception is the lines processed between .ENABLE and
.DISABLE DATA directives; no blanks or tabs are removed from
these lines. For example:

.IFT z .GOTO
MACRO/NOLI ST

.10: LINK TEST
.OPEN
.DATA

.ENABLE DATA
This is data
that goes into
the data file .
. DISABLE DATA

DAT FIL
xxxxx

.GOTO 20

10
TEST

Note that the .DISABLE DATA statement must begin in column 1 or
Indirect will place it in the data file.

4.6.1 Logical Tests

A number of .IF directives make tests; if the test is true,
Indirect processes the remainder of the command line. Logical
tests can be combined to form compound logical tests by using the
.AND and .OR directives.

An implied .AND is effected when more than one .IF appears on the
same line without being separated by an .AND directive.

When using .AND and .OR, the .AND directive takes precedence over
the .OR directive, as shown in the following example:

.IFT A .OR .IFT B .AND .IFT C .GOTO D

That is, Indirect reads the line as:

.IFT A .OR (.IFT B .AND .IFT C) .GOTO D

Examples follow:

.IFT A .AND .IFF B .GOTO HELP

If the logical symbol A is true and the logical symbol B is
false, control passes to the line containing the label .HELP: .

. IFT A .IFF B .GOTO HELP

Same effect as the previous directive (.AND implied).

4-25

USING INDIRECT DIRECTIVES

.IFT A .OR .IFF B RUN TESTER

If the logical symbol A is true or if the logical symbol B is
false, the RUN command is issued.

The following sections describe all of the Indirect directives.

4-26

/ - DEFINE LOGICAL END-OF-FILE

4.7 I - DEFINE LOGICAL END-OF-FILE

The logical end-of-file directive (/) terminates file processing
and exits. The message

$ @ <EOF>

is then displayed.

Format

I

is the first nonblank character on a line.

You can use this directive at any location in the command file to
quickly terminate file processing, but care should be taken to
avoid an inadvertent exit.

Example

.100:

.ASK CONT DO YOU WISH TO CONTINUE

.IFT CONT .GOTO 100
I

4-27

.ASK - ASK A QUESTION AND WAIT FOR A REPLY

4.8 .ASK - ASK A QUESTION AND WAIT FOR A REPLY

The .ASK directive prints a question on the screen, waits for a
reply, and sets a specified logical symbol to the value of true
or false, depending on the reply. If the symbol has not already
been defined, Indirect makes an entry in the symbol table. If
the symbol has been defined, Indirect resets its value (true or
false) in accordance with the reply. Indirect exits with a fatal
error if the symbol was previously defined as a string or numeric
symbol.

Formats (brackets are required syntax)

.ASK ssssss txt-strng

.ASK [default:timeout] ssssss txt-strng

.ASK [:timeout] ssssss txt-strng

where:

ssssss

txt-strng

default

timeout

The 1- to 6-character symbol to be assigned a
true or false value.

The question or prompt that Indirect displays.

The default response; used if the
answered with an empty line (null)
occurs. The default can be <TRUE>
another logical variable.

question is
or if timeout
or <FALSE> or

The timeout count. Indirect waits this long for
a response, then applies the default answer.
The format for timeout is nnu, where nn is the
decimal number of time units to wait and u is T
(ticks), s (seconds), M (minutes), or H (hours).
The timeout count is used only if timeout mode
is enabled (.ENABLE TIMEOUT).

The entire .ASK statement must fit on one command line.

Note that if you omit the default value but specify a timeout
count, the colon is required for positional identification.

When executing an .ASK directive, Indirect displays
prefixed by an asterisk and suffixed with "? [Y/N]:".
recognizes five answers:

4-28

txt-strng
Indirect

.ASK - ASK A QUESTION AND WAIT FOR A REPLY

1. Y<RET>

Set symbol ssssss to true.

2. N<RET>

Set symbol ssssss to false.

3. <RET>

Set symbol to false or to user-specified default value.
<RET> indicates the <RETURN> key.

4. <ESC>

Set symbol ssssss to true and set the special logical
symbol <ESCAPE> to true only if escape recognition has
been enabled. <ESC> indicates the <ESCAPE> key.

NOTE

If escape sequence recognition is not enabled,
the <Fll> key (ESC) functions as the escape key

5. <CTRL/Z>

Example

If CONTROL-Z mode is enabled, set <EOF> to true and
proceed, or else exit immediately.

The directive statement:

.ASK INSFOR DO YOU WANT TO INSTALL FORTRAN

displays

$*DO YOU WANT TO INSTALL FORTRAN? [Y/N]:

on the screen. Symbol INSFOR will be set to true or false after
you type Y, N, the <RETURN> key, or the <ESCAPE> key (if escape
recognition is enabled).

4-29

.ASKN - ASK FOR DEFINITION OF A NUMERIC SYMBOL

4.9 .ASKN - ASK FOR DEFINITION OF A NUMERIC SYMBOL

The .ASKN directive prints on the terminal screen a request for a
numeric value, waits for it to be entered, optionally tests the
range for the numeric response and/or applies a default value,
and sets the specif!ed symbol accordingly.

If the symbol has not previously been defined, Indirect makes an
entry in the symbol table. If the symbol has already been
defined, Indirect resets its value in accordance with the reply.
Indirect exits with a fatal error if the symbol was previously
defined as a logical or string symbol.

Formats (brackets are required syntax)

.ASKN ssssss txt-strng

.ASKN [low:high:default:timeout] ssssss txt-strng

where:

ssssss

txt-strng

low:high

default

timeout

The 1- to 6-character symbol to be assigned a
numeric value.

The question or prompt that Indirect displays.

A numeric expression giving the range for the
response.

A numeric expression or symbol giving
default value.

the

The timeout count. Indirect waits this long for
a response, then applies the default answer.
The format for timeout is nnu, where nn is the
decimal number of time units to wait and u is T
(ticks), s (seconds), M (minutes), or H (hours).
The timeout count is valid only if timeout mode
is enabled (.ENABLE TIMEOUT).

The entire .ASKN statement must fit on one command line.

Note that if you omit any of the
brackets, any preceding colons
identification.

parameters within
are required for

the square
positional

The command line cannot exceed 132 (decimal) characters in
length. When executing an .ASKN directive, Indirect displays
txt-strng prefixed by an asterisk and suffixed with [O]: to
indicate that the response is considered as octal or [DJ: to
indicate that the response is considered as decimal. The reply

4-30

.ASKN - ASK FOR DEFINITION OF A NUMERIC SYMBOL

must be a number either within the specified range or in the
range 0 through 177777 (octal) (by default) or 0 through 65535
(decimal).

If the response is outside the specified range, the message

IND -- VALUE NOT IN RANGE

is displayed and the query repeated.

If an arithmetic operation yields a result greater than 177777
(octal) when computing the actual value of any of the arguments
(low, high, or default), a fatal error occurs and the message

IND -- NUMERIC UNDER- OR OVERFLOW

is displayed.

If the response is an empty line (null) and a default value
(default) was not specified, Indirect applies a default of 0.
Note that in this case, the range, if specified, must include 0.

The response may be either octal or decimal; a leading pound sign
(#) forces octal, a trailing period(.) forces decimal. In the
absence of both, Indirect applies a default radix. The default
radix is decimal if either the range or default values are
decimal expressions (followed by a period). Otherwise, the
default radix is octal (unless decimal mode has been enabled).
Indirect displays the default type as either [OJ or [DJ.

To force a default decimal radix without specifying a range
argument, use the following construction:

.ASKN [::0.J A ENTER VALUE

or

.ENABLE DECIMAL

.ASKN A ENTER VALUE

Examples

• The directive statement:

.ASKN SYM DEFINE NUMERIC SYMBOL A

displays

$*DEFINE NUMERIC SYMBOL A [OJ:

on the terminal screen where:

4-31

.ASKN - ASK FOR DEFINITION OF A NUMERIC SYMBOL

[OJ is the default radix (octal).

Indirect then defines symbol SYM according to the reply
entered.

• The directive statement:

.ASKN [2:35:16:20S] NUMSYM DEFINE NUMERIC SYMBOL A

displays

$*DEFINE NUMERIC SYMBOL A [O R:2-35 D:16 T:20S]:

in the format [x R:low-high D:default T:timeout]

where:

x O if the default radix is octal or D if
it is decimal.

R:low-high The specified range.

D:default The specified default.

T:timeout The specified timeout count before the
default answer is applied.

Indirect then checks that the response string is in the
specified range.

• The directive statement:

.ASKN [NUMSYM+10:45:NUMSYM+10] SYM DEFINE NUMERIC SYMBOL B

displays (assuming the value of 16 octal for NUMSYM):

$*DEFINE NUMERIC SYMBOL B [O R:26-45 D:26]:

4-32

.ASKS - ASK FOR DEFINITION OF A STRING SYMBOL

4.10 .ASKS - ASK FOR DEFINITION OF A STRING SYMBOL

The .ASKS directive prints on the terminal screen a request for a
string value to define a specified symbol and optionally tests
that the number of characters in the response string falls within
the specified range.

If the symbol has not previously been defined, Indirect makes an
entry in the symbol table. If the symbol has already been
defined, Indirect resets its value in accordance with the reply.
Indirect exits with a fatal error if the symbol was defined
previously as a logical or numeric symbol. If the number of
characters is out of the specified range, the message

IND -- STRING LENGTH NOT IN RANGE

is displayed and the question repeated.

Formats (brackets are required syntax)

.ASKS ssssss txt-strng

.ASKS [low:high:default:timeout] ssssss txt-strng

where:

ssssss

txt-strng

low:high

default

timeout

The 1- to 6-character symbol to be assigned a
string value.

The question or prompt that Indirect displays.

A numeric expression giving the range for the
number of characters permitted in the response
string.

A string expression or symbol giving the default
value.

The timeout count. Indirect waits this long for
a response, then applies the default answer.
The format for timeout is nnu, where nn is the
decimal number of time units to wait and u is T
(ticks), S (seconds), M (minutes), or H (hours).
The timeout count is valid only if timeout mode
is enabled (.ENABLE TIMEOUT).

The entire .ASKS statement must fit on one command line.

Note that if you omit any of the
brackets, any preceding colons
identification.

4-33

parameters within
are required for

the square
positional

.ASKS - ASK FOR DEFINITION OF A STRING SYMBOL

When executing an .ASKS directive, Indirect displays
prefixed by an asterisk (*) and suffixes it with (SJ:.
must be an ASCII character string.

txt-strng
The reply

Examples

@ The directive statement: .ASKS NAM PLEASE ENTER YOUR NAME

displays

$*PLEASE ENTER YOUR NAME [SJ:

on the terminal screen. Indirect then defines symbol NAM
according to the string reply entered.

• The directive statement:

.ASKS [1:15::10S] MIDNAM PLEASE ENTER YOUR MIDDLE NAME

displays

$*PLEASE ENTER YOUR MIDDLE NAME [S R:l-15 T:10S]:

in the format [S R:low-high T:timeout]

where:

s The symbol type (string).

R:low-high The specified range for
characters.

T:timeout The specified timeout count.

4-34

number of

.BEGIN - BEGIN BLOCK

4.11 .BEGIN - BEGIN BLOCK

The .BEGIN directive marks the beginning of a Begin-End block.
The block must be terminated with an .END directive.

Labels and local symbols defined following the .BEGIN directive
are local to the block instead of being used throughout the
entire command file. Therefore, labels and local symbols defined
inside a block lose definition outside the block. (Labels and
symbols defined outside a block retain definition throughout the
file.) Labels and symbols defined outside a block and then
modified within the block, however, assume and retain the value
assigned in the block.

Labels and local symbols defined within a block
with an .ERASE LOCAL directive statement or
directive .

lose definition
with the .END

. BEGIN must be the only directive on a command line. For
example, the .BEGIN directive cannot appear on the same line as
an .IF directive.

Format

.BEGIN

as the only directive on the line.

4-35

.CHAIN - CONTINUE PROCESSING USING ANOTHER FILE

4.12 .CHAIN - CONTINUE PROCESSING USING ANOTHER FILE

The .CHAIN directive closes the current file, erases all local
symbols, clears any .ONERR arguments, empties the direct access
label cache, and continues processing using command lines from
another file. However, the .CHAIN directive does not close data
files or change the nested-file level.

Format (brackets not part of syntax)

.CHAIN filename[/switches]

where filename is the name of the file that contains the new
command lines. The /switches are any of the optional switches
described in Section 4.5.

Example

The directive statement:

.CHAIN OUTPUT

transfers control to the file OUTPUT.CMD.

4-36

.CLOSE - CLOSE SECONDARY FILE

4.13 .CLOSE - CLOSE SECONDARY FILE

The .CLOSE directive closes the secondary file opened by an .OPEN
directive.

Format (brackets not part of syntax)

.CLOSE [#n]

where:

#n An optional file
default is #0.
for the value
apostrophes.

number in the range 0 to 3. The
You can substitute a numeric symbol

n by enclosing the symbol in

4-37

.DATA - OUTPUT DATA TO SECONDARY FILE

4.14 .DATA - OUTPUT DATA TO SECONDARY FILE

The .DATA directive specifies text that is to be output to a
secondary file previously opened by an .OPEN directive.

When Indirect processes the text string that follows the .DATA
directive, it ignores a leading space (if present), assuming it
to be a separator between the directive and the text string. Any
other spaces or tabs are transferred to the data file.

Format (brackets not part of syntax)

.DATA [#n] txt-strng

where:

txt-strng

#n

The text to be output to the secondary file.

An optional file number in the range 0 to 3.
The default is #0. You can substitute a numeric
symbol for the value n by enclosing the symbol
in apostrophes.

The command line cannot exceed 132 (decimal) characters and the
specified text string cannot continue onto the next line. If a
secondary file is not open, an error condition exists; Indirect
issues an error message and begins error processing.

Example

.SETS SEND "THIS IS DATA"

.OPEN TEMP

.DATA 'SEND'

.CLOSE

These directives output THIS IS DATA to the secondary file
TEMP.DAT (.DAT is the default file type for a data file).

4-38

.DEC - DECREMENT NUMERIC SYMBOL

4.15 .DEC - DECREMENT NUMERIC SYMBOL

The .DEC directive decrements a numeric symbol by one. Indirect
exits with a fatal error if the symbol was defined previously as
a logical or string symbol.

Format

.DEC ssssss

where:

ssssss The 1- to 6-character numeric symbol.

Example

.DEC LOOPCT

This directive decrements by 1 the value assigned to the numeric
symbol LOOPCT.

4-39

.DELAY - DELAY EXECUTION FOR A SPECIFIED PERIOD OF TIME

4.16 .DELAY - DELAY EXECUTION FOR A SPECIFIED PERIOD OF TIME

The .DELAY directive delays further processing of the file for a
specified period of time.

Format

.DELAY nnu

where:

nn The decimal number of time units to delay.

u T - ticks
s - seconds
M - minutes
H - hours

The parameter nn is decimal by default.

If quiet mode is disabled when the .DELAY directive is executed,
Indirect issues the message:

IND -- DELAYING

When the time period expires and the task resumes, Indirect
issues the message:

IND -- CONTINUING

Example

The directive statement:

.DELAY 20M

delays processing for 20 (decimal) minutes.

4-40

.DISABLE - DISABLE OPTION

4.17 .DISABLE - DISABLE OPTION

The .DISABLE directive disables a specified operating mode
previously activated by an .ENABLE directive.

Format

.DISABLE option[,option ... l

The following is a list of the operating modes that can be
disabled:

ATTACH DETACH GLOBAL TIMEOUT
CONTROL-Z DISPLAY LOWERCASE TRACE
DATA ESCAPE CLI TRUNCATE
DECIMAL ESCAPE-SEQ OVERFLOW SUBSTITUTION
DELETE QUIET

Note that when you disable detach mode from a command file and
then request a task or DCL command to display information, the
command file may not be able to continue executing. The task or
DCL command may need to attach to the terminal to display the
information but will not be able to do so because Indirect cannot
detach from the terminal.

4-41

.ENABLE - ENABLE OPTION

4.18 .ENABLE - ENABLE OPTION

The .ENABLE directive is used to invoke several operating modes.
Each mode is independent of the others; all of them can be active
simultaneously. When Indirect starts to process a file, the
initial settings are:

ATTACH enabled GLOBAL enabled
CONTROL-Z disabled LOWERCASE enabled
DATA disabled CLI enabled
DECIMAL disabled OVERFLOW disabled
DELETE disabled QUIET disabled
DETACH enabled SUBSTITUTION enabled
DISPLAY enabled TIMEOUT enabled
ESCAPE disabled TRACE disabled
ESCAPE-SEQ disabled TRUNCATE disabled

In attach mode, Indirect attaches to the screen when displaying
comment lines. In detach mode, it detaches from the screen when
processing command lines. Enabling both of these modes allows
you to type CTRL/O to suppress a lengthy comment.

Enabling Control-Z mode allows a command file to detect a CTRL/Z
response to a question and continue processing. If Control-Z
mode is disabled and you type CTRL/Z in response to an .ASKx
question, Indirect exits. If Control-Z mode is enabled, the
special symbol <EOF> is set to true and Indirect continues
processing the command file.

In data mode, Indirect outputs lines that follow an .ENABLE DATA
directive statement to a secondary file. (The .DATA directive
sends a single line of text to a secondary file.) To disable data
mode, the .DISABLE DATA statement must begin in the first column.
Otherwise, Indirect copies the statement itself into the data
file. The .ENABLE DATA directive also has an optional argument
(#n) that specifies which file the data is to go into. See the
description of the .DATA directive for more information.

In global symbol mode, symbol names that begin with a dollar sign
($) are defined as global to all levels of indirect files; once
such a symbol has been defined, all levels recognize it. Symbols
that do not begin with a dollar sign are recognized only within
the level that defines them.

In decimal mode, all numeric symbols are created or redefined by
default as decimal instead of as octal.

In delete mode, the current command file is deleted when Indirect
processes the last command line in the file.

4-42

.ENABLE - ENABLE OPTION

In display mode, Indirect displays the current
.ASKx directives and @ <EOF>. If display
Indirect displays only the text string for the
and suppresses @ <EOF>.

fields for the
mode is disabled,

.ASKx directive

In CLI mode, commands not processed by Indirect are passed to
DCL. CLI mode is equivalent to the functions of the /CLI switch.

In lowercase mode, characters read from the terminal in response
to .ASKS directives are stored in the string symbol without
lower- to uppercase conversion. The representation of characters
is significant when comparing strings since the .IF directive
distinguishes between lowercase and uppercase characters.

In substitution mode, Indirect substitutes a string for a symbol.
The symbol must begin and end in apostrophes ('symbol'). For
example, if the symbol A has been assigned the string value THIS
IS A TEST, then every 'A' will be replaced by THIS IS A TEST.
When substitution mode is enabled, Indirect performs
substitutions in each line before scanning the line for
directives and DCL commands.

Escape recognition (.ENABLE ESCAPE) permits the response to an
.ASK, .ASKN, or .ASKS directive to be an escape character. A
question answered with a single escape character sets the special
logical symbol <ESCAPE> to true. The escape character must be
used only as an immediate terminator to the question; if one or
more characters precede the escape character, an error condition
exists. In this case, the message

IND INVALID ANSWER OR TERMINATOR

is printed and the question repeated. Note that if you press the
<ESCAPE> key in response to an .ASK directive, the specified
logical symbol (ssssss of .ASK ssssss txt-strng) is also set to
true.

Escape-sequence recognition (.ENABLE ESCAPE-SEQ) forces Indirect
to attach to the terminal for escape-sequence recognition, using
the IO.ATT!TF.ESQ I/O function.

In this mode, the result of an .ASKx or .READ statement from the
terminal will contain the terminating escape character and escape
sequence, as documented in the P/OS System Reference Manual.

Overflow mode allows signed arithmetic in numeric expressions.
Enabling the mode provides for numeric expressions and operations
that otherwise would result in the "Numeric under- or overflow''
error message.

In quiet mode, Indirect does not echo DCL command lines or

4-43

.ENABLE - ENABLE OPTION

comments. The command lines are executed normally and, if they
return a message or display, the message or display is printed on
the screen.

In timeout mode, Indirect uses the timeout parameters specified
with the .ASKx directives. Indirect waits for the timeout count
to elapse and then applies the default answer to the directives.
Timeout mode must be enabled (the default) to use the timeout
counts for the .ASKx directives.

In trace mode, command lines that Indirect has processed are
displayed on the terminal screen. As each line is processed, it
is displayed with its nesting level and an exclamation mark (!).
Trace mode is equivalent to the function of the /TR switch.

In truncate mode, Indirect ignores any truncate errors on a .READ
directive. A truncate error occurs when a line in a file is too
long. If the full record cannot fit within the 132
(decimal)-character limit of the symbol, the record is truncated.

Formats (brackets not part of syntax):

.ENABLE option[,option ...]

.ENABLE DATA [#n]

where:

#n

Examples

An optional file
default is #0.
for the value
apostrophes.

o Substitution mode:

.ENABLE SUBSTITUTION

number in the range 0 to 3. The
You can substitute a numeric symbol

n by enclosing the symbol in

.ASKS FIL SPECIFY SOURCE FILE
MACRO 'FIL'

When the file is executing, the corresponding lines displayed
at the terminal screen are:

$*SPECIFY SOURCE FILE [SJ: SOURCE
$ MACRO SOURCE

4-44

.ENABLE - ENABLE OPTION

o Control-Z mode:

.ENABLE CONTROL-Z

.ASK RESP DO YOU WISH TO CONTINUE

.IFT <EOF> .GOTO CLENUP

.IFF RESP> .GOTO CLENUP

If you type CTRL/Z in response to the question, <EOF> is set
to true and Indirect transfers to CLENUP.

4-45

.END - END BLOCK

4.19 .END - END BLOCK

The .END directive marks the end of the Begin-End block. If
Indirect encounters more .END directives than .BEGIN directives,
command processing terminates and the following message is
displayed:

IND ILLEGAL NESTING

Format

.END

as the only directive on the line.

4-46

.ERASE - DELETE SYMBOLS

4.20 .ERASE - DELETE SYMBOLS

The .ERASE directive deletes all local or global symbol
definitions, or a specific global symbol definition. When you
define a symbol, either locally (by defining a symbol value) or
globally (by enabling global symbol mode and preceding the symbol
name with a dollar sign($)), Indirect creates an entry in the
symbol table. The .ERASE directive erases either all local or
all global entries, or a specific global entry, in the table.

Following an .ERASE directive, you can redefine symbol values as
well as symbol type.

Formats

.ERASE LOCAL

.ERASE GLOBAL

.ERASE SYMBOL global-symbol

An .ERASE LOCAL directive outside of a Begin-End block erases all
local symbols defined within the current file.

An .ERASE LOCAL directive within a Begin-End block erases only
those local symbols defined within the block.

However, note that the following actions also occur:

1. Local symbols defined within a nested file are erased
when that file exits.

2. Local symbols defined within a Begin-End block are
erased with .END.

3. Local symbols defined outside of Begin-End blocks are
visible, modifiable, and not erasable within a Begin-End
block.

An .ERASE GLOBAL, either outside of or within a Begin-End block,
erases all global symbols.

An .ERASE SYMBOL global-symbol erases the specified global
symbol. (Individual local symbols are not erasable.)

4-47

.ERASE - DELETE SYMBOLS

Example

.ERASE LOCAL

This directive erases all local symbol definitions used in the
indirect command file .

. ERASE SYMBOL $SWITC

This directive erases the single global symbol "$SWITC."

4-48

.EXIT - EXIT CURRENT COMMAND FILE

4.21 .EXIT - EXIT CURRENT COMMAND FILE

The .EXIT directive terminates processing of the current command
file or Begin-End block and returns control to the previous-level
command file or, if the directive is executed within a block, to
the line following the .END directive. If the directive is
encountered at the uppermost indirect nesting level, Indirect
exits and passes control to DCL (see the .STOP directive).

The .EXIT directive also allows you to optionally specify a value
to copy into the special symbol <EXSTAT>.

Format (brackets not part of syntax)

.EXIT [value]

where value is an optional numeric expression copied to <EXSTAT>.

Examples

The following line is in an indirect command file called TEST1:

@TEST2

The file TEST2.CMD contains the following line:

.EXIT

When Indirect encounters the .EXIT directive in TEST2, control
returns to TESTl.CMD.

If the .EXIT directive in TEST2.CMD
expression, for example:

.EXIT N+2

includes a numeric

Indirect evaluates the expression and copies the value into
<EXSTAT>.

4-49

.FORM - ACCESS FORM DRIVER

4.22 .FORM - ACCESS FORM DRIVER

The .FORM command provides access to the PRO/FMS-11 form driver
from a command file. You can specify commands in the command
file that perform operations such as:

• Directing the display of a form

o Directing the motion of the cursor from field to field

s Acquiring and parsing the user typein

The syntax of the .FORM command parallels the format
MACR0-11 call interface to FMS-11. For details,
FMS-11/RSX Software Reference Manual, particularly the
on form driver operation and the MACR0-11 interface.

of the
see the
chapters

Format

.FORM FNC,p1,p2, ... pn

where:

FNC

pl. .. pn

Formal parameters:

LINENUM

RETTRM

FILENAME

RETNAM

RETINX

TERMINATOR

is a three-letter code indicating which FMS
operation is to be performed. These codes
are a subset of the codes used in the
MACR0-11/FMS interface and are summarized
below.

are string or numeric symbols or constants
conforming to Indirect syntax rules.

The screen line number where form display is
to begin.

The name of a numeric variable to contain the
code for the terminator typed by the user.

The name of a string variable or string
constant naming the file in which the form
definitions are stored.

The name of the field completed by the user.

The index of the field completed by the user.

The code for the terminator to be processed.

4-50

VALUE

FORMNAME

FLDNAME

INDEX

RETVAL

Examples

.FORM - ACCESS FORM DRIVER

A string variable or constant to be placed in
the indicated field.

The name of the form to display.

The name of a field defined in the currently
displayed form.

In an indexed field, the index referencing
the specific field being addressed.

The name of a string variable into which the
returned value will be placed.

String values supplied as input to
expressed as a constant enclosed
name of a previously defined string
following have equivalent results:

the .FORM command can be
in quotation marks or as the

variable. For example, the

.FORM OPN,"FMSDEM.FLB" !define form library filename

and

.SETS LIBR "FMSDEM.FLB"

.FORM OPN,LIBR !define form library filename

String and numeric values returned as output from the .FORM
command are passed as though a .SETS or .SETN command were being
executed. This means that the name of the variable to receive
the value must be supplied, and that it must either have not been
defined or is previously defined as the appropriate string or
numeric type. For example:

.FORM GET,"CHOICE",,,,FLDVAL
"CHOICE"

return value of field

The Indirect local symbol FLDVAL is defined or redefined as
required and contains the string typed by the user to fill the
field named CHOICE on the currently displayed form.

Remember that Indirect can handle strings only as long as 132.
characters, so that values returned to strings from the form
driver must be shorter than that length. This is particularly
important with the ·ALL and RAL commands, which attempt to place
the string values of all fields displayed on the form into a
single Indirect string variable. A better programming practice
would be to use a series of GET commands addressing each

4-51

.FORM - ACCESS FORM DRIVER

individual field.

A demonstration procedure is included in LB: [1,2]INDSYS.CLB.
This procedure library is packaged on the PRO/Tool Kit
distribution kit. To execute the demonstration procedure, type
the following command line:

$ @LB:[l,2]INDSYS.CLB/LB:FMSDEM

After the terminal type setting is verified, a temporary copy of
the forms library is placed in your directory. The procedure is
identical to that provided in MACR0-11 form on the FMS-11/RSX
kit. Refer to the FMS-11/RSX Software Reference Manual for a
complete description of this demonstration.

Using the following DCL command, extract the FMS demonstration
procedure and use it as an extended example for building your own
command procedures.

$ LIBRARIAN/EXTRACT/OUT=FDEM.CMD LB:[l,2]INDSYS.CLB FMSDEM

Commands:

CSH -- Clear screen and show form

.FORM CSH, FORMNAME [,LINENUM]

The form driver clears the entire screen and displays the
specified form from the currently open form library. If
LINENUM is supplied, it is interpreted as an integer line
number which overrides the form starting line number
supplied by the forms editor.

SHO -- Show form

.FORM SHO, FORMNAME [,LINENUM]

The form
required
named in
LINENUM
supplied

driver clears only the portion of the screen
for the specified form, then displays the form

FORMNAME from the currently open forms library. If
is present, it overrides the starting line number
by the forms editor.

GET -- Get value for specified field

.FORM GET, FLDNAME [,INDEX [,RETNAM [,RETINX [,RETVAL
[,RETTRM]]JJJ

The form driver places the cursor at the initial position of
the specified field and accepts input from the keyboard for
that field.

4-52

.FORM - ACCESS FORM DRIVER

ANY -- Return any field value

.FORM ANY ,RETNAM ,[RETINX] ,RETVAL [,RETTRM]

The form driver waits for the operator to fill
The cursor may be positioned in a field
display-only. The field name and its resulting
returned.

ALL -- Return all fields

.FORM ALL [,RETVAL [,RETTRM]]

any field.
that is not

value are

After the operator has filled any or all fields of a form
and presses the <ENTER> key, the form driver returns all
field values as a concatenated string into the string
variable RETVAL. Remember that strings may have a maximum
length of 132. characters so that the concatenated value
may not exceed this length.

DAT -- Get named data from form

.FORM DAT, FLDNAME, [INDEX], RETVAL

The form driver returns the value from the named data
portion of the form. If INDEX is supplied, it is
interpreted as the index for the named data value to be
returned.

GSC -- Get current line of scrolled area

.FORM GSC, FLDNAME, RETVAL [,RETTRM]

The form driver returns the contents of the entire current
scrolled data line as a concatenated string.

CLS -- Close forms library

.FORM CLS

The currently open forms library is closed.

OPN -- Open forms library

.FORM OPN, FILENAME

The forms driver attempts to open the specified file as a
library of form definitions. The library is built by the
forms utility program.

4-53

.FORM - ACCESS FORM DRIVER

PSC -- Put to current line of scrolled area

.FORM PSC, FLDNAME, VALUE

The form driver outputs the data specified to the current
line of the scrolled area. The scrolled area is identified
by naming in FLDNAME any field in that area.

TRM -- Process field terminator

.FORM TRM, [FLDNAME], [VALUE], TERMINATOR [,RETNAM
[,RETINX])

The user supplies the numeric code for the terminator,
processed in TERMINATOR. The form driver then performs
cursor and field positioning accordingly. The FMS-11/RSX
Software Reference Manual describes terminator codes and
actions.

PUT -- Put to specified field

.FORM PUT, FLDNAME, [INDEX], VALUE

This displays the value specified in the named field.

PAL -- Put all fields

.FORM PAL [,VALUE)

The contents of VALUE are used to fill all fields of the
current form. Remember that the VALUE string may have a
maximum of 132. characters.

LST -- Output to last line of screen

.FORM LST [,VALUE]

The form driver clears the last line of the screen and
displays the specified string. (The last line is not
normally accessible via a form.) This is the only way to
display messages in this screen location.

RAL -- Return all fields

.FORM RAL, VALUE

RTN -- Return value for specified field or for all fields

.FORM RTN, [FLDNAME] [INDEX] , RETVAL

If the FLDNAME parameter is not present the form driver

4-54

returns the
all fields in

.FORM - ACCESS FORM DRIVER

concatenated string of the current values for
the form. See the note under the ALL command.

If FLDNAME is present, the form driver returns the value
only for the named field.

SPN/SPF -- Supervisor mode control

.FORM SPN

.FORM SPF

Turn supervisor mode on (SPN) or off (SPF). The form editor
permits defining some fields as display only if supervisor
mode is off.

4-55

.GOSUB - CALL A SUBROUTINE

4.23 .GOSUB - CALL A SUBROUTINE

The .GOSUB directive saves the current position
command file and then branches to a label. The
an entry point to a subroutine that is terminated
directive.

in an indirect
label identifies

by a .RETURN

When you issue a .GOSUB directive from within a Begin-End block,
Indirect saves the current block context and then scans down the
file searching for the first occurrence of the subroutine label.
Note that during the scan, Indirect ignores any intervening
.BEGIN or .END directives. The .RETURN directive restores
previous block context. Thus, the subroutine can be contained
within a Begin-End block.

The maximum nesting depth for subroutine calls is 8.

Format

.GOSUB label parameters

of a
colon.
of a

The

where label is the label that designates the first line
subroutine, but without the leading period and trailing
Any parameters to the right of the label and to the left
comment are transferred to the reserved local symbol COMMAN.
value of COMMAN can then be parsed with the .PARSE directive
obtain formal call parameters.

to

Example

The directive statement:

.GOSUB EVAL

transfers control to the subroutine labeled .EVAL:.

4-56

.GOTO - BRANCH TO A LABEL

4.24 .GOTO - BRANCH TO A LABEL

The .GOTO directive causes a branch from one line in an indirect
command file to another. All commands between the .GOTO
directive and the specified label are ignored. Branches can go
forward or backward in the file.

The target of a .GOTO branch from within a Begin-End block must
be contained in that block. The .GOTO directive cannot branch
into another block. When Indirect encounters a .GOTO directive
within a Begin-End block, it searches for the specified label in
that block.

Since Indirect only searches the one Begin-End block, you can use
the same label more than once in a command file.

Format

.GOTO label

where label is the name of the label, but without the leading
period and trailing colon.

Example

The directive statement:

.GOTO 100

transfers control to the line containing the label .100:.

4-57

.IF - TEST IF SYMBOL SATISFIES SPECIFIED CONDITION

4.25 .IF - TEST IF SYMBOL SATISFIES SPECIFIED CONDITION

The .IF directive compares a numeric or
another expression of the same type to
several possible conditions is true. If
satisfied, Indirect executes the remainder of

string symbol with
determine if one of

the condition is
the command line.

When comparing a string symbol with a string expression, Indirect
compares the ASCII values of each operand's characters (from left
to right) one by one. An operand is considered greater if the
first nonequal character has a greater value than the
corresponding character in the other operand. Numeric symbols
are compared strictly on the basis of magnitude.

Format

.IF symbol relop expr directive-statement

where:

symbol

re lop

ex pr

directive
statement

Examples

.SETS X "A"

.SETS Y "a"

The 1- to 6-character numeric or string
symbol.

One of the following relational operators:

EQ or - Equal to
NE or <> - Not equal to
GE or >= - Greater than or equal to
LE or <= - Less than or equal to
GT or > - Greater than
LT or < - Less than

An expression of the same type as symbol.

The Indirect command line to be processed
if the condition is satisfied.

.IF X LT Y .GOTO 200

The ASCII value of string symbol x is less than the ASCII value
of string symbol Y, which satisfies the less-than condition.
Thus, control passes to the line containing the label .200: .

. SETN Nl 2

.SETN N2 7

.IF Nl <= N2 DIRECTORY/FULL

4-58

.IF - TEST IF SYMBOL SATISFIES SPECIFIED CONDITION

With the condition satisfied (numeric symbol Nl less than or
equal to numeric symbol N2), the DIRECTORY command is processed .

. SETS Sl "AAb"

.SETS S2 "AA"

.SETS S3 "BBBB''

.IF Sl >= S2+S3[1:1] .INC N

The condition is satisfied where string symbol Sl is greater than
or equal to the concatenation of string symbol S2 and the first
character of string symbol S3 (AAb >= AAB). Therefore, Indirect
increments numeric symbol N.

4-59

.IFACT/.IFNACT - TEST IF TASK IS ACTIVE OR DORMANT

4.26 .IFACT/.IFNACT - TEST IF TASK IS ACTIVE OR DORMANT

The .IFACT or .IFNACT directive tests whether a task is active
(.IFACT) or dormant (.IFNACT). If the test is true, the rest of
the command is processed. If the specified task is not
installed, Indirect assumes the dormant condition.

Formats

.IFACT taskname directive-statement

.IFNACT taskname directive-statement

where:

taskname

directive
statement

Examples

A 1- to 6- character legal task name.

The Indirect command line to be processed
if the condition is satisfied.

.IFACT REPORT .GOTO 350

.IFNACT REPORT RUN REPORT

4-60

.IFDF/.IFNDF - TEST IF SYMBOL DEFINED OR NOT DEFINED

4.27 .IFDF/.IFNDF - TEST IF SYMBOL DEFINED OR NOT DEFINED

The .IFDF or .IFNDF directive tests whether a logical, numeric,
or string symbol has been defined (.IFDF) or not defined
(.IFNDF). If the test is true, the rest of the command line is
processed. This directive does not test the value of the symbol.

Formats

.IFDF ssssss directive-statement

.IFNDF ssssss directive-statement

where:

ssssss The 1- to 6-character symbol
The symbol can be local,
Indirect special symbol.

being
global,

tested.
or an

directive
statement

The Indirect command line to be processed
if the condition is satisfied.

Examples

.IFDF A .GOTO 100

.IFNDF A .ASK A DO YOU WANT TO SET TIME

4-61

.IFINS/.IFNINS - TEST IF TASK INSTALLED OR NOT INSTALLED

4.28 .IFINS/.IFNINS - TEST IF TASK INSTALLED OR NOT INSTALLED

The .IFINS or .IFNINS directive tests whether a task is installed
(.IFINS) or not installed (.IFNINS) in the system. If the test
is true, the rest of the command line is processed.

Formats

.IFINS taskname directive-statement

.IFNINS taskname directive-statement

where:

taskname

directive
statement

Examples

A 1- to 6-character task name.

The Indirect command line to be processed
if the condition is satisfied.

.IFINS ... PIP .GOTO 250

.IFNINS ... PIP INS DW1:[ZZTKT]PIPRES.TSK

4-62

.IFENABLED/.IFDISABLED - TEST IF MODE ENABLED OR DISABLED

4.29 .IFENABLED/.IFDISABLED - TEST IF MODE ENABLED OR DISABLED

The .IFENABLED or .IFDISABLED directive tests whether an
operating mode has been enabled with the .ENABLE directive or
disabled with the .DISABLE directive. (See the description of
the .ENABLE directive for the list of operating modes.)

Formats

.IFENABLED option directive-statement

.IFDISABLED option directive-statement

where:

option

directive
statement

The same operating
exception of DATA)
.DISABLE directive.

mode option (with the
used with the .ENABLE or

The Indirect command line to be processed
if the condition is satisfied.

4-63

.IFLOA/.IFNLO - TEST IF DRIVER LOADED OR NOT LOADED

4.30 .IFLOA/.IFNLO - TEST IF DRIVER LOADED OR NOT LOADED

The .IFLOA or .IFNLOA directive tests whether a driver is loaded
(.IFLOA) or not loaded (.IFNLOA) in the system. If the test is
true, the rest of the command line is processed. For purposes of
this directive, resident drivers are considered loaded.

Formats

.IFLOA dd: directive-statement

.IFNLOA dd: directive-statement

where:

dd:

directive
statement

Examples

A device driver.

The Indirect command line to be processed
if the condition is satisfied.

.IFLOA XK: .GOTO 250

.IFNLOA XK: ;Sorry, XK Driver not available

4-64

.IFT/.IFF - TEST IF SYMBOL TRUE OR FALSE

4.31 .IFT/.IFF - TEST IF SYMBOL TRUE OR FALSE

The .IFT or .IFF directive tests whether a logical symbol is true
or false. If the test is true, Indirect processes the rest of
the command line.

Indirect exits with a fatal error if the tested symbol was
previously defined as a numeric or string symbol.

Formats

.IFT ssssss directive-statement

.IFF ssssss directive-statement

where:

ssssss

directive
statement

Examples

The 1- to 6-character logical symbol being
tested.

The Indirect command line to be processed
if the condition is satisfied.

.IFT A .GOTO 100

.IFF B .GOTO 200

4-65

.INC - INCREMENT NUMERIC SYMBOL

4.32 .INC - INCREMENT NUMERIC SYMBOL

The .INC directive increments a numeric symbol by one. Indirect
exits with a fatal error if the symbol was previously defined as
a logical or string symbol.

Format

.INC ssssss

where:

SSS SSS

Example

. INC B

The 1- to 6-character numeric
incremented.

symbol

Increment by 1 the value assigned to the numeric symbol B.

4-66

being

.label: - DEFINE A LABEL

4.33 .label: - DEFINE A LABEL

Labels always appear at the beginning of the line; they may be on
a line with additional directives and/or a DCL command, on a line
with a comment, or on a line by themselves. When control passes
to a line with a label, the line is processed from the first
character after the colon.

Commands do not have to be separated from the label by a space.
Only one label is permitted per line. Labels are one through six
characters in length and must be preceded by a period and
terminated by a colon. A label may contain only alphanumeric
characters and/or dollar signs ($).

It is also possible to define a label as a direct access label;
once the label is found, its position in the command file is
saved. This allows subsequent jumps to frequently-called labels
or subroutines to be effected quickly. The first statement
processed after a jump to a direct access label is the one on the
next line. The maximum number of direct access labels you can
define within an indirect command file is 16. If you define more
than the maximum number allowed, the subsequent direct access
labels replace the earliest, and so on.

To declare a label for direct access, leave the line following
the colon blank.

Example

.100: .ASK A DO YOU WANT TO CONTINUE?

.IFT A .GOSUB 200

.200:
.;THIS IS THE START OF A SUBROUTINE

.RETURN

4-67

.ONERR - BRANCH TO LABEL ON DETECTING AN ERROR

4.34 .ONERR - BRANCH TO LABEL ON DETECTING AN ERROR

If Indirect detects one of the errors list below, control passes
to the line containing the specified label. This feature
provides you with a means of gaining control to terminate command
file processing in an orderly manner.

o Undefined symbol

o Bad syntax

o Unrecognized command

o String substitution error

0 Symbol type error (.IF, .IFT, .IFF, .INC, .DEC)

o Redefinition of a symbol to a different type (.ASK, .ASKN,
.ASKS, .SETT, .SETF, .SETL, .SETN, .SETD, .SETO, .SETS)

0 Data file error (.OPEN, .OPENA, .OPENR, .DATA,
.READ between .ENABLE DATA and .DISABLE DATA)

.CLOSE, or

Note that the .ONERR directive applies only to
conditions listed; errors returned from a task
Indirect (for example, a DCL syntax error) are not

the error
external to

processed by
the .ONERR directive.

Format

.ONERR label

Upon detecting an error, the processor passes control to the line
starting with .label:. The .ONERR directive must be issued
before Indirect encounters the error condition. If the directive
is executed (one of the listed errors is encountered), error
processing passes to the specified label. If the label specified
by the .ONERR directive does not exist and an error condition has
occurred, command processing terminates.

Once an .ONERR condition has occurred, another .ONERR directive
must be issued to trap a future error.

Example

.ONERR 100

Upon detecting one of the error conditions, Indirect passes
control to the line labeled .100:.

4-68

.OPEN - OPEN SECONDARY FILE

4.35 .OPEN - OPEN SECONDARY FILE

The .OPEN directive opens a specified secondary file as an output
file. The .DATA directive is used to place data in this
secondary file.

Format (brackets not part of syntax)

.OPEN [#n] filename

where:

filename A file to be opened as an output file. The
default file type is .DAT.

#n An optional file number in the range 0 to 3. The
default is #0. You can substitute a numeric
symbol for the value n by enclosing the symbol in
apostrophes.

Note that you cannot include a comment that begins with a
semicolon (;comment) in an .OPEN statement. Doing so results in
a syntax error. (Comments that begin with an exclamation mark
(!comment) are accepted.)

Example

.OPEN SECOUT

This directive opens the file SECOUT.DAT as an output file.

4-69

.OPENA - OPEN SECONDARY FILE FOR APPEND

4.36 .OPENA - OPEN SECONDARY FILE FOR APPEND

The .OPENA directive opens a secondary file and appends all
subsequent data to the file.

Format (brackets not part of syntax)

.OPENA [#n] filename

where:

filename A secondary file to be opened with subsequent data
appended to it. The default file type is .DAT.

#n An optional file number in the range 0 to 3. The
default is #0. You can substitute a numeric
symbol for the value n by enclosing the symbol in
apostrophes.

Note that you cannot include a comment that begins with a
semicolon (;comment) in an .OPENA statement. Doing so results in
a syntax error. (Comments that begin with an exclamation mark
(!comment) are accepted.)

If the specified file does not already exist, .OPENA becomes the
.OPEN directive by default.

Example

.OPENA SECOUT

This directive opens the file SECOUT.DAT as an output file and
appends subsequent data to it.

4-70

.OPENR - OPEN FILE FOR READING

4.37 .OPENR - OPEN FILE FOR READING

The .OPENR directive opens a file for reading with the .READ
directive.

Format (brackets not part of syntax)

.OPENR (#n) filename

where:

filename A file to be opened for reading. The default file
type is .DAT.

#n An optional file number in the range 0 to 3. The
default is #0. You can substitute a numeric
symbol for the value n by enclosing the symbol in
apostrophes.

You cannot include a comment that begins with a semicolon
(;comment) in an .OPENR statement; it results in a syntax error.
(Comments beginning with an exclamation mark (!comment) are
accepted.)

Examples

.OPENR INDADD

This directive opens the file INDADD.DAT for reading with the
. READ directive .

. OPENR DATLIB.ULB/LB:DATINP

This directive opens for reading the library module DATINP
contained in the universal library DATLIB.

4-71

.PARSE - PARSE STRINGS INTO SUBSTRINGS

4.38 .PARSE - PARSE STRINGS INTO SUBSTRINGS

The .PARSE directive parses strings in a command line into
substrings.

Format

.PARSE <string> <control-string> <varl> <var2> ... <var9>

The string is broken up into substrings as specified by the
control string. The substrings are stored in the specified
variables. The first character of the control string delimits
the first substring, the second character of the control string
delimits the second substring, and so on. The last character of
the control string is repeated if the number of variables exceeds
the length of the control string. If you specify more variables
than substrings, the additional variables are set to null
strings. If you specify fewer variables than the number of
substrings that can be parsed, the last variable contains the
unparsed fragment of <string>.

The symbol <STRLEN> contains the actual number of substrings that
Indirect processed (including explicit null substrings).

Example

.PARSE COMMAN" ," FILE Al A2 A3 A4 A5

Given that COMMAN contains "TESTFILE IND,DCL,,LOA",
directive has the following results:

FILE
Al
A2
A3
A4
A5

TESTFILE
IND
DCL
null
LOA
null

<STRLEN> contains a 5.

4-72

this

.PAUSE - PAUSE FOR OPERATOR ACTION

4.39 .PAUSE ~ PAUSE FOR OPERATOR ACTION

.PAUSE is provided for compatibility with RSX Indirect. It is a
no-op under the PRO/Tool Kit.

4-73

.READ - READ NEXT RECORD

4.40 .READ - READ NEXT RECORD

The .READ directive reads the next record into a specified string
variable. The entire record is written into the variable. If
the record is longer than 132 (decimal) characters, an error
occurs.

After every .READ operation, the special symbol <FILERR> contains
the FCS-11 file code for the read and the special symbol <EOF>
reflects whether an end-of-file was found. (Note that .OPENR
does not clear <EOF>.) If an error or end-of-file occurs, the
string variable remains unchanged from its previous state.

