
PRO/RMS-11:
An Introduction
Order No. AA-P098A-TK

November 1982

This document introduces the concepts and operations of Record Manage
ment Services (RMS-11) for the Professional Operating System (P/OS).

OPERATING SYSTEM AND VERSION: P/OS V1.0 or later
SOFTWARE VERSION: RMS-11 Version 2.0

digital equipment corporation · maynard, massachusetts

First Printing, November 1982

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright © 1982 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL RSX
DEC/CMS EduSystem UNIBUS
DECnet IAS VAX
DECsystem-10 MAS SB US VMS
DECSYSTEM-20 PDP VT
DEC US PDT

~omoamo DECwriter RSTS

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico call 800-258-1710

In New Hampshire, Alaska, and Hawaii call 603-884-6660

In Canada call 613-234-7726 (Ottawa-Hull)
800-267-6146 (all other Canadian)

DIRECT MAIL ORDERS (USA & PUERTO RICO)*

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

•Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

DIRECT MAIL ORDERS (CANADA)

Digital Equipment of Canada Ltd.
940 Belfast Road
Ottawa, Ontario K1G 4C2
Attn: A&SG Business Manager

DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation
A&SG Business Manager
c/o Digital's local subsidiary or
approved distributor

Internal orders should be placed through the Software Distribution Center (SOC), Digital Equipment
Corporation, Northboro, Massachusetts 01532

ZK2170

PREFACE

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

INDEX

CONTENTS

DOCUMENT OBJECTIVES
INTENDED AUDIENCE
ASSOCIATED DOCUMENTS

INTRODUCTION

DATA STORAGE

Page

• v
. • • v

• v

DISK STRUCTURE • • • • •••••••••••••• 2-1

FILE STRUCTURE

RECORD FORMATS • • • • • • • • • • • • • • • • • • 3-1
Fixed-Length Records • • • • ••••••• 3-1
Variable-Length Records •• 3-2
Variable-Length with Fixed Control (VFC) Records 3-2
Stream Records ••••••••••••••••• 3-4
Undefined Records • • • • • ••••••• 3-4

FILE ORGANIZATIONS • • • •••• 3-4
Sequential Organization • • • • • • 3-4

Special Case • • • • • • • • • 3-5
Relative Organization • • • • • • • •• 3-5
Indexed Organization •••••• 3-6

ACCESS MODES • • • • • • • • • • • • • • • • • • 3-11
Record Access Modes • • • • • 3-11
Block Access Modes • • 3-12
Access Mode Switching • • • • • • • • • 3-13

FILE STRUCTURE INTERDEPENDENCIES • • • • • • 3-13
File Organization and Access • • • • • • • • • 3-13
Summary • • • • • • • • • • • • 3-15

FILE DESIGN • • • • • • • • • • • • • • • 3-16

OPERATIONS

FILE PROCESSING
I/O Buffers and Data Transfer
Access Sharing ••••••••

• • • • • • 4-1
• • • • • • • • • 4-2

• • 4-3
RECORD PROCESSING • • • • • • • • • • 4-3

Record Context •••
Record Access Modes
Record Transfer Modes

BLOCK PROCESSING •••
Block Access Modes •

MACROS AND SYMBOLS • •

iii

• • • 4-4
• 4-5
• 4-6

• • • 4-6
• 4-7

4-7

FIGURE 1
2
3
4
5
6
7
8
9

TABLE 1
2

FIGURES

Physical Disk Structure • • • • •
Logical Disk Structure •••••••••

• 2-2
• • • • • 2-3

• • • • 2-4 Virtual-to-Logical Block Mapping
Fixed-Length and Variable-Length
VFC Record Format • • • • •
Sequential File Organization

Record Formats • 3-3
• 3-3

• • • 3-5
3-6 Relative File Organization •

Indexed File Organization
Indexed File Organization --

Single Key
Multiple Keys

• • 3-8
• • 3-9

TABLES

File Structure Interdependencies
File and Record Attributes

iv

••• 3-15
• • • • • 3-16

PREFACE

DOCUMENT OBJECTIVES

This document introduces the major concepts of RMS-11: record formats,
file organizations, and record access modes.

It also introduces the RMS-11 operations and defines key terms
required for understanding RMS-11 capabilities and functions.

This document does not provide reference or usage information. You
should read it, however, before you proceed to the other RMS-11
documents. See the Associated Documents section below.

INTENDED AUDIENCE

This document is intended for all users of RMS-11, including MACR0-11
and high-level language programmers. Nonprogramming users, programming
users who are new to the Professional Operating System, and
programming users who are new to RMS-11 will find this document
useful.

ASSOCIATED DOCUMENTS

The PRO/RMS-11 Macro Programmer's Guide manual is a reference document
for MACR0-11 programmers that describes the macros and symbols that
make up the interface between a MACR0-11 program and the RMS-11
operation routines. Chapter 4, Operations, of this manual provides a
background for the reference information.

v

CHAPTER 1

INTRODUCTION

The PDP-11 computer allows you to store large amounts of information.
The combination of the software supplied by DIGITAL and the software
that you write allows you to access and manipulate that information.
This means that you can store, retrieve, and process (modify and
delete) data according to your requirements.

All businesses, for example, need to store detailed and up-to-date
personnel information. At a minimum, this information would include
each employee's name, address, and social security number.

The employer will want to be able to retrieve this information in some
orderly fashion, perhaps in alphabetical order by employee name or by
social security number for tax purposes.

The employer also must be able to readily
information on new employees, delete
leave, and modify information that is
employee moves) .

process the information: add
information on employees who
incorrect or changes (the

The ability to store and retrieve information and to process that
information readily and in some orderly fashion implies that the
information is stored in some orderly fashion, such as in records. A
record is a logical unit of data, that is, an item or collection of
items that are related in some manner.

The information on each employee -- name, address, and social security
number would constitute one record. The information on each
manufactured part in inventory -- part name, number, and price
would constitute another, different type of record.

To keep records of one type separate from records of another type,
records are organized into files. A file contains groups of records of
the same type. One or more files, depending on the amount of data,
would contain all the records of a specific type.

In a small business, all the employee records would be stored in one
file; all the inventory records would be stored in another.

How the data is used helps determine how the records are stored in and
retrieved from files so they can be processed, or used for a specific
purpose. Data storage and retrieval is also called access.

To obtain a complete report on all employees, the employer might
simply get each record, one after another. New records might be put at
the end of the file, one after another. To withhold state income tax,
the employer might use the address data to identify the records of
employees who reside in that state.

1-1

Introduction

The software that provides data access is RMS-11. RMS-11 is a set of
routines that allows your programs to gain access to and process
add, modify, and delete -- records and files. RMS-11 provides the
connection between your program and the stored data that your program
requires.

This document is an introduction to RMS-11. Data storage is described
briefly in Chapter 2. File structure and access are described in
Chapter 3.

The RMS-11 operation routines that provide file and record processing
are introduced in Chapter 4.

1-2

CHAPTER 2

DATA STORAGE

The data that your programs use typically is stored on mass-storage
devices, called disks. The operating system software controls thes~
hardware devices, and allows your programs to access the data stored
on them. Each device is controlled by a device driver, or software
that handles the input/output (I/O) -- the writing of data into and
reading of data out of storage.

The Files-11 Ancillary Control Processor (FCP) is the P/OS file
control processor that catalogues and maintains files on the disks,
and issues I/O requests to the device drivers.

The smallest unit of information stored on hardware devices is the
bit. A bit is an area of disk or tape surface for which the magnec1c
orientation can be changed to one of two values, conventionally
designated Q and !·

Information typically is grouped into units of 8 bits, called bytes.
Bytes are used, for example, to represent alphanumeric characters in
memory with the DEC multinational character set. Other ways of
representing data, particularly numeric data, may require 2 or more
bytes. A wor~, for example, consists of 2 bytes (or 16 bits).

