
Professional Tool Kit
DIBOL User's Guide
Order No. AA·P043C· TK
October 1983

Supersession: This is Version 1.6 and replaces Version 1.5

Operating System: VAXIVMS V3.3
RSX-11M V4.3
RSX-11 M-Plus V2.1
P/OS V1.7

Software Version: Professional Developer's Tool Kit V1.7
PRO/Tool Kit V1.0
Professional Host Tool Kit DIBOL V1.6
PRO/Tool Kit DIBOL V1.6

1 st Printing, December 1982
First Revision, May 1983

Second Revision, October 1983

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license and may
be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital or its affiliated companies.

The specifications and drawings, herein, are the property of Digital
Equipment Corporation and shall not be reproduced or copied or used in
whole or in part as the basis for the manufacture or sale of items without
written permission.

Copyright (c) 1983 by Digital Equipment Corporation. All Rights Reserved

CTIBUS MASSBUS RSTS
DEC PDP RSX
DECmate P/OS Tool Kit
DECsystem-10 PRO/BASIC UNIBUS
DECSYSTEM-20 Professional VAX
DECUS PRO/FMS VMS
DECwriter PRO/RMS VT
DIBOL PROSE Work Processor

momaamo Rainbow

PREFACE

CHAPTER 1

1.1
1.1.1
1.1. 2
1.2
1.3
1.4

CHAPTER 2

2.1
2.2

2.2.1
2.2.2
2.2.2.1
2.2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7
2.2.8
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.6
2.3.7
2.4

CHAPTER 3

3.1
3.1.1
3.2
3.2.1
3.2.2
3.2.3

CONTENTS

INTRODUCTION

THE DIBOL TOOL KIT
The DIBOL Tool Kit Software
Documentation

HOST ENVIRONMENT
PROFESSIONAL SYSTEM ENVIRONMENT
TOOL KIT DIBOL

DIBOL PROGRAM DEVELOPMENT FOR THE PROFESSIONAL

APPLICATION DEVELOPMENT OVERVIEW
PROFESSIONAL SYSTEM CONSIDERATIONS FOR DIBOL

PROGRAMMERS
Interface to the User
Display

Terminal Addressing
Display Characters

Keyboard
P/OS Services and Facilities
Libraries
Files
DIBOL Debugging Technique (DDT)
Error Messages (Condition Handling)

DEVELOPMENT TASKS/STEPS
Coding/Editing
Compiling
Application Building
Application Installation File
Transfer to the Professional System
Installing/Executing/Debugging
Creating Usable Diskettes

PROGRAM MIGRATION

THE DIBOL COMPILER

CHARACTERISTICS
Compiler Features

USING THE DIBOL COMPILER
Running the DIBOL Compiler
Command Qualifiers
Specifying Output Files

iii

Page

xi

1-1
1-1
1-2
1-2
1-3
1-4

2-2

2-4
2-4
2-4
2-4
2-4
2-5
2-5
2-7
2-7
2-8
2-8
2-8
2-10
2-10
2-10
2-10
2-10
2-11
2-11
2-11

3-1
3-1
3-2
3-2
3-4
3-6

3.2.4
3.2.4.1
3.2.4.2
3.2.4.3
3.2.5
3.2.6

Contents (Cont.)

Contents of the Listing File
The Program Listing
The Symbol Table
The Label Table

Error Messages
Example DIBOL program and Program Listing

CHAPTER 4 PROFESSIONAL APPLICATION BUILDER (PAB)

4.1
4.2
4.2.1
4.2.2
4.2.3
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.4
4.4.1
4.4.2

CHAPTER 5

5.1
5.1.1
5.1.2
5.1.3
5.1.3.1
5.1.3.2
5.2
5.2.1
5.2.2
5.3
5.3.1
5.3.1.1
5.3.1.2
5.3.1.3
5.3.2
5.4
5.4.1
5.4.2
5.4.3
5.4.4
5.4.5

LIBRARIES
APPLICATION-BUILD PROCEDURE DECISIONS

Generating the Command and Descriptor Files
Editing the Command (.CMD) File
Editing the Overlay Descriptor File

APPLICATION-BUILDING DIBOL PROGRAMS
A Simple Application Build
Background Information
Application Builder Error Messages
Command Format
Files Used by the Application Builder

EXAMPLES OF .ODL FILES
Without Overlays
With Overlays

RMS-ll AND DIBOL ON THE PROFESSIONAL

RMS-ll FILE ORGANIZATION
Sequential File Organization
Relative File Organization
Indexed File Organization

Indexed File Keys
Defining Keys

RMS-ll ACCESS MODES
Sequential Access Mode
Random Access Mode

CREATING AN RMS-ll FILE
The Formats, Lengths, and Storage of Records

Record Formats
Record Lengths
Record Storage

RMS-ll File Size
USING RMS-ll FILES

Sequential File Record Operations
Relative File Record Operations
Indexed File Record Operations
Block Mode Access
Record Operations and RMS-ll MACROS

iv

Page

3-7
3-7
3-7
3-7
3-8
3-9

4-2
4-3
4-3
4-4
4-7
4-7
4-7
4-7
4-8
4-9
4-11
4-12
4-12
4-13

5-1
5-2
5-2
5-2
5-3
5-4
5-5
5-5
5-6
5-6
5-6
5-6
5-7
5-8
5-9
5-9
5-9
5-9
5-10
5-10
5-10

5.5
5.6
5.7

CHAPTER 6

6.1
6.2
6.2.1
6.2.2
6.2.3
6.2.3.1
6.2.3.2

6.2.3.3
6.2.3.4
6.3
6.3.1
6.3.1.1
6.3.1.2
6.3.2
6.3.2.1
6.3.2.2
6.3.2.3
6.3.3
6.3.3.1
6.3.3.2
6.3.3.3
6.3.4

CHAPTER 7

7.1
7.2
7.3

CHAPTER 8

8.1
8.1.1
8.1.2
8.1.3
8.1.4
8.1.5
8.1.6
8.1.7

Contents (Cont.)

RMS-ll ERROR MESSAGES
AN EXAMPLE: CREATING AN INDEXED FILE
DATA STORAGE SPACE REQUIREMENTS

THE DIBOL DEBUGGING UTILITY (DDT)

Page

5-12
5-12
5-17

FEATURES 6-1
PREPARING FOR DDT 6-1

Compiling 6-1
Application Building 6-1
DDT Operation 6-2

Running DDT 6-2
Using a Terminal Connected to the Printer

Port 6-2
Failure to Properly Prepare for DDT 6-2
Error Messages 6-2

DDT COMMANDS 6-2
Program Execution Control 6-3

Program Execution 6-3
Single Step 6-3

Breakpoint Control 6-4
Setting Breakpoints 6-5
Clearing Breakpoints 6-5
Iteration of Breakpoints 6-6

Variable Manipulation 6-7
Setting Variables 6-7
Examining Variables 6-8
Extended Variable Manipulation 6-8

Subroutine Traceback 6-9

DIBOL INTERFACE TO FMS

DIBOL DATA TYPES FOR FORM DRIVER ARGUMENTS
SYNTAX FOR THE CALLS
BUILDING A DIBOL TASK

DIBOL INTERFACE TO plos SYSTEM SERVICES, CALLABLE
IMAGES, AND ROUTINES

MENU SERVICE ROUTINES
Open Menu File
Read Menu Frame
Show Single-Choice Menu
Unpack Menu Buffer
Pack Dynamic Single-Choice Menu
Display Dynamic Menu
Pack Multiple-Choice Menu

v

7-1
7-2
7-5

8-2
8-2
8-2
8-3
8-4
8-6
8-7
8-8

8.1.8
8.1. 9
8.2
8.2.1
8.2.2
8.2.3
8.2.4
8.3
8.4
8.4.1
8.4.2
8.4.3
8.4.4
8.4.S
8.4.6
8.4.7
8.S
8.S.1
8.S.2
8.S.3
8.6
8.6.1
8.6.2
8.6.3
8.6.4

CHAPTER 9

9.1

9.2
9.2.1
9.2.2
9.2.3

9.3
9.3.1

9.3.2

9.3.3

9.3.4
9.3.S
9.3.6

9.3.7

Contents (Cant.)

Display Multiple-Choice Menu Frame
Close Menu File

HELP SERVICE ROUTINES
Open Help File
Specify Help Frame
Display Help Frame
Close Help File

MESSAGE SERVICE ROUTINE
MISCELLANEOUS SERVICES

Fatal Error
Get Keystroke
Parse String
New File
Old File
Wait for Resume Key
Send Message to Message/Status Display

CALLABLE P/OS USER SYSTEM SERVICES
PROSE Text Editor
PRINT Services
PRO/SORT.

CALLABLE SYSTEM ROUTINES
PRODIR
PROFBI
PROLOG
PROVOL

DIBOL INTERFACE TO THE CORE GRAPHICS LIBRARY

Page

8-9
8-11
8-12
8-12
8-12
8-13
8-14
8-14
8-1S
8-1S
8-16
8-16
8-17
8-18
8-19
8-20
8-21
8-21
8-22
8-23
8-23
8-24
8-2S
8-2S
8-26

CHAPTER ORGANIZATION 9-1

THE DIBOL INTERFACE 9-1
Calling CORE Graphics Library Subprograms 9-1
Building Your DIBOL Program 9-2
Running CORE GRAPHICS Library Programs 9-4

CONTROL INSTRUCTIONS 9-4
INITIALIZE CORE -- Prepare Graphics System for

Use 9-4
TERMINATE CORE -- Graphics System Usage

Finished 9-S
REPORT MOST RECENT ERROR -- Identify Execution

Error - - 9-S
NEW FRAME -- Refresh Screen 9-S
ERASE VIEWPORT -- Erase Images in Viewport 9-6
PRINT_SCREEN -- Send Screen Image to Output

Device 9-6
CGL WAIT Suspend Execution 9-7

vi

9.4
9.4.1

9.4.2
9.4.3

9.4.4
9.4.5

9.5
9.5.1

9.5.2

9.5.3

9.5.4
9.5.5

9.5.6
9.5.7

9.6
9.6.1
9.6.1.1

9.6.1.2
9.6.1.3

9.6.2
9.6.2.1

9.6.2.2

9.6.2.3

9.6.2.4

9.6.3
9.6.3.1

9.7
9.7.1
9.7.1.1

Contents (Cont.)

Page

VIEWING TRANSFORMATION INSTRUCTIONS 9-7
SET WINDOW - Specify Visible Part of World

Coordinate Space 9-7
SET_ORIGIN -- Specify Origin of Window 9-7
SET WINDOW CLIPPING -- Enable or Disable Window

Clipping- 9-8
SET VIEWPORT 2 -- Specify Usable Area of Screen 9-8
SCROLL -- Move Screen Contents 9-10

GLOBAL ATTRIBUTE INSTRUCTIONS 9-10
SET WRITING INDEX -- Select Color Map Index for

Images 9-10
SET BACKGROUND INDEX -- Set Background Color Map

Index 9-10
SET COLOR MAP ENTRY -- Set Color Map Entry RGB

Values - - 9-11
SET COLOR MAP -- Set All Color Map RGB Values 9-12
SET-WRITING PLANES -- Select Combination of

Planes 9-12
SET WRITING MODE -- Set Writing Characteristics 9-13
SET-GLOBAL ATTRIBUTES -- Set Global Attribute

List 9-13

CURRENT POSITION AND MARKER INSTRUCTIONS
Current Position Instructions

MOVE ABSOLUTE 2 -- Move to Absolute
Position

MOVE REL 2 - Move to Relative position - -INQUIRE CURRENT POSITION 2 -- Get Current
Positlon - -

Marker Primitive Instructions
MARKER ABS 2 Draw Marker at Absolute

Position­
MARKER REL 2 Draw Marker Relative to

9-14
9-14

9-14
9-14

9-15
9-15

9-15

Current position 9-15
POLYMARKER ABS 2 Draw Markers at Absolute

Positions 9-16
POLYMARKER REL 2 Draw Markers at Relative

Positions
Marker Attribute Instuctions

SET MARKER SYMBOL -- Select New Marker
Symbol

LINE INSTRUCTIONS
Straight Line Primitive Instructions

LINE ABS 2 -- Draw Line to Absolute
Posi tion

vi i

9-16
9-17

9-17

9-18
9-18

9-18

9.7.1.2

9.7.1.3

9.7.1.4

9.7.1.5

9.7.1.6

9.7.1.7

9.7.1.8

9.7.2
9.7.2.1

9.7.2.2

9.7.2.3

9.7.2.4

9.7.3
9.7.3.1
9.7.3.2
9.7.3.3

9.7.3.4

9.7.3.5

9.8
9.8.1
9.8.1.1
9.8.1.2

9.8.2
9.8.2.1
9.8.2.2
9.8.2.3
9.8.2.4
9.8.2.5
9.8.2.6
9.8.2.7

Contents (Cont.)

LINE REL 2 -- Draw Line to Relative
Position

POLYLINE ABS 2
Positions

POLYLINE REL 2
positions

POLYGON ABS 2
Positions

POLYGON REL 2

Draw Lines to Absolute

Draw Lines to Relative

Draw Polygon by Absolute

PositIons­
Draw Polygon by Relative

RECTANGLE ABS 2 -- Draw
Absolute Position

RECTANGLE REL 2 -- Draw

Rectangle by

Relative position
Rectangle by

Curved Line Primitive Instructions
ARC ABS 2 -- Draw Arc Based on Absolute

Position
ARC REL 2 -- Draw Arc Based on Relative

PositIon
CURVE ABS 2 Draw Curve by Absolute

PosItion
CURVE REL 2 Draw Curve by Relative

Position
Line Attribute Instructions

SET LINESTYLE Set Line Drawing Style
SET-LINEWIDTH Set Line Drawing Width
SET-FILL MODE Enable or Disable Area

FTll
SET FILL ENTITY -- Set Fill to Line or

Point
SET FILL CHAR -- Specify Character for

Fill

TEXT INSTRUCTIONS
Text Primitive Instructions

TEXT -- Draw Line of Text
INQUIRE_TEXT_EXTENT_2 -- Report position at

End of String
Text Attribute Instructions

SET CHARSIZE -- Set Character Size
SET-CHARSPACE -- Set Character Spacing
SET-CHARPATH -- Set Text Writing Direction
SET-CHARJUST -- Set Text Justification
SET-CHARITALIC -- Set Character Slant
SET-FONT -- Set Character Font
SET-FONT SIZE -- Define Size of Character

Font

viii

Page

9-18

9-18

9-19

9-19

9-20

9-20

9-21
9-21

9-21

9-21

9-22

9-22
9-23
9-23
9-23

9-24

9-24

9-25

9-25
9-25
9-25

9-26
9-26
9-26
9-27
9-27
9-28
9-28
9-29

9-29

APPENDIX

APPENDIX

APPENDIX

INDEX

9.8.2.8

9.9

9.10

A

B

C
C.l
C.2
C.3
C.4
C.5
C.6
C.7
C.8
C.9
C.IO
C.ll
C.12
C.13
C.14

2-1
2-2
5-1
5-2

3-1
3-2
5-1

5-2
7-1
7-2
A-I

A-2
B-1
B-2

Contents (Cont.)

LOAD CHARACTER -- Load User-defined
Character

CONSTANT DECLARATION FILE

EXAMPLES

Character Collating Sequence

Multi-National Characters

DIBOL OSSL EXTERNAL SUBROUTINES
FUNLK
ISMCRE
PRINT
R5ASC
SYSID
TBBIN
TBDUT
TBENG
TBFRE
TBGER
TBMOD
TBMUL
TBRET
TBRPL

FIGURES

Application Program Development Steps
DIBOL Application Program Development Tasks
Single-Key Indexed File Organization
MultiKey Indexed File Organization

TABLES

Contents of the Symbol Table
Contents of the Label Table
Permissible Combinations of File organizations

and Record Formats
RMS-ll Record Operations
Argument Data Types
DIBOL Form Driver CALLS
English, German, Dutch, and French Collating

Sequences
Multi-National Collating Sequence
ASCII Character Set
Mult-National Character Set

ix

Page

9-30
9-30

9-33

A-I

B-1

C-l
C-2
C-3
C-6
C-8
C-9
C-lO
C-ll
C-12
C-13
C-14
C-15
C-16
C-17
C-18

2-2
2-9
5-3
5-4

3-8
3-8

5-7
5-11
7-1
7-2

A-2
A-3
B-2
B-3

INDEX-l

PREFACE

This manual provides information on the use of Professional Host Tool
Kit DIBOL or PRO/Tool Kit DIBOL in the development and production of
DIBOL programs that are run on a Professional 300 system.

A DIGITAL
developed
itself.

Professional 300 system executes a DIBOL program that is
on a host computer system or on the Professional 300 system

The host system may have any of the following operating systems:
VAX/VMS V3.3 or later, RSX-llM V4.3 or later, RSX-llM-PLUS V2.l or
later. The Professional Host Tool Kit DIBOL Vl.6 package is used to
develop the DIBOL programs on the host and to transfer the developed
programs to the Professional 300 system. This process is described in
the Professional 300 series Tool Kit User's Guide.

The Professional 300 system has the p/OS Vl.7 operating system. The
PRO/Tool Kit DIBOL Vl.6 package is used to develop the DIBOL programs
on the Professional 300 system.

The user
knowledge
used, the
RSX-llM) •

of this manual must be a DIBOL programmer who has a working
of the Professional 300 system and, if a host system is
operating system of that host (VAX/VMS, RSX-llM-PLUS, or

RELATIONSHIP TO OTHER DOCUMENTATION

This user's guide provides information specific to DIBOL program
development and DIBOL program migration. Use of the Professional Tool
Kit components is described in the Professional documentation (see the
list of related documentation below). Operations discussed in the
Professional documentation which are essential to the DIBOL program
developer include: communicating with the host from a Professional
system; using the Professional Host Tool Kit on the host; using the
PRO/Tool Kit on the Professionl system; transferring programs from the
host to the Professional system; and using the FMS interface, the p/os
system services, and the interface to CORE Graphics. Frequent
reference is made to the Professional documentation.

STRUCTURE

Individual chapters are devoted to background information, to DIBOL
program development for the Professional in general, and to the
particular tasks required to produce a program with the DIBOL Tool
Kit. These chapters are followed by three appendixes.

xi

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Appendix A

Appendix B

Appendix C

contains background information on the relationship
between DIBOL and the Professional system. Environmental
factors impacting development and operation are
discussed in terms of both the Professional system and
DIBOL.

provides an overview of the required activities for
DIBOL program development. The characteristics of the
Professional system that impact DIBOL are discussed in
detail. Files, utilities, etc., are identified.

describes how to use the DIBOL compiler.

explains task building (application building) for DIBOL
programs.

contains information about RMS files that is of
particular interest to the DIBOL programmer.

describes how to use DDT (the DIBOL Debugging Technique)
on the Professional system.

describes the DIBOL interface to FMS.

describes the DIBOL interface to p/os system services.

describes the DIBOL interface to the CORE Graphics
Library.

contains two tables illustrating character collating
sequences.

contains tables illustrating
multi-national character sets.

the ASCII and the

describes the DIBOL external subroutines that are used
solely with Professional Tool Kit DIBOL.

Document Symbols

The symbols defined below are used throughout this manual:

Symbol

afield

aliteral

Definition

The name of an alpha field

An alpha literal which must be delimited by single
quotes; that is, 'ABC'

xii

ch

dexp

dfield

dliteral

field

filespec

label

lowercase

nontrappable
error

record

subnam

trappable
error

UPPERCASE
CHARACTERS

<CR)

A decimal expression or symbol that evaluates to an
input/output channel number (range: 1-15)

A decimal expression

The name of a decimal field

A decimal literal

The name of a field

The name of a record,
literal that contains a
following form:

dev:[directory]filnam.exti n

where:

an alpha field, or an alpha
file specification in the

dev: The mnemonic name of an I/O device

directory

filnam

.ext

in

A one to nine character directory name

A one to nine character file namei the
first character must be alphabetic

A one to
extension

three character file name

The version number

A statement label

Lowercase characters indicate elements of the language
that are supplied by the programmer.

An error that causes program termination and cannot be
trapped

The name of a record

The name of a subroutine

An error that can cause program termination but may be
trapped using the ONERROR statement

Uppercase characters indicate elements of the language
that must be used exactly as shown.

Line terminator for terminal inputi causes CR (carriage
Return) and LF (Line Feed) code combination to be sent
to the receiving program and echoed at the terminal

xiii

Indicates optional arguments

Verticle lines indicate that a single choice must be
made from a list of arguments.

Indicates optional continuation of an argument list in
the form of the last specified argument

Indicates that the example of a program, user input, or
system output is sufficient for illustration, but not
complete

DOCUMENTATION CONVENTIONS

The following are the documentation conventions used in this manual:

<prompt) is used to indicate the host prompt character(s) •

<CR) is used to indicate a carriage return used as a line
terminator or response during an interactive session.

RELATED DOCUMENTATION

Professional Installation Instructions

Professional Owner's Manual

Professional for Beginners: Hard Disk System

Professional User's Guide for Hard Disk System

Professional User's Guide for Diskette System

Professional Reference Card Diskette System

Professional System Reference Card

PRO/BASIC Language Manual

Professional Communications Manual

Documentation Guidelines

Tool Kit Documentation Directory

Tool Kit Installation Guide and Release Notes

Tool Kit User's Guide

CORE Graphics Library Manual

p/OS System Reference Manual
xiv

Terminal Subsystem Manual

IAS/RSX-ll ODT Supplement

IAS/RSX-ll ODT Reference Manual

Host Communications Installation Procedures

PRO/RMS-ll: An Introduction

PRO/RMS-ll MACRO programmers Guide

FMS-ll/RSX-ll Software Reference Manual

FMS-ll/RSX-ll Release Notes

PRO/FMS-ll Documentation Supplement

RSX-llM/M-PLUS Task Builder Manual

PDP-Il MACRO-ll Language Reference Manual

Introduction to DIBOL

Professional Tool Kit DIBOL Release Notes and Installation Guide

Professional Tool Kit DIBOL Message Manual

DIBOL-83 Language Reference Manual

DIBOL-83 Compatability Guide

xv

CHAPTER 1
INTRODUCTION

Professional 300 system application programs can be developed on
either the Professional 300 system itself or on a host computer
system; the operating system on the host is VAX/VMS V3.3, RSX-llM V4.3
or RSX-llM-PLUS V2.l or later.

Application program development on both the Professional 300 and the
host are facilitated by software packages called tool kits. The
Professional Host Tool Kit package is used to develop programs on a
host for later execution on Professional 300 system. The PRO/Tool Kit
package is used to develop programs on the Professional 300 for later
execution on that system. These packages are also called Professional
tool kit(s).

The Professional tool kits are used together with language tool kits
to develop programs in a particular language. DIBOL program
development use~ the Professional Host Tool Kit DIBOL package on a
host computer system, and the PRO/Tool Kit DIBOL package on the
Professional 300 system. These packages are also called the DIBOL
tool kit(s).

The following sections describe the host computer system environment,
the Professional 300 environment, the components of the DIBOL tool
kits, and the associated DIBOL documentation. This information
pertains to the development of new DIBOL applications programs and to
the migration of existing DIBOL applications.

1.1 THE DIBOL TOOL KIT

1.1.1 The DIBOL Tool Kit Software

Both the Professional Host Tool Kit DIBOL package and the PRO/Tool Kit
DIBOL package consist of the following software components.

• The DIBOL compiler (DIB83P.EXE on VAX, and DIB83P.TSK on RSX
or p/OS).

• The DIBOL OSSL
DBPLIB.OLB) •

and UESL libraries

• The DDT object module (DBLDDT.OBJ).

(DBPOSL.OLB AND

• The run-time system modules for task linkage (DBLRES.STB and
DBLRES.TSK) •

This software is described in Chapters 2 and 4 of this manual.

1-1

1.1.2 Documentation

The documentation associated with the DIBOL tool kits consists of
three manuals.

• The Professional Tool Kit DIBOL User's Guide

• The Professional Tool Kit DIBOL Message Manual

• The Professional Tool Kit DIBOL Release Notes and Installation
Guide

The User's Guide provides the information necessary to the following.

• Program development on either the host system or the
Professional 300 system.

• Program
system.

debugging and execution on the Profesional 300

The Professional Tool Kit DIBOL Message Manual describes the messages
that are generated by the various components of the DIBOL tool kits.

"The messages report current status, successful completion, and error
detection.

The Professional Tool Kit DIBOL Release Notes and Installation Guide
describes the features of the latest release of the DIBOL tool kits
and the procedure by which the tool kits are installed on the
appropriate system.

The software facilities provided by the the Professional tool kits is
described in the Professional 300 Series documentation. This
Professional tool kit documentation refers to program development in
all supported languages (DIBOL, BASIC, PASCAL ...). In this manual,
reference is made to Professional tool kit documentation as it applies
to DIBOL program development.

1.2 HOST ENVIRONMENT

The prog~ammer who is planning DIBOL program development on a host
system must be familiar with the host operating system environment
(RSX-IIM, RSX-IIM-PLUS or VAX/VMS with AME). You must be familiar
enough with the host system command language (DCL or MCR) to log in,
to manipulate files, and to run programs such as the compiler and the
Professional Application Builder (PAB).

The host is described from the Professional system perspective in the
Professional system documentation and in host documentation. The use
of the DIBOL tool kits is described in this manual.

1-2

Typically, the Professional system is used (with the communications
facility) in the terminal emulation mode operating as a remote work
station to perform development tasks on the host. In this mode the
operation is the same as any other work station (VTIOO/vTI25
terminal); in fact, development can be accomplished using one of these
other "standard" terminals connected directly to the host. The use of
the Professional system is necessary, however, for 8-bit characters
(see the Terminal Subsystem Manual). The Professional system is also
used to transfer the executable files (and any other required files)
to the Professional system from the host.

The software on the host that is supplied with the DIBOL Tool Kit
consists of DIBOL object libraries and DIBOL run-time system modules
that are used for symbol reference resolution during application
building on the host. Other DIBOL Tool Kit software on the host
includes the DIBOL compiler and the DDT object module.

1.3 PROFESSIONAL SYSTEM ENVIRONMENT

Both programmers who develop their programs on another host and
programmers who develop their programs on the PRO itself must be
familiarwith the PROFESSIONALIS SYSTEM ENVIRONMENT; DIBOL programs are
installed and executed in this environment.

The Professional 300 system environment is a single user multitask
operating system, p/os. Depending on the hardware configuration, p/os
is either disk or diskette based. p/os features include a standard
interface to the end user via menus that can be integrated into an
application. Other features include access to user-developed help
frames and application messages. File support is provided by RMS
(Record Management Services) •

The Professional 300 system supports clustered and segmented resident
libraries that are used for RMS file 1/0, for p/os system functions
and services, and for the DIBOL run-time interpreter.

The Professional system does not require traditional device codes.
Internally the "dev: [directory]filename.ext" format is accepted; at
the user level this is optional and all the system devices are
accessed by name. For example, when a diskette is inserted into a
drive it is automatically mounted and causes that drive to assume the
name (volume label) assigned to the diskette when it was created with
the application builder program.

When the application is installed on a Professional system, it is done
by means of an "application installation file". This file contains
information related to the application configuration and the software
component parts of the total application including a degree of control
over device names. The application installation utility is selected
from the disk service menu.

1-3

The P/OS operating system "command interface" is called the
ProDispatcher. The ProDispatcher (via the installation file) starts
and terminates applications. The ProDispatcher also controls the main
menu and the user interface.

The P/OS operating system provides an intertask communications
mechanism to the ProDispatcher. It provides access to the terminal
driver (and, through this driver, to the printer), to device drivers,
and makes the installed diskette name an available volume. It also
supports the various RMS and p/OS file, print, and other system
services.

1.4 TOOL KIT DIBOL

Tool Kit DIBOL application program support consists of a shared/­
resident library for the run-time interpreter, RMS, and p/OS.
Subroutines may be linked to the task from object libraries on the
host. DIBOL on the Professional is designed to be highly compatible
with DIBOL on CTS-300, RSTS/E, and VAX-II. Some differences between
DIBOL on the Professional and the other DIBOL versions do exist. The
differences are due to operating system functionality and file
management system differences (i.e., RMS versus DMS -- Data Management
Services -- file management). Those procedure statements and external
subroutines with differences are listed and explained in the DIBOL-83
Compatibility Guide.

DIBOL on the Professional allows users to take advantage of many
Professional system features, because the DIBOL Tool Kit has (as part
of the OSSL library) interface routines to the Professional system
services. More information on DIBOL and access to the system services
and features is described in Chapters 7, 8, and 9 of this manual.

1-4

The process
environment
environments
Chapter 1.

CHAPTER 2

DIBOL PROGRAM DEVELOPMENT FOR THE PROFESSIONAL

of DIBOL program development can take place in a host
or in a Professional 300 system environment. These

and their associated software packages are described in

If the host environment is used, the Professional is used as a work
station (remote terminal connected to the host) for program
development; i.e., source program creation, compilation, debugging and
linking. After compiling and linking, the executable program is
transferred from the host to the Professional system; and final
debugging of the program is done on the Professional.

If the Professional 300 system environment is used, the Professional
provides the sole environment for all programming activities; i.e.,
the Professional provides the environment for program development,
compilation, debugging, and execution.

The documentation required for program development in these two
environments is described in Chapter 1.

NOTE

Effective with Version 1.5, the following
items should be particularly noted:

• There are important differences when
creating applications that will run
under plOS Diskette. These differences
are covered in the Professional Tool
Kit User's Guide. This user's guide
focuses on development of applications
for plos hard disk.

• There is a new resident run-time
library, DBLRES, that programs are
built against on the host and which
supports new applications on the
Professional. The previous library,
DBLPRO, is provided only to support
Version 1.0 applications at run time
only and is not a part of the tool
kit.

2-1

2.1 APPLICATION DEVELOPMENT OVERVIEW

The major steps required for application program development are
listed in Figure 2-1, followed by a list of the documentation
appropriate to each of these steps.

It is important that you familiarize yourself with the Professional
system and the plos operating system before proceeding beyond the
preliminary installation activities. This is best done by following
the Professional Tool Kit and Tool Kit DIBOL installation verification
procedures and by reviewing the information contained in the
installation documents and other related documentation.

PRELIMINARY ACTIVITIES

1. Preliminary installation activities
Professional Tool Kit software on host (if required)
Tool Kit DIBOL software on host pr p/os
Professional hardware
Profesional resident libraries

2. Familiarize yourself with host, Professional system, and
Tool Kit DIBOL.

3. Establish connection to host (if required) -- use menu
selections

APPLICATION DEVELOPMENT

Application development on either a host system or p/os.

4. Consider TOOL Kit DIBOL features and requirements.

5. Create and edit application.
Create menus (FDT).
Incorporate other system features; viz. FMS, GRAPHICS.

6. Compile Application; use DIBB3P on host, DIBOL on p/OS.

7. Build Application; PAB on host, LINK on p/os.

B. Write application command installation file.

9. Transfer task and installation command files to Professional
use menu selections.

Continued on Page 2-3

2-2

APPLICATION INSTALLATION AND EXECUTION

Application installation and execution must take place on plOS

10. Install application -- use menu selections.

11. Execute application.
DDT is optional.
If errors present, return to step 5 (edit).
Build diskettes for distribution -- use menu selections.