Format (brackets not part of syntax)

.READ [#n) ssssss

where:

#n An optional file number that specifies the file
from which the record is to be read. The file
number must be one of the numbers used in a
previous . OPENR statement . The default is # 0.
You can substitute a numeric symbol for the value
n by enclosing the symbol in apostrophes.

ssssss The string variable into which the record will be
read.

Example

.LOOP:

.ERROR:

.DONE:

.ENABLE SUBSTITUTION

.OPENR FILE
IF <FILERR> NE 1 .GOTO ERROR

.READ RECORD

.IFT <EOF> .GOTO DONE

.IF <FILERR> NE 1 .GOTO ERROR
; 'RECORD'
.GOTO LOOP

.CLOSE

4-74

.READ - READ NEXT RECORD

These directives open the file FILE.DAT for reading, read each
record into the string variable RECORD, display each record on
the terminal screen, and close the file.

4-75

.RETURN - RETURN FROM A SUBROUTINE

4.41 .RETURN - RETURN FROM A SUBROUTINE

The .RETURN directive signifies the end of a subroutine and
returns control to the line immediately following the .GOSUB
directive that initiated the subroutine.

Format

.RETURN

4-76

.SETT/.SETF/.SETL - SET SYMBOL TO TRUE OR FALSE

4.42 .SETT/.SETF/.SETL - SET SYMBOL TO TRUE OR FALSE

The .SETT, .SETF, and .SETL directives define or change the value
of a specified logical symbol. If the symbol has not been
defined, Indirect makes an entry in the symbol table and sets the
logical symbol to the value specified. If the symbol has already
been defined, Indirect resets the symbol accordingly. Indirect
exits with a fatal error if the logical symbol was defined
previously as a numeric or string symbol.

Formats

.SETT ssssss

.SETF ssssss

.SETL ssssss 111111

where:

ssssss The 1- to 6-character logical symbol to
assigned a true or false value.

be

111111 A logical or numeric
assigned the value of
expression is evaluated.

expression. ssssss is
111111 when the logical

Examples

.SETT X

This directive sets the logical symbol X to true .

. SETF ABCDE

This directive sets the logical symbol ABCDE to false .

. SETL TEST SWITCHA!SWITCHB

This directive sets the logical symbol TEST to true if SWITCHA or
SWITCHB is true.

4-77

.SETN - SET SYMBOL TO NUMERIC VALUE

4.43 .SETN - SET SYMBOL TO NUMERIC VALUE

The .SETN directive defines or changes the value of a specified
numeric symbol. If the symbol has not been defined, Indirect
makes an entry in the symbol table and sets the symbol to the
numeric value specified. If the symbol has already been defined,
Indirect resets the symbol accordingly. Indirect exits with a
fatal error if the numeric symbol was previously defined as a
logical or string symbol.

Format

.SETN ssssss numexp

where:

ssssss The 1- to 6-character numeric symbol.

numexp A numeric expression.

When specifying a numeric value to assign to a symbol, you may
combine a numeric symbol or constant with another numeric symbol
or constant to form a numeric expression. If numeric expressions
are used, no embedded blanks or tabs are permitted. Evaluation
is done from left to right unless parentheses are used to form
subexpressions that are evaluated first. The radix of an
expression is octal if all the operands are octal and decimal
mode has not been enabled; otherwise the radix is decimal.

Examples

.SETN NUMBER 27

This directive assigns to the numeric symbol NUMBER the value 27
(octal) .

. SETN Al 3*(A2-5)

This directive assigns the numeric symbol Al the value of symbol
A2 minus 5 multiplied by 3.

4-78

.SETO/.SETD - SET SYMBOL TO OCTAL OR DECIMAL

4.44 .SETO/.SETD - SET SYMBOL TO OCTAL OR DECIMAL

The .SETO and .SETD directives redefine the radix of a specified
numeric symbol (without affecting the symbol's actual value).

If the symbol has not been defined, Indirect makes an entry in
the symbol table and sets the symbol to the specified radix with
a value of 0. If the symbol has already been defined, Indirect
resets the symbol accordingly. Indirect exits with a fatal error
if the symbol was previously defined as a logical or string
symbol.

Formats

.SETO ssssss

.SETD ssssss

where:

ssssss The 1- to 6-character numeric symbol to be
assigned an octal or decimal radix.

Example

.SETN A 10 Sets symbol A to 10 (octal)

.SETD A Defines A as a decimal radix symbol with a
value of 8 (decimal).

.SETO A Defines A back to original radix with a
value of 10 (octal).

4-79

.SETS - SET SYMBOL TO STRING VALUE

4.45 .SETS - SET SYMBOL TO STRING VALUE

The .SETS directive defines or changes the string value of a
specified string symbol. If the symbol has not been defined,
Indirect makes an entry in the symbol table and sets the symbol
to the specified string value. If the symbol has been defined,
Indirect resets the symbol accordingly. Indirect exits with a
fatal error if the symbol was defined previously as a logical or
numeric symbol.

Format

.SETS ssssss strexp

where:

ssssss The 1- to 6-character string symbol.

strexp Any string expression.

Indirect assigns to the specified symbol the
represented by the string expression strexp.
constant is used in strexp, the constant must be
quotation marks ("constant"}.

string value
If a string
enclosed by

You can combine a string symbol, constant, or substring with
another string symbol or substring by the string concatenation
operator (+) to form a string expression.

Examples

.SETS A "ABCDEF"

This directive assigns to the string symbol A the string value
ABCDEF .

. SETS STR2 "ZZZ"

This directive assigns string symbol STR2 the value ZZZ .

. SETS X STR2+"ABC"

This directive assigns string symbol X the value of symbol STR2
plus ABC (that is ZZZABC) .

. SETS X STR2+A[1:3]

This directive is equivalent to the previous directive; it
assigns the string symbol x the string value of STR2 plus the
first three characters of string A (that is ZZZABC).

4-80

.SETS - SET SYMBOL TO STRING VALUE

The substring select expression is of the form:

"[start-index:ending-index]" .

. SETS MYFILE <DIRECT>+"MYFILE.TXT"

This directive assigns the string
of the current directory and
quotation marks. For example,
[USERFILES], then MYFILE is
[USERFILES]MYFILE.TXT.

symbol MYFILE the string value
the string contained within the
if the current directory is

assigned the string value

4-81

.STOP - TERMINATE COMMAND FILE PROCESSING

4.46 .STOP - TERMINATE COMMAND FILE PROCESSING

The .STOP directive
processing and exits.

$ @ <EOF>

immediately
The message

terminates command

is then displayed (unless .DISABLE DISPLAY is in effect).

file

The .STOP directive allows you to optionally set the exit status
for Indirect execution.

Format (brackets not part of syntax)

.STOP [value]

where:

value

Example

.STOP 0

An optional numeric expression to serve as the
exit status for Indirect. If you do not specify
an exit status value, the .STOP directive is
identical to the logical end-of-file directive
(/).

This directive terminates command file processing and sets the
exit status for Indirect to 0.

4-82

.TEST - TEST SYMBOL

4.47 .TEST - TEST SYMBOL

The .TEST directive has two
variable and sets various
does substring searches and
accordingly.

Format 1

.TEST ssssss

where:

different functions. It tests a
special symbols accordingly, and it

sets the special symbol <STRLEN>

sssss The 1- to 6-character symbol to be tested.

The results of the test are as follows:

® If variable is a string, <SYMTYP> is set to 4 and
<STRLEN> contains the length of the string. Also, the
special symbols <ALPHAN>, <NUMBER>, <RAD50>, and <OCTAL>
are set based on a scan of the characters of variable.

@ If variable is numeric, <SYMTYP> is set to 2.

& If variable is octal, <SYMTYP> is set to 2 and <OCTAL>
is set to TRUE.

o If variable is logical, <SYMTYP> is set to 0.

Format 2

.TEST string substring

where:

string A string symbol or constant.

substring A string expression.

In this case, the substring is searched for in the specified
string. If the substring is present, <STRLEN> is set to the
position of the starting character of the substring within the
string. If substring is not present, <STRLEN> is set to 0.

4-83

.TEST - TEST SYMBOL

Examples

1. If SUM is a string symbol, the directive statement:

.TEST SUM

sets <SYMTYP> to 4 and places the number of characters
represented by the symbol SUM into <STRLEN>.

2. The directive statements:

.SETS MAIN "ABCDEF"

.TEST MAIN "C"

set <STRLEN> to 3, C's position in string ABCDEF.

4-84

.TESTDEVICE - TEST DEVICE

4.48 .TESTDEVICE - TEST DEVICE

The .TESTDEVICE directive allows a command file to acquire
information about any device in the system. The information,
including error indications, is contained in the string symbol
<EXSTRI>. Each device attribute in the string is separated by a
comma (which allows processing by the .PARSE and .TEST
directives). The first field of the string is the full physical
name of the device. The next four fields are octal
representations of the device-characteristics words (U.CWl
through U.CW4 of the Unit Control Block). Additional fields
contain more information about the device.

Format

.TESTDEVICE dd[nn]:

where:

dd [nn]: The device about which the command file
requesting information.

is

The information stored in <EXSTRI> is in the following form:

ddnn:,xx,xx,xx,xx,atr,atr ... ,atr,

where:

ddnn:

xx,xx,
xx,xx

atr

Example

The physical device name for the device specified
in the command line.

The four device-characteristics words in octal
notation.

One or more of the following device attributes:

NSD "No such device'' is configured into this
system.

LOD The device driver is loaded.
UNL The device driver is not loaded.

.TESTDEVICE SY:

This directive acquires information about user logical device SY:
and stores it in <EXSTRI>.

4-85

.TESTFILE - TEST A FILE

4.49 .TESTFILE - TEST A FILE

The .TESTFILE directive determines if a specified file exists.

If you specify a file in the command line, the results of a
.TESTFILE operation are contained in the symbols <FILSPC> and
<FILERR>. <FILSPC> contains the fully qualified file
specification and <FILERR> contains the FCS status code resulting
from the search for the file.

Formats

.TESTFILE filespec

where:

filespec Is the file to be tested.

Examples

.TESTFILE IND.MAP

This directive assigns the following values if the file exists:

<FILERR>
<FILSPC>

1
DW1:[USERFILES]IND.MAP;4

If the file does not exist, the directive assigns the following
values:

<FILERR>
<FILSPC>

230.
DW1:[USERFILES]IND.MAP;0

The following directive translates the logical name TI: into its
physical device name .

. TESTFILE TI:

The directive assigns the symbol values as follows:

<FILERR>
<FILSPC>

1
TT1:.DAT;0

4-86

.TESTPARTITION - TEST A PARTITION

4.50 .TESTPARTITION - TEST A PARTITION

The .TESTPARTITION directive allows a command file to obtain
information about a partition in the system. The partition can
be the one in which Indirect is running or any other partition.
You can use the directive to verify that a partition is large
enough before installing a task in it or that the partition is
present before loading a special system. Indirect returns the
information (in the special symbol <EXSTRI>) in the following
format:

partition-name,base,size,type,

where base and size are in 64-byte blocks and type is SYS for
system-controlled partitions, USR for user-controlled partitions,
or NSP for an unknown partition name. If the partition is not
found, Indirect returns a "No Such Partition" error in the form:

partition-name,,,NSP,

Format

.TESTPARTITION partition-name

where:

partition
name

A 1- to 6-character legal partition name.

Example

.TESTPARTITION GEN
;GEN,1500,2303,SYS,

This directive obtains information about the partition named GEN.
The partition has a starting address of 150000 (octal), is 230300
(octal) bytes long, and is a system-controlled partition.

4-87

.TESTSYSTEM - TEST SYSTEM

4.51 .TESTSYSTEM - TEST SYSTEM

The .TESTSYSTEM directive allows a
information about the presence of
features.

command file to acquire
certain operating system

Format

.TESTSYSTEM keyword number

where:

keyword

number

Example

identifies the system component to be returned.
Valid keywords are:

OPTION which interprets the immediately

SERIAL

following symbol (number) as a number
indicating the system feature to be
interrogated.

which
number
value.

returns
in the

the processor serial
<EXSTRI> return string

is a number representing the desired feature.
(Symbolic equivalents for these numbers, called
system feature symbols, are listed in the P/OS
System Reference Manual under the description of
the FEAT$ system directive.) For convenience,
the command library INDSYS.CLB contains a
procedure (INDSFN) that performs feature
testing. The return value of string <EXSTRI> is
the string "<TRUE>" or "<FALSE>", depending upon
whether or not the current system contains or
was built with the indicated feature.

@DW1:[1,2]INDSYS/LB:INDSFN HF$FPP
.SETL FPUPRS '<EXSTRI>'

is FPP present?

Sets the logical symbol FPUPRS to true or false, depending on
whether or not the floating point chip is installed on this
system. HF$FPP is a system feature symbol .

. TESTSYSTEM OPTION -16 .

. SETL FPUPRS '<EXSTRI>'

4-88

.TESTSYSTEM - TEST SYSTEM

Does the same as the previous example, except that it uses the
actual number representing the FPP (-16.) rather than the system
feature symbol (HF$FPP).

4-89

.TRANSLATE - TRANSLATE A LOGICAL NAME

4.52 .TRANSLATE - TRANSLATE A LOGICAL NAME

This directive attempts to translate a logical name as defined by
the DCL command ASSIGN.

Format

.TRANSLATE logical-name

If available, the translated value of 'logical-name' is returned
in <EXSTRI>. The logical-name must have been previously defined
(using the ASSIGN command, for example).

The .TRANSLATE command will translate a logical name by first
searching in the USER logical name table. If the logical name is
not found, the SESSION logical name table is searched. If the
logical is still not found the SYSTEM table is searched.

NOTE

You cannot limit the search to a particular table
as you can in DCL.

Example

The directive:

.TRANSLATE LDW001:
;'<EXSTRI>'

displays the following:

;BIGDISK

4-90

.WAIT - WAIT FOR A TASK TO FINISH EXECUTION

4.53 .WAIT - WAIT FOR A TASK TO FINISH EXECUTION

.WAIT is provided for compatibility with command files moved from
RSX-11 systems. It is a no-op under the PRO/Tool Kit.

4-91

.XQT - INITIATE PARALLEL TASK EXECUTION

4.54 .XQT - INITIATE PARALLEL TASK EXECUTION

.XQT is provided for compatibility with command files transferred
from RSX-11 systems. The remainder of the command line is passed
to DCL as though the ''.XQT" had not been present.

4-92

COMPATIBILITY WITH COMMAND FILES FROM RSX SYSTEMS

4.55 COMPATIBILITY WITH COMMAND FILES FROM RSX SYSTEMS

Many features of the indirect command processors present on
RSX-11M and RSX-11M-PLUS has been preserved under the PRO/Tool
Kit. Because of differences in the goals of the P/OS system,
some commands and symbols have little or no meaning. For
example:

o The .WAIT and .XQT commands are present and parsed but behave
as no-operation commands.

o The .XQT command is implemented as a synchronous operation,
since it is not possible to initiate multiple commands or
programs for parallel execution.

o The .PAUSE command does not pause. Command file processing
continues without delay.

The following special symbols are available in the symbol table
of the PRO/Tool Kit INDIRECT. When transporting procedures from
other RSX-11 systems that make use of these symbols, examine such
usage and make any appropriate changes.

<ALTMOD>
<BASLIN>
<CONFIG>
<ERRCTL>
<ERRNUM>
<ERRS EV>

<FILATR>
<FMASK>

<IAS>
<LIBUIC>
<LOCAL>
<MAPPED>

<NETUIC>
<NXTSYM>

<RSX11D>

<SYSUIC>
<TI SPED>

use <ESCAPE>
always <FALSE>
see module INDCFG in the procedure
behave as on RSX-11 systems
behave as on RSX-11 systems
behave as on RSX-11 systems

as on RSX-11 systems
see module INDSFN
in library LB000:[1,2]INDSYS.CLB.
always <FALSE>
not meaningful
always <TRUE>
always <TRUE>

not meaningful
use module INDDMP in LB000:[1,2]INDSYS.CLB

Always false in RSX-11M/M-PLUS and
systems
not meaningful
always 0 on TT1:

4-93

P/OS

INDIRECT MESSAGES

4.56 INDIRECT MESSAGES

When Indirect encounters an error, it prints the appropriate
error message and the command line in which the error occurred.
If the line contained a substitution, the line as it appeared
before the substitution took place is also displayed.

4.56.1 Information-Only Messages

@ <EOF>

Indirect has reached the end-of-file for the outermost
command file and is terminating execution.

IND CONTINUING

Indirect is resuming execution after a .PAUSE or .DELAY
directive.

IND DELAYING

IND

A .DELAY directive was just executed, halting the
processing of an indirect command file for a specified
period of time.

INVALID ANSWER OR TERMINATOR

In response to a question from .ASK, you entered
something other than Y, N, or null, followed by a
RETURN; or you did not enter a numeric value in
response to an .ASKN question; or you pressed the
<ESCAPE> key either without escape recognition enabled
or as a character other than the first one following
the question. The question will be repeated.

4-94

INDIRECT MESSAGES

IND VALUE NOT IN RANGE

The response to an .ASKN
within the specified
question.

or
range.

.ASKS question was
Indirect repeats

not
the

4.56.2 Error Messages

IND BAD RANGE OR DEFAULT SPECIFICATION

An illegal character
default argument.
permitted.

IND COMMAND FILE OPEN ERROR

was specified
Only numeric

as a range or
expressions are

The file being invoked in an @file or @file/LB:module
command line cannot be found or opened.

IND DATA FILE ERROR, CODE x.

Indirect encountered an error while processing an
.OPEN, .OPENA, .CLOSE, or .DATA directive or a data
mode access to the secondary file.

IND FILE ALREADY OPEN

An .OPEN or .OPENA directive specified a file that was
already open.

IND FILE NOT FOUND

An @filename or .CHAIN directive specified an incorrect
file name or nonexistent file.

IND FILE NOT OPEN

Indirect encountered a .DATA or .CLOSE directive that
did not reference an open file.

4-95

IND

IND

IND

IND

INDIRECT MESSAGES

FILE READ ERROR

An error was detected in reading the indirect command
file. This error is usually caused by records that are
more than 132 (decimal) bytes long.

ILLEGAL FILE NUMBER

The file number in an .OPEN, .OPENA, .OPENR, .DATA,
.ENABLE DATA, .READ, or .CLOSE directive is not in the
range of 0 through 3.

ILLEGAL NESTING

Too many Begin-End blocks have been nested in the
indirect command file. The maximum nesting depth is
limited to the size of the symbol table.

INITIALIZATION ERROR, CODE x.

Indirect failed to complete initialization when you
invoked it. The following list gives the meaning of
the displayed code number:

1. Unable to acquire system information such as
the UIC or device name.

2. Impure area setup failed.

3. Unable to acquire task-specific information.

4. Unable to acquire terminal-type information.

5. Unable to acquire the disk name and other
information about the system device (SY:).

6. Unable to allocate enough space
and data I/O buffers. The

for command
EXTEND TASK

directive failed to return sufficient space
for Indirect to allocate the buffers.

7. Initialization of allocated buffers failed.

8. Initialization of the DATA file structures
failed.

9. Allocation of FCS-11 buffers for data and
command lines failed.

4-96

IND

INDIRECT MESSAGES

10. Symbol table initialization failed.

11. Initialization cleanup failed.

12. Unable to obtain initial command line.

13. Unable to initialize the FMS-11 forms driver
impure area.

>13. Error codes greater than 13 are returned by
special purpose initialization modules.

Error number 6 is the only initialization error that
you should encounter. If any other error from 1
through 12 persists, call your DIGITAL Customer Support
Center.

INVALID KEYWORD

An unrecognized keyword (preceded by a period) was
specified.

IND LABEL NOT AT BEGINNING OF LINE

The specified label does not start in the first column
of the line. All labels must do so.

IND MAXIMUM INDIRECT FILE DEPTH EXCEEDED

An attempt was made to reference an indirect command
file at a nested depth greater than the maximum
specified in the build file for the Indirect task.

IND NO POOL SPACE

The executive dynamic memory allocation has
exhausted.

IND NULL CONTROL STRING

been

The control string specified with the .PARSE directive
was null (there were no characters between the
quotation marks).

4-97

INDIRECT MESSAGES

IND NUMERIC UNDER- OR OVERFLOW

The evaluation of a numeric expression yielded a value
outside the range 0 through 177777 (octal).

IND REDEFINING A READ-ONLY SYMBOL

An attempt was made
read-only symbol.
overwritten.

to assign
Read-only

a new
symbols

value to a
cannot be

IND REDEFINING SYMBOL TO DIFFERENT TYPE ssssss

IND

IND

IND

IND

An .ASK, .ASKN, .ASKS, .READ, .SETT, .SETF, .SETL,
.SETN, or .SETS directive was used in an attempt to set
the specified, already defined symbol to a different
type. The first definition of a symbol determines its
type (logical, numeric, or string); subsequent value
assignments must conform to the original type .

. RETURN WITHOUT .GOSUB

A .RETURN directive was specified without a previous
call to a subroutine (.GOSUB).

STRING EXPRESSION LARGER THAN 132. BYTES

An attempt was made to generate a string expression
longer than 132 (decimal) characters.

STRING SUBSTITUTION ERROR

Indirect encountered an error during a substitution
operation. A probable cause for the error is either
the omission of a second apostrophe or the
specification of a symbol that is not defined.

SUBROUTINE NESTING TOO DEEP

The maximum subroutine nesting level was exceeded. The
maximum level is specified in the build file for the
Indirect task.

4-98

INDIRECT MESSAGES

IND SYMBOL TABLE OVERFLOW ssssss

The symbol table was full and there was no space for
symbol ssssss.

IND SYMBOL TYPE ERROR ssssss

IND

The symbol ssssss was used out of context for its type;
for example, a numeric expression referenced a logical
symbol. Only symbols of the same type can be compared.

SYNTAX ERROR

The format of the specified command line is incorrect.

IND UNDEFINED LABEL .label:

The label .label: specified in a .GOTO,
.ONERR directive could not be found.

IND UNDEFINED SYMBOL ssssss

.GOSUB, or

The symbol ssssss was referenced, but it had not been
defined.

4-99

CHAPTER 5

FILE COMPARE UTILITY (CMP)

The File Compare Utility (CMP) compares the contents of two ASCII
files on a line-by-line basis, determining whether parallel
records are identical. The utility produces a listing of the
differences between the two files.

Using CMP, you can perform the following file-compare functions:

• Generate a listing showing the differences between the two
files. Each difference is listed as a pair: first, the
lines from the first file, then the lines from the second
file.

o Generate a listing in the form of one list, with differences
marked by change bars.

• Generate output suitable for input to the Source Language
Input Program utility (SLP). This output contains the SLP
commands and input required to make the first input file
identical to the second input file. (For more information on
SLP, see Chapter 10.)

CMP provides switches that allow you to control compare
processing. Using these switches, you can control the comparison
of blanks, tabs, form feeds, and comments. You can also control
line numbering and specify the number of lines required for CMP
to consider that a match has been made between lines in the two
files.

5-1

INVOKING CMP

5.1 INVOKING CMP

You can invoke CMP in two ways:

1. Invoke the DIFFERENCES command, which in turn invokes CMP.
See Chapter 3 for a description of the DIFFERENCES command.

2. Invoke CMP directly from the DCL command level.

To invoke CMP directly from the DCL command level, enter the
following command:

$ RUN $CMP

You receive a new prompt to indicate that you are in the CMP
environment:

CMP>

Once you are in the CMP environment, CMP waits for your command.
The following section describes the command format.

5.2 CMP COMMAND FORMAT

The format for a CMP command is:

[outfile[/sw ...]=] infilel,infile2

outfile

The file specification for the output file. This file can
be in one of three formats, depending on the switch you
specify in the command line. The defaults are:

SYO:
[curdir]
FILCOM
.LST

User's default system device
Current directory CMP is running under
Default file name
Default file type

However, if you do not specify an output file, the output
defaults to your terminal screen. For example:

CMP>FILE1.MAC,FILE2.MAC

5-2

CMP COMMAND FORMAT

CMP lists the differences between FILEl.MAC and FILE2.MAC on
your terminal screen. If you type the equal sign but give
no output file specification, only the total number of
differences is output to your terminal screen. For example:

CMP>=FILE1.MAC;l,FILE2.MAC;l
10 differences found

/sw •..

Switches that you apply to the output file specification.
Some of the switches can be negated and some are mutually
exclusive. See Section 5.3 for more information.

inf ilel

The file specification for the input file to be compared to
infile2. The file name of this file must be specified. The
default file type is .MAC.

infile2

The file specification for the input file to be compared to
infilel. You do not have to have a complete file
specification. The specifications for infilel are used as
defaults for any unspecified portions of infile2. For
example:

CMP>DZl:[FOO]EXEC,;2

CMP interprets the second input file as DZl:[FOO]EXEC.MAC;2.

If you do not specify a file version number, the default is the
most recent version of the file.

5.3 CMP SWITCHES

This section lists the CMP switches, describes the function of
each one, and gives the default setting for each one. You
specify switches after the output file in the command line.

/BL
/-BL

Specifies that blank lines in both files be included in
compare processing. If this switch is specified in the
form /-BL, blank lines are not included in compare
processing. /-BL is the default switch.

5-3

/CB
/-CB

/CO
/-CO

/DI
/-DI

/FF
/-FF

/LI:n

/LN
/-LN

/MB
/-MB

/SL[:au]

CMP SWITCHES

Specifies that CMP list infile2 with change bars, in
the form of exclamation marks (!), to denote which
lines do not have a corresponding line in infilel.
When a section of lines in infilel has been deleted in
infile2 (the output listing file), the first line not
deleted is marked. /-CB is the default switch.

You can change the change bar character from the
exclamation mark to any character you wish by means of
the /VB switch.

Specifies that CMP include comments (that is, text
preceded by a semicolon) in compare processing. /CO is
the default switch.

Specifies that CMP list the differences between the two
files (rather than marking the lines in infile2). /DI
is the default switch.

/CB and /DI are mutually exclusive switches.
specify both, /CB overrides /DI.

If you

Specifies that CMP include records consisting of a
single form-feed character in compare processing. /-FF
is the default switch.

Specifies that a number (n) of lines must be identical
before CMP recognizes a match. /LI:3 is the default
switch.

When it encounters a match, CMP lists all the preceding
nonmatching lines, along with the first line of the
matched sequence of lines to help you find the location
in the file where the match occurred.

Specifies that lines in the output file be preceded by
their line number. Line numbers are incremented by one
for each record read, including blank lines. /LN is
the default switch. If you specify /SL, /LN is
unnecessary.

Specifies that CMP include all blank and tab characters
in a line in compare processing. If you specify /-MB,
CMP interprets any sequence of blank and/or tab
characters as a single blank character. However, all
spaces and tabs are printed in the output listing. /MB
is the default switch.

Directs CMP to generate an output file suitable for use
as SLP command input. When you specify /SL, CMP
generates the SLP command input necessary to make

5-4

/TB
/-TB

/VB:nnn

CMP SWITCHES

infilel identical to infile2. If a 1- to 8-character
alphanumeric symbol is included after the /SL switch
(:au), an audit trail is specified for SLP input.
Section 5.4.3 gives an example of how CMP generates SLP
command input. (For information on SLP, see Chapter
10.) /-SL is the default switch.

Specifies that CMP include all trailing blanks on a
line in compare processing. If you specify /-TB, CMP
ignores all blanks following the last nonblank
character on a line. When you specify /-CO and /-TB
together, blanks that precede a semicolon (;)are
considered trailing blanks and are ignored. /TB is the
default switch.

Specifies an octal character code for the character you
want to use as a change bar. You use this switch with
the /CB switch. The value nnn specifies the octal
character code. For example, you can specify /VB:174
for a vertical bar. /VB:041 (for an exclamation mark)
is the default switch.

CMP default switch settings are listed in Table 5-1.

Table 5-1: Summary of CMP Default Switch Settings

Default

/-BL

/-CB

/CO

/DI

/-FF

/LI:3

/LN

/MB

/-SL

Description

Do not compare blanks.

Do not generate change bars.

Compare comments.

List only the differences between the two files.

Do not compare form-feed characters.

Find three identical lines before a match can
occur.

Generate numbered lines.

Compare all blank and tab characters.

Do not generate an output file suitable for use as
SLP command input.

5-5

CMP SWITCHES

Default Description

/TB Compare all trailing blanks.

/VB:041 Set the exclamation mark (ASCII 041) as the change
bar character. Used with /CB.

5.4 FORMATS OF CMP OUTPUT FILES

CMP uses the two input files you specify on the command line to
create an output file. CMP compares each line in infile1 to its
sequential counterpart in infile2. When there are differences
between the two files, CMP displays those differences in one of
three output formats:

• Differences format (default) (/DI)

• Change bar format (/CB)

• SLP command input format (/SL)

This section gives an example of each of these formats. In the
examples in the subsequent sections, the following files are used
as infilel (TESTl.DAT;l) and infile2 (TEST2.DAT;l):

DW1:[USERFILES]TEST1.DAT;1

LINEl
LINE2
LINE3
LINE4
LINE5
12345
23456
34567
LINE9
LINE10
LINEll
EXTRA

5-6

DW1:[USERFILES]TEST2.DAT;1

LINEl
LINE2
LINE3
LINE4
LINE5
45678
56789
67891
LINE9
LINE10
LINEll
EXTRA
EXTRA
EXTRA
EXTRA

FORMATS OF CMP OUTPUT FILES

5.4.1 Differences Format

If you enter a command line and do not specify any switches, CMP
lists the differences between the two files on your terminal
screen or in an output file. The differences are listed in
pairs; first, the lines from infilel that do not have
counterparts in infile2 are listed, then the lines from infile2
that do not have counterparts in infilel are listed. Each set of
lines is terminated by the first line (or set of lines) for which
a match is successful.

The following example
without any switches.
command:

shows the format of output generated
The output file is generated with the CMP

CMP>TESTDIF.DAT=TEST1.DAT,TEST2.

1) DWl:[USERFILES]TESTl.DAT;l

6 12345
7 23456
8 34567
9 LINE9

2) DW1:[USERFILES]TEST2.DAT;l

6 45678
7 56789
8 67891
9 LINE9

1) DWl:[USERFILES]TESTl.DAT;l

2)

13
14
15

DW1:[USERFILES]TEST2.DAT;1
EXTRA
EXTRA
EXTRA

2 differences found

The input files are TESTl.DAT and TEST2.DAT, which are shown in
Section 5.4. There are two sets of differences separated by a
long line of asterisks. (When there are several sets of
differences, CMP separates each set from the next set by a long
line of asterisks.) The short line of asterisks separates the
pair of differences that comprise the set.

Note that because /LI:n was not specified, the number of lines
required for a match defaults to 3. Thus, CMP found two
differences.

5-7

FORMATS OF CMP OUTPUT FILES

5.4.2 Change Bar Format

You use the /CB switch to generate a listing containing change
bars that show the differences between two files. In the CMP
command line, infile2 is the listing you want generated.

The following example shows the format of output with change bars
applied to lines from two files that do not match line for line.
The output file is generated with the CMP command:

CMP> .l. f

Notice that the change bar is applied to the first line of match
(line 9).

1 LINEl
2 LINE2
3 LINE3
4 LINE4
5 LINES
6 45678
7 56789
8 67891
9 LINE9

10 LINE10
11 LINE11
12 EXTRA
13 EXTRA
14 EXTRA
15 EXTRA

2 differences found

5.4.3 SLP Command Input Format

You use the /SL[:au] switch to generate a file containing records
to be used as SLP command input. /SL directs CMP to generate the
SLP edit command lines and input lines required to make infilel
identical to infile2.

After executing CMP, you execute SLP (CMP does not
SLP command line). For a complete description
utility, see Chapter 10 in this manual.

5-8

generate an
of the SLP

FORMATS OF CMP OUTPUT FILES

The following example shows the format of output generated using
the /SL switch. The output file is generated with the CMP
command:

CMP>TESTDIF.DAT/SL:BLS001=TEST1.DAT,TEST2.DAT

-6,8,/;BLSOOl/
45678
56789
67891
-12, ,/;BLS001/
EXTRA
EXTRA
EXTRA
I

5.5 CMP MESSAGES

This section lists the CMP messages, gives a brief description of
the condition that causes each message, and suggests a response
to the condition.

CMP -- n differences found

Explanation: CMP found n differences between the two files.

User Action: This is an informational message.

CMP -- Command syntax error

Explanation: CMP found an error in the command line syntax.

User Action: Check the syntax of the command line
specification and reenter the command line using the correct
syntax.

CMP -- Error reading input file

Explanation: An I/O error occurred while CMP was reading an
input file.

User Action: Reenter the command line.

5-9

CMP MESSAGES

CMP -- Error writing output file

Explanation: An I/O error occurred while CMP was writing
the output file.

User Action: The output device may be full or bad.
this, then reenter the command line.

CMP -- Illegal /LI value

Check

Explanation: You specified a negative value for the number
of lines required for a match.

User Action: Reenter the command line with a legal value
specified.

CMP -- Illegal switch or switch value

Explanation: An illegal switch or switch value was entered
in the command line.

User Action: Reenter the command line using a legal switch
or switch value.

CMP -- Open failure on input file #1

Explanation: CMP could not open the first input file.

User Action: Check the file specification for the first
input file and reenter the command line using the correct
file specification.

CMP -- Open failure on input file #2

Explanation: CMP could not open the second input file.

User Action: Check the file specification for the second
input file and reenter the command line using the correct
file specification.

CMP -- Open failure on output file

Explanation: CMP could not open the specified output file.

User Action: Check the file specification for the output
file and reenter the command line using the correct file
specification.

5-10

CMP MESSAGES

CMP -- Too many differences for available core

Explanation: The files were too dissimilar for CMP to fit
all the differences in memory.

User Action: You cannot compare the two files.

5-11

CHAPTER 6

FILE DUMP UTILITY (DMP)

The File Dump Utility (DMP) enables you to examine the contents
of a specific file or volume of files. You can format the output
in ASCII, octal, decimal, hexadecimal, or Radix-50 form and dump
it to any suitable output device, such as a printer, terminal
screen, or disk.

You can dump the header and/or virtual blocks of a file or only
the virtual records of a file. If you are dumping a volume, you
can specify a range of logical blocks. DMP handles blocks of up
to 256 (decimal) words in length. The maximum block size must
not exceed this length.

DMP operates in two basic modes: file mode and device mode. Use
file mode to dump virtual records or virtual blocks; use device
mode to dump logical blocks.

File Mode In file mode, one input file is specified,
and all or a specified range of virtual
blocks are dumped. You can also dump all the
virtual records of a specified file in this
mode. The input device must be a FILES-11
formatted disk.

In file mode, you can specify that data be
dumped one record or one block at a time. A
virtual block or record refers to one block
or record of data in a file. Virtual blocks
and records are numbered sequentially from 1
through n, where n is the total number of
blocks or records in the file. Virtual block
O contains the header of the file. Use the
/BL:n:m switch to dump virtual blocks and the
/RC switch to dump virtual records. The /BL
and /RC switches are mutually exclusive.
(DMP switches are listed in Section 6.3.)

6-1

Device Mode

6.1 INVOKING DMP

In device mode, you specify only the input
device, and a specified range of logical
blocks is dumped. The /BL:n:m switch is a
required parameter in this mode.

A logical block refers to a physical 512-byte
block on disk. Logical blocks are numbered
from 0 to n-1, where n is the total number of
logical blocks on the device.

NOTE

The volume must be mounted foreign.

You can invoke DMP in two ways:

1. Invoke the DUMP command, which in turn invokes DMP. See
Chapter 3 for a description of the DUMP command.

2. Invoke DMP directly from the DCL command level.

To invoke DMP directly from the DCL command level, enter the
following command:

$

You receive a new prompt to indicate that you are in the DMP
environment:

DMP>

Once you are in the DMP environment, DMP waits for your command.
The following section describes the command format.

6.2 DMP COMMAND FORMAT

The format for a DMP command is:

De " ~ .1

6-2

DMP COMMAND FORMAT

out file

/SW

Specifies the output file. If the output file name and file
type are unspecified, DMP creates the file DMPFIL.DMP. TI:
(terminal) is also an acceptable outfile specification.

Specifies one of the switches listed in Section 6.3. Unless
otherwise indicated in a switch description, all switches
can be applied either to the input file or to the output
file with equal effect. DMP will allow multiple dumps in a
single command line. Therefore, any or all of the current
format switches may be specified. Certain switches are
mutually exclusive. For example, the /HX, /LW, and /WD
switches are mutually exclusive hexadecimal dump switches.
The first one in the following order will be the only one
executed: /LW, /WD, /HX.

in spec

Specifies the input device and file or input device only.
In file mode, the equal sign and the input file name and
file type are required because DMP does not provide a
default for either of them. However, the input file version
number defaults to the latest version and the device
defaults to SY: and the current directory.

In device mode, the equal sign and input device are required
as is the /BL:n:m switch which specifies the range of
logical blocks to be dumped.

For a complete description of file specifications, see the Tool
Kit User's Guide.

6.3 DMP SWITCHES

DMP switch specifications consist of a slash (/)
switch name, optionally followed by a value.
separated from the switch by a colon (:). DMP
implemented by the following switches:

followed by a
The value is

functions are

Default The default is a word mode octal dump.

6-3

/AS

/BA:n:m

DMP SWITCHES

Specifies that the data should be dumped
one byte at a time in ASCII mode. The
control characters (0-37 octal) are
printed as eight-bit characters consisting
of a circumflex (~), followed by the
alphabetic character corresponding to the
character code plus 100 octal. For
example, bell (code 7 octal) is printed as
~G (code 107 octal). Lowercase characters
(140-177 octal) are printed as a percent
sign (%), followed by the corresponding
uppercase character (character code minus
40 octal), unless the /LC switch is
specified. DMP will also display the DEC
Multinational Characters.

The /AS
mutually
bytes.

NOTE

and /OCT switches are
exclusive when dumping

Specifies a 2-word base block address (the
initial base address is 0,0), where n is
the high-order base block address (octal),
and m is the low-order base block address
(octal). The address may also be
specified in decimal by using a period
after the number. All future block
numbers specified by the /BL switch will
be added to this value to obtain an
effective block number. This switch is
useful for specifying block numbers that
exceed 16 bits. For example:

DMP>/BA:l:O

specifies that all future block numbers
will be relative to 65536 decimal (200000
octal).

DMP>/BA:O:O

clears the base address. Once the /BA
switch is specified, it remains in effect
until it is used again to set a new base
address.

6-4

/BL:n:m

/BY

/DC

/FI:file-number:
sequence-number

/HD[:F or :U]

DMP SWITCHES

When the /BA switch appears in a
line, no blocks are dumped.
result of the command line is to
base address.

command
The only
set the

Specifies the range of blocks to be
dumped, where n is the first block and m
is the last block. The values of n and m
must not exceed 16 bits. In file mode
only, the /BL switch is not required. If
the /BL switch is not specified, DMP will
dump all blocks of the specified file,
relative to the current base address.

If /BL:n:m is specified in file mode, it
specifies the range of virtual blocks to
be dumped. If /BL:n:m is specified as
/BL:O in file mode, no virtual blocks are
dumped. This is useful for dumping only
the header portion of the file (see /HD).
The /BL switch and the /RC switch are
mutually exclusive.

The /BL:n:m switch is a required parameter
in device mode. When used in device mode,
it specifies the range of logical blocks
to be dumped.

The value n represents the block number of
the first block dumped. Successive blocks
are labeled with a block number one higher
than the preceding block number. The dump
will continue until the block labeled m is
dumped.

Specifies that the data be dumped in octal
byte format.

Specifies that the data be dumped in
decimal word format.

In file mode, the file number
instead of a file name as
specification for input.

can be used
a file

This switch is an
in file mode.
switch causes the
the specified or
file to be dumped.

6-5

optional parameter used
If specified, the /HD
file header as well as

implied portion of the
Example:

/HF

/HX

/ID

/LB

DMP SWITCHES

DMP>TI:=JMF.DAT/HD/BL:5:6

This example dumps the header of JMF.DAT
in header format and virtual blocks 5 and
6 in octal format.

In addition, this switch has two options.
"F", the default, causes a FILES-11
formatted dump of the header. "U"
specifies an unformatted octal dump. An
octal dump also occurs when DMP is used on
non-FILES-11 headers.

If you want only the header portion of the
file to be dumped, specify:

/HD/BL:O

Specifies the format for data blocks that
have the FILES-11 header structure. Other
blocks are output as a data dump in the
format selected by /AS, /BY, and so on, in
default octal words.

Example:

DMP>HEAD.LST=[O,OJINDEXF.SYS/HF

This example generates a dump of the index
file INDEXF.SYS and formats all the
headers in the file.

Specifies that the data be dumped in
hexadecimal byte format. Note that a
hexadecimal dump reads from right to left.
(See also the /LW and /WD switches.)

Causes DMP's version to be identified.
This switch may be specified on a command
line by itself at any time.

Example:

DMP>/ID
DMP--DMP VERSION M07.1C

Requests logical block information for a
file. The starting block number and a
contiguous or noncontiguous indication for
the file are displayed.

6-6

/LC

/LIM:n:m

/LW

/MD[:n]

/OCT

/RS

/RC

DMP SWITCHES

Example:

DMP>TI:=RICKSFILE.DAT
STARTING BLOCK NUMBER= 0,13S163 C

The file RICKSFILE.DAT, version 3,
contiguous file starting at block
0,13S163. (See /BA:n:m for block
description.)

is a
number
number

Specifies that the data should be dumped
in lowercase characters.

Specifies the range of bytes, n through m,
of each record or block to be dumped. The
default remains /OCT if you do not specify
format switches.

Specifies that the data be dumped in
hexadecimal double-word format.

Specifies a memory dump and allows control
of line numbers. Line numbers are
normally reset to zero whenever a block
boundary is crossed. The /MD switch
allows lines to be numbered sequentially
for the full extent of the file, that is,
the line numbers are not reset when block
boundaries are crossed. The optional
value (:n) specifies the value of the
first line number. The default is 0. The
/MD switch is used with the output file
specification.

Specifies that the data should be dumped
in octal format in addition to other
formats specified. If no DMP format
switches are specified, the default is
octal. The /AS switch and the /OCT switch
are mutually exclusive when dumping bytes.

Specifies that data
Radix-SO-format words.

be dumped in

Specifies that data be dumped a record at
a time (rather than a block at a time).
The data format is determined by setting
any of these format switches: /AS, /DC,
/HX, /LW, /RS, or /WD.

6-7

/WD

6.4 DMP EXAMPLES

DMP SWITCHES

The largest record that DMP can process is
limited by the amount of space available
to the DMP task. DMP's task image has 512
(decimal) bytes allocated to it initially.

The /RC switch and the /BL switch are
mutually exclusive.

Specifies that the data be dumped in
hexadecimal word format.

Three examples of dump listings are included in this section to
illustrate how the various DMP switches can be used. DMP edits
blocks or records 16 (decimal) bytes at a time. The dump
includes the indicated number of valid bytes in the block or
record. The remaining number of bytes are listed as null bytes
(0).

6.4.1 A Multiple Format Dump

The following command line shown dumps virtual blocks 5 and 6 of
DSC.MAC in hexadecimal, Radix-50, and decimal format. Each line
of the output file will appear in three different formats.

DMP>

The contents of DOC.DMP are:

DUMP OF DWl:[USERFILES]DSC.MAC;l - FILE ID 17725,11,0
VIRTUAL BLOCK 0,000005 - SIZE 512. BYTES

4E 41 4D 4D 4F 43 20 41 20 3B 00 lE 53 45 52 49 0000 ;HX
000000 MFY ML7 0 EFK EFQ L$K LN/ LT3 ;R5
0. 21065. 21317. 00030. 08251. 08257. 20291. 19789. 20033. ;DC

53 45 53 53 45 43 4F 52 50 20 44 4E 41 20 2C 44 0010
000020 GCL JP2 J7F L22 L$Z KCK MMK ML7
16. 11332. 16672. 17486. 20512. 20306. 17731. 21331. 21317.

53 52 49 46 20 3B 00 39 00 3B 00 01 2E 54 49 20 0020

6-8

DMP EXAMPLES

DUMP OF DWl:[USERFILES]DSC.MAC;l - FILE ID 17725,11,0
VIRTUAL BLOCK 0,000006 - SIZE 512. BYTES

20 44 4E 46 55 42 24 20 51 45 20 30 52 20 46 49 0000
000000 KI3 MEX EF M E ElH MYZ LT8 EFT
0. 17993. 21024. 08240. 20805. 09248. 21826. 20038. 08260.

44 4E 45 09 00 09 50 4F 4F 4C 20 45 56 41 45 4C 0010
000020 KCT M2A EFU L$T L39 I KA3 J7F
16. 17740. 22081. 08261. 20300. 20559. 00009. 17673. 17486.

54 53 24 20 54 45 4C 09 00 2B 00 50 4F 4F 4C 20 0020

6.4.2 A Record Dump

The following command line dumps all of the virtual records of
YACHT.SEQ in ASCII and decimal word format:

DMP>REC.DMP=[USERFILES]YACHT.SEQ/RC/AS/DC

The contents of REC.DMP are:

DUMP OF DWl:[USERFILES]YACHT.SEQ;l - FILE ID 15451,35,0
RECORD NUMBER 01. - SIZE 41. BYTES

000000 A L B E R G 3 7 M K
o. 19521. 17730. 18258. 08224. 08224. 14131. 19744.

000020 I I K E T c H 3 7 2 0 0
16. 18761. 08224. 17739. 17236. 08264. 14131. 12832.

000040 0 0 1 2 3 6 9 5 1 A@ A@ A@ A@ A@ A@ A@

32. 12336. 12849. 13875. 13625. 00049. 00000. 00000.

RECORD NUMBER 02. - SIZE 41. BYTES

A L B I N 7 9

08267.

12336.

00000.

000000
0. 19521. 18754. 08270. 08224. 08224. 14647. 08224. 08224.

6-9

DMP EXAMPLES

000020 S L 0 0 P 2 6 0 4 2
16. 08224. 08224. 19539. 20303. 08272. 13874. 12320. 12852.

000040 0 0 1 0 1 7 9 0 OA@A@A@A@A@A@A@
32. 12336. 12337. 14129. 12345. 00048. 00000. 00000. 00000.

6.4.3 A Header Dump

The following command line dumps only the header of DSC.MAC.

DMP>DHR.DMP=[USERFILES]DSC.MAC/HD/BL:O

The contents of DHR.DMP are:
DUMP OF DWl:[USERFILES]DSC.MAC;l - FILE ID 17725,11,0

FILE HEADER
HEADER AREA

H. IDOF
H.MPOF
H.FNUM,
H.FSEQ
H.FLEV
H.FOWN
H.FPRO
H.UCHA
H.SCHA
H.UFAT

F.RTYP
F.RATT
F.RSIZ
F.HIBK
F.EFBK
F.FFBY
(REST)

027
056

(17725,11)
401
[200,200]
[RWED,RWED,RWED,RWED]
000=
000

002 R.VAR
002 FD.CR
116 78.
H:O L:000040 32.
H:O L:000040 32.
532 346.

000000 000000 000000 000000 000000 000000 000000 000000
000000

IDENTIFICATION AREA
I.FNAM,
I.FTYP,
I.FVER
I.RVNO
I.RVDT
I.RVTI
I.CRDT
I.CRTI
I.EXDT

DSC .MAC;l
1
13-0CT-80
09:52:46
13-0CT-80
09:52:45

6-10

DMP EXAMPLES

MAP AREA
M.ESQN 000
M.ERVN 000
M.EFNU,
M.EFSQ (0, 0)
M.CTSZ 001
M.LBSZ 003
M.USE 014 12.
M.MAX 314 204.
M.RTRV
SIZE LBN
12. H:OOO L:036215 15501.
3. H:OOO L:036235 15517.
1. H:OOO L:036250 15528.
2. H:OOO L:036272 15546.
3. H:OOO L:036313 15563.
11. H:OOO L:036411 15625.