DISK STRUCTURE

A disk is made up of one or more circular platters, arranged one above
the other to form a cylinder. A disk is mounted on a drive, which is
the electromechanical unit for reading and writing---aata on the
platters. The disk platters spin and the read/write heads of the drive
move across the platters to access the data. Data is usually written
on both sides of a platter.

Figure 1 shows how
DIGITAL, a sector
sectors at a single
consists of all the

data is stored on a disk. On most disks supplied by
consists of 512 bvtes. A track consists of all the

radius on one ·disk platter, and a cylinder
tracks at the same radius on all the platters.

The disk drive can access all tracks on a single cylinder without
changing the position of the read/write heads. Any sector on a disk
thus has a unique physical address: its cylinder number, its track
number, and its sector number on that track.

2-1

Bit

Byte

Sector

1

p
I I

I

j i I I
I -
I~ -...:::.

I
......

'
......

'

Track

Data Storage
Disk Structure

8

I] -
rr

I I I I
:; ..J

.......
/ ,.,.

/
/ ,.,.

512

/
/

/
/

Cylinder

Remainder of
Volume

ZK-1073-82

Figure 1: Physical Disk Structure

2-2

Data Storage
Disk Structure

The device drivers impose a simpler logical addressing structure on
each disk. They treat the disk as a single, logically contiguous,
series of data units, called blocks. A block contains 512 8-bit bytes.
Logical blocks are numbered sequentially, from 0 to n-1, where n is
-the numberofblocks on the disk. Figure 2 illustrates- this logTcal
structure. Blocks, which are logically adjacent, frequently correspond
to sectors, which are physically adjacent on the disk.

Logical
Block

Number ------.
0

Sector 1,
Track 1

Figure 2: Logical Disk Structure

Logical
Block

Number
n-1

ZK-1074-82

On disk~ a file is simply a series of blocks, which contain your data
organized into records. You can store multiple files on a disk. The
file control processor treats each file as a unit, ignoring any blocks
on the disk except those in the file being processed.

Figure 3 illustrates how blocks in a file -- called virtual blocks
may be mapped to logical blocks. Virtual blo~are numbered
sequentially in a file from 1 to ~· where n is the number of blocks in
a file.

The blocks in a file, however, need not be logically contiguous. As
files are created or extended, the file control processor may allocate
blocks to the file that are not next to each other on the disk. The
blocks in a file, then, are virtually contiguous.

2-3

File A

Logical blocks IA A A A

/
/

/
/

./

File B [

Data Storage
Disk Structure

r::
' '

'

A~ B
B B B

/
/

/
/

./
/

r

l
......

......
......

'
'

B: B A A

/

Figure 3: Virtual-to-Logical Block Mapping

......
'

A A]

ZK-1075-82

Note that a virtual block number (VBN) and a logical block number
(LBN) refer to the-5a"me physical unit of disk storage space. But
although a virtual block also has an LBN, a logical block has a VBN
only if it is allocated to a file.

To access files, the file control processor translates VBNs to LBNs
and issues an I/O request to the device driver. The device driver, in
turn, translates the LBNs to the physical location (cylinder, track,
and sector) that is to be read or written.

Disk storage offers two main advantages: 1) it allows both sequential
and random access and 2) it allows access sharing. Sequential access
means that virtual blocks containing data are stored and retrieved
consecutively, one after another.

On the other hand, random access (also called direct access) means
that a specific block containing data can be located and retrieved
without a search of all the blocks that precede it in the file. The
time needed to access the data may thus be improved over sequential
access.

In addition, disk storage allows access sharina. This means that more
than one user can access the same disk at one time, and more than one
user can be allowed to open the same file at one time.

2-4

CHAPTER 3

FILE STRUCTURE

The operating system software
drivers handles files. Your
access the records within the files
within the records.

file control processor, device
programs, however, must be able to

so they can process the data

RMS-11 allows you to define the internal structure of files (the size
and arrangement of records within files) and provides operations that
allow your programs to read and write records in files. RMS-11 thus
provides the interface between the operating system and your programs.

You define the internal structure of a file when you create it by
selecting record format and file organization.

Your selection of file organization may have to take into account the
access modes that you will use to store and retrieve your data.

This chapter
organization,
operations.

RECORD FORMATS

introduces
and access

the concepts of
modes. Chapter 4

record format, file
introduces the RMS-11

RMS-11 does not handle, or process, data within records. Your program
does that. However, to retrieve or store a record for your program,
RMS-11 must know how large that record is. The record formats that
allow you to define for RMS-11 the size of your data records are:

• Fixed length

• Variable length

• Variable length with fixed control (VFC)

• Stream

These are the standard RMS-11 record formats. In addition, you can
specify undefined as the record format for non-RMS-11 files.

Fixed-Length Records

In a file that contains fixed-length records, every record is the same
size. The size (number of bytes) is fixed at file-creation time and
cannot be changed for the life of the file.

3-1

File Structure
Record Formats

Typically, fixed-length records are used to contain data that is
always the same length. This is the most efficient use, although your
program need not supply data for every byte of a fixed-length record.
RMS-11 will simply store and return the fixed-size record regardless
of whether every byte in the record contains data that is meaningful
to you. Your program must be able to recognize that some bytes in the
record are "unneeded."

For example, you could use a fixed-length record to contain
information on manufactured parts including, say, part number, date of
manufacture, and price. Each of these fields would always be the same
length and would always be filled.

If you
length
fields
format

also used a field for a part name, that field would vary in
with the names of the parts. However, as long as most of the

contain data whose length does not vary, fixed-length record
may still be the most efficient way to store your data.

Variable-Length Records

In a file that contains variable-length records, records can be of
different lengths, up to a maximum size that you specify. This maximum
is fixed at file-creation time and cannot be changed for the life of
the file.

Because the number of bytes of data per record is not fixed, each
variable-length record is only as long as it needs to be to contain
the record data. To keep track of the length of each record for
reading and writing, RMS-11 maintains a length field which is prefixed
to each record.

Thus, a variable-length record will require slightly more space than a
fixed-length record to hold exactly the same amount of data. However,
if the number of bytes of data in a record must vary, fixed-length
records would waste space in unneeded bytes, and variable-length
records may therefore be more efficient.

Figure 4 compares the fixed-length and variable-length record formats.

Typically, variable-length records contain text data
length: for example, the names and addresses of
fixed-length records for this information could
unneeded bytes and inefficient use of storage space.

Variable-Length with Fixed Control (VFC) Records

that varies in
employees. Using
result in many

A VFC record is much like a variable-length record except that in each
record in the file a fixed-length control area precedes the
variable-length data. This format allows you to construct records with
additional data that labels, or identifies, the contents of the
variable-length portion of the record.

For example, in a text file, each line of text constitutes the
variable-length portion of a record. The fixed-length control area of
each record contains a line number that indicates the sequence in
which the line occurs in the text file: line 3, say, in a text file of
10 lines (that is, 10 records). An editing program can use the line
numbers to locate a particular line of text easily in the file.

3-2

Fixed-length
records

File Structure
Record Formats

32 bytes 32 bytes 32 bytes

Variable-length
records

8
bytes

16
bytes

Length fields

24
bytes

ZK-1077-82

Figure 4: Fixed-Length and Variable-Length Record Formats

At file-creation time, you specify two sizes for the records in the
file: the maximum size permitted for the variable-length portion and
the fixed size of the control area.

As for variable-length records, RMS-11 keeps track of
each record by maintaining a length field for each
memory, a VFC record consists of a length field,
control area, and variable-length data.

Figure 5 illustrates the VFC record format.