Figure 2-1 Application Program Development Steps

The following is a list of the documents most useful for each of the
program development steps (see the Preface for a complete list of
documents related to the Professional):

Program Development
Step(s)

1,2

3

4

5

6

primary Documentation Source(s)

Professional and DIBOL Release Notes
and Installation Guides

Professional Owner's Manual

Professional
Disk System

for Beginners: Hard

Professional User's Guide for Hard
Disk Systems

Professional Tool Kit User's Guide

This manual

Professional Communications Manual

This manual

DIBOL-83 Compatibility Guide

Professional Tool Kit User's Guide

Tool Kit DIBOL Language Reference
Manual

This manual

This manual (Chapter 3)

2-3

7 This manual (Chapter 4)

Professional Tool Kit User's Guide

8 Professional Tool Kit User's Guide

9 Professional Communicatons Manual

10 Professional Tool Kit User's Guide

11 This manual (Chapter 6)

12 Professional Tool Kit User's Guide

2.2 PROFESSIONAL SYSTEM CONSIDERATIONS FOR DIBOL PROGRAMMERS

The best sources of Professional system information are the various
Professional documents. Particularly useful are the Professional Tool
Kit User's Guide and the plos System Reference Manual. References to
the documentation is made throughout this chapter. Some of the
characteristics of the Professional that are particularly important
for the DIBOL programmer are presented in the following sections.

2.2.1 Interface to the User

One of the outstanding characteristics of the Professional system is
its interface with the end user. Interaction is achieved through
menus, help frames, and message frames. Facilities are provided so
that a DIBOL program can take advantage of these standard interfaces.
In addition, there is a facility to display system information.

2.2.2 Display

2.2.2.1 Terminal Addressing - The terminal is identified from within
a DIBOL program with a "TT:" device designation. For the
Professional, programs may also use "TI:". The printer is designated
as "LP:".

2.2.2.2 Display Characters The Professional display uses 8-bit
characters instead of the 7-bit ASCII characters used with other
DIGITAL terminals. The eighth bit accesses additional characters for
other natural (human) languages. Therefore, if you want to generate
and display the 8-bit characters necessary for these languages, you
must use a Professional when creating programs; the professional is
used as a remote terminal to a host system or as "host" system for
program development.

2-4

The Professional accepts most VT100 escape sequences plus sequences
that are peculiar to the Professional.

See Chapter 10 in the Professional Tool Kit User's Guide for the
available characters and the Terminal Subsystem Manual for information
on the characters and the escape sequences.

2.2.3 Keyboard

Several
by the
Chapter

of the Professional keyboard function keys can be interpreted
application at run-time. The GETKEY system service (see
8) provides the programmer with a way to avoid interpreting

escape sequences.

2.2.4 p/OS Services and Facilities

The Professional system offers p/OS services and facilities that are
accessed from within a DIBOL program via special DIBOL XCALLs that are
documented in Chapters 7, 8, and 9.

The more important services and facilities are summarized below.

PRO/FMS-ll

PRO/FMS-ll is used to create forms for use by an application for
receiving user inquiries, receiving user responses, or displaying
application output. The forms can be designed and modified on a
screen using a forms editor and are stored in form libraries. Use
of these forms reduces terminal I/O programming requirements. See
Chapter 4 in the Professional Tool Kit User's Guide and Chapter 7
in this manual.

PRO/GRAPHICS

FDT

The P/OS operating system includes a library of graphics routines
that the application developer can use to create graphic displays.
The graphics primitives are callable from the application and
include such features as graphics text and character attributes.
See Chapter 4 in the Professional Tool Kit User's Guide and
Chapter 9 in this manual.

The tool kit frame development tool allows the developer to create
menus, messages, and help frames for the application user
interface. See Chapters 4 and 12 in the Professional Tool Kit
User's Guide.

2-5

RMS (file services)

Access to sequential, relative, and indexed files is provided by
RMS-ll record management service routines and utilities. The RMS
utilities available on the host system enable an application
programmer to define, populate, update, and maintain files. There
are no callable file services; RMS-ll is the file and record I/O
interface between p/OS and the application. See Chapter 4 in the
Professional Tool Kit User's Guide.

See the DIBOL-83 Compatibility Guide if you have DIBOL programs
written with DMS file organization that you are migrating for
execution on the Professional.

PRO/SORT

PRO/SORT is
application.
is invoked, a
application.
User's Guide.

a general-purpose sorting program callable from the
Its operation is similar to SORT-II. When PRO/SORT

file containing the sort commands is passed from the
See Chapters 4 and 11 in the Professional Tool Kit

NOTE

PRO/SORT does not support DIBOL decimal
data types. Negative numeric fields
cannot be properly sorted.

PROSE (editor)

PROSE is an end-user accessable text editor that uses the editing
keys on the Professional keyboard. It can be used to create
documents or to perform other related editing jobs. PROSE can
perform these editing tasks as a part of an application as a
callable editor task. See Chapter 11 of the Professional Tool Kit
User's Guide.

Communications Facility

The p/OS communicatons facility operates in
emulation and file transfer between systems.
the end-user through a menu. See Chapter 11
Tool Kit User's Guide.

PRINT

two roles: terminal
It is available to

of the Professional

File printing can be requested from the system menu. (See Chapter
11 in the Professional Tool Kit User's Guide.) In addition,
printing is available from DIBOL programs via a subroutine. See
Appendix C in this manual for a description of the PRINT external
subroutine. The DIBOL LPQUE statement can also be used; however,
only the filespec is recognized; the other arguments are ignored.

2-6

Messages

Messages can be accessed by the application from a specified
message file by a call to the p/os message service routines. See
Chapter 13 of the Professional Tool Kit User's Guide.

2.2.5 Libraries

Object libraries are provided as a part of the DIBOL tool kit. These
modules are the DIBOL external subroutines consisting of the UESL
library (DBPLIB.OLB) and the OSSL library (DBPOSL.OLB). Subroutines
from these libraries can be included in the application program as
part of the development process.

The Professional utilizes libraries that are clustered; and in the
case of RMS, they are also segmented. All the libraries are also
resident; they share the same virtual address space on the
Professional at run time. They are:

DIBOL run-time language support (DBLRES.TSK):

• the DIBOL language interpreter

NOTE

DBLPRO.TSK supplied for run-time support
of Vl.O applications only.

Professional operating system services (POSRES.TSK):

• p/OS service routines (menu, message, help)

RMS support (RMSRES.TSK):

• file I/O support (record management services)

Optional Graphics support (CGLFPU.TSK or CGLEIS.TSK):

• Pro/Graphics support

2.2.6 Files

The Professional supports:

• Sequential, relative, and indexed files

• RMS file structure

2-7

The Professional does not support:

• ISAM utilities

• DMS files

• Multivolume files

An interactive ISAM utility is not supported by DIBOL on the
Professional. You can use the RMS DEFine utility on host to create
indexed application files for subsequent use by DIBOL programs or you
can use the ISMCRE subroutine documented in Appendix C.

The DIBOL OPEN statement creates sequential files by default; OPEN O:R
creates relative files. Indexed files cannot be created using the
OPEN statement.

The use of OPEN O:P creates a file with special characters normally
intended to be printed. See the DIBOL-83 Language Reference Manual
for more detailed informaton about the OPEN statement.

2.2.7 DIBOL Debugging Technique (DDT)

The DIBOL Debugging Technique (DDT) operates on the Professional in
the same manner as on other systems supporting DIBOL. In addition,
the DDT display can be directed to a VT100 terminal connected to the
printer port using a special cable. If the /B and /D options are used
with the compiler to generate .ODL and .CMD files, DDT will be
included automatically. See Chapter 6 of this manual for detailed
information on DDT.

2.2.8 Error Messages (Condition Handling)

Applications may use the p/OS message facility to access and display
messages from a file. All errors and messages generated by either the
Professional system or by languages running on it make use of these
files which are located separately from the program modules. A
multiline traceback report is displayed by DIBOL when a nontrapped
error occurs. The message remains displayed until the user presses
the RESUME key.

See the Professional Tool Kit DIBOL Message Manual for Run-Time, DDT,
and DIBOL compiler error messages.

2.3 DEVELOPMENT TASKS/STEPS

Figure 2-2 outlines the DIBOL program development tasks and the
software used to accomplish these tasks.

2-8

APPLICATION DEVELOPMENT

APPLICATION DEVELOPMENT TAKES PLACE ON A HOST SYSTEM OR p/os.

The DI80L application (.DBL file) is produced by the user. Th
.DBL file includes the main program, data files, and externa
subroutlnes (if any).

1. Create application source files (.D8L).

2. Compi Ie (DIB83P 0 r DIBOL) wi th 18 (and D) •
See notes 1 and 2 below.

3. Object files (.08J) result from step 2 •• CMD
files and ODL files also included.

4. Build application with PA8 (host) or LINK
(p/OS) • DDT module included if ID used. See
notes 3 and 4 below.

5. Executable task (.TSK)
DDT module may be present.

results from step 4.
See note 5 below.

APPLICATION INSTALLATION AND EXECUTION

APPLICATION INSTALLATION AND EXECUTION MUST TAKE PLACE ON plos

6. Create installation command file (.INS).
Install with disk service from system menu.

7. Execute .INS and .TSK; Debug if DDT present.

NOTES

(1) causes automatic generation of .CMD and .ODL files; 10
selects DDT.

(2) The .ODL file includes appropriate reference to .OBJ
libraries and resident libraties.

(3) The object libraries are as follows: DBPLIB.OL8 contains the
UESL subroutines; DBPOSL.OLB contains OSSL subroutines and
includes access to plOS services from DIBOL

(4) Program segments to tie task to resident libraries described
in note 5.

(5) The resident libraries available from the Professional Tool
Kit on diskettes are as follows: DBLRES.TSK for DIBOL
run-time system; POSRES.TSK for p/OS; RMSRES.TSK for file
I ; CGLEIS.TSL or CGLFPU.TSK for graphics; POSSUM for p/os
errror messaqe files.

Figure 2-2 DIBOL ication program Development Tasks

2-9

2.3.1 Coding/Editing

The creation of source code can be done using any editor that is
available on the host system, or the editors currently available on
the Professional (PROSE and EDT). Using the Professional has the
advantage of allowing 8-bit characters to be included in the source
programs. See the DIBOL-83 Language Reference Manual for detailed
information.

2.3.2 Compiling

DrBOL programs are compiled with the DrBOL compiler as described in
detail in Chapter 3 of this manual. Consider the various option
switches to the compiler command line (note especially the /B build
option and DDT considerations) .

2.3.3 Application Building

Once the source program has been compiled it must be combined with
other componets of the DrBOL program; user-developed external
subroutines, UESL subroutines, OSSL subroutines. The physical manner
in which the elements of the program will be stored and accessed is
also determined by the way in which they are combined.

Certain operating characteristics such as logical unit and stack size
specification are specified during application building. Application
building is done on the host using the Professional Application
Builder (PAB). See Chapter 4 in this manual and Chapter 5 in the
Professional Tool Kit User's Guide.

2.3.4 Application Installation File

The application installation file identifies all the files and the
hardware configuration for a given application. See Chapters 3 and 6
in the Professional Tool Kit User's Guide.

2.3.5 Transfer to the Professional System

rf the application program is developed in the host environment, it is
moved to the Professional before final debugging and execution. The
transfer process is described in Chapter 7 of the Professional Tool
Kit User's Guide and in Chapter 6 of the Professional Communications
Manual. The program is transferred over a normal terminal line that
has been connected to the Professional.

2-10

2.3.6 Installing/Executing/Debugging

The p/OS install routine (using the Application Installation File)
identifies all executable images and data files, places the
application name in the selected menu, and allows the application to
be invoked by a menu selection. See Chapter 8 in the Professional
Tool Kit User's Guide for application installation.

Execution is under control of DDT if it was compiled and linked with
the application. All problems must be corrected either on the
Professional or on the host system, if one was used. DDT output can
be diverted to a VT100 connected to the Professional's printer port if
DDT was specified in the compiler and application build commands. See
Chapter 5 in this manual for detailed information on using DDT.

2.3.7 Creating Usable Diskettes

The final step in application development is to produce a diskette (or
diskettes) that contains all the modules needed for a customer-usable
package. This is accomplished with the Application Diskette Builder
described in Chapter 9 of the Professional Tool Kit User's Guide.

2.4 PROGRAM MIGRATION

Program migration refers to moving DIBOL programs that are already
developed for use on other systems to the Professional system. DIBOL
as implemented on the Professional closely resembles DIBOL as
implemented on CTS-300, CTS-500, and VAX. However, the Professional
environment requires some differences because of functions and
capabilities not available on other systems. The differences between
the Professional system and the other systems supporting DIBOL and the
new features available on the Professional system may require
modification of existing programs before they are executable on the
Professional.

The development cycle for migrated programs is the same as for
programs developed for the Professional system; the editing phase is
used to make necessary changes to the code for Professional system
operation.

The differences in DIBOL implementation across the systems supporting
the language is contained in the DIBOL-83 Compatibility Guide. That
guide also contains an explanation of the how to transfer existing
files to the host system. Take note of the subroutines and access to
services that are documented in Chapters 7, 8, and 9 and in Appendix C
of this manual.

2-11

CHAPTER 3

OIBOL COMPILER

The DIBOL compiler runs on the host operating system or on the
Professional 300 system. It accepts DIBOL source code files that have
been created by the user with an editor, and creates object files
(.OBJ files) that are ready to be linked (application built) with
other object modules to produce an executable DIBOL program. It can
also produce command and overlay descriptor files to control the
Professional Application Builder (PAB). The DIBOL compiler is invoked
using the appropriate host command format.

A complete description of the DIBOL language is given in the DIBOL
Language Reference Manual and the Introduction To DIBOL.

3.1 CHARACTERISTICS

3.1.1 Compiler Features

The DIBOL compiler can do the following:

• Read DIBOL source files and produce linkable object files.

• Accept up to six DIBOL source code files.

• Accept several qualifiers which govern the n~ture of the files
produced, the listings, and the warning messages.

• Accept a qualifier that creates application builder files
(.CMD and .ODL files).

• Respond to certain compiler directives in the source code.
See the DIBOL-83 Language Reference Manual for details.

• Detect and report syntax errors and semantic errors.

The DIBOL compiler produces up to seven types of output.

• A listing of the source program (.LST file).

• A linkable file of compiled DIBOL data and statements (.OBJ
file) •

• A table of variable names used in the program (symbol table).

• A table of label names used in the program (label table).

3-1

• A report of the number and type of errors that were
encountered during compilation.

• A command file.

• An overlay descriptor file.

The object file, the listing file, the contents of the listing file,
the command file, and the overlay descriptor file are optional.

3.2 USING THE DIBOL COMPILER

3.2.1 Running the DIBOL Compiler

The manner in which the compiler is executed depends upon the
environment in which program development takes place.

NOTE

The parameters (object, list, etc.) used
in the compilation commands are described
below after the various compiler commands
are described.

If a host environment is used, the manner of compiler execution
depends on the host operating system.

The compiler can be invoked on VAX in two ways:

• $MCR DIB83P<CR)
*[object] [,list]=source[,source, •..]

• $MCR DIB83P [object] [,list]=source[,source, .••]

The compiler can be invoked on RSX (either RSX-IlM or RSX-l1M-PLUS) in
three ways:

The form for execution is either of the following if the compiler is
installed as •.• DBP.

•)DBP [object] [,list]=source[,source, •••]

•)DBP <CR)
*[object] [,list]=source[,source, •••]

The form for execution at any time:

•)RUN $DIB83P<CR)
*[object] [,list]=source[,source, •••]

3-2

If the Professional 300 system environment is used, the manner of
compiler execution is as follows.

1. Select the PRO/Tool Kit DIGITAL Command Language (DCL) from the
menu.

2. The form for execution of the compiler is either of the following .

• >DIBOL [/switch[/switch ••.]]source[,source •••]

• >DIBOL [/switch[/switch •••]]<CR>
File(s)?source[,source •••]

The parameters used in the compiler commands are described in the
following paragraphs.

object

,list

is the file specification in the general form:

dev:[directory] filnam.extiver[/switch[/switch ••.]]

• If dev: is not specified, the default device is the
development system (host or PRO) default ••

• If [directory] is not specified, the default directory
is the development system default.

• If a file extension is not specified, then the default
extension is .OBJ.

• If an object file is not specified, then an object
file is not created.

• If a version number is not specified (iver), the most
recent version number is used.

is the listing file in the general form:

dev: [directory]filnam.extiver[/switch[/switch •••]]

• If dev: is not specified, the default device is the
current system default. Often the listing file is
directed to the terminal (TT: on VAX, TI: on RSX) by
specifying the device. This could also be used with
just a file name to store the listing on a disk.

• If [directory] is not specified, the default
directory is the development system default.

• If a file extention is not specified, then the
default extension is .LST

• If a listing file is not specified, than none is
producedi if only an object file is specified, only
that file is generated.

3-3

source

• If only a listing file is desired with no object
file, then specify only a listing file specification
preceded by the comma. The comma indicates the
omission of the object file.

is the DIBOL source file supplied as input to the
compiler. Source files are specified in the general
form:

dev: [directory]filnam.extiver[switch[/switch •••]]

• If dev: is not specified, the default device is the
development system (host or PRO) default.

• If [directory] is not specified, the default
directory is the development system default.

• If a file extention is not specified, the default
extension is .DBL.

• If a version number is not specified (iver), then the
most recent (highest version number) version is used.

• If multiple input files are specified, a single
object and/or listing file is produced as output as
though the input files had been combined
(concatenated) before the compilation had begun.

switch is the compiler command qualifier. Qualifiers are
discussed in detail in the following section. If more
than one qualifier is specified, they are separated by
slashes. When multiple qualifiers are specified, their
order is unimportant.

3.2.2 Command Qualifiers

Command qualifiers (switches) restrict or modify the action specified
by the command. The qualifiers are listed below for compilation on a
host system (HST) and the Professional system (p/OS).

The qualifier is appended to the DIBOL command (DCL only) or a file
specification (MCR or DCL) with a forward slash (I) as follows.

Iswitch

where:

1 specifies that a command qualifier or file
specification qualifier follows.

switch specifies the qualifier to be activated.

3-4

The qualifiers used with the HOST are of the form /switch, where
switch is a single alphabetic character that specifies a particular
action. If a particular qualifier is not used, the specified action
is not activated (defaulted).

The qualifiers used with p/os are of the form /[NO]switch, where
switch is a POSITIVE WORD that specifies a particular action and
NOswitch is the NEGATIVE that specifies deletion or omission of that
action. If a particular qualifier is not used, its p/os default value
is used; that default value is shown in the table under ACTION.

Only the number of letters that uniquely identifies the qualifier need
be used. For example, /L is sufficient for /LISTING and lOB is.
sufficient for /OBJECT (/0 could be /OBJECT or /OPTIMIZE).

(UALIFIER
HST P/OS

/B /[NO]BUILD

/D / [NO] DEBUG

ACTION

directs the compiler to automatically invoke a
build procedure that creates command (.CMD) files
and overlay descriptor (.ODL) files for direct
input into the applica~ion builder.

The p/OS default value is /NOBUILD.

If you
have to
by the
Builder

want an overlaid DIBOL program, you will
modify the overlay descriptor file created
compiler. See the RSX-llM/M-PLUS Task

Manual and Chapter 4 of this manual.

directs the compiler to include debugging
information in the object module. This debugging
information is required if the DIBOL Debugging
Technique is to be used to debug this module.

If the /B and /D (or /BUILD and /DEBUG)qualifiers
are used together, the overlay descriptor file
(.ODL) will include the required reference to
DBLDDT.OBJ.

The p/OS default value is /NODEBUG.

/0 /[NO]OPTIMIZE directs the compiler suppress tracking of line
numbers as part of the object code and causes other
optimizations to occur. The resulting program code
is smaller and executes more quickly. Line numbers
are required by DDT for single-step execution and
breakpoints. Therefore, /D (or /DEBUG) overrides
/0 (or /OPTIMIZE). If /0 (or /optimize) is not
used, line numbers tracking occurs in the object
module and optimization does not occur.

The p/OS default value is /NOOPTIMIZE

3-5

/psn /PAGE=N directs the compiler to use the argument Un" as the
page length for the listing file. The specified
value includes three lines for the top margin,
three lines for a header, and three lines for the
bottom margin (nine in all). If this qualifier is
omitted, the system default lines per page is used.

/N

/S

/[NO]STANDARD directs the compiler to
features. This qualifier
mode I/O is utilized.

include non-standard
must be used if block

/[NO]TABLE

The p/OS default value is /STANDARD.

directs the compiler to generate a symbol table and
a label table as part of the listing file.

The p/OS default value is /NOTABLE.

/W /[NO]WARNING directs the compiler to suppress warnings during
compilation.

The p/OS default value is /WARNING.

-- /LIST[=filnm] creates a listing file with default file type LIS.

/[NO]OBJECT[=
filnm]

If no file (filnm) is specified, the first file
specification in the command line is used. If the
negative form is used, no listing is produced.

The p/OS default value is /NOLIST.

There is no HST form of this command.

creates an object file with default file type 08J.
If no file (filnm) is specified, the first file
specification in the command line is used. If the
negative form is used, no object file is produced.

The p/OS default value is /OBJECT.

There is no HST form of this command.

3.2.3 Specifying Output Files

During the early stages of program development, you may find it
helpful to specify no object file which will suppress the production
of object files until your source program compiles without errors.
The /S (or /TABLE) qualifier produces information that helps in
debugging.

3-6

3.2.4 Contents of the Listing File

The listing file consists
listing and, if selected,
contents of each component
following paragraphs.

of the following components: the program
the symbol table and label table. The
of the listing file are described in the

3.2.4.1 THE PROGRAM LISTING - The program listing consists of the
original source code with line numbers prefixed to each DIBOL
statement. Line numbers are not assigned to the following:

The compiler directives: .ENDC, .IFDEF, .IFNDEF, .INCLUDE, .LIST,
.NOLIST, .PAGE, .TITLE

Continuation lines

Blank lines

Comment lines

Line numbers are used in the label table to identify the location of
variable names and label names. In addition, line numbers are useful
in debugging (DDT) and error trapping at run time.

For each error detected during compilation, an error message appears
in the line-numbered listing. Each message appears immediately after
the line in which the error is detected.

Example of an error reported in the listing:

3 PROC
4 Ll, GOTO(Ll,L2,L3) ,VAR

%DIBOL-W-LABOUTBLK, Label out of context block; L2

The above example shows a warning message. An error message would
have a "-E-" in place of the "-W-."

3.2.4.2 The Symbol Table The symbol table contains descriptive
information about each variable in the source code. The table consists
of four columns with the following headings: NAME, TYPE, DIMENSION,
SIZE. The information under each heading is described in Table 3-1.

3.2.4.3 The Label Table The label table contains descriptive
information on each label name and external subroutine name in the
source code. The table consists of three columns with the following
headings: NAME, TYPE, LINE #. The information under each heading is
described in Table 3-2.

3-7

COLUMN
HEADING

NAME

TYPE

DIMENSION

NAME

TYPE

LINE #

TABLE 1
k

CONTENTS OF TH SYMBO TABLE

DESCRIPTION

list
used

of data fie d
the program.

names RECORD, COMMON, field)

The data
a1 a

f he f eld The data type may be
numer c (DECIMAL, or improper

definition (IMDEF •

If the field is defined in
data type identification
symbol C-"; C-DECIMAL, for

a COMMON statement,
is preceded with
examp e.

The number
dimension
IMDEF

of data elements in the field.
to the data r

L zer 1".0
~ assigned

The number of
field. If t
ar ay element is

TABLE

characters
fie d is an
shown

eauired to store
array, the size of

CONTENTS OF THE L TABLE

its
the

A

the
one

The name of sac label and eternal subroutine that
is used the program.

The type is either a statemen label (LABEL), or an
external subroutine EXSUB).

The line n r at lch the label is defined.
Zero is assigned 0 all improperly defined or
referenced 1a el ames and external s routine
names.

2.5 Error Messages

The errors detected the compiler are
in specific DIBOL statements. The e
distinguished from run-time error , which
execution.

3

rors of s tax or semant cs
o~pller er ors should be
are detected during program

The compiler error messages are described in the Professional Tool Kit
OrBOL Message Manual.

3.2.6 Example OrBOL Program and Program Listing

The following is a source listing of the program PAYRLl.DBL. It
computes regular and overtime gross pay (note that the listing has
been modified to fit an 3D-column page:.

REC!JRi) PERSON
HOURPY,
HOJRWK,

A3,'100'
12A2,'39' ,'40' ,'41',

'42' ,'43' ,'44',
'45' ,'46' ,'47',
'48' ,'49' ,'50'

&
&
&

RECORD Tcl"1P
D2
D3
D2
A7

PROC

&

&

&

A,
B,
K,
C,
PAY, DI0

OPEN (1 ,0, 'TT:')
DISPLAY (1, 'HOURS' , , ,

'GROSS PAY' ,13,10)
B = HOU:lPY
FOR K FROM 1 TrlRJ 12

BEGIN
A = HOURWI«K)
PAY = A * B
IF (A .GT. 40)
PAY = PAY + (B*(A-40)/2)
C = PAY, '$$$$.XX'
DISPLAY (1,' ',HOURWK (K) ,

END
CLOSE 1
END

, ',C,13,lO)

;

Hourly payrate of $1.00.

An array of hours worked per week

Working variable for HOURWK
Working variable for HOURPY
Loop counter -- index
Display weekly pay
Field to contain gross pay amount

Open the terminal for output

Display the output headings
Work variable equals hourly pay
Compute for each field in array

Work variable equals array field
Compute regular pay

Compute if overtime pay
Format the pay as dollars

Display the answer on the terminal
; End loop

Close the terminal

The following file specification is used to compile this source file
and produce an object file and listing file with a symbol table (there
are no labels in this example source file):

*PAYRLl.03J,PAYRLl.LST=PAYRLl.DBL/S

As a result of this command, the source program is compiled and the
following items are written to the file PAYRLl.LST: a line-numbered
listing and a symbol table. The contents of PAYRLl.LST is shown
below.

3-9

PAYRLI 15-APR-1983 14:36:44 PRO DIBOL-83 VI-05 Page 1

Data Division DRC4: [WRITER.DICKR.PRODIB17]PAYRL1.DBLil

1
2
3

4
5
6
7
8
9

PAYRLI

RECORD PERSON
HOURPY,
HOURWK,

&
&
&
RECORD TEMP

D2
D3
D2
A7

A,
B,
K,
C,
PAY, DI0

A3,'100'
12A2,'39' ,'40' ,'41',

'42' ,'43' ,'44',
'45' ,'46' ,'47',
'48' ,'49' ,'50'

15-APR-1983 14:36:44

Hourly payrate of $1.00.

Hours worked per week

Working variable for HOURWK
Working variable for HOURPY
Loop counter -- index
Display weekly pay
Field for gross pay amount

PRO DIBOL-83 VI-OS Page 2

Procedure Division DRC4: [WRITER.DICKR.PRODIB17]PAYRL1.DBLil

10
11
12

13
14
15
16
17
18

19
20

21
22
23

PROC
OPEN (1,0, ' TT: ')
DISPLAY(I,'HOURS',' ,

& 'GROSS PAY' ,13,10)
B = HOURPY
FOR K FROM 1 THRU 12

BEGIN
A = HOURWK(K)
PAY = A * B
IF (A .GT. 40)

& PAY = PAY + (B*(A-40)/2)
C = PAY, '$$$$.XX'
DISPLAY(l,' ',HOURWK(K),

& ",C,13,10)
END

CLOSE 1
END

No errors detected

3-10

Open the terminal for output

Display the output headings
Work variable equals hourly pay
Compute for each field in array

Work variable equals array field
Compute regular pay

Compute if overtime pay
Format the pay as dollars

, Display answer on terminal
End loop
Close the terminal

PAYRLl 15-APR-1983 14:36:44 PRO DIBOL-83 Yl-05 Page 3

Symbol Table DRC4: (WRITER.DICKR.PRODIB17]PAYRL1.DBL;1

Name Dim Type Size

PERSON Alpha 27
HOURPY Alpha 3
HOURWK 12 Alpha 2
TEMP Alpha 24
A Decimal 2
B Decimal 3
K Decimal 2
C Alpha 7
PAY Decimal 10

3-11

I I

I I

I I

I I

I I

II

II

II

CHAPTER 4

THE APPLICATION BUILDER

The Application Builder performs the final step in preparing a DIBOL
program for execution. It combines object modules created by the
DIBOL compiler with object modules extracted from the object libraries
on into an executable program (task) and resolves references to
resident libraries. Every module produced by the DIBOL compiler must
be processed by the application builder before it can be executed.

If program
Host Tool
used. PAB
builders.

development takes place on a host system using Professional
Kit DIBOL, the Professional Application Builder (PAB) is

is an enhanced version of the R5X-llM and RSX-llM-PLUS task

If program development takes place on the Professional using PRO/Tool
Kit DIBOL, the application builder is called LINK.

NOTE

The term LINK is used throughout this
chapter. If development was done on the
host, substitute PAB for LINK.

The application builder does the following:

• Combines (links) external subroutines and the main program(s)
into an executable task.

• Combines the main program(s) and external subroutines with
modules from the appropriate object libraries.

• Resolves references to resident libraries.

• Creates overlay structures.

• Produces a load map that shows the layout of a program in
memory.

• Produces
the task
Manual) •

error messages in the event of an inability to build
as specified (see the RSX-llM/M-PLUS Task Builder

This chapter presents the more common decisions a DIBOL programmer
faces during application building. It is an overview of a process
that can be quite complex. See the RSX-llM/M-PLUS Task Builder Manual
for a complete discussion of application building.

4-1

4.1 LIBRARIES

The libraries supplied for the application builder are provided solely
for linkage; modules from these libraries (UESL and OSSL) are
incorporated into the task image by LINK. Application building does
not produce a task image that is executable on the host; a run-time
system is required to interpret and execute the code linked by the
application builder.

NOTE

The application builder for Professional
programs (PAB or LINK) translates all
references of LB:[l,I] to LB:[1,5] for
input files to avoid conflict with other
libraries on the host. All required
libraries for the Professional are in
LB: [l,5] on the host.

The Professional system itself utilizes resident, clustered, (and
segmented in the case of RMS) libraries that are prebuilt to be used
as part of the Professional system.

The libraries are:

Supplied with the DIBOL Tool Kit:

1. The Universal External DIBOL Subroutine Library (DBPLIB.OLB)
This provides common DIBOL external subroutines (DATE,

TIME, etc.)

2. The Operating
(DBPOSL.OLB)
subroutines.

System Specific DIBOL Subroutine Library
This provides system specific DIBOL external

Supplied with the Professional Tool Kit:

1. The RMS Resident Library symbol table and truncated task image
files (RMSRES) These supply information necessary to link
the DIBOL task with the RMS resident library.

2. Graphics There are two supplied graphics libraries: CGLFPU
and CGLEIS.

3. p/os Service Routines (POSRES) (eg., menu, help, text) -­
These supply information necessary to link the DIBOL task with
the p/os services.

4. The POSSUM system services -- These are actually integrated
into the p/os executive but if any of the POSSUM facilities
are to be used by a DIBOL program, POSSUM must appear in the
"CLSTR=" line of the .CMD file as though it were a discrete
resident library.