CHECKSUM
H.CKSM 122620

6.5 DMP ERROR MESSAGES

DMP -- BAD DEVICE NAME

Explanation: An incorrect device name was entered in a file
specification.

User Action:
correct device.

Reenter the command line specifying the

DMP -- BLOCK SWITCH REQUIRED IN LOGICAL BLOCK MODE

Explanation: /BL must be specified.

User Action: Reenter the command line specifying the /BL
switch.

DMP -- CANNOT FIND INPUT FILE

Explanation: The requested file cannot be located in the
specified directory.

User Action: Reenter the command line specifying the
correct file name and directory.

DMP -- COMMAND SYNTAX ERROR

Explanation: A command line was entered in a format that
does not conform to syntax rules.

6-11

DMP ERROR MESSAGES

User Action: Reenter the command line specifying the
correct syntax.

DMP -- FAILED TO ASSIGN LUN

Explanation: An illegal device was entered in a file
specification.

User Action: Reenter the command line specifying the
correct device.

DMP -- FAILED TO READ ATTRIBUTES

Explanation: A file was specified for which you did not
have read access privileges.

User Action: Rerun DMP after you have
protection of the file to READ access.

DMP -- ILLEGAL SWITCH

changed the

Explanation: A switch was specified that is not a valid DMP
switch, or a legal switch was used in an invalid manner.

User Action: Reenter the command line specifying the
correct switch.

DMP -- ILLEGAL USE OF /RC SWITCH

Explanation: The /RC switch can be used only in file mode
(see the beginning of this chapter).

User Action: Reenter the command line specifying a file
name.

DMP -- ILLEGAL VALUE ON HD SWITCH

Explanation: An option was entered other than F or U for
the /HD switch.

User Action:
correct option.

Reenter the command line specifying the

DMP -- I/0 ERROR ON INPUT FILE

or

DMP -- I/O ERROR ON OUTPUT FILE

Explanation: One of the following conditions exists:

6-12

DMP ERROR MESSAGES

G A problem exists on the physical device.

@ The file is corrupted or the format is incorrect.

G The output volume is full.

User Action: Determine which condition caused the message
and correct that condition. Reenter the command line.

DMP -- NO INPUT FILE SPECIFIED

Explanation: A command line was entered with no input file
specification.

User Action: Reenter the command line specifying an input
file.

DMP -- NO LISTS OR WILD CARDS ALLOWED

Explanation: Either a command line with more than one input
or output file name was entered, or a wildcard was entered
as a file specification.

User Action: Reenter the command line, specifying only one
input file specification and one output file specification.
No wildcard specifications are allowed.

DMP -- OPEN FAILURE ON INDIRECT FILE

Explanation: The requested indirect command file does not
exist as specified. One of the following conditions exists:

@ The file is protected against access.

o A problem exists on the physical device.

o The volume is not mounted.

~ The specified file directory does not exist.

The named file does not exist in
directory.

the specified

User Action: Determine which condition caused the message
and correct that condition. Reenter the command line.

DMP -- OPEN FAILURE ON INPUT FILE

or

DMP -- OPEN FAILURE ON OUTPUT FILE

6-13

DMP ERROR MESSAGES

Explanation: One of the following conditions exists:

o The file is protected against access.

o A problem exists on the physical device.

The named file does not exist in
directory.

s The volume is not mounted.

the

o The specified file directory does not exist.

specified

User Action: Determine which condition caused the message
and correct that condition. Reenter the command line.

6-14

CHAPTER 7

LIBRARIAN UTILITY PROGRAM (LBR)

The Librarian Utility Program (LBR) allows you to create, update,
modify, list, and maintain library files. A library file is a
direct access file that contains a collection of related files.
LBR organizes files, usually having the same file type, into
library modules so that you have rapid and convenient access to
your files.

Library files contain two directory tables: the Entry Point
Table (EPT) and the Module Name Table (MNT). The EPT contains
entry point names that consist of global symbols defined as entry
points in MACRO source programs. The MNT contains names of the
modules in the library. Both tables are alphabetically ordered.

There are three kinds of library files:
universal, described below.

object, macro, and

Object library
files (.OLB)

contain object files (.OBJ). The module
names are derived from .TITLE directives, while
the entry point names are derived from global
symbols defined in the module. LBR references
the module code in the library by the module
name. The source program references object
library modules by the entry point name. Entry
points apply only to object libraries.

You use object module libraries as input to the
Professional Application Builder (PAB). PAB
searches for definitions of all global symbols
referenced in a program in the following
manner. First, PAB searches the other modules
specified, then it searches the specified
user-written object module library, and
finally, it searches the system library.

7-1

Macro library
files (.MLB)

Universal
library
files (.ULB)

contain source macro files (.MAC). The module
names are derived from .MACRO directives. From
each macro definition, LBR extracts the name
and creates an entry in the module name table.
The entry in the module name table is the means
by which the assembler finds the associated
macro definition in the library.

You use macro library modules as input to the
Professional MACR0-11 Assembler. The assembler
searches the specified library for macros
listed in .MCALL statements and called in the
source program before searching the system
macro library.

contain modules inserted from any kind of file,
whether it be a program or text. The module
names are either user-specified in the Insert
(/IN) switch, or derived from the file name at
the time of insertion.

Primarily, you use universal libraries to
package related files together. You can
reference a universal library module in a
program by using the Universal Library Access
($ULA) system library routine. $ULA, specified
in the macro source program, establishes the
necessary conditions for access (read-only) to
a universal library module.

Section 7.3 describes how you invoke LBR.

7.1 FORMAT OF LIBRARY FILES

A library file consists of a library header, an entry point
table, a module name table, the library modules and their
headers, and any available space.

The entry point table has zero length for macro and universal
libraries. Figure 7-1 illustrates object and macro library file
format. Figure 7-2 illustrates universal library file format.

7 .1.1 Library Header

The header section is a full block in which the first 24
(decimal) words are used to describe the current status of the
library. The header's contents are updated as the library is

7-2

FORMAT OF LIBRARY FILES

modified. This allows LBR to access the necessary information to
perform its functions (for example, Insert, Compress, and
Delete). The twenty-fourth word in the library header is the
default insert file type for universal libraries and is undefined
for macro and object libraries. See Figure 7-3.

7.1.2 Entry Point Table

The entry point table consists of 4-word elements containing an
entry point name (words 0-1) and a pointer to the module header
of the module where the entry point is defined (words 2-3). See
Figure 7-4. This table is searched when a library module is
referenced by one of its entry points. The table is sequenced in
order of ascending entry point names. The entry point table
applies only to object library files.

7.1.2.1 Module Name Table - The module name table is searched
when the library module is referenced by its module name rather
than by one of its entry points. It is made up of 4-word
elements: a module name (words 0-1) and a pointer to the module
header (words 2-3). See Figure 7-5. The module name table is
sequenced in order of ascending module names.

7.1.2o2 Module Header - Each module starts with a header of
eight words for object and macro modules and 32 (decimal) words
for universal modules. The module header contains information
about the module such as the type and status of the module, its
length (number of words), and its attributes. See Figures 7-6
and 7-7.

In object and universal modules, the low-order bit of the
attributes byte is set if the module has the selective search
attribute. In universal modules, bit 1 of the attributes byte is
set if the input file was contiguous. Also, in object modules,
the two words of type-dependent information contain the module
identification defined by the .IDENT directive at assembly time.
In macro modules, these two words are undefined.

For universal modules, type-dependent identification is derived
from the file type and version number of the input file.

Universal libraries allow you to change the module header, which
contains optional descriptive information, by means of the Modify
Header switch (/MH).

7-3

FIXED-
LENGTH
RECORDS

VARIABLE-
LENGTH
RECORDS

Figure 7-1:

FORMAT OF LIBRARY FILES

LIBRARY
HEADER

ENTRY POINT
TABLE

MODULE NAME
TABLE

MODULE l HEP,DER
!----

MODULE l

MODULE N HEADER

MODULE N

AVAILABLE SPACE

+---

BLOCK
BOUNDARIES

ZK-184-81

neral Fo for Object and Macro

7-4

b Files

FIXED
LENGTH
RECORDS

VARIABLE
LENGTH
RECORDS

FORMAT OF LIBRARY FILES

LIBRARY
HEADER

ENTRY POINT
TABLE

r----~~~~~~~~-i-~~

MODULE NAME
TABLE

MODULE l HEADER
UNUSED SPACE

MODULE 1
I-·- -

I--- -

UNUSED SPACE

MODULE 2 HEADER
UNUSED SPACE

MODULE 2
-

-

1-- -----I

UNUSED SPACE

MODULE N HEADER
UNUSED SPACE

MODULE N
-

AVAILABLE SPACE

NOTE

BLOCK
BOUNDARIES

All universal module headers and the first record
of each universal module will start on a block
boundary.

Figure 7-2: Universal brary File Format

7-5

FORMAT OF LIBRARY FILES

OFFSET

WORD 0 NON ZERO ID I. LIBRARY TYPE

2 LBR (LIBRARIAN) VERSION

4 (. IDENT FORMAT)

6 YEAR

10 DATE AND MONTH

12 TIME LAST DAY

14 INSERT HOUR

16 MINUTE

20 SECOND

22 RESERVED l SIZE EPT ENTR's

24 EPT STARTING RELATIVE BLOCK

26 NO. EPT ENTRIES ALLOCATED

30 NO. EPT ENTRIES AVAILABLE

32 RESERVED l SIZE MNT ENTR'S

34 MNT STARTING REL BLOCK

36 NO. MNT ENTRIES ALLOCATED

40 NO. MNT ENTRIES AVAILABLE

42 LOGICALLY DELETED

44 AVAILABLE (BYTES)

46 CONTIGUOUS SPACE

50 AVAILABLE (BYTES)

52 NEXT INSERT RELATIVE BLOCK

54 START BYTE WITHIN BLOCK

56 UNIVERSAL DEFAULT INSERT TYPEl

luNDEFINED FOR MACRO AND OBJECT LIBRARIES
ZK-186-81

Figure 7-3: Contents of Library Header

7-6

FORMAT OF LIBRARY FILES

WORD 0 I GLOBAL SYMBOL
I

l NAME (RAD50)

2 ADDRESS OF RELATIVE BLK.
MODULE

3 HEADER BYTE IN BLOCK
ZK-18/'-Si

Figure 7-4: Format of Entry Point Table Element

WORD 0 MODULE NAME

l (RAD50)

2 ADDRESS OF RELATIVE BLK.
MODULE

3 HEADER BYTE IN BLOCK

ZK-188-81

Figure 7-5: Format of Module Name Table Element

7-7

OFFSET FROM
START OF

MODULE HEADER

0

2

4

6

10

12

14

16

FORMAT OF LIBRARY FILES

ATTRIBUTES

DATE
MODULE
INSERTED

STATUS

SIZE OF

MODULE (BYTES)

YEAR

MONTH

DAY

TYPE DEPENDENT

INFORMATION

I

I
I

O=NORMAL MODULE
l=DELETED MODULE

ZK 189-B'

Figure 7-6: Module Header Format for Object and Macro Libraries

7-8

FORMAT OF LIBRARY FILES

OFFSET FROM
START OF
MODULE HEADER

0 ATTRIBUTES STATUS I

2 SIZE OF

4

l
MODULE (BnES)

6

10 ~
YEAR

MONTH QDULE
L

12 I INSERTED DAY i

14 I DENT

16

20 OPTIONAL

22 INFO l

24 OPTIONAL

26 INFO 2

30 OPTIONAL

32 INFO 3

r---
34 OPTIONAL

36 INFO 4

4'.J
USER

42 FILE
44 ATTRIBUTES

76
,

Figure 7-7: Module Header Format for Universal Libraries

7-9

FORMAT OF LIBRARY FILES

Note to Figure 7-7

Locations 40 (octal) through 76 (octal)
attributes. User file attributes comprise
sections in the FDB of the original file from
was created. The user file attributes are:

contain user file
the first of five

which the module

0 Record type

0 Record attribute

0 Record size

4) Highest virtual block

0 End of file block number

IJ Optional information

When you create a file and insert it into a universal library,
LBR copies the input file attributes to the module header. You
can modify some of these attributes by using the modify header
switch (/MH).

7.2 LBR RESTRICTIONS

The following restrictions apply when using LBR:

o Limit of 65,536 (64K) words per module.

o Limit of 65,536 (64K) blocks per library.

• Tables should be allocated their anticipated
Expanding table allocations requires using
switch (/CO) to copy the entire file.

maximum size .
the Compress

• A fatal error results if an attempt is made to insert a
module into a library that contains a module with a different
name from, but with the same entry point as, the inserted
module. For further information, refer to the discussion of
the /IN switch in Section 7.5.8.

• The use of wildcards in file specifiers is not allowed (that
is, forms such as *.OBJ, where the * indicates all modules
with type .OBJ).

7-10

LBR RESTRICTIONS

The library's tables must contain enough space
modules being replaced and their replacements,
modules are entered and the old modules are only
physically) deleted.

for both the
because the new
logically (not

7.3 INVOKING LBR

You can invoke LBR in two ways:

1. Invoke one of the LIBRARY commands, which in
LBR. See Chapter 3 for a description of
commands.

2. Invoke LBR directly from the DCL command level.

turn
the

invokes
LIBRARY

To invoke LBR directly from the DCL command level, enter the
following command:

$ RUN $LBR

You receive a new prompt to indicate that you are in the LBR
environment:

LBR>

Once you are in the LBR environment, LBR waits for your command.
LBR accepts command lines in the following general format:

outfile[,listfile]=infilel[,infile2, ... infilen]

LBR allows only one level of indirect command file nesting.

7.4 DEFAULTS FOR LBR FILE SPECIFIERS

Table 7-1 describes the defaults for LBR file specifiers.

7-11

DEFAULTS FOR LBR FILE SPECIFIERS

Table 7-1: LBR File Specifiers Defaults

Specifier Default

dev: Output File

[dir)

filename

SYO:

Listing File
The device that was specified for the
output file; otherwise, the default for
the output file.

Input File
For the first input file specifier, SYO:.

For subsequent input file specifiers, the
device specified in the previous input
file specifier; otherwise, the default for
the previous input file specifier.

Output File
The default directory under which LBR is
currently running.

Listing File
The directory that was specified for the
output file; otherwise, the default for
the output file specifier.

Input File
For the first input file specifier, the
directory under which LBR is currently
running.

For subsequent input file specifiers, the
directory specified in the previous input
file specifier; otherwise, the default for
the previous input file specifier.

No default. Must be specified.

7-12

Specifier

.type

;ver

/switch

DEFAULTS FOR LBR FILE SPECIFIERS

Default

Output File
Depends on the default in effect (see
Section 7.5.4), except when the Compress
(/CO) or Create (/CR) switch is specified
(see Sections 7.5.1 and 7.5.2,
respectively) .

Listing File
.LST

Input File
Refer to the descriptions of Compress
(Section 7.5.1), Insert (Section 7.5.8),
and Replace (Section 7.5.12) switches.

Latest version of the file, or latest version
plus 1 for the output file when the Compress
(/CO), Create (/CR), or Extract (/EX) switches
are specified.

Output File
/IN (Insert)

List File
/LI (List module names)

Input File
None

7.5 LBR SWITCHES

LBR uses switches appended to file specifications to invoke
functions. These switches are summarized in Table 7-2.

7-13

Table 7-2: LBR Switches

Option Switch

Compress /CO

Create /CR

Delete /DE

Default /OF

Delete Global /DG

Entry Point /EP

/-EP

Extract /EX

Insert /IN

List /LI

/LE

/FU

Modify Header /MH

Replace /RP

/-RP

Selective Search /SS

Squeeze /SZ

/-SZ

LBR SWITCHES

Function

Compress a library file.

Create a library file.

Delete a library module and all its
entry points.

Specify default library file type.

Delete a library module entry point.

Include entry point elements in the
library entry point table.

Exclude entry point elements in the
library entry point table.

Extract (read) one or more modules
from a library file and write them
into a specified output file.

Insert a module.

List module names.

List module names and entry points.

List module names and full module
description.

Modify a universal module header.

Replace a module.

Do not replace a module.

Set the selective search attribute
in the module header.

Reduce the size of the macro source.

Do not reduce the size of a specific
macro source.

7-14

LBR SWITCHES

7.5.1 Compress Switch (/CO)

Use the Compress switch (/CO) to physically delete all logically
deleted records, to put all free space at the end of the file,
and to make the free space available for new library module
inserts. Additionally, the library table specification may be
altered for the resulting library. LBR accomplishes this by
creating a new file that is a compressed copy of the old library
file. The old library file is not deleted after the new file is
created.

The /CO switch
specification.

can be appended only to the output
The format for specifying the /CO switch is:

file

outfile/CO:size:ept:mnt=infile

outfile·

/CO

:size

:ept

Specifies the file that is to become the compressed version
of the input file. The default file type is .OLB if the
input file is an object library, .MLB if the input file is a
macro library, or .ULB if the input file is a universal
library.

Specifies the Compress switch.

Specifies the size of
(decimal)-word blocks.
the default size.

the new library file in 256
The size of the old library file is

Specifies the number of Entry Point Table (EPT) entries to
allocate. If the value specified is not a multiple of 64
(decimal), the next highest multiple of 64 (decimal) is
used. The number of EPTs in the old library file is the
default value. This parameter is always forced to zero for
macro libraries and universal libraries. The maximum number
of entries is 4096 (decimal).

7-15

:mnt

LBR SWITCHES

Specifies the number of Module Name Table (MNT) entries to
allocate. If the value specified is not a multiple of 64
(decimal), the next highest multiple of 64 (decimal) is
used. The number of MNTs in the old library file is the
default value. The maximum number of entries is 4096
(decimal).

infile

Specifies the library file to be compressed. The default
file type is .OLB for object libraries, .MLB for macro
libraries, and .ULB for universal libraries. The actual
default file type is determined by the current default
library file type (see Section 7.5.4).

Example

LBR>HICKLI 100. 128.:64.=SHEILA.OLB

In this example, file SHEILA.OLE is compressed, and a new
file, RICKLIB.OLB, is created with the following attributes:

size
EPT
MNT

100 (decimal) blocks
128 (decimal) entry points
64 (decimal) module names

The new file, RICKLIB.OLB, receives a version number that is
one version greater than the latest version for the file.

Both files, RICKLIB.OLB and SHEILA.OLB,
default directory file on SYO:.

7 .5.2 Create Switch (/CR)

reside in the

use the Create switch (/CR) to allocate a contiguous library
file. The switch initializes the library file header, the entry
point table, and the module name table.

The /CR switch can be appended only to the output file
specification. The format for specifying the /CR switch is:

j- r • '
ou_J~lL : s i z e : e p t : rnr1 t : J_ i ·infiletype

7-16

LBR SWITCHES

out file

/CR

:size

:ept

:mnt

Specifies the library file being created.
type is .OLB if an object library is being
a macro library is being created, or .ULB
library is being created.

Specifies the Create switch.

The default file
created, .MLB if
if a universal

Specifies the new library file size in disk (256 decimal
word) blocks. The default size is 100 (decimal) blocks.

Specifies the number of Entry Point Table (EPT) entries to
allocate. The default value is 512 (decimal) for object
libraries. This parameter is always forced to zero for
macro libraries and universal libraries. The maximum number
of entries is 4096 (decimal).

Specifies the number of Module Name Table (MNT)
allocate. The default value is 256 (decimal).
number of entries is 4096 (decimal).

entries to
The maximum

:libtype

Specifies the type of library to be created. Acceptable
values are OBJ for object libraries, MAC for macro
libraries, and UNI for universal libraries. The default is
the last value specified or implied with the /DF switch (see
Section 7.5.4), or OBJ if /DF has not been specified.

:infiletype

Specifies the default input file type for the created
universal library. If this value is not specified, the
default input file type for universal libraries is .UNI.
This value is not defined for object or macro libraries.

7-17

LBR SWITCHES

If the values specified for EPT and MNT are not multiples of 64
(decimal), EPT and MNT are automatically filled out to the next
disk block boundary.

Example

LBR>PICKI_,I .l 8 .. :6 ,,:(JBJ·==

In this example, a combination of functions
First, the library file RICKLIB.OLB is
default directory on SYO:. RICKLIB has
attributes:

is performed.
created in the

the following

size
EPT
MNT
type

100 (decimal) blocks (default size)
128 (decimal) entry points
64 (decimal) module names
.OBJ

Secondly, object modules from the input files SHEILA.OBJ,
LAURA.OBJ, and JENNY.OBJ, which reside in the default
directory on SYO:, are inserted into the newly created
library file. Insert (/IN) is the default switch for input
files (see Section 7.5.8).

7.5.3 Delete Switch (/DE)

Use the Delete switch (/DE) to logically delete library modules
and their associated entry points (global symbols) from a library
file. Up to 15 (decimal) library modules and their associated
entry points can be deleted with one delete command.

When LBR begins processing the /DE switch,
following message on the terminal screen:

MODULES DELETED:

it prints the

As modules are logically deleted from the library file, the
module name is printed on the terminal screen. (See the example
at the end of this section.)

If a specified library module is not contained in the library
file, a message is printed on the terminal screen and the
processing of the current command is terminated. This message is
as follows:

LBR *FATAL*-NO MODULE NAMED "name"

The /DE switch can be appended only to the library file
specification.

7-18

LBR SWITCHES

When LBR deletes a module from a library file, the module is not
physically removed from the file, but is marked for deletion.
This means that, although the module is no longer accessible, the
file space it once occupied is not available (unless the deleted
module was the last one inserted). To physically remove the
module from the file and make the freed space available, you must
compress the library (see Section 7.5.1).

The format for specifying the /DE switch is:

outfile/DE:modulel[:module2 ... :modulen]

out file

Specifies the library file.

/DE

Specifies the Delete switch.

:module

Specifies the name of the module to be deleted.

Example

LBR>RICKLIB/DE:SHEILA:LAURA:JENNY

MODULES DELETED:

SHEILA

LAURA

JENNY

In this example, the modules SHEILA, LAURA, and JENNY and
their associated entry points are deleted from the latest
version of library file SYO:RICKLIB.OLB.

7.5.4 Default Switch (/OF)

Use the Default switch (/DF) to specify the
file type. Acceptable default values are
libraries, MAC for macro libraries, and UNI
libraries:

7-19

default library
OBJ for object

for universal

LBR SWITCHES

When a default library file type is not specified by the /DF
switch, OBJ is the default library file type.

Specifying a default value:

1. Sets the default file type for the Create switch (/CR).

2. Provides a file type default value of .MLB for macro
libraries, .ULB for universal libraries, and .OLB for
object libraries when opening an output (library) file.
Exceptions to this occur when you use /CO or /CR. When
you specify /CO, the default applies to the library
input file. When you specify /CR, the default file type
is .OLB if an object library is being created, .ULB if a
universal library is being created, or .MLB if a macro
library is being created.

The /DF switch only affects the file type of the file to
be opened. After that, the library header record
information is used to determine the type of library
file being processed.

The /OF switch can be issued alone or appended to a library file
specification. The format for specifying the /DF switch is:

outfile/DF:filetype ...

or

/DF:filetype

outf ile

Specifies the library file.

/DF

Specifies the Default switch.

filetype

Specifies the default library file type: OBJ for object
library files, MAC for macro library files, and UNI for
universal library files.

If a value other than OBJ, ULB, or MAC is specified, the
current default library type will be set to object libraries
and the following message will be displayed:

7-20

LBR SWITCHES

LBR -- *FATAL*-INVALID LIBRARY TYPE SPECIFIED

Examples

LBR>/DF:MAC
LBR>RICKLIB=infile

The file RICKLIB.MLB is opened for insertion.

LBR>/DF:MAC
LBR>RICKLIB/DF:OBJ=infile

OBJ replaces MAC as the default filetype.
RICKLIB.OLB is opened for insertion.

LBR>/DF:MAC
LBR>RICKLIB/CR

The macro library RICKLIB.MLB is created.

LBR>/DF:MAC
LBR>RICKLIB/CR::::OBJ

The file

Because OBJ is specified, it overrides the default (MAC).
The object library RICKLIB.OLB is created.

LBR>/DF:OBJ
LBR>TEMP/CO=RICKLIB.MLB

Because RICKLIB.MLB is a macro library, MAC overrides the
default (OBJ). The macro library file TEMP.MLB is created
to receive the compressed output.

LBR>/DF:UNI
LBR>RICHLIB=TEST

The file RICHLIB.ULB is opened for insertion.

7.5.5 Delete Global Switch (/DG)

Use the Delete Global switch (/DG) to delete a specified entry
point (global symbol) from the EPT. Up to 15 (decimal) entry
points may be deleted with one command. This command does not
affect the object module that contains the actual symbol
definition. You may wish to delete an entry point if a module to
be inserted has the same entry point.

When LBR begins processing the /DG switch, it prints the
following message on the terminal screen:

7-21

LBR SWITCHES

ENTRY POINTS DELETED:

As entry points are deleted from the library file, the entry
point is printed on the terminal screen. (See the example at the
end of this section.)

If a specified entry point is not contained in the EPT, a message
is printed on the terminal screen and the processing of the
current command is terminated. This message is as follows:

LBR -- *FATAL* - NO ENTRY POINT NAMED "name"

The /DG switch can only be appended to the library file
specification.

The format for specifying the /DG switch is:

ou~tfil globall[:global2 ... :gl ln]

outf ile

Specifies the library file.

/DG

Specifies the Delete Global switch.

global

Specifies the name of the entry point to be deleted.

Example

LBR>RICKLI :SHEILA: LAURA: JENNY

ENTRY POINTS DELETED:

SHEILA

LAURA

JENNY

In this example, the entry points SHEILA, LAURA, and JENNY
are deleted from the latest version of the library file
named SYO:RICKLIB.OLB.

7-22

LBR SWITCHES

7.5.6 Entry Point Switch (/EP)

Use the Entry Point switch (/EP) to control (include or exclude)
the placement of global symbols in a library entry point table.
The switch can be specified in either a positive or negative
format:

/EP

/-EP

/NOEP

Include entry points in the entry point table.

Do not include entry points in the entry point
table.

Do not include entry points in the entry point
table.

The positive format (/EP) causes all entry points in a module or
modules to be entered in the library entry point table.

Either negative format (/-EP or /NOEP) provides for a module to
be included in a library, but excludes the entry points in that
module from being entered in the library entry point table.

/EP is the LBR default. If the switch is not specified, all
entry points are entered into the library entry point table.

The /EP switch has no effect on macro or universal libraries.

The format for specifying the /EP switch is:

outfile[/EP]=infile, ... infilen
[/-EP]
[/NOEP]

or

outfile=infile[/EP][, ... infilen[/EP]
[-/EP] [-/EP]
[/NOEP] [/NOEP]

outfile

Specifies the output file. When the entry point switch is
applied to this file specification, LBR assumes each of the
input files contains modules for which entry points are to
be either included or excluded.

7-23

LBR SWITCHES

infile

Specifies an input file. When the /EP switch is applied to
an input file specification, LBR assumes only the input
files to which the switch is applied contain modules for
which entry points are to be either included or excluded.

NOTE

Although not reflected in the command formats,
the positive and negative forms of the switch may
be applied to both the output and input file
specifications. For example, the effect of /EP
applied to the output file can be overridden by
applying /-EP to a specific input file.

The /-EP switch is useful for including modules that contain
duplicate entry point names in the same library. The /-EP switch
provides the means for entering a module in the library without
having its entry points included in the library entry point
table.

The /-EP switch is also useful in the case where the Task Builder
uses only module names to search for modules in an object module
library. In this case, entries in the library entry point table
are not required. The /-EP switch can be used to exclude entry
points from being entered in the library entry point table.

Depending on whether the /EP switch is applied
specification or to an input specification,
global or local effect.

to the output
it has either a

When applied to the output file specification, the /EP switch has
a global effect. That is, LBR either includes all entry points
in the entry point table or excludes all entry points from being
entered in the entry point table.

When applied to an input file specification, the Entry
switch has a local effect. That is, LBR either includes
points in the entry point table, or excludes entries from
entered in the entry point table for only those modules to
the switch is applied.

Point
entry
being
which

Entry points in an object module are not affected by the /EP
switch. The switch only affects entries in the library entry
point table.

7-24

LBR SWITCHES

7.5.7 Extract Switch (/EX)

Use the Extract switch (/EX) to extract (read) one or more
modules from an object or macro library file and write them into
a specified output file. If more than one module is extracted,
the modules are concatenated in the output file. The extract
operation has no effect on the library file from which the
modules are extracted; that file remains intact. Up to eight
modules may be specified in one extract operation for object and
macro libraries. However, only one module may be specified in
one extract operation for a universal library.

For object and macro libraries, if no modules are specified in
the command line, all modules in the library are extracted and
concatenated in the output file in alphabetical order.

For universal libraries, RMS fields cannot be extracted to a
record-oriented device, such as a terminal.

The /EX switch may be applied only to input file specifications.
The format for specifying the /EX switch is:

outfile=infile/EX[:modulenamel ... :modulenamen]

outfile

Specifies the file into which extracted modules are to be
stored. The default file type for this file is .OBJ if the
input modules are object modules. The default file type is
.MAC if the input modules are macro modules. If the library
is a universal library, the outfile retains the infile type
of the module extracted. (However, you are allowed to
extract only one universal library module at a time.)

infile

/EX

Specifies the library file from which the modules are to be
extracted. The default file type is .ULB, .OLB, or .MLB,
depending on the current default library type.

Specifies the Extract switch.

7-25

LBR SWITCHES

modulename

Specifies the name of the module to be extracted from the
library.

Examples

LBR>DRIVERS=RSXl :DXDRV:DKDRV:TTDRV

The object modules DXDRV, DKDRV, and TTDRV are concatenated
in alphabetical order and written into the file DRIVERS.OBJ.

LBR>TI:=[l 5]RSXMAC. :QI S

The macro QIO$S is written to the terminal screen.

LBR>TE T.OBS=TEST

All of the modules in the library TEST.OLE are written into
the file TEST.OBS in alphabetical order.

7 .5.8 Insert Switch (/IN) for Object and Macro Libraries

Use the Insert switch (/IN) to insert modules into a library
file. Any number of input files can be specified. For object
and macro libraries, each input file can contain any number of
concatenated input modules. For macro libraries, only
first-level macro definitions are extracted from the input files.
All text outside of the first-level macro definitions is ignored.
(The Insert switch for Universal Libraries, is explained in
Section 7.5.9.) The /IN switch is the default library file option
and can be appended only to the library file specification.

If you attempt to insert an input module that already exists in
the library file, the following message is printed on the
terminal screen:

LBR -- *FATAL* DUPLICATE MODULE NAME "name" IN filename

Likewise, if you attempt to insert a module and a module contains
an entry point that duplicates one that is already in the EPT,
the following message is printed on the terminal screen:

LBR -- *FATAL* DUPLICATE ENTRY POINT "name" IN filename

7-26

LBR SWITCHES

The format for specifying the /IN switch is:

outfile[/IN]=infilel[,infile2, ... infilen]

outfile

/IN

Specifies the library file into which the input modules are
depends on the

.OLB if the
if the current

to be
current
current
default

inserted. The default file type
default (see Section 7.5.4). It is
default is object libraries, .MLB

is macro libraries.

Specifies the Insert switch.

infile

Specifies the input file containing the modules to be
inserted into the library file. The default file type is
.OBJ if the outfile is an object library and .MAC if the
outfile is a macro library.

Example

RICKLIB/IN=SHEILA,LAURA,JENNY

In this example, the modules contained in the latest
versions SHEILA, LAURA, and JENNY, which reside in the
default directory on SYO:, are inserted into the latest
version of the library file RICKLIB, which also resides in
the default directory on SYO:. The default file type for
SHEILA, LAURA, and JENNY is .OBJ if RICKLIB is an object
module library, or .MAC. if RICKLIB is a macro library.

7.5.9 Insert Switch (/IN) for Universal Libraries

The Insert switch (/IN) works basically the same for universal
libraries as it does for object and macro libraries. However,
when inserting a file into a universal library, the /IN switch is
applied to the input file rather than the output file. You can
also specify module name and descriptive information as switch
values in the command line. In addition, LBR copies input file
attributes to the module header.

7-27

LBR SWITCHES

The high block indicator (F.HIBK of the file's descriptor block)
and the end of file indicator (F.EFBK of the file's FDB) are
included in the input file's user file attributes. LBR makes the
high block indicator equal to the end of file indicator in the
module header. This means that when a module is extracted to a
file, that file will have as many blocks allocated to it as are
used.

The format for specifying the /IN switch for universal libraries
is:

outfile=infile/IN:name:op:op:op:op

outf ile

Specifies the universal library into which the infile is to
be inserted.

infile

/IN

:name

:op

Specifies the input file to be inserted into the outfile.
The default for the file type is the value indicated at the
universal library's creation time. See Section 7.5.2.

Specifies the Insert switch.

Optionally specifies the module name (up to six Radix-50
characters). The default is the first six characters of the
input file name.

Specifies optional descriptive information (up to six
Radix-50 characters) to be stored in the module header. The
default is null. If only part of the information set is
specified, all preceding colons must be supplied.

Example

LBR>RICKLIB.ULB=JOE.TXT/IN:MOD1:THIS:IS:JAN2:TEXT

7-28

LBR SWITCHES

In this example, LBR inserts JOE.TXT into the universal
library RICKLIB.ULB as MODl. "THIS", "IS", "JAN2", and
"TEXT" are stored in the module header.

You can insert JOE.TXT without the /IN switch and its
values. As a result, all the information normally specified
by the switch values defaults as described in this example.

7.5.10 list Switches (/LI, /LE, /FU)

Use the list switches to produce a printed listing of the
contents of a library file. Three switches allow you to select
the type of listing desired. These switches are as follows:

/LI

/LE

/FU

Produces a listing of the names of all modules in
the library file.

Produces a listing of the names of all modules in
the library file and their corresponding entry
points.

Produces a listing of the names of all modules in
the library file and gives a full module
description for each: that is, size, date of
insertion, and module-dependent information.

These switches can be appended only to the
specification or the list file specification.

output file

The /LI switch is the default value. It need not be specified
when a listing file has been specified or when any other list
switch is included in the command line.

The format for specifying list switches is:

outfile[,listfile] tch(es)

outf ile

Specifies the library file whose contents are to be listed.

listfile

Optionally specifies the listing file. If not specified,
the listing is directed to the terminal screen.

7-29

LBR SWITCHES

/switch(es)

Specifies the list option(s) selected.

Examples

LBR>RICKLIB/LI

In this example, a listing of the names of all the modules
contained in file SYO:RICKLIB.OLB is printed on the terminal
screen.

LBR>RICKLIB/LE

In this example, a listing of the names of all the modules
and their entry points (contained in file SYO:RICKLIB.OLB)
is printed on the terminal screen.

LBR>RICKLIB/FU

In this example, a listing of the names of all the modules
in file SYO:RICKLIB.OLB, and a full description of each one
contained is printed on the terminal screen.

LBR>DW1:[FOOBAR]RICKLIB,LP.LST/LE/FU

In this example, LBR creates file LP.LST in directory
[FOOBAR] on DWl, which lists the module names, their entry
points, and a full description of each module for file
RICKLIB.

7.5.11 Modify Header Switch (/MH)

The Modify Header switch (/MH) pertains only to universal
libraries and allows you to modify the optional user-specified
information in the module header.

The format for specifying the /MH switch is:

outfile/MH:module:op:op:dp:op

outfile

Specifies an output file for the universal library. The
file type defaults to .ULB.

7-30

LBR SWITCHES

/MH

Specifies the Modify Header switch.

:module

:op

Specifies the name of the module
information is to be modified.

whose descriptive

Specifies the optional user information (up to six Radix-50
characters) to be stored in the module header. The default
is null and indicates that the corresponding information
field is not to be changed. Also, entering a pound sign (#)
clears the corresponding information field.

Example

The optional descriptive information for module A of
RICKLIB.ULB is:

"MODA" "FCHCD" "OF" "FCH"

The LBR command is:

LBR>RICKLIB/MH:A:FCHTS:#::

The optional descriptive information for module A in file
RICKLIB is changed to:

"FCHTS" " " "OF" "FCH"

7.5.12 Replace Switch (/RP) For Macro and Object Libraries

Use the Replace switch (/RP) to replace modules in a library file
with input modules of the same name. Any number of input files
are allowed and each file can contain any number of concatenated
input modules.

For macro libraries, only first-level macro definitions are
extracted from the replacement files.

When a match occurs on a module name, the existing module is
logically deleted and its entries are removed from the EPT.

7-31

LBR SWITCHES

As each module in the library file is replaced, a message is
printed on the terminal screen. This message, which contains the
name of the module being replaced, is as follows:

MODULE "name" REPLACED

If the module to be replaced does not exist
LBR assumes that the input module is
automatically inserts it without printing a

in the library file,
to be inserted and
message.

The /RP switch can be specified in either of the following
formats:

• Global format - The /RP switch is appended to the library
file specification and all of the input files are assumed
to contain replacement modules.

• Local format - The /RP switch is appended to an input
file specification and only the file to which the /RP
switch is appended is considered to contain replacement
modules.

Global Format

outfile/RP=infile1[,infile2, ... infilen]

outf ile

/RP

Specifies the library file. The default file
on the current default (see Section 7.5.4).
the current default is object libraries or
current default is macro libraries.

Specifies the Replace switch.

type depends
It is .OLB if
.MLB if the

infile

Specifies the input file that contains replacement modules
for the library file. The default type is .OBJ if outfile
is an object library or .MAC if it is a macro library.

The Global format allows you to specify a list of input files
without having to append the /RP switch to each of them.

7-32

LBR SWITCHES

To override the global function for a particular input file (that
is, to instruct LBR to process a particular file in a list as a
file containing modules to be inserted but not replaced), append
/-RP or /NORP to the desired input file specification.

Local Format

outfile=infile1[/RP][,infile2[/RP], ... infilen(/RP]]

outf ile

Specifies the library file. The local format default is the
same as the global format default.

infile

/RP

Specifies the input file that contains replacement modules
for the output library file. The local format default is
the same as the global format default.

Specifies the Replace switch. Appending the /RP switch to
an input file specifier constitutes the local format of the
switch. This overrides the LBR default (/IN) and instructs
LBR to treat the module(s) contained in the specified file
as replacement modules.

Examples

The files used in the following four examples, and the
modules contained within each file, are depicted in Figure
7-8. These files are assumed to reside in the default
directory on the default device and the initial state of the
library file is assumed to be as shown in Figure 7-8.

1. LBR>RICKLIB/RP=SHEILA,LAURA,JENNY

MODULE "SHEILA" REPLACED
MODULE "LAURAl" REPLACED
MODULE "LAURA2" REPLACED
MODULE "JENNYl" REPLACED

MODULE "JENNY2" REPLACED

This example uses the global format for the /RP switch.
Object modules from the input files SHEILA, LAURA, and
JENNY replace modules by the same names in the library

7-33

LBR SWITCHES

file RICKLIB, and modules JENNY3 and LAURA3 are
inserted. Figure 7-9 shows the resulting library file.

2. LBR>RICKLIB=CHRIS,SHEILA/RP

MODULE "SHEILA" REPLACED

In this example, the local format of the /RP switch is
used. The object module SHEILA from file SHEILA is
replaced in the library file RICKLIB. The object
modules in the file CHRIS are inserted in the library
file. (See the description of the /IN switch in Section
7.5.8.) The resulting library file is shown in Figure
7-10.

3. LBR>RICKLIB/RP=SHEILA,LAURA,JENNY,CHRIS/-RP

MODULE "SHEILA" REPLACED
MODULE "LAURA1" REPLACED
MODULE "LAURA2" REPLACED
MODULE "JENNY1" REPLACED
MODULE "JENNY2" REPLACED

In this example, the /-RP switch is used to override the
global format of the command. Object modules in files
SHEILA, LAURA, and JENNY are processed as modules to be
replaced, and file CHRIS is processed as a file that
contains modules to be inserted. The resulting library
file is shown in Figure 7-11.

4. LBR>RICKLIB/RP=SHEILA,LAURA/-RP,JENNY

MODULE "SHEILA" REPLACED
LBR -- *FATAL* -- DUPLICATE
LAURA.OBJ;l

MODULE "LAURA1" IN

In this example, only module SHEILA from file SHEILA was
replaced. The user specified that the modules in file
LAURA not be replaced (/-RP), but inserted. One of the
modules contained in file LAURA duplicated an already
existing module in file RICKLIB. Therefore, LBR issued
the fatal error message and terminated the processing of
the current command line.

7-34

LBR SWITCHES

OUTPUT INPUT FILES
LIBRARY FILES

FILE NAME RICKLIB.OLB;l SHEILA.OBJ;l LAURA.OBJ;l JENNY.OBJ;l

JENNYl SHEILA LAURAl JENNYl
OBJECT JENNY2 LAURA2 JENNY2
MODULES LAURAl LAURA3 JENNY3

LAURA2

SHEILA

Figure 7-8: Sample Files Used in LBR Examples 1-4

RICKLIB.OLB;l

JENNYl

JENNY2

JENNY3 1

LAURAl

LAURA2

LAURA3 1

SHEILA

1. These modules did not exist in the
library file prior to the exe~ution of
this example, but they did exis~ in the
input files. LBR, therefore, assumed
that they were to be inserted. · Since
LBR handled these modules as a normal
insert, no message was printed on the
input terminal.

ZK-192-81

CHRIS.OBJ;l

CHRISl

CHRIS2

ZK-191-81

Figure 7-9: Output Library File After Execution of Example 1

7-35

LBR SWITCHES

RICKLIB. OLB; 1

CHRIS1 1

CHRIS2 1

JENNYl

JENNY2

LAURAl

LAURA2

SHEILA 2

1. These modules are inserted.

2. This module is replaced.
ZK-193-81

Figure 7-10: Output Library File After Execution of Example 2

RICKLIB.OLB;l

CHRIS1 1

CHRIS2 1

JENNYl

JENNY2

JENNY3 2

LAURAl

LAURA2

LAURA3 2

SHEILA __J

1. These modules were specified to be
ir.serted. Had a module of the same name
been present, a fatal error message
would have been issued. See Example 4.

2. ·rhese modules were inserted by default.
ZK-194-81

Figure 7-11: Output Library File After Execution of Example 3

7-36

LBR SWITCHES

7 .5.13 Replace Switch (/RP) for Universal Libraries

Use the /RP switch for universal libraries in the same way as for
macro and object libraries. However, you can also specify the
same values for the /RP switch as for the /IN switch for
universal libraries. See Section 7.5.9.

As with macro and object
switch with either the
input file specifications.

libraries, you can specify the /RP
output file specification or with the

The global format of the /RP switch for universal libraries is:

outfile/RP:name:op:op:op:op=infile[,infile2, infilen]

The local format of the /RP switch for universal libraries is:

outfile=infile/RP:name:op:op:op:op[,infile2 infilen]

outf ile

Specifies the universal library file.

infile

/RP

Specifies the input file that contains replacement modules
for the library file. The default for the file type is the
value indicated at the universal library's creation time.
See Section 7.5.2.

Specifies the Replace switch.

:name

:op

Optionally specifies the module name to be replaced (up to
six Radix-50 characters). The default is the first six
characters of the infile name.

Specifies optional descriptive information (up to six
Radix-50 characters) to be stored in the module header. The
default is null. If only part of the information set is
specified, all preceding colons must be supplied.

Example

LBR>TEXT.ULB=DEBBIE.TXT/RP::THIS:IS:JAN3:UPDATE

MODULE "DEBBIE" REPLACED

7-37

LBR SWITCHES

In this example, LBR replaces the module DEBBIE in the
universal library TEXT.ULB with an updated module from file
DEBBIE.TXT. The date of replacement is specified by the
optional user information and inserted in the module header.
Note that the optional name is omitted.

The initial state of the library file is shown in Figure
7-12. The resulting library file is shown in Figure 7-13.

OUTPUT
LIBRARY FILE INPUT FILES

FILE NAME TEXT.ULB;l DEBBIE.TXT

MODULES DEBBIE
B:::RNIE

ZK-19:::i-81

Figure 7-12: Sample Files for Universal Library Replace Example

TEXT.ULB;l

DEBBI El
BERNIE

l.The module DEBBIE was replaced. If a
different inf ile were specified, that
file would become module DEBBIE and
occupy the same location in ~EXT.ULB.

ZK-196-3'·

Figure 7-13: Output Library File After Library Replace

7-38

LBR SWITCHES

7 .5.14 Selective Search Switch (/SS)

Use the Selective Search switch (/SS) to set the selective search
attribute bit in the module header of object modules as they are
inserted into an object library. The switch has no effect when
applied to modules being inserted into a macro library. The
switch may be specified with input files for insertion or
replacement operations only, and it affects all modules in the
input file to which it is applied.

Object modules with the selective search attribute are given
special treatment by the Task Builder. Global symbols, defined
in modules with the selective search attribute, are only included
in the Task Builder's symbol table if they are previously
referenced by other modules. Thus, only referenced symbols will
be listed with the module in the Task Builder memory allocation
file, thereby reducing task build time. The /SS switch should
only be applied to object files whose modules contain only
absolute (not relocatable) symbol definitions.

The format for specifying the /SS switch is:

outfile=infile1/SS[,infile2[/SS], ... infilen[/SS]J

out file

Specifies the library file.

infile

/SS

Specifies the input file that contains modules to be
selectively searched.

Specifies the Selective Search switch.

Example

LBR>ANGEL=JOHN,JILL/SS,MARK/SS,MARY

The object files JOHN.OBJ, JILL.OBJ, MARK.OBJ, and MARY.OBJ
are inserted into object library ANGEL.OLB. The selective
search attribute bit is set in both the JILL and MARK object
module header.

7-39

LBR SWITCHES

7.5.15 Squeeze Switch (/SZ)

Use the Squeeze switch (/SZ) to reduce the size of macro
definitions by eliminating all trailing blanks and tabs, blank
lines, and comments from macro text. The /SZ switch is used to
conserve memory in the MACR0-11 Assembler and to reduce the size
of macro library files. The /SZ switch has no effect on object
libraries or universal libraries.

The /SZ switch can be specified in either of two formats:

• Global format - The /SZ switch is appended to the library
file specification. All of the input files are assumed
to contain modules to be squeezed.

Local format - The /SZ switch is
file specification. The /SZ
file to which you append it.

appended to an input
switch works only on the

Global Format

outfile/SZ=infilel[,infile2, ... infilen)

outf ile

Specifies the library file.

/SZ

Specifies the Squeeze switch.

infile

Specifies the input file that contains modules to be
squeezed during insertion into the library file.

Use the global format of the /SZ switch to specify a list of
input files without having to append the /SZ switch to each of
them. To override the global function for a particular input
file (that is, to instruct LBR to process a particular file in a
list as a file containing modules to be inserted but not
squeezed), append /-SZ or /NOSZ to the desired input file
speci fica ti on.