Length Fixed-length Variable-length
field control area data

ZK-1078-82

Figure 5: VFC Record Format

3-3

the length of
record. Thus, in

a fixed-length

Stream Records

A stream record

File Structure
Record Formats

consists of a continuous series of ASCII characters
delimited by a special
terminators: form feed,
terminators.

character or sequence of characters called
line feed, or vertical tab are all

For example, a text file might consist of a series of stream records
terminated by carriage-return/line-feed characters pairs.

RMS-11 considers each record a series of bytes; the length of a stream
record is determined by the position of the terminator.

Undefined Records

A file with undefined records either may have no record format or may
contain records that are not in one of the four standard RMS-11
formats described in the previous sections.

RMS-11 considers a file with undefined records as a series of blocks;
that is, it stores and retrieves data in units of 512-byte blocks.
Your program must be able to interpret the contents of the blocks.

and stream
This means

created

RMS-ll's support of both undefined
compatibility with non-RMS-11 files.
limitations, RMS-11 can process files
systems.

FILE ORGANIZATIONS

records provides
that, with some

under other file

The arrangement of records within files directly affects access
flexibility, or how quickly and easily RMS-11 can access those
records. Your selection of file organization, therefore, should take
access mode into consideration. For more information on access mode
selection, see the Access Modes section and the File Structure
Interdependencies section.

RMS-11 makes three file organizations available:

• Sequential

• Relative

• Indexed

Sequential Organization

In a sequential file, records normally are arranged within the file in
the order in which they were written; that is, the first record
written is the first record in the file, and the record written most
recently is the last record in the file.

3-4

File Structure
File Organizations

You can add records to a sequential file only at the logical end of
the file. You can delete a record or series of records in a sequential
file only by truncating the file from a specific point to the logical
end of the file, which effectively deletes the record(s). You can,
however, update a record -- retrieve it, change its contents, and
rewrite it in the file -- as long as the length of the record has not
changed.

Sequential file organization is supported for all record formats. In
addition, sequential files allow shared access for reading data.

Figure 6 illustrates sequential file organization.

End of file

1st 2nd 3rd 4th 5th 6th n-1 nth
record record record record record record • • • record record
written written written written written written written written

r The 4th record written is
located between the 3rd
and 5th records written.

ZK-1079-82

Figure 6: Sequential File Organization

Special Case - In a sequential file with fixed-length records, the
records are numbered consecutively from 1 to ~· where ~ is the number
of records in the file. The record numbers are known as relative
record numbers. In this case, records may not be arranged in the file
in the order in which they were written. You can, for example, specify
that relative record number 5 be written before relative record number
4. When relative record number 4 is written later, it will be inserted
before relative record number 5. Fixed-length records in a sequential
file can be retrieved by random access.

In addition, RMS-11 supports the use of unit-record devices (such as
terminals and line printers) by treating them as sequential files.
That is, your program can write to and read from a unit-record device
in much the same manner as it would to a sequential file.

Relative Organization

A relative file consists of a series of cells, or fixed-length units
of storage. Each record within a relative file is stored in a cell;
however, not every cell need contain a record. The cells are numbered
consecutively from 1 to n, where n is the number of cells in the file.
As for sequential files with fixed-length records, the cell numbers
are known as relative record numbers.

To randomly access a record in a cell, your program must keep track of
the relative record number. One way to do so is to associate a value
within the record (for example, an order number) with the relative
record number.

3-5

File Structure
File Organizations

Because records are stored by relative record number, they need not be
arranged within the file in the same order in which they were written.
For example, order number 4 may be completed and its record written to
the file before order number 3. Thus, order number 4 will be stored in
cell 4, and cell 3 will remain empty until order number 3 has been
completed and its record written to the file.

Figure 7 illustrates relative file organization.

Cell
number 2

Record Record
1 2

1st record 2nd record
written written

3

Empty

4 5 6

Record
Empty Record • • • 4 6

3rd record 10th record
written written

n-1

Record
n-1

T
6th record

written

Figure 7: Relative File Organization

End of file

n

Empty

ZK-1080-82

The records in a relative file can be fixed length, variable length,
or VFC. Since there can be only one record per cell, RMS-11 determines
the cell size based on the maximum record size that you specify. This
means that with variable-length and VFC records there may be unneeded
bytes in a cell (much like fixed-length records in which there may be
unneeded bytes) •

Unlike sequential files, relative files
capabilities:

permit the following

• Random access by relative record number, regardless of record
format

• Record deletion

• Access sharing for both reading and writing data

Indexed Organization

In an indexed file, records are arranged in ascending order by~- A
key is a data field within the record that RMS-11 uses to determine
the order in which to access the records in the file. This is the only
case in which RMS-11 interprets data within records~ thus, a record
can be identified by its contents, instead of by its position within
the file.

3-6

File Structure
File Organizations

When you create an indexed file, you must define one field of the
record as the primary~· A key is defined by its location within the
record, its data type, and its length. When a record is stored in that
file, RMS-11 inserts the record in order based on the value that it
finds in the primary key field; that is, RMS-11 inserts the record
after a record with a lower or equal value in the primary key field,
and before a record with a higher value in the primary key field.

You can optionally define other fields of a record as alternate keys.
These keys specify alternate access orders for the retrieved records;
they do not affect the order in which the records are arranged within
the file.

The data type of values in key fields can be byte (character) string,
signed integer, unsigned binary number, or packed decimal number.

For each data field defined as a primary or alternate key, RMS-11
constructs an index. A primary index contains the values in the
primary key fields, and an alternate index contains the values in
alternate key fields.

An indexed file is a heirarchical, or tree, structure consisting of
levels of records. The highest level(s) are the index records. The
data records comprise the lowest level. An indexed file consists of at
least two levels of records: index and data. Each index record
contains the highest key value in a group of records at the next lower
level plus a pointer to that group of records.

Thus, each key value provides a logical
specific record or set of records in a
your program to retrieve your records in
stores the indexes in the file itself.

access path to locate a
file. The indexes also allow

a specific order. RMS-11

For example, to maintain employee files in alphabetical order by
employee name, you could create an indexed file and specify the
employee-name field of the record as the primary key. RMS-11 would
construct a primary index consisting of employee names, in
alphabetical order, and insert the records in the file in that order.

Figure 8 illustrates an indexed file with only a primary key defined;
note that the data records contain other fields, including address and
badge number.

In many cases, employee records may need to be retrieved in different
orders; for example, the payroll may be processed by badge number
rather than by employee name. Thus, you might want to define the
badge-number field as an alternate key for the file.

Figure 9 illustrates an indexed file with an alternate key defined.

3-7

w
I

CX>

KEY DEFINITION

BAKER WYMAN

ADAMS BAKER CLARK JONES SMITH TAYLOR

ADAMS PINE ST 35112 CLARK ELM AVE 24379 JONES MAIN ST 19724 SMITH HOLT RD

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-DATA RECORDS 

Figure 8: Indexed File Organization -- Single Key 

WYMAN 

11733 

PRIMARY INDEX 
(Employee Name) 

WYMAN MAIN ST 2254 

ZK-1081-82 

'>!I .... 
I-' "ll 
(I) ..... 

lo-' 
0(1) 
>"! 

<.Q Ul 
Ill rt 
::l "t 
..... c 
N 0 

°' rt 
('1" c 
t-'• l"'I 
0 Cl) 

::l 
(fl 



w 
I 

l.O 

PRIMARY INDEX 
(Emplo)'11e Name) 

Figure 9: 

SMITH 

CLARK ELM AVE 

AL TERNA TE INOEX 
(B11:d9e Number) 

' / ' / I / -_:::--
'' !:-: J:. - - - - - ------- - - - -;; ( ----
,,,,, _,,--

/ 
/ 

/ 
/ 

/ 

/ 

JONES MA!N ST 19724 

--i- ' 

I 
I 
I 
I 
I 

' ' 

SMITH HOLT RD 

' ' ' ' ' ' ' 

Indexed File Organization -- Multiple Keys 

/ 

"ii ..... 
I-' '2J 
CD..,. 