4-2

5. Callable system utilities (eg., SORT, FMS, and EDIT).

6. The DIBOL Resident Libraries for Vl.6 (D8LRES) -- These supply
information necessary to link the DI80L task with the RMS
resident library and support the application at run time.

7. The DI80L Resident Libraries for VI.D (D8LPRO) -- These
support Vl.D applications at run time.

4.2 APPLICATION-BUILD PROCEDURE DECISIONS

NOTE

Application building a DIBOL program re­
quires the use of both a command file and
an .ODL file. In particular, you should
not application build a program without
using an .ODL file with the references to
RMS which are in the compiler generated
(/B) .ODL file. While such an approach
may succeed, it is not supported and is
unlikely to be compatible with future
releases of RMS. The options supplied by
the use of the /8 switch in the .CMD file
will also be needed.

4.2.1 Generating the Command and Descriptor Files

When compiling a main program, use the DIBOL compiler build (/8)
option to generate a command file (.CMD) and overlay descriptor file
(.ODL) for your application. LINK uses these files to define how
libraries are referenced, and to specify special-purpose buffers,
logical unit numbers (LUNs), and event flags (EFNs).

Look at the .CMD and .ODL files in the text and examples. You may
need to edit the command file or overlay descriptor file for your
particular application. The following sections describe the
information that must be contained in these command and overlay
descriptor files.

4-3

4.2.2 Editing the Command (.CMD) File

A command file output by the Tool Kit DIBOL compiler for an applica­
tion named "TEST1" would look like this:

SY:TEST1/CP=SY:TEST1/MP
UNITS=24
ASG=TI:16
ASG=TI:17
ASG=SYO:18
ASG=TI:19
ASG=SY:23
ASG=LB:24
,

Foreground terminal
DDT terminal
Channel for RENAM/DELET
POSRES Terminal
Directory Searches
Message board

CLSTR=DBLRES,POSRES,POSSUM,RMSRES:RO

TASK=TESTl

The command file would be followed by extend section and global
definition lines (shown in later examples).

The command file automatically references the DIBOL RTS and the
required p/OS service routine library clustered with RMS. You should
edit the command file if you want to reference any libraries (such as
Graphics) other than the language RTS (DBLRES), the system services
libraries (POSRES, POSSUM), and RMS (RMSRES).

Note the following points concerning the .CMD file:

1. Clusterable Libraries

List all required clusterable libraries on the line beginning
"CLSTR". Note that the default library must be the Tool Kit DIBOL
language RTS. For example:

CLSTR = DBLRES,POSRES,POSSUM,RMSRES:RO

This line identifies the DIBOL (RTS) (DBLRES) as the default
library and RMS and POSRES as referenced libraries. All libraries
are read-only; therefore, the :RO switch is always required.

2. Additional Logical Units.

DIBOL requires the first 18 logical units. CTAB services may re­
quire an additional five for a total of 23. The total number must
be declared in the UNITS statement, otherwise LINK will default to
six. The DIBOL BUILD option automatically specifies 24.

4-4

3. Extend Section Commands

If your application uses p/OS user interface services in the
POSRES library, allocate buffer space with extend section (EXTSCT)
commands in the command file. The help and menu user interface
routines access definition files created with FDT. Definition
files contain frames with fields of information. For each type of
service, allocate a buffer that is large enough to accomodate the
largest frame of that type used by the application. Frame size is
calculated by adding together the sizes of all the fields in a
frame, then adding an overhead of eight bytes for each field in a
frame plus 20 bytes per frame. See the Professional Tool Kit
User's Guide, Chapters 4 and 5, for complete information on
definition files, frames, fields, and user interface services.

Version
Vl.5 OR

NOTE

1.0 users
LATER the

should note that for
EXTSCT for MS$BUF

message facility is no longer used.

4. Logical Unit Numbers

p/OS user interface services require logical unit numbers (LUNs)
to perform file I/O to menu, help, and message definition files.
LUN assignments for p/OS I/O can be made with global definition
commands (GBLDEF) in the command file. In assigning LUNs,
remember to account for LUNs needed by the DIBOL Language RTS
(18). You must include the LUN for DIBOL RTS messages:

gbldef = ms$lun:25 message frame file

If one type of p/OS service is never used, such as help services,
specify 0 in the global definition line for help files. Do not
omit any global definition line. After assigning LUNs, determine
the total number needed and include that number in the UNITS
command.

NOTE

All required LUNs are included by DIBOL.
If you want DDT direct output to the
other (debugging) terminal, change ASG =
TI:17 to ASG = TT2:17.

5. Event Flags

p/OS user interface routines also require an event flag (EFN) to
perform terminal I/O. The event flag assignment should not con­
flict with event flag assignments made for other purposes by the
application. Language RTS routines use DIGITAL reserved event
flags (flags 25-32). The event flag assigned with the TT$EFN line
should not be a DIGITAL reserved flag. The DIBOL BUILD option
assigns EFN 1.

4-5

IMPORTANT NOTE

The assign (ASG) commands and units list
DECIMAL numbers. Extend (EXTSCT) and
global definition (GBLDEF) lines specify
OCTAL numbers.

The following list shows the extend section and the global definition
lines that are added below the "CLSTR" line in the command file. The
values for the extend section lines (EXTSCT) are calculated for the
largest possible frame of each type. That is, if every field on a
menu, help, and message frame were filled with the maximum amount of
data, the respective buffers would have to be allocated the sizes
shown.

extsct = mn$buf:4540
extsct = dm$buf:4540
extsct = mm$buf:lOOO
extsct = hl$buf:3410
extsct = fl$buf:4310
;
gbldef = tt$lun:23
gbldef = hl$lun:24
gbldef = ms$lun:25
gbldef = mn$lun:26
gbldef = wc$lun:27
gbldef = mb$lun:30
;
gbldef = tt$efn:l

DEFINE BUFFER SIZES
static single-choice menu
dynamic single-choice menu
multi-choice menu
help text/menu
file selection/specification

(19.) terminal I/O
(20.) help frame fi Ie
(21.) message frame file
(22.) menu frame file
(23.) directory searches
(24.) message board lun

terminal I/O event flag

NOTE

DIBOL includes these buffers with maximum
allocation. Keep only the required
buffers. Memory used for these buffers
is available to the task. If a service
is not to be used, set extsct to zero.

Example:

extsct = mn$buf:O
extsct = dm$buf:O
extsct = mm$buf:O
extsct = hl$buf:O
extsct = fl$buf:O

See also Chapters 4 and 5 of the
Professional Tool Kit User's Guide.

4-6

4.2.3 Editing the Overlay Descriptor File

The Tool Kit DIBOL compiler would produce this overlay descriptor file
for the tool kit application TESTl:

.ROOT
APOBJ$: • FCTR
DBLI B$: • FCTR
RMS$ • FCTR
@LB: [1,5]RMSRLX.ODL

• END

APOBJ$-DBLIB$-RMS$
TESTI
LB: [1,5]DBPLIB/LB-LB: [1,5]DBPOSL/LB
RMSROT

If you want to reference any Tool Kit object libraries facilities,
such as FMS-ll, you must edit the overlay descriptor file. Chapter 7
illustrates the required edits for FMS-ll support.

4.3 APPLICATION-BUILDING DIBOL PROGRAMS

Use LINK to create an application task image (.TSK). See the
Professional Tool Kit User's Guide for complete information on
Professional Application Builder Commands. The remainder of this
chapter contains information specific to the DIBOL developer.

4.3.1 A Simple Application Build

A simple application build can be done using the .CMD and .ODL files
created by use of the IB qualifier in the compiler command line. To
use this method, respond to the "DIBOL BUILD)" prompt with a carriage
return to initiate the generation of the .CMD and .ODL files. If DDT
is desired in the application, include the ID qualifier in the
compiler command line and DBLDDT.OBJ will be automatically inserted in
the .ODL file.

4.3.2 Background Information

There are two items in particular that influence the application build
procedure: the resident libraries and overlaying. A brief discussion
of these two items follows. After this discussion, examples
illustrate the various options.

NOTE

Linking with POSRES removes approximately
4KW of user space. POSRES is required
because it is used for run-time error
messages. Use of the IB generated
command file will result in maximum
options being chosen for system services.
You can remove unused services for more
user space.

4-7

One way
external
switch,
modified

to deal with a
subroutines.

provides an
by the user.

The
.ODL

memory
DIBOL

file

space problem is to overlay user
compiler, with the use of the /B

that can serve as a prototype to be

The RMS resident library, RMSRES, occupies approximately 23K words in
main memory. However, no more than 8K words of user space are used by
RMS code (RMSRES) at any given time. ~apping the necessary RMS code
into user space occurs very rapidly since it takes place within main
memory. This is in contrast to disk-resident overlays in which a
module must be moved from disk memory to main memory. You must use
the RMS resident library. If there is not enough room in memory for
all segments, they will be swapped on and off disk with the normal
overhead of disk swapping.

For more information on overlays, see the RSX-IIM/M-PLUS Task Builder
Manual.

4.3.3 Application Builder Error Messages

The application builder produces diagnostic and
Some diagnostic error messages merely tell
condition. If you consider the condition normal
run the task image.

fatal error messages.
you about an unusual
to your task, you can

In general, you can application build and execute programs that have
compiler errors; this is not recommended. If the error occurs in an
overlaid subroutine, the application builder will report an illegal
format error and will not link in the subroutine. The resulting exe­
cutable task is unpredictable. If such a program is run, a message is
displayed prior to program execution indicating that the program has
compilation errors.

If the task exceeds memory limits at execution time, you will need to
reduce some of the values provided by the compiler-generated .CMD and
.ODL files (maximum values are the default). You could also try
compiling with the /0 option or using additional overlays. A frequent
cause is having a large number of files open at one time; especially
if those files use bucket sizes greater than one. If memory space is
a problem, a map listing should be generated using LINK by specifying
a second output file to determine where the space is being used. Keep
in mind that extra space is required at run time for the run-time
system and for each open file. At execution time 48 KB is available
for each task exclusive of the clustered libraries.

For a listing of the application builder error messages, see the
RSX-IIM/M-PLUS Task Builder Manual.

4-8

4.3.4 Command Format

A command to the application builder consists of two parts. In the
first part you specify the output files (task and, optionally, a map) ,
the input files (object modules and subroutine libraries, from an
overlay description file which replaces/specifies input files only) ,
and one or more switches that prescribe functions to be performed. In
the second part you specify the appropriate options, for example,
which resident libraries to use.

The command for an existing .CMD file (TEST):

LINK @TEST

where TEST is the .CMD file. The .CMD file generated by the DIBOL
compiler looks like the following example for program PROG (this would
be the contents of "@TEST").

PROG/CP=PROG.ODL/MP File Specification
UNITS=24
ASG=TI:16
ASG=TI:17
ASG=SYO:18

ASG=TI:19
ASG=SY:23
ASG=LB:24

i Foreground terminal
DDT terminal
Channel for RENAM/DELET

POSRES terminal
Directory Searches

i Message board

\

CLSTR=DBLRES,POSRES,POSSUM,RMSRES:RO

I
I
I
I
I
I
I
I
I
I
I

i
'rASK=TESTl

extsct =
extsct =
extsct =
extsct =
extsct =
i
gbldef =
gbldef =
gbldef =
gbldef =
gbldef =
gbldef =

gbldef =
i
//

mn$buf:4540
dm$buf:4540
mm$buf:IOOO
hl$buf:3410
fl$buf:4310

t t$l un: 23
hl$lun:24
ms$lun:25
mn$lun:26
wc$lun:27
mb$lun:30

tt$efn:l

istatic single choice menu
idynamic single choice menu
imulti-choice menu
ihelp text/menu

I
I
I
\

ifile selection/specification /

(19 •)
(20.)

i (21.)
(22.)

i (23.)
i (24.)

terminal I/O
help frame file
message frame file
menu frame file
directory searches
message board lun

terminal I/O event flag

4-9

I
I
I
I
I
I
I
I
I
/

Options

The following is an explanation of some of the components of the file
specification section of the .CMD file:

PROG/CP

PROG.ODL/MP

switches

represents the file specification of
executable program (the task file) that
created. The default extension is .TSK.

NOTE

The /CP switch is always required with
the task file for Tool Kit DIBOL.

the final
is to be

represents the file specification of the overlay
description file. The assumed extension is .ODL (for an
overlay description file).

NOTE

The use of an .ODL file is mandatory for
Tool Kit DIBOL. Therefore, the /MP
swi tch (see below) is requi red wi th the
.ODL file specification.

are appended to the file name. For more advanced switch
functions, see the RSX-IIM/M-PLUS Task Builder Manual.

Commomly Used Application Builder Switches

Mnemonic Function

/CP Always required on the task file
(.TSK).

/LB Specifies that the input file is a
subroutine object library file
(.OLB) •

/MP Specifies that the input files are
described in a separate overlay
description file (• ODL)

/WI Instructs LINK to produce a wide
MAP listing file (• MAP) •

Resident libraries are clustered. The form is:

CLSTR=DBLRES,POSRES,POSSUM,RMSRES:RO

4-10

4.3.5 Files used by the Application Builder

Files specified as input files to the application builder fall into
four categories:

1. COMMAND and OVERLAY DESCRIPTION LANGUAGE FILES (.CMD and .ODL) -
These files contain instructions for LINK. Both of these files
are generated by the DIBOL compiler when the /B switch is used.

The command file refers LINK to the .ODL file and specifies the
LINK options.

The overlay description file that describes the structure of the
overlays, or the way that the input (object) files are to be
combined, must be created and supplied to the application builder.
The .ODL file identifies the .OBJ and .OLB files (numbers 2 and 3,
following) •

NOTE

DIBOL always uses an .ODL file specified
in the .CMD file and this .ODL file re­
fers to the above input files.

2. OBJECT MODULE FILES (.OBJ) - These are files created by the DIBOL
compiler (DIB83P). They have a default extension of .OBJ and are
the files that are to be linked together in order to make the
executable program (that is, the task file).

3. LIBRARY FILES (DBPLIB.OLB, DBPOSL.OLB, and USER.OLB) - These files
are searched for .OBJ modules to be included with the .OBJ file(s)
in 2, above.

The DIBOL subroutine library files are DBPLIB.OLB and DBPOSL.OLB.

USER.OLB refers to libraries that you create with the Librarian
(see the operating system documentation). They will probably
contain frequently used subroutines that you have placed in the
library for easy access by one or more of your programs.

4. REFERENCES TO RESIDENT LIBRARY FILES (xxx.TSK and xxx.STB) - These
are files used by LINK to resolve RESLIB (resident library)
entries. The resident libraries follow.

• The Tool Kit DIBOL resident library file (DBLRES).

• The RMS resident library file (RMSRES).

• The P/OS operating system (POSRES, POSSUM).

• Other resident libraries possibly required for optional
features.

4-11

Input files may be entered as complete file specifications or as file
names alone. The extension .OBJ is assumed except where the /LB
switch is used; then the assumed extension is .OLB, or where the /MP
switch is used, an .ODL file.

Subroutine libraries are used by the application builder to resolve
subroutine references in the object modules. If a subroutine name is
not found in the input files or any of the libraries, the application
builder displays an error message on the terminal.

An overlay description file must be the only input file specified.
This file must describe all .OBJ and .OLB files and it must define the
structure of the overlays (see Section 4.7).

The application builder outputs two types of files for DIBOL programs:

1. TASK FILE The task file is a program in its final executable
form. The application builder gives it a .TSK extension.

2. MAP FILE - This is an optional file that produces a listing of the
task file's memory allocation. The application builder outputs
this file with a .MAP extension.

4.4 EXAMPLES OF .ODL FILES

4.4.1 Without Overlays

The application-build procedure that links PRGRM2 and USERLIB against
the RMS resident library follows. No map file is produced •

• ROOT APOBJ$-DBLIB$-RMS$
APOBJ$: .FCTR PRGRM2
DBLIB$: .FCTR USERLIB/LB-LB:[1,5]DBPLIB/LB-LB: [1,5]DBPOSL/LB
RMS$: • FCTR RMSROT
@LB: [1,5]RMSRLX.ODL

.END

4-12

4.4.2 with Overlays

The overlay description
application-build procedure
(SUB's) is:

file PGM.ODL that is used in the
for program PGM with various subroutines

.ROOT PGM-LIB2-LIBR-RMS$-*(A,B,C,D,E,F,G)
A: .FCTR SUBOI-LIBR
B: .FCTR SUBll-H
C: .FCTR SUB12-LIBR-*(J,SUB21-LIBR,SUB03-LIBR,SUB04-LIBR)
D: .FCTR SUB13-*(SUB23-LIBR,SUB32-LIBR,SUB04-LIBR,I,J)
E: .FCTR SUB14-*(J,SUB22-LIBR,SUB03-LIBR,SUB04-LIBR)
F: .FCTR SUB16-*(J,SUB22-LIBR,SUB03-LIBR,SUB04-LIBR)
G: .FCTR SUB18-*(J,SUB22-LIBR,SUB03-LIBR,SUB04-LIBR)
H: .FCTR LIBR-*(J,SUB21-LIBR,SUB22-LIBR,SUB03-LIBR,SUB04-LIBR)
I: .FCTR SUB06-LIBR
J: .FCTR SUB31-LIBR
LIB2: .FCTR FGLIB/LB:USB03:USB06:USB09:USB10:USBll:SUB02:SUB05:PGMLG-LIBR
LIBR: .FCTR LB:[1,5]DBPLIB/LB-LB:[1,5]DBPOSL/LB
RMS$: • FCTR RMSROT
@LB:[1,5]RMSRLX.ODL

.END

4-13

II
II
II
II
I

CHAPTER 5

RMS-ll AND DIBOL ON THE PROFESSIONAL

Record Management Services (RMS-ll) used on the Professional is a
general purpose file processing environment which provides data stor­
age, retrieval, and modification facilities. When executing DIBOL
application programs on the Professional, file processing is
ultimately done by RMS-ll.

NOTE

For further information on all of the
topics covered in this chapter, see the
RMS-ll manuals listed in the Preface.

This chapter briefly explains the RMS-ll file organizations and access
modes. More information on access is contained in the DIBOL-83
Language Reference Manual.

An indexed file is created on a host system with the RMS facilities or
the DIBOL OSSL subroutine ISMCRE. Only the ISMCRE subroutine can be
used with the Professional 300 System. This chapter provides an
example of how to create an RMS indexed file on the host for use with
dibol on the Professional.

5.1 RMS-ll FILE ORGANIZATION

RMS-ll provides three file organizations, each of which is discussed
in this chapter:

1. Sequential file

2. Relative file

3. Indexed file

The organization of a file establishes the techniques you can use to
retrieve and store data in that file. These techniques are known as
access modes. The access modes available under Professional Tool Kit
DIBOL are:

1. Sequential access

2. Random access

In addition, block mode I/O can be used to read and write entire
blocks of data rather than transferring a record at a time.

5-1

The organization and characteristics of a file are specified when an
RMS file is created. The file characteristics are called attributes.
Among those you can specify are the storage medium, the file name and
protection specifications, the record format and length, and the file
allocation information.

5.1.1 Sequential File Organization

In the sequential file organization, records appear in the order in
which they are inserted. That is, records can only be retrieved from
a file in the same order in which they were originally written, and
there is no attempt to optimize file access. Therefore, you will have
to scan the file from the beginning to locate a record. Records may
be added only to the end of a sequential file, and records within the
file cannot be deleted.

Sequential files are created by a DrBOL program when a file is opened
using the OPEN statement in 0 ~ode without any submode specifier.

5.1.2 Relative File Organization

The relative file organization permits a file's records to be accessed
randomly, based on their positions relative to the beginning of the
file. The records in a relative file may also be retrieved sequen­
tially, by successively requesting the next record. However, the
relative organization also permits access, by record number, to a
record anywhere within the file without previously accessing any other
record.

Relative files can be created by a DIBOL program when a file is opened
using the OPEN statement with the O:R submode specifier (see the
DIBOL-B3 Language Reference Manual). Relative files can also be
created with the RMSDEF utility.

5.1.3 Indexed File Organization

The indexed file organization permits the random access of records
based on the values of fields contained within the records. The
location of these records is transparent to the program. RMS-li
controls the placement of records in this type of file; the contents
of key values within the records govern this placement.

An indexed file is created with the RMS facilities or the DIBOL OSSL
subroutine ISMCRE. Only the rSMCRE subroutine can be used with the
Professional 300 System. For an example of RMSDEF, see Section 5.6 in
this manual. For more information on RMSDEF and RMS see the RMS
manuals listed in the Preface. The ISMCRE external subroutine is
described in Appendix C of this manual.

5-2

5.1.3.1 Indexed File Keys - For an indexed file, you must define at
least one key, the primary key. With RMS-II, however, you may also
define alternate keys, up to a total of 255 keys (1 primary and 254
alternate keys). As programs write records into an indexed file,
RMS-ll locates the values contained in the primary and alternate key
positions of each record. From these values, R~S-ll builds a tree­
structured table known as an index. An index consists of a series of
entries, each containing a key value copied from a record that a
program wrote into the file. With each key value is a pointer to the
location in the file of the record from which the value was copied.
RMS-ll builds and maintains a separate index for each key defined for
the file. When alternate keys are defined, RMS-ll builds and stores
an additional index for each alternate key. Figure 5-1 shows the
general structure of an indexed file that has been defined with only a
single key. Figure 5-2 depicts an indexed file defined with two keys

a primary key and an alternate key. This means that a file with
many keys will be larger than one with few keys. More disk accesses
will be required to add a record to that file because each key must be
entered into each index.

KEY DEFINITION

I
~ PRIMARY INDEX (Employee Name)

~

ABLE •••• JONES •••• SMITH

1 I L
I I I I
I I I I I I

ABLE I ELM AV : 24379 ••• JONES :MAINST: 19724 ••• SMITH : HOLT AV : 35888 I
I I I , I I

I I I I I I

DATA RECORDS

Figure 5-1 Single-Key Indexed File organization

5-3

KEY DEFINITIONS

PRIMARY INDEX ALTERNATE lND£X

(Employee Name) (Badge Number)

':--AB_L_E---'-___ ~_n ~~ONES i MAIN ST : 1972~". ''----SM_IT_H~: H_O~LT~R_:~i_1_~~_33--i
'-~------------DATA RECORDS------------/

Figure 5-2 Multi-key Indexed File Organization

5.1.3.2 Defining Keys - When defining keys at file creation time, you
specify two characteristics for each key:

1. Whether duplicate key values are allowed

2. Whether a key value can change (alternate keys only)

When you specify that duplicate key values are allowed, you are indi­
cating that more than one record in the file can have the same value
in a given key. Such records, therefore, have the same record iden­
tifier (for that key). The capability to allow duplicate key values
further distinguishes indexed files from relative files. In relative
files, the record identifier, representing a relative record number,
is always unique.

A personnel file can serve as an example of the use of duplicate keys.
At file creation time, the creator of the file could define the de­
partment name field as an alternate key. As programs store (STORE)
records into the file, the alternate index for the department name key
field will contain multiple entries for each key value (for example,
PAYROLL, SALES, ADMINISTRATION) since departments are composed of more
than one employee each. When such duplication occurs, RMS-Il stores
the records so that they can be retrieved in first-in/first-out (FIFO)
order.

5-4

Using this personnel file, an application could be written to list the
names of employees in any particular department -- for example, in
SALES. By reading (READ) the file by alternate value SALES, the
application would obtain the first record written into the file
containing this value. Then, the application could switch to
sequential access (READS) and successively obtain records with the
same value, SALES, in the alternate key field. Part of the logic of
the application would have to determine the point at which a sequen­
tially accessed record no longer contained the value SALES in the
alternate key field. The program could then switch back to random
mode (READ) and access the first record containing a different value
(for example, PAYROLL) in the department name key field.

The second key characteristic (key value can change) indicates that
records can be read and then written back into the file with a
modified value in the key. (This is not permitted for the primary
key.) When such modification occurs, RMS-ll automatically updates the
appropriate index to reflect the new key value. You can specify this
characteristic only for alternate keys. Further, when specifying this
characteristic, you must also specify that duplicate key values are
allowed.

5.2 RMS-ll ACCESS MODES

The methods of retrieving and storing records in a file are called ac­
cess modes. You must choose the organization of a file at the time
you create it, but you may use different access modes to process
records within the file each time you use it. Also, your program can
change access modes during file processing.

There are two access modes:

1. Sequential

2. Random

The DIBOL sequential access statements are READS and WRITES. The
DIBOL random access statements are READ, WRITE, STORE, and DELETE.
DIBOL also supports block mode access which allow access of data in
entire blocks rather than individual records (see Section 5.4.4).

5.2.1 sequential Access Mode

You can use this mode to access all types of RMS-ll files. Sequential
access means that records are retrieved in the same sequence as they
appear in the file. The organization of the file establishes this
sequence; that is, the next record you read or write immediately fol­
lows the previous record read or written in the file. In the case of
indexed files, sequential access retrieves records by increasing value
of the specified key.

5-5

5.2.2 Random Access Mode

The random access mode allows the retrieval of records without regard
to the location of the previous record read or written. The program,
rather than the organization of the file, establishes the order in
which records are processed. Successive requests can identify and
access records anywhere in the file.

5.3 CREATING AN RMS-ll FILE

To create an RMS-ll sequential file with DIBOL, OPEN the file in 0
mode.

To create an RMS-ll relative file with DIBOL, OPEN the file in 0 mode
and specify the O:R submode. Only fixed length records can be
created, and the size of the records must be specified with the
"RECSIZ" option.

To create an RMS-ll indexed file, use the RMSDEF utility or the ISMCRE
external subroutine. If using RMSDEF, define file attributes by
responding to the utility's requests for data and questions. The
utility then stores the attributes within the newly created file. You
also have the option of specifying an initial allocation quantity, and
the utility allocates space at creation time; however, it does not
write records into the file. The writing of the actual data contents
of a file may be accomplished using RMSDEF, using a DIBOL application
program on the Professional, using the RMSCNV utility or the RMSIFL
utility. (The RMSCNV and RMSIFL utilities are described in
PRO/RMS-ll: An Introduction.)

An example using the RMSDEF and RMSIFL utilities is found in Section
5.6.

5.3.1 The Formats, Lengths, and Storage of Records

When creating a relative file, you must provide the maximum length
specifications for the records the file will contain. The specified
format then establishes how each record will physically appear in the
file on a storage device. The specified length allows RMS-11 to
verify that records written into the file do not exceed the length
specified at file creation.

5.3.1.1 Record Formats - DIBOL supports two types of record formats:

1. Fixed-length

2. Variable-length

The choice of a record format depends on the file's organization.
Table 5-1 shows the permissible combinations of file organizations and
record formats.

5-6

TABLE 5-1

PERMISSIBLE COMBINATIONS OF

FILE ORGANIZATIONS AND RECORD FORMATS

File Organization

1----

Sequential

Relative

Fixed-length Record Format:

Record Format

Fixed-length

Input Only (1)

Yes

Variable-leng

Yes

Yes (2)

(2)

Records in the file are all equal in length; each record occupies the
same amount of space in the file.

Variable-length Record Format:

Records in the file need not be equal in length. For retrieval of
variable-length records, RMS-Il prefixes a count field to each record
it writes. The count field describes the record length (in bytes).
The count field is removed before a record is passed to the program.
Variable-length records in files on disk devices have a one-word
binary count field preceding the data field portion of each record.
The length of the most recently accessed record is available to the
DIBOL program via the RSTAT external subroutine.

5.3.1.2 Record
length and the
How RMS-ll uses
selected.

Lengths - When defining the file, define the reco d
specific information for the record format selected.
this information depends upon the record format

When selecting fixed-length records, indicate the actual length of
each record in the file. This length specification becomes part of
t e information stored and maintained by RMS-ll for the file. There­
after, if a program attempts to write a record whose length differs
from the previously defined length, RMS-ll will reject the operation
and DIBOL will return an error indicating the record was too long.

5-7

I

I

When creating a file with variable-length records, specify a maximum
record length greater than zero. Subsequently, each record that a
program actually writes must be less than or equal to this length or
RMS-ll rejects the operation.

When creating a sequential or an indexed file with variable-length
records, specify a maximum record length equal to zero. RMS-ll then
neither checks nor enforces a maximum record length. (When a
sequential file is created by means of a DIBOL OPEN for output (0
mode] statement, the maximum record length is always set equal to
zero.)

5.3.1.3 Record Storage - The unit of storage for RMS-ll relative and
indexed files is the "bucket." A bucket can hold only complete
records; it can never contain a portion of a record, and records
cannot span bucket boundaries. The buckets can only be read one at a
time.

You define the size of buckets in a file at the time you create the
file. Buckets can consist of from 1 to 32 blocks (32 blocks is the
maximum bucket size allowed on the Professional). When selecting a
bucket size, consider file organization, record format, record size,
and the internal information RMS-ll maintains in each bucket. Since
this can be a complicated decision, refer to PRO/RMS-ll: An
Introduction before defining the bucket size.

RMS-ll uses bucket locking with relative and indexed files to ensure
that a program can add, delete, or modify a record in a file without
another program simultaneously accessing the same record. When a
record is read or written, the bucket in which the record is contained
is locked depending on mode. A READ can be done without locking. A
READ in U mode locks the record until it is rewritten or it is
unlocked. Indexes are also locked during the time records are being
accessed.

When the program opens a relative or an indexed file with the declared
intention of writing or updating records, RMS-ll locks any bucket ac­
cessed by the program. This locking prevents another program from
accessing any record in the bucket until your program releases it.
The lock remains in effect until your program either accesses another
record, rewrites the locked record, or explicitly unlocks the locked
bucket. RMS-ll then unlocks the locked bucket and locks the new one,
if any. The unlocked bucket is then available for access by another
concurrently executing program.

If you have large buckets and small records, you will lock more
records when you lock a bucket. This could cause you to get many
RECORD LOCKED (*40) errors when other programs try to access the
locked bucket. Since this error is nonfatal, you can trap it, but you
will suffer from poorer performance than with smaller buckets.

5-8

5.3.2 RMS-II File Size

The size of an RMS-II file is expressed as an integral number of vir­
tual blocks. Each virtual block in a file is a unit of data whose
size depends on the physical medium on which the file resides. For
example, the size of virtual blocks in files on disk devices is 512
bytes. (Operating system convention established this size; it cannot
be altered from the DIBOL environment.)

5.4 USING RMS-II FILES

After DIBOL or the RMSDEF utility is used to create a file with a
given set of attributes, the application program can access the file
to store and retrieve data. When the application program accesses the
file it may perform record operations that:

• Read a record.
program.

RMS-II returns the existing record to your

• Write a record. RMS-II adds the new record to the file.

• Update
record.

a record. RMS-II modifies the contents of an existing
The modified record replaces the old record.

• Delete a record. RMS-II removes the existing record from the
file (relative and index organization only) •

The types of record operations allowed on a file depend on that file's
organization.

5.4.1 Sequential File Record Operations

In the sequential file organization, your program can sequentially
read existing records from the file (the READS statement). New
records can be written sequentially (the WRITES statement). You
cannot delete or update records.

5.4.2 Relative File Record Operations

The relative file organization permits greater flexibility in
performing record operations than the sequential organization.

Your program can read existing records from the file using sequential
(READS) or random (READ) access modes. Records can be written
sequentially (WRITES) or randomly (WRITE). If the format of the
records is variable-length, update operations using the READ(S) and
WRITE statements can modify record length (though the length cannot
exceed the maximum specified when the file was created).