Local Format

outfile=infile1/SZ[,infile2[/SZ] ... ,infilen[/SZ])

7-40

LBR SWITCHES

outfile

Specifies the library file.

infile

/SZ

Specifies the file that contains modules to be squeezed
during insertion into the library file.

Specifies the Squeeze switch.

LBR uses the following algorithm on each line to be squeezed and
then inserts the resulting line into the library file:

1. The line is examined for the rightmost semicolon (;).

2. If a semicolon is located, it is deleted, along with all
trailing characters in the line.

3. All trailing blanks and tabs in the line are deleted.

4. If the resulting line is null, nothing is transferred to
the library file.

If the line contains a semicolon embedded in noncomment text and
you want comments squeezed, code a dummy comment for that line.
The /SZ switch will use only the rightmost comment during squeeze
processing.

Example

Figure 7-14 illustrates the use of the LBR /SZ switch. A
file containing input text to be squeezed is illustrated,
along with the text actually inserted into the library file
after the squeeze operation has been completed.

7-41

LBR SWITCHES

BEFORE

.MACRO MOVSTR RX,RY,?LBL

;*** - - NOTE :
BOTH ARGUMENTS MUST BE REGISTERS

LBL: MOVB
BNE
DEC

(RX)+, (RY)+
LBL
RY

;MOVE A CHARACTER
;CONTINUE UNTIL NULL SEEN
;BACKUP OUTPUT PTR TO NULL

;END OF MOVSTR
.ENDM

AFTER

.MACRO MOVSTR RX,RY,?LBL
;*** - - NOTE :

BOTH ARGUMENTS MUST BE REGISTERS
LBL: MOVB (RX)+, (RY)+

BNE LBL
DEC RY
.ENDM

ZK-197-81

Figure 7-14: MACRO Listing Before and After Running LBR with /SZ

7.6 COMBINING LIBRARY FUNCTIONS

Two or more library functions may be requested in the same
command line. The only exceptions are that /CO cannot be
requested with anything else except /LI, and /CR and /DE cannot
be specified in the same command line.

Functions are performed in the following order:

1. Default switch (/DF)
2. Create switch (/CR)
3. Delete switch (/DE)
4. Delete Global switch (/DG)
5. Modify Header switch (/MH)
6. Insert (/IN), Replace (/RP), Selective Search (/SS),

Squeeze (/SZ), Entry Point (/EP) switches
7. Compress switch (/CO)
8. Extract switch (/EX)
9. List switches (/LI), /LE, /FU)

7-42

COMBINING LIBRARY FUNCTIONS

Example

LBR>FILE/DE:XYZ:$A,FILE.LST:/LE/FU=MODX,MODY/RP

Functions, performed in order, are:

1. Delete modules XYZ and $A.

2. Insert all modules from MODX and replace duplicate
modules of MODY.

3. Produce a listing of the resultant library file on
the line printer with full module descriptions and
all entry points.

7. 7 LBR ERROR MESSAGES

LBR returns two types of error messages: diagnostic and fatal.

Diagnostic error messages describe a condition that requires
consideration, but the nature of the condition does not warrant
termination of the command. Diagnostic messages are issued to
your terminal screen in the format:

LBR -- *DIAG* - message

Fatal error messages describe a condition that caused LBR to
terminate the processing of a command. When this occurs, LBR
returns to the highest level of command input. For example, LBR
issues the fatal error message and exits if you enter the
command:

$ RUN $LBR/COMMAND:"LBR cmd"

where cmd is an LBR command.

If, however, you enter the command in response to the LBR prompt,
that is,

LBR>cmd

LBR issues the fatal error message and reprompts.

Fatal error messages are issued to your terminal screen in the
format:

7-43

LBR ERROR MESSAGES

LBR -- *FATAL* - message

If a fatal error occurs during the processing of an indirect
command file, the command file is closed, the fatal error
message--followed by the command line in error---is issued to
your terminal screen and LBR returns to the highest level of
command input.

7.7.1 Effect of Fatal Errors on Library Files

The status of a library file after fatal errors is:

1. In general, output errors leave the library in an
indeterminate state.

2. During the deletion process, the library is
prior to the printing of the
module-/entry-point-deleted messages.

rewritten
individual

3. During the replacement process, the library is rewritten
prior to the printing of the individual module-replaced
messages.

4. During the insertion process, the library is rewritten
after the insertion of all modules in each individual
input file, that is, between input files.

7.7.2 LBR Error Messages

LBR -- BAD LIBRARY HEADER

Explanation: The file is not a library file or it is
corrupted.

User Action:

e If the file is not a library file, reenter the command
line with a proper library file specified.

o If the file is a proper library file, the volume may be
corrupted.

• If the volume is corrupted,
before it can be used.

7-44

it must be reconstructed

LBR ERROR MESSAGES

LBR -- CANNOT MODIFY HEADER

Explanation: An attempt was made to modify the module
header of a module in an object library or macro library.
No change is made to the module header.

User Action: Reenter the command line, specifying a module
in a universal library.

LBR -- COMMAND I/O ERROR

Explanation: One of the following conditions may exist:

• A problem exists on the physical device.

o The file is corrupted or the format is incorrect (for
example, record length exceeds 132 bytes).

User Action:
message and
line.

Determine which of the conditions caused the
correct that condition. Reenter the command

LBR -- COMMAND SYNTAX ERROR
command line

Explanation: A command was entered in a format that does
not conform to syntax rules.

User Action: Reenter the command line, using the correct
syntax.

LBR -- DUPLICATE ENTRY POINT NAME "name" IN filename

Explanation:
library file
point.

An attempt was made to insert a module into a
when both contain an identically named entry

User Action: Determine
correct file. If not,
the correct input file.
file, you can delete
library and reenter the

if the specified input file is the
reenter the command line, specifying
If the input file is the correct
the duplicate entry point from the

command line.

7-45

LBR ERROR MESSAGES

LBR -- DUPLICATE MODULE NAME ''name" IN filename

Explanation: An attempt was made to insert (without
replacing) a module into a library that already contains a
module with the specified name.

User Action: Determine if the specified input file is the
correct file. If the input file is correct, decide whether
to delete the duplicate module from the library file and
insert the new one, or replace the duplicate module with the
/RP switch appended to the input file specification.

LBR -- EPT OR MNT EXCEEDED IN filename

Explanation: The EPT or MNT table limit was reached during
the execution of an insert or replace operation.

User Action: Copy the library, increasing the table space
by means of the Compress switch. Reenter the command line.

LBR -- EPT OR MNT SPACE EXCEEDED IN COMPRESS

Explanation: An EPT or MNT table size was specified for the
output library file that is not large enough to contain the
EPT or MNT entries used in the input library file.

User Action: Reenter the command line with a larger EPT or
MNT table size specified.

LBR -- ERROR IN LIBRARY TABLES, FILE filename

Explanation: The library file is corrupted or is not a
library file.

User Action: If the file is corrupted, no recovery is
possible; the file must be reconstructed. If the file is
not a library file, reenter the command line with the
correct library file specified.

LBR -- EXACTLY ONE INPUT FILE MUST APPEAR WITH /CO

Explanation: No input library file, or more than one file,
was specified when using the /CO switch.

User Action: ReenteT the command line with only one input
file specified.

7-46

LBR ERROR MESSAGES

LBR -- FATAL COMPRESS ERROR

Explanation: The input library file is corrupted or is not
a library file.

User Action: No recovery is possible. The file in question
must be reconstructed.

LBR -- GET TIME FAILED

Explanation: This error occurs when LBR attempts to execute
a Get Time Parameters directive and fails. The error is
caused by a system malfunction.

User Action: Reenter the command line. If the problem
persists, call your DIGITAL Customer Support Center.

LBR -- ILLEGAL DEVICE/VOLUME
command line

Explanation: The Device specifier entered does not conform
to syntax rules. A device specifier consists of two ASCII
characters, followed by one or two optional octal digits.

User Action: Reenter the command line with the correct
device syntax specified and followed by a colon.

LBR -- ILLEGAL DIRECTORY
command line

Explanation: The directory entered does not conform to
syntax rules. Directory syntax consists of a left square
bracket, followed by one to nine alphanumeric characters (or
one to three octal digits, a comma, and one to three octal
digits), terminated by a right square bracket (for example,
[USERFILES]).

User Action: Reenter the command line with the correct
directory syntax.

LBR -- ILLEGAL FILENAME
command line

Explanation: One of the following was entered:

• A file specifier that contains a wildcard.

7-47

LBR ERROR MESSAGES

$ A file specifier that contains neither a file name nor a
file type.

User Action: Reenter the command line correctly.

LBR -- ILLEGAL GET COMMAND LINE ERROR CODE

Explanation: LBR could not process the command line.

User Action: Reenter the command line. If the problem
persists, call your DIGITAL Customer Support Center.

LBR -- ILLEGAL SWITCH
command line

Explanation: A non-LBR switch was specified or a legal
switch was specified in an invalid context.

User Action: Reenter the command line with the correct
switch specification.

LBR -- ILLEGAL SWITCH COMBINATION

Explanation: Switches were entered that cannot be executed
in combination. See Section 7.6.

User Action: Reenter the command line, specifying the
switches in the proper combination.

LBR -- INDIRECT COMMAND SYNTAX ERROR
command line

Explanation: An indirect command file was specified in a
format that does not conform to syntax rules.

User Action: Reenter the command line with the correct
syntax.

LBR -- INDIRECT FILE DEPTH EXCEEDED
command line

Explanation: An attempt was made to exceed one level of
indirect command files.

User Action: Rerun the job with only one level of indirect
command file specified.

7-48

LBR ERROR MESSAGES

LBR -- INDIRECT FILE OPEN FAILURE
command line

Explanation: The requested indirect command file does not
exist as specified. One of the following conditions may
exist:

• The user directory area is protected against access.

• A problem exists on the physical device.

o The volume is not mounted.

• The specified file directory does not exist.

o The file does not exist as specified.

• Insufficient dynamic memory exists in the Executive.

User Action:
message and
line.

Determine which of the conditions caused the
correct that condition. Reenter the command

LBR -- INPUT ERROR ON filename

Explanation: The file system, while attempting to process
an input file, has detected an error.

A problem exists with the physical device.

User Action: Reenter the command line.

LBR -- INSUFFICIENT DYNAMIC MEMORY TO CONTINUE

Explanation: Your library is too large for the attempted
operation.

User Action: Break up the library into two or three smaller
libraries.

LBR -- INVALID EFT AND/OR MNT SPECIFICATION

Explanation: An EFT or MNT value greater than
(decimal) was entered in a /CR or /CO switch.

4096

User Action: Reenter the command line with the correct
value specified.

7-49

LBR ERROR MESSAGES

LBR -- INVALID FORMAT, INPUT FILE filename

Explanation: The format of the specified input file is not
the standard format for a macro source or object file, or
the input file is corrupted.

User Action: Reenter the command line with the correct
input file specified.

LBR -- INVALID LIBRARY TYPE SPECIFIED

Explanation: An invalid library type was specified when
using the Create or Default switch. The values OBJ, MAC,
and UNI are the only valid specifications. See Sections
7.5.2 and 7.5.4.

User Action: Reenter the command line with OBJ, MAC, or UNI
specified.

LBR -- INVALID MODULE FORMAT in insertion module

Explanation: An attempt was made to insert a macro module
into an object library.

User Action: Determine if an object file was to be inserted
into an object library. If so, reenter the command line
with the correct object file. If a macro library was to
receive the insertion, reenter the command line with the
correct macro library.

LBR -- INVALID NAME -- "name"

Explanation: A module name that contains a non-Radix-50
character was specified for deletion, insertion, or
replacement of a module in a universal library or in a macro
module; or a module name was specified for modification of a
universal module header. Radix-50 characters consist of the
letters A through z, the numbers 0 through 9, and the
special characters period (.) and dollar sign ($).

User Action: Reenter the command line with a valid name.

7-50

LBR ERROR MESSAGES

LBR -- INVALID OPERATION FOR OBJECT AND MACRO LIBRARIES

Explanation: Module header information was supplied for an
object library or macro library in an insert or replace
operation.

User Action: No action required. The command will be
executed as if the information had not been supplied.

LBR -- INVALID RAD50 CHARACTER IN "character string"

Explanation: A character supplied as part of information
when using the Insert, Replace, or Modify Header switches
for a universal library is not a Radix-50 character.

User Action: Determine which character of the corresponding
switch value is not a Radix-50 character. Reenter a
Radix-50 character in place of the invalid character.

LBR -- I/0 ERROR ON INPUT FILE filename

Explanation: A read error has occurred on an input file.
One of the following conditions may exist:

• A problem exists on the physical device.

o The file is corrupted or the format is wrong (record
length exceeds 132 bytes).

User Action:
message and
line.

Determine which of the conditions caused the
correct that condition. Reenter the command

LBR -- LIBRARY FILE SPECIFICATION MISSING

Explanation: A command line was entered without specifying
the library file.

User Action: Reenter the command line with the library file
specified.

LBR -- MARK FOR DELETE FAILURE ON LBR WORK FILE

Explanation: When LBR begins processing commands, it
automatically creates a work file and marks it for delete.
For some reason, this marking for delete failed.

7-51

LBR ERROR MESSAGES

The work file constitutes a lost file because it does not
appear in any file directory.

User Action: The file may be deleted by typing the
following command from the DCL command level:

$ @VERIFY

LBR MULTIPLE MODULE EXTRACTIONS NOT PERMITTED FOR UNI MODULES

Explanation: An attempt was made to extract more than one
module from a universal library. The first module specified
is extracted, but others are ignored.

User Action: Reenter the command line for each additional
extraction.

LBR -- NO ENTRY POINT NAMED "name"

Explanation: The entry point to be deleted is not in the
specified library file.

User Action: Determine if the entry point is misspelled or
if the wrong library file is specified. Reenter the command
line with the entry point or the library file correctly
specified.

LBR -- NO MODULE NAMED "module"

Explanation: The module to be deleted is not in the
specified library file.

user Action: Determine if the module name is misspelled or
if the wrong library file is specified. Reenter the command
line with the module name correctly specified.

LBR -- OPEN FAILURE ON FILE filename

Explanation: The file system, while attempting to open a
file, has detected an error. One of the following
conditions may exist:

• The user directory area is protected against an open
operation.

o A problem exists on the physical device.

• The volume is not mounted.

s The specified file directory does not exist.

7-52

LBR ERROR MESSAGES

• The file does not exist as specified.

• Insufficient contiguous space to allocate the library
file (Compress and Create only).

o Insufficient dynamic memory exists in the Executive.

User Action:
the message
command line.

Determine which of the above conditions caused
and correct that condition. Reenter that

LBR -- OPEN FAILURE ON LBR WORK FILE

Explanation: The file system, while attempting to open the
LBR work file, has detected an error. The LBR work file is
created on the volume from which LBR was installed. One of
the following conditions may exist:

o The volume is full.

• The device is write-protected.

s A problem exists with the physical device.

• Insufficient dynamic memory exists in the Executive.

User Action:
message and
line.

Determine which of the conditions caused the
correct that condition. Reenter the command

LBR -- OUTPUT ERROR ON filename

Explanation: A write error has occurred on the output file.
One of the following conditions may exist:

• The volume is full.

• The device is write-protected.

g The hardware has failed.

User Action: If the volume is full, delete all unnecessary
files and rerun LBR. If the device is write-protected,
write-enable the device and reenter the command line. If
the hardware has failed, swap devices and reenter the
command line or wait until the device is repaired and rerun
LBR.

7-53

LBR ERROR MESSAGES

LBR -- POSITIONING ERROR ON filename

Explanation: A positioning error has occurred on the input
file. One of the following conditions exist:

• A problem exists on the physical device.

• The file is corrupted or the format is wrong.

User Action:
message and
line.

Determine which of the conditions caused the
correct that condition. Reenter the command

LBR -- RMS MODULES CANNOT BE EXTRACTED TO RECORD ORIENTED DEVICES

Explanation: An attempt was made to extract a module
inserted from a nonsequential RMS file to a record-oriented
device. This is a fatal error message.

User Action: Extract the file to a disk and then use an RMS
conversion to make an RMS sequential file.

LBR -- TOO MANY OUTPUT FILES SPECIFIED

Explanation: More than two output files were specified.
LBR makes the following assumptions:

• The first output file specified is the output library
file.

o The second output file specified is the listing file.

o The third through n files specified to the left of the
equal sign are ignored.

User Action: No action is required. LBR continues as
though the extra file(s) had not been specified.

LBR -- VIRTUAL STORAGE REQUIREMENT EXCEEDS 65536 WORDS

Explanation: This error may occur if you are working with
maximum size libraries. You might have specified a single
command line that first logically deletes a large number of
modules and entry points, then replaces them with an equally
large number of modules and entry points. The replacement
modules and entry points have names much different from
those being replaced. This message usually indicates a

7-54

LBR ERROR MESSAGES

system error.

User Action: Rerun the job, but divide the complicated
command line into several smaller command lines that do the
same operations.

LBR -- WORK FILE I/O ERROR

Explanation: A write error has occurred on the LBR work
file. One of the following conditions may exist:

~ The volume is full.

o The device is write-protected.

• The hardware has failed.

User Action: If the volume is full, delete all unnecessary
files and rerun LBR. If the device is write-protected,
write-enable the device and reenter the command line. If
the hardware has failed, swap devices and retry the command,
or wait until the device is repaired and rerun LBR.

7-55

CHAPTER 8

RESOURCE MONITORING DISPLAY (RMD)

The Resource Monitoring Display (RMD) is a privileged task that
displays information about the resources in your system. This
information includes the active tasks, their location in memory,
the amount of memory they occupy, and available pool space.

8.1 INTRODUCTION

RMD consists of pages. A page consists of 24 lines. The program
contains two kinds of pages: display and setup.

8.1.1 Display Pages

There are four display pages available:

• Memory (M)

• Active Task List (A)

• Task Header (T)

e Help (H)

You press the terminal keys indicated in parentheses to switch
display pages.

8.1.2 Setup Pages

There are three setup pages. Each setup page is associated with
a display page. (The Help Display Page has no associated setup
page.) You access a setup page from a display page by pressing

8-1

INTRODUCTION

the CTRL-[sequence on your terminal. The setup page documents
and prompts you for setup commands, which alter the content of
the information displayed on the associated display page.

8.2 INVOKING RMD

You can invoke RMD in three ways:

1. Invoke the SHOW MEMORY command, which in turn invokes RMD.
See Chapter 3 for a description of the SHOW MEMORY command.

2. Invoke the SHOW TASKS/DYNAMIC command, which in turn invokes
RMD. See Chapter 3 for a description of the SHOW
TASKS/DYNAMIC command.

3. Invoke RMD directly from the DCL command level.

To invoke RMD directly from the DCL command level, enter the
following command:

$ R~JN $

After entering the command, you see the memory display page on
your terminal screen, indicating that you are in the RMD
environment. Once you are in the RMD environment, RMD waits for
your command.

RMD accepts command lines in the following general format:

page

One of the display page abbreviations (M, A, T, or H). The
default page is the Memory Display (M).

setupcommand

A valid setup command for the display page that you have
selected. The setup commands are the same as those
available to you from the setup page associated with the
display page you specified. The default setup commands are
discussed in Sections 8.4 through 8.6, which describe the
content of each display page and how you use setup commands
to alter display parameters.

8-2

INVOKING RMD

8.2.1 Running RMD on a Second Terminal

You can connect a second terminal to the Professional through its
printer port. (For details, see the section on debugging an
application in the Tool Kit User's Guide).

Enter the following commands, either from the keyboard or from an
indirect command procedure:

$ SET TERMINAL /TT2: /NOSLAVE
$ ASSIGN/TASK RMD TT2: 1
$ ASSIGN/TASK RMD TT2: 2
$ SPAWN SHOW MEMORY

This command sequence does the following:

• It reassigns LUNs 1 and 2 to the terminal on which you want
to run the task, and

• It invokes the task on the second terminal while allowing you
to continue entering DCL commands at the Professional's
terminal.

NOTE

You must be a privileged user to issue the SET
TERMINAL /TT2: command.

8.3 THE HELP DISPLAY

The Help Display documents how you switch display pages. You
switch display pages by pressing a terminal key as follows:

Key Explanation

M Accesses the Memory Display
A Accesses the Active Task Display
T Accesses the Task Header Display

The Help Display also documents how to exit from RMD and use the
CTRL-[sequence to access setup pages from their associated
display pages. (Because there is nothing to alter on the Help
Display, no setup page is available from the Help Display.)

The Memory, Active Task, and Task Header Displays use the entire
screen. Therefore, you receive no prompts or documentation on

8-3

THE HELP DISPLAY

display pages.
display page or
Help) to access

To find out how to access a setup page from a
how to switch display pages, press the H key (for
the Help Display.

8.4 THE MEMORY DISPLAY

The Memory Display graphically represents system memory. It
shows the approximate size and locations of partitions and active
tasks, pool statistics, the name of the currently-executing task,
and other information regarding operating system status. You
access the Memory Display from another display page by pressing
the M key (for Memory). If you invoke RMD without specifying a
display page, RMD defaults to the Memory Display.

Figure 8-1 shows the Memory Display. See the numbered notes
following the figure for a description of each item in the Memory
Display.

G) ® ® @ ®
r;;\F'RO/SER.1v'ER. \Jl • 0 8L26. 0
\..VTASK= *IDLE*

(PR.Cb) 256K UP 000:00:00 2:3-AUG-85 14:09:06
\.I)FREE= SYO : 6192. DZl : DMO

{])POOL=6496.:7468.:14.
6496. :7468. :14.

IN: D T D
"" _, z T I
14K R

@ouT: L 1
0 D 1
01<. R. M

F
1
1
A
c
p

DW3:0FL DZ2:DMO
~SECPOOL=211.:250.:84%

211 . : 250 • : 84%

\) R. PI T $ $ T c R
E M Of'l F 'v' D F $ M
R. s ,.-.,.-. 1--l T F w c D@ ·:>.:O

R SR. 2 I] T T
E UE 0 ~~ E 1
s MM 0 T ><.

()==)>====!====>>=====! !=]<==>==!=!-+> <-->
O**ckc>:ckck* l 6**'":ckck* 32****•kci< 4 8-J.:·k**·k·k 6 4*****·k 80 kkck*** 96*ck·k·k*·k 11 2·k**-J.:ck

=====~====~===~=============================~=~================~<§) 128**'":ckck 144**·k·k·k160*·k·k**176***'"* 19 2*-k*** 20 8·kck·kkk 22 4*ck*·kck 2 4 0 ***·kck

Figure 8-1: Memory Display for P/OS

8-4

1::1

E
c@
* F'
L

PARS

~;ECPOL: P
DR'·....IPAR.: D
TF>-lCOM: D

,;~;~:tTA; g@)
CNFTBL: D
E:J TMAP: D
10 PAR:D

THE MEMORY DISPLAY

Notes to Figure 8-1

(1) Operating system type, version number, and base level.

(2) A one- to six-character name that is a DECnet node name (if
DECnet is running on your system).

(3) Size in K words of the system memory.

(4) Time elapsed in units of days, hours, and minutes, since the
system was last booted.

(5) Current date and time.

(6) Name of the task that is currently executing or, if none is
executing, *IDLE* (Executive executing the idle loop).

(7) Number of free blocks on the first four FILES-11 devices in
your system. If a device is dismounted, RMD displays:
"OMO". If a device is off line, RMD displays: "OFL".

(8) Pool (dynamic storage region) information in the format:

POOL=X:Y:Z
x

Number of words in the largest free block in pool

y

Number of free words in pool

z

Number of fragments in the pool free list

The second line records the worst case of pool since you
invoked RMD. This line is most useful if RMD has been
running on a second terminal since the last system boot.

(9) Secondary pool information in the format:

SECPOOL=A:B:C%

A

Number of free blocks in secondary pool

B

Total number of blocks in secondary pool

8-5

THE MEMORY DISPLAY

C%

Percentage of secondary pool that is free

The second line records the worst case of secondary pool
since you invoked RMD. This line is most useful if RMD has
been running on another terminal since the last system boot.

(10) Partitions in the system using the format:

type

partitionname:type

One of the following:

D System-controlled (dynamic) partition
P Secondary pool partition

(11) Number of tasks in memory and amount of memory they use, and
number of active tasks swapped or checkpointed out of memory
and the amount of memory they would require.

(12) Name of each task, common, or driver in memory and its
location in memory using the following symbols to designate
size, type (task, common, or driver), and other attributes:

Symbol

<
[

>
l

Attribute

Active task
Task not active, yet occupies memory
Named common

+ + Unnamed common (displayed name is first
attached task)
Loaded driver using device mnemonic
Task not fixed in memory
Task fixed in memory

The hyphens and equal signs represent the amount of memory
that each task, driver, or common occupies. Where the
display shows only one delimiter and no hyphens or equal
signs, the open delimiter is in the same location as the
closing delimiter of the preceding task.

(13) Partition size and location. The beginning of
partition is marked with the same symbols as those
previously, plus the following additions:

8-6

each
listed

E Executive
P Pool

THE MEMORY DISPLAY

The lines of asterisks are proportional representations of
the amount of memory occupied by each partition. The
numbers are in lK word increments. Each numerical character
also represents the same amount of memory as an asterisk.
RMD always divides the system memory into groups of eight
units.

(14) System error count sequence recorded by the Error Logger
(always zero if Error Logger not present in your system).

8.4.1 Altering the Memory Display from the Setup Page

To alter the Memory Display, you press the CTRL-[sequence, which
accesses the setup page for the Memory Display. The setup page
documents and prompts you for commands which you use to alter the
Memory Display. You can enter multiple commands after each
prompt by using commas as separators. The setup commands
available for altering the Memory Display are:

• FREEx=ddnn: where x is a number from 0 to 3 and ddnn: is a
device name and number

o RATE=s where s is the replot rate in seconds

You can truncate these commands to their shortest unique forms.
These setup parameters stay in effect until you alter them, even
if you switch to another display page and back to the Memory
Display.

8.4.1.1 The FREE Command - You use this command to determine the
four FILES-11 devices far which you want the Memory Display to
show the available free blocks. This information is (7) in
Figure 8-1. The default is your system disk (SY:) and the next
three FILES-11 devices in your configuration.

8.4.1.2 The RATE Command - You use this command to determine how
often RMD replots the Memory Display. The default replot rate is
once per second.

8-7

THE ACTIVE TASK DISPLAY

8.5 THE ACTIVE TASK DISPLAY

The Active Task Display shows you the active tasks in the system.
You access this display from another display page by pressing the
A key (for Active Task).

This display has six fields:

e Name of the task

o Length of the task in octal bytes

• Terminal that issued the task

~ Running priority of the task

o Outstanding I/O count

s Status flags

The status flags use the same mnemonics as the SHOW TASK/FULL
command. See Chapter 3 for definitions of the status flags.

8.5.1 Altering the Active Task Display from the Setup Page

To alter the Active Task Display, you press the CTRL-[sequence,
which displays the setup page for the Active Task Display. The
setup page documents and prompts you for commands that you use to
alter the Active Task Display. You can enter multiple commands
after each prompt by using commas as separators. The setup
commands available for altering the Active Task Display are:

o OWNER=ttnn: where ttnn:
task

is the terminal that issued the

o PRIORITY=p where p is a task's running priority

Q RATE=s where s is the replot rate in seconds

o TASK=taskname where taskname is the name of the task whose
header you want to display

You can truncate these commands to their shortest unique forms.
These setup parameters stay in effect until you alter them, even
if you switch to another display page and back to the Active Task
Display.

8-8

THE ACTIVE TASK DISPLAY

8.5.1.1 The OWNER Command - This command allows RMD to display
only those tasks that have been issued by a particular terminal.
The default is ALL, which displays tasks issued from all
terminals.

8.5.1.2 The PRIORITY Command - The active task list may be too
long to fit on one screen. You use the PRIORITY command to
determine the highest priority tasks that you want to see. The
default is 250, the highest possible priority.

8.5.1.3 The RATE Command - This command allows you to determine
how often RMD replots the Active Task Display. The default
replot rate is once per second.

8.5.1.4 The TASK Command - This command allows you to look at a
specific task header. This command is an exception because it is
the only setup command that switches display pages. There is no
default for the TASK command. The Task Header Display is
discussed in Section 8.6.

8.6 THE TASK HEADER DISPLAY

The Task Header Display shows you the task header of the task you
specify. You access this display from another display page by
pressing the T key (for Task Header). If no task is currently
specified, RMD shows you the setup page first so that you can
specify the task whose task header you want RMD to display.

The Task Header Display shows you the following information about
the specified task:

• Name of the task

• Name of the partition in which the task runs

• Status flags, which have the same mnemonics as in the Active
Task display

• Owner of the task by terminal number

8-9

THE TASK HEADER DISPLAY

0 Outstanding I/O count

0 Default priority

• Running priority

• Swapping priority

0 Length in decimal words

• Contents of the six general purpose registers, the program
counter, and the Processor Status Word

• Contents of the Directive Status Word ($DSW)

o Local event flags

o Logical unit number (LUN) assignments to a maximum of 26 LUNs

When RMD displays file names in the list of LUN assignments, the
filename and directory displayed are the filename and directory
of the file when it was created. If the file has been renamed,
the RMD display may not reflect the current directory and/or
filename.

8.6.1 Altering the Task Header Display from the Setup Page

To alter the Task Header Display, you press the CTRL-[sequence,
which displays the setup page for the Task Header Display. The
setup page documents and prompts you for commands that alter the
Task Header Display. You can enter multiple commands after each
prompt by using commas as separators. The setup commands
available for altering the Task Header Display are:

s RATE=s where s is the replot rate in seconds

• TASK=taskname where taskname is the name of the task whose
header you want to display

You can truncate these commands to their shortest unique forms.
These setup parameters remain in effect until you alter them,
even if you switch to another display page and back to the Task
Header Display.

8-10

THE TASK HEADER DISPLAY

8.6.1.1 The RATE Command - This command allows you to determine
how often RMD replots the Task Header Display. The default
replot rate is once per second.

8.6.1.2 The TASK Command - This command changes the task header
to be displayed. There is no default. The TASK command has the
same function as the TASK command on the Active Task Display,
except that here it does not switch display pages.

8. 7 ERROR MESSAGES

RMD generates the following error messages:

RMD - Allocated screen buffer too small for this device

Explanation: RMD requires more internal memory to display
the requested display on the type of terminal on which you
are running RMD.

User Action: Call your DIGITAL Customer Support Center.

RMD - Illegal command - xxxxx

Explanation: You entered an illegal command xxxxx either on
the command line or in response to the COMMAND> prompt on a
setup page.

User Action: Enter the correct command as documented in
this chapter.

RMD - Page does not exist

Explanation: You requested a display page from the command
line that does not exist.

user Action: Enter the command line again specifying a
correct display mnemonic.

8-11

ERROR MESSAGES

RMD - Segment 'xxxxxx' not found

Explanation: The module xxxxxx was not found
image for RMD. This denotes an error in
task-built.

in the task
how RMD was

User Action: Call your DIGITAL Customer Support Center.

RMD - Terminal type not defined

Explanation: The operating system and RMD do not recognize
your terminal type.

User Action: Check your terminal type using the command
SHOW TERMINAL. If this setting is incorrect, use the SET
TERMINAL command to correct your terminal type setting.

RMD - Terminal type not set

Explanation: You did not build RMD to display the requested
display page on the type of terminal to which your terminal
is set.

User Action: Determine your terminal type setting using the
command SHOW TERMINAL. If this setting is incorrect, use
the command SET TERMINAL to correct your terminal type
setting.

RMD - Terminal type not yet supported

Explanation: RMD does not recognize your terminal type.

User Action: Determine your terminal type setting using the
command SHOW TERMINAL. If this setting is incorrect, use
the command SET TERMINAL to correct your terminal type
setting.

8-12

CHAPTER 9

TASK/FILE PATCH PROGRAM (ZAP)

The Task/File Patch Program (ZAP) allows you to directly examine
and modify task image and data files on a FILES-11 volume. Using
ZAP, you can patch these files interactively without reassembling
and rebuilding the task.

ZAP supports four types of task image files:

o Regular task image files, which include those mapped to
resident and supervisor mode libraries

o Multiuser task image files

o I- and D-space (instruction and data space) tasks

o Resident libraries

NOTE

I- and D-space and supervisor mode libraries are
not currently supported.

These types of task image files are discussed fully with the
/List switch (refer to Section 9.1).

ZAP performs many of the functions performed by the RSX-11
on-line debugging utility, ODT. Thus, working knowledge of ODT
is helpful in using ZAP. See the IAS/RSX-11 ODT Reference Manual
for more information on ODT.

ZAP provides the following features:

~ Operating modes that allow you to access specific words and
bytes in a file, modify locations in a file, list the disk
block and address boundaries for each overlay segment in a
task image file on disk, and open a file for reading only.

9-1

a A set of internal registers that include eight Relocation
Registers.

e Single-character commands that, with other command line
elements, allow you to open and close locations in a file and
to display and manipulate the values in those locations.

Although the ZAP program is relatively straightforward to use,
patching locations in a task image file requires knowing how to
use the map (or memory allocation file) generated by the Task
Builder and the listings generated by the MACR0-11
assembler. These maps and listings provide information you need
to access the locations whose contents you want to change. For
information on Task Builder maps, see the RSX-llM/M-PLUS and
Micro/RSX Task Builder Manual. For information on MACR0-11
listings, see the PDP-11 MACR0-11 Language Reference Manual.

9.1 ZAP OPERATING MODES AND SWITCHES

ZAP provides two addressing modes and two access modes. The
addressing modes are task image mode and absolute mode. Task
image mode is the default mode. The access modes are read/write
mode and read-only mode. Read/write is the default mode. Either
addressing mode can be used with either access mode. The modes
and their associated switches are as follows:

o Task image mode is the default addressing mode for ZAP. In

•

this mode, addresses in ZAP command lines refer to addresses
in the task image file as they are shown in the Task Builder
map for the file. Refer to Section 9.1.1.1 for more
information on using task image mode.

In absolute mode, specified with the /AB switch, ZAP
processes the addresses you enter in ZAP command lines as
absolute byte addresses within the file. You must use
absolute mode for any files that are not task images. Refer
to Section 9.2.1 for more information on using absolute mode.

o Read/write mode is the default access mode for ZAP. In this
mode, ZAP opens a file for reading and/or modification.

• In read-only mode, specified with the /RO switch, ZAP opens a
file for reading but not modification. That is, you can
execute ZAP functions that change the contents of locations,
but these changes are not actually made to the file. When
ZAP exits, the original values in the file are still there.

9-2

ZAP OPERATING MODES AND SWITCHES

9.1.1 The List Switch {/LI)

When using ZAP in task image mode (but not absolute), you can
also specify the /List switch (/LI). The /List switch displays
the overlay segment table for the on-disk task image file with
which you are working. The table lists the starting disk block
and address boundaries for each overlay segment in the file. The
segment table lists are in a different format for each type of
task image file. The table and Task Builder map allow you to
locate the task segments being changed.

The /LI switch displays the overlay segment boundaries in the
following format:

ssssss: aaaaaa-bbbbbb [nnnnnn] [dddddd]

ssssss:

The starting block in octal.

aaaaaa

The lower address boundary in octal.

bbbbbb

The upper address boundary in octal.

nnnnnn

The segment name that appears for I- and D-space tasks;
manually loaded overlays ($LOAD); memory-resident overlays;
tasks that link to the library with memory-resident
overlays; or for any combination of the previous conditions.

dddddd

The description of the segment type string which appears
next to the segment name in the segment table.

The following sections describe the /List switch formats for the
different kinds of task image files. Section 9.6.6 gives
examples of the segment table lists.

9.1.1.1 The /LI Switch and Regular Task Image
regular task image files, including those mapped to
supervisor mode libraries, the /LI switch displays
overlay segments in the order of their location
Each segment begins on an even block boundary.

9-3

Files - For
resident and
the task's

in the file.

ZAP OPERATING MODES AND SWITCHES

9.1.1.2 The /LI Switch and Multiuser Task Image Files - For
multiuser tasks, the /LI switch lists the starting disk block
number and address boundaries of each segment. In addition, the
address boundaries of the shared read-only segment are listed.
The block number that is used to reference the multiuser segment
is the same as the root segment. The multiuser segment is an
extension of the root segment. The segment list disk block
numbers have a corresponding entry in the Task Builder map.

See the RSX-11M/M-PLUS and Micro/RSX Task Builder Manual for more
information on multiuser tasks.

9.1.1.3 The /LI Switch and Resident Libraries - For
resident libraries, the /LI switch displays each of the task's
segments as beginning on a new block boundary. However, the
segments may not actually begin on even boundaries because of
compression by the Task Builder. Resident libraries can be
overlaid, but each overlay segment must also be resident in
memory.

To avoid the possibility that two or more segments in a single
block could have the same virtual address, ZAP treats the
resident library in the same way that the Task Builder does. The
Task Builder builds the library with each segment beginning on an
even block boundary, but then compresses the segments in the task
file itself. The Task Builder map is generated before the
segments are compressed, so the boundaries given in the map do
not necessarily correspond to the actual location of the
segments.

The disk block boundaries given in the Task Builder map file are
the ones that ZAP uses to address locations in the resident
library and that the /LI switch displays in its segment table.
They do not use the actual starting blocks of the segments. (You
should be aware of this when you are working with resident
libraries in absolute mode. However, also remember that you
cannot use the /LI switch in absolute mode.)

You should also note that ZAP cannot know the physical starting
addresses for the segments of an overlaid resident library
because its overlay structure is stored in the symbol definition
(.STB) file, not with the task image file itself. For ZAP, each
segment's starting address is 000000.

See the RSX-11M/M-PLUS and Micro/RSX Task Builder Manual for more
information on resident libraries.

9-4

ZAP OPERATING MODES AND SWITCHES

9.1.1.4 The /LI Switch and I- and D-Space Tasks - For I- and
D-space tasks, the /LI switch lists the starting block number and
the address boundaries of each segment. The I-space or D-space
segment may be suppressed in the listing when, for example, a
segment with only I-space code does not include a listing for a
D-space segment. If the segments are not suppressed, the segment
list disk block numbers have a corresponding entry in the Task
Builder map.

9.2 ADDRESSING LOCATIONS lN FILES

To address locations in a file, ZAP provides two addressing modes
(task image and absolute, described above) and a set of internal
registers, which includes eight Relocation Registers. This
section first introduces the concept of relocation biases and the
use of the Relocation Registers, then explains how to use the
addressing modes.

9.2.1 Relocation Biases

When MACR0-11 generates a relocatable object module, the base
address of each program section of the module is 000000. In the
assembler listing, all locations in the program section are shown
relative to this base address.

The Task Builder links program sections to other program sections
by mapping the relative addresses applied by the assembler to the
physical addresses in memory (for unmapped systems) or to virtual
addresses (for mapped systems).

Many values within the resulting task image are biased by a
constant whose value is the absolute base address of the program
section after the section has been relocated. This bias is
called the relocation bias for the program section.

ZAP's eight Relocation Registers, OR through 7R, are generally
set to the relocation biases of the program sections to be
examined. This allows you to refer to a location in a module by
the same relative address that appears in the MACR0-11 listing.
The addressing modes help you calculate the relocation biases.

9.2.2 ZAP Addressing Modes

As explained in Section 9.1, ZAP's two modes for addressing
locations in a file are task image mode and absolute mode. Task

9-5

ADDRESSING LOCATIONS IN FILES

image mode is the default mode for ZAP. The next two sections
explain how to use these modes.

The following examples show excerpts from a MACR0-11 listing of
the module MYFILE and a Task Builder map. These excerpts and the
accompanying text show how to use ZAP in task image mode. The
following lines represent assembled instructions from a MACR0-11
source listing:

71 000574 032767 OOOOOOG OOOOOOG BIT #FE.MUP,$FMASK
72 000602 001002 BNE 2$
73 000604 000167 000406 JMP 30$
74 000610 016700 OOOOOOG 2$: MOV $TKTCB,R0
75 000614 016000 OOOOOOG MOV T.UCB(RO),RO
76 000620 010067 177534 MOV RO,UCB
77 000624 032760 OOOOOOG OOOOOOG BIT #U2.HLD,U.CW2(R0)

The following lines from a Task Builder map give the information
you need to address locations in the task image file as they
appear in the above MACR0-11 listing:

R/W MEM
DISK BLK

LIMITS: 120000 123023 003024 01556.
LIMITS: 000002 000005 000004 00004.

MEMORY ALLOCATION SYNOPSIS:

SECTION

. BLK.:(RW,I,LCL,REL,CON) 120232 002546 01382.

TITLE IDENT

120232 002244 01188. MYFILE 01
122476 000064 00052. FMTDV 01

$$RESL:(RW,I,LCL,REL,CON) 123000 000024 00020.

FILE

MCR.OLB;l
MCR.OLB;l

Using information in the Task Builder map, you can determine the
block number and byte offset for the beginning of the file you
want to change. The disk-block-limits line lists block 2 as the
block where the program code begins. The synopsis lists byte
offset 120232 as the beginning of the file MYFILE. To address
location 574 in the MACR0-11 listing in task image mode, specify
the following command line:

2:120232+574/<RET>

ZAP responds by opening the location and displaying its contents:

002:121026/ 032767

9-6

ADDRESSING LOCATIONS IN FILES

9.2.2.1 Using the Task Image Addressing Mode - In task image
mode, ZAP allows you to address locations in a task image file by
using the addresses the MACR0-11 assembler displays in its
listing and the starting block number and byte offset listed in
the Task Builder map. Unlike absolute mode, task image mode is
useful for working with locations in an overlaid file because the
Task Builder and ZAP perform the calculations necessary to relate
the file's disk structure to its run-time memory structure.

9.2.2.2 Using the Absolute Addressing Mode - In
ZAP processes the addresses you enter in the
absolute byte addresses within the file. To use
mode, invoke ZAP and enter the /AB switch
specification.

absolute mode,
command lines as
ZAP in absolute
with the file

ZAP interprets the first address in the file you are changing as
virtual block 1, location 000000. All other addresses you enter
are interpreted using this address as the base location.
Absolute mode allows you to access all the bytes in a data or
task image file as well as the label and header blocks of a task
image file on disk. However, to modify a disk task image, you
must know the disk layout of the task image. Generally, absolute
mode is practical only for data files or for task image files
that are not overlaid.

9.3 INVOKING AND TERMINATING ZAP

To invoke ZAP type:

$ RUN $ZAP

ZA~ will prompt you:

ZAP>

You cannot enter a file specification on the same line that you
use to invoke ZAP unless the file is an indirect command file.
Refer to Section 9.3. When ZAP prompts you, enter the file
specification for the file you want to change. You enter the
file specification in the format:

dev:[directory]filename.filetype;version[/sw ...]

The default file type is .TSK. After you enter the file
specification, ZAP prompts with an underscore (_).

9-7

INVOKING AND TERMINATING ZAP

You terminate ZAP by entering the X command (explained in Section
9.6.1). This command exits you from ZAP and returns control to
your DCL.

9.3.1 Using Indirect Command Files with ZAP

An indirect command file contains the specification for the file
you want to work with and the appropriate ZAP commands. You can
specify the indirect command file in the same command line in
which you invoke ZAP.

The following sample indirect command file (called CHANGE.CMD)
contains ZAP commands. The commands will change the default
priority of the despooler from 70 to 80 (120 octal). The V
command (explained in Section 9.7.5) is used to verify that 70
(106 octal) is what is actually in the location to be changed.
The command file has the following ZAP commands:

LPP.TSK/AB
0:346/
106V
120
x

To use the indirect command file type the following:

ZAP> @CHANGE

In this command, ZAP executes the commands in the file named
CHANGE.CMD.

The commands being used first open the task image file (LPP.TSK)
in absolute mode (/AB). The next two commands open the desired
location (byte 346 in block 0) and verify its contents (106).
The next command changes the contents to 120, which will be the
new default priority for the despooler. The X command exits you
from ZAP and returns control to DCL.

9.4 THE ZAP COMMAND LINE AND COMMAND LINE ELEMENTS

ZAP commands perform functions that allow you to
modify the contents of locations in a file.
comprise combinations of the following elements:

9-8

examine and
Command lines

THE ZAP COMMAND LINE AND COMMAND LINE ELEMENTS

o Commands

• Internal registers

o Arithmetic operators

o Command line element separators

o The current location symbol

• Location-specifier formats

The command elements can be combined to perform multiple
functions. The function of a given command line depends not only
on which elements you use, but also on the position of one
element in relation to the next.

The following sections describe the ZAP command line elements.
Sections 9.5 and 9.6 describe how to combine the command line
elements to execute ZAP functions.

9.4.1 ZAP Commands

There are three types of ZAP commands:

~ Open/close location commands

o General purpose commands

o <RETURN> key

The following sections describe each type of command.

9.4.1.1 Open/Close Location Commands - Open/close location
commands are nonalphanumeric ASCII characters that direct ZAP to
perform a sequence of functions. Open/close commands specify two
general sequences of operations:

• Open a location, display its contents, and store the contents
in the Quantity Register (see Section 9.6.2).

o Close the location after (optionally) modifying it and open
another location as specified by the command.

Section 9.6 describes the format for specifying open/close
location commands.

9-9

THE ZAP COMMAND LINE AND COMMAND LINE ELEMENTS

9.4.1.2 General Purpose Commands - ZAP provides six
single-character, general purpose commands. You use these
commands for calculating displacements, verifying location
contents, and exiting from ZAP. You can enter some of the
commands on the command line with no other parameters. Section
9.7 describes the format for specifying these commands.

9.4.1.3 <RETURN> Key - Unless there is another value or command
on the line, the <RETURN> key closes the current location as
modified and opens the next sequential location. ZAP commands
take effect only after you press the <RETURN> key.

9.4 ZAP Internal Registers

ZAP internal registers are fixed storage locations that ZAP uses
as registers. These registers contain values set by both you and
ZAP. ZAP provides the following internal registers:

Relocation Registers 0 through 7 (OR
registers provide a means for indexing
to change the contents of locations in
You load the registers with the base
section that has been relocated by the

through 7R). These
into a program section
the program section.
address of the program
Task Builder.

a The Constant Register (C). You set this register to contain
a 16-bit value, which you can specify as an expression in the
ZAP command line.

o The Format Register (F). This register controls the format
of the displayed address. If the value of the F Register is
O (the initial value), ZAP displays addresses relative to the
largest value of any Relocation Register whose value is less
than or equal to the address to be displayed. If the value
of the Format Register is not 0, ZAP displays addresses in
absolute byte format.

o The Quantity Register (Q). ZAP sets the value in the
register to be the last value displayed at your terminal.

To access the contents of a register, specify a dollar sign ($)
preceding the register name (in this case, C) in the command
line. For example:

_$C/<RE'I'>
$C/ 000000

9-10

THE ZAP COMMAND LINE AND COMMAND LINE ELEMENTS

This command line directs ZAP to
Constant Register. The slash (/)
Table 9-3.

display the contents of the
is an open command described in

9.4.3 ZAP Arithmetic Operators

Operators are single-character command line elements that define
an arithmetic operation. Generally, ZAP evaluates these
expressions as addresses. Table 9-1 describes the operators.