I-' 
OCD ,., 
Ul t/l 
OJ rt 
::i,., 
1-'•C:: 
N 0 
OJ rt 
rt i::: ..... ,., 
0 CD 
::i 
tll 



File Structure 
File Organizations 

You can optionally specify three key value characteristics for 
individual keys: 

1. Duplicate values for primary and/or alternate keys. 

This means that more than one record in the file can have the 
same value for the key. 

In the employee file example, duplicate key values could be 
allowed for employee name but not for badge number. 

By default, RMS-11 
primary keys but 
keys. 

does not allow duplicate values for 
does allow duplicate values for alternate 

2. Changeable values for alternate keys. 

This means that the data in the key field can be modified. 
For example, if employee address was also an alternate key in 
the employee file, key values would be allowed to change in 
case the employee moves. 

If the field does change, RMS-11 updates the appropriate 
index to reflect the new key value. 

By default, RMS-11 allows alternate key values to be changed. 
Note, however, that alternate key values can change only if 
duplicate key values are also allowed. Primary key values 
cannot be changed. 

3. Null values for alternate keys. 

This means that the data in the key field can be null, that 
is, have no value. It is possible, for example, that employee 
information may be incomplete when the record is put into the 
file, and that one of the incomplete fields is a key. 

RMS-11 makes no alternate index entrv for such a record; if 
the record is subsequently m~dified to include the 
information, RMS-11 makes an entry in the appropriate index. 
Note that primary key values cannot be null, nor can a null 
value later be changed unless the key was specified to be 
changeable. 

By default, RMS-11 treats any value in the key field as a 
true key value. 

When keys are character strings, you can also specify that keys are 
segmented; that is, the keys consist of separate fields of the record. 
For example, you can define a key in an employee file as consisting of 
both the employee-name and badge-number fields. RMS-11 will 
concatenate the segments to form the key. 

Indexed files permit fast sequential access (in key order) 
access by key value. Indexed files allow only 
variable-length record formats. 

3-10 

and random 
fixed- and 



ACCESS MODES 

File Structure 
File Organizations 

The access modes are the methods that RMS-11 uses to store or retrieve 
the contents of files. The contents of files can be either records or 
blocks. 

The record access modes are: 

• Sequential 

·• Random by record file address (RFA) 

• Random by key 

The block access modes are: 

• Sequential 

• Random by virtual block number (VBN) 

In the sequential access modes, RMS-11 stores or retrieves records or 
blocks consecutively, one after another. 

Sequential access is efficient when you need to read all the records 
or blocks in a file. For example, you would use sequential record 
access mode with an employee file to perform weekly payroll processing 
because you would always want to access all of the employee records. 

In the random access modes, RMS-11 stores or retrieves records or 
blocks directly, using an identifier unique to the required record or 
block. This means that your program, not the sequence of records or 
blocks within the file, establishes the order in which records or 
blocks are processed. 

Random access is efficient when you need to "jump around" in a file, 
rather than access all the records or blocks one after another. For 
example, if your program needs to process only the records for 
employees who receive sick pay during a payroll period, you would use 
a random record access mode to access only those records, by employee 
name. 

Record Access Modes 

For sequential access, record storage or retrieval begins at a point 
in the file and continues with consecutive records through the file. 
Your program issues a series of requests to RMS-11 to successively 
retrieve the next record in the file. 

Sequential access does not allow you to backspace through a file; you 
must reopen the file, or rewind to the first record in the file, and 
begin again at the first record. 

For random by RFA access, RMS-11 uses the record file address (RFA) as 
an identifier to gain direct access to a specific record in a file, 
without a successive search of all the records that precede it. The 
RFA is a unique record identifier that RMS-11 establishes for every 
record that it writes to a file. 

When RMS-11 stores a record in a file, it establishes the RFA for that 
record and returns the RFA information to your program. Your program 
can then use the RFA to retrieve the record. 

3-11 



File Structure 
Access Modes 

Note that because only RMS-11 can establish the RFA, you cannot store 
a record by RFA (that is, you cannot specify an RFA for the record). 

RFA access can be used with files of any organization and record 
format; it is the fastest way to read a record randomly in an indexed 
file. 

For random by key access, your program specifies an identifier that 
allows RMS-11 to gain direct access to a specific record without a 
successive search of all the records that precede it. For sequential 
files with fixed-length records or for relative files, the identifier 
is a relative record number (RRN). For indexed files, the identifier 
is a key value. 

To randomly read a record in an indexed file, your program specifies a 
key value and the index (primary, first alternate, and so on). RMS-11 
searches the index to locate the record with the specific key value. 
For byte (character) string keys, your program can also specify the 
number of characters on which the match is to be made; this is called 
generic match. 

In addition to specifying a key value or RRN, you can also specify 
match criteria: 

• An exact match on the key value or RRN, that is, only the 
record with the specified key value or RRN 

• A greater-than match on the key value or RRN, that is, the 
next record after the record with the specified key value or 
RRN 

• A greater-than-or-equal-to match on the key value or RRN, that 
is, either 1) the record with the specified key value or, if 
there is no such record, the record with the next higher key 
value; or 2) the record in the cell with the specified RRN or, 
if that cell is empty, the first record in a cell after the 
specified RRN 

For example, in an employee file the second alternate key might be the 
social security number. If you want to read the first record that 
contains a social security number beginning with 175, you would 
specify key number 2 (the index), key value 175, and that the match is 
to be an exact match on the first three characters of the key. 

Block Access Modes 

For sequential access to blocks, RMS-11 stores or retrieves data as a 
consecutive series of blocks. Your program issues a series of requests 
to RMS-11 to successively access the next block(s) in the file. 

For random by VBN access, your program specifies the virtual block 
number (VBN) as the identifier of the first block to be accessed. 
RMS-11 uses the VBN to gain direct access to the specified block(s) 
without a successive search of all the blocks that precede it. 

3-12 



Access Mode Switching 

File Structure 
Access Modes 

RMS-11 allows your programs to change access modes -- either among the 
three record access modes or between the two block access modes -- at 
any time during file processing, as long as the file organization 
allows the access modes selected. 

However, you must make the basic selection of either record access or 
block access when you open the file. You can switch between record and 
block access only by closing and reopening the file. 

Access mode switching is most useful when a random access mode is used 
to retrieve the first record or block of a series, and then sequential 
access mode is used to retrieve subsequent records or blocks of that 
series. 

For example, if an indexed employee file uses the department code as 
one of the alternate keys, your program could print a report on all 
the employees in a specific department. It would do this by using key 
record access mode to locate the first record whose department field 
matches the specified key and then switch to sequential record access 
mode to consecutively retrieve all the remaining records of the 
employees in that department. 

FILE STRUCTURE INTERDEPENDENCIES 

As the previous sections indicate, your selection of record format, 
file organization, and access mode(s) cannot be made independently of 
each other. For example, if you want to use VFC records, you cannot 
choose indexed file organization; and if your records are undefined, 
you must use a block access mode. 

File Organization and Access 

You can use sequential record access mode with any RMS-11 file 
organization. The organization of the file determines the order in 
which the records are stored and retrieved. 

You can use random by RFA record access mode and VBN access mode with 
any file organization. For random by RFA record access mode, your 
program must save the RFAs established by RMS-11 when it stores the 
records in the file. 

Random by key record access mode also can be used with any file 
organization. For sequential files, however, the record format must be 
fixed length. 

You can use sequential block access mode with a file of any 
organization, including non-RMS-11 files. 

The block access modes may improve access time because RMS-11 ignores 
file structure and record characteristics. Your program, however, must 
be able to interpret the contents of the blocks. 