You cannot physically delete records; you can zero a record by
updating it appropriately.

5-9

5.4.3 Indexed File Record Operations

The indexed file organization provides the greatest flexibility in
performing record operations. Your program can read existing records
from the file in sequential (READS) or random (READ) access modes.
New records can be written randomly (STORE). Your program can update
records using WRITE (after a READ or READS) and delete records using
DELETE (after a READ or READS). For the update operation, the primary
key must not be changed.

5.4.4 Block Mode Access

Block mode access is supported by DIBOL on the Professional but is not
currently documented in the DIBOL-83 Language Reference Manual. A
file opened in block mode (using 0:8, I:B, or U:8), can be accessed
with a subsequent read or write in the form:

READ (ch,buffer,block~)

WRITE (ch,buffer,block~)

where:

ch

buffer

block~

is the channel number.

is an alpha field or record where the data is to be
stored.

is an alpha field or record or literal specifying the
relative block number to be read or written.

Multiple blocks will be transferred depending on the size of the
buffer. An error message will be generated if the buffer size is not
a multiple of 512.

5.4.5 Record Operations and RMS-ll MACROS

Table 5-2 cross references DI80L language statements with RMS-ll file
organization and record operations. It is provided for RMS-ll MACRO
programmers who might wish to know which MACRO functions implement
which DIBOL statements. If a DI80L statement does not appear in the
table, then it may not be used with RMS-ll. If a statement appears
but has the entry "-none-" in the column, that statement is either
prohibited or not defined for the given RMS-ll file organization. The
other entries indicate the RMS-ll MACRO function ($CLOSE, $DELETE,
etc.) that corresponds to the DIBOL statement, and the functions (get,
put, etc.) that can be performed in the given instance, or the access
mode (seq, ran) involved.

5-10

TABLE 5-2

RMS-ll RECORD OPERATIONS

File Organization
DIBOL
Statement Sequential Relative Indexed

CLOSE $CLOSE $CLOSE $CLOSE

DELETE -none- -none- $DELETE
-ran

OPEN-I $OPEN $OPEN $OPEN
-get -get -get

OPEN-O (: R) $CREATE $CREATE (0: R) -none-
-put -get,

put,upd

OPEN-U -none- $OPEN -none-
-get,
put,upd

OPEN-SI -none- -none- $OPEN
-get

OPEN-SU -none- -none- $OPEN
-get,put,
upd,del

READ -none- $GET $GET
-ran -ran

READS $GET $GET $GET
-seq -seq -seq

STORE -none- -none- $PUT
-ran

UNLOCK $FREE $FREE $FREE

WRITE -none- $PUT/$UPDATE $UPDATE
-ran -ran

WRITES $PUT $PUT --none-
-seq -seq

5-11

5.5 RMS-ll ERROR MESSAGES

RMS errors are translated, wherever possible, to errors for reporting
as DIBOL run-time errors. R~S errors that do not correspond to
existing DIBOL errors are handled as fatal RMS errors. Fatal RMS
errors are displayed in the general format:

?UNEXPECTED RMS ERROR decimal value

Here "decimal value" is an RMS-ll Macro (decimal) error number. For
the RMS error messages, see the PRO/RMS-ll Macro Programmers Guide.

5.6 AN EXAMPLE: CREATING AN INDEXED FILE

NOTE

An RMS-ll sequential file or fixed-length
relative file may be created simply by
opening the file in 0 or O:R mode -­
there is no need to use RMSDEF for
creating these files.

This section presents the RMSDEF dialogue that creates the indexed
file INFO.ISM. It is assumed that the device is the system disk (SY:)
and that the account is [200,15].

The record EMPLOY, which is the relevant record in PRGRM1.DBL and
PRGRM2.DBL, is defined as follows:

ID,
key.
key.

RECORD EMPLOY
LNAME, AlO
ID, A6
ADDRSS, A20
FILLR, A40

the employee
LNAME, the

identification number, will be used as the primary
employee's last name, will be used as an alternate

The RMSDEF dialogue is generated on the RSX-llM AND RSX-llM-PLUS
operating systems with the following command.

RUN $RMSDEF.TSK

The RMSDEF dialogue is generated on the VAX/VMS operating system with
the following command.

MCR DEF

The RMSDEF dialogue is generated on the p/OS operating system with the
following command.

RUN RMSDEF

5-12

The RMSDEF dialogue now follows. Comments are interspersed in the
dialogue where appropriate. Although each user response must be
terminated by pressing the RETURN key, this terminator «CR) below) is
explicitly shown only when a default is being accepted.

RUN $RMSDEF.TSK
DO YOU WANT TO GENERATE A COMMAND FILE FOR FUTURE USE(NO)?<CR)

No command file is desired.

ENTER FILE SPECIFICATION:INFO.ISM

INFO.ISM is the file specification desired for the indexed file being
created.

IF THE FILE ALREADY EXISTS, DO YOU WANT TO SUPERSEDE IT(NO)?<CR)

If a file named INFO.ISM already exists, do not delete it (create a
new version) •

ENTER FILE ORGANIZATION (SEQ) :IDX

The file is to be an indexed file. The options are SEQ (sequential),
REL (relative), and IDX (indexed).

ENTER RECORD FORMAT (VAR) :FIX

The only options are FIX (fixed) and VAR (variable).

The record EMPLOY is of FIXed size.

ENTER MAXIMUM RECORD SIZE:76

76 bytes (or characters) is the size of the record EMPLOY.

DO YOU WANT CARRIAGE RETURN CONTROL(YES)?<CR)

This makes the file look neat when you print it or display it on a
terminal.

IT'S TIME TO DEFINE THE PRIMARY KEY
ENTER DATA TYPE (STR) :<CR)

Field ID contains a string (STR) of ASCII characters. (This would be
true even if ID were a decimal field rather than an alpha field.)

ENTER POSITION OF KEY:lO

The field ID starts with the eleventh byte of the record. If it had
started with the first byte of the record its position would have been
O.

ENTER SIZE OF KEY:6

5-13

The field ID is 6 characters long.

ENTER NAME OF KEY(NONE) :ID

The name of the primary key field is ID. The default is to assume
that the key field has no name.

WILL YOU ALLOW DUPLICATE KEYS(NO)?<CR>

Each record is to have a unique value for the primary key.

DO YOU WANT TO DEFINE MORE KEYS(NO)?Y

The answer is Yes. The field LNAME is to be an alternate key.

ENTER DATA TYPE(STR) :<CR>

LNAME contains a string (STR) of characters.

ENTER POSITION OF KEY:O

The field LNAME starts at the beginning of the record.

ENTER SIZE OF KEY:10

The field LNAME is 10 characters long.

ENTER NAME OF KEY(NONE):LNAME

The name of the first (and in this case the only) alternate key field
is LNAME.

WILL YOU ALLOW DUPLICATE KEYS(YES)?<CR>

Different employees may have the same last name.

WILL YOU ALLOW KEYS TO CHANGE(YES)?<CR>

If an employee quits or is fired, his identification number may be
given to a newly hired employee.

DO YOU WISH TO DEFINE A NULL KEY VALUE(NO)?<CR>

You would want a null key value if there were some records that could
not be accessed by this alternate key.

JUST FINISHED ALTERNATE KEY NUMBER 1
DO YOU WANT TO DEFINE MORE KEYS(NO)?<CR>

No additiona+ alternate keys are desired.

DO YOU WANT TO DEFINE AREAS(NO)?<CR>

Areas are discussed in PRO/RMS-ll: An Introduction.

5-14

DO YOU WANT PLACEMENT CONTROL(NO)?(CR)

If placement control were chosen, you would be able to pick a specific
location on the disk in which to place the file or an area of the
file. Placement control is of no use when operating in the tool kit
environment.

ENTER INITIAL ALLOCATION IN BLOCKS(0):40

Assume there are somewhat less than 200 records in the sequential file
INFO.DDF that is going to be used to populate the file INFO. ISM (see
the end of this section). Since each record is 76 bytes long, the
initial allocation should be at least 15,200 bytes. Since 30 blocks
contain 15,360 bytes, 30 blocks might seem a reasonable initial
allocation. However, in the present case, it is expected that the
file will probably grow by about a third of its original size. There­
fore, about one-quarter of the initial allocation should be set aside
for those records that will be added later. An initial allocation of
40 blocks is reasonable under these conditions. For additional
discussion of data storage space requirements, see Section 5.7.

ENTER BUCKET SIZE(1):4

Note that the maximum bucket size allowed is 32. For additional dis­
cussion of bucket size see PRO/RMS-ll: An Introduction. The value
entered here will determine the size of buffers to be allocated when
the file is OPENed and overrides the value specified with the PROC
statement.

ENTER DEFAULT EXTENSION QUANTITY IN BLOCKS(0):4

In the present case, although the file is expected to grow by about a
third of its original size, it is not expected to grow by much more
than that. Therefore, since it is felt that little or no extension
will be necessary beyond the initial allocation, this minimal exten­
sion quantity of 4 was chosen.

DO YOU WANT A CONTIGUOUS FILE(NO)?(CR)

If you choose to have a contiguous file, make sure your initial allo­
cation is big enough to handle as many records as you will ever want
to enter. If the file is extended it becomes noncontiguous.

THESE QUESTIONS ARE FOR THE PRIMARY KEY:

THE BUCKET SIZE IS 4 BLOCKS.
ENTER FILL NUMBER FOR DATA BUCKETS(O) :1536

5-15

That is, 1536 bytes in each bucket are allotted for receiving data
when the file is initially populated. Since the bucket size is 4
blocks (2048 bytes), this sets aside one quarter of the bucket (2048 -
1536 = 512 = one quarter of the bucket) for records added after the
file is populated. By leaving empty space in each bucket, bucket
splitting may be avoided until buckets become full. Bucket splitting
is a high overhead operation that can have a large effect on system
performance.

Remember that the first three digits of the ID number represent a
department and the last three digits represent an employee number
within that department. Therefore, with respect to the ID number,
records will be more or less randomly scattered throughout the file.
This fact, together with the expected growth of the file, means that
new records should be adequately handled with this fill number.
(Remember that a growth of one-third the original size of the file
equals one-fourth the final size of the file.)

ENTER FILL NUMBER FOR INDEX BUCKETS(O) :1536
THESE QUESTIONS ARE FOR ALTERNATE KEY NUMBER 1

THE BUCKET SIZE IS 4 BLOCKS.
ENTER FILL NUMBER FOR DATA BUCKETS(O) :1536
ENTER FILL NUMBER FOR INDEX BUCKETS(O) :1536

SPECIFY PROTECTION BY CLASS:
OWNER (RWED ALLOWED):
GROUP (RWED ALLOWED):
SYSTEM (RWED ALLOWED) :
WORLD (R ALLOWED):

YOUR FILE HAS BEEN CREATED!!! -- SY: [200,15]INFO.ISM

ENTER FILE SPECIFICATION:AZ

CTRL/Z exits.

To populate the indexed file INFO.ISM with the data contained in the
sequential file INFO.DDF created by PRGRM1.DBL, use RMSCNV as follows:

On RSX-IIM or RSX-IIM-PLUS

RUN $CNV
CNV)INFO.ISM/FO:ISM=INFO.DDF
CNV)A Z

On VAX/VMS

MCR CNV
CNV)INFO.ISM/FO:ISM=INFO.DDF
CNV)A Z

5-16

5.7 DATA STORAGE SPACE REQUIREMENTS

The space RMS-II requires to store data is proportional to the organ­
ization of the file and the processing capabilities of that
organization:

Sequential File organization

RMS-II adds an empty byte to the size of your data to align each
record with a word boundary (a word equals two bytes). However,
even if this empty byte is added, it is not included in the record
byte count. When the file contains variable length records,
RMS-Il adds a record-length field of two bytes to each record.

Relative File Organization

RMS-II constructs a series of record storage cells based on the
length of the records. The cells are one byte longer than the
fixed size of fixed-length records or three bytes longer than the
maximum size specified for variable-length records.

Indexed File Organization

RMS-II adds to your data:

• an index for each defined key

• fifteen bytes of formatting information for each bucket

• a seven-byte header for each record

• a record-length field for each variable-length record

• other overhead of varying lengths for records RMS-Il moves
during file activity and for deleted records

An additional fact to keep in mind is that records cannot cross bucket
boundaries. In the example given above, the bucket size chosen is 4
blocks and the record size is 76 bytes. Therefore, a maximum of 26
records can be placed in a bucket. If there were indeed 200 records,
they would not be able to fit into the 30 blocks originally suggested
for the initial allocation.

For additional information see PRO/RMS-11: An Introduction.

5-17

I I

I I

I I

I I

I I

II

II

II

CHAPTER 6

THE DIBOL DEBUGGING UTILITY (DDT)

DDT (DIBOL Debugging Technique) is a utility that allows you to
interact with your DIBOL program while it is executing. The program
is run with DDT after it has been compiled on either a host system or
the Professional 300 system; it is run with (or without) DDT only on
the Professional.

6.1 FEATURES

The features of DDT are intended
problems; examining and modifying
execution directly without having
application again. Specifically, you

to aid the programmer in locating
data values; and testing program

to edit, compile, and rebuild the
may:

• Set predetermined stopping points.

• Examine and/or alter the contents of variables.

• Single step through lines of a DIBOL program.

• Trace through sequences of XCALL nestings.

6.2 PREPARING FOR DDT

This section reviews the procedures required to compile, link, and run
with DDT.

6.2.1 Compiling

The main program, as well as all subroutines which are to be debugged,
must be compiled for use with DDT by specifying the DDT option (/D) in
the DI80L compiler command. This option generates a symbol table used
by DDT.

If certain subroutines are known to be already debugged, you may
compile your program specifying /D only for those modules you intend
to further debug.

6.2.2 Application Building

A DIBOL task must be linked with a special DDT module in order for DDT
to be available at run time. See Chapter 4 in this manual for
detailed information.

6-1

6.2.3 DDT Operation

6.2.3.1 Running DDT - Control is initially passed to DDT whenever a
program compiled and application built for DDT operation is run. DDT
outputs its version number and, on the next line, the hyphen prompt.
This is illustrated below for a program, which has been compiled and
linked for DDT:

execute program
DIBOL DDT VOl.OO

At this point, any valid command discussed in Section 6.3 can be
entered.

6.2.3.2 Using a Terminal Connected to the Printer Port - A terminal
connected
enter the
display is
assigned to

to the Professional printer port can be used to monitor and
DDT commands and responses. In this way the normal screen
not disrupted. To do this TT2: (the printer port) must be
DDTLUN:

ASG=TT2:l7

Normally the DDT logical unit number (LUN 17) is assigned to TI: (the
Professional terminal) in the PAB command file (.CMD).

6.2.3.3 Failure to Properly Prepare for DDT - If you forget to
perform one of the required steps in Sections 6.2, the program will
exhibit the following characteristics:

• If no DDT was requested during compilation, but DBLDDT.OBJ was
linked when the application was built, the program will
respond to DDT except for those commands that examine and/or
alter the contents of variables.

• If no DDT was requested during application build, the program
will run as though no ddt were requested.

6.2.3.4 Error Messages - See the Professional Tool Kit DIBOL Message
Manual for the DDT error messages and their meanings.

6.3 DDT COMMANDS

This section discusses valid DDT commands. In the following text,
when the term routine is used it refers to a specific program module;
either the main program or an external DIBOL subroutine.

6-2

For future reference, the DDT commands and command formats are listed
below in the order they appear in this section.

Task Command

Start or resume execution CTRL/Z

Single step CTRL/G

Setting breakpoints $[name:]nnn

Clearing breakpoints $[name]

Iteration of breakpoints >n

Examining variables vvv=

Setting variables vvv=nnn

Extended variable manipulation ++vvv= or ++vvv=nnn

Subroutine traceback

DDT commands (except the CTRL/Z and CTRL/G commands) must be followed
by a carriage return «CR».

6.3.1 Program Execution Control

Program execution control has two functions: it allows you to resume
execution after a breakpoint has been encountered; and it allows you
to single step through individual DIBOL statements to see if they are
being properly executed.

6.3.1.1 Program Execution - To start or resume execution of the DIBOL
routine from a DDT breakpoint, enter the following command in response
to the DDT prompt:

-CTRL/Z

There are no arguments. The current routine simply starts or resumes
execution.

6.3.1.2 Single Step
of a computed GOTO,
take. The single
routine and halts.
response to the DDT

-CTRL/G

- It is frequently desirable to know which branch
or of a complicated IF statement the program will
step command executes the next instruction in the

To single step, enter the following command in
prompt:

6-3

There are no arguments. The routine executes the present instruction
and returns the following message:

AT LINE xxxx IN ROUTINE yyyy

where:

xxxx

yyyy

is the line number of the next instruction to be
executed.

is the name of the routine in which line xxxx resides.

You may now enter any DDT command in response to the DDT prompt.

Example:

Assume there is a conditional GOTO statement at line 47 in routine
SUB3 and you want to find the next instruction to be executed. First,
while in subroutine SUB3, set a breakpoint (see Section 6.3.2.1) at
line 47:

$47

Start execution of the routine by issuing a CTRL/Z. When line 47 is
reached, the display will be:

DDT BREAK AT LINE 47 IN ROUTINE SUB3

Respond to the prompt with CTRL/G. The display will be:

AT LINE nn IN ROUTINE SUB3

where:

nn is the next instruction to be executed.

6.3.2 Breakpoint Control

A breakpoint is a user-determined stopping point within a routine.
Breakpoints are used in a routine to exercise other DDT capabilities.

6-4

6.3.2.1 Setting Breakpoints - Type the following command in response
to the DDT prompt to set a breakpoint:

-$[name:]nnn

where:

name

nnn

Example:

-$SUBl:50

is the name of the routine in which the breakpoint is to
be set. If a breakpoint is to be set in the main
program, the name of the first routine specified in the
link command (by convention, the root segment) should be
used. Otherwise, the name of the routine should match
the name given in the subroutine statement. If the name
argument is omitted, the current routine is assumed.

is the line number at which the routine is to halt.

• The line at which the routine is halted has not yet
been executed.

• A maximum of eight breakpoints may be set at anyone
time.

• Only one breakpoint is allowed in any main program or
subroutine at any given time.

• A breakpoint in the data section has no meaning and
will never cause a break.

sets a breakpoint at line 50 in subroutine SUBI.

-$21

sets a breakpoint at line 21 in the current routine.

6.3.2.2
cleared
prompt:

Clearing
by typing

Breakpoints
the following

Previously set breakpoints may be
command in response to the DDT

-$[name]

where:

name is the name of the routine in which the breakpoint is to
be deleted. If name is omitted, the breakpoint in the
current routine is cleared.

6-5

Example:

-$SUB2

• The breakpoint in a
before a breakpoint
routine.

routine
is set

need not be deleted
at a new line in that

• Setting a new breakpoint automatically deletes any
other breakpoint in that routine.

clears the breakpoint in subroutine SUB2.

-$56

sets a breakpoint at line 56 in the current routine and clears any
prior breakpoint in that routine.

6.3.2.3 Iteration of Breakpoints - To test the effects resulting from
iterative procedures, it is sometimes useful to set a breakpoint in a
loop and pass through it several times before allowing execution to
halt. This is accomplished with the following command in response to
the DDT prompt:

->n

where:

>

n

Example:

is the iteration specifier.

is the iteration count.
breakpoint is to be
halted.

This is the number of times the
encountered before execution is

• The iteration count can be set only in the current
routine.

• You must be at the breakpoint before issuing the
iteration command.

• Execution is halted the nth time the breakpoint is
encountered.

Assuming that a breakpoint is set in a loop at line 25 of the current
routine and the program executes until reaching this point, the
response will be:

DDT BREAK AT LINE 25 IN ROUTINE XXX

6-6

where:

xxx is the name of the current routine.

You might respond with an iteration count and execution command:

->8
-CTRL/Z

The routine then loops through this location; stopping the eighth time
it reaches line 25. The response is:

DDT BREAK AT LINE 25 IN ROUTINE XXX

6.3.3 Variable Manipulation

Variable manipulation allows you to change or examine variables in a
routine to determine whether or not they are being correctly handled.

6.3.3.1
desired
prompt:

Setting
value by

Variables - Variables may be set (loaded) with any
using the following command in response to the DDT

-vvv=nnn

where:

vvv

nnn

Examples:

is the variable name.

is the value you want to assign to the variable.

• If the length of nnn is too long to store in vvv, the
data is left justified in the field and the excess
right-hand characters are truncated. This is true
for both alpha and decimal fields.

• Do not use single quotes when specifying alpha data.

• A field, alpha or decimal, can be cleared by entering
a space for an assigned value.

• Decimal literal subscripts, single or double, can
also be used to set variables.

-VAR1=ABCD

Assigns the value of ABCD to VAR1.

6-7

-VARl='ABCD'

Assigns the value of 'ABC to VARI.

6.3.3.2 Examining Variables Variables may be examined to verify
their contents with the following command in response to the DDT
prompt:

-vvv=

where:

vvv

Example:

is the variable name. Decimal literal subscripts,either
single or double, may be used with the variable name to
access an array element, a part of a field, or data in
an unlabeled field.

Assume you have stopped at a breakpoint; then:

-VARl=

results in a display of the present contents of this variable.

6.3.3.3 Extended Variable Manipulation - It is possible under the
specific circumstances explained here to examine, or to set, a
variable used outside the current routine. This may be done only when
the variable is defined in the routine which called the current
routine or is defined in one of the routines in the chain of calls
which led to the current routine. For example:

-++VAR2=

will return the current value of VAR2 located in the chain of routines
which called the current routine. The two plus signs indicate that
the variable was defined in a routine located two calls back (two
levels of nesting) in the chain which led to the current routine.
Also:

-++VAR2=EFGH

will set VAR2 to the value EFGH.

6-8

6.3.4 Subroutine Traceback

The subroutine traceback feature allows you to determine whether or
not the calling sequences (XCALL statements) are executing in the
expected manner. The output is a list of the routines and the line
numbers in those routines of all the related preceding XC ALL
statements back to the main program. To obtain this list, enter the
following command (a caret, up arrow, or circumflex) in response to
the DDT prompt:

There are no arguments.
generated.

The circumflex (A) causes the list to be

Example:

Assume you have halted in a subroutine at a DDT breakpoint, or you
have single stepped to the current position, and you need to know how
you arrived at this point from the main program. The command and
traceback list might look like the following:

AT LINE 37 IN ROUTINE SUB3
AT LINE 192 IN ROUTINE SUB2
AT LINE 21 IN ROUTINE MAIN

(current location)
(SUB3 called from SUB2, line 192)
(SUB2 called from MAIN, line 21)

You are still in routine SUB3 and may enter any DDT command.

6-9

CHAPTER 7

DIBOL INTERFACE TO FMS

This chapter assumes that you
subroutines explained in this cha
XCALL statement to incorporate
programs; each subroutine calls
chapter presents argument data
building information for the DIBOL

are familiar with FMS. The DIBOL
er provide a way for you to use the
FMS functionality in your DIBOL

a function provided by FMS. This
types, calling syntax, and task
interface to FMS-il.

For more information on FMS-ll, see the list of related documents in
the preface.

In DIBOL applications, all values passed to and from the form driver
must be ASCII string variables or literals. When the form driver
returns a string value, the length is the length of the field,
including any trailing spaces or fill characters. String values that
are shorter than the DraOL variables to which they are assigned are
'left-justified and the fields are blank filled. String values that
~re longer than the variables to which they are assigned result in the
orBOL run-time error message #31 (Argument wrong Size) and cause the
form driver to set the status code to -22.

7.1 DrBOL DATA TYPES FOR FORM DRIVER ARGUMENTS

All the forms
common meaning.

Argument
Abbreviation

chan

fid

fidx

flen

flnm

foam

driver
These

arguments used in DIBOL XCALLs to FMS have a
are explained in Table 7-1.

TABLE 7-1

ARGUMENT DATA TYPES

Explanation
(purpose, data , and data structure)

l
Channel
literal

number: ASCII numeric string variable or

Field name: six-byte ASCII string variable or literal

Field and named data index: ASCII numeric string vari­
able or literal

Field length: ASCII numeric variable or literal

Form library file specification: ASCII string variable
or literal (must incorporate a trailing space)

Form name: six- e ASCII string variable or literal

Continued on Page 7-2

7-1

fval

tid

impure

line

size

status

stat2

term

Named data value, one or more field values, text for
display on the bottom screen line: ASCII string vari­
able or literal (the size depends on the application)

Keyboard string that identifies the terminal. The de­
fault can be identified by KBn: where n is the terminal
number.

Impure area: byte array (using the impure area size
that the Form Editor and the Form Utility report, the
size of the array should be 64 bytes larger than the
largest impure area for the forms that the application
uses) •

First line for a displayed form: ASCII numeric variable
or literal

The size of the impure area in bytes: ASCII numeric
value

Call completion status: ASCII numeric string variable

RSTS/E system
variable

Field terminator
literal

error code: ASCII numeric string

code: ASCII string variable or

7.2 SYNTAX FOR THE CALLS

All Form Driver calls use the XCALL statement. The following table
summarizes the principal purposes and shows the full XCALL statement
syntax for each call. The arguments that you must supply are in lower
case letters, and optional arguments are enclosed in square brackets
([and]). The formats of calls that have no arguments are listed
separately. The argument abbreviations and purposes are fully
described in Table 7-2.

TABLE 7-2

DIBOL FORM DRIVER CALLS

Call Summary and Forms
Abbreviation

CLRSH Clears the entire screen and displays the form with the
default field values. If a line number is specified,
it is used as the first line of the form.

XCALL CLRSH (fnam[,line])

ContInued on page 7-3

7-2

PGCF

FGET

GETAP

GETAL

IDATA

INIT

PINLN

LCHAN

Returns the field name from the Porm Driver argument
list {and if it is an indexed field, its index).

XCALL PGCF (fld(,fldx])

If a field name is specified, FGET gets and returns the
value for the field and the field terminator used. If
no field name is specified, FGET aces the cursor at
the lower right corner of the screen and deactivates
all operator responses except the RETURN and ENTER
keys.

XCALL FGET ([fval,term,fid[,fidx]])

Gets and returns the value, field name (and if it is an
indexed field, its index), and the field terminator
used for the field that the operator chooses.

XCALL GETAF (fval,termffid[,fidx))

If the call includes an argument, GETAL gets and
returns a concatenated string of all field values (and
optionally the last field terminator used). If no
arguments are specified, GETAL gets all values from the
operator t only stores them in the impure area.

XCALL GETAL ([fval[,term]])

Gets and returns the named data value that has the spe­
cified index.

XCALL IDATA (fidx,fval)

Supplies to the Form Driver the name and size of the
impure area to use. The 'size' argument isn't needed
unless the 'status' argument is being passed. Size is
conveyed by the DIBOL 'size, origin descriptor! passed
for every argument.

XCALL FINIT (impure[,size[,status]])

Gets and returns a concatenated string of the field
values for the current line of the scrolled area that
contains the specified field name and the last termi­
nator used.

XCALL FINLN (fid,fval,term)

Supplies the Form Driver with the I/O channel (LUN) to
use for reading a form library file.

XCALL LCHAN (chan)

7-3

LCLOS

FLEN

LOPEN

NDATA

OUTLN

FPFT

FPUT

PUTAL

Closes the current form library file.

XCALL LCLOS

Returns the length of the specified field.

XCALL FLEN (flen,fid(,fidx])

Opens the specified form library file.

XCALL LOPEN (flnm)

Gets and returns the named data value that has the spe­
cified named data label.

XCALL NDATA (fid,fval)

Displays the specified string of field values in the
current line of the scrolled area that contains the
specified field.

XCALL OUTLN (fid,fval)

If the call includes an argument, FPFT processes the
specified field terminator and identifies the
appropriate field as the current field. To get the
name of the field, use the FGCF call. If the specified
terminator is a scrolled area terminator, the name of a
field in the intended scrolled area must be specified;
if a string of values is also specified, they will be
displayed on the top or bottom line of the scrolled
area after the terminator is processed. If no argument
is included, FPFT processes the last terminator that
was used.

XCALL FPFT ((term[,fid[,fval]]])

Displays the specified value in the specified field.

XCALL FPUT (fval,fid(,fidx])

Displays values in all fields of the form. If a conca­
tenated string of values is supplied, each value must
be the same length as the field in which it is to be
displayed. The values must be in the same order that
the GETAL call would produce for the form. Values from
the supplied string are displayed in the first fields
of the form; defaults are displayed in any fields that
remain. If no string of values is supplied, default
values are displayed in all fields.

XCALL PUTAL ([fval])

7-4

FPUTL

RETAL

FRETN

FSHOW

SPOFF

FSPON

FSTAT

If an argument is specified, FPUTL displays the
specified string on the bottom line of the screen. If
no argument is specified, FPUTL clears the bottom line.

XCALL FPUTL ([fval])

Returns the current values for all fields in the form
in the same order that the GETAL call would produce.

XCALL RETAL (fval)

Returns the current value of the specified field.

XCALL FRETN (fval,fid[,fidx])

Clears the
was created
values. If
as the first

area of the screen specified when the form
and displays the form with default field
a line number is specified, FSHOW uses it

line for the form.

XCALL FSHOW (fnam[,line])

Turns off the supervisor-only mode and allows the
operator to enter and change data in fields to which
the supervisor-only attribute was assigned with the
Form Editor.

XCALL SPOFF

Turns on the supervisor-only mode and prevents the op­
erator from entering or changing data in fields to
which the supervisor-only attribute was assigned with
the Form Editor.

XCALL FSPON

Returns the status code for the last call that was pro­
cessed as the value of the first argument. The value
of the second argument is meaningful as an RMS system
error code (depending on the version of the Form Driver
in use) only if the value of the first argument is -4
or -18. These two arguments indicate an error occurred
while trying to open or read a form library file.

XCALL FSTAT (status[,stat2])

7.3 BUILDING A DIBOL TASK

The following
application.
library. In
building, the

example shows how to build a nonoverlaid FMS DrBOL
The command file builds with the Form Driver object
order to include this object library when application

following three steps should be added.

7-5

STEP 1

Compile the program using the /B switch causing the OIBOL compiler
to create default .CMD and .ODL files for you.

STEP 2

Edit the .ODL file and add '-LB:[1,5]FDV/LB' to the end of the
line beginning with 'DBLIB$:'. (See original and modified files,
on the following page.)

ORIGINAL FMSTEST.ODL

.ROOT
APOBJ$: • FCTR
DBLIB$: .FCTR
RMS$: • FCTR
@LB:[1,5]RMSRLX.ODL

.END

APOBJ$-DBLIB$-RMS$
program
L8: [1,5]DBPLIB/LB-LB: [1,5]DBPOSL/LB
RMSROT

MODIFIED FMSTEST.ODL

.ROOT
APOBJ$: • FCTR
DBLI8$: .FCTR
FMS$: .FCTR
RMS$: • FCTR
@LB:[1,5]RMSRLX.ODL

.END

where:

fmslib may be either:

APOBJ$-DBLIB$-FMS$-RMS$
program
L8: [1,5]DBPLIB/LB-LB:[1,5]OBPOSL/LB
LB: [1,5]fmslib/LB
RMSROT

• FDVDBG, which includes error messages that are helpful during
debugging •

• FDV, which is a smaller module without the messages.