You use the operators in expressions in command lines. For
example, rather than manually adding all the displacements listed
in the Task Builder map, you can specify a location using the
following notation:

_2:120000+170/<RET>

This method for calculating such a displacement is faster and
more accurate than doing it manually.

Table 9-1: ZAP Arithmetic Operators

Operator Function

+ The plus sign adds a value to another value. Use
it in an expression that ZAP then evaluates to be
a command line element.

*

The minus sign subtracts a value from another
value. Use it an expression that ZAP then
evaluates to be a command line element.

The asterisk multiplies a value by 50 (octal) and
adds it to another value. Use it to form a
Radix-50 string.

The following example shows how to use the asterisk (*) to form
Radix-50 strings. Section 9.5.4 explains the use of the colon
and comma; the percent sign is an open command described in Table
9-3.

9-11

THE ZAP COMMAND LINE AND COMMAND LINE ELEMENTS

_0,40/<RET>
002:0,000040/ 000001
_1*33<RET>
_!<RET>
002:0,000040/ 000103
_%<RET>
002:0,000040% A$

In this example, the first command opens the locations that is 40
bytes offset from the location address contained in Relocation
Register 0 and displays in octal format the contents of the new
location. The location contains the value 000001. The second
command converts 000001 to Radix-50 and adds 33 to the Radix-50
value. The slash (/) command again displays in octal the value
contained in the offset location. The value is now 103. The
percent sign (%) command displays 103 in Radix-50 format.

9.4.4 ZAP Command Line Element Separators

ZAP provides separators to delimit one command line element from
another. Different separators are required depending on the type
of ZAP command being executed. See Table 9-2.

Table 9-2: ZAP Command Line Element Separators

Separator Function

The comma separates a Relocation Register
specification from another command line element.

The semicolon separates an address
internal register specification.
expressions that set values for
Registers.

from an
Used in

Relocation

The colon separates a block number base value from
a byte offset into the block. Used in most of the
references to locations in a file.

9.4.5 ZAP Command Line Location-Specifier Formats

ZAP has four formats for specifying locations in a command line.

9-12

THE ZAP COMMAND LINE AND COMMAND LINE ELEMENTS

Each provides a means of indexing into a file.

The formats are:

@ Current location symbol

@ Byte offset

• Block number:byte offset

o Relocation register, byte offset

9.4.5.1 The Current Location
expressions that ZAP evaluates
represents the last open location.

Symbol - In
as addresses,

command
a period

line
(.)

9.4.5.2 Byte Offset Format - You specify the byte offset format
as follows:

lac on

If you are using ZAP in absolute mode, ZAP interprets this
specification as a byte offset from block 1, location 000000.
This format is generally useful only when you are using absolute
mode.

The following ZAP command line opens absolute location 664 and
displays its contents in octal format:

_6 RET

9.4.5.3 Block Number: Byte Offset Format - This format allows
you to specify a byte offset from a specific block in the file.
Specify the format as follows:

blocknum: offset

You can use this format for addressing locations whether or not
you enter the /AB switch with the file specification.

In task image mode, ZAP allows you to enter the block number and
byte offset displayed in the Task Builder map. The map gives
information on the overlay segments in a task image file. Refer
to Section 9.3 for more information.

9-13

THE ZAP COMMAND LINE AND COMMAND LINE ELEMENTS

9.4.5.4 Relocation Register, Byte Offset Format - This format
allows you to load a Relocation Register with the address of a
location. The address is then used as a relocation bias. You
specify this format for addressing locations in a task image file
as follows:

relocreg,byteoffset

Specify relocreg in the form nR, where n is the number of the
Relocation Register. You can then address byte offsets from the
address loaded in the Relocation Register. For example:

_2:001254;3R<RET>
_3,64/<RET>
002:3,000064/ 037334

The first command loads the address 001254 into Relocation
Register 3, then the second command opens the location that is 64
bytes offset from block 2, location 001254. The contents of that
location are 037334.

9.5 USING ZAP OPEN AND CLOSE COMMANDS

This section gives examples of how to use the ZAP open and close
commands. These commands allow you to open locations in a file,
modify those locations, and close the locations.

Table 9-3 summarizes the open and close commands

Table 9-3: ZAP Open and Close Commands

Command Name

/ Slash

II Quotation mark

Description

Opens a location, displays its
contents in octal, and stores
the contents of the location in
the Quantity Register (Q). If
the location is odd, it is
opened as a byte.

Opens a location, displays the
contents of the location as two
ASCII characters, and stores the
contents of the location in the
Quantity Register (Q).

9-14

Command

%

\

<RET>

@

USING ZAP OPEN AND CLOSE COMMANDS

Name

Percent sign

Backslash

Apostrophe

RETURN key

Circumflex or
Up-arrow

Underscore or
Back-arrow

At sign

Description

Opens a
contents
Radix-50
contents
Quantity

location, displays the
of the location in

format, and stores the
of the location in the
Register (Q).

Opens a location as a byte,
displays the contents of the
location in octal, and stores
the contents of the location in
the Quantity Register (Q).

Opens a location, displays the
contents as one ASCII character,
and stores the contents of the
location in the Quantity
Register (Q) .

Closes Lne current location as
modified and opens the next
sequential location if no other
values or commands are on the
command line. ZAP commands take
effect only after you press the
RETURN key.

Closes the currently open
location as modified and opens
the preceding location.

Closes
location
contents
off set
location,
location.

the currently open
as modified, uses the

of the location as an
from the current

and opens the new

Closes the currently open
location as modified, uses the
contents of the location as an
absolute address, and opens that
location.

9-15

Command

>

<

USING ZAP OPEN AND CLOSE COMMANDS

Name

Right angle
bracket

Left angle
bracket

Description

Closes the currently open
location as modified, interprets
the low-order byte of the
contents of the location as the
relative branch offset, and
opens the target location of the
branch.

Closes the currently open
location as modified, returns to
the location from which the last
series of underscore (~), at
sign (@), and/or right angle
bracket (>) commands began, and
opens the next sequential
location.

9.5.1 Opening Locations in a File

Use any of the ZAP open commands slash (/), quotation mark
("), percent sign (%), backslash(\), or apostrophe(') -- to
open a location in a file. The format ZAP uses to display the
contents of the open location depends on which operator you use.

Once you open a location in a given format, ZAP displays in that
format any other locations you open. For example, if you enter
the percent sign (%) command, the contents of the open location
are displayed in Radix-50 format. If you continually press the
<RETURN> key, consecutive locations are displayed in Radix-50
format until you change the format by entering a different
special-character open command.

9.5.2 Changing the Contents of a Location

When you open a location with a special-character open command,
you can change the contents of that location by entering the new
value and pressing the <RETURN> key. The following example is a
sequence of commands and ZAP responses that show how to open a
location, change the value of the location, and close the
location.

9-16

USING ZAP OPEN AND CLOSE COMMANDS

_/<RET>
002:120000/ 000000
_44444<RET>
_/<RET>
002:120000/ 44444

The first command (/) displays in octal format the contents
(000000) of the current location. The contents are changed by
entering the value 44444 and then the location is closed as
modified by pressing the <RETURN> key. The slash (/) and
<RETURN> key display the new contents of the location (last line
of example). ·

9.5.3 Closing· Locations in a File

ZAP uses the <RETURN> key and other
for closing a location in a file.
three functions:

• Close the current location

special-character commands
The close commands perform

• Direct ZAP to another location (such as the preceding
location or a location referred to by the current location)

• Open the new location

The following sections give examples of how each command works.

9.5.3.1 Closing a Location and Opening the Preceding
Location - Use the circumflex (A) or up-arrow (~)

command (depending on the type of terminal you are using) to
close the current location, to direct ZAP to the preceding
location, and to open that location. The following sequence of
ZAP commands and responses shows how this command works:

_2:120100/<RET>
002:120100/ 000000
_<RET>
002:120102/ 000111
_<RET>
002:120104/ 000222
_<RET>
002:120106/ 000333
_A <RET>
002:120104/ 000222

9-17

USING ZAP OPEN AND CLOSE COMMANDS

The <RETURN> key closes the first three open locations and then
opens the next location. The circumflex command closes location
120106 and directs ZAP to open the preceding location, 120104.

9.5.3.2 Closing a Location and Opening an Offset Location -
Use the underscore (_) or back-arrow (#) command to close the
current location, to direct ZAP to use the contents of the
current location as an offset from the current location, and to
open the new location. The following sequence of ZAP commands
and responses shows how this command works:

_2:120100/<RET>
002:120100/ 000000

<RET> -
002:120102/ 111111

<RET>
002:120104/ 222222

<RET>
002:120106/ 000022

<RET>
002:120132/ 123456

The <RETURN> key closes the first three open locations. The
underscore command closes location 120106, directs ZAP to use the
contents (22) of the current location as the offset from the
current location (120110), and then opens that offset location
(120132).

9.5.3.3 Closing a Location and Opening an Absolute Location -
use the at sign (@) command to close the current location, to
direct ZAP to use the contents of the just-closed location as the
absolute address of a location, and to open that location.

The following sequence of ZAP commands and responses shows how
this command works:

_2:120100/<RET>
002:120100/ 000000

<RET>
002:120102/ 111111

<RET>
002:120104/ 120114
_@<RET>
002:120114/ 114114

The <RETURN> key closes the first three open locations. The at
sign command closes 120104, directs ZAP to use the contents

9-18

USING ZAP OPEN AND CLOSE COMMANDS

(120114) of that location as the absolute address of the next
location to open, and then opens that location.

9.5.3.4 Closing a Location and Opening a Branch Target
Location - Use the right angle bracket (>) command to

close the current location, to direct ZAP to use the low-order
byte of the contents of the just-closed location as a branch
offset for the address of the next location, and then to open
that location. The following sequence of ZAP commands and
responses shows how this command works:

_2:120100/<RET>
002:120100/ 005000

<RET>
002:120102/ 005301

<RET>
002:120104/ 001020
_><RET>
002:120146/ 052712

The <RETURN> key closes the first three open locations. The
right angle bracket command closes location 120104, directs ZAP
to use the low-order byte (020) of its contents as the branch
offset for the address of the next location (120146), and then
opens that location.

9.5.3.5 Closing a Location and Opening a Previous Location - Use
the left angle bracket (<) command to close the current location;
to direct ZAP to the location where the current series of
underscore (_), at sign (@), and/or right angle bracket (>)
'HEADER'began; and then to open that location. The following
sequence of ZAP commands and responses shows how this command
works:

_1202;0R<RET>
_0,10/<RET>
002:0,000010/ 005212

<RET>
002:0,005224/ 001020

><RET>
002:0,005266/ 000000
_@<RET>
002:0,000000/ 000000

<<RET>
002:0,000012/ 000430

The underscore command directs ZAP to location 005224. The right

9-19

USING ZAP OPEN AND CLOSE COMMANDS

angle bracket command directs ZAP to location 005266, and the at
sign command directs ZAP to location 000000. The left angle
bracket command then directs ZAP to location 000012, which is the
next sequential address after the location where the sequence of
commands began.

9.6 USING ZAP GENERAL PURPOSE COMMANDS

This section explains the functions of ZAP general purpose
commands and shows the formats for specifying them. Table 9-4
describes the commands.

Table 9-4: ZAP General Purpose Commands

Command Function

X Exits from ZAP; returns control to DCL.

K Calculates the offset in bytes between an address
and the value contained in a Relocation Register,
displays the offset value, and stores it in the
Quantity Register (Q).

0

v

R

Displays the jump and branch displacements from
the current location to a target location.

Displays in octal the value of the expression to
the left of the equal sign.

Verifies the contents of the current location.

Sets the value of a Relocation Register.

9.6. 1 The X Command

Use the X command to exit from ZAP and then return control to
DCL.

Specify the X command in the format:

x

9-20

USING ZAP GENERAL PURPOSE COMMANDS

9.6.2 The K Command

Use the K command to calculate the offset in bytes between an
address and the value contained in a Relocation Register, to
display the offset value, and to store it in the Quantity
Register (Q).

You can enter the K command in the following formats:

K

nK

a;nK

Calculates the offset in bytes between the address of
the currently open location and the value of the
Relocation Register whose contents are equal to or
closest to (but less than) the value of that address.

Calculates the offset in bytes between the currently
open location and Relocation Register n.

Calculates the offset in bytes between address a and
Relocation Register n.

ZAP responds to the K
Register it used and
format:

command by
the off set

displaying the Relocation
value it calculated in the

=reg,offset

The following example shows how to use the K command:

:117 ;OR RET
:1232;1 RET

2 12 0 H~ET

002:000020/ 000111
K HE'I1 >

=0,000010
, 00 K<RET

=1,000040

The first command sets the value of Relocation Register 0 to
001172. The second command sets the value of Relocation Register
1 to 001232. The slash command displays in octal format the
contents of location 001202 (000111). The K command calculates
the physical distance (offset) between the address of the
currently open location (001202) and the value of the Relocation
Register whose contents are equal to or closest to (but less
than) the value of the address. ZAP then displays the number of
the Relocation Register it used (0) and the offset
(00010=001202-001172).

9-21

USING ZAP GENERAL PURPOSE COMMANDS

The last command adds 100 to the address in Relocation Register 0
(001172) and then calculates the offset between the new address 0
(001272) and the contents of Relocation Register 1 (001232). ZAP
then displays the number of the specified Relocation Register (1)
and the offset (000040=001272-001232).

9.6.3 The 0 Command

Use the O command to display the jump and branch displacements
from the current location to a target location. A jump
displacement is the offset between the open location and the
target location. The jump displacement is used in the second
word of a jump instruction if the instruction uses relative
addressing. A branch displacement is the low-order byte of a
branch instruction which, when executed, branches to the target
location.

You can enter the O command in the following formats:

Displays the jump and branch displacements from the
current location to the target of the branch (a).

a.: Displays the jump and branch
location a to target location r.

displacements

The following example shows how to use the 0 command:

,453 FZET

0,4534/ 1234

RET

014

from

The first number (000030) is the jump displacement; the second
number (000014) is the branch displacement.

9.6.4 The Equal Sign (=) Command

use the equal sign command (=) to display (in octal) the value of
the expression to the left of the equal sign.

Specify the equal sign command in the format:

expression=

The following example shows how to use the equal sign command

9-22

USING ZAP GENERAL PURPOSE COMMANDS

(note that 177777 equals -1):

_2:30/<RET>
002:000030/ 000000
_.+177756=<RET>
000006

The first command displays in octal format the contents of
location 000030, which are 000000. The next command adds 177756
to the address of the currently open location (000030). ZAP then
displays the value of the specified expression (6=30+177756 or
6=30-22).

9.6.5 The V Command

Use the V command to verify that a location contains a specified
value.

Specify the V command in the format:

contentsv

You use the V command to ensure that, before you have ZAP change
them, the contents being changed are what they should be. The V
command is mainly useful in indirect command files because ZAP
issues an error message and exits if the contents do not match.
That way, the contents are not changed incorrectly.

The following example shows how to use the v command; if you were
using an indirect command file, you would include this sequence
of ZAP commands in it.

0,1200/
6V
10

ZAP opens the location that is 1200 offset from the value of
Relocation Register 0 and ensures that the value contained at the
location is 6. If so, ZAP changes the 6 to 10. If the value is
not 6, ZAP exits.

9.6.6 The R Command

Use the R command to specify the value for a Relocation Register.
As explained in Sections 9.3 and 9.5.2, ZAP uses these registers
to index into a program section so that you can change the
contents of locations in the program section.

9-23

USING ZAP GENERAL PURPOSE COMMANDS

Specify the R command in the format:

_contents;nR

The variable n is the number of the Relocation Register (0
through 7) .

For example:

$3R/ 177777

$3R/ 125670

The first command accesses the contents of Relocation Register 3,
which ZAP displays in octal format as specified by the slash.
The contents of the register are 177777. The next command
changes the contents of the register to 125670. The last command
again displays the contents of the register, which have been
changed correctly.

9.7 EXAMPLES

This section gives examples of ZAP usage. The examples show the
/LI switch segment table format and how you would use some of the
ZAP commands.

Some of the ZAP examples in this section are based on information
contained in the following excerpts from a sample Task Builder
memory allocation map and from the program code for some of the
modules in the task. Each example follows the section of program
code associated with it.

Excerpts from Task Builder map:

MAINMEO.TSK;l

Task name
Partition name
Identification
Task UIC
Stack limits:
PRG xfr address:

Memory allocation map TKB M40.10
14-MAR-83 16:01

... MEO
GEN
MOO
[200,200]
000300 001277 001000 00512.
020520

Task attributes: ID
Total address windows: 2.
Task image size : 9184. words, I-Space

9-24

Page 1

EXAMPLES

3520. words, D-Space
Task Address limits: 000000 043647 I-Space

000000 015507 D-Space
R-W disk blk limits: 000002 000102 000101 00065.

MAINMEO.TSK;l Overlay description:

Base Top Length

000000 023135 023136 09822. I MAINO
000000 014123 014124 06228. D

022140 043645 021506 09030. I INPUT
014124 015507 001364 00756. D

022140 022307 000150 00104. I CALC
014124 014167 000044 00036. D

022310 022437 000130 00088. I AADD
014170 014173 000004 00004. D

022310 022437 000130 00088. I SUBB
014170 014173 000004 00004. D

022310 022437 000130 00088. I MULL
014170 014173 000004 00004. D

022310 022441 000132 00090. I DIVV
014170 014173 000004 00004. D

022140 023725 001566 00886. I OUTPUT
014124 014251 000126 00086. D

MAINMEO.TSK;l
MAINO

Memory allocation map TKB M40.10
14-MAR-83 16:01

*** Root segment: MAINO

R/W mem limits: 000000 023135 023136 09822. I-Space
000000 014123 014124 06228. D-Space

Disk blk limits: 000002 000024 000023 00019. I-Space
000025 000041 000015 00013. D-Space

Memory allocation synopsis:

Page 2

Section
File

Title Ident

. BLK.:(RW,I,LCL,REL,CON) 000300 000216 00142 .

9-25

EXAMPLES

000300 000216 00142. CBTA 04.3
SYSLIB.OLB;7

MAINMEO.TSK;l
INPUT

Memory allocation map TKB M40.10
14-MAR-83 16:01

*** Segment: INPUT

R/W mem limits: 022140 043645 021506 09030. I-Space
014124 015507 001364 00756. D-Space

Disk blk limits: 000042 000063 000022 00018. I-Space
000064 000065 000002 00002. D-Space

*** Segment: CALC

R/W mem limits: 022140 022307 000150 00104. I-Space
014124 014167 000044 00036. D-Space

Disk blk limits: 000066 000066 000001 00001. I-Space
000067 000067 000001 00001. D-Space

*** Segment: AADD

R/W mem limits: 022310 022437 000130 00088. I-Space
014170 014173 000004 00004. D-Space

Disk blk limits: 000070 000070 000001 00001. I-Space
000071 000071 000001 00001. D-Space

*** Segment: SUBB

R/W mem limits: 022310 022437 000130 00088. I-Space
014170 014173 000004 00004. D-Space

Disk blk limits: 000072 000072 000001 00001. I-Space
000073 000073 000001 00001. D-Space

9-26

Page 4

Page 5

Page 7

Page 8

EXAMPLES

Page 9
*** Segment: MULL

R/W mem limits: 022310 022437 000130 00088. I-Space
014170 014173 000004 00004. D-Space

Disk blk limits: 000074 000074 000001 00001. I-Space
000075 000075 000001 00001. D-Space

MAINMEO.TSK;l
DIVV

Memory allocation map TKB M40.10 Page 10
14-MAR-83 16:01

*** Segment: DIW

R/W mem limits: 022310 022441 000132 00090. I-Space
014170 014173 000004 00004. D-Space

Disk blk limits: 000076 000076 000001 00001. I-Space
000077 000077 000001 00001. D-Space

Page 11
*** Segment: OUTPUT

R/W mem limits: 022140 023725 001566 00886. I-Space
014124 014251 000126 00086. D-Space

Disk blk limits: 000100 000101 000002 00002. I-Space
000102 000102 000001 00001. D-Space

Memory allocation synopsis:

Section Title Ident
File

BLK.:(RW,I,LCL,REL,CON) 022140 000374 00252.
022140 000042 00034. SA VAL 00

SYSLIB.OLB;7
022202 000074 00060. CATB 03

SYSLIB.OLB;7
022276 000126 00086. CDDMG 00

SYSLIB.OLB;7
022424 000110 00072. C5TA 02

SYSLIB.OLB;7

9-27

EXAMPLES

Example 1:

In this example, the segment table for task MAINMEO is requested.

Note that the segment table corresponds exactly
description list given in the Task Builder map.
ZAP commands is as follows:

NOTE

to the overlay
The sequence of

This example was taken from a PDP-11 running
RSX-llM-PLUS. The example serves to show users
how to use ZAP. Note, however, that I and D
space capability is not currently supported.

ZAP> LI
ZAP Version V02.01 COPYRIGHT (c) DIGITAL EQUIPMENT
CORPORATION 1983
Segment Table
000002: 000000-022137 MAINO I-space root
000025: 000000-014123 MAINO D-space root
000042: 022140-043647 INPUT I- and
000064: 014124-015507 INPUT D-space
000066: 022140-022307 CALC I- and
000067: 014124-014167 CALC D-space
000070: 022310-022347 AADD I- and
000071: 014170-014173 AADD D-space
000072: 022310-022437 SUBB I- and
000073: 014170-014173 SUBS D-space
000074: 022310-022437 MULL I- and
000075: 014170-014173 MULL D-space
000076: 022310-022443 DIW I- and
000077: 014170-014173 DIW o-space
000100: 022140-023727 OUTPUT I- and
000102: 014124-014253 OUTPUT D-space

In Example 1, the first command line invokes ZAP and the second
command line requests the segment table for the task MAINMEO.
The /List switch directs ZAP to give the starting disk block for
the root segment of the task (in this example, MAINO) and for
each segment overlaid on the root of the task. The /List switch
also lists the base and top addresses, plus the segment text
string for each segment.

Because this is an I- and D-space overlaid task, there is an
I-space root segment and a D-space root segment and each is a
part of the root segment of the task MAINO. In this example, the
I-space root segment begins at disk block 2. The addresses for
the I-space root segment range from 000000 to 022137. The next
line of numbers is for the D-space root segment which begins at
disk block 25. The addresses for the 0-space root segment range

9-28

EXAMPLES

from 000000 to 014123. The next line of numbers is for the
segment INPUT. That I-space segment begins at disk block 42 and
the D-space segment begins at disk block 64. The I-space
addresses range from 022140 to 043647 and the D-space addresses
range from 014124 to 015507. The table continues for the
remaining overlaid segments in the task MAINMEO.

Example 2:

In this example, the contents of a
module (TEST.MAC) are being changed.
the module shows the associated code.

location in another task
The following excerpt from

TEST - TEST MACRO FILE MACRO M1113
1269 THIS IS A
1270
1271 WHICH IS
1272
1273
1274 010132 010146
1275 010134 012704 041114
1276 010140 005003
1277 010142
1278 010146 010146
1279 010150 012704 050123

The sequence of ZAP commands is:

_42:121244;0R<RET>
_0,10136"<RET>
042:131402" LB
_, <RET>
042:131402' L
_, <RET>
042:131403' B
_120<RET>
_0,10136"<RET>
042:131402" LP

18-MAR-81 07:48 PAGE 8-1
PART OF THE MODULE
TEST.MAC

IN THE ROOT SEGMENT:
TEST

MOV Rl,-(SP)
MOV *"LB,R4
CLR R3
CALL $FNDUB
MOV Rl,-(SP)
MOV *"SP,R4

The first command line loads the starting address of TEST.MAC
(121244 in disk block 42) into Relocation Register 0. The second
command line displays as an ASCII word the contents of location
10136 of the module. The contents are LB. The first apostrophe
command (') displays the first byte of the word (L) and the
second command displays the second byte (B). The following
command line changes the contents of the second byte to 120,
which is the ASCII code for the letter P. The last command
displays the new contents of location 10136, which are now LP.

9-29

EXAMPLES

Example 3:

In this example, the contents of a location are also being
changed. This time, the location is in the module TSTVB1.MAC.
The following excerpt is the associated code.

TSTVBl - TSTVB1 MACRO FILE MACRO M1113 18-MAR-81 07:52 PAGE 4-2

153
154
155
156
157
158
159
160

000334
000336
000340
000346

005702
001404
052767
000403

000060 172516

The sequence of ZAP commands is:

_42:133470;1R<RET>
_1,342/<RET>
042:134032/ 000060

100<RET>
_1,342/<RET>
042:134032/ 000100

PART OF MODULE TSTVB1.MAC
WHICH IS ALSO IN THE ROOT SEGMENT:

TEST

TST R2
BEQ 70$
BIS #60,SR3
BR 75$

The first command line loads the starting address of TSTVB1.MAC
(133470 in disk block 42) into Relocation Register 1. The second
command line displays in octal the contents of location 342 in
the module. The third command line changes the contents of this
location from 60 to 100. The last command line displays the new
contents (again in octal).

Example 4:

In this example, the operation code (op code) for one of the
instructions in another module is being changed. The module is
TSTCM.MAC, and the following excerpt is the associated code.

TSTCM - TSTCM MACRO FILE MACRO M1113 18-MAR-81 07:47 PAGE 3-7

402 PART OF THE MODULE TSTCM.MAC
403 WHICH IS IN THE SEGMENT: TSTCM
404
405 001272 073127 1 77766 ASHC #-10. , Rl
406 001276 010037 OOOOOG MOV R0,@#KISAR6
407 001302 062701 140002 ADD #140000+2,Rl

The sequence of ZAP commands is:

9-30

_113:154530;R2<RET>
_2,1302/<RET>
113:156032/ 062701

162701<RET>
_2, 1302/<RET>
113:156032/ 162701
_x

EXAMPLES

The first command line loads the starting address of TSTCM.MAC
(154530 in disk block 113) into Relocation Register 2. The
second command line displays in octal the current instruction
contained in location 1302. The instruction includes the op code
06 for the ADD operation. The third command line changes the op·
code to 16, which signifies the SUBTRACT operation. The fourth
command line displays the new contents of the location and the X
command ends the ZAP session.

9.8 ZAP ERROR MESSAGES

This section lists the messages generated by ZAP, explains the
condition that causes each message, and suggests a response to
the message.

ZAP -- ADDRESS NOT WITHIN SEGMENT

Explanation: The address specified was not within the
overlay segment specified.

User Action: Reenter the command line, specifying the
correct address or overlay segment number.

ZAP -- CANNOT BE USED IN BYTE MODE

Explanation: The at sign (@), underscore (_), and right
angle bracket (>) commands cannot be used when a location is
opened as a byte.

user Action: If the location is an even address, open the
location as a word.

9-31

ZAP ERROR MESSAGES

ZAP -- ERROR IN FILE SPECIFICATION

Explanation: The
incorrectly.

file specification was entered

User Action: Reenter the command line, using the correct
file specification.

ZAP -- ERROR ON COMMAND INPUT

Explanation:
being read.

An I/0 error occurred while a command line was
This could be a hardware error.

User Action: Ensure that the hardware is
properly. If it is, reenter the command line.
your DIGITAL Customer Support Center.

ZAP -- I/O ERROR ON TASK IMAGE FILE

Explanation: An I/O error occurred while the
modified was being read or written. This
hardware error.

User Action: Ensure that the hardware is
properly. If it is, reenter the command line.
your DIGITAL Customer Support Center.

ZAP -- NO OPEN LOCATION

functioning
If not, call

file being
could be a

functioning
If not, call

Explanation: You attempted to modify the contents of a
closed location.

User Action: Open the location to perform the modification.

ZAP -- NO SUCH INTERNAL REGISTER

Explanation: The character following a dollar sign was not
a valid specification for the internal register.

User Action: Reenter the command line, specifying the
correct value.

9-32

ZAP ERROR MESSAGES

ZAP -- NO SUCH RELOCATION REGISTER

Explanation: An invalid number was
Relocation Register.

specified for a

User Action: Relocation Registers are numbered 0 through 7.
Any other numbers are illegal. Reenter the command line,
specifying a valid Relocation Register number.

ZAP -- NO SUCH SEGMENT

Explanation: The starting disk block was not the start of
any segment in the task image file on disk.

User Action: Reenter the command line, specifying the
correct disk block address.

ZAP-- NOT A TASK IMAGE OR NO TASK HEADER

Explanation: An error occurred while the segment tables
were being constructed. Possibly, the file is not a task
image, the /AB switch was not specified, or the task image
is defective.

User Action: Terminate the ZAP session, then try invoking
ZAP with the /AB switch specified.

ZAP -- NOT IMPLEMENTED

Explanation: You entered a command that is recognized by
ZAP, but not implemented.

User Action: Ensure that you entered the command correctly.

ZAP -- OPEN FAILURE FOR TASK IMAGE FILE

Explanation: The file to be modified could not be opened.
Possibly, the file does not exist, the file is locked, the
device is not mounted, or you do not have write-access to
the file.

User Action: Check the file specification for errors, or
check your file access privileges. Refer to Section 3.21
for an explanation of the DIRECTORY command and the /FULL
qualifier.

9-33

ZAP ERROR MESSAGES

ZAP -- SEGMENT TABLE OVERFLOW

Explanation: ZAP does not have enough room in its partition
to construct a segment table.

User Action: You cannot use ZAP on the file.

ZAP -- TOO MANY ARGUMENTS

Explanation: You entered more arguments on the command line
than are allowed.

User Action: Reenter the command line, specifying the
correct syntax.

ZAP -- UNRECOGNIZED COMMAND

Explanation: ZAP did not recognize the command as entered.

user Action: Check the syntax of the command you are trying
to execute, then reenter the command line, specifyin9 the
correct syntax.

ZAP -- VERIFY FAILURE

Explanation:
a location
terminates.

The V command determined that the contents of
did not match the expected value. ZAP

User Action: If applicable, check for errors in the
indirect command file. Ensure that the contents of the file
are what they should be. Locate the cause of the error and
reenter the command line. Ensure that you are correcting
the right file or file version.

9-34

CHAPTER 10

SOURCE LANGUAGE INPUT PROGRAM (SLP)

The Source Language Input Program (SLP) is a utility used to
maintain and audit source files. The optional audit trail in the
output files allows you to keep a record of maintenance changes.

SLP is invoked by edit command statements and switches. SLP edit
command statements allow you to:

o Update (delete, replace, add) lines in an existing file

o Create source files

o Run indirect files containing SLP edit commands

Input to SLP is a file that you want updated and command input
consisting of text lines and edit command lines that specify the
update operations to be performed. To locate lines to be
changed, SLP uses line numbers or character strings that you
specify. Command input can come directly from your terminal or
from an indirect command file containing commands and text lines
to be inserted into the file. SLP accepts data from any FILES-11
volume.

Output from SLP is a listing file and the updated input file.
SLP provides an optional audit trail that helps you keep track of
the update status of each line in the file. If an audit trail is
not suppressed, it is shown in the listing file and permanently
applied to the output file.

You can control SLP processing with SLP control switches.
switches allow you to:

o Suppress audit trails

10-1

These

@ Specify the length and beginning position of the audit trails

o Calculate the checksum value for the edit commands

~ Generate a double-spaced listing

To invoke SLP type:

IT LP (refer to EDIT/SLP In Chapter 3)

or

$ SLP

SLP will prompt:

SLP>

You should not specify TI: as your output file, because when you
finish editing, you will not have a copy of the output file and
the input file will be the same as before you began editing.

10.1 SLP INPUT AND OUTPUT FILES

SLP requires two types of input, an input file and command input.
The input file is the source file you want to update using SLP.
Command input consists of SLP edit commands and, optionally, new
lines of text to be placed in the file.

SLP output consists of an output file and a listing file.
output file is the updated input file. The listing file
copy of the output file with line numbers added. Both show
changes SLP made to the file.

10.1.1 The Input File

The
is a
the

The input file is the file to be updated by SLP. It can contain
as many lines of text as are required. When SLP processes the
input file, it makes the changes specified by SLP edit commands.
If an audit trail is generated, these changes are noted in the
output files.

10-2

SLP INPUT AND OUTPUT FILES

10.1.2 Command Input

SLP uses command input to update files. Command input can be
entered interactively after you invoke the SLP utility or
indirectly by means of indirect command files.

You enter command input to SLP in two modes: command mode and
edit mode. After it is invoked, SLP is in command mode, where
the first line entered must be the command line defining the
files to be processed. When SLP accepts this line, it
initializes the files you want processed. Once these files are
initialized, SLP enters edit mode, where it interprets the lines
you enter as SLP edit commands or new input lines.

You terminate command input with a single slash as the first
character of an edit command line.

The following example shows the general form of command input:

MY'F I LE~ rv11-~c;
-3, ,/;BJOO
CMP (Rl) +,
-4' 4

:55 10,MYFILE.LST l=MYFILE.MAC 1

DEC R2
I

NOTE

Numeric values given for switches default to
octal. Decimal values must be followed by a
period (.). The default position for the audit
trail is 80 (decimal) and its default length is 8
(decimal); no more than 14 (decimal) characters
may be specified. (See Section 10.4.2 for more
information about the audit trail.)

The first line is the command line, where you define the output
file, the listing file, and the input file. The next four lines
comprise the SLP edit commands and input lines.

Note that the input and output files in the example have the same
file name and file type; only the versions are different. To
ensure that the correct files are processed, specify the version
numbers explicitly when you enter the SLP command line.
Wildcards cannot be used in any of the file specifications.

You can also calculate the checksum value for the edit commands.
Specify the checksum switch with either the input or output file
specification in the format:

10-3

SLP INPUT AND OUTPUT FILES

:n

The checksum value can be calculated for
lines. The checksum value cannot
following:

all SLP edit
be calculated

command
for the

@ The command line specifying the input and output files.

@ Comments in the edit command lines.

~ Any spaces and/or tabs between characters included in the
checksum calculation and those characters excluded from the
calculation.

~ The second comma and anything following it in an edit command
line (that is, audit trail and/or comment).

~ Comment delimiter (specified by the first character of the
last audit trail string before the current delimiter) and any
characters following it in an input line, whether or not it
is being used in the line as a delimiter. The value is then
reported in a message on your terminal. If you specify a
value for the checksum and it is not the same as the
calculated checksum, you will get a diagnostic error message.
(The messages are described in Section 10.5.2.)

10.1.3 The SLP listing File

The SLP listing file shows the updates made to the source file.
Each line in the listing file is numbered. Updates are marked by
means of the audit trail if one has been generated. The examples
given throughout this chapter contain samples of listing files.

10.1.4 The SLP Output File

The SLP output file is the updated input file. All of the
updates specified by command input are inserted in this file.
The audit trail, if specified, is applied to lines changed by the
update. The audit trail is included in the output file. The
numbers generated by SLP for the listing file do not appear in
the output file.

10-4

HOW SLP PROCESSES FILES

10.2 HOW SLP PROCESSES FILES

This section describes how SLP porcesses files when it receives
the following command line and edit commands.

MYFILE.MAC;2/AU:55:10,MYFILE.LST/-SP=MYFILE.MAC;1
-3
CMP (Rl)+,B
-4,4
DEC (R2)
I

This is the input file (MYFILE.MAC;l) before SLP processes the
files:

MOV #BUFl,RO
MOV #SIZ,Rl
CALL READ
TST R2
BEQ END
CLR Rl
MOV R2,NUMC
CMPB (RO)+,A
BNE 20$
INC Rl

The following is the listing file (MYFILE.LST;l) resulting from
SLP processing of these files:

1. MOV #BUFl,RO
2. MOV #SIZ,Rl
3. CALL READ
4. CMP (Rl)+,B ;**NEW**
5. DEC (R2) ;**NEW**
6. BEQ END ;**-1
7. CLR Rl
8. MOV R2,NUMC
9. CMPB (RO)+,A

10. BNE 20$
11. INC Rl

The audit trail shows the new lines (;**NEW**) and indicates
where lines have been removed (;**-1). (The audit trails
;**NEW** and ;**-n are automatically generated by SLP if you have
not suppressed audit trail generation or if you have not
specified another audit trail string.) In this case, a line has
been added after line 3, and line 4 has been deleted and a new
line added in its place.

10-5

HOW SLP PROCESSES FILES

SLP processes an input file using command input. When processing
begins, SLP writes each line from the input file into the output
file until it reaches a line to be modified, as requested in the
command input. When SLP reaches a line to be modified, it
modifies the line, notes the change by means of the audit trail,
and then continues writing lines to the output file until another
command is encountered or until end-of-file is reached.

10.3 USING SLP

This section describes how to:

@ Specify the SLP edit commands.

o Update files using the SLP edit commands.

o Enter SLP commands interactively and by means of indirect
command files.

• Create a source file using SLP.

10.3.1 Specifying SLP Edit Commands

The SLP edit commands allow you to update source files by adding,
deleting, and replacing lines in a file. SLP allows you to enter
lines sequentially. Once past a given line in the file, you
cannot return the line pointer to that line. To return the line
pointer to that line, you must begin another SLP editing session.
You enter SLP edit commands after invoking SLP and specifying an
edit command line.

The general format of the SLP edit command line is as follows:

-[locator1][,locator2][,/audittrail/][; comment]
inputline

- (dash)

Identifies a SLP edit command line.

locator1

A line locator that causes SLP to move the current line

10-6

USING SLP

pointer to a specified line. If you specify only locatorl,
the current line pointer is moved to that line and SLP reads
the next line in the command input file. This field can be
specified using any of the locator forms described later in
this section.

locator2

A line locator that defines a range of lines (that is, the
range beginning with locatorl and ending with locator2,
inclusive) to be deleted or replaced. This field can be
specified using any of the locator forms described later in
this section.

/audittrail/

A character string used to keep track of the update status
of each line in the file. The string must be enclosed
within slashes (/). It consists of a comment delimiter as
the first character and then a text string. The semicolon
(;) is the default delimiter for audit trails automatically
generated by SLP (;**NEW** and ;**-n). The comment
delimiter specified in audittrail (usually a semicolon) is
the new delimiter for all subsequent audit trails until
redefined by a later audittrail.

inputline

A line of new text to be inserted into the file immediately
following the current line. You can enter as many input
lines as required.

comment

A line of text (delimited by a semicolon) at the end of the
SLP edit command line that appears only in the command input
file.

All fields in the SLP edit command line are positional and commas
must be specified.

The locator fields can take one of the following forms:

tri [+n]
tring,,,,QstrJ. [+n]

-nu_rnbe r [
~·. [+n I

string

A string of ASCII characters. SLP locates the line where

10-7

USING SLP

the string exists and moves the current line pointer to that
line. If the locator is specified in the form
/string ... string/, SLP locates the line where the two
character strings delimit a larger character string
abbreviated by an ellipsis (...).

number

A decimal line number where the current line pointer is to
be moved. The largest line number that can be specified is
9999.

. (period)

n

The current line.

A decimal value used as an offset from the line specified by
the locator. You cannot use +n by itself. It must be
specified with a number or string locator or a period. SLP
moves the current line pointer n lines beyond the line
specified in the locator field.

Although the values for number and n are taken as decimal,
remember that all other SLP values are octal by default.

All forms of the line locator can be specified interchangeably in
the SLP edit command lines.

10.3.2 Entering SLP Edit Commands

Once you have invoked SLP, you can enter SLP edit commands
interactively or by specifying indirect command files. In both
cases, the first command you must enter is the command line
defining the files to be processed during this SLP session. This
section gives examples of how to use both methods of entering SLP
commands.

The following file (BASE.MAC;l) is used as the input file for the
examples in this section:

MOV #$SWTCH,R3
CLR $ERFLG
CLR $CRCVL
CLR $CSSV
MOV SPSAV,SP
MOV #$CFNMB,R0
MOV #<$HDSIZ-$CFNMB>/2+1,Rl

10-8

USING SLP

CLR (RO)+
DEC Rl
BNE 5$

10.3.2.1 Entering SLP Commands Interactively - To alter the
example file interactively, invoke SLP. Once you have entered
the SLP command mode, SLP does not display prompts. The first
line you enter must always be the command line defining the files
you want processed during this session:

BASE.MAC;2/AU:48./TR,BASE.LST=BASE.MAC;1

Then you enter the edit commands and input lines:

-3
TST Rl
-4,4
BEQ 10$
-6, ,/;JM010/
CLR R2
I

In this example, the edit commands instruct SLP to do the
following: -3 inserts a new line after line 3; -4,4 deletes line
4 and replaces it with a new line; -6,,/;JMOlO/ inserts a line
after line 6 with a new audit trail value.

When you have entered all the corrections, enter the slash {/) to
terminate the edit session. SLP processes the files and returns
control to you with the prompt:

SLP>

This returns SLP to command mode. You can then enter another
input file and begin another editing session.

The listing file (BASE.LST;l) resulting from SLP processing
appears as follows:

1. MOV #$SWTCH,R3
2. CLR $ERFLG
3. CLR $CRCVL
4. TST Rl ;**NEW**
5. BEQ 10$;**NEW**
6. MOV SPSAV,SP ;**-1
7. MOV #$CFNMB,R0
8? CLR R2 ;JM010
9. MOV #<$HDSIZ-$CFNMB>/2+1,Rl

10-9

10. CLR
11. DEC
12. BNE

(RO)+
Rl
5$

USING SLP

The /TR switch (/TR in the command line) records the truncation
of lines by the audit trail. In the listing file, a question
mark (?) replaces the period (.) after the line number for the
lines that were truncated. It is possible that audit-trail
strings in the input file will be truncated by the new
audit-trail string, although the commands or text strings will
not be truncated.

10.3.2.2 Entering SLP Commands Using Indirect Command Files
- To alter the example file by using the SLP edit commands in

the indirect command file, BASE.SLP, you invoke SLP and SLP
responds with the prompt:

SLP>

You then enter the file specification for the indirect command
file containing the command line, the SLP edit commands, and the
input lines:

SLP processes the files just as if you entered the commands and
input lines interactively, returning control to you with the
prompt:

SLP>

The output listing resulting from indirect command file
processing is exactly like the output listing resulting from the
same changes made interactively.

Indirect command files can be nested to a maximum level of three.
This permits indirect command files to reference a text file.

10.3.2.3 Using SLP Operators - In addition, you can enter
special characters called operators, which perform specific
functions. Table 10-1 lists the operators and the function each
performs. Enter operators, in edit mode, as the first character
of an input line.

10-10

USING SLP

Table 10-1: SLP Operators

Operator Function

Identifies the first character of a SLP edit
command line.

\ Suppresses audit-trail processing.

g,
0 Re enables audit-trail processing.

@ Invokes an indirect command file for SLP
processing.

I Terminates the SLP edit session, and then returns
to SLP command mode.

< Enables you to enter characters in the input file
that SLP otherwise would interpret as operators.
For example, </ hides the slash character from
SLP, thereby enabling you to enter the slash into
the output file without terminating the SLP
editing session. This character can be used with
all SLP operators.

10.3.3 Updating Source Files With SLP

This section describes the procedure for generating a numbered
listing for use in editing source files by line number. The
section also describes how to use SLP to add, delete, and replace
lines in a file.

10.3.3.1 Generating a Numbered Listing - SLP processes input by
line number. However, line numbers appear only in the listing
file; they are not written to the output file. To use SLP
effectively, you should use a numbered listing when you prepare
command input. To generate a numbered listing, first invoke SLP,
then enter the command line in the format:

,list ile=infile
/

10-11

USING SLP

In this format, listfile is the name you assign
file SLP will produce and infile is the name
whose lines are to be numbered. The slash (/)
mode. For example, suppose the input file is:

MOV Rl,-(SP)
BIC #177770,@SP
ADD #60,@SP
MOVB (SP)+,-(RO)
ASR Rl
ASR Rl
ASR Rl
DEC R2
BNE 30$
MOV #MSG,RO

to the listing
of the input file

terminates edit

SLP processes each line to generate a numbered list file (list
file;l):

1. MOV Rl,-(SP)
2. BIC #177770,@SP
3. ADD #60,@SP
4. MOVB (SP)+,-(RO)
5. ASR Rl
6. ASR Rl
7. ASR Rl
8. DEC R2
9. BNE 30$

10. MOV #MSG,RO

10.3.3.2 Adding Lines to a File - The three SLP edit command
formats for adding lines to a file are:

-locatorl
inputline

or

-locator1,,
input.line

or

10-12

locatorl,,/audittrail/
inputline

USING SLP

The following example shows how to add lines to a file. The
command input consists of the following lines:

MYFILE.MAC;2/AU:48.:10./TR,MYFILE.LST/-SP=MYFILE.MAC;1
-3
CMP
-4,4
DEC

(Rl)+,B

R2
-6,, ,/;JM010/
INC R3
-9, ,/;BJ008/
BEQ 10$
I

The next example uses text rather than line numbers to indicate
where new lines should be added or deleted:

MYFILE.MAC;2/AU:50,MYFILE.LST=MYFILE.MAC;1
-/BEQ/
CALL
I

WRITE

In this example, the edit command /BEQ/ instructs SLP to insert a
line after the line with the first occurrence of BEQ.

SLP processing generates the following listing file
(MYFILE.LST;l):

1. MOV #BUF1,RO
2. MOV #SIZ,Rl
3. CALL READ
4. TST R2
5. BEQ END
6. CALL WRITE ;**NEW**
7. CLR Rl
8. MOV R2,NUMC
9. CMPB (RO)+,A

10. BNE 20$
11. INC Rl

SLP has numbered the lines and applied an audit trail to the line
following line 5, where SLP found the first occurrence of the
string BEQ.

10-13

USING SLP

The next example uses the same input file and the following new
command lines:

SLP

MYFILE.MAC;2/AU:50,MYFILE.LST=MYFILE.MAC;1
:-/#SIZ/+2
CMP (Rl) +I B
I

processing generates the following listing

1. MOV #BUF1,RO
2. MOV #SIZ,R1
3. CALL READ
4. TST R2

file

5. CMP (Rl)+,B ;**NEW**
6. BEQ END
7. CLR Rl
8. MOV R2,NUMC
9. CMPB (RO)+,A

10. BNE 20$
11. INC Rl

(MYFILE;l):

Again, SLP has numbered the lines and this time the new input
line is inserted so that it is two lines beyond the line
containing the first occurrence of the string /#SIZ/.

10.3.3.3 Deleting Lines from a File - The SLP edit command
format for deleting lines from a file is:

-[locatorl],[locator2],[/audittrail/][; comment]

In this format, locatorl and locator2 can be any of the forms of
the locator fields described in Section 10.3.1; locatorl
specifies the line where SLP is to begin deleting lines; locator2
specifies the last line to be deleted. SLP deletes all lines
from locatorl through locator2, inclusive.

Suppose an input file consists of the following lines:

MOV #BUF1,RO
MOV #SIZ,Rl
CALL READ
TST R2
BEQ END
CLR Rl
MOV R2,NUMC
CMPB (RO)+,A
BNE 20$
INC Rl

10-14

USING SLP

To delete lines from the file, the command input can consist of
the following commands and text lines:

SLP

MYFILE.MAC;2/AU:50,MYFILE.LST=MYFILE.MAC;1
-/MOV ... Rl/,/NUMC/
I

processing generates the following listing

1. MOV #BUF1,RO
2. CMPB (RO)+,A
3. BNE 20$
4. INC Rl ;**-6

file (MYFILE;l):

In this example, the ellipsis (...) abbreviates the larger string
MOV #SIZ,Rl. Assuming the two strings bracket a larger string,
SLP search~s for the first occurrence of the string MOV and then
the first occurrence on the same line of the string Rl, in this
case the string MOV #SIZ,Rl. SLP begins deleting lines at this
line and continues deleting lines until it deletes the last line
of the given range, specified here by the string NUMC. SLP
applies the audit-trail count of the lines it deleted to the next
line from the input file.