Sequential Access to Sequential Files. If you use sequential record 
access mode with a file of sequential organization, your program must 
open the file and read through the records one after the other 
beginning with the first record. Even though the record you require 
may be near the end of the file, your program must read every record 
that precedes it. In addition, records can be added sequentially only 
at the end of a sequential file. 

3-13 



File Structure 
File Structure Interdependencies 

Sequential Access to Relative Files. If you use sequential record 
access mode with a relative file, RMS-11 will search for successive 
record cells, ignoring cells that are empty. For example, if a 
relative file contains records in cells 1, 2, 4, and 8, and all other 
cells are empty, RMS-11 will check each cell from 1 through 8 but will 
read only RRNs 1, 2, 4, and 8, in that order. 

To retrieve a specific record in a relative file, using sequential 
access, your program first must retrieve all the records in all the 
preceding cells. 

To insert a record sequentially in a relative file, RMS-11 puts the 
record in the next cell after the cell just accessed {the cell with an 
RRN one number higher than the current cell), if that cell is empty. 
If the cell contains a record, RMS-11 will return an error code. 

Sequential Access to Indexed Files. If you 
access mode to retrieve records in an indexed 
key for RMS-11 to use to establish the order 
records sequentially. The key you specify 
any alternate key. You can use sequential 
retrieve records in the order represented by 

use sequential record 
file, you must specify a 

in which it will read the 
can be the primary key or 

record access mode to 
any index for the file. 

RMS-11 will retrieve the records in ascending order by key value; that 
is, if you specify the employee-name key, all employee records will be 
read beginning with the ~·s. 

To store, or insert, a record sequentially in an indexed file, RMS-11 
uses the primary key value to insert the record in order in the file, 
and updates the primary and alternate indexes according to the key 
fields within the record. 

In a series of sequential insertions, RMS-11 verifies that the primary 
key of each new record has a value equal to or greater than the 
primary key of the previously inserted record. 

Random Access to Sequential Files. If you use random by key record 
access mode with a sequential file, the record format must be fixed 
length. Your program specifies the RRN of a record in the file and the 
match criterion, and RMS-11 stores or retrieves that record. 

When you are reading a record from a file, RMS-11 will retrieve that 
record or return an error code if the specified record position lies 
beyond the end of the file. 

Note that RMS-11 does not initialize sequential files. Thus, if you 
attempt to read a record from a sequential file with fixed-length 
records to which records have been randomly written, you may get 
"garbage• data. That is, if you specify an RRN that is not beyond the 
end of the file but at which no record has been stored, RMS-11 will 
return whatever data happens to be at that location. 

When you are writing records to a file and specify an RRN, RMS-11 will 
store the record in that RRN's position in the file regardless of 
whether a record with that RRN already exists. If the specified record 
position lies beyond the end of the file, RMS-11 will extend the file 
and store the record at the designated RRN. 

If you know the RFA, you can use random by RFA record access mode to 
read sequential files. This is the only random record access mode in 
which your program can read sequential files of variable-length or VFC 
record format. 

3-14 



File Structure 
File Structure Interdependencies 

Random Access to Relative Files. In random by key record access mode, 
your program specifies the relative record number of a record's cell 
in the file. RMS-11 then stores or retrieves the record in that cell. 

When you are reading records from a file and specify an exact match on 
an RRN, RMS-11 will retrieve the record in that cell or return an 
error code if the cell is empty. 

When you are writing records to a file, RMS-11 will store the record 
in the cell if the cell is empty or return an error code if the cell 
contains a record. Only on an UPDATE record operation (see Chapter 4) 
will RMS-11 write a record into a cell that already contains a record. 

If you know the RFA, you can use random by RFA record access mode to 
read relative files. 

Random Access to Indexed Files. In random by key record access mode, 
your program supplies the key value of a record in the file. RMS-11 
then retrieves the record associated with that key value. 

If you know the RF~, you can use random by RFA record access mode to 
read indexed files. RFA access is faster than key access because it 
bypasses the searching of the index, but your program must keep track 
of the RFAs. 

Summary 

Table 1 summarizes the RMS-11 file structure interdependencies. 

Table 1: File Structure Interdependencies 

Device File Organization Record Access Mode Record Format 

Disk Sequential Sequential, Fixed, 
Random by RFA Variable, 

VFC, 
Stream 

Random by key Fixed 

Relative Sequential, Fixed, 
Random by key, Variable, 
Random by RFA VFC 

Indexed Sequential, Fixed, 
Random by key, Variable 
Random by RFA 

NOTE: The block access modes can be used to access files of any 
organization and any record format. A block access mode must be 
used to access a file with undefined record format. 

3-15 



File Structure 
File Structure Interdependencies 

FILE DESIGN 

To create a file that will allow your program to store, retrieve, and 
process your data records readily and efficiently, you must specify to 
RMS-11 the file and record attributes. The attributes consist of the 
device, file organization, and record format, plus additional values 
that describe the characteristics of your files and records. 

You can design files with the attributes you require and create them 
by using the CREATE operation routine (see Chapter 4, Operations). 

RMS-11 requires this information to access your data. The information 
is stored in the file directory and, for relative and indexed files, 
in the file prologue, and is passed to RMS-11 as required for the file 
and record operations. The prologue consists of the first blocks of a 
relative or indexed file and is used to store specific relative or 
indexed file attributes that cannot be stored in the file directory. 

Table 2 lists the RMS-11 file and record attributes. 

Table 2: File and Record Attributes 

Attribute 

File Attributes: 

File specification 

File organization 

Allocation 

Extension 

Bucket size 1 

Contiguity 

Location 

Protection 

Maximum record number 

Explanation 

System node, device, account, file 
name, extension, and version 

Sequential, relative, or indexed 

Initial size of the file, 
blocks 

in 

The number of blocks to be added 
to the file each time its size 
must be increased 

For relative and indexed files, 
the number of blocks per bucket 

Whether disk 
allocated 
continuous, 
blocks 

space is 
to the 

adjacent 

to be 
file in 

logical 

Where the file is to be physically 
placed on the disk 

The type of access different 
categories of user may have 

For relative files, 
number of records 
contain 

the 
the 

maximum 
file can 

(continued on next page) 

1. See the File Processing section in Chapter 4 for more information. 

3-16 



File Structure 
File Design 

Table 2: File and Record Attributes (Cont.) 

Attribute 

Record Attributes: 

Record format 

Record size 

Control field size 

Block spanning l 

Record-output handling 

Indexed File Key Attributes: 

Key number 

Key position 

Key size 

Key data type 

Key name 

Duplicate key values 

Explanation 

Fixed length, variable length, 
VFC, stream, or undefined 

The size of the record in bytes: 
for variable-length and stream 
records, record size is a maximum 
length; for fixed-length records, 
record size is the exact length of 
each record; for VFC records, 
record size is the maximum 
allowable length of the variable 
portion 

For VFC records, the size in bytes 
of the fixed-length portion of the 
record 

For sequential files, the ability 
for records to span physical block 
boundaries 

Carriage control: how a record is 
to be treated when ~ritten to a 
terminal or line printer 

The number of the key 

The location of the key within the 
record 

The length of the key, in bytes 

Byte (character) string, signed 
integer, unsigned binary number, 
or packed decimal number 

The name for the key (optional) 

The ability to have more than one 
record in the file with the same 
primary or alternate key value 

(continued on next page~ 

1. See the File Processing section in Chapter 4 for more information. 

3-17 



File Structure 
File Design 

Table 2: File and Record Attributes (Cont.) 

Attribute 

Indexed File Key Attributes 
(Cont.): 

Changeable key values 

Null key values 

Segmented keys 

Bucket fill sizel 

Explanation 

The ability to modify alternate 
key values 

The ability to have null alternate 
key values 

The ability to use separate fields 
of the record as the key value 

The level to which buckets are to 
be loaded with records 

1. See the File Processing section in Chapter 4 for 
information. 

more 

3-18 



CHAPTER 4 

OPERATIONS 

The RMS-11 routines operate either on a file as a whole or on a record 
or block within a file. The operation routines allow your programs to 
add, retrieve, modify, and delete files, records, or blocks. 