STEP 3

Build your program with PAB.

7-6

CHAPTER 8

DIBOL INTERFACE TO p/os SYSTEM SERVICES,
CALLABLE IMAGES, AND ROUTINES

This chapter is
Professional Tool
Manual.

intended to
Kit User's

be used
Guide and

in conjunction with the
the p/os System Reference

Only those services, images, and routines that must be interfaced from
DIBOL are documented. The first four sections (Sections 8.1 through
8.4) include the menu, message, help, and miscellaneous services
available through POSRES. Also included (Section 8.5) are the calls
to the SORT and PROSE utilities. Printing from a DIBOL application is
accomplished via the DIBOL PRINT subroutine rather than the p/os PRINT
utility. The final section (Section 8.6) covers callable system
routines. These three groups are documented in Chapters 5 and 6 of
the Tool Kit User's Guide and as Chapter 8 of the p/os System
Reference Manual, respectively. The sections of this chapter parallel
the contents of those chapters.

This chapter shows the proper format for calls from a DIBOL program.
Within each of these categories an explanation of the arguments
(purpose, data type, and data structure) precedes the presentation of
the calls and the calling format. The explanation for the system
calls is not included here. This chapter includes only the DIBOL
parameters. It should be consulted in conjunction with the
Professional Tool Kit documentation where the Professional system
calls are fully documented.

The DIBOL interface to FMS is documented in Chapter 7 of this manual.
The DIBOL interface to CORE Graphics is documented in Chapter 9 of
this manual.

NOTE

Most of the system calls require specifi­
cation of both the variable name and the
size. The DIBOL SIZE external subroutine
may be used to obtain the size of the
variable.

General Information for Sections 8.1 through 8.4

The p/os user interface services library (POSRES) offers service
routines for displaying menus, on-line help, and messages from frames
created with FDT or stored data. These displays comprise the user
interface for a p/os application. These interface routines can be
called from high-level languages. These sections describe how service
routines can be called in different combinations from DIBOL to display
user interface frames.

8-1

The reason for some menu calls having two entry points from DI80L is
because the parameters passed do not always require the same
conversion.

8.1 MENU SERVICE ROUTINES

This section describes the service routines for creating, retrieving,
and displaying single and multiple-choice menus.

8.1.1 Open Menu File

This routine opens the specified menu definition file. Only one menu
file can be open at any time. Any open menu file is closed before the
requested file is opened. After opening a menu file, one frame at a
time can be read from it.

Call

XCall DMFIL (status,filename,maxlen)

status

filename

maxlen

Example

RECORD
STATUS

PROC

A decimal array with two elements used to return a code
indicating the results of the requested operation. See
Section 5.9 of the Tool Kit User's Guide for status
values.

An alpha
name and
which the
included.

expression specifying the menu definition file
type. The system searches the directory in
application resides unless a directory spec is

A decimal expression indicating the length of the
filename parameter.

,2D3

XCALL DMFIL (STATUS, 'BASETEST.MNU', 12)
IF (STATUS(l) .LT.l) GOTO ERROR

8.1.2 Read Menu Frame

This routine reads the specified menu frame into the static menu
buffer.

8-2

Call

XCall DMFRA (status,frameid,maxlen[,globalstr,maxlen,length])

status

frameid

maxlen

A decimal array with two elements used to return a code
indicating the results of the requested operation. See
Section 5.9 of the Tool Kit User's Guide for status
values.

An alpha expression containing the frame identifier of
the desired frame.

A decimal expression specifying the length of the
preceding alpha variable or alpha literal.

globalstr An optional alpha variable of any length. This parameter
is used to pass back the global action string associated
with the menu frame, if present.

length A decimal variable which
number of characters in
passed back.

is returned indicating the
globalstr that were actually

Example

RECORD

PROC

GLOACT ,ASO
LENGTH ,D2
STATUS ,2D3

XCALL DMFRA (STATUS, 'FRAMEOOl', S, GLOACT, SO, LENGTH)
IF (STATUS(l) .LT.l) GOTO ERROR

S.1.3 Show Single-Choice Menu

This routine displays a frame from the default static menu buffer.

Call

XCall DMEN (status,action,maxlen,length,display,addopt,
[msgl,maxlen,msg2,maxlen])

status

action

max len

A decimal array with two elements used to return a code
indicating the results of the requested operation. See
Section 5.9 of the Tool Kit User's Guide for status
values.

An alpha variable that will receive the action string for
the selected option.

A decimal expression specifying the length of the
preceding alpha variable or alpha literal.

8-3

length

display

addopt

msgl/2

Example

A decimal variable which is returned indicating the
number of characters in action that were actually passed
back.

Reserved for future use. Pass a literal zero.

A decimal expression indicating whether to show an
Additional Options flag on the screen.

o = don't show flag, non-O = show flag

An alpha expression containing text to be displayed at
the bottom of the menu.

RECORD

PROC

&

ACTION
LENGTH
MSGl
MSG2
ADDOPT
STATUS

,A80
,D2
,A30
,A31
,Dl
,2D3

,'THIS IS THE FIRST MESSAGE LINE'
,'THIS IS THE SECOND MESSAGE LINE'
,0

XCALL DMEN (STATUS, ACTION, 80, LENGTH,
Msgl, 30, Msg2, 31

0, ADDOPT,

IF (STATUS(l) .LT.l) GOTO ERROR

8.1.4 Unpack Menu Buffer

This routine unpacks the static buffer into fields.

Call

XCall DMUNP (status,fieldid,maxlen,buff,maxlen,length
[,fieldid,maxlen,buff,maxlen,length .•• J)

XCall DMUNl (status,'DFLT',maxlen,defopt,
'KEYWnn',maxlen,offset,keylen
[,'KEYWnn',maxlen,offset,keylen ••. J)

status

fieldid

maxlen

A decimal array with two elements used to return a code
indicating the results of the requested operation. See
Section 5.9 of the Tool Kit User1s Guide for status
values.

An alpha expression specifying what field is to be
unpacked.

A decimal expression specifying the length of the
preceding alpha variable or alpha literal.

8-4

buff

length

defopt

offset

keylen

Example

RECORD
TITLE
PROMPT
GBLHLP
TXT
OPT
ACT
HLP
DEFLT
KEY
LEN
LTXT
LOPT
LACT
LHLP
LGHELP
LTITLE
LPRMPT
STATUS

PROC

An alpha variable used to pass the value of the fieldid.
For example, if fieldid is 'TITL' then buff receives the
title text.

A decimal variable which is returned value indicating the
number of characters that were actually placed in the
buffer.

A decimal variable that is returned the default option
number.

A decimal variable receiving the number of characters
from the start of the option at which the keyword begins.

A decimal variable receiving the number of characters in
the keyword.

,A80
,A80
,A8
,3A80
,12A80
,12A80
,12A8
,D2
,12D2
,12D2
,3D2
,12D2
,12D2
,12Dl
,Dl
,D2
,D2
,2D3

;

;

;

Will receive
II II

II
..
II

..

..
II

..

the
II

II

..
" ..
..
..
..

'TITL' field
'PRMT' ..
'GHLP' ..
'TEXTNN' Fields
'OPTNNN' Fields
'ACTNNN' Fields
'OHLPNN' Fields
'DFLT' Field
'KEYWNN' key posn
'KEYWNN' key length
Length of TXT (X)
Length of OPT (X)
Length of ACT (X)
Length of HLP(X)
Length of GBLHLP
Length of TITLE
Length of PROMPT
STATUS of the call

Unpack title, global help, and prompt fields.
XCALL DMUNP (STATUS, 'GHLP' , 4, GBLHLP, 8, LGHELP,

& 'TITL' , 4 , TITLE, 80, LTITLE,
& 'PRMT' , 4, PROMPT, 80, LPRMPT)

; Unpack 2 options, Help frames, Action Strings
XCALL DMUNP (STATUS, 'OPTN01' , 6, OPT (1), 80, LOPT (1) ,

& 'OPTN02' , 6, OPT (2) , 80, LOPT(2) ,
& ' ACTN 0 1', 6, ACT (1), 80, LACT (1) ,
& 'ACTN02' , 6, ACT (2) , 80, LACT (2) ,
& 'OHLP01' , 6, HLP (1) , 8, LHLP(l) ,
& 'OHLP02' , 6, HLP(2), 8, LHLP(2))

Unpack key word and default option
XCALL DMUNl (STATUS, 'KEYWO 1', 6, KEY (1) , LEN (1) ,

& 'KEYW02', 6, KEY(2), LEN (2) ,
& 'DFLT' , 4 , DEFLT)

8-5

8.1.5 Pack Dynamic Single-Choice Menu

This routine packs the dynamic menu buffer using specified fields.

Call

XCall DDPAC (status,fieldid,maxlen,buff,maxlen
[,fieldid,maxlen,buff,maxlen •••] ,
['DFLTnn' ,maxlen] ,
['CLRB' ,maxlen])

XCal1 DDPAI (status,'KEYWnn' ,maxlen,offset,length
[,'KEYWnn' ,maxlen,offset,length •••])

status

fieldid

maxlen

buff

offset

length

A decimal array with two elements used to return a code
indicating the results of the requested operation. See
Section 5.9 of the Tool Kit User's Guide for status
values.

An alpha expression specifying what field is to be
packed.

A decimal expression specifying the length of the
preceding alpha variable or alpha literal.

An alpha variable used to pass the value of the fieldid.
For example, if fieldid is 'TITL' then buff contains the
title text.

A decimal expression representing the number of
characters from the start of the option at which the
keyword begins.

A decimal expression containing the number of characters
in the keyword.

8-6

Example

RECORD
TITLE
PROMPT
TXTl
TXT2
TXT3
OPTl
OPT2
ACT
HLP
GBLHLP
KEY
LEN
STATUS

PROC

,A25 ,'Title for DYNAMIC menu
,A30 ,'Select option and press DO
,A30 ~'This is the first text line
,A30 ,'And this is the second line
,A30 ,'And finally the third one
,A30 ,'Option 1 - the first choice
,A30 ,'Second option - the default
,2A8 ,'Action l','Action 2'
,2A8 ,'HELPOOOl' ,'HELP0002'
,A8 , 'HELPOOOO'
,2Dl, 0, 0
,2Dl, 8, 6
,2D3

; Clear the buffer, pack the title, text,
; help, prompt and default option.

XCALL DDPAC (STATUS, 'CLRB' , 4,
& 'DFLT02' , 6,
& 'GHLP' , 4 , GBLHLP, 8,
& 'TITL' , 4 , TITLE, 25,
& 'PRMT' , 4 , PROMPT, 30,
& 'TEXTOl' , 6 , TXTl, 30,
& 'TEXT02' , 6, TXT2, 30,
& 'TEXT03' , 6, TXT3, 30)

; Pack 2 options, Help frames and Action
XCALL DDPAC (STATUS, 'OPTNOl' , 6, OPTl, 30,

& 'OPTN02' , 6 , OPT2, 30,
& 'ACTNOl' , 6 , ACT (1) , 8,
& 'ACTN02' , 6, ACT (2) , 8 ,
& 'OHLPOl' , 6, HLP (1) , 8,
& 'OHLP02' , 6, HLP(2) , 8 ,

global

Strings

; Pack key word information. (Note: requires DDPAl
; entry)

XCALL DDPAl (STATUS, 'KEYWOl' , 6, KEY (1) , LEN (1) ,
& 'KEYW02' , 6, KEY(2) , LEN(2))

8.1.6 Display Dynamic Menu

This routine displays a single choice menu constructed from the dyna­
mic buffer. The operation of a menu created with DMENU is identical
to the operation of a menu displayed with the MENU routine.

8-7

Call

XCall DDMEN (status,action,maxlen,length,display,addopt,
[msgl,maxlen,msg2,maxlen))

status

action

maxlen

length

display

addopt

A decimal array with two elements used to return a code
indicating the results of the requested operation. See
Section 5.9 of the Tool Kit User's Guide for status
values.

An alpha variable that will receive the action string for
the selected option.

A decimal expression specifying the length of the
preceding alpha variable or alpha literal.

A decimal variable which is returned indicating the
number of characters in action that were actually passed
back.

Reserved for future use. Pass a literal zero.

A decimal expression indicating whether to show an
Additional Options flag on the screen.

a = don't show flag, non-O = show flag

msgl,msg2 An alpha expression containing text to be displayed at
the bottom of the menu.

Example

RECORD

PROC

&

ACTION
LENGTH
MSGI
MSG2
ADDOPT
STATUS

,A80
,D2
,A42
,A43
,Dl
,2D3

,'The first message line of the Dynamic Menu'
,'The second message line of the Dynamic Menu'
,0

XCALL DDMEN (STATUS, ACTION, 80,
MSGl, 42, MSG2, 43)

IF (STATUS(l) .LT. 1) GOTO ERROR

LENGTH, 0, ADDOPT,

8.1.7 Pack Multiple-Choice Menu

This routine packs the multibuffer with peripheral parts of the
mUltiple-choice menu. Peripheral parts of the menu include the title,
text lines, and prompt, as well as the global action string and help
frameid.

8-8

Call

XCall DMPAC (status,fieldid,maxlen,buff,maxlen
[,fieldid,maxlen,buff,maxlen •••) ,
['CLRB' ,maxlen))

status

fieldid

max len

buff

Example

RECORD
TITLE
PROMPT
TXTl
TXT2
TXT3
GBLHLP
STATUS

PROC

A decimal array with two elements used to return a code
indicating the results of the requested operation. See
Section 5.9 of the Tool Kit User's Guide for status
values.

An alpha expression specifying what field is to be
packed.

A decimal expression specifying the length of the
preceding alpha variable or alpha literal.

An alpha variable used to pass the value of the fieldid.
For example, if fieldid is 'TITL' then buff contains the
title text.

,A40
,A30
,A30
,A30
,A30
,A8
,2D3

,'Title for DYNAMIC Multiple-Choice menu
,'Select option and press DO '
,'This is the first text line
,'And this is the second line
,'And finally the third one
, 'HELPOOOO '

; Clear the buffer, pack the title, text, global
help, and prompt fields. Use only one XCall to be

; more efficient
XCALL DMPAC (STATUS, 'CLRB' , 4 ,

& 'GHLP' , 4 , GBLHLP, 8,
& 'TITL' , 4 , TITLE, 25,
& 'PRMT' , 4, PROMPT, 30,
& 'TEXTOl' , 6, TXTl, 30,
& 'TEXT02' , 6, TXT2, 30,
& 'TEXT03' , 6, TXT3, 30)

8.1.8 Display Multiple-Choice Menu Frame

This routine displays a multiple-choice menu created from a combina­
tion of the multibuffer, the option-text, and of message specified in
this routine.

8-9

Call

XCal1 DMMEN (status,optstr,optlen,optcnt,limit,
numrsp,rsparr,addopt,
[msgl,maxlen,msg2,maxlen])

status

optstr

optlen

optcnt

limit

numrsp

rsparr

addopt

msgl/2

maxlen

A decimal array with two elements used to return a code
indicating the results of the requested operation. See
Section 5.9 of the Tool Kit User's Guide for status
values.

An alpha array variable containing all of the options for
this menu. Each option may be up to 72 characters long.

A decimal expression indicating the length per entry in
the optstr array.

A decimal expression indicating the number of entries in
the optstr array.

A decimal expression specifying the maximum number of
choices that the user can select.

A decimal variable that will be set to the number of
responses that the user selected.

A decimal array variable that the option numbers that the
user has selected will be placed. The number of valid
entries in this array is in the numrsp argument.

A decimal expression indicating whether to show an
Additional Options flag on the screen.

o = don't show flag, non-O = show flag

An alpha expression containing text to be displayed at
the bottom of the menu.

A decimal expression specifying the length of the
preceding alpha variable or alpha literal.

8-10

Example

RECORD
OPTSTR ,6A5 ,'Red ','Blue ','Green',

, 'Brown' , 'Black' , 'White' &

PROC

NUMRSP
RSPARR
MSGl
MSG2
ADDOPT
STATUS

,Dl
,5Dl
,A30
,A31
,Dl
,2D3

,'This is the first message line'
,'This is the second message line'
,0

; Display the dynamic multiple-choice menu allowing
them to make 2 choices.

XCALL DMMEN (STATUS, OPTSTR, 5, 6, 2, NUMRSP, RSPARR,
& ADDOPT, MSG1, 30, MSG2, 31)

LP,

END,

IF (STATUS(l) .LT. 1) GOTO ERROR
The following code shows how to display the text of

; the choices made
OPEN (1,O,'TT:')

IF (NUMRSP.EQ.O) GOTO END
DISPLAY (1,13,10,'CHOOSE - ',OPTSTR(RSPARR(NUMRSP»)
NUMRSP = NUMRSP - 1
GOTO LP

CLOSE 1

8.1.9 Close Menu File

This routine closes an open menu file.

Call

XCall DMCLO (status)

status A decimal array with two elements used to return a code
indicating the results of the requested operation. See
Section 5.9 of the Tool Kit User's Guide for status
values.

Example

RECORD
STATUS ,2D3

PROC
Assume a menu file is open at this point

Close the menu file
XCALL DMCLO (STATUS)
IF (STATUS .LT. 1) GOTO ERROR

8-11

8.2 HELP SERVICE ROUTINES

This section describes service routines for retrieving and displaying
help-text frames and help menus.

8.2.1 Open Help File

This routine opens the specified help definition file. Only one help
file can be open at any time. If another help file is open, it is
closed before the requested file is open. This call does not result
in a display.

Call

XCall DHFIL (status,filename,maxlen,frameid,maxlen)

status A decimal array with two elements used to return a code
indicating the results of the requested operation. See
Section 5.9 of the Tool Kit User's Guide for status
values.

filename An alpha expression specifying the help definition file
name and type.

maxlen

frameid

A decimal expression indicating the length of the
preceding alpha expression.

An alpha expression containing the frameid for the
default help frame.

Example

RECORD
STATUS ,2D3

PROC
XCALL DHFIL (STATUS, 'BASETEST.HLP', 12, 'HELPOOOO', 8)
IF (STATUS(l) .LT. 1) GOTO ERROR

8.2.2 Specify Help Frame

This routine specifies the frame ID of the frame to be displayed when
help is requested. This call does not result in a display; it simply
defines the default frame.

Call

XCall DHFRA (status,frameid,maxlen)

status A decimal array with two elements used to return a code
indicating the results of the requested operation. See
Section 5.9 of the Tool Kit User's Guide for status
values.

8-12

frameid

max len

An alpha expression containing the frame identifier of
the desired frame.

A decimal expression specifying the length of the frameid
variable.

Example

RECORD

PROC
STATUS ,2D3

XCALL DHFRA (STATUS, 'HELP0001', 8)
IF (STATUS(l) .LT. 1) GOTO ERROR

8.2.3 Display Help Frame

This routine displays the default help frame.

Call

XCall DHELP (status [,frameid,maxlen])

status

frameid

maxlen

A decimal array with two elements used to return a code
indicating the results of the requested operation. See
Section 5.9 of the Tool Kit User's Guide for status
values.

An optional alpha expression containing the frame
identifier of the desired frame.

A decimal expression specifying the length of the frameid
variable.

Example

RECORD

PROC
STATUS ,2D3

XCALL DHELP (STATUS)
IF (STATUS(I) .LT. 1) GOTO ERROR

Display a new help frame
XCALL DHELP (STATUS, 'HELP0002', 8)
IF (STATUS(I) .LT. 1) GOTO ERROR

8-13

8.2.4 Close Help File

This routine closes the help definition file.

Call

XCal1 DHCLO (status)

status A decimal array with two elements used to return a code
indicating the results of the requested operation. See
Section 5.9 of the Tool Kit User's Guide for status
values.

Example

Record
STATUS

PROC
,2D3

Assume a help file is open at this point

Close the help file
XCALL DHCLO (STATUS)
IF (STATUS .LT. 1) GOTO Error

8.3 MESSAGE SERVICE ROUTINE

This section describes the service routine for retrieving and
displaying a message.

Read Message

This routine reads the specified message from the specified message
file into a buffer supplied by the calling task.

Call

XCa11 DRDMS (status,filename,maxlen,frameid,maxlen,
buffer,maxlen,length)

status A decimal array with two elements used to return a code
indicating the results of the requested operation. See
Section 5.9 of the Tool Kit User's Guide for status
values.

filename An alpha expression specifying the message file name and
type. The system searches the directory in which the
application resides unless a directory spec is included.

maxlen

frameid

A decimal expression indicating the length of the
preceding alpha expression.

An alpha expression specifying the message frame
identifier for the desired message.

8-14

buffer

length

An alpha variable in which to read the message specified
by frameid.

A decimal variable which receives the length of the
message read into the buffer.

Example

RECORD
BUFFER ,A80
LENGTH ,D2
STATUS ,2D3

PROC
XCALL DRDMS (STATUS, 'BaseTest.MSG', 12, 'Mess0001', 8,

& BUFFER, 80, LENGTH)
IF (STATUS(l) .LT. 1) GOTO Error

8.4 MISCELLANEOUS SERVICES

Miscellaneous services includes the following routines:
• Display a fatal error message.

• Get a keystroke from the terminal.

• Parse a string.

• Display p/OS forms to name a new file and get an old file name.

• Wait for the RESUME key.

• Send a message to the Message/Status Display.

8.4.1 Fatal Error

This routine provides processing for unexpected and disabling error
conditions which may prevent an application from continuing.

Call

XCall DFATL (message, msglen)

message

msglen

An alpha expression containing the message to be
displayed on the bottom line.

A decimal expression containing the length of the message
parameter.

8-15

Example

PROC
ONERROR ERR

ERR,
XCALL DFATL ('A Fatal Error Has Occured' ,25)

8.4.2 Get Keystroke

This routine gets a single key stroke from the terminal. The
keystroke is not echoed on the screen.

Call

XCall DGETK (status)

status A decimal array with two elements containing a code
corresponding to which key was pressed.

In the first element of the status array, +1 indicates
that the key is a single ASCII character. The second
element of the array contains the ASCII code of the key.

In the first element of the status array, +2 indicates
that the key is a function key. The second element of
the array contains a code corresponding to the function
key. See Section 5.9 of the Tool Kit User's Guide for
function key codes.

In the first element of the status array, a value less
than zero indicates that an error occurred. See Section
5.9 of the Tool Kit User's Guide for status values.

Example

RECORD

PROC
STATUS ,2D3

XCALL DGETK (STATUS)
IF (STATUS(l) .LT. 1) GOTO ERROR
GOTO (ASCII,FUNCT), STATUS(l)
GOTO ERROR

8.4.3 Parse String

This routine parses a string for a CSI sequence. The characters in
the buff parameter are scanned from the left until a CSI character is
found. The sequence following the CSI character is parsed and trans­
lated into a value indicating what function key terminates the string.
The length of the string up to the CSI character is returned in the
length parameter.

8-16

Call

XCal1 DPRSC (status,buff,maxlen,length)

status

buff

maxlen

length

A decimal array with two elements. In the first element
of the array, +2 indicates that a valid CSI sequence was
found. The second element of the array contains the CSI
sequence code. See Section 5.9 of the Tool Kit User's
Guide for function key values.

In the first element of the status array, a value less
than zero indicates that an error occured. See Section
5.9 of the Tool Kit User's Guide for status values.

An alpha variable specifying the buffer to be parsed.

A decimal expression specifying the length of the buffer.

A decimal variable to receive the number of characters
before the CSI character.

Example

RECORD

PROC

STATUS
BUFFER
LENGTH

,2D3
,ASO
,D2

OPEN (1, I , , TT : ')
READS (l,BUFFER) ; Let the user fill in the buffer
XCALL DPRSC (STATUS,BUFFER,SO,LENGTH)
IF (STATUS(l) .LT. 1) GOTO ERROR
IF (STATUS(l) .NE .2) GOTO NOCSI

; At this point we know we have a CSI sequence

S.4.4 New File

This routine requests the name of a new file to be created by dis­
playing the p/os New File Specification form. The user is allowed to
enter the name portion of a filespec. The file type must be in the
form .XXX and may not be omitted.

Call

XCal1 DNEWF (status,filename,maxlen,namelen,filetype,
maxlen,typelen,text,maxlen

status

(,msgl ,maxlen])

A decimal array with two elements used to return a code
indicating the results of the requested operation. See
Section 5.9 of the Tool Kit User's Guide for status
values.

8-17

filename An alpha variable of length SO (max) which is returned
the file name entered by the user.

maxlen

namelen

A decimal expression indicating the length of the
preceding alpha variable or literal.

A decimal variable into which the length of the filename
is returned.

filetype An alpha variable of length 4 (max). A default file type
must be specified.

typelen

text

msgl

Example

A decimal variable in which the length of the file type
is returned.

An alpha expression of up to 72 characters to be
displayed at the top of the form.

An alpha expression of up to 80 characters to be
displayed on line 23 of the form.

RECORD

PROC

&

FILNAM
NAMLEN
FILTYP
TYPLEN
TEXT
MESAG
STATUS

,ASO
,D2
, A4, , • DDF'
,Dl
,A3S,'Test to
,A3S,' Message
,2D3

check the new file service
at bottom of New File menu.'

XCALL DNEWF (STATUS,FILNAM,SO,NAMLEN,FILTYP,4,TYPLEN,
TEXT,3S,MESAG,3S)

IF (Status(l) .LT. 1) GOTO ERROR

8.4.S Old File

This routine requests the name of one or more existing files by dis­
playing the File Selection Menu. An additional options menu allows
the user to select a different directory from which to select a file.
The calling task may specify a selection criterion for file names from
the default directory, the maximum number of choices the user may
make, and several lines of text to be displayed on the menu.

Call

XCall DOLDF (status, numchoice, filebuf, sizarr,
wldcrd, maxlen, text, maxlen,
[msgl, maxlen, msg2, maxlen])

8-18

status A decimal array with two elements used to return a code
indicating the results of the requested operation. See
Section 5.9 of the Tool Kit User's Guide for status
values.

numchoice A decimal variable indicating the number of choices that
the user may make. This variable is updated upon return
to indicate how many the user actually selected.

filebuf

sizarr

wldcrd

maxlen

text

msgl/2

Example

RECORD
NAMBUF
SIZARR
NUMCHS
WLDSPC
TEXT
MESAGI
MESAG2
STATUS

PROC

An alpha variable or array with numchoice entries. Each
entr~ in the array must be 50 characters in length.

A decimal array variable with numchoice entries into
which the system will place the actual size of the file
names in filebuf.

An alpha expression that specifies the file selection
criteria.

A decimal expression indicating the length of the
preceding alpha variable or literal.

An alpha expression containing text to be displayed at
the top of the menu.

Alpha expressions containing text to be displayed at the
bottom of the menu.

,2A50
,2D2
,Dl,2
,A5,'*.DDF'
,A35,'Test to check the Old File Service'
,A35,'Msg *1 at bottom of New File menu.
,A35,'Msg *2 at bottom of New File menu. '
,2D3

XCALL DOLDF (STATUS,NUMCHS,NAMBUF,SIZARR,WLDSPC,5,
& TEXT,35,MESAGl,35,MESAG2,35)

IF (STATUS(l) .LT. 1) GOTO ERROR

8.4.6 Wait for Resume Key

This routine echoes a bell character for all keystrokes except the
RESUME key. When the RESUME key is pressed, control returns to the
application. The application should display a message such as "Press
RESUME to continue." on the screen.

8-19

Call

XCall DWTRE

Note that there are no parameters to this call.

Example

RECORD
TEXT

PROC
,A31,'Please press RESUME to continue'

OPEN (l,O,'TT:')
DISPLAY (1,27,' [24;lH' ,27,' [J' ,Text)
XCALL DWTRE

Clear bottom line

8.4.7 Send Message to Message/Status Display

This routine sends a message to the p/os Message/Status Display. This
routine enters the specified message into a queue. The end user sees
this message when Display Message/Status is selected from the Main
Menu.

Call

XCall DMSGB (status, message, msglen)

status

message

msglen

Example

RECORD
MESAG
STATUS

PROC
ONERROR
OPEN

Err,

A decimal array with two elements used to return a code
indicating the results of the requested operation. See
Section 5.9 of the Tool Kit User's Guide for status
values.

An alpha expression containing the message to be sent to
the Message/Status Display.

A decimal expression containing the length of the message
parameter.

,A80
,2D3

ERR
(l,I,'DZl: [MYDATA]Important.Fil')

MESAG = 'Please insert Data diskette in top drive'
XCALL DMSGB (STATUS,MESAG,80)
STOP

8-20

8.5 CALLABLE p/OS USER SYSTEM SERVICES

Callable p/OS system services include the Communications Facility,
PROSE, Print Services, and PRO/SORT.

PROSE and PRO/SORT are callable from Professional Tool Kit DIBOL using
information in this section. Print services are available via the
PRINT subroutine documented in Appendix C.

The following sections illustrate how to call each of the three facil­
ities from your DIBOL application. Detailed information on these
services is documented in Chapter 6 of the Professional Tool Kit
User's Guide.

8.5.1 PROSE Text Editor

PROSE is the text editor for the Professional. PROSE offers
facilities for entering and editing text to create documents, source
programs, and memos or similar text files.

By calling the PROSE callable editor task (CET), an application can
offer the text editor for use within the context of the application.
For example, an electronic mail application might use the editor to
provide editing services for message creation or modification. All
the editor functions offered to the end user are available in the
callable form of the editor.

CALLABLE EDITOR TASK

Call
XCall DEDIT (status,infile,maxlen,outfile,maxlen,wkfile,

maxlen,crenewfil,format,maxline,initleft,
initright,initwrap,lun)

status

infile

maxlen

outfile

wkfile

A decimal array with two elements used to return a code
indicating the results of the requested operation.

See Chapter 6 of the Tool Kit User's Guide for possible
returned status values.

An alpha expression specifying the input file name.

A decimal expression specifying the length of the
preceding alpha variable or alpha literal.

An alpha expression specifying the output file name.

An alpha expression containing the name of a temporary
file for CET to use.

8-21

crenewfil A decimal expression whose value indicates whether to
create a new file:

format

o = no non-zero = create a new file

A decimal expression whose value determines whether
escape sequences are retained in the output file.

o = do not retain non-zero = retain

maxline A decimal expression specifying the maximum number of
characters on a line that may be saved by a user.

initleft A decimal expression indicating the initial left margin
to use when creating a new file.

initright A decimal expression indicating the initial right margin
to use when creating a file.

initwrap A decimal expression representing the default setting for
word wrap. To disable word wrapping specify a value of
O.

lun

Example

RECORD
STATUS
INFIL
OUTFIL
WRKFIL
CREATE
FORMAT
MAXLIN
INILFT
INIRGT
INIWRP
LUN

PROC

A decimal expression containing a DIBOL channel number
that is not being used.

,2D3
,A12
,A12,'NewData.DDF '
,A12,'WorkFile.DDF'
,Dl,l
,Dl,O
,D2,80
,Dl,l
,D2,80
,D1,O
,D2,15

;
This example will create a new file.

Status variable
No Input File
Output File
Work File
Create new file
No Esc Sequences
Max chars/line
Left Margin
Right margin

; No word wrapping
Free channel

XCALL DEDIT (STATUS, INFIL, 12, OUTFIL, 12, WRKFIL,
& 12, CREATE, FORMAT, MAXLIN, INILFT,
& INIRGT, INIWRP, LUN)

8.5.2 PRINT Services

printing from a DIBOL application is accomplished using the DIBOL
PRINT external subroutine. See Appendix C.