Using the same input file as used in the previous example, the
following example shows how to delete a single line using the
period locator. The command input for this example is:

SLP

MYFILE.MAC;2/AU:50,MYFILE.LST=MYFILE.MAC;1
- /MOV jf s I z I R 1 I ' .
I

processing generates the following listing

1. MOV #:BUF1,RO
2. CALL READ ;**-1
3. TST R2
4. BEQ END
5. CLR Rl
6. MOV R2,NUMC
7. CMPB (RO)+,A
8. BNE 20$
9. INC Rl

file (MYFILE;l):

SLP moves the current line pointer to the line containing the
string MOV #:SIZ,Rl and then finds the period as the second
locator field. Since the second locator field is specified as
the current line, SLP deletes the current line.

10-15

USING SLP

10.3.3.4 Replacing Lines in a File - A replacement is the
deletion of old text followed by the insertion of new text. The
number of lines deleted need not match the number of lines added.
To replace lines in a file, use the same SLP edit command format
as used in the delete command. The first line locator field
specifies the first line to be deleted. The second line locator
field defines the last line in the range to be deleted and where
the new text is to be inserted. For example:

-4' .+4

This command instructs SLP to move the line pointer to line 4,
and replace line 4 and the next four lines with new input lines.

The following example shows how to delete lines from a file and
replace them with new lines. The input file consists of the
following lines:

The

MOV #BUFl,RO
MOV #SIZ,Rl
CALL READ
TST R2
BEQ END
CLR Rl
MOV R2,NUMC

command input is:

MYFILE.MAC;2/AU:50,MYFILE.LST=MYFILE.MAC;1
-2, .+1
CMP
INC
I

(Rl)+,B
R2

In this example, the edit command, -2,.+1, instructs SLP to
delete lines 2 and 3 and insert two new lines.

SLP processing generates the following listing file (LISTING;l):

1. MOV #BUFl,RO
2. CMP (Rl)+,B ;**NEW**
3. INC R2 ;**NEW**
4. TST R2 ;**-2
5. BEQ END
6. CLR Rl
7. MOV R2,NUMC

10-16

USING SLP

10.3.4 Creating Source Files Using SLP

Using SLP to create source files is possible, but not
recommended. SLP does not have an intraline editing mode and you
cannot return to a line once you have passed it. An interactive
editor, EDT, is better for creating source files.

To create source files using SLP, invoke SLP and enter the
command line in the format:

outfile/-AU[/sw][,listfile][/sw]=[primary_input_device:[/sw))

outfile

/-AU

The file specification for the output file.
device is SYO:.

The default

Specifies that an audit trail is not to be generated.
Otherwise, you will get the ;**NEW** audit trail on every
line of the output files.

listf ile

The file specification for the listing file (optional). The
default device is implied by the output file specification.

primary_input_device:

/SW

Specifies that input for the file being created
from this device, for example, a terminal.
device is your primary input device.

Specifies any optional SLP switches.

is coming
The default

The following file specification creates a new file called
MYFILE.MAC from the terminal and puts it on SYO:.

MYFILE.MAC/-AU=TI:

Once you have entered the file specification, SLP accepts each
line as a variable-length record of up to 132 (decimal)
characters. Trailing blanks and tabs on input lines are deleted.
SLP expects input to the file to come from the primary input
device. End the SLP session with a slash (/) and then a CTRL/Z.

10-17

CONTROLLING SLP

10.4 CONTROLLING SLP

The SLP switches allow you to calculate the checksum value for
the edit commands and to control the generation and format of the
listing file and the output file.

10.4.1 SLP Switches

SLP output consists of two files--a listing file and the output
file, which is the modified version of the input file. You can
use the SLP switches to control the audit trail and print options
associated with the two files.

The effects of SLP switches are the same whether you apply them
to input or output files. Table 10-2 lists the SLP switches and
gives a brief description of the functions each performs.

Table 10-2:

Switch

/AU
/-AU

/BF
/-BF

/CM[:n]

/CS[:n]

SLP Switches

Function

Allows you to generate an audit trail or suppress
audit-trail generation and specify the beginning
field and length of the audit trail. /AU is the
default value. See the following sections for more
information about the /AU switch.

Positions the audit trail by inserting spaces
instead of tabs at the end of text information. /BF
is the default value.

Deletes audit trails and any trailing spaces or tabs,
and truncates the text at a specified horizontal
position. The value given for the beginning position
of the audit trail is the default value for this
switch. See Section 10.4.6 for more information
about the /CM switch.

Calculates the checksum value for the edit commands.
If you do not specify n, SLP reports the value in a
message on your terminal. If you do specify n and
the checksum value that SLP calculates is not the
same as the one you specified, SLP displays a
diagnostic error message.

10-18

Switch

/DB
/-DB

/TR

/SQ

CONTROLLING SLP

Function

The procedure SLP uses to calculate the checksum
value for the edit commands is described in Section
10.1.2.

Generates the listing file in double-space
format. /-DB is the default value.

Reports truncation of lines by the audit trail. If
line truncation occurs, you will get a diagnostic
error message. There is no default value for this
switch.

In the listing file, a question mark (?) replaces the
period (.) in the line number of the lines that were
truncated.

Sequences the lines in the output file so that the
numbers reflect the line numbers of the original
input file. New lines added to the file have the
same number as the preceding line. This allows the
MACRO Relocatable Assembler to output listing files
that contain the original line numbers, thus easing
the process of updating correction files.

If you specify a listing file, SLP preserves the line
numbers of the input file but does not display
numbers for the new lines that have been inserted.

/RS Resequences the lines in the output file so that the
line numbers are incremented for each line written to
the output file. The /RS switch overrides the /SQ
switch.

/NS Does not sequence the lines in the output file. New
lines are indicated by the audit trail (if
specified). The /NS switch is the default condition
and overrides the /SQ and /RS switches.

10.4.2 Controlling the Audit Trail

The /AU switch allows you to generate, suppress, and set the
length and contents of the audit trail. To suppress generation
of the audit trail, specify the /-AU switch in either the input
or output file specification. For example, either of the
following command lines generates an output file with no audit
trail:

10-19

CONTROLLING SLP

By default, SLP automatically generates an audit trail; that is,
you need not explicitly specify the /AU switch in your command
line (unless you want to specify the beginning position and
length of the audit trail).

10.4.3 Setting the Position and Length of the Audit Trail

You can set the beginning position of the audit trail and the
length of the audit trail using the /AU switch in the format:

position

A number, less than or equal to 132 (decimal), designating
the beginning character position of the audit trail on the
line. SLP rounds this value to the next highest tab stop (a
multiple of 8). The default value for position is 80
(decimal).

length

NOTE

Numeric values given for switches default to octal.
Decimal values must be followed by a period(.).
The default position for the audit trail is 80
(decimal) and its default length is 8 (decimal); no
more than 14 (decimal) characters may be specified.
(See Section 10.4.2 for more information about the
audit tt"ail.)

The length of the audit trail.
is 8 (decimal) characters;
characters may be specified.

The default value for length
no more than 14 (decimal)

The following example shows how to specify the beginning position
and length of the audit trail. The input file for this example
is:

MOV #BUF1,R0
MOV #SIZ,Rl
CALL READ
TST R2
BEQ END

10-20

CONTROLLING SLP

The command input is:

MYFILE.MAC;2/AU:30.:10./TR,MYFILE.LST=MYFILE.MAC;1
-2,.+1,/;CHANGEOOl/
CMP (Rl)+,B
DEC R2
I

The listing file MYFILE.LST;l resulting from SLP processing

1. MOV #BUFl,RO
2. CMP (Rl)+,B ;CHANGE001
3. DEC R2 ;CHANGE001
4. TST R2 ;**-2
5. BEQ END

10.4.4 Changing the Value of the Audit Trail

To change the value of the audit trail, specify:

-[locatorl],[locator2],/;new value/

is:

The following example shows how to change the audit trail values.
The input file consists of the following lines:

MOV #BUFl,RO
MOV #SIZ,Rl
CALL READ
TST R2
BEQ END
CLR Rl
MOV R2,NUMC
CMPB (RO)+,A
BNE 20$
INC Rl

The command input consists of the following commands and text
lines:

MYFILE.MAC;2/AU:48.:10./TR,MYFILE.LST/-SP=MYFILE.MAC;1
-3
CMP (Rl)+,B
-4,4
DEC R2
-6,,/;JMOlO/
INC R3
-9, ,/;BJ008/
BEQ 10$
I

10-21

CONTROLLING SLP

In this example, the edit commands instruct SLP to insert a line
after line 3, to delete and replace line 4, and to insert new
lines after lines 6 and 9 with new audit trail values.

The listing file (MYFILE.LST) resulting from SLP processing
appears as follows:

1. MOV #BUFl,RO
2. MOV #SIZ,Rl
3. CALL READ
4. CMP (Rl)+,B
5. DEC R2
6. BEQ END
7. CLR Rl
8. INC R3
9. MOV R2,NUMC

10. CMPB (RO)+,A
11. BNE 20$
12. BEQ 10$
13. INC Rl

10.4.5 Temporarily Suppressing the Audit Trail

;**NEW**
;**NEW**
;**-1

;JM010

;BJ008

You can temporarily suppress the generation of the audit trail by
using the backslash (\) operator. You can then reenable
audit-trail processing with the percent sign (%) operator. (You
cannot enable audit trail processing with this operator if you
have specified the /-AU switch in the SLP command line.)

Both operators are entered in the command input. The backslash
(\) is specified in column 1 of the line that precedes those
commands and/or input files for which you do not want audit-trail
processing. The percent sign (%) is specified in column 1 of the
line that precedes the lines for which you do want processing.
For example:

BAK.MAC;26/AU/-BF=BAK.MAC;25
\
-2,2

.IDENT /05.03/
-23,23
; VERSION 05.03
-37,,

J. MATTHEWS

JM011
INPUT-BUFFER

11-NOV-80

CORRECT OUT-OF-BOUNDS CONDITION FOR

SIZE

10-22

CONTROLLING SLP

9.-
0

06,106,/;JMO
CMP # 32. , I I :NPlJT- FER SIZE IN RANGE?
BLT 3 $ F LT 1

I

The lines between the backslash (\) and the percent sign (%) are
not affected by audit-trail processing. The lines following the
percent sign (%) are affected.

10.4.6 Deleting the Audit Trail

The /CM switch allows you to delete audit trails and trailing
spaces and tabs from a file. The /CM switch applied to the
output or input file specification accepts a numeric argument
that specifies the beginning position of an audit trail or other
text string to be deleted. The default for this argument is the
position argument given for the /AU switch (or its default,
decimal 80). This value is rounded to the next highest tab stop
before use.

When processing an input line, SLP first truncates the text to
the next highest tab stop after the position specified, and then
deletes any trailing spaces or tabs. The remaining text is
copied to the output file.

The /CM switch is specified in the form:

n

[n]

A number designating the beginning character position of the
audit trail (or other text) to be deleted.

For example:

SLP>SLPR1l.MAC l
I

119.=SLPRll.MAC;ll

In this case, the input lines are truncated to a length of 120
(decimal) characters. The specified length is rounded up to the
next highest tab stop and the audit trail begins at column 121
(decimal). Trailing spaces and tabs are deleted before each line
is copied to the output file.

10-23

CONTROLLING SLP

In the following example, SLP truncates input lines to the
default position of the audit trail, column 80 (decimal).

SLP>SLPR11.MAC;12=SLPR11.MAC;11/CM
I

10.5 SLP MESSAGES

SLP messages are divided into two groups: information and error.
The messages and suggested responses are given in the following
sections. Section 10.5.1 describes the information message and
Section 10.5.2 describes the error messages.

10.5.1 SLP Information Message

SLP COMMAND FILE CHECKSUM IS ######

Explanation: By specifying the /CS[:n] switch in the
command line, you requested SLP to calculate the checksum
value for the edit commands.

User Action: This message is for your information only. No
action is required.

10.5.2 SLP Error Messages

This section lists the SLP error
message is an explanation of the
action to correct the error.

messages. Following each
error and recommended user

SLP error messages are issued in two formats:

0 SLP followed by a dash, the type of error message, and the
error message. If applicable, the command line or command
line segment that caused the message is printed on the next
line. For example:

SLP -- ~FATAL*-ILLEGAL SWITCH OR FILESPEC
SHIRLEY.MAC;2/CF

o SLP followed by a dash, the type of error message, the error
message, and the name of the file with which the error is
associated. For example:

SLP -- *FATAL*-OPEN FAILURE LINE LISTING FILE filename

10-24

SLP MESSAGES

Note that all but two of the SLP error messages are fatal. The
two exceptions are diagnostic messages, which are described at
the end of this section.

SLP -- *FATAL*-COMMAND SYNTAX ERROR
command line

Explanation: The command line format
syntax rules. Open files were
reinitialized.

did not conform to
closed and SLP was

User Action: Reenter the command line, specifying the
proper syntax.

SLP -- *FATAL*-ILLEGAL DEVICE NAME
command line

Explanation: The device specified was not a legal device.
Open files were closed and SLP was reinitialized.

User Action: Reenter the command line, specifying a legal
device.

SLP -- *FATAL*-ILLEGAL DIRECTORY
command line segment

Explanation: The directory was not legally specified. Open
files were closed and SLP was reinitialized.

User Action: Reenter the command line, specifying a legal
directory.

SLP -- *FATAL*-ILLEGAL ERROR/SEVERITY CODE pl p2 p3

Explanation: This error message indicates an error in the
SLP program.

User Action:
correct the
Center.

Reenter the command line. If this does not
problem, call your DIGITAL Customer Support

SLP -- *FATAL*-ILLEGAL FILE NAME
command line segment

Explanation: A file specification was greater than 19
(decimal) characters in length or contained a wildcard (that

10-25

SLP MESSAGES

is, an asterisk in place of a file specification element).
Open files were closed and SLP was reinitialized.

User Action: Reenter the command line, specifying a legal
filename.

SLP -- *FATAL*-ILLEGAL GET COMMAND LINE ERROR

Explanation: The system was unable to read a command line.
This error message indicates an internal system failure or
an error in the SLP program.

User Action:
correct the
Center.

Reenter the command line. If this does not
problem, call your DIGITAL Customer Support

SLP -- *FATAL*-ILLEGAL SWITCH OR FILESPEC
command line segment

Explanation: The switch was not a legal
legal switch was used in an illegal
specification could not be parsed.

SLP switch or a
manner, or a file

User Action: Reenter the command line, specifying the legal
switch, or correct the file specification.

SLP -- *FATAL*-INDIRECT COMMAND SYNTAX ERROR
command line

Explanation: The command line format specified for the
indirect command file did not conform to syntax rules. Open
files are closed and SLP was reinitialized.

User Action: Reenter the command line,
proper syntax.

SLP -- *FATAL*-INDIRECT FILE DEPTH EXCEEDED
command line

specifying the

Explanation: More than three levels of indirect command
files were specified in an indirect command file. Open
files were closed and SLP was reinitialized.

User Action: Correct the indirect command file and reenter
the command line.

10-26

SLP MESSAGES

SLP - - *FATAL*-I/O ERROR COMMAND INPUT FILE

or

SLP - - *FATAL*-I/O ERROR COMMAND OUTPUT FILE

or

SLP - - *FATAL*-I/0 ERROR CORRECTION INPUT FILE filename

or

SLP - - *FATAL*-I/O ERROR LINE LISTING FILE filename

or

SLP *FATAL*-I/O ERROR SOURCE OUTPUT FILE filename

Explanation: One of the following conditions may exist:

• A problem exists on the physical device.

@ The length of the command line was greater than the
allowed number of characters.

o The file is corrupted or the format is incorrect.

User Action: Determine which condition caused the message
and correct that condition. Reenter the command line.

SLP -- *FATAL*-INDIRECT FILE OPEN FAILURE
command line

or

SLP -- *FATAL*-OPEN FAILURE CORRECTION INPUT FILE filename

or

SLP -- *FATAL*-OPEN FAILURE LINE LISTING FILE filename

or

SLP *FATAL*-OPEN FAILURE SOURCE OUTPUT FILE filename

Explanation: One of the following conditions may exist:

10-27

SLP MESSAGES

® The file is protected against an access.

o A problem exists with the physical device

o The volume is not mounted.

• The specified file directory does not exist.

~ The named file does not exist in
directory.

the specified

• The available Executive dynamic memory is insufficient
for the operation.

These errors cause open files to be closed and SLP to be
reinitialized.

User Action: Determine which condition caused the message
and correct that condition. Reenter the command line.

SLP -- *FATAL*-LINE NUMBER ERROR
command line

Explanation: The command line printed
illegally specified numeric line locator.

contained an

User Action: Terminate the SLP edit session and refer to
the rules for specifying numeric line locators in Section
10.3.1. Correct the error and reenter the command line.

SLP -- *FATAL*-PREMATURE EOF CORRECTION INPUT FILE filename

Explanation: An out-of-range line locator was specified in
an indirect command file or from the terminal; for example,
-990 was specified for an 800-line file.

User Action: Terminate the current editing session.
Restart the editing session, and enter the edit command
line, specifying the correct line number.

SLP -- *FATAL*-PREMATURE EOF COMMAND INPUT FILE

Explanation: This is caused by not terminating SLP command
input with a slash (/) or by inadvertently typing CTRL/Z at
the terminal, which sends an end-of-file to SLP before the
slash (/) character is read. SLP prompts (SLP>), indicating
that a new file specification is expected.

10-28

SLP MESSAGES

User Action: Restart the editing session at the point where
the CTRL/Z was typed.

SLP -- *DIAG*-ERROR IN COMMAND FILE filespec CHECKSUM

Explanation: An incorrect value was specified for the
command file checksum. If you enter the edit command lines
directly from the terminal, the command file in the error
message is CMI.CMD. Thus, the error message reads:

SLP -- *DIAG*-ERROR IN COMMAND FILE CMI.CMD CHECKSUM

User Action:
output file
intended.

This is a warning message only. The specified
is still created, although possibly not as

SLP -- *DIAG*-n LINES TRUNCATED BY AUDIT TRAIL
command line

Explanation: Line truncation by the audit
detected.

trail was

User Action: This is an informational message only. The
specified output file is still created. (In the listing
file, a question mark(?) replaces the period (.) in the
line number of the lines that were truncated. It is
possible that audit-trail strings from the input file will
be truncated by the new audit-trail string although text
strings will not be truncated.) Determine where the
truncation(s) occurred. If necessary, modify the command
file so that it contains commands that do not cause
truncation.

10-29

CHAPTER 11

CONVERT UTILITY (CVT)

The Convert Utility (CVT) provides you with a convenient means of
converting an integer value into several different radixes.

To invoke CVT, enter the following command from DCL:

$ RUN $CVT

You receive the following prompt:

CVT>

Once you receive the CVT prompt, you can enter an integer
expression. Figure 11-1 illustrates the output of CVT when you
enter the value 15 (octal).

$ RUN $CVT ! Execute the Convert Utility.
CVT> 15
13. 13., 0. 000015 015,000 $000D % M "<CR ><NUL>

t t t t t t t
Decimal Decimal Octal Octal Hex RAD50 ASCII
Word Bytes Word Bytes Word Word Bytes

Figure 11-1: Output of the CVT Utility

CVT displays a row of numbers that represent the value 15 (octal)
converted into a decimal word, decimal bytes, octal word, octal
bytes, hexadecimal word, RAD50 word, and ASCII bytes.

11-1

CONVERT UTILITY

By default, CVT interprets the expression you specify as an octal
value. However, you can force CVT to interpret the expression as
decimal, hexadecimal, RADSO, or ASCII. To do this, you use the
punctuation described in Table 11-1. Note that CVT uses the same
punctuation in its output display to indicate the radix of each
value.

Table 11-1: Punctuation to Specify Radix

Name

Period

Dollar
Sign

Percent
Sign

Apostrophe

Quotation
Mark

Example

13.

$D

%M

'x

"xx

Description

Forces decimal interpretation. Place
the period immediately after the
value you want interpreted as
decimal.

Forces hexadecimal interpretation.
Place the dollar sign immediately
before the value you want
interpreted as hexadecimal.

Forces RADSO interpretation. Place
the percent sign immediately before
the value you want interpreted as
RADSO. You can enter from one to
three RAD50 characters at a time.

Forces ASCII interpretation of 1
byte. Place the apostrophe
immediately before the value you
want interpreted as an ASCII byte.
You can enter no more than one
character after an apostrophe.

Forces ASCII interpretation of two
bytes. Place the quotation mark
immediately before the value you
want interpreted as two ASCII bytes.

11-2

CHAPTER 12

PERIPHERAL INTERCHANGE PROGRAM (PIP)

The Peripheral Interchange Program (PIP) is a file utility
program that transfers data files from one standard FILES-11
device to another. PIP also performs file control functions.

Some of the functions PIP performs are:

s Copying files from one device to another

o Deleting files

~ Renaming files

• Listing file directories

@ Setting the default device and UIC for PIP operations

@ Unlocking files

12.1 INVOKING PIP

You can invoke PIP in two ways:

1. Invoke the DCL commands that manipulate files; these commands
in turn invoke PIP. See Section 1.1.1 for a list of
file-handling commands.

2. Invoke PIP directly from the DCL command level.

To invoke PIP directly from the DCL command level, enter the
following command:

$ RUN $PIP

12-1

INVOKING PIP

You receive a new prompt to indicate that you are in the PIP
environment:

PIP>

Once you are in the PIP environment, PIP waits for your command.
The following section describes the command format.

12.2 FORMAT OF PIP COMMANDS

The simplest format for the PIP command line is:

outf ile

The output file specification. If the output filename, file
type, and version are either defaulted or *.*;*, the input
filename, file type, and version are used for the output
file (see /NV and /SU subswitches).

If you explicitly specify any portion of the output file
specification (filename, file type, or version), wildcards
cannot be used in this specification.

Similarly, for a copy command, if you enter any portion of
the output specification, you can enter only one file as the
input file.

infile

The input file specification.
and version fields are not
default.

If the filename,
specified, then

file
* *•* • I

type,
is the

One switch that you can specify when copying FILES-11 files is
the Merge switch (/ME). The Merge switch creates a new file from
two or more existing files. PIP assumes /ME when you explicitly
specify an output file, two or more input files, and no switches.

Because the basic copy function and the Merge switch are
logically related, the Merge switch is described here rather than
with the other switches.

The general format of the PIP command line is:

outfile=infilelf infile2 ... ,infi en

12-2

FORMAT OF PIP COMMANDS

outf ile

The output file specification.

infile

The input file specification.

/ME

The Merge switch.

/subswitch

Specifies any of the subswitches that you can enter as
of the basic command line or with the Merge switch.
12-2 describes these subswitches.)

part
(Table

Subswitches can appear in either the output or input file
specification. If you place the subswitch in an input file
specification, it applies only to that file. If you place
the subswitch in the output file specification, it applies
to the entire list of input specifications.

12.3 PIP DEFAULTS FOR FILE SPECIFICATION FIELDS

With the exception of the version number, PIP generally uses the
last value encountered in the command line as the default. That
is, PIP uses values you enter to set defaults and changes the
default when you change the value. Exceptions to this are noted
in the descriptions of each switch.

In the following example, Tl.MAC;S sets the defaults for the
subsequent file specifications in the command line. Then, T2 is
specified and overrides Tl as the default filename; however, .MAC
remains the default file type. Finally, .TSK is specified, which
overrides .MAC as the default, while T2 remains the default
filename.

Note, in this example, that the version number does not default.

PIP>T1.MAC;5,T2, .TS

Tl.MAC;S
T2.MAC;l
T2.TSK;3

12-3

PIP DEFAULTS FOR FILE SPECIFICATION FIELDS

Table 12-1 summarizes the rules PIP uses to set defaults.

Table 12-1: PIP Default File Specifications

Field Default Value

dev: For the first file specification, the unit on
which the user's system disk is mounted (SYO:) or
the default that you specify with the /DF switch.

[ufd]

filename

.filetype

For subsequent file specifications, either you
explicitly specify a new device or PIP assumes the
device from the previous specification.

For the first file specification, your current
User Identification Code (UIC)--the UIC under
which you log on, the UIC you specify with the SET
command, or the default you specify with the /DF
switch.

For subsequent file specifications, either you
explicitly specify a new User File Directory or
PIP assumes the UFD from the previous
specification. Only the asterisk specification is
valid as a wildcard.

No default for the first file specification. For
subsequent file specifications, the last file name
that you explicitly specified. Asterisk and
percent sign specifications are valid as
wildcards.

No default for the first file specification. For
subsequent file specifications, the last file type
that you explicitly specified. Asterisk and
percent sign specifications are valid as
wildcards.

12-4

Field

;version

PIP DEFAULTS FOR FILE SPECIFICATION FIELDS

Default Value

The default for input files is the most recent
version number. The default for output files is
the next higher version number, or version 1 if
the file does not exist in the output directory.
An exception is the PIP file delete function,
which requires that a version number be specified.

An explicit version number is defined tq be of the
form ;n where n is greater than 0. A version
number of ;-1 may be used to specify the oldest
version of a file. A version number of ;0 or ; may
be specified to signify the most recent version.
In certain cases, just the asterisk (wildcard) may
be specified.

12.4 PIP SWITCHES AND SUBSWITCHES

PIP provides several file control switches and subswitches. A
switch specification consists of a slash (/) followed by a two
or three-character switch name.

The switch specification is optionally followed by
name separated from the switch name by a slash.
subswitch can have arguments that are separated from
or subswitch name by a colon (:).

a subswitch
The switch or

the switch

To allow several commands to be performed consecutively, more
than one command can be specified in a line. To separate each
command, the ampersand character (&) is used.

Most of the PIP switches operate on lists of file specifications.
The exceptions are /DD, /DF, /ID, and /TD, which are used by
themselves.

Table 12-2 lists PIP switches and subswitches and summarizes the
functions performed by them. The subswitches are listed with
their respective switches. The switches and subswitches are
described in detail in Section 12.4.1.

12-5

PIP SWITCHES AND SUBSWITCHES

Table 12-2: PIP Switches and Subswitches

Switch Subswitch

/AP

FO

/CD

DE

LO

DD

OF

EN

NV

EOF[:block:byte]

EX

/FI:filenum:seqnum

FR

ID

Function

Appends file(s) to the end of an
existing file.

Specifies the file owner for a file.

Allows the output file to take the
creation date of the input file rather
than the date of transfer.

Deletes one or more files.

Lists the deleted files.

Restricts file searches to files
created during a specified period of
time.

Changes PIP's default device and/or
UFO.

Enters a synonym for a file in a
directory file.

Forces the version number of a file to
one greater than the latest version.

Specifies the end-of-file pointer for
a file.

Excludes one file specification from
the PIP operation.

Accesses a file by its file
identification number (file-ID).

Displays the amount of available space
on the specified volume, the largest
contiguous free space on that volume,
and the number of available file
headers.

Identifies the version of PIP being
used.

12-6

Switch

LI

ME

NM

/PR

PIP SWITCHES AND SUBSWITCHES

Subswitch

BR

FU [: n [.])

TB

BL: n [.]

co

FO

NV

SU

FO

GR [: RWED]

OW[: RWED]

SY[:RWED]

Function

Lists directory files.

Lists a directory file in brief format
(an alternative mode for the /LI
switch) .

Lists a directory file in full format
(an alternative mode for the /LI
switch) .

Lists the total number of blocks used
for a directory, along with the total
number of blocks allocated and the
number of files in that directory (an
alternative mode for the /LI switch).

Concatenates two or more files into
one file.

Allocates a number (n) of contiguous
blocks.

Specifies that the output file(s) be
contiguous.

Specifies the file ownership for a
file.

Forces the version number of a file to
one greater than the latest version.

Supersedes (replaces) an existing
file.

Suppresses certain PIP error messages.

Changes the protection status of a
file.

Specifies the ownership for a file.

Sets the read/write/extend/delete
protection at the group level.

Sets the read/write/extend/delete
protection at the owner level.

Sets the read/write/extend/delete
protection at the system level.

12-7

Switch

/PU [: n [.]]

RE

RM

SD

SR

TD

TR

UF

UN

UP

12.4.1

PIP SWITCHES AND SUBSWITCHES

Subswitch

WO [: RWED]

LD

FO

hes

Function

Sets the read/write/extend/delete
protection at the world level.

Deletes obsolete version(s) of a file.

Lists the deleted files.

Renames a file.

Removes a file entry from a directory.

Selectively deletes files by prompting
for your response before deleting.

Allows shared reading of a file that
has already been opened for writing by
another user or task.

Restricts file searches to files
created on the current day.

Truncates files to logical
end-of-file.

Creates a User File Directory entry on
the volume to which a file is being
transferred.

Unlocks a file.

Updates (rewrites) an existing file.

Specifies the owner for a file.

PIP accepts some switches with no file specification. However,
when you use a switch in a command line, it must follow the file
or directory specification. It cannot come before the device
name, the directory, the filename, file type, or version of the
file on which it is to operate.

You may specify a switch once for a list of file specifications.
For example:

12-8

PIP SWITCHES AND SUBSWITCHES

filespec1,filespec2,filespec3/DE

The /DE switch applies to all of the file specifications. PIP
deletes every specified file from its UFD.

You specify switch arguments as octal (default), decimal, or
alphabetic characters, depending on the switch. The sections
that explain the individual PIP switches discuss these values.

12.4.2 Subswitches

You can apply subswitches to one or more file
depending on the placement of the subswitch.
appear in either the output file specification or
specification.

specifications,
Subswitches can
the input file

If you place the subswitch in the output file specification, the
subswitch applies to the entire list of input file
specifications. For example, the Contiguous Output switch (/CO)
is applied to both TEST.TSK and SAMP.DAT. (The /CO switch is
used with the Copy function.)

PIP>/CO=TEST.TSK;l,SAMP.DAT;l

PIP copies TEST.TSK;l and SAMP.DAT;l such that the copies,
TEST.TSK;2 and SAMP.DAT;2, are contiguous.

If you place the subswitch in the input file specification, it
usually applies only to the file specification that immediately
precedes it. In the following example, the New Version subswitch
(/NV) is applied to the file ASDG.MAC. (The /NV subswitch is
being used with the Rename switch, /RE.)

PIP>*.SMP=PRT2.QRT,ASDG.MAC/NV,KG.MAC/RE

PIP renames the files PRT2.QRT and KG.MAC, but they maintain
their associated version numbers. File ASDG.MAC is also renamed,
but the version number is forced to a number one greater than the
latest version of file ASDG.SMP (assuming a version of ASDG.SMP
already exists).

When you explicitly apply a subswitch to a file specification,
you implicitly apply the switch with which the subswitch is
associated. On a command line with more than one file
specification, the explicit subswitch affects only the file to
which it is applied. The implicit switch affects all the files
on the command line.

12-9

PIP SWITCHES AND SUBSWITCHES

Example

PIP>FILE1.CMD/GR:R/WO,FILE2.MAC/GR:RW

This command is equivalent to:

PIP>FILE1.CMD/GR:R/WO,FILE2.MAC/GR:RW/PR

The command results in the following file protection:

a. FILE1 SYSTEM Unchanged
MEMBER Unchanged
GROUP Read access
WORLD No access

b. FILE2 SYSTEM Unchanged
MEMBER Unchanged
GROUP Read/write access
WORLD Unchanged

12.5 SPECIFYING WILDCARDS

PIP allows you to specify wildcards in file specifications. The
wildcard characters are the asterisk (*) and the percent sign (%)
characters. You can use both wildcards in place of explicit
specifications for filenames and file types. Use only the
asterisk wildcard in place of file directories and version
numbers.

The asterisk can denote zero or more characters in the field you
specify it in, while the percent sign character denotes a single
character in a field. (Correct syntax must be followed,
however.)

Wildcards are restricted in some cases. The following sections
describe and give examples of wildcards in input and output file
specifications.

12.5.1 Wildcards in Output File Specifications

Wildcards in the output file specifications are restricted. For
the following PIP functions, the output file specification cannot
have any wildcards:

12-10

SPECIFYING WILDCARDS

• Concatenating files to a specified file

• Appending files to an existing file

• Updating (rewriting) an existing file

• Listing a directory

If you use wildcards in the output file specification for any of
these functions, the meaning of the command line would be
ambiguous. For example:

PIP>LIST.*=(USERFILES]/LI

You have incompletely specified the output file specification.
PIP returns an error message.

When you make copies of several files, the output specification
must be*.*;* or defaulted from the input file specification(s).

For the Rename (/RE) and Enter (/EN) switches, the output
specification may have wildcards (asterisk only) mixed with
specified fields. For either switch, the equivalent field of the
input file specification is used.

For all cases in which wildcards are allowed in the output file
specification, the wildcard directory form [*] is used to
indicate that the output directory is to be the same as the input
directory.

NOTE

The percent sign (%) cannot be used in output
file specifications.

12.5.2 Wildcards in Input Specifications

PIP provides the following wildcard features for input file
specifications:

• *.*;* means all versions of all files.

o *.DAT;* means all versions of all files of file type .DAT.

12-11

SPECIFYING WILDCARDS

® *.D*;* means all versions of all files with file types
beginning with D.

~ TEST.*;* means all versions of all types of files named TEST.

~ T*.*;* means all versions of all types of files with names
beginning with T.

~ TEST.DAT;* means all versions of file TEST.DAT.

TEST.D%T;* means
three-character
T.

all
file

versions of files named TEST with
types beginning with D and ending with

o T%N.*;* means all versions of all file types of all
three-character filenames beginning with T and ending with N.

@ *·* means the most recent version of all files.

@ *.DAT means the most recent version of all files of file type
.DAT.

o *%.DAT means the most recent version of all files that have
at least one character in their names and have the file type
of .DAT.

o TEST.* means the most recent version of all file types for
files named TEST.

PIP also provides the following wildcard directory features:

~ [*,*] means all group,member number combinations (1 to 377
octal).

~ [nl,*] means all member numbers under group nl.

® [*,n2] means all group numbers for member n2.

e [*] means all directories.

NOTE

The percent sign (%) character cannot be used in
the directory.

12-12

PIP ERROR MESSAGES

12.6 PIP ERROR MESSAGES

The PIP error messages, their descriptions and suggested user
actions are as follows:

PIP -- ALLOCATION FAILURE - NO CONTIGUOUS SPACE

Explanation: Not enough contiguous space was available on
the output volume for the file being copied.

User Action: Delete all files that are no longer required
on the output volume, then reenter the command line.

PIP -- ALLOCATION FAILURE ON OUTPUT FILE

or

PIP ALLOCATION FAILURE - NO SPACE AVAILABLE

Explanation: Not enough space was available on the output
volume for the file being copied.

User Action: Delete all files that are no longer required
on the output volume, then reenter the command line.

PIP -- BAD USE OF WILD CARDS/CHARACTERS IN DESTINATION FILE NAME

Explanation: A wildcard/character
output filename when use of a
explicitly disallowed.

was specified for an
wildcard/character was

Oser Action: Reenter the command line with the output file
explicitly specified.

PIP -- CANNOT EXCLUDE *.*;*

Explanation: The /EX switch does not accept all wildcards
as the input file specification.

User Action: Determine the files to be excluded and reenter
the command line.

12-13

PIP ERROR MESSAGES

PIP -- CANNOT FIND DIRECTORY FILE

Explanation: The specified directory does not exist on the
volume.

User Action: Reenter the command line, specifying the
correct directory or the correct volume.

PIP -- CANNOT FIND FILE(S)

Explanation: The file(s) specified in the command line
was(were) not found in the designated directory.

User Action: Check the file specification and reenter the
command line.

PIP -- CANNOT RENAME FROM ONE DEVICE TO ANOTHER

Explanation: You attempted to rename a file across devices.

User Action: Reenter the command line, renaming the file on
the input volume, then enter another command to transfer the
file to the intended volume.

PIP -- CANNOT TRUNCATE THIS FILETYPE

Explanation: PIP can only truncate files containing
fixed-length, variable-length, and sequenced records.

User Action: Check the file specification and reenter the
command line.

PIP -- CLOSE FAILURE ON INPUT FILE

or

PIP -- CLOSE FAILURE ON OUTPUT FILE

Explanation: The input or output file could not be properly
closed. If the failure is on the output file, the output
file is then locked to indicate possible corruption.

User Action: Reenter the command line. If the error
recurs, run a validity check of the file structure using the
File Structure Verification Utility (VFY) on the volume in
question to determine if it is corrupted.

12-14

PIP ERROR MESSAGES

PIP -- COMMAND SYNTAX ERROR

Explanation: Command did not conform to syntax rules.

User Action: Reenter the command line with the correct
syntax.

PIP -- DEVICE NOT MOUNTED/ALLOCATED

Explanation: The drive had not been allocated, the device
was not mounted, or another user had mounted the device.

User Action: Allocate the drive and/or mount the device,
then reenter the command line.

PIP -- DIRECTORY WRITE PROTECTED

Explanation: PIP could not remove an entry from a directory
because the device was write-protected or because of a
privilege violation.

User Action: Enable the device for write operations or have
the owner of the directory change its protection.

PIP -- ERROR FROM PARSE

Explanation: The specified directory file does not exist.

user Action: Reenter the command line with the correct UIC
specified.

PIP -- EXPLICIT OUTPUT FILENAME REQUIRED

Explanation: Self-explanatory.

User Action: Reenter the command line with the output
filename explicitly specified.

PIP -- FAILED TO ATTACH OUTPUT DEVICE

or

PIP -- FAILED TO DETACH OUTPUT DEVICE

12-15

PIP ERROR MESSAGES

Explanation: An attempt to attach/.detach a record-oriented
output device failed. This is usually caused by the device
being off-line or nonresident.

User Action: Ensure that the device is on-line and reenter
the command line.

PIP -- FAILED TO ATTACH TERMINAL

Explanation: PIP could not attach a terminal, probably
because of a privilege violation.

User Action: Determine the cause of the failure and correct
it. Reenter the command line.

PIP -- FAILED TO CREATE OUTPUT directory

Explanation:
because the

PIP could not create an entry in
device was write-protected or

privilege violation.

a directory
because of a

User Action: Enable the unit for write operations or have
the owner of the directory change its protection.

PIP -- FAILED TO DELETE FILE

or

PIP -- FAILED TO MARK FILE FOR DELETE

Explanation: You attempted to delete a protected file.

User Action: Change the protection of the file if possible,
and reenter the command line.

PIP -- FAILED TO ENTER NEW FILE NAME

Explanation: You specified a file that already exists in
the directory file, or you did not have the necessary
privileges to make entries in the specified directory file.

User Action: Reenter the command line, ensuring that the
filename and directory are specified correctly.

12-16

PIP ERROR MESSAGES

PIP -- FAILED TO FIND FILE(S)

Explanation: The file(s) specified in the command line
was(were) not found in the designated directory.

User Action: Check the file specification and reenter the
command line.

PIP -- FAILED TO GET TIME PARAMETERS

Explanation: An internal system failure occurred while PIP
was trying to obtain the current date and time.

User Action: Reenter the command line. If the problem
persists, submit a Software Performance Report (SPR).

PIP -- FAILED TO OPEN INDEX FILE

Explanation: PIP was unable to read the index
probably because of a privilege violation.

file,

User Action: Retry the operation by running PIP under a
system UIC, or have the system manager change the protection
on the index file.

PIP -- FAILED TO OPEN STORAGE BITMAP FILE

Explanation: PIP could not read the specified volume's
storage bitmap, probably because of a privilege violation.

User Action: Retry the operation by running PIP under a
system UIC, or have the system manager change the protection
on the storage bitmap.

PIP -- FAILED TO READ ATTRIBUTES

Explanation: The volume you specified was corrupted or you
did not have the necessary privileges to access the file.

User Action: Ensure that PIP is running under the correct
UIC. If the UIC is correct, then run the validity check
using the File Structure Verification Utility (VFY) against
the volume in question to determine where and to what extent
the volume is corrupted.

12-17

PIP ERROR MESSAGES

PIP -- FAILED TO REMOVE DIRECTORY ENTRY

Explanation: PIP could not remove an entry from a directory
because the unit was write-protected or because of a
privilege violation.

User Action: Enable the unit for write operations or have
the owner of the directory change its protection.

PIP -- FAILED TO RESTORE ORIGINAL DIRECTORY ENTRY - FILE IS LOST

Explanation: PIP has removed a file from a directory,
failed to enter it (using /RE) into another directory, and
failed to replace the original directory entry.

User Action: Run the lost check of the File Structure
Verification Utility (VFY) to recover the filename.

PIP -- FAILED TO TRUNCATE FILE

Explanation: The volume you specified is corrupted or you
did not have the necessary privileges (write, extend) to
truncate this file.

User Action: Ensure that PIP is running under the correct
UIC. If the UIC is correct, then run the validity check of
the File Structure Verification Utility (VFY) against the
volume in question to determine where and to what extent the
volume is corrupted.

PIP -- FAILED TO WRITE ATTRIBUTES

Explanation: The volume you specified is corrupted or you
did not have the necessary privileges to write the file
attributes.

User Action: Ensure that PIP is running under the correct
UIC. If the UIC is correct, then run the validity check of
the File Structure Verification Utility (VFY) against the
volume in question to determine where and to what extent the
volume is corrupted.

12-18

PIP ERROR MESSAGES

PIP -- FILE IS LOST

Explanation: PIP has removed a file from its directory,
failed to delete it, and failed to restore the directory
entry.

User Action: Run the lost check of the File Structure
Verification Utility (VFY) to recover the filename.

PIP -- FILE NOT LOCKED

PIP

Explanation: The /UN switch was entered for a file that was
not locked.

User Action: Reenter the command line, specifying the
correct file.

-- GET COMMAND LINE - BAD @ FILE NAME

Explanation: An illegal indirect command filename was
specified.

User Action: Reenter the command line, specifying the
correct name for the indirect command file.

PIP - GET COMMAND LINE - FAILED TO OPEN @ FILE

Explanation: PIP could not find the specified indirect
command file.

User Action: Check the specification for the indirect
command file and reenter the command line.

PIP -- GET COMMAND LINE - I/O ERROR

Explanation: An I/O error occurred during an attempt to
read a command line.

User Action: Check the command to ensure that you entered
it correctly, then reenter the command line. If the error
persists, submit a Software Performance Report (SPR).

PIP -- GET COMMAND LINE - MAX @ FILE DEPTH EXCEEDED

Explanation: The maximum level of nesting for indirect
command files (4) was exceeded.

12-19

PIP ERROR MESSAGES

User Action: Reduce the level of nesting.

PIP -- ILLEGAL COMMAND

Explanation: The command was not recognized by PIP.

User Action: Reenter the command line with the PIP command
correctly specified.

PIP -- ILLEGAL EOF VALUE

Explanation: You specified an illegal block and/or byte
value in the command line.

User Action: Reenter the command line with the correct
values.

PIP -- ILLEGAL RESPONSE - TRY AGAIN

Explanation: Self-explanatory.

User Action: Check which response you want and enter it
when PIP prompts you.

PIP -- ILLEGAL SWITCH

Explanation: The specified switch was not a legal PIP
switch.

User Action: Reenter the command line with the correct
switch specification.

PIP -- ILLEGAL "*" COPY TO SAME DEVICE AND DIRECTORY

Explanation: You attempted to copy all versions of a file
into the same directory that is being scanned for input
files. This would result in an infinite number of versions
of the same file, so is not allowed.

User Action: Reenter the command line, renaming the files
or copying them into a different directory.

12-20

PIP ERROR MESSAGES

PIP -- ILLEGAL USE OF WILDCARD VERSION OR LATEST VERSION

Explanation: The use of either a wildcard version number or
a latest version number in the attempted operation would
result in inconsistent or unpredictable output.

User Action: Reenter the command line with different
options or with an explicit or default version number.

PIP -- INPUT FILES HAVE CONFLICTING ATTRIBUTES

Explanation: The input files specified in a Merge,
or Supersede command had conflicting attributes
attributes of the input file(s) specified in an
command conflicted with those of the output file.

Update,
or the
Append

User Action: The message is a warning only. The specified
action was completed despite the conflict. With a Merge,
Update, or Supersede command, the attributes of the output
file will be those of the first input file. With an Append
command, the attributes of the output file are unchanged.
The resulting file should, however, be suspect because its
attributes may not correctly represent all the records in
the file.

PIP -- I/O ERROR ON INPUT FILE

or

PIP -- I/O ERROR ON OUTPUT FILE

Explanation: One of the following conditions may exist:

~ The device is not on-line

@ The device is not mounted

o The hardware has failed

~ The volume is full (output only)

~ The input file is corrupted

Note that these are the most common conditions. Conditions
other than those listed may have caused the message.

User Action: Determine which condition caused the message
and correct that condition. Reenter the command line.

12-21

PIP ERROR MESSAGES

PIP -- NOT A DIRECTORY DEVICE

Explanation: A directory-oriented command was issued to a
device that does not have directories (such as a printer).

User Action: Reenter the command line without specifying a
directory.

PIP -- NOT ENOUGH BUFFER SPACE AVAILABLE

Explanation: PIP did not have enough I/O buffer space to
perform the requested command.

User Action: You cannot use PIP to perform the requested
operation. Submit a Software Performance Report to your
local DIGITAL representative.

PIP -- NO SUCH FILE(S)

Explanation: The file(s) specified in the command was(were)
not found in the designated directory.

User Action: Check the file specification and reenter the
command line.

PIP -- ONLY [*] IS LEGAL AS DESTINATION UIC

Explanation: A directory other than [*] was specified as
the output file directory for a copy operation.

User Action: Reenter the command line with [*] specified as
the output directory.

PIP -- OPEN FAILURE ON INPUT FILE

or

PIP -- OPEN FAILURE ON OUTPUT FILE

Explanation: The specified file could not be opened. One
of the following conditions may exist:

e The file is protected against access.

12-22

PIP ERROR MESSAGES

• A problem on the physical device (for example, device
down).

• The volume is not mounted.

o The specified file directory does not exist.

• The named file does not exist in
directory.

the specified

Note that these are the most common conditions. Conditions
other than those listed may have caused the message.

User Action: Determine which condition caused the message
and correct that condition. Reenter the command line.

PIP -- OUTPUT FILE ALREADY EXISTS NOT SUPERSEDED

Explanation: An output file of the same name, type, and
version as the file specified already exists.

User Action: Retry the copy with /NV to assign a new
version number or use /SU to supersede the output file.

PIP -- TOO MANY COMMAND SWITCHES - AMBIGUOUS

Explanation: Too many switches were specified or the
switches conflict.

User Action: Reenter the command line, specifying the
correct set of switches.

PIP -- VERSION MUST BE EXPLICIT OR "*"

Explanation: The version number of the specified file must
be expressed explicitly or as a wildcard (*).

User Action: Reenter the command line with the version
number correctly expressed.

12.7 PIP ERROR CODES

Table 12-3 identifies error codes PIP issues when it cannot
access the message file. The descriptions and suggested user
actions are identical to those described in Section 12.6.