At the file processing 
processor to access 
operations. 

level, 
files, 

RMS-11 
by means 

makes 
of 

requests of 
the directory 

the file 
and file 

At the record processing level, RMS-11 stream and record operations 
provide access to individual records. 

At the block processing level, RMS-11 block operations provide access 
to the individual virtual blocks of a file, regardless of file 
organization and record format. 

FILE PROCESSING 

The RMS-11 directory and file operations are the interface between 
your program and your data files. 

The directory operations affect only file specification entries in 
directories. RMS-11 operations construct and use file specification 
strings and file identifiers, including wildcard file specification 
strings. The directory operations are: 

• ENTER -- places a file specification in a directory 

• REMOVE deletes a file spec if ication from a directory 

• RENAME replaces an existing file specification with a new 
one 

• PARSE returns file specification information to your 
program 

• SEARCH -- examines one or more directories for a specified 
file and returns the file specification and location in a form 
that can be used by other directory operations or by file 
operations 

4-1 



Operations 
File Processing 

The file operations provide access to files as whole entities (that 
is, they do not provide access to records within files). These 
operations are: 

• CREATE -- creates a new file with the attributes you specify 
and opens it for processing 

• OPEN -- makes an existing file available for processing 

e CLOSE terminates access to a file 

• ERASE deletes a file and removes its directory entry, if 
one is specified 

• EXTEND -- increases the allocated size of an open file 

• DISPLAY -- returns file information to your program 

I/O Buffers and Data Transfer 

For each file that is open for processing, RMS-11 requires that you 
provide at least one I/O buffer for its internal use. RMS-11 either 
transfers the data from disk to an I/O buffer, or from an I/O buffer 
to disk. 

Data in sequential files is transferred in blocks. The user can define 
whether records in files can cross block boundaries. If you specify 
block spanning when you create a file, records may continue across 
15'IOCK boundaries. This means that they can be stored most efficiently 
within a file. 

When records are restricted by block boundaries, they must be less 
than or equal to 512 bytes. Unneeded bytes may remain after each 
record to the end of that block if the next record will not fit within 
those bytes. 

Data in relative and indexed files is transferred in buckets. A bucket 
consists of one or more blocks that RMS-11 treats as a unit. The 
bucket size, or number of blocks in a bucket, is user specified when a 
file is created, and cannot be changed unless the file is redesigned. 
Although records may span block boundaries, they cannot span bucket 
boundaries. 

For indexed files, you can also specify a bucket fill size. This file 
attribute directs RMS-11 to load records into buckets only to the 
particular level -- number of bytes -- specified, leaving free space 
within each bucket. If a large number of random insertions are to be 
made to the file, filling buckets only partially can improve 
processing time. 

Buckets are an RMS-11 concept; thus, when RMS-11 requests an I/O 
operation for a file, it directs the file control processor to move a 
bucket by specifying the VBN for the first block in the bucket and the 
size of the bucket in bytes. 

4-2 



Access Sharing 

Operations 
File Processing 

The degree to which other users can access files is determined by the 
protection code and by access sharing. 

The protection code is a file attribute (see Table 2) that describes 
the types of access granted to different users or potential users of 
the file. This attribute is defined for the file at the time the file 
is created, and is checked by the file control processor to determine 
whether the user of an accessing program has the right to process or 
delete the file. The protection code can also be changed when the file 
is closed. 

In many cases, more than one program must access the same file at the 
same time. RMS-11, therefore, permits access sharing, which is 
controlled by the accessing programs at the time a file is opened for 
processing. 

Each program to open a file supplies two items of information: 

l. The types of operations it will perform on records 

2. The types of record operations it will allow other accessing 
programs to perform 

The file control processor will check the file's protection code to 
ensure that the intended operations are allowed. If so, the file 
control processor will then check that the operations requested and 
the operations allowed are compatible with the operations being 
performed and with the operations allowed by all current accessing 
programs (if any) of the file. To share access to the file, accessing 
programs must not only meet the protection criteria but must also 
specify compatible access sharing. 

To protect data in a file in which access sharing is allowed, RMS-11 
provides bucket locking. When a set of programs that are concurrently 
accessing a relative or indexed file allows access sharing for write 
operations, each bucket moved from disk is locked against access by 
other programs until RMS-11 unlocks it, usually after completion of 
the operation, or at the start of the next operation on the stream. 

Access sharing also depends on file organization. All files can be 
shared for reading by any number of programs, but sequential files 
cannot be shared for writing. Relative and indexed files can be shared 
for writing by multiple programs. 

RECORD PROCESSING 

Once file access is established, the RMS-11 stream and record 
operations are the interface between your program and the records your 
program requires. 

An access stream is a path between your program and the records in a 
file (or blocks in a file; see the Block Processing section). 

The stream operations are: 

• CONNECT -- initiates an access stream 

• DISCONNECT -- terminates a stream 

4-3 



Operations 
Record Processing 

• FLUSH -- writes the contents of I/O buffers (modified records) 
to the file 

• FREE -- releases control of the record or block most recently 
accessed by the stream 

• REWIND -- resets stream context to the beginning of the file 
(to the first record in the file) 

• WAIT -- suspends processing until an outstanding asynchronous 
operation is completed 

The record operations process records within files. These operations 
are of three types: locate, read, and write. Locate and read 
operations do not affect the data contents of the records; for 
example, a FIND operation merely returns the position of a record in a 
file. Write operations, on the other hand, may result in altered data; 
for example, an UPDATE operation replaces the contents of an existing 
record with new data. 

The record operations are: 

e FIND -- reads a record from a file to an I/O buffer and sets 
the current-record stream context to that record 

e GET -- reads a record from a file to an I/O buffer and then to 
a user buffer, and sets the current-record stream context to 
that record 

• PUT -- writes a record from a user buffer to an I/O buffer and 
then to a file 

• UPDATE -- transfers a modified record from a user buffer to an 
I/O buffer and then to a a file, overwriting the previous 
version of the record in the file 

e DELETE -- removes an existing record from a relative or 
indexed file 

• TRUNCATE -- effectively deletes all records in a sequential 
file from the current record through the logical end of the 
file 

Record Context 

Each record operation processes one record at a time along the path 
established by the access stream. RMS-11 keeps track of the stream's 
position in the file so that it knows which record is the target of 
the operation. The stream's position is called its context, which is 
either the current record or the next record, depending on the 
operation. The stream's position changes at the completion of the 
operation. 

In general, the current record is the record that was the target of 
the just-completed operation (the record operated upon), and the next 
record is the record that follows the current record. 

For example, when you use a CONNECT stream operation to 
access stream to a file opened by means of the OPEN 
operation, the current-record context is undefined 
operation has been performed) , and the next-record 
first record in the file. 

4-4 

establish an 
or CREATE file 

(no record 
context is the 



Operations 
Record Processing 

If the file is a sequential file and you use a sequential-access FIND 
record operation, the target will be the next record, which was 
established by the CONNECT operation as the first record in the file. 
After the FIND operation is completed, the current record will be the 
found record (the first record in the file), and the next record will 
be the record after the found record (the second record in the file). 

If you then use a GET record operation, the target will be the current 
record, which was established by the FIND operation as the first 
record in the file. After the GET operation is completed, the current 
record will be the retrieved record (the first record in the file), 
and the next record will be the record after the retrieved record (the 
second record in the file). 

To modify the record, you can use the UPDATE record operation. Its 
target will be the current record, which was established by the GET 
operation as the first record in the file. After the UPDATE operation 
is completed, the current record will be undefined (it was 
overwritten), and the next record will be the record that follows the 
overwritten record. 

After a DISCONNECT stream operation, there is no current-record or 
next-record context. 