8-22

8.5.3 PRO/SORT

PRO/SORT is a general-purpose sorting utility that runs on p/OS.

Call

XCALL OSORT (filespec,length,status)

filespec An alpha expression containing a PRO/SORT command file
specification.

length

status

A decimal expression containing the number of characters
in the filespec.

A two-element decimal array that receives status
information from PRO/SORT. PRO/SORT error messages may
be found in Table 6-3 in The Tool Kit User's Guide.

8.6 CALLABLE SYSTEM ROUTINES

This section describes
that are located in
these routines are in
Also, refer to that
from these routines.

how a OlBOL program may call system routines
a resident library called POSSUM. Details of
Chapter 8 of the p/os System Reference Manual.
chapter for possible STATUS values passed back

OlBOL programs may call the following POSSUM routines:
• PROOlR -- creates or deletes a directory.

• PROFBl formats, initializes, and checks for bad blocks on
disks (see restrictions below) •

• PROLOG -- translates, creates, and deletes a logical name.

• PROVOL mounis, dismounts, bootstraps, and/or writes the
bootblock on a volume (see restrictions below) •

OlBOL programs may not call or use:

• PROATR -- gets or sets file attributes.

Restrictions on some calls:

• Attribute lists may not be used in calls to PROFSl or in calls
to PROVOL.

8-23

8.6.1 PRODIR

The PRODIR routine provides two forms of directory manipulation. You
can use PRODIR to:

• Create a directory on a device.

• Delete a directory on a device.

DIBOL Call:

XCALL DDIR (Status, Request, File_Name, File Size

where:

Status

Request

is a decimal array with 8 entries (for example: 8DIO).
See Chapter 8 of the p/os System Reference Manual for
possible status values.

is a decimal expression indicating whether to create or
to delete a directory.

File Name is an alpha expression containing a device and directory
specification.

File Size is a decimal expression containing the length of the
File Name argument.

Example:

This example illustrates access to PRODIR from a DIBOL program:

RECORD
ANSWER
STATUS
DIRECT
REQ

PROC

TOP,

I
ACOUNT
ASTATS

,AI
,8DIO
,ASO
,Dl
,Dl
,AI
,Ala

OPEN (I, 0, 'TT: ')
DISPLAY (1,13,10,'CREATE OR DELETE? (C/D) ')
READS (l,ANSWER)
IF (ANSWER.EQ.'C') THEN REQ=I ELSE REQ=2
DISPLAY (1,13,10,'NAME OF DIRECTORY? ')
READS (l,DIRECT)
CALL DDIR (STATUS, REQ, DIRECT, 50)
FOR I FROM 1 THRU 8

BEGIN
ACOUNT = I
ASTATS = STATUS(I}
DISPLAY (1,13,10,'STATUS(' ,ALPHA,') =' ,ASTATS}
END

GOTO TOP

8-24

8.6.2 PROFS I

The PROFS I routine provides the mechanism for preparing media on the
system. The PROFSI routine allows you to:

• Format a volume.

• Check a volume for bad blocks.

• Initialize a volume.

DISOL Call:

XCALL DFSI (Status, Request, Dev_Spec, Dev Size

where:

Status

NOTE

Attribute lists are not supported from
DISOL.

is a decimal array with 8 entries (i.e. 8DlO).

Request is a decimal expression indicating which operation to
perform.

Dev_Spec is an alpha expression containing a device
specification.

Dev Size is a decimal expression containing the length of the
Dev_Spec argument.

Example:

Initialize a diskette in the top drive:

RECORD
STATUS ,lOD8

PROC
XCALL DFSI (STATUS, 4, 'DZl:MYLASEL', 11)

8.6.3 PROLOG

The PROLOG routine provides five forms of logical name manipulation.
You can use PROLOG as follows:

• Create a logical name for a device specification.

• Delete a logical name for a device specification.

• Translate a logical name to a device specification.

8-25

• Set the default directory and/or device.

• Show the default directory and device.

DIBOL Call:

XCall DLOG (Status, Request, Log Name, Log_Size
[,Equiv_Name, Equiv_STze])

where:

Status

Request

Example:

is a decimal array with 8 entries (for example,
8DIO) • See Chapter 8 of the P/OS System Reference
Manual for possible status values.

is a decimal expression indicating which operation
to perform.

is an
data.

alpha argument containing or receiving the
(See the p/OS System Reference Manual.)

is a decimal expression containing the length of the
Log_Name argument.

is an alpha expression containing the device spec to
assign to the logical name.

is a decimal variable containing the length of the
Equiv_Name argument.

An example to get the system directory that contains my application
and set my default there (see next page).

RECORD
MYAPPL
SIZE

PROC
XCALL DLOG
XCALL DLOG

8.6.4 PROVOL

,A80
,D2,80

STATUS, 4, 'APPL$DIR', 8, MYAPPL, SIZE)
STATUS, 1, MYAPPL, SIZE)

The PROVOL routine provides a two-fold service. You can use the
PROVOL routine to mount or dismount volumes. You can also use PROVOL
to write a bootblock on a volume and/or bootstrap a volume.

DIBOL XCall:

XCALL DVOL (Status, Request, Dev_Spec, Dev Size

8-26

where:

Status

Request

The Attribute
supported.

NOTE

List argument is not

is a decimal array with 8 entries (for example, 8D10).
See Chapter 8 of the p/os System Reference Manual for
possible status values.

is a decimal expression indicating which operation to
perform.

Dev_Spec is an alpha expression
specification of the volume.

containing the device

Dev Size is a decimal expression containing the length of the
Dev Name argument.

NOTE

This service may be useful after initial­
izing a diskette. The diskette can be
dismounted and remounted without user
intervention.

8-27

CHAPTER 9

OIBOL INTERFACE TO THE CORE GRAPHICS LIBRARY

This chapter describes how CORE Graphics Library subroutines are
called from a OI80L program. The CORE Graphics Library and the use of
the subroutines in that library are explained in the CORE Graphics
Library Manual. This chapter is to be used in conjunction with that
manual. It assumes knowledge contained in that manual.

9.1 CHAPTER ORGANIZATION

The subsections in this
Graphics Library Manual.

chapter correlate to those in the CORE
The page numbers do not correlate.

NOTE

When the or80L calls are individually
explained in this chapter, they are
preceded by the corresponding BAsrc­
PLUS-2 call as a means of identifying the
call as explained in the CORE Graphics
Library Manual.

9.2 THE OIBOL INTERFACE

This section describes how to use the CORE Graphics Library with
Professional Host Tool Kit OIBOL and PRO/Tool Kit or80L.

9.2.1 Calling CORE Graphics Library Subprograms

Each CGL instruction is a subroutine callable from orBOL. To transfer
control to a CGL subroutine from a orBOL program or subroutine, use
the XCALL statement, which has the format:

XCALL DCGL (inst name [,param, •••])
inst name -is a decimal expression specifying the desired CGL

instruction. DrBOL provides a file name "CGL.DBL"
(listed in Section 9.9) that declares a DIBOL RECORD
with fields corresponding to the names of the CGL
instructions.

param is one of up to eight parameters described in the
individual instruction sections of this chapter.

9-1

Example:
;

NOTE

Any program making a CORE Graphics
Library call must use the .INCLUDE
directive which appears in the following
example.

; This program uses the CORE Graphics Library
;
.INCLUDE 'LB: [l,S]CGL.DBL'
PROC

CGL mnemonics

XCALL DCGL GIC) Initialize Core
XCALL DCGL GNF) New Frame
XCALL DCGL GSW, 0, 100, a , 100 Set Window
XCALL DCGL GMA2, a , a) Move Absolute 2
XCALL DCGL GRA2, 100, 100) Rectangle Absolute
XCALL DCGL GTC) ; Terminate Core
STOP

9.2.2 Building Your DIBOL Program

2

At this point, you must decide which of the two supplied versions of
CGL you intend to use. They are:

• CGLEIS (for the Extended Instruction Set)

• CGLFPU (for the Floating Point Unit)

Some CGL instructions require quite a lot of floating point
arithmetic; thus, task images that use CGLFPU will perform better. If
possible, supply two task images so that your program is not
FPU-dependent.

Compile your program with the DIBOL compiler using the build switch
(/B) • DIBOL creates a .CMD file and an .ODL file for your program.
The .CMD file (for a program named TESTl) looks something like:

9-2

TEST1/CP=TEST1/MP
UNITS=24
ASG=TI:16
ASG=TI:17
ASG=SY:18
ASG='rI: 19
ASG=SY:23
ASG=LB:24

CLSTR=DBLRES,POSRES,POSSUM,RMSRES:RO

TASK=TESTl

extsct
extsct
extsct
extsct
extsct

gbldef
gbldef
gbldef
gbldef
gbldef
gbldef

gbldef
//

= mn$buf:4540
= dm$buf:4540
= mm$buf:1000
= hl$buf:34l0
= fl$buf:43l0

= tt$lun:23
= hl$lun:24
= ms$lun:25
= mn$lun:26
= wc$lun:27
= mb$l in: 30

= tt$efn:l

Foreground terminal
DDT terminal
Channel for RENAM/DELET
POSRES terminal
Directory Searches
Message board

static single choice menu
dynamic single choice menu
multi-choice menu
help text/menu
file selection/specification

(19.) terminal I/O
(20.) help frame fi Ie
(21.) message frame file
(22.) menu frame file
(23.) directory searches
(24.) message board lun

terminal I/O event flag

Make the following edits to the .CMD file:

1. Increment the number of UNITS by 1. It should look like this:

UNITS=25

2. Add the following ASG line prior to the CLSTR line:

ASG=TI:25 ; Graphics LUN

3. Find the line that begins with CLSTR and insert either "CGLEIS" or
"CGLFPU". It should look like:

CLSTR=DBLRES,CGLEIS,POSRES,POSSUM,RMSRES:RO
or

CLSTR=DBLRES,CGLFPU,POSRES,POSSUM,RMSRES:RO

4. After all of the other GBLDEF lines and add the following line:

GBLDEF= G$Lun:3l (25.) Graphics Lun

5. The .CMD file (with FPU graphics library) should now look like
this:

9-3

TESTl/CP=TESTl/MP
UNITS=25
ASG=TI:16
ASG=TI:17
ASG=SY:18
ASG=TI:19
ASG=SY:23
ASG=LB:24
ASG=TI:25

Foreground terminal
; DDT terminal

,

Channel for RENAM/DELET
POSRES terminal
Directory Searches
Message board
Graphics LUN

CLSTR=DBLRES,CGLFPU,POSRES,POSSUM,RMSRES:RO

TASK=TESTI

extsct = mn$buf:4540 static single choice menu
extsct = dm$buf:4540 dynamic single choice menu
extsct = mm$buf:lOOO multi-choice menu
extsct = hl$buf:34l0 help text/menu
extsct = fl$buf:43l0 file selection/specification

gbldef = tt$lun:23 ; (19.) terminal I/O
gbldef = hl$lun:24 (20.) help frame file
gbldef = ms$lun:25 ; (21.) message frame file
gbldef = mn$lun:26 (22.) menu frame file
gbldef = wc$lun:27 (23.) directory searches
gbldef = tt$efn:l terminal I/O event flag
gbldef = mb$l un: 30 (24 .) message board lun
GBLDEF = G$LUN:31 ; (25.) Graphics Lun
//

9.2.3 Running CORE GRAPHICS Library Programs

Application programs that use CGL must specify the appropriate cluster
library in the installation command (.INS) file:

INSTALL [ZZSYS]CGLEIS.TSK/LIBRARY

or

INSTALL [ZZSYS]CGLFPU.TSK/LIBRARY

9.3 CONTROL INSTRUCTIONS

This section descibes the instructions that control the overall
operation of the CORE Graphics Library.

9.3.1 INITIALIZE CORE -- Prepare Graphics System for Use

BASIC-PLUS-2 Call

CALL CGL BY REF (INITIALIZE_CORE)

9-4

OIBOL CALL

XCALL DCGL (GIC)

Parameters

GIC defined in CGL.DBL with" a value of 90.

9.3.2 TERMINATE CORE -- Graphics System Usage Finished

BASIC-PLUS-2 CALL

CALL CGL 8Y REF (TERMINATE_CORE)

DIBOL CALL

XCALL DCGL (GTC)

Parameters

GTC defined in CGL.DBL with a value of 91.

9.3.3 REPORT_MOST RECENT_ERROR -- Identify Execution Error

BASIC-PLUS-2 CALL

CALL CGL BY REF (REPORT_MOST RECENT ERROR ,inst_name,code)

OIBOL CALL

XCALL DCGL (GRMRE,inst_name,code)

Parameters

GRMRE

inst name

code

defined in CGL.DBL with a value of 93.

decimal field to which is returned the instruction number
(defined in CGL.OBL) of the call that received the error.

decimal field to receive the value.

9.3.4 NEW FRAME -- Refresh Screen

BASIC-PLUS-2 CALL

CALL CGL BY REF (NEW_FRAME)

9-5

DIBOL CALL

XCALL DCGL (GNF)

Parameters

GNF defined in CGL.DBL with a value of 92.

9.3.5 ERASE VIEWPORT -- Erase Images in Viewport

BASIC-PLUS-2 CALL

CALL CGL BY REF (ERASE_VIEWPORT)

DIBOL CALL

XCALL DCGL (GEV)

Parameters

GEV defined in CGL.DBL with a value of 88.

9.3.6 PRINT SCREEN -- Send Screen Image to Output Device

BASIC-PLUS-2 CALL

CALL CGL BY REF (PRINT SCREEN,lower x,upper x,
lower=y,upper_y,x_offset,y offset)

DIBOL CALL

Parameters

All parameters in this call are decimal fields or literals.

GPS defined in CGL.DBL with a value of 94.
lower x specifies the lower limit of x
upper_x specifies the upper limit of x
lower_y specifies the lower limit of y
upper_y specifies the upper limi t of y
x offset specifies the horizontal margin. -
y-offset specifies the vertical margin.

9-6

9.3.7 CGL WAIT -- Suspend Execution

BASIC-PLUS-2 CALL

CALL CGL BY REF (CGL_WAIT,seconds)

DIBOL CALL

XCALL DCGL (GCW,seconds)

Parameters

GCW defined in CGL.DBL with a value of 95.

seconds decimal expression specifying the number of seconds.

9.4 VIEWING TRANSFORMATION INSTRUCTIONS

9.4.1 SET WINDOW - Specify Visible Part of World Coordinate Space

BASIC-PLUS-2 Call

DIBOL CALL

XCALL DCGL (GSW,lower_x,upper_x,lower_y,upper_y)

XCALL DCGL (GIW,lower_x,upper_x,lower_y,upper_y)

Parameters

The set parameters are decimal expressions while the inquire
parameters are decimal variables.

GSW,GIW
lower x
upper x
lowe(~y
upper_y

defined in
specifies
specifies
specifies
specifies

CGL.DBL with values of
the X lower limit of the
the X upper limit of the
the Y lower limit of the
the Y upper limit of the

9.4.2 SET ORIGIN Specify Origin of Window

BASIC-PLUS-2 CALL

CALL CGL BY REF (SET_ORIGIN,origin)

CALL CGL BY REF (INQUIRE_ORIGIN,origin)

9-7

80,8l.
window
window
window
window

DIBOL CALL

XCALL DCGL (GSO,origin)

Parameters

GSO,GIO

origin

defined in CGL.DBL with values of 86,87.

a decimal expression/variable to set or receive the
origin.

9.4.3 SET WINDOW CLIPPING -- Enable or Disable Window Clipping

BASIC-PLUS-2 CALL

CALL CGL BY REF (SET_WINDOW CLIPPING,on off)

CALL CGL BY REF (INQUIRE_WINDOW_CLIPPING, on off)

DIBOL CALL

XCALL DCGL (GSWC,on_off)

XCALL DCGL (GIWC,on_off)

Parameters

GSWC,GIWC

on off

defined in CGL.DBL with values of 84,85.

a decimal expression/variable to set or receive the window
clipping flag. Zero is OFF, any other value is ON.

9.4.4 SET VIEWPORT 2 -- Specify Usable Area of Screen

BASIC-PLUS-2 CALL

CALL CGL BY REF (SET_VIEWPORT_2,lower_x,upper_x,lower_y,upper_y)

CALL CGL BY REF (INQUIRE_VIEWPORT_2,lower_x,lower_y,lower_y,upper_y

9-8

DIBOL CALL

NOTE

Set/Inquire viewport requires special
attention, because the calls require
numbers between zero and one that are not
supported in DIBOL. These two calls are
implemented with with a 'division
factor' • The interface will convert all
of the arguments to divide or multiply
the x and y values by the factor before
calling CGL.

XCALL DCGL (GSV2,lower_x,upper_x,lower_y,upper_y,Factor)

XCALL DCGL (GIV2,lower_x,upper_x,lower_y,upper_y[,Factor])

Parameters

All parameters for the Set Viewport are decimal expressions, but in
the Inquire call all parameters are decimal variables except for the
first (GIV2).

GSV2,GIV2
lower x
upper x
lower=y
upper_y

Example

PROC

defined in CGL.DBL with values of 82,83.
specifies the lower limit of X
specifies the upper limit of X
specifies the lower limit of Y
specifies the upper limit of Y

Set the viewport 4 times, each time defining a
different quartile.

X
; 0 1

+-------+-------+ 0
I 1 I 4 I
+-------+-------+ Y
I 2 I 3 I
+-------+-------+ 1

XCALL DCGL (GIC)
XCALL DCGL (GSV2, o , 5, 0, 5, 10) ;
XCALL DCGL (GSV2, 0, 5, 5, 10, 10) ;
XCALL DCGL (GSV2, 5, 10, 5, 10, 10)
XCALL DCGL (GSV2, 5, 10, 0, 5, 10)

9-9

Quartile ft 1
Quartile ft 2
Quartile t 3
Quartile ft 4

9.4.5 SCROLL -- Move Screen Contents

BASIC-PLUS-2 CALL

CALL CGL BY REF (SCROLL,delta_x,delta_y)

DIBOL CALL

XCALL DCGL (GS,delta_x,delta_y)

Parameters

All parameters in this call are decimal expressions.

GS defined in CGL.DBL with a value of 89.

delta x specifies the X (horizontal) movement.

specifies the Y (horizontal) movement.

9.5 GLOBAL ATTRIBUTE INSTRUCTIONS

9.5.1 SET WRITING INDEX -- Select Color Map Index for Images

BASIC-PLUS-2 CALL

CALL CGL BY REF (SET_WRITING_INDEX,index)

CALL CGL BY REF (INQUIRE_WRITING_INDEX,index)

DIBOL CALL

XCALL DCGL (GSWI,index)

XCALL DCGL (GIWI,index)

Parameters

GSWI,GIWI

index

defined in CGL.DBL with values of 60,61.

a decimal expression/variable used to set or inquire the
writing index.

9.5.2 SET BACKGROUND INDEX -- Set Background Color Map Index

BASIC-PLUS-2 CALL

CALL CGL BY REF (SET_BACKGROUND_INDEX,index)

CALL CGL BY REF (INQUIRE_BACKGROUND_INDEX,index)

9-10

DIBOL CALL

XCALL DCGL (GSBI,index)

XCALL DCGL (GIWI,index)

Parameters

GSBI,GIBI

index

defined in CGL.DBL with values of 62,63.

a decimal expression/variable used to set or inquire the
background index.

9.5.3 SET COLOR MAP ENTRY -- Set Color Map Entry RGB Values

BASIC-PLUS-2 CALL

CALL CGL BY REF (SET_COLOR_MAP_ENTRY,entry,color)

CALL CGL BY REF (INQUIRE_COLOR_MAP_ENTRY,entry,color)

DIBOL CALL

XCALL DCGL (GSCME,entry,color)

XCALL DCGL (GICME,entry,color)

Parameters

GSCME,GICME defined in CGL.DBL with values of 66 and 67.

entry

color

Example

RECORD
WHITE,
BLACK,

PROC
XCALL
XCALL
XCALL

a decimal expression specifying which color map entry
(0-7) to set or inquire.

a decimal expression/variable that contains or will
receive the index.

3Dl,7,7,6
3Dl,0,0,0

DCGL (G IC)
DCGL (GSCME,4,WHITE)
DCGL (GSCME,O,BLACK)

Init CGL
Color 5 is white
Color 1 is black

9-11

9.5.4 SET COLOR MAP -- Set All Color Map RGB Values

BASIC-PLUS-2 CALL

CALL CGL BY REF (SET_COLOR_MAP,color_map)

CALL CGL BY REF (INQUIRE_COLOR_MAP,color_map)

DIBOL CALL

XCALL DCGL (GSCM,color_map)

XCALL DCGL (GICM,color_map)

Parameters

GSCM,GICM defined in CGL.DBL with values of 64,65.

a 24 element decimal array containing colors (range 0 to
7) that specify all eight color map entries.

Example:

24Dl
RECORD
OLDMAP,
NEWMAP,
&

24Dl,7,0,0 ,0,7,0 ,0,0,6 ,0,0,0
,7,7,6 ,7,7,0 ,7,0,6 ,0,7,6

PROC
XCALL
XCALL
XCALL

DCGL (GIC)
DCGL (GICM,OLDMAP)
DCGL (GSCM,NEWMAP)

XCALL DCGL (GSCM,OLDMAP)
XCALL DCGL (GTC)
STOP

9.5.5 SET WRITING PLANES

BASIC-PLUS-2 CALL

Must always be done
; Fetch the old map

Replace with our map
Intervening code

; Restore old color map
; And terminate core

Select Combination of Planes

CALL CGL BY REF (SET_WRITING_PLANES,n)

CALL CGL BY REF (INQUIRE_WRI'rING_PLANES ,n)

DIBOL CALL

XCALL DCGL (GSWP,n)

XCALL DCGL (GIWP,n)

9-12

Parameters

GSWP,GIWP

n

defined in CGL.DBL with values of 68,69.

a decimal expression/variable that sets or receives the
plane combination value.

9.5.6 SET WRITING MODE -- Set Writing Characteristics

BASIC-PLUS-2 CALL

CALL CGL BY REF (SET_WRITING MODE,mode)

CALL CGL BY REF (INQUIRE_WRITING_MODE,mode)

OIBOL CALL

XCALL OCGL (GSWM,mode)

XCALL OCGL (GIWM,mode)

Parameters

GSWM,GIWM

mode

defined in CGL.DBL with values of 70,71.

a decimal expression/variable that sets or receives the
writing mode.

9.5.7 SET GLOBAL ATTRIBUTES -- Set Global Attribute List

BASIC-PLUS-2 CALL

CALL CGL BY REF (SET_GLOBAL_ATTRIBUTES,int_list,real_list)

CALL CGL BY REF (INQUIRE_GLOBAL_ATTRIBUTES,int_list,real_list)

OIBOL CALL

XCALL DCGL (GSGA,int_list,real_list)

XCALL OCGL (GIGA,int_list,real_list)

9-13

Parameters

GSGA,GIGA defined in CGL.DBL with values of 72,73.

int list a decimal variable array with 19 entries as shown in the
CGL manual.

real list an 8 entry decimal variable array with entries as shown in
the CGL manual.

9.6 CURRENT POSITION AND MARKER INSTRUCTIONS

9.6.1 Current Position Instructions

9.6.1.1 MOVE ABSOLUTE 2 -- Move to Absolute position

BASIC-PLUS-2 CALL

CALL CGL BY REF (MOVE_ABSOLUTE_2,x,y)

DIBOL CALL

XCALL DCGL (GMA2,x,y)

Parameters

GMA2 defined in CGL.DBL with a value of 1.

x,y decimal expressions specifying the x and y values.

9.6.1.2 MOVE REL 2 - Move to Relative Position

BASIC-PLUS-2 CALL

DIBOL CALL

XCALL DCGL (GMR2,delta_x,delta_y)

Parameters

GMR2 defined in CGL.DBL with a value of 2.

delta x a decimal expression specifying the change in the X
(horizontal) position.

delta -y a decimal expression specifying the change in the Y
(vertical) position.

9-14

9.6.1.3 INQUIRE_CURRENT_POSITION_2 -- Get Current Position

BASIC-PLUS-2 CALL

CALL CGL BY REF (INQUIRE_CURRENT_POSITION_2,x,y)

DrBOL CALL

XCALL DCGL (GICP2,x,y)

Parameters

GICP2 defined in CGL.DBL with a value of 3.

x,y decimal variables to receive the coordinates.

9.6.2 Marker Primitive Instructions

9.6.2.1 MARKER ABS 2 -- Draw Marker at Absolute Position

BASIC-PLUS-2 CALL

CALL CGL BY REF (MARKER_ABS_2,x,y)

OIBOL CALL

XCALL DCGL (GMKA2,x,y)

Parameters

GMKA2 defined in CGL.DBL with a value of 33.

x,y decimal expressions containing the x and y coordinates of
where to put the marker.

9.6.2.2 MARKER REL 2 -- Draw Marker Relative to Current position

BASIC-PLUS-2 CALL

OIBOL CALL

XCALL DCGL (GMKR2,delta_x,delta_y)

Parameters

GMKR2 defined in CGL.DBL with a value of 34.

9-15

delta x a decimal expression specifying the X offset at which to
draw a marker.

delta_y a decimal expression specifying the Y offset at which to
draw a marker.

9.6.2.3 POLYMARKER ABS 2 -- Draw Markers at Absolute Positions

BASIC-PLUS-2 CALL

DIBOL CALL

XCALL DCGL (GPMA2, x_array, y_array, n)

Parameters

GPMA2

n

Example

RECORD
X,
Y,

PROC

defined in CGL.DBL with a value of 35.

a decimal variable array with In' entries specifying the X
coordinates of where to draw the markers.

a decimal variable array with In' entries specifying the Y
coordinates of where to draw the markers.

a decimal expression specifying the number of valid
entries in the x_array and y_array parameters.

NOTE

When an array is specified in this manner
it is imperative that the value of In' be
greater than zero and less than or equal
to the actual size of the array.

6D2,10 ,40 ,90 ,30 ,20 ,50
6D2,30 ,20 ,10 ,30 ,60 ,90

XCALL DCGL (GIC) Initialize CGL
Draw the Markers XCALL DCGL (GPMA2,X,Y,6)

9.6.2.4 POLYMARKER REL 2 -- Draw Markers at Relative positions

BASIC-PLUS-2 CALL

9-16

DIBOL CALL

XCALL DCGL (GPMR2,dx_array,dy_array,n)

Parameters

GPMR2 defined in CGL.DBL with a value of 36.

a decimal variable array with In' entries specifying the X
offsets at which to draw the markers.

a decimal variable array with In' entries specifying the Y
offsets at which to draw the markers.

n a decimal expression containing the numb~r of entries in
the two arrays.

9.6.3 Marker Attribute Instuctions

9.6.3.1 SET MARKER SYMBOL -- Select New Marker Symbol

BASIC-PLUS-2 CALL

CALL CGL BY REF (SET_MARKER_SYMBOL,symbol,code)

CALL CGL BY REF (INQUIRE_MARKER_SYMBOL,symbol,code)

DlaOL CALL

XCALL DCGL (GSMKS,symbol,code)

XCALL DCGL (GIMKS,symbol,code)

Parameters

GSMKS,GIMKS defined in CGL.DBL with values of 37 and 38.

symbol a decimal expression/variable used to set or
marker symbol.

code a decimal expression/variable used to set or
decimal code of a user defined marker symbol.

9-17

receive the

receive the

9.7 LINE INSTRUCTIONS

9.7.1 Straight Line Primitive Instructions

9.7.1.1 LINE ABS 2 -- Draw Line to Absolute position

BASIC-PLUS-2 CALL

CALL CGL BY REF (LINE_ABS_2,x,y)

DIBOL CALL

XCALL DCGL (GLA2,z,y)

Parameters

GLA2 defined in CGL.DBL with a value of 4.

x,y decimal expressions specifying the X and Y coordinates to
which a line is to be drawn.

9.7.1.2 LINE REL 2 -- Draw Line to Relative position

BASIC-PLUS-2 CALL

DIBOL CALL

XCALL DCGL (GLR2,delta_x,delta_y)

Parameters

GLR2

delta x,y

defined in CGL.DBL with a value of 5.

decimal expressions specifying the X and Y offsets to
which a line is to be drawn.

9.7.1.3 POLYLINE ABS 2 -- Draw Lines to Absolute Positions

BASIC-PLUS-2 CALL

DIBOL CALL

XCALL DCGL (GPLA2,x_array,y_array,n)

9-18

Parameters

GPLA2

n

defined in CGL.DBL with a value of 6.

a decimal variable array with 'n' entries specifying the X
entries to which a line is to be drawn.

a decimal variable array with 'n' entries specifying the Y
entries to which a line is to be drawn.

a decimal expression specifying the number of entries in
the x_array and y_array parameters.

9.7.1.4 POLYLINE REL 2 Draw Lines to Relative Positions

BASIC-PLUS-2 CALL

DIBOL CALL

XCALL DCGL (GPLR2,dx_array,dy_array,n)

Parameters

GPLR2 defined in CGL.DBL with a value of 7.

dx_array a decimal variable array with 'n' entries specifying the X
offsets to which a line is to be drawn.

dy_array a decimal variable array with 'n' entries specifying the Y
offsets to which a line is to be drawn.

n a decimal expression specifying the number of entries in
each of the arrays.

9.7.1.5 POLYGON ABS 2 -- Draw Polygon by Absolute Positions

BASIC-PLUS-2 CALL

DIBOL CALL

XCALL DCGL (GPGA2,x_array,y_array,n)

Parameters

GPGA2 defined in CGL.DBL with a value of 8.

9-19

a decimal variable array containing a list of the X
coordinates describing the polygon.

a decimal variable array containing a list of the Y
coordinates describing the polygon.

n a decimal expression specifying the number of entries in
each of the two arrays.

9.7.1.6 POLYGON REL 2 -- Draw Polygon by Relative Positions

BASIC-PLUS-2 CALL

DIBOL CALL

XCALL DCGL (GPGR2,dx_array,dy_array,n)

Parameters

GPGR2 deFined in CGL.DBL with a value of 9.

dx _array a decimal variable array containing a list of the X
coordinate offsets describing the polygon.

dy_array a decimal variable array containing a list of the Y
coordinate offsets describing the polygon.

n a decimal expression specifying the number of entries in
each of the two arrays.

9.7.1.7 RECTANGLE ABS 2 Draw Rectangle by Absolute Position

BASIC-PLUS-2 CALL

CALL CGL BY REF (RECTANGLE_ABS_2,x,y)

DIBOL CALL

XCALL DCGL (GRA2,x,y)

Parameters

GRA2 defined in CGL.DBL with a value of 10.

x,y decimal expressions specifying the opposite corner (the
current position being the other) of the rectangle.

9-20

9.7.1.8 RECTANGLE REL 2 -- Draw Rectangle by Relative position

BASIC-PLUS-2 CALL

CALL CGL BY REF (RECTANGLE_REL_2,dx,dy)

DIBOL CALL

XCALL DCGL (GRR2,dx,dy)

Parameters

GRR2 defined in CGL.DBL with a value of 11.

dx,dy decimal expressions containing the X and Y offsets to the
other corner of the rectangle.