12-23

PIP ERROR CODES

Table 12-3: PIP Error Codes and Messages

Code Message

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Command syntax error
Invalid switch
Too many command switches--ambiguous
Only [*,*] is legal as destination UIC
Invalid command
Invalid "*" copy to same device and directory
Bad use of wildcards/characters in destination filename
Explicit output filename required
Allocation failure--no contiguous space
Allocation failure--no space available
Allocation failure on output file
I/O error on input file
I/O error on output file
Invalid use of wildcard version or latest version
Failed to create output directory
Input files have conflicting attributes
Open failure on input file
Open failure on output file
Close failure on input file
Close failure on output file
Failed to detach output device
Device not mounted/allocated
Output file already exists--not superseded
Failed to mark file for delete
File is lost
Version must be explicit or "*"
Error from parse
Failed to delete file
Failed to attach terminal
Invalid response--try again
Cannot exclude *.*;*
Cannot find directory file
Failed to attach output device
Failed to get time parameters
Not a directory device
Failed to write attributes
Failed to read attributes
File not locked
Failed to enter new filename
Failed to restore original directory entry--file lost
Cannot rename from one device to another
Failed to spool file for printing

12-24

Code

43
44
45
46
47
48
49
50
51
52
53
54

PIP ERROR CODES

Message

Cannot spool by file ID
Failed to open storage bitmap file
Failed to open index file
Failed to find file(s)
Cannot find file(s)
No such file(s)
Failed to remove directory entry
Directory write protected
Not enough buffer space available
Failed to truncate file
Cannot truncate this filetype
Invalid EOF value

12-25

CHAPTER 13

OBJECT MODULE PATCH UTILITY (PAT)

The Object Module Patch Utility (PAT) allows you to update, or
patch, code in a relocatable binary object module.

Input to PAT is two files, an input file and a correction file.
The input file consists of one or more concatenated object
modules. You can correct only one of these object modules with a
single execution of PAT. The correction file consists of object
code that, when linked by the Task Builder, either overlays or is
appended to the input object module.

Unlike the Task Builder and ZAP patching options, PAT allows you
to increase the size of the object module because the changes are
applied before the module is linked by the Task Builder.

PAT uses the correction file, which contains
additional instructions, to update the object
input is prepared in source form and then
MACR0-11 assembler.

Output from PAT is the updated input file.

corrections and/or
module. Correction

assembled by the

Using PAT to update a file involves several steps. First, you
create the correction file using a text editor. Once created,
the correction file must be assembled to produce an object
module. The correction file and the input file (both in object
module format) are then submitted to PAT for processing.

Finally, the updated
Builder to resolve
task. Figure 13-1
generating an updated

input object module is submitted to the Task
global symbols and to create an executable
shows the processing steps involved in
task file using PAT.

13-1

INVOKING PAT

13.1 INVOKING PAT

To invoke PAT, enter the following command:

$ RUN $PAT

PAT can be used interactively or by means of indirect command
files. If you use indirect command files, PAT allows a maximum
nesting level of 2.

13.2 PAT COMMAND LINE FORMAT

Specify the PAT command line in the following format:

(outfile]=infile[/CS[:number]],correctfile[/CS:[number)]

outf ile

The file specification for the output file. If you do not
specify an output file, PAT does not generate one.

infile

The file specification for the input file. This file can
contain one or more concatenated object modules.

correctfile

The file specification for the correction file. This file
contains the updates to be applied to one module in the
input file.

/CS(:number]

Specifies the Checksum switch. This switch directs PAT to
calculate the checksum for all the binary data that
constitutes the module. PAT displays this checksum in
octal. (Refer to Section 13.3.4 for information on how to
use /CS.)

You can optionally specify an octal number with /CS. Then,
after PAT calculates the checksum value, it compares that
value with the number you specified. If the values are not
the same, PAT informs you with an error message. You must
then rerun PAT, specifying the correct checksum.

13-2

TEXT
EDITOR

CORRECT.SAC

LJ
CORRECT.OBJ

LJ
MYFILE.OBJ

.-----~P'\ MYFILE.OBJ

TASK
BUILDER

PAT COMMAND LINE FORMAT

1. Generate a correction flie using

the Text Editor.

Execute the assembler (or compiler)

to generate an ob1ect module
\ters1on of the fde.

3. Execute PAT using as input the

correction file and the module to

be updated.

4. Execute the Task Builder to

resol"Ve new addresses and

generate an executable task

Figure 13-1: Using PAT

13.3 HOW PAT APPLIES UPDATES

CORRECT.SAC

->U
CORA ECT .OBJ

->LJ
MY FILE.OBJ

->LJ

MYFILE TSK

->EJ
ZK-199-81

This section describes the PAT input and correction files, gives
information on how to create the correction file, and gives
examples of how PAT applies the corrections to a module.

13-3

HOW PAT APPLIES UPDATES

13.3.1 The Input File

The input file is the file to be updated; it is the base for the
output file. The input file must be in object module format.
When you execute PAT, the correction file is applied to one of
the object modules in the file. PAT assumes a file type of .OBJ
for the input file. If you use a file type other than .OBJ, you
must specify it explicitly in the command line.

13.3.2 The Correction File

The correction file contains the patches to be applied to the
input file. PAT assumes a file type of .OBJ for the correction
file. If you use a file type other than .OBJ, you must specify
it explicitly in the command line.

As shown in Figure 13-1, the first step in using PAT to update an
object file is to generate the correction file. Use any text
editor to create this source file, which is usually in the
following format:

.TITLE inputname

.IDENT updatenum
inputline
inputline

inputname

The name of the module to be corrected by
You must specify the module that you
inputname.

updatenum

the PAT update.
are updating for

Any value acceptable to the MACR0-11 .IDENT assembler
directive. Generally, this value reflects the updated
version of the file to be processed by PAT.

NOTE

The .IDENT assembler directive is a required part
of the correction file. Failure to include an
.IDENT directive in the file produces unusable
output.

13-4

HOW PAT APPLIES UPDATES

inputline

Lines of input to be used to correct and update the input
file.

Once you have created the source version of the correction file,
you assemble it to produce an object module that can be processed
by PAT.

During PAT execution, new global symbols defined in the
correction file are added to the module's symbol table. A symbol
definition that is already being used in the input file can be
superseded by the definition in the correction file. For a
symbol definition to be superseded, both definitions must be
either relocatable or absolute.

A duplicate program section supersedes the previous program
section, provided:

o Both have the same relocatability attribute (ABS or REL)

o Both are defined with the same directive (.PSECT or .CSECT)

If PAT encounters duplicate program section names, the length
attribute for the program section is set to the length of the
longer program section and a new program section is appended to
the module.

If you specify a transfer address, it supersedes the transfer
address of the module being patched.

13.3.3 How PAT and the Task Builder Update Object Modules

The examples in the following sections show an input file and a
correction file (both in object module format) to be processed by
PAT and the Task Builder, along with a source-like representation
of how the output file looks once PAT and the Task Builder
complete processing. Two techniques
overlaying lines in a module, and
subroutine to a module.

are described:
the other for

one for
adding a

13.3.3.1 Overlaying Lines in a Module - The following
example illustrates a technique using a patch file to overlay
lines in a module. First, PAT appends the correction file to the
input file. Then, the Task Builder generates a task image from
the patched object modules.

13-5

HOW PAT APPLIES UPDATES

The input file for this example is:

.TITLE ABC

. IDENT /01/
ABC::

MOV A,C
CALL XYZ
RETURN
.END

To add the instruction ADD A,B after the CALL instruction, you
can use the following patch in the correction file:

.=.+12

.TITLE ABC

.IDENT /01.01/

ADD A,B
RETURN
.END

You use the MACR0-11 assembler to assemble the correction file.
After assembly, PAT processes the resulting object module and the
input object module. The result of PAT processing appears as
follows:

.TITLE ABC

.IDENT /01.01/
ABC::

MOV A,C
CALL XYZ
RETURN

.=ABC

.=.+12
ADD A,B
RETURN
.END

You then use the Task Builder to produce the patched object
module as a task image. This task image looks the same as the
source code would have looked if it had originally been written
as follows:

.TITLE ABC

. IDENT /01. 01/
ABC::

MOV A,C
CALL XYZ
ADD A,B
RETURN
.END

13-6

HOW PAT APPLIES UPDATES

PAT uses the .=.+12 in the program counter field
where to begin overlaying instructions in the
overlays the RETURN instruction with the patch code:

ADD A,B
RETURN

to determine
program. It

13.3.3.2 Adding a Subroutine to a Module - The second
example illustrates a technique for adding a subroutine to an
object module. A patch often requires that more than a few lines
be added to correct the file. A convenient technique for adding
new code is to append it to the end of the module as a
subroutine. That way, you insert a CALL instruction at an
appropriate location in the subroutine. The CALL instruction
directs the program to branch to the new code, execute that code,
and then return to in-line processing.

The input file for this example is:

.TITLE ABC
~

. IDENT /01/
ABC::

MOV A,B
CALL XYZ
MOV C,RO
RETURN

.END

The correction file for this example is:

PATCH:

.TITLE

. IDENT
CALL
NOP
.PSECT

ABC
/01. 01/
PATCH

PATCH

MOV A,B
MOV D,RO
ASL RO
RETURN
.END

PAT merges the correction file with the input file, as in the
first example. The Task Builder then processes the files and
produces a task image that looks the same as the source file
would have looked if it had originally been written as follows:

13-7

HOW PAT APPLIES UPDATES

.TITLE ABC

. I DENT /01.01/
ABC::

CALL PATCH
NOP
CALL XYZ
MOV C,RO
RETURN

.PSECT PATCH
PATCH:

MOV A,B
MOV D,RO
ASL RO
RETURN
.END

In this example, the CALL PATCH and NOP instructions overlay the
3-word MOV A,B instruction. (The NOP is included because this is
a case where a 2-word instruction replaces a 3-word instruction
and NOP is required to maintain alignment.) The Task Builder
allocates additional storage for .PSECT PATCH, writes the
specified code into this program section, and binds the CALL
instruction to the first address in this section. The MOV A,B
instruction, replaced by the CALL PATCH instruction, is the first
instruction executed by the PATCH subroutine.

13.3.4 Determining and Validating the Contents of a File

You use the Checksum switch (/CS) to determine or validate the
contents of a module. The switch directs PAT to calculate the
checksum (in octal) for all the binary data that constitutes the
module and to then inform you of the checksum by means of a
diagnostic message.

To determine the checksum of a file, enter the PAT command line
with the /CS switch applied to that file's specification. For
example:

=MYFILE/CS,CORRECT.POB

The command directs PAT to calculate the checksum for the input
file, MYFILE.PAT then responds with the message:

INPUT MODULE CHECKSUM IS checksum

13-8

HOW PAT APPLIES UPDATES

PAT generates a similar message when you request the checksum for
the correction file. For example:

=MYFILE,CORRECT.POB/CS

After calculating the checksum for the correction file, PAT
responds with the message:

CORRECTION INPUT FILE CHECKSUM IS checksum

If you specify /CS:number to validate the size of a file, PAT
calculates the checksum for the file and then compares that
checksum with the value you specified as number. If the two
values do not match, PAT displays the following message to report
the checksum error:

ERROR IN FILE filename CHECKSUM

For example, you might specify:

=MYFILE,CORRECT.POB/CS:432163

When PAT calculates the checksum for the correction file, the
number is different. PAT then displays the message:

ERROR IN FILE CORRECT.POB CHECKSUM

Checksum processing always results in an octal, nonzero value.

13.4 PAT MESSAGES

PAT generates messages that state checksum values and messages
that describe error conditions. For checksum values and nonfatal
error messages, PAT prefixes the messages with:

PAT -- *DIAG*-error message

For messages that describe fatal errors (errors that caused PAT
to terminate), PAT uses the prefix:

PAT -- *FATAL*-error message

The following messages are grouped according to message type, as
follows:

• Information messages

13-9

PAT MESSAGES

~ Command line errors

~ File specification errors

a Input/output errors

~ File content or format errors

• Internal software error

o Storage allocation error

13.4.1 Information Messages

The following messages describe results of checksum processing.

CORRECTION INPUT FILE CHECKSUM IS checksum

Explanation: When you specify /CS in the correction file
specification, PAT informs you of the file's checksum value.
The value is given in octal.

user Action: No response necessary.

INPUT MODULE CHECKSUM IS checksum

Explanation: When you specify /CS in the input file
specification, PAT informs you of the file's checksum value.
The value is given in octal.

User Action: No response necessary.

13.4.2 Command Line Errors

The following error messages result from failure to adhere to the
command line syntax rules.

COMMAND LINE ERROR command line

Explanation: The system standard command line processor
(.GCML) detected an error in the command line.

13-10

PAT MESSAGES

User Action: Reenter the command line using the correct
information.

COMMAND SYNTAX ERROR command line

Explanation: The command line contained a syntax error.

User Action: Reenter the command line using the correct
syntax.

ILLEGAL INDIRECT FILE SPECIFICATION command line

Explanation: You specified an indirect command file that
contains one of the following errors:

s A syntax error

o A specification for a nonexistent indirect command file

User Action: Check for file specification syntax errors or
ensure that the specified file is contained in the specified
User File Directory. Reenter the command line.

MAXIMUM INDIRECT FILE DEPTH EXCEEDED command line

Explanation: In the command line, you specified an indirect
command file that exceeds the maximum nesting level of 2
that is permitted by PAT.

User Action: Reorder your files so that they do not exceed
PAT's nesting limit.

13.4.3 File Specification Errors

The following error messages are caused by errors in the
specification of input or output files or related file switches.

CORRECTION INPUT FILE MISSING command line

Explanation: The mandatory
specified.

13-11

correction file was not

PAT MESSAGES

User Action: Reenter the command line specifying the
correction file.

ILLEGAL DEVICE/VOLUME SPECIFIED device name

Explanation: The device or volume
contained a syntax error.

name specification

User Action: Check the rules for specifying devices and
volumes, then reenter the command line using the correct
syntax for the device or volume specification.

ILLEGAL DIRECTORY SPECIFICATION directory name

Explanation: The directory specification contained a syntax
error.

User Action: Check the rules for specifying a directory and
reenter the command line using the correct syntax for the
directory specification.

ILLEGAL FILE SPECIFICATION filename

Explanation: The file specification contained a syntax
error.

User Action: Reenter the command line using the correct
syntax for the file specification.

ILLEGAL SWITCH SPECIFIED filename

Explanation: An unrecognized switch or switch value was
specified with the file.

user Action: Check the rules for specifying the switch and
reenter the command line using the correct switch or switch
value.

INVALID FILE SPECIFIED filename

Explanation: You specified a file that contains one of the
following errors:

e Nonexistent device

13-12

PAT MESSAGES

@ Nonexistent directory - The directory in the filename
specification does not exist on the specified device (or
on the default device if no device was specified).

User Action: Reenter the command line specifying the
correct device or directory.

MULTIPLE OUTPUT FILES SPECIFIED command line

Explanation: PAT
specification.

accepts only one output file

User Action: Reenter the command line specifying only one
output file.

REQUIRED INPUT FILE MISSING command line

Explanation: The mandatory input file was not specified in
the command line.

User Action: Reenter the command line specifying an input
file.

TOO MANY INPUT FILES SPECIFIED command line

Explanation: Too many input files were specified in the
command line. PAT accepts only the input and correction
file specifications.

User Action: Reenter the command line specifying the
correct files.

UNABLE TO FIND FILE filename

Explanation: PAT could not locate the specified input or
correction file.

User Action: Check the directory to ensure that the file
exists. Reenter the command line specifying the correct
filename.

13.4.4 Input/Output Errors

The following error messages are caused by faults detected while
PAT was performing I/O to the specified file.

13-13

PAT MESSAGES

ERROR DURING CLOSE: FILE: filename

Explanation: This error is most likely to occur while PAT
is attempting to write the remaining data into the output
file before deaccessing it. The most likely causes of this
error are the following conditions:

o The device is full

~ The device is write-locked

@ A hardware error occurred

User Action: Perform the appropriate corrective action and
reenter the command line: if the device is full, delete all
unnecessary files; if the device is write-locked,
write-enable it; if the problem is a hardware error, contact
your DIGITAL Field Service representative.

ERROR POSITIONING FILE filename

Explanation: PAT attempted to position the file beyond
end-of-file.

User Action: Submit a Software Performance Report along
with the related console dialog and any other pertinent
information.

I/O ERROR ON INPUT FILE filename

Explanation: An error was detected while PAT was attempting
to read the specified input file. The principal cause of
this error is a device hardware error.

User Action: Reenter the command.

I/0 ERROR ON OUTPUT FILE filename

Explanation: An error occurred while PAT attempted to write
into the named output file. The most likely causes of this
error are the following conditions:

~ The device is full

13-14

PAT MESSAGES

@ The device is write-locked

~ A device hardware error occurred

User Action: Perform the appropriate corrective acLion and
reenter the command line: if the device is full, delete all
unnecessary files; if the device is write-locked,
write-enable it; if the problem is a hardware error, contact
your DIGITAL Field Service representative.

13.4.5 Errors in File Contents or Format

The following errors represent inconsistencies detected by PAT in
the format or contents of the input or correction files.

ERROR IN FILE filename CHECKSUM

Explanation: The checksum that PAT calculated for the named
file does not match the one that you specified with
/CS:number.

User Action: Ensure that you specified the correct
checksum. If the checksum is correct, then you specified an
invalid version of the file. Rerun PAT specifying the
correct version of the file.

FILE filename HAS ILLEGAL FORMAT

Explanation: The format of the named file is not compatible
with the object files produced by the standard DIGITAL
language processors or accepted by the Task Builder. The
principal causes are:

• Truncated input file

~ Input file that consists of text

User Action: Ensure that the file is in the correct format
and resubmit it for PAT processing.

13-15

PAT MESSAGES

INCOMPATIBLE REFERENCE TO GLOBAL SYMBOL symbol name

Explanation: The correction file contains a global symbol
whose attributes do not match one or more of the following
input file symbol attributes:

o Definition or reference

o Relocatable or absolute

User Action: Update the correction file by modifying the
symbol attributes. Reassemble the file and resubmit it for
PAT processing.

INCOMPATIBLE REFERENCE TO PROGRAM SECTION section name

Explanation: The correction file contains a section name
whose attributes do not match one or both of the following
input file section attributes:

• Relocatable or absolute

e Defined with the same directive (.PSECT or .CSECT)

User Action: Update the correction file by modifying the
section attribute or changing the section type. Reassemble
the file and resubmit it to PAT for processing.

UNABLE TO LOCATE MODULE module name

Explanation: PAT could not find the module name that was
specified in the correction file in the file of concatenated
input modules.

User Action: Update the input file specification to include
the missing module. Reenter the command line.

13.4.6 Internal Software Error

This error reflects internal software error conditions.

ILLEGAL ERROR-SEVERITY CODE error data

Explanation: An error message call, containing an illegal
parameter, has been generated.

13-16

PAT MESSAGES

User Action: If these messages persist, submit a Software
Performance Report along with related console dialog and any
other pertinent information.

13.4.7 Storage Allocation Error

The following error message indicates that not enough task memory
was available for storing global symbol and program section data.

NO DYNAMIC STORAGE AVAILABLE storage-listhead

Explanation:
available to
storage.

Not enough
satisfy a

contiguous
request for

task
the

memory was
allocation of

PAT displays the contents of the 2-word dynamic storage
listhead in octal.

User Action: You cannot use PAT to correct the input file.

UNABLE TO OPEN FILE filename

Explanation: There is insufficient work space in the
internal File Storage Region (FSR) of the PAT Utility.

User Action: You cannot use PAT to correct the input file.

13-17

CHAPTER 14

FILE STRUCTURE VERIFICATION UTILITY (VFY)

The File Structure Verification Utility (VFY) for FILES-11
volumes provides the ability to:

• Check the readability and validity of a file-structured
volume (default function).

o Print the number of available blocks on a file-structured
volume (/FR).

• Search for files in the index file that are not in any
directory; that is, files that are "lost" in the sense that
they cannot be accessed by filename (/LO).

o Validate directories against the files they list (/DV).

o List all files in the index file, showing the file ID,
filename, and owner (/LI).

• Perform a read check on every allocated block on a file
structured volume (/RC).

The volume to be verified must be mounted as a FILES-11 device.

There should be no other activity on the volume while VFY is
executing. In particular, activities that create new files,
extend existing files, or delete files should not be attempted
while VFY is executing a function.

14.1 INVOKING VFY

To invoke VFY type:

$ RUN $VFY

14-1

INVOKING VFY

VFY will prompt:

VFY>

14.2 VFY COMMAND FORMAT

The command line for VFY uses the format:

VFY>listfile,scratchdev=indev/switch

The parameters of this command format are:

Output Parameters

listf ile

Specifies the output listing file in the following format:

dev:[ufd]filename.filetype;ver

If you do not specify a device, the default for the output
listing device is the issuing terminal (TI:). The [ufd] is
the UIC under which VFY is currently running. You must,
however, specify the filename and file type of the output
file. The default version number will be the latest version
plus one.

scratchdev

Specifies the device on which the scratch file produced by
VFY is to be written. This parameter is in the following
format:

dev:

The scratch file is used by VFY during the verification scan
and during the lost file scan. It is created but not
entered in a directory. Therefore, it is transparent to
you. The scratch file is automatically deleted when VFY is
terminated. If you do not specify a scratch device the
default device is SYO:.

If the user's default system disk is faulty or full, use
this parameter to direct the scratch file to another device.
The scratch file should always be assigned to a volume other
than the indev volume. The scratch file is not used with
the /FR and /LI switches.

Input Parameters

14-2

VFY COMMAND FORMAT

indev

Specifies the volume to be verified in the format dev:. If
you do not specify the volume, the default is SYO:.

/switch

Specifies the function to be performed by VFY.

14.3 VFY MODE OF OPERATION

VFY normally operates in read-only mode, where the scratch file,
if required, is on another device.

If the /LO switch is specified and lost files are found, VFY
requires write access to [1,3], which is the directory containing
lost files.

14.4 VFY VALIDITY CHECK

VFY checks the readability and validity of the volume mounted on
the specified device. This function is the default function and
entails reading all the file headers in the index file and
ensuring that all the disk blocks referenced in the map area of
each file header are allocated to that file in the volume bitmap.

The volume may be write-protected if it is not the system volume,
or if the required scratch file is directed to another file
structured volume.

A validity check is specified in the following format:

listfile,scratchdev=indev<RET>

or

indev<RET>

Example

$ RUN $VFY
VFY>DRO:

CONSISTENCY CHECK OF INDEX AND BITMAP ON DRO:

14-3

VFY VALIDITY CHECK

INDEX INDICATES 114524. BLOCKS FREE, 17156. BLOCKS USED OUT OF 131680.
BITMAP INDICATES 114524. BLOCKS FREE, 17156. BLOCKS USED OUT OF 131680.

14.5 VFY SWITCHES

VFY functions are specified with switches appended to the VFY
command line. The sw~tches and their functions are summarized in
Table 14-1.

Table 14-1: VFY Switches and Functions

Switch

Directory Validation

Free

Identify

List

Lost

Read Check

Format

/DV

/FR

/ID

/LI

/LO

/RC

Description

Validates directories against
the files they list.

Prints out the available space
on a volume.

Identifies the VFY version.
This switch may be specified on
a command line by itself at any
time.

Lists the index file by file
ID.

Scans the file structure
looking for files which are not
in any directory.

Checks the volume to see if
every block of every file can
be read.

14.5.1 Directory Validation Switch (/DV)

The Directory Validation Switch (/DV) examines each directory on
the volume. (VFY considers any file on the volume with the file

14-4

VFY SWITCHES

type .DIR and a fixed record length of 16 bytes to be a
directory.) It then reports any errors found that could be
attributed to a corrupt directory or a nonexistent file listed in
the directory. For example:

$ HUN
VFY>ox:
THE FOLLOWING DIRECTORY ENTRIES WERE INVALID
[301,333] FILE ID 13,2,0 DELETED.FIL;l - FILE NOT FOUND
[301,333] FILE ID 12345,3,0 CORRUPTED.FID;l - FILE NOT FOUND
(301,333] FILE ID 14,2,0 GARBAGE.VER;123456 - INVALID VERSION NUMBER
[301,333] FILE ID 15,1,444 RELVOLNEZ.ERO;l - RESERVED FIELD WAS NON-ZERO

4. INVALID DIRECTORY ENTRIES WERE FOUND

Directory entries may be invalid due to the following conditions:

FILE NOT FOUND

The file
directory
directory
cannot be

was either deleted without the corresponding
entry being removed or the file ID field in the

entry was corrupted. If the file does exist, it
accessed with this directory entry.

Remove the directory entry using the PIP /RM command.

INVALID VERSION NUMBER

The directory entry was corrupted. If the file does exist,
it cannot be accessed with this directory entry.

Remove version zero of the file with the PIP /RM command.

RESERVED FIELD WAS NON-ZERO

The third word of the file ID field in a directory entry is
a reserved field and should always be zero. Remove the
directory entry with PIP /RM and then reenter it with the
PIP /EN command.

14.5.2 Free Switch (/FR)

The Free switch (/FR) displays the available space on a specified
volume with the following message:

dev: HAS nnnn. BLOCKS FREE, nnnn. BLOCKS USED OUT OF nnnn.

14-5.

VFY SWITCHES

14.5.3 List Switch (/LI)

The List switch (/LI) lists the index file.

The output for each file specifies the file number, file sequence
number, filename, and owner UIC, as shown in the following
example:

VFY>DK: o·
.L

LISTING OF INDEX ON DKO:

FILE ID 000001,000001 INDEXF.SYS;l OWNER [1, 1]
FILE ID 000002,000002 BITMAP.SYS;l OWNER [1, 1]
FILE ID 000003,000003 BADBLK.SYS;l OWNER [1, 1 J
FILE ID 000004,000004 000000.DIR;l OWNER [1 , 1 J
FILE ID 000005,000005 CORIMG.SYS;l OWNER [1 I 1 J
FILE ID 000006,000006 001001.DIR;l OWNER [1I1 J
FILE ID 000007,000007 001002.DIR;l OWNER [1 ' 2 l
FILE ID 000010,000010 EXEMC.MLB;l OWNER [1, 1 J
FILE ID 000011, 000011 RSXMAC.SML;l OWNER [1, 1 J
FILE ID 000012,000012 NODES.TBL;l OWNER [1 , 1 J
FILE ID 000013,000036 QIOSYM.MSG;311 OWNER [1, 2 l
FILE ID 000014,000037 F4PCOM.MSG;1 OWNER [1, 2 l

14.5.4 Lost Switch (/LO)

The Lost switch (/LO) scans the file structure looking for files
that are not in any directory and cannot be referenced by
filename. (VFY considers any file on the volume with the
filetype .DIR and a fixed record length of 16 bytes to be a
directory.) A list of the files is produced, and if the "lost
file directory" (1, 3] exists on that volume, the files will be
entered in that directory. If an I/0 error occurs, however, on a
directory file operation, the files will not be entered into
(1,3]. The following error message will appear:

FAILED TO OPEN DIRECTORY FILE
ERROR CODE -16. - DIRECTORY [301,333]
AS A RESULT, NO FILES WILL BE ENTERED IN [1,3)

14.5.5 Read Check Switch (/RC)

The Read Check switch (/RC) checks to ensure that every block of
every file on a specified volume can be read.

14-6

VFY SWITCHES

The optional parameter [:n] is the blocking factor that indicates
the number of file blocks to be read at a time. The default
value is the maximum number of blocks available in VFY's buffer
area. The buffer area available may be increased by installing
VFY in a larger partition. Four blocks are available when VFY is
installed in an 8K partition, and four blocks are added for each
lK increment.

For the fastest read check, the maximum block factor should be
used. Whenever an error is encountered, each block of the
portion in error is reread to determine which data block(s)
cannot be read.

When an error is detected, a file identification line is
displayed in the following format:

FILE ID nn,nn filename.typ;ver. n blocks used/n blocks allocated

Following this line, an error message
blocking factor other than 1 is in use,
following form will be issued:

is displayed. If a
an error message in the

ERROR STARTING AT VBN nl,n2 LBN nl,n2 - ERROR CODE -n

Following the first error message, there should be one or more
error messages indicating the exact block(s) in error. The
second error message line(s) will be in the following form:

ERROR AT VBN nl,n2 LBN nl,n2 - ERROR CODE -n

If an ERROR STARTING AT line is displayed without one or more
ERROR AT lines, a multiblock read operation on the selected
device has failed, but the data blocks appear to be individually
readable.

If the VBN of the unreadable block listed in the ERROR AT line is
beyond the block-used-count, the data portion of the file is
readable.

The negative number printed after the ERROR CODE message is
usually -4 to indicate a device parity error.

14.6 FILE ERROR REPORTING

As VFY verifies a volume, error conditions are reported. Errors
for a given file are preceded by a line that identifies the file
in error. This line is formatted as follows:

FILE ID nn,mm filename.filetype;version OWNER [uic]

14-7

FILE ERROR REPORTING

nn,mm

Represents the unique file identification number assigned to
the file by the system at file-creation time.

filename

Represents the filename .

. filetype

Represents the file type (for example,
file).

.OBJ for object

;version

Represents the version number of the file.

[uic]

Represents the UIC for the file.

This file identification line is followed by one or more of the
following messages:

I/O ERROR READING FILE HEADER-ERROR CODE -32

Explanation: VFY failed to read the file header for the
specified file ID. The device is not mounted or is
off-line, or the hardware has failed.

BAD FILE HEADER

Explanation: VFY checks on the validity of the file header
indicate that the header has been corrupted.

MULTIPLE ALLOCATION n,m

Explanation: The specified (double-precision) logical block
number is allocated to more than one file. If this error
occurs, a second pass automatically occurs that indicates
all files that share each multiple-allocated block. The
second pass is taken after all file headers are checked.

BLOCK IS MARKED FREE n,m

Explanation: The specified logical
allocated to the indicated file but
allocated in the storage allocation map.

14-8

block number is
is not marked as

FILE ERROR REPORTING

BAD BLOCK NUMBER n,m

Explanation: The specified block number was found in the
header for this file but is illegal for the device (out of
range). This indicates a corrupted file header.

FILE IS MARKED FOR DELETE

Explanation: A system failure occurred while the specified
file was being deleted. The deletion was not completed and
the file header still exists.

HEADER MAP ERROR

Explanation: VFY detected an error in the header map area
that also indicates a corrupted file header.

The last error message for the file is followed by a summary line
for that file, as follows:

MULT

FREE

BAD

SUMMARY: MULT=nn, FREE=nn, BAD=nn.

Specifies the number of multiple block allocations.

Specifies the number of blocks marked free that should have
been allocated.

Specifies the number of errors encountered in the the map
area of the file header.

If the output for VFY is directed to a terminal and you do not
wish to see the error messages for a given file, enter CTRL/O.
This terminates the listing of error messages for that file that
is, all messages but the summary line.

14.6. 1 Files Marked for Delete

If a file has been marked for delete but the deletion process was
not completed, you can either restore the file, if you still need
it, or you can delete the file to recover the space it was
occupying. This situation only occurs when the system crashes
during file processing.

14-9

FILE ERROR REPORTING

14.6.1.1 Deleting a File Marked for Delete - Files that
are marked for delete can be deleted directly with PIP, once
their unique file ID has been obtained by doing a validity check.
The file ID appears as the first entry in the file identification
line that precedes each list of file errors. The following
example shows how the file ID is used with PIP to delete a file:

$ l=<.lJL\J PIP
PIP> : 2:2

In this example, the file with file ID 12,20 is deleted from the
system device. PIP issues the error message:

PIP -- FAILED TO MARK FILE FOR DELETE-NO SUCH FILE

since the file system denies the existence of files already
marked for delete; however, the file is deleted.

14.6.2 Deletion of Multiple-Allocated Blocks

If the file structure contains multiple-allocated blocks, it is
necessary to delete files until there are no such blocks. An
automatic rescan of the volume identifies which files share which
blocks. This rescan lists the files which contain the
multiple-allocated blocks. Use this information to determine
which, if any, of the files can be saved and then delete the rest
with the PIP delete function.

After the files have been deleted, VFY should be run once again
to ensure that all of the files containing multiple-allocated
blocks have been deleted.

14.6.3 Recovering Lost Blocks

To determine whether any blocks have been lost on a file
structured volume, examine the last two lines of output from the
Validity Check. The last two lines of output give the free space
on the volume. The first line reports the amount of available
space according to the index file (that is, the number of blocks
that are not in use by any file in the index file). The second
line reports the amount of available space according to the
storage allocation bitmap.

If there are no errors, the two figures should agree. If the
index file indicates that more blocks are free than the storage
allocation bitmap indicate, then those blocks are "lost" (they
appear to be allocated, but no file contains them).

14-10

VFY ERROR MESSAGES

14.7 VFY ERROR MESSAGES

The VFY error messages, their explanations, and suggested user
actions are described below.

VFY -- COMMAND SYNTAX ERROR

Explanation: The command as entered does not conform to
command syntax rules.

User Action: Reenter the command line with the correct
syntax specified.

VFY CLOSE FAILURE ON BIT MAP

or

VFY CLOSE FAILURE ON INDEX FILE

or

VFY CLOSE FAILURE ON TEMPORARY FILE

or

VFY CLOSE FAILURE ON LISTING FILE

or

VFY -- I/O ERROR ON INPUT FILE

or

VFY -- I/O ERROR ON OUTPUT FILE

or

VFY I/O ERROR READING DIRECTORY FILE

or

VFY I/O ERROR WRITING FILE HEADER

or

14-11

VFY ERROR MESSAGES

VFY FAILED TO CLOSE DIRECTORY FILE

Explanation: One of the following conditions may exist:

® The device is not on-line

G The device is not mounted

8 The hardware has failed

User Action: Determine which of the above conditions caused
the message and correct that condition. Reenter the command
line.

VFY FAILED TO ALLOCATE SPACE FOR TEMP FILE

Explanation: The volume specified for the temporary scratch
file is full.

User Action: Use PIP to delete unnecessary files and rerun
VFY, or specify another volume as the scratch device when
you reenter the command line.

VFY -- FAILED TO ATTACH DEVICE

or

VFY -- FAILED TO DETACH DEVICE

Explanation: The list file specified a terminal device.
VFY was not able to attach or detach the device.

User Action: Reenter the command line with a list file
device that can be attached or detached.

VFY FAILED TO ENTER FILE

Explanation: One of the following conditions may exist:

® VFY is not running under a system UIC

o The device is not on-line.

® The device is not mounted.

o The hardware has failed.

14-12

VFY ERROR MESSAGES

User Action:
message and
line.

Determine which of the conditions caused the
correct that condition. Reenter the command

VFY -- FAILED TO FIND INDEXF.SYS;1 IN MFD-WILL OPEN INDEX BY FILE ID 1,1

or

VFY -- FAILED TO FIND BITMAP.SYS;1 IN MFD-WILL OPEN BITMAP BY FILE ID 2.2

Explanation: The Master File Directory has been corrupted.

User Action: Copy the disk using the BRU Utility.

VFY FAILED TO OPEN DIRECTORY FILE (See OPEN FAILURE error
messages)

VFY -- ILLEGAL DEVICE

Explanation: The input device specified is something other
than a disk or DECtape.

User Action: Reenter the command line with a mounted
FILES-11 device specified.

VFY -- ILLEGAL SWITCH

Explanation: The switch specified is not a valid VFY switch
or a valid switch is used illegally.

User Action: Reenter the command line with the correct
switch specified.

VFY -- NO DYNAMIC MEMORY AVAILABLE - PARTITION TOO SMALL

Explanation: VFY does not have enough buffer space to run.

User Action: Run VFY in a larger partition (8K minimum).

VFY -- OPEN FAILURE ON BIT MAP

14-13

VFY ERROR MESSAGES

or

VFY -- OPEN FAILURE ON INDEX FILE

or

VFY -- OPEN FAILURE ON LISTING FILE

or

VFY -- OPEN FAILURE ON TEMPORARY FILE

or

VFY FAILED TO OPEN DIRECTORY FILE

or

VFY FAILED TO OPEN FILE FOR READ CHECK

Explanation: One of the following conditions may exist:

s VFY is not running under a system UIC but should be.

The named file does not exist in
directory.

o The volume is not mounted.

o The specified file is read protected.

o The specified file does not exist.

the specified

User Action: Determine which of the above conditions caused
the message and correct that condition. Reenter the command
line.

VFY STORAGE CONTROL BLOCK (VBN1 of BITMAP.SYS) IS CORRUPTED

Explanation: The Storage Control Block is corrupt. This is
harmless, because only VFY and PIP /FR can examine the
block.

User Action: Copy the disk using the Backup and Restore
Utility.

14-14

VFY ERROR MESSAGES

VFY THEY ARE STILL LOST, COULD NOT FIND DIRECTORY

Explanation: UFD [1,3] did not exist on the volume. UFD
[1,3] is the "lost files" directory. VFY enters all files
found by the /LO switch into this directory.

user Action: Use the DCL CREATE/DIRECTORY command to enter
UFD [1,3] on the volume.

14-15

APPENDIX A

FUNCTIONS INITIATED BY DCL COMMANDS

Most DCL commands initiate functions that are actually performed
by some other system task or utility. Table A-1 lists these
relationships.

Table A-1: Functions Initiated by DCL Commands

DCL Task/Utility Installed
Command Filename Task Name

ABORT LB:[ZZPRODCL]CATCH.TSK ... CA3

APPEND LB:[ZZPRODCL]PIP.TSK ... PIP

ASSIGN LB:[ZZPRODCL]LCT.TSK ... MMV

ASSIGN/TASK LB:[ZZPRODCL]CA2.TSK ... CA2

BASIC (Language dependent) ... BP2

CANCEL LB:[ZZPRODCL]LCT.TSK ... MMV

COBOL (Language dependent) ... C81

CONTINUE LB:[ZZPRODCL]LCT.TSK ... MMV

CONVERT LB:[ZZPRODCL]RMSCNV.TSK ... CNV

COPY LB:[ZZPRODCL]PIP.TSK ... PIP

CREATE LB:[ZZPRODCL]PIP.TSK ... PIP

CREATE/DIR LB:[ZZPRODCL]LCT.TSK ... MMV

A-1

FUNCTIONS INITIATED BY DCL COMMANDS

DCL
Command

DEASSIGN

DEFINE

DELETE

DIBOL

DIFFERENCES

DIRECTORY
(Local files)

DIRECTORY
(Remote files)

DIRECTORY/ATTRIBUTES

DISMOUNT

DUMP

EDIT/EDT

EDIT/SLP

EDIT/PROSE
(Starts the editor)

EDIT/PROSE
(PROSE editor)

FORMAT

FORTRAN

HELP

INITIALIZE

INSTALL

LIBRARY

LINK

Task/Utility
Filename

LB:[ZZPRODCL]LCT.TSK

LB:[ZZPRODCL]LCT.TSK

LB:[ZZPRODCL]PIP.TSK

(Language dependent)

LB:[ZZPRODCL]CMP.TSK

LB:[ZZPRODCL]PIP.TSK

LB:[ZZDECNET]NFT.TSK

LB:[ZZPRODCL]RMSDSP.TSK

LB:[ZZPRODCL]LCT.TSK

LB:[ZZPRODCL]DMP.TSK

LB:[ZZPRODCL]EDT.TSK

LB:[ZZPRODCL]SLP.TSK

LB:[ZZPRODCL]DCLPROSE.TSK

LB:[ZZSYS]CET.TSK

LB:[ZZPRODCL]LCT.TSK

(Language dependent)

LB:[ZZPRODCL]HELP.TSK

LB:[ZZPRODCL]LCT.TSK

LB:[ZZPRODCL]LCT.TSK

LB:[ZZPRODCL]LBR.TSK

LB:[ZZPRODCL]PAB.TSK

A-2

Installed
Task Name

... MMV

... MMV

... PIP

... DIB

... CMP

... PIP

... NFT

... DSP

... MMV

... DMP

... EDT

... SLP

... PRO

CET

... MMV

... F77

... HLP

... MMV

... MMV

... LBR

... PAB

FUNCTIONS INITIATED BY DCL COMMANDS

DCL
Command

LINK/C81
(Invokes ... BLD,
... PAB, and ... PIP)

LOAD

MACRO

MOUNT

PASCAL

PURGE

REMOVE

RENAME

RUN
(If the task is
installed, DCL
runs the task.)

SET [DAY]TIME

SET DEFAULT

SET DEVICE

SET PRIORITY

SET PROTECTION

SET TERMINAL

SHOW ASSIGNMENTS
(Show a specific
logical)

SHOW ASSIGNMENTS
(Show all logicals)

SHOW CLOCK_QUEUE

SHOW COMMON

SHOW [DAY]TIME

Task/Utility
Filename

(Language dependent)

LB:[ZZPRODCL]LCT.TSK

LB:[ZZPRODCL]PMA.TSK

LB:[ZZPRODCL]LCT.TSK

(Language dependent)

LB:[ZZPRODCL]PIP.TSK

LB:[ZZPRODCL]LCT.TSK

LB:[ZZPRODCL]PIP.TSK

LB:[ZZPRODCL]LCT.TSK

LB:[ZZPRODCL]CA2.TSK

LB:[ZZPRODCL]LCT.TSK

LB:[ZZPRODCL]CA2.TSK

LB:[ZZPRODCL]CA2.TSK

LB:[ZZPRODCL]PIP.TSK

LB:[ZZPRODCL]CA2.TSK

LB:[ZZPRODCL]LCT.TSK

LB:[ZZPRODCL]LNBDMP.TSK

LB:[ZZPRODCL]CA2.TSK

LB:[ZZPRODCL]CA2.TSK

LB:[ZZPRODCL]CA2.TSK

A-3

Installed
Task Name

... BLD

... MMV

... PMA

... MMV

... PAS

... PIP

... MMV

... PIP

... MMV

... CA2

... MMV

... CA2

... CA2

... PIP

... CA2

... MMV

... SLG

... CA2

... CA2

... CA2

FUNCTIONS INITIATED BY DCL COMMANDS

DCL
Command

SHOW DEFAULT

SHOW LOGICALS
(Show a specific
logical)

SHOW LOGICALS
(Show all logicals)

SHOW DEVICES

SHOW MEMORY

SHOW TASKS

SHOW TASKS/ACTIVE

SHOW TASKS/DYNAMIC

SHOW TASKS/INSTALLED

SHOW TASKS/LOGICAL_UNIT

SHOW TERMINAL

START

START/UNBLOCK

STOP/BLOCK

TYPE

UNLOAD

UNLOCK

Task/Utility
Filename

LB:[ZZPRODCL]LCT.TSK

LB:[ZZPRODCL]LCT.TSK

LB:[ZZPRODCL]LNBDMP.TSK

LB:[ZZPRODCL]CA2.TSK

LB:[ZZPRODCL]RMD.TSK

LB:[ZZPRODCL]CA2.TSK

LB:[ZZPRODCL]CA2.TSK

LB:[ZZPRODCL]RMD.TSK

LB:[ZZPRODCL]CA2.TSK

LB:[ZZPRODCL]CA2.TSK

LB:[ZZPRODCL]CA2.TSK

LB:[ZZPRODCL]LCT.TSK

LB:[ZZPRODCL]CATCH.TSK

LB:[ZZPRODCL]CATCH.TSK

LB:[ZZPRODCL]PIP.TSK

LB:[ZZPRODCL]LCT.TSK

LB:[ZZPRODCL]PIP.TSK

A-4

Installed
Task Name

... MMV

... MMV

... SLG

... CA2

... RMD

... CA2

... CA2

... RMD

... CA2

... CA2

... CA2

... MMV

... CA3

... CA3

... PIP

... MMV

... PIP

APPENDIX B

ERROR MESSAGES

This appendix lists two categories of error messages:
error messages and I/O error messages.

NOTE

Many system utilities issue error messages; these
messages are explained elsewhere in the
documentation set.

B.1 GENERAL ERROR MESSAGES

general

General error messages are common to many DCL commands. They can
appear on your terminal screen preceded by a 3-letter code
identifying the system component that detected the error. This
can be the name of the utility (task) performing the command, or
the command itself. This code appears here as yyy.

Most of the general error messages with the word "expected" in
them reprint the command on your terminal with a circumflex (A)

pointing to the error. Sometimes the circumflex points to the
character just past the last successfully parsed command element.

Many of the explanations refer to the Radix-50 character set.
The Radix-50 characters are the uppercase alphabet, the numerals
0 through 9, the dollar sign ($), and the period (.).

yyy -- Allocation failure - no contiguous space

Explanation: Not enough contiguous space is available on
the output volume for the file being copied.

User Action: Delete any files no longer required on the
output volume and retry the command.

B-1

GENERAL ERROR MESSAGES

yyy -- Allocation failure on output file

or

yyy Allocation failure -- no space available

Explanation: Not enough space is available on the output
volume for the file being copied.

User Action: Delete any files no longer required on the
output volume and retry the command.

yyy -- A-Z expected

Explanation: The command as typed included a nonalphabetic
character.

User Action: Check command for proper syntax and reenter.

yyy -- A-Z and/or 0-9 expected

Explanation: The command as typed included a
nonalphanumeric character.

User Action: Check command for proper syntax and reenter.

yyy -- Bad error message

Explanation: Some unusual condition has caused an error.

User Action: Record the command that caused the error and
other information on activity at your terminal at the time.
Then call your DIGITAL Customer Support Center.

yyy -- Bad use of wild cards in destination file name

Explanation: A wildcard (*) was specified for an output
file where it is not permitted.

User Action: Reenter the command with a complete and
explicit file specification for the output file.

yyy -- Cannot find directory file

Explanation: The command specified a directory not found on
the current volume.

User Action: Reenter the command after checking for the
correct directory and correc~ volume.

B-2

GENERAL ERROR MESSAGES

yyy -- Cannot find files

Explanation: The file or files specified in the command are
not in the designated directory.

User Action: Check the file specification and reenter the
command line.

yyy -- Cannot rename from one device to another

Explanation: The command attempted to rename a file across
devices.

User Action: Use the COPY command to move the file from one
device to another and rename it.

yyy -- Cannot truncate this filetype

Explanation: The command attempted to truncate a file that
cannot be truncated. Only files containing fixed-length,
variable-length, or sequenced records can be truncated.

User Action: Check to see if you have named the proper file
and retry the command.

yyy -- Close failure on input file

or

yyy -- Close failure on output file

Explanation: A file name in the command could not be
properly closed. The file is locked by PIP.

User Action: Use UNLOCK to unlock the file. Determine the
cause of the error and correct it if you can.

yyy -- Command function not unique

Explanation: The command as typed did not include
sufficient characters to identify some command function.

User Action: Retype command after checking proper syntax.

8-3

GENERAL ERROR MESSAGES

yyy -- Command line incomplete

Explanation: The command as typed is not a
command.

complete

User Action: Retype command after checking proper syntax.

yyy -- Command syntax error

Explanation: The command did not conform to the syntax
rules.

User Action: Check command for proper syntax and reenter
it.

yyy -- Conflicting qualifier

Explanation: The command as typed included qualifiers that
conflict with each other in their effect.

User Action: Retype command after checking proper syntax.

yyy -- Contradictory qualifier

Explanation: The command as typed included contradictory
qualifiers, such as /DELETE and /NODELETE.