Although only one record can be processed at a time by means of a 
stream, more than one stream can be connected to a relative or indexed 
file. For example, you can open an indexed file and, with one stream, 
use the primary index to access records randomly and, with a second 
stream, use an alternate index to access records sequentially. 

Record Access Modes 

For the FIND, GET, and PUT record operations, your program specifies 
record access mode, which determines which record is the target of the 
operation. 

A sequential-access FIND operation can be used to position to records 
from a file of any organization. The target of a sequential-access 
FIND operation is the next record, as established by a previous 
CONNECT or REWIND stream operation or a FIND or GET record operation 

Repeated sequential-access FIND operations may be time-consuming for 
files with a large number of records. For relative and indexed files 
and sequential files with fixed-length records, you can use a 
key-access FIND operation, the target of which is the record whose RRN 
or key value matches the one that you specify for the operation. 

If you know the RFA for a disk file of any organization, you can also 
use an RFA-access FIND operation, the target of which is the record 
whose RFA matches the one that you specify for the operation. 

Exactly the same dependencies exist for GET operations, which are the 
same as FIND operations except that records are moved to the I/O 
buffer and then on to the user buffer. In addition, the target of a 
sequential-access GET operation depends on whether it was immediately 
preceded by a FIND operation. If so, the target is the current record; 
otherwise, the target is the next record. 

4-5 



Operations 
Record Processing 

A sequential-access PUT operation can be used to write records to a 
file of any organization. The target of a sequential-access PUT 
operation depends on the file organization: for sequential files, the 
target is the end of the file and for relative files, the target is 
the next record. For indexed files, RMS-11 inserts the record in 
primary key order and updates the indexes. 

The target of a key-access PUT operation for a relative file or for a 
sequential file with fixed-length records is the cell specified by the 
RRN. For an indexed file, there is no target; RMS-11 inserts the 
record and updates the indexes. 

Note that you cannot specify RFA access for PUT operations. For more 
information, see the Access Modes section in Chapter 3. 

Record Transfer Modes 

Your program can use either of two record transfer modes to perform 
record operations: move mode or locate mode. 

In both modes, a user buffer, established by your program, is required 
in addition to the I/O buffer. For read operations in move mode, 
RMS-11 first transfers the data into the I/O buffer, then copies the 
record into the user buffer for processing by the program. 

For write operations in move mode, your program builds or modifies the 
record in the user buffer. Then, upon a write request, RMS-11 copies 
the record into the I/O buffer before writing it to the file. 

In locate mode, on the other hand, your program can, under some 
circumstances, access the record in the I/O buffer directly. This may 
reduce the amount of data movement, thereby reducing processing time. 

BLOCK PROCESSING 

Your program can bypass RMS-11 file and record 
block access to process 512-byte blocks one 
program identifies the starting VBN of the file 
bytes to be accessed. 

structures and use 
after the other. Your 

and the number of 

When you 
blocks, 
stream's 
writable 

use block access, RMS-11 regards the file as a series of 
rather than as a series of records. RMS-11 keeps track of the 
position, or block context, which is either readable block or 
block, dependTi1(JOn the operation. 

Block access requires minimum time and space for processing; however, 
your program must be able to interpret the contents of the blocks. 

The block access operations are: 

• READ -- gets blocks from a file 

• WRITE -- puts blocks in a file 

4-6 



Block Access Modes 

Operations 
Block Processing 

For the READ and WRITE operations, your program specifies block access 
mode -- sequential or random by VBN -- which determines which block is 
the target of the operation. Upon completion of an operation, RMS-11 
resets the readable-block and writable-block contexts. 

MACROS AND SYMBOLS 

The RMS-11 operation routines are fully accessible only from a 
MACR0-11 program. High-level languages restrict your options for some 
operations; see your particular language documentation for information 
on its support of RMS-11. 

The interface between a MACR0-11 program and the RMS-11 operation 
routines is defined by the RMS-11 macros and symbols. Your program 
uses the RMS-11 macros to call the RMS-11 operation routines. 

Information is passed between the calling program and an RMS-11 
operation routine by means of control blocks, which consist of 
structured series of data fields that contain the information. The 
information passed includes the attributes that your program supplies 
to RMS-11 for file and record access and the returned values that 
RMS-11 supplies to your program as a result of an operation. RMS-11 
macros also allow your program to declare and manipulate the control 
blocks. 

The fields of 
locations of 
the codes and 
symbols). 

a control block are referenced by symbols that name the 
fields within control blocks (field-offset symbols) and 
bit masks used within the fields (code and mask 

The RMS-11 control blocks are: 

• Area allocation (ALL) block -- contains information about a 
file area 

• File date (DAT) block -- contains file creation and revision 
dates 

• File access block (FAB) contains information about the 
file, including device, file attributes, access sharing, 
record format, record blocking, record-output handling 

• File key (KEY) block -- contains index and key information for 
an indexed file 

• File name (NAM) block 
information 

• File protection (PRO) block 
protection information 

contains file specification 

contains file owner and 

• Record access block (RAB) contains information about a 
stream or record and record access mode 

• File summary (SUM) block 
for an indexed file 

contains file and area information 



Operations 
Macros and Symbols 

In addition to calling RMS-11 operations and declaring and 
manipulating control blocks, RMS-11 macros allow your program to: 

• Declare and manipulate memory space (pools) 

• Declare RMS-11 facilities that are required for certain 
operations based on file organization 

• Extract from a macro library definitions for RMS-11 macros and 
symbols 

4-8 



INDEX 

Access, 1-1 
block, 4-6 
direct, 2-4 
modes, 3-11 
random, 2--4 
sequential, 2-4 
sharing, 2-4, 4-3 

read, 3-5 to 3-6 
write, 3-6 

stream, 4-3 
Access modes, 3-1, 3-11 

and file organization, 3-13 
block, 3-11 to 3-13, 4-7 

sequential, 3-12 
VBN, 3-12 

random access to 
indexed files, 3-15 
relative files, 3-15 
sequential files, 3-14 

record, 3-11, 4-5 
FIND operations, 4-5 
GET operations, 4-5 
key, 3-12 
PUT operations, 4-6 
RFA, 3-11 
sequential, 3-11 

sequential access to 
indexed files, 3-14 
relative files, 3-14 
sequential files, 3-13 

switching, 3-13 
Access sharing, 2-4, 4-3 

read, 3-5 to 3-6 
write, 3-6 

ALL control block, 4-7 
Alternate keys, 3-7 
Attributes, 3-16, 4-3 

Bit, 2-1 
Block, 2-3 

access, 4-6 
context, 4-6 

readable block, 4-6 
writable block, 4-6 

logical, 2-3 
operations, 4-6 
processing, 4-1, 4-6 
spanning, 4-2 
virtual, 2-3 

Block access, 3-11 
Block access modes, 3-12 to 3-13 

sequential, 3-12 
VBN, 3-12 

Bucket, 4-2 
locking, 4-3 

Bucket fill size, 4-2 

Byte, 2-1 

Cell, 3-5 
Changeable keys, 3-10 
CLOSE operation, 4-2 
CONNECT operation, 4-3 
Context, 4-4 

block, 4-6 
readable block, 4-6 
writable block, 4-6 

current record, 4-4 
next record, 4-4 

Contiguity 
virtual, 2-3 

Control blocks, 4-7 
ALL, 4-7 
DAT, 4-7 
FAB, 4-7 
KEY, 4-7 
NAM, 4-7 
PRO, 4-7 
RAB, 4-7 
SUM, 4-7 