9.7.2 Curved Line Primitive Instructions

9.7.2.1 ARC ABS 2 -- Draw Arc Based on Absolute Position

BASIC-PLUS-2 CALL

CALL CGL BY REF (ARC_ABS_2,x,y,angle)

DIBOL CALL

XCALL DCGL (GAA2,x,y,angle)

Parameters

GAA2

x,y

defined in CGL.DBL with a value of 39.

decimal expressions containing the coordinates of the
center of the arc.

angle a decimal expression containing the number of degrees to
draw the arc.

9.7.2.2 ARC REL 2 -- Draw Arc Based on Relative position

BASIC-PLUS-2 CALL

CALL CGL BY REF (ARC_REL_2,x,y,angle)

DIBOL CALL

XCALL DCGL (GAR2,x,y,angle)

9-21

Parameters

GAR2 defined in CGL.DBL with a value of 40.

x,y decimal expressions containing the offset from the current
position of the center of the arc.

angle a decimal expression containing the number of degrees to
draw the arc.

9.7.2.3 CURVE ABS 2 -- Draw Curve by Absolute Position

BASIC-PLUS-2 CALL

DIBOL CALL

XCALL DCGL (GCA2,x_array,y_array,n,type)

Parameters

GCA2 defined in CGL.DBL with a value of 41.

a decimal variable array with In' entries with the X
coordinates of the curve.

a decimal variable array with In' entries with the Y
coordinates of the curve.

n a decimal expression containing the number of entries in
the above arrays.

type a decimal expression that specifies either an open curve
(type=O) or a closed curve (type=non-zero).

9.7.2.4 CURVE REL 2 -- Draw Curve by Relative position

BASIC-PLUS-2 CALL

DIBOL CALL

XCALL DCGL (GCR2,x_array,y_array,n,type)

Parameters

GCR2 defined in CGL.DBL with a value of 42.

9-22

a decimal variable array with 'n' entries specifying the X
coordinate offsets of the curve.

y_array a decimal variable array with 'n' entries specifying the Y
coordinate offsets of the curve.

n a decimal expression containing the number of entries in
the above arrays.

type a decimal expression that specifies either an open curve
(type=O) or a closed curve (type=non-zero).

9.7.3 Line Attribute Instructions

9.7.3.1 SET LINESTYLE -- Set Line Drawing Style

BASIC-PLUS-2 CALL

CALL CGL BY REF (SET_LINESTYLE,style,pattern,mult)

CALL CGL BY REF (INQUIRE_LINESTYLE,style,pattern,mult)

DIBOL CALL

XCALL DCGL (GSLS,style,pattern,mult)

XCALL DCGL (GILS,style,pattern,mult)

Parameters

GSLS,GILS defined in CGL.DBL with values of 12,13.

style a decimal expression/variable specifying or receiving one
of the nine standard line styles or a user defined style.

pattern an alpha expression/variable with a length of 16
characters representing a 'bit pattern' for the line
style. Spaces and Zeros are OFF, anything else is ON.

mult a decimal expression/variable specifying how many times to
draw each bit in the pattern.

9.7.3.2 SET LINEWIDTH -- Set Line Drawing width

BASIC-PLUS-2 CALL

CALL CGL BY REF (SET_LINEWIDTH,dx,dy)

CALL CGL BY REF (INQUIRE_LINEWIDTH,dx,dy)

9-23

DIBOL CALL

XCALL DCGL (GSLW,dx,dy)

XCALL DCGL (GILW,dx,dy)

Parameters

GSLW,GILW defined in CGL.DBL with values of 14,15.

dx,dy decimal expressions/variables to
horizontal and vertical width
primitive line instructions.

specify or receive the
of lines created by

9.7.3.3 SET FILL MODE -- Enable or Disable Area Fill

BASIC-PLUS-2 CALL

CALL CGL BY REF (SET_FILL MODE,mode)

CALL CGL BY REF (INQUIRE_FILL_MODE,mode)

DIBOL CALL

XCALL DCGL (GSFM,mode)

XCALL DCGL (GIFM,mode)

Parameters

GSFM,GIFM defined in CGL.DBL with values of 74,75.

mode a decimal expression/variable that sets or receives the
fill mode indicator.

9.7.3.4 SET FILL ENTITY -- Set Fill to Line or Point

BASIC-PLUS-2 CALL

CALL CGL BY REF (SET_FILL_ENTITY,x,y)

CALL CGL BY REF (INQUIRE_FILL_ENTITY,x,y)

DIBOL CALL

XCALL DCGL (GSFE,x,y)

XCALL DCGL (GIFE,x,y)

9-24

Parameters

GSFE,GIFE defined in CGL.DBL with values of 76,77.

x,y decimal expressions/variables that set or receive the fill
entity coordinates.

9.7.3.5 SET FILL CHAR -- Specify Character for Fill

BASIC-PLUS-2 CALL

CALL CGL BY REF (SET_FILL_CHARACTER,font,char,width_mult,height_mult)

CALL CGL BY REF (INQUIRE FILL CHARACTER,font,char,width mult
,height=mult) -

DIBOL CALL

XCALL DCGL (GSFC,font,char,width_mult,height_mult)

XCALL DCGL (GIFC,font,char,width_mult,height_mult)

Parameters

GSFC,GIFC defined in CGL.DBL with a value of 78.

font a decimal expression/variable that sets or receives the
font number that the fill character is in.

char a decimal expression/variable that sets or receives the
numeric code for the fill character.

width mult a decimal expression/variable that sets or receives the
width multiplier for the fill character.

height_mult a decimal expression/variable that sets or receives the
height multiplier for the fill character.

9.8 TEXT INSTRUCTIONS

9.8.1 Text Primitive Instructions

9.8.1.1 TEXT -- Draw Line of Text

BASIC-PLUS-2 CALL

CALL CGL BY REF (TEXT,string,length)

9-25

OIBOL CALL

XCALL OCGL (GT,string,length)

Parameters

GT defined in CGL.DBL with a value of 16.

string an alpha expression containing the text to be displayed.

length a decimal expression specifying the number of characters
in the string argument.

9.8.1.2 INQUIRE_TEXT_EXTENT_2 -- Report Position at End of String

BASIC-PLUS-2 CALL

CALL CGL BY REF (INQUIRE_TEXT_EXTENT_2,length,dx,dy)

OIBOL CALL

XCALL OCGL (GITE2,length,dx,dy)

Parameters

GITE2 defined in CGL.OBL with a value of 17.

length a decimal expression specifying the number of characters
in the string.

dx,dy decimal variables to receive the X and Y offsets.

9.8.2 Text Attribute Instructions

9.8.2.1 SET CHARSIZE -- Set Character Size

BASIC-PLUS-2 CALL

CALL CGL BY REF (SET_CHARSIZE,width,height)

CALL CGL BY REF (INQUIRE_CHARSIZE,width,height)

OIBOL CALL

XCALL DCGL (GSCS,width,height)

XCALL OCGL (GICS,width,height)

9-26

Parameters

GSCS,GICS defined in CGL.DBL with values of 20,21.

width A decimal expression/variable specifying the character
width.

height A decimal expression/variable specifying the character
height.

9.8.2.2 SET CHARSPACE -- Set Character Spacing

BASIC-PLUS-2 CALL

CALL CGL BY REF (SET_CHARSPACE,delta_x,delta_y)

CALL CGL BY REF (INQUIRE CHARSPACE,delta x,delta_y)

DIBOL CALL

XCALL DCGL (GSCSp,delta_x,delta_y)

XCALL DCGL (GICSP ,del ta_x ,del ta_y)

Parameters

GSCSP,GICSP defined in CGL.DBL with values of 24 and 25.

delta x a decimal expression/variable to set or to receive the X
(horizontal) character spacing.

delta_y a decimal expression/variable to set or to receive the Y
(vertical) character spacing.

9.8.2.3 SET CHARPATH -- Set Text Writing Direction

BASIC-PLUS-2 CALL

CALL CGL BY REF (SET_CHARPATH,path,mode)

CALL CGL BY REF (INQUIRE_CHARPATH,path,mode)

DIBOL CALL

XCALL DCGL (GSCP,path,mode)

XCALL DCGL (GICP,path,mode)

9-27

Parameters

GSCP,GICP defined in CGL.DBL with values of 22,23.

path decimal expression/variable to set
character path.

mode decimal expression/variable to set
character path mode.

9.8.2.4 SET CHARJUST -- Set Text Justification

BASIC-PLUS-2 CALL

CALL CGL BY REF (SET_CHARJUST,x_just,y_just)

CALL CGL BY REF (INQUIRE_CHARJUST,x_just,y_just)

DIBOL CALL

XCALL DCGL (GSCJ,x_just,y_just)

XCALL DCGL (GICJ,x_just,y_just)

Parameters

or

or

GSCJ,GICJ defined in CGL.DBL with values of 26,27.

decimal expression/variable to
justification value.

decimal expression/variable to
justification value.

9.8.2.5 SET CHARITALIC -- Set Character Slant

BASIC-PLUS-2 CALL

CALL CGL BY REF (SET_CHARITALIC,angle)

CALL CGL BY REF (INQUIRE_CHARITALIC,angle)

DIBOL CALL

XCALL DCGL (GSCI,angle)

XCALL DCGL (GICI,angle)

9-28

set or

set or

to receive the

to receive the

to receive the X

to receive the Y

Parameters

GSCI,GICI defined in CGL.DBL with a value of 28,29.

angle decimal expression/variable to set or to receive the angle
of italics.

9.8.2.6 SET FONT -- Set Character Font

BASIC-PLUS-2 CALL

CALL CGL BY REF (SET_FONT, font)

CALL CGL BY REF (INQUIRE_FONT, font)

DIBOL CALL

XCALL DCGL (GSF,font)

XCALL DCGL (GIF,font)

Parameters

GSF,GIF defined in CGL.DBL with values of 18,19.

font a decimal expression or variable in the case of Inquire to
set or to receive the current font that is being used.

9.8~2.7 SET FONT SIZE -- Define Size of Character Font

BASIC-PLUS-2 CALL

CALL CGL BY REF (SET_FONT_SIZE,extent,x_size,y_size)

CALL CGL BY REF (INQUIRE_FONT_SIZE,extent,x_size,y_size)

DIBOL CALL

XCALL DCGL (GSFS,extent,x_size,y_size)

XCALL DCGL (GIFS,extent,x_size,y_size)

Parameters

GSFS,GIFS

extent

defined in CGL.DBL with values of 30,31.

a decimal expression/variable to set or receive the
highest numbered character in the font.

9-29

x size a decimal expression/variable to set or receive the width
(x size) of the font characters.

y_size a decimal expression/variable to set or receive the height
of the characters.

9.S.2.S LOAD CHARACTER -- Load User-defined Character

BASIC-PLUS-2 CALL

CALL CGL BY REF (LOAD_CHARACTER,code,matrix)

DIBOL CALL

XCALL DCGL (GLC,code,matrix)

Parameters

GLC defined in CGL.DBL with a value of 32.

code a decimal expression specifying which character of the
font is being loaded.

matrix an alpha variable array with 16 entries; each entry is 16
characters in length.

Example

RECORD
MYA ,16A16,I A

& ,I A A I

& ,IA AI
& ,IAAAAAI
& ,IA AI
& ,IA AI
& ,IA AI
& , I A A I

PROC
XCALL DCGL (GIC) ; Initialize CGL
XCALL DCGL (GSF,3) Font 3
XCALL DCGL (GSFS,126,5,S); Set the size
XCALL DCGL (GLC ,65 ,MyA) ; Load character

9.9 CONSTANT DECLARATION FILE

This section is a listing of the constant declaration file (CGL.DBL)
with the values for DIBOL which correspond to a similar file used by
CORE graphics.

9-30

; Control Instructions

RECORD
GIC ,D2 ,90 Initialize cgl
GTC ,D2 ,91 Terminate cgl
GRMRE ,D2 ,93 Report most recent error
GNF ,D2 ,92 New frame
GEV ,D2 ,88 Erase viewport
GPS ,D2 ,94 Print screen
GCW ,D2 ,95 Cgl wait

; Global Attribute Instructions

GSWI ,D2 ,60 Set writing index
GIWI ,D2 ,61 Inquire writing index
GSSI ,D2 ,62 Set background index
GISI ,D2 ,63 Inquire background index
GSCME ,D2 ,66 ; Set color map entry
GICME ,D2 ,67 Inquire color map entry
GSCM ,D2 ,64 Set color map
GICM ,D2 ,65 ; Inquire color map
GSWP ,D2 ,68 ; Set writing planes
GIWP ,D2 ,69 Inquire writing planes
GSWM ,D2 ,70 ; Set writing mode
GIWM ,D2 ,71 Inquire writing mode
GSGA ,D2 ,72 Set global attributes
GIGA ,D2 ,73 ; Inquire global attributes

; Viewing Transformation Instructions
;

GSV2 ,D2 ,82 Set viewport 2
GIV2 ,D2 ,83 Inquire viewport 2
GSW ,D2 ,80 Set window
GIW ,D2 ,81 Inquire window
GSO ,D2 ,86 ; Set origin
GIO ,D2 ,87 Inquire origin
GSWC ,D2 ,84 ; Set window clipping
GIWC ,D2 ,85 Inquire window clipping
GS ,D2 ,89 ; Scroll

; Current Position Instructions

GMA2
GMR2
GICP2

, D2 ,01
, D2 ,02
, D2 ,03

Move Absolute 2
Move Relative 2
Inquire Current position 2

9-31

Marker Instructions

GMKA2
GMKR2
GPMA2
GPMR2

,D2 ,33
,D2 ,34
,D2 ,35
,D2 ,36

; Marker Attributes

;
GSMKS
GIMKS

,D2 ,37
,D2 ,38

Marker absolute 2
Marker relative 2
Polymarker absolute 2
Polymarker relative 2

Set marker symbol
Inquire marker symbol

; Straight Line-Drawing Instructions

i

i
;

i

GLA2
GLR2
GPLA2
GPLR2
GPGA2
GPGR2
GRA2
GRR2

,D2 ,04
,D2 ,05
,D2 ,06
,D2 ,0 7
,D2 ,08
,D2 ,09
,D2 ,10
,D2 ,11

Line absolute 2
Line relative 2
Polyline absolute 2
Polyline relative 2
Polygon absolute 2
Polygon relative 2
Rectangle absolute 2
Rectangle relative 2

Curved 'Line-Drawing Instructions

GAA2 ,D2 ,39 Arc absolute 2
GAR2 ,D2 ,40 Arc relative 2
GCA2 ,D2 ,41 Curve absolute 2
GCR2 ,D2 ,42 Curve relative 2

Line Attributes

GSLS ,D2 ,12 Set line style
GILS ,D2 ,13 Inquire line style
GSLW ,D2 ,14 Set line width
GILW ,D2 ,15 Inquire line width
GSFM ,D2 ,74 Set fill mode
GIFM ,D2 ,75 Inquire fill mode
GSFE ,D2 ,76 i Set fill entity
GIFE ,D2 ,77 i Inquire fill entity
GSFC ,D2 ,78 i Set fill character
GIFC ,D2 ,79 i Inquire fill character

9-32

Text Primitive Instructions

GT ,02 ,16 Text
GITE2 ,02 ,17 ; Inquire text extent 2

i
; . Text Attribute Instructions ,

GSCS ,02 ,20 Set character size
GICS ,D2 ,21 ; Inquire character size
GSCSP ,D2 ,24 ; Set character space
GICSP ,D2 ,25 ; Inquire character space
GSCP ,02 ,22 Set character path
GICP ,02 ,23 Inquire character path
GSCJ ,D2 ,26 Set character justification
GICJ ,D2 ,27 Inquire char justification
GSCI ,D2 ,28 Set character italics
GICI ,D2 ,29 Inquire character italics
GSF ,D2 ,18 Set font
GIF ,02 ,19 Inquire font
GSFS ,D2 ,30 Set font size
GIFS ,D2 ,31 Inquire font size
GLC ,D2 ,32 Load character

9.10 EXAMPLES

This section consists of the DIBOL version of a program that exists in
the CORE graphics manual. The program allows you to generate graphics
in an interractive mode at a terminal.

GEDIT -- GRAPHICS SKETCHPAD

; GEDIT - GRAPHICS SKETCHPAD
;

;

Instructions:

The status line displays the current function, home position,
and mode.

9-33

Graphics sketchpad (cont.)

+----+----+----+
IMOVElwRITIERASI
+----+----+----+
I NH IHOMEI CS I
+----+----+----+

I" I

MOVE:
WRIT:
ERAS:
NH:
HOME:
CS:

Editing Keys ***

Select move mode
Select write mode
Select erase mode
Set new home position
Return to home position
Clear screen

; +----+----+----+
I <- I V I -) I
+----+----+----+

The arrow keys move the cursor

*** Function Keys ***

;

F17 F18 F19 F20
+----+----+----+----+
IVECTIRECTlcIRCI PS I
+----+----+----+----+

.PAGE

.INCLUDE 'LB:[l,S]CGL.DBL'
RECORD

XINCR
YINCR
CIRCUM

RECORD STATS
ESCI

,Dl ,3
,Dl ,-2
,D3 ,360

,AI

VECT:
RECT:
CIRC:
PS:

STSX

,A6 ,'[24;lH'
,A7 ,'Home =
,A4
,AI , ' ,

STSY

Begin vector
Begin rectangle
Begin circle
Print screen

CGL symbols

X movement Index
; Y movement Index

Degrees in a circle

,A4
,AIS
,AS
,A17 ,
,A9
,AI

Plot Mode:'
STSPM

STSAM
ESC2

RECORD CLRSTS
,A2 ,'[H'

ESC3 ,AI

,
Act ion Mode:';

,A6 ,'[24;lH'
ESC4 ,AI

RECORD
KEYTYP
KEY
FUNCT

RECORD

,A2 ,'[J'

,D3
,D3
,Dl ,2

;

;
;

9-34

Graphics sketchpad (cont.)

CANCEL
EXIT
NOISE
HELP
DO
VECTOR
RECT
CIRCLE
PRINT
TRACE
WRITE
ERASE
SETHOM
HOMCUR
CLRSCR
UP
LEFT
DOWN
RIGHT

RECORD

PROC

CX
CY
PX
PY
XX
YY
HOMEX
HomeY

VCTMOD
Vl
DUMMY
WK

CURMOD
LOUD

MODNAM
ACTNAM

OPEN
XCALL
XCALL
ESC2
ESC3
ESC4

,Dl
,D2
,D2
,D2
,D2
,D2
,D2
,D2
,D2
,D2
,D2
,D2
,D2
,D2
,D2
,D2
,D2
,D2
,D2

,D4
,D4
,D4
,D4
,D4
,D4
,D4
,D4

,Dl
,Dl
,Dl
,Dl

,8
,10
,11
,1S
,16
,17
,18
,19
,20
,21
,22
,23
,24
,2S
,26
,27
,28
,29
,30

,OSOO
,OSOO

,OSOO
,OSOO

,0

,Dl ,4
,Dl ,1

,AS ,'Write'
,A9 , 'Plot

(1 , 0 , ' TT: ')
FLAGS ('SOOOO')
ASCII (27, ESCl)

= ESCl
= ESCl
= ESCl

(GIC) XCALL DCGL
XCALL DCGL
XCALL DCGL
CALL CLEAR

(GSW,0,1000,0,62S)
(GNF)

9-35

Cancel Key
Exi t Key
Beep on Error
Help Key

; Do key
Vector plot
Rectangle
Circle
Print Screen
Trace Mode
Write Mode
Erase mode
Set home
Home cursor

; Clear screen
; Move Cursor Up

Move Cursor Left
Move Cursor Down
Move Cursor Right

Current X (Def: SOO)
Current Y (Def: SOO)
Stored X position
Stored Y position
Vector end-point X
Vector end-point Y
Home of X (Def:SOO)
Home of Y (Def:SOO)

; Vector Mode flag
Locator Action flag

; Dummy Argument
Funct key parameter

Writing Mode
; Bellon error flag

Mode Name
Action name

; Open the terminal
Disable echo

; Get the Escape

;

Initialize core
Square
New frame
Clear , display Sts

Graphics sketchpad (cont.)

XCALL DCGL
XCALL DCGL
XCALL DCGL
XCALL DCGL

GSWM, CURMOD)
GSLS, 1, 0, 0)
GMA2, CX, CY)
G LA2, CX, CY)

; Main plotting loop
;
,
MAIN,

CALL CMDS
XCALL DCGL (GLA2, CX, CY)
GOrro MAIN

;
The movement Routine

;
CMDS,

XCALL DGETK (KEYTYP

IF (KEYTYP.GT.FUNCT) GOTO NOKEY

IF (KE;Y.EQ.UP) CY=CY+YINCR
IF (KE'l!.EQ.UP) RETURN
IF (KE¥.EQ.RIGHT) CX=CX+XINCR
IF (KF;Y.EQ.RIGHT) RETURN
IF (KEY.EQ.DOWN) CY=CY-YINCR
IF (KEY.EQ.DOWN) RETURN
IF (KEY.EQ.LEFT) CX=CX-XINCR
IF (KEY.EQ.LEFT) RETURN

IF (VCTMOD) GOTO VCTFIX

IF (KEY.EQ.EXIT) GOTO EXIT
IF (KEY.EQ.NOISE) GOTO NOISE
IF (KEY.EQ.HELP) GOTO HELP
IF (KEY.EQ.VECTOR) GOTO VCTPLT
IF (KE;Y.EQ.RECT) GOTO RECT
IF (KEY.EQ.CIRCLE) GOTO CIRCLE
IF (KEY.EQ.PRINT) GOTO PRINT
IF (KEY.EQ.TRACE) GOTO TRACE
IF (KEY.EQ.WRITE) GOTO WRITE
IF (KEY.EQ.ERASE) GOTO ERASE
IF (KEY.EQ.SETHOM) GOTO SETHOM
IF (KEY.EQ.HOMCUR) GOTO HOMCUR
IF (KEY.EQ.CLRSCR) GOTO CLEAR

;

; Unassigned Function Key

;

9-36

Set the writing mode
; Line style is SOLID

Move absolute

;

;

;

;

Line absolute

Get movement
Move absolute
And Loop

Get next key

If Err - Ring

Move Up
And return
Move right
and return
Move down
and return
Move left
and return

Vector, go by

Dispatch

Bell

table

Graphics sketchpad (cont.)

&

DISPLAY (l,CLRSTS)
DISPLAY

(l,'Unassigned Function Key')
SLEEP 1
CALL STATUS
RETURN

Vector Fix

Clear status line

Display Error
Sleep a second

; Redisplay Status Line
And return

;

Check function keys in Locator Mode, DO key successful
termination, Help key unsuccessful (for now)

;
VCTFIX,

;

IF (KEY.EQ.DO) Vl = 1
IF (KEY.EQ.CANCEL) Vl = 0
IF (KEY.EQ.TRACE) GOTO TRACE
IF (KEY.EQ.WRITE) GOTO WRITE
IF (KEY.EQ.ERASE) GOTO ERASE
RE'rURN

Non Function Key

NOKEY,
IF (LOUD) bISPLAY (1,7)
RETURN

Move cursor to Home position

HOMCUR,
CX = HOMEX
CY = HOMEY
XCALL DCGL (GMA2, CX, CY)
RETURN

; Success Do
Non-Success Cancel
Switch to Trace Mode
Switch to Write Mode
Switch to Erase Mode

; If Loud ring a bell

;
; New X position
; New Y position
; Move to abs position

And return

Print Screen Image without Status Line

PRINT,

;

DISPLAY (1,CLRSTS,ESCl,'#7')
CALL STATUS
RETURN

; Clear Screen

9-37

; Clear the Status
Redisplay Status Line
Return

Graphics sketchpad (cant.)

;

CLEAR,

;

XCALL DCGL (GEV)
CALL STATUS
RETURN

Erase Viewport
Redisplay Status Line
And return

; Set writing mode to erase mode and update status line.
If in locator mode, don't update real writing mode

ERASE,
MODNAM = 'ERASE'
CURMOD = 8
CALL STATUS
IF (VCTMOD) RETURN
XCALL DCGL (GSWM, CURMOD)
RETURN

;

Mode Name
Erase Mode
Display Status Line
Locator Mode Return

; Set Writing Mode
Return

Set mode to replace mode and update status line. In Locator
; Mode, don't update real writing mode

WRITE,
MODNAM = 'WRITE'
CURMOD = 4
CALL STATUS
IF (VCTMOD) RETURN
XCALL DCGL (GSWM, CURMOD)
RETURN

; Mode Name
; Crnt Mode = Overlay

Update Status Line
Return (Locator Mode)

; Set writing Mode
Return

Trace Mode - no writing, just movement. Do not alter actual
writing mode in Locator mode.

;

TRACE,
MODNAM = 'TRACE'
CURMOD = a
CALL STATUS
IF (VCTMOD) RETURN
XCALL DCGL (GSWM, CURMOD)

;

; Toggle beep on bad input
;
;

9-38

Mode Name
Mode is TRANSPARENT

; Redisplay Status line
Return (Locator Mode)

; Set Writing Mode

Graphics sketchpad (cont.)

NOISE,
LOUD
IF
RETURN

= LOUD - 1
(LOUD.EQ.-l) LOUD = 1

Decrement Loud
If neg, turn it on
Return

Home is where the cursor is. Update status line
i
i
SETHOM,

i

HOMEX = CX
HOMEY = CY
CALL STATUS
RETURN

Help the User. No help yet

HELP,
DISPLAY

& (l,CLRSTS,'HELP NOT AVAILABLE.')
SLEEP 2
CALL STATUS
RETURN

i Update X
i Update Y

Display status line
And return

Write Error
i Sleep a couple
i Redisplay Status line

And return

Plot a vector from here to located point.
i Leave cursor at end of Vector.

VCTPLT,

i

ACTNAM = 'VECTOR
CALL STATUS
PX = CX
PY = CY
CALL VCTFND
IF (Vl.EQ.O) GOTO RSTCRS
XX = PX
YY = PY
CALL DRWVEC
ACTNAM = 'Plot
CALL STATUS
RETURN

i Action name is VECTOR
i Redisplay the Status

Save Crnt position

Find the end point
Restore if cancelled
Prepare vector

Draw the vector
Back into Plot Mode
Redisplay status line
And return

Draw a rectangle by finding the opposite corner

9-39

Graphics sketchpad (cont.)

RECT,

, ,

ACTNAM = 'Rectangle'
CALL STATUS
PX = CX
PY = CY
CALL VCTFND
IF (VI.EQ.O) GOTO RSTCRS
XCALL DCGL (GMA2, PX, PY
XCALL DCGL (GRA2, CX, CY
GOTO RSTCRS

Action Name
Update Status line

Find the end point
Restore if Cancelled
Put corner back
Draw the rectangle
Restore the cursor

; Draw a circle with center here and radius located
Operation can be cancelled

;
CIRCLE,

;

ACTNAM = 'Circle
CALL STATUS
PX = CX
PY = CY
CALL VCTFND
IF (VI.EQ.O) GOTO RSTCRS
XCALL DCGL (GMA2, CX, CY)
XCALL DCGL (GAA2,PX,PY,CIRCUM)

Restore the cursor after locator find

RSTCRS,

;

CX = PX
CY = PY
XCALL DCGL (GMA2,
ACTNAM = 'Plot
CALL STATUS
RETURN

CX, CY) ,

Circle option
Update the Status
Hang on to the start
point for center
Locate a radius
Quit if cancelled
Back to center
Draw the circle
Fall into RstCrs

Reset crnt position

; Restore the cursor
Back to Plot mode
Update status
And return

Locator - Find endpoints of vector with one end here

VCTFND,
XCALL DCGL (GSWM, 2)
VCTMOD = I
VI = 0
xx = CX
YY = CY
CALL DRWVEC

; Mode to COMPLEMENT
i We are in vector mode

;

Draw the vector

9-40

Graphics sketchpad (cont.)

WHILOP,
IF (Vl.NE.O) GOTO NOMORE
CALL DRWVEC
XX = CX
YY = CY
CALL DRWVEC
CALL CMDS
GOTO WHILOP

NOMORE,

;

CALL DRWVEC
XCALL DCGL GSWM, CURMOD)
VCTMOD = 0
RETURN

Draw vector

We want DO WHILE here
Draw the vector

Draw the vector
Call commands
Complete While loop

; One more time
Restore writing mode
No more vector mode
All done

; This routine plots a vector from point (px,Py) to point
(Xx,Yy) in ; whatever writing mode

;

DRWVEC,
XCALL DCGL
XCALL DCGL
RETURN

GMA2, PX, PY
GLA2, XX, YY

Start point
Small vector

; And return

Display a status line at the bottom of the screen and put
the cursor back at the top of the screen

STATUS,

;

STSX = HOMEX
STSY = HOMEY
STSPM = MODNAM
STSAM = ACTNAM
DISPLAY (l,STATS)
RETURN

Exit the program

EXIT,
CALL CLEAR
DISPLAY (l,CLRSTS)
XCALL DCGL (GTC)
STOP

END

9-41

i

The cursor position

Plot Mode:
Action Mode:
Print status line
And return

Clear the screen
; Clear the status line
i Terminate Graphics
i Bye, Bye

APPENDIX A

CHARACTER COLLATING SEQUENCE

This appendix contains two tables. Table A-I shows the English,
German, Dutch, and French collating sequences; and Table A-2 shows the
multi-national collating sequence.

A-I

English, German, Dutch, and French Collating Sequences

INCREASING
AAEBCDEFGH J KLM N OCEPQRSssTUVWXYZ

aaeb c d e f 9 h k I m n ooep q r s t u v v x y z

A C;
"- I N a 0 y E

E a 9 e i n- o u y
Q /

A E 'I 6 U
/ e ..- 6 u U a i
A '" A '" " A A E I 0 U

'" "- "- "- "-
L a e i 0 u

A E y 0 U
a e i 0 U
0 0 A
0 0 a

0

"

A-2

Table A-2

Multi-National Collating Sequence

INCREASING
ABCDEFGH I J KLMNN~OPQRS~TUVWXYZ~0

a b c d e f 9 h k I m n noe 0 p q r s u v v x y z as f5

A Q E f 6 0 Y
E a 9 e

,
i 0 u y

A E i b
,

Q U

a e -(./ ./ U I 0 U
A " I 6 A

A A E U
" "

A a "-L a e i u

A
' , 'f 0 U E

a '13 i 0 ii

A a
a 0

A-3

, ,
! ,

"

This appendix
character set.

APPENDIX 8

contains two tables. Table 8-1 contains the ASCII
Table 8-1 contains the multi-national character set.