User Action: Check for proper syntax and reenter command.

yyy -- Contradictory qualifier in key specification

Explanation: The command included a contradictory qualifier
in the key definition argument to the /KEY qualifier.

User Action: Check command for proper syntax and reenter.

yyy -- Decimal number expected

Explanation: The command included a number not in proper
format.

user Action: Check command for proper syntax and reenter
with a decimal point(.) terminating the number.

B-4

GENERAL ERROR MESSAGES

yyy -- Device invalid or not specified

Explanation: The command specified an invalid device or no
device at all when a device name is required.

User Action: Check the devices on the system with SHOW
DEVICES. Reenter command after checking for proper syntax.
Determine the cause of the error and correct it if you can.

yyy -- Device not in system

Explanation: The command specified a device that is not in
the current system.

User Action: Check the devices on the system with SHOW
DEVICES. Reenter command after checking for proper syntax.

yyy -- Device not mounted/allocated

Explanation: The command specified a device that is not
properly mounted or allocated for the command to execute.

User Action: Check the status of the device with SHOW
DEVICES. Find the cause of the error and correct it if you
can.

yyy - Device not terminal

Explanation: The command specified a device other than a
terminal where a terminal device name is required. TI: is
not an acceptable terminal device name in all contexts.

User Action: Reenter the command after checking for proper
syntax.

yyy -- Directory write protected

Explanation: The command attempted to remove an entry from
a directory that is privileged or from a directory on a
device that is write-protected.

User Action: Determine the cause of the error and correct
it if you can. You may need to enable write access through
the device hardware or change the protection for the
directory.

8-5

GENERAL ERROR MESSAGES

yyy -- Error dispatching command. DSW = 'n'

Explanation: An error occurred that was not explicitly
handled by DCL or some invoked task.

User Action: Look up the DSW error code in
Reference Manual. Determine the cause
correct it if you can.

yyy -- Explicit output file name required

Explanation: The command requires an
fil~name.

the P/OS System
of the error and

explicit output

User Action: Reenter the command line in proper syntax and
without wildcards.

yyy -- Extraneous input

Explanation: The command as typed included extraneous
input. The circumflex (A) points to the error or just past
the last successfully parsed command element.

User Action: Reenter the command line in proper syntax.

yyy -- Failed to attach output device

or

yyy -- Failed to detach output device

Explanation: An attempt to attach
record-oriented output device, such as a
printer, failed. This error usually means
off-line or nonresident.

or detach a
terminal or line
the device is

User Action: Determine the cause of the error and correct
it if you can.

yyy -- Failed to create output UFD

Explanation: The command failed to create an entry in a
directory because the device was write-protected or because
of a privilege violation.

User Action: Determine the cause of the error and correct
it if you can. You may need to enable write access through
the device hardware or change the protection for the
directory.

B-6

GENERAL ERROR MESSAGES

yyy -- Failed to delete file

or

yyy -- Failed to mark file for delete

Explanation: The command attempted to delete a protected
file.

User Action: Check for the proper file specification and
default directory and reenter the command.

yyy -- Failed to enter new filename

Explanation: The command specified a file that already
exists in the directory, or the directory is protected.

User Action: Check for proper syntax; reenter command.

yyy -- Failed to find files

Explanation: The command specified a file or files that
could not be found as specified.

User Action: Check for proper file specifications and
reenter the command.

yyy -- Failed to get time parameters

Explanation: An internal system problem has occurred.

User Action: Retry the command. If the error recurs,
record the command that caused the error and other
information on activity at your terminal at the time. Then
call your DIGITAL Customer Support Center.

yyy -- Failed to read attributes

Explanation: The command specified a volume that is either
corrupted or protected against access.

user Action: You may be able to correct the error by making
your defaults the same as the device and directory of the
file you wish to affect.

B-7

GENERAL ERROR MESSAGES

yyy -- Failed to remove directory entry

Explanation: The command attempted to remove an entry from
a directory that was either protected against access or on a
write-protected device.

User Action: Determine the cause of the error and correct
it if you can. You may need to enable write access through
the device hardware or change the protection for the
directory.

yyy -- Failed to truncate file

Explanation: The command specified a volume that is
corrupted or is protected against access.

User Action: You may be able to correct the error by making
your defaults the same as the device and directory of the
file you wish to affect.

yyy -- Failed to write attributes

Explanation: The command specified a volume that is
corrupted or is protected against access.

User
your
file

Action: You may be able to
defaults the same as the

you wish to affect.

yyy -- Fatal I/0 error

correct the error by making
device and directory of the

Explanation: The command failed to execute because of some
I/O error. This error can be caused by the unavailability
of a device or of pool space, or by a device error. The
device may be write-locked.

User Action:
it if you can.

yyy -- File is lost

Determine the cause of the error and correct

Explanation: PIP has removed a file from its directory,
failed to delete it, and failed to restore the directory
entry.

User Action: Type @VERIFY to run the lost-file check to
recover the filename.

B-8

GENERAL ERROR MESSAGES

yyy -- Filename or filetype not specified

Explanation: The command as typed did not clearly specify a
filename and file type where one or the other or both is
required. This error can be caused if you do not leave a
space in front of a file specification that is a parameter.

User Action: Retype command after checking for proper
syntax.

yyy -- File not locked

Explanation: An UNLOCK command specified a file that is not
locked.

User Action: Check for the proper file specification and
reenter the command.

yyy -- File specification either invalid or not specified

Explanation: The system could not read a file specification
included in the command. This error often results from a
typing mistake or typing the command in the wrong format.

User Action: Check for proper syntax and reenter the
command.

yyy -- File specification list not available for RMS-11

Explanation: A command to an RMS-11 utility included more
than one input file specification.

User Action: Check for proper syntax and reenter command.

yyy -- File version number not specified

Explanation: The command requires a file version number to
be specified.

User Action: Reenter command after checking for proper
syntax.

yyy -- Function not unique

Explanation: The command as typed did not
sufficient characters to identify some function.

User Action: Retype
characters.

the

B-9

command but include

include

more

GENERAL ERROR MESSAGES

yyy -- Get command line - Bad @ filename

Explanation: The command specified an illegal indirect
command file.

User Action: Check for proper file specification and
reenter the command.

yyy -- Illegal command

Explanation:
command line,

The command, which is the first
is not part of DCL.

word on the

User Action: Check command for proper syntax and reenter.

yyy -- Illegal device

Explanation: The command named a device in an illegal
format or contained some other syntax error.

User Action: Check command for proper syntax and reenter.
Device names are two alphabetical characters followed by an
octal number and a colon.

yyy -- Illegal filespec

Explanation: The command required a file specification that
was not present.

User Action: Check command for proper syntax and reenter.
See Chapter 2 for a complete description of a file
specification. Perhaps some other command element is being
parsed as a filespec. Use the prompting version.

yyy -- Illegal or contradictory qualifier

Explanation: One or more qualifiers to the command are in
conflict, or are in error.

User Action: Check command for proper syntax and reenter.

yyy -- Illegal protection code

Explanation: The command specified a protection code in an
improper format.

User Action: Check command for proper syntax and reenter.

B-10

GENERAL ERROR MESSAGES

yyy -- Illegal qualifier value

Explanation: The command as typed included an improper
argument to a qualifier.

User Action: Check command for proper syntax and reenter.
In DCL, an argument is preceded by a colon(:).

yyy -- Illegal use of wildcard character

Explanation: The command included a wildcard (* or %) in a
file specification in a way that would result in
unpredictable or inconsistent output.

User Action: Check command for proper syntax and reenter.
You may not be able to use the wildcard.

yyy -- Illegal task name

Explanation: The command named a task using a task name in
an illegal format.

User Action: Check command for proper syntax and reenter.
Task names include as many as six Radix-50 characters.

yyy -- Input device must be a directory device

Explanation: The command as typed specified a device that
is not a directory device, such as a printer. Directory
devices are those on which FILES-11 volumes with directories
can be mounted.

User Action: Correct syntax and reenter command.

yyy -- Input files have conflicting attributes

Explanation: Warning message. The command operation
completed, but the files named had conflicting attributes.

User Action: Use DIRECTORY/ATTRIBUTES to
attributes of all input and output files
Determine if the conflict causes any difficulty.

yyy -- Invalid command function

find the
involved.

Explanation: The command as typed requested a function that
is not valid for that command.

User Action: Check command for proper syntax and reenter
it.

B-11

GENERAL ERROR MESSAGES

yyy -- Invalid command parameter

Explanation: The command as typed included a parameter that
is not valid. In DCL, a parameter is either entered in
response to a prompt or preceded by a space.

User Action: Check command for proper syntax and reenter.

yyy -- Invalid file specification list

Explanation: The command included a list of file
specifications in an invalid format. In general, file
specifications in lists should be separated by commas and,
optionally, blanks.

User Action: Retype command after checking proper syntax.

yyy -- Invalid file specification qualifier

Explanation: The command included a
specification that was not valid.
preceded by a slash (/).

qualifier to a file
In DCL, a qualifier is

User Action: Check for proper syntax and retype the
command.

yyy -- Invalid terminal specified

Explanation: A command directed to a specific terminal
named the terminal in an improper format.

User Action: Check the name of the terminal using SHOW
DEVICE and reenter the command with the proper format.

yyy -- Invalid time or date

Explanation: The command specified a clock or calendar
field, or both, incorrectly.

User Action: Check for proper syntax and retype the
command.

yyy -- Invalid UIC specified

or

B-12

GENERAL ERROR MESSAGES

yyy -- Invalid directory specified

Explanation: The command specified:

• A named character containing a nonalphanumeric string or
more than nine characters, or

o A numbered directory containing 0 or a number that
includes 8 or 9 or a number greater than 377 (octal).

User Action: Retype command after checking for proper
syntax.

yyy -- I/O error on input file

or

yyy -- I/0 error on output file

Explanation: One of the following conditions exists:

• The device is not on line.

• The device is not mounted.

o The hardware has failed.

• The output volume is full.

o The input file is corrupted.

User Action: Determine the cause of the error and correct
it if you can.

yyy -- Key position size or number not specified

Explanation: The command failed to include the size or
number of a key position in the key definition argument to
the /KEY qualifier.

User Action: Check command for proper syntax and retype it.

yyy -- Key specification out of sequence

Explanation: The command included improper syntax in the
key definition argument to the /KEY qualifier.

User Action: Check command for proper syntax and reenter.

B-13

GENERAL ERROR MESSAGES

yyy -- More command parameters than permitted

Explanation:
parameters.

The command as typed included too many

User Action: Check command for proper syntax and reenter.

yyy -- No such file

Explanation: The command requested operations on a file
that does not exist.

User Action: Make sure you have named the file properly.
Check your defaults to be sure you are looking in the right
directory on the right device. You may have made a typing
error. If the desired file is in fact not present, find out
why it is not present and proceed accordingly.

yyy -- Not a directory device

Explanation: A directory-oriented command named a device
that does not have directories, such a line printer.

User Action: If you can, reenter the command without
specifying a directory.

yyy -- Numeral expected

or

yyy -- Numeral required

Explanation: Command included nonnumeric characters in a
position where numerals are required or expected.

User Action: Check command for proper syntax and reenter.

yyy -- Octal number expected

Explanation: The command included a number with an 8 or 9
where an octal number was expected.

User Action: Check command for proper syntax and reenter.

B-14

GENERAL ERROR MESSAGES

yyy -- Open failure on file

Explanation: The system could not open a required file for
some reason.

User Action: Check the directory to be sure that the file
is present, not locked, and in the proper format. If the
file is locked, it may be corrupted or contain bad data.
Determine the cause of the error and correct it if you can.

yyy -- Output device must be a directory device

Explanation: The command as typed specified a device that
is not a directory device, such as a printer. Directory
devices are those on which FILES-11 volumes with directories
can be mounted.

User Action: Correct syntax and reenter command.

yyy -- Primary key not specified

Explanation: A command affecting an indexed file failed to
include a primary key. In many such commands, you cannot
specify any action on an alternate key without first
identifying the primary key.

User Action: Check for proper syntax and reenter command.

yyy -- Qualifier inconsistent with compiler

Explanation: A compiler command included a qualifier not
acceptable by that compiler.

User Action: Check the command for proper syntax and try it
again.

yyy -- Qualifier not available for this command format

Explanation: The command included a qualifier that is
invalid in the current context of the command. The context
is usually determined by some other qualifier in the
command.

User Action: Reenter command after checking for proper
syntax.

B-15

GENERAL ERROR MESSAGES

yyy -- Qualifier not unique

Explanation: The command as typed did not
sufficient characters to identify some qualifier.
qualifiers are preceded by a slash(/).

User Action: Retype the
characters.

command,

yyy -- Qualifier value invalid here

but include

include
In DCL,

more

Explanation: The commands as typed included an
inappropriate argument to a qualifier. In DCL, an argument
is usually preceded by a colon(:).

User Action: Check command for proper syntax and reenter.

yyy -- Radix-50 expected

Explanation: The command included a non-Radix-50 character
where Radix-50 required.

User Action: Reenter the command using proper syntax. The
Radix-50 characters are the uppercase alphabet, the numbers
0 through 9, the dollar sign($), and the period (.).

yyy Repeated command parameter

Explanation: The command as typed included one parameter
more than once. In DCL, a parameter is preceded by a blank
or prompt.

User Action: Retype command after checking for proper
syntax.

yyy -- Repeated key specification

Explanation: The command as typed included the same key
specification more than once in the key definition argument
to the /KEY qualifier.

User Action: Retype command after checking for proper
syntax.

B-16

GENERAL ERROR MESSAGES

yyy -- Repeated keyword in key specification

Explanation: The command as typed included the same keyword
more than once in the key definition argument to the /KEY
qualifier.

User Action: Retype command after checking for proper
syntax.

yyy -- Repeated qualifier

Explanation: The command specified the same qualifier more
than onte. In DCL, a qualifier is preceded by a slash (/).

User Action: Reenter command after checking the syntax to
see if it is right.

yyy -- Required parameter not specified

Explanation: The command cannot execute without required
parameters, such as a file specification or attribute. In
DCL, a parameter is preceded by a blank or prompt.

User Action: Retry the command, using the prompts. DCL
prompts for all required parameters.

yyy -- Required qualifier not specified

Explanation:
not include.
(/).

The command requires a qualifier that it does
In DCL, a qualifier is preceded by a slash

User Action: Check for proper syntax and reenter the
command.

yyy -- Required qualifier value not specified

Explanation: A qualifier to the command requires that you
state a numerical argument. In DCL, an argument is usually
preceded by a colon(:).

User Action: Retype command after checking for proper
syntax.

B-17

GENERAL ERROR MESSAGES

yyy -- Required value not specified for position size or number

Explanation: The command failed to include a required value
in the key definition argument to the /INDEXED qualifier.

User Action: Check command for proper syntax and reenter.

yyy -- Sorry, line too long

Explanation: DCL commands are translated for execution by a
system task or utility. This error is caused by a
translated command line that the destination task cannot
handle.

User Action: Check command syntax to see if you are
specifying elements that can be defaulted. Check to see if
you can enter the command twice with different qualifiers
instead of entering one command.

YYY -- Sorry, low pool

Explanation:
insufficient
region).

The command could not execute because of
space in the system pool (dynamic storage

User Action: The pool is the Executive's data base. In
general, each task, including commands, uses a certain
amount of pool. If the pool is full or badly fragmented,
there may not be sufficient space for the command to
execute. Usually, pool problems clear up spontaneously if
you wait.

Retry the command after an interval.
to execute any other task, not even
is low. The task also absorbs pool.

yyy -- Sorry, task active

You should not attempt
an ABORT, when the pool

Explanation: The command required some action that cannot
be taken on an active task.

User Action: Determine the cause of the error and correct
it if you can. Check the task with the various SHOW TASK
commands, or SHOW MEMORY.

B-18

GENERAL ERROR MESSAGES

yyy -- Sorry, task not installed

Explanation: The command attempted to invoke a task that
was not installed.

User Action: Try running the task with a command in the RUN
$ form. Determine the cause of the error and correct it if
you can.

yyy -- Syntax error

Explanation: The command included some error in typing or
specification, such as a letter where a number should
appear.

User Action: Check for proper syntax and reenter command.

yyy -- Version must be explicit or "*"

Explanation: The command syntax requires that the version
number of the file must be specified explicitly or as a
wildcard (*).

User Action: Reenter the command with the version number
correctly expressed.

yyy -- Wildcards not permitted

Explanation: Command included a wildcard (* or %) in a
context where it is not permitted.

User Action: Check for proper syntax and reenter command.

yyy -- Zero value not valid for key size or number

Explanation: The command included a zero value in the key
definition argument to the /KEY qualifier.

User Action: Check command for proper syntax and reenter.

8.2 1/0 ERROR MESSAGES

I/O error messages are returned as codes. Table B-1 lists P/OS
I/O error codes. Only partial abbreviations (xxx) are listed;
the complete abbreviation is IE.xxx. The octal number listed is
the low-order byte of the complete value (2's complement of the
decimal number).

B-19

I/O ERROR MESSAGES

Table B-1: 1/0 Error Messages

Abbre
viation

.BAD

. IFC

.DNR

.VER

.ONP

.SPC

.DNA

.DAA

.DUN

.EOF

.EOV

.WLK

.DAO

.SRE

.ABO

.PRI

.RSU

.OVR

.BYT

.BLK

.MOD

.CON

.NOD

.DFU

. IFU

.NSF

.LCK

.HFU

.WAC

.CKS

.WAT

.RER

.WER

.ALN

.SNC

.soc

.NLN

--Error
Decimal

-1
-2
-3
-4
-5
-6
-7
-8

-9
-10
-11
-12
-13
-14
-15
-16
-17
-18
-19
-20
-21
-22
-23
-24

-25
-26
-27
-28
-29
-30
-31
-32
-33
-34

-35
-36
-37

No.-
Octal

377
376
375
374
373
372
371
370

367
366
365
364
363
362
361
360
357
356
355
354
353
352
351
350

347
346
345
344
343
342
341
340
337
336

335
334
333

Meaning

Bad parameters
Invalid function code
Device not ready
Parity error on device
Hardware option not present
Invalid user buffer
Device not attached
Device already attached

Device not attachable
End-of-file detected
End-of-volume detected
Write attempted to locked unit
Data overrun
Send/receive failure
Request terminated
Privilege violation
Shareable resource in use
Invalid overlay request
Odd byte count or virtual address
Logical Block Number too large
Invalid UDC module number
UDC connect error
System dynamic memory
Device full

Index file full
No such file
Locked from read-write access
File header full
Accessed for write
File header checksum failure
Attribute control list format error
File processor device read error
File processor device write error
File already accessed on LUN

File ID, file number check
File ID, sequence number check
No file accessed on LUN

B-20

Abbre
viation

.CLO

.NEF

.RBG

.NBK

.ILL

.BTP

.RAC

.RAT

.RCN

.ICE

. 2DV

.FEX

.BDR

.RNM

.EDI

.FOP

.BNM

.BDV

.BEE

.DUP

.STK

.FHE

.NFI

.ISQ

.EOT

.BVR

.BHD

.OFL

.BCC

.ONL

.NNN

.NFW

.ELB

.TMM

.NDR

.URJ

--Error
Decimal

-38
-39
-40

-41
-42

-43
-44
-45
-46
-47
-48

-49
-50
-51
-52
-53
-54
-55
-56
-57
-58
-59
-60
-61
-62
-63
-64

-65
-66
-67
-68
-69
-70
-71
-72
-73

I/O ERROR MESSAGES

No.-
Octal

332
331
330

327
326

325
324
323
322
321
320

317
316
315
314
313
312
311
310
307
306
305
304
303
302
301
300

277
276
275
274
273
272
271
270
267

Meaning

File was not properly closed
File buffer space unavailable
Invalid record size

File exceeds space allocated, no blocks
Invalid operation on file
descriptor block
Bad record type
Invalid record access bits set
Invalid record attribute bits set
Invalid record number-too large
Internal consistency error
Rename--two different devices

Rename--a new filename already in use
Bad directory syntax
Cannot rename old file system
Bad directory syntax
File already open
Bad filename
Bad device name
Bad block on device
Enter-duplicate entry in directory
Not enough stack space (FCS or FCP)
Fatal hardware error on device
File ID was not specified
Invalid sequential operation
End-of-tape detected
Bad version number
Bad file header

Device off line
Block check, CRC, or framing error
Device on line
No such node
Path lost to partner
Bad logical buffer
Too many outstanding messages
No dynamic space available
Connection rejected by user

B-21

Abbre
viation

.BTF

.NNC

.NNL

.NLK

.NST

.AST

.FLN

.IES

.PES

.ALC

.ULK

.WCK

.CNR

I/O ERROR MESSAGES

--Error No.-
Decimal Octal

-76
-77
-78
-79

-80
-80

-81

-82
-83
-84
-85
-86

-96

264
263
262
261

260
260

257

256
255
254
253
252

240

Meaning

Bad tape format
Not ANSI 'D' format byte count
Not a network LUN
Task not linked to specified
ICS/ICR interrupts

Specified task not installed
No AST specified in connect

Device off line when off-line
request issued

Invalid escape sequence
Partial escape sequence
Allocation failure
Unlock error
Write check failure

Connection rejected

B-22

APPENDIX C

SAMPLE EDT INITIALIZATION FILE

The Edit command initializes EDT using a default EDT
initialization file. The complete file specification for this
initialization file is:

LB000:[1,2]EDTSYS.EDT

You can edit this initialization file to include
are similar to those found in the example in this
to the EDT Quick Reference Guide for further
creating EDT initialization files).

commands that
appendix (refer
information on

You can maintain one or more EDT initialization files in
directories other than [1,2]. However, you must use the /COM
qualifier in the EDT command line to use any command file not
found in the default directory.

A sample initialization file follows.

SET SCREEN 79

SET CURSOR 2:15

SET WRAP 70

SET NOTRUNCATE

SET TAB 3

Sets screen width to 79 characters.

EDT will scroll file, if cursor is moved before line
2 or after line 15.

Sets the maximum line length of n character
positions (70 in this example). As you enter
text, EDT will attempt to wrap a full word that
extends beyond character position 70.

Displays lines that extend beyond the line width set
by SET SCREEN 79.

Sets the first tab stop at character position 3; all
other tab stops are set at multiples of 8 after the
first tab stop.

C-1

DEFINE KEY GOLD

DEFINE KEY GOLD

DEFINE KEY CONTROL

SET MODE CHANGE

E AS "EXT EXIT."

Defines the keystroke sequence GOLD + E
as the EXIT command in Change mode.

Q AS "EXT QUIT."

Defines the keystroke sequence GOLD + Q as
the QUIT command (used only in Change mode).

RAS "+DC ADV C UNDC C."

This keystroke sequence
reverses the position of two letters.

Causes EDT to begin the editing session in
Change mode.

C-2

INDEX

Abbreviated form of DCL commands,
2-1

Abbreviations, 2-7
ABORT, 3-2

background processing, 2-15
definition, 2-16

Active task display, 8-8
Adding lines to file, 10-12
Adding subroutine to module, 13-7
Addressing locations in files,

9-5
Addressing modes

ZAP, 9-5
Alphabetical PRO/Tool Kit DCL

command descriptions, 3-1
Altering

active task display, 8-8
RMD memory display, 8-7
task header display, 8-10

APPEND, 3-4
Application

refer to program development
cycle

Applying updates, 13-3
Arguments

in DCL command line, 2-2
. ASK, 4 -2 8
.ASKN I 4-30
.ASKS, 4-33
ASSIGN, 3-8
ASSIGN/TASK, 3-12
Associated documents, iv
Attaching terminal in background

mode
caution against, 2-16

Audit trail
controlling, 10-19
deleting, 10-23
length, 10-20
position, 10-20
suppressing, 10-22
value, 10-21

Background processing, 2-15
BAS IC I 3-13
.BEGIN, 4-35

CANCEL, 3-14
Cancellation

of DCL command, 2-9
.CHAIN, 4-36
Change bar format, 5-8
CLEAR, 3-15
.CLOSE, 4-37
.CMD extension, 4-1
CMP I 5-1

change bar format, 5-8
command format, 5-2
differences format, 5-7
invoking, 5-2
messages, 5-9
output files, 5-6
switches, 5-3

COBOL, 3-16
Command

ABORT, 3-2
APPEND, 3-4
ASSIGN, 3-8
ASSIGN/TASK, 3-12
BASIC, 3-13
C.11,.NCEL I 3 -14
CLEAR, 3-15
COBOL, 3-16
CONTINUE, 3-23
CONVERT, 3-24
COPY, 3-30
CREATE, 3-37
CREATE/DIRECTORY, 3-40
DEASSIGN, 3-42
DEBUG, 3-44
DEFINE, 3-45
DELETE, 3-49
DELETE/DIRECTORY, 3-52
DIBOL, 3-53
DIFFERENCES, 3-57
DIRECTORY, 3-61
DISMOUNT, 3-65
DUMP, 3-66
EDIT, 3-71
EDIT/EDT, 3-71
EDIT/PROSE, 3-74
EDIT/SLP, 3-75
EXIT I 3- 78
FIX, 3-79

Index-1

INDEX

FORMAT, 3-81
FORTRAN, 3-82
HELP, 3-88
INITIALIZE, 3-89
INSTALL, 3-91
LIBRARY, 3-93
LIBRARY/COMPRESS, 3-94
LIBRARY/CREATE, 3-96
LIBRARY/DELETE, 3-99
LIBRARY/EXTRACT, 3-100
LIBRARY/INSERT, 3-101
LIBRARY/LIST, 3-103
LIBRARY/REMOVE, 3-105
LIBRARY/REPLACE, 3-106
LINK, 3-108
LINK/C81, 3-123
LOAD, 3-126
MACRO, 3-127
MAIL, 3-135
MOUNT I 3-136
PASCAL, 3-137
PHONE, 3 -14 0
PRINT, 3-141
PRINT/REMOTE, 3-142
PURGE, 3-143
REMOVE, 3-146
RENAME, 3-147
RUN installed task, 3-152
RUN uninstalled task, 3-150
SET DAYTIME, 3-155
SET DEFAULT, 3-156
SET DEVICE, 3-157
SET HOST, 3-159
SET PRIORITY, 3-160
SET PROTECTION, 3-161
SET PROTECTION/DEFAULT, 3-164
SET PROTECTION/NODEFAULT, 3-166
SET TERMINAL, 3-167
SET TIME, 3-155
SHOW ASSIGNMENTS, 3-172
SHOW CLOCK_QUEUE, 3-173
SHOW COMMON, 3-174
SHOW DAYTIME, 3-176
SHOW DEFAULT, 3-177
SHOW DEVICES, 3-178
SHOW LOGICALS, 3-179
SHOW MEMORY, 3-180
SHOW PROTECTION, 3-181
SHOW TASK/DYNAMIC, 3-188
SHOW TASK/LOGICAL_UNITS, 3-191
SHOW TASKS/ACTIVE, 3-182

SHOW TASKS/ACTIVE/DYNAMIC,
3-190

SHOW TASKS/INSTALLED, 3-186
SHOW TERMINAL, 3-192
SHOW TIME, 3-176
s p AWN I 3 -1 9 3
START, 3-194
START/UNBLOCK, 3-195
STOP/BLOCK, 3-196
SUBMIT/REMOTE, 3-197
TYPE, 3-198
UNLOAD, 3-201
UNLOCK, 3-202

Command files, 4-1
Command line

DCL, 2-1
Command line continuation, 2-8
Commands

file manipulation, 1-2
manipulating Tasks, 1-2
miscellaneous, 1-3
program development, 1-2
set and show, 1-3

Comments
comment character, 2-8

Compare utility
see CMP

Compatibility
with RSX command files, 4-93

Compound tests, 4-25
CONTINUE, 3-23
Controlling audit trail, 10-19
CONVERT, 3-24
Convert Utility, 11-1
COPY, 3-30
Correction file, 13-4
CREATE, 3-37
CREATE/DIRECTORY, 3-40
Creating source files with SLP,

10-17
CTRL/C

definition, 2-15
foreground processing, 2-15

CTRL/Z, 2-9
to cancel DCL command, 2-9

CVT, 11-1

.DATA, 4-38
DCL

abbreviations, 2-7
ABORT command use, 2-16

Index-2

INDEX

background processing, 2-15
colon use, 2-7
command abbreviations, 2-1
command format, 2-2
command line comments, 2-8
command line continuation, 2-8
command line errors, 2-9
command line format, 2-1
command line terminators, 2-2
CTRL/C use, 2-15
equal sign use, 2-7
errors, 2-9
file specifications, 2-13
foreground processing, 2-15
functional groups, 1-1
HELP, 2-5
initialization, 2-10
logical name translation, 2-15
prompting, 2-2
qualifiers, 2-3
Single Line Editor, 2-11
termination, 2-10
wildcard features in, 2-13

JEASSIGN, 3-42
)EBUG, 3-44
.DEC, 4-39
)efault file type, 4-1
)EFINE, 3-45
)efine logical EOF, 4-27
.DELAY, 4-40
)ELETE, 3-49
)ELETE/DIRECTORY, 3-52
)eleting file marked for delete,

14-10
)eleting lines from file, 10-14
)eletion of multiple-allocated

blocks, 14-10
)escription

of PRO/Tool Kit Utilities, 1-4
)evelopment of the application,

iii
)evice and file manipulation, 1-1

also see Chapter 3
HBOL, 3-53
)IFFERENCES, 3-57
)ifferences format, 5-7
HRECTORY, 3-61
)irectory validation, 14-4
.DISABLE, 4-41
HSMOUNT I 3-65
)MP, 6 -1

DO

command format, 6-2
error messages, 6-11
examples, 6-8
header dump, 6-10
invoking, 6-2
multiple format dump, 6-8
record dump, 6-9
switches, 6-3

command line terminator, 2-2
Document conventions, v
Document structure, iii
DUMP, 3-66

EDIT, 3-71
EDIT/EDT, 3-71

see EDT
EDIT/PROSE, 3-74
EDIT/SLP, 3-75
Editors

text, 1-4
EDT command file

directory location, 3-71
use with /COMMAND qualifier,

3-71
Effect of qualifier position in

command line, 2-4
.ENABLE, 4-42
. END I 4-46
Entry point table, 7-3
.ERASE, 4-47
Error

detection by system, 2-9
Error messages

indirect, 4-95
Errors

DCL Command Line, 2-9
. EXIT I 4-49
EXIT, 3-78
Exit

from PRO/Tool Kit, 2-10
Expressions, 4-16, 4-18

File Compare Utility, 5-1
File contents determination, 13-8
File contents validation, 13-8
File Dump Utility, 6-1
File manipulation commands, 1-2
File specifications, 2-13
File Structure Verification

Utility, 14-1

Index-3

Files marked for delete, 14-9
/FINAL qualifier

with ASSIGN, 3-9
with DEFINE, 3-46

FIX, 3-79
Foreground processing, 2-15
. FORM, 4-50
FORMAT, 3-81
Format

PIP commands, 12-2
Format of library files, 7-2
Formats of CMP output files, 5-6
FORTRAN, 3-82
/FR, 14-5
FREE command, 8-7
Functional groups

DCL commands, 1-1
Functions initiated by DCL

commands, A-1

general error messages, B-1
.GOSUB, 4-56
. GOTO, 4- 5 7

Header dump, 6-10
HELP, 2-5, 3-88

as a separate command, 2-5
while using a DCL command, 2-5

Hyphen
in command line, 2-8

I/O error messages, B-19
.IF, 4-25, 4-58
I FACT, 4-60
IFDF, 4-61
.IFDISABLED, 4-63
. I FENABLED, 4- 6 3
.IFF, 4-65
.IFINS, 4-62
. IFLOA, 4-64
. I FNACT , 4 - 6 0
.IFNDF, 4-61
.IFNINS, 4-62
. I FNLOA I 4 - 6 4
. I FT, 4 - 6 5
.INC, 4-66
Indirect

. ASK, 4-2 8

.ASKN, 4-30

. ASKS, 4 -3 3

.BEGIN, 4-35

INDEX

Index-4

. CHA IN , 4 - 3 6

.CLOSE, 4-37
command files, 4-1
command processor, 4-2
.DATA, 4-38
.DEC, 4-39
define logical EOF, 4-27
.DELAY, 4-40
directive summary, 4-4
.DISABLE, 4-41
.ENABLE, 4-42
. END, 4-46
.ERASE, 4-47
error messages, 4-95
. EXIT, 4-49
expressions, 4-16, 4-18
. FORM, 4-50
.GOSUB, 4-56
.GOTO, 4-57
.IF, 4-25, 4-58
. I FACT, 4-60
.IFDF, 4-61
.IFDISABLED, 4-63
. I FENABLED, 4-6 3
.IFF, 4-65
.IFINS, 4-62
. IFLOA, 4-64
. I FND F , 4 - 61
.IFNINS, 4-62
. IFNLOA, 4-64
. IFT, 4-65
.INC, 4-66
information only messages, 4-94
.LABEL, 4-67
messages, 4-94
numeric symbols, 4-16
.ONERR, 4-68
.OPEN, 4-69
.OPENA, 4-70
.OPENR, 4-71
.PARSE, 4-72
.PAUSE, 4-73
.READ, 4-74
reserved symbols, 4-19
.RETURN, 4-76
RSX compatibilty, 4-93
.SETD, 4-79
.SETF, 4-77
.SETL, 4-77
.SETN, 4-78
.SETO, 4-79

.SETS, 4-80

.SETT, 4-77
special symbols, 4-9

logical, 4-9
numeric, 4-11
string, 4-14

.STOP, 4-82
string symbols, 4-18
substitution format, 4-20
substrings, 4-18
switches, 4-21
symbol substition, 4-19
symbols, 4-8
.TEST, 4-83
.TESTDEVICE, 4-85
.TESTFILE, 4-86
.TESTPARTITION, 4-87
.TESTSYSTEM, 4-88
.TRANSLATE, 4-90
using directives, 4-24
.WAIT, 4-91
.XQT, 4-92

Indirect Command Processor
refer to Chapter 4
use with PRO/Tool Kit DCL

commands, 2-1
Indirect Command Processor, 4-1
INITIALIZE, 3-89
Input file wildcards, 12-11
INSTALL, 3-91
Installation of application, iii
Intended audience, iii
Interactive

program development, 1-1
program execution and control,

1-1
Interactive use of PRO/Tool Kit

DCL, 2-1
Invoking

CMP, 5-2
CVT, 11-1
DMP, 6-2
LBR, 7-11
PAT, 13-2
PIP, 12-1
RMD, 8-2
SLP, 10-2
VFY, 14-1
ZAP, 9-7

.LABEL, 4-67

INDEX

LB:[l,2]EDTSYS.EDT
see EDT use with /COMMAND

qualifier
LBR, 7-1

/CO, 7-15
combining library functions,

7-42
compress switch, 7-15
/CR, 7-16
create switch, 7-16
/DE, 7-18
default switch, 7-19
delete global switch, 7-21
delete switch, 7-18
/DF, 7-19
/DG, 7-21
entry point switch, 7-23
entry point table, 7-3
/EP, 7-23
error messages, 7-43, 7-44
/EX, 7-25
extract switch, 7-25
fatal errors, 7-44
file specifier defaults, 7-11
/FU, 7-29
/IN, 7-26, 7-27
insert switch, 7-26, 7-27
invoking, 7-11
/LE, 7-29
/LI, 7-29
library file format, 7-2
library header, 7-2
list switches, 7-29
/MH, 7-30
modify header switch, 7-30
module header, 7-3
module name table, 7-3
replace switch, 7-31, 7-37
restrictions, 7-10
/RP, 7 - 31, 7 - 3 7
selective search switch, 7-39
squeeze switch, 7-40
/SS, 7-39
switches, 7-13
/SZ, 7-40

/LI, 14-6
Librarian Utility Program, 7-1
LIBRARY, 3-93
Library header, 7-2
LIBRARY/COMPRESS, 3-94
LIBRARY/CREATE, 3-96

Index-5

INDEX

LIBRARY/DELETE, 3-99
LIBRARY/EXTRACT, 3-100
LIBRARY/INSERT, 3-101
LIBRARY/LIST, 3-103
LIBRARY/REMOVE, 3-105
LIBRARY/REPLACE, 3-106
LINK, 3-108
LINK/C81, 3-123
/LO, 14-6
LOAD, 3-126
Locations

addressing
in files, 9-5

/LOG qualifier
with PRINT/REMOTE, 3-142

Logical name translation, 2-15
Lost block recovery, 14-10

MACRO, 3-127
MAIL, 3-135
Manual objectives, 111

Miscellaneous commands, 1-3
Module name table, 7-3
MOUNT, 3-136
Multiple format dump, 6-8

Nesting command files, 4-1
/NOWARNINGS qualifier

with PRINT/REMOTE, 3-142
Numeric symbols, 4-16

Object Module Patch Utility, 13-1
Object modules, 13-5
.ONERR, 4-68
. OPEN I 4-69
.OPENA, 4-70
.OPENR, 4-71
Output file wildcards, 12-10
Overlaying lines, 13-5
OWNER command, 8-9

Parameters
in DCL command line, 2-2

.PARSE, 4-72
PASCAL, 3-137
PAT, 13-1

adding subroutine, 13-7
applying updates, 13-3
command line errors, 13-10
command line format, 13-2
correction file, 13-4

errors in file contents, 13-15
errors in file format, 13-15
file contents determination,

13-8
file contents validation, 13-8
file specification errors,

13-11
I/O errors, 13-13
information messages, 13-10
input file, 13-4
internal software error, 13-16
invoking, 13-2
messages, 13-9
module, 13-5, 13-7
object modules, 13-5
overlaying lines, 13-5
storage allocation error, 13-17
updates, 13-3
updating object modules, 13-5
validation, 13-8

.PAUSE, 4-73
Peripheral Interchange Program,

12-1
PHONE, 3-140
PIP, 12-1

command format, 12-2
error codes, 12-23
error messages, 12-13
file specification fields, 12-3
input file wildcards, 12-11
invoking, 12-1
output file wildcards, 12-10
specifying wildcards, 12-10
subswitches, 12-5, 12-9
switches, 12-5, 12-8

PRINT, 3-141
PRINT/REMOTE, 3-142
PRIORITY command, 8-9
PRO/TK

Refer to PRO/Tool Kit
PRO/Tool Kit, 1-1

environment, 1-1
introduction, 1-1
origins, 1-1
requirements to run, 1-1
utilities description, 1-4

PRO/Tool Kit DCL
Refer to PRO/Tool Kit Command

Language
use with Indirect, 2-1

PRO/Tool Kit DCL commands

Index-6

INDEX

alphabetical
description of, 3-1

Processing
background

use of ABORT command, 2-15
foreground

use of CTRL/C, 2-15
Program development commmands,

1-2
Prompting, 2-2

examples of, 2-2
when invoking DCL, 2-2

PURGE, 3-143

Qualifier
/SHOW, 3-55

Qualifiers
definition of, 2-3

Radix, 11-2
RATE command, 8-7, 8-9, 8-11
/RC, 14-6
.READ, 4-74
Record dump, 6-9
REMOVE, 3-146
RENAME, 3-147
Replacing lines in file, 10-16
Reserved symbols, 4-19
Resource Monitoring Display, 8-1
.RETURN, 4-76
RETURN

command line terminator, 2-2
RMD, 8-1

active task display, 8-8
altering active task display,

8-8
altering memory display, 8-7
altering task header display,

8-10
display pages, 8-1
error messages, 8-11
FREE command, 8-7
help display, 8-3
invoking, 8-2
memory display, 8-4
OWNER command, 8-9
PRIORITY command, 8-9
RATE command, 8-7, 8-9, 8-11
running on second terminal, 8-3
setup pages, 8-1
TASK command, 8-9, 8-11

task header display, 8-9
RSX

compatibilty, 4-93
RSX-11M-PLUS, 1-1
RUN installed task, 3-152
RUN uninstalled task, 3-150
Running RMD on second terminal,

8-3

/SESSION qualifier
with ASSIGN, 3-9
with DEFINE, 3-46

Set and Show commands, 1-3
SET DAYTIME, 3-155
SET DEFAULT, 3-156
SET DEVICE, 3-157
SET HOST, 3-159
SET PRIORITY, 3-160
SET PROTECTION, 3-161
SET PROTECTION/DEFAULT, 3-164
SET PROTECTION/NODEFAULT, 3-166
SET TERMINAL, 3-167
SET TIME, 3-155
.SETD, 4-79
.SETF, 4-77
.SETL, 4-77
.SETN, 4-78
.SETO, 4-79
.SETS, 4-80
.SETT, 4-77
SHOW ASSIGNMENTS, 3-172
SHOW CLOCK_QUEUE, 3-173
SHOW COMMON, 3-174
SHOW DAYTIME, 3-176
SHOW DEFAULT, 3-177
SHOW DEVICES, 3-178
SHOW LOGICALS, 3-179
SHOW MEMORY, 3-180
SHOW PROTECTION, 3-181
/SHOW qualifier

arguments to, 3-55
SHOW TASK/DYNAMIC, 3-188
SHOW TASK/LOGICAL_UNITS, 3-191
SHOW TASKS/ACTIVE, 3-182
SHOW TASKS/ACTIVE/DYNAMIC, 3-190
SHOW TASKS/INSTALLED, 3-186
SHOW TERMINAL, 3-192
SHOW TIME, 3-176
SLE

see DCL Single Line Editor
SLP, 10-1

Index-7

INDEX

adding lines to file, 10-12
audit trail

controlling, 10-19
deleting, 10-23
length, 10-20
position, 10-20
suppressing, 10-22
value, 10-21

command input, 10-3
command input format, 5-8
controlling, 10-18
controlling audit trail, 10-19
creating source files with,

10-17
deleting lines from file, 10-14
edit commands, 10-6, 10-8
error messages, 10-24
file processing, 10-5
information message, 10-24
input files, 10-2
interactive commands, 10-9
invoking, 10-2
listing, 10-11
listing file, 10-4
messages, 10-24
numbered listing, 10-11
operators, 10-10
output files, 10-2, 10-4
replacing lines in file, 10-16
source files, 10-11
switches, 10-18
through Indirect, 10-10
updating source files, 10-11
using, 10-6

Source files, 10-11
Source ~anguage Input Program,

10-1
SPAWN, 3-193
Special logical symbols, 4-9
Special numeric symbols, 4-11
Special string symbols, 4-14
Special symbols, 4-9
Specifying wildcards, 12-10
START I 3-194
START/UNBLOCK, 3-195
Status bits

task, 3-174
. STOP, 4 -8 2
STOP/BLOCK, 3-196
String symbols, 4-18

Structure of DCL command line,
2-1

SUBMIT/REMOTE, 3-197
Substitution format control, 4-20
Substrings, 4-18
Summary of indirect directives,

4-4
Symbol value substitution, 4-19
Symbols, 4-8
/SYSTEM qualifier

with ASSIGN, 3-9
with DEFINE, 3-46

TASK command, 8-9, 8-11
Task header display, 8-9
Task Manipulation Commands, 1-2
Task status bits, 3-174
Task/File Patch Program, 9-1
Terminal

attaching in background mode,
2-16

.TEST, 4-83

.TESTDEVICE, 4-85

.TESTFILE, 4-86

.TESTPARTITION, 4-87

.TESTSYSTEM, 4-88

.TRANSLATE, 4-90
Translation of logical names,

2-15
/TRANSLATION_ATTRIBUTES

with ASSIGN, 3-9
with DEFINE, 3-46

TYPE, 3-198

UNLOAD, 3-201
UNLOCK, 3-202
Updating object modules, 13-5
Updating source files, 10-11
/USER qualifier

with ASSIGN, 3-9
with DEFINE, 3-46

Using indirect directives, 4-24
Utilities

form, 1-4
frame, 1-4
program development, 1-4

Utility
invocation of

CMP, 5-2
CVT, 11-1
DMP I 6 -2

Index-8

LBR, 7-11
PAT, 13-2
PIP, 12-1
R.MD, 8-2
SLP, 10-2
VFY, 14-1
ZAP, 9-7

Validation, 13-8
Validity check, 14-3
VAX/VMS, 1-1
Verify utility

see VFY
VFY, 14-1

command format, 14-2

INDEX

deleting file marked for delete,
14-10

deletion of multiple-allocated
blocks, 14-10

directory validation, 14-4
/DV I 14-4
error messages, 14-11
file error reporting, 14-7
files marked for delete, 14-9
/FR, 14-5
free switch, 14-5
invoking, 14-1
/LI I 14-6
list switch, 14-6
/LO, 14-6
lost block recovery, 14-10
lost switch, 14-6
mode of operation, 14-3
/RC I 14 -6
read check switch, 14-6
switches, 14-4
validity check, 14-3

.WAIT, 4-91
Wildcard, 2-13
Wildcards, 12-10

. XQT, 4-92

ZAP, 9-1
absolute addressing, 9-7
absolute location, 9-18
addressing locations, 9-5

Index-9

addressing modes, 9-5
arithmetic operators, 9-11
block number, 9-13
branch target location, 9-19
byte offset, 9-13
changing location contents,

9-16
close command, 9-14
close location, 9-9
closing file locations, 9-17
command line, 9-8
commands, 9-9
commands, general purpose, 9-20
current location symbol, 9-13
equal sign command, 9-22
error messages, 9-31
examples, 9-24
generap purpose commands, 9-10
I- and D-space, 9-5
internal registers, 9-10
K command, 9-21
/LI, 9-3
list switch, 9-3
location specifier, 9-12
multiuser task image, 9-4
O command, 9-22
offset location, 9-18
open command, 9-14
open location, 9-9
opening file locations, 9-16
opening preceding location,

9-17
operating modes, 9-2
previous location, 9-19
R command, 9-23
regular task image, 9-3
relocation bias, 9-5
relocation register, 9-14
resident libraries, 9-4
RETURN key, 9-10
separators in command line,

9-12
switches, 9-2
task image addressing, 9-7
termination of, 9-7
through Indirect, 9-8
V command, 9-23
X command, 9-20

ai
..§
I/)

£
O'l c
0
ro
:;
u
Q)

"' "' Q)

a:

READER'S COMMENTS

PRO/Tool Kit
Command Language
and Utilities Manual
AA-X912B-TH

NOTE: This form is for document comments only. DIGIT Al
will use comments submitted on this form at the com
pany's discretion. If you require a written reply and
are eligible to receive one under Software Perfor
mance Report (SPR) service, submit your comments
on an SPR form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of reader that you most nearly represent.
0 Assembly language programmer
0 Higher-level language programmer
0 Occasional programmer (experienced)
0 User with little programming experience
0 Student programmer
0 Other (please specify)--------------------------

Name _______________________ Oate ________ _

Organization---------------------------------

Street----------------------------------~-~
City _______________ State ________ Zip Code ______ _

or

Country

-- Do Not Tear - Fold Here and Tape --

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

Professional Workstations Publications
DIGITAL EQUIPMENT CORPORATION
146 Main Street, ML021-2/T76
Maynard, Massachusetts 01754-2571

No Postage

Necessary

if Mai led in the

United States

I
I
I
I
I

--- Do Not Tear - Fold Here---1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
l :::!
I :J
I -o
I ~
I o

I~
I g
I~
I :;;
lu
l
I
I
I
I
I
I
I
I
I
I
I