CREATE operation, 4-2 
Current record 

see Context 
Cylinder, 2-1 

DAT control block, 4-7 
Data storage, 2-1 
Data type 

key values, 3-7 
DELETE operation, 4-4 
Designing files, 3-16 
Dev ice, 2-1 

disk, 2-1 
driver, 2-1 
unit-record, 3-5 

Direct access 
see Random access 

Directory 
operations, 4-1 

DISCONNECT operation, 4-3 
Disk 

drive, 2-1 
structure, 2-1 

cylinder, 2-1 
platter, 2-1 
sector, 2-1 
track, 2-1 

DISPLAY operation, 4-2 
Drive, 2-1 
Duplicate keys, 3-10 

ENTER operation, 4-1 
ERASE operation, 4-2 

Index-1 



EXTEND operation, 4-2 

FAB control block, 4-7 
File, 1-1 

design, 3-16 
non-RMS-11, 3-4 
operations, 4-2 
processing, 4-1 
specification, 4-1 
structure , 3-1 

File control processor, 2-1, 4-3 
File organization, 3-1, 3-4 

indexed, 3-6 
alternate keys, 3-7 
changeable keys, 3-10 
duplicate keys, 3-10 
index, 3-7 
keys, 3-6 
null keys, 3-10 
primary key, 3-7 
segmented keys, 3-10 

random access to 
indexed files, 3-15 
relative files, 3-15 
sequential files, 3-14 

relative, 3-5 
cell, 3-5 
RRN, 3-5 

sequential, 3-4 
sequential access to 

indexed files, 3-14 
relative files, 3-14 
sequential files, 3-13 

File specification, 4-1 
wildcard characters, 4-1 

Fill size 
see Bucket fill size 

FIND operation, 4-4 
access modes, 4-5 

Fixed-length record format, 3-1 
FLUSH operation, 4-4 
Format 

see Record format 
FREE operation, 4-4 

Generic match, 3-12 
GET operation, 4-4 

access modes, 4-5 

I/O, 2-1 
buffers, 4-2 

Index, 3-7 
Indexed file organization, 3-6 

alternate keys, 3-7 
changeable keys, 3-10 
data records, 3-7 
duplicate keys, 3-10 
index, 3-7 
index records, 3-7 
keys, 3-6 

INDEX 

data type, 3-7 
null keys, 3-10 
primary key, 3-7 
segmented keys, 3-10 
tree structure, 3-7 

Input/output 
see I/O 

KEY control block, 4-7 
Key record access mode, 3-12 
Keys, 3-6 

alternate, 3-7 
changeable, 3-10 
data type, 3-7 
duplicate, 3-10 
match criteria, 3-12 
null, 3-10 
segmented, 3-10 

LBN, 2-4 
Locate mode, 4-6 
Locking buckets, 4-3 
Logical block, 2-3 
Logical block number 

see LBN 

Macros, 4-7 
Mass-storage device, 2-1 
Match criteria, 3-12 
Mode 

see Access modes 
see Record transfer modes 

Move mode, 4-6 

NAM control block, 4-7 
Next record 

see Context 
Non-RMS-11 files, 3-4 
Null keys, 3-10 

OPEN operation, 4-2 
Operations, 4-1 

block, 4-6 
CLOSE, 4-2 
CONNECT, 4-3 
CREATE, 4-2 
DELETE, 4-4 
directory, 4-1 
DISCONNECT, 4-3 
DISPLAY, 4-2 
ENTEND, 4-2 
ENTER, 4-1 
ERASE, 4-2 
file, 4-2 
FIND, 4-4 

access modes, 4-5 
FLUSH, 4-4 
FREE, 4-4 
from high-level languages, 4-7 
GET, 4-4 

Index-2 



access modes, 4-5 
OPEN, 4-2 
PARSE, 4-1 
PUT, 4-4 

access modes, 4-6 
READ, 4-6 

access modes, 4-7 
record, 4-4 
REMOVE, 4-1 
RENAME, 4-1 
REWIND, 4-4 
SEARCH, 4-1 
SPACE, 4-6 

access modes, 4-7 
stream, 4-3 
TRUNCATE, 4-4 
UPDATE, 4-4 
WAIT, 4-4 
WRITE, 4-6 

access modes, 4-7 
Organization 

see File organization 

PARSE operation, 4-1 
Platter, 2-1 
Primary key, 3-7 
PRO control block, 4-7 
Processing blocks, 4-1, 4-6 
Processing files, 4-1 
Processing records, 4-1, 4-3 
Prologue, 3-16 
PUT operation, 4-4 

access modes, 4-6 

RAB control block, 4-7 
Random access, 2-4 

key, 3-12 
match criteria, 3-12 

RFA, 3-11 
VBN, 3-12 

READ operation, 4-6 
access modes, 4-7 

Record, 1-1 
data, 3-7 
index, 3-7 
operations, 4-4 
processing, 4-1, 4-3 
see also Record format 

Record access modes, 3-11 
key, 3-12 
RFA, 3-11 
sequential, 3-11 

Record file address 
see RFA 

Record format, 3-1 
fixed-length, 3-1 
stream, 3-4 
undefined, 3-4 
variable-length, 3-2 
VFC, 3-2 

INDEX 

Record transfer modes, 4-6 
locate mode, 4-6 
move mode, 4-6 

Relative file organization, 3-5 
cell, 3-5 
RRN, 3-5 

Relative record number 
see RRN 

REMOVE operation, 4-1 
RENAME operation, 4-1 
REWIND operation, 4-4 
RFA, 3-11, 3-14 to 3-15 
RRN, 3-5, 3-12, 3-14 to 3-15 

SEARCH operation, 4-1 
Sector, 2-1 
Segmented keys, 3-10 
Sequential access, 2-4 

block, 3-12 
record, 3-11 

Sequential file organization, 
3-4 
RRN, 3-5 

SPACE operation, 4-6 
access modes, 4-7 

Spanning blocks, 4-2 
Storage 

data, 2-1 
Stream 

access, 4-3 
operations, 4-3 

Stream record format, 3-4 
terminators, 3-4 

SUM control block, 4-7 
Switching access modes, 3-13 
Symbols, 4-7 

code and mask, 4-7 
field-offset, 4-7 

Terminators 
stream records, 3-4 

Track, 2-1 
Tree structure 

indexed file organization, 3-7 
TRUNCATE operation, 4-4 

Undefined record format, 3-4 
Unit-record devices, 3-5 
UPDATE operation, 4-4 

Variable with fixed control 
see VFC 

Variable-length record format, 
3-2 

VBN, 2-4 
access, 3-12, 4-6 

VFC record format, 3-2 
Virtual block, 2-3 
Virtual block number 

see VBN 

Index-3 



WAIT operation, 4-4 
Wildcard characters, 4-1 
Word, 2-1 
WRITE operation, 4-6 

access modes, 4-7 

INDEX 

Index-4 



READER'S COMMENTS 

PRO/RMS-11: An Introduction 
AA-P098A-TK 

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the 
company's discretion. If you require a written reply and are eligible to receive one under Software 
Performance Report (SPR) service, submit your comments on an SPR form. 

Did you find this manual understandable, usable, and well organized? Please make suggestions for improvement. 

Did you find errors in this manual? If so, specify the error and the page number. 

Please indicate the type of user/reader that you most nearly represent. 

[J Assembly language programmer 
[] Higher-level language programmer 
O Occasional programmer (experienced) 
D User with little programming experience 

CJ Student programmer 
[] Other (please specify) 

Name _________________________ Date 

Organization 

Street 

City ________________________ _ State ______ Zip Code _____ _ 

or Country 



- - Do Not Tear - Fold Here and Tape 

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT N0.33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

BSSG PUBLICATIONS ZKi-3/J35 
DIGIT AL EQUIPMENT CORPORATION 
110 SPIT BROOK ROAD 
NASHUA, NEW HAMPSHIRE 03061 

No Postage 
Necessary 

if Mailed in the 
United States 

-1 

I 

· - - DoNotTear-FoldHere - - - - - - - - - - - - - - - - - - - - - -I 

I 

I 

I 