8-1

TABLE B-1

ASCII Character Set

Decimal Decimal Decimal
Code Character Code Character Code Character

000 CTRL/(u (NUL) 042 * 085 U
001 CTRL/A 043 + 086 V
002 CTRL/B 044 087 W
003 CTRL/C 045 - 088 X
004 CTRL/D 046 089 Y
005 CTRL/E 047 / 090 Z
006 CTRL/F 048 0 091 [
007 BELL (CTRL/G) 049 I 092 \
008 CTRL/H 050 2 093 1
009 HT (Horizontal Tab) 051 3 094 A {t!
010 LF (Line Feed) 052 4 095 ~tf
011 VT (Vertical Tab) 053 5 096
012 FF (Form Feed) 054 6 097 a
013 CR (Carriage Return) 055 7 098 h
014 CTRL/N 056 8 099 c
015 CTRL/O 057 9 100 d
016 CTRL/P 058 101 e
017 CTRL/Q 059 102 f
018 CTRL/R 060 < 103 g
019 CTRL/S 061 = 104 h

020 CTRL/T 062 > 105 i
021 CTRL/U 063 ') 106 J
022 CTRL/V 064 ((/ 107 k
023 CTRL/W 065 A 108 I
024 CTRL/X 066 B 109 m

025 CTRL/Y 067 C 110 n

026 CTRL/Z (logical 068 D 111 ()

end-of-file) 069 E 112 P -0
027 ESC (ALTMODE) 070 F 113 q - 1
028 CTRL/\ 071 G 114 r _"l

029 CTRL/I 072 H I 15 s -3
030 CTRL/ ~ 073 ! 116 t -4
031 CTRL/- 074 J 117 1I -5
032 SPACE 075 K 118 v -6
033 , 076 L 119 w -7
034 " 077 1'.1 120 -8 x
035 # 078 N 12 I y -9
036 $ 079 0 122 z
037 (Ir 080 P 123 1
038 & 081 Q 124 I
039 OS2 R 125 f
040 (083 S 126 -
041) 084 T 127 DEL (RUBOUT)

8-2

Decimal
Code

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

TABLE B-2

Multi-National Character Set

Decimal Decimal
Character Code Character Code

171 « 214
172 215
173 216
174 217

IND 175 218
NEL 176 0 219
SSA 177 ± 220
ESA 178 2 221
HTS 179 3 222
HTJ 180 223
VTS 181 P. 224
PLD 182 4J 225
PLU 183 • 226

RI 184 227
SS2 185 1 228
SS3 186 0 229
DCS 187 » 230
PU1 188 1f4 231
PU2 189 1/2 232
STS 190 233
CCH 191 i 234
MW 192 A 235
SPA 193 A 236

" EPA 194 A 237
195 A 238
196 A 239

0

197 A 240
CSI 198 If. 241
ST 199 g 242

OSC 200 E 243
PM 201 E 244

" APC 202 E 245
203 EO 246

i 204 1 247
¢ 205 f 248

" £ 206 I 249
207 oj" 250

¥- 208 251
209 N 252

§ 210 6 253
/

:xx:: 211 0 254
" © 212 0 255

a 213 0

8-3

Character

t5
CI
fJ

0
/

U
" U
U
V

B
a
a
" a
a
·a·
0 a
~

S
e
/ e
" e
if
'>
I
<'
I

" i
i

n
0
--0

" 0

0
·0

De

13
,
u
/

u
" u
u

V

APPENDIX C

DIBOL OSSL EXTERNAL SUBROUTINES

This appendix describes the external subroutines that are supplied
with Tool Kit DIBOL in the OSSL (Operating System Specific Library,
DBPOSL.OLB) • The subroutines in the UESL (Universal External
Subroutine Library, DBPLIB.OLB) are described in the DIBOL-83 Language
Reference Manual and provide a variety of functions that are commonly
required by DIBOL users. All the subroutines described in this
appendix can be linked with any DIBOL program using the application
build procedures described in Chapter 4 of this manual; they are
accessed with the DIBOL XCALL statement.

Chapters 7, 8, and 9 contain, respectively, procedures for accessing
FMS, p/os callable images and system services, and the CORE Graphics
Library.

The subroutines documented in this appendix are:

FUNLK
ISMCRE
PRINT
R5ASC
SYSID
TBBIN
TBDUT

C-l

TBENG
TBFRE
TBGER
TBMOD
TBMUL
TBRET
TBRPL

C.l FUNLK

The FUNLK external subroutine unlocks a locked (or not locked) file.

XCALL FUNLK (filespec[,status])

filespec

status

The file specification of the file(s) to
Wildcarding is permissable. The defaults are:

Device:
Directory:
Filename:
Extension:
Version:

SYO:
current directory
no default
.DDF
. * ,

unlock.

Optional decimal variable to which is returned the
number of files unlocked.

C-2

C.2 ISMCRE

The ISMCRE
ability to
multiple
programmer

external subroutine
create RMS ISAM files.
keys (not segmented
defined bucket sizes,

provides the DIBOL program with the
The files that are created may have

keys), initial block allocations,
and a specified protection code.

XCALL ISMCRE (File Name
,Max fiec Size
,posn_Arr

; File Name
Maximum Record Size

; Array of Key Start Posn
Array of Key Lengths
Array of Duplicate Flags
Array of Change Flags
Number of keys defined
Initial Allocation

,Len Arr
,[Dupl Arr]
,[Ket Chg Arr]
,[Number Keys]
,[Init Alloc]
,[Bucket Size]
,[Protection]

Size per bucket
; Protection Code

File Information:

File Name An alpha record, field, or literal specifying the name
of the file to create. The default extension is '.ISM'.

Max Rec Size A decimal expression equal to the length of the longest
record that the file will contain. RMS fixed length
records are created.

Init Alloc

Bucket Size

Protection

An optional decimal expression equal to the initial
allocation of the file in blocks. If this argument is
not passed, or a null (,,) argument is passed, no
initial allocation is assumed.

An optional decimal expression equal to the bucket size,
in disk blocks, that you want RMS to use for this
indexed file. If this argument is not supplied, RMS
calculates a bucket size big enough to contain at least
one record.

An optional expression representing the protection code
to be given to the file when created. The protection
code is expressed similar to the call for 'FLAGS'. ~
value of zero or space indicates the corresponding
protection be denied while a non-zero, non-space value
would grant the particular access to the file.

The file protection value identifies the file access
privileges of four classes of users:

+--------+-------+-------+-------+
I System I Owner I Group I World I
+--------+-------+-------+-------+

C-3

Each of the categories contain four types of access to be
granted or denied:

+------+-------+--------+--------+
I Read I Write I Extend I Delete I
+------+-------+--------+--------+

Therefore, a 16 character field is required to express the
protection code for a particular file. If the field is
shorter than sixteen characters, then the omitted classes
and access types are assumed to be zero, or denied.

Key Information:

All key information is passed in arrays with the Number_of_Keys
argument indicating the number of valid entries in each of the arrays.
In order to create an ISAM file with three keys, for example, each of
the arrays would be declared as decimal arrays with three entries.

By default each array contains only one entry which allows you to pass
literal numbers in place of the arrays when creating an ISAM file with
only one key. If there is to be more than one key in a file, it is
imperative that you declare these arrays in the data area of the
program. Arrays with more than one entry cannot be expressed as
literals from DIBOL.

Posn Arr

Len Arr

A decimal array containing the starting positions of
each of the keys.

NOTE

The first character in the record is
position ONE, which is not the way it is
expressed in the RMS utility RMSDEF.

A decimal array containing the lengths, in characters,
of each of the keys.

A decimal array containing a flag that indicates whether
this particular key may have duplicates. A value of
zero or space means 'No Duplicate Keys'. If defining
only one key and this argument is omitted, then a
default value of 'No Duplicate Keys' is assumed.

A decimal array containing a flag that indicates whether
a key may be changed during an update operation. Note
that this parameter affects only ALTERNATE keys and not
the PRIMARY key. This argument must be present in the
array for the primary key, but is ignored for that key.
If the value of this expression is zero or a space, the
key may not be changed during an UPDATE operation.

C-4

Examples:

1. create an ISAM file named TEST.ISM with the following:

a. KEY #1 - Start:4, Length:6, Duplicates:No
b. The maximum record size is 80 characters

XCALL ISMCRE (' Test' ,80,4,6)

2. Create an ISAM file named TEST. ISM with the following:

Record
Pos
Len
Dupl
Chng

PROC

a. Four keys

Key #1 - Start:3, Length:6, Dupl:No
Key #2 - Start:12, Length:4, Dupl:Yes, Change:Yes

Key #3 - Start:80, Length:6, Dupl:Yes, Change:No
Key #4 - Start:255, Length:12, Dupl:Yes, Change:No

b. Maximum Record Length of 512
c. Bucket size of 4 blocks
d. Initial allocation of 250 blocks
e. Protection of (System:RWED,Owner:RWED,Group:,World:)

,4D3, 3,12,80,255
,4D2, 6, 4, 6, 12
,4Dl, 0, 1, 1, 1
,4Dl, 0, 1, 0, 0

Keys starting positions
i Key lengths

Duplicate Key Flags
Allow UPDATE change flags

XCALL ISMCRE ('Test' ,512,Pos,Len,Dupl,Chng,4,250,4,'11111111')

C-5

C.3 PRINT

The PRINT external subroutine enables a DIBOL program to access all
the functions available through the print services task which is
documented in the Professional Tool Kit User's Guide.

The calling sequence is in the form:

where:

XCALL PRINT (status,code[,arg(s)])

status

code

is a decimal array with two entries. The values
returned for the two entries are documented in
Chapter 6 of the Professional Tool Kit User's
Guide.

is a decimal variable or literal indicating the
print call function. The codes are:

Code

1
2
3
4
5
6

Function

Print File or Files
Abandon Print Job
Pause Print Job
Continue Print Job
Restart Current File
Vie~ Status

arg(s) is an optional argument (or arguments) that are
used only with "code 1".

The form for "code 1" is:

XCALL PRINT (status, 1, filename(s) [,ifiles])

where:

filename(s)

#files

is an alpha literal, or variable when printing
one file, or an alpha array when printing a
group of files.

an optional decimal expression indicating the
number of file names in the alpha array. If
only one file is being printed, this argument
may be omitted and a value of 1 is assumed.

The non-trappable error #6 (Incorrect Number of Args) is generated if
the correct number of arguments (either 1, 2, or 3) are not specified.
Error ~58 (Program Startup Error) is generated if the print utility
cannot be started. Error #104 (Value out of Range) is generated if
the code is not in the range 1 through 6.

C-6

Example:

This program accepts, from the keyboard, up to nine file names to be
printed, and reports the ststus.

Proc

Record

Status
AStat
Files
NumFil
Alpha
Code

Open
Top, Display

Reads
Code
Goto
Display
Goto

Codel, Display
Reads
Numfi 1

Okay,

If
Display
Goto

XCall
Call
Goto

Code2,
Code3,
Code4,
CodeS"
Code6,

Call
Goto

Sts, AStat(l)
AStat(2)

&
Display

Display
XCall
Return

,2D3
,2A3
,9ASO
,Dl
,Al
,Dl

(l , 0 , , TT : ')

Decimal array passed for status
Used to Display Status
File Names to Print
Number of Files in 'Files'
Used to do READS of 'Code'
Decimal for code 1 thru 6

(l,13,lO,'Input Function:')
(l,Alpha,End)
= Alpha
(Codel, Code2, Code3 , Code4 , CodeS, Code6), Code
(l,13,lO,'Range 1 to 6')
Top

(l,13,lO,'How many files?')
(l,Alpha,Codel)
= Alpha
«NumFil.Gt.O) .And. (NumFil.LE.9» Goto Okay
(l,13,lO,'Range 1 to 9')
Codel
For Code From 1 Thru NumFil
Begin

End

Display (l,13,lO,'File Name? ')
Reads (l,Files(Code»

Print (Status,l,Files,NumFil)
STS
Top

XCall Print (Status,Code)
STS
Top

= Status(l)
= Status(2)

(l,13,lO,'Status returned = '
AStat(l) " " ,Astat(2»

(l,13,lO,'Press RESUME to continue')
DWTRE

C-7

C.4 R5ASC

The R5ASC external subroutine changes one RAD50 word to three ASCII
characters.

The calling sequence is in the form:

XCALL R5ASC (afieldl,afield2)

where:

afieldl

afield2

is the data field consisting of two alpha characters
(one RAD50 word) •

is the data field consisting of three alpha characters.
This is the destination field for the converted RAD50
word.

The non-trappable error 16 (Incorrect Number of Args) is generated if
two arguments are not specified.

The non-trappable error 131 (Argument Wrong Size) is generated if the
size of afieldl is not two or more characters.

C-8

C.S SYSID

The SYSID subroutine returns the CPU identification number.

The calling sequence is in the form:

XCALL SYSID (dfield)

where:

dfield is a decimal variable which receives
tification number. The recommended
variable is 16.

the CPU iden­
size of this

The error message #6 (Incorrect Number of Args) is generated if other
than one argument is specified.

C-9

C.6 TBBIN

The TBBIN external subroutine replaces the previously
collating sequence used for alpha comparisons with a
sequence consisting of ASCII values for binary comparison.

NOTE

This binary comparison is the default
collating sequence for DIBOL.

The calling sequence is in the form:

XCALL TBBIN

There are no arguments.

C-10

selected
collating

C.7 TBDUT

The TBDUT external subroutine replaces the previously selected
collating sequence table used for alpha comparisons with a table
containing the Dutch collating sequence. Both sequences are
established by DEC Standard 169. Appendix A contains tables showing
character collation sequences.

The calling sequence is in the form:

XCALL TBDUT

There are no arguments.

C-ll

c.s TBENG

The TBENG external subroutine replaces the previously selected
collating sequence table used for alpha comparisons with a table
containing the English collating sequence. Both sequences are
established by DEC Standard 169. Appendix A contains tables showing
character collation sequences.

The calling sequence is in the form:

XCALL TBENG

There are no arguments.

C-12

C.9 TBFRE

The TBFRE external subroutine replaces the previously selected
collating sequence table used for alpha comparisons with a table
containing the French collating sequence. Both sequences are
established by DEC Standard 169. Appendix A contains tables showing
character collation sequences.

The calling sequence is in the form:

XCALL TBFRE

There are no arguments.

C-13

C.lO TBGER

The TBGER external subroutine replaces the ~reviously selected
collating sequence table used for alpha comparisons with a table
containing the German collating sequence. Both sequences are
established by DEC Standard 169. Appendix A contains tables showing
character collation sequences.

The calling sequence is in the form:

XCALL TBGER

There are no arguments.

NOTE

Proper names are a special case in the
German language. They are not collated
in the same way as the rest of the
language. The TBGER subroutine does not
make this distinction.

C-14

C.II TBMOD

The TBMOD external subroutine permits changing one or more of the
entries in the current collating table used for alpha comparisons.

The calling sequence is in the form:

XCALL TBMOD (offsetl,valuel[offset2,value2, ••• offsetn,valuen])

where:

offsetn

valuen

is a decimal field or literal specifying an offset into
the collating table.

is a decimal field or literal specifying the new
contents of the entry selected by the paired "offset"
value.

The error message #6 (Incorrect Number of Args) is generated if the
arguments are not paired or if there are no arguments specified.

The error message #104 (Value out of Range) is generated if the value
of any argument does not fall within the range of 0 to 255 inclusive.

Example:

RECORD

PROC

OFFSET, D3
NEWVAL, D3
COUNT, D3

OPEN (l, 0 , , TT: ')
XCALL DECML ('a' ,OFFSET) offsets start at letter 'a'
XCALL DECML ('A' ,NEWVAL) values start with ASCII

LOOP, XCALL TBMOD (OFFSET,NEWVAL) for 'A'
INCR COUNT
INCR OFFSET
INCR NEWVAL
IF (COUNT.LT.26) GOTO LOOP repeat 26 times
IF ('ABCDE'.EQ.'abcde') DISPLAY (l.13.l0,'SUCCESS!!')
IF ('ABCDE' .NE.'abcde') DISPLAY (1.13.10,'FAILURE??')
CLOSE 1
STOP

This program will print on the terminal:

SUCCESS!!

C-IS

C.12 TBMUL

The TBMUL external subroutine replaces the previously selected
collating sequence table used for alpha comparisons with a table
containing the multi-national collating sequence. Both sequences are
established by DEC Standard 169. Appendix A contains tables showing
character collation sequences.

The calling sequence is in the form:

XCALL TBMUL

There are no arguments.

C-16

C.13 TBRET

The TBRET external subroutine returns one or more of the entries in
the current collating table.

The calling sequence is in the form:

XCALL TBRET (offsetl,valuel[offset2,value2, .•. offsetn,valuen])

where:

offsetn

valuen

is a decimal field or literal specifying an offset into
the collating table.

is a decimal field into
value of the contents of
paired "offset" value.

which is placed the decimal
the entry selected by the

The error message #6 (Incorrect Number of Args) is generated if the
arguments are not paired or if there are no arguments specified.

The error message #104 (Value out of Range) is generated if the value
of the "offset" argument does not fall within the range of 0 to 255
inclusive.

C-17

C.14 TBRPL

The TBRPL external subroutine replaces the current collating table
that is used for alpha comparisons with a user-developed table.

The calling sequence is in the form:

where:

table

XCALL TBRPL (table)

is a record containing any number of D3 fields. If
there are n D3 fields, the first n entries in the table
are replaced.

NOTE

The first D3 field corresponds to the
first entry (the Oth entry) in the col­
lating table.
• If an entry in the replacement record

is zero, the current collating table
is unchanged for that entry position.

• If an entry in the replacement table
is non-zero, the current collating
table is changed to the specified
value for that position.

• If the replacement table is smaller
than the current collating table, the
values in the replacement table are
used (according to the rules above) on
a one for one basis starting with the
first character position. Characters
in the current collating table that do
not correspond with any in the
replacement table are unchanged.

The error message 16 (Incorrect Number of Args) is generated if other
than one argument is specified.

The non-trappable error message .31 (Argument Wrong Size) is generated
if the record size is not divisible by three.

C-18

INDEX

A

Addressing, terminal, 2-4
Application Builder (PAS), 1-2, 4-1

DIBOL programs, 4-7
files used by, 4-11
operating characteristics with,

2-10
switches, 4-10

Application development, major
steps in, 2-2 to 2-5, Figure 2-1

Application Diskette Builder, 2-11,
Application installation file, 1-3,

2-10
Application messages, 1-3

builder error, 4-8
Application programs,

developed on host system, 1-1
installed on the professional,

1-3
transfer from host to

Professional, 2-11
ASCII characters,

B

a-bit instead of 7-bit, 2-4
table, B-1

/B, compiler switch, 3-5
Block mode operation, 5-10
Blocks, virtual, 5-9
Breakpoint control,

clearing, 6-5
iteration of, 6-6
setting, 6-5

Bucket, 5-8
locking, RMS-ll uses, 5-8
records cannot cross boundaries,

5-17
Building a DIBOL program for CORE
Graphics, 9-2

c

.CMD files,
application builder files, 3-1
command files, 4-9

.CMD files (continued)
file specification section, 4-9

Callable immages/routines, 8-1
Callable p/OS system services, 8-21

to 8-23
Callable system routines, 8-24 to

8-23
Calling CORE Graphics library

subprograms, 9-1
Characters,

display, 2-4
8-bit, 2-4
natural (human) language, 2-4

Clustered libraries,
Professional supports, 1-3
with .CMD files, 4-4

Code,
creation with any available

editor, 2-10
non-requirment on Professional,

1-3
Collating sequence, A-I

English, German, Dutch, and
French, A-2

Multi-national, A-3
Command files,

editing, 4-4
generating, 4-3
to control application builder,

3-1
Command interface (ProDispatcher),

1-4
Command language, host system (DCL,

MCR) , 1-2
Command qualifiers, compiler, 3-4
Commands,

application builder format, 4-9
DDT, 6-2
global definition, 4-4

Communications facility, 2-5
Compiler, 3-1

command qualifiers, 3-4
example, 3-9
DIBOL programs compiled with,

2-10
invoked using host command

format, 3-2
output files, 3-6

Compiling with DDT, 6-1

Index-l

INDEX (Cont.)

Condition handling, error messages,
2-8

Constant declaration file (CORE
Graphics), 9-3

Control instructions (CORE
Graphics), 9-4 to 9-5

CTRL/G with DDT, 6-3
CTRL/z with DDT, 6-3
Current position and marker

D

instructions (CORE Graphics) ,
9-14 to 9-17

ID, com?iler switch, 3-S, 6-1
Data stora3e space requirements,

S-lS
DeL command language, 1-2, 3-4
DDT, 6-1

commands, 6-2
execution under control of, 2-11
object module, 1-1
on the Professional, 2-8
program execution, 6-3

Debugging, on the professional,
1-1, 2-3

DELETE statement, S-S
Descriptor files,

editing overlay, 4-7
generatin'J, 4-3

Device codes, Professional system
does not require, 1-3

Device drivers, proDispatcher
provides access to, 1-3

DIBOL Debugging Technique (DDT),
see DDT

DIBOL ISAM utility not supported,
2-8

DISOL system language differences,
1-3, 1-4

DIBOL programs,
application building, 4-7
development, 2-1
for the Professional, 1-1, 2-1
migration to professional, 2-11
overall process for, 2-1 to 2-4
system considerations for, 2-4

DIBOL resident libraries, 4-2

Index-2

DIBOL Tool Kit Software, 1-1
compi ler, 1-1
DDT object module, 1-1
OSSL libraries, 1-1
run-time system modules, 1-1
UESL libraries, 1-1

Diskettes, producing
customer-usable package, 2-11
Display characters, 2-4

a-bit instead of 7-bit ASCII, 2-4
DMS files, not supported on
Professional, 2-8
Documentation, 1-2

primary sources of, 2-3

E

Ed i tor (PROSE), 2-5
EFNs, see Event flags
8-bit characters, access natural

(human) language characters, 2-4
End-user interface, characteristics

of Professional, 2-4
Error messa3es,

condition handling, 2-8
DIBOL compiler, 3-8
DDT, 6-2
RMS-11, S-12

Escape sequences,
VT100, 2-S
peculiar to the professional, 2-S

Event flags (EFNs), 4-S
Executable files, transfer of, 1-3,

2-11
External subroutines for the

Professional, APPENDIX C

F

Fatal error routine, 8-1S
FDT (frame development tool), 2-S
File access,

block mode, 5-10
indexed, 2-7, S-5
relative, 2-7. S-6
RMS, 2-6, S-S
sequential, 2-7, 5-S

INDEX (Cont.)

File (RMS) services, 2-6
Files,

DIBOL ISAM not supported on
Professional, 2-8

generating command and descriptor
files, 4-3

map, 4-12
multivolume not supported on

Professional, 2-7
organizations, Tables 5-1 and 5-2
overlay descriptor files, 3-1,

4-3, 4-7
reference to library, 4-11
task, 4-12
transfer of executable, 2-11
used by application builder, 4-11

FMS-ll, PRO, 2-5
argument data types, 7-1
calling syntax, 7-2
interface to, 7-1

Form driver, 7-1
Format,

PAB command, 4-9
record, 5-7

Frame development tool (FDT), 2-5
FUNLK external subroutine, C-2

G

Get keystroke routirl, 8-16
Global attribute instructions (CORE

Graphics), 9-10 to 9-13
Global definition commands, 4-4,

4-6
Graphics routines, PRO/GRAPHICS,

2-5
Graphics supplied with the

Professional Tool kit, 4-2

H

Help frames, 1-3, 2-5
Help service routines, 8-12 to 8-13
Host environment, program

development on, 1-2
Host software, supplied with DIBOL,

1-2

Host system,

I

application programs developed
on, 1-1

command language, 1-2

Indexed file,
created using ISMCRE subroutine,

5-2
created using RMSDEF utility,

5-2, 5-12
keys, 5-3
operations, 5-10
organization, 5-2, 5-17, Figures

5-1 and 5-2
Installing with P/OS, 2-11
Interface to CORE Graphics, 9-1
ISAM utility, not supported on

Professional, 2-8
ISMCRE external subroutine, C-3

K

Keyboard function keys, 2-5
Keys,

L

alternate, 5-4
defining, 5-4
duplicate, 5-4
indexed file, 5-3, Figures 5-1

and 5-2
keyboard function, 2-5

Label table, compiler, 3-8
Libraries,

with application builder on host,
4-2

clustered, Professional supports,
1-3, 4-4

object libraries for use on host,
2-7

RMS file access through resident,
4-2

Index-3

INDEX (Cont.)

Libraries (continued)
segmented, Professional supports,

4-2
Library,

files, 4-11
resident files, 4-11

Line instruct ions (CORE Graph i cs) ,
9-18 to 9-25

Link with DDT, 6-1
Listing,

compiler, 3-7
program, 3-7
suppress program listing, 3-6

Logical unit,
CTAB requirements, 4-4
DIBOL requires first 18, 4-4
numbers, 4-4
specified during application

building, 2-10
LPQUE statement, 2-6

M

Macros, RMS-ll, 5-10
Map file, 4-12
MCR command language, 1-2
Miscellaneous services (p/OS), 8-15
Messages,

application builder error, 4-8
compiler error, 3-8
DDT error, 6-2
Menus, p/OS feature, 1-3
condition handling, 2-8
p/OS message facility 2-7
RMS-ll error, 5-12
Suppress DICOMP warning with /w,

3-6
Menu service routines, 8-2 to 8-11
Message service routine, 8-14
Multivolume files, not supported on

Professional, 2-8
Multi-national characters, B-1, B-3

N

/N compiler switch, 3-6

Index-4

Natural (human) language
characters, 2-4

New file routine, 8-17

o

.OBJ (Object Module Files), 4-10

.ODL files,
application builder files, 3-1
examples of, 4-11
overlay description language,

4-10
/0, compiler switch, 3-4
O:R submode, 5-6
Object libraries, 2-7

modules from combined with main
programs, 4-1

Object module files, 4-11
Old file routine, 8-18
Operating system functionality,

DIBOL differences caused by, 1-4
Operating System Specific Library

(OSSL), see Subroutine
Options, compiler qualifiers, 3-4
OSSL, see Subroutine
Overlay descriptor files, 3-1, 4-7,

4-12
Overlay user subroutines, 4-8

P

/p compiler switch, 3-6
Parse string routine, 8-16
P/OS, 1-3

features of, 1-3
services and facilities, 2-5
single user multitask operating

system, 1-3
p/OS services and facilities, 2-5

callable services, 8-21 to 8-23
Communications Facility, 2-6
FDT (frame development tool), 2-5
Messages, 2-7
PRO/FMS-ll, 2-5
PRO/GRAPHICS, 2-5
PRO/SORT, 2-6, 8-23
PROSE (editor), 2-6, 8-21

I

INDEX (Cont.)

p/OS Services (continued)
RMS (file services), 2-6

PAS (Professional Application
Builder), 1-2

PRINT external subroutine, C-6
Printing as callable service, 2-6

use of DIBOL PRINT subroutine,
8-22

PRO/SORT (system service), 8-23
PRODIR (system routine), 8-24
PROFSI (system routine), 8-25
Professional system,

DIBOL Tool Kit supplied on, 1-1
Professional Tool Kit supplied

on, 1-1
software environment, 1-3

Professional system services,
interface routines to, 1-4

Professional Tool Kit, 1-1
supplied on Professional systems,

1-1
Program,

development tasks, 2-8
OISOL development, 1-1, 2-1
migration before modification,

1-2
movement to the Professional,

2-11
PROLOG (system routine), 8-25
PROSE text editor (system service),

8-21
PROVOL (system routine), 8-26

R

R5ASC external subroutine, C-8
Random access,

mode, 5-6
statements, 5-5

READ statement, 5-5
READS statement, 5-5
Record,

cannot cross bucket boundaries,
5-17

formats, lengths, and storage,
5-6

operations, 5-9, 5-10

Relative file,
ope ra t ions, 5-9
organization, 5-2, 5-17

Resident libraries,
DIBOL, 4-2
files, 4-11
RMS file access via, 1-3

RMS-l1,
error messages, 5-12
Macros, 5-10
record operations, Table 5-2

RMS-11 and DIBOL, 5-1
access modes, 5-1, 5-5
creating, 5-6
file organization, 5-1
file services, 2-6

RMSDEF utility,
dialogue, 5-12
indexed files created using, 5-2,

5-6
RMS file access, 1-3

support for, 1-3
via resident libraries, 1-3

RMS file services, 2-6
RMS resident library, symbol table,

4-2
Run-time interpreter, libraries

for, 1-3
Run-time language support, in

clustered libraries, 2-7

s

IS, compiler switch, 3-6
Send message to message/status

display (routine), 8-20
Segmented (RMS) libraries,

Professional supports, 1-3
Sequential access,

mode, 5-5
statements, 5-5

Sequential file,
operations, 5-9
organization, 5-2, 5-17

Software,
DIBOL Tool Kit, 1-1
Host supplied with DIBOL, 1-2
Profes~lonal environment, 1-3

Index-5

INDEX (Cont.)

Sort (PRO/SORT),
general purpose, 2-6
similar to SORT-II, 2-6

Source code files, compiler
accepts, 3-1

Source program, creation of, 2-1,
2-10

Space requirements, data storage,
5-17

STORE statement, 5-5
Subroutines,

linked from object libraries, 1-4
OSSL library, 4-2
OSSL and UESL libraries contain,

2-7
traceback, 6-9
UESL library, 4-2

Symbol Table, compiler, 3-6
SYSIO external subroutine, C-9
System considerations for OIBOL

programmers, 2-4
System environment, 1-2
System services, 8-1

GETKEY, 5-2
System utilities, 4-2

T

Task,
building a DIBOL task for FMS,

7-5
file, 4-12
executable program, 4-1

TBBIN external subroutine, C-IO
TBDUT external subroutine, C-Il
TBENG external subroutine, C-12
TBFRE external subroutine, C-13
TBGER external subroutine, C-14
TBMOD external subroutine, C-15
TBMUL external subroutine, C-16
TBRET external subroutine, C-17
TBRPL external subroutine, C-18
Terminal,

addressing, 2-4
connected to printer port, DDT,

6-2
emulator, 1-2

Index-6

Terminal driver, ProDispatcher
provides access to, 1-4

Text editor (PROSE), 2-6
Text instructions (CORE Graphics) ,

9-25 to 9-30
TI:, Professional terminal

identification, 2-4
TT:, terminal identification, 2-4

U

UESL, see Subroutine
Universal External Subroutine

Library (UESL), see Subroutine

v

Variables,
examining, 6-8
manipulation of, 6-7
setting, 6-7

Viewing transformation instructions
(CORE Graphics), 9-7 to 9-9

Virtual blocks, 5-9

w

/W, compiler switch, 3-6
Wai t for resume key (routine), 8-19
WRITE statement, 5-5
WRITES statement, 5-5

X

XCALL, used with FMS interface, 7-1

· I~
I:.::

I.~
1-£
Ig>
1..2
1°
IB
I I)

12
Iii:
I

READER'S COMMENTS

Professional Tool Kit
DIBOL User's Guide

Order No. AA-P043C-TK
October 1983

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. Problems with software should be reported
on a Software Performance Report (SPR) form. If you
require a written reply and are eligible to receive
one under SPR service, submit your comments on an SPR
form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

o Assembly language programmer
o Higher-level language programmer

o Occasional programmer (experienced)
o User with little programming experience

o Student programmer
o Non-programmer interested in computer concepts and capabilitie!

Name Date ____________ _

Organization __ ___

Street __ __

City _________________________ State ____________ Zip Code ____________ _
or

Country

- - - -Do Not Tear - Fold Here and Tape - - - - - - - - - - - - - - -

mamaama IIIIII

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POST AGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION

Applied Commercial Engineering MK1-2/H32

Continental Boulevard

Merrimack N.H. 03054

ATTN: Documentation Supervisor

,
I

- ---1

No Postage

Necessary

if Mailed in the

United States

I ,
- - - - Do Not Tear - Fold Here and Tape - - - - - - - - - - - - - - - - - -,

...
,8

